text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the Glove embeddings Step2: Build Simple TF model Step3: Build Index Step4: Instantiate Client Step5: Log Artifacts Step6: Build a NearestNeighbor Search class Step7: Run some simple tests Step8: Deploy Model Step9: Deploy the model and make predictions
<ASSISTANT_TASK:> Python Code: import six import json import numpy as np import pandas as pd import tensorflow as tf import annoy from verta import Client from verta.utils import ModelAPI, TFSavedModel REPRESENTATION_LENGTH = 25 MAX_INPUT_LENGTH = 50 HOST = 'app.verta.ai' DATA_DIR = '' DATA_FILE = DATA_DIR + 'imdb_master.csv' EMBEDDING_FILE = DATA_DIR + 'glove.twitter.27B/glove.twitter.27B.25d.txt' SAVED_MODEL_DIR = 'saved-model' # Load the glove embeddings embeddings_index = dict() with open(EMBEDDING_FILE) as f: for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs embeddings_index['UNK'] = [0.0] * REPRESENTATION_LENGTH print('Loaded %s word vectors.' % len(embeddings_index)) embedding_matrix = np.zeros((len(embeddings_index), REPRESENTATION_LENGTH)) word_to_index = {} ctr = 0 UNK_INDEX = -1 for word, embedding in embeddings_index.items(): if word == 'UNK': UNK_INDEX = ctr word_to_index[word] = ctr embedding_matrix[ctr, :] = embedding ctr += 1 VOCABULARY_SIZE = embedding_matrix.shape[0] reviews = pd.read_csv(DATA_FILE)['review'].values.tolist() input_data = reviews[:1000] input_data[0] import shutil; shutil.rmtree(SAVED_MODEL_DIR, ignore_errors=True) batch_indexes = tf.placeholder(tf.int32, shape=[50], name="input") tf_embedding = tf.Variable( tf.constant(0.0, shape=[VOCABULARY_SIZE, REPRESENTATION_LENGTH]), trainable=False, name="Embedding", ) tf_embedding_placeholder = tf.placeholder( tf.float32, [VOCABULARY_SIZE, REPRESENTATION_LENGTH] ) tf_embedding_init = tf_embedding.assign(tf_embedding_placeholder) embedding_list = tf.nn.embedding_lookup( params=tf_embedding, ids=batch_indexes) concatenated_embedding = tf.concat(embedding_list, -1) embedding = tf.reduce_mean(concatenated_embedding, axis=0, name="output") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) _ = sess.run( tf_embedding_init, feed_dict={ tf_embedding_placeholder: embedding_matrix } ) # save the model for use later tf.saved_model.simple_save( sess, SAVED_MODEL_DIR, {'batch_indexes': batch_indexes}, {'embedding': embedding} ) from annoy import AnnoyIndex model = TFSavedModel(SAVED_MODEL_DIR) t = AnnoyIndex(REPRESENTATION_LENGTH, 'angular') # Length of item vector that will be indexed for i in range(len(reviews)): review = reviews[i] words = review.split()[:MAX_INPUT_LENGTH] batch_indexes = [word_to_index.get(w.lower(), word_to_index['UNK']) for w in words] batch_indexes += [UNK_INDEX] * (MAX_INPUT_LENGTH - len(batch_indexes)) # calculate embedding with TF embedding = model.predict(batch_indexes=batch_indexes)['embedding'] t.add_item(i, embedding) t.build(10) # 10 trees t.save('reviews.ann') client = Client(HOST) client.set_project("TF") client.set_experiment("SavedModel") run = client.set_experiment_run() run.log_artifact("saved_model", SAVED_MODEL_DIR) with open("word_to_index.json", 'w') as f: json.dump(word_to_index, f) run.log_artifact("word_to_index", "word_to_index.json") run.log_artifact("reviews_index", "reviews.ann") class TextNNSearch(object): def __init__(self, artifacts): self.session = tf.Session() tf.compat.v1.saved_model.load(self.session, ['serve'], artifacts['saved_model']) with open(artifacts['word_to_index'], 'r') as f: self.word_to_index = json.load(f) self.index = annoy.AnnoyIndex(REPRESENTATION_LENGTH, "angular") self.index.load(artifacts['reviews_index']) def predict(self, input_strs): predictions = [] for input_str in input_strs: words = input_str.split()[:MAX_INPUT_LENGTH] batch_indexes = [self.word_to_index.get(w.lower(), self.word_to_index['UNK']) for w in words] batch_indexes += [UNK_INDEX] * (MAX_INPUT_LENGTH - len(batch_indexes)) # calculate embedding with TF embedding = self.session.run("output:0", {"input:0": batch_indexes}) # find embedding vectors of ten nearest neighbors predictions.append({ input_str: self.index.get_nns_by_vector(embedding, 10) }) return predictions artifacts = run.fetch_artifacts(["saved_model", "word_to_index", "reviews_index"]) model = TextNNSearch(artifacts) prediction = model.predict(["omg I love this film"]) similar_reviews = [reviews[i] for i in prediction[0].values()[0]] print(similar_reviews[0]) run.log_model( TextNNSearch, custom_modules=[], model_api=ModelAPI(input_data, model.predict(input_data)), artifacts=["saved_model", "word_to_index", "reviews_index"], ) run.log_requirements(["tensorflow", "annoy==1.15.2"]) run # remove reviews with weird bytes bad_reviews = [] for i, review in enumerate(input_data): try: unicode(review, 'utf-8') except UnicodeDecodeError: bad_reviews.append(i) else: pass for i in sorted(bad_reviews, reverse=True): del input_data[i] from verta.deployment import DeployedModel embeddings = DeployedModel(HOST, run.id).predict(input_data[:1000], compress=True) embeddings[0] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If this works, the output should greet you without throwing any errors. If so, that's pretty much all we need so let's get started with some MCMC! Step2: Now we'll load the datapoints and plot them. When you execute the following cell, you should see a plot of the data. If not, make sure that you run the import cell from above first. Step3: As I mentioned previously, it is pretty silly to use MCMC to solve this problem because the maximum likelihood and full posterior probability distribution (under infinitely broad priors) for the slope and intercept of the line are known analytically. Therefore, let's compute what the right answer should be before we even start. The analytic result for the posterior probability distribution is a 2-d Gaussian with mean Step4: We'll save these results for later to compare them to the result computed using MCMC but for now, it's nice to take a look and see what this prediction looks like. To do this, we'll sample 24 slopes and intercepts from this 2d Gaussian and overplot them on the data. Step5: This plot is a visualization of our posterior expectations for the true underlying line that generated these data. We'll reuse this plot a few times later to test the results of our code. Step6: After you're satisfied with your implementation, run the following cell. In this cell, we're checking to see if your code is right. If it is, you'll see a smiling face (☺︎) but if not, you'll get an error message. Step7: If you don't get the ☺︎, go back and try to debug your model. Iterate until your result is correct. Step8: Metropolis(–Hastings) MCMC Step9: As before, here's a simple test for this function. When you run the following cell it will either print a smile or throw an exception. Since the algorithm is random, it might occasionally fail this test so if it fails once, try running it again. If it fails a second time, edit your implementation until the test consistently passes. Step10: Running the Markov Chain Step11: In the next cell, we'll start from this initial guess for the slope and intercept and walk through parameter space (using the transition probability from above) to generate a Markov Chain of samples from the posterior probability. Step12: The results of the MCMC run are stored in the array called chain with dimensions (nstep, 2). These are samples from the posterior probability density for the parameters. We know from above that this should be a Gaussian with mean $\mathbf{w}$ and covariance $\mathbf{V}$ so let's compare the sample mean and covariance to the analytic result that we computed above Step13: If you don't get a smile here, that could mean a few things Step14: This plot is a representation of our contraints on the posterior probability for the slope and intercept conditioned on the data. The 2-D plot shows the full posterior and the two 1-D plots show the constraints for each parameter marginalized over the other. Step15: It is always useful to make a plot like this because it lets you see if your model is capable of describing your data or if there is anything catasrophically wrong. Step16: In the following cell, you need to implement the log-likelihood function for the problem (same as above) Step17: As before, edit your implementation until the following test passes. Step18: Once you're happy with this implementation, we'll define the full probabilistic model including a prior. As before, I've chosen a broad flat prior on alpha and beta but you should feel free to change this. Step19: Now let's run the MCMC for this model. As before, you should tune the parameters of the algorithm until you get a reasonable acceptance fraction ($\sim 25- 40\%$) and the chains seem converged. Step20: Once you're happy with to convergence of your chain, plot the results as a corner plot (compared to the values that I used to generate the dataset; $\alpha = 500$ and $\beta = -2$) and plot the posterior predictive distribution.
<ASSISTANT_TASK:> Python Code: name = "YOUR NAME HERE" print("Hello {0}!".format(name)) %matplotlib inline from matplotlib import rcParams rcParams["savefig.dpi"] = 100 # This makes all the plots a little bigger. import numpy as np import matplotlib.pyplot as plt # Load the data from the CSV file. x, y, yerr = np.loadtxt("linear.csv", delimiter=",", unpack=True) # Plot the data with error bars. plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0) plt.xlim(0, 5); A = np.vander(x, 2) # Take a look at the documentation to see what this function does! ATA = np.dot(A.T, A / yerr[:, None]**2) w = np.linalg.solve(ATA, np.dot(A.T, y / yerr**2)) V = np.linalg.inv(ATA) plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0) for m, b in np.random.multivariate_normal(w, V, size=50): plt.plot(x, m*x + b, "g", alpha=0.1) plt.xlim(0, 5); def lnlike_linear((m, b)): # CODE HERE f = m*x + b return -0.5 * np.sum(((y-f) / yerr) ** 2) p_1, p_2 = (0.0, 0.0), (0.01, 0.01) ll_1, ll_2 = lnlike_linear(p_1), lnlike_linear(p_2) if not np.allclose(ll_2 - ll_1, 535.8707738280209): raise ValueError("It looks like your implementation is wrong!") print("☺︎") def lnprior_linear((m, b)): if not (-10 < m < 10): return -np.inf if not (-10 < b < 10): return -np.inf return 0.0 def lnpost_linear(theta): return lnprior_linear(theta) + lnlike_linear(theta) def metropolis_step(lnpost_function, theta_t, lnpost_t, step_cov): # CODE HERE q = np.random.multivariate_normal(theta_t, step_cov) lp1 = lnpost_function(q) if lp1 - lnpost_t > np.log(np.random.rand()): return q, lp1 return theta_t, lnpost_t lptest = lambda x: -0.5 * np.sum(x**2) th = np.array([0.0]) lp = 0.0 chain = np.array([th for th, lp in (metropolis_step(lptest, th, lp, [[0.3]]) for _ in range(10000))]) if np.abs(np.mean(chain)) > 0.1 or np.abs(np.std(chain) - 1.0) > 0.1: raise ValueError("It looks like your implementation is wrong!") print("☺︎") # Edit these guesses. m_initial = 0.5 b_initial = 3 # You shouldn't need to change this plotting code. plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0) for m, b in np.random.multivariate_normal(w, V, size=24): plt.plot(x, m_initial*x + b_initial, "g", alpha=0.1) plt.xlim(0, 5); # Edit this line to specify the proposal covariance: step = np.diag([1e-4, 1e-4]) # Edit this line to choose the number of steps you want to take: nstep = 50000 # Edit this line to set the number steps to discard as burn-in. nburn = 1000 # You shouldn't need to change any of the lines below here. p0 = np.array([m_initial, b_initial]) lp0 = lnpost_linear(p0) chain = np.empty((nstep, len(p0))) for i in range(len(chain)): p0, lp0 = metropolis_step(lnpost_linear, p0, lp0, step) chain[i] = p0 # Compute the acceptance fraction. acc = float(np.any(np.diff(chain, axis=0), axis=1).sum()) / (len(chain)-1) print("The acceptance fraction was: {0:.3f}".format(acc)) # Plot the traces. fig, axes = plt.subplots(2, 1, figsize=(8, 5), sharex=True) axes[0].plot(chain[:, 0], "k") axes[0].axhline(w[0], color="g", lw=1.5) axes[0].set_ylabel("m") axes[0].axvline(nburn, color="g", alpha=0.5, lw=2) axes[1].plot(chain[:, 1], "k") axes[1].axhline(w[1], color="g", lw=1.5) axes[1].set_ylabel("b") axes[1].axvline(nburn, color="g", alpha=0.5, lw=2) axes[1].set_xlabel("step number") axes[0].set_title("acceptance: {0:.3f}".format(acc)); if np.any(np.abs(np.mean(chain, axis=0)-w)>0.01) or np.any(np.abs(np.cov(chain, rowvar=0)-V)>1e-4): raise ValueError("It looks like your implementation is wrong!") print("☺︎") import triangle triangle.corner(chain[nburn:, :], labels=["m", "b"], truths=w); plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0) for m, b in chain[nburn+np.random.randint(len(chain)-nburn, size=50)]: plt.plot(x, m*x + b, "g", alpha=0.1) plt.xlim(0, 5); # Edit these guesses. alpha_initial = 100 beta_initial = -1 # These are the edges of the distribution (don't change this). a, b = 1.0, 5.0 # Load the data. events = np.loadtxt("poisson.csv") # Make a correctly normalized histogram of the samples. bins = np.linspace(a, b, 12) weights = 1.0 / (bins[1] - bins[0]) + np.zeros(len(events)) plt.hist(events, bins, range=(a, b), histtype="step", color="k", lw=2, weights=weights) # Plot the guess at the rate. xx = np.linspace(a, b, 500) plt.plot(xx, alpha_initial * xx ** beta_initial, "g", lw=2) # Format the figure. plt.ylabel("number") plt.xlabel("x"); sme = np.sum(np.log(events)) K = len(events) def lnlike_poisson((alpha, beta)): if beta == -1.0: norm = alpha * (np.log(a) - np.log(b)) + K * np.log(alpha) else: bp1 = beta+1 norm = alpha / bp1 * (a**bp1-b**bp1) + K * np.log(alpha) return norm + beta * sme p_1, p_2 = (1000.0, -1.), (1500., -2.) ll_1, ll_2 = lnlike_poisson(p_1), lnlike_poisson(p_2) if not np.allclose(ll_2 - ll_1, 337.039175916): raise ValueError("It looks like your implementation is wrong!") print("☺︎") def lnprior_poisson((alpha, beta)): if not (0 < alpha < 1000): return -np.inf if not (-10 < beta < 10): return -np.inf return 0.0 def lnpost_poisson(theta): return lnprior_poisson(theta) + lnlike_poisson(theta) # Edit this line to specify the proposal covariance: step = np.diag([100., 1e-1]) # Edit this line to choose the number of steps you want to take: nstep = 50000 # Edit this line to set the number steps to discard as burn-in. nburn = 1000 # You shouldn't need to change any of the lines below here. p0 = np.array([alpha_initial, beta_initial]) lp0 = lnpost_poisson(p0) chain = np.empty((nstep, len(p0))) for i in range(len(chain)): p0, lp0 = metropolis_step(lnpost_poisson, p0, lp0, step) chain[i] = p0 # Compute the acceptance fraction. acc = float(np.any(np.diff(chain, axis=0), axis=1).sum()) / (len(chain)-1) print("The acceptance fraction was: {0:.3f}".format(acc)) # Plot the traces. fig, axes = plt.subplots(2, 1, figsize=(8, 5), sharex=True) axes[0].plot(chain[:, 0], "k") axes[0].set_ylabel("alpha") axes[0].axvline(nburn, color="g", alpha=0.5, lw=2) axes[1].plot(chain[:, 1], "k") axes[1].set_ylabel("beta") axes[1].axvline(nburn, color="g", alpha=0.5, lw=2) axes[1].set_xlabel("step number") axes[0].set_title("acceptance: {0:.3f}".format(acc)); triangle.corner(chain[nburn:], labels=["alpha", "beta"], truths=[500, -2]); plt.hist(events, bins, range=(a, b), histtype="step", color="k", lw=2, weights=weights) # Plot the guess at the rate. xx = np.linspace(a, b, 500) for alpha, beta in chain[nburn+np.random.randint(len(chain)-nburn, size=50)]: plt.plot(xx, alpha * xx ** beta, "g", alpha=0.1) # Format the figure. plt.ylabel("number") plt.xlabel("x"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's Dive In! Step2: Features (aka columns in data) Step3: Targets (aka labels) Step4: sklearn TIP Step5: <b>Sneak a peek at data (a reminder of your pandas dataframe methods)<b> Step6: <b>Describe the dataset with some summary statitsics<b> Step7: We don't have to do much with the iris dataset. It has no missing values. It's already in numpy arrays and has the correct shape for sklearn. However we could try <b>standardization</b> and/or <b>normalization</b>. (later, in the transforms section, we will show one hot encoding, a preprocessing step) Step8: PRO TIP
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import load_iris iris = load_iris() print(type(iris.data)) print(type(iris.target)) import pandas as pd import numpy as np %matplotlib inline import pandas as pd from sklearn import datasets iris = datasets.load_iris() pd.DataFrame({'feature name': iris.feature_names}) import pandas as pd from sklearn import datasets iris = datasets.load_iris() pd.DataFrame({'target name': iris.target_names}) import pandas as pd from sklearn import datasets iris = datasets.load_iris() # How many data points (rows) x how many features (columns) print(iris.data.shape) print(iris.target.shape) # convert to pandas df (adding real column names) iris.df = pd.DataFrame(iris.data, columns = iris.feature_names) # first few rows iris.df.head() # summary stats iris.df.describe() # Standardization aka scaling from sklearn import preprocessing, datasets # make sure we have iris loaded iris = datasets.load_iris() X, y = iris.data, iris.target # scale it to a gaussian distribution X_scaled = preprocessing.scale(X) # how does it look now pd.DataFrame(X_scaled).head() # let's just confirm our standardization worked (mean is 0 w/ unit variance) pd.DataFrame(X_scaled).describe() # also could: #print(X_scaled.mean(axis = 0)) #print(X_scaled.std(axis = 0)) # Standardization aka scaling from sklearn import preprocessing, datasets # make sure we have iris loaded iris = datasets.load_iris() X, y = iris.data, iris.target # scale it to a gaussian distribution X_norm = preprocessing.normalize(X, norm='l1') # how does it look now pd.DataFrame(X_norm).tail() # let's just confirm our standardization worked (mean is 0 w/ unit variance) pd.DataFrame(X_norm).describe() # cumulative sum of normalized and original data: #print(pd.DataFrame(X_norm.cumsum().reshape(X.shape)).tail()) #print(pd.DataFrame(X).cumsum().tail()) # unit norm (convert to unit vectors) - all row sums should be 1 now X_norm.sum(axis = 1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This code creates a CP model container that allows the use of constraints that are specific to constraint programming or to Step2: Adding the constraints Step3: Here, the special constraint end_before_start() ensures that one interval variable ends before the other starts. Step4: Displaying the solution Step5: To understand the solution found by CP Optimizer to this satisfiability scheduling problem, consider the line Step6: Note on interval variables Step7: The declaration of necessary interval variables is done as follows Step8: Step 3 Step9: To model the cost for starting a task earlier than the preferred starting date, the expression start_of() can be used. Step 4 Step10: Solving a problem consists of finding a value for each decision variable so that all constraints are satisfied. Step 5 Step11: Graphical display of the same result is available with Step12: The overall cost is 5000 and moving will be completed by day 110. Step13: One part of the objective is based on the time it takes to build a house. Step 3 Step14: Step 4 Step15: Step 5 Step16: To model the cost associated with the length of time it takes to build a single house, the interval variable associated with the house is constrained to start at the start of the first task of the house and end at the end of the last task. Step 6 Step17: Step 7 Step18: Each of the tasks requires a particular worker. Step 8 Step19: Step 9 Step20: The cost for building a house is the sum of the tardiness cost and the number of days it takes from start to finish building the house. Step 10 Step21: Step 11 Step22: Chapter 4. Adding calendars to the house building problem Step23: Step 3 Step24: This intensity function is used in creating the task variables for the workers. Step 4 Step25: The tasks of the house building project have precedence constraints that are added to the model. Step 5 Step26: Step 6 Step27: Step 7 Step28: Step 8 Step29: Step 9 Step30: Chapter 5. Using cumulative functions in the house building problem Step31: Step 3 Step32: As the workers are equivalent in this problem, it is better to represent them as one pool of workers instead of as individual workers with no overlap constraints as was done in the earlier examples. Step 4 Step33: Step 5 Step34: Step 6 Step35: Step 7 Step36: Step 8 Step37: Step 9 Step38: Step 10 Step39: Chapter 6. Using alternative resources in the house building problem Step40: Step 3 Step41: Step 4 Step42: Step 5 Step43: The expression presence_of() is used to represent whether a task is performed by a worker. Step44: Step 7 Step45: Step 8 Step46: Step 9 Step47: Chapter 7. Using state functions Step48: Step 3 Step49: Step 4 Step50: Step 5 Step51: Step 6 Step52: Step 7 Step53: Step 8 Step54: Step 9
<ASSISTANT_TASK:> Python Code: import sys from docplex.cp.model import * mdl0 = CpoModel() masonry = mdl0.interval_var(size=35) carpentry = mdl0.interval_var(size=15) plumbing = mdl0.interval_var(size=40) ceiling = mdl0.interval_var(size=15) roofing = mdl0.interval_var(size=5) painting = mdl0.interval_var(size=10) windows = mdl0.interval_var(size=5) facade = mdl0.interval_var(size=10) garden = mdl0.interval_var(size=5) moving = mdl0.interval_var(size=5) mdl0.add( mdl0.end_before_start(masonry, carpentry) ) mdl0.add( mdl0.end_before_start(masonry, plumbing) ) mdl0.add( mdl0.end_before_start(masonry, ceiling) ) mdl0.add( mdl0.end_before_start(carpentry, roofing) ) mdl0.add( mdl0.end_before_start(ceiling, painting) ) mdl0.add( mdl0.end_before_start(roofing, windows) ) mdl0.add( mdl0.end_before_start(roofing, facade) ) mdl0.add( mdl0.end_before_start(plumbing, facade) ) mdl0.add( mdl0.end_before_start(roofing, garden) ) mdl0.add( mdl0.end_before_start(plumbing, garden) ) mdl0.add( mdl0.end_before_start(windows, moving) ) mdl0.add( mdl0.end_before_start(facade, moving) ) mdl0.add( mdl0.end_before_start(garden, moving) ) mdl0.add( mdl0.end_before_start(painting, moving) ) # Solve the model print("\nSolving model....") msol0 = mdl0.solve(TimeLimit=10) print("done") if msol0: var_sol = msol0.get_var_solution(masonry) print("Masonry : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(carpentry) print("Carpentry : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(plumbing) print("Plumbing : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(ceiling) print("Ceiling : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(roofing) print("Roofing : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(painting) print("Painting : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(windows) print("Windows : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(facade) print("Facade : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol0.get_var_solution(moving) print("Moving : {}..{}".format(var_sol.get_start(), var_sol.get_end())) else: print("No solution found") import docplex.cp.utils_visu as visu import matplotlib.pyplot as plt %matplotlib inline #Change the plot size from pylab import rcParams rcParams['figure.figsize'] = 15, 3 if msol0: wt = msol0.get_var_solution(masonry) visu.interval(wt, 'lightblue', 'masonry') wt = msol0.get_var_solution(carpentry) visu.interval(wt, 'lightblue', 'carpentry') wt = msol0.get_var_solution(plumbing) visu.interval(wt, 'lightblue', 'plumbing') wt = msol0.get_var_solution(ceiling) visu.interval(wt, 'lightblue', 'ceiling') wt = msol0.get_var_solution(roofing) visu.interval(wt, 'lightblue', 'roofing') wt = msol0.get_var_solution(painting) visu.interval(wt, 'lightblue', 'painting') wt = msol0.get_var_solution(windows) visu.interval(wt, 'lightblue', 'windows') wt = msol0.get_var_solution(facade) visu.interval(wt, 'lightblue', 'facade') wt = msol0.get_var_solution(moving) visu.interval(wt, 'lightblue', 'moving') visu.show() import sys from docplex.cp.model import * mdl1 = CpoModel() masonry = mdl1.interval_var(size=35) carpentry = mdl1.interval_var(size=15) plumbing = mdl1.interval_var(size=40) ceiling = mdl1.interval_var(size=15) roofing = mdl1.interval_var(size=5) painting = mdl1.interval_var(size=10) windows = mdl1.interval_var(size=5) facade = mdl1.interval_var(size=10) garden = mdl1.interval_var(size=5) moving = mdl1.interval_var(size=5) mdl1.add( mdl1.end_before_start(masonry, carpentry) ) mdl1.add( mdl1.end_before_start(masonry, plumbing) ) mdl1.add( mdl1.end_before_start(masonry, ceiling) ) mdl1.add( mdl1.end_before_start(carpentry, roofing) ) mdl1.add( mdl1.end_before_start(ceiling, painting) ) mdl1.add( mdl1.end_before_start(roofing, windows) ) mdl1.add( mdl1.end_before_start(roofing, facade) ) mdl1.add( mdl1.end_before_start(plumbing, facade) ) mdl1.add( mdl1.end_before_start(roofing, garden) ) mdl1.add( mdl1.end_before_start(plumbing, garden) ) mdl1.add( mdl1.end_before_start(windows, moving) ) mdl1.add( mdl1.end_before_start(facade, moving) ) mdl1.add( mdl1.end_before_start(garden, moving) ) mdl1.add( mdl1.end_before_start(painting, moving) ) obj = mdl1.minimize( 400 * mdl1.max([mdl1.end_of(moving) - 100, 0]) + 200 * mdl1.max([25 - mdl1.start_of(masonry), 0]) + 300 * mdl1.max([75 - mdl1.start_of(carpentry), 0]) + 100 * mdl1.max([75 - mdl1.start_of(ceiling), 0]) ) mdl1.add(obj) # Solve the model print("\nSolving model....") msol1 = mdl1.solve(TimeLimit=20) print("done") if msol1: print("Cost will be " + str(msol1.get_objective_values()[0])) var_sol = msol1.get_var_solution(masonry) print("Masonry : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(carpentry) print("Carpentry : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(plumbing) print("Plumbing : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(ceiling) print("Ceiling : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(roofing) print("Roofing : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(painting) print("Painting : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(windows) print("Windows : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(facade) print("Facade : {}..{}".format(var_sol.get_start(), var_sol.get_end())) var_sol = msol1.get_var_solution(moving) print("Moving : {}..{}".format(var_sol.get_start(), var_sol.get_end())) else: print("No solution found") import docplex.cp.utils_visu as visu import matplotlib.pyplot as plt %matplotlib inline #Change the plot size from pylab import rcParams rcParams['figure.figsize'] = 15, 3 if msol1: wt = msol1.get_var_solution(masonry) visu.interval(wt, 'lightblue', 'masonry') wt = msol1.get_var_solution(carpentry) visu.interval(wt, 'lightblue', 'carpentry') wt = msol1.get_var_solution(plumbing) visu.interval(wt, 'lightblue', 'plumbing') wt = msol1.get_var_solution(ceiling) visu.interval(wt, 'lightblue', 'ceiling') wt = msol1.get_var_solution(roofing) visu.interval(wt, 'lightblue', 'roofing') wt = msol1.get_var_solution(painting) visu.interval(wt, 'lightblue', 'painting') wt = msol1.get_var_solution(windows) visu.interval(wt, 'lightblue', 'windows') wt = msol1.get_var_solution(facade) visu.interval(wt, 'lightblue', 'facade') wt = msol1.get_var_solution(moving) visu.interval(wt, 'lightblue', 'moving') visu.show() NbHouses = 5 WorkerNames = ["Joe", "Jim"] TaskNames = ["masonry", "carpentry", "plumbing", "ceiling", "roofing", "painting", "windows", "facade", "garden", "moving"] Duration = [35, 15, 40, 15, 5, 10, 5, 10, 5, 5] Worker = {"masonry" : "Joe" , "carpentry": "Joe" , "plumbing" : "Jim" , "ceiling" : "Jim" , "roofing" : "Joe" , "painting" : "Jim" , "windows" : "Jim" , "facade" : "Joe" , "garden" : "Joe" , "moving" : "Jim"} ReleaseDate = [ 0, 0, 151, 59, 243] DueDate = [120, 212, 304, 181, 425] Weight = [100.0, 100.0, 100.0, 200.0, 100.0] Precedences = [("masonry", "carpentry"),("masonry", "plumbing"), ("masonry", "ceiling"), ("carpentry", "roofing"), ("ceiling", "painting"), ("roofing", "windows"), ("roofing", "facade"), ("plumbing", "facade"), ("roofing", "garden"), ("plumbing", "garden"), ("windows", "moving"), ("facade", "moving"), ("garden", "moving"), ("painting", "moving")] Houses = range(NbHouses) import sys from docplex.cp.model import * mdl2 = CpoModel() houses = [mdl2.interval_var(start=(ReleaseDate[i], INTERVAL_MAX), name="house"+str(i)) for i in Houses] TaskNames_ids = {} itvs = {} for h in Houses: for i,t in enumerate(TaskNames): _name = str(h)+"_"+str(t) itvs[(h,t)] = mdl2.interval_var(size=Duration[i], name=_name) TaskNames_ids[_name] = i for h in Houses: for p in Precedences: mdl2.add(mdl2.end_before_start(itvs[(h,p[0])], itvs[(h,p[1])]) ) for h in Houses: mdl2.add( mdl2.span(houses[h], [itvs[(h,t)] for t in TaskNames] ) ) transitionTimes = transition_matrix([[int(abs(i - j)) for j in Houses] for i in Houses]) workers = {w : mdl2.sequence_var([ itvs[(h,t)] for h in Houses for t in TaskNames if Worker[t]==w ], types=[h for h in Houses for t in TaskNames if Worker[t]==w ], name="workers_"+w) for w in WorkerNames} for w in WorkerNames: mdl2.add( mdl2.no_overlap(workers[w], transitionTimes) ) # create the obj and add it. mdl2.add( mdl2.minimize( mdl2.sum(Weight[h] * mdl2.max([0, mdl2.end_of(houses[h])-DueDate[h]]) + mdl2.length_of(houses[h]) for h in Houses) ) ) # Solve the model print("\nSolving model....") msol2 = mdl2.solve(FailLimit=30000) print("done") if msol2: print("Cost will be " + str(msol2.get_objective_values()[0])) else: print("No solution found") # Viewing the results of sequencing problems in a Gantt chart # (double click on the gantt to see details) import docplex.cp.utils_visu as visu import matplotlib.pyplot as plt %matplotlib inline #Change the plot size from pylab import rcParams rcParams['figure.figsize'] = 15, 3 def showsequence(msol, s, setup, tp): seq = msol.get_var_solution(s) visu.sequence(name=s.get_name()) vs = seq.get_value() for v in vs: nm = v.get_name() visu.interval(v, tp[TaskNames_ids[nm]], nm) for i in range(len(vs) - 1): end = vs[i].get_end() tp1 = tp[TaskNames_ids[vs[i].get_name()]] tp2 = tp[TaskNames_ids[vs[i + 1].get_name()]] visu.transition(end, end + setup.get_value(tp1, tp2)) if msol2: visu.timeline("Solution for SchedSetup") for w in WorkerNames: types=[h for h in Houses for t in TaskNames if Worker[t]==w] showsequence(msol2, workers[w], transitionTimes, types) visu.show() import sys from docplex.cp.model import * mdl3 = CpoModel() NbHouses = 5; WorkerNames = ["Joe", "Jim" ] TaskNames = ["masonry","carpentry","plumbing","ceiling","roofing","painting","windows","facade","garden","moving"] Duration = [35,15,40,15,5,10,5,10,5,5] Worker = {"masonry":"Joe","carpentry":"Joe","plumbing":"Jim","ceiling":"Jim", "roofing":"Joe","painting":"Jim","windows":"Jim","facade":"Joe", "garden":"Joe","moving":"Jim"} Precedences = { ("masonry","carpentry"),("masonry","plumbing"), ("masonry","ceiling"),("carpentry","roofing"), ("ceiling","painting"),("roofing","windows"), ("roofing","facade"),("plumbing","facade"), ("roofing","garden"),("plumbing","garden"), ("windows","moving"),("facade","moving"), ("garden","moving"),("painting","moving") } Houses = range(NbHouses) Breaks ={ "Joe" : [ (5,14),(19,21),(26,28),(33,35),(40,42),(47,49),(54,56),(61,63), (68,70),(75,77),(82,84),(89,91),(96,98),(103,105),(110,112),(117,119), (124,133),(138,140),(145,147),(152,154),(159,161),(166,168),(173,175), (180,182),(187,189),(194,196),(201,203),(208,210),(215,238),(243,245),(250,252), (257,259),(264,266),(271,273),(278,280),(285,287),(292,294),(299,301), (306,308),(313,315),(320,322),(327,329),(334,336),(341,343),(348,350), (355,357),(362,364),(369,378),(383,385),(390,392),(397,399),(404,406),(411,413), (418,420),(425,427),(432,434),(439,441),(446,448),(453,455),(460,462),(467,469), (474,476),(481,483),(488,490),(495,504),(509,511),(516,518),(523,525),(530,532), (537,539),(544,546),(551,553),(558,560),(565,567),(572,574),(579,602),(607,609), (614,616),(621,623),(628,630),(635,637),(642,644),(649,651),(656,658),(663,665), (670,672),(677,679),(684,686),(691,693),(698,700),(705,707),(712,714), (719,721),(726,728) ], "Jim" : [ (5,7),(12,14),(19,21),(26,42),(47,49),(54,56),(61,63),(68,70),(75,77), (82,84),(89,91),(96,98),(103,105),(110,112),(117,119),(124,126),(131,133), (138,140),(145,147),(152,154),(159,161),(166,168),(173,175),(180,182),(187,189), (194,196),(201,225),(229,231),(236,238),(243,245),(250,252),(257,259), (264,266),(271,273),(278,280),(285,287),(292,294),(299,301),(306,315), (320,322),(327,329),(334,336),(341,343),(348,350),(355,357),(362,364),(369,371), (376,378),(383,385),(390,392),(397,413),(418,420),(425,427),(432,434),(439,441), (446,448),(453,455),(460,462),(467,469),(474,476),(481,483),(488,490),(495,497), (502,504),(509,511),(516,518),(523,525),(530,532),(537,539),(544,546), (551,553),(558,560),(565,581),(586,588),(593,595),(600,602),(607,609), (614,616),(621,623),(628,630),(635,637),(642,644),(649,651),(656,658), (663,665),(670,672),(677,679),(684,686),(691,693),(698,700),(705,707), (712,714),(719,721),(726,728)] } from collections import namedtuple Break = namedtuple('Break', ['start', 'end']) Calendar = {} mymax = max(max(v for k,v in Breaks[w]) for w in WorkerNames) for w in WorkerNames: step = CpoStepFunction() step.set_value(0, mymax, 100) for b in Breaks[w]: t = Break(*b) step.set_value(t.start, t.end, 0) Calendar[w] = step #TaskNames_ids = {} itvs = {} for h in Houses: for i,t in enumerate(TaskNames): _name = str(h) + "_" + str(t) itvs[(h,t)] = mdl3.interval_var(size=Duration[i], intensity=Calendar[Worker[t]], name=_name) for h in Houses: for p in Precedences: mdl3.add( mdl3.end_before_start(itvs[h,p[0]], itvs[h,p[1]]) ) for w in WorkerNames: mdl3.add( mdl3.no_overlap( [itvs[h,t] for h in Houses for t in TaskNames if Worker[t]==w] ) ) for h in Houses: for t in TaskNames: mdl3.add(mdl3.forbid_start(itvs[h,t], Calendar[Worker[t]])) mdl3.add(mdl3.forbid_end (itvs[h,t], Calendar[Worker[t]])) mdl3.add( mdl3.minimize(mdl3.max(mdl3.end_of(itvs[h,"moving"]) for h in Houses))) # Solve the model print("\nSolving model....") msol3 = mdl3.solve(FailLimit=30000) print("done") if msol3: print("Cost will be " + str( msol3.get_objective_values()[0] )) # Allocate tasks to workers tasks = {w : [] for w in WorkerNames} for k,v in Worker.items(): tasks[v].append(k) types = {t : i for i,t in enumerate(TaskNames)} import docplex.cp.utils_visu as visu import matplotlib.pyplot as plt %matplotlib inline #Change the plot size from pylab import rcParams rcParams['figure.figsize'] = 15, 3 visu.timeline('Solution SchedCalendar') for w in WorkerNames: visu.panel() visu.pause(Calendar[w]) visu.sequence(name=w, intervals=[(msol3.get_var_solution(itvs[h,t]), types[t], t) for t in tasks[w] for h in Houses]) visu.show() else: print("No solution found") NbWorkers = 3 NbHouses = 5 TaskNames = {"masonry","carpentry","plumbing", "ceiling","roofing","painting", "windows","facade","garden","moving"} Duration = [35, 15, 40, 15, 5, 10, 5, 10, 5, 5] ReleaseDate = [31, 0, 90, 120, 90] Precedences = [("masonry", "carpentry"), ("masonry", "plumbing"), ("masonry", "ceiling"), ("carpentry", "roofing"), ("ceiling", "painting"), ("roofing", "windows"), ("roofing", "facade"), ("plumbing", "facade"), ("roofing", "garden"), ("plumbing", "garden"), ("windows", "moving"), ("facade", "moving"), ("garden", "moving"), ("painting", "moving")] Houses = range(NbHouses) import sys from docplex.cp.model import * mdl4 = CpoModel() itvs = {} for h in Houses: for i,t in enumerate(TaskNames): itvs[h,t] = mdl4.interval_var(start = [ReleaseDate[h], INTERVAL_MAX], size=Duration[i]) workers_usage = step_at(0, 0) for h in Houses: for t in TaskNames: workers_usage += mdl4.pulse(itvs[h,t],1) cash = step_at(0, 0) for p in Houses: cash += mdl4.step_at(60*p, 30000) for h in Houses: for i,t in enumerate(TaskNames): cash -= mdl4.step_at_start(itvs[h,t], 200*Duration[i]) for h in Houses: for p in Precedences: mdl4.add( mdl4.end_before_start(itvs[h,p[0]], itvs[h,p[1]]) ) mdl4.add( workers_usage <= NbWorkers ) mdl4.add( cash >= 0 ) mdl4.add( mdl4.minimize( mdl4.max( mdl4.end_of(itvs[h,"moving"]) for h in Houses) ) ) # Solve the model print("\nSolving model....") msol4 = mdl4.solve(FailLimit=30000) print("done") if msol4: print("Cost will be " + str( msol4.get_objective_values()[0] )) import docplex.cp.utils_visu as visu import matplotlib.pyplot as plt %matplotlib inline #Change the plot size from pylab import rcParams rcParams['figure.figsize'] = 15, 3 workersF = CpoStepFunction() cashF = CpoStepFunction() for p in range(5): cashF.add_value(60 * p, INT_MAX, 30000) for h in Houses: for i,t in enumerate(TaskNames): itv = msol4.get_var_solution(itvs[h,t]) workersF.add_value(itv.get_start(), itv.get_end(), 1) cashF.add_value(itv.start, INT_MAX, -200 * Duration[i]) visu.timeline('Solution SchedCumul') visu.panel(name="Schedule") for h in Houses: for i,t in enumerate(TaskNames): visu.interval(msol4.get_var_solution(itvs[h,t]), h, t) visu.panel(name="Workers") visu.function(segments=workersF, style='area') visu.panel(name="Cash") visu.function(segments=cashF, style='area', color='gold') visu.show() else: print("No solution found") NbHouses = 5 Deadline = 318 Workers = ["Joe", "Jack", "Jim"] Tasks = ["masonry", "carpentry", "plumbing", "ceiling","roofing", "painting", "windows", "facade","garden", "moving"] Durations = [35, 15, 40, 15, 5, 10, 5, 10, 5, 5] Skills = [("Joe","masonry",9),("Joe","carpentry",7),("Joe","ceiling",5),("Joe","roofing",6), ("Joe","windows",8),("Joe","facade",5),("Joe","garden",5),("Joe","moving",6), ("Jack","masonry",5),("Jack","plumbing",7),("Jack","ceiling",8),("Jack","roofing",7), ("Jack","painting",9),("Jack","facade",5),("Jack","garden",5),("Jim","carpentry",5), ("Jim","painting",6),("Jim","windows",5),("Jim","garden",9),("Jim","moving",8)] Precedences = [("masonry","carpentry"),("masonry","plumbing"),("masonry","ceiling"), ("carpentry","roofing"),("ceiling","painting"),("roofing","windows"), ("roofing","facade"),("plumbing","facade"),("roofing","garden"), ("plumbing","garden"),("windows","moving"),("facade","moving"), ("garden","moving"),("painting","moving") ] Continuities = [("Joe","masonry","carpentry"),("Jack","roofing","facade"), ("Joe","carpentry", "roofing"),("Jim","garden","moving")] nbWorkers = len(Workers) Houses = range(NbHouses) import sys from docplex.cp.model import * mdl5 = CpoModel() tasks = {} wtasks = {} for h in Houses: for i,t in enumerate(Tasks): tasks[(h,t)] = mdl5.interval_var(start=[0,Deadline], size=Durations[i]) for s in Skills: wtasks[(h,s)] = mdl5.interval_var(optional=True) for h in Houses: for p in Precedences: mdl5.add( mdl5.end_before_start(tasks[h,p[0]], tasks[h,p[1]]) ) for h in Houses: for t in Tasks: mdl5.add( mdl5.alternative(tasks[h,t], [wtasks[h,s] for s in Skills if s[1]==t]) ) for h in Houses: for c in Continuities: for (worker1, task1, l1) in Skills: if worker1 == c[0] and task1 == c[1]: for (worker2, task2, l2) in Skills: if worker2 == c[0] and task2 == c[2]: mdl5.add( mdl5.presence_of(wtasks[h,(c[0], task1, l1)]) == mdl5.presence_of(wtasks[h,(c[0], task2, l2)]) ) for w in Workers: mdl5.add( mdl5.no_overlap([wtasks[h,s] for h in Houses for s in Skills if s[0]==w]) ) mdl5.add( mdl5.maximize( mdl5.sum( s[2] * mdl5.presence_of(wtasks[h,s]) for h in Houses for s in Skills) ) ) # Solve the model print("\nSolving model....") msol5 = mdl5.solve(FailLimit=30000) print("done") if msol5: print("Cost will be "+str( msol5.get_objective_values()[0] )) worker_idx = {w : i for i,w in enumerate(Workers)} worker_tasks = [[] for w in range(nbWorkers)] # Tasks assigned to a given worker for h in Houses: for s in Skills: worker = s[0] wt = wtasks[(h,s)] worker_tasks[worker_idx[worker]].append(wt) import docplex.cp.utils_visu as visu import matplotlib.pyplot as plt %matplotlib inline #Change the plot size from pylab import rcParams rcParams['figure.figsize'] = 15, 3 visu.timeline('Solution SchedOptional', 0, Deadline) for i,w in enumerate(Workers): visu.sequence(name=w) for t in worker_tasks[worker_idx[w]]: wt = msol5.get_var_solution(t) if wt.is_present(): #if desc[t].skills[w] == max(desc[t].skills): # Green-like color when task is using the most skilled worker # color = 'lightgreen' #else: # Red-like color when task does not use the most skilled worker # color = 'salmon' color = 'salmon' visu.interval(wt, color, wt.get_name()) visu.show() else: print("No solution found") NbHouses = 5 NbWorkers = 2 AllStates = ["clean", "dirty"] TaskNames = ["masonry","carpentry", "plumbing", "ceiling","roofing","painting","windows","facade","garden","moving"] Duration = [35,15,40,15,5,10,5,10,5,5] States = [("masonry","dirty"),("carpentry","dirty"),("plumbing","clean"), ("ceiling","clean"),("roofing","dirty"),("painting","clean"), ("windows","dirty")] Precedences = [("masonry","carpentry"),("masonry","plumbing"),("masonry","ceiling"), ("carpentry","roofing"),("ceiling","painting"),("roofing","windows"), ("roofing","facade"),("plumbing","facade"),("roofing","garden"), ("plumbing","garden"),("windows","moving"),("facade","moving"), ("garden","moving"),("painting","moving")] Houses = range(NbHouses) import sys from docplex.cp.model import * mdl6 = CpoModel() task = {} for h in Houses: for i,t in enumerate(TaskNames): task[(h,t)] = mdl6.interval_var(size = Duration[i]) workers = step_at(0, 0) for h in Houses: for t in TaskNames: workers += mdl6.pulse(task[h,t], 1) Index = {s : i for i,s in enumerate(AllStates)} ttvalues = [[0, 0], [0, 0]] ttvalues[Index["dirty"]][Index["clean"]] = 1 ttime = transition_matrix(ttvalues, name='TTime') state = { h : state_function(ttime, name="house"+str(h)) for h in Houses} for h in Houses: for p in Precedences: mdl6.add( mdl6.end_before_start(task[h,p[0]], task[h,p[1]]) ) for s in States: mdl6.add( mdl6.always_equal(state[h], task[h,s[0]], Index[s[1]]) ) mdl6.add( workers <= NbWorkers ) mdl6.add(mdl6.minimize( mdl6.max( mdl6.end_of(task[h,"moving"]) for h in Houses ))) # Solve the model print("\nSolving model....") msol6 = mdl6.solve(FailLimit=30000) print("done") if msol6: print("Cost will be " + str( msol6.get_objective_values()[0] )) import docplex.cp.utils_visu as visu import matplotlib.pyplot as plt %matplotlib inline #Change the plot size from pylab import rcParams rcParams['figure.figsize'] = 15, 3 workers_function = CpoStepFunction() for h in Houses: for t in TaskNames: itv = msol6.get_var_solution(task[h,t]) workers_function.add_value(itv.get_start(), itv.get_end(), 1) visu.timeline('Solution SchedState') visu.panel(name="Schedule") for h in Houses: for t in TaskNames: visu.interval(msol6.get_var_solution(task[h,t]), h, t) visu.panel(name="Houses state") for h in Houses: f = state[h] visu.sequence(name=f.get_name(), segments=msol6.get_var_solution(f)) visu.panel(name="Nb of workers") visu.function(segments=workers_function, style='line') visu.show() else: print("No solution found") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Goal Step2: In the block below, we check if we are running this notebook in the CNTK internal test machines by looking for environment variables defined there. We then select the right target device (GPU vs CPU) to test this notebook. In other cases, we use CNTK's default policy to use the best available device (GPU, if available, else CPU). Step3: Data reading Step4: Data reading Step5: <a id='#Model Creation'></a> Step6: Convolution layers incorporate the following key features Step7: Building our CNN models Step8: The first model we build is a simple convolution only network. Here we have two convolutional layers. Since, our task is to detect the 10 digits in the MNIST database, the output of the network should be a vector of length 10, 1 element corresponding to each output class. This is achieved by projecting the output of the last convolutional layer using a dense layer with the output being num_output_classes. We have seen this before with Logistic Regression and MLP where features were mapped to the number of classes in the final layer. Also, note that since we will be using the softmax operation that is combined with the cross entropy loss function during training (see a few cells below), the final dense layer has no activation function associated with it. Step9: Let us create an instance of the model and inspect the different components of the model. z will be used to represent the output of a network. In this model, we use the relu activation function. Note Step10: Understanding the number of learnable parameters in a model is key to deep learning since there is a dependency between the number of parameters and the amount of data one needs to have to train the model. Step11: Understanding Parameters Step12: Next we will need a helper function to perform the model training. First let us create additional helper functions that will be needed to visualize different functions associated with training. Step13: Configure training Step14: <a id='#Run the trainer'></a> Step15: Note, the average test error is very comparable to our training error indicating that our model has good "out of sample" error a.k.a. generalization error. This implies that our model can very effectively deal with previously unseen observations (during the training process). This is key to avoid overfitting. Step16: Evaluation / Prediction Step17: Let us test a small minibatch sample from the test data. Step18: Let us visualize some of the results Step19: Pooling Layer Step20: Typical convolution network Step21: Knowledge Check
<ASSISTANT_TASK:> Python Code: # Figure 1 Image(url= "http://3.bp.blogspot.com/_UpN7DfJA0j4/TJtUBWPk0SI/AAAAAAAAABY/oWPMtmqJn3k/s1600/mnist_originals.png", width=200, height=200) from __future__ import print_function # Use a function definition from future version (say 3.x from 2.7 interpreter) import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import os import sys import time import cntk as C %matplotlib inline # Select the right target device when this notebook is being tested: if 'TEST_DEVICE' in os.environ: if os.environ['TEST_DEVICE'] == 'cpu': C.device.try_set_default_device(C.device.cpu()) else: C.device.try_set_default_device(C.device.gpu(0)) # Test for CNTK version if not C.__version__ == "2.0": raise Exception("this notebook is designed to work with 2.0. Current Version: " + C.__version__) # Ensure we always get the same amount of randomness np.random.seed(0) C.cntk_py.set_fixed_random_seed(1) C.cntk_py.force_deterministic_algorithms() # Define the data dimensions input_dim_model = (1, 28, 28) # images are 28 x 28 with 1 channel of color (gray) input_dim = 28*28 # used by readers to treat input data as a vector num_output_classes = 10 # Read a CTF formatted text (as mentioned above) using the CTF deserializer from a file def create_reader(path, is_training, input_dim, num_label_classes): ctf = C.io.CTFDeserializer(path, C.io.StreamDefs( labels=C.io.StreamDef(field='labels', shape=num_label_classes, is_sparse=False), features=C.io.StreamDef(field='features', shape=input_dim, is_sparse=False))) return C.io.MinibatchSource(ctf, randomize = is_training, max_sweeps = C.io.INFINITELY_REPEAT if is_training else 1) # Ensure the training and test data is available # We search in two locations in the toolkit for the cached MNIST data set. data_found=False # A flag to indicate if train/test data found in local cache for data_dir in [os.path.join("..", "Examples", "Image", "DataSets", "MNIST"), os.path.join("data", "MNIST")]: train_file=os.path.join(data_dir, "Train-28x28_cntk_text.txt") test_file=os.path.join(data_dir, "Test-28x28_cntk_text.txt") if os.path.isfile(train_file) and os.path.isfile(test_file): data_found=True break if not data_found: raise ValueError("Please generate the data by completing Lab1_MNIST_DataLoader") print("Data directory is {0}".format(data_dir)) Image(url="https://www.cntk.ai/jup/cntk103d_conv2d_final.gif", width= 300) # Plot images with strides of 2 and 1 with padding turned on images = [("https://www.cntk.ai/jup/cntk103d_padding_strides.gif" , 'With stride = 2'), ("https://www.cntk.ai/jup/cntk103d_same_padding_no_strides.gif", 'With stride = 1')] for im in images: print(im[1]) display(Image(url=im[0], width=200, height=200)) x = C.input_variable(input_dim_model) y = C.input_variable(num_output_classes) # function to build model # relu error:1.37 # sigmoid error: 2.69 # leaky relu error: 1.26 # tanh error: 1.4 # def create_model(features): # with C.layers.default_options(init=C.glorot_uniform(), activation=C.relu): # #with C.layers.default_options(init=C.glorot_uniform(), activation=C.sigmoid): # #with C.layers.default_options(init=C.glorot_uniform(), activation=C.leaky_relu): # #with C.layers.default_options(init=C.glorot_uniform(), activation=C.tanh): # h = features # h = C.layers.Convolution2D(filter_shape=(5,5), # num_filters=8, # strides=(2,2), # pad=True, name='first_conv')(h) # h = C.layers.Convolution2D(filter_shape=(5,5), # num_filters=16, # strides=(2,2), # pad=True, name='second_conv')(h) # r = C.layers.Dense(num_output_classes, activation=None, name='classify')(h) # return r # average pool # relu error:1.25 # leak relu error: 1.17 # sigmoid error:3.89 # tanh erro:1.47 # def create_model(features): # with C.layers.default_options(init=C.glorot_uniform(), activation=C.leaky_relu): # h = features # h = C.layers.Convolution2D(filter_shape=(5,5), # num_filters=8, # strides=(1,1), # pad=True, name='first_conv')(h) # h = C.layers.AveragePooling(filter_shape=(5,5), # strides=(2,2), name = 'first_avg_pool')(h) # h = C.layers.Convolution2D(filter_shape=(5,5), # num_filters=16, # strides=(1,1), # pad=True, name='second_conv')(h) # h = C.layers.AveragePooling(filter_shape=(5,5), # strides=(2,2), name = 'second_avg_pool')(h) # r = C.layers.Dense(num_output_classes, activation=None, name='classify')(h) # return r # max pool # leaky relu 2*2 2*2 error:1.12 # leaky relu 5*5 5*5 error:1.37 def create_model(features): with C.layers.default_options(init=C.glorot_uniform(), activation=C.leaky_relu): h = features h = C.layers.Convolution2D(filter_shape=(5,5), num_filters=8, strides=(1,1), pad=True, name='first_conv')(h) h = C.layers.MaxPooling(filter_shape=(5,5), strides=(2,2), name = 'first_max_pool')(h) h = C.layers.Convolution2D(filter_shape=(5,5), num_filters=16, strides=(1,1), pad=True, name='second_conv')(h) h = C.layers.MaxPooling(filter_shape=(5,5), strides=(2,2), name = 'second_max_pool')(h) r = C.layers.Dense(num_output_classes, activation=None, name='classify')(h) return r # Create the model z = create_model(x) # Print the output shapes / parameters of different components print("Output Shape of the first convolution layer:", z.first_conv.shape) print("Bias value of the last dense layer:", z.classify.b.value) print("Output Shape of the second convolution layer:", z.second_conv.shape) # Number of parameters in the network C.logging.log_number_of_parameters(z) def create_criterion_function(model, labels): loss = C.cross_entropy_with_softmax(model, labels) errs = C.classification_error(model, labels) return loss, errs # (model, labels) -> (loss, error metric) # Define a utility function to compute the moving average sum. # A more efficient implementation is possible with np.cumsum() function def moving_average(a, w=5): if len(a) < w: return a[:] # Need to send a copy of the array return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)] # Defines a utility that prints the training progress def print_training_progress(trainer, mb, frequency, verbose=1): training_loss = "NA" eval_error = "NA" if mb%frequency == 0: training_loss = trainer.previous_minibatch_loss_average eval_error = trainer.previous_minibatch_evaluation_average if verbose: print ("Minibatch: {0}, Loss: {1:.4f}, Error: {2:.2f}%".format(mb, training_loss, eval_error*100)) return mb, training_loss, eval_error def train_test(train_reader, test_reader, model_func, num_sweeps_to_train_with=10): # Instantiate the model function; x is the input (feature) variable # We will scale the input image pixels within 0-1 range by dividing all input value by 255. model = model_func(x/255) # Instantiate the loss and error function loss, label_error = create_criterion_function(model, y) # Instantiate the trainer object to drive the model training learning_rate = 0.2 lr_schedule = C.learning_rate_schedule(learning_rate, C.UnitType.minibatch) learner = C.sgd(z.parameters, lr_schedule) trainer = C.Trainer(z, (loss, label_error), [learner]) # Initialize the parameters for the trainer minibatch_size = 64 num_samples_per_sweep = 60000 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size # Map the data streams to the input and labels. input_map={ y : train_reader.streams.labels, x : train_reader.streams.features } # Uncomment below for more detailed logging training_progress_output_freq = 500 # Start a timer start = time.time() for i in range(0, int(num_minibatches_to_train)): # Read a mini batch from the training data file data=train_reader.next_minibatch(minibatch_size, input_map=input_map) trainer.train_minibatch(data) print_training_progress(trainer, i, training_progress_output_freq, verbose=1) # Print training time print("Training took {:.1f} sec".format(time.time() - start)) # Test the model test_input_map = { y : test_reader.streams.labels, x : test_reader.streams.features } # Test data for trained model test_minibatch_size = 512 num_samples = 10000 num_minibatches_to_test = num_samples // test_minibatch_size test_result = 0.0 for i in range(num_minibatches_to_test): # We are loading test data in batches specified by test_minibatch_size # Each data point in the minibatch is a MNIST digit image of 784 dimensions # with one pixel per dimension that we will encode / decode with the # trained model. data = test_reader.next_minibatch(test_minibatch_size, input_map=test_input_map) eval_error = trainer.test_minibatch(data) test_result = test_result + eval_error # Average of evaluation errors of all test minibatches print("Average test error: {0:.2f}%".format(test_result*100 / num_minibatches_to_test)) def do_train_test(): global z z = create_model(x) reader_train = create_reader(train_file, True, input_dim, num_output_classes) reader_test = create_reader(test_file, False, input_dim, num_output_classes) train_test(reader_train, reader_test, z) do_train_test() print("Bias value of the last dense layer:", z.classify.b.value) out = C.softmax(z) # Read the data for evaluation reader_eval=create_reader(test_file, False, input_dim, num_output_classes) eval_minibatch_size = 25 eval_input_map = {x: reader_eval.streams.features, y:reader_eval.streams.labels} data = reader_eval.next_minibatch(eval_minibatch_size, input_map=eval_input_map) img_label = data[y].asarray() img_data = data[x].asarray() # reshape img_data to: M x 1 x 28 x 28 to be compatible with model img_data = np.reshape(img_data, (eval_minibatch_size, 1, 28, 28)) predicted_label_prob = [out.eval(img_data[i]) for i in range(len(img_data))] # Find the index with the maximum value for both predicted as well as the ground truth pred = [np.argmax(predicted_label_prob[i]) for i in range(len(predicted_label_prob))] gtlabel = [np.argmax(img_label[i]) for i in range(len(img_label))] print("Label :", gtlabel[:25]) print("Predicted:", pred) # Plot a random image sample_number = 5 plt.imshow(img_data[sample_number].reshape(28,28), cmap="gray_r") plt.axis('off') img_gt, img_pred = gtlabel[sample_number], pred[sample_number] print("Image Label: ", img_pred) # Plot images with strides of 2 and 1 with padding turned on images = [("https://www.cntk.ai/jup/c103d_max_pooling.gif" , 'Max pooling'), ("https://www.cntk.ai/jup/c103d_average_pooling.gif", 'Average pooling')] for im in images: print(im[1]) display(Image(url=im[0], width=200, height=200)) # Modify this model def create_model(features): with C.layers.default_options(init = C.glorot_uniform(), activation = C.relu): h = features h = C.layers.Convolution2D(filter_shape=(5,5), num_filters=8, strides=(2,2), pad=True, name='first_conv')(h) h = C.layers.Convolution2D(filter_shape=(5,5), num_filters=16, strides=(2,2), pad=True, name='second_conv')(h) r = C.layers.Dense(num_output_classes, activation = None, name='classify')(h) return r # do_train_test() import numpy from PIL import Image img = Image.open("MysteryNumberD.bmp").convert("F") imgarr = numpy.asarray(img) imgarr = np.reshape(imgarr,(1,28,28)) np.argmax(out.eval(imgarr)) type(imgarr) np.reshape(imgarr,(1,28,28)).ndim out.eval(np.reshape(imgarr,(1,28,28))) type(img_data[1]) img_data[1].ndim <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read in SERC Flightline & Subset Step2: Stack NIR and VIS bands Step3: Calculate NDVI & Plot Step4: Extract Spectra Using Masks Step5: Function to calculate the mean spectra for reflectance values thresholed by NDVI using numpy.ma Step6: We can test out this function for various NDVI thresholds. We'll test two together, and you can try out different values on your own. Let's look at the average spectra for healthy vegetation (NDVI > 0.6), and for a lower threshold (NDVI < 0.3).
