text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 特征数增加后,决策 Step2: 决策树可以用这些特征值进行训练,但DecisionTreeClassifier仍把它们当作连续型特 Step3: 使用随机森林
<ASSISTANT_TASK:> Python Code: last_match_winner = defaultdict(int) dataset['HomeTeamWonLast'] = 0 for index,row in dataset.iterrows(): home_team = row['home'] visitor_team = row['visitor'] teams = tuple(sorted([home_team,visitor_team])) row['HomeTeamWonLast'] = 1 if last_match_winner[teams] == home_team else 0 dataset.ix[index] = row last_match_winner[teams] = home_team if row["HomeWin"] else visitor_team x_lastWinner = dataset[["HomeTeamWonLast","HomeTeamRanksHigher"]].values clf = DecisionTreeClassifier(random_state=14) scores3 = cross_val_score(clf,x_lastWinner,y_true,scoring='accuracy') print("Accuracy: {0:.1f}%".format(np.mean(scores3) * 100)) from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder encoding = LabelEncoder() encoding.fit(dataset['home'].values) home_teams = encoding.transform(dataset["home"].values) visitor_teams = encoding.transform(dataset["visitor"].values) X_teams = np.vstack([home_teams,visitor_teams]).T onehot = OneHotEncoder() X_teams_expanded = onehot.fit_transform(X_teams).todense() clf = DecisionTreeClassifier(random_state=14) scores4 = cross_val_score(clf, X_teams_expanded, y_true, scoring='accuracy') print("Accuracy: {0:.1f}%".format(np.mean(scores4) * 100)) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=14) scores5 = cross_val_score(clf,X_teams_expanded,y_true,scoring="accuracy") print("Accuracy: {0:.1f}%".format(np.mean(socres5) * 100)) X_all = np.hstack([x_homehighter, X_teams]) clf = RandomForestClassifier(random_state=14) scores6 = cross_val_score(clf, X_all, y_true, scoring='accuracy') print("Accuracy: {0:.1f}%".format(np.mean(scores6) * 100)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: IK as an Optimization Problem Step2: We are going to use the distance function to compute the cost, the further away the more costly the position is. Step3: In order to obtain the current position, we need to calculate the matrices of rotation and translation for every joint. Here we use the Denvait-Hartenberg parameters for that. So we define a function that calculates these. The function uses the rotation angle and the extension $d$ of a prismatic joint as input Step4: Now we can calculate the transformation matrix to obtain the end tip position. For this we create another function that takes our vector $\mathbf{X}$ with the joint variables as input Step5: The last thing we need to prepare in order to run the algorithm is the actual function that we want to optimize. We just need to calculate the distance between the position of each swarm particle and the target point Step6: Running the algorithm Step7: Now let's see if the algorithm really worked and test the output for joint_vars
<ASSISTANT_TASK:> Python Code: # Import modules import numpy as np # Import PySwarms import pyswarms as ps # Some more magic so that the notebook will reload external python modules; # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def distance(query, target): x_dist = (target[0] - query[0])**2 y_dist = (target[1] - query[1])**2 z_dist = (target[2] - query[2])**2 dist = np.sqrt(x_dist + y_dist + z_dist) return dist swarm_size = 20 dim = 6 # Dimension of X epsilon = 1.0 options = {'c1': 1.5, 'c2':1.5, 'w':0.5} constraints = (np.array([-np.pi , -np.pi/2 , 1 , -np.pi , -5*np.pi/36 , -np.pi]), np.array([np.pi , np.pi/2 , 3 , np.pi , 5*np.pi/36 , np.pi])) d1 = d2 = d3 = d4 = d5 = d6 = 3 def getTransformMatrix(theta, d, a, alpha): T = np.array([[np.cos(theta) , -np.sin(theta)*np.cos(alpha) , np.sin(theta)*np.sin(alpha) , a*np.cos(theta)], [np.sin(theta) , np.cos(theta)*np.cos(alpha) , -np.cos(theta)*np.sin(alpha) , a*np.sin(theta)], [0 , np.sin(alpha) , np.cos(alpha) , d ], [0 , 0 , 0 , 1 ] ]) return T def get_end_tip_position(params): # Create the transformation matrices for the respective joints t_00 = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]) t_01 = getTransformMatrix(params[0] , d2 , 0 , -np.pi/2) t_12 = getTransformMatrix(params[1] , d2 , 0 , -np.pi/2) t_23 = getTransformMatrix(0 , params[2] , 0 , -np.pi/2) t_34 = getTransformMatrix(params[3] , d4 , 0 , -np.pi/2) t_45 = getTransformMatrix(params[4] , 0 , 0 , np.pi/2) t_56 = getTransformMatrix(params[5] , d6 ,0 , 0) # Get the overall transformation matrix end_tip_m = t_00.dot(t_01).dot(t_12).dot(t_23).dot(t_34).dot(t_45).dot(t_56) # The coordinates of the end tip are the 3 upper entries in the 4th column pos = np.array([end_tip_m[0,3],end_tip_m[1,3],end_tip_m[2,3]]) return pos def opt_func(X): n_particles = X.shape[0] # number of particles target = np.array([-2,2,3]) dist = [distance(get_end_tip_position(X[i]), target) for i in range(n_particles)] return np.array(dist) %%time # Call an instance of PSO optimizer = ps.single.GlobalBestPSO(n_particles=swarm_size, dimensions=dim, options=options, bounds=constraints) # Perform optimization cost, joint_vars = optimizer.optimize(opt_func, iters=1000) print(get_end_tip_position(joint_vars)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Dataset Step2: Divide into train and test Step3: We've also found that it is not necessary to train on the full dataset, so we here select a 10% random sample of time series for training. We will evaluate on the full dataset later. Step4: We follow Torchvision in processing examples using Transforms chained together by Compose. Step5: TimeSeriesDataset inherits from Torch Datasets for use with Torch DataLoader. It handles the creation of the examples used to train the network using lookback and horizon to partition the time series. Step6: Modeling and Forecasting Step7: Evaluation Step8: We need to transform the output forecasts. The output from the foracaster is of the form (n_samples, n_time_series, n_variables, n_timesteps). Step9: We calculate the symmetric MAPE.
<ASSISTANT_TASK:> Python Code: import numpy as np import os import pandas as pd import datetime as dt import matplotlib.pyplot as plt import torch from torch.utils.data import DataLoader from deep4cast.forecasters import Forecaster from deep4cast.models import WaveNet from deep4cast.datasets import TimeSeriesDataset import deep4cast.transforms as transforms import deep4cast.metrics as metrics # Make RNG predictable np.random.seed(0) torch.manual_seed(0) # Use a gpu if available, otherwise use cpu device = ('cuda' if torch.cuda.is_available() else 'cpu') %matplotlib inline if not os.path.exists('data/Daily-train.csv'): !wget https://raw.githubusercontent.com/M4Competition/M4-methods/master/Dataset/Train/Daily-train.csv -P data/ if not os.path.exists('data/Daily-test.csv'): !wget https://raw.githubusercontent.com/M4Competition/M4-methods/master/Dataset/Test/Daily-test.csv -P data/ data_arr = pd.read_csv('data/Daily-train.csv') data_arr = data_arr.iloc[:, 1:].values data_arr = list(data_arr) for i, ts in enumerate(data_arr): data_arr[i] = ts[~np.isnan(ts)][None, :] horizon = 14 lookback = 128 import random data_train = [] for time_series in data_arr: data_train.append(time_series[:, :-horizon],) data_train = random.sample(data_train, int(len(data_train) * 0.1)) transform = transforms.Compose([ transforms.ToTensor(), transforms.LogTransform(targets=[0], offset=1.0), transforms.RemoveLast(targets=[0]), transforms.Target(targets=[0]), ]) data_train = TimeSeriesDataset( data_train, lookback, horizon, step=1, transform=transform ) # Create mini-batch data loader dataloader_train = DataLoader( data_train, batch_size=512, shuffle=True, pin_memory=True, num_workers=1 ) # Define the model architecture model = WaveNet(input_channels=1, output_channels=1, horizon=horizon, hidden_channels=89, skip_channels=199, n_layers=7) print('Number of model parameters: {}.'.format(model.n_parameters)) print('Receptive field size: {}.'.format(model.receptive_field_size)) # Enable multi-gpu if available if torch.cuda.device_count() > 1: print('Using {} GPUs.'.format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) # .. and the optimizer optim = torch.optim.Adam(model.parameters(), lr=0.0008097436666349985) # .. and the loss loss = torch.distributions.StudentT # Fit the forecaster forecaster = Forecaster(model, loss, optim, n_epochs=5, device=device) forecaster.fit(dataloader_train, eval_model=True) data_train = pd.read_csv('data/Daily-train.csv') data_test = pd.read_csv('data/Daily-test.csv') data_train = data_train.iloc[:, 1:].values data_test = data_test.iloc[:, 1:].values data_arr = [] for ts_train, ts_test in zip(data_train, data_test): ts_a = ts_train[~np.isnan(ts_train)] ts_b = ts_test ts = np.concatenate([ts_a, ts_b])[None, :] data_arr.append(ts) # Sequentialize the training and testing dataset data_test = [] for time_series in data_arr: data_test.append(time_series[:, -horizon-lookback:]) data_test = TimeSeriesDataset( data_test, lookback, horizon, step=1, transform=transform ) dataloader_test = DataLoader( data_test, batch_size=1024, shuffle=False, num_workers=2 ) # Get time series of actuals for the testing period y_test = [] for example in dataloader_test: example = dataloader_test.dataset.transform.untransform(example) y_test.append(example['y']) y_test = np.concatenate(y_test) # Get corresponding predictions y_samples = forecaster.predict(dataloader_test, n_samples=100) # Evaluate forecasts test_smape = metrics.smape(y_samples, y_test) print('SMAPE: {}%'.format(test_smape.mean())) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The tables define the value and error as a string Step2: Table 1 - Basic data on sources Step3: Table 3- IRAC photometry Step4: Convert spectral type to number Step5: Make a plot of mid-IR colors as a function of spectral type. Step6: Save the cleaned data.
<ASSISTANT_TASK:> Python Code: %pylab inline import seaborn as sns import warnings warnings.filterwarnings("ignore") import pandas as pd def strip_parentheses(col, df): ''' splits single column strings of "value (error)" into two columns of value and error input: -string name of column to split in two -dataframe to apply to returns dataframe ''' out1 = df[col].str.replace(")","").str.split(pat="(") df_out = out1.apply(pd.Series) # Split the string on the whitespace base, sufx = col.split(" ") df[base] = df_out[0].copy() df[base+"_e"] = df_out[1].copy() del df[col] return df names = ["Name","R.A. (J2000.0)","Decl. (J2000.0)","Spectral Type","SpectralType Ref.","Parallax (error)(arcsec)", "Parallax Ref.","J (error)","H (error)","Ks (error)","JHKRef.","PhotSys"] tbl1 = pd.read_csv("http://iopscience.iop.org/0004-637X/651/1/502/fulltext/64991.tb1.txt", sep='\t', names=names, na_values='\ldots') cols_to_fix = [col for col in tbl1.columns.values if "(error)" in col] for col in cols_to_fix: print col tbl1 = strip_parentheses(col, tbl1) tbl1.head() names = ["Name","Spectral Type","[3.6] (error)","n1","[4.5] (error)","n2", "[5.8] (error)","n3","[8.0] (error)","n4","[3.6]-[4.5]","[4.5]-[5.8]","[5.8]-[8.0]","Notes"] tbl3 = pd.read_csv("http://iopscience.iop.org/0004-637X/651/1/502/fulltext/64991.tb3.txt", sep='\t', names=names, na_values='\ldots') cols_to_fix = [col for col in tbl3.columns.values if "(error)" in col] cols_to_fix for col in cols_to_fix: print col tbl3 = strip_parentheses(col, tbl3) tbl3.head() pd.options.display.max_columns = 50 del tbl3["Spectral Type"] #This is repeated patten2006 = pd.merge(tbl1, tbl3, how="outer", on="Name") patten2006.head() import gully_custom patten2006["SpT_num"], _1, _2, _3= gully_custom.specTypePlus(patten2006["Spectral Type"]) sns.set_context("notebook", font_scale=1.5) for color in ["[3.6]-[4.5]", "[4.5]-[5.8]", "[5.8]-[8.0]"]: plt.plot(patten2006["SpT_num"], patten2006[color], '.', label=color) plt.xlabel(r'Spectral Type (M0 = 0)') plt.ylabel(r'$[3.6]-[4.5]$') plt.title("IRAC colors as a function of spectral type") plt.legend(loc='best') patten2006.to_csv('../data/Patten2006/patten2006.csv', index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Get the Data Step2: EDA Step3: Train Test Split Step4: Decision Trees Step5: Prediction and Evaluation Step6: Tree Visualization Step7: Random Forests
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline df = pd.read_csv('kyphosis.csv') df.head() sns.pairplot(df,hue='Kyphosis',palette='Set1') from sklearn.model_selection import train_test_split X = df.drop('Kyphosis',axis=1) y = df['Kyphosis'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30) from sklearn.tree import DecisionTreeClassifier dtree = DecisionTreeClassifier() dtree.fit(X_train,y_train) predictions = dtree.predict(X_test) from sklearn.metrics import classification_report,confusion_matrix print(classification_report(y_test,predictions)) print(confusion_matrix(y_test,predictions)) from IPython.display import Image from sklearn.externals.six import StringIO from sklearn.tree import export_graphviz import pydot features = list(df.columns[1:]) features dot_data = StringIO() export_graphviz(dtree, out_file=dot_data,feature_names=features,filled=True,rounded=True) graph = pydot.graph_from_dot_data(dot_data.getvalue()) Image(graph[0].create_png()) from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100) rfc.fit(X_train, y_train) rfc_pred = rfc.predict(X_test) print(confusion_matrix(y_test,rfc_pred)) print(classification_report(y_test,rfc_pred)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This will tell python to import the sci-analysis function analyze(). Step2: Now, sci-analysis should be ready to use. Try the following code Step3: A histogram, box plot, summary stats, and test for normality of the data should appear above. Step4: Let's examine the analyze() function in more detail. Here's the signature for the analyze() function Step5: analyze() will detect the desired type of data analysis to perform based on whether the ydata argument is supplied, and whether the xdata argument is a two-dimensional array-like object. Step6: If xdata is a sequence or dictionary of vectors, a location test and summary statistics for each vector will be performed. If each vector is normally distributed and they all have equal variance, a one-way ANOVA is performed. If the data is not normally distributed or the vectors do not have equal variance, a non-parametric Kruskal-Wallis test will be performed instead of a one-way ANOVA. Step7: In the example above, sci-analysis is telling us the four groups are normally distributed (by use of the Bartlett Test, Oneway ANOVA and the near straight line fit on the quantile plot), the groups have equal variance and the groups have matching means. The only significant difference between the four groups is the sample size we specified. Let's try another example, but this time change the variance of group B Step8: In the example above, group B has a standard deviation of 2.75 compared to the other groups that are approximately 1. The quantile plot on the right also shows group B has a much steeper slope compared to the other groups, implying a larger variance. Also, the Kruskal-Wallis test was used instead of the Oneway ANOVA because the pre-requisite of equal variance was not met.
<ASSISTANT_TASK:> Python Code: import warnings warnings.filterwarnings("ignore") import numpy as np import scipy.stats as st from sci_analysis import analyze %matplotlib inline import numpy as np import scipy.stats as st from sci_analysis import analyze np.random.seed(987654321) data = st.norm.rvs(size=1000) analyze(xdata=data) pets = ['dog', 'cat', 'rat', 'cat', 'rabbit', 'dog', 'hamster', 'cat', 'rabbit', 'dog', 'dog'] analyze(pets) from inspect import signature print(analyze.__name__, signature(analyze)) print(analyze.__doc__) example1 = [0.2, 0.25, 0.27, np.nan, 0.32, 0.38, 0.39, np.nan, 0.42, 0.43, 0.47, 0.51, 0.52, 0.56, 0.6] example2 = [0.23, 0.27, 0.29, np.nan, 0.33, 0.35, 0.39, 0.42, np.nan, 0.46, 0.48, 0.49, np.nan, 0.5, 0.58] analyze(example1, example2) np.random.seed(987654321) group_a = st.norm.rvs(size=50) group_b = st.norm.rvs(size=25) group_c = st.norm.rvs(size=30) group_d = st.norm.rvs(size=40) analyze({"Group A": group_a, "Group B": group_b, "Group C": group_c, "Group D": group_d}) np.random.seed(987654321) group_a = st.norm.rvs(0.0, 1, size=50) group_b = st.norm.rvs(0.0, 3, size=25) group_c = st.norm.rvs(0.1, 1, size=30) group_d = st.norm.rvs(0.0, 1, size=40) analyze({"Group A": group_a, "Group B": group_b, "Group C": group_c, "Group D": group_d}) np.random.seed(987654321) group_a = st.norm.rvs(0.0, 1, size=50) group_b = st.norm.rvs(0.0, 3, size=25) group_c = st.weibull_max.rvs(1.2, size=30) group_d = st.norm.rvs(0.0, 1, size=40) analyze({"Group A": group_a, "Group B": group_b, "Group C": group_c, "Group D": group_d}) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Importing and processing the Iris data set Step2: Experimental procedure Step3: The experiment
<ASSISTANT_TASK:> Python Code: import numpy as np import active import experiment import logistic_regression as logr from sklearn import datasets # The Iris dataset is imported from here. from IPython.display import display import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 1 %aimport active %aimport experiment %aimport logistic_regression np.set_printoptions(precision=4) plt.rcParams['axes.labelsize'] = 15 plt.rcParams['axes.titlesize'] = 15 plt.rcParams['xtick.labelsize'] = 15 plt.rcParams['ytick.labelsize'] = 15 plt.rcParams['legend.fontsize'] = 15 plt.rcParams['figure.titlesize'] = 18 # This code was adapted from # http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html# iris = datasets.load_iris() X = iris.data[:, :2] # Take the first two features. Y = iris.target print('X has shape', X.shape) print('Y has shape', Y.shape) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(12, 7)) plt.clf() plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length (cm)') plt.ylabel('Sepal width (cm)') plt.title('The Iris flower data set') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.savefig('iris.png', dpi=600, bbox_inches='tight', transparent=True) plt.show() bias = np.ones((X.shape[0], 1)) # Add a bias variable set to 1. X = np.hstack((X, bias)) Y[Y==1] = -1 Y[Y==2] = -1 Y[Y==0] = +1 np.random.seed(1) size = X.shape[0] index = np.arange(size) np.random.shuffle(index) training_index = index[:int(size/2)] testing_index = index[int(size/2):] X_iris_training = X[training_index] Y_iris_training = Y[training_index] X_iris_testing = X[testing_index] Y_iris_testing = Y[testing_index] n = 10 iterations = 75 X_testing = X_iris_testing Y_testing = Y_iris_testing X_training = X_iris_training Y_training = Y_iris_training Y_training[Y_training== -1] = 0 Y_testing[Y_testing==-1] = 0 Y_training Y_testing average_accuracies_logr = \ logr.experiment(n, iterations, X_testing, Y_testing, X_training, Y_training) print(average_accuracies_logr) w_best = logr.train(X_training, Y_training) print('w_best is', w_best) predictions = logr.predict(w_best, X_testing) print('Using w_best the accuracy is', \ logr.compute_accuracy(predictions, Y_testing)) Y_training[Y_training==0] = -1 Y_testing[Y_testing==0] = -1 Y_training Y_testing average_accuracies_ac = \ experiment.experiment(n, iterations, X_testing, Y_testing, X_training, Y_training, center='ac', sample=1, M=None) average_accuracies_cc = \ experiment.experiment(n, iterations, X_testing, Y_testing, X_training, Y_training, center='cc', sample=1, M=None) average_accuracies_rand = \ experiment.experiment(n, iterations, X_testing, Y_testing, X_training, Y_training, center='random', sample=1, M=None) plt.figure(figsize=(12,7)) queries = np.arange(1, iterations + 1) plt.plot(queries, average_accuracies_logr, 'mx-', label='LR', markevery=5, lw=1.5, ms=10, markerfacecolor='none', markeredgewidth=1.5, markeredgecolor = 'm') plt.plot(queries, average_accuracies_ac, 'r^-', label='AC', markevery=5, lw=1.5, ms=10, markerfacecolor='none', markeredgewidth=1.5, markeredgecolor = 'r') plt.plot(queries, average_accuracies_cc, 'go-', label='CC', markevery=5, lw=1.5, ms=10, markerfacecolor='none', markeredgewidth=1.5, markeredgecolor = 'g') plt.plot(queries, average_accuracies_rand, 'bs-', label='Random', markevery=5, lw=1.5, ms=10, markerfacecolor='none', markeredgewidth=1.5, markeredgecolor = 'b') plt.xlabel('Number of iterations') plt.ylabel('Accuracy averaged over %d tests' % n) plt.title('Average accuracy of a cutting plane active learning procedure (Iris flower data set)') plt.legend(loc='best') plt.savefig('iris_experiment.png', dpi=600, bbox_inches='tight', transparent=True) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: build stimulus dictionary Step2: upload stim dictionary to mongo (db = 'stimuli', collection='sketchpad_basic_recog') Step4: crop 3d objects
<ASSISTANT_TASK:> Python Code: upload_dir = './sketch' import boto runThis = 0 if runThis: conn = boto.connect_s3() b = conn.create_bucket('sketchpad_basic_pilot2_sketches') all_files = [i for i in os.listdir(upload_dir) if i != '.DS_Store'] for a in all_files: print a k = b.new_key(a) k.set_contents_from_filename(os.path.join(upload_dir,a)) k.set_acl('public-read') ## read in experimental metadata file path_to_metadata = '../../analysis/sketchpad_basic_pilot2_group_data.csv' meta = pd.read_csv(path_to_metadata) ## clean up and add filename column meta2 = meta.drop(['svg','png','Unnamed: 0'],axis=1) filename = [] games = [] for i,row in meta2.iterrows(): filename.append('gameID_{}_trial_{}.png'.format(row['gameID'],row['trialNum'])) games.append([]) meta2['filename'] = filename meta2['games'] = games ## write out metadata to json file stimdict = meta2.to_dict(orient='records') import json with open('sketchpad_basic_recog_meta.js', 'w') as fout: json.dump(stimdict, fout) J = json.loads(open('sketchpad_basic_recog_meta.js',mode='ru').read()) assert len(J)==len(meta2) '{} unique games.'.format(len(np.unique(meta2.gameID.values))) # set vars auth = pd.read_csv('auth.txt', header = None) # this auth.txt file contains the password for the sketchloop user pswd = auth.values[0][0] user = 'sketchloop' host = 'rxdhawkins.me' ## cocolab ip address # have to fix this to be able to analyze from local import pymongo as pm conn = pm.MongoClient('mongodb://sketchloop:' + pswd + '@127.0.0.1') db = conn['stimuli'] coll = db['sketchpad_basic_pilot2_sketches'] ## actually add data now to the database for (i,j) in enumerate(J): if i%100==0: print ('%d of %d' % (i,len(J))) coll.insert_one(j) ## How many sketches have been retrieved at least once? equivalent to: coll.find({'numGames':{'$exists':1}}).count() coll.find({'numGames':{'$gte':0}}).count() ## stashed away handy querying things # coll.find({'numGames':{'$gte':1}}).sort('trialNum')[0] # from bson.objectid import ObjectId # coll.find({'_id':ObjectId('5a9a003d47e3d54db0bf33cc')}).count() import os from PIL import Image def RGBA2RGB(image, color=(255, 255, 255)): Alpha composite an RGBA Image with a specified color. Simpler, faster version than the solutions above. Source: http://stackoverflow.com/a/9459208/284318 Keyword Arguments: image -- PIL RGBA Image object color -- Tuple r, g, b (default 255, 255, 255) image.load() # needed for split() background = Image.new('RGB', image.size, color) background.paste(image, mask=image.split()[3]) # 3 is the alpha channel return background def load_and_crop_image(path, dest='object_cropped', imsize=224): im = Image.open(path) # if np.array(im).shape[-1] == 4: # im = RGBA2RGB(im) # crop to sketch only arr = np.asarray(im) if len(arr.shape)==2: w,h = np.where(arr!=127) else: w,h,d = np.where(arr!=127) # where the image is not white if len(h)==0: print(path) xlb = min(h) xub = max(h) ylb = min(w) yub = max(w) lb = min([xlb,ylb]) ub = max([xub,yub]) im = im.crop((lb, lb, ub, ub)) im = im.resize((imsize, imsize), Image.ANTIALIAS) objname = path.split('/')[-1] if not os.path.exists(dest): os.makedirs(dest) im.save(os.path.join(dest,objname)) run_this = 0 if run_this: ## actually crop images now data_dir = './object' allobjs = ['./object/' + i for i in os.listdir(data_dir)] for o in allobjs: load_and_crop_image(o) run_this = 0 if run_this: ## rename objects in folder data_dir = './object' allobjs = [data_dir + '/' + i for i in os.listdir(data_dir) if i != '.DS_Store'] for o in allobjs: if len(o.split('_'))==4: os.rename(o, os.path.join(data_dir, o.split('/')[-1].split('_')[2] + '.png')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Calculator Step2: Strings Step3: show ' and " in a string Step4: span multiple lines Step5: slice and index Step6: Index in the Python way Step7: List Step8: Built-in functions like sum and len are explained in the document too. Here is a link to it. Step9: Nest lists Step10: tuple Step11: dict Step12: Quiz Step13: while Step14: for Step16: Define function Step17: Data I/O Step18: MySQL Step19: Quiz Step20: Target Step21: Negative index Step22: More about list Step23: Versatile features Step24: Target Step25: Use if in list comprehension Step26: Use Python to access MySQL database Step27: To get better understanding of the table we just created. We will use MySQL command line again. Step28: Regular expression in Python
<ASSISTANT_TASK:> Python Code: width = 20 height = 5*9 width * height tax = 8.25 / 100 price = 100.50 price * tax price + _ round(_, 2) print('spam email') # This would cause error print('doesn't') # One way of doing it correctly print('doesn\'t') # Another way of doing it correctly print("doesn't") print(''' Usage: thingy [OPTIONS] -h Display this usage message -H hostname Hostname to connect to ''') print('''Cheng highly recommends Python programming language''') word = 'HELP' + 'A' word word[0] word[4] # endding index not included word[0:2] word[2:4] # length of a string len(word) a = ['spam', 'eggs', 100, 1234] a a[0] a[3] a[2:4] sum(a[2:4]) a a[2] = a[2] + 23 a q = [2, 3] p = [1, q, 4] p len(p) p[1] p[1][0] x=(1,2,3,4) x[0] x[0]=7 # it will raise error since tuple is immutable tel = {'jack': 4098, 'sam': 4139} tel['dan'] = 4127 tel tel['jack'] del tel['sam'] tel tel['mike'] = 4127 tel # Is dan in the dict? 'dan' in tel for key in tel: print('key:', key, '; value:', tel[key]) x = int(input("Please enter an integer for x: ")) if x < 0: x = 0 print('Negative; changed to zero') elif x == 0: print('Zero') elif x == 1: print('Single') else: print('More') a, b = 0, 1 # multiple assignment while a < 10: print(a) a, b = b, a+b # Measure some strings: words = ['cat', 'window', 'defenestrate'] for i in words: print(i, len(i)) def fib(n): # write Fibonacci series up to n Print a Fibonacci series up to n. a, b = 0, 1 while a < n: print(a) a, b = b, a+b fib(200) fib(2000000000000000) # do not need to worry about the type of a,b # output for viewing first import string import random # fix the pseudo-random sequences for easy replication # It will generate the same random sequences # of nubmers/letters with the same seed. random.seed(123) for i in range(50): # Data values separated by comma(csv file) print(i+1,random.choice(string.ascii_uppercase), random.choice(range(6)), sep=',') # write the data to a file random.seed(123) out_file=open('data.csv','w') columns=['id','name','age'] out_file.write(','.join(columns)+'\n') for i in range(50): row=[str(i+1),random.choice(string.ascii_uppercase), str(random.choice(range(6)))] out_file.write(','.join(row)+'\n') else: out_file.close() # read data into Python for line in open('data.csv', 'r'): print(line) # crawl_UTD_reviews # Author: Cheng Nie # Email: me@chengnie.com # Date: Feb 8, 2016 # Updated: Feb 12, 2016 from urllib.request import urlopen num_pages = 2 reviews_per_page = 20 # the file we will save the rating and date out_file = open('UTD_reviews.csv', 'w') # the url that we need to locate the page for UTD reviews url = 'http://www.yelp.com/biz/university-of-texas-at-dallas-\ richardson?start={start_number}' # the three string patterns we just explained review_start_pattern = '<div class="review-wrapper">' rating_pattern = '<i class="star-img stars_' date_pattern = '"datePublished" content="' reviews_count = 0 for page in range(num_pages): print('processing page', page) # open the url and save the source code string to page_content html = urlopen(url.format(start_number = page * reviews_per_page)) page_content = html.read().decode('utf-8') # locate the beginning of an individual review review_start = page_content.find(review_start_pattern) while review_start != -1: # it means there at least one more review to be crawled reviews_count += 1 # get the rating cut_front = page_content.find(rating_pattern, review_start) \ + len(rating_pattern) cut_end = page_content.find('" title="', cut_front) rating = page_content[cut_front:cut_end] # get the date cut_front = page_content.find(date_pattern, cut_end) \ + len(date_pattern) cut_end = page_content.find('">', cut_front) date = page_content[cut_front:cut_end] # save the data into out_file out_file.write(','.join([rating, date]) + '\n') review_start = page_content.find(review_start_pattern, cut_end) print('crawled', reviews_count, 'reviews so far') out_file.close() word # first index default to 0 and second index default to the size word[:2] # It's equivalent to word[0:2] # Everything except the first two characters word[2:] # It's equivalent to word[2:len(word)] # start: end: step word[0::2] word[0:len(word):2] word[-1] # The last character word[-2] # The last-but-one character word[-2:] # The last two characters word[:-2] # Everything except the last two characters a a[-2] a[1:-1] a[:2] + ['bacon', 2*2] 3*a[:3] + ['Boo!'] # Replace some items: a[0:2] = [1, 12] a # Remove some: a[0:2] = [] # or del a[0:2] a # Insert some: a[1:1] = ['insert', 'some'] a # inserting at one position is not the same as changing one element # a=[1, 12, 100, 1234] a = [123, 1234] sum(a) a[1] = ['insert', 'some'] a # loop way cubes = [] for x in range(11): cubes.append(x**3) cubes # map way def cube(x): return x*x*x list(map(cube, range(11))) # list comprehension way [x**3 for x in range(11)] result = [] for i in range(11): if i%2 == 0: result.append(i) else: print(result) [i for i in range(11) if i%2==0] l=[1,3,5,6,8,10] [i for i in l if i%2==0] # # ----------------------- In Python ------------------ # access table from Python # connect to MySQL in Python import mysql.connector cnx = mysql.connector.connect(user='root', password='pythonClass', database='test') # All DDL (Data Definition Language) statements are # executed using a handle structure known as a cursor cursor = cnx.cursor() #cursor.execute("") # write the same data to the example table query0 = '''insert into example (id, name, age) \ values ({id_num},"{c_name}",{c_age});''' random.seed(123) for i in range(50): query1 = query0.format(id_num = i+1, c_name = random.choice(string.ascii_uppercase), c_age = random.choice(range(6))) print(query1) cursor.execute(query1) cnx.commit() # # ----------------------- In Python ------------------ # cursor.execute('select * from e_copy;') for i in cursor: print(i) # # ----------------------- In Python ------------------ # # # example for adding new info for existing record # cursor.execute('alter table e_copy add mother_name varchar(1) default null') query='update e_copy set mother_name="{m_name}" where id={id_num};' # random.seed(333) for i in range(50): query1=query.format(m_name = random.choice(string.ascii_uppercase),id_num = i+1) print(query1) cursor.execute(query1) cnx.commit() # # ----------------------- In Python ------------------ # # example for insert new records query2='insert into e_copy (id, name,age,mother_name) \ values ({id_num},"{c_name}",{c_age},"{m_name}")' for i in range(10): query3=query2.format(id_num = i+60, c_name = random.choice(string.ascii_uppercase), c_age = random.randint(0,6), m_name = random.choice(string.ascii_uppercase)) print(query3) cursor.execute(query3) cnx.commit() # check if you've updated the data successfully in MySQL import re # digits # find all the numbers infile=open('digits.txt','r') content=infile.read() print(content) # Find all the numbers in the file numbers=re.findall(r'\d+',content) for n in numbers: print(n) # find equations equations=re.findall(r'(\d+)=\d+',content) for e in equations: print(e) # subsitute equations to correct them print(re.sub(r'(\d+)=\d+',r'\1=\1',content)) # Save to file print(re.sub(r'(\d+)=\d+',r'\1=\1',content), file = open('digits_corrected.txt', 'w')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lab 3 Step2: Part 1 Step3: 1. Sampling from the Gaussian process prior (30 points) Step4: 1.2 computeK( X1, X2, thetas ) (10 points) Step5: 1.3 Plot function samples (15 points) Step6: 2. Predictive distribution (35 points) Step7: 2.2 gp_log_likelihood(...) (10 points) Step8: 2.3 Plotting (10 points) Step9: 2.4 More plotting (5 points) Step10: Part 2 Step11: b) (10 points) In the next step we will combine the two datasets X_1, X_2 and generate a vector t containing the labels. Write a function create_X_and_t(X1, X2) it should return the combined data set X and the corresponding target vector t. Step12: 2.2 Finding the support vectors (15 points) Step13: Next, we will rewrite the dual representation so that we can make use of computationally efficient vector-matrix multiplication. The objective becomes Step14: 2.3 Plot support vectors (5 points) Step15: 2.4 Plot the decision boundary (10 Points)
<ASSISTANT_TASK:> Python Code: NAME = "Michelle Appel" NAME2 = "Verna Dankers" NAME3 = "Yves van Montfort" EMAIL = "michelle.appel@student.uva.nl" EMAIL2 = "verna.dankers@student.uva.nl" EMAIL3 = "yves.vanmontfort@student.uva.nl" %pylab inline plt.rcParams["figure.figsize"] = [20,10] def true_mean_function(x): return np.cos(2*pi*(x+1)) def add_noise(y, sigma): return y + sigma*np.random.randn(len(y)) def generate_t(x, sigma): return add_noise(true_mean_function(x), sigma) sigma = 0.2 beta = 1.0 / pow(sigma, 2) N_test = 100 x_test = np.linspace(-1, 1, N_test) mu_test = np.zeros(N_test) y_test = true_mean_function(x_test) t_test = add_noise(y_test, sigma) plt.plot( x_test, y_test, 'b-', lw=2) plt.plot( x_test, t_test, 'go') plt.show() def k_n_m(xn, xm, thetas): theta0, theta1, theta2, theta3 = thetas # Unpack thetas if(xn == xm): k = theta0 + theta2 + theta3*xn*xm else: k = theta0 * np.exp(-(theta1/2)*(xn-xm)**2) + theta2 + theta3*xn*xm return k def computeK(x1, x2, thetas): K = np.zeros(shape=(len(x1), len(x2))) # Create empty array for xn, row in zip(x1, range(len(x1))): # Iterate over x1 for xm, column in zip(x2, range(len(x2))): # Iterate over x2 K[row, column] = k_n_m(xn, xm, thetas) # Add kernel to matrix return K x1 = [0, 0, 1] x2 = [0, 0, 1] thetas = [1, 2, 3, 1] K = computeK(x1, x2, thetas) ### Test your function x1 = [0, 1, 2] x2 = [1, 2, 3, 4] thetas = [1, 2, 3, 4] K = computeK(x1, x2, thetas) assert K.shape == (len(x1), len(x2)), "the shape of K is incorrect" import matplotlib.pyplot as plt # The thetas thetas0 = [1, 4, 0, 0] thetas1 = [9, 4, 0, 0] thetas2 = [1, 64, 0, 0] thetas3 = [1, 0.25, 0, 0] thetas4 = [1, 4, 10, 0] thetas5 = [1, 4, 0, 5] f, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3) # Subplot setup all_thetas = [thetas0, thetas1, thetas2, thetas3, thetas4, thetas5] # List of all thetas all_plots = [ax1, ax2, ax3, ax4, ax5, ax6] # List of all plots n = 5 # Number of samples per subplot for subplot_, theta_ in zip(all_plots, all_thetas): # Iterate over all plots and thetas K = computeK(x_test, x_test, theta_) # Compute K # Fix numerical error on eigenvalues 0 that are slightly negative (<e^15) min_eig = np.min(np.real(np.linalg.eigvals(K))) if min_eig < 0: K -= 10*min_eig * np.eye(*K.shape) mean = np.zeros(shape=len(K)) # Generate Means random = numpy.random.multivariate_normal(mean, K) # Draw n random samples samples = [numpy.random.multivariate_normal(mean, K) for i in range(n)] # Calculate expected y and variance expected_y = numpy.mean(np.array(samples), axis=0) uncertainties = numpy.sqrt(K.diagonal()) for sample in samples: subplot_.plot(sample) x = np.arange(0, 100) # 100 Steps # Plot uncertainty subplot_.fill_between( x, expected_y - 2 * uncertainties, expected_y + 2 * uncertainties, alpha=0.3, color='pink' ) subplot_.plot(expected_y, 'g--') # Plot ground truth # subplot_.legend(['Sampled y', 'Expected y']) # Add legend subplot_.set_title(theta_) # Set title plt.show() def computeC(x1, x2, theta, beta): K = computeK(x1, x2, theta) return K + np.diag(np.array([1/beta for x in x1])) def gp_predictive_distribution(x_train, t_train, x_test, theta, beta, C=None): # Calculate or reuse C if C is None: C = computeC(x_train, x_train, theta, beta) # Calculate mean and variance c = computeC(x_test, x_test, theta, beta) K = computeK(x_train, x_test, theta) KC = np.matmul(np.linalg.inv(C), K) mean_test = np.asarray(np.matrix(t_train) * KC) var_test = c - np.matmul(KC.T, K) return mean_test.squeeze(), var_test.squeeze(), C ### Test your function N = 2 train_x = np.linspace(-1, 1, N) train_t = 2*train_x test_N = 3 test_x = np.linspace(-1, 1, test_N) theta = [1, 2, 3, 4] beta = 25 test_mean, test_var, C = gp_predictive_distribution(train_x, train_t, test_x, theta, beta, C=None) assert test_mean.shape == (test_N,), "the shape of mean is incorrect" assert test_var.shape == (test_N, test_N), "the shape of var is incorrect" assert C.shape == (N, N), "the shape of C is incorrect" C_in = np.array([[0.804, -0.098168436], [-0.098168436, 0.804]]) _, _, C_out = gp_predictive_distribution(train_x, train_t, test_x, theta, beta, C=C_in) assert np.allclose(C_in, C_out), "C is not reused!" import math def gp_log_likelihood(x_train, t_train, theta, beta, C=None, invC=None): if C is None: C = computeC(x_train, x_train, theta, beta) if invC is None: invC = np.linalg.inv(C) t_train = np.matrix(t_train) # Data likelihood as represented in Bishop page 311 lp = -0.5 * np.log(np.linalg.det(C)) - 0.5 * t_train * \ invC * t_train.T - len(x_train) / 2 * np.log(2*np.pi) lp = np.asscalar(lp) return lp, C, invC ### Test your function N = 2 train_x = np.linspace(-1, 1, N) train_t = 2 * train_x theta = [1, 2, 3, 4] beta = 25 lp, C, invC = gp_log_likelihood(train_x, train_t, theta, beta, C=None, invC=None) assert lp < 0, "the log-likelihood should smaller than 0" assert C.shape == (N, N), "the shape of var is incorrect" assert invC.shape == (N, N), "the shape of C is incorrect" C_in = np.array([[0.804, -0.098168436], [-0.098168436, 0.804]]) _, C_out, _ = gp_log_likelihood(train_x, train_t, theta, beta, C=C_in, invC=None) assert np.allclose(C_in, C_out), "C is not reused!" invC_in = np.array([[1.26260453, 0.15416407], [0.15416407, 1.26260453]]) _, _, invC_out = gp_log_likelihood(train_x, train_t, theta, beta, C=None, invC=invC_in) assert np.allclose(invC_in, invC_out), "invC is not reused!" def gp_plot( x_test, y_test, mean_test, var_test, x_train, t_train, theta, beta ): # x_test: # y_test: the true function at x_test # mean_test: predictive mean at x_test # var_test: predictive covariance at x_test # t_train: the training values # theta: the kernel parameters # beta: the precision (known) # the reason for the manipulation is to allow plots separating model and data stddevs. std_total = np.sqrt(np.diag(var_test)) # includes all uncertainty, model and target noise std_model = np.sqrt(std_total**2 - 1.0/beta) # remove data noise to get model uncertainty in stddev std_combo = std_model + np.sqrt(1.0/beta) # add stddev (note: not the same as full) plt.plot(x_test, y_test, 'b', lw=3) plt.plot(x_test, mean_test, 'k--', lw=2) plt.fill_between(x_test, mean_test+2*std_combo,mean_test-2*std_combo, color='k', alpha=0.25) plt.fill_between(x_test, mean_test+2*std_model,mean_test-2*std_model, color='r', alpha=0.25) plt.plot(x_train, t_train, 'ro', ms=10) np.random.seed(70121327) # Number of data points n = 2 def plot_conditioned_on_training(n): # Use the periodic data generator to create 2 training points x_train = np.random.uniform(low=-1.0, high=1.0, size=n) t_train = generate_t(x_train, sigma) # 100 data points for testing x_test = np.linspace(-1, 1, 100) y_test = true_mean_function(x_test) # Iterate over all plots and thetas for i, theta in enumerate(all_thetas): plt.subplot(2, 3, i+1) mean, var, C = gp_predictive_distribution(x_train, t_train, x_test, theta, beta) lp, C, invC = gp_log_likelihood(x_train, t_train, theta, beta, C) # Put theta info and log likelihood in title plt.title("thetas : {}, lp : {}".format(theta, lp)) gp_plot( x_test, y_test, mean, var, x_train, t_train, theta, beta) plt.show() plot_conditioned_on_training(n) # Number of data points n = 10 plot_conditioned_on_training(n) np.random.seed(1) plt.rcParams["figure.figsize"] = [10,10] # Cov should be diagonal (independency) and have the same values (identical), i.e. a*I. def create_X(mean, sig, N): return np.random.multivariate_normal(mean, sig * np.identity(2), N) m1 = [1, 1]; m2 = [3, 3] s1 = 1/2; s2 = 1/2 N1 = 20; N2 = 30 X1 = create_X(m1, s1, N1) X2 = create_X(m2, s2, N2) plt.figure() plt.axis('equal') plt.scatter(X1[:, 0], X1[:, 1], c='b', marker='o') plt.scatter(X2[:, 0], X2[:, 1], c='r', marker='o') plt.show() def create_X_and_t(X1, X2): X1_len = X1.shape[0] X2_len = X2.shape[0] X = np.vstack((X1, X2)) t = np.hstack((-np.ones(X1_len), np.ones(X2_len))) # Shuffle data? indices = np.arange(X1_len + X2_len) np.random.shuffle(indices) return X[indices], t[indices] ### Test your function dim = 2 N1_test = 2 N2_test = 3 X1_test = np.arange(4).reshape((N1_test, dim)) X2_test = np.arange(6).reshape((N2_test, dim)) X_test, t_test = create_X_and_t(X1_test, X2_test) assert X_test.shape == (N1_test + N2_test, dim), "the shape of X is incorrect" assert t_test.shape == (N1_test + N2_test,), "the shape of t is incorrect" def computeK(X): K = np.dot(X, X.T).astype('float') return K dim = 2 N_test = 3 X_test = np.arange(6).reshape((N_test, dim)) K_test = computeK(X_test) assert K_test.shape == (N_test, N_test) import cvxopt def compute_multipliers(X, t): K = computeK(np.dot(np.diag(t), X)) q = cvxopt.matrix(-np.ones_like(t, dtype='float')) G = cvxopt.matrix(np.diag(-np.ones_like(t, dtype='float'))) A = cvxopt.matrix(t).T h = cvxopt.matrix(np.zeros_like(t, dtype='float')) b = cvxopt.matrix(0.0) P = cvxopt.matrix(K) sol = cvxopt.solvers.qp(P, q, G, h, A, b) a = np.array(sol['x']) return a ### Test your function dim = 2 N_test = 3 X_test = np.arange(6).reshape((N_test, dim)) t_test = np.array([-1., 1., 1.]) a_test = compute_multipliers(X_test, t_test) assert a_test.shape == (N_test, 1) np.random.seed(420) X, t = create_X_and_t(X1, X2) a_opt = compute_multipliers(X, t) sv_ind = np.nonzero(np.around(a_opt[:, 0])) X_sv = X[sv_ind] t_sv = t[sv_ind] a_sv = a_opt[sv_ind] plt.figure() plt.axis('equal') plt.scatter(X1[:, 0], X1[:, 1], c='b', marker='o') plt.scatter(X2[:, 0], X2[:, 1], c='r', marker='o') plt.scatter(X_sv[:, 0], X_sv[:, 1], s=200, facecolors='none', edgecolors='lime', linewidth='3') plt.show() w_opt = np.squeeze(np.dot(a_opt.T, np.dot(np.diag(t), X))) K_sv = computeK(X_sv) N_sv = size(sv_ind) atk_sv = np.dot(a_sv.T * t_sv, K_sv) b = np.sum(t_sv - atk_sv)/N_sv x_lim = np.array([1, 4]) y_lim = (-w_opt[0] * x_lim - b) / w_opt[1] plt.figure() plt.axis('equal') plt.scatter(X1[:, 0], X1[:, 1], c='b', marker='o') plt.scatter(X2[:, 0], X2[:, 1], c='r', marker='o') plt.scatter(X_sv[:, 0], X_sv[:, 1], s=200, facecolors='none', edgecolors='lime', linewidth='3') plt.plot(x_lim, y_lim, c='black') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Similarity Interface Step2: To follow Deerwester’s example, we first use this tiny corpus to define a 2-dimensional LSI space Step3: Now suppose a user typed in the query “Human computer interaction”. We would like to sort our nine corpus documents in decreasing order of relevance to this query. Unlike modern search engines, here we only concentrate on a single aspect of possible similarities—on apparent semantic relatedness of their texts (words). No hyperlinks, no random-walk static ranks, just a semantic extension over the boolean keyword match Step4: In addition, we will be considering cosine similarity to determine the similarity of two vectors. Cosine similarity is a standard measure in Vector Space Modeling, but wherever the vectors represent probability distributions, different similarity measures may be more appropriate. Step5: <B>Warning</B> Step6: This is true for all similarity indexing classes (similarities.Similarity, similarities.MatrixSimilarity and similarities.SparseMatrixSimilarity). Also in the following, index can be an object of any of these. When in doubt, use similarities.Similarity, as it is the most scalable version, and it also supports adding more documents to the index later.
<ASSISTANT_TASK:> Python Code: import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) from gensim import corpora, models, similarities dictionary = corpora.Dictionary.load('/tmp/deerwester.dict') corpus = corpora.MmCorpus('/tmp/deerwester.mm') # comes from the first tutorial, "From strings to vectors" print(corpus) lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=2) doc = "Human computer interaction" vec_bow = dictionary.doc2bow(doc.lower().split()) vec_lsi = lsi[vec_bow] # convert the query to LSI space print(vec_lsi) index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it index.save('/tmp/deerwester.index') index = similarities.MatrixSimilarity.load('/tmp/deerwester.index') sims = index[vec_lsi] # perform a similarity query against the corpus print(list(enumerate(sims))) # print (document_number, document_similarity) 2-tuples <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The next step of using H2O is to parse and load data into H2O's in-memory columnar compressed storage. Today we will be using the Iris flower data set. Step2: H2O provides convenient commands to understand the H2OFrame object, the data structure for data that will be used by H2O's machine learning algorithms. Because H2O is often used for very large datasets and in a cluster computing configuration information about how much the data is compressed in memory and the distribution of the data across the H2O nodes, along with standard summary statics on the data in the H2OFrame, is provided. Step3: The iris data set is labeled into three classes; there are four measurements that were taken for each iris. While we will not be using the labeled data for clustering, it does provide us a convenient comparison and visualization of the data as it was provided. In this example I use Seaborn for the visualization of the data. Step4: The next step is to model the data using H2O's kmeans algorithm. We will do this across a range of cluster options and collect each H2O model object as an element in an array. In this example the initial position of the cluster centers is selected at random and the random number seed is set for reproducibility. Because H2O is designed for high performance it is quick and easy to explore many different hyper-parameter settings during modeling to find the model that best suits your needs. Step5: There are three diagnostics that will be demonstrated to help with determining the number of clusters Step6: From the plot below, to me, it is difficult to find a 'knee' in the rate of decrease of the total within cluster sum of square. It might be at 4 clusters, it might be 7. AIC is minimized at 7 clusters, and BIC is minimized at 4 clusters. Step7: For demonstration purposes, I will selected the number of clusters to be 4. I will use the H2O Model for 4 clusters previously created, and use that to assign the membership in each of the original data points. This predicted cluster assignment is then added to the original iris data frames as a new vector (mostly to make plotting easy). Step8: Finally, I will plot the predicted cluster membership using the same layout as on the original data earlier in the notebook.
<ASSISTANT_TASK:> Python Code: import h2o import imp from h2o.estimators.kmeans import H2OKMeansEstimator # Start a local instance of the H2O engine. h2o.init(); iris = h2o.import_file(path="https://github.com/h2oai/h2o-3/raw/master/h2o-r/h2o-package/inst/extdata/iris_wheader.csv") iris.describe() try: imp.find_module('pandas') can_pandas = True import pandas as pd except: can_pandas = False try: imp.find_module('seaborn') can_seaborn = True import seaborn as sns except: can_seaborn = False %matplotlib inline if can_seaborn: sns.set() if can_seaborn: sns.set_context("notebook") sns.pairplot(iris.as_data_frame(True), vars=["sepal_len", "sepal_wid", "petal_len", "petal_wid"], hue="class"); results = [H2OKMeansEstimator(k=clusters, init="Random", seed=2, standardize=True) for clusters in range(2,13)] for estimator in results: estimator.train(x=iris.col_names[0:-1], training_frame = iris) import math as math def diagnostics_from_clusteringmodel(model): total_within_sumofsquares = model.tot_withinss() number_of_clusters = len(model.centers()[0]) number_of_dimensions = len(model.centers()) number_of_rows = sum(model.size()) aic = total_within_sumofsquares + 2 * number_of_dimensions * number_of_clusters bic = total_within_sumofsquares + math.log(number_of_rows) * number_of_dimensions * number_of_clusters return {'Clusters':number_of_clusters, 'Total Within SS':total_within_sumofsquares, 'AIC':aic, 'BIC':bic} if can_pandas: diagnostics = pd.DataFrame( [diagnostics_from_clusteringmodel(model) for model in results]) diagnostics.set_index('Clusters', inplace=True) if can_pandas: diagnostics.plot(kind='line'); clusters = 4 predicted = results[clusters-2].predict(iris) iris["Predicted"] = predicted["predict"].asfactor() if can_seaborn: sns.pairplot(iris.as_data_frame(True), vars=["sepal_len", "sepal_wid", "petal_len", "petal_wid"], hue="Predicted"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: So from the histograms above we can see all these methods give us points on the unit sphere. (Uniform gives us almost) But are they all uncorrelated? Let us see,
<ASSISTANT_TASK:> Python Code: import numpy as np # returns a random d dimensional vector, a direction to peturb in def direction(d,t): # if type == uniform if(t == 'u'): return np.random.uniform(-2/np.sqrt(d), 2/np.sqrt(d), d) elif(t == 'n'): return np.random.normal(0, 1/np.sqrt(d), d) elif(t == 's'): # a point on the N-Sphere r = 1 so it is ommited angles = np.random.uniform(0, np.pi, d-2) angleLast = np.random.uniform(0, 2*np.pi,1)[0] x = np.zeros(d) x[0] = np.cos(angles[0]) for i in range(1,d-1): temp = 1 for j in range(i): temp = temp * np.sin(angles[j]) if(i == d-2): x[i] = temp * np.cos(angleLast) else: x[i] = temp*np.cos(angles[i]) x[d-1] = x[d-2]*np.tan(angleLast) return x #N = 10000 N = 100 # number of directions sampled AND the number of dimensions. d = N hN = [] normal = direction(d,'n').reshape(d,1) for i in range(N-1): hN.append(np.linalg.norm(direction(d,'n'))) normal = np.concatenate((normal,direction(d,'n').reshape(d,1)), axis = 1) import matplotlib.pyplot as plt plt.hist(hN) plt.show() hU = [] uniform = direction(d,'u').reshape(d,1) for i in range(N-1): hU.append(np.linalg.norm(direction(d,'u'))) uniform = np.concatenate((uniform,direction(d,'u').reshape(d,1)), axis = 1) import matplotlib.pyplot as plt plt.hist(hU) plt.show() N = 1000 hS = [] spherical = direction(d,'s').reshape(d,1) for i in range(N-1): hS.append(np.linalg.norm(direction(d,'s'))) spherical = np.concatenate((spherical,direction(d,'s').reshape(d,1)), axis = 1) for i in hS: # All vectors are close enough to 1 in length. Even for small d if((i-1)>10**-16): print(i-1) np.matmul(normal.T, normal) np.matmul(uniform.T, uniform) np.matmul(spherical.T, spherical) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Caffe computation mode Step2: GPU Step3: Network loading and tests Step4: The cell bellows checks that opencv and its python bindings are properly installed Step6: Face detection in image Step7: Redraw Step8: Train dataset appender
<ASSISTANT_TASK:> Python Code: import numpy as np from cStringIO import StringIO import matplotlib.pyplot as plt import caffe from IPython.display import clear_output, Image, display import cv2 import PIL.Image import os os.chdir("start_deep/") caffe.set_mode_cpu() caffe.set_device(0) caffe.set_mode_gpu() net = caffe.Net('deploy.prototxt', "facenet_iter_200000.caffemodel", caffe.TEST) #training = caffe.Net('facenet_train_test.prototxt', "facenet_iter_200000.caffemodel", caffe.TRAIN) #solver = caffe.SGDSolver('facenet_solver.prototxt') #test_net = solver.testnets[0] def showarray(a, fmt='jpeg'): a = np.uint8(np.clip(a, 0, 255)) f = StringIO() PIL.Image.fromarray(a).save(f, fmt) display(Image(data=f.getvalue())) #im = np.array(PIL.Image.open('train_images/0/137021_102_88_72_72.pgm'))/256.0 im = np.array(PIL.Image.open('train_images/1/image000619.pgm'))/256.0 im_input = im[np.newaxis, np.newaxis, :, :] net.blobs['data'].reshape(*im_input.shape) net.blobs['data'].data[...] = im showarray(im) print (len(im)) print (len(im[0])) print (im) output = net.forward() print(output) if output['prob'][0][0] >0.9: print "visage" print cv2.__version__ orig_scale = 4 def process_chunk(chunk): im_input = chunk[np.newaxis, np.newaxis, :, :] net.blobs['data'].reshape(*im_input.shape) net.blobs['data'].data[...] = imtmp return net.forward()['prob'][0][1] def get_face_prob(chunk): return process_chunk(chunk) def add_outline(img, i, j, scale, confidence): color = (255,255,255) if confidence > 0.985: color = (0,255,0) elif confidence >0.96: color = (255,255,0) else: color =(255,0,0) for x in range (int(i*scale), int((i+36)*scale)): img[x][int(j*scale)]=color img[x][int((j+36)*scale-1)]=color for y in range(int(j*scale), int((j+36)*scale)): img[int(i*scale)][y]=color img[int((i+36)*scale-1)][y]=color return img img = PIL.Image.open('test_vis4.jpg') w, h = img.size img = img.resize((int(w/orig_scale),int(h/orig_scale)), PIL.Image.NEAREST) imbase = img img = img.convert('L') w, h = img.size scale = 1 print "starting processing" found_pairs = [] next_scale = 1.3 next_i = 4 while w >=36*2 and h >36*2: img = img.resize((int(w/next_scale),int(h/next_scale)), PIL.Image.NEAREST) w, h = img.size print img.size im = np.array(img) scale*=next_scale i = 0 j = 0 last_result = 0 while i < int(h-36): next_i = 4 while j < int(w-36): imtmp = np.array(im [i:i+36, j:j+36]/256.0) face_prob = get_face_prob(imtmp) if face_prob > 0.5: next_i = 2 while j < int(w-36) and face_prob > last_result: imtmp = np.array(im [i:i+36, j:j+36]/256.0) last_result = face_prob face_prob = get_face_prob(imtmp) j += 1 if last_result > 0.92: next_i = 1 matched = False print last_result print "visage trouvé @ %i , %i"%(i, j) showarray(imtmp*255) for pair in found_pairs[:]: # copy the list to remove while working in it if (abs(pair[0]*pair[3] - i*scale) + abs(pair[1]*pair[3] - j*scale)) < 20*scale : matched = True if pair[2] < last_result: found_pairs.remove(pair) found_pairs.append((i, j, last_result, scale)) if not matched: found_pairs.append((i, j, last_result, scale)) j+=36 last_result = 0 j+= 4 i+=next_i j = 0 print "adding overlay" for pair in found_pairs: imbase = add_outline(np.array(imbase),pair[0],pair[1],pair[3], pair[2]) showarray(imbase) threshold = 0.96 img = PIL.Image.open('test_vis4.jpg') w, h = img.size img = img.resize((int(w/orig_scale),int(h/orig_scale)), PIL.Image.NEAREST) imbase = img print "adding overlay" for pair in found_pairs: if pair[2]>threshold: imbase = add_outline(np.array(imbase),pair[0],pair[1],pair[3], pair[2]) showarray(imbase) img = PIL.Image.open('test_vis4.jpg').convert('LA') arr = np.array(img) w, h = img.size print w a img = PIL.Image.open('neg1.jpg') w, h = img.size #img = img.resize((int(w/4),int(h/4)), PIL.Image.NEAREST) imbase = img img = img.convert('L') w, h = img.size scale = 1 width = 36 height = 36 import array findex = 4327 with open('posneg.txt', 'a') as f: print "starting processing" while w >=36*2 and h >36*2: img = img.resize((int(w/1.3),int(h/1.3)), PIL.Image.NEAREST) w, h = img.size print img.size im = np.array(img) scale*=1.3 found_pairs = [] i = 0 j = 0 last_result = 0 while i < int(h-36): while j < int(w-36): imtmp = np.array(im [i:i+36, j:j+36]/256.0) face_prob = get_face_prob(imtmp) if face_prob > 0.9: showarray(imtmp*255) buff=array.array('B') for k in range(0, 36): for l in range(0, 36): buff.append(int(imtmp[k][l]*255)) findex += 1 # open file for writing filename = '0/lbe%i.pgm'%findex try: fout=open("train_images/"+filename, 'wb') except IOError, er: print "Cannot open file ", filename, "Exiting … \n", er # define PGM Header pgmHeader = 'P5' + '\n' + str(width) + ' ' + str(height) + ' ' + str(255) + '\n' # write the header to the file fout.write(pgmHeader) # write the data to the file buff.tofile(fout) # close the file fout.close() f.write(filename + " 0\n") j+=4 i+=4 j = 0 print "adding overlay" for pair in found_pairs: imbase = add_outline(np.array(imbase),pair[0],pair[1],scale, pair[2]) showarray(imbase) print findex <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: class Node : def __init__(self , data ) : self . data = data self . next = None   def fun1(head ) : if(head == None ) : return  fun1(head . next ) print(head . data , end = "▁ ")  def fun2(start ) : if(start == None ) : return  print(start . data , end = "▁ ") if(start . next != None ) : fun2(start . next . next )  print(start . data , end = "▁ ")  def push(head , new_data ) : new_node = Node(new_data ) new_node . next = head head = new_node return head  head = None head = Node(5 ) head = push(head , 4 ) head = push(head , 3 ) head = push(head , 2 ) head = push(head , 1 ) print("Output ▁ of ▁ fun1() ▁ for ▁ list ▁ 1 - > 2 - > 3 - > 4 - > 5") fun1(head ) print("Output of fun2() for list 1 -> 2 -> 3 -> 4 -> 5 ") fun2(head ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sparse 2d interpolation Step2: The following plot should show the points on the boundary and the single point in the interior Step3: Use meshgrid and griddata to interpolate the function $f(x,y)$ on the entire square domain Step4: Plot the values of the interpolated scalar field using a contour plot. Customize your plot to make it effective and beautiful.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import numpy as np sns.set_style('white') from scipy.interpolate import griddata from scipy.interpolate import interp1d from scipy.interpolate import interp2d xb=np.array([-5,-4,-3,-2,-1,0,1,2,3,4,5]) yb=np.array([-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5]) yt=np.array([5]*11) yc=np.array(0) x=np.hstack((xb,xb,yb[1:10],yt[1:10],yc)) y=np.hstack((yb,yt,xb[1:10],xb[1:10],yc)) f1=np.array([0]*40) f2=[1] f=np.hstack((f1,f2)) plt.scatter(x,y); assert x.shape==(41,) assert y.shape==(41,) assert f.shape==(41,) assert np.count_nonzero(f)==1 # F=np.meshgrid(f,y) xnew=np.linspace(-5,5,100) ynew=xnew Xnew,Ynew=np.meshgrid(xnew,ynew) Fnew=griddata((x,y),f,(Xnew,Ynew),method='cubic') # worked with Jessi Pilgram assert xnew.shape==(100,) assert ynew.shape==(100,) assert Xnew.shape==(100,100) assert Ynew.shape==(100,100) assert Fnew.shape==(100,100) plt.figure(figsize=(12,8)) plt.contourf(Xnew,Ynew,Fnew) plt.xlabel('x') plt.ylabel('y') plt.title('Sparse 2d Interpolation') plt.colorbar(shrink=.9) plt.figure(figsize=(12,8)) plt.pcolor(Xnew,Ynew,Fnew) plt.xlabel('x') plt.ylabel('y') plt.title('2d Sparse Interpolation') plt.colorbar(shrink=.9) assert True # leave this to grade the plot <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Initialization of setup Step2: 2. Finite Volumes setup Step3: 3. Initial condition Step4: 4. Solution for the scalar advection problem
<ASSISTANT_TASK:> Python Code: # Import all necessary libraries, this is a configuration step for the exercise. # Please run it before the simulation code! import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # Show the plots in the Notebook. plt.switch_backend("nbagg") # Initialization of setup # -------------------------------------------------------------------------- nx = 2000 # number of grid points xmax = 8000 # in m c = 2500 # Advected speed eps = 0.5 # CFL tmax = 2 # simulation time in s sig = 200 # Gaussian width, in m x0 = 1000 # Gaussian position, in m method = 'Lax-Wendroff' # 'Lax-Wendroff', 'upwind' isnap = 10 # Initialize Space x = np.linspace(0,xmax,nx) dx = min(np.diff(x)) # use wave based CFL criterion dt = eps*dx/c # calculate tim step from stability criterion # Simulation time nt = int(np.floor(tmax/dt)) # Initialize shape of fields Q = np.zeros(nx) dQ = np.zeros(nx) dQ1 = np.zeros(nx) dQ2 = np.zeros(nx) Qa = np.zeros(nx) # Spatial initial condition #--------------------------------------------------------------- sx = np.exp(-1./sig**2 * (x-x0)**2) # Set Initial condition Q = sx # --------------------------------------------------------------- # Plot initial condition # --------------------------------------------------------------- plt.plot(x, sx, color='b', lw=2, label='Initial condition') plt.ylabel('Amplitude', size=16) plt.xlabel('x', size=16) plt.legend() plt.grid(True) plt.show() # --------------------------------------------------------------- # Initialize animated plot # --------------------------------------------------------------- fig = plt.figure(figsize=(12,6)) line = plt.plot(x, Q, 'k', x, Qa, 'r--') plt.ylabel('Amplitude') plt.xlabel('x') plt.title('Scalar Advection - %s method'%method, size=16) plt.ion() # set interective mode plt.show() # --------------------------------------------------------------- # Time extrapolation # --------------------------------------------------------------- for i in range(nt): # upwind method if method == 'upwind': for j in range(1, nx-1): # Forward (upwind) (c>0) dQ[j] = Q[j] - Q[j-1] # Time extrapolation Q = Q - dt/dx*c*dQ # Lax wendroff method if method == 'Lax-Wendroff': for j in range(1, nx-1): # Forward (upwind) (c>0) dQ1[j] = Q[j+1] - 2*Q[j] + Q[j-1] dQ2[j] = Q[j+1] - Q[j-1] # Time extrapolation Q = Q - 0.5*c*dt/dx*dQ2 + 0.5*(c*dt/dx)**2 *dQ1 # Boundary condition Q[0] = Q[nx-2] # Periodic Q[nx-1] = Q[nx-2] # Absorbing # -------------------------------------- # Animation plot. Display solution if not i % isnap: for l in line: l.remove() del l # -------------------------------------- # Analytical solution xd = c*i*dt+x0 Qa = np.exp(-1./sig**2 * (x - xd)**2) # -------------------------------------- # Display lines line = plt.plot(x, Q, 'k', x, Qa, 'r--', lw=1.5) plt.legend(iter(line), ('F. Volume', 'Analytic')) plt.gcf().canvas.draw() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Variable Type Step2: dir & help Step3: type Step4: Data Structure Step5: 定义函数 Step6: For 循环 Step7: map Step8: if elif else Step9: while循环 Step10: try except Step11: Write and Read data Step12: 保存中间步骤产生的字典数据 Step13: 重新读入json Step14: 使用matplotlib绘图
<ASSISTANT_TASK:> Python Code: %matplotlib inline import random, datetime import numpy as np import matplotlib.pyplot as plt import matplotlib import statsmodels.api as sm from scipy.stats import norm from scipy.stats.stats import pearsonr # str, int, float str(3) "chengjun wang" # int int('5') # float float('7.1') range(10) # for i in range(1, 10): # print(i) range(1,10) dir dir(str)[-10:] help(str) x = ' Hello WorlD ' dir(x)[-10:] # lower x.lower() # upper x.upper() # rstrip x.rstrip() # strip x.strip() # replace x.replace('lo', '') # split x.split('lo') # join ','.join(['a', 'b']) x = 'hello world' type(x) l = [1,2,3,3] # list t = (1, 2, 3, 3) # tuple s = {1, 2, 3, 3} # set([1,2,3,3]) # set d = {'a':1,'b':2,'c':3} # dict a = np.array(l) # array print(l, t, s, d, a) l = [1,2,3,3] # list l.append(4) l d = {'a':1,'b':2,'c':3} # dict d.keys() d = {'a':1,'b':2,'c':3} # dict d.values() d = {'a':1,'b':2,'c':3} # dict d['b'] d = {'a':1,'b':2,'c':3} # dict d.items() def devidePlus(m, n): # 结尾是冒号 y = m/n + 1 # 注意:空格 return y # 注意:return range(10) range(1, 10) for i in range(10): print(i, i*10, i**2) for i in range(10): print(i*10) for i in range(10): print(devidePlus(i, 2)) # 列表内部的for循环 r = [devidePlus(i, 2) for i in range(10)] r m1 = map(devidePlus, [4,3,2], [2, 1, 5]) print(*m1) #print(*map(devidePlus, [4,3,2], [2, 1, 5])) # 注意: 将(4, 2)作为一个组合进行计算,将(3, 1)作为一个组合进行计算 m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) print(*m2) m3 = map(lambda x, y, z: x + y - z, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10], [3, 3, 2, 2, 5]) print(*m3) j = 5 if j%2 == 1: print(r'余数是1') elif j%2 ==0: print(r'余数是0') else: print(r'余数既不是1也不是0') x = 5 if x < 5: y = -1 z = 5 elif x > 5: y = 1 z = 11 else: y = 0 z = 10 print(x, y, z) j = 0 while j <10: print(j) j+=1 # avoid dead loop j = 0 while j <10: if j%2 != 0: print(j**2) j+=1 # avoid dead loop j = 0 while j <50: if j == 30: break if j%2 != 0: print(j**2) j+=1 # avoid dead loop a = 4 while a: # 0, None, False print(a) a -= 1 if a < 0: a = None # [] def devidePlus(m, n): # 结尾是冒号 return m/n+ 1 # 注意:空格 for i in [2, 0, 5]: try: print(devidePlus(4, i)) except Exception as e: print(e) pass alist = [[1,1], [0, 0, 1]] for aa in alist: try: for a in aa: print(10 / a) except Exception as e: print(e) pass alist = [[1,1], [0, 0, 1]] for aa in alist: for a in aa: try: print(10 / a) except Exception as e: print(e) pass data =[[i, i**2, i**3] for i in range(10)] data for i in data: print('\t'.join(map(str, i))) type(data) len(data) data[0] help(f.write) # 保存数据 data =[[i, i**2, i**3] for i in range(10000)] f = open("../data/data_write_to_file1.txt", "w") for i in data: f.write('\t'.join(map(str,i)) + '\n') f.close() with open('../data/data_write_to_file.txt','r') as f: data = f.readlines() data[:5] with open('../data/data_write_to_file.txt','r') as f: data = f.readlines(1000) #bytes len(data) with open('../data/data_write_to_file.txt','r') as f: print(f.readline()) f = [1, 2, 3, 4, 5] for k, i in enumerate(f): print(k, i) with open('../data/data_write_to_file.txt','r') as f: for i in f: print(i) with open('../data/data_write_to_file.txt','r') as f: for k, i in enumerate(f): if k%2000 == 0: print(i) data = [] line = '0\t0\t0\n' line = line.replace('\n', '') line = line.split('\t') line = [int(i) for i in line] # convert str to int data.append(line) data # 读取数据 data = [] with open('../data/data_write_to_file1.txt','r') as f: for line in f: line = line.replace('\n', '').split('\t') line = [int(i) for i in line] data.append(line) data # 读取数据 data = [] with open('../data/data_write_to_file.txt','r') as f: for line in f: line = line.replace('\n', '').split('\t') line = [int(i) for i in line] data.append(line) data import pandas as pd help(pd.read_csv) df = pd.read_csv('../data/data_write_to_file.txt', sep = '\t', names = ['a', 'b', 'c']) df[-5:] import json data_dict = {'a':1, 'b':2, 'c':3} with open('../data/save_dict.json', 'w') as f: json.dump(data_dict, f) dd = json.load(open("../data/save_dict.json")) dd data_list = list(range(10)) with open('../data/save_list.json', 'w') as f: json.dump(data_list, f) dl = json.load(open("../data/save_list.json")) dl %matplotlib inline import matplotlib.pyplot as plt x = range(1, 100) y = [i**-3 for i in x] plt.plot(x, y, 'b-s') plt.ylabel('$p(k)$', fontsize = 20) plt.xlabel('$k$', fontsize = 20) plt.xscale('log') plt.yscale('log') plt.title('Degree Distribution') plt.show() import numpy as np # red dashes, blue squares and green triangles t = np.arange(0., 5., 0.2) plt.plot(t, t, 'r--') plt.plot(t, t**2, 'bs') plt.plot(t, t**3, 'g^') plt.show() # red dashes, blue squares and green triangles t = np.arange(0., 5., 0.2) plt.plot(t, t**2, 'b-s', label = '1') plt.plot(t, t**2.5, 'r-o', label = '2') plt.plot(t, t**3, 'g-^', label = '3') plt.annotate(r'$\alpha = 3$', xy=(3.5, 40), xytext=(2, 80), arrowprops=dict(facecolor='black', shrink=0.05), fontsize = 20) plt.ylabel('$f(t)$', fontsize = 20) plt.xlabel('$t$', fontsize = 20) plt.legend(loc=2,numpoints=1,fontsize=10) plt.show() # plt.savefig('/Users/chengjun/GitHub/cjc/figure/save_figure.png', # dpi = 300, bbox_inches="tight",transparent = True) import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(5,5)) sns.set(style="whitegrid") plt.figure(1) plt.subplot(221) plt.plot(t, t, 'r--') plt.text(2, 0.8*np.max(t), r'$\alpha = 1$', fontsize = 20) plt.subplot(222) plt.plot(t, t**2, 'bs') plt.text(2, 0.8*np.max(t**2), r'$\alpha = 2$', fontsize = 20) plt.subplot(223) plt.plot(t, t**3, 'g^') plt.text(2, 0.8*np.max(t**3), r'$\alpha = 3$', fontsize = 20) plt.subplot(224) plt.plot(t, t**4, 'r-o') plt.text(2, 0.8*np.max(t**4), r'$\alpha = 4$', fontsize = 20) plt.show() def f(t): return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) plt.figure(1) plt.subplot(211) plt.plot(t1, f(t1), 'bo') plt.plot(t2, f(t2), 'k') plt.subplot(212) plt.plot(t2, np.cos(2*np.pi*t2), 'r--') plt.show() import matplotlib.gridspec as gridspec import numpy as np t = np.arange(0., 5., 0.2) gs = gridspec.GridSpec(3, 3) ax1 = plt.subplot(gs[0, :]) plt.plot(t, t**2, 'b-s') ax2 = plt.subplot(gs[1,:-1]) plt.plot(t, t**2, 'g-s') ax3 = plt.subplot(gs[1:, -1]) plt.plot(t, t**2, 'r-o') ax4 = plt.subplot(gs[-1,0]) plt.plot(t, t**2, 'g-^') ax5 = plt.subplot(gs[-1,1]) plt.plot(t, t**2, 'b-<') plt.tight_layout() def OLSRegressPlot(x,y,col,xlab,ylab): xx = sm.add_constant(x, prepend=True) res = sm.OLS(y,xx).fit() constant, beta = res.params r2 = res.rsquared lab = r'$\beta = %.2f, \,R^2 = %.2f$' %(beta,r2) plt.scatter(x,y,s=60,facecolors='none', edgecolors=col) plt.plot(x,constant + x*beta,"red",label=lab) plt.legend(loc = 'upper left',fontsize=16) plt.xlabel(xlab,fontsize=26) plt.ylabel(ylab,fontsize=26) x = np.random.randn(50) y = np.random.randn(50) + 3*x pearsonr(x, y) fig = plt.figure(figsize=(10, 4),facecolor='white') OLSRegressPlot(x,y,'RoyalBlue',r'$x$',r'$y$') plt.show() fig = plt.figure(figsize=(7, 4),facecolor='white') data = norm.rvs(10.0, 2.5, size=5000) mu, std = norm.fit(data) plt.hist(data, bins=25, normed=True, alpha=0.6, color='g') xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = norm.pdf(x, mu, std) plt.plot(x, p, 'r', linewidth=2) title = r"$\mu = %.2f, \, \sigma = %.2f$" % (mu, std) plt.title(title,size=16) plt.show() import pandas as pd df = pd.read_csv('../data/data_write_to_file.txt', sep = '\t', names = ['a', 'b', 'c']) df[:5] df.plot.line() plt.yscale('log') plt.ylabel('$values$', fontsize = 20) plt.xlabel('$index$', fontsize = 20) plt.show() df.plot.scatter(x='a', y='b') plt.show() df.plot.hexbin(x='a', y='b', gridsize=25) plt.show() df['a'].plot.kde() plt.show() bp = df.boxplot() plt.yscale('log') plt.show() df['c'].diff().hist() plt.show() df.plot.hist(stacked=True, bins=20) # plt.yscale('log') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Pmf class Step2: To be true probabilities, they have to add up to 1. So we can normalize the Pmf Step3: The return value from Normalize is the sum of the probabilities before normalizing. Step4: A faster way to make a Pmf is to provide a sequence of values. The constructor adds the values to the Pmf and then normalizes Step5: To extract a value from a Pmf, you can use Prob Step6: Or you can use the bracket operator. Either way, if you ask for the probability of something that's not in the Pmf, the result is 0. Step7: The cookie problem Step8: And we can update it using Mult Step9: Or here's the shorter way to construct the prior. Step10: And we can use *= for the update. Step11: Either way, we have to normalize the posterior distribution. Step16: The Bayesian framework Step17: We can confirm that we get the same result. Step18: But this implementation is more general; it can handle any sequence of data. Step23: The Monty Hall problem Step24: And here's how we use it. Step25: The Suite class Step26: And it works. Step29: The M&M problem Step30: And here's an update Step31: Exercise Step32: Exercise Step33: Exercises Step34: Exercise Step35: Exercise Step36: Exercise In Section 2.3 I said that the solution to the cookie problem generalizes to the case where we draw multiple cookies with replacement.
