Unnamed: 0
int64
0
15.9k
cleaned_code
stringlengths
67
124k
cleaned_prompt
stringlengths
168
30.3k
2,700
<ASSISTANT_TASK:> Python Code: import pycuda.autoinit import pycuda.driver as drv import numpy from pycuda.compiler import SourceModule mod = SourceModule( __global__ void multiplicar(float *dest, float *a, float *b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; } ) multiplicar = mod.get_function("multiplicar") a = numpy.random.randn(400).astype(numpy.float32) b = numpy.random.randn(400).astype(numpy.float32) dest = numpy.zeros_like(a) print dest multiplicar( drv.Out(dest), drv.In(a), drv.In(b), block=(400,1,1), grid=(1,1)) print dest print dest-a*b import pycuda.driver as cuda import pycuda.autoinit from pycuda.compiler import SourceModule import numpy a = numpy.random.randn(4,4) a = a.astype(numpy.float32) a_gpu = cuda.mem_alloc(a.nbytes) cuda.memcpy_htod(a_gpu, a) mod = SourceModule( __global__ void duplicar(float *a) { int idx = threadIdx.x + threadIdx.y*4; a[idx] *= 2; } ) mod func = mod.get_function("duplicar") func(a_gpu, block=(4,4,1)) func a_duplicado = numpy.empty_like(a) cuda.memcpy_dtoh(a_duplicado, a_gpu) print a_duplicado print a print(type(a)) print(type(a_gpu)) print(type(a_duplicado)) a_duplicado <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ¿Por qué PyCUDA? Step2: Al correr este programa vamos a obtener un montón de ceros; algo no muy interesante. Sin embargo detrás de escenas sí pasó algo interesante. Step3: Transferir datos Step4: sin embargo nuestro arreglo a consiste en números de doble precisión, dado que no todos los GPU de NVIDIA cuentan con doble precisión es que hacemos lo siguiente Step5: finalmente, necesitmos un arreglo hacia el cuál transferir la información, así que deberíamos guardar la memoria en el dispositivo Step6: como último paso, necesitamos tranferir los datos al GPU Step8: Ejecutando kernels Step9: Si no hay errores, el código ahora ha sido compilado y cargado en el dispositivo. Encontramos una referencia a nuestra pycuda.driver.Function y la llamamos, especificando a_gpu como el argumento, y un tamaño de bloque de $4\times 4$ Step10: Finalmente recogemos la información del GPU y la mostramos con el a original
2,701
<ASSISTANT_TASK:> Python Code: %pylab inline matplotlib.rcParams['figure.figsize'] = 9, 6 from numpy import * import scipy.integrate # This code is not very efficient, it recalculates many quantities from many # different functions. It is easy to maintain though, and does not need to be # run very often. def r(t,p,R,F): # Position on reflector of facet at theta,phi return R*array([sin(t)*cos(p), sin(t)*sin(p), 1-cos(t)]) def A(t,p,R,F): # Alignment point for facet at theta,phi return array([0,0,F+norm(r(t,p,R,F)-array([0,0,F]))]) def n(t,p,R,F): # Normal of facet at theta,phi _n = A(t,p,R,F)-r(t,p,R,F) return _n/norm(_n) def g(t,p,U,R,F): _g = r(t,p,R,F)-U return _g/norm(_g) def s(t,p,U,R,F): # Direction of ray reflected from facet at theta,phi _g = g(t,p,U,R,F) _n = n(t,p,R,F) return _g - 2*dot(_g,_n)*_n def r_im(t,p,U,R,F): # Position on image plane of ray reflected from facet at theta,phi V = 1.0/(1.0/F-1.0/U[2]) _r = r(t,p,R,F) _s = s(t,p,U,R,F) tim = (V-_r[2])/_s[2] return (_r+tim*_s)/V def integrate(fn,U,R,F,D): # Integral of parallel beam over full reflector integrand = lambda t,p: -(R**2)*sin(t)*fn(t,p)*cos(t)*dot(n(t,p,R,F),g(t,p,U,R,F)) tmax = arcsin(D/2.0/R) gfun = lambda p: 0 hfun = lambda p: tmax return scipy.integrate.dblquad(integrand,0,2*pi,gfun,hfun) F = 1600. R = F*1.2 D = 1200. Uz = 10.6 * 1e5 d = 4.0/180.0*pi figure(1,figsize=[15,3]) labset=False C = [ 'k','r','b' ] for d in arange(0,4.01,0.5)/180.0*pi: U = array([-Uz*tan(d), 0, Uz]) for i in range(0,3): Di = D*float(i+1)/3.0/2.0 t = Di/R p = arange(0.0,360.1,1)/180.0*pi rfp = list(map(lambda _p: r_im(t,_p,U,R,F),p)) x = array(list(map(lambda _r: _r[0]/pi*180, rfp))) y = array(list(map(lambda _r: _r[1]/pi*180, rfp))) lab = "_NOLABEL_" if labset==False: lab = 'd=%.0fcm'%Di plot(x,y,C[i],label=lab) labset = True axis([-0.25, 4.75, -.5, .5]); xlabel('Tangential focal plane position [deg]') ylabel('Sagittal position [deg]') legend(loc=2); #gcf().savefig('zfs_lewes_10k.pdf',bbox_inches='tight') def tof(t,p,U,R,F): V = 1.0/(1.0/F-1.0/U[2]) r_ref = r(t,p,R,F) return (norm(r_ref-U)+norm(r_im(t,p,U,R,F)*V - r_ref))/2.9979246e+10 def calcPSF_SA(dv, R, F, D, Uz): meanxv = [] meanyv = [] meantv = [] rmsxv = [] rmsyv = [] rmstv = [] for d in dv: U = array([-Uz*tan(d), 0, Uz]) int1 = integrate(lambda t,p: 1,U,R,F,D) intx = integrate(lambda t,p: r_im(t,p,U,R,F)[0],U,R,F,D) inty = integrate(lambda t,p: r_im(t,p,U,R,F)[1],U,R,F,D) intxx = integrate(lambda t,p: r_im(t,p,U,R,F)[0]**2,U,R,F,D) intyy = integrate(lambda t,p: r_im(t,p,U,R,F)[1]**2,U,R,F,D) intt = integrate(lambda t,p: tof(t,p,U,R,F),U,R,F,D) inttt = integrate(lambda t,p: tof(t,p,U,R,F)**2,U,R,F,D) meanx = intx[0]/int1[0] meany = inty[0]/int1[0] meant = intt[0]/int1[0] varx = intxx[0]/int1[0] - meanx**2 vary = intyy[0]/int1[0] - meany**2 vart = inttt[0]/int1[0] - meant**2 meanxv.append(meanx) meanyv.append(meany) meantv.append(meant) rmsxv.append(sqrt(varx)) rmsyv.append(sqrt(vary)) rmstv.append(sqrt(vart)) meanx = array(meanxv) meany = array(meanyv) meant = array(meantv) rmsx = array(rmsxv) rmsy = array(rmsyv) rmst = array(rmstv) return meanx, meany, rmsx, rmsy, meant, rmst dv = arange(0.0,10.01,0.1)/180.0*pi meanx_sa, meany_sa, rmsx_sa, rmsy_sa, meant_sa, rmst_sa = calcPSF_SA(dv,R,F,D,Uz) P=polyfit(dv,meanx_sa,1) print("Plate-scale factor: %.3f"%P[0]) import sys,os from calin.simulation.vs_optics import * from numpy import * def calcPSF_RT(dv, R, F, D, Uz, N=100000): param = calin.ix.simulation.vs_optics.IsotropicDCArrayParameters() param.mutable_prescribed_array_layout().add_scope_positions(); dc = param.mutable_reflector() dc.set_curvature_radius(R) dc.set_aperture(D) dc.set_facet_spacing(1.0) dc.set_facet_size(dc.facet_spacing()) dc.set_facet_focal_length(F) dc.mutable_psf_align().set_object_plane(inf); dc.set_alignment_image_plane(F) dc.set_weathering_factor(1.0) dc.set_facet_spot_size_probability(0.8) dc.set_facet_spot_size(0) param.mutable_focal_plane().mutable_translation().set_y(1.0/(1.0/F-1.0/Uz)) param.mutable_pixel().set_spacing(1) param.mutable_pixel().set_cone_inner_diameter(1) param.mutable_pixel().set_cone_survival_prob(1) rng = calin.math.rng.RNG() cta = calin.simulation.vs_optics.VSOArray() cta.generateFromArrayParameters(param, rng) scope = cta.telescope(0) print(scope.numMirrors(), scope.numPixels()) PS = 1/scope.focalPlanePosition()[1] raytracer = calin.simulation.vs_optics.VSORayTracer(cta, rng) ph = calin.math.ray.Ray() info = calin.simulation.vs_optics.VSOTraceInfo() nhit = [] meanxv = [] meanyv = [] meantv = [] rmsxv = [] rmsyv = [] rmstv = [] for d in dv: x = [] y = [] t = [] for i in range(0,N): raytracer.testBeam(ph, scope, d, 0, Uz) pixel = raytracer.trace(ph, info, scope) # print(info.status) if info.rayHitFocalPlane(): x.append(info.fplane_z) y.append(info.fplane_x) t.append(info.fplane_t) x = array(x)*PS y = array(y)*PS nhit.append(len(x)) meanxv.append(mean(x)) meanyv.append(mean(y)) meantv.append(mean(t)) rmsxv.append(std(x)) rmsyv.append(std(y)) rmstv.append(std(t)) nhit = array(nhit) meanx = array(meanxv) meany = array(meanyv) meant = array(meantv) rmsx = array(rmsxv) rmsy = array(rmsyv) rmst = array(rmstv) return nhit, meanx, meany, rmsx, rmsy, meant, rmst dv2 = arange(0.0,10.01,0.5)/180.0*pi nhit_rt, meanx_rt, meany_rt, rmsx_rt, rmsy_rt, meant_rt, rmst_rt = calcPSF_RT(dv2,R,F,D,Uz,N=100000) figure(figsize=(6,4)) plot(dv/pi*180,rmsx_sa/pi*180,'r-',label='Quadrature: tangential') plot(dv/pi*180,rmsy_sa/pi*180,'g-',label='Quadrature: sagittal') plot(dv2/pi*180,rmsx_rt/pi*180,'rx',label='Monte Carlo: tangential') plot(dv2/pi*180,rmsy_rt/pi*180,'gx',label='Monte Carlo: sagittal') xlabel('Off axis angle [deg]') ylabel('Image RMS [deg]') legend(loc=2) axis(array(axis())+array([-0.1, 0.1, 0, 0])) grid() #gcf().savefig('zfs_rms_10k.pdf',bbox_inches='tight') figure(figsize=(6,4)) plot(dv/pi*180,rmst_sa*1e9,'b-',label='Quadrature') #plot(dv2/pi*180,rmst_rt*1e9,'bx',label='Monte Carlo') errorbar(dv2/pi*180,rmst_rt*1e9,fmt='bx',yerr=rmst_rt*1e9/sqrt(2*nhit_rt),label='Monte Carlo') text(0.025,0.025,'Note: errors on RMS assume Gaussian distribution',transform=gca().transAxes) xlabel('Off axis angle [deg]') ylabel('Time dispersion RMS [ns]') legend(loc=1) a=array(axis()) a[0] = -0.1 a[1] = 10.1 a[3] = 0.7501 axis(a) grid() #gcf().savefig('zfs_tdisp_10k.pdf',bbox_inches='tight') meanx_sa_x2, meany_sa_x2, rmsx_sa_x2, rmsy_sa_x2, meant_sa_x2, rmst_sa_x2 = calcPSF_SA(dv,R,F,D*2.0,Uz) nhit_rt_x2, meanx_rt_x2, meany_rt_x2, rmsx_rt_x2, rmsy_rt_x2, meant_rt_x2, rmst_rt_x2 = calcPSF_RT(dv2,R,F,D*2.0,Uz,N=100000) figure(figsize=(6,4)) plot(dv/pi*180,rmsx_sa_x2/pi*180,'r-',label='Quadrature: tangential') plot(dv/pi*180,rmsy_sa_x2/pi*180,'g-',label='Quadrature: sagittal') plot(dv2/pi*180,rmsx_rt_x2/pi*180,'rx',label='Monte Carlo: tangential') plot(dv2/pi*180,rmsy_rt_x2/pi*180,'gx',label='Monte Carlo: sagittal') xlabel('Off axis angle [deg]') ylabel('Image RMS [deg]') legend(loc=2) axis(array(axis())+array([-0.1, 0.1, 0, 0])) grid() #gcf().savefig('zfs_rms_D2400_10k.pdf',bbox_inches='tight') figure(figsize=(6,4)) plot(dv/pi*180,rmst_sa_x2*1e9,'b-',label='Quadrature') #plot(dv2/pi*180,rmst_rt_x2*1e9,'bx',label='Monte Carlo') errorbar(dv2/pi*180,rmst_rt_x2*1e9,fmt='bx',yerr=rmst_rt_x2*1e9/sqrt(2*nhit_rt_x2),label='Monte Carlo') text(0.025,0.025,'Note: errors on RMS assume Gaussian distribution',transform=gca().transAxes) xlabel('Off axis angle [deg]') ylabel('Time dispersion RMS [ns]') legend(loc=1) a=array(axis()) a[0] = -0.1 a[1] = 10.1 axis(a) grid() #gcf().savefig('zfs_tdisp_D2400_10k.pdf',bbox_inches='tight') #numpy.savez('zfs_10k.npz',dv, meanx_sa, meany_sa, rmsx_sa, rmsy_sa, meant_sa, rmst_sa, # dv2, nhit_rt, meanx_rt, meany_rt, rmsx_rt, rmsy_rt, meant_rt, rmst_rt, # meanx_sa_x2, meany_sa_x2, rmsx_sa_x2, rmsy_sa_x2, meant_sa_x2, rmst_sa_x2, # nhit_rt_x2, meanx_rt_x2, meany_rt_x2, rmsx_rt_x2, rmsy_rt_x2, meant_rt_x2, rmst_rt_x2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Development of semi-analytic method Step2: Illustration of focal plane images Step3: Image moments using semi-analytic method Step4: Fitting a linear function to the centroid position gives the plate-scale correction factor appropriate for this modified DC design Step5: Image moments using Monte Carlo ray-tracing code Step6: Comparison of results - PSF and time dispersion Step7: System with f=F/D=1600/2400=0.67
2,702
<ASSISTANT_TASK:> Python Code:: import matplotlib.pyplot as plt plt.hist(L) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
2,703
<ASSISTANT_TASK:> Python Code: plt.imshow(plt.imread('./res/fig11_2.png')) show_image('fig11_5.png') show_image('fig11_7.png', figsize=(8, 10)) show_image('fig11_9.png', figsize=(8, 10)) show_image('fig11_10.png', figsize=(8, 10)) show_image('fig11_13.png') show_image('ex11_17.png') #Exercise <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 11.2.2 Using Eigenvectors for Dimensionality Reduction Step2: 11.3.2 Interpretation of SVD Step3: If we set the $s$ smallest singular values to 0, then we can also eliminate the corresponding $s$ rows of $U$ and $V$. Step4: 11.3.4 Why Zeroing Low Singular Values Works Step5: Eliminating Duplicate Rows and Columns
2,704
<ASSISTANT_TASK:> Python Code: %pylab inline rcParams["figure.figsize"] = (8, 6) rcParams["axes.grid"] = True from IPython.display import display, clear_output from mpl_toolkits.axes_grid1 import make_axes_locatable from time import sleep from __future__ import division def cart2pol(x, y): theta = arctan2(y, x) r = sqrt(x ** 2 + y ** 2) return theta, r def pol2cart(theta, r): x = r * cos(theta) y = r * sin(theta) return x, y def selfDiffusionOfWater(T, P=101.325): # Implements the Krynicki formula; returns the self-diffusion of water (in micrometers^2/millisec) # given the temperature T (in Centigrade) and the pressure P (in kPa). d = 12.5 * exp(P * -5.22 * 1e-6) * sqrt(T + 273.15) * exp(-925 * exp(P * -2.6 * 1e-6)/(T + 273.15 - (95 + P * 2.61 * 1e-4))) return d D = selfDiffusionOfWater(37) print("%f micrometers^2/millisecond" % D) T = arange(25,41) D = selfDiffusionOfWater(T) figure() plot(T, D, 'k') xlabel('Temperature (Centigrade)', fontsize=14) ylabel('Self-diffusion ($\mu$m$^2$/ms)', fontsize=14) plot([37,37], [2,3.4], 'r-') text(37, 3.45, 'Body Temperature', ha='center', color='r', fontsize=12) # compute your answer here voxel_size = 50.0 # micrometers ADC = 2.0 # micrometers^2/millisecond) barrier_spacing = 10.0 # micrometers (set this to 0 for no barriers) num_particles = 500 def draw_particles(ax, title, xy, particle_color, voxel_size, barrier_spacing): ax.set_xlabel('X position $(\mu m)$') ax.set_ylabel('Y position $(\mu m)$') ax.axis('equal') ax.set_title(title) ax.set_xlim(-voxel_size/2, voxel_size/2) ax.set_ylim(-voxel_size/2, voxel_size/2) if barrier_spacing > 0: compartments = unique(np.round(xy[1,:] / barrier_spacing)) for c in range(compartments.size): ax.hlines(compartments[c]*barrier_spacing, -voxel_size/2, voxel_size/2, linewidth=4, colors=[.7, .7, .8], linestyles='solid') particles = [] for p in range(xy.shape[1]): particles.append(Circle(xy[:,p], 0.3, color=particle_color[p])) ax.add_artist(particles[p]) return particles # Place some particles randomly distributed in the volume xy = random.rand(2, num_particles) * voxel_size - voxel_size/2. start_xy = xy particle_color = [((xy[0,p] + voxel_size/2) / voxel_size, (xy[1,p] + voxel_size/2) / voxel_size, .5) for p in range(num_particles)] # draw 'em fig,ax = subplots(1, 1, figsize=(6, 6)) particles = draw_particles(ax, 'initial particle positions', xy, particle_color, voxel_size, barrier_spacing) import time, sys from IPython.core.display import clear_output time_step = 0.1 # milliseconds nTimeSteps = 100 fig,ax = subplots(1, 1, figsize=(6, 6)) total_time = 0 for t_i in range(nTimeSteps): dxy = np.random.standard_normal(xy.shape) * sqrt(2 * ADC * time_step) new_xy = xy + dxy if barrier_spacing>0: curCompartment = np.round(xy[1,:]/barrier_spacing) newCompartment = np.round(new_xy[1,:]/barrier_spacing) for p in range(newCompartment.size): if newCompartment[p]!=curCompartment[p]: # approximate particles reflecting off the impermeable barrier new_xy[1,p] = xy[1,p] xy = new_xy title = 'elapsed time: %5.2f ms' % (time_step * t_i) particles = draw_particles(ax, title, xy, particle_color, voxel_size, barrier_spacing) clear_output(wait=True) display(fig,ax) ax.cla() total_time += time_step close() # compute your answer here Dt = cov(start_xy - xy) / (2 * total_time) [val,vec] = eig(Dt) estimatedADC = val / total_time principalDiffusionDirection = vec[0] print('ADC = ' + str(estimatedADC)) print('Principal Diffusion Direction (PDD) = ' + str(principalDiffusionDirection)) # compute your answer here fig,ax = subplots(1, 1, figsize=(6, 6)) start_p = draw_particles(ax, 'initial particle positions', start_xy, particle_color, voxel_size, barrier_spacing) for p in range(num_particles): ax.plot((start_xy[0,p], xy[0,p]), (start_xy[1,p], xy[1,p]), linewidth=1, color=[.5, .5, .5], linestyle='solid') # compute your answer here B0 = 3.0 # Magnetic field strength (Tesla) gyromagneticRatio = 42.58e+6 # Gyromagnetic constant for hydrogen (Hz / Tesla) # The Larmor frequency (in Hz) of Hydrogen spins in this magnet is: spinFreq = gyromagneticRatio * B0 # compute your answer here voxelSize = 100.0 # micrometers gx = 5e-8 # Tesla / micrometer gy = 0.0 # Tesla / micrometer def draw_spins(ax, title, field_image, im_unit, sx, sy, px, py): # a function to draw spin-packets # draw the relative magnetic field map image im = ax.imshow(field_image, extent=im_unit+im_unit, cmap=matplotlib.cm.bone) ax.set_ylabel('Y position (micrometers)') ax.set_xlabel('X position (micrometers)') ax.set_title(title) # Place some spin packets in there: ax.scatter(x=sx+px, y=sy+py, color='r', s=3) ax.scatter(x=sx, y=sy, color='c', s=3) ax.set_xlim(im_unit) ax.set_ylim(im_unit) # add a colorbar divider = make_axes_locatable(ax) cax = divider.append_axes("bottom", size="7%", pad=0.5) cbl = fig.colorbar(im, cax=cax, orientation='horizontal') cbl.set_label('Relative field strength (micro Tesla)') im_unit = (-voxelSize/2, voxelSize/2) x = linspace(im_unit[0], im_unit[1], 100) y = linspace(im_unit[0], im_unit[1], 100) [X,Y] = meshgrid(x,y) # micrometers * Tesla/micrometer * 1e6 = microTesla relative_field_image = (X*gx + Y*gy) * 1e6 locations = linspace(-voxelSize/2+voxelSize/10, voxelSize/2-voxelSize/10, 5) sx,sy = meshgrid(locations, locations); sx = sx.flatten() sy = sy.flatten() # set the phase/magnitude to be zero px = zeros(sx.shape) py = zeros(sy.shape) fig,ax = subplots(1, 1) draw_spins(ax, 'Spin packets at rest in a gradient', relative_field_image, im_unit, sx, sy, px, py) spinFreq = (sx * gx + sy * gy) * gyromagneticRatio + B0 * gyromagneticRatio print(spinFreq) relativeSpinFreq = (sx * gx + sy * gy) * gyromagneticRatio print(relativeSpinFreq) # compute your answer here fig,ax = subplots(1, 1) timeStep = .001 # Initialize the transverse magnitization to reflect a 90 deg RF pulse. # The scale here is arbitrary and is selected simply to make a nice plot. Mxy0 = 5 # Set the T2 value of the spins (in seconds) T2 = 0.07 curPhase = zeros(sx.size) t = 0. nTimeSteps = 50 for ti in range(nTimeSteps): # Update the current phase based on the spin's precession rate, which is a function # of its local magnetic field. curPhase = curPhase + 2*pi*gyromagneticRatio * (sx*gx+sy*gy) * timeStep # Do a 180 flip at the TE/2: if ti==round(nTimeSteps/2.): curPhase = -curPhase # The transverse magnitization magnitude decays with the T2: curMagnitude = Mxy0 * exp(-t/T2) px = sin(curPhase) * curMagnitude py = cos(curPhase) * curMagnitude # Summarize the total (relative) MR signal for this iteration S = sqrt(sum(px**2 + py**2)) / sx.size title = 'elapsed time: %5.1f/%5.1f ms' % (t*1000., timeStep*(nTimeSteps-1)*1000) draw_spins(ax, title, relative_field_image, im_unit, sx, sy, px, py) clear_output(wait=True) display(fig,ax) ax.cla() t = t+timeStep close() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Self-diffusion of water Step2: The self-diffusion of water at body temperature and standard pressure, in micrometers<sup>2</sup>/millimeter, is Step3: Now we'll plot D for a biologically meaningful range of temperatures Step4: Question 1 Step5: Brownian motion Step6: Run the diffusion simulation Step7: Question 2 Step8: By comparing the particle ending positions (in xy) with their starting positions (in start_xy), we can compute the diffusion tensor. This is essentially just a 2-d Gaussian fit to the position differences, computed using the covariance function (cov). We also need to normalize the positions by the total time that we diffused. Step9: Question 3 Step10: Now lets show the particle starting positions a little line segment showing where each moved to. Step11: Question 4 Step12: The effect of diffusion on the MR signal Step13: Question 4 Step14: Simulate spins in an MR experiment Step15: Calculate the relative spin frequency at each spin location. Our gradient strengths are expressed as T/cm and are symmetric about the center of the voxelSize. To understand the following expression, work through the units Step16: Note that including the B0 field in this equation simply adds an offset to the spin frequency. For most purposes, we usually only care about the spin frequency relative to the B0 frequency (i.e., the rotating frame of reference), so we can leave that last term off and compute relative frequencies (in Hz) Step17: Question 5 Step18: Display the relative frequencies (in Hz)
2,705
<ASSISTANT_TASK:> Python Code: %matplotlib inline path = "data/galaxy/sample/" #path = "data/galaxy/" train_path = path + 'train/' valid_path = path + 'valid/' test_path = path + 'test/' results_path = path + 'results/' model_path = path + 'model/' from utils import * batch_size = 32 num_epoch = 1 import pandas as pd df = pd.read_csv(path+ "train.csv") df_val = pd.read_csv(path+ "valid.csv") # custom iterator for regression import Iterator; reload(Iterator) from Iterator import DirectoryIterator imgen = image.ImageDataGenerator() # imgen = image.ImageDataGenerator(samplewise_center=0, # rotation_range=360, # width_shift_range=0.05, # height_shift_range=0.05, # zoom_range=[0.9,1.2], # horizontal_flip=True, # channel_shift_range=0.1, # dim_ordering='tf') batches = DirectoryIterator(train_path, imgen, class_mode=None, dataframe=df, batch_size=4, target_size=(128,128)) val_imgen = image.ImageDataGenerator() val_batches = DirectoryIterator(valid_path, val_imgen, class_mode=None, dataframe=df_val, batch_size=4, target_size=(128,128)) imgs, target = next(batches) imgs[0].shape plots(imgs) def conv1(): model = Sequential([ BatchNormalization(axis=1, input_shape=(3,128,128)), Convolution2D(32,3,3, activation='relu'), BatchNormalization(axis=1), MaxPooling2D((3,3)), Flatten(), Dense(200, activation='relu'), BatchNormalization(), Dense(37) ]) model.compile(Adam(lr=0.0001), loss='mse') return model model = conv1() model.summary() model.fit_generator(batches, batches.nb_sample, nb_epoch=5, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) model.save_weights(model_path+'conv1.h5') train_files = batches.filenames train_out = model.predict_generator(batches, batches.nb_sample) features = list(df.columns.values) train_ids = [os.path.splitext(f) for f in train_files] submission = pd.DataFrame(train_out, columns=features[2:]) submission.insert(0, 'GalaxyID', [int(a[0][7:]) for a in train_ids]) submission.head() df.loc[df['GalaxyID'] == 924379] val_files = val_batches.filenames val_out = model.predict_generator(val_batches, val_batches.nb_sample) features = list(df_val.columns.values) val_ids = [os.path.splitext(f) for f in val_files] submission = pd.DataFrame(val_out, columns=features[2:]) submission.insert(0, 'GalaxyID', [int(a[0][7:]) for a in val_ids]) submission.head() df_val.loc[df_val['GalaxyID'] == 546684] test_batches = get_batches(test_path, batch_size=64, target_size=(128,128)) test_files = test_batches.filenames test_out = model.predict_generator(test_batches, test_batches.nb_sample) save_array(results_path+'test_out.dat', test_out) features = list(df.columns.values) test_ids = [os.path.splitext(f) for f in test_files] submission = pd.DataFrame(test_out, columns=features[2:]) submission.insert(0, 'GalaxyID', [int(a[0][7:]) for a in test_ids]) submission.head() subm_name = results_path+'subm.csv' submission.to_csv(subm_name, index=False) FileLink(subm_name) imgen_aug = image.ImageDataGenerator(horizontal_flip=True) batches = DirectoryIterator(train_path, imgen_aug, class_mode=None, dataframe=df, batch_size=4) model = conv1() model.fit_generator(batches, batches.nb_sample, nb_epoch=5, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) imgen_aug = image.ImageDataGenerator(rotation_range=360) batches = DirectoryIterator(train_path, imgen_aug, class_mode=None, dataframe=df, batch_size=4) model = conv1() model.fit_generator(batches, batches.nb_sample, nb_epoch=5, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) imgen_aug = image.ImageDataGenerator(width_shift_range=0.05) batches = DirectoryIterator(train_path, imgen_aug, class_mode=None, dataframe=df, batch_size=4) model = conv1() model.fit_generator(batches, batches.nb_sample, nb_epoch=5, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) imgen_aug = image.ImageDataGenerator(channel_shift_range=20) batches = DirectoryIterator(train_path, imgen_aug, class_mode=None, dataframe=df, batch_size=4) model = conv1() model.fit_generator(batches, batches.nb_sample, nb_epoch=5, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) imgen_aug = image.ImageDataGenerator(horizontal_flip=True, rotation_range=180, width_shift_range=0.05, channel_shift_range=20) batches = DirectoryIterator(train_path, imgen_aug, class_mode=None, dataframe=df, batch_size=4) model = conv1() model.fit_generator(batches, batches.nb_sample, nb_epoch=5, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) model.optimizer.lr = 0.0001 model.fit_generator(batches, batches.nb_sample, nb_epoch=5, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First Model Step2: To Do
2,706
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from ttim import * ml = ModelMaq(kaq=[1, 20, 2], z=[25, 20, 18, 10, 8, 0], c=[1000, 2000], Saq=[0.1, 1e-4, 1e-4], Sll=[0, 0], phreatictop=True, tmin=0.1, tmax=1000) w = Well(ml, xw=0, yw=0, rw=0.2, tsandQ=[(0, 1000)], layers=1, label='well 1') yls = [-500, -300, -200, -100, -50, 0, 50, 100, 200, 300, 500] xls = 50 * np.ones(len(yls)) ls1 = HeadLineSinkString(ml, list(zip(xls, yls)), tsandh='fixed', layers=0, label='river') ml.solve() ml.xsection(x1=-200, x2=200, npoints=100, t=100, layers=[0, 1, 2], sstart=-200) t = np.logspace(-1, 3, 100) Q = ls1.discharge(t) plt.semilogx(t, Q[0]) plt.ylabel('Q [m$^3$/d]') plt.xlabel('time [days]'); ml.contour(win=[-200, 200, -200, 200], ngr=[20, 20], t=100, layers=0, levels=20, color='b', labels='True', decimals=2, figsize=(8, 8)) ml = ModelMaq(kaq=[1, 20, 2], z=[25, 20, 18, 10, 8, 0], c=[1000, 2000], Saq=[0.1, 1e-4, 1e-4], Sll=[0, 0], phreatictop=True, tmin=0.1, tmax=2000) tsandQ=[(0, 1000), (100, 0), (365, 1000), (465, 0), (730, 1000), (830, 0), (1095, 1000), (1195, 0), (1460, 1000), (1560, 0)] w = Well(ml, xw=0, yw=0, rw=0.2, tsandQ=tsandQ, layers=1, label='well 1') yls = [-500, -300, -200, -100, -50, 0, 50, 100, 200, 300, 500] xls = 50 * np.ones(len(yls)) ls1 = HeadLineSinkString(ml, list(zip(xls, yls)), tsandh='fixed', layers=0, label='river') ml.solve() t = np.linspace(0.1, 2000, 200) Q = ls1.discharge(t) plt.plot(t, Q[0]) plt.ylabel('Q [m$^3$/d]') plt.xlabel('time [days]'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Consider a well in the middle aquifer of a three aquifer system located at $(x,y)=(0,0)$. The well starts pumping at time $t=0$ at a discharge of $Q=1000$ m$^3$/d. Aquifer properties are the shown in table 3 (same as exercise 2). A stream runs North-South along the line $x=50$. The head along the stream is fixed. Step2: Exercise 3b Step3: Exercise 3c Step4: Exercise 3d
2,707
<ASSISTANT_TASK:> Python Code: # Assign value 1 to variable x x = 1 x = 1 # Assign value 1 to variable x This is a multi-line comment. Assign value 1 to variable x. x = 1 print(1) # Print a constant x = 2014 print(x) # Print an integer variable xstr = "Hello World." # Print a string print(xstr) print(x,xstr) # Print multiple objects print("String 1" + " " + "String2") # Concatenate multiple strings and print them x = 1 print("Formatted integer is {0:06d}".format(x)) # Note the format specification, 06d, for the integer. y = 12.66666666667 print("Formatted floating point number is {0:2.3f}".format(y)) # Note the format specification, 2.3f, for the floating point number. iStr = "Hello World" fStr = "Goodbye World" print("Initial string: {0:s} . Final string: {1:s}.".format(iStr,fStr)) # Note the format specification, s, for the string. print("Initial string: {0} . Final string: {1}.".format(iStr,fStr)) # In this case, omitting the s format specified works too. x = 1 print("Formatted integer is {0:06d}".format(x)) y = 12.66666666667 print("Formatted floating point number is {0:2.3f}".format(y)) year = 2014 print(year) print("The year is %d." % year) print(type(year)) help(year) help(int) mean = (1.0 + 0.7 + 2.1)/3.0 print(mean) print("The mean is %6.2f." % mean) print(type(mean)) help(mean) help(float) x = 2**3 # ** is the exponentiation operator print(x) x = 9 % 4 # % is the modulus operator print(x) x = 9 // 4 # // is the operator for floor division print(x) x = 2.0 y = 5.0 y += x # y = y + x print(y) y %= x # y = y%x print(y) x = 1 y = 1 x == y # Check for equality x = 1 y = 1 x != 1 # Check for inequality x = 0.5 y = 1.0 x > y # Check if x greater than y x < y # Check if x less than y x >= y # Check if x greater than equal to y x <= y # Check if x less than equal to y a = 99 b = 99 (a == b) and (a <= 100) # use the and operator to check if both the operands are true a = True b = False a and b a = True b = False a or b # use the or operator to check if at least one of the two operands is true a = 100 b = 100 a == b not(a == b) # use the not operator to reverse a logical statement pythonStr = 'A first Python string.' # String specified with single quotes. print(type(pythonStr)) print(pythonStr) pythonStr = "A first Python string" # String specified with double quotes. print(type(pythonStr)) print(pythonStr) pythonStr = A multi-line string. A first Python string. # Multi-line string specified with triple quotes. print(type(pythonStr)) print(pythonStr) str1 = " Rock " str2 = " Paper " str3 = " Scissors " longStr = str1 + str2 + str3 print(longStr) str1 = "Rock,Paper,Scissors\n" repeatStr = str1*5 print(repeatStr) str1 = "Python" lenStr1 = len(str1) print("The length of str: is " + str(lenStr1) + ".") str1 = "Python" print(str1[0]) # Print the first character element of the string. print(str1[len(str1)-1]) # Print the last character element of the string. print(str1[2:4]) # Print a 2-element slice of the string, starting from the 2-nd element up to but not including the 4-th element. str1 = "Python" str1[1] = "3" # Error, strings can't be modified. str1 = "Python" print(str1.upper()) # Convert str1 to all uppercase. str2 = "PYTHON" print(str1.lower()) # Convert str2 to all lowercase. str3 = "Rock,Paper,Scissors,Lizard,Spock" print(str3.split(",")) # Split str3 using "," as the separator. A list of string elements is returned. str4 = "The original string has trailing spaces.\t\n" print("***"+str4.strip()+"***") # Print stripped string with trailing space characters removed. # pyList contains an integer, string and floating point number pyList = [2014,"02 June", 74.5] # Print all the elements of pyList print(pyList) print("\n") # Print the length of pyList obtained using the len() function print("Length of pyList is: {0}.\n".format(len(pyList))) print(pyList) print("\n") # Print the first element of pyList. Remember, indexing starts with 0. print("First element of pyList: {0}.\n".format(pyList[0])) # Print the last element of pyList. Last element can be conveniently indexed using -1. print("Last element of pyList: {0}.\n".format(pyList[-1])) # Also the last element has index = (length of list - 1) check = (pyList[2] == pyList[-1]) print("Is pyList[2] equal to pyList[-1]?\n{0}.\n".format(check)) # Assign a new value to the third element of the list pyList[2] = -99.0 print("Modified element of pyList[2]: {0}.\n".format(pyList[2])) pyList = ["rock","paper","scissors","lizard","Spock"] print(pyList[2:4]) # Print elements of a starting from the second, up to but not including the fourth. print(pyList[:2]) # Print the first two elements of pyList. print(pyList[2:]) # Print all the elements of pyList starting from the second. print(pyList[:]) # Print all the elements of pyList pyList = ["rock","paper","scissors","lizard","Spock"] pyList[2:4] = ["gu","pa"] # Replace the second and third elements of pyList print("Original contents of pyList:") print(pyList) print("\n") pyList[:] = [] # Clear pyList, replace all items with an empty list print("Modified contents of pyList:") print(pyList) pyList = ["rock","paper"] print("Printing Python list pyList:") print(pyList) print("\n") pyList.append("scissors") print("Appended the string 'scissors' to pyList:") print(pyList) print("\n") anotherList = ["lizard","Spock"] pyList.extend(anotherList) print("Extended pyList:") print(pyList) print("\n") pyList1 = ["rock","paper","scissors"] pyList2 = ["lizard","Spock"] newList = pyList1 + pyList2 print("New list:") print(newList) pyLists = [["rock","paper","scissors"], ["ji","gu","pa"]] # Print the first element (0-th index) of pyLists which is itself a list print("pyLists[0] = ") print(pyLists[0]) print("\n") # Print the 0-th index element of the first list element in pyLists print("pylists[0][0] = " + pyLists[0][0] + ".") print("\n") # Print the second element of pyLists which is itself a list print("pyLists[1] = ") print(pyLists[1]) print("\n") # Print the 0-th index element of the second list element in pyLists print("pyLists[1][0] = " + pyLists[1][0] + ".") print("\n") pyList = [1,3,4,2] pyList.sort(reverse=True) sum(pyList) 2*(pyList) #2**(pyList) # pyTuple contains an integer, string and floating point number pyTuple = (2014,"02 June", 74.5) # Print all the elements of pyTuple print("pyTuple is: ") print(pyTuple) print("\n") # Print the length of pyTuple obtained using the len() function print("Length of pyTuple is: {0}.\n".format(len(pyTuple))) pyTuple[1] = "31 December" # Error as pyTuple is a tuple and hence, immutable pyTuple = "rock", "paper", "scissors" # pack the strings into a tuple named pyTuple print(pyTuple) str0,str1,str2 = pyTuple # unpack the tuple into strings named str0, str1, str2 print("str0 = " + str0 + ".") print("str1 = " + str1 + ".") print("str2 = " + str2 + ".") pyTuples = (("rock","paper","scissors"),("ji","gu","pa")) print("pyTuples[0] = {0}.".format(pyTuples[0])) # Print the first sub-tuple in pyTuples. print("pyTuples[1] = {0}.".format(pyTuples[1])) # Print the second sub-tuple in pyTuples. pyNested = (["rock","paper","scissors"],["ji","gu","pa"]) pyNested[0][2] = "lizard" # OK, list within the tuple is mutable print(pyNested[0]) # Print first list element of the tuple pyNested = [("rock","paper","scissors"),("ji","gu","pa")] pyNested[0][2] = "lizard" # Error, tuples is immutable* pyDict = {"Canada":"CAN","Argentina":"ARG","Austria":"AUT"} print("pyDict: {0}.".format(pyDict)) print("pyDict['Argentina']: " + pyDict['Argentina'] + ".") # Print the value corresponding to key 'afghanistan' print(pyDict.keys()) print(pyDict.values()) # Return all the values in the dictionary as a list. print(pyDict.items()) # Return key, value pairs from the dictionary as a list of tuples. pyDicts = {"Canada":{"Alpha-2":"CA","Alpha-3":"CAN","Numeric":"124"}, "Argentina":{"Alpha-2":"AR","Alpha-3":"ARG","Numeric":"032"}, "Austria":{"Alpha-2":"AT","Alpha-3":"AUT","Numeric":"040"}} print("pyDicts['Canada'] = {0}.".format(pyDicts['Canada'])) print("pyDicts['Canada']['Alpha-2'] = {0}.".format(pyDicts['Canada']['Alpha-2'])) pyNested = {"Canada":[2011,2008,2006,2004,2000 ],"Argentina":[2013,2011,2009,2007,2005],"Austria":[2013,2008,2006,2002,1999]} print("pyNested['Canada'] = {0}".format(pyNested['Canada'])) print("pyNested['Austria'][4] = {0}.".format(pyNested['Austria'][4])) pyNested = [{"year":2011,"countries":["Canada","Argentina"]}, {"year":2008,"countries":["Canada","Austria"]}, {"year":2006,"countries":["Canada","Austria"]}, {"year":2013,"countries":["Argentina","Austria"]}] print("pyNested[0] = {0}".format(pyNested[0])) print("pyNested[0]['year'] = {0}, pyNested[0]['countries'] = {1}.".format(pyNested[0]['year'],pyNested[0]['countries'])) pyNested = [{"year":2011,"countries":["Canada","Argentina"]}, {"year":2008,"countries":["Canada","Austria"]}, {"year":2006,"countries":["Canada","Austria"]}, {"year":2013,"countries":["Argentina","Austria"]}] # Check if first dictionary element of pyNested corresponds to years 2006 or 2008 if(pyNested[0]["year"] == 2008): print("Countries corresponding to year 2008 are: {0}.".format(pyNested[0]["countries"])) elif(pyNested[0]["year"] == 2011): print("Countries corresponding to year 2011 are: {0}.".format(pyNested[0]["countries"])) else: print("The first element does not correspond to either 2008 or 2011.") countryList = ["Canada", "United States of America", "Mexico"] for country in countryList: # Loop over countryList, set country to next element in list. print(country) countryDict = {"Canada":"124","United States":"840","Mexico":"484"} print("Country\t\tISO 3166-1 Numeric Code") for country,code in countryDict.items(): # Loop over all the key and value pairs in the dictionary print("{0:12s}\t\t{1:12s}".format(country,code)) countryList = ["Canada", "United States of America", "Mexico"] for i in range(0,3): # Loop over values of i in the range 0 up to, but not including, 3 print(countryList[i]) countryList = ["Canada", "United States of America", "Mexico"] # iterate over countryList backwards, starting from the last element while(countryList): print(countryList[-1]) countryList.pop() i = 0 countryList = ["Canada", "United States of America", "Mexico"] while(i < len(countryList)): print("Iteration variable i = {0}, Country = {1}.".format(i,countryList[i])) i += 1 countryList = ["Canada", "United States of America", "Mexico"] for country in countryList: if(country == "United States of America"): # if the country name matches, then break out of the for loop break else: # do some processing print(country) countryList = ["Canada", "United States of America", "Mexico"] for country in countryList: if(country == "United States of America"): # if the country name matches, then break out of the for loop continue else: # do some processing print(country) filename = "tmp.txt" fout = open(filename,"w") # The 'r' option indicates that the file is being opened to be read for i in range(0,5): # Read in each line from the file # Do some processing fout.write("i = {0}.\n".format(i)) fout.close() # Once the file has been read, close the file filename = "tmp.txt" with open(filename,"w") as fout: for i in range(0,5): fout.write("i = {0}.\n".format(i)) fout.close() filename = "tmp.txt" fin = open(filename,"r") # The 'r' option indicates that the file is being opened to be read for line in fin: # Read in each line from the file # Do some processing print(line) fin.close() # Once the file has been read, close the file filename = "tmp.txt" with open(filename,"r") as fin: for line in fin: # Do some processing print(line) import csv with open("game.csv","wb") as csvfile: csvwriter = csv.writer(csvfile,delimiter=',') csvwriter.writerow(["rock","paper","scissor"]) csvwriter.writerow(["ji","gu","pa"]) csvwriter.writerow(["rock","paper","scissor","lizard","Spock"]) cat game.csv import csv with open("game.csv","r") as csvfile: csvreader = csv.reader(csvfile,delimiter=",") for row in csvreader: print(row) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Comments can also be placed on the same line as the code as shown here. Step3: For multi-line comments, use triple-quoted strings. Step4: 1.4 Python's print() function Step5: For web-scraping and text-processing type tasks, we'd like better control over how things get printed out, such as the number of decimal places when printing out floating point numbers. Use the format() method on the string to be printed out to control the output format. Step6: 2. Numeric Variable Types Step7: 2.2. Floating Point Numbers Step8: 3. Basic Operators Step9: 3.2. Assignment Operators Step10: 3.3. Comparison Operators Step11: 3.4. Logical Operators Step13: 4. Strings Step14: Strings can be concatenated using the addition(+) operator. Step15: Strings can also be repeated with the multiplication (*) operator. Step16: The len() function returns the length of a string. Step17: Since, the Python string is a sequence of characters, individual characters in the string can be indexed. Note that, unlike R, in Python sequences indexing starts at 0 and goes up to one less than the length of the sequence. Step18: Strings are immutable. That is, an existing instance of a string cannot be modified. Instead, a new string that contains the modification should be created. Step19: Strings come with some powerful methods (https Step20: 5. Python Data Structures Step21: List elements can be individually referenced using their index in the list. Python indexing starts with 0 and runs up to the length of the sequence - 1. The square bracket is used to specify the index in to the list. This notation can also be used to assign values to the elements of the list. In contrast to strings, lists are mutable. Step22: Python lists can be sliced using the slice notation of two indices separated by a colon. An omitted first index indicates 0 and an omitted second index indicates the length of the list/sequence. Step23: Python slice notation can also be used to assign into lists. Step24: Python lists come with useful methods to add elements - append() and extend() Step25: Python lists can be concatenated using the "+" operator (similar to strings). Step26: Python lists can be nested - list within a list within a list and so on. An index needs to be specified for each level of nesting. Step27: 5.2. Tuples Step28: Tuples are immutable. Attempting to change elements of a tuple will result in errors. Step29: Tuples can be packed from and unpacked into individual elements. Step30: One can declare tuples of tuples. Step31: One can declare a tuple of lists. Step32: One can also declare a list of tuples. Step33: 5.3. Dictionaries Step34: Parsing hierarchical data structures involving Python dictionaries will be very useful when working with the JSON data format and APIs such as the Twitter API. Step35: Values in a dictionary can also be lists. Step36: Lastly, we can have lists of dictionaries Step37: 6. Control Flow Step38: Scripting languages, such as Python, make it easy to automate repetitive tasks. In this workshop, we'll use two of Python's syntactic constructs for iteration - the for loop and the while loop. Step39: 6.3 <tt>range()</tt> Function Step40: 6.4 while() Statement Step41: 6.5 <tt>break</tt> and <tt>continue</tt> Statements Step42: If, instead of exiting the loop, one merely wishes to skip that iteration, then use the continue statement as shown here. Step43: 7. Python File I/O Step44: Alternative syntax for writing to file using 'with open' is shown below. Step45: 7.2 Reading from a file Step46: The code below demonstrates another way to open a file and read each line. With this syntax, the file is automatically closed after the <tt >with</tt> block. Step47: An input file can also be read in as one string by using the read() method. Step48: And this is an example of reading the games.csv file. Each row of the csv file is read in as a list.
