Unnamed: 0
int64
0
15.9k
cleaned_code
stringlengths
67
124k
cleaned_prompt
stringlengths
168
30.3k
3,500
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np %load_ext Cython %%cython cimport cython cimport numpy as np @cython.wraparound(False) @cython.boundscheck(False) def cython_diff2d(np.ndarray[double, ndim=2] u,np.ndarray[double, ndim=2] v, double dx2, double dy2, double c): cdef unsigned int i, j for i in xrange(1,u.shape[0]-1): for j in xrange(1, u.shape[1]-1): v[i,j] = u[i,j] + c*( (u[i+1, j] + u[i-1, j]-2.0*u[i,j])/dy2 + (u[i, j+1] + u[i, j-1]-2.0*u[i,j])/dx2 ) def numpy_diff2d(u,v,dx2,dy2,c): v[1:-1,1:-1] =u[1:-1,1:-1] + c*((u[2:,1:-1]+u[:-2,1:-1]-2.0*u[1:-1,1:-1])/dy2 + (u[1:-1,2:] + u[1:-1,:-2]-2.0*u[1:-1,1:-1])/dx2) def numpy_diff2d_a(u,v,dx2,dy2,c): A = (1.0-2.0*(c/dx2+c/dy2)) v[1:-1,1:-1] =A*u[1:-1,1:-1] + c/dy2*(u[2:,1:-1] + u[:-2,1:-1]) + \ c/dx2*(u[1:-1,2:] + u[1:-1,:-2]) def numpy_diff2d_b(u,v,dx2,dy2,c): v[1:-1,1:-1] =u[1:-1,1:-1] + c/dx2*(np.diff(u,2,axis=0)[:,1:-1] + np.diff(u,2,axis=1)[1:-1,:]) def calc(N, Niter, func, dx2,dy2,c): u = np.zeros([N, N]) v = np.zeros_like(u) u[u.shape[0]//2,u.shape[1]//2] = 1.0/np.sqrt(dx2*dy2) for i in range(Niter//2): func(u,v,dx2,dy2,c) func(v,u,dx2,dy2,c) return u N = 100 dx = 0.1 dy = 0.1 dx2 = dx*dx dy2 = dy*dy dt = 0.01 D = 0.1 c = D*dt print("CLF = ",c/dx2,c/dy2) u = calc(N,125,numpy_diff2d_b,dx2,dy2,c) plt.imshow(u) u = calc(N,125,cython_diff2d,dx2,dy2,c) plt.imshow(u) Lx,Ly = N/2*dx,N/2*dy x = np.linspace(-Lx,Lx,N) y = np.linspace(-Ly,Ly,N) X,Y = np.meshgrid(x,y ) Niter = 125 t = dt*Niter P = 1/(4*np.pi*D*t)*np.exp(-(X**2+Y**2)/(4*D*t) ) plt.contourf(X,Y,P) plt.axes().set_aspect('equal') u = calc(N,Niter,cython_diff2d,dx2,dy2,c) np.sum(P)*dx2,np.sum(u)*dx2 plt.plot(X[X.shape[0]//2,:],P[X.shape[0]//2,:],'b') plt.plot(X[X.shape[0]//2,:],u[X.shape[0]//2,:],'r') %%time u = calc(1000,200,cython_diff2d,dx2,dy2,c) %%time u = calc(1000,200,numpy_diff2d,dx2,dy2,c) %%time u = calc(1000,200,numpy_diff2d_a,dx2,dy2,c) %%time u = calc(1000,200,numpy_diff2d_b,dx2,dy2,c) N = 1000 fortran_source = subroutine fortran_diff2d(u, v, dx2, dy2, c) real(8), intent(inout) :: u({0}, {1}) real(8), intent(inout) :: v({0}, {1}) real(8), intent(in) :: dx2, dy2, c v(2:{0}-1,2:{1}-1) = u(2:{0}-1,2:{1}-1)+ c*( (u(3:,2:{1}-1)+u(:{0}-2,2:{1}-1))/dy2 + & (u(2:{0}-1,3:) + u(2:{0}-1,:{1}-2))/dx2) end subroutine .format(N,N) fp = open("myfile.f90", "w") fp.write(fortran_source) fp.close() !cat myfile.f90 %%capture f2py.log !f2py -c -m my_fortran_module myfile.f90 !ls -l from my_fortran_module import fortran_diff2d def calcF(N, Niter, func, dx2,dy2,c): u = np.zeros([N, N],order='F') v = np.zeros_like(u) u[u.shape[0]//2,u.shape[1]//2] = 1.0/np.sqrt(dx2*dy2) for i in range(Niter//2): func(u,v,dx2,dy2,c) func(v,u,dx2,dy2,c) return u %%time u = calcF(1000,200,fortran_diff2d,dx2,dy2,c) import subprocess subprocess.check_output(["pwd"]) import subprocess import importlib counter = 12 def prepare_fortran_module(N=100): global counter fortran_source = subroutine fortran_diff2d(u, v, dx2, dy2, c) real(8), intent(in) :: u({0}, {1}) real(8), intent(inout) :: v({0}, {1}) real(8), intent(in) :: dx2, dy2, c v(2:{0}-1,2:{1}-1) = u(2:{0}-1,2:{1}-1)+ c*( (u(3:,2:{1}-1)+u(:{0}-2,2:{1}-1))/dy2 + & (u(2:{0}-1,3:) + u(2:{0}-1,:{1}-2))/dx2) end subroutine subroutine fortran_diff2d_a(u, dx2, dy2, c) real(8), intent(inout) :: u({0}, {1}) real(8), intent(in) :: dx2, dy2, c u(2:{0}-1,2:{1}-1) = u(2:{0}-1,2:{1}-1)+ c*( (u(3:,2:{1}-1)+u(:{0}-2,2:{1}-1))/dy2 + & (u(2:{0}-1,3:) + u(2:{0}-1,:{1}-2))/dx2) end subroutine .format(N,N) fp = open("myfile.f90", "w") fp.write(fortran_source) fp.close() counter=counter+1 try: output = subprocess.check_output(["f2py", "-c","-m", "fortran_module%05d"%counter, "myfile.f90"]) m = importlib.import_module("fortran_module%05d"%counter) except: print ("problem z kompilacja!") return output return m fortran_module = prepare_fortran_module(N=1000) fortran_diff2d, fortran_diff2d_a = fortran_module.fortran_diff2d, fortran_module.fortran_diff2d_a def calcF(N, Niter, func, dx2,dy2,c): u = np.zeros([N, N],order='F') v = np.zeros_like(u) u[u.shape[0]//2,u.shape[1]//2] = 1.0/np.sqrt(dx2*dy2) for i in range(Niter//2): func(u,v,dx2,dy2,c) func(v,u,dx2,dy2,c) return u N = 1000 fortran_module = prepare_fortran_module(N=N) fortran_diff2d, fortran_diff2d_a = fortran_module.fortran_diff2d, fortran_module.fortran_diff2d_a u = calcF(N,1225,fortran_diff2d,dx2,dy2,c) plt.imshow(u) def calcF_a(N, Niter, func, dx2,dy2,c): u = np.zeros([N, N],order='F') v = np.zeros_like(u) u[u.shape[0]//2,u.shape[1]//2] = 1.0/np.sqrt(dx2*dy2) for i in range(Niter): func(u,dx2,dy2,c) return u u = calcF_a(1000,1225,fortran_diff2d_a,dx2,dy2,c) plt.imshow(u) %%time u = calc(1000,200,numpy_diff2d_a,dx2,dy2,c) %%time u = calc(1000,200,cython_diff2d,dx2,dy2,c) fortran_diff2d = prepare_fortran_module(N=1000).fortran_diff2d %%time u = calcF(1000,200,fortran_diff2d,dx2,dy2,c) %%time u = calcF_a(1000,200,fortran_diff2d_a,dx2,dy2,c) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Parametry symulacji Step2: Walidacja wyników Step3: znamy rozwiązanie równania dyfuzji na nieskończonym obszarze startujące z punktu Step5: Benchmarks Step7: Najszybsza wersja - wektorowy Fortran Step8: teraz możemy skompilować wielokrotnie ten sam kod i załadować modluł
3,501
<ASSISTANT_TASK:> Python Code: import pandas as pd x=pd.DataFrame() #Mejor hasta ahora for m in range(1995,2018): if m < 2016: o='.xlsx' else: o='.xls' if m < 2000: sK=3 else: sK=2 n='Precio_Bolsa_Nacional_($kwh)_' + str(m) + o y=pd.read_excel(n, skiprows=sK, parse_cols=24) x= x.append(y) print(x.head()) print(x.tail()) print(str(len(x.index)) + ' Filas y ' + str(len(x.columns)) + ' Columnas') print('Hay un total de ' + str(len(x)-len(x.dropna())) + ' registros con datos faltantes.') print('Hay un total de ' + str(len(x)-len(x.drop_duplicates())) + ' registros con datos duplicados.') print('Hay un total de ' + str(len(x))+' Registros.') z=x.dropna().drop_duplicates() print('Al eliminar los registros duplicados o con datos faltantes quedan ' + str(len(z))+' registros completos.') print('Finalmente quedan ' + str((len(z)-len(z.dropna()))+(len(z)-len(z.drop_duplicates()))) + ' registros duplicados o con datos faltantes, es decir, ninguno.') import matplotlib %matplotlib inline import numpy as np import matplotlib.pyplot as plt z['Prom']=z.mean(axis=1) z.groupby('Fecha').mean()['Prom'].plot(kind='line', title='Precio Promedio Diario Erroneamente comenzando en 1996') w=[] for n in range(len(z['Fecha'])): w.append(str(z.iloc[n,0])[0:10]) z['Fecha']=w z['Prom']=z.mean(axis=1) z.groupby('Fecha').mean()['Prom'].plot(kind='line', title='Precio Promedio Diario Correcto comenzando en 1995', y='FFF') z['Max']=z.max(axis=1) w=[] for n in range(len(z['Fecha'])): w.append(str(z.iloc[n,0])[0:7]) z['Ano-Mes']=w z.groupby('Ano-Mes').max()['Max'].plot(kind='line', title='Precio Máximo Mensual') z['Min']=z.min(axis=1) z.groupby('Ano-Mes').min()['Min'].plot(kind='line', title='Precio Mínimo Mensual') z.groupby('Ano-Mes').max()['Max'].plot(kind='line', legend='true') z.groupby('Ano-Mes').mean()['Prom'].plot(kind='line', legend='true', title='Comparación Precio Promedio y Precio Máximo Mensual') import datetime w=[] v=[] for n in range(len(z['Fecha'])): temp=str(z.iloc[n,0]) ano, mes, dia = temp.split('-') dia=str(dia)[0:3] year=int(ano) month=int(mes) day=int(dia) semnum=datetime.date(year, month, day).weekday() if semnum>4: Labor=0 else: Labor=1 w.append(semnum) v.append(Labor) z['Semana']=w z[['Semana']]=z[['Semana']].apply(pd.to_numeric) z['Labor']=v z[['Labor']]=z[['Labor']].apply(pd.to_numeric) w=[] w=z[z['Labor']==1] v=[] for n in range(len(w['Fecha'])): for m in range(1,25): if w.iloc[n,m]==w.iloc[n,26]: v.append(m-1) continue ParaHist=pd.DataFrame() ParaHist['Maximo para Laborales']=v ParaHist.plot.hist(alpha=0.5, title='Histograma con el Precio Maximo Diario para dias Laborales') s=[] zZ=[] tT=[] for n in range(len(w['Fecha'])): s=w.iloc[n].values[1:25] tT=[i for i, e in enumerate(s) if e == max(s)] zZ.append(tT[0]) tT=[] continue ParaHist=pd.DataFrame() ParaHist['Maximo para Laborales']=zZ ParaHist.plot.hist(alpha=0.5, title='Histograma con el Precio Maximo Diario para dias Laborales') w=z[z['Semana']==5] v=[] for n in range(len(w['Fecha'])): for m in range(1,25): if w.iloc[n,m]==w.iloc[n,26]: v.append(m-1) continue ParaHist=pd.DataFrame() ParaHist['Maximo para Sabados']=v ParaHist.plot.hist(alpha=0.5, title='Histograma con el Precio Maximo Diario para los Sabados') s=[] zZ=[] tT=[] for n in range(len(w['Fecha'])): s=w.iloc[n].values[1:25] tT=[i for i, e in enumerate(s) if e == max(s)] zZ.append(tT[0]) tT=[] continue ParaHist=pd.DataFrame() ParaHist['Maximo para Sabados']=zZ ParaHist.plot.hist(alpha=0.5, title='Histograma con el Precio Maximo Diario para los Sabados') w=z[z['Semana']==6] v=[] for n in range(len(w['Fecha'])): for m in range(1,25): if w.iloc[n,m]==w.iloc[n,26]: v.append(m-1) continue ParaHist=pd.DataFrame() ParaHist['Maximo para Domingos']=v ParaHist.plot.hist(alpha=0.5, title='Histograma con el Precio Maximo Diario para los Domingos') s=[] zZ=[] tT=[] for n in range(len(w['Fecha'])): s=w.iloc[n].values[1:25] tT=[i for i, e in enumerate(s) if e == max(s)] zZ.append(tT[0]) tT=[] continue ParaHist=pd.DataFrame() ParaHist['Maximo para Domingos']=zZ ParaHist.plot.hist(alpha=0.5, title='Histograma con el Precio Maximo Diario para los Domingos') w=[] for n in range(len(z['Fecha'])): w.append(str(z.iloc[n,0])[0:4]) z['Ano']=w w=pd.DataFrame() w=z.groupby(['Ano']).min()['Min'] w Lt=pd.DataFrame() Lt['Fecha']=z['Fecha'] Lt['Ano-Mes']=z['Ano-Mes'] Lt['Prom']=z['Prom'] print(Lt.groupby(Lt['Ano-Mes']).mean().plot(kind='line',legend='false')) print(Lt.groupby(Lt['Fecha']).mean().plot(kind='line',legend='false')) z.groupby('Fecha').mean()['Prom'].plot(kind='line', legend='false') z.groupby('Ano-Mes').mean()['Prom'].plot(kind='line', legend='false') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2.-- Compute e imprima el número de registros con datos faltantes. Step2: 3.-- Compute e imprima el número de registros duplicados. Step3: 4.-- Elimine los registros con datos duplicados o datos faltantes, e imprima la cantidad de registros que quedan (registros completos). Step4: 5.-- Compute y grafique el precio primedio diario. Step5: Ya que la grafica comienza en 1996, se corrigen los valores de la fecha para verla completa Step6: 6.-- Compute y grafique el precio máximo por mes. Step7: 7.-- Compute y grafique el precio mínimo mensual. Step8: 8.-- Haga un gráfico para comparar el precio máximo del mes (para cada mes) y el precio promedio mensual. Step9: 9.-- Haga un histograma que muestre a que horas se produce el máximo precio diario para los días laborales. Step10: Este metodo tiene en cuenta el valor maximo diario, y todas las horas a las cuales se presenta. Step11: Este metodo tiene en cuenta unicamente la primera hora a la cual se presenta el valor maximo en el dia Step12: Este metodo tiene en cuenta el valor maximo diario, y todas las horas a las cuales se presenta. Step13: Este metodo tiene en cuenta unicamente la primera hora a la cual se presenta el valor maximo en el dia Step14: Este metodo tiene en cuenta el valor maximo diario, y todas las horas a las cuales se presenta. Step15: Este metodo tiene en cuenta unicamente la primera hora a la cual se presenta el valor maximo en el dia Step16: 13.-- Haga una gráfica en que se muestre el precio promedio diario y el precio promedio mensual.
3,502
<ASSISTANT_TASK:> Python Code: from pymldb import Connection mldb = Connection() %%bash mkdir -p /mldb_data/data curl "file://mldb/mldb_test_data/ml-20m.zip" 2>/dev/null > /mldb_data/data/ml-20m.zip unzip /mldb_data/data/ml-20m.zip -d /mldb_data/data %%bash head /mldb_data/data/ml-20m/README.txt %%bash head /mldb_data/data/ml-20m/ratings.csv %%time print mldb.put('/v1/procedures/import_mvlns', { "type": "import.text", "params": { "dataFileUrl":"file:///mldb_data/data/ml-20m/ratings.csv", "outputDataset": "mvlns_ratings_csv", "runOnCreation": True } }) print mldb.put('/v1/procedures/process_mvlns', { "type": "transform", "params": { "inputData": select pivot(movieId, rating) as * named userId from mvlns_ratings_csv group by userId , "outputDataset": "mvlns_ratings", "runOnCreation": True } }) mldb.query("select * from mvlns_ratings limit 3") print mldb.put('/v1/procedures/mvlns_svd', { "type" : "svd.train", "params" : { "trainingData" : "select COLUMN EXPR (where rowCount() > 3) from mvlns_ratings", "columnOutputDataset" : "mvlns_svd_embedding", "modelFileUrl": "file://models/mvlns.svd", "functionName": "mvlns_svd_embedder", "runOnCreation": True } }) from ipywidgets import interact, interact_manual from uuid import uuid4 print mldb.put('/v1/procedures/import_movies', { "type": "import.text", "params": { "dataFileUrl":"file:///mldb_data/data/ml-20m/movies.csv", "outputDataset": "movies", "select": "title, movieId", "named": "movieId", "runOnCreation": True } }) @interact def movie_search(x = "toy story"): return mldb.query("select title from movies where regex_match(lower(title), '.*%s.*')" % x.strip().lower()) print mldb.put("/v1/datasets/mvlns_user_prefs", {"type": "sparse.mutable"}) print mldb.put("/v1/functions/preferences", { "type": "sql.query", "params": { "query": "select {*} as p from mvlns_user_prefs where rowName()=$user" } }) def save_prefs(user_id, likes, dislikes): for rating, search_terms in zip([5,1],[likes, dislikes]): for x in search_terms.split(","): if len(x) > 3: mldb.post("/v1/datasets/mvlns_user_prefs/rows", { "rowName":user_id, "columns": [[str(m), rating, 0] for m in movie_search(x).index] }) mldb.post("/v1/datasets/mvlns_user_prefs/commit", {}) save_prefs("janedoe", "Toy Story", "Terminator") mldb.query("select preferences({ user: 'janedoe' })[p] as *") print mldb.put("/v1/functions/nearest_movies", { "type": "embedding.neighbors", "params": { "dataset": "mvlns_svd_embedding", "defaultNumNeighbors": 25, "columnName": "embedding" } }) print mldb.put("/v1/functions/recommendations", { "type": "sql.query", "params": { "query": select nearest_movies({ coords: mvlns_svd_embedder({ row: preferences({ user: $user })[p] })[embedding] })[distances] as r } }) def recommend(likes="Toy Story, Terminator", dislikes="Star Trek"): # here we simulate a new user saving these preferences user_id = str(uuid4()) save_prefs(user_id, likes, dislikes) # we can then run an SQL query to: # - retrieve recommendations # - transpose and join them to movies to get titles # - exclude the already-rated movies from the result return mldb.query( select m.title named m.movieId from transpose(( select recommendations({ user: '%(user)s' }) )) as r join movies as m on r.rowPathElement(2) = m.rowPathElement(0) where m.movieId not in (keys of preferences({ user: '%(user)s' })[p]) order by r.result % dict(user=user_id)) recommend(likes="Toy Story, Terminator", dislikes="Star Trek") interact_manual(recommend) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download the MovieLens 20M data Step3: Load the data into MLDB Step4: Take a peek at the dataset Step5: Singular Value Decomposition (SVD) Step6: Explore the results! Step7: A simple search function to find all movies (and corresponding movieIds) whose names contain a string. Step8: Now let's create a dataset to hold user preferences, and a simple function to simulate a user rating movies they like and movies they dislike, based on the movie_search function above. Step10: With all that done, we can now build a recommendation engine out of a simple SQL query by mapping a user's preferences into the same space as the movie embeddings (i.e. embedding the user's preferences) and looking for the nearest movies. Step12: Here's a simple function which lets you simulate the results of liking and disliking certain movies and getting back the resulting recommendations. Step13: Here's an interactive form that lets you play with this function to see if you agree with the recommendations!
3,503
<ASSISTANT_TASK:> Python Code: N = 6000 known_labels_ratio = 0.1 X, y = make_moons(n_samples=N, noise=0.1, shuffle=True) rp = np.random.permutation(int(N/2)) data_P = X[y==1][rp[:int(len(rp)*known_labels_ratio)]] data_U = np.concatenate((X[y==1][rp[int(len(rp)*known_labels_ratio):]], X[y==0]), axis=0) print("Amount of labeled samples: %d" % (data_P.shape[0])) plt.figure(figsize=(8, 4.5)) plt.scatter(data_U[:, 0], data_U[:, 1], c='k', marker='.', linewidth=1, s=1, alpha=0.5, label='Unlabeled') plt.scatter(data_P[:, 0], data_P[:, 1], c='b', marker='o', linewidth=0, s=20, alpha=0.5, label='Positive') plt.grid() plt.legend() NP = data_P.shape[0] NU = data_U.shape[0] T = 1000 K = NP train_label = np.zeros(shape=(NP+K,)) train_label[:NP] = 1.0 n_oob = np.zeros(shape=(NU,)) f_oob = np.zeros(shape=(NU, 2)) for i in range(T): # Bootstrap resample bootstrap_sample = np.random.choice(np.arange(NU), replace=True, size=K) # Positive set + bootstrapped unlabeled set data_bootstrap = np.concatenate((data_P, data_U[bootstrap_sample, :]), axis=0) # Train model model = DecisionTreeClassifier(max_depth=None, max_features=None, criterion='gini', class_weight='balanced') model.fit(data_bootstrap, train_label) # Index for the out of the bag (oob) samples idx_oob = sorted(set(range(NU)) - set(np.unique(bootstrap_sample))) # Transductive learning of oob samples f_oob[idx_oob] += model.predict_proba(data_U[idx_oob]) n_oob[idx_oob] += 1 predict_proba = f_oob[:, 1]/n_oob # Plot the class probabilities for the unlabeled samples fig = plt.figure(figsize=(12, 4)) ax1 = fig.add_subplot(1, 2, 1) sp= ax1.scatter(data_U[:, 0], data_U[:, 1], c=predict_proba, linewidth=0, s=5, alpha=0.5, cmap=plt.cm.plasma, label='unlabeled') plt.grid() plt.colorbar(sp, label='Class probability on Unlabeled set') true_labels = np.zeros(shape=(data_U.shape[0])) true_labels[:int(len(rp)*(1.0-known_labels_ratio))] = 1.0 precision, recall, th = precision_recall_curve(true_labels, predict_proba) ax2 = fig.add_subplot(1, 2, 2) f1s = precision[:-1]*recall[:-1] ax2.plot(th, f1s, linewidth=2, alpha=0.5) best_th = np.argmax(f1s) ax2.plot(th[best_th], f1s[best_th], c='r', marker='o') ax2.plot([th[best_th], th[best_th]], [0.0,f1s[best_th] ], 'r--') ax2.plot([0.0, th[best_th]], [f1s[best_th], f1s[best_th] ], 'r--') ax2.annotate('Pre: %0.3f, Rec: %0.3f' %(precision[best_th], recall[best_th]), xy=(th[best_th]+ 0.01, f1s[best_th]-0.05)) ax2.set_ylabel('F1 score') ax2.set_xlabel('Probability threshold') plt.grid() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Transductive PU learning
3,504
<ASSISTANT_TASK:> Python Code: DISPLAY_ROWS = 6 # screen is 6 pixels tall DISPLAY_COLS = 50 # screen is 50 pixels wide display = [ # set display pixels to False [False for i in range(0, DISPLAY_COLS)] for i in range(0, DISPLAY_ROWS)] def rect(display, a, b): '''rect AxB turns on all of the pixels in a rectangle at the top-left of the screen which is A wide and B tall''' # a: col b: row for i in range(0, b): for j in range(0, a): display[i][j] = True def rotate_row(display, a, b): '''rotate row y=A by B shifts all of the pixels in row A (0 is the top row) right by B pixels''' display[a] = display[a][-b:] + display[a][:-b] def rotate_col(display, a, b): '''rotate column x=A by B shifts all of the pixels in column A (0 is the left column) down by B pixels''' new_col_a = [display[i][a] for i in range(DISPLAY_ROWS - b, DISPLAY_ROWS)] new_col_b = [display[i][a] for i in range(0, DISPLAY_ROWS - b)] new_col = new_col_a + new_col_b for i in range(0, DISPLAY_ROWS): display[i][a] = new_col[i] import re instructions = { re.compile(r'rect (\d+)x(\d+)'): rect, re.compile(r'rotate row y=(\d+) by (\d+)'): rotate_row, re.compile(r'rotate column x=(\d+) by (\d+)'): rotate_col, } with open('../inputs/day08.txt', 'r') as f: data = [line.strip() for line in f.readlines()] # TEST DATA from problem description # data = [ # 'rect 3x2', # 'rotate column x=1 by 1', # 'rotate row y=0 by 4', # 'rotate column x=1 by 1' # ] for line in data: for pattern, handler in instructions.items(): match = pattern.match(line) if match: inputs = [int(i) for i in match.groups()] handler(display, *inputs) break else: print('ERROR', line) def display_pixels_lit(display): '''return number of pixels that are ON''' return sum(sum(row) for row in display) display_pixels_lit(display) def print_display(display): for row in display: print(''.join(['#' if i else '.' for i in row])) print_display(display) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Instructions patterns and handlers Step2: Retrieving the input Step3: Counting number of pixels that are ON Step4: Part Two
3,505
<ASSISTANT_TASK:> Python Code: import skrf as rf ring_slot = rf.Network('data/ring slot.s2p') from skrf.data import ring_slot ring_slot short = rf.data.wr2p2_short delayshort = rf.data.wr2p2_delayshort short - delayshort short/delayshort short = rf.data.wr2p2_short line = rf.data.wr2p2_line delayshort = line ** short short = line.inv ** delayshort # display plots in notebook %matplotlib inline from pylab import * rf.stylely() ring_slot.plot_s_db() ring_slot.plot_s_deg(m=0,n=1) ring_slot.plot_s_smith(lw=2) title('Big ole Smith Chart') rf.read_all('data/', contains='ro') from skrf import NetworkSet ro_dict = rf.read_all('data/', contains='ro') ro_ns = NetworkSet(ro_dict, name='ro set') # name is optional ro_ns ro_ns.mean_s ro_ns.std_s ro_ns.std_s.plot_s_mag(label='S11') ylabel('Standard Deviation') title('Standard Deviation of RO'); ro_ns.plot_uncertainty_bounds_s_db(label='S11'); from skrf import Frequency from skrf.media import CPW, Coaxial freq = Frequency(75,110,101,'ghz') cpw = CPW(freq, w=10e-6, s=5e-6, ep_r=10.6) cpw cpw.line(d=90,unit='deg', name='line') freq = Frequency(1,10,101,'ghz') coax = Coaxial(frequency=freq, Dint=1e-3, Dout=2e-3) coax <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If this produces an error, please see the installation tutorial. Step2: If you cant find ring slot.s2p, then just import it from the skrf.data module. Step3: A short description of the network will be printed out if entered onto the command line Step4: The basic attributes of a microwave Network are provided by the Step5: The complex difference between their s-parameters is computed with Step6: This returns a new Network. Other arrimetic operators are overloaded as well, Step7: Cascading and De-embedding Step8: De-embedding can be accomplished by cascading the inverse of a network. The inverse of a network is accessed through the property Network.inv. Step9: For more information on the functionality provided by the Network object, such as interpolation, stitching, n-port connections, and IO support see the Networks tutorial. Step10: The methods of the Network class provide convenient ways to plot components of the network parameters, Step11: Or plot the phase of $S_{12}$ Step12: For more detailed information about plotting see the Plotting tutorial Step13: This dictionary can be passed directly to the NeworkSet constructor, Step14: NeworkSet's are list-like. Step15: The returned results are stored in a Networks s-parameters, regardless of the type of the output. Similarly, to calculate the complex standard deviation of the set, Step16: Because these methods return a Network object the results can be Step17: Plotting Uncertainty Bounds Step18: See the networkset tutorial for more information. Step19: Coax
3,506
<ASSISTANT_TASK:> Python Code: from sklearn.model_selection import train_test_split, KFold from sklearn.linear_model import LinearRegression, Ridge, SGDRegressor, ElasticNet from sklearn.kernel_ridge import KernelRidge from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from yellowbrick.features import Rank2D, JointPlotVisualizer from yellowbrick.regressor import ResidualsPlot, PredictionError, ManualAlphaSelection, CooksDistance from yellowbrick.model_selection import cv_scores, LearningCurve, FeatureImportances, ValidationCurve import pandas as pd import numpy as np # GET THE CURRENT WORKING DIRECTORY SO YOU CAN LOAD THE PATH TO THE WO_MEN.XLSX FILE import os os.getcwd() # YOU WILL HAVE TO INSTALL OPENPYXL - pip install openpyxl - TO BE ABLE TO OPEN EXCEL FILES WITH PANDAS df = pd.read_excel('data/wo_men.xlsx', sheet_name='wo_men') df.head(2) ds = df.drop(['time', 'sex', 'height', 'shoe_size - German', 'height in feet - String', 'height in inches'], axis=1) ds.shape ds.columns X = ds.drop(['shoe_size-american'], axis=1) y = ds['shoe_size-american'] viz = Rank2D(algorithm='pearson') viz.fit_transform(ds) viz.show() viz = JointPlotVisualizer(columns=['Height in Feet', 'shoe_size-american']) viz.fit_transform(ds) viz.show() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42) models = [ LinearRegression(), Ridge(alpha=2), SGDRegressor(max_iter=100), KernelRidge(alpha=2), SVR(), RandomForestRegressor(n_estimators=5), GradientBoostingRegressor(n_estimators=5) ] def visualize_model(X, y, estimator, **kwargs): viz = ResidualsPlot(estimator, **kwargs) viz.fit(X.values, y) viz.score(X.values, y) viz.show() viz = PredictionError(model) viz.fit(X_train.values, y_train) viz.score(X_test.values, y_test) viz.show() for model in models: visualize_model(X, y, model) model = RandomForestRegressor(n_estimators=5) cv = KFold(n_splits=5, shuffle=True, random_state=42) viz = cv_scores(model, X, y, cv=cv, scoring='r2') viz = LearningCurve(model, cv=cv, scoring='r2', ) viz.fit(X, y) viz.show() viz = FeatureImportances(model, stack=True, relative=False) viz.fit(X, y) viz.show() viz = ValidationCurve(RandomForestRegressor(), param_name='n_estimators', param_range=range(1, 10), cv=cv, scoring='r2') viz.fit(X, y) viz.show() alphas = np.logspace(1, 2, 20) viz = ManualAlphaSelection(Ridge(), alphas=alphas, cv=cv, scoring='r2') viz.fit(X, y) viz.show() viz = CooksDistance() viz.fit(X, y) viz.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: **DATASET WAS TAKEN FROM https Step2: Women is coded as 1 vs Man being 0 so that's why there is negative correlation between sex and shoe size Step3: SPECIFIC MODEL TUNING Step4: RANDOM FOREST REGRESSOR HYPERPARAMETER TUNING Step5: USE MODEL THAT HAS ALPHA AS PARAMETERS - RIDGE
3,507
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline # read data df = pd.read_csv('HR_comma_sep.csv') # print first rows df.head() # print info, we have no nulls df.info() # describe numeric columns # satisfaction_level and last_evaluation seems percentages # work_accident, left and promotion are booleans df.describe() # describe object columns and print unique values print(df[['sales', 'salary']].describe()) print(df.sales.unique()) print(df.salary.unique()) n_employees = len(df) left = df.left.sum() accident = df.Work_accident.sum() accident_left = len(df[(df['Work_accident'] == 1) & (df['left'] == 1)]) # probability that a randomly selected employee left the company print(left/n_employees) # probability that experienced a work accident print(accident/n_employees) # probability that a randomly selected employee left the company and experienced a work accident print(accident_left/n_employees) # Creating two dataframes, one for employees who left and one for those who stayed df_left = df[df['left'] == 1] df_stayed = df[df['left'] == 0] # Compute the 25th, 50th, and 90th percentiles for the satisfaction level score for all employees that left the company. print('Employees who left 25th, 50th and 90th percentile: {}, {}, {}' .format(df_left.satisfaction_level.quantile(0.25), df_left.satisfaction_level.quantile(0.5), df_left.satisfaction_level.quantile(0.9))) # Compare these results to the same percentiles for those that did not leave. What can you say about the results? print('Employees who stayed 25th, 50th and 90th percentile: {}, {}, {}' .format(df_stayed.satisfaction_level.quantile(0.25), df_stayed.satisfaction_level.quantile(0.5), df_stayed.satisfaction_level.quantile(0.9))) # Compute the variance and standard deviation of hours worked. print(df.average_montly_hours.var()) print(df.average_montly_hours.std()) # Compare the variance between the satisfaction levels of employees who left versus those who stayed. # Which is larger? What does this mean? print(df_left.satisfaction_level.var()) print(df_stayed.satisfaction_level.var()) # Compute the mean satisfaction level for each salary category. Comment on your results. df.groupby('salary').satisfaction_level.mean() # Given an employees salary level (low, medium, or high), calculate the probability that # they worked more than two standard deviations of the average monthly hours across all groups. # In other words, compute P(hours > 2*sigma|salary) = P(salary|hours > 2*\sigma)*P(hours > 2*sigma)/P(salary) # Creating a dataset for each salary level df_low = df[df['salary'] == 'low'] df_medium = df[df['salary'] == 'medium'] df_high = df[df['salary'] == 'high'] # And one for employees who have worked more than two std above sigma_hours = df.average_montly_hours.mean() + 2*df.average_montly_hours.std() df_above = df[df['average_montly_hours'] > sigma_hours] P_hours = len(df_above) / n_employees for d, level in zip([df_low, df_medium, df_high], ['low', 'medium', 'high']): P_salary = len(d) / n_employees P_salary_hours = len(df_above[df_above['salary'] == level]) / len(df_above) P = (P_salary_hours * P_hours) / P_salary P_hours_salary = len(d[d['average_montly_hours'] > sigma_hours]) / len(d) print('{} salary level probability: {:.5f}, {:.5f}'.format(level, P, P_hours_salary)) # Repeat parts 6 and 7 for P(left|salary) = P(salary|left)*P(left)/P(salary) P_left = len(df_left) / n_employees for d, level in zip([df_low, df_medium, df_high], ['low', 'medium', 'high']): P_salary = len(d) / n_employees P_salary_left = len(df_left[df_left['salary'] == level]) / len(df_left) P = (P_salary_left * P_left) / P_salary P_left_salary = len(d[d['left'] == 1]) / len(d) print('{} salary level probability: {:.5f}, {:.5f}'.format(level, P, P_left_salary)) # What is the odds ratio of an employee with a high salary getting a promotion # within the past five years versus a low salary employee? Comment on your results. p_high = df_high.promotion_last_5years.value_counts() / len(df_high) p_low = df_low.promotion_last_5years.value_counts() / len(df_low) print(p_high) print(p_low) print((p_high[1] / p_high[0]) / (p_low[1] / p_low[0])) import random # Demonstrate your assertions by writing some python code to do just that. random.seed(7) size = 50 s = random.sample(range(0, n_employees), size) print('Dataset mean: {}\nSample mean: {}'.format(df.satisfaction_level.mean(), df.iloc[s].satisfaction_level.mean())) random.seed(7) size = 50 n_samples = 10 mean = 0 for i in range(n_samples): s = random.sample(range(0, n_employees), size) mean += df.iloc[s].satisfaction_level.mean() mean = mean / n_samples print('Dataset mean: {}\nMean of sample means: {}'.format(df.satisfaction_level.mean(), mean)) from scipy import stats # For the variables you identified in part 1, compute the probabilities p_k, of each having a positive (x = 1) result, # where k is a placeholder for each variable. bernoulli = ['Work_accident', 'left', 'promotion_last_5years'] for var in bernoulli: print('probability for {}: {:.5f}'.format(var, df[var].sum() / n_employees)) # Compute the variance of each of the variables in part 2 using p_k as described above. for var in bernoulli: p = df[var].sum() / n_employees print('variance for {}: {:.5f}'.format(var, p*(1-p))) # For each of the k variables, compute the probability of randomly selecting 3500 employees with a positive result. # Comment on your answer. x = 3500 for var in bernoulli: p = df[var].sum() / n_employees print('PMF for {}: {:.5f}'.format(var, stats.binom.pmf(x, n_employees, p))) # For each of the k variables, compute the probability of randomly selecting 3500 or less with a positive result. # Comment on your answer. x = 3500 for var in bernoulli: p = df[var].sum() / n_employees print('CDF for {}: {:.5f}'.format(var, stats.binom.cdf(x, n_employees, p))) # Now plot both the PMF and CDF as a function of the number of drawn samples for each of the k variables. # Comment on your results. x = np.arange(0, n_employees) fig, ax = plt.subplots(3, 2, figsize=(16, 15)) i = j = 0 for var in bernoulli: p = df[var].sum() / n_employees ax[i, 0].plot(x, stats.binom.pmf(x, n_employees, p)) ax[i, 0].set_title(var +' PMF') ax[i, 1].plot(x, stats.binom.cdf(x, n_employees, p)) ax[i, 1].set_title(var + ' CDF') i += 1 # For the variables in part 1, plot some histograms. normal = ['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours'] fig, ax = plt.subplots(2, 2, figsize=(16, 10)) i = j = 0 for var in normal: if j == 2: i += 1 j = 0 ax[i, j].hist(df[var], bins=50) ax[i, j].set_title(var) j += 1 # Compute the mean and variance for each of the variables used in parts 1 and 2. for var in normal: print('{}\n\tmean = {:.5f}\n\tvariance = {:.5f}'.format(var, df[var].mean(), df[var].var())) # Using the mean and variance in part 3, construct normal distributions for each # and overlay them on top of the histograms you made in part one. # Are they well approximated by normals? fig, ax = plt.subplots(2, 2, figsize=(16, 10)) i = j = 0 for var in normal: x = np.linspace(min(df[var]), max(df[var]), 1000) Z = stats.norm.pdf(x, loc=df[var].mean(), scale=df[var].std()) if j == 2: i += 1 j = 0 ax[i, j].hist(df[var], bins=50, normed=True) ax[i, j].set_title(var) ax[i, j].plot(x, Z) j += 1 # For each variable in part 1, divide each by salary and fit a Poisson distribution to each. poisson = ['time_spend_company'] for var in poisson: for level in ['low', 'medium', 'high']: mu = df[df['salary'] == level][var].mean() fit = stats.poisson(mu) print('{} {} mean and Poisson fit mean: {:.5f}, {:.5f}'.format(var, level, mu, fit.mean())) x = np.arange(0, 20) fig, ax = plt.subplots(3, 1, figsize=(16, 15)) i = 0 for var in poisson: for level in ['low', 'medium', 'high']: mu = df[df['salary'] == level][var].mean() ax[i].set_title(var + ' ' + level + ' salary') ax[i].plot(x, stats.poisson.pmf(x, mu)) ax[i].hist(df[df['salary'] == level][var], bins=20, normed=True) i += 1 # For each salary level, compute the probability of obtaining at least the mean of each variable # regardless of salary level by using the Poisson distributions you constructed in part 2. # Comment on your results. for var in poisson: global_mean = df[var].mean() # print(global_mean) for level in ['low', 'medium', 'high']: mu = df[df['salary'] == level][var].mean() # print(mu, df[df['salary'] == level][var].median()) print('{} {} salary level probability is {:.5f}'.format(var, level, stats.poisson.sf(global_mean, mu))) # Choose two variables which may be good candidates to test this theorem. central = ['average_montly_hours', 'last_evaluation'] # Using the variables chosen in part 1, randomly select a set of n = 10 samples and take the mean. # Repeat this 1000 times for each variable. def make_samples(n_samples, size, seed): res = {} for var in central: random.seed(seed) mean = [] for i in range(n_samples): s = random.sample(range(0, n_employees), size) mean.append(df.iloc[s][var].mean()) # from solution using a list comprehension: # mean = [df[var].sample(size).mean() for i in range(n_samples)] res[var] = mean return res sampsize10 = make_samples(1000, 10, 7) # Plot a histogram for each variable used in part 2. Comment on your results. def plot_samples(samples): fig, ax = plt.subplots(1, 2, figsize=(16, 5)) i = 0 for var in central: ax[i].set_title(var) ax[i].hist(samples[var], bins=50) i += 1 plot_samples(sampsize10) # Repeat parts 2-3 for n = 100, n = 500, and n = 1000. Comment on your results. sampsize100 = make_samples(1000, 100, 7) plot_samples(sampsize100) sampsize500 = make_samples(1000, 500, 7) plot_samples(sampsize500) sampsize1000 = make_samples(1000, 1000, 7) plot_samples(sampsize1000) # Overlay an normal curve on your n = 1000 plots, using the mean and variance computed from the data. # Comment on your results. fig, ax = plt.subplots(1, 2, figsize=(16, 5)) i = 0 for var in central: x = np.linspace(min(sampsize1000[var]), max(sampsize1000[var]), 1000) ax[i].set_title(var) ax[i].hist(sampsize1000[var], bins=50, normed=True) # from solutions: divide by sqrt(1000) to find the std of a sampled distribution! # but if I do