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division % matplotlib inline from thinkbayes2 import Hist, Pmf, Suite pmf = Pmf() for x in [1,2,3,4,5,6]: pmf[x] = 1 pmf.Print() pmf.Normalize() pmf.Print() pmf = Pmf([1,2,3,4,5,6]) pmf.Print() pmf.Prob(1) pmf[1] pmf = Pmf() pmf['Bowl 1'] = 0.5 pmf['Bowl 2'] = 0.5 pmf.Print() pmf.Mult('Bowl 1', 0.75) pmf.Mult('Bowl 2', 0.5) pmf.Print() pmf = Pmf(['Bowl 1', 'Bowl 2']) pmf.Print() pmf['Bowl 1'] *= 0.75 pmf['Bowl 2'] *= 0.5 pmf.Print() pmf.Normalize() pmf.Print() class Cookie(Pmf): A map from string bowl ID to probablity. def __init__(self, hypos): Initialize self. hypos: sequence of string bowl IDs Pmf.__init__(self) for hypo in hypos: self.Set(hypo, 1) self.Normalize() def Update(self, data): Updates the PMF with new data. data: string cookie type for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) self.Normalize() mixes = { 'Bowl 1':dict(vanilla=0.75, chocolate=0.25), 'Bowl 2':dict(vanilla=0.5, chocolate=0.5), } def Likelihood(self, data, hypo): The likelihood of the data under the hypothesis. data: string cookie type hypo: string bowl ID mix = self.mixes[hypo] like = mix[data] return like pmf = Cookie(['Bowl 1', 'Bowl 2']) pmf.Update('vanilla') pmf.Print() dataset = ['vanilla', 'chocolate', 'vanilla'] for data in dataset: pmf.Update(data) pmf.Print() class Monty(Pmf): Map from string location of car to probability def __init__(self, hypos): Initialize the distribution. hypos: sequence of hypotheses Pmf.__init__(self) for hypo in hypos: self.Set(hypo, 1) self.Normalize() def Update(self, data): Updates each hypothesis based on the data. data: any representation of the data for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) self.Normalize() def Likelihood(self, data, hypo): Compute the likelihood of the data under the hypothesis. hypo: string name of the door where the prize is data: string name of the door Monty opened if hypo == data: return 0 elif hypo == 'A': return 0.5 else: return 1 pmf = Monty('ABC') pmf.Update('B') pmf.Print() class Monty(Suite): def Likelihood(self, data, hypo): if hypo == data: return 0 elif hypo == 'A': return 0.5 else: return 1 pmf = Monty('ABC') pmf.Update('B') pmf.Print() class M_and_M(Suite): Map from hypothesis (A or B) to probability. mix94 = dict(brown=30, yellow=20, red=20, green=10, orange=10, tan=10, blue=0) mix96 = dict(blue=24, green=20, orange=16, yellow=14, red=13, brown=13, tan=0) hypoA = dict(bag1=mix94, bag2=mix96) hypoB = dict(bag1=mix96, bag2=mix94) hypotheses = dict(A=hypoA, B=hypoB) def Likelihood(self, data, hypo): Computes the likelihood of the data under the hypothesis. hypo: string hypothesis (A or B) data: tuple of string bag, string color bag, color = data mix = self.hypotheses[hypo][bag] like = mix[color] return like suite = M_and_M('AB') suite.Update(('bag1', 'yellow')) suite.Update(('bag2', 'green')) suite.Print() suite.Update(('bag1', 'blue')) suite.Print() # Solution goes here # Solution goes here # Solution goes here from sympy import symbols p = symbols('p') # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setting up the simulation Step2: A lot of information can be recovered from the old storage, and so we don't have the recreate it. However, we did not save our network, so we'll have to create a new one. Since the network creates the ensembles, that means we will have to translate the trajectories from the old ensembles to new ensembles. Step3: Loading from storage is very easy. Each store is a list. We take the 0th snapshot as a template (it doesn't actually matter which one) for the next storage we'll create. Step4: Named objects can be found in storage by using their name as a dictionary key. This allows us to load our old engine, collective variables, and states. Step5: Creating new interface set, network, and move scheme Step6: Once again, we have everything we need to build the MSTIS network. Recall that this will create all the ensembles we need for the simulation. However, even though the ensembles are semantically the same, these are not the same objects. We'll need to deal with that later. Step7: Finally, we'll create the move scheme. For this, we'll use the default TIS move scheme Step8: Preparing initial conditions Step9: We are missing trajectories that satisfy the minus ensembles. In real simulations, you usually will have run trajectories in each state (you'll use those to create state/interface definitions). You can (and should) feed those trajectories to the initial_conditions_from_trajectories, instead of the complicated code below. That function is smart enough to select a section of the trajectory that satisfies the minus ensemble. Step10: Now that we have the necessary trajectories, we create a new sample set using initial_conditions_from_trajectories. By adding the sample_set keyword, we retain any assignments that existing in the given sample set. Step11: Now we have a sample set with a trajectory for all the ensembles required to start the simulation. We can (and should) double-check that everything is okay with a few simple checks Step12: Equilibration Step13: When using one-way shooting, as we are, part of the trajectory is reused after each shooting move. Therefore, an absolute minimum requirement for equilibration is that all frames from each initial trajectory have been replaced by other frames. We refer to such trajectories as "decorrelated," and OPS has a convenience for running a move scheme until all trajectories are decorrelated. Step14: Production Step15: The next block sets up a live visualization. This is optional, and only recommended if you're using OPS interactively (which would only be for very small systems). Some of the same tools can be used to play back the behavior after the fact if you want to see the behavior for more complicated systems. You can create a background (here we use the PES contours), and the visualization will plot the trajectories. Step16: Now everything is ready Step17: In RETIS, there are several different move types (shooting, replica exchange, etc.), and each move type can have a different probability of being selected. Moreover, different move types may have different numbers of specific moves (ensembles affected) within them. Step18: Finally, let's run for a lot longer to get enough statistics. Note that this time, we'll run the simulation using run_until, which picks up from where we left off, and finishes when a total of n_steps trials have been performed. Step19: Appendix Step20: We want to create a move scheme that consists of a shooting mover for each ensemble that is used in the move scheme called scheme, which we created above. The easiest way to get that is the scheme's find_used_ensembles method. However, we could get equivalent information from the network object mstis, by looking at its sampling_ensembles (normal TIS), ms_outers (multiple state outer), and minus_ensembles.
<ASSISTANT_TASK:> Python Code: from __future__ import print_function %matplotlib inline import openpathsampling as paths import numpy as np old_store = paths.Storage("mstis_bootstrap.nc", mode='r') print("PathMovers: "+ str(len(old_store.pathmovers))) print("Samples: " + str(len(old_store.samples))) print("Ensembles: " + str(len(old_store.ensembles))) print("SampleSets: " + str(len(old_store.samplesets))) print("Snapshots: " + str(len(old_store.snapshots))) print("Networks: " + str(len(old_store.networks))) template = old_store.snapshots[0] engine = old_store.engines['toy_engine'] opA = old_store.cvs['opA'] opB = old_store.cvs['opB'] opC = old_store.cvs['opC'] stateA = old_store.volumes['A'] stateB = old_store.volumes['B'] stateC = old_store.volumes['C'] # we could also load the interfaces, but it is just as easy: interfacesA = paths.VolumeInterfaceSet(opA, 0.0,[0.2, 0.3, 0.4]) interfacesB = paths.VolumeInterfaceSet(opB, 0.0,[0.2, 0.3, 0.4]) interfacesC = paths.VolumeInterfaceSet(opC, 0.0,[0.2, 0.3, 0.4]) ms_outers = paths.MSOuterTISInterface.from_lambdas( {ifaces: 0.5 for ifaces in [interfacesA, interfacesB, interfacesC]} ) mstis = paths.MSTISNetwork( [(stateA, interfacesA), (stateB, interfacesB), (stateC, interfacesC)], ms_outers=ms_outers ).named('mstis') scheme = paths.DefaultScheme(mstis, engine=engine).named("scheme") # load the sampleset we have saved before; there is only one in the file old_sampleset = old_store.samplesets[0] from_old_sset = scheme.initial_conditions_from_trajectories(old_sampleset) # CODE IN THIS CELL IS NEEDED FOR TEST SUITE, NOT NORMAL USE def shoot_until_A_to_A(initial_ensemble, desired_ensemble, sample, engine): # we only shoot forward because we know the final frame is the problem mover = paths.ForwardShootMover(ensemble=initial_ensemble, selector=paths.UniformSelector(), engine=engine) while not desired_ensemble(sample): change = mover.move_core([sample]) if desired_ensemble(change.trials[0]): sample = change.trials[0] return sample minus_samples = [] for minus_ensemble in mstis.special_ensembles['minus']: # tis_ensemble allows A->B; desired_ensemble only allows A->A initial_state = minus_ensemble.state_vol tis_ensemble = mstis.from_state[initial_state].ensembles[0] desired_ensemble = paths.TISEnsemble(initial_state, initial_state, tis_ensemble.interface) initial_sample = from_old_sset[tis_ensemble] # ensure we're A->A, not A->B sample_A_to_A = shoot_until_A_to_A(tis_ensemble, desired_ensemble, initial_sample, engine) # with an A->A segment, just use this to extend into the minus ensemble sample = minus_ensemble.extend_sample_from_trajectories( sample_A_to_A, engine=engine, replica=-len(minus_samples) - 1 ) minus_samples.append(sample) init_conds = scheme.initial_conditions_from_trajectories( minus_samples, sample_set=from_old_sset ) # verify that every trajectory satisfies its ensemble init_conds.sanity_check() # verify that this initial conditions are valid for this move scheme scheme.assert_initial_conditions(init_conds) equilibration = paths.PathSampling( storage=None, sample_set=init_conds, move_scheme=scheme ) # NBVAL_SKIP # don't run this during testing equilibration.run_until_decorrelated() # get the final sample set; normally we'd save to a file and reload equilibrated = equilibration.sample_set # logging creates ops_output.log file with details of what is going on #import logging.config #logging.config.fileConfig("../resources/logging.conf", # disable_existing_loggers=False) storage = paths.Storage("mstis.nc", "w") storage.save(template) mstis_calc = paths.PathSampling( storage=storage, sample_set=equilibrated, move_scheme=scheme ) mstis_calc.save_frequency = 50 # NBVAL_SKIP # skip this during testing, but leave it for demo purposes # we use the %run magic because this isn't in a package %run ../resources/toy_plot_helpers.py xval = paths.FunctionCV("xval", lambda snap : snap.xyz[0][0]) yval = paths.FunctionCV("yval", lambda snap : snap.xyz[0][1]) mstis_calc.live_visualizer = paths.StepVisualizer2D(mstis, xval, yval, [-1.0, 1.0], [-1.0, 1.0]) background = ToyPlot() background.contour_range = np.arange(-1.5, 1.0, 0.1) background.add_pes(engine.pes) mstis_calc.live_visualizer.background = background.plot() # increase update frequency to speed things up, but it isn't as pretty mstis_calc.status_update_frequency = 1 mstis_calc.run(100) representative_mover = scheme.movers['shooting'][0] n_steps = int(scheme.n_steps_for_trials(representative_mover, 1000)) print(n_steps) # NBVAL_SKIP # don't run all those steps in testing! mstis_calc.live_visualizer = None # turn off the live visualization mstis_calc.run_until(n_steps) storage.close() from openpathsampling import strategies all_ensembles = scheme.find_used_ensembles() shooting_strat = strategies.OneWayShootingStrategy( selector=paths.UniformSelector(), ensembles=all_ensembles, engine=engine ) # all custom strategies need a global-level "OrganizeBy" strategy # this is the standard one to use global_strat = strategies.OrganizeByMoveGroupStrategy() equil_scheme = paths.MoveScheme(mstis) equil_scheme.append([shooting_strat, global_strat]) custom_equil = paths.PathSampling( storage=None, move_scheme=equil_scheme, sample_set=init_conds ) # NBVAL_SKIP custom_equil.run_until_decorrelated() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Make a vector with 6 elements Step2: Get some information about the vector Step3: Create a matrix like this Step4: Get some information about the matrix Step5: A very powerful feature of NumPy and Python are List Comprehensions. These can replace many for loops and are much more efficient to run. Here we square every element in the vector a from above Step6: Using NumPy we can select rows and columns of data very easily (known as array slicing). Step7: Or we can slice the first column only. Using the , symbol we can ask for specfic rows and columns. The first integer always specifies the rows, which is followed by , and the second integer specifies the columns. The colon character Step8: We can select a specific element using the matrix's column and row index, for example we want to select the item in the second column's second row Step9: Entire books have been written about NumPy. Let's move on to Matplotlib. Step10: Using the plt.plot() function, you can plot many types of data and Matplotlib will try to figure out what you want to do with the data Step11: The plt.plot() function will take an arbritrary number of x y argument pairs Step12: Or plot three lines at once by supplying three pairs of x y values Step13: Combined with functions, more complex curves can be plotted. Let's plot the sigmoid curve Step14: Pandas Step15: Let's load the well known Wisconsin Breast Cancer dataset Step16: You can view a summary of the data using the describe() function Step17: Let's rename the column names Step18: See the first few rows Step19: Notice how the Class column (the last column in the table) consists of 2s and 4s. In this case 2 stands for malignant and 4 stands for benign. You can check this quickly using Step20: So you see only 2s and 4s are contained in this column. See a breakdown of the counts using the value_counts() function Step21: However, it is convention in machine learning to use a 0-based index to represent classes. Let's replace the 2s with 0s and the 4s with 1s Step22: Perhaps now we would like to drop the ID column Step23: As you can see you can use Pandas to quickly manipulate and access tabular data. Here we access the first 10 rows of the Size_Uniformity column Step24: Columns can also be accessed using the name of the column as an index Step25: You can examine the data types (Pandas dataframes can contain multiple types) Step26: The column Bare_Nucleoli appears as type object as it contains some missing data, which appear as ? in the dataset. Later in the course we will learn how to handle missing data. Step27: Or calculate the standard deviation for a certain column Step28: Pandas also provides useful plotting tools. To look for correlations in data, a scatter matrix is often useful. Step29: SciKit-Learn Step30: Load the Iris dataset (a flower data set often used for demonstration purposes) Step31: Convention states that matrices are represented using uppercase letters, often the letter X, and label vectors are represented using lower case letters, often y Step32: The k-Nearest Neighbour algorithm is possibly the simplest classifier. Given a new observation, take the label of the sample closest to it in the n-dimensional feature space. Step33: Then, the data must be split into a test set and a training set (again we are using naming conventions here for the training and test data X_train and X_test and their labels y_train and y_test) Step34: Now we will try to fit the k-nearest neighbours classifier to the training data Step35: The classifier has now been trained on the training data (X_train). We can now check how well it predicts newly seen data (using our test set, X_test) Step36: We can now element-wise compare our predicted results, in y_pred, with the true labels stored in y_test
<ASSISTANT_TASK:> Python Code: import numpy as np a = np.array([1,2,3,4,5,6]) # Print the contents of a a print("The vector a has " + str(a.ndim) + " dimension(s) and has the shape " + str(a.shape) + ".") m = np.array([[1,2,3], [4,5,6]]) m print("The matrix m has " + str(m.ndim) + " dimension(s) and has the shape " + str(m.shape) + ".") a_squared = [i**2 for i in a] a_squared m[0] m[:,0] m[1,1] import matplotlib.pyplot as plt %matplotlib inline plt.plot([1,2,3,4,5]) # x**y is shorthand for x to the power of y plt.plot([1,2,3,4,5],[1**2,2**2,3**2,4**2,5**2]) p = np.arange(1,10) # Get a range of numbers form 1 to 10 plt.plot(p, p, p, p**2, p, p**3) import math def sigmoid(x): a = [] for item in x: a.append(1/(1+math.exp(-item))) return a x = np.arange(-10., 10., 0.1) sig = sigmoid(x) plt.plot(x,sig) import pandas as pd df = pd.read_csv("https://raw.githubusercontent.com/mdbloice/Machine-Learning-for-Health-Informatics/master/data/breast-cancer-wisconsin.csv") df.describe() df.columns = ["ID","Clump_Thickness","Size_Uniformity","Shape_Uniformity","Marginal_Adhesion","Epithelial_Size","Bare_Nucleoli","Bland_Chromatin","Normal_Nucleoli","Mitoses","Class"] # Print the new header names: df.columns df.head() df.Class.unique() df.Class.value_counts() df = df.replace({"Class": {2: 0, 4: 1}}) df.Class.value_counts() df = df.drop(["ID"], axis=1) df.describe() df.Size_Uniformity[0:10] df['Size_Uniformity'][0:10] df.dtypes df.std() df.Clump_Thickness.std() from pandas.tools.plotting import scatter_matrix # Manually select three of the table's columns by passing an array of column names: df_subset = df[['Clump_Thickness','Size_Uniformity', 'Shape_Uniformity']] # The semi colon at the end of this line is to suppress informational output (we only want to see the plot) scatter_matrix(df_subset.head(100), alpha=0.2, figsize=(6,6), diagonal='kde'); from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier iris = datasets.load_iris() X = iris.data y = iris.target np.random.seed(376483) random_indices = np.random.permutation(len(y)) random_indices X_train = X[random_indices[:-10]] X_test = X[random_indices[-10:]] y_train = y[random_indices[:-10]] y_test = y[random_indices[-10:]] print("Number of training samples: %d. Number of test samples: %d." % (len(X_train), len(X_test)) ) knn = KNeighborsClassifier() # Initialise the classifier. knn.fit(X_train, y_train) # Fit the classifier. y_pred = knn.predict(X_test) # The classifier's predicted labels are now contained in y_pred: y_pred y_pred == y_test <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Integración Montecarlo tipo 1 Step2: Entonces, lo que queremos es aproximar el área de la región $\mathcal{D}$. Llamaremos esta área $A(\mathcal{D})$. Step3: En este caso, la integral se puede hacer fácilmente. Comparemos el resultado con el valor real Step4: Ver que los resultados son distintos cada vez (¿porqué?). Sin embargo, se aproximan más o menos en la misma medida. Step5: Actividad. Utilizar la anterior función para realizar las siguientes integrales. Poner los resultados en una tabla cuyas filas correspondan a la cantidad de términos utilizados en la aproximación (usar 10, 100, 1000, 10000 y 100000 términos) y cuyas columnas correspondan a las funciones. Step6: Integración Montecarlo tipo 2 Step7: De cálculo integral, sabemos que Step8: De modo que si la región se puede describir fácilmente, diría el ferras 'no hay pedo, lo pago' (podemos usar montecarlo tipo 1). Step9: Pero, ¿qué pasa si la geometría de la región no se puede describir fácilmente? Step10: Si aproximamos $A(\mathcal{D})$ aproximamos el valor de $\pi$, pues el área del círculo unitario es Step11: La probabilidad de que el punto $(X,Y)$ esté en el círculo unitario $\mathcal{D}$ es Step12: De nuevo, comparemos con el valor real Step13: Escribamos una función que tenga como entradas Step14: Actividad. Utilizar la anterior función para aproximar el área de la región descrita por
<ASSISTANT_TASK:> Python Code: from IPython.display import YouTubeVideo YouTubeVideo('Ti5zUD08w5s') YouTubeVideo('jmsFC0mNayM') import matplotlib.pyplot as plt import numpy as np %matplotlib inline def parab(x): return x**2 x = np.linspace(0,1) y = parab(x) plt.fill_between(x,y) plt.text(0.8,0.2,'$\mathcal{D}$',fontsize=20) plt.show() help(np.random.uniform) N = 100000 x = np.random.uniform(0, 1, N) A_Dapprox = np.sum(parab(x))/N A_Dapprox import pandas as pd A_D = 1/3 N = np.logspace(1,7,7) df = pd.DataFrame(index=N,columns=['Valor_aproximacion', 'Error_relativo'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: x = np.random.uniform(0, 1, n.astype(int)) df.loc[n,"Valor_aproximacion"] = np.sum(parab(x))/n df.loc[n,"Error_relativo"] = np.abs(df.loc[n,"Valor_aproximacion"]-A_D)/A_D df # Escribir la función acá def int_montecarlo1(f, a, b, N): return (b-a)/N*np.sum(f(np.random.uniform(a,b,N))) # Resolver def func1(x): return np.exp(x**2) def func2(x): return 1/np.log(x) def func3(x): return np.sin(x)/x a, b = 4, 5 N = np.logspace(1,5,5) df = pd.DataFrame(index=N,columns=['Funcion1', 'Funcion2', 'Funcion3'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: df.loc[n,"Funcion1"] = int_montecarlo1(func1, a, b, n.astype(int)) df.loc[n,"Funcion2"] = int_montecarlo1(func2, a, b, n.astype(int)) df.loc[n,"Funcion3"] = int_montecarlo1(func3, a, b, n.astype(int)) df x = np.linspace(-0.1,1.1) y = parab(x) plt.plot(x,x,'k--',label='$y=x$') plt.plot(x,y,'k',label='$y=x^2$') plt.fill_between(x,x,y) plt.text(0.5,0.4,'$\mathcal{D}$',fontsize=20) plt.legend(loc='best') plt.show() # Usar la funcion int_montecarlo1 def f(x): return x-x**2 A_Daprox = int_montecarlo1(f, 0, 1, 100000000) A_Daprox YouTubeVideo('G8fOTMYDPEA') def circ_arriba(x, r): return np.sqrt(r**2-x**2) def circ_abajo(x, r): return -np.sqrt(r**2-x**2) x = np.linspace(-1,1,100) y1 = circ_arriba(x, 1) y2 = circ_abajo(x, 1) plt.figure(figsize=(5,5)) plt.plot(x,y1,'k') plt.plot(x,y2,'k') plt.fill_between(x,y1,y2) plt.text(0,0,'$\mathcal{D}$',fontsize=20) plt.text(0.8,0.8,'$\mathcal{R}$',fontsize=20) plt.show() N = 1000000 x = np.random.uniform(-1, 1, N) y = np.random.uniform(-1, 1, N) X, Y = np.meshgrid(x,y) plt.figure(figsize=(5,5)) plt.scatter(X,Y) plt.show() def reg_circ(x,y): return x**2+y**2<=1 A_R = 4 A_Dapprox = A_R*np.sum(reg_circ(x,y))/N A_Dapprox A_D = np.pi N = np.logspace(1,7,7) df = pd.DataFrame(index=N,columns=['Valor_aproximacion', 'Error_relativo'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: x = np.random.uniform(-1, 1, n.astype(int)) y = np.random.uniform(-1, 1, n.astype(int)) df.loc[n,"Valor_aproximacion"] = A_R*np.sum(reg_circ(x,y))/n df.loc[n,"Error_relativo"] = np.abs(df.loc[n,"Valor_aproximacion"]-A_D)/A_D df # Escribir la función acá def int_montecarlo2(region, a1, b1, a2, b2, N): A_R = (b1-a1)*(b2-a2) x = np.random.uniform(a1, b1, N.astype(int)) y = np.random.uniform(a2, b2, N.astype(int)) return A_R*np.sum(region(x,y))/N N = 100 x = np.linspace(0, 1, N) y = np.linspace(0, 1, N) def region(x,y): return 4*(2*x-1)**4+8*(2*y-1)**8 < 1+2*(2*y-1)**3*(3*x-2)**2 X, Y = np.meshgrid(x,y) plt.figure(figsize=(5,5)) plt.scatter(X,Y,c=~region(X,Y),cmap='bone') plt.show() # Resolver a1, a2, b1, b2 = 0, 0, 1, 1 N = np.logspace(1,5,5) df = pd.DataFrame(index=N,columns=['Valor_aproximacion'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: df.loc[n,"Valor_aproximacion"] = int_montecarlo2(region, a1, b1, a2, b2, n) df <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In order to simulate source time courses, labels of desired active regions Step3: Create simulated source activity Step4: Here, Step5: Simulate raw data Step6: Extract epochs and compute evoked responsses Step7: Reconstruct simulated source time courses using dSPM inverse operator
<ASSISTANT_TASK:> Python Code: # Author: Ivana Kojcic <ivana.kojcic@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com> # Samuel Deslauriers-Gauthier <sam.deslauriers@gmail.com> # License: BSD-3-Clause import os.path as op import numpy as np import mne from mne.datasets import sample print(__doc__) # In this example, raw data will be simulated for the sample subject, so its # information needs to be loaded. This step will download the data if it not # already on your machine. Subjects directory is also set so it doesn't need # to be given to functions. data_path = sample.data_path() subjects_dir = op.join(data_path, 'subjects') subject = 'sample' meg_path = op.join(data_path, 'MEG', subject) # First, we get an info structure from the sample subject. fname_info = op.join(meg_path, 'sample_audvis_raw.fif') info = mne.io.read_info(fname_info) tstep = 1 / info['sfreq'] # To simulate sources, we also need a source space. It can be obtained from the # forward solution of the sample subject. fwd_fname = op.join(meg_path, 'sample_audvis-meg-eeg-oct-6-fwd.fif') fwd = mne.read_forward_solution(fwd_fname) src = fwd['src'] # To simulate raw data, we need to define when the activity occurs using events # matrix and specify the IDs of each event. # Noise covariance matrix also needs to be defined. # Here, both are loaded from the sample dataset, but they can also be specified # by the user. fname_event = op.join(meg_path, 'sample_audvis_raw-eve.fif') fname_cov = op.join(meg_path, 'sample_audvis-cov.fif') events = mne.read_events(fname_event) noise_cov = mne.read_cov(fname_cov) # Standard sample event IDs. These values will correspond to the third column # in the events matrix. event_id = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4, 'smiley': 5, 'button': 32} # Take only a few events for speed events = events[:80] activations = { 'auditory/left': [('G_temp_sup-G_T_transv-lh', 30), # label, activation (nAm) ('G_temp_sup-G_T_transv-rh', 60)], 'auditory/right': [('G_temp_sup-G_T_transv-lh', 60), ('G_temp_sup-G_T_transv-rh', 30)], 'visual/left': [('S_calcarine-lh', 30), ('S_calcarine-rh', 60)], 'visual/right': [('S_calcarine-lh', 60), ('S_calcarine-rh', 30)], } annot = 'aparc.a2009s' # Load the 4 necessary label names. label_names = sorted(set(activation[0] for activation_list in activations.values() for activation in activation_list)) region_names = list(activations.keys()) def data_fun(times, latency, duration): Function to generate source time courses for evoked responses, parametrized by latency and duration. f = 15 # oscillating frequency, beta band [Hz] sigma = 0.375 * duration sinusoid = np.sin(2 * np.pi * f * (times - latency)) gf = np.exp(- (times - latency - (sigma / 4.) * rng.rand(1)) ** 2 / (2 * (sigma ** 2))) return 1e-9 * sinusoid * gf times = np.arange(150, dtype=np.float64) / info['sfreq'] duration = 0.03 rng = np.random.RandomState(7) source_simulator = mne.simulation.SourceSimulator(src, tstep=tstep) for region_id, region_name in enumerate(region_names, 1): events_tmp = events[np.where(events[:, 2] == region_id)[0], :] for i in range(2): label_name = activations[region_name][i][0] label_tmp = mne.read_labels_from_annot(subject, annot, subjects_dir=subjects_dir, regexp=label_name, verbose=False) label_tmp = label_tmp[0] amplitude_tmp = activations[region_name][i][1] if region_name.split('/')[1][0] == label_tmp.hemi[0]: latency_tmp = 0.115 else: latency_tmp = 0.1 wf_tmp = data_fun(times, latency_tmp, duration) source_simulator.add_data(label_tmp, amplitude_tmp * wf_tmp, events_tmp) # To obtain a SourceEstimate object, we need to use `get_stc()` method of # SourceSimulator class. stc_data = source_simulator.get_stc() raw_sim = mne.simulation.simulate_raw(info, source_simulator, forward=fwd) raw_sim.set_eeg_reference(projection=True) mne.simulation.add_noise(raw_sim, cov=noise_cov, random_state=0) mne.simulation.add_eog(raw_sim, random_state=0) mne.simulation.add_ecg(raw_sim, random_state=0) # Plot original and simulated raw data. raw_sim.plot(title='Simulated raw data') epochs = mne.Epochs(raw_sim, events, event_id, tmin=-0.2, tmax=0.3, baseline=(None, 0)) evoked_aud_left = epochs['auditory/left'].average() evoked_vis_right = epochs['visual/right'].average() # Visualize the evoked data evoked_aud_left.plot(spatial_colors=True) evoked_vis_right.plot(spatial_colors=True) method, lambda2 = 'dSPM', 1. / 9. inv = mne.minimum_norm.make_inverse_operator(epochs.info, fwd, noise_cov) stc_aud = mne.minimum_norm.apply_inverse( evoked_aud_left, inv, lambda2, method) stc_vis = mne.minimum_norm.apply_inverse( evoked_vis_right, inv, lambda2, method) stc_diff = stc_aud - stc_vis brain = stc_diff.plot(subjects_dir=subjects_dir, initial_time=0.1, hemi='split', views=['lat', 'med']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lists in native Python Step2: This list is one-dimensional, let's make it multidimensional! Step3: How do we access the 6 element in the second row, third column for native Python list? Step4: Converting to numpy Arrays Step5: How do we access the 6 element in the second row, third column for numpy array? Step6: How do we retrieve a slice of the array, array([[1, 2], [4, 5]])? Step7: How do we retrieve the second column of the array? Step8: 4. Introduction to Pandas DataFrames Step9: What operations do we perform on tables? Step10: Operations on a Pandas DataFrame Step11: uncomment this to download the data Step12: Loading Data into a DataFrame Step13: Now we can use the read_csv command to read the comma-separated-value data Step14: The shape attribute shows us the number of elements Step15: The columns attribute gives us the column names Step16: Sophisticated Data Manipulation Step17: Mathematical operations on columns happen element-wise Step18: Columns can be created (or overwritten) with the assignment operator. Step19: Or to break down rides by age Step20: By default, the values rather than the index are sorted. Use sort=False to turn this behavior off Step21: We can explore other things as well Step22: Group-by Operation Step23: The simplest version of a groupby looks like this, and you can use almost any aggregation function you wish (mean, median, sum, minimum, maximum, standard deviation, count, etc.) Step24: It's also possible to index the grouped object like it is a dataframe Step25: Now we can simply call the plot() method of any series or dataframe to get a reasonable view of the data Step26: Adjusting the Plot Style Step27: Other plot types Step28: For example, we can create a histogram of trip durations
<ASSISTANT_TASK:> Python Code: import numpy as np my_list = [2, 5, 7, 8] my_list type(my_list) multi_list = [[1, 2, 3], [4, 5, 6]] # my_array = np.array(my_list) type(my_array) my_array.dtype multi_array.shape multi_array = np.array([[1, 2, 3], [4, 5, 6]], np.int32) # # # # Pandas DataFrames as table elements import pandas as pd df = pd.DataFrame({'A': [1,2,3], 'B': [2, 4, 6], 'ccc': [1.0, 33, 4]}) df sub_df = df[['A', 'ccc']] sub_df df['A'] + 2*df['B'] !ls !curl -o pronto.csv https://data.seattle.gov/api/views/tw7j-dfaw/rows.csv?accessType=DOWNLOAD import pandas as pd df = pd.read_csv('pronto.csv') type(df) len(df) df.head() df.columns df.index smaller_df = df.loc[[1,4,6,7,9,34],:] smaller_df.index df.shape df.dtypes df_small = df['stoptime'] type(df_small) df_small.tolist() trip_duration_hours = df['tripduration']/3600 trip_duration_hours[:2] trip_duration_hours.head() df['trip_duration_hours'] = df['tripduration']/3600 del df['trip_duration_hours'] df.head() df.loc[[0,1],:] df_long_trips = df[df['tripduration'] >10000] sel = df['tripduration'] > 10000 df_long_trips = df[sel] df_long_trips df[sel].shape # Make a copy of a slice df_subset = df[['starttime', 'stoptime']].copy() df_subset['trip_hours'] = df['tripduration']/3600 pd.value_counts(df["gender"]) pd.value_counts(2019 - df["birthyear"]) pd.value_counts(df["birthyear"], sort=False) # df.head() df_count = df.groupby(['from_station_id']).count() df_count.head() df_mean = df.groupby(['from_station_id']).mean() df_mean.head() dfgroup = df.groupby(['from_station_id']) dfgroup.groups df.groupby(gender).mean() %matplotlib inline import matplotlib.pyplot as plt df['tripduration'].hist() plt.style.use("ggplot") plt. # A script for creating a dataframe with counts of the occurrence of a columns' values df_count = df.groupby('from_station_id').count() df_count1 = df_count[['trip_id']] df_count2 = df_count1.rename(columns={'trip_id': 'count'}) df_count2.head() def make_table_count(df_arg, groupby_column): df_count = df_arg.groupby(groupby_column).count() column_name = df.columns[0] df_count1 = df_count[[column_name]] df_count2 = df_count1.rename(columns={column_name: 'count'}) return df_count2 dff = make_table_count(df, 'from_station_id') dff.head() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Creating dictionary with values Step2: Adding values to the dictionary Step3: Notice the ordering of the items in the output above Step4: Deleting item from the dictionary
<ASSISTANT_TASK:> Python Code: empty_dictionary = {} print empty_dictionary filled_dictionary = {'first_name': 'abhinav', 'last_name': 'upadhyay'} print filled_dictionary food_menu = {} food_menu['pizza'] = 300 food_menu['sandwich'] = 30 food_menu['tea'] = 10 print food_menu pizza_price = food_menu['pizza'] print pizza_price tea_price = food_menu['tea'] print tea_price food_menu.pop('tea') print food_menu <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load XRT data Step2: Load GBM data Step3: View the light curve Step4: Make energy selections and check them out Step5: Setup the model Step6: Setup the joint likelihood Step7: Fitting Step8: And then go Bayesian!