2,708
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler data = load_data() scaler = StandardScaler() scaler.fit(data) scaled = scaler.transform(data) inversed = scaler.inverse_transform(scaled) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
2,709
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', validation_size=0) img = mnist.train.images[2] plt.imshow(img.reshape((28, 28)), cmap='Greys_r') learning_rate = 0.001 image_size = mnist.train.images.shape[1] # Input and target placeholders inputs_ = tf.placeholder(dtype=tf.float32, shape=(None, 28, 28, 1), name="inputs") targets_ = tf.placeholder(dtype=tf.float32, shape=(None, 28, 28, 1), name="targets") ### Encoder ''' tf.layers.conv2d(inputs, filters, kernel_size, strides=(1, 1), # stride of (1, 1) will not reduce size padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None ) max_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None ) ''' conv1 = tf.layers.conv2d(inputs_, 16, (5, 5), padding="same", activation=tf.nn.relu) # Now 28x28x16 maxpool1 = tf.layers.max_pooling2d(conv1, (2, 2), strides=(2, 2), padding="same") # Now 14x14x16 conv2 = tf.layers.conv2d(maxpool1, 8, (5, 5), padding="same", activation=tf.nn.relu) # Now 14x14x8 maxpool2 = tf.layers.max_pooling2d(conv2, (2, 2), strides=(2, 2), padding="same") # Now 7x7x8 conv3 = tf.layers.conv2d(maxpool2, 8, (5, 5), padding="same", activation=tf.nn.relu) # Now 7x7x8 encoded = tf.layers.max_pooling2d(conv3, (2, 2), strides=(2, 2), padding="valid") # Now 4x4x8 ### Decoder upsample1 = tf.image.resize_images(encoded, (7, 7)) # Now 7x7x8 conv4 = tf.layers.conv2d(upsample1, 8, (5, 5), padding="same", activation=tf.nn.relu) # Now 7x7x8 upsample2 = tf.image.resize_images(conv4, (14, 14)) # Now 14x14x8 conv5 = tf.layers.conv2d(upsample2, 8, (5, 5), padding="same", activation=tf.nn.relu) # Now 14x14x8 upsample3 = tf.image.resize_images(conv5, (28, 28)) # Now 28x28x8 conv6 = tf.layers.conv2d(upsample3, 16, (5, 5), padding="same", activation=tf.nn.relu) # Now 28x28x16 logits = tf.layers.conv2d(conv6, 1, (5, 5), padding="same", activation=None) #Now 28x28x1 # Pass logits through sigmoid to get reconstructed image decoded = tf.nn.sigmoid(logits, name='output') # Pass logits through sigmoid and calculate the cross-entropy loss loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits) # Get cost and define the optimizer cost = tf.reduce_mean(loss) opt = tf.train.AdamOptimizer(learning_rate).minimize(cost) sess = tf.Session() epochs = 20 batch_size = 200 sess.run(tf.global_variables_initializer()) for e in range(epochs): for ii in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) imgs = batch[0].reshape((-1, 28, 28, 1)) batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: imgs, targets_: imgs}) print("Epoch: {}/{}...".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost)) fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4)) in_imgs = mnist.test.images[:10] reconstructed = sess.run(decoded, feed_dict={inputs_: in_imgs.reshape((10, 28, 28, 1))}) for images, row in zip([in_imgs, reconstructed], axes): for img, ax in zip(images, row): ax.imshow(img.reshape((28, 28)), cmap='Greys_r') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) fig.tight_layout(pad=0.1) sess.close() learning_rate = 0.001 inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs') targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets') ### Encoder conv1 = tf.layers.conv2d() # Now 28x28x32 maxpool1 = # Now 14x14x32 conv2 = # Now 14x14x32 maxpool2 = # Now 7x7x32 conv3 = # Now 7x7x16 encoded = # Now 4x4x16 ### Decoder upsample1 = # Now 7x7x16 conv4 = # Now 7x7x16 upsample2 = # Now 14x14x16 conv5 = # Now 14x14x32 upsample3 = # Now 28x28x32 conv6 = # Now 28x28x32 logits = #Now 28x28x1 # Pass logits through sigmoid to get reconstructed image decoded = # Pass logits through sigmoid and calculate the cross-entropy loss loss = # Get cost and define the optimizer cost = tf.reduce_mean(loss) opt = tf.train.AdamOptimizer(learning_rate).minimize(cost) sess = tf.Session() epochs = 100 batch_size = 200 # Set's how much noise we're adding to the MNIST images noise_factor = 0.5 sess.run(tf.global_variables_initializer()) for e in range(epochs): for ii in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) # Get images from the batch imgs = batch[0].reshape((-1, 28, 28, 1)) # Add random noise to the input images noisy_imgs = imgs + noise_factor * np.random.randn(*imgs.shape) # Clip the images to be between 0 and 1 noisy_imgs = np.clip(noisy_imgs, 0., 1.) # Noisy images as inputs, original images as targets batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: noisy_imgs, targets_: imgs}) print("Epoch: {}/{}...".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost)) fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4)) in_imgs = mnist.test.images[:10] noisy_imgs = in_imgs + noise_factor * np.random.randn(*in_imgs.shape) noisy_imgs = np.clip(noisy_imgs, 0., 1.) reconstructed = sess.run(decoded, feed_dict={inputs_: noisy_imgs.reshape((10, 28, 28, 1))}) for images, row in zip([noisy_imgs, reconstructed], axes): for img, ax in zip(images, row): ax.imshow(img.reshape((28, 28)), cmap='Greys_r') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) fig.tight_layout(pad=0.1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Network Architecture Step2: Training Step3: Denoising Step4: Checking out the performance
2,710
<ASSISTANT_TASK:> Python Code: import cashflows as cf cflo = cf.cashflow(const_value= 0,nper=6, spec = [(0, -1000), (1, 400), (2, 360), (3, 320), (4, 280), (5, 240)]) cflo cf.timevalue(cflo = cflo, marr = cf.nominal_rate([10]*6) ) cf.timevalue(cflo = cflo, marr = cf.nominal_rate([10]*6), base_date = 5 ) ## la función npv puede recibir simultaneamente varios flujos de efectivo cf.timevalue(cflo = [cflo,cflo,cflo], marr = cf.nominal_rate([10]*6)) # o varias tasas de interes marr1 = cf.nominal_rate([10]*6) marr2 = cf.nominal_rate([20]*6) marr3 = cf.nominal_rate([30]*6) cf.timevalue(cflo = cflo, marr = [marr1, marr2, marr3]) ## o una tasa de descuento para cada flujo de efectivo marr1 = cf.nominal_rate([10]*6) marr2 = cf.nominal_rate([20]*6) marr3 = cf.nominal_rate([30]*6) cf.timevalue(cflo = [cflo, cflo, cflo], marr = [marr1, marr2, marr3]) cf.irr(cflo) cf.mirr(cflo=cflo, finance_rate=0, reinvest_rate=0) ## la función puede recibir varios flujos de fondos simulataneamente. cf.irr([cflo, cflo, cflo]) ## se construye una función que recibe la información relevante y retorn el npv def project(marr, produccion, precio, costo, inversion): ingre = cf.cashflow(const_value=0, nper=11, spec = [(t, precio * produccion) if t > 0 else (0,0) for t in range(11)]) opera = cf.cashflow(const_value=0, nper=11, spec = [(t, costo) if t > 0 else (0,0) for t in range(11)]) inver = cf.cashflow(const_value=0, nper=11, spec = (0, inversion)) dep = cf.depreciation_sl(costs = cf.cashflow(const_value=0, nper=11, spec=(0, inversion)), life = cf.cashflow(const_value=0, nper=11, spec=(0, 10)), noprint = True) antes = ingre - opera - inver - dep desp = cf.after_tax_cashflow(antes, tax_rate = cf.nominal_rate(const_value=[30] * 11)) neto = antes + desp npv = cf.timevalue(cflo = neto, marr = cf.nominal_rate([marr]*11)) return npv project(10, 100, 10, 220, 2000) ## resultados para diferentes valores de la MARR x=[] for i in [8, 10, 12]: x.append(project( i, 100, 10, 220, 2000)) x ## resultados para diferentes valores de la inversión [project(10, 100, 10, 220, x) for x in [1600, 1800, 2000, 2200, 2400]] ## resultados para diferentes valores del precio [project(10, 100, x, 220, 2000) for x in [8, 9, 10, 11, 12]] import matplotlib.pyplot as plt %matplotlib inline precio = [8, 9, 10, 11, 12] y = [project(0.10, 100, x, 220, 2000) for x in precio] plt.plot(precio, y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Criterio de la tasa interna de retorno Step2: Tasa Interna de Retorno Modificada. Step3: Análisis de sensibilidad
2,711
<ASSISTANT_TASK:> Python Code: import os import matplotlib.pyplot as plt from ascat.h_saf import AscatSsmDataRecord test_data_path = os.path.join('..', 'tests','ascat_test_data', 'hsaf') h109_path = os.path.join(test_data_path, 'h109') h110_path = os.path.join(test_data_path, 'h110') h111_path = os.path.join(test_data_path, 'h111') grid_path = os.path.join(test_data_path, 'grid') static_layer_path = os.path.join(test_data_path, 'static_layer') h109_dr = AscatSsmDataRecord(h109_path, grid_path, static_layer_path=static_layer_path) h110_dr = AscatSsmDataRecord(h110_path, grid_path, static_layer_path=static_layer_path) h111_dr = AscatSsmDataRecord(h111_path, grid_path, static_layer_path=static_layer_path) gpi = 2501225 h109_ts = h109_dr.read(gpi) fig, ax = plt.subplots(1, 1, figsize=(15, 5)) ax.plot(h109_ts['sm'], label='Metop ASCAT SSM Data Record (H109)') ax.set_ylabel('Degree of Saturation (%)') ax.legend() h110_ts = h110_dr.read(gpi) fig, ax = plt.subplots(1, 1, figsize=(15, 5)) ax.plot(h109_ts['sm'], label='Metop ASCAT SSM Data Record (H109)') ax.plot(h110_ts['sm'], label='Metop ASCAT SSM Data Record Extension (H110)') ax.set_ylabel('Degree of Saturation (%)') ax.legend() fields = ['sm', 'sm_noise', 'ssf', 'snow_prob', 'frozen_prob'] h111_ts = h111_dr.read(gpi) fig, ax = plt.subplots(1, 1, figsize=(15, 5)) h111_ts[fields].plot(ax=ax) ax.legend() conf_flag_ok = h111_ts['conf_flag'] == 0 fig, ax = plt.subplots(1, 1, figsize=(15, 5)) h111_ts[conf_flag_ok][fields].plot(ax=ax) ax.legend() metop_a = h111_ts[conf_flag_ok]['sat_id'] == 3 metop_b = h111_ts[conf_flag_ok]['sat_id'] == 4 fig, ax = plt.subplots(1, 1, figsize=(15, 5)) h111_ts[conf_flag_ok]['sm'][metop_a].plot(ax=ax, ls='none', marker='o', color='C1', fillstyle='none', label='Metop-A SSM') h111_ts[conf_flag_ok]['sm'][metop_b].plot(ax=ax, ls='none', marker='o', color='C0', fillstyle='none', label='Metop-B SSM') ax.set_ylabel('Degree of Saturation (%)') ax.legend() h111_ts = h111_dr.read(gpi, absolute_sm=True) conf_flag_ok = h111_ts['conf_flag'] == 0 fig, ax = plt.subplots(1, 1, figsize=(15, 5)) h111_ts[conf_flag_ok]['abs_sm_gldas'].plot(ax=ax, label='Absolute SSM using porosity from Noah GLDAS') h111_ts[conf_flag_ok]['abs_sm_hwsd'].plot(ax=ax, label='Absolute SSM using porosity from HWSD') ax.set_ylabel('Vol. soil moisture ($m^3 m^{-3}$)') ax.legend() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A soil moisture time series is read for a specific grid point. The data attribute contains a pandas.DataFrame object. Step2: Time series plots Step3: The SSM data record H109 can be extended using H110, representing a consistent continuation of the data set Step4: A soil moisture time series can also be plotted using the plot function provided by the pandas.DataFrame. The following example displays several variables stored in the time series. Step5: Masking invalid soil moisture measurements Step6: Differentiate between soil moisture from Metop satellites Step7: Convert to absolute surface soil moisture
2,712
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) import numpy as np import problem_unittests as tests def create_lookup_tables(text): Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) vocab = set(text) vocab_to_int = {c: i for i, c in enumerate(vocab)} int_to_vocab = dict(enumerate(vocab)) return vocab_to_int, int_to_vocab DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_create_lookup_tables(create_lookup_tables) def token_lookup(): Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token return {'.' : '||Period||', ',' : '||Comma||', '"' : '||Quotation_Mark||', ';' : '||Semicolon||', '!' : '||Exclamation_mark||', '?' : '||Question_mark||', '(' : '||Left_Parentheses||', ')' : '||Right_Parentheses||', '--' : '||Dash||', '\n' : '||Return||' } DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_tokenize(token_lookup) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) DON'T MODIFY ANYTHING IN THIS CELL import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def get_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) inputs = tf.placeholder(tf.int32, [None, None], name='input') targets = tf.placeholder(tf.int32, [None, None], name='targets') learning_rate = tf.placeholder(tf.float32, name='learning_rate') return inputs, targets, learning_rate DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_inputs(get_inputs) def get_init_cell(batch_size, rnn_size): Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) #drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=0.8) cell = tf.contrib.rnn.MultiRNNCell([lstm] * 1) initial_state = cell.zero_state(batch_size, tf.float32) initial_state = tf.identity(initial_state, name='initial_state') return cell, initial_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_init_cell(get_init_cell) def get_embed(input_data, vocab_size, embed_dim): Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_embed(get_embed) def build_rnn(cell, inputs): Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) final_state = tf.identity(final_state, name='final_state') return outputs, final_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_rnn(build_rnn) def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) inputs = get_embed(input_data, vocab_size, embed_dim) outputs, final_state = build_rnn(cell, inputs) logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None, weights_initializer = tf.truncated_normal_initializer(stddev=0.1), biases_initializer = tf.zeros_initializer()) return logits, final_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_nn(build_nn) def get_batches(int_text, batch_size, seq_length): Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array #print(int_text[:20]) #print(batch_size) #print(seq_length) #print(len(int_text)) #print(batches[0][0][1]) #batches = np.array(batches) #print(batches.shape) #print(len(int_text)) num_batches = len(int_text)//(batch_size * seq_length) #print(num_batches) batches = np.zeros([num_batches, 2, batch_size, seq_length], dtype=np.int) for i in range(num_batches): for j in range(batch_size): batches[i,0,j,:] = int_text[num_batches*seq_length*j + i*seq_length : num_batches*seq_length*j + seq_length + i*seq_length] batches[i,1,j,:] = int_text[num_batches*seq_length*j + i*seq_length + 1 : num_batches*seq_length*j + seq_length + 1 + i*seq_length] if i == num_batches-1 and j == batch_size-1: #print('!!') batches[i,1,j,seq_length-1] = int_text[0] #print(batches[num_batches-1, 2, batch_size, seq_length]) #print(batches[1]) #print(batches[0][1]) return batches DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_batches(get_batches) # Number of Epochs num_epochs = 50 # Batch Size batch_size = 512 # RNN Size rnn_size = 512 # Embedding Dimension Size embed_dim = 512 # Sequence Length seq_length = 10 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 10 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE save_dir = './save' DON'T MODIFY ANYTHING IN THIS CELL from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() def get_tensors(loaded_graph): Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) inputs = loaded_graph.get_tensor_by_name("input:0") initial_state = loaded_graph.get_tensor_by_name("initial_state:0") final_state = loaded_graph.get_tensor_by_name("final_state:0") probs = loaded_graph.get_tensor_by_name("probs:0") return inputs, initial_state, final_state, probs DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_tensors(get_tensors) def pick_word(probabilities, int_to_vocab): Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word #print(probabilities) return int_to_vocab[np.argmax(probabilities)] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_pick_word(pick_word) gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TV Script Generation Step3: Explore the Data Step6: Implement Preprocessing Functions Step9: Tokenize Punctuation Step11: Preprocess all the data and save it Step13: Check Point Step15: Build the Neural Network Step18: Input Step21: Build RNN Cell and Initialize Step24: Word Embedding Step27: Build RNN Step30: Build the Neural Network Step33: Batches Step35: Neural Network Training Step37: Build the Graph Step39: Train Step41: Save Parameters Step43: Checkpoint Step46: Implement Generate Functions Step49: Choose Word Step51: Generate TV Script
2,713
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np np.set_printoptions(precision=2) from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.svm import LinearSVC digits = load_digits() X, y = digits.data, digits.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) classifier = LinearSVC().fit(X_train, y_train) y_test_pred = classifier.predict(X_test) print("Accuracy: %f" % classifier.score(X_test, y_test)) from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_test_pred) plt.matshow(confusion_matrix(y_test, y_test_pred)) plt.colorbar() plt.xlabel("Predicted label") plt.ylabel("True label") from sklearn.metrics import classification_report print(classification_report(y_test, y_test_pred)) X, y = digits.data, digits.target == 3 from sklearn.cross_validation import cross_val_score from sklearn.svm import SVC cross_val_score(SVC(), X, y) from sklearn.dummy import DummyClassifier cross_val_score(DummyClassifier("most_frequent"), X, y) from sklearn.metrics import roc_curve, roc_auc_score X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) for gamma in [.01, .05, 1]: plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate (recall)") svm = SVC(gamma=gamma).fit(X_train, y_train) decision_function = svm.decision_function(X_test) fpr, tpr, _ = roc_curve(y_test, decision_function) acc = svm.score(X_test, y_test) auc = roc_auc_score(y_test, svm.decision_function(X_test)) plt.plot(fpr, tpr, label="acc:%.2f auc:%.2f" % (acc, auc), linewidth=3) plt.legend(loc="best") from sklearn.cross_validation import cross_val_score cross_val_score(SVC(), X, y, scoring="roc_auc") from sklearn.metrics.scorer import SCORERS print(SCORERS.keys()) def my_accuracy_scoring(est, X, y): return np.mean(est.predict(X) == y) cross_val_score(SVC(), X, y, scoring=my_accuracy_scoring) def my_super_scoring(est, X, y): return np.mean(est.predict(X) == y) - np.mean(est.coef_ != 0) from sklearn.grid_search import GridSearchCV from sklearn.svm import LinearSVC y = digits.target grid = GridSearchCV(LinearSVC(C=.01, dual=False), param_grid={'penalty' : ['l1', 'l2']}, scoring=my_super_scoring) grid.fit(X, y) print(grid.best_params_) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Here, we predicted 94.4% of samples correctly. For multi-class problems, it is often interesting to know which of the classes are hard to predict, and which are easy, or which classes get confused. One way to get more information about misclassifications is the confusion_matrix, which shows for each true class, how frequent a given predicted outcome is. Step2: A plot is sometimes more readable Step3: We can see that most entries are on the diagonal, which means that we predicted nearly all samples correctly. The off-diagonal entries show us that many eights were classified as ones, and that nines are likely to be confused with many other classes. Step4: These metrics are helpful in two particular cases that come up often in practice Step5: Now we run cross-validation on a classifier to see how well it does Step6: Our classifier is 90% accurate. Is that good? Or bad? Keep in mind that 90% of the data is "not three". So let's see how well a dummy classifier does, that always predicts the most frequent class Step7: Also 90% (as expected)! So one might thing that means our classifier is not very good, it doesn't to better than a simple strategy that doesn't even look at the data. Step8: With a very small decision threshold, there will be few false positives, but also few false negatives, while with a very high threshold, both true positive rate and false positive rate will be high. So in general, the curve will be from the lower left to the upper right. A diagonal line reflects chance performance, while the goal is to be as much in the top left corner as possible. This means giving a higher decision_function value to all positive samples than to any negative sample. Step9: Built-In and custom scoring functions Step10: It is also possible to define your own scoring metric. Instead of a string, you can provide a callable to as scoring parameter, that is an object with a __call__ method or a function. Step11: The interesting thing about this interface is that we can access any attributes of the estimator we trained. Let's say we have trained a linear model, and we want to penalize having non-zero coefficients in our model selection Step12: We can evaluate if this worked as expected, by grid-searching over l1 and l2 penalties in a linear SVM. An l1 penalty is expected to produce exactly zero coefficients
2,714
<ASSISTANT_TASK:> Python Code: import csv data = [] revid = [] with open('page_data.csv') as csvfile: reader = csv.reader(csvfile) for row in reader: data.append([row[0],row[1],row[2]]) revid.append(row[2]) # Remove the first element ('rev_id') from revid so that the list only contains revision IDs. revid.pop(0) from itertools import islice import csv import pandas as pd population = [] with open('Population Mid-2015.csv') as population_file: reader = csv.reader(population_file) # note that first row is title; the second and last two rows are blank # skip first and last two rows in the csv file for row in islice(reader,2,213): population.append([row[0],row[4]]) chunks = [revid[x:x+50] for x in range(0, len(revid), 50)] import requests import json def get_ores_data(revision_ids, headers): # Define the endpoint endpoint = 'https://ores.wikimedia.org/v3/scores/{project}/?models={model}&revids={revids}' # Specify the parameters - smushing all the revision IDs together separated by | marks. # Yes, 'smush' is a technical term, trust me I'm a scientist. # What do you mean "but people trusting scientists regularly goes horribly wrong" who taught you tha- oh. params = {'project' : 'enwiki', 'model' : 'wp10', 'revids' : '|'.join(str(x) for x in revision_ids) } api_call = requests.get(endpoint.format(**params)) response = api_call.json() return response headers = {'User-Agent' : 'https://github.com/yawen32', 'From' : 'liy44@uw.edu'} article_quality = [] for i in range(len(chunks)): response = get_ores_data(chunks[i],headers) aq = response['enwiki']['scores'] for j in range(len(chunks[i])): for key in aq[chunks[i][j]]["wp10"]: # Flag the articles have been deleted if key == "error": article_quality.append("None") else: article_quality.append(aq[chunks[i][j]]['wp10']['score']['prediction']) aq = open("article_quality.txt","w") for item in article_quality: aq.write("{}\n".format(item)) aq.close() with open("article_quality.csv","w",newline="") as f: aqcsv = csv.writer(f) aqcsv.writerow(article_quality) with open('article_quality.txt','r') as f: articleQuality = f.read().splitlines() wiki_data = pd.DataFrame(data[1:],columns=data[0]) wiki_data len(pd.Series(articleQuality).values) # Add the ORES data into the Wikipedia data wiki_data["article_quality"] = pd.Series(articleQuality).values # Rename columns of the Wikipedia data wiki_data.columns = ["article_name","country","revision_id","article_quality"] # Convert data (country and population) from the population file to dataframe population_data = pd.DataFrame(population[1:],columns=population[0]) # Renames the columns with suitable names population_data.columns = ["Location","population"] # Merge two datasets(wiki_data and population_data) base on the common key (country name). This step removes the rows do not have # matching data automatically. merge_data = pd.merge(wiki_data, population_data, left_on = 'country', right_on = 'Location', how = 'inner') merge_data = merge_data.drop('Location', axis=1) # Swap first and second columns so that the dataframe follows the formatting conventions merge_data = merge_data[["country","article_name","revision_id","article_quality","population"]] merge_data.to_csv("final_data.csv") # Extract column "country" from merge data merge_country = merge_data.iloc[:,0].tolist() # Count the number of articles for each country from collections import Counter count_article = Counter(merge_country) prop_article_per_population = [] df_prop_article_per_population = pd.DataFrame(columns=['country', 'population', 'num_articles','prop_article_per_population']) num_country = 0 for country in count_article: population = int(population_data.loc[population_data["Location"] == country, "population"].iloc[0].replace(",","")) percentage = count_article[country] / population prop_article_per_population.append("{:.10%}".format(percentage)) df_prop_article_per_population.loc[num_country] = [country,population,count_article[country],"{:.10%}".format(percentage)] num_country += 1 # Show the table of the proportion of articles-per-population for each country df_prop_article_per_population prop_high_quality_articles_each_country = [] df_prop_high_quality_articles_each_country = pd.DataFrame(columns=["country","num_high_quality_articles","num_articles","prop_high_quality_articles"]) num_country = 0 for country in count_article: num_FA = Counter(merge_data.loc[merge_data['country'] == country].iloc[:,3].tolist())['FA'] num_GA = Counter(merge_data.loc[merge_data['country'] == country].iloc[:,3].tolist())['GA'] num_high_quality = num_FA + num_GA percentage = num_high_quality / count_article[country] prop_high_quality_articles_each_country.append("{:.10%}".format(percentage)) df_prop_high_quality_articles_each_country.loc[num_country] = [country,num_high_quality,count_article[country],"{:.10%}".format(percentage)] num_country += 1 # Show the table of the proportion of high-quality articles for each country df_prop_high_quality_articles_each_country # Get index of 10 highest-ranked countries idx = df_prop_article_per_population["prop_article_per_population"].apply(lambda x:float(x.strip('%'))/100).sort_values(ascending=False).index[0:10] # Retrieve these rows by index values highest_rank_10_prop_article_per_population = df_prop_article_per_population.loc[idx] highest_rank_10_prop_article_per_population.to_csv("highest_rank_10_prop_article_per_population.csv") highest_rank_10_prop_article_per_population # Get index of 10 lowest-ranked countries idx = df_prop_article_per_population["prop_article_per_population"].apply(lambda x:float(x.strip('%'))/100).sort_values(ascending=True).index[0:10] # Retrieve these rows by index values lowest_rank_10_prop_article_per_population = df_prop_article_per_population.loc[idx] lowest_rank_10_prop_article_per_population.to_csv("lowest_rank_10_prop_article_per_population.csv") lowest_rank_10_prop_article_per_population # Get index of 10 highest-ranked countries idx = df_prop_high_quality_articles_each_country["prop_high_quality_articles"].apply(lambda x:float(x.strip('%'))/100).sort_values(ascending=False).index[0:10] # Retrieve these rows by index values highest_rank_10_prop_high_quality_articles = df_prop_high_quality_articles_each_country.loc[idx] highest_rank_10_prop_high_quality_articles.to_csv("highest_rank_10_prop_high_quality_articles.csv") highest_rank_10_prop_high_quality_articles # Get index of 10 lowest-ranked countries idx = df_prop_high_quality_articles_each_country["prop_high_quality_articles"].apply(lambda x:float(x.strip('%'))/100).sort_values(ascending=True).index[0:10] # Retrieve these rows by index values lowest_rank_10_prop_high_quality_articles = df_prop_high_quality_articles_each_country.loc[idx] lowest_rank_10_prop_high_quality_articles.to_csv("lowest_rank_10_prop_high_quality_articles_allzeros.csv") lowest_rank_10_prop_high_quality_articles # Get index of 10 lowest-ranked countries that proportions of high-quality articles are NOT equal to 0 idx = df_prop_high_quality_articles_each_country["prop_high_quality_articles"].apply(lambda x:float(x.strip('%'))/100).sort_values(ascending=True)!=0 idx_not_zero = idx[idx == True].index[0:10] lowest_rank_10_prop_high_quality_articles_not_zero = df_prop_high_quality_articles_each_country.loc[idx_not_zero] lowest_rank_10_prop_high_quality_articles_not_zero.to_csv("lowest_rank_10_prop_high_quality_articles_notzeros.csv") lowest_rank_10_prop_high_quality_articles_not_zero <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Getting the data (country and population) from the population file Step2: Getting article quality predictions Step3: Write a function to make a request with multiple revision IDs Step4: Request the values for prediction (the quality of an article) from ORES API. Step5: Save prediction values to a file Step6: Read prediction values from the saved file Step7: Combining the datasets Step8: Write merged data to a CSV file Step9: Analysis Step10: Calculate the proportion (as a percentage) of high-quality articles for each country. Step11: Tables Step12: 10 lowest-ranked countries in terms of number of politician articles as a proportion of country population Step13: 10 highest-ranked countries in terms of number of GA and FA-quality articles as a proportion of all articles about politicians from that country Step14: 10 lowest-ranked countries in terms of number of GA and FA-quality articles as a proportion of all articles about politicians from that country
2,715
<ASSISTANT_TASK:> Python Code: from accounts import create_accounts_json num_files = 25 n = 100000 # number of accounts per file k = 500 # number of transactions create_accounts_json(num_files, n, k) from nfs import create_denormalized create_denormalize() from random_array import random_array random_array() Image("http://dask.pydata.org/en/latest/_images/collections-schedulers.png") SVG("http://dask.pydata.org/en/latest/_images/dask-array-black-text.svg") import dask.array as da x = da.arange(25, chunks=5) y = x ** 2 y y.visualize() y.dask.keys() y.compute() np.array(y) y.compute(get=dask.get) y.compute(get=dask.threaded.get) from multiprocessing import cpu_count cpu_count() y.compute(get=dask.multiprocessing.get) import h5py import os f = h5py.File(os.path.join('..', 'data', 'random.hdf5')) dset = f['/x'] sums = [] for i in range(0, 1000000000, 1000000): chunk = dset[i: i + 1000000] sums.append(chunk.sum()) total = np.sum(sums) print(total / 1e9) x = da.from_array(dset, chunks=(1000000, )) result = x.mean() result result.compute() x[:10].compute() # [Solution here] %load solutions/dask_array.py import numpy as np %%time x = np.random.normal(10, 0.1, size=(20000, 20000)) y = x.mean(axis=0)[::100] y %%time x = da.random.normal(10, 0.1, size=(20000, 20000), chunks=(1000, 1000)) y = x.mean(axis=0)[::100] y.compute() import os import dask.bag as db bag = db.read_text(os.path.join('..', 'data', 'accounts.*.json.gz')) bag.take(3) import json js = bag.map(json.loads) js.take(3) counts = js.pluck('name').frequencies() counts.compute() %load solutions/bag_alice.py b = db.from_sequence(['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']) b.groupby(len).compute() b = db.from_sequence(list(range(10))) b.groupby(lambda x: x % 2).compute() b.groupby(lambda x: x % 2).map(lambda k, v: (k, max(v))).compute() import functools values = range(10) def func(acc, y): print(acc) print(y) print() return acc + y functools.reduce(func, values) b.foldby(lambda x: x % 2, binop=max, combine=max).compute() js.take(1) from dask.diagnostics import ProgressBar counts = js.foldby(key='name', binop=lambda total, x: total + 1, initial=0, combine=lambda a, b: a + b, combine_initial=0) with ProgressBar(): result = counts.compute() result %load solutions/bag_foldby.py import dask.dataframe as dd df = dd.read_csv("../data/NationalFoodSurvey/NFS*.csv") df.head(5) df.npartitions df.known_divisions partitions = list(range(1974, 2001)) + [2000] df = df.set_partition('styr', divisions=partitions) df.known_divisions df.divisions df.info() df2000 = df.get_division(26) type(df2000) df2000.set_index('minfd') grp = df2000.groupby('minfd') size = grp.apply(len, columns='size') size.head() minfd = size.compute().idxmax() print(minfd) food_mapping = pd.read_csv("../data/NationalFoodSurvey/food_mapping.csv") food_mapping.ix[food_mapping.minfd.isin([minfd])] # [Solution here] %load solutions/nfs_most_purchased.py def most_frequent_food(partition): # partition is a pandas.DataFrame grpr = partition.groupby('minfd') size = grpr.size() minfd = size.idxmax() idx = food_mapping.minfd.isin([minfd]) description = food_mapping.ix[idx].minfddesc.iloc[0] year = int(partition.styr.iloc[0]) return year, description mnfd_year = df.map_partitions(most_frequent_food) mnfd_year.compute() zip(mnfd_year.compute(),) %load solutions/average_consumption.py Image('images/bcolz_bench.png') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Denormalize NFS Data Step2: Random Array Step3: Dask Step4: Dask Array Step5: Arithmetic and scalar mathematics, +, *, exp, log, ... Step6: The idea of the chunk is important and has performance implications Step7: Dask operates on a delayed computation model Step8: You can execute the graph by using compute Step9: As an example of the __array__ protocol Step10: Scheduling Backends Step11: Threaded Scheduler Step12: By default, dask will use as many threads as there are logical processors on your machine Step13: Process Scheduler Step14: Distributed Executor Step15: If were to implement this ourselves it might look like this Step16: Dask does this for you and uses the backend scheduler to do so in parallel Step17: x looks and behaves much like a numpy array Step18: Exercise Step19: Performance vs. NumPy Step20: Faster and needs only MB of memory Step21: Linear Algebra Step22: Using map to process the lines in the text files Step23: Exercise Step24: GroupBy / FoldBy Step25: Group by evens and odds Step26: Group by eevens and odds and take the largest value Step27: FoldBby, while harder to grok, is much more efficient Step28: Using the accounts data above, find the number of people with the same name Step29: Exercise Step30: Dask DataFrame Step31: DataFrame.head is one operation that is not lazy Step32: Partitions Step33: We are going to set the partition explicitly to styr to make some operations more performant Step34: Nothing yet is loaded in to memory Step35: DataFrame API Step36: What food group was consumed the most times in 2000? Step37: NOTE Step38: There isn't (yet) support for idxmin/idxmax. Step39: Get the pre-processed mapping across food grouping variables Step40: Pandas provides the efficient isin method Step41: Exercise Step42: map_partitions Step43: Exercise Step44: Aside on Storage Formats
2,716
<ASSISTANT_TASK:> Python Code: %load_ext watermark %watermark -a '' -u -d -v -p numpy,pandas,matplotlib,scipy,sklearn %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version from sklearn.datasets import load_digits digits = load_digits() X = digits.data # training data y = digits.target # training label print(X.shape) print(y.shape) import matplotlib.pyplot as plt import pylab as pl num_rows = 4 num_cols = 5 fig, ax = plt.subplots(nrows=num_rows, ncols=num_cols, sharex=True, sharey=True) ax = ax.flatten() for index in range(num_rows*num_cols): img = digits.images[index] label = digits.target[index] ax[index].imshow(img, cmap='Greys', interpolation='nearest') ax[index].set_title('digit ' + str(label)) ax[0].set_xticks([]) ax[0].set_yticks([]) plt.tight_layout() plt.show() from sklearn.preprocessing import StandardScaler if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split print ('scikit-learn version: ' + str(Version(sklearn_version))) # 1. Standardize features by removing the mean and scaling to unit variance X_std = StandardScaler().fit_transform(X) # fit_transform(X) will fit to data, then transform it. print ('1. Complete removing the mean and scaling to unit variance.') # 2. splitting data into 70% training and 30% test data: split_ratio = 0.3 X_train, X_test, y_train, y_test = train_test_split(X_std, y, test_size=split_ratio, random_state=0) print('2. Complete splitting with ' + str(y_train.shape[0]) + \ '(' + str(int((1-split_ratio)*100)) +'%) training data and ' + \ str(y_test.shape[0]) + '(' + str(int(split_ratio*100)) +'%) test data.') from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score # Training ppn = Perceptron(n_iter=800, eta0=0.1, random_state=0) ppn.fit(X_train, y_train) # Testing y_pred = ppn.predict(X_test) # Results print('Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print('Accuracy: %.3f' % accuracy_score(y_test, y_pred)) from sklearn.linear_model import LogisticRegression # Training lr = LogisticRegression(C=1.0, random_state=0) # we observe that changing C from 0.0001 to 1000 has ignorable effect lr.fit(X_train, y_train) # Testing y_pred = lr.predict(X_test) # Results print('Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print('Accuracy: %.3f' % accuracy_score(y_test, y_pred)) from sklearn.svm import SVC # 1. Using linear kernel # Training svm = SVC(kernel='linear', C=1.0, random_state=0) svm.fit(X_train, y_train) # Testing y_pred = svm.predict(X_test) # Results print('1. Using linear kernel:') print(' Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print(' Accuracy: %.3f' % accuracy_score(y_test, y_pred)) # 2. Using rbf kernel # Training svm = SVC(kernel='rbf', C=1.0, random_state=0) svm.fit(X_train, y_train) # Testing y_pred = svm.predict(X_test) # Results print('2. Using rbf kernel:') print(' Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print(' Accuracy: %.3f' % accuracy_score(y_test, y_pred)) from sklearn.tree import DecisionTreeClassifier # 1. Using entropy criterion # Training tree = DecisionTreeClassifier(criterion='entropy', random_state=0) tree.fit(X_train, y_train) # Testing y_pred = tree.predict(X_test) # Results print('1. Using entropy criterion:') print(' Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print(' Accuracy: %.3f' % accuracy_score(y_test, y_pred)) # 2. Using Gini criterion # Training tree = DecisionTreeClassifier(criterion='gini', random_state=0) tree.fit(X_train, y_train) # Testing y_pred = tree.predict(X_test) # Results print('2. Using Gini criterion:') print(' Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print(' Accuracy: %.3f' % accuracy_score(y_test, y_pred)) from sklearn.ensemble import RandomForestClassifier # 1. Using entropy criterion # Training forest = RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=1, n_jobs=2) forest.fit(X_train, y_train) # Testing y_pred = forest.predict(X_test) # Results print('1. Using entropy criterion:') print(' Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print(' Accuracy: %.3f' % accuracy_score(y_test, y_pred)) # 2. Using Gini criterion # Training forest = RandomForestClassifier(criterion='gini', n_estimators=10, random_state=1, n_jobs=2) forest.fit(X_train, y_train) # Testing y_pred = forest.predict(X_test) # Results print('2. Using Gini criterion:') print(' Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print(' Accuracy: %.3f' % accuracy_score(y_test, y_pred)) from sklearn.neighbors import KNeighborsClassifier # Training knn = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski') knn.fit(X_train, y_train) # Testing y_pred = knn.predict(X_test) # Results print('Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print('Accuracy: %.3f' % accuracy_score(y_test, y_pred)) from sklearn.naive_bayes import GaussianNB # Training gnb = GaussianNB() gnb.fit(X_train, y_train) # Testing y_pred = gnb.predict(X_test) # Results print('Misclassified samples: %d out of %d' % ((y_test != y_pred).sum(), y_test.shape[0])) print('Accuracy: %.3f' % accuracy_score(y_test, y_pred)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load data Step2: Visualize data Step3: Date Preprocessing Step4: Classifier #1 Perceptron Step5: Classifier #2 Logistic Regression Step6: Classifier #3 SVM Step7: Classifier #4 Decision Tree Step8: Classifer #5 Random Forest Step9: Classifier #6 KNN Step10: Classifier #7 Naive Bayes
2,717
<ASSISTANT_TASK:> Python Code: import nbformat from nbformat.v4 import new_notebook nb = new_notebook() display(nb) nbformat.validate(nb) nb.pizza = True nbformat.validate(nb) nb = new_notebook() # get rid of pizza from nbformat.v4 import new_code_cell, new_markdown_cell, new_raw_cell md = new_markdown_cell("First argument is the source string.") display(md) nb.cells.append(md) raw = new_raw_cell(["Sources can also be a ","list of strings."]) display(raw) nb.cells.append(raw) code = new_code_cell(["#Either way, you need newlines\n", "print('like this')"]) display(code) nb.cells.append(code) nbformat.write(nb, "my_demo_notebook.ipynb") !ls my_* nb2 = nbformat.read("my_demo_notebook.ipynb", as_version=4) print(nb2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: cells Step2: What happens if it's invalid? Step3: Cells and their sources Step4: Three types of cells Step5: cell_type Step6: cell_type Step7: cell_type
2,718
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import math def tf_assert_shape(tensors, requested_shape): if not type(tensors) is list: tensors = [tensors] for tensor in tensors: shape = tensor.get_shape().as_list() error_msg = 'Tensor {} has shape {} while shape {} was requested'.format(tensor.name, shape, requested_shape) assert shape == requested_shape, error_msg BATCH_SIZE = 2500 NSAMPLE = BATCH_SIZE DIM = 3 # number of dimentions offset_data = np.float32(np.linspace(-10, 10, num=DIM)) y_data_one = np.float32(np.random.uniform(-10, 10, (NSAMPLE, 1))) y_data = np.float32(np.random.uniform(-10, 10, (NSAMPLE, DIM))) r_x = np.float32(np.random.normal(size=(NSAMPLE, 1))) r_y = np.float32(np.random.normal(size=(NSAMPLE, 3))) x_data= np.float32(np.sin(0.75*y_data_one)*7.0+y_data_one*1+r_x*0.4) y_data[:,0] = y_data_one[:,0] y_data[:,1] = y_data_one[:,0] y_data[:,2] = y_data_one[:,0] y_data = y_data + offset_data + r_y*0.4 plt.figure(figsize=(8, 8)) plt.plot(x_data , y_data[:,0],'ro', alpha=0.3) plt.plot(x_data , y_data[:,1],'go', alpha=0.3) plt.plot(x_data , y_data[:,2],'bo', alpha=0.3) plt.show() NHIDDEN = 24 STDEV = 0.5 KMIX = 10 # number of mixtures NOUT = KMIX * DIM * 3 # pi, mu, sigma FLOAT_TYPE = tf.float64 # Define input (x) and output (y) # output can be higher dimension than x x = tf.placeholder(dtype=FLOAT_TYPE, shape=[BATCH_SIZE, 1], name="x") y = tf.placeholder(dtype=FLOAT_TYPE, shape=[BATCH_SIZE, DIM], name="y") # Define coeficients Wh = tf.Variable(tf.random_normal([1,NHIDDEN], stddev=STDEV, dtype=FLOAT_TYPE)) bh = tf.Variable(tf.random_normal([1,NHIDDEN], stddev=STDEV, dtype=FLOAT_TYPE)) Wo = tf.Variable(tf.random_normal([NHIDDEN,NOUT], stddev=STDEV, dtype=FLOAT_TYPE)) bo = tf.Variable(tf.random_normal([1, NOUT], stddev=STDEV, dtype=FLOAT_TYPE)) # connect layers hidden_layer = tf.nn.tanh(tf.matmul(x, Wh) + bh) output = tf.matmul(hidden_layer,Wo) + bo # get_mixture_coef take the output of a model and convert it to a mixture model def get_mixture_coef(output, batch_size, data_size, mixture_size): tf_assert_shape(output, [batch_size, data_size * mixture_size * 3]) # 3 stand for pi, mu, stdev # split the output out_pi, out_sigma, out_mu = tf.split(output, 3, axis=1) tf_assert_shape([out_pi, out_sigma, out_mu], [batch_size, data_size * mixture_size]) # reshape pi, sigma and mu new_shape = [batch_size, data_size, mixture_size] out_pi = tf.reshape(out_pi, new_shape) out_sigma = tf.reshape(out_sigma, new_shape) out_mu = tf.reshape(out_mu, new_shape) # pi is a distribution out_pi = tf.nn.softmax(out_pi, axis=2) # sigma value are on an exponetial scale out_sigma = tf.exp(out_sigma) return out_pi, out_sigma, out_mu # Add the mixture model to the tf graph out_pi, out_sigma, out_mu = get_mixture_coef(output, NSAMPLE, DIM, KMIX) oneDivSqrtTwoPI = 1 / math.sqrt(2*math.pi) # normalisation factor for gaussian, not needed. def tf_normal(y, mu, sigma, batch_size, data_size): # check args tf_assert_shape(y, [batch_size, data_size]) tf_assert_shape([mu, sigma], [batch_size, data_size, KMIX]) y = tf.reshape(y, (batch_size, data_size, 1)) # add one dim to ease broadcast result = tf.subtract(y, mu) # Broadcast should work now tf_assert_shape(result, [batch_size, data_size, KMIX]) result = tf.multiply(result, tf.reciprocal(sigma)) # element wise result = -tf.square(result)/2 # element wise tf_assert_shape(result, [batch_size, data_size, KMIX]) return tf.multiply(tf.exp(result), tf.reciprocal(sigma))*oneDivSqrtTwoPI def get_lossfunc(out_pi, out_sigma, out_mu, y, batch_size, data_size): # check args tf_assert_shape(y, [batch_size, data_size]) tf_assert_shape([out_pi, out_sigma, out_mu], [batch_size, data_size, KMIX]) normal = tf_normal(y, out_mu, out_sigma, batch_size, data_size) tf_assert_shape(normal, [batch_size, data_size, KMIX]) result = tf.multiply(normal, out_pi) # element wise tf_assert_shape(result, [batch_size, data_size, KMIX]) result = tf.reduce_sum(result, axis=2) tf_assert_shape(result, [batch_size, data_size]) result = -tf.log(result) result = tf.reduce_mean(result) tf_assert_shape(result, []) return result lossfunc = get_lossfunc(out_pi, out_sigma, out_mu, y, NSAMPLE, DIM) train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(lossfunc) sess = tf.InteractiveSession() sess.run(tf.initialize_all_variables()) NEPOCH = 15000 loss = np.zeros(NEPOCH) # store the training progress here. for i in range(NEPOCH): loss[i], _ = sess.run((lossfunc, train_op), feed_dict={x: x_data, y: y_data}) if i%500 == 0: print ('step:',i,'loss:',loss[i]) plt.figure(figsize=(8, 8)) plt.plot(np.arange(500, NEPOCH,1), loss[500:], 'r-') plt.show() # Helper fonction to pick a gaussian according to the distribution def generate_ensemble(out_pi, out_mu, out_sigma): result = np.zeros([NSAMPLE, DIM]) # initially random [0, 1] rn = np.random.randn(NSAMPLE, DIM) # normal random matrix (0.0, 1.0) for dim in range(DIM): for i in range(NSAMPLE): idx = np.random.choice(KMIX, p=out_pi[i,dim]) mu = out_mu[i, dim, idx] std = out_sigma[i, dim, idx] result[i, dim] = mu + rn[i, dim]*std return result # generate a new set of inputs x_test = np.float32(np.arange(-12.5,12.5,0.01)) x_test = x_test[:NSAMPLE] x_test = x_test.reshape(NSAMPLE, 1) # needs to be a matrix, not a vector # ask the model to generate out_pi_test, out_sigma_test, out_mu_test = sess.run([out_pi, out_sigma, out_mu], feed_dict={x: x_test}) # generate the output using the model y_test = generate_ensemble(out_pi_test, out_mu_test, out_sigma_test) plt.figure(figsize=(8, 8)) plt.plot(x_data , y_data[:,0],'x', alpha=0.1, color='black') plt.plot(x_data , y_data[:,1],'x', alpha=0.1, color='black') plt.plot(x_data , y_data[:,2],'x', alpha=0.1, color='black') plt.plot(x_test, y_test[:,0],'ro',alpha=0.3) plt.plot(x_test, y_test[:,1],'go',alpha=0.3) plt.plot(x_test, y_test[:,2],'bo',alpha=0.3) plt.show() # Inspecting the first dimention mixture model dim = 0 plt.figure(figsize=(8, 8)) plt.plot(x_test, out_mu_test[:,dim,:],'go', alpha=0.03) plt.plot(x_test , y_test[:,dim],'bo',alpha=0.1) plt.plot(x_test, out_pi_test[:,dim,:]*20,'ro', alpha=0.03) plt.show() # Inspecting the scond dimention mixture model dim = 1 plt.figure(figsize=(8, 8)) plt.plot(x_test, out_mu_test[:,dim,:],'go', alpha=0.03) plt.plot(x_test , y_test[:,dim],'bo',alpha=0.1) plt.plot(x_test, out_pi_test[:,dim,:]*20,'ro', alpha=0.03) plt.show() # Inspecting the first dimention mixture model dim = 2 plt.figure(figsize=(8, 8)) plt.plot(x_test, out_mu_test[:,dim,:],'go', alpha=0.03) plt.plot(x_test , y_test[:,dim],'bo',alpha=0.1) plt.plot(x_test, out_pi_test[:,dim,:]*20,'ro', alpha=0.03) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate some data Step2: Model Step3: Add the loss Step4: Trainning Step5: Sample the model Step6: inspecting the model
2,719
<ASSISTANT_TASK:> Python Code: factors(689) max_seq_len = 682 #full_train_size = 55820 #train_size = 55800 #small_train_size = 6000 #just because of performance reasons, no statistics behind this decision #test_size = 6200 data_path = '../../../../Dropbox/data' phae_path = data_path + '/price_hist_autoencoder' csv_in = '../price_history_03_seq_start_suddens_trimmed.csv' assert path.isfile(csv_in) npz_unprocessed = phae_path + '/price_history_full_seqs.npz' assert path.isfile(npz_unprocessed) npz_dates = phae_path + '/price_history_full_seqs_dates.npz' assert path.isfile(npz_dates) npz_train = phae_path + '/price_history_seqs_dates_normed_train.npz' assert path.isfile(npz_train) npz_test = phae_path + '/price_history_seqs_dates_normed_test.npz' assert path.isfile(npz_test) npz_path = npz_train[:-len('_train.npz')] for key, val in np.load(npz_train).iteritems(): print key, ",", val.shape dp = PriceHistoryAutoEncDataProvider(npz_path=npz_path, batch_size=53, with_EOS=False) for data in dp.datalist: print data.shape # for item in dp.next(): # print item.shape # model = PriceHistoryAutoencoder(rng=random_state, dtype=dtype, config=config) # graph = model.getGraph(batch_size=53, # enc_num_units = 10, # dec_num_units = 10, # ts_len=max_seq_len) #show_graph(graph) def experiment(): return model.run(npz_path=npz_path, epochs=2, batch_size = 53, enc_num_units = 400, dec_num_units = 400, ts_len=max_seq_len, learning_rate = 1e-4, preds_gather_enabled = False, ) dyn_stats_dic = experiment() dyn_stats_dic['dyn_stats'].plotStats() plt.show() dyn_stats_dic['dyn_stats_diff'].plotStats() plt.show() model = PriceHistoryAutoencoder(rng=random_state, dtype=dtype, config=config) npz_test = npz_path + '_test.npz' assert path.isfile(npz_test) path.abspath(npz_test) def experiment(): return model.run(npz_path=npz_path, epochs=200, batch_size = 53, enc_num_units = 450, dec_num_units = 450, ts_len=max_seq_len, learning_rate = 1e-4, preds_gather_enabled = True, ) #%%time # dyn_stats_dic, preds_dict, targets, twods = experiment() dyn_stats, preds_dict, targets, twods = get_or_run_nn(experiment, filename='035_autoencoder_000', nn_runs_folder = data_path + "/nn_runs") dyn_stats['dyn_stats'].plotStats() plt.show() dyn_stats['dyn_stats_diff'].plotStats() plt.show() r2_scores = [r2_score(y_true=targets[ind], y_pred=preds_dict[ind]) for ind in range(len(targets))] ind = np.argmin(r2_scores) ind reals = targets[ind] preds = preds_dict[ind] r2_score(y_true=reals, y_pred=preds) #sns.tsplot(data=dp.inputs[ind].flatten()) fig = plt.figure(figsize=(15,6)) plt.plot(reals, 'b') plt.plot(preds, 'g') plt.legend(['reals','preds']) plt.show() %%time dtw_scores = [fastdtw(targets[ind], preds_dict[ind])[0] for ind in range(len(targets))] np.mean(dtw_scores) coint(preds, reals) cur_ind = np.random.randint(len(targets)) reals = targets[cur_ind] preds = preds_dict[cur_ind] fig = plt.figure(figsize=(15,6)) plt.plot(reals, 'b', label='reals') plt.plot(preds, 'g') plt.legend(['reals','preds']) plt.show() twod_arr = np.array(twods.values()) twod_arr.shape plt.figure(figsize=(16,7)) plt.plot(twod_arr[:, 0], twod_arr[:, 1], 'r.') plt.title('two dimensional representation of our time series after dimensionality reduction') plt.xlabel('first dimension') plt.ylabel('second dimension') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 - collect data Step2: Step 2 - Build model Step3: targets Step4: Quick test run Step5: Step 3 training the network Step6: Conclusion
2,720
<ASSISTANT_TASK:> Python Code: import colour colour.utilities.filter_warnings(True, False) sorted(colour.LIGHTNESS_METHODS.keys()) colour.colorimetry.lightness_Glasser1958(10.08) colour.lightness(10.08, method='Glasser 1958') %matplotlib inline from colour.plotting import * colour_plotting_defaults() # Plotting the "Glasser (1958)" "Lightness" function. single_lightness_function_plot('Glasser 1958') colour.colorimetry.lightness_Wyszecki1963(10.08) colour.lightness(10.08, method='Wyszecki 1963') # Plotting the "Wyszecki (1963)" "Lightness" function. single_lightness_function_plot('Wyszecki 1963') colour.colorimetry.lightness_CIE1976(10.08) colour.lightness(10.08) colour.lightness(10.08, method='CIE 1976', Y_n=95) colour.lightness(10.08, method='Lstar1976', Y_n=95) # Plotting the "CIE 1976" "Lightness" function. single_lightness_function_plot('CIE 1976') # Plotting multiple "Lightness" functions for comparison. multi_lightness_function_plot(['CIE 1976', 'Glasser 1958']) colour.colorimetry.lightness_Fairchild2010(10.08 / 100, 1.836) colour.lightness(10.08 / 100, method='Fairchild 2010', epsilon=1.836) # Plotting the "Fairchild and Wyble (2010)" "Lightness" function. single_lightness_function_plot('Fairchild 2010') # Plotting multiple "Lightness" functions for comparison. multi_lightness_function_plot(['CIE 1976', 'Fairchild 2010']) colour.colorimetry.lightness_Fairchild2011(10.08 / 100, 0.710) colour.lightness(10.08 / 100, method='Fairchild 2011', epsilon=0.710) # Plotting the "Fairchild and Chen (2011)" "Lightness" function. single_lightness_function_plot('Fairchild 2011') # Plotting multiple "Lightness" functions for comparison. multi_lightness_function_plot(['CIE 1976', 'Fairchild 2011']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Note Step2: Note Step3: Wyszecki (1963) Method Step4: Note Step5: CIE 1976 Method Step6: Note Step7: Fairchild and Wyble (2010) Method Step8: Fairchild and Chen (2011) Method
2,721
<ASSISTANT_TASK:> Python Code: # Install libraries. # The magic cells insures that those libraries can be part of a custom container # if moving the code somewhere else. %pip install -q googleads %pip install -q -U kfp matplotlib Faker --user # Automatically restart kernel after installs # import IPython # app = IPython.Application.instance() # app.kernel.do_shutdown(True) # Import from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, json, random import hashlib, uuid import time, calendar, math import pandas as pd, numpy as np import matplotlib.pyplot as plt, seaborn as sns from datetime import datetime from google.cloud import bigquery from googleads import adwords PROJECT_ID = "[YOUR-PROJECT]" #@param {type:"string"} REGION = "US" ! gcloud config set project $PROJECT_ID import sys if 'google.colab' in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() ! bq show $PROJECT_ID:ltv_ecommerce || bq mk $PROJECT_ID:ltv_ecommerce # Loads CRM data !bq load \ --project_id $PROJECT_ID \ --skip_leading_rows 1 \ --max_bad_records 100000 \ --replace \ --field_delimiter "," \ --autodetect \ ltv_ecommerce.00_crm \ gs://solutions-public-assets/analytics-componentized-patterns/ltv/crm.csv # Loads Sales data !bq load \ --project_id $PROJECT_ID \ --skip_leading_rows 1 \ --max_bad_records 100000 \ --replace \ --field_delimiter "," \ --autodetect \ ltv_ecommerce.10_orders \ gs://solutions-public-assets/analytics-componentized-patterns/ltv/sales_* # BigQuery client bq_client = bigquery.Client(project=PROJECT_ID) %%bigquery --params $MATCH_FIELDS --project $PROJECT_ID CREATE OR REPLACE TABLE `ltv_ecommerce.10_orders` AS ( SELECT CAST(customer_id AS STRING) AS customer_id, order_id AS order_id, transaction_date AS transaction_date, product_sku AS product_sku, qty AS qty, unit_price AS unit_price FROM `[YOUR_PROJECT].[YOUR_DATASET].[YOUR_SOURCE_TABLE]` ); %%bigquery df_histo_qty --project $PROJECT_ID WITH min_max AS ( SELECT MIN(qty) min_qty, MAX(qty) max_qty, CEIL((MAX(qty) - MIN(qty)) / 100) step FROM `ltv_ecommerce.10_orders` ) SELECT COUNT(1) c, bucket_same_size AS bucket FROM ( SELECT -- Creates (1000-100)/100 + 1 buckets of data. ML.BUCKETIZE(qty, GENERATE_ARRAY(min_qty, max_qty, step)) AS bucket_same_size, -- Creates custom ranges. ML.BUCKETIZE(qty, [-1, -1, -2, -3, -4, -5, 0, 1, 2, 3, 4, 5]) AS bucket_specific, FROM `ltv_ecommerce.10_orders`, min_max ) # WHERE bucket != "bin_1" and bucket != "bin_2" GROUP BY bucket -- Ohterwise, orders bin_10 before bin_2 ORDER BY CAST(SPLIT(bucket, "_")[OFFSET(1)] AS INT64) # Uses a log scale for bucket_same_size. # Can remove the log scale when using bucket_specific. plt.figure(figsize=(12,5)) plt.title('Log scaled distribution for qty') hqty = sns.barplot( x='bucket', y='c', data=df_histo_qty) hqty.set_yscale("log") %%bigquery df_histo_unit_price --project $PROJECT_ID WITH min_max AS ( SELECT MIN(unit_price) min_unit_price, MAX(unit_price) max_unit_price, CEIL((MAX(unit_price) - MIN(unit_price)) / 10) step FROM `ltv_ecommerce.10_orders` ) SELECT COUNT(1) c, bucket_same_size AS bucket FROM ( SELECT -- Creates (1000-100)/100 + 1 buckets of data. ML.BUCKETIZE(unit_price, GENERATE_ARRAY(min_unit_price, max_unit_price, step)) AS bucket_same_size, -- Creates custom ranges. ML.BUCKETIZE(unit_price, [10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000]) AS bucket_specific, FROM `ltv_ecommerce.10_orders`, min_max ) # WHERE bucket != "bin_1" and bucket != "bin_2" GROUP BY bucket -- Ohterwise, orders bin_10 before bin_2 ORDER BY CAST(SPLIT(bucket, "_")[OFFSET(1)] AS INT64) # Uses a log scale for bucket_same_size. # Can remove the log scale when using bucket_specific. plt.figure(figsize=(12,5)) q = sns.barplot( x='bucket', y='c', data=df_histo_unit_price) q.set_yscale("log") plt.title('Log scaled distribution for unit_price') LTV_PARAMS = { 'WINDOW_LENGTH': 0, 'WINDOW_STEP': 30, 'WINDOW_STEP_INITIAL': 90, 'LENGTH_FUTURE': 30, 'MAX_STDV_MONETARY': 500, 'MAX_STDV_QTY': 100, 'TOP_LTV_RATIO': 0.2 } LTV_PARAMS %%bigquery --params $LTV_PARAMS --project $PROJECT_ID DECLARE MAX_STDV_MONETARY INT64 DEFAULT @MAX_STDV_MONETARY; DECLARE MAX_STDV_QTY INT64 DEFAULT @MAX_STDV_QTY; CREATE OR REPLACE TABLE `ltv_ecommerce.20_aggred` AS SELECT customer_id, order_day, ROUND(day_value_after_returns, 2) AS value, day_qty_after_returns as qty_articles, day_num_returns AS num_returns, CEIL(avg_time_to_return) AS time_to_return FROM ( SELECT customer_id, order_day, SUM(order_value_after_returns) AS day_value_after_returns, STDDEV(SUM(order_value_after_returns)) OVER(PARTITION BY customer_id ORDER BY SUM(order_value_after_returns)) AS stdv_value, SUM(order_qty_after_returns) AS day_qty_after_returns, STDDEV(SUM(order_qty_after_returns)) OVER(PARTITION BY customer_id ORDER BY SUM(order_qty_after_returns)) AS stdv_qty, CASE WHEN MIN(order_min_qty) < 0 THEN count(1) ELSE 0 END AS day_num_returns, CASE WHEN MIN(order_min_qty) < 0 THEN AVG(time_to_return) ELSE NULL END AS avg_time_to_return FROM ( SELECT customer_id, order_id, -- Gives the order date vs return(s) dates. MIN(transaction_date) AS order_day, MAX(transaction_date) AS return_final_day, DATE_DIFF(MAX(transaction_date), MIN(transaction_date), DAY) AS time_to_return, -- Aggregates all products in the order -- and all products returned later. SUM(qty * unit_price) AS order_value_after_returns, SUM(qty) AS order_qty_after_returns, -- If negative, order has qty return(s). MIN(qty) order_min_qty FROM `ltv_ecommerce.10_orders` GROUP BY customer_id, order_id) GROUP BY customer_id, order_day) WHERE -- [Optional] Remove dates with outliers per a customer. (stdv_value < MAX_STDV_MONETARY OR stdv_value IS NULL) AND (stdv_qty < MAX_STDV_QTY OR stdv_qty IS NULL); SELECT * FROM `ltv_ecommerce.20_aggred` LIMIT 5; %%bigquery df_dist_dates --project $PROJECT_ID SELECT count(1) c, SUBSTR(CAST(order_day AS STRING), 0, 7) as yyyy_mm FROM `ltv_ecommerce.20_aggred` WHERE qty_articles > 0 GROUP BY yyyy_mm ORDER BY yyyy_mm plt.figure(figsize=(12,5)) sns.barplot( x='yyyy_mm', y='c', data=df_dist_dates) %%bigquery df_dist_customers --params $LTV_PARAMS --project $PROJECT_ID SELECT customer_id, count(1) c FROM `ltv_ecommerce.20_aggred` GROUP BY customer_id plt.figure(figsize=(12,4)) sns.distplot(df_dist_customers['c'], hist_kws=dict(ec="k"), kde=False) %%bigquery df_dist_qty --params $LTV_PARAMS --project $PROJECT_ID SELECT qty_articles, count(1) c FROM `ltv_ecommerce.20_aggred` GROUP BY qty_articles plt.figure(figsize=(12,4)) sns.distplot(df_dist_qty['qty_articles'], hist_kws=dict(ec="k"), kde=False) %%bigquery df_dist_values --params $LTV_PARAMS --project $PROJECT_ID SELECT value FROM `ltv_ecommerce.20_aggred` axv = sns.violinplot(x=df_dist_values["value"]) axv.set_xlim(-200, 3500) %%bigquery --params $LTV_PARAMS --project $PROJECT_ID -- Lenght are number of days -- -- Date of the first order in the dataset. DECLARE MIN_DATE DATE; -- Date of the final order in the dataset. DECLARE MAX_DATE DATE; -- Date that separates inputs orders from target transactions. DECLARE THRESHOLD_DATE DATE; -- How many days back for inputs transactions. 0 means from the start. DECLARE WINDOW_LENGTH INT64 DEFAULT @WINDOW_LENGTH; -- Date at which an input transactions window starts. DECLARE WINDOW_START DATE; -- How many days between thresholds. DECLARE WINDOW_STEP INT64 DEFAULT @WINDOW_STEP; -- How many days for the first window. DECLARE WINDOW_STEP_INITIAL INT64 DEFAULT @WINDOW_STEP_INITIAL; -- Index of the window being run. DECLARE STEP INT64 DEFAULT 1; -- How many days to predict for. DECLARE LENGTH_FUTURE INT64 DEFAULT @LENGTH_FUTURE; SET (MIN_DATE, MAX_DATE) = ( SELECT AS STRUCT MIN(order_day) AS min_days, MAX(order_day) AS max_days FROM `ltv_ecommerce.20_aggred` ); SET THRESHOLD_DATE = MIN_DATE; -- For more information about the features of this table, -- see https://github.com/CamDavidsonPilon/lifetimes/blob/master/lifetimes/utils.py#L246 -- and https://cloud.google.com/solutions/machine-learning/clv-prediction-with-offline-training-train#aggregating_data CREATE OR REPLACE TABLE ltv_ecommerce.30_featured ( -- dataset STRING, customer_id STRING, monetary FLOAT64, frequency INT64, recency INT64, T INT64, time_between FLOAT64, avg_basket_value FLOAT64, avg_basket_size FLOAT64, has_returns STRING, avg_time_to_return FLOAT64, num_returns INT64, -- threshold DATE, -- step INT64, target_monetary FLOAT64, ); LOOP -- Can choose a longer original window in case -- there were not many orders in the early days. IF STEP = 1 THEN SET THRESHOLD_DATE = DATE_ADD(THRESHOLD_DATE, INTERVAL WINDOW_STEP_INITIAL DAY); ELSE SET THRESHOLD_DATE = DATE_ADD(THRESHOLD_DATE, INTERVAL WINDOW_STEP DAY); END IF; SET STEP = STEP + 1; IF THRESHOLD_DATE >= DATE_SUB(MAX_DATE, INTERVAL (WINDOW_STEP) DAY) THEN LEAVE; END IF; -- Takes all transactions before the threshold date unless you decide -- to use a different window lenght to test model performance. IF WINDOW_LENGTH != 0 THEN SET WINDOW_START = DATE_SUB(THRESHOLD_DATE, INTERVAL WINDOW_LENGTH DAY); ELSE SET WINDOW_START = MIN_DATE; END IF; INSERT ltv_ecommerce.30_featured SELECT -- CASE -- WHEN THRESHOLD_DATE <= DATE_SUB(MAX_DATE, INTERVAL LENGTH_FUTURE DAY) THEN 'UNASSIGNED' -- ELSE 'TEST' -- END AS dataset, CAST(tf.customer_id AS STRING), ROUND(tf.monetary_orders, 2) AS monetary, tf.cnt_orders AS frequency, tf.recency, tf.T, ROUND(tf.recency/cnt_orders, 2) AS time_between, ROUND(tf.avg_basket_value, 2) AS avg_basket_value, ROUND(tf.avg_basket_size, 2) AS avg_basket_size, has_returns, CEIL(avg_time_to_return) AS avg_time_to_return, num_returns, -- THRESHOLD_DATE AS threshold, -- STEP - 1 AS step, ROUND(tt.target_monetary, 2) AS target_monetary, FROM ( -- This SELECT uses only data before THRESHOLD_DATE to make features. SELECT customer_id, SUM(value) AS monetary_orders, DATE_DIFF(MAX(order_day), MIN(order_day), DAY) AS recency, DATE_DIFF(THRESHOLD_DATE, MIN(order_day), DAY) AS T, COUNT(DISTINCT order_day) AS cnt_orders, AVG(qty_articles) avg_basket_size, AVG(value) avg_basket_value, CASE WHEN SUM(num_returns) > 0 THEN 'y' ELSE 'n' END AS has_returns, AVG(time_to_return) avg_time_to_return, THRESHOLD_DATE AS threshold, SUM(num_returns) num_returns, FROM `ltv_ecommerce.20_aggred` WHERE order_day <= THRESHOLD_DATE AND order_day >= WINDOW_START GROUP BY customer_id ) tf INNER JOIN ( -- This SELECT uses all data after threshold as target. SELECT customer_id, SUM(value) target_monetary FROM `ltv_ecommerce.20_aggred` WHERE order_day <= DATE_ADD(THRESHOLD_DATE, INTERVAL LENGTH_FUTURE DAY) -- Overall value is similar to predicting only what's after threshold. -- and the prediction performs better. We can substract later. -- AND order_day > THRESHOLD_DATE GROUP BY customer_id) tt ON tf.customer_id = tt.customer_id; END LOOP; %%bigquery --project $PROJECT_ID -- Shows all data for a specific customer and some other random records. SELECT * FROM `ltv_ecommerce.30_featured` WHERE customer_id = "10" UNION ALL (SELECT * FROM `ltv_ecommerce.30_featured` LIMIT 5) ORDER BY customer_id, frequency, T %%bigquery df_featured --project $PROJECT_ID ltv_ecommerce.30_featured df_featured.describe() # Display distribution for all columns that are numerical (but will still ignore the categorical ones like day of the week) valid_column_names = [key for key in dict(df_featured.dtypes) if dict(df_featured.dtypes)[key] in ['float64', 'int64']] NUM_COLS = 5 NUM_ROWS = math.ceil(int(len(valid_column_names)) / NUM_COLS) fig, axs = plt.subplots(nrows=NUM_ROWS, ncols=NUM_COLS, figsize=(25, 7)) for idx, cname in enumerate(valid_column_names): x = int(idx/NUM_COLS) y = idx % NUM_COLS sns.violinplot(df_featured[cname], ax=axs[x, y], label=cname) # You can run this query using the magic cell but the cell would run for hours. # Although stopping the cell would not stop the query, using the Python client # also enables you to add a custom parameter for the model name. suffix_now = datetime.now().strftime("%Y%m%d_%H%M%S") train_model_jobid = f'train_model_{suffix_now}' train_model_sql = f''' CREATE OR REPLACE MODEL `ltv_ecommerce.model_tutorial_{suffix_now}` OPTIONS(MODEL_TYPE="AUTOML_REGRESSOR", INPUT_LABEL_COLS=["target_monetary"], OPTIMIZATION_OBJECTIVE="MINIMIZE_MAE") AS SELECT * EXCEPT(customer_id) FROM `ltv_ecommerce.30_featured` ''' bq_client.query(train_model_sql, job_id=train_model_jobid) %%bigquery --params $LTV_PARAMS --project $PROJECT_ID -- TODO(developer): -- 1. Update the model name to the one you want to use. -- 2. Update the table where to output predictions. -- How many days back for inputs transactions. 0 means from the start. DECLARE WINDOW_LENGTH INT64 DEFAULT @WINDOW_LENGTH; -- Date at which an input transactions window starts. DECLARE WINDOW_START DATE; -- Date of the first transaction in the dataset. DECLARE MIN_DATE DATE; -- Date of the final transaction in the dataset. DECLARE MAX_DATE DATE; -- Date from which you want to predict. DECLARE PREDICT_FROM_DATE DATE; SET (MIN_DATE, MAX_DATE) = ( SELECT AS STRUCT MIN(order_day) AS min_days, MAX(order_day) AS max_days FROM `ltv_ecommerce.20_aggred` ); -- You can set any date here. In production, it is generally today. SET PREDICT_FROM_DATE = MAX_DATE; IF WINDOW_LENGTH != 0 THEN SET WINDOW_START = DATE_SUB(PREDICT_FROM_DATE, INTERVAL WINDOW_LENGTH DAY); ELSE SET WINDOW_START = MIN_DATE; END IF; CREATE OR REPLACE TABLE `ltv_ecommerce.predictions_tutorial` AS ( SELECT customer_id, monetary AS monetary_so_far, ROUND(predicted_target_monetary, 2) AS monetary_predicted, ROUND(predicted_target_monetary - monetary, 2) AS monetary_future FROM ML.PREDICT( -- /!\ Set your model name here. MODEL ltv_ecommerce.model_tutorial_YYYYMMDD, ( SELECT customer_id, ROUND(monetary_orders, 2) AS monetary, cnt_orders AS frequency, recency, T, ROUND(recency/cnt_orders, 2) AS time_between, ROUND(avg_basket_value, 2) AS avg_basket_value, ROUND(avg_basket_size, 2) AS avg_basket_size, has_returns, CEIL(avg_time_to_return) AS avg_time_to_return, num_returns FROM ( SELECT customer_id, SUM(value) AS monetary_orders, DATE_DIFF(MAX(order_day), MIN(order_day), DAY) AS recency, DATE_DIFF(PREDICT_FROM_DATE, MIN(order_day), DAY) AS T, COUNT(DISTINCT order_day) AS cnt_orders, AVG(qty_articles) avg_basket_size, AVG(value) avg_basket_value, CASE WHEN SUM(num_returns) > 0 THEN 'y' ELSE 'n' END AS has_returns, AVG(time_to_return) avg_time_to_return, SUM(num_returns) num_returns, FROM `ltv_ecommerce.20_aggred` WHERE order_day <= PREDICT_FROM_DATE AND order_day >= WINDOW_START GROUP BY customer_id ) ) ) ) %%bigquery df_predictions --project $PROJECT_ID ltv_ecommerce.predictions_windowed df_predictions.describe() from matplotlib.gridspec import GridSpec fig = plt.figure(constrained_layout=True, figsize=(15, 5)) gs = GridSpec(2, 2, figure=fig) sns.set(font_scale = 1) plt.tick_params(axis='x', labelsize=14) ax0 = plt.subplot(gs.new_subplotspec((0, 0), colspan=1)) ax1 = plt.subplot(gs.new_subplotspec((0, 1), colspan=1)) ax2 = plt.subplot(gs.new_subplotspec((1, 0), colspan=2)) sns.violinplot(df_predictions['monetary_so_far'], ax=ax0, label='monetary_so_far') sns.violinplot(df_predictions['monetary_predicted'], ax=ax1, label='monetary_predicted') sns.violinplot(df_predictions['monetary_future'], ax=ax2, label='monetary_future') %%bigquery df_top_ltv --params $LTV_PARAMS --project $PROJECT_ID DECLARE TOP_LTV_RATIO FLOAT64 DEFAULT @TOP_LTV_RATIO; SELECT p.customer_id, monetary_future, c.email AS email FROM ( SELECT customer_id, monetary_future, PERCENT_RANK() OVER (ORDER BY monetary_future DESC) AS percent_rank_monetary FROM `ltv_ecommerce.predictions_windowed` ) p -- This creates fake emails. You need to join with your own CRM table. INNER JOIN ( SELECT customer_id, email FROM `ltv_ecommerce.00_crm` ) c ON p.customer_id = CAST(c.customer_id AS STRING) WHERE -- Decides the size of your list of emails. For similar-audience use cases -- where you need to find a minimum of matching emails, 20% should provide -- enough potential emails. percent_rank_monetary <= TOP_LTV_RATIO ORDER BY monetary_future DESC df_top_ltv.head(5) # Shows distribution of the predicted monetary value for the top LTV customers. print(df_top_ltv.describe()) fig, axs = plt.subplots() sns.set(font_scale = 1.2) sns.distplot(df_top_ltv['monetary_future']) # Sets your variables. if 'google.colab' in sys.modules: from google.colab import files ADWORDS_FILE = "/tmp/adwords.yaml" DEVELOPER_TOKEN = "[YOUR_DEVELOPER_TOKEN]" OAUTH_2_CLIENT_ID = "[YOUR_OAUTH_2_CLIENT_ID]" CLIENT_SECRET = "[YOUR_CLIENT_SECRET]" REFRESH_TOKEN = "[YOUR_REFRESH_TOKEN]" # Creates a local YAML file adwords_content = f # AdWordsClient configurations adwords: ############################################################################# # Required Fields # ############################################################################# developer_token: {DEVELOPER_TOKEN} ############################################################################# # Optional Fields # ############################################################################# # client_customer_id: INSERT_CLIENT_CUSTOMER_ID_HERE # user_agent: INSERT_USER_AGENT_HERE # partial_failure: True # validate_only: True ############################################################################# # OAuth2 Configuration # # Below you may provide credentials for either the installed application or # # service account flows. Remove or comment the lines for the flow you're # # not using. # ############################################################################# # The following values configure the client for the installed application # flow. client_id: {OAUTH_2_CLIENT_ID} client_secret: {CLIENT_SECRET} refresh_token: {REFRESH_TOKEN} # The following values configure the client for the service account flow. # path_to_private_key_file: INSERT_PATH_TO_JSON_KEY_FILE_HERE # delegated_account: INSERT_DOMAIN_WIDE_DELEGATION_ACCOUNT ############################################################################# # ReportDownloader Headers # # Below you may specify boolean values for optional headers that will be # # applied to all requests made by the ReportDownloader utility by default. # ############################################################################# # report_downloader_headers: # skip_report_header: False # skip_column_header: False # skip_report_summary: False # use_raw_enum_values: False # AdManagerClient configurations ad_manager: ############################################################################# # Required Fields # ############################################################################# application_name: INSERT_APPLICATION_NAME_HERE ############################################################################# # Optional Fields # ############################################################################# # The network_code is required for all services except NetworkService: # network_code: INSERT_NETWORK_CODE_HERE # delegated_account: INSERT_DOMAIN_WIDE_DELEGATION_ACCOUNT ############################################################################# # OAuth2 Configuration # # Below you may provide credentials for either the installed application or # # service account (recommended) flows. Remove or comment the lines for the # # flow you're not using. # ############################################################################# # The following values configure the client for the service account flow. path_to_private_key_file: INSERT_PATH_TO_JSON_KEY_FILE_HERE # delegated_account: INSERT_DOMAIN_WIDE_DELEGATION_ACCOUNT # The following values configure the client for the installed application # flow. # client_id: INSERT_OAUTH_2_CLIENT_ID_HERE # client_secret: INSERT_CLIENT_SECRET_HERE # refresh_token: INSERT_REFRESH_TOKEN_HERE # Common configurations: ############################################################################### # Compression (optional) # # Below you may specify whether to accept and automatically decompress gzip # # encoded SOAP requests. By default, gzip compression is not enabled. # ############################################################################### # enable_compression: False ############################################################################### # Logging configuration (optional) # # Below you may specify the logging configuration. This will be provided as # # an input to logging.config.dictConfig. # ############################################################################### # logging: # version: 1 # disable_existing_loggers: False # formatters: # default_fmt: # format: ext://googleads.util.LOGGER_FORMAT # handlers: # default_handler: # class: logging.StreamHandler # formatter: default_fmt # level: INFO # loggers: # Configure root logger # "": # handlers: [default_handler] # level: INFO ############################################################################### # Proxy configurations (optional) # # Below you may specify an HTTP or HTTPS Proxy to be used when making API # # requests. Note: You must specify the scheme used for the proxy endpoint. # # # # For additional information on configuring these values, see: # # http://docs.python-requests.org/en/master/user/advanced/#proxies # ############################################################################### # proxy_config: # http: INSERT_HTTP_PROXY_URI_HERE # https: INSERT_HTTPS_PROXY_URI_HERE # If specified, the given cafile will only be used if certificate validation # is not disabled. # cafile: INSERT_PATH_HERE # disable_certificate_validation: False ################################################################################ # Utilities Included (optional) # # Below you may specify whether the library will include utilities used in the # # user agent. By default, the library will include utilities used in the user # # agent. # ################################################################################ # include_utilities_in_user_agent: True ################################################################################ # Custom HTTP headers (optional) # # Specify one or more custom headers to pass along with all requests to # # the API. # ################################################################################ # custom_http_headers: # X-My-Header: 'content' with open(ADWORDS_FILE, "w") as adwords_file: print(adwords_content, file=adwords_file) # Google Ads client # adwords_client = adwords.AdWordsClient.LoadFromStorage(ADWORDS_FILE) ltv_emails = list(set(df_top_ltv['email'])) # https://developers.google.com/adwords/api/docs/samples/python/remarketing#create-and-populate-a-user-list # https://github.com/googleads/googleads-python-lib/blob/7c41584c65759b6860572a13bde65d7395c5b2d8/examples/adwords/v201809/remarketing/add_crm_based_user_list.py # Adds a user list and populates it with hashed email addresses. # Note: It may take several hours for the list to be populated with members. Email # addresses must be associated with a Google account. For privacy purposes, the # user list size will show as zero until the list has at least 1000 members. After # that, the size will be rounded to the two most significant digits. # # def normalize_and_SHA256(s): # Normalizes (lowercase, remove whitespace) and hashes a string with SHA-256. # Args: # s: The string to perform this operation on. # Returns: # A normalized and SHA-256 hashed string. # # return hashlib.sha256(s.strip().lower()).hexdigest() # def create_user_list(client): # # Initialize appropriate services. # user_list_service = client.GetService('AdwordsUserListService', 'v201809') # user_list = { # 'xsi_type': 'CrmBasedUserList', # 'name': f'Customer relationship management list #{uuid.uuid4()}', # 'description': 'A list of customers that originated from email addresses', # # CRM-based user lists can use a membershipLifeSpan of 10000 to indicate # # unlimited; otherwise normal values apply. # 'membershipLifeSpan': 30, # 'uploadKeyType': 'CONTACT_INFO' # } # # Create an operation to add the user list. # operations = [{ # 'operator': 'ADD', # 'operand': user_list # }] # result = user_list_service.mutate(operations) # user_list_id = result['value'][0]['id'] # emails = ltv_emails # members = [{'hashedEmail': normalize_and_SHA256(email)} for email in emails] # mutate_members_operation = { # 'operand': { # 'userListId': user_list_id, # 'membersList': members # }, # 'operator': 'ADD' # } # response = user_list_service.mutateMembers([mutate_members_operation]) # if 'userLists' in response: # for user_list in response['userLists']: # print('User list with name "%s" and ID "%d" was added.' # % (user_list['name'], user_list['id'])) # create_user_list(adwords_client) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import packages Step2: Set up your GCP project Step3: Authenticate your GCP account Step4: Create a working dataset Step5: Load example tables Step6: Create clients Step7: [Optional] Match your dataset to template Step8: Analyze dataset Step9: Unit price Step10: Set parameters for LTV Step11: Aggregate per day per customer Step12: Check distributions Step13: Orders are quite well distributed across the year despite a lower number in the early days of the dataset. You can keep this in mind when choosing a value for WINDOW_STEP_INITIAL. Step14: The number of transactions per customer is distributed across a few discrete values with no clear outliers. Step15: A few customers seems to have quite large quantities in their orders but the distribution is generally healthy. Step16: The distribution shows a few outliers that you could investigate to improve the base model that you create in this tutorial. Step17: Dataset Step18: Seems like for most values, there is a long tail of records. This is something that might required additional feature preparation even if AutoML already provides some automatic engineering. You can investigate this if you want to improve the base model. Step19: This is an example of a model evaluation Step20: The monetary distribution analysis shows small monetary amounts for the next month compare to the overall historical value. The difference is about 3 to 4 orders of magnitude. Step22: Setup Adwords client Step25: Create an AdWords user list
2,722
<ASSISTANT_TASK:> Python Code: import sys sys.path.append("..") import numpy as np from pstd import PSTD, PML, Medium, PointSource from acoustics import Signal #import seaborn as sns %matplotlib inline x = 30.0 y = 20.0 z = 0.0 soundspeed = 343.2 density = 1.296 maximum_frequency_target = 200.0 medium = Medium(soundspeed=soundspeed, density=density) pml = PML(absorption_coefficient=(1000.0, 1000.0), depth=10.0) model = PSTD( maximum_frequency=maximum_frequency_target, pml=pml, medium=medium, cfl=None, size=[x, y] ) source_position = (x/4.0, y/2.0) source = model.add_object('source', 'PointSource', position=source_position, excitation='pulse', quantity='pressure', amplitude=0.1) receiver_position = (x*3.0/4.0, y/2.0) receiver = model.add_object('receiver', 'Receiver', position=receiver_position, quantity='pressure') print(model.overview()) _ = model.plot_scene() model.run(seconds=0.002) _ = model.plot_field() %%prun model.run(seconds=0.06) _ = model.plot_field() _ = receiver.recording().plot() model.restart() import logging logger = logging.getLogger() logger.setLevel(logging.INFO) model.run(steps=10) _ = model.plot_field() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Configuration Step2: Create model Step3: The model is only finite and to prevent aliasing we need a Perfectly Matched Layer. Step4: Now we create the actual model. Step5: In this example our source excites a pulse. Step6: We also add a receiver on the other side of the domain Step7: Check model Step8: To check whether the geometry is as we want it to be, we can simply draw it. Step9: Running the simulation Step10: Let's see how the sound pressure field looks like now. Step11: It might happen that you realize that you actually need to calculate a bit further. This can easily be done, since the state is remembered. Simply use model.run() again and the simulation continues. Step12: as you can see. Step13: Recordings Step14: If however, you want to restart the simulation you can do so with model.restart(). Step15: Show log Step16: When we now run the simulation, you will see which step it is at.