<ASSISTANT_TASK:> Python Code: %matplotlib inline import warnings warnings.filterwarnings('ignore') %load neon_aop_refl_hdf5_functions.py #Define inputs filename = '../data/SERC/hyperspectral/NEON_D02_SERC_DP1_20160807_160559_reflectance.h5' sercRefl, sercRefl_md, wavelengths = h5refl2array(filename) clipExtDict = {} clipExtDict['xMin'] = 367400. clipExtDict['xMax'] = 368100. clipExtDict['yMin'] = 4305750. clipExtDict['yMax'] = 4306350. clipExtent = (clipExtDict['xMin'],clipExtDict['xMax'],clipExtDict['yMin'],clipExtDict['yMax']) clipIndex = calc_clip_index(clipExtDict,sercRefl_md['ext_dict']) sercReflSubset = subset_clean_refl(sercRefl,sercRefl_md,clipIndex) #Select bands to be used in the NDVI calculation ndvi_bands = (58,90) #NIR and VIS (Red) bands #Check the center wavelengths that these bands represent band_width = wavelengths.value[1]-wavelengths.value[0] print('band 58 wavelength range: ' + str(round(wavelengths.value[57]-band_width/2,2)) + '-' + str(round(wavelengths.value[57]+band_width/2,2)) + ' nm') print('band 90 wavelength range: ' + str(round(wavelengths.value[89]-band_width/2,2)) + '-' + str(round(wavelengths.value[89]+band_width/2,2)) + ' nm') #Use the stack_subset_bands function to create a stack of the subsetted red and NIR bands needed to calculate NDVI ndvi_stack = stack_subset_bands(sercRefl,sercRefl_md,ndvi_bands,clipIndex) vis = ndvi_stack[:,:,0].astype(float) nir = ndvi_stack[:,:,1].astype(float) ndvi = np.divide((nir-vis),(nir+vis)) plot_band_array(ndvi,clipExtent,(0,np.max(ndvi)),\ title='SERC Subset NDVI \n (VIS = Band 58, NIR = Band 90)',cmap_title='NDVI',colormap='seismic') import copy ndvi_gtpt6 = copy.copy(ndvi) ndvi_gtpt6[ndvi<0.6] = np.nan #set all pixels with NDVI < 0.6 to nan, keeping only values > 0.6 print('Mean NDVI > 0.6:',round(np.nanmean(ndvi_gtpt6),2)) plot_band_array(ndvi_gtpt6,clipExtent,(0.6,1),title='SERC Subset NDVI > 0.6 \n (VIS = Band 58, NIR = Band 90)', cmap_title='NDVI',colormap='RdYlGn') import numpy.ma as ma def calculate_mean_masked_spectra(reflArray,ndvi,ndvi_threshold,ineq='>'): mean_masked_refl = np.zeros(reflArray.shape[2]) for i in np.arange(reflArray.shape[2]): refl_band = reflArray[:,:,i] if ineq == '>': ndvi_mask = ma.masked_where((ndvi<=ndvi_threshold) | (np.isnan(ndvi)),ndvi) elif ineq == '<': ndvi_mask = ma.masked_where((ndvi>=ndvi_threshold) | (np.isnan(ndvi)),ndvi) else: print('ERROR: Invalid inequality. Enter < or >') masked_refl = ma.MaskedArray(refl_band,mask=ndvi_mask.mask) mean_masked_refl[i] = ma.mean(masked_refl) return mean_masked_refl sercSpectra_ndvi_gtpt6 = calculate_mean_masked_spectra(sercReflSubset,ndvi,0.6) sercSpectra_ndvi_ltpt3 = calculate_mean_masked_spectra(sercReflSubset,ndvi,0.3,ineq='<') import pandas #Remove water vapor band windows & last 10 bands w = copy.copy(wavelengths.value) w[((w >= 1340) & (w <= 1445)) | ((w >= 1790) & (w <= 1955))]=np.nan w[-10:]=np.nan; # the last 10 bands sometimes have noise - best to eliminate nan_ind = np.argwhere(np.isnan(w)) sercSpectra_ndvi_gtpt6[nan_ind] = np.nan sercSpectra_ndvi_ltpt3[nan_ind] = np.nan #Create dataframe with masked NDVI mean spectra sercSpectra_ndvi_df = pandas.DataFrame() sercSpectra_ndvi_df['wavelength'] = w sercSpectra_ndvi_df['mean_refl_ndvi_gtpt6'] = sercSpectra_ndvi_gtpt6 sercSpectra_ndvi_df['mean_refl_ndvi_ltpt3'] = sercSpectra_ndvi_ltpt3 ax = plt.gca(); sercSpectra_ndvi_df.plot(ax=ax,x='wavelength',y='mean_refl_ndvi_gtpt6',color='green', edgecolor='none',kind='scatter',label='NDVI > 0.6',legend=True); sercSpectra_ndvi_df.plot(ax=ax,x='wavelength',y='mean_refl_ndvi_ltpt3',color='red', edgecolor='none',kind='scatter',label='NDVI < 0.3',legend=True); ax.set_title('Mean Spectra of Reflectance Masked by NDVI') ax.set_xlim([np.nanmin(w),np.nanmax(w)]); ax.set_ylim(0,0.45) ax.set_xlabel("Wavelength, nm"); ax.set_ylabel("Reflectance") ax.grid('on'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Data Step3: Burst Variance Analysis Step4: Next we prepare the data for BVA Step5: and call the bva_sigma_E function Step6: Finally, we make a KDE plot of the 2D distribution E_sub_std versus the burst FRET efficiency
<ASSISTANT_TASK:> Python Code: from fretbursts import * sns = init_notebook(apionly=True) # Tweak here matplotlib style import matplotlib as mpl mpl.rcParams['font.sans-serif'].insert(0, 'Arial') mpl.rcParams['font.size'] = 12 %config InlineBackend.figure_format = 'retina' url = 'http://files.figshare.com/2182601/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5' download_file(url, save_dir='./data') full_fname = "./data/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5" d = loader.photon_hdf5(full_fname) loader.alex_apply_period(d) d.calc_bg(bg.exp_fit, time_s=50.1, tail_min_us='auto', F_bg=1.7) d.burst_search(m=10, computefret=False, ph_sel=Ph_sel(Dex='DAem')) d.calc_fret(count_ph=True, corrections=False) ds = d.select_bursts(select_bursts.naa, th1=30, computefret=False) ds1 = ds.select_bursts(select_bursts.size, th1=30, computefret=False) ds_FRET = ds1.select_bursts(select_bursts.S, S1=0.25, S2=0.85, computefret=False) dx=ds_FRET alex_jointplot(dx) def bva_sigma_E(n, bursts, DexAem_mask, out=None): Perform BVA analysis computing std.dev. of E for sub-bursts in each burst. Split each burst in n-photons chunks (sub-bursts), compute E for each sub-burst, then compute std.dev. of E across the sub-bursts. For details on BVA see: - Torella et al. (2011) Biophys. J. doi.org/10.1016/j.bpj.2011.01.066 - Ingargiola et al. (2016) bioRxiv, doi.org/10.1101/039198 Arguments: n (int): number of photons in each sub-burst bursts (Bursts object): burst-data object with indexes relative to the Dex photon stream. DexAem_mask (bool array): mask of A-emitted photons during D-excitation periods. It is a boolean array indexing the array of Dex timestamps (`Ph_sel(Dex='DAem')`). out (None or list): append the result to the passed list. If None, creates a new list. This is useful to accumulate data from different spots in a single list. Returns: E_sub_std (1D array): contains for each burst, the standard deviation of sub-bursts FRET efficiency. Same length of input argument `bursts`. E_sub_std = [] if out is None else out for burst in bursts: E_sub_bursts = [] startlist = range(burst.istart, burst.istop + 2 - n, n) stoplist = [i + n for i in startlist] for start, stop in zip(startlist, stoplist): A_D = DexAem_mask[start:stop].sum() assert stop - start == n E = A_D / n E_sub_bursts.append(E) E_sub_std.append(np.std(E_sub_bursts)) return E_sub_std ph_d = ds_FRET.get_ph_times(ph_sel=Ph_sel(Dex='DAem')) bursts = ds_FRET.mburst[0] bursts_d = bursts.recompute_index_reduce(ph_d) Dex_mask = ds_FRET.get_ph_mask(ph_sel=Ph_sel(Dex='DAem')) DexAem_mask = ds_FRET.get_ph_mask(ph_sel=Ph_sel(Dex='Aem')) DexAem_mask_d = DexAem_mask[Dex_mask] n = 7 E_sub_std = bva_sigma_E(n, bursts_d, DexAem_mask_d) plt.figure(figsize=(4.5, 4.5)) x = np.arange(0,1.01,0.01) y = np.sqrt((x*(1-x))/n) plt.plot(x, y, lw=2, color='k', ls='--') im = sns.kdeplot(ds_FRET.E[0], np.asfarray(E_sub_std), shade=True, cmap='Spectral_r', shade_lowest=False, n_levels=20) plt.xlim(0,1) plt.ylim(0,np.sqrt(0.5**2/7)*2) plt.xlabel('E', fontsize=16) plt.ylabel(r'$\sigma_i$', fontsize=16); plt.text(0.05, 0.95, 'BVA', va='top', fontsize=22, transform=plt.gca().transAxes) plt.text(0.95, 0.95, '# Bursts: %d' % ds_FRET.num_bursts, va='top', ha='right', transform=plt.gca().transAxes) plt.savefig('BVA.png', bbox_inches='tight', dpi=200, transparent=False) x, y = ds_FRET.E[0], np.asfarray(E_sub_std) hist_kws = dict(edgecolor='k', linewidth=0.2, facecolor=sns.color_palette('Spectral_r', 100)[10]) g = sns.JointGrid(x=x, y=y, ratio=3) g.plot_joint(sns.kdeplot, cmap='Spectral_r', shade=True, shade_lowest=False, n_levels=20) g.ax_marg_x.hist(x, bins=np.arange(-0.2, 1.2, 0.025), **hist_kws) g.ax_marg_y.hist(y, bins=50, orientation="horizontal", **hist_kws) x1 = np.arange(0,1.01,0.01) y1 = np.sqrt((x1*(1-x1))/n) plt.plot(x1, y1, lw=2, color='k', ls='--') g.ax_joint.set_xlim(0,1) g.ax_joint.set_ylim(0,np.sqrt(0.5**2/7)*2) g.ax_joint.set_xlabel('E', fontsize=16) g.ax_joint.set_ylabel(r'$\sigma_i$', fontsize=16); g.ax_joint.text(0.05, 0.95, 'BVA', va='top', fontsize=22, transform=g.ax_joint.transAxes) g.ax_joint.text(0.95, 0.95, '# Bursts: %d' % ds_FRET.num_bursts, va='top', ha='right', transform=g.ax_joint.transAxes) plt.savefig('BVA_joint.png', bbox_inches='tight', dpi=200, transparent=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Chemistry Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 1.8. Coupling With Chemical Reactivity Step12: 2. Key Properties --&gt; Software Properties Step13: 2.2. Code Version Step14: 2.3. Code Languages Step15: 3. Key Properties --&gt; Timestep Framework Step16: 3.2. Split Operator Advection Timestep Step17: 3.3. Split Operator Physical Timestep Step18: 3.4. Split Operator Chemistry Timestep Step19: 3.5. Split Operator Alternate Order Step20: 3.6. Integrated Timestep Step21: 3.7. Integrated Scheme Type Step22: 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order Step23: 4.2. Convection Step24: 4.3. Precipitation Step25: 4.4. Emissions Step26: 4.5. Deposition Step27: 4.6. Gas Phase Chemistry Step28: 4.7. Tropospheric Heterogeneous Phase Chemistry Step29: 4.8. Stratospheric Heterogeneous Phase Chemistry Step30: 4.9. Photo Chemistry Step31: 4.10. Aerosols Step32: 5. Key Properties --&gt; Tuning Applied Step33: 5.2. Global Mean Metrics Used Step34: 5.3. Regional Metrics Used Step35: 5.4. Trend Metrics Used Step36: 6. Grid Step37: 6.2. Matches Atmosphere Grid Step38: 7. Grid --&gt; Resolution Step39: 7.2. Canonical Horizontal Resolution Step40: 7.3. Number Of Horizontal Gridpoints Step41: 7.4. Number Of Vertical Levels Step42: 7.5. Is Adaptive Grid Step43: 8. Transport Step44: 8.2. Use Atmospheric Transport Step45: 8.3. Transport Details Step46: 9. Emissions Concentrations Step47: 10. Emissions Concentrations --&gt; Surface Emissions Step48: 10.2. Method Step49: 10.3. Prescribed Climatology Emitted Species Step50: 10.4. Prescribed Spatially Uniform Emitted Species Step51: 10.5. Interactive Emitted Species Step52: 10.6. Other Emitted Species Step53: 11. Emissions Concentrations --&gt; Atmospheric Emissions Step54: 11.2. Method Step55: 11.3. Prescribed Climatology Emitted Species Step56: 11.4. Prescribed Spatially Uniform Emitted Species Step57: 11.5. Interactive Emitted Species Step58: 11.6. Other Emitted Species Step59: 12. Emissions Concentrations --&gt; Concentrations Step60: 12.2. Prescribed Upper Boundary Step61: 13. Gas Phase Chemistry Step62: 13.2. Species Step63: 13.3. Number Of Bimolecular Reactions Step64: 13.4. Number Of Termolecular Reactions Step65: 13.5. Number Of Tropospheric Heterogenous Reactions Step66: 13.6. Number Of Stratospheric Heterogenous Reactions Step67: 13.7. Number Of Advected Species Step68: 13.8. Number Of Steady State Species Step69: 13.9. Interactive Dry Deposition Step70: 13.10. Wet Deposition Step71: 13.11. Wet Oxidation Step72: 14. Stratospheric Heterogeneous Chemistry Step73: 14.2. Gas Phase Species Step74: 14.3. Aerosol Species Step75: 14.4. Number Of Steady State Species Step76: 14.5. Sedimentation Step77: 14.6. Coagulation Step78: 15. Tropospheric Heterogeneous Chemistry Step79: 15.2. Gas Phase Species Step80: 15.3. Aerosol Species Step81: 15.4. Number Of Steady State Species Step82: 15.5. Interactive Dry Deposition Step83: 15.6. Coagulation Step84: 16. Photo Chemistry Step85: 16.2. Number Of Reactions Step86: 17. Photo Chemistry --&gt; Photolysis Step87: 17.2. Environmental Conditions
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'awi', 'sandbox-2', 'atmoschem') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.chemistry_scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/mixing ratio for gas" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.coupling_with_chemical_reactivity') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Operator splitting" # "Integrated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_chemistry_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_alternate_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.turbulence') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.convection') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.emissions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.gas_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.tropospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.stratospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.photo_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.aerosols') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.use_atmospheric_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.transport_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Soil" # "Sea surface" # "Anthropogenic" # "Biomass burning" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Aircraft" # "Biomass burning" # "Lightning" # "Volcanos" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HOx" # "NOy" # "Ox" # "Cly" # "HSOx" # "Bry" # "VOCs" # "isoprene" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_bimolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_termolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_tropospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_stratospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_advected_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_oxidation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Cly" # "Bry" # "NOy" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule))" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.sedimentation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon/soot" # "Polar stratospheric ice" # "Secondary organic aerosols" # "Particulate organic matter" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.number_of_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline (clear sky)" # "Offline (with clouds)" # "Online" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.environmental_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Ahora, ¿qué pasa cuando ese número entero crece mucho?, por ejemplo, si le asignamos 9223372036854775807 Step2: ¿Y si ahora le sumamos 1? Step3: Reales Step4: ¿Y qué pasa si a un entero le sumamos un real? Step5: Operaciones entre reales y enteros Step6: En cambio, si alguno de los números es real Step7: ¿Y si queremos hacer la división entera por más que uno de los números sea real? Step8: Esto cambia en Python 3, donde la / hace la división real (por más que le pases dos números enteros) y la // hace la división entera. Step9: Si bien Python soporta aritmética de complejos, la verdad es que no es uno de los tipos de datos más usados. Sin embargo, es bueno saber que existe. Step10: También se puede crear un boolean a partir de comparar dos números Step11: Incluso, se puede saber fácilmente si un número está dentro de un rango o no. Step12: Muchas formas de imprimir el número 5 Step13: Strings Step15: Además, se pueden armar strings multilínea poniendo tres comillas simples o dobles seguidas Step16: Índices y Slice en string Step17: H | o | l | a | | m | u | n | d | o Step18: H | o | l | a | | m | u | n | d | o Step19: Aunque a veces lo que queremos es una parte del string, no todo Step20: Aunque lo más común es quitar el último carácter, por ejemplo, cuando es un Enter Step21: Ingreso de datos desde teclado Step22: Y para convertirlo como entero Step23: None Step24: if-else Step25: if-elif-else Step26: En cambio, en Python lo podemos un poco más compacto y claro Step27: Como ya dijimos antes, se puede usar el operador in para saber si un elemento se encuentra en una lista Step28: Cualquier tipo de dato se lo puede evaluar como booleano. Step29: short-if
<ASSISTANT_TASK:> Python Code: numero_entero = 5 # Asigno el número 5 a la variable numero_entero print numero_entero # Imprimo el valor que tiene la variable numero_entero print type(numero_entero) # Imprimo el tipo de la variable numero_entero numero_muy_grande = 9223372036854775807 print numero_muy_grande print type(numero_entero) numero_muy_grande += 1 print numero_muy_grande print type(numero_muy_grande) numero_real = 7.5 print numero_real print type(numero_real) print numero_entero + numero_real print type(numero_entero + numero_real) dividendo = 5 divisor = 3 resultado = dividendo / divisor print resultado print type(resultado) divisor = 3.0 resultado = dividendo / divisor print resultado print type(resultado) cociente = dividendo // divisor print "cociente: ", cociente print type(cociente) resto = dividendo % divisor print "resto: ", resto print type(resto) complejo = 5 + 3j print complejo print type(complejo) complejo_cuadrado = complejo ** 2 print '(5+3j)*(5+3j) = 5*5 + 5*3j + 3j*5 + 3j*3j = (25-9) + 30j' print complejo_cuadrado boolean = True print boolean print not boolean print type(boolean) print True or False and True boolean = 5 < 7 print boolean numero = 7 en_rango = 5 < numero < 9 fuera_de_rango = 5 < numero < 6 print 'numero vale {0}'.format(numero) print '5 < numero < 9: {pertenece}'.format(pertenece=en_rango) print '5 < numero < 6: %s' % fuera_de_rango print " %d %i %s %ld %lu %0.4d %4d" % (5, 5, 5, 5, 5, 5, 5) cadena_caracteres = 'Hola mundo' print cadena_caracteres print type(cadena_caracteres) cadena_caracteres = "Y con doble comilla?, de qué tipo es?" print cadena_caracteres print type(cadena_caracteres) cadena_caracteres = y si quiero usar un string que se escriba en varias líneas?. print cadena_caracteres print type(cadena_caracteres) cadena_caracteres = 'Hola mundo' print cadena_caracteres print 'El septimo caracter de la cadena "{0}" es "{1}"'.format(cadena_caracteres, cadena_caracteres[6]) print 'El septimo caracter de la cadena "{0}" es "{1}"'.format(cadena_caracteres, cadena_caracteres[-4]) cadena_caracteres[6] = 'x' print cadena_caracteres[2:8] # Con los dos índices positivos print cadena_caracteres[2:-2] # Con un índice negativo y otro positivo print cadena_caracteres[-8:8] # Con un índice negativo y otro positivo print cadena_caracteres[-8:-2] # Con ambos índices negativos print cadena_caracteres[2:-2:3] # Y salteándose de a dos cadena_caracteres = 'Hola mundo\n' print cadena_caracteres print cadena_caracteres[:-1] print cadena_caracteres[:-5] numero = raw_input('Ingrese un número') print numero print type(numero) numero = int(numero) print numero print type(numero) numero1 = 1 numero2 = 2 if numero1 == numero2: print 'Los números son iguales' print 'Este string se imprime siempre' print 'Ahora cambio el valor de numero2' numero2 = 1 if numero1 == numero2: print 'Los números son iguales' print 'Este string se imprime siempre' numero1 = 1 numero2 = 2 if numero1 == numero2: print 'Los números son iguales' print 132 print 23424 else: print 'Los números son distintos' # Como lo tendríamos que hacer en Pascal o C. if numero1 == numero2: print 'Los dos números son iguales' else: if numero1 > numero2: print 'numero1 es mayor a numero2' else: print 'numero1 es menor a numero2' # Más corto y elegante en Python. if numero1 == numero2: print 'Los dos números son iguales' elif numero1 > numero2: print 'numero1 es mayor a numero2' else: print 'numero1 es menor a numero2' lista_de_numeros = [] if lista_de_numeros: print 'la lista tiene elementos' else: print 'la lista no tiene elementos' if lista_de_numeros: print 'La lista no esta vacía' if False or None or [] or () or {} or 0: print 'Alguna de las anteriores no era falsa' else: print 'Todos los valores anteriores son consideradas como Falso' num = 5 es_par = True if (num % 2 == 0) else False print '5 es par?:', es_par num = 6 es_par = True if (num % 2 == 0) else False print '6 es par?:', es_par nulo = None print nulo print type(nulo) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TensorFlow Hub による転移学習 Step2: ImageNet の分類器 Step3: 1 枚の画像で実行する Step4: バッチの次元を追加し、画像をモデルに入力します。 Step5: 結果は、1001 要素のベクトルのロジットで、画像の各クラスの確率を評価します。 Step6: 推論結果のデコード Step7: シンプルな転移学習 Step8: まず、tf.keras.utils.image_dataset_from_directory を使用して、このデータをディスクの画像データを使ったモデルに読み込みます。これにより、tf.data.Dataset が生成されます。 Step9: flowers データセットには 5 つのクラスがあります。 Step10: 次に、画像モデルに使用される TensorFlow Hub の規則では[0, 1] 範囲の浮動小数点数の入力が期待されるため、tf.keras.layers.Rescaling 前処理レイヤーを使用してこれを達成します。 Step11: 3 番目に、Dataset.prefetch を使って、バッファリングされたプリフェッチで入力パイプラインを終了します。これで、I/O ブロッキングの問題が生じずにディスクからデータを生成することができます。 Step12: 分類器で画像をバッチ処理する Step13: これらの予測が画像とどれくらい整合しているかを確認します。 Step14: 注意 Step15: hub.KerasLayer を使用して、事前トレーニング済みモデルを Keras レイヤーとしてラップし、特徴量抽出器を作成します。trainable=False 引数を使用して変数を凍結し、トレーニングのみが新しい分類器レイヤーを変更できるようにします。 Step16: 特徴量抽出器は、画像ごとに 1280 長のベクトルを返します(この例では、画像バッチサイズは 32 のママになります)。 Step17: 上位の分類レイヤーを接合する Step18: モデルのトレーニング Step19: 次に、Model.fit メソッドを使用して、モデルをトレーニングします。 Step20: エポックごとに指標がどのように変化しているかを表示し、他のスカラー値を追跡するために、TensorBoard を起動します。 Step21: <!-- <img class="tfo-display-only-on-site" src="https Step22: 結果をプロットします Step23: モデルのエクスポート Step24: SavedModel を再読み込みできることと、モデルが同じ結果を出力できることを確認します。
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import time import PIL.Image as Image import matplotlib.pylab as plt import tensorflow as tf import tensorflow_hub as hub import datetime %load_ext tensorboard mobilenet_v2 ="https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4" inception_v3 = "https://tfhub.dev/google/imagenet/inception_v3/classification/5" classifier_model = mobilenet_v2 #@param ["mobilenet_v2", "inception_v3"] {type:"raw"} IMAGE_SHAPE = (224, 224) classifier = tf.keras.Sequential([ hub.KerasLayer(classifier_model, input_shape=IMAGE_SHAPE+(3,)) ]) grace_hopper = tf.keras.utils.get_file('image.jpg','https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg') grace_hopper = Image.open(grace_hopper).resize(IMAGE_SHAPE) grace_hopper grace_hopper = np.array(grace_hopper)/255.0 grace_hopper.shape result = classifier.predict(grace_hopper[np.newaxis, ...]) result.shape predicted_class = tf.math.argmax(result[0], axis=-1) predicted_class labels_path = tf.keras.utils.get_file('ImageNetLabels.txt','https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt') imagenet_labels = np.array(open(labels_path).read().splitlines()) plt.imshow(grace_hopper) plt.axis('off') predicted_class_name = imagenet_labels[predicted_class] _ = plt.title("Prediction: " + predicted_class_name.title()) data_root = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) batch_size = 32 img_height = 224 img_width = 224 train_ds = tf.keras.utils.image_dataset_from_directory( str(data_root), validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size ) val_ds = tf.keras.utils.image_dataset_from_directory( str(data_root), validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size ) class_names = np.array(train_ds.class_names) print(class_names) normalization_layer = tf.keras.layers.Rescaling(1./255) train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) # Where x—images, y—labels. val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) # Where x—images, y—labels. AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break result_batch = classifier.predict(train_ds) predicted_class_names = imagenet_labels[tf.math.argmax(result_batch, axis=-1)] predicted_class_names plt.figure(figsize=(10,9)) plt.subplots_adjust(hspace=0.5) for n in range(30): plt.subplot(6,5,n+1) plt.imshow(image_batch[n]) plt.title(predicted_class_names[n]) plt.axis('off') _ = plt.suptitle("ImageNet predictions") mobilenet_v2 = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4" inception_v3 = "https://tfhub.dev/google/tf2-preview/inception_v3/feature_vector/4" feature_extractor_model = mobilenet_v2 #@param ["mobilenet_v2", "inception_v3"] {type:"raw"} feature_extractor_layer = hub.KerasLayer( feature_extractor_model, input_shape=(224, 224, 3), trainable=False) feature_batch = feature_extractor_layer(image_batch) print(feature_batch.shape) num_classes = len(class_names) model = tf.keras.Sequential([ feature_extractor_layer, tf.keras.layers.Dense(num_classes) ]) model.summary() predictions = model(image_batch) predictions.shape model.compile( optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['acc']) log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=1) # Enable histogram computation for every epoch. NUM_EPOCHS = 10 history = model.fit(train_ds, validation_data=val_ds, epochs=NUM_EPOCHS, callbacks=tensorboard_callback) %tensorboard --logdir logs/fit predicted_batch = model.predict(image_batch) predicted_id = tf.math.argmax(predicted_batch, axis=-1) predicted_label_batch = class_names[predicted_id] print(predicted_label_batch) plt.figure(figsize=(10,9)) plt.subplots_adjust(hspace=0.5) for n in range(30): plt.subplot(6,5,n+1) plt.imshow(image_batch[n]) plt.title(predicted_label_batch[n].title()) plt.axis('off') _ = plt.suptitle("Model predictions") t = time.time() export_path = "/tmp/saved_models/{}".format(int(t)) model.save(export_path) export_path reloaded = tf.keras.models.load_model(export_path) result_batch = model.predict(image_batch) reloaded_result_batch = reloaded.predict(image_batch) abs(reloaded_result_batch - result_batch).max() reloaded_predicted_id = tf.math.argmax(reloaded_result_batch, axis=-1) reloaded_predicted_label_batch = class_names[reloaded_predicted_id] print(reloaded_predicted_label_batch) plt.figure(figsize=(10,9)) plt.subplots_adjust(hspace=0.5) for n in range(30): plt.subplot(6,5,n+1) plt.imshow(image_batch[n]) plt.title(reloaded_predicted_label_batch[n].title()) plt.axis('off') _ = plt.suptitle("Model predictions") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TF-Hub CORD-19 Swivel 임베딩 살펴보기 Step2: 임베딩 분석하기 Step3: 임베딩이 여러 용어의 의미를 성공적으로 포착했음을 알 수 있습니다. 각 단어는 해당 클러스터의 다른 단어와 유사하지만(즉, "coronavirus"는 "SARS" 및 "MERS"와 높은 상관 관계가 있음) 다른 클러스터의 용어와는 다릅니다(즉, "SARS"와 "Spain" 사이의 유사성은 0에 가까움). Step4: 인용 의도 분류자 훈련하기 Step5: 모델 훈련 및 평가하기 Step6: 모델 평가하기 Step7: 특히 정확성이 빠르게 증가하는 동안 손실이 빠르게 감소하는 것을 볼 수 있습니다. 예측이 실제 레이블과 어떻게 관련되는지 확인하기 위해 몇 가지 예를 플롯해 보겠습니다.
<ASSISTANT_TASK:> Python Code: # Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import functools import itertools import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_hub as hub from tqdm import trange # Use the inner product between two embedding vectors as the similarity measure def plot_correlation(labels, features): corr = np.inner(features, features) corr /= np.max(corr) sns.heatmap(corr, xticklabels=labels, yticklabels=labels) # Generate embeddings for some terms queries = [ # Related viruses 'coronavirus', 'SARS', 'MERS', # Regions 'Italy', 'Spain', 'Europe', # Symptoms 'cough', 'fever', 'throat' ] module = hub.load('https://tfhub.dev/tensorflow/cord-19/swivel-128d/3') embeddings = module(queries) plot_correlation(queries, embeddings) builder = tfds.builder(name='scicite') builder.download_and_prepare() train_data, validation_data, test_data = builder.as_dataset( split=('train', 'validation', 'test'), as_supervised=True) #@title Let's take a look at a few labeled examples from the training set NUM_EXAMPLES = 10#@param {type:"integer"} TEXT_FEATURE_NAME = builder.info.supervised_keys[0] LABEL_NAME = builder.info.supervised_keys[1] def label2str(numeric_label): m = builder.info.features[LABEL_NAME].names return m[numeric_label] data = next(iter(train_data.batch(NUM_EXAMPLES))) pd.DataFrame({ TEXT_FEATURE_NAME: [ex.numpy().decode('utf8') for ex in data[0]], LABEL_NAME: [label2str(x) for x in data[1]] }) #@title Hyperparameters { run: "auto" } EMBEDDING = 'https://tfhub.dev/tensorflow/cord-19/swivel-128d/3' #@param {type: "string"} TRAINABLE_MODULE = False #@param {type: "boolean"} hub_layer = hub.KerasLayer(EMBEDDING, input_shape=[], dtype=tf.string, trainable=TRAINABLE_MODULE) model = tf.keras.Sequential() model.add(hub_layer) model.add(tf.keras.layers.Dense(3)) model.summary() model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) EPOCHS = 35#@param {type: "integer"} BATCH_SIZE = 32#@param {type: "integer"} history = model.fit(train_data.shuffle(10000).batch(BATCH_SIZE), epochs=EPOCHS, validation_data=validation_data.batch(BATCH_SIZE), verbose=1) from matplotlib import pyplot as plt def display_training_curves(training, validation, title, subplot): if subplot%10==1: # set up the subplots on the first call plt.subplots(figsize=(10,10), facecolor='#F0F0F0') plt.tight_layout() ax = plt.subplot(subplot) ax.set_facecolor('#F8F8F8') ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.']) display_training_curves(history.history['accuracy'], history.history['val_accuracy'], 'accuracy', 211) display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 212) results = model.evaluate(test_data.batch(512), verbose=2) for name, value in zip(model.metrics_names, results): print('%s: %.3f' % (name, value)) prediction_dataset = next(iter(test_data.batch(20))) prediction_texts = [ex.numpy().decode('utf8') for ex in prediction_dataset[0]] prediction_labels = [label2str(x) for x in prediction_dataset[1]] predictions = [ label2str(x) for x in np.argmax(model.predict(prediction_texts), axis=-1)] pd.DataFrame({ TEXT_FEATURE_NAME: prediction_texts, LABEL_NAME: prediction_labels, 'prediction': predictions }) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Get number of pages for publications Step2: Extract links to publications, from all pages Step3: Keyword extraction, for each publication Step4: Mine titles and abstracts for topics Step5: Save output for D3 word cloud Step6: Having consturcted three project score vectors (without title, with title, both), we sort the projects based on high scores. These are best matching research projects. We display a link to them below. Repeat for each topic.
<ASSISTANT_TASK:> Python Code: #python dom extension functions to get class and other attributes def getAttr(dom,cl,attr='class',el='div'): toreturn=[] divs=dom.getElementsByTagName(el) for div in divs: clarray=div.getAttribute(attr).split(' ') for cli in clarray: if cli==cl: toreturn.append(div) if toreturn!=[]: return toreturn else: return None #open first page, parse html, get number of pages and their links import html5lib import urllib2 url="http://www.research.lancs.ac.uk/portal/en/organisations/energy-lancaster/publications.html" aResp = urllib2.urlopen(url) t = aResp.read() dom = html5lib.parse(t, treebuilder="dom") links=getAttr(dom,'portal_navigator_paging',el='span')[0].childNodes nr_of_pages=int([i for i in links if i.nodeType==1][::-1][0].childNodes[0].childNodes[0].nodeValue)-1 #create publist array publist=[] #parse publications links on all pages for pagenr in range(nr_of_pages): aResp = urllib2.urlopen(url+'?page='+str(pagenr)) t = aResp.read() dom = html5lib.parse(t, treebuilder="dom") #get html list htmlpublist=dom.getElementsByTagName('ol') #extract pub links for i in htmlpublist[0].childNodes: if i.nodeType==1: if i.childNodes[0].nodeType==1: j=i.childNodes[1].childNodes[0].childNodes[0] if j.nodeType==1: publist.append(j.getAttribute('href')) print 'finished page',pagenr print len(publist),'publications associated with Energy Lancaster' #create dictionary pubdict={i:{"url":i} for i in publist} for r in range(len(publist)): pub=publist[r] aResp = urllib2.urlopen(pub) t = aResp.read() dom = html5lib.parse(t, treebuilder="dom") #get keywords from pub page keywords=getAttr(dom,'keywords',el='ul') if keywords: pubdict[pub]['keywords']=[i.childNodes[0].childNodes[0].nodeValue for i in keywords[0].getElementsByTagName('a')] #get title from pub page title=getAttr(dom,'title',el='h2') if title: pubdict[pub]['title']=title[0].childNodes[0].childNodes[0].nodeValue abstract=getAttr(dom,'rendering_researchoutput_abstractportal',el='div') if abstract: pubdict[pub]['abstract']=abstract[0].childNodes[0].childNodes[0].nodeValue if r%10==0: print 'processed',r,'publications...' #save parsed data import json file('pubdict.json','w').write(json.dumps(pubdict)) #load if saved previously #pubdict=json.loads(file('pubdict.json','r').read()) #import dependencies import pandas as pd from textblob import TextBlob #import spacy #nlp = spacy.load('en') #run once if you need to download nltk corpora, igonre otherwise import nltk nltk.download() #get topical nouns for title and abstract using natural language processing for i in range(len(pubdict.keys())): if 'title' in pubdict[pubdict.keys()[i]]: if text: text=pubdict[pubdict.keys()[i]]['title'] #get topical nouns with textblob blob1 = TextBlob(text) keywords1=blob1.noun_phrases #get topical nouns with spacy blob2 = nlp(text) keywords2=[] for k in blob2.noun_chunks: keywords2.append(str(k).decode('utf8').replace(u'\n',' ')) #create unified, unique set of topical nouns, called keywords here keywords=list(set(keywords2).union(set(keywords1))) pubdict[pubdict.keys()[i]]['title-nlp']=keywords if 'abstract' in pubdict[pubdict.keys()[i]]: text=pubdict[pubdict.keys()[i]]['abstract'] if text: #get topical nouns with textblob blob1 = TextBlob(text) keywords1=blob1.noun_phrases #get topical nouns with spacy blob2 = nlp(text) keywords2=[] for k in blob2.noun_chunks: keywords2.append(str(k).decode('utf8').replace(u'\n',' ')) #create unified, unique set of topical nouns, called keywords here keywords=list(set(keywords2).union(set(keywords1))) pubdict[pubdict.keys()[i]]['abstract-nlp']=keywords print i,',', #save parsed data file('pubdict2.json','w').write(json.dumps(pubdict)) #load if saved previously #pubdict=json.loads(file('pubdict2.json','r').read()) keywords=[j for i in pubdict if 'keywords' in pubdict[i] if pubdict[i]['keywords'] for j in pubdict[i]['keywords']] titles=[pubdict[i]['title'] for i in pubdict if 'title' in pubdict[i] if pubdict[i]['title']] abstracts=[pubdict[i]['abstract'] for i in pubdict if 'abstract' in pubdict[i] if pubdict[i]['abstract']] title_nlp=[j for i in pubdict if 'title-nlp' in pubdict[i] if pubdict[i]['title-nlp'] for j in pubdict[i]['title-nlp']] abstract_nlp=[j for i in pubdict if 'abstract-nlp' in pubdict[i] if pubdict[i]['abstract-nlp'] for j in pubdict[i]['abstract-nlp']] kt=keywords+titles kta=kt+abstracts kt_nlp=keywords+title_nlp kta_nlp=kt+abstract_nlp file('keywords.json','w').write(json.dumps(keywords)) file('titles.json','w').write(json.dumps(titles)) file('abstracts.json','w').write(json.dumps(abstracts)) file('kt.json','w').write(json.dumps(kt)) file('kta.json','w').write(json.dumps(kta)) file('kt_nlp.json','w').write(json.dumps(kt_nlp)) file('kta_nlp.json','w').write(json.dumps(kta_nlp)) import re def convert(name): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1 \2', name) return re.sub('([a-z0-9])([A-Z])', r'\1 \2', s1).lower() kc=[convert(i) for i in keywords] file('kc.json','w').write(json.dumps(kc)) ks=[j for i in kc for j in i.split()] file('ks.json','w').write(json.dumps(ks)) ktc_nlp=[convert(i) for i in kt_nlp] file('ktc_nlp.json','w').write(json.dumps(ktc_nlp)) kts_nlp=[j for i in ktc_nlp for j in i.split()] file('kts_nlp.json','w').write(json.dumps(kts_nlp)) ktac_nlp=[convert(i) for i in kta_nlp] file('ktac_nlp.json','w').write(json.dumps(ktac_nlp)) ktas_nlp=[j for i in ktac_nlp for j in i.split()] file('ktas_nlp.json','w').write(json.dumps(ktas_nlp)) for topic_id in range(1,len(topics)): #select topic #topic_id=1 #use title usetitle=True verbose=False #initiate global DFs DF=pd.DataFrame() projects1={} projects2={} projects12={} #specify depth (n most relevant projects) depth=100 #get topical nouns with textblob blob1 = TextBlob(topics[topic_id].decode('utf8')) keywords1=blob1.noun_phrases #get topical nouns with spacy blob2 = nlp(topics[topic_id].decode('utf8')) keywords2=[] for i in blob2.noun_chunks: keywords2.append(str(i).replace(u'\n',' ')) #create unified, unique set of topical nouns, called keywords here keywords=list(set(keywords2).union(set(keywords1))) print '----- started processing topic ', topic_id,'-----' print 'topic keywords are:', for keyword in keywords: print keyword+', ', print ' ' #construct search query from title and keywords, the cycle through the keywords for keyword in keywords: if usetitle: if verbose: print 'query for <'+title+keyword+'>' query=repr(title+keyword).replace(' ','+')[2:-1] u0='http://gtr.rcuk.ac.uk/search/project/csv?term=' u1='&selectedFacets=&fields=' u2='pro.gr,pro.t,pro.a,pro.orcidId,per.fn,per.on,per.sn,' u3='per.fnsn,per.orcidId,per.org.n,per.pro.t,per.pro.abs,pub.t,pub.a,pub.orcidId,org.n,org.orcidId,' u4='acp.t,acp.d,acp.i,acp.oid,kf.d,kf.oid,is.t,is.d,is.oid,col.i,col.d,col.c,col.dept,col.org,col.pc,col.pic,' u5='col.oid,ip.t,ip.d,ip.i,ip.oid,pol.i,pol.gt,pol.in,pol.oid,prod.t,prod.d,prod.i,prod.oid,rtp.t,rtp.d,rtp.i,' u6='rtp.oid,rdm.t,rdm.d,rdm.i,rdm.oid,stp.t,stp.d,stp.i,stp.oid,so.t,so.d,so.cn,so.i,so.oid,ff.t,ff.d,ff.c,' u7='ff.org,ff.dept,ff.oid,dis.t,dis.d,dis.i,dis.oid' u8='&type=&fetchSize=50' u9='&selectedSortableField=score&selectedSortOrder=DESC' url=u0+query+u8+u9 #query RCUK GtR API df=pd.read_csv(url,nrows=depth) #record scores df['score'] = depth-df.index df=df.set_index('ProjectReference') DF=pd.concat([DF,df]) for i in df.index: if i not in projects12:projects12[i]=0 projects12[i]+=df.loc[i]['score']**2 if i not in projects1:projects1[i]=0 projects1[i]+=df.loc[i]['score']**2 if verbose: print 'query for <'+keyword+'>' query=repr(keyword).replace(' ','+')[2:-1] u0='http://gtr.rcuk.ac.uk/search/project/csv?term=' u1='&selectedFacets=&fields=' u2='pro.gr,pro.t,pro.a,pro.orcidId,per.fn,per.on,per.sn,' u3='per.fnsn,per.orcidId,per.org.n,per.pro.t,per.pro.abs,pub.t,pub.a,pub.orcidId,org.n,org.orcidId,' u4='acp.t,acp.d,acp.i,acp.oid,kf.d,kf.oid,is.t,is.d,is.oid,col.i,col.d,col.c,col.dept,col.org,col.pc,col.pic,' u5='col.oid,ip.t,ip.d,ip.i,ip.oid,pol.i,pol.gt,pol.in,pol.oid,prod.t,prod.d,prod.i,prod.oid,rtp.t,rtp.d,rtp.i,' u6='rtp.oid,rdm.t,rdm.d,rdm.i,rdm.oid,stp.t,stp.d,stp.i,stp.oid,so.t,so.d,so.cn,so.i,so.oid,ff.t,ff.d,ff.c,' u7='ff.org,ff.dept,ff.oid,dis.t,dis.d,dis.i,dis.oid' u8='&type=&fetchSize=50' u9='&selectedSortableField=score&selectedSortOrder=DESC' url=u0+query+u8+u9 #query RCUK GtR API df=pd.read_csv(url,nrows=depth) #record scores df['score'] = depth-df.index df=df.set_index('ProjectReference') DF=pd.concat([DF,df]) for i in df.index: if i not in projects12:projects12[i]=0 projects12[i]+=df.loc[i]['score']**2 if i not in projects2:projects2[i]=0 projects2[i]+=df.loc[i]['score']**2 print '----- finished topic ', topic_id,'-----' print ' ' ###### SORTING ####### #select top projects #sort project vectors top=30 import operator sorted_projects1=sorted(projects1.items(), key=operator.itemgetter(1))[::-1][:30] sorted_projects2=sorted(projects2.items(), key=operator.itemgetter(1))[::-1][:30] sorted_projects12=sorted(projects12.items(), key=operator.itemgetter(1))[::-1][:30] #record scores in sorted vector in a master vector projects={} for i in range(len(sorted_projects1)): if sorted_projects1[i][0] not in projects:projects[sorted_projects1[i][0]]=0 projects[sorted_projects1[i][0]]+=(top-i)**2 for i in range(len(sorted_projects2)): if sorted_projects2[i][0] not in projects:projects[sorted_projects2[i][0]]=0 projects[sorted_projects2[i][0]]+=(top-i)**2 for i in range(len(sorted_projects12)): if sorted_projects12[i][0] not in projects:projects[sorted_projects12[i][0]]=0 projects[sorted_projects12[i][0]]+=(top-i)**2 #save final vector of most relevant projects sorted_projects=sorted(projects.items(), key=operator.itemgetter(1))[::-1][:30] ###### DISPLAY ######## #print resulting links to projects for i in range(len(sorted_projects)): print str(i+1)+'.',DF.loc[sorted_projects[i][0]][u'GTRProjectUrl'].values[0],\ DF.loc[sorted_projects[i][0]][u'PIFirstName'].values[0],\ DF.loc[sorted_projects[i][0]][u'PISurname'].values[0]+'|',\ DF.loc[sorted_projects[i][0]][u'LeadROName'].values[0]+'|',\ DF.loc[sorted_projects[i][0]][u'StartDate'].values[0][6:]+'-'+\ DF.loc[sorted_projects[i][0]][u'EndDate'].values[0][6:]+'|',\ str(int(DF.loc[sorted_projects[i][0]][u'AwardPounds'].values[0])/1000)+'k' print DF.loc[sorted_projects[i][0]][u'Title'].values[0]+'\n' #print '----------------------------------------------------' <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: I have chosen Lima-Peru, the city I was born. Step2: 2) What's the current wind speed? How much warmer does it feel than it actually is? Step3: 3) The first daily forecast is the forecast for today. For the place you decided on up above, how much of the moon is currently visible?
<ASSISTANT_TASK:> Python Code: import requests response = requests.get("https://api.forecast.io/forecast/5afc9217d7eea82824254c951b1b57f4/-12.0561,-77.0268") weather_Lima = response.json() weather_Lima.keys() print(weather_Lima['timezone']) print("Longitude:", weather_Lima['longitude'], "Latitude:", weather_Lima['latitude']) weather_Lima['currently'].keys() Lima_windspeed = weather_Lima['currently']['windSpeed'] print("The wind in Lima is currently blowing at", Lima_windspeed, "mph") weather = weather_Lima['currently'] Temperature = int(weather['apparentTemperature']) - int(weather['temperature']) if Temperature == 0: print("The temperature feels exactly as expected:", weather['temperature'], "degrees Fahrenheit") elif Temperature > 0: print("It feels", Temperature, "degrees Fahrenheit warmer than the actual temperature:", weather['temperature'], "degrees Fahrenheit") else: print("It feels", Temperature, "degrees Fahrenheit colder than the actual temperature:", weather['temperature'], "degrees Fahrenheit") weather_Lima['daily'].keys() weather_Lima['daily']['data'] for moon in weather_Lima['daily']['data']: moon_forecast = moon['moonPhase'] break if moon_forecast == 0: print("Tomorrow is New Moon.") elif moon_forecast > .75: print("Tomorrow the Moon is in a Waning Crescent phase.") elif moon_forecast == .75: print("Tomorrow is last quarter Moon.") elif moon_forecast > .5: print("Tommorrow the Moon is in a Waning Gibbous phase.") elif moon_forecast == .5: print("Tommorrow is Full Moon.") elif moon_forecast > .25: print("Tommorrow the Moon is a Waxing Gibbous phase.") elif moon_forecast == .25: print("Tommorrow is first Quarter Moon.") elif moon_forecast > 0: print("Tommorrow the Moon is in a Waxing Crescent phase. This is the first phase after New Moon.") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part One Step2: In its first test, the new Alien Blaster 9000 takes 10 shots and hits 2 targets. Taking into account this data, what is the posterior distribution of $x$ for this missile? What is the value in the posterior with the highest probability, also known as the MAP? Step4: Now suppose the new ultra-secret Alien Blaster 10K is being tested. In a press conference, an EDF general reports that the new design has been tested twice, taking two shots during each test. The results of the test are confidential, so the general won't say how many targets were, but they report Step5: If we start with a uniform prior, we can see what the likelihood function looks like Step6: A tie is most likely if they are both terrible shots or both very good. Step7: The posterior mean and MAP are lower than in the prior. Step8: So if we learn that the new design is "consistent", it is more likely to be consistently bad (in this case). Step9: The answer is a value drawn from the mixture of the two distributions. Step10: Here's what the distribution looks like. Step11: The mean should be near 3.7. We can run this simulation more efficiently using NumPy. First we generate a sample of xs Step12: Then for each x we generate a k Step13: And the results look similar. Step14: One more way to do the same thing is to make a meta-Pmf, which contains the two binomial Pmf objects Step15: Here's how we can draw samples from the meta-Pmf Step16: And here are the results, one more time Step17: This result, which we have estimated three ways, is a predictive distribution, based on our uncertainty about x. Step19: Exercise
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division % matplotlib inline import warnings warnings.filterwarnings('ignore') import numpy as np from thinkbayes2 import Hist, Pmf, Cdf, Suite, Beta import thinkplot prior = Beta(2, 3) thinkplot.Pdf(prior.MakePmf()) prior.Mean() posterior = Beta(3, 2) posterior.Update((2, 8)) posterior.MAP() from scipy import stats class AlienBlaster(Suite): def Likelihood(self, data, hypo): Computes the likeliood of data under hypo. data: number of shots they took hypo: probability of a hit, p n = data x = hypo # specific version for n=2 shots likes = [x**4, (1-x)**4, (2*x*(1-x))**2] # general version for any n shots likes = [stats.binom.pmf(k, n, x)**2 for k in range(n+1)] return np.sum(likes) pmf = Beta(1, 1).MakePmf() blaster = AlienBlaster(pmf) blaster.Update(2) thinkplot.Pdf(blaster) pmf = Beta(2, 3).MakePmf() blaster = AlienBlaster(pmf) blaster.Update(2) thinkplot.Pdf(blaster) prior.Mean(), blaster.Mean() prior.MAP(), blaster.MAP() k = 3 n = 10 x1 = 0.3 x2 = 0.4 0.3 * stats.binom.pmf(k, n, x1) + 0.7 * stats.binom.pmf(k, n, x2) def flip(p): return np.random.random() < p def simulate_shots(n, p): return np.random.binomial(n, p) ks = [] for i in range(1000): if flip(0.3): k = simulate_shots(n, x1) else: k = simulate_shots(n, x2) ks.append(k) pmf = Pmf(ks) thinkplot.Hist(pmf) len(ks), np.mean(ks) xs = np.random.choice(a=[x1, x2], p=[0.3, 0.7], size=1000) Hist(xs) ks = np.random.binomial(n, xs) pmf = Pmf(ks) thinkplot.Hist(pmf) np.mean(ks) from thinkbayes2 import MakeBinomialPmf pmf1 = MakeBinomialPmf(n, x1) pmf2 = MakeBinomialPmf(n, x2) metapmf = Pmf({pmf1:0.3, pmf2:0.7}) metapmf.Print() ks = [metapmf.Random().Random() for _ in range(1000)] pmf = Pmf(ks) thinkplot.Hist(pmf) np.mean(ks) from thinkbayes2 import MakeMixture mix = MakeMixture(metapmf) thinkplot.Hist(mix) mix.Mean() from thinkbayes2 import Beta beta = Beta(2, 3).MakePmf() metapmf = Pmf() thinkplot.hist(beta) for x, prob in beta.Items(): nested_pmf = MakeBinomialPmf(n, x) metapmf[nested_pmf] = prob mix = MakeMixture(metapmf) thinkplot.hist(mix) mix.Mean() beta.Mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fully-Connected Neural Nets Step4: Affine layer Step5: Affine layer Step6: ReLU layer Step7: ReLU layer Step8: "Sandwich" layers Step9: Loss layers Step10: Two-layer network Step11: Solver Step12: Multilayer network Step13: As another sanity check, make sure you can overfit a small dataset of 50 images. First we will try a three-layer network with 100 units in each hidden layer. You will need to tweak the learning rate and initialization scale, but you should be able to overfit and achieve 100% training accuracy within 20 epochs. Step14: Now try to use a five-layer network with 100 units on each layer to overfit 50 training examples. Again you will have to adjust the learning rate and weight initialization, but you should be able to achieve 100% training accuracy within 20 epochs. Step15: Inline question Step16: Once you have done so, run the following to train a six-layer network with both SGD and SGD+momentum. You should see the SGD+momentum update rule converge faster. Step17: RMSProp and Adam Step18: Once you have debugged your RMSProp and Adam implementations, run the following to train a pair of deep networks using these new update rules Step19: Train a good model! Step20: Test you model
<ASSISTANT_TASK:> Python Code: # As usual, a bit of setup from __future__ import absolute_import, division, print_function import time import numpy as np import matplotlib.pyplot as plt import seaborn from cs231n.classifiers.fc_net import * from cs231n.data_utils import get_CIFAR10_data from cs231n.gradient_check import eval_numerical_gradient from cs231n.gradient_check import eval_numerical_gradient_array from cs231n.solver import Solver %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading external modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def rel_error(x, y): returns relative error return np.max(np.abs(x - y) \ / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) # Load the (preprocessed) CIFAR10 data. data = get_CIFAR10_data() for k, v in data.iteritems(): print('{}: {}'.format(k, v.shape)) # Test the affine_forward function num_inputs = 2 input_shape = (4, 5, 6) output_dim = 3 input_size = num_inputs * np.prod(input_shape) weight_size = output_dim * np.prod(input_shape) x = np.linspace(-0.1, 0.5, num=input_size).reshape( num_inputs, *input_shape) w = np.linspace(-0.2, 0.3, num=weight_size).reshape( np.prod(input_shape), output_dim) b = np.linspace(-0.3, 0.1, num=output_dim) out, _ = affine_forward(x, w, b) correct_out = np.array([[ 1.49834967, 1.70660132, 1.91485297], [ 3.25553199, 3.5141327, 3.77273342]]) # Compare your output with ours. The error should be around 1e-9. print('Testing affine_forward function:') print('difference:', rel_error(out, correct_out)) # Test the affine_backward function x = np.random.randn(10, 2, 3) w = np.random.randn(6, 5) b = np.random.randn(5) dout = np.random.randn(10, 5) dx_num = eval_numerical_gradient_array( lambda x: affine_forward(x, w, b)[0], x, dout) dw_num = eval_numerical_gradient_array( lambda w: affine_forward(x, w, b)[0], w, dout) db_num = eval_numerical_gradient_array( lambda b: affine_forward(x, w, b)[0], b, dout) _, cache = affine_forward(x, w, b) dx, dw, db = affine_backward(dout, cache) # The error should be around 1e-10 print('Testing affine_backward function:') print('dx error:', rel_error(dx_num, dx)) print('dw error:', rel_error(dw_num, dw)) print('db error:', rel_error(db_num, db)) # Test the relu_forward function x = np.linspace(-0.5, 0.5, num=12).reshape(3, 4) out, _ = relu_forward(x) correct_out = np.array( [[ 0., 0., 0., 0., ], [ 0., 0., 0.04545455, 0.13636364,], [ 0.22727273, 0.31818182, 0.40909091, 0.5, ]]) # Compare your output with ours. The error should be around 1e-8 print('Testing relu_forward function:') print('difference:', rel_error(out, correct_out)) x = np.random.randn(10, 10) dout = np.random.randn(*x.shape) dx_num = eval_numerical_gradient_array( lambda x: relu_forward(x)[0], x, dout) _, cache = relu_forward(x) dx = relu_backward(dout, cache) # The error should be around 1e-12 print('Testing relu_backward function:') print('dx error:', rel_error(dx_num, dx)) from cs231n.layer_utils import affine_relu_forward, \ affine_relu_backward x = np.random.randn(2, 3, 4) w = np.random.randn(12, 10) b = np.random.randn(10) dout = np.random.randn(2, 10) out, cache = affine_relu_forward(x, w, b) dx, dw, db = affine_relu_backward(dout, cache) dx_num = eval_numerical_gradient_array( lambda x: affine_relu_forward(x, w, b)[0], x, dout) dw_num = eval_numerical_gradient_array( lambda w: affine_relu_forward(x, w, b)[0], w, dout) db_num = eval_numerical_gradient_array( lambda b: affine_relu_forward(x, w, b)[0], b, dout) print('Testing affine_relu_forward:') print('dx error:', rel_error(dx_num, dx)) print('dw error:', rel_error(dw_num, dw)) print('db error:', rel_error(db_num, db)) num_classes, num_inputs = 10, 50 x = 0.001 * np.random.randn(num_inputs, num_classes) y = np.random.randint(num_classes, size=num_inputs) dx_num = eval_numerical_gradient( lambda x: svm_loss(x, y)[0], x, verbose=False) loss, dx = svm_loss(x, y) # Test svm_loss function. Loss should be around 9 and dx error # should be 1e-9 print('Testing svm_loss...') print('loss:', loss) print('dx error:', rel_error(dx_num, dx)) dx_num = eval_numerical_gradient( lambda x: softmax_loss(x, y)[0], x, verbose=False) loss, dx = softmax_loss(x, y) # Test softmax_loss function. Loss should be 2.3 and dx error # should be 1e-8 print('\nTesting softmax_loss:') print('loss:', loss) print('dx error:', rel_error(dx_num, dx)) N, D, H, C = 3, 5, 50, 7 X = np.random.randn(N, D) y = np.random.randint(C, size=N) std = 1e-2 model = TwoLayerNet(input_dim=D, hidden_dim=H, num_classes=C, weight_scale=std) print('Testing initialization ... ') W1_std = abs(model.params['W1'].std() - std) b1 = model.params['b1'] W2_std = abs(model.params['W2'].std() - std) b2 = model.params['b2'] assert W1_std < std / 10, 'First layer weights do not seem right' assert np.all(b1 == 0), 'First layer biases do not seem right' assert W2_std < std / 10, 'Second layer weights do not seem right' assert np.all(b2 == 0), 'Second layer biases do not seem right' print('Testing test-time forward pass ... ') model.params['W1'] = np.linspace(-0.7, 0.3, num=D*H).reshape(D, H) model.params['b1'] = np.linspace(-0.1, 0.9, num=H) model.params['W2'] = np.linspace(-0.3, 0.4, num=H*C).reshape(H, C) model.params['b2'] = np.linspace(-0.9, 0.1, num=C) X = np.linspace(-5.5, 4.5, num=N*D).reshape(D, N).T scores = model.loss(X) correct_scores = np.asarray( [[11.53165108, 12.2917344, 13.05181771, 13.81190102, 14.57198434, 15.33206765, 16.09215096], [12.05769098, 12.74614105, 13.43459113, 14.1230412, 14.81149128, 15.49994135, 16.18839143], [12.58373087, 13.20054771, 13.81736455, 14.43418138, 15.05099822, 15.66781506, 16.2846319 ]]) scores_diff = np.abs(scores - correct_scores).sum() assert scores_diff < 1e-6, 'Problem with test-time forward pass' print('Testing training loss (no regularization)') y = np.asarray([0, 5, 1]) loss, grads = model.loss(X, y) correct_loss = 3.4702243556 assert abs(loss - correct_loss) < 1e-10, \ 'Problem with training-time loss' model.reg = 1.0 loss, grads = model.loss(X, y) correct_loss = 26.5948426952 assert abs(loss - correct_loss) < 1e-10, \ 'Problem with regularization loss' for reg in [0.0, 0.7]: print('Running numeric gradient check with reg =', reg) model.reg = reg loss, grads = model.loss(X, y) for name in sorted(grads): f = lambda _: model.loss(X, y)[0] grad_num = eval_numerical_gradient( f, model.params[name], verbose=False) print('{} relative error: {:.2e}'.format( name, rel_error(grad_num, grads[name]))) model = TwoLayerNet() solver = None ################################################################### # TODO: Use a Solver instance to train a TwoLayerNet that # # achieves at least 50% accuracy on the validation set. # ################################################################### input_dim = 3 * 32 * 32 num_classes = 10 hidden_dim = 200 weight_scale = np.sqrt(2.0 / data['X_train'].shape[0]) reg = 1 learning_rate = 2e-3 lr_decay = 0.7 batch_size = 250 num_epochs = 5 print_every = 100 verbose = True model = TwoLayerNet( input_dim=input_dim, hidden_dim=hidden_dim, num_classes=num_classes, weight_scale=weight_scale, reg=reg, ) solver = Solver( model, data, update_rule='sgd', optim_config={'learning_rate': learning_rate}, lr_decay=lr_decay, batch_size=batch_size, num_epochs=num_epochs, print_every=print_every, verbose=verbose, ) solver.train() ################################################################### # END OF YOUR CODE # ################################################################### # Run this cell to visualize training loss and train / val accuracy plt.subplot(2, 1, 1) plt.title('Training loss') plt.plot(solver.loss_history, 'o') plt.xlabel('Iteration') plt.subplot(2, 1, 2) plt.title('Accuracy') plt.plot(solver.train_acc_history, '-o', label='train') plt.plot(solver.val_acc_history, '-o', label='val') plt.plot([0.5] * len(solver.val_acc_history), 'k--') plt.xlabel('Epoch') plt.legend(loc='lower right') plt.gcf().set_size_inches(15, 12) plt.show() N, D, H1, H2, C = 2, 15, 20, 30, 10 X = np.random.randn(N, D) y = np.random.randint(C, size=(N,)) ### [djn] ===> # model = FullyConnectedNet([H1, H2], input_dim=D, num_classes=C, # reg=reg, weight_scale=5e-2, # dtype=np.float64) # scores = model.loss(X) # print('scores:', scores) ### [djn] <=== for reg in [0, 3.14, 30000]: print('Running check with reg =', reg) model = FullyConnectedNet([H1, H2], input_dim=D, num_classes=C, #loss_func='softmax', reg=reg, weight_scale=5e-2, dtype=np.float64) loss, grads = model.loss(X, y) print('Initial loss:', loss) for name in sorted(grads): f = lambda _: model.loss(X, y)[0] grad_num = eval_numerical_gradient( f, model.params[name], verbose=False, h=1e-5) print('{} relative error: {:.2e}'.format( name, rel_error(grad_num, grads[name]))) # TODO: Use a three-layer Net to overfit 50 training examples. num_train = 50 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } weight_scale = np.sqrt(2.0 / num_train) #1e-2 learning_rate = 1e-3 #1e-4 model = FullyConnectedNet([100, 100], #loss_func='svm', weight_scale=weight_scale, dtype=np.float64) solver = Solver(model, small_data, print_every=10, num_epochs=20, batch_size=25, update_rule='sgd', optim_config={ 'learning_rate': learning_rate, } ) solver.train() plt.plot(solver.loss_history, 'o') plt.title('Training loss history') plt.xlabel('Iteration') plt.ylabel('Training loss') plt.show() # TODO: Use a five-layer Net to overfit 50 training examples. num_train = 50 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } learning_rate = 1e-4 weight_scale = np.sqrt(2.0 / num_train) # 1e-5 model = FullyConnectedNet([100, 100, 100, 100], #loss_func='svm', weight_scale=weight_scale, dtype=np.float64) solver = Solver(model, small_data, print_every=10, num_epochs=20, batch_size=25, update_rule='sgd', optim_config={ 'learning_rate': learning_rate, } ) solver.train() plt.plot(solver.loss_history, 'o') plt.title('Training loss history') plt.xlabel('Iteration') plt.ylabel('Training loss') plt.show() from cs231n.optim import sgd_momentum N, D = 4, 5 w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) v = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) config = {'learning_rate': 1e-3, 'velocity': v} next_w, _ = sgd_momentum(w, dw, config=config) expected_next_w = np.asarray([ [ 0.1406, 0.20738947, 0.27417895, 0.34096842, 0.40775789], [ 0.47454737, 0.54133684, 0.60812632, 0.67491579, 0.74170526], [ 0.80849474, 0.87528421, 0.94207368, 1.00886316, 1.07565263], [ 1.14244211, 1.20923158, 1.27602105, 1.34281053, 1.4096 ]]) expected_velocity = np.asarray([ [ 0.5406, 0.55475789, 0.56891579, 0.58307368, 0.59723158], [ 0.61138947, 0.62554737, 0.63970526, 0.65386316, 0.66802105], [ 0.68217895, 0.69633684, 0.71049474, 0.72465263, 0.73881053], [ 0.75296842, 0.76712632, 0.78128421, 0.79544211, 0.8096 ]]) print('next_w error:', rel_error(next_w, expected_next_w)) print('velocity error: ', rel_error(expected_velocity, config['velocity'])) num_train = 4000 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } solvers = {} for update_rule in ['sgd', 'sgd_momentum']: print('running with ', update_rule) model = FullyConnectedNet([100, 100, 100, 100, 100], weight_scale=5e-2) solver = Solver(model, small_data, num_epochs=5, batch_size=100, update_rule=update_rule, optim_config={ 'learning_rate': 1e-2, }, verbose=True) solvers[update_rule] = solver solver.train() print('') plt.subplot(3, 1, 1) plt.title('Training loss') plt.xlabel('Iteration') plt.subplot(3, 1, 2) plt.title('Training accuracy') plt.xlabel('Epoch') plt.subplot(3, 1, 3) plt.title('Validation accuracy') plt.xlabel('Epoch') for update_rule, solver in solvers.iteritems(): plt.subplot(3, 1, 1) plt.plot(solver.loss_history, 'o', label=update_rule) plt.subplot(3, 1, 2) plt.plot(solver.train_acc_history, '-o', label=update_rule) plt.subplot(3, 1, 3) plt.plot(solver.val_acc_history, '-o', label=update_rule) for i in [1, 2, 3]: plt.subplot(3, 1, i) plt.legend(loc='upper center', ncol=4) plt.gcf().set_size_inches(15, 15) plt.show() # Test RMSProp implementation; you should see errors less than 1e-7 from cs231n.optim import rmsprop N, D = 4, 5 w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) cache = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) config = {'learning_rate': 1e-2, 'cache': cache} next_w, _ = rmsprop(w, dw, config=config) expected_next_w = np.asarray([ [-0.39223849, -0.34037513, -0.28849239, -0.23659121, -0.18467247], [-0.132737, -0.08078555, -0.02881884, 0.02316247, 0.07515774], [ 0.12716641, 0.17918792, 0.23122175, 0.28326742, 0.33532447], [ 0.38739248, 0.43947102, 0.49155973, 0.54365823, 0.59576619]]) expected_cache = np.asarray([ [ 0.5976, 0.6126277, 0.6277108, 0.64284931, 0.65804321], [ 0.67329252, 0.68859723, 0.70395734, 0.71937285, 0.73484377], [ 0.75037008, 0.7659518, 0.78158892, 0.79728144, 0.81302936], [ 0.82883269, 0.84469141, 0.86060554, 0.87657507, 0.8926 ]]) print('next_w error:', rel_error(expected_next_w, next_w)) print('cache error:', rel_error(expected_cache, config['cache'])) # Test Adam implementation; you should see errors around 1e-7 or less from cs231n.optim import adam N, D = 4, 5 w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) m = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) v = np.linspace(0.7, 0.5, num=N*D).reshape(N, D) config = {'learning_rate': 1e-2, 'm': m, 'v': v, 't': 5} next_w, _ = adam(w, dw, config=config) expected_next_w = np.asarray([ [-0.40094747, -0.34836187, -0.29577703, -0.24319299, -0.19060977], [-0.1380274, -0.08544591, -0.03286534, 0.01971428, 0.0722929], [ 0.1248705, 0.17744702, 0.23002243, 0.28259667, 0.33516969], [ 0.38774145, 0.44031188, 0.49288093, 0.54544852, 0.59801459]]) expected_v = np.asarray([ [ 0.69966, 0.68908382, 0.67851319, 0.66794809, 0.65738853,], [ 0.64683452, 0.63628604, 0.6257431, 0.61520571, 0.60467385,], [ 0.59414753, 0.58362676, 0.57311152, 0.56260183, 0.55209767,], [ 0.54159906, 0.53110598, 0.52061845, 0.51013645, 0.49966, ]]) expected_m = np.asarray([ [ 0.48, 0.49947368, 0.51894737, 0.53842105, 0.55789474], [ 0.57736842, 0.59684211, 0.61631579, 0.63578947, 0.65526316], [ 0.67473684, 0.69421053, 0.71368421, 0.73315789, 0.75263158], [ 0.77210526, 0.79157895, 0.81105263, 0.83052632, 0.85 ]]) print('next_w error: ', rel_error(expected_next_w, next_w)) print('v error: ', rel_error(expected_v, config['v'])) print('m error: ', rel_error(expected_m, config['m'])) learning_rates = {'rmsprop': 1e-4, 'adam': 1e-3} for update_rule in ['adam', 'rmsprop']: print('running with ', update_rule) model = FullyConnectedNet([100, 100, 100, 100, 100], weight_scale=5e-2) solver = Solver(model, small_data, num_epochs=5, batch_size=100, update_rule=update_rule, optim_config={ 'learning_rate': learning_rates[update_rule] }, verbose=True) solvers[update_rule] = solver solver.train() print plt.subplot(3, 1, 1) plt.title('Training loss') plt.xlabel('Iteration') plt.subplot(3, 1, 2) plt.title('Training accuracy') plt.xlabel('Epoch') plt.subplot(3, 1, 3) plt.title('Validation accuracy') plt.xlabel('Epoch') for update_rule, solver in solvers.iteritems(): plt.subplot(3, 1, 1) plt.plot(solver.loss_history, 'o', label=update_rule) plt.subplot(3, 1, 2) plt.plot(solver.train_acc_history, '-o', label=update_rule) plt.subplot(3, 1, 3) plt.plot(solver.val_acc_history, '-o', label=update_rule) for i in [1, 2, 3]: plt.subplot(3, 1, i) plt.legend(loc='upper center', ncol=4) plt.gcf().set_size_inches(15, 15) plt.show() best_model = None ################################################################### # TODO: Train the best FullyConnectedNet that you can on # # CIFAR-10. You might batch normalization and dropout useful. # # Store your best model in the best_model variable. # ###################################################################input_dim = 3 * 32 * 32 input_dim = 3 * 32 * 32 num_classes = 10 #hidden_dims = [100, 200, 50, 50, 50] weight_scale = np.sqrt(2.0 / data['X_train'].shape[0]) #reg = 1 #learning_rate = 2e-3 #lr_decay = 0.7 model = FullyConnectedNet( input_dim=3 * 32 * 32, num_classes=10, # hidden_dims=[450, 400, 300, 200], #hidden_dims=[200, 400, 100, 100], loss_func='softmax', dropout=0.95, #0.95, use_batchnorm=True, weight_scale=weight_scale, reg=1e-4, #1e-4, ) solver = Solver( model, data, update_rule='adam', optim_config={'learning_rate': 2e-3}, lr_decay=0.7, batch_size=250, num_epochs=5, print_every=100, verbose=True, ) solver.train() # visualize training loss and train / val accuracy plt.subplot(2, 1, 1) plt.title('Training loss') plt.plot(solver.loss_history, 'o') plt.xlabel('Iteration') plt.subplot(2, 1, 2) plt.title('Accuracy') plt.plot(solver.train_acc_history, '-o', label='train') plt.plot(solver.val_acc_history, '-o', label='val') plt.plot([0.5] * len(solver.val_acc_history), 'k--') plt.xlabel('Epoch') plt.legend(loc='lower right') plt.gcf().set_size_inches(15, 12) plt.show() ################################################################### # END OF YOUR CODE # ################################################################### best_model = model X_test = data['X_test'] X_val = data['X_val'] y_test = data['y_test'] y_val = data['y_val'] y_test_pred = np.argmax(best_model.loss(X_test), axis=1) y_val_pred = np.argmax(best_model.loss(X_val), axis=1) print('Validation set accuracy:', (y_val_pred == y_val).mean()) print('Test set accuracy:', (y_test_pred == y_test).mean()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create an Authenticated Client Step2: And then we create a client for the Genomics API. Step3: Send a request to the Genomics API Step4: Next, we'll send this request to the Genomics API by calling the request.execute() method. Step5: You will need enable the Genomics API for your project if you have not done so previously. Click on this link to enable the API in your project. Step6: Success! We can see the name of the specified Dataset and a few other pieces of metadata. Step7: Get read bases for a sample at specific a position Step8: Once we have the read group set ID, lookup the reads at the position in which we are interested. Step9: And we print out the results. Step10: Get variants for a sample at specific a position Step11: Once we have the call set ID, lookup the variants that overlap the position in which we are interested. Step12: And we print out the results.