<ASSISTANT_TASK:> Python Code: %matplotlib inline %matplotlib notebook from threeML import * import os trigger="GRB110731A" dec=-28.546 ra=280.52 xrt_dir='xrt' xrt = SwiftXRTLike("XRT",pha_file=os.path.join(xrt_dir,"xrt_src.pha"), bak_file=os.path.join(xrt_dir,"xrt_bkg.pha"), rsp_file=os.path.join(xrt_dir,"xrt.rmf"), arf_file=os.path.join(xrt_dir,"xrt.arf")) xrt.view_count_spectrum() data_dir_gbm=os.path.join('gbm','bn110731A') trigger_number = 'bn110731465' gbm_data = download_GBM_trigger_data(trigger_number,detectors=['n3'],destination_directory=data_dir_gbm,compress_tte=True) # Select the time interval src_selection = "100.169342-150.169342" nai3 = FermiGBMTTELike('NAI3', os.path.join(data_dir_gbm,"glg_tte_n3_bn110731465_v00.fit.gz"), "20-90,160-250", # background selection src_selection, # source interval rsp_file=os.path.join(data_dir_gbm, "glg_cspec_n3_bn110731465_v00.rsp2")) nai3.view_lightcurve(20,250) nai3.set_active_measurements("8-900") nai3.view_count_spectrum() xspec_abund('angr') spectral_model = XS_phabs()* XS_zphabs() * XS_powerlaw() spectral_model.nh_1=0.101 spectral_model.nh_1.fix = True spectral_model.nh_2=0.1114424 spectral_model.nh_2.fix = True spectral_model.redshift_2 = 0.618 spectral_model.redshift_2.fix =True spectral_model.display() ptsrc = PointSource(trigger,ra,dec,spectral_shape=spectral_model) model = Model(ptsrc) data = DataList(xrt,nai3) jl = JointLikelihood(model, data, verbose=False) model.display() res = jl.fit() res = jl.get_errors() res = jl.get_contours(spectral_model.phoindex_3,1.5,2.5,50) res = jl.get_contours(spectral_model.norm_3,.1,.3,25,spectral_model.phoindex_3,1.5,2.5,50) spectral_model.phoindex_3.prior = Uniform_prior(lower_bound=-5.0, upper_bound=5.0) spectral_model.norm_3.prior = Log_uniform_prior(lower_bound=1E-5, upper_bound=1) bayes = BayesianAnalysis(model, data) samples = bayes.sample(n_walkers=50,burn_in=100, n_samples=1000) fig = bayes.corner_plot(plot_contours=True, plot_density=False) bayes.get_highest_density_interval() cleanup_downloaded_GBM_data(gbm_data) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Fast Style Transfer for Arbitrary Styles Step4: Let's get as well some images to play with. Step5: Import TF Hub module Step6: The signature of this hub module for image stylization is Step7: Let's try it on more images
<ASSISTANT_TASK:> Python Code: # Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import functools import os from matplotlib import gridspec import matplotlib.pylab as plt import numpy as np import tensorflow as tf import tensorflow_hub as hub print("TF Version: ", tf.__version__) print("TF Hub version: ", hub.__version__) print("Eager mode enabled: ", tf.executing_eagerly()) print("GPU available: ", tf.config.list_physical_devices('GPU')) # @title Define image loading and visualization functions { display-mode: "form" } def crop_center(image): Returns a cropped square image. shape = image.shape new_shape = min(shape[1], shape[2]) offset_y = max(shape[1] - shape[2], 0) // 2 offset_x = max(shape[2] - shape[1], 0) // 2 image = tf.image.crop_to_bounding_box( image, offset_y, offset_x, new_shape, new_shape) return image @functools.lru_cache(maxsize=None) def load_image(image_url, image_size=(256, 256), preserve_aspect_ratio=True): Loads and preprocesses images. # Cache image file locally. image_path = tf.keras.utils.get_file(os.path.basename(image_url)[-128:], image_url) # Load and convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]. img = tf.io.decode_image( tf.io.read_file(image_path), channels=3, dtype=tf.float32)[tf.newaxis, ...] img = crop_center(img) img = tf.image.resize(img, image_size, preserve_aspect_ratio=True) return img def show_n(images, titles=('',)): n = len(images) image_sizes = [image.shape[1] for image in images] w = (image_sizes[0] * 6) // 320 plt.figure(figsize=(w * n, w)) gs = gridspec.GridSpec(1, n, width_ratios=image_sizes) for i in range(n): plt.subplot(gs[i]) plt.imshow(images[i][0], aspect='equal') plt.axis('off') plt.title(titles[i] if len(titles) > i else '') plt.show() # @title Load example images { display-mode: "form" } content_image_url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Golden_Gate_Bridge_from_Battery_Spencer.jpg/640px-Golden_Gate_Bridge_from_Battery_Spencer.jpg' # @param {type:"string"} style_image_url = 'https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg' # @param {type:"string"} output_image_size = 384 # @param {type:"integer"} # The content image size can be arbitrary. content_img_size = (output_image_size, output_image_size) # The style prediction model was trained with image size 256 and it's the # recommended image size for the style image (though, other sizes work as # well but will lead to different results). style_img_size = (256, 256) # Recommended to keep it at 256. content_image = load_image(content_image_url, content_img_size) style_image = load_image(style_image_url, style_img_size) style_image = tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME') show_n([content_image, style_image], ['Content image', 'Style image']) # Load TF Hub module. hub_handle = 'https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2' hub_module = hub.load(hub_handle) # Stylize content image with given style image. # This is pretty fast within a few milliseconds on a GPU. outputs = hub_module(tf.constant(content_image), tf.constant(style_image)) stylized_image = outputs[0] # Visualize input images and the generated stylized image. show_n([content_image, style_image, stylized_image], titles=['Original content image', 'Style image', 'Stylized image']) # @title To Run: Load more images { display-mode: "form" } content_urls = dict( sea_turtle='https://upload.wikimedia.org/wikipedia/commons/d/d7/Green_Sea_Turtle_grazing_seagrass.jpg', tuebingen='https://upload.wikimedia.org/wikipedia/commons/0/00/Tuebingen_Neckarfront.jpg', grace_hopper='https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg', ) style_urls = dict( kanagawa_great_wave='https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg', kandinsky_composition_7='https://upload.wikimedia.org/wikipedia/commons/b/b4/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg', hubble_pillars_of_creation='https://upload.wikimedia.org/wikipedia/commons/6/68/Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg', van_gogh_starry_night='https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg/1024px-Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg', turner_nantes='https://upload.wikimedia.org/wikipedia/commons/b/b7/JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg', munch_scream='https://upload.wikimedia.org/wikipedia/commons/c/c5/Edvard_Munch%2C_1893%2C_The_Scream%2C_oil%2C_tempera_and_pastel_on_cardboard%2C_91_x_73_cm%2C_National_Gallery_of_Norway.jpg', picasso_demoiselles_avignon='https://upload.wikimedia.org/wikipedia/en/4/4c/Les_Demoiselles_d%27Avignon.jpg', picasso_violin='https://upload.wikimedia.org/wikipedia/en/3/3c/Pablo_Picasso%2C_1911-12%2C_Violon_%28Violin%29%2C_oil_on_canvas%2C_Kr%C3%B6ller-M%C3%BCller_Museum%2C_Otterlo%2C_Netherlands.jpg', picasso_bottle_of_rum='https://upload.wikimedia.org/wikipedia/en/7/7f/Pablo_Picasso%2C_1911%2C_Still_Life_with_a_Bottle_of_Rum%2C_oil_on_canvas%2C_61.3_x_50.5_cm%2C_Metropolitan_Museum_of_Art%2C_New_York.jpg', fire='https://upload.wikimedia.org/wikipedia/commons/3/36/Large_bonfire.jpg', derkovits_woman_head='https://upload.wikimedia.org/wikipedia/commons/0/0d/Derkovits_Gyula_Woman_head_1922.jpg', amadeo_style_life='https://upload.wikimedia.org/wikipedia/commons/8/8e/Untitled_%28Still_life%29_%281913%29_-_Amadeo_Souza-Cardoso_%281887-1918%29_%2817385824283%29.jpg', derkovtis_talig='https://upload.wikimedia.org/wikipedia/commons/3/37/Derkovits_Gyula_Talig%C3%A1s_1920.jpg', amadeo_cardoso='https://upload.wikimedia.org/wikipedia/commons/7/7d/Amadeo_de_Souza-Cardoso%2C_1915_-_Landscape_with_black_figure.jpg' ) content_image_size = 384 style_image_size = 256 content_images = {k: load_image(v, (content_image_size, content_image_size)) for k, v in content_urls.items()} style_images = {k: load_image(v, (style_image_size, style_image_size)) for k, v in style_urls.items()} style_images = {k: tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME') for k, style_image in style_images.items()} #@title Specify the main content image and the style you want to use. { display-mode: "form" } content_name = 'sea_turtle' # @param ['sea_turtle', 'tuebingen', 'grace_hopper'] style_name = 'munch_scream' # @param ['kanagawa_great_wave', 'kandinsky_composition_7', 'hubble_pillars_of_creation', 'van_gogh_starry_night', 'turner_nantes', 'munch_scream', 'picasso_demoiselles_avignon', 'picasso_violin', 'picasso_bottle_of_rum', 'fire', 'derkovits_woman_head', 'amadeo_style_life', 'derkovtis_talig', 'amadeo_cardoso'] stylized_image = hub_module(tf.constant(content_images[content_name]), tf.constant(style_images[style_name]))[0] show_n([content_images[content_name], style_images[style_name], stylized_image], titles=['Original content image', 'Style image', 'Stylized image']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Kubeflow Stats Step2: Compute cluster stats Step3: Number of new deployments Step4: Number of active deployments Step5: Compute histogram of Kubeflow deployment age for
<ASSISTANT_TASK:> Python Code: import datetime import numpy as np # Install and pin to versions that seem to work together !pip3 install pandas-gbq==0.10.0 google-cloud-bigquery==1.11.2 google-api-core==1.8.2 !pip3 install matplotlib # Inline all matplotlib plots %matplotlib inline from google.cloud import bigquery # NOTE: The RuntimeWarnings (if any) are harmless. See ContinuumIO/anaconda-issues#6678. import pandas as pd from pandas.io import gbq # Note: access to this project is restricted PROJECT="kubeflow-usage" # We need to filter out empty timestamps because they can't be converted to dates # Why would pings be missing a timestamp # Get data for last year max_age_hours = 24 * 365 query = select TIMESTAMP_SECONDS(cast(timestamp as int64)) as timestamp, clusteriD FROM usage.collector where timestamp is not null and length(timestamp) > 0 and timestamp_diff(CURRENT_TIMESTAMP(), TIMESTAMP_SECONDS(cast(timestamp as int64)), HOUR) < {max_age_hours} .format(max_age_hours=max_age_hours) data=gbq.read_gbq(str(query), dialect='standard', project_id=PROJECT) # Good reference for working with aggregations # https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas/ aggregations = { "timestamp": { "min_timestamp": "min", "max_timestamp": "max", "count": "count" } } stats = data.groupby("clusteriD").agg(aggregations) # Drop the multi-level index to make it easier to work with stats.columns = stats.columns.droplevel(level=0) stats["age"] = stats["max_timestamp"] - stats["min_timestamp"] long_stats = stats[stats["age"] > datetime.timedelta(hours=24)] new_per_day = pd.Series(data=1, index=stats["min_timestamp"]) new_per_day = new_per_day.sort_index() new_deployments = new_per_day.rolling('28d').sum() from matplotlib import pyplot as plt plt.plot(new_deployments.index, new_deployments.values) plt.title("New Kubeflow Deployments Last 28 Days") plt.ylabel('Number of created deployments', fontsize='large'); new_per_day_long = pd.Series(data=1, index=long_stats["min_timestamp"]) new_per_day_long = new_per_day_long.sort_index() new_deployments_long = new_per_day_long.rolling('28d').sum() from matplotlib import pyplot as plt plt.plot(new_deployments_long.index, new_deployments_long.values) plt.title("New Kubeflow Deployments Last 28 Days with minimum duration 24 hours") plt.ylabel('Number of created deployments', fontsize='large'); # We need to drop unknown_cluster and empty string because those represent # multiple clusters and the min and max timestamp will not correspond to the duration # of those clusters filtered_stats = stats[np.logical_and(stats.index != "" , stats.index != "unknown_cluster")] create_times = pd.Series(data=1, index=filtered_stats["min_timestamp"]) delete_times = pd.Series(data=-1, index=filtered_stats["max_timestamp"]) # Drop delete_times and create_times which are less than 24 hours old. # We assume those clusters are still active. So we don't want to interpret the # max ping timestamp as a delete timestamp now = datetime.datetime.now(delete_times.index.tzinfo) min_hours = 48 create_times = create_times[now - create_times.index > datetime.timedelta(hours=min_hours)] delete_times = delete_times[now - delete_times.index > datetime.timedelta(hours=min_hours)] deltas = pd.concat([create_times, delete_times]) deltas = deltas.sort_index() active_deployments= deltas.cumsum() plt.plot(active_deployments.index, active_deployments.values) plt.title("Active Kubeflow Deployments with minimum duration 24 hours") plt.ylabel('Number of deployments', fontsize='large'); last_28 = stats[now - stats["min_timestamp"] < datetime.timedelta(days=28)] age_counts = pd.Series(data=1, index=last_28["age"]) age_counts=age_counts.sort_index() age_stats = age_counts.cumsum() plt.plot(age_stats.index.total_seconds() / (24.0 * 3600), age_stats.values) plt.title("Kubeflow deployment duration for most recent 28 days") plt.ylabel('Kubeflow deployment count', fontsize='large'); # Compute a plot of age stats for clusters that have a minimum age of 1 day # Excluding short lived clusters filters out short lived automated clusters from testing # and other data last_28_long = last_28[last_28["age"] > datetime.timedelta(hours=24)] age_counts_long = pd.Series(data=1, index=last_28_long["age"]) age_counts_long=age_counts_long.sort_index() age_stats_long = age_counts_long.cumsum() age_cpdf_long = age_stats_long / age_stats_long.max() plt.plot(age_stats_long.index.total_seconds() / (24.0 * 3600), age_stats_long.values) plt.title("Age of Kubeflow deployments for clusters created in last 28 days") plt.xlabel("Deployment Age(days)") plt.ylabel('Cumulative deployment count', fontsize='large'); plt.plot(age_cpdf_long.index.total_seconds() / (24.0 * 3600), age_cpdf_long.values) now_day = now.strftime("%Y-%m-%d") plt.title("Age of Kubeflow deployments for clusters created in last 28 days\nTotal deployments={0}\n{1}".format(age_stats_long.max(), now_day)) plt.xlabel("Deployment Age(days)") plt.ylabel('Cumulative distribution', fontsize='large'); last_28_long["age"].quantile([.25, .5, .75, .9]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Session 4 Step2: <a name="part-1---pretrained-networks"></a> Step3: Now we can load a pre-trained network's graph and any labels. Explore the different networks in your own time. Step4: Each network returns a dictionary with the following keys defined. Every network has a key for "labels" except for "i2v", since this is a feature only network, e.g. an unsupervised network, and does not have labels. Step5: <a name="preprocessdeprocessing"></a> Step6: Let's now try preprocessing this image. The function for preprocessing is inside the module we used to load it. For instance, for vgg16, we can find the preprocess function as vgg16.preprocess, or for inception, inception.preprocess, or for i2v, i2v.preprocess. Or, we can just use the key preprocess in our dictionary net, as this is just convenience for us to access the corresponding preprocess function. Step7: Let's undo the preprocessing. Recall that the net dictionary has the key deprocess which is the function we need to use on our processed image, img. Step8: <a name="tensorboard"></a> Step9: If you open up the "mixed3a" node above (double click on it), you'll see the first "inception" module. This network encompasses a few advanced concepts that we did not have time to discuss during the lecture, including residual connections, feature concatenation, parallel convolution streams, 1x1 convolutions, and including negative labels in the softmax layer. I'll expand on the 1x1 convolutions here, but please feel free to skip ahead if this isn't of interest to you. Step10: <a name="using-context-managers"></a> Step11: <a name="part-2---visualizing-gradients"></a> Step12: Let's also grab the input layer Step14: We'll now try to find the gradient activation that maximizes a layer with respect to the input layer x. Step15: Let's try this w/ an image now. We're going to use the plot_gradient function to help us. This is going to take our input image, run it through the network up to a layer, find the gradient of the mean of that layer's activation with respect to the input image, then backprop that gradient back to the input layer. We'll then visualize the gradient by normalizing its values using the utils.normalize function. Step16: <a name="part-3---basic-deep-dream"></a> Step17: Let's now try running Deep Dream for every feature, each of our 5 pooling layers. We'll need to get the layer corresponding to our feature. Then find the gradient of this layer's mean activation with respect to our input, x. Then pass these to our dream function. This can take awhile (about 10 minutes using the CPU on my Macbook Pro). Step18: Instead of using an image, we can use an image of noise and see how it "hallucinates" the representations that the layer most responds to Step19: We'll do the same thing as before, now w/ our noise image Step20: <a name="part-4---deep-dream-extensions"></a> Step21: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step22: Let's decide on some parameters of our deep dream. We'll need to decide how many iterations to run for. And we'll plot the result every few iterations, also saving it so that we can produce a GIF. And at every iteration, we need to decide how much to ascend our gradient. Step23: Now let's dream. We're going to define a context manager to create a session and use our existing graph, and make sure we use the CPU device, as there is no gain in using GPU, and we have much more CPU memory than GPU memory. Step24: <a name="fractal"></a> Step25: <a name="guided-hallucinations"></a> Step26: Preprocess both images Step27: Like w/ Style Net, we are going to measure how similar the features in the guide image are to the dream images. In order to do that, we'll calculate the dot product. Experiment with other measures such as l1 or l2 loss to see how this impacts the resulting Dream! Step28: We'll now use another measure that we saw when developing Style Net during the lecture. This measure the pixel to pixel difference of neighboring pixels. What we're doing when we try to optimize a gradient that makes the mean differences small is saying, we want the difference to be low. This allows us to smooth our image in the same way that we did using the Gaussian to blur the image. Step29: Now we train just like before, except we'll need to combine our two loss terms, feature_loss and tv_loss by simply adding them! The one thing we have to keep in mind is that we want to minimize the tv_loss while maximizing the feature_loss. That means we'll need to use the negative tv_loss and the positive feature_loss. As an experiment, try just optimizing the tv_loss and removing the feature_loss from the tf.gradients call. What happens? Step30: <a name="further-explorations"></a> Step31: Let's now import the graph definition into our newly created Graph using a context manager and specifying that we want to use the CPU. Step32: Let's then grab the names of every operation in our network Step33: Now we need an image for our content image and another one for our style image. Step34: Let's see what the network classifies these images as just for fun Step35: <a name="content-features"></a> Step36: Pick a layer for using for the content features. If you aren't using VGG remember to get rid of the dropout stuff! Step37: <a name="style-features"></a> Step38: Now we find the gram matrix which we'll use to optimize our features. Step39: <a name="remapping-the-input"></a> Step40: <a name="content-loss"></a> Step41: <a name="style-loss"></a> Step42: <a name="total-variation-loss"></a> Step43: <a name="training"></a> Step44: And now iterate! Feel free to play with the number of iterations or how often you save an image. If you use a different network to VGG, then you will not need to feed in the dropout parameters like I've done here. Step45: <a name="assignment-submission"></a>
<ASSISTANT_TASK:> Python Code: # First check the Python version import sys if sys.version_info < (3,4): print('You are running an older version of Python!\n\n', 'You should consider updating to Python 3.4.0 or', 'higher as the libraries built for this course', 'have only been tested in Python 3.4 and higher.\n') print('Try installing the Python 3.5 version of anaconda' 'and then restart `jupyter notebook`:\n', 'https://www.continuum.io/downloads\n\n') # Now get necessary libraries try: import os import numpy as np import matplotlib.pyplot as plt from skimage.transform import resize from skimage import data from scipy.misc import imresize from scipy.ndimage.filters import gaussian_filter import IPython.display as ipyd import tensorflow as tf from libs import utils, gif, datasets, dataset_utils, vae, dft, vgg16, nb_utils except ImportError: print("Make sure you have started notebook in the same directory", "as the provided zip file which includes the 'libs' folder", "and the file 'utils.py' inside of it. You will NOT be able", "to complete this assignment unless you restart jupyter", "notebook inside the directory created by extracting", "the zip file or cloning the github repo. If you are still") # We'll tell matplotlib to inline any drawn figures like so: %matplotlib inline plt.style.use('ggplot') # Bit of formatting because I don't like the default inline code style: from IPython.core.display import HTML HTML(<style> .rendered_html code { padding: 2px 4px; color: #c7254e; background-color: #f9f2f4; border-radius: 4px; } </style>) from libs import vgg16, inception, i2v # Stick w/ Inception for now, and then after you see how # the next few sections work w/ this network, come back # and explore the other networks. net = inception.get_inception_model(version='v5') # net = inception.get_inception_model(version='v3') # net = vgg16.get_vgg_model() # net = vgg16.get_vgg_face_model() # net = i2v.get_i2v_model() # net = i2v.get_i2v_tag_model() print(net.keys()) # First, let's get an image: og = plt.imread('clinton.png')[..., :3] plt.imshow(og) print(og.min(), og.max()) # Now call the preprocess function. This will preprocess our # image ready for being input to the network, except for changes # to the dimensions. I.e., we will still need to convert this # to a 4-dimensional Tensor once we input it to the network. # We'll see how that works later. img = net['preprocess'](og) print(img.min(), img.max()) deprocessed = ... plt.imshow(deprocessed) plt.show() nb_utils.show_graph(net['graph_def']) net['labels'] label_i = 851 print(net['labels'][label_i]) # Load the VGG network. Scroll back up to where we loaded the inception # network if you are unsure. It is inside the "vgg16" module... net = .. assert(net['labels'][0] == (0, 'n01440764 tench, Tinca tinca')) # Let's explicity use the CPU, since we don't gain anything using the GPU # when doing Deep Dream (it's only a single image, benefits come w/ many images). device = '/cpu:0' # We'll now explicitly create a graph g = tf.Graph() # And here is a context manager. We use the python "with" notation to create a context # and create a session that only exists within this indent, as soon as we leave it, # the session is automatically closed! We also tell the session which graph to use. # We can pass a second context after the comma, # which we'll use to be explicit about using the CPU instead of a GPU. with tf.Session(graph=g) as sess, g.device(device): # Now load the graph_def, which defines operations and their values into `g` tf.import_graph_def(net['graph_def'], name='net') # Now we can get all the operations that belong to the graph `g`: names = [op.name for op in g.get_operations()] print(names) # First find all the pooling layers in the network. You can # use list comprehension to iterate over all the "names" we just # created, finding whichever ones have the name "pool" in them. # Then be sure to append a ":0" to the names features = ... # Let's print them print(features) # This is what we want to have at the end. You could just copy this list # if you are stuck! assert(features == ['net/pool1:0', 'net/pool2:0', 'net/pool3:0', 'net/pool4:0', 'net/pool5:0']) # Use the function 'get_tensor_by_name' and the 'names' array to help you # get the first tensor in the network. Remember you have to add ":0" to the # name to get the output of an operation which is the tensor. x = ... assert(x.name == 'net/images:0') def plot_gradient(img, x, feature, g, device='/cpu:0'): Let's visualize the network's gradient activation when backpropagated to the original input image. This is effectively telling us which pixels contribute to the predicted layer, class, or given neuron with the layer # We'll be explicit about the graph and the device # by using a context manager: with tf.Session(graph=g) as sess, g.device(device): saliency = tf.gradients(tf.reduce_mean(feature), x) this_res = sess.run(saliency[0], feed_dict={x: img}) grad = this_res[0] / np.max(np.abs(this_res)) return grad og = plt.imread('clinton.png')[..., :3] img = net['preprocess'](og)[np.newaxis] fig, axs = plt.subplots(1, len(features), figsize=(20, 10)) for i in range(len(features)): axs[i].set_title(features[i]) grad = plot_gradient(img, x, g.get_tensor_by_name(features[i]), g) axs[i].imshow(utils.normalize(grad)) def dream(img, gradient, step, net, x, n_iterations=50, plot_step=10): # Copy the input image as we'll add the gradient to it in a loop img_copy = img.copy() fig, axs = plt.subplots(1, n_iterations // plot_step, figsize=(20, 10)) with tf.Session(graph=g) as sess, g.device(device): for it_i in range(n_iterations): # This will calculate the gradient of the layer we chose with respect to the input image. this_res = sess.run(gradient[0], feed_dict={x: img_copy})[0] # Let's normalize it by the maximum activation this_res /= (np.max(np.abs(this_res) + 1e-8)) # Or alternatively, we can normalize by standard deviation # this_res /= (np.std(this_res) + 1e-8) # Or we could use the `utils.normalize function: # this_res = utils.normalize(this_res) # Experiment with all of the above options. They will drastically # effect the resulting dream, and really depend on the network # you use, and the way the network handles normalization of the # input image, and the step size you choose! Lots to explore! # Then add the gradient back to the input image # Think about what this gradient represents? # It says what direction we should move our input # in order to meet our objective stored in "gradient" img_copy += this_res * step # Plot the image if (it_i + 1) % plot_step == 0: m = net['deprocess'](img_copy[0]) axs[it_i // plot_step].imshow(m) # We'll run it for 3 iterations n_iterations = 3 # Think of this as our learning rate. This is how much of # the gradient we'll add back to the input image step = 1.0 # Every 1 iterations, we'll plot the current deep dream plot_step = 1 for feature_i in range(len(features)): with tf.Session(graph=g) as sess, g.device(device): # Get a feature layer layer = g.get_tensor_by_name(features[feature_i]) # Find the gradient of this layer's mean activation # with respect to the input image gradient = tf.gradients(tf.reduce_mean(layer), x) # Dream w/ our image dream(img, gradient, step, net, x, n_iterations=n_iterations, plot_step=plot_step) noise = net['preprocess']( np.random.rand(256, 256, 3) * 0.1 + 0.45)[np.newaxis] for feature_i in range(len(features)): with tf.Session(graph=g) as sess, g.device(device): # Get a feature layer layer = ... # Find the gradient of this layer's mean activation # with respect to the input image gradient = ... # Dream w/ the noise image. Complete this! dream(...) # Load your own image here og = ... plt.imshow(og) # Preprocess the image and make sure it is 4-dimensional by adding a new axis to the 0th dimension: img = ... assert(img.ndim == 4) # Let's get the softmax layer print(names[-2]) layer = g.get_tensor_by_name(names[-2] + ":0") # And find its shape with tf.Session(graph=g) as sess, g.device(device): layer_shape = tf.shape(layer).eval(feed_dict={x:img}) # We can find out how many neurons it has by feeding it an image and # calculating the shape. The number of output channels is the last dimension. n_els = layer_shape[-1] # Let's pick a label. First let's print out every label and then find one we like: print(net['labels']) # Pick a neuron. Or pick a random one. This should be 0-n_els neuron_i = ... print(net['labels'][neuron_i]) assert(neuron_i >= 0 and neuron_i < n_els) # And we'll create an activation of this layer which is very close to 0 layer_vec = np.ones(layer_shape) / 100.0 # Except for the randomly chosen neuron which will be very close to 1 layer_vec[..., neuron_i] = 0.99 # Explore different parameters for this section. n_iterations = 51 plot_step = 5 # If you use a different network, you will definitely need to experiment # with the step size, as each network normalizes the input image differently. step = 0.2 imgs = [] with tf.Session(graph=g) as sess, g.device(device): gradient = tf.gradients(tf.reduce_max(layer), x) # Copy the input image as we'll add the gradient to it in a loop img_copy = img.copy() with tf.Session(graph=g) as sess, g.device(device): for it_i in range(n_iterations): # This will calculate the gradient of the layer we chose with respect to the input image. this_res = sess.run(gradient[0], feed_dict={ x: img_copy, layer: layer_vec})[0] # Let's normalize it by the maximum activation this_res /= (np.max(np.abs(this_res) + 1e-8)) # Or alternatively, we can normalize by standard deviation # this_res /= (np.std(this_res) + 1e-8) # Then add the gradient back to the input image # Think about what this gradient represents? # It says what direction we should move our input # in order to meet our objective stored in "gradient" img_copy += this_res * step # Plot the image if (it_i + 1) % plot_step == 0: m = net['deprocess'](img_copy[0]) plt.figure(figsize=(5, 5)) plt.grid('off') plt.imshow(m) plt.show() imgs.append(m) # Save the gif gif.build_gif(imgs, saveto='softmax.gif') ipyd.Image(url='softmax.gif?i={}'.format( np.random.rand()), height=300, width=300) n_iterations = 101 plot_step = 10 step = 0.1 crop = 1 imgs = [] n_imgs, height, width, *ch = img.shape with tf.Session(graph=g) as sess, g.device(device): # Explore changing the gradient here from max to mean # or even try using different concepts we learned about # when creating style net, such as using a total variational # loss on `x`. gradient = tf.gradients(tf.reduce_max(layer), x) # Copy the input image as we'll add the gradient to it in a loop img_copy = img.copy() with tf.Session(graph=g) as sess, g.device(device): for it_i in range(n_iterations): # This will calculate the gradient of the layer # we chose with respect to the input image. this_res = sess.run(gradient[0], feed_dict={ x: img_copy, layer: layer_vec})[0] # This is just one way we could normalize the # gradient. It helps to look at the range of your image's # values, e.g. if it is 0 - 1, or -115 to +115, # and then consider the best way to normalize the gradient. # For some networks, it might not even be necessary # to perform this normalization, especially if you # leave the dream to run for enough iterations. # this_res = this_res / (np.std(this_res) + 1e-10) this_res = this_res / (np.max(np.abs(this_res)) + 1e-10) # Then add the gradient back to the input image # Think about what this gradient represents? # It says what direction we should move our input # in order to meet our objective stored in "gradient" img_copy += this_res * step # Optionally, we could apply any number of regularization # techniques... Try exploring different ways of regularizing # gradient. ascent process. If you are adventurous, you can # also explore changing the gradient above using a # total variational loss, as we used in the style net # implementation during the lecture. I leave that to you # as an exercise! # Crop a 1 pixel border from height and width img_copy = img_copy[:, crop:-crop, crop:-crop, :] # Resize (Note: in the lecture, we used scipy's resize which # could not resize images outside of 0-1 range, and so we had # to store the image ranges. This is a much simpler resize # method that allows us to `preserve_range`.) img_copy = resize(img_copy[0], (height, width), order=3, clip=False, preserve_range=True )[np.newaxis].astype(np.float32) # Plot the image if (it_i + 1) % plot_step == 0: m = net['deprocess'](img_copy[0]) plt.grid('off') plt.imshow(m) plt.show() imgs.append(m) # Create a GIF gif.build_gif(imgs, saveto='fractal.gif') ipyd.Image(url='fractal.gif?i=2', height=300, width=300) # Replace these with your own images! guide_og = plt.imread(...)[..., :3] dream_og = plt.imread(...)[..., :3] assert(guide_og.ndim == 3 and guide_og.shape[-1] == 3) assert(dream_og.ndim == 3 and dream_og.shape[-1] == 3) guide_img = net['preprocess'](guide_og)[np.newaxis] dream_img = net['preprocess'](dream_og)[np.newaxis] fig, axs = plt.subplots(1, 2, figsize=(7, 4)) axs[0].imshow(guide_og) axs[1].imshow(dream_og) x = g.get_tensor_by_name(names[0] + ":0") # Experiment with the weighting feature_loss_weight = 1.0 with tf.Session(graph=g) as sess, g.device(device): feature_loss = tf.Variable(0.0) # Explore different layers/subsets of layers. This is just an example. for feature_i in features[3:5]: # Get the activation of the feature layer = g.get_tensor_by_name(feature_i) # Do the same for our guide image guide_layer = sess.run(layer, feed_dict={x: guide_img}) # Now we need to measure how similar they are! # We'll use the dot product, which requires us to first reshape both # features to a 2D vector. But you should experiment with other ways # of measuring similarity such as l1 or l2 loss. # Reshape each layer to 2D vector layer = tf.reshape(layer, [-1, 1]) guide_layer = guide_layer.reshape(-1, 1) # Now calculate their dot product correlation = tf.matmul(guide_layer.T, layer) # And weight the loss by a factor so we can control its influence feature_loss += feature_loss_weight * correlation n_img, height, width, ch = dream_img.shape # We'll weight the overall contribution of the total variational loss # Experiment with this weighting tv_loss_weight = 1.0 with tf.Session(graph=g) as sess, g.device(device): # Penalize variations in neighboring pixels, enforcing smoothness dx = tf.square(x[:, :height - 1, :width - 1, :] - x[:, :height - 1, 1:, :]) dy = tf.square(x[:, :height - 1, :width - 1, :] - x[:, 1:, :width - 1, :]) # We will calculate their difference raised to a power to push smaller # differences closer to 0 and larger differences higher. # Experiment w/ the power you raise this to to see how it effects the result tv_loss = tv_loss_weight * tf.reduce_mean(tf.pow(dx + dy, 1.2)) # Experiment with the step size! step = 0.1 imgs = [] with tf.Session(graph=g) as sess, g.device(device): # Experiment with just optimizing the tv_loss or negative tv_loss to understand what it is doing! gradient = tf.gradients(-tv_loss + feature_loss, x) # Copy the input image as we'll add the gradient to it in a loop img_copy = dream_img.copy() with tf.Session(graph=g) as sess, g.device(device): sess.run(tf.global_variables_initializer()) for it_i in range(n_iterations): # This will calculate the gradient of the layer we chose with respect to the input image. this_res = sess.run(gradient[0], feed_dict={x: img_copy})[0] # Let's normalize it by the maximum activation this_res /= (np.max(np.abs(this_res) + 1e-8)) # Or alternatively, we can normalize by standard deviation # this_res /= (np.std(this_res) + 1e-8) # Then add the gradient back to the input image # Think about what this gradient represents? # It says what direction we should move our input # in order to meet our objective stored in "gradient" img_copy += this_res * step # Plot the image if (it_i + 1) % plot_step == 0: m = net['deprocess'](img_copy[0]) plt.figure(figsize=(5, 5)) plt.grid('off') plt.imshow(m) plt.show() imgs.append(m) gif.build_gif(imgs, saveto='guided.gif') ipyd.Image(url='guided.gif?i=0', height=300, width=300) sess.close() tf.reset_default_graph() # Stick w/ VGG for now, and then after you see how # the next few sections work w/ this network, come back # and explore the other networks. net = vgg16.get_vgg_model() # net = vgg16.get_vgg_face_model() # net = inception.get_inception_model(version='v5') # net = inception.get_inception_model(version='v3') # net = i2v.get_i2v_model() # net = i2v.get_i2v_tag_model() # Let's explicity use the CPU, since we don't gain anything using the GPU # when doing Deep Dream (it's only a single image, benefits come w/ many images). device = '/cpu:0' # We'll now explicitly create a graph g = tf.Graph() # And here is a context manager. We use the python "with" notation to create a context # and create a session that only exists within this indent, as soon as we leave it, # the session is automatically closed! We also tel the session which graph to use. # We can pass a second context after the comma, # which we'll use to be explicit about using the CPU instead of a GPU. with tf.Session(graph=g) as sess, g.device(device): # Now load the graph_def, which defines operations and their values into `g` tf.import_graph_def(net['graph_def'], name='net') names = [op.name for op in g.get_operations()] content_og = plt.imread('arles.png')[..., :3] style_og = plt.imread('clinton.png')[..., :3] fig, axs = plt.subplots(1, 2) axs[0].imshow(content_og) axs[0].set_title('Content Image') axs[0].grid('off') axs[1].imshow(style_og) axs[1].set_title('Style Image') axs[1].grid('off') # We'll save these with a specific name to include in your submission plt.imsave(arr=content_og, fname='content.png') plt.imsave(arr=style_og, fname='style.png') content_img = net['preprocess'](content_og)[np.newaxis] style_img = net['preprocess'](style_og)[np.newaxis] # Grab the tensor defining the input to the network x = ... # And grab the tensor defining the softmax layer of the network softmax = ... # Remember from the lecture that we have to set the dropout # "keep probability" to 1.0. keep_probability = np.ones([1, 4096]) for img in [content_img, style_img]: with tf.Session(graph=g) as sess, g.device('/cpu:0'): res = softmax.eval(feed_dict={x: img, 'net/dropout_1/random_uniform:0': keep_probability, 'net/dropout/random_uniform:0': keep_probability})[0] print([(res[idx], net['labels'][idx]) for idx in res.argsort()[-5:][::-1]]) print(names) # Experiment w/ different layers here. You'll need to change this if you # use another network! content_layer = 'net/conv3_2/conv3_2:0' with tf.Session(graph=g) as sess, g.device('/cpu:0'): content_features = g.get_tensor_by_name(content_layer).eval( session=sess, feed_dict={x: content_img, 'net/dropout_1/random_uniform:0': keep_probability, 'net/dropout/random_uniform:0': keep_probability}) # Experiment with different layers and layer subsets. You'll need to change these # if you use a different network! style_layers = ['net/conv1_1/conv1_1:0', 'net/conv2_1/conv2_1:0', 'net/conv3_1/conv3_1:0', 'net/conv4_1/conv4_1:0', 'net/conv5_1/conv5_1:0'] style_activations = [] with tf.Session(graph=g) as sess, g.device('/cpu:0'): for style_i in style_layers: style_activation_i = g.get_tensor_by_name(style_i).eval( feed_dict={x: style_img, 'net/dropout_1/random_uniform:0': keep_probability, 'net/dropout/random_uniform:0': keep_probability}) style_activations.append(style_activation_i) style_features = [] for style_activation_i in style_activations: s_i = np.reshape(style_activation_i, [-1, style_activation_i.shape[-1]]) gram_matrix = np.matmul(s_i.T, s_i) / s_i.size style_features.append(gram_matrix.astype(np.float32)) tf.reset_default_graph() g = tf.Graph() # Get the network again net = vgg16.get_vgg_model() # Load up a session which we'll use to import the graph into. with tf.Session(graph=g) as sess, g.device('/cpu:0'): # We can set the `net_input` to our content image # or perhaps another image # or an image of noise # net_input = tf.Variable(content_img / 255.0) net_input = tf.get_variable( name='input', shape=content_img.shape, dtype=tf.float32, initializer=tf.random_normal_initializer( mean=np.mean(content_img), stddev=np.std(content_img))) # Now we load the network again, but this time replacing our placeholder # with the trainable tf.Variable tf.import_graph_def( net['graph_def'], name='net', input_map={'images:0': net_input}) with tf.Session(graph=g) as sess, g.device('/cpu:0'): content_loss = tf.nn.l2_loss((g.get_tensor_by_name(content_layer) - content_features) / content_features.size) with tf.Session(graph=g) as sess, g.device('/cpu:0'): style_loss = np.float32(0.0) for style_layer_i, style_gram_i in zip(style_layers, style_features): layer_i = g.get_tensor_by_name(style_layer_i) layer_shape = layer_i.get_shape().as_list() layer_size = layer_shape[1] * layer_shape[2] * layer_shape[3] layer_flat = tf.reshape(layer_i, [-1, layer_shape[3]]) gram_matrix = tf.matmul(tf.transpose(layer_flat), layer_flat) / layer_size style_loss = tf.add(style_loss, tf.nn.l2_loss((gram_matrix - style_gram_i) / np.float32(style_gram_i.size))) def total_variation_loss(x): h, w = x.get_shape().as_list()[1], x.get_shape().as_list()[1] dx = tf.square(x[:, :h-1, :w-1, :] - x[:, :h-1, 1:, :]) dy = tf.square(x[:, :h-1, :w-1, :] - x[:, 1:, :w-1, :]) return tf.reduce_sum(tf.pow(dx + dy, 1.25)) with tf.Session(graph=g) as sess, g.device('/cpu:0'): tv_loss = total_variation_loss(net_input) with tf.Session(graph=g) as sess, g.device('/cpu:0'): # Experiment w/ the weighting of these! They produce WILDLY different # results. loss = 5.0 * content_loss + 1.0 * style_loss + 0.001 * tv_loss optimizer = tf.train.AdamOptimizer(0.05).minimize(loss) imgs = [] n_iterations = 100 with tf.Session(graph=g) as sess, g.device('/cpu:0'): sess.run(tf.global_variables_initializer()) # map input to noise og_img = net_input.eval() for it_i in range(n_iterations): _, this_loss, synth = sess.run([optimizer, loss, net_input], feed_dict={ 'net/dropout_1/random_uniform:0': keep_probability, 'net/dropout/random_uniform:0': keep_probability}) print("%d: %f, (%f - %f)" % (it_i, this_loss, np.min(synth), np.max(synth))) if it_i % 5 == 0: m = vgg16.deprocess(synth[0]) imgs.append(m) plt.imshow(m) plt.show() gif.build_gif(imgs, saveto='stylenet.gif') ipyd.Image(url='stylenet.gif?i=0', height=300, width=300) utils.build_submission('session-4.zip', ('softmax.gif', 'fractal.gif', 'guided.gif', 'content.png', 'style.png', 'stylenet.gif', 'session-4.ipynb')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Examples Step2: Numerical example Step3: Image example Step4: Calculating a rectangle area with SAT (Summed Area Table)
<ASSISTANT_TASK:> Python Code: def sat(f): return f.cumsum(axis=1).cumsum(axis=0) def satarea(sat,r0_c0,r1_c1): a,b,c,d = 0,0,0,0 r0,c0 = r0_c0 r1,c1 = r1_c1 if ((r0 - 1 >= 0) and (c0 - 1 >= 0)): a = sat[r0-1,c0-1] if (r0 - 1 >= 0): b = sat[r0-1,c1] if (c0 - 1 >= 0): c = sat[r1,c0-1] d = sat[r1,c1] return a + d - c - b testing = (__name__ == "__main__") if testing: ! jupyter nbconvert --to python sat.ipynb %matplotlib inline import numpy as np import sys,os ia898path = os.path.abspath('../../') if ia898path not in sys.path: sys.path.append(ia898path) import ia898.src as ia import matplotlib.image as mpimg if testing: f = np.array([[0,1,1,0,0,0,0,0,0], [1,0,0,0,0,0,0,1,0], [1,0,0,1,0,0,0,1,0], [0,0,0,0,0,1,1,0,0]], dtype=np.uint8) s = ia.sat(f) print('f (input):\n',f) print('s (output):\n',s) a = ia.satarea(s,(0,0),(3,8)) print('area:',a) if testing: f = mpimg.imread('../data/lenina.pgm')[::2,::2] nb = ia.nbshow(2) nb.nbshow(f, 'Original Image') nb.nbshow(ia.normalize(ia.sat(f)), 'Integral Image') nb.nbshow() if testing: f = mpimg.imread('../data/lenina.pgm')[::2,::2] H,W = f.shape s = ia.sat(f) a0 = ia.satarea(s,(0,0),(H-1,W-1)) atopleft = ia.satarea(s,( 0,0 ),(H//2-1,W//2-1)) abotleft = ia.satarea(s,(H//2,0 ),(H-1, W//2-1)) atopright = ia.satarea(s,( 0,W//2),(H//2-1,W-1)) abotright = ia.satarea(s,(H//2,W//2),(H-1, W-1)) print('Area Total: ', a0) print('Area Top-left: ', atopleft) print('Area Bot-left: ', abotleft) print('Area Top-right: ', atopright) print('Area Bot-right: ', abotright) print('Area Total:', atopleft+abotleft+atopright+abotright) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Next, we want to open a connection to the QVM. Step2: Now we can make a program by adding some Quil instruction using the inst method on a Program object. Step3: This program simply applies the $X$-gate to the zeroth qubit, measures that qubit, and stores the measurement result in the zeroth classical register. We can look at the Quil code that makes up this program simply by printing it. Step4: Most importantly, of course, we can see what happens if we run this program on the QVM Step5: We see that the result of this program is that the classical register [0] now stores the state of qubit 0, which should be $\left\vert 1\right\rangle$ after an $X$-gate. We can of course ask for more classical registers Step6: The classical registers are initialized to zero, so registers [1] and [2] come out as zero. If we stored the measurement in a different classical register we would obtain Step7: We can also run programs multiple times and accumulate all the results in a single list Step8: Try running the above code several times. You will, with very high probability, get different results each time. Step9: It is important to remember that this wavefunction method is just a useful debugging tool for small quantum systems, and it cannot be feasibly obtained on a quantum processor. Step10: Fixing a Mistaken Instruction Step11: The Standard Gate Set Step12: Quil in general supports defining parametric gates, though right now only static gates are supported by pyQuil. Below we show how we can define $X_1\otimes \sqrt{X_0} $ as a single gate. Step13: Advanced Usage Step14: There is a very important detail to recognize here Step15: Next, we want to prepare a state that corresponds to the sequence we want to compute the discrete Fourier transform of. Fortunately, this is easy, we just apply an $X$-gate to the zeroth qubit. Step16: We can verify that this works by computing its wavefunction. However, we need to add some "dummy" qubits, because otherwise wavefunction would return a two-element vector. Step17: If we have two quantum programs a and b, we can concatenate them by doing a + b. Using this, all we need to do is compute the QFT after state preparation to get our final result. Step18: We can verify this works by computing the (inverse) FFT from NumPy. Step19: Classical Control Flow Step20: Notice that the init_register program applied a Quil instruction directly to a classical register. There are several classical commands that can be used in this fashion Step21: We can run this program a few times to see what we get in the answer_register. Step22: Parametric Depolarizing Noise Step23: We can test this by applying an $X$ gate and measuring. Nominally, we should always measure 1. Step24: Parametric Programs Step25: The parametric program par_p now takes the same arguments as rotator Step26: We can think of ParametricPrograms as a sort of template for Quil programs. They cache computations Step27: There are two primary things one can do with Pauli terms and sums
<ASSISTANT_TASK:> Python Code: import pyquil.quil as pq import pyquil.forest as forest from pyquil.gates import * qvm = forest.Connection() p = pq.Program() p.inst(X(0)).measure(0, 0) print p classical_regs = [0] # A list of which classical registers to return the values of. qvm.run(p, classical_regs) qvm.run(p, [0, 1, 2]) p = pq.Program() # clear the old program p.inst(X(0)).measure(0, 1) qvm.run(p, [0, 1, 2]) coin_flip = pq.Program().inst(H(0)).measure(0, 0) num_flips = 5 qvm.run(coin_flip, [0], num_flips) coin_flip = pq.Program().inst(H(0)) qvm.wavefunction(coin_flip) print "Multiple inst arguments with final measurement:" print pq.Program().inst(X(0), Y(1), Z(0)).measure(0, 1) print "Chained inst with explicit MEASURE instruction:" print pq.Program().inst(X(0)).inst(Y(1)).measure(0, 1).inst(MEASURE(1, 2)) print "A mix of chained inst and measures:" print pq.Program().inst(X(0)).measure(0, 1).inst(Y(1), X(0)).measure(0, 0) print "A composition of two programs:" print pq.Program(X(0)) + pq.Program(Y(0)) p = pq.Program().inst(X(0)) p.inst(Y(1)) print "Oops! We have added Y 1 by accident:" print p print "We can fix by popping:" p.pop() print p print "And then add it back:" p += pq.Program(Y(1)) print p import numpy as np # First we define the new gate from a matrix x_gate_matrix = np.array(([0.0, 1.0], [1.0, 0.0])) sqrt_x = np.array([[ 0.5+0.5j, 0.5-0.5j], [ 0.5-0.5j, 0.5+0.5j]]) p = pq.Program().defgate("SQRT-X", sqrt_x) # Then we can use the new gate, p.inst(("SQRT-X", 0)) print p qvm.wavefunction(p) # A multi-qubit defgate example x_gate_matrix = np.array(([0.0, 1.0], [1.0, 0.0])) sqrt_x = np.array([[ 0.5+0.5j, 0.5-0.5j], [ 0.5-0.5j, 0.5+0.5j]]) x_sqrt_x = np.kron(x_gate_matrix, sqrt_x) p = pq.Program().defgate("X-SQRT-X", x_sqrt_x) # Then we can use the new gate p.inst(("X-SQRT-X", 0, 1)) qvm.wavefunction(p) from math import pi def qft3(q0, q1, q2): p = pq.Program() p.inst( H(q2), CPHASE(pi/2.0, q1, q2), H(q1), CPHASE(pi/4.0, q0, q2), CPHASE(pi/2.0, q0, q1), H(q0), SWAP(q0, q2) ) return p print qft3(0, 1, 2) state_prep = pq.Program().inst(X(0)) add_dummy_qubits = pq.Program().inst(I(2)) qvm.wavefunction(state_prep + add_dummy_qubits) qvm.wavefunction(state_prep + qft3(0, 1, 2)) from numpy.fft import ifft ifft([0,1,0,0,0,0,0,0], norm="ortho") # Name our classical registers: classical_flag_register = 2 # Write out the loop initialization and body programs: init_register = pq.Program(TRUE([classical_flag_register])) loop_body = pq.Program(X(0), H(0)).measure(0, classical_flag_register) # Put it all together in a loop program: loop_prog = init_register.while_do(classical_flag_register, loop_body) print loop_prog # Name our classical registers: test_register = 1 answer_register = 0 # Construct each branch of our if-statement. We can have empty branches # simply by having empty programs. then_branch = pq.Program(X(0)) else_branch = pq.Program() # Make a program that will put a 0 or 1 in test_register with 50% probability: branching_prog = pq.Program(H(1)).measure(1, test_register) # Add the conditional branching: branching_prog.if_then(test_register, then_branch, else_branch) # Measure qubit 0 into our answer register: branching_prog.measure(0, answer_register) print branching_prog qvm.run(branching_prog, [answer_register], 10) # 20% chance of a X gate being applied after gate applications and before measurements. gate_noise_probs = [0.2, 0.0, 0.0] meas_noise_probs = [0.2, 0.0, 0.0] noisy_qvm = forest.Connection(gate_noise=gate_noise_probs, measurement_noise=meas_noise_probs) p = pq.Program().inst(X(0)).measure(0, 0) print "Without Noise:", qvm.run(p, [0], 10) print "With Noise :", noisy_qvm.run(p, [0], 10) # This function returns a quantum circuit with different rotation angles on a gate on qubit 0 def rotator(angle): return pq.Program(RX(angle, 0)) from pyquil.parametric import ParametricProgram par_p = ParametricProgram(rotator) # This produces a new type of parameterized program object print par_p(0.5) from pyquil.paulis import ID, sX, sY, sZ # Pauli term takes an operator "X", "Y", "Z", or "I"; a qubit to act on, and # an optional coefficient. a = 0.5 * ID b = -0.75 * sX(0) * sY(1) * sZ(3) c = (5-2j) * sZ(1) * sX(2) # Construct a sum of Pauli terms. sigma = a + b + c print "sigma =", sigma import pyquil.paulis as pl # Simplification sigma_cubed = sigma * sigma * sigma print "Simplified :", sigma_cubed print #Produce Quil code to compute exp[iX] H = -1.0 * sX(0) print "Quil to compute exp[iX] on qubit 0:" print pl.exponential_map(H)(1.0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initialization Step2: Read the input images Step3: STEP 1 Step4: STEP 2 Step5: STEP 3 Step6: STEP 4 Step7: STEP 5 Step8: STEP 6 Step9: STEP 7 Step10: STEP 8 Step11: STEP 9
<ASSISTANT_TASK:> Python Code: import os import sys import numpy # Path for TubeTK libs and bin #Values takend from TubeTK launcher #sys.path.append("C:/src/TubeTK_Python_ITK/SlicerExecutionModel-build/GenerateCLP/") #sys.path.append("C:/src/TubeTK_Python_ITK/SlicerExecutionModel-build/GenerateCLP/Release") #sys.path.append("C:/src/TubeTK_Python_ITK/ITK-build/bin/") #sys.path.append("C:/src/TubeTK_Python_ITK/ITK-build/bin/Release") #sys.path.append("C:/src/TubeTK_Python_ITK/TubeTK-build/bin/") #sys.path.append("C:/src/TubeTK_Python_ITK/TubeTK-build/bin/Release") sys.path.append("C:/src/TubeTK_Python_ITK/TubeTK-build/lib/") sys.path.append("C:/src/TubeTK_Python_ITK/TubeTK-build/lib/Release") #sys.path.append("C:/src/TubeTK_Python_ITK/VTK-build/bin/") #sys.path.append("C:/src/TubeTK_Python_ITK/VTK-build/bin/Release") # Setting TubeTK Build Directory TubeTK_BUILD_DIR=None if 'TubeTK_BUILD_DIR' in os.environ: TubeTK_BUILD_DIR = os.environ['TubeTK_BUILD_DIR'] else: print('TubeTK_BUILD_DIR not found!') print(' Set environment variable') os.environ["TubeTK_BUILD_DIR"] = "C:/src/TubeTK_Python_ITK/TubeTK-build" TubeTK_BUILD_DIR = os.environ["TubeTK_BUILD_DIR"] #sys.exit( 1 ) if not os.path.exists(TubeTK_BUILD_DIR): print('TubeTK_BUILD_DIR set by directory not found!') print(' TubeTK_BUILD_DIR = ' + TubeTK_BUILD_DIR ) sys.exit(1) # Setting ITK Build Directory and importing ITK try: import itk except: ITK_BUILD_DIR = None if 'ITK_BUILD_DIR' in os.environ: ITK_BUILD_DIR = os.environ['ITK_BUILD_DIR'] else: print('ITK_BUILD_DIR not found!') print(' Set environment variable') os.environ["ITK_BUILD_DIR"] = "C:/src/TubeTK_Python_R/ITK-build" ITK_BUILD_DIR = os.environ["ITK_BUILD_DIR"] #sys.exit( 1 ) if not os.path.exists(ITK_BUILD_DIR): print('ITK_BUILD_DIR set by directory not found!') print(' ITK_BUIDL_DIR = ' + ITK_BUILD_DIR ) sys.exit(1) # Append ITK libs sys.path.append("C:/src/TubeTK_Python_ITK/ITK-build/Wrapping/Generators/Python/Release") sys.path.append("C:/src/TubeTK_Python_ITK/ITK-build/lib/Release") sys.path.append("C:/src/TubeTK_Python_ITK/ITK-build/lib") # Append TubeTK libs sys.path.append("C:/src/TubeTK_Python_ITK/TubeTK-build/ITKModules/TubeTKITK-build/Wrapping/Generators/Python/Release") import itk from itk import TubeTKITK as itktube Dimension = 3 PixelType = itk.F CTImageFileName = os.path.join(TubeTK_BUILD_DIR, 'MIDAS_Data\inputCTA.mha') ExpertMaskImageFileName = os.path.join(TubeTK_BUILD_DIR, 'MIDAS_Data\inputExpertMask.mha') MaskImageFileName = os.path.join(TubeTK_BUILD_DIR, 'MIDAS_Data\inputMask.mha') SpatialObjectType = itk.SpatialObject[Dimension] ImageType = itk.Image[PixelType, Dimension] ImageReaderType = itk.ImageFileReader[ImageType] imageReader1 = ImageReaderType.New() imageReader1.SetFileName(CTImageFileName) imageReader1.Update() CTImage = imageReader1.GetOutput() imageReader2 = ImageReaderType.New() imageReader2.SetFileName(ExpertMaskImageFileName) imageReader2.Update() ExpertMaskImage = imageReader2.GetOutput() imageReader3 = ImageReaderType.New() imageReader3.SetFileName(MaskImageFileName) imageReader3.Update() MaskImage = imageReader3.GetOutput() boundary = itk.Index[3]() boundary.Fill(10) #Create the crop image filter CropImageFilterType = itktube.CropImage[ImageType, ImageType] cropImageFilter = CropImageFilterType.New() cropImageFilter.SetBoundary(boundary) #cropImageFilter.SetMatchVolume(MaskImage) #Giving error #Crop Input CTA cropImageFilter.SetInput(CTImage) cropImageFilter.Update() croppedCTImage = cropImageFilter.GetOutput() #Crop Expert Mask cropImageFilter.SetInput(ExpertMaskImage) cropImageFilter.Update() croppedExpertMaskImage = cropImageFilter.GetOutput() #Crop Mask cropImageFilter.SetInput(MaskImage) cropImageFilter.Update() croppedMaskImage = cropImageFilter.GetOutput() boundary = itk.Index[3]() boundary.Fill(10) #Create the resample image filter ResampleImageFilterType = itktube.ResampleImage[ImageType, ImageType] #Resample Input CTA resampleImageFilter1 = ResampleImageFilterType.New() resampleImageFilter1.SetInput(croppedCTImage) resampleImageFilter1.SetMakeIsotropic(True) resampleImageFilter1.SetInterpolator("Sinc") resampleCTImage = resampleImageFilter1.GetOutput() #Resample Expert Mask resampleImageFilter2 = ResampleImageFilterType.New() resampleImageFilter2.SetInput(croppedExpertMaskImage) resampleImageFilter2.SetMakeIsotropic(True) resampleImageFilter2.SetInterpolator("NearestNeighbor") resampleExpertMaskImage = resampleImageFilter2.GetOutput() #Resample Mask resampleImageFilter3 = ResampleImageFilterType.New() resampleImageFilter3.SetInput(croppedMaskImage) resampleImageFilter3.SetMakeIsotropic(True) resampleImageFilter3.SetInterpolator("NearestNeighbor") resampleMaskImage = resampleImageFilter3.GetOutput() # create resampleMaskImage -> erodedResampleMaskImage # resampleExpertMaskImage -> erodedResampleExpertMaskImage # resampleCTImage -> maskedResampleCTImage # Create image to save not-vessel mask. ShortImageType = itk.Image[itk.S, Dimension] notVesselMaskImage = ShortImageType.New() #Create Compute Training Mask Filter ComputeTrainingMaskFilterType = itktube.ComputeTrainingMask[ImageType] computeTrainingMaskFilter = ComputeTrainingMaskFilterType.New() computeTrainingMaskFilter.SetInput(erodedResampleExpertMaskImage) computeTrainingMaskFilter.SetNotVesselMask(notVesselMaskImage) computeTrainingMaskFilter.SetGap(0.5) computeTrainingMaskFilter.SetNotVesselWidth(2) computeTrainingMaskFilter.Update() expertTrainMaskImage = computeTrainingMaskFilter.GetOutput() DiscriminantInfoFileName = os.path.join(TubeTK_BUILD_DIR, 'Temporary\\vascularModel.mrs') enhancedScalesExpertMaskImage = ImageType.New() # Create EnhanceTubesUsingDiscriminantAnalysis Filter EnhanceTubesUsingDiscriminantAnalysisFilterType = itktube.EnhanceTubesUsingDiscriminantAnalysis[ImageType, ImageType] ETUDAFilter = EnhanceTubesUsingDiscriminantAnalysisFilterType.New() ETUDAFilter.SetInput(maskedResampleCTImage) ETUDAFilter.SetLabelMap(expertTrainMaskImage) ETUDAFilter.SetTubeId(255) ETUDAFilter.SetBackgroundId(127) ETUDAFilter.SetSaveDiscriminantInfo(DiscriminantInfoFileName) ETUDAFilter.SetOutputSeedScaleImage(enhancedScalesExpertMaskImage) ETUDAFilter.SetTubeScales(0.4,0.8,1.2,1.6) enhancedExpertMaskImage = ETUDAFilter.GetOutput() vasculaModelParameterFileName = os.path.join(TubeTK_BUILD_DIR, 'Temporary\\vascularModel.mtp') # Create SegmentTubesParameters Filter ComputeSegmentTubesParametersFilterType = itktube.ComputeSegmentTubesParameters[ImageType] CSTPFilter = ComputeSegmentTubesParametersFilterType.New() CSTPFilter.SetInput(maskedResampleCTImage) CSTPFilter.SetMaskImage(expertTrainMaskImage) CSTPFilter.SetScaleImage(enhancedScalesExpertMaskImage) CSTPFilter.SetParametersFileName(vasculaModelParameterFileName) CSTPFilter.Update() # enhancedExpertMaskImage -> vesselEnhancedExpertMaskImage # Create SegmentBinaryImageSkeleton Filter SegmentBinaryImageSkeletonFilterType = itktube.SegmentBinaryImageSkeleton[Imagetype] SBISFilter = SegmentBinaryImageSkeletonFilterType.New() SBISFilter.SetInput(vesselEnhancedExpertMaskImage) SBISFilter.Update() seedsVesselEnhancedExpertMaskImage = SBISFilter.GetOutput() outputVesselsFileName = os.path.join(TubeTK_BUILD_DIR, 'Temporary\\outputVessels.tre') # Create SegmentTubes Filter SegmentTubesFilterType = itktube.SegmentTubes[ImageType] SegmenttubesFilter = SegmentTubesFilterType.New() SegmenttubesFilter.SetInput(maskedResampleCTImage) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problem 51 Step2: Let's try to obtain the examples given in the problem statement, with the smallest prime giving a 6-sized family being 13 and the smallest prime giving a 7-sized family being 56003. Step3: The code seems to work pretty well. It's not that fast... but let's try to obtain the smallest prime giving a 8-sized family. Step4: Done! Step5: Done, it was quick.
<ASSISTANT_TASK:> Python Code: %load_ext Cython %%cython import math def erathostene_sieve(int n): cdef list primes = [False, False] + [True] * (n - 1) # from 0 to n included cdef int max_divisor = math.floor(math.sqrt(n)) cdef int i = 2 for divisor in range(2, max_divisor + 1): if primes[divisor]: number = 2*divisor while number <= n: primes[number] = False number += divisor return primes sieve10million = erathostene_sieve(int(1e7)) primes_upto_10million = [p for p,b in enumerate(sieve10million) if b] print(f"There are {len(primes_upto_10million)} prime numbers smaller than 10 million") import itertools prime = 56003 nb_digit_prime = len(str(prime)) nb_replacements = 2 for c in itertools.combinations(range(nb_digit_prime), nb_replacements): print(c) from typing import List def find_prime_digit_replacements(max_size_family: int=6, primes: List[int]=primes_upto_10million) -> int: set_primes = set(primes) # we explore this list of primes in ascending order, # so we'll find the smallest that satisfy the property # for prime in primes: for prime in range(10, max(primes) + 1): str_prime = str(prime) # for this prime, try all the possibilities nb_digit_prime = len(str_prime) for nb_replacements in range(1, nb_digit_prime + 1): # cannot replace all the digits # now try to replace nb_replacements digits (not necessarily adjacent) for positions in itertools.combinations(range(nb_digit_prime), nb_replacements): size_family = 0 good_digits = [] good_primes = [] for new_digit in range(0, 9 + 1): if positions[0] == 0 and new_digit == 0: continue new_prime = int(''.join( (c if i not in positions else str(new_digit)) for i,c in enumerate(str_prime) )) if new_prime in set_primes: size_family += 1 good_digits.append(new_digit) good_primes.append(new_prime) if size_family >= max_size_family: print(f"For p = {prime} with {nb_digit_prime} digits, and {nb_replacements} replacement(s), we found") print(f"a family of {size_family} prime(s) when replacing digit(s) at position(s) {positions}") for new_digit, new_prime in zip(good_digits, good_primes): print(f" {new_prime} obtained by replacing with digit {new_digit}") return prime %%time find_prime_digit_replacements(max_size_family=6) %%time find_prime_digit_replacements(max_size_family=7) %%time find_prime_digit_replacements(max_size_family=8) def x_to_kx_contain_same_digits(x: int, kmax: int) -> bool: digits_x = sorted(list(str(x))) for k in range(2, kmax+1): digits_kx = sorted(list(str(k*x))) if digits_x != digits_kx: return False return True assert not x_to_kx_contain_same_digits(125873, 2) assert x_to_kx_contain_same_digits(125874, 2) assert not x_to_kx_contain_same_digits(125875, 2) assert not x_to_kx_contain_same_digits(125874, 3) def find_smallest_x_such_that_x_to_6x_contain_same_digits(kmax: int=6) -> int: x = 1 while True: if x_to_kx_contain_same_digits(x, kmax): print(f"Found a solution x = {x}, proof:") for k in range(1, kmax + 1): print(f" k x = {k}*{x}={k*x}") return x x += 1 %%time find_smallest_x_such_that_x_to_6x_contain_same_digits() %load_ext Cython %%cython def choose_kn(int k, int n): # {k choose n} = {n-k choose n} so first let's keep the minimum if k < 0 or k > n: return 0 elif k > n-k: k = n-k # instead of computing with factorials (that blow up VERY fast), # we can compute with product product = 1 for p in range(k+1, n+1): product *= p for p in range(2, n-k+1): product //= p return product choose_kn(10, 23) def how_many_choose_kn_are_greater_than_x(max_n: int, x: int) -> int: count = 0 for n in range(1, max_n + 1): for k in range(1, n//2 + 1): c_kn = choose_kn(k, n) if c_kn > x: count += 1 if n-k != k: # we count twice for (n choose k) and (n choose n-k) # only if n-k != k count += 1 return count how_many_choose_kn_are_greater_than_x(100, 1e6) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: OOP in Action Step3: Explanation of the graph Step5: none Step7: Manual or “by hand” root calculations Step9: none Step10: none Step11: none Step13: none Step14: none Step15: none Step16: Digression Step17: <table width=100%><tr style='background-color Step19: <table width=100%><tr style='background-color Step20: none Step22: none Step23: A permanent government spending shock can be simulated as follows Step24: none Step26: none Step27: Illustration of Samuelson class Step28: ```none Step29: Using the graph Step31: Using the LinearStateSpace class Step32: Other methods in the LinearStateSpace class Step33: <table width=100%><tr style='background-color Step35: none Step36: Illustrations Step37: Step38: Step39: Step40: none Step41: none Step42:
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt def param_plot(): this function creates the graph on page 189 of Sargent Macroeconomic Theory, second edition, 1987 fig, ax = plt.subplots(figsize=(12, 8)) ax.set_aspect('equal') # Set axis xmin, ymin = -3, -2 xmax, ymax = -xmin, -ymin plt.axis([xmin, xmax, ymin, ymax]) # Set axis labels ax.set(xticks=[], yticks=[]) ax.set_xlabel(r'$\rho_2$', fontsize=16) ax.xaxis.set_label_position('top') ax.set_ylabel(r'$\rho_1$', rotation=0, fontsize=16) ax.yaxis.set_label_position('right') # Draw (t1, t2) points rho1 = np.linspace(-2, 2, 100) ax.plot(rho1, -abs(rho1) + 1, c='black') ax.plot(rho1, np.ones_like(rho1) * -1, c='black') ax.plot(rho1, -(rho1**2 / 4), c='black') # Turn normal axes off for spine in ['left', 'bottom', 'top', 'right']: ax.spines[spine].set_visible(False) # Add arrows to represent axes axes_arrows = {'arrowstyle': '<|-|>', 'lw': 1.3} ax.annotate('', xy=(xmin, 0), xytext=(xmax, 0), arrowprops=axes_arrows) ax.annotate('', xy=(0, ymin), xytext=(0, ymax), arrowprops=axes_arrows) # Annotate the plot with equations plot_arrowsl = {'arrowstyle': '-|>', 'connectionstyle': "arc3, rad=-0.2"} plot_arrowsr = {'arrowstyle': '-|>', 'connectionstyle': "arc3, rad=0.2"} ax.annotate(r'$\rho_1 + \rho_2 < 1$', xy=(0.5, 0.3), xytext=(0.8, 0.6), arrowprops=plot_arrowsr, fontsize='12') ax.annotate(r'$\rho_1 + \rho_2 = 1$', xy=(0.38, 0.6), xytext=(0.6, 0.8), arrowprops=plot_arrowsr, fontsize='12') ax.annotate(r'$\rho_2 < 1 + \rho_1$', xy=(-0.5, 0.3), xytext=(-1.3, 0.6), arrowprops=plot_arrowsl, fontsize='12') ax.annotate(r'$\rho_2 = 1 + \rho_1$', xy=(-0.38, 0.6), xytext=(-1, 0.8), arrowprops=plot_arrowsl, fontsize='12') ax.annotate(r'$\rho_2 = -1$', xy=(1.5, -1), xytext=(1.8, -1.3), arrowprops=plot_arrowsl, fontsize='12') ax.annotate(r'${\rho_1}^2 + 4\rho_2 = 0$', xy=(1.15, -0.35), xytext=(1.5, -0.3), arrowprops=plot_arrowsr, fontsize='12') ax.annotate(r'${\rho_1}^2 + 4\rho_2 < 0$', xy=(1.4, -0.7), xytext=(1.8, -0.6), arrowprops=plot_arrowsr, fontsize='12') # Label categories of solutions ax.text(1.5, 1, 'Explosive\n growth', ha='center', fontsize=16) ax.text(-1.5, 1, 'Explosive\n oscillations', ha='center', fontsize=16) ax.text(0.05, -1.5, 'Explosive oscillations', ha='center', fontsize=16) ax.text(0.09, -0.5, 'Damped oscillations', ha='center', fontsize=16) # Add small marker to y-axis ax.axhline(y=1.005, xmin=0.495, xmax=0.505, c='black') ax.text(-0.12, -1.12, '-1', fontsize=10) ax.text(-0.12, 0.98, '1', fontsize=10) return fig param_plot() plt.show() def categorize_solution(rho1, rho2): this function takes values of rho1 and rho2 and uses them to classify the type of solution discriminant = rho1 ** 2 + 4 * rho2 if rho2 > 1 + rho1 or rho2 < -1: print('Explosive oscillations') elif rho1 + rho2 > 1: print('Explosive growth') elif discriminant < 0: print('Roots are complex with modulus less than one; therefore damped oscillations') else: print('Roots are real and absolute values are less than zero; therfore get smooth convergence to a steady state') ### Test the categorize_solution function categorize_solution(1.3, -.4) def plot_y(function=None): function plots path of Y_t plt.subplots(figsize=(12, 8)) plt.plot(function) plt.xlabel('Time $t$') plt.ylabel('$Y_t$', rotation=0) plt.grid() plt.show() from cmath import sqrt ##=== This is a 'manual' method ===# def y_nonstochastic(y_0=100, y_1=80, alpha=.92, beta=.5, gamma=10, n=80): Takes values of parameters and computes roots of characteristic polynomial. It tells whether they are real or complex and whether they are less than unity in absolute value. It also computes a simulation of length n starting from the two given initial conditions for national income roots = [] rho1 = alpha + beta rho2 = -beta print('rho_1 is ', rho1) print('rho_2 is ', rho2) discriminant = rho1 ** 2 + 4 * rho2 if discriminant == 0: roots.append(-rho1 / 2) print('Single real root: ') print(''.join(str(roots))) elif discriminant > 0: roots.append((-rho1 + sqrt(discriminant).real) / 2) roots.append((-rho1 - sqrt(discriminant).real) / 2) print('Two real roots: ') print(''.join(str(roots))) else: roots.append((-rho1 + sqrt(discriminant)) / 2) roots.append((-rho1 - sqrt(discriminant)) / 2) print('Two complex roots: ') print(''.join(str(roots))) if all(abs(root) < 1 for root in roots): print('Absolute values of roots are less than one') else: print('Absolute values of roots are not less than one') def transition(x, t): return rho1 * x[t - 1] + rho2 * x[t - 2] + gamma y_t = [y_0, y_1] for t in range(2, n): y_t.append(transition(y_t, t)) return y_t plot_y(y_nonstochastic()) ### code to reverse engineer a cycle ### y_t = r^t (c_1 cos(phi t) + c2 sin(phi t)) ### import cmath import math def f(r, phi): Takes modulus r and angle phi of complex number r exp(j phi) and creates rho1 and rho2 of characteristic polynomial for which r exp(j phi) and r exp(- j phi) are complex roots. Returns the multiplier coefficient a and the accelerator coefficient b that verifies those roots. g1 = cmath.rect(r, phi) # Generate two complex roots g2 = cmath.rect(r, -phi) rho1 = g1 + g2 # Implied rho1, rho2 rho2 = -g1 * g2 b = -rho2 # Reverse engineer a and b that validate these a = rho1 - b return rho1, rho2, a, b ## Now let's use the function in an example ## Here are the example paramters r = .95 period = 10 # Length of cycle in units of time phi = 2 * math.pi/period ## Apply the function rho1, rho2, a, b = f(r, phi) print("a, b = ", a, b) print("rho1, rho2 =", rho1, rho2) ## Print the real components of rho1 and rho2 rho1 = rho1.real rho2 = rho2.real rho1, rho2 r1, r2 = np.roots([1, -rho1, -rho2]) p1 = cmath.polar(r1) p2 = cmath.polar(r2) print("r, phi =", r, phi) print("p1, p2 = ", p1, p2) # print("g1, g2 = ", g1, g2) print("a, b =", a, b) print("rho1, rho2 =", rho1, rho2) ##=== This method uses numpy to calculate roots ===# def y_nonstochastic(y_0=100, y_1=80, alpha=.9, beta=.8, gamma=10, n=80): Rather than computing the roots of the characteristic polynomial by hand as we did earlier, this function enlists numpy to do the work for us # Useful constants rho1 = alpha + beta rho2 = -beta categorize_solution(rho1, rho2) # Find roots of polynomial roots = np.roots([1, -rho1, -rho2]) print('Roots are', roots) # Check if real or complex if all(isinstance(root, complex) for root in roots): print('Roots are complex') else: print('Roots are real') # Check if roots are less than one if all(abs(root) < 1 for root in roots): print('Roots are less than one') else: print('Roots are not less than one') # Define transition equation def transition(x, t): return rho1 * x[t - 1] + rho2 * x[t - 2] + gamma # Set initial conditions y_t = [y_0, y_1] # Generate y_t series for t in range(2, n): y_t.append(transition(y_t, t)) return y_t plot_y(y_nonstochastic()) r = 1 # generates undamped, nonexplosive cycles period = 10 # length of cycle in units of time phi = 2 * math.pi/period ## Apply the reverse engineering function f rho1, rho2, a, b = f(r, phi) a = a.real # drop the imaginary part so that it is a valid input into y_nonstochastic b = b.real print("a, b =", a, b) ytemp = y_nonstochastic(alpha=a, beta=b, y_0=20, y_1=30) plot_y(ytemp) from ipywidgets import interact def choose_r_phi(r, phi): rho1, rho2, a, b = f(r, phi) a = a.real # drop the imaginary part so that it is a valid input into y_nonstochastic b = b.real ytemp = y_nonstochastic(alpha=a, beta=b, y_0=20, y_1=30) return plot_y(ytemp) periodhighest = 20 interact(choose_r_phi, r=(0, 1.5), phi=(math.pi/periodhighest, 10 * math.pi/periodhighest)) import sympy from sympy import Symbol, init_printing init_printing() r1 = Symbol("rho_1") r2 = Symbol("rho_2") z = Symbol("z") sympy.solve(z**2 - r1*z - r2, z) a = Symbol("alpha") b = Symbol("beta") r1 = a + b r2 = -b sympy.solve(z**2 - r1*z - r2, z) def y_stochastic(y_0=0, y_1=0, alpha=0.8, beta=0.2, gamma=10, n=100, sigma=5): This function takes parameters of a stochastic version of the model and proceeds to analyze the roots of the characteristic polynomial and also generate a simulation # Useful constants rho1 = alpha + beta rho2 = -beta # Categorize solution categorize_solution(rho1, rho2) # Find roots of polynomial roots = np.roots([1, -rho1, -rho2]) print(roots) # Check if real or complex if all(isinstance(root, complex) for root in roots): print('Roots are complex') else: print('Roots are real') # Check if roots are less than one if all(abs(root) < 1 for root in roots): print('Roots are less than one') else: print('Roots are not less than one') # Generate shocks epsilon = np.random.normal(0, 1, n) # Define transition equation def transition(x, t): return rho1 * \ x[t - 1] + rho2 * x[t - 2] + gamma + sigma * epsilon[t] # Set initial conditions y_t = [y_0, y_1] # Generate y_t series for t in range(2, n): y_t.append(transition(y_t, t)) return y_t plot_y(y_stochastic()) r = .97 period = 10 # length of cycle in units of time phi = 2 * math.pi/period ### apply the reverse engineering function f rho1, rho2, a, b = f(r, phi) a = a.real # drop the imaginary part so that it is a valid input into y_nonstochastic b = b.real print("a, b = ", a, b) plot_y(y_stochastic(y_0=40, y_1 = 42, alpha=a, beta=b, sigma=2, n=100)) def y_stochastic_g(y_0=20, y_1=20, alpha=0.8, beta=0.2, gamma=10, n=100, sigma=2, g=0, g_t=0, duration='permanent'): This program computes a response to a permanent increase in government expenditures that occurs at time 20 # Useful constants rho1 = alpha + beta rho2 = -beta # Categorize solution categorize_solution(rho1, rho2) # Find roots of polynomial roots = np.roots([1, -rho1, -rho2]) print(roots) # Check if real or complex if all(isinstance(root, complex) for root in roots): print('Roots are complex') else: print('Roots are real') # Check if roots are less than one if all(abs(root) < 1 for root in roots): print('Roots are less than one') else: print('Roots are not less than one') # Generate shocks epsilon = np.random.normal(0, 1, n) def transition(x, t, g): # Non-stochastic - separated to avoid generating random series when not needed if sigma == 0: return rho1 * x[t - 1] + rho2 * x[t - 2] + gamma + g # Stochastic else: epsilon = np.random.normal(0, 1, n) return rho1 * x[t - 1] + rho2 * x[t - 2] + gamma + g + sigma * epsilon[t] # Create list and set initial conditions y_t = [y_0, y_1] # Generate y_t series for t in range(2, n): # No government spending if g == 0: y_t.append(transition(y_t, t)) # Government spending (no shock) elif g != 0 and duration == None: y_t.append(transition(y_t, t)) # Permanent government spending shock elif duration == 'permanent': if t < g_t: y_t.append(transition(y_t, t, g=0)) else: y_t.append(transition(y_t, t, g=g)) # One-off government spending shock elif duration == 'one-off': if t == g_t: y_t.append(transition(y_t, t, g=g)) else: y_t.append(transition(y_t, t, g=0)) return y_t plot_y(y_stochastic_g(g=10, g_t=20, duration='permanent')) plot_y(y_stochastic_g(g=500, g_t=50, duration='one-off')) class Samuelson(): rThis class represents the Samuelson model, otherwise known as the multiple-accelerator model. The model combines the Keynesian multipler with the accelerator theory of investment. The path of output is governed by a linear second-order difference equation .. math:: Y_t = + \alpha (1 + \beta) Y_{t-1} - \alpha \beta Y_{t-2} Parameters ---------- y_0 : scalar Initial condition for Y_0 y_1 : scalar Initial condition for Y_1 alpha : scalar Marginal propensity to consume beta : scalar Accelerator coefficient n : int Number of iterations sigma : scalar Volatility parameter. Must be greater than or equal to 0. Set equal to 0 for non-stochastic model. g : scalar Government spending shock g_t : int Time at which government spending shock occurs. Must be specified when duration != None. duration : {None, 'permanent', 'one-off'} Specifies type of government spending shock. If none, government spending equal to g for all t. def __init__(self, y_0=100, y_1=50, alpha=1.3, beta=0.2, gamma=10, n=100, sigma=0, g=0, g_t=0, duration=None): self.y_0, self.y_1, self.alpha, self.beta = y_0, y_1, alpha, beta self.n, self.g, self.g_t, self.duration = n, g, g_t, duration self.gamma, self.sigma = gamma, sigma self.rho1 = alpha + beta self.rho2 = -beta self.roots = np.roots([1, -self.rho1, -self.rho2]) def root_type(self): if all(isinstance(root, complex) for root in self.roots): return 'Complex conjugate' elif len(self.roots) > 1: return 'Double real' else: return 'Single real' def root_less_than_one(self): if all(abs(root) < 1 for root in self.roots): return True def solution_type(self): rho1, rho2 = self.rho1, self.rho2 discriminant = rho1 ** 2 + 4 * rho2 if rho2 >= 1 + rho1 or rho2 <= -1: return 'Explosive oscillations' elif rho1 + rho2 >= 1: return 'Explosive growth' elif discriminant < 0: return 'Damped oscillations' else: return 'Steady state' def _transition(self, x, t, g): # Non-stochastic - separated to avoid generating random series when not needed if self.sigma == 0: return self.rho1 * x[t - 1] + self.rho2 * x[t - 2] + self.gamma + g # Stochastic else: epsilon = np.random.normal(0, 1, self.n) return self.rho1 * x[t - 1] + self.rho2 * x[t - 2] + self.gamma + g + self.sigma * epsilon[t] def generate_series(self): # Create list and set initial conditions y_t = [self.y_0, self.y_1] # Generate y_t series for t in range(2, self.n): # No government spending if self.g == 0: y_t.append(self._transition(y_t, t)) # Government spending (no shock) elif self.g != 0 and self.duration == None: y_t.append(self._transition(y_t, t)) # Permanent government spending shock elif self.duration == 'permanent': if t < self.g_t: y_t.append(self._transition(y_t, t, g=0)) else: y_t.append(self._transition(y_t, t, g=self.g)) # One-off government spending shock elif self.duration == 'one-off': if t == self.g_t: y_t.append(self._transition(y_t, t, g=self.g)) else: y_t.append(self._transition(y_t, t, g=0)) return y_t def summary(self): print('Summary\n' + '-' * 50) print('Root type: ' + self.root_type()) print('Solution type: ' + self.solution_type()) print('Roots: ' + str(self.roots)) if self.root_less_than_one() == True: print('Absolute value of roots is less than one') else: print('Absolute value of roots is not less than one') if self.sigma > 0: print('Stochastic series with sigma = ' + str(self.sigma)) else: print('Non-stochastic series') if self.g != 0: print('Government spending equal to ' + str(self.g)) if self.duration != None: print(self.duration.capitalize() + ' government spending shock at t = ' + str(self.g_t)) def plot(self): fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(self.generate_series()) ax.set(xlabel='Iteration', xlim=(0, self.n)) ax.set_ylabel('$Y_t$', rotation=0) ax.grid() # Add parameter values to plot paramstr = '$\\alpha=%.2f$\n$\\beta=%.2f$\n$\\gamma=%.2f$\n$\\sigma=%.2f$\n$\\rho_1=%.2f$\n$\\rho_2=%.2f$'%( self.alpha, self.beta, self.gamma, self.sigma, self.rho1, self.rho2) props = dict(fc='white', pad=10, alpha=0.5) ax.text(0.87, 0.05, paramstr, transform=ax.transAxes, fontsize=12, bbox=props, va='bottom') return fig def param_plot(self): # Uses the param_plot() function defined earlier (it is then able # to be used standalone or as part of the model) fig = param_plot() ax = fig.gca() # Add lambda values to legend for i, root in enumerate(self.roots): if isinstance(root, complex): operator = ['+', ''] # Need to fill operator for positive as string is split apart label = r'$\lambda_{0} = {1.real:.2f} {2} {1.imag:.2f}i$'.format(i+1, sam.roots[i], operator[i]) else: label = r'$\lambda_{0} = {1.real:.2f}$'.format(i+1, sam.roots[i]) ax.scatter(0, 0, 0, label=label) # dummy to add to legend # Add rho pair to plot ax.scatter(self.rho1, self.rho2, 100, 'red', '+', label=r'$(\ \rho_1, \ \rho_2 \ )$', zorder=5) plt.legend(fontsize=12, loc=3) return fig sam = Samuelson(alpha=0.8, beta=0.5, sigma=2, g=10, g_t=20, duration='permanent') sam.summary() sam.plot() plt.show() sam.param_plot() plt.show() from quantecon import LinearStateSpace This script maps the Samuelson model in the the LinearStateSpace class alpha = 0.8 beta = 0.9 rho1 = alpha + beta rho2 = -beta gamma = 10 sigma = 1 g = 10 n = 100 A = [[1, 0, 0], [gamma + g, rho1, rho2], [0, 1, 0]] G = [[gamma + g, rho1, rho2], # this is Y_{t+1} [gamma, alpha, 0], # this is C_{t+1} [0, beta, -beta]] # this is I_{t+1} mu_0 = [1, 100, 100] C = np.zeros((3,1)) C[1] = sigma # stochastic sam_t = LinearStateSpace(A, C, G, mu_0=mu_0) x, y = sam_t.simulate(ts_length=n) fig, axes = plt.subplots(3, 1, sharex=True, figsize=(15, 8)) titles = ['Output ($Y_t$)', 'Consumption ($C_t$)', 'Investment ($I_t$)'] colors = ['darkblue', 'red', 'purple'] for ax, series, title, color in zip(axes, y, titles, colors): ax.plot(series, color=color) ax.set(title=title, xlim=(0, n)) ax.grid() axes[-1].set_xlabel('Iteration') plt.show() imres = sam_t.impulse_response() imres = np.asarray(imres) y1 = imres[:, :, 0] y2 = imres[:, :, 1] y1.shape A = np.asarray(A) w, v = np.linalg.eig(A) print(w) class SamuelsonLSS(LinearStateSpace): this subclass creates a Samuelson multiplier-accelerator model as a linear state space system def __init__(self, y_0=100, y_1=100, alpha=0.8, beta=0.9, gamma=10, sigma=1, g=10): self.alpha, self.beta = alpha, beta self.y_0, self.y_1, self.g = y_0, y_1, g self.gamma, self.sigma = gamma, sigma # Define intial conditions self.mu_0 = [1, y_0, y_1] self.rho1 = alpha + beta self.rho2 = -beta # Define transition matrix self.A = [[1, 0, 0], [gamma + g, self.rho1, self.rho2], [0, 1, 0]] # Define output matrix self.G = [[gamma + g, self.rho1, self.rho2], # this is Y_{t+1} [gamma, alpha, 0], # this is C_{t+1} [0, beta, -beta]] # this is I_{t+1} self.C = np.zeros((3, 1)) self.C[1] = sigma # stochastic # Initialize LSS with parameters from Samuleson model LinearStateSpace.__init__(self, self.A, self.C, self.G, mu_0=self.mu_0) def plot_simulation(self, ts_length=100, stationary=True): # Temporarily store original parameters temp_mu = self.mu_0 temp_Sigma = self.Sigma_0 # Set distribution parameters equal to their stationary values for simulation if stationary == True: try: self.mu_x, self.mu_y, self.sigma_x, self.sigma_y = self.stationary_distributions() self.mu_0 = self.mu_y self.Sigma_0 = self.sigma_y # Exception where no convergence achieved when calculating stationary distributions except ValueError: print('Stationary distribution does not exist') x, y = self.simulate(ts_length) fig, axes = plt.subplots(3, 1, sharex=True, figsize=(15, 8)) titles = ['Output ($Y_t$)', 'Consumption ($C_t$)', 'Investment ($I_t$)'] colors = ['darkblue', 'red', 'purple'] for ax, series, title, color in zip(axes, y, titles, colors): ax.plot(series, color=color) ax.set(title=title, xlim=(0, n)) ax.grid() axes[-1].set_xlabel('Iteration') # Reset distribution parameters to their initial values self.mu_0 = temp_mu self.Sigma_0 = temp_Sigma return fig def plot_irf(self, j=5): x, y = self.impulse_response(j) # Reshape into 3 x j matrix for plotting purposes yimf = np.array(y).flatten().reshape(j+1, 3).T fig, axes = plt.subplots(3, 1, sharex=True, figsize=(15, 8)) labels = ['$Y_t$', '$C_t$', '$I_t$'] colors = ['darkblue', 'red', 'purple'] for ax, series, label, color in zip(axes, yimf, labels, colors): ax.plot(series, color=color) ax.set(xlim=(0, j)) ax.set_ylabel(label, rotation=0, fontsize=14, labelpad=10) ax.grid() axes[0].set_title('Impulse Response Functions') axes[-1].set_xlabel('Iteration') return fig def multipliers(self, j=5): x, y = self.impulse_response(j) return np.sum(np.array(y).flatten().reshape(j+1, 3), axis=0) samlss = SamuelsonLSS() samlss.plot_simulation(100, stationary=False) plt.show() samlss.plot_simulation(100, stationary=True) plt.show() samlss.plot_irf(100) plt.show() samlss.multipliers() pure_multiplier = SamuelsonLSS(alpha=0.95, beta=0) pure_multiplier.plot_simulation() pure_multiplier = SamuelsonLSS(alpha=0.8, beta=0) pure_multiplier.plot_simulation() pure_multiplier.plot_irf(100) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Each propbank instance defines the following member variables Step2: The location of the predicate and of the arguments are encoded using PropbankTreePointer objects, as well as PropbankChainTreePointer objects and PropbankSplitTreePointer objects. A PropbankTreePointer consists of a wordnum and a height Step3: This identifies the tree constituent that is headed by the word that is the wordnum'th token in the sentence, and whose span is found by going height nodes up in the tree. This type of pointer is only useful if we also have the corresponding tree structure, since it includes empty elements such as traces in the word number count. The trees for 10% of the standard PropBank Corpus are contained in the treebank corpus Step4: Propbank tree pointers can be converted to standard tree locations, which are usually easier to work with, using the treepos() method Step5: In some cases, argument locations will be encoded using PropbankChainTreePointers (for trace chains) or PropbankSplitTreePointers (for discontinuous constituents). Both of these objects contain a single member variable, pieces, containing a list of the constituent pieces. They also define the method select(), which will return a tree containing all the elements of the argument. (A new head node is created, labeled "CHAIN" or "SPLIT", since the argument is not a single constituent in the original tree). Sentence #6 contains an example of an argument that is both discontinuous and contains a chain Step6: The PropBank Corpus also provides access to the frameset files, which define the argument labels used by the annotations, on a per-verb basis. Each frameset file contains one or more predicates, such as 'turn' or 'turn_on', each of which is divided into coarse-grained word senses called rolesets. For each roleset, the frameset file provides descriptions of the argument roles, along with examples. Step7: Note that the standard corpus distribution only contains 10% of the treebank, so the parse trees are not available for instances starting at 9353 Step8: However, if you supply your own version of the treebank corpus (by putting it before the nltk-provided version on nltk.data.path, or by creating a ptb directory as described above and using the propbank_ptb module), then you can access the trees for all instances.