2,723
<ASSISTANT_TASK:> Python Code: %pylab inline import GPyOpt from numpy.random import seed func = GPyOpt.objective_examples.experiments1d.forrester() domain =[{'name': 'var1', 'type': 'continuous', 'domain': (0,1)}] X_init = np.array([[0.0],[0.5],[1.0]]) Y_init = func.f(X_init) iter_count = 10 current_iter = 0 X_step = X_init Y_step = Y_init while current_iter < iter_count: bo_step = GPyOpt.methods.BayesianOptimization(f = None, domain = domain, X = X_step, Y = Y_step) x_next = bo_step.suggest_next_locations() y_next = func.f(x_next) X_step = np.vstack((X_step, x_next)) Y_step = np.vstack((Y_step, y_next)) current_iter += 1 x = np.arange(0.0, 1.0, 0.01) y = func.f(x) plt.figure() plt.plot(x, y) for i, (xs, ys) in enumerate(zip(X_step, Y_step)): plt.plot(xs, ys, 'rD', markersize=10 + 20 * (i+1)/len(X_step)) bo_loop = GPyOpt.methods.BayesianOptimization(f = func.f, domain = domain, X = X_init, Y = Y_init) bo_loop.run_optimization(max_iter=iter_count) X_loop = bo_loop.X Y_loop = bo_loop.Y plt.figure() plt.plot(x, y) for i, (xl, yl) in enumerate(zip(X_loop, Y_loop)): plt.plot(xl, yl, 'rD', markersize=10 + 20 * (i+1)/len(X_step)) pending_X = np.array([[0.75]]) ignored_X = np.array([[0.15], [0.85]]) bo = GPyOpt.methods.BayesianOptimization(f = None, domain = domain, X = X_step, Y = Y_step, de_duplication = True) bo.suggest_next_locations(pending_X = pending_X, ignored_X = ignored_X) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: For the purposes of this notebook we are going to use one of the predefined objective functions that come with GPyOpt. However the key thing to realize is that the function could be anything (e.g., the results of a physical experiment). As long as users are able to externally evaluate the suggested points somehow and provide GPyOpt with results, the library has opinions about the objective function's origin. Step2: Now we define the domain of the function to optimize as usual. Step3: First we are going to run the optimization loop outside of GPyOpt, and only use GPyOpt to get the next point to evaluate our function. Step4: Let's visualize the results. The size of the marker denotes the order in which the point was evaluated - the bigger the marker the later was the evaluation. Step5: To compare the results, let's now execute the whole loop with GPyOpt. Step6: Now let's print the results of this optimization and compare to the previous external evaluation run. As before, size of the marker corresponds to its evaluation order. Step7: To allow even more control over the execution, this API allows to specify points that should be ignored (say the objetive is known to fail in certain locations), as well as points that are already pending evaluation (say in case the user is running several candidates in parallel). Here is how one can provide this information.
2,724
<ASSISTANT_TASK:> Python Code: import numpy as np import tensorflow as tf PROJECT_ID = 'yourProject' # Change to your project. PROJECT_NUMBER = 'yourProjectNumber' # Change to your project number BUCKET = 'yourBucketName' # Change to the bucket you created. REGION = 'yourPredictionRegion' # Change to your AI Platform Prediction region. ARTIFACTS_REPOSITORY_NAME = 'ml-serving' EMBEDDNIG_LOOKUP_MODEL_OUTPUT_DIR = f'gs://{BUCKET}/bqml/embedding_lookup_model' EMBEDDNIG_LOOKUP_MODEL_NAME = 'item_embedding_lookup' EMBEDDNIG_LOOKUP_MODEL_VERSION = 'v1' INDEX_DIR = f'gs://{BUCKET}/bqml/scann_index' SCANN_MODEL_NAME = 'index_server' SCANN_MODEL_VERSION = 'v1' KIND = 'song' !gcloud config set project $PROJECT_ID try: from google.colab import auth auth.authenticate_user() print("Colab user is authenticated.") except: pass !gcloud ai-platform models create {EMBEDDNIG_LOOKUP_MODEL_NAME} --region={REGION} !gcloud ai-platform versions create {EMBEDDNIG_LOOKUP_MODEL_VERSION} \ --region={REGION} \ --model={EMBEDDNIG_LOOKUP_MODEL_NAME} \ --origin={EMBEDDNIG_LOOKUP_MODEL_OUTPUT_DIR} \ --runtime-version=2.2 \ --framework=TensorFlow \ --python-version=3.7 \ --machine-type=n1-standard-2 print("The model version is deployed to AI Platform Prediction.") import googleapiclient.discovery from google.api_core.client_options import ClientOptions api_endpoint = f'https://{REGION}-ml.googleapis.com' client_options = ClientOptions(api_endpoint=api_endpoint) service = googleapiclient.discovery.build( serviceName='ml', version='v1', client_options=client_options) def caip_embedding_lookup(input_items): request_body = {'instances': input_items} service_name = f'projects/{PROJECT_ID}/models/{EMBEDDNIG_LOOKUP_MODEL_NAME}/versions/{EMBEDDNIG_LOOKUP_MODEL_VERSION}' print(f'Calling : {service_name}') response = service.projects().predict( name=service_name, body=request_body).execute() if 'error' in response: raise RuntimeError(response['error']) return response['predictions'] input_items = ['2114406', '2114402 2120788', 'abc123'] embeddings = caip_embedding_lookup(input_items) print(f'Embeddings retrieved: {len(embeddings)}') for idx, embedding in enumerate(embeddings): print(f'{input_items[idx]}: {embedding[:5]}') !gcloud beta artifacts repositories create {ARTIFACTS_REPOSITORY_NAME} \ --location={REGION} \ --repository-format=docker !gcloud beta auth configure-docker {REGION}-docker.pkg.dev --quiet IMAGE_URL = f'{REGION}-docker.pkg.dev/{PROJECT_ID}/{ARTIFACTS_REPOSITORY_NAME}/{SCANN_MODEL_NAME}:{SCANN_MODEL_VERSION}' PORT=5001 SUBSTITUTIONS = '' SUBSTITUTIONS += f'_IMAGE_URL={IMAGE_URL},' SUBSTITUTIONS += f'_PORT={PORT}' !gcloud builds submit --config=index_server/cloudbuild.yaml \ --substitutions={SUBSTITUTIONS} \ --timeout=1h repository_id = f'{REGION}-docker.pkg.dev/{PROJECT_ID}/{ARTIFACTS_REPOSITORY_NAME}' !gcloud beta artifacts docker images list {repository_id} SERVICE_ACCOUNT_NAME = 'caip-serving' SERVICE_ACCOUNT_EMAIL = f'{SERVICE_ACCOUNT_NAME}@{PROJECT_ID}.iam.gserviceaccount.com' !gcloud iam service-accounts create {SERVICE_ACCOUNT_NAME} \ --description="Service account for AI Platform Prediction to access cloud resources." !gcloud projects describe {PROJECT_ID} --format="value(projectNumber)" !gcloud projects add-iam-policy-binding {PROJECT_ID} \ --role=roles/iam.serviceAccountAdmin \ --member=serviceAccount:service-{PROJECT_NUMBER}@cloud-ml.google.com.iam.gserviceaccount.com !gcloud projects add-iam-policy-binding {PROJECT_ID} \ --role=roles/storage.objectViewer \ --member=serviceAccount:{SERVICE_ACCOUNT_EMAIL} !gcloud projects add-iam-policy-binding {PROJECT_ID} \ --role=roles/ml.developer \ --member=serviceAccount:{SERVICE_ACCOUNT_EMAIL} !gcloud ai-platform models create {SCANN_MODEL_NAME} --region={REGION} HEALTH_ROUTE=f'/v1/models/{SCANN_MODEL_NAME}/versions/{SCANN_MODEL_VERSION}' PREDICT_ROUTE=f'/v1/models/{SCANN_MODEL_NAME}/versions/{SCANN_MODEL_VERSION}:predict' ENV_VARIABLES = f'PROJECT_ID={PROJECT_ID},' ENV_VARIABLES += f'REGION={REGION},' ENV_VARIABLES += f'INDEX_DIR={INDEX_DIR},' ENV_VARIABLES += f'EMBEDDNIG_LOOKUP_MODEL_NAME={EMBEDDNIG_LOOKUP_MODEL_NAME},' ENV_VARIABLES += f'EMBEDDNIG_LOOKUP_MODEL_VERSION={EMBEDDNIG_LOOKUP_MODEL_VERSION}' !gcloud beta ai-platform versions create {SCANN_MODEL_VERSION} \ --region={REGION} \ --model={SCANN_MODEL_NAME} \ --image={IMAGE_URL} \ --ports={PORT} \ --predict-route={PREDICT_ROUTE} \ --health-route={HEALTH_ROUTE} \ --machine-type=n1-standard-4 \ --env-vars={ENV_VARIABLES} \ --service-account={SERVICE_ACCOUNT_EMAIL} print("The model version is deployed to AI Platform Prediction.") from google.cloud import datastore import requests client = datastore.Client(PROJECT_ID) def caip_scann_match(query_items, show=10): request_body = { 'instances': [{ 'query':' '.join(query_items), 'show':show }] } service_name = f'projects/{PROJECT_ID}/models/{SCANN_MODEL_NAME}/versions/{SCANN_MODEL_VERSION}' print(f'Calling: {service_name}') response = service.projects().predict( name=service_name, body=request_body).execute() if 'error' in response: raise RuntimeError(response['error']) match_tokens = response['predictions'] keys = [client.key(KIND, int(key)) for key in match_tokens] items = client.get_multi(keys) return items songs = { '2120788': 'Limp Bizkit: My Way', '1086322': 'Jacques Brel: Ne Me Quitte Pas', '833391': 'Ricky Martin: Livin\' la Vida Loca', '1579481': 'Dr. Dre: The Next Episode', '2954929': 'Black Sabbath: Iron Man' } for item_Id, desc in songs.items(): print(desc) print("==================") similar_items = caip_scann_match([item_Id], 5) for similar_item in similar_items: print(f'- {similar_item["artist"]}: {similar_item["track_title"]}') print() BQ_DATASET_NAME = 'recommendations' BQML_MODEL_NAME = 'item_matching_model' BQML_MODEL_VERSION = 'v1' BQML_MODEL_OUTPUT_DIR = f'gs://{BUCKET}/bqml/item_matching_model' !bq --quiet extract -m {BQ_DATASET_NAME}.{BQML_MODEL_NAME} {BQML_MODEL_OUTPUT_DIR} !saved_model_cli show --dir {BQML_MODEL_OUTPUT_DIR} --tag_set serve --signature_def serving_default !gcloud ai-platform models create {BQML_MODEL_NAME} --region={REGION} !gcloud ai-platform versions create {BQML_MODEL_VERSION} \ --region={REGION} \ --model={BQML_MODEL_NAME} \ --origin={BQML_MODEL_OUTPUT_DIR} \ --runtime-version=2.2 \ --framework=TensorFlow \ --python-version=3.7 \ --machine-type=n1-standard-2 print("The model version is deployed to AI Platform Predicton.") def caip_bqml_matching(input_items, show): request_body = {'instances': input_items} service_name = f'projects/{PROJECT_ID}/models/{BQML_MODEL_NAME}/versions/{BQML_MODEL_VERSION}' print(f'Calling : {service_name}') response = service.projects().predict( name=service_name, body=request_body).execute() if 'error' in response: raise RuntimeError(response['error']) match_tokens = response['predictions'][0]["predicted_item2_Id"][:show] keys = [client.key(KIND, int(key)) for key in match_tokens] items = client.get_multi(keys) return items return response['predictions'] for item_Id, desc in songs.items(): print(desc) print("==================") similar_items = caip_bqml_matching([int(item_Id)], 5) for similar_item in similar_items: print(f'- {similar_item["artist"]}: {similar_item["track_title"]}') print() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Configure GCP environment settings Step2: Authenticate your GCP account Step3: Deploy the embedding lookup model to AI Platform Prediction Step4: Next, deploy the model Step5: Once the model is deployed, you can verify it in the AI Platform console. Step6: Run the caip_embedding_lookup method to retrieve item embeddings. This method accepts item IDs, calls the embedding lookup model in AI Platform Prediction, and returns the appropriate embedding vectors. Step7: Test the caip_embedding_lookup method with three item IDs Step8: ScaNN matching service Step9: Use Cloud Build to build the Docker container image Step10: Run the following command to verify the container image has been built Step11: Create a service account for AI Platform Prediction Step12: Grant the Cloud ML Engine (AI Platform) service account the iam.serviceAccountAdmin privilege, and grant the caip-serving service account the privileges required by the ScaNN matching service, which are storage.objectViewer and ml.developer. Step13: Deploy the custom container to AI Platform Prediction Step14: Deploy the custom container to AI Platform prediction. Note that you use the env-vars parameter to pass environmental variables to the Flask application in the container. Step15: Test the Deployed ScaNN Index Service Step16: Call the caip_scann_match method with five item IDs and request five match items for each Step17: (Optional) Deploy the matrix factorization model to AI Platform Prediction Step18: Deploy the exact matching model to AI Platform Prediction
2,725
<ASSISTANT_TASK:> Python Code: import tensorflow as tf print(tf.__version__) # Load the diabetes dataset from sklearn.datasets import load_diabetes diabetes_datasets = load_diabetes() print(diabetes_datasets["DESCR"]) # Save the input and target variables print(diabetes_datasets.keys()) data = diabetes_datasets["data"] targets = diabetes_datasets["target"] # The ten features are already normalised. # Normalise the target data (this will make clearer training curves) targets = (targets - targets.mean(axis = 0)) / targets.std() import numpy as np # for reproducibility np.random.seed(8) tf.random.set_seed(8) # Split the data into train and test sets from sklearn.model_selection import train_test_split train_data, test_data, train_targets, test_targets = train_test_split(data, targets, test_size = 0.1) print (train_data.shape) print (test_data.shape) print (train_targets.shape) print (test_targets.shape) # example of train data train_data[0] # example of train target train_targets[0] from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # Build the model firstModel = Sequential([ Dense(128, activation = "relu", input_shape=(train_data.shape[1],)), Dense(128, activation = "relu"), Dense(128, activation = "relu"), Dense(128, activation = "relu"), Dense(128, activation = "relu"), Dense(128, activation = "relu"), Dense(1) ]) # Print the model summary firstModel.summary() # Compile the model: optimiser is Adam, we measure the loss and the Mean Abosulte Error as accuracy firstModel.compile(optimizer = "adam", loss="mse", metrics=["mae"]) # Train the model, with some of the data reserved for validation (15%) firstTrainingHistory = firstModel.fit(train_data, train_targets, epochs = 100, validation_split = 0.15, batch_size = 64, verbose = False) firstTrainingHistory.history['loss'][0] firstTrainingHistory.history['val_loss'][0] lossU, maeU = firstModel.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossU}\nMAE is {maeU}") import matplotlib.pyplot as plt %matplotlib inline import pandas as pd def plotMetricsByEpoch(history): frame = pd.DataFrame(history) epochs = np.arange(len(frame)) fig = plt.figure(figsize=(12,4)) # Loss plot ax = fig.add_subplot(121) ax.plot(epochs, frame['loss'], label="Train") ax.plot(epochs, frame['val_loss'], label="Validation") ax.set_xlabel("Epochs") ax.set_ylabel("Loss") ax.set_title("Loss vs Epochs") ax.legend() # Accuracy plot ax = fig.add_subplot(122) ax.plot(epochs, frame['mae'], label="Train") ax.plot(epochs, frame['val_mae'], label="Validation") ax.set_xlabel("Epochs") ax.set_ylabel("Mean Absolute Error") ax.set_title("Accuracy: Mean Absolute Error vs Epochs") ax.legend(); plotMetricsByEpoch(firstTrainingHistory.history) from tensorflow.keras import regularizers # we define a model that is the same as the previous one, only regularised # wd is the weight decay wd = 1e-5 regularisedModel = Sequential([ Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu", input_shape=(train_data.shape[1],)), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dense(1)]) # Compile the model regularisedModel.compile(optmizer="adam", loss="mse", metrics=["mae"]) # Train the model, with some of the data reserved for validation trainingHistoryR1 = regularisedModel.fit(train_data, train_targets, epochs = 100, validation_split = 0.15, batch_size = 64, verbose=False) plotMetricsByEpoch(trainingHistoryR1.history) # Evaluate the model on the test set lossR1, maeR1 = regularisedModel.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossR1}\nMAE is {maeR1}") from tensorflow.keras.layers import Dropout # we define a function to build a regularised model that we can call later to tune the parameters # (weight D ... and dropout rate) def getRegularisedModel(wd, rate): model = Sequential([ Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu", input_shape=(train_data.shape[1],)), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(1) ]) return model regularisedModelD = getRegularisedModel(1e-5, 0.3) # Compile the model regularisedModelD.compile(optmizer="adam", loss="mse", metrics=["mae"]) # Train the model, with some of the data reserved for validation trainingHistoryR2 = regularisedModelD.fit(train_data, train_targets, epochs = 100, validation_split = 0.15, batch_size = 64, verbose=False) # Evaluate the model on the test set lossR2, maeR2 = regularisedModelD.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossR2}\nMAE is {maeR2}") # Plot the training and validation loss plotMetricsByEpoch(trainingHistoryR2.history) from tensorflow.keras.layers import BatchNormalization wd = 1e-8 rate = 0.2 modelBN = Sequential([ Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu", input_shape=(train_data.shape[1],)), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), Dropout(rate), ]) # Add a customised batch normalisation layer modelBN.add(BatchNormalization( momentum=0.95, epsilon=0.005, axis = -1, beta_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.05), gamma_initializer= tf.keras.initializers.Constant(value=0.9) )) # Add the output layer modelBN.add(Dense(1)) # Print the model summary modelBN.summary() # Compile the model modelBN.compile(optimizer='adam', loss='mse', metrics=['mae']) # Train the model trainingHistoryBN = modelBN.fit(train_data, train_targets, epochs=100, validation_split=0.15, batch_size=64, verbose=False) # Evaluate the model on the test set lossBN, maeBN = modelBN.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossBN}\nMAE is {maeBN}") # Plot the training and validation loss plotMetricsByEpoch(trainingHistoryBN.history) modelBN2 = Sequential([ Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu", input_shape=(train_data.shape[1],)), BatchNormalization(), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), BatchNormalization(), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), BatchNormalization(), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), BatchNormalization(), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), BatchNormalization(), Dropout(rate), Dense(128, kernel_regularizer = regularizers.l2(wd), activation="relu"), BatchNormalization( momentum=0.95, epsilon=0.005, beta_initializer=RandomNormal(mean=0.0, stddev=0.05), gamma_initializer=Constant(value=0.9)), Dense(1) ]) # Compile the model modelBN2.compile(optimizer='adam', loss='mse', metrics=['mae']) # Train the model trainingHistoryBN2 = modelBN2.fit(train_data, train_targets, epochs=100, validation_split=0.15, batch_size=64, verbose=False) # Evaluate the model on the test set lossBN2, maeBN2 = modelBN2.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossBN2}\nMAE is {maeBN2}") # Plot the training and validation loss plotMetricsByEpoch(trainingHistoryBN2.history) # Write a custom callback from tensorflow.keras.callbacks import Callback class TrainingCallback(Callback): def on_train_begin(self, logs=None): print("Starting Training ...") # Print the loss and mean absolute error after each epoch def on_epoch_end(self, epoch, logs=None): print('Epoch {}: Average loss is {:7.2f}, mean absolute error is {:7.2f}.'.format(epoch, logs['loss'], logs['mae'])) def on_train_end(self, logs=None): print("Finished training!") # Train the model, with some of the data reserved for validation regularisedModel.fit(train_data, train_targets, epochs = 3, batch_size=128, verbose=False, callbacks=[TrainingCallback()]) # Write more custom callbacks class LossAndMetricCallback(Callback): def on_test_begin(self, logs=None): print("Starting Testing ...") # Print the loss after each batch in the test set def on_test_batch_end(self, batch, logs=None): print('\n After batch {}, the loss is {:7.2f}.'.format(batch, logs['loss'])) def on_test_end(self, logs=None): print("Finished testing!") def on_predict_begin(self, logs=None): print("Starting prediction ...") # Notify the user when prediction has finished on each batch def on_predict_batch_end(self,batch, logs=None): print("Finished prediction on batch {}!".format(batch)) def on_predict_end(self, logs=None): print("Finished Prediction!") # Evaluate the model regularisedModel.evaluate(test_data, test_targets, verbose=False, callbacks=[LossAndMetricCallback()]) # Make predictions with the model regularisedModel.predict(test_data, verbose=False, callbacks=[LossAndMetricCallback()]) from tensorflow.keras.callbacks import EarlyStopping # Re-train the regularised model regularisedModelES = getRegularisedModel(1e-8, 0.2) regularisedModelES.compile(optimizer="adam", loss="mse", metrics=["mae"]) reg_history = regularisedModelES.fit(train_data, train_targets, epochs=100, validation_split=0.15, batch_size=64, verbose=False, callbacks= [EarlyStopping(patience=3)]) # Evaluate the model on the test set lossR2, maeR2 = regularisedModelES.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossR2}\nMAE is {maeR2}") # Plot the training and validation loss plotMetricsByEpoch(reg_history.history) # Re-train the regularised model regularisedModelES = getRegularisedModel(1e-8, 0.2) regularisedModelES.compile(optimizer="adam", loss="mse", metrics=["mae"]) reg_history = regularisedModelES.fit(train_data, train_targets, epochs=100, validation_split=0.15, batch_size=64, verbose=False, callbacks= [EarlyStopping(monitor='val_mae', patience=3)]) # Evaluate the model on the test set lossR2, maeR2 = regularisedModelES.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossR2}\nMAE is {maeR2}") # Plot the training and validation loss plotMetricsByEpoch(reg_history.history) # Define the learning rate schedule. The tuples below are (start_epoch, new_learning_rate) lr_schedule = [ (0, 0.01), (4, 0.007), (7, 0.005), (11, 0.003), (15, 0.001) ] def get_new_epoch_lr(epoch, lr): # Checks to see if the input epoch is listed in the learning rate schedule # and if so, returns index in lr_schedule epoch_in_sched = [i for i in range(len(lr_schedule)) if lr_schedule[i][0]==int(epoch)] if len(epoch_in_sched)>0: # If it is, return the learning rate corresponding to the epoch return lr_schedule[epoch_in_sched[0]][1] else: # Otherwise, return the existing learning rate return lr # Define the custom callback class LRScheduler(tf.keras.callbacks.Callback): def __init__(self, new_lr): super(LRScheduler, self).__init__() # Add the new learning rate function to our callback self.new_lr = new_lr def on_epoch_begin(self, epoch, logs=None): # Make sure that the optimizer we have chosen has a learning rate, and raise an error if not if not hasattr(self.model.optimizer, 'lr'): raise ValueError('Error: Optimizer does not have a learning rate.') # Get the current learning rate curr_rate = float(tf.keras.backend.get_value(self.model.optimizer.lr)) # Call the auxillary function to get the scheduled learning rate for the current epoch scheduled_rate = self.new_lr(epoch, curr_rate) # Set the learning rate to the scheduled learning rate tf.keras.backend.set_value(self.model.optimizer.lr, scheduled_rate) print('Learning rate for epoch {} is {:7.3f}'.format(epoch, scheduled_rate)) regularisedModelLR = getRegularisedModel(1e-8, 0.2) # Print the model summary regularisedModelLR.summary() # Compile the model regularisedModelLR.compile(optimizer = "adam", loss="mse", metrics=["mae"]) # Fit the model with our learning rate scheduler callback new_history = regularisedModelLR.fit(train_data, train_targets, epochs=20, validation_split=0.15, batch_size=64, callbacks=[LRScheduler(get_new_epoch_lr)], verbose=False) # Evaluate the model on the test set lossULT, maeULT = regularisedModelLR.evaluate(test_data, test_targets, verbose=False) print(f"Loss is {lossULT}\nMAE is {maeULT}") # Plot the training and validation loss plotMetricsByEpoch(new_history.history) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and pre-process the data Step2: Split the data into train and test sets Step3: First model Step4: Compile and train the first unregularised model Step5: Let's say then that we want Step6: In the previous post we have seen that the model.fit method returns the Step7: Evaluate the model on the test set Step8: Loss = 0.68 Step9: One interesting outcome from the curves is that the metrics on the validation dataset (the orange one) is not improving at all after the first epochs. It even diverges. Step10: The loss improved to 0.55 but the results on the validation dataset shows it's still overfitting. Step11: Loss = 0.45 Step12: Validation now is much more similar to training and improved during the epochs Step13: There are some parameters and hyperparameters associated with batch normalisation Step14: Let's now compile and fit our model with batch normalisation, and track the progress on training and validation sets. Step15: Batch normalisation can be applied to all layers, not only before the last one, and this usually improves the performance Step16: Plot the learning curves Step17: Introduction to callbacks Step18: You can see that on_epoch_end has been overwritten to print the current loss and accuracy, after the end of the epoch. Step19: There are quite a few Step20: Plot the learning curves Step21: You can see that the model stopped training after 20 epochs (that's a fifth of the original one!) because the error on training wasn't improving anymore. Step22: Plot the learning curves Step23: The process of setting the hyper-parameters requires expertise and extensive trial and error. There are no simple and easy ways to set hyper-parameters — specifically, learning rate, batch size, momentum, and weight decay. Step24: We can apply the callback to the regularised model and see how the learning rate parameter gets adapted. Step25: You can see that the learning rate was constantly adapted and diminished. Step26: Plot the learning curves
2,726
<ASSISTANT_TASK:> Python Code: %pdb DON'T MODIFY ANYTHING IN THIS CELL import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] view_sentence_range = (1000, 1010) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines/sentences: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) import numpy as np import problem_unittests as tests from collections import Counter def create_lookup_tables(text): Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) # TODO: Implement Function words_counter = Counter(text) words_sorted = sorted(words_counter, key=words_counter.get,reverse=True) int_to_vocab = dict([i,words_sorted[i]] for i in range(len(words_sorted))) vocab_to_int = dict([words_sorted[i],i] for i in range(len(words_sorted))) return vocab_to_int, int_to_vocab DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_create_lookup_tables(create_lookup_tables) def token_lookup(): Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token # TODO: Implement Function token_lookup_dict = { "." : "||PERIOD||", "," : "||COMMA||", "\"" : "||QUOTATION||", ";" : "||SEMICOLON||", "!" : "||EXLAMATIONMARK||", "?" : "||QUESTIONMARK||", "(" : "||LEFTPARENTHESIS||", ")" : "||RIGHTPARENTHESIS||", "--" : "||DASH||", "\n" : "||RETURN||" } return token_lookup_dict DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_tokenize(token_lookup) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) DON'T MODIFY ANYTHING IN THIS CELL import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def get_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) input = tf.placeholder(tf.int32,[None,None], name='input') targets = tf.placeholder(tf.int32,[None,None], name='targets') learning_rate = tf.placeholder(tf.float32,shape=(), name = 'learning_rate') return input, targets, learning_rate DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_inputs(get_inputs) def get_init_cell(batch_size, rnn_size, keep_prob = 0.5, num_layers = 1): Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) # TODO: Implement Function lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) cell = tf.contrib.rnn.MultiRNNCell([lstm]*num_layers) initial_state = cell.zero_state(batch_size = batch_size, dtype=tf.float32) initial_state = tf.identity(initial_state, name="initial_state") return cell, initial_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_init_cell(get_init_cell) def get_embed(input_data, vocab_size, embed_dim): Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. embedding = tf.Variable(tf.random_uniform([vocab_size,embed_dim],-0.5,0.5), name = 'embedding') embed = tf.nn.embedding_lookup(embedding,input_data) return embed DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_embed(get_embed) def build_rnn(cell, inputs): Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) output,final_state = tf.nn.dynamic_rnn(cell,inputs,dtype=tf.float32) final_state = tf.identity(final_state,"final_state") return output, final_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_rnn(build_rnn) def build_nn(cell, rnn_size, input_data, vocab_size): Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) #get embeddings embed_layer = get_embed(input_data,vocab_size,300) #get the rnn output, final_state = build_rnn(cell,embed_layer) #fully connected layer logits_pre = tf.contrib.layers.fully_connected(output, 300, activation_fn=tf.nn.relu, weights_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.05), biases_initializer=tf.zeros_initializer() ) #adding an extra layer logits = tf.contrib.layers.fully_connected(logits_pre, vocab_size, activation_fn=tf.nn.relu, weights_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.05), biases_initializer=tf.zeros_initializer() ) return logits, final_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_nn(build_nn) #%pdb def get_batches(int_text, batch_size, seq_length): Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array # TODO: Implement Function #print("length int_text before: ",len(int_text)) n_batches = len(int_text)//(batch_size * seq_length) print("Losing",len(int_text)%(batch_size * seq_length),"characters") int_text = int_text[:n_batches*batch_size*seq_length +1] #print("length int_text after: ",len(int_text)) #print("batch size = ",batch_size, " , seq_length = ",seq_length , " n_batches = ", n_) batches = np.zeros(shape=(n_batches,2,batch_size,seq_length),dtype=int) batch_served = 0 for i in range(0,len(int_text)-2,seq_length): #print("i: ",i," batch served: ",batch_served) batches[batch_served,0,i//(seq_length*n_batches)]= int_text[i:i+seq_length] batches[batch_served,1,i//(seq_length*n_batches)] =int_text[i+1:i+seq_length+1] batch_served+=1 if(batch_served == n_batches): batch_served =0 return batches DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_batches(get_batches) # Number of Epochs num_epochs = 150 # Batch Size batch_size = 64 # RNN Size rnn_size = 512 # Sequence Length seq_length = 16 # Learning Rate learning_rate = 0.001 # Show stats for every n number of batches show_every_n_batches = 50 #adding keep prob keep_prob = 0.8 #adding number of LSTM layers num_layers = 1 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE save_dir = './save' DON'T MODIFY ANYTHING IN THIS CELL from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size, keep_prob,num_layers) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() def get_tensors(loaded_graph): Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) # TODO: Implement Function return loaded_graph.get_tensor_by_name("input:0"), loaded_graph.get_tensor_by_name("initial_state:0"), loaded_graph.get_tensor_by_name("final_state:0"), loaded_graph.get_tensor_by_name("probs:0") DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_tensors(get_tensors) def pick_word(probabilities, int_to_vocab): Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word # TODO: Implement Function return int_to_vocab[np.argmax(probabilities)] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_pick_word(pick_word) gen_length = 500 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TV Script Generation Step3: Explore the Data Step6: Implement Preprocessing Functions Step9: Tokenize Punctuation Step11: Preprocess all the data and save it Step13: Check Point Step15: Build the Neural Network Step18: Input Step21: Build RNN Cell and Initialize Step24: Word Embedding Step27: Build RNN Step30: Build the Neural Network Step33: Batches Step35: Neural Network Training Step37: Build the Graph Step39: Train Step41: Save Parameters Step43: Checkpoint Step46: Implement Generate Functions Step49: Choose Word Step51: Generate TV Script
2,727
<ASSISTANT_TASK:> Python Code: xi, l, rho = symbols('xi, l, rho') # Shape functions S = Matrix(np.zeros((4, 12))) x2 = (1 - xi) S[0, 0 ] = x2 # extension S[0, 6 ] = xi S[1, 1 ] = x2**2 * (3 - 2*x2) # y-deflection S[1, 7 ] = xi**2 * (3 - 2*xi) S[1, 5 ] = -x2**2 * (x2 - 1) * l S[1, 11] = xi**2 * (xi - 1) * l S[2, 2 ] = x2**2 * (3 - 2*x2) # z-deflection S[2, 8 ] = xi**2 * (3 - 2*xi) S[2, 4 ] = x2**2 * (x2 - 1) * l S[2, 10] = -xi**2 * (xi - 1) * l S[3, 3 ] = x2 # torsion S[3, 9 ] = xi #S[4, 2 ] = 6 * x2 * (x2 - 1) / l # y-rotation #S[4, 8 ] = 6 * xi * (xi - 1) / l #S[4, 4 ] = -x2 * (3*x2 - 2) #S[4, 10] = xi * (3*xi - 2) #S[5, 1 ] = -6 * x2 * (x2 - 1) / l # z-rotation #S[5, 7 ] = -6 * xi * (xi - 1) / l #S[5, 5 ] = x2 * (3*x2 - 2) #S[5, 11] = xi * (3*xi - 2) S[:3, :].T titles = ['x-defl', 'y-defl', 'z-defl', 'torsion'] for i in range(4): sympy.plot(*([xx.subs(l, 2) for xx in S[i,:] if xx != 0] + [(xi, 0, 1)]), title=titles[i]) rho1, rho2 = symbols('rho_1, rho_2') rho = (1 - xi)*rho1 + xi*rho2 rho def sym_me(): m = Matrix(np.diag([rho, rho, rho, 0])) integrand = S.T * m * S me = integrand.applyfunc( lambda xxx: l * sympy.integrate(xxx, (xi, 0, 1)).expand().factor() ) return me me = sym_me() me.shape me[0,:] me[6,:] me[1,:] me.subs({rho2: rho1})/rho1 mass = l * sympy.integrate(rho, (xi, 0, 1)).factor() mass shape_integral_1 = S[:3, :].applyfunc( lambda xxx: l * sympy.integrate(rho * xxx, (xi, 0, 1)).expand().simplify() ) shape_integral_1.T shape_integral_2 = [ [l * (S[i, :].T * S[j, :]).applyfunc( lambda xxx: sympy.integrate(rho * xxx, (xi, 0, 1)).expand().simplify()) for j in range(3)] for i in range(3) ] (shape_integral_2[0][0] + shape_integral_2[1][1] + shape_integral_2[2][2] - me).expand() B = Matrix(np.zeros((4, 12))) B[0, :] = S[0, :].diff(xi, 1) / l B[1, :] = S[1, :].diff(xi, 2) / l**2 B[2, :] = S[2, :].diff(xi, 2) / l**2 B[3, :] = S[3, :].diff(xi, 1) / l B.simplify() B[:, :6] B[:, 6:] titles = ['x-defl', 'y-defl', 'z-defl', 'torsion'] for i in range(4): sympy.plot(*([xx.subs(l, 2) for xx in B[i,:] if xx != 0] + [(xi, 0, 1)]), title=titles[i]) EA1, EA2, EIy1, EIy2, EIz1, EIz2, GJ1, GJ2 = symbols('EA_1, EA_2, EIy_1, EIy_2, EIz_1, EIz_2, GJ_1, GJ_2') EA = (1 - xi)*EA1 + xi*EA2 EIy = (1 - xi)*EIy1 + xi*EIy2 EIz = (1 - xi)*EIz1 + xi*EIz2 GJ = (1 - xi)*GJ1 + xi*GJ2 EA, EIy, EIz, GJ Ex, Ey, Ez, Gx = symbols('E_x, E_y, E_z, G_x') def sym_ke(): # Note the order -- y deflections depend on EIz etc E = Matrix(np.diag([EA, EIz, EIy, GJ])) integrand = B.T * E * B ke = integrand.applyfunc( lambda xxx: l * sympy.integrate(xxx, (xi, 0, 1)).factor() #.subs((EA1+EA2), 2*Ex) #.expand().factor() ) return ke ke = sym_ke() def simplify_ke(ke, EI=False): result = ke.applyfunc( lambda xxx: xxx.subs((EA1+EA2), 2*Ex).subs((GJ1+GJ2), 2*Gx)) if EI: result = result.applyfunc( lambda xxx: xxx.subs((EIy1+EIy2), 2*Ey).subs((EIz1+EIz2), 2*Ez)) return result kem = simplify_ke(ke, True) kem[:, :6] kem[:, 6:] kem.subs({EA1: Ex, EA2: Ex, EIy1: Ey, EIy2: Ey, EIz1: Ez, EIz2: Ez}) # G = Matrix(np.zeros((3, 12))) # G[0, :] = S[0, :].diff(xi, 1) / l # G[1, :] = S[1, :].diff(xi, 1) / l # G[2, :] = S[2, :].diff(xi, 1) / l G = S[:3, :].diff(xi, 1) / l G.simplify() G[:, :6] G[:, 6:] def sym_ks_axial_force(): # Unit axial force (absorbing area from integral), block matrix 3 times #smat3 = Matrix(9, 9, lambda i, j: 1 if i == j and i % 3 == 0 else 0) #integrand = G.T * smat3 * G integrand = G.T * G ks = integrand.applyfunc( lambda xxx: l * sympy.integrate(xxx, (xi, 0, 1)).factor() #.subs((EA1+EA2), 2*Ex) #.expand().factor() ) return ks ks = sym_ks_axial_force() ks * 30*l fx1, fx2, fy1, fy2, fz1, fz2 = symbols('f_x1, f_x2, f_y1, f_y2, f_z1, f_z2') fx = (1 - xi)*fx1 + xi*fx2 fy = (1 - xi)*fy1 + xi*fy2 fz = (1 - xi)*fz1 + xi*fz2 f = Matrix([fx, fy, fz]) f # Shape functions for applied force -- linear SF = Matrix(np.zeros((3, 12))) SF[0, 0 ] = x2 # x SF[0, 6 ] = xi SF[1, 1 ] = x2 # y SF[1, 7 ] = xi SF[2, 2 ] = x2 # z SF[2, 8 ] = xi SF shape_integral_F1 = SF.applyfunc( lambda xxx: l * sympy.integrate(xxx, (xi, 0, 1)).expand().simplify() ) shape_integral_F1 shape_integral_F2 = [ [l * (S[i, :].T * SF[j, :]).applyfunc( lambda xxx: sympy.integrate(xxx, (xi, 0, 1)).expand().simplify()) for j in range(3)] for i in range(3) ] F = shape_integral_F2[0][0] + shape_integral_F2[1][1] + shape_integral_F2[2][2] F * Matrix([fx1, fy1, fz1, 0, 0, 0, fx1, fy1, fz1, 0, 0, 0]) F * Matrix([0, 0, fz1, 0, 0, 0, 0, 0, fz1, 0, 0, 0]) / (l/12*fz1) def numpy_array_str(expr): return str(expr) \ .replace('Matrix([', 'array([\n') \ .replace('], [', '],\n[') \ .replace(']])', ']\n])') def numpy_array_str_2x2(arr): return ',\n'.join(['[{}]'.format(',\n'.join([numpy_array_str(arr[i][j]) for j in range(3)])) for i in range(3)]) import datetime code = # Automatically generated from SymPy in notebook # {date} from __future__ import division from numpy import array def mass(l, rho_1, rho_2): return {mass} def S1(l, rho_1, rho_2): return {S1} def S2(l, rho_1, rho_2): return [ {S2} ] def K(l, E_x, G_x, EIy_1, EIy_2, EIz_1, EIz_2): return {K} def Ks(l): return {Ks} def F1(l): return {F1} def F2(l): return [ {F2} ] .format( date=datetime.datetime.now(), mass=mass, S1=numpy_array_str(shape_integral_1), S2=numpy_array_str_2x2(shape_integral_2), K=numpy_array_str(simplify_ke(ke)), Ks=numpy_array_str(ks), F1=numpy_array_str(shape_integral_F1), F2=numpy_array_str_2x2(shape_integral_F2) ) with open('../beamfe/tapered_beam_element_integrals.py', 'wt') as f: f.write(code) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Mass matrix Step2: Integrate the density distribution with the shape functions. Step3: Special case Step4: Shape integrals Step5: First shape integral Step6: The mass matrix should be the same as the trace of the 2nd shape integrals Step7: Stiffness matrix Step8: Define the stiffness distribution (linear) Step9: Note that $EI_y$ refers to the stiffness for bending in the $y$-direction, not about the $y$ axis. Step10: Special case Step11: This is the same as Rao2004 p.326 Step12: This agrees with Cook1989, p.434, for the transverse directions. Step13: First shape integral for applied forces Step14: Second shape integral for applied forces Step15: The generalised nodal forces are given by the trace of this (the other parts of it are used to find the moments on the whole body directly...) Step16: Special case -- constant force Step17: Another example -- a uniform distributed force in the z direction Step19: Output
2,728
<ASSISTANT_TASK:> Python Code: b = 5 b = 6 assert b == 6 # Here's a comment! b = 5 # Here's another comment! Neither of these comments are evaluated by Python! # this is my comment b = 6 print(b) print(500) # Integer i = 1 # String s = "Hello World" # Float f = 55.55 hundred_integer = 100 hundred_string = "hundred" hundred_float = 100.5 assert hundred_integer == 100 a = type(5) # The type is assigned to a. When you print the type, it is abbreviated to `str` print(a) c = type(10) print(c) five = 5 twenty_five = five * 5 negative_five = -five assert twenty_five == 25 assert negative_five == -5 ten = "10" eight = 8 int_ten = int(ten) str_eight = str(eight) assert int_ten == 10 assert str_eight == u"8" l = [] # Print the type of `l` to confirm it's a list. print(type(l)) l.append("January") l.append("February") l.append("March") l.append("April") print(l) l = ["January", "February", "March", "April"] m = [0,1,2,3] years = [_ for _ in range(2010, 2015)] print(years) o = [u"Jan", 5., 1., u"uary", 10] print(o) int_months = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] index_four = int_months[4] last_value = int_months[-1] months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov"] second_last = months[-2] months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec"] eight_eleven = months[8:12] ending_index = len(months) eight_eleven = months[8:ending_index] five_nine = months[5:10] print(months[:5]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 4 Step2: 5 Step3: 6 Step4: 7 Step5: 8 Step6: 9 Step7: 11 Step8: 12 Step9: 13 Step10: 14 Step11: 15 Step12: 16
2,729
<ASSISTANT_TASK:> Python Code: %matplotlib inline %load_ext autoreload %autoreload 2 import sys sys.path.append('../../') import imp import macrodensity as md import math import numpy as np import matplotlib.pyplot as plt import os if os.path.isfile('LOCPOT'): print('LOCPOT already exists') else: os.system('bunzip2 LOCPOT.bz2') input_file = 'LOCPOT' #=== No need to edit below vasp_pot, NGX, NGY, NGZ, Lattice = md.read_vasp_density(input_file) vector_a,vector_b,vector_c,av,bv,cv = md.matrix_2_abc(Lattice) resolution_x = vector_a/NGX resolution_y = vector_b/NGY resolution_z = vector_c/NGZ grid_pot, electrons = md.density_2_grid(vasp_pot,NGX,NGY,NGZ) cube_origin = [1,1,1] travelled = [0,0,0] int(cube_origin[0]*NGX) dim = [1,10,20,40,60,80,100] print("Dimension Potential Variance") print("--------------------------------") for d in dim: cube = [d, d, d] cube_potential, cube_var = md.volume_average(cube_origin, cube,grid_pot, NGX, NGY, NGZ, travelled=travelled) print(" %3i %10.4f %10.6f"%(d, cube_potential, cube_var)) print("IP: %3.4f eV" % (2.3068 -- 2.4396 )) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read the potential Step2: Look for pore centre points Step3: We want to try a range of sampling area sizes. Step4: From the OUTCAR the VBM is at -2.4396 V
2,730
<ASSISTANT_TASK:> Python Code: from geopy.geocoders import GoogleV3 geolocator = GoogleV3() # geolocator = GoogleV3(api_key=<your_google_api_key>) t = pd.read_csv('https://data.cityofnewyork.us/api/views/43nn-pn8j/rows.csv?accessType=DOWNLOAD', header=0, sep=',', dtype={'PHONE':str, 'INSPECTION DATE':str}); ## Helper Functions from datetime import datetime def str_to_iso(text): if text != '': for fmt in (['%m/%d/%Y']): try: #print(fmt) #print(datetime.strptime(text, fmt)) return datetime.isoformat(datetime.strptime(text, fmt)) except ValueError: #print(text) pass #raise ValueError('Changing date') else: return None def getLatLon(row): if row['Address'] != '': location = geolocator.geocode(row['Address'], timeout=10000, sensor=False) if location != None: lat = location.latitude lon = location.longitude #print(lat,lon) return [lon, lat] elif row['Zipcode'] !='' or location != None: location = geolocator.geocode(row['Zipcode'], timeout=10000, sensor=False) if location != None: lat = location.latitude lon = location.longitude #print(lat,lon) return [lon, lat] else: return None def getAddress(row): if row['Building'] != '' and row['Street'] != '' and row['Boro'] != '': x = row['Building']+' '+row['Street']+' '+row['Boro']+',NY' x = re.sub(' +',' ',x) return x else: return '' def combineCT(x): return str(x['Inspection_Date'][0][0:10])+'_'+str(x['Camis']) # process column names: remove spaces & use title casing t.columns = map(str.title, t.columns) t.columns = map(lambda x: x.replace(' ', '_'), t.columns) # replace nan with '' t.fillna('', inplace=True) # Convert date to ISO format t['Inspection_Date'] = t['Inspection_Date'].map(lambda x: str_to_iso(x)) t['Record_Date'] = t['Record_Date'].map(lambda x: str_to_iso(x)) t['Grade_Date'] = t['Grade_Date'].map(lambda x: str_to_iso(x)) #t['Inspection_Date'] = t['Inspection_Date'].map(lambda x: x.split('/')) # Combine Street, Building and Boro information to create Address string t['Address'] = t.apply(getAddress, axis=1) addDict = t[['Address','Zipcode']].copy(deep=True) addDict = addDict.drop_duplicates() addDict['Coord'] = [None]* len(addDict) for item_id, item in addDict.iterrows(): if item_id % 100 == 0: print(item_id) if addDict['Coord'][item_id] == None: addDict['Coord'][item_id] = getLatLon(item) #print(addDict.loc[item_id]['Coord']) # Save address dictionary to CSV #addDict.to_csv('./dict_final.csv') # Merge coordinates into original table t1 = t.merge(addDict[['Address', 'Coord']]) # Keep only 1 value of score and grade per inspection t2=t1.copy(deep=True) t2['raw_num'] = t2.index t2['RI'] = t2.apply(combineCT, axis=1) yy = t2.groupby('RI').first().reset_index()['raw_num'] t2['Unique_Score'] = None t2['Unique_Score'].loc[yy.values] = t2['Score'].loc[yy.values] t2['Unique_Grade'] = None t2['Unique_Grade'].loc[yy.values] = t2['Grade'].loc[yy.values] del(t2['RI']) del(t2['raw_num']) del(t2['Grade']) del(t2['Score']) t2.rename(columns={'Unique_Grade' : 'Grade','Unique_Score':'Score'}, inplace=True) t2['Grade'].fillna('', inplace=True) t2.iloc[1] ### Create and configure Elasticsearch index # Name of index and document type index_name = 'nyc_restaurants'; doc_name = 'inspection' # Delete donorschoose index if one does exist if es.indices.exists(index_name): es.indices.delete(index_name) # Create donorschoose index es.indices.create(index_name) # Add mapping with open('./inspection_mapping.json') as json_mapping: d = json.load(json_mapping) es.indices.put_mapping(index=index_name, doc_type=doc_name, body=d) # Index data for item_id, item in t2.iterrows(): if item_id % 1000 == 0: print(item_id) thisItem = item.to_dict() #thisItem['Coord'] = getLatLon(thisItem) thisDoc = json.dumps(thisItem); #pprint.pprint(thisItem) # write to elasticsearch es.index(index=index_name, doc_type=doc_name, id=item_id, body=thisDoc) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import Data Step2: Data preprocessing Step3: Create a dictionary of unique Addresses. We do this to avoid calling the Google geocoding api multiple times for the same address Step4: Get address for the geolocation for each address. This step can take a while because it's calling the Google geocoding API for each unique address. Step5: Index Data
2,731
<ASSISTANT_TASK:> Python Code: def sort(L): if len(L) <= 1: return L x, y, R = L[0], L[-1], L[1:-1] p1, p2 = min(x, y), max(x, y) L1, L2, L3 = partition(p1, p2, R) if p1 == p2: return sort(L1) + [p1] + L2 + [p2] + sort(L3) else: return sort(L1) + [p1] + sort(L2) + [p2] + sort(L3) def partition(p1, p2, L): if L == []: return [], [], [] x, *R = L R1, R2, R3 = partition(p1, p2, R) if x < p1: return [x] + R1, R2, R3 if x <= p2: return R1, [x] + R2, R3 else: return R1, R2, [x] + R3 partition(5, 13, [1, 19, 27, 2, 5, 6, 4, 7, 8, 5, 8, 17, 13]) sort([1, 19, 27, 2, 5, 6, 4, 7, 8, 5, 8, 17, 13]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The function partition receives three arguments
2,732
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline Xtrain = pd.read_csv('./data/multivariate_tr.csv') Xtrain.head() Xtrain.describe() Xtest = pd.read_csv('./data/multivariate_ts.csv') Xtest.head() Xtest.describe() from scipy.stats import multivariate_normal def check_mult_norm(data, levels): cov = np.cov(data.values.T) mu = np.mean(data).values x = np.linspace(min(data.iloc[:, 0])-0.5, max(data.iloc[:, 0])+0.5, 1000) y = np.linspace(min(data.iloc[:, 1])-0.5, max(data.iloc[:, 1])+0.5, 1000) x, y = np.meshgrid(x, y) mult = multivariate_normal(mean=mu, cov=cov) z = mult.pdf(np.array([x.ravel(), y.ravel()]).T).reshape(x.shape) plt.figure(figsize=(16, 10)) plt.scatter(data.iloc[:, 0], data.iloc[:, 1]) plt.contour(x, y, z, levels=np.arange(0, 0.5, 0.005)) check_mult_norm(Xtrain, np.arange(0, 0.5, 0.005)) check_mult_norm(Xtest, np.arange(0, 0.5, 0.005)) def calc_rolling_var(data, variable, variable_pos): rolling_mean = data[variable].cumsum() / np.arange(1, len(data)+1) rolling_var = [] for i in np.arange(2, len(data)+1): rolling_var.append(np.sum((data.iloc[:i, variable_pos] - rolling_mean[i-1])**2) / i) return rolling_mean, np.array(rolling_var) rolling_mean_x1, rolling_var_x1 = calc_rolling_var(Xtrain, 'X1', 0) rolling_mean_x2, rolling_var_x2 = calc_rolling_var(Xtrain, 'X2', 1) def plot_rollings(data1, data2, window, title, xlab, ylab1, ylab2): fig, ax = plt.subplots(2, 1, figsize=(16, 15)) ax[0].plot(data1[window]) ax[0].set_xlabel(xlab) ax[0].set_ylabel(ylab1) ax[0].set_title(title, size=25) ax[1].plot(data2[window]) ax[1].set_xlabel(xlab) ax[1].set_ylabel(ylab2) plot_rollings(rolling_mean_x1, rolling_mean_x2, np.arange(len(Xtrain)), 'Rolling Mean over Time', 'Epochs', 'X1 Measurements', 'X2 Measurements'); plot_rollings(rolling_var_x1, rolling_var_x2, np.arange(len(Xtrain)-1), 'Rolling Variance over Time', 'Epochs', 'X1 Measurements', 'X2 Measurements'); plot_rollings(rolling_mean_x1, rolling_mean_x2, np.arange(3000, 3101), 'Rolling Mean over Time', 'Epochs', 'X1 Measurements', 'X2 Measurements') rolling_mean = [] for i in np.arange(1, len(Xtrain)+1): rolling_mean.append(np.sum(Xtrain.iloc[i-10:i, 0]) / 10) rolling_mean = np.array(rolling_mean) rolling_mean[10:20] def calc_rolling_var_windowed(data, variable_pos, window): rolling_mean = [] for i in np.arange(1, len(data)+1): rolling_mean.append(np.sum(data.iloc[i-window:i, variable_pos]) / window) rolling_mean = np.array(rolling_mean) rolling_var = [] for i in np.arange(2, len(data)+1): rolling_var.append(np.sum((data.iloc[i-window:i, variable_pos] - rolling_mean[i-1])**2) / window) return rolling_mean, np.array(rolling_var) rolling_mean_x1_10, rolling_var_x1_10 = calc_rolling_var_windowed(Xtrain, 0, 1000) rolling_mean_x2_10, rolling_var_x2_10 = calc_rolling_var_windowed(Xtrain, 1, 1000) plot_rollings(rolling_mean_x1_10, rolling_mean_x2_10, np.arange(len(rolling_mean_x1_10)), 'Rolling Mean over Time', 'Epochs', 'X1 Measurements', 'X2 Measurements'); plot_rollings(rolling_var_x1_10, rolling_var_x2_10, np.arange(len(rolling_var_x1_10)), 'Rolling Variance over Time', 'Epochs', 'X1 Measurements', 'X2 Measurements'); def estd_multi(data): cov = np.cov(data.values.T) mu = np.mean(data).values return multivariate_normal(mean=mu, cov=cov) def is_outlier(obs, distr, threshold): prob = distr.pdf(obs) if prob < threshold: return 1, prob else: return 0, prob multi = estd_multi(Xtrain.iloc[:100, ]) print(is_outlier(Xtrain.iloc[152, ], multi, threshold=0.01)) print(is_outlier(Xtrain.iloc[1523, ], multi, threshold=0.01)) def live_feed(stream_data, past_data, window, threshold = 0.0001): is_out = [] for i in np.arange(len(stream_data)): data = past_data.iloc[-window:, ] multi = estd_multi(data) flag, _ = is_outlier(stream_data.iloc[i, ], multi, threshold) is_out.append(flag) past_data = past_data.append(stream_data.iloc[i, ]) return is_out, past_data past = Xtest.iloc[:100, ] is_out, past = live_feed(Xtest.iloc[100:200, ], past, 10) past.iloc[np.append(np.repeat(False, 100), (np.array(is_out)))==1, ] is_out, past = live_feed(Xtest.iloc[200:300, ], past, 10) past.iloc[np.append(np.repeat(False, 200), (np.array(is_out)))==1, ] past = Xtest.iloc[:1000, ] is_out, _ = live_feed(Xtest.iloc[1000:, ], past, 1000) np.append(np.repeat(False, 1000), (np.array(is_out)))[1000:1100] plt.figure(figsize=(16, 10)) plt.scatter(Xtest.iloc[np.append(np.repeat(False, 1000), (np.array(is_out)))==0, 0], Xtest.iloc[np.append(np.repeat(False, 1000), (np.array(is_out)))==0, 1], marker='o') plt.scatter(Xtest.iloc[np.append(np.repeat(False, 1000), (np.array(is_out)))==1, 0], Xtest.iloc[np.append(np.repeat(False, 1000), (np.array(is_out)))==1, 1], marker='x') # I'm drawing just 10 examples of the distribution in order to make the plot readable... x = np.linspace(min(Xtest.iloc[:, 0])-0.5, max(Xtest.iloc[:, 0])+0.5, 1000) y = np.linspace(min(Xtest.iloc[:, 1])-0.5, max(Xtest.iloc[:, 1])+0.5, 1000) x, y = np.meshgrid(x, y) # for i in range(10): # cov = np.cov(Xtest.iloc[i*2550:i*2550+10, ].values.T) # mu = np.mean(Xtest.iloc[i*2550:i*2550+10, ]).values # mult = multivariate_normal(mean=mu, cov=cov) # z = mult.pdf(np.array([x.ravel(), y.ravel()]).T).reshape(x.shape) # plt.contour(x, y, z, levels=[0.0001]); cov = np.cov(Xtest.values.T) mu = np.mean(Xtest).values mult = multivariate_normal(mean=mu, cov=cov) z = mult.pdf(np.array([x.ravel(), y.ravel()]).T).reshape(x.shape) plt.contour(x, y, z); errors = pd.read_csv('./data/errors.csv') errors.head() errors.describe() threshold = 0.01 n = 1000 p = 5/1000 n_blocks = int(np.ceil(len(errors) / 1000)) from scipy.stats import binom distr = binom(p=p, n=n) blocks = [] is_out = [] for i in np.arange(n_blocks): curr_count = errors[n*i:n*(i+1)].sum()[0] blocks.append(curr_count) is_out.append(distr.pmf(curr_count) < threshold) print(is_out[:10]) print(blocks[:10]) fig, ax = plt.subplots(figsize=(16, 10)) ax.bar(np.arange(n_blocks), blocks, color=['red' if out else 'blue' for out in is_out]) ax.set_title('Error per Block of 1000 Obs') ax.set_xlabel('Block No.') ax.set_ylabel('Errors') ax.set_xlim(-1.5, n_blocks+0.5) ax.hlines(10.5, -1.5, n_blocks+0.5, color='r', alpha=0.7, linestyles='--') ax.xaxis.set_major_locator(plt.MaxNLocator(20)); iris_train = pd.read_csv('./data/iris_train.csv') iris_test = pd.read_csv('./data/iris_test.csv') iris_train.head() iris_train.describe() from sklearn.cluster import KMeans km = KMeans(n_clusters=3) km.fit(iris_train.iloc[:, :4]) print(km.labels_) print(km.cluster_centers_) centers = np.array([list(km.cluster_centers_[lab]) for lab in km.labels_]) distances = np.sqrt(np.sum((iris_train.iloc[:, :4] - centers)**2, axis=1)) percentiles = np.array([np.percentile(distances[km.labels_==i], 98) for i in range(3)]) percentiles pred = km.predict(iris_test.iloc[:, :4]) centers = np.array([list(km.cluster_centers_[lab]) for lab in pred]) distances = np.sqrt(np.sum((iris_test.iloc[:, :4] - centers)**2, axis=1)) is_out = [distances[i] > percentiles[lab] for i, lab in enumerate(pred)] from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(16, 10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(iris_test.iloc[:, 0], iris_test.iloc[:, 1], iris_test.iloc[:, 2], color=['red' if out else 'blue' for out in is_out]); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1 - Check that the training data is suitable for a multivariate modeling approach (multivariate_tr.csv & multivariate_ts.csv) Step2: 2 - Check for any drift in the training data mean and std over time Step3: I think $N=10$ is a good window... Step4: 3 - Create the following functions Step5: 4 - Create a function to simulate a live feed (a stream) of the test data Step6: 5 - Create a single plot that has Step7: 6 - How do you think the threshold could be optimized? Step8: 2 - Create a script that will simulate this data as a feed Step9: 3 - Create a plot with the following properties Step10: Anomaly Detection Using Cluster Analysis Step11: 1 - Fit the training data using k-means clustering (without labels) using a number a clusters determined by the label values Step12: 2 - Get the 98th percentile for distances from cluster centers for the training data Step13: 3 - Use these percentiles to determine outliers in the test data and create a 3d plot using the first three attributes and highlight outliers
2,733
<ASSISTANT_TASK:> Python Code: from symbulate import * %matplotlib inline cards = ['club', 'diamond', 'heart', 'spade'] * 4 # 4 cards of each suit len(cards) P = BoxModel(cards, size=2, replace=False, order_matters=True) P.draw() sims = P.sim(10000) sims sims = P.sim(10000) sims.tabulate() def first_is_heart(x): return (x[0] == 'heart') first_is_heart(('heart', 'club')) first_is_heart(('club', 'heart')) sims_first_is_heart = sims.filter(first_is_heart) sims_first_is_heart.tabulate() len(sims_first_is_heart) / len(sims) # Type your Symbulate commands in this cell. # Type your Symbulate commands in this cell. n = 10 prizes = list(range(n)) prizes def number_collected(x): return len(set(x)) # For example number_collected([2, 1, 2, 0, 2, 2, 0]) n = 3 prizes = list(range(n)) prizes # Type your Symbulate commands in this cell. # Type your Symbulate commands in this cell. # Type your Symbulate commands in this cell. # Type your Symbulate commands in this cell. # Type your Symbulate commands in this cell. # Type your relevant code in this cell for 0.5 # Type your relevant code in this cell for 0.9 # Type your relevant code in this cell for 0.99 # Type your Symbulate commands in this cell. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part I. Introduction to Symbulate, and conditional versus unconditional probability Step2: Now we define a BoxModel probability space corresponding to drawing two cards (size=2) from the deck at random. We'll assume that the cards are drawn without replacement (replace=False). We also want to keep track of which card was drawn first and which second (order_matters=True). Step3: The .draw() method simulates a single outcome from the probability space. Note that each outcome is an ordered pair of cards. Step4: Many outcomes can be simulated using .sim(). The following simulates 10000 draws and stores the results in the variable sims. Step5: We can summarize the simulation results with .tabulate(). Note that ('heart', 'club') is counted as a separate outcome than ('club', 'heart') because the order matters. Step6: The above table could be used to estimate the probabilities in question. Instead, we will illustrate several other tools available in Symbulate to summarize simulation output. Step7: Now we filter the simulated outcomes to create the subset of outcomes for which first_is_heart returns True. Step8: Returning to question 1, we can estimate the probability that the first card is a heart by dividing the number of simulated draws for which the first card is a heart divided by the total number of simulated draws (using the length function len to count.) Step9: The true probability is 4/16 = 0.25. Your simulated probability should be close to 0.25, but there will be some natural variability due to the randomness in the simulation. Very roughly, the margin of error of a probability estimate based on $N$ simulated repetitions is about $1/\sqrt{N}$, so about 0.01 for 10000 repetitions. The interval constructed by adding $\pm 0.01$ to your estimate will likely contain 0.25. Step10: b) Step11: c) Step12: And here is a function that returns the number of distinct prizes collected among a set of prizes. Step13: Aside from the above functions, you should use Symbulate commands exclusively for Part II. Step14: a) Step15: b) Step16: c) Step17: d) Step18: Problem 2. Step19: Problem 3. Step20: Problem 4.