it results are not so good! ax[i].plot(x, stats.norm.pdf(x, loc=pd.Series(sampsize1000[var]).mean(), scale=pd.Series(sampsize1000[var]).std()), color='red') i += 1 # Compute a confidence interval for satisfaction levels, at the 95% confidence level, # of employees who left the company and those who didn't. # Do this using both a t distribution and a normal. Comment on your results. import statsmodels.stats.api as sm # checking mean and variance print('Employees who left mean and variance are {:.5f} and {:.5f}'. format(df_left.satisfaction_level.mean(), df_left.satisfaction_level.var())) print('Employees who stayed mean and variance are {:.5f} and {:.5f}'. format(df_stayed.satisfaction_level.mean(), df_stayed.satisfaction_level.var())) # using normal distribution print('\nNormal Distribution\n') # df_left_norm_confidence = df_left.satisfaction_level.mean() + df_left.satisfaction_level.std() / np.sqrt(len(df_left)) * np.array(stats.norm.ppf([0.025, 0.975])) # print('Employees who left 95% confidence interval: {}'.format(df_left_norm_confidence)) # print('Employees who left 95% confidence interval: {}'. # format(stats.norm.interval(0.95, # df_left.satisfaction_level.mean(), # df_left.satisfaction_level.std()/np.sqrt(len(df_left))))) print('Employees who left 95% confidence interval: {}'.format(sm.DescrStatsW(df_left.satisfaction_level).zconfint_mean(alpha=0.05))) # df_stayed_norm_confidence = df_stayed.satisfaction_level.mean() + df_stayed.satisfaction_level.std() / np.sqrt(len(df_stayed)) * np.array(stats.norm.interval(0.95)) # print('Employees who stayed 95% confidence interval: {}'.format(df_stayed_norm_confidence)) # print('Employees who stayed 95% confidence interval: {}'. # format(stats.norm.interval(0.95, # df_stayed.satisfaction_level.mean(), # df_stayed.satisfaction_level.std()/np.sqrt(len(df_stayed))))) print('Employees who stayed 95% confidence interval: {}'.format(sm.DescrStatsW(df_stayed.satisfaction_level).zconfint_mean(alpha=0.05))) # using t distribution print('\nT Distribution with n={}\n'.format(n_employees)) # df_left_t_confidence = df_left.satisfaction_level.mean() + df_left.satisfaction_level.std() / np.sqrt(len(df_left)) * np.array(stats.t.interval(0.95, n_employees)) # print('Employees who left 95% confidence interval: {}'.format(df_left_t_confidence)) # print('Employees who left 95% confidence interval: {}'. # format(stats.t.interval(0.95, # n_employees, # df_left.satisfaction_level.mean(), # df_left.satisfaction_level.std()/np.sqrt(len(df_left))))) print('Employees who left 95% confidence interval: {}'.format(sm.DescrStatsW(df_left.satisfaction_level).tconfint_mean(alpha=0.05))) # df_stayed_t_confidence = df_stayed.satisfaction_level.mean() + df_stayed.satisfaction_level.std() / np.sqrt(len(df_stayed)) * np.array(stats.t.interval(0.95, n_employees)) # print('Employees who stayed 95% confidence interval: {}'.format(df_stayed_t_confidence)) # print('Employees who stayed 95% confidence interval: {}'. # format(stats.t.interval(0.95, # n_employees, # df_stayed.satisfaction_level.mean(), # df_stayed.satisfaction_level.std()/np.sqrt(len(df_stayed))))) print('Employees who stayed 95% confidence interval: {}'.format(sm.DescrStatsW(df_stayed.satisfaction_level).tconfint_mean(alpha=0.05))) # Use a t-test to test the hypothesis that employees who left the company, # had lower satisfaction levels than those who did not. If significant, is the mean difference? # Comment on your results. (Hint: Do the two populations have equal variance?) print('Test assuming equal variance: {}'.format(stats.ttest_ind(df_left.satisfaction_level, df_stayed.satisfaction_level, equal_var=True))) print('Test assuming different variance: {}'.format(stats.ttest_ind(df_left.satisfaction_level, df_stayed.satisfaction_level, equal_var=False))) # Fit a normal curve to each group in part 2 and put them on the same plot next to each other. Comment on your results. fig = plt.figure(figsize=(15, 10)) ax = plt.axes() x1 = np.linspace(df_left.satisfaction_level.min(), df_left.satisfaction_level.max(), 1000) ax.plot(x1, stats.norm.pdf(x1, df_left.satisfaction_level.mean(), df_left.satisfaction_level.std() / np.sqrt(len(df_left))), label='left') x2 = np.linspace(df_stayed.satisfaction_level.min(), df_stayed.satisfaction_level.max(), 1000) ax.plot(x2, stats.norm.pdf(x2, df_stayed.satisfaction_level.mean(), df_stayed.satisfaction_level.std() / np.sqrt(len(df_stayed))), label='stayed') ax.legend(); # Test the hypothesis that the satisfaction level between each salary group, denoted k, # differs signicantly from the mean. Namely # H0:μ−μk=0H0:μ−μk=0 # Ha:μ−μk≠0Ha:μ−μk≠0 # print(df.satisfaction_level.mean()) # print(df_high.satisfaction_level.mean()) # print(df_medium.satisfaction_level.mean()) # print(df_low.satisfaction_level.mean()) # print(df.satisfaction_level.var()) # print(df_high.satisfaction_level.var()) # print(df_medium.satisfaction_level.var()) # print(df_low.satisfaction_level.var()) print('High level test: {}'.format(stats.ttest_1samp(df_high.satisfaction_level, df.satisfaction_level.mean()))) print('Medium level test: {}'.format(stats.ttest_1samp(df_medium.satisfaction_level, df.satisfaction_level.mean()))) print('Low level test: {}'.format(stats.ttest_1samp(df_low.satisfaction_level, df.satisfaction_level.mean()))) # Generate plots for part 4 as you did in part 3. What conclusions can you draw from the plot? fig = plt.figure(figsize=(15, 10)) ax = plt.axes() # x1 = np.linspace(df.satisfaction_level.min(), df.satisfaction_level.max(), 1000) # ax.plot(x1, stats.norm.pdf(x1, df.satisfaction_level.mean(), df.satisfaction_level.std() / np.sqrt(len(df))), label='all') x2 = np.linspace(df_low.satisfaction_level.min(), df_low.satisfaction_level.max(), 1000) ax.plot(x2, stats.norm.pdf(x2, df_low.satisfaction_level.mean(), df_low.satisfaction_level.std() / np.sqrt(len(df_low))), label='low') x3 = np.linspace(df_medium.satisfaction_level.min(), df_medium.satisfaction_level.max(), 1000) ax.plot(x3, stats.norm.pdf(x3, df_medium.satisfaction_level.mean(), df_medium.satisfaction_level.std() / np.sqrt(len(df_medium))), label='medium') x4 = np.linspace(df_high.satisfaction_level.min(), df_high.satisfaction_level.max(), 1000) ax.plot(x4, stats.norm.pdf(x4, df_high.satisfaction_level.mean(), df_high.satisfaction_level.std() / np.sqrt(len(df_high))), label='high') ax.legend(); # Repeat parts 4-6 on a hypothesis of your choosing. # Last evaluation mean differs between people who left and people who stayed print('Last evaluation mean and variance for employees who left: {}, {}'.format(df_left.last_evaluation.mean(), df_left.last_evaluation.var())) print('Last evaluation mean and variance for employees who stayed: {}, {}'.format(df_stayed.last_evaluation.mean(), df_stayed.last_evaluation.var())) print('Test assuming different variance: {}'.format(stats.ttest_ind(df_left.last_evaluation, df_stayed.last_evaluation, equal_var=False))) fig = plt.figure(figsize=(15, 10)) ax = plt.axes() x1 = np.linspace(df_left.last_evaluation.min(), df_left.last_evaluation.max(), 1000) ax.plot(x1, stats.norm.pdf(x1, df_left.last_evaluation.mean(), df_left.last_evaluation.std() / np.sqrt(len(df_left))), label='left') x2 = np.linspace(df_stayed.last_evaluation.min(), df_stayed.last_evaluation.max(), 1000) ax.plot(x2, stats.norm.pdf(x2, df_stayed.last_evaluation.mean(), df_stayed.last_evaluation.std() / np.sqrt(len(df_stayed))), label='stayed') ax.legend(); # when it is false (thus more power is good). Compute the power for the # hypothesis that the satisfaction level of high paid employees is different than # that of medium paid employees using a t distribution. import statsmodels.stats.power as smp # From solution the size effect to use is high-medium divided by std of all the data: effect_size = (df_high.satisfaction_level.mean() - df_medium.satisfaction_level.mean()) / df.satisfaction_level.std() print(smp.TTestIndPower().solve_power(effect_size, nobs1=len(df_high), ratio=len(df_high)/len(df_medium), alpha=0.05, alternative='two-sided')) # This is used in the solution but I don't understand the use of the number of employees who stayed as nobs1... print(sm.TTestIndPower().power(effect_size, nobs1=len(df_stayed), ratio=len(df_high)/len(df_medium), alpha=0.05)) def bootstrap(n, b, var): statistics = [] for i in range(b): sample = pd.Series(np.random.choice(np.array(df[var]), size=n)) statistics.append(sample.median()) return pd.Series(statistics) n = 100 b = 100 var = 'satisfaction_level' sat_lvl_bootstrapped = bootstrap(n, b, var) print('Bootstrapped samples median mean and variance: {:.5f}, {:.5f}'.format(sat_lvl_bootstrapped.mean(), sat_lvl_bootstrapped.std())) print('True median: {:.5f}'.format(df[var].median())) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Probability, Expectation Values, and Variance Step2: There seems to be a difference but before we draw any conclusion we would need to perform a hypothesis test Step3: The variance in the satisfaction levels is larger for employees who left, so the satisfaction level for this employees is more spread out around the mean. This may indicate that the employees leaving the company have a level of satisfaction more variable than those who stay. Step4: The satisfaction level increases with the salary, as expected. It seems though to be a more sensible difference between low and medium than medium and high salaries, but again we would need to test to see if the difference is significant. Step5: What can you say about your results in part 6? Step6: As above the probability that an employee left the company given a certain salary level is higher for low and medium salary levels than for high ones. Step7: The probability is sensibly higher for high salary level than low. Step8: Distributions and The Central Limit Theorem Step9: Which variables in the HR data can be said to be Bernoulli random variables? Step10: The Normal Distribution Step11: The Poisson Distribution Step12: The Central Limit Theorem Step13: Hypothesis Testing Step14: The results are almost the same because for $n \rightarrow \infty$ the t distribution tends to the normal. Step15: The difference is significant, and since the mean of employees who left is lower we can say that the hypothesis that they had lower satisfaction level is statistically relevant (we have a two-tailed test but the p-value is very small in either case). Step16: From the plots we can see that the peaks of the normal are far apart, thus backing up our test results. Step17: How would you interpret your results in part 4? Step18: In this case the curves are not that far apart as in the previous case but they still seem reasonably distant. Step19: We can't reject the null hypothesis, let's plot the data Step20: Indeed the means seems very close! Step21: Bootstrapping
3,508
<ASSISTANT_TASK:> Python Code: from dynamite.operators import sigmax, sigmaz, index_sum, op_sum # the None default argument will be important later def build_hamiltonian(L): interaction = op_sum(index_sum(sigmax(0)*sigmax(i), size=L) for i in range(1,L)) uniform_field = 0.5*index_sum(sigmaz(), size=L) return interaction + uniform_field # look at an example build_hamiltonian(20) %matplotlib inline build_hamiltonian(8).spy() H = build_hamiltonian(20) print('full space dimension: ', H.dim) from dynamite.subspaces import Parity H.subspace = Parity('even') print('parity subspace dimension:', H.dim) from dynamite.states import State ket = State(L=20, subspace=Parity('even')) print('vector length:', ket.vec.size) from dynamite import config config.L = 20 config.subspace = Parity('even') # now we never have to specify the subspace! and we only need to give # build_hamiltonian the value of L so it knows the longest long-range interaction H = build_hamiltonian(config.L) ket = State() print('H size:', H.L) print('H subspace:', H.subspace) print('ket subspace:', ket.subspace) from dynamite.operators import sigmay def build_XXYY(L=None): return index_sum(sigmax(0)*sigmax(1) + sigmay(0)*sigmay(1), size=L) # our operator size is still set from config build_XXYY() config.L = 8 build_XXYY().spy() from dynamite.subspaces import Auto H = build_XXYY() # we want the subspace conserved by Hamiltonian H, that contains # the state with four up spins followed by four down spins subspace = Auto(H, 'UUUUDDDD') H.subspace = subspace H.spy() from math import factorial def choose(n, k): return factorial(n) // (factorial(k)*factorial(n-k)) print('subspace dimension:', subspace.get_dimension()) print('8 choose 4: ', choose(8, 4)) # only three down spins subspace = Auto(H, 'UUUUUDDD') print('subspace dimension:', subspace.get_dimension()) print('8 choose 3: ', choose(8, 3)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If we look at the nonzero structure of the matrix, it's not at all clear that it's block diagonal Step2: This is a graphical representation of the matrix, where each black dot represents a nonzero element. Step3: As expected, the dimension was cut in half! The same subspace can be applied to states, and even globally Step4: Let's set everything globally so we don't have to keep writing lengths and subspaces everywhere. Step5: The Auto subspace Step6: How can we take advantage of conservation of total magnetization? With the Auto subspace Step7: As expected, the dimension has been reduced significantly! In fact, it has been reduced to 8 choose 4, which is what we would expect for total spin conservation Step8: Or we can do a different total spin sector
3,509
<ASSISTANT_TASK:> Python Code: %matplotlib inline import yahoo_finance from yahoo_finance import Share import numpy as np import pandas import matplotlib.pyplot as plt import datetime import cvxopt as opt from cvxopt import blas, solvers # We will do a lot of optimizations, # and don't want to see each step. solvers.options['show_progress'] = False def getTimeSeries( ticker, start_date='2012-01-01', end_date='2012-02-01'): # yahoo_finance API to load list of dictionaries obj = Share(ticker) ts = obj.get_historical(start_date,end_date) # yahoo_finance indexes most recent date first, reverse this ts = list(reversed(ts)) # Convert date strings to python datetime objects for easier manipulation dates = [datetime.datetime.strptime(ts[i]['Date'],'%Y-%m-%d').date() for i in range(len(ts))] # Convert close price strings to floats for numerical manipulation prices = [float(ts[i]['Adj_Close']) for i in range(len(ts))] # Create DataFrame from the list produced - python will recognize as Series time_series = pandas.DataFrame( prices, index = dates, columns = [ticker]) return time_series def getMultTimeSeries( tickers = ['XLY','XLP','XLE','XLF','XLV','XLI','XLB','XLK','XLU'], start_date = '2012-01-01', end_date = '2012-02-01'): # Initialize DataFrame time_series_dataframe = pandas.DataFrame() # Iterate over all tickers and append column to DataFrame for ticker in tickers: # Use helper function to get single column DataFrame df = getTimeSeries( ticker, start_date, end_date) # Concatanate on axis = 1 time_series_dataframe = pandas.concat([time_series_dataframe,df],axis = 1) return time_series_dataframe def markowitzReturns( returns, tickers, explain = False): n = len(returns) returns_df = returns returns = np.asmatrix(returns) mus = [10**(5.0 * t/50 - 1.0) for t in range(50)] # Convert to cvxopt matrices Sigma = opt.matrix(np.cov(returns)) q = opt.matrix(np.mean(returns, axis=1)) # Create constraint matrices G = -opt.matrix(np.eye(n)) # negative n x n identity matrix h = opt.matrix(0.0, (n ,1)) # -I*w < 0 i.e. no shorts A = opt.matrix(1.0, (1, n)) # A is all ones so A*w = w b = opt.matrix(1.0) # Dot product sums to 1 # Calculate efficient frontier weights using quadratic programming ports = [solvers.qp(mu*Sigma, -q, G, h, A, b)['x'] for mu in mus] # Calculate risks and returns of frontier returns = [blas.dot(q, x) for x in ports] risks = [np.sqrt(blas.dot(x, Sigma*x)) for x in ports] # Fit polynomial to frontier curve m = np.polyfit(returns, risks, 2) x = np.sqrt(m[2]/m[0]) # Calculate optimal portfolio weights optimal_weights = solvers.qp(opt.matrix(x * Sigma), -q, G, h, A, b)['x'] optimal_return = blas.dot(q, optimal_weights) optimal_risk = np.sqrt(blas.dot(optimal_weights, Sigma*optimal_weights)) # Method to justify this portfolio distribution if asked for if( explain ): date_text = -------------------------------------------------------------------------------------------------- Using returns data from {0} to {1} a careful mean - variance analysis was performed. The analysis found a number of portfolios lying on the markowitz efficient frontier and they are found below. The analysis indicates that the optimal portfolio for the next trading day will have the following distribution: print(date_text.format(returns_df.columns[0],returns_df.columns[len(returns_df.columns)-1])) # Print optimal weights weights = np.asarray(optimal_weights) weights = [float(weights[i]) for i in range(len(weights))] wts = dict(zip(tickers,weights)) for k in wts: weight_text = "\t{0} : {1:.4f}%" print(weight_text.format(str(k),float(wts[k])*100)) returns_text = This portfolio distribution has an expected return of: {0:.4f}% print(returns_text.format(float(optimal_return)*100)) risk_text = And the associated risk (standard deviation) is: {0:.4f} print(risk_text.format(float(optimal_risk))) break_text= -------------------------------------------------------------------------------------------------- print(break_text) plt.plot(risks, returns, 'b-o') plt.title('Efficient Portfolios on {}'.format(returns_df.columns[len(returns_df.columns)-1])) plt.ylabel('Returns (%)') plt.xlabel('Risk (STD)') return np.asarray(optimal_weights), returns, risks def backtest( tickers = ['XLY','XLP','XLE','XLF','XLV','XLI','XLB','XLK','XLU'], start_date = '2012-01-01', end_date = '2012-01-20', start = 10, max_lookback = 100, explain = False): timeseries = getMultTimeSeries( tickers, start_date, end_date) returns = timeseries.pct_change().dropna() weights_df = pandas.DataFrame() for i in range(len(returns)): if ( i > start ): if( i < max_lookback ): returns_window = returns[0:i] else: returns_window = returns[(i-max_lookback):i] try: if( explain ): weights, returns_window, risks = markowitzReturns(returns_window.T, tickers, explain = True) else: weights, returns_window, risks = markowitzReturns(returns_window.T, tickers, explain = False) except ValueError as e: # Sometimes CVXOPT fails (infrequently) # "ValueError: Rank(A) < p or Rank([P; A; G]) < n" # In this case just do nothing (keep current weights) weights, returns_window, risks = weights_prev, returns_window_prev, risks_prev weights = [float(weights[i]) for i in range(len(weights))] wts = dict(zip(tickers,weights)) df = pandas.DataFrame(wts, index = [returns.index[i]]) weights_df = pandas.concat([weights_df, df]) weights_prev, returns_window_prev, risks_prev = weights, returns_window, risks total_returns = pandas.DataFrame(weights_df.values*returns[(start+1)::], columns = returns.columns, index = returns.index) naive_returns = [np.sum(total_returns[[i]]) for i in range(len(total_returns.columns))] naive_return = np.sum(naive_returns) return weights_df, total_returns.dropna(), naive_return weights, returns, naive_return = backtest(explain = True) weights, returns, naive_return = backtest(start_date='2012-01-01',end_date='2012-12-31') def analyzeResults( weights_df, total_returns, naive_return, commission = .0004): start_date = weights_df.index[0] end_date = weights_df.index[len(weights_df.index)-1] # Get cummulative sum of returns for plotting return_sums = total_returns.cumsum() return_sums['total_return'] = return_sums.sum(axis=1) # Analyze data with commission costs weights_diff = weights_df.diff() weights_diff['total_delta'] = weights_diff.abs().sum(axis = 1) portfolio_movement = pandas.DataFrame(weights_diff['total_delta']/2) portfolio_movement['commissions'] = portfolio_movement['total_delta']*commission portfolio_movement['naive_return'] = total_returns.sum(axis=1) portfolio_movement['real_return'] = (portfolio_movement['naive_return'] - portfolio_movement['commissions']) real_sums = portfolio_movement.cumsum() real_return = portfolio_movement['real_return'].sum() # Print naive_return and real_return + analysis naive_return_text = -------------------------------------------------------------------------------------------------- In trading from {0} to {1} the total return ignoring commission fees was: {2:.4f}% After factoring in commission fees of {3} the total return was: {4:.4f}% -------------------------------------------------------------------------------------------------- print(naive_return_text.format( start_date, end_date, naive_return*100, commission ,real_return*100) ) # Get plot of naive_returns and real returns over time plt.figure(figsize=(12,6)) plt.plot(return_sums.index,return_sums['total_return'],label='Naive Returns') plt.plot(real_sums.index,real_sums['real_return'],label='Real Returns') plt.title('Returns over Time') plt.xlabel('Time') plt.ylabel('Returns (%)') plt.xticks(rotation=70) plt.legend() plt.legend(bbox_to_anchor=(1.01, .5), loc=2, borderaxespad=0.) return analyzeResults( weights, returns, naive_return, commission = .0004) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: getTimeSeries( ticker, start_date, end_date) Step2: getMultTimeSeries( tickers, start_date, end_date) Step7: markowitzReturns( returns) Step8: backtest( tickers, start_date, end_date, start, max_lookback, explain) Step10: analyzeResults( weights_df, total_returns, naive_return, commission)
3,510
<ASSISTANT_TASK:> Python Code: # restart your notebook if prompted on Colab try: import verta except ImportError: !pip install verta HOST = "app.verta.ai" PROJECT_NAME = "Census Income Classification" EXPERIMENT_NAME = "Logistic Regression" WORKSPACE = "XXXXX" import os os.environ['VERTA_EMAIL'] = 'XXXXXXXXXX' os.environ['VERTA_DEV_KEY'] = 'XXXXXXXXXXXXXXXXXXXX' from __future__ import print_function import warnings from sklearn.exceptions import ConvergenceWarning warnings.filterwarnings("ignore", category=ConvergenceWarning) warnings.filterwarnings("ignore", category=FutureWarning) import itertools import os import time import six import numpy as np import pandas as pd import sklearn from sklearn import model_selection from sklearn import linear_model from sklearn import metrics try: import wget except ImportError: !pip install wget # you may need pip3 import wget from verta import Client from verta.utils import ModelAPI client = Client(HOST) proj = client.set_project(PROJECT_NAME, workspace=WORKSPACE, public_within_org=True) expt = client.set_experiment(EXPERIMENT_NAME) train_data_url = "http://s3.amazonaws.com/verta-starter/census-train.csv" train_data_filename = wget.detect_filename(train_data_url) if not os.path.isfile(train_data_filename): wget.download(train_data_url) test_data_url = "http://s3.amazonaws.com/verta-starter/census-test.csv" test_data_filename = wget.detect_filename(test_data_url) if not os.path.isfile(test_data_filename): wget.download(test_data_url) from verta.dataset import Path dataset = client.set_dataset(name="Census Income Local") dataset_version = dataset.create_version(Path(train_data_filename)) df_train = pd.read_csv(train_data_filename) X_train = df_train.iloc[:,:-1] y_train = df_train.iloc[:, -1] df_train.head() hyperparam_candidates = { 'C': [1e-6, 1e-4], 'solver': ['lbfgs'], 'max_iter': [15, 28], } hyperparam_sets = [dict(zip(hyperparam_candidates.keys(), values)) for values in itertools.product(*hyperparam_candidates.values())] def run_experiment(hyperparams): # create object to track experiment run run = client.set_experiment_run() # log attributes run.log_attributes({ 'library': "scikit-learn", 'model_type': "logistic regression", }) # create validation split (X_val_train, X_val_test, y_val_train, y_val_test) = model_selection.train_test_split(X_train, y_train, test_size=0.2, shuffle=True) # log hyperparameters run.log_hyperparameters(hyperparams) print(hyperparams, end=' ') # create and train model model = linear_model.LogisticRegression(**hyperparams) model.fit(X_train, y_train) # calculate and log validation accuracy val_acc = model.score(X_val_test, y_val_test) run.log_metric("val_acc", val_acc) print("Validation accuracy: {:.4f}".format(val_acc)) # create deployment artifacts model_api = ModelAPI(X_train, model.predict(X_train)) requirements = ["scikit-learn"] # save and log model run.log_model(model, model_api=model_api, custom_modules=[]) run.log_requirements(requirements) # log training data run.log_dataset_version("census_data", dataset_version) # log dataset metadata # log git information run.log_code( repo_url="git@github.com:VertaAI/modeldb.git", commit_hash="d412a0d9", autocapture=False, ) # NOTE: run_experiment() could also be defined in a module, and executed in parallel for hyperparams in hyperparam_sets: run_experiment(hyperparams) best_run = expt.expt_runs.sort("metrics.val_acc", descending=True)[0] print("Validation Accuracy: {:.4f}".format(best_run.get_metric("val_acc"))) best_hyperparams = best_run.get_hyperparameters() print("Hyperparameters: {}".format(best_hyperparams)) model = linear_model.LogisticRegression(multi_class='auto', **best_hyperparams) model.fit(X_train, y_train) train_acc = model.score(X_train, y_train) print("Training accuracy: {:.4f}".format(train_acc)) registered_model = client.get_or_create_registered_model(name="census", workspace=WORKSPACE, public_within_org=True) registered_model.create_version_from_run(best_run.id, name="v0") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This example features Step2: Phase 1 Step3: Prepare data Step4: Prepare hyperparameters Step5: Train models Step6: Revisit Workflow Step7: Train on full dataset Step8: Calculate accuracy on full training set Step9: Phase 2
3,511
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt from jyquickhelper import add_notebook_menu add_notebook_menu() from mlstatpy.data.wikipedia import download_pageviews import os from datetime import datetime download_pageviews(datetime(2018,2,1), folder=".") with open("pageviews-20180201-000000", "r", encoding="utf-8") as f: fr = filter(lambda line: line.startswith("fr "), f) with open("pageviews-20180201-000000.fr.txt", "w", encoding="utf-8") as g: for line in fr: g.write(line) import pandas df = pandas.read_csv("pageviews-20180201-000000.fr.txt", encoding="utf-8", sep=" ", header=None) df.columns="country page impressions _".split() df = df[["page", "impressions"]] df = df.sort_values("impressions", ascending=False) print(df.shape) df.head() df["ch1"] = df["page"].apply(lambda r: r[0] if isinstance(r, str) else r) df.head() co = df.copy() co["volume"] = 1 gr = co.groupby("ch1", as_index=False).sum().sort_values("ch1") gr.head() gr[(gr["ch1"] >= "A") & (gr["ch1"] <= "Z")].plot(x="ch1", y=["impressions", "volume"], kind="bar", figsize=(14,4)) import hashlib def hash(text): md5 = hashlib.md5() md5.update(text.encode('utf-8')) return md5.hexdigest() hash("France") ha = co.copy() ha["hash"] = ha["page"].apply(lambda r: hash(r) if isinstance(r, str) else r) ha.head() ha["ch2"] = ha["hash"].apply(lambda r: r[0] if isinstance(r, str) else r) ha.head() gr = ha.groupby("ch2", as_index=False).sum().sort_values("ch2") gr.head() gr.plot(x="ch2", y=["impressions", "volume"], kind="bar", figsize=(14,4)) def substr(s, size=2): if isinstance(s, str): if len(s) < size: return s else: return s[:size] else: return s ha["ch12"] = ha["hash"].apply(lambda r: substr(r)) gr = ha.groupby("ch12", as_index=False).sum().sort_values("ch12") gr.plot(x="ch12", y=["impressions", "volume"], figsize=(14,4)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Récupérer un fichier wikipédia Step2: On ne garde que les pages françaises. Step3: Les données sont biaisées car les pages non démandées par les utilisateurs sur cett date ne sont pas répertoriées mais cela ne nuit pas à la démonstration faite ci-dessous. Step4: Il est possible de distribuer les impressions et les volumns sur plusieurs machines mais ce serait beaucoup plus simple si les volumes (volume de données) et les impressions (usage de ces données) suivent des distributions identiques. Step5: Après avoir appliqué une fonction de hashage, les deux distributions volumes et impressions sont presque uniforme par rapport au premier caractère du hash. Il reste un pic
3,512
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ! pip install -q tensorflow-model-optimization import tensorflow as tf import numpy as np import tempfile import zipfile import os # Load MNIST dataset mnist = tf.keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # Normalize the input image so that each pixel value is between 0 to 1. train_images = train_images / 255.0 test_images = test_images / 255.0 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=(28, 28)), tf.keras.layers.Reshape(target_shape=(28, 28, 1)), tf.keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(10) ]) # Train the digit classification model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit( train_images, train_labels, validation_split=0.1, epochs=10 ) _, baseline_model_accuracy = model.evaluate( test_images, test_labels, verbose=0) print('Baseline test accuracy:', baseline_model_accuracy) _, keras_file = tempfile.mkstemp('.h5') print('Saving model to: ', keras_file) tf.keras.models.save_model(model, keras_file, include_optimizer=False) import tensorflow_model_optimization as tfmot prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.ConstantSparsity(0.5, begin_step=0, frequency=100) } callbacks = [ tfmot.sparsity.keras.UpdatePruningStep() ] pruned_model = prune_low_magnitude(model, **pruning_params) # Use smaller learning rate for fine-tuning opt = tf.keras.optimizers.Adam(learning_rate=1e-5) pruned_model.compile( loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=opt, metrics=['accuracy']) pruned_model.summary() # Fine-tune model pruned_model.fit( train_images, train_labels, epochs=3, validation_split=0.1, callbacks=callbacks) def print_model_weights_sparsity(model): for layer in model.layers: if isinstance(layer, tf.keras.layers.Wrapper): weights = layer.trainable_weights else: weights = layer.weights for weight in weights: if "kernel" not in weight.name or "centroid" in weight.name: continue weight_size = weight.numpy().size zero_num = np.count_nonzero(weight == 0) print( f"{weight.name}: {zero_num/weight_size:.2%} sparsity ", f"({zero_num}/{weight_size})", ) stripped_pruned_model = tfmot.sparsity.keras.strip_pruning(pruned_model) print_model_weights_sparsity(stripped_pruned_model) stripped_pruned_model_copy = tf.keras.models.clone_model(stripped_pruned_model) stripped_pruned_model_copy.set_weights(stripped_pruned_model.get_weights()) # Clustering cluster_weights = tfmot.clustering.keras.cluster_weights CentroidInitialization = tfmot.clustering.keras.CentroidInitialization clustering_params = { 'number_of_clusters': 8, 'cluster_centroids_init': CentroidInitialization.KMEANS_PLUS_PLUS } clustered_model = cluster_weights(stripped_pruned_model, **clustering_params) clustered_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) print('Train clustering model:') clustered_model.fit(train_images, train_labels,epochs=3, validation_split=0.1) stripped_pruned_model.save("stripped_pruned_model_clustered.h5") # Sparsity preserving clustering from tensorflow_model_optimization.python.core.clustering.keras.experimental import ( cluster, ) cluster_weights = cluster.cluster_weights clustering_params = { 'number_of_clusters': 8, 'cluster_centroids_init': CentroidInitialization.KMEANS_PLUS_PLUS, 'preserve_sparsity': True } sparsity_clustered_model = cluster_weights(stripped_pruned_model_copy, **clustering_params) sparsity_clustered_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) print('Train sparsity preserving clustering model:') sparsity_clustered_model.fit(train_images, train_labels,epochs=3, validation_split=0.1) print("Clustered Model sparsity:\n") print_model_weights_sparsity(clustered_model) print("\nSparsity preserved clustered Model sparsity:\n") print_model_weights_sparsity(sparsity_clustered_model) def get_gzipped_model_size(file): # It returns the size of the gzipped model in kilobytes. _, zipped_file = tempfile.mkstemp('.zip') with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f: f.write(file) return os.path.getsize(zipped_file)/1000 # Clustered model clustered_model_file = 'clustered_model.h5' # Save the model. clustered_model.save(clustered_model_file) #Sparsity Preserve Clustered model sparsity_clustered_model_file = 'sparsity_clustered_model.h5' # Save the model. sparsity_clustered_model.save(sparsity_clustered_model_file) print("Clustered Model size: ", get_gzipped_model_size(clustered_model_file), ' KB') print("Sparsity preserved clustered Model size: ", get_gzipped_model_size(sparsity_clustered_model_file), ' KB') stripped_sparsity_clustered_model = tfmot.clustering.keras.strip_clustering(sparsity_clustered_model) converter = tf.lite.TFLiteConverter.from_keras_model(stripped_sparsity_clustered_model) converter.optimizations = [tf.lite.Optimize.DEFAULT] sparsity_clustered_quant_model = converter.convert() _, pruned_and_clustered_tflite_file = tempfile.mkstemp('.tflite') with open(pruned_and_clustered_tflite_file, 'wb') as f: f.write(sparsity_clustered_quant_model) print("Sparsity preserved clustered Model size: ", get_gzipped_model_size(sparsity_clustered_model_file), ' KB') print("Sparsity preserved clustered and quantized TFLite model size:", get_gzipped_model_size(pruned_and_clustered_tflite_file), ' KB') def eval_model(interpreter): input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] # Run predictions on every image in the "test" dataset. prediction_digits = [] for i, test_image in enumerate(test_images): if i % 1000 == 0: print(f"Evaluated on {i} results so far.") # Pre-processing: add batch dimension and convert to float32 to match with # the model's input data format. test_image = np.expand_dims(test_image, axis=0).astype(np.float32) interpreter.set_tensor(input_index, test_image) # Run inference. interpreter.invoke() # Post-processing: remove batch dimension and find the digit with highest # probability. output = interpreter.tensor(output_index) digit = np.argmax(output()[0]) prediction_digits.append(digit) print('\n') # Compare prediction results with ground truth labels to calculate accuracy. prediction_digits = np.array(prediction_digits) accuracy = (prediction_digits == test_labels).mean() return accuracy # Keras model evaluation stripped_sparsity_clustered_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) _, sparsity_clustered_keras_accuracy = stripped_sparsity_clustered_model.evaluate( test_images, test_labels, verbose=0) # TFLite model evaluation interpreter = tf.lite.Interpreter(pruned_and_clustered_tflite_file) interpreter.allocate_tensors() sparsity_clustered_tflite_accuracy = eval_model(interpreter) print('Pruned, clustered and quantized Keras model accuracy:', sparsity_clustered_keras_accuracy) print('Pruned, clustered and quantized TFLite model accuracy:', sparsity_clustered_tflite_accuracy) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sparsity preserving clustering Keras example Step2: Train a tf.keras model for MNIST to be pruned and clustered Step3: Evaluate the baseline model and save it for later usage Step4: Prune and fine-tune the model to 50% sparsity Step5: Fine-tune the model, check sparsity, and evaluate the accuracy against baseline Step6: Define helper functions to calculate and print the sparsity of the model. Step7: Check that the model kernels was correctly pruned. We need to strip the pruning wrapper first. We also create a deep copy of the model to be used in the next step. Step8: Apply clustering and sparsity preserving clustering and check its effect on model sparsity in both cases Step9: Check sparsity for both models. Step10: Create 1.6x smaller models from clustering Step11: Create a TFLite model from combining sparsity preserving weight clustering and post-training quantization Step12: See the persistence of accuracy from TF to TFLite Step13: You evaluate the model, which has been pruned, clustered and quantized, and then see that the accuracy from TensorFlow persists in the TFLite backend.