<ASSISTANT_TASK:> Python Code: !pip install --upgrade google-api-python-client from httplib2 import Http from oauth2client.client import GoogleCredentials credentials = GoogleCredentials.get_application_default() http = Http() credentials.authorize(http) from apiclient.discovery import build genomics = build('genomics', 'v1', http=http) request = genomics.datasets().get(datasetId='10473108253681171589') response = request.execute() for entry in response.items(): print "%s => %s" % entry dataset_id = '10473108253681171589' # This is the 1000 Genomes dataset ID sample = 'NA12872' reference_name = '22' reference_position = 51003835 request = genomics.readgroupsets().search( body={'datasetIds': [dataset_id], 'name': sample}, fields='readGroupSets(id)') read_group_sets = request.execute().get('readGroupSets', []) if len(read_group_sets) != 1: raise Exception('Searching for %s didn\'t return ' 'the right number of read group sets' % sample) read_group_set_id = read_group_sets[0]['id'] request = genomics.reads().search( body={'readGroupSetIds': [read_group_set_id], 'referenceName': reference_name, 'start': reference_position, 'end': reference_position + 1, 'pageSize': 1024}, fields='alignments(alignment,alignedSequence)') reads = request.execute().get('alignments', []) # Note: This is simplistic - the cigar should be considered for real code bases = [read['alignedSequence'][ reference_position - int(read['alignment']['position']['position'])] for read in reads] print '%s bases on %s at %d are' % (sample, reference_name, reference_position) from collections import Counter for base, count in Counter(bases).items(): print '%s: %s' % (base, count) request = genomics.callsets().search( body={'variantSetIds': [dataset_id], 'name': sample}, fields='callSets(id)') resp = request.execute() call_sets = resp.get('callSets', []) if len(call_sets) != 1: raise Exception('Searching for %s didn\'t return ' 'the right number of call sets' % sample) call_set_id = call_sets[0]['id'] request = genomics.variants().search( body={'callSetIds': [call_set_id], 'referenceName': reference_name, 'start': reference_position, 'end': reference_position + 1}, fields='variants(names,referenceBases,alternateBases,calls(genotype))') variant = request.execute().get('variants', [])[0] variant_name = variant['names'][0] genotype = [variant['referenceBases'] if g == 0 else variant['alternateBases'][g - 1] for g in variant['calls'][0]['genotype']] print 'the called genotype is %s for %s' % (','.join(genotype), variant_name) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We can take a look at the data set with the following plot Step2: The Geometry Class Step3: Geometry is the main class that will Cache things like distance/adjacency, Step4: At class instantiation you can also pass parameters & methods for Step5: Inputing your Data to Geometry Step6: Computing geometric matrices Step7: Note that by defualt this is pass-by-reference pass copy=True to get a copied version. Step8: Dictionary valued geometry Step9: Embedding Step10: Now we will go through the API with the different embedding functions. Step11: You have to select an output dimnension. Since the data lie on an S-curve Step12: Once you have your geometry selected, each method works fairly simply. Step13: for visualization purposes we're going to use the 1st and 3rd Step14: Visualization Step15: Riemannian Metric Step16: We can then estimate the R metric on each embedding with Step17: We can use the cover_plotter module included in megaman to Step18: we can also do this with the spectral embedding Step19: Best parameters for large data sets Step20: cyflann also has the option to use 'kdtrees' which has parameters
<ASSISTANT_TASK:> Python Code: import numpy as np from sklearn import datasets N = 1000 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) %matplotlib inline import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X[:,0], X[:,1], X[:,2], c=color, s = 1) plt.title('orignal data') plt.show() from megaman.geometry import Geometry geom = Geometry() radius = 1.0 adjacency_method = 'cyflann' adjacency_kwds = {'radius':radius} # ignore distances above this radius affinity_method = 'gaussian' affinity_kwds = {'radius':radius} # A = exp(-||x - y||/radius^2) laplacian_method = 'geometric' laplacian_kwds = {'scaling_epps':radius} # scaling ensures convergence to Laplace-Beltrami operator geom = Geometry(adjacency_method=adjacency_method, adjacency_kwds=adjacency_kwds, affinity_method=affinity_method, affinity_kwds=affinity_kwds, laplacian_method=laplacian_method, laplacian_kwds=laplacian_kwds) geom.set_data_matrix(X) adjacency_matrix = geom.compute_adjacency_matrix() from scipy.sparse.csgraph import connected_components rad1 = 0.2 # compute an adjacency matrix with a radius geom.adjacency_kwds = {'radius':rad1} adjacency_matrix = geom.compute_adjacency_matrix() # compute the corresponding affinity matrix geom.affinity_kwds = {'radius':rad1} affinity_matrix = geom.compute_affinity_matrix({'radius':rad1}) (number_connected_components, labels) = connected_components(affinity_matrix) print(number_connected_components) rad1 = 0.5 # compute an adjacency matrix with a radius geom.adjacency_kwds = {'radius':rad1} adjacency_matrix = geom.compute_adjacency_matrix() # compute the corresponding affinity matrix geom.affinity_kwds = {'radius':rad1} affinity_matrix = geom.compute_affinity_matrix({'radius':rad1}) (number_connected_components, labels) = connected_components(affinity_matrix) print(number_connected_components) radius = 0.5 adjacency_method = 'cyflann' adjacency_kwds = {'radius':radius} affinity_method = 'gaussian' affinity_kwds = {'radius':radius} laplacian_method = 'symmetricnormalized' laplacian_kwds = {'scaling_epps':radius} geom = {'adjacency_method':adjacency_method, 'adjacency_kwds':adjacency_kwds, 'affinity_method':affinity_method, 'affinity_kwds':affinity_kwds, 'laplacian_method':laplacian_method, 'laplacian_kwds':laplacian_kwds} geom = Geometry(adjacency_method=adjacency_method, adjacency_kwds=adjacency_kwds, affinity_method=affinity_method, affinity_kwds=affinity_kwds, laplacian_method=laplacian_method, laplacian_kwds=laplacian_kwds) geom.set_data_matrix(X) from megaman.embedding import (Isomap, LocallyLinearEmbedding, LTSA, SpectralEmbedding) n_components = 2 spectral = SpectralEmbedding(n_components=3, eigen_solver='amg',geom=geom, drop_first=False) # use 3 for spectral embed_spectral = spectral.fit_transform(X) ltsa = LTSA(n_components=n_components,eigen_solver='arpack',geom=geom) embed_ltsa = ltsa.fit_transform(X) lle = LocallyLinearEmbedding(n_components=n_components, eigen_solver='arpack',geom=geom) embed_lle = lle.fit_transform(X) isomap = Isomap(n_components=n_components, eigen_solver='arpack',geom=geom) embed_isomap = isomap.fit_transform(X) embed_spectral = embed_spectral[:, [0, 2]] * 50.0 tmp = embed_spectral[:, 1].copy() embed_spectral[:,1] = embed_spectral[:,0].copy() embed_spectral[:,0] = tmp.copy() tmp = None fig, axes = plt.subplots(nrows=2, ncols=2) axes[0, 0].scatter(embed_ltsa[:, 0], embed_ltsa[:, 1], s=1, c=color) axes[0, 0].set_title('LTSA') axes[0, 1].scatter(embed_lle[:, 0], embed_lle[:, 1], s=1, c=color) axes[0, 1].set_title('LLE') axes[1, 0].scatter(embed_isomap[:, 0], embed_isomap[:, 1], s=1, c=color) axes[1, 0].set_title('Isomap') axes[1, 1].scatter(embed_spectral[:, 0], embed_spectral[:, 1], s=1, c=color) axes[1, 1].set_title('Spectral Embedding') plt.show() geom.laplacian_method = 'geometric' geom.laplacian_kwds = {'scaling_epps':radius} # scaling ensures convergence to Laplace-Beltrami operator laplacian_matrix = geom.compute_laplacian_matrix() from megaman.geometry.rmetric import RiemannMetric rmetric_spectral = RiemannMetric(embed_spectral, geom.laplacian_matrix) H_spectral = rmetric_spectral.get_dual_rmetric() rmetric_ltsa = RiemannMetric(embed_ltsa, geom.laplacian_matrix) H_ltsa = rmetric_ltsa.get_dual_rmetric() rmetric_lle = RiemannMetric(embed_lle, geom.laplacian_matrix) H_lle = rmetric_lle.get_dual_rmetric() rmetric_isomap = RiemannMetric(embed_isomap, geom.laplacian_matrix) H_isomap = rmetric_isomap.get_dual_rmetric() from megaman.utils.covar_plotter import plot_cov_ellipse n_plot = 50 rng = np.random.RandomState(8675309) sample_points = rng.choice(range(N), n_plot, replace = False) f, ax = plt.subplots() ax.scatter(embed_isomap[:, 0], embed_isomap[:, 1], s = 1) ax.set_aspect('equal') # if an ellipse is a circle no distortion occured. for i in range(n_plot): ii = sample_points[i] cov = H_isomap[ii, :, :] plot_cov_ellipse(cov*0.05, embed_isomap[ii, :] ,ax=ax, edgecolor='none', alpha = 0.5) plt.show() f, ax = plt.subplots() ax.scatter(embed_spectral[:, 0], embed_spectral[:, 1], s = 1) ax.set_aspect('equal') # if an ellipse is a circle no distortion occured. for i in range(n_plot): ii = sample_points[i] cov = H_spectral[ii,:,:] plot_cov_ellipse(cov*0.01, embed_spectral[ii,:] ,ax=ax, edgecolor='none', alpha = 0.5) plt.show() import time N = 100000 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) radius = 1.5 adjacency_method = 'cyflann' cyflann_kwds = {'index_type':'kmeans', 'branching':64, 'iterations':20, 'cb_index':0.4} adjacency_kwds = {'radius':radius, 'cyflann_kwds':cyflann_kwds} affinity_method = 'gaussian' affinity_kwds = {'radius':radius} laplacian_method = 'geometric' laplacian_kwds = {'scaling_epps':radius} geom = Geometry(adjacency_method=adjacency_method, adjacency_kwds=adjacency_kwds, affinity_method=affinity_method, affinity_kwds=affinity_kwds, laplacian_method=laplacian_method, laplacian_kwds=laplacian_kwds) geom.set_data_matrix(X) t0 = time.time() adjacency_matrix = geom.compute_adjacency_matrix() t1 = time.time() - t0 print(t1) N = 100000 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) radius = 1.5 adjacency_method = 'cyflann' cyflann_kwds = {'index_type':'kdtrees', 'num_trees':10} adjacency_kwds = {'radius':radius, 'cyflann_kwds':cyflann_kwds} affinity_method = 'gaussian' affinity_kwds = {'radius':radius} laplacian_method = 'geometric' laplacian_kwds = {'scaling_epps':radius} geom = Geometry(adjacency_method=adjacency_method, adjacency_kwds=adjacency_kwds, affinity_method=affinity_method, affinity_kwds=affinity_kwds, laplacian_method=laplacian_method, laplacian_kwds=laplacian_kwds) geom.set_data_matrix(X) t0 = time.time() adjacency_matrix = geom.compute_adjacency_matrix() t1 = time.time() - t0 print(t1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read in an Image Step10: Ideas for Lane Detection Pipeline Step11: Test Images Step12: Build a Lane Finding Pipeline Step13: Test on Videos Step14: Let's try the one with the solid white lane on the right first ... Step16: Play the video inline, or if you prefer find the video in your filesystem (should be in the same directory) and play it in your video player of choice. Step18: Improve the draw_lines() function Step20: Writeup and Submission
<ASSISTANT_TASK:> Python Code: #importing some useful packages import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 %matplotlib inline #reading in an image image = mpimg.imread('test_images/solidWhiteRight.jpg') #printing out some stats and plotting print('This image is:', type(image), 'with dimensions:', image.shape) plt.imshow(image) # if you wanted to show a single color channel image called 'gray', for example, call as plt.imshow(gray, cmap='gray') import math def grayscale(img): Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray') return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread() # return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def canny(img, low_threshold, high_threshold): Applies the Canny transform return cv2.Canny(img, low_threshold, high_threshold) def gaussian_blur(img, kernel_size): Applies a Gaussian Noise kernel return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def region_of_interest(img, vertices): Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def draw_lines(img, lines, color=[255, 0, 0], thickness=5): NOTE: this is the function you might want to use as a starting point once you want to average/extrapolate the line segments you detect to map out the full extent of the lane (going from the result shown in raw-lines-example.mp4 to that shown in P1_example.mp4). Think about things like separating line segments by their slope ((y2-y1)/(x2-x1)) to decide which segments are part of the left line vs. the right line. Then, you can average the position of each of the lines and extrapolate to the top and bottom of the lane. This function draws `lines` with `color` and `thickness`. Lines are drawn on the image inplace (mutates the image). If you want to make the lines semi-transparent, think about combining this function with the weighted_img() function below for line in lines: for x1,y1,x2,y2 in line: cv2.line(img, (x1, y1), (x2, y2), color, thickness) def annotationLine( slopeAvgs, theLines, lineIndex, line_img, vertices, lastLines ): Create an annotation line using the longest segment and extending to ROI extent try: if theLines[ lineIndex ] is None: return if slopeAvgs[ 2 ] == 0: slopeAvgs[ lineIndex ] = theLines[ lineIndex ][ 1 ] elif slopeAvgs[ 2 ] < slopeAvgs[ 3 ]: slopeAvgs[ lineIndex ] = slopeAvgs[ lineIndex ] * ((slopeAvgs[ 2 ] - 1) / slopeAvgs[ 2 ]) + (theLines[ lineIndex ][ 1 ] / slopeAvgs[ 2 ]) else: slopeAvgs[ lineIndex ] = slopeAvgs[ lineIndex ] * ((slopeAvgs[ 3 ] - 1) / slopeAvgs[ 3 ]) + (theLines[ lineIndex ][ 1 ] / slopeAvgs[ 3 ]) currentLine = theLines[ lineIndex ] currentSlope = slopeAvgs[ lineIndex ] lineb = currentLine[ 0 ][ 1 ] - currentLine[ 0 ][ 0 ] * currentSlope x1 = (vertices[ 0 ][ 0 ][ 1 ] - lineb) / currentSlope x2 = (vertices[ 0 ][ 1 ][ 1 ] - lineb) / currentSlope newLine = [[(int(x1), vertices[ 0 ][ 0 ][ 1 ],int(x2),vertices[ 0 ][ 1 ][ 1 ]) ]] draw_lines(line_img, newLine,thickness=10,color=[255, 0, 255]) lastLines[ lineIndex ] = newLine except: draw_lines(line_img, lastLines[ lineIndex ],thickness=10,color=[255, 0, 255]) def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap, vertices=None, draw_segments=False): `img` should be the output of a Canny transform. Returns an image with hough lines drawn. lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) # # Find longest segements in frame # theSlopes = [ 0.0, 0.0 ] theCounts = [ 0.0, 0.0 ] theLengths = [ 0.0, 0.0 ] theLines = [ None, None ] for aLine in lines: aLine = aLine[ 0 ] lineSlope = ( (aLine[ 3 ] - aLine[ 1 ]) / (aLine[ 2 ] - aLine[ 0 ]) ) # # Filter near horizontal segments # if abs( lineSlope ) < 0.05: continue lineLength = math.sqrt( (aLine[ 3 ] - aLine[ 1 ]) ** 2 + (aLine[ 2 ] - aLine[ 0 ]) ** 2 ) if lineSlope > 0: theSlopes[ 0 ] += lineSlope theCounts[ 0 ] += 1 if lineLength > theLengths[ 0 ]: theLines[ 0 ] = [aLine,lineSlope,lineLength] theLengths[ 0 ] = lineLength else: theSlopes[ 1 ] += lineSlope theCounts[ 1 ] += 1 if lineLength > theLengths[ 1 ]: theLines[ 1 ] = [aLine,lineSlope,lineLength] theLengths[ 1 ] = lineLength # # Draw ROI # if 0: newLine = [[(vertices[ 0 ][ 0 ][ 0 ], vertices[ 0 ][ 0 ][ 1 ],vertices[ 0 ][ 1 ][ 0 ],vertices[ 0 ][ 1 ][ 1 ]) ]] draw_lines( line_img, newLine,color=[0, 0, 255] ) newLine = [[(vertices[ 0 ][ 2 ][ 0 ], vertices[ 0 ][ 2 ][ 1 ],vertices[ 0 ][ 3 ][ 0 ],vertices[ 0 ][ 3 ][ 1 ]) ]] draw_lines( line_img, newLine,color=[0, 0, 255] ) if draw_segments: draw_lines(line_img, lines) # # Take longest lines and extend to ROI # annotationLine( slopeAvgs, theLines, 0, line_img, vertices, lastLines ) annotationLine( slopeAvgs, theLines, 1, line_img, vertices, lastLines ) slopeAvgs[ 2 ] += 1 return line_img # Python 3 has support for cool math symbols. def weighted_img(img, initial_img, α=0.8, β=1., λ=0.): `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + λ NOTE: initial_img and img must be the same shape! return cv2.addWeighted(initial_img, α, img, β, λ) import os os.listdir("test_images/") import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 imagePath = "test_images/" arrImages = os.listdir("test_images/") figureIndex = 0 slopeAvgs = [ 0.0, 0.0, 0, 30 ] lastLines = [ None, None ] for anImage in arrImages: # Read in and grayscale the image image = mpimg.imread("test_images/" + anImage) gray = grayscale(image) # Define a kernel size and apply Gaussian smoothing kernel_size = 5 blur_gray = gaussian_blur( gray, kernel_size ) # Define our parameters for Canny and apply low_threshold = 50 high_threshold = 150 edges = canny(blur_gray, low_threshold, high_threshold) # Next we'll create a masked edges image using cv2.fillPoly() mask = np.zeros_like(edges) ignore_mask_color = 255 # This time we are defining a four sided polygon to mask imshape = image.shape vertices = np.array([[( 95, imshape[0] ), ( 460, 310 ), ( 480, 310 ), ( 900, imshape[0])]], dtype=np.int32) masked_edges = region_of_interest( edges, vertices ) # Define the Hough transform parameters # Make a blank the same size as our image to draw on rho = 1 # distance resolution in pixels of the Hough grid theta = np.pi/180 # angular resolution in radians of the Hough grid threshold = 5 # minimum number of votes (intersections in Hough grid cell) min_line_length = 10 #minimum number of pixels making up a line max_line_gap = 1 # maximum gap in pixels between connectable line segments line_image = np.copy(image)*0 # creating a blank to draw lines on # Run Hough on edge detected image line_image = hough_lines( masked_edges, rho, theta, threshold, min_line_length, max_line_gap, vertices, True ) # Create a "color" binary image to combine with line image color_edges = np.dstack((edges, edges, edges)) lines_edges = weighted_img( color_edges, line_image) plt.figure(figureIndex) plt.imshow(lines_edges) plt.figure(figureIndex + 1) plt.imshow(image) figureIndex = figureIndex + 2 # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip from IPython.display import HTML import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 def process_image(image): gray = grayscale(image) # Define a kernel size and apply Gaussian smoothing kernel_size = 5 blur_gray = gaussian_blur( gray, kernel_size ) # Define our parameters for Canny and apply low_threshold = 50 high_threshold = 150 edges = canny(blur_gray, low_threshold, high_threshold) # Next we'll create a masked edges image using cv2.fillPoly() mask = np.zeros_like(edges) ignore_mask_color = 255 # This time we are defining a four sided polygon to mask imshape = image.shape # Regular vid ROIs vertices = np.array([[( 125, imshape[0] ), ( 400, 340 ), ( 520, 340 ), ( 900, imshape[0])]], dtype=np.int32) # Challenge ROI # vertices = np.array([[( 155 + 80, imshape[0] - 60 ), ( 590, 450 ), ( 750, 450 ), ( 1200 - 60, imshape[0] - 60)]], dtype=np.int32) masked_edges = region_of_interest( edges, vertices ) # Define the Hough transform parameters # Make a blank the same size as our image to draw on rho = 1 # distance resolution in pixels of the Hough grid theta = np.pi/180 # angular resolution in radians of the Hough grid threshold = 10 # minimum number of votes (intersections in Hough grid cell) min_line_length = 15 #minimum number of pixels making up a line max_line_gap = 1 # maximum gap in pixels between connectable line segments line_image = np.copy(image)*0 # creating a blank to draw lines on # Run Hough on edge detected image line_image = hough_lines( masked_edges, rho, theta, threshold, min_line_length, max_line_gap, vertices, False ) # Create a "color" binary image to combine with line image color_edges = np.dstack((edges, edges, edges)) lines_edges = weighted_img( image, line_image) return lines_edges fileName = 'solidWhiteRight.mp4' white_output = 'test_videos_output/' + fileName slopeAvgs = [ 0.0, 0.0, 0, 30 ] lastLines = [ None, None ] ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4").subclip(0,5) clip1 = VideoFileClip("test_videos/" + fileName ) white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! %time white_clip.write_videofile(white_output, audio=False) HTML( <video width="960" height="540" controls> <source src="{0}"> </video> .format(white_output)) fileName = 'solidYellowLeft.mp4' yellow_output = 'test_videos_output/' + fileName slopeAvgs = [ 0.0, 0.0, 0, 30 ] lastLines = [ None, None ] ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip2 = VideoFileClip('test_videos/solidYellowLeft.mp4').subclip(0,5) clip2 = VideoFileClip('test_videos/' + fileName) yellow_clip = clip2.fl_image(process_image) %time yellow_clip.write_videofile(yellow_output, audio=False) HTML( <video width="960" height="540" controls> <source src="{0}"> </video> .format(yellow_output)) fileName = 'challenge.mp4' challenge_output = 'test_videos_output/' + fileName slopeAvgs = [ 0.0, 0.0, 0, 30 ] lastLines = [ None, None ] #### #### NOTE: the ROI must be changed in process_image for this to work properly #### ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip3 = VideoFileClip('test_videos/challenge.mp4').subclip(0,5) clip3 = VideoFileClip('test_videos/' + fileName) challenge_clip = clip3.fl_image(process_image) %time challenge_clip.write_videofile(challenge_output, audio=False) HTML( <video width="960" height="540" controls> <source src="{0}"> </video> .format(challenge_output)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Observem que diferente do método simples, para cada cenário (seed) ocorre uma situação diferente, ou seja, o número de segurados que se aposenta é diferente Step2: Se calcularmos a média, temos um valor bem próximo ao do Método determinístico. Step3: Porém, com diferentes cenários, podemos calcular medidas de dispersão, como o desvio padrão. Step4: Visualizando em um gráfico Step5: Aplicando o método probabilístico no cálculo dos estoques (onde as probabilidades são aplicadas), teremos para cada seed, uma projeção/resultado diferente.
<ASSISTANT_TASK:> Python Code: import numpy as np n_segurados = 1000 prob = 0.35 # Lista que salva a quantidade de aposentados para cada cenário lista_nap = [] # Lista de seeds -> 50 cenários seeds = range(0,50) # Executa 50 cenários (seeds) diferentes for seed in seeds: # Define o seed para geração de números aleatórios np.random.seed(seed) # Gera 1000 números aletórios entre 0 e lista_na = np.random.rand(n_segurados) # Número de aposentados num_ap = 0 # Determina quantos irão se aposentar para o cenário for na in lista_na: # calcula a probabilidade de cada um dos segurados se aposentar # Se o número aleatório for menor ou igual a probabilidade o segurado irá se aposentar if na <= prob: num_ap += 1 lista_nap.append(num_ap) print(lista_nap) media = np.mean(lista_nap) print('Média: {}'.format(media)) std = np.std(lista_nap) print('Desvio padrão: {}'.format(std)) import matplotlib.pyplot as plt %matplotlib inline medias = [350] * len(seeds) fig, ax = plt.subplots() ax.plot(seeds, lista_nap, '--', linewidth=2, label='Método Probabilístico') ax.plot(seeds, medias,label='Método Determinístico') ax.set_ylabel('Número de Aposentados') ax.set_xlabel('Seed') ax.set_title('Cálculo do estoque usando diferentes métodos') ax.legend() plt.show() np.var(lista_nap) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the Models Step2: Create the Mapping and Tranfer the Weights Step3: Update the CSV file in Excel
<ASSISTANT_TASK:> Python Code: ### imports from IPython.core.debugger import Tracer #Tracer()() import os, sys, time ### prevent the dying jupyter notebook stdout = sys.stdout #sys.stdout = sys.__stdout__ # did not work to restoure print -> console #sys.stdout = open('keras_output.txt', 'a+') #sys.stdout = stdout import sys, os, argparse, logging # NOQA import importlib from pprint import pprint from tqdm import tqdm import twBase from twBase import * # NOQA importlib.reload(twBase) import twQuoraRun importlib.reload(twQuoraRun) #from twQuoraRun import * # NOQA #Allow relative imports to directories above cwd/ sys.path.insert(1, os.path.join(sys.path[0], '..')) %matplotlib inline np.random.seed(42) params = { "DATA": { "BASE_DIR": "./data", "GLOVE_DIR": './data/glove.6B', "DATA_FN": './data/train.csv', "DATA_TEST_FN": './data/test.csv', "H5DATA_FN": "./data/train_emb.40.300.200000.h5", "H5DATA_TEST_FN": "./data/test_emb.40.300.200000.h5", "embedOnly": True, #"H5DATA_FN": "./data/train.40.300.200000.h5", #"H5DATA_TEST_FN": "./data/test.40.300.200000.h5", #"H5DATA_FN": "./data/train.s.40.300.200000.h5.s", #"H5DATA_TEST_FN": "./data/test.s.40.300.200000.h5.s", "EMBED_FN": './data/emb.300.200k.npy', "isSample": False, }, "SPACY": { "MODEL": "en1G", # en1G #"MODEL": "en", # en1G }, "MODEL": { "MAX_SEQUENCE_LENGTH": 40, # 60 "MAX_NB_WORDS": 200000, # 40000, 200000 "EMBED_DIM": 300, "BASIC_FEAT_DIM": 26, "SUFFIX": "xx", #"SUFFIX": "01", "NAME": None, #"CLASS": "CosModel", #"CLASS": "RNNSimple", #"CLASS": "FeatsSimple", #"CLASS": "BasicSimple", #"CLASS": "EmbedCNN", #"CLASS": "CNN1D", #"CLASS": "All", "CLASS": "AllSmall", "LOAD_WEIGHTS": None, "MASKING": False, "RNN_TOPOLOGY": [100], "CNN_TOPOLOGY": [128, 256, 512, 1024], "TOPOLOGY": [256, 512, 1024], "DROPOUT": [0.2, 0.3, 0.4, 0.5], "REGULIZER": [0.01, 0.0], # k_reg, a_reg: 0.005, order of 10 "OPTIMIZER": ['Adam', {"lr": 0.001}] }, 'SIMILARITY': { #'mode': 'cosine', 'mode': 'euclidean', 'gamma': 1, 'c': 1, 'd': 2, 'dropout': 0.5, }, "TRAINING": { "DEVICE": "/cpu:0", "VALIDATION_SPLIT": 0.2, "BATCH_SIZE": 2048, "EPOCHS": 80, "PATIENCE": 25, "DECAY_EPOCH": 30, "SAVE_BEST": True, "isShuffle": False, "VERBOSITY": 1, "UNFREEZE": True }, "OUTPUT": { "BASE_DIR": "./data/out", "MODEL_DIR": None, "MODEL_PRETRAINED": None, } } # params generated by jinja ###{{params}}### P = Struct(params) #P.DATA.H5DATA_FN = "./data/train.{}.{}.{}.h5".format(P.MODEL.MAX_SEQUENCE_LENGTH, P.MODEL.EMBED_DIM, P.MODEL.MAX_NB_WORDS) # build name #P.DATA.H5DATA_TEST_FN = "./data/test.{}.{}.{}.h5".format(P.MODEL.MAX_SEQUENCE_LENGTH, P.MODEL.EMBED_DIM, P.MODEL.MAX_NB_WORDS) # build name P.MODEL.NAME = "{}.{}".format(P.MODEL.CLASS, P.MODEL.SUFFIX) # build name P.OUTPUT.MODEL_DIR = os.path.join(P.OUTPUT.BASE_DIR, "{}.{}.{}".format(P.MODEL.MAX_SEQUENCE_LENGTH, P.MODEL.EMBED_DIM, P.MODEL.MAX_NB_WORDS), P.MODEL.NAME) # build output dir import importlib import twQuoraModel importlib.reload(twQuoraModel) #from twQuoraModel import CNN1D e1 = twQuoraRun.Evaluator(P, model=twQuoraModel.CNN1D) import importlib import twQuoraModel importlib.reload(twQuoraModel) #from twQuoraModel import All e3 = twQuoraRun.Evaluator(P, model=twQuoraModel.RNNSimple) import importlib import twQuoraModel importlib.reload(twQuoraModel) #from twQuoraModel import All e2 = twQuoraRun.Evaluator(P, model=twQuoraModel.AllSmall) # load the weights path = './data/out/40.300.200000/CNN1D.03.200k/_weights_epoch_26.0.364.h5' e1.model.model.load_weights(path) # load the weights path = './data/out/40.300.200000/RNNSimple.03.200k/_weights_epoch_27.0.342.h5' e3.model.model.load_weights(path) # sanity check cnn_emb = e1.model.model.layers[2].get_weights() cnn_emb[0].shape all_emb = e2.model.model.layers[2].get_weights() all_emb[0].shape assert cnn_emb[0].shape == all_emb[0].shape # syntactic sugar Cnn = e1.model.model All = e2.model.model Rnn = e3.model.model import keras cnn_layerlist = [] rnn_layerlist = [] for i, (allL, cnnL, rnnL) in enumerate(twBase.outer_zip((All.layers, 'x'), (Cnn.layers, '_'), (Rnn.layers, '.'))): if isinstance(allL, keras.engine.Layer): name1 = allL.name else: name1 = allL if isinstance(cnnL, keras.engine.Layer): name2 = cnnL.name else: name2 = cnnL if isinstance(rnnL, keras.engine.Layer): name3 = rnnL.name else: name3 = rnnL print("{:2d}: {:25.25} {:25.25} {!s:25.25}".format(i, name1, name2, name3)) cnn_layerlist.append((i, name1, name2)) rnn_layerlist.append((i, name1, name3)) df = pd.DataFrame(cnn_layerlist, columns=['ix', 'All', 'Cnn']) df.to_csv(os.path.join(P.DATA.BASE_DIR, 'weight_transfer_cnn.csv'), index=False, sep=';') df = pd.DataFrame(rnn_layerlist, columns=['ix', 'All', 'Rnn']) df.to_csv(os.path.join(P.DATA.BASE_DIR, 'weight_transfer_rnn.csv'), index=False, sep=';') # manipulated weight transfer list df = pd.read_csv(os.path.join(P.DATA.BASE_DIR, 'weight_transfer_cnn.csv'), sep=';') df # Load CNN weights for i in range(len(df)): l1 = All.get_layer(df.ix[i, 'All']) l2 = Cnn.get_layer(df.ix[i, 'Cnn']) print("Copy weights from {} -> {}".format(l2.name, l1.name)) l1.set_weights(l2.get_weights()) l1.trainable = False # must be set BEVORE compile # manipulated weight transfer list df = pd.read_csv(os.path.join(P.DATA.BASE_DIR, 'weight_transfer_rnn.csv'), sep=';') df # Load RNN weights for i in range(len(df)): l1 = All.get_layer(df.ix[i, 'All']) l2 = Rnn.get_layer(df.ix[i, 'Rnn']) print("Copy weights from {} -> {}".format(l2.name, l1.name)) l1.set_weights(l2.get_weights()) l1.trainable = False # must be set BEVORE compile # compile due to set trainable and save optimizer = getattr(keras.optimizers, P.MODEL.OPTIMIZER[0])(lr=P.MODEL.OPTIMIZER[1]['lr']) All.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) All.save(os.path.join(P.OUTPUT.MODEL_DIR, 'AllSmall.preloaded.h5')) # Load the model and check trainable from keras.models import load_model #del All # deletes the existing model # returns a compiled model # identical to the previous one model = load_model(os.path.join(P.OUTPUT.MODEL_DIR, 'All.preloaded.h5')) model.get_layer('bidirectional_4').trainable # check layer topology n = 5 w = e1.model.model.layers[n].get_weights() len(w), type(w) w[0].shape, w[1].shape # check layer identity after copyting over the weights n = 5 w1 = e1.model.model.layers[n].get_weights() w2 = e2.model.model.layers[n].get_weights() if isinstance(w1, list): np.allclose(w1[0], w2[0]) w1[0].sum(), w2[0].sum() else: np.allclose(w1, w2) w1.sum(), w2.sum() # Get layer by name Cnn.get_layer("CNN1d.ConvL4.CNN1d") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercise P1.1 (50%) Step2: Submission example
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pandas as pd data = pd.read_csv('https://github.com/albahnsen/PracticalMachineLearningClass/raw/master/datasets/dataTrain_carListings.zip') data.head() data.shape data.Price.describe() data.plot(kind='scatter', y='Price', x='Year') data.plot(kind='scatter', y='Price', x='Mileage') data.columns data_test = pd.read_csv('https://github.com/albahnsen/PracticalMachineLearningClass/raw/master/datasets/dataTest_carListings.zip', index_col=0) data_test.head() data_test.shape import numpy as np np.random.seed(42) y_pred = pd.DataFrame(np.random.rand(data_test.shape[0]) * 75000 + 5000, index=data_test.index, columns=['Price']) y_pred.to_csv('test_submission.csv', index_label='ID') y_pred.head() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: NumPy Arrays and Indexing Step2: Here's what the array looks like Step3: We can index arrays in the same ways as lists Step4: Arrays vs Lists Step5: We can't do this with an array Step6: The data type is contained in the dtype attribute Step7: The dtype is fixed Step8: What is an Array Step9: Array Creation Step10: We have seen how the arange function generates an array for a range of integers. Step11: Random Number Generation Step12: $X \sim N(9, 3)$ Step13: Exercise Step14: Index Arrays Step15: Integer Indexing Step16: Asssignment Step17: Copies vs Views Step18: This, however, produces a copy Step19: Exercise Step20: Multidimensional Arrays Step21: With two-dimensional arrays we start seeing the convenience of NumPy data structures Step22: Most of the array creation functions listed above can be passed multidimensional shapes. For example Step23: In fact, an array can be reshaped at any time, as long as the total number of elements is unchanged. For example, if we want a 2x4 array with numbers increasing from 0, the easiest way to create it is via the array's reshape method. Step24: With multidimensional arrays, you can also use slices, and you can mix and match slices and single indices in the different dimensions (using the same array as above) Step25: If you only provide one index, then you will get the corresponding row. Step26: Now that we have seen how to create arrays with more than one dimension, it's a good idea to look at some of the most useful properties and methods that arrays have. The following provide basic information about the size, shape and data in the array Step27: Arrays also have many useful methods, some especially useful ones are Step28: For these methods, the above operations area all computed on all the elements of the array. But for a multidimensional array, it's possible to do the computation along a single dimension, by passing the axis parameter; for example Step29: Notice that summing over the rows returned a 1d array above. Step30: Another widely used property of arrays is the .T attribute, which allows you to access the transpose of the array Step31: There is a wide variety of methods and properties of arrays. Step32: What is a Multi-Dimensional Array Step33: Exercises Step34: Array Operations, Methods, and Functions Step35: This includes the multiplication operator -- it does not perform matrix multiplication, as is the case in Matlab, for example Step36: In Python 3.5, you can use the @ operator to get the inner product (or matrix multiplication) (!) Step37: this implies that the dimension of the arrays for each operation must match in size, Step38: In this case, numpy looked at both operands and saw that the first was a one-dimensional array of length 4 and the second was a scalar, considered a zero-dimensional object. The broadcasting rules allow numpy to Step39: Remember that matching begins at the trailing dimensions. Here, c would need to have a trailing dimension of 1 for the broadcasting to work. We can augment arrays with dimensions on the fly, by indexing it with a np.newaxis object, which adds an "empty" dimension Step40: Exercises Step41: What Else Step42: Pandas Series Step43: If an index is not specified, a default sequence of integers is assigned as the index. A NumPy array comprises the values of the Series, while the index is a pandas Index object. Step44: Index Object Step45: We can assign meaningful labels to the index, if they are available Step46: NumPy's math functions and other operations can be applied to Series without losing the data structure. Step47: Creation from a dict Step48: Pandas DataFrames Step49: We often will want to peak at the first few rows of a DataFrame Step50: Columns as an Index Step51: Reading and Writing Files Step52: Exercises
<ASSISTANT_TASK:> Python Code: import numpy as np lst = list(range(1000)) arr = np.arange(1000) arr[:10] arr[10:20] arr[10:20:2] type(arr) %timeit [i ** 2 for i in lst] %timeit arr ** 2 arr[5:10] arr[-1] ['a', 2, (1, 3)] lst[0] = 'some other type' lst[:3] arr[0] = 'some other type' arr.dtype arr[0] = 1.234 arr[:10] Image("https://docs.scipy.org/doc/numpy/_images/threefundamental.png") np.zeros(5, dtype=float) np.zeros(5, dtype=int) np.zeros(5, dtype=complex) np.ones(5, dtype=float) np.linspace(0, 1, num=5) np.logspace(1, 4, num=4) np.random.randn(5) norm10 = np.random.normal(loc=9, scale=3, size=10) %load solutions/random_number.py mask = norm10 > 9 mask norm10[mask] norm10[[1, 4, 6]] norm10[norm10 > 9] = 0 norm10 norm10[[1, 4, 7]] = 10 norm10 x = np.arange(10) x y = x[::2] y y[3] = 100 y x a = norm10[[0, 1, 5]] a a[:] = -10 a norm10 # [Solution here] %load solutions/copies_vs_views.py samples_list = [[632, 1638, 569, 115], [433,1130,754,555]] samples_array = np.array(samples_list) samples_array.shape print(samples_array) samples_list[0][1] samples_array[0,1] np.zeros((2,3)) np.random.normal(10, 3, size=(2, 4)) arr = np.arange(8).reshape(2,4) arr arr[1, 2:4] arr[:, 2] arr[1] print('Data type :', samples_array.dtype) print('Total number of elements :', samples_array.size) print('Number of dimensions :', samples_array.ndim) print('Shape (dimensionality) :', samples_array.shape) print('Memory used (in bytes) :', samples_array.nbytes) print('Minimum and maximum :', samples_array.min(), samples_array.max()) print('Sum, mean and standard deviation:', samples_array.sum(), samples_array.mean(), samples_array.std()) samples_array.sum(axis=0) samples_array.sum(axis=1) samples_array.sum(axis=1, keepdims=True) samples_array.T [attr for attr in dir(samples_array) if not attr.startswith('__')] Image('https://ipython-books.github.io/images/layout.png') %load solutions/matrix_creation.py sample1 = np.array([632, 1638, 569, 115]) sample2 = np.array([433,1130,754,555]) sample_sum = sample1 + sample2 np.array([632, 1638, 569, 115]) print('{0} X {1} = {2}'.format(sample1, sample2, sample1 * sample2)) print('{0} . {1} = {2}'.format(sample1, sample2, sample1 @ sample2)) sample1 + 1.5 sample1 + np.array([7,8]) b = np.array([10, 20, 30, 40]) bcast_sum = sample1 + b print('{0}\n\n+ {1}\n{2}\n{3}'.format(sample1, b, '-'*21, bcast_sum)) c = np.array([-100, 100]) sample1 + c cplus = c[:, np.newaxis] cplus cplus.shape sample1 + cplus sample1[:, np.newaxis] + c # [Solution here] %load solutions/broadcasting.py import pandas as pd counts = pd.Series([632, 1638, 569, 115]) counts counts.values counts.index bacteria = pd.Series([632, 1638, 569, 115], index=['Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes']) bacteria np.log(bacteria) bacteria_dict = { 'Firmicutes': 632, 'Proteobacteria': 1638, 'Actinobacteria': 569, 'Bacteroidetes': 115 } pd.Series(bacteria_dict) data = pd.DataFrame({'value': [632, 1638, 569, 115, 433, 1130, 754, 555], 'patient': [1, 1, 1, 1, 2, 2, 2, 2], 'phylum': ['Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes', 'Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes']}) data data.head() data.columns vessels = pd.read_csv("../data/AIS/vessel_information.csv") vessels.head() %load solutions/read_nfs_1974.py <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As can be seen in the figure above, each state ("cold", "mild", "warm", and "hot") has a membership value defined at all temperatures between 30 and 100 degrees (F). This was accomplished easily by defining the following triangular functions for each state Step2: Looking at the figure above, values tend to be more heavily concentrated around the "full" membership values, dropping off more steeply than the triangular membership function. This might be preferential behavior, depending on the system that's being modeled. Step3: As suspected, the membership function does not sum to 100% at each temperature value. There may be situations where this doesn't matter. For instance, if you're using fuzzy logic to determine the most likely descriptor at each temperature value, that the membership doesn't need to sum to 1, since only the maximum value is required. Generally, though, if you are going to be treating the membership function as a probability or using it in a summation somewhere down the line, you want to normalize your membership functions so that they always equal 1. Step4: After normalization, notice that the membership functions no longer look Gaussian. Let's make sure that the membership does sum to 1 at each temperature
<ASSISTANT_TASK:> Python Code: import numpy as np import skfuzzy as fuzz import matplotlib.pyplot as plt %matplotlib inline x = np.arange(30, 100, 0.1) ## LINEAR # Create the membership functions x_cold_lin = fuzz.trimf(x, [30, 30, 50]) x_mild_lin = fuzz.trimf(x, [30, 50, 70]) x_warm_lin = fuzz.trimf(x, [50, 70, 100]) x_hot_lin = fuzz.trimf(x, [70, 100, 100]) # Plot the results of the linear fuzzy membership plt.figure() plt.plot(x, x_cold_lin, 'b', linewidth=1.5, label='Cold') plt.plot(x, x_mild_lin, 'k', linewidth=1.5, label='Mild') plt.plot(x, x_warm_lin, 'm', linewidth=1.5, label='Warm') plt.plot(x, x_hot_lin, 'r', linewidth=1.5, label='Hot') plt.title('Temperature, Linear Fuzzy') plt.ylabel('Membership') plt.xlabel('Temperature (Fahrenheit)') plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), ncol=1, fancybox=True, shadow=True); ## GAUSSIAN # Create the membership functions x_cold_gauss = fuzz.gaussmf(x, 30, 8) x_mild_gauss = fuzz.gaussmf(x, 50, 8) x_warm_gauss = fuzz.gaussmf(x, 70, 12) x_hot_gauss = fuzz.gaussmf(x, 100, 8) # Plot the results of the gaussian fuzzy membership plt.figure() plt.plot(x, x_cold_gauss, 'b', linewidth=1.5, label='Cold') plt.plot(x, x_mild_gauss, 'k', linewidth=1.5, label='Mild') plt.plot(x, x_warm_gauss, 'm', linewidth=1.5, label='Warm') plt.plot(x, x_hot_gauss, 'r', linewidth=1.5, label='Hot') plt.title('Temperature, Gaussian Fuzzy') plt.ylabel('Membership') plt.xlabel('Temperature') plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), ncol=1, fancybox=True, shadow=True); # Plot to show the sum is not always 1 x_sum = x_cold_gauss + x_mild_gauss + \ x_warm_gauss + x_hot_gauss plt.figure() plt.plot(x, x_sum, 'y', linewidth=1.5, label='Total') plt.title('Temperature, Gaussian Fuzzy Sum') plt.ylabel('Membership') plt.xlabel('Temperature') plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), ncol=1, fancybox=True, shadow=True); ## NORMALIZED GAUSSIAN # rescale x_sum = x_cold_gauss + x_mild_gauss + \ x_warm_gauss + x_hot_gauss x_cold_rescale = x_cold_gauss / x_sum x_mild_rescale = x_mild_gauss / x_sum x_warm_rescale = x_warm_gauss / x_sum x_hot_rescale = x_hot_gauss / x_sum # Plot the results of the rescaled gaussian fuzzy membership plt.figure() plt.plot(x, x_cold_rescale, 'b', linewidth=1.5, label='Cold') plt.plot(x, x_mild_rescale, 'k', linewidth=1.5, label='Mild') plt.plot(x, x_warm_rescale, 'm', linewidth=1.5, label='Warm') plt.plot(x, x_hot_rescale, 'r', linewidth=1.5, label='Hot') plt.title('Temperature, Rescaled Gaussian Fuzzy') plt.ylabel('Membership') plt.xlabel('Temperature') plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), ncol=1, fancybox=True, shadow=True); # Plot to show the sum is not always 1 x_sum = x_cold_rescale + x_mild_rescale + \ x_warm_rescale + x_hot_rescale plt.figure() plt.plot(x, x_sum, 'y', linewidth=1.5, label='Total') plt.title('Temperature, Rescaled Gaussian Fuzzy Sum') plt.ylabel('Membership') plt.xlabel('Temperature') plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), ncol=1, fancybox=True, shadow=True); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First, we load the data. For details, please see the accompanying notebook MNIST-loader.ipynb for details. Step2: Now let's define some useful functions for the neural network to use. First is the sigmoid activation function Step3: The neural network Step4: Next is the predict function. This function takes the learned weights and performs forward propagation through the netwwork using the x values supplied in the arguments. The effect of this is essentially to predict the output class of the given data using the weights that have been learned. We also calculate the cost here, because the actual cost value (and it's calculation) is only necessary if monitoring is set to True. Note Step5: We initialize theta with a set of random weights with a standard deviation of $ 1/\sqrt{n} $ Step6: Stochastic gradient descent Step7: Finally, we train the model Step8: Visualizing cost and accuracy as a function of epochs Step9: Visualizing the handwritten numbers
<ASSISTANT_TASK:> Python Code: # Import libraries import numpy as np import matplotlib.pyplot as plt import math from sklearn.metrics import accuracy_score import pickle import sys # Load data with open('./data/pickled/xtrain.pickle', 'rb') as f: xtrain = pickle.load(f) with open('./data/pickled/ytrain.pickle', 'rb') as f: ytrain = pickle.load(f) with open('./data/pickled/xtest.pickle', 'rb') as f: xtest = pickle.load(f) with open('./data/pickled/ytest.pickle', 'rb') as f: ytest = pickle.load(f) with open('./data/pickled/xval.pickle', 'rb') as f: xval = pickle.load(f) with open('./data/pickled/yval.pickle', 'rb') as f: yval = pickle.load(f) # Sigmoid function def sigmoid(z): return 1.0 / (1.0 + np.exp(-z)) def nn(weights,x,y): ### Initialization n = len(x) activations = [np.array(0) for i in range(n_layers)] activations[0] = x deltas = [np.array(0) for i in range(n_layers-1)] bias = np.ones((n,1)) ### Forward propagation for w,l in zip(weights,range(1,n_layers)): inputs = np.concatenate((bias,activations[l-1]),axis=1) activations[l] = sigmoid(np.dot(inputs,w.T)) ### Output error deltas[-1] = activations[-1] - y ### Back propagation for l in range(2,n_layers): deltas[-l] = np.dot(deltas[-(l-1)],weights[-(l-1)][:,1:]) * activations[-l]*(1-activations[-l]) # Update the weights / biases for w,l in zip(weights,range(len(layers)-1,0,-1)): w[:,1:] = w[:,1:] * (1-rate*Lambda/n) - np.dot(deltas[-l].T,activations[-(l+1)])*rate/n w[:,:1] -= np.sum(deltas[-l])*rate/n return weights def predict(weights,x,y): ### Initialization n = len(x) activations = [np.array(0) for i in range(n_layers)] activations[0] = x bias = np.ones((n,1)) ### Forward propagation for w,l in zip(weights,range(1,n_layers)): inputs = np.concatenate((bias,activations[l-1]),axis=1) activations[l] = sigmoid(np.dot(inputs,w.T)) # Cost function: regularized cross entropy C = np.sum(np.nan_to_num(-y*np.log(activations[-1]) - (1-y)*(np.log(1-activations[-1]))))/n ws_sum_squares = 0 for l in range(n_layers-1): ws_sum_squares += np.sum(weights[l][:,1:]**2) C += ((Lambda/(2*n))) * ws_sum_squares # Add regularization to the cost function return np.argmax(activations[-1],axis=1),C def weight_init(L_in,L_out): np.random.seed(13) # This makes testing consistent. return np.random.normal(scale=1/np.sqrt(L_in), size=(L_out,L_in+1)) def SGD(x,y,monitor_cost,monitor_train_acc,monitor_test_acc): # Make list of weights arrays weights = [np.array(0) for i in range(len(layers)-1)] for l in range(len(layers)-1): weights[l] = weight_init(layers[l],layers[l+1]) #[layers-1,[L_in+1,Lout]] def shuffle(x,y): state = np.random.get_state() np.random.shuffle(x) np.random.set_state(state) np.random.shuffle(y) return x,y costs, test_acc, train_acc = [],[],[] for j in range(epochs): # Shuffle the data x,y = shuffle(x,y) # Seperate x,y mini-batches mini_x = [x[k:k+minibatchsize] for k in range(0,len(x),minibatchsize)] mini_y = [y[k:k+minibatchsize] for k in range(0,len(y),minibatchsize)] # Iterate through pairs of mini-batches, calling nn() on each pair for x_mini,y_mini in zip(mini_x,mini_y): weights = nn(weights,x_mini,y_mini) # If statements for monitoring. This ensures the predict() function isn't called unnecessarily if monitor_cost | monitor_train_acc: ypred, C = predict(weights,x,y) if monitor_cost: costs.append(C) if monitor_train_acc: train_acc.append(accuracy_score(np.argmax(y,axis=1),ypred)) if monitor_test_acc: test_acc.append(accuracy_score(np.argmax(ytest,axis=1),predict(weights,xtest,ytest)[0])) # Write progress monitor progress = (j+1)/(epochs)*100.0 bar = 20 hashes = '#'*(int(round(progress/100*bar))) spaces = ' '*(bar-len(hashes)) sys.stdout.write('\r[{0}] {1}%'.format(hashes + spaces, round(progress,2))) return weights,costs,train_acc,test_acc # Model parameters m = np.int(xtrain.shape[1]) # Number of features in each example layers = [m, 100, 10] n_layers = len(layers) # Learning parameters Lambda = 0.01 epochs = 40 minibatchsize = 50 rate = 0.3 # Train the model weights, costs, train_acc, test_acc = SGD(xtrain,ytrain,True,True,True) # Plot the results # Note: don't bother calling unless the monitor parameters are set... plot() accuracy_score(np.argmax(yval,axis=1),predict(weights,xval,yval)[0]) def plot():# Visualize the cost and accuracy fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(221) ax.plot(np.arange(epochs), costs, "-") ax.set_xlim([0, epochs]) ax.set_xlabel('Epoch') ax.set_ylabel('Cost') ax.set_title('Cost over epochs') ax = fig.add_subplot(222) ax.plot(np.arange(epochs), train_acc, "-",color='blue',label="Training data, final acc: "+str(train_acc[-1])) ax.plot(np.arange(epochs), test_acc, "-",color='orange',label="Testing data, final acc: "+str(test_acc[-1])) ax.set_xlim([0, epochs]) ax.set_xlabel('Epoch') ax.set_ylabel('Accuracy') plt.legend(loc='lower right') ax.set_title('Accuracy over epochs') plt.show() # Visualize the data def drawplot(draw,x,y): if draw: n = x.shape[0] idx = np.random.randint(0,n,size=100) # Make an array of random integers between 0 and n fig, ax = plt.subplots(10, 10) # make the plots img_size = math.sqrt(m) # Specify the image size (in these case sqrt(m) = 28) for i in range(10): for j in range(10): Xi = x[idx[i*10+j],:].reshape(int(img_size), int(img_size)) # get each example and resize ax[i,j].set_axis_off() # Turns off the axes for all the subplots for clarity ax[i,j].imshow(Xi, aspect='auto',cmap='gray') # plots the current image in the correct position plt.show() drawplot(True,xtrain,ytrain) # Interactive printer function def printer(x,y,weights): idx = np.random.randint(len(x),size=1) img_size = int(math.sqrt(m)) xi = x[idx,:].reshape(img_size,img_size) yi = predict(weights,x[idx,:],y[idx,:])[0] plt.title('The predicted value is %i\n The true value is %i' %(yi,np.argmax(y[idx,:],axis=1))) plt.imshow(xi, aspect='auto',cmap='gray') plt.axis('off') plt.show() # Running this cell will draw a single image # The predicted and real value for y is printed above printer(xtest,ytest,weights) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generating data Step2: There are 500 images (corresponding to 500 time points), and the data are two-dimensional, so we'll want to generate 500 random shifts in x and y. We'll use smoothing functions from scipy to make sure the drift varies slowly over time, which will be easier to look at. Step3: Now let's use these drifts to shift the data. We'll use the apply method on our data, which applies an arbitrary function to each record; in this case, the function is to shift by an amount given by the corresponding entry in our list of shifts. Step4: Look at the first entry of both the original images and the shifted images, and their difference Step5: It's also useful to look at the mean of the raw images and the shifted images, the mean of the shifted images should be much more blurry! Step6: Registration Step7: This method computes a cross-correlation in parallel between every image and a reference. To compute that reference, we can use the prepare method, and either give it a reference, or have it compute one for us. For this method, the default prepare is to compute a mean, over some specified range. We call Step8: This adds a reference attribute to the reg object, which we can look at Step9: We could have equivalently computed the reference ourselves (using the mean, or any other calculation) and passed it as an argument Step10: Now we use the registration method reg and fit it to the shifted data, returning a fitted RegistrationModel Step11: Inspect the model Step12: The model represents a list of transformations. You can inspect them Step13: You can also convert the full collection of transformations into an array, which is useful for plotting. Here we'll plot the estimated transformations relative to the ground truth, they should be fairly similar. Step14: Note that, while following a similar pattern as the ground truth, the estimates are not perfect. That's because we didn't use the true reference to estimate the displacements, but rather the mean of the displaced data. To see that we get the exact displacements back, let's compute a reference from the original, unshifted data. Step15: Now the estimates should be exact (up to rounding error)! But note that this is sort of cheating, because in general we don't know the ground truth. Step16: We can now use our model to transform a set of images, which applies the estimated transformations. The API design makes it easy to apply the transformations to the dataset we used to estimate the transformations, or a different one. We'll use the model we just estimates, which used the true reference, because it will be easy to see that it did the right thing. Step17: Let's again look at the first image from the orignal and corrected, and their difference. Whereas before they were different, now they should be the same, except for minor near the boundaries (where the image has been replaced with its nearest neighbors). Step18: As a final check on the registation, we can compare the mean of the shifted data, and the mean of the regsitered data. The latter should be much sharper.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import seaborn as sns import matplotlib.pyplot as plt from thunder import Colorize image = Colorize.image tile = Colorize.tile sns.set_style('darkgrid') sns.set_context('notebook') data = tsc.loadExample('mouse-images') data from numpy import random from scipy.ndimage.filters import gaussian_filter t = 500 dx = gaussian_filter(random.randn(t), 50) * 25 dy = gaussian_filter(random.randn(t), 50) * 25 plt.plot(dx); plt.plot(dy); from scipy.ndimage import shift shifted = data.apply(lambda (k, v): (k, shift(v, (dx[k], dy[k]), mode='nearest', order=0))) im1 = data[0] im2 = shifted[0] tile([im1, im2, im1-im2], clim=[(0,300), (0,300), (-300,300)], grid=(1,3), size=14) tile([data.mean(), shifted.mean()], size=14) from thunder import Registration reg = Registration('crosscorr') reg.prepare(shifted, startIdx=0, stopIdx=500); image(reg.reference) ref = shifted.filterOnKeys(lambda k: k > 0 and k < 500).mean() reg.prepare(ref) image(reg.reference) model = reg.fit(shifted) model model[0] clrs = sns.color_palette('deep') plt.plot(model.toArray()[:,0], color=clrs[0]) plt.plot(dx, color=clrs[0]) plt.plot(model.toArray()[:,1], color=clrs[1]) plt.plot(dy, color=clrs[1]); reg.prepare(data, startIdx=0, stopIdx=500) model = reg.fit(shifted) plt.plot(model.toArray()[:,0], color=clrs[0]) plt.plot(dx, color=clrs[0]) plt.plot(model.toArray()[:,1], color=clrs[1]) plt.plot(dy, color=clrs[1]); corrected = model.transform(shifted) im1 = data[0] im2 = corrected[0] tile([im1, im2, im1-im2], clim=[(0,300), (0,300), (-300,300)], grid=(1,3), size=14) tile([shifted.mean(), corrected.mean()], size=14) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: from scipy import stats import pandas as pd import numpy as np LETTERS = list('ABCDEFGHIJKLMNOPQRSTUVWXYZ') df = pd.DataFrame({'NUM1': np.random.randn(50)*100, 'NUM2': np.random.uniform(0,1,50), 'NUM3': np.random.randint(100, size=50), 'CAT1': ["".join(np.random.choice(LETTERS,1)) for _ in range(50)], 'CAT2': ["".join(np.random.choice(['pandas', 'r', 'julia', 'sas', 'stata', 'spss'],1)) for _ in range(50)], 'CAT3': ["".join(np.random.choice(['postgres', 'mysql', 'sqlite', 'oracle', 'sql server', 'db2'],1)) for _ in range(50)] }) df = df[(np.abs(stats.zscore(df.select_dtypes(exclude='object'))) < 3).all(axis=1)] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's read in some data. Our file is an .xls file and it has 2 sheets. I don't know how to do that, so I will google "pandas read in excel file multiple sheets" and see what happens. Step2: Let's take a look at the "tables" we read in. By the way, in Python pandas terms, the data structure of the data we read in is called a DataFrame. This is the reason why when you search for answers online, a lot of people will refer to their variable names as df. Step3: That's beautiful. Now pandas has a nice function called head() that summarizes our data. Right now our data only has 2 columns and maybe 10+ rows. But head() is going to be super useful to have a giant table of 1000 rows x 1000 columns. This is how you use it. Step4: If you search up the documentation, you will see we can pass in an argument of how many rows we want to show. Let's see if we can show the first 7 rows. Step5: That works! Let's now doing some fun stuff with pandas. I want to rename the two columns in liquid_table_temp to "Primary" and "Ultrasonic". Let's take a look at the current column names first. As always, I googled "list of column names" and found this Stackoverflow answer. Step6: Cool. Let's rename it now. Again, I googled "pandas rename column" and found http Step7: Let's check it now Step8: Let's say I, for some reasons, want to add the primary + ultrasonic together and create a new column called mySum. Again, googled for "pandas add column together" and found http Step9: Let's say now I want to create a new column that is the cumulative sum of Ultrasonic. Step10: Now let's say I want to divide this CumulativeSum by the maximum of that Cumulative Sum column. I'm going to call the new column something arbitrary, "myDivision". Step11: Now let's say I want to sort the table based on the Primary column from smallest to largest. Step12: Apparently the sort() we are trying to use is deprecreted, I don't know what that quite mean but I'm gonna do what it says and use sort_values() instead Step13: Now let's do some filtering. I want my table to only shows Primary values that are greater than 40. Let's first take a look at the original table before we move on. Step14: http Step15: That stackoverflow answer brought up a really nice option. That is, how can I select data where only certain values is what I want. For example, I want the table to only show rows where my Primary is either 39.61 or 60.64. Step16: Not working so I searched "pandas isin()" and found http Step17: Great! That sounds like most of the things I want to do. Now I want to try somethinga litle bit different and actually plot them out. I'm going back to my temp_table and plot the K-type and T-Type. Let's take a look at the temp_table again before we start. Step18: Now I frankly don't know where to start so I googled "how to plot with python". First result came up was http Step19: Now what if I don't want the figure to come up every time? Is there a way for Jupyter notebook to display the images within the notebook I'm working on? Step20: Now I'm going to run that again and see what happens. Step21: Perfect! Let's try now to plot our data. Step22: But now I also want the other column in the same plot! No problem. Just add another line. Step23: Awesome! Now I want to add in the title for the x-axis, y-axis, figure, label, and legend. Step24: Sounds great! Now let's go a little bit further and decorate our plots. With some googling, "matplotlib change line styles" gave me http Step25: Awesome. Let's say we have to plot the same thing over and over again for 10 different columns. That's going to be very annoying to do in Excel. So let's see if we can write up some function and "automate" this for us. I'm going to copy&paste all the code above and put it in a function. Step26: Now I'm going plot several columns in the liquid_flow_table (because there are many columns). Again, let's take a look at the table again. Step27: So 5 different plots, all in 5 lines! Imagine doing this in Excel! And in fact, programming is so awesome you can in fact not even have to copy&paste and do all that work. Step28: So if you're not still sold over this, I don't know what will
<ASSISTANT_TASK:> Python Code: import pandas as pd xls = pd.ExcelFile(r'C:\Users\jenng\Documents\texaspse-blog\media\f16-scientific-python\week2\myExcelData.xls') temp_table = xls.parse('Temperature') liquid_flow_table = xls.parse('Liquid Flow') temp_table temp_table.head() temp_table.head(7) list(liquid_flow_table.columns.values) liquid_flow_table = liquid_flow_table.rename(columns={'Primary Std, Avg mL/s': 'Primary', 'Ultrasonic, mL/S': 'Ultrasonic',}) liquid_flow_table.head() # Great! It worked like we wanted. liquid_flow_table['mySum'] = liquid_flow_table.Primary + liquid_flow_table.Ultrasonic liquid_flow_table.head() #check my table to see if it did add liquid_flow_table['myMultiplication'] = liquid_flow_table['Primary'] * liquid_flow_table['Ultrasonic'] liquid_flow_table.head() #check my table to see if it did multiply liquid_flow_table['myPower'] = liquid_flow_table.Primary ** liquid_flow_table.Ultrasonic liquid_flow_table.head() #check my table to see if it did multiply liquid_flow_table['CumulativeSum'] = liquid_flow_table.Ultrasonic.cumsum() liquid_flow_table liquid_flow_table['CumulativeSum'].max() #looks right liquid_flow_table['myDivision'] = liquid_flow_table['CumulativeSum']/liquid_flow_table['CumulativeSum'].max() liquid_flow_table.head() liquid_flow_table.sort('Primary', ascending=True, inplace=True) liquid_flow_table.sort_values(by='Primary', ascending=True, inplace=True) liquid_flow_table.head() liquid_flow_table liquid_flow_table.loc[liquid_flow_table['Ultrasonic'] > 40].head() liquid_flow_table.loc[liquid_flow_table['Primary'].isin(39.62,60.64)].head() liquid_flow_table.loc[liquid_flow_table['Primary'].isin([39.62,60.64])].head() temp_table import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() %matplotlib inline import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() # no need for the import statement again because it's already imported plt.plot(temp_table['K-type TC, °C']) plt.ylabel('some numbers') plt.show() plt.plot(temp_table['K-type TC, °C']) plt.plot(temp_table['T-type TC, °C']) plt.ylabel('some numbers') plt.show() plt.plot(temp_table['K-type TC, °C']) plt.plot(temp_table['T-type TC, °C']) plt.ylabel('Temperature, °C') plt.xlabel('Index') plt.title('Temperature vs. Index') plt.legend() plt.show() plt.plot(temp_table['K-type TC, °C'],'-.',color='r',linewidth=3) plt.plot(temp_table['T-type TC, °C'],'o-',color='c') plt.ylabel('Temperature, °C') plt.xlabel('Index') plt.title('Temperature vs. Index') plt.legend() plt.show() def plotMyData(x,y): plt.plot(x, y,'-.',color='r',linewidth=3) plt.xlabel(x.name) plt.ylabel(y.name) plt.title(y.name + " vs. " + x.name) plt.legend() plt.show() liquid_flow_table.head() plotMyData(liquid_flow_table.Primary,liquid_flow_table.mySum) plotMyData(liquid_flow_table.Primary,liquid_flow_table.myMultiplication) plotMyData(liquid_flow_table.Primary,liquid_flow_table.myPower) plotMyData(liquid_flow_table.Primary,liquid_flow_table.CumulativeSum)b plotMyData(liquid_flow_table.Primary,liquid_flow_table.myDivision) liquid_table_columns_list = list(liquid_flow_table.columns.values) liquid_table_columns_list for column in liquid_table_columns_list: plotMyData(liquid_flow_table.Primary, liquid_flow_table[column])b %%timeit xls = pd.read_csv(r'C:\Users\jenng\Documents\texaspse-blog\media\f16-scientific-python\week2\GASISData.csv') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Parameters Step3: Colab-only auth Step4: tf.data.Dataset Step5: Let's have a look at the data Step6: Estimator model [WORK REQUIRED] Step7: Train and validate the model Step8: Visualize predictions Step9: Deploy the trained model to ML Engine Step10: Deploy the model Step11: Test the deployed model