2,734
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.2,<2.3" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b.add_dataset('lc', dataset='lc01') b.add_dataset('mesh', times=[0], columns=['intensities*']) print(b['gravb_bol']) print(b['gravb_bol@primary']) print(b.run_checks()) b['teff@primary'] = 8500 b['gravb_bol@primary'] = 0.8 print(b.run_checks()) b['teff@primary'] = 7000 b['gravb_bol@primary'] = 0.2 print(b.run_checks()) b['teff@primary'] = 6000 b['gravb_bol@primary'] = 1.0 print(b.run_checks()) b['teff@primary'] = 6000 b['gravb_bol@primary'] = 0.32 b.run_compute(model='gravb_bol_32') afig, mplfig = b['primary@mesh01@gravb_bol_32'].plot(fc='intensities', ec='None', show=True) b['gravb_bol@primary'] = 1.0 b.run_compute(model='gravb_bol_10') afig, mplfig = b['primary@mesh01@gravb_bol_10'].plot(fc='intensities', ec='None', show=True) np.nanmax((b.get_value('intensities', component='primary', model='gravb_bol_32') - b.get_value('intensities', component='primary', model='gravb_bol_10'))/b.get_value('intensities', component='primary', model='gravb_bol_10')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new bundle. See Building a System for more details. Step2: Relevant Parameters Step3: If you have a logger enabled, PHOEBE will print a warning if the value of gravb_bol is outside the "suggested" ranges. Note that this is strictly a warning, and will never turn into an error at b.run_compute(). Step4: Influence on Intensities Step5: Comparing these two plots, it is essentially impossible to notice any difference between the two models. But if we compare the intensities directly, we can see that there is a subtle difference, with a maximum difference of about 3%.
2,735
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'uhh', 'sandbox-1', 'aerosol') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/volume ratio for aerosols" # "3D number concenttration for aerosols" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses atmospheric chemistry time stepping" # "Specific timestepping (operator splitting)" # "Specific timestepping (integrated)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Specific transport scheme (eulerian)" # "Specific transport scheme (semi-lagrangian)" # "Specific transport scheme (eulerian and semi-lagrangian)" # "Specific transport scheme (lagrangian)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Mass adjustment" # "Concentrations positivity" # "Gradients monotonicity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.convention') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Convective fluxes connected to tracers" # "Vertical velocities connected to tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Prescribed (climatology)" # "Prescribed CMIP6" # "Prescribed above surface" # "Interactive" # "Interactive above surface" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Volcanos" # "Bare ground" # "Sea surface" # "Lightning" # "Fires" # "Aircraft" # "Anthropogenic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Interannual" # "Annual" # "Monthly" # "Daily" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dry deposition" # "Sedimentation" # "Wet deposition (impaction scavenging)" # "Wet deposition (nucleation scavenging)" # "Coagulation" # "Oxidation (gas phase)" # "Oxidation (in cloud)" # "Condensation" # "Ageing" # "Advection (horizontal)" # "Advection (vertical)" # "Heterogeneous chemistry" # "Nucleation" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Radiation" # "Land surface" # "Heterogeneous chemistry" # "Clouds" # "Ocean" # "Cryosphere" # "Gas phase chemistry" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "DMS" # "SO2" # "Ammonia" # "Iodine" # "Terpene" # "Isoprene" # "VOC" # "NOx" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Bulk" # "Modal" # "Bin" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon / soot" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule)" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 2. Key Properties --&gt; Software Properties Step12: 2.2. Code Version Step13: 2.3. Code Languages Step14: 3. Key Properties --&gt; Timestep Framework Step15: 3.2. Split Operator Advection Timestep Step16: 3.3. Split Operator Physical Timestep Step17: 3.4. Integrated Timestep Step18: 3.5. Integrated Scheme Type Step19: 4. Key Properties --&gt; Meteorological Forcings Step20: 4.2. Variables 2D Step21: 4.3. Frequency Step22: 5. Key Properties --&gt; Resolution Step23: 5.2. Canonical Horizontal Resolution Step24: 5.3. Number Of Horizontal Gridpoints Step25: 5.4. Number Of Vertical Levels Step26: 5.5. Is Adaptive Grid Step27: 6. Key Properties --&gt; Tuning Applied Step28: 6.2. Global Mean Metrics Used Step29: 6.3. Regional Metrics Used Step30: 6.4. Trend Metrics Used Step31: 7. Transport Step32: 7.2. Scheme Step33: 7.3. Mass Conservation Scheme Step34: 7.4. Convention Step35: 8. Emissions Step36: 8.2. Method Step37: 8.3. Sources Step38: 8.4. Prescribed Climatology Step39: 8.5. Prescribed Climatology Emitted Species Step40: 8.6. Prescribed Spatially Uniform Emitted Species Step41: 8.7. Interactive Emitted Species Step42: 8.8. Other Emitted Species Step43: 8.9. Other Method Characteristics Step44: 9. Concentrations Step45: 9.2. Prescribed Lower Boundary Step46: 9.3. Prescribed Upper Boundary Step47: 9.4. Prescribed Fields Mmr Step48: 9.5. Prescribed Fields Mmr Step49: 10. Optical Radiative Properties Step50: 11. Optical Radiative Properties --&gt; Absorption Step51: 11.2. Dust Step52: 11.3. Organics Step53: 12. Optical Radiative Properties --&gt; Mixtures Step54: 12.2. Internal Step55: 12.3. Mixing Rule Step56: 13. Optical Radiative Properties --&gt; Impact Of H2o Step57: 13.2. Internal Mixture Step58: 14. Optical Radiative Properties --&gt; Radiative Scheme Step59: 14.2. Shortwave Bands Step60: 14.3. Longwave Bands Step61: 15. Optical Radiative Properties --&gt; Cloud Interactions Step62: 15.2. Twomey Step63: 15.3. Twomey Minimum Ccn Step64: 15.4. Drizzle Step65: 15.5. Cloud Lifetime Step66: 15.6. Longwave Bands Step67: 16. Model Step68: 16.2. Processes Step69: 16.3. Coupling Step70: 16.4. Gas Phase Precursors Step71: 16.5. Scheme Type Step72: 16.6. Bulk Scheme Species
2,736
<ASSISTANT_TASK:> Python Code: from theano.sandbox import cuda %matplotlib inline import utils; reload(utils) from utils import * from __future__ import division, print_function path = get_file('nietzsche.txt', origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt") text = open(path).read() print('corpus length:', len(text)) chars = sorted(list(set(text))) vocab_size = len(chars)+1 print('total chars:', vocab_size) chars.insert(0, "\0") ''.join(chars[1:-6]) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) idx = [char_indices[c] for c in text] idx[:10] ''.join(indices_char[i] for i in idx[:70]) cs=3 c1_dat = [idx[i] for i in xrange(0, len(idx)-1-cs, cs)] c2_dat = [idx[i+1] for i in xrange(0, len(idx)-1-cs, cs)] c3_dat = [idx[i+2] for i in xrange(0, len(idx)-1-cs, cs)] c4_dat = [idx[i+3] for i in xrange(0, len(idx)-1-cs, cs)] x1 = np.stack(c1_dat[:-2]) x2 = np.stack(c2_dat[:-2]) x3 = np.stack(c3_dat[:-2]) y = np.stack(c4_dat[:-2]) x1[:4], x2[:4], x3[:4] y[:4] x1.shape, y.shape n_fac = 42 def embedding_input(name, n_in, n_out): inp = Input(shape=(1,), dtype='int64', name=name) emb = Embedding(n_in, n_out, input_length=1)(inp) return inp, Flatten()(emb) c1_in, c1 = embedding_input('c1', vocab_size, n_fac) c2_in, c2 = embedding_input('c2', vocab_size, n_fac) c3_in, c3 = embedding_input('c3', vocab_size, n_fac) n_hidden = 256 dense_in = Dense(n_hidden, activation='relu') c1_hidden = dense_in(c1) dense_hidden = Dense(n_hidden, activation='tanh') c2_dense = dense_in(c2) hidden_2 = dense_hidden(c1_hidden) c2_hidden = merge([c2_dense, hidden_2]) c3_dense = dense_in(c3) hidden_3 = dense_hidden(c2_hidden) c3_hidden = merge([c3_dense, hidden_3]) dense_out = Dense(vocab_size, activation='softmax') c4_out = dense_out(c3_hidden) model = Model([c1_in, c2_in, c3_in], c4_out) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) model.optimizer.lr=0.000001 model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4, verbose=2) model.optimizer.lr=0.01 model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4, verbose=2) model.optimizer.lr = 0.000001 model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4, verbose=2) model.optimizer.lr = 0.01 model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4, verbose=2) def get_next(inp): idxs = [char_indices[c] for c in inp] arrs = [np.array(i)[np.newaxis] for i in idxs] p = model.predict(arrs) i = np.argmax(p) return chars[i] get_next('phi') get_next(' th') get_next(' an') cs=8 c_in_dat = [[idx[i+n] for i in xrange(0, len(idx)-1-cs, cs)] for n in range(cs)] c_out_dat = [idx[i+cs] for i in xrange(0, len(idx)-1-cs, cs)] xs = [np.stack(c[:-2]) for c in c_in_dat] len(xs), xs[0].shape y = np.stack(c_out_dat[:-2]) [xs[n][:cs] for n in range(cs)] y[:cs] n_fac = 42 def embedding_input(name, n_in, n_out): inp = Input(shape=(1,), dtype='int64', name=name+'_in') emb = Embedding(n_in, n_out, input_length=1, name=name+'_emb')(inp) return inp, Flatten()(emb) c_ins = [embedding_input('c'+str(n), vocab_size, n_fac) for n in range(cs)] n_hidden = 256 dense_in = Dense(n_hidden, activation='relu') dense_hidden = Dense(n_hidden, activation='relu', init='identity') dense_out = Dense(vocab_size, activation='softmax') hidden = dense_in(c_ins[0][1]) for i in range(1,cs): c_dense = dense_in(c_ins[i][1]) hidden = dense_hidden(hidden) hidden = merge([c_dense, hidden]) c_out = dense_out(hidden) model = Model([c[0] for c in c_ins], c_out) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) model.fit(xs, y, batch_size=64, nb_epoch=12, verbose=2) def get_next(inp): idxs = [np.array(char_indices[c])[np.newaxis] for c in inp] p = model.predict(idxs) return chars[np.argmax(p)] get_next('for thos') get_next('part of ') get_next('queens a') n_hidden, n_fac, cs, vocab_size = (256, 42, 8, 86) model=Sequential([ Embedding(vocab_size, n_fac, input_length=cs), SimpleRNN(n_hidden, activation='relu', inner_init='identity'), Dense(vocab_size, activation='softmax') ]) model.summary() model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) model.fit(np.concatenate(xs,axis=1), y, batch_size=64, nb_epoch=8, verbose=2) def get_next_keras(inp): idxs = [char_indices[c] for c in inp] arrs = np.array(idxs)[np.newaxis,:] p = model.predict(arrs)[0] return chars[np.argmax(p)] get_next_keras('this is ') get_next_keras('part of ') get_next_keras('queens a') #c_in_dat = [[idx[i+n] for i in xrange(0, len(idx)-1-cs, cs)] # for n in range(cs)] c_out_dat = [[idx[i+n] for i in xrange(1, len(idx)-cs, cs)] for n in range(cs)] ys = [np.stack(c[:-2]) for c in c_out_dat] [xs[n][:cs] for n in range(cs)] [ys[n][:cs] for n in range(cs)] dense_in = Dense(n_hidden, activation='relu') dense_hidden = Dense(n_hidden, activation='relu', init='identity') dense_out = Dense(vocab_size, activation='softmax', name='output') inp1 = Input(shape=(n_fac,), name='zeros') hidden = dense_in(inp1) outs = [] for i in range(cs): c_dense = dense_in(c_ins[i][1]) hidden = dense_hidden(hidden) hidden = merge([c_dense, hidden], mode='sum') # every layer now has an output outs.append(dense_out(hidden)) model = Model([inp1] + [c[0] for c in c_ins], outs) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) zeros = np.tile(np.zeros(n_fac), (len(xs[0]),1)) zeros.shape model.fit([zeros]+xs, ys, batch_size=64, nb_epoch=12, verbose=2) def get_nexts(inp): idxs = [char_indices[c] for c in inp] arrs = [np.array(i)[np.newaxis] for i in idxs] p = model.predict([np.zeros(n_fac)[np.newaxis,:]] + arrs) print(list(inp)) return [chars[np.argmax(o)] for o in p] get_nexts(' this is') get_nexts(' part of') n_hidden, n_fac, cs, vocab_size model=Sequential([ Embedding(vocab_size, n_fac, input_length=cs), SimpleRNN(n_hidden, return_sequences=True, activation='relu', inner_init='identity'), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.summary() model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) xs[0].shape x_rnn=np.stack(xs, axis=1) y_rnn=np.expand_dims(np.stack(ys, axis=1), -1) x_rnn.shape, y_rnn.shape model.fit(x_rnn[:,:,0], y_rnn[:,:,0], batch_size=64, nb_epoch=8, verbose=2) def get_nexts_keras(inp): idxs = [char_indices[c] for c in inp] arr = np.array(idxs)[np.newaxis,:] p = model.predict(arr)[0] print(list(inp)) return [chars[np.argmax(o)] for o in p] get_nexts_keras(' this is') model=Sequential([ SimpleRNN(n_hidden, return_sequences=True, input_shape=(cs, vocab_size), activation='relu', inner_init='identity'), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.compile(loss='categorical_crossentropy', optimizer=Adam()) oh_ys = [to_categorical(o, vocab_size) for o in ys] oh_y_rnn=np.stack(oh_ys, axis=1) oh_xs = [to_categorical(o, vocab_size) for o in xs] oh_x_rnn=np.stack(oh_xs, axis=1) oh_x_rnn.shape, oh_y_rnn.shape model.fit(oh_x_rnn, oh_y_rnn, batch_size=64, nb_epoch=8, verbose=2) def get_nexts_oh(inp): idxs = np.array([char_indices[c] for c in inp]) arr = to_categorical(idxs, vocab_size) p = model.predict(arr[np.newaxis,:])[0] print(list(inp)) return [chars[np.argmax(o)] for o in p] get_nexts_oh(' this is') bs=64 model=Sequential([ Embedding(vocab_size, n_fac, input_length=cs, batch_input_shape=(bs,8)), BatchNormalization(), LSTM(n_hidden, return_sequences=True, stateful=True), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) mx = len(x_rnn)//bs*bs model.fit(x_rnn[:mx, :, 0], y_rnn[:mx, :, :, 0], batch_size=bs, nb_epoch=4, shuffle=False, verbose=2) model.optimizer.lr=1e-4 model.fit(x_rnn[:mx, :, 0], y_rnn[:mx, :, :, 0], batch_size=bs, nb_epoch=4, shuffle=False, verbose=2) model.fit(x_rnn[:mx, :, 0], y_rnn[:mx, :, :, 0], batch_size=bs, nb_epoch=4, shuffle=False, verbose=2) n_input = vocab_size n_output = vocab_size def init_wgts(rows, cols): scale = math.sqrt(2/rows) return shared(normal(scale=scale, size=(rows, cols)).astype(np.float32)) def init_bias(rows): return shared(np.zeros(rows, dtype=np.float32)) def wgts_and_bias(n_in, n_out): return init_wgts(n_in, n_out), init_bias(n_out) def id_and_bias(n): return shared(np.eye(n, dtype=np.float32)), init_bias(n) t_inp = T.matrix('inp') t_outp = T.matrix('outp') t_h0 = T.vector('h0') lr = T.scalar('lr') all_args = [t_h0, t_inp, t_outp, lr] W_h = id_and_bias(n_hidden) W_x = wgts_and_bias(n_input, n_hidden) W_y = wgts_and_bias(n_hidden, n_output) w_all = list(chain.from_iterable([W_h, W_x, W_y])) def step(x, h, W_h, b_h, W_x, b_x, W_y, b_y): # Calculate the hidden activations h = nnet.relu(T.dot(x, W_x) + b_x + T.dot(h, W_h) + b_h) # Calculate the output activations y = nnet.softmax(T.dot(h, W_y) + b_y) # Return both (the 'Flatten()' is to work around a theano bug) return h, T.flatten(y, 1) [v_h, v_y], _ = theano.scan(step, sequences=t_inp, outputs_info=[t_h0, None], non_sequences=w_all) error = nnet.categorical_crossentropy(v_y, t_outp).sum() g_all = T.grad(error, w_all) def upd_dict(wgts, grads, lr): return OrderedDict({w: w-g*lr for (w,g) in zip(wgts,grads)}) upd = upd_dict(w_all, g_all, lr) fn = theano.function(all_args, error, updates=upd, allow_input_downcast=True) X = oh_x_rnn Y = oh_y_rnn X.shape, Y.shape err=0.0; l_rate=0.01 for i in range(len(X)): err+=fn(np.zeros(n_hidden), X[i], Y[i], l_rate) if i % 1000 == 999: print ("Error:{:.3f}".format(err/1000)) err=0.0 f_y = theano.function([t_h0, t_inp], v_y, allow_input_downcast=True) pred = np.argmax(f_y(np.zeros(n_hidden), X[6]), axis=1) act = np.argmax(X[6], axis=1) [indices_char[o] for o in act] [indices_char[o] for o in pred] def sigmoid(x): return 1/(1+np.exp(-x)) def sigmoid_d(x): output = sigmoid(x) return output*(1-output) def relu(x): return np.maximum(0., x) def relu_d(x): return (x > 0.)*1. relu(np.array([3.,-3.])), relu_d(np.array([3.,-3.])) def dist(a,b): return pow(a-b,2) def dist_d(a,b): return 2*(a-b) import pdb eps = 1e-7 def x_entropy(pred, actual): return -np.sum(actual * np.log(np.clip(pred, eps, 1-eps))) def x_entropy_d(pred, actual): return -actual/pred def softmax(x): return np.exp(x)/np.exp(x).sum() def softmax_d(x): sm = softmax(x) res = np.expand_dims(-sm,-1)*sm res[np.diag_indices_from(res)] = sm*(1-sm) return res test_preds = np.array([0.2,0.7,0.1]) test_actuals = np.array([0.,1.,0.]) nnet.categorical_crossentropy(test_preds, test_actuals).eval() x_entropy(test_preds, test_actuals) test_inp = T.dvector() test_out = nnet.categorical_crossentropy(test_inp, test_actuals) test_grad = theano.function([test_inp], T.grad(test_out, test_inp)) test_grad(test_preds) x_entropy_d(test_preds, test_actuals) pre_pred = random(oh_x_rnn[0][0].shape) preds = softmax(pre_pred) actual = oh_x_rnn[0][0] loss_d=x_entropy_d np.allclose(softmax_d(pre_pred).dot(loss_d(preds,actual)), preds-actual) softmax(test_preds) nnet.softmax(test_preds).eval() test_out = T.flatten(nnet.softmax(test_inp)) test_grad = theano.function([test_inp], theano.gradient.jacobian(test_out, test_inp)) test_grad(test_preds) softmax_d(test_preds) act=relu act_d = relu_d loss=x_entropy def scan(fn, start, seq): res = [] prev = start for s in seq: app = fn(prev, s) res.append(app) prev = app return res scan(lambda prev,curr: prev+curr, 0, range(5)) inp = oh_x_rnn outp = oh_y_rnn n_input = vocab_size n_output = vocab_size inp.shape, outp.shape def one_char(prev, item): # Previous state tot_loss, pre_hidden, pre_pred, hidden, ypred = prev # Current inputs and output x, y = item pre_hidden = np.dot(x,w_x) + np.dot(hidden,w_h) hidden = act(pre_hidden) pre_pred = np.dot(hidden,w_y) ypred = softmax(pre_pred) return ( # Keep track of loss so we can report it tot_loss+loss(ypred, y), # Used in backprop pre_hidden, pre_pred, # Used in next iteration hidden, # To provide predictions ypred) def get_chars(n): return zip(inp[n], outp[n]) def one_fwd(n): return scan(one_char, (0,0,0,np.zeros(n_hidden),0), get_chars(n)) # "Columnify" a vector def col(x): return x[:,newaxis] def one_bkwd(args, n): global w_x,w_y,w_h i=inp[n] # 8x86 o=outp[n] # 8x86 d_pre_hidden = np.zeros(n_hidden) # 256 for p in reversed(range(len(i))): totloss, pre_hidden, pre_pred, hidden, ypred = args[p] x=i[p] # 86 y=o[p] # 86 d_pre_pred = softmax_d(pre_pred).dot(loss_d(ypred,y)) # 86 d_pre_hidden = (np.dot(d_pre_hidden, w_h.T) + np.dot(d_pre_pred,w_y.T)) * act_d(pre_hidden) # 256 # d(loss)/d(w_y) = d(loss)/d(pre_pred) * d(pre_pred)/d(w_y) w_y -= col(hidden) * d_pre_pred * alpha # d(loss)/d(w_h) = d(loss)/d(pre_hidden[p-1]) * d(pre_hidden[p-1])/d(w_h) if (p>0): w_h -= args[p-1][3].dot(d_pre_hidden) * alpha w_x -= col(x)*d_pre_hidden * alpha return d_pre_hidden scale=math.sqrt(2./n_input) w_x = normal(scale=scale, size=(n_input,n_hidden)) w_y = normal(scale=scale, size=(n_hidden, n_output)) w_h = np.eye(n_hidden, dtype=np.float32) overallError=0 alpha=0.0001 for n in range(10000): res = one_fwd(n) overallError+=res[-1][0] deriv = one_bkwd(res, n) if(n % 1000 == 999): print ("Error:{:.4f}; Gradient:{:.5f}".format( overallError/1000, np.linalg.norm(deriv))) overallError=0 model=Sequential([ GRU(n_hidden, return_sequences=True, input_shape=(cs, vocab_size), activation='relu', inner_init='identity'), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.compile(loss='categorical_crossentropy', optimizer=Adam()) model.fit(oh_x_rnn, oh_y_rnn, batch_size=64, nb_epoch=8, verbose=2) get_nexts_oh(' this is') W_h = id_and_bias(n_hidden) W_x = init_wgts(n_input, n_hidden) W_y = wgts_and_bias(n_hidden, n_output) rW_h = init_wgts(n_hidden, n_hidden) rW_x = wgts_and_bias(n_input, n_hidden) uW_h = init_wgts(n_hidden, n_hidden) uW_x = wgts_and_bias(n_input, n_hidden) w_all = list(chain.from_iterable([W_h, W_y, uW_x, rW_x])) w_all.extend([W_x, uW_h, rW_h]) def gate(x, h, W_h, W_x, b_x): return nnet.sigmoid(T.dot(x, W_x) + b_x + T.dot(h, W_h)) def step(x, h, W_h, b_h, W_y, b_y, uW_x, ub_x, rW_x, rb_x, W_x, uW_h, rW_h): reset = gate(x, h, rW_h, rW_x, rb_x) update = gate(x, h, uW_h, uW_x, ub_x) h_new = gate(x, h * reset, W_h, W_x, b_h) h = update*h + (1-update)*h_new y = nnet.softmax(T.dot(h, W_y) + b_y) return h, T.flatten(y, 1) [v_h, v_y], _ = theano.scan(step, sequences=t_inp, outputs_info=[t_h0, None], non_sequences=w_all) error = nnet.categorical_crossentropy(v_y, t_outp).sum() g_all = T.grad(error, w_all) upd = upd_dict(w_all, g_all, lr) fn = theano.function(all_args, error, updates=upd, allow_input_downcast=True) err=0.0; l_rate=0.1 for i in range(len(X)): err+=fn(np.zeros(n_hidden), X[i], Y[i], l_rate) if i % 1000 == 999: l_rate *= 0.95 print ("Error:{:.2f}".format(err/1000)) err=0.0 W = (shared(np.concatenate([np.eye(n_hidden), normal(size=(n_input, n_hidden))]) .astype(np.float32)), init_bias(n_hidden)) rW = wgts_and_bias(n_input+n_hidden, n_hidden) uW = wgts_and_bias(n_input+n_hidden, n_hidden) W_y = wgts_and_bias(n_hidden, n_output) w_all = list(chain.from_iterable([W, W_y, uW, rW])) def gate(m, W, b): return nnet.sigmoid(T.dot(m, W) + b) def step(x, h, W, b, W_y, b_y, uW, ub, rW, rb): m = T.concatenate([h, x]) reset = gate(m, rW, rb) update = gate(m, uW, ub) m = T.concatenate([h*reset, x]) h_new = gate(m, W, b) h = update*h + (1-update)*h_new y = nnet.softmax(T.dot(h, W_y) + b_y) return h, T.flatten(y, 1) [v_h, v_y], _ = theano.scan(step, sequences=t_inp, outputs_info=[t_h0, None], non_sequences=w_all) def upd_dict(wgts, grads, lr): return OrderedDict({w: w-g*lr for (w,g) in zip(wgts,grads)}) error = nnet.categorical_crossentropy(v_y, t_outp).sum() g_all = T.grad(error, w_all) upd = upd_dict(w_all, g_all, lr) fn = theano.function(all_args, error, updates=upd, allow_input_downcast=True) err=0.0; l_rate=0.01 for i in range(len(X)): err+=fn(np.zeros(n_hidden), X[i], Y[i], l_rate) if i % 1000 == 999: print ("Error:{:.2f}".format(err/1000)) err=0.0 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setup Step2: Sometimes it's useful to have a zero value in the dataset, e.g. for padding Step3: Map from chars to indices and back again Step4: idx will be the data we use from now own - it simply converts all the characters to their index (based on the mapping above) Step5: 3 char model Step6: Our inputs Step7: Our output Step8: The first 4 inputs and outputs Step9: The number of latent factors to create (i.e. the size of the embedding matrix) Step10: Create inputs and embedding outputs for each of our 3 character inputs Step11: Create and train model Step12: This is the 'green arrow' from our diagram - the layer operation from input to hidden. Step13: Our first hidden activation is simply this function applied to the result of the embedding of the first character. Step14: This is the 'orange arrow' from our diagram - the layer operation from hidden to hidden. Step15: Our second and third hidden activations sum up the previous hidden state (after applying dense_hidden) to the new input state. Step16: This is the 'blue arrow' from our diagram - the layer operation from hidden to output. Step17: The third hidden state is the input to our output layer. Step18: Test model Step19: Our first RNN! Step20: For each of 0 through 7, create a list of every 8th character with that starting point. These will be the 8 inputs to out model. Step21: Then create a list of the next character in each of these series. This will be the labels for our model. Step22: So each column below is one series of 8 characters from the text. Step23: ...and this is the next character after each sequence. Step24: Create and train model Step25: The first character of each sequence goes through dense_in(), to create our first hidden activations. Step26: Then for each successive layer we combine the output of dense_in() on the next character with the output of dense_hidden() on the current hidden state, to create the new hidden state. Step27: Putting the final hidden state through dense_out() gives us our output. Step28: So now we can create our model. Step29: Test model Step30: Our first RNN with keras! Step31: This is nearly exactly equivalent to the RNN we built ourselves in the previous section. Step32: Returning sequences Step33: Reading down each column shows one set of inputs and outputs. Step34: Create and train model Step35: We're going to pass a vector of all zeros as our starting point - here's our input layers for that Step36: Test model Step37: Sequence model with keras Step38: To convert our previous keras model into a sequence model, simply add the 'return_sequences=True' parameter, and add TimeDistributed() around our dense layer. Step39: One-hot sequence model with keras Step40: Stateful model with keras Step41: A stateful model is easy to create (just add "stateful=True") but harder to train. We had to add batchnorm and use LSTM to get reasonable results. Step42: Since we're using a fixed batch shape, we have to ensure our inputs and outputs are a even multiple of the batch size. Step43: Theano RNN Step44: Using raw theano, we have to create our weight matrices and bias vectors ourselves - here are the functions we'll use to do so (using glorot initialization). Step45: We return the weights and biases together as a tuple. For the hidden weights, we'll use an identity initialization (as recommended by Hinton.) Step46: Theano doesn't actually do any computations until we explicitly compile and evaluate the function (at which point it'll be turned into CUDA code and sent off to the GPU). So our job is to describe the computations that we'll want theano to do - the first step is to tell theano what inputs we'll be providing to our computation Step47: Now we're ready to create our intial weight matrices. Step48: Theano handles looping by using the GPU scan operation. We have to tell theano what to do at each step through the scan - this is the function we'll use, which does a single forward pass for one character Step49: Now we can provide everything necessary for the scan operation, so we can setup that up - we have to pass in the function to call at each step, the sequence to step through, the initial values of the outputs, and any other arguments to pass to the step function. Step50: We can now calculate our loss function, and all of our gradients, with just a couple of lines of code! Step51: We even have to show theano how to do SGD - so we set up this dictionary of updates to complete after every forward pass, which apply to standard SGD update rule to every weight. Step52: We're finally ready to compile the function! Step53: To use it, we simply loop through our input data, calling the function compiled above, and printing our progress from time to time. Step54: Pure python RNN! Step55: We also have to define our own scan function. Since we're not worrying about running things in parallel, it's very simple to implement Step56: ...for instance, scan on + is the cumulative sum. Step57: Set up training Step58: Here's the function to do a single forward pass of an RNN, for a single character. Step59: We use scan to apply the above to a whole sequence of characters. Step60: Now we can define the backward step. We use a loop to go through every element of the sequence. The derivatives are applying the chain rule to each step, and accumulating the gradients across the sequence. Step61: Now we can set up our initial weight matrices. Note that we're not using bias at all in this example, in order to keep things simpler. Step62: Our loop looks much like the theano loop in the previous section, except that we have to call the backwards step ourselves. Step63: Keras GRU Step64: Theano GRU Step65: Here's the definition of a gate - it's just a sigmoid applied to the addition of the dot products of the input vectors. Step66: Our step is nearly identical to before, except that we multiply our hidden state by our reset gate, and we update our hidden state based on the update gate. Step67: Everything from here on is identical to our simple RNN in theano. Step68: Combined weights
2,737
<ASSISTANT_TASK:> Python Code: from search import * %psource Problem %psource GraphProblem romania_map = UndirectedGraph(dict( Arad=dict(Zerind=75, Sibiu=140, Timisoara=118), Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211), Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138), Drobeta=dict(Mehadia=75), Eforie=dict(Hirsova=86), Fagaras=dict(Sibiu=99), Hirsova=dict(Urziceni=98), Iasi=dict(Vaslui=92, Neamt=87), Lugoj=dict(Timisoara=111, Mehadia=70), Oradea=dict(Zerind=71, Sibiu=151), Pitesti=dict(Rimnicu=97), Rimnicu=dict(Sibiu=80), Urziceni=dict(Vaslui=142))) romania_map.locations = dict( Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288), Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449), Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506), Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537), Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410), Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350), Vaslui=(509, 444), Zerind=(108, 531)) romania_problem = GraphProblem('Arad', 'Bucharest', romania_map) romania_locations = romania_map.locations print(romania_locations) %matplotlib inline import networkx as nx import matplotlib.pyplot as plt from matplotlib import lines from ipywidgets import interact import ipywidgets as widgets from IPython.display import display import time # initialise a graph G = nx.Graph() # use this while labeling nodes in the map node_labels = dict() # use this to modify colors of nodes while exploring the graph. # This is the only dict we send to `show_map(node_colors)` while drawing the map node_colors = dict() for n, p in romania_locations.items(): # add nodes from romania_locations G.add_node(n) # add nodes to node_labels node_labels[n] = n # node_colors to color nodes while exploring romania map node_colors[n] = "white" # we'll save the initial node colors to a dict to use later initial_node_colors = dict(node_colors) # positions for node labels node_label_pos = {k:[v[0],v[1]-10] for k,v in romania_locations.items()} # use thi whiel labeling edges edge_labels = dict() # add edges between cities in romania map - UndirectedGraph defined in search.py for node in romania_map.nodes(): connections = romania_map.get(node) for connection in connections.keys(): distance = connections[connection] # add edges to the graph G.add_edge(node, connection) # add distances to edge_labels edge_labels[(node, connection)] = distance def show_map(node_colors): # set the size of the plot plt.figure(figsize=(18,13)) # draw the graph (both nodes and edges) with locations from romania_locations nx.draw(G, pos = romania_locations, node_color = [node_colors[node] for node in G.nodes()]) # draw labels for nodes node_label_handles = nx.draw_networkx_labels(G, pos = node_label_pos, labels = node_labels, font_size = 14) # add a white bounding box behind the node labels [label.set_bbox(dict(facecolor='white', edgecolor='none')) for label in node_label_handles.values()] # add edge lables to the graph nx.draw_networkx_edge_labels(G, pos = romania_locations, edge_labels=edge_labels, font_size = 14) # add a legend white_circle = lines.Line2D([], [], color="white", marker='o', markersize=15, markerfacecolor="white") orange_circle = lines.Line2D([], [], color="white", marker='o', markersize=15, markerfacecolor="orange") red_circle = lines.Line2D([], [], color="white", marker='o', markersize=15, markerfacecolor="red") gray_circle = lines.Line2D([], [], color="white", marker='o', markersize=15, markerfacecolor="gray") plt.legend((white_circle, orange_circle, red_circle, gray_circle), ('Un-explored', 'Frontier', 'Currently exploring', 'Explored'), numpoints=1,prop={'size':16}, loc=(.8,.75)) # show the plot. No need to use in notebooks. nx.draw will show the graph itself. plt.show() show_map(node_colors) def final_path_colors(problem, solution): "returns a node_colors dict of the final path provided the problem and solution" # get initial node colors final_colors = dict(initial_node_colors) # color all the nodes in solution and starting node to green final_colors[problem.initial] = "green" for node in solution: final_colors[node] = "green" return final_colors def display_visual(user_input, algorithm=None, problem=None): if user_input == False: def slider_callback(iteration): # don't show graph for the first time running the cell calling this function try: show_map(all_node_colors[iteration]) except: pass def visualize_callback(Visualize): if Visualize is True: button.value = False global all_node_colors iterations, all_node_colors, node = algorithm(problem) solution = node.solution() all_node_colors.append(final_path_colors(problem, solution)) slider.max = len(all_node_colors) - 1 for i in range(slider.max + 1): slider.value = i # time.sleep(.5) slider = widgets.IntSlider(min=0, max=1, step=1, value=0) slider_visual = widgets.interactive(slider_callback, iteration = slider) display(slider_visual) button = widgets.ToggleButton(value = False) button_visual = widgets.interactive(visualize_callback, Visualize = button) display(button_visual) if user_input == True: node_colors = dict(initial_node_colors) if algorithm == None: algorithms = {"Breadth First Tree Search": breadth_first_tree_search, "Breadth First Search": breadth_first_search, "Uniform Cost Search": uniform_cost_search, "A-star Search": astar_search} algo_dropdown = widgets.Dropdown(description = "Search algorithm: ", options = sorted(list(algorithms.keys())), value = "Breadth First Tree Search") display(algo_dropdown) def slider_callback(iteration): # don't show graph for the first time running the cell calling this function try: show_map(all_node_colors[iteration]) except: pass def visualize_callback(Visualize): if Visualize is True: button.value = False problem = GraphProblem(start_dropdown.value, end_dropdown.value, romania_map) global all_node_colors if algorithm == None: user_algorithm = algorithms[algo_dropdown.value] # print(user_algorithm) # print(problem) iterations, all_node_colors, node = user_algorithm(problem) solution = node.solution() all_node_colors.append(final_path_colors(problem, solution)) slider.max = len(all_node_colors) - 1 for i in range(slider.max + 1): slider.value = i # time.sleep(.5) start_dropdown = widgets.Dropdown(description = "Start city: ", options = sorted(list(node_colors.keys())), value = "Arad") display(start_dropdown) end_dropdown = widgets.Dropdown(description = "Goal city: ", options = sorted(list(node_colors.keys())), value = "Fagaras") display(end_dropdown) button = widgets.ToggleButton(value = False) button_visual = widgets.interactive(visualize_callback, Visualize = button) display(button_visual) slider = widgets.IntSlider(min=0, max=1, step=1, value=0) slider_visual = widgets.interactive(slider_callback, iteration = slider) display(slider_visual) def tree_search(problem, frontier): Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. Don't worry about repeated paths to a state. [Figure 3.7] # we use these two variables at the time of visualisations iterations = 0 all_node_colors = [] node_colors = dict(initial_node_colors) frontier.append(Node(problem.initial)) node_colors[Node(problem.initial).state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) while frontier: node = frontier.pop() # modify the currently searching node to red node_colors[node.state] = "red" iterations += 1 all_node_colors.append(dict(node_colors)) if problem.goal_test(node.state): # modify goal node to green after reaching the goal node_colors[node.state] = "green" iterations += 1 all_node_colors.append(dict(node_colors)) return(iterations, all_node_colors, node) frontier.extend(node.expand(problem)) for n in node.expand(problem): node_colors[n.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) # modify the color of explored nodes to gray node_colors[node.state] = "gray" iterations += 1 all_node_colors.append(dict(node_colors)) return None def breadth_first_tree_search(problem): "Search the shallowest nodes in the search tree first." iterations, all_node_colors, node = tree_search(problem, FIFOQueue()) return(iterations, all_node_colors, node) all_node_colors = [] romania_problem = GraphProblem('Arad', 'Fagaras', romania_map) display_visual(user_input = False, algorithm = breadth_first_tree_search, problem = romania_problem) def breadth_first_search(problem): "[Figure 3.11]" # we use these two variables at the time of visualisations iterations = 0 all_node_colors = [] node_colors = dict(initial_node_colors) node = Node(problem.initial) node_colors[node.state] = "red" iterations += 1 all_node_colors.append(dict(node_colors)) if problem.goal_test(node.state): node_colors[node.state] = "green" iterations += 1 all_node_colors.append(dict(node_colors)) return(iterations, all_node_colors, node) frontier = FIFOQueue() frontier.append(node) # modify the color of frontier nodes to blue node_colors[node.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) explored = set() while frontier: node = frontier.pop() node_colors[node.state] = "red" iterations += 1 all_node_colors.append(dict(node_colors)) explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: if problem.goal_test(child.state): node_colors[child.state] = "green" iterations += 1 all_node_colors.append(dict(node_colors)) return(iterations, all_node_colors, child) frontier.append(child) node_colors[child.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) node_colors[node.state] = "gray" iterations += 1 all_node_colors.append(dict(node_colors)) return None all_node_colors = [] romania_problem = GraphProblem('Arad', 'Bucharest', romania_map) display_visual(user_input = False, algorithm = breadth_first_search, problem = romania_problem) def best_first_graph_search(problem, f): Search the nodes with the lowest f scores first. You specify the function f(node) that you want to minimize; for example, if f is a heuristic estimate to the goal, then we have greedy best first search; if f is node.depth then we have breadth-first search. There is a subtlety: the line "f = memoize(f, 'f')" means that the f values will be cached on the nodes as they are computed. So after doing a best first search you can examine the f values of the path returned. # we use these two variables at the time of visualisations iterations = 0 all_node_colors = [] node_colors = dict(initial_node_colors) f = memoize(f, 'f') node = Node(problem.initial) node_colors[node.state] = "red" iterations += 1 all_node_colors.append(dict(node_colors)) if problem.goal_test(node.state): node_colors[node.state] = "green" iterations += 1 all_node_colors.append(dict(node_colors)) return(iterations, all_node_colors, node) frontier = PriorityQueue(min, f) frontier.append(node) node_colors[node.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) explored = set() while frontier: node = frontier.pop() node_colors[node.state] = "red" iterations += 1 all_node_colors.append(dict(node_colors)) if problem.goal_test(node.state): node_colors[node.state] = "green" iterations += 1 all_node_colors.append(dict(node_colors)) return(iterations, all_node_colors, node) explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: frontier.append(child) node_colors[child.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) elif child in frontier: incumbent = frontier[child] if f(child) < f(incumbent): del frontier[incumbent] frontier.append(child) node_colors[child.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) node_colors[node.state] = "gray" iterations += 1 all_node_colors.append(dict(node_colors)) return None def uniform_cost_search(problem): "[Figure 3.14]" iterations, all_node_colors, node = best_first_graph_search(problem, lambda node: node.path_cost) return(iterations, all_node_colors, node) all_node_colors = [] romania_problem = GraphProblem('Arad', 'Bucharest', romania_map) display_visual(user_input = False, algorithm = uniform_cost_search, problem = romania_problem) def best_first_graph_search(problem, f): Search the nodes with the lowest f scores first. You specify the function f(node) that you want to minimize; for example, if f is a heuristic estimate to the goal, then we have greedy best first search; if f is node.depth then we have breadth-first search. There is a subtlety: the line "f = memoize(f, 'f')" means that the f values will be cached on the nodes as they are computed. So after doing a best first search you can examine the f values of the path returned. # we use these two variables at the time of visualisations iterations = 0 all_node_colors = [] node_colors = dict(initial_node_colors) f = memoize(f, 'f') node = Node(problem.initial) node_colors[node.state] = "red" iterations += 1 all_node_colors.append(dict(node_colors)) if problem.goal_test(node.state): node_colors[node.state] = "green" iterations += 1 all_node_colors.append(dict(node_colors)) return(iterations, all_node_colors, node) frontier = PriorityQueue(min, f) frontier.append(node) node_colors[node.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) explored = set() while frontier: node = frontier.pop() node_colors[node.state] = "red" iterations += 1 all_node_colors.append(dict(node_colors)) if problem.goal_test(node.state): node_colors[node.state] = "green" iterations += 1 all_node_colors.append(dict(node_colors)) return(iterations, all_node_colors, node) explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: frontier.append(child) node_colors[child.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) elif child in frontier: incumbent = frontier[child] if f(child) < f(incumbent): del frontier[incumbent] frontier.append(child) node_colors[child.state] = "orange" iterations += 1 all_node_colors.append(dict(node_colors)) node_colors[node.state] = "gray" iterations += 1 all_node_colors.append(dict(node_colors)) return None def astar_search(problem, h=None): A* search is best-first graph search with f(n) = g(n)+h(n). You need to specify the h function when you call astar_search, or else in your Problem subclass. h = memoize(h or problem.h, 'h') iterations, all_node_colors, node = best_first_graph_search(problem, lambda n: n.path_cost + h(n)) return(iterations, all_node_colors, node) all_node_colors = [] romania_problem = GraphProblem('Arad', 'Bucharest', romania_map) display_visual(user_input = False, algorithm = astar_search, problem = romania_problem) all_node_colors = [] # display_visual(user_input = True, algorithm = breadth_first_tree_search) display_visual(user_input = True) penguin_problem = GraphProblem('Start', 'Penguin', museum_graph) penguin_ucs_node = uniform_cost_search(penguin_problem) penguin_ucs_node.solution() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Review Step2: The Problem class has six methods. Step3: Now it's time to define our problem. We will define it by passing initial, goal, graph to GraphProblem. So, our problem is to find the goal state starting from the given initial state on the provided graph. Have a look at our romania_map, which is an Undirected Graph containing a dict of nodes as keys and neighbours as values. Step4: It is pretty straight forward to understand this romania_map. The first node Arad has three neighbours named Zerind, Sibiu, Timisoara. Each of these nodes are 75, 140, 118 units apart from Arad respectively. And the same goes with other nodes. Step5: Romania map visualisation Step6: Let's start the visualisations by importing necessary modules. We use networkx and matplotlib to show the map in notebook and we use ipywidgets to interact with the map to see how the searching algorithm works. Step7: Let's get started by initializing an empty graph. We will add nodes, place the nodes in their location as shown in the book, add edges to the graph. Step8: We have completed building our graph based on romania_map and its locations. It's time to display it here in the notebook. This function show_map(node_colors) helps us do that. We will be calling this function later on to display the map at each and every interval step while searching using variety of algorithms from the book. Step9: We can simply call the function with node_colors dictionary object to display it. Step10: Voila! You see, the romania map as shown in the Figure[3.2] in the book. Now, see how different searching algorithms perform with our problem statements. Step12: Breadth first tree search Step13: Now, we use ipywidgets to display a slider, a button and our romania map. By sliding the slider we can have a look at all the intermediate steps of a particular search algorithm. By pressing the button Visualize, you can see all the steps without interacting with the slider. These two helper functions are the callback function which are called when we interact with slider and the button. Step14: Breadth first search Step16: Uniform cost search Step19: A* search
2,738
<ASSISTANT_TASK:> Python Code: import numpy as np from scipy.misc import factorial from scipy.optimize import curve_fit import scipy.constants as cst import matplotlib.pyplot as plt %matplotlib inline ao = cst.physical_constants["Bohr radius"][0] / cst.angstrom print("a0 = {} A".format(ao)) def rms(y_th, y): compute the root mean square between y and y_th values return np.sqrt(((np.array(y) - np.array(y_th))**2).mean()) def OA4s(r, z=19, ao=ao): Return values of the radial part of a 4s AO of an hydrogen like specie Args: r : float or ndarray of float in the same unit as ao (A by default) z (int) : atomic number ao (float): Bohr radius (in A by default) poly = 24 - 18 * z * r / ao + 3 * z**2 * r**2 / ao**2 - z**3 * r**3 / (8 * ao**3) return (z / ao)**(3/2) / 96 * poly * np.exp(- z * r / (4 * ao)) def OA3s(r, z=11, ao=ao): Return values of the radial part of a 3s AO of an hydrogen like specie Args: r : float or ndarray of float in the same unit as ao (A by default) z (int) : atomic number ao (float): Bohr radius (in A by default) poly = 6 - 4 * z * r / ao + 4 * z**2 * r**2 / (9 * ao**2) return (z / ao)**(3/2) / (9. * np.sqrt(3)) * poly * np.exp(-z * r / (3 * ao)) def slater_ns(r, n=3, z=11, ao=ao): Return values of the radial part of a slater type AO of an hydrogen like specie Args: r : float or ndarray of float in the same unit as ao (A by default) z (int) : atomic number ao (float): Bohr radius (in A by default) fact = 1 / np.sqrt(factorial(2 * n)) * (2 * z / (n * ao))**(n + 0.5) return fact * r**(n-1) * np.exp(- z * r / (n * ao)) def smooth_3s(r, c=14, alpha=1.9, ao=ao): Return values of the radial part of a smooth AO without any oscillation closed to the nuclei. Args: r : float or ndarray of float in the same unit as ao (A by default) z (int) : atomic number ao (float): Bohr radius (in A by default) return c * np.exp(- alpha * r / ao) r = np.linspace(0, 1.4, 200) plt.plot(r, OA3s(r, z=11), "b-", label="OA 3s", lw=2) #plt.plot(r, smooth_3s(r), "m-", label="3s smooth", lw=2) ymin, ymax = plt.ylim() plt.title("Atomic orbitals") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") plt.legend() plt.savefig("orbitals_1.pdf") plt.plot(r, slater_ns(r, n=3, z=11), "r-", label="Slater 3s", lw=2) plt.vlines(0.5, ymin, ymax, lw=2) plt.fill_between(x=[0, .5], y1=[ymin, ymin], y2=[ymax, ymax], color="k", alpha=.15) plt.annotate("Core part", xy=(0.25, 27), horizontalalignment="center") plt.annotate("Valence part", xy=(0.9, 27), horizontalalignment="center") plt.savefig("orbitals_2.pdf") def pw_1D(x, u, box=1, phi=0): Compute the real part of a 1D plane wave at position x. The length of the box is assume to be a. Args: x: float or array of float u: coordinate of the wave vector in reciprocal space box: length of the box phi: phase return 1 / np.sqrt(box) * np.cos(2 * np.pi * u * x / box + phi) def e_kinet_pw(u, box=1): Return the kinetic energy of a plane wave in electron volt defined by its reciprocal space vectors G. Args: u (int): plane waves index g = 2 * np.pi * u / (box * cst.angstrom) return cst.hbar**2 * g**2 / (2 * cst.m_e) / cst.eV BOXLENGTH = 5 r = np.linspace(0, BOXLENGTH, 200) spw = np.zeros(200) for u in range(1, 9): pw = pw_1D(r, u, box=BOXLENGTH) spw += pw if u in [1, 2, 4, 8]: plt.plot(r, pw, label="{:5.1f} eV".format(e_kinet_pw(u, box=BOXLENGTH)), lw=1) plt.plot(r, spw/7, label="sum", lw=3) plt.title("Plane waves") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") plt.legend() plt.savefig("planewaves.pdf") BOXLENGTH = 5 rmax = 2 r = np.linspace(0, rmax, 100) def pw_vector(x, *args): return the linear combination of plane waves npar = len(args) return np.sum([args[u] * pw_1D(x, u + 1, box=BOXLENGTH, phi=0) for u in range(npar)], axis=0) rp = np.linspace(0, rmax, 50) for umax in [1, 5, 10, 20, 40, 50]: popt, pcov = curve_fit(pw_vector, r, OA3s(r), p0=np.ones(umax)) ek = e_kinet_pw(umax, box=BOXLENGTH) valrms = rms(OA3s(r), pw_vector(r, *popt)) print("{:3d} plane waves, ENCUT = {:8.2f} eV rms = {:8.4f}".format(umax, ek, valrms)) plt.plot(rp, pw_vector(rp, *popt), "r-", label="{} plane waves".format(umax), lw=2) plt.plot(rp, OA3s(rp), "ko--", label="AO 3s", alpha=.75) plt.legend() plt.title("Fit a 3s hydrogen like AO with plane waves") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") plt.ylim(-10, 40) plt.savefig("fit_AO3s_{}.pdf".format(umax)) plt.clf() plt.plot(rp, pw_vector(rp, *popt), "r-", label="{} plane waves".format(umax), lw=2) plt.plot(rp, OA3s(rp), "ko--", label="AO 3s", alpha=.75) plt.legend() plt.ylim(-10, 40) plt.title("Fit a 3s hydrogen like AO with plane waves") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") rp = np.linspace(0, rmax, 50) for umax in [1, 5, 10, 15]: popt, pcov = curve_fit(pw_vector, r, smooth_3s(r), p0=np.ones(umax)) ek = e_kinet_pw(umax, box=BOXLENGTH) valrms = rms(smooth_3s(r), pw_vector(r, *popt)) print("{:3d} plane waves, ENCUT = {:8.2f} eV r^2 = {:8.4f}".format(umax, ek, valrms)) plt.plot(rp, pw_vector(rp, *popt), "r-", label="{} plane waves".format(umax), lw=2) plt.plot(rp, OA3s(rp), "ko--", label="AO 3s", alpha=.75) plt.legend() plt.title("Fit a smooth 3s AO with plane waves") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") plt.savefig("fit_smooth3s_{}.pdf".format(umax)) plt.clf() plt.plot(rp, pw_vector(rp, *popt), "r-", label="{} plane waves".format(umax), lw=2) plt.plot(rp, smooth_3s(rp), "ko--", label="AO 3s", alpha=.75) plt.legend() plt.title("Fit a smooth 3s AO with plane waves") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") smooth_popt = popt rp = np.linspace(0, rmax, 50) for umax in [1, 5, 10, 15, 20]: popt, pcov = curve_fit(pw_vector, r, slater_ns(r, z=11, n=3), p0=np.ones(umax)) ek = e_kinet_pw(umax, box=BOXLENGTH) valrms = rms(slater_ns(r, z=11, n=3), pw_vector(r, *popt)) print("{:3d} plane waves, ENCUT = {:8.2f} eV r^2 = {:8.4f}".format(umax, ek, valrms)) plt.plot(rp, pw_vector(rp, *popt), "r-", label="{} plane waves".format(umax), lw=2) plt.plot(rp, slater_ns(rp, z=11, n=3), "ko--", label="AO 3s", alpha=.75) plt.legend() plt.title("Fit a slater type 3s AO with plane waves") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") plt.ylim(-1, 5) plt.savefig("fit_slater3s_{}.pdf".format(umax)) plt.clf() plt.plot(rp, pw_vector(rp, *popt), "r-", label="{} plane waves".format(umax), lw=2) plt.plot(rp, slater_ns(rp, z=11, n=3), "ko--", label="AO 3s", alpha=.75) plt.legend() plt.title("Fit a slater type 3s AO with plane waves") plt.xlabel("r / $\AA$") plt.ylabel("wavefunction") plt.ylim(-1, 5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Matplotlib is used in order to make plots Step2: Bhor radius is defined in angstrom from scipy.constants module. Step4: A root mean square function is defined in order to measure the quality of the fit with plane waves. Step6: Atomic orbitals Step8: We define the radial part of a 4s AO of an hydrogen like specie. Step10: For comparison we define also a slater type orbital Step12: A smooth AO is defined for comparison, without oscillations closed to the nuclei. Step13: Make some simple plots for comparison. As expected, the slater type orbital is smoother than the solution of the hydrogen like one. Step15: Plane waves basis set Step17: kinetic energy of a plane waves Step18: Example Step19: Fit on a 3s atomoc orbital Step21: Fit function is defined such as the number of parameters set the number of used plane waves. Step22: Hydrogen like atomic orbital Step23: smooth 3s atomic orbital Step24: Slater type atomic orbital
2,739
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline from IPython.display import HTML HTML('../style/course.css') #apply general CSS from mpl_toolkits.mplot3d import Axes3D import plotBL HTML('../style/code_toggle.html') ant1 = np.array([-500e3,500e3,0]) # in m ant2 = np.array([500e3,-500e3,+10]) # in m b_ENU = ant2-ant1 # baseline D = np.sqrt(np.sum((b_ENU)**2)) # |b| print str(D/1000)+" km" L = (np.pi/180)*(45+0./60+0./3600) # Latitude in radians A = np.arctan2(b_ENU[0],b_ENU[1]) print "Baseline Azimuth="+str(np.degrees(A))+"°" E = np.arcsin(b_ENU[2]/D) print "Baseline Elevation="+str(np.degrees(E))+"°" %matplotlib nbagg plotBL.sphere(ant1,ant2,A,E,D,L) # Observation parameters c = 3e8 # Speed of light f = 1420e9 # Frequency lam = c/f # Wavelength dec = (np.pi/180)*(-30-43.0/60-17.34/3600) # Declination time_steps = 600 # time steps h = np.linspace(-4,4,num=time_steps)*np.pi/12 # Hour angle window ant1 = np.array([25.095,-9.095,0.045]) ant2 = np.array([90.284,26.380,-0.226]) b_ENU = ant2-ant1 D = np.sqrt(np.sum((b_ENU)**2)) L = (np.pi/180)*(-30-43.0/60-17.34/3600) A=np.arctan2(b_ENU[0],b_ENU[1]) print "Azimuth=",A*(180/np.pi) E=np.arcsin(b_ENU[2]/D) print "Elevation=",E*(180/np.pi) X = D*(np.cos(L)*np.sin(E)-np.sin(L)*np.cos(E)*np.cos(A)) Y = D*np.cos(E)*np.sin(A) Z = D*(np.sin(L)*np.sin(E)+np.cos(L)*np.cos(E)*np.cos(A)) u = lam**(-1)*(np.sin(h)*X+np.cos(h)*Y)/1e3 v = lam**(-1)*(-np.sin(dec)*np.cos(h)*X+np.sin(dec)*np.sin(h)*Y+np.cos(dec)*Z)/1e3 w = lam**(-1)*(np.cos(dec)*np.cos(h)*X-np.cos(dec)*np.sin(h)*Y+np.sin(dec)*Z)/1e3 %matplotlib nbagg plotBL.UV(u,v,w) %matplotlib inline from matplotlib.patches import Ellipse # parameters of the UVtrack as an ellipse a=np.sqrt(X**2+Y**2)/lam/1e3 # major axis b=a*np.sin(dec) # minor axis v0=Z/lam*np.cos(dec)/1e3 # center of ellipse plotBL.UVellipse(u,v,w,a,b,v0) L=np.radians(90.) ant1 = np.array([25.095,-9.095,0.045]) ant2 = np.array([90.284,26.380,-0.226]) b_ENU = ant2-ant1 D = np.sqrt(np.sum((b_ENU)**2)) A=np.arctan2(b_ENU[0],b_ENU[1]) print "Azimuth=",A*(180/np.pi) E=np.arcsin(b_ENU[2]/D) print "Elevation=",E*(180/np.pi) X = D*(np.cos(L)*np.sin(E)-np.sin(L)*np.cos(E)*np.cos(A)) Y = D*np.cos(E)*np.sin(A) Z = D*(np.sin(L)*np.sin(E)+np.cos(L)*np.cos(E)*np.cos(A)) dec=np.radians(90.) uNCP = lam**(-1)*(np.sin(h)*X+np.cos(h)*Y)/1e3 vNCP = lam**(-1)*(-np.sin(dec)*np.cos(h)*X+np.sin(dec)*np.sin(h)*Y+np.cos(dec)*Z)/1e3 wNCP = lam**(-1)*(np.cos(dec)*np.cos(h)*X-np.cos(dec)*np.sin(h)*Y+np.sin(dec)*Z)/1e3 # parameters of the UVtrack as an ellipse aNCP=np.sqrt(X**2+Y**2)/lam/1e3 # major axis bNCP=aNCP*np.sin(dec) # minor axi v0NCP=Z/lam*np.cos(dec)/1e3 # center of ellipse dec=np.radians(30.) u30 = lam**(-1)*(np.sin(h)*X+np.cos(h)*Y)/1e3 v30 = lam**(-1)*(-np.sin(dec)*np.cos(h)*X+np.sin(dec)*np.sin(h)*Y+np.cos(dec)*Z)/1e3 w30 = lam**(-1)*(np.cos(dec)*np.cos(h)*X-np.cos(dec)*np.sin(h)*Y+np.sin(dec)*Z)/1e3 a30=np.sqrt(X**2+Y**2)/lam/1e3 # major axis b30=a*np.sin(dec) # minor axi v030=Z/lam*np.cos(dec)/1e3 # center of ellipse %matplotlib inline plotBL.UVellipse(u30,v30,w30,a30,b30,v030) plotBL.UVellipse(uNCP,vNCP,wNCP,aNCP,bNCP,v0NCP) L=np.radians(90.) X = D*(np.cos(L)*np.sin(E)-np.sin(L)*np.cos(E)*np.cos(A)) Y = D*np.cos(E)*np.sin(A) Z = D*(np.sin(L)*np.sin(E)+np.cos(L)*np.cos(E)*np.cos(A)) # At local zenith == Celestial Equator dec=np.radians(0.) uEQ = lam**(-1)*(np.sin(h)*X+np.cos(h)*Y)/1e3 vEQ = lam**(-1)*(-np.sin(dec)*np.cos(h)*X+np.sin(dec)*np.sin(h)*Y+np.cos(dec)*Z)/1e3 wEQ = lam**(-1)*(np.cos(dec)*np.cos(h)*X-np.cos(dec)*np.sin(h)*Y+np.sin(dec)*Z)/1e3 # parameters of the UVtrack as an ellipse aEQ=np.sqrt(X**2+Y**2)/lam/1e3 # major axis bEQ=aEQ*np.sin(dec) # minor axi v0EQ=Z/lam*np.cos(dec)/1e3 # center of ellipse # Close to Zenith dec=np.radians(10.) u10 = lam**(-1)*(np.sin(h)*X+np.cos(h)*Y)/1e3 v10 = lam**(-1)*(-np.sin(dec)*np.cos(h)*X+np.sin(dec)*np.sin(h)*Y+np.cos(dec)*Z)/1e3 w10 = lam**(-1)*(np.cos(dec)*np.cos(h)*X-np.cos(dec)*np.sin(h)*Y+np.sin(dec)*Z)/1e3 a10=np.sqrt(X**2+Y**2)/lam/1e3 # major axis b10=a*np.sin(dec) # minor axi v010=Z/lam*np.cos(dec)/1e3 # center of ellipse %matplotlib inline plotBL.UVellipse(u10,v10,w10,a10,b10,v010) plotBL.UVellipse(uEQ,vEQ,wEQ,aEQ,bEQ,v0EQ) H = np.linspace(-6,6,600)*(np.pi/12) #Hour angle in radians d = 100 #We assume that we have already divided by wavelength delta = 60*(np.pi/180) #Declination in degrees u_60 = d*np.cos(H) v_60 = d*np.sin(H)*np.sin(delta) RA_sources = np.array([5+30.0/60,5+32.0/60+0.4/3600,5+36.0/60+12.8/3600,5+40.0/60+45.5/3600]) DEC_sources = np.array([60,60+17.0/60+57.0/3600,61+12.0/60+6.9/3600,61+56.0/60+34.0/3600]) Flux_sources_labels = np.array(["","1 Jy","0.5 Jy","0.2 Jy"]) Flux_sources = np.array([1,0.5,0.1]) #in Jy step_size = 200 print "Phase center Source 1 Source 2 Source3" print repr("RA="+str(RA_sources)).ljust(2) print "DEC="+str(DEC_sources) RA_rad = np.array(RA_sources)*(np.pi/12) DEC_rad = np.array(DEC_sources)*(np.pi/180) RA_delta_rad = RA_rad-RA_rad[0] l = np.cos(DEC_rad)*np.sin(RA_delta_rad) m = (np.sin(DEC_rad)*np.cos(DEC_rad[0])-np.cos(DEC_rad)*np.sin(DEC_rad[0])*np.cos(RA_delta_rad)) print "l=",l*(180/np.pi) print "m=",m*(180/np.pi) point_sources = np.zeros((len(RA_sources)-1,3)) point_sources[:,0] = Flux_sources point_sources[:,1] = l[1:] point_sources[:,2] = m[1:] %matplotlib inline fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111) plt.xlim([-4,4]) plt.ylim([-4,4]) plt.xlabel("$l$ [degrees]") plt.ylabel("$m$ [degrees]") plt.plot(l[0],m[0],"bx") plt.hold("on") plt.plot(l[1:]*(180/np.pi),m[1:]*(180/np.pi),"ro") counter = 1 for xy in zip(l[1:]*(180/np.pi)+0.25, m[1:]*(180/np.pi)+0.25): ax.annotate(Flux_sources_labels[counter], xy=xy, textcoords='offset points',horizontalalignment='right', verticalalignment='bottom') counter = counter + 1 plt.grid() u = np.linspace(-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10, num=step_size, endpoint=True) v = np.linspace(-1*(np.amax(abs(v_60)))-10, np.amax(abs(v_60))+10, num=step_size, endpoint=True) uu, vv = np.meshgrid(u, v) zz = np.zeros(uu.shape).astype(complex) s = point_sources.shape for counter in xrange(1, s[0]+1): A_i = point_sources[counter-1,0] l_i = point_sources[counter-1,1] m_i = point_sources[counter-1,2] zz += A_i*np.exp(-2*np.pi*1j*(uu*l_i+vv*m_i)) zz = zz[:,::-1] u_track = u_60 v_track = v_60 z = np.zeros(u_track.shape).astype(complex) s = point_sources.shape for counter in xrange(1, s[0]+1): A_i = point_sources[counter-1,0] l_i = point_sources[counter-1,1] m_i = point_sources[counter-1,2] z += A_i*np.exp(-1*2*np.pi*1j*(u_track*l_i+v_track*m_i)) plt.subplot(121) plt.imshow(zz.real,extent=[-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10,-1*(np.amax(abs(v_60)))-10, \ np.amax(abs(v_60))+10]) plt.plot(u_60,v_60,"k") plt.xlim([-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10]) plt.ylim(-1*(np.amax(abs(v_60)))-10, np.amax(abs(v_60))+10) plt.xlabel("u") plt.ylabel("v") plt.title("Real part of visibilities") plt.subplot(122) plt.imshow(zz.imag,extent=[-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10,-1*(np.amax(abs(v_60)))-10, \ np.amax(abs(v_60))+10]) plt.plot(u_60,v_60,"k") plt.xlim([-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10]) plt.ylim(-1*(np.amax(abs(v_60)))-10, np.amax(abs(v_60))+10) plt.xlabel("u") plt.ylabel("v") plt.title("Imaginary part of visibilities") plt.subplot(121) plt.plot(z.real) plt.xlabel("Timeslots") plt.ylabel("Jy") plt.title("Real: sampled visibilities") plt.subplot(122) plt.plot(z.imag) plt.xlabel("Timeslots") plt.ylabel("Jy") plt.title("Imag: sampled visibilities") plt.subplot(121) plt.imshow(abs(zz), extent=[-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10, -1*(np.amax(abs(v_60)))-10, np.amax(abs(v_60))+10]) plt.plot(u_60,v_60,"k") plt.xlim([-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10]) plt.ylim(-1*(np.amax(abs(v_60)))-10, np.amax(abs(v_60))+10) plt.xlabel("u") plt.ylabel("v") plt.title("Amplitude of visibilities") plt.subplot(122) plt.imshow(np.angle(zz), extent=[-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10, -1*(np.amax(abs(v_60)))-10, np.amax(abs(v_60))+10]) plt.plot(u_60,v_60,"k") plt.xlim([-1*(np.amax(np.abs(u_60)))-10, np.amax(np.abs(u_60))+10]) plt.ylim(-1*(np.amax(abs(v_60)))-10, np.amax(abs(v_60))+10) plt.xlabel("u") plt.ylabel("v") plt.title("Phase of visibilities") plt.subplot(121) plt.plot(abs(z)) plt.xlabel("Timeslots") plt.ylabel("Jy") plt.title("Abs: sampled visibilities") plt.subplot(122) plt.plot(np.angle(z)) plt.xlabel("Timeslots") plt.ylabel("Jy") plt.title("Phase: sampled visibilities") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import section specific modules Step2: 4.4.1 UV coverage Step3: Let's express the corresponding physical baseline in ENU coordinates. Step4: Let's place the interferometer at a latitude $L_a=+45^\circ00'00''$. Step5: Figure 4.4.1 Step6: Computation of the projected baselines in ($u$,$v$,$w$) coordinates along time Step7: As the $u$, $v$, $w$ coordinates depend explicitely on $H$, we must evaluate them for each time step of the observation. We will use the equations defined in $\S$ 4.1.2 &#10142; Step8: We have now everything that describe the $uvw$-track of the baseline over an 8-hour observation period. Under this form, it is for the moment quite unclear which shape the $uvw$ track takes. Let's plot it on the $uvw$ space and its protection $uv$ space. Step9: Figure 4.4.2 Step10: Figure 4.4.3 Step11: Let's compute the $uv$ tracks when observing the NCP ($\delta=90^\circ$) Step12: Let's compute the uv tracks when observing a source at $\delta=30^\circ$ Step13: Figure 4.4.4 Step14: Figure 4.4.5 Step15: Simulating a sky Step16: We then convert the ($\alpha$,$\delta$) to $l,m$ with Step17: The coordinates of the sources and the phase center are now in degrees. Step18: Figure 4.4.6 Step19: We create the dimensions of our visibility plane. Step20: We create our completely filled in visibitly plane. If we had a perfect interferometer we could sample the entire $uv$-plane, but due to the fact that we only have a finite amount of antennas this is not possible. Recall that our sky brightness $I(l,m)$ is related to to our visibilites $V(u,v)$ via the Fourier transform. For a bunch of point sources we can therefore write Step21: Below we sample our visibility plane on the $uv$-track derived in the first section, i.e. $V(u_t,v_t)$. Step22: Figure 4.4.7 Step23: Figure 4.4.8 Step24: Figure 4.4.9
2,740
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns; sns.set() # for plot styling import numpy as np from sklearn.datasets.samples_generator import make_blobs X, y_true = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:, 0], X[:, 1], s=50); from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=4) kmeans.fit(X) y_kmeans = kmeans.predict(X) plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis') centers = kmeans.cluster_centers_ plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5); from sklearn.metrics import pairwise_distances_argmin def find_clusters(X, n_clusters, rseed=2): # 1. Randomly choose clusters rng = np.random.RandomState(rseed) i = rng.permutation(X.shape[0])[:n_clusters] centers = X[i] while True: # 2a. Assign labels based on closest center labels = pairwise_distances_argmin(X, centers) # 2b. Find new centers from means of points new_centers = np.array([X[labels == i].mean(0) for i in range(n_clusters)]) # 2c. Check for convergence if np.all(centers == new_centers): break centers = new_centers return centers, labels centers, labels = find_clusters(X, 4) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis'); centers, labels = find_clusters(X, 4, rseed=0) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis'); labels = KMeans(6, random_state=0).fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis'); from sklearn.datasets import make_moons X, y = make_moons(200, noise=.05, random_state=0) labels = KMeans(2, random_state=0).fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: k-Means Algorithm Step2: Caveats of expectation–maximization Step3: Here the E–M approach has converged, but has not converged to a globally optimal configuration. For this reason, it is common for the algorithm to be run for multiple starting guesses, as indeed Scikit-Learn does by default (set by the n_init parameter, which defaults to 10). Step4: Whether the result is meaningful is a question that is difficult to answer definitively; one approach that is rather intuitive, but that we won't discuss further here, is called silhouette analysis.