<ASSISTANT_TASK:> Python Code: from nltk.corpus import propbank pb_instances = propbank.instances() print(pb_instances) inst = pb_instances[103] print("File ID:", inst.fileid) print("Sentence Number:", inst.sentnum) print("Word Number:", inst.wordnum) inst.tagger inst.inflection infl = inst.inflection infl.form, infl.tense, infl.aspect, infl.person, infl.voice inst.roleset inst.predicate inst.arguments print(inst.predicate.wordnum, inst.predicate.height) tree = inst.tree from nltk.corpus import treebank assert tree == treebank.parsed_sents(inst.fileid)[inst.sentnum] inst.predicate.select(tree) for (argloc, argid) in inst.arguments: print('%-10s %s' % (argid, argloc.select(tree).pformat(500)[:50])) treepos = inst.predicate.treepos(tree) print (treepos, tree[treepos]) inst = pb_instances[6] inst.roleset argloc, argid = inst.arguments[2] argloc argloc.pieces argloc.pieces[0].pieces print(argloc.select(inst.tree)) expose_01 = propbank.roleset('expose.01') turn_01 = propbank.roleset('turn.01') print(turn_01) for role in turn_01.findall("roles/role"): print(role.attrib['n'], role.attrib['descr']) from xml.etree import ElementTree print(ElementTree.tostring(turn_01.find('example')).decode('utf8').strip()) inst = pb_instances[9352] inst.fileid print(inst.tree) print(inst.predicate.select(inst.tree)) inst = pb_instances[9353] inst.fileid print(inst.tree) print(inst.predicate.select(inst.tree)) propbank.verbs() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A pop up will appear saying Step2: Step3: Now, if you click the button, the callback will be called. Step4: Now the Jupyter QtConsole will be started by connecting to the ipython kernel that is already running.
<ASSISTANT_TASK:> Python Code: %gui from PyQt5 import QtWidgets b1 = QtWidgets.QPushButton("Click Me") %gui qt5 from PyQt5 import QtWidgets b1 = QtWidgets.QPushButton("Click Me") b1.show() def on_click_cb(): print("Clicked") b1.clicked.connect(on_click_cb) %connect_info !jupyter kernel list %qtconsole b1.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example 2 Step2: Example 2
<ASSISTANT_TASK:> Python Code: import heapq nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] print(heapq.nlargest(3, nums)) # Prints [42, 37, 23] print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2] portfolio = [ {'name': 'IBM', 'shares': 100, 'price': 91.1}, {'name': 'AAPL', 'shares': 50, 'price': 543.22}, {'name': 'FB', 'shares': 200, 'price': 21.09}, {'name': 'HPQ', 'shares': 35, 'price': 31.75}, {'name': 'YHOO', 'shares': 45, 'price': 16.35}, {'name': 'ACME', 'shares': 75, 'price': 115.65} ] cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price']) expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price']) print(cheap) print(expensive) import os file_dir = os.path.dirname(os.path.realpath('__file__')) filename = os.path.abspath(os.path.join(file_dir, "..", "code/src/1/keeping_the_last_n_items/somefile.txt")) !head $filename from collections import deque def search(lines, pattern, history=5): previous_lines = deque(maxlen=history) for line in lines: if pattern in line: yield line, previous_lines previous_lines.append(line) # Example use on a file if __name__ == '__main__': with open(filename) as f: for line, prevlines in search(f, 'python', 5): for pline in prevlines: print(pline, end='') print(line, end='') print('-'*20) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <br> Step2: <br> Step3: <br> Step4: <br>
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt def lin_regplot(X, y, model): plt.scatter(X, y, c='blue') plt.plot(X, model.predict(X), color='red') return X = np.array([ 1, 2, 3, 4, 5])[:, np.newaxis] y = np.array([ 1, 2, 3, 4, 5]) ne_lr = LinearRegression(solver='normal_equation') ne_lr.fit(X, y) print('Intercept: %.2f' % ne_lr.w_[0]) print('Slope: %.2f' % ne_lr.w_[1]) lin_regplot(X, y, ne_lr) gd_lr = LinearRegression(solver='gd', eta=0.005, epochs=1500, random_seed=0) gd_lr.fit(X, y) print('Intercept: %.2f' % gd_lr.w_[0]) print('Slope: %.2f' % gd_lr.w_[1]) plt.plot(range(1, gd_lr.epochs+1), gd_lr.cost_) plt.xlabel('Epochs') plt.ylabel('Cost') plt.tight_layout() plt.show() lin_regplot(X, y, gd_lr) X_std = (X - np.mean(X)) / X.std() y_std = (y - np.mean(y)) / y.std() gd_lr = LinearRegression(solver='gd', eta=0.1, epochs=10, random_seed=0) gd_lr.fit(X_std, y_std) print('Intercept: %.2f' % gd_lr.w_[0]) print('Slope: %.2f' % gd_lr.w_[1]) plt.plot(range(1, gd_lr.epochs+1), gd_lr.cost_) plt.xlabel('Epochs') plt.ylabel('Cost') plt.tight_layout() plt.show() lin_regplot(X_std, y_std, gd_lr) sgd_lr = LinearRegression(solver='sgd', eta=0.1, epochs=10, random_seed=0) sgd_lr.fit(X_std, y_std) print('Intercept: %.2f' % sgd_lr.w_[0]) print('Slope: %.2f' % sgd_lr.w_[1]) plt.plot(range(1, sgd_lr.epochs+1), sgd_lr.cost_) plt.xlabel('Epochs') plt.ylabel('Cost') plt.tight_layout() plt.show() lin_regplot(X, y, sgd_lr) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate a sequence Step2: Entropies Step3: Now we have mappings from binary block size to entropies of sequences Step4: Now we will calculate average entropy for each block size Step5: Get same entropies for chaotic sequence Step6: To get only needed numbers we need to calculate standard deviations Step7: Analysis Step8: Results
<ASSISTANT_TASK:> Python Code: MU = 3.9 N = int(10E4) INITIAL = 0.5 MIN_SIZE = 2 MAX_SIZE = 26 BITS_RANGE = array(list(range(MIN_SIZE, MAX_SIZE + 1))) def generate(x, mu, n): current = x for _ in range(n): yield current current = mu * current * (1 - current) def bin_to_dec(sequence, bits): aligned_sequence = sequence.flatten()[:sequence.size - sequence.size % bits] binary_matrix = aligned_sequence.reshape((sequence.size // bits, bits)) result_sequence = array([binary_matrix[:,i] * (2**i) for i in range(binary_matrix.shape[1])]) return result_sequence.sum(axis=0) def R(probabilities, beta): return -log((probabilities[probabilities>0]**beta).sum()) / (beta - 1) def H(probabilities): indices = probabilities>0 return -(log(probabilities[indices]) * probabilities[indices]).sum() def show_entropies(entropies, errors=None, count=None, labels=None): for entropy, label in zip(entropies, labels): if count is None: plt.plot(BITS_RANGE, entropy, '-o', label=label) else: plt.plot(BITS_RANGE[:count], entropy, '-o', label=label) if errors is not None: plt.errorbar(**errors) plt.legend() plt.show() source_sequence = array(list(generate(INITIAL, MU, N))) bin_sequence = (source_sequence > 0.5).astype('i') sequences = array([bin_to_dec(bin_sequence, bits_count).astype('i') for bits_count in BITS_RANGE]) probabilities = array([bincount(sequence)/sequence.size for sequence in sequences]) probabilities[1] plt.plot(source_sequence[:100]) plt.show() shannon_entropies = [H(p) for p in probabilities] renyi_entropies2 = [R(p, 2) for p in probabilities] renyi_entropies3 = [R(p, 3) for p in probabilities] show_entropies([shannon_entropies, renyi_entropies2, renyi_entropies3], labels=['Shannon', 'Renyi (2)', 'Renyi (3)']) means = array([shannon_entropies, renyi_entropies2, renyi_entropies3]).mean(axis=0) show_entropies([shannon_entropies, renyi_entropies2, renyi_entropies3, means], labels=['Shannon', 'Renyi (2)', 'Renyi (3)', 'Mean']) shannon_entropies_chaos = [n*log(2) for n in BITS_RANGE] renyi_entropies2_chaos = [-(n*log(2)-2*n*log(2)) for n in BITS_RANGE] renyi_entropies3_chaos = [-(n*log(2)-3*n*log(2))/2 for n in BITS_RANGE] show_entropies([shannon_entropies, renyi_entropies2, renyi_entropies3, means, shannon_entropies_chaos], labels=['Shannon', 'Renyi (2)', 'Renyi (3)', 'Mean', 'Uniform entropy']) standard_deviation = array([shannon_entropies, renyi_entropies2, renyi_entropies3]).std(axis=0) show_entropies([shannon_entropies, renyi_entropies2, renyi_entropies3], labels=['Shannon', 'Renyi (2)', 'Renyi (3)'], errors={'x': BITS_RANGE, 'y': means, 'yerr': standard_deviation, 'label': 'Mean'}) count = standard_deviation.argmax() a, b = lstsq(vstack([BITS_RANGE[:count], ones(count)]).T, means[:count])[0] approximation_error = array([means[:count], a*BITS_RANGE[:count]+b]).std(axis=0) show_entropies([shannon_entropies[:count], renyi_entropies2[:count], renyi_entropies3[:count], means[:count]], labels=['Shannon', 'Renyi (2)', 'Renyi (3)', 'Mean'], errors={'x': BITS_RANGE[:count], 'y': a*BITS_RANGE[:count]+b, 'yerr': approximation_error, 'label': 'Linear approximation'}, count=count) show_entropies([shannon_entropies_chaos[:count], means[:count]], labels=['Uniform entropy', 'Mean'], errors={'x': BITS_RANGE[:count], 'y': a*BITS_RANGE[:count]+b, 'yerr': approximation_error, 'label': 'Linear approximation'}, count=count) print('Source entropy estimate is', a) print('Chaotic entropy is', log(2)) (array(shannon_entropies[1:]) - shannon_entropies[:-1])[:count][:6] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Right, now, you can use those module. Step3: B. Modeling Step4: n_iter=10
<ASSISTANT_TASK:> Python Code: from utils import load_buzz, select, write_result from features import featurize, get_pos from containers import Questions, Users, Categories %matplotlib inline import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture def plot_gmm(X, models, n_components, covariance_type='diag', n_iter=100, figsize=(10, 20), suptitle=None, xlabel=None, ylabel=None): color_iter = ['r', 'g', 'b', 'c', 'm', 'y', 'k', 'gray', 'pink', 'lime'] plt.figure(figsize=figsize) plt.suptitle(suptitle, fontsize=20) for i, model in enumerate(models): mm = getattr(mixture, model)(n_components=n_components, covariance_type=covariance_type, n_iter=n_iter) mm.fit(X_pos_qid) Y = mm.predict(X_pos_qid) plt.subplot(len(models), 1, 1 + i) for i, color in enumerate(color_iter): plt.scatter(X_pos_qid[Y == i, 0], X_pos_qid[Y == i, 1], .7, color=color) plt.title(model, fontsize=15) plt.xlabel(xlabel, fontsize=12) plt.ylabel(ylabel, fontsize=12) plt.grid() plt.show() users = Users(load_buzz()) questions = Questions(load_buzz()) X_pos_uid = users.select(['ave_pos_uid', 'acc_ratio_uid']) X_pos_qid = questions.select(['ave_pos_qid', 'acc_ratio_qid']) plot_gmm(X_pos_uid, models=['GMM', 'VBGMM', 'DPGMM'], n_components=8, covariance_type='diag', figsize=(10, 20), suptitle='Classifying users', xlabel='abs(position)', ylabel='accuracy ratio') plot_gmm(X_pos_qid, models=['GMM', 'VBGMM', 'DPGMM'], n_components=8, covariance_type='diag', figsize=(10, 20), suptitle='Classifying questions', xlabel='abs(position)', ylabel='accuracy ratio') # Question category n_components = 8 gmm = mixture.DPGMM(n_components=n_components, covariance_type='diag', n_iter=10**10) gmm.fit(X_pos_qid) pred_cat_qid = gmm.predict(X_pos_qid) plt.hist(pred_cat_qid, bins=50, facecolor='g', alpha=0.75) plt.xlabel("Category number") plt.ylabel("Count") plt.title("Question Category: " + str(n_components) + " categories") plt.grid(True) plt.show() # User category n_components = 8 gmm = mixture.DPGMM(n_components=n_components, covariance_type='diag', n_iter=10**10) gmm.fit(X_pos_uid) pred_cat_uid = gmm.predict(X_pos_uid) plt.hist(pred_cat_uid, bins=50, facecolor='g', alpha=0.75) plt.xlabel("Category number") plt.ylabel("Count") plt.title("User Category: " + str(n_components) + " categories") plt.grid(True) plt.show() from collections import Counter users.sub_append('cat_uid', [str(x) for x in pred_cat_uid]) questions.sub_append('cat_qid', [str(x) for x in pred_cat_qid]) # to get most frequent cat for some test data which do not have ids in train set most_pred_cat_uid = Counter(pred_cat_uid).most_common(1)[0][0] most_pred_cat_qid = Counter(pred_cat_qid).most_common(1)[0][0] print(most_pred_cat_uid) print(most_pred_cat_qid) print(users[1]) print(questions[1]) regression_keys = ['category', 'q_length', 'qid', 'uid', 'answer', 'avg_pos_uid', 'avg_pos_qid'] X_train, y_train = featurize(load_buzz(), group='train', sign_val=None, extra=['sign_val', 'avg_pos']) X_train = select(X_train, regression_keys) categories = Categories(load_buzz()) for item in X_train: for key in categories[item['category']].keys(): item[key] = categories[item['category']][key] X_train import nltk def extract_entities(text, all=True, verbose=False): count = 0 for sent in nltk.sent_tokenize(text): for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))): if all: if verbose: print(chunk) if type(chunk) is nltk.tree.Tree: count += 1 if verbose: print(chunk.label(), ' '.join(c[0] for c in chunk.leaves())) elif chunk[1] == 'CD': count += 1 if verbose: print('CD', chunk[0]) return count from collections import defaultdict ne_count = defaultdict(int) for key in questions: ne_count[key] = extract_entities(questions[key]['question'], all=False, verbose=False) import pickle with open('ne_count01.pkl', 'wb') as f: pickle.dump(ne_count, f) def transform(X): for index, item in enumerate(X): uid = int(item['uid']) qid = int(item['qid']) # uid if int(uid) in users: item['acc_ratio_uid'] = users[uid]['acc_ratio_uid'] item['cat_uid'] = users[uid]['cat_uid'] else: acc = users.select(['acc_ratio_uid']) item['acc_ratio_uid'] = sum(acc) / float(len(acc)) item['cat_uid'] = most_pred_cat_uid # qid if int(qid) in questions: item['acc_ratio_qid'] = questions[qid]['acc_ratio_qid'] item['cat_qid'] = questions[qid]['cat_qid'] item['ne_count'] = ne_count[qid] else: acc = questions.select(['acc_ratio_qid']) item['acc_ratio_qid'] = sum(acc) / float(len(acc)) item['cat_qid'] = most_pred_cat_qid item['uid'] = str(uid) item['qid'] = str(qid) transform(X_train) X_train[1] from sklearn.feature_extraction import DictVectorizer vec = DictVectorizer() X_train_dict_vec = vec.fit_transform(X_train) import multiprocessing from sklearn import linear_model from sklearn.cross_validation import train_test_split, cross_val_score import math from numpy import abs, sqrt regressor_names = ElasticNetCV #for l1 in [0.5, 0.2, 0.7, 0.9]: for l1 in [0.5]: print ("=== ElasticNetCV RMSE", "with", l1) for regressor in regressor_names.split(): scores = cross_val_score(getattr(linear_model, regressor)(n_jobs=3, normalize=True, l1_ratio = l1), X_train_dict_vec, y_train, cv=2, scoring='mean_squared_error' ) print (regressor, sqrt(abs(scores)).mean()) regression_keys = ['category', 'q_length', 'qid', 'uid', 'answer', 'avg_pos_uid', 'avg_pos_qid'] X_train, y_train = featurize(load_buzz(), group='train', sign_val=None, extra=['avg_pos']) X_train = select(X_train, regression_keys) X_test = featurize(load_buzz(), group='test', sign_val=None, extra=['avg_pos']) X_test = select(X_test, regression_keys) transform(X_train) transform(X_test) for item in X_train: for key in categories[item['category']].keys(): item[key] = categories[item['category']][key] for item in X_test: for key in categories[item['category']].keys(): item[key] = categories[item['category']][key] X_train[1] X_test[1] vec = DictVectorizer() vec.fit(X_train + X_test) X_train = vec.transform(X_train) X_test = vec.transform(X_test) for l1_ratio in [0.72, 0.7]: print('=== l1_ratio:', l1_ratio) regressor = linear_model.ElasticNetCV(n_jobs=3, normalize=True, l1_ratio=l1_ratio) regressor.fit(X_train, y_train) print(regressor.coef_) print(regressor.alpha_) predictions = regressor.predict(X_test) write_result(load_buzz()['test'], predictions, file_name=str(l1_ratio)+'guess.csv') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As you can see, it doesn't generate the complete list like the listcomp above. Genexps don't produce entire lists in memory. You need to iterate over them, and then you will get the item one by one. No one is keeping the entire list! Step2: Next, it's about tuple (in short, not just an immutable list), and slicing. More examples Step3: Next, the chapter moves on to list.sort() vs. sorted(). I kinda like sorted because it works with everything including generators, and it returns a new list. Whereas list.sort() is more limited because it is an in-place sort which returns None.
<ASSISTANT_TASK:> Python Code: couleurs = ["rouge", "orange", "jaune", "vert", "bleu", "indigo", "violet"] tailles = ["page", "homme", "demi patron", "patron", "grand patron"] [(couleur, taille) for couleur in couleurs for taille in tailles] couleurs_et_tailles = ((couleur, taille) for couleur in couleurs for taille in tailles) couleurs_et_tailles couleurs_et_tailles = ((couleur, taille) for couleur in couleurs for taille in tailles) couleurs_et_tailles for article in couleurs_et_tailles: print(article) jours = ["lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche"] all_slice = slice(None, None, None) print(jours[all_slice]) every_other_slice = slice(0, None, 2) print(jours[every_other_slice]) reverse_slice = slice(None, None, -1) print(jours[reverse_slice]) jours = ["lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche"] # already ordered print(sorted(jours)) print(sorted(jours, reverse=True)) print(sorted(jours, key=len, reverse=True)) # by length of string, descend print(sorted(jours, reverse=True, key=lambda x: jours.index(x))) # by actual order of week, descending <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question 1 Step2: Question 2 Step4: Question 3
<ASSISTANT_TASK:> Python Code: from IPython.display import YouTubeVideo # WATCH THE VIDEO IN FULL-SCREEN MODE YouTubeVideo("JXJQYpgFAyc",width=640,height=360) # Numerical integration # Put your code here import math Nstep = 10 begin = 0.0 end = 3.1415926 dx = (end-begin)/Nstep sum = 0.0 xpos = 0.0 for i in range(Nstep): thisval = math.sin(xpos)*dx sum += thisval xpos += dx error = abs(sum-2.0)/2.0 print("for dx = {0:3f} we get an answer of {1:3f} and a fractional error of {2:4e}".format(dx,sum,error)) # WATCH THE VIDEO IN FULL-SCREEN MODE YouTubeVideo("b0K8LiHyrBg",width=640,height=360) # Numerical differentiation # Put your code here import numpy as np %matplotlib inline import matplotlib.pyplot as plt def f(x): return np.exp(-2.0*x) def dfdx(x): return -2.0*np.exp(-2.0*x) x = np.linspace(-3.0,3.0, 100) dx = 1.0e-2 deriv = (f(x+dx)-f(x-dx))/(2.0*dx) error = np.abs((deriv-dfdx(x))/dfdx(x)) plt.plot(x,error) print("the average fractional error is:", error.mean()) from IPython.display import HTML HTML( <iframe src="https://goo.gl/forms/IMkGVL5XnxqZM8EP2?embedded=true" width="80%" height="1200px" frameborder="0" marginheight="0" marginwidth="0"> Loading... </iframe> ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Continuous data is stored in objects of type Step2: Information about the channels contained in the Step3: You can also pass an index directly to the Step4: Selecting subsets of channels and samples Step5: Notice the different scalings of these types Step6: You can restrict the data to a specific time range Step7: And drop channels by name Step8: Concatenating
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import mne import os.path as op from matplotlib import pyplot as plt # Load an example dataset, the preload flag loads the data into memory now data_path = op.join(mne.datasets.sample.data_path(), 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.RawFIF(data_path, preload=True, verbose=False) # Give the sample rate print('sample rate:', raw.info['sfreq'], 'Hz') # Give the size of the data matrix print('channels x samples:', raw._data.shape) print('Shape of data array:', raw._data.shape) array_data = raw._data[0, :1000] _ = plt.plot(array_data) # Extract data from the first 5 channels, from 1 s to 3 s. sfreq = raw.info['sfreq'] data, times = raw[:5, int(sfreq * 1):int(sfreq * 3)] _ = plt.plot(times, data.T) _ = plt.title('Sample channels') # Pull all MEG gradiometer channels: # Make sure to use copy==True or it will overwrite the data meg_only = raw.pick_types(meg=True, copy=True) eeg_only = raw.pick_types(meg=False, eeg=True, copy=True) # The MEG flag in particular lets you specify a string for more specificity grad_only = raw.pick_types(meg='grad', copy=True) # Or you can use custom channel names pick_chans = ['MEG 0112', 'MEG 0111', 'MEG 0122', 'MEG 0123'] specific_chans = raw.pick_channels(pick_chans, copy=True) print(meg_only, eeg_only, grad_only, specific_chans, sep='\n') f, (a1, a2) = plt.subplots(2, 1) eeg, times = eeg_only[0, :int(sfreq * 2)] meg, times = meg_only[0, :int(sfreq * 2)] a1.plot(times, meg[0]) a2.plot(times, eeg[0]) restricted = raw.crop(5, 7) # in seconds print('New time range from', restricted.times.min(), 's to', restricted.times.max(), 's') restricted = restricted.drop_channels(['MEG 0241', 'EEG 001']) print('Number of channels reduced from', raw.info['nchan'], 'to', restricted.info['nchan']) # Create multiple :class:`Raw <mne.io.RawFIF>` objects raw1 = raw.copy().crop(0, 10) raw2 = raw.copy().crop(10, 20) raw3 = raw.copy().crop(20, 100) # Concatenate in time (also works without preloading) raw1.append([raw2, raw3]) print('Time extends from', raw1.times.min(), 's to', raw1.times.max(), 's') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: On peut maintenant extraire le lien vers l'image. Step2: On peut afficher ceci dans le notebook. Step5: On peut répeter ce processus et faire une gallerie avec toutes ces images. Step6: Ce sont des belles photos... Step8: On s'attaque aux pages individuelles.
<ASSISTANT_TASK:> Python Code: from bs4 import BeautifulSoup import requests r = requests.get('https://en-marche.fr/emmanuel-macron/le-programme') soup = BeautifulSoup(r.text, 'html.parser') proposals = soup.find_all(class_='programme__proposal') proposals = [p for p in proposals if 'programme__proposal--category' not in p.attrs['class']] len(proposals) p = proposals[0] full_url = 'https://en-marche.fr' + p.find('a').attrs['href'] full_url full_urls = ['https://en-marche.fr' + p.find('a').attrs['href'] for p in proposals] full_urls[:10] r = requests.get(full_url) soup = BeautifulSoup(r.text, 'html.parser') figure_tag = soup.find('figure', class_='fullscreen') figure_tag src_url = 'https://en-marche.fr' + figure_tag('img')[0].attrs['src'] src_url from IPython.display import Image Image(url=src_url) def extract_img_src(url): "Extracts image src url from linked page." r = requests.get(url) soup = BeautifulSoup(r.text, 'html.parser') figure_tag = soup.find('figure', class_='fullscreen') if figure_tag is not None and figure_tag('img') is not None: src_url = 'https://en-marche.fr' + figure_tag('img')[0].attrs['src'] return src_url else: print("no image for url: {}".format(url)) return None srcs = [extract_img_src(url) for url in full_urls] srcs = [_ for _ in srcs if _ is not None] header = <!doctype html> <html lang="fr"> <head> <meta charset="utf-8"> <title>Gallerie des photos du site d'Emmanuel Macron</title> <style> img {width: 100%;} </style> </head> def format_as_img_tag(src): return "<img src={} />".format(src) format_as_img_tag(srcs[2]) with open('galerie_macron.html', 'w') as f: body = <body> {0} </body>.format("\n".join(format_as_img_tag(url) for url in srcs)) html = header + body + "</html>" f.write(html) r = requests.get('https://www.fillon2017.fr/projet/') soup = BeautifulSoup(r.text, 'html.parser') tags = soup.find_all('a', class_='projectItem__inner') sublinks = [tag.attrs['href'] for tag in tags] sublinks[0] r = requests.get(sublinks[0]) soup = BeautifulSoup(r.text, 'html.parser') src = soup.find('div', class_='singleProject__banner bannerWithMask backgroundCover').attrs['style'].split("background-image: url(")[1][1:-3] def extract_img_src(url): r = requests.get(url) soup = BeautifulSoup(r.text, 'html.parser') src = soup.find('div', class_='singleProject__banner bannerWithMask backgroundCover').attrs['style'].split("background-image: url(")[1][1:-3] return src srcs = [extract_img_src(url) for url in sublinks] srcs with open('galerie_fillon.html', 'w') as f: body = <body> {0} </body>.format("\n".join(format_as_img_tag(url) for url in srcs)) html = header + body + "</html>" f.write(html) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Delete rows with missing data Step2: Getting ready to do classification Step3: Now let us create a confusion matrix to identify sensitivity specificity & all the other good statistical stuff Step4: Now let us find out the area under the curve.
<ASSISTANT_TASK:> Python Code: # Importing pandas to read CSV file import pandas as pd # Read breast cancer csv file to pandas data frame data data = pd.read_csv('wisconsin_breast_cancer.csv') # Display the first 5 rows of the csv file data.head() data.shape # It is always a good idea to understand your data # There are 699 rows and 11 columns in this CSV file data.isnull().sum() # Find out how many cells have missing values # Looks like the field nucleoli has 16 missing values data=data.dropna(how='any') # Dropping any rows that has missing values # previously we had 699 rows. The above code deleted 16 rows with missing values and now we have 683 rows #creating feature data set # Here we are going to select feature fileds and assign it to a pandas data frame x. We do not need Id. So it was dropped x=data[['thickness','size','shape','adhesion','single','nuclei','chromatin','nucleoli','mitosis']] x.head() # printing the first 5 rows to see whether we got all the features # Now we are going to extract the 'class' field from 'data' and store it in variable y # This is the variable that we want to predict 0= no cancer 1 = cancer y=data['class'] y.head() from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0) # train logistic regression model from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() logreg.fit(x_train,y_train) y_pred_class=logreg.predict(x_test) # make predictions based on x_test and store it to y_pred_class # Now let us see how our model is performing. # We will start with accuracy from sklearn import metrics print metrics.accuracy_score(y_test, y_pred_class) ## Not bad at all. 92.9% of the time our model was able to identify breast cancer based on the training data # Now let us see how our "intelligent" model compare to a dumb model which predicts "o" or "not cancer" all the time # because it the most prevelent class y_test.value_counts() # as you see "0" is more prevalent # Now let us see the percentage of "o" in y_test. This will be the accuracy of a dumb model that predicts 0 # all the time 1-y_test.mean() # looks like we did better than the dumb model! print metrics.confusion_matrix(y_test, y_pred_class) # let us see what this means # # Predicted 0 Predicted 1 Total # #Actual 0 103 4 107 #Actual 1 8 56 64 #Total 111 60 confusion =metrics.confusion_matrix(y_test, y_pred_class) TP = confusion[1,1] # true positive TN = confusion[0,0] # true negatives FP = confusion[0,1] # false positives FN = confusion[1,0] # false negatives # Let us see the sensitivity of our logistic regression model print TP / float(TP+FN) # Our model's sensitivity is 87.5% # Let us calculate specificity print TN / float(TN+FP) # Looks like our model has pretty good specificity 96.2% # Calculate false postive rate - predicting cancer when pt does not have cancer print FP/ float(TN+FP) # pretty awesome 3.7% # precison - when it is predicting cancer how precise is it # positive predictive value print TP / float(TP+FP) # 93.3% of the time # Negative predictive value print TN / float(TN+ FN) # Now let us say that you want to figure out the probaility of cancer from a set of features # we can use the predict_proba function # let us first see the predicted answers logreg.predict(x_test)[0:10] # predicting cancer based on the data from first 10 rows of x # Now let us predict the probaility of each prediction logreg.predict_proba(x_test)[0:10, :] # The first colun is the probability of it being benign. Second column is the probablity of it being cancerous from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt import random %matplotlib inline # calculates the probability of predicting "1" (cancer) and store the out put in probab_cancer proba_cancer=logreg.predict_proba(x_test)[:,1] # we need the actual values in the cancer column and the predicted probabilities of postive value "1" roc_auc_score(y_test, proba_cancer) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, proba_cancer) roc_auc = auc(false_positive_rate, true_positive_rate) plt.title('Receiver Operating Characteristic') plt.plot(false_positive_rate, true_positive_rate, 'b', label='AUC = %0.2f'% roc_auc) plt.legend(loc='lower right') plt.plot([0,1],[0,1],'r--') plt.xlim([-0.1,1.2]) plt.ylim([-0.1,1.2]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: MAX = 10005 MOD = 1000000007 def countNum(idx , sum , tight , num , len1 , k ) : if(len1 == idx ) : if(sum == 0 ) : return 1  else : return 0   if(dp[idx ][sum ][tight ] != - 1 ) : return dp[idx ][sum ][tight ]  res = 0 if(tight == 0 ) : limit = num[idx ]  else : limit = 9  for i in range(limit + 1 ) : new_tight = tight if(tight == 0 and i < limit ) : new_tight = 1  res += countNum(idx + 1 ,(sum + i ) % k , new_tight , num , len1 , k ) res %= MOD  if(res < 0 ) : res += MOD  dp[idx ][sum ][tight ] = res return dp[idx ][sum ][tight ]  def process(s ) : num =[] for i in range(len(s ) ) : num . append(ord(s[i ] ) - ord('0' ) )  return num  if __name__== ' __main __' : n = "98765432109876543210" len1 = len(n ) k = 58 dp =[[[- 1 for i in range(2 ) ] for j in range(101 ) ] for k in range(MAX ) ] num = process(n ) print(countNum(0 , 0 , 0 , num , len1 , k ) )  <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Getting the estimated distributional parameters at a set of points is easy. This returns the predicted mean and standard deviation of the first five observations in the test set Step2: Distributions Step3: There are two prediction methods for NGBRegressor objects Step4: Survival Regression Step5: The scores currently implemented assume that the censoring is independent of survival, conditional on the observed predictors. Step6: When using NGBoost for classification, the outcome vector Y must consist only of integers from 0 to K-1, where K is the total number of classes. This is consistent with the classification standards in sklearn. Step7: Scores Step8: Base Learners Step9: Other Arguments Step10: Sample weights (for training) are set using the sample_weight argument to fit.
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('/Users/c242587/Desktop/projects/git/ngboost') from ngboost import NGBRegressor from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error X, Y = load_boston(True) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) ngb = NGBRegressor().fit(X_train, Y_train) Y_preds = ngb.predict(X_test) Y_dists = ngb.pred_dist(X_test) # test Mean Squared Error test_MSE = mean_squared_error(Y_preds, Y_test) print('Test MSE', test_MSE) # test Negative Log Likelihood test_NLL = -Y_dists.logpdf(Y_test).mean() print('Test NLL', test_NLL) Y_dists[0:5].params from ngboost.distns import Exponential, Normal X, Y = load_boston(True) X_reg_train, X_reg_test, Y_reg_train, Y_reg_test = train_test_split(X, Y, test_size=0.2) ngb_norm = NGBRegressor(Dist=Normal, verbose=False).fit(X_reg_train, Y_reg_train) ngb_exp = NGBRegressor(Dist=Exponential, verbose=False).fit(X_reg_train, Y_reg_train) ngb_norm.predict(X_reg_test)[0:5] ngb_exp.predict(X_reg_test)[0:5] ngb_exp.pred_dist(X_reg_test)[0:5].params import numpy as np from ngboost import NGBSurvival from ngboost.distns import LogNormal X, Y = load_boston(True) X_surv_train, X_surv_test, Y_surv_train, Y_surv_test = train_test_split(X, Y, test_size=0.2) # introduce administrative censoring to simulate survival data T_surv_train = np.minimum(Y_surv_train, 30) # time of an event or censoring E_surv_train = Y_surv_train > 30 # 1 if T[i] is the time of an event, 0 if it's a time of censoring ngb = NGBSurvival(Dist=LogNormal).fit(X_surv_train, T_surv_train, E_surv_train) from ngboost import NGBClassifier from ngboost.distns import k_categorical, Bernoulli from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(True) y[0:15] = 2 # artificially make this a 3-class problem instead of a 2-class problem X_cls_train, X_cls_test, Y_cls_train, Y_cls_test = train_test_split(X, y, test_size=0.2) ngb_cat = NGBClassifier(Dist=k_categorical(3), verbose=False) # tell ngboost that there are 3 possible outcomes _ = ngb_cat.fit(X_cls_train, Y_cls_train) # Y should have only 3 values: {0,1,2} ngb_cat.predict(X_cls_test)[0:5] ngb_cat.predict_proba(X_cls_test)[0:5] ngb_cat.pred_dist(X_cls_test)[0:5].params from ngboost.scores import LogScore, CRPScore NGBRegressor(Dist=Exponential, Score=CRPScore, verbose=False).fit(X_reg_train, Y_reg_train) NGBClassifier(Dist=k_categorical(3), Score=LogScore, verbose=False).fit(X_cls_train, Y_cls_train) from sklearn.tree import DecisionTreeRegressor learner = DecisionTreeRegressor(criterion='friedman_mse', max_depth=5) NGBSurvival(Dist=Exponential, Score=CRPScore, Base=learner, verbose=False).fit(X_surv_train, T_surv_train, E_surv_train) ngb = NGBRegressor(n_estimators=100, learning_rate=0.01, minibatch_frac=0.5, col_sample=0.5) ngb.fit(X_reg_train, Y_reg_train) ngb = NGBRegressor(n_estimators=100, learning_rate=0.01, minibatch_frac=0.5, col_sample=0.5) weights = np.random.random(Y_reg_train.shape) ngb.fit(X_reg_train, Y_reg_train, sample_weight=weights) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Power of Ensembles Step2: The accuracy of a majority-vote system from an ensemble of weak classifiers is a big improvement on the accuracy of any individual classifier in the ensemble. Step3: When individual classifier accuracy is lower than 0.5 -- i.e., when the classifiers are worse than randomly predicting a result, the ensemble accuracy is a lot lower than the accuracy of the individual classifiers. Step4: The majority value jumps around even when the number of coins tossed is high.
<ASSISTANT_TASK:> Python Code: import numpy as np from scipy import stats import matplotlib.pyplot as plt %matplotlib inline def clf_preds(accuracy, truth_vector): # accuracy of classifier # truth_vector is the actual value of the target preds = [] for i in range(len(truth)): pred = np.random.choice([truth[i], 1-truth[i]], p=[accuracy, 1-accuracy]) preds.append(pred) return preds # generate num_clfs number of predictors -- an ensemble of predictors def generate_clfs(num_clfs, accuracy, truth_vector): clfs = [clf_preds(accuracy, truth_vector) for i in range(num_clfs)] return clfs # majority vote result for a prediction from each member of the ensemble def majority_vote(pred_vector): vote_result = stats.mode(pred_vector)[0][0] return vote_result def ensemble_accuracy(num_clfs, clf_accuracy, truth_vector): # Generate the ensemble of classifiers and their predictions clfs = generate_clfs(num_clfs, clf_accuracy, truth_vector) # Each clf in clfs contains a list of predictions associated with a particular classifier # Transpose those values to get the first set of predictions # This set of predictions can then be voted on to find the majority result preds = np.transpose(clfs) majority_results = [majority_vote(pred) for pred in preds] # Compare the majority_results with the truth_vector correct = 0 for i in range(len(truth_vector)): if majority_results[i] == truth_vector[i]: correct += 1 ensemble_accuracy = correct/len(truth_vector) return ensemble_accuracy # The truth (training data) is as follows truth = np.random.choice([0,1], 1000, p=[0.7, 0.3]) #truth clfs = [clf_preds(0.55, truth) for i in range(3)] np.transpose(clfs) %time ensemble_accuracy(100, 0.51, truth) # 10 classifiers, data has 1000 rows, each classifier's accuracy varies from # 0 to 1 clf_accs = np.arange(0,1.02,0.02) %time ensemble_accs = [ensemble_accuracy(100, x, truth) for x in clf_accs] #ensemble_accs fig = plt.figure(1, figsize=(12, 8)) # Create an axes instance ax = fig.add_subplot(111) plt.title('Ensemble Prediction Accuracy (100 Individual Models/Classifiers)') plt.xlabel('Individual Classifier Prediction Accuracy') plt.ylabel('Ensemble Prediction Accuracy') ax.set_xticks(np.arange(0, 1.1, 0.05)) ax.set_yticks(np.arange(0, 1.1, 0.05)) plt.grid() # Create the plot plt.plot(clf_accs, ensemble_accs, marker='o'); # Toss 5 coins, each with 0.51 probability each of heads outcomes = np.random.choice(['heads', 'tails'], 5, p=[0.51, 1-0.51]) majority_outcome = majority_vote(outcomes) #print("Tosses: {}".format(outcomes)) print("Majority Value: {}".format(majority_outcome)) # Toss n coins and see if the majority of outcome is heads (1) or tails (0) clf_accuracy = 0.51 num_clfs = 500 outcomes = np.random.choice([1,0], num_clfs, p=[clf_accuracy, 1-clf_accuracy]) # Check majority value as number of classifiers increases majority_vals = [] outcome_ratios = [] for i in range(1, num_clfs+1): #print(outcomes[:i]) outcome_subset = outcomes[:i] majority = majority_vote(outcome_subset) majority_vals.append(majority) # number of 1s (i.e., heads) num_heads = list(outcome_subset).count(1) outcome_ratio = num_heads/len(outcome_subset) outcome_ratios.append(outcome_ratio) #outcomes, majority_vals, outcome_ratios fig = plt.figure(1, figsize=(12, 8)) # Create an axes instance ax = fig.add_subplot(111) plt.title('Ensemble Majority Value as Number of Classifiers Change') plt.xlabel('Number of Classifiers') plt.ylabel('Ensemble Majority Value') #ax.set_xticks(np.arange(0, 1.1, 0.05)) #ax.set_yticks(np.arange(0, 1.1, 0.05)) plt.ylim([0,1.2]) plt.grid() # Create the plot plt.plot(range(1, num_clfs+1), majority_vals); fig = plt.figure(1, figsize=(12, 8)) # Create an axes instance ax = fig.add_subplot(111) plt.title('Ratio of Heads as Number of Classifiers in the Ensemble Increases') plt.xlabel('Number of Classifiers') plt.ylabel('Ratio of Heads') #ax.set_xticks(np.arange(0, 1.1, 0.05)) ax.set_yticks(np.arange(0, 1.1, 0.1)) plt.ylim([0,1.2]) #plt.xlim([0,100]) plt.grid() # Create the plot plt.plot(range(1, num_clfs+1), outcome_ratios); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Functions Step3: In the above example, we have caps as function, which takes val as argument and returns val * 2. Step4: Functions can return any data type, next example returns a boolean value. Step5: Example (factorial without recursion) Step7: Example (factorial with recursion) Step9: Example (Fibonacci series with recursion) Step10: Example (Fibonacci series without recursion) Step11: python Step12: Functions can also not return anything like in the below example Step13: Functions can also return multiple values, usually in form of tuple. Step16: Example (RGB conversion) Step17: Note Step18: Observations Step19: In the example, kargs will receive the named arguments and args will receive the others. Step20: Python also has a builtin function eval(), which evaluates code (source or object) and returns the value.
<ASSISTANT_TASK:> Python Code: def caps(val): caps returns double the value of the provided value return val*2 a = caps("TEST ") print(a) print(caps.__doc__) a = caps(1234) print(a) def is_valid(data): if 10 in data: return True return False a = is_valid([10, 200, 33, "asf"]) print(a) a = is_valid((10,)) print(a) is_valid((10,)) a = is_valid((110,)) print(a) def is_valid_new(data): return 10 in data print(is_valid_new([10, 200, 33, "asf"])) a = is_valid_new((110,)) print(a) def fatorial(n):#{ n = n if n > 1 else 1 j = 1 for i in range(1, n + 1): j = j * i return j #} # Testing... for i in range(1, 6): print (i, '->', fatorial(i)) def factorial(num): Fatorial implemented with recursion. if num <= 1: return 1 else: return(num * factorial(num - 1)) # Testing factorial() print (factorial(5)) # 5 * (4 * (3 * (2) * (1)) def fib(n): Fibonacci: fib(n) = fib(n - 1) + fib(n - 2) se n > 1 fib(n) = 1 se n <= 1 if n > 1: return fib(n - 1) + fib(n - 2) else: return 1 # Show Fibonacci from 1 to 5 for i in [1, 2, 3, 4, 5]: print (i, '=>', fib(i)) def fib(n): # the first two values l = [1, 1] # Calculating the others for i in range(2, n + 1): l.append(l[i -1] + l[i - 2]) return l[n] # Show Fibonacci from 1 to 5 for i in [1, 2, 3, 4, 5]: print (i, '=>', fib(i)) def test(a, b): print(a, b) return a + b print(test(1, 2)) test(b=1, a=2) def test_abc(a, b, c): print(a, b, c) return a + b + c test_abc(2, c=3, b=2) test_abc(2, b=2, c=3) try: test_abc(2, a=12, c=3) except Exception as e: print(e) def test_new(a, b, c): pass def test(a, b): print(a, b) return a*a, b*b x, a = test(2, 5) print(x) print(type(x)) print(a) print(type(a)) print(type(test(2, 5))) def test(a, b): print(a, b) return a*a, b*b, a*b x = test(2 , 5) print(x) print(type(x)) def test(a, b): print(a, b) return a*a, b*b, "asdf" x = test(2, 5) print(x) print(type(x)) def test(a=100, b=1000): print(a, b) return a, b x = test(2, 5) print(x) print(test(10)) def test(a=100, b=1000): print(a, b) return a, b print(test(b=10)) print(test(101)) def test(d, c, a=100, b=1000): print(d, c, a, b) return d, c, a, b x = test(c=2, d=10, b=5) print(x) x = test(1, 2, 3, 4) print(x) print(test(10, 2)) def rgb_html(r=0, g=0, b=0): Converts R, G, B to #RRGGBB return '#%02x%02x%02x' % (r, g, b) def html_rgb(color='#000000'): Converts #RRGGBB em R, G, B if color.startswith('#'): color = color[1:] r = int(color[:2], 16) g = int(color[2:4], 16) b = int(color[4:], 16) return r, g, b print (rgb_html(200, 200, 255)) print (rgb_html(b=200, g=200, r=255)) print (html_rgb('#c8c8ff')) def test(c, d, a=100, b=1000): print(d, c, a, b) return d, c, a, b x = test(c=2, d=10, b=5) print(x) x = test(1, 2, 3, 4) print(x) print(test(10, 2)) # *args - arguments without name (list) # **kargs - arguments with name (ditcionary) def func(*args, **kargs): print (args) print (kargs) func('weigh', 10, unit='k') def func(* , **kargs): print (args) print (kargs) a = { "name": "Mohan kumar Shah", "age": 24 + 1 } func('weigh', 10, unit='k', val=a) def func(*args): print(args) func('weigh', 10, "test") data = [(4, 3), (5, 1), (7, 2), (9, 0)] # Comparing by the last element def _cmp(x, y): return cmp(x[-1], y[-1]) print ('List:', data) print (eval('12. / 2 + 3.3')) def listing(lst): for l in lst: print(l) d = {"Mayank Johri":40, "Janki Mohan Johri":68} listing(d) d = { "name": "Mohan", "age": 24 } a = { "name": "Mohan kumar Shah", "age": 24 + 1 } def process_dict(d=a): print(d) process_dict(d) process_dict() def test(a=[]): a.append(1) print(a) test() test() test() def test(a=None): if a == None: a = [] a.append(1) print(a) test() test() test() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now that we have the TensorFlow code working on a subset of the data, we can package the TensorFlow code up as a Python module and train it on Cloud AI Platform. Step2: Lab Task 2 Step3: Lab Task 3 Step4: Lab Task 4 Step5: Lab Task 5 Step6: When I ran it, I used train_examples=2000000. When training finished, I filtered in the Stackdriver log on the word "dict" and saw that the last line was Step7: <h2> Repeat training </h2>
<ASSISTANT_TASK:> Python Code: # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' PROJECT = 'cloud-training-demos' REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.13' %%bash gcloud config set project $PROJECT gcloud config set compute/region $REGION %%bash if ! gsutil ls | grep -q gs://${BUCKET}/babyweight/preproc; then gsutil mb -l ${REGION} gs://${BUCKET} # copy canonical set of preprocessed files if you didn't do previous notebook gsutil -m cp -R gs://cloud-training-demos/babyweight gs://${BUCKET} fi %%bash gsutil ls gs://${BUCKET}/babyweight/preproc/*-00000* %%writefile babyweight/trainer/task.py import argparse import json import os from . import model import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_runner if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--bucket', help = 'GCS path to data. We assume that data is in gs://BUCKET/babyweight/preproc/', required = True ) parser.add_argument( '--output_dir', help = 'GCS location to write checkpoints and export models', required = True ) parser.add_argument( '--batch_size', help = 'Number of examples to compute gradient over.', type = int, default = 512 ) parser.add_argument( '--job-dir', help = 'this model ignores this field, but it is required by gcloud', default = 'junk' ) parser.add_argument( '--nnsize', help = 'Hidden layer sizes to use for DNN feature columns -- provide space-separated layers', nargs = '+', type = int, default=[128, 32, 4] ) parser.add_argument( '--nembeds', help = 'Embedding size of a cross of n key real-valued parameters', type = int, default = 3 ) ## TODOs after this line ################################################################################ ## TODO 1: add the new arguments here ## parse all arguments args = parser.parse_args() arguments = args.__dict__ # unused args provided by service arguments.pop('job_dir', None) arguments.pop('job-dir', None) ## assign the arguments to the model variables output_dir = arguments.pop('output_dir') model.BUCKET = arguments.pop('bucket') model.BATCH_SIZE = arguments.pop('batch_size') model.TRAIN_STEPS = (arguments.pop('train_examples') * 1000) / model.BATCH_SIZE model.EVAL_STEPS = arguments.pop('eval_steps') print ("Will train for {} steps using batch_size={}".format(model.TRAIN_STEPS, model.BATCH_SIZE)) model.PATTERN = arguments.pop('pattern') model.NEMBEDS= arguments.pop('nembeds') model.NNSIZE = arguments.pop('nnsize') print ("Will use DNN size of {}".format(model.NNSIZE)) # Append trial_id to path if we are doing hptuning # This code can be removed if you are not using hyperparameter tuning output_dir = os.path.join( output_dir, json.loads( os.environ.get('TF_CONFIG', '{}') ).get('task', {}).get('trial', '') ) # Run the training job model.train_and_evaluate(output_dir) %%writefile babyweight/trainer/model.py import shutil import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) BUCKET = None # set from task.py PATTERN = 'of' # gets all files # Determine CSV, label, and key columns CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',') LABEL_COLUMN = 'weight_pounds' KEY_COLUMN = 'key' # Set default values for each CSV column DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']] # Define some hyperparameters TRAIN_STEPS = 10000 EVAL_STEPS = None BATCH_SIZE = 512 NEMBEDS = 3 NNSIZE = [64, 16, 4] # Create an input function reading a file using the Dataset API # Then provide the results to the Estimator API def read_dataset(prefix, mode, batch_size): def _input_fn(): def decode_csv(value_column): columns = tf.decode_csv(value_column, record_defaults=DEFAULTS) features = dict(zip(CSV_COLUMNS, columns)) label = features.pop(LABEL_COLUMN) return features, label # Use prefix to create file path file_path = 'gs://{}/babyweight/preproc/{}*{}*'.format(BUCKET, prefix, PATTERN) # Create list of files that match pattern file_list = tf.gfile.Glob(file_path) # Create dataset from file list dataset = (tf.data.TextLineDataset(file_list) # Read text file .map(decode_csv)) # Transform each elem by applying decode_csv fn if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None # indefinitely dataset = dataset.shuffle(buffer_size = 10 * batch_size) else: num_epochs = 1 # end-of-input after this dataset = dataset.repeat(num_epochs).batch(batch_size) return dataset.make_one_shot_iterator().get_next() return _input_fn # Define feature columns def get_wide_deep(): # Define column types is_male,mother_age,plurality,gestation_weeks = \ [\ tf.feature_column.categorical_column_with_vocabulary_list('is_male', ['True', 'False', 'Unknown']), tf.feature_column.numeric_column('mother_age'), tf.feature_column.categorical_column_with_vocabulary_list('plurality', ['Single(1)', 'Twins(2)', 'Triplets(3)', 'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']), tf.feature_column.numeric_column('gestation_weeks') ] # Discretize age_buckets = tf.feature_column.bucketized_column(mother_age, boundaries=np.arange(15,45,1).tolist()) gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks, boundaries=np.arange(17,47,1).tolist()) # Sparse columns are wide, have a linear relationship with the output wide = [is_male, plurality, age_buckets, gestation_buckets] # Feature cross all the wide columns and embed into a lower dimension crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000) embed = tf.feature_column.embedding_column(crossed, NEMBEDS) # Continuous columns are deep, have a complex relationship with the output deep = [mother_age, gestation_weeks, embed] return wide, deep # Create serving input function to be able to serve predictions later using provided inputs def serving_input_fn(): feature_placeholders = { 'is_male': tf.placeholder(tf.string, [None]), 'mother_age': tf.placeholder(tf.float32, [None]), 'plurality': tf.placeholder(tf.string, [None]), 'gestation_weeks': tf.placeholder(tf.float32, [None]), KEY_COLUMN: tf.placeholder_with_default(tf.constant(['nokey']), [None]) } features = { key: tf.expand_dims(tensor, -1) for key, tensor in feature_placeholders.items() } return tf.estimator.export.ServingInputReceiver(features, feature_placeholders) # create metric for hyperparameter tuning def my_rmse(labels, predictions): pred_values = predictions['predictions'] return {'rmse': tf.metrics.root_mean_squared_error(labels, pred_values)} ## TODOs after this line ################################################################################ # Create estimator to train and evaluate def train_and_evaluate(output_dir): tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file wide, deep = get_wide_deep() EVAL_INTERVAL = 300 # seconds ## TODO 2a: set the save_checkpoints_secs to the EVAL_INTERVAL run_config = tf.estimator.RunConfig(save_checkpoints_secs = None, keep_checkpoint_max = 3) ## TODO 2b: change the dnn_hidden_units to NNSIZE estimator = tf.estimator.DNNLinearCombinedRegressor( model_dir = output_dir, linear_feature_columns = wide, dnn_feature_columns = deep, dnn_hidden_units = None, config = run_config) # illustrates how to add an extra metric estimator = tf.contrib.estimator.add_metrics(estimator, my_rmse) # for batch prediction, you need a key associated with each instance estimator = tf.contrib.estimator.forward_features(estimator, KEY_COLUMN) ## TODO 2c: Set the third argument of read_dataset to BATCH_SIZE ## TODO 2d: and set max_steps to TRAIN_STEPS train_spec = tf.estimator.TrainSpec( input_fn = read_dataset('train', tf.estimator.ModeKeys.TRAIN, None), max_steps = None) exporter = tf.estimator.LatestExporter('exporter', serving_input_fn, exports_to_keep=None) ## TODO 2e: Lastly, set steps equal to EVAL_STEPS eval_spec = tf.estimator.EvalSpec( input_fn = read_dataset('eval', tf.estimator.ModeKeys.EVAL, 2**15), # no need to batch in eval steps = None, start_delay_secs = 60, # start evaluating after N seconds throttle_secs = EVAL_INTERVAL, # evaluate every N seconds exporters = exporter) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) %%bash echo "bucket=${BUCKET}" rm -rf babyweight_trained export PYTHONPATH=${PYTHONPATH}:${PWD}/babyweight python -m trainer.task \ --bucket=${BUCKET} \ --output_dir=babyweight_trained \ --job-dir=./tmp \ --pattern="00000-of-" --train_examples=1 --eval_steps=1 %%writefile inputs.json {"key": "b1", "is_male": "True", "mother_age": 26.0, "plurality": "Single(1)", "gestation_weeks": 39} {"key": "g1", "is_male": "False", "mother_age": 26.0, "plurality": "Single(1)", "gestation_weeks": 39} %%bash sudo find "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/command_lib/ml_engine" -name '*.pyc' -delete %%bash MODEL_LOCATION=$(ls -d $(pwd)/babyweight_trained/export/exporter/* | tail -1) echo $MODEL_LOCATION gcloud ai-platform local predict --model-dir=$MODEL_LOCATION --json-instances=inputs.json %%bash OUTDIR=gs://${BUCKET}/babyweight/trained_model JOBNAME=babyweight_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR gcloud ai-platform jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.task \ --package-path=$(pwd)/babyweight/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=STANDARD_1 \ --runtime-version=$TFVERSION \ -- \ --bucket=${BUCKET} \ --output_dir=${OUTDIR} \ --train_examples=200000 %%writefile hyperparam.yaml trainingInput: scaleTier: STANDARD_1 hyperparameters: hyperparameterMetricTag: rmse goal: MINIMIZE maxTrials: 20 maxParallelTrials: 5 enableTrialEarlyStopping: True params: - parameterName: batch_size type: INTEGER minValue: 8 maxValue: 512 scaleType: UNIT_LOG_SCALE - parameterName: nembeds type: INTEGER minValue: 3 maxValue: 30 scaleType: UNIT_LINEAR_SCALE - parameterName: nnsize type: INTEGER minValue: 64 maxValue: 512 scaleType: UNIT_LOG_SCALE %%bash OUTDIR=gs://${BUCKET}/babyweight/hyperparam JOBNAME=babyweight_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR gcloud ai-platform jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.task \ --package-path=$(pwd)/babyweight/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=STANDARD_1 \ --config=hyperparam.yaml \ --runtime-version=$TFVERSION \ -- \ --bucket=${BUCKET} \ --output_dir=${OUTDIR} \ --eval_steps=10 \ --train_examples=20000 %%bash OUTDIR=gs://${BUCKET}/babyweight/trained_model_tuned JOBNAME=babyweight_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR gcloud ai-platform jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.task \ --package-path=$(pwd)/babyweight/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=STANDARD_1 \ --runtime-version=$TFVERSION \ -- \ --bucket=${BUCKET} \ --output_dir=${OUTDIR} \ --train_examples=20000 --batch_size=35 --nembeds=16 --nnsize=281 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Write a function that checks whether a number is in a given range (Inclusive of high and low) Step2: If you only wanted to return a boolean Step3: Write a Python function that accepts a string and calculate the number of upper case letters and lower case letters. Step4: Write a Python function that takes a list and returns a new list with unique elements of the first list. Step5: Write a Python function to multiply all the numbers in a list. Step6: Write a Python function that checks whether a passed string is palindrome or not. Step7: Hard
<ASSISTANT_TASK:> Python Code: def vol(rad): pass def ran_check(num,low,high): pass def ran_bool(num,low,high): pass ran_bool(3,1,10) def up_low(s): pass def unique_list(l): pass unique_list([1,1,1,1,2,2,3,3,3,3,4,5]) def multiply(numbers): pass multiply([1,2,3,-4]) def palindrome(s): pass palindrome('helleh') import string def ispangram(str1, alphabet=string.ascii_lowercase): pass ispangram("The quick brown fox jumps over the lazy dog") string.ascii_lowercase <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new bundle. See Building a System for more details. Step2: Let's make our system so that the boosting effects will be quite noticeable. Step3: We'll add lc, rv, and mesh datasets so that we can see how they're each affected by beaming and boosting. Step4: Relevant Parameters Step5: Influence on Light Curves (fluxes) Step6: Influence on Radial Velocities Step7: Influence on Meshes
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.0,<2.1" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b['rpole@primary'] = 1.8 b['rpole@secondary'] = 0.96 b['teff@primary'] = 10000 b['gravb_bol@primary'] = 1.0 b['teff@secondary'] = 5200 b['gravb_bol@secondary'] = 0.32 b['q@binary'] = 0.96/1.8 b['incl@binary'] = 88 b['period@binary'] = 1.0 b['sma@binary'] = 6.0 times = np.linspace(0,1,101) b.add_dataset('lc', times=times, dataset='lc01') b.add_dataset('rv', times=times, dataset='rv01') b.add_dataset('mesh', times=times[::10], dataset='mesh01') b.set_value('irrad_method', 'none') print b['boosting_method@compute'] print b['boosting_method@compute'].choices b.run_compute(boosting_method='none', model='boosting_none') b.run_compute(boosting_method='linear', model='boosting_linear') axs, artists = b['lc01'].plot() leg = plt.legend() axs, artists = b['lc01'].plot(ylim=(1.01,1.03)) leg = plt.legend() fig = plt.figure(figsize=(10,6)) ax1, ax2 = fig.add_subplot(121), fig.add_subplot(122) axs, artists = b['rv01@boosting_none'].plot(ax=ax1) axs, artists = b['rv01@boosting_linear'].plot(ax=ax2) fig = plt.figure(figsize=(10,6)) ax1, ax2 = fig.add_subplot(121), fig.add_subplot(122) axs, artists = b['mesh@boosting_none'].plot(time=0.6, facecolor='boost_factors@lc01', edgecolor=None, ax=ax1) axs, artists = b['mesh@boosting_linear'].plot(time=0.6, facecolor='boost_factors@lc01', edgecolor=None, ax=ax2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Display results Step4: Need to remove the tilt from this. Get the best fit orthoganal distance regression plane using approach here Step5: What is the angle between the z axis and the normal vector? Need to dot product the normal with z unit vector. http Step6: Now rotate the original set of points so that the best fit plane has normal equal to z axis unit vector. Use approach here
<ASSISTANT_TASK:> Python Code: probe_x_offset = 5 # i.e. probe is 5 mm to the right of the nozzle probe_y_offset = -31 # i.e. probe is 31mm "down" from the nozzle probe_z_offset = -22.5 # i.e. probe clicks with nozzle 22.5mm above the bed min_y = 41 min_x = 5 max_y = 147 # Moving beyond this value after homing will crash bed max_x = 130 # moving beyond this value will cause probe to miss bed pre_travel_z = 27 safe_z = 32.5 x_points = 10 # Number of points in x direction y_points = 10 # Number of points in y direction f = open('bedread8.g', 'w') f.write("G28\n") # Home first x_step = (max_x - min_x) / (x_points - 1) y_step = (max_y - min_y) / (y_points - 1) for y_point in reversed(range(0, y_points)): for x_point in range(0, x_points): f.write('G1 X{0:.1f} Y{1:.1f} Z{2:.1f}\n'.format((x_point * x_step + min_x), (y_point * y_step + min_y), (safe_z))) f.write('M400\n') f.write('G30\n') f.write('M400\n') f.write('G1 Z{0:.1f}\n'.format(pre_travel_z)) f.write('M400\n') f.write('G1 Z{0:.1f}\n'.format(safe_z)) f.write('M400\n') f.write('M402\n') f.close() f = open("bed_level_20160227_6.txt") printlog = f.read() # Extract values from logfile (only lines starting with 'Bed' are interesting) bed_values = [] for line in iter(printlog.splitlines()): if line[0:3] == "Bed": x_start = line.index("X") y_start = line.index("Y") z_start = line.index("Z") bed_values.append([float(line[x_start+3:y_start]), float(line[y_start+3:z_start]), float(line[z_start+3:].rstrip(' \t\r\n\0\x00\x03'))]) def plot_scatter_from_points(bed_values): xs = np.array([event[0] for event in bed_values]) ys = np.array([event[1] for event in bed_values]) zs = np.array([event[2] for event in bed_values]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xs, ys, zs, c='r', marker='o') plt.show() plot_scatter_from_points(bed_values) def plot_surface_from_points(bed_values, resX=10, resY=10): # Convert scatter plot into surface plot # http://stackoverflow.com/questions/18764814/make-contour-of-scatter x = [point[0] for point in bed_values] y = [point[1] for point in bed_values] z = [point[2] for point in bed_values] xi = linspace(min(x), max(x), resX) yi = linspace(min(y), max(y), resY) Z = griddata(x, y, z, xi, yi, interp='linear') X, Y = meshgrid(xi, yi) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0.1) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() def plot_contour_from_points(bed_values, resX=10, resY=10): # Convert scatter plot into surface plot # http://stackoverflow.com/questions/18764814/make-contour-of-scatter x = [point[0] for point in bed_values] y = [point[1] for point in bed_values] z = [point[2] for point in bed_values] xi = linspace(min(x), max(x), resX) yi = linspace(min(y), max(y), resY) Z = griddata(x, y, z, xi, yi, interp='linear') X, Y = meshgrid(xi, yi) plt.figure() CS = plt.contour(X, Y, Z) plt.clabel(CS, inline=1, fontsize=10) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0.1) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() plot_surface_from_points(bed_values) plot_contour_from_points(bed_values) def planeFit(points): p, n = planeFit(points) Given an array, points, of shape (d,...) representing points in d-dimensional space, fit an d-dimensional plane to the points. Return a point, p, on the plane (the point-cloud centroid), and the normal, n. points = np.reshape(points, (np.shape(points)[0], -1)) # Collapse trialing dimensions assert points.shape[0] <= points.shape[1], "There are only {} points in {} dimensions.".format(points.shape[1], points.shape[0]) ctr = points.mean(axis=1) x = points - ctr[:,np.newaxis] M = np.dot(x, x.T) # Could also use np.cov(x) here. return ctr, svd(M)[0][:,-1] centroid, normal = planeFit(np.transpose(np.array(bed_values))) mag = np.sqrt(normal.dot(normal)) # Should be 1 if this is a unit vector print(centroid, normal) # Plot the plane to make sure def get_height_on_plane(centroid, normal, x, y): # plane is of form ax + by +cz +d = 0 # Normal vector of plane is [a,b,c]T, so just need to find d # d = -(ax0 + by0 + cz0) d = - np.sum((np.array(centroid) * np.array(normal))) [a, b, c] = normal z = -(a * x + b * y + d) / c return z best_fit_plane = [] for point in bed_values: best_fit_plane.append([ point[0], point[1], get_height_on_plane(centroid, normal, point[0], point[1]) ]) plot_surface_from_points(best_fit_plane) z_unit = np.array([0,0,1]) dot_product = normal.dot(z_unit) tilt_angle =np.arccos(dot_product) print("Bed is tilted by {0:.3f} degrees".format(tilt_angle)) old_x_unit = np.array([1,0,0]) old_y_unit = np.array([0,1,0]) old_z_unit = np.array([0,0,1]) new_z_unit = np.array(normal) new_y_unit = np.cross(old_x_unit, new_z_unit) new_y_unit = new_y_unit / (np.dot(new_y_unit, new_y_unit)) new_x_unit = np.cross(new_z_unit, new_y_unit) new_x_unit = new_x_unit / (np.dot(new_x_unit, new_x_unit)) # For each point, create new coords centroid_vec = np.array(centroid) rotated_bed_values = [] min_x = None min_y = None min_z = None for point in bed_values: point_vec = np.array(point) from_centroid = point_vec - centroid_vec new_coords = [np.dot(from_centroid, new_x_unit), np.dot(from_centroid, new_y_unit), np.dot(from_centroid, new_z_unit) ] if min_z is None or np.dot(from_centroid, new_z_unit) < min_z: min_z = np.dot(from_centroid, new_z_unit) if min_y is None or np.dot(from_centroid, new_y_unit) < min_y: min_y = np.dot(from_centroid, new_y_unit) if min_x is None or np.dot(from_centroid, new_x_unit) < min_x: min_x = np.dot(from_centroid, new_x_unit) rotated_bed_values.append(new_coords) # Make minimum point z = 0 for point in rotated_bed_values: point[0] -= min_x point[1] -= min_y point[2] -= min_z plot_scatter_from_points(rotated_bed_values) plot_surface_from_points(rotated_bed_values, resX=20, resY=20) plot_contour_from_points(rotated_bed_values, resX=20, resY=20) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lets try some graphs on them Step2: In the above graph, you can see that everytime, "X" were the lowest and "Mukesh" & "Manish" were the highests names in the created list and more I increase the value of k more prominent the graph becomes as shown in the below code and graph
<ASSISTANT_TASK:> Python Code: from random import choices lnct_few_friends = ["Jyoti Pancholi", "Amit Shrivastava", "Mukesh Bansal", "Preeti Saraswat", "Manish Nandle"] list_of_prob = [0.2, 0.1, 0.3, 0.2, 0.2] lnct_few_friends = choices(lnct_few_friends, weights=list_of_prob, k=200) for name in set(population): print(name, lnct_few_friends.count(name)) from random import choices import matplotlib.pyplot as plt lnct_few_friends = ["X", "Jyoti Pancholi", "Amit Shrivastava", "Mukesh Bansal", "Preeti Saraswat", "Manish Nandle"] list_of_prob = [0.05, 0.15, 0.1, 0.3, 0.1, 0.3] d = {} for i in range(10): a = {} lst = choices(lnct_few_friends, weights=list_of_prob, k=10) for name in set(lnct_few_friends): a[name] = lst.count(name) d[i] = a # print(d) import matplotlib.pyplot as plt from matplotlib import ticker import math plt.xticks(rotation=90) for key, val in d.items(): plt.plot(val.keys() ,val.values(), marker="o") from random import choices import matplotlib.pyplot as plt lnct_few_friends = ["X", "Jyoti Pancholi", "Amit Shrivastava", "Mukesh Bansal", "Preeti Saraswat", "Manish Nandle"] list_of_prob = [0.05, 0.15, 0.1, 0.3, 0.1, 0.3] d = {} for i in range(10): a = {} lst = choices(lnct_few_friends, weights=list_of_prob, k=900) for name in set(lnct_few_friends): a[name] = lst.count(name) d[i] = a import matplotlib.pyplot as plt from matplotlib import ticker import math plt.xticks(rotation=90) for key, val in d.items(): plt.plot(val.keys() ,val.values(), marker="o") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Instantiate individual analog controller Step2: 2. Read voltage value out Step3: 3. Read raw value out Step4: 4. Logging multiple sample values Step 1 Step5: Step 2 Step6: Step 3. Plot values over time Step7: 5. Logging multiple devices Step8: Step 2 Step9: Step 3. Plot values over time
<ASSISTANT_TASK:> Python Code: # Make sure the base overlay is loaded from pynq.overlays.base import BaseOverlay base = BaseOverlay("base.bit") from pynq.lib.arduino import Arduino_Analog from pynq.lib.arduino import ARDUINO_GROVE_A1 from pynq.lib.arduino import ARDUINO_GROVE_A4 analog1 = Arduino_Analog(base.ARDUINO,ARDUINO_GROVE_A1) analog1.read() analog1.read('raw')[0] from time import sleep analog1.set_log_interval_ms(100) analog1.start_log() log1 = analog1.get_log() %matplotlib inline import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot(range(len(log1[0])), log1[0], 'ro', label="X-axis of joystick") line2, = plt.plot(range(len(log1[1])), log1[1], 'bs', label="Y-axis of joystick") plt.title('Arduino Analog Voltage Log') plt.axis([0, len(log1[0]), 0.0, 3.3]) plt.xlabel('Sample number') plt.ylabel('Voltage') plt.legend(loc=4,bbox_to_anchor=(1, -0.3), ncol=2, borderaxespad=0., handler_map={line1: HandlerLine2D(numpoints=1), line2: HandlerLine2D(numpoints=1)}) plt.show() analog2 = Arduino_Analog(base.ARDUINO,[0,1,4]) analog2.set_log_interval_ms(100) analog2.start_log() log2 = analog2.get_log() %matplotlib inline import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot(range(len(log2[0])), log2[0], 'ro', label="X-axis of joystick") line2, = plt.plot(range(len(log2[1])), log2[1], 'bs', label="Y-axis of joystick") line3, = plt.plot(range(len(log2[2])), log2[2], 'g^', label="potentiometer") plt.title('Arduino Analog Voltage Log') plt.axis([0, len(log2[0]), 0.0, 3.3]) plt.xlabel('Sample number') plt.ylabel('Voltage') plt.legend(loc=4,bbox_to_anchor=(1, -0.3), ncol=2, borderaxespad=0., handler_map={line1: HandlerLine2D(numpoints=1), line2: HandlerLine2D(numpoints=1), line3: HandlerLine2D(numpoints=1)}) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If that hasn't convinced you, here are some other benefits
<ASSISTANT_TASK:> Python Code: from IPython.display import Image Image(url='http://www.phdcomics.com/comics/archive/phd101212s.gif') %%bash git status <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: See Auspex example notebooks on how to configure a channel library. Step2: One can define simultaneous operations on qubits using the * operator (indicating a tensor product), see ex1_QGL_basics. Step3: Two-qubit gates Step4: We can now include CNOT gates in our sequences. In this example you can see the use of the two-qubit primitive CNOT. Step5: You can also explicitly call CNOT_CR to Step6: Inverting the order of the CNOT_CR input will also produce a CNOT using the same directed edge (q1->q2), but with added single-qubit gates to invert the CNOT control and target.