<ASSISTANT_TASK:> Python Code: import os, re, math, json, shutil, pprint, datetime import PIL.Image, PIL.ImageFont, PIL.ImageDraw import numpy as np import tensorflow as tf from matplotlib import pyplot as plt from tensorflow.python.platform import tf_logging print("Tensorflow version " + tf.__version__) BATCH_SIZE = 128 #@param {type:"integer"} BUCKET = 'gs://' #@param {type:"string"} assert re.search(r'gs://.+', BUCKET), 'You need a GCS bucket for your Tensorboard logs. Head to http://console.cloud.google.com/storage and create one.' training_images_file = 'gs://mnist-public/train-images-idx3-ubyte' training_labels_file = 'gs://mnist-public/train-labels-idx1-ubyte' validation_images_file = 'gs://mnist-public/t10k-images-idx3-ubyte' validation_labels_file = 'gs://mnist-public/t10k-labels-idx1-ubyte' # backend identification IS_COLAB_BACKEND = 'COLAB_GPU' in os.environ # this is always set on Colab, the value is 0 or 1 depending on GPU presence # Auth on Colab # Little wrinkle: without auth, Colab will be extremely slow in accessing data from a GCS bucket, even public if IS_COLAB_BACKEND: from google.colab import auth auth.authenticate_user() #@title visualization utilities [RUN ME] This cell contains helper functions used for visualization and downloads only. You can skip reading it. There is very little useful Keras/Tensorflow code here. # Matplotlib config plt.rc('image', cmap='gray_r') plt.rc('grid', linewidth=0) plt.rc('xtick', top=False, bottom=False, labelsize='large') plt.rc('ytick', left=False, right=False, labelsize='large') plt.rc('axes', facecolor='F8F8F8', titlesize="large", edgecolor='white') plt.rc('text', color='a8151a') plt.rc('figure', facecolor='F0F0F0')# Matplotlib fonts MATPLOTLIB_FONT_DIR = os.path.join(os.path.dirname(plt.__file__), "mpl-data/fonts/ttf") # pull a batch from the datasets. This code is not very nice, it gets much better in eager mode (TODO) def dataset_to_numpy_util(training_dataset, validation_dataset, N): # get one batch from each: 10000 validation digits, N training digits unbatched_train_ds = training_dataset.apply(tf.data.experimental.unbatch()) v_images, v_labels = validation_dataset.make_one_shot_iterator().get_next() t_images, t_labels = unbatched_train_ds.batch(N).make_one_shot_iterator().get_next() # Run once, get one batch. Session.run returns numpy results with tf.Session() as ses: (validation_digits, validation_labels, training_digits, training_labels) = ses.run([v_images, v_labels, t_images, t_labels]) # these were one-hot encoded in the dataset validation_labels = np.argmax(validation_labels, axis=1) training_labels = np.argmax(training_labels, axis=1) return (training_digits, training_labels, validation_digits, validation_labels) # create digits from local fonts for testing def create_digits_from_local_fonts(n): font_labels = [] img = PIL.Image.new('LA', (28*n, 28), color = (0,255)) # format 'LA': black in channel 0, alpha in channel 1 font1 = PIL.ImageFont.truetype(os.path.join(MATPLOTLIB_FONT_DIR, 'DejaVuSansMono-Oblique.ttf'), 25) font2 = PIL.ImageFont.truetype(os.path.join(MATPLOTLIB_FONT_DIR, 'STIXGeneral.ttf'), 25) d = PIL.ImageDraw.Draw(img) for i in range(n): font_labels.append(i%10) d.text((7+i*28,0 if i<10 else -4), str(i%10), fill=(255,255), font=font1 if i<10 else font2) font_digits = np.array(img.getdata(), np.float32)[:,0] / 255.0 # black in channel 0, alpha in channel 1 (discarded) font_digits = np.reshape(np.stack(np.split(np.reshape(font_digits, [28, 28*n]), n, axis=1), axis=0), [n, 28*28]) return font_digits, font_labels # utility to display a row of digits with their predictions def display_digits(digits, predictions, labels, title, n): plt.figure(figsize=(13,3)) digits = np.reshape(digits, [n, 28, 28]) digits = np.swapaxes(digits, 0, 1) digits = np.reshape(digits, [28, 28*n]) plt.yticks([]) plt.xticks([28*x+14 for x in range(n)], predictions) for i,t in enumerate(plt.gca().xaxis.get_ticklabels()): if predictions[i] != labels[i]: t.set_color('red') # bad predictions in red plt.imshow(digits) plt.grid(None) plt.title(title) # utility to display multiple rows of digits, sorted by unrecognized/recognized status def display_top_unrecognized(digits, predictions, labels, n, lines): idx = np.argsort(predictions==labels) # sort order: unrecognized first for i in range(lines): display_digits(digits[idx][i*n:(i+1)*n], predictions[idx][i*n:(i+1)*n], labels[idx][i*n:(i+1)*n], "{} sample validation digits out of {} with bad predictions in red and sorted first".format(n*lines, len(digits)) if i==0 else "", n) # utility to display training and validation curves def display_training_curves(training, validation, title, subplot): if subplot%10==1: # set up the subplots on the first call plt.subplots(figsize=(10,10), facecolor='#F0F0F0') plt.tight_layout() ax = plt.subplot(subplot) ax.grid(linewidth=1, color='white') ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.']) def read_label(tf_bytestring): label = tf.decode_raw(tf_bytestring, tf.uint8) label = tf.reshape(label, []) label = tf.one_hot(label, 10) return label def read_image(tf_bytestring): image = tf.decode_raw(tf_bytestring, tf.uint8) image = tf.cast(image, tf.float32)/256.0 image = tf.reshape(image, [28*28]) return image def load_dataset(image_file, label_file): imagedataset = tf.data.FixedLengthRecordDataset(image_file, 28*28, header_bytes=16) imagedataset = imagedataset.map(read_image, num_parallel_calls=16) labelsdataset = tf.data.FixedLengthRecordDataset(label_file, 1, header_bytes=8) labelsdataset = labelsdataset.map(read_label, num_parallel_calls=16) dataset = tf.data.Dataset.zip((imagedataset, labelsdataset)) return dataset def get_training_dataset(image_file, label_file, batch_size): dataset = load_dataset(image_file, label_file) dataset = dataset.cache() # this small dataset can be entirely cached in RAM, for TPU this is important to get good performance from such a small dataset dataset = dataset.shuffle(5000, reshuffle_each_iteration=True) dataset = dataset.repeat() # Mandatory for Keras for now dataset = dataset.batch(batch_size, drop_remainder=True) # drop_remainder is important on TPU, batch size must be fixed dataset = dataset.prefetch(-1) # prefetch next batch while training (-1: autotune prefetch buffer size) return dataset def get_validation_dataset(image_file, label_file): dataset = load_dataset(image_file, label_file) dataset = dataset.cache() # this small dataset can be entirely cached in RAM, for TPU this is important to get good performance from such a small dataset dataset = dataset.batch(10000, drop_remainder=True) # 10000 items in eval dataset, all in one batch dataset = dataset.repeat() # Mandatory for Keras for now return dataset # instantiate the datasets training_dataset = get_training_dataset(training_images_file, training_labels_file, BATCH_SIZE) validation_dataset = get_validation_dataset(validation_images_file, validation_labels_file) # In Estimator, we will need a function that returns the dataset training_input_fn = lambda: get_training_dataset(training_images_file, training_labels_file, BATCH_SIZE) validation_input_fn = lambda: get_validation_dataset(validation_images_file, validation_labels_file) N = 24 (training_digits, training_labels, validation_digits, validation_labels) = dataset_to_numpy_util(training_dataset, validation_dataset, N) display_digits(training_digits, training_labels, training_labels, "training digits and their labels", N) display_digits(validation_digits[:N], validation_labels[:N], validation_labels[:N], "validation digits and their labels", N) font_digits, font_labels = create_digits_from_local_fonts(N) def model_fn(features, labels, mode): is_training = (mode == tf.estimator.ModeKeys.TRAIN) x = features y = tf.reshape(x, [-1, 28, 28, 1]) # input images are 28x28 pixels, greyscale (-1 is for variable batch size) ### # YOUR LAYERS HERE # LAYERS YOU CAN TRY: # y = tf.layers.Conv2D(filters=6, kernel_size=3, padding='same', strides=1, activation="relu")(y) # y = tf.layers.Dense(200, activation="relu")(y) # y = tf.layers.MaxPooling2D(pool_size=2)(y) # y = tf.layers.Dropout(0.3)(y, training=is_training) # y = tf.layers.Flatten()(y) y = tf.layers.Dense(200, activation='relu')(y) ### logits = tf.layers.Dense(10)(y) predictions = tf.nn.softmax(logits) classes = tf.math.argmax(predictions, axis=-1) if (mode != tf.estimator.ModeKeys.PREDICT): loss = tf.losses.softmax_cross_entropy(labels, logits) step = tf.train.get_or_create_global_step() ### # YOUR LEARNING RATE SCHEDULE HERE # lr = 0.005 # lr = 0.0001 + tf.train.exponential_decay(0.005, step, 3000, 1/math.e) # tf.summary.scalar("learn_rate", lr) # you can visualize it in Tensorboard ### optimizer = tf.train.AdamOptimizer(lr) # little wrinkle: batch norm uses running averages which need updating after each batch. create_train_op does it, optimizer.minimize does not. train_op = tf.contrib.training.create_train_op(loss, optimizer) #train_op = optimizer.minimize(loss, tf.train.get_or_create_global_step()) metrics = {'accuracy': tf.metrics.accuracy(classes, tf.math.argmax(labels, axis=-1))} else: loss = train_op = metrics = None # None of these can be computed in prediction mode because labels are not available return tf.estimator.EstimatorSpec( mode=mode, predictions={"predictions": predictions, "classes": classes}, # name these fields as you like loss=loss, train_op=train_op, eval_metric_ops=metrics ) # little wrinkle: tf.keras.layers can normally be used in an Estimator but tf.keras.layers.BatchNormalization does not work # in an Estimator environment. Using TF layers everywhere for consistency. tf.layers and tf.ketas.layers are carbon copies of each other. # Called once when the model is saved. This function produces a Tensorflow # graph of operations that will be prepended to your model graph. When # your model is deployed as a REST API, the API receives data in JSON format, # parses it into Tensors, then sends the tensors to the input graph generated by # this function. The graph can transform the data so it can be sent into your # model input_fn. You can do anything you want here as long as you do it with # tf.* functions that produce a graph of operations. def serving_input_fn(): # placeholder for the data received by the API (already parsed, no JSON decoding necessary, # but the JSON must contain one or multiple 'image' key(s) with 28x28 greyscale images as content.) inputs = {"serving_input": tf.placeholder(tf.float32, [None, 28, 28])} # the shape of this dict should match the shape of your JSON features = inputs['serving_input'] # no transformation needed return tf.estimator.export.TensorServingInputReceiver(features, inputs) # features are the features needed by your model_fn # Return a ServingInputReceiver if your features are a dictionary of Tensors, TensorServingInputReceiver if they are a straight Tensor EPOCHS = 4 steps_per_epoch = 60000 // BATCH_SIZE # 60,000 images in training dataset MODEL_EXPORT_NAME = "mnist" # name for exporting saved model tf_logging.set_verbosity(tf_logging.INFO) now = datetime.datetime.now() # create a model dir for each run MODEL_DIR = BUCKET+"/mnistjobs/job" + "-{}-{:02d}-{:02d}-{:02d}:{:02d}:{:02d}".format(now.year, now.month, now.day, now.hour, now.minute, now.second) training_config = tf.estimator.RunConfig(model_dir=MODEL_DIR, save_summary_steps=30, save_checkpoints_steps=steps_per_epoch, log_step_count_steps=steps_per_epoch/4) export_latest = tf.estimator.LatestExporter(MODEL_EXPORT_NAME, serving_input_receiver_fn=serving_input_fn) estimator = tf.estimator.Estimator(model_fn=model_fn, config=training_config) train_spec = tf.estimator.TrainSpec(training_input_fn, max_steps=EPOCHS*steps_per_epoch) eval_spec = tf.estimator.EvalSpec(validation_input_fn, steps=1, exporters=export_latest, throttle_secs=0) # no eval throttling: evaluates after each checkpoint final_metrics = tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) tf_logging.set_verbosity(tf_logging.WARN) print(final_metrics) # recognize digits from local fonts predictions = estimator.predict(lambda: tf.data.Dataset.from_tensor_slices(font_digits).batch(N), yield_single_examples=False) # the returned value is a generator that will yield one batch of predictions per next() call predicted_font_classes = next(predictions)['classes'] display_digits(font_digits, predicted_font_classes, font_labels, "predictions from local fonts (bad predictions in red)", N) # recognize validation digits predictions = estimator.predict(validation_input_fn, yield_single_examples=False) # the returned value is a generator that will yield one batch of predictions per next() call predicted_labels = next(predictions)['classes'] display_top_unrecognized(validation_digits, predicted_labels, validation_labels, N, 7) PROJECT = "" #@param {type:"string"} NEW_MODEL = True #@param {type:"boolean"} MODEL_NAME = "estimator_mnist" #@param {type:"string"} MODEL_VERSION = "v0" #@param {type:"string"} assert PROJECT, 'For this part, you need a GCP project. Head to http://console.cloud.google.com/ and create one.' export_path = os.path.join(MODEL_DIR, 'export', MODEL_EXPORT_NAME) last_export = sorted(tf.gfile.ListDirectory(export_path))[-1] export_path = os.path.join(export_path, last_export) print('Saved model directory found: ', export_path) # Create the model if NEW_MODEL: !gcloud ml-engine models create {MODEL_NAME} --project={PROJECT} --regions=us-central1 # Create a version of this model (you can add --async at the end of the line to make this call non blocking) # Additional config flags are available: https://cloud.google.com/ml-engine/reference/rest/v1/projects.models.versions # You can also deploy a model that is stored locally by providing a --staging-bucket=... parameter !echo "Deployment takes a couple of minutes. You can watch your deployment here: https://console.cloud.google.com/mlengine/models/{MODEL_NAME}" !gcloud ml-engine versions create {MODEL_VERSION} --model={MODEL_NAME} --origin={export_path} --project={PROJECT} --runtime-version=1.10 # prepare digits to send to online prediction endpoint digits = np.concatenate((font_digits, validation_digits[:100-N])) labels = np.concatenate((font_labels, validation_labels[:100-N])) with open("digits.json", "w") as f: for digit in digits: # the format for ML Engine online predictions is: one JSON object per line data = json.dumps({"serving_input": digit.tolist()}) # "serving_input" because that is what you defined in your serving_input_fn: {"serving_input": tf.placeholder(tf.float32, [None, 28, 28])} f.write(data+'\n') # Request online predictions from deployed model (REST API) using the "gcloud ml-engine" command line. predictions = !gcloud ml-engine predict --model={MODEL_NAME} --json-instances digits.json --project={PROJECT} --version {MODEL_VERSION} predictions = np.array([int(p.split('[')[0]) for p in predictions[1:]]) # first line is the name of the input layer: drop it, parse the rest display_top_unrecognized(digits, predictions, labels, N, 100//N) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Using the SavedModel format Step2: You'll use an image of Grace Hopper as a running example, and a Keras pre-trained image classification model since it's easy to use. Custom models work too, and are covered in detail later. Step3: The top prediction for this image is "military uniform". Step4: The save-path follows a convention used by TensorFlow Serving where the last path component (1/ here) is a version number for your model - it allows tools like Tensorflow Serving to reason about the relative freshness. Step5: Imported signatures always return dictionaries. To customize signature names and output dictionary keys, see Specifying signatures during export. Step6: Running inference from the SavedModel gives the same result as the original model. Step7: Running a SavedModel in TensorFlow Serving Step8: The saved_model.pb file stores the actual TensorFlow program, or model, and a set of named signatures, each identifying a function that accepts tensor inputs and produces tensor outputs. Step9: The variables directory contains a standard training checkpoint (see the guide to training checkpoints). Step10: The assets directory contains files used by the TensorFlow graph, for example text files used to initialize vocabulary tables. It is unused in this example. Step11: When you save a tf.Module, any tf.Variable attributes, tf.function-decorated methods, and tf.Modules found via recursive traversal are saved. (See the Checkpoint tutorial for more about this recursive traversal.) However, any Python attributes, functions, and data are lost. This means that when a tf.function is saved, no Python code is saved. Step12: Loading and using a custom model Step13: Because no Python code is saved, calling a tf.function with a new input signature will fail Step14: General fine-tuning Step15: Specifying signatures during export Step16: To declare a serving signature, specify a ConcreteFunction using the signatures kwarg. When specifying a single signature, its signature key will be 'serving_default', which is saved as the constant tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY. Step17: To export multiple signatures, pass a dictionary of signature keys to ConcreteFunctions. Each signature key corresponds to one ConcreteFunction. Step18: By default, the output tensor names are fairly generic, like output_0. To control the names of outputs, modify your tf.function to return a dictionary that maps output names to outputs. The names of inputs are derived from the Python function arg names.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile from matplotlib import pyplot as plt import numpy as np import tensorflow as tf tmpdir = tempfile.mkdtemp() physical_devices = tf.config.list_physical_devices('GPU') for device in physical_devices: tf.config.experimental.set_memory_growth(device, True) file = tf.keras.utils.get_file( "grace_hopper.jpg", "https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg") img = tf.keras.utils.load_img(file, target_size=[224, 224]) plt.imshow(img) plt.axis('off') x = tf.keras.utils.img_to_array(img) x = tf.keras.applications.mobilenet.preprocess_input( x[tf.newaxis,...]) labels_path = tf.keras.utils.get_file( 'ImageNetLabels.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt') imagenet_labels = np.array(open(labels_path).read().splitlines()) pretrained_model = tf.keras.applications.MobileNet() result_before_save = pretrained_model(x) decoded = imagenet_labels[np.argsort(result_before_save)[0,::-1][:5]+1] print("Result before saving:\n", decoded) mobilenet_save_path = os.path.join(tmpdir, "mobilenet/1/") tf.saved_model.save(pretrained_model, mobilenet_save_path) loaded = tf.saved_model.load(mobilenet_save_path) print(list(loaded.signatures.keys())) # ["serving_default"] infer = loaded.signatures["serving_default"] print(infer.structured_outputs) labeling = infer(tf.constant(x))[pretrained_model.output_names[0]] decoded = imagenet_labels[np.argsort(labeling)[0,::-1][:5]+1] print("Result after saving and loading:\n", decoded) !ls {mobilenet_save_path} !saved_model_cli show --dir {mobilenet_save_path} --tag_set serve !ls {mobilenet_save_path}/variables class CustomModule(tf.Module): def __init__(self): super(CustomModule, self).__init__() self.v = tf.Variable(1.) @tf.function def __call__(self, x): print('Tracing with', x) return x * self.v @tf.function(input_signature=[tf.TensorSpec([], tf.float32)]) def mutate(self, new_v): self.v.assign(new_v) module = CustomModule() module_no_signatures_path = os.path.join(tmpdir, 'module_no_signatures') module(tf.constant(0.)) print('Saving model...') tf.saved_model.save(module, module_no_signatures_path) imported = tf.saved_model.load(module_no_signatures_path) assert imported(tf.constant(3.)).numpy() == 3 imported.mutate(tf.constant(2.)) assert imported(tf.constant(3.)).numpy() == 6 optimizer = tf.optimizers.SGD(0.05) def train_step(): with tf.GradientTape() as tape: loss = (10. - imported(tf.constant(2.))) ** 2 variables = tape.watched_variables() grads = tape.gradient(loss, variables) optimizer.apply_gradients(zip(grads, variables)) return loss for _ in range(10): # "v" approaches 5, "loss" approaches 0 print("loss={:.2f} v={:.2f}".format(train_step(), imported.v.numpy())) loaded = tf.saved_model.load(mobilenet_save_path) print("MobileNet has {} trainable variables: {}, ...".format( len(loaded.trainable_variables), ", ".join([v.name for v in loaded.trainable_variables[:5]]))) trainable_variable_ids = {id(v) for v in loaded.trainable_variables} non_trainable_variables = [v for v in loaded.variables if id(v) not in trainable_variable_ids] print("MobileNet also has {} non-trainable variables: {}, ...".format( len(non_trainable_variables), ", ".join([v.name for v in non_trainable_variables[:3]]))) assert len(imported.signatures) == 0 module_with_signature_path = os.path.join(tmpdir, 'module_with_signature') call = module.__call__.get_concrete_function(tf.TensorSpec(None, tf.float32)) tf.saved_model.save(module, module_with_signature_path, signatures=call) imported_with_signatures = tf.saved_model.load(module_with_signature_path) list(imported_with_signatures.signatures.keys()) module_multiple_signatures_path = os.path.join(tmpdir, 'module_with_multiple_signatures') signatures = {"serving_default": call, "array_input": module.__call__.get_concrete_function(tf.TensorSpec([None], tf.float32))} tf.saved_model.save(module, module_multiple_signatures_path, signatures=signatures) imported_with_multiple_signatures = tf.saved_model.load(module_multiple_signatures_path) list(imported_with_multiple_signatures.signatures.keys()) class CustomModuleWithOutputName(tf.Module): def __init__(self): super(CustomModuleWithOutputName, self).__init__() self.v = tf.Variable(1.) @tf.function(input_signature=[tf.TensorSpec([], tf.float32)]) def __call__(self, x): return {'custom_output_name': x * self.v} module_output = CustomModuleWithOutputName() call_output = module_output.__call__.get_concrete_function(tf.TensorSpec(None, tf.float32)) module_output_path = os.path.join(tmpdir, 'module_with_output_name') tf.saved_model.save(module_output, module_output_path, signatures={'serving_default': call_output}) imported_with_output_name = tf.saved_model.load(module_output_path) imported_with_output_name.signatures['serving_default'].structured_outputs <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Definitions Step2: Problem Statement Step3: Summarizing the states, Step4: Then, the net work is calculated by Step5: <div class="alert alert-success"> Step6: <div class="alert alert-success">
<ASSISTANT_TASK:> Python Code: from thermostate import State, Q_, units from thermostate.plotting import IdealGas import numpy as np %matplotlib inline import matplotlib.pyplot as plt substance = 'air' p_1 = Q_(1.0, 'bar') T_1 = Q_(300.0, 'K') T_3 = Q_(1700.0, 'K') p2_p1 = Q_(8.0, 'dimensionless') p_low = Q_(2.0, 'dimensionless') p_high = Q_(50.0, 'dimensionless') st_1 = State(substance, T=T_1, p=p_1) h_1 = st_1.h.to('kJ/kg') s_1 = st_1.s.to('kJ/(kg*K)') s_2 = s_1 p_2 = p_1*p2_p1 st_2 = State(substance, p=p_2, s=s_2) h_2 = st_2.h.to('kJ/kg') T_2 = st_2.T p_3 = p_2 st_3 = State(substance, p=p_3, T=T_3) h_3 = st_3.h.to('kJ/kg') s_3 = st_3.s.to('kJ/(kg*K)') s_4 = s_3 p_4 = p_1 st_4 = State(substance, p=p_4, s=s_4) h_4 = st_4.h.to('kJ/kg') T_4 = st_4.T Brayton = IdealGas(substance, ('s', 'T'), ('v', 'p')) Brayton.add_process(st_1, st_2, 'isentropic') Brayton.add_process(st_2, st_3, 'isobaric') Brayton.add_process(st_3, st_4, 'isentropic') Brayton.add_process(st_4, st_1, 'isobaric') W_c = h_1 - h_2 W_t = h_3 - h_4 W_net = W_c + W_t Q_23 = h_3 - h_2 eta = W_net/Q_23 p_range = np.linspace(p_low, p_high, 50) eta_l = np.zeros(shape=p_range.shape) * units.dimensionless W_net_l = np.zeros(shape=p_range.shape) * units.kJ / units.kg for i, p_ratio in enumerate(p_range): s_2 = s_1 p_2 = p_1*p_ratio st_2 = State(substance, p=p_2, s=s_2) h_2 = st_2.h.to('kJ/kg') T_2 = st_2.T p_3 = p_2 st_3 = State(substance, p=p_3, T=T_3) h_3 = st_3.h.to('kJ/kg') s_3 = st_3.s.to('kJ/(kg*K)') s_4 = s_3 p_4 = p_1 st_4 = State(substance, p=p_4, s=s_4) h_4 = st_4.h.to('kJ/kg') T_4 = st_4.T W_c = h_1 - h_2 W_t = h_3 - h_4 W_net = W_c + W_t W_net_l[i] = W_net Q_23 = h_3 - h_2 eta = W_net/Q_23 eta_l[i] = eta fig, work_ax = plt.subplots() work_ax.plot(p_range, W_net_l, label='Net work per unit mass flowing', color='C0') eta_ax = work_ax.twinx() eta_ax.plot(p_range, eta_l, label='Thermal efficiency', color='C1') work_ax.set_xlabel('Pressure ratio $p_2/p_1$') work_ax.set_ylabel('Net work per unit mass flowing (kJ/kg)') eta_ax.set_ylabel('Thermal efficiency') lines, labels = work_ax.get_legend_handles_labels() lines2, labels2 = eta_ax.get_legend_handles_labels() work_ax.legend(lines + lines2, labels + labels2, loc='best'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step6: Copyright 2019 Google LLC Step9: Search Algorithms Step10: Experiments Step11: Plain Evolution Step12: Plain Evolution Step13: Progressive Dynamic Hurdles Step14: Mean Fitness Comparison
<ASSISTANT_TASK:> Python Code: DIM = 100 # Number of bits in the bit strings (i.e. the "models"). NOISE_STDEV = 0.01 # Standard deviation of the simulated training noise. EARLY_SIGNAL_NOISE = 0.005 # Standard deviation of the noise added to earlier # observations. REDUCTION_FACTOR = 100.0 # The factor by which the number of train steps is # reduced for earlier observations. class Model(object): A class representing a model. Attributes: arch: the architecture as an int representing a bit-string of length `DIM`. As a result, the integers are required to be less than `2**DIM`. observed_accuracy: the simulated validation accuracy observed for the model during the search. This may be either the accuracy after training for the maximum number of steps or the accuracy after training for 1/100 the maximum number of steps. true_accuracy: the simulated validation accuracy after the maximum train steps. def __init__(self): self.arch = None self.observed_accuracy = None self.true_accuracy = None def get_final_accuracy(arch): Simulates training for the maximum number of steps and then evaluating. Args: arch: the architecture as an int representing a bit-string. accuracy = float(_sum_bits(arch)) / float(DIM) accuracy += random.gauss(mu=0.0, sigma=NOISE_STDEV) accuracy = 0.0 if accuracy < 0.0 else accuracy accuracy = 1.0 if accuracy > 1.0 else accuracy return accuracy def get_early_accuracy(final_accuracy): Simulates training for 1/100 the maximum steps and then evaluating. Args: final_accuracy: the accuracy of the model if trained for the maximum number of steps. observed_accuracy = final_accuracy/REDUCTION_FACTOR + random.gauss(mu=0, sigma=EARLY_SIGNAL_NOISE) observed_accuracy = 0.0 if observed_accuracy < 0.0 else observed_accuracy observed_accuracy = 1.0 if observed_accuracy > 1.0 else observed_accuracy return observed_accuracy def _sum_bits(arch): Returns the number of 1s in the bit string. Args: arch: an int representing the bit string. total = 0 for _ in range(DIM): total += arch & 1 arch = (arch >> 1) return total import random def random_architecture(): Returns a random architecture (bit-string) represented as an int. return random.randint(0, 2**DIM - 1) def mutate_arch(parent_arch): Computes the architecture for a child of the given parent architecture. Args: parent_arch: an int representing the architecture (bit-string) of the parent. Returns: An int representing the architecture (bit-string) of the child. position = random.randint(0, DIM - 1) # Index of the bit to flip. # Flip the bit at position `position` in `child_arch`. child_arch = parent_arch ^ (1 << position) return child_arch import collections import random import copy def plain_evolution(cycles, population_size, sample_size, early_observation): Plain evolution. Args: cycles: the number of cycles the search is run for. population_size: the size of the population. sample_size: the size of the sample for both parent selection and killing. early_observation: boolean. Whether or not we are observing the models early by evaluating them for 1/100th the maximum number of train steps. population = collections.deque() history = [] # Not used by the algorithm, only used to report results. # Initialize the population with random models. while len(population) < population_size: model = Model() model.arch = random_architecture() model.true_accuracy = get_final_accuracy(model.arch) # If we are observing early, get the early accuracy that corresponds to the # true_accuracy. Else, we are training each model for the maximum number of # steps and so the observed_accuracy is the true_accuracy. if early_observation: model.observed_accuracy = get_early_accuracy(model.true_accuracy) else: model.observed_accuracy = model.true_accuracy population.append(model) history.append(model) # Carry out evolution in cycles. Each cycle produces a model and removes # another. while len(history) < cycles: # Sample randomly chosen models from the current population. sample = random.sample(population, sample_size) # The parent is the best model in the samples, according to their observed # accuracy. parent = max(sample, key=lambda i: i.observed_accuracy) # Create the child model and store it. child = Model() child.arch = mutate_arch(parent.arch) child.true_accuracy = get_final_accuracy(child.arch) # If we are observing early, get the early accuracy that corresponds to the # true_accuracy. Else, we are training each model for the maximum number of # steps and so the observed_accuracy is the true_accuracy. if early_observation: child.observed_accuracy = get_early_accuracy(child.true_accuracy) else: child.observed_accuracy = child.true_accuracy # Choose model to kill. sample_indexes = random.sample(range(len(population)), sample_size) min_fitness = float("inf") kill_index = population_size for sample_index in sample_indexes: if population[sample_index].observed_accuracy < min_fitness: min_fitness = population[sample_index].observed_accuracy kill_index = sample_index # Replace victim with child. population[kill_index] = child history.append(child) return history, population def pdh_evolution(train_resources, population_size, sample_size): Evolution with PDH. Args: train_resources: the resources alotted for training. An early obsevation costs 1, while a maximum train step observation costs 100. population_size: the size of the population. sample_size: the size of the sample for both parent selection and killing. population = collections.deque() history = [] # Not used by the algorithm, only used to report results. resources_used = 0 # The number of resource units used. # Initialize the population with random models. while len(population) < population_size: model = Model() model.arch = random_architecture() model.true_accuracy = get_final_accuracy(model.arch) # Always initialize with the early observation, since no hurdle has been # established. model.observed_accuracy = get_early_accuracy(model.true_accuracy) population.append(model) history.append(model) # Since we are only performing an early observation, we are only consuming # 1 resource unit. resources_used += 1 # Carry out evolution in cycles. Each cycle produces a model and removes # another. hurdle = None while resources_used < train_resources: # Sample randomly chosen models from the current population. sample = random.sample(population, sample_size) # The parent is the best model in the sample, according to the observed # accuracy. parent = max(sample, key=lambda i: i.observed_accuracy) # Create the child model and store it. child = Model() child.arch = mutate_arch(parent.arch) child.true_accuracy = get_final_accuracy(child.arch) # Once the hurdle has been established, a model is trained for the maximum # amount of train steps if it overcomes the hurdle value. Otherwise, it # only trains for the lesser amount of train steps. if hurdle: child.observed_accuracy = get_early_accuracy(child.true_accuracy) # Performing the early observation costs 1 resource unit. resources_used += 1 if child.observed_accuracy > hurdle: child.observed_accuracy = child.true_accuracy # Now that the model has trained longer, we consume additional # resource units. resources_used += REDUCTION_FACTOR - 1 else: child.observed_accuracy = get_early_accuracy(child.true_accuracy) # Since we are only performing an early observation, we are only consuming # 1 resource unit. resources_used += 1 # Choose model to kill. sample_indexes = random.sample(range(len(population)), sample_size) min_fitness = float("inf") kill_index = population_size for sample_index in sample_indexes: if population[sample_index].observed_accuracy < min_fitness: min_fitness = population[sample_index].observed_accuracy kill_index = sample_index # Replace victim with child. population[kill_index] = child history.append(child) # Create a hurdle, splitting resources such that the number of models # trained before and after the hurdle are approximately even. Here, our # appoximation is assuming that every model after the hurdle trains for the # maximum number of steps. if not hurdle and resources_used >= int(train_resources/REDUCTION_FACTOR): hurdle = 0 for model in population: hurdle += model.observed_accuracy hurdle /= len(population) return history, population import matplotlib.pyplot as plt import matplotlib.ticker as ticker import seaborn as sns TOTAL_RESOURCES = 10000 # Total number of resource units. POPULATION_SIZE = 100 # The size of the population. SAMPLE_SIZE = 10 # The size the subpopulation used for selecting parents and # kill targets. def graph_values(values, title, xlim, ylim): plt.figure() sns.set_style('white') xvalues = range(len(values)) yvalues = values ax = plt.gca() dot_size = int(TOTAL_RESOURCES / xlim) ax.scatter( xvalues, yvalues, marker='.', facecolor=(0.0, 0.0, 0.0), edgecolor=(0.0, 0.0, 0.0), linewidth=1, s=dot_size) ax.xaxis.set_major_locator(ticker.LinearLocator(numticks=2)) ax.xaxis.set_major_formatter(ticker.ScalarFormatter()) ax.yaxis.set_major_locator(ticker.LinearLocator(numticks=2)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) ax.set_title(title, fontsize=20) fig = plt.gcf() fig.set_size_inches(8, 6) fig.tight_layout() ax.tick_params( axis='x', which='both', bottom=True, top=False, labelbottom=True, labeltop=False, labelsize=14, pad=10) ax.tick_params( axis='y', which='both', left=True, right=False, labelleft=True, labelright=False, labelsize=14, pad=5) plt.xlabel('Number of Models Evaluated', labelpad=-16, fontsize=16) plt.ylabel('Accuracy', labelpad=-30, fontsize=16) plt.xlim(0, xlim + .05) plt.ylim(0, ylim + .05) sns.despine() def graph_history(history): observed_accuracies = [i.observed_accuracy for i in history] true_accuracies = [i.true_accuracy for i in history] graph_values(observed_accuracies, "Observed Accuracy", xlim=len(history), ylim=max(observed_accuracies)) graph_values(true_accuracies, "True Accuracy", xlim=len(history), ylim=max(true_accuracies)) history, _ = plain_evolution( cycles=TOTAL_RESOURCES, population_size=POPULATION_SIZE, sample_size=SAMPLE_SIZE, early_observation=True) graph_history(history) history, _ = plain_evolution( cycles=TOTAL_RESOURCES/REDUCTION_FACTOR, population_size=POPULATION_SIZE, sample_size=SAMPLE_SIZE, early_observation=False) graph_history(history) history, _ = pdh_evolution(train_resources=TOTAL_RESOURCES, population_size=POPULATION_SIZE, sample_size=SAMPLE_SIZE) graph_history(history) import numpy as np num_trials = 500 print("===========================") print("Mean Top Fitness Comparison") print("===========================") max_fitnesses = [] for _ in range(num_trials): _, population = plain_evolution( cycles=TOTAL_RESOURCES, population_size=POPULATION_SIZE, sample_size=SAMPLE_SIZE, early_observation=True) # Assume all models in the final population are fully evaluated max_fitness = max([indiv.true_accuracy for indiv in population]) max_fitnesses.append(max_fitness) max_fitnesses = np.array(max_fitnesses) print("Early Observation Plain Evolution: %.4s ± %.4s" % (np.mean(max_fitnesses), np.std(max_fitnesses))) max_fitnesses = [] for _ in range(num_trials): _, population = plain_evolution( cycles=TOTAL_RESOURCES/REDUCTION_FACTOR, population_size=POPULATION_SIZE, sample_size=SAMPLE_SIZE, early_observation=False) # Assume all models in the final population are fully evaluated max_fitness = max([indiv.true_accuracy for indiv in population]) max_fitnesses.append(max_fitness) max_fitnesses = np.array(max_fitnesses) print("Max Step Observation Plain Evolution: %.4s ± %.4s" % (np.mean(max_fitnesses), np.std(max_fitnesses))) max_fitnesses = [] for _ in range(num_trials): _, population = pdh_evolution(train_resources=TOTAL_RESOURCES, population_size=POPULATION_SIZE, sample_size=SAMPLE_SIZE) # Assume all models in the final population are fully evaluated max_fitness = max([indiv.true_accuracy for indiv in population]) max_fitnesses.append(max_fitness) max_fitnesses = np.array(max_fitnesses) print("Progressive Dynamic Hurdles: %.4s ± %.4s" % (np.mean(max_fitnesses), np.std(max_fitnesses))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Query a single song, get its audio features and make a dataframe Step2: Grab and compare the hottest tracks, available in Spotify, for 2 artists on a number of audio features
<ASSISTANT_TASK:> Python Code: from pyechonest import config, artist, song import pandas as pd config.ECHO_NEST_API_KEY = 'XXXXXXXX' #retrieved from https://developer.echonest.com/account/profile import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline songs = song.search(title='Elastic Heart',artist='Sia',buckets='id:spotify',limit=True,results=1) elasticHeart = songs[0] elasticHeartFeatures = pd.DataFrame.from_dict(elasticHeart.audio_summary,orient='index') pd.DataFrame.from_dict([elasticHeart.audio_summary]) floHottest = song.search(artist = 'Flo Rida' ,sort = 'song_hotttnesss-desc', buckets = 'id:spotify', limit = True, results = 20) fsongFeatures = [] for song in floHottest: fsongFeatures.append(song.audio_summary) S= pd.DataFrame.from_dict(songFeatures) S.index = [song.title for song in siaHottest] S['hotness'] = [song.song_hotttnesss for song in siaHottest] F= pd.DataFrame.from_dict(fsongFeatures) F.index = [song.title for song in floHottest] F['hotness'] = [song.song_hotttnesss for song in floHottest] u,idx = np.unique(S.index,return_index=True) S = S.ix[idx,:] u,idx = np.unique(F.index,return_index=True) F = F.ix[idx,:] ax = pd.DataFrame({'Flo Rida':F.mean(), 'Sia': S.mean()}).plot(kind='bar',figsize=(18,6),rot=0, color = ['lightblue','salmon']); ax.set_title("Average Song Features for Artist's Hottest 20 tracks",fontsize=14); ax.tick_params(axis='x', labelsize=12) Elastic_Heart = siaHottest[5].get_tracks('spotify') Elastic_Heart[1] %%html <iframe src="https://embed.spotify.com/?uri=spotify:track:3yFdQkEQNzDwpPB1iIFtaM" width="300" height="380" frameborder="0" allowtransparency="true"></iframe> <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set all the operating parameters to the default values Step3: Start the frames Step6: Run the variance test
<ASSISTANT_TASK:> Python Code: from tessfpe.dhu.fpe import FPE from tessfpe.dhu.unit_tests import check_house_keeping_voltages fpe1 = FPE(1, debug=False, preload=True, FPE_Wrapper_version='6.1.1') print fpe1.version fpe1.cmd_start_frames() fpe1.cmd_stop_frames() if check_house_keeping_voltages(fpe1): print "Wrapper load complete. Interface voltages OK." def set_fpe_defaults(fpe): "Set the FPE to the default operating parameters and return a list of the default values" defaults = {} for k in range(len(fpe.ops.address)): if fpe.ops.address[k] is None: continue fpe.ops.address[k].value = fpe.ops.address[k].default defaults[fpe.ops.address[k].name] = fpe.ops.address[k].default return defaults set_fpe_defaults(fpe1) fpe1.cmd_start_frames() subprocess.check_output(["pwd"]) def capture_frames(self, n): Capture frames import subprocess import os.path self.cmd_start_frames() proc = subprocess.Popen( [os.path.join(self._dir, "..", "fits_capture", "tess_obssim", "tess_obssim"), '-n', str(n)], shell=False) proc.communicate() self.cmd_stop_frames() from numpy import var, sqrt samples=5 #from tessfpe.data.housekeeping_channels import housekeeping_channels fpe1.cmd_cam_status() # We make sample_data a dictionary and each value will be a set of HK # data, with key = sample_name. sample_data = {} # For later: signal_names = [] signal_values = [] signal_data = {} variance_values = {} #for i in range(samples): # Get a new set of HK values # house_keeping_values = fpe1.house_keeping["analogue"] # data_values = house_keeping_values.values() # Add the new HK values to the sample_data dictionary: sample_number = "sample_" + str(i) sample_data[sample_number] = data_values # Get the signal names for use later signal_names = housekeeping_channels.keys() # Get list of units for later units = {} for name in housekeeping_channels: units[name] = housekeeping_channels[name]['unit'] Assign the set of all HK values of the same signal (e.g. substrate_1) to the dictionary 'signal_data' for k in range(len(signal_names)): # Build the list 'signal_values' for this signal: for i in range(samples): sample_number = "sample_" + str(i) signal_values.append(sample_data[sample_number][k]) # Add signal_values to the signal_data dictionary: signal_data[signal_names[k]] = signal_values signal_values = [] Now get the square root of the variance of each of the 'signal_values' in the signal_data dictionary and put the result in the 'variance_values' dictionary. for name in signal_data: variance_values[name] = sqrt(var(signal_data[name])) #print units[name]["unit"] #print signal_data #print units[name] print '{0:26} {1:.3} {2}'.format(name, variance_values[name], units[name]) # Results will be displayed below, in engineering units (root-variance). # Watch ObsSim LEDs for activity. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters Step2: Compute statistic Step3: Visualize the clusters
<ASSISTANT_TASK:> Python Code: # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Eric Larson <larson.eric.d@gmail.com> # License: BSD (3-clause) import os.path as op import numpy as np from scipy import stats as stats import mne from mne import spatial_src_connectivity from mne.stats import spatio_temporal_cluster_test, summarize_clusters_stc from mne.datasets import sample print(__doc__) data_path = sample.data_path() stc_fname = data_path + '/MEG/sample/sample_audvis-meg-lh.stc' subjects_dir = data_path + '/subjects' src_fname = subjects_dir + '/fsaverage/bem/fsaverage-ico-5-src.fif' # Load stc to in common cortical space (fsaverage) stc = mne.read_source_estimate(stc_fname) stc.resample(50, npad='auto') # Read the source space we are morphing to src = mne.read_source_spaces(src_fname) fsave_vertices = [s['vertno'] for s in src] morph = mne.compute_source_morph(stc, 'sample', 'fsaverage', spacing=fsave_vertices, smooth=20, subjects_dir=subjects_dir) stc = morph.apply(stc) n_vertices_fsave, n_times = stc.data.shape tstep = stc.tstep n_subjects1, n_subjects2 = 7, 9 print('Simulating data for %d and %d subjects.' % (n_subjects1, n_subjects2)) # Let's make sure our results replicate, so set the seed. np.random.seed(0) X1 = np.random.randn(n_vertices_fsave, n_times, n_subjects1) * 10 X2 = np.random.randn(n_vertices_fsave, n_times, n_subjects2) * 10 X1[:, :, :] += stc.data[:, :, np.newaxis] # make the activity bigger for the second set of subjects X2[:, :, :] += 3 * stc.data[:, :, np.newaxis] # We want to compare the overall activity levels for each subject X1 = np.abs(X1) # only magnitude X2 = np.abs(X2) # only magnitude print('Computing connectivity.') connectivity = spatial_src_connectivity(src) # Note that X needs to be a list of multi-dimensional array of shape # samples (subjects_k) x time x space, so we permute dimensions X1 = np.transpose(X1, [2, 1, 0]) X2 = np.transpose(X2, [2, 1, 0]) X = [X1, X2] # Now let's actually do the clustering. This can take a long time... # Here we set the threshold quite high to reduce computation. p_threshold = 0.0001 f_threshold = stats.distributions.f.ppf(1. - p_threshold / 2., n_subjects1 - 1, n_subjects2 - 1) print('Clustering.') T_obs, clusters, cluster_p_values, H0 = clu =\ spatio_temporal_cluster_test(X, connectivity=connectivity, n_jobs=1, threshold=f_threshold, buffer_size=None) # Now select the clusters that are sig. at p < 0.05 (note that this value # is multiple-comparisons corrected). good_cluster_inds = np.where(cluster_p_values < 0.05)[0] print('Visualizing clusters.') # Now let's build a convenient representation of each cluster, where each # cluster becomes a "time point" in the SourceEstimate fsave_vertices = [np.arange(10242), np.arange(10242)] stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') # Let's actually plot the first "time point" in the SourceEstimate, which # shows all the clusters, weighted by duration subjects_dir = op.join(data_path, 'subjects') # blue blobs are for condition A != condition B brain = stc_all_cluster_vis.plot('fsaverage', hemi='both', views='lateral', subjects_dir=subjects_dir, time_label='Duration significant (ms)', clim=dict(kind='value', lims=[0, 1, 40])) brain.save_image('clusters.png') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Keys Step2: Example
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License") # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. !pip install --quiet -U apache-beam import apache_beam as beam with beam.Pipeline() as pipeline: icons = ( pipeline | 'Garden plants' >> beam.Create([ ('🍓', 'Strawberry'), ('🥕', 'Carrot'), ('🍆', 'Eggplant'), ('🍅', 'Tomato'), ('🥔', 'Potato'), ]) | 'Keys' >> beam.Keys() | beam.Map(print) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Survey Data Step4: We'll also be looking at prior-year surveys, so I'll condense the unzipping processes above into a function out of laziness Step6: Distribution of Income in the United States Step9: Is the distribution of income in the U.S. becoming more or less equal? Step10: The figure above is pretty revealing, but the picture might be even more stark for the period 1992-2001, which corresponds roughly to President Clinton's two terms in office (or as close as we can get with the SCF, which is conducted every three years).
<ASSISTANT_TASK:> Python Code: import pandas as pd #The data package import sys #The code below wont work for any versions before Python 3. This just ensures that (allegedly). assert sys.version_info >= (3,5) import requests import io import zipfile #Three packages we'll need to unzip the data The next two lines of code converts the URL into a format that works with the "zipfile" package. url2013 = 'http://www.federalreserve.gov/econresdata/scf/files/scfp2013s.zip' url2013_requested = requests.get(url2013) Next, zipfile downloads, unzips, and saves the file to your computer. 'url2013_unzipped' contains the file path for the file. zipfile2013 = zipfile.ZipFile(io.BytesIO(url2013_requested.content)) url2013_unzipped = zipfile2013.extract(zipfile2013.namelist()[0]) df2013 = pd.read_stata(url2013_unzipped) df2013.head(10) #Returns the first 10 rows of the dataframe def unzip_survey_file(year = '2013'): import requests, io, zipfile import pandas as pd if int(year) <1989: url = 'http://www.federalreserve.gov/econresdata/scf/files/'+year+'_scf'+year[2:]+'bs.zip' else: url = 'http://www.federalreserve.gov/econresdata/scf/files/scfp'+year+'s.zip' url = requests.get(url) url_unzipped = zipfile.ZipFile(io.BytesIO(url.content)) return url_unzipped.extract(url_unzipped.namelist()[0]) df1983 = pd.read_stata(unzip_survey_file(year = '1983')) df1992 = pd.read_stata(unzip_survey_file(year = '1992')) df2001 = pd.read_stata(unzip_survey_file(year = '2001')) There is no Summary Extract dataset for 1983, so we'll rename the variable names in the 1983 Full dataset so that they correspond to the variable names in the other survey years. Also, 161 out of the 4262 total households covered in the 1983 survey actually reported having negative income. This isn't the case for the other survey years we are considering, and it complicates our analysis a bit below. Because of this, we drop any obs. that report negative incomes before proceeding. This has a near-zero impact on any of our results, since all but 2 of these observations recieve a weight of zero. The two non-zero weight observations reporting negative incomes account for only <0.05% of the total population, so not much is lost be excluding them. Going forward: it might be worthwhile to figure out why there are instances of negative incomes in the 1983 survey yet none for the other years. df1983 = df1983.rename(columns = {'b3201':'income', 'b3324':'networth', 'b3015' : 'wgt'}) df1983 = df1983[df1983['income']>=0] def weighted_percentiles(data, variable, weights, percentiles = [], dollar_amt = False, subgroup = None, limits = []): data specifies what dataframe we're working with variable specifies the variable name (e.g. income, networth, etc.) in the dataframe percentiles = [] indicates what percentile(s) to return (e.g. 90th percentile = .90) weights corresponds to the weighting variable in the dataframe dollar_amt = False returns the percentage of total income earned by that percentile group (i.e. bottom 80% of earners earned XX% of total) dollar_amt = True returns the $ amount earned by that percentile (i.e. 90th percentile earned $X) subgroup = '' isolates the analysis to a particular subgroup in the dataset. For example subgroup = 'age' would return the income distribution of the age group determined by the limits argument limits = [] Corresponds to the subgroup argument. For example, if you were interesting in looking at the distribution of income across heads of household aged 18-24, then you would input "subgroup = 'age', limits = [18,24]" import numpy a = list() data[variable+weights] = data[variable]*data[weights] if subgroup is None: tt = data else: tt = data[data[subgroup].astype(int).isin(range(limits[0],limits[1]+1))] values, sample_weight = tt[variable], tt[weights] for index in percentiles: values = numpy.array(values) index = numpy.array(index) sample_weight = numpy.array(sample_weight) sorter = numpy.argsort(values) values = values[sorter] sample_weight = sample_weight[sorter] weighted_percentiles = numpy.cumsum(sample_weight) - 0.5 * sample_weight weighted_percentiles /= numpy.sum(sample_weight) a.append(numpy.interp(index, weighted_percentiles, values)) if dollar_amt is False: return[tt.loc[tt[variable]<=a[x], variable+weights].sum()/tt[variable+weights].sum() for x in range(len(percentiles))] else: return a %pylab inline import matplotlib.pyplot as plt def figureprefs(data, variable = 'income', labels = False, legendlabels = []): percentiles = [i * 0.05 for i in range(20)]+[0.99, 1.00] fig, ax = plt.subplots(figsize=(10,8)); ax.set_xticks([i*0.1 for i in range(11)]); #Sets the tick marks ax.set_yticks([i*0.1 for i in range(11)]); vals = ax.get_yticks() #Labels the tick marks ax.set_yticklabels(['{:3.0f}%'.format(x*100) for x in vals]); ax.set_xticklabels(['{:3.0f}%'.format(x*100) for x in vals]); ax.set_title('Lorenz Curve: United States, 1983 vs. 2013', #Axes titles fontsize=18, loc='center'); ax.set_ylabel('Cumulative Percent of Total Income', fontsize = 12); ax.set_xlabel('Percent of Familes Ordered by Incomes', fontsize = 12); if type(data) == list: values = [weighted_percentiles(data[x], variable, 'wgt', dollar_amt = False, percentiles = percentiles) for x in range(len(data))] for index in range(len(data)): plt.plot(percentiles,values[index], linewidth=2.0, marker = 's',clip_on=False,label=legendlabels[index]); for num in [10, 19, 20]: ax.annotate('{:3.1f}%'.format(values[index][num]*100), xy=(percentiles[num], values[index][num]), ha = 'right', va = 'center', fontsize = 12); else: values = weighted_percentiles(data, variable, 'wgt', dollar_amt = False, percentiles = percentiles) plt.plot(percentiles,values, linewidth=2.0, marker = 's',clip_on=False,label=legendlabels); plt.plot(percentiles,percentiles, linestyle = '--', color='k', label='Perfect Equality'); legend(loc = 2) years_graph = [df2013, df1983] labels = ['2013', '1983'] figureprefs(years_graph, variable = 'income', legendlabels = labels); Note: All Summary Extract data for survey years 1989 and later have been adjusted for inflation (2013=100). This isn't the case for survey data prior to 1989, so we'll have to adjust the 1983 data manually. from pandas.io import wb # World Bank api import warnings warnings.simplefilter(action = "ignore", category = FutureWarning) #Ignore these two lines cpi = wb.download(indicator='FP.CPI.TOTL' , country= 'USA', start=1983, end=2013) #CPI The World Bank CPI series is indexed so that 2010 = 100. We'll have to re-index it so that 2013 = 100 to be consistent with the other data. cpi1983 = (100/cpi['FP.CPI.TOTL'][2013-2013])*cpi['FP.CPI.TOTL'][2013-1983]/100 df1983['realincome'] = df1983['income']/cpi1983 percentiles = [i * 0.01 for i in range(1,100)]+[0.99]+[0.999] incomes = pd.DataFrame({'2001': weighted_percentiles(df2001, 'income', 'wgt', dollar_amt = True, percentiles =percentiles), '2013': weighted_percentiles(df2013, 'income', 'wgt', dollar_amt = True, percentiles = percentiles), '1992': weighted_percentiles(df1992, 'income', 'wgt', dollar_amt = True, percentiles = percentiles), '1983': weighted_percentiles(df1983, 'realincome', "wgt", dollar_amt = True, percentiles = percentiles)}) fig, ax = plt.subplots(figsize=(10,6)) plt.plot(percentiles,(incomes['2013']-incomes['1983'])/incomes['1983']/(2013-1983+1), linewidth = 2.0, label = '1983-2013'); yvals = ax.get_yticks() ax.set_xticks([i * 0.1 for i in range(11)]) xvals = ax.get_xticks() ax.set_yticklabels(['{:3.2f}%'.format(x*100) for x in yvals]); ax.set_xticklabels(['{:3.0f}'.format(x*100) for x in xvals]); ax.set_title('Annual real income growth by income percentile', #Axes titles fontsize=18, loc='center'); ax.axhline(y=0,xmin = 0, xmax = 1, linestyle = '--', color = 'k'); ax.set_ylabel('Average annual growth rate of real income'); ax.set_xlabel('Income percentile'); legend(loc=2); fig, ax = plt.subplots(figsize=(10,6)) plt.plot(percentiles,(incomes['2001']-incomes['1992'])/incomes['1992']/(2001-1992+1), linewidth = 2.0, label = '1992-2001'); plt.plot(percentiles,(incomes['2013']-incomes['1983'])/incomes['1983']/(2013-1983+1), linewidth = 2.0, label = '1983-2013'); yvals = ax.get_yticks() ax.set_xticks([i * 0.1 for i in range(11)]) xvals = ax.get_xticks() ax.set_yticklabels(['{:3.2f}%'.format(x*100) for x in yvals]); ax.set_xticklabels(['{:3.0f}'.format(x*100) for x in xvals]); ax.set_title('Annual real income growth by income percentile', #Axes titles fontsize=18, loc='center'); ax.axhline(y=0,xmin = 0, xmax = 1, linestyle = '--', color = 'k'); ax.set_ylabel('Average annual growth rate of real income'); ax.set_xlabel('Income percentile'); legend(loc=2); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: DRB Vizer json services Step2: Service end point Step3: Meta info (metadata) requests Step4: Examine all stations (siso assets) by first importing into a Pandas Dataframe Step5: Summaries (station counts) by platform_type and provider Step6: Request and examine one station Step7: Meta info request Step8: Data request Step9: Create dtutc column with parsed datetime. Also, it's safer to rename the "value" column to something unlikely to conflict with pandas method names.
<ASSISTANT_TASK:> Python Code: import json import requests import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import datetime import time import calendar import pytz #from matplotlib.dates import date2num, num2date utc_tz = pytz.utc def epochsec_to_dt(epochsec): Return the datetime object for epoch seconds epochsec dtnaive_dt = datetime.datetime.utcfromtimestamp(epochsec) dtutc_dt = dtnaive_dt.replace(tzinfo=pytz.utc) return dtutc_dt def get_measurement_byvarid(metaresult, var_id): return [e for e in metaresult['measurements'] if e['var_id'] == var_id][0] vz_gai_url = "http://www.wikiwatershed-vs.org/services/get_asset_info.php" meta_r = requests.get(vz_gai_url, params={'asset_type':'siso', 'opt':'meta'}) meta = meta_r.json() meta.keys(), meta['success'] type(meta['result']), len(meta['result']) # siso_id is the unique identifier (string type) for the station siso_id_lst = [e['siso_id'] for e in meta['result']] # Examine the response for the first station (index 0) in the returned list meta['result'][0]['siso_id'] meta['result'][0] stations_rec = [] for sta in meta['result']: sta_rec = {key:sta[key] for key in ['siso_id', 'name', 'lat', 'lon', 'platform_type', 'provider']} stations_rec.append(sta_rec) stations_df = pd.DataFrame.from_records(stations_rec) stations_df.set_index('siso_id', inplace=True, verify_integrity=True) stations_df.index.name = 'siso_id' print len(stations_df) stations_df.head(10) stations_df.platform_type.value_counts() stations_df.provider.value_counts() # USGS Schuylkill River at Philadelphia siso_id = 'USGS_01474500' # (asset_id, a more generic descriptor for the unique id of any asset) meta_r = requests.get(vz_gai_url, params={'asset_type':'siso', 'opt':'meta', 'asset_id':siso_id}) # use [0] to pull out the dict from the single-element list metaresult = meta_r.json()['result'][0] # ideally, should first test for success # var_id is the unique identifier for a "measurement" (or variable) [(d['var_id'], d['depth']) for d in metaresult['measurements']] metaresult['name'] data_r = requests.get(vz_gai_url, params={'asset_type':'siso', 'opt':'data', 'units_mode': 'v1', 'asset_id':siso_id, 'var_id':'all'}) data = data_r.json() data['success'], len(data['result']), data['result'][0].keys(), len(data['result'][0]['data']) # Mapping of var_id string to 'result' list element index var_ids = {e['var_id']:i for i,e in enumerate(data['result'])} var_ids var_id = 'H1_Discharge' get_measurement_byvarid(metaresult, var_id) data['result'][var_ids[var_id]]['data'][-10:] # Pull out data time series for one variable based on var_id # returns a list of dicts data_lst = data['result'][var_ids[var_id]]['data'] data_df = pd.DataFrame.from_records(data_lst) data_df.head() data_df['dtutc'] = data_df.time.map(lambda es: epochsec_to_dt(es)) data_df.set_index('dtutc', inplace=True, verify_integrity=True) data_df.index.name = 'dtutc' data_df = data_df.rename(columns={'value':var_id}) data_df.info() data_df.head() data_df.describe() var_info = get_measurement_byvarid(metaresult, var_id) title = "%s (%s) at %s" % (var_info['name'], var_id, metaresult['name']) data_df[var_id].plot(title=title, figsize=[11,5]) plt.ylabel(var_info['units']); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basic plot_topomap options Step2: If times is set to None at most 10 regularly spaced topographies will be Step3: Instead of showing topographies at specific time points we can compute Step4: We can plot gradiometer data (plots the RMS for each pair of gradiometers) Step5: Additional plot_topomap options Step6: If you look at the edges of the head circle of a single topomap you'll see Step7: More advanced usage Step8: Animating the topomap
<ASSISTANT_TASK:> Python Code: # Authors: Christian Brodbeck <christianbrodbeck@nyu.edu> # Tal Linzen <linzen@nyu.edu> # Denis A. Engeman <denis.engemann@gmail.com> # Mikołaj Magnuski <mmagnuski@swps.edu.pl> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mne.datasets import sample from mne import read_evokeds print(__doc__) path = sample.data_path() fname = path + '/MEG/sample/sample_audvis-ave.fif' # load evoked corresponding to a specific condition # from the fif file and subtract baseline condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0)) times = np.arange(0.05, 0.151, 0.02) evoked.plot_topomap(times, ch_type='mag', time_unit='s') evoked.plot_topomap(ch_type='mag', time_unit='s') evoked.plot_topomap(times, ch_type='mag', average=0.05, time_unit='s') evoked.plot_topomap(times, ch_type='grad', time_unit='s') evoked.plot_topomap(times, ch_type='mag', cmap='Spectral_r', res=32, outlines='skirt', contours=4, time_unit='s') extrapolations = ['box', 'head', 'local'] fig, axes = plt.subplots(figsize=(7.5, 2.5), ncols=3) for ax, extr in zip(axes, extrapolations): evoked.plot_topomap(0.1, ch_type='mag', size=2, extrapolate=extr, axes=ax, show=False, colorbar=False) ax.set_title(extr, fontsize=14) evoked.plot_topomap(0.1, ch_type='mag', show_names=True, colorbar=False, size=6, res=128, title='Auditory response', time_unit='s') plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.88) evoked.animate_topomap(ch_type='mag', times=times, frame_rate=10, time_unit='s') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Iris Flower Data Step2: Standardize Features Step3: Train Logistic Regression Using SAG solver
<ASSISTANT_TASK:> Python Code: # Load libraries from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler # Load data iris = datasets.load_iris() X = iris.data y = iris.target # Standarize features scaler = StandardScaler() X_std = scaler.fit_transform(X) # Create logistic regression object using sag solver clf = LogisticRegression(random_state=0, solver='sag') # Train model model = clf.fit(X_std, y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Once DirectedMutagenesis is instantiated and finished running, we can plot the results. The plotScan_interactive function by default, outputs the results in an html file and opens it up in your browser. However, if you are using a notebook to view it, you can display the plot inline by passing the argument display_output='notebook' to the function. Here we display it in the notebook so that it's easier to view alongside the code. Step2: The plotScan_interactive function displays a bar plot similar to plotScan but now hovering over specific bars displays the corresponding asssociation/solvation free energy values. Additionally, clicking and dragging in the plot allows you to zoom in a subset of values. The plotly modebar in the top right has additional options such as zoom, autoscale and saving as a static image.
<ASSISTANT_TASK:> Python Code: from aesop import DirectedMutagenesis, plotScan_interactive, plotNetwork_interactive path_apbs = 'path\to\executable\apbs' path_coulomb = 'path\to\executable\coulomb' path_pdb2pqr = 'path\to\executable\pdb2pqr' jobname = 'directedscan' pdbfile = 'barnase_barstar.pdb' selstr = ['chain A', 'chain B'] target = ['resnum 27', 'resnum 73', 'resnum 83', 'resnum 87', # mutations in chain A 'resnum 145', 'resnum 149', 'resnum 164', 'resnum 186'] # mutations in chain B mutation = ['ASP', 'LYS', 'GLU', 'GLU', # mutations in chain A 'ARG', 'ARG', 'ASP', 'LYS'] # mutations in chain B mutscan = DirectedMutagenesis(pdb=pdbfile, pdb2pqr_exe=path_pdb2pqr, apbs_exe=path_apbs, coulomb_exe=path_coulomb, jobname=jobname, selstr=selstr, target=target, mutation=mutation, minim=True) mutscan.run() plotScan_interactive(mutscan,display_output='notebook') #If you are not using a notebook to run your code then use the code below instead: #plotScan_interactive(mutscan) plotNetwork_interactive(mutscan,display_output='notebook') #If you are not using a notebook to run your code then use the code below instead: #plotNetwork_interactive(mutscan) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Note Step2: For any unit you can find all of the built-in units that are equivalent Step3: The units package is much more useful when you combine it with scalars or arrays to create Quantities Step4: You can access the number and unit part of the Quantity separately Step5: At example problem Step6: Notice that the units are a bit strange. We can simplify this using .decompose() Step7: Unit conversion is really easy! Step8: Units make math with Time easy! Step9: You can define your own units Step10: Dimentionless Units Step11: Some math functions only make sense with dimentionless quanities Step12: Or they expect the correct type of unit! Step13: Using units can save you headaches. Step14: Tables and units Step15: Constants Step16: An Example Step17: Functions and Units - (Last week's homework)
<ASSISTANT_TASK:> Python Code: import numpy as np from astropy.table import QTable from astropy import units as u from astropy import constants as const from astropy.units import imperial imperial.enable() u.m # The unit of meters u.s # The unit of seconds u.m / u.s # combine them into a composite unit u.m.find_equivalent_units() time_1 = 0.25 * u.s time_1 position = np.arange(1,6,1) * u.m # np.arange(x,y,z) - create an array of numbers between x and y in steps z position velocity = position / time_1 velocity velocity.value velocity.unit distance = 100 * u.km time_2 = distance / velocity time_2 time_2.decompose() time_2.to(u.h) velocity.to(u.cm / u.h) velocity.to(imperial.mi / u.h) velocity.si # quick conversion to SI units velocity.cgs # quick conversion to CGS units density = 3000 * (u.kg / u.m**3) # From last week's homework density.to(u.kg / u.km**3) u.s.find_equivalent_units() time_3 = 29 * u.day + 7 * u.h + 56 * u.min + 12 * u.s time_4 = 2 * u.fortnight + 1.33 * u.day time_3 - time_4 (time_3 - time_4).to(u.min) ringo = u.def_unit('Ringos', 3.712 * imperial.yd) position.to(ringo) velocity.to(ringo / u.s) dimless_y = (1 * u.m) / (1 * u.km) dimless_y dimless_y.unit dimless_y.decompose() # returns the scale of the dimentionless quanity np.log(2 * u.m) np.log((2 * u.km) / (1 * u.m)) np.log10((2 * u.km) / (1 * u.m)) np.sin(2 * u.m) np.sin(2 * u.deg) np.sin(90) # not really what I expected np.sin(90 * u.deg) # better planet_table = QTable.read('Planets.csv', format='ascii.csv') planet_table[0:3] planet_table['a'].unit = u.AU planet_table[0:3] planet_table['a'].to(u.km) planet_table['a'].to(u.km)[2] const.G const.M_sun distance = planet_table['a'][0:3] # Mercury, Venus, Earth orbit_v = np.sqrt(const.G * const.M_sun / distance) orbit_v orbit_v.decompose() orbit_v.to(u.km/u.s) orbit_v.to(ringo/u.ms) def find_diameter(H,A): result = (1329 / np.sqrt(A)) * (10 ** (-0.2 * H)) return result * u.km H = 3.34 A = 0.09 asteroid_diameter = find_diameter(H,A) asteroid_diameter def find_mass(D): p = 3000 * (u.kg / u.m**3) result = p * (1/6) * np.pi * D**3 return result asteroid_mass = find_mass(asteroid_diameter) asteroid_mass asteroid_mass.decompose() moon_mass = u.def_unit('Lunar\ Masses', 7.34767309e22 * u.kg) asteroid_mass.to(moon_mass) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read raw file Step2: Check DACQ defined averaging categories and other info Step3: Extract epochs corresponding to a category Step4: Get epochs from all conditions, average Step5: Make a new averaging category
<ASSISTANT_TASK:> Python Code: # Author: Jussi Nurminen (jnu@iki.fi) # # License: BSD (3-clause) import mne import os from mne.datasets import multimodal fname_raw = os.path.join(multimodal.data_path(), 'multimodal_raw.fif') print(__doc__) raw = mne.io.read_raw_fif(fname_raw) print(raw.acqparser) cond = raw.acqparser.get_condition(raw, 'Auditory right') epochs = mne.Epochs(raw, **cond) epochs.average().plot_topo(background_color='w') evokeds = [] for cat in raw.acqparser.categories: cond = raw.acqparser.get_condition(raw, cat) # copy (supported) rejection parameters from DACQ settings epochs = mne.Epochs(raw, reject=raw.acqparser.reject, flat=raw.acqparser.flat, **cond) evoked = epochs.average() evoked.comment = cat['comment'] evokeds.append(evoked) # save all averages to an evoked fiff file # fname_out = 'multimodal-ave.fif' # mne.write_evokeds(fname_out, evokeds) newcat = dict() newcat['comment'] = 'Visual lower left, longer epochs' newcat['event'] = 3 # reference event newcat['start'] = -.2 # epoch start rel. to ref. event (in seconds) newcat['end'] = .7 # epoch end newcat['reqevent'] = 0 # additional required event; 0 if none newcat['reqwithin'] = .5 # ...required within .5 sec (before or after) newcat['reqwhen'] = 2 # ...required before (1) or after (2) ref. event newcat['index'] = 9 # can be set freely cond = raw.acqparser.get_condition(raw, newcat) epochs = mne.Epochs(raw, reject=raw.acqparser.reject, flat=raw.acqparser.flat, **cond) epochs.average().plot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 문제2. Step2: 문제3. Step3: 문제4. Step4: 문제 5. Step5: 문제6. Step6: 문제7. Step7: 문제10 Step8: 선형대수
<ASSISTANT_TASK:> Python Code: X = np.array([[11, 12], [21, 22], [31, 32]]) X X = np.array([[1,1,1,1], [1,2,4,8], [1,3,5,7], [1,4,16,32], [1,5,9,13]]) X X[1::2, 1:] X = np.array([[1,1,1,1], [1,2,4,8], [1,3,5,7],[1,4,16,32],[1,5,9,13]]) X X[X%4==0] X = np.ones((5,4)) Y = np.zeros((5,4)) np.hstack([X, Y]) np.arange(1,6) np.arange(1,6).reshape(5,1) x = np.arange(5) x x[:, np.newaxis] + 1 10 * (x[:, np.newaxis] + 1) 10 * (x[:, np.newaxis] + 1) + x np.random.seed(0) X = np.random.random_integers(0, 100, (5,3)) X X.max(axis=1) plt.scatter(*np.meshgrid(range(5), range(6))); A = np.array([[1,2], [3,4]]) B = np.array([[5,6,], [7,8]]) print(np.linalg.det(3*A), 3*np.linalg.det(A)) #no.2 print(np.linalg.det(A+B), np.linalg.det(A) + np.linalg.det(B)) #no.6 print(np.trace(A), np.trace(np.linalg.inv(A))) #no.9 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Table of Contents Step2: Tests (1/2) Step4: We can start to see that the time complexity of this function seems to grow linearly as the size grows. Step5: Let try it! Step6: Now for a test of the speed? Step8: $\implies$ Yay! It seems faster indeed! but only x2 times faster... Step9: Let try it! Step11: $\implies$ Well... It doesn't seem that much faster from the naive Python code. Step13: That's probably not optimal, but we can generate a string with Step14: And so, this function can test to check that the three implementations (naive, Cython-powered, Numba-powered) always give the same result. Step15: Benchmarks Step16: Let check the time used by all the three functions, for longer and longer sequences Step17: Complexity ? Step19: It is linear in $\log\log$ scale, so indeed the algorithm seems to have a linear complexity. Step21: And to compare it fairly, let us use Pypy for comparison.