2,741
<ASSISTANT_TASK:> Python Code: import pandas raw_elections_2015 = pandas.read_csv("test2015.csv",delimiter='\t') raw_elections_2016 = pandas.read_csv("test2016.csv",delimiter='\t') def find_PODEMOS(words): if 'PODEMOS' in words: return 'PODEMOS' if 'EN COMU' == words: return 'PODEMOS' return words elections_2015 = raw_elections_2015 elections_2016 = raw_elections_2016 elections_2015['Partido'] = elections_2015['Partido'].apply(find_PODEMOS) elections_2016['Partido'] = elections_2016['Partido'].apply(find_PODEMOS) print(elections_2015.columns) #The data is in spanish format (10,0 and 1.000) def replace_dots(word): return word.replace('.','') def replace_commas(word): return word.replace(',','.') elections_2015['Votos'] = elections_2015['Votos'].apply(replace_dots) elections_2015['%'] = elections_2015['%'].apply(replace_commas) elections_2016['Votos'] = elections_2016['Votos'].apply(replace_dots) elections_2016['%'] = elections_2016['%'].apply(replace_commas) elections_2015.info() elections_2015['Votos'] = pandas.to_numeric(elections_2015['Votos'], errors='coerse') elections_2015['Escannos'] = pandas.to_numeric(elections_2015['Escannos'], errors='coerse') elections_2015['%'] = pandas.to_numeric(elections_2015['%'], errors='coerse') elections_2016['Votos'] = pandas.to_numeric(elections_2016['Votos'], errors='coerse') elections_2016['Escannos'] = pandas.to_numeric(elections_2016['Escannos'], errors='coerse') elections_2016['%'] = pandas.to_numeric(elections_2016['%'], errors='coerse') print(elections_2015.head()) print(elections_2016.head()) elections_2015.describe() elections_2016 = elections_2016.groupby('Partido',as_index=False).sum() elections_2015 = elections_2015.groupby('Partido',as_index=False).sum() elections_2015.columns=['Partido','Votos 2015','% 2015', 'Escanos 2015'] elections_2016.columns=['Partido','Votos 2016','% 2016', 'Escanos 2016'] belections = pandas.merge(elections_2015, elections_2016, on='Partido',how='outer') elections = pandas.merge(elections_2015, elections_2016, on='Partido',how='inner') elections.sort_values('Votos 2015', ascending = False) import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline sns.set_style("whitegrid") sns.set_style({"grid.color": "1."}) sns.set_context("notebook", font_scale=1.5) election_filtred = elections[elections['% 2015'] > 1.01] election_filtred = election_filtred.sort_values('% 2016', ascending=False) columns = election_filtred['Partido'] #Dataframe transposition for graph dict_pre = {} for i in range(election_filtred.shape[0]): #print(i) dict_pre[election_filtred.iloc[i,0]] = [election_filtred.iloc[i,1],election_filtred.iloc[i,4]] election_graph = pandas.DataFrame(dict_pre, index=[2015,2016]) election_graph.columns = columns election_graph.plot(colormap='Paired') #elections.to_csv("elections_clean.csv") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <p>All the data are string</p> Step2: <h3>Despite all the corruption cases from the PP, only this growh their votes in 2016</h3>
2,742
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) import numpy as np import problem_unittests as tests def create_lookup_tables(text): #print(text) Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) # TODO: Implement Function vocab = set(text) vocab_to_int = {word: index for index,word in enumerate(vocab)} int_to_vocab = dict(enumerate(vocab)) return vocab_to_int, int_to_vocab DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_create_lookup_tables(create_lookup_tables) def token_lookup(): Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token # TODO: Implement Function symbols_dict = {'.' : '||Period||' , ',' : '||Comma||' , '"' : '||QuotationMark||' , ';' : '||Semicolon||' , '!' : '||Exclamationmark||' , '?' : '||Questionmark||', '(' : '||LeftParentheses||' , ')' : '||RightParentheses||' , '--' : '||Dash||' , '\n' : '||Return||' } return symbols_dict DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_tokenize(token_lookup) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) DON'T MODIFY ANYTHING IN THIS CELL import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def get_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) # TODO: Implement Function # Create the graph object inputs = tf.placeholder(tf.int32, [None, None], name='input') targets = tf.placeholder(tf.int32, [None, None], name='targets') learning_rate = tf.placeholder(tf.float32, name='learning_rate') return inputs, targets, learning_rate DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_inputs(get_inputs) def lstm_cell(state_size , output_keep_prob): cell = tf.contrib.rnn.BasicLSTMCell( state_size, forget_bias=0.0, state_is_tuple=True, reuse=tf.get_variable_scope().reuse) return cell def get_init_cell(batch_size, rnn_size,keep_prob=0.75 ): Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) # TODO: Implement Function # Stack up multiple LSTM layers, for deep learning num_layers = 3 cell = tf.contrib.rnn.MultiRNNCell([lstm_cell( rnn_size, keep_prob) for _ in range(num_layers)], state_is_tuple = True) initial_state=cell.zero_state(batch_size, tf.float32) initial_state=tf.identity(initial_state, name='initial_state') return cell,initial_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_init_cell(get_init_cell) def get_embed(input_data, vocab_size, embed_dim): Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. # TODO: Implement Function # Size of the embedding vectors (number of units in the embedding layer) embed_size = embed_dim embedding = tf.Variable(tf.random_uniform((vocab_size, embed_size), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_embed(get_embed) def build_rnn(cell, inputs): Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) # TODO: Implement Function n_vocab = len(int_to_vocab) outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) final_state = tf.identity(final_state, name='final_state') return outputs, final_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_rnn(build_rnn) def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) # TODO: Implement Function embedding = get_embed(input_data, vocab_size, embed_dim) outputs, final_state = build_rnn(cell, embedding) logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), biases_initializer=tf.zeros_initializer()) return logits, final_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_nn(build_nn) def get_batches(int_text, batch_size, seq_length): Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array elements_per_batch = batch_size * seq_length num_batches = len(int_text)//elements_per_batch #Keep only enough elements to make full batches int_text = int_text[:num_batches * elements_per_batch] int_text = np.array(int_text).reshape((batch_size, -1)) batches = np.zeros((num_batches, 2, batch_size, seq_length), dtype=np.int32) batch_num = 0 for n in range(0, int_text.shape[1], seq_length): # The features x = int_text[:, n:n+seq_length] # The target shifted by one if ((n+seq_length)%int_text.shape[1] == 0): y = np.zeros_like(x) y[:,:-1] = x[:,1:] for batch in range(num_batches): y[batch,-1] = int_text[(batch+1)%num_batches,0] else: y = int_text[:, n+1:n+seq_length+1] batches[batch_num][0] = x batches[batch_num][1] = y batch_num += 1 return batches DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_batches(get_batches) # Number of Epochs num_epochs = 100 # Batch Size batch_size = 256 # RNN Size rnn_size = 256 # Embedding Dimension Size embed_dim = 256 # Sequence Length seq_length = 16 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 20 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE save_dir = './save' DON'T MODIFY ANYTHING IN THIS CELL from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() def get_tensors(loaded_graph): Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) # TODO: Implement Function return loaded_graph.get_tensor_by_name("input:0"), loaded_graph.get_tensor_by_name("initial_state:0"), loaded_graph.get_tensor_by_name("final_state:0"), loaded_graph.get_tensor_by_name("probs:0") DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_tensors(get_tensors) def pick_word(probabilities, int_to_vocab): Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word # TODO: Implement Function word_picked = np.random.choice(list(int_to_vocab.values()), p=probabilities) return word_picked DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_pick_word(pick_word) gen_length = 1200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TV Script Generation Step3: Explore the Data Step6: Implement Preprocessing Functions Step9: Tokenize Punctuation Step11: Preprocess all the data and save it Step13: Check Point Step15: Build the Neural Network Step18: Input Step21: Build RNN Cell and Initialize Step24: Word Embedding Step27: Build RNN Step30: Build the Neural Network Step33: Batches Step35: Neural Network Training Step37: Build the Graph Step39: Train Step41: Save Parameters Step43: Checkpoint Step46: Implement Generate Functions Step49: Choose Word Step51: Generate TV Script
2,743
<ASSISTANT_TASK:> Python Code: import numpy as np %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import networkx as nx K_5=nx.complete_graph(5) nx.draw(K_5) def complete_deg(n): a = np.identity((n), dtype = np.int) for element in np.nditer(a, op_flags=['readwrite']): if element > 0: element[...] = element + n - 2 return a complete_deg(3) D = complete_deg(5) assert D.shape==(5,5) assert D.dtype==np.dtype(int) assert np.all(D.diagonal()==4*np.ones(5)) assert np.all(D-np.diag(D.diagonal())==np.zeros((5,5),dtype=int)) def complete_adj(n): b = np.identity((n), dtype = np.int) for element in np.nditer(b, op_flags=['readwrite']): if element == 0: element[...] = 1 else: element[...] = 0 return b complete_adj(3) A = complete_adj(5) assert A.shape==(5,5) assert A.dtype==np.dtype(int) assert np.all(A+np.eye(5,dtype=int)==np.ones((5,5),dtype=int)) def L(n): L = complete_deg(n) - complete_adj(n) return L print L(1) print L(2) print L(3) print L(4) print L(5) print L(6) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Complete graph Laplacian Step2: The Laplacian Matrix is a matrix that is extremely important in graph theory and numerical analysis. It is defined as $L=D-A$. Where $D$ is the degree matrix and $A$ is the adjecency matrix. For the purpose of this problem you don't need to understand the details of these matrices, although their definitions are relatively simple. Step3: The adjacency matrix for $K_n$ is an $n \times n$ matrix with zeros along the diagonal and ones everywhere else. Write a function to compute the adjacency matrix for $K_n$ using NumPy. Step4: Use NumPy to explore the eigenvalues or spectrum of the Laplacian L of $K_n$. What patterns do you notice as $n$ changes? Create a conjecture about the general Laplace spectrum of $K_n$.
2,744
<ASSISTANT_TASK:> Python Code: import numpy as np %matplotlib inline import matplotlib.pyplot as plt fake_depth = np.linspace(100, 150, 101) fake_log = np.array([np.random.choice([0, 1]) for _ in fake_depth]) plt.figure(figsize=(15, 1)) plt.plot(fake_depth, fake_log, 'o-') from striplog import Striplog, Component comps = [ Component({'pay': True}), Component({'pay': False}) ] s = Striplog.from_log(fake_log, cutoff=0.5, components=comps, basis=fake_depth) s[-1].base.middle = 150.5 # Adjust the bottom thickness... not sure if this is a bug. s[0] from striplog import Legend legend = Legend.random(comps) legend.get_decor(comps[-1]).width = 0.2 legend.plot() legend_csv = colour,hatch,width,component pay #48cc0e,None,1,True #5779e2,None,0.2,False legend = Legend.from_csv(text=legend_csv) legend.plot() s.plot(legend=legend, aspect=5) pruned = s.prune(limit=1.0, keep_ends=True) annealed = pruned.anneal() merged = annealed.merge_neighbours() # Anneal works on a copy fig, axs = plt.subplots(ncols=4, figsize=(6, 10)) axs[0] = s.plot(legend=legend, ax=axs[0], lw=1, aspect=5) axs[0].set_title('Original') axs[1] = pruned.plot(legend=legend, ax=axs[1], lw=1, aspect=5) axs[1].set_yticklabels([]) axs[1].set_title('Pruned') axs[2] = annealed.plot(legend=legend, ax=axs[2], lw=1, aspect=5) axs[2].set_yticklabels([]) axs[2].set_title('Annealed') axs[3] = merged.plot(legend=legend, ax=axs[3], lw=1, aspect=5) axs[3].set_yticklabels([]) axs[3].set_title('Merged') plt.show() fig, axs = plt.subplots(ncols=4, figsize=(6, 10)) opening = s.binary_morphology('pay', 'opening', step=0.1, p=7) closing = s.binary_morphology('pay', 'closing', step=0.1, p=7) axs[0] = s.plot(legend=legend, ax=axs[0], lw=1, aspect=5) ntg = s.net_to_gross('pay') axs[0].set_title(f'Original\n{ntg:.2f}') axs[1] = merged.plot(legend=legend, ax=axs[1], lw=1, aspect=5) axs[1].set_yticklabels([]) ntg = merged.net_to_gross('pay') axs[1].set_title(f'PAM\n{ntg:.2f}') # Prune-anneal-merge axs[2] = opening.plot(legend=legend, ax=axs[2], lw=1, aspect=5) axs[2].set_yticklabels([]) ntg = opening.net_to_gross('pay') axs[2].set_title(f'Opening\n{ntg:.2f}') axs[3] = closing.plot(legend=legend, ax=axs[3], lw=1, aspect=5) axs[3].set_yticklabels([]) ntg = closing.net_to_gross('pay') axs[3].set_title(f'Closing\n{ntg:.2f}') plt.show() s.unique s.thickest() s.thickest(5).plot(legend=legend, lw=1, aspect=5) s.bar(legend=legend) s.bar(legend=legend, sort=True) n, ents, ax = s.hist(legend=legend) s legend data = [c[1] for c in s.unique] colors = [c['_colour'] for c in legend.table] fig, axs = plt.subplots(ncols=2, gridspec_kw={'width_ratios': [1, 3]}) axs[0] = s.plot(ax=axs[0], legend=legend) axs[0].set_title("Striplog") axs[1].pie(data, colors=colors) axs[1].set_title("Pay proportions") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Make a striplog Step2: Each Interval in the striplog looks like Step3: Plot the intervals Step5: Or we can make one with a bit more control Step6: Remove thin things Step7: Now we can anneal the gaps Step8: Then merge the adjacent intervals that are alike... Step9: We could have chained these commands Step10: Dilate and erode Step11: Some statistics Step12: We can get at the thickest (and thinnest, with .thinnest()) intervals Step13: These functions optionally take an integer argument n specifying how many of the thickest or thinnest intervals you want to see. If n is greater than 1, a Striplog object is returned so you can see the positions of those items Step14: Bar plots and histograms Step15: More interesting is to sort the thicknesses Step16: Finally, we can make a thickness histogram of the various types of component present in the log.
2,745
<ASSISTANT_TASK:> Python Code: # Function to generate target value for a given x. true_func = lambda X: np.cos(1.5 * np.pi * X) np.random.seed(0) # Training Set: No. of random samples used for training the model n_samples = 30 x = np.sort(np.random.rand(n_samples)) y = true_func(x) + np.random.randn(n_samples) * 0.1 # Test Set: 100 samples for which we want the model to predict value n_test = 100 x_test = np.linspace(0, 1, n_test) y_test_actual = true_func(x_test) + np.random.randn(n_test) * 0.1 x[:5] x[:5],y[:5] # Function to add more features from existing features # in this case degree is the desired order of polynomials # Example degree 3 with 1 feature x would output: x,x^2,x^3 # Similary, if there are multiple features x1,x2: x1,x2,x1*x2,x1^2,x1^2*x2,x1^3....and so forth def generate_higher_order(degrees, x): # Generate higher order features from a given set of features. poly = PolynomialFeatures(degree = degrees, include_bias = False) x_new = poly.fit_transform(x) df = pd.DataFrame(x_new) df.columns = df.columns.map(lambda n: 'x' + str(n)) return df data_path = r'..\Data\RegressionExamples\under_over_fit_30samples' # degrees for feature generation degrees = [1, 4, 15] # Generate training set for each of the degree for d in degrees: df = generate_higher_order(d, x.reshape((n_samples, 1))) df['y'] = y df.to_csv(os.path.join(data_path,'fit_degree_{0}_example_train{1}.csv'.format(d,n_samples)), index = True, index_label = 'Row') # Generate Evaluation set. Contains all the features and target. # Generate Test set. Contains only the features. AWSML would predict the target for d in degrees: df = generate_higher_order(d, x_test.reshape((n_test, 1))) df.to_csv(os.path.join(data_path,'fit_degree_{0}_example_test{1}.csv'.format(d, n_samples)), index = True, index_label = 'Row') df['y'] = y_test_actual df.to_csv(os.path.join(data_path,'fit_degree_{0}_example_eval{1}.csv'.format(d, n_samples)), index = True, index_label = 'Row') # Pull Predictions df_samples = pd.read_csv(os.path.join(data_path, 'fit_degree_1_example_train30.csv'), index_col = 'Row') df_actual = pd.read_csv(os.path.join(data_path, 'fit_degree_1_example_eval30.csv'), index_col = 'Row') df_d1_predicted = pd.read_csv( os.path.join(data_path,'output_deg_1', 'bp-aYBztCIPIdb-fit_degree_1_example_test30.csv.gz')) df_d1_predicted.columns = ["Row","y_predicted"] fig = plt.figure(figsize = (12, 8)) plt.scatter(x = df_samples['x0'], y = df_samples['y'], color = 'b', label='samples') plt.scatter(x = df_actual['x0'], y = df_actual['y'], color = 'r', label = 'true function') plt.scatter(x = df_actual['x0'], y = df_d1_predicted['y_predicted'], color = 'g', label = 'predicted with degree 1') plt.title('Model with degree 1 feature - Underfit') plt.grid(True) plt.legend() fig = plt.figure(figsize = (12, 8)) plt.boxplot([df_actual['y'], df_d1_predicted['y_predicted']], labels=['actual','predicted with deg1']) plt.title('Box Plot - Actual, Predicted') plt.ylabel('Target Attribute') plt.grid(True) df_d4_predicted = pd.read_csv( os.path.join(data_path,'output_deg_4', 'bp-W4oBOhwClbH-fit_degree_4_example_test30.csv.gz')) df_d4_predicted.columns = ["Row","y_predicted"] fig = plt.figure(figsize = (12, 8)) plt.scatter(x = df_samples['x0'], y = df_samples['y'], color = 'b', label = 'samples') plt.scatter(x = df_actual['x0'], y = df_actual['y'], color = 'r', label = 'true function') plt.scatter(x = df_actual['x0'], y = df_d4_predicted['y_predicted'], color = 'g', label = 'predicted with degree 4') plt.title('Model with degree 4 features - normal fit') plt.grid(True) plt.legend() fig = plt.figure(figsize = (12, 8)) plt.boxplot([df_actual['y'], df_d1_predicted['y_predicted'], df_d4_predicted['y_predicted']], labels=['actual','predicted with deg1','predicted with deg4']) plt.title('Box Plot - Actual, Predicted') plt.ylabel('Target Attribute') plt.grid(True) df_d15_predicted = pd.read_csv( os.path.join(data_path,'output_deg_15', 'bp-rBWxcnPN3zu-fit_degree_15_example_test30.csv.gz')) df_d15_predicted.columns = ["Row","y_predicted"] fig = plt.figure(figsize = (12, 8)) plt.scatter(x = df_samples['x0'], y = df_samples['y'], color = 'b', label = 'samples') plt.scatter(x = df_actual['x0'], y = df_actual['y'], color = 'r', label = 'true function') plt.scatter(x = df_actual['x0'], y = df_d15_predicted['y_predicted'], color = 'g', label = 'predicted with degree 15') plt.grid(True) plt.legend() fig = plt.figure(figsize = (12, 8)) plt.boxplot([df_actual['y'], df_d1_predicted['y_predicted'], df_d4_predicted['y_predicted'], df_d15_predicted['y_predicted']], labels = ['actual','predicted deg1','predicted deg4','predicted deg15']) plt.title('Box Plot - Actual, Predicted') plt.ylabel('Target Attribute') plt.grid(True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Polynomial with degree 1 is a straight line - Underfitting<br> Step2: <h4>Model with degree 4 features</h4> Step3: Good Fit with degree 4 polynomial<br> Step4: <h4>Model with degree 15 features</h4> Step5: Not quite over fitting as shown in sci-kit example; fit is actually pretty good here.<br>
2,746
<ASSISTANT_TASK:> Python Code: # Author: Ivana Kojcic <ivana.kojcic@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com> # Samuel Deslauriers-Gauthier <sam.deslauriers@gmail.com> # License: BSD (3-clause) import os.path as op import numpy as np import mne from mne.datasets import sample print(__doc__) # In this example, raw data will be simulated for the sample subject, so its # information needs to be loaded. This step will download the data if it not # already on your machine. Subjects directory is also set so it doesn't need # to be given to functions. data_path = sample.data_path() subjects_dir = op.join(data_path, 'subjects') subject = 'sample' meg_path = op.join(data_path, 'MEG', subject) # First, we get an info structure from the sample subject. fname_info = op.join(meg_path, 'sample_audvis_raw.fif') info = mne.io.read_info(fname_info) tstep = 1 / info['sfreq'] # To simulate sources, we also need a source space. It can be obtained from the # forward solution of the sample subject. fwd_fname = op.join(meg_path, 'sample_audvis-meg-eeg-oct-6-fwd.fif') fwd = mne.read_forward_solution(fwd_fname) src = fwd['src'] # To simulate raw data, we need to define when the activity occurs using events # matrix and specify the IDs of each event. # Noise covariance matrix also needs to be defined. # Here, both are loaded from the sample dataset, but they can also be specified # by the user. fname_event = op.join(meg_path, 'sample_audvis_raw-eve.fif') fname_cov = op.join(meg_path, 'sample_audvis-cov.fif') events = mne.read_events(fname_event) noise_cov = mne.read_cov(fname_cov) # Standard sample event IDs. These values will correspond to the third column # in the events matrix. event_id = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4, 'smiley': 5, 'button': 32} # Take only a few events for speed events = events[:80] activations = { 'auditory/left': [('G_temp_sup-G_T_transv-lh', 30), # label, activation (nAm) ('G_temp_sup-G_T_transv-rh', 60)], 'auditory/right': [('G_temp_sup-G_T_transv-lh', 60), ('G_temp_sup-G_T_transv-rh', 30)], 'visual/left': [('S_calcarine-lh', 30), ('S_calcarine-rh', 60)], 'visual/right': [('S_calcarine-lh', 60), ('S_calcarine-rh', 30)], } annot = 'aparc.a2009s' # Load the 4 necessary label names. label_names = sorted(set(activation[0] for activation_list in activations.values() for activation in activation_list)) region_names = list(activations.keys()) def data_fun(times, latency, duration): Function to generate source time courses for evoked responses, parametrized by latency and duration. f = 15 # oscillating frequency, beta band [Hz] sigma = 0.375 * duration sinusoid = np.sin(2 * np.pi * f * (times - latency)) gf = np.exp(- (times - latency - (sigma / 4.) * rng.rand(1)) ** 2 / (2 * (sigma ** 2))) return 1e-9 * sinusoid * gf times = np.arange(150, dtype=np.float64) / info['sfreq'] duration = 0.03 rng = np.random.RandomState(7) source_simulator = mne.simulation.SourceSimulator(src, tstep=tstep) for region_id, region_name in enumerate(region_names, 1): events_tmp = events[np.where(events[:, 2] == region_id)[0], :] for i in range(2): label_name = activations[region_name][i][0] label_tmp = mne.read_labels_from_annot(subject, annot, subjects_dir=subjects_dir, regexp=label_name, verbose=False) label_tmp = label_tmp[0] amplitude_tmp = activations[region_name][i][1] if region_name.split('/')[1][0] == label_tmp.hemi[0]: latency_tmp = 0.115 else: latency_tmp = 0.1 wf_tmp = data_fun(times, latency_tmp, duration) source_simulator.add_data(label_tmp, amplitude_tmp * wf_tmp, events_tmp) # To obtain a SourceEstimate object, we need to use `get_stc()` method of # SourceSimulator class. stc_data = source_simulator.get_stc() raw_sim = mne.simulation.simulate_raw(info, source_simulator, forward=fwd) raw_sim.set_eeg_reference(projection=True) mne.simulation.add_noise(raw_sim, cov=noise_cov, random_state=0) mne.simulation.add_eog(raw_sim, random_state=0) mne.simulation.add_ecg(raw_sim, random_state=0) # Plot original and simulated raw data. raw_sim.plot(title='Simulated raw data') epochs = mne.Epochs(raw_sim, events, event_id, tmin=-0.2, tmax=0.3, baseline=(None, 0)) evoked_aud_left = epochs['auditory/left'].average() evoked_vis_right = epochs['visual/right'].average() # Visualize the evoked data evoked_aud_left.plot(spatial_colors=True) evoked_vis_right.plot(spatial_colors=True) method, lambda2 = 'dSPM', 1. / 9. inv = mne.minimum_norm.make_inverse_operator(epochs.info, fwd, noise_cov) stc_aud = mne.minimum_norm.apply_inverse( evoked_aud_left, inv, lambda2, method) stc_vis = mne.minimum_norm.apply_inverse( evoked_vis_right, inv, lambda2, method) stc_diff = stc_aud - stc_vis brain = stc_diff.plot(subjects_dir=subjects_dir, initial_time=0.1, hemi='split', views=['lat', 'med']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In order to simulate source time courses, labels of desired active regions Step3: Create simulated source activity Step4: Here, Step5: Simulate raw data Step6: Extract epochs and compute evoked responsses Step7: Reconstruct simulated source time courses using dSPM inverse operator
2,747
<ASSISTANT_TASK:> Python Code: # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: BSD-3-Clause import numpy as np import matplotlib.pyplot as plt import mne from mne.time_frequency import tfr_morlet from mne.stats import permutation_cluster_1samp_test from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' tmin, tmax, event_id = -0.3, 0.6, 1 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6)) # just use right temporal sensors for speed epochs.pick_channels(mne.read_vectorview_selection('Right-temporal')) evoked = epochs.average() # Factor to down-sample the temporal dimension of the TFR computed by # tfr_morlet. Decimation occurs after frequency decomposition and can # be used to reduce memory usage (and possibly computational time of downstream # operations such as nonparametric statistics) if you don't need high # spectrotemporal resolution. decim = 5 freqs = np.arange(8, 40, 2) # define frequencies of interest sfreq = raw.info['sfreq'] # sampling in Hz tfr_epochs = tfr_morlet(epochs, freqs, n_cycles=4., decim=decim, average=False, return_itc=False, n_jobs=1) # Baseline power tfr_epochs.apply_baseline(mode='logratio', baseline=(-.100, 0)) # Crop in time to keep only what is between 0 and 400 ms evoked.crop(-0.1, 0.4) tfr_epochs.crop(-0.1, 0.4) epochs_power = tfr_epochs.data sensor_adjacency, ch_names = mne.channels.find_ch_adjacency( tfr_epochs.info, 'grad') # Subselect the channels we are actually using use_idx = [ch_names.index(ch_name.replace(' ', '')) for ch_name in tfr_epochs.ch_names] sensor_adjacency = sensor_adjacency[use_idx][:, use_idx] assert sensor_adjacency.shape == \ (len(tfr_epochs.ch_names), len(tfr_epochs.ch_names)) assert epochs_power.data.shape == ( len(epochs), len(tfr_epochs.ch_names), len(tfr_epochs.freqs), len(tfr_epochs.times)) adjacency = mne.stats.combine_adjacency( sensor_adjacency, len(tfr_epochs.freqs), len(tfr_epochs.times)) # our adjacency is square with each dim matching the data size assert adjacency.shape[0] == adjacency.shape[1] == \ len(tfr_epochs.ch_names) * len(tfr_epochs.freqs) * len(tfr_epochs.times) threshold = 3. n_permutations = 50 # Warning: 50 is way too small for real-world analysis. T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_1samp_test(epochs_power, n_permutations=n_permutations, threshold=threshold, tail=0, adjacency=adjacency, out_type='mask', verbose=True) evoked_data = evoked.data times = 1e3 * evoked.times plt.figure() plt.subplots_adjust(0.12, 0.08, 0.96, 0.94, 0.2, 0.43) # Create new stats image with only significant clusters T_obs_plot = np.nan * np.ones_like(T_obs) for c, p_val in zip(clusters, cluster_p_values): if p_val <= 0.05: T_obs_plot[c] = T_obs[c] # Just plot one channel's data ch_idx, f_idx, t_idx = np.unravel_index( np.nanargmax(np.abs(T_obs_plot)), epochs_power.shape[1:]) # ch_idx = tfr_epochs.ch_names.index('MEG 1332') # to show a specific one vmax = np.max(np.abs(T_obs)) vmin = -vmax plt.subplot(2, 1, 1) plt.imshow(T_obs[ch_idx], cmap=plt.cm.gray, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.imshow(T_obs_plot[ch_idx], cmap=plt.cm.RdBu_r, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.colorbar() plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title(f'Induced power ({tfr_epochs.ch_names[ch_idx]})') ax2 = plt.subplot(2, 1, 2) evoked.plot(axes=[ax2], time_unit='s') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters Step2: Define adjacency for statistics Step3: Compute statistic Step4: View time-frequency plots
2,748
<ASSISTANT_TASK:> Python Code: #On windows #import findspark #findspark.init(spark_home="C:/Users/me/software/spark-1.6.3-bin-hadoop2.6/") import pyspark import numpy as np # we'll be using numpy for some numeric operations sc = pyspark.SparkContext(master="local[*]", appName="tour") sc.stop() # To try the SparkContext with other masters first stop the one that is already running # sc.stop() f = lambda line: 'Spark' in line f("we are learning park") def f(line): return 'Spark' in line f("we are learning Spark") my_list = [0,1,2,3,4,5,6,7,8,9] data = sc.parallelize(my_list) # create RDD from Python collection data_squared = data.map(lambda num: num ** 2) # transformation data_squared.collect() data = sc.parallelize([0,1,2,3,4,5,6,7,8,9]) # creation of RDD data_squared = data.map(lambda num: num ** 2) # transformation data_squared.collect() # action text = sc.textFile("myfile.txt",1) # load data text = sc.textFile("myfile.txt") # load data # count only lines that mention "Spark" spark_lines = text.filter(lambda line: 'Spark' in line) spark_lines.collect() def is_prime(num): return True if num is prime, False otherwise if num < 1 or num % 1 != 0: raise Exception("invalid argument") for d in range(2, int(np.sqrt(num) + 1)): if num % d == 0: return False return True numbersRDD = sc.parallelize(range(1, 1000000)) # creation of RDD primesRDD = numbersRDD.filter(is_prime) # transformation # primesRDD has not been materialized until this point primes = primesRDD.collect() # action type(primesRDD) print(primes[0:15]) print(primesRDD.take(15)) primesRDD.persist() primesRDD.persist() # we're asking Spark to keep this RDD in memory. Note that cache is the same but as using persist for memory. However, persist allows you to define other types of storage print("Found", primesRDD.count(), "prime numbers") # first action -- causes primesRDD to be materialized print("Here are some of them:") print(primesRDD.take(20)) # second action - RDD is already in memory primesRDD.unpersist() %%timeit primes = primesRDD.collect() primesRDD.persist() %%timeit primes = primesRDD.collect() data = sc.parallelize(range(10)) squares = data.map(lambda x: x**2) squares.collect() def f(x): return the square of a number return x**2 data = sc.parallelize(range(10)) squares = data.map(f) squares.collect() class SearchFunctions(object): def __init__(self, query): self.query def is_match(self, s): return self.query in s def get_matches_in_rdd_v1(self, rdd): return rdd.filter(self.is_match) # the function is an object method def get_matches_in_rdd_v2(self, rdd): return rdd.filter(lambda x: self.query in x) # the function references an object field class SearchFunctions(object): def __init__(self, query): self.query def is_match(self, s): return self.query in s def get_matches_in_rdd(self, rdd): query = self.query return rdd.filter(lambda x: query in x) phrases = sc.parallelize(["hello world", "terve terve", "how are you"]) words_map = phrases.map(lambda phrase: phrase.split(" ")) words_map.collect() # This returns a list of lists phrases = sc.parallelize(["hello world", "terve terve", "how are you"]) words_flatmap = phrases.flatMap(lambda phrase: phrase.split(" ")) words_flatmap.collect() # This returns a list withe the combined elements of the list # We can use the flatmap to make a word count words_flatmap.map( lambda x: (x,1) ).reduceByKey( lambda x,y: x+y ).collect() oneRDD = sc.parallelize([1, 1, 1, 2, 3, 3, 4, 4]) oneRDD.persist() otherRDD = sc.parallelize([1, 4, 4, 7]) otherRDD.persist() unionRDD = oneRDD.union(otherRDD) unionRDD.persist() oneRDD.subtract(otherRDD).collect() oneRDD.distinct().collect() oneRDD.intersection(otherRDD).collect() # removes duplicates oneRDD.cartesian(otherRDD).collect()[:5] np.sum([1,43,62,23,52]) data = sc.parallelize([1,43,62,23,52]) data.reduce(lambda x, y: x + y) data.reduce(lambda x, y: x * y) data.reduce(lambda x, y: x**2 + y**2) # this does NOT compute the sum of squares of RDD elements ((((1 ** 2 + 43 ** 2) ** 2 + 62 ** 2) **2 + 23 ** 2) **2 + 52 **2) data.reduce(lambda x, y: np.sqrt(x**2 + y**2)) ** 2 np.sum(np.array([1,43,62,23,52]) ** 2) help(data.aggregate) def seq(x,y): return x[0] + y, x[1] + 1 def comb(x,y): print(x,y,"comb") return x[0] + y[0], x[1] + y[1] data = sc.parallelize([1,43,62,23,52], 1) # Try different levels of paralellism aggr = data.aggregate(zeroValue = (0,0), seqOp = seq, # combOp = comb) aggr aggr[0] / aggr[1] # average value of RDD elements help(pairRDD.reduceByKey) pairRDD = sc.parallelize([('$APPL', 100.64), ('$APPL', 100.52), ('$GOOG', 706.2), ('$AMZN', 552.32), ('$AMZN', 552.32) ]) pairRDD.reduceByKey(lambda x,y: x + y).collect() # sum of values per key help(pairRDD.combineByKey) pairRDD = sc.parallelize([ ('$APPL', 100.64), ('$GOOG', 706.2), ('$AMZN', 552.32), ('$APPL', 100.52), ('$AMZN', 552.32) ]) aggr = pairRDD.combineByKey(createCombiner = lambda x: (x, 1), mergeValue = lambda x,y: (x[0] + y, x[1] + 1), mergeCombiners = lambda x,y: (x[0] + y[0], x[1] + y[1])) aggr.collect() aggr.map(lambda x: (x[0], x[1][0]/x[1][1])).collect() # average value per key help(course_a.join) course_a = sc.parallelize([ ("Antti", 8), ("Tuukka", 10), ("Leena", 9)]) course_b = sc.parallelize([ ("Leena", 10), ("Tuukka", 10)]) result = course_a.join(course_b) result.collect() text = sc.textFile("myfile.txt") long_lines = sc.accumulator(0) # create accumulator def line_len(line): global long_lines # to reference an accumulator, declare it as global variable length = len(line) if length > 30: long_lines += 1 # update the accumulator return length llengthRDD = text.map(line_len) llengthRDD.count() long_lines.value # this is how we obtain the value of the accumulator in the driver program help(long_lines) long_lines.value # this is how we obtain the value of the accumulator in the driver program text = sc.textFile("myfile.txt") long_lines_2 = sc.accumulator(0) def line_len(line): global long_lines_2 length = len(line) if length > 30: long_lines_2 += 1 text.foreach(line_len) long_lines_2.value def load_address_table(): return {"Anu": "Chem. A143", "Karmen": "VTT, 74", "Michael": "OIH, B253.2", "Anwar": "T, B103", "Orestis": "T, A341", "Darshan": "T, A325"} address_table = sc.broadcast(load_address_table()) def find_address(name): res = None if name in address_table.value: res = address_table.value[name] return res people = sc.parallelize(["Anwar", "Michael", "Orestis", "Darshan"]) pairRDD = people.map(lambda name: (name, find_address(name))) # first operation that uses the address table print(pairRDD.collectAsMap()) other_people = sc.parallelize(["Karmen", "Michael", "Anu"]) pairRDD = other_people.map(lambda name: (name, find_address(name))) # second operation that uses the address table print(pairRDD.collectAsMap()) sc.stop() import random NUM_SAMPLES = 10000000 def inside(p): x, y = random.random(), random.random() return x*x + y*y < 1 count = sc.parallelize(range(0, NUM_SAMPLES)).filter(inside).count() print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)) # Details of the algorithm can be found here: http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm iterations = 5 def computeContribs(urls, rank): Calculates URL contributions to the rank of other URLs. num_urls = len(urls) for url in urls: yield (url, rank / num_urls) def parseNeighbors(urls): Parses a urls pair string into urls pair. parts = urls.split(',') return parts[0], parts[1] # Read the lines lines = sc.textFile("higgs-mention_network.txt").persist() lines.collect() # Loads all URLs from input file and initialize their neighbors. links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache() links.collect() # Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one. ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0)) ranks.collect() # Calculates and updates URL ranks continuously using PageRank algorithm. for iteration in range(iterations): # Calculates URL contributions to the rank of other URLs. contribs = links.join(ranks).flatMap( lambda url_urls_rank: computeContribs(url_urls_rank[1][0], url_urls_rank[1][1])) # Re-calculates URL ranks based on neighbor contributions. ranks = contribs.reduceByKey(lambda x,y: x+y).mapValues(lambda rank: rank * 0.85 + 0.15) # Collects all URL ranks and dump them to console. for (link, rank) in ranks.collect(): print("%s has rank: %s." % (link, rank)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: local Step2: Lambda functions Step3: Creating RDDS Step4: RDD operations Step5: Step7: Lazy evaluation Step8: Persistence Step9: If we do not need primesRDD in memory anymore, we can tell Spark to discard it. Step10: How long does it take to collect primesRDD? Let's time the operation. Step11: When I ran the above on my laptop, it took about more than 10s. That's because Spark had to evaluate primesRDD before performing collect on it. Step13: When I ran the above on my laptop, it took about 1s to collect primesRDD - that's almost $10$ times faster compared to when the RDD had to be recomputed from scratch. Step14: Be careful, though Step15: The following is a better way to implement the two methods above (get_matches_in_rdd_v1 and get_matches_in_rdd_v2), if we want to avoid sending a SearchFunctions object for computation to the cluster. Step16: map and flatmap Step17: (Pseudo) set operations Step18: reduce Step19: aggregate Step20: reduceByKey Step21: From https Step22: (inner) join Step23: Accumulators Step24: Warning Step25: Broadcast variable Step26: Stopping Step27: Example Step30: Example
2,749
<ASSISTANT_TASK:> Python Code: plt.plot(pop_x, pop_y, 'o') plt.xlabel('Year') plt.ylabel('Population [Millions]') plt.show() graphene_used = np.concatenate( (np.ones(5), np.zeros(5)) ) temperature = np.concatenate( (T, T) ) intercept = np.ones(10) x_mat = np.column_stack( (intercept, temperature, graphene_used) ) print(x_mat) #Ignore these %matplotlib inline import numpy as np import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') import scipy.stats as ss pop_x = np.arange(1998, 2016) pop_y = 275.9 * np.exp((pop_x - 1998) * 0.005) + ss.norm.rvs(size=len(pop_x)) * 0.2 T = np.arange(280, 280 + 5 * 5, 5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example 1 Answer Step2: Example 3
2,750
<ASSISTANT_TASK:> Python Code: !pip install -qq optax import numpy as np import jax from jax import numpy as jnp from jax import grad, jit, vmap, random try: import optax except ModuleNotFoundError: %pip install -qq optax import optax try: import tensorflow_datasets as tfds except ModuleNotFoundError: %pip install -qq tensorflow tensorflow_datasets import tensorflow_datasets as tfds from sklearn.linear_model import LogisticRegression from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec def plot_digit(img, label=None, ax=None): Plot MNIST Digit. if ax is None: fig, ax = plt.subplots() if img.ndim == 1: img = img.reshape(28, 28) ax.imshow(img.squeeze(), cmap="Greys_r") ax.axis("off") if label is not None: ax.set_title(f"Label:{label}", fontsize=10, pad=1.3) return ax def grid_plot_imgs(imgs, dim=None, axs=None, labels=None, figsize=(5, 5)): Plot a series of digits in a grid. if dim is None: if axs is None: n_imgs = len(imgs) dim = np.sqrt(n_imgs) if not dim.is_integer(): raise ValueError("If dim not specified `len(imgs)` must be a square number.") else: dim = int(dim) else: dim = len(axs) if axs is None: gridspec_kw = {"hspace": 0.05, "wspace": 0.05} if labels is not None: gridspec_kw["hspace"] = 0.25 fig, axs = plt.subplots(dim, dim, figsize=figsize, gridspec_kw=gridspec_kw) for n in range(dim**2): img = imgs[n] row_idx = n // dim col_idx = n % dim axi = axs[row_idx, col_idx] if labels is not None: ax_label = labels[n] else: ax_label = None plot_digit(img, ax=axi, label=ax_label) return axs def gridspec_plot_imgs(imgs, gs_base, title=None, dim=5): Plot digits into a gridspec subgrid. Args: imgs - images to plot. gs_base - from `gridspec.GridSpec` title - subgrid title. Note that, in general, for this type of plotting it is considerably more simple to using `fig.subfigures()` however that requires matplotlib >=3.4 which has some conflicts with the default colab setup as of the time of writing. gs0 = gs_base.subgridspec(dim, dim) for i in range(dim): for j in range(dim): ax = fig.add_subplot(gs0[i, j]) plot_digit(imgs[i * dim + j], ax=ax) if (i == 0) and (j == 2): if title is not None: ax.set_title(title) def initialise_params(N_vis, N_hid, key): Initialise the parameters. Args: N_vis - number of visible units. N_hid - number of hidden units. key - PRNG key. Returns: params - (W, a, b), Weights and biases for network. W_key, a_key, b_key = random.split(key, 3) W = random.normal(W_key, (N_vis, N_hid)) * 0.01 a = random.normal(a_key, (N_hid,)) * 0.01 b = random.normal(b_key, (N_vis,)) * 0.01 return (W, a, b) @jit def sample_hidden(vis, params, key): Performs the hidden layer sampling, P(h|v;θ). Args: vis - state of the visible units. params - (W, a, b), Weights and biases for network. key - PRNG key. Returns: The probabilities and states of the hidden layer sampling. W, a, _ = params activation = jnp.dot(vis, W) + a hid_probs = jax.nn.sigmoid(activation) hid_states = random.bernoulli(key, hid_probs).astype("int8") return hid_probs, hid_states @jit def sample_visible(hid, params, key): Performs the visible layer sampling, P(v|h;θ). Args: hid - state of the hidden units params - (W, a, b), Weights and biases for network. key - PRNG key. Returns: The probabilities and states of the visible layer sampling. W, _, b = params activation = jnp.dot(hid, W.T) + b vis_probs = jax.nn.sigmoid(activation) vis_states = random.bernoulli(key, vis_probs).astype("int8") return vis_probs, vis_states @jit def CD1(vis_sample, params, key): The one-step contrastive divergence algorithm. Can handle batches of training data. Args: vis_sample - sample of visible states from data. params - (W, a, b), Weights and biases for network. key - PRNG key. Returns: An estimate of the gradient of the log likelihood with respect to the parameters. key, subkey = random.split(key) hid_prob0, hid_state0 = sample_hidden(vis_sample, params, subkey) key, subkey = random.split(key) vis_prob1, vis_state1 = sample_visible(hid_state0, params, subkey) key, subkey = random.split(key) # It would be more efficient here to not actual sample the unused states. hid_prob1, _ = sample_hidden(vis_state1, params, subkey) delta_W = jnp.einsum("...j,...k->...jk", vis_sample, hid_prob0) - jnp.einsum( "...j,...k->...jk", vis_state1, hid_prob1 ) delta_a = hid_prob0 - hid_prob1 delta_b = vis_sample - vis_state1 return (delta_W, delta_a, delta_b) @jit def reconstruct_vis(vis_sample, params, key): Reconstruct the visible state from a conditional sample of the hidden units. Returns Reconstruction probabilities. subkey1, subkey2 = random.split(key, 2) _, hid_state = sample_hidden(vis_sample, params, subkey1) vis_recon_prob, _ = sample_visible(hid_state, params, subkey2) return vis_recon_prob @jit def reconstruction_loss(vis_samples, params, key): Calculate the L2 loss between a batch of visible samples and their reconstructions. Note this is a heuristic for evaluating training progress, not an objective function. reconstructed_samples = reconstruct_vis(vis_samples, params, key) loss = optax.l2_loss(vis_samples.astype("float32"), reconstructed_samples).mean() return loss @jit def vis_free_energy(vis_state, params): Calculate the free enery of a visible state. The free energy of a visible state is equal to the sum of the energies of all of the configurations of the total state (hidden + visible) which contain that visible state. Args: vis_state - state of the visible units. params - (W, a, b), Weights and biases for network. key - PRNG key. Returns: The free energy of the visible state. W, a, b = params activation = jnp.dot(vis_state, W) + a return -jnp.dot(vis_state, b) - jnp.sum(jax.nn.softplus(activation)) @jit def free_energy_gap(vis_train_samples, vis_test_samples, params): Calculate the average difference in free energies between test and train data. The free energy gap can be used to evaluate overfitting. If the model starts to overfit the training data the free energy gap will start to become increasingly negative. Args: vis_train_samples - samples of visible states from training data. vis_test_samples - samples of visible states from validation data. params - (W, a, b), Weights and biases for network. Returns: The difference between the test and validation free energies. train_FE = vmap(vis_free_energy, (0, None))(vis_train_samples, params) test_FE = vmap(vis_free_energy, (0, None))(vis_test_samples, params) return train_FE.mean() - test_FE.mean() @jit def evaluate_params(train_samples, test_samples, params, key): Calculate performance measures of parameters. train_key, test_key = random.split(key) train_recon_loss = reconstruction_loss(train_samples, params, train_key) test_recon_loss = reconstruction_loss(test_samples, params, test_key) FE_gap = free_energy_gap(train_samples, test_samples, params) return train_recon_loss, test_recon_loss, FE_gap def preprocess_images(images): images = images.reshape((len(images), -1)) return jnp.array(images > (255 / 2), dtype="float32") def load_mnist(split): images, labels = tfds.as_numpy(tfds.load("mnist", split=split, batch_size=-1, as_supervised=True)) procced_images = preprocess_images(images) return procced_images, labels mnist_train_imgs, mnist_train_labels = load_mnist("train") mnist_test_imgs, mnist_test_labels = load_mnist("test") def train_RBM(params, train_data, optimizer, key, eval_samples, n_epochs=5, batch_size=20): Optimize parameters of RBM using the CD1 algoritm. @jit def batch_step(params, opt_state, batch, key): grads = jax.tree_map(lambda x: x.mean(0), CD1(batch, params, key)) updates, opt_state = optimizer.update(grads, opt_state, params) params = jax.tree_map(lambda p, u: p - u, params, updates) return params, opt_state opt_state = optimizer.init(params) metric_list = [] param_list = [params] n_batches = len(train_data) // batch_size for _ in range(n_epochs): key, subkey = random.split(key) perms = random.permutation(subkey, len(mnist_train_imgs)) perms = perms[: batch_size * n_batches] # Skip incomplete batch perms = perms.reshape((n_batches, -1)) for n, perm in enumerate(perms): batch = mnist_train_imgs[perm, ...] key, subkey = random.split(key) params, opt_state = batch_step(params, opt_state, batch, subkey) if n % 200 == 0: key, eval_key = random.split(key) batch_metrics = evaluate_params(*eval_samples, params, eval_key) metric_list.append(batch_metrics) param_list.append(params) return params, metric_list, param_list # In practice you can use many more than 100 hidden units, up to 1000-2000. # A small number is chosen here so that training is fast. N_vis, N_hid = mnist_train_imgs.shape[-1], 100 key = random.PRNGKey(111) key, subkey = random.split(key) init_params = initialise_params(N_vis, N_hid, subkey) optimizer = optax.sgd(learning_rate=0.05, momentum=0.9) eval_samples = (mnist_train_imgs[:1000], mnist_test_imgs[:1000]) params, metric_list, param_list = train_RBM(init_params, mnist_train_imgs, optimizer, key, eval_samples) train_recon_loss, test_recon_loss, FE_gap = list(zip(*metric_list)) epoch_progress = np.linspace(0, 5, len(train_recon_loss)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6)) ax1.plot(epoch_progress, train_recon_loss, label="Train Reconstruction Loss") ax1.plot(epoch_progress, test_recon_loss, label="Test Reconstruction Loss") ax1.legend() ax1.set_xlabel("Epoch") ax1.set_ylabel("Loss") ax2.plot(epoch_progress, FE_gap) ax2.set_xlabel("Epoch") ax2.set_ylabel("Free Energy Gap"); vis_data_samples = mnist_test_imgs[:25] fig = plt.figure(figsize=(15, 5)) gs_bases = gridspec.GridSpec(1, 3, figure=fig) recon_params = (param_list[0], param_list[1], param_list[-1]) subfig_titles = ("Initial", "Epoch 1", "Epoch 5") key, subkey = random.split(key) for gs_base, epoch_param, sf_title in zip(gs_bases, recon_params, subfig_titles): # Use the same subkey for all parameter sets. vis_recon_probs = reconstruct_vis(vis_data_samples, epoch_param, subkey) title = f"{sf_title} Parameters" gridspec_plot_imgs(vis_recon_probs, gs_base, title) fig.suptitle("Reconstruction Samples", fontsize=20); class RBM_LogReg: Perform logistic regression on samples transformed to RBM hidden representation with `params`. def __init__(self, params): self.params = params self.LR = LogisticRegression(solver="saga", tol=0.1) def _transform(self, samples): W, a, _ = self.params activation = jnp.dot(samples, W) + a hidden_probs = jax.nn.sigmoid(activation) return hidden_probs def fit(self, train_samples, train_labels): transformed_samples = self._transform(train_samples) self.LR.fit(transformed_samples, train_labels) def score(self, test_samples, test_labels): transformed_samples = self._transform(test_samples) return self.LR.score(transformed_samples, test_labels) def predict(self, test_samples): transformed_samples = self._transform(test_samples) return self.LR.predict(transformed_samples) def reconstruct_samples(self, samples, key): return reconstruct_vis(samples, self.params, key) train_data = (mnist_train_imgs, mnist_train_labels) test_data = (mnist_test_imgs, mnist_test_labels) # Train LR classifier on the raw pixel data for comparison. LR_raw = LogisticRegression(solver="saga", tol=0.1) LR_raw.fit(*train_data) # LR classifier trained on hidden representations after 1 Epoch of training. rbm_lr1 = RBM_LogReg(param_list[1]) rbm_lr1.fit(*train_data) # LR classifier trained on hidden representations after 5 Epochs of training. rbm_lr5 = RBM_LogReg(param_list[-1]) rbm_lr5.fit(*train_data) print("Logistic Regression Accuracy:") print(f"\tRaw Data: {LR_raw.score(*test_data)}") print(f"\tHidden Units Epoch-1: {rbm_lr1.score(*test_data)}") print(f"\tHidden Units Epoch-5: {rbm_lr5.score(*test_data)}") class1_correct = rbm_lr1.predict(mnist_test_imgs) == mnist_test_labels class5_correct = rbm_lr5.predict(mnist_test_imgs) == mnist_test_labels diff_class_img_idxs = np.where(class5_correct & ~class1_correct)[0] print(f"There are {len(diff_class_img_idxs)} images which were correctly labelled after >1 Epochs of training.") key = random.PRNGKey(100) # Try out different subsets of img indices. idx_list = diff_class_img_idxs[100:] n_rows = 5 fig, axs = plt.subplots(n_rows, 3, figsize=(9, 20)) for img_idx, ax_row in zip(idx_list, axs): ax1, ax2, ax3 = ax_row img = mnist_test_imgs[img_idx] plot_digit(img, ax=ax1) true_label = mnist_test_labels[img_idx] ax1.set_title(f"Raw Image\nTrue Label: {true_label}") epoch1_recon = rbm_lr1.reconstruct_samples(img, key) plot_digit(epoch1_recon, ax=ax2) hid1_label = rbm_lr1.predict(img[None, :])[0] ax2.set_title(f"Epoch 1 Reconstruction\nPredicted Label: {hid1_label} (incorrect)") epoch5_recon = rbm_lr5.reconstruct_samples(img, key) hid5_label = rbm_lr5.predict(img[None, :])[0] plot_digit(epoch5_recon, ax=ax3) ax3.set_title(f"Epoch 5 Reconstruction\nPredicted Label: {hid5_label} (correct)"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step4: Plotting functions Step14: Restricted Boltzmann Machines Step15: Load MNIST Step17: Training with optax Step18: Evaluating Training Step20: Classification Step21: The increase in accuracy here is modest because of the small number of hidden units. When 1000 hidden units are used the Epoch-5 accuracy approaches 97.5%. Step22: We can explore the quality of the learned hidden tranformation by inspecting reconstructions of these test images.