<ASSISTANT_TASK:> Python Code: from QGL import * cl = ChannelLibrary("example") q1 = cl["q1"] # Repeat similar configuration for q2 q2 = cl.new_qubit("q2") aps2_3 = cl.new_APS2("BBNAPS3", address="192.168.5.103") aps2_4 = cl.new_APS2("BBNAPS4", address="192.168.5.104") dig_2 = cl.new_X6("X6_2", address=0) cl.set_control(q2, aps2_3) cl.set_measure(q2, aps2_4, dig_2.ch(1)) RabiPoints = 101; plot_pulse_files(RabiAmp_NQubits((q1,q2),np.linspace(0,1,RabiPoints), measChans=(q1,q2), add_cals=True)) e = cl.new_edge(q1, q2) # Most calls required label and address. Let's define # an AWG for control pulse generation aps2_5 = cl.new_APS2("BBNAPS5", address="192.168.5.106") cl.set_control(e, aps2_5) seqs = [[Id(q1), CNOT(q1, q2)]] # use the default CNOT_simple implementation, where the CNOT is represented as an X pulse mf = compile_to_hardware(seqs,'CNOT_simple') plot_pulse_files(mf) seqs = [[Id(q1), CNOT_CR(q1, q2)]] # use the CNOT_CR implementation, where the CNOT is decomposed # into a sequence of single-qubit gates and a ZX90, as is appropriate for a cross-resonance interaction. mf = compile_to_hardware(seqs,'CNOT_CR') plot_pulse_files(mf) seqs = [[Id(q1), CNOT_CR(q2, q1)]] # use the CNOT_CR implementation, where the CNOT is decomposed # into a sequence of single-qubit gates and a ZX90, as is appropriate for a cross-resonance interaction. mf = compile_to_hardware(seqs,'CNOT_CR_inv') plot_pulse_files(mf) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Class size Step3: I generate a sample from this distribution, assuming a uniform distribution in each range and an upper bound of 300. Step4: The "unbiased" sample is as seen by the college, with each class equally likely to be in the sample. Step6: To generate a biased sample, we use the values themselves as weights and resample with replacement. Step8: To plot the distribution, I use KDE to estimate the density function, then evaluate it over the given sequence of xs. Step9: The following plot shows the distribution of class size as seen by the Dean, and as seen by a sample of students. Step11: Here are the means of the unbiased and biased distributions. Step12: Red Line Step13: Here's the same data in minutes. Step14: We can use the same function to generate a biased sample. Step15: And plot the results. Step16: Here are the means of the distributions and the percentage difference. Step18: Social network Step19: The unbiased sample is the number of friends for each user. Step20: We can use the same function to generate a biased sample. Step21: And generate the plot. Step22: Here are the means of the distributions. Step23: And the probability that the friend of a user has more friends than the user. Step24: Relay race Step25: In this case, the weights are related to the difference between each element of the sample and the hypothetical speed of the observer. Step26: And here's the plot. Step27: Prison sentences Step28: Here are the low and I sentences for each range. I assume that the minimum sentence is about a week, that sentences "less than life" are 40 years, and that a life sentence is between 40 and 60 years. Step29: We can get the counts from the table. Step31: Here's a different version of generate_sample for a continuous quantity. Step32: In this case, the data are biased. Step33: So we have to unbias them with weights inversely proportional to the values. Step34: Here's the unbiased sample. Step35: And the plotted distributions. Step36: We can also compute the distribution of sentences as seen by someone at the prison for 13 months. Step37: Here's the sample. Step38: And here's what it looks like. Step39: In the unbiased distribution, almost half of prisoners serve less than one year. Step40: But if we sample the prison population, barely 3% are short timers. Step41: Here are the means of the distributions. Step42: The dartboard problem
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from empiricaldist import Pmf from utils import decorate # set the random seed so we get the same results every time np.random.seed(17) # make the directory for the figures import os if not os.path.exists('inspection'): !mkdir inspection # Class size data originally from # https://www.purdue.edu/datadigest/2013-14/InstrStuLIfe/DistUGClasses.html # now available from # https://web.archive.org/web/20160415011613/https://www.purdue.edu/datadigest/2013-14/InstrStuLIfe/DistUGClasses.html sizes = [(1, 1), (2, 9), (10, 19), (20, 29), (30, 39), (40, 49), (50, 99), (100, 300)] counts = [138, 635, 1788, 1979, 796, 354, 487, 333] def generate_sample(sizes, counts): Generate a sample from a distribution. sizes: sequence of (low, high) pairs counts: sequence of integers returns: NumPy array t = [] for (low, high), count in zip(sizes, counts): print(count, low, high) sample = np.random.randint(low, high+1, count) t.extend(sample) return np.array(t) unbiased = generate_sample(sizes, counts) def resample_weighted(sample, weights): Resample values from `sample` with the given weights. sample: NumPy array weights: NumPy array returns: NumPy array n = len(sample) p = weights / np.sum(weights) return np.random.choice(sample, n, p=p) biased = resample_weighted(unbiased, unbiased) from scipy.stats import gaussian_kde def kdeplot(sample, xs, label=None, **options): Use KDE to plot the density function. sample: NumPy array xs: NumPy array label: string density = gaussian_kde(sample, **options).evaluate(xs) plt.plot(xs, density, label=label) decorate(ylabel='Relative likelihood') xs = np.arange(1, 300) kdeplot(unbiased, xs, 'Reported by the Dean') kdeplot(biased, xs, 'Reported by students') decorate(xlabel='Class size', title='Distribution of class sizes') plt.savefig('inspection/class_size.png', dpi=150) np.mean(unbiased) np.mean(biased) from empiricaldist import Cdf def cdfplot(sample, xs, label=None, **options): Plot the CDF of the sample. sample: NumPy array xs: NumPy array (ignored) label: string cdf = Cdf.from_seq(sample, **options) cdf.plot(label=label) decorate(ylabel='CDF') xs = np.arange(1, 300) cdfplot(unbiased, xs, 'Reported by the Dean') cdfplot(biased, xs, 'Reported by students') decorate(xlabel='Class size', title='Distribution of class sizes') plt.savefig('inspection/class_size.png', dpi=150) unbiased = [ 428.0, 705.0, 407.0, 465.0, 433.0, 425.0, 204.0, 506.0, 143.0, 351.0, 450.0, 598.0, 464.0, 749.0, 341.0, 586.0, 754.0, 256.0, 378.0, 435.0, 176.0, 405.0, 360.0, 519.0, 648.0, 374.0, 483.0, 537.0, 578.0, 534.0, 577.0, 619.0, 538.0, 331.0, 186.0, 629.0, 193.0, 360.0, 660.0, 484.0, 512.0, 315.0, 457.0, 404.0, 740.0, 388.0, 357.0, 485.0, 567.0, 160.0, 428.0, 387.0, 901.0, 187.0, 622.0, 616.0, 585.0, 474.0, 442.0, 499.0, 437.0, 620.0, 351.0, 286.0, 373.0, 232.0, 393.0, 745.0, 636.0, 758.0, ] unbiased = np.array(unbiased) / 60 biased = resample_weighted(unbiased, unbiased) xs = np.linspace(1, 16.5, 101) kdeplot(unbiased, xs, 'Seen by MBTA') kdeplot(biased, xs, 'Seen by passengers') decorate(xlabel='Time between trains (min)', title='Distribution of time between trains') plt.savefig('inspection/red_line.png', dpi=150) xs = np.linspace(1, 16.5, 101) cdfplot(unbiased, xs, 'Seen by MBTA') cdfplot(biased, xs, 'Seen by passengers') decorate(xlabel='Time between trains (min)', title='Distribution of time between trains') plt.savefig('inspection/red_line.png', dpi=150) np.mean(biased), np.mean(unbiased) (np.mean(biased) - np.mean(unbiased)) / np.mean(unbiased) * 100 import networkx as nx def read_graph(filename): Read a graph from a file. filename: string return: nx.Graph G = nx.Graph() array = np.loadtxt(filename, dtype=int) G.add_edges_from(array) return G # https://snap.stanford.edu/data/facebook_combined.txt.gz fb = read_graph('facebook_combined.txt.gz') n = len(fb) m = len(fb.edges()) n, m unbiased = [fb.degree(node) for node in fb] len(unbiased) np.max(unbiased) biased = resample_weighted(unbiased, unbiased) xs = np.linspace(0, 300, 101) kdeplot(unbiased, xs, 'Random sample of people') kdeplot(biased, xs, 'Random sample of friends') decorate(xlabel='Number of friends in social network', title='Distribution of social network size') plt.savefig('inspection/social.png', dpi=150) xs = np.linspace(0, 300, 101) cdfplot(unbiased, xs, 'Random sample of people') cdfplot(biased, xs, 'Random sample of friends') decorate(xlabel='Number of friends in social network', title='Distribution of social network size', xlim=[-10, 310]) plt.savefig('inspection/social.png', dpi=150) np.mean(biased), np.mean(unbiased) np.mean(biased > unbiased) import relay results = relay.ReadResults() unbiased = relay.GetSpeeds(results) weights = np.abs(np.array(unbiased) - 7) biased = resample_weighted(unbiased, weights) xs = np.linspace(3, 11, 101) kdeplot(unbiased, xs, 'Seen by spectator') kdeplot(biased, xs, 'Seen by runner at 7 mph', bw_method=0.2) decorate(xlabel='Running speed (mph)', title='Distribution of running speed') plt.savefig('inspection/relay.png', dpi=150) xs = np.linspace(3, 11, 101) cdfplot(unbiased, xs, 'Seen by spectator') cdfplot(biased, xs, 'Seen by runner at 7 mph') decorate(xlabel='Running speed (mph)', title='Distribution of running speed') plt.savefig('inspection/relay.png', dpi=150) tables = pd.read_html('BOP Statistics_ Sentences Imposed.html') df = tables[0] df sentences = [(0.02, 1), (1, 3), (3, 5), (5, 10), (10, 15), (15, 20), (20, 40), (40, 60)] counts = df['# of Inmates'] def generate_sample(sizes, counts): Generate a sample from a distribution. sizes: sequence of (low, high) pairs counts: sequence of integers returns: NumPy array t = [] for (low, high), count in zip(sizes, counts): print(count, low, high) sample = np.random.uniform(low, high, count) t.extend(sample) return np.array(t) biased = generate_sample(sentences, counts) weights = 1 / (0.85 * np.array(biased)) unbiased = resample_weighted(biased, weights) xs = np.linspace(0, 60, 101) kdeplot(unbiased, xs, 'Seen by judge', bw_method=0.5) kdeplot(biased, xs, 'Seen by prison visitor', bw_method=0.5) decorate(xlabel='Prison sentence (years)', title='Distribution of federal prison sentences') plt.savefig('inspection/orange.png', dpi=150) xs = np.linspace(0, 60, 101) cdfplot(unbiased, xs, 'Seen by judge') cdfplot(biased, xs, 'Seen by prison visitor') decorate(xlabel='Prison sentence (years)', title='Distribution of federal prison sentences') plt.savefig('inspection/orange.png', dpi=150) x = 0.85 * unbiased y = 13 / 12 weights = x + y kerman = resample_weighted(unbiased, weights) xs = np.linspace(0, 60, 101) kdeplot(unbiased, xs, 'Seen by judge', bw_method=0.5) kdeplot(kerman, xs, 'Seen by Kerman', bw_method=0.5) kdeplot(biased, xs, 'Seen by visitor', bw_method=0.5) decorate(xlabel='Prison sentence (years)', title='Distribution of federal prison sentences') plt.savefig('inspection/orange.png', dpi=150) xs = np.linspace(0, 60, 101) cdfplot(unbiased, xs, 'Seen by judge') cdfplot(kerman, xs, 'Seen by Kerman') cdfplot(biased, xs, 'Seen by visitor') decorate(xlabel='Prison sentence (years)', title='Distribution of federal prison sentences') plt.savefig('inspection/orange.png', dpi=150) np.mean(unbiased<1) np.mean(biased<1) np.mean(unbiased) np.mean(biased) np.mean(kerman) from matplotlib.patches import Circle def draw_dartboard(): ax = plt.gca() c1 = Circle((0, 0), 170, color='C3', alpha=0.3) c2 = Circle((0, 0), 160, color='white') c3 = Circle((0, 0), 107, color='C3', alpha=0.3) c4 = Circle((0, 0), 97, color='white') c5 = Circle((0, 0), 16, color='C3', alpha=0.3) c6 = Circle((0, 0), 6, color='white') for circle in [c1, c2, c3, c4, c5, c6]: ax.add_patch(circle) plt.axis('equal') draw_dartboard() plt.text(0, 10, '25 ring') plt.text(0, 110, 'triple ring') plt.text(0, 170, 'double ring') plt.savefig('inspection/darts0.png', dpi=150) sigma = 50 n = 100 error_x = np.random.normal(0, sigma, size=(n)) error_y = np.random.normal(0, sigma, size=(n)) draw_dartboard() plt.plot(error_x, error_y, '.') plt.savefig('inspection/darts1.png', dpi=150) sigma = 50 n = 10000 error_x = np.random.normal(0, sigma, size=(n)) error_y = np.random.normal(0, sigma, size=(n)) import numpy as np import seaborn as sns import matplotlib.pyplot as pl ax = sns.kdeplot(error_x, error_y, shade=True, cmap="PuBu") ax.collections[0].set_alpha(0) plt.axis([-240, 240, -175, 175]) decorate(xlabel='x distance from center (mm)', ylabel='y distance from center (mm)', title='Estimated density') plt.savefig('inspection/darts2.png', dpi=150) rs = np.hypot(error_x, error_y) np.random.seed(18) sigma = 50 n = 10000 error_x = np.random.normal(0, sigma, size=(n)) error_y = np.random.normal(0, sigma, size=(n)) xs = np.linspace(-200, 200, 101) #ys = np.exp(-(xs/sigma)**2/2) #pmf = Pmf(ys, index=xs) #pmf.normalize() #pmf.plot(color='gray') unbiased = error_x biased = resample_weighted(unbiased, np.abs(unbiased)) kdeplot(unbiased, xs, 'Density at a point') kdeplot(biased, xs, 'Total density in a ring') #kdeplot(rs, xs, 'Total density in a ring') decorate(xlabel='Distance from center (mm)', ylabel='Density', xlim=[0, 210]) plt.savefig('inspection/darts3.png', dpi=150) xs = np.linspace(0, 200, 101) unbiased = np.abs(error_x) biased = resample_weighted(unbiased, unbiased) cdfplot(unbiased, xs, 'Density at a point') cdfplot(biased, xs, 'Total density in a ring') decorate(xlabel='Distance from center (mm)', ylabel='Density') plt.savefig('inspection/darts4.png', dpi=150) triple = (biased > 97) & (biased < 107) triple.mean() * 100 ring50 = (biased > 6) & (biased < 16) ring50.mean() * 100 double = (biased > 160) & (biased < 170) double.mean() * 100 bull = (biased < 6) bull.mean() * 100 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plane Surface Step2: Spherical Surface Step3: Cylindrical Surface Step4: The second class is the Cylindrical. Step5: Aspherical Surface
<ASSISTANT_TASK:> Python Code: from pyoptools.all import * from numpy import pi P1=Plane(shape=Circular(radius=(25))) Plot3D(P1,center=(0,0,0),size=(60,60),rot=[(0,0,0)],scale=6) P2=Plane(shape=Rectangular(size=(50,50))) Plot3D(P2,center=(0,0,0),size=(60,60),rot=[(0,0,0)],scale=6) P3=Plane(shape=Triangular(coord=((0,25),(25,-25),(-25,-25)))) Plot3D(P3,center=(0,0,0),size=(60,60),scale=6) S=Spherical(curvature=1/200., shape=Circular(radius=145.),reflectivity=0) Plot3D(S,center=(0,0,0),size=(400,400),scale=1) S3=Cylinder(radius=36,length=100,reflectivity=1) Plot3D(S3,center=(0,0,0),size=(100,100),rot=[(0,pi/32,0)],scale=4) S1=Cylindrical(shape=Rectangular(size=(50,100)),curvature=1/20.) Plot3D(S1,center=(0,0,0),size=(150,150),rot=[(pi/4,0,0)],scale=2) S2=Cylindrical(shape=Circular(radius=(50)),curvature=1/100.) Plot3D(S2,center=(0,0,0),size=(150,150),rot=[(-pi/4,0,0)],scale=2) %%latex $$Z=\frac{(Ax*x^2+Ay*y^2)}{(1+\sqrt{(1-(1+Kx)*Ax^2*x^2-(1+Ky)*Ay^2*y^2))}}+ poly2d()$$ sa=Aspherical(shape=Rectangular(size=(5,5)),Ax=.2,Ay=.2,Kx=.1, Ky=.15, poly=poly2d((0,0,0,.5,0,.5))) Plot3D(sa,center=(0,0,5),size=(10,10),rot=[(-3*pi/10,pi/4,0)],scale=40) sa=Aspherical(shape=Circular(radius=2.5),Ax=.2,Ay=.2,Kx=.1, Ky=.15, poly=poly2d((0,0,0,.5,0,.5))) Plot3D(sa,center=(0,0,5),size=(10,10),rot=[(-3*pi/10,pi/4,0)],scale=40) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: You can access a single element in a list by indexing in using brackets. List indexing starts at 0 so to get the first element, you use 0, the second element is 1 and so on. Step2: You can find the length of a list using len Step3: You can use negative indexing to get the last element of a list Step4: Nested lists Step5: To access an element in a nested list, first index to the inner list, then index to the item. Step6: TRY IT Step7: Operators and Lists Step8: You can use some arithmatic operators on lists Step9: Note Step10: Remember slices from strings? We can also use the slice operator on lists Step11: Don't forget, you can use the for and in keywords to loop through a list Step12: TRY IT Step13: Adding and deleting elements Step14: You also have several options for removing elements Step15: TRY IT Step16: TRY IT Step17: Aliasing Step18: To check this, you can use the is operator to see if both variable refer to the same object Step19: To fix this, you can make a copy of the list using the list function Step20: Tuples Step21: You can create a tuple from any sequence using the tuple function Step22: To create a single element tuple, you need to add a comma to the end of that element (it looks kinda weird) Step23: You can use the indexing and slicing you learned for lists the same with tuples. Step24: To change the values in a tuple, you need to create a new tuple (there is nothing stopping you from assigning it to the same variable, though Step25: You can loop through tuples the same way you loop through lists, using for in Step26: TRY IT Step27: Enumerate
<ASSISTANT_TASK:> Python Code: sushi_order = ['unagi', 'hamachi', 'otoro'] prices = [6.50, 5.50, 15.75] print(sushi_order) print(prices) print(sushi_order[0]) print(sushi_order[2]) print(len(sushi_order)) print(sushi_order[-3]) everyones_order = [['california roll'], ['unagi', 'dragon roll'], sushi_order] print(everyones_order) sushi_order[0] = 'caterpillar roll' print(sushi_order) prices[-1] = 21.00 print(prices) sushi_order print(('hamachi' in sushi_order)) if 'otoro' in sushi_order: print("Big spender!") print((sushi_order * 3)) exprep = ['rep'+str(i) for i in range(5)] exprep print((prices + sushi_order)) newprices = prices.copy() newprices.append(22) print(newprices) prices inexpensive = sushi_order[:2] #takes only the first two elements from list print(inexpensive) for item in sushi_order: print(("I'd like to order the {}.".format(item))) print("And hold the wasabi!") for ind, item in enumerate(sushi_order): print(("I'd like to order the {0} for {1}.".format(item, prices[ind]))) lots_of_sushi = inexpensive*2 print(lots_of_sushi) my_sushis = ['maguro', 'rock n roll'] my_sushis.append('avocado roll') print(my_sushis) my_sushis.append(['hamachi', 'california roll']) print(my_sushis) my_sushis = ['maguro', 'rock n roll'] my_sushis.extend(['hamachi', 'california roll']) print(my_sushis) print(my_sushis) last_sushi = my_sushis.pop(-1) print(last_sushi) my_sushis.remove('maguro') print(my_sushis) del my_sushis[1:] print(my_sushis) numbers = [1, 1, 2, 3, 5, 8] print((max(numbers))) print((min(numbers))) print((sum(numbers))) print((len(numbers))) sum(numbers)/len(numbers) cooked_rolls = ['unagi roll', 'shrimp tempura roll'] my_order = cooked_rolls my_order.append('hamachi') print(my_order) print(cooked_rolls) print((my_order is cooked_rolls)) cooked_rolls = ['unagi roll', 'shrimp tempura roll'] my_order = list(cooked_rolls) my_order.append('hamachi') print(my_order) print(cooked_rolls) noodles = ('soba', 'udon', 'ramen', 'lo mein', 'somen', 'rice noodle') print((type(noodles))) sushi_tuple = tuple(my_order) print(sushi_tuple) # Remember strings are sequences maguro = tuple('maguro') print(maguro) single_element_tuple = (1,) print(single_element_tuple) print((type(single_element_tuple))) print((noodles[0])) print((noodles[4:])) # This should throw an error noodles[0] = 'spaghetti' print(sushi_tuple) sushi_tuple = sushi_tuple[1:] + ('california roll',) print(sushi_tuple) for noodle in noodles: print(("Yummy, yummy {0} and {1}".format(noodle, 'sushi'))) print((list(zip([1,2,3], [4,5,6])))) sushi = ['salmon', 'tuna', 'sea urchin'] prices = [5.5, 6.75, 8] sushi_and_prices = list(zip(sushi, prices)) sushi_and_prices for sushi, price in sushi_and_prices: print(("The {0} costs ${1}".format(sushi, price))) exotic_sushi = ['tako', 'toro', 'uni', 'hirame'] for index, item in enumerate(exotic_sushi): print((index, item)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a dataset Step2: The dataset index Step3: drop_last=True skips the last batch if it contains fewer than BATCH_SIZE items Step4: shuffle permutes items across batches Step5: Run the cell above multiple times to see how batches change. Step6: Run the cell above multiple times to see that batches stay the same across runs. Step7: And finally with shuffle=True, n_epochs=None and a variable batch size Step8: n_epochs=None allows for infinite iterations. Step9: To get a deeper understanding of drop_last read very important notes in the API. Step10: Load data into a batch Step11: You can easily iterate over batch items too Step12: Data components Step13: Let's generate some random data Step14: Now create a dataset (preloaded handles data loading from data stored in memory) Step15: Since components are defined, you can address them as batch and even item attributes (they are created and loaded automatically). Step16: You can iterate over batch items and change them on the fly Step17: Splitting a dataset Step18: Now the dataset is split into train / test in 80/20 ratio. Step19: Dataset may be shuffled before splitting.
<ASSISTANT_TASK:> Python Code: import sys import numpy as np # the following line is not required if BatchFlow is installed as a python package. sys.path.append("../..") from batchflow import Dataset, DatasetIndex, Batch # number of items in the dataset NUM_ITEMS = 10 # number of items in a batch when iterating BATCH_SIZE = 3 dataset = Dataset(index=NUM_ITEMS, batch_class=Batch) for i, batch in enumerate(dataset.gen_batch(BATCH_SIZE, n_epochs=1)): print("batch", i, " contains items", batch.indices) for i, batch in enumerate(dataset.gen_batch(BATCH_SIZE, n_iters=5)): print("batch", i, " contains items", batch.indices) for i, batch in enumerate(dataset.gen_batch(BATCH_SIZE, n_epochs=1, drop_last=True)): print("batch", i, " contains items", batch.indices) for i, batch in enumerate(dataset.gen_batch(BATCH_SIZE, n_iters=4, drop_last=True, shuffle=True)): print("batch", i, " contains items", batch.indices) for i, batch in enumerate(dataset.gen_batch(BATCH_SIZE, n_epochs=1, drop_last=True, shuffle=123)): print("batch", i, " contains items", batch.indices) for i in range(NUM_ITEMS * 3): try: batch = dataset.next_batch(BATCH_SIZE, shuffle=True, n_epochs=2, drop_last=True) print("batch", i + 1, "contains items", batch.indices) except StopIteration: print("got StopIteration") break dataset.reset('iter') for i in range(int(NUM_ITEMS * 1.3)): batch = dataset.next_batch(BATCH_SIZE + (-1)**i * i % 3, shuffle=True, n_epochs=None, drop_last=True) print("batch", i + 1, "contains items", batch.indices) data = np.arange(NUM_ITEMS).reshape(-1, 1) * 100 + np.arange(3).reshape(1, -1) data for batch in dataset.gen_batch(BATCH_SIZE, n_epochs=1): batch = batch.load(src=data) print("batch contains items with indices", batch.indices) print('and batch data is') print(batch.data) print() for batch in dataset.gen_batch(BATCH_SIZE, n_epochs=1): batch = batch.load(src=data) print("batch contains") for item in batch: print(item) print() class MyBatch(Batch): components = 'features', 'labels' features_array = np.arange(NUM_ITEMS).reshape(-1, 1) * 100 + np.arange(3).reshape(1, -1) labels_array = np.random.choice(10, size=NUM_ITEMS) data = features_array, labels_array dataset = Dataset(index=NUM_ITEMS, batch_class=MyBatch, preloaded=data) for i, batch in enumerate(dataset.gen_batch(BATCH_SIZE, n_epochs=1)): print("batch", i, " contains items", batch.indices) print("and batch data consists of features:") print(batch.features) print("and labels:", batch.labels) print() for i, batch in enumerate(dataset.gen_batch(BATCH_SIZE, n_epochs=1)): print("Batch", i) for item in batch: print("item features:", item.features, " item label:", item.labels) print() print("You can change batch data, even scalars.") for item in batch: item.features = item.features + 1000 item.labels = item.labels + 100 print("New batch features:\n", batch.features) print("and labels:", batch.labels) print() dataset.split(0.8) len(dataset.train), len(dataset.test) dataset.split([.6, .2, .2]) len(dataset.train), len(dataset.test), len(dataset.validation) dataset.split(0.7, shuffle=True) dataset.train.indices, dataset.test.indices <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: There is a function in scikit-learn, called validation_plot to reproduce the cartoon figure above. It plots one parameter, such as the number of neighbors, against training and validation error (using cross-validation) Step2: Note that many neighbors mean a "smooth" or "simple" model, so the plot is the mirror image of the diagram above. Step3: As this is such a very common pattern, there is a built-in class for this in scikit-learn, GridSearchCV. GridSearchCV takes a dictionary that describes the parameters that should be tried and a model to train. Step4: One of the great things about GridSearchCV is that it is a meta-estimator. It takes an estimator like SVR above, and creates a new estimator, that behaves exactly the same - in this case, like a regressor. Step5: What fit does is a bit more involved then what we did above. First, it runs the same loop with cross-validation, to find the best parameter combination. Step6: You can inspect the best parameters found by GridSearchCV in the best_params_ attribute, and the best score in the best_score_ attribute Step7: There is a problem with using this score for evaluation, however. You might be making what is called a multiple hypothesis testing error. If you try very many parameter settings, some of them will work better just by chance, and the score that you obtained might not reflect how your model would perform on new unseen data. Step8: We can also look at the parameters that were selected Step9: Some practitioners go for an easier scheme, splitting the data simply into three parts, training, validation and testing. This is a possible alternative if your training set is very large, or it is infeasible to train many models using cross-validation because training a model takes very long. Step10: This is much faster, but might result in worse hyperparameters and therefore worse results.
<ASSISTANT_TASK:> Python Code: from sklearn.model_selection import cross_val_score, KFold from sklearn.neighbors import KNeighborsRegressor # generate toy dataset: x = np.linspace(-3, 3, 100) rng = np.random.RandomState(42) y = np.sin(4 * x) + x + rng.normal(size=len(x)) X = x[:, np.newaxis] cv = KFold(shuffle=True) # for each parameter setting do cross_validation: for n_neighbors in [1, 3, 5, 10, 20]: scores = cross_val_score(KNeighborsRegressor(n_neighbors=n_neighbors), X, y, cv=cv) print("n_neighbors: %d, average score: %f" % (n_neighbors, np.mean(scores))) from sklearn.model_selection import validation_curve n_neighbors = [1, 3, 5, 10, 20, 50] train_errors, test_errors = validation_curve(KNeighborsRegressor(), X, y, param_name="n_neighbors", param_range=n_neighbors, cv=cv) plt.plot(n_neighbors, train_errors.mean(axis=1), label="train error") plt.plot(n_neighbors, test_errors.mean(axis=1), label="test error") plt.legend(loc="best") from sklearn.model_selection import cross_val_score, KFold from sklearn.svm import SVR # each parameter setting do cross_validation: for C in [0.001, 0.01, 0.1, 1, 10]: for gamma in [0.001, 0.01, 0.1, 1]: scores = cross_val_score(SVR(C=C, gamma=gamma), X, y, cv=cv) print("C: %f, gamma: %f, average score: %f" % (C, gamma, np.mean(scores))) from sklearn.model_selection import GridSearchCV param_grid = {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1]} grid = GridSearchCV(SVR(), param_grid=param_grid, cv=cv, verbose=3) grid.fit(X, y) grid.predict(X) print(grid.best_score_) print(grid.best_params_) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) param_grid = {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1]} cv = KFold(n_splits=10, shuffle=True) grid = GridSearchCV(SVR(), param_grid=param_grid, cv=cv) grid.fit(X_train, y_train) grid.score(X_test, y_test) grid.best_params_ from sklearn.model_selection import train_test_split, ShuffleSplit X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) param_grid = {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1]} single_split_cv = ShuffleSplit(n_splits=1) grid = GridSearchCV(SVR(), param_grid=param_grid, cv=single_split_cv, verbose=3) grid.fit(X_train, y_train) grid.score(X_test, y_test) clf = GridSearchCV(SVR(), param_grid=param_grid) clf.fit(X_train, y_train) clf.score(X_test, y_test) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: $\mathbb{N}$ Step2: Quando leggi la scrittura matematica $x + 3 = 2$, questa significa la seguente cosa Step3: puoi leggere la scrittura matematica $x^2 + 3x -1 = 0$, questa significa la seguente cosa Step4: Quando leggi la scrittura matematica $x + 3 = 2$, questa significa la seguente cosa Step5: Ha significato $\mathcal{X} = \lbrace x \in \mathbb{N} Step6: dove in questo caso sia $y=3$ sia $z=-2$ sono in $\mathbb{Z}$. Step7: Ha significato $\mathcal{X} = \lbrace x \in \mathbb{N} Step8: Ha significato $\mathcal{X} = \lbrace x, y \in \mathbb{Z} Step9: dove in questo caso sia $y=2$ sia $z=3$ sono in $\mathbb{Z}$.
<ASSISTANT_TASK:> Python Code: from sympy import * init_printing() x = symbols('x') x**2 eq = Eq(x + 3, 2, evaluate=False) eq Eq(x**2 + 3*x -1, 0, evaluate = False) solve(eq, [x], dict=True) eq = Eq(3*x, -2, evaluate=False) eq solve(eq, [x], dict=True) eq = Eq(x**2, 3, evaluate=False) eq tentativi = list(map(S, range(-5, 5))) tentativi equazioni = [Eq((x/y)**2, S(3), evaluate=False) for x in tentativi for y in tentativi if y] equazioni list(map(solve, equazioni)) solve(eq, [x], dict=True) 0.3 == 3/10 #0.47368754355678678678678678678678678...(678)*... is in Q pi list(filter(lambda r: r.is_real, solve(Eq(x**5, 10)))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This function gets the name of the script from sys.argv[0], because that’s where it’s always put, and the name of the file to process from sys.argv[1]. Here’s a simple test Step2: and run that Step3: <section class="challenge panel panel-success"> Step5: <section class="challenge panel panel-success"> Step6: <section class="challenge panel panel-success"> Step7: <section class="challenge panel panel-success"> Step8: <section class="challenge panel panel-success">
<ASSISTANT_TASK:> Python Code: import sys import numpy def main(): script = sys.argv[0] filename = sys.argv[1] data = numpy.loadtxt(filename, delimiter=',') for m in data.mean(axis=1): print(m) import sys import numpy def main(): script = sys.argv[0] filename = sys.argv[1] data = numpy.loadtxt(filename, delimiter=',') for m in data.mean(axis=1): print(m) main() from __future__ import division, print_function import sys def main(): action = sys.argv[1] number1 = int(sys.argv[2]) number2 = int(sys.argv[3]) assert action in ['add', 'subtract'] if action == 'add': print(number1 + number2) else: print(number1 - number2) main() from __future__ import division, print_function import sys import glob def main(): suffix = sys.argv[1] files = glob.glob('*.' + suffix) for file in files: print(file) main() from __future__ import division, print_function import sys def main(): if len(sys.argv) < 2: print(This program should be called with an action and a filename or list of filenames, like so: $ python readings.py [action] [filename(s)] In the above, action is either '--min', '--mean', or '--max'. filename(s) is a filename or several filenames, or a file in standard input.) script = sys.argv[0] action = sys.argv[1] filenames = sys.argv[2:] assert action in ['--min', '--mean', '--max'], \ 'Action is not one of --min, --mean, or --max: ' + action if len(filenames) == 0: process(sys.stdin, action) else: for f in filenames: process(f, action) def process(filename, action): data = numpy.loadtxt(filename, delimiter=',') if action == '--min': values = data.min(axis=1) elif action == '--mean': values = data.mean(axis=1) elif action == '--max': values = data.max(axis=1) for m in values: print(m) main() def main(): script = sys.argv[0] if len(sys.argv) > 1: action = sys.argv[1] else: action = '--mean' filenames = sys.argv[2:] assert action in ['--min', '--mean', '--max'], \ 'Action is not one of --min, --mean, or --max: ' + action if len(filenames) == 0: process(sys.stdin, action) else: for f in filenames: process(f, action) from __future__ import division, print_function import sys import numpy as np def main(): script = sys.argv[0] filenames = sys.argv[1:] print filenames[0] shape0 = np.loadtxt(filenames[0]).shape for file in filenames[1:]: assert np.loadtxt(file).shape == shape0, 'Shape of {} does not match'.format(file) main() from __future__ import division, print_function import sys import numpy as np def main(): script = sys.argv[0] filenames = sys.argv[1:] shape0 = np.loadtxt(filenames[0], delimiter=',').shape for file in filenames[1:]: assert np.loadtxt(file, delimiter=',').shape == shape0, 'Shape of {} does not match'.format(file) main() import sys def main(): if len(sys.argv) < 2: count = 0 for line in sys.stdin: count += 1 print(count, 'lines in standard input') else: total_lines = 0 filenames = sys.argv[1:] for file in filenames: file_contents = np.loadtxt(file) print('Lines in', file, ':', len(file_contents)) total_lines += 1 print('Total number of lines:', total_lines) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Print Longest Common Subsequence Step2: Time Travelling dictionary Step3: Alien Dictionary Step4: Binary Search
<ASSISTANT_TASK:> Python Code: letters_map = {'2':'ABC', '3':'DEF', '4':'GHI', '5':'JKL', '6':'MNO', '7':'PQRS', '8':'TUV', '9':'WXYZ'} def printWords(number, ): #number is phone number def printWordsUtil(numb, curr_digit, output, n): if curr_digit == n: print('%s ' % output) return for i in range(len(letters_map[numb[curr_digit]])): output[curr_digit] = letters_map[number[curr_digit]][i] printWordsUtil(numb, curr_digit+1, output, n) if numb[curr_digit] == 0 or numb[curr_digit] == 1: return def gen_phone(digits): results = [] lookup = { '0': ' ', '1': ' ', '2': 'abc', '3': 'def', '4': 'ghi', '5': 'jkl', '6': 'mno', '7': 'pqrs', '8': 'tuv', '9': 'wxyz', } def decode_next(s, i): if i == len(digits): results.append(s) return for c in lookup[digits[i]]: decode_next(s + c, i + 1) decode_next('', 0) return results # Dynamic programming implementation of LCS problem # Returns length of LCS for X[0..m-1], Y[0..n-1] def lcs(X, Y, m, n): L = [[0 for x in xrange(n+1)] for x in xrange(m+1)] # Following steps build L[m+1][n+1] in bottom up fashion. Note # that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] for i in xrange(m+1): for j in xrange(n+1): if i == 0 or j == 0: L[i][j] = 0 elif X[i-1] == Y[j-1]: L[i][j] = L[i-1][j-1] + 1 else: L[i][j] = max(L[i-1][j], L[i][j-1]) # Following code is used to print LCS index = L[m][n] # Create a character array to store the lcs string lcs = [""] * (index+1) lcs[index] = "\0" # Start from the right-most-bottom-most corner and # one by one store characters in lcs[] i = m j = n while i > 0 and j > 0: # If current character in X[] and Y are same, then # current character is part of LCS if X[i-1] == Y[j-1]: lcs[index-1] = X[i-1] i-=1 j-=1 index-=1 # If not same, then find the larger of two and # go in the direction of larger value elif L[i-1][j] > L[i][j-1]: i-=1 else: j-=1 print "LCS of " + X + " and " + Y + " is " + "".join(lcs) # Driver program X = "AGGTAB" Y = "GXTXAYB" m = len(X) n = len(Y) lcs(X, Y, m, n) passed in a list of dictionaries also passed a character passed single characted to int if a character does not exist in the dict then the defualt value it zero find the highest possisble value for a character in the dicts now design it to take an abatrary operator and reutrn the highest value based on the operator and then have it return ascending and descending order import time import math class TimeTravelDict: def __init__(self): self.dict = {} def get(self, key, time): if not self.dict[key]: return -1 most_recent, value = math.inf, None for a, b in self.dict[key]: if b < time: if (time - b) < most_recent: most_recent = b value = a if value == None: return -1 else: return value def put(self, key, value): if not key in self.dict: self.dict[key] = [(value, time.time())] self.dict[key].append((value, time.time())) print(self.dict[key]) tt = TimeTravelDict() tt.put('a', 11) tt.put('a', 12) tt.put('a', 13) tt.put('a', 14) tt.get('a', 1513571590.2447577) #[2::][1::2] import collections words = ["baa", "", "abcd", "abca", "cab", "cad"] def alienOrder(words): pre, suc = collections.defaultdict(set), collections.defaultdict(set) for pair in zip(words, words[1:]): print(pair) for a, b in zip(*pair): if a != b: suc[a].add(b) pre[b].add(a) break print('succ %s' % suc) print('pred %s' % pre) chars = set(''.join(words)) print('chars %s' % chars) print(set(pre)) free = chars - set(pre) print('free %s' % free) order = '' while free: a = free.pop() order += a for b in suc[a]: pre[b].discard(a) if not pre[b]: free.add(b) if set(order) == chars: return order else: False # return order * (set(order) == chars) alienOrder(words) def binarySearch(alist, value): mini = 0 maxi = len(alist) while mini <= maxi: print('here') pivot = (maxi - mini) // 2 current_value = alist[pivot] if current_value < value: mini = pivot + 1 elif current_value > value: maxi = pivot -1 else: return pivot return pivot or -1 test1 = [0, 5, 10 , 23, 46, 49, 78] test2 = [0, 5, 10] test3 = [0] print(binarySearch(test1, 49)) print(binarySearch(test2, 10)) binarySearch(test3, 90) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will continue to refer to this client object for accessing the remote server. Step2: Access the reference set Step3: With the reference set saved to a variable we will now request for the available references. This is the list of contigs for which we can request reference bases. Step4: Here, we print the names of the available references. These reference names are used in the variants/search API. By selecting one of the references we can craft a ListBases request. Here, we ask for the 1000 bases between 10,000 and 11,000 on the first chromosome. Step5: List Variant Sets Step6: There are two variant sets currently being made available by this server instance. release contains the calls for the each participant and functional_annotation provides details of the effects of these variants created using the Variant Effect Predictor. Step7: Variant calls Step8: This tells us that for the participant HG00096 the variant in question was observed on the first haplotype ("genotype" Step9: Variant annotations Step10: We can now search for the range that includes our example variant to discover relevant annotations. Step11: Here we have found the annotation for our example variant and have found it has the upstream_gene_variant consequence. Step12: We can now craft search requests for features to find the nearest gene Step13: Querying read group set and reads from dataset
<ASSISTANT_TASK:> Python Code: import ga4gh.client as client c = client.HttpClient("http://1kgenomes.ga4gh.org") dataset = c.search_datasets().next() print(dataset) reference_set = c.search_reference_sets().next() print(reference_set) references = [r for r in c.search_references(reference_set_id=reference_set.id)] print(', '.join(sorted([reference.name for reference in references]))) chr1 = filter(lambda x: x.name == "1", references)[0] bases = c.list_reference_bases(chr1.id, start=10000, end=11000) print(bases) print(len(bases)) release = None functional = None for variant_set in c.search_variant_sets(dataset_id=dataset.id): if variant_set.name == "phase3-release": release = variant_set else: functional = variant_set all_call_sets = list(c.search_call_sets(release.id)) call_set_ids = [] for call_set in all_call_sets: call_set_ids.append(str(call_set.id)) example_variant = c.search_variants(variant_set_id=release.id, start=10000, end=11000, reference_name=chr1.name, call_set_ids=call_set_ids).next() print("Variant name: {}".format(example_variant.names[0])) print("Start: {}, End: {}".format(example_variant.start, example_variant.end)) print("Reference bases: {}".format(example_variant.reference_bases)) print("Alternate bases: {}".format(example_variant.alternate_bases)) print("Number of calls: {}".format(len(example_variant.calls))) print(example_variant.calls[0]) total = 0 count = 0 for call in example_variant.calls: total += 1 count += call.genotype[0] or call.genotype[1] print("{}/{} participants with this variant".format(count, total)) print(float(count) / float(total)) annotation_set = c.search_variant_annotation_sets(variant_set_id=functional.id).next() annotation = c.search_variant_annotations( variant_annotation_set_id=annotation_set.id, start=example_variant.start, end=example_variant.end, reference_name=chr1.name).next() print(annotation.transcript_effects[0].effects[0].term) gencode = c.search_feature_sets(dataset_id=dataset.id).next() print(gencode) gene = c.search_features( feature_set_id=gencode.id, start=10000, end=12000, reference_name="chr1", feature_types=['gene']).next() print("Gene name: {}".format(gene.attributes.vals['gene_name'].values[0])) print("Start: {}, End: {}".format(gene.start, gene.end)) limit = 2 iterator = 0 read_group_set = c.search_read_group_sets(dataset_id=dataset.id).next() print("Read group set : {}".format(read_group_set.name)) for read_group in read_group_set.read_groups: sequence = c.search_reads(read_group_ids=[read_group.id], start=0, end = 1000000, reference_id=references[0].id).next() print("Read group name: {},\nSequence: {}".format(read_group.name, sequence.aligned_sequence)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Although most operations related to state space models rely on the Kalman filtering recursions, in some special cases one can use a separate method often called "Chandrasekhar recursions". These provide an alternative way to iteratively compute the conditional moments of the state vector, and in some cases they can be substantially less computationally intensive than the Kalman filter recursions. For complete details, see the paper "Using the 'Chandrasekhar Recursions' for Likelihood Evaluation of DSGE Models" (Herbst, 2015). Here we just sketch the basic idea. Step2: We will construct two model instances. The first will be set to use the Kalman filter recursions, while the second will be set to use the Chandrasekhar recursions. This setting is controlled by the ssm.filter_chandrasekhar property, as shown below. Step3: We time computation of the log-likelihood function, using the following code Step4: Again, we time computation of the log-likelihood function, using the following code
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt from pandas_datareader.data import DataReader cpi_apparel = DataReader('CPIAPPNS', 'fred', start='1986') cpi_apparel.index = pd.DatetimeIndex(cpi_apparel.index, freq='MS') inf_apparel = np.log(cpi_apparel).diff().iloc[1:] * 1200 inf_apparel.plot(figsize=(15, 5)); # Model that will apply Kalman filter recursions mod_kf = sm.tsa.SARIMAX(inf_apparel, order=(6, 0, 0), seasonal_order=(15, 0, 0, 12), tolerance=0) print(mod_kf.k_states) # Model that will apply Chandrasekhar recursions mod_ch = sm.tsa.SARIMAX(inf_apparel, order=(6, 0, 0), seasonal_order=(15, 0, 0, 12), tolerance=0) mod_ch.ssm.filter_chandrasekhar = True # Model that will apply Kalman filter recursions mod_kf = sm.tsa.SARIMAX(inf_apparel, order=(6, 0, 0), seasonal_order=(15, 0, 0, 12)) print(mod_kf.k_states) # Model that will apply Chandrasekhar recursions mod_ch = sm.tsa.SARIMAX(inf_apparel, order=(6, 0, 0), seasonal_order=(15, 0, 0, 12)) mod_ch.ssm.filter_chandrasekhar = True res_kf = mod_kf.filter(mod_kf.start_params) print('Convergence at t=%d, of T=%d total observations' % (res_kf.filter_results.period_converged, res_kf.nobs)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TEAM Members Step2: Compute some Summary Statistics for the data Step3: How many movies have an average rating over 4.5 overall? Step4: How many movies have an average rating over 4.5 among men? How about women? Step5: How many movies have an median rating over 4.5 among men over age 30? How about women over age 30? Step6: What are the ten most popular movies? Step7: Make some conjectures about how easy various groups are to please? Support your answers with data! Step8: Conclusion Step9: Conclusion Step10: Plot a histogram of the number of ratings each movie recieved. Step11: Plot a histogram of the average rating for each movie. Step12: Plot a histogram of the average rating for movies which are rated more than 100 times. Step13: Make some conjectures about the distribution of ratings? Support your answers with data! Step14: Conjecture 2 Step15: *------------------------ Step16: Make a scatter plot of men versus women and their mean rating for every movie. Step17: Make a scatter plot of men versus women and their mean rating for movies rated more than 200 times. Step18: Compute the correlation coefficent between the ratings of men and women. Step19: This data seems to be somewhat misleading. Based on the high correlation values, it seems that the ratings between men and women are similar, especially among movies watched more than 200 times. However, this is the correlation between the MEAN rating per title between men and women. What this is saying is that ON AVERAGE, men and women rate movies similarly. This doesn't indicate that the ratings themselves are actually similar! For example, there could be a movie in which both men and women have an average rating of 3, but women rate it as either a 1 or a 5 and all men rate it as 3. We need to explore the data more to understand if the ratings between men and women are actually similar. Step20: Similarly, we perform the same analysis for number of ratings of 1 or 2 Step21: This indicates that male and females tend to agree on average and in distribution (especially on movies rated more than 200 times). This does not, however, indicate we can predict a single male rating given female ratings! The average behavior of the two is similar, but not single instances. Step22: Conjecture 1.) People rate more similarly when they are tired. Step23: Conclusion Step24: As before, we consider the percent ratings of 5 (per title) given by each age group. Step25: And the percent of low (1 or 2) ratings. Step26: Conjecture 3.) Men and Women rate similarly on highly-watched movies made most recently. Step27: We see that, for movies made in the 90's, the correlation coefficient for the percent of ratings given as 5 between males and females is Step28: *------------------------ Step29: What is the best time of day to recommend a drama for each gender? Step30: The most dramas are rated at 4pm (16th hour) during the day, therefore the best time to recommend a drama is likely before 4pm. To make a more precise determination, instead of our current answer Step31: When comparing the average rating versus occuptation for comedy movies, scientists have the highest average rating (3.687170) followed by retired (3.663825) and clerical/admin (3.601516). Does this mean that those occupations are most likely to enjoy comedies? Possibly, but since we are using mean as our comparison metric and the range of the data is 0.285, we also looked at the number of comedy ratings per occupation. Step32: From the chart, we can see that even though scientist, retired, and clerical/admin have the highest average rating for comedies, they also have low numbers of ratings, 7771, 4340, and 11870 respectively. In contrast, college/grad student, other, and executive/managerial have significantly more ratings (at least triple) 48672, 46500, and 35784 respectively. Although scientist has the highest average rating, it might be better to recommend comedies to students because while they have a lower average rating, they have almost seven times more ratings than scientists. Step33: What age group watches the most adventure movies? Step34: Additional Data Exploration (not used in Problems 1-4)
<ASSISTANT_TASK:> Python Code: from IPython.lib.display import YouTubeVideo YouTubeVideo('6O43gOxtaWo', start=14) %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt # Import Users Data unames = ['user_id','gender','age','occupation','zip'] users = pd.read_table('data/users.dat', sep = '::', header = None, names = unames, engine='python') users[:5] # Import Ratings Data rnames = ['user_id','movie_id','rating','timestamp'] ratings = pd.read_table('data/ratings.dat', sep = '::', header = None, names = rnames,engine='python') ratings[:5] # Import movies Data mnames = ['movie_id','title','genres'] movies = pd.read_table('data/movies.dat', sep = '::', header = None, names = mnames,engine='python') movies[:5] # Merge the data into a single data frame data = pd.merge(pd.merge(ratings,users),movies) data[:5] #Store the data into an HDF5 file data_hdf = pd.HDFStore('data/movies.h5') data_hdf['data1'] = data data_hdf.close() #check statistics of data data[['rating','age']].describe() # Use a pivot table to compute mean ratings by title mean_ratings = data.pivot_table('rating',index = 'title',aggfunc = 'mean') # Determine titles with high mean ratings top_overall_titles = mean_ratings.index[mean_ratings >= 4.5] #Extract those titles top_overall_movies = mean_ratings.ix[top_overall_titles] print 'Total movies with an average ranking of (at least) 4.5 overall:' print len(top_overall_movies) print print 'Examples:' print top_overall_movies[:5] # Use a pivot table to compute mean ratings per title, stratified by gender. mean_ratings = data.pivot_table('rating',index = 'title',columns = 'gender',aggfunc = 'mean') #Determine those title ranked high among females. top_female_titles = mean_ratings.index[mean_ratings['F'] >= 4.5] # Extract those titles top_female_movies = mean_ratings.ix[top_female_titles] print 'Total movies with an average ranking of (at least) 4.5 among women:' print len(top_female_movies) print print 'Examples (average rankings):' print top_female_movies[:5] mean_ratings = data.pivot_table('rating',index = 'title',columns = 'gender',aggfunc = 'mean') # Determine which titles had high average ratings among men top_male_titles = mean_ratings.index[mean_ratings['M'] >= 4.5] # Extract those titles top_male_movies = mean_ratings.ix[top_male_titles] print 'Total movies with an average ranking of (at least) 4.5 among men:' print len(top_male_movies) print print 'Examples (average rankings):' print top_male_movies[:5] # Restrict data to those with raters aged over 30 data_over30 = data.ix[data['age']>30] # Use a pivot table to compute the median ratings by title on this restricted data median_ratings = data_over30.pivot_table('rating',index = 'title',columns = ['gender'],aggfunc = 'median') # Determine which movies had a high median among men and extract those titles top_male_median_titles = median_ratings.index[median_ratings['M'] >= 4.5] top_male_median_movies = median_ratings.ix[top_male_median_titles] print 'Total movies with an median ranking of (at least) 4.5 among men over 30:' print len(top_male_median_movies) print print 'Examples, median scores among people over 30:' print top_male_median_movies[:5] # Determine which movies had a high median among men and extract those titles top_female_median_titles = median_ratings.index[median_ratings['F'] >= 4.5] top_female_median_movies = median_ratings.ix[top_female_median_titles] print 'Total movies with an median ranking of (at least) 4.5 among women over 30:' print len(top_female_median_movies) print print 'Examples, median scores among people over 30:' print top_female_median_movies[:5] # Determine the overall total ratings and mean ratings per title popularity_test = data.pivot_table('rating',index = 'title', aggfunc = [len, np.mean]) # Determine the mean ratings per title by gender gender_popularity_test = data.pivot_table('rating',index = 'title', columns = 'gender', aggfunc = np.mean) popularity_test[:5] gender_popularity_test[:5] # Calculate total number of ratings for each title ratings_by_title = data.groupby('title').size() # Determine the average number of total ratings per title average_total_ratings = sum(ratings_by_title)/len(ratings_by_title) # Determine which titles had above average total ratings and isolate those titles. high_total_titles = popularity_test.index[popularity_test['len'] >= average_total_ratings] high_total = popularity_test.ix[high_total_titles] high_total[:5] # Determine the average of ALL ratings given by men and by women. gender_average_ratings = data.pivot_table('rating', index = 'gender',aggfunc = np.mean) gender_average_ratings # Determine the titles with above average female ratings and isolate those titles among the movies with above average total ratings. high_female_titles = gender_popularity_test.index[gender_popularity_test['F'] >= gender_average_ratings['F']] high_total_female = high_total.ix[high_female_titles] # Among the above isolated titles, determine those with above average male ratings and isolate those titles. high_male_titles = gender_popularity_test.index[gender_popularity_test['M'] >= gender_average_ratings['M']] high_total_female_male = high_total_female.ix[high_male_titles] # Determine the popular movies, given the definition above. from numpy import nan as NA popular_movies = high_total_female_male.dropna(how = 'all') popular_movies[:5] # Given the popluar movies, determine the 10 most popular. most_popular_movies = popular_movies.sort_values(by='mean',ascending = False) most_popular_movies[:10] # Compute average rating by age group age_avg_ratings = data.pivot_table('rating', index = 'age',aggfunc = np.mean) age_avg_ratings # Compute weighted average by weighting each rating by the total number of ratings that individual submits avg_by_user = data.pivot_table('rating',index = ['age','user_id'], aggfunc = [ len , np.mean]) avg_by_user[:10] avg_ratings = np.mean(avg_by_user['len']) avg_by_user['weight'] = avg_by_user['len']/avg_ratings avg_by_user['weighted_mean'] = avg_by_user['mean']*avg_by_user['weight'] age_avg_weighted_ratings = avg_by_user.pivot_table('weighted_mean', index = avg_by_user.index.droplevel(1), aggfunc = np.mean) age_avg_weighted_ratings # Compute average age per rating avg_age_ratings = data.pivot_table('age', index = 'rating',aggfunc = np.mean) avg_age_ratings age_counts = data.pivot_table('title', index='age', columns='rating', aggfunc='count') age_counts.rename(index={1: 'Under 18', 18: '18-24', 25: '25-34', 35: '35-44', 45: '45-49', 50: '50-55', 56: '56+'}, inplace=True) print 'Frequency of Age Groups Ratings' print age_counts #normalize age_counts_norm = age_counts.div(age_counts.sum(1).astype(float), axis=0) age_counts_norm # plot percentage of each rate from each age group age_counts_norm.plot(ylim=[0,0.4],kind='bar', color=['yellow','#E50E14','#ec971f','#00b27f','#5898f1'],title = "Percent of Ratings By Age").legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) import time timestamps = data['timestamp'] # Time stamps are reported in seconds since epoch. Convert these values to local time, and extract the hour. hour = [time.localtime(stamp).tm_hour for stamp in timestamps.values] hour_series = pd.DataFrame(hour, index=data.index) # Append the hour each rating was reported to the data set. data['hour'] = hour_series # Use a pivot table to determine the average overall rating by hour. avg_by_hour = data.pivot_table('rating',index = 'hour', aggfunc = np.mean) avg_by_hour wee_hours_data = data[np.logical_or(data['hour']>= 22,data['hour']<=5)] wee_hours_5 = wee_hours_data[wee_hours_data['rating']==5] wee_hours_1 = wee_hours_data[wee_hours_data['rating']==1] total_5 = data[data['rating']==5] total_1 = data[data['rating']==1] wee_hours_5_percent = float(len(wee_hours_5))/len(wee_hours_data) wee_hours_1_percent = float(len(wee_hours_1))/len(wee_hours_data) total_5_percent = float(len(total_5))/len(data) total_1_percent = float(len(total_1))/len(data) compdat = {'Percent Ratings 5':[wee_hours_5_percent , total_5_percent], 'Percent Raings 1':[wee_hours_1_percent, total_1_percent]} comp = pd.DataFrame(compdat, columns=['Percent Ratings 5','Percent Raings 1'], index=['Wee Hours','Total']) comp #Plot a histogram of the ratings of all movies. Rating_all=data.pivot_table('title',index='rating',aggfunc='count') Rating_all.plot(kind='bar', color='#FA5744') plt.title('Histogram of all ratings') plt.ylabel('Total number') #Plot a histogram of the number of ratings each movie recieved. Rating_each=data.pivot_table('rating',index='title',aggfunc='count') Rating_each.hist() plt.title('Histogram of Number of ratings each movie received') plt.ylabel('Number of Movies') plt.xlabel('Number of Ratings') #Plot a histogram of the average rating for each movie. Avg_rating_each=data.pivot_table('rating',index='title',aggfunc='mean') Avg_rating_each.hist(color='orange') plt.title('Histogram of Average rating for each movie') plt.ylabel('Number of Movies') plt.xlabel('Average Rating') #Plot a histogram of the average rating for movies which are rated more than 100 times. rating_by_title = data.groupby('title').size() active_titles = rating_by_title.index[rating_by_title > 100] avg_ratings_each_active = Avg_rating_each.ix[active_titles] avg_ratings_each_active.hist(color='red') plt.title('average rating for movies rated more than 100 times') plt.ylabel('Number of Movies') plt.xlabel('Average rating') # Select the movies with less than half the average number of total ratings. rating_by_title = data.groupby('title').size() inactive_titles = rating_by_title.index[rating_by_title <= average_total_ratings/2] inactive = [title in inactive_titles.values for title in data['title']] inactive_series = pd.DataFrame(inactive, index = data.index) data['Inactive'] = inactive_series inactive_data = data[data['Inactive']] inactive_rating_all=inactive_data.pivot_table('title',index='rating',aggfunc='count') inactive_rating_all.plot(kind='bar', color='blue') plt.title('Histogram of ratings of movies \n with less than half the average number of ratings') plt.ylabel('Total number') # Select the movies with less more than twice the average number of total ratings. rating_by_title = data.groupby('title').size() wayactive_titles = rating_by_title.index[rating_by_title >= average_total_ratings*2] wayactive = [title in wayactive_titles.values for title in data['title']] wayactive_series = pd.DataFrame(wayactive, index = data.index) data['wayactive'] = wayactive_series wayactive_data = data[data['wayactive']] wayactive_rating_all=wayactive_data.pivot_table('title',index='rating',aggfunc='count') wayactive_rating_all.plot(kind='bar', color='blue') plt.title('Histogram of ratings of movies with \n more than twice the average number of ratings') plt.ylabel('Total number') # Extract the year from the title def extract(string, start='(', stop=')'): while string.index(stop) - (string.index(start)+1)!