<ASSISTANT_TASK:> Python Code: def lempel_ziv_complexity(sequence): Lempel-Ziv complexity for a binary sequence, in simple Python code. sub_strings = set() n = len(sequence) ind = 0 inc = 1 # this while loop runs at most n times while True: if ind + inc > len(sequence): break # this can take some time, takes O(inc) sub_str = sequence[ind : ind + inc] # and this also, takes a O(log |size set|) in worst case # max value for inc = n / size set at the end # so worst case is that the set contains sub strings of the same size # and the worst loop takes a O(n / |S| * log(|S|)) # ==> so if n/|S| is constant, it gives O(n log(n)) at the end # but if n/|S| = O(n) then it gives O(n^2) if sub_str in sub_strings: inc += 1 else: sub_strings.add(sub_str) ind += inc inc = 1 return len(sub_strings) s = '1001111011000010' lempel_ziv_complexity(s) # 1 / 0 / 01 / 11 / 10 / 110 / 00 / 010 %timeit lempel_ziv_complexity(s) lempel_ziv_complexity('1010101010101010') # 1, 0, 10, 101, 01, 010, 1010 lempel_ziv_complexity('1001111011000010000010') # 1, 0, 01, 11, 10, 110, 00, 010, 000 lempel_ziv_complexity('100111101100001000001010') # 1, 0, 01, 11, 10, 110, 00, 010, 000, 0101 %timeit lempel_ziv_complexity('100111101100001000001010') import random def random_string(size, alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ"): return "".join(random.choices(alphabet, k=size)) def random_binary_sequence(size): return random_string(size, alphabet="01") random_string(100) random_binary_sequence(100) for (r, name) in zip( [random_string, random_binary_sequence], ["random strings in A..Z", "random binary sequences"] ): print("\nFor {}...".format(name)) for n in [10, 100, 1000, 10000, 100000]: print(" of sizes {}, Lempel-Ziv complexity runs in:".format(n)) %timeit lempel_ziv_complexity(r(n)) %load_ext cython %%cython import cython ctypedef unsigned int DTYPE_t @cython.boundscheck(False) # turn off bounds-checking for entire function, quicker but less safe def lempel_ziv_complexity_cython(str sequence not None): Lempel-Ziv complexity for a string, in simple Cython code (C extension). cdef set sub_strings = set() cdef str sub_str = "" cdef DTYPE_t n = len(sequence) cdef DTYPE_t ind = 0 cdef DTYPE_t inc = 1 while True: if ind + inc > len(sequence): break sub_str = sequence[ind : ind + inc] if sub_str in sub_strings: inc += 1 else: sub_strings.add(sub_str) ind += inc inc = 1 return len(sub_strings) s = '1001111011000010' lempel_ziv_complexity_cython(s) # 1 / 0 / 01 / 11 / 10 / 110 / 00 / 010 %timeit lempel_ziv_complexity(s) %timeit lempel_ziv_complexity_cython(s) lempel_ziv_complexity_cython('1010101010101010') # 1, 0, 10, 101, 01, 010, 1010 lempel_ziv_complexity_cython('1001111011000010000010') # 1, 0, 01, 11, 10, 110, 00, 010, 000 lempel_ziv_complexity_cython('100111101100001000001010') # 1, 0, 01, 11, 10, 110, 00, 010, 000, 0101 for (r, name) in zip( [random_string, random_binary_sequence], ["random strings in A..Z", "random binary sequences"] ): print("\nFor {}...".format(name)) for n in [10, 100, 1000, 10000, 100000]: print(" of sizes {}, Lempel-Ziv complexity in Cython runs in:".format(n)) %timeit lempel_ziv_complexity_cython(r(n)) from numba import jit @jit def lempel_ziv_complexity_numba(sequence : str) -> int: Lempel-Ziv complexity for a sequence, in Python code using numba.jit() for automatic speedup (hopefully). sub_strings = set() n : int= len(sequence) ind : int = 0 inc : int = 1 while True: if ind + inc > len(sequence): break sub_str : str = sequence[ind : ind + inc] if sub_str in sub_strings: inc += 1 else: sub_strings.add(sub_str) ind += inc inc = 1 return len(sub_strings) s = '1001111011000010' lempel_ziv_complexity_numba(s) # 1 / 0 / 01 / 1110 / 1100 / 0010 %timeit lempel_ziv_complexity_numba(s) lempel_ziv_complexity_numba('1010101010101010') # 1, 0, 10, 101, 01, 010, 1010 lempel_ziv_complexity_numba('1001111011000010000010') # 1, 0, 01, 11, 10, 110, 00, 010, 000 9 lempel_ziv_complexity_numba('100111101100001000001010') # 1, 0, 01, 11, 10, 110, 00, 010, 000, 0101 %timeit lempel_ziv_complexity_numba('100111101100001000001010') from numpy.random import binomial def bernoulli(p, size=1): One or more samples from a Bernoulli of probability p. return binomial(1, p, size) bernoulli(0.5, 20) ''.join(str(i) for i in bernoulli(0.5, 20)) def random_binary_sequence(n, p=0.5): Uniform random binary sequence of size n, with rate of 0/1 being p. return ''.join(str(i) for i in bernoulli(p, n)) random_binary_sequence(50) random_binary_sequence(50, p=0.1) random_binary_sequence(50, p=0.25) random_binary_sequence(50, p=0.5) random_binary_sequence(50, p=0.75) random_binary_sequence(50, p=0.9) def tests_3_functions(n, p=0.5, debug=True): s = random_binary_sequence(n, p=p) c1 = lempel_ziv_complexity(s) if debug: print("Sequence s = {} ==> complexity C = {}".format(s, c1)) c2 = lempel_ziv_complexity_cython(s) c3 = lempel_ziv_complexity_numba(s) assert c1 == c2 == c3, "Error: the sequence {} gave different values of the Lempel-Ziv complexity from 3 functions ({}, {}, {})...".format(s, c1, c2, c3) return c1 tests_3_functions(5) tests_3_functions(20) tests_3_functions(50) tests_3_functions(500) tests_3_functions(5000) %timeit lempel_ziv_complexity('100111101100001000001010') %timeit lempel_ziv_complexity_cython('100111101100001000001010') %timeit lempel_ziv_complexity_numba('100111101100001000001010') %timeit lempel_ziv_complexity('10011110110000100000101000100100101010010111111011001111111110101001010110101010') %timeit lempel_ziv_complexity_cython('10011110110000100000101000100100101010010111111011001111111110101001010110101010') %timeit lempel_ziv_complexity_numba('10011110110000100000101000100100101010010111111011001111111110101001010110101010') %timeit tests_3_functions(10, debug=False) %timeit tests_3_functions(20, debug=False) %timeit tests_3_functions(40, debug=False) %timeit tests_3_functions(80, debug=False) %timeit tests_3_functions(160, debug=False) %timeit tests_3_functions(320, debug=False) def test_cython(n): s = random_binary_sequence(n) c = lempel_ziv_complexity_cython(s) return c %timeit test_cython(10) %timeit test_cython(20) %timeit test_cython(40) %timeit test_cython(80) %timeit test_cython(160) %timeit test_cython(320) %timeit test_cython(640) %timeit test_cython(1280) %timeit test_cython(2560) %timeit test_cython(5120) %timeit test_cython(10240) %timeit test_cython(20480) import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline sns.set(context="notebook", style="darkgrid", palette="hls", font="sans-serif", font_scale=1.4) import numpy as np import timeit sizes = np.array(np.trunc(np.logspace(1, 6, 30)), dtype=int) times = np.array([ timeit.timeit( stmt="lempel_ziv_complexity_cython(random_string({}))".format(n), globals=globals(), number=10, ) for n in sizes ]) plt.figure(figsize=(15, 10)) plt.plot(sizes, times, 'o-') plt.xlabel("Length $n$ of the binary sequence $S$") plt.ylabel(r"Time in $\mu\;\mathrm{s}$") plt.title("Time complexity of Lempel-Ziv complexity") plt.show() plt.figure(figsize=(15, 10)) plt.loglog(sizes, times, 'o-') plt.xlabel("Length $n$ of the binary sequence $S$") plt.ylabel(r"Time in $\mu\;\mathrm{s}$") plt.title("Time complexity of Lempel-Ziv complexity, loglog scale") plt.show() %%time %%script julia Lempel-Ziv complexity for a sequence, in simple Julia code. function lempel_ziv_complexity(sequence) sub_strings = Set() n = length(sequence) ind = 1 inc = 1 while true if ind + inc > n break end sub_str = sequence[ind : ind + inc] if sub_str in sub_strings inc += 1 else push!(sub_strings, sub_str) ind += inc inc = 1 end end return length(sub_strings) end s = "1001111011000010" lempel_ziv_complexity(s) # 1 / 0 / 01 / 1110 / 1100 / 0010 M = 1000; N = 10000; for _ in 1:M s = join(rand(0:1, N)); lempel_ziv_complexity(s); end lempel_ziv_complexity(s) # 1 / 0 / 01 / 1110 / 1100 / 0010 %%time %%pypy def lempel_ziv_complexity(sequence): Lempel-Ziv complexity for a binary sequence, in simple Python code. sub_strings = set() n = len(sequence) ind = 0 inc = 1 while True: if ind + inc > len(sequence): break sub_str = sequence[ind : ind + inc] if sub_str in sub_strings: inc += 1 else: sub_strings.add(sub_str) ind += inc inc = 1 return len(sub_strings) s = "1001111011000010" lempel_ziv_complexity(s) # 1 / 0 / 01 / 11 / 10 / 110 / 00 / 010 from random import random M = 1000 N = 10000 for _ in range(M): s = ''.join(str(int(random() < 0.5)) for _ in range(N)) lempel_ziv_complexity(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load config from default location Step2: Create API endpoint instance and API resource instances Step3: Create key value pair data for the ConfigMap Step4: Create ConfigMap Step5: Create API endpoint instance and API resource instances for test Pod Step6: Initialize test Pod container Step7: Define Pod environment variables with data from ConfigMaps Step8: Create Pod Step9: View ConfigMap data from Pod log Step10: Delete ConfigMap Step11: Delete Pod
<ASSISTANT_TASK:> Python Code: from kubernetes import client, config from kubernetes.client.rest import ApiException config.load_kube_config() api_instance = client.CoreV1Api() cmap = client.V1ConfigMap() cmap.metadata = client.V1ObjectMeta(name="special-config") cmap.data = {} cmap.data["special.how"] = "very" cmap.data["special.type"] = "charm" api_instance.create_namespaced_config_map(namespace="default", body=cmap) pod = client.V1Pod() spec = client.V1PodSpec() pod.metadata = client.V1ObjectMeta(name="dapi-test-pod") container = client.V1Container() container.name = "test-container" container.image = "gcr.io/google_containers/busybox" container.command = ["/bin/sh", "-c", "env"] container.env = [client.V1EnvVar(name="SPECIAL_LEVEL_KEY"), client.V1EnvVar(name="SPECIAL_TYPE_KEY")] container.env[0].value_from = client.V1EnvVarSource() container.env[0].value_from.config_map_key_ref = client.V1ConfigMapKeySelector(name="special-config", key="special.how") container.env[1].value_from = client.V1EnvVarSource() container.env[1].value_from.config_map_key_ref = client.V1ConfigMapKeySelector(name="special-config", key="special.type") spec.restart_policy = "Never" spec.containers = [container] pod.spec = spec api_instance.create_namespaced_pod(namespace="default",body=pod) log = "" try: log = api_instance.read_namespaced_pod_log(name="dapi-test-pod", namespace="default") except ApiException as e: if str(e).find("ContainerCreating") != -1: print("Creating Pod container.\nRe-run current cell.") else: print("Exception when calling CoreV1Api->read_namespaced_pod_log: %s\n" % e) for line in log.split("\n"): if line.startswith("SPECIAL"): print(line) api_instance.delete_namespaced_config_map(name="special-config", namespace="default", body=cmap) api_instance.delete_namespaced_pod(name="dapi-test-pod", namespace="default", body=client.V1DeleteOptions()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If you're wondering where this HDF5 files with weights is stored, please take a look at ~/.keras/models/ Step2: <img src="imgs/imagenet/strawberry_1157.jpeg" > Step3: <img src="imgs/imagenet/apricot_696.jpeg" > Step4: <img src="imgs/imagenet/apricot_565.jpeg" > Step5: Hands On Step6: Residual Networks
<ASSISTANT_TASK:> Python Code: from keras.applications import VGG16 from keras.applications.imagenet_utils import preprocess_input, decode_predictions import os # -- Jupyter/IPython way to see documentation # please focus on parameters (e.g. include top) VGG16?? vgg16 = VGG16(include_top=True, weights='imagenet') IMAGENET_FOLDER = 'imgs/imagenet' #in the repo !ls imgs/imagenet from keras.preprocessing import image import numpy as np img_path = os.path.join(IMAGENET_FOLDER, 'strawberry_1157.jpeg') img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print('Input image shape:', x.shape) preds = vgg16.predict(x) print('Predicted:', decode_predictions(preds)) img_path = os.path.join(IMAGENET_FOLDER, 'apricot_696.jpeg') img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print('Input image shape:', x.shape) preds = vgg16.predict(x) print('Predicted:', decode_predictions(preds)) img_path = os.path.join(IMAGENET_FOLDER, 'apricot_565.jpeg') img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print('Input image shape:', x.shape) preds = vgg16.predict(x) print('Predicted:', decode_predictions(preds)) # from keras.applications import VGG19 ## from keras.applications import ... <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Predicting consumption expeditures Step2: Panel B Step3: Panel C Step4: Panel D
<ASSISTANT_TASK:> Python Code: from fig_utils import * import matplotlib.pyplot as plt import time %matplotlib inline # Plot parameters country = 'nigeria' country_path = '../data/LSMS/nigeria/' dimension = None k = 5 k_inner = 5 points = 10 alpha_low = 1 alpha_high = 5 margin = 0.25 # Plot single panel t0 = time.time() X, y, y_hat, r_squareds_test = predict_consumption(country, country_path, dimension, k, k_inner, points, alpha_low, alpha_high, margin) t1 = time.time() print 'Finished in {} seconds'.format(t1-t0) # Plot parameters country = 'tanzania' country_path = '../data/LSMS/tanzania/' dimension = None k = 5 k_inner = 5 points = 10 alpha_low = 1 alpha_high = 5 margin = 0.25 # Plot single panel t0 = time.time() X, y, y_hat, r_squareds_test = predict_consumption(country, country_path, dimension, k, k_inner, points, alpha_low, alpha_high, margin) t1 = time.time() print 'Finished in {} seconds'.format(t1-t0) # Plot parameters country = 'uganda' country_path = '../data/LSMS/uganda/' dimension = None k = 5 k_inner = 5 points = 10 alpha_low = 1 alpha_high = 5 margin = 0.25 # Plot single panel t0 = time.time() X, y, y_hat, r_squareds_test = predict_consumption(country, country_path, dimension, k, k_inner, points, alpha_low, alpha_high, margin) t1 = time.time() print 'Finished in {} seconds'.format(t1-t0) # Plot parameters country = 'malawi' country_path = '../data/LSMS/malawi/' dimension = None k = 5 k_inner = 5 points = 10 alpha_low = 1 alpha_high = 5 margin = 0.25 # Plot single panel t0 = time.time() X, y, y_hat, r_squareds_test = predict_consumption(country, country_path, dimension, k, k_inner, points, alpha_low, alpha_high, margin) t1 = time.time() print 'Finished in {} seconds'.format(t1-t0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: NFA-2-DFA.ipynb contains the function nfa2dfa that converts a non-deterministic Step2: Given two sets A and B, the function cartesian_product(A, B) computes the Step3: Given to deterministic FSMs F1 and F2, the expression fsm_complement(F1, F2) computes a deterministic Step4: Given a regular expression $r$ and an alphabet $\Sigma$, the function $\texttt{regexp2DFA}(r, \Sigma)$ Step5: Given a deterministic FSM $F$ the function Step6: The function regExpEquiv takes three arguments
<ASSISTANT_TASK:> Python Code: %run Regexp-2-NFA.ipynb %run NFA-2-DFA.ipynb def cartesian_product(A, B): return { (x, y) for x in A for y in B } cartesian_product({1, 2}, {'a', 'b'}) def fsm_complement(F1, F2): States1, Σ, 𝛿1, q1, A1 = F1 States2, _, 𝛿2, q2, A2 = F2 States = cartesian_product(States1, States2) 𝛿 = {} for p1, p2 in States: for c in Σ: 𝛿[(p1, p2), c] = (𝛿1[p1, c], 𝛿2[p2, c]) return States, Σ, 𝛿, (q1, q2), cartesian_product(A1, States2 - A2) def regexp2DFA(r, Σ): converter = RegExp2NFA(Σ) nfa = converter.toNFA(r) dfa = nfa2dfa(nfa) return dfa def is_empty(F): States, Σ, δ, q0, Accepting = F Reachable = { q0 } while True: NewFound = { δ[q, c] for q in Reachable for c in Σ } if NewFound <= Reachable: break Reachable |= NewFound return Reachable & Accepting == set() def regExpEquiv(r1, r2, Σ): F1 = regexp2DFA(r1, Σ) F2 = regexp2DFA(r2, Σ) r1_minus_r2 = fsm_complement(F1, F2) r2_minus_r1 = fsm_complement(F2, F1) return is_empty(r1_minus_r2) and is_empty(r2_minus_r1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression model = LinearRegression() model_name = type(model).__name__ <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: Include an exploratory visualization of the dataset Step3: Step 2 Step4: Model Architecture Step5: Train, Validate and Test the Model Step6: Evaluate the Model Step7: Step 3 Step8: Predict the Sign Type for Each Image Step9: Analyze Performance Step10: Output Top 5 Softmax Probabilities For Each Image Found on the Web Step11: Project Writeup
<ASSISTANT_TASK:> Python Code: # Load pickled data import pickle import cv2 # for grayscale and normalize # TODO: Fill this in based on where you saved the training and testing data training_file ='traffic-signs-data/train.p' validation_file='traffic-signs-data/valid.p' testing_file = 'traffic-signs-data/test.p' with open(training_file, mode='rb') as f: train = pickle.load(f) with open(validation_file, mode='rb') as f: valid = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_trainLd, y_trainLd = train['features'], train['labels'] #X_trainLd, y_trainLd = X_trainLd[:20000], y_trainLd[:20000] X_validLd, y_validLd = valid['features'], valid['labels'] X_test, y_test = test['features'], test['labels'] print("Xtrain shape : "+str(X_trainLd.shape)) print("ytrain shape : "+str(y_trainLd.shape)) ### Replace each question mark with the appropriate value. ### Use python, pandas or numpy methods rather than hard coding the results import numpy as np # TODO: Number of training examples n_train = X_trainLd.shape[0] # TODO: Number of validation examples n_validation = X_validLd.shape[0] # TODO: Number of testing examples. n_test = X_test.shape[0] # TODO: What's the shape of an traffic sign image? image_shape = X_trainLd.shape[1:4] # TODO: How many unique classes/labels there are in the dataset. #n_classes = n_train+n_validation+n_test -- this doesn't seem correct 43 in excel file n_classes = 43 print("Xtrain Shape = " ,X_trainLd.shape) print("ytrain Shape = " ,y_trainLd.shape) print("Number of training examples =", n_train) print("Number of validation examples =", n_validation) print("Number of testing examples =", n_test) print("Image data shape =", image_shape) print("Number of classes =", n_classes) import random ### Data exploration visualization code goes here. ### Feel free to use as many code cells as needed. import matplotlib.pyplot as plt # Visualizations will be shown in the notebook. %matplotlib inline #------------------------------------------- #normalise def normit(img): image = img.astype(float) temp = np.zeros(shape=img.shape) i=0 for pix in image: b=0 for pix2 in pix: check = float((pix2-128)/128) pix[b] = check #print("stuff" +str(check) +" norm "+ str(pix[b])+" i "+str(b)+" "+ str(pix2) +" "+str(check)) b=b+1 temp[i] = pix i=i+1 return temp def normit3(img): imagen = img.astype(float) temp = np.zeros(shape=img.shape) #print("imagen 0 " + str(imagen[0][0])) i=0 for pix in imagen: d=0 for pix2 in pix: for b in range(0,3): check = float((pix2[b]-128)/128) pix2[b] = check temp[i][d] = pix2 d=d+1 i=i+1 return temp def normit4(img1,imagegray): imagen = img1.astype(float) imagen2 = imagegray.astype(float) tempy = np.zeros((img1.shape[0],img1.shape[1],4)) #print("shapey : ",tempy.shape) temp= tempy.reshape(32,32,4) #print("imagen 0 " + str(imagen[0][0])) i=0 for pix in imagen: d=0 for pix2 in pix: for b in range(0,3): check = float((pix2[b]-128)/128) pix2[b] = check #pix3 = np.concatenate(pix2,((imagen2[i][d]-128)/128)) temp[i][d] =[pix2[0],pix2[1], pix2[2],((imagen2[i][d]-128)/128)] #if i==20 and d==20: #print("here : " ,temp[i][d]) d=d+1 #g i=i+1 #print("here : " ,temp[20][20]) return temp #------------------------------------------- index = random.randint(0, len(X_trainLd)) imagetest = X_trainLd[109] #squeeze : Remove single-dimensional entries from the shape of an array. print(imagetest.shape) #print(image[0]) np.set_printoptions(threshold=np.inf) #print(image[0]) imagegray = cv2.cvtColor(imagetest,cv2.COLOR_RGB2GRAY) imagegr = imagegray #------------------------------------------- temp2 = normit4(imagetest,imagegray) print("here : " ,temp2[20][20]) #------------------------------------------- #imagegnormnew = temp2.reshape(32,32,1) #imagegnorm = temp.reshape(list(imagef.shape[:-1]) + [1]) #method list() takes sequence types and converts them to lists. This is used to convert a given tuple into list. plt.figure(figsize=(1,1)) #plt.imshow(imageld.squeeze()) plt.imshow(temp2.squeeze(),cmap='gray') print("gray ", imagegray[20][20], ((imagegray[20][20]-128)/128), "imagetest : ",imagetest[20][20], "temp2 ",temp2[20][20]) ### Preprocess the data here. It is required to normalize the data. Other preprocessing steps could include ### converting to grayscale, etc. ### Feel free to use as many code cells as needed. import cv2 from sklearn.utils import shuffle #print("X_Train 0" +str(X_train[0])) #gre ## xtrain grey_X_train = np.zeros(shape=[X_trainLd.shape[0],X_trainLd.shape[1],X_trainLd.shape[2]]) norm_X_train = np.zeros(shape=[X_trainLd.shape[0],X_trainLd.shape[1],X_trainLd.shape[2],4]) norm_X_train = norm_X_train.astype(float) X_train_Pre, y_train_Pre = shuffle(X_trainLd, y_trainLd) X_valid_Pre, y_valid_Pre = X_validLd, y_validLd i=0 for img in X_train_Pre: img2 = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) grey_X_train[i] = img2 i=i+1 i=0 for p in grey_X_train: #pnor= cv2.normalize(p, dst =image_shape, alpha=0, beta=25, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1) #p2 = pnor.reshape(list(pnor.shape[:-1]) + [1]) temp2 = normit4(X_train_Pre[i], p) #temp = temp2.reshape(32,32,1) #print(p.shape) #print("test " + str(test.shape) ) norm_X_train[i] = temp2 i=i+1 if i%1000 ==0: print(i) ##validate grey_X_valid = np.zeros(shape=[X_validLd.shape[0],X_validLd.shape[1],X_validLd.shape[2]]) norm_X_valid = np.zeros(shape=[X_validLd.shape[0],X_validLd.shape[1],X_validLd.shape[2],4]) norm_X_valid=norm_X_valid.astype(float) i=0 for imgv in X_valid_Pre: imgv2 = cv2.cvtColor(imgv,cv2.COLOR_RGB2GRAY) grey_X_valid[i] = imgv2 i=i+1 i=0 for v in grey_X_valid: tv = normit4(X_train_Pre[i],v) #tempv = tv.reshape(32,32,1) norm_X_valid[i] = tv i=i+1 if i%1000 ==0: print(i) print("after normalise") ### Define your architecture here. ### Feel free to use as many code cells as needed. import tensorflow as tf EPOCHS = 15 BATCH_SIZE = 128 #SMcM change to 256 from 128 #X_train=norm_X_train, #X_valid=norm_X_valid #X_train,y_train=X_trainLd, y_trainLd #X_valid,y_valid=X_validLd, y_validLd X_train,y_train=norm_X_train, y_train_Pre X_valid,y_valid=norm_X_valid, y_valid_Pre from tensorflow.contrib.layers import flatten def LeNet(x): # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer mu = 0 sigma = 0.05 #SMcM very good result with .05 for standard lenet no preprocesing # SOLUTION: Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6. conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5,4, 6), mean = mu, stddev = sigma)) #SMcM depth cahnged to 3 conv1_b = tf.Variable(tf.zeros(6)) conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b # SOLUTION: Activation. conv1 = tf.nn.relu(conv1) #conv1 = tf.nn.relu(conv1) #SMcM add an extra relu # SOLUTION: Pooling. Input = 28x28x6. Output = 14x14x6. conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Layer 2: Convolutional. Output = 10x10x16. conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma)) conv2_b = tf.Variable(tf.zeros(16)) conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b # SOLUTION: Activation. conv2 = tf.nn.relu(conv2) # SOLUTION: Pooling. Input = 10x10x16. Output = 5x5x16. conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Flatten. Input = 5x5x16. Output = 400. fc0 = flatten(conv2) # SOLUTION: Layer 3: Fully Connected. Input = 400. Output = 120. fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma)) fc1_b = tf.Variable(tf.zeros(120)) fc1 = tf.matmul(fc0, fc1_W) + fc1_b # SOLUTION: Activation. fc1 = tf.nn.relu(fc1) # SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 84. fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma)) fc2_b = tf.Variable(tf.zeros(84)) fc2 = tf.matmul(fc1, fc2_W) + fc2_b # SOLUTION: Activation. fc2 = tf.nn.relu(fc2) # SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 43. fc3_W = tf.Variable(tf.truncated_normal(shape=(84, 43), mean = mu, stddev = sigma)) fc3_b = tf.Variable(tf.zeros(43)) logits = tf.matmul(fc2, fc3_W) + fc3_b return logits print("model") ### Train your model here. ### Calculate and report the accuracy on the training and validation set. ### Once a final model architecture is selected, ### the accuracy on the test set should be calculated and reported as well. ### Feel free to use as many code cells as needed. #Features and Labels x = tf.placeholder(tf.float32, (None, 32, 32, 4)) y = tf.placeholder(tf.int32, (None)) one_hot_y = tf.one_hot(y, 43) #Training Pipeline rate = 0.001 # SMCM decreased rate to .0008 from 0.001 logits = LeNet(x) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_y, logits=logits) loss_operation = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer(learning_rate = rate) training_operation = optimizer.minimize(loss_operation) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1)) accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() #Model Evaluation def evaluate(X_data, y_data): num_examples = len(X_data) total_accuracy = 0 sess = tf.get_default_session() for offset in range(0, num_examples, BATCH_SIZE): batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE] accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y}) total_accuracy += (accuracy * len(batch_x)) return total_accuracy / num_examples #Train the Model with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_examples = len(X_train) print("Training...") print() for i in range(EPOCHS): X_train, y_train = shuffle(X_train, y_train) for offset in range(0, num_examples, BATCH_SIZE): end = offset + BATCH_SIZE batch_x, batch_y = X_train[offset:end], y_train[offset:end] sess.run(training_operation, feed_dict={x: batch_x, y: batch_y}) validation_accuracy = evaluate(X_valid, y_valid) print("EPOCH {} ...".format(i+1)) print("Validation Accuracy = {:.3f}".format(validation_accuracy)) print() saver.save(sess, './lenet') print("Model saved") #evaluate the model with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) test_accuracy = evaluate(X_test, y_test) print("Test Accuracy = {:.3f}".format(test_accuracy)) ### Load the images and plot them here. ### Feel free to use as many code cells as needed. ### Run the predictions here and use the model to output the prediction for each image. ### Make sure to pre-process the images with the same pre-processing pipeline used earlier. ### Feel free to use as many code cells as needed. ### Calculate the accuracy for these 5 new images. ### For example, if the model predicted 1 out of 5 signs correctly, it's 20% accurate on these new images. ### Print out the top five softmax probabilities for the predictions on the German traffic sign images found on the web. ### Feel free to use as many code cells as needed. ### Visualize your network's feature maps here. ### Feel free to use as many code cells as needed. # image_input: the test image being fed into the network to produce the feature maps # tf_activation: should be a tf variable name used during your training procedure that represents the calculated state of a specific weight layer # activation_min/max: can be used to view the activation contrast in more detail, by default matplot sets min and max to the actual min and max values of the output # plt_num: used to plot out multiple different weight feature map sets on the same block, just extend the plt number for each new feature map entry def outputFeatureMap(image_input, tf_activation, activation_min=-1, activation_max=-1 ,plt_num=1): # Here make sure to preprocess your image_input in a way your network expects # with size, normalization, ect if needed # image_input = # Note: x should be the same name as your network's tensorflow data placeholder variable # If you get an error tf_activation is not defined it may be having trouble accessing the variable from inside a function activation = tf_activation.eval(session=sess,feed_dict={x : image_input}) featuremaps = activation.shape[3] plt.figure(plt_num, figsize=(15,15)) for featuremap in range(featuremaps): plt.subplot(6,8, featuremap+1) # sets the number of feature maps to show on each row and column plt.title('FeatureMap ' + str(featuremap)) # displays the feature map number if activation_min != -1 & activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin =activation_min, vmax=activation_max, cmap="gray") elif activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmax=activation_max, cmap="gray") elif activation_min !=-1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin=activation_min, cmap="gray") else: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", cmap="gray") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate training/testing subsets Step2: Associate SWIRE objects with each set Step3: Generate Features for Each SWIRE Object Step4: Generate labels for each SWIRE object Step5: Experiment Step6: Experiment Step7: Experiment Step8: Export
<ASSISTANT_TASK:> Python Code: import sklearn.model_selection, numpy, astropy.io.ascii as asc table = asc.read('/Users/alger/data/Crowdastro/one-table-to-rule-them-all.tbl') # clean = numpy.array(asc.read('clean-atlas.tbl')['Clean']).astype(bool) # clean.shape primary_component_to_norris_swire = {} primary_component_to_rgz_swire = {} # Only includes primary components (though labels may come from any component). primary_components_with_both_labels = set() for row in table:# table[clean] primary_component_id = row['Primary Component ID (RGZ)'] if not primary_component_id: # If something does not have a primary component ID, it cannot have an RGZ label, so we don't care about it! continue norris_swire = row['Source SWIRE (Norris)'] rgz_swire = row['Source SWIRE Name (RGZ)'] if not norris_swire or not rgz_swire or not norris_swire.startswith('SWIRE'): continue primary_component_to_norris_swire[primary_component_id] = norris_swire primary_component_to_rgz_swire[primary_component_id] = rgz_swire primary_components_with_both_labels.add(primary_component_id) print(len(primary_components_with_both_labels)) keys = numpy.array([r['Key'] for r in table if r['Component Zooniverse ID (RGZ)'] and r['Component ID (Franzen)'] in primary_components_with_both_labels], dtype=int) print(', '.join(table[keys]['Component Zooniverse ID (RGZ)'])) kf = sklearn.model_selection.KFold(n_splits=5, shuffle=True) # List of lists of one-table keys. sets = [[keys[s] for s in f] for f in kf.split(keys)] import h5py crowdastro_f = h5py.File('/Users/alger/data/Crowdastro/crowdastro-swire.h5', 'r') import scipy.spatial swire_coords = crowdastro_f['/swire/cdfs/numeric'][:, :2] swire_tree = scipy.spatial.KDTree(swire_coords) swire_names = crowdastro_f['/swire/cdfs/string'].value name_to_crowdastro = {j.decode('ascii'):i for i, j in enumerate(swire_names)} swire_sets = [] norris_label_sets = [] rgz_label_sets = [] for split in sets: swire_split = [] for ts in split: # ts is a list of keys. locs = numpy.array([(i[0], i[1]) for i in table['Component RA (Franzen)', 'Component DEC (Franzen)'][ts]]) nearby_swire_indices = sorted(set(numpy.concatenate(swire_tree.query_ball_point(locs, 1 / 60)))) # 1 arcmin swire_split.append(nearby_swire_indices) swire_sets.append(swire_split) training_f = h5py.File('/Users/alger/data/Crowdastro/training-swire.h5', 'r') swire_distances = training_f['raw_features'][:, 8] swire_images = training_f['raw_features'][:, 9:] assert swire_images.shape[1] == 32 * 32 # AstroPy can't deal with a large file like the SWIRE file, so we have to do this line-by-line... SPITZER_SENSITIVITIES = { 36: 7.3, 45: 9.7, 58: 27.5, 80: 32.5, 24: 450, } headers = [] swire_features = numpy.zeros((len(swire_coords), 6 + # Magnitude differences 1 + # S_3.6 2 + # Stellarities 1 + # Distances 32 * 32 # Image )) for row_num, line in enumerate(open('/Users/alger/data/SWIRE/SWIRE3_CDFS_cat_IRAC24_21Dec05.tbl')): if line.startswith('\\'): continue if line.startswith('|') and not headers: headers.extend(map(str.strip, line.split('|')[1:-1])) lengths = list(map(len, headers)) continue if line.startswith('|'): continue line = dict(zip(headers, line.split())) name = line['object'] if name not in name_to_crowdastro: continue # Skip non-crowdastro SWIRE. crowdastro_index = name_to_crowdastro[name] fluxes = [] for s in [36, 45, 58, 80]: aps = [] for ap in range(1, 6): v = line['flux_ap{}_{}'.format(ap, s)] try: v = float(v) if v != -99.0: aps.append(v) except: pass if aps: fluxes.append(numpy.mean(aps)) else: fluxes.append(SPITZER_SENSITIVITIES[s]) # 5 sigma is an upper-bound for flux in each band. mags = [numpy.log10(s) for s in fluxes] mag_diffs = [mags[0] - mags[1], mags[0] - mags[2], mags[0] - mags[3], mags[1] - mags[2], mags[1] - mags[3], mags[2] - mags[3]] # Guaranteed a stellarity in the first two bands; not so much in the others. stellarities_ = [line['stell_{}'.format(s)] for s in [36, 45]] stellarities = [] for s in stellarities_: if s != 'null' and s != '-9.00': stellarities.append(float(s)) else: stellarities.append(float('nan')) # We will have nan stellarities - but we will replace those with the mean later. features = numpy.concatenate([ mag_diffs, mags[:1], stellarities, [swire_distances[crowdastro_index]], swire_images[crowdastro_index], ]) swire_features[crowdastro_index] = features # Set nans to the mean. for feature in range(swire_features.shape[1]): nan = numpy.isnan(swire_features[:, feature]) swire_features[:, feature][nan] = swire_features[:, feature][~nan].mean() import seaborn, matplotlib.pyplot as plt plt.figure(figsize=(15, 8)) feature_names = ['$[3.6] - [4.5]$', '$[3.6] - [5.8]$', '$[3.6] - [8.0]$', '$[4.5] - [5.8]$', '$[4.5] - [8.0]$', '$[5.8] - [8.0]$', '$\log_{10} S_{3.6}$', 'Stellarity (3.6)', 'Stellarity (4.5)', 'Distance'] for feature in range(10): plt.subplot(2, 5, feature + 1) plt.title(feature_names[feature]) seaborn.distplot(swire_features[:, feature]) plt.subplots_adjust(hspace=0.4) plt.show() # Normalise and centre the features. swire_features -= swire_features.mean(axis=0) swire_features /= swire_features.std(axis=0) plt.figure(figsize=(15, 8)) feature_names = ['$[3.6] - [4.5]$', '$[3.6] - [5.8]$', '$[3.6] - [8.0]$', '$[4.5] - [5.8]$', '$[4.5] - [8.0]$', '$[5.8] - [8.0]$', '$\log_{10} S_{3.6}$', 'Stellarity (3.6)', 'Stellarity (4.5)', 'Distance'] for feature in range(10): plt.subplot(2, 5, feature + 1) plt.title(feature_names[feature]) seaborn.distplot(swire_features[:, feature]) plt.subplots_adjust(hspace=0.4) plt.show() swire_norris_labels = numpy.zeros((len(swire_coords),), dtype=bool) swire_rgz_labels = numpy.zeros((len(swire_coords),), dtype=bool) import astropy.coordinates, re for row in table: n = row['Source SWIRE (Norris)'] if n and n.startswith('SWIRE'): if n in name_to_crowdastro: index = name_to_crowdastro[n] swire_norris_labels[index] = True else: m = re.match(r'SWIRE3_J(\d\d)(\d\d)(\d\d\.\d\d)(-\d\d)(\d\d)(\d\d\.\d)', n) ra, dec = ' '.join(m.groups()[:3]), ' '.join(m.groups()[3:]) sc = astropy.coordinates.SkyCoord(ra=ra, dec=dec, unit=('hourangle', 'deg')) coord = (sc.ra.deg, sc.dec.deg) dist, index = swire_tree.query(coord) if dist < 5 / 60 / 60: swire_norris_labels[index] = True n = row['Source SWIRE Name (RGZ)'] if n: index = name_to_crowdastro[n] swire_rgz_labels[index] = True swire_norris_labels.sum(), swire_rgz_labels.sum() import sklearn.linear_model, crowdastro.crowd.util, itertools bas = {'RGZ': {'RGZ': [], 'Norris': []}, 'Norris': {'RGZ': [], 'Norris': []}} for (train_name, train_labels), (test_name, test_labels) in itertools.product( [('RGZ', swire_rgz_labels), ('Norris', swire_norris_labels)], repeat=2): for train, test in swire_sets: X_train = swire_features[train, :] X_test = swire_features[test, :] T_train = train_labels[train] T_test = test_labels[test] lr = sklearn.linear_model.LogisticRegression(class_weight='balanced', penalty='l1') lr.fit(X_train, T_train) preds = lr.predict(X_test) ba = crowdastro.crowd.util.balanced_accuracy(T_test, preds) bas[train_name][test_name].append(ba) for tr in ['RGZ', 'Norris']: for te in ['RGZ', 'Norris']: print('LR({:^6}) vs {:^6}: ({:.02f} +- {:.02f})%'.format( tr, te, numpy.mean(bas[tr][te]) * 100, numpy.std(bas[tr][te]) * 100)) import astropy.table def plot_bas(bas): dx = [] dy = [] dh = [] for train in bas: for test in bas[train]: for i in bas[train][test]: dx.append(train) dh.append(test) dy.append(i) data = astropy.table.Table(data=[dx, dy, dh], names=('train', 'BA', 'test')).to_pandas() ax = plt.figure(figsize=(15, 7)) vp = seaborn.violinplot( scale='width', orient='v', x='train', y='BA', hue='test', data=data, split=True) plt.show() plot_bas(bas) import sklearn.ensemble bas_rf = {'RGZ': {'RGZ': [], 'Norris': []}, 'Norris': {'RGZ': [], 'Norris': []}} for (train_name, train_labels), (test_name, test_labels) in itertools.product( [('RGZ', swire_rgz_labels), ('Norris', swire_norris_labels)], repeat=2): for train, test in swire_sets: X_train = swire_features[train, :] X_test = swire_features[test, :] T_train = train_labels[train] T_test = test_labels[test] rf = sklearn.ensemble.RandomForestClassifier(class_weight='balanced', criterion='entropy', min_samples_leaf=40) rf.fit(X_train, T_train) preds = rf.predict(X_test) ba = crowdastro.crowd.util.balanced_accuracy(T_test, preds) bas_rf[train_name][test_name].append(ba) for tr in ['RGZ', 'Norris']: for te in ['RGZ', 'Norris']: print('RF({:^6}) vs {:^6}: ({:.02f} +- {:.02f})%'.format( tr, te, numpy.mean(bas_rf[tr][te]) * 100, numpy.std(bas_rf[tr][te]) * 100)) plot_bas(bas_rf) def powerset(iterable: [1,2,3]) -> [(), (1,), (2,), (3,), (1,2), (1,3), (2,3), (1,2,3)]: s = list(iterable) return itertools.chain.from_iterable(itertools.combinations(s, r) for r in range(len(s)+1)) featuresets = { 'colour': swire_features[:, :2], 'stellarity': swire_features[:, 2:4], 'distance': swire_features[:, 4:5], 'image': swire_features[:, 5:], } import collections bas_ablation = collections.defaultdict(list) # Maps features -> balanced accuracies. for i in powerset(['distance', 'colour', 'stellarity', 'image']): if not i: continue print('Testing features:', ', '.join(i)) for train, test in swire_sets: this_featureset = numpy.concatenate([featuresets[j] for j in i], axis=1) X_train = this_featureset[train, :] X_test = this_featureset[test, :] T_train = swire_norris_labels[train] T_test = swire_norris_labels[test] lr = sklearn.linear_model.LogisticRegression(class_weight='balanced', penalty='l1') lr.fit(X_train, T_train) preds = lr.predict(X_test) ba = crowdastro.crowd.util.balanced_accuracy(T_test, preds) bas_ablation[i].append(ba) # for i in powerset(['distance', 'colour', 'stellarity', 'image']): # if not i: # continue # print('{:<40}: ({:.02f} +- {:.02f})%'.format( # ', '.join(i), # numpy.mean(bas_ablation[i]) * 100, # numpy.std(bas_ablation[i]) * 100)) ax = plt.figure(figsize=(15, 7)) vp = seaborn.violinplot( scale='width', orient='v', data=[bas_ablation[i] for i in sorted(bas_ablation.keys())]) vp.set_xticklabels(sorted([', '.join(k) for k in bas_ablation.keys()]), rotation='vertical') plt.show() import h5py # Convert SWIRE/ATLAS sets into boolean arrays. n_swire = len(swire_coords) n_atlas = crowdastro_f['/atlas/cdfs/numeric'].shape[0] swire_sets_train_bool = numpy.zeros((5, n_swire), dtype=bool) swire_sets_test_bool = numpy.zeros((5, n_swire), dtype=bool) for k in range(5): swire_sets_train_bool[k, swire_sets[k][0]] = True swire_sets_test_bool[k, swire_sets[k][1]] = True with h5py.File('/Users/alger/data/Crowdastro/swire_11_05_17.h5', 'w') as f: f.create_dataset('features', data=swire_features) f.create_dataset('rgz_labels', data=swire_rgz_labels) f.create_dataset('norris_labels', data=swire_norris_labels) f.create_dataset('clean_swire_sets_train', data=swire_sets_train_bool) f.create_dataset('clean_swire_sets_test', data=swire_sets_test_bool) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The module HARK.ConsumptionSaving.ConsIndShockModel concerns consumption-saving models with idiosyncratic shocks to (non-capital) income. All of the models assume CRRA utility with geometric discounting, no bequest motive, and income shocks are fully transitory or fully permanent. Step2: Solving and examining the solution of the perfect foresight model Step3: The $\texttt{solve}$ method fills in the instance's attribute solution as a time-varying list of solutions to each period of the consumer's problem. In this case, solution will be a list with exactly one instance of the class ConsumerSolution, representing the solution to the infinite horizon model we specified. Step4: Each element of solution has a few attributes. To see all of them, we can use the \texttt{vars} built in function Step5: The two most important attributes of a single period solution of this model are the (normalized) consumption function $\texttt{cFunc}$ and the (normalized) value function $\texttt{vFunc}$. Let's plot those functions near the lower bound of the permissible state space (the attribute $\texttt{mNrmMin}$ tells us the lower bound of $m_t$ where the consumption function is defined). Step6: An element of solution also includes the (normalized) marginal value function $\texttt{vPfunc}$, and the lower and upper bounds of the marginal propensity to consume (MPC) $\texttt{MPCmin}$ and $\texttt{MPCmax}$. Note that with a linear consumption function, the MPC is constant, so its lower and upper bound are identical. Step7: Simulating the perfect foresight consumer model Step8: To generate simulated data, we need to specify which variables we want to track the "history" of for this instance. To do so, we set the track_vars attribute of our PerfForesightConsumerType instance to be a list of strings with the simulation variables we want to track. Step9: A perfect foresight consumer can borrow against the PDV of his future income-- his human wealth-- and thus as time goes on, our simulated agents approach the (very negative) steady state level of $m_t$ while being steadily replaced with consumers with roughly $m_t=1$. Step10: The distribution is (discretely) exponential, with a point mass at 120 with consumers who have survived since the beginning of the simulation.
<ASSISTANT_TASK:> Python Code: # Initial imports and notebook setup, click arrow to show from copy import copy import matplotlib.pyplot as plt import numpy as np from HARK.ConsumptionSaving.ConsIndShockModel import PerfForesightConsumerType from HARK.utilities import plot_funcs mystr = lambda number: "{:.4f}".format(number) PerfForesightDict = { # Parameters actually used in the solution method "CRRA": 2.0, # Coefficient of relative risk aversion "Rfree": 1.03, # Interest factor on assets "DiscFac": 0.96, # Default intertemporal discount factor "LivPrb": [0.98], # Survival probability "PermGroFac": [1.01], # Permanent income growth factor "BoroCnstArt": None, # Artificial borrowing constraint "aXtraCount": 200, # Maximum number of gridpoints in consumption function # Parameters that characterize the nature of time "T_cycle": 1, # Number of periods in the cycle for this agent type "cycles": 0, # Number of times the cycle occurs (0 --> infinitely repeated) } PFexample = PerfForesightConsumerType(**PerfForesightDict) PFexample.cycles = 0 PFexample.solve() print(PFexample.solution) print(vars(PFexample.solution[0])) print("Linear perfect foresight consumption function:") mMin = PFexample.solution[0].mNrmMin plot_funcs(PFexample.solution[0].cFunc, mMin, mMin + 10.0) print("Perfect foresight value function:") plot_funcs(PFexample.solution[0].vFunc, mMin + 0.1, mMin + 10.1) LiqConstrDict = copy(PerfForesightDict) LiqConstrDict["BoroCnstArt"] = 0.0 # Set the artificial borrowing constraint to zero LiqConstrExample = PerfForesightConsumerType(**LiqConstrDict) LiqConstrExample.cycles = 0 # Make this type be infinite horizon LiqConstrExample.solve() print("Liquidity constrained perfect foresight consumption function:") plot_funcs(LiqConstrExample.solution[0].cFunc, 0.0, 10.0) # At this time, the value function for a perfect foresight consumer with an artificial borrowing constraint is not computed nor included as part of its $\texttt{solution}$. SimulationParams = { "AgentCount": 10000, # Number of agents of this type "T_sim": 120, # Number of periods to simulate "aNrmInitMean": -6.0, # Mean of log initial assets "aNrmInitStd": 1.0, # Standard deviation of log initial assets "pLvlInitMean": 0.0, # Mean of log initial permanent income "pLvlInitStd": 0.0, # Standard deviation of log initial permanent income "PermGroFacAgg": 1.0, # Aggregate permanent income growth factor "T_age": None, # Age after which simulated agents are automatically killed } PFexample.assign_parameters(**SimulationParams) PFexample.track_vars = ['mNrm'] PFexample.initialize_sim() PFexample.simulate() # Each simulation variable $\texttt{X}$ named in $\texttt{track_vars}$ will have the *history* of that variable for each agent stored in the attribute $\texttt{X_hist}$ as an array of shape $(\texttt{T_sim},\texttt{AgentCount})$. To see that the simulation worked as intended, we can plot the mean of $m_t$ in each simulated period: plt.plot(np.mean(PFexample.history['mNrm'], axis=1)) plt.xlabel("Time") plt.ylabel("Mean normalized market resources") plt.show() N = PFexample.AgentCount F = np.linspace(0.0, 1.0, N) plt.plot(np.sort(PFexample.t_age), F) plt.xlabel("Current age of consumers") plt.ylabel("Cumulative distribution") plt.show() PFexample.initialize_sim() PFexample.simulate(80) PFexample.state_prev['aNrm'] += -5.0 # Adjust all simulated consumers' assets downward by 5 PFexample.simulate(40) plt.plot(np.mean(PFexample.history['mNrm'], axis=1)) plt.xlabel("Time") plt.ylabel("Mean normalized market resources") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load data Step2: Let's plot the raw pupil timeseries Step3: The periods where the timeseries drop to 0 correspond to blinks. Let's linearly interpolate these blinks. Step4: To see what happened, let's zoom in on one interpolated blink Step5: Let's filter blink interpolated pupil timeseries now. We'll construct a low pass (<10Hz), and a band-pass (0.01-10Hz) signal. And again, let's plot the results. Step6: The band-pass filtered signal we can use now to estimate pupil responses to blinks and saccades. You can think of these of simple event related averages. However, to account for temporally adjacent event, and hence overlapping responses (due to slow pupil IRF), here we will rely on deconvolution. Step7: Let's fit kernels to these Step8: Now, with a GLM let's regress these responses to blinks and saccades from our pupil timeseries. Step9: Finally, let's add back the slow drift, which is meaningful part of the signal!
<ASSISTANT_TASK:> Python Code: import numpy as np import scipy as sp import scipy.signal as signal import matplotlib import matplotlib.pyplot as pl %matplotlib inline import seaborn as sn sn.set(style="ticks") # extra dependencies of this notebook, for data loading and fitting of kernels import pandas as pd from lmfit import minimize, Parameters, Parameter, report_fit import sys import os workingDir = os.getcwd()[:-5] sys.path.append(workingDir) from fir import FIRDeconvolution sample_rate = 1000.0 eye_dict = pd.read_csv('data/eye_dict.csv') blink_dict = pd.read_csv('data/blink_dict.csv') sac_dict = pd.read_csv('data/sac_dict.csv') # variables to work with: start_time = eye_dict.timepoints[0] timepoints = eye_dict.timepoints - start_time pupil = eye_dict.pupil blink_starts = np.array(blink_dict.start_timestamp - start_time, dtype=int) blink_ends = np.array(blink_dict.end_timestamp - start_time, dtype=int) sac_starts = np.array(sac_dict.start_timestamp - start_time, dtype=int) sac_ends = np.array(sac_dict.end_timestamp - start_time, dtype=int) x = np.arange(timepoints.shape[0]) / sample_rate f = pl.figure(figsize = (10,3.5)) pl.plot(x, pupil) pl.xlabel('Time (s)') pl.ylabel('Pupil size') sn.despine(offset=10) margin = 100 # ms margin = int((margin*sample_rate)/1000) pupil_interpolated = np.array(pupil.copy()) for b in np.arange(blink_starts.shape[0]): blink_start = np.where(timepoints==blink_starts[b])[0][0]-margin+1 blink_end = np.where(timepoints==blink_ends[b])[0][0]+margin+1 interpolated_signal = np.linspace(pupil_interpolated[blink_start], pupil_interpolated[blink_end], blink_end-blink_start, endpoint=False) pupil_interpolated[blink_start:blink_end] = interpolated_signal f = pl.figure(figsize = (10,3.5)) pl.plot(x, pupil_interpolated) pl.xlabel('Time (s)') pl.ylabel('Pupil size') sn.despine(offset=10) f = pl.figure(figsize = (10,3.5)) pl.axvspan((-margin + blink_starts[7]) / sample_rate, (margin + blink_ends[7]) / sample_rate, alpha=0.15, color='k') pl.axvline( (-margin + blink_starts[7]) / sample_rate, color = 'k', alpha = 0.5, lw = 1.5) pl.axvline( (margin + blink_ends[7]) / sample_rate, color = 'k', alpha = 0.5, lw = 1.5) pl.plot(x, pupil, label='raw pupil') pl.plot(x, pupil_interpolated, label='interpolated pupil') pl.xlim((-margin + blink_starts[7] - 1000) / sample_rate, (margin + blink_ends[7] + 1000) / sample_rate) pl.xlabel('Time (s)') pl.ylabel('Pupil size') pl.legend(loc=3) sn.despine(offset=10) def _butter_lowpass(data, highcut, fs, order=5): nyq = 0.5 * fs high = highcut / nyq b, a = signal.butter(order, high, btype='lowpass') y = signal.filtfilt(b, a, data) return y def _butter_highpass(data, lowcut, fs, order=5): nyq = 0.5 * fs low = lowcut / nyq b, a = signal.butter(order, low, btype='highpass') y = signal.filtfilt(b, a, data) return y def _butter_bandpass(data, lowcut, highcut, fs, order=5): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq data_hp = _butter_highpass(data, lowcut, fs, order) b, a = signal.butter(order, high, btype='lowpass') y = signal.filtfilt(b, a, data_hp) return y # High pass: pupil_interpolated_hp = _butter_highpass(data=pupil_interpolated, lowcut=0.01, fs=1000, order=3) # Low pass: pupil_interpolated_lp = _butter_lowpass(data=pupil_interpolated, highcut=10, fs=1000, order=3) # Band pass: pupil_interpolated_bp = _butter_bandpass(data=pupil_interpolated, lowcut=0.01, highcut=10, fs=1000, order=3) f = pl.figure(figsize = (16,3.5)) pl.plot(pupil_interpolated_lp, label='low pass') pl.plot(pupil_interpolated_hp, label='high pass') pl.plot(pupil_interpolated_bp, label='band pass') pl.xlabel('Time (s)') pl.ylabel('Pupil size') pl.legend() sn.despine(offset=10) downsample_rate = 100 new_sample_rate = sample_rate / downsample_rate interval = 6 # events: events = [(blink_ends / sample_rate), (sac_ends / sample_rate)] # compute blink and sac kernels with deconvolution (on downsampled timeseries): a = FIRDeconvolution(signal=sp.signal.decimate(pupil_interpolated_bp, downsample_rate, 1), events=events, event_names=['blinks', 'sacs'], sample_frequency=new_sample_rate, deconvolution_frequency=new_sample_rate, deconvolution_interval=[0,interval],) a.create_design_matrix() a.regress() a.betas_for_events() blink_response = np.array(a.betas_per_event_type[0]).ravel() sac_response = np.array(a.betas_per_event_type[1]).ravel() # baseline the kernels: blink_response = blink_response - blink_response[0].mean() sac_response = sac_response - blink_response[0].mean() # plot: x = np.linspace(0, interval, len(blink_response)) f = pl.figure(figsize = (10,3.5)) pl.plot(x, blink_response, label='blink response') pl.plot(x, sac_response, label='sac response') pl.xlabel('Time from event (s)') pl.ylabel('Pupil size') pl.axhline(0,color = 'k', lw = 0.5, alpha = 0.5) pl.legend(loc=2) sn.despine(offset=10) def single_pupil_IRF(params, x): s1 = params['s1'] n1 = params['n1'] tmax1 = params['tmax1'] return s1 * ((x**n1) * (np.e**((-n1*x)/tmax1))) def single_pupil_IRF_ls(params, x, data): s1 = params['s1'].value n1 = params['n1'].value tmax1 = params['tmax1'].value model = s1 * ((x**n1) * (np.e**((-n1*x)/tmax1))) return model - data def double_pupil_IRF(params, x): s1 = params['s1'] s2 = params['s2'] n1 = params['n1'] n2 = params['n2'] tmax1 = params['tmax1'] tmax2 = params['tmax2'] return s1 * ((x**n1) * (np.e**((-n1*x)/tmax1))) + s2 * ((x**n2) * (np.e**((-n2*x)/tmax2))) def double_pupil_IRF_ls(params, x, data): s1 = params['s1'].value s2 = params['s2'].value n1 = params['n1'].value n2 = params['n2'].value tmax1 = params['tmax1'].value tmax2 = params['tmax2'].value model = s1 * ((x**n1) * (np.e**((-n1*x)/tmax1))) + s2 * ((x**n2) * (np.e**((-n2*x)/tmax2))) return model - data # create a set of Parameters params = Parameters() params.add('s1', value=-1, min=-np.inf, max=-1e-25) params.add('s2', value=1, min=1e-25, max=np.inf) params.add('n1', value=10, min=9, max=11) params.add('n2', value=10, min=8, max=12) params.add('tmax1', value=0.9, min=0.5, max=1.5) params.add('tmax2', value=2.5, min=1.5, max=4) # do fit, here with powell method: blink_result = minimize(double_pupil_IRF_ls, params, method='powell', args=(x, blink_response)) blink_kernel = double_pupil_IRF(blink_result.params, x) sac_result = minimize(single_pupil_IRF_ls, params, method='powell', args=(x, sac_response)) sac_kernel = single_pupil_IRF(sac_result.params, x) # plot: f = pl.figure(figsize = (10,3.5)) pl.plot(x, blink_response, label='blink response') pl.plot(x, blink_kernel, label='blink fit') pl.plot(x, sac_response, label='sac response') pl.plot(x, sac_kernel, label='sac fit') pl.xlabel('Time from event (s)') pl.ylabel('Pupil size') pl.axhline(0,color = 'k', lw = 0.5, alpha = 0.5) pl.legend(loc=4) sn.despine(offset=10) # upsample: x = np.linspace(0, interval, interval*sample_rate) blink_kernel = double_pupil_IRF(blink_result.params, x) sac_kernel = double_pupil_IRF(sac_result.params, x) # regressors: blink_reg = np.zeros(len(pupil)) blink_reg[blink_ends] = 1 blink_reg_conv = sp.signal.fftconvolve(blink_reg, blink_kernel, 'full')[:-(len(blink_kernel)-1)] sac_reg = np.zeros(len(pupil)) sac_reg[blink_ends] = 1 sac_reg_conv = sp.signal.fftconvolve(sac_reg, sac_kernel, 'full')[:-(len(sac_kernel)-1)] regs = [blink_reg_conv, sac_reg_conv] # GLM: design_matrix = np.matrix(np.vstack([reg for reg in regs])).T betas = np.array(((design_matrix.T * design_matrix).I * design_matrix.T) * np.matrix(pupil_interpolated_bp).T).ravel() explained = np.sum(np.vstack([betas[i]*regs[i] for i in range(len(betas))]), axis=0) # clean pupil: pupil_clean_bp = pupil_interpolated_bp - explained # plot: f = pl.figure(figsize = (10,3.5)) x = np.arange(timepoints.shape[0]) / sample_rate pl.plot(x, pupil_interpolated_bp, 'r', label='band-passed') pl.plot(x, pupil_clean_bp, 'k', label='blinks/sacs regressed out') pl.xlabel('Time (s)') pl.ylabel('Pupil size') pl.axhline(0,color = 'k', lw = 0.5, alpha = 0.5) pl.legend() sn.despine(offset=10) pupil_clean_lp = pupil_clean_bp + (pupil_interpolated_lp-pupil_interpolated_bp) f = pl.figure(figsize = (10,3.5)) x = np.arange(timepoints.shape[0]) / sample_rate pl.plot(x, pupil, 'k', label='rawest version') pl.plot(x, pupil_interpolated, label='band-passed') pl.plot(x, pupil_clean_lp, label='blinks/sacs regressed out') pl.xlabel('Time (s)') pl.ylabel('Pupil size') pl.axhline(0,color = 'k', lw = 0.5, alpha = 0.5) pl.legend() sn.despine(offset=10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Send a chat message Step2: If everthing went well, you saw a chat message in Minecraft. You have now written your first program for Minecraft. Jump up and down three times yelling Step3: Task 2
<ASSISTANT_TASK:> Python Code: import sys #sys.path.append('/Users/esumitra/workspaces/mc/mcpipy') # Start typing below # once you are done typing, press (Ctrl+Enter) to run the code import mcpi.minecraft as minecraft import time mc = minecraft.Minecraft.create() mc.postToChat("Hello kids") time.sleep(5) # Program for Adventure 1 - Task 1 # Program for Adventure 1 - Task 2 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2) Write a function called sum_digits that returns the sum of the digits of an integer argument; that is, sum_digits(123) should return 6. Use this function in an other function that prints out the sum of the digits of every integer multiple of the first argument, up to either a second optional argument (if included) or the first argument's square. That is
<ASSISTANT_TASK:> Python Code: #I don't think this is the code golf winner. Try to beat me. for i in range(100): print('FizzBuzz'*(not (i+1)%5)*(not (i+1)%3) or 'Fizz'*(not (i+1)%5) or 'Buzz'*(not (i+1)%3) or str(i+1)) def sum_digits(number): ''' Function that takes a number as an input and sums its digits Parameters number: int an integer number with several digits Returns total: int the sum of the digits in number ''' string_num = str(number) total = 0 for letter in string_num: total += int(letter) return total def list_multiple(number, limit = None): ''' Function that lists the sum_digits of every multiple of the input until the limit or the square of number is reached Parameters number: int an integer Optional limit: int limit on the multiple of number for which to print its sum_digits() Returns None ''' if limit == None: limit = number**2 mul = 1 result = number+0 while (result+number) < limit: result = mul*number mul += 1 print(sum_digits(result)) return print(sum_digits(128)) list_multiple(4, 21) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Changing the index to the datetime Step2: It's the column on the far left - 0, 1, 2, 3, 4... boring and useless! If we replace the index with the datetime, though, we can start to have some fun Step3: Selecting specific(-ish) dates via the index Step4: List slices with datetimes Step5: Instead of using boring ol' numbers, we can use dates instead. Step6: Info on our time series Step7: Hmmm, looks like something might have happened at some point. Maybe we want to see some numbers instead of a graph? To do aggregate statistics on time series in pandas we use a method called .resample(), and we're going to tell it to group the data by year. Step8: That still looks like too much data! What about every decade? Step9: Cyclical data Step10: More details
<ASSISTANT_TASK:> Python Code: data_df = pd.read_excel("RESSALES-mf.xlsx", sheetname='data') data_df.head() categories_df = pd.read_excel("RESSALES-mf.xlsx", sheetname='categories') data_types_df = pd.read_excel("RESSALES-mf.xlsx", sheetname='data_types') error_types_df = pd.read_excel("RESSALES-mf.xlsx", sheetname='error_types') geo_levels_df = pd.read_excel("RESSALES-mf.xlsx", sheetname='geo_levels') periods_df = pd.read_excel("RESSALES-mf.xlsx", sheetname='periods') categories_df.head(2) # it auto-merges cat_idx in our original dataframe with cat_idx in categories_df # it auto-merges dt_idx in our original dataframe with dt_idx in data_types_df # it auto-merges geo_idx in our original dataframe with geo_idx in geo_levels_df # it auto-merges per_idx in our original dataframe with per_idx in periods_df df = data_df.merge(categories_df).merge(data_types_df).merge(geo_levels_df).merge(periods_df) # We only want to look at the total number of homes sold across entire the united states df = df[(df['cat_code'] == 'SOLD') & (df['geo_code'] == 'US') & (df['dt_code'] == 'TOTAL')] # We don't merge error_types_df because all of the errors are the same df['et_idx'].value_counts() df.head(2) # Now let's remove the join columns to keep things clean df = df.drop(['per_idx', 'cat_idx', 'dt_idx', 'et_idx', 'geo_idx'], axis=1) df.head() # At least we can see 'per_name' (period name) is already a datetime! df.info() df.head(3) # First we move it over into the index column df.index = df['per_name'] df.head(2) # Then we delete the per_name column because we don't need it any more... del df['per_name'] df.head(2) # Everything in March, 1963 df['1963-3'] # Everything in 2010 df['2010'] # Make our list of fruits ranked_fruits = ('banana', 'orange', 'apple', 'blueberries', 'strawberries') # Start from the beginning, get the first two ranked_fruits[:2] # Start from two, get up until the fourth element ranked_fruits[2:4] # Starting from the third element, get all the rest ranked_fruits[3:] # Everything after 2001 df["2001":] # Everything between June 1990 and March 1995 df["1990-06":"1995-03"] df.plot(y='val') # http://stackoverflow.com/a/17001474 gives us a list of what we can pass to 'resample' df.resample('A').median() # If 'A' is every year, 10A is every 5 years df.resample('5A').median() # We can graph these! df.plot(y='val', label="Monthly") df.resample('A').median().plot(y='val', label="Annual") df.resample('10A').median().plot(y='val', label="Decade") # We can graph these ALL ON THE SAME PLOT! # we store the 'ax' from the first .plot and pass it to the others ax = df.plot(y='val', label="Monthly") df.resample('A').median().plot(y='val', ax=ax, label="Annual") df.resample('10A').median().plot(y='val', ax=ax, label="Decade") # Which year had the worst month? df.resample('A').median() # Group by the month, check the median df.groupby(by=df.index.month).median() # Group by the month, check the median, plot the results df.groupby(by=df.index.month).median().plot(y='val') # Group by the month, check the median, plot the results ax = df.groupby(by=df.index.month).median().plot(y='val', legend=False) ax.set_xticks([1,2,3,4,5,6,7,8,9,10,11, 12]) ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']) ax.set_ylabel("Houses sold (in thousands)") ax.set_title("House sales by month, 1963-2016") df.resample('A')['val'].max().plot() # The fewest? df.resample('A')['val'].min().plot() # We now know we can look at the range ax = df.resample('A')['val'].median().plot() df.resample('A')['val'].max().plot(ax=ax) df.resample('A')['val'].min().plot(ax=ax) # We now know we can look at the range IN AN EVEN COOLER WAY ax = df.resample('A')['val'].median().plot() x_values = df.resample('A').index min_values = df.resample('A')['val'].min() max_values = df.resample('A')['val'].max() ax.fill_between(x_values, min_values, max_values, alpha=0.5) ax.set_ylim([0,130]) ax.set_ylabel("Houses sold (in thousands)") ax.set_xlabel("Year") ax.set_title("The Housing Bubble") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: generators return their contents 'lazily'. This leaves a minimal memory footprint, at the cost of making the generator nonreusable. Step2: 'range' is something like a generator, but with special properties because of its intended use case (in 'for' loops or similar structures. Step3: From the docs (https Step4: zips produced iterators from pairs Step5: More on Dicts Step6: from assignment Step7: from iterator Step8: In function definitions Step9: In function calls Step10: This allows, for instance, matplotlibs plot function to accept a huge range of different plotting options, or few to none at all.