2,751
<ASSISTANT_TASK:> Python Code: import numpy from keras.datasets import imdb from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers.embeddings import Embedding from keras.preprocessing import sequence # fix random seed for reproducibility numpy.random.seed(7) # load the dataset but only keep the top n words, zero the rest top_words = 5000 (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=top_words) # truncate and pad input sequences max_review_length = 500 X_train = sequence.pad_sequences(X_train, maxlen=max_review_length) X_test = sequence.pad_sequences(X_test, maxlen=max_review_length) # create the model embedding_vecor_length = 32 model = Sequential() model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length)) model.add(LSTM(100)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) %%capture output model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=1, batch_size=64) output.show() # step redundent, eval part of training already # Final evaluation of the model scores = model.evaluate(X_test, y_test, verbose=0) print("Accuracy: %.2f%%" % (scores[1]*100)) from keras.layers import Dropout model = Sequential() model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length, dropout=0.2)) model.add(Dropout(0.2)) model.add(LSTM(100)) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) %%capture output model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=1, batch_size=64) output.show() # Final evaluation of the model #scores = model.evaluate(X_test, y_test, verbose=0) #print("Accuracy: %.2f%%" % (scores[1]*100)) model = Sequential() model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length, dropout=0.2)) model.add(LSTM(100, dropout_W=0.2, dropout_U=0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) %%capture output model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=1, batch_size=64) output.show() from keras.layers.convolutional import Convolution1D from keras.layers.convolutional import MaxPooling1D model = Sequential() model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length)) model.add(Convolution1D(nb_filter=32, filter_length=3, border_mode='same', activation='relu')) model.add(MaxPooling1D(pool_length=2)) model.add(LSTM(100)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) %%capture output model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=1, batch_size=64) output.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: You can see that this simple LSTM with little tuning achieves near state-of-the-art results on the IMDB problem. Importantly, this is a template that you can use to apply LSTM networks to your own sequence classification problems. Step2: We can see dropout having the desired impact on training with a slightly slower trend in convergence and in this case a lower final accuracy. The model could probably use a few more epochs of training and may achieve a higher skill (try it an see). Step3: We can see that the LSTM specific dropout has a more pronounced effect on the convergence of the network than the layer-wise dropout. As above, the number of epochs was kept constant and could be increased to see if the skill of the model can be further lifted.
2,752
<ASSISTANT_TASK:> Python Code: import numpy as np ints = np.arange(1,21) pows = 2**ints print(pows) print(pows[9], pows[19]) sum = 0 for i in range(1, 100): sum += i if sum > 200: print(i, sum) break from scipy.special import factorial def fxn(n, k): '''Computes the number of permutations of n objects in a k-length sequence. Args: n: The number of objects k: The sequence length Retunrs: The number of permutations of fixed length. ''' return factorial(n) / factorial(n - k) cats = 1 while fxn(n=30, k=cats) < 10**6: cats += 1 print(cats) 0.75 * 0.25 gsum = 0 n = 0 p = 0.75 while gsum < 0.99: n += 1 gsum += (1 - p)**(n - 1) * p print(n, gsum) from scipy import stats as ss mu = 27500 sig = 15000 Z = (0 - mu) / sig print(ss.norm.cdf(Z)) Z = (67000 - mu) / sig print(1 - ss.norm.cdf(Z)) ss.norm.ppf(0.99, scale=sig, loc=mu) def annual(P, r=0.05, W=30000): '''Computes the change in principal after one year Args: P: The principal - amount of money at the beginning of the year r: The rate of return from principal W: The amount withdrawn Returns: The new principal''' P -= W P *= (r + 1) return P def terminator(P, r=0.05, W=30000, upper_limit=50): '''Finds the number of years before the principal is exhausted. Args: P: The principal - amount of money at the beginning of the year r: The rate of return from principal W: The amount withdrawn upper_limit: The maximum iterations before giving up. Returns: The new principal''' for i in range(upper_limit): if(P < 0): break P = annual(P, r, W) return i terminator(250000) %matplotlib inline import matplotlib.pyplot as plt import numpy as np ps = [i / 1000. for i in range(10**5, int(5 * 10**5), 100)] ys = [terminator(p * 1000) for p in ps] plt.plot(ps, ys) plt.xlabel('Thousands of Dollars') plt.ylabel('Years') plt.show() ps = [i / 1000. for i in range(10**5, int(7.5 * 10**5), 100)] ys = [terminator(p * 1000, upper_limit=1000) for p in ps] plt.plot(ps, ys) plt.show() from scipy import stats as ss def s_annual(P, r=0.05, W=30000, sig_r=0.03, sig_W=10000): '''Computes the change in principal after one year with stochastic Args: P: The principal - amount of money at the beginning of the year r: The rate of return from principal W: The amount withdrawn Returns: The new principal''' P -= ss.norm.rvs(size=1,scale=sig_W, loc=W) P *= (ss.norm.rvs(size=1, scale=sig_r, loc=r) + 1) return P def s_terminator(P, r=0.05, W=30000, upper_limit=50): for i in range(upper_limit): if(P < 0): break P = s_annual(P, r, W) return i samples = [] for i in range(1000): samples.append(s_terminator(2.5 * 10**5)) plt.hist(samples) plt.show() def s_threshold(P, y): '''Returns the fraction of times the principal P lasts longer than y''' success = 0 for i in range(1000): if s_terminator(P) > y: success += 1 return success / 1000 s_threshold(2.5 * 10**5, 10) p = np.linspace(1 * 10**5, 10 * 10**5, 200) for pi in p: if s_threshold(pi, 25) > 0.95: print(pi) break import random import scipy.stats scipy.stats.geom? <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: $$2^{10} \approx 10^3$$ Step2: 1.3 Answer Step3: 1.4 Answer Step4: 2. Watching Youtube with the Geometric Distribution (15 Points) Step5: 2.4 Answer Step6: You will return after watching the 4th video Step7: The assumption is OK, only 3% of our probability is in "impossible" values of negative numbers Step8: The probability is 0.4%. It appears this is a bad model since income is much more spread than this. Step9: The top 1% of earners is anyone above $62,395 Step10: 5. The Excellent Retirement Simulator - Stochastic (9 Points)
2,753
<ASSISTANT_TASK:> Python Code: # Execute this cell import numpy as np import scipy.stats from astroML import stats as astroMLstats data = np.random.random(1000) # Execute this cell mean = np.mean(data) print mean # Execute this cell. Think about what it is doing. median = np.median(data) mask = data>0.75 data[mask] = data[mask]*2 newmedian = np.median(data) newmean = np.mean(data) print median,newmedian print mean,newmean # Execute this cell var = np.var(data) # Execute this cell std = np.std(data) # Complete this cell and execute q25,q50,q75 = # Complete # Execute this cell astroMLstats.sigmaG(data) # Execute this cell mode = scipy.stats.mode(data) # Execute this cell modealt = 3*q50 - 2*mean # Execute this cell skew = scipy.stats.skew(data) kurt = scipy.stats.kurtosis(data) # Excute this cell print mean, median, var, std, skew, kurt, mode.mode, modealt, q25, q50, q75 # Complete and Execute this cell ndata = # Make this a normal distribution with mean=0, sigma=1 with a sample size of 10000 # Compute all the above stats for this distribution print np.mean(ndata), np.median(ndata), np.var(ndata), np.std(ndata) print scipy.stats.skew(ndata), scipy.stats.kurtosis(ndata), scipy.stats.mode(ndata).mode print np.percentile(ndata, [25,50,75]) # Execute this cell %matplotlib inline %run code/fig_uniform_distribution.py # Complete and execute this cell from scipy import stats dist = # Complete for left edge = 0, width = 2 r = dist # Complete for 10 random draws print r p = dist # Complete for pdf evaluated at x=1 print p # Execute this cell %run code/fig_gaussian_distribution.py # Complete and execute this cell from scipy import stats dist = # Normal distribution with mean = 0, stdev = 1 r = # 10 random draws p = # pdf evaluated at x=0 print p,r # Uncomment the next line and run # I just want you to know that this magic function exists. #%load code/fig_gaussian_distribution.py # Complete and execute this cell N=10000 mu=0 sigma=1 dist = # Complete v = np.linspace( # Complete prob = # Complete print prob.sum() # Execute this cell x = stats.norm(0,1) # mean = 0, stdev = 1 y = np.exp(x) print y.mean() print x # Complete and execute this cell dist = stats.norm(0,1) # mean = 0, stdev = 1 x = # Complete y = # Complete print x.mean(),np.log(y.mean()) # Execute this cell %run code/fig_chi2_distribution.py # Execute this cell %run code/fig_student_t_distribution.py import numpy as np from matplotlib import pyplot as plt from scipy.stats import norm N= # Complete mu= # Complete sigma = # Complete u = # Complete dist = # Complete plt.plot(u, # Complete x = # Complete plt.plot(x, 0*x, '|', markersize=50) # Copy your code from above # Add a histogram that is the 2-sample mean of 1,000,000 draws yy = # Complete plt.hist(yy, #Complete # Copy your code from above and edit accordingly (or just edit your code from above) # Execute this cell %run code/fig_central_limit.py # Base code drawn from Ivezic, Figure 3.22, edited by G. Richards to simplify the example from matplotlib.patches import Ellipse from astroML.stats.random import bivariate_normal from astroML.stats import fit_bivariate_normal #------------------------------------------------------------ # Create 10,000 points from a multivariate normal distribution mean = [0, 0] cov = [[1, 0.3], [0.3, 1]] x, y = np.random.multivariate_normal(mean, cov, 10000).T # Fit those data with a bivariate normal distribution mean, sigma_x, sigma_y, alpha = fit_bivariate_normal(x,y) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 5)) ax = fig.add_subplot(111) plt.scatter(x,y,s=2,edgecolor='none') # draw 1, 2, 3-sigma ellipses over the distribution for N in (1, 2, 3): ax.add_patch(Ellipse(mean, N * sigma_x, N * sigma_y, angle=alpha * 180./np.pi, lw=1, ec='k', fc='none')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The arithmetic mean (or Expectation value) is Step2: While it is perhaps most common to compute the mean, the median is a more robust estimator of the (true) mean location of the distribution. That's because it is less affected by outliers. Step3: In addition to the "average", we'd like to know something about deviations from the average. The simplest thing to compute is $$d_i = x_i - \mu.$$ However, the average deviation is zero by definition of the mean. The next simplest thing to do is to compute the mean absolute deviation Step4: And we define the standard deviation as Step5: There is also the Median Absolute Deviation (MAD) given by Step6: Where we call the difference between the 25th and 75th percentiles, $q_{75} - q_{25}$, the interquartile range. Step7: The mode is the most probable value, determined from the peak of the distribution, which is the value where the derivative is 0 Step8: Another way to estimate the mode (at least for a Gaussian distribution) is Step9: Other useful measures include the "higher order" moments (the skewness and kurtosis) Step10: We could do the same with a normal distribution Step11: Sample vs. Population Statistics Step12: We can implement uniform in scipy as follows. Use the methods listed at the bottom of the link to complete the cell. Step13: Did you expect that answer for the pdf? Why? What would the pdf be if you changed the width to 4? Step14: Note that the convolution of two Gaussians results in a Gaussian. So $\mathscr{N}(\mu,\sigma)$ convolved with $\mathscr{N}(\nu,\rho)$ is $\mathscr{N}(\mu+\nu,\sqrt{\sigma^2+\rho^2})$ Step15: Log Normal Step16: The catch here is that stats.norm(0,1) returns an object and not something that we can just do math on in the expected manner. What can you do with it? Try dir(x) to get a list of all the methods and properties. Step17: $\chi^2$ Distribution Step18: Student's $t$ Distribution Step19: What's the point? Step20: Now let's average those two draws and plot the result (in the same panel). Do it as a histogram for 1,000,000 samples (of 2 each). Use a stepfilled histogram that is normalized with 50% transparency and 100 bins. Step21: Now instead of averaging 2 draws, average 3. Then do it for 10. Then for 100. Each time for 1,000,000 samples. Step22: For 100 you will note that your draws are clearly sampling the full range, but the means of those draws are in a much more restrictred range. Moreover they are very closely following a Normal Distribution. This is the power of the Central Limit Theorem. We'll see this more later when we talk about maximum likelihood. Step23: If you are confused, then watch this video from the Khan Academy
2,754
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers inputs = keras.Input(shape=(784,)) # Just for demonstration purposes. img_inputs = keras.Input(shape=(32, 32, 3)) inputs.shape inputs.dtype dense = layers.Dense(64, activation="relu") x = dense(inputs) x = layers.Dense(64, activation="relu")(x) outputs = layers.Dense(10)(x) model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model") model.summary() keras.utils.plot_model(model, "my_first_model.png") keras.utils.plot_model(model, "my_first_model_with_shape_info.png", show_shapes=True) (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(60000, 784).astype("float32") / 255 x_test = x_test.reshape(10000, 784).astype("float32") / 255 model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.RMSprop(), metrics=["accuracy"], ) history = model.fit(x_train, y_train, batch_size=64, epochs=2, validation_split=0.2) test_scores = model.evaluate(x_test, y_test, verbose=2) print("Test loss:", test_scores[0]) print("Test accuracy:", test_scores[1]) model.save("path_to_my_model") del model # Recreate the exact same model purely from the file: model = keras.models.load_model("path_to_my_model") encoder_input = keras.Input(shape=(28, 28, 1), name="img") x = layers.Conv2D(16, 3, activation="relu")(encoder_input) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.Conv2D(16, 3, activation="relu")(x) encoder_output = layers.GlobalMaxPooling2D()(x) encoder = keras.Model(encoder_input, encoder_output, name="encoder") encoder.summary() x = layers.Reshape((4, 4, 1))(encoder_output) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) x = layers.Conv2DTranspose(32, 3, activation="relu")(x) x = layers.UpSampling2D(3)(x) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x) autoencoder = keras.Model(encoder_input, decoder_output, name="autoencoder") autoencoder.summary() encoder_input = keras.Input(shape=(28, 28, 1), name="original_img") x = layers.Conv2D(16, 3, activation="relu")(encoder_input) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.Conv2D(16, 3, activation="relu")(x) encoder_output = layers.GlobalMaxPooling2D()(x) encoder = keras.Model(encoder_input, encoder_output, name="encoder") encoder.summary() decoder_input = keras.Input(shape=(16,), name="encoded_img") x = layers.Reshape((4, 4, 1))(decoder_input) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) x = layers.Conv2DTranspose(32, 3, activation="relu")(x) x = layers.UpSampling2D(3)(x) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x) decoder = keras.Model(decoder_input, decoder_output, name="decoder") decoder.summary() autoencoder_input = keras.Input(shape=(28, 28, 1), name="img") encoded_img = encoder(autoencoder_input) decoded_img = decoder(encoded_img) autoencoder = keras.Model(autoencoder_input, decoded_img, name="autoencoder") autoencoder.summary() def get_model(): inputs = keras.Input(shape=(128,)) outputs = layers.Dense(1)(inputs) return keras.Model(inputs, outputs) model1 = get_model() model2 = get_model() model3 = get_model() inputs = keras.Input(shape=(128,)) y1 = model1(inputs) y2 = model2(inputs) y3 = model3(inputs) outputs = layers.average([y1, y2, y3]) ensemble_model = keras.Model(inputs=inputs, outputs=outputs) num_tags = 12 # Number of unique issue tags num_words = 10000 # Size of vocabulary obtained when preprocessing text data num_departments = 4 # Number of departments for predictions title_input = keras.Input( shape=(None,), name="title" ) # Variable-length sequence of ints body_input = keras.Input(shape=(None,), name="body") # Variable-length sequence of ints tags_input = keras.Input( shape=(num_tags,), name="tags" ) # Binary vectors of size `num_tags` # Embed each word in the title into a 64-dimensional vector title_features = layers.Embedding(num_words, 64)(title_input) # Embed each word in the text into a 64-dimensional vector body_features = layers.Embedding(num_words, 64)(body_input) # Reduce sequence of embedded words in the title into a single 128-dimensional vector title_features = layers.LSTM(128)(title_features) # Reduce sequence of embedded words in the body into a single 32-dimensional vector body_features = layers.LSTM(32)(body_features) # Merge all available features into a single large vector via concatenation x = layers.concatenate([title_features, body_features, tags_input]) # Stick a logistic regression for priority prediction on top of the features priority_pred = layers.Dense(1, name="priority")(x) # Stick a department classifier on top of the features department_pred = layers.Dense(num_departments, name="department")(x) # Instantiate an end-to-end model predicting both priority and department model = keras.Model( inputs=[title_input, body_input, tags_input], outputs=[priority_pred, department_pred], ) keras.utils.plot_model(model, "multi_input_and_output_model.png", show_shapes=True) model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.BinaryCrossentropy(from_logits=True), keras.losses.CategoricalCrossentropy(from_logits=True), ], loss_weights=[1.0, 0.2], ) model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={ "priority": keras.losses.BinaryCrossentropy(from_logits=True), "department": keras.losses.CategoricalCrossentropy(from_logits=True), }, loss_weights={"priority": 1.0, "department": 0.2}, ) # Dummy input data title_data = np.random.randint(num_words, size=(1280, 10)) body_data = np.random.randint(num_words, size=(1280, 100)) tags_data = np.random.randint(2, size=(1280, num_tags)).astype("float32") # Dummy target data priority_targets = np.random.random(size=(1280, 1)) dept_targets = np.random.randint(2, size=(1280, num_departments)) model.fit( {"title": title_data, "body": body_data, "tags": tags_data}, {"priority": priority_targets, "department": dept_targets}, epochs=2, batch_size=32, ) inputs = keras.Input(shape=(32, 32, 3), name="img") x = layers.Conv2D(32, 3, activation="relu")(inputs) x = layers.Conv2D(64, 3, activation="relu")(x) block_1_output = layers.MaxPooling2D(3)(x) x = layers.Conv2D(64, 3, activation="relu", padding="same")(block_1_output) x = layers.Conv2D(64, 3, activation="relu", padding="same")(x) block_2_output = layers.add([x, block_1_output]) x = layers.Conv2D(64, 3, activation="relu", padding="same")(block_2_output) x = layers.Conv2D(64, 3, activation="relu", padding="same")(x) block_3_output = layers.add([x, block_2_output]) x = layers.Conv2D(64, 3, activation="relu")(block_3_output) x = layers.GlobalAveragePooling2D()(x) x = layers.Dense(256, activation="relu")(x) x = layers.Dropout(0.5)(x) outputs = layers.Dense(10)(x) model = keras.Model(inputs, outputs, name="toy_resnet") model.summary() keras.utils.plot_model(model, "mini_resnet.png", show_shapes=True) (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=keras.losses.CategoricalCrossentropy(from_logits=True), metrics=["acc"], ) # We restrict the data to the first 1000 samples so as to limit execution time # on Colab. Try to train on the entire dataset until convergence! model.fit(x_train[:1000], y_train[:1000], batch_size=64, epochs=1, validation_split=0.2) # Embedding for 1000 unique words mapped to 128-dimensional vectors shared_embedding = layers.Embedding(1000, 128) # Variable-length sequence of integers text_input_a = keras.Input(shape=(None,), dtype="int32") # Variable-length sequence of integers text_input_b = keras.Input(shape=(None,), dtype="int32") # Reuse the same layer to encode both inputs encoded_input_a = shared_embedding(text_input_a) encoded_input_b = shared_embedding(text_input_b) vgg19 = tf.keras.applications.VGG19() features_list = [layer.output for layer in vgg19.layers] feat_extraction_model = keras.Model(inputs=vgg19.input, outputs=features_list) img = np.random.random((1, 224, 224, 3)).astype("float32") extracted_features = feat_extraction_model(img) class CustomDense(layers.Layer): def __init__(self, units=32): super(CustomDense, self).__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b inputs = keras.Input((4,)) outputs = CustomDense(10)(inputs) model = keras.Model(inputs, outputs) class CustomDense(layers.Layer): def __init__(self, units=32): super(CustomDense, self).__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b def get_config(self): return {"units": self.units} inputs = keras.Input((4,)) outputs = CustomDense(10)(inputs) model = keras.Model(inputs, outputs) config = model.get_config() new_model = keras.Model.from_config(config, custom_objects={"CustomDense": CustomDense}) units = 32 timesteps = 10 input_dim = 5 # Define a Functional model inputs = keras.Input((None, units)) x = layers.GlobalAveragePooling1D()(inputs) outputs = layers.Dense(1)(x) model = keras.Model(inputs, outputs) class CustomRNN(layers.Layer): def __init__(self): super(CustomRNN, self).__init__() self.units = units self.projection_1 = layers.Dense(units=units, activation="tanh") self.projection_2 = layers.Dense(units=units, activation="tanh") # Our previously-defined Functional model self.classifier = model def call(self, inputs): outputs = [] state = tf.zeros(shape=(inputs.shape[0], self.units)) for t in range(inputs.shape[1]): x = inputs[:, t, :] h = self.projection_1(x) y = h + self.projection_2(state) state = y outputs.append(y) features = tf.stack(outputs, axis=1) print(features.shape) return self.classifier(features) rnn_model = CustomRNN() _ = rnn_model(tf.zeros((1, timesteps, input_dim))) units = 32 timesteps = 10 input_dim = 5 batch_size = 16 class CustomRNN(layers.Layer): def __init__(self): super(CustomRNN, self).__init__() self.units = units self.projection_1 = layers.Dense(units=units, activation="tanh") self.projection_2 = layers.Dense(units=units, activation="tanh") self.classifier = layers.Dense(1) def call(self, inputs): outputs = [] state = tf.zeros(shape=(inputs.shape[0], self.units)) for t in range(inputs.shape[1]): x = inputs[:, t, :] h = self.projection_1(x) y = h + self.projection_2(state) state = y outputs.append(y) features = tf.stack(outputs, axis=1) return self.classifier(features) # Note that you specify a static batch size for the inputs with the `batch_shape` # arg, because the inner computation of `CustomRNN` requires a static batch size # (when you create the `state` zeros tensor). inputs = keras.Input(batch_shape=(batch_size, timesteps, input_dim)) x = layers.Conv1D(32, 3)(inputs) outputs = CustomRNN()(x) model = keras.Model(inputs, outputs) rnn_model = CustomRNN() _ = rnn_model(tf.zeros((1, 10, 5))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Functional API Step2: 前書き Step3: データの形状は、784次元のベクトルとして設定されます。各サンプルの形状のみを指定するため、バッチサイズは常に省略されます。 Step4: 返されるinputsには、モデルに供給する入力データの形状とdtypeについての情報を含みます。形状は次のとおりです。 Step5: dtype は次のとおりです。 Step6: このinputsオブジェクトのレイヤーを呼び出して、レイヤーのグラフに新しいノードを作成します。 Step7: 「レイヤー呼び出し」アクションは、「入力」から作成したこのレイヤーまで矢印を描くようなものです。denseレイヤーに入力を「渡して」、xを取得します。 Step8: この時点で、レイヤーのグラフの入力と出力を指定することにより、Modelを作成できます。 Step9: モデルの概要がどのようなものか、確認しましょう。 Step10: また、モデルをグラフとしてプロットすることも可能です。 Step11: そしてオプションで、プロットされたグラフに各レイヤーの入力形状と出力形状を表示します 。 Step12: この図とコードはほぼ同じです。コードバージョンでは、接続矢印は呼び出し演算に置き換えられています。 Step13: さらに詳しくはトレーニングと評価ガイドをご覧ください。 Step14: 詳細は、モデルシリアライゼーションと保存ガイドをご覧ください。 Step15: ここでは、デコーディングアーキテクチャはエンコーディングアーキテクチャに対して厳密に対称的であるため、出力形状は入力形状(28, 28, 1)と同じです。 Step16: ご覧のように、モデルはネストすることができ、(モデルはちょうどレイヤーのようなものであるため)サブモデルを含むことができます。モデル・ネスティングのための一般的なユースケースは アンサンブル です。モデルのセットを (それらの予測を平均する) 単一のモデルにアンサンブルする方法の例を次に示します。 Step17: 複雑なグラフトポロジーを操作する Step18: では、モデルをプロットします。 Step19: このモデルをコンパイルする時に、各出力に異なる損失を割り当てることができます。また、各損失に異なる重みを割り当てて、トレーニング損失全体へのそれらの寄与をモジュール化することも可能です。 Step20: 出力レイヤーの名前が異なるため、対応するレイヤー名を使用して、損失と損失の重みを指定することも可能です。 Step21: 入力とターゲットの NumPy 配列のリストを渡し、モデルをトレーニングします。 Step22: Datasetオブジェクトで fit を呼び出す時、それは([title_data, body_data, tags_data], [priority_targets, dept_targets])などのリストのタプル、または({'title' Step23: モデルをプロットします。 Step24: モデルをトレーニングします。 Step25: レイヤーを共有する Step26: レイヤーのグラフのノードを抽出して再利用する Step27: そしてこれらはグラフデータ構造をクエリして得られる、モデルの中間的なアクティブ化です。 Step28: これらの機能を使用して、中間レイヤーのアクティブ化の値を返す新しい特徴抽出モデルを作成します。 Step29: これは特に、ニューラルスタイル転送などのタスクに有用です。 Step30: カスタムレイヤーでシリアル化をサポートするには、レイヤーインスタンスのコンストラクタ引数を返す get_config メソッドを定義します。 Step31: オプションで、config ディクショナリが与えられたレイヤーインスタンスを再作成する際に使用されたクラスメソッド from_config(cls, config) を実装します。デフォルトの from_config の実装は以下の通りです。 Step32: 次のいずれかのパターンに従ったcallメソッドを実装していれば、Functional API で任意のサブクラス化されたレイヤーやモデルを使用することができます。
2,755
<ASSISTANT_TASK:> Python Code: import numpy as np import scipy.linalg as la a = np.array([[1,2,3], [4,5,6], [7,8,9]]) m = np.matrix([[1,2,3], [4,5,6]]) print('a=', a) print(19*'-') print('m=', m) print(19*'-') print('ndim(a) = ', np.ndim(a)) print('a.ndim = ', a.ndim) print(19*'-') print('np.ndim(m) = ', np.ndim(m)) print('m.ndim = ', m.ndim) a = np.array([[1,2,3], [4,5,6], [7,8,9]]) m = np.matrix([[1,2,3], [4,5,6]]) print('a=', a) print(19*'-') print('m=', m) print(19*'-') print('size(a) = ', np.size(a)) print('a.size = ', a.size) print(19*'-') print('np.size(m) = ', np.size(m)) print('m.size = ', m.size) a = np.array([[1,2,3], [4,5,6], [7,8,9]]) m = np.matrix([[1,2,3], [4,5,6]]) print('a=', a) print(19*'-') print('m=', m) print(19*'-') print('shape(a) = ', np.shape(a)) print('a.shape = ', a.shape) print(19*'-') print('np.shape(m) = ', np.shape(m)) print('m.shape = ', m.shape) a = np.array([[1,2,3], [4,5,6], [7,8,9]]) m = np.matrix([[1,2,3], [4,5,6]]) print('a=', a) print(19*'-') print('m=', m) print(19*'-') print('a.shape[2-1] = ', a.shape[2-1]) print(19*'-') print('m.shape[2-1] = ', m.shape[2-1]) a = np.array([[1.,2.,3.], [4.,5.,6.]]) m = np.matrix([[1.,2.,3.], [4.,5.,6.]]) print('a=', a) print(19*'-') print('m=', m) a = np.array([[1.,2.,3.], [4.,5.,6.]]) b = np.array([[10.,20.,30.], [40.,50.,60.]]) c = np.array([[11.,12.,13.], [14.,15.,16.]]) d = np.array([[19.,29.,39.], [49.,59.,69.]]) m = np.matrix([[1.,2.,3.], [4.,5.,6.]]) n = np.matrix([[10.,20.,30.], [40.,50.,60.]]) r = np.matrix([[11.,12.,13.], [14.,15.,16.]]) p = np.matrix([[19.,29.,39.], [49.,59.,69.]]) e = np.vstack([np.hstack([a,b]), np.hstack([c,d])]) q = np.vstack([np.hstack([m,n]), np.hstack([r,p])]) print ('e = ', e) print ('q = ', q) f = np.bmat('a b; c d').A s = np.bmat('m n; r p').A print ('f = ', f) print ('s = ', s) a = np.array([1,2,3,4]) print(a[-1]) a = np.array([[1.,2.,3.,4.,5.], [6.,7.,8.,9.,10.],[11.,12.,13.,14.,15.]]) m = np.matrix([[1.,2.,3.,4.,5.], [6.,7.,8.,9.,10.],[11.,12.,13.,14.,15.]]) print('a=', a) print(39*'-') print('m=', m) print(39*'-') print(a[1,4]) print(39*'-') print(m[1,4]) a = np.array([[1.,2.,3.,4.,5.], [6.,7.,8.,9.,10.],[11.,12.,13.,14.,15.]]) m = np.matrix([[1.,2.,3.,4.,5.], [6.,7.,8.,9.,10.],[11.,12.,13.,14.,15.]]) print('a=', a) print(39*'-') print('m=', m) print(39*'-') print('2nd row of a: a[1] = ', a[1]) print('2nd row of a: a[1:] = ', a[1,:]) print(39*'-') print('2nd row of m: m[1] = ', m[1]) print('2nd row of m: m[1:]', m[1,:]) a=np.random.rand(8,5) print(a) a[0:5] a[:5] a[0:5,:] m = np.mat(a) #or np.asmatrix(a) m m[0:5] m[:5] m[0:5,:] a[-5:] m=np.mat(a) m m[-5:] a=np.random.rand(5,10) b= a.copy() print(a) a[0:3][:,4:9] a[np.ix_([1,3,4],[0,2])] a[2:21:2,:] a[::2,:] a[ ::-1,:] a[np.r_[:len(a),0]] a.transpose() a.T a.conj().T a.conj().transpose() a.dot(np.asarray(m)) a*a a/a a**3 a>0.5 np.nonzero(a>0.5) v = a[:,4].T a[:,np.nonzero(v>0.5)[0]] a[:,v.T>0.5] a = b.copy() a[a<0.5]=0 print(a) a = b.copy() a * (a>0.5) a[:] = 3 a a=np.random.rand(2,2) c = a.copy() b = a print(a), print(b) # changing b now changes a (anf vise veras) b[1,1] = 0 print(a) print(b) a[0,0] = -1 print(a) print(b) # changing c does not change a (and vise versa) a[0,1] = -10 print(a) print(c) c[1,0] = 20 print(a) print(c) y=a[1,:] print(a) print(y) a[1,1]=1 print(y) a.flatten() a = np.arange(1,11) a = np.arange(10) a = np.zeros((3,5)) print(a) a = np.zeros((2,3,5)) print(a) a = np.ones((3,4)) print(a) a = np.eye(3) print(a) a=np.random.rand(4,4) b = np.diag(a) print(a) print(b) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <span style="color Step2: <span style="color Step3: <span style="color Step4: <span style="color Step5: <span style="color Step6: <span style="color Step7: <span style="color Step8: <span style="color Step9: <span style="color Step10: <span style="color Step11: <span style="color Step12: <span style="color Step13: <span style="color Step14: <span style="color Step15: <span style="color Step16: <span style="color Step17: <span style="color Step18: <span style="color Step19: <span style="color Step20: <span style="color Step21: <span style="color Step22: <span style="color Step23: <span style="color Step24: <span style="color Step25: <span style="color Step26: <span style="color Step27: <span style="color Step28: <span style="color Step29: <span style="color Step30: <span style="color Step31: <span style="color Step32: <span style="color Step33: <span style="color Step34: <span style="color Step35: <span style="color Step36: <span style="color Step37: <span style="color Step38: <span style="color Step39: <span style="color Step40: <span style="color
2,756
<ASSISTANT_TASK:> Python Code: ipd.display( ipd.YouTubeVideo("ajCYQL8ouqw") ) ipd.display( ipd.YouTubeVideo("PrVu9WKs498", start=8) ) ipd.display( ipd.YouTubeVideo("Cxj8vSS2ELU", start=540) ) ipd.display( ipd.YouTubeVideo("ECvinPjmBVE", start=6) ) ipd.display( ipd.YouTubeVideo("DiW6XVFeFgo", start=60)) ipd.display( ipd.YouTubeVideo("YDjsoZKlG04", start=155)) ipd.display( ipd.YouTubeVideo("TG-ivjyyYhM", start=35)) ipd.display( ipd.VimeoVideo("96140435") ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: (Chords) Step2: One more Step3: Why MIR? Step4: Example Step5: Example Step6: Example Step7: Example
2,757
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import scipy.stats as st import seaborn from IPython.html.widgets import interact, interactive, fixed#functii necesare pt interactivitate from IPython.display import clear_output, display, HTML rcdef = plt.rcParams.copy() plt.rcParams['figure.figsize'] = 5, 3 seaborn.palplot(seaborn.color_palette()) colors=seaborn.color_palette()# colors[i] va fi culoarea i, i=0,...5 theta=2.0 V=st.expon(scale=theta)# se declara variabila aleatoare exponential distribuita #de parametru theta=2 x=np.linspace(0,20, 100) y=V.pdf(x) plt.title('Densitatea distributiei de probabilitate Exp(2)') plt.plot(x, y) print 'Media M(V)=', V.mean() theta=1.5 x=np.linspace(0,20, 100) y=st.expon.cdf(x,scale=theta) plt.title('Functia de repartitie a distributiei Exp(1.5)') plt.plot(x,y) print 'Dispersia pentru Exp(1.5):', st.expon.var(scale=theta) def Expopdf(theta): V=st.expon(scale=theta) x=np.linspace(0,10,100) y=V.pdf(x)# fig, ax = plt.subplots() ax.plot(x,y) ax.fill_between(x, y, alpha=0.3) ax.set_xlim(0,10) ax.set_ylim(0,2) ax.set_title(r'Variatia densitatilor de probabilitate $Exp(\theta)$') interact(Expopdf, theta=(0.5, 5.0, 0.5)) def Expocdf(theta): V=st.expon(scale=theta) x=np.linspace(0,10,100) y=V.cdf(x) fig, ax = plt.subplots() ax.plot(x,y) ax.fill_between(x, y, alpha=.33) ax.set_title(r'Variatia functiilor de repartitie $Exp(\theta)$') ax.set_xlim(0,10) ax.set_ylim(0, 1.0) interact(Expocdf, theta=(0.2, 3.2)) print 'Valoarea medie si dispersia sunt:', st.expon.mean(scale=2), st.expon.var(scale=2) vals=V.rvs(size=1000)# apeleaza simulatorul ce implementeaza metoda inversarii pt Exp(theta) histo=plt.hist(vals, bins=50, normed=True) valM=np.max(vals) x=np.linspace(0,valM, 100) plt.plot(x, V.pdf(x), color=colors[2]) alpha=3.0 V=st.pareto(alpha)# beta=2.0 x=np.linspace(0,20, 100) y=(1.0/beta)*V.pdf(x/beta) plt.plot(x,y) plt.fill_between(x, y, alpha=.33) plt.title('Densitatea de probabilitate Pareto') def Paretopdf(beta, alpha): x=np.linspace(0,20,100) y=(1.0/beta)*st.pareto.pdf(x/beta, alpha) fig, ax = plt.subplots() ax.plot(x,y) ax.fill_between(x, y, alpha=.33) ax.set_title(r'Variatia densitatilor de probabilitate $Pareto(\alpha, \beta)$') ax.set_ylim(0,3) interact(Paretopdf, beta=(0.2, 2, 0.2), alpha=(0.1, 3, 0.3)) plt.rcParams['figure.figsize'] = 8, 5 fig, ax = plt.subplots() beta=1 alphaVals=np.arange(0.2, 2.2, 0.4) for alpha in alphaVals: x=np.linspace(beta,20, 100) y=st.pareto.pdf(x,alpha) ax.plot(x,y, lw=2, label=r'$\alpha = %.1f $'%alpha) ax.set_title(r'Densitati ale distributiilor de probabilitate $Pareto(\alpha, 1)$') ax.legend() fig, ax = plt.subplots() alpha=0.8 betaVals=np.arange(0.2, 2.2, 0.4) for beta in betaVals: x=np.linspace(beta,20, 200) y=(1.0/beta)*st.pareto.pdf(x/beta,alpha) ax.plot(x,y, lw=2, label=r'$\beta = %.1f $'%beta) ax.set_title(r'Densitati ale distributiiilor de probabilitate $Pareto(0.8, \beta)$') ax.legend() plt.rcParams['figure.figsize'] = 5, 3 beta=0.5 def ParetoMeanVar(alpha): V=st.pareto(alpha)# beta setat pe 1 print 'media=', beta*V.mean() print 'dispersia=', beta**2*V.var() interact(ParetoMeanVar, beta=0.5, alpha=(0.1, 3)) plt.rcParams['figure.figsize'] = 6, 4 V=st.pareto(3.0)# alpha a fost setat pe 3.0 beta=1.5 c=1.0/beta fX=lambda x: c*V.pdf(c*x) vals=beta*V.rvs(size=1000) fig, ax=plt.subplots() ax.hist(vals, bins=50, normed=True) x=np.linspace(beta,20, 500) ax.plot(x, fX(x) , color=colors[2])#seaborn dark red V=st.norm() plt.rcParams['figure.figsize'] = 5, 3 x=np.linspace(-4, 4,100) plt.title('Densitatea de probabilitate N(0,1)') plt.plot(x, V.pdf(x)) m=2 sigma=0.75 W=st.norm(loc=m, scale=sigma) xx=np.linspace(m-4*sigma, m+4*sigma, 100) plt.title('Densitatea de probabilitate N(2, 0.75)') plt.plot(xx,W.pdf(xx)) def MedieVar(m): sigma=1 x=np.linspace(m-4*sigma, m+4*sigma, 100) y=st.norm.pdf(x,loc=m, scale=sigma) fig, ax = plt.subplots() ax.plot(x,y) ax.fill_between(x, y, alpha=.33) ax.set_title(r'Variatia graficului densitatii $N(m,1)$') ax.set_xlim(-4, 6) interact(MedieVar, m=(0,2, 0.2)) plt.rcParams['figure.figsize'] = 8, 5 fig, ax = plt.subplots() m=0 sigmaVals=np.arange(0.2, 2.2, 0.4) x=np.linspace(-7,7, 300) for sigma in sigmaVals: y=st.norm.pdf(x,loc=0, scale=sigma) ax.plot(x,y, label=r'$\sigma = %.1f $'%sigma) ax.legend() plt.rcParams['figure.figsize'] = 10, 4 fig=plt.figure() ax1=fig.add_subplot(121) x=np.linspace(-4,4, 200) y=st.norm.cdf(x) ax1.set_title('Graficul functiei de repartitiei $\Phi$') ax1.plot(x,y) ax2=fig.add_subplot(122) u=np.linspace(0,1,100) xx=st.norm.ppf(u) ax2.set_title('Graficul inversei, $\Phi^{-1}$') ax2.plot(u,xx) print 'alpha cvantila 0.4 si respectiv 0.78 este:', st.norm.ppf([0.4, 0.78]) plt.rcParams['figure.figsize'] = 5, 3 X=st.norm(loc=1.5, scale=0.8) fig,ax=plt.subplots() ax.set_xlim(-1.5, 4.5) vals=X.rvs(size=1000) histo=plt.hist(vals, bins=50, normed=True) x=np.linspace(np.min(vals), np.max(vals), 100) ax.plot(x, X.pdf(x), color=colors[2]) p=[0.3, 0.48, 0.22]#probabilitatile din definitia mixturii m=[-4.8, -0.5, 3.5]#lista mediilor celor 3 distributii sigma=[0.8, 1.0, 1.7]# lista abaterilor standard x=np.linspace(-10,10, 1000) y=np.zeros(x.shape) for i in range(3): y+=p[i]*st.norm.pdf(x,loc=m[i], scale=sigma[i]) plt.plot(x,y) plt.fill_between(x, y, alpha=.33) def simDiscrete(pr): k=0 F=pr[0] u=np.random.random() while(u>F): k+=1 F=F+pr[k] return k def GaussianMixture1D(N, p, m,sig): dis=[simDiscrete(p) for i in xrange(N)]#genereaza N observatii asupra distr discrete vals=np.empty(N, dtype=float)# vals va contine valorile generate ale mixturii n=len(p) for k in range(n): I=[j for j in range(N) if dis[j] == k]# lista indicilor elementelor listei dis, egale #cu k (k=0, 1, ..., m-1) s=len(I) va=st.norm.rvs(size=s, loc=m[k], scale=sig[k])#generam atatea valori din f_k #cat este lungimea lui I vals[I]=va # in pozitiile I copiem valorile generate return vals N=1000 vals=GaussianMixture1D(N,p, m, sigma) histo=plt.hist(vals, bins=50, normed=True) plt.plot(x,y, color=colors[2]) from IPython.core.display import HTML def css_styling(): styles = open("./custom.css", "r").read() return HTML(styles) css_styling() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: seaborn este o biblioteca destinata vizualizarii in statistica. Nu este inclusa in distributia Anaconda. Se bazeaza pe matplotlib si se instaleaza folosind pip. In cmd sau terminal se da comanda Step2: Pentru a le folosi in acest notebook in locul culorilor oferite de matplotlib, le salvam in Step3: In continuare evidentiem modalitatea de lucru cu variabile aleatoare continue, ce sunt instante ale clasei scipy.stats.NumeDistributie. Step4: O astfel de definitie a variabilei aleatoare se numeste "inghetata" (frozen random variable), in sensul Step5: O alta modalitate este sa nu inghetam definitia, ci sa apelam metodele pentru o variabila aleatoare, Step6: Pentru a vizualiza dependenta densitatii $Exp(\theta)$ de parametrul $\theta$ folosim functia interact Step7: Apelam functia interact care genereaza un widget si permite interactiunea cu graficul densitatii Step8: A se observa ca in $0$ densitatea ia valoarea $1/\theta$. Deci pe masura ce $\theta$ creste, Step9: Valoarea medie a distributiei $Exp(\theta)$ este $M(V)=\theta$, iar dispersia Step10: Sa simulam acum variabila aleatoare $Exp(\theta=2.0)$, generand 1000 de valori de observatie. Step11: Distributia Pareto Step12: Daca insa studiem o variabila aleatoare $X\sim Pareto(\alpha, \beta\neq 1)$, atunci exploatam relatiile de mai sus. Step13: Sa ilustram acum dependenta graficului densitatii Pareto de cei doi parametri, $\beta$ si $\alpha$ Step14: O alta modalitate de a vizualiza variatia graficului densitatii, cand unul din parametri este fix Step15: Fixand $\alpha=0.8$ si variind $\beta$ avem Step16: Am analizat in Cursul 15 media si dispersia distributiei Pareto si am concluzionat ca o variabila aleatoare Step17: Simulatorul distributiei Pareto standard implementeaza metoda inversarii, Step18: Distributia Pareto se mai numeste si distributie cu coada lunga (long tail distribution), Step19: O variabila aleatoare, $X\sim N(m,\sigma)$, normal distribuita de parametri $m, \sigma$, arbitrari, are densitatea de probabilitate Step20: Fixand parametrul $\sigma$ si variind media, $m$, graficul densitatii corespunzatoare se translateaza Step21: Fixand acum media pe 0 si variind abaterea standard, $\sigma$ avem Step22: Se observa ca pe masura ce abaterea standard creste, valorile unei varabile aleatoare $N(0,\sigma)$ sunt mai imprastiate in jurul mediei. Step23: Sa calculam $\alpha$-cvantila distributiei $N(0,1)$, pentru $\alpha=0.4$ si $\alpha=0.78$ Step24: Prin urmare $z_{0.4}\approx-0.25$, iar $z_{0.78}\approx 0.77$. Step25: Mixtura Gaussiana 1D Step26: Generam $N=1000$ de valori din mixtura de mai sus Step27: Histograma valorilor generate are alura graficului densitatii mixturii.
2,758
<ASSISTANT_TASK:> Python Code: import numpy as np from matplotlib import pyplot %matplotlib inline from matplotlib import rcParams rcParams['font.family'] = 'serif' rcParams['font.size'] = 16 a=0.3 # diffusion constant L = 1. # length of domain J = 41 # number of grid points dx = float(L)/float(J-1) # mesh size h = dx #x_grid = np.array([j*dx for j in range(J)]) # spatial grid points x_grid = np.linspace(0,1.0,J) # T = 1. # length of time N = 20 # number of time steps #dt = float(T)/float(N-1) # time step size sigma = .4 # stability if a dt/dx <= 1/2 ==> dt <= dx**2/(2*a) # hence, sigma < 0.5 dt = sigma*dx**2/a # stability: dt <= dx**2/(2*a) u = np.ones(J) #numpy function ones() lbound = np.where(x_grid >= 0.125) ubound = np.where(x_grid <= 0.25) bounds = np.intersect1d(lbound, ubound) u[bounds]=2 #setting u = 2 between 0.5 and 1 as per our I.C.s u0 = np.ones(J) pyplot.plot(x_grid, u, color='#003366', ls='--', lw=3) pyplot.ylim(0,2.5); for n in range(N): u0 = u.copy() u[1:-1] = u0[1:-1] + a*dt/dx**2*(u0[2:] -2*u0[1:-1] +u0[0:-2]) # Set Dirichlet boundary conditions u[0] = 1; u[N] = 1 if n%3 == 0: pyplot.plot(x_grid, u, color='#003366', ls='--', lw=3) pyplot.ylim(0,2.5); pyplot.plot(x_grid, u, color='#003366', ls='--', lw=3) pyplot.ylim(0.8,2.2); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Physical parameters Step2: Specify spatial grid in Python Step3: Specify temporal grid in Python Step4: Goal Step5: That leaves us with two vectors
2,759
<ASSISTANT_TASK:> Python Code: #relatively fast networks package (pip install python-igraph) that I used for these homeworks import igraph # slow-and-steady networks package. fewer bugs, easier drawing import networkx as nx # plots! import matplotlib.pyplot as plt from matplotlib import style %matplotlib inline # other packages from __future__ import division from random import random, shuffle from numpy import percentile from operator import itemgetter from tabulate import tabulate from collections import Counter real_graph = nx.karate_club_graph() positions = nx.spring_layout(real_graph) nx.draw(real_graph, node_color = 'blue', pos = positions) # Use the same number of nodes for each example num_nodes = 500 # list of the sizes of the largest components big_comp = [] # number of nodes in the graph #num_nodes = 500 # vector of edge probabilities p_values = [(1-x*.0001) for x in xrange(9850,10000)] # try it a few times to get a smoother curve iterations = 10 for p in p_values: size_comps = [] for h in xrange(0, iterations): edge_list = [] for i in xrange(0,num_nodes): for j in xrange(i,num_nodes): if (random() < p): edge_list.append((i,j)) G = igraph.Graph(directed = False) G.add_vertices(num_nodes) G.add_edges(edge_list) comps = [len(x) for x in G.clusters()] size_comps.append(comps) big_comp.append((sum([max(x) for x in size_comps])/len(size_comps)/float(num_nodes))) plt.plot([x*(num_nodes-1) for x in p_values], big_comp, '.') plt.title("Phase transitions in connectedness") plt.ylabel("Fraction of nodes in the largest component") plt.xlabel("Average degree (k = p(n-1)), {} < p < {}".format(p_values[99],p_values[0])) # vector of edge probabilities p_values_clustering = [x*.01 for x in xrange(0,100)] # try it a few times to get a smoother curve iterations = 1 # store the clustering coefficient clustering = [] for p in p_values_clustering: size_comps = [] for h in xrange(0, iterations): edge_list = [] for i in xrange(0,num_nodes): for j in xrange(i,num_nodes): if (random() < p): edge_list.append((i,j)) G = igraph.Graph(directed = False) G.add_vertices(num_nodes) G.add_edges(edge_list) clustering.append((p, G.transitivity_undirected(mode="zero"))) plt.plot([x[0]*(num_nodes-1) for x in clustering], [x[1] for x in clustering], '.') plt.title("Clustering coeff vs avg degree in a random graph") plt.ylabel("Clustering coefficient") plt.xlabel("Average degree (k = (n-1)p), 0 < p < 1") # list of the average (over X iterations) diameters of the largest components diam = [] # the degree distribution of the network for each average degree degrees = {} # vector of edge probabilities p_values = [(1-x*.0001) for x in xrange(9850,10000)] # try it a few times to get a smoother curve iterations = 10 for p in p_values: size_comps = [] diameters = [] for h in xrange(0, iterations): edge_list = [] for i in xrange(0,num_nodes): for j in xrange(i,num_nodes): if (random() < p): edge_list.append((i,j)) G = igraph.Graph(directed = False) G.add_vertices(num_nodes) G.add_edges(edge_list) diameters.append(G.diameter()) degrees[p*(num_nodes-1)] = G.degree() diam.append(sum(diameters)/len(diameters)) fig, ax1 = plt.subplots(figsize = (8,6)) plt.title("Graph metrics vs avg degree in a random graph", size = 16) ax1.plot([x*(num_nodes-1) for x in p_values], big_comp, 'o', color = "red", markersize=4) ax1.set_xlabel('Average degree (k = (n-1)p), 0 < p < 1', size = 16) ax1.set_ylim(0,1.01) ax1.set_xlim(0,6) # Make the y-axis label and tick labels match the line color. ax1.set_ylabel('Fraction of nodes in giant component', color='red', size = 16) ax1.grid(True) for tl in ax1.get_yticklabels(): tl.set_color('red') tl.set_size(16) ax2 = ax1.twinx() ax2.set_xlim(0,6) ax2.plot([x*(num_nodes-1) for x in p_values], diam, 's', color = "blue", markersize=4) ax2.set_ylabel('Diameter of the giant component', color='blue', size = 16) for tl in ax2.get_yticklabels(): tl.set_color('blue') tl.set_size(16) avg_degree_near_5 = min(degrees.keys(), key = lambda x: abs(x-5)) xy = Counter(degrees[avg_degree_near_5]).items() plt.bar([x[0] for x in xy], [x[1] for x in xy], edgecolor = "none", color = "blue") plt.ylabel("# of nodes with degree X", size = 16) plt.xlabel("Degree", size = 16) plt.title("Degree distribution of the random graph", size = 16) print("The number of nodes in the graph (all are connected): {}".format(len(real_graph.nodes()))) print("The number of edges in the graph: {}".format(len(real_graph.edges()))) print("The average degree: {}".format(sum(nx.degree(real_graph).values())/len(real_graph.nodes()))) print("The clustering coefficient: {}".format(nx.average_clustering(real_graph))) print("The clustering coefficient that a random graph with the same degree would predict (k/(n-1)): {}" .format(sum(nx.degree(real_graph).values())/len(real_graph.nodes())/(len(real_graph.nodes())-1))) print("The diameter of the graph: {}".format(nx.diameter(real_graph))) A = [] for v in real_graph.nodes(): for x in range(0, real_graph.degree(v)): A.append(v) shuffle(A) # make the edge list _E = [(A[2*x], A[2*x+1]) for x in range(0,int(len(A)/2))] E = set([x for x in _E if x[0]!=x[1]]) # add the edges to a new graph with the name node list C = real_graph.copy() C.remove_edges_from(real_graph.edges()) C.add_edges_from(E) nx.draw(C, node_color = 'blue', pos = positions) print("The number of nodes in the graph (all are connected): {}".format(len(C.nodes()))) print("The number of edges in the graph: {}".format(len(C.edges()))) print("The average degree: {}".format(sum(nx.degree(C).values())/len(C.nodes()))) print("The clustering coefficient: {}".format(nx.average_clustering(C))) print("The clustering coefficient that a random graph with the same degree would predict (k/(n-1)): {}" .format(sum(nx.degree(real_graph).values())/len(C.nodes())/(len(C.nodes())-1))) print("The diameter of the graph: {}".format(nx.diameter(C))) # get the graph florentine_families = igraph.Nexus.get("padgett")["PADGB"] # degree centrality d = florentine_families.degree() d_rank = [(x, florentine_families.vs[x]['name'], d[x]) for x in range(0,len(florentine_families.vs()))] d_rank.sort(key = itemgetter(2), reverse = True) # harmonic centrality distances = florentine_families.shortest_paths_dijkstra() h = [sum([1/x for x in dist if x != 0])/(len(distances)-1) for dist in distances] h_rank = [(x, florentine_families.vs[x]['name'], h[x]) for x in range(0,len(florentine_families.vs()))] h_rank.sort(key = itemgetter(2), reverse = True) # make the table d_table = [] d_table.append(["Rank (by degree)", "degree", "Rank (h centrality)", "harmonic"]) for n in xrange(0,len(florentine_families.vs())): table_row = [] table_row.extend([d_rank[n][1], str(d_rank[n][2])[0:5]]) table_row.extend([h_rank[n][1], str(h_rank[n][2])[0:5]]) #table_row.extend([e_rank[n][1], str(e_rank[n][2])[0:5]]) #table_row.extend([b_rank[n][1], str(b_rank[n][2])[0:5]]) d_table.append(table_row) print tabulate(d_table) config_model_centrality = [[] for x in florentine_families.vs()] config_model_means = [] hc_differences = [[] for x in range(0,16)] for i in xrange(0,1000): # build a random graph based on the configuration model C = florentine_families.copy() # graph with the same edge list as G C.delete_edges(None) # print C.summary() # Add random edges # vertex list A A = [] for v in florentine_families.vs().indices: for x in range(0,florentine_families.degree(v)): A.append(v) shuffle(A) # print A # make the edge list _E = [(A[2*x], A[2*x+1]) for x in range(0,int(len(A)/2))] E = set([x for x in _E if x[0]!=x[1]]) # add the edges to C # print E C.add_edges(E) # rank the vertices by harmonic centrality C_distances = C.shortest_paths_dijkstra() C_h = [sum([1/x for x in dist if x != 0])/(len(C_distances)-1) for dist in C_distances] del C for vertex in range(0,16): hc_differences[vertex].append(h[vertex] - C_h[vertex]) plt.plot([percentile(diff, 50) for diff in hc_differences], '--') plt.plot([percentile(diff, 25) for diff in hc_differences], 'r--') plt.plot([percentile(diff, 75) for diff in hc_differences], 'g--') plt.xticks(range(0,16)) plt.gca().set_xticklabels(florentine_families.vs()['name']) plt.xticks(rotation = 90) plt.gca().grid(True) plt.ylabel("(centrality) - (centrality on the null model)") plt.title("How much of harmonic centrality is explained by degree?") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Graphs! Step2: Now. What's the difference between that (^) drawing of nodes and edges and a completely random assembly of dots and lines? How can we quantify the difference between a social network, which we think probably has important structure, and a completely random network, whose structure contains very little useful information? Which aspects of a network can be explained by simple statistics like average degree, the number of nodes, or the degree distribution? Which characteristics of a network depend on a structure or generative process that could reveal an underlying truth about the way the network came about? Step3: Clustering coefficient Step4: Small diameter graphs Step5: A comparison with a real social graph Step6: The Configuration Model Step7: Asking questions using a null model Step8: First, let's show the relative rankings of the families with respect to vertex degree in the network and with respect to our chosen centrality measure, harmonic centrality. I won't go into various centrality measures here, beyond to say that harmonic centrality is formulated Step9: Now the fun (?) part. Create a bunch of different random configuration models based on the florentine families graph, then measure the harmonic centrality on those graphs. The harmonic centality of a node on the null model will deend only on its degree (as the graph structure is now ranom).