= 4: string = string[:string.index(start)] + string[string.index(stop)+1:] return string[string.index(start)+1:string.index(stop)] titles = data['title'] year = [int(extract(title)) for title in titles] year_series = pd.DataFrame(year, index=data.index) data['year'] = year_series data[:5] year_array = list(set(data['year'].values)) average_year = int(float(sum(year_array))/len(year_array)) average_year old_data = data[data['year']<= average_year] old_rating_all=old_data.pivot_table('title',index='rating',aggfunc='count') old_rating_all.plot(kind='bar', color='#FA5744') plt.title('Histogram of all of early movies') plt.ylabel('Total number') newer_data = data[data['year']>= average_year] new_rating_all=newer_data.pivot_table('title',index='rating',aggfunc='count') new_rating_all.plot(kind='bar', color='#00b27f') plt.title('Histogram of all of newer movies') plt.ylabel('Total number') %matplotlib inline import matplotlib import matplotlib.pyplot as plt # among total6040 users, how many female? how may male? users.groupby('gender').size() #among total 100209 rating records, how many was made by female? how many was made by male? data.groupby('gender').size() # Use a pivot table to compute mean ratings per title by gender mean_ratings = data.pivot_table('rating',index = 'title',columns = 'gender',aggfunc = 'mean') # Scatter this data. plt.scatter(mean_ratings['M'], mean_ratings['F']) plt.title('Average Ratings by Movie') plt.ylabel('Average female rating') plt.xlabel('Average male rating') # Determine titles with more than 200 total ratings. ratings_by_title = data.groupby('title').size() active_titles = ratings_by_title.index[ratings_by_title > 200] # Extract these titles over_200_mean_ratings = mean_ratings.ix[active_titles] #Produce scatter plot plt.scatter(over_200_mean_ratings['M'], over_200_mean_ratings['F']) plt.title('Average Ratings by Movie, \n Among movies rated more than 200 times') plt.ylabel('Average female rating') plt.xlabel('Average male rating') # Compute the correlation coefficient print 'correlation coefficient between averege male and female ratings: {0}'.format(mean_ratings.M.corr(mean_ratings.F)) # Based on scatter plots above, it is clear that men and women tend to agree more when the movies have a higher total number # of ratings. Calculate the correlation coeffcient in this case print 'correlation coefficient between averege male and female ratings among movies with over 200 ratings: {0}'.format( over_200_mean_ratings.M.corr(over_200_mean_ratings.F)) # Given this observed in crease in correlation coefficient, we now compute the correlation coefficient based on the number of # total ratings: ratings_by_title = data.groupby('title').size() mean_ratings = data.pivot_table('rating',index = 'title',columns = 'gender',aggfunc = 'mean') i = 1 IND = ['0'] RAT = [0] while i < max(ratings_by_title): titles = ratings_by_title.index[np.logical_and(ratings_by_title >= i, ratings_by_title < 2*i)] subset_mean_ratings = mean_ratings.ix[titles] correl = subset_mean_ratings.M.corr(subset_mean_ratings.F) IND.append('Total ratings between {0} and {1}'.format(i, 2*i)) RAT.append(correl) j = i i = 2*j correl_comp = pd.Series(RAT, index=IND) correl_comp.index.name = 'Total number of Ratings' correl_comp.name = 'Correlation coefficient between average Male and Female Ratings per Movie' correl_comp fives_data = data[data['rating']==5] five_ratings = fives_data.pivot_table('rating', index = 'title', columns = 'gender', aggfunc = 'count') total_ratings = data.pivot_table('rating',index ='title',columns = 'gender',aggfunc = 'count') fives_percent = pd.DataFrame(index = five_ratings.index) fives_percent['M'] = five_ratings['M']/total_ratings['M'] fives_percent['F'] = five_ratings['F']/total_ratings['F'] print 'correlation coefficient between percent ratings of 5 by male and female per title: {0}'.format(fives_percent.M.corr(fives_percent.F)) over_200_fives_percent = fives_percent.ix[active_titles] print 'correlation coefficient between percent ratings of 5 by male and female among titles with more than 200 ratings: {0}'.format(over_200_fives_percent.M.corr(over_200_fives_percent.F)) plt.scatter(over_200_fives_percent['M'], over_200_fives_percent['F']) plt.title('Percent ratings 5 by Movie, \n Among movies rated more than 200 times') plt.ylabel('Percent 5, female') plt.xlabel('Percent 5, male') low_data = data[data['rating']<= 2] low_ratings = low_data.pivot_table('rating', index = 'title', columns = 'gender', aggfunc = 'count') total_ratings = data.pivot_table('rating',index ='title',columns = 'gender',aggfunc = 'count') low_percent = pd.DataFrame(index = low_ratings.index) low_percent['M'] = low_ratings['M']/total_ratings['M'] low_percent['F'] = low_ratings['F']/total_ratings['F'] print 'correlation coefficient between percent ratings of 1 or 2 by male and female per title: {0}'.format(low_percent.M.corr(low_percent.F)) over_200_low_percent = low_percent.ix[active_titles] print 'correlation coefficient between percent ratings of 5 by male and female among titles with more than 200 ratings: {0}'.format(over_200_low_percent.M.corr(over_200_low_percent.F)) plt.scatter(over_200_low_percent['M'], over_200_low_percent['F']) plt.title('Percent low ratings by Movie, \n Among movies rated more than 200 times') plt.ylabel('Low percent, female') plt.xlabel('Low percent, male') #freqency of men vs. wen ratings for each age group gender_counts = data.pivot_table('title', index='gender', columns='rating', aggfunc='count') print 'Frequency of men vs. wemen Ratings' print gender_counts #normalize to sum to 1, giving us the percent of each rating given by men and women. gender_counts_norm = gender_counts.div(gender_counts.sum(1).astype(float), axis=0) gender_counts_norm gender_counts_norm.plot(kind='bar') print print 'Percent of each Rating, men vs women' print gender_counts_norm # Calculate the correlation coefficient among these average ratings. gender_counts_norm.ix['M'].corr(gender_counts_norm.ix['F']) import time # Convert time stamps to local time and extract the hour. timestamps = data['timestamp'] hour = [time.localtime(stamp).tm_hour for stamp in timestamps.values] hour_series = pd.DataFrame(hour, index=data.index) data['hour'] = hour_series # Isolate data for ratings submitted between 10PM and 5AM local time wee_hours_data = data[np.logical_or(data['hour']>= 22,data['hour']<=5)] # Determine the average ratings per title by gender during these late-night hours. wee_hours_mean_ratings = wee_hours_data.pivot_table('rating', index = 'title', columns = 'gender', aggfunc = np.mean) wee_hours_mean_ratings[:5] #Calculate the correlation coefficient. print 'Correlation coefficient between averege male and female ratings between 10PM and 5AM: {0}'.format( wee_hours_mean_ratings.M.corr(wee_hours_mean_ratings.F)) # We already know that men and women tend to disagree on movies with lower total ratings. Segment from the late-night data those with # high total numbers of ratings. wee_hours_over_200_mean_ratings = wee_hours_mean_ratings.ix[active_titles] wee_hours_over_200_mean_ratings[:5] #Compute Correlation Coefficient 'Correlation coefficient between averege male and female ratings between 10PM and 5AM, among movies with at least 200 total ratings: {0}'.format(wee_hours_over_200_mean_ratings.M.corr(wee_hours_over_200_mean_ratings.F)) # Determine which movies have "Comedy" listed within its genres. genres = data['genres'] all_genres = [string.split('|') for string in genres] comedy_truth = [ 'Comedy' in genres for genres in all_genres] comedy_series = pd.DataFrame(comedy_truth, index=data.index) data['comedy'] = comedy_series comedy_data = data.ix[data['comedy'] == True] # Determine comedies with at least 100 ratings comedy_ratings_by_title = comedy_data.groupby('title').size() comedy_active_titles = comedy_ratings_by_title.index[comedy_ratings_by_title > 100] # Extract these titles comedy_mean_ratings = comedy_data.pivot_table('rating',index = 'title',columns = 'gender',aggfunc = 'mean') active_comedy_mean_ratings = comedy_mean_ratings.ix[comedy_active_titles] active_comedy_mean_ratings[:10] # Compute correlation between average men's and women's ratings. active_comedy_mean_ratings.M.corr(active_comedy_mean_ratings.F) from sklearn import cross_validation, linear_model, feature_selection, metrics # Train a linear model to examine predictability # Can't have any NaN values for linear regression. active_comedy_mean_ratings = active_comedy_mean_ratings.dropna() # Select out our predictor columns and our response columns X = active_comedy_mean_ratings.ix[:,['M']] y = active_comedy_mean_ratings.ix[:,['F']] # Split the data into training data and testing data X_train,X_test,y_train,y_test = cross_validation.train_test_split(X, y, test_size=0.8) # Run the solver reg = linear_model.LinearRegression(fit_intercept=True) reg.fit(X_train,y_train) # Plot the data and the model plotX = np.linspace(0,5,100) plotY = reg.predict(np.matrix(plotX).T) plt.plot(X_train,y_train,'o', color='#FA5744') plt.plot(X_test,y_test,'o', color='#00b27f') plt.plot(plotX,plotY,'-', color='#5898f1') plt.title('Average Rating of Comedies') plt.ylabel('Female Average') plt.xlabel('Male Average') # Compute the slope and intercept of the linear model print reg.intercept_ # Beta_1 print reg.coef_ # Compute testing and training error. print 'training error' print metrics.mean_squared_error(y_train,reg.predict(X_train)) print 'testing error' print metrics.mean_squared_error(y_test,reg.predict(X_test)) comedy_fives_data = comedy_data[comedy_data['rating']==5] comedy_gender_fives = comedy_fives_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') comedy_gender_totals = comedy_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') comedy_gender_percents = comedy_gender_fives / comedy_gender_totals comedy_gender_percents = comedy_gender_percents.ix[active_titles] comedy_gender_percents.M.corr(comedy_gender_percents.F) # Train a linear model to examine predictability # Can't have any NaN values for linear regression. comedy_gender_percents = comedy_gender_percents.dropna() # Select out our predictor columns and our response columns X = comedy_gender_percents.ix[:,['M']] y = comedy_gender_percents.ix[:,['F']] # Split the data into training data and testing data X_train,X_test,y_train,y_test = cross_validation.train_test_split(X, y, test_size=0.8) # Run the solver reg = linear_model.LinearRegression(fit_intercept=True) reg.fit(X_train,y_train) # Plot the data and the model plotX = np.linspace(0,1,100) plotY = reg.predict(np.matrix(plotX).T) plt.plot(X_train,y_train,'o', color='#FA5744') plt.plot(X_test,y_test,'o', color='#00b27f') plt.plot(plotX,plotY,'-', color='#5898f1') plt.title('Percent 5 Rating of Comedies') plt.ylabel('Female Average') plt.xlabel('Male Average') # Compute the slope and intercept of the linear model print reg.intercept_ # Beta_1 print reg.coef_ # Compute testing and training error. print 'training error' print metrics.mean_squared_error(y_train,reg.predict(X_train)) print 'testing error' print metrics.mean_squared_error(y_test,reg.predict(X_test)) comedy_low_data = comedy_data[comedy_data['rating']<=2] comedy_low = comedy_low_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') comedy_totals = comedy_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') comedy_low_percents = comedy_low / comedy_totals comedy_low_percents = comedy_low_percents.ix[active_titles] comedy_low_percents.M.corr(comedy_low_percents.F) # Train a linear model to determine predictability # Can't have any NaN values for linear regression. comedy_low_percents = comedy_low_percents.dropna() # Select out our predictor columns and our response columns X = comedy_low_percents.ix[:,['M']] y = comedy_low_percents.ix[:,['F']] # Split the data into training data and testing data X_train,X_test,y_train,y_test = cross_validation.train_test_split(X, y, test_size=0.8) # Run the solver reg = linear_model.LinearRegression(fit_intercept=True) reg.fit(X_train,y_train) # Plot the data and the model plotX = np.linspace(0,1,100) plotY = reg.predict(np.matrix(plotX).T) plt.plot(X_train,y_train,'o', color='#FA5744') plt.plot(X_test,y_test,'o', color='#00b27f') plt.plot(plotX,plotY,'-', color='#5898f1') plt.title('Percent 1 or 2 Rating of Comedies') plt.ylabel('Female Average') plt.xlabel('Male Average') # Compute the slope and intercept of the linear model print reg.intercept_ # Beta_1 print reg.coef_ # Compute testing and training error. print 'training error' print metrics.mean_squared_error(y_train,reg.predict(X_train)) print 'testing error' print metrics.mean_squared_error(y_test,reg.predict(X_test)) # Extract those movies made in the last 10 years of those available. newest_data = data[data['year']>= 1990] # Use a pivot table to compute mean ratings per title by gender newest_mean_ratings = newest_data.pivot_table('rating',index = 'title',columns = 'gender',aggfunc = 'mean') over_200_newest_mean_ratings = newest_mean_ratings.ix[active_titles] # Scatter this data. plt.scatter(over_200_newest_mean_ratings['M'], over_200_newest_mean_ratings['F']) plt.title('Average Ratings by Movie, after 1990') plt.ylabel('Average female rating') plt.xlabel('Average male rating') print 'correlation coefficient between percent average males and females per title: {0}'.format( over_200_newest_mean_ratings.M.corr(over_200_newest_mean_ratings.F)) # Compute the percent 5 ratings by males and females for movies made in each year of this 10 year window. new_fives_data = newest_data[newest_data['rating']==5] year_gender_fives = new_fives_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') year_gender_totals = newest_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') year_gender_percents = year_gender_fives / year_gender_totals year_gender_percents = year_gender_percents.ix[active_titles] # Scatter this data. plt.scatter(year_gender_percents['M'], year_gender_percents['F']) plt.title('Percent ratings 5 by Movie, after 1990') plt.ylabel('Female percent 5') plt.xlabel('Male percent 5') print 'Correlation coefficient between percent ratings of 5 between males and females by year of movie release: {0}'.format( year_gender_percents.M.corr(year_gender_percents.F)) new_low_data = newest_data[newest_data['rating']<=2] year_low = new_low_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') year_totals = newest_data.pivot_table('rating', index='title', columns='gender', aggfunc='count') year_low_percents = year_low / year_totals year_low_percents = year_low_percents.ix[active_titles] plt.scatter(year_low_percents['M'], year_low_percents['F']) plt.title('Percent ratings 1 or 2 by Movie, after 1990') plt.ylabel('Female percent 1 or 2') plt.xlabel('Male percent 1 or 2') print 'Correlation between percent ratings of 1 or 2 between males and females on movies with the same release year: {0}'.format( year_low_percents.M.corr(year_low_percents.F)) # Train a linear model to predict average ratings between genders. from sklearn import cross_validation, linear_model, feature_selection, metrics # Can't have any NaN values for linear regression. over_200_newest_mean_ratings = over_200_newest_mean_ratings.dropna() # Select out our predictor columns and our response columns X = over_200_newest_mean_ratings.ix[:,['M']] y = over_200_newest_mean_ratings.ix[:,['F']] # Split the data into training data and testing data X_train,X_test,y_train,y_test = cross_validation.train_test_split(X, y, test_size=0.8) # Run the solver reg = linear_model.LinearRegression(fit_intercept=True) reg.fit(X_train,y_train) # Compute the slope and intercept of the linear model print reg.intercept_ # Beta_1 print reg.coef_ # Plot the data and the model plotX = np.linspace(0,5,100) plotY = reg.predict(np.matrix(plotX).T) plt.plot(X_train,y_train,'ro') plt.plot(X_test,y_test,'go') plt.plot(plotX,plotY,'b-') plt.title('Average Ratings by Movie, after 1990') plt.ylabel('Average female rating') plt.xlabel('Average male rating') # Compute testing and training error. print 'training error' print metrics.mean_squared_error(y_train,reg.predict(X_train)) print 'testing error' print metrics.mean_squared_error(y_test,reg.predict(X_test)) # Train a linear model to predict percent of ratings given as 5 per-movie between genders. # Can't have any NaN values for linear regression. year_gender_percents = year_gender_percents.dropna() # Select out our predictor columns and our response columns X = year_gender_percents.ix[:,['M']] y = year_gender_percents.ix[:,['F']] # Split the data into training data and testing data X_train,X_test,y_train,y_test = cross_validation.train_test_split(X, y, test_size=0.8) # Run the solver reg = linear_model.LinearRegression(fit_intercept=True) reg.fit(X_train,y_train) # Plot the data and the model plotX = np.linspace(0,1,100) plotY = reg.predict(np.matrix(plotX).T) plt.plot(X_train,y_train,'ro') plt.plot(X_test,y_test,'go') plt.plot(plotX,plotY,'b-') plt.title('Percent 5 Ratings by Movie, after 1990') plt.ylabel('Female % 5') plt.xlabel('Male % 5') # Compute the slope and intercept of the linear model print reg.intercept_ # Beta_1 print reg.coef_ # Compute testing and training error. print 'training error' print metrics.mean_squared_error(y_train,reg.predict(X_train)) print 'testing error' print metrics.mean_squared_error(y_test,reg.predict(X_test)) # Train a linear model to predict percent of ratings given as 1 or 2 per-movie between genders. # Can't have any NaN values for linear regression. year_low_percents = year_low_percents.dropna() # Select out our predictor columns and our response columns X = year_low_percents.ix[:,['M']] y = year_low_percents.ix[:,['F']] # Split the data into training data and testing data X_train,X_test,y_train,y_test = cross_validation.train_test_split(X, y, test_size=0.8) # Run the solver reg = linear_model.LinearRegression(fit_intercept=True) reg.fit(X_train,y_train) # Plot the data and the model plotX = np.linspace(0,1,100) plotY = reg.predict(np.matrix(plotX).T) plt.plot(X_train,y_train,'ro') plt.plot(X_test,y_test,'go') plt.plot(plotX,plotY,'b-') plt.title('Percent 1 or 2 Ratings by Movie, after 1990') plt.ylabel('Female % 1 or 2') plt.xlabel('Male % 1 or 2') # Compute the slope and intercept of the linear model print reg.intercept_ # Beta_1 print reg.coef_ # Compute testing and training error. print 'training error' print metrics.mean_squared_error(y_train,reg.predict(X_train)) print 'testing error' print metrics.mean_squared_error(y_test,reg.predict(X_test)) #Convert genres into 18 dummies. New dataset has total 100209 rows*28 columns #generate 18 dummies variables for movie genres genre_iter=(set(x.split('|')) for x in movies.genres) genres=sorted(set.union(*genre_iter)) dummies=pd.DataFrame(np.zeros((len(movies), len(genres))), columns=genres) for i, gen in enumerate(movies.genres): dummies.ix[i,gen.split('|')]=1 movies_windic=movies.join(dummies) movies_windic.ix[0] # newdata has total 100209 rows 28 columns newdata = pd.merge(pd.merge(pd.merge(ratings,users),movies), movies_windic) newdata.columns #How many movies for each genre are in this dataset? moviegenre=movies_windic moviegenre.drop(moviegenre[[0,1,2]],axis=1,inplace=True) moviegenre.sum().plot(kind='bar',color='g') plt.title('Number of Movies in Each Genre') #Total number of ratings received for each type of movie genres_rating_received=newdata genres_rating_received.drop(genres_rating_received.columns[[0,1,2,3,4,5,6,7,8,9]], axis=1, inplace=True) genres_rating_received.sum().plot(kind='bar') plt.title('Number of total ratings for Movies in each genre') average_ratings_genre = (genres_rating_received.sum())*moviegenre.sum()/sum(moviegenre.sum()) average_ratings_genre # Percent of movies watched by each gender classified as comedies genres = data['genres'] all_genres = [string.split('|') for string in genres] comedy_truth = [ 'Comedy' in genres for genres in all_genres] comedy_series = pd.DataFrame(comedy_truth, index=data.index) data['comedy'] = comedy_series comedy_data = data.ix[data['comedy'] == True] comedy_gender_counts = comedy_data.pivot_table('rating', index = 'gender', aggfunc = 'count') total_gender_counts = data.pivot_table('rating', index = 'gender', aggfunc = 'count') gender_counts = pd.concat([total_gender_counts,comedy_gender_counts],axis = 1) gender_counts.columns = ['total_gender_counts', 'comedy_gender_counts'] gender_counts['comedy_gender_percent'] = gender_counts['comedy_gender_counts']/gender_counts['total_gender_counts'] gender_counts import time # convert timestamps to localized hours timestamps = data['timestamp'] hours = [time.localtime(timestamp).tm_hour for timestamp in timestamps.values] hour_series = pd.DataFrame(hours, index=data.index) data['hour'] = hour_series genres = data['genres'] all_genres = [string.split('|') for string in genres] drama_truth = [ 'Drama' in genres for genres in all_genres] drama_series = pd.DataFrame(drama_truth, index=data.index) data['drama'] = drama_series drama_data = data.ix[data['drama'] == True] drama_ratings_per_hours=drama_data.pivot_table('title', index='hour', columns = 'gender', aggfunc='count') drama_ratings_per_hours.plot(kind='bar', color=['#E50E14','#5898f1']).legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('Dramas Rated per Hour') plt.ylabel('Count') plt.xlabel('Hour') movie_ratings_per_hours=data.pivot_table('title', index='hour', columns = 'gender', aggfunc='count') movie_ratings_per_hours.plot(kind='bar', color=['#E50E14','#5898f1']).legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('Total Movies Rated per Hour') plt.ylabel('Count') plt.xlabel('Hour') percent_dramas_per_hours = drama_ratings_per_hours/movie_ratings_per_hours percent_dramas_per_hours.plot(kind='bar', color=['#E50E14','#5898f1']).legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('Percent Dramas Rated Per Hour') plt.ylabel('Percent') plt.xlabel('Hour') # histogram of occupation vs count of comedy ratings # Percent of movies watched by each gender classified as comedies genres = data['genres'] all_genres = [string.split('|') for string in genres] comedy_truth = [ 'Comedy' in genres for genres in all_genres] comedy_series = pd.DataFrame(comedy_truth, index=data.index) data['comedy'] = comedy_series comedy_data = data.ix[data['comedy'] == True] job_avg_ratings = comedy_data.pivot_table('rating', index='occupation', aggfunc=np.mean) job_avg_ratings.rename(index={0:'other', 1:'academic/educator',2: 'artist',3: 'clerical/admin',4: 'college/grad student', 5: 'customer service',6: 'doctor/health care',7:'executive/managerial',8:'farmer', 9: 'homemaker',10: 'K-12 student',11: 'lawyer',12 :'programmer',13: 'retired', 14:'sales/marketing',15:'scientist',16: 'self-employed',17: 'technician/engineer', 18: 'tradesman/craftsman',19 :'unemployed',20: 'writer'}, inplace=True) print job_avg_ratings print "RANGE: %s" % (job_avg_ratings.max() - job_avg_ratings.min()) job_avg_ratings.plot(kind='bar', color='#00b27f') plt.title('Average Comedy Rating vs. Occupation') plt.xlabel('Occupation') plt.ylabel('Average Rating') job_total_comedy_ratings = comedy_data.pivot_table('title', index='occupation', aggfunc='count') job_total_comedy_ratings.rename(index={0:'other', 1:'academic/educator',2: 'artist',3: 'clerical/admin',4: 'college/grad student', 5: 'customer service',6: 'doctor/health care',7:'executive/managerial',8:'farmer', 9: 'homemaker',10: 'K-12 student',11: 'lawyer',12 :'programmer',13: 'retired', 14:'sales/marketing',15:'scientist',16: 'self-employed',17: 'technician/engineer', 18: 'tradesman/craftsman',19 :'unemployed',20: 'writer'}, inplace=True) print job_total_comedy_ratings job_total_comedy_ratings.plot(kind='bar', color='#ec971f') plt.title('Comedies Rated vs. Occupation') plt.xlabel('Occupation') plt.ylabel('Number of Ratings') job_total_ratings = data.pivot_table('title', index='occupation', aggfunc='count') job_total_ratings.rename(index={0:'other', 1:'academic/educator',2: 'artist',3: 'clerical/admin',4: 'college/grad student', 5: 'customer service',6: 'doctor/health care',7:'executive/managerial',8:'farmer', 9: 'homemaker',10: 'K-12 student',11: 'lawyer',12 :'programmer',13: 'retired', 14:'sales/marketing',15:'scientist',16: 'self-employed',17: 'technician/engineer', 18: 'tradesman/craftsman',19 :'unemployed',20: 'writer'}, inplace=True) job_percent_comedy_ratings = job_total_comedy_ratings / job_total_ratings job_percent_comedy_ratings.plot(kind='bar', color='#E50E14') plt.title('Percent Comedies vs. Occupation') plt.xlabel('Occupation') plt.ylabel('Percent of all movies watched') # histogram of age group vs adventure genre genres = data['genres'] all_genres = [string.split('|') for string in genres] adventure_truth = [ 'adventure' in genres for genres in all_genres] adventure_series = pd.DataFrame(drama_truth, index=data.index) data['adventure'] = adventure_series adventure_data = data.ix[data['adventure'] == True] adventure_ratings_per_age = adventure_data.pivot_table('title', index='age', columns='gender', aggfunc='count') adventure_ratings_per_age.rename(index={1: 'Under 18', 18: '18-24', 25: '25-34', 35: '35-44', 45: '45-49', 50: '50-55', 56: '56+'}, inplace=True) adventure_ratings_per_age.plot(kind='bar', color=['#E50E14','#5898f1']) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('Adventure Movies Rated per Age Group') plt.xlabel('Age Group') plt.ylabel('Count') total_per_age = data.pivot_table('title', index='age', columns='gender', aggfunc='count') total_per_age.rename(index={1: 'Under 18', 18: '18-24', 25: '25-34', 35: '35-44', 45: '45-49', 50: '50-55', 56: '56+'}, inplace=True) adventure_percent = adventure_ratings_per_age / total_per_age adventure_percent.plot(kind='bar', color=['#E50E14','#5898f1']) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('Percent Adventure Movies per Age Group') plt.xlabel('Age Group') plt.ylabel('Percent') print adventure_ratings_per_age print total_per_age print adventure_percent # avg rating vs. gender gender_avg_ratings = data.pivot_table('rating', index = 'gender',aggfunc = np.mean) gender_avg_ratings gender_avg_ratings.plot(kind='barh', color='yellow') plt.title('avg rating vs. gender') # avg rating vs. occupation job_avg_ratings = data.pivot_table('rating', index = 'occupation',aggfunc = np.mean) job_avg_ratings job=job_avg_ratings.rename(index={0:'other',1:'academic/educator',2: 'artist',3: 'clerical/admin',4: 'college/grad student', 5 :'customer service',6: 'doctor/health care',7:'executive/managerial',8:'farmer', 9: 'homemaker',10: 'K-12 student',11: 'lawyer',12 :'programmer',13: 'retired', 14:'sales/marketing',15:'scientist',16: 'self-employed',17: 'technician/engineer', 18: 'tradesman/craftsman',19 :'unemployed',20: 'writer'}) job.plot(kind='bar') plt.title('avg rating vs. occupation') plt.ylabel('average rating') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercise Step2: Exercise
<ASSISTANT_TASK:> Python Code: import pandas as pd from bokeh.charts import TimeSeries, output_notebook, show # Get data df = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv') # Process data df['datetime'] = pd.to_datetime(df['datetime']) df = df[['anomaly','datetime']] # Output option output_notebook() # Create timeseries chart t = TimeSeries(df, x='datetime') # Show chart show(t) # Style your timeseries chart t = TimeSeries(df, x='datetime', xlabel='time', ylabel='Anomaly(ºC)', xgrid = False, ygrid=True, tools=False, width=950, height=300, title="Temperature Anomaly(ºC) Monthly Average", palette=["grey"]) # Show new chart show(t) # Compute moving average df['moving_average'] = pd.rolling_mean(df['anomaly'], 12) # Create chart with moving average t = TimeSeries(df, x='datetime', xlabel='time', ylabel='Anomaly(ºC)', xgrid = False, ygrid=True, tools=False, width=950, height=300, legend="bottom_right", title="Temperature Anomaly(ºC) Monthly Average", palette=["grey", "red"]) # Show chart with moving average show(t) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Show result on 3D source space
<ASSISTANT_TASK:> Python Code: # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: BSD (3-clause) from mne.datasets import sample from mne.minimum_norm import read_inverse_operator print(__doc__) data_path = sample.data_path() fname = data_path fname += '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' inv = read_inverse_operator(fname) print("Method: %s" % inv['methods']) print("fMRI prior: %s" % inv['fmri_prior']) print("Number of sources: %s" % inv['nsource']) print("Number of channels: %s" % inv['nchan']) lh_points = inv['src'][0]['rr'] lh_faces = inv['src'][0]['use_tris'] rh_points = inv['src'][1]['rr'] rh_faces = inv['src'][1]['use_tris'] from mayavi import mlab # noqa mlab.figure(size=(600, 600), bgcolor=(0, 0, 0)) mesh = mlab.triangular_mesh(lh_points[:, 0], lh_points[:, 1], lh_points[:, 2], lh_faces, colormap='RdBu') mesh.module_manager.scalar_lut_manager.reverse_lut = True mesh = mlab.triangular_mesh(rh_points[:, 0], rh_points[:, 1], rh_points[:, 2], rh_faces, colormap='RdBu') mesh.module_manager.scalar_lut_manager.reverse_lut = True <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This dataset is wrapped around numpy so we can access can easily access entries Step2: Or access several entries, and even interpolate Step3: 1.1 GridMesh Step4: We can read out some basic properties of the mesh, and plot it Step5: The upper left corner can be accessed, and returns our original anchoring point. The lower right corner is also accessible for convenience Step6: We can also access the original terrain dataset through the dataset keyword Step7: GridMesh also stores the local coordinate system of the grid, which can then be converted back and forth to other representations. The two coordinate systems are called ROW_COL and COL_ROW, which allows to define a point given the row and the column. Step8: 1.2 GridMeshModel Step9: If no envelope is passed as an argument, the entire dataset is processed. Be careful with this, as it might take up significant memory if a very large dataset is being used. Step10: Before we used dataset to access the underlying heightmap. For the model we will use the data property, which carries the raw representation of the data. Step11: 1.3 Model info Step12: The code below demonstrates a more advanced usage of GeoMesh Step13: We will use a 0.5 resolution DEM of NASA Ames Roverscape site Step14: Whats different in this representation from when we had a GridMesh with a numpy array, is that if we access the dataset we wont get an array. This is because the DEM is still encoded, and wont be decoded until loadSubSection has been called; this is done to limit memory used when larger DEMs (100s of MB or GB size) are being used. Step15: We can display it, including the obstacles in red Step16: We notice that some of the areas are white; these represent masked locations, that are points with a no data value such as -9999. Step17: 2.2 From text file Step18: LOLA(Lunar Orbiter Laser Altimeter) instrument recently generated a 2m DEM of the Lunar terrain. The data has been post processed into the format of the legacy code, and is displayed below as an example. Step19: 3. Other Representations
<ASSISTANT_TASK:> Python Code: from pextant.mesh.abstractmesh import NpDataset import numpy as np xx,yy= np.mgrid[0:5,0:5] basic_terrain = NpDataset(0.1*(xx**2+yy**2), resolution=1) basic_terrain basic_terrain[1,1] basic_terrain.get_datapoint(np.array(([1,1],[1.5,1.5]))) from pextant.EnvironmentalModel import GridMesh from pextant.lib.geoshapely import GeoPoint, LAT_LONG upper_left_corner = GeoPoint(LAT_LONG, 0, 0) # this will be the north-west corner of the dataset basic_mesh = GridMesh(upper_left_corner, basic_terrain) print basic_mesh upper_left_corner, lower_right_corner = basic_mesh.nw_geo_point, basic_mesh.se_geo_point import matplotlib.pyplot as plt plt.matshow(basic_mesh.dataset, cmap='gray_r') plt.show() point_in_mesh = GeoPoint(basic_mesh.ROW_COL, 1, 1) from pextant.lib.geoshapely import GeoEnvelope model_envelope = GeoEnvelope(point_in_mesh, lower_right_corner) terrain_model = basic_mesh.loadSubSection(model_envelope) import matplotlib.patches as patches plt.matshow(basic_mesh.data, cmap='gray_r') plt.gca().add_patch(patches.Rectangle(point_in_mesh.to(basic_mesh.ROW_COL)-np.array([0.5,0.5]),basic_mesh.y_size,basic_mesh.x_size, fill=False, hatch='/')) plt.legend(["terrain_model area"]) plt.show() terrain_model.slopes plt.matshow(terrain_model.dataset, cmap='gray_r') plt.imshow(terrain_model.obstacle_mask(), alpha=0.5, cmap='bwr_r') plt.text(1.2,2.3,"Steep terrain \n in red", size=15, color="white") plt.show() from pextant.EnvironmentalModel import GDALMesh ames_gridmesh = GDALMesh('Ames.tif') print ames_gridmesh ames_model = ames_gridmesh.loadSubSection() plt.matshow(ames_model.data, cmap='gray_r') obstacle_transparent = np.ma.masked_array(np.ones_like(ames_model.data), ames_model.slopes<15) plt.imshow(obstacle_transparent, alpha=0.5, cmap='bwr_r') plt.show() from pextant.viz.utils import hillshade hillshade(ames_model, 5) #5 is used to exaggerate the effect of the hillshade plt.show() from pextant.EnvironmentalModel import load_legacy apollo14_model = load_legacy('Apollo14.txt') print(apollo14_model) hillshade(apollo14_model, 1) plt.show() from pextant.mesh.triangularmesh import grid_to_tri apollo14_tri = grid_to_tri(apollo14_model, accuracy=3) tri = apollo14_tri.data plt.gca().invert_yaxis() plt.tripcolor(tri.vertices[:,0], tri.vertices[:,1], tri.faces, facecolors=tri.triangles_center[:,2], cmap='gray_r', alpha=1.) plt.axis('equal') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Local Functions Step2: Generate Data Step3: View means of the various combinations (poisson mean values) Step4: Briefly Describe Dataset Step5: Observe Step6: 1. Manual method, create design matrices and manually specify model Step7: Create Model Step8: Sample Model Step9: View Diagnostics Step10: Observe Step11: Observe Step12: Sample Model Step13: View Traces Step14: Transform coeffs Step15: Observe Step16: ... of 9.45 with a range [25%, 75%] of [4.17, 24.18], we see this is pretty close to the overall mean of
<ASSISTANT_TASK:> Python Code: ## Interactive magics %matplotlib inline import sys import warnings warnings.filterwarnings('ignore') import re import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import patsy as pt from scipy import optimize # pymc3 libraries import pymc3 as pm import theano as thno import theano.tensor as T sns.set(style="darkgrid", palette="muted") pd.set_option('display.mpl_style', 'default') plt.rcParams['figure.figsize'] = 14, 6 np.random.seed(0) def strip_derived_rvs(rvs): '''Convenience fn: remove PyMC3-generated RVs from a list''' ret_rvs = [] for rv in rvs: if not (re.search('_log',rv.name) or re.search('_interval',rv.name)): ret_rvs.append(rv) return ret_rvs def plot_traces_pymc(trcs, varnames=None): ''' Convenience fn: plot traces with overlaid means and values ''' nrows = len(trcs.varnames) if varnames is not None: nrows = len(varnames) ax = pm.traceplot(trcs, varnames=varnames, figsize=(12,nrows*1.4), lines={k: v['mean'] for k, v in pm.df_summary(trcs,varnames=varnames).iterrows()}) for i, mn in enumerate(pm.df_summary(trcs, varnames=varnames)['mean']): ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data', xytext=(5,10), textcoords='offset points', rotation=90, va='bottom', fontsize='large', color='#AA0022') # decide poisson theta values theta_noalcohol_meds = 1 # no alcohol, took an antihist theta_alcohol_meds = 3 # alcohol, took an antihist theta_noalcohol_nomeds = 6 # no alcohol, no antihist theta_alcohol_nomeds = 36 # alcohol, no antihist # create samples q = 1000 df = pd.DataFrame({ 'nsneeze': np.concatenate((np.random.poisson(theta_noalcohol_meds, q), np.random.poisson(theta_alcohol_meds, q), np.random.poisson(theta_noalcohol_nomeds, q), np.random.poisson(theta_alcohol_nomeds, q))), 'alcohol': np.concatenate((np.repeat(False, q), np.repeat(True, q), np.repeat(False, q), np.repeat(True, q))), 'nomeds': np.concatenate((np.repeat(False, q), np.repeat(False, q), np.repeat(True, q), np.repeat(True, q)))}) df.tail() df.groupby(['alcohol','nomeds']).mean().unstack() g = sns.factorplot(x='nsneeze', row='nomeds', col='alcohol', data=df, kind='count', size=4, aspect=1.5) fml = 'nsneeze ~ alcohol + antihist + alcohol:antihist' # full patsy formulation fml = 'nsneeze ~ alcohol * nomeds' # lazy, alternative patsy formulation (mx_en, mx_ex) = pt.dmatrices(fml, df, return_type='dataframe', NA_action='raise') pd.concat((mx_ex.head(3),mx_ex.tail(3))) with pm.Model() as mdl_fish: # define priors, weakly informative Normal b0 = pm.Normal('b0_intercept', mu=0, sd=10) b1 = pm.Normal('b1_alcohol[T.True]', mu=0, sd=10) b2 = pm.Normal('b2_nomeds[T.True]', mu=0, sd=10) b3 = pm.Normal('b3_alcohol[T.True]:nomeds[T.True]', mu=0, sd=10) # define linear model and exp link function theta = (b0 + b1 * mx_ex['alcohol[T.True]'] + b2 * mx_ex['nomeds[T.True]'] + b3 * mx_ex['alcohol[T.True]:nomeds[T.True]']) ## Define Poisson likelihood y = pm.Poisson('y', mu=np.exp(theta), observed=mx_en['nsneeze'].values) with mdl_fish: trc_fish = pm.sample(2000, tune=1000, njobs=4)[1000:] rvs_fish = [rv.name for rv in strip_derived_rvs(mdl_fish.unobserved_RVs)] plot_traces_pymc(trc_fish, varnames=rvs_fish) np.exp(pm.df_summary(trc_fish, varnames=rvs_fish)[['mean','hpd_2.5','hpd_97.5']]) with pm.Model() as mdl_fish_alt: pm.glm.GLM.from_formula(fml, df, family=pm.glm.families.Poisson()) with mdl_fish_alt: trc_fish_alt = pm.sample(4000, tune=2000)[2000:] rvs_fish_alt = [rv.name for rv in strip_derived_rvs(mdl_fish_alt.unobserved_RVs)] plot_traces_pymc(trc_fish_alt, varnames=rvs_fish_alt) np.exp(pm.df_summary(trc_fish_alt, varnames=rvs_fish_alt)[['mean','hpd_2.5','hpd_97.5']]) np.percentile(trc_fish_alt['mu'], [25,50,75]) df['nsneeze'].mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 3. Extend your program to n objects. How many different combinations do I have for 5 objects? How about 15? What is the max number of objects I could calculate for if I was storing the result in a 32 bit integer? What happens if the combinations exceed 32 bits? Step3: 4. What will the following code yield? Was it what you expected? What's going on here? Step7: Strategy 1
<ASSISTANT_TASK:> Python Code: count = 1 for elem in range(1, 3 + 1): count *= elem print(count) from math import factorial as f f(3) def n_max(): inpt = eval(input("Please enter some values: ")) maximum = max_val(inpt) print("The largest value is", maximum) def max_val(ints): Input: collection of ints. Returns: maximum of the collection int - the max integer. max = ints[0] for x in ints: if x > max: max = x return max assert max_val([1, 2, 3]) == 3 assert max_val([1, 1, 1]) == 1 assert max_val([1, 2, 2]) == 2 n_max() inpt = eval(input("Please enter three values: ")) list(inpt) assert compress('AAAADDBBBBBCCEAA') == 'A4D2B5C2E1A2' # %load ../scripts/compress/compressor.py def groupby_char(lst): Returns a list of strings containing identical characters. Takes a list of characters produced by running split on a string. Groups runs (in order sequences) of identical characters into string elements in the list. Parameters --------- Input: lst: list A list of single character strings. Output: grouped: list A list of strings containing grouped characters. new_lst = [] count = 1 for i in range(len(lst) - 1): # we range to the second to last index since we're checking if lst[i] == lst[i + 1]. if lst[i] == lst[i + 1]: count += 1 else: new_lst.append([lst[i],count]) # Create a lst of lists. Each list contains a character and the count of adjacent identical characters. count = 1 new_lst.append((lst[-1],count)) # Return the last character (we didn't reach it with our for loop since indexing until second to last). grouped = [char*count for [char, count] in new_lst] return grouped def compress_group(string): Returns a compressed two character string containing a character and a number. Takes in a string of identical characters and returns the compressed string consisting of the character and the length of the original string. Example ------- "AAA"-->"A3" Parameters: ----------- Input: string: str A string of identical characters. Output: ------ compressed_str: str A compressed string of length two containing a character and a number. return str(string[0]) + str(len(string)) def compress(string): Returns a compressed representation of a string. Compresses the string by mapping each run of identical characters to a single character and a count. Ex. -- compress('AAABBCDDD')--> 'A3B2C1D3'. Only compresses string if the compression is shorter than the original string. Ex. -- compress('A')--> 'A' # not 'A1'. Parameters ---------- Input: string: str The string to compress Output: compressed: str The compressed representation of the string. try: split_str = [char for char in string] # Create list of single characters. grouped = groupby_char(split_str) # Group characters if characters are identical. compressed = ''.join( # Compress each element of the grouped list and join to a string. [compress_group(elem) for elem in grouped]) if len(compressed) < len(string): # Only return compressed if compressed is actually shorter. return compressed else: return string except IndexError: # If our input string is empty, return an empty string. return "" except TypeError: # If we get something that's not compressible (including NoneType) return None. return None # %load ../scripts/compress/compress_tests.py # This will fail to run because in wrong directory from compress.compressor import * def compress_test(): assert compress('AAABBCDDD') == 'A3B2C1D3' assert compress('A') == 'A' assert compress('') == '' assert compress('AABBCC') == 'AABBCC' # compressing doesn't shorten string so just return string. assert compress(None) == None def groupby_char_test(): assert groupby_char(["A", "A", "A", "B", "B"]) == ["AAA", "BB"] def compress_group_test(): assert compress_group("AAA") == "A3" assert compress_group("A") == "A1" <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Dataset Step2: Modelling Step3: Now comes the most interesting part. We know that the observed data $y$ has latent structure Step4: We will use a sparse version of Gaussian process inference to make training faster. Remember that we also need to define $X$ as a Parameter so that we can set a prior and guide (variational distribution) for it. Step5: We will use the autoguide() method from the Parameterized class to set an auto Normal guide for $X$. Step6: Inference Step7: After inference, the mean and standard deviation of the approximated posterior $q(X) \sim p(X | y)$ will be stored in the parameters X_loc and X_scale. To get a sample from $q(X)$, we need to set the mode of gplvm to "guide". Step8: Visualizing the result
<ASSISTANT_TASK:> Python Code: import os import matplotlib.pyplot as plt import pandas as pd import torch from torch.nn import Parameter import pyro import pyro.contrib.gp as gp import pyro.distributions as dist import pyro.ops.stats as stats smoke_test = ('CI' in os.environ) # ignore; used to check code integrity in the Pyro repo assert pyro.__version__.startswith('1.7.0') pyro.set_rng_seed(1) # license: Copyright (c) 2014, the Open Data Science Initiative # license: https://www.elsevier.com/legal/elsevier-website-terms-and-conditions URL = "https://raw.githubusercontent.com/sods/ods/master/datasets/guo_qpcr.csv" df = pd.read_csv(URL, index_col=0) print("Data shape: {}\n{}\n".format(df.shape, "-" * 21)) print("Data labels: {}\n{}\n".format(df.index.unique().tolist(), "-" * 86)) print("Show a small subset of the data:") df.head() data = torch.tensor(df.values, dtype=torch.get_default_dtype()) # we need to transpose data to correct its shape y = data.t() capture_time = y.new_tensor([int(cell_name.split(" ")[0]) for cell_name in df.index.values]) # we scale the time into the interval [0, 1] time = capture_time.log2() / 6 # we setup the mean of our prior over X X_prior_mean = torch.zeros(y.size(1), 2) # shape: 437 x 2 X_prior_mean[:, 0] = time kernel = gp.kernels.RBF(input_dim=2, lengthscale=torch.ones(2)) # we clone here so that we don't change our prior during the course of training X = Parameter(X_prior_mean.clone()) # we will use SparseGPRegression model with num_inducing=32; # initial values for Xu are sampled randomly from X_prior_mean Xu = stats.resample(X_prior_mean.clone(), 32) gplvm = gp.models.SparseGPRegression(X, y, kernel, Xu, noise=torch.tensor(0.01), jitter=1e-5) # we use `.to_event()` to tell Pyro that the prior distribution for X has no batch_shape gplvm.X = pyro.nn.PyroSample(dist.Normal(X_prior_mean, 0.1).to_event()) gplvm.autoguide("X", dist.Normal) # note that training is expected to take a minute or so losses = gp.util.train(gplvm, num_steps=4000) # let's plot the loss curve after 4000 steps of training plt.plot(losses) plt.show() gplvm.mode = "guide" X = gplvm.X # draw a sample from the guide of the variable X plt.figure(figsize=(8, 6)) colors = plt.get_cmap("tab10").colors[::-1] labels = df.index.unique() X = gplvm.X_loc.detach().numpy() for i, label in enumerate(labels): X_i = X[df.index == label] plt.scatter(X_i[:, 0], X_i[:, 1], c=[colors[i]], label=label) plt.legend() plt.xlabel("pseudotime", fontsize=14) plt.ylabel("branching", fontsize=14) plt.title("GPLVM on Single-Cell qPCR data", fontsize=16) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: I. Python Overview Step2: (If you're typing this into an IPython notebook, or otherwise using notebook file, you hit shift-Enter to evaluate a cell.) Step3: or you can simply import the math library itself Step4: You can define variables using the equals (=) sign Step5: You can name a variable almost anything you want. It needs to start with an alphabetical character or "_", can contain alphanumeric characters plus underscores ("_"). Certain words, however, are reserved for the language Step6: The Python Tutorial has more on using Python as an interactive shell. The IPython tutorial makes a nice complement to this, since IPython has a much more sophisticated iteractive shell. Step7: or double quotes Step8: Just like the other two data objects we're familiar with (ints and floats), you can assign a string to a variable Step9: The print statement is often used for printing character strings Step10: But it can also print data types other than strings Step11: In the above snipped, the number 600 (stored in the variable "area") is converted into a string before being printed out. Step12: If you have a lot of words to concatenate together, there are other, more efficient ways to do this. But this is fine for linking a few strings together. Step13: You can access members of the list using the index of that item Step14: Python lists, like C, but unlike Fortran, use 0 as the index of the first element of a list. Thus, in this example, the 0 element is "Sunday", 1 is "Monday", and so on. If you need to access the nth element from the end of the list, you can use a negative index. For example, the -1 element of a list is the last element Step15: You can add additional items to the list using the .append() command Step16: The range() command is a convenient way to make sequential lists of numbers Step17: Note that range(n) starts at 0 and gives the sequential list of integers less than n. If you want to start at a different number, use range(start,stop) Step18: The lists created above with range have a step of 1 between elements. You can also give a fixed step size via a third command Step19: Lists do not have to hold the same data type. For example, Step20: However, it's good (but not essential) to use lists for similar objects that are somehow logically connected. If you want to group different data types together into a composite data object, it's best to use tuples, which we will learn about below. Step21: Iteration, Indentation, and Blocks Step22: This code snippet goes through each element of the list called days_of_the_week and assigns it to the variable day. It then executes everything in the indented block (in this case only one line of code, the print statement) using those variable assignments. When the program has gone through every element of the list, it exists the block. Step23: The range() command is particularly useful with the for statement to execute loops of a specified length Step24: Slicing Step25: This is only occasionally useful. Slightly more useful is the slicing operation, which you can also use on any sequence. We already know that we can use indexing to get the first element of a list Step26: If we want the list containing the first two elements of a list, we can do this via Step27: or simply Step28: If we want the last items of the list, we can do this with negative slicing Step29: which is somewhat logically consistent with negative indices accessing the last elements of the list. Step30: Since strings are sequences, you can also do this to them Step31: If we really want to get fancy, we can pass a third element into the slice, which specifies a step length (just like a third argument to the range() function specifies the step) Step32: Note that in this example I was even able to omit the second argument, so that the slice started at 2, went to the end of the list, and took every second element, to generate the list of even numbers less that 40. Step33: (Quick quiz Step34: If we evaluate it by itself, as we just did, we see that it returns a boolean value, False. The "==" operator performs equality testing. If the two items are equal, it returns True, otherwise it returns False. In this case, it is comparing two variables, the string "Sunday", and whatever is stored in the variable "day", which, in this case, is the other string "Saturday". Since the two strings are not equal to each other, the truth test has the false value. Step35: We see a few other boolean operators here, all of which which should be self-explanatory. Less than, equality, non-equality, and so on. Step36: We can do boolean tests on lists as well Step37: Finally, note that you can also string multiple comparisons together, which can result in very intuitive tests Step38: If statements can have elif parts ("else if"), in addition to if/else parts. For example Step39: Of course we can combine if statements with for loops, to make a snippet that is almost interesting Step40: This is something of an advanced topic, but ordinary data types have boolean values associated with them, and, indeed, in early versions of Python there was not a separate boolean object. Essentially, anything that was a 0 value (the integer or floating point 0, an empty string "", or an empty list []) was False, and everything else was true. You can see the boolean value of any data object using the bool() function. Step41: Code Example Step42: Let's go through this line by line. First, we define the variable n, and set it to the integer 20. n is the length of the sequence we're going to form, and should probably have a better variable name. We then create a variable called sequence, and initialize it to the list with the integers 0 and 1 in it, the first two elements of the Fibonacci sequence. We have to create these elements "by hand", since the iterative part of the sequence requires two previous elements. Step43: We can now call fibonacci() for different sequence_lengths Step44: We've introduced a several new features here. First, note that the function itself is defined as a code block (a colon followed by an indented block). This is the standard way that Python delimits things. Next, note that the first line of the function is a single string. This is called a docstring, and is a special kind of comment that is often available to people using the function through the python command line Step45: If you define a docstring for all of your functions, it makes it easier for other people to use them, since they can get help on the arguments and return values of the function. Step46: Tuples are like lists, in that you can access the elements using indices Step47: However, tuples are immutable, you can't append to them or change the elements of them Step48: Tuples are useful anytime you want to group different pieces of data together in an object, but don't want to create a full-fledged class (see below) for them. For example, let's say you want the Cartesian coordinates of some objects in your program. Tuples are a good way to do this Step49: Again, it's not a necessary distinction, but one way to distinguish tuples and lists is that tuples are a collection of different things, here a name, and x and y coordinates, whereas a list is a collection of similar things, like if we wanted a list of those coordinates Step50: Tuples can be used when functions return more than one value. Say we wanted to compute the smallest x- and y-coordinates of the above list of objects. We could write Step51: Dictionaries are an object called "mappings" or "associative arrays" in other languages. Whereas a list associates an integer index with a set of objects Step52: The index in a dictionary is called the key, and the corresponding dictionary entry is the value. A dictionary can use (almost) anything as the key. Whereas lists are formed with square brackets [], dictionaries use curly brackets {} Step53: There's also a convenient way to create dictionaries without having to quote the keys. Step54: The len() command works on both tuples and dictionaries Step55: Conclusion of the Python Overview Step56: No matter how experienced a programmer you are, these are words to meditate on. Step57: size of the array Step58: To build matrices, you can either use the array command with lists of lists Step59: Add a column of ones to mat Step60: size of a matrix Step61: You can also form empty (zero) matrices of arbitrary shape (including vectors, which Numpy treats as vectors with one row), using the zeros command Step62: There's also an identity command that behaves as you'd expect Step63: as well as a ones command. Step64: If you provide a third argument, it takes that as the number of points in the space. If you don't provide the argument, it gives a length 50 linear space. Step65: linspace is an easy way to make coordinates for plotting. Functions in the numpy library (all of which are imported into IPython notebook) can act on an entire vector (or even a matrix) of points at once. Thus, Step66: In conjunction with matplotlib, this is a nice way to plot things Step67: Matrix operations Step68: as well as when you add two matrices together. (However, the matrices have to be the same shape.) Step69: Something that confuses Matlab users is that the times (*) operator give element-wise multiplication rather than matrix multiplication Step70: To get matrix multiplication, you need the dot command Step71: dot can also do dot products (duh!) Step72: as well as matrix-vector products. Step73: There's also a diag() function that takes a list or a vector and puts it along the diagonal of a square matrix. Step75: We'll find this useful later on. Step76: There's a section below on parsing CSV data. We'll steal the parser from that. For an explanation, skip ahead to that section. Otherwise, just assume that this is a way to parse that text into a numpy array that we can plot and do other analyses with. Step77: Since we expect the data to have an exponential decay, we can plot it using a semi-log plot. Step78: For a pure exponential decay like this, we can fit the log of the data to a straight line. The above plot suggests this is a good approximation. Given a function Step79: Let's see whether this curve fits the data. Step81: If we have more complicated functions, we may not be able to get away with fitting to a simple polynomial. Consider the following data Step82: This data looks more Gaussian than exponential. If we wanted to, we could use polyfit for this as well, but let's use the curve_fit function from Scipy, which can fit to arbitrary functions. You can learn more using help(curve_fit). Step83: Now fit to it using curve_fit Step84: The curve_fit routine we just used is built on top of a very good general minimization capability in Scipy. You can learn more at the scipy documentation pages. Step85: random() uses the Mersenne Twister algorithm, which is a highly regarded pseudorandom number generator. There are also functions to generate random integers, to randomly shuffle a list, and functions to pick random numbers from a particular distribution, like the normal distribution Step86: It is generally more efficient to generate a list of random numbers all at once, particularly if you're drawing from a non-uniform distribution. Numpy has functions to generate vectors and matrices of particular types of random distributions. Step87: III. Introduction to Pandas Step88: Series Step89: Get the array representation of a Series Step90: Index objects are immutable and hold the axis labels and metadata such as names and axis names. Step91: Create a Series with a custom index Step92: Get a value from a Series Step93: Get a set of values from a Series by passing in a list Step94: Get values great than 0 Step95: Scalar multiply Step96: Apply a numpy math function Step97: A Series is like a fixed-length, ordered dict. Step98: Re-order a Series by passing in an index (indices not found are NaN) Step99: Check for NaN with the pandas method Step100: Check for NaN with the Series method Step101: Series automatically aligns differently indexed data in arithmetic operations Step102: Name a Series Step103: Name a Series index Step104: Rename a Series' index in place Step105: DataFrame Step106: Like Series, columns that are not present in the data are NaN Step107: Retrieve a column by key, returning a Series Step108: Retrive a column by attribute, returning a Series Step109: Retrieve a row by position Step110: Update a column by assignment Step111: Assign a Series to a column (note if assigning a list or array, the length must match the DataFrame, unlike a Series) Step112: Assign a new column that doesn't exist to create a new column Step113: Delete a column Step114: Transpose the DataFrame Step115: Create a DataFrame from a nested dict of dicts (the keys in the inner dicts are unioned and sorted to form the index in the result, unless an explicit index is specified) Step116: Create a DataFrame from a dict of Series Step117: Set the DataFrame index name Step118: Set the DataFrame columns name Step119: Return the data contained in a DataFrame as a 2D ndarray Step120: If the columns are different dtypes, the 2D ndarray's dtype will accomodate all of the columns Step121: Reindexing Step122: Reindexing rows returns a new frame with the specified index Step123: Reindex columns Step124: Dropping Entries Step125: Indexing, Selecting, Filtering Step126: Select specified columns from a DataFrame Step127: Select a slice from a DataFrame Step128: Select from a DataFrame based on a filter Step129: Select a slice of rows from a specific column of a DataFrame Step130: Arithmetic and Data Alignment Step131: Set a fill value instead of NaN for indices that do not overlap Step132: Like NumPy, pandas supports arithmetic operations between DataFrames and Series. Step133: Match the index of the Series on the DataFrame's columns, broadcasting down the rows and union the indices that do not match Step134: Function Application and Mapping Step135: Apply a function on 1D arrays to each column Step136: Apply a function on 1D arrays to each row Step137: Apply an element-wise Python function to a DataFrame Step138: Sorting Step139: Sort a DataFrame by its index Step140: Sort a DataFrame by columns in descending order Step141: Sort a DataFrame's values by column Step142: Summarizing and Computing Descriptive Statistics Step143: Sum and Mean Step144: Descriptive analysis Step145: Pivot tables