3,513
<ASSISTANT_TASK:> Python Code: from databaker.framework import * # put your input-output files here inputfile = "example1.xls" outputfile = "example1.csv" previewfile = "preview.html" from databaker.framework import * tab = loadxlstabs("example1.xls", sheetids="stones", verbose=True)[0] print(tab) cellbag = tab print("Numbered cells only:", cellbag.is_number()) print() print("Not numbers:", cellbag.is_not_number()) print() print("Not numbers and not whitespace:", cellbag.is_not_number().is_not_whitespace()) print() print("Cells that seem to be a date:", cellbag.is_date()) from databaker.framework import * # restated import so you can run from this cell cellbag = tab = loadxlstabs("example1.xls", sheetids="stones", verbose=True)[0] print("Get some matching cells", cellbag.one_of(["Rocks", "ice", "mud"])) print("A3 is", cellbag.excel_ref("A3")) print("A3:B4 is", cellbag.excel_ref("A2:B4")) print() print("The second cell in the whole table is", tab.by_index(2)) ngreater20 = cellbag.is_number().filter(lambda c: c.value>20) nlessthan20 = cellbag.is_number().filter(lambda c: c.value<20) print("Numbers greater than 20", ngreater20) print("Numbers less than 20", nlessthan20) # Uncomment this line to see these selections in contents # savepreviewhtml([ngreater20, nlessthan20]) colC = tab.excel_ref("D3:D5") rowC = tab.excel_ref("A4:D4") print("colC", colC) print("rowC", rowC) print() print("Union is", colC.union(rowC)) print("Difference is", colC.difference(rowC)) print("Intersection is", colC.intersection(rowC)) print() print("Union is", (colC | rowC)) print("Difference is", (colC - rowC)) print("Intersection is", (colC & rowC)) c = tab.excel_ref("D3") | tab.excel_ref("E4") d = tab.excel_ref("A6:A7") print("Waffle:") savepreviewhtml([c,d, c.waffle(d)]) print("Junction output:") for s in c.junction(d): print(" ", s) print("Cells column A that are in same row as", c, "are", tab.excel_ref("A").same_row(c)) print("Cells column 7 that are in same column as", c, "are", tab.excel_ref("7").same_col(c)) c = tab.excel_ref("B4") print("Shift RIGHT from", c, "is", c.shift(RIGHT)) print("Shift (-1,-2) from", c, "is", c.shift((-1, -2))) print("Fill UP from", c, "is", c.fill(UP)) print("Expand UP from", c, "is", c.expand(UP)) print() print("How it works: UP=", UP, " DOWN=", DOWN, " LEFT=", LEFT, " RIGHT=", RIGHT) print() print("Extrude two cells rightwards", c.extrude(2,0)) from databaker.framework import * tab = loadxlstabs("example1.xls", sheetids="stones", verbose=False)[0] rocks = tab.filter("Rocks").fill(DOWN) years = tab.filter("Year").fill(DOWN).is_not_whitespace() cost = tab.filter("cost").fill(DOWN) print(rocks) # savepreviewhtml([rocks, years, cost]) # <-- uncomment this line to see the table hrocks = HDim(rocks, "ROCKS!", DIRECTLY, LEFT) hrocks.AddCellValueOverride("granite", "gneiss") hyears = HDim(years, "yyyy", CLOSEST, UP) for ob in cost: print(ob, "\t", hyears.cellvalobs(ob), "\t", hrocks.cellvalobs(ob)) # savepreviewhtml([hrocks, hyears, cost]) # <-- uncomment to see as a coloured table from databaker.framework import * times = [2017.0, "Q32017", "Mar 2017"] for t in times: print(t, "is\t", Ldatetimeunitloose(t), "corrected to\t", Ldatetimeunitforce(t, Ldatetimeunitloose(t))) from databaker.framework import * tab = loadxlstabs("example1.xls", sheetids="stones", verbose=False)[0] cs = ConversionSegment(tab.filter("cost").fill(DOWN), [ HDim(tab.filter("Year").fill(DOWN).is_not_whitespace(), "year", CLOSEST, UP), HDim(tab.filter("Month").fill(DOWN).is_not_whitespace(), "month", DIRECTLY, LEFT) ]) ################### # savepreviewhtml(cs) # <-- uncomment this to see the interactive table dcs = cs.topandas() # print(dcs) # uncomment to see the table # concatenate the month and year into a time dcs["TIME"] = dcs.month + " " + dcs.year pdguessforceTIMEUNIT(dcs) # <-- fixes the date format (removing the '.0's on the years) # print(dcs) # uncomment to see the table at this point # delete the now redundant columns dcs.drop(['year', "month"], axis=1, inplace=True) #print(dcs) # uncomment to see pandas table # Output the finished WDA file where the dates should all work! print(writetechnicalCSV(None, dcs)) import urllib, re, os # url containing the index of a set of spreadsheets ddurl = "https://www.ons.gov.uk/businessindustryandtrade/constructionindustry/datasets/outputintheconstructionindustry/current" req1 = urllib.request.Request(ddurl, headers={'User-Agent' : "Sensible code"}) dhtml = urllib.request.urlopen(req1).read().decode("utf8") print("Downloaded a webpage with", len(dhtml), "bytes") # make the download directory dfiles = "downloaddir" if not os.path.isdir(dfiles): print("making directory", dfiles) os.mkdir(dfiles) # quick and dirty regular expression for pullint out the links to relevant xls spreadsheets xllinklist = re.findall('href="(/file\?uri=/businessindustryandtrade.*?/([^/"]*\.xls))"', dhtml) for xl, xln in xllinklist: lxln = os.path.join(dfiles, xln) if os.path.exists(lxln): continue # <-- we avoid downloading the same file a second time, in this case furl = urllib.parse.urljoin(ddurl, xl) req = urllib.request.Request(furl, headers={'User-Agent' : "Sensible code"}) xp = urllib.request.urlopen(req).read() print("Downloading", xln, len(xp), "bytes") fout = open(lxln, "wb") fout.write(xp) fout.close() fnames = [ os.path.join(dfiles, f) for f in os.listdir(dfiles) if f[-4:] == '.xls' ] print("Your list of xls files is:\n", "\n ".join(fnames)) import urllib, re # fetch the front page and find the link to the zip file we want iurl = "https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/workplacepensions/datasets/annualsurveyofhoursandearningspensiontablespensiontypebyagegroupandbygrossweeklyearningsbandsp1" req = urllib.request.Request(iurl, headers={'User-Agent' : "Sensible Code"}) ipage = urllib.request.urlopen(req).read() # search the link to the zip file and "join" against the baseurl to get the full url (there's a space -> %20 bug problem) zyears = [ urllib.parse.urljoin(iurl, z.replace(" ", "%20")) for z in re.findall('<a href="([^"]*?\.zip)"', str(ipage)) ] zurl = zyears[0] print("We are about to download the file:\n", zurl) zfilename = "downloaded.zip" zurl = zurl.replace(" ", "%20") # spaces in the url get escaped in the browser req = urllib.request.Request(zurl, headers={'User-Agent' : "Sensible Code"}) zbytes = urllib.request.urlopen(req).read() fout = open(zfilename, "wb") fout.write(zbytes) fout.close() print(zfilename, "is", len(zbytes), "bytes long.") import zipfile zfilename = "downloaded.zip" # open the zipfile zdir = zipfile.ZipFile(zfilename) print("The files in", zfilename, "are:\n", "\n ".join(zdir.namelist())) zmember0 = zdir.namelist()[0] xlsfilename = "downloaded0.xls" fout = open(xlsfilename, "wb") xlsbindata = zdir.read(zmember0) fout.write(xlsbindata) fout.close() print() print("We have unzipped:\n", zmember0, "\nand saved it as", xlsfilename, "with", len(xlsbindata), "bytes") # now we can load this file into databaker and continue with our work from databaker.framework import * tabs = loadxlstabs(xlsfilename) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Cell bag selection Step2: cellbag.is_XXX() Step3: cellbag.filter(word) Step4: cellbag1.union(cellbag2) Step5: cellbag1.waffle(cellbag2) Step6: cellbag.shift(direction) Step and include this many cells between 0 and dx and dy. Step7: Dimensions Step8: Conversion Segments Step9: Downloading excel and unzipping files Step10: What to do when you have zip files
3,514
<ASSISTANT_TASK:> Python Code: import math def euclidean_distance(x1, y1, x2, y2): return math.sqrt((x1 - x2) ** 2 + (y1-y2) ** 2) euclidean_distance(0,0,1,1) values_list = [0,0,1,1] euclidean_distance(*values_list) values_tuple = (0,0,1,1) euclidean_distance(*values_tuple) values_dict = { 'x1': 0, 'y1': 0, 'x2': 1, 'y2': 1 } euclidean_distance(**values_dict) list(zip([1,2,3,4,5,6])) # List comprehension [num ** 2 for num in range(-10, 11)] [num ** 2 for num in range(-10, 11) if num > 0] # Set comprehension names = [ 'Bob', 'JOHN', 'alice', 'bob', 'ALICE', 'J', 'Bob' ] { name[0].upper() + name[1:].lower() for name in names if len(name) > 1 } s = "Action Is Eloquence" counts = dict() for char in s: counts[char] = counts.get(char, 0) + 1 counts freq = { k.lower() : counts.get(k.lower(), 0) + counts.get(k.upper(), 0) for k in counts.keys() if k.isalpha() } freq <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We can unpack a list or tuple into positional arguments using a star * Step2: Similarly, we can use double star ** to unpack a dictionary into keyword arguments. Step3: Comprehensions Step4: Dictionary comprehension
3,515
<ASSISTANT_TASK:> Python Code: import numpy as np from ray import tune def train_function(config, checkpoint_dir=None): for i in range(30): loss = config["mean"] + config["sd"] * np.random.randn() tune.report(loss=loss) api_key = "YOUR_COMET_API_KEY" project_name = "YOUR_COMET_PROJECT_NAME" # This cell is hidden from the rendered notebook. It makes the from unittest.mock import MagicMock from ray.tune.integration.comet import CometLoggerCallback CometLoggerCallback._logger_process_cls = MagicMock api_key = "abc" project_name = "test" from ray.tune.integration.comet import CometLoggerCallback analysis = tune.run( train_function, name="comet", metric="loss", mode="min", callbacks=[ CometLoggerCallback( api_key=api_key, project_name=project_name, tags=["comet_example"] ) ], config={"mean": tune.grid_search([1, 2, 3]), "sd": tune.uniform(0.2, 0.8)}, ) print(analysis.best_config) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now, given that you provide your Comet API key and your project name like so Step2: You can add a Comet logger by specifying the callbacks argument in your tune.run accordingly
3,516
<ASSISTANT_TASK:> Python Code: # Login information (Edit here or be prompted by the next cell) email = None mcurl = "https://materialscommons.org/api" # Construct a Materials Commons client from materials_commons.cli.user_config import make_client_and_login_if_necessary if email is None: print("Account (email):") email = input() client = make_client_and_login_if_necessary(email=email, mcurl=mcurl) import materials_commons.api as mcapi # Project name name = "ExampleProjectFromJupyter" # Projct summary - short description to show in tables summary = "Example project created via Jupyter notebook" # Project description - describes the project, may be more detailed description = "This project was created as an example of how to create "\ "and use Materials Commons projects from within a Jupyter notebook" # Create a new project (or return existing one with same name) request = mcapi.CreateProjectRequest(description=description, summary=summary) remote_mc_proj = client.create_project(name, request) print(str(remote_mc_proj)) print("URL:", client.base_url) print("Project ID:", remote_mc_proj.id) print("Project name:", remote_mc_proj.name) import os import pathlib import shutil from materials_commons.cli.cloned_project import ClonedProject cloned_mc_proj = ClonedProject(email=email, mcurl=mcurl, proj_id=remote_mc_proj.id) print(str(cloned_mc_proj)) print("Cloned project local path:", cloned_mc_proj.local_path) parent_path = pathlib.Path.home() / "mc_projects" os.makedirs(parent_path, exist_ok=True) cloned_mc_proj = ClonedProject(email=email, mcurl=mcurl, proj_id=remote_mc_proj.id, parent_path=parent_path, # must exist name=None) # default uses project name print(str(cloned_mc_proj)) print("Cloned project local path:", cloned_mc_proj.local_path) cloned_mc_proj = ClonedProject(email=email, mcurl=mcurl, proj_id=remote_mc_proj.id, path=pathlib.Path.home() / "mc_projects" / "ExampleProjectFromJupyter") print(str(cloned_mc_proj)) print("Cloned project local path:", cloned_mc_proj.local_path) print(str(cloned_mc_proj.proj)) print(str(cloned_mc_proj.proj.remote)) print(type(cloned_mc_proj.local_path), str(cloned_mc_proj.local_path)) example_file1 = cloned_mc_proj.local_path / "example_file1.txt" with open(example_file1, 'w') as f: f.write("Hello World!\n") example_file2 = cloned_mc_proj.local_path / "example_file2.txt" with open(example_file2, 'w') as f: f.write("Hello World, again!\n") example_dir = cloned_mc_proj.local_path / "dir" os.makedirs(example_dir, exist_ok=True) example_file3 = example_dir / "example_file3.txt" with open(example_file3, 'w') as f: f.write("Got some data here!\n") example_file4 = example_dir / "example_file4.txt" with open(example_file4, 'w') as f: f.write("So much data!\n") cloned_mc_proj.upload(example_file1) cloned_mc_proj.upload(example_file1) cloned_mc_proj.upload(example_file1, no_compare=True) cloned_mc_proj.upload(example_file1, example_file2) cloned_mc_proj.upload(example_dir, recursive=True) nb_name = "MaterialsCommons-Project-Example.ipynb" notebook_local_abspath = os.path.join(os.getcwd(), nb_name) notebook_upload_as = cloned_mc_proj.local_path / "notebooks" / nb_name cloned_mc_proj.upload(notebook_local_abspath, upload_as=notebook_upload_as) for file in [example_file1, example_file2]: if os.path.exists(file): os.remove(file) if os.path.exists(example_dir): shutil.rmtree(example_dir) print("Local project directory contents:", os.listdir(cloned_mc_proj.local_path)) cloned_mc_proj.download(example_file1) cloned_mc_proj.download(example_file1, no_compare=True) cloned_mc_proj.download(example_file2) shutil.copyfile(example_file2, example_file1) cloned_mc_proj.download(example_file1, force=True) cloned_mc_proj.download(example_file1, example_file2, force=True) cloned_mc_proj.download(example_dir, recursive=True) cloned_mc_proj.download(example_file1, output=cloned_mc_proj.local_path / "example_file3.txt") cloned_mc_proj.upload(example_file1, globus=True) cloned_mc_proj.download(example_file2, globus=True, force=True) ! cd {cloned_mc_proj.local_path} && mc globus upload && mc globus download ! globus task list from materials_commons.cli.functions import read_project_config project_config = read_project_config(cloned_mc_proj.local_path) ! cd {cloned_mc_proj.local_path} && mc globus upload --id {project_config.globus_upload_id} --finish --force ! cd {cloned_mc_proj.local_path} && mc globus download --id {project_config.globus_download_id} --delete --force # Delete the remote project projs = client.get_all_projects() for proj in projs: if proj.name == "ExampleProjectFromJupyter": client.delete_project(proj.id) # Delete the local project local_project_path = pathlib.Path.home() / "mc_projects" / "ExampleProjectFromJupyter" if os.path.exists(local_project_path): shutil.rmtree(local_project_path) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Cloning a project Step2: Example 1 Step3: Example 2 Step4: Example 3 Step5: Using the ClonedProject Step6: File transfer Step7: Upload one file Step8: By default, files that already exist will be skipped Step9: Upload multiple files Step10: Upload files and directories, recursively Step11: Uploading the notebook itself / use of "upload_as" Step12: Setup for download examples Step13: Download one file Step14: By default, files that already exist will be skipped Step15: Download multiple files Step16: Download files and directories, recursively Step17: Download with different name Step18: Using Globus file transfer Step19: Monitor transfer status Step20: Finish the transfer Step21: Example cleanup
3,517
<ASSISTANT_TASK:> Python Code: [x**2 for x in range(0,10)] [x for x in range(1,20) if x%2==0 ] [x for x in 'MATHEMATICS' if x in ['A','E','I','O','U']] for i in range(1,101): if int(i**0.5)==i**0.5: print i [i for i in range(1,101) if int(i**0.5)==i**0.5] import numpy as np # matrix = [ range(0,5), range(5,10), range(10,15) ] # print matrix def eg1_for(matrix): flat = [] for row in matrix: for x in row: flat.append(x) return flat def eg1_lc(matrix): return [x for row in matrix for x in row ] matrix = [ range(0,5), range(5,10), range(10,15) ] print "Original Matrix: " + str(matrix) print "FOR-loop result: " + str(eg1_for(matrix)) print "LC result : " + str(eg1_lc(matrix)) %timeit eg1_for(matrix) %timeit eg1_lc(matrix) def eg2_for(sentence): vowels = 'aeiou' filtered_list = [] for l in sentence: if l not in vowels: filtered_list.append(l) return ''.join(filtered_list) eg2_for('My name is Aarshay Jain!') def eg2_lc(sentence): vowels = 'aeiou' return ''.join([ l for l in sentence if l not in vowels]) eg2_for('My name is Aarshay Jain!') sentence = 'My name is Aarshay Jain!' print "FOR-loop result: " + eg2_for(sentence) print "LC result : " + eg2_lc(sentence) %timeit eg2_for('My name is Aarshay Jain!') %timeit eg2_lc('My name is Aarshay Jain!') country = ['India', 'Pakistan', 'Nepal', 'Bhutan', 'China', 'Bangladesh'] capital = ['New Delhi', 'Islamabad','Kathmandu', 'Thimphu', 'Beijing', 'Dhaka'] def eg3_for(keys, values): dic = {} for i in range(len(keys)): dic[keys[i]] = values[i] return dic eg3_for(country,capital) def eg3_lc(keys, values): return { keys[i] : values[i] for i in range(len(keys)) } eg3_lc(country,capital) country = ['India', 'Pakistan', 'Nepal', 'Bhutan', 'China', 'Bangladesh'] capital = ['New Delhi', 'Islamabad','Kathmandu', 'Thimphu', 'Beijing', 'Dhaka'] print "FOR-loop result: " + str(eg3_for(country, capital)) print "LC result : " + str(eg3_lc(country, capital)) %timeit eg3_for(country,capital) %timeit eg3_lc(country,capital) #FOR: def eg4_for(N): non_primes = [] for i in range(2,int(N**0.5)+1): for j in range(i,N,i): # print j non_primes.append(j) primes = [] for i in range(2,N): if i not in non_primes: primes.append(i) return primes print eg4_for(100) %timeit eg4_for(100) #LC: def eg4_lc(N): non_primes = [ j for i in range(2,int(N**0.5)+1) for j in range(i,N,i)] return [ i for i in range(2,N) if i not in non_primes] print eg4_lc(100) %timeit eg4_lc(100) mat1 = [ range(0,5), range(5,10) ] mat2 = [ range(0,2), range(2,4), range(4,6), range(6,8), range(8,10) ] print mat1 , mat2 def eg2_for(mat1, mat2): mat1_row = len(mat1) mat2_row = len(mat2) #also num of col of mat1 mat2_col = len(mat2[0]) matm2 = [ [0]*mat2_col for i in range(mat1_row) ] for row in range(mat1_row): for col in range(mat2_col): for i in range(mat2_row): matm2[row][col] += (mat1[row][i]*mat2[i][col]) return matm2 print eg2_for(mat1,mat2) %timeit eg2_for(mat1,mat2) def eg2_lc(mat1, mat2): mat1_row = len(mat1) mat2_row = len(mat2) #also num of col of mat1 mat2_col = len(mat2[0]) matm = [ sum( [mat1[row][i]*mat2[i][col] for i in range(mat2_row)] ) for row in range(mat1_row) for col in range(mat2_col) ] return matm print eg2_lc(mat1,mat2) %timeit eg2_lc(mat1,mat2) %timeit eg2_for(mat1,mat2) %timeit eg2_lc(mat1,mat2) def tri_for(N): L=[] for i in range(1,N-2): for j in range(i+1,N-1): for k in range(j+1, N): if (i+j<k) | (i+k<j) | (j+k<i): L.append((i,j,k)) return L def tri_lc(N): return [(i,j,k) for i in range(1,N-2) for j in range(i+1,N-1) for k in range(j+1,N) if ((i+j<k) | (i+k<j) | (j+k<i))] # [ (i,j,k) for i in range(1,N-2) for j in range(i+1,N-1) for k in range(j+1,N) ] print tri_for(10) %timeit tri_for(10) print tri_lc(10) %timeit tri_lc(10) arr = range(10) #contains [0,1,...,9] map(lambda x: x*(x+1), arr) #Method 1: For-Loop def square_for(arr): result = [] for i in arr: result.append(i**2) return result print square_for(range(1,11)) #Method 2: Map Function def square_map(arr): return map(lambda x: x**2, arr) print square_map(range(1,11)) #Method 3: List comprehension: def square_lc(arr): return [i**2 for i in arr] print square_lc(range(1,11)) #Method 1: For-Loop def square_even_for(arr): result = [] for i in arr: if i%2 == 0: result.append(i**2) return result print square_even_for(range(1,11)) #Method 2: Map Function def square_even_map(arr): return filter(lambda x: x is not None,map(lambda x: x**2 if x%2==0 else None, arr)) print square_even_map(range(1,11)) #Method 3: List comprehension: def square_even_lc(arr): return [i**2 for i in arr if i%2==0] print square_even_lc(range(1,11)) %timeit square_for(range(1,11)) %timeit square_map(range(1,11)) %timeit square_lc(range(1,11)) %timeit square_even_for(range(1,11)) %timeit square_even_map(range(1,11)) %timeit square_even_lc(range(1,11)) #Method 1: For-loop: def empty_for(arr): for i in arr: pass %timeit empty_for(range(1,11)) #Method 2: Map def empty_map(arr): map(lambda x: None,arr) %timeit empty_map(range(1,11)) #Method 3: LC def empty_lc(arr): [None for i in arr] %timeit empty_lc(range(1,11)) #Method 1: For-loop: def x2_for(arr): for i in arr: i*2 %timeit x2_for(range(1,11)) #Method 2: Map def x2_map(arr): map(lambda x: x*2,arr) %timeit x2_map(range(1,11)) #Method 3: LC def x2_lc(arr): [i*2 for i in arr] %timeit x2_lc(range(1,11)) def store_for(arr): result=[] for i in arr: result.append(i*2) return result %timeit store_for(range(1,11)) def x2_lc(arr): def mul(x): return x*2 [mul(i) for i in arr] %timeit x2_lc(range(1,11)) def my_first_gen(n): for i in range(n): yield i print my_first_gen(10) gen = my_first_gen(3) print gen.next() def flow_of_info_gen(N): print 'function runs for first time' for i in range(N): print 'execution before yielding value %d' % i yield i print 'execution after yielding value %d' % i print 'function runs for last time' gen2 = flow_of_info_gen(3) gen2.next() gen2.next() gen2.next() gen2.next() gen3 = my_first_gen(10) gen3.next() gen3.next() gen3.next() gen3.next() sum(gen3) #LC returning a list [x for x in range(10)] #LC working as a generator (x for x in range(10)) sum(x for x in range(10)) def sum_list(N): return sum([x for x in range(N)]) def sum_gen(N): return sum((x for x in range(N))) N=1000 print 'Time for LC : ', %timeit sum_list(N) print '\nTime for Generator : ', %timeit sum_gen(N) N=100000 #100K print 'Time for LC : ', %timeit sum_list(N) print '\nTime for Generator : ', %timeit sum_gen(N) N=10000000 #10Mn print 'Time for LC : ', %timeit sum_list(N) print '\nTime for Generator : ', %timeit sum_gen(N) N=100000000 #100Mn print '\nTime for Generator : ', %timeit sum_gen(N) print 'Time for LC : ', %timeit sum_list(N) import pandas as pd data = pd.read_csv("skills.csv") print data #Split text with the separator ';' data['skills_list'] = data['skills'].apply(lambda x: x.split(';')) print data['skills_list'] #Initialize the set skills_unq = set() #Update each entry into set. Since it takes only unique value, duplicates will be ignored automatically. skills_unq.update( (sport for l in data['skills_list'] for sport in l) ) print skills_unq #Convert set to list: skills_unq = list(skills_unq) sport_matrix = [ [1 if skill in row else 0 for skill in skills_unq] for row in data['skills_list'] ] sport_matrix data = pd.concat([data, pd.DataFrame(sport_matrix,columns=skills_unq)],axis=1) print data data2 = pd.DataFrame([1,2,3,4,5], columns=['number']) print data2 deg = 6 cols = ['power_%d'%i for i in range(2,deg+1)] print cols power_matrix = [ [i**p for p in range(2,deg+1) ] for i in data2['number'] ] power_matrix data2 = pd.concat([data2, pd.DataFrame(power_matrix,columns=cols)],axis=1) print data2 cols = ['a','b','c','d','a_transform','b_transform','c_transform','d_power2','d_power3','d_power4','d_power5','temp1','temp2'] #Here a,b,c,d are original variables; transform are transformation, power are for polynomial reg, temp are intermediate #Select only variables with 'transform': col_set1 = [x for x in cols if x.endswith('transform')] col_set2 = [x for x in cols if 'power' in x] col_set3 = [x for x in cols if (x.endswith('transform')) | ('power' in x)] col_set4 = [x for x in cols if x not in ['temp1','temp2']] print 'Set1: ', col_set1 print 'Set2: ', col_set2 print 'Set3: ', col_set3 print 'Set4: ', col_set4 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Eg1 Step2: Eg2 Step3: Eg3 Step4: Additional examples (mentioned as exercise for users) Step5: Eg Step6: Eg Step7: The Time Advantage Step8: Here we have used the Python temporary function lambda. This can be replaced with a standard Python function or a user-defined function declared earlier. Step9: Though the three techniques produce the same result, we can see that LC is the most elegant and readable technique. You might argue that even the map function is not bad in this case. But map has its own limitations which are not evident in this example. Step10: It is clearly evident that with the slight increase in complexity, both for and map routines became bulkier and less readable. However, the LC routine is still concise and required a minor modification. Step11: Here we can see that in this case LC is ~30% faster than for-loop and ~45% faster than map function. Step12: In this case, LC is ~20% faster than for-loop and ~65% faster than map function. Step13: Here we see that for-loop is fasters. This is because in a for-loop, we need not return an element and just move onto next iteration using "pass". Step14: Here we see a similar trend as before. So till the point of iterating and making slight modifications, for-loop is clear winner. Step15: This is interesting! So the runtime jumps to almost twice just because of storing the information. The reason being that we have to define an empty list and append the result to each in each iteration. Step16: Aha! So the guess was right. When we force LC to make function calls, it ends up being more expensive than map function. Step17: Data Science Examples Step18: Eg5 Step19: Eg6
3,518
<ASSISTANT_TASK:> Python Code: import collections print(collections.Counter(['a', 'b', 'c', 'a', 'b', 'b'])) print(collections.Counter({'a': 2, 'b': 3, 'c': 1})) print(collections.Counter(a=2, b=3, c=1)) import collections c = collections.Counter() print('Initial :', c) c.update('abcdaab') print('Sequence:', c) c.update({'a': 1, 'd': 5}) print('Dict :', c) import collections c = collections.Counter('abcdaab') for letter in 'abcde': print('{} : {}'.format(letter, c[letter])) import collections c = collections.Counter('extremely') c['z'] = 0 print(c) print(list(c.elements())) import collections c1 = collections.Counter(['a', 'b', 'c', 'a', 'b', 'b']) c2 = collections.Counter('alphabet') print('C1:', c1) print('C2:', c2) print('\nCombined counts:') print(c1 + c2) print('\nSubtraction:') print(c1 - c2) print('\nIntersection (taking positive minimums):') print(c1 & c2) print('\nUnion (taking maximums):') print(c1 | c2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: An empty Counter can be constructed with no arguments and populated via the update() method Step2: Accessing Counts Step3: The elements() method returns an iterator that produces all of the items known to the Counter. Step4: Arithmetic
3,519
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np from numpy import nonzero import matplotlib.pyplot as plt # to generate plots from mpl_toolkits.basemap import Basemap # plot on map projections import matplotlib.dates as mdates import datetime from netCDF4 import Dataset # http://unidata.github.io/netcdf4-python/ from netCDF4 import netcdftime from netcdftime import utime ncfile = 'data\skt.mon.mean.nc' fh = Dataset(ncfile, mode='r') # file handle, open in read only mode lon = fh.variables['lon'][:] lat = fh.variables['lat'][:] nctime = fh.variables['time'][:] t_unit = fh.variables['time'].units skt = fh.variables['skt'][:] try : t_cal = fh.variables['time'].calendar except AttributeError : # Attribute doesn't exist t_cal = u"gregorian" # or standard fh.close() # close the file utime = netcdftime.utime(t_unit, calendar = t_cal) datevar = utime.num2date(nctime) print(datevar.shape) datevar[0:5] idx_lat_n3 = (lat>=-5.0) * (lat<=5.0) idx_lon_n3 = (lon>=210.0) * (lon<=270.0) years = np.array([idx.year for idx in datevar]) idx_tim_n3 = (years>=1970) * (years<=1999) idxtim = nonzero(idx_tim_n3)[0] #idxlat = nonzero(idx_lat_n3)[0] idxlon = nonzero(idx_lon_n3)[0] idxlon lat_n3 = lat[idx_lat_n3] lon_n3 = lon[idx_lon_n3] dates_n3 = datevar[idx_tim_n3] skt_n3 = skt[idx_tim_n3, :, :][:,idx_lat_n3,:][:,:,idx_lon_n3] print(skt_n3.shape) print(dates_n3.shape) skt_n3 = np.reshape(skt_n3, (12,30,6,33), order='F') skt_n3 = np.transpose(skt_n3, (1, 0, 2, 3)) skt_n3.shape clima_skt_n3 = np.mean(skt_n3, axis=0) clima_skt_n3.shape num_repeats = 30 # 30 years clima_skt_n3 = np.vstack([clima_skt_n3]*num_repeats) clima_skt_n3.shape clima_skt_n3 = np.reshape(clima_skt_n3, (12,30,6,33),order='F') clima_skt_n3 = np.transpose(clima_skt_n3, (1, 0, 2, 3)) clima_skt_n3.shape ssta = skt_n3-clima_skt_n3 ssta2 = np.reshape(ssta,(30,12,6*33), order='F') # 30x12x198 ssta3 = np.mean(ssta2, axis=2); # 30x12 ssta3.shape ssta_series = np.reshape(ssta3.T,(12*30,1), order='F'); # 1x360 ssta_series.shape import matplotlib.dates as mdates from matplotlib.dates import MonthLocator, WeekdayLocator, DateFormatter import matplotlib.ticker as ticker fig, ax = plt.subplots(1, 1 , figsize=(15,5)) ax.plot(dates_n3, ssta_series) ax.set_ylim((-4,4)) #horiz_line_data = np.array([0 for i in np.arange(len(dates_n3))]) #ax.plot(dates_n3, horiz_line_data, 'r--') ax.axhline(0, color='r') ax.set_title('NINO3 SSTA 1970-1999') ax.set_ylabel(['$^oC$']) ax.set_xlabel('Date') # rotate and align the tick labels so they look better fig.autofmt_xdate() # use a more precise date string for the x axis locations in the toolbar ax.fmt_xdata = mdates.DateFormatter('%Y') np.savez('data/ssta.nino3.30y.npz', ssta_series=ssta_series) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Set and read input NetCDF file info Step2: 2.2 Parse time Step3: 3. Subregion for nino3 area Step4: time Step5: Get Index using np.nonzero Step6: 3.2 Extract data over nino3 area Step7: 4. Calculate region means Step8: 4.2 Calculate monthly climatology Step9: 4.3 Calculate anomaly of SST over nino3 area Step10: 5. Have a beautiful look Step11: 6. Save data
3,520
<ASSISTANT_TASK:> Python Code: #import modules import numpy as np from matplotlib import pyplot as plt # Help function def is_zero_vector(v): Check whether vector v is a zero vector Arguments: - v : vector Return: - True if v is a nonzero vector. Otherwise, false Exceptions: - TypeError: - v is not a vector if v.ndim != 1 and not np.isscalar(v): raise TypeError('v is not a vector') return not np.any(v) def power_iteration(A, x, k=10): Compute the dominant eigenvalue and eigenvector of a matrix A Arguments: - A : A matrix - x : initial and nonzero vector - k : number of steps (default:10) Returns: - eigval : dominant eigenvalue - eigvec : dominant eigenvector Exceptions: - ValueError: - x is a zero vector if is_zero_vector(x): raise ValueError('x is a zero vector') for _ in range(k): eigvec = x / np.linalg.norm(x) x = np.matmul(A, eigvec) eigval = np.matmul(np.matmul(eigvec.T, A), eigvec) eigvec = x / np.linalg.norm(x) return eigval, eigvec A = np.array([ [1, 3], [2, 2] ]) x = np.random.rand(2) power_iteration(A, x, 25) def inverse_power_iteration(A, x, s, k=10): Compute eigenvalue and eigenvector of a matrix A nearest to input s Arguments: - A : A matrix - x : nonzero initial vector - s : shift - k : number of steps (default:10) Returns: - eigval : dominant eigenvalue - eigvec : dominant eigenvector As = A - s * np.eye(A.shape[0]) for _ in range(k): eigvec = x / np.linalg.norm(x) x = np.linalg.solve(As, eigvec) eigval = np.matmul(eigvec.T, x) u = x / np.linalg.norm(x) eigval = 1 / eigval + s return eigval, eigvec A = np.array([ [3, 2, 4], [2, 1, 2], [4, 2, 3] ]) x = np.random.rand(3) print(inverse_power_iteration(A, x, -1.1)) print(inverse_power_iteration(A, x, 0)) print(inverse_power_iteration(A, x, 8)) def rayleigh_quotient_iteration(A, x, k=10): Compute the dominant eigenvalue and eigenvector of a matrix A Arguments: - A : A matrix - x : nonzero initial vector - k : number of steps (default:10) Returns: - eigval : dominant eigenvalue - eigvec : dominant eigenvector for _ in range(k): eigvec = x / np.linalg.norm(x) eigval = np.matmul(np.matmul(eigvec.T, A), eigvec) x = np.linalg.solve(A - eigval * np.eye(A.shape[0]), eigvec) eigvec = x / np.linalg.norm(x) eigval = np.matmul(np.matmul(eigvec.T, A), eigvec) return eigval, eigvec A = np.array([ [3, 2, 4], [2, 1, 2], [4, 2, 3] ]) x = np.random.rand(3) print(rayleigh_quotient_iteration(A, x)) def normalized_simultaneous_iteration(A, k=10): Compute the eigenvalue and eigenvector of a symmetric matrix A Arguments: - A : A matrix - k : number of steps (default:10) Returns: - eigval : dominant eigenvalue - eigvec : dominant eigenvector m, n = A.shape Q = np.eye(m) for _ in range(k): Q, R = np.linalg.qr(np.matmul(A, Q)) eigval = np.diag(np.matmul(np.matmul(Q.T, A), Q)) eigvec = Q return eigval, eigvec A = np.array([ [3, 2, 4], [2, 1, 2], [4, 2, 3] ]) eigval, eigvec = normalized_simultaneous_iteration(A) print('eigenvalues : ') print(eigval) print() print('eigenvectors : ') print(eigvec) print() eigval, eigvec = np.linalg.eig(A) print('eigenvalues (np.linalg.eig) : ') print(eigval) print() print('eigenvectors (np.linalg.eig) : ') print(eigvec) def unshifted_qr(A, k=10): Compute the eigenvalue and eigenvector of a symmetric matrix A Arguments: - A : A matrix - k : number of steps (default:10) Returns: - eigval : dominant eigenvalue - eigvec : dominant eigenvector m, n = A.shape Q = np.eye(m) Qbar = Q R = A for _ in range(k): Q, R = np.linalg.qr(np.matmul(R, Q)) Qbar = np.matmul(Qbar, Q) eigval = np.diag(np.matmul(R, Q)) eigvec = Qbar return eigval, eigvec A = np.array([ [3, 2, 4], [2, 1, 2], [4, 2, 3] ]) eigval, eigvec = unshifted_qr(A) print('eigenvalues : ') print(eigval) print() print('eigenvectors : ') print(eigvec) print() eigval, eigvec = np.linalg.eig(A) print('eigenvalues (np.linalg.eig) : ') print(eigval) print() print('eigenvectors (np.linalg.eig) : ') print(eigvec) def shifted_qr(A, tol=1e-14, max_count=1000): m = A.shape[0] # row size eigval = np.zeros(m) n = m while n > 1: count = 0 while np.max(A[n-1, 0:n-1]) > tol and count < max_count: count += 1 shift = A[n-1, n-1] Q, R = np.linalg.qr(A - shift * np.eye(n)) A = np.matmul(R, Q) + shift * np.eye(n) if count < max_count: eigval[n-1] = A[n-1, n-1] n -= 1 A = A[0:n, 0:n] else: disc = (A[n-2, n-2] - A[n-1, n-1])^2 + 4 * A[n-1, n-2] * A[n-2, n-1] eigval[n-1] = (A[n-2, n-2] + A[n-1,n-1] + np.sqrt(disc)) / 2 eigval[n-2] = (A[n-2, n-2] + A[n-1,n-1] - np.sqrt(disc)) / 2 n -= 2 A = A[0:n, 0:n] if n > 0: eigval[0] = A[0, 0] return eigval A = np.array([ [3, 2, 4], [2, 1, 2], [4, 2, 3] ]) print(shifted_qr(A)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ★ Eigenvalues And Singular Values ★ Step3: 12.1 power Iteration methods Step4: Example Step6: Theorem Step7: Example Step9: Rayleigh Quotient Iteration Step10: Example Step12: 12.2 QR Algorithm Step13: Example Step15: Unshifted QR Algorithm Step16: Theorem Step18: Real Schur form and the QR algorithm Step19: Example
3,521
<ASSISTANT_TASK:> Python Code: import magma as m import mantle @m.circuit.combinational def full_adder(A: m.Bit, B: m.Bit, C: m.Bit) -> (m.Bit, m.Bit): return A ^ B ^ C, A & B | B & C | C & A # sum, carry import fault tester = fault.PythonTester(full_adder) assert tester(1, 0, 0) == (1, 0), "Failed" assert tester(0, 1, 0) == (1, 0), "Failed" assert tester(1, 1, 0) == (0, 1), "Failed" assert tester(1, 0, 1) == (0, 1), "Failed" assert tester(1, 1, 1) == (1, 1), "Failed" print("Success!") assert tester(1, 0, 0) == full_adder(1, 0, 0), "Failed" assert tester(0, 1, 0) == full_adder(0, 1, 0), "Failed" assert tester(1, 1, 0) == full_adder(1, 1, 0), "Failed" assert tester(1, 0, 1) == full_adder(1, 0, 1), "Failed" assert tester(1, 1, 1) == full_adder(1, 1, 1), "Failed" print("Success!") class FullAdder(m.Circuit): io = m.IO(I0=m.In(m.Bit), I1=m.In(m.Bit), CIN=m.In(m.Bit), O=m.Out(m.Bit), COUT=m.Out(m.Bit)) O, COUT = full_adder(io.I0, io.I1, io.CIN) io.O @= O io.COUT @= COUT print(repr(FullAdder)) print(repr(full_adder.circuit_definition)) with open(".magma/full_adder.py") as f: print(f.read()) import logging logging.basicConfig(level=logging.INFO) import fault tester = fault.Tester(FullAdder) tester.circuit.I0 = 1 tester.circuit.I1 = 1 tester.circuit.CIN = 1 tester.eval() tester.circuit.O.expect(1) tester.circuit.COUT.expect(1) # compile_and_run throws an exception if the test fails tester.compile_and_run("verilator") O, COUT = tester(1, 0, 0) tester.expect(O, 1) tester.expect(COUT, 0) tester.compile_and_run("verilator") m.compile("build/FullAdder", FullAdder, inline=True) %cat build/FullAdder.v %cat build/FullAdder.json !coreir -i build/FullAdder.json -p instancecount <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A full adder has three single bit inputs, and returns the sum and the carry. The sum is the exclusive or of the 3 bits, the carry is 1 if any two of the inputs bits are 1. Here is a schematic of a full adder circuit (from logisim). Step2: We can test our combinational function to verify that our implementation behaves as expected fault. Step3: combinational functions are polymorphic over Python and magma types. If the function is called with magma values, it will produce a circuit instance, wire up the inputs, and return references to the outputs. Otherwise, it will invoke the function in Python. For example, we can use the Python function to verify the circuit simulation. Step4: Circuits Step5: First, notice that the FullAdder is a subclass of Circuit. All magma circuits are classes in python. Step6: We see that it has created an instance of the full_adder combinational function and wired up the interface. Step7: We can also inspect the code generated by the m.circuit.combinational decorator by looking in the .magma directory for a file named .magma/full_adder.py. When using m.circuit.combinational, magma will generate a file matching the name of the decorated function. You'll notice that the generated code introduces an extra temporary variable (this is an artifact of the SSA pass that magma runs to handle if/else statements). Step8: In the code above, a mux is imported and named phi. If the combinational circuit contains any if-then-else constructs, they will be transformed into muxes. Step9: Earlier in the notebook, we showed an example using fault.PythonTester to simulate a circuit. This uses an interactive programming model where test actions are immediately dispatched to the underlying simulator (which is why we can perform assertions on the simulation values in Python. Step10: An instance of a Tester has an attribute .circuit that enables the user to record test actions. For example, inputs to a circuit can be poked by setting the attribute corresponding to the input port name. Step11: fault's default Tester provides the semantics of a cycle accurate simulator, so, unlike verilog, pokes do not create events that trigger computation. Instead, these poke values are staged, and the propogation of their effect occurs when the user calls the eval action. Step12: To assert that the output of the circuit is equal to a value, we use the expect method that are defined on the attributes corresponding to circuit output ports Step13: Because fault is a staged programming environment, the above actions are not executed until we have advanced to the next stage. In the first stage, the user records test actions (e.g. poke, eval, expect). In the second stage, the test is compiled and run using a target runtime. Here's examples of running the test using magma's python simulator, the coreir c++ simulator, and verilator. Step14: The tester also provides the same convenient __call__ interface we saw before. Step15: Generate Verilog Step16: Generate CoreIR Step17: Here's an example of running a CoreIR pass on the intermediate representation.