2,760
<ASSISTANT_TASK:> Python Code: import ipyrad as ip ## this is a comment, it is not executed, but the code below it is. import ipyrad as ip ## here we print the version print ip.__version__ ## create an Assembly object named data1. data1 = ip.Assembly("data1") ## setting/modifying parameters for this Assembly object data1.set_params('project_dir', "pedicularis") data1.set_params('sorted_fastq_path', "./example_empirical_rad/*.gz") data1.set_params('filter_adapters', 2) data1.set_params('datatype', 'rad') ## prints the parameters to the screen data1.get_params() ## this should raise an error, since clust_threshold cannot be 2.0 data1.set_params("clust_threshold", 2.0) print data1.name ## another example attribute listing directories ## associated with this object. Most are empty b/c ## we haven't started creating files yet. But you ## can see that it shows the fastq directory. print data1.dirs ## run step 1 to create Samples objects data1.run("1") ## The force flag allows you to re-run a step that is already finished data1.run("1", force=True) ## this is the explicit way to connect to ipcluster import ipyparallel ## connect to a running ipcluster instance ipyclient = ipyparallel.Client() ## or, if you used a named profile then enter that ipyclient = ipyparallel.Client(profile="default") ## call the run function of ipyrad and pass it the ipyclient ## process that you want the work distributed on. data1.run("1", ipyclient=ipyclient, force=True) ## Sample objects stored as a dictionary data1.samples ## run step 1 to create Samples objects data1.run("1", show_cluster=True, force=True) ## print full stats summary print data1.stats ## print full stats for step 1 (in this case it's the same but for other ## steps the stats_dfs often contains more information.) print data1.stats_dfs.s1 ## access all Sample names in data1 allsamples = data1.samples.keys() print "Samples in data1:\n", "\n".join(allsamples) ## Drop the two samples from this list that have "prz" in their names. ## This is a programmatic way to remove the outgroup samples. subs = [i for i in allsamples if "prz" not in i] ## use branching to create new Assembly named 'data2' ## with only Samples whose name is in the subs list data2 = data1.branch("data2", subsamples=subs) print "Samples in data2:\n", "\n".join(data2.samples) ## Start by creating an initial assembly, setting the path to your data, ## and running step1. I set a project-dir so that all of our data sets ## will be grouped into a single directory called 'branch-test'. data = ip.Assembly("base") data.set_params("project_dir", "branch-test") data.set_params("raw_fastq_path", "./ipsimdata/rad_example_R1_.fastq.gz") data.set_params("barcodes_path", "./ipsimdata/rad_example_barcodes.txt") ## step 1: load in the data data.run('1') ## let's create a dictionary to hold the finished assemblies adict = {} ## iterate over parameters settings creating a new named assembly for filter_setting in [1, 2]: ## create a new name for the assembly and branch newname = data.name + "_f{}".format(filter_setting) child1 = data.branch(newname) child1.set_params("filter_adapters", filter_setting) child1.run("2") ## iterate over clust thresholds for clust_threshold in ['0.85', '0.90']: newname = child1.name + "_c{}".format(clust_threshold[2:]) child2 = child1.branch(newname) child2.set_params("clust_threshold", clust_threshold) child2.run("3456") ## iterate over min_sample coverage for min_samples_locus in [4, 12]: newname = child2.name + "_m{}".format(min_samples_locus) child3 = child2.branch(newname) child3.set_params("min_samples_locus", min_samples_locus) child3.run("7") ## store the complete assembly in the dictionary by its name ## so it is easy for us to access and retrieve, since we wrote ## over the variable name 'child' during the loop. You can do ## this using dictionaries, lists, etc., or, as you'll see below, ## we can use the 'load_json()' command to load a finished assembly ## from its saved file object. adict[newname] = child3 ## run an assembly up to step 3 data.run("123", force=True) ## select clade 1 from the sample names subs = [i for i in data.samples if "1" in i] ## branch selecting only those samples data1 = data.branch("data1", subs) ## select clade 2 from the sample names subs = [i for i in data.samples if "2" in i] ## branch selecting only those samples data2 = data.branch("data2", subs) ## make diploid base calls on 'data1' samples data1.set_params("max_alleles_consens", 2) ## make haploid base calls on 'data2' samples data2.set_params("max_alleles_consens", 1) ## run both assemblies through base-calling steps data1.run("45", force=True) data2.run("45", force=True) ## merge assemblies back together for across-sample steps data3 = ip.merge("data3", [data1, data2]) data3.run("67") ## create a branch for a population-filtered assembly pops = data3.branch("populations") ## assign samples to populations pops.populations = { "clade1": (1, [i for i in pops.samples if "1" in i]), "clade2": (1, [i for i in pops.samples if "2" in i]), } ## print the population dictionary pops.populations ## run assembly pops.run("7") ## save assembly object (also auto-saves after every run() command) data1.save() ## load assembly object data1 = ip.load_json("pedicularis/data1.json") ## write params file for use by the CLI data1.write_params(force=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Getting started with Jupyter notebooks Step2: The ipyrad API data structures Step3: Setting parameters Step4: Instantaneous parameter (and error) checking Step5: Attributes of Assembly objects Step6: Sample Class objects Step7: The .run() command Step8: The run command will automatically parallelize work across all cores of a running ipcluster instance (remember, you should have started this outside of notebook. Or you can start it now.) If ipcluster is running on the default profile then ipyrad will detect and use it when the run command is called. However, if you start an ipcluster instance with a specific profile name then you will need to connect to it using the ipyparallel library and then pass the connection client object to ipyrad. I'll show an example of that here. Step9: Samples stored in an Assembly Step10: The progress bar Step11: Viewing results of Assembly steps Step12: Branching to subsample taxa Step13: Branching to iterate over parameter settings Step14: Working with your data programmatically Step15: Population assignments Step16: Saving Assembly objects
2,761
<ASSISTANT_TASK:> Python Code: import helper source_path = 'data/letters_source.txt' target_path = 'data/letters_target.txt' source_sentences = helper.load_data(source_path) target_sentences = helper.load_data(target_path) source_sentences[:50].split('\n') target_sentences[:50].split('\n') def extract_character_vocab(data): special_words = ['<pad>', '<unk>', '<s>', '<\s>'] set_words = set([character for line in data.split('\n') for character in line]) int_to_vocab = {word_i: word for word_i, word in enumerate(special_words + list(set_words))} vocab_to_int = {word: word_i for word_i, word in int_to_vocab.items()} return int_to_vocab, vocab_to_int # Build int2letter and letter2int dicts source_int_to_letter, source_letter_to_int = extract_character_vocab(source_sentences) target_int_to_letter, target_letter_to_int = extract_character_vocab(target_sentences) # Convert characters to ids source_letter_ids = [[source_letter_to_int.get(letter, source_letter_to_int['<unk>']) for letter in line] for line in source_sentences.split('\n')] target_letter_ids = [[target_letter_to_int.get(letter, target_letter_to_int['<unk>']) for letter in line] for line in target_sentences.split('\n')] print("Example source sequence") print(source_letter_ids[:3]) print("\n") print("Example target sequence") print(target_letter_ids[:3]) def pad_id_sequences(source_ids, source_letter_to_int, target_ids, target_letter_to_int, sequence_length): new_source_ids = [sentence + [source_letter_to_int['<pad>']] * (sequence_length - len(sentence)) \ for sentence in source_ids] new_target_ids = [sentence + [target_letter_to_int['<pad>']] * (sequence_length - len(sentence)) \ for sentence in target_ids] return new_source_ids, new_target_ids # Use the longest sequence as sequence length sequence_length = max( [len(sentence) for sentence in source_letter_ids] + [len(sentence) for sentence in target_letter_ids]) # Pad all sequences up to sequence length source_ids, target_ids = pad_id_sequences(source_letter_ids, source_letter_to_int, target_letter_ids, target_letter_to_int, sequence_length) print("Sequence Length") print(sequence_length) print("\n") print("Input sequence example") print(source_ids[:3]) print("\n") print("Target sequence example") print(target_ids[:3]) from distutils.version import LooseVersion import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Number of Epochs epochs = 60 # Batch Size batch_size = 32 # RNN Size rnn_size = 50 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 13 decoding_embedding_size = 13 # Learning Rate learning_rate = 0.001 input_data = tf.placeholder(tf.int32, [batch_size, sequence_length]) targets = tf.placeholder(tf.int32, [batch_size, sequence_length]) lr = tf.placeholder(tf.float32) source_vocab_size = len(source_letter_to_int) # Encoder embedding enc_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, encoding_embedding_size) # Encoder enc_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers) _, enc_state = tf.nn.dynamic_rnn(enc_cell, enc_embed_input, dtype=tf.float32) import numpy as np # Process the input we'll feed to the decoder ending = tf.strided_slice(targets, [0, 0], [batch_size, -1], [1, 1]) dec_input = tf.concat([tf.fill([batch_size, 1], target_letter_to_int['<s>']), ending], 1) demonstration_outputs = np.reshape(range(batch_size * sequence_length), (batch_size, sequence_length)) sess = tf.InteractiveSession() print("Targets") print(demonstration_outputs[:2]) print("\n") print("Processed Decoding Input") print(sess.run(dec_input, {targets: demonstration_outputs})[:2]) target_vocab_size = len(target_letter_to_int) # Decoder Embedding dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size])) dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input) # Decoder RNNs dec_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers) with tf.variable_scope("decoding") as decoding_scope: # Output Layer output_fn = lambda x: tf.contrib.layers.fully_connected(x, target_vocab_size, None, scope=decoding_scope) with tf.variable_scope("decoding") as decoding_scope: # Training Decoder train_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_train(enc_state) train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder( dec_cell, train_decoder_fn, dec_embed_input, sequence_length, scope=decoding_scope) # Apply output function train_logits = output_fn(train_pred) with tf.variable_scope("decoding", reuse=True) as decoding_scope: # Inference Decoder infer_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_inference( output_fn, enc_state, dec_embeddings, target_letter_to_int['<s>'], target_letter_to_int['<\s>'], sequence_length - 1, target_vocab_size) inference_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, infer_decoder_fn, scope=decoding_scope) # Loss function cost = tf.contrib.seq2seq.sequence_loss( train_logits, targets, tf.ones([batch_size, sequence_length])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) import numpy as np train_source = source_ids[batch_size:] train_target = target_ids[batch_size:] valid_source = source_ids[:batch_size] valid_target = target_ids[:batch_size] sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch) in enumerate( helper.batch_data(train_source, train_target, batch_size)): _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate}) batch_train_logits = sess.run( inference_logits, {input_data: source_batch}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_source}) train_acc = np.mean(np.equal(target_batch, np.argmax(batch_train_logits, 2))) valid_acc = np.mean(np.equal(valid_target, np.argmax(batch_valid_logits, 2))) print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}' .format(epoch_i, batch_i, len(source_ids) // batch_size, train_acc, valid_acc, loss)) input_sentence = 'hello' input_sentence = [source_letter_to_int.get(word, source_letter_to_int['<unk>']) for word in input_sentence.lower()] input_sentence = input_sentence + [0] * (sequence_length - len(input_sentence)) batch_shell = np.zeros((batch_size, sequence_length)) batch_shell[0] = input_sentence chatbot_logits = sess.run(inference_logits, {input_data: batch_shell})[0] print('Input') print(' Word Ids: {}'.format([i for i in input_sentence])) print(' Input Words: {}'.format([source_int_to_letter[i] for i in input_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in np.argmax(chatbot_logits, 1)])) print(' Chatbot Answer Words: {}'.format([target_int_to_letter[i] for i in np.argmax(chatbot_logits, 1)])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's start by examining the current state of the dataset. source_sentences contains the entire input sequence file as text delimited by newline symbols. Step2: target_sentences contains the entire output sequence file as text delimited by newline symbols. Each line corresponds to the line from source_sentences. target_sentences contains a sorted characters of the line. Step3: Preprocess Step4: The last step in the preprocessing stage is to determine the the longest sequence size in the dataset we'll be using, then pad all the sequences to that length. Step5: This is the final shape we need them to be in. We can now proceed to building the model. Step6: Hyperparameters Step7: Input Step8: Sequence to Sequence Step9: Process Decoding Input Step10: Decoding Step11: Decoder During Training Step12: Decoder During Inference Step13: Optimization Step14: Train Step15: Prediction
2,762
<ASSISTANT_TASK:> Python Code: import numpy as np import sys from casadi import * import os import time # Add do_mpc to path. This is not necessary if it was installed via pip sys.path.append('../../../') # Import do_mpc package: import do_mpc import matplotlib.pyplot as plt import pandas as pd sp = do_mpc.sampling.SamplingPlanner() sp.set_param(overwrite = True) # This generates the directory, if it does not exist already. sp.data_dir = './sampling_test/' sp.set_sampling_var('alpha', np.random.randn) sp.set_sampling_var('beta', lambda: np.random.randint(0,5)) plan = sp.gen_sampling_plan(n_samples=10) pd.DataFrame(plan) plan = sp.add_sampling_case(alpha=1, beta=-0.5) print(plan[-1]) sampler = do_mpc.sampling.Sampler(plan) sampler.set_param(overwrite = True) def sample_function(alpha, beta): time.sleep(0.1) return alpha*beta sampler.set_sample_function(sample_function) sampler.data_dir = './sampling_test/' sampler.set_param(sample_name = 'dummy_sample') sampler.sample_data() ls = os.listdir('./sampling_test/') ls.sort() ls dh = do_mpc.sampling.DataHandler(plan) dh.data_dir = './sampling_test/' dh.set_param(sample_name = 'dummy_sample') dh.set_post_processing('res_1', lambda x: x) dh.set_post_processing('res_2', lambda x: x**2) pd.DataFrame(dh[:3]) pd.DataFrame(dh.filter(input_filter = lambda alpha: alpha<0)) pd.DataFrame(dh.filter(output_filter = lambda res_2: res_2>10)) sys.path.append('../../../examples/oscillating_masses_discrete/') from template_model import template_model from template_mpc import template_mpc from template_simulator import template_simulator # Initialize sampling planner sp = do_mpc.sampling.SamplingPlanner() sp.set_param(overwrite=True) # Sample random feasible initial states def gen_initial_states(): x0 = np.random.uniform(-3*np.ones((4,1)),3*np.ones((4,1))) return x0 # Add sampling variable including the corresponding evaluation function sp.set_sampling_var('X0', gen_initial_states) plan = sp.gen_sampling_plan(n_samples=9) model = template_model() mpc = template_mpc(model) estimator = do_mpc.estimator.StateFeedback(model) simulator = template_simulator(model) def run_closed_loop(X0): mpc.reset_history() simulator.reset_history() estimator.reset_history() # set initial values and guess x0 = X0 mpc.x0 = x0 simulator.x0 = x0 estimator.x0 = x0 mpc.set_initial_guess() # run the closed loop for 150 steps for k in range(100): u0 = mpc.make_step(x0) y_next = simulator.make_step(u0) x0 = estimator.make_step(y_next) # we return the complete data structure that we have obtained during the closed-loop run return simulator.data %%capture # Initialize sampler with generated plan sampler = do_mpc.sampling.Sampler(plan) # Set directory to store the results: sampler.data_dir = './sampling_closed_loop/' sampler.set_param(overwrite=True) # Set the sampling function sampler.set_sample_function(run_closed_loop) # Generate the data sampler.sample_data() # Initialize DataHandler dh = do_mpc.sampling.DataHandler(plan) dh.data_dir = './sampling_closed_loop/' dh.set_post_processing('input', lambda data: data['_u', 'u']) dh.set_post_processing('state', lambda data: data['_x', 'x']) res = dh[:] n_res = min(len(res),80) n_row = int(np.ceil(np.sqrt(n_res))) n_col = int(np.ceil(n_res/n_row)) fig, ax = plt.subplots(n_row, n_col, sharex=True, sharey=True, figsize=(8,8)) for i, res_i in enumerate(res): ax[i//n_col, np.mod(i,n_col)].plot(res_i['state'][:,1],res_i['state'][:,0]) for i in range(ax.size): ax[i//n_col, np.mod(i,n_col)].axis('off') fig.tight_layout(pad=0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Toy example Step 1 Step2: We then introduce new variables to the SamplingPlanner which will later jointly define a sampling case. Think of header rows in a table (see figure above). Step3: In this example we have two variables alpha and beta. We have Step4: We can inspect the plan conveniently by converting it to a pandas DataFrame. Natively, the plan is a list of dictionaries. Step5: If we do not wish to automatically generate a sampling plan, we can also add sampling cases one by one with Step6: Typically, we finish the process of generating the sampling plan by saving it to the disc. This is simply done with Step7: Most important settting of the sampler is the sample_function. This function takes as arguments previously the defined sampling_var (from the configuration of the SamplingPlanner). Step8: Before we sample, we want to set the directory for the created files and a name Step9: Now we can actually create all the samples Step10: The sampler will now create the sampling results as a new file for each result and store them in a subfolder with the same name as the sampling_plan Step11: Step 3 Step12: We then need to point out where the data is stored and how the samples are called Step13: Next, we define the post-processing functions. For this toy example we do some "dummy" post-processing and request to compute two results Step14: The interface of DataHandler.set_post_processing requires a name that we will see again later and a function that processes the output of the previously defined sample_function. Step15: Or we use a more complex filter with the DataHandler.filter method. This method requires either an input or an output filter in the form of a function. Step16: Or we can filter by outputs, e.g. with Step17: Sampling closed-loop trajectories Step18: Step 1 Step19: This implementation is sufficient to generate the sampling plan Step20: Since we want to run the system in the closed-loop in our sample function, we need to load the corresponding configuration Step21: We can now define the sampling function Step22: Now we have all the ingredients to make our sampler Step23: Step 3 Step24: In this case, we are interested in the states and the inputs of all trajectories. We define the following post processing functions Step25: To retrieve all post-processed data from the datahandler we use slicing. The result is stored in res. Step26: To inspect the sampled closed-loop trajectories, we create an array of plots where in each plot $x_2$ is plotted over $x_1$. This shows the different behavior, based on the sampled initial conditions
2,763
<ASSISTANT_TASK:> Python Code: !rm -rf * !rm -rf .config !rm -rf .git !git clone https://github.com/google-research/scenic.git . !python -m pip install -q . !python -m pip install -r scenic/projects/baselines/clip/requirements.txt !echo "Done." import os import jax from matplotlib import pyplot as plt import numpy as np from scenic.projects.owl_vit import models from scenic.projects.owl_vit.configs import clip_b32 from scipy.special import expit as sigmoid import skimage from skimage import io as skimage_io from skimage import transform as skimage_transform config = clip_b32.get_config() module = models.TextZeroShotDetectionModule( body_configs=config.model.body, normalize=config.model.normalize, box_bias=config.model.box_bias) variables = module.load_variables(config.init_from.checkpoint_path) # Load example image: filename = os.path.join(skimage.data_dir, 'astronaut.png') image_uint8 = skimage_io.imread(filename) image = image_uint8.astype(np.float32) / 255.0 # Pad to square with gray pixels on bottom and right: h, w, _ = image.shape size = max(h, w) image_padded = np.pad( image, ((0, size - h), (0, size - w), (0, 0)), constant_values=0.5) # Resize to model input size: input_image = skimage.transform.resize( image_padded, (config.dataset_configs.input_size, config.dataset_configs.input_size), anti_aliasing=True) text_queries = ['human face', 'rocket', 'nasa badge', 'star-spangled banner'] tokenized_queries = np.array([ module.tokenize(q, config.dataset_configs.max_query_length) for q in text_queries ]) # Pad tokenized queries to avoid recompilation if number of queries changes: tokenized_queries = np.pad( tokenized_queries, pad_width=((0, 100 - len(text_queries)), (0, 0)), constant_values=0) # Note: The model expects a batch dimension. predictions = module.apply( variables, input_image[None, ...], tokenized_queries[None, ...], train=False) # Remove batch dimension and convert to numpy: predictions = jax.tree_map(lambda x: np.array(x[0]), predictions ) %matplotlib inline score_threshold = 0.1 logits = predictions['pred_logits'][..., :len(text_queries)] # Remove padding. scores = sigmoid(np.max(logits, axis=-1)) labels = np.argmax(predictions['pred_logits'], axis=-1) boxes = predictions['pred_boxes'] fig, ax = plt.subplots(1, 1, figsize=(8, 8)) ax.imshow(input_image, extent=(0, 1, 1, 0)) ax.set_axis_off() for score, box, label in zip(scores, boxes, labels): if score < score_threshold: continue cx, cy, w, h = box ax.plot([cx - w / 2, cx + w / 2, cx + w / 2, cx - w / 2, cx - w / 2], [cy - h / 2, cy - h / 2, cy + h / 2, cy + h / 2, cy - h / 2], 'r') ax.text( cx - w / 2, cy + h / 2 + 0.015, f'{text_queries[label]}: {score:1.2f}', ha='left', va='top', color='red', bbox={ 'facecolor': 'white', 'edgecolor': 'red', 'boxstyle': 'square,pad=.3' }) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Choose config Step2: Load the model and variables Step3: Prepare image Step4: Prepare text queries Step5: Get predictions Step6: Plot predictions
2,764
<ASSISTANT_TASK:> Python Code: peyton_dataset_url = 'https://github.com/facebookincubator/prophet/blob/master/examples/example_wp_peyton_manning.csv' peyton_filename = '../datasets/example_wp_peyton_manning.csv' import pandas as pd import numpy as np from fbprophet import Prophet # NB: this didn't work as of 8/22/17 #import io #import requests #s=requests.get(peyton_dataset_url).content #df=pd.read_csv(io.StringIO(s.decode('utf-8')))#df = pd.read_csv(peyton_dataset_url) df = pd.read_csv(peyton_filename) # transform to log scale df['y']=np.log(df['y']) df.head() m = Prophet() m.fit(df); future = m.make_future_dataframe(periods=365) future.tail() forecast = m.predict(future) forecast[['ds','yhat','yhat_lower','yhat_upper']].tail() m.plot(forecast) m.plot_components(forecast) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fit the model by instantiating a new Prophet object. Any settings required for the forecasting procedure are passed to this object upon construction. You then can call this object's fit method and pass in the historical dataframe. Fitting should take 1-5 seconds. Step2: Predictions are then made on a dataframe with a column ds containing the dates for which a prediction is to be made. You can get a suitable dataframe that extends into the future a specified number of days using the helper method Prophet.make_future_dataframe. By default it will also include the dates from the history, so we will see the model fit as well. Step3: The predict method will assign each row in future a predicted value which it names yhat. If you pass in historical dates, it will provide an in-sample fit. The forecast object here is a new dataframe that includes a column yhat with the forecast, as well as columns for components and uncertainty intervals. Step4: You can plot the forecast by calling the Prophet.plot method and passing in your forecast dataframe Step5: If you want to see the forecast components, you can use the Prophet.plot_components method. By default you’ll see the trend, yearly seasonality, and weekly seasonality of the time series.
2,765
<ASSISTANT_TASK:> Python Code: # Configure Jupyter so figures appear in the notebook %matplotlib inline # Configure Jupyter to display the assigned value after an assignment %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' # import functions from the modsim.py module from modsim import * data = pd.read_csv('data/glucose_insulin.csv', index_col='time'); I = interpolate(data.insulin) params = Params(G0 = 290, k1 = 0.03, k2 = 0.02, k3 = 1e-05) def make_system(params, data): Makes a System object with the given parameters. params: sequence of G0, k1, k2, k3 data: DataFrame with `glucose` and `insulin` returns: System object G0, k1, k2, k3 = params Gb = data.glucose[0] Ib = data.insulin[0] I = interpolate(data.insulin) t_0 = get_first_label(data) t_end = get_last_label(data) init = State(G=G0, X=0) return System(params, init=init, Gb=Gb, Ib=Ib, I=I, t_0=t_0, t_end=t_end, dt=2) system = make_system(params, data) def update_func(state, t, system): Updates the glucose minimal model. state: State object t: time in min system: System object returns: State object G, X = state k1, k2, k3 = system.k1, system.k2, system.k3 I, Ib, Gb = system.I, system.Ib, system.Gb dt = system.dt dGdt = -k1 * (G - Gb) - X*G dXdt = k3 * (I(t) - Ib) - k2 * X G += dGdt * dt X += dXdt * dt return State(G=G, X=X) update_func(system.init, system.t_0, system) def run_simulation(system, update_func): Runs a simulation of the system. system: System object update_func: function that updates state returns: TimeFrame init = system.init t_0, t_end, dt = system.t_0, system.t_end, system.dt frame = TimeFrame(columns=init.index) frame.row[t_0] = init ts = linrange(t_0, t_end, dt) for t in ts: frame.row[t+dt] = update_func(frame.row[t], t, system) return frame results = run_simulation(system, update_func); results subplot(2, 1, 1) plot(results.G, 'b-', label='simulation') plot(data.glucose, 'bo', label='glucose data') decorate(ylabel='Concentration (mg/dL)') subplot(2, 1, 2) plot(results.X, 'C1', label='remote insulin') decorate(xlabel='Time (min)', ylabel='Concentration (arbitrary units)') savefig('figs/chap18-fig01.pdf') def slope_func(state, t, system): Computes derivatives of the glucose minimal model. state: State object t: time in min system: System object returns: derivatives of G and X G, X = state k1, k2, k3 = system.k1, system.k2, system.k3 I, Ib, Gb = system.I, system.Ib, system.Gb dGdt = -k1 * (G - Gb) - X*G dXdt = k3 * (I(t) - Ib) - k2 * X return dGdt, dXdt slope_func(system.init, 0, system) results2, details = run_ode_solver(system, slope_func) details results2 plot(results.G, 'C0', label='run_simulation') plot(results2.G, 'C2--', label='run_ode_solver') decorate(xlabel='Time (min)', ylabel='Concentration (mg/dL)') savefig('figs/chap18-fig02.pdf') diff = results.G - results2.G percent_diff = diff / results2.G * 100 percent_diff max(abs(percent_diff)) # Solution system3 = System(system, dt=1) results3, details = run_ode_solver(system3, slope_func) details # Solution plot(results2.G, 'C2--', label='run_ode_solver (dt=2)') plot(results3.G, 'C3:', label='run_ode_solver (dt=1)') decorate(xlabel='Time (m)', ylabel='mg/dL') # Solution diff = (results2.G - results3.G).dropna() percent_diff = diff / results2.G * 100 # Solution max(abs(percent_diff)) source_code(run_ode_solver) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Code from the previous chapter Step2: Interpolate the insulin data. Step3: The glucose minimal model Step5: Here's a version of make_system that takes the parameters and data Step7: And here's the update function. Step8: Before running the simulation, it is always a good idea to test the update function using the initial conditions. In this case we can veryify that the results are at least qualitatively correct. Step10: Now run_simulation is pretty much the same as it always is. Step11: And here's how we run it. Step12: The results are in a TimeFrame object with one column per state variable. Step13: The following plot shows the results of the simulation along with the actual glucose data. Step15: Numerical solution Step16: We can test the slope function with the initial conditions. Step17: Here's how we run the ODE solver. Step18: details is a ModSimSeries object with information about how the solver worked. Step19: results is a TimeFrame with one row for each time step and one column for each state variable Step20: Plotting the results from run_simulation and run_ode_solver, we can see that they are not very different. Step21: The differences in G are less than 2%. Step22: Exercises Step23: Under the hood
2,766
<ASSISTANT_TASK:> Python Code: m = 1.00 k = 4*pi*pi wn = 2*pi T = 1.0 z = 0.02 wd = wn*sqrt(1-z*z) c = 2*z*wn*m NSTEPS = 200 # steps per second h = 1.0 / NSTEPS def load(t): return np.where(t<0, 0, np.where(t<5, sin(0.5*wn*t)**2, 0)) t = np.linspace(-1, 6, 7*NSTEPS+1) plt.plot(t, load(t)) plt.ylim((-0.05, 1.05)); kstar = k + 2*c/h + 4*m/h/h astar = 2*m vstar = 2*c + 4*m/h t = np.linspace(0, 8+h, NSTEPS*8+2) P = load(t) DP = P[+1:]-P[:-1] x, v, a = [], [], [] x0, v0 = 0.0, 0.0 for p, dp in zip(P, DP): a0 = (p - k*x0 - c*v0)/m x.append(x0), v.append(v0), a.append(a0) dx = (dp + astar*a0 + vstar*v0)/kstar dv = 2*(dx/h-v0) x0, v0 = x0+dx, v0+dv x, v = np.array(x), np.array(v) plt.plot(t[:-1],x) xe = (((1 - 2*z**2)*sin(wd*t) / (2*z*sqrt(1-z*z)) - cos(wd*t)) *exp(-z*wn*t) + 1. - sin(wn*t)/(2*z))/2/k plt.plot(t[:1001], xe[:1001], lw=2) plt.plot(t[:1001:10], x[:1001:10], 'ko') plt.plot(t[:1001], x[:1001]-xe[:1001]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define the Loading Step2: Numerical Constants Step3: Vectorize the time and the load Step4: Integration Step5: Results Step6: Comparison Step7: Eventually we plot the difference between exact and approximate response,
2,767
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np scatx=np.random.rand(50) scaty=np.random.randn(50) f= plt.figure(figsize=(9,6)) plt.scatter(scatx,scaty,c=u'k',marker=u'o',alpha=1) plt.xlabel('X') plt.ylabel('Y') plt.title("Scatter Plot of A Set of Random Data") x= np.random.rand(50) plt.hist(x) plt.xlabel("X") plt.ylabel("Y") plt.title("One Dimensional Histogram of a Random Set of Data") plt.hist(x,bins=50, normed=True, facecolor="r",stacked=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Scatter plots Step2: Histogram
2,768
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np df = pd.read_csv('../data/train.csv') df.head(10) df = df.drop(['Name', 'Ticket', 'Cabin'], axis=1) df.info() df = df.dropna() df['Sex'].unique() df['Gender'] = df['Sex'].map({'female': 0, 'male':1}).astype(int) df['Embarked'].unique() df['Port'] = df['Embarked'].map({'C':1, 'S':2, 'Q':3}).astype(int) df = df.drop(['Sex', 'Embarked'], axis=1) cols = df.columns.tolist() print(cols) cols = [cols[1]] + cols[0:1] + cols[2:] df = df[cols] df.head(10) df.info() train_data = df.values from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators = 100) model = model.fit(train_data[0:,2:],train_data[0:,0]) df_test = pd.read_csv('../data/test.csv') df_test.head(10) df_test = df_test.drop(['Name', 'Ticket', 'Cabin'], axis=1) df_test = df_test.dropna() df_test['Gender'] = df_test['Sex'].map({'female': 0, 'male':1}) df_test['Port'] = df_test['Embarked'].map({'C':1, 'S':2, 'Q':3}) df_test = df_test.drop(['Sex', 'Embarked'], axis=1) test_data = df_test.values output = model.predict(test_data[:,1:]) result = np.c_[test_data[:,0].astype(int), output.astype(int)] df_result = pd.DataFrame(result[:,0:2], columns=['PassengerId', 'Survived']) df_result.head(10) df_result.to_csv('../results/titanic_1-0.csv', index=False) df_result.shape <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Pandas - Cleaning data Step2: We notice that the columns describe features of the Titanic passengers, such as age, sex, and class. Of particular interest is the column Survived, which describes whether or not the passenger survived. When training our model, what we are essentially doing is assessing how each feature impacts whether or not the passenger survived (or if the feature makes an impact at all). Step3: Next, we review the type of data in the columns, and their respective counts. Step4: We notice that the columns Age and Embarked have NAs or missing values. As previously discussed, we take the approach of simply removing the rows with missing values. Step5: Question Step6: Similarly for Embarked, we review the range of values and create a new column called Port that represents, as a numerical value, where each passenger embarks from. Step7: Question Step8: We review the columns our final, processed data set. Step9: For convenience, we move the column Survived to the left-most column. We note that the left-most column is indexed as 0. Step10: In our final review of our training data, we check that (1) the column Survived is the left-most column (2) there are no NA values, and (3) all the values are in numerical form. Step11: Finally, we convert the processed training data from a Pandas dataframe into a numerical (Numpy) array. Step12: Scikit-learn - Training the model Step13: We use the processed training data to 'train' (or 'fit') our model. The column Survived will be our first input, and the set of other features (with the column PassengerId omitted) as the second. Step14: Scikit-learn - Making predictions Step15: We then review a selection of the data. Step16: We notice that test data has columns similar to our training data, but not the column Survived. We'll use our trained model to predict values for the column Survived. Step17: We now apply the trained model to the test data (omitting the column PassengerId) to produce an output of predictions. Step18: Pandas - Preparing submission Step19: We briefly review our predictions. Step20: Finally, we output our results to a .csv file. Step21: However, it appears that we have a problem. The Kaggle submission website expects "the solution file to have 418 predictions."
2,769
<ASSISTANT_TASK:> Python Code: from k2datascience import hr_analytics from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" %matplotlib inline hr = hr_analytics.HR() print(f'Data Shape\n\n{hr.data.shape}') print('\n\nColumns\n\n{}'.format('\n'.join(hr.data.columns))) hr.data.head() hr.box_plot(); print(f'P(employee left the company) = {hr.p_left_company:.3f}') print(f'P(employee experienced a work accident) = {hr.p_work_accident:.3f}') print(f'P(employee experienced accident and left company) = {hr.p_left_and_accident:.3f}') hr.compare_satisfaction() hours_variance, hours_std = hr.calc_hours_stats() print(f'Hours Worked Variance: {hours_variance:.3f}') print(f'Hours Worked Standard Deviation: {hours_std:.3f}') satisfaction_ex, satisfaction_current = hr.compare_satisfaction_variance() print(f'Ex-Employee Job Satisfaction Variance: {satisfaction_ex:.3f}') print(f'Current Employee Job Satisfaction Variance: {satisfaction_current:.3f}') hr.calc_satisfaction_salary() hr.calc_p_hours_salary() hr.calc_p_left_salary() hr.calc_p_salary_promotion() print(f'Approximate Sample Satisfaction Mean: {hr.data.satisfaction.mean():.3f}') sample_n = 10 sample_means = [] for n in range(sample_n): sample_means.append(hr.calc_satisfaction_random_sample(50)) sample_mean = '\n'.join([f'{x:.3f}' for x in sample_means]) print(f'Actual Sample Satisfaction Mean: {sum(sample_means) / sample_n}') print('Actual Sample Satisfaction Values:') print(f'{sample_mean}') print('\n'.join(hr.bernoulli_vars)) hr.calc_p_bernoulli() hr.calc_bernoulli_variance() hr.calc_p_bernoulli_k() hr.calc_p_bernoulli_k(cumulative=True) hr.bernoulli_plot() print('\n'.join(hr.normal_vars)) hr.gaussian_plot() hr.norm_stats hr.gaussian_plot(normal_overlay=True) print('\n'.join(hr.poisson_vars)) poisson = hr.poisson_distributions() poisson poisson[[f'p_{x}' for x in hr.poisson_vars]] print('\n'.join(hr.central_limit_vars)) hr.central_limit_plot() left = hr.data.query('left == 1').satisfaction stayed = hr.data.query('left == 0').satisfaction comparison = hr.compare_confidence(left, 'left', stayed, 'stayed', 0.95) comparison ttest = hr.t_test(left, 'left', stayed, 'stayed') mean_diff = abs(left.mean() - stayed.mean()) variance_diff = abs(left.var() - stayed.var()) print(f'T-test P-value: {ttest[1]:.3f}') print(f'Difference of Means: {mean_diff:.3f}') print(f'Difference of Variances: {variance_diff:.3f}') low = hr.data.query('salary == "low"').satisfaction medium = hr.data.query('salary == "medium"').satisfaction high = hr.data.query('salary == "high"').satisfaction hr.t_test(low, 'low', hr.data.satisfaction, 'All Satisfaction Data', independent_vars=False) hr.t_test(medium, 'medium', hr.data.satisfaction, 'All Satisfaction Data', independent_vars=False) hr.t_test(high, 'high', hr.data.satisfaction, 'All Satisfaction Data', independent_vars=False) hr.t_test(low, 'low', medium, 'medium', high, 'high'); low = hr.data.query('salary == "low"').evaluation medium = hr.data.query('salary == "medium"').evaluation high = hr.data.query('salary == "high"').evaluation hr.t_test(low, 'low', hr.data.evaluation, 'All Evaluation Data', independent_vars=False) hr.t_test(medium, 'medium', hr.data.evaluation, 'All Evaluation Data', independent_vars=False) hr.t_test(high, 'high', hr.data.evaluation, 'All Evaluation Data', independent_vars=False) hr.t_test(low, 'low', medium, 'medium', high, 'high'); high.mean() hr.data.evaluation.mean() medium = hr.data.query('salary == "medium"').satisfaction high = hr.data.query('salary == "high"').satisfaction hr.calc_power(medium, high) hr.bootstrap(hr.data.satisfaction, n=100, sets=100) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Data Step2: Explore the data Step3: Probability, Expectation Values, and Variance Step4: Compute the 25th, 50th, and 90th percentiles for the satisfaction level score for all employees that left the company. Compare these results to the same percentiles for those that did not leave. What can you say about the results? Step5: Findings Step6: Compare the variance between the satisfaction levels of employees who left versus those who stayed. Which is larger? What does this mean? Step7: Findings Step8: Findings Step9: Findings Step10: Findings Step11: Findings Step12: Distributions and The Central Limit Theorem Step13: For the k variables you identified in part 1, compute the probabilities $p_k$, of each having a positive $(x = 1)$ result. Step14: Compute the variance of each of the variables in part 2 using $p_k$ as described above. Step15: For each of the k variables, compute the probability of randomly selecting 3500 employees with a positive result. Comment on your answer. Step16: Findings Step17: Findings Step18: The Normal Distribution Step19: For the variables in part 1, plot some histograms. Step20: Compute the mean and variance for each of the variables used in parts 1 and 2. Step21: Using the mean and variance in part 3, construct normal distributions for each and overlay them on top of the histograms you made in part one. Are they well approximated by normals? Step22: Findings Step23: For each variable in part 1, divide each by salary and fit a Poisson distribution to each. Step24: Findings Step25: Using the variables chosen in part 1, randomly select a set of n = 10, n = 100, n = 500 and n = 1000 samples and take the mean. Repeat this 1000 times for each variable. Step26: Findings Step27: Findings Step28: Findings Step29: Findings Step30: Findings Step31: Bootstrapping
2,770
<ASSISTANT_TASK:> Python Code: chain = sisl.Geometry([0]*3, sisl.Atom(1, R=1.), sc=[1, 1, 10]) chain.set_nsc([3, 3, 1]) # Transport along y-direction chain = chain.tile(20, 0) He = sisl.Hamiltonian(chain) He.construct(([0.1, 1.1], [0, -1])) Hd = He.tile(20, 1) He.write('ELEC.nc') Hd.write('DEVICE.nc') with open('RUN.fdf', 'w') as f: f.write( TBT.k [ 3 1 1 ] TBT.DOS.A TBT.Current.Orb TBT.HS DEVICE.nc %block TBT.Elec.Left HS ELEC.nc semi-inf-direction -a2 electrode-position 1 %endblock %block TBT.Elec.Right HS ELEC.nc semi-inf-direction +a2 electrode-position end -1 %endblock ) trs = sisl.get_sile('TRS/siesta.TBT.nc') no_trs = sisl.get_sile('NO_TRS/siesta.TBT.nc') def plot_bond(tbt, E): xy = tbt.geometry.xyz[:, :2] vector = tbt.vector_current(0, E)[:, :2] atom = tbt.atom_current(0, E) # Normalize atomic current atom += 1 atom *= 10 / atom.max() plt.scatter(xy[:, 0], xy[:, 1], atom); plt.quiver(xy[:, 0], xy[:, 1], vector[:, 0], vector[:, 1]); plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.tight_layout() plot_bond(trs, 1.) plt.savefig('fig/trs.png') plot_bond(no_trs, 1.) plt.savefig('fig/no_trs.png') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example of the $k$-point sampling for TBtrans. Step2: Run these two executables
2,771
<ASSISTANT_TASK:> Python Code:: def load_doc(filename): # open the file as read only file = open(filename, 'r') # read all text text = file.read() # close the file file.close() return text <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
2,772
<ASSISTANT_TASK:> Python Code: #import tm1 service module from TM1py.Services import TM1Service #import tm1 utils module from TM1py.Utils import Utils #import pandas import pandas as pd #import matplotlib import matplotlib.pyplot as plt #inline plotting for matplotlib %matplotlib inline #import statsmodels package from fbprophet import Prophet #Server address address = 'localhost' #HTTP port number - this can be found in your config file port = '8892' #username user = 'admin' #password password = 'apple' #SSL parameter - this can be found in your config file ssl = True #specify the cube cube_name = 'Retail' #specify the view view_name = 'Time Series' with TM1Service(address= address, port=port, user=user, password=password, ssl=ssl) as tm1: # Extract pnl data from specified cube view raw_data = tm1.cubes.cells.get_view_content(cube_name=cube_name, view_name=view_name, private=False) # Build pandas DataFrame fram raw cellset data df = Utils.build_pandas_dataframe_from_cellset(raw_data, multiindex=False) ts = df ts.dtypes ts['Date'] = ts['Year'] + '-' + ts['Period'] ts['Date'] = pd.DatetimeIndex(ts['Date']) ts = ts.rename(columns={'Date': 'ds', 'Values': 'y'}) region = '13' product = '315' sub = ts[ts['Region']==region] sub = sub[sub['Product']==product] sub_model = Prophet(interval_width=0.95) sub_model.fit(sub) #specify the number of future periods future_dates = sub_model.make_future_dataframe(periods=24, freq='MS') forecast = sub_model.predict(future_dates) forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail() sub_model.plot(forecast, uncertainty=True) sub_model.plot_components(forecast) #Combine the forecast dataframe and our original subset sub = sub.set_index('ds') forecast = forecast.set_index('ds') result = pd.concat([sub, forecast], axis = 1) #fill out other dimensions result['Version'] = result.Version.fillna('3') result['Currency'] = result.Currency.fillna('Local') result['Region'] = result.Region.fillna(region) result['Product'] = result.Product.fillna(product) result['Retail Measure'] = result['Retail Measure'].fillna('Sales Amount') #make ds accessible result = result.reset_index() result['Year'] = pd.DatetimeIndex(result['ds']).year result['Period'] = pd.DatetimeIndex(result['ds']).month with TM1Service(address= address, port=port, user=user, password=password, ssl=ssl) as tm1: # cellset to store the new data cellset = {} # Populate cellset with coordinates and value pairs for index, row in result.iterrows(): cellset[(row['Year'], row['Period'], 'Forecast', row['Product'], row['Currency'], row['Region'],row['Retail Measure'])] = row['yhat'] tm1.cubes.cells.write_values('Retail', cellset) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 2 Step2: Step 3 Step3: Step 4 Step4: Rather than looping through each region and product within the data set, the following cell creates a subset of data to forecast. If you'd like to forecast for an alternate region/product combination this is where you're able to make the change by subbing out Region <i>13</i> and Product <i>315</i>. Step5: Step 5
2,773
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import numpy as np import statsmodels.api as sm from statsmodels.formula.api import ols sm.formula.ols import statsmodels.formula.api as smf sm.OLS.from_formula dta = sm.datasets.get_rdataset("Guerry", "HistData", cache=True) df = dta.data[['Lottery', 'Literacy', 'Wealth', 'Region']].dropna() df.head() mod = ols(formula='Lottery ~ Literacy + Wealth + Region', data=df) res = mod.fit() print(res.summary()) res = ols(formula='Lottery ~ Literacy + Wealth + C(Region)', data=df).fit() print(res.params) res = ols(formula='Lottery ~ Literacy + Wealth + C(Region) -1 ', data=df).fit() print(res.params) res1 = ols(formula='Lottery ~ Literacy : Wealth - 1', data=df).fit() res2 = ols(formula='Lottery ~ Literacy * Wealth - 1', data=df).fit() print(res1.params, '\n') print(res2.params) res = smf.ols(formula='Lottery ~ np.log(Literacy)', data=df).fit() print(res.params) def log_plus_1(x): return np.log(x) + 1. res = smf.ols(formula='Lottery ~ log_plus_1(Literacy)', data=df).fit() print(res.params) import patsy f = 'Lottery ~ Literacy * Wealth' y,X = patsy.dmatrices(f, df, return_type='matrix') print(y[:5]) print(X[:5]) f = 'Lottery ~ Literacy * Wealth' y,X = patsy.dmatrices(f, df, return_type='dataframe') print(y[:5]) print(X[:5]) print(sm.OLS(y, X).fit().summary()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import convention Step2: Alternatively, you can just use the formula namespace of the main statsmodels.api. Step3: Or you can use the following conventioin Step4: These names are just a convenient way to get access to each model's from_formula classmethod. See, for instance Step5: All of the lower case models accept formula and data arguments, whereas upper case ones take endog and exog design matrices. formula accepts a string which describes the model in terms of a patsy formula. data takes a pandas data frame or any other data structure that defines a __getitem__ for variable names like a structured array or a dictionary of variables. Step6: Fit the model Step7: Categorical variables Step8: Patsy's mode advanced features for categorical variables are discussed in Step9: Multiplicative interactions Step10: Many other things are possible with operators. Please consult the patsy docs to learn more. Step11: Define a custom function Step12: Any function that is in the calling namespace is available to the formula. Step13: To generate pandas data frames
2,774
<ASSISTANT_TASK:> Python Code: %matplotlib notebook from sympy import init_printing from sympy import S from sympy import sin, cos, tanh, exp, pi, sqrt, log from boutdata.mms import x, y, z, t from boutdata.mms import DDX import os, sys # If we add to sys.path, then it must be an absolute path common_dir = os.path.abspath('./../../../../common') # Sys path is a list of system paths sys.path.append(common_dir) from CELMAPy.MES import make_plot, BOUT_print init_printing() folder = '../gaussianWSinAndParabola/' # Initialization the_vars = {} # We need Lx from boututils.options import BOUTOptions myOpts = BOUTOptions(folder) Lx = eval(myOpts.geom['Lx']) Ly = eval(myOpts.geom['Ly']) mu = eval(myOpts.cst['mu']) # Needed for Lambda Lambda = eval(myOpts.cst['Lambda']) phiRef = eval(myOpts.cst['phiRef']) # The potential # The skew sinus # In cartesian coordinates we would like a sinus with with a wave-vector in the direction # 45 degrees with respect to the first quadrant. This can be achieved with a wave vector # k = [1/sqrt(2), 1/sqrt(2)] # sin((1/sqrt(2))*(x + y)) # We would like 2 nodes, so we may write # sin((1/sqrt(2))*(x + y)*(2*pi/(2*Lx))) the_vars['phi'] = sin((1/sqrt(2))*(x + y)*(2*pi/(2*Lx))) # The density the_vars['n'] = 1 # The current the_vars['uIPar'] = 0 # The parallel electron velocity, given by the sheath boundary condition the_vars['uEPar'] = exp(Lambda-(phiRef+the_vars['phi'])) # The parallel velocity, given by the sheath boundary condition the_vars['jPar'] = the_vars['n']*(the_vars['uIPar']-the_vars['uEPar']) #make_plot(folder=folder, the_vars=the_vars, plot2d=True, include_aux=False, direction='y') BOUT_print(the_vars, rational=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initialize Step2: Define the variables Step3: Plot Step4: Print the variables in BOUT++ format
2,775
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import glob import os from matplotlib.patches import Rectangle # define all variables for convergence script # these will pass to the bash magic below used to call plumed sum_hills dir="MetaD_converge" #where the intermediate fes will be stored hills="other/HILLS" #your HILLS file from the simulation finalfes='other/fes.dat' #the final fes.dat file stride=1000 kT=8.314e-3*300 #throughout we convert to kcal, but the HILLS are assumed to be in GROMACS units (kJ) ## here is where you set the boxes to define convergence regions C1=[-1.5,1.0] #center of box 1 C2=[1.0,-.5] edge1=1.0 #edge of box1 edge2=1.0 %%bash -s "$dir" "$hills" "$stride" "$kT" # calling sum hills and output to devnul HILLSFILE=HILLS rm -rf $1 mkdir $1 cp $2 $1 cd $1 plumed sum_hills --hills $HILLSFILE --kt $4 --stride $3 >& /dev/null %matplotlib inline #read the data in from a text file fesdata = np.genfromtxt(finalfes,comments='#'); fesdata = fesdata[:,0:3] #what was your grid size? this calculates it dim=int(np.sqrt(np.size(fesdata)/3)) #some post-processing to be compatible with contourf X=np.reshape(fesdata[:,0],[dim,dim],order="F") #order F was 20% faster than A/C Y=np.reshape(fesdata[:,1],[dim,dim],order="F") Z=np.reshape((fesdata[:,2]-np.min(fesdata[:,2]))/4.184,[dim,dim],order="F") #convert to kcal/mol #what spacing do you want? assume units are in kJ/mol spacer=1 #this means 1kcal/mol spacing lines=20 levels=np.linspace(0,lines*spacer,num=(lines+1),endpoint=True) fig=plt.figure(figsize=(8,6)) axes = fig.add_subplot(111) xlabel='$\Phi$' ylabel='$\Psi$' plt.contourf(X, Y, Z, levels, cmap=plt.cm.bone,) plt.colorbar() axes.set_xlabel(xlabel, fontsize=20) axes.set_ylabel(ylabel, fontsize=20) currentAxis = plt.gca() currentAxis.add_patch(Rectangle((C1[0]-edge1/2, C1[1]-edge1/2), edge1, edge1,facecolor='none',edgecolor='yellow',linewidth='3')) currentAxis.add_patch(Rectangle((C2[0]-edge2/2, C2[1]-edge2/2), edge2, edge2,facecolor='none',edgecolor='yellow',linewidth='3')) plt.show() def diffNP(file): #read the data in from a text file # note - this is very slow fesdata = np.genfromtxt(file,comments='#'); A=0.0 B=0.0 dim=np.shape(fesdata)[0] for i in range(0, dim): x=fesdata[i][0] y=fesdata[i][1] z=fesdata[i][2] if x < C1[0]+edge1/2 and x > C1[0]-edge1/2 and y > C1[1]-edge1/2 and y < C1[1]+edge1/2: A+=np.exp(-z/kT) if x < C2[0]+edge2/2 and x > C2[0]-edge2/2 and y > C2[1]-edge2/2 and y < C2[1]+edge2/2: B+=np.exp(-z/kT) A=-kT*np.log(A) B=-kT*np.log(B) diff=(A-B)/4.184 #output in kcal return diff def diff(file): kT=8.314e-3*300 A=0.0 B=0.0 f = open(file, 'r') for line in f: if line[:1] != '#': line=line.strip() if line: columns = line.split() x=float(columns[0]) y=float(columns[1]) z=float(columns[2]) if x < C1[0]+edge1/2 and x > C1[0]-edge1/2 and y > C1[1]-edge1/2 and y < C1[1]+edge1/2: A+=np.exp(-z/kT) if x < C2[0]+edge2/2 and x > C2[0]-edge2/2 and y > C2[1]-edge2/2 and y < C2[1]+edge2/2: B+=np.exp(-z/kT) f.close A=-kT*np.log(A) B=-kT*np.log(B) diff=(A-B)/4.184 return diff diffvec=None rootdir = '/Users/jpfaendt/Learning/Python/ALA2_MetaD/MetaD_converge' i=0 diffvec=np.zeros((1,2)) #the variable func defines which function you are going to call to read in your data files fes_*.dat #func=diffNP uses the numpy read in (SLOW) #func=diff streams in data from a text file #to experience the differnece , uncomment out the print statements and run each way func=diff for infile in glob.glob( os.path.join(rootdir, 'fes_?.dat') ): if i >= i: diffvec.resize((i+1,2)) #print "current file is: " + infile diffvec[i][0]=i*1.0 diffvec[i][1]=func(infile) i+=1 for infile in glob.glob( os.path.join(rootdir, 'fes_??.dat') ): if i >= i: diffvec.resize((i+1,2)) #print "current file is: " + infile diffvec[i][0]=i*1.0 diffvec[i][1]=func(infile) i+=1 for infile in glob.glob( os.path.join(rootdir, 'fes_???.dat') ): if i >= i: diffvec.resize((i+1,2)) #print "current file is: " + infile diffvec[i][0]=i*1.0 diffvec[i][1]=func(infile) i+=1 fig = plt.figure(figsize=(6,6)) axes = fig.add_subplot(111) xlabel='time (generic)' ylabel='diff (A-B) (kcal/mol)' axes.plot(diffvec[:,0],diffvec[:,1]) axes.set_xlabel(xlabel, fontsize=20) axes.set_ylabel(ylabel, fontsize=20) plt.show() ## #read the data in from a text file using genfrom txt fesdata = np.genfromtxt('MetaD_converge/fes_1.dat',comments='#'); kT=8.314e-3*300 A=0.0 B=0.0 dim=np.shape(fesdata)[0] for i in range(0, dim): x=fesdata[i][0] y=fesdata[i][1] z=fesdata[i][2] if x < C1[0]+edge1/2 and x > C1[0]-edge1/2 and y > C1[1]-edge1/2 and y < C1[1]+edge1/2: A+=np.exp(-z/kT) if x < C2[0]+edge2/2 and x > C2[0]-edge2/2 and y > C2[1]-edge2/2 and y < C2[1]+edge2/2: B+=np.exp(-z/kT) A=-kT*np.log(A) B=-kT*np.log(B) diff=(A-B)/4.184 diff ## #read the data in from a text file using read in commands kT=8.314e-3*300 A=0.0 B=0.0 f = open('MetaD_converge/fes_1.dat', 'r') for line in f: if line[:1] != '#': line=line.strip() if line: columns = line.split() x=float(columns[0]) y=float(columns[1]) z=float(columns[2]) if x < C1[0]+edge1/2 and x > C1[0]-edge1/2 and y > C1[1]-edge1/2 and y < C1[1]+edge1/2: A+=np.exp(-z/kT) if x < C2[0]+edge2/2 and x > C2[0]-edge2/2 and y > C2[1]-edge2/2 and y < C2[1]+edge2/2: B+=np.exp(-z/kT) f.close A=-kT*np.log(A) B=-kT*np.log(B) diff=(A-B)/4.184 diff file='MetaD/fes.dat' %timeit diffNP(file) %timeit diff(file) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Graph the final FES and plot the two squares on top of it Step2: The two functions below calculate the average free energy of a region by integrating over whichever boxes you defined above. Since the FES is discrete and points are equally spaced, this is trivially taken as a summation Step3: Below this is all testing of different read-in options Step4: Profiling speed of different read in options
2,776
<ASSISTANT_TASK:> Python Code: # Librerias import pandas as pd df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'], 'B': ['B8', 'B9', 'B10', 'B11'], 'C': ['C8', 'C9', 'C10', 'C11'], 'D': ['D8', 'D9', 'D10', 'D11']}, index=[8, 9, 10, 11]) df1 df2 df3 pd.concat([df1,df2,df3]) pd.concat([df1,df2,df3],axis=1) left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) left right pd.merge(left,right,how='inner',on='key') left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], 'key2': ['K0', 'K0', 'K0', 'K0'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) pd.merge(left, right, on=['key1', 'key2']) pd.merge(left, right, how='outer', on=['key1', 'key2']) pd.merge(left, right, how='right', on=['key1', 'key2']) pd.merge(left, right, how='left', on=['key1', 'key2']) left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=['K0', 'K1', 'K2']) right = pd.DataFrame({'C': ['C0', 'C2', 'C3'], 'D': ['D0', 'D2', 'D3']}, index=['K0', 'K2', 'K3']) left.join(right) left.join(right, how='outer') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Concatenar Step2: Ejemplos de DataFrames Step3: Merge Step4: Ejemplo Complicado Step5: Joining
2,777
<ASSISTANT_TASK:> Python Code: # Step 1: Configure your cluster with gcloud # `gcloud container clusters get-credentials <cluster_name> --zone <cluster-zone> --project <project-id> # Step 2: Get the port where the gRPC service is running on the cluster # `kubectl get configmap metadata-grpc-configmap -o jsonpath={.data}` # Use `METADATA_GRPC_SERVICE_PORT` in the next step. The default port used is 8080. # Step 3: Port forwarding # `kubectl port-forward deployment/metadata-grpc-deployment 9898:<METADATA_GRPC_SERVICE_PORT>` # Troubleshooting # If getting error related to Metadata (For examples, Transaction already open). Try restarting the metadata-grpc-service using: # `kubectl rollout restart deployment metadata-grpc-deployment` import sys, os PROJECT_DIR=os.path.join(sys.path[0], '..') %cd {PROJECT_DIR} import json from examples import config as cloud_config import examples.tuner_data_utils as tuner_utils from ml_metadata.proto import metadata_store_pb2 from ml_metadata.metadata_store import metadata_store from nitroml.benchmark import results import seaborn as sns import tensorflow as tf import qgrid sns.set() connection_config = metadata_store_pb2.MetadataStoreClientConfig() connection_config.host = 'localhost' connection_config.port = 9898 store = metadata_store.MetadataStore(connection_config) # Name of the dataset/subbenchmark # This is used to filter out the component path. testdata = 'ilpd' def get_metalearning_data(meta_algorithm: str = '', test_dataset: str = '', multiple_runs: bool = True): d_list = [] execs = store.get_executions_by_type('nitroml.automl.metalearning.tuner.component.AugmentedTuner') model_dir_map = {} for tuner_exec in execs: run_id = tuner_exec.properties['run_id'].string_value pipeline_root = tuner_exec.properties['pipeline_root'].string_value component_id = tuner_exec.properties['component_id'].string_value pipeline_name = tuner_exec.properties['pipeline_name'].string_value if multiple_runs: if '.run_' not in component_id: continue if test_dataset not in component_id: continue if f'metalearning_benchmark' != pipeline_name and meta_algorithm not in pipeline_name: continue config_path = os.path.join(pipeline_root, component_id, 'trial_summary_plot', str(tuner_exec.id)) model_dir_map[tuner_exec.id] = config_path d_list.append(config_path) return d_list # Specify the path to tuner_dir from above # You can get the list of tuner_dirs by calling: get_metalearning_data(multiple_runs=False) example_plot = '' if not example_plot: raise ValueError('Please specify the path to the tuner plot dir.') with tf.io.gfile.GFile(os.path.join(example_plot, 'tuner_plot_data.txt'), mode='r') as fin: data = json.load(fin) tuner_utils.display_tuner_data(data, save_plot=False) algorithm = 'majority_voting' d_list = get_metalearning_data(algorithm, testdata) d_list # Select the runs from `d_list` to visualize. data_list = [] for d in d_list: with tf.io.gfile.GFile(os.path.join(d, 'tuner_plot_data.txt'), mode='r') as fin: data_list.append(json.load(fin)) tuner_utils.display_tuner_data_with_error_bars(data_list, save_plot=True) algorithm = 'nearest_neighbor' d_list = get_metalearning_data(algorithm, testdata) d_list # Select the runs from `d_list` to visualize. data_list = [] for d in d_list: with tf.io.gfile.GFile(os.path.join(d, 'tuner_plot_data.txt'), mode='r') as fin: data_list.append(json.load(fin)) tuner_utils.display_tuner_data_with_error_bars(data_list, save_plot=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Connect to the ML Metadata (MLMD) database Step2: Get trial summary data (used to plot Area under Learning Curve) stored as AugmentedTuner artifacts. Step3: Majority Voting Step4: Nearest Neighbor
2,778
<ASSISTANT_TASK:> Python Code: # Importa la librería financiera. # Solo es necesario ejecutar la importación una sola vez. import cashflows as cf cflo = cf.cashflow(const_value=[100] * 11 + [0], start='2016-1', freq='M') cflo nrate = cf.interest_rate([24] * 12, start='2016-1', freq='M') nrate cf.savings(deposits = cflo, # depósito periodico initbal = 100, # balance inicial nrate = nrate) # tasa de interés nominal x = cf.savings(deposits = cflo, # depósito períodico initbal = 100, # balance inicial nrate = nrate) # tasa de interés nominal x.Earned_Interest ## intereses como lista x.Earned_Interest.tolist() ## suma aritmética de los intereses sum(x.Earned_Interest) # balance final x.Ending_Balance[-1] ## tasa de interés nrate = cf.interest_rate([24] * 12, start='2016-1', freq='M', chgpts={5:16}) ## depósitos cflo = cf.cashflow(const_value=[100]*11 + [0], start='2016-1', freq='M') ## modelado x = cf.savings(deposits = cflo, # deposito periodico initbal = 100, # balance inicial nrate = nrate) # tasa de interes mensual x nrate = cf.interest_rate(const_value=[36]*24, start='2000-01', freq='M', chgpts={'2001-01':24}) nrate cflo = cf.cashflow(const_value=0, periods=24, start='2000-01', freq='M') cflo[[3*t-1 for t in range(1, 9)]] = 50 cflo x = cf.savings(deposits = cflo, # depósito períodico initbal = 100, # balance inicial nrate = nrate) # tasa de interés mensual x <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Ejercicio.-- Usando Microsoft Excel u otra herramienta solucione el siguiente problema Step2: *Ejemplo.--* Realice el mismo ejemplo anterior, pero considerando que la tasa de interés es del 16% nominal a partir de 2016-06. Step3: *Ejemplo.--* Se tiene una cuenta con un saldo inicial de $ 100. Se hacen depósitos al final de cada trimestre por $ 50 (se hará el primer depósito en 3 meses). La tasa nominal es del 36% con capitalización mensual y cambiará a 24% a partir del 13avo mes (incluido). ¿Cuál será el saldo al final de mes 24?.