<ASSISTANT_TASK:> Python Code: import sys print('Python version:', sys.version) import IPython print('IPython:', IPython.__version__) import numpy print('numpy:', numpy.__version__) import scipy print('scipy:', scipy.__version__) import matplotlib print('matplotlib:', matplotlib.__version__) import pandas print('pandas:', pandas.__version__) import sklearn print('scikit-learn:', sklearn.__version__) 2+2 (50-5*6)/4 sqrt(81) from math import sqrt sqrt(81) import math math.sqrt(81) radius = 20 pi = math.pi area = pi * radius ** 2 area return = 0 'Hello, World!' "Hello, World!" greeting = "Hello, World!" print(greeting) print("The area is " + area) print("The area is " + str(area)) statement = "Hello, " + "World!" print(statement) days_of_the_week = ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"] days_of_the_week[2] days_of_the_week[-1] languages = ["Fortran","C","C++"] languages.append("Python") print(languages) list(range(10)) list(range(2,8)) evens = list(range(0,20,2)) evens evens[3] ["Today",7,99.3,""] help(len) len(evens) for day in days_of_the_week: print(day) for day in days_of_the_week: statement = "Today is " + day print(statement) for i in range(20): print("The square of ",i," is ",i*i) for letter in "Sunday": print(letter) days_of_the_week[0] days_of_the_week[0:2] days_of_the_week[:2] days_of_the_week[-2:] workdays = days_of_the_week[1:6] print(workdays) day = "Sunday" abbreviation = day[:3] print(abbreviation) numbers = list(range(0,40)) evens = numbers[2::2] evens if day == "Sunday": print("Sleep in") else: print("Go to work") day == "Sunday" 1 == 2 50 == 2*25 3 < 3.14159 1 == 1.0 1 != 0 1 <= 2 1 >= 1 1 is 1.0 [1,2,3] == [1,2,4] [1,2,3] < [1,2,4] hours = 5 0 < hours < 24 if day == "Sunday": print("Sleep in") elif day == "Saturday": print("Do chores") else: print("Go to work") for day in days_of_the_week: statement = "Today is " + day print(statement) if day == "Sunday": print(" Sleep in") elif day == "Saturday": print(" Do chores") else: print(" Go to work") bool(1) bool(0) bool(["This "," is "," a "," list"]) n = 10 sequence = [0,1] for i in range(2,n): # This is going to be a problem if we ever set n <= 2! sequence.append(sequence[i-1]+sequence[i-2]) print(sequence) def fibonacci(sequence_length): "Return the Fibonacci sequence of length *sequence_length*" sequence = [0,1] if sequence_length < 1: print("Fibonacci sequence only defined for length 1 or greater") return if 0 < sequence_length < 3: return sequence[:sequence_length] for i in range(2,sequence_length): sequence.append(sequence[i-1]+sequence[i-2]) return sequence fibonacci(2) fibonacci(12) help(fibonacci) t = (1,2,'hi',9.0) t t[1] t.append(7) t[1]=77 ('Bob',0.0,21.0) positions = [ ('Bob',0.0,21.0), ('Cat',2.5,13.1), ('Dog',33.0,1.2) ] def minmax(objects): minx = 1e20 # These are set to really big numbers miny = 1e20 for obj in objects: name,x,y = obj if x < minx: minx = x if y < miny: miny = y return minx,miny x,y = minmax(positions) print(x,y) mylist = [1,2,9,21] ages = {"Rick": 46, "Bob": 86, "Fred": 21} print("Rick's age is ",ages["Rick"]) dict(Rick=46,Bob=86,Fred=20) len(t) len(ages) import this import numpy as np import scipy as sp array = np.array([1,2,3,4,5,6]) array array.shape mat = np.array([[0,1],[1,0]]) mat mat2 = np.c_[mat, np.ones(2)] mat2 mat2.shape np.zeros((3,3)) np.identity(4) np.linspace(0,1) np.linspace(0,1,11) x = np.linspace(0,2*np.pi) np.sin(x) %matplotlib inline import matplotlib.pyplot as plt plt.style.use('ggplot') plt.plot(x,np.sin(x)) 0.125*np.identity(3) np.identity(2) + np.array([[1,1],[1,2]]) np.identity(2)*np.ones((2,2)) np.dot(np.identity(2),np.ones((2,2))) v = np.array([3,4]) np.sqrt(np.dot(v,v)) m = np.array([[1,2],[3,4]]) m.T np.linalg.inv(m) np.diag([1,2,3,4,5]) raw_data = \ 3.1905781584582433,0.028208609537968457 4.346895074946466,0.007160804747670053 5.374732334047101,0.0046962988461934805 8.201284796573875,0.0004614473299618756 10.899357601713055,0.00005038370219939726 16.295503211991434,4.377451812785309e-7 21.82012847965739,3.0799922117601088e-9 32.48394004282656,1.524776208284536e-13 43.53319057815846,5.5012073588707224e-18 data = [] for line in raw_data.splitlines(): words = line.split(',') data.append(words) data = np.array(data, dtype=np.float) data data[:, 0] plt.title("Raw Data") plt.xlabel("Distance") plt.plot(data[:,0],data[:,1],'bo') plt.title("Raw Data") plt.xlabel("Distance") plt.semilogy(data[:,0],data[:,1],'bo') params = sp.polyfit(data[:,0],np.log(data[:,1]),1) a = params[0] A = np.exp(params[1]) x = np.linspace(1,45) plt.title("Raw Data") plt.xlabel("Distance") plt.semilogy(data[:,0],data[:,1],'bo') plt.semilogy(x,A*np.exp(a*x),'b-') gauss_data = \ -0.9902286902286903,1.4065274110372852e-19 -0.7566104566104566,2.2504438576596563e-18 -0.5117810117810118,1.9459459459459454 -0.31887271887271884,10.621621621621626 -0.250997150997151,15.891891891891893 -0.1463309463309464,23.756756756756754 -0.07267267267267263,28.135135135135133 -0.04426734426734419,29.02702702702703 -0.0015939015939017698,29.675675675675677 0.04689304689304685,29.10810810810811 0.0840994840994842,27.324324324324326 0.1700546700546699,22.216216216216214 0.370878570878571,7.540540540540545 0.5338338338338338,1.621621621621618 0.722014322014322,0.08108108108108068 0.9926849926849926,-0.08108108108108646 data = [] for line in gauss_data.splitlines(): words = line.split(',') data.append(words) data = np.array(data, dtype=np.float) plt.plot(data[:,0],data[:,1],'bo') def gauss(x,A,a): return A*np.exp(a*x**2) from scipy.optimize import curve_fit params,conv = curve_fit(gauss,data[:,0],data[:,1]) x = np.linspace(-1,1) plt.plot(data[:,0],data[:,1],'bo') A,a = params plt.plot(x,gauss(x,A,a),'g-') from random import random rands = [] for i in range(100): rands.append(random()) plt.plot(rands) from random import gauss grands = [] for i in range(100): grands.append(gauss(0,1)) plt.plot(grands) plt.plot(np.random.rand(100)) import pandas as pd import numpy as np ser_1 = pd.Series([1, 1, 2, -3, -5, 8, 13]) ser_1 ser_1.values ser_1.index ser_2 = pd.Series([1, 1, 2, -3, -5], index=['a', 'b', 'c', 'd', 'e']) ser_2 ser_2[4] == ser_2['e'] ser_2[['c', 'a', 'b']] ser_2[ser_2 > 0] ser_2 * 2 np.exp(ser_2) dict_1 = {'foo' : 100, 'bar' : 200, 'baz' : 300} ser_3 = pd.Series(dict_1) ser_3 index = ['foo', 'bar', 'baz', 'qux'] ser_4 = pd.Series(dict_1, index=index) ser_4 pd.isnull(ser_4) ser_4.isnull() ser_3 + ser_4 ser_4.name = 'foobarbazqux' ser_4.index.name = 'label' ser_4 ser_4.index = ['fo', 'br', 'bz', 'qx'] ser_4 data_1 = {'state' : ['VA', 'VA', 'VA', 'MD', 'MD'], 'year' : [2012, 2013, 2014, 2014, 2015], 'pop' : [5.0, 5.1, 5.2, 4.0, 4.1]} df_1 = pd.DataFrame(data_1) df_1 df_2 = pd.DataFrame(data_1, columns=['year', 'state', 'pop']) df_2 df_3 = pd.DataFrame(data_1, columns=['year', 'state', 'pop', 'unempl']) df_3 df_3['state'] df_3.year df_3.iloc[0] df_3['unempl'] = np.arange(5) df_3 unempl = pd.Series([6.0, 6.0, 6.1], index=[2, 3, 4]) df_3['unempl'] = unempl df_3 df_3['state_dup'] = df_3['state'] df_3 del df_3['state_dup'] df_3 df_3.T pop = {'VA' : {2013 : 5.1, 2014 : 5.2}, 'MD' : {2014 : 4.0, 2015 : 4.1}} df_4 = pd.DataFrame(pop) df_4 data_2 = {'VA' : df_4['VA'][1:], 'MD' : df_4['MD'][2:]} df_5 = pd.DataFrame(data_2) df_5 df_5.index.name = 'year' df_5 df_5.columns.name = 'state' df_5 df_5.values df_3.values df_3 df_3.reindex(list(reversed(range(0, 6)))) df_3.reindex(columns=['state', 'pop', 'unempl', 'year']) df_7 = df_3.drop([0, 1]) df_7 df_7 = df_7.drop('unempl', axis=1) df_7 df_3 df_3[['pop', 'unempl']] df_3[:2] df_3.iloc[1:3] df_3[df_3['pop'] > 5] df_3.loc[0:2, 'pop'] df_3 np.random.seed(0) df_8 = pd.DataFrame(np.random.rand(9).reshape((3, 3)), columns=['a', 'b', 'c']) df_8 np.random.seed(1) df_9 = pd.DataFrame(np.random.rand(9).reshape((3, 3)), columns=['b', 'c', 'd']) df_9 df_8 + df_9 df_10 = df_8.add(df_9, fill_value=0) df_10 ser_8 = df_10.iloc[0] df_11 = df_10 - ser_8 df_11 ser_9 = pd.Series(range(3), index=['a', 'd', 'e']) ser_9 df_11 - ser_9 df_11 = np.abs(df_11) df_11 df_11.apply(sum) df_11.apply(sum, axis=1) def func_3(x): return '%.2f' %x df_11.applymap(func_3) df_12 = pd.DataFrame(np.arange(12).reshape((3, 4)), index=['three', 'one', 'two'], columns=['c', 'a', 'b', 'd']) df_12 df_12.sort_index() df_12.sort_index(axis=1, ascending=False) df_12.sort_values(by=['d', 'c']) df_15 = pd.DataFrame(np.random.randn(10, 3), columns=['a', 'b', 'c']) df_15['cat1'] = (np.random.rand(10) * 3).round(0) df_15['cat2'] = (np.random.rand(10)).round(0) df_15 df_15.sum() df_15.sum(axis=1) df_15.mean(axis=0) df_15['a'].describe() df_15['cat1'].value_counts() pd.pivot_table(df_15, index='cat1', aggfunc=np.mean) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: or from GitHub for the latest version. Step2: Demo Starts Step3: Simple Metrics Step4: Count Step5: Dot (inner product) Step6: It can also be normalized. Step7: Max Step8: Min Step9: Mean Step10: Weighted Mean Step11: Quantile Step12: Interpolation Step13: Weighted Quantile Step14: Variance Step15: Biased Variance Step16: Weighted Variance Step17: Standard Deviation Step18: Biased Standard Deviation Step19: Weighted Standard Deviation Step20: Coefficient of Variation Step21: Correlation Step22: Weighted Correlation Step23: Covariance Step24: Weighted Covariance Step25: Slicing Step26: Multiple Metrics Step27: Arithmetic of Metrics Step28: Divide Step29: Ratio Step30: We also support many other common arithmetic operations. Step31: Output Format Step32: Operations Step33: It's equal to Step34: Distribution has an alias Normalize. Step35: Cumulative Distribution Step36: PercentChange Step37: You can include the base group in your result. Step38: You can also specify multiple columns as the condition columns, then your base value should be a tuple. Step39: Absolute Change Step40: You can also include the base group in your result. Step41: Cochran-Mantel-Haenszel statistics Step42: CUPED Step43: CUPED essentially fits a linear model of Postperiod metric ~ 1 + preperiod metric and uses it to control for the variance in the preperiod. Step44: We can see that CUPED's result is similar to the absolute change but has smaller variance. Step45: PrePostChange Step46: Standard Errors Step47: You can also specify a confidence level, the we'll return the confidence interval. The returned DataFrame also comes with a display() method for visualization which will highlight significant changes. To customize the display(), please take a look at confidence_interval_display_demo.ipynb. Step48: Bootstrap Step49: Models Step50: Linear Regression Step51: What Model(y, x, groupby).compute_on(data) does is Step52: Ridge Regression Step53: Lasso Regression Step54: Logistic Regression Step55: If y is not binary, by default a multinomal model is fitted. The behavior can be controlled via the 'multinomial' arg. Step56: Classes are the unique values of y. Step57: Wrapping sklearn models into Meterstick provides the ability to combine Models with other built-in Metrics and Operations. For example, you can Jackknife the Model to get the uncertainty of coefficients. Step58: Pipeline Step59: It's equivalent to Step60: SQL Step61: Custom Metric Step62: CustomSum doesn't have vectorization. It loops through the DataFrame and sum on every slice. As the result, it's slower than vectorized summation. Step63: With Vectorization Step64: Precompute, postcompute and final_compute Step65: Overwrite using Lambda Functions Step67: Custom Operation Step68: SQL Generation Step70: For an Operation, you ususally call the child metrics' get_sql_and_with_clause() to get the subquery you need. Step71: Caching Step72: Now let's see what heppens if we reuse sum_clicks. Step73: Then sum_clicks only gets computed once. For Metics that are not quite compatible, you can still put them in a MeticList and set return_dataframe to False to maximize the caching. Step74: If you really cannot compute Metrics together, you can use a cache_key. Step75: The resulte are cached in ctr, a composite Metric, as well as its children, the Sum Metrics. Step76: You can flush the cache by calling flush_cache(key, split_by=None, recursive=True, prune=True), where "recursive" means if you want to flush the cache of the children Metrics as well, and "prune" means if the key is not found in current Metric, do you still want to flush the children Metrics or stop early. It's useful when a high level Metric appears in several places then during the flushing we will hit it multiple times. We can save time by stop early. Step77: Though ctr's cache has been flushed, we can still compute ctr from cache because all its children are cached. Step78: We won't be able to re-compute ctr if we recursively flush its cache. Step79: However, the behavior becomes subtle when Operation is involved. Step80: Note that it's sum_clicks.compute_on(df, 'country') instead of sum_clicks.compute_on(df) got saved in the cache. The reason is we need the former not the latter to compute the PercentChange. Using sum_clicks.compute_on(df, cache_key=42) will always give you the right result so it's not a big issue, just might confuse you sometime. Step81: Advanced Examples Step82: Difference in differences Step83: Compare the standard errors between Jackknife and Bootstrap Step86: Linear Regression Step87: LOWESS Step88: Coefficient Shrikage
<ASSISTANT_TASK:> Python Code: !pip install meterstick !git clone https://github.com/google/meterstick.git import sys, os sys.path.append(os.getcwd()) import matplotlib.pyplot as plt import numpy as np import pandas as pd from meterstick import * np.random.seed(42) platform = ('Desktop', 'Mobile', 'Tablet') exprs = ('ctrl', 'expr') country = ('US', 'non-US') size = 1000 impressions = np.random.randint(10, 20, size) clicks = impressions * 0.1 * np.random.random(size) df = pd.DataFrame({'impressions': impressions, 'clicks': clicks}) df['platform'] = np.random.choice(platform, size=size) df['expr_id'] = np.random.choice(exprs, size=size) df['country'] = np.random.choice(country, size=size) df['cookie'] = np.random.choice(range(5), size=size) df.loc[df.country == 'US', 'clicks'] *= 2 df.loc[(df.country == 'US') & (df.platform == 'Desktop'), 'impressions'] *= 4 df.head() Sum('clicks').compute_on(df) Count('country').compute_on(df) Count('country', distinct=True).compute_on(df) Dot('clicks', 'impressions').compute_on(df) Dot('clicks', 'clicks', True).compute_on(df) Max('clicks').compute_on(df) Min('clicks').compute_on(df) Mean('clicks').compute_on(df) Mean('clicks', 'impressions').compute_on(df) Quantile('clicks').compute_on(df) # Default is median. Quantile('clicks', 0.2).compute_on(df) Quantile('clicks', (0.2, 0.5)).compute_on(df) # Quantile can take multiple quantiles. Quantile('clicks', 0.5, interpolation='higher').compute_on(df) Quantile('clicks', weight='impressions').compute_on(df) Variance('clicks').compute_on(df) Variance('clicks', unbiased=False).compute_on(df) Variance('clicks', weight='impressions').compute_on(df) StandardDeviation('clicks').compute_on(df) StandardDeviation('clicks', False).compute_on(df) StandardDeviation('clicks', weight='impressions').compute_on(df) CV('clicks').compute_on(df) Correlation('clicks', 'impressions').compute_on(df) Correlation('clicks', 'impressions', weight='impressions').compute_on(df) Cov('clicks', 'impressions').compute_on(df) Cov('clicks', 'impressions', weight='impressions').compute_on(df) Sum('clicks').compute_on(df, 'country') Mean('clicks').compute_on(df, ['platform', 'country']) MetricList((Sum('clicks'), Count('clicks'))).compute_on(df) (Sum('clicks') + 1).compute_on(df) sum((Sum('clicks'), Sum('impressions'), 1)).compute_on(df) sum((Sum('clicks'), Sum('impressions'), 1)).set_name('meaningless sum').compute_on(df) (Sum('clicks') / Sum('impressions')).compute_on(df) Ratio('clicks', 'impressions', 'ctr').compute_on(df) MetricList( (Sum('clicks') - 1, -Sum('clicks'), 2 * Sum('clicks'), Sum('clicks')**2, 2**Mean('clicks'), (Mean('impressions')**Mean('clicks')).set_name('meaningless power')) ).compute_on(df, melted=True) Sum('clicks').compute_on(df, return_dataframe=False) Count('clicks').compute_on(df, ['platform', 'country'], return_dataframe=False) Mean('clicks').compute_on(df, melted=True) MetricList((Sum('clicks'), Count('clicks'))).compute_on(df, 'country') Quantile('clicks', [0.2, 0.7]).compute_on(df, 'country', melted=True) # Don't worry. We will talk more about the pipeline operator "|" later. (MetricList((Sum('clicks'), Count('clicks'))) | Jackknife('cookie') | compute_on(df, 'country')) (MetricList((Sum('clicks'), Count('clicks'))) | Bootstrap(n_replicates=100) | compute_on(df, 'country', melted=True)) Distribution('country', Sum('clicks')).compute_on(df) (Sum('clicks').compute_on(df, 'country') / Sum('clicks').compute_on(df, return_dataframe=False)) Normalize('country', Sum('clicks')).compute_on(df) CumulativeDistribution('country', MetricList( (Sum('clicks'), Sum('impressions')))).compute_on(df) CumulativeDistribution( 'country', Sum('clicks'), order=('non-US', 'US')).compute_on(df, 'platform') CumulativeDistribution( 'country', MetricList((Sum('clicks'), Sum('impressions'))) ).compute_on(df, melted=True) PercentChange('country', 'US', Mean('clicks')).compute_on(df) mean = Mean('clicks').compute_on(df, 'country') (mean.loc['non-US'] / mean.loc['US'] - 1) * 100 PercentChange( 'country', 'US', MetricList((Count('clicks'), Count('impressions'))), include_base=True).compute_on(df, 'platform') PercentChange( ['country', 'platform'], ('US', 'Desktop'), MetricList((Count('clicks'), Count('impressions'))), include_base=True).compute_on(df) AbsoluteChange('country', 'US', Mean('clicks')).compute_on(df) AbsoluteChange( 'country', 'US', Count('clicks'), include_base=True).compute_on( df, 'platform', melted=True) ctr = Ratio('clicks', 'impressions') MH('country', 'US', 'platform', ctr).compute_on(df) # stratified by platform np.random.seed(42) exprs = ('ctrl', 'expr') n = 10000 df_prepost = pd.DataFrame({'impressions': np.random.randint(10, 30, n)}) df_prepost['expr_id'] = np.random.choice(exprs, size=n) df_prepost['cookie'] = np.random.choice(range(20), size=n) # Preperiod correlates with postperiod. df_prepost['pre_impressions'] = np.random.normal(df_prepost.impressions, 3) # Add small and noisy improvments. df_prepost.loc[df_prepost.expr_id == 'expr', 'impressions'] += np.random.randint(-2, 4, size=len(df_prepost.loc[df_prepost.expr_id == 'expr', 'impressions'])) abs = AbsoluteChange('expr_id', 'ctrl', Mean('impressions')) cuped = CUPED('expr_id', 'ctrl', Mean('impressions'), Mean('pre_impressions'), 'cookie') MetricList((abs, cuped)).compute_on(df_prepost) from sklearn import linear_model df_agg = MetricList((Mean('impressions'), Mean('pre_impressions'))).compute_on(df_prepost, ['expr_id', 'cookie']) lm = linear_model.LinearRegression() lm.fit(df_agg[['mean(pre_impressions)']], df_agg['mean(impressions)']) theta = lm.coef_[0] df_agg['adjusted'] = df_agg['mean(impressions)'] - theta * df_agg['mean(pre_impressions)'] adjusted = df_agg.groupby('expr_id').adjusted.mean() adjusted['expr'] - adjusted['ctrl'] from plotnine import ggplot, aes, geom_density, after_stat, facet_grid data_to_plot = pd.concat([df_agg['mean(impressions)'], df_agg.adjusted], keys=['Raw', 'CUPED'], names=['Adjusted']) data_to_plot = pd.DataFrame(data_to_plot, columns=['Value']).reset_index() ( ggplot(data_to_plot) + aes(x="Value", y=after_stat('density'), color='expr_id') + geom_density() + facet_grid('Adjusted ~ .') ) # Jackknife is explained in the 'Standard Errors' section. Jackknife('cookie', MetricList((abs, cuped))).compute_on(df_prepost) # It's possible to control for multiple metrics. CUPED('expr_id', 'ctrl', Mean('impressions'), [Mean('pre_impressions'), Mean('pre_impressions')**2], 'cookie').compute_on(df_prepost) pct = PercentChange('expr_id', 'ctrl', Mean('impressions')) prepost = PrePostChange('expr_id', 'ctrl', Mean('impressions'), Mean('pre_impressions'), 'cookie') MetricList((pct, prepost)).compute_on(df_prepost) df_agg = MetricList((Mean('impressions'), Mean('pre_impressions'))).compute_on( df_prepost, ['expr_id', 'cookie']).reset_index() df_agg['mean(pre_impressions)'] -= df_agg['mean(pre_impressions)'].mean() df_agg['is_treated'] = df_agg.expr_id == 'expr' df_agg['interaction'] = df_agg.is_treated * df_agg['mean(pre_impressions)'] lm = linear_model.LinearRegression() lm.fit(df_agg[['is_treated', 'mean(pre_impressions)', 'interaction']], df_agg['mean(impressions)']) beta1 = lm.intercept_ beta2 = lm.coef_[0] beta2 / beta1 * 100 # Jackknife is explained in the 'Standard Errors' section. Jackknife('cookie', MetricList((pct, prepost))).compute_on(df_prepost) Jackknife('cookie', MetricList((Sum('clicks'), Sum('impressions')))).compute_on(df) metrics = MetricList((Sum('clicks'), Sum('impressions'))) Jackknife('cookie', metrics).compute_on(df, 'country', True) Jackknife('cookie', metrics, 0.9).compute_on(df) res = ( MetricList((Ratio('clicks', 'impressions', 'ctr'), Sum('clicks'))) | PercentChange('country', 'US') | Jackknife('cookie', confidence=0.9) | compute_on(df, 'platform')) res.display() np.random.seed(42) Bootstrap(None, Sum('clicks'), 100).compute_on(df) np.random.seed(42) Bootstrap('cookie', Sum('clicks'), 100).compute_on(df, 'country') np.random.seed(42) Bootstrap('cookie', Sum('clicks'), 100, 0.95).compute_on(df, 'country') np.random.seed(42) res = ( MetricList((Ratio('clicks', 'impressions', 'ctr'), Sum('impressions'))) | AbsoluteChange('country', 'US') | Bootstrap(None, n_replicates=100, confidence=0.9) | compute_on(df, 'platform')) res.display() from meterstick.models import * m = LinearRegression(Mean('clicks'), Mean('impressions'), 'platform') m.compute_on(df) from sklearn import linear_model x = Mean('impressions').compute_on(df, 'platform') y = Mean('clicks').compute_on(df, 'platform') m = linear_model.LinearRegression().fit(x, y) print(m.coef_, m.intercept_) # x can also be a list of Metrics or a MetricList. m = Ridge( Mean('clicks'), [Mean('impressions'), Variance('clicks')], 'platform', alpha=2) m.compute_on(df, melted=True) m = Lasso( Mean('clicks'), Mean('impressions'), 'platform', fit_intercept=False, alpha=5) m.compute_on(df, 'country') m = LogisticRegression(Count('clicks'), Mean('impressions'), 'country') m.compute_on(df, melted=True) m = LogisticRegression(Count('clicks'), Mean('impressions'), 'platform', name='LR') m.compute_on(df, melted=True) Count('clicks').compute_on(df, 'platform') (LinearRegression( Mean('clicks'), [Mean('impressions'), Variance('impressions')], 'country', name='lm') | AbsoluteChange('platform', 'Desktop') | Jackknife('cookie', confidence=0.9) | compute_on(df)).display() clicks_us = Sum('clicks', where='country == "US"') clicks_not_us = Sum('clicks', where='country != "US"') (clicks_not_us - clicks_us).compute_on(df) Sum('clicks') | AbsoluteChange('country', 'US') | compute_on(df) MetricList((Sum('X', where='Y > 0'), Sum('X'))).to_sql('T', 'grp') m = MetricList((Sum('clicks'), Mean('impressions'))) m = AbsoluteChange('country', 'US', m) m.compute_on(df, 'platform') from sqlalchemy import create_engine engine = create_engine('sqlite://', echo=False) df.to_sql('T', con=engine) # Meterstick uses a different SQL dialect from SQLAlchemy, so this doesn't # always work. m.compute_on_sql('T', 'platform', execute=lambda sql: pd.read_sql(sql, engine)) class CustomSum(Metric): def __init__(self, var): name = 'custom sum(%s)' % var super(CustomSum, self).__init__(name) self.var = var def compute(self, df): return df[self.var].sum() CustomSum('clicks').compute_on(df, 'country') Sum('clicks').compute_on(df, 'country') %%timeit CustomSum('clicks').compute_on(df, 'country') %%timeit Sum('clicks').compute_on(df, 'country') %%timeit df.groupby('country')['clicks'].sum() class VectorizedSum(Metric): def __init__(self, var): name = 'vectorized sum(%s)' % var super(VectorizedSum, self).__init__(name = name) self.var = var def compute_slices(self, df, split_by): if split_by: return df.groupby(split_by)[self.var].sum() return df[self.var].sum() VectorizedSum('clicks').compute_on(df, 'country') %%timeit VectorizedSum('clicks').compute_on(df, 'country') class USOnlySum(Sum): def precompute(self, df, split_by): return df[df.country == 'US'] def postcompute(self, data, split_by): print('Inside postcompute():') print('Input data: ', data) print('Input split_by: ', split_by) print('\n') return data def final_compute(self, res, melted, return_dataframe, split_by, df): # res is the result processed by the dataflow till now. df is the original # DataFrme passed to compute_on(). print('Inside final_compute():') for country in df.country.unique(): if country not in res.index: print('Country "%s" is missing!' % country) return res USOnlySum('clicks').compute_on(df, 'country') normalize = metrics.Sum('clicks', postcompute=lambda res, split_by: res / res.sum()) normalize.compute_on(df, 'country') # The above is equivalent to Normalize by 'country'. Normalize('country', Sum('clicks')).compute_on(df) class Distribution(Operation): Computes the normalized values of a Metric over column(s). Attributes: extra_index: A list of column(s) to normalize over. children: A tuple of a Metric whose result we normalize on. And all other attributes inherited from Operation. def __init__(self, over: Union[Text, List[Text]], child: Optional[Metric] = None, **kwargs): self.over = over # The 3rd argument is the extra column that will be added to split_by. It'll # be converted to a list then assigned to self.extra_index. super(Distribution, self).__init__(child, 'Distribution of {}', over, **kwargs) def compute_slices(self, df, split_by=None): # extra_index is after the split_by. lvls = split_by + self.extra_index if split_by else self.extra_index res = self.compute_child(df, lvls) total = res.groupby(level=split_by).sum() if split_by else res.sum() return res / total class SumWithSQL(SimpleMetric): def __init__(self, var: Text, name: Optional[Text] = None, where: Optional[Text] = None, **kwargs): super(SumWithSQL, self).__init__(var, name, 'sum({})', where, **kwargs) self._sum = Sum(var, name, where, **kwargs) def compute_slices(self, df, split_by): return self._sum.compute_slices(df, split_by) # All the SQL-related classes, like Datasource, Filters, Columns, and so on, # are defined in sql.py. def get_sql_and_with_clause(self, table: Datasource, split_by: Columns, global_filter: Filters, indexes: Columns, local_filter: Filters, with_data: Datasources): del indexes # unused # Always starts with this line unless you know what you are doing. local_filter = Filters([self.where, local_filter]).remove(global_filter) columns = Column(self.var, 'SUM({})', self.name, local_filter) # Returns a Sql instance and the WITH clause it needs. return Sql(columns, table, global_filter, split_by), with_data m = Sum('clicks') - SumWithSQL('clicks', 'custom_sum') m.compute_on_sql('T', 'platform', execute=lambda sql: pd.read_sql(sql, engine)) class DistributionWithSQL(Operation): def __init__(self, over: Union[Text, List[Text]], child: Optional[Metric] = None, **kwargs): super(DistributionWithSQL, self).__init__(child, 'Distribution of {}', over, **kwargs) def compute_slices(self, df, split_by=None): lvls = split_by + self.extra_index if split_by else self.extra_index res = self.compute_child(df, lvls) total = res.groupby(level=split_by).sum() if split_by else res.sum() return res / total def get_sql_and_with_clause(self, table: Datasource, split_by: Columns, global_filter: Filters, indexes: Columns, local_filter: Filters, with_data: Datasources): Gets the SQL query and WITH clause. The query is constructed by 1. Get the query for the child metric. 2. Keep all indexing/groupby columns unchanged. 3. For all value columns, get value / SUM(value) OVER (PARTITION BY split_by). Args: table: The table we want to query from. split_by: The columns that we use to split the data. global_filter: The Filters that can be applied to the whole Metric tree. indexes: The columns that we shouldn't apply any arithmetic operation. local_filter: The Filters that have been accumulated so far. with_data: A global variable that contains all the WITH clauses we need. Returns: The SQL instance for metric, without the WITH clause component. The global with_data which holds all datasources we need in the WITH clause. # Always starts with this line unless you know what you are doing. local_filter = Filters([self.where, local_filter]).remove(global_filter) # The intermediate tables needed by child metrics will be added to with_data # in-place. child_sql, with_data = self.children[0].get_sql_and_with_clause( table, indexes, global_filter, indexes, local_filter, with_data) child_table = sql.Datasource(child_sql, 'DistributionRaw') # Always use the alias returned by with_data.add(), because if the with_data # already holds a different table that also has 'DistributionRaw' as its # alias, we'll use a different alias for the child_table, which is returned # by with_data.add(). child_table_alias = with_data.add(child_table) groupby = sql.Columns(indexes.aliases, distinct=True) columns = sql.Columns() for c in child_sql.columns: if c.alias in groupby: continue col = sql.Column(c.alias) / sql.Column( c.alias, 'SUM({})', partition=split_by.aliases) col.set_alias('Distribution of %s' % c.alias_raw) columns.add(col) return sql.Sql(groupby.add(columns), child_table_alias), with_data m = DistributionWithSQL('country', Sum('clicks')) m.to_sql('T') class SumWithTrace(Sum): def compute_through(self, data, split_by): print('Computing %s...' % self.name) return super(SumWithTrace, self).compute_through(data, split_by) sum_clicks = SumWithTrace('clicks', 'sum of clicks') ctr = SumWithTrace('clicks') / SumWithTrace('impressions') MetricList((sum_clicks, ctr)).compute_on(df) sum_clicks = SumWithTrace('clicks', 'sum of clicks') ctr = sum_clicks / SumWithTrace('impressions') MetricList((sum_clicks, ctr)).compute_on(df) sum_clicks = SumWithTrace('clicks', 'sum of clicks') jk, s = MetricList( [Jackknife('cookie', sum_clicks), sum_clicks], children_return_dataframe=False).compute_on( df, return_dataframe=False) print(s) jk sum_clicks = SumWithTrace('clicks', 'sum of clicks') ctr = sum_clicks / SumWithTrace('impressions') sum_clicks.compute_on(df, 'country', cache_key='foo') ctr.compute_on(df, 'country', cache_key='foo') sum_clicks = SumWithTrace('clicks', 'sum of clicks') ctr = sum_clicks / SumWithTrace('impressions') MetricList((sum_clicks, ctr)).compute_on(df, cache_key='foo') print('sum_clicks cached: ', sum_clicks.get_cached('foo')) print('ctr cached: ', ctr.get_cached('foo')) ctr.compute_on(None, cache_key='foo') sum_clicks = SumWithTrace('clicks', 'sum of clicks') ctr = sum_clicks / SumWithTrace('impressions') MetricList((sum_clicks, ctr)).compute_on(df, cache_key='foo') ctr.flush_cache('foo', recursive=False) sum_clicks.compute_on(None, cache_key='foo') # sum is not flushed. ctr.in_cache('foo') ctr.compute_on(None, cache_key='foo') ctr.in_cache('foo') ctr.flush_cache('foo') sum_clicks.compute_on(None, cache_key='foo') # sum is flushed too. sum_clicks = SumWithTrace('clicks') PercentChange('country', 'US', sum_clicks).compute_on(df, cache_key=42) sum_clicks.compute_on(None, 'country', cache_key=42) sum_clicks.compute_on(df, cache_key=42) sum_clicks.compute_on(df, 'country', cache_key=42) np.random.seed(42) df['duration'] = np.random.random(len(df)) * 200 long_clicks = Sum('clicks', where='duration > 60') short_clicks = Sum('clicks', where='duration < 30') click_split = (long_clicks / short_clicks).set_name('click split') click_split | Jackknife('cookie') | compute_on(df, 'country') np.random.seed(42) df['period'] = np.random.choice(('preperiod', 'postperiod'), size=size) sum_clicks = Sum('clicks') ctr = sum_clicks / Sum('impressions') metrics = (sum_clicks, ctr) preperiod_clicks = MetricList(metrics, where='period == "preperiod"') postperiod_clicks = MetricList(metrics, where='period == "postperiod"') pct = PercentChange('platform', 'Desktop') did = (pct(postperiod_clicks) - pct(preperiod_clicks)).rename_columns( ['clicks% DID', 'ctr% DID']) Jackknife('cookie', did).compute_on(df) np.random.seed(42) sum_clicks = Sum('clicks') ctr = sum_clicks / Sum('impressions') metrics = MetricList((sum_clicks, ctr)) (Jackknife('cookie', metrics) / Bootstrap('cookie', metrics, 100)).rename_columns( pd.MultiIndex.from_product( (('sum(clicks)', 'ctr'), ('Value', 'SE')))).compute_on(df, 'country') np.random.seed(42) size = 1000000 df_lin = pd.DataFrame({'grp': np.random.choice(range(10), size=size)}) df_lin['x'] = df_lin.grp + np.random.random(size=size) df_lin['y'] = 2 * df_lin.x + np.random.random(size=size) df_lin['cookie'] = np.random.choice(range(20), size=size) df_lin_mean = df_lin.groupby('grp').mean() plt.scatter(df_lin_mean.x, df_lin_mean.y) plt.show() from sklearn import linear_model class LinearReg(Operation): def __init__(self, x, y, grp): self.lm = linear_model.LinearRegression() # Delegate most of the computations to Mean Metrics. child = MetricList((Mean(x), Mean(y))) self.grp = grp # Register grp as the extra_index. super(LinearReg, self).__init__(child, '%s ~ %s' % (y, x), grp) def split_data(self, df, split_by=None): The 1st element in yield will be passed to compute(). if not split_by: yield self.compute_child(df, self.grp), None else: # grp needs to come after split_by. child = self.compute_child(df, split_by + [self.grp]) keys, indices = list(zip(*child.groupby(split_by).groups.items())) for i, idx in enumerate(indices): yield child.loc[idx.unique()].droplevel(split_by), keys[i] def compute(self, df): self.lm.fit(df.iloc[:, [0]], df.iloc[:, 1]) return pd.Series((self.lm.coef_[0], self.lm.intercept_)) lr = LinearReg('x', 'y', 'grp') Jackknife('cookie', lr, 0.95).compute_on(df_lin) class LinearRegSlow(Metric): def __init__(self, x, y, grp): self.lm = linear_model.LinearRegression() # Doesn't delegate. self.x = x self.y = y self.grp = grp super(LinearRegSlow, self).__init__('%s ~ %s' % (y, x)) def split_data(self, df, split_by=None): The 1st element in yield will be passed to compute(). idx = split_by + [self.grp] if split_by else self.grp mean = df.groupby(idx).mean() if not split_by: yield mean, None else: keys, indices = list(zip(*mean.groupby(split_by).groups.items())) for i, idx in enumerate(indices): yield mean.loc[idx.unique()].droplevel(split_by), keys[i] def compute(self, df): self.lm.fit(df.iloc[:, [0]], df.iloc[:, 1]) return pd.Series((self.lm.coef_[0], self.lm.intercept_)) lr_slow = LinearRegSlow('x', 'y', 'grp') Jackknife('cookie', lr_slow, 0.95).compute_on(df_lin) %%timeit Jackknife('cookie', lr, 0.95).compute_on(df_lin) %%timeit Jackknife('cookie', lr_slow, 0.95).compute_on(df_lin) # Mimics that measurements, y, are taken repeatedly at a fixed grid, x. np.random.seed(42) size = 10 x = list(range(5)) df_sin = pd.DataFrame({'x': x * size, 'cookie': np.repeat(range(size), len(x))}) df_sin['y'] = np.sin(df_sin.x) + np.random.normal(scale=0.5, size=len(df_sin.x)) df_sin.head(10) import statsmodels.api as sm lowess = sm.nonparametric.lowess class Lowess(Metric): def __init__(self, x, y, name=None, where=None): self.x = x self.y = y name = name or 'LOWESS(%s ~ %s)' % (y, x) super(Lowess, self).__init__(name, where=where) def compute(self, data): lowess_fit = pd.DataFrame( lowess(data[self.y], data[self.x]), columns=[self.x, self.y]) return lowess_fit.drop_duplicates().reset_index(drop=True) Lowess('x', 'y') | compute_on(df_sin) jk = Lowess('x', 'y') | Jackknife('cookie', confidence=0.9) | compute_on(df_sin) point_est = jk[('y', 'Value')] ci_lower = jk[('y', 'Jackknife CI-lower')] ci_upper = jk[('y', 'Jackknife CI-upper')] plt.scatter(df_sin.x, df_sin.y) plt.plot(x, point_est, c='g') plt.fill_between( x, ci_lower, ci_upper, color='g', alpha=0.5) plt.show() from plotnine import ggplot, geom_point, geom_ribbon, aes, ylab y = Mean('clicks') x = [Mean('impressions'), Variance('impressions')] grpby = 'platform' baseline = LinearRegression(y, x, grpby, fit_intercept=False) shrinkage = [(Ridge(y, x, grpby, a, False) / baseline).rename_columns( ('%s::mean(impressions)' % a, '%s::var(impressions)' % a)) for a in range(10)] jk = (MetricList(shrinkage) | Jackknife('cookie', confidence=0.95) | compute_on(df, melted=True)).reset_index() jk[['penalty', 'X']] = jk.Metric.str.split('::', expand=True) jk.penalty = jk.penalty.astype(int) (ggplot(jk, aes('penalty', 'Value', color='X')) + ylab('Shrinkage') + geom_point() + geom_ribbon( aes(ymin='Jackknife CI-lower', ymax='Jackknife CI-upper', fill='X'), alpha=0.1)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create Data Step2: Calculate Population Variance Step3: Calculate Population Standard Deviation
<ASSISTANT_TASK:> Python Code: # Import data import math # Create list of values data = [3,2,3,4,2,3,5,2,2,33,3,5,2,2,5,6,62,2,2,3,6,6,2,23,3,2,3] # Calculate n n = len(data) # Calculate the mean mean = sum(data)/len(data) # Create a list of all deviations from the mean all_deviations_from_mean_squared = [] # For each observation in the data for observation in data: # Calculate the deviation from the mean deviation_from_mean = (observation - mean) # Square it deviation_from_mean_squared = deviation_from_mean**2 # Add the result to our list all_deviations_from_mean_squared.append(deviation_from_mean_squared) # Sum all the squared deviations in our list sum_of_deviations_from_mean_squared = sum(all_deviations_from_mean_squared) # Divide by n population_variance = sum_of_deviations_from_mean_squared/n # Show variance population_variance # Find the square root of the population variance population_standard_deviation = math.sqrt(population_variance) # Print the populaton standard deviation population_standard_deviation <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: geo Step2: 1. 'city' Step3: we only consider Champaign and Urbana as our target in this dataset Step4: 2. 'is_open' Step5: we only consider those with is_open == 1 Step6: 3. 'Hour' Step7: Drop all records with missing 'Hour' Step8: 4. 'postal_code' Step9: 5. 'review_count' Step10: 6. 'categories' Step11: Here we should set the list of categories we are interested. Step12: All 'Neighborhood' == None Step13: We need a threshold to decide which attributes we use to build model. Step14: There are 2 kinds of attributes Step15: If we would like to build a binary classification model, here we could set threshold 'star' as '<4.0' Step16: output df_uc_open
<ASSISTANT_TASK:> Python Code: import seaborn import pandas as pd import pylab as pl import yaml %pylab inline df = pd.read_pickle("../yelp-challenge/data_urbana_champaign/business_urbana_champaign.p") df.reset_index(drop=True, inplace=True) print df.shape print df.columns.values len(df.business_id.unique()) df.head(2) print df.city.unique(), '\n', len(df.city.unique()) city_count = df.city.groupby(df.city).apply(lambda x:x.count()) uc_sum = city_count[city_count.keys().isin(['Champaign', 'Urbana'])].sum() 100.0 * uc_sum / city_count.sum() df_uc = df[df.city.isin(['Champaign', 'Urbana'])] df_uc.shape print "{}% ({}/{}) business_id(s) are open".format(100.0 * sum(df_uc.is_open == 1) / len(df_uc), sum(df_uc.is_open == 1), len(df_uc)) df_uc_open = df_uc[df_uc.is_open == 1] df_uc_open.reset_index(drop=True, inplace=True) df_uc_open.shape 100.0 * df_uc_open.hours.dropna().shape[0] / df_uc_open.shape[0] df_uc_open = df_uc_open.dropna(subset=['hours']) df_uc_open.reset_index(drop=True, inplace=True) df_uc_open.shape len(df_uc_open.postal_code.unique()) df.review_count.describe() df_uc_open.review_count.describe() df_uc_open.ix[df_uc_open.review_count.argmax()] cat = {} none_num = 0 for i in df_uc_open.categories: if not i: none_num += 1 continue for j in i: cat[j] = cat.get(j,0) + 1 none_num sorted(cat.iteritems(), key=lambda x: x[1], reverse=True) df_uc_open.neighborhood.unique() df_uc_open = df_uc_open.dropna(subset=['attributes']) df_uc_open.reset_index(drop=True, inplace=True) df_uc_open.shape # 814 -> ? # df_uc_open.attributes # import yaml att_count = {} for i in df_uc_open.attributes: data = yaml.load('['+','.join(i)+']') for d in data: att_count[d.keys()[0]] = att_count.get(d.keys()[0], 0) + 1 sorted(att_count.iteritems(), key=lambda x: x[1], reverse=True) df_uc_open.shape[0] data = yaml.load('['+','.join(df_uc_open.attributes[452])+']') data pl.hist(df_uc_open.stars) df_uc_open.stars.describe() s = 3.9 1.0 * sum(df_uc_open.stars > s) / 729 df_uc_open.stars.value_counts() /729 pl.hist? c = ['Champaign', 'Urbana'] print c[0], '\n',df_uc_open[df_uc_open.city == c[0]].stars.describe() pl.hist(df_uc_open[df_uc_open.city == c[0]].stars, normed=True) print c[1], '\n',df_uc_open[df_uc_open.city == c[1]].stars.describe() pl.hist(df_uc_open[df_uc_open.city == c[1]].stars, normed=True) print df.shape, df_uc.shape, df_uc_open.shape df_uc_open.to_pickle("UC01_df_uc_open.p") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Using Indic NLP Library Step2: Transliteration Step3: Using Silpa Step4: Using BengaliStemmer Step5: Using BanglaStemmer Step6: Using Avro
<ASSISTANT_TASK:> Python Code: from indicnlp.morph import unsupervised_morph morph = unsupervised_morph.UnsupervisedMorphAnalyzer("bn") text = u\ করা করেছিলাম করেছি করতে করেছিল হয়েছে হয়েছিল হয় হওয়ার হবে আবিষ্কৃত আবিষ্কার অভিষিক্ত অভিষেক অভিষেকের আমি আমার আমাদের তুমি তোমার তোমাদের বসা বসেছিল বসে বসি বসেছিলাম বস বসার\ word_token = text.split(" ") word_morph = [] for i in word_token: word_morph.append(morph.morph_analyze(i)) import pandas as pd indic = pd.DataFrame({"1_Word": word_token, "2_Morpheme": word_morph}) indic from indicnlp.transliterate.unicode_transliterate import ItransTransliterator bangla_text = "ami apni tumi tomar tomader amar apnar apnader akash" text_trans = ItransTransliterator.from_itrans(bangla_text, "bn") print repr(text_trans).decode("unicode_escape") from transliteration import getInstance trans = getInstance() text_trans = trans.transliterate(bangla_text, "bn_IN") print repr(text_trans).decode("unicode_escape") import rbs word_stem1 = [] for i in word_token: word_stem1.append(rbs.stemWord(i, True)) bs1 = pd.DataFrame({"1_Word": word_token, "2_Stem": word_stem1}) bs1 import jnius_config jnius_config.set_classpath(".", "path to class") from jnius import autoclass cls = autoclass("RuleFileParser") stemmer = cls() word_stem2 = [] for i in word_token: word_stem2.append(stemmer.stemOfWord(i)) bs2 = pd.DataFrame({"1_Word": word_token, "2_Stem": word_stem2}) bs2 from pyavrophonetic import avro trans_text = avro.parse(bangla_text) print repr(trans_text).decode("unicode_escape") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import Things Step2: Retrieve Information about a Device Step3: Access the status of the previous request Step4: Access the header information Step5: Access the json information (data) Step6: Retrieve the Actual Data Step7: We can get the actual data by accesing the "data" key in the resp.json() dictionary Step8: We can also add keywords to our request. The most useful ones are the following Step9: Utilizing the Magical DataFrame Step10: Let's take a look at our data now Step11: Let's get all data from the EBAM for the year 2017 Step12: Export Data
<ASSISTANT_TASK:> Python Code: import tataaq YOUR_API_KEY_HERE = "" api = tataaq.TataAQ(apikey=YOUR_API_KEY_HERE) # Ping the server to see if we have valid auth credentials resp = api.ping() print (resp.status_code) import pandas as pd import feather # Request decice information for EBAM001 resp = api.device("EBAM001") resp.status_code resp.headers resp.json() # Request the data resp = api.data("EBAM001") # Print the meta information resp.json()['meta'] # print the 0 row resp.json()['data'][0] # return data after 2017-01-01 resp = api.data("EBAM001", per_page=100, filter="timestamp,gt,2017-01-01") resp.json()['meta'] meta, df = api.data("EBAM001", dataframe=True) meta df.info() meta, df = api.data("EBAM001", per_page=10000, filter="timestamp,gt,2017-01-01", dataframe=True) df.index = df['timestamp_local'] df.info() # Delete a couple of columns so we can easily peak at the data del df['instrument'] del df['timestamp'] df.head() %time feather.write_dataframe(df, "EBAM001_2017_data.feather") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: let's say for a hypothetical network with 3 layer groups (conv_group_1, conv_group_2, linear_group). Step2: Interesting, so if you have multiple trainable layer groups, and pass in a slice with only a stop element, you'll get the lr for the last group, and the lr / 3 for all preceeding groups. Step3: Now what happens when I pass in a start and stop value Step4: This is so cool. Fastai finds the order / magnitude / exponential / logorithmic mean, not the absolute mean. This is why the step multiplier is (stop/start)**1/(n-1)) where n is the number of layer groups. Step5: So the question I have, and why I'm here, is Step6: This is very exciting. Step8:
<ASSISTANT_TASK:> Python Code: import numpy as np # from fastai.core def even_mults(start:float, stop:float, n:int)->np.ndarray: "Build evenly stepped schedule from `star` to `stop` in `n` steps." mult = stop/start step = mult**(1/(n-1)) return np.array([start*(step**i) for i in range(n)]) layer_groups = ['conv_group_1', 'conv_group_2', 'linear_group'] def lr_range(lr:[float,slice])->np.ndarray: if not isinstance(lr, slice): return lr if lr.start: res = even_mults(lr.start, lr.stop, len(layer_groups)) else: res = [lr.stop/3]*(len(layer_groups)-1)+[lr.stop] return np.array(res) lr = slice(1e-3) lr_range(lr) lr = 1e-3 lr_range(lr) # 10 layer groups layer_groups = [i for i in range(10)] lr = slice(1e-3) lr_range(lr) lr = slice(1e-6, 1e-3) lr_range(lr) 1e-3/30 1e-6*30 (1e-3/30 + 1e-6/30)*2 even_mults(1e-6, 1e-3, 3) even_mults(1e-6, 1e-3, 10) lr_stop = 1e-3 lr_start= lr_stop / 3**2 even_mults(lr_start, lr_stop, 3) 1e-3/9 (1/9 + 1)/2 5/9 even_mults(1/9, 1, 3) lr_range(3) even_mults(1e-10, 1, 11) from fastai import * from fastai.vision import * __version__ import torchvision path = untar_data(URLs.MNIST_TINY) tfms = get_transforms() data = (ImageItemList.from_folder(path).split_by_folder() .label_from_folder().transform(tfms).databunch()) learn = create_cnn(data, torchvision.models.inception_v3) ??models.resnet18 ??torchvision.models.inception_v3 def inception_v3_2(pretrained=False, **kwargs): rInception v3 model architecture from `"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet model = torchvision.models.Inception3(**kwargs) # if pretrained: # if 'transform_input' not in kwargs: # kwargs['transform_input'] = True # model.load_state_dict(model_zoo.load_url(model_urls['inception_v3_google'])) return model create_cnn(data, inception_v3_2) ??learn.fit_one_cycle ??learn.lr_range ??even_mults <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example Step2: And then we simply call the parses function Step3: You can see which edges get added by setting the optional initialization argument trace to true. Step4: Let's try and parse a sentence that is not recognized by the grammar Step5: An empty list was returned. Step6: When updating the probability of a substring, we pick the max of its current one and the probability of the substring broken into two parts Step7: Now let's see the probabilities table for the sentence "the robot is good" Step8: A defaultdict object is returned (defaultdict is basically a dictionary but with a default value/type). Keys are tuples in the form mentioned above and the values are the corresponding parse trees which demonstrates how the sentence will be parsed. Let's check the details of each parsing Step9: Please note that each item in the returned dict represents a parsing strategy. For instance, ('Article', 0, 0) Step10: So we can interpret this step as parsing the word at index 2 and 3 together('is' and 'good') as a verh phrase. Step11: Example Step12: The algorithm returns a 'S' which means it treats the inputs as a sentence. If we change the order of words to make it unreadable Step13: Then the algorithm asserts that out words cannot be a sentence. Step14: Example
<ASSISTANT_TASK:> Python Code: psource(Chart) chart = Chart(E0) print(chart.parses('the stench is in 2 2')) chart_trace = Chart(nlp.E0, trace=True) chart_trace.parses('the stench is in 2 2') print(chart.parses('the stench 2 2')) import os, sys sys.path = [os.path.abspath("../../")] + sys.path from nlp4e import * from notebook4e import psource psource(CYK_parse) E_Prob_Chomsky = ProbGrammar("E_Prob_Chomsky", # A Probabilistic Grammar in CNF ProbRules( S = "NP VP [1]", NP = "Article Noun [0.6] | Adjective Noun [0.4]", VP = "Verb NP [0.5] | Verb Adjective [0.5]", ), ProbLexicon( Article = "the [0.5] | a [0.25] | an [0.25]", Noun = "robot [0.4] | sheep [0.4] | fence [0.2]", Adjective = "good [0.5] | new [0.2] | sad [0.3]", Verb = "is [0.5] | say [0.3] | are [0.2]" )) words = ['the', 'robot', 'is', 'good'] grammar = E_Prob_Chomsky P = CYK_parse(words, grammar) print(P) parses = {k: p.leaves for k, p in P.items()} print(parses) for subtree in P['VP', 2, 3].leaves: print(subtree.leaves) psource(astar_search_parsing) grammar = E0 words = ['the', 'wumpus', 'is', 'dead'] astar_search_parsing(words, grammar) words_swaped = ["the", "is", "wupus", "dead"] astar_search_parsing(words_swaped, grammar) psource(beam_search_parsing) beam_search_parsing(words, grammar) beam_search_parsing(words_swaped, grammar) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Description Step2: (a) Step3: The feeder’s impedance referred to the secondary side is Step4: The secondary current $I_S$ is given by Step5: The power factor is 0.80 lagging, so the impedance angel $\theta = \arccos(PF)$ is Step6: The phasor current is Step7: (a) Step8: Therefore, the voltage at the power source is Step9: (b) Step10: There is a voltage drop of 15 V under these load conditions. Step11: (c) Step12: Therefore, the efficiency of the power system is
<ASSISTANT_TASK:> Python Code: %pylab notebook %precision 4 Zline = 38.2 + 140.0j # [Ohm] Zeq = 0.10 + 0.4j # [Ohm] V_high = 14e3 # [V] V_low = 2.4e3 # [V] Pout = 90e3 # [W] load PF = 0.8 # lagging VS = 2.3e3 # [V] secondary voltage a = V_high / V_low a Z_line = (1/a)**2 * Zline print('Z_line = {:.2f} Ω'.format(Z_line)) Is = Pout / (VS*PF) print('Is = {:.2f} A'.format(Is)) IS_angle = - arccos(PF) # negative because lagging PF print('θ = {:.2f}°'.format(degrees(IS_angle))) IS = Is * (cos(IS_angle) + sin(IS_angle)*1j) print('IS = {:.2f} A ∠{:.2f}°'.format(abs(IS), degrees(IS_angle))) V_source = VS + IS*Z_line + IS*Zeq V_source_angle = arctan(V_source.imag/V_source.real) # angle of V_source [rad] print('V_source = {:.1f} V ∠{:.1f}°'.format( abs(V_source), degrees(V_source_angle))) Vsource = V_source * a # [V] Vsource_angle = arctan(Vsource.imag/Vsource.real) # angle of Vsource [rad] print('Vsource = {:.1f} kV ∠{:.1f}°'.format( abs(Vsource)/1000, # display in kV degrees(Vsource_angle))) VP = VS + IS*Zeq VP_angle = arctan(VP.imag/VP.real) # angle of VP [rad] print('VP = {:.1f} V ∠{:.1f}°'.format(abs(VP), degrees(VP_angle))) VR = (abs(VP)-VS) / VS * 100 # [%] print('VR = {:.2f} %'.format(VR)) R = Z_line.real + Zeq.real Pin = Pout + abs(IS)**2 * R # [W] print('Pin = {:.2f} kW'.format(Pin/1000)) # [kW] eta = Pout/Pin * 100 # [%] print('η = {:.1f} %'.format(eta)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The following two cells may also be useful to understand the values in the training data Step2: Question 1 Step3: Question 2 Step4: Uncomment the lines below for a hint or to see the solution. Step5: Question 3 Step6: Question 4 Step7: How would you interpret these importance scores? Distance traveled seems far more important than any location effects. Step8: Question 5 Step9: Question 6
<ASSISTANT_TASK:> Python Code: # Loading data, dividing, modeling and EDA below import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split data = pd.read_csv('../input/new-york-city-taxi-fare-prediction/train.csv', nrows=50000) # Remove data with extreme outlier coordinates or negative fares data = data.query('pickup_latitude > 40.7 and pickup_latitude < 40.8 and ' + 'dropoff_latitude > 40.7 and dropoff_latitude < 40.8 and ' + 'pickup_longitude > -74 and pickup_longitude < -73.9 and ' + 'dropoff_longitude > -74 and dropoff_longitude < -73.9 and ' + 'fare_amount > 0' ) y = data.fare_amount base_features = ['pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count'] X = data[base_features] train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) first_model = RandomForestRegressor(n_estimators=50, random_state=1).fit(train_X, train_y) # Environment Set-Up for feedback system. from learntools.core import binder binder.bind(globals()) from learntools.ml_explainability.ex2 import * print("Setup Complete") # show data print("Data sample:") data.head() train_X.describe() train_y.describe() # Check your answer (Run this code cell to receive credit!) q_1.solution() import eli5 from eli5.sklearn import PermutationImportance # Make a small change to the code below to use in this problem. # perm = PermutationImportance(my_model, random_state=1).fit(val_X, val_y) # Check your answer q_2.check() # uncomment the following line to visualize your results # eli5.show_weights(perm, feature_names = val_X.columns.tolist()) #%%RM_IF(PROD)%% import eli5 from eli5.sklearn import PermutationImportance perm = PermutationImportance(first_model, random_state=1).fit(val_X, val_y) eli5.show_weights(perm, feature_names = base_features) q_2.check() # q_2.hint() # q_2.solution() # Check your answer (Run this code cell to receive credit!) q_3.solution() # create new features data['abs_lon_change'] = abs(data.dropoff_longitude - data.pickup_longitude) data['abs_lat_change'] = abs(data.dropoff_latitude - data.pickup_latitude) features_2 = ['pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'abs_lat_change', 'abs_lon_change'] X = data[features_2] new_train_X, new_val_X, new_train_y, new_val_y = train_test_split(X, y, random_state=1) second_model = RandomForestRegressor(n_estimators=30, random_state=1).fit(new_train_X, new_train_y) # Create a PermutationImportance object on second_model and fit it to new_val_X and new_val_y # Use a random_state of 1 for reproducible results that match the expected solution. perm2 = ____ # show the weights for the permutation importance you just calculated ____ # Check your answer q_4.check() # Check your answer (Run this code cell to receive credit!) q_4.solution() # Check your answer (Run this code cell to receive credit!) q_5.solution() # Check your answer (Run this code cell to receive credit!) q_6.solution() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Flower power Step2: ConvNet Codes Step3: Below I'm running images through the VGG network in batches. Step4: Building the Classifier Step5: Data prep Step6: Now you'll want to create your training, validation, and test sets. An important thing to note here is that our labels and data aren't randomized yet. We'll want to shuffle our data so the validation and test sets contain data from all classes. Otherwise, you could end up with testing sets that are all one class. Typically, you'll also want to make sure that each smaller set has the same the distribution of classes as it is for the whole data set. The easiest way to accomplish both these goals is to use StratifiedShuffleSplit from scikit-learn. Step7: If you did it right, you should see these sizes for the training sets Step9: Batches! Step10: Training Step11: Testing Step12: Below, feel free to choose images and see how the trained classifier predicts the flowers in them.