3,522
<ASSISTANT_TASK:> Python Code: %matplotlib inline import openpathsampling as paths import numpy as np import matplotlib.pyplot as plt import pandas as pd from openpathsampling.visualize import PathTreeBuilder, PathTreeBuilder from IPython.display import SVG, HTML def ipynb_visualize(movevis): Default settings to show a movevis in an ipynb. view = movevis.renderer view.zoom = 1.5 view.scale_y = 18 view.scale_th = 20 view.font_size = 0.4 return view old_store = paths.AnalysisStorage("mstis.nc") #old_store = paths.Storage("mstis.nc") # if not actually doing analysis, but loading network, etc network = old_store.networks[0] engine = old_store.engines[0] template = old_store.snapshots[0] # this is how we would get it out of a simulation (although the actual simulation here has bad stats) # first, we need the crossing probabilities, which we get when we calculate the rate network.hist_args['max_lambda'] = { 'bin_width' : 0.02, 'bin_range' : (0.0, 0.5) } network.hist_args['pathlength'] = { 'bin_width' : 5, 'bin_range' : (0, 150) } rates = network.rate_matrix(old_store.steps) # just use the analyzed network to make the bias bias = paths.SRTISBiasFromNetwork(network) bias.df # For better stats, use the results that I got from a 20k MC step run # We can create fake TCPs and force them on the network. tcp_A = paths.numerics.LookupFunction.from_dict( {0.2: 1.0, 0.3: 0.13293104100673198, 0.4: 0.044370838092911397, 0.5: 0.021975696374764188} ) tcp_B = paths.numerics.LookupFunction.from_dict( {0.2: 1.0, 0.3: 0.13293104100673198, 0.4: 0.044370838092911397, 0.5: 0.021975696374764188} ) tcp_C = paths.numerics.LookupFunction.from_dict( {0.2: 1.0, 0.3: 0.19485705066078274, 0.4: 0.053373003923696649, 0.5: 0.029175949467020165} ) # load states for identification purposes stateA = old_store.volumes['A'] stateB = old_store.volumes['B'] stateC = old_store.volumes['C'] # use the sampling transitions; in MSTIS, these are also stored in from_state network.from_state[stateA].tcp = tcp_A network.from_state[stateB].tcp = tcp_B network.from_state[stateC].tcp = tcp_C bias = paths.SRTISBiasFromNetwork(network) bias.df scheme = paths.SRTISScheme(network, bias=bias, engine=engine) movevis = paths.visualize.MoveTreeBuilder() #movevis.mover(scheme.move_decision_tree(), network.all_ensembles) #SVG(ipynb_visualize(movevis).to_svg()) final_samp0 = old_store.steps[len(old_store.steps)-1].active[network.sampling_ensembles[-1]] sset = paths.SampleSet([final_samp0]) storage = paths.Storage("srtis.nc", "w") storage.save(template) srtis = paths.PathSampling( storage=storage, sample_set=sset, move_scheme=scheme ) n_steps_to_run = int(scheme.n_steps_for_trials( mover=scheme.movers['minus'][0], n_attempts=1 )) print(n_steps_to_run) # logging creates ops_output.log file with details of what the calculation is doing #import logging.config #logging.config.fileConfig("logging.conf", disable_existing_loggers=False) %%time multiplier = 2 srtis.run_until(multiplier*n_steps_to_run) #storage.close() %%time #storage = paths.AnalysisStorage("srtis.nc") #scheme = storage.schemes[0] scheme.move_summary(storage.steps) scheme.move_summary(storage.steps, 'shooting') scheme.move_summary(storage.steps, 'minus') scheme.move_summary(storage.steps, 'repex') scheme.move_summary(storage.steps, 'pathreversal') replica = storage.samplesets[0].samples[0].replica ensemble_trace = paths.trace_ensembles_for_replica(replica, storage.steps) print len(ensemble_trace) srtis_ensembles = scheme.network.sampling_ensembles+scheme.network.special_ensembles['ms_outer'].keys() srtis_ensemble_numbers = {e : srtis_ensembles.index(e) for e in srtis_ensembles} # this next is just for pretty printing srtis_numbers_ensemble = {srtis_ensemble_numbers[e] : e for e in srtis_ensemble_numbers} for k in sorted(srtis_numbers_ensemble.keys()): print k, ":", srtis_numbers_ensemble[k].name plt.plot([srtis_ensemble_numbers[e] for e in ensemble_trace]) count = 0 for i in range(len(ensemble_trace)-1): [this_val, next_val] = [srtis_ensemble_numbers[ensemble_trace[k]] for k in [i,i+1]] if this_val == 1 and next_val == 0: count += 1 count hist_numbers = [srtis_ensemble_numbers[e] for e in ensemble_trace] bins = [i-0.5 for i in range(len(srtis_ensembles)+1)] plt.hist(hist_numbers, bins=bins); import pandas as pd hist = paths.analysis.Histogram(bin_width=1.0, bin_range=[-0.5,9.5]) colnames = {i : srtis_numbers_ensemble[i].name for i in range(len(srtis_ensembles))} df = pd.DataFrame(columns=[colnames[i] for i in colnames]) for i in range(len(hist_numbers)): hist.add_data_to_histogram([hist_numbers[i]]) if i % 100 == 0: normalized = hist.normalized() local_df = pd.DataFrame([normalized.values()], index=[i], columns=[colnames[k] for k in normalized.keys()]) df = df.append(local_df) plt.pcolormesh(df.fillna(0.0), cmap="bwr", vmin=0.0, vmax=0.2); plt.gca().invert_yaxis() plt.colorbar() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Single Replica TIS Step2: Open the storage and load things from it. Step3: One of the points of SRTIS is that we use a bias (which comes from an estimate of the crossing probability) in order to improve our sampling. Step4: Here we actually set up the SRTIS move scheme for the given network. It only requires one line Step5: Now we'll visualize the SRTIS move scheme. Step6: Next we need to set up an appropriate single-replica initial sampleset. We'll take the last version of from one of the outer TIS ensembles. Step7: Finally, we set up the new storage file and the new simulation. Step8: From here, we'll be doing the analysis of the SRTIS run.
3,523
<ASSISTANT_TASK:> Python Code: from os import path as p, chdir if 'examples' in p.abspath('.'): chdir('..') from riko.modules.fetchpage import pipe url = 'https://news.ycombinator.com/' next(pipe(conf={'url': url, 'start': '<title>', 'end': '</title>'})) from riko.modules.xpathfetchpage import pipe xpath = '/html/body/center/table/tr[3]/td/table/tr[1]/td[3]/a' next(pipe(conf={'url': 'https://news.ycombinator.com/', 'xpath': xpath})) ### Create a SyncPipe flow ### # # `SyncPipe` is a convenience class that creates chainable flows # and allows for parallel processing. from riko.collections import SyncPipe ### Set the pipe configurations ### # # Notes: # 1. the `detag` option will strip all html tags from the result # 2. fetch the text contained inside the 'body' tag of the hackernews homepage # 3. replace newlines with spaces and assign the result to 'content' # 4. tokenize the resulting text using whitespace as the delimeter # 5. count the number of times each token appears # 6. obtain the raw stream # 7. extract the first word and its count url = 'https://news.ycombinator.com/' fetch_conf = {'url': url, 'start': '<body>', 'end': '</body>', 'detag': True} # 1 replace_conf = {'rule': [{'find': '\r\n', 'replace': ' '}, {'find': '\n', 'replace': ' '}]} flow = ( SyncPipe('fetchpage', conf=fetch_conf) # 2 .strreplace(conf=replace_conf, assign='content') # 3 .tokenizer(conf={'delimiter': ' '}, emit=True) # 4 .count(conf={'count_key': 'content'})) # 5 stream = flow.output # 6 next(stream) # 7 from riko.modules.fetch import pipe ### Fetch an RSS feed ### stream = pipe(conf={'url': 'https://news.ycombinator.com/rss'}) item = next(stream) item['title'], item['link'], item['comments'] from riko.modules.fetchsitefeed import pipe ### Fetch the first RSS feed found ### # # Note: regardless of how you fetch an RSS feed, it will have the same # structure stream = pipe(conf={'url': 'http://arstechnica.com/rss-feeds/'}) item = next(stream) item.keys() item['title'], item['author'], item['id'] from riko.collections import SyncPipe ### Set the pipe configurations ### fetch_conf = {'url': 'https://news.ycombinator.com/rss'} filter_rule = {'field': 'link', 'op': 'contains', 'value': '.com'} xpath = '/html/body/center/table/tr[3]/td/table[2]/tr[1]/td/table/tr/td[3]/span/span' xpath_conf = {'url': {'subkey': 'comments'}, 'xpath': xpath} ### Create a SyncPipe flow ### # # `SyncPipe` is a convenience class that creates chainable flows # and allows for parallel processing. # # The following flow will: # 1. fetch the hackernews RSS feed # 2. filter for items with '.com' in the link # 3. sort the items ascending by title # 4. fetch the first comment from each item # 5. flatten the result into one raw stream # 6. extract the first item's content # # Note: sorting is not lazy so take caution when using this pipe flow = ( SyncPipe('fetch', conf=fetch_conf) # 1 .filter(conf={'rule': filter_rule}) # 2 .sort(conf={'rule': {'sort_key': 'title'}}) # 3 .xpathfetchpage(conf=xpath_conf)) # 4 stream = flow.output # 5 next(stream)['content'] # 6 from riko.collections import SyncPipe ### Set the pipe configurations ### fetch_conf = {'url': 'https://news.ycombinator.com/rss'} filter_rule = {'field': 'link', 'op': 'contains', 'value': '.com'} xpath = '/html/body/center/table/tr[3]/td/table[2]/tr[1]/td/table/tr/td[3]/span/span' xpath_conf = {'url': {'subkey': 'comments'}, 'xpath': xpath} ### Create a parallel SyncPipe flow ### # # The following flow will: # 1. fetch the hackernews RSS feed # 2. filter for items with '.com' in the article link # 3. fetch the first comment from all items in parallel (using 4 workers) # 4. flatten the result into one raw stream # 5. extract the first item's content # # Note: no point in sorting after the filter since parallel fetching doesn't guarantee # order flow = ( SyncPipe('fetch', conf=fetch_conf, parallel=True, workers=4) # 1 .filter(conf={'rule': filter_rule}) # 2 .xpathfetchpage(conf=xpath_conf)) # 3 stream = flow.output # 4 next(stream)['content'] # 5 from riko.bado import coroutine, react from riko.collections import AsyncPipe ### Set the pipe configurations ### fetch_conf = {'url': 'https://news.ycombinator.com/rss'} filter_rule = {'field': 'link', 'op': 'contains', 'value': '.com'} xpath = '/html/body/center/table/tr[3]/td/table[2]/tr[1]/td/table/tr/td[3]/span/span' xpath_conf = {'url': {'subkey': 'comments'}, 'xpath': xpath} ### Create an AsyncPipe flow ### # # The following flow will: # 1. fetch the hackernews RSS feed # 2. filter for items with '.com' in the article link # 3. asynchronously fetch the first comment from each item (using 4 connections) # 4. flatten the result into one raw stream # 5. extract the first item's content # # Note: no point in sorting after the filter since async fetching doesn't guarantee # order @coroutine def run(reactor): stream = yield ( AsyncPipe('fetch', conf=fetch_conf, connections=4) # 1 .filter(conf={'rule': filter_rule}) # 2 .xpathfetchpage(conf=xpath_conf) # 3 .output) # 4 print(next(stream)['content']) # 5 try: react(run) except SystemExit: pass from riko.modules.reverse import pipe stream = [{'title': 'riko pt. 1'}, {'title': 'riko pt. 2'}] next(pipe(stream)) from riko.modules.hash import pipe item = {'title': 'riko pt. 1'} stream = pipe(item, field='title') next(stream) from riko.modules.tokenizer import pipe item = {'title': 'riko pt. 1'} tokenizer_conf = {'delimiter': ' '} stream = pipe(item, conf=tokenizer_conf, field='title') next(stream) # In this case, if we just want the result, we can `emit` it instead stream = pipe(item, conf=tokenizer_conf, field='title', emit=True) next(stream) from riko.modules.count import pipe stream = [{'title': 'riko pt. 1'}, {'title': 'riko pt. 2'}] next(pipe(stream)) from riko.modules.itembuilder import pipe attrs = {'key': 'title', 'value': 'riko pt. 1'} next(pipe(conf={'attrs': attrs})) from riko.modules import fetchpage, count fetchpage.async_pipe.__dict__ count.pipe.__dict__ from riko.collections import SyncPipe attrs = [ {'key': 'title', 'value': 'riko pt. 1'}, {'key': 'content', 'value': "Let's talk about riko!"}] flow = SyncPipe('itembuilder', conf={'attrs': attrs}).hash() flow.list[0] from __future__ import print_function from riko.collections import SyncPipe conf1 = {'attrs': [{'value': 'https://google.com', 'key': 'content'}]} conf2 = {'rule': [{'find': 'com', 'replace': 'co.uk'}]} def pipe(test=False): kwargs = {'conf': conf1, 'test': test} flow = SyncPipe('itembuilder', **kwargs).strreplace(conf=conf2) stream = flow.output for i in stream: print(i) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Examples Step2: Fetch a webpage using an xpath Step3: Word Count Step4: Fetching feeds Step5: Please see the FAQ for a complete list of supported file types and Step6: Please see alternate workflow creation for an alternative (function based) method for Step7: Asynchronous processing Step8: Design Principles Step9: processors process individual items and can be parallelized across Step10: Some processors, e.g., pipetokenizer, return multiple results. Step11: operators are split into sub-types of aggregators Step12: processors are split into sub-types of source and transformer. Step13: The following table summaries these observations Step14: The SyncPipe and AsyncPipe classes (among other things) perform this Step15: Please see the cookbook for advanced examples including how to wire in
3,524
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('..') import socnet as sn sn.node_size = 3 sn.node_color = (0, 0, 0) sn.edge_width = 1 sn.edge_color = (192, 192, 192) sn.node_label_position = 'top center' g = sn.load_graph('twitter.gml') sn.show_graph(g, nlab=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Carregando e visualizando o grafo
3,525
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target from sklearn.cross_validation import cross_val_score from sklearn.svm import LinearSVC cross_val_score(LinearSVC(), X, y, cv=5) cross_val_score(LinearSVC(), X, y, cv=5, scoring="f1_macro") y % 2 cross_val_score(LinearSVC(), X, y % 2) cross_val_score(LinearSVC(), X, y % 2, scoring="average_precision") cross_val_score(LinearSVC(), X, y % 2, scoring="roc_auc") from sklearn.metrics.scorer import SCORERS print(SCORERS.keys()) def my_accuracy_scoring(est, X, y): return np.mean(est.predict(X) == y) cross_val_score(LinearSVC(), X, y, scoring=my_accuracy_scoring) def my_super_scoring(est, X, y): return np.mean(est.predict(X) == y) - np.mean(est.coef_ != 0) from sklearn.grid_search import GridSearchCV y = iris.target grid = GridSearchCV(LinearSVC(C=.01, dual=False), param_grid={'penalty' : ['l1', 'l2']}, scoring=my_super_scoring) grid.fit(X, y) print(grid.best_params_) from sklearn.cross_validation import ShuffleSplit shuffle_split = ShuffleSplit(len(X), 10, test_size=.4) cross_val_score(LinearSVC(), X, y, cv=shuffle_split) from sklearn.cross_validation import StratifiedKFold, KFold, ShuffleSplit def plot_cv(cv, n_samples): masks = [] for train, test in cv: mask = np.zeros(n_samples, dtype=bool) mask[test] = 1 masks.append(mask) plt.matshow(masks) plot_cv(StratifiedKFold(y, n_folds=5), len(y)) plot_cv(KFold(len(iris.target), n_folds=5), len(iris.target)) plot_cv(ShuffleSplit(len(iris.target), n_iter=20, test_size=.2), len(iris.target)) # %load solutions/cross_validation_iris.py kf = KFold(len(X), n_folds=5) print( cross_val_score(LinearSVC(), X, y, cv=kf) ) print( cross_val_score(LinearSVC(), X, y, cv=KFold(len(X), n_folds=3)) ) skf = StratifiedKFold(y, n_folds=5) cross_val_score(LinearSVC(), X, y, cv=skf) plot_cv(KFold(len(X), n_folds=3), len(y)) y <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's go to a binary task for a moment Step2: Implementing your own scoring metric Step3: There are other ways to do cross-valiation Step4: Exercises
3,526
<ASSISTANT_TASK:> Python Code: !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.5 import numpy as np from matplotlib import pyplot as plt import tensorflow as tf print(tf.__version__) x = tf.constant([2, 3, 4]) x x = tf.Variable(2.0, dtype=tf.float32, name='my_variable') x.assign(45.8) # TODO 1 x x.assign_add(4) # TODO 2 x x.assign_sub(3) # TODO 3 x a = tf.constant([5, 3, 8]) # TODO 1 b = tf.constant([3, -1, 2]) c = tf.add(a, b) d = a + b print("c:", c) print("d:", d) a = tf.constant([5, 3, 8]) # TODO 2 b = tf.constant([3, -1, 2]) c = tf.multiply(a, b) d = a * b print("c:", c) print("d:", d) # tf.math.exp expects floats so we need to explicitly give the type a = tf.constant([5, 3, 8], dtype=tf.float32) b = tf.math.exp(a) print("b:", b) # native python list a_py = [1, 2] b_py = [3, 4] tf.add(a_py, b_py) # TODO 1 # numpy arrays a_np = np.array([1, 2]) b_np = np.array([3, 4]) tf.add(a_np, b_np) # TODO 2 # native TF tensor a_tf = tf.constant([1, 2]) b_tf = tf.constant([3, 4]) tf.add(a_tf, b_tf) # TODO 3 a_tf.numpy() X = tf.constant(range(10), dtype=tf.float32) Y = 2 * X + 10 print("X:{}".format(X)) print("Y:{}".format(Y)) X_test = tf.constant(range(10, 20), dtype=tf.float32) Y_test = 2 * X_test + 10 print("X_test:{}".format(X_test)) print("Y_test:{}".format(Y_test)) y_mean = Y.numpy().mean() def predict_mean(X): y_hat = [y_mean] * len(X) return y_hat Y_hat = predict_mean(X_test) errors = (Y_hat - Y)**2 loss = tf.reduce_mean(errors) loss.numpy() def loss_mse(X, Y, w0, w1): Y_hat = w0 * X + w1 errors = (Y_hat - Y)**2 return tf.reduce_mean(errors) # TODO 1 def compute_gradients(X, Y, w0, w1): with tf.GradientTape() as tape: loss = loss_mse(X, Y, w0, w1) return tape.gradient(loss, [w0, w1]) w0 = tf.Variable(0.0) w1 = tf.Variable(0.0) dw0, dw1 = compute_gradients(X, Y, w0, w1) print("dw0:", dw0.numpy()) print("dw1", dw1.numpy()) STEPS = 1000 LEARNING_RATE = .02 MSG = "STEP {step} - loss: {loss}, w0: {w0}, w1: {w1}\n" w0 = tf.Variable(0.0) w1 = tf.Variable(0.0) for step in range(0, STEPS + 1): dw0, dw1 = compute_gradients(X, Y, w0, w1) w0.assign_sub(dw0 * LEARNING_RATE) w1.assign_sub(dw1 * LEARNING_RATE) if step % 100 == 0: loss = loss_mse(X, Y, w0, w1) print(MSG.format(step=step, loss=loss, w0=w0.numpy(), w1=w1.numpy())) loss = loss_mse(X_test, Y_test, w0, w1) loss.numpy() X = tf.constant(np.linspace(0, 2, 1000), dtype=tf.float32) Y = X * tf.exp(-X**2) %matplotlib inline plt.plot(X, Y) def make_features(X): f1 = tf.ones_like(X) # Bias. f2 = X f3 = tf.square(X) f4 = tf.sqrt(X) f5 = tf.exp(X) return tf.stack([f1, f2, f3, f4, f5], axis=1) def predict(X, W): return tf.squeeze(X @ W, -1) def loss_mse(X, Y, W): Y_hat = predict(X, W) errors = (Y_hat - Y)**2 return tf.reduce_mean(errors) def compute_gradients(X, Y, W): with tf.GradientTape() as tape: loss = loss_mse(Xf, Y, W) return tape.gradient(loss, W) # TODO 2 STEPS = 2000 LEARNING_RATE = .02 Xf = make_features(X) n_weights = Xf.shape[1] W = tf.Variable(np.zeros((n_weights, 1)), dtype=tf.float32) # For plotting steps, losses = [], [] plt.figure() for step in range(1, STEPS + 1): dW = compute_gradients(X, Y, W) W.assign_sub(dW * LEARNING_RATE) if step % 100 == 0: loss = loss_mse(Xf, Y, W) steps.append(step) losses.append(loss) plt.clf() plt.plot(steps, losses) print("STEP: {} MSE: {}".format(STEPS, loss_mse(Xf, Y, W))) plt.figure() plt.plot(X, Y, label='actual') plt.plot(X, predict(Xf, W), label='predicted') plt.legend() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Operations on Tensors Step2: Point-wise operations Step3: NumPy Interoperability Step4: You can convert a native TF tensor to a NumPy array using .numpy() Step5: Linear Regression Step6: Let's also create a test dataset to evaluate our models Step7: Loss Function Step8: Using mean squared error, our loss is Step9: This values for the MSE loss above will give us a baseline to compare how a more complex model is doing. Step10: Gradient Function Step11: Training Loop Step12: Now let's compare the test loss for this linear regression to the test loss from the baseline model that outputs always the mean of the training set Step13: This is indeed much better!
3,527
<ASSISTANT_TASK:> Python Code: # Inicializacao %matplotlib inline import numpy as np from matplotlib import pyplot as plt # Abrindo conjunto de dados import csv with open("biometria.csv", 'rb') as f: dados = list(csv.reader(f)) rotulos_volei = [d[0] for d in dados[1:-1] if d[0] is 'V'] rotulos_futebol = [d[0] for d in dados[1:-1] if d[0] is 'F'] altura_volei = [[float(d[1])] for d in dados[1:-1] if d[0] is 'V'] altura_futebol = [[float(d[1])] for d in dados[1:-1] if d[0] is 'F'] peso_volei = [[float(d[2])] for d in dados[1:-1] if d[0] is 'V'] peso_futebol = [[float(d[2])] for d in dados[1:-1] if d[0] is 'F'] from sklearn import mixture from sklearn.cross_validation import train_test_split def treinamento_GMM_ML(train_size=0.3, n_components=2): # Separar dados adequadamente dados_treino, dados_teste, rotulos_treino, rotulos_teste =\ train_test_split(altura_volei + altura_futebol, rotulos_volei + rotulos_futebol, train_size=train_size) treino_futebol = [dados_treino[i] for i in xrange(len(dados_treino)) if rotulos_treino[i] == 'F'] treino_volei = [dados_treino[i] for i in xrange(len(dados_treino)) if rotulos_treino[i] == 'V'] # Especificar parametros da mistura g1 = mixture.GMM(n_components=n_components) g2 = mixture.GMM(n_components=n_components) # Treinar modelo GMM g1.fit(treino_futebol) g2.fit(treino_volei) # Executar modelos sobre conjunto de teste p_futebol = g1.score(dados_teste) p_volei = g2.score(dados_teste) # Verificar qual modelo mais provavelmente gerou os dados de teste x = [] for i in xrange(len(dados_teste)): if p_futebol[i] > p_volei[i]: x.append('F') else: x.append('V') # Verificar quantidade de acertos acertos = 0.0 for i in xrange(len(x)): if x[i] == rotulos_teste[i]: acertos += 1 acertos *= 100.0/float(len(x)) return acertos print "Acertos:", treinamento_GMM_ML(), "%" # Parametros para executar busca exaustiva train_size_min = 0.35 train_size_max = 0.95 train_size_step = 0.05 # Numero de iteracoes para cada tamanho de conjunto de treino n_iter = 100 # Listas que armazenarao os resultados steps = [] medias = [] variancias = [] train_size_atual = train_size_min while train_size_atual <= train_size_max: # para cada tamanho do conjunto de treino acertos = [] for k in xrange(n_iter): # para cada iteracao do processo Monte Carlo dados_treino, dados_teste, rotulos_treino, rotulos_teste =\ train_test_split(altura_volei + altura_futebol, rotulos_volei + rotulos_futebol, train_size=train_size_atual) score = treinamento_GMM_ML(train_size=train_size_atual, n_components=2) acertos.append(score) steps.append(train_size_atual) medias.append(np.mean(np.array(acertos))) variancias.append(np.std(np.array(acertos))) train_size_atual += train_size_step plt.figure(); plt.errorbar(steps, medias, yerr=variancias); plt.ylabel('Indice de acertos'); plt.xlabel('Tamanho do conjunto de treino'); import math def treinamento_GMM_MAP(train_size=0.3, n_components=2): # Separar dados adequadamente dados_treino, dados_teste, rotulos_treino, rotulos_teste =\ train_test_split(altura_volei + altura_futebol, rotulos_volei + rotulos_futebol, train_size=train_size) treino_futebol = [dados_treino[i] for i in xrange(len(dados_treino)) if rotulos_treino[i] == 'F'] treino_volei = [dados_treino[i] for i in xrange(len(dados_treino)) if rotulos_treino[i] == 'V'] # Especificar parametros da mistura g1 = mixture.GMM(n_components=n_components) g2 = mixture.GMM(n_components=n_components) # Treinar modelo GMM g1.fit(treino_futebol) g2.fit(treino_volei) # Treino das probabilidades a priori prior_futebol = len([rotulo for rotulo in rotulos_treino if rotulo == 'F']) / float(len(rotulos_treino)) prior_volei = len([rotulo for rotulo in rotulos_treino if rotulo == 'V']) / float(len(rotulos_treino)) # Executar modelos sobre conjunto de teste p_futebol = g1.score(dados_teste) + math.log(prior_futebol) p_volei = g2.score(dados_teste) + math.log(prior_volei) # Verificar qual modelo mais provavelmente gerou os dados de teste x = [] for i in xrange(len(dados_teste)): if p_futebol[i] > p_volei[i]: x.append('F') else: x.append('V') # Verificar quantidade de acertos acertos = 0.0 for i in xrange(len(x)): if x[i] == rotulos_teste[i]: acertos += 1 acertos *= 100.0/float(len(x)) return acertos print "Acertos:", treinamento_GMM_MAP(), "%" # Parametros para executar busca exaustiva train_size_min = 0.35 train_size_max = 0.95 train_size_step = 0.05 # Numero de iteracoes para cada tamanho de conjunto de treino n_iter = 100 # Listas que armazenarao os resultados steps1 = [] medias1 = [] variancias1 = [] train_size_atual = train_size_min while train_size_atual <= train_size_max: # para cada tamanho do conjunto de treino acertos = [] for k in xrange(n_iter): # para cada iteracao do processo Monte Carlo dados_treino, dados_teste, rotulos_treino, rotulos_teste =\ train_test_split(altura_volei + altura_futebol, rotulos_volei + rotulos_futebol, train_size=train_size_atual) score = treinamento_GMM_ML(train_size=train_size_atual, n_components=2) acertos.append(score) steps1.append(train_size_atual) medias1.append(np.mean(np.array(acertos))) variancias1.append(np.std(np.array(acertos))) train_size_atual += train_size_step plt.figure(); plt.errorbar(steps, medias, yerr=variancias); plt.errorbar(steps1, medias1, yerr=variancias1, color='red'); plt.ylabel('Indice de acertos'); plt.xlabel('Tamanho do conjunto de treino'); def treinamento_GMM_nao_supervisionado(): # Especificar parametros da mistura g = mixture.GMM(n_components=2) # Treinar modelo GMM g.fit(altura_volei + altura_futebol) # Verificar qual Gaussiana corresponde a cada rótulo if g.means_[0][0] > g.means_[1][0]: rotulos = ('V', 'F') else: rotulos = ('F', 'V') # Executar modelos sobre conjunto de teste p = g.predict_proba(altura_volei + altura_futebol) # Verificar qual modelo mais provavelmente gerou os dados de teste x = [] for i in xrange(len(altura_volei + altura_futebol)): if p[i][0] > p[i][1]: x.append(rotulos[0]) else: x.append(rotulos[1]) # Verificar quantidade de acertos acertos = 0.0 for i in xrange(len(x)): if x[i] == (rotulos_volei + rotulos_futebol)[i]: acertos += 1 acertos *= 100.0/float(len(x)) return acertos acertos_nao_supervisionados = treinamento_GMM_nao_supervisionado() print "Acertos:", acertos_nao_supervisionados, "%" plt.figure(); plt.errorbar(steps, medias, yerr=variancias); plt.errorbar(steps1, medias1, yerr=variancias1, color='red'); plt.plot(steps, [acertos_nao_supervisionados] * len(steps), ':', color='green') plt.ylabel('Indice de acertos'); plt.xlabel('Tamanho do conjunto de treino'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Teorema de Bayes Step2: Podemos verificar a estabilidade do modelo para diferentes tamanhos de conjunto de treino de forma semelhante a que fizemos no caso de KNN Step3: Classificador de Máxima Probabilidade À Posteriori (MAP) Step4: O critério MAP minimiza a probabilidade de erro teórico do estimador. Embora esse seja um resultado relevante, também é importante considerar que a estimativa das probabilidades envolvidas pode não ser sempre ótima. Step5: Veja que, embora MAP tenha uma possibilidade teórica de conseguir um erro menor que ML, seu erro médio é bastante semelhante. A variância do erro também apresenta um comportamento semelhante, aumentando à medida que o conjunto de treino aumenta. Essa variância não decorre de uma degradação do modelo, mas sim da diminuição do conjunto de testes Step6: Podemos verificar que o treinamento não-supervisionado, por utilizar todo o conjunto de dados para treino/teste, não apresenta flutuações de desempenho. Ao mesmo tempo, não é possível dizer que esse modelo generaliza para outros pontos, já que é um modelo que foi treinado e testado no mesmo conjunto de dados. A não-generalização, neste caso, não é um grande problema, já que o problema está restrito à base de dados que temos. Neste caso, realizamos o agrupamento dos dados do nosso conjunto através do modelo GMM, e então interpretamos manualmente os resultados de acordo com nosso conhecimento prévio.