2,779
<ASSISTANT_TASK:> Python Code: import numpy as np np.random.seed(29384924) data = np.random.randint(10, size = 100) # 100 random numbers, from 0 to 9 print(data) print("Number of data points: ", data.shape[0]) # Remember our friend, ndarray.shape? print("Largest value: ", data.max()) print("Smallest value: ", data.min()) print(data.mean()) # Mean outlier = np.array([1, 1, 2, 3, 2, 1, 3, 2, 38]) # Note the outlier of 38 at the end. print(outlier.mean()) print(np.median(data)) print(outlier) print(np.median(outlier)) print(np.mean(outlier)) print(data) print(data.var()) print(np.sqrt(data.var())) print(data.std()) print(np.percentile(data, 75) - np.percentile(data, 25)) %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns # Observe 100 data points from a Gaussian random variable with mean = 0.0 and variance = 1.0. observations = np.random.normal(size = 100) _ = plt.hist(observations) # Observe **1000** data points from a Gaussian random variable with mean = 0.0 and variance = 1.0. observations = np.random.normal(size = 1000) _ = plt.hist(observations) # Observe **** 10,000 **** data points from a Gaussian random variable with mean = 0.0 and variance = 1.0. observations = np.random.normal(size = 10000) _ = plt.hist(observations, bins = 25) print(observations) print("Mean: {:.2f}".format(observations.mean())) print("Variance: {:.2f}".format(observations.var())) from scipy.stats import norm xs = np.linspace(-5, 5, 100) plt.plot(xs, norm.pdf(xs, loc = 0, scale = 1), '-', label = "mean=0, var=1") plt.plot(xs, norm.pdf(xs, loc = 0, scale = 2), '--', label = "mean=0, var=2") plt.plot(xs, norm.pdf(xs, loc = 0, scale = 0.5), ':', label = "mean=0, var=0.5") plt.plot(xs, norm.pdf(xs, loc = -1, scale = 1), '-.', label = "mean=-1, var=1") plt.legend(loc = 0) plt.title("Various Normal Distributions") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Some very straightforward statistics are the number of data points, the largest value, and the smallest value. These shouldn't be immediately ignored, but they are of limited utility. Step2: Mean Step3: The mean is very simple to compute Step4: The mean is sensitive to outliers, meaning one or two data points that lie well beyond all the others can disproportionately affect the value of the mean. In the above simple example, the lone outlier of 38 pulls the mean to be larger than all the other data points except for 38; not exactly a representative statistic! Step5: The median is computed by Step6: For comparison Step7: Quite a difference! But which is more representative of data will, ultimately, depend on your data and what you're trying to do with it. Step8: The variance is computed by subtracting each individual data point from the average of the whole data set, squaring this difference, and summing all these differences together before finally dividing by the number of data points. Step9: (they should indeed both show the same number--this is just to show that the standard deviation is defined precisely as the square root of the variance) Step10: This, like the median, is robust to outliers. But also like the median, it relies on sorting the data first, then picking out the value 1/4 of the way down the dataset and subtracting it from the value 3/4 of the way down the dataset. This can be expensive in large datasets. Step11: It's tough to see, isn't it? Let's try 1000 observations. Step12: That looks a little better! Maybe 10,000 data points, just for grins? Step13: There's the bell curve we know and love! Step14: This could be any old dataset! In fact, forget for a moment that we generated this dataset ourselves, and instead think that this could be a dataset we picked up from the web. Step15: You'll notice the mean is very close to 0, and the variance is likewise very close to 1. Since we ourselves set the mean and variance for the random number generator, we know that these are very close to the true mean and true variance, but in general we wouldn't necessarily know that.
2,780
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (9,6) df = pd.read_csv("data/creditRisk.csv") df.head() import seaborn as sns sns.stripplot(data = df, x = "Income", y = "Credit History", hue = "Risk", size = 10) from sklearn import preprocessing le = preprocessing.LabelEncoder() df['Credit History'].unique() df['Credit History'].unique() le.fit(df['Credit History'].unique()) df['Credit History'].tail() # Converting the categorical data using label encoder df['Credit History'] = le.transform(df['Credit History']) df['Credit History'].tail() le.classes_ df.Risk.unique() Risk_mapping = { 'High': 2, 'Moderate': 1, 'Low': 0} df.Risk.tail() df['Risk'] = df['Risk'].map(Risk_mapping) df.Risk.tail() df.head() data = df.iloc[:,0:2] target = df.iloc[:,2:3] from sklearn import tree clf = tree.DecisionTreeClassifier() clf clf = clf.fit(data, target) import pydotplus from IPython.display import Image dot_data = tree.export_graphviz(clf, out_file='tree.dot', feature_names=data.columns, class_names=['Low', 'Moderate', 'High'], filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_file('tree.dot') Image(graph.create_png()) import modelvis modelvis.render_tree(clf, feature_names=data.columns,class_names=['Low', 'Moderate', 'High'] ) modelvis.print_tree_as_code(clf) def plot_classifier_2d(clf, data, target): x_min, x_max = data.iloc[:,0].min(), data.iloc[:,0].max() y_min, y_max = data.iloc[:,1].min(), data.iloc[:,1].max() xx, yy = np.meshgrid( np.arange(x_min, x_max, (x_max - x_min)/100), np.arange(y_min, y_max, (y_max - y_min)/100)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap="viridis", alpha = 0.5) plt.colorbar(cs) plt.scatter(x = data.iloc[:,0], y = data.iloc[:,1], c = target, s = 100, cmap="magma") modelvis.plot_decision_boundaries(clf, data, target, feature_names=data.columns, show_input=True, class_names=['Low', 'Moderate', 'High']) plot_classifier_2d(clf, data,target) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plotting the Data Step2: Preparing Data Step3: Lets use a dictionary for encoding nominal variable Step4: Decision Tree Classifier Step5: Visualise the Tree Step6: Now we need to first define an Impurity measure. The three popular impurity measures are
2,781
<ASSISTANT_TASK:> Python Code: person_name = "Mike" person_age = 50 person_faculty = True person = {} person['name'] = "Mike" person['age'] = 50 person['faculty'] = True print(person) 'dob' in person.keys() if 'dob' not in person.keys(): dob = input("Enter your DOB") person['dob'] = dob person person['hjklsdagkljhfaSDGfkjasd'] = 10 print(person) 50 in person.values() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: More Lab Questions...
2,782
<ASSISTANT_TASK:> Python Code: # Create the message variable and assign the value "Hello World" to it message="Hello World" # Use the variable in a print statement # The print statement retrieves the value assigned to the variable and displays the value print(message) message #Assign raw numbers to variables apples=5 oranges=10 #Do a sum with the values represented by the variables and assign the result to a new variable items_in_basket = apples + oranges #Display the resulting value as the cell output items_in_basket %run 'Set-up.ipynb' %run 'Loading scenes.ipynb' %run 'vrep_models/PioneerP3DX.ipynb' %%vrepsim '../scenes/OU_Pioneer.ttt' PioneerP3DX import time #side 1 robot.move_forward() time.sleep(1) #turn 1 robot.rotate_left(1.8) time.sleep(0.45) #side 2 robot.move_forward() time.sleep(1) #turn 2 robot.rotate_left(1.8) time.sleep(0.45) #side 3 robot.move_forward() time.sleep(1) #turn 3 robot.rotate_left(1.8) time.sleep(0.45) #side 4 robot.move_forward() time.sleep(1) %%vrepsim '../scenes/OU_Pioneer.ttt' PioneerP3DX import time #YOUR CODE HERE %%vrepsim '../scenes/OU_Pioneer.ttt' PioneerP3DX import time side_length_time=1 turn_speed=1.8 turn_time=0.45 #side 1 robot.move_forward() time.sleep(side_length_time) #turn 1 robot.rotate_left(turn_speed) time.sleep(turn_time) #side 2 robot.move_forward() time.sleep(side_length_time) #turn 2 robot.rotate_left(turn_speed) time.sleep(turn_time) #side 3 robot.move_forward() time.sleep(side_length_time) #turn 3 robot.rotate_left(turn_speed) time.sleep(turn_time) #side 4 robot.move_forward() time.sleep(side_length_time) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Try changing the message in the previous code cell and re-running it. Does it behave as you expect? Step2: You can assign whatever object you like to a variable. Step3: See if you can add the count of a new set of purchases to the number of items in your basket in the cell above. For example, what if you also bought 3 pears. And a bunch of bananas. Step4: The original programme appears in the code cell below. Step5: Using the above programme as a guide, see if you can write a programme in the code cell below that makes it easier to maintin and simplifies the act of changing the numerical parameter values. Step6: How did you get on?
2,783
<ASSISTANT_TASK:> Python Code: # Constants D = 2 N = 100 K = 2 w = np.random.randn(D) w = normalize(w) theta = np.arctan2(w[0], w[1]) X = np.random.randn(N,D,K) y = np.zeros(N) for i in range(N): m = w.dot(X[i]) X[i] = X[i][:,np.argsort(-m)] y[i] = np.sign(max(m)) # Visualize data plt.plot(np.arange(-3,3), -w[0]/w[1] * np.arange(-3,3), c='black') plt.scatter(X[y<0,0,0], X[y<0,1,0], c='r', marker='o') plt.scatter(X[y<0,0,1], X[y<0,1,1], c='r', marker='o') plt.scatter(X[y>0,0,0], X[y>0,1,0], c='b', marker='D') plt.scatter(X[y>0,0,1], X[y>0,1,1], c='b', marker='D') # Split data for convenience X_ = np.concatenate((X[y<0,:,0],X[y<0,:,1])) Xa = X[y>0,:,0] Xb = X[y>0,:,1] Xp = np.concatenate((Xa, Xb)) Na, N_, Np = y[y>0].shape[0], 2*y[y<0].shape[0], 2*y[y>0].shape[0] Nb = Na Na, N_, Np from cvxpy import * # Beta is the coefficients, and e is the slack. beta = Variable(D) ea, e_ = Variable(Na), Variable(N_) loss = 0.5 * norm(beta, 2) ** 2 + 1*sum_entries(e_)/N_ + 1* sum_entries(ea)/Na constr = [mul_elemwise(-1,X_*beta) > 1 - e_, mul_elemwise(1,Xa*beta) > 1 - ea] prob = Problem(Minimize(loss), constr) print("loss", prob.solve()) w_ = np.array(beta.value).flatten() w_ = w_ / np.linalg.norm(w_) # Until I add a 0. print("error", np.linalg.norm(w-w_)) # Visualize data plt.plot(np.arange(-3,3), -w[0]/w[1] * np.arange(-3,3), linestyle='dashed', c='black') plt.plot(np.arange(-3,3), -w_[0]/w_[1] * np.arange(-3,3), c='green') plt.scatter(X[y<0,0,0], X[y<0,1,0], c='r', marker='o') plt.scatter(X[y<0,0,1], X[y<0,1,1], c='r', marker='o') plt.scatter(X[y>0,0,0], X[y>0,1,0], c='b', marker='D') plt.scatter(X[y>0,0,1], X[y>0,1,1], c='b', marker='D') # Beta is the coefficients, and e is the slack. beta = Variable(D) ep, e_ = Variable(Np), Variable(N_) loss = 0.5 * norm(beta, 2) ** 2 + 1*sum_entries(e_)/N_ + 1* sum_entries(ep)/Np constr = [mul_elemwise(-1,X_*beta) > 1 - e_, mul_elemwise(1,Xp*beta) > 1 - ep] prob = Problem(Minimize(loss), constr) print("loss", prob.solve()) w_ = np.array(beta.value).flatten() w_ = w_ / np.linalg.norm(w_) # Until I add a 0. print("error", np.linalg.norm(w-w_)) # Visualize data plt.plot(np.arange(-3,3), -w[0]/w[1] * np.arange(-3,3), linestyle='dashed', c='black') plt.plot(np.arange(-3,3), -w_[0]/w_[1] * np.arange(-3,3), c='green') plt.scatter(X[y<0,0,0], X[y<0,1,0], c='r', marker='o') plt.scatter(X[y<0,0,1], X[y<0,1,1], c='r', marker='o') plt.scatter(X[y>0,0,0], X[y>0,1,0], c='b', marker='D') plt.scatter(X[y>0,0,1], X[y>0,1,1], c='b', marker='D') # Beta is the coefficients, and e is the slack. Da, = y[y>0].shape beta = Variable(D) e = Variable() loss = 0.5 * norm(beta, 2) ** 2 + 1 * e constr = [mul_elemwise(-1,X_*beta) > 1 - e, Xa*beta + Xb*beta > 1 - e, ] prob = Problem(Minimize(loss), constr) print("loss", prob.solve()) w_ = np.array(beta.value).flatten() w_ = w_ / np.linalg.norm(w_) # Until I add a 0. print("error", np.linalg.norm(w-w_)) # Visualize data plt.plot(np.arange(-3,3), -w[0]/w[1] * np.arange(-3,3), linestyle='dashed', c='black') plt.plot(np.arange(-3,3), -w_[0]/w_[1] * np.arange(-3,3), c='green') plt.scatter(X[y<0,0,0], X[y<0,1,0], c='r', marker='o') plt.scatter(X[y<0,0,1], X[y<0,1,1], c='r', marker='o') plt.scatter(X[y>0,0,0], X[y>0,1,0], c='b', marker='D') plt.scatter(X[y>0,0,1], X[y>0,1,1], c='b', marker='D') # Beta is the coefficients, and e is the slack. Da, = y[y>0].shape beta = Variable(D) e = Variable() C = 1. C_ = 1 loss = 0.5 * norm(beta, 2) ** 2 + C * e + C_ * sum_entries(pos(Xa*beta) + pos(Xb*beta) - 1) / Na constr = [mul_elemwise(-1,X_*beta) > 1 - e, ] prob = Problem(Minimize(loss), constr) print("loss", prob.solve()) w_ = np.array(beta.value).flatten() w_ = w_ / np.linalg.norm(w_) # Until I add a 0. print("error", np.linalg.norm(w-w_)) # Visualize data plt.plot(np.arange(-3,3), -w[0]/w[1] * np.arange(-3,3), linestyle='dashed', c='black') plt.plot(np.arange(-3,3), -w_[0]/w_[1] * np.arange(-3,3), c='green') plt.scatter(X[y<0,0,0], X[y<0,1,0], c='r', marker='o') plt.scatter(X[y<0,0,1], X[y<0,1,1], c='r', marker='o') plt.scatter(X[y>0,0,0], X[y>0,1,0], c='b', marker='D') plt.scatter(X[y>0,0,1], X[y>0,1,1], c='b', marker='D') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Method Step2: Exact SVM solution Step3: Naive Step4: As expected, the naive approach does really poorly. Step5: Proposed 2
2,784
<ASSISTANT_TASK:> Python Code: # This will take a few minutes r = requests.get("http://www.transtats.bts.gov/Download/On_Time_On_Time_Performance_2015_1.zip", stream=True) with open("otp-1.zip", "wb") as f: for chunk in r.iter_content(chunk_size=1024): f.write(chunk) f.flush() r.close() z = zipfile.ZipFile("otp-1.zip") fp = z.extract('On_Time_On_Time_Performance_2015_1.csv') columns = ['FlightDate', 'Carrier', 'TailNum', 'FlightNum', 'Origin', 'OriginCityName', 'OriginStateName', 'Dest', 'DestCityName', 'DestStateName', 'DepTime', 'DepDelay', 'TaxiOut', 'WheelsOn', 'WheelsOn', 'TaxiIn', 'ArrTime', 'ArrDelay', 'Cancelled', 'Diverted', 'ActualElapsedTime', 'AirTime', 'Distance', 'CarrierDelay', 'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay'] df = pd.read_csv('On_Time_On_Time_Performance_2015_1.csv', usecols=columns, dtype={'DepTime': str}) dep_time = df.DepTime.fillna('').str.pad(4, side='left', fillchar='0') df['ts'] = pd.to_datetime(df.FlightDate + 'T' + dep_time, format='%Y-%m-%dT%H%M%S') df = df.drop(['FlightDate', 'DepTime'], axis=1) carriers = ['AA', 'AS', 'B6', 'DL', 'US', 'VX', 'WN', 'UA', 'NK', 'MQ', 'OO', 'EV', 'HA', 'F9'] df.pipe(ck.within_set, items={'Carrier': carriers}).Carrier.value_counts().head() df.pipe(ck.none_missing, columns=['Carrier', 'TailNum', 'FlightNum']) import engarde.decorators as ed @ed.within_range({'Counts!': (4000, 110000)}) @ed.within_n_std(3) def pretty_counts(df): return df.Carrier.value_counts().to_frame(name='Counts!') pretty_counts(df) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's suppose that down the road our probram can only handle certain carriers; an update to the data adding a new carrier would violate an assumpetion we hold. We'll use the within_set method to check our assumption Step2: Great, our assumption was true (at least for now). Step3: Note
2,785
<ASSISTANT_TASK:> Python Code: import math import os import pandas as pd import numpy as np from datetime import datetime import tensorflow as tf from tensorflow import data print "TensorFlow : {}".format(tf.__version__) SEED = 19831060 DATA_DIR='data' # !mkdir $DATA_DIR # !gsutil cp gs://cloud-samples-data/ml-engine/census/data/adult.data.csv $DATA_DIR # !gsutil cp gs://cloud-samples-data/ml-engine/census/data/adult.test.csv $DATA_DIR TRAIN_DATA_FILE = os.path.join(DATA_DIR, 'adult.data.csv') EVAL_DATA_FILE = os.path.join(DATA_DIR, 'adult.test.csv') TRAIN_DATA_SIZE = 32561 EVAL_DATA_SIZE = 16278 HEADER = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income_bracket'] HEADER_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''], [0], [0], [0], [''], ['']] NUMERIC_FEATURE_NAMES = ['age', 'education_num', 'capital_gain', 'capital_loss', 'hours_per_week'] CATEGORICAL_FEATURE_NAMES = ['gender', 'race', 'education', 'marital_status', 'relationship', 'workclass', 'occupation', 'native_country'] FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES TARGET_NAME = 'income_bracket' TARGET_LABELS = [' <=50K', ' >50K'] WEIGHT_COLUMN_NAME = 'fnlwgt' NUM_CLASSES = len(TARGET_LABELS) def get_categorical_features_vocabolary(): data = pd.read_csv(TRAIN_DATA_FILE, names=HEADER) return { column: list(data[column].unique()) for column in data.columns if column in CATEGORICAL_FEATURE_NAMES } feature_vocabolary = get_categorical_features_vocabolary() print(feature_vocabolary) def create_feature_columns(): feature_columns = [] for column in NUMERIC_FEATURE_NAMES: feature_column = tf.feature_column.numeric_column(column) feature_columns.append(feature_column) for column in CATEGORICAL_FEATURE_NAMES: vocabolary = feature_vocabolary[column] embed_size = round(math.sqrt(len(vocabolary)) * 1.5) feature_column = tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list(column, vocabolary), embed_size) feature_columns.append(feature_column) return feature_columns from tensorflow.python.ops import math_ops def find_learning_rate(params): training_step = tf.cast(tf.train.get_global_step(), tf.float32) factor = tf.cast(tf.multiply(1.e-5, training_step*training_step), tf.float32) learning_rate = tf.add(params.learning_rate, factor) return learning_rate def update_learning_rate(params): training_step = tf.cast(tf.train.get_global_step(), tf.int32) base_cycle = tf.floordiv(training_step, params.cycle_length) current_cycle = tf.cast(tf.round(tf.sqrt(tf.cast(base_cycle, tf.float32))) + 1, tf.int32) current_cycle_length = tf.cast(tf.multiply(current_cycle, params.cycle_length), tf.int32) cycle_step = tf.mod(training_step, current_cycle_length) learning_rate = tf.cond( tf.equal(cycle_step, 0), lambda: params.learning_rate, lambda: tf.train.cosine_decay( learning_rate=params.learning_rate, global_step=cycle_step, decay_steps=current_cycle_length, alpha=0.0, ) ) tf.summary.scalar('base_cycle', base_cycle) tf.summary.scalar('current_cycle', current_cycle) tf.summary.scalar('current_cycle_length', current_cycle_length) tf.summary.scalar('cycle_step', cycle_step) tf.summary.scalar('learning_rate', learning_rate) return learning_rate def model_fn(features, labels, mode, params): is_training = True if mode == tf.estimator.ModeKeys.TRAIN else False # model body def _inference(features, mode, params): feature_columns = create_feature_columns() input_layer = tf.feature_column.input_layer(features=features, feature_columns=feature_columns) dense_inputs = input_layer for i in range(len(params.hidden_units)): dense = tf.keras.layers.Dense(params.hidden_units[i], activation='relu')(dense_inputs) dense_dropout = tf.keras.layers.Dropout(params.dropout_prob)(dense, training=is_training) dense_inputs = dense_dropout fully_connected = dense_inputs logits = tf.keras.layers.Dense(units=1, name='logits', activation=None)(fully_connected) return logits # model head head = tf.contrib.estimator.binary_classification_head( label_vocabulary=TARGET_LABELS, weight_column=WEIGHT_COLUMN_NAME ) learning_rate = find_learning_rate(params) if params.lr_search else update_learning_rate(params) return head.create_estimator_spec( features=features, mode=mode, logits=_inference(features, mode, params), labels=labels, optimizer=tf.train.AdamOptimizer(learning_rate) ) def create_estimator(params, run_config): feature_columns = create_feature_columns() estimator = tf.estimator.Estimator( model_fn, params=params, config=run_config ) return estimator def make_input_fn(file_pattern, batch_size, num_epochs, mode=tf.estimator.ModeKeys.EVAL): def _input_fn(): dataset = tf.data.experimental.make_csv_dataset( file_pattern=file_pattern, batch_size=batch_size, column_names=HEADER, column_defaults=HEADER_DEFAULTS, label_name=TARGET_NAME, field_delim=',', use_quote_delim=True, header=False, num_epochs=num_epochs, shuffle=(mode==tf.estimator.ModeKeys.TRAIN) ) iterator = dataset.make_one_shot_iterator() features, target = iterator.get_next() return features, target return _input_fn def train_and_evaluate_experiment(params, run_config): # TrainSpec #################################### train_input_fn = make_input_fn( TRAIN_DATA_FILE, batch_size=params.batch_size, num_epochs=None, mode=tf.estimator.ModeKeys.TRAIN ) train_spec = tf.estimator.TrainSpec( input_fn = train_input_fn, max_steps=params.traning_steps ) ############################################### # EvalSpec #################################### eval_input_fn = make_input_fn( EVAL_DATA_FILE, num_epochs=1, batch_size=params.batch_size, ) eval_spec = tf.estimator.EvalSpec( name=datetime.utcnow().strftime("%H%M%S"), input_fn = eval_input_fn, steps=None, start_delay_secs=0, throttle_secs=params.eval_throttle_secs ) ############################################### tf.logging.set_verbosity(tf.logging.INFO) if tf.gfile.Exists(run_config.model_dir): print("Removing previous artefacts...") tf.gfile.DeleteRecursively(run_config.model_dir) print '' estimator = create_estimator(params, run_config) print '' time_start = datetime.utcnow() print("Experiment started at {}".format(time_start.strftime("%H:%M:%S"))) print(".......................................") # tf.estimator.train_and_evaluate( # estimator=estimator, # train_spec=train_spec, # eval_spec=eval_spec # ) estimator.train(train_input_fn, steps=params.traning_steps) time_end = datetime.utcnow() print(".......................................") print("Experiment finished at {}".format(time_end.strftime("%H:%M:%S"))) print("") time_elapsed = time_end - time_start print("Experiment elapsed time: {} seconds".format(time_elapsed.total_seconds())) MODELS_LOCATION = 'models/census' MODEL_NAME = 'dnn_classifier-01' model_dir = os.path.join(MODELS_LOCATION, MODEL_NAME) BATCH_SIZE = 64 NUM_EPOCHS = 10 steps_per_epoch = int(math.ceil((TRAIN_DATA_SIZE / BATCH_SIZE))) training_steps = int(steps_per_epoch * NUM_EPOCHS) print("Training data size: {}".format(TRAIN_DATA_SIZE)) print("Btach data size: {}".format(BATCH_SIZE)) print("Steps per epoch: {}".format(steps_per_epoch)) print("Traing epochs: {}".format(NUM_EPOCHS)) print("Training steps: {}".format(training_steps)) params = tf.contrib.training.HParams( batch_size=BATCH_SIZE, traning_steps=training_steps, hidden_units=[64, 32], learning_rate=1.e-3, cycle_length=500, dropout_prob=0.1, eval_throttle_secs=0, lr_search=False ) run_config = tf.estimator.RunConfig( tf_random_seed=SEED, save_checkpoints_steps=steps_per_epoch, log_step_count_steps=100, save_summary_steps=1, keep_checkpoint_max=3, model_dir=model_dir, ) train_and_evaluate_experiment(params, run_config) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download the Data Step2: Dataset Metadata Step3: Building a TensorFlow Custom Estimator Step4: 2. Create model_fn Step5: 3. Create estimator Step6: 4. Data Input Function Step7: 5. Experiment Definition Step8: 6. Run Experiment with Parameters
2,786
<ASSISTANT_TASK:> Python Code: number = 3.14159265359 number = "1.7724538509055743" number = 3.14159265359 number = number ** 0.5 # Raise to the 0.5, which means square root. number = str(number) # Cast to a string. def first_negative(numbers): num = 0 index = 0 while numbers[index] > 0: index += 1 num = numbers[index] return num first_negative([1, 2, 3, -1]) first_negative([10, -10, -100, -50, -75, 10]) def compute_3dmagnitudes(X, Y, Z): magnitudes = [] ### BEGIN SOLUTION ### END SOLUTION return magnitudes def compute_3dmagnitudes(X, Y, Z): magnitudes = [] length = len(X) for i in range(length): # Pull out the corresponding (x, y, z) coordinates. x = X[i] y = Y[i] z = Z[i] ### Do the magnitude computation ### return magnitudes def compute_3dmagnitudes(X, Y, Z): magnitudes = [] for x, y, z in zip(X, Y, Z): pass ### Do the magnitude computation ### return magnitudes def list_of_positive_indices(numbers): indices = [] for index, element in enumerate(numbers): if element > 0: indices.append(index) else: pass # Why are we here? What is our purpose? Do we even exist? return indices def list_of_positive_indices(numbers): indices = [] for index, element in enumerate(numbers): if element > 0: indices.append(index) return indices def make_matrix(rows, cols): pre_built_row = [] # Build a single row that has <cols> 0s. for j in range(cols): pre_built_row.append(0) # Now build a list of the rows. matrix = [] for i in range(rows): matrix.append(pre_built_row) return matrix m = make_matrix(3, 4) print(m) m[0][0] = 99 print(m) def make_matrix(rows, cols): matrix = [] for i in range(rows): matrix.append([]) # First, append an empty list for the new row. for j in range(cols): matrix[i].append(0) # Now grow that empty list. return matrix m = make_matrix(3, 4) print(m) m[0][0] = 99 print(m) # Some test data import numpy as np x = np.random.random(10) y = np.random.random(10) len(x) == len(y) x = np.random.random((5, 5)) # A 5x5 matrix y = np.random.random((5, 10)) # A 5x10 matrix len(x) == len(y) x = np.random.random((5, 5)) # A 5x5 matrix y = np.random.random((5, 10)) # A 5x10 matrix x.shape == y.shape import numpy as np # Generate a random list to work with as an example. some_list = np.random.random(10).tolist() print(some_list) for element in some_list: print(element) list_length = len(some_list) for index in range(list_length): # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] element = some_list[index] print(element) def count_substring(base_string, substring, case_insensitive = True): count = 0 if case_insensitive == True: base_string = base_string.lower() #base_string = base_string.upper() length = len(substring) index = 0 while (index + length) < len(base_string): # Sliding window. substring_to_test = base_string[index : (index + length)] if substring_to_test == substring: count += 1 index += 1 return count numbers = [10, 20, 30, 40] print(sum(numbers)) numbers = [10/100, 20/100, 30/100, 40/100] # (0.1 + 0.2 + 0.3 + 0.4) = 1.0 print(sum(numbers)) import numpy as np def normalize(something): # Compute the normalizing constant s = something.sum() # Use vectorized programming (broadcasting) to normalize each element # without the need for any loops normalized = (something / s) return normalized import numpy as np # 1 def normalize(something): # 2 return something / something.sum() # 3 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Answering this is not simply taking what's in the autograder and copy-pasting it into your solution Step2: The whole point is that your code should generalize to any possible input. Step3: With great looping power comes great looping responsibility. Step4: From A2 Step5: Since all three lists--X, Y, and Z--are the same length, you could run a for loop with an index through one of them, and use that index across all three. That would work just fine. Step6: ...but it's very verbose, and can get a bit difficult to follow. Step7: Look how much cleaner that is! Step8: if statements are adults; they can handle being short-staffed, as it were. If there's literally nothing to do in an else clause, you're perfectly able to omit it entirely Step9: An actual example of reference versus value. Step10: Certainly looks ok--3 "rows" (i.e. lists), each with 4 0s in them. Why is this a problem? Step11: Now if we print this... what do you think we'll see? Step12: cue The Thriller Step13: From A4 Step14: which works, but only for one-dimensional arrays. Step15: These definitely are not equal in length. But that's because len doesn't measure length of matrices...it only measures the number of rows (i.e., the first axis--which in this case is 5 in both, hence it thinks they're equal). Step16: We get the answer we expect. Step17: 1 Step18: 2 Step19: In general Step20: Normalization by any other name Step21: This can then be condensed into the 3 lines required by the question
2,787
<ASSISTANT_TASK:> Python Code: #$HIDE_INPUT$ import pandas as pd autos = pd.read_csv("../input/fe-course-data/autos.csv") autos["make_encoded"] = autos.groupby("make")["price"].transform("mean") autos[["make", "price", "make_encoded"]].head(10) #$HIDE_INPUT$ import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import warnings plt.style.use("seaborn-whitegrid") plt.rc("figure", autolayout=True) plt.rc( "axes", labelweight="bold", labelsize="large", titleweight="bold", titlesize=14, titlepad=10, ) warnings.filterwarnings('ignore') df = pd.read_csv("../input/fe-course-data/movielens1m.csv") df = df.astype(np.uint8, errors='ignore') # reduce memory footprint print("Number of Unique Zipcodes: {}".format(df["Zipcode"].nunique())) X = df.copy() y = X.pop('Rating') X_encode = X.sample(frac=0.25) y_encode = y[X_encode.index] X_pretrain = X.drop(X_encode.index) y_train = y[X_pretrain.index] from category_encoders import MEstimateEncoder # Create the encoder instance. Choose m to control noise. encoder = MEstimateEncoder(cols=["Zipcode"], m=5.0) # Fit the encoder on the encoding split. encoder.fit(X_encode, y_encode) # Encode the Zipcode column to create the final training data X_train = encoder.transform(X_pretrain) plt.figure(dpi=90) ax = sns.distplot(y, kde=False, norm_hist=True) ax = sns.kdeplot(X_train.Zipcode, color='r', ax=ax) ax.set_xlabel("Rating") ax.legend(labels=['Zipcode', 'Rating']); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Target Encoding Step2: This kind of target encoding is sometimes called a mean encoding. Applied to a binary target, it's also called bin counting. (Other names you might come across include Step3: With over 3000 categories, the Zipcode feature makes a good candidate for target encoding, and the size of this dataset (over one-million rows) means we can spare some data to create the encoding. Step4: The category_encoders package in scikit-learn-contrib implements an m-estimate encoder, which we'll use to encode our Zipcode feature. Step5: Let's compare the encoded values to the target to see how informative our encoding might be.
2,788
<ASSISTANT_TASK:> Python Code: import vcsn def aut(e): return vcsn.context('lal_char, b').expression(e, 'binary').standard() a1 = aut('a*+b*'); a1 a2 = aut('b*+a*'); a2 a1.is_isomorphic(a2), a1 == a2 %%automaton -s a1 $ -> 0 0 -> 1 a %%automaton -s a2 $ -> 0 0 -> 1 b a1.is_isomorphic(a1), a1.is_isomorphic(a2) a1 = aut('a+a') a2 = aut('a') a1.is_isomorphic(a2), a1.is_equivalent(a2) def aut(e): return vcsn.context('lal_char, z').expression(e, 'binary').standard() a1 = aut('<2>a+<3>b') a2 = aut('<3>b+<2>a') a1.is_isomorphic(a2) a1 = aut('<2>a') a2 = aut('a+a') a1.is_isomorphic(a2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The automata must be accessible, but coaccessibility is not required. Step2: Equivalent automata can be non isomorphic. Step3: Weighted Automata
2,789
<ASSISTANT_TASK:> Python Code: df = pd.DataFrame(np.fromfile("./output.bni", dtype=np.uint16).astype(np.float32) * (3300 / 2**12)) #df.describe() fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df[20000:20100].plot(ax=ax) df_r = df.groupby(df.index//10).mean() fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df_r[:30000].plot(ax=ax) df_r1000 = df.groupby(df.index//1000).mean() fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df_r1000.plot(ax=ax) fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df_r1000[40000:41000].plot(ax=ax) times = [ 51540, 52010, 52502, 52857, 53317, 53660, 54118, 54504, 54966, 55270, 60000 + 1916, # PageLoadStarted 60000 + 3453, # DownloadStarted 60000 + 9147, # DownloadFinished 60000 + 13336, 60000 + 13691, 60000 + 14051, 60000 + 14377, 60000 + 14783, 60000 + 15089, 60000 + 32190, 60000 + 34015, 60000 + 37349, 60000 + 37491, ] sync = 40200 fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() sync = 40205 df_r1000[40000:43000].plot(ax=ax) for t in times: sns.plt.axvline(sync + t - times[0]) fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df[41100000:41250000].plot(ax=ax) sns.plt.axvline(40200000 + 470000 + 498000 + 5000) fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df[40100000:40250000].plot(ax=ax) sns.plt.axvline(40200000 + 5000) fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() sync = 40205 df_r1000[40000:65000].plot(ax=ax) for t in times: sns.plt.axvline(sync + t - times[0]) fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() sync = 40205 df_r1000[52000:58000].plot(ax=ax) for t in times: sns.plt.axvline(sync + t - times[0]) df[1010000:1025000].plot() for i in range(5): df[10230+256*i:10250+256*(i+1)].plot() df[:2048].plot() df4 = pd.DataFrame(np.fromfile("./output3.bin", dtype=np.uint16).astype(np.float32) * (3300 / 2**12)) fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df4[:16384].plot(ax=ax) fig = sns.plt.figure(figsize=(16, 6)) ax = sns.plt.subplot() df4[6000000:6001000].plot(ax=ax) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Данных много, миллион сэмплов в секунду. Мы насобирали почти 70 миллионов сэмплов. Если строить их все сразу, питон ОЧЕНЬ задумается. Поэтому будем строить кусочки. 100 сэмплов, или 100 микросекунд Step2: Возьмем более мелкий масштаб, для этого сгруппируем данные по 10 мкс и возьмем среднее Step3: Посмотрим на таймстемпы в logcat. У нас три события из Браузера, остальное -- включение/выключение фонарика. Step4: Интересные всплески потребления начинаются где-то с 40000-ной миллисекунды (их пять подряд, мы моргали лампочкой пять раз). Step5: Предполагаем, что первый всплеск был в 40200-ю миллисекунду. Теперь посчитаем относительные времена Step6: И построим их на нашем графике Step7: У второй вспышки более резкий фронт, поэтому попробуем синхронизироваться более точно по нему (и используем микросекундные данные) Step8: То же для первой вспышки, видно, что фронт у нее размытый Step9: Теперь построим данные за весь тесткейс, учитывая изменение синхронизации Step10: И увеличим до периода загрузки файла Step11: Фиксим неприятный баг Step12: Расстояние между пиками -- 256 сэмплов Step13: В самом начале -- пустые сэмплы с пиками, по числу буферов. На столько же "предсказывается" значение Step14: Оказалось, в исходнике баг, описание тут Step15: Одна миллисекунда, как мы ее видим
2,790
<ASSISTANT_TASK:> Python Code: import numpy as np import scipy.optimize as sciopt x = np.array([[ 1247.04, 1274.9 , 1277.81, 1259.51, 1246.06, 1230.2 , 1207.37, 1192. , 1180.84, 1182.76, 1194.76, 1222.65], [ 589. , 581.29, 576.1 , 570.28, 566.45, 575.99, 601.1 , 620.6 , 637.04, 631.68, 611.79, 599.19]]) y = np.array([ 1872.81, 1875.41, 1871.43, 1865.94, 1854.8 , 1839.2 , 1827.82, 1831.73, 1846.68, 1856.56, 1861.02, 1867.15]) fp = lambda p, x: p[0]*x[0]+p[1]*x[1] e = lambda p, x, y: ((fp(p,x)-y)**2).sum() pmin = np.array([0.5,0.7]) # mimimum bounds pmax = np.array([1.5,1.8]) # maximum bounds p_guess = (pmin + pmax)/2 bounds = np.c_[pmin, pmax] fp = lambda p, x: p[0]*x[0]+p[1]*x[1] e = lambda p, x, y: ((fp(p,x)-y)**2).sum() sol = sciopt.minimize(e, p_guess, bounds=bounds, args=(x,y)) result = sol.x <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
2,791
<ASSISTANT_TASK:> Python Code: import main raw_data = main.load_raw_data([]) # asume el cache gdf = main.get_grouped_dataset(raw_data, level=4) m, dfX = main.get_model_to_draw(4) import model figure() distr = model.ConditionalDistribution(gdf['131_pct'], gdf['135_pct']).fit() distr.draw_joint() xlabel('Proporción de votos a Scioli'.decode('utf8')) ylabel('Proporción de votos a Macri'.decode('utf8')) figure() distr = model.ConditionalDistribution(gdf['138_pct'], gdf['131_pct']).fit() distr.draw_joint() xlabel('Proporción de votos a Massa'.decode('utf8')) ylabel('Proporción de votos a Scioli'.decode('utf8')) figure() distr = model.ConditionalDistribution(gdf['138_pct'], gdf['135_pct']).fit() distr.draw_joint() xlabel('Proporción de votos a Massa'.decode('utf8')) ylabel('Proporción de votos a Macri'.decode('utf8')) level = 4 raw_data = main.load_raw_data([]) # asume el cache gdf = main.get_grouped_dataset(raw_data, level=level) totals = {} for k in u'131', u'132', u'133', u'135', u'137', u'138': totals[k] = gdf[k].sum() s = sum(totals.values()) # Como el proceso es lento, en lugar de ejecutarlo en este notebook, # se ejecuta en un proceso que guarda los resultados en una collection de mongodb import main # row_id = max(main.save_collection.find({'predict_level': level}).distinct('row_id')) # docs = list(main.save_collection.find({'predict_level': level, 'row_id': row_id})) row_id = max(main.save_collection.find({'level': level}).distinct('row_id')) docs = list(main.save_collection.find({'level': level, 'row_id': row_id})) print len(docs) import pandas as pd df = pd.DataFrame([e['pred'] for e in docs]) df['131_pct'] += totals['131'] df['135_pct'] += totals['135'] s = df['135_pct'] + df['131_pct'] df['131_pct_pct'] = df['131_pct'] / s df['135_pct_pct'] = df['135_pct'] / s figure() (df['131_pct_pct']).hist(alpha=0.65, color='b') (df['135_pct_pct']).hist(alpha=0.65, color='y') legend(('Scioli', 'Macri')) print np.percentile(df['131_pct_pct'], [.5, 99.5]) print np.percentile(df['135_pct_pct'], [.5, 99.5]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Patrones de voto Step2: Hay una relación inversa entre la gente que votó a Macri y a Scioli. Step3: Este patrón es super interesante, parecería haber dos secciones, una donde Massa tiene al rededor de 15%, y luego una cola, donde Massa tiene mayor cantidad de votos, y esa mayor cantidad de votos correlaciona con la cantidad de votos a Scioli. Step4: Este es otro patrón muy interesante, tiene claramente una correlación negativa Step5: Este resultado es bastante sorprendente. Hay dos posibles interpretaciones
2,792
<ASSISTANT_TASK:> Python Code: # Pykep imports from pykep.trajopt import mga_1dsm, launchers from pykep.planet import jpl_lp from pykep import epoch from pykep.core import lambert_problem, propagate_lagrangian, fb_prop from pykep import DAY2SEC, DAY2YEAR, AU, RAD2DEG, ic2par from pykep.trajopt.gym import solar_orbiter_resdsm, solar_orbiter_1dsm from pykep.trajopt.gym._solar_orbiter import _solar_orbiter_udp # Other imports import numpy as np from numpy.linalg import norm from numpy import sign from math import acos, asin, cos, exp, log, pi, sin import matplotlib.pyplot as plt from copy import deepcopy import pygmo import time %matplotlib notebook # Solution found by Dietmar Wolz x = [7454.239968096991, 404.2427682075494, 224.7007818627643, 166.76492404089777, 332.1943747024565, 224.70067465717648, 224.70064854708585, 674.102011793403, 449.4013940418292, 0.46175426496713623, 0.15595624336471145, 1.057897958249542, 0.5111221499713654, -0.23551244689346862, 1.0578678140141846, 0.6126539084565384, 0.0363223837410434, 1.0578389473452743, 0.15966690593566818, 0.9904935428678754, 1.05789170937413, 0.1958888817342986, 0.4998253324280215, 1.0580079586797548, 0.676246650510244, 1.0581815819568168] earth = jpl_lp("earth") venus = jpl_lp("venus") seq = [earth, venus, venus, earth, venus, venus, venus, venus, venus] solar_orbiter = _solar_orbiter_udp([7000, 8000], seq=seq, max_revs=3, dummy_DSMs=True) # Show angle, delta v, mass and sun distance constraints print (str(solar_orbiter.fitness(x))) solar_orbiter.pretty(x) solar_orbiter.plot(x) solar_orbiter.plot_distance_and_flybys(x) plt.show() # Plot inclination and distance timeframe = range(1,5*365) distances = [] inclinations = [] for i in timeframe: epoch = x[0]+i pos, _ = solar_orbiter.eph(x, epoch) inclination = sign(pos[2])*acos(norm(pos[:2]) / norm(pos)) distances.append(norm(pos) / AU) inclinations.append(inclination) color = 'tab:red' fig2, ax2 = plt.subplots() ax2.plot(list(timeframe), inclinations, color=color) ax2.set_ylabel("Inclination", color=color) ax2.set_xlabel("Days") ax2.set_title("Distance and Inclination") ax3 = ax2.twinx() # instantiate a second axes that shares the same x-axis color = 'tab:blue' ax3.set_ylabel('AU', color=color) ax3.plot(list(timeframe), distances, color=color) ax3.tick_params(axis='y', labelcolor=color) fig2.tight_layout() # otherwise the right y-label is slightly clipped plt.show() # Solution from Dietmar Wolz, at https://gist.github.com/dietmarwo/86f24e1b9a702e18615b767e226e883f x = [7454.227192641146, 0.4423260291238188, 0.6302883057062232, 5599.894458722009, 0.7401095862496564, 404.2492226073736, 0.15597148623687598, 1.0580076618074068, 0.5101575847266027, 224.70077856657431, -2.4933856179307377, 1.6963855192653385, 0.2901090720064779, 166.75556035570827, 1.6526396514193433, 1.0991472801826805, 0.7121915384668397, 332.20042106080774, -0.23546201156899235, 1.0578347798406122, 0.4655083705172811, 224.70070445614851, 0.036302301169642275, 1.0585127275180912, 0.5295285687741118, 224.70066944051027, 0.9905167586625055, 1.0579496308868774, 0.40373301194586536, 674.102018785453, 0.4999699781508085, 1.0585074637313125, 0.862087191395979, 449.4013947111085, 0.09134030084117842, 1.0611243930405114, 0.506628071700843, 449.40141784746976, 1.042759861414433, 1.5785454129349583] seq = [earth, venus, venus, earth, venus, venus, venus, venus, venus, venus] solar_orbiter = solar_orbiter_1dsm#([7000, 8000], seq=seq, max_revs=3) print (str(solar_orbiter.fitness(x))) solar_orbiter.pretty(x) solar_orbiter.plot(x) solar_orbiter.plot_distance_and_flybys(x) plt.show() # Plot inclination and distance distances = [] inclinations = [] eph_function = solar_orbiter.get_eph_function(x) for i in timeframe: epoch = x[0]+i pos, _ = eph_function(epoch) inclination = sign(pos[2])*acos(norm(pos[:2]) / norm(pos)) distances.append(norm(pos) / AU) inclinations.append(inclination) color = 'tab:red' fig2, ax2 = plt.subplots() ax2.plot(list(timeframe), inclinations, color=color) ax2.set_ylabel("Inclination", color=color) ax2.set_xlabel("Days") ax2.set_title("Distance and Inclination") ax3 = ax2.twinx() # instantiate a second axes that shares the same x-axis color = 'tab:blue' ax3.set_ylabel('AU', color=color) ax3.plot(list(timeframe), distances, color=color) ax3.tick_params(axis='y', labelcolor=color) fig2.tight_layout() # otherwise the right y-label is slightly clipped plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Solar Orbiter, modelles with DSMs only on resonant arcs Step2: Solar Orbiter modeled as mga_1dsm
2,793
<ASSISTANT_TASK:> Python Code: folium.Map().add_child(ClickForMarker()) folium.Map().add_child(LatLngPopup()) folium.Map().add_child(ClickForLatLng(format_str='"[" + lat + "," + lng + "]"')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Click on the map to see the effects Step2: Click on the map to see the effects
2,794
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np from math import log, exp %matplotlib inline # Evaluate beta for this sensor T_0=273.15+20; N=(1/273.15-1/293.15)-(1/298.15-1/293.15); beta= log(3000/1000)/N; R_0=1000/exp(beta*((1/298.15)-(1/293.15))); ## Results print('Beta for this sensor = %2.2f and the resistance of the sensor at temperature T0 is R_0 = = %2.2f' % (beta, R_0)) # Plot the sensor transfer function for the intended span. # T= np.arange(start = -45, stop = 121, step = 1)+273.15; T = np.linspace(-45,120)+273.15 R_T= R_0*np.exp(beta*(1/T-1/T_0)); # Plot # plt.plot(T,R_T,T[45],R_T[45],'ro',T[45+25],R_T[45+25],'ro') plt.plot(T,R_T) plt.ylabel('Resistance of the sensor[ohm]') plt.xlabel('Temperature [K]') plt.show() # Linear fit with just end points a, b = np.polyfit(np.array([T[0],T[-1]]),np.array([R_T[0],R_T[-1]]),1) print('The coefficients are a = %2.4f and b = %2.4f' % (a, b)) # Linear approximation R_T_linear = a*T+b # Plot plt.plot(T,R_T_linear,'b:',label='Linear approximation') plt.plot(T,R_T,label='Transfer function') plt.ylabel('Resistance of the sensor[ohm]') plt.xlabel('Temperature [K]') plt.legend(loc='upper right') plt.show() # Output Full scale FS = np.abs(np.max(R_T)-np.min(R_T)) error=np.abs(R_T-R_T_linear)/FS*100; # error_X=np.abs(error_Y/a2); plt.ylabel('error [%]') plt.plot(T,error) plt.xlabel('Temperature [K]') plt.show() print('The maximum error expected as a percentage of full scale is = %2.2f %%' % (np.max(error))) # polyfit computes the coefficients a and b of degree=1 a,b = np.polyfit(T,R_T,1) # Linear approximation R_T_lsq = a*T+b # Plot plt.plot(T,R_T_lsq,'b:',label='Least Squares fit') plt.plot(T,R_T,label='Transfer function') plt.ylabel('Resistance of sensor [ohm]') plt.xlabel('Temperature [K]') plt.legend(loc='upper right') plt.show() error=np.abs(R_T-R_T_lsq)/FS*100; # error_X=np.abs(error_Y/a2); plt.ylabel('error [%]') plt.plot(T,error) plt.xlabel('Temperature [K]') plt.show() print('The maximum error expected as a percentage of full scale is = %2.1f %%' % (np.max(error))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The plot shows the nonlinear behaviour of the sensor and the two points used for estimating the curve. Step2: Note how the error starts from zero reaches a maximum of 66.5 % and comes back down to zero at the other end point as expected.
2,795
<ASSISTANT_TASK:> Python Code: import ipywidgets import IPython.display args = ipywidgets.Text( description='Input string:', value='cube') IPython.display.display(args) print args.value <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Construct widget with a default value and display using IPython display call. Step2: Print widget value for clarity.
2,796
<ASSISTANT_TASK:> Python Code: import os with open(os.path.join("datasets", "smsspam", "SMSSpamCollection")) as f: lines = [line.strip().split("\t") for line in f.readlines()] text = [x[1] for x in lines] y = [x[0] == "ham" for x in lines] text[:10] y[:10] type(text) type(y) from sklearn.cross_validation import train_test_split text_train, text_test, y_train, y_test = train_test_split(text, y, random_state=42) from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() vectorizer.fit(text_train) X_train = vectorizer.transform(text_train) X_test = vectorizer.transform(text_test) print(len(vectorizer.vocabulary_)) X_train.shape print(vectorizer.get_feature_names()[:20]) print(vectorizer.get_feature_names()[3000:3020]) print(X_train.shape) print(X_test.shape) from sklearn.linear_model import LogisticRegression clf = LogisticRegression() clf clf.fit(X_train, y_train) clf.score(X_test, y_test) clf.score(X_train, y_train) def visualize_coefficients(classifier, feature_names, n_top_features=25): # get coefficients with large absolute values coef = classifier.coef_.ravel() positive_coefficients = np.argsort(coef)[-n_top_features:] negative_coefficients = np.argsort(coef)[:n_top_features] interesting_coefficients = np.hstack([negative_coefficients, positive_coefficients]) # plot them plt.figure(figsize=(15, 5)) colors = ["red" if c < 0 else "blue" for c in coef[interesting_coefficients]] plt.bar(np.arange(50), coef[interesting_coefficients], color=colors) feature_names = np.array(feature_names) plt.xticks(np.arange(1, 51), feature_names[interesting_coefficients], rotation=60, ha="right"); visualize_coefficients(clf, vectorizer.get_feature_names()) vectorizer = CountVectorizer(min_df=2) vectorizer.fit(text_train) X_train = vectorizer.transform(text_train) X_test = vectorizer.transform(text_test) clf = LogisticRegression() clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) visualize_coefficients(clf, vectorizer.get_feature_names()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Training a Classifier on Text Features Step2: We can now evaluate the classifier on the testing set. Let's first use the builtin score function, which is the rate of correct classification in the test set Step3: We can also compute the score on the training set, to see how well we do there Step4: Visualizing important features
2,797
<ASSISTANT_TASK:> Python Code: import imaginet.task model = imaginet.task.load(path="model-ipa.zip") emb = imaginet.task.embeddings(model) print(emb.shape) symb = imaginet.task.symbols(model) print " ".join(symb.values()) %pylab inline from sklearn.decomposition import PCA pca = PCA(n_components=2) xy = pca.fit_transform(emb) pylab.rc('font', family='DejaVu Sans') pylab.figure(figsize=(8,8)) pylab.scatter(xy[:,0], xy[:,1], alpha=0.1) for j,symb_j in symb.items(): pylab.text(xy[j,0], xy[j,1], symb_j) from imaginet.data_provider import getDataProvider # Adjust the root to point to the directory above data prov = getDataProvider('coco', root="..") sents = list(prov.iterSentences(split='val')) from imaginet.simple_data import phonemes sents_ipa = [ phonemes(sent) for sent in sents ] reps = imaginet.task.representation(model, sents_ipa) from scipy.spatial.distance import cdist distance = cdist(reps, reps, metric='cosine') import numpy def neighbors(k, distance=distance): nn = numpy.argsort(distance[k,:])[1:5] print sents[k]['raw'], ''.join(sents_ipa[k]) for n in nn: print u"✔" if sents[n]['imgid']==sents[k]['imgid'] else u"✘", \ sents[n]['raw'], ''.join(sents_ipa[n]) import random for _ in range(10): neighbors(random.randint(0, len(sents))) print import imaginet.tracer reload(imaginet.tracer) tr = imaginet.tracer.Tracer() tr.fit(reps) tr.proj.explained_variance_ from subprocess import check_output def espeak(words): return phon(check_output(["espeak", "-q", "--ipa", '-v', 'en-us', words]).decode('utf-8')) def phon(inp): return list(''.join(inp.split())) def trace(orths, tracer=tr, model=model, eos=True, size=(6,6)): ipas = [ espeak(orth) for orth in orths ] states = [ imaginet.task.states(model, ipa) for ipa in ipas ] pylab.figure(figsize=size) tracer.traces(ipas, states, eos=eos) trace(["A bowl of salad","A plate of pizza","A brown dog", "A black cat"]) trace(["a girl skiing", "a girl wind surfing", "a girl water skiing",]) trace(["a cow", "a baby cow","a tiny baby cow"]) trace(["some food on a table","a computer on a table","a table with food"]) pylab.axis('off') trace(["a bear in a cage", "a brown bear in the zoo","a teddy bear on a chair"]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the model Step2: Symbol embeddings Step3: The table of IPA symbols corresponding to the 49 dimensions Step4: Let's display the embeddings projected to 2D via PCA Step5: Seems mostly random... Step6: Project sentences to state space Step7: Find similar sentences in state space Step8: Display neighbors for a sentence Step9: Tracing the evolution of states Step10: Use espeak to convert graphemes to phonemes Step11: Plot traces of example sentences
2,798
<ASSISTANT_TASK:> Python Code: import numpy as np A = np.array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) mat1 = (A.T).dot(A) print mat1 a = np.array([.25, .25, .25, .25]) for i in xrange(3): a = mat1.dot(a) print a mat2 = (A).dot(A.T) print mat2 h = np.array([.25, .25, .25, .25]) for i in xrange(3): h = mat2.dot(h) print h A = np.array([[0,1,1,1,1], [1,0,1,1,1], [1,1,0,1,1], [1,1,1,0,1], [1,1,1,1,0]]) D = np.array([[4,0,0,0,0], [0,4,0,0,0], [0,0,4,0,0], [0,0,0,4,0], [0,0,0,0,4]]) L = D - A s = 0 ## output the sum of squares in laplacian matrix for G for row in L: s += row.dot(row) print s import math def phi(bid, spent, budget): frac = 1 - float(spent) / budget return bid * (1 - math.exp( - frac) ) print "A's phi value = {}".format(phi(1, 20, 100)) print "B's phi value = {}".format(phi(2, 40, 100)) print "C's phi value = {}".format(phi(3, 60, 100)) print "D's phi value = {}".format(phi(4, 80, 100)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question 8. Step2: Question 9.
2,799
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division import thinkstats2 import thinkplot %matplotlib inline import scipy.stats mu = 178 sigma = 7.7 dist = scipy.stats.norm(loc=mu, scale=sigma) type(dist) dist.mean(), dist.std() dist.cdf(mu-sigma) low = dist.cdf(177.8) high = dist.cdf(185.4) print("177.8 - 185.4 : ", dist.cdf(185.4) - dist.cdf(177.8)) # 5'10'' (177.8cm), 6'1'' (185.4cm) alpha = 1.7 xmin = 1 dist = scipy.stats.pareto(b=alpha, scale=xmin) dist.median() xs, ps = thinkstats2.RenderParetoCdf(xmin, alpha, 0, 10.0, n=100) thinkplot.Plot(xs, ps, label=r'$\alpha=%g$' % alpha) thinkplot.Config(xlabel='height (m)', ylabel='CDF') dist.mean() dist.cdf(dist.mean()) (1- dist.cdf(1000)) * 7e9 # 70억 = 7e9 dist.sf(1000) * 7e9 dist.sf(600000) * 7e9 # sf는 생존함수로 1-cdf 보다 더 정확하다. (http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto) import random import thinkstats2 import thinkplot sample = [random.weibullvariate(2,1) for _ in range(1000)] cdf = thinkstats2.Cdf(sample) thinkplot.Cdf(cdf, transform='weibull') thinkplot.Show(legend=False) cdf.Random() cdf.Sample(10) prs = [cdf.PercentileRank(x) for x in cdf.Sample(1000)] pr_cdf = thinkstats2.Cdf(prs) thinkplot.Cdf(pr_cdf) values = [random.random() for _ in range(1000)] pmf = thinkstats2.Pmf(values) thinkplot.Pmf(pmf, linewidth=0.1) cdf = thinkstats2.Cdf(values) thinkplot.Cdf(cdf) thinkplot.Show(legend=False) import analytic df = analytic.ReadBabyBoom() diffs = df.minutes.diff() cdf = thinkstats2.Cdf(diffs, label='actual') n = len(diffs) Iam = 44.0 / 24 / 60 sample = [random.expovariate(Iam) for _ in range(n)] model = thinkstats2.Cdf(sample, label='model') thinkplot.PrePlot(2) thinkplot.Cdfs([cdf,model], complement=True) thinkplot.Show(title='Time between births', xlabel='minutes', ylabel='CCDF', yscale='log') from mystery import * funcs = [uniform_sample, triangular_sample, expo_sample, gauss_sample, lognorm_sample, pareto_sample, weibull_sample, gumbel_sample] for i in range(len(funcs)): sample = funcs[i](1000) filename = 'mystery%d.dat' % i print(filename, funcs[i].__name__) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 연습문제 5.1 Step2: 예를 들어, <tt>scipy.stats.norm</tt>은 정규분포를 나타낸다. Step3: "고정된 확률변수(frozen random variable)"는 평균과 표준편차를 계산할 수 있다. Step4: CDF도 평가할 수 있다. 평균아래 1 표준편차를 벗어난 사람은 얼마나 될까? 약 16% Step5: 5'10"과 6'1" 사이 얼마나 많은 사람이 분포하고 있는가? Step6: 연습문제 5.2 Step7: 파레토 세상에서 평균신장이 얼마인가? Step8: 평균보다 더 키가 작은 사람의 비율은 얼마나 될까? Step9: 70억 사람중에서, 1 km 보다 더 키가 클 것으로 예상되는 사람은 얼마나 될까? <tt>dist.cdf</tt> 혹은 <tt>dist.sf</tt>을 사용한다. Step10: 가장 키가 큰 사람은 얼마나 키가 클 것으로 예상되는가? 힌트 Step11: 연습문제 5.3 Step12: thinkplot.Cdf 메쏘드는 와이블 분포 CDF를 직선처럼 보이게 만드는 변환기능을 제공한다. Step13: cdf로부터 무작위 선택을 하시오. Step14: cdf로부터 임의표본을 뽑으시오. Step15: cdf로부터 임의표본을 뽑고 나서, 각 값에 대한 백분위순위를 계산하시오. 그리고, 백분위순위 분포를 도식화하시오. Step16: random.random() 메쏘드를 사용해서 1000 개 난수를 생성하고 해당 표본 PMF를 도식화하시오. Step17: PMF가 잘 동작하지 않는다고 가정하고, 대신에 CDF 도식화를 시도한다. Step18: 연습문제 5.4 Step19: 연습문제 5.5