<ASSISTANT_TASK:> Python Code: # iterating over a list by object x = ['bob', 'sue', 'mary'] for name in x: print(name.upper() + ' WAS HERE') # alternatively, you could iterate over position for i in range(len(x)): print(x[i].upper() + ' WAS HERE') dir(x) # ignore the __ methods for now y = (x*x for x in [1, 2, 3]) type(y) dir(y) y.send?? y[5] next(y) y.send(1) next(y) # run this cell twice - what happens? z = range(10, 5, -1) dir(range) # let's filter that list a little [x for x in dir(range) if not x.startswith('_')] z.start len(z) # __ function - overloaded operator for i in z: print(i) GPA = zip(['bob', 'sue', 'mary'], [2.3, 4.0, 3.7]) type(GPA) dir(GPA) next(GPA) next(GPA)[1] dict? GPA_2 = dict(bob=2.0, sue=3.4, mary=4.0) names = ['bob', 'mary', 'sue', 'lisa'] gpas = [3.2, 4.0, 3.1, 2.8] GPA_3 = dict(zip(names, gpas)) GPA_3 # explicitly named arguments are also positional # Anything after * in a function is a positional argument - tuple # Anything after ** is a named argument # the latter are unpacked as dicts def arg_explainer(x, y, *args, **kwargs): print('-'*30) print('x is %d, even though you didn\'t specify it, because of its position.' % x) print('same with y, which is %d.' %y) if args: print('-'*30) print('type(*args) = %s' % type(args)) print('these are the *args arguments: ') for arg in args: print(arg) else: print('-'*30) print('no *args today!') if kwargs: print('-'*30) print('type(**kwargs) == %s' % type(kwargs)) for key in kwargs: print(key, kwargs[key]) else: print('-'*30) print('no **kwargs today!') print('-'*30) arg_explainer(2, 4, 3, 7, 8, 9, 10, plot=True, sharey=True, rotate=False) my_kwargs = {'plot': False, 'sharey': True} arg_explainer(1, 2, **my_kwargs) import numpy as np import matplotlib.pyplot as plt %matplotlib inline ?plt.plot x = np.linspace(-5, 5, 100) y1 = np.sin(x) y2 = np.cos(x) plt.plot(x, y1) # all of these arguments are *args plt.plot(x, y2, color='red', label='just on the cosine, for no reason at all') # starting w/ color, **kwargs plt.legend(loc='center'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Enter your gateway and the cookie Step2: Set Log bucket and Tensorboard Image Step4: Define pipeline Step5: Wait for inference service below to go to READY True state. Step6: Get Inferenceservice name Step7: Prediction Request Step8: Explanation Request Step9: Visualization of Predictions Step10: visualization appreas as below
<ASSISTANT_TASK:> Python Code: ! pip uninstall -y kfp ! pip install --no-cache-dir kfp torch captum import kfp import json import os from kfp.onprem import use_k8s_secret from kfp import components from kfp.components import load_component_from_file, load_component_from_url, InputPath from kfp import dsl from kfp import compiler kfp.__version__ INGRESS_GATEWAY='http://istio-ingressgateway.istio-system.svc.cluster.local' AUTH="<enter your token here>" NAMESPACE="kubeflow-user-example-com" COOKIE="authservice_session="+AUTH EXPERIMENT="Default" dist_volume = 'dist-vol' volume_mount_path ="/model" dataset_path = volume_mount_path+"/dataset" checkpoint_dir = volume_mount_path+"/checkpoint" tensorboard_root = volume_mount_path+"/tensorboard" MINIO_ENDPOINT="http://minio-service.kubeflow:9000" LOG_BUCKET="mlpipeline" TENSORBOARD_IMAGE="public.ecr.aws/pytorch-samples/tboard:latest" client = kfp.Client(host=INGRESS_GATEWAY+"/pipeline", cookies=COOKIE) client.create_experiment(EXPERIMENT) experiments = client.list_experiments(namespace=NAMESPACE) my_experiment = experiments.experiments[0] my_experiment DEPLOY_NAME="bert-dist" MODEL_NAME="bert" ! python utils/generate_templates.py bert/template_mapping.json prepare_tensorboard_op = load_component_from_file( "yaml/tensorboard_component.yaml" ) prep_op = components.load_component_from_file( "yaml/preprocess_component.yaml" ) # Use GPU image in train component train_op = components.load_component_from_file( "yaml/train_component.yaml" ) deploy_op = load_component_from_file( "yaml/deploy_component.yaml" ) minio_op = components.load_component_from_file( "yaml/minio_component.yaml" ) pytorch_job_op = load_component_from_file("../../../components/kubeflow/pytorch-launcher/component.yaml") kubernetes_create_pvc_op = load_component_from_file( "../../../components/kubernetes/Create_PersistentVolumeClaim/component.yaml" ) cp_op = load_component_from_file( "yaml/copy_component.yaml" ) from kubernetes.client.models import V1Volume, V1PersistentVolumeClaimVolumeSource def create_dist_pipeline(): kubernetes_create_pvc_op(name=dist_volume, storage_size= "20Gi") create_volume_run = client.create_run_from_pipeline_func(create_dist_pipeline, arguments={}) create_volume_run.wait_for_run_completion() @dsl.pipeline(name="Training pipeline", description="Sample training job test") def pytorch_bert( minio_endpoint=MINIO_ENDPOINT, log_bucket=LOG_BUCKET, log_dir=f"tensorboard/logs/{dsl.RUN_ID_PLACEHOLDER}", confusion_matrix_log_dir=f"confusion_matrix/{dsl.RUN_ID_PLACEHOLDER}/", mar_path=f"mar/{dsl.RUN_ID_PLACEHOLDER}/model-store/", config_prop_path=f"mar/{dsl.RUN_ID_PLACEHOLDER}/config/", model_uri=f"pvc://{dist_volume}/mar/{dsl.RUN_ID_PLACEHOLDER}", tf_image=TENSORBOARD_IMAGE, deploy=DEPLOY_NAME, namespace=NAMESPACE, num_samples=1000, max_epochs=1, gpus=2, num_nodes=2 ): prepare_tb_task = prepare_tensorboard_op( log_dir_uri=f"s3://{log_bucket}/{log_dir}", image=tf_image, pod_template_spec=json.dumps({ "spec": { "containers": [{ "env": [ { "name": "AWS_ACCESS_KEY_ID", "valueFrom": { "secretKeyRef": { "name": "mlpipeline-minio-artifact", "key": "accesskey", } }, }, { "name": "AWS_SECRET_ACCESS_KEY", "valueFrom": { "secretKeyRef": { "name": "mlpipeline-minio-artifact", "key": "secretkey", } }, }, { "name": "AWS_REGION", "value": "minio" }, { "name": "S3_ENDPOINT", "value": f"{minio_endpoint}", }, { "name": "S3_USE_HTTPS", "value": "0" }, { "name": "S3_VERIFY_SSL", "value": "0" }, ] }] } }), ).set_display_name("Visualization") prep_task = prep_op().after(prepare_tb_task).set_display_name("Preprocess & Transform") copy_task = cp_op("true", prep_task.outputs['output_data'], dataset_path,"").add_pvolumes({volume_mount_path: dsl.PipelineVolume(pvc=dist_volume)}).after(prep_task).set_display_name("Copy Dataset") confusion_matrix_url = f"minio://{log_bucket}/{confusion_matrix_log_dir}" train_task = pytorch_job_op( name="pytorch-bert", namespace=namespace, master_spec= { "replicas": 1, "imagePullPolicy": "Always", "restartPolicy": "OnFailure", "template": { "metadata": { "annotations": { "sidecar.istio.io/inject": "false" } }, "spec": { "containers": [ { "name": "pytorch", "image": "public.ecr.aws/pytorch-samples/kfp_samples:latest-gpu", "command": ["python3", "bert/agnews_classification_pytorch.py"], "args": [ "--dataset_path", dataset_path, "--checkpoint_dir", checkpoint_dir, "--script_args", f"model_name=bert.pth,num_samples={num_samples}", "--tensorboard_root", tensorboard_root, "--ptl_args", f"max_epochs={max_epochs},profiler=pytorch,gpus={gpus},accelerator=ddp,num_nodes={num_nodes},confusion_matrix_url={confusion_matrix_url}" ], "ports": [ { "containerPort": 24456, "name": "pytorchjob-port" } ], "resources": { "limits": { "nvidia.com/gpu": 2 } }, "volumeMounts": [ { "mountPath": volume_mount_path, "name": "model-volume" } ] } ], "volumes": [ { "name": "model-volume", "persistentVolumeClaim": { "claimName": dist_volume } } ] } } }, worker_spec= { "replicas": 1, "imagePullPolicy": "Always", "restartPolicy": "OnFailure", "template": { "metadata": { "annotations": { "sidecar.istio.io/inject": "false" } }, "spec": { "containers": [ { "name": "pytorch", "image": "public.ecr.aws/pytorch-samples/kfp_samples:latest-gpu", "command": ["python3", "bert/agnews_classification_pytorch.py"], "args": [ "--dataset_path", dataset_path, "--checkpoint_dir", checkpoint_dir, "--script_args", f"model_name=bert.pth,num_samples={num_samples}", "--tensorboard_root", tensorboard_root, "--ptl_args", f"max_epochs={max_epochs},profiler=pytorch,gpus={gpus},accelerator=ddp,num_nodes={num_nodes},confusion_matrix_url={confusion_matrix_url}" ], "ports": [ { "containerPort": 24456, "name": "pytorchjob-port" } ], "resources": { "limits": { "nvidia.com/gpu": 2 } }, "volumeMounts": [ { "mountPath": volume_mount_path, "name": "model-volume" } ] } ], "volumes": [ { "name": "model-volume", "persistentVolumeClaim": { "claimName": dist_volume } } ] } } }, delete_after_done=False ).after(copy_task) mar_folder_restructure_task = dsl.ContainerOp( name='mar restructure', image='library/bash:4.4.23', command=['sh', '-c'], arguments=[f'mkdir -p {volume_mount_path}/{mar_path}; mkdir -p {volume_mount_path}/{config_prop_path}; cp {checkpoint_dir}/*.mar {volume_mount_path}/{mar_path}; cp {checkpoint_dir}/config.properties {volume_mount_path}/{config_prop_path}']).add_pvolumes({volume_mount_path: dsl.PipelineVolume(pvc=dist_volume)}).after(train_task).set_display_name("Restructure MAR and config.properties path") mar_folder_restructure_task.execution_options.caching_strategy.max_cache_staleness = "P0D" copy_tensorboard = cp_op("false", "", "", tensorboard_root).add_pvolumes({volume_mount_path: dsl.PipelineVolume(pvc=dist_volume)}).after(mar_folder_restructure_task).set_display_name("Copy Tensorboard Logs") copy_tensorboard.execution_options.caching_strategy.max_cache_staleness = "P0D" minio_tb_upload = ( minio_op( bucket_name=log_bucket, folder_name=log_dir, input_path=copy_tensorboard.outputs["destination_path"], filename="", ).after(copy_tensorboard) .set_display_name("Tensorboard Events Pusher") ) # Deploy inferenceservice in gpu gpu_count = "1" isvc_gpu_yaml = apiVersion: "serving.kubeflow.org/v1beta1" kind: "InferenceService" metadata: name: {} namespace: {} spec: predictor: serviceAccountName: sa pytorch: storageUri: {} resources: requests: cpu: 4 memory: 8Gi limits: cpu: 4 memory: 8Gi nvidia.com/gpu: {} .format( deploy, namespace, model_uri, gpu_count ) deploy_task = ( deploy_op(action="apply", inferenceservice_yaml=isvc_gpu_yaml) .after(minio_tb_upload) .set_display_name("Deployer") ) deploy_task.execution_options.caching_strategy.max_cache_staleness = "P0D" dsl.get_pipeline_conf().add_op_transformer( use_k8s_secret( secret_name="mlpipeline-minio-artifact", k8s_secret_key_to_env={ "secretkey": "MINIO_SECRET_KEY", "accesskey": "MINIO_ACCESS_KEY", }, ) ) # Compile pipeline compiler.Compiler().compile(pytorch_bert, 'pytorch.tar.gz', type_check=True) # Execute pipeline run = client.run_pipeline(my_experiment.id, 'pytorch-bert', 'pytorch.tar.gz') !kubectl get isvc $DEPLOY INFERENCE_SERVICE_LIST = ! kubectl get isvc {DEPLOY_NAME} -n {NAMESPACE} -o json | python3 -c "import sys, json; print(json.load(sys.stdin)['status']['url'])"| tr -d '"' | cut -d "/" -f 3 INFERENCE_SERVICE_NAME = INFERENCE_SERVICE_LIST[0] INFERENCE_SERVICE_NAME !curl -v -H "Host: $INFERENCE_SERVICE_NAME" -H "Cookie: $COOKIE" "$INGRESS_GATEWAY/v1/models/$MODEL_NAME:predict" -d @./bert/sample.txt > bert_prediction_output.json ! cat bert_prediction_output.json !curl -v -H "Host: $INFERENCE_SERVICE_NAME" -H "Cookie: $COOKIE" "$INGRESS_GATEWAY/v1/models/$MODEL_NAME:explain" -d @./bert/sample.txt > bert_explaination_output.json ! cat bert_explaination_output.json explanations_json = json.loads(open("./bert_explaination_output.json", "r").read()) explanations_json prediction_json = json.loads(open("./bert_prediction_output.json", "r").read()) import torch attributions = explanations_json["explanations"][0]['importances'] tokens = explanations_json["explanations"][0]['words'] delta = explanations_json["explanations"][0]['delta'] attributions = torch.tensor(attributions) pred_prob = 0.75 pred_class = prediction_json["predictions"][0] true_class = "Business" attr_class ="world" from captum.attr import visualization vis_data_records =[] vis_data_records.append(visualization.VisualizationDataRecord( attributions, pred_prob, pred_class, true_class, attr_class, attributions.sum(), tokens, delta)) vis = visualization.visualize_text(vis_data_records) ! kubectl delete --all isvc -n $NAMESPACE ! kubectl delete pod --field-selector=status.phase==Succeeded -n $NAMESPACE <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Gráficos
<ASSISTANT_TASK:> Python Code: # Versão da Linguagem Python from platform import python_version print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version()) # Instala a versão exata do pacote matplotlib !pip install -q -U matplotlib==3.2.1 import matplotlib as mat mat.__version__ import sqlite3 import random import datetime import matplotlib.pyplot as plt %matplotlib notebook # Criando uma conexão conn = sqlite3.connect('dsa.db') # Criando um cursor c = conn.cursor() # Função para criar uma tabela def create_table(): c.execute('CREATE TABLE IF NOT EXISTS produtos(id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, date TEXT, '\ 'prod_name TEXT, valor REAL)') # Função para inserir uma linha def data_insert(): c.execute("INSERT INTO produtos VALUES(now, 'Teclado', 130 )") conn.commit() c.close() conn.close() # Usando variáveis para inserir dados def data_insert_var(): new_date = datetime.datetime.now() new_prod_name = 'monitor' new_valor = random.randrange(50,100) c.execute("INSERT INTO produtos (date, prod_name, valor) VALUES (?, ?, ?, ?)", (new_date, new_prod_name, new_valor)) conn.commit() # Leitura de dados def leitura_todos_dados(): c.execute("SELECT * FROM PRODUTOS") for linha in c.fetchall(): print(linha) # Leitura de registros específicos def leitura_registros(): c.execute("SELECT * FROM PRODUTOS WHERE valor > 60.0") for linha in c.fetchall(): print(linha) # Leitura de colunas específicos def leitura_colunas(): c.execute("SELECT * FROM PRODUTOS") for linha in c.fetchall(): print(linha[3]) # Update def atualiza_dados(): c.execute("UPDATE produtos SET valor = 70.00 WHERE valor > 80.0") conn.commit() # Delete def remove_dados(): c.execute("DELETE FROM produtos WHERE valor = 62.0") conn.commit() # Gerar gráfico com os dados no banco de dados def dados_grafico(): c.execute("SELECT id, valor FROM produtos") ids = [] valores = [] dados = c.fetchall() for linha in dados: ids.append(linha[0]) valores.append(linha[1]) plt.bar(ids, valores) plt.show() # Gerando gráficos dados_grafico() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lists can be accessed by numerical position (aka index) Step2: Slicing can also be used with strings in the same way. Just imagine that each character in the string is the same as a list element Step3: Print all values in a list Step4: Note Step5: Other useful list methods Step6: Sometimes we may want to capture the popped value. Step7: Sorting list Step8: sort() – is a method and will replace the original list object Step9: Sorting lists numerically Step10: Sorting big to small Step11: Finding the length of a list Step12: CONDITIONALS Step13: Examples of logical operators in action Step14: Boolean logic Step15: Using or Step16: Converting English to Boolean Step17: This is wrong! Step18: i.e. with negatives both conditions have to be true Step19: Note Step20: This tests the if statement first, then the first elsif statement and so on. Step21: exit is very useful for error checking in your program e.g. if you want to check that something must happen to avoid a runtime error (remember example of dividing by zero last week...) Step22: Note Step23: while loops Step24: while loops are used a lot for reading from files (lecture 5) – the conditional statement is that you keep reading until there are no lines left in the file
<ASSISTANT_TASK:> Python Code: exam_scores = [67,78,94,45,55,66] print("scores: " ,exam_scores) exam_scores = [67,78,94,45,55] print("score 2: " ,exam_scores[1]) print("score 3: " ,exam_scores[2]) print("score 2 & 3: " ,exam_scores[1:3]) exam_scores = [67,78,94,45,55] exam_scores[2] = 90 print("score: " ,exam_scores[2]) exam_scores = [67,78,94,45,55] print ("Here are the scores:",exam_scores) exam_scores = [67,78,94,45,55] exam_scores.append(32) #add a variable to this list print ("Here are the scores:",exam_scores) # extend(list) - appends another list exam_scores = [67,78,94,45,55] exam_scores2 = [54,73,65] exam_scores.extend(exam_scores2) print (exam_scores) # insert(index,item)-insert an item at a given index exam_scores = [67,78,94,45,55] exam_scores.insert(4,90) print (exam_scores) exam_scores = [67,78,94,45,55] exam_scores.pop(2) print (exam_scores) exam_scores = [67,78,94,45,55] popped_value = exam_scores.pop(2) print (exam_scores) print("Popped value=", popped_value) exam_scores = [67,78,94,45,55] exam_scores.reverse() print (exam_scores) names = ["James", "John", "Andy", "Ben", "Chris", "Thomas"] sorted_names = sorted(names) print("Sorted names:" ,sorted_names) names = ["James", "John", "Andy", "Ben", "Chris", "Thomas"] names.sort() print("Sorted names:",names) values = [5, 7, 4, 6, 1, 2] sorted_values = sorted(values) print("Sorted values:", sorted_values) values = [5, 7, 4, 6, 1, 2, 45, 12] sorted_values = sorted(values,reverse=True) print("Sorted values:", sorted_values) values = [5, 7, 4, 6, 1, 2, 45, 12] values.sort(reverse=True) print("Sorted values:",values) exam_scores = [67,78,94,45,55] length = len(exam_scores) print("number of scores:",length) x = 5 y = 5 if x == y : print("x and y are the same") a = 5 b = 4 if a < b: print("a is less than b") #conditional block must be indented four spaces or a tab else: print("a is not less than b") name1 = "Alistair" name2 = "Alastair" if name1 == name2: print("names are the same") else: print("names are not the same") biol733_mark = 75 biol734_mark = 72 if biol733_mark >= 70 and biol734_mark >= 70: print("You're getting a distinction :-)") else: print("You're not getting a distinction :-(") biol733_mark = 34 biol734_mark = 55 if biol733_mark <50 or biol734_mark < 50: print("You've failed a module :-( ") else: print("You've passed your modules :-) ") day = "Monday" if day != "Monday" or day != "Friday": print("Alistair is researching") else: print("Alistair is not researching") day = "Monday" if day != "Monday" and day != "Friday": print("Alistair is researching\n") else: print("Alistair is not researching\n") a = 4 b = 4 c = 6 if a == b: print("a equals b") if b >= c: print("and b is greater or equal to c") else: print("and b is less than c") else: print("a doesn't equal b") module_code = "BIOL734" if module_code == "BIOL007": module_name = "Statistics for Life Science" elif module_code == "BIOL733": module_name = "Perl Programming" elif module_code == "BIOL734": module_name = "Post-genomic technologies" else: module_name = "Unknown module code" print("The module is " + module_name + "\n") a = 4 b = 5 if a == b: print("a equals b\n") else: exit("Error - a doesn't equal b\n") print("Program continues...\n") for x in range(1, 6): print("Row number " + str(x)) exam_scores = [67,78,94,45,55] counter = 1 for x in exam_scores: print("score " + str(counter) + ": " + str(x)) counter +=1 # “+=“ is the same as counter = counter + 1 incrementing a = 1 while a < 5: print("The value of a is ",a) a+=1 # a = 1 # while 4<5: # print("The value of a is ",a) # a+=1 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Resetting one generator should not reset others of the same type Step2: The random generators which produce the attributes of items generated by g1 and g2 must be independent of each other. This regression test checks this by making sure that g1.reset() does not interfere with g2.reset(). In particular, the two outputs below should be identical (because the final call g1.reset(12345) should not interfere with the previous call g2.reset(9999)). Step3: Sub-generators of custom generator should be initialised with separate seeds Step4: NumpyRandomGenerator Step5: Zip should use different seeds internally to reset its input generators Step6: If .reset() is called on a Zip generator, it should use different seeds internally to reset each of its constituent input generators. In particular, the output of h1 and h2 below should be different. Step7: Multiple FakerGenerator instances should be independent
<ASSISTANT_TASK:> Python Code: import tohu from tohu import * from utils import print_generated_sequence print(f"Tohu version: {tohu.__version__}") class FoobarGenerator(CustomGenerator): a = Integer(low=1000, high=3000) b = Sequential(prefix="Foo_", digits=2) c = Float(low=1.0, high=4.0) g1 = FoobarGenerator() g2 = FoobarGenerator() g1.reset(seed=12345) g2.reset(seed=9999) print_generated_sequence(g1, num=3, sep='\n') print_generated_sequence(g2, num=3, sep='\n') print("-------------------------------------------------") g1.reset(seed=12345) g2.reset(seed=9999) g1.reset(seed=12345) print_generated_sequence(g1, num=3, sep='\n') print_generated_sequence(g2, num=3, sep='\n') class FoobarGenerator(CustomGenerator): a1 = HashDigest(length=8) a2 = HashDigest(length=8) a3 = HashDigest(length=8) b1 = Integer(low=0, high=1000) b2 = Integer(low=0, high=1000) b3 = Integer(low=0, high=1000) g = FoobarGenerator() g.reset(seed=99999) print_generated_sequence(g, num=10, sep='\n') g = NumpyRandomGenerator(method="normal", loc=3.0, scale=5.0) g.reset(seed=12345); print_generated_sequence(g, num=4) g.reset(seed=99999); print_generated_sequence(g, num=4) g1 = NumpyRandomGenerator(method="normal", loc=3.0, scale=5.0) g2 = NumpyRandomGenerator(method="normal", loc=3.0, scale=5.0) g1.reset(seed=12345) g2.reset(seed=99999) print_generated_sequence(g1, num=4) print_generated_sequence(g2, num=4) g1 = Integer(0, 100) g2 = Integer(0, 100) g1.reset(12345) g2.reset(12345) print_generated_sequence(g1, num=10) print_generated_sequence(g2, num=10) z = Zip(g1, g2) h1, h2 = Split(z) z.reset(seed=12345) print_generated_sequence(h1, num=10) print_generated_sequence(h2, num=10) g1 = FakerGenerator(method="name") g2 = FakerGenerator(method="name") g1.reset(seed=12345) g2.reset(seed=12345) print_generated_sequence(g1, num=5) print_generated_sequence(g2, num=5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Again we need functions for shuffling the data and calculating classification errrors. Step2: 0.1 Load the dataset of paintings Step3: We want to formulate a binary classification problem. In the data folder there's a file that has labels denoting what is in each painting (tree, mountain, etc.). Let's load it... Step4: Let's make two classes Step5: Make training and test split... Step6: 0.2 Run a baseline classifier Step7: 1. The Bias-Variance Tradeoff Step8: 2.2 Training on Bootstrap Samples Step9: Now run the function... Step10: 2. Voting Step11: 3. Stacking Models Step12: Ah! The training error is zero percent--a dead giveaway that the added power of stacking caused us to overfit. One way of prevent this overfitting is to split the training data and fit the base learners and meta-classifier on different subsets. Step13: Let's visualize the images... Step14: As a last step of pre-processing, let's flatten the data tensor... Step15: And just to get you started, here's code to train a logistic regression classifier...
<ASSISTANT_TASK:> Python Code: from IPython.display import Image import matplotlib.pyplot as plt import numpy as np import pandas as pd import time %matplotlib inline ### function for shuffling the data and labels def shuffle_in_unison(features, labels): rng_state = np.random.get_state() np.random.shuffle(features) np.random.set_state(rng_state) np.random.shuffle(labels) ### calculate classification errors # return a percentage: (number misclassified)/(total number of datapoints) def calc_classification_error(predictions, class_labels): n = predictions.size num_of_errors = 0. for idx in xrange(n): if (predictions[idx] >= 0.5 and class_labels[idx]==0) or (predictions[idx] < 0.5 and class_labels[idx]==1): num_of_errors += 1 return num_of_errors/n from sklearn.decomposition import PCA # load the 403 x 360,000 matrix br_paintings = np.load(open('../data/bob_ross/bob_ross_paintings.npy','rb')) # perform PCA again pca = PCA(n_components=400) start_time = time.time() pca_paintings = pca.fit_transform(br_paintings) end_time = time.time() # remove the br_paintings from memory br_paintings = None print "Training took a total of %.2f seconds." %(end_time-start_time) print "Preserved percentage of original variance: %.2f%%" %(pca.explained_variance_ratio_.sum() * 100) print "Dataset is now of size: %d x %d"%(pca_paintings.shape) br_labels_data = pd.read_csv('../data/bob_ross/elements-by-episode.csv') br_labels_data.head() labels = (br_labels_data['HILLS'] + br_labels_data['MOUNTAIN'] + br_labels_data['MOUNTAINS'] \ + br_labels_data['SNOWY_MOUNTAIN'] > 0).astype('int8').as_matrix() print "Contains mountain?: "+str(bool(labels[5])) recon_img = pca.inverse_transform(pca_paintings[5,:]) plt.imshow(np.reshape(recon_img, (300, 400, 3))) plt.show() # set the random number generator for reproducability np.random.seed(182) # shuffle data N = pca_paintings.shape[0] shuffle_in_unison(pca_paintings, labels) # split into train and test sets train_features = pca_paintings[:int(.8*N), :] test_features = pca_paintings[int(.8*N):, :] train_labels = labels[:int(.8*N)] test_labels = labels[int(.8*N):] np.random.seed(182) from sklearn.linear_model import LogisticRegression # initialize and train a logistic regression model lr_model = LogisticRegression() lr_model.fit(train_features, train_labels) # compute error on test data lr_predictions = lr_model.predict(test_features) one_model_test_error_rate = calc_classification_error(lr_predictions, test_labels) print "Classification error on test set: %.2f%%" %(one_model_test_error_rate*100) # compute the baseline error since the classes are imbalanced print "Baseline Error: %.2f%%" %((sum(test_labels)*100.)/len(test_labels)) ### function for bootstrap resampling def bootstrap_resample(features, labels, n_resamples): N = features.shape[0] idxs = np.arange(N) # numpy's choice() handles the sampling w/ replacement resampled_idxs = np.random.choice(idxs, size=(N,n_resamples), replace=True) boot_samps_x = [] boot_samps_y = [] for i in xrange(n_resamples): boot_samps_x.append(features[resampled_idxs[:,i],:]) boot_samps_y.append(labels[resampled_idxs[:,i]]) return boot_samps_x, boot_samps_y def fit_and_predict_on_bootstrap_samples(model, bootstrapped_features, bootstrapped_labels, \ test_features, n_bootstrap_samples): n_test = test_features.shape[0] ensemb_probs = np.zeros((n_test,)) ensemb_preds = np.zeros((n_test,)) for idx in xrange(n_bootstrap_samples): print "training model #%d" %(idx+1) model.fit(bootstrapped_features[idx], bootstrapped_labels[idx]) ensemb_probs += model.predict_proba(test_features)[:,1] ensemb_preds += model.predict(test_features) ensemb_probs /= n_bootstrap_samples ensemb_preds /= n_bootstrap_samples ensemb_probs = np.around(ensemb_probs) ensemb_preds = np.around(ensemb_preds) return ensemb_probs, ensemb_preds np.random.seed(182) n_bootstrap_samples = 7 bootstrapped_features, bootstrapped_labels = bootstrap_resample(train_features, train_labels, n_bootstrap_samples) ensembled_probs, ensembled_preds = \ fit_and_predict_on_bootstrap_samples(lr_model, bootstrapped_features, bootstrapped_labels, \ test_features, n_bootstrap_samples) print print "Averaging probabilities: classification error on test set is %.2f%%" \ %(calc_classification_error(ensembled_probs, test_labels)*100) print "Averaging predictions: classification error on test set is %.2f%%" \ %(calc_classification_error(ensembled_preds, test_labels)*100) print print "One logistic regression model error: %.2f%%"%(one_model_test_error_rate*100) # compute the baseline error since the classes are imbalanced print "Baseline error: %.2f%%" %((sum(test_labels)*100.)/len(test_labels)) np.random.seed(182) # import the three new classifiers from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB # initialize models d_tree_model = DecisionTreeClassifier() knn_model = KNeighborsClassifier(n_neighbors=5) nb_model = GaussianNB() # fit models d_tree_model.fit(train_features, train_labels) knn_model.fit(train_features, train_labels) nb_model.fit(train_features, train_labels) # predict on test data tree_predictions = d_tree_model.predict(test_features) knn_predictions = knn_model.predict(test_features) nb_predictions = nb_model.predict(test_features) # average predictions # add in the logistic regression predictions calcuated previously avg_predictions = np.around((tree_predictions + knn_predictions + nb_predictions + lr_predictions)/4.) print "Averaging predictions: classification error on test set is %.2f%%" \ %(calc_classification_error(avg_predictions, test_labels)*100) print print "One logistic regression model error: %.2f%%"%(one_model_test_error_rate*100) # compute the baseline error since the classes are imbalanced print "Baseline error: %.2f%%" %((sum(test_labels)*100.)/len(test_labels)) np.random.seed(182) ### TRAINING # calculate probabilities on the training data tree_probs = d_tree_model.predict_proba(train_features)[:,1][np.newaxis].T knn_probs = knn_model.predict_proba(train_features)[:,1][np.newaxis].T nb_probs = nb_model.predict_proba(train_features)[:,1][np.newaxis].T logReg_probs = lr_model.predict_proba(train_features)[:,1][np.newaxis].T # combine into a new 'feature' matrix train_probs_matrix = np.hstack([tree_probs, knn_probs, nb_probs, logReg_probs]) # train logistic regression meta_classifier = LogisticRegression() meta_classifier.fit(train_probs_matrix, train_labels) # plot the weights learned for each classifier f,ax = plt.subplots() ticks = np.arange(4) ax.bar(ticks, meta_classifier.coef_[0]) ax.set_xticks(ticks+.4) ax.set_xticklabels(['Decision Tree', 'kNN', 'Naive Bayes', 'Log. Regression']) ax.set_title('Weights Learned for Each Classifier') plt.show() ### TESTING # calculate probabilities on the test data tree_probs = d_tree_model.predict_proba(test_features)[:,1][np.newaxis].T knn_probs = knn_model.predict_proba(test_features)[:,1][np.newaxis].T nb_probs = nb_model.predict_proba(test_features)[:,1][np.newaxis].T logReg_probs = lr_model.predict_proba(test_features)[:,1][np.newaxis].T # combine into a new 'feature' matrix test_probs_matrix = np.hstack([tree_probs, knn_probs, nb_probs, logReg_probs]) stacked_predictions = meta_classifier.predict(test_probs_matrix) print "Averaging predictions: classification error on test set is %.2f%%" %(calc_classification_error(stacked_predictions, test_labels)*100) print print "One logistic regression model error: %.2f%%"%(one_model_test_error_rate*100) # compute the baseline error since the classes are imbalanced print "Baseline error: %.2f%%" %((sum(test_labels)*100.)/len(test_labels)) train_stacked_predictions = meta_classifier.predict(train_probs_matrix) print "Stacking train error: %.2f%%" %(calc_classification_error(train_stacked_predictions, train_labels)) from sklearn.datasets import fetch_lfw_pairs lfw_train = fetch_lfw_pairs(subset='train') lfw_test = fetch_lfw_pairs(subset='test') lfw_train_pairs = lfw_train['pairs'] lfw_train_targets = lfw_train['target'] lfw_test_pairs = lfw_test['pairs'] lfw_test_targets = lfw_test['target'] print "The training data is of size: %d instances x %d faces x %d pixels x %d pixels" %(lfw_train_pairs.shape) print "The test data is of size: %d instances x %d faces x %d pixels x %d pixels" %(lfw_test_pairs.shape) face_idx=0 # subplot containing first image ax1 = plt.subplot(1,2,1) ax1.imshow(lfw_train_pairs[face_idx,0,:,:],cmap='Greys_r') # subplot containing second image ax2 = plt.subplot(1,2,2) ax2.imshow(lfw_train_pairs[face_idx,1,:,:],cmap='Greys_r') plt.show() train_x = np.reshape(lfw_train_pairs, (2200, 5828)) train_y = lfw_train_targets test_x = np.reshape(lfw_test_pairs, (1000, 5828)) test_y = lfw_test_targets # print the shapes just to check its what we expect print train_x.shape print train_y.shape print test_x.shape print test_y.shape np.random.seed(182) # initialize and train a logistic regression model lr_model = LogisticRegression() lr_model.fit(train_x, train_y) # compute error on test data lr_predictions = lr_model.predict(test_x) one_model_test_error_rate = calc_classification_error(lr_predictions, test_y) print "Classification error on test set: %.2f%%" %(one_model_test_error_rate*100) # compute the baseline error since the classes are imbalanced print "Baseline Error: %.2f%%" %((sum(test_y)*100.)/len(test_y)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Then define the pipeline using the following function Step2: Compile and run the end-to-end ML pipeline Step3: Next, instantiate an API client Step4: Next, kick off a pipeline run
<ASSISTANT_TASK:> Python Code: !python3 -c "import kfp; print('KFP SDK version: {}'.format(kfp.__version__))" import os import json from functools import partial import kfp import pprint import yaml from jinja2 import Template from kfp.v2 import dsl from kfp.v2.compiler import compiler from kfp.v2.dsl import Dataset from kfp.v2.google.client import AIPlatformClient project_id='woven-rush-197905' project_number='297370817971' af_registry_location='asia-southeast1' af_registry_name='mlops-vertex-kit' components_dir='../components/' def _load_custom_component(project_id: str, af_registry_location: str, af_registry_name: str, components_dir: str, component_name: str): component_path = os.path.join(components_dir, component_name, 'component.yaml.jinja') with open(component_path, 'r') as f: component_text = Template(f.read()).render( project_id=project_id, af_registry_location=af_registry_location, af_registry_name=af_registry_name) return kfp.components.load_component_from_text(component_text) load_custom_component = partial(_load_custom_component, project_id=project_id, af_registry_location=af_registry_location, af_registry_name=af_registry_name, components_dir=components_dir) preprocess_op = load_custom_component(component_name='data_preprocess') train_op = load_custom_component(component_name='train_model') check_metrics_op = load_custom_component(component_name='check_model_metrics') create_endpoint_op = load_custom_component(component_name='create_endpoint') test_endpoint_op = load_custom_component(component_name='test_endpoint') deploy_model_op = load_custom_component(component_name='deploy_model') monitor_model_op = load_custom_component(component_name='monitor_model') pipeline_region='asia-southeast1' pipeline_root='gs://vertex_pipeline_demo_root/pipeline_root' data_region='asia-southeast1' input_dataset_uri='bq://woven-rush-197905.vertex_pipeline_demo.banknote_authentication' gcs_data_output_folder='gs://vertex_pipeline_demo_root/datasets/training' training_data_schema='VWT:float;SWT:float;KWT:float;Entropy:float;Class:int' data_pipeline_root='gs://vertex_pipeline_demo_root/compute_root' training_container_image_uri=f'{af_registry_location}-docker.pkg.dev/{project_id}/{af_registry_name}/training:latest' serving_container_image_uri=f'{af_registry_location}-docker.pkg.dev/{project_id}/{af_registry_name}/serving:latest' custom_job_service_account=f'{project_number}-compute@developer.gserviceaccount.com' training_container_image_uri,serving_container_image_uri,custom_job_service_account train_additional_args = json.dumps({ 'num_leaves_hp_param_min': 6, 'num_leaves_hp_param_max': 11, 'max_depth_hp_param_min': -1, 'max_depth_hp_param_max': 4, 'num_boost_round': 300, 'min_data_in_leaf': 5 }) train_additional_args @dsl.pipeline(name='training-pipeline-template') def pipeline(project_id: str, data_region: str, gcs_data_output_folder: str, input_dataset_uri: str, training_data_schema: str, data_pipeline_root: str, training_container_image_uri: str, train_additional_args: str, serving_container_image_uri: str, custom_job_service_account: str, hptune_region: str, hp_config_suggestions_per_request: int, hp_config_max_trials: int, metrics_name: str, metrics_threshold: float, endpoint_machine_type: str, endpoint_min_replica_count: int, endpoint_max_replica_count: int, endpoint_test_instances: str, monitoring_user_emails: str, monitoring_log_sample_rate: float, monitor_interval: int, monitoring_default_threshold: float, monitoring_custom_skew_thresholds: str, monitoring_custom_drift_thresholds: str, machine_type: str = "n1-standard-8", accelerator_count: int = 0, accelerator_type: str = 'ACCELERATOR_TYPE_UNSPECIFIED', vpc_network: str = "", enable_model_monitoring: str = 'False'): dataset_importer = kfp.v2.dsl.importer( artifact_uri=input_dataset_uri, artifact_class=Dataset, reimport=False) preprocess_task = preprocess_op( project_id=project_id, data_region=data_region, gcs_output_folder=gcs_data_output_folder, gcs_output_format="CSV", input_dataset=dataset_importer.output) train_task = train_op( project_id=project_id, data_region=data_region, data_pipeline_root=data_pipeline_root, input_data_schema=training_data_schema, training_container_image_uri=training_container_image_uri, train_additional_args=train_additional_args, serving_container_image_uri=serving_container_image_uri, custom_job_service_account=custom_job_service_account, input_dataset=preprocess_task.outputs['output_dataset'], machine_type=machine_type, accelerator_count=accelerator_count, accelerator_type=accelerator_type, hptune_region=hptune_region, hp_config_max_trials=hp_config_max_trials, hp_config_suggestions_per_request=hp_config_suggestions_per_request, vpc_network=vpc_network) check_metrics_task = check_metrics_op( metrics_name=metrics_name, metrics_threshold=metrics_threshold, basic_metrics=train_task.outputs['basic_metrics']) create_endpoint_task = create_endpoint_op( project_id=project_id, data_region=data_region, data_pipeline_root=data_pipeline_root, display_name='endpoint-classification-template', create_if_not_exists=True) deploy_model_task = deploy_model_op( project_id=project_id, data_region=data_region, data_pipeline_root=data_pipeline_root, machine_type=endpoint_machine_type, min_replica_count=endpoint_min_replica_count, max_replica_count=endpoint_max_replica_count, model=train_task.outputs['output_model'], endpoint=create_endpoint_task.outputs['endpoint']) test_endpoint_task = test_endpoint_op( project_id=project_id, data_region=data_region, data_pipeline_root=data_pipeline_root, endpoint=create_endpoint_task.outputs['endpoint'], test_instances=endpoint_test_instances, ).after(deploy_model_task) with dsl.Condition(enable_model_monitoring == 'True', name='Monitoring'): monitor_model_task = monitor_model_op( project_id=project_id, data_region=data_region, user_emails=monitoring_user_emails, log_sample_rate=monitoring_log_sample_rate, monitor_interval=monitor_interval, default_threshold=monitoring_default_threshold, custom_skew_thresholds=monitoring_custom_skew_thresholds, custom_drift_thresholds=monitoring_custom_drift_thresholds, endpoint=create_endpoint_task.outputs['endpoint'], instance_schema=train_task.outputs['instance_schema'], dataset=preprocess_task.outputs['output_dataset']) monitor_model_task.after(deploy_model_task) compiler.Compiler().compile( pipeline_func=pipeline, package_path="training_pipeline_job.json" ) api_client = AIPlatformClient( project_id=project_id, region=pipeline_region) test_instances = json.dumps([ {"VWT":3.6216,"SWT":8.6661,"KWT":-2.8073,"Entropy":-0.44699,"Class":"0"}, {"VWT":4.5459,"SWT":8.1674,"KWT":-2.4586,"Entropy":-1.4621,"Class":"0"}, {"VWT":3.866,"SWT":-2.6383,"KWT":1.9242,"Entropy":0.10645,"Class":"0"}, {"VWT":-3.7503,"SWT":-13.4586,"KWT":17.5932,"Entropy":-2.7771,"Class":"1"}, {"VWT":-3.5637,"SWT":-8.3827,"KWT":12.393,"Entropy":-1.2823,"Class":"1"}, {"VWT":-2.5419,"SWT":-0.65804,"KWT":2.6842,"Entropy":1.1952,"Class":"1"} ]) test_instances pipeline_params = { 'project_id': project_id, 'data_region': data_region, 'gcs_data_output_folder': gcs_data_output_folder, 'input_dataset_uri': input_dataset_uri, 'training_data_schema': training_data_schema, 'data_pipeline_root': data_pipeline_root, 'training_container_image_uri': training_container_image_uri, 'train_additional_args': train_additional_args, 'serving_container_image_uri': serving_container_image_uri, 'custom_job_service_account': custom_job_service_account, 'hptune_region':"asia-east1", 'hp_config_suggestions_per_request': 5, 'hp_config_max_trials': 30, 'metrics_name': 'au_prc', 'metrics_threshold': 0.4, 'endpoint_machine_type': 'n1-standard-4', 'endpoint_min_replica_count': 1, 'endpoint_max_replica_count': 1, 'endpoint_test_instances': test_instances, 'monitoring_user_emails': 'luoshixin@google.com', 'monitoring_log_sample_rate': 0.8, 'monitor_interval': 3600, 'monitoring_default_threshold': 0.3, 'monitoring_custom_skew_thresholds': 'VWT:.5,SWT:.2,KWT:.7,Entropy:.4', 'monitoring_custom_drift_thresholds': 'VWT:.5,SWT:.2,KWT:.7,Entropy:.4', 'enable_model_monitoring': 'True' } response = api_client.create_run_from_job_spec( job_spec_path="training_pipeline_job.json", pipeline_root=pipeline_root, parameter_values=pipeline_params, enable_caching=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This chapter introduces "survival analysis", which is a set of statistical methods used to answer questions about the time until an event. Step2: As an example, here's a Weibull distribution with parameters $\lambda=3$ and $k=0.8$. Step3: The result is an object that represents the distribution. Step4: actual_dist provides rvs, which we can use to generate a random sample from this distribution. Step5: So, given the parameters of the distribution, we can generate a sample. Step6: And a uniform prior for $k$ Step7: I'll use make_joint to make a joint prior distribution for the two parameters. Step8: The result is a DataFrame that represents the joint prior, with possible values of $\lambda$ across the columns and values of $k$ down the rows. Step9: Now we can use weibull_dist to compute the PDF of the Weibull distribution for each pair of parameters and each data point. Step10: The likelihood of the data is the product of the probability densities along axis=2. Step11: Now we can compute the posterior distribution in the usual way. Step13: The following function encapsulates these steps. Step14: Here's how we use it. Step15: And here's a contour plot of the joint posterior distribution. Step16: It looks like the range of likely values for $\lambda$ is about 1 to 4, which contains the actual value we used to generate the data, 3. Step17: And compute the posterior means and 90% credible intervals. Step18: The vertical gray line show the actual value of $\lambda$. Step19: The posterior distributions are wide, which means that with only 10 data points we can't estimated the parameters precisely. Step20: Incomplete Data Step21: Now let's suppose that the residence times follow the Weibull distribution we used in the previous example. Step22: I'll use these values to construct a DataFrame that contains the arrival and departure times for each dog, called start and end. Step23: For display purposes, I'll sort the rows of the DataFrame by arrival time. Step24: Notice that several of the lifelines extend past the observation window of 8 weeks. Step25: censored is a Boolean Series that is True for lifelines that extend past Week 8. Step27: Now we can plot a "lifeline" for each dog, showing the arrival and departure times on a time line. Step28: And I'll add one more column to the table, which contains the duration of the observed parts of the lifelines. Step29: What we have simulated is the data that would be available at the beginning of Week 8. Step30: For the complete data, we can use update_weibull, which uses the PDF of the Weibull distribution to compute the likelihood of the data. Step32: For the incomplete data, we have to think a little harder. Step33: Here's the update with the incomplete data. Step34: And here's what the joint posterior distribution looks like after both updates. Step35: Compared to the previous contour plot, it looks like the range of likely values for $\lambda$ is substantially wider. Step36: Here's the posterior marginal distribution for $\lambda$ compared to the distribution we got using all complete data. Step37: The distribution with some incomplete data is substantially wider. Step38: In this example, the marginal distribution is shifted to the left when we have incomplete data, but it is not substantially wider. Step39: We can load the data into a DataFrame like this Step40: Column h contains the times when bulbs failed in hours; Column f contains the number of bulbs that failed at each time. Step41: Because of the design of this experiment, we can consider the data to be a representative sample from the distribution of lifetimes, at least for light bulbs that are lit continuously. Step42: Assuming that these data are well modeled by a Weibull distribution, let's estimate the parameters that fit the data. Step43: For this example, there are 51 values in the prior distribution, rather than the usual 101. That's because we are going to use the posterior distributions to do some computationally-intensive calculations. Step44: Although we have data for 50 light bulbs, there are only 32 unique lifetimes in the dataset. For the update, it is convenient to express the data in the form of 50 lifetimes, with each lifetime repeated the given number of times. Step45: Now we can use update_weibull to do the update. Step46: Here's what the posterior joint distribution looks like Step47: To summarize this joint posterior distribution, we'll compute the posterior mean lifetime. Step48: Now for each pair of parameters we'll use weibull_dist to compute the mean. Step49: The result is an array with the same dimensions as the joint distribution. Step50: Finally we compute the sum of the weighted means. Step52: Based on the posterior distribution, we think the mean lifetime is about 1413 hours. Step54: Incomplete Information Step55: The probability that a value falls in an interval is the difference between the CDF at the beginning and end of the interval. Step56: And here are the results. Step57: Visually this result is almost identical to what we got using the PDF. Step58: When we take into account the 12-hour interval between observations, the posterior mean is about 6 hours less. Step59: If there are 100 bulbs and each has this probability of dying, the number of dead bulbs follows a binomial distribution. Step60: And here's what it looks like. Step61: But that's based on the assumption that we know $\lambda$ and $k$, and we don't. Step62: The result is a Series with a MultiIndex that contains two "levels" Step63: Now we can use make_mixture, passing as parameters the posterior probabilities in posterior_series and the sequence of binomial distributions in pmf_seq. Step64: Here's what the posterior predictive distribution looks like, compared to the binomial distribution we computed with known parameters. Step65: The posterior predictive distribution is wider because it represents our uncertainty about the parameters as well as our uncertainty about the number of dead bulbs. Step67: Exercise Step68: Now we need some data. Step69: Now we can load it into a DataFrame Step70: I'll make a Boolean Series to indicate which days it rained. Step71: And select the total rainfall on the days it rained. Step72: Here's what the CDF of the data looks like. Step73: The maximum is 1.14 inches of rain is one day.
<ASSISTANT_TASK:> Python Code: # If we're running on Colab, install empiricaldist # https://pypi.org/project/empiricaldist/ import sys IN_COLAB = 'google.colab' in sys.modules if IN_COLAB: !pip install empiricaldist # Get utils.py from os.path import basename, exists def download(url): filename = basename(url) if not exists(filename): from urllib.request import urlretrieve local, _ = urlretrieve(url, filename) print('Downloaded ' + local) download('https://github.com/AllenDowney/ThinkBayes2/raw/master/soln/utils.py') from utils import set_pyplot_params set_pyplot_params() from scipy.stats import weibull_min def weibull_dist(lam, k): return weibull_min(k, scale=lam) lam = 3 k = 0.8 actual_dist = weibull_dist(lam, k) import numpy as np from empiricaldist import Cdf from utils import decorate qs = np.linspace(0, 12, 101) ps = actual_dist.cdf(qs) cdf = Cdf(ps, qs) cdf.plot() decorate(xlabel='Duration in time', ylabel='CDF', title='CDF of a Weibull distribution') np.random.seed(17) data = actual_dist.rvs(10) data from utils import make_uniform lams = np.linspace(0.1, 10.1, num=101) prior_lam = make_uniform(lams, name='lambda') ks = np.linspace(0.1, 5.1, num=101) prior_k = make_uniform(ks, name='k') from utils import make_joint prior = make_joint(prior_lam, prior_k) lam_mesh, k_mesh, data_mesh = np.meshgrid( prior.columns, prior.index, data) densities = weibull_dist(lam_mesh, k_mesh).pdf(data_mesh) densities.shape likelihood = densities.prod(axis=2) likelihood.sum() from utils import normalize posterior = prior * likelihood normalize(posterior) def update_weibull(prior, data): Update the prior based on data. lam_mesh, k_mesh, data_mesh = np.meshgrid( prior.columns, prior.index, data) densities = weibull_dist(lam_mesh, k_mesh).pdf(data_mesh) likelihood = densities.prod(axis=2) posterior = prior * likelihood normalize(posterior) return posterior posterior = update_weibull(prior, data) from utils import plot_contour plot_contour(posterior) decorate(title='Posterior joint distribution of Weibull parameters') from utils import marginal posterior_lam = marginal(posterior, 0) posterior_k = marginal(posterior, 1) import matplotlib.pyplot as plt plt.axvline(3, color='C5') posterior_lam.plot(color='C4', label='lambda') decorate(xlabel='lam', ylabel='PDF', title='Posterior marginal distribution of lam') plt.axvline(0.8, color='C5') posterior_k.plot(color='C12', label='k') decorate(xlabel='k', ylabel='PDF', title='Posterior marginal distribution of k') print(lam, posterior_lam.credible_interval(0.9)) print(k, posterior_k.credible_interval(0.9)) np.random.seed(19) start = np.random.uniform(0, 8, size=10) start np.random.seed(17) duration = actual_dist.rvs(10) duration import pandas as pd d = dict(start=start, end=start+duration) obs = pd.DataFrame(d) obs = obs.sort_values(by='start', ignore_index=True) obs censored = obs['end'] > 8 obs.loc[censored, 'end'] = 8 obs.loc[censored, 'status'] = 0 def plot_lifelines(obs): Plot a line for each observation. obs: DataFrame for y, row in obs.iterrows(): start = row['start'] end = row['end'] status = row['status'] if status == 0: # ongoing plt.hlines(y, start, end, color='C0') else: # complete plt.hlines(y, start, end, color='C1') plt.plot(end, y, marker='o', color='C1') decorate(xlabel='Time (weeks)', ylabel='Dog index', title='Lifelines showing censored and uncensored observations') plt.gca().invert_yaxis() plot_lifelines(obs) obs['T'] = obs['end'] - obs['start'] data1 = obs.loc[~censored, 'T'] data2 = obs.loc[censored, 'T'] data1 data2 posterior1 = update_weibull(prior, data1) def update_weibull_incomplete(prior, data): Update the prior using incomplete data. lam_mesh, k_mesh, data_mesh = np.meshgrid( prior.columns, prior.index, data) # evaluate the survival function probs = weibull_dist(lam_mesh, k_mesh).sf(data_mesh) likelihood = probs.prod(axis=2) posterior = prior * likelihood normalize(posterior) return posterior posterior2 = update_weibull_incomplete(posterior1, data2) plot_contour(posterior2) decorate(title='Posterior joint distribution, incomplete data') posterior_lam2 = marginal(posterior2, 0) posterior_k2 = marginal(posterior2, 1) posterior_lam.plot(color='C5', label='All complete', linestyle='dashed') posterior_lam2.plot(color='C2', label='Some censored') decorate(xlabel='lambda', ylabel='PDF', title='Marginal posterior distribution of lambda') posterior_k.plot(color='C5', label='All complete', linestyle='dashed') posterior_k2.plot(color='C12', label='Some censored') decorate(xlabel='k', ylabel='PDF', title='Posterior marginal distribution of k') download('https://gist.github.com/epogrebnyak/7933e16c0ad215742c4c104be4fbdeb1/raw/c932bc5b6aa6317770c4cbf43eb591511fec08f9/lamps.csv') df = pd.read_csv('lamps.csv', index_col=0) df.head() from empiricaldist import Pmf pmf_bulb = Pmf(df['f'].to_numpy(), df['h']) pmf_bulb.normalize() pmf_bulb.mean() lams = np.linspace(1000, 2000, num=51) prior_lam = make_uniform(lams, name='lambda') ks = np.linspace(1, 10, num=51) prior_k = make_uniform(ks, name='k') prior_bulb = make_joint(prior_lam, prior_k) data_bulb = np.repeat(df['h'], df['f']) len(data_bulb) posterior_bulb = update_weibull(prior_bulb, data_bulb) plot_contour(posterior_bulb) decorate(title='Joint posterior distribution, light bulbs') lam_mesh, k_mesh = np.meshgrid( prior_bulb.columns, prior_bulb.index) means = weibull_dist(lam_mesh, k_mesh).mean() means.shape prod = means * posterior_bulb prod.to_numpy().sum() def joint_weibull_mean(joint): Compute the mean of a joint distribution of Weibulls. lam_mesh, k_mesh = np.meshgrid( joint.columns, joint.index) means = weibull_dist(lam_mesh, k_mesh).mean() prod = means * joint return prod.to_numpy().sum() def update_weibull_between(prior, data, dt=12): Update the prior based on data. lam_mesh, k_mesh, data_mesh = np.meshgrid( prior.columns, prior.index, data) dist = weibull_dist(lam_mesh, k_mesh) cdf1 = dist.cdf(data_mesh) cdf2 = dist.cdf(data_mesh-12) likelihood = (cdf1 - cdf2).prod(axis=2) posterior = prior * likelihood normalize(posterior) return posterior posterior_bulb2 = update_weibull_between(prior_bulb, data_bulb) plot_contour(posterior_bulb2) decorate(title='Joint posterior distribution, light bulbs') joint_weibull_mean(posterior_bulb) joint_weibull_mean(posterior_bulb2) lam = 1550 k = 4.25 t = 1000 prob_dead = weibull_dist(lam, k).cdf(t) prob_dead from utils import make_binomial n = 100 p = prob_dead dist_num_dead = make_binomial(n, p) dist_num_dead.plot(label='known parameters') decorate(xlabel='Number of dead bulbs', ylabel='PMF', title='Predictive distribution with known parameters') posterior_series = posterior_bulb.stack() posterior_series.head() pmf_seq = [] for (k, lam) in posterior_series.index: prob_dead = weibull_dist(lam, k).cdf(t) pmf = make_binomial(n, prob_dead) pmf_seq.append(pmf) from utils import make_mixture post_pred = make_mixture(posterior_series, pmf_seq) dist_num_dead.plot(label='known parameters') post_pred.plot(label='unknown parameters') decorate(xlabel='Number of dead bulbs', ylabel='PMF', title='Posterior predictive distribution') # Solution goes here # Solution goes here # Solution goes here # Solution goes here import scipy.stats def gamma_dist(k, theta): Makes a gamma object. k: shape parameter theta: scale parameter returns: gamma object return scipy.stats.gamma(k, scale=theta) # Load the data file download('https://github.com/AllenDowney/ThinkBayes2/raw/master/data/2203951.csv') weather = pd.read_csv('2203951.csv') weather.head() rained = weather['PRCP'] > 0 rained.sum() prcp = weather.loc[rained, 'PRCP'] prcp.describe() cdf_data = Cdf.from_seq(prcp) cdf_data.plot() decorate(xlabel='Total rainfall (in)', ylabel='CDF', title='Distribution of rainfall on days it rained') # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we have a problem, we were only returned the name of the first student. Why? Because the function only ran the for name in names iteration once! Step2: Everything has been the same so far, but now things get interesting. Above when we ran students when it was a function, it returned one name. However, now that students refers to a generator, it yields a generator object of names! Step3: What can we do this a generator object? A lot! As a generator students will can each student in the list of students Step4: It is interesting to note that if we use list(students) we can see all the students still remaining in the generator object's iteration
<ASSISTANT_TASK:> Python Code: # Create a function that def function(names): # For each name in a list of names for name in names: # Returns the name return name # Create a variable of that function students = function(['Abe', 'Bob', 'Christina', 'Derek', 'Eleanor']) # Run the function students # Create a generator that def generator(names): # For each name in a list of names for name in names: # Yields a generator object yield name # Same as above, create a variable for the generator students = generator(['Abe', 'Bob', 'Christina', 'Derek', 'Eleanor']) # Run the generator students # Return the next student next(students) # Return the next student next(students) # Return the next student next(students) # List all remaining students in the generator list(students) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The function returns the following Step2: And look at the result Step3: Now the wedge contains rock properties, not integer labels. Step4: Notice that the wedge function returns 4 things Step5: Here's another example. We can reverse the wedge direction by passing in (1, 0.5) for the thickess. As a result, the left-hand-side is the maximum thickness of 1, the right is half the thickness. Step6: Top and bottom conformance Step7: Different 'wedge' shapes Step9: If you're feeling creative, you can also give wedge() your own function (since version 0.4.3). Your function should have an API like np.linspace() (the function that produces the standard wedge shape). Here's an example Step10: Let's use that function to make a model Step11: Varying net Step12: Let's look at 3 slices Step13: Slices in/out of the page, look like this Step14: Let's simulate the seismic. We'll provide 4 'rocks', one for each of the integers in the array Step15: We can check the reflectivities on a vertical slice half-way through the 'breadth' Step16: Now we can convolve with a wavelet to get a synthetic. The synthetic will, like the RC series, be three-dimensional Step17: Let's look at the three orthognal profiles through this synthetic Step18: Models from well logs Step19: And calculate an acoustic impedance log as input into our model Step20: And now we can segment this array into upper, middle, and lower segments. Step21: We'll create arrays of depths for the corresponding zones as well Step22: A quick plot of the three zones shows us the stratigraphic inputs to the wedge function. Step23: The middle piece (orange) will be fitted to the middle layer of the wedge (resulting in the number of pixels given in the depth argument. The upper (blue) and lower (green) pieces will then be cropped to fit their layers, so you must provide enough data for this to happen. The safest thing to do is to provide the entire log above and the same below. Step24: Now we can plot everything together
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import bruges as bg w, top, base, ref = bg.models.wedge() plt.imshow(w, interpolation='none') plt.axvline(ref, color='k', ls='--') plt.plot(top, 'r-', lw=4) plt.plot(base, 'r-', lw=4) plt.show() import numpy as np vps = np.array([2320, 2350, 2350]) rhos = np.array([2650, 2600, 2620]) impedances = vps * rhos w, top, base, ref = bg.models.wedge(strat=impedances) plt.imshow(w, interpolation='none') plt.axvline(ref, color='k', ls='--') plt.plot(top, 'r-', lw=4) plt.plot(base, 'r-', lw=4) plt.colorbar() plt.show() w, top, base, ref = bg.models.wedge(depth=(100, 600, 100), width=(200, 1600, 200), strat=(0, (1, 2, 1, 2, 1), 3), mode='linear' ) plt.imshow(w, interpolation='none') plt.axvline(ref, color='k', ls='--') plt.plot(top, 'r-', lw=4) plt.plot(base, 'r-', lw=4) plt.show() w, top, base, ref = bg.models.wedge(depth=(10., 80, 10), width=(10, 80, 10), strat=(0, (1, 2, 2, 1, 2, 1, 0, 1, 1,), 3), # Floats in the wedge thickness=(1, 1), mode='linear', ) plt.imshow(w, interpolation='none') plt.axvline(ref, color='k', ls='--') plt.plot(top, 'r-', lw=4) plt.plot(base, 'r-', lw=4) plt.show() w, top, base, ref = bg.models.wedge(depth=(10., 80, 10), width=(10, 80, 10), strat=(1.48, (2.10, 2.25, 2.35), 2.40), # Floats in the wedge. thickness=(1, 0.5), mode='linear', ) plt.imshow(w, interpolation='none') plt.axvline(ref, color='k', ls='--') plt.plot(top, 'r-', lw=4) plt.plot(base, 'r-', lw=4) cb = plt.colorbar() cb.ax.invert_yaxis() plt.show() confs = ['both', 'top', 'bottom'] fig, axs = plt.subplots(ncols=len(confs), figsize=(12, 4)) for ax, conf in zip(axs, confs): w, top, base, ref = bg.models.wedge(strat=((0, 1, 0), (2, 3, 2, 3, 2), (4, 5, 4)), conformance=conf) ax.imshow(w, interpolation='none') ax.axvline(ref, color='k', ls='--') ax.plot(top, 'r-', lw=4) ax.plot(base, 'r-', lw=4) ax.set_title(f"{conf} conformant") plt.show() modes = ['linear', 'root', 'power', 'sigmoid'] fig, axs = plt.subplots(ncols=len(modes), figsize=(15, 5)) for ax, mode in zip(axs, modes): w, top, base, ref = bg.models.wedge(mode=mode) ax.imshow(w, interpolation='none') ax.axvline(ref, color='k', ls='--') ax.plot(top, 'r-', lw=4) ax.plot(base, 'r-', lw=4) ax.set_title(mode) plt.show() def wavy(start, stop, num): Custom wedge shape. x = np.linspace(0, 10*np.pi, num) y = np.sin(x) + x # Normalize to 0-1. y_ = (y - np.min(y)) / (np.max(y)-np.min(y)) # Scale to required output. return min(start, stop) + abs(stop-start) * y_ # The wedge function will pass 'left' and 'right' thicknesses. # You only need to worry about the case where left < right. left, right = 1, 2 y = wavy(left, right, 100) plt.plot(y) plt.ylim(right, 0) plt.show() w, top, base, ref = bg.models.wedge(mode=wavy, thickness=(1, 0)) plt.imshow(w, interpolation='none') plt.axvline(ref, color='k', ls='--') plt.plot(top, 'r-', lw=4) plt.plot(base, 'r-', lw=4) plt.show() w, top, base, ref = bg.models.wedge(strat=(0, (1, 2, 1, 1, 2, 1), 3), # Binary wedge. breadth=100) w.shape, top.shape, base.shape, ref slices = [0, 50, 99] fig, axs = plt.subplots(ncols=len(slices), figsize=(16, 4)) for ax, slic in zip(axs, slices): ax.imshow(w[..., slic], interpolation='none') ax.plot(top[:, slic], 'r-', lw=4) ax.plot(base[:, slic], 'r-', lw=4) ax.set_title(f"Wedge slice: {slic}") plt.show() slices = [30, 50, 90] fig, axs = plt.subplots(ncols=len(slices), figsize=(16, 4)) for ax, slic in zip(axs, slices): ax.imshow(w[:, slic], interpolation='none') ax.plot(top[slic], 'r-', lw=4) ax.plot(base[slic], 'r-', lw=4) ax.set_title(f"Net:gross slice: {slic}") plt.show() vps = np.array([2320, 2350, 2350, 2370]) rhos = np.array([2650, 2600, 2620, 2610]) vp = vps[w] rho = rhos[w] rc = bg.reflection.acoustic_reflectivity(vp, rho) plt.imshow(rc[:, :, 50]) ricker, t = bg.filters.ricker(duration=0.064, dt=0.001, f=40) syn = bg.filters.convolve(rc, ricker, axis=0) # Time is on the first axis. syn.shape plt.imshow(syn[:, :, 50]) ma = np.percentile(syn, 99.9) vols, cmaps = [w, syn], ['viridis', 'gray'] fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(14, 8)) for row, vol, cm in zip(axs, vols, cmaps): row[0].imshow(vol[:, :, 24], aspect='auto', interpolation='none', cmap=cm, vmin=-ma if vol is syn else None, vmax=ma if vol is syn else None) row[0].axhline(40, c='w', lw=0.67) row[0].axvline(50, c='w', lw=0.67) row[0].set_title(f"Wedge axis") row[1].imshow(vol[:, 50, :], aspect='auto', interpolation='none', cmap=cm, vmin=-ma if vol is syn else None, vmax=ma if vol is syn else None) row[1].axhline(40, c='w', lw=0.67) row[1].axvline(24, c='w', lw=0.67) row[1].set_title(f"Net:gross axis") row[2].imshow(vol[40, :, :], aspect='auto', interpolation='none', cmap=cm, vmin=0 if vol is w else -ma, vmax=ma if vol is syn else None) row[2].axhline(50, c='w', lw=0.67) row[2].axvline(24, c='w', lw=0.67) row[2].set_title(f"Timeslice axis") plt.show() log_data = np.loadtxt('../data/P-129.csv', delimiter=',', skiprows=1) depths, dt, rhob = log_data[:, 0], log_data[:, 2], log_data[:, 4] impedance = (1e6 / dt) * rhob datum, top, base, floor = 500, 701, 805, 1005 log_upper = impedance[(depths >= datum) & (depths < top)] log_wedge = impedance[(depths >= top) & (depths < base)] log_lower = impedance[(depths >= base) & (depths < floor)] upper_depths = depths[(depths >= datum) & (depths < top)] wedge_depths = depths[(depths >= top) & (depths < base)] lower_depths = depths[(depths >= base) & (depths < floor)] plt.figure(figsize=(2, 8)) plt.plot(log_upper, upper_depths, lw=2) plt.plot(log_wedge, wedge_depths, lw=1) plt.plot(log_lower, lower_depths, lw=1) plt.ylim(floor, datum) w, top, base, ref = bg.models.wedge(depth=(400, 208, 400), width=(20, 260, 20), strat=(log_upper, log_wedge, log_lower), mode='sigmoid', conformance='bottom', thickness=(0, 2) ) log = w[:, ref] # Make a scaled version of the log for the section plot. log_ = (log - np.mean(log)) / np.std(log) depth = np.arange(len(log)) sf = 2.5 log_bias = np.ptp(log_) fig, axs = plt.subplots(figsize=(16, 8), ncols=2, gridspec_kw={'width_ratios': (1, 5)}) axs[0].plot(log, depth) axs[0].set_ylim(depth[-1], depth[0]) axs[0].set_title('Impedance') im=axs[1].imshow(w, aspect='auto', cmap='viridis') axs[1].plot(top, 'r-', lw=4) axs[1].plot(base, 'r-', lw=4) axs[1].fill_betweenx(depth, ref + log_bias + (sf*log_), ref, color='k', alpha=0.3) # axs[1].plot(ref + log_bias + (sf*log), depth, c='k', lw=1) axs[1].axvline(ref, color='k', ls='--', lw=1) axs[1].set_title('Well A') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <font size="1.5em">More information about the watermark magic command extension.</font> Step 1 Step2: <a name="sample_data"></a> Step3: $\pmb X = \begin{bmatrix} x_{1_{\text{sepal length}}} & x_{1_{\text{sepal width}}} & x_{1_{\text{petal length}}} & x_{1_{\text{petal width}}}\ Step4: $\pmb y = \begin{bmatrix}{\text{setosa}}\ Step5: From just looking at these simple graphical representations of the features, we can already tell that the petal lengths and widths are likely better suited as potential features two separate between the three flower classes. In practice, instead of reducing the dimensionality via a projection (here Step6: <a name="sample_data"></a> Step7: <a name="sample_data"></a> Step 2 Step8: <br> Step9: <br> Step 3 Step10: <br> Step11: <br> Step 4 Step12: <br> Step13: <br> Step14: <br> Step 5 Step15: The scatter plot above represents our new feature subspace that we constructed via LDA. We can see that the first linear discriminant "LD1" separates the classes quite nicely. However, the second discriminant, "LD2", does not add much valuable information, which we've already concluded when we looked at the ranked eigenvalues is step 4. Step16: <br>
<ASSISTANT_TASK:> Python Code: %load_ext watermark %watermark -v -d -u -p pandas,scikit-learn,numpy,matplotlib feature_dict = {i:label for i,label in zip( range(4), ('sepal length in cm', 'sepal width in cm', 'petal length in cm', 'petal width in cm', ))} import pandas as pd df = pd.io.parsers.read_csv( filepath_or_buffer='https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None, sep=',', ) df.columns = [l for i,l in sorted(feature_dict.items())] + ['class label'] df.dropna(how="all", inplace=True) # to drop the empty line at file-end df.tail() from sklearn.preprocessing import LabelEncoder X = df[[0,1,2,3]].values y = df['class label'].values enc = LabelEncoder() label_encoder = enc.fit(y) y = label_encoder.transform(y) + 1 label_dict = {1: 'Setosa', 2: 'Versicolor', 3:'Virginica'} %matplotlib inline from matplotlib import pyplot as plt import numpy as np import math fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12,6)) for ax,cnt in zip(axes.ravel(), range(4)): # set bin sizes min_b = math.floor(np.min(X[:,cnt])) max_b = math.ceil(np.max(X[:,cnt])) bins = np.linspace(min_b, max_b, 25) # plottling the histograms for lab,col in zip(range(1,4), ('blue', 'red', 'green')): ax.hist(X[y==lab, cnt], color=col, label='class %s' %label_dict[lab], bins=bins, alpha=0.5,) ylims = ax.get_ylim() # plot annotation leg = ax.legend(loc='upper right', fancybox=True, fontsize=8) leg.get_frame().set_alpha(0.5) ax.set_ylim([0, max(ylims)+2]) ax.set_xlabel(feature_dict[cnt]) ax.set_title('Iris histogram #%s' %str(cnt+1)) # hide axis ticks ax.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on") # remove axis spines ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) axes[0][0].set_ylabel('count') axes[1][0].set_ylabel('count') fig.tight_layout() plt.show() from sklearn import preprocessing preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=False) print() np.set_printoptions(precision=4) mean_vectors = [] for cl in range(1,4): mean_vectors.append(np.mean(X[y==cl], axis=0)) print('Mean Vector class %s: %s\n' %(cl, mean_vectors[cl-1])) S_W = np.zeros((4,4)) for cl,mv in zip(range(1,4), mean_vectors): class_sc_mat = np.zeros((4,4)) # scatter matrix for every class for row in X[y == cl]: row, mv = row.reshape(4,1), mv.reshape(4,1) # make column vectors class_sc_mat += (row-mv).dot((row-mv).T) S_W += class_sc_mat # sum class scatter matrices print('within-class Scatter Matrix:\n', S_W) overall_mean = np.mean(X, axis=0) S_B = np.zeros((4,4)) for i,mean_vec in enumerate(mean_vectors): n = X[y==i+1,:].shape[0] mean_vec = mean_vec.reshape(4,1) # make column vector overall_mean = overall_mean.reshape(4,1) # make column vector S_B += n * (mean_vec - overall_mean).dot((mean_vec - overall_mean).T) print('between-class Scatter Matrix:\n', S_B) eig_vals, eig_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) for i in range(len(eig_vals)): eigvec_sc = eig_vecs[:,i].reshape(4,1) print('\nEigenvector {}: \n{}'.format(i+1, eigvec_sc.real)) print('Eigenvalue {:}: {:.2e}'.format(i+1, eig_vals[i].real)) for i in range(len(eig_vals)): eigv = eig_vecs[:,i].reshape(4,1) np.testing.assert_array_almost_equal(np.linalg.inv(S_W).dot(S_B).dot(eigv), eig_vals[i] * eigv, decimal=6, err_msg='', verbose=True) print('ok') # Make a list of (eigenvalue, eigenvector) tuples eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eig_pairs = sorted(eig_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for i in eig_pairs: print(i[0]) print('Variance explained:\n') eigv_sum = sum(eig_vals) for i,j in enumerate(eig_pairs): print('eigenvalue {0:}: {1:.2%}'.format(i+1, (j[0]/eigv_sum).real)) W = np.hstack((eig_pairs[0][1].reshape(4,1), eig_pairs[1][1].reshape(4,1))) print('Matrix W:\n', W.real) X_lda = X.dot(W) assert X_lda.shape == (150,2), "The matrix is not 2x150 dimensional." from matplotlib import pyplot as plt def plot_step_lda(): ax = plt.subplot(111) for label,marker,color in zip( range(1,4),('^', 's', 'o'),('blue', 'red', 'green')): plt.scatter(x=X_lda[:,0].real[y == label], y=X_lda[:,1].real[y == label], marker=marker, color=color, alpha=0.5, label=label_dict[label] ) plt.xlabel('LD1') plt.ylabel('LD2') leg = plt.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.5) plt.title('LDA: Iris projection onto the first 2 linear discriminants') # hide axis ticks plt.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on") # remove axis spines ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) plt.grid() plt.tight_layout plt.show() plot_step_lda() from sklearn.decomposition import PCA as sklearnPCA sklearn_pca = sklearnPCA(n_components=2) X_pca = sklearn_pca.fit_transform(X) def plot_pca(): ax = plt.subplot(111) for label,marker,color in zip( range(1,4),('^', 's', 'o'),('blue', 'red', 'green')): plt.scatter(x=X_pca[:,0][y == label], y=X_pca[:,1][y == label], marker=marker, color=color, alpha=0.5, label=label_dict[label] ) plt.xlabel('PC1') plt.ylabel('PC2') leg = plt.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.5) plt.title('PCA: Iris projection onto the first 2 principal components') # hide axis ticks plt.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on") # remove axis spines ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) plt.tight_layout plt.grid() plt.show() plot_pca() plot_step_lda() from sklearn.lda import LDA # LDA sklearn_lda = LDA(n_components=2) X_lda_sklearn = sklearn_lda.fit_transform(X, y) def plot_scikit_lda(X, title, mirror=1): ax = plt.subplot(111) for label,marker,color in zip( range(1,4),('^', 's', 'o'),('blue', 'red', 'green')): plt.scatter(x=X[:,0][y == label]*mirror, y=X[:,1][y == label], marker=marker, color=color, alpha=0.5, label=label_dict[label] ) plt.xlabel('LD1') plt.ylabel('LD2') leg = plt.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.5) plt.title(title) # hide axis ticks plt.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on") # remove axis spines ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) plt.grid() plt.tight_layout plt.show() plot_step_lda() plot_scikit_lda(X_lda_sklearn, title='Default LDA via scikit-learn', mirror=(-1)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Conduction Step2: These values can be used to calculate $\dot{Q}$ the rate of heat transfer. This can be related to a more physically relevant value, $\dot{q}$, the heat flux. Where, Step3: The temperature in the intermediary steps can be found using the fact that $\dot{Q}$ is constant throughout the slab.
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt # Temperatures at stations T1 = 150 T4 = 10 # celcius # define values for thermal conductivity k = [0.07, 0.7, 0.07] # Length of layers L = [0.03, 0.1, 0.03] AR = [] # initialize empty array for i in range(0,len(k)): AR.append(L[i]/k[i]) print(AR, "m^2 K/W") q = float(T1 - T4)/np.sum(AR) print('q = ', q, 'W/m^2') # W/m^2 T2 = -q*AR[0] + T1 T3 = q*AR[2] + T4 T = [T1, T2, T3, T4] # vectorize temps x = [0, L[0], L[0]+L[1], L[0]+L[1]+L[2]] # Plot Temperature distribution plt.title('Temperature Distribution Across Brick Wall') plt.xlabel('X-location') plt.ylabel('Temperature (C)') plt.grid() plt.plot(x,T) plt.show() # Print Temperatures print('T1 = ', T1, 'C') print('T2 = ', T2, 'C') print('T3 = ', T3, 'C') print('T4 = ', T4, 'C') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Parsing the molecular formula is not a trivial task that we will do later. We start by assuming that the formula has been parsed. Step2: From that, calculate the total weight Step3: Now imagine we also accept formulas in an extended way, for example ethanol as $\mathrm{CH_3CH_2OH}$. In that case it makes sense that our parsing procedure returns a list of tuples such as Step4: From that, we could also create a dictionary such as the previous one, but we can also calculate the weight directly Step5: Parsing
<ASSISTANT_TASK:> Python Code: weightDict = { 'C':12, 'H':1, 'O':16, 'Cl':35 #add more if needed. } ethanol = {'C':2, 'H':6, 'O':1} water = {'H':2, 'O':1} HCl = {'H':1, 'Cl':1} #Finish... ethanol2 = [('C',1), ('H',3), ('C',1), ('H',2), ('O',1), ('H',1)] acetic2 = [('C',1), ('H',3), ('C',1), ('O',1), ('O',1), ('H',1)] #Finish #Try to do it molecule = input("Write a molecule: ") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Top used domains in Wikidata. Step2: Top used domains in Wikipedia. Step3: Matching domains across both Wikipedia and Wikidata. Step4: Scatter Plot of Top-Level Domains Step5: Check the type distribution across Wikidata, items in our dataset and items with matching domains. Step6: Single web page matches between Wikidata items and corresponding Wikipedia articles, by Wikipedia language version. Step7: Domain matches between Wikidata items and corresponding Wikipedia articles, by Wikipedia language version.