3,528
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt import math data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() rides[:24*10].plot(x='dteday', y='cnt') dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # Save the last 21 days test_data = data[-21*24:] data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # Hold out the last 60 days of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.input_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5, (self.output_nodes, self.hidden_nodes)) self.lr = learning_rate def train(self, inputs_list, targets_list): # Convert inputs list to 2d array inputs = np.array(inputs_list, ndmin=2).T targets = np.array(targets_list, ndmin=2).T ### Forward pass ### hidden_inputs = np.dot(self.weights_input_to_hidden,inputs) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) final_outputs = final_inputs ### Backward pass ### output_errors = targets-final_outputs output_grad = output_errors hidden_errors = np.dot(self.weights_hidden_to_output.T,output_errors) hidden_grad = self.activation_function_derivative(hidden_inputs) self.weights_hidden_to_output += self.lr*np.dot(output_grad,hidden_outputs.T) self.weights_input_to_hidden += self.lr*np.dot(hidden_errors* hidden_grad,inputs.T) def activation_function(self,x): return 1/(1 + np.exp(-x)) def activation_function_derivative(self,x): return self.activation_function(x)*(1-self.activation_function(x)) def run(self, inputs_list): # Run a forward pass through the network inputs = np.array(inputs_list, ndmin=2).T hidden_inputs = np.dot(self.weights_input_to_hidden,inputs) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(self.weights_hidden_to_output,hidden_outputs) final_outputs = final_inputs return final_outputs def MSE(y, Y): return np.mean((y-Y)**2) import sys ### Set the hyperparameters here ### epochs = 2000 learning_rate = 0.008 hidden_nodes = 10 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for e in range(epochs): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) for record, target in zip(train_features.ix[batch].values, train_targets.ix[batch]['cnt']): network.train(record, target) # Printing out the training progress train_loss = MSE(network.run(train_features), train_targets['cnt'].values) val_loss = MSE(network.run(val_features), val_targets['cnt'].values) if e%(epochs/10) == 0: sys.stdout.write("\nProgress: " + str(100 * e/float(epochs))[:4] \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() plt.ylim(ymax=0.5) fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features)*std + mean ax.plot(predictions[0], 'r',label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, 'g', label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) import unittest inputs = [0.5, -0.2, 0.1] targets = [0.4] test_w_i_h = np.array([[0.1, 0.4, -0.3], [-0.2, 0.5, 0.2]]) test_w_h_o = np.array([[0.3, -0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328, -0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, 0.39775194, -0.29887597], [-0.20185996, 0.50074398, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) def runTest(self): pass suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner(verbosity=1).run(suite) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and prepare the data Step2: Checking out the data Step3: Dummy variables Step4: Scaling target variables Step5: Splitting the data into training, testing, and validation sets Step6: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). Step7: Time to build the network Step8: Training the network Step9: Check out your predictions Step10: Thinking about your results
3,529
<ASSISTANT_TASK:> Python Code: %%sh # ls -l ~/Downloads/G20*csv # mv ~/Downloads/G20*csv G20.csv data = pd.read_csv('G20.csv') cols = ['Area', 'Population_2010', 'Population_2011', 'Population_2012', 'Population_2013', 'Population_2014', 'Population_2015', 'GDP_2010', 'GDP_2011', 'GDP_2012', 'GDP_2013', 'GDP_2014', 'GDP_2015', 'GDP_PCI_2010', 'GDP_PCI_2011', 'GDP_PCI_2012', 'GDP_PCI_2013', 'GDP_PCI_2014', 'GDP_PCI_2015', 'GDP_PPP_2010', 'GDP_PPP_2011', 'GDP_PPP_2012', 'GDP_PPP_2013', 'GDP_PPP_2014', 'GDP_PPP_2015'] data[cols] = data[cols].applymap(lambda x: float(str(x).replace(',', ''))) all_countries = sorted(data.Country.unique()) country_labler = all_countries.index # country_labler('India') # data.Country = data.Country.map(country_labler) sorted(data.columns.tolist()) cols1 = ['GDP_2010', 'GDP_2011', 'GDP_2012', 'GDP_2013', 'GDP_2014', 'GDP_2015',] cols2 = [ 'GDP_PPP_2010', 'GDP_PPP_2011', 'GDP_PPP_2012', 'GDP_PPP_2013', 'GDP_PPP_2014', 'GDP_PPP_2015'] cols3 = [] data1 = data[['Area', 'Country', 'GDP_2010', 'GDP_2011', 'GDP_2012', 'GDP_2013', 'GDP_2014', 'GDP_2015',]].copy() data2 = data[['Area', 'Country', 'GDP_PPP_2010', 'GDP_PPP_2011', 'GDP_PPP_2012', 'GDP_PPP_2013', 'GDP_PPP_2014', 'GDP_PPP_2015',]].copy() data3 = data[['Area', 'Country', 'GDP_PCI_2010', 'GDP_PCI_2011', 'GDP_PCI_2012', 'GDP_PCI_2013', 'GDP_PCI_2014', 'GDP_PCI_2015',]].copy() data4 = data[['Area', 'Country', 'Population_2010', 'Population_2011', 'Population_2012', 'Population_2013', 'Population_2014', 'Population_2015']].copy() import sklearn.cluster clf = sklearn.cluster.AgglomerativeClustering(5) pred = clf.fit_predict(data1['GDP_2010 GDP_2011 GDP_2012 GDP_2013 GDP_2014 GDP_2015'.split()]) pred new_data.metric.unique() new_data.head(20).copy(deep=True) # segregating year & param new_data['year'] = new_data.metric.map(lambda x: int(x.rsplit('_')[-1])) new_data['param'] = new_data.metric.map(lambda x: ''.join(x.rsplit('_')[:-1])) # drop metric column new_data.drop('metric', axis=1, inplace=True) # converting data into integers # Key values to check how the world print('Country', new_data.country.unique()) print('Country', new_data.param.unique()) temp = new_data[(new_data.country == 'USA') & (new_data.param == 'GDP')].copy(deep=True) temp X_Label = 'USA' Y_Label = 'GDP' plt.figure(figsize=(15, 5)) temp = new_data[(new_data.country == X_Label) & (new_data.param == Y_Label)].copy(deep=True) _x, _y = temp.year.values, temp.value.values plt.plot(_x, _y) plt.xticks(_x, map(str, _x)) X_Label = 'European Union' Y_Label = 'GDP' plt.figure(figsize=(15, 5)) temp = new_data[(new_data.country == X_Label) & (new_data.param == Y_Label)].copy(deep=True) _x, _y = temp.year.values, temp.value.values plt.plot(_x, _y) plt.xticks(_x, map(str, _x)) X_Label = 'USA' Y_Label = 'GDP' plt.figure(figsize=(15, 5)) temp = new_data[(new_data.country == X_Label) & (new_data.param == Y_Label)].copy(deep=True) _x, _y = temp.year.values, temp.value.values plt.plot(_x, _y) plt.xticks(_x, map(str, _x)) _y _y - _y.min() Y_Label = 'Population' plt.figure(figsize=(15, 8)) all_countries = new_data.country.unique()[:5] for X_Label in all_countries: temp = new_data[(new_data.country == X_Label) & (new_data.param == Y_Label)].copy(deep=True) _x, _y = temp.year.values, temp.value.values _y = _y - _y.min() plt.plot(_x, _y) plt.xticks(_x, map(str, _x)) plt.legend(all_countries) country_codes = {'Argentina': 'ARG', 'Australia': 'AUS', 'Brazil': 'BRA', 'Canada': 'CAN', 'China': 'CHN', 'European Union': 'USA', 'France': 'FRA', 'Germany': 'DEU', 'India': 'IND', 'Indonesia': 'IDN', 'Italy': 'ITA', 'Japan': 'JPN', 'Mexico': 'MEX', 'Republic of Korea': 'USA', 'Russia': 'RUS', 'Saudi Arabia': 'SAU', 'South Africa': 'ZAF', 'Turkey': 'TUR', 'USA': 'USA', 'United Kingdom': 'GBR'} chart_colors = ["rgb(0,0,0)", "rgb(255,255,255)", "rgb(255,0,0)", "rgb(0,255,0)", "rgb(0,0,255)", "rgb(255,255,0)", "rgb(0,255,255)", "rgb(255,0,255)", "rgb(192,192,192)", "rgb(128,128,128)", "rgb(128,0,0)", "rgb(128,128,0)", "rgb(0,128,0)", "rgb(128,0,128)", "rgb(0,128,128)", "rgb(0,0,128)",] chart_colors += chart_colors chart_colors = chart_colors[:len(country_codes)] data1['Country_Codes'] = data1['Country'].map(lambda x: country_codes[x]) import sklearn.cluster clf = sklearn.cluster.AgglomerativeClustering(5) pred = clf.fit_predict(data1['GDP_2010 GDP_2011 GDP_2012 GDP_2013 GDP_2014 GDP_2015'.split()]) pred data1['cluster'] = pred data1['text'] = 'Cluster ID' + data1.cluser data1.head() import plotly.plotly as py import pandas as pd # df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_world_gdp_with_codes.csv') data = [ dict( type = 'choropleth', locations = data1['Country_Codes'], z = data1['cluser'], text = data1['Country_Codes'], # colorscale = [[0,"rgb(5, 10, 172)"],[0.35,"rgb(40, 60, 190)"],[0.5,"rgb(70, 100, 245)"],\ # [0.6,"rgb(90, 120, 245)"],[0.7,"rgb(106, 137, 247)"],[1,"rgb(220, 220, 220)"]], # autocolorscale = True, # reversescale = True, # marker = dict( # line = dict ( # color = 'rgb(180,180,180)', # width = 0.5 # ) ), colorbar = dict( autotick = False, tickprefix = '$', title = 'GDP<br>Billions US$'), ) ] layout = dict( title = 'G-20"s GDP', geo = dict( showframe = False, showcoastlines = False, projection = dict( type = 'Mercator' ) ) ) fig = dict(data=data, layout=layout) # py.iplot( fig, validate=False, filename='d3-world-map' ) plot( fig, validate=False, filename='d3-world-map') fig = { 'data': [ { 'x': df2007.gdpPercap, 'y': df2007.lifeExp, 'text': df2007.country, 'mode': 'markers', 'name': '2007'}, { 'x': df1952.gdpPercap, 'y': df1952.lifeExp, 'text': df1952.country, 'mode': 'markers', 'name': '1952'} ], 'layout': { 'xaxis': {'title': 'GDP per Capita', 'type': 'log'}, 'yaxis': {'title': "Life Expectancy"} } } data = [] year = 'GDP_2015' data.append({ 'x': data1[year], 'y': data1['cluster'], 'mode': 'markers', 'text': data1['Country'], 'name': year, 'colors': chart_colors }) fig = dict(data=data, layout=layout) # py.iplot( fig, validate=False, filename='d3-world-map' ) plot( fig, validate=False, filename='d3-world-map') from sklearn import datasets # import some data to play with iris = datasets.load_iris() X = iris.data # [:, :2] # we only take the first two features. Y = iris.target X[:5] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=0) print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf = clf.fit(X_train, y_train) accuracy_score(clf.predict(X_train), y_train) accuracy_score(clf.predict(X_test), y_test) accuracy_score(clf.predict(X), Y) from sklearn import svm clf = svm.SVC(kernel='linear', C=2) clf = clf.fit(X_train, y_train) accuracy_score(clf.predict(X_train), y_train) accuracy_score(clf.predict(X_test), y_test) accuracy_score(clf.predict(X), Y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Cleanup Step2: Experiments Step3: Ideas Step4: IRIS Dataset Step5: Random Forest Step6: SVM
3,530
<ASSISTANT_TASK:> Python Code: %pylab inline import astropy.table import astropy.cosmology import astropy.io.fits as fits import astropy.units as u import os.path assert 'DESIMODEL' in os.environ assert os.path.exists(os.path.join(os.getenv('DESIMODEL'), 'data', 'spectra', 'spec-sky.dat')) import desimodel import specsim print(f'Using desimodel {desimodel.__version__}, specsim {specsim.__version__}') elg_spec = astropy.table.Table.read( os.path.join(os.environ['DESIMODEL'], 'data', 'spectra', 'spec-elg-o2flux-8e-17-average-line-ratios.dat'), format='ascii') elg_wlen0 = elg_spec['col1'].data elg_flux0 = 1e-17 * elg_spec['col2'].data def get_elg_nz(): # Read the nz file from $DESIMODEL. full_name = os.path.join(os.environ['DESIMODEL'], 'data', 'targets', 'nz_elg.dat') table = astropy.table.Table.read(full_name, format='ascii') # Extract the n(z) histogram into numpy arrays. z_lo, z_hi = table['col1'], table['col2'] assert np.all(z_hi[:-1] == z_lo[1:]) z_edge = np.hstack((z_lo, [z_hi[-1]])) nz = table['col3'] # Trim to bins where n(z) > 0. non_zero = np.where(nz > 0)[0] lo, hi = non_zero[0], non_zero[-1] + 1 nz = nz[lo: hi] z_edge = z_edge[lo: hi + 1] return nz, z_edge elg_nz, elg_z_edge = get_elg_nz() def get_nz_weight(z): Calculate n(z) weights corresponding to input z values. nz = np.zeros_like(z) idx = np.digitize(z, elg_z_edge) sel = (idx > 0) & (idx <= len(elg_nz)) nz[sel] = elg_nz[idx[sel] - 1] return nz def generate_elg_z(n=100, seed=123): cdf = np.cumsum(elg_nz) cdf = np.hstack(([0], cdf / cdf[-1])) gen = np.random.RandomState(seed) return np.interp(gen.rand(n), cdf, elg_z_edge) z=generate_elg_z(n=20000) plt.hist(z, bins=elg_z_edge, histtype='stepfilled') plt.xlim(elg_z_edge[0], elg_z_edge[-1]) print(f'Mean ELG redshift is {np.mean(z):.3f}') LCDM = astropy.cosmology.Planck15 def generate_elg_profiles(z, seed=123, verbose=False): ELG profiles are assumed to be disk (Sersic n=1) only. gen = np.random.RandomState(seed) nsrc = len(z) source_fraction = np.zeros((nsrc, 2)) source_half_light_radius = np.zeros((nsrc, 2)) source_minor_major_axis_ratio = np.zeros((nsrc, 2)) source_position_angle = 360. * gen.normal(size=(nsrc, 2)) # Precompute cosmology scale factors. angscale = ( LCDM.angular_diameter_distance(1.0) / LCDM.angular_diameter_distance(z)).to(1).value if verbose: print(f'mean n(z) DA(1.0)/DA(z) = {np.mean(angscale):.3f}') # Disk only with random size and ellipticity. source_fraction[:, 0] = 1. source_half_light_radius[:, 0] = 0.427 * np.exp(0.25 * gen.normal(size=nsrc)) * angscale source_minor_major_axis_ratio[:, 0] = np.minimum(0.99, 0.50 * np.exp(0.15 * gen.normal(size=nsrc))) if verbose: print(f'mean HLR = {np.mean(source_half_light_radius[:, 0]):.3f}"') return dict( source_fraction=source_fraction, source_half_light_radius=source_half_light_radius, source_minor_major_axis_ratio=source_minor_major_axis_ratio, source_position_angle=source_position_angle) def plot_elg_profiles(save=None): z = generate_elg_z(50000) sources = generate_elg_profiles(z, verbose=True) fig, ax = plt.subplots(2, 2, figsize=(8, 6)) ax = ax.flatten() ax[0].hist(sources['source_minor_major_axis_ratio'][:, 0], range=(0,1), bins=25) ax[0].set_xlabel('ELG minor/major axis ratio') ax[0].set_xlim(0, 1) ax[1].hist(z, bins=np.arange(0.6, 1.8, 0.1)) ax[1].set_xlim(0.6, 1.7) ax[1].set_xlabel('ELG redshift') ax[2].hist(sources['source_half_light_radius'][:, 0], bins=25) ax[2].set_xlabel('ELG half-light radius [arcsec]') ax[2].set_xlim(0.1, 1.1) ax[3].scatter(z, sources['source_half_light_radius'][:, 0], s=0.5, alpha=0.5) ax[3].set_xlabel('ELG redshift') ax[3].set_ylabel('ELG half-light radius [arcsec]') ax[3].set_xlim(0.6, 1.7) ax[3].set_ylim(0.1, 1.1) plt.tight_layout() if save: plt.savefig(save) plot_elg_profiles(save='elg-sample.png') def calculate_elg_snr(simulator, save, description, z1=0.6, z2=1.65, dz=0.002, zref=1.20, seed=123, wlen=elg_wlen0, flux=elg_flux0): Calculate the ELG [OII] SNR as a function of redshift. Parameters ---------- simulator : specsim.simulator.Simulator Instance of an initialized Simulator object to use. Each fiber will be simulated independently to study variations across the focal plane. save : str Filename to use for saving FITS results. description : str Short description for the saved file header, also used for plots later. z1 : float Minimum ELG redshift to calculate. z2 : float Maximum ELG redshift to calculate. dz : float Spacing of equally spaced grid to cover [z1, z2]. z2 will be increased by up to dz if necessary. zref : float Reference redshift used to save signal, noise and fiberloss. Must be on the grid specified by (z1, z2, dz). seed : int or None Random seed used to generate fiber positions and galaxy profiles. wlen : array 1D array of N rest wavelengths in Angstroms. flux : array 1D array of N corresponding rest fluxes in erg / (s cm2 Angstrom). zooms = (3715., 3742.), (4850., 4875.), (4950., 5020.) gen = np.random.RandomState(seed=seed) # Generate random focal plane (x,y) positions for each fiber in mm units. nfibers = simulator.num_fibers focal_r = np.sqrt(gen.uniform(size=nfibers)) * simulator.instrument.field_radius phi = 2 * np.pi * gen.uniform(size=nfibers) xy = (np.vstack([np.cos(phi), np.sin(phi)]) * focal_r).T # Build the grid of redshifts to simulate. nz = int(np.ceil((z2 - z1) / dz)) + 1 z2 = z1 + (nz - 1) * dz z_grid = np.linspace(z1, z2, nz) iref = np.argmin(np.abs(z_grid - zref)) assert np.abs(zref - z_grid[iref]) < 1e-5, 'zref not in z_grid' snr2 = np.zeros((4, nz, simulator.num_fibers)) # Initialize the results. hdus = fits.HDUList() hdus.append(fits.PrimaryHDU( header=fits.Header({'SEED': seed, 'NFIBERS': nfibers, 'DESCRIBE': description}))) # Zero-pad the input spectrum if necessary. wlo = 0.99 * desi.simulated['wavelength'][0] / (1 + z2) if wlen[0] > wlo: wlen = np.hstack([[wlo], wlen]) flux = np.hstack([[0.], flux]) # Simulate the specified rest-frame flux. simulator.source.update_in( 'ELG [OII] doublet', 'elg', wlen * u.Angstrom, flux * u.erg/(u.s * u.cm**2 * u.Angstrom), z_in=0.) # Simulate each redshift. for i, z in enumerate(z_grid): # Redshift the ELG spectrum. simulator.source.update_out(z_out=z) source_flux = np.tile(simulator.source.flux_out, [nfibers, 1]) # Generate source profiles for each target at this redshift. Since the seed is # fixed, only the redshift scaling of the HLR will change. sources = generate_elg_profiles(np.full(nfibers, z), seed=seed) # Simulate each source. simulator.simulate(source_fluxes=source_flux, focal_positions=xy, **sources) # Calculate the quadrature sum of SNR in each camera, by fiber. for output in simulator.camera_output: rest_wlen = output['wavelength'] / (1 + z) # Loop over emission lines. for j, (lo, hi) in enumerate(zooms): sel = (rest_wlen >= lo) & (rest_wlen < hi) if not np.any(sel): continue # Sum SNR2 over pixels. pixel_snr2 = output['num_source_electrons'][sel] ** 2 / output['variance_electrons'][sel] snr2[j, i] += pixel_snr2.sum(axis=0) if i == iref: # Save the fiberloss fraction and total variance tabulated on the simulation grid. table = astropy.table.Table(meta={'ZREF': zref}) sim = simulator.simulated table['WLEN'] = sim['wavelength'].data table['FLUX'] = sim['source_flux'].data table['FIBERLOSS'] = sim['fiberloss'].data table['NSRC'] = sim['num_source_electrons_b'] + sim['num_source_electrons_r'] + sim['num_source_electrons_z'] table['SKYVAR'] = sim['num_sky_electrons_b'] + sim['num_sky_electrons_r'] + sim['num_sky_electrons_z'] table['NOISEVAR'] = ( sim['read_noise_electrons_b'] ** 2 + sim['read_noise_electrons_r'] ** 2 + sim['read_noise_electrons_z'] ** 2 + sim['num_dark_electrons_b'] + sim['num_dark_electrons_r'] + sim['num_dark_electrons_z']) hdus.append(fits.table_to_hdu(table)) hdus[-1].name = 'REF' # Calculate the n(z) weighted mean SNR for [OII], using the median over fibers at each redshift. snr_oii = np.median(np.sqrt(snr2[0]), axis=-1) wgt = get_nz_weight(z_grid) snr_oii_eff = np.sum(snr_oii * wgt) / np.sum(wgt) print(f'n(z)-weighted effective [OII] SNR = {snr_oii_eff:.3f}') # Save the SNR vs redshift arrays for each emission line. table = astropy.table.Table(meta={'SNREFF': snr_oii_eff}) table['Z'] = z_grid table['ZWGT'] = wgt table['SNR_OII'] = np.sqrt(snr2[0]) table['SNR_HBETA'] = np.sqrt(snr2[1]) table['SNR_OIII'] = np.sqrt(snr2[2]) hdus.append(fits.table_to_hdu(table)) hdus[-1].name = 'SNR' hdus.writeto(save, overwrite=True) def get_flux_limits(z, snr, nominal_flux=8., nominal_snr=7., ax=None): fluxlim = np.zeros_like(snr) nonzero = snr > 0 fluxlim[nonzero] = nominal_flux * (nominal_snr / snr[nonzero]) bins = np.linspace(0.6, 1.6, 6) nlim = len(bins) - 1 medians = np.empty(nlim) for i in range(nlim): sel = (z >= bins[i]) & (z < bins[i + 1]) medians[i] = np.median(fluxlim[sel]) if ax is not None: zmid = 0.5 * (bins[1:] + bins[:-1]) dz = 0.5 * (bins[1] - bins[0]) ax.errorbar(zmid, medians, xerr=dz, color='b', fmt='o', zorder=10, capsize=3) return fluxlim, medians def plot_elg_snr(name, save=True): Plot a summary of results saved by calculate_elg_snr(). Parameters ---------- name : str Name of the FITS file saved by calculate_elg_snr(). hdus = fits.open(name) hdr = hdus[0].header nfibers = hdr['NFIBERS'] description = hdr['DESCRIBE'] fig, axes = plt.subplots(2, 1, figsize=(8, 6)) plt.suptitle(description, fontsize=14) snr_table = astropy.table.Table.read(hdus['SNR']) snr_oii_eff = snr_table.meta['SNREFF'] ref_table = astropy.table.Table.read(hdus['REF']) zref = ref_table.meta['ZREF'] ax = axes[0] color = 'rgb' labels = '[OII]', 'H$\\beta$', '[OIII]' z_grid = snr_table['Z'].data for i, tag in enumerate(('SNR_OII', 'SNR_HBETA', 'SNR_OIII')): snr = snr_table[tag].data snr_q = np.percentile(snr, (5, 50, 95), axis=-1) ax.fill_between(z_grid, snr_q[0], snr_q[2], color=color[i], alpha=0.25, lw=0) ax.plot(z_grid, snr_q[1], c=color[i], ls='-', label=labels[i]) ax.plot([], [], 'k:', label='n(z)') ax.legend(ncol=4) ax.set_xlabel('ELG redshift') ax.set_ylabel(f'Total signal-to-noise ratio') ax.axhline(7, c='k', ls='--') rhs = ax.twinx() rhs.plot(z_grid, snr_table['ZWGT'], 'k:') rhs.set_yticks([]) ax.set_xlim(z_grid[0], z_grid[-1]) ax.set_ylim(0, 12) rhs.set_ylim(0, None) ax.text(0.02, 0.03, f'n(z)-wgtd [OII] SNR={snr_oii_eff:.3f}', fontsize=12, transform=ax.transAxes) # Calculate the median [OII] flux limits. _, fluxlim = get_flux_limits(z_grid, np.median(snr_table['SNR_OII'], axis=-1)) # Print latex-format results for DESI-3977 Table 2. print(f'&{snr_oii_eff:7.3f}', end='') for m in fluxlim: print(f' &{m:5.1f}', end='') print(' \\\\') ax = axes[1] wlen = ref_table['WLEN'].data dwlen = wlen[1] - wlen[0] sky_q = np.percentile(ref_table['SKYVAR'].data, (5, 50, 95), axis=-1) sky_q[sky_q > 0] = 1 / sky_q[sky_q > 0] ax.fill_between(wlen, sky_q[0], sky_q[2], color='b', alpha=0.5, lw=0) ax.plot([], [], 'b-', label='sky ivar') ax.plot(wlen, sky_q[1], 'b.', ms=0.25, alpha=0.5) noise_q = np.percentile(ref_table['NOISEVAR'].data, (5, 50, 95), axis=-1) noise_q[noise_q > 0] = 1 / noise_q[noise_q > 0] ax.fill_between(wlen, noise_q[0], noise_q[2], color='r', alpha=0.25, lw=0) ax.plot(wlen, noise_q[1], c='r', ls='-', label='noise ivar') floss_q = np.percentile(ref_table['FIBERLOSS'].data, (5, 50, 95), axis=-1) ax.plot([], [], 'k-', label='fiberloss') rhs = ax.twinx() rhs.fill_between(wlen, floss_q[0], floss_q[2], color='k', alpha=0.25, lw=0) rhs.plot(wlen, floss_q[1], 'k-') rhs.set_ylim(0.2, 0.6) rhs.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.1)) rhs.set_ylabel('Fiberloss') ax.set_xlabel('Wavelength [A]') ax.set_ylabel(f'Inverse Variance / {dwlen:.1f}A') ax.set_xlim(wlen[0], wlen[-1]) ax.set_ylim(0, 0.25) ax.legend(ncol=3) plt.subplots_adjust(wspace=0.1, top=0.95, bottom=0.08, left=0.10, right=0.92) if save: base, _ = os.path.splitext(name) plot_name = base + '.png' plt.savefig(plot_name) print(f'Saved {plot_name}') import specsim.simulator desi = specsim.simulator.Simulator('desi', num_fibers=100) %time calculate_elg_snr(desi, save='desimodel-0.9.6.fits', description='desimodel 0.9.6') plot_elg_snr('desimodel-0.9.6.fits') desi.instrument.fiberloss_method = 'galsim' %time calculate_elg_snr(desi, save='desimodel-0.9.6-galsim.fits', description='desimodel 0.9.6 (galsim)') plot_elg_snr('desimodel-0.9.6-galsim.fits') desi867 = astropy.table.Table.read('elg_snr2_desimodel-0-3-1.fits', hdu=1) def desi_867_fig1(): z = desi867['Z'] snr_all = np.sqrt(desi867['SNR2']) snr_oii = np.sqrt(desi867['SNR2_OII']) fig = plt.figure(figsize=(6, 5)) plt.plot(z, snr_all, 'k-', lw=1, label='all lines') plt.plot(z, snr_oii, 'r-', lw=1, label='[OII] only') plt.legend(fontsize='large') plt.axhline(7, c='b', ls='--') plt.ylim(0, 22) plt.xlim(z[0], z[-1]) plt.xticks([0.5, 1.0, 1.5]) plt.xlabel('Redshift') plt.ylabel('S/N') desi_867_fig1() def desi_867_fig2(): z = desi867['Z'] snr_all = np.sqrt(desi867['SNR2']) snr_oii = np.sqrt(desi867['SNR2_OII']) flux_limit_all, _ = get_flux_limits(z, snr_all) flux_limit_oii, medians = get_flux_limits(z, snr_oii) fig = plt.figure(figsize=(6, 5)) plt.plot(z, flux_limit_all, 'k-', lw=1, label='all lines') plt.plot(z, flux_limit_oii, 'r-', lw=1, label='[OII] only') plt.legend(loc='upper right', fontsize='large') _, _ = get_flux_limits(z, snr_oii, ax=plt.gca()) plt.ylim(0, 40) plt.xlim(z[0], z[-1]) plt.xticks([0.5, 1.0, 1.5]) plt.xlabel('Redshift') plt.ylabel('[OII] Flux limit ($10^{-17}$ ergs cm$^{-2}$ s$^{-1}$)') desi_867_fig2() def cdr_summary(): z = desi867['Z'] snr_oii = np.sqrt(desi867['SNR2_OII']) wgt = get_nz_weight(z) snreff = np.sum(wgt * snr_oii) / wgt.sum() _, medians = get_flux_limits(z, snr_oii) print(f'0.3.1 (CDR) & {snreff:6.3f}', end='') for m in medians: print(f' &{m:5.1f}', end='') print(' \\\\') cdr_summary() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Parts of this notebook assume that the desimodel package is installed (both its git and svn components) and its data/ directory is accessible via the $DESIMODEL environment variable Step2: Document relevant version numbers Step3: ELG Spectrum Step4: DESI ELG Sample Step6: Calculate n(z) weights corresponding to an array of ELG redshifts Step7: Sample random redshifts from n(z) Step8: Define a background cosmology for the angular-diameter distance used to scale galaxy angular sizes Step10: Generate random ELG profiles for each target. The mean half-light radius is 0.45" and scales with redshift. Step11: Diagnostic plot showing the assumed ELG population (Figure 1 of DESI-3977) Step13: Simulated SNR Step14: Calculate flux limits in bins of redshift, to compare with SRD L3.1.3 Step16: Plot a summary of the results saved by calculate_elg_snr(). Shaded bands show the 5-95 percentile range, with the median drawn as a solid curve. The fiberloss in the lower plot is calculated at the redshift zref specified in calculate_elg_snr() (since the ELG size distribution is redshift dependent). Step17: Examples Step18: NOTE Step19: Plot the results (Figure 2 of DESI-3977) Step20: Check that the results with GalSim are compatible with those using the (default) fastsim mode of fiberloss calculations Step21: NOTE Step22: This comparison shows that the "fastsim" fiberloss fractions are about 1% (absolute) higher than "galsim", leading to a slight increase in signal and therefore SNR. The reason for this increase is that "fastsim" assumes a fixed minor / major axis ratio of 0.7 while our ELG population has a distribution of ratios with a median of 0.5. The weighted [OII] SNR values are 6.764 (fastsim) and 6.572 (galsim), which agree at the few percent level. Step23: Check that we can reproduce the figures from DESI-867 Step24: Print a summary for Table 2 of DESI-3977
3,531
<ASSISTANT_TASK:> Python Code: import os import zipfile from math import log, sqrt import numpy as np import pandas as pd from sklearn import linear_model import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') %matplotlib inline # Put files in current direction into a list files_list = [f for f in os.listdir('.') if os.path.isfile(f)] # Filenames of unzipped files unzip_files = ['kc_house_data.csv','wk3_kc_house_train_data.csv', 'wk3_kc_house_test_data.csv', 'wk3_kc_house_train_data.csv', 'wk3_kc_house_valid_data.csv'] # If upzipped file not in files_list, unzip the file for filename in unzip_files: if filename not in files_list: zip_file = filename + '.zip' unzipping = zipfile.ZipFile(zip_file) unzipping.extractall() unzipping.close # Dictionary with the correct dtypes for the DataFrame columns dtype_dict = {'bathrooms':float, 'waterfront':int, 'sqft_above':int, 'sqft_living15':float, 'grade':int, 'yr_renovated':int, 'price':float, 'bedrooms':float, 'zipcode':str, 'long':float, 'sqft_lot15':float, 'sqft_living':float, 'floors':float, 'condition':int, 'lat':float, 'date':str, 'sqft_basement':int, 'yr_built':int, 'id':str, 'sqft_lot':int, 'view':int} sales = pd.read_csv('kc_house_data.csv', dtype=dtype_dict) sales['sqft_living_sqrt'] = sales['sqft_living'].apply(sqrt) sales['sqft_lot_sqrt'] = sales['sqft_lot'].apply(sqrt) sales['bedrooms_square'] = sales['bedrooms']*sales['bedrooms'] sales['floors_square'] = sales['floors']*sales['floors'] all_features = ['bedrooms', 'bedrooms_square', 'bathrooms', 'sqft_living', 'sqft_living_sqrt', 'sqft_lot', 'sqft_lot_sqrt', 'floors', 'floors_square', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated'] model_all = linear_model.Lasso(alpha=5e2, normalize=True) # set parameters model_all.fit(sales[all_features], sales['price']) # learn weights print model_all.coef_ for feat, weight in zip(all_features, model_all.coef_): if weight != 0.0: print feat + ':', weight testing = pd.read_csv('wk3_kc_house_test_data.csv', dtype=dtype_dict) training = pd.read_csv('wk3_kc_house_train_data.csv', dtype=dtype_dict) validation = pd.read_csv('wk3_kc_house_valid_data.csv', dtype=dtype_dict) testing['sqft_living_sqrt'] = testing['sqft_living'].apply(sqrt) testing['sqft_lot_sqrt'] = testing['sqft_lot'].apply(sqrt) testing['bedrooms_square'] = testing['bedrooms']*testing['bedrooms'] testing['floors_square'] = testing['floors']*testing['floors'] training['sqft_living_sqrt'] = training['sqft_living'].apply(sqrt) training['sqft_lot_sqrt'] = training['sqft_lot'].apply(sqrt) training['bedrooms_square'] = training['bedrooms']*training['bedrooms'] training['floors_square'] = training['floors']*training['floors'] validation['sqft_living_sqrt'] = validation['sqft_living'].apply(sqrt) validation['sqft_lot_sqrt'] = validation['sqft_lot'].apply(sqrt) validation['bedrooms_square'] = validation['bedrooms']*validation['bedrooms'] validation['floors_square'] = validation['floors']*validation['floors'] l1_pen_val = np.logspace(1, 7, num=13) models_diff_l1 = {} for i in range(len(l1_pen_val)): key_val = str(i) models_diff_l1[key_val] = linear_model.Lasso(alpha=l1_pen_val[i], normalize=True) # set parameters models_diff_l1[key_val].fit(training[all_features], training['price']) # learn weights def RSS_val(output_vals, predictions): RSS_error = sum( (output_vals - predictions)**2.0 ) return RSS_error RSS_L1_vals = [] for i in range(len(l1_pen_val)): key_val = str(i) pred_vals = models_diff_l1[key_val].predict(validation[all_features]) RSS = RSS_val(validation['price'], pred_vals) RSS_L1_vals.append( (RSS, i) ) print l1_pen_val[ min(RSS_L1_vals)[1] ] print '%.2e' % ( min(RSS_L1_vals)[0] ) print ( np.count_nonzero(models_diff_l1[ str(min(RSS_L1_vals)[1]) ].coef_) + np.count_nonzero(models_diff_l1[ str(min(RSS_L1_vals)[1]) ].intercept_) ) max_nonzeros = 7 l1_penalty_values = np.logspace(1, 4, num=20) list_l1_pen_n_less_nmax = [] list_l1_pen_n_larger_nmax = [] for i in range(len(l1_penalty_values)): mod_diff_l1_n7 = linear_model.Lasso(alpha=l1_penalty_values[i], normalize=True) # set parameters mod_diff_l1_n7.fit(training[all_features], training['price']) # learn weights non_0_weights = ( np.count_nonzero(mod_diff_l1_n7.coef_) + np.count_nonzero(mod_diff_l1_n7.intercept_) ) if non_0_weights<max_nonzeros: list_l1_pen_n_less_nmax.append(l1_penalty_values[i]) if non_0_weights>max_nonzeros: list_l1_pen_n_larger_nmax.append(l1_penalty_values[i]) l1_penalty_min = max(list_l1_pen_n_larger_nmax) l1_penalty_max = min(list_l1_pen_n_less_nmax) print 'l1_penalty_min: ', round(l1_penalty_min,0) print 'l1_penalty_max: ', round(l1_penalty_max,0) l1_penalty_values = np.linspace(l1_penalty_min,l1_penalty_max,20) RSS_L1_vals_ref = [] for i in range(len(l1_penalty_values)): mod_diff_l1_ref = linear_model.Lasso(alpha=l1_penalty_values[i], normalize=True) # set parameters mod_diff_l1_ref.fit(training[all_features], training['price']) # learn weights non_0_weights = ( np.count_nonzero(mod_diff_l1_ref.coef_) + np.count_nonzero(mod_diff_l1_ref.intercept_) ) if non_0_weights==max_nonzeros: pred_vals = mod_diff_l1_ref.predict(validation[all_features]) RSS = RSS_val(validation['price'], pred_vals) RSS_L1_vals_ref.append( (RSS, i) ) print round( l1_penalty_values[ min(RSS_L1_vals_ref)[1] ] , 0 ) best_L1_index = min(RSS_L1_vals_ref)[1] mod_diff_l1_ref = linear_model.Lasso(alpha=l1_penalty_values[ best_L1_index ], normalize=True) # set parameters mod_diff_l1_ref.fit(training[all_features], training['price']) # learn weights if mod_diff_l1_ref.intercept_ != 0: print 'intercept: %.2e' % (mod_diff_l1_ref.intercept_) for feat, weight in zip(all_features, mod_diff_l1_ref.coef_): if weight != 0.0: print feat + ':', weight <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Unzipping files with house sales data Step2: Load in house sales data Step3: Create new features Step4: Squaring bedrooms will increase the separation between not many bedrooms (e.g. 1) and lots of bedrooms (e.g. 4) since 1^2 = 1 but 4^2 = 16. Consequently this variable will mostly affect houses with many bedrooms. Step5: Using the entire house dataset, learn regression weights using an L1 penalty of 5e2. Make sure to add "normalize=True" when creating the Lasso object. Step6: Note that a majority of the weights have been set to zero. So by setting an L1 penalty that's large enough, we are performing a subset selection. Step7: Note that a majority of the weights have been set to zero. So by setting an L1 penalty that's large enough, we are performing a subset selection. Step8: Selecting an L1 penalty Step9: Make sure to create the 4 features as we did above Step10: Next, we write a loop that does the following Step11: Creating a dictionary to store the regression models for each L1 penalty. The key of the dictionary will be the index of the l1_pen_val array, passed as a string Step12: Creating a regression model for each L1 penalty Step13: Making a function to compute the RSS on the validation data Step14: Making a list to store tuples of the form (RSS value for a L1 penalty, index of L1 penalty array) Step15: In this loop, we use the repression model to calculate the predicted output values. We then use the predicted values and observed output value to calculate the RSS error. We then fill in values for the RSS_L1_vals. Step16: QUIZ QUESTIONS Step17: QUIZ QUESTION Step18: Limit the number of nonzero weights Step19: Exploring the larger range of values to find a narrow range with the desired sparsity Step20: Now, implement a loop that search through this space of possible l1_penalty values Step21: Creating a regression model for each L1 penalty. Then, finding the non-zero entries for the regression models. If number of non-zero weights are larger or smaller than max_nonzeros, store the number of non_zero weights Step22: Out of this large range, we want to find the two ends of our desired narrow range of l1_penalty. At one end, we will have l1_penalty values that have too few non-zeros, and at the other end, we will have an l1_penalty that has too many non-zeros. Step23: Exploring the narrow range of values to find the solution with the right number of non-zeros that has lowest RSS on the validation set Step24: For l1_penalty in np.linspace(l1_penalty_min,l1_penalty_max,20) Step25: Creating a regression model for each L1 penalty. If the the number of non-zero weights is equal to max_nonzeros, storing the RSS on the validation set and the index for this L1 penalty in the l1_penalty_values list Step26: QUIZ QUESTIONS Step27: Q2. What features in this model have non-zero coefficients? Step28: Printing the features with non-zero weights and the values of the weights.