<ASSISTANT_TASK:> Python Code: from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm vgg_dir = 'tensorflow_vgg/' # Make sure vgg exists if not isdir(vgg_dir): raise Exception("VGG directory doesn't exist!") class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(vgg_dir + "vgg16.npy"): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='VGG16 Parameters') as pbar: urlretrieve( 'https://s3.amazonaws.com/content.udacity-data.com/nd101/vgg16.npy', vgg_dir + 'vgg16.npy', pbar.hook) else: print("Parameter file already exists!") import tarfile dataset_folder_path = 'flower_photos' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile('flower_photos.tar.gz'): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='Flowers Dataset') as pbar: urlretrieve( 'http://download.tensorflow.org/example_images/flower_photos.tgz', 'flower_photos.tar.gz', pbar.hook) if not isdir(dataset_folder_path): with tarfile.open('flower_photos.tar.gz') as tar: tar.extractall() tar.close() import os import numpy as np import tensorflow as tf from tensorflow_vgg import vgg16 from tensorflow_vgg import utils data_dir = 'flower_photos/' contents = os.listdir(data_dir) classes = [each for each in contents if os.path.isdir(data_dir + each)] # Set the batch size higher if you can fit in in your GPU memory batch_size = 10 codes_list = [] labels = [] batch = [] codes = None with tf.Session() as sess: # TODO: Build the vgg network here vgg = vgg16.Vgg16() input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) with tf.name_scope("content_vgg"): vgg.build(input_) for each in classes: print("Starting {} images".format(each)) class_path = data_dir + each files = os.listdir(class_path) for ii, file in enumerate(files, 1): # Add images to the current batch # utils.load_image crops the input images for us, from the center img = utils.load_image(os.path.join(class_path, file)) batch.append(img.reshape((1, 224, 224, 3))) labels.append(each) # Running the batch through the network to get the codes if ii % batch_size == 0 or ii == len(files): # Image batch to pass to VGG network images = np.concatenate(batch) # TODO: Get the values from the relu6 layer of the VGG network feed_dict = {input_: images} codes_batch = sess.run(vgg.relu6, feed_dict=feed_dict) # Here I'm building an array of the codes if codes is None: codes = codes_batch else: codes = np.concatenate((codes, codes_batch)) # Reset to start building the next batch batch = [] print('{} images processed'.format(ii)) # write codes to file with open('codes', 'w') as f: codes.tofile(f) # write labels to file import csv with open('labels', 'w') as f: writer = csv.writer(f, delimiter='\n') writer.writerow(labels) # read codes and labels from file import csv with open('labels') as f: reader = csv.reader(f, delimiter='\n') labels = np.array([each for each in reader if len(each) > 0]).squeeze() with open('codes') as f: codes = np.fromfile(f, dtype=np.float32) codes = codes.reshape((len(labels), -1)) from sklearn import preprocessing lb = preprocessing.LabelBinarizer() # lb.fit(labels) labels_vecs = lb.fit_transform(labels) # Your one-hot encoded labels array here from sklearn.model_selection import StratifiedShuffleSplit ss = StratifiedShuffleSplit(n_splits=1, test_size=0.2) for train_index, test_index in ss.split(codes, labels_vecs): # print("TRAIN:", train_index, "TEST:", test_index) train_x, test_x_full = codes[train_index], codes[test_index] train_y, test_y_full = labels_vecs[train_index], labels_vecs[test_index] # train_x, train_y = splitting_idx = int(len(test_x_full)/2) val_x, val_y = test_x_full[:splitting_idx],test_y_full[:splitting_idx] test_x, test_y = test_x_full[splitting_idx:],test_y_full[splitting_idx:] print("Train shapes (x, y):", train_x.shape, train_y.shape) print("Validation shapes (x, y):", val_x.shape, val_y.shape) print("Test shapes (x, y):", test_x.shape, test_y.shape) inputs_ = tf.placeholder(tf.float32, shape=[None, codes.shape[1]]) labels_ = tf.placeholder(tf.int64, shape=[None, labels_vecs.shape[1]]) # TODO: Classifier layers and operations nn = tf.contrib.layers.fully_connected(inputs_, 512) logits =tf.contrib.layers.fully_connected(nn, labels_vecs.shape[1] , activation_fn = None)# output layer logits cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels_)) # cross entropy loss optimizer = tf.train.AdamOptimizer().minimize(cost) # training optimizer # Operations for validation/test accuracy predicted = tf.nn.softmax(logits) correct_pred = tf.equal(tf.argmax(predicted, 1), tf.argmax(labels_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) def get_batches(x, y, n_batches=10): Return a generator that yields batches from arrays x and y. batch_size = len(x)//n_batches for ii in range(0, n_batches*batch_size, batch_size): # If we're not on the last batch, grab data with size batch_size if ii != (n_batches-1)*batch_size: X, Y = x[ii: ii+batch_size], y[ii: ii+batch_size] # On the last batch, grab the rest of the data else: X, Y = x[ii:], y[ii:] # I love generators yield X, Y saver = tf.train.Saver() epochs = 50 batch_size = 10 iteration=0 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(epochs): for batch_features, batch_labels in get_batches(train_x, train_y, batch_size): sess.run(optimizer, feed_dict={ inputs_: batch_features, labels_: batch_labels}) loss= sess.run(cost, feed_dict={ inputs_: batch_features, labels_: batch_labels}) print("Epoch: {}/{}".format(epoch+1, epochs), "Iteration: {}".format(iteration), "Training loss: {:.5f}".format(loss)) iteration += 1 if iteration % 5 == 0: feed = {inputs_: val_x, labels_: val_y} val_acc = sess.run(accuracy, feed_dict=feed) print("Epoch: {}/{}".format(epoch, epochs), "Iteration: {}".format(iteration), "Validation Acc: {:.4f}".format(val_acc)) # TODO: Your training code here saver.save(sess, "checkpoints/flowers.ckpt") with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: test_x, labels_: test_y} test_acc = sess.run(accuracy, feed_dict=feed) print("Test accuracy: {:.4f}".format(test_acc)) %matplotlib inline import matplotlib.pyplot as plt from scipy.ndimage import imread test_img_path = 'flower_photos/roses/10894627425_ec76bbc757_n.jpg' test_img = imread(test_img_path) plt.imshow(test_img) # Run this cell if you don't have a vgg graph built if 'vgg' in globals(): print('"vgg" object already exists. Will not create again.') else: #create vgg with tf.Session() as sess: input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) vgg = vgg16.Vgg16() vgg.build(input_) with tf.Session() as sess: img = utils.load_image(test_img_path) img = img.reshape((1, 224, 224, 3)) feed_dict = {input_: img} code = sess.run(vgg.relu6, feed_dict=feed_dict) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: code} prediction = sess.run(predicted, feed_dict=feed).squeeze() plt.imshow(test_img) plt.barh(np.arange(5), prediction) _ = plt.yticks(np.arange(5), lb.classes_) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 上面的测试准确率可以看出,不同的训练集、测试集分割的方法导致其准确率不同,而交叉验证的基本思想是:将数据集进行一系列分割,生成一组不同的训练测试集,然后分别训练模型并计算测试准确率,最后对结果进行平均处理。这样来有效降低测试准确率的差异。 Step2: 3. 使用交叉验证的建议 Step3: 上面的例子显示了偏置-方差的折中,K较小的情况时偏置较低,方差较高;K较高的情况时,偏置较高,方差较低;最佳的模型参数取在中间位置,该情况下,使得偏置和方差得以平衡,模型针对于非样本数据的泛化能力是最佳的。 Step4: 4.3 用于特征选择 Step5: 这里要注意的是,上面的scores都是负数,为什么均方误差会出现负数的情况呢?因为这里的mean_squared_error是一种损失函数,优化的目标的使其最小化,而分类准确率是一种奖励函数,优化的目标是使其最大化。
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics # read in the iris data iris = load_iris() X = iris.data y = iris.target for i in xrange(1,5): print "random_state is ", i,", and accuracy score is:" X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=i) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) print metrics.accuracy_score(y_test, y_pred) # 下面代码演示了K-fold交叉验证是如何进行数据分割的 # simulate splitting a dataset of 25 observations into 5 folds from sklearn.cross_validation import KFold kf = KFold(25, n_folds=5, shuffle=False) # print the contents of each training and testing set print '{} {:^61} {}'.format('Iteration', 'Training set observations', 'Testing set observations') for iteration, data in enumerate(kf, start=1): print '{:^9} {} {:^25}'.format(iteration, data[0], data[1]) from sklearn.cross_validation import cross_val_score knn = KNeighborsClassifier(n_neighbors=5) # 这里的cross_val_score将交叉验证的整个过程连接起来,不用再进行手动的分割数据 # cv参数用于规定将原始数据分成多少份 scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy') print scores # use average accuracy as an estimate of out-of-sample accuracy # 对十次迭代计算平均的测试准确率 print scores.mean() # search for an optimal value of K for KNN model k_range = range(1,31) k_scores = [] for k in k_range: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy') k_scores.append(scores.mean()) print k_scores import matplotlib.pyplot as plt %matplotlib inline plt.plot(k_range, k_scores) plt.xlabel("Value of K for KNN") plt.ylabel("Cross validated accuracy") # 10-fold cross-validation with the best KNN model knn = KNeighborsClassifier(n_neighbors=20) print cross_val_score(knn, X, y, cv=10, scoring='accuracy').mean() # 10-fold cross-validation with logistic regression from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() print cross_val_score(logreg, X, y, cv=10, scoring='accuracy').mean() import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression # read in the advertising dataset data = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0) # create a Python list of three feature names feature_cols = ['TV', 'Radio', 'Newspaper'] # use the list to select a subset of the DataFrame (X) X = data[feature_cols] # select the Sales column as the response (y) y = data.Sales # 10-fold cv with all features lm = LinearRegression() scores = cross_val_score(lm, X, y, cv=10, scoring='mean_squared_error') print scores # fix the sign of MSE scores mse_scores = -scores print mse_scores # convert from MSE to RMSE rmse_scores = np.sqrt(mse_scores) print rmse_scores # calculate the average RMSE print rmse_scores.mean() # 10-fold cross-validation with two features (excluding Newspaper) feature_cols = ['TV', 'Radio'] X = data[feature_cols] print np.sqrt(-cross_val_score(lm, X, y, cv=10, scoring='mean_squared_error')).mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2) The discrete valued random variable $X$ follows a Poisson distribution if its probabilities depend on a parameter $\lambda$ and are such that Step2: Your answers for the exercise
<ASSISTANT_TASK:> Python Code: %matplotlib inline from pylab import * N = 10**5 lambda_ = 2.0 ######################################## # Supply the missing coefficient herein below V1 = -1.0/lambda_ data = V1*log(rand(N)) ######################################## m = mean(data) v = var(data) print("\u03BB={0}: m={1:1.2f}, \u03C3\u00B2={2:1.2f}" .format(lambda_,m,v)) #\u... for unicode caracters from scipy.stats import poisson lambda_ = 20 N = 10**5 #################################### # Give parameters mu and size in function poisson.rvs # (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html) sample = poisson.rvs(mu= lambda_, size= N) #################################### # mean and variance of sample vector mean_sample = mean(sample) var_sample = var(sample) print(("\u03BB = {0}\nestimated mean = {1:1.2f}\n" +"estimated var = {2:1.2f}") .format(lambda_,mean_sample, var_sample)) #------------------------ V2 = mean_sample print("---------------------------\n" +"RESULTS SUPPLIED FOR LAB 1:\n" +"---------------------------") results = ("V"+str(k) for k in range(1,3)) for x in results: try: print(x+" = {0:.2f}".format(eval(x))) except: print(x+": variable is undefined") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: K-Means++ Step2: 예
<ASSISTANT_TASK:> Python Code: X = np.array([[7, 5],[5, 7],[7, 7],[4, 4],[4, 6],[1, 4],[0, 0],[2, 2],[8, 7],[6, 8],[5, 5],[3, 7]], dtype=float) plt.scatter(X[:,0], X[:,1], s=100) plt.show() from sklearn.cluster import KMeans model = KMeans(n_clusters=2, init="random", n_init=1, max_iter=1, random_state=1).fit(X) c0, c1 = model.cluster_centers_ print(c0, c1) plt.scatter(X[model.labels_==0,0], X[model.labels_==0,1], s=100, marker='v', c='r') plt.scatter(X[model.labels_==1,0], X[model.labels_==1,1], s=100, marker='^', c='b') plt.scatter(c0[0], c0[1], s=100, c="r") plt.scatter(c1[0], c1[1], s=100, c="b") plt.show() def kmeans_df(c0, c1): df = pd.DataFrame(np.hstack([X, np.linalg.norm(X - c0, axis=1)[:, np.newaxis], np.linalg.norm(X - c1, axis=1)[:, np.newaxis], model.labels_[:, np.newaxis]]), columns=["x0", "x1", "d0", "d1", "c"]) return df kmeans_df(c0, c1) print(X[model.labels_==0,0].mean(), X[model.labels_==0,1].mean()) print(X[model.labels_==1,0].mean(), X[model.labels_==1,1].mean()) model.score(X) model = KMeans(n_clusters=2, init="random", n_init=1, max_iter=2, random_state=0).fit(X) c0, c1 = model.cluster_centers_ print(c0, c1) plt.scatter(X[model.labels_==0,0], X[model.labels_==0,1], s=100, marker='v', c='r') plt.scatter(X[model.labels_==1,0], X[model.labels_==1,1], s=100, marker='^', c='b') plt.scatter(c0[0], c0[1], s=100, c="r") plt.scatter(c1[0], c1[1], s=100, c="b") kmeans_df(c0, c1) model.score(X) (np.linalg.norm(X[model.labels_==0] - c0, axis=1)**2).sum() + \ (np.linalg.norm(X[model.labels_==1] - c1, axis=1)**2).sum() model = KMeans(n_clusters=2, init="random", n_init=1, max_iter=100, random_state=0).fit(X) c0, c1 = model.cluster_centers_ print(c0, c1) plt.scatter(X[model.labels_==0,0], X[model.labels_==0,1], s=100, marker='v', c='r') plt.scatter(X[model.labels_==1,0], X[model.labels_==1,1], s=100, marker='^', c='b') plt.scatter(c0[0], c0[1], s=100, c="r") plt.scatter(c1[0], c1[1], s=100, c="b") kmeans_df(c0, c1) from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8)} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float), s=100, cmap=mpl.cm.jet) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.title(name) fignum = fignum + 1 plt.show() from sklearn.datasets import load_digits from sklearn.preprocessing import scale digits = load_digits() data = scale(digits.data) def print_digits(images, labels): f = plt.figure(figsize=(10,2)) plt.subplots_adjust(top=1, bottom=0, hspace=0, wspace=0.05) i = 0 while (i < 10 and i < images.shape[0]): ax = f.add_subplot(1, 10, i + 1) ax.imshow(images[i], cmap=plt.cm.bone) ax.grid(False) ax.table ax.set_title(labels[i]) ax.xaxis.set_ticks([]) ax.yaxis.set_ticks([]) plt.tight_layout() i += 1 print_digits(digits.images, range(10)) from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test, images_train, images_test = \ train_test_split(data, digits.target, digits.images, test_size=0.25, random_state=42) from sklearn.cluster import KMeans clf = KMeans(init="k-means++", n_clusters=10, random_state=42) clf.fit(X_train) print_digits(images_train, clf.labels_) y_pred = clf.predict(X_test) def print_cluster(images, y_pred, cluster_number): images = images[y_pred == cluster_number] y_pred = y_pred[y_pred == cluster_number] print_digits(images, y_pred) for i in range(10): print_cluster(images_test, y_pred, i) from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_pred) from sklearn.decomposition import PCA pca = PCA(n_components=2).fit(X_train) reduced_X_train = pca.transform(X_train) clf = KMeans(init="k-means++", n_clusters=10, random_state=42) clf.fit(reduced_X_train) centroids = clf.cluster_centers_ xmin, xmax = reduced_X_train[:,0].min(), reduced_X_train[:,0].max() ymin, ymax = reduced_X_train[:,1].min(), reduced_X_train[:,1].max() XGrid, YGrid = np.meshgrid(np.arange(xmin, xmax, (xmax-xmin)/1000), np.arange(ymin, ymax, (ymax-ymin)/1000)) ZGrid = np.reshape(clf.predict(np.array([XGrid.ravel(), YGrid.ravel()]).T), XGrid.shape) cmap = mpl.colors.ListedColormap(sns.color_palette("Set1")) plt.contourf(XGrid, YGrid, ZGrid, cmap=mpl.cm.Accent) plt.scatter(reduced_X_train[:, 0], reduced_X_train[:, 1], c=y_train, cmap=mpl.cm.Accent) plt.scatter(centroids[:, 0], centroids[:, 1], marker='.', s=1000, color='k', alpha=0.6, zorder=10) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: def printArr(arr , n ) : arr . sort() if(arr[0 ] == arr[n - 1 ] ) : print("No ")  else : print("Yes ") for i in range(n ) : print(arr[i ] , end = "▁ ")  print()   if __name__== ' __main __' : arr =[1 , 2 , 2 , 1 , 3 , 1 ] N = len(arr ) printArr(arr , N )  <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: One shot keyword trigger Step2: Wav MFCC loader Step3: Conv Network Step4: Siamese Network
<ASSISTANT_TASK:> Python Code: from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import math import os.path import random import re import sys import tarfile import numpy as np import librosa as rosa from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, Dropout, Flatten, Lambda #from tensorflow.contrib.framework.python.ops import audio_ops as contrib_audio #from tensorflow.python.ops import io_ops #from tensorflow.python.platform import gfile #from tensorflow.python.util import compat number_mfcc=128 sample_rate=16000 #for mac #speech_data_dir="/Users/hermitwang/Downloads/speech_dataset" #for ubuntu speech_data_dir="/home/hermitwang/TrainingData/datasets/speech_dataset" def load_wav_mfcc(filename): wav_loader, sample_rate = rosa.load(filename, sr=16000) #print(rosa.get_duration(wav_loader, sample_rate)) wav_mfcc = rosa.feature.mfcc(y=wav_loader, sr=16000, n_mfcc=128) return wav_mfcc class WavMFCCLoader(object): def __init__(self, data_dir, wanted, validation_percentage=0, testing_percentage=0): self.data_dir = data_dir self.wanted = wanted self.wav_files = dict() self.wav_file_index() def wav_file_index(self): for dirpath, dirnames, files in os.walk(self.data_dir): for name in files: if name.lower().endswith('.wav'): word_name = dirpath.rsplit('/', 1)[1]; if word_name in self.wanted: file_name = os.path.join(dirpath, name) #print(file_name, dirpath, word_name) if word_name in self.wav_files.keys(): self.wav_files[word_name].append(file_name) else: self.wav_files[word_name] = [file_name] return self.wav_files def wavs_to_mfcc_pair(self): how_many_words = len(self.wanted) a_index = random.randint(0, how_many_words - 1) b_index = random.randint(0, how_many_words - 1) a_wav_index = b_wav_index = -1 mfcc_pair = np.array([3, 1]) if (a_index != b_index): a_wav_index = random.randint(0, len(self.wav_files[self.wanted[a_index]]) - 1) b_wav_index = random.randint(0, len(self.wav_files[self.wanted[b_index]]) - 1) mfcc_1 = load_wav_mfcc(self.wav_files[self.wanted[a_index]][a_wav_index]) mfcc_2 = load_wav_mfcc(self.wav_files[self.wanted[b_index]][b_wav_index]) mfcc_pair = 0 else: a_wav_index = random.randint(0, len(self.wav_files[self.wanted[a_index]]) - 1) b_wav_index = random.randint(0, len(self.wav_files[self.wanted[a_index]]) - 1) mfcc_1 = load_wav_mfcc(self.wav_files[self.wanted[a_index]][a_wav_index]) mfcc_2 = load_wav_mfcc(self.wav_files[self.wanted[a_index]][b_wav_index]) mfcc_pair = 1 #print("aaa", mfcc_1.shape, mfcc_2.shape) return mfcc_1, mfcc_2, mfcc_pair def get_mfcc_pairs(self, how_many): mfcc1_data = np.zeros((how_many, 128, 32)) mfcc2_data = np.zeros((how_many, 128, 32)) same_data = np.zeros(how_many) for i in range(0, how_many - 1): mfcc1_data_, mfcc2_data_, same_data[i] = self.wavs_to_mfcc_pair() mfcc1_data[i, :, 0:mfcc1_data_.shape[1]] = mfcc1_data_ mfcc2_data[i, :, 0:mfcc2_data_.shape[1]] = mfcc2_data_ #np.append(mfcc1_data, mfcc1_) #np.append(mfcc2_data, mfcc2_) #np.append(same_data, same_) #print(mfcc_pairs) return mfcc1_data, mfcc2_data, same_data loader = WavMFCCLoader(speech_data_dir, wanted=["one", "two", "bed"]) #wav_list = loader.wav_file_index() mfcc1_data, mfcc2_data, same_pair = loader.get_mfcc_pairs(100) print(same_pair) def create_keras_model(fingerprint_shape, is_training=True): model = Sequential() model.add(Conv2D(input_shape=fingerprint_shape, filters=64, kernel_size=3, activation="relu")) model.add(MaxPooling2D()) #if (is_training): # model.add(Dropout(0.5)) model.add(Conv2D(filters=64, kernel_size=3, activation="relu")) model.add(MaxPooling2D()) #if (is_training): # model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(1024)) if (is_training): model.add(Dropout(0.5)) #model.add(Dense(labels_count, activation="softmax")) return model def model_train(labels_count=10, epochs=10, batch_size=32): x_train = np.random.random((1000, 98, 40, 1)) y_train = keras.utils.to_categorical(np.random.randint(labels_count, size=(1000, 1)), num_classes=labels_count) x_test = np.random.random((100, 98, 40, 1)) y_test = keras.utils.to_categorical(np.random.randint(labels_count, size=(100, 1)), num_classes=labels_count) keras_model = create_keras_model((98, 40, 1), True) keras_model.add(Dense(labels_count, activation='softmax')) keras_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) keras_model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size) score = keras_model.evaluate(x_test, y_test, batch_size) return score def create_siamese_model(input_shape, siamese_model = 'concat'): right_input = Input(input_shape) left_input = Input(input_shape) keras_model = create_keras_model(input_shape) right_encoder = keras_model(right_input) left_encoder = keras_model(left_input) if (siamese_model == 'concat'): concatenated_layer = keras.layers.concatenate([right_encoder, left_encoder]) elif (siamese_model == 'abs'): concatenated_layer = Lambda(lambda x: tf.sqrt(tf.reduce_sum(tf.square(x[0]-x[1]), 2)), output_shape=lambda x: x[0])([right_encoder, left_encoder]) else: raise ValueError("unknown siamese_model") output_layer = Dense(1, activation='sigmoid')(concatenated_layer) siamese_model = Model([right_input, left_input], output_layer) return siamese_model def siamese_train(siamese_model='abs'): siamese_model = create_siamese_model((128,32,1), siamese_model="concat") siamese_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) loader = WavMFCCLoader(speech_data_dir, wanted=["one", "two", "bed"]) mfcc1_data, mfcc2_data, pairs = loader.get_mfcc_pairs(1000) x1_train = mfcc1_data.reshape((1000, 128, 32, 1)) #np.random.random((1000, 98, 40, 1)) x2_train = mfcc2_data.reshape((1000, 128, 32, 1)) #np.random.random((1000, 98, 40, 1)) y_train = pairs #keras.utils.to_categorical(pairs, num_classes=1) siamese_model.fit([x1_train, x2_train], y_train, epochs=10, batch_size=32) mfcc1_test, mfcc2_test, pairs_test = loader.get_mfcc_pairs(100) x1_test = mfcc1_test.reshape((100, 128,32, 1)) x2_test = mfcc2_test.reshape((100, 128,32, 1)) y_test = pairs_test loss, accuracy = siamese_model.evaluate([x1_test, x2_test], y_test) print(loss) return accuracy #wav_mfcc = load_wav_mfcc("/Users/hermitwang/Downloads/speech_dataset/backward/0a2b400e_nohash_0.wav") #print(wav_mfcc.shape) score = siamese_train() print(score) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Steps for building plots in pyplot Step1: For creating other marks (like scatter, pie, bars, etc.), only step 2 needs to be changed. Lets look a simple example to create a bar chart Step2: Multiple marks can be rendered in a figure. It's as easy as creating marks one after another. They'll all be added to the same figure!
<ASSISTANT_TASK:> Python Code: import bqplot.pyplot as plt # first, let's create two vectors x and y to plot using a Lines mark import numpy as np x = np.linspace(-10, 10, 100) y = np.sin(x) # 1. Create the figure object fig = plt.figure(title="Simple Line Chart") # 2. By default axes are created with basic defaults. If you want to customize the axes create # a dict and pass it to `axxes_options` argument in the marks axes_opts = {"x": {"label": "X"}, "y": {"label": "Y"}} # 3. Create a Lines mark by calling plt.plot function line = plt.plot( x=x, y=y, axes_options=axes_opts ) # note that custom axes options are passed here # 4. Render the figure using plt.show() plt.show() # first, let's create two vectors x and y to plot a bar chart x = list("ABCDE") y = np.random.rand(5) # 1. Create the figure object fig = plt.figure(title="Simple Bar Chart") # 2. Customize the axes options axes_opts = { "x": {"label": "X", "grid_lines": "none"}, "y": {"label": "Y", "tick_format": ".0%"}, } # 3. Create a Bars mark by calling plt.bar function bar = plt.bar(x=x, y=y, padding=0.2, axes_options=axes_opts) # 4. directly display the figure object created in step 1 (note that the toolbar no longer shows up) fig # first, let's create two vectors x and y import numpy as np x = np.linspace(-10, 10, 25) y = 3 * x + 5 y_noise = y + 10 * np.random.randn(25) # add some random noise to y # 1. Create the figure object fig = plt.figure(title="Scatter and Line") # 3. Create line and scatter marks # additional attributes (stroke_width, colors etc.) can be passed as attributes to the mark objects as needed line = plt.plot(x=x, y=y, colors=["green"], stroke_width=3) scatter = plt.scatter(x=x, y=y_noise, colors=["red"], stroke="black") # setting x and y axis labels using pyplot functions. Note that these functions # should be called only after creating the marks plt.xlabel("X") plt.ylabel("Y") # 4. render the figure fig <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We can observe quite good f1-score on RandomForest with normalised projected cosine similarity.
<ASSISTANT_TASK:> Python Code: summaryDf = pd.DataFrame([extractSummaryLine(l) for l in open('../../data/learnedModel/anto/summary.txt').readlines()], columns=['bidirectional', 'strict', 'clf', 'feature', 'post', 'precision', 'recall', 'f1']) summaryDf.sort_values('f1', ascending=False)[:10] !python ../../toolbox/script/detailConceptPairClfError.py ../../data/voc/npy/wikiEn-skipgram.npy ../../data/learnedModel/anto/bidi__RandomForestClassifier_pCosSim_postNormalize.dill ../../data/wordPair/wordnetAnto.txt anto ../../data/wordPair/wordnetAnto_fake.txt notAnto <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Make a list of constraints to compute Step2: Now combine those constraint results with non-trivial boolean logic Step3: Simple visualization of this combined constraint result, white pixels = constraints are met, black pixels = constraints are not met.
<ASSISTANT_TASK:> Python Code: from __future__ import (absolute_import, division, print_function, unicode_literals) from astropy.time import Time import astropy.units as u from astroplan import Observer, FixedTarget # Observe from Keck obs = Observer.at_site("Keck") # Observe these three stars name_list = ['vega', 'rigel', 'sirius'] target_list = [FixedTarget.from_name(name) for name in name_list] # Check constraints once an hour for one day times = Time.now() + u.Quantity(range(24), unit=u.hour) from astroplan import (AltitudeConstraint, MoonSeparationConstraint, AtNightConstraint) from astropy.time import Time # Make an instance of each constraint constraint1 = AltitudeConstraint(min=25*u.deg) constraint2 = AtNightConstraint.twilight_astronomical() constraint3 = MoonSeparationConstraint(min=30*u.deg) # Apply each constraint, store each result separately c1, c2, c3 = [c(obs, target_list, times) for c in [constraint1, constraint2, constraint3]] # Show one result print("AltitudeConstraint result: (col=time, row=target)\n{0}".format(c1)) combination = (c1 & c2) | c3 combination %matplotlib inline import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(12, 3)) ax.imshow(combination, interpolation='nearest', origin='lower', cmap=plt.cm.binary_r) ax.set_yticks(range(3)) ax.set_yticklabels([t.name for t in target_list]) time_inds = range(24)[::2] ax.set_xticks(time_inds) ax.set_xticklabels([t.datetime.strftime("%H:%M") for t in times[time_inds]]) ax.set_title("(AltitudeConstraint & AtNightConstraint) | MoonSeparationConstraint"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Clustering Step2: k-means Step3: Aplicación a datos Step4: ¿Es necesario reinventar la rueda? Step5: ¿Cómo seleccionar k?
<ASSISTANT_TASK:> Python Code: from sklearn import datasets import matplotlib.pyplot as plt iris = datasets.load_iris() def plot(dataset, ax, i, j): ax.scatter(dataset.data[:,i], dataset.data[:,j], c=dataset.target, s=50) ax.set_xlabel(dataset.feature_names[i], fontsize=20) ax.set_ylabel(dataset.feature_names[j], fontsize=20) # row and column sharing f, ((ax1, ax2), (ax3, ax4), (ax5,ax6)) = plt.subplots(3, 2, figsize=(16,8)) plot(iris, ax1, 0, 1) plot(iris, ax2, 0, 2) plot(iris, ax3, 0, 3) plot(iris, ax4, 1, 2) plot(iris, ax5, 1, 3) plot(iris, ax6, 2, 3) f.tight_layout() plt.show() from mat281_code import iplot iplot.kmeans(N_points=100, n_clusters=4) import numpy as np from scipy.linalg import norm def find_centers(X, k, seed=None): if seed is None: seed = np.random.randint(10000000) np.random.seed(seed) # Initialize to K random centers old_centroids = random_centers(X, k) new_centroids = random_centers(X, k) while not has_converged(new_centroids, old_centroids): old_centroids = new_centroids # Assign all points in X to clusters clusters = cluster_points(X, old_centroids) # Reevaluate centers new_centroids = reevaluate_centers(X, clusters, k) return (new_centroids, clusters) def random_centers(X, k): index = np.random.randint(0, X.shape[0], k) return X[index, :] def has_converged(new_mu, old_mu, tol=1E-6): num = norm(np.array(new_mu)-np.array(old_mu)) den = norm(new_mu) rel_error= num/den return rel_error < tol def cluster_points(X, centroids): clusters = [] for i, x in enumerate(X): distances = np.array([norm(x-cj) for cj in centroids]) clusters.append( distances.argmin()) return np.array(clusters) def reevaluate_centers(X, clusters, k): centroids = [] for j in range(k): cj = X[clusters==j,:].mean(axis=0) centroids.append(cj) return centroids from mat281_code import gendata from mat281_code import plot from mat281_code import kmeans X = gendata.init_blobs(1000, 4, seed=40) ax = plot.data(X) centroids, clusters = kmeans.find_centers(X, k=4) plot.clusters(X, centroids, clusters) from mat281_code import gendata from mat281_code import plot from sklearn.cluster import KMeans X = gendata.init_blobs(10000, 6, seed=43) plot.data(X) kmeans = KMeans(n_clusters=6) kmeans.fit(X) centroids = kmeans.cluster_centers_ clusters = kmeans.labels_ plot.clusters(X, centroids, clusters) import numpy as np from sklearn import datasets from sklearn.cluster import KMeans from sklearn.metrics import confusion_matrix # Parameters n_clusters = 8 # Loading the data iris = datasets.load_iris() X = iris.data y_true = iris.target # Running the algorithm kmeans = KMeans(n_clusters) kmeans.fit(X) y_pred = kmeans.labels_ # Show the classificacion report cm = confusion_matrix(y_true, y_pred) print cm print (cm.sum() - np.diag(cm).sum() ) / float(cm.sum()) # 16/100 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Variable Type Step2: dir & help Step3: type Step4: Data Structure Step5: 定义函数 Step6: For 循环 Step7: map Step8: if elif else Step9: while循环 Step10: try except Step11: Write and Read data Step12: 保存中间步骤产生的字典数据 Step13: 重新读入json Step14: use dill to save data Step15: http
<ASSISTANT_TASK:> Python Code: import random, datetime import numpy as np import pylab as plt import statsmodels.api as sm from scipy.stats import norm from scipy.stats.stats import pearsonr # str, int, float str(3) # int int('5') # float float('7.1') range(10) range(1, 10) dir dir(str)[-5:] help(str) x = ' Hello WorlD ' dir(x)[-10:] # lower x.lower() # upper x.upper() # rstrip x.rstrip() # strip x.strip() # replace x.replace('lo', '') # split x.split('lo') # join ','.join(['a', 'b']) x = 'hello world' type(x) l = [1,2,3,3] # list t = (1, 2, 3, 3) # tuple s = set([1,2,3,3]) # set d = {'a':1,'b':2,'c':3} # dict a = np.array(l) # array print l, t, s, d, a l = [1,2,3,3] # list l.append(4) l d = {'a':1,'b':2,'c':3} # dict d.keys() d = {'a':1,'b':2,'c':3} # dict d.values() d = {'a':1,'b':2,'c':3} # dict d['b'] d = {'a':1,'b':2,'c':3} # dict d.items() def devidePlus(m, n): # 结尾是冒号 y = float(m)/n+ 1 # 注意:空格 return y # 注意:return range(10) range(1, 10) for i in range(10): print i, i*10, i**2 for i in range(10): print i*10 for i in range(10): print devidePlus(i, 2) # 列表内部的for循环 r = [devidePlus(i, 2) for i in range(10)] r map(devidePlus, [4,3,2], [2, 1, 5]) # 注意: 将(4, 2)作为一个组合进行计算,将(3, 1)作为一个组合进行计算 map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) map(lambda x, y, z: x + y - z, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10], [3, 3, 2, 2, 5]) j = 3 if j%2 == 1: print r'余数是1' elif j%2 ==2: print r'余数是2' else: print r'余数既不是1也不是2' x = 5 if x < 5: y = -1 z = 5 elif x > 5: y = 1 z = 11 else: y = 0 z = 10 print(x, y, z) j = 0 while j <10: print j j+=1 # avoid dead loop j = 0 while j <10: if j%2 != 0: print j**2 j+=1 # avoid dead loop j = 0 while j <50: if j == 30: break if j%2 != 0: print j**2 j+=1 # avoid dead loop a = 4 while a: print a a -= 1 if a < 0: a = None # [] for i in [2, 0, 5]: try: print devidePlus(4, i) except Exception, e: print e pass data =[[i, i**2, i**3] for i in range(10)] data for i in data: print '\t'.join(map(str, i)) type(data) len(data) data[0] # 保存数据 data =[[i, i**2, i**3] for i in range(10000)] f = open("/Users/chengjun/github/cjc2016/data/data_write_to_file.txt", "wb") for i in data: f.write('\t'.join(map(str,i)) + '\n') f.close() with open('/Users/chengjun/github/cjc2016/data/data_write_to_file.txt','r') as f: data = f.readlines() data[:5] with open('/Users/chengjun/github/cjc2016/data/data_write_to_file.txt','r') as f: data = f.readlines(1000) len(data) with open('/Users/chengjun/github/cjc2016/data/data_write_to_file.txt','r') as f: print f.readline() f = [1, 2, 3, 4, 5] for k, i in enumerate(f): print k, i with open('/Users/chengjun/github/cjc2016/data/data_write_to_file.txt','r') as f: for i in f: print i with open('/Users/chengjun/github/cjc2016/data/data_write_to_file.txt','r') as f: for k, i in enumerate(f): if k%2000 ==0: print i data = [] line = '0\t0\t0\n' line = line.replace('\n', '') line = line.split('\t') line = [int(i) for i in line] # convert str to int data.append(line) data # 读取数据 data = [] with open('/Users/chengjun/github/cjc2016/data/data_write_to_file.txt','r') as f: for line in f: #line = line.replace('\n', '').split('\t') #line = [int(i) for i in line] data.append(line) data # 读取数据 data = [] with open('/Users/chengjun/github/cjc2016/data/data_write_to_file.txt','r') as f: for line in f: line = line.replace('\n', '').split('\t') line = [int(i) for i in line] data.append(line) data import json data_dict = {'a':1, 'b':2, 'c':3} with open('/Users/chengjun/github/cjc2016/save_dict.json', 'w') as f: json.dump(data_dict, f) dd = json.load(open("/Users/chengjun/github/cjc2016/save_dict.json")) dd data_list = range(10) with open('/Users/chengjun/github/cjc2016/save_list.json', 'w') as f: json.dump(data_list, f) dl = json.load(open("/Users/chengjun/github/cjc2016/save_list.json")) dl import dill # pip insstall dill # http://trac.mystic.cacr.caltech.edu/project/pathos/wiki/dill def myFunction(num): return num,num with open('/Users/chengjun/github/cjc2016/data.pkl', 'wb') as f: dill.dump(myFunction, f) with open('/Users/chengjun/github/cjc2016/data.pkl', 'r') as f: newFunction = dill.load(f)#, strictio=strictio)) newFunction('hello') %matplotlib inline import matplotlib.pyplot as plt x = range(1, 100) y = [i**-3 for i in x] plt.plot(x, y, 'b-s') plt.ylabel('$p(k)$', fontsize = 20) plt.xlabel('$k$', fontsize = 20) plt.xscale('log') plt.yscale('log') plt.title('Degree Distribution') plt.show() import numpy as np # red dashes, blue squares and green triangles t = np.arange(0., 5., 0.2) plt.plot(t, t, 'r--') plt.plot(t, t**2, 'bs') plt.plot(t, t**3, 'g^') plt.show() # red dashes, blue squares and green triangles t = np.arange(0., 5., 0.2) plt.plot(t, t**2, 'b-s', label = '1') plt.plot(t, t**2.5, 'r-o', label = '2') plt.plot(t, t**3, 'g-^', label = '3') plt.annotate(r'$\alpha = 3$', xy=(3.5, 40), xytext=(2, 80), arrowprops=dict(facecolor='black', shrink=0.05), fontsize = 20) plt.ylabel('$f(t)$', fontsize = 20) plt.xlabel('$t$', fontsize = 20) plt.legend(loc=2,numpoints=1,fontsize=10) plt.show() # plt.savefig('/Users/chengjun/GitHub/cjc2016/figure/save_figure.png', # dpi = 300, bbox_inches="tight",transparent = True) plt.figure(1) plt.subplot(221) plt.plot(t, t, 'r--') plt.text(2, 0.8*np.max(t), r'$\alpha = 1$', fontsize = 20) plt.subplot(222) plt.plot(t, t**2, 'bs') plt.text(2, 0.8*np.max(t**2), r'$\alpha = 2$', fontsize = 20) plt.subplot(223) plt.plot(t, t**3, 'g^') plt.text(2, 0.8*np.max(t**3), r'$\alpha = 3$', fontsize = 20) plt.subplot(224) plt.plot(t, t**4, 'r-o') plt.text(2, 0.8*np.max(t**4), r'$\alpha = 4$', fontsize = 20) plt.show() def f(t): return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) plt.figure(1) plt.subplot(211) plt.plot(t1, f(t1), 'bo') plt.plot(t2, f(t2), 'k') plt.subplot(212) plt.plot(t2, np.cos(2*np.pi*t2), 'r--') plt.show() import matplotlib.gridspec as gridspec t = np.arange(0., 5., 0.2) gs = gridspec.GridSpec(3, 3) ax1 = plt.subplot(gs[0, :]) plt.plot(t, t**2, 'b-s') ax2 = plt.subplot(gs[1,:-1]) plt.plot(t, t**2, 'g-s') ax3 = plt.subplot(gs[1:, -1]) plt.plot(t, t**2, 'r-o') ax4 = plt.subplot(gs[-1,0]) plt.plot(t, t**2, 'g-^') ax5 = plt.subplot(gs[-1,-2]) plt.plot(t, t**2, 'b-<') plt.tight_layout() def OLSRegressPlot(x,y,col,xlab,ylab): xx = sm.add_constant(x, prepend=True) res = sm.OLS(y,xx).fit() constant, beta = res.params r2 = res.rsquared lab = r'$\beta = %.2f, \,R^2 = %.2f$' %(beta,r2) plt.scatter(x,y,s=60,facecolors='none', edgecolors=col) plt.plot(x,constant + x*beta,"red",label=lab) plt.legend(loc = 'upper left',fontsize=16) plt.xlabel(xlab,fontsize=26) plt.ylabel(ylab,fontsize=26) x = np.random.randn(50) y = np.random.randn(50) + 3*x pearsonr(x, y) fig = plt.figure(figsize=(10, 4),facecolor='white') OLSRegressPlot(x,y,'RoyalBlue',r'$x$',r'$y$') plt.show() fig = plt.figure(figsize=(7, 4),facecolor='white') data = norm.rvs(10.0, 2.5, size=5000) mu, std = norm.fit(data) plt.hist(data, bins=25, normed=True, alpha=0.6, color='g') xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = norm.pdf(x, mu, std) plt.plot(x, p, 'r', linewidth=2) title = r"$\mu = %.2f, \, \sigma = %.2f$" % (mu, std) plt.title(title,size=16) plt.show() from matplotlib.dates import WeekdayLocator, DayLocator, MONDAY, DateFormatter from matplotlib.finance import quotes_historical_yahoo_ochl, candlestick_ochl date1 = (2014, 2, 1) date2 = (2014, 5, 1) quotes = quotes_historical_yahoo_ochl('INTC', date1, date2) fig = plt.figure(figsize=(15, 5)) ax = fig.add_subplot(1,1,1) candlestick_ochl(ax, quotes, width=0.8, colorup='green', colordown='r', alpha=0.8) mondays = WeekdayLocator(MONDAY) # major ticks on the mondays alldays = DayLocator() # minor ticks on the days weekFormatter = DateFormatter('%b %d') # e.g., Jan 12 ax.xaxis.set_major_locator(mondays) ax.xaxis.set_minor_locator(alldays) ax.xaxis.set_major_formatter(weekFormatter) ax.autoscale_view() plt.setp( plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right') plt.title(r'$Intel \,Corporation \,Stock \,Price$',size=16) fig.subplots_adjust(bottom=0.2) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Get the Data Step2: Exploratory Data Analysis Step3: Train Test Split Step4: Decision Trees Step5: Prediction and Evaluation Step6: Tree Visualization Step7: Random Forests
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns %matplotlib inline df = pd.read_csv("../kyphosis.csv") df.head() # TODO 1 sns.pairplot(df, hue="Kyphosis", palette="Set1") from sklearn.model_selection import train_test_split X = df.drop("Kyphosis", axis=1) y = df["Kyphosis"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30) from sklearn.tree import DecisionTreeClassifier dtree = DecisionTreeClassifier() # TODO 2 dtree.fit(X_train, y_train) predictions = dtree.predict(X_test) from sklearn.metrics import classification_report, confusion_matrix # TODO 3a print(classification_report(y_test, predictions)) # TODO 3b print(confusion_matrix(y_test, predictions)) import pydot from IPython.display import Image from six import StringIO from sklearn.tree import export_graphviz features = list(df.columns[1:]) features dot_data = StringIO() export_graphviz( dtree, out_file=dot_data, feature_names=features, filled=True, rounded=True ) graph = pydot.graph_from_dot_data(dot_data.getvalue()) Image(graph[0].create_png()) from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100) rfc.fit(X_train, y_train) rfc_pred = rfc.predict(X_test) # TODO 4a print(confusion_matrix(y_test, rfc_pred)) # TODO 4b print(classification_report(y_test, rfc_pred)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now, let's connect to your Postgres database. On your Heroku Postgres details, Step2: Table Descriptions Step3: For longer queries, you can save your query into a string, then use it in the Step4: In addition, you can assign the SQL statement to a variable and then call .DataFrame() on it to get a Pandas DataFrame. Step5: Question 1a Step6: Question 1b Step7: Question 1c Step9: If you peruse the results of your last query, you should notice that some names are listed twice with slightly different spellings. Perhaps this causes some contributions to be split extraneously. Step10: Question 1e Step11: Question 2 Step12: Question 3 Step13: Question 4 Step14: Question 5 Step16: Part 2 Step17: Question 8 Step20: Question 9 Step21: Question 10 Step23: Question 11 Step24: Question 12 Step25: Question 13 Step27: Question 14 Step28: Plotting the sample distribution Step29: Computing the Confidence Interval Step30: Question 15 Step31: Then, we'll submit the assignment to OkPy so that the staff will know to grade it. You can submit as many times as you want, and you can choose which submission you want us to grade by going to https
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import sqlalchemy !pip install -U okpy from client.api.notebook import Notebook ok = Notebook('hw4.ok') my_URI = "postgres://sam:@localhost:5432/fec" %load_ext sql %sql $my_URI engine = sqlalchemy.create_engine(my_URI) connection = engine.connect() # We use `LIMIT 5` to avoid displaying a huge table. # Although our tables shouldn't get too large to display, # this is generally good practice when working in the # notebook environment. Jupyter notebooks don't handle # very large outputs well. %sql SELECT * from cand LIMIT 5 query = ''' SELECT cand_id, cand_name FROM cand WHERE cand_pty_affiliation = 'REP' LIMIT 5 ''' %sql $query res = %sql select * from cand limit 5 res_df = res.DataFrame() res_df['cand_id'] # SOLUTION query_q1a = ''' SELECT count(*) FROM inter_comm WHERE transaction_amt > 5000 ''' q1a = %sql $query_q1a q1a _ = ok.grade('q01a') _ = ok.backup() # SOLUTION query_q1b = ''' SELECT cmte_id AS donor_cmte_id, name AS recipient_name, transaction_amt AS transaction_amt FROM inter_comm WHERE transaction_amt > 5000 ORDER BY transaction_amt DESC ''' q1b = %sql $query_q1b q1b _ = ok.grade('q01b') _ = ok.backup() # SOLUTION query_q1c = ''' SELECT cmte_id AS donor_cmte_id, name AS recipient_name, sum(transaction_amt) AS total_transaction_amt FROM inter_comm GROUP BY cmte_id, name ORDER BY sum(transaction_amt) DESC LIMIT 20 ''' q1c = %sql $query_q1c q1c ok.grade('q01c') _ = ok.backup() # SOLUTION query_q1d = SELECT cmte_id AS donor_id, other_id AS recipient_id, sum(transaction_amt) AS total_transaction_amt FROM inter_comm GROUP BY cmte_id, other_id ORDER BY sum(transaction_amt) DESC LIMIT 20 q1d = %sql $query_q1d q1d _ = ok.grade('q01d') _ = ok.backup() # SOLUTION query_q1e = ''' SELECT donor.cmte_nm as donor_name, recipient.cmte_nm as recipient_name, sum(transaction_amt) AS total_transaction_amt FROM inter_comm, comm AS donor, comm AS recipient WHERE inter_comm.cmte_id = donor.cmte_id AND inter_comm.other_id = recipient.cmte_id GROUP BY donor.cmte_nm, recipient.cmte_nm ORDER BY sum(transaction_amt) DESC LIMIT 20 ''' q1e = %sql $query_q1e q1e _ = ok.grade('q01e') _ = ok.backup() # SOLUTION query_q2 = ''' SELECT cmte_st AS state, count(*) AS count FROM comm GROUP BY cmte_st ORDER BY count(*) DESC ''' q2 = %sql $query_q2 q2 _ = ok.grade('q02') _ = ok.backup() # SOLUTION query_q3 = ''' WITH pac_donations(cmte_id, pac_donations) AS ( SELECT i.other_id, SUM(i.transaction_amt) FROM inter_comm i WHERE i.entity_tp = 'PAC' GROUP BY i.other_id ) SELECT c.cmte_nm AS cmte_name, i.pac_donations AS pac_donations FROM comm c LEFT OUTER JOIN pac_donations i ON c.cmte_id = i.cmte_id ORDER BY pac_donations, cmte_nm LIMIT 20 ''' q3 = %sql $query_q3 q3 _ = ok.grade('q03') _ = ok.backup() # SOLUTION query_q4 = ''' SELECT cfrom.cmte_nm AS from_cmte_name, cto.cmte_nm AS to_cmte_name FROM comm cfrom, comm cto, inter_comm ict WHERE cfrom.cmte_id = ict.cmte_id AND cfrom.cmte_pty_affiliation = 'REP' AND cto.cmte_pty_affiliation = 'REP' AND cto.cmte_id = ict.other_id GROUP BY cfrom.cmte_id, cfrom.cmte_nm, cto.cmte_id, cto.cmte_nm ORDER BY count(*) DESC LIMIT 10 ''' q4 = %sql $query_q4 q4 _ = ok.grade('q04') _ = ok.backup() # SOLUTION query_q5 = ''' SELECT DISTINCT c1.cand_name AS cand_1, c2.cand_name AS cand_2 FROM inter_comm i1, inter_comm i2, cand c1, cand c2 WHERE i1.cand_id <> i2.cand_id AND i1.cmte_id = i2.cmte_id AND i2.state='FL' AND i1.state='FL' AND c1.cand_id = i1.cand_id AND c2.cand_id = i2.cand_id ORDER BY cand_1 ''' q5 = %sql $query_q5 q5 _ = ok.grade('q05') _ = ok.backup() query_q7 = SELECT comm.cmte_nm AS cmte_nm, sum(indiv_sample.transaction_amt) AS total_transaction_amt FROM indiv_sample, comm WHERE indiv_sample.cmte_id = comm.cmte_id GROUP BY comm.cmte_id, comm.cmte_nm HAVING cmte_nm = 'HILLARY FOR AMERICA' OR cmte_nm = 'BERNIE 2016' # Do not change anything below this line res = %sql $query_q7 q7 = res.DataFrame().set_index("cmte_nm") q7 # q7 will be graded _ = ok.grade('q07') _ = ok.backup() # SOLUTION query_q8 = ''' SELECT comm.cmte_id AS cmte_id, comm.cmte_nm AS cmte_name, SUM ( CASE WHEN transaction_amt::float <= 200.0 THEN transaction_amt::float ELSE 0.0 END ) / SUM(transaction_amt::float) AS prop_funds FROM indiv_sample, comm WHERE indiv_sample.cmte_id = comm.cmte_id GROUP BY comm.cmte_id, comm.cmte_nm HAVING cmte_nm = 'HILLARY FOR AMERICA' OR cmte_nm = 'BERNIE 2016' ''' # Do not change anything below this line res = %sql $query_q8 small_donor_funds_prop = res.DataFrame() small_donor_funds_prop _ = ok.grade('q08') _ = ok.backup() # SOLUTION query_q9a = SELECT transaction_amt FROM indiv_sample, comm WHERE indiv_sample.cmte_id = comm.cmte_id AND cmte_nm = 'HILLARY FOR AMERICA' # Do not change anything below this line res = %sql $query_q9a hillary_contributions = res.DataFrame() print(hillary_contributions.head()) # Make the Plot sns.distplot(hillary_contributions) plt.title('Distribution of Contribution Amounts to Hillary') plt.xlim((-50, 3000)) plt.ylim((0, 0.02)) # SOLUTION query_q9b = SELECT transaction_amt FROM indiv_sample, comm WHERE indiv_sample.cmte_id = comm.cmte_id AND cmte_nm = 'BERNIE 2016' # Do not change anything below this line res = %sql $query_q9b bernie_contributions = res.DataFrame() print(bernie_contributions.head()) sns.distplot(bernie_contributions) plt.title('Distribution of Contribution Amounts to Bernie') plt.xlim((-50, 3000)) plt.ylim((0, 0.02)) _ = ok.grade('q09') _ = ok.backup() %%sql DROP VIEW IF EXISTS hillary CASCADE; DROP VIEW IF EXISTS bernie CASCADE; CREATE VIEW hillary AS SELECT row_number() over () AS row_id, indiv_sample.* FROM indiv_sample, comm WHERE indiv_sample.cmte_id = comm.cmte_id AND comm.cmte_nm = 'HILLARY FOR AMERICA'; CREATE VIEW bernie AS SELECT row_number() over () AS row_id, indiv_sample.* FROM indiv_sample, comm WHERE indiv_sample.cmte_id = comm.cmte_id AND comm.cmte_nm = 'BERNIE 2016'; SELECT * FROM hillary LIMIT 5 # SOLUTION n_hillary_rows = 1524 n_trials = 500 seed = 0.42 query_q11 = CREATE VIEW hillary_design AS SELECT trial_id, (FLOOR( $n_hillary_rows * RANDOM() ) + 1) :: INTEGER AS row_id FROM GENERATE_SERIES(1, $n_trials) as a(trial_id), GENERATE_SERIES(1, $n_hillary_rows) as sample_size; # Fill in the $ variables set in the above string import string query_q11 = string.Template(query_q11).substitute(locals()) %sql drop view if exists hillary_design cascade %sql SET SEED TO $seed %sql $query_q11 %sql select * from hillary_design limit 5 _ = ok.grade('q11') _ = ok.backup() # SOLUTION query_q12 = ''' CREATE VIEW hillary_trials as SELECT d.trial_id, SUM(CASE WHEN transaction_amt <= 200 THEN transaction_amt ELSE 0 END) AS small_donor_sum, SUM(transaction_amt) AS total FROM hillary_design d, hillary h WHERE d.row_id = h.row_id GROUP BY d.trial_id ''' # Do not change anything below this line %sql drop view if exists hillary_trials cascade %sql SET SEED TO $seed %sql $query_q12 %sql select * from hillary_trials limit 5 _ = ok.grade('q12') _ = ok.backup() # SOLUTION query_q13 = ''' CREATE VIEW hillary_props as SELECT trial_id, small_donor_sum::float / total::float AS small_donor_prop FROM hillary_trials ''' %sql drop view if exists hillary_props cascade %sql SET SEED TO $seed %sql $query_q13 %sql select * from hillary_props limit 5 _ = ok.grade('q13') _ = ok.backup() # SOLUTION n_bernie_rows = 1173 n_trials = 500 create_bernie_design = CREATE VIEW bernie_design AS SELECT trial_id, (FLOOR( $n_bernie_rows * RANDOM() ) + 1) :: INTEGER AS row_id FROM GENERATE_SERIES(1, $n_trials) as a(trial_id), GENERATE_SERIES(1, $n_bernie_rows) as sample_size; create_bernie_trials = ''' CREATE VIEW bernie_trials as SELECT d.trial_id, SUM(CASE WHEN transaction_amt <= 200 THEN transaction_amt ELSE 0 END) AS small_donor_sum, SUM(transaction_amt) AS total FROM bernie_design d, bernie h WHERE d.row_id = h.row_id GROUP BY d.trial_id ''' create_bernie_props = ''' CREATE VIEW bernie_props as SELECT trial_id, small_donor_sum::float / total::float AS small_donor_prop FROM bernie_trials ''' # Do not change anything below this line # Fill in the $ variables set in the above string import string create_bernie_design = (string.Template(create_bernie_design) .substitute(locals())) %sql drop view if exists bernie_design cascade %sql $create_bernie_design %sql drop view if exists bernie_trials cascade %sql $create_bernie_trials %sql drop view if exists bernie_props %sql $create_bernie_props %sql SET SEED TO $seed %sql select * from bernie_props limit 5 _ = ok.grade('q14') _ = ok.backup() res = %sql select * from hillary_props hillary_trials_df = res.DataFrame() res = %sql select * from bernie_props bernie_trials_df = res.DataFrame() ax = plt.subplot(1,2,1) sns.distplot(hillary_trials_df['small_donor_prop'], ax=ax) plt.title('Hillary Bootstrap Prop') plt.xlim(0.1, 0.9) plt.ylim(0, 25) ax = plt.subplot(1,2,2) sns.distplot(bernie_trials_df['small_donor_prop'], ax=ax) plt.title('Bernie Bootstrap Prop') plt.xlim(0.1, 0.9) plt.ylim(0, 25) compute_hillary_ci = ''' SELECT percentile_disc(0.025) WITHIN GROUP (ORDER BY small_donor_prop) as ci_lower, percentile_disc(0.975) WITHIN GROUP (ORDER BY small_donor_prop) as ci_upper FROM hillary_props ''' compute_bernie_ci = ''' SELECT percentile_disc(0.025) WITHIN GROUP (ORDER BY small_donor_prop) as ci_lower, percentile_disc(0.975) WITHIN GROUP (ORDER BY small_donor_prop) as ci_upper FROM bernie_props ''' %sql SET SEED TO $seed hillary_ci = %sql $compute_hillary_ci bernie_ci = %sql $compute_bernie_ci print(hillary_ci) print(bernie_ci) _ = ok.grade_all() # Now, we'll submit to okpy _ = ok.submit() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Rohdaten Step2: Stopwörter Step3: Aufbereiten der Rohdaten Step5: Zählen Step6: Aufbereiten der Daten und schreiben in CSV-Dateien
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import pandas as pd import numpy as np import re !ls -liLah ../../share/Data # generate the raw_data from CSV raw_data = pd.read_csv("../../share/Data/SPON_complete", delimiter=",", skipinitialspace=True) # Stopwords are downloaded and defined here try: with open("../german_stopwords_full.txt") as f: STOPWORDS = [line.strip() for line in f if not line.startswith(";")] except FileNotFoundError: !wget https://raw.githubusercontent.com/solariz/german_stopwords/master/german_stopwords_full.txt with open("../german_stopwords_full.txt") as f: STOPWORDS = [line.strip() for line in f if not line.startswith(";")] dynamic_stopwords = ["dass", "", " ", "worden", "jahren", "jahre", "jahr", "heißt", "heißen", "müsse", "prozent"] STOPWORDS += dynamic_stopwords # Aufbereitung der Daten zur späteren Bearbeitung ## TODO: nicht mit DF sondern als Text bearbeiten -- Zeit- und Memkritisch data = raw_data if False: # Cleaning the strings to be only alphanumeric data['article'] = data['article'].map(lambda x: re.sub(r'\W+', '', str(x), re.UNICODE)) # Removing the stopwords data['article'] = data['article'].map(lambda x: [item for item in x.split() if item not in STOPWORDS]) data.to_csv("./share/Data/SPON_complete_clean.csv".format(word) , sep=',') data def count_words(source): Counting the words of the column article of a given Dataframe. It is possible to define a word, so only this word will be counted. #split column Message to new df, create Serie by stack s = (source.article.str.split(expand=True).stack().str.lower() ) #remove multiindex s.index = s.index.droplevel(-1) s.name= 'words' #join Serie s to df source df = (source.join(s)) # Cleaning the strings to be only alphanumeric df['words'] = df['words'].map(lambda x: re.sub(r'\W+', '', str(x), re.U)) df = df[~df['words'].isin( STOPWORDS)].groupby( ['words']).size().reset_index( name='count' ).sort_values(by='count') return df def wordcounter(source, word): df = count_words(source) return df[df['words'].str.contains(word)] # This will generate a list of Strings, representating the months from .01.2001 to .12.2012 datestrings = [".{:02d}.20{:02d}".format(m,y) for y in range(1, 17) for m in range(1, 13) ] top25words_ofCategory = lambda m, c : count_words( raw_data[ (raw_data.day.str.contains(m, na=False)) & (raw_data.cats.str.contains(c, na=False) )] ).nlargest(25, columns=['count', ]).set_index('words') gen = False if gen: _ = [top25words_ofCategory('{}'.format(Y), 'Politik').to_csv("../../share/DATA/politics_top25words_{}.csv".format(Y)) for Y in range(2001, 2017)] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Unit Test
<ASSISTANT_TASK:> Python Code: %run ../linked_list/linked_list.py %load ../linked_list/linked_list.py class MyLinkedList(LinkedList): def kth_to_last_elem(self, k): # TODO: Implement me pass # %load test_kth_to_last_elem.py from nose.tools import assert_equal class Test(object): def test_kth_to_last_elem(self): print('Test: Empty list') linked_list = MyLinkedList(None) assert_equal(linked_list.kth_to_last_elem(0), None) print('Test: k >= len(list)') assert_equal(linked_list.kth_to_last_elem(100), None) print('Test: One element, k = 0') head = Node(2) linked_list = MyLinkedList(head) assert_equal(linked_list.kth_to_last_elem(0), 2) print('Test: General case') linked_list.insert_to_front(1) linked_list.insert_to_front(3) linked_list.insert_to_front(5) linked_list.insert_to_front(7) assert_equal(linked_list.kth_to_last_elem(2), 3) print('Success: test_kth_to_last_elem') def main(): test = Test() test.test_kth_to_last_elem() if __name__ == '__main__': main() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Individual energy terms Step2: The unnormalised probability of state $\theta_1\theta_2$ Step3: 2-dimensional Boltzmann distribution Step4: Analytical results Step5: Energy landscape Step6: Probability state-space Step7: Markov-chain Monte-Carlo (MCMC) Step8: Setting up the PyMC3 model is simple! Specify the priors and the energy function using pm.Potential Step9: Chose the NUTS algorithm as our MCMC step and request a large number of random samples. These are returned in the trace variable. Step10: Compare results Step11: Marginalisation over one variable Step12: Langevin dynamics simulations (sLLG) Step13: Negligible interactions case Step14: Weakly interacting case Step15: Strongly interacting case Step16: High noise
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import ImageGrid %matplotlib inline def dd(t1, t2, nu): return -nu*(3*np.cos(t1)*np.cos(t2) - np.cos(t1-t2)) def anis(t1, t2, sigma): return sigma*(np.sin(t1)**2 + np.sin(t2)**2) def tot(t1, t2, nu, sigma): return dd(t1, t2, nu) + anis(t1, t2, sigma) def p_unorm(t1,t2,nu,sigma): return np.sin(t1)*np.sin(t2)*np.exp(-tot(t1,t2,nu,sigma)) from scipy.integrate import dblquad def boltz_2d(ts, nu, sigma): e = np.array([[p_unorm(t1,t2,nu,sigma) for t1 in ts] for t2 in ts]) Z = dblquad(lambda t1,t2: p_unorm(t1,t2,nu,sigma), 0, ts[-1], lambda x: 0, lambda x: ts[-1])[0] return e/Z nus = [0, 0.3, 0.3] sigmas = [2.0, 2.0, 0.5] ts = np.linspace(0, np.pi, 100) fg = plt.figure(figsize=(10,4)) axs = ImageGrid( fg, 111, nrows_ncols=(1,3), axes_pad=0.15, share_all=True,cbar_location="right", cbar_mode="single",cbar_size="7%", cbar_pad=0.15, ) for nu, sigma, ax in zip(nus, sigmas, axs): e = [[tot(t1, t2, nu, sigma) for t1 in ts] for t2 in ts] cf=ax.contourf(ts, ts, e) ax.set_xlabel('$\\theta_1$'); ax.set_ylabel('$\\theta_2$') ax.set_aspect('equal') axs[0].set_title('No interactions') axs[1].set_title('Strong interactions') axs[2].set_title('Weak anisotropy') ax.cax.colorbar(cf) # fix color bar ts = np.linspace(0, np.pi, 100) fg = plt.figure(figsize=(10,4)) axs = ImageGrid( fg, 111, nrows_ncols=(1,3), axes_pad=0.15, share_all=True,cbar_location="right", cbar_mode="single",cbar_size="7%", cbar_pad=0.15, ) for nu, sigma, ax in zip(nus, sigmas, axs): b = boltz_2d(ts, nu, sigma) cf=ax.contourf(ts, ts, b) ax.set_xlabel('$\\theta_1$'); ax.set_ylabel('$\\theta_2$') ax.set_aspect('equal') axs[0].set_title('No interactions') axs[1].set_title('Strong interactions') axs[2].set_title('Weak anisotropy') ax.cax.colorbar(cf) # fix color bar import pymc3 as pm nu = 0.3 sigma = 1.5 with pm.Model() as model: z1 = pm.Uniform('z1', -1, 1) theta1 = pm.Deterministic('theta1', np.arccos(z1)) z2 = pm.Uniform('z2', -1, 1) theta2 = pm.Deterministic('theta2', np.arccos(z2)) energy = tot(theta1, theta2, nu, sigma) like = pm.Potential('energy', -energy) with model: step = pm.NUTS() trace = pm.sample(100000, step=step) b = boltz_2d(ts, nu, sigma) plt.hist2d(trace['theta1'], trace['theta2'], bins=70, normed=True) plt.contour(ts, ts, b, cmap='Greys') plt.gca().set_aspect('equal') plt.xlabel('$\\theta_1$'); plt.ylabel('$\\theta_2$'); from scipy.integrate import trapz b_marginal = -b.sum(axis=0) / trapz(ts, b.sum(axis=0)) fg, axs = plt.subplots(ncols=2, figsize=(9,3)) for i in range(2): axs[i].hist(trace['theta{}'.format(i+1)], bins=100, normed=True) axs[i].plot(ts, b_marginal, lw=2) axs[i].set_xlabel('$\\theta_{}$'.format(i+1)) axs[i].set_ylabel('$p(\\theta_{})$'.format(i+1)) plt.suptitle('Marginal distributions', fontsize=18) import magpy as mp K = 1e5 r = 8e-9 T = 330 Ms=400e3 R=1.5e-3 kdir = [0, 0, 1] location1 = np.array([0, 0, 0], dtype=np.float) location2 = np.array([0, 0, R], dtype=np.float) direction = np.array([0, 0, 1], dtype=np.float) alpha = 1.0 V = 4./3*np.pi*r**3 sigma = K*V/mp.get_KB()/T nu = mp.get_mu0() * V**2 * Ms**2 / 2.0 / np.pi / R**3 / mp.get_KB() / T print('Sigma: {:.3f}'.format(sigma)) print(' Nu: {:.3f}'.format(nu)) model = mp.Model( anisotropy=np.array([K, K], dtype=np.float), anisotropy_axis=np.array([kdir, kdir], dtype=np.float), damping=alpha, location=np.array([location1, location2], dtype=np.float), magnetisation=Ms, magnetisation_direction=np.array([direction, direction], dtype=np.float), radius=np.array([r, r], dtype=np.float), temperature=T ) res = model.simulate_ensemble(end_time=1e-9, time_step=1e-12, max_samples=500, seeds=range(5000), n_jobs=8, implicit_solve=True, interactions=False) m_z = [state['z'][0] for state in res.final_state()] theta = np.arccos(m_z) ts = np.linspace(0, np.pi/2, 100) b = boltz_2d(ts, nu, sigma) b_marginal = -b.sum(axis=0) / trapz(ts, b.sum(axis=0)) b_noint = b_marginal plt.hist(theta, bins=50, normed=True) plt.plot(ts[ts<theta.max()], b_marginal[ts<theta.max()]) res = model.simulate_ensemble(end_time=1e-9, time_step=1e-12, max_samples=500, seeds=range(5000), n_jobs=8, implicit_solve=True, interactions=True) m_z = [state['z'][0] for state in res.final_state()] theta = np.arccos(m_z) ts = np.linspace(0, np.pi/2, 100) b = boltz_2d(ts, nu, sigma) b_marginal = -b.sum(axis=0) / trapz(ts, b.sum(axis=0)) plt.hist(theta, bins=50, normed=True) plt.plot(ts[ts<theta.max()], b_marginal[ts<theta.max()]) plt.plot(ts[ts<theta.max()], b_noint[ts<theta.max()]) R=1e-7 location1 = np.array([0, 0, 0], dtype=np.float) location2 = np.array([0, 0, R], dtype=np.float) nu = mp.get_mu0() * V**2 * Ms**2 / 2.0 / np.pi / R**3 / mp.get_KB() / T print('Sigma: {:.3f}'.format(sigma)) print(' Nu: {:.3f}'.format(nu)) model = mp.Model( anisotropy=np.array([K, K], dtype=np.float), anisotropy_axis=np.array([kdir, kdir], dtype=np.float), damping=alpha, location=np.array([location1, location2], dtype=np.float), magnetisation=Ms, magnetisation_direction=np.array([direction, direction], dtype=np.float), radius=np.array([r, r], dtype=np.float), temperature=T ) res = model.simulate_ensemble(end_time=1e-9, time_step=1e-12, max_samples=500, seeds=range(5000), n_jobs=8, implicit_solve=True, interactions=True) m_z = [state['z'][0] for state in res.final_state()] theta = np.arccos(m_z) ts = np.linspace(0, np.pi/2, 100) b = boltz_2d(ts, nu, sigma) b_marginal = -b.sum(axis=0) / trapz(ts, b.sum(axis=0)) plt.hist(theta, bins=50, normed=True) plt.plot(ts[ts<theta.max()], b_marginal[ts<theta.max()]) plt.plot(ts[ts<theta.max()], b_noint[ts<theta.max()]) R=0.6e-8 location1 = np.array([0, 0, 0], dtype=np.float) location2 = np.array([0, 0, R], dtype=np.float) nu = mp.get_mu0() * V**2 * Ms**2 / 2.0 / np.pi / R**3 / mp.get_KB() / T print('Sigma: {:.3f}'.format(sigma)) print(' Nu: {:.3f}'.format(nu)) model = mp.Model( anisotropy=np.array([K, K], dtype=np.float), anisotropy_axis=np.array([kdir, kdir], dtype=np.float), damping=alpha, location=np.array([location1, location2], dtype=np.float), magnetisation=Ms, magnetisation_direction=np.array([direction, direction], dtype=np.float), radius=np.array([r, r], dtype=np.float), temperature=T ) res = model.simulate_ensemble(end_time=10e-9, time_step=1e-12, max_samples=500, seeds=range(5000), n_jobs=8, implicit_solve=True, interactions=True) m_z = [state['z'][0] for state in res.final_state()] theta = np.arccos(m_z) ts = np.linspace(0, np.pi/2, 100) b = boltz_2d(ts, nu, sigma) b_marginal = -b.sum(axis=0) / trapz(ts, b.sum(axis=0)) plt.hist(theta, bins=50, normed=True, label='simulation') plt.plot(ts[ts<theta.max()], b_marginal[ts<theta.max()], label='analytic') plt.plot(ts[ts<theta.max()], b_noint[ts<theta.max()], label='analytic ($\\nu=0$)') plt.legend() r = 1e-9 V = 4./3*np.pi*r**3 sigma = K*V/mp.get_KB()/T nu = mp.get_mu0() * V**2 * Ms**2 / 2.0 / np.pi / R**3 / mp.get_KB() / T print('Sigma: {:.3f}'.format(sigma)) print(' Nu: {:.3f}'.format(nu)) model = mp.Model( anisotropy=np.array([K, K], dtype=np.float), anisotropy_axis=np.array([kdir, kdir], dtype=np.float), damping=alpha, location=np.array([location1, location2], dtype=np.float), magnetisation=Ms, magnetisation_direction=np.array([direction, direction], dtype=np.float), radius=np.array([r, r], dtype=np.float), temperature=T ) res = model.simulate(end_time=1e-9, time_step=1e-13, max_samples=1000, seed=1001, implicit_solve=True, interactions=True) res.plot(); res = model.simulate_ensemble(end_time=1e-9, time_step=1e-13, max_samples=500, seeds=range(5000), n_jobs=8, implicit_solve=True, interactions=True) m_z = [state['z'][0] for state in res.final_state()] theta = np.arccos(m_z) ts = np.linspace(0, np.pi, 100) b = boltz_2d(ts, nu, sigma) b_marginal = -b.sum(axis=0) / trapz(ts, b.sum(axis=0)) plt.hist(theta, bins=50, normed=True) plt.plot(ts, b_marginal) <END_TASK>