<ASSISTANT_TASK:> Python Code: totalDomainsOccurrences = 0 for num in domains[1]: totalDomainsOccurrences += num length = 10 width = 0.8 fig = plt.figure() plt.barh(range(length), np.asarray(domains[1][0:length] * 100 / totalDomainsOccurrences), width, align='center', color='b') plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of Matches') plt.ylim(-width) plt.yticks(range(length), domains[0][0:length]) plt.tight_layout() plt.savefig("./Figures/TopDomains.pdf", format="pdf") plt.show() # plotly_fig = tls.mpl_to_plotly( fig ) # print(plotly_fig) # plot_url = py.plot_mpl(plotly_fig, filename='mpl-axes-labels') # plot_url = py.plot_mpl(plotly_fig, filename='mpl-annotation-with-custom-font-size') totalDataOccurrences = 0 for num in dataDomains['refHost']: totalDataOccurrences += num length = 10 width = 0.8 ax = plt.barh(range(length), np.asarray(dataDomains['refHost'][0:length] * 100 / totalDataOccurrences), width, align='center', color='#b60628', edgecolor='white', hatch="//") plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of References') plt.ylim(-width) plt.yticks(range(length), dataDomains['index'][0:length]) plt.tight_layout() plt.savefig("./Figures/TopDomainsData.pdf", format="pdf") plt.show() totalPediaOccurrences = 0 for num in pediaDomains['refHost']: totalPediaOccurrences += num length = 10 width = 0.8 ax = plt.barh(np.arange(length), np.asarray(pediaDomains['refHost'][0:length] * 100 / totalPediaOccurrences), width, align='center', color='#06b694', edgecolor='white', hatch='x') plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of Citations') plt.ylim(-width) plt.yticks(np.arange(length), pediaDomains['index'][0:length]) plt.tight_layout() plt.savefig("./Figures/TopDomainsPedia.pdf", format="pdf") plt.show() totalPediaOccurrences = 0 for num in topPediaDomains['citeTld']: totalPediaOccurrences += num length = 10 width = 0.8 ax = plt.barh(range(length), np.asarray(topPediaDomains['citeTld'][0:length] * 100 / totalPediaOccurrences), width, align='center', color='#06b694') plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of Matches') plt.ylim(-width) plt.yticks(range(length), topPediaDomains['index'][0:length]) plt.tight_layout() plt.savefig("./Figures/TopLevelDomainsPedia.pdf", format="pdf") plt.show() totalDataOccurrences = 0 for num in topDataDomains['refTld']: totalDataOccurrences += num length = 10 width = 0.8 ax1 = plt.barh(range(length), np.asarray(topDataDomains['refTld'][0:length] * 100 / totalDataOccurrences), width, align='center', color='#b60628') plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of Matches') plt.ylim(-width) plt.yticks(np.arange(length), topDataDomains['index'][0:length]) plt.tight_layout() plt.savefig("./Figures/TopLevelDomainsData.pdf", format="pdf") plt.show() tempPediaDomains = np.zeros(length) for i in range(0, len(topDataDomains['index'][0:length])): for j in range(0, len(topPediaDomains['citeTld'])): if topDataDomains['index'][i] == topPediaDomains['index'][j]: tempPediaDomains[i] = topPediaDomains['citeTld'][j] length = 10 width = 0.4 ax1 = plt.barh(np.arange(length), np.asarray(topDataDomains['refTld'][0:length] * 100 / totalDataOccurrences), width, label = 'Wikidata', color='#b60628') ax2 = plt.barh(np.arange(length) + width, tempPediaDomains * 100 / totalPediaOccurrences, width, label = 'Wikipedia', color='#06b694') plt.legend() plt.grid(which='both') plt.ylim(-width) plt.yticks(np.arange(length) + width, topDataDomains['index'][0:length]) plt.tight_layout() plt.savefig("./Figures/TopLevelDomainsComparison.pdf", format="pdf") plt.show() # plt.plot(topLevelDomainsScatter['citeTld_pc'], topLevelDomainsScatter['refTld_pc'], "o") # plt.plot(np.log(topLevelDomainsScatter['citeTld']), np.log(topLevelDomainsScatter['refTld']), "o") plt.plot(topLevelDomainsScatter['citeTld'], topLevelDomainsScatter['refTld'], "o", color='b') ## Find the selected n-max points; the ones that are close to the far upper-right corner in the logarithmic scale. selected = topLevelDomainsScatter.sort_values('refTld', ascending=False) n = 10 for index in selected[:n].index: # plt.text(selected['citeTld'][index], selected['refTld'][index], selected['index'][index]) # We put this IF here in order to avoid clutter with overlapping labels in the graph. if selected['index'][index] in ['gov', 'pl']: adjust_x = 0.5 * (10 ** np.log10(selected['citeTld'][index])) adjust_y = 0.1 * (10 ** np.log10(selected['refTld'][index])) plt.annotate(selected['index'][index], (selected['citeTld'][index] - adjust_x, selected['refTld'][index] + adjust_y)) print('Hi') else: adjust_x = 0.1 * (10 ** np.log10(selected['citeTld'][index])) adjust_y = 0.1 * (10 ** np.log10(selected['refTld'][index])) plt.annotate(selected['index'][index], (selected['citeTld'][index] + adjust_x, selected['refTld'][index] + adjust_y)) plt.grid(which='both', linewidth=0.2) plt.xscale('log') plt.yscale('log') plt.xlabel('Wikipedia Citations') plt.ylabel('Wikidata References') plt.savefig("./Figures/ScatterPlot.pdf", format="pdf") plt.show() dataTypes = pandas.read_csv('./Data/item_type_all_wd.csv') domainTypes = pandas.read_csv('./Data/item_types_matchdom.csv') itemTypes = pandas.read_csv('./Data/item_types.csv') dataTypes.sort_values(by='shareType', ascending=False, inplace=True) dataTypes.reset_index(drop=True, inplace=True) tempDomainTypes = np.zeros(len(dataTypes)) tempItemTypes = np.zeros(len(dataTypes)) for i in range(0, len(dataTypes)): for j in range(0, len(domainTypes)): if dataTypes['type'][i] == domainTypes['type'][j]: tempDomainTypes[i] = domainTypes['shareType'][j] for j in range(0, len(itemTypes)): if dataTypes['type'][i] == itemTypes['type'][j]: tempItemTypes[i] = itemTypes['shareType'][j] width = 0.28 plt.figure(figsize=(10, 6)) ax1 = plt.barh(np.arange(0, len(dataTypes) - 1) - width, np.asarray(dataTypes['shareType'][1:len(dataTypes)]), width, label = 'Wikidata', color='k', edgecolor='white', hatch='//') ax3 = plt.barh(np.arange(0, len(dataTypes) - 1), tempItemTypes[1:len(dataTypes)], width, label = 'Items In our Dataset', color='#06b694', edgecolor='white', hatch='|') ax3 = plt.barh(np.arange(0, len(dataTypes) - 1) + width, tempDomainTypes[1:len(dataTypes)], width, label = 'Items with Matching Domains', color='r', edgecolor='white', hatch='x') plt.legend() plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of Matches') plt.ylim(-2 * width) plt.yticks(np.arange(0, len(dataTypes)) + 0.45 * width, dataTypes['type'][1:len(dataTypes)]) plt.tight_layout() plt.savefig("./Figures/MatchedTypes.pdf", format="pdf") plt.show() referencesLanguagesSingle = pandas.read_csv('./Data/matching_refs_unique_lang_single_ref_count.csv', header=None) referencesLanguages = pandas.read_csv('./Data/matching_refs_unique_lang_count.csv', header=None) referencesLanguagesSingle.sort_values(by=1, ascending=False, inplace=True) referencesLanguagesSingle.reset_index(drop=True, inplace=True) totalReferencesSingleOccurrences = 0 for num in referencesLanguagesSingle[1]: totalReferencesSingleOccurrences += num totalReferencesOccurrences = 0 for num in referencesLanguages[1]: totalReferencesOccurrences += num length = 10 tempReferencesLanguages = np.zeros(length) for i in range(0, len(referencesLanguagesSingle[1][0:length])): for j in range(0, len(referencesLanguages[1])): if referencesLanguages[0][j] == referencesLanguagesSingle[0][i]: tempReferencesLanguages[i] = referencesLanguages[1][j] width = 0.4 ax1 = plt.barh(np.arange(length), np.asarray(referencesLanguagesSingle[1][0:length] * 100 / totalReferencesSingleOccurrences), width, label = 'Total Page Matches', color='#b60628', edgecolor='white', hatch='//') ax2 = plt.barh(np.arange(length) + width, tempReferencesLanguages * 100 / totalReferencesOccurrences, width, label = 'Unique Page Matches', color='#06b694', edgecolor='white', hatch='x') plt.legend() plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of Matches') plt.ylim(-width) plt.yticks(np.arange(length) + width, referencesLanguagesSingle[0][0:length]) plt.tight_layout() plt.savefig("./Figures/ReferencesLanguages.pdf", format="pdf") plt.show() domainsLanguagesSingle = pandas.read_csv('./Data/matching_domain_lang_single_ref_count.csv', header=None) domainsLanguages = pandas.read_csv('./Data/matching_domain_unique_lang_count.csv', header=None) domainsLanguagesSingle.sort_values(by=1, ascending=False, inplace=True) domainsLanguagesSingle.reset_index(drop=True, inplace=True) totalDomainsSingleOccurrences = 0 for num in domainsLanguagesSingle[1]: totalDomainsSingleOccurrences += num totalDomainsOccurrences = 0 for num in domainsLanguages[1]: totalDomainsOccurrences += num length = 10 tempDomainsLanguages = np.zeros(length) for i in range(0, len(domainsLanguagesSingle[1][0:length])): for j in range(0, len(domainsLanguages[1])): if domainsLanguages[0][j] == domainsLanguagesSingle[0][i]: tempDomainsLanguages[i] = domainsLanguages[1][j] width = 0.4 ax1 = plt.barh(np.arange(length), np.asarray(domainsLanguagesSingle[1][0:length] * 100 / totalDomainsSingleOccurrences), width, label = 'Total Domain Matches', color='#b60628', edgecolor='white', hatch='//') ax2 = plt.barh(np.arange(length) + width, tempDomainsLanguages * 100 / totalDomainsOccurrences, width, label = 'Unique Domain Matches', color='#06b694', edgecolor='white', hatch='x') plt.legend() plt.grid(which='both') plt.xlabel(r'$\%$ on the Total Number of Matches') plt.ylim(-width) plt.yticks(np.arange(length) + width, domainsLanguagesSingle[0][0:length]) plt.tight_layout() plt.savefig("./Figures/DomainsLanguages.pdf", format="pdf") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fetch the dataset Step2: The following code is heavily based on the code provided by the competition's organizers. Step3: Dump arrays
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import os import pathlib curr_dir = pathlib.Path("./") rsfmri_basedir = str((curr_dir / "raw_data/autism/").resolve()) def parse_dataset(): _target_column_name = 'asd' _prediction_label_names = [0, 1] subject_id = pd.read_csv(os.path.join(rsfmri_basedir, 'data', 'train.csv'), header=None) # read the list of the subjects df_participants = pd.read_csv(os.path.join(rsfmri_basedir, 'data', 'participants.csv'), index_col=0) df_participants.columns = ['participants_' + col for col in df_participants.columns] # load the structural and functional MRI data df_anatomy = pd.read_csv(os.path.join(rsfmri_basedir, 'data', 'anatomy.csv'), index_col=0) df_anatomy.columns = ['anatomy_' + col for col in df_anatomy.columns] df_fmri = pd.read_csv(os.path.join(rsfmri_basedir, 'data', 'fmri_filename.csv'), index_col=0) df_fmri.columns = ['fmri_' + col for col in df_fmri.columns] # load the QC for structural and functional MRI data df_anatomy_qc = pd.read_csv(os.path.join(rsfmri_basedir, 'data', 'anatomy_qc.csv'), index_col=0) df_fmri_qc = pd.read_csv(os.path.join(rsfmri_basedir, 'data', 'fmri_qc.csv'), index_col=0) # rename the columns for the QC to have distinct names df_anatomy_qc = df_anatomy_qc.rename(columns={"select": "anatomy_select"}) df_fmri_qc = df_fmri_qc.rename(columns={"select": "fmri_select"}) X = pd.concat([df_participants, df_anatomy, df_anatomy_qc, df_fmri, df_fmri_qc], axis=1) X = X.loc[subject_id[0]] y = X['participants_asd'] y.columns = [_target_column_name] X = X.drop('participants_asd', axis=1) return X, y.values data, labels = parse_dataset() fmri_data = data[[col for col in data.columns if col.startswith('fmri')]] fmri_msdl_filenames = fmri_data['fmri_msdl'] fmri = np.array([pd.read_csv(rsfmri_basedir + "/" + subject_filename, header=None).values for subject_filename in fmri_msdl_filenames]) anatomy = data[[col for col in data.columns if col.startswith('anatomy')]] anatomy = anatomy.drop(columns='anatomy_select') np.save('data/fmri_autism_ts.npy', fmri) np.save('data/fmri_autism_anatomy.npy', anatomy) np.save('data/fmri_autism_labels.npy', labels) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 首先,我们观察一下几个比较重要的数值,初步得出一些结论,比如只有‘Age’这一列存在缺失值,整体的存活率只有0.383838。所以首先应该对年龄的缺失值进行填充。 Step2: 可以看出年龄这一列数据的总数正常了,为891,接下来可以进一步分析生存率了。 Step3: 根据以上不同舱位人数所占比例和关于生存率的直方图可以看出头等舱的生存率最高,经济舱的生存率最低。虽然头等舱的人数占总人数的比例很少,生存率却极高,三等舱的人数超过一半,而生存率确只有20%,间接的说明了一个现实问题:社会地位越高生存机率越高。或者说头等舱的安全措施很高 Step4: 我们可以清晰的看到虽然船上的男性人数显著多于女性人数,但是女性的存活率高达74%,而男性的存活率只有19%。这说明在逃生的时候会有男性保护女性的情况。一般是女先男后。 Step5: 可见0~10岁的儿童成活率是最高的,也说明了在家长陪同下的婴幼儿受到了很好的保护,超过60岁的老年人成活率非常低,由此我们可以推测老年人可能会因为年迈行动不便而导致在灾难中无法及时脱身。在10~60各个年龄阶段的生存率几本相等。
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import pylab as pl %matplotlib inline filename = './titanic-data.csv' titanic_df = pd.read_csv(filename) titanic_df.describe() titanic_df = titanic_df.fillna(method='pad')#用前一个数值填充 titanic_df.describe() sort_pclass = titanic_df.groupby('Pclass').count()['PassengerId'] print sort_pclass titanic_df.groupby('Pclass')['PassengerId'].count().plot(kind = 'pie',autopct = '%.0f%%') plt.title('Pclass VS Count') plt.show() Pclass_survived = titanic_df.groupby('Pclass').mean()['Survived'] print Pclass_survived.plot.bar() sort_sex = titanic_df.groupby('Sex').count()['PassengerId'] print sort_sex Sex_survived = titanic_df.groupby('Sex').mean()['Survived'] print Sex_survived print Sex_survived.plot.bar() titanic_df['Age_bins'] = pd.cut(titanic_df['Age'],range(0,80,10)) Age_survived = titanic_df.groupby('Age_bins').mean()['Survived'] Sort_survived = titanic_df.groupby('Age_bins').count()['Survived'] print Age_survived print Sort_survived Age_survived.plot(kind='bar', stacked=True) sort_SibSp = titanic_df.groupby('SibSp').count()['PassengerId'] print sort_SibSp titanic_df.groupby('SibSp')['PassengerId'].count().plot(kind = 'pie',autopct = '%.0f%%') plt.title('SibSp VS Count') plt.show() SibSp_survived = titanic_df.groupby('SibSp').mean()['Survived'] print SibSp_survived SibSp_survived.plot.bar() sort_Parch = titanic_df.groupby('Parch').count()['PassengerId'] print sort_Parch titanic_df.groupby('Parch')['PassengerId'].count().plot(kind = 'pie',autopct = '%.0f%%') plt.title('Parch VS Count') plt.show() Parch_survived = titanic_df.groupby('Parch').mean()['Survived'] print Parch_survived Parch_survived.plot.bar() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If the above cell ran without error, we're ready to go! Step2: Download public 1000 Genomes data Step3: Importing data from VCF Step4: Next we read the written file, assigning the variable mt (for matrix table). Step5: Getting to know our data Step6: Alternatively Step7: Here is how to peek at the first few sample IDs Step8: To look at the first few genotype calls, we can use entries along with select and take. The take method collects the first n rows into a list. Alternatively, we can use the show method, which prints the first n rows to the console in a table format. Step9: Adding column fields Step10: A good way to peek at the structure of a Table is to look at its schema. Step11: To peek at the first few values, use the show method Step12: Now we'll use this table to add sample annotations to our dataset, storing the annotations in column fields in our MatrixTable. First, we'll print the existing column schema Step13: We use the annotate_cols method to join the table with the MatrixTable containing our dataset. Step14: Query functions and the Hail Expression Language Step15: stats is an aggregation function that produces some useful statistics about numeric collections. We can use this to see the distribution of the CaffeineConsumption phenotype. Step16: However, these metrics aren't perfectly representative of the samples in our dataset. Here's why Step17: Since there are fewer samples in our dataset than in the full thousand genomes cohort, we need to look at annotations on the dataset. We can use aggregate_cols to get the metrics for only the samples in our dataset. Step18: The functionality demonstrated in the last few cells isn't anything especially new Step19: We can list the counts in descending order using Python's Counter class. Step20: It's nice to see that we can actually uncover something biological from this small dataset Step21: Quality Control Step22: Plotting the QC metrics is a good place to start. Step23: Often, these metrics are correlated. Step24: Removing outliers from the dataset will generally improve association results. We can make arbitrary cutoffs and use them to filter Step25: Next is genotype QC. It's a good idea to filter out genotypes where the reads aren't where they should be Step26: Variant QC is a bit more of the same Step27: These statistics actually look pretty good Step28: These filters removed about 15% of sites (we started with a bit over 10,000). This is NOT representative of most sequencing datasets! We have already downsampled the full thousand genomes dataset to include more common variants than we'd expect by chance. Step29: Looking at the bottom of the above printout, you can see the linear regression adds new row fields for the beta, standard error, t-statistic, and p-value. Step30: This doesn't look like much of a skyline. Let's check whether our GWAS was well controlled using a Q-Q (quantile-quantile) plot. Step31: Confounded! Step32: Now that we've got principal components per sample, we may as well plot them! Human history exerts a strong effect in genetic datasets. Even with a 50MB sequencing dataset, we can recover the major human populations. Step33: Now we can rerun our linear regression, controlling for sample sex and the first few principal components. We'll do this with input variable the number of alternate alleles as before, and again with input variable the genotype dosage derived from the PL field. Step34: We'll first make a Q-Q plot to assess inflation... Step35: That's more like it! This shape is indicative of a well-controlled (but not especially well-powered) study. And now for the Manhattan plot Step36: We have found a caffeine consumption locus! Now simply apply Hail's Nature paper function to publish the result. Step37: What if we want to group by minor allele frequency bin and hair color, and calculate the mean GQ? Step38: We've shown that it's easy to aggregate by a couple of arbitrary statistics. This specific examples may not provide especially useful pieces of information, but this same pattern can be used to detect effects of rare variation
<ASSISTANT_TASK:> Python Code: import hail as hl hl.init() from hail.plot import show from pprint import pprint hl.plot.output_notebook() hl.utils.get_1kg('data/') hl.import_vcf('data/1kg.vcf.bgz').write('data/1kg.mt', overwrite=True) mt = hl.read_matrix_table('data/1kg.mt') mt.rows().select().show(5) mt.row_key.show(5) mt.s.show(5) mt.entry.take(5) table = (hl.import_table('data/1kg_annotations.txt', impute=True) .key_by('Sample')) table.describe() table.show(width=100) print(mt.col.dtype) mt = mt.annotate_cols(pheno = table[mt.s]) mt.col.describe() pprint(table.aggregate(hl.agg.counter(table.SuperPopulation))) pprint(table.aggregate(hl.agg.stats(table.CaffeineConsumption))) table.count() mt.count_cols() mt.aggregate_cols(hl.agg.counter(mt.pheno.SuperPopulation)) pprint(mt.aggregate_cols(hl.agg.stats(mt.pheno.CaffeineConsumption))) snp_counts = mt.aggregate_rows(hl.agg.counter(hl.Struct(ref=mt.alleles[0], alt=mt.alleles[1]))) pprint(snp_counts) from collections import Counter counts = Counter(snp_counts) counts.most_common() p = hl.plot.histogram(mt.DP, range=(0,30), bins=30, title='DP Histogram', legend='DP') show(p) mt.col.describe() mt = hl.sample_qc(mt) mt.col.describe() p = hl.plot.histogram(mt.sample_qc.call_rate, range=(.88,1), legend='Call Rate') show(p) p = hl.plot.histogram(mt.sample_qc.gq_stats.mean, range=(10,70), legend='Mean Sample GQ') show(p) p = hl.plot.scatter(mt.sample_qc.dp_stats.mean, mt.sample_qc.call_rate, xlabel='Mean DP', ylabel='Call Rate') show(p) mt = mt.filter_cols((mt.sample_qc.dp_stats.mean >= 4) & (mt.sample_qc.call_rate >= 0.97)) print('After filter, %d/284 samples remain.' % mt.count_cols()) ab = mt.AD[1] / hl.sum(mt.AD) filter_condition_ab = ((mt.GT.is_hom_ref() & (ab <= 0.1)) | (mt.GT.is_het() & (ab >= 0.25) & (ab <= 0.75)) | (mt.GT.is_hom_var() & (ab >= 0.9))) fraction_filtered = mt.aggregate_entries(hl.agg.fraction(~filter_condition_ab)) print(f'Filtering {fraction_filtered * 100:.2f}% entries out of downstream analysis.') mt = mt.filter_entries(filter_condition_ab) mt = hl.variant_qc(mt) mt.row.describe() mt = mt.filter_rows(mt.variant_qc.AF[1] > 0.01) mt = mt.filter_rows(mt.variant_qc.p_value_hwe > 1e-6) print('Samples: %d Variants: %d' % (mt.count_cols(), mt.count_rows())) gwas = hl.linear_regression_rows(y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0]) gwas.row.describe() p = hl.plot.manhattan(gwas.p_value) show(p) p = hl.plot.qq(gwas.p_value) show(p) eigenvalues, pcs, _ = hl.hwe_normalized_pca(mt.GT) pprint(eigenvalues) pcs.show(5, width=100) mt = mt.annotate_cols(scores = pcs[mt.s].scores) p = hl.plot.scatter(mt.scores[0], mt.scores[1], label=mt.pheno.SuperPopulation, title='PCA', xlabel='PC1', ylabel='PC2') show(p) gwas = hl.linear_regression_rows( y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0, mt.pheno.isFemale, mt.scores[0], mt.scores[1], mt.scores[2]]) p = hl.plot.qq(gwas.p_value) show(p) p = hl.plot.manhattan(gwas.p_value) show(p) entries = mt.entries() results = (entries.group_by(pop = entries.pheno.SuperPopulation, chromosome = entries.locus.contig) .aggregate(n_het = hl.agg.count_where(entries.GT.is_het()))) results.show() entries = entries.annotate(maf_bin = hl.if_else(entries.info.AF[0]<0.01, "< 1%", hl.if_else(entries.info.AF[0]<0.05, "1%-5%", ">5%"))) results2 = (entries.group_by(af_bin = entries.maf_bin, purple_hair = entries.pheno.PurpleHair) .aggregate(mean_gq = hl.agg.stats(entries.GQ).mean, mean_dp = hl.agg.stats(entries.DP).mean)) results2.show() table = hl.import_table('data/1kg_annotations.txt', impute=True).key_by('Sample') mt = hl.read_matrix_table('data/1kg.mt') mt = mt.annotate_cols(pheno = table[mt.s]) mt = hl.sample_qc(mt) mt = mt.filter_cols((mt.sample_qc.dp_stats.mean >= 4) & (mt.sample_qc.call_rate >= 0.97)) ab = mt.AD[1] / hl.sum(mt.AD) filter_condition_ab = ((mt.GT.is_hom_ref() & (ab <= 0.1)) | (mt.GT.is_het() & (ab >= 0.25) & (ab <= 0.75)) | (mt.GT.is_hom_var() & (ab >= 0.9))) mt = mt.filter_entries(filter_condition_ab) mt = hl.variant_qc(mt) mt = mt.filter_rows(mt.variant_qc.AF[1] > 0.01) eigenvalues, pcs, _ = hl.hwe_normalized_pca(mt.GT) mt = mt.annotate_cols(scores = pcs[mt.s].scores) gwas = hl.linear_regression_rows( y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0, mt.pheno.isFemale, mt.scores[0], mt.scores[1], mt.scores[2]]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plot magnetometer data as an arrowmap along with the topoplot at the time Step2: Plot gradiometer data as an arrowmap along with the topoplot at the time Step3: Since Vectorview 102 system perform sparse spatial sampling of the magnetic
<ASSISTANT_TASK:> Python Code: # Authors: Sheraz Khan <sheraz@khansheraz.com> # # License: BSD (3-clause) import numpy as np import mne from mne.datasets import sample from mne.datasets.brainstorm import bst_raw from mne import read_evokeds from mne.viz import plot_arrowmap print(__doc__) path = sample.data_path() fname = path + '/MEG/sample/sample_audvis-ave.fif' # load evoked data condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0)) evoked_mag = evoked.copy().pick_types(meg='mag') evoked_grad = evoked.copy().pick_types(meg='grad') max_time_idx = np.abs(evoked_mag.data).mean(axis=0).argmax() plot_arrowmap(evoked_mag.data[:, max_time_idx], evoked_mag.info) # Since planar gradiometers takes gradients along latitude and longitude, # they need to be projected to the flatten manifold span by magnetometer # or radial gradiometers before taking the gradients in the 2D Cartesian # coordinate system for visualization on the 2D topoplot. You can use the # ``info_from`` and ``info_to`` parameters to interpolate from # gradiometer data to magnetometer data. plot_arrowmap(evoked_grad.data[:, max_time_idx], info_from=evoked_grad.info, info_to=evoked_mag.info) path = bst_raw.data_path() raw_fname = path + '/MEG/bst_raw/' \ 'subj001_somatosensory_20111109_01_AUX-f.ds' raw_ctf = mne.io.read_raw_ctf(raw_fname) raw_ctf_info = mne.pick_info( raw_ctf.info, mne.pick_types(raw_ctf.info, meg=True, ref_meg=False)) plot_arrowmap(evoked_grad.data[:, max_time_idx], info_from=evoked_grad.info, info_to=raw_ctf_info, scale=2e-10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Run solver Step2: Plot dipole activations Step3: Plot residual Step4: Generate stc from dipoles Step5: View in 2D and 3D ("glass" brain like 3D plot) Step6: Morph onto fsaverage brain and view
<ASSISTANT_TASK:> Python Code: # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de> # # License: BSD (3-clause) import numpy as np import mne from mne.datasets import sample from mne.inverse_sparse import mixed_norm, make_stc_from_dipoles from mne.minimum_norm import make_inverse_operator, apply_inverse from mne.viz import (plot_sparse_source_estimates, plot_dipole_locations, plot_dipole_amplitudes) print(__doc__) data_path = sample.data_path() fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' ave_fname = data_path + '/MEG/sample/sample_audvis-ave.fif' cov_fname = data_path + '/MEG/sample/sample_audvis-shrunk-cov.fif' subjects_dir = data_path + '/subjects' # Read noise covariance matrix cov = mne.read_cov(cov_fname) # Handling average file condition = 'Left Auditory' evoked = mne.read_evokeds(ave_fname, condition=condition, baseline=(None, 0)) evoked.crop(tmin=0, tmax=0.3) # Handling forward solution forward = mne.read_forward_solution(fwd_fname) alpha = 55 # regularization parameter between 0 and 100 (100 is high) loose, depth = 0.2, 0.9 # loose orientation & depth weighting n_mxne_iter = 10 # if > 1 use L0.5/L2 reweighted mixed norm solver # if n_mxne_iter > 1 dSPM weighting can be avoided. # Compute dSPM solution to be used as weights in MxNE inverse_operator = make_inverse_operator(evoked.info, forward, cov, depth=depth, fixed=True, use_cps=True) stc_dspm = apply_inverse(evoked, inverse_operator, lambda2=1. / 9., method='dSPM') # Compute (ir)MxNE inverse solution with dipole output dipoles, residual = mixed_norm( evoked, forward, cov, alpha, loose=loose, depth=depth, maxit=3000, tol=1e-4, active_set_size=10, debias=True, weights=stc_dspm, weights_min=8., n_mxne_iter=n_mxne_iter, return_residual=True, return_as_dipoles=True, verbose=True) t = 0.083 tidx = evoked.time_as_index(t) for di, dip in enumerate(dipoles, 1): print(f'Dipole #{di} GOF at {1000 * t:0.1f} ms: ' f'{float(dip.gof[tidx]):0.1f}%') plot_dipole_amplitudes(dipoles) # Plot dipole location of the strongest dipole with MRI slices idx = np.argmax([np.max(np.abs(dip.amplitude)) for dip in dipoles]) plot_dipole_locations(dipoles[idx], forward['mri_head_t'], 'sample', subjects_dir=subjects_dir, mode='orthoview', idx='amplitude') # Plot dipole locations of all dipoles with MRI slices for dip in dipoles: plot_dipole_locations(dip, forward['mri_head_t'], 'sample', subjects_dir=subjects_dir, mode='orthoview', idx='amplitude') ylim = dict(eeg=[-10, 10], grad=[-400, 400], mag=[-600, 600]) evoked.pick_types(meg=True, eeg=True, exclude='bads') evoked.plot(ylim=ylim, proj=True, time_unit='s') residual.pick_types(meg=True, eeg=True, exclude='bads') residual.plot(ylim=ylim, proj=True, time_unit='s') stc = make_stc_from_dipoles(dipoles, forward['src']) solver = "MxNE" if n_mxne_iter == 1 else "irMxNE" plot_sparse_source_estimates(forward['src'], stc, bgcolor=(1, 1, 1), fig_name="%s (cond %s)" % (solver, condition), opacity=0.1) morph = mne.compute_source_morph(stc, subject_from='sample', subject_to='fsaverage', spacing=None, sparse=True, subjects_dir=subjects_dir) stc_fsaverage = morph.apply(stc) src_fsaverage_fname = subjects_dir + '/fsaverage/bem/fsaverage-ico-5-src.fif' src_fsaverage = mne.read_source_spaces(src_fsaverage_fname) plot_sparse_source_estimates(src_fsaverage, stc_fsaverage, bgcolor=(1, 1, 1), fig_name="Morphed %s (cond %s)" % (solver, condition), opacity=0.1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Rather than using a template to build the network, it's fairly easy to define it by hand. The network looks something like the following Step2: Using the above network, train the model on only two of the classes (for clarity, I chose the two that are least separated, versicolor and virginica) Step3: The network is then ready for anomaly detection; this entails applying the entire dataset to the trained model, and plotting the results. The Log Likelihood will always give a negative value, the closer to 0, the more normal the applied data sample is.
<ASSISTANT_TASK:> Python Code: %matplotlib notebook import pandas as pd import sys sys.path.append("../../../bayespy") import bayespy from bayespy.network import Builder as builder import logging import os import matplotlib.pyplot as plt from IPython.display import display logger = logging.getLogger() logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.INFO) bayespy.jni.attach(logger) db_folder = bayespy.utils.get_path_to_parent_dir("") iris = pd.read_csv(os.path.join(db_folder, "data/iris.csv"), index_col=False) network = bayespy.network.create_network() cluster = builder.create_cluster_variable(network, 4) petal_length = builder.create_continuous_variable(network, "petal_length") petal_width = builder.create_continuous_variable(network, "petal_width") sepal_length = builder.create_continuous_variable(network, "sepal_length") sepal_width = builder.create_continuous_variable(network, "sepal_width") nodes = [petal_length, petal_width, sepal_length, sepal_width] for i, node in enumerate(nodes): builder.create_link(network, cluster, node) for j in range(i+1, len(nodes)): builder.create_link(network, node, nodes[j]) layout = bayespy.visual.NetworkLayout(network) graph = layout.build_graph() pos = layout.fruchterman_reingold_layout(graph) layout.visualise(graph, pos) # build the 'normal' model on two of the classes model = bayespy.model.NetworkModel(network, logger) with bayespy.data.DataSet(iris.drop('iris_class', axis=1), db_folder, logger) as dataset: subset = dataset.subset( iris[(iris.iris_class == "Iris-versicolor") | (iris.iris_class == "Iris-virginica")].index.tolist()) model.train(subset) with bayespy.data.DataSet(iris.drop('iris_class', axis=1), db_folder, logger) as dataset: # get the loglikelihood value for the whole model on each individual sample, # the lower the loglikelihood value the less likely the data point has been # generated by the model. results = model.batch_query(dataset, [bayespy.model.QueryModelStatistics()]) display(results) cmap = plt.cm.get_cmap('Blues_r') fig = plt.figure(figsize=(10, 10)) k = 1 for i, v in enumerate(nodes): for j in range(i+1, len(nodes)): v_name = v.getName() v1_name = nodes[j].getName() ax = fig.add_subplot(3,2,k) ax.set_title("{} vs {}".format(v_name, v1_name)) h = ax.scatter(x=iris[v_name].tolist(), y=iris[v1_name].tolist(), c=results['loglikelihood'].tolist(), vmin=results.loglikelihood.min(), vmax=results.loglikelihood.max(), cmap=cmap ) k+=1 fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) fig.colorbar(h, cax=cbar_ax) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question 1 Step2: From this example, we could see that if we just split training and testing data for just once, sometimes we could get a very "good model and sometimes we may have got a very ""bad" model. From the example, we could know that it is not about model itself. It is just because we use different set of training data and test data. Step3: A new Cross-validation task
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics # read in the iris data iris = load_iris() # create X (features) and y (response) X = iris.data y = iris.target # use train/test split with different random_state values X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4) # check classification accuracy of KNN with K=5 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) print(metrics.accuracy_score(y_test, y_pred)) from sklearn.cross_validation import cross_val_score # 10-fold cross-validation with K=5 for KNN (the n_neighbors parameter) # First we initialize a knn model knn = KNeighborsClassifier(n_neighbors=5) # Secondly we use cross_val_scores to get all possible accuracies. # It works like this, first we make the data into 10 chunks. # Then we run KNN for 10 times and we make each chunk as testing data for each iteration. scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy') print(scores) # use average accuracy as an estimate of out-of-sample accuracy print(scores.mean()) # search for an optimal value of K for KNN # Suppose we set the range of K is from 1 to 31. k_range = list(range(1, 31)) # An list that stores different accuracy scores. k_scores = [] for k in k_range: # Your code: # First, initilize a knn model with number k # Second, use 10-fold cross validation to get 10 scores with that model. k_scores.append(scores.mean()) # Make a visuliazaion for it, and please check what is the best k for knn import matplotlib.pyplot as plt %matplotlib inline # plot the value of K for KNN (x-axis) versus the cross-validated accuracy (y-axis) plt.plot(k_range, k_scores) plt.xlabel('Value of K for KNN') plt.ylabel('Cross-Validated Accuracy') # 10-fold cross-validation with the best KNN model knn = KNeighborsClassifier(n_neighbors=20) print(cross_val_score(knn, X, y, cv=10, scoring='accuracy').mean()) # How about logistic regression? Please finish the code below and make a comparison. # Hint, please check how we make it by knn. from sklearn.linear_model import LogisticRegression # initialize a logistic regression model here. # Then print the average score of logistic model. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Symbolic variables Step2: Variables can be used in expressions, but (IMPORTANT!) the result is symbolic as well Step3: Investigating expressions Step4: Evaluating expressions Step5: Or compile a function Step6: Compiled function has been transformed Step7: Other tensor types Step8: Numpy style indexing Step9: Many functions/operations are available through theano.tensor or variable methods Step10: But don't try to use numpy functions on Theano variables. Results may vary! Step11: Shared Variables Step12: We can get and set the variable's value Step13: Shared variables can be used in expressions as well Step14: Their value is used as input when evaluating Step15: Updates Step16: Debugging Step17: THE ABOVE SHOULD BE AN ERROR! Step18: THE ABOVE SHOULD BE AN ERROR!
<ASSISTANT_TASK:> Python Code: import theano import theano.tensor as T x = T.scalar() x y = 3*(x**2) + x type(y) print(y) theano.pprint(y) theano.printing.debugprint(y) from IPython.display import SVG SVG(theano.printing.pydotprint(y, return_image=True, format='svg')) y.eval({x: 2}) f = theano.function([x], y) f(2) SVG(theano.printing.pydotprint(f, return_image=True, format='svg')) X = T.vector() X = T.matrix() X = T.tensor3() X = T.tensor4() X = T.vector() X[1:-1:2] X[ [1,2,3] ] y = X.argmax() y = T.cosh(X) y = T.outer(X, X) x = T.scalar() y = T.log(x) gradient = T.grad(y, x) gradient.eval({x: 2}) import numpy as np x = theano.shared(np.zeros((2, 3), dtype=theano.config.floatX)) x values = x.get_value() print(values.shape) print(values) x.set_value(values) (x + 2) ** 2 ((x + 2) ** 2).eval() theano.function([], (x + 2) ** 2)() count = theano.shared(0) new_count = count + 1 updates = {count: new_count} g = theano.function([], count, updates=updates) g() g() g() x = T.matrix() y = 3*(x**2) + x h = theano.function([x], y) h( 2 ) h( np.array( [ [ 2. ] ] ) ) h( np.array( [ [ 2. ] ], dtype='float32' ) ) h( np.array( [ [ 2., 3. ], [ 4., 5. ] ], dtype='float32' ) ) h( np.array( [ [ 2., 3., 4. ], [ 6., 7., 8. ] ], dtype='float32' ) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Creating a model Step2: Typically, we will initialize a Bambi Model by passing it a model formula and a pandas DataFrame. Other arguments such as family, priors, and link are available. By default, it uses family="gaussian" which implies a linear regression with normal error. We get back a model that we can immediately fit by calling model.fit(). Step3: We pass dropna=True to tell Bambi to drop rows containing missing values. The number of rows dropped is different from the number of rows with missing values because Bambi only considers columns involved in the model. Step4: Each of the above examples specifies a full model that can be fitted using PyMC3 by doing Step5: The above code obtains 1,000 draws (the default value) and return them as an InferenceData instance (for more details, see the ArviZ documentation). In this case, the fit() method accepts optional keyword arguments to pass onto PyMC3's sample() method, so any methods accepted by sample() can be specified here. We can also explicitly set the number of draws via the draws argument. For example, if we call fit(draws=2000, chains=2), the PyMC3 sampler will sample two chains in parallel, drawing 2,000 draws for each one. We could also specify starting parameter values, the step function to use, and so on (for full details, see the PyMC3 documentation). Step6: Building without sampling can be useful if we want to inspect the internal PyMC3 model before we start the (potentially long) sampling process. Once we're satisfied, and wish to run the sampler, we can then simply call model.fit(), and the sampler will start running. Another good reason to build a model is to generate plot of the marginal priors using model.plot_priors(). Step7: Specifying priors Step8: Priors specified using the Prior class can be nested to arbitrary depths--meaning, we can set any of a given prior's argument to point to another Prior instance. This is particularly useful when specifying hierarchical priors on group specific effects, where the individual group specific slopes or intercepts are constrained to share a common source distribution Step9: The above prior specification indicates that the individual subject intercepts are to be treated as if they are randomly sampled from the same underlying normal distribution, where the variance of that normal distribution is parameterized by a separate hyperprior (a half-cauchy with beta = 5). Step10: If no link argument is explicitly set (see below), the canonical link function (or an otherwise sensible default) will be used. The following table summarizes the currently available families and their associated links Step11: The above example produces results identical to simply setting family='bernoulli'. Step12: More details on this plot are available in the ArviZ documentation. Step13: If you want to view summaries or plots for specific parameters, you can pass a list of its names Step14: You can find detailed, worked examples of fitting Bambi models and working with the results in the example notebooks here.
<ASSISTANT_TASK:> Python Code: import arviz as az import bambi as bmb import numpy as np import pandas as pd az.style.use("arviz-darkgrid") # Read in a tab-delimited file containing our data data = pd.read_table("data/my_data.txt", sep="\t") # Initialize the model model = bmb.Model("y ~ x + z", data) # Inspect model object model data = pd.read_csv("data/rrr_long.csv") data.head(10) # Number of rows with missing values data.isna().any(axis=1).sum() # Common (or fixed) effects only bmb.Model("value ~ condition + age + gender", data, dropna=True) # Common effects and group specific (or random) intercepts for subject bmb.Model("value ~ condition + age + gender + (1|uid)", data, dropna=True) # Multiple, complex group specific effects with both # group specific slopes and group specific intercepts bmb.Model("value ~ condition + age + gender + (1|uid) + (condition|study) + (condition|stimulus)", data, dropna=True) model = bmb.Model("value ~ condition + age + gender + (1|uid)", data, dropna=True) results = model.fit() model = bmb.Model("value ~ condition + age + gender + (1|uid)", data, dropna=True) model.build() model.plot_priors(); # A Laplace prior with mean of 0 and scale of 10 my_favorite_prior = bmb.Prior("Laplace", mu=0, b=10) # Set the prior when adding a term to the model; more details on this below. priors = {"1|uid": my_favorite_prior} bmb.Model("value ~ condition + (1|uid)", data, priors=priors, dropna=True) subject_sd = bmb.Prior("HalfCauchy", beta=5) subject_prior = bmb.Prior("Normal", mu=0, sd=subject_sd) priors = {"1|uid": subject_prior} bmb.Model("value ~ condition + (1|uid)", data, priors=priors, dropna=True) data = bmb.load_data("admissions") model = bmb.Model("admit ~ gre + gpa + rank", data, family="bernoulli") results = model.fit() from scipy import special # Construct likelihood distribution ------------------------------ # This must use a valid PyMC3 distribution name. # 'parent' is the name of the variable that represents the mean of the distribution. # The mean of the Bernoulli family is given by 'p'. likelihood = bmb.Likelihood("Bernoulli", parent="p") # Set link function ---------------------------------------------- # There are two alternative approaches. # 1. Pass a name that is known by Bambi link = bmb.Link("logit") # 2. Build everything from scratch # link: A function that maps the response to the linear predictor # linkinv: A function that maps the linear predictor to the response # linkinv_backend: A function that maps the linear predictor to the response # that works with Aesara tensors. # bmb.math.sigmoid is a Aesara tensor function wrapped by PyMC3 and Bambi link = bmb.Link( "my_logit", link=special.expit, linkinv=special.logit, linkinv_backend=bmb.math.sigmoid ) # Construct the family ------------------------------------------- # Families are defined by a name, a Likelihood and a Link. family = bmb.Family("bernoulli", likelihood, link) # Now it's business as usual model = bmb.Model("admit ~ gre + gpa + rank", data, family=family) results = model.fit() az.plot_trace(results, compact=False); az.summary(results) # show the names of all variables stored in the InferenceData object list(results.posterior.data_vars) type(model.backend.model) model.backend.model model.backend.model.observed_RVs model.backend.model.unobserved_RVs <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In this chapter we will use the same toy model in Chapter 1 but write a more interesting test with additional features included in SciUnit. Step3: Now let's write a test that validates the observation and returns more informative score type. Step4: We've done two new things here Step5: Instead of returning a BooleanScore, encoding a True/False value, we return a ZScore encoding a more quantitative summary of the relationship between the observation and the prediction. When we execute the test Step6: Then we get a more quantitative summary of the results
<ASSISTANT_TASK:> Python Code: import sciunit from sciunit.models import ConstModel # One of many dummy models included for illustration. const_model_37 = ConstModel(37, name="Constant Model 37") from sciunit.capabilities import ProducesNumber from sciunit.scores import ZScore # One of many SciUnit score types. from sciunit.comparators import compute_zscore # A function for computing raw z-scores. from sciunit import ObservationError # An exception class raised when a test is instantiated # with an invalid observation. class MeanTest(sciunit.Test): Tests if the model predicts the same number as the observation. required_capabilities = (ProducesNumber,) # The one capability required for a model to take this test. score_type = ZScore # This test's 'judge' method will return a BooleanScore. def validate_observation(self, observation): if type(observation) is not dict: raise sciunit.ObservationError("Observation must be a python dictionary") if 'mean' not in observation: raise sciunit.ObservationError("Observation must contain a 'mean' entry") def generate_prediction(self, model): return model.produce_number() # The model has this method if it inherits from the 'ProducesNumber' capability. def compute_score(self, observation, prediction): z = compute_zscore(observation,prediction) # Compute a z-score. score = self.score_type(z.score) # Returns a ZScore object. score.description = ("A z-score corresponding to the normalized location of the observation " "relative to the predicted distribution.") return score observation = {'mean':37.8, 'std':2.1} mean_37_test = MeanTest(observation, name='=37') score = mean_37_test.judge(const_model_37) score.summarize() score.describe() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As seen in the introductory tutorial &lt;tut-overview&gt;, when a Step2: However, it is not strictly necessary to load the Step3: As you can see, the Step4: Most of the fields contain Step5: Obtaining subsets of channels Step6: Step7: Note that the meg and fnirs parameters of Step8: Step9: To obtain several channel types at once, you could embed Step10: Alternatively, you can get the indices of all channels of all channel types Step11: Dropping channels from an Info object Step12: We can also get a nice HTML representation in IPython like
<ASSISTANT_TASK:> Python Code: import os import mne sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file) print(raw.info) info = mne.io.read_info(sample_data_raw_file) print(info) print(info.keys()) print() # insert a blank line print(info['ch_names']) print(info['chs'][0].keys()) print(mne.pick_channels(info['ch_names'], include=['MEG 0312', 'EEG 005'])) print(mne.pick_channels(info['ch_names'], include=[], exclude=['MEG 0312', 'EEG 005'])) print(mne.pick_types(info, meg=False, eeg=True, exclude=[])) print(mne.pick_channels_regexp(info['ch_names'], '^E.G')) print(mne.channel_type(info, 25)) picks = (25, 76, 77, 319) print([mne.channel_type(info, x) for x in picks]) print(raw.get_channel_types(picks=picks)) ch_idx_by_type = mne.channel_indices_by_type(info) print(ch_idx_by_type.keys()) print(ch_idx_by_type['eog']) print(info['nchan']) eeg_indices = mne.pick_types(info, meg=False, eeg=True) print(mne.pick_info(info, eeg_indices)['nchan']) info <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Description Step7: 1.4. Land Atmosphere Flux Exchanges Step8: 1.5. Atmospheric Coupling Treatment Step9: 1.6. Land Cover Step10: 1.7. Land Cover Change Step11: 1.8. Tiling Step12: 2. Key Properties --&gt; Conservation Properties Step13: 2.2. Water Step14: 2.3. Carbon Step15: 3. Key Properties --&gt; Timestepping Framework Step16: 3.2. Time Step Step17: 3.3. Timestepping Method Step18: 4. Key Properties --&gt; Software Properties Step19: 4.2. Code Version Step20: 4.3. Code Languages Step21: 5. Grid Step22: 6. Grid --&gt; Horizontal Step23: 6.2. Matches Atmosphere Grid Step24: 7. Grid --&gt; Vertical Step25: 7.2. Total Depth Step26: 8. Soil Step27: 8.2. Heat Water Coupling Step28: 8.3. Number Of Soil layers Step29: 8.4. Prognostic Variables Step30: 9. Soil --&gt; Soil Map Step31: 9.2. Structure Step32: 9.3. Texture Step33: 9.4. Organic Matter Step34: 9.5. Albedo Step35: 9.6. Water Table Step36: 9.7. Continuously Varying Soil Depth Step37: 9.8. Soil Depth Step38: 10. Soil --&gt; Snow Free Albedo Step39: 10.2. Functions Step40: 10.3. Direct Diffuse Step41: 10.4. Number Of Wavelength Bands Step42: 11. Soil --&gt; Hydrology Step43: 11.2. Time Step Step44: 11.3. Tiling Step45: 11.4. Vertical Discretisation Step46: 11.5. Number Of Ground Water Layers Step47: 11.6. Lateral Connectivity Step48: 11.7. Method Step49: 12. Soil --&gt; Hydrology --&gt; Freezing Step50: 12.2. Ice Storage Method Step51: 12.3. Permafrost Step52: 13. Soil --&gt; Hydrology --&gt; Drainage Step53: 13.2. Types Step54: 14. Soil --&gt; Heat Treatment Step55: 14.2. Time Step Step56: 14.3. Tiling Step57: 14.4. Vertical Discretisation Step58: 14.5. Heat Storage Step59: 14.6. Processes Step60: 15. Snow Step61: 15.2. Tiling Step62: 15.3. Number Of Snow Layers Step63: 15.4. Density Step64: 15.5. Water Equivalent Step65: 15.6. Heat Content Step66: 15.7. Temperature Step67: 15.8. Liquid Water Content Step68: 15.9. Snow Cover Fractions Step69: 15.10. Processes Step70: 15.11. Prognostic Variables Step71: 16. Snow --&gt; Snow Albedo Step72: 16.2. Functions Step73: 17. Vegetation Step74: 17.2. Time Step Step75: 17.3. Dynamic Vegetation Step76: 17.4. Tiling Step77: 17.5. Vegetation Representation Step78: 17.6. Vegetation Types Step79: 17.7. Biome Types Step80: 17.8. Vegetation Time Variation Step81: 17.9. Vegetation Map Step82: 17.10. Interception Step83: 17.11. Phenology Step84: 17.12. Phenology Description Step85: 17.13. Leaf Area Index Step86: 17.14. Leaf Area Index Description Step87: 17.15. Biomass Step88: 17.16. Biomass Description Step89: 17.17. Biogeography Step90: 17.18. Biogeography Description Step91: 17.19. Stomatal Resistance Step92: 17.20. Stomatal Resistance Description Step93: 17.21. Prognostic Variables Step94: 18. Energy Balance Step95: 18.2. Tiling Step96: 18.3. Number Of Surface Temperatures Step97: 18.4. Evaporation Step98: 18.5. Processes Step99: 19. Carbon Cycle Step100: 19.2. Tiling Step101: 19.3. Time Step Step102: 19.4. Anthropogenic Carbon Step103: 19.5. Prognostic Variables Step104: 20. Carbon Cycle --&gt; Vegetation Step105: 20.2. Carbon Pools Step106: 20.3. Forest Stand Dynamics Step107: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis Step108: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration Step109: 22.2. Growth Respiration Step110: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation Step111: 23.2. Allocation Bins Step112: 23.3. Allocation Fractions Step113: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology Step114: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality Step115: 26. Carbon Cycle --&gt; Litter Step116: 26.2. Carbon Pools Step117: 26.3. Decomposition Step118: 26.4. Method Step119: 27. Carbon Cycle --&gt; Soil Step120: 27.2. Carbon Pools Step121: 27.3. Decomposition Step122: 27.4. Method Step123: 28. Carbon Cycle --&gt; Permafrost Carbon Step124: 28.2. Emitted Greenhouse Gases Step125: 28.3. Decomposition Step126: 28.4. Impact On Soil Properties Step127: 29. Nitrogen Cycle Step128: 29.2. Tiling Step129: 29.3. Time Step Step130: 29.4. Prognostic Variables Step131: 30. River Routing Step132: 30.2. Tiling Step133: 30.3. Time Step Step134: 30.4. Grid Inherited From Land Surface Step135: 30.5. Grid Description Step136: 30.6. Number Of Reservoirs Step137: 30.7. Water Re Evaporation Step138: 30.8. Coupled To Atmosphere Step139: 30.9. Coupled To Land Step140: 30.10. Quantities Exchanged With Atmosphere Step141: 30.11. Basin Flow Direction Map Step142: 30.12. Flooding Step143: 30.13. Prognostic Variables Step144: 31. River Routing --&gt; Oceanic Discharge Step145: 31.2. Quantities Transported Step146: 32. Lakes Step147: 32.2. Coupling With Rivers Step148: 32.3. Time Step Step149: 32.4. Quantities Exchanged With Rivers Step150: 32.5. Vertical Grid Step151: 32.6. Prognostic Variables Step152: 33. Lakes --&gt; Method Step153: 33.2. Albedo Step154: 33.3. Dynamics Step155: 33.4. Dynamic Lake Extent Step156: 33.5. Endorheic Basins Step157: 34. Lakes --&gt; Wetlands
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'ncc', 'sandbox-2', 'land') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_atmosphere_flux_exchanges') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "water" # "energy" # "carbon" # "nitrogen" # "phospherous" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.atmospheric_coupling_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bare soil" # "urban" # "lake" # "land ice" # "lake ice" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover_change') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.energy') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.water') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestep_dependent_on_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestepping_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.total_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_water_coupling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.number_of_soil layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.texture') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.organic_matter') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.water_table') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.continuously_varying_soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "soil humidity" # "vegetation state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.direct_diffuse') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "distinction between direct and diffuse albedo" # "no distinction between direct and diffuse albedo" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.number_of_wavelength_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.number_of_ground_water_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.lateral_connectivity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "perfect connectivity" # "Darcian flow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Bucket" # "Force-restore" # "Choisnel" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.number_of_ground_ice_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.ice_storage_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.permafrost') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Gravity drainage" # "Horton mechanism" # "topmodel-based" # "Dunne mechanism" # "Lateral subsurface flow" # "Baseflow from groundwater" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.heat_storage') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Force-restore" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "soil moisture freeze-thaw" # "coupling with snow temperature" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.number_of_snow_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.density') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.water_equivalent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.heat_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.temperature') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.liquid_water_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_cover_fractions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ground snow fraction" # "vegetation snow fraction" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "snow interception" # "snow melting" # "snow freezing" # "blowing snow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "prescribed" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "snow age" # "snow density" # "snow grain type" # "aerosol deposition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.dynamic_vegetation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation types" # "biome types" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "broadleaf tree" # "needleleaf tree" # "C3 grass" # "C4 grass" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biome_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "evergreen needleleaf forest" # "evergreen broadleaf forest" # "deciduous needleleaf forest" # "deciduous broadleaf forest" # "mixed forest" # "woodland" # "wooded grassland" # "closed shrubland" # "opne shrubland" # "grassland" # "cropland" # "wetlands" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_time_variation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed (not varying)" # "prescribed (varying from files)" # "dynamical (varying from simulation)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.interception') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic (vegetation map)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "light" # "temperature" # "water availability" # "CO2" # "O3" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.number_of_surface_temperatures') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "alpha" # "beta" # "combined" # "Monteith potential evaporation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "transpiration" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.anthropogenic_carbon') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "grand slam protocol" # "residence time" # "decay time" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.forest_stand_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.photosynthesis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.maintainance_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.growth_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_bins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "leaves + stems + roots" # "leaves + stems + roots (leafy + woody)" # "leaves + fine roots + coarse roots + stems" # "whole plant (no distinction)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_fractions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "function of vegetation type" # "function of plant allometry" # "explicitly calculated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.phenology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.mortality.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.is_permafrost_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.emitted_greenhouse_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.impact_on_soil_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_inherited_from_land_surface') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.number_of_reservoirs') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.water_re_evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "flood plains" # "irrigation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_land') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.quantities_exchanged_with_atmosphere') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.basin_flow_direction_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "adapted for other periods" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.flooding') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.discharge_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "direct (large rivers)" # "diffuse" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.quantities_transported') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.coupling_with_rivers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.quantities_exchanged_with_rivers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.vertical_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.ice_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "No lake dynamics" # "vertical" # "horizontal" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamic_lake_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.endorheic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.wetlands.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters Step2: Step3: It is quite clear that things are not well aligned for estimating the Step4: The previous is possible if you have the surfaces available from Freesurfer.
<ASSISTANT_TASK:> Python Code: import os.path as op import mne from mne.datasets import sample print(__doc__) data_path = sample.data_path() subjects_dir = op.join(data_path, 'subjects') raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw.fif') tr_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw-trans.fif') raw = mne.io.read_raw_fif(raw_fname) mne.viz.plot_alignment(raw.info, trans=None, subject='sample', subjects_dir=subjects_dir, surfaces=['head', 'brain']) # mne.gui.coregistration(subject='sample', subjects_dir=subjects_dir) trans = mne.read_trans(tr_fname) src = mne.read_source_spaces(op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-oct-6-meg-inv.fif')) mne.viz.plot_alignment(raw.info, trans=trans, subject='sample', src=src, subjects_dir=subjects_dir, surfaces=['head', 'white']) sphere = mne.make_sphere_model(info=raw.info, r0='auto', head_radius='auto') mne.viz.plot_alignment(raw.info, subject='sample', eeg='projected', meg='helmet', bem=sphere, dig=True, surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Leave One Out Cross Validation(LOOCV) Step2: $$CV_{(n)} = \frac {1} {n} \sum_{i =1}^n (\frac{y_i - \hat y_i}{1- h_i})^2$$ Step3: K-Fold Cross Validation Step4: Bootstrap
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import scipy as sp import matplotlib.pyplot as plt %matplotlib inline #读取数据集 auto_df = pd.read_csv('data/Auto.csv', na_values = "?") auto_df.dropna(inplace = True) auto_df.head() fig, ax = plt.subplots() ax.scatter(x=auto_df['horsepower'],y=auto_df['mpg']) ax.set_ylabel('mpg') from sklearn.linear_model import LinearRegression from sklearn.cross_validation import LeaveOneOut from sklearn.metrics import mean_squared_error clf = LinearRegression() loo = LeaveOneOut(len(auto_df)) #loo提供了训练和测试的索引 X = auto_df[['horsepower']].values y = auto_df['mpg'].values n = np.shape(X)[0] mses =[] for train, test in loo: Xtrain,ytrain,Xtest,ytest = X[train],y[train],X[test],y[test] clf.fit(Xtrain,ytrain) ypred = clf.predict(Xtest) mses.append(mean_squared_error(ytest,ypred)) np.mean(mses) def loo_shortcut(X,y): clf = LinearRegression() clf.fit(X,y) ypred = clf.predict(X) xbar = np.mean(X,axis =0) xsum = np.sum(np.power(X-xbar,2)) nrows = np.shape(X)[0] mses = [] for row in range(0,nrows): hi = (1 / nrows) + (np.sum(X[row] - xbar) ** 2 / xsum) mse = ((y[row] - ypred[row])/(1-hi))**2 mses.append(mse) return np.mean(mses) loo_shortcut(auto_df[['horsepower']].values,auto_df['mpg'].values) # LOOCV 应用于同一种模型不同复杂度的选择 auto_df['horsepower^2'] = auto_df['horsepower'] * auto_df['horsepower'] auto_df['horsepower^3'] = auto_df['horsepower^2'] * auto_df['horsepower'] auto_df['horsepower^4'] = auto_df['horsepower^3'] * auto_df['horsepower'] auto_df['horsepower^5'] = auto_df['horsepower^4'] * auto_df['horsepower'] auto_df['unit'] = 1 colnames = ["unit", "horsepower", "horsepower^2", "horsepower^3", "horsepower^4", "horsepower^5"] cv_errors = [] for ncols in range(2,6): X = auto_df[colnames[0:ncols]] y = auto_df['mpg'] clf = LinearRegression() clf.fit(X,y) cv_errors.append(loo_shortcut(X.values,y.values)) plt.plot(range(1,5),cv_errors) plt.xlabel('degree') plt.ylabel('cv.error') from sklearn.cross_validation import KFold cv_errors = [] for ncols in range(2,6): X = auto_df[colnames[0:ncols]].values y = auto_df['mpg'].values kfold = KFold(len(auto_df),n_folds = 10) mses =[] for train,test in kfold: Xtrain,ytrain,Xtest,ytest = X[train],y[train],X[test],y[test] clf.fit(X,y) ypred = clf.predict(Xtest) mses.append(mean_squared_error(ypred,ytest)) cv_errors.append(np.mean(mses)) plt.plot(range(1,5),cv_errors) plt.xlabel("degree") plt.ylabel('cv.error') from sklearn.cross_validation import Bootstrap cv_errors = [] for ncols in range(2,6): X = auto_df[colnames[0:ncols]].values y = auto_df['mpg'].values n = len(auto_df) bs = Bootstrap(n,train_size=int(0.9*n),test_size=int(0.1*n),n_iter=10,random_state=0) mses = [] for train,test in bs: Xtrain,ytrain,Xtest,ytest = X[train],y[train],X[test],y[test] clf = LinearRegression() clf.fit(X,y) ypred = clf.predict(Xtest) mses.append(mean_squared_error(ypred,ytest)) cv_errors.append(np.mean(mses)) plt.plot(range(1,5),cv_errors) plt.xlabel('degree') plt.ylabel('cv.error') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 1. Utility functions Step3: 2. Open the data file Step4: We can open the file, as a normal HDF5 file Step5: The object h5file is a pytables file reference. The root group is accessed with h5file.root. Step6: We see the typical Photon-HDF5 structure. In particular the field description provides a short description of the measurement and acquisition_duration tells that the acquisition lasted 600 seconds. Step7: Let's define a shortcut to the photon_data group to save some typing later Step8: 4. Reading the data Step9: Ok, tha's what we espect. Step10: We may want to check the excitation wavelengths used in the measurement. This information is found in the setup group Step11: Now, let's load the definitions of donor/acceptor channel and excitation periods Step12: These numbers define the donor and acceptor alternation periods as shown below Step13: Now that the data has been loaded we can plot an alternation histogram using matplotlib Step14: 6. Timestamps in different excitation periods
<ASSISTANT_TASK:> Python Code: from __future__ import division, print_function # only needed on py2 %matplotlib inline import numpy as np import tables import matplotlib.pyplot as plt def print_children(group): Print all the sub-groups in `group` and leaf-nodes children of `group`. Parameters: group (pytables group): the group to be printed. for name, value in group._v_children.items(): if isinstance(value, tables.Group): content = '(Group)' else: content = value.read() print(name) print(' Content: %s' % content) print(' Description: %s\n' % value._v_title.decode()) filename = '../data/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5' h5file = tables.open_file(filename) print_children(h5file.root) print_children(h5file.root.sample) photon_data = h5file.root.photon_data photon_data.measurement_specs.measurement_type.read().decode() timestamps = photon_data.timestamps.read() timestamps_unit = photon_data.timestamps_specs.timestamps_unit.read() detectors = photon_data.detectors.read() print('Number of photons: %d' % timestamps.size) print('Timestamps unit: %.2e seconds' % timestamps_unit) print('Detectors: %s' % np.unique(detectors)) h5file.root.setup.excitation_wavelengths.read() donor_ch = photon_data.measurement_specs.detectors_specs.spectral_ch1.read() acceptor_ch = photon_data.measurement_specs.detectors_specs.spectral_ch2.read() print('Donor CH: %d Acceptor CH: %d' % (donor_ch, acceptor_ch)) alex_period = photon_data.measurement_specs.alex_period.read() offset = photon_data.measurement_specs.alex_offset.read() donor_period = photon_data.measurement_specs.alex_excitation_period1.read() acceptor_period = photon_data.measurement_specs.alex_excitation_period2.read() print('ALEX period: %d \nOffset: %4d \nDonor period: %s \nAcceptor period: %s' % \ (alex_period, offset, donor_period, acceptor_period)) timestamps_donor = timestamps[detectors == donor_ch] timestamps_acceptor = timestamps[detectors == acceptor_ch] fig, ax = plt.subplots() ax.hist((timestamps_acceptor - offset) % alex_period, bins=100, alpha=0.8, color='red', label='donor') ax.hist((timestamps_donor - offset) % alex_period, bins=100, alpha=0.8, color='green', label='acceptor') ax.axvspan(donor_period[0], donor_period[1], alpha=0.3, color='green') ax.axvspan(acceptor_period[0], acceptor_period[1], alpha=0.3, color='red') ax.set_xlabel('(timestamps - offset) MOD alex_period') ax.set_title('ALEX histogram') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False); timestamps_mod = (timestamps - offset) % alex_period donor_excitation = (timestamps_mod < donor_period[1])*(timestamps_mod > donor_period[0]) acceptor_excitation = (timestamps_mod < acceptor_period[1])*(timestamps_mod > acceptor_period[0]) timestamps_Dex = timestamps[donor_excitation] timestamps_Aex = timestamps[acceptor_excitation] fig, ax = plt.subplots() ax.hist((timestamps_Dex - offset) % alex_period, bins=np.arange(0, alex_period, 40), alpha=0.8, color='green', label='D_ex') ax.hist((timestamps_Aex - offset) % alex_period, bins=np.arange(0, alex_period, 40), alpha=0.8, color='red', label='A_ex') ax.set_xlabel('(timestamps - offset) MOD alex_period') ax.set_title('ALEX histogram (selected periods only)') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False); #plt.close('all') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: $$\text{???} = (MC)^2$$ Step2: Estimation Step3: Another Aspect Step4:
<ASSISTANT_TASK:> Python Code: def metropolis_hastings(f, q, initial_state, num_iters): Generate a Markov Chain Monte Carlo using the Metropolis-Hastings algorithm. Parameters ---------- f : function the [relative] likelood function for the distribution we would like to approximate q : function The conditional distribution to be sampled from (given an X_i, sample from q(X_i) to get potential X_i+1) initial_state : type accepted by f,q The initial state. This state will not be included as part of the Markov Chain. num_iters : int or float the number of desired iterations float is included to facilitate 1e5 type use Returns ------- out : Python Array Array where out[i] = X_{i-1} because X_0 (the initial state) is not included MC = [] X_i = initial_state for i in range(int(num_iters)): Y = q(X_i) r = min(f(Y)/f(X_i), 1) a = np.random.uniform() if a < r: X_i = Y MC.append(X_i) return MC def cauchy_dist(x): return 1/(np.pi*(1 + x**2)) def q(scale): return lambda x: np.random.normal(loc=x, scale=scale) from scipy.stats import cauchy CauchyInterval = np.linspace(cauchy.ppf(0.01), cauchy.ppf(0.99), 100); plt.figure(1); plt.subplot(3,1,1); plt.title("STD = 0.1") std01 = metropolis_hastings(cauchy_dist, q(0.1), 0, 1000) tmpHist = plt.hist(std01, bins=20, normed=True); tmpLnSp = np.linspace(min(tmpHist[1]), max(tmpHist[1]),100) plt.plot(tmpLnSp, cauchy.pdf(tmpLnSp), 'r-') plt.subplot(3,1,2) plt.title("STD = 1") std1 = metropolis_hastings(cauchy_dist, q(1), 0, 1000) tmpHist = plt.hist(std1, bins=20, normed=True); tmpLnSp = np.linspace(min(tmpHist[1]), max(tmpHist[1]),100) plt.plot(tmpLnSp, cauchy.pdf(tmpLnSp), 'r-') plt.subplot(3,1,3) plt.title("STD = 10") std10 = metropolis_hastings(cauchy_dist, q(10), 0, 1000) tmpHist = plt.hist(std10, bins=20, normed=True); tmpLnSp = np.linspace(min(tmpHist[1]), max(tmpHist[1]),100) plt.plot(tmpLnSp, cauchy.pdf(tmpLnSp), 'r-') plt.tight_layout() plb.savefig("tmp/18-MCMC-Cauchy-Estimation.png") plb.savefig("../../../pics/2017/04/18-MCMC-Cauchy-Estimation.png"); plt.show() plt.figure(2) plt.subplot(3,1,1) plt.title("STD = 0.1") plt.plot(std01) plt.subplot(3,1,2) plt.title("STD = 1") plt.plot(std1) plt.subplot(3,1,3) plt.title("STD = 10") plt.plot(std10) plt.tight_layout() plb.savefig("tmp/18-MCMC-Cauchy-Estimation_TS.png") plb.savefig("../../../pics/2017/04/18-MCMC-Cauchy-Estimation_TS.png") plt.show() def psu_mcmc(X, q, numIters=10000): theta, lambd, k, b1, b2 = 1, 1, 20, 1, 1 thetas, lambds, ks, b1s, b2s = [], [], [], [], [] n = len(X) def f_k(theta, lambd, k, b1, b2): if 0 <= k and k <= n: return theta**sum(X[:k])*lambd**sum(X[k:])*np.exp(-k*theta-(n-k)*lambd) elif k < 0: return lambd**sum(X)*np.exp(-n*lambd) elif k > n: return theta**sum(X)*np.exp(-n*theta) def f_t(theta, k, b1): return theta**(sum(X[:k])+0.5)*np.exp(-theta*(k+1.0)/b1) def f_l(lambd, k, b2): return lambd**(sum(X[k:])+0.5)*np.exp(-lambd*((n-k)+1.0)/b2) def f_b(b, par): return np.exp(-(1 + par) / b) / (b*np.sqrt(b)) for i in range(numIters): tmp = q(theta) if tmp < np.infty: r = min(1, f_t(tmp,k,b1)/f_t(theta,k,b1)) if np.random.uniform(0,1) < r: theta = tmp tmp = q(lambd) if tmp < np.infty: r = min(1, f_l(tmp,k,b2)/f_l(lambd,k,b2)) if np.random.uniform(0,1) < r: lambd = tmp tmp = q(b1) if tmp < np.infty: r = min(1, f_b(tmp, theta)/f_b(b1, theta)) if np.random.uniform(0,1) < r: b1 = tmp tmp = q(b2) if tmp < np.infty: r = min(1, f_b(tmp, lambd)/f_b(b2, lambd)) if np.random.uniform(0,1) < r: b2 = tmp tmp = q(k) if tmp < np.infty: r = min(1, f_k(theta, lambd, tmp, b1, b2) / f_k(theta, lambd, k, b1,b2)) if np.random.uniform(0,1) < r: k = tmp thetas.append(theta) lambds.append(lambd) b1s.append(b1) b2s.append(b2) ks.append(k) return np.array([thetas,lambds,ks,b1s,b2s]) %%bash if [ ! -f tmp/psu_data.tsv ] then wget http://sites.stat.psu.edu/~mharan/MCMCtut/COUP551_rates.dat -O tmp/psu_data.tsv fi psu_data = [] with open("tmp/psu_data.tsv", "r") as f: title = f.readline() for line in f: tmpArr = [x.strip() for x in line.split(" ")] psu_data.append([int(x) for x in tmpArr if x != ""][1]) psu_data = np.array(psu_data) psu_data mcmc2 = psu_mcmc(psu_data, q(1), 1000) plt.figure() plt.subplot(2,1,1) plt.hist(mcmc2[2] % len(psu_data), normed=True) plt.subplot(2,1,2) plt.plot(mcmc2[2]) plt.show(); fig = plt.figure() fig.suptitle("MCMC values for Change Point") plt.subplot(2,1,1) plt.hist(mcmc2[2] % len(psu_data), normed=True) plt.subplot(2,1,2) plt.plot(mcmc2[2]) plb.savefig("tmp/psu_graphs1.png") plt.show() plt.plot(psu_data) plt.title("PSU Data") plb.savefig("tmp/psu_ts.png") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <font size="1.5em">More info about the %watermark extension</font> Step2: Scatter plots in matplotlib Step3: <br> Step5: <br> Step6: <br>
<ASSISTANT_TASK:> Python Code: %load_ext watermark %watermark -u -v -d -p matplotlib,numpy %matplotlib inline from matplotlib import pyplot as plt import numpy as np # Generating a Gaussion dataset: # creating random vectors from the multivariate normal distribution # given mean and covariance mu_vec1 = np.array([0,0]) cov_mat1 = np.array([[2,0],[0,2]]) x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1, 100) x2_samples = np.random.multivariate_normal(mu_vec1+0.2, cov_mat1+0.2, 100) x3_samples = np.random.multivariate_normal(mu_vec1+0.4, cov_mat1+0.4, 100) # x1_samples.shape -> (100, 2), 100 rows, 2 columns plt.figure(figsize=(8,6)) plt.scatter(x1_samples[:,0], x1_samples[:,1], marker='x', color='blue', alpha=0.7, label='x1 samples') plt.scatter(x2_samples[:,0], x1_samples[:,1], marker='o', color='green', alpha=0.7, label='x2 samples') plt.scatter(x3_samples[:,0], x1_samples[:,1], marker='^', color='red', alpha=0.7, label='x3 samples') plt.title('Basic scatter plot') plt.ylabel('variable X') plt.xlabel('Variable Y') plt.legend(loc='upper right') plt.show() import matplotlib.pyplot as plt x_coords = [0.13, 0.22, 0.39, 0.59, 0.68, 0.74, 0.93] y_coords = [0.75, 0.34, 0.44, 0.52, 0.80, 0.25, 0.55] fig = plt.figure(figsize=(8,5)) plt.scatter(x_coords, y_coords, marker='s', s=50) for x, y in zip(x_coords, y_coords): plt.annotate( '(%s, %s)' %(x, y), xy=(x, y), xytext=(0, -10), textcoords='offset points', ha='center', va='top') plt.xlim([0,1]) plt.ylim([0,1]) plt.show() # 2-category classification with random 2D-sample data # from a multivariate normal distribution import numpy as np from matplotlib import pyplot as plt def decision_boundary(x_1): Calculates the x_2 value for plotting the decision boundary. return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16)) # Generating a Gaussion dataset: # creating random vectors from the multivariate normal distribution # given mean and covariance mu_vec1 = np.array([0,0]) cov_mat1 = np.array([[2,0],[0,2]]) x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1, 100) mu_vec1 = mu_vec1.reshape(1,2).T # to 1-col vector mu_vec2 = np.array([1,2]) cov_mat2 = np.array([[1,0],[0,1]]) x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100) mu_vec2 = mu_vec2.reshape(1,2).T # to 1-col vector # Main scatter plot and plot annotation f, ax = plt.subplots(figsize=(7, 7)) ax.scatter(x1_samples[:,0], x1_samples[:,1], marker='o', color='green', s=40, alpha=0.5) ax.scatter(x2_samples[:,0], x2_samples[:,1], marker='^', color='blue', s=40, alpha=0.5) plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc='upper right') plt.title('Densities of 2 classes with 25 bivariate random patterns each') plt.ylabel('x2') plt.xlabel('x1') ftext = 'p(x|w1) ~ N(mu1=(0,0)^t, cov1=I)\np(x|w2) ~ N(mu2=(1,1)^t, cov2=I)' plt.figtext(.15,.8, ftext, fontsize=11, ha='left') # Adding decision boundary to plot x_1 = np.arange(-5, 5, 0.1) bound = decision_boundary(x_1) plt.plot(x_1, bound, 'r--', lw=3) x_vec = np.linspace(*ax.get_xlim()) x_1 = np.arange(0, 100, 0.05) plt.show() import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(8,6)) # Generating a Gaussion dataset: # creating random vectors from the multivariate normal distribution # given mean and covariance mu_vec1 = np.array([0,0]) cov_mat1 = np.array([[1,0],[0,1]]) X = np.random.multivariate_normal(mu_vec1, cov_mat1, 500) R = X**2 R_sum = R.sum(axis=1) plt.scatter(X[:, 0], X[:, 1], color='gray', marker='o', s=32. * R_sum, edgecolor='black', alpha=0.5) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Step9: 2. Key Properties --&gt; Seawater Properties Step10: 2.2. Eos Functional Temp Step11: 2.3. Eos Functional Salt Step12: 2.4. Eos Functional Depth Step13: 2.5. Ocean Freezing Point Step14: 2.6. Ocean Specific Heat Step15: 2.7. Ocean Reference Density Step16: 3. Key Properties --&gt; Bathymetry Step17: 3.2. Type Step18: 3.3. Ocean Smoothing Step19: 3.4. Source Step20: 4. Key Properties --&gt; Nonoceanic Waters Step21: 4.2. River Mouth Step22: 5. Key Properties --&gt; Software Properties Step23: 5.2. Code Version Step24: 5.3. Code Languages Step25: 6. Key Properties --&gt; Resolution Step26: 6.2. Canonical Horizontal Resolution Step27: 6.3. Range Horizontal Resolution Step28: 6.4. Number Of Horizontal Gridpoints Step29: 6.5. Number Of Vertical Levels Step30: 6.6. Is Adaptive Grid Step31: 6.7. Thickness Level 1 Step32: 7. Key Properties --&gt; Tuning Applied Step33: 7.2. Global Mean Metrics Used Step34: 7.3. Regional Metrics Used Step35: 7.4. Trend Metrics Used Step36: 8. Key Properties --&gt; Conservation Step37: 8.2. Scheme Step38: 8.3. Consistency Properties Step39: 8.4. Corrected Conserved Prognostic Variables Step40: 8.5. Was Flux Correction Used Step41: 9. Grid Step42: 10. Grid --&gt; Discretisation --&gt; Vertical Step43: 10.2. Partial Steps Step44: 11. Grid --&gt; Discretisation --&gt; Horizontal Step45: 11.2. Staggering Step46: 11.3. Scheme Step47: 12. Timestepping Framework Step48: 12.2. Diurnal Cycle Step49: 13. Timestepping Framework --&gt; Tracers Step50: 13.2. Time Step Step51: 14. Timestepping Framework --&gt; Baroclinic Dynamics Step52: 14.2. Scheme Step53: 14.3. Time Step Step54: 15. Timestepping Framework --&gt; Barotropic Step55: 15.2. Time Step Step56: 16. Timestepping Framework --&gt; Vertical Physics Step57: 17. Advection Step58: 18. Advection --&gt; Momentum Step59: 18.2. Scheme Name Step60: 18.3. ALE Step61: 19. Advection --&gt; Lateral Tracers Step62: 19.2. Flux Limiter Step63: 19.3. Effective Order Step64: 19.4. Name Step65: 19.5. Passive Tracers Step66: 19.6. Passive Tracers Advection Step67: 20. Advection --&gt; Vertical Tracers Step68: 20.2. Flux Limiter Step69: 21. Lateral Physics Step70: 21.2. Scheme Step71: 22. Lateral Physics --&gt; Momentum --&gt; Operator Step72: 22.2. Order Step73: 22.3. Discretisation Step74: 23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff Step75: 23.2. Constant Coefficient Step76: 23.3. Variable Coefficient Step77: 23.4. Coeff Background Step78: 23.5. Coeff Backscatter Step79: 24. Lateral Physics --&gt; Tracers Step80: 24.2. Submesoscale Mixing Step81: 25. Lateral Physics --&gt; Tracers --&gt; Operator Step82: 25.2. Order Step83: 25.3. Discretisation Step84: 26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff Step85: 26.2. Constant Coefficient Step86: 26.3. Variable Coefficient Step87: 26.4. Coeff Background Step88: 26.5. Coeff Backscatter Step89: 27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity Step90: 27.2. Constant Val Step91: 27.3. Flux Type Step92: 27.4. Added Diffusivity Step93: 28. Vertical Physics Step94: 29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details Step95: 30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers Step96: 30.2. Closure Order Step97: 30.3. Constant Step98: 30.4. Background Step99: 31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum Step100: 31.2. Closure Order Step101: 31.3. Constant Step102: 31.4. Background Step103: 32. Vertical Physics --&gt; Interior Mixing --&gt; Details Step104: 32.2. Tide Induced Mixing Step105: 32.3. Double Diffusion Step106: 32.4. Shear Mixing Step107: 33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers Step108: 33.2. Constant Step109: 33.3. Profile Step110: 33.4. Background Step111: 34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum Step112: 34.2. Constant Step113: 34.3. Profile Step114: 34.4. Background Step115: 35. Uplow Boundaries --&gt; Free Surface Step116: 35.2. Scheme Step117: 35.3. Embeded Seaice Step118: 36. Uplow Boundaries --&gt; Bottom Boundary Layer Step119: 36.2. Type Of Bbl Step120: 36.3. Lateral Mixing Coef Step121: 36.4. Sill Overflow Step122: 37. Boundary Forcing Step123: 37.2. Surface Pressure Step124: 37.3. Momentum Flux Correction Step125: 37.4. Tracers Flux Correction Step126: 37.5. Wave Effects Step127: 37.6. River Runoff Budget Step128: 37.7. Geothermal Heating Step129: 38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction Step130: 39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction Step131: 40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration Step132: 40.2. Ocean Colour Step133: 40.3. Extinction Depth Step134: 41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing Step135: 41.2. From Sea Ice Step136: 41.3. Forced Mode Restoring
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'cmcc', 'cmcc-cm2-sr5', 'ocean') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OGCM" # "slab ocean" # "mixed layer ocean" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Primitive equations" # "Non-hydrostatic" # "Boussinesq" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # "Salinity" # "U-velocity" # "V-velocity" # "W-velocity" # "SSH" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Wright, 1997" # "Mc Dougall et al." # "Jackett et al. 2006" # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Practical salinity Sp" # "Absolute salinity Sa" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pressure (dbars)" # "Depth (meters)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Present day" # "21000 years BP" # "6000 years BP" # "LGM" # "Pliocene" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Enstrophy" # "Salt" # "Volume of ocean" # "Momentum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Z-coordinate" # "Z*-coordinate" # "S-coordinate" # "Isopycnic - sigma 0" # "Isopycnic - sigma 2" # "Isopycnic - sigma 4" # "Isopycnic - other" # "Hybrid / Z+S" # "Hybrid / Z+isopycnic" # "Hybrid / other" # "Pressure referenced (P)" # "P*" # "Z**" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Lat-lon" # "Rotated north pole" # "Two north poles (ORCA-style)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa E-grid" # "N/a" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite difference" # "Finite volumes" # "Finite elements" # "Unstructured grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Via coupling" # "Specific treatment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Preconditioned conjugate gradient" # "Sub cyling" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "split explicit" # "implicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flux form" # "Vector form" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.ALE') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ideal age" # "CFC 11" # "CFC 12" # "SF6" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Eddy active" # "Eddy admitting" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "GM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Non-penetrative convective adjustment" # "Enhanced vertical diffusion" # "Included in turbulence closure" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear implicit" # "Linear filtered" # "Linear semi-explicit" # "Non-linear implicit" # "Non-linear filtered" # "Non-linear semi-explicit" # "Fully explicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diffusive" # "Acvective" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Non-linear" # "Non-linear (drag function of speed of tides)" # "Constant drag coefficient" # "None" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Free-slip" # "No-slip" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "1 extinction depth" # "2 extinction depth" # "3 extinction depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Real salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example Data (centered Quadratic) Step2: Simple Feed-Foward 1-Layer Neural Networks Step3: Let's visualize the inputs to the final layer Step4: hmm, maybe not enough hidden nodes to get the nonlinearity, try 10 Step5: Ok, it learned better and faster, let's see fewer training epochs per line Step6: WTF? ... oh, right .... we are using a local optimizer so we get local optima
<ASSISTANT_TASK:> Python Code: ## Setup the path for our codebase import sys sys.path.append( '../code/' ) %matplotlib inline import matplotlib.pyplot as plt import neural_network.simple as simple data = simple.generate_hill_data(100) xs = map(lambda z: z[0], data) ys = map(lambda z: z[1], data) plt.plot( xs, ys ) nn = simple.SimpleScalarF_1Layer(hidden_layer_size=3) simple.plot_fits( nn, data, train_epochs=200 ) nn.visualize_inputs_to_final_layer(data) nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10) simple.plot_fits( nn, data, train_epochs=200 ) nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10,learning_rate=0.001) simple.plot_fits( nn, data, train_epochs=20 ) nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10,learning_rate=0.001) simple.plot_fits( nn, data, train_epochs=20 ) nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10,learning_rate=0.001) simple.plot_fits( nn, data, train_epochs=2000 ) nn.visualize_inputs_to_final_layer(data) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's take the covariance of two closely related variables, $X$ and $Y$. Say that $X$ is some randomly drawn set and that $Y = 5X + \epsilon$, where $\epsilon$ is some extra noise. We can compute the covariance using the formula above to get a clearer picture of how $X$ evolves with respect to asset $Y$. Step2: We can also compute the covariance between $X$ and $Y$ with a single function. Step3: This gives us the covariance matrix between $X$ and $Y$. The diagonals are their respective variances and the indices $(i, j)$ refer to the covariance between assets indexed $i$ and $j$. Step4: In this case, we only have two assets so we only have indices $(0, 1)$ and $(1, 0)$. Covariance matrices are symmetric, since $COV(X, Y) = COV(Y, X)$, which is why the off-diagonals mirror each other. Step5: Between the covariance, the linear regression, and our knowledge of how $X$ and $Y$ are related, we can easily assess the relationship between our toy variables. With real data, there are two main complicating factors. The first is that we are exmaining significantly more relationships. The second is that we do not know any of their underlying relationships. These hindrances speak to the benefit of having accurate estimates of covariance matrices. Step6: Why does all this matter? Step7: Here we calculate the in-sample Ledoit-Wolf estimator. Step8: Calculating Errors Step9: Comparing to Sample Matrix Step10: We can see that the improvement of Ledoit-Wolf over the sample covariance is pretty solid. This translates into decreased volatility and turnover rate in our portfolio, and thus increased returns when using the shrunk covariance matrix. Step11: Adding More Assets Step12: Here we calculate our different covariance estimates. Step13: Here we calculate the error for each time period. Step14: And here we plot the errors over time!