3,532
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import numpy as np sns.set_style('white') from scipy.interpolate import griddata xb = np.array([-5,-4,-3,-2,-1,0,1,2,3,4,5]) yb = np.array([-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5]) yt = np.array([5]*11) yc = np.array(0) x = np.hstack((xb,xb,yb[1:10],yt[1:10],yc)) y = np.hstack((yb,yt,xb[1:10],xb[1:10],yc)) f1 = np.array([0]*40) f2 = [1] f = np.hstack((f1,f2)) plt.scatter(x, y); assert x.shape==(41,) assert y.shape==(41,) assert f.shape==(41,) assert np.count_nonzero(f)==1 xnew = np.linspace(-5,5,100) ynew = np.linspace(-5,5,100) Xnew,Ynew = np.meshgrid(xnew,ynew) Fnew = griddata((x,y),f,(Xnew,Ynew), method = 'cubic') assert xnew.shape==(100,) assert ynew.shape==(100,) assert Xnew.shape==(100,100) assert Ynew.shape==(100,100) assert Fnew.shape==(100,100) plt.contourf(Fnew) ax = plt.gca() plt.title('Interpolated Scaler Field') plt.xlabel('X') plt.ylabel('Y') assert True # leave this to grade the plot <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sparse 2d interpolation Step2: The following plot should show the points on the boundary and the single point in the interior Step3: Use meshgrid and griddata to interpolate the function $f(x,y)$ on the entire square domain Step4: Plot the values of the interpolated scalar field using a contour plot. Customize your plot to make it effective and beautiful.
3,533
<ASSISTANT_TASK:> Python Code: import random num = [random.randint(0,10) for i in range(1000)] hist = {} for i in num: hist[i] = hist.get(i, 0) + 1 hist def count1(num): hist = {} for i in num: hist[i] = hist.get(i, 0) + 1 return hist %timeit count1(num) def count2(num): hist = {} for i in num: if i in hist: hist[i] += 1 else: hist[i] = 1 return hist %timeit count2(num) from collections import Counter def count3(num): return Counter(num) %timeit count3(num) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Mesurer le temps que cela prend Step2: Comparons avec une autre implémentation Step3: Et une dernière version, la plus rapide
3,534
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'dwd', 'sandbox-3', 'aerosol') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/volume ratio for aerosols" # "3D number concenttration for aerosols" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses atmospheric chemistry time stepping" # "Specific timestepping (operator splitting)" # "Specific timestepping (integrated)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Specific transport scheme (eulerian)" # "Specific transport scheme (semi-lagrangian)" # "Specific transport scheme (eulerian and semi-lagrangian)" # "Specific transport scheme (lagrangian)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Mass adjustment" # "Concentrations positivity" # "Gradients monotonicity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.convention') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Convective fluxes connected to tracers" # "Vertical velocities connected to tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Prescribed (climatology)" # "Prescribed CMIP6" # "Prescribed above surface" # "Interactive" # "Interactive above surface" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Volcanos" # "Bare ground" # "Sea surface" # "Lightning" # "Fires" # "Aircraft" # "Anthropogenic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Interannual" # "Annual" # "Monthly" # "Daily" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dry deposition" # "Sedimentation" # "Wet deposition (impaction scavenging)" # "Wet deposition (nucleation scavenging)" # "Coagulation" # "Oxidation (gas phase)" # "Oxidation (in cloud)" # "Condensation" # "Ageing" # "Advection (horizontal)" # "Advection (vertical)" # "Heterogeneous chemistry" # "Nucleation" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Radiation" # "Land surface" # "Heterogeneous chemistry" # "Clouds" # "Ocean" # "Cryosphere" # "Gas phase chemistry" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "DMS" # "SO2" # "Ammonia" # "Iodine" # "Terpene" # "Isoprene" # "VOC" # "NOx" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Bulk" # "Modal" # "Bin" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon / soot" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule)" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 2. Key Properties --&gt; Software Properties Step12: 2.2. Code Version Step13: 2.3. Code Languages Step14: 3. Key Properties --&gt; Timestep Framework Step15: 3.2. Split Operator Advection Timestep Step16: 3.3. Split Operator Physical Timestep Step17: 3.4. Integrated Timestep Step18: 3.5. Integrated Scheme Type Step19: 4. Key Properties --&gt; Meteorological Forcings Step20: 4.2. Variables 2D Step21: 4.3. Frequency Step22: 5. Key Properties --&gt; Resolution Step23: 5.2. Canonical Horizontal Resolution Step24: 5.3. Number Of Horizontal Gridpoints Step25: 5.4. Number Of Vertical Levels Step26: 5.5. Is Adaptive Grid Step27: 6. Key Properties --&gt; Tuning Applied Step28: 6.2. Global Mean Metrics Used Step29: 6.3. Regional Metrics Used Step30: 6.4. Trend Metrics Used Step31: 7. Transport Step32: 7.2. Scheme Step33: 7.3. Mass Conservation Scheme Step34: 7.4. Convention Step35: 8. Emissions Step36: 8.2. Method Step37: 8.3. Sources Step38: 8.4. Prescribed Climatology Step39: 8.5. Prescribed Climatology Emitted Species Step40: 8.6. Prescribed Spatially Uniform Emitted Species Step41: 8.7. Interactive Emitted Species Step42: 8.8. Other Emitted Species Step43: 8.9. Other Method Characteristics Step44: 9. Concentrations Step45: 9.2. Prescribed Lower Boundary Step46: 9.3. Prescribed Upper Boundary Step47: 9.4. Prescribed Fields Mmr Step48: 9.5. Prescribed Fields Mmr Step49: 10. Optical Radiative Properties Step50: 11. Optical Radiative Properties --&gt; Absorption Step51: 11.2. Dust Step52: 11.3. Organics Step53: 12. Optical Radiative Properties --&gt; Mixtures Step54: 12.2. Internal Step55: 12.3. Mixing Rule Step56: 13. Optical Radiative Properties --&gt; Impact Of H2o Step57: 13.2. Internal Mixture Step58: 14. Optical Radiative Properties --&gt; Radiative Scheme Step59: 14.2. Shortwave Bands Step60: 14.3. Longwave Bands Step61: 15. Optical Radiative Properties --&gt; Cloud Interactions Step62: 15.2. Twomey Step63: 15.3. Twomey Minimum Ccn Step64: 15.4. Drizzle Step65: 15.5. Cloud Lifetime Step66: 15.6. Longwave Bands Step67: 16. Model Step68: 16.2. Processes Step69: 16.3. Coupling Step70: 16.4. Gas Phase Precursors Step71: 16.5. Scheme Type Step72: 16.6. Bulk Scheme Species
3,535
<ASSISTANT_TASK:> Python Code: year = arange(1955,2005,5) y = array([ -0.0480, -0.0180, -0.0360, -0.0120, -0.0040, 0.1180, 0.2100, 0.3320, 0.3340, 0.4560 ]) fig,ax = subplots() ax.scatter(year,y,color="k",label="data") xlabel("year") ylabel("anomaly (degrees C)") title("World temperature anomaly"); t = (year-1950)/10 V = vander(t) c = solve(V,y) p = poly1d(c) tt = linspace(1955,2000,500) ax.plot(tt,p((tt-1950)/10),label="interpolant") ax.legend(); fig year = arange(1955,2005,5) y = array([ -0.0480, -0.0180, -0.0360, -0.0120, -0.0040, 0.1180, 0.2100, 0.3320, 0.3340, 0.4560 ]) t = (year-1950)/10 V = [ [t[i],1] for i in range(t.size) ] # Vandermonde-ish matrix c,res,rank,sv = lstsq(V,y) fig,ax = subplots() ax.scatter(year,y,color="k",label="data") p = poly1d(c) tt = linspace(1955,2000,500) ax.plot(tt,p((tt-1950)/10),label="linear fit") xlabel("year") ylabel("anomaly (degrees C)") title("World temperature anomaly"); ax.legend(); V = [ [t[i]**3,t[i]**2,t[i],1] for i in range(t.size) ] # Vandermonde-ish matrix c,res,rank,sv = lstsq(V,y,rcond=None) p = poly1d(c) ax.plot(tt,p((tt-1950)/10),label="cubic fit") fig a = array([1/(k+1)**2 for k in range(100)]) s = cumsum(a) # cumulative summation p = sqrt(6*s) plot(range(100),p,"o") xlabel("$k$") ylabel("$p_k$") title("Sequence convergence"); ep = abs(pi-p) # error sequence loglog(range(100),ep,"o") xlabel("$k$") ylabel("error") title("Sequence convergence"); V = [ [1,log(k+1)] for k in range(100) ] # fitting matrix c = lstsq(V,log(ep),rcond=None)[0] # coefficients of linear fit print(c) a,b = exp(c[0]),c[1] print("b:",b) loglog(range(100),ep,"o",label="sequence") k = arange(1,100) plot(k,a*k**b,"--",label="power fit") xlabel("$k$"); ylabel("error"); legend(); title("Sequence convergence"); t = linspace(0,3,400) A = array([ [ sin(t)**2,cos((1+1e-7)*t)**2,1 ] for t in t ]) kappa = cond(A) print(kappa) x = array([1.,2,1]) b = A@x x_BS = lstsq(A,b,rcond=None)[0] print("observed error:",norm(x_BS-x)/norm(x)) print("max error:",kappa/2**52) N = A.T@A x_NE = solve(N,A.T@b) print("observed error:",norm(x_NE-x)/norm(x)) print("digits:",-log10(norm(x_NE-x)/norm(x))) A = 1.0 + floor(9*rand(6,4)) A.shape Q,R = qr(A) print("Q:",Q) print("R:",R) norm(Q.T@Q - eye(4)) Q,R = qr(A,"complete") print(Q.shape) norm(Q.T@Q - eye(6)) A = 1.0 + floor(9*rand(6,4)) m,n = A.shape z = A[:,0] v = z - norm(z)*hstack([1,zeros(m-1)]) P = eye(m) - (2/dot(v,v))*outer(v,v) # reflector P@z A = P@A print(A) A[1:,1:] z = A[1:,1] v = z - norm(z)*hstack([1,zeros(m-2)]) P = eye(m-1) - (2/dot(v,v))*outer(v,v) A[1:,1:] = P@A[1:,1:] print(A) for j in [2,3]: z = A[j:,j] v = z - norm(z)*hstack([1,zeros(m-j-1)]) P = eye(m-j) - (2/dot(v,v))*outer(v,v) A[j:,j:] = P@A[j:,j:] R = A print(R) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A polynomial interpolant can be used to fit the data. Here we build one using a Vandermonde matrix. First, though, we express time as decades since 1950, as it improves the condition number of the matrix. Step2: As you can see, the interpolant does represent the data, in a sense. However it's a crazy-looking curve for the application. Trying too hard to reproduce all the data exactly is known as overfitting. Step3: The standard best-fit line results from using a linear polynomial that meets the least squares criterion. Step4: If we use a global cubic polynomial, the points are fit more closely. Step5: If we were to continue increasing the degree of the polynomial, the residual at the data points would get smaller, but overfitting would increase. Step6: This graph suggests that $p_k\to \pi$ but doesn't give much information about the rate of convergence. Let $\epsilon_k=|\pi-p_k|$ be the sequence of errors. By plotting the error sequence on a log-log scale, we can see a nearly linear relationship. Step7: This suggests a power-law relationship where $\epsilon_k\approx a k^b$, or $\log \epsilon_k \approx b (\log k) + \log a$. Step8: In terms of the parameters $a$ and $b$ used above, we have Step9: It's tempting to conjecture that $b\to -1$ asymptotically. Here is how the numerical fit compares to the original convergence curve. Step10: Example 3.2.1 Step11: Now we set up an artificial linear least squares problem with a known exact solution that actually makes the residual zero. Step12: Using backslash to find the solution, we get a relative error that is about $\kappa$ times machine epsilon. Step13: If we formulate and solve via the normal equations, we get a much larger relative error. With $\kappa^2\approx 10^{14}$, we may not be left with more than about 2 accurate digits. Step14: Example 3.3.1 Step15: Here is a standard call Step16: We can test that $\mathbf{Q}$ has orthonormal columns. Step17: Here's the full or "complete" factorization. Step18: Example 3.4.1 Step19: Our first step is to introduce zeros below the diagonal in column 1. Define the vector Step20: Applying the Householder definitions gives us Step21: By design we can use the reflector to get the zero structure we seek Step22: Now we let Step23: We are set to put zeros into column 2. We must not use row 1 in any way, lest it destroy the zeros we just introduced. To put it another way, we can repeat the process we just did on the smaller submatrix Step24: We now apply the reflector to the submatrix. Step25: We need two more iterations of this process. Step26: We have now reduced the original to an upper triangular matrix using four orthogonal Householder reflections
3,536
<ASSISTANT_TASK:> Python Code: # Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== module_path = 'https://tfhub.dev/deepmind/bigbigan-resnet50/1' # ResNet-50 # module_path = 'https://tfhub.dev/deepmind/bigbigan-revnet50x4/1' # RevNet-50 x4 import io import IPython.display import PIL.Image from pprint import pformat import numpy as np import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import tensorflow_hub as hub def imgrid(imarray, cols=4, pad=1, padval=255, row_major=True): Lays out a [N, H, W, C] image array as a single image grid. pad = int(pad) if pad < 0: raise ValueError('pad must be non-negative') cols = int(cols) assert cols >= 1 N, H, W, C = imarray.shape rows = N // cols + int(N % cols != 0) batch_pad = rows * cols - N assert batch_pad >= 0 post_pad = [batch_pad, pad, pad, 0] pad_arg = [[0, p] for p in post_pad] imarray = np.pad(imarray, pad_arg, 'constant', constant_values=padval) H += pad W += pad grid = (imarray .reshape(rows, cols, H, W, C) .transpose(0, 2, 1, 3, 4) .reshape(rows*H, cols*W, C)) if pad: grid = grid[:-pad, :-pad] return grid def interleave(*args): Interleaves input arrays of the same shape along the batch axis. if not args: raise ValueError('At least one argument is required.') a0 = args[0] if any(a.shape != a0.shape for a in args): raise ValueError('All inputs must have the same shape.') if not a0.shape: raise ValueError('Inputs must have at least one axis.') out = np.transpose(args, [1, 0] + list(range(2, len(a0.shape) + 1))) out = out.reshape(-1, *a0.shape[1:]) return out def imshow(a, format='png', jpeg_fallback=True): Displays an image in the given format. a = a.astype(np.uint8) data = io.BytesIO() PIL.Image.fromarray(a).save(data, format) im_data = data.getvalue() try: disp = IPython.display.display(IPython.display.Image(im_data)) except IOError: if jpeg_fallback and format != 'jpeg': print ('Warning: image was too large to display in format "{}"; ' 'trying jpeg instead.').format(format) return imshow(a, format='jpeg') else: raise return disp def image_to_uint8(x): Converts [-1, 1] float array to [0, 255] uint8. x = np.asarray(x) x = (256. / 2.) * (x + 1.) x = np.clip(x, 0, 255) x = x.astype(np.uint8) return x # module = hub.Module(module_path, trainable=True, tags={'train'}) # training module = hub.Module(module_path) # inference for signature in module.get_signature_names(): print('Signature:', signature) print('Inputs:', pformat(module.get_input_info_dict(signature))) print('Outputs:', pformat(module.get_output_info_dict(signature))) print() class BigBiGAN(object): def __init__(self, module): Initialize a BigBiGAN from the given TF Hub module. self._module = module def generate(self, z, upsample=False): Run a batch of latents z through the generator to generate images. Args: z: A batch of 120D Gaussian latents, shape [N, 120]. Returns: a batch of generated RGB images, shape [N, 128, 128, 3], range [-1, 1]. outputs = self._module(z, signature='generate', as_dict=True) return outputs['upsampled' if upsample else 'default'] def make_generator_ph(self): Creates a tf.placeholder with the dtype & shape of generator inputs. info = self._module.get_input_info_dict('generate')['z'] return tf.placeholder(dtype=info.dtype, shape=info.get_shape()) def gen_pairs_for_disc(self, z): Compute generator input pairs (G(z), z) for discriminator, given z. Args: z: A batch of latents (120D standard Gaussians), shape [N, 120]. Returns: a tuple (G(z), z) of discriminator inputs. # Downsample 256x256 image x for 128x128 discriminator input. x = self.generate(z) return x, z def encode(self, x, return_all_features=False): Run a batch of images x through the encoder. Args: x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range [-1, 1]. return_all_features: If True, return all features computed by the encoder. Otherwise (default) just return a sample z_hat. Returns: the sample z_hat of shape [N, 120] (or a dict of all features if return_all_features). outputs = self._module(x, signature='encode', as_dict=True) return outputs if return_all_features else outputs['z_sample'] def make_encoder_ph(self): Creates a tf.placeholder with the dtype & shape of encoder inputs. info = self._module.get_input_info_dict('encode')['x'] return tf.placeholder(dtype=info.dtype, shape=info.get_shape()) def enc_pairs_for_disc(self, x): Compute encoder input pairs (x, E(x)) for discriminator, given x. Args: x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range [-1, 1]. Returns: a tuple (downsample(x), E(x)) of discriminator inputs. # Downsample 256x256 image x for 128x128 discriminator input. x_down = tf.nn.avg_pool(x, ksize=2, strides=2, padding='SAME') z = self.encode(x) return x_down, z def discriminate(self, x, z): Compute the discriminator scores for pairs of data (x, z). (x, z) must be batches with the same leading batch dimension, and joint scores are computed on corresponding pairs x[i] and z[i]. Args: x: A batch of data (128x128 RGB images), shape [N, 128, 128, 3], range [-1, 1]. z: A batch of latents (120D standard Gaussians), shape [N, 120]. Returns: A dict of scores: score_xz: the joint scores for the (x, z) pairs. score_x: the unary scores for x only. score_z: the unary scores for z only. inputs = dict(x=x, z=z) return self._module(inputs, signature='discriminate', as_dict=True) def reconstruct_x(self, x, use_sample=True, upsample=False): Compute BigBiGAN reconstructions of images x via G(E(x)). Args: x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range [-1, 1]. use_sample: takes a sample z_hat ~ E(x). Otherwise, deterministically use the mean. (Though a sample z_hat may be far from the mean z, typically the resulting recons G(z_hat) and G(z) are very similar. upsample: if set, upsample the reconstruction to the input resolution (256x256). Otherwise return the raw lower resolution generator output (128x128). Returns: a batch of recons G(E(x)), shape [N, 256, 256, 3] if `upsample`, otherwise [N, 128, 128, 3]. if use_sample: z = self.encode(x) else: z = self.encode(x, return_all_features=True)['z_mean'] recons = self.generate(z, upsample=upsample) return recons def losses(self, x, z): Compute per-module BigBiGAN losses given data & latent sample batches. Args: x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range [-1, 1]. z: A batch of latents (120D standard Gaussians), shape [M, 120]. For the original BigBiGAN losses, pass batches of size N=M=2048, with z's sampled from a 120D standard Gaussian (e.g., np.random.randn(2048, 120)), and x's sampled from the ImageNet (ILSVRC2012) training set with the "ResNet-style" preprocessing from: https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_preprocessing.py Returns: A dict of per-module losses: disc: loss for the discriminator. enc: loss for the encoder. gen: loss for the generator. # Compute discriminator scores on (x, E(x)) pairs. # Downsample 256x256 image x for 128x128 discriminator input. scores_enc_x_dict = self.discriminate(*self.enc_pairs_for_disc(x)) scores_enc_x = tf.concat([scores_enc_x_dict['score_xz'], scores_enc_x_dict['score_x'], scores_enc_x_dict['score_z']], axis=0) # Compute discriminator scores on (G(z), z) pairs. scores_gen_z_dict = self.discriminate(*self.gen_pairs_for_disc(z)) scores_gen_z = tf.concat([scores_gen_z_dict['score_xz'], scores_gen_z_dict['score_x'], scores_gen_z_dict['score_z']], axis=0) disc_loss_enc_x = tf.reduce_mean(tf.nn.relu(1. - scores_enc_x)) disc_loss_gen_z = tf.reduce_mean(tf.nn.relu(1. + scores_gen_z)) disc_loss = disc_loss_enc_x + disc_loss_gen_z enc_loss = tf.reduce_mean(scores_enc_x) gen_loss = tf.reduce_mean(-scores_gen_z) return dict(disc=disc_loss, enc=enc_loss, gen=gen_loss) bigbigan = BigBiGAN(module) # Make input placeholders for x (`enc_ph`) and z (`gen_ph`). enc_ph = bigbigan.make_encoder_ph() gen_ph = bigbigan.make_generator_ph() # Compute samples G(z) from encoder input z (`gen_ph`). gen_samples = bigbigan.generate(gen_ph) # Compute reconstructions G(E(x)) of encoder input x (`enc_ph`). recon_x = bigbigan.reconstruct_x(enc_ph, upsample=True) # Compute encoder features used for representation learning evaluations given # encoder input x (`enc_ph`). enc_features = bigbigan.encode(enc_ph, return_all_features=True) # Compute discriminator scores for encoder pairs (x, E(x)) given x (`enc_ph`) # and generator pairs (G(z), z) given z (`gen_ph`). disc_scores_enc = bigbigan.discriminate(*bigbigan.enc_pairs_for_disc(enc_ph)) disc_scores_gen = bigbigan.discriminate(*bigbigan.gen_pairs_for_disc(gen_ph)) # Compute losses. losses = bigbigan.losses(enc_ph, gen_ph) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) feed_dict = {gen_ph: np.random.randn(32, 120)} _out_samples = sess.run(gen_samples, feed_dict=feed_dict) print('samples shape:', _out_samples.shape) imshow(imgrid(image_to_uint8(_out_samples), cols=4)) def get_flowers_data(): Returns a [32, 256, 256, 3] np.array of preprocessed TF-Flowers samples. import tensorflow_datasets as tfds ds, info = tfds.load('tf_flowers', split='train', with_info=True) # Just get the images themselves as we don't need labels for this demo. ds = ds.map(lambda x: x['image']) # Filter out small images (with minor edge length <256). ds = ds.filter(lambda x: tf.reduce_min(tf.shape(x)[:2]) >= 256) # Take the center square crop of the image and resize to 256x256. def crop_and_resize(image): imsize = tf.shape(image)[:2] minor_edge = tf.reduce_min(imsize) start = (imsize - minor_edge) // 2 stop = start + minor_edge cropped_image = image[start[0] : stop[0], start[1] : stop[1]] resized_image = tf.image.resize_bicubic([cropped_image], [256, 256])[0] return resized_image ds = ds.map(crop_and_resize) # Convert images from [0, 255] uint8 to [-1, 1] float32. ds = ds.map(lambda image: tf.cast(image, tf.float32) / (255. / 2.) - 1) # Take the first 32 samples. ds = ds.take(32) return np.array(list(tfds.as_numpy(ds))) test_images = get_flowers_data() test_images_batch = test_images[:16] _out_recons = sess.run(recon_x, feed_dict={enc_ph: test_images_batch}) print('reconstructions shape:', _out_recons.shape) inputs_and_recons = interleave(test_images_batch, _out_recons) print('inputs_and_recons shape:', inputs_and_recons.shape) imshow(imgrid(image_to_uint8(inputs_and_recons), cols=2)) _out_features = sess.run(enc_features, feed_dict={enc_ph: test_images_batch}) print('AvePool features shape:', _out_features['avepool_feat'].shape) print('BN+CReLU features shape:', _out_features['bn_crelu_feat'].shape) feed_dict = {enc_ph: test_images, gen_ph: np.random.randn(32, 120)} _out_scores_enc, _out_scores_gen, _out_losses = sess.run( [disc_scores_enc, disc_scores_gen, losses], feed_dict=feed_dict) print('Encoder scores:', {k: v.mean() for k, v in _out_scores_enc.items()}) print('Generator scores:', {k: v.mean() for k, v in _out_scores_gen.items()}) print('Losses:', _out_losses) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: BigBiGAN으로 이미지 생성하기 Step2: 설정 Step7: 이미지를 표시하는 일부 함수 정의하기 Step8: BigBiGAN TF Hub 모듈을 로드하고 사용 가능한 기능 표시하기 Step19: 다양한 함수에 편리하게 액세스할 수 있도록 래퍼 클래스 정의하기 Step20: 나중에 샘플, 재구성, 판별자 점수 및 손실 계산에 사용할 텐서 만들기 Step21: TensorFlow 세션을 만들고 변수 초기화하기 Step22: 생성기 샘플 Step24: TF-Flowers 데이터세트에서 test_images 로드하기 Step25: 재구성 Step26: 인코더 특성 Step27: 판별자 점수 및 손실
3,537
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper import problem_unittests as tests source_path = 'data/small_vocab_en' target_path = 'data/small_vocab_fr' source_text = helper.load_data(source_path) target_text = helper.load_data(target_path) view_sentence_range = (10, 20) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) sentences = source_text.split('\n') word_counts = [len(sentence.split()) for sentence in sentences] print('Number of sentences: {}'.format(len(sentences))) print('Average number of words in a sentence: {}'.format(np.average(word_counts))) print() print('English sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) print() print('French sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) def to_id(text, vocab, add_eos=False): ids = [] for sentence in text.split('\n'): sw_ids = [] # sentence words ids for word in sentence.split(): sw_ids.append(vocab[word]) if add_eos: sw_ids.append(vocab['<EOS>']) ids.append(sw_ids) return ids source_id_text = to_id(source_text, source_vocab_to_int) target_id_text = to_id(target_text, target_vocab_to_int, True) return source_id_text, target_id_text DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_text_to_ids(text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL helper.preprocess_and_save_data(source_path, target_path, text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np import helper import problem_unittests as tests (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf from tensorflow.python.layers.core import Dense # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def model_inputs(): Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences. :return: Tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length) inputs = tf.placeholder(tf.int32, (None, None), name='input') targets = tf.placeholder(tf.int32, (None, None), name='targets') lr = tf.placeholder(tf.float32, name='learning_rate') keep_prob = tf.placeholder(tf.float32, name='keep_prob') tsl = tf.placeholder(tf.int32, (None,), name='target_sequence_length') mtl = tf.reduce_max(tsl, name='max_target_len') ssl = tf.placeholder(tf.int32, (None,), name='source_sequence_length') return inputs, targets, lr, keep_prob, tsl, mtl, ssl DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def process_decoder_input(target_data, target_vocab_to_int, batch_size): Preprocess target data for encoding :param target_data: Target Placehoder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data go_id = target_vocab_to_int['<GO>'] # Ref: udacity/deep-learning.git:seq2seq/sequence_to_sequence_implementation.ipynb target_data = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) return tf.concat([tf.fill([batch_size, 1], go_id), target_data], 1) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_process_encoding_input(process_decoder_input) from imp import reload reload(tests) # RNN cell def make_cell(rnn_size, seed=42): initializer = tf.random_uniform_initializer(-0.1, 0.1, seed=seed) cell = tf.contrib.rnn.LSTMCell(rnn_size, initializer=initializer) return cell def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size): Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :param source_sequence_length: a list of the lengths of each sequence in the batch :param source_vocab_size: vocabulary size of source data :param encoding_embedding_size: embedding size of source data :return: tuple (RNN output, RNN state) inputs = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoding_embedding_size) cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)]) return tf.nn.dynamic_rnn(cell, inputs, sequence_length=source_sequence_length, dtype=tf.float32) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_encoding_layer(encoding_layer) def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_summary_length, output_layer, keep_prob): Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param target_sequence_length: The lengths of each sequence in the target batch :param max_summary_length: The length of the longest sequence in the batch :param output_layer: Function to apply the output layer :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing training logits and sample_id s2s = tf.contrib.seq2seq # Apply dropout drop_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, keep_prob) # Create the decoder helper = s2s.TrainingHelper(dec_embed_input, target_sequence_length) decoder = s2s.BasicDecoder(drop_cell, helper, encoder_state, output_layer) # Perform dynamic decoding return s2s.dynamic_decode(decoder, impute_finished=True, maximum_iterations=max_summary_length)[0] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_train(decoding_layer_train) def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob): Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param max_target_sequence_length: Maximum length of target sequences :param vocab_size: Size of decoder/target vocabulary :param decoding_scope: TenorFlow Variable Scope for decoding :param output_layer: Function to apply the output layer :param batch_size: Batch size :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing inference logits and sample_id s2s = tf.contrib.seq2seq # vocab_size is not in use? start_tokens = tf.tile(tf.constant([start_of_sequence_id], dtype=tf.int32), [batch_size], name='start_tokens') helper = s2s.GreedyEmbeddingHelper(dec_embeddings, start_tokens, end_of_sequence_id) drop_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, keep_prob) decoder = s2s.BasicDecoder(drop_cell, helper, encoder_state, output_layer) return s2s.dynamic_decode(decoder, impute_finished=True, maximum_iterations=max_target_sequence_length)[0] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_infer(decoding_layer_infer) def decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sequence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, decoding_embedding_size): Create decoding layer :param dec_input: Decoder input :param encoder_state: Encoder state :param target_sequence_length: The lengths of each sequence in the target batch :param max_target_sequence_length: Maximum length of target sequences :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param target_vocab_size: Size of target vocabulary :param batch_size: The size of the batch :param keep_prob: Dropout keep probability :param decoding_embedding_size: Decoding embedding size :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) dec_cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)]) out_kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1) output_layer = Dense(target_vocab_size, kernel_initializer=out_kernel_initializer) dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size])) dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input) with tf.variable_scope("decoding") as decoding_scope: train_logits = decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob) with tf.variable_scope("decoding", reuse=True) as decoding_scope: start_of_sequence_id = target_vocab_to_int['<GO>'] end_of_sequence_id = target_vocab_to_int['<EOS>'] inference_logits = decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, target_vocab_size, output_layer, batch_size, keep_prob) return train_logits, inference_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer(decoding_layer) def seq2seq_model(input_data, target_data, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sentence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param source_sequence_length: Sequence Lengths of source sequences in the batch :param target_sequence_length: Sequence Lengths of target sequences in the batch :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) _, encoder_state = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, enc_embedding_size) dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size) return decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, dec_embedding_size) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_seq2seq_model(seq2seq_model) # Number of Epochs epochs = 4 # Batch Size batch_size = 512 # RNN Size rnn_size = 512 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 50 decoding_embedding_size = 50 # Learning Rate learning_rate = 0.001 # Dropout Keep Probability keep_probability = 0.5 display_step = 80 DON'T MODIFY ANYTHING IN THIS CELL save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_target_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length = model_inputs() #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) training_logits = tf.identity(train_logits.rnn_output, name='logits') inference_logits = tf.identity(inference_logits.sample_id, name='predictions') masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( training_logits, targets, masks) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL def pad_sentence_batch(sentence_batch, pad_int): Pad sentences with <PAD> so that each sentence of a batch has the same length max_sentence = max([len(sentence) for sentence in sentence_batch]) return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch] def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int): Batch targets, sources, and the lengths of their sentences together for batch_i in range(0, len(sources)//batch_size): start_i = batch_i * batch_size # Slice the right amount for the batch sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] # Pad pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int)) pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int)) # Need the lengths for the _lengths parameters pad_targets_lengths = [] for target in pad_targets_batch: pad_targets_lengths.append(len(target)) pad_source_lengths = [] for source in pad_sources_batch: pad_source_lengths.append(len(source)) yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths DON'T MODIFY ANYTHING IN THIS CELL def get_accuracy(target, logits): Calculate accuracy max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1])], 'constant') return np.mean(np.equal(target, logits)) # Split data to training and validation sets train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = source_int_text[:batch_size] valid_target = target_int_text[:batch_size] (valid_sources_batch, valid_targets_batch, valid_sources_lengths, valid_targets_lengths ) = next(get_batches(valid_source, valid_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate( get_batches(train_source, train_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])): _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, target_sequence_length: targets_lengths, source_sequence_length: sources_lengths, keep_prob: keep_probability}) if batch_i % display_step == 0 and batch_i > 0: batch_train_logits = sess.run( inference_logits, {input_data: source_batch, source_sequence_length: sources_lengths, target_sequence_length: targets_lengths, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_sources_batch, source_sequence_length: valid_sources_lengths, target_sequence_length: valid_targets_lengths, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(valid_targets_batch, batch_valid_logits) print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params(save_path) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() load_path = helper.load_params() def sentence_to_seq(sentence, vocab_to_int): Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids return [ vocab_to_int[x] if x in vocab_to_int else vocab_to_int['<UNK>'] for x in sentence.lower().split() ] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_sentence_to_seq(sentence_to_seq) translate_sentence = 'he saw a old yellow truck .' DON'T MODIFY ANYTHING IN THIS CELL translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('predictions:0') target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0') source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size, target_sequence_length: [len(translate_sentence)*2]*batch_size, source_sequence_length: [len(translate_sentence)]*batch_size, keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in translate_logits])) print(' French Words: {}'.format(" ".join([target_int_to_vocab[i] for i in translate_logits]))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Translation Step3: Explore the Data Step6: Implement Preprocessing Function Step8: Preprocess all the data and save it Step10: Check Point Step12: Check the Version of TensorFlow and Access to GPU Step15: Build the Neural Network Step18: Process Decoder Input Step21: Encoding Step24: Decoding - Training Step27: Decoding - Inference Step30: Build the Decoding Layer Step33: Build the Neural Network Step34: Neural Network Training Step36: Build the Graph Step40: Batch and pad the source and target sequences Step43: Train Step45: Save Parameters Step47: Checkpoint Step50: Sentence to Sequence Step52: Translate
3,538
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import seaborn as sns sampling_rate = 20 # This quantity is on Hertz step = 1.0 / sampling_rate Tmax = 20.0 time = np.arange(0, Tmax, step) N_to_use = 1024 # Should be a power of two. print("The smalles frequency that the FFT will discern: ", sampling_rate / N_to_use) print("Nyquist Frequency: ", sampling_rate / 2) f1 = 1.0 f2 = 2.0 f3 = 4.0 # All of this on Hertz y1 = np.sin(2 * np.pi * f1 * time) y2 = np.sin(2 * np.pi * f2 * time) y3 = np.sin(2 * np.pi * f3 * time) y = y1 + y2 + y3 transform = np.fft.fft(y, N_to_use) # We get the proper frequencies for the FFT frequencies = np.fft.fftfreq(N_to_use, d=step) %matplotlib inline plt.plot(frequencies, np.abs(transform)) plt.title('Fast Fourier Transform') plt.xlabel('Frequencies (Hz)') plt.ylabel('Power Spectrum') plt.xlim([-6, 6]) aux = int(N_to_use / 2) freq_aux = frequencies[0: aux] plt.plot(freq_aux, np.abs(transform[:aux])) plt.title('Fast Fourier Transform') plt.xlabel('Frequencies (Hz)') plt.ylabel('Power Spectrum') plt.xlim([0, 6]) sampling_rate = 100 # This quantity is on Hertz step = 1.0 / sampling_rate Tmax = 20.0 time = np.arange(0, Tmax, step) N_to_use = 1024 * 2 # Should be a power of two. T = 10.0 # Period f = 1.0 / T # Frequency relationship y = np.sin(2 * np.pi * f * time) transform = np.fft.fft(y, N_to_use) inverse = np.fft.ifft(transform, N_to_use) time_inverse = np.arange(0, N_to_use * step, step) # Now we plot this. plt.subplot(1, 2, 1) plt.title('Original Signal') plt.plot(time, y) plt.subplot(1, 2, 2) plt.title('Recovered Signal') plt.plot(time_inverse, inverse.real) sampling_rate * T <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Size of the FFT Step2: Analysis of the sampling rate on the limits of what the FFT can tell us. Step3: A word about frequencies units and the pi value Step4: Final Comments Step5: Implementation Number 2 Step6: Here we will give the frequency in terms of the period for ease of interpretation. Step7: About the Period of the Recovered Signal
3,539
<ASSISTANT_TASK:> Python Code: # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Stefan Appelhoff <stefan.appelhoff@mailbox.org> # Richard Höchenberger <richard.hoechenberger@gmail.com> # # License: BSD-3-Clause import os.path as op import numpy as np import matplotlib.pyplot as plt import mne from mne.time_frequency import tfr_morlet, psd_multitaper, psd_welch from mne.datasets import somato data_path = somato.data_path() subject = '01' task = 'somato' raw_fname = op.join(data_path, 'sub-{}'.format(subject), 'meg', 'sub-{}_task-{}_meg.fif'.format(subject, task)) # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) # crop and resample just to reduce computation time raw.crop(120, 360).load_data().resample(200) events = mne.find_events(raw, stim_channel='STI 014') # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False) # Construct Epochs event_id, tmin, tmax = 1, -1., 3. baseline = (None, 0) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=baseline, reject=dict(grad=4000e-13, eog=350e-6), preload=True) epochs.plot_psd(fmin=2., fmax=40., average=True, spatial_colors=False) epochs.plot_psd_topomap(ch_type='grad', normalize=False) f, ax = plt.subplots() psds, freqs = psd_multitaper(epochs, fmin=2, fmax=40, n_jobs=1) psds = 10 * np.log10(psds) # convert to dB psds_mean = psds.mean(0).mean(0) psds_std = psds.mean(0).std(0) ax.plot(freqs, psds_mean, color='k') ax.fill_between(freqs, psds_mean - psds_std, psds_mean + psds_std, color='k', alpha=.5) ax.set(title='Multitaper PSD (gradiometers)', xlabel='Frequency (Hz)', ylabel='Power Spectral Density (dB)') plt.show() # Estimate PSDs based on "mean" and "median" averaging for comparison. kwargs = dict(fmin=2, fmax=40, n_jobs=1) psds_welch_mean, freqs_mean = psd_welch(epochs, average='mean', **kwargs) psds_welch_median, freqs_median = psd_welch(epochs, average='median', **kwargs) # Convert power to dB scale. psds_welch_mean = 10 * np.log10(psds_welch_mean) psds_welch_median = 10 * np.log10(psds_welch_median) # We will only plot the PSD for a single sensor in the first epoch. ch_name = 'MEG 0122' ch_idx = epochs.info['ch_names'].index(ch_name) epo_idx = 0 _, ax = plt.subplots() ax.plot(freqs_mean, psds_welch_mean[epo_idx, ch_idx, :], color='k', ls='-', label='mean of segments') ax.plot(freqs_median, psds_welch_median[epo_idx, ch_idx, :], color='k', ls='--', label='median of segments') ax.set(title='Welch PSD ({}, Epoch {})'.format(ch_name, epo_idx), xlabel='Frequency (Hz)', ylabel='Power Spectral Density (dB)') ax.legend(loc='upper right') plt.show() psds_welch_unagg, freqs_unagg = psd_welch(epochs, average=None, **kwargs) print(psds_welch_unagg.shape) freqs = np.logspace(*np.log10([6, 35]), num=8) n_cycles = freqs / 2. # different number of cycle per frequency power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=True, decim=3, n_jobs=1) power.plot_topo(baseline=(-0.5, 0), mode='logratio', title='Average power') power.plot([82], baseline=(-0.5, 0), mode='logratio', title=power.ch_names[82]) fig, axis = plt.subplots(1, 2, figsize=(7, 4)) power.plot_topomap(ch_type='grad', tmin=0.5, tmax=1.5, fmin=8, fmax=12, baseline=(-0.5, 0), mode='logratio', axes=axis[0], title='Alpha', show=False) power.plot_topomap(ch_type='grad', tmin=0.5, tmax=1.5, fmin=13, fmax=25, baseline=(-0.5, 0), mode='logratio', axes=axis[1], title='Beta', show=False) mne.viz.tight_layout() plt.show() power.plot_joint(baseline=(-0.5, 0), mode='mean', tmin=-.5, tmax=2, timefreqs=[(.5, 10), (1.3, 8)]) itc.plot_topo(title='Inter-Trial coherence', vmin=0., vmax=1., cmap='Reds') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters Step2: Frequency analysis Step3: Now, let's take a look at the spatial distributions of the PSD, averaged Step4: Alternatively, you can also create PSDs from ~mne.Epochs with functions Step5: Notably, Step6: Lastly, we can also retrieve the unaggregated segments by passing Step7: Time-frequency analysis Step8: Inspect power Step9: Joint Plot Step10: Inspect ITC
3,540
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt #Load libraries for data processing import pandas as pd #data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np from scipy.stats import norm ## Supervised learning. from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.model_selection import cross_val_score from sklearn.pipeline import make_pipeline from sklearn.metrics import confusion_matrix from sklearn import metrics, preprocessing from sklearn.metrics import classification_report # visualization import seaborn as sns plt.style.use('fivethirtyeight') sns.set_style("white") plt.rcParams['figure.figsize'] = (8,4) #plt.rcParams['axes.titlesize'] = 'large' data = pd.read_csv('data/clean-data.csv', index_col=False) data.drop('Unnamed: 0',axis=1, inplace=True) #data.head() #Assign predictors to a variable of ndarray (matrix) type array = data.values X = array[:,1:31] # features y = array[:,0] #transform the class labels from their original string representation (M and B) into integers le = LabelEncoder() y = le.fit_transform(y) # Normalize the data (center around 0 and scale to remove the variance). scaler =StandardScaler() Xs = scaler.fit_transform(X) # 5. Divide records in training and testing sets. X_train, X_test, y_train, y_test = train_test_split(Xs, y, test_size=0.3, random_state=2, stratify=y) # 6. Create an SVM classifier and train it on 70% of the data set. clf = SVC(probability=True) clf.fit(X_train, y_train) #7. Analyze accuracy of predictions on 30% of the holdout test sample. classifier_score = clf.score(X_test, y_test) print '\nThe classifier accuracy score is {:03.2f}\n'.format(classifier_score) # Get average of 3-fold cross-validation score using an SVC estimator. n_folds = 3 cv_error = np.average(cross_val_score(SVC(), Xs, y, cv=n_folds)) print '\nThe {}-fold cross-validation accuracy score for this classifier is {:.2f}\n'.format(n_folds, cv_error) from sklearn.feature_selection import SelectKBest, f_regression clf2 = make_pipeline(SelectKBest(f_regression, k=3),SVC(probability=True)) scores = cross_val_score(clf2, Xs, y, cv=3) # Get average of 3-fold cross-validation score using an SVC estimator. n_folds = 3 cv_error = np.average(cross_val_score(SVC(), Xs, y, cv=n_folds)) print '\nThe {}-fold cross-validation accuracy score for this classifier is {:.2f}\n'.format(n_folds, cv_error) print scores avg = (100*np.mean(scores), 100*np.std(scores)/np.sqrt(scores.shape[0])) print "Average score and uncertainty: (%.2f +- %.3f)%%"%avg # The confusion matrix helps visualize the performance of the algorithm. y_pred = clf.fit(X_train, y_train).predict(X_test) cm = metrics.confusion_matrix(y_test, y_pred) #print(cm) %matplotlib inline import matplotlib.pyplot as plt from IPython.display import Image, display fig, ax = plt.subplots(figsize=(5, 5)) ax.matshow(cm, cmap=plt.cm.Reds, alpha=0.3) for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(x=j, y=i, s=cm[i, j], va='center', ha='center') plt.xlabel('Predicted Values', ) plt.ylabel('Actual Values') plt.show() print(classification_report(y_test, y_pred )) from sklearn.metrics import roc_curve, auc # Plot the receiver operating characteristic curve (ROC). plt.figure(figsize=(10,8)) probas_ = clf.predict_proba(X_test) fpr, tpr, thresholds = roc_curve(y_test, probas_[:, 1]) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold (area = %0.2f)' % (roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Random') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.axes().set_aspect(1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Classification with cross-validation Step2: To get a better measure of prediction accuracy (which you can use as a proxy for “goodness of fit” of the model), you can successively split the data into folds that you will use for training and testing Step3: The above evaluations were based on using the entire set of features. You will now employ the correlation-based feature selection strategy to assess the effect of using 3 features which have the best correlation with the class labels. Step4: From the above results, you can see that only a fraction of the features are required to build a model that performs similarly to models based on using the entire set of features. Step5: Observation
3,541
<ASSISTANT_TASK:> Python Code: # install Pint if necessary try: import pint except ImportError: !pip install pint # download modsim.py if necessary from os.path import exists filename = 'modsim.py' if not exists(filename): from urllib.request import urlretrieve url = 'https://raw.githubusercontent.com/AllenDowney/ModSim/main/' local, _ = urlretrieve(url+filename, filename) print('Downloaded ' + local) # import functions from modsim from modsim import * def bike_to_wellesley(): bikeshare.olin -= 1 bikeshare.wellesley += 1 def bike_to_wellesley(state): state.olin -= 1 state.wellesley += 1 bikeshare = State(olin=10, wellesley=2) bike_to_wellesley(bikeshare) bikeshare1 = State(olin=10, wellesley=2) bikeshare2 = State(olin=2, wellesley=10) bike_to_wellesley(bikeshare1) bike_to_wellesley(bikeshare2) def bike_to_olin(state): Move one bike from Wellesley to Olin. state: bikeshare State object # We decrease one state variable and increase the # other, so the total number of bikes is unchanged. state.wellesley -= 1 state.olin += 1 def bike_to_olin(state): if state.wellesley == 0: return state.wellesley -= 1 state.olin += 1 bikeshare = State(olin=12, wellesley=0) bike_to_olin(bikeshare) bikeshare x = 5 x == 5 if x == 5: print('yes, x is 5') def bike_to_olin(state): if state.wellesley == 0: state.wellesley_empty += 1 return state.wellesley -= 1 state.olin += 1 bikeshare = State(olin=12, wellesley=0, wellesley_empty=0) bike_to_olin(bikeshare) bikeshare def run_simulation(state, p1, p2, num_steps): Simulate the given number of time steps. state: State object p1: probability of an Olin->Wellesley customer arrival p2: probability of a Wellesley->Olin customer arrival num_steps: number of time steps results = TimeSeries() results[0] = state.olin for i in range(num_steps): step(state, p1, p2) results[i+1] = state.olin results.plot(label='Olin') decorate(title='Olin-Wellesley Bikeshare', xlabel='Time step (min)', ylabel='Number of bikes') def step(state, p1, p2): Simulate one time step. state: bikeshare State object p1: probability of an Olin->Wellesley ride p2: probability of a Wellesley->Olin ride if flip(p1): bike_to_wellesley(state) if flip(p2): bike_to_olin(state) def bike_to_olin(state): Move one bike from Wellesley to Olin. state: bikeshare State object if state.wellesley == 0: state.wellesley_empty += 1 return state.wellesley -= 1 state.olin += 1 def bike_to_wellesley(state): Move one bike from Olin to Wellesley. state: bikeshare State object state.olin -= 1 state.wellesley += 1 # Solution def bike_to_wellesley(state): Move one bike from Olin to Wellesley. state: bikeshare State object if state.olin == 0: state.olin_empty += 1 return state.olin -= 1 state.wellesley += 1 # Solution bikeshare = State(olin=0, wellesley=12, olin_empty=0, wellesley_empty=0) # Solution bike_to_wellesley(bikeshare) # Solution bikeshare # Solution bikeshare = State(olin=10, wellesley=2, olin_empty=0, wellesley_empty=0) run_simulation(bikeshare, 0.3, 0.2, 60) bikeshare <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: To paraphrase two Georges, "All models are wrong, but some models are Step2: When this function is called, it modifies bikeshare. As long as there Step3: The name of the parameter is state rather than bikeshare as a Step4: Again, the argument we provide gets assigned to the parameter, so this Step5: And update them independently Step7: Changes in bikeshare1 do not affect bikeshare2, and vice versa. So Step8: Docstrings follow a conventional format Step9: The first line checks whether the number of bikes at Wellesley is zero. If so, it uses a return statement, which causes the function to end immediately, without running the rest of the statements. So if there are no bikes at Wellesley, we "return" from bike_to_olin without changing the state. Step10: The state of the system should be unchanged. Step11: No more negative bikes (at least at Wellesley). Step12: On the other hand, the following statement checks whether x is 5 and Step13: You can use the equals operator in an if statement, like this Step14: If you make a mistake and use = in an if statement, like this Step15: If a customer arrives at the Wellesley station and finds no bike Step16: We can test it by calling bike_to_olin Step17: There should be 12 bikes at Olin, no bikes at Wellesley, and one unhappy customer. Step22: Looks good! Step24: Exercise Step25: Exercise
3,542
<ASSISTANT_TASK:> Python Code: import graphlab sales = graphlab.SFrame('kc_house_data.gl/') # In the dataset, 'floors' was defined with type string, # so we'll convert them to int, before using it below sales['floors'] = sales['floors'].astype(int) import numpy as np # note this allows us to refer to numpy as np instead def get_numpy_data(data_sframe, features, output): data_sframe['constant'] = 1 # this is how you add a constant column to an SFrame # add the column 'constant' to the front of the features list so that we can extract it along with the others: features = ['constant'] + features # this is how you combine two lists # select the columns of data_SFrame given by the features list into the SFrame features_sframe (now including constant): features_sframe = data_sframe[features] # the following line will convert the features_SFrame into a numpy matrix: feature_matrix = features_sframe.to_numpy() # assign the column of data_sframe associated with the output to the SArray output_sarray output_sarray = data_sframe[output] # the following will convert the SArray into a numpy array by first converting it to a list output_array = output_sarray.to_numpy() return(feature_matrix, output_array) def predict_output(feature_matrix, weights): # assume feature_matrix is a numpy matrix containing the features as columns and weights is a corresponding numpy array # create the predictions vector by using np.dot() predictions = np.dot(feature_matrix, weights) return(predictions) X = np.array([[3.,5.,8.],[4.,12.,15.]]) print X norms = np.linalg.norm(X, axis=0) # gives [norm(X[:,0]), norm(X[:,1]), norm(X[:,2])] print norms print X / norms # gives [X[:,0]/norm(X[:,0]), X[:,1]/norm(X[:,1]), X[:,2]/norm(X[:,2])] def normalize_features(feature_matrix): norms = np.linalg.norm(feature_matrix, axis=0) normalized_features = feature_matrix / norms return (normalized_features, norms) features, norms = normalize_features(np.array([[3.,6.,9.],[4.,8.,12.]])) print features # should print # [[ 0.6 0.6 0.6] # [ 0.8 0.8 0.8]] print norms # should print # [5. 10. 15.] simple_features = ['sqft_living', 'bedrooms'] my_output = 'price' (simple_feature_matrix, output) = get_numpy_data(sales, simple_features, my_output) simple_feature_matrix, norms = normalize_features(simple_feature_matrix) weights = np.array([1., 4., 1.]) prediction = predict_output(simple_feature_matrix, weights) ro = {} for i in range(len(weights)): feature = simple_feature_matrix[:, i] ro[i] = (feature * (output - prediction) + weights[i] * feature).sum() print ro def check(weight, l1_penalty): return 0 if -l1_penalty/2 < weight < l1_penalty/2 else weight for i in [1.4e8, 1.64e8, 1.73e8, 1.9e8, 2.3e8]: w1 = check(ro[1], i) w2 = check(ro[2], i) if w1 != 0 and w2 ==0: print "%e" % i for i in [1.4e8, 1.64e8, 1.73e8, 1.9e8, 2.3e8]: w1 = check(ro[1], i) w2 = check(ro[2], i) if w1 == w2 == 0: print "%e %d" % (i, i / ro[1]) def lasso_coordinate_descent_step(i, feature_matrix, output, weights, l1_penalty): # compute prediction prediction = predict_output(feature_matrix, weights) # compute ro[i] = SUM[ [feature_i]*(output - prediction + weight[i]*[feature_i]) ] feature = feature_matrix[:, i] ro_i = (feature * (output - prediction + weights[i] * feature)).sum() if i == 0: # intercept -- do not regularize new_weight_i = ro_i elif ro_i < -l1_penalty/2.: new_weight_i = (ro_i + l1_penalty/2.) elif ro_i > l1_penalty/2.: new_weight_i = (ro_i - l1_penalty/2.) else: new_weight_i = 0. return new_weight_i # should print 0.425558846691 import math print lasso_coordinate_descent_step(1, np.array([[3./math.sqrt(13),1./math.sqrt(10)],[2./math.sqrt(13),3./math.sqrt(10)]]), np.array([1., 1.]), np.array([1., 4.]), 0.1) def lasso_cyclical_coordinate_descent(feature_matrix, output, initial_weights, l1_penalty, tolerance): converged = False weights = np.array(initial_weights.copy()) while not converged: change = list() for i in range(len(weights)): old_weights_i = weights[i] weights[i] = lasso_coordinate_descent_step(i, feature_matrix, output, weights, l1_penalty) change_in_weight = abs(old_weights_i - weights[i]) change.append(change_in_weight) if max(change) < tolerance: converged = True return weights simple_features = ['sqft_living', 'bedrooms'] my_output = 'price' initial_weights = np.zeros(3) l1_penalty = 1e7 tolerance = 1.0 (simple_feature_matrix, output) = get_numpy_data(sales, simple_features, my_output) (normalized_simple_feature_matrix, simple_norms) = normalize_features(simple_feature_matrix) # normalize features weights = lasso_cyclical_coordinate_descent(normalized_simple_feature_matrix, output, initial_weights, l1_penalty, tolerance) predictions = predict_output(normalized_simple_feature_matrix, weights) residuals = predictions - output RSS = (residuals**2).sum() print "RSS", RSS print weights for i in range(len(weights)): if i == 0: pass n = check(weights[i], l1_penalty) if n == 0: print simple_features[i - 1] train_data,test_data = sales.random_split(.8,seed=0) all_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated'] my_output = 'price' initial_weights = np.zeros(len(all_features) + 1) l1_penalty = 1e7 tolerance = 1.0 (feature_matrix, output) = get_numpy_data(train_data, all_features, my_output) (normalized_feature_matrix, norms) = normalize_features(feature_matrix) # normalize features def show_nnz_features(w, f): for i in range(len(w)): if i == 0: continue weight = w[i] if weight != 0.: print f[i - 1] weights1e7 = lasso_cyclical_coordinate_descent(normalized_feature_matrix, output, initial_weights, l1_penalty, tolerance) print weights1e7 show_nnz_features(weights1e7, all_features) l1_penalty = 1e8 initial_weights = np.zeros(len(all_features) + 1) weights1e8 = lasso_cyclical_coordinate_descent(normalized_feature_matrix, output, initial_weights, l1_penalty, tolerance) print weights1e8 l1_penalty=1e4 initial_weights = np.zeros(len(all_features) + 1) weights1e4 = lasso_cyclical_coordinate_descent(normalized_feature_matrix, output, initial_weights, l1_penalty, tolerance) print weights1e4 normalized_weights1e4 = weights1e4 / norms normalized_weights1e7 = weights1e7 / norms normalized_weights1e8 = weights1e8 / norms print normalized_weights1e7[3] (test_feature_matrix, test_output) = get_numpy_data(test_data, all_features, 'price') predictions = predict_output(test_feature_matrix, normalized_weights1e4) residuals = predictions - test_output RSS = (residuals**2).sum() print "RSS", RSS predictions = predict_output(test_feature_matrix, normalized_weights1e7) residuals = predictions - test_output RSS = (residuals**2).sum() print "RSS", RSS predictions = predict_output(test_feature_matrix, normalized_weights1e8) residuals = predictions - test_output RSS = (residuals**2).sum() print "RSS", RSS <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load in house sales data Step2: If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the first notebook of Week 2. For this notebook, however, we will work with the existing features. Step3: Also, copy and paste the predict_output() function to compute the predictions for an entire matrix of features given the matrix and the weights Step4: Normalize features Step5: Numpy provides a shorthand for computing 2-norms of each column Step6: To normalize, apply element-wise division Step7: Using the shorthand we just covered, write a short function called normalize_features(feature_matrix), which normalizes columns of a given feature matrix. The function should return a pair (normalized_features, norms), where the second item contains the norms of original features. As discussed in the lectures, we will use these norms to normalize the test data in the same way as we normalized the training data. Step8: To test the function, run the following Step9: Implementing Coordinate Descent with normalized features Step10: Don't forget to normalize features Step11: We assign some random set of initial weights and inspect the values of ro[i] Step12: Use predict_output() to make predictions on this data. Step13: Compute the values of ro[i] for each feature in this simple model, using the formula given above, using the formula Step14: QUIZ QUESTION Step15: QUIZ QUESTION Step16: So we can say that ro[i] quantifies the significance of the i-th feature Step17: To test the function, run the following cell Step18: Cyclical coordinate descent Step19: Using the following parameters, learn the weights on the sales dataset. Step20: First create a normalized version of the feature matrix, normalized_simple_feature_matrix Step21: Then, run your implementation of LASSO coordinate descent Step22: QUIZ QUESTIONS Step23: Let us consider the following set of features. Step24: First, create a normalized feature matrix from the TRAINING data with these features. (Make you store the norms for the normalization, since we'll use them later) Step25: First, learn the weights with l1_penalty=1e7, on the training data. Initialize weights to all zeros, and set the tolerance=1. Call resulting weights weights1e7, you will need them later. Step26: QUIZ QUESTION Step27: QUIZ QUESTION Step28: QUIZ QUESTION Step29: To check your results, if you call normalized_weights1e7 the normalized version of weights1e7, then Step30: Compute the RSS of each of the three normalized weights on the (unnormalized) test_feature_matrix
3,543
<ASSISTANT_TASK:> Python Code: def arb(M): for x in M: return x assert False, 'Error: arb called with empty set!' def cart_prod(A, B): return { (x, y) for x in A for y in B } def separate(Pairs, States, Σ, 𝛿): Result = { (q1, q2) for q1 in States for q2 in States for c in Σ if (𝛿[q1, c], 𝛿[q2, c]) in Pairs } return Result def find_equivalence_class(p, Partition): return arb({ C for C in Partition if p in C }) def reachable(q0, Σ, 𝛿): Result = { q0 } while True: NewStates = { 𝛿[p, c] for p in Result for c in Σ } if NewStates <= Result: return Result Result |= NewStates def all_separable(Q, A, Σ, 𝛿): Separable = cart_prod(Q - A, A) | cart_prod(A, Q - A) while True: NewPairs = separate(Separable, Q, Σ, 𝛿) if NewPairs <= Separable: return Separable Separable |= NewPairs def minimize(F): Q, Σ, 𝛿, q0, A = F Q = reachable(q0, Σ, 𝛿) Separable = all_separable(Q, A, Σ, 𝛿) Equivalent = cart_prod(Q, Q) - Separable EquivClasses = { frozenset({ p for p in Q if (p, q) in Equivalent }) for q in Q } newQ0 = arb({ M for M in EquivClasses if q0 in M }) newAccept = { M for M in EquivClasses if arb(M) in A } newDelta = {} for q in Q: for c in Σ: p = 𝛿.get((q, c)) if p != None: classOfP = find_equivalence_class(p, EquivClasses) classOfQ = find_equivalence_class(q, EquivClasses) newDelta[(classOfQ, c)] = classOfP else: newDelta[(classOfQ, c)] = frozenset() return EquivClasses, Σ, newDelta, newQ0, newAccept <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The function cart_prod(A, B) computes the Cartesian product $A \times B$ of the sets $A$ and $B$ where $A \times B$ is defined as follows Step2: The function separate takes four arguments Step3: Given a state p and a Partition of the set of all states, the function find_equivalence_class(p, Partition) returns the equivalence class of p, i.e. it returns the set from Partition that contains x. Step4: The function reachable(q0, Σ, 𝛿) takes three arguments Step5: The function all_separable(Q, A, Σ, 𝛿) takes four arguments Step6: The function minimize(A) takes a deterministic
3,544
<ASSISTANT_TASK:> Python Code: %pylab inline np.random.seed(0) p = [3.2, 5.6, 9.2] x = np.arange(-8., 5., 0.1) y = np.polyval(p, x) + np.random.randn(x.shape[0])*1. plt.plot(x, y); # STEP 1 - define your model def my_model(p, x): return np.polyval(p, x) # STEP 2 - define your cost function def my_costfun(p, x, y): return np.sum((my_model(p, x) - y)**2) # STEP 3 - minimize cost function from scipy.optimize import minimize result = minimize(my_costfun, np.array([2., 3., 5.]), args=(x,y) ) print result print 'RESULT:\n', result print '' print 'RELATIVE ERROR:\n', (result.x - p)/p*100., '%' print '' print 'Hessian ERROR:' #err = sqrt(diag(inv(Hessian))) hess_err = np.sqrt(np.diag(result['hess_inv'])) print hess_err from emcee import EnsembleSampler def lnprob(theta): theta = np.array(theta) if np.all(theta>-3.) and np.all(theta<3.): return 0 return -np.inf nwalkers = 10 ndim = 3 p0 = [np.random.rand(ndim) for i in range(nwalkers)] sampler = EnsembleSampler(nwalkers, ndim, lnprob) pos = sampler.run_mcmc(p0, 2000) np.corrcoef(sampler.flatchain[0:2000, 0], sampler.flatchain[2000:4000, 0]) fig = plt.figure(figsize=(12,10)) ax = fig.add_subplot(311) ax.plot(sampler.chain[:,:,0].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(312) ax.plot(sampler.chain[:,:,1].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(313) ax.plot(sampler.chain[:,:,2].T, '-', color='k', alpha=0.3); import corner fig = corner.corner(sampler.flatchain, labels=["p0", "p1", "p2"], truths=[0., 0., 0.]) # fig.savefig("triangle.png") def lnprob(x, mu, ivar): # if np.all(np.abs(x)<100.): x = x.reshape(-1, 1) mu = mu.reshape(-1, 1) return -np.dot(np.dot((x-mu).T, ivar), x-mu) # else: # return -np.inf mu = np.array([0.1, 0.2, 0.5]) cov = np.array([[1.0, 0.0, 0.0], [0.0, 10, 9], [0.0, 9, 10]]) ivar = np.linalg.inv(cov) print 'ivar: \n', ivar print 'det(cov): \n', np.linalg.det(cov) print 'det(ivar): \n', np.linalg.det(ivar) nwalkers = 10 ndim = 3 p0 = [np.random.rand(ndim) for i in range(nwalkers)] sampler = EnsembleSampler(nwalkers, ndim, lnprob, args=(mu, ivar), threads=10) pos,prob,state = sampler.run_mcmc(p0, 2000) p0 fig = plt.figure(figsize=(12,10)) ax = fig.add_subplot(311) ax.plot(sampler.chain[:,:,0].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(312) ax.plot(sampler.chain[:,:,1].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(313) ax.plot(sampler.chain[:,:,2].T, '-', color='k', alpha=0.3); fig = corner.corner(sampler.flatchain, labels=["mu1", "mu2", "mu3"], truths=mu) print mu print ivar def lnprior(theta): if np.all(np.abs(theta)<10000.): return 0 else: return -np.inf def lnlike(theta, x, y): y_model = np.polyval(theta, x) return -np.sum((y_model-y)**2) def lnprob(theta, x, y): return lnprior(theta)+lnlike(theta, x, y) nwalkers = 10 ndim = 3 p0 = [np.random.rand(ndim) for i in range(nwalkers)] sampler = EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y), threads=10) pos,prob,state = sampler.run_mcmc(p0, 500) np.corrcoef(sampler.flatchain[0:500, 0], sampler.flatchain[500:1000, 0]) fig = plt.figure(figsize=(12,10)) ax = fig.add_subplot(311) ax.plot(sampler.chain[:,:,0].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(312) ax.plot(sampler.chain[:,:,1].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(313) ax.plot(sampler.chain[:,:,2].T, '-', color='k', alpha=0.3); fig = corner.corner(sampler.flatchain, labels=["p0", "p1", "p2"], truths=p) sampler.reset() pos,prob,state = sampler.run_mcmc(pos, 2000) np.corrcoef(sampler.flatchain[0:2000, 0], sampler.flatchain[4000:6000, 0]) fig = plt.figure(figsize=(12,10)) ax = fig.add_subplot(311) ax.plot(sampler.chain[:,:,0].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(312) ax.plot(sampler.chain[:,:,1].T, '-', color='k', alpha=0.3) ax = fig.add_subplot(313) ax.plot(sampler.chain[:,:,2].T, '-', color='k', alpha=0.3); fig = corner.corner(sampler.flatchain, labels=["p0", "p1", "p2"], truths=p) fig = corner.corner(sampler.flatchain, labels=["p0", "p1", "p2"], truths=result.x) # truth p # MCMC results np.percentile(sampler.flatchain, [15., 50., 85.], axis=0) print result.x - hess_err print result.x print result.x + hess_err <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: MCMC (emcee) Step2: a simple example - draw sample from uniformly distribution Step3: how about Gaussian distribution? Step4: how to use MCMC to estimate model parameters? Step5: comparison with the results from optimization
3,545
<ASSISTANT_TASK:> Python Code: import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data_utils import numpy as np word_pair = [['고양이', '흰'], ['고양이', '동물'], ['국화', '흰'], ['국화', '식물'], ['선인장', '초록'], ['선인장', '식물'], ['강아지', '검은'], ['강아지', '동물'], ['타조', '회색'], ['타조', '동물'], ['코끼리', '회색'], ['코끼리', '동물'], ['장미', '빨간'], ['장미', '식물'], ['자동차', '빨간'], ['그릇', '빨간'], ['민들레', '식물'], ['민들레', '흰']] word_list = set(np.array(word_pair).flatten()) word_dict = {w: i for i, w in enumerate(word_list)} skip_grams = [[word_dict[word[0]], word_dict[word[1]]] for word in word_pair] label = torch.LongTensor(skip_grams)[:, 0].contiguous() context = torch.LongTensor(skip_grams)[:, 1].contiguous() skip_grams_dataset = data_utils.TensorDataset(label, context) train_loader = torch.utils.data.DataLoader(skip_grams_dataset, batch_size=8, shuffle=True) test_loader = torch.utils.data.DataLoader(skip_grams_dataset, batch_size=1, shuffle=False) class _model(nn.Module) : def __init__(self): super(_model, self).__init__() self.embedding = nn.Embedding(len(word_list), 2) self.linear = nn.Linear(2, len(word_list), bias=True) def forward(self, x): x = self.embedding(x) x = self.linear(x) return F.log_softmax(x) model = _model() loss_fn = nn.NLLLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.1) model.train() for epoch in range(100): for data, target in train_loader: data, target = Variable(data), Variable(target) #(입력 생성) output = model(data) # model 생성 loss = F.nll_loss(output, target) #loss 생성 optimizer.zero_grad() # zeroGrad loss.backward() # calc backward gradients optimizer.step() # update parameters model.eval() invDic = { i : w for w, i in word_dict.items()} print('Input : true : pred') for x, y in test_loader : x, y = Variable(x.squeeze()), y.squeeze() y_pred = model(x).max(1)[1].data[0][0] print('{:s} : {:s} : {:s}'.format(invDic[x.data[0]], invDic[y[0]], invDic[y_pred])) import matplotlib.pyplot as plt import matplotlib %matplotlib inline matplotlib.rc('font', family="NanumGothic") for i in label : x = Variable(torch.LongTensor([i])) fx, fy = model.embedding(x).squeeze().data plt.scatter(fx, fy) plt.annotate(invDic[i], xy=(fx, fy), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Dataset 준비 Step2: Dataset Loader 설정 Step3: 2. 사전 설정 Step4: 3. Trainning loop Step5: 4. Predict & Evaluate Step6: 5. plot embedding space
3,546
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt %matplotlib inline import cartopy import cartopy.crs as ccrs ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() print('axes type:', type(ax)) ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() ax.set_global() plt.plot([-100, 50], [25, 25], linewidth=4, color='r', transform=ccrs.PlateCarree()) plt.plot([-100, 50], [25, 25], linewidth=4, color='b', transform=ccrs.Geodetic()) ax = plt.axes(projection=ccrs.Mercator()) ax.coastlines() gl = ax.gridlines(draw_labels=True) import matplotlib.ticker as mticker from cartopy.mpl.gridliner import LATITUDE_FORMATTER ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() gl = ax.gridlines(draw_labels=True) gl.xlocator = mticker.FixedLocator([-180, -45, 0, 45, 180]) gl.yformatter = LATITUDE_FORMATTER fig = plt.figure(figsize=(9, 6)) ax = fig.add_subplot(111, projection=ccrs.PlateCarree()) ax.set_global() lons = -75, 77.2, 151.2, -75 lats = 43, 28.6, -33.9, 43 ax.plot(lons, lats, color='green', linewidth=2, marker='o', ms=10, transform=ccrs.Geodetic()) # feature = cartopy.feature.LAND feature = cartopy.feature.NaturalEarthFeature(name='land', category='physical', scale='110m', edgecolor='red', facecolor='black') ax.add_feature(feature) _ = ax.add_feature(cartopy.feature.LAKES, facecolor='b') states = cartopy.feature.NaturalEarthFeature(category='cultural', scale='50m', facecolor='none', name='admin_1_states_provinces_lines') _ = ax.add_feature(states, edgecolor='gray') url = 'http://map1c.vis.earthdata.nasa.gov/wmts-geo/wmts.cgi' ax = plt.axes(projection=ccrs.PlateCarree()) ax.add_wmts(url, 'VIIRS_CityLights_2012') import numpy as np x = np.linspace(310, 390, 25) y = np.linspace(-24, 25, 35) x2d, y2d = np.meshgrid(x, y) data = np.cos(np.deg2rad(y2d) * 4) + np.sin(np.deg2rad(x2d) * 4) rot_crs = ccrs.RotatedPole(177.5, 37.5) ax = plt.axes(projection=rot_crs) ax.coastlines() fig = plt.figure() ax = fig.add_subplot(111, projection=ccrs.PlateCarree()) ax.contourf(x2d, y2d, data, transform=rot_crs) ax.coastlines() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Then let's import the cartopy Step2: In addition, we import cartopy's coordinate reference system submodule Step3: Creating GeoAxes Step4: Here we are using a Plate Carrée projection, which is one of equidistant cylindrical projections. Step5: Notice that unless we specify a map extent (we did so via the set_global method in this case) the map will zoom into the range of the plotted data. Step6: Unfortunately, gridline labels work only in PlateCarree and Mercator projections. Step7: Plotting layers directly from Web Map Service (WMS) and Web Map Tile Service (WMTS) Step8: Exercise Step9: Idea 1
3,547
<ASSISTANT_TASK:> Python Code: import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import make_blobs #create data data = make_blobs(n_samples=200,n_features=2,centers=4,cluster_std=1.8,random_state=101) plt.scatter(data[0][:,0],data[0][:,1],c=data[1],cmap='rainbow') from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=4) kmeans.fit(data[0]) kmeans.cluster_centers_ kmeans.labels_ f, (ax1, ax2) = plt.subplots(1, 2, sharey=True,figsize=(10,6)) ax1.set_title('K Means') ax1.scatter(data[0][:,0],data[0][:,1],c=kmeans.labels_,cmap='rainbow') ax2.set_title("Original") ax2.scatter(data[0][:,0],data[0][:,1],c=data[1],cmap='rainbow') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create some data Step2: Visualize data Step3: Creating Clusters
3,548
<ASSISTANT_TASK:> Python Code: from pytrends.request import TrendReq google_username = "mm.trends.api@gmail.com" google_password = "" path = "" # connect to Google pytrend = TrendReq(google_username, google_password, custom_useragent='Pytrends') trend_payload = {'q': 'Pizza, Italian, Spaghetti, Breadsticks, Sausage', 'cat': '0-71'} # trend trend = pytrend.trend(trend_payload) print(trend) df = pytrend.trend(trend_payload, return_type='dataframe') df # toprelated toprelated = pytrend.related(trend_payload, related_type='top') print(toprelated) risingrelated = pytrend.related(trend_payload, related_type='rising') print(risingrelated) # top30in30 top30in30 = pytrend.top30in30() print(top30in30) country_payload = {'geo': 'US'} # hottrends hottrends = pytrend.hottrends(country_payload) print(hottrends) # hottrendsdetail # returns XML data hottrendsdetail = pytrend.hottrendsdetail(country_payload) print(hottrendsdetail) payload = {'date': '201601', 'geo': 'US'} # alltopcharts topcharts = pytrend.topcharts(payload) print(topcharts) keyword = 'pizza' # suggestions suggestions = pytrend.suggestions(keyword) print(suggestions) gt = pd.read_table? gt = pd.read_clipboard(index_col) gt <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: GOOGLEINDEX_US
3,549
<ASSISTANT_TASK:> Python Code: %run db2.ipynb %%sql -q DROP TABLE CENTRAL_LINE; CREATE TABLE CENTRAL_LINE ( STATION_NO INTEGER GENERATED ALWAYS AS IDENTITY, STATION VARCHAR(31), UPPER_STATION VARCHAR(31) GENERATED ALWAYS AS (UCASE(STATION)) ) ; INSERT INTO CENTRAL_LINE(STATION) VALUES 'West Ruislip','Ruislip Gardens','South Ruislip','Northolt','Greenford', 'Perivale','Hanger Lane','Ealing Broadway','West Acton','North Acton', 'East Acton','White City','Shepherd''s Bush','Holland Park','Notting Hill Gate', 'Queensway','Lancaster Gate','Marble Arch','Bond Street','Oxford Circus', 'Tottenham Court Road','Holborn','Chancery Lane','St. Paul''s','Bank', 'Liverpool Street','Bethnal Green','Mile End','Stratford','Leyton', 'Leytonstone','Wanstead','Redbridge','Gants Hill','Newbury Park', 'Barkingside','Fairlop','Hainault','Grange Hill','Chigwell', 'Roding Valley','Snaresbrook','South Woodford','Woodford','Buckhurst Hill', 'Loughton','Debden','Theydon Bois','Epping' ; %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'Ruislip') %%sql SELECT STATION FROM CENTRAL_LINE WHERE STATION LIKE '%Ruislip%' %%sql SELECT STATION FROM CENTRAL_LINE WHERE STATION LIKE 'Ruislip%' %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'RUISLIP','i') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'^Ruislip') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'Ruislip$') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'^Leyton$') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'^Leyton'); %%sql -q DROP TABLE LONGLINE; CREATE TABLE LONGLINE (NAME VARCHAR(255)); INSERT INTO LONGLINE VALUES 'George' || CHR(10) || 'Katrina'; %%sql SELECT COUNT(*) FROM LONGLINE WHERE REGEXP_LIKE(NAME,'^Katrina$') %%sql SELECT COUNT(*) FROM LONGLINE WHERE REGEXP_LIKE(NAME,'^Katrina$','m') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'way|ing') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'way| ing') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'way| ing','x') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(way)|(ing)') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(ing)*.(way)') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(ing).*(way)') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(an)+') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(an){1,}') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(an){2}') %%sql SELECT STATION, REGEXP_INSTR(STATION,'(an)') AS LOCATION, REGEXP_EXTRACT(STATION,'(an)') AS EXTRACT FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(an)') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'((an).*){2}') %%sql SELECT STATION, REGEXP_INSTR(STATION,'((an).*){2}') AS LOCATION, REGEXP_EXTRACT(STATION,'((an).*){2}') AS EXTRACT FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'((an).*){2}') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'^[P-R]') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'[p-rP-R]') %%sql VALUES CASE WHEN REGEXP_LIKE('123-34-1422','[0-9]{3}-[0-9]{2}-[0-9]{4}') THEN 'Valid' ELSE 'Invalid' END %%sql WITH SSNS(SSN) AS ( VALUES '123-34-1322', 'ABC-34-9999', 'X123-44-0001', '123X-Y44-Z0001', '111-222-111' ) SELECT SSN, CASE WHEN REGEXP_LIKE(SSN,'[0-9]{3}-[0-9]{2}-[0-9]{4}') THEN 'Valid' ELSE 'Invalid' END FROM SSNS %%sql WITH SSNS(SSN) AS ( VALUES '123-34-1322', 'ABC-34-9999', 'X123-44-0001', '123X-Y44-Z0001', '111-222-111' ) SELECT SSN, CASE WHEN REGEXP_LIKE(SSN,'^[0-9]{3}-[0-9]{2}-[0-9]{4}$') THEN 'Valid' ELSE 'Invalid' END FROM SSNS %%sql -a WITH SSNS(SSN) AS ( VALUES '123-34-1322', 'ABC-34-9999', 'X123-44-0001', '123X-Y44-Z0001', '111-222-111' ) SELECT 'Original', SSN, CASE WHEN REGEXP_LIKE(SSN,'^[0-9]{3}-[0-9]{2}-[0-9]{4}$') THEN 'Valid' ELSE 'Invalid' END FROM SSNS UNION ALL SELECT 'Posix', SSN, CASE WHEN REGEXP_LIKE(SSN,'^[:digit:]{3}-[:digit:]{2}-[:digit:]{4}$') THEN 'Valid' ELSE 'Invalid' END FROM SSNS UNION ALL SELECT 'Escape', SSN, CASE WHEN REGEXP_LIKE(SSN,'^\d{3}-\d{2}-\d{4}$') THEN 'Valid' ELSE 'Invalid' END FROM SSNS %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'^West') %%sql SELECT STATION FROM CENTRAL_LINE WHERE NOT REGEXP_LIKE(STATION,'^West') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'^(?!West)') %%sql WITH SSNS(SSN) AS ( VALUES '123-456-789', '123-555-123', '890-533-098', '123-456-456' ) SELECT SSN, CASE WHEN REGEXP_LIKE(SSN,'^([0-9]{3})-([0-9]{3})-([0-9]{3})$') THEN 'Valid' ELSE 'Invalid' END FROM SSNS %%sql WITH SSNS(SSN) AS ( VALUES '123-456-789', '123-555-123', '890-533-098', '123-456-456' ) SELECT SSN, CASE WHEN REGEXP_LIKE(SSN,'^([0-9]{3})-([0-9]{3})-(?!\1)([0-9]{3})$') THEN 'Valid' ELSE 'Invalid' END FROM SSNS %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(West)') %%sql SELECT STATION FROM CENTRAL_LINE WHERE REGEXP_LIKE(STATION,'(?:West)') %%sql -d -q DROP TABLE TEMP_LINE @ CREATE TABLE TEMP_LINE AS (SELECT * FROM CENTRAL_LINE) DEFINITION ONLY NOT LOGGED INITIALLY @ BEGIN DECLARE I INTEGER DEFAULT 0; WHILE I <= 1000 DO INSERT INTO TEMP_LINE SELECT * FROM CENTRAL_LINE; SET I = I + 1; END WHILE; END @ SELECT COUNT(*) FROM TEMP_LINE @ results_like = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE STATION LIKE '%West%' results_string = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE REGEXP_LIKE(STATION,'West') results_capturing = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE REGEXP_LIKE(STATION,'(West)') results_noncapturing = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE REGEXP_LIKE(STATION,'(?:West)') %sql -q DROP TABLE RESULTS %sql CREATE TABLE RESULTS(TYPE VARCHAR(16), RESULT DEC(9,2)) %sql INSERT INTO RESULTS VALUES ('LIKE', {results_like} ), \ ('REGX STRING', {results_string} ), \ ('REGX CAPTURE', {results_capturing} ), \ ('REGX NONCAPTURE', {results_noncapturing} ) %sql SELECT * FROM RESULTS %sql -pb SELECT * FROM RESULTS %%sql -q DROP INDEX TEMP_STATION_INDEX; CREATE INDEX TEMP_STATION_INDEX ON TEMP_LINE(STATION); results_like = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE STATION LIKE '%West%' results_string = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE REGEXP_LIKE(STATION,'West') results_capturing = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE REGEXP_LIKE(STATION,'(West)') results_noncapturing = %sql -t SELECT COUNT(*) FROM TEMP_LINE WHERE REGEXP_LIKE(STATION,'(?:West)') %sql -q DROP TABLE RESULTS %sql -q CREATE TABLE RESULTS(TYPE VARCHAR(16), RESULT DEC(9,2)) %sql -q INSERT INTO RESULTS VALUES ('LIKE', {results_like} ), \ ('REGX STRING', {results_string} ), \ ('REGX CAPTURE', {results_capturing} ), \ ('REGX NONCAPTURE', {results_noncapturing} ) %sql SELECT * FROM RESULTS %sql -pb SELECT * FROM RESULTS <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Table of Contents Step2: Back to Top Step3: The pattern 'Ruislip' will look for a match of Ruislip Step4: If you didn't place the % at the beginning of the LIKE Step5: If you want to match Ruislip with upper or lower case being Step6: Back to Top Step7: To match a pattern at the end of the string, the dollar sign Step8: To force an exact match with a string you would use both the Step9: Note that if we didn't use the end anchor, we are going to Step10: Back to Top Step11: Searching for Katrina at the beginning and end of string Step12: We can override the regular expression search by telling it Step13: Back to Top Step14: Some things to be aware of when creating the search pattern. Step15: Using the "x" flag will ignore blanks in your pattern, so Step16: Brackets can be used to make it clear what the pattern is Step17: Back to Top Step18: The previous answer gave you two results (Ealing Broadway Step19: Finding at least one occurrence of a pattern requires the Step20: If we want to find an exact number of occurrences, we need Step21: If we want to match exactly 2 'an' patterns in a string, we Step22: Sadly, we get no results! This would appear to be the wrong Step23: What you should see in the previous result is the location Step24: You should find that two stations match the pattern. The Step25: Back to Top Step26: If you wanted to include all stations that have the letter Step27: Back to our SSN question. Can a regular expression pattern Step28: The SSN is valid in the example above. Here are some other Step29: If you check closely, one of the strings was marked as Step30: Back to Top Step31: Back to Top Step32: Adding the NOT modifier in front of the REGEXP function Step33: You can also negate some of the searches in a pattern by Step34: Back to Top Step35: All of these numbers fit the pattern and should be valid. Step36: In many cases it may be easier to find the patterns that Step37: The following SQL is equivalent, except that the matched Step38: Back to Top Step39: We will run four queries in the following SQL. Step40: The results are placed into a temporary table for easier formatting. Step41: The results are clearer when we plot them all on one graph! Step42: Every system will have different performance Step43: We will try the 4 queries again and plot the result.