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats from sklearn import covariance # Generate random values of x X = np.random.normal(size = 1000) epsilon = np.random.normal(0, 3, size = len(X)) Y = 5*X + epsilon product = (X - np.mean(X))*(Y - np.mean(Y)) expected_value = np.mean(product) print 'Value of the covariance between X and Y:', expected_value np.cov([X, Y]) print np.var(X), np.var(Y) # scatter plot of X and y from statsmodels import regression import statsmodels.api as sm def linreg(X,Y): # Running the linear regression X = sm.add_constant(X) model = regression.linear_model.OLS(Y, X).fit() a = model.params[0] b = model.params[1] X = X[:, 1] # Return summary of the regression and plot results X2 = np.linspace(X.min(), X.max(), 100) Y_hat = X2 * b + a plt.scatter(X, Y, alpha=0.3) # Plot the raw data plt.plot(X2, Y_hat, 'r', alpha=0.9); # Add the regression line, colored in red plt.xlabel('X Value') plt.ylabel('Y Value') return model.summary() linreg(X, Y) plt.scatter(X, Y) plt.title('Scatter plot and linear equation of x as a function of y') plt.xlabel('X') plt.ylabel('Y') plt.legend(['Linear equation', 'Scatter Plot']); # Four asset example of the covariance matrix. start_date = '2016-01-01' end_date = '2016-02-01' returns = get_pricing( ['SBUX', 'AAPL', 'GS', 'GILD'], start_date=start_date, end_date=end_date, fields='price' ).pct_change()[1:] returns.columns = map(lambda x: x.symbol, returns.columns) print 'Covariance matrix:' print returns.cov() # Getting the return data of assets. start = '2016-01-01' end = '2016-02-01' symbols = ['AAPL', 'MSFT', 'BRK-A', 'GE', 'FDX', 'SBUX'] prices = get_pricing(symbols, start_date = start, end_date = end, fields = 'price') prices.columns = map(lambda x: x.symbol, prices.columns) returns = prices.pct_change()[1:] returns.head() in_sample_lw = covariance.ledoit_wolf(returns)[0] print in_sample_lw oos_start = '2016-02-01' oos_end = '2016-03-01' oos_prices = get_pricing(symbols, start_date = oos_start, end_date = oos_end, fields = 'price') oos_prices.columns = map(lambda x: x.symbol, oos_prices.columns) oos_returns = oos_prices.pct_change()[1:] out_sample_lw = covariance.ledoit_wolf(oos_returns)[0] lw_errors = sum(abs(np.subtract(in_sample_lw, out_sample_lw))) print "Average Ledoit-Wolf error: ", np.mean(lw_errors) sample_errors = sum(abs(np.subtract(returns.cov().values, oos_returns.cov().values))) print 'Average sample covariance error: ', np.mean(sample_errors) print 'Error improvement of LW over sample: {0:.2f}%'.format((np.mean(sample_errors/lw_errors)-1)*100) sns.boxplot( data = pd.DataFrame({ 'Sample Covariance Error': sample_errors, 'Ledoit-Wolf Error': lw_errors }) ) plt.title('Box Plot of Errors') plt.ylabel('Error'); start_date = '2016-01-01' end_date = '2017-06-01' symbols = [ 'SPY', 'XLF', 'XLE', 'XLU','XLK', 'XLI', 'XLB', 'GE', 'GS', 'BRK-A', 'JPM', 'AAPL', 'MMM', 'BA', 'CSCO','KO', 'DIS','DD', 'XOM', 'INTC', 'IBM', 'NKE', 'MSFT', 'PG', 'UTX', 'HD', 'MCD', 'CVX', 'AXP','JNJ', 'MRK', 'CAT', 'PFE', 'TRV', 'UNH', 'WMT', 'VZ', 'QQQ', 'BAC', 'F', 'C', 'CMCSA', 'MS', 'ORCL', 'PEP', 'HON', 'GILD', 'LMT', 'UPS', 'HP', 'FDX', 'GD', 'SBUX' ] prices = get_pricing(symbols, start_date=start_date, end_date=end_date, fields='price') prices.columns = map(lambda x: x.symbol, prices.columns) returns = prices.pct_change()[1:] dates = returns.resample('M').first().index sample_covs = [] lw_covs = [] for i in range(1, len(dates)): sample_cov = returns[dates[i-1]:dates[i]].cov().values sample_covs.append(sample_cov) lw_cov = covariance.ledoit_wolf(returns[dates[i-1]:dates[i]])[0] lw_covs.append(lw_cov) lw_diffs = [] for pair in zip(lw_covs[:-1], lw_covs[1:]): diff = np.mean(np.sum(np.abs(pair[0] - pair[1]))) lw_diffs.append(diff) sample_diffs = [] for pair in zip(sample_covs[:-1], sample_covs[1:]): diff = np.mean(np.sum(np.abs(pair[0] - pair[1]))) sample_diffs.append(diff) plt.plot(dates[2:], lw_diffs) plt.plot(dates[2:], sample_diffs) plt.xlabel('Time') plt.ylabel('Mean Error') plt.legend(['Ledoit-Wolf Errors', 'Sample Covariance Errors']); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: SPARQL from Python Step4: Querying Wikidata Step5: Let's use pandas to review the results as a dataframe
<ASSISTANT_TASK:> Python Code: from SPARQLWrapper import SPARQLWrapper, JSON # Specify the DBPedia endpoint sparql = SPARQLWrapper("http://dbpedia.org/sparql") # Query for the description of "Capsaicin", filtered by language sparql.setQuery( PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> SELECT ?comment WHERE { <http://dbpedia.org/resource/Capsaicin> rdfs:comment ?comment FILTER (LANG(?comment)='en') } ) # Convert results to JSON format sparql.setReturnFormat(JSON) result = sparql.query().convert() # The return data contains "bindings" (a list of dictionaries) for hit in result["results"]["bindings"]: # We want the "value" attribute of the "comment" field print(hit["comment"]["value"]) sparql = SPARQLWrapper("https://query.wikidata.org/sparql") # Below we SELECT both the hot sauce items & their labels # in the WHERE clause we specify that we want labels as well as items sparql.setQuery( SELECT ?item ?itemLabel WHERE { ?item wdt:P279 wd:Q522171. SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". } } ) sparql.setReturnFormat(JSON) results = sparql.query().convert() import pandas as pd results_df = pd.io.json.json_normalize(results['results']['bindings']) results_df[['item.value', 'itemLabel.value']] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The first thing we do in the analysis is we create a new SMPS object with the DMA instance we wish to use. Here, we also set the initial directory to search for SMPS data. When a new SMPS object is created, an open file dialog window will be produced and the user may select one or many files to analyze. The file names will be stored in the SMPS attribute files. Step2: Determining the Lag Step3: Processing the Files Step4: Charge Correction Step5: Use of the SizeDistr Object Step6: In addition, we will need to convert the bin centers produced by the SMPS object to bin edges. To do this, we will make the simple assumption that the bin edges are just the halfway points between the centers. For the edge cases, we will simply take the difference between the smallest bin center and the halfway point between the first and second bin centers and subtract this value from the smallest diameter. Similarly, for the largest diameter, we will take the difference between the halfway point between the largest and second largest bin centers and the largest bin center and add it to the largest bin center. Step7: Once we have the corresponding SizeDistr object, we can now change the current distribution which is in $dN/d\log D_p$ space and change this to a surface area distribution in log space. This will produce a new object that we will call sfSD. Step8: To get an overall view, we can further manipulate the data to produce average distributions from the entire time series.
<ASSISTANT_TASK:> Python Code: from atmPy.instruments.DMA import smps from atmPy.instruments.DMA import dma from matplotlib import colors import matplotlib.pyplot as plt from numpy import meshgrid import numpy as np import pandas as pd from matplotlib.dates import date2num from matplotlib import dates from atmPy import sizedistribution as sd %matplotlib inline hagis = smps.SMPS(dma.NoaaWide(),scan_folder="C:/Users/mrichardson/Documents/HAGIS/SMPS/Scans") hagis.getLag(10, delta=10) hagis.lag = 10 hagis.proc_files() hagis.date index = [] for i,e in enumerate(hagis.date): if e is None: index.append(i) print(index) if index: hagis.date = np.delete(hagis.date, index) hagis.dn_interp = np.delete(hagis.dn_interp,index, axis=0) xfmt = dates.DateFormatter('%m/%d %H:%M') xi = date2num(hagis.date) XI, YI = meshgrid(xi, hagis.diam_interp) #XI = dates.datetime.datetime.fromtimestamp(XI) Z = hagis.dn_interp.transpose() Z[np.where(Z <= 0)] = np.nan pmax = 1e6 # 10**np.ceil(np.log10(np.amax(Z[np.where(Z > 0)]))) pmin = 1 #10**np.floor(np.log10(np.amin(Z[np.where(Z > 0)]))) fig, ax = plt.subplots() pc = ax.pcolor(XI, YI, Z, cmap=plt.cm.jet, norm=colors.LogNorm(pmin, pmax, clip=False), alpha=0.8) plt.colorbar(pc) plt.yscale('log') plt.ylim(5, 1000) ax.xaxis.set_major_formatter(xfmt) fig.autofmt_xdate() fig.tight_layout() dataframe = pd.DataFrame(hagis.dn_interp) dataframe.index = hagis.date binedges = (hagis.diam_interp[1:]+hagis.diam_interp[:-1])/2 first = hagis.diam_interp[0] -(binedges[0]-hagis.diam_interp[0]) last = hagis.diam_interp[-1]+ (hagis.diam_interp[-1]-binedges[-1]) binedges = np.append([first],binedges) binedges=np.append(binedges,[last]) sizeDistr = sd.SizeDist_TS(dataframe,binedges, 'dNdlogDp') f,a,b,c = sizeDistr.plot(vmax = pmax, vmin = pmin, norm='log', showMinorTickLabels=False, cmap=plt.cm.jet) a.set_ylim((5,1000)) sfSD = sizeDistr.convert2dSdlogDp() from imp import reload reload(sd) f,a,b,c = sfSD.plot(vmax = 1e10, vmin = 1e4, norm='log', showMinorTickLabels=False,removeTickLabels=['200','300','400',] ,cmap =plt.cm.jet) a.set_ylim((5,1000)) avgAt = sizeDistr.average_overAllTime() f,a = avgAt.plot(norm='log') # a.set_yscale('log') avgAtS = sfSD.average_overAllTime() f,a= avgAtS.plot(norm='log') a.set_yscale('log') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This is where and when the notebook was run Step2: First lets set the output path for where we want our plots to be saved and the database path and see what tables it contains Step3: This code adds a button to see/hide code in html Step4: The code below provides functions for accessing the project database and extract a table names so you can see what tables have been loaded into the database and are available for plotting. It also has a function for geting table from the database and indexing the table with the track name Step5: Number of reads per samples Step6: This should give you a good idea of Step7: Lets graph the number of reads that remain at each step for each bam file Step8: Now lets look at the number of reads filtered at each step side by side - this uses R for plotting Step9: Now have a look at the percentage of reads remaining at each stage of filtering Step10: Now lets get the number of reads that are filtered out at each stage of the filtering by subtracting the number of reads at the filtering stage of interest from the number of reads in the stage prior to the filter of interst being applied Step11: Now lets plot the number of reads reamining at each filtering step side by side Step12: Now lets get the percentage of reads removed at each filtering step Step13: Great thats all the filtering stats done by now you should have a good idea about
<ASSISTANT_TASK:> Python Code: import sqlite3 import pandas as pd import numpy as np %matplotlib inline import matplotlib import numpy as np import matplotlib.pyplot as plt import CGATPipelines.Pipeline as P import os import statistics import collections #load R and the R packages required # use these functions to display tables nicely as html from IPython.display import display, HTML plt.style.use('ggplot') %load_ext rpy2.ipython %R require(ggplot2) !pwd !date database_path = '../csvdb' output_path = '.' HTML('''<script> code_show=true; function code_toggle() { if (code_show){ $('div.input').hide(); } else { $('div.input').show(); } code_show = !code_show } $( document ).ready(code_toggle); </script> <form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''') def getTableNamesFromDB(database_path): # Create a SQL connection to our SQLite database con = sqlite3.connect(database_path) cur = con.cursor() # the result of a "cursor.execute" can be iterated over by row cur.execute("SELECT name FROM sqlite_master WHERE type='table' ORDER BY name;") available_tables = (cur.fetchall()) #Be sure to close the connection. con.close() return available_tables db_tables = getTableNamesFromDB(database_path) print('Tables contained by the database:') for x in db_tables: print('\t\t%s' % x[0]) #This function retrieves a table from sql database and indexes it with track name def getTableFromDB(statement,database_path): '''gets table from sql database depending on statement and set track as index if contains track in column names''' conn = sqlite3.connect(database_path) df = pd.read_sql_query(statement,conn) if 'track' in df.columns: df.index = df['track'] return df #get table of bam file size filtering_stats = getTableFromDB('select * from post_filtering_read_counts;',database_path) filtering_stats.index = filtering_stats['Input_Bam'] filtering_stats.drop('Input_Bam',1,inplace=True) #sort dataframe by values in rows to get order filters were applied #this is based on the number of reads in each row new_cols = filtering_stats.columns[filtering_stats.ix[filtering_stats.last_valid_index()].argsort()] filtering_stats = filtering_stats[new_cols[::-1]] #get number of reads in the bams before and after filtering - smallest_col = last filtering step applied smallest_col = filtering_stats.idxmin(axis=1)[1] #plot bar graph of pre vs post filtering sizes ax = filtering_stats[['pre_filtering',smallest_col]].divide(1000000).plot.bar() ax.set_ylabel('Million Reads (not pairs)') ax.legend(['pre_filtering','post_filtering'], loc=2,bbox_to_anchor=(1.05, 1),borderaxespad=0. ) ax.set_title('number of reads (not pairs) pre and post filtering') #get the order of filters applied def get_filter_order(dataframe): '''function to print out the order of filters in dataframe''' print('order of filters applied to bam file:') for x in list(dataframe): if x != 'pre_filtering': print ('\t%s' % x) return list(dataframe) filter_order = get_filter_order(filtering_stats) print('Table of number of reads remaining at each state of filtering ') display(filtering_stats.T) #plot how the reads have been filtered ax = filtering_stats.T.divide(1000000).plot(rot=90) ax.set_xlabel('filters') ax.set_ylabel('million reads (not pairs)') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('number of reads remaining at\neach stage of filtering') filtered_df = filtering_stats.copy() filtered_df = filtered_df.divide(1000000) filtered_df['Name'] = filtered_df.index %%R -i filtered_df -w 600 -h 600 -u px library("reshape2") filtered_df$Name <- factor(filtered_df$Name) df.m = melt(filtered_df) cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7") ## pink #CC79A7 # orange #D55E00 # 0072B2 blue # yellow #F0E442 # green #009E73 # light blue g = ggplot(data=df.m, aes(factor(Name), y=value,fill=variable)) + labs(title="Number of individual reads remaining after each filtering step") + geom_bar(stat="identity",position="dodge", width=0.7) + scale_fill_manual(values=cbPalette) + theme_bw() g + scale_y_continuous(name="million reads remaining \n (individual reads not pairs)") + theme(plot.title=element_text(size=16, hjust=0.5, face='bold'), legend.position="top",axis.text=element_text(size=15,face='bold'),axis.text.x=element_text(size=15,face='bold',angle=90),axis.title.x=element_blank(),axis.title.y=element_text(size=10,face='bold')) #Make percentage of reads dataframe percentage_filtered_df = filtering_stats.copy() percentage_filtered_df = percentage_filtered_df.div(percentage_filtered_df.pre_filtering, axis='index')*100 percentage_filtered_df = percentage_filtered_df.round(3) percentage_filtered_df['Name']= percentage_filtered_df.index print('Table showing the percentage of reads remaining at each filtering step') percentage_filtered_df.T %%R -i percentage_filtered_df -w 600 -h 600 -u px library("reshape2") percentage_filtered_df$Name <- factor(percentage_filtered_df$Name) df.m = melt(percentage_filtered_df) cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7") ## pink #CC79A7 # orange #D55E00 # 0072B2 blue # yellow #F0E442 # green #009E73 # light blue g = ggplot(data=df.m, aes(factor(Name), y=value,fill=variable)) + labs(title="Percentage of reads remaining after each filtering step") + geom_bar(stat="identity",position="dodge", width=0.7) + scale_fill_manual(values=cbPalette) + theme_bw() g + scale_y_continuous(name="Percentage reads remaining") + theme(plot.title=element_text(size=16, hjust=0.5, face='bold'), legend.position="top",axis.text=element_text(size=15,face='bold'),axis.text.x=element_text(size=15,face='bold',angle=90),axis.title.x=element_blank(),axis.title.y=element_text(size=10,face='bold')) #Get number of reads removed by each stage of filtering order_of_filters = get_filter_order(filtering_stats) df_reads_removed = pd.DataFrame(index=filtering_stats.index) for loc in range(len(order_of_filters)): filt = order_of_filters[loc] if filt == 'pre_filtering': df_reads_removed['total_reads'] = filtering_stats['pre_filtering'] else: previous_filter_step = order_of_filters[loc-1] #print("calcultation number removed by %s filtering step by doing number of reads in %s - number of reads in %s column \n" % (filt, previous_filter_step, filt)) df_reads_removed['removed_by_%s_filter' % filt] = filtering_stats[previous_filter_step] - filtering_stats[filt] print('\n\nTable shown as million reads removed by each filter:') display(df_reads_removed.T.divide(1000000)) #plot how the reads have been filtered ax = df_reads_removed.divide(1000000).plot(rot=90) ax.set_xlabel('filters') ax.set_ylabel('million reads removed (not pairs)') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('number of reads removed at each stage of filtering') ax = df_reads_removed.T.divide(1000000).plot(rot=90) ax.set_xlabel('filters') ax.set_ylabel('million reads removed (not pairs)') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('number of reads removed at each stage of filtering') ax = df_reads_removed.T.divide(1000000).drop('total_reads').plot(rot=90,kind='bar') ax.set_xlabel('filters') ax.set_ylabel('million reads removed (not pairs)') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('number of reads removed at each stage of filtering') df_reads_removed_mills = df_reads_removed.divide(1000000) df_reads_removed_mills['Name'] = df_reads_removed_mills.index %%R -i df_reads_removed_mills -w 900 -h 800 -u px library("reshape2") df_reads_removed_mills$Name <- factor(df_reads_removed_mills$Name) df.m = melt(df_reads_removed_mills) cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7") ## pink #CC79A7 # orange #D55E00 # 0072B2 blue # yellow #F0E442 # green #009E73 # light blue g = ggplot(data=df.m, aes(factor(Name), y=value,fill=variable)) + labs(title="Number of reads remaining after each filtering step") + geom_bar(stat="identity",position="dodge", width=0.7) + scale_fill_manual(values=cbPalette) + theme_bw() g + scale_y_continuous(name="Number of reads filtered at each step") + theme(plot.title=element_text(size=16, hjust=0.5, face='bold'), legend.position='top',axis.text=element_text(size=15,face='bold'),axis.text.x=element_text(size=15,face='bold',angle=90),axis.title.x=element_blank(),axis.title.y=element_text(size=10,face='bold')) #Get number of reads removed by each stage of filtering percentage_filtered_df = percentage_filtered_df.drop('Name',axis=1) order_of_filters = get_filter_order(percentage_filtered_df) df_percentreads_removed = pd.DataFrame(index=percentage_filtered_df.index) for loc in range(len(order_of_filters)): filt = order_of_filters[loc] if filt == 'pre_filtering': df_percentreads_removed['total_reads'] = percentage_filtered_df['pre_filtering'] else: previous_filter_step = order_of_filters[loc-1] #print("calcultation number removed by %s filtering step by doing number of reads in %s - number of reads in %s column \n" % (filt, previous_filter_step, filt)) df_percentreads_removed['removed_by_%s_filter' % filt] = percentage_filtered_df[previous_filter_step] - percentage_filtered_df[filt] print('\n\nTable shown as million reads removed by each filter:') display(df_percentreads_removed.T) #plot how the reads have been filtered ax = df_percentreads_removed.plot(rot=90) ax.set_xlabel('bam file') ax.set_ylabel('percentage reads removed (not pairs)') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('percentage of reads removed at each stage of filtering') ax = df_percentreads_removed.T.plot(rot=90) ax.set_xlabel('filters') ax.set_ylabel('percentage reads removed (not pairs)') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('percentage of reads removed at each stage of filtering') ax = df_percentreads_removed.T.drop('total_reads').plot(rot=90,kind='bar') ax.set_xlabel('filters') ax.set_ylabel('percentage reads removed (not pairs)') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('percentage of reads removed at each stage of filtering') df_percentreads_removed['Name'] = df_percentreads_removed.index %%R -i df_percentreads_removed -w 900 -h 800 -u px library("reshape2") df_percentreads_removed$Name <- factor(df_percentreads_removed$Name) df.m = melt(df_percentreads_removed) cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7") ## pink #CC79A7 # orange #D55E00 # 0072B2 blue # yellow #F0E442 # green #009E73 # light blue g = ggplot(data=df.m, aes(factor(Name), y=value,fill=variable)) + labs(title="Percentage of reads remaining after each filtering step") + geom_bar(stat="identity",position="dodge", width=0.7) + scale_fill_manual(values=cbPalette) + theme_bw() g + scale_y_continuous(name="Number of reads filtered at each step") + theme(plot.title=element_text(size=16, hjust=0.5, face='bold'), legend.position='top',axis.text=element_text(size=15,face='bold'),axis.text.x=element_text(size=15,face='bold',angle=90),axis.title.x=element_blank(),axis.title.y=element_text(size=10,face='bold')) filtering_stats['NRF'] = filtering_stats.duplicates/filtering_stats.pre_filtering filtering_stats <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Création d'un dataframe à partir d'un itérateur Step2: On compare plusieurs constructions Step3: On décompose Step4: D'après ces temps, pandas convertit probablement l'itérateur en liste. On essaye de créer le dataframe vide, puis avec la méthode from_records. Step5: Création d'un array à partir d'un itérateur Step6: Et si on ne précise pas la taille du tableau créé avec la fonction fromiter
<ASSISTANT_TASK:> Python Code: from jyquickhelper import add_notebook_menu add_notebook_menu() import random def enumerate_row(nb=10000, n=10): for i in range(nb): # on retourne un tuple, les données sont # plus souvent recopiées car le type est immuable yield tuple(random.random() for k in range(n)) # on retourne une liste, ces listes ne sont pas # recopiées en général, seule la liste qui les tient # l'est # yield list(random.random() for k in range(n)) list(enumerate_row(2)) import pandas nb, n = 10, 10 df = pandas.DataFrame(enumerate_row(nb=nb, n=n), columns=["c%d" % i for i in range(n)]) df.head() nb, n =100000, 10 print(nb,n) %timeit pandas.DataFrame(enumerate_row(nb=nb,n=n), columns=["c%d" % i for i in range(n)]) print(nb,n) %timeit pandas.DataFrame(list(enumerate_row(nb=nb,n=n)), columns=["c%d" % i for i in range(n)]) def cache(): return list(enumerate_row(nb=nb,n=n)) print(nb,n) %timeit cache() print(nb,n) l = list(enumerate_row(nb=nb,n=n)) %timeit pandas.DataFrame(l, columns=["c%d" % i for i in range(n)]) %timeit pandas.DataFrame(columns=["c%d" % i for i in range(n)], index=range(n)) def create_df3(): return pandas.DataFrame.from_records(enumerate_row(nb=nb,n=n), columns=["c%d" % i for i in range(n)]) print(nb,n) %timeit create_df3() def enumerate_row2(nb=10000, n=10): for i in range(nb): for k in range(n): yield random.random() import numpy nb,n = 100000, 10 # on précise la taille du tableau car cela évite à numpy d'agrandir le tableau # au fur et à mesure, ceci ne fonctionne pas print(nb,n) m = numpy.fromiter(enumerate_row2(nb=nb,n=n), float, nb*n) m.resize((nb,n)) m [:5,:] def create_array(): m = numpy.fromiter(enumerate_row2(nb=nb,n=n), float, nb*n) m.resize((nb,n)) return m print(nb,n) %timeit create_array() def create_array2(): m = list(enumerate_row(nb=nb,n=n)) ml = numpy.array(m, float) return ml print(nb,n) %timeit create_array2() def create_array3(): m = numpy.fromiter(enumerate_row2(nb=nb,n=n), float) m.resize((nb,n)) return m print(nb,n) %timeit create_array3() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define Network Architectures Step2: Setup Step3: Training Step4: Evaluation Step5: If PartialFlow works correctly, the losses should be very similar for both networks. The training processes mainly differ in the initializations and the order of the inputs. Step6: PartialFlow trades additional computation time for lower memory consumption. The time overhead depends on the number and position of splits in the graph. Here, we compare the duration of update operations.
<ASSISTANT_TASK:> Python Code: import tensorflow as tf import numpy as np # load MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) train_images = np.reshape(mnist.train.images, [-1, 28, 28, 1]) train_labels = mnist.train.labels test_images = np.reshape(mnist.test.images, [-1, 28, 28, 1]) test_labels = mnist.test.labels from BasicNets import BatchnormNet def buildSectionNet(sm): batch_size = 250 image, label = tf.train.slice_input_producer([train_images, train_labels]) image_batch, label_batch = tf.train.batch([image, label], batch_size=batch_size) # flag for batch normalization layers is_training = tf.placeholder(name='is_training', shape=[], dtype=tf.bool) net = BatchnormNet(is_training, image_batch) # first network section with initial convolution and three residual blocks with sm.new_section(): with tf.variable_scope('initial_conv'): stream = net.add_conv(net._inputs, n_filters=16) stream = net.add_bn(stream) stream = tf.nn.relu(stream) with tf.variable_scope('scale0'): for i in range(3): with tf.variable_scope('block_%d' % i): stream = net.res_block(stream) # second network section strided convolution to decrease the input resolution #with sm.new_section(): with tf.variable_scope('scale1'): stream = net.res_block(stream, filters_factor=2, first_stride=2) for i in range(2): with tf.variable_scope('block_%d' % i): stream = net.res_block(stream) # third network section with sm.new_section(): with tf.variable_scope('scale2'): stream = net.res_block(stream, filters_factor=2, first_stride=2) for i in range(4): with tf.variable_scope('block_%d' % i): stream = net.res_block(stream) # fourth network section with final pooling and cross-entropy loss #with sm.new_section(): with tf.variable_scope('final_pool'): # global average pooling over image dimensions stream = tf.reduce_mean(stream, axis=2) stream = tf.reduce_mean(stream, axis=1) # final conv for classification stream = net.add_fc(stream, out_dims=10) with tf.variable_scope('loss'): loss = tf.nn.softmax_cross_entropy_with_logits(stream, label_batch) loss = tf.reduce_mean(loss) return loss, is_training def buildBasicNet(): batch_size = 250 image, label = tf.train.slice_input_producer([train_images, train_labels]) image_batch, label_batch = tf.train.batch([image, label], batch_size=batch_size) # flag for batch normalization layers is_training = tf.placeholder(name='is_training', shape=[], dtype=tf.bool) net = BatchnormNet(is_training, image_batch) # first network section with initial convolution and three residual blocks with tf.variable_scope('initial_conv'): stream = net.add_conv(net._inputs, n_filters=16) stream = net.add_bn(stream) stream = tf.nn.relu(stream) with tf.variable_scope('scale0'): for i in range(3): with tf.variable_scope('block_%d' % i): stream = net.res_block(stream) # second network section strided convolution to decrease the input resolution with tf.variable_scope('scale1'): stream = net.res_block(stream, filters_factor=2, first_stride=2) for i in range(2): with tf.variable_scope('block_%d' % i): stream = net.res_block(stream) # third network section with tf.variable_scope('scale2'): stream = net.res_block(stream, filters_factor=2, first_stride=2) for i in range(4): with tf.variable_scope('block_%d' % i): stream = net.res_block(stream) # fourth network section with final pooling and cross-entropy loss with tf.variable_scope('final_pool'): # global average pooling over image dimensions stream = tf.reduce_mean(stream, axis=2) stream = tf.reduce_mean(stream, axis=1) # final conv for classification stream = net.add_fc(stream, out_dims=10) with tf.variable_scope('loss'): loss = tf.nn.softmax_cross_entropy_with_logits(stream, label_batch) loss = tf.reduce_mean(loss) return loss, is_training from partialflow import GraphSectionManager # construct network with splits sm = GraphSectionManager() with tf.variable_scope('section_net'): loss_sec, is_training_sec = buildSectionNet(sm) opt = tf.train.AdamOptimizer(learning_rate=0.0001) sm.add_training_ops(opt, loss_sec, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES), verbose=False) sm.prepare_training() # construct same network without splits with tf.variable_scope('basic_net'): loss_basic, is_training_basic = buildBasicNet() opt = tf.train.AdamOptimizer(learning_rate=0.0001) grads = opt.compute_gradients(loss_basic, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)) train_op = opt.apply_gradients(grads) # initialize the session sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) _ = tf.train.start_queue_runners(sess=sess) from time import time N = 500 losses = np.zeros([2,N], dtype=np.float32) times = np.zeros([2,N], dtype=np.float32) for i in range(N): start = time() losses[0, i] = sm.run_full_cycle(sess, fetches=loss_sec, basic_feed={is_training_sec:True}) times[0, i] = time() - start start = time() _, losses[1, i] = sess.run([train_op, loss_basic], feed_dict={is_training_basic:True}) times[1, i] = time() - start if i%100 == 0: print('Processed %d/%d batches' % (i,N)) %matplotlib inline import matplotlib.pyplot as plt plt.plot(losses.T) plt.xlabel('Batch') plt.ylabel('Loss') _ = plt.legend(['with PartialFlow', 'without PartialFlow']) plt.plot(times.T) plt.xlabel('Batch') plt.ylabel('Duration of Batch [s]') _ = plt.legend(['with PartialFlow', 'without PartialFlow']) plt.plot(times[0]/times[1] - 1) plt.xlabel('Batch') _ = plt.ylabel('Relative Overhead') print('Mean relative overhead: %.5f' % (np.mean(times[0]/times[1])-1)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Métodos
<ASSISTANT_TASK:> Python Code: # Versão da Linguagem Python from platform import python_version print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version()) # Criando uma classe chamada Circulo class Circulo(): # O valor de pi é constante pi = 3.14 # Quando um objeto desta classe for criado, este método será executado e o valor default do raio será 5. def __init__(self, raio = 5): self.raio = raio # Esse método calcula a área. Self utiliza os atributos deste mesmo objeto def area(self): return (self.raio * self.raio) * Circulo.pi # Método para gerar um novo raio def setRaio(self, novo_raio): self.raio = novo_raio # Método para obter o raio do círculo def getRaio(self): return self.raio # Criando o objeto circ. Uma instância da classe Circulo() circ = Circulo() # Executando um método da classe Circulo circ.getRaio() # Criando outro objeto chamado circ1. Uma instância da classe Circulo() # Agora sobrescrevendo o valor do atributo circ1 = Circulo(7) # Executando um método da classe Circulo circ1.getRaio() # Imprimindo o raio print ('O raio é: ', circ.getRaio()) # Imprimindo a area print('Area igual a: ', circ.area()) # Gerando um novo valor para o raio do círculo circ.setRaio(3) # Imprimindo o novo raio print ('Novo raio igual a: ', circ.getRaio()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Gaussian Blur Step2: 3x3 Image Kernels Step4: Wavelet Decomposition
<ASSISTANT_TASK:> Python Code: from timeit import default_timer as timer from bokeh.plotting import figure, show, output_notebook from bokeh.models import GlyphRenderer, LinearColorMapper from bokeh.io import push_notebook from numba import jit, njit from ipywidgets import interact import numpy as np import scipy.misc output_notebook() # smaller image img_blur = (scipy.misc.ascent()[::-1,:]/255.0)[:250, :250].copy(order='C') palette = ['#%02x%02x%02x' %(i,i,i) for i in range(256)] width, height = img_blur.shape p_blur = figure(x_range=(0, width), y_range=(0, height)) r_blur = p_blur.image(image=[img_blur], x=[0], y=[0], dw=[width], dh=[height], palette=palette, name='blur') @njit def blur(outimg, img, amt): iw, ih = img.shape for i in range(amt, iw-amt): for j in range(amt, ih-amt): px = 0. for w in range(-amt//2, amt//2): for h in range(-amt//2, amt//2): px += img[i+w, j+h] outimg[i, j]= px/(amt*amt) def update(i=0): level = 2*i + 1 out = img_blur.copy() ts = timer() blur(out, img_blur, level) te = timer() print('blur takes:', te - ts) renderer = p_blur.select(dict(name="blur", type=GlyphRenderer)) r_blur.data_source.data['image'] = [out] push_notebook(handle=t_blur) t_blur = show(p_blur, notebook_handle=True) interact(update, i=(0, 10)) @jit def getitem(img, x, y): w, h = img.shape if x >= w: x = w - 1 - (x - w) if y >= h: y = h - 1 - (y - h) return img[x, y] def filter_factory(kernel): ksum = np.sum(kernel) if ksum == 0: ksum = 1 k9 = kernel / ksum @jit def kernel_apply(img, out, x, y): tmp = 0 for i in range(3): for j in range(3): tmp += img[x+i-1, y+j-1] * k9[i, j] out[x, y] = tmp @jit def kernel_apply_edge(img, out, x, y): tmp = 0 for i in range(3): for j in range(3): tmp += getitem(img, x+i-1, y+j-1) * k9[i, j] out[x, y] = tmp @jit def kernel_k9(img, out): # Loop through all internals for x in range(1, img.shape[0] -1): for y in range(1, img.shape[1] -1): kernel_apply(img, out, x, y) # Loop through all the edges for x in range(img.shape[0]): kernel_apply_edge(img, out, x, 0) kernel_apply_edge(img, out, x, img.shape[1] - 1) for y in range(img.shape[1]): kernel_apply_edge(img, out, 0, y) kernel_apply_edge(img, out, img.shape[0] - 1, y) return kernel_k9 average = np.array([ [1, 1, 1], [1, 1, 1], [1, 1, 1], ], dtype=np.float32) sharpen = np.array([ [-1, -1, -1], [-1, 12, -1], [-1, -1, -1], ], dtype=np.float32) edge = np.array([ [ 0, -1, 0], [-1, 4, -1], [ 0, -1, 0], ], dtype=np.float32) edge_h = np.array([ [ 0, 0, 0], [-1, 2, -1], [ 0, 0, 0], ], dtype=np.float32) edge_v = np.array([ [0, -1, 0], [0, 2, 0], [0, -1, 0], ], dtype=np.float32) gradient_h = np.array([ [-1, -1, -1], [ 0, 0, 0], [ 1, 1, 1], ], dtype=np.float32) gradient_v = np.array([ [-1, 0, 1], [-1, 0, 1], [-1, 0, 1], ], dtype=np.float32) sobol_h = np.array([ [ 1, 2, 1], [ 0, 0, 0], [-1, -2, -1], ], dtype=np.float32) sobol_v = np.array([ [-1, 0, 1], [-2, 0, 2], [-1, 0, 1], ], dtype=np.float32) emboss = np.array([ [-2, -1, 0], [-1, 1, 1], [ 0, 1, 2], ], dtype=np.float32) kernels = { "average" : filter_factory(average), "sharpen" : filter_factory(sharpen), "edge (both)" : filter_factory(edge), "edge (horizontal)" : filter_factory(edge_h), "edge (vertical)" : filter_factory(edge_v), "gradient (horizontal)" : filter_factory(gradient_h), "gradient (vertical)" : filter_factory(gradient_v), "sobol (horizontal)" : filter_factory(sobol_h), "sobol (vertical)" : filter_factory(sobol_v), "emboss" : filter_factory(emboss), } images = { "ascent" : np.copy(scipy.misc.ascent().astype(np.float32)[::-1, :]), "face" : np.copy(scipy.misc.face(gray=True).astype(np.float32)[::-1, :]), } palette = ['#%02x%02x%02x' %(i,i,i) for i in range(256)] cm = LinearColorMapper(palette=palette, low=0, high=256) width, height = images['ascent'].shape p_kernel = figure(x_range=(0, width), y_range=(0, height)) r_kernel = p_kernel.image(image=[images['ascent']], x=[0], y=[0], dw=[width], dh=[height], color_mapper=cm, name="kernel") def update(image="ascent", kernel_name="none", scale=100, bias=0): global _last_kname global _last_out img_kernel = images.get(image) kernel = kernels.get(kernel_name, None) if kernel == None: out = np.copy(img_kernel) else: out = np.zeros_like(img_kernel) ts = timer() kernel(img_kernel, out) te = timer() print('kernel takes:', te - ts) out *= scale / 100.0 out += bias r_kernel.data_source.data['image'] = [out] push_notebook(handle=t_kernel) t_kernel = show(p_kernel, notebook_handle=True) knames = ["none"] + sorted(kernels.keys()) interact(update, image=["ascent" ,"face"], kernel_name=knames, scale=(10, 100, 10), bias=(0, 255)) @njit def wavelet_decomposition(img, tmp): Perform inplace wavelet decomposition on `img` with `tmp` as a temporarily buffer. This is a very simple wavelet for demonstration w, h = img.shape halfwidth, halfheight = w//2, h//2 lefthalf, righthalf = tmp[:halfwidth, :], tmp[halfwidth:, :] # Along first dimension for x in range(halfwidth): for y in range(h): lefthalf[x, y] = (img[2 * x, y] + img[2 * x + 1, y]) / 2 righthalf[x, y] = img[2 * x, y] - img[2 * x + 1, y] # Swap buffer img, tmp = tmp, img tophalf, bottomhalf = tmp[:, :halfheight], tmp[:, halfheight:] # Along second dimension for y in range(halfheight): for x in range(w): tophalf[x, y] = (img[x, 2 * y] + img[x, 2 * y + 1]) / 2 bottomhalf[x, y] = img[x, 2 * y] - img[x, 2 * y + 1] return halfwidth, halfheight img_wavelet = np.copy(scipy.misc.face(gray=True)[::-1, :]) palette = ['#%02x%02x%02x' %(i,i,i) for i in range(256)] width, height = img_wavelet.shape p_wavelet = figure(x_range=(0, width), y_range=(0, height)) r_wavelet = p_wavelet.image(image=[img_wavelet], x=[0], y=[0], dw=[width], dh=[height], palette=palette, name="wavelet") def update(level=0): out = np.copy(img_wavelet) tmp = np.zeros_like(img_wavelet) ts = timer() hw, hh = img_wavelet.shape while level > 0 and hw > 1 and hh > 1: hw, hh = wavelet_decomposition(out[:hw, :hh], tmp[:hw, :hh]) level -= 1 te = timer() print('wavelet takes:', te - ts) r_wavelet.data_source.data['image'] = [out] push_notebook(handle=t_wavelet) t_wavelet = show(p_wavelet, notebook_handle=True) interact(update, level=(0, 7)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Acquiring Data Step2: You should see a DataFrame containing information about iris flowers. Step3: Downloading With Pandas Step4: Kaggle Data Step5: Notice that the file that we loaded was oranges-vs-grapefruit.zip, which is a zip file, not a csv file. Zip files are 'compressed' files. We do this to save space. However, if you were to open oranges-vs-grapefruit.zip in a text editor, you wouldn't be able to read it. Lucky for us, read_csv knows what to do when it receives a compressed file. Step6: Zip is one of many file compression formats, and it is actually more than just a compression format. Remember when we mentioned above that a zip file might contain multiple files? The combining of one or more files is known as archiving. The reduction in size of files is known as compression. Zip is actually an archiving and compression algorithm. Step7: You should see text similar to Step8: You might also be wondering what that KAGGLE_CONFIG_DIR=/content/ in front of the kaggle command was. Step9: And then move the file. Step10: Now you can run the kaggle command without having to set the configuration directory. Step11: Note that you'll have to repeat this process every time your virtual machine resets. The setup will live through reloads though. Step12: Exercise 2
<ASSISTANT_TASK:> Python Code: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd column_names = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'class' ] pd.read_csv('iris.data', names=column_names) import urllib.request import os urllib.request.urlretrieve( 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names', 'iris.names') os.listdir() import pandas as pd column_names = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'class' ] url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' pd.read_csv(url, names=column_names) import pandas as pd pd.read_csv('oranges-vs-grapefruit.zip') import zipfile import os with zipfile.ZipFile('oranges-vs-grapefruit.zip','r') as z: z.extractall('./') os.listdir() ! KAGGLE_CONFIG_DIR=/content/ kaggle datasets download joshmcadams/oranges-vs-grapefruit ! chmod 600 kaggle.json ! ls ~/.kaggle 2>/dev/null || mkdir ~/.kaggle ! mv kaggle.json ~/.kaggle ! kaggle datasets download joshmcadams/oranges-vs-grapefruit # Your code goes here # Your code goes here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: How well are we predicting? Step2: The coefficients of the discrete choice model do not tell us much. What we're after is marginal effects. Step3: The "correct" model here is likely the Tobit model. We have an work in progress branch "tobit-model" on github, if anyone is interested in censored regression models. Step4: Compare the estimates of the Logit Fair model above to a Probit model. Does the prediction table look better? Much difference in marginal effects? Step5: Aside Step6: The number of trials Step7: First differences Step8: The interquartile first difference for the percentage of low income households in a school district is Step9: Plot fitted values vs Pearson residuals Step10: Histogram of standardized deviance residuals with Kernel Density Estimate overlayed Step11: QQ-plot of deviance residuals
<ASSISTANT_TASK:> Python Code: %matplotlib inline from __future__ import print_function import numpy as np from scipy import stats import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.formula.api import logit, probit, poisson, ols print(sm.datasets.fair.SOURCE) print( sm.datasets.fair.NOTE) dta = sm.datasets.fair.load_pandas().data dta['affair'] = (dta['affairs'] > 0).astype(float) print(dta.head(10)) print(dta.describe()) affair_mod = logit("affair ~ occupation + educ + occupation_husb" "+ rate_marriage + age + yrs_married + children" " + religious", dta).fit() print(affair_mod.summary()) affair_mod.pred_table() mfx = affair_mod.get_margeff() print(mfx.summary()) respondent1000 = dta.ix[1000] print(respondent1000) resp = dict(zip(range(1,9), respondent1000[["occupation", "educ", "occupation_husb", "rate_marriage", "age", "yrs_married", "children", "religious"]].tolist())) resp.update({0 : 1}) print(resp) mfx = affair_mod.get_margeff(atexog=resp) print(mfx.summary()) affair_mod.predict(respondent1000) affair_mod.fittedvalues[1000] affair_mod.model.cdf(affair_mod.fittedvalues[1000]) fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) support = np.linspace(-6, 6, 1000) ax.plot(support, stats.logistic.cdf(support), 'r-', label='Logistic') ax.plot(support, stats.norm.cdf(support), label='Probit') ax.legend(); fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) support = np.linspace(-6, 6, 1000) ax.plot(support, stats.logistic.pdf(support), 'r-', label='Logistic') ax.plot(support, stats.norm.pdf(support), label='Probit') ax.legend(); print(sm.datasets.star98.SOURCE) print(sm.datasets.star98.DESCRLONG) print(sm.datasets.star98.NOTE) dta = sm.datasets.star98.load_pandas().data print(dta.columns) print(dta[['NABOVE', 'NBELOW', 'LOWINC', 'PERASIAN', 'PERBLACK', 'PERHISP', 'PERMINTE']].head(10)) print(dta[['AVYRSEXP', 'AVSALK', 'PERSPENK', 'PTRATIO', 'PCTAF', 'PCTCHRT', 'PCTYRRND']].head(10)) formula = 'NABOVE + NBELOW ~ LOWINC + PERASIAN + PERBLACK + PERHISP + PCTCHRT ' formula += '+ PCTYRRND + PERMINTE*AVYRSEXP*AVSALK + PERSPENK*PTRATIO*PCTAF' stats.binom(5, 1./6).pmf(2) from scipy.misc import comb comb(5,2) * (1/6.)**2 * (5/6.)**3 from statsmodels.formula.api import glm glm_mod = glm(formula, dta, family=sm.families.Binomial()).fit() print(glm_mod.summary()) glm_mod.model.data.orig_endog.sum(1) glm_mod.fittedvalues * glm_mod.model.data.orig_endog.sum(1) exog = glm_mod.model.data.orig_exog # get the dataframe means25 = exog.mean() print(means25) means25['LOWINC'] = exog['LOWINC'].quantile(.25) print(means25) means75 = exog.mean() means75['LOWINC'] = exog['LOWINC'].quantile(.75) print(means75) resp25 = glm_mod.predict(means25) resp75 = glm_mod.predict(means75) diff = resp75 - resp25 print("%2.4f%%" % (diff[0]*100)) nobs = glm_mod.nobs y = glm_mod.model.endog yhat = glm_mod.mu from statsmodels.graphics.api import abline_plot fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111, ylabel='Observed Values', xlabel='Fitted Values') ax.scatter(yhat, y) y_vs_yhat = sm.OLS(y, sm.add_constant(yhat, prepend=True)).fit() fig = abline_plot(model_results=y_vs_yhat, ax=ax) fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111, title='Residual Dependence Plot', xlabel='Fitted Values', ylabel='Pearson Residuals') ax.scatter(yhat, stats.zscore(glm_mod.resid_pearson)) ax.axis('tight') ax.plot([0.0, 1.0],[0.0, 0.0], 'k-'); resid = glm_mod.resid_deviance resid_std = stats.zscore(resid) kde_resid = sm.nonparametric.KDEUnivariate(resid_std) kde_resid.fit() fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111, title="Standardized Deviance Residuals") ax.hist(resid_std, bins=25, normed=True); ax.plot(kde_resid.support, kde_resid.density, 'r'); fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) fig = sm.graphics.qqplot(resid, line='r', ax=ax) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: the torch.Tensor.sum(dim) call takes an integer argument as the axis along which to sum. This applies to NumPy arrays as well. Step2: torch.unsqueeze returns a tensor with a dimension of size 1 inserted at the specified position. Step3: taking a look at what .unsqueeze does; what does the tensor look like right before unsqueeze is applied to it? Step4: making sure I didn't need parentheses there Step5: Okay so .unsqueeze turns the size 64 tensor into a 64x1 tensor, so it's nicely packaged up with the first element being the 64-long vector ... or something like that right? Step6: The unsqueezed tensor doesn't look as 'nice'.. I guess. So it's packaged into a single column vector because we'll need that for the linear algebra we'll do to it later yeah? Step7: Oh this is cool. I was wondering how .unsqeeze worked for tensors with multiple items in multiple dimensions (ie Step8: So .unsqueeze turns our size 64x10 ... ohhhhhhhh I misread Step9: Oh this is where I was confused. I'm not throwing xb into Log Softmax. I'm throwing xb • w + bias. The shape going into the log softmax function is not 64x784, it's 64x10. Yeah that makes sense. well duh it has to. Each value in the tensor is an activation for a class, for each image in the minibatch. So by the magic of machine learning, each activation encapsulates the effect of the weights and biases on that input element with respect to that class. Step10: Note the loss equals that in cell Out[25] above as it should. Step11: The minibatch's activations as they head into the Log Softmax Step12: The minibatch activations after the Log Softmax and before heading into Negative Log Likelihood Step13: The loss value computed via NLL on the Log Softmax activations Step14: Okay. Now questions. What is indexing input by [range(target.shape[0]), target] supposed to be doing? I established before that A[range(n)] is valid if n ≤ A.shape[0]. So what's going on is I'm range-indexing the 1st dimension of the LogSoftmax activations with the length of the target tensor, and the rest of the dimension indices being the ..target tensor itself? Step15: Okay. What does it look like when I index a tensor – forget range-idx for now – with another tensor? Step16: Okay.. Step17: Uh, moment of truth Step18: Oof course. What happened. Is it.. yes. I'm indexing the wrong array. Also no value in target is greater than the number of classes ... oh... oh ffs. Okay. Step19: When the activations are activating, only the weights and biases are having a say. Right? Step20: Right. Step21: umm.... Step22: Good it works. Now to change things. The question was if any of the dropped values (non-target index) had any effect on the loss - since the loss was only calculated on error from the correct target. Basically
<ASSISTANT_TASK:> Python Code: from pathlib import Path import requests data_path = Path('data') path = data_path/'mnist' path.mkdir(parents=True, exist_ok=True) url = 'http://deeplearning.net/data/mnist/' filename = 'mnist.pkl.gz' (path/filename) if not (path/filename).exists(): content = requests.get(url+filename).content (path/filename).open('wb').write(content) import pickle, gzip with gzip.open(path/filename, 'rb') as f: ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding='latin-1') %matplotlib inline from matplotlib import pyplot import numpy as np pyplot.imshow(x_train[0].reshape((28,28)), cmap="gray") x_train.shape import torch x_train,y_train,x_valid,y_valid = map(torch.tensor, (x_train,y_train,x_valid,y_valid)) n,c = x_train.shape x_train, x_train.shape, y_train.min(), y_train.max() import math weights = torch.rand(784, 10)/math.sqrt(784) weights.requires_grad_() bias = torch.zeros(10, requires_grad=True) def log_softmax(x): return x - x.exp().sum(-1).log().unsqueeze(-1) def model(xb): return log_softmax(xb @ weights + bias) xb.shape, xb.sum(-1).shape bs = 64 xb = x_train[0:bs] # a mini-batch from x preds = model(xb) preds[0], preds.shape def nll(input, target): return -input[range(target.shape[0]), target].mean() loss_func = nll yb = y_train[0:bs] loss_func(preds, yb) preds[0] ((x_train[0:bs]@weights+bias) - (x_train[0:bs]@weights+bias).exp().sum(-1).log().unsqueeze(-1))[0] preds[0] nll(preds, yb) -preds[range(yb.shape[0]), yb].mean() type(preds) preds[range(0)] preds[0] preds[range(1)] preds[range(2)] preds[:2] type(preds) np.array([[range(10)]])[range(1)] A = np.array([[range(10)]]) A.shape A[range(2)] A.shape len(A[0]) A.shape[0] A[0] A[range(1)] xb.sum() xb.numpy().sum(-1) xb.sum(-1) xb.sum(-1) xb[0].sum() xb.exp().sum(-1).log() xb.exp().sum(-1).log()[0] (xb.exp().sum(-1).log())[0] xb.exp().sum(-1).log().unsqueeze(-1)[:10] np.array([i for i in range(10)]).shape torch.Tensor([i for i in range(10)]).shape xb.exp().sum(-1).log().unsqueeze(-1).numpy().shape xb.exp().sum(-1).log()[:10] preds.unsqueeze(-1).shape preds.unsqueeze(-1)[:2] # logsoftmax(xb) ls_xb = log_softmax(xb) log_softmax(xb@weights+bias)[0] (xb@weights).shape xb.shape (xb@weights).shape # for reference: xb = x_train[0:bs] yb = y_train[0:bs] def log_softmax(x): return x - x.exp().sum(-1).log().unsqueeze(-1) def model(xb): return log_softmax(xb @ weights + bias) preds = model(xb) def nll(input, target): return -input[range(target.shape[0]), target].mean() loss = nll(preds, yb) loss xb, xb.shape (xb @ weights + bias)[:2] (xb @ weights + bias).shape log_softmax(xb@weights+bias)[:2] log_softmax(xb@weights+bias).shape nll(log_softmax(xb@weights+bias), yb) [range(yb.shape[0]), yb] xb[yb] xb.shape, yb.shape array_1 = np.array([[str(j)+str(i) for i in range(10)] for j in range(5)]) array_1 array_2 = np.array([i for i in range(len(array_1[0]))]) array_2 array_1[range(array_2.shape[0]), array_2] # for reference (again): xb = x_train[0:bs] yb = y_train[0:bs] def log_softmax(x): return x - x.exp().sum(-1).log().unsqueeze(-1) def model(xb): return log_softmax(xb @ weights + bias) preds = model(xb) def nll(input, target): return -input[range(target.shape[0]), target].mean() loss = nll(preds, yb) xb.shape, weights.shape np.array([[1,1,1],[2,2,2],[3,3,3]]) @ np.array([[1],[2],[3]]) np.array([[1,1,1],[2,2,2],[-11,0,3]]) @ np.array([[1],[2],[3]]) yb.type() # batch size of 3 xb_tmp = np.array([[1,1,1,1,1],[2,2,2,2,2],[3,3,3,3,3]]) yb_tmp = np.array([0,1,2]) # 4 classes c = 4 w_tmp = np.array([[i for i in range(c)] for j in range(xb_tmp.shape[1])]) xb_tmp = torch.Tensor(xb_tmp) yb_tmp = torch.tensor(yb_tmp, dtype=torch.int64) # see: https://pytorch.org/docs/stable/tensors.html#torch-tensor w_tmp = torch.Tensor(w_tmp) torch.tensor([[1, 2, 3]],dtype=torch.int32) xb_tmp.shape, yb_tmp.shape, w_tmp.shape xb.shape, yb.shape, weights.shape actv_tmp = log_softmax(xb_tmp @ w_tmp) actv_tmp nll(actv_tmp, yb_tmp) # batch size of 3 xb_tmp = np.array([[0,1,1,0,0]]) yb_tmp = np.array([1]) # 4 classes c = 4 w_tmp = np.array([[i for i in range(c)] for j in range(xb_tmp.shape[1])]) xb_tmp = torch.Tensor(xb_tmp) yb_tmp = torch.tensor(yb_tmp, dtype=torch.int64) # see: https://pytorch.org/docs/stable/tensors.html#torch-tensor w_tmp = torch.Tensor(w_tmp) xb_tmp @ w_tmp # LogSoftmax(activations) actv_tmp = log_softmax(xb_tmp @ w_tmp) actv_tmp # NLL Loss loss = nll(actv_tmp, yb_tmp) loss def cross_test(x, y): # batch size of 3 xb_tmp = np.array(x) yb_tmp = np.array(y) # 4 classes c = 4 w_tmp = np.array([[i for i in range(c)] for j in range(xb_tmp.shape[1])]) xb_tmp = torch.Tensor(xb_tmp) yb_tmp = torch.tensor(yb_tmp, dtype=torch.int64) # see: https://pytorch.org/docs/stable/tensors.html#torch-tensor w_tmp = torch.Tensor(w_tmp) print(f'Activation: {xb_tmp @ w_tmp}') # LogSoftmax(activations) actv_tmp = log_softmax(xb_tmp @ w_tmp) print(f'Log Softmax: {actv_tmp}') # NLL Loss loss = nll(actv_tmp, yb_tmp) print(f'NLL Loss: {loss}') w_tmp cross_test([[1,1,1,1,1]], [1]) cross_test([[1,1,1,1,0]], [1]) cross_test([[1,1,1,0,0]], [1]) cross_test([[1,1,1,1,0]], [1]) cross_test([[1,1,0,0,0]], [1]) <END_TASK>