3,550
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm import problem_unittests as tests import tarfile cifar10_dataset_folder_path = 'cifar-10-batches-py' # Use Floyd's cifar-10 dataset if present floyd_cifar10_location = '/input/cifar-10/python.tar.gz' if isfile(floyd_cifar10_location): tar_gz_path = floyd_cifar10_location else: tar_gz_path = 'cifar-10-python.tar.gz' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(tar_gz_path): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar: urlretrieve( 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz', tar_gz_path, pbar.hook) if not isdir(cifar10_dataset_folder_path): with tarfile.open(tar_gz_path) as tar: tar.extractall() tar.close() tests.test_folder_path(cifar10_dataset_folder_path) %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper import numpy as np # Explore the dataset batch_id = 2 sample_id = 7 helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id) def normalize(x): Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (32, 32, 3) : return: Numpy array of normalize data # TODO: Implement Function return x/255; DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_normalize(normalize) one_hot_map = np.eye(10) def one_hot_encode(x): One hot encode a list of sample labels. Return a one-hot encoded vector for each label. : x: List of sample Labels : return: Numpy array of one-hot encoded labels # TODO: Implement Function return one_hot_map[x] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_one_hot_encode(one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL import pickle import problem_unittests as tests import helper # Load the Preprocessed Validation data valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb')) import tensorflow as tf def neural_net_image_input(image_shape): Return a Tensor for a batch of image input : image_shape: Shape of the images : return: Tensor for image input. # TODO: Implement Function print( len(image_shape) ) x = tf.placeholder(tf.float32,(None,)+image_shape, name="x") return x def neural_net_label_input(n_classes): Return a Tensor for a batch of label input : n_classes: Number of classes : return: Tensor for label input. # TODO: Implement Function y = tf.placeholder(tf.float32,[None,n_classes], name="y") return y def neural_net_keep_prob_input(): Return a Tensor for keep probability : return: Tensor for keep probability. # TODO: Implement Function keep_prob = tf.placeholder(tf.float32, name="keep_prob") return keep_prob DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides): Apply convolution then max pooling to x_tensor :param x_tensor: TensorFlow Tensor :param conv_num_outputs: Number of outputs for the convolutional layer :param conv_ksize: kernal size 2-D Tuple for the convolutional layer :param conv_strides: Stride 2-D Tuple for convolution :param pool_ksize: kernal size 2-D Tuple for pool :param pool_strides: Stride 2-D Tuple for pool : return: A tensor that represents convolution and max pooling of x_tensor # find # of input channels and create weight tensor channels = x_tensor.get_shape().as_list()[3] weight_dimension = conv_ksize + (channels,) + (conv_num_outputs,) weight = tf.Variable( tf.truncated_normal( weight_dimension, mean=0.0, stddev=0.1 ) ) # conv layer bias = tf.Variable(tf.zeros(conv_num_outputs)) conv_layer = tf.nn.conv2d(x_tensor, weight, (1,) + conv_strides + (1,), padding='SAME') conv_layer = tf.nn.bias_add(conv_layer, bias) conv_layer = tf.nn.relu(conv_layer) # max pooling conv_layer = tf.nn.max_pool( conv_layer, (1,) + pool_ksize + (1,), (1,) + pool_strides + (1,), padding='SAME') return conv_layer DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_con_pool(conv2d_maxpool) def flatten(x_tensor): Flatten x_tensor to (Batch Size, Flattened Image Size) : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions. : return: A tensor of size (Batch Size, Flattened Image Size). # TODO: Implement Function return tf.contrib.layers.flatten(x_tensor) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_flatten(flatten) def fully_conn(x_tensor, num_outputs): Apply a fully connected layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. # TODO: Implement Function return tf.contrib.layers.fully_connected( inputs=x_tensor, num_outputs=num_outputs, activation_fn=tf.nn.relu, biases_initializer=tf.zeros_initializer, weights_initializer=lambda size, dtype, partition_info: tf.truncated_normal(shape=size,dtype=dtype,mean=0.0,stddev=0.1) ) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_fully_conn(fully_conn) def output(x_tensor, num_outputs): Apply a output layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. # TODO: Implement Function return tf.contrib.layers.fully_connected( inputs=x_tensor, num_outputs=num_outputs, weights_initializer=lambda size, dtype, partition_info: tf.truncated_normal(shape=size,dtype=dtype,mean=0.0,stddev=0.1) ) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_output(output) def conv_net(x, keep_prob): Create a convolutional neural network model : x: Placeholder tensor that holds image data. : keep_prob: Placeholder tensor that hold dropout keep probability. : return: Tensor that represents logits # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers # Play around with different number of outputs, kernel size and stride # Function Definition from Above: # conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) x = conv2d_maxpool(x, 16, (4,4), (1,1), (2,2), (1,1)) x = conv2d_maxpool(x, 32, (4,4), (1,1), (2,2), (1,1)) x = conv2d_maxpool(x, 64, (4,4), (1,1), (2,2), (1,1)) # TODO: Apply a Flatten Layer # Function Definition from Above: # flatten(x_tensor) x = flatten(x) # TODO: Apply 1, 2, or 3 Fully Connected Layers # Play around with different number of outputs # Function Definition from Above: # fully_conn(x_tensor, num_outputs) x = fully_conn(x, 512) x = tf.nn.dropout(x, keep_prob) x = fully_conn(x, 256) x = tf.nn.dropout(x, keep_prob) x = fully_conn(x, 64) x = tf.nn.dropout(x, keep_prob) # TODO: Apply an Output Layer # Set this to the number of classes # Function Definition from Above: # output(x_tensor, num_outputs) logits = output(x,10) # TODO: return output return logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE ############################## ## Build the Neural Network ## ############################## # Remove previous weights, bias, inputs, etc.. tf.reset_default_graph() # Inputs x = neural_net_image_input((32, 32, 3)) y = neural_net_label_input(10) keep_prob = neural_net_keep_prob_input() # Model logits = conv_net(x, keep_prob) # Name logits Tensor, so that is can be loaded from disk after training logits = tf.identity(logits, name='logits') # Loss and Optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer().minimize(cost) # Accuracy correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy') tests.test_conv_net(conv_net) def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch): Optimize the session on a batch of images and labels : session: Current TensorFlow session : optimizer: TensorFlow optimizer function : keep_probability: keep probability : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data # TODO: Implement Function session.run( optimizer, feed_dict={ x: feature_batch, y: label_batch, keep_prob: keep_probability }) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_train_nn(train_neural_network) def print_stats(session, feature_batch, label_batch, cost, accuracy): Print information about loss and validation accuracy : session: Current TensorFlow session : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data : cost: TensorFlow cost function : accuracy: TensorFlow accuracy function # TODO: Implement Function cost = session.run( cost, feed_dict={ x: feature_batch, y: label_batch, keep_prob: 1.0 }) validation = session.run( accuracy, feed_dict={ x: valid_features, y: valid_labels, keep_prob: 1.0 }) print( "cost: {}, accuracy: {}".format(cost, validation)) # TODO: Tune Parameters epochs = 20 batch_size = 128 keep_probability = 0.5 DON'T MODIFY ANYTHING IN THIS CELL print('Checking the Training on a Single Batch...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): batch_i = 1 for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) DON'T MODIFY ANYTHING IN THIS CELL save_model_path = './image_classification' print('Training...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): # Loop over all batches n_batches = 5 for batch_i in range(1, n_batches + 1): for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # Save Model saver = tf.train.Saver() save_path = saver.save(sess, save_model_path) DON'T MODIFY ANYTHING IN THIS CELL %matplotlib inline %config InlineBackend.figure_format = 'retina' import tensorflow as tf import pickle import helper import random # Set batch size if not already set try: if batch_size: pass except NameError: batch_size = 64 save_model_path = './image_classification' n_samples = 4 top_n_predictions = 3 def test_model(): Test the saved model against the test dataset test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb')) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load model loader = tf.train.import_meta_graph(save_model_path + '.meta') loader.restore(sess, save_model_path) # Get Tensors from loaded model loaded_x = loaded_graph.get_tensor_by_name('x:0') loaded_y = loaded_graph.get_tensor_by_name('y:0') loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') loaded_logits = loaded_graph.get_tensor_by_name('logits:0') loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0') # Get accuracy in batches for memory limitations test_batch_acc_total = 0 test_batch_count = 0 for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size): test_batch_acc_total += sess.run( loaded_acc, feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0}) test_batch_count += 1 print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count)) # Print Random Samples random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples))) random_test_predictions = sess.run( tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions), feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0}) helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions) test_model() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Image Classification Step2: Explore the Data Step5: Implement Preprocess Functions Step8: One-hot encode Step10: Randomize Data Step12: Check Point Step17: Build the network Step20: Convolution and Max Pooling Layer Step23: Flatten Layer Step26: Fully-Connected Layer Step29: Output Layer Step32: Create Convolutional Model Step35: Train the Neural Network Step37: Show Stats Step38: Hyperparameters Step40: Train on a Single CIFAR-10 Batch Step42: Fully Train the Model Step45: Checkpoint
3,551
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import torch a, b = load_data() ab = torch.cat((a, b), 0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
3,552
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import math import cmath from scipy.optimize import root import matplotlib.pyplot as plt %matplotlib inline a = ("Table1.txt") a class InterfazPolimero: def __init__ (self,a): self.a=a def Lire(self): self.tab = pd.read_csv(self.a,sep=" ") coef =self.tab.values self.Experiment = coef[:,0] self.Thickness = coef[:,1] self.FoodSimulant = coef[:,2] self.Cpo = coef[:,3] self.K = coef [:,4] self.Dp = coef[:,5] self.RMSE = coef[:,6] self.k = coef[:,7] self.c4 = coef[:,8] # self.c1 =coef[:,9] self.c2 = np.zeros(10) return self.tab def inicializarC2(self): self.c2 = np.zeros(10) self.dimension = np.shape(self.c2) print(self.dimension) return self.c2 def calcul(self): self.tab["j1"] = (self.tab["Dp"] / (self.tab["Thickness"] / 2)) * (self.tab["Cpo"] - self.c2) print(self.tab["j1"]) self.c3 = self.c2 / self.K self.j2 = self.k * (self.c3 - self.tab["c4"]) return (self.tab["j1"] - self.j2) / self.tab["j1"] def calcul2(self): i = 0 for self.tab["Thickness"], self.tab["Dp"], self.tab["K"], self.tab["k"], self.tab["c"] in enumerate(tab): self.sol = root(calcul,15,args=(float(self.tab["Dp"]),float(self.tab["k"]),float(self.tab["K"]),float(self.tab["c4"]),float(self.tab["Cpo"]),float(self.tab["Thickness"]))) c2[i]= self.sol.x i = i + 1 print(self.c2) return self.c2 def Garder(self): raw_data ={"résultat" : [1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793]} df = pd.DataFrame(raw_data,index=["1","2","3","4","5","6","7","8","9","10"]) df.to_csv("c2rep") return df def Graphique(self): plt.plot(self.tab["Dp"],self.Cpo,"^") plt.title("f(Dp)=Cpo") plt.xlabel("Dp") plt.ylabel("Cpo") def Graphique2(self): plt.plot(self.tab["Dp"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") plt.title("f(Dp)=c2") plt.xlabel("Dp") plt.ylabel("c2") def Graphique3(self): plt.plot(self.tab["Cpo"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") plt.title("f(Cpo)=c2") plt.xlabel("Cpo") plt.ylabel("c2") def Graphique4(self): plt.plot(self.tab["Thickness"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") plt.title("f(Epaisseur)=c2") plt.xlabel("Epaisseur") plt.ylabel("c2") def Graphique5(self): fig,axes=plt.subplots(2,2) axes[0,0].plot(self.tab["Dp"],self.Cpo,"^") axes[1,1].plot(self.tab["Dp"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") axes[0,1].plot(self.tab["Cpo"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") axes[1,0].plot(self.tab["Thickness"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") p = InterfazPolimero("Table1.txt") p p.Lire() p.calcul() p.Graphique() p.Graphique2() p.Graphique3() p.Graphique4() p.Graphique5() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Polymère Step2: Calcul de la concentration finale Step3: Table des valeurs Step4: Calcul de c2 Step5: Graphique Step6: Graphique Step7: Graphique Step8: Grapgique Step9: Nous remarquons que réunir tous les graphiques n'est pas spécialement adéquat car les résultats sont totalement illisibles.
3,553
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import colab !pip install --upgrade pip except: pass !pip install tensorflow==2.2.0 import pprint import tempfile import tensorflow as tf import tensorflow_transform as tft import tensorflow_transform.beam as tft_beam from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import schema_utils raw_data = [ {'x': 1, 'y': 1, 's': 'hello'}, {'x': 2, 'y': 2, 's': 'world'}, {'x': 3, 'y': 3, 's': 'hello'} ] raw_data_metadata = dataset_metadata.DatasetMetadata( schema_utils.schema_from_feature_spec({ 'y': tf.io.FixedLenFeature([], tf.float32), 'x': tf.io.FixedLenFeature([], tf.float32), 's': tf.io.FixedLenFeature([], tf.string), })) def preprocessing_fn(inputs): Preprocess input columns into transformed columns. x = inputs['x'] y = inputs['y'] s = inputs['s'] x_centered = x - tft.mean(x) y_normalized = tft.scale_to_0_1(y) s_integerized = tft.compute_and_apply_vocabulary(s) x_centered_times_y_normalized = (x_centered * y_normalized) return { 'x_centered': x_centered, 'y_normalized': y_normalized, 's_integerized': s_integerized, 'x_centered_times_y_normalized': x_centered_times_y_normalized, } def main(): # Ignore the warnings with tft_beam.Context(temp_dir=tempfile.mkdtemp()): transformed_dataset, transform_fn = ( # pylint: disable=unused-variable (raw_data, raw_data_metadata) | tft_beam.AnalyzeAndTransformDataset( preprocessing_fn)) transformed_data, transformed_metadata = transformed_dataset # pylint: disable=unused-variable print('\nRaw data:\n{}\n'.format(pprint.pformat(raw_data))) print('Transformed data:\n{}'.format(pprint.pformat(transformed_data))) if __name__ == '__main__': main() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 使用 TensorFlow Transform 预处理数据 Step2: 安装 TensorFlow Transform Step3: 是否已重新启动运行时? Step4: 数据:创建一些虚拟数据 Step6: Transform:创建一个预处理函数 Step7: 总结
3,554
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np import pandas as pd %matplotlib inline # Code here from sklearn.datasets import load_iris iris_dataset = load_iris() features = iris_dataset.feature_names data = iris_dataset.data targets = iris_dataset.target df = pd.DataFrame(data, columns=features) pd.plotting.scatter_matrix(df, c=targets, figsize=(15,15), marker='o', hist_kwds={'bins': 20}, s=60, alpha=.8); # Code here # Code here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question 1 Step2: Question 2 Step3: Create a pair-plot of the iris dataset similar to this figure using only numpy and Step4: Question 3
3,555
<ASSISTANT_TASK:> Python Code: import numpy as np # Configurable test settings channel_count = 3 # Simulate sampling from multiple channels. sample_count = 8 # Number of samples (each sample -> one value per channel). N = channel_count * sample_count src_data = np.arange(1, N + 1, dtype='uint8') src_chunks = [src_data[i * channel_count:(i + 1) * channel_count] for i in xrange(sample_count)] dst_data = np.column_stack(src_chunks).ravel() for i, chunk in enumerate(src_chunks): print 'SOURCE%d:' % i, chunk # Show interleaved result print 'TARGET:', dst_data from teensy_minimal_rpc import SerialProxy import teensy_minimal_rpc.DMA as dma # Disconnect from existing proxy (if available) try: del proxy except NameError: pass proxy = SerialProxy() proxy.free_all() # Allocate source array src_addr = proxy.mem_alloc(N) # Allocate destination array dst_addr = proxy.mem_alloc(N) src_addrs = [src_addr + i * channel_count for i in xrange(sample_count)] tcds_addr = proxy.mem_aligned_alloc(32, sample_count * 32) hw_tcds_addr = 0x40009000 tcd_addrs = [tcds_addr + 32 * i for i in xrange(sample_count)] hw_tcd_addrs = [hw_tcds_addr + 32 * i for i in xrange(sample_count)] # Fill first 16 bytes of source array with the numbers 1-N proxy.mem_cpy_host_to_device(src_addr, src_data) for i in xrange(sample_count): print 'SOURCE%d: ' % i, proxy.mem_cpy_device_to_host(src_addrs[i], channel_count) # Create Transfer Control Descriptor configuration for first chunk, encoded # as a Protocol Buffer message. tcd0_msg = dma.TCD(CITER_ELINKNO=dma.R_TCD_ITER_ELINKNO(ITER=1), BITER_ELINKNO=dma.R_TCD_ITER_ELINKNO(ITER=1), ATTR=dma.R_TCD_ATTR(SSIZE=dma.R_TCD_ATTR._8_BIT, DSIZE=dma.R_TCD_ATTR._8_BIT), NBYTES_MLNO=channel_count, SADDR=int(src_addrs[0]), SOFF=1, SLAST=-channel_count, DADDR=int(dst_addr), DOFF=sample_count, DLASTSGA=int(tcd_addrs[1]), CSR=dma.R_TCD_CSR(START=0, DONE=False, ESG=True)) # Convert Protocol Buffer encoded TCD to bytes structure. tcd0 = proxy.tcd_msg_to_struct(tcd0_msg) # Create binary TCD struct for each TCD protobuf message and copy to device # memory. for i, src_addr_i in enumerate(src_addrs): tcd_i = tcd0.copy() tcd_i['SADDR'] = src_addr_i tcd_i['DADDR'] = dst_addr + i tcd_i['DLASTSGA'] = tcd_addrs[(i + 1) % len(tcd_addrs)] tcd_i['CSR'] |= (1 << 4) # | 0x1 # Automatically start transfers 2-n # __N.B.,__ Setting `START` bit causes destination bus error. # if i > 0: # tcd_i['CSR'] |= 0x1 # Automatically start transfers 2-n proxy.mem_cpy_host_to_device(tcd_addrs[i], tcd_i.tostring()) # Fill the destination array with all zeros (to show transfer progress below). proxy.mem_fill_uint32(dst_addr, 0, N / 4) for i in xrange(sample_count): print 'SOURCE%d: ' % i, proxy.mem_cpy_device_to_host(src_addrs[i], channel_count) # Load initial TCD to DMA channel 0. proxy.mem_cpy_host_to_device(hw_tcd_addrs[0], tcd0.tostring()) print 'DEST:' # Trigger once per chunk for i in xrange(sample_count): proxy.update_dma_registers(dma.Registers(SSRT=0)) device_dst_data = proxy.mem_cpy_device_to_host(dst_addr, N) print ' Trigger %d:' % i, device_dst_data # Verify device result matches expected result computed on host. assert((device_dst_data == dst_data).all()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Simulate concatenate behaviour on host (i.e., using numpy) Step2: Device Step3: Allocate arrays Step4: Create Transfer Control Descriptor (TCD) configurations Step5: Load first TCD in scatter chain and enable scatter/gather
3,556
<ASSISTANT_TASK:> Python Code: from notebook_preamble import J, V, define define('pair_up == dup uncons swap unit concat zip') J('[1 2 3] pair_up') J('[1 2 2 3] pair_up') define('total_matches == 0 swap [i [=] [pop +] [popop] ifte] step') J('[1 2 3] pair_up total_matches') J('[1 2 2 3] pair_up total_matches') define('AoC2017.1 == pair_up total_matches') J('[1 1 2 2] AoC2017.1') J('[1 1 1 1] AoC2017.1') J('[1 2 3 4] AoC2017.1') J('[9 1 2 1 2 1 2 9] AoC2017.1') J('[9 1 2 1 2 1 2 9] AoC2017.1') J('[1 2 3 4] dup size 2 / [drop] [take reverse] cleave concat zip') J('[1 2 3 4] dup size 2 / [drop] [take reverse] cleave zip') define('AoC2017.1.extra == dup size 2 / [drop] [take reverse] cleave zip swap pop total_matches 2 *') J('[1 2 1 2] AoC2017.1.extra') J('[1 2 2 1] AoC2017.1.extra') J('[1 2 3 4 2 5] AoC2017.1.extra') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: I'll assume the input is a Joy sequence of integers (as opposed to a string or something else.) Step2: Now we need to derive total_matches. It will be a step function Step3: Now we can define our main program and evaluate it on the examples. Step4: pair_up == dup uncons swap unit concat zip Step5: I realized that each pair is repeated...
3,557
<ASSISTANT_TASK:> Python Code: import tensorflow as tf import shutil print(tf.__version__) tf.enable_eager_execution() CSV_COLUMN_NAMES = ["fare_amount","dayofweek","hourofday","pickuplon","pickuplat","dropofflon","dropofflat"] CSV_DEFAULTS = [[0.0],[1],[0],[-74.0], [40.0], [-74.0], [40.7]] def parse_row(row): fields = # TODO: Your code goes here features = # TODO: Your code goes here labels = # TODO: Your code goes here return features, label a_row = "0.0,1,0,-74.0,40.0,-74.0,40.7" features, labels = parse_row(a_row) assert labels.numpy() == 0.0 assert features["pickuplon"].numpy() == -74.0 print("You rock!") def read_dataset(csv_path): dataset = # TODO: Your code goes here dataset = # TODO: Your code goes here return dataset %%writefile test.csv fare_amount,dayofweek,hourofday,pickuplon,pickuplat,dropofflon,dropofflat 28,1,0,-73.0,41.0,-74.0,20.7 12.3,1,0,-72.0,44.0,-75.0,40.6 10,1,0,-71.0,41.0,-71.0,42.9 for feature, label in read_dataset("./test.csv"): print("dropofflat:", feature["dropofflat"].numpy()) print("fare_amount:", label.numpy()) dataset= read_dataset("./test.csv") dataset_iterator = dataset.make_one_shot_iterator() features, labels = dataset_iterator.get_next() assert features['dayofweek'].numpy() == 1 assert labels.numpy() == 28 print("You rock!") def train_input_fn(csv_path, batch_size = 128): dataset = # TODO: Your code goes here dataset = # TODO: Your code goes here return dataset def eval_input_fn(csv_path, batch_size = 128): dataset = # TODO: Your code goes here dataset = # TODO: Your code goes here return dataset FEATURE_NAMES = CSV_COLUMN_NAMES[1:] # all but first column print(FEATURE_NAMES) feature_cols = # TODO: Your code goes here print(feature_cols) OUTDIR = "taxi_trained" model = # TODO: Your code goes here %%time tf.logging.set_verbosity(tf.logging.INFO) # so loss is printed during training shutil.rmtree(path = OUTDIR, ignore_errors = True) # start fresh each time model.train( input_fn = # TODO: Your code goes here, steps = # TODO: Your code goes here ) metrics = # TODO: Your code goes here print("RMSE on dataset = {}".format(# TODO: Your code goes here)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Input function reading from CSV Step2: Run the following test to make sure your implementation is correct Step3: Exercise 2 Step4: Tests Step5: You should be able to iterate over what's returned by read_dataset. We'll print the dropofflat and fare_amount for each entry in ./test.csv Step6: Run the following test cell to make sure you function works properly Step7: Exercise 3 Step8: Exercise 4 Step9: Create feature columns Step10: Exercise 5 Step11: Choose Estimator Step12: Train Step13: Evaluate
3,558
<ASSISTANT_TASK:> Python Code: print(conf.toDebugString()) #Instance of SparkConf with options set by the extension conf.setAppName('ExtensionTestingApp') #conf.setMaster('spark://dell-inspiron:7077') # if master is started using command line conf.setMaster('local[*]') from pyspark import SparkContext sc=SparkContext.getOrCreate(conf=conf) #Start the spark context import time b=sc.broadcast([3,5]) #Creating a broadcast variable available on all executors a=sc.accumulator(0) #Creating an accumulator for adding values across executors RDD0=sc.parallelize([y for y in range(0,5)]) #RDD from input python collection RDD2=sc.parallelize([z for z in range(10,15)]) RDD1=RDD0.cartesian(RDD2) cached=RDD2.cache() #Testing cached RDD RDD22=RDD1.map(lambda x:x[0]+x[1]+b.value[0]) RDD3=RDD22.repartition(5) # To trigger a new stage. RDD4=RDD2.map(lambda x: 3*x-b.value[0]) RDD5=RDD3.filter(lambda x:x%2==0) RDD6=RDD4.filter(lambda x:x%2!=0) RDD7=RDD5.cartesian(RDD6) RDD8=RDD7.flatMap(lambda x: [x[i] for i in range(0,2)]) RDD9=RDD8.union(cached) ans=RDD9.reduce(lambda x,y: x+y) # Doing a simple sum on the random data. print(ans) def f(x): global a time.sleep(0.5) #Making the job run a little longer a+=x RDD9.foreach(f) print(a.value) #Display should appear automatically sc.parallelize(range(0,100)).count() sc.parallelize(range(0,100)).count() sc.parallelize(range(0,100)).count() sc.parallelize(range(0,100)).count() sc.parallelize(range(0,100)).count() sc.parallelize(range(0,100)).map(lambda x:x*x).filter(lambda x:x%2==0).count() sc.parallelize(range(0,100)).map(lambda x:x*x).filter(lambda x:x%2==0).count() sc.parallelize(range(0,100)).map(lambda x:x*x).filter(lambda x:x%2==0).count() sc.parallelize(range(0,100)).map(lambda x:x*x).filter(lambda x:x%2==0).count() sc.stop() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: User adds other options and starts the spark context Step2: Example spark job
3,559
<ASSISTANT_TASK:> Python Code: import sys # system module import pandas as pd # data package import matplotlib.pyplot as plt # graphics module import datetime as dt # date and time module import numpy as np %matplotlib inline plt.style.use("ggplot") # quandl package import quandl # check versions (overkill, but why not?) print('Python version:', sys.version) print('Pandas version: ', pd.__version__) print('quandl version: ', quandl.version.VERSION) print('Today: ', dt.date.today()) # helper function to print info about dataframe def df_info(df): print("Shape: ", df.shape) print("dtypes: ", df.dtypes.to_dict()) print("index dtype: ", df.index.dtype) return pd.concat([df.head(3), df.tail(3)]) us_tax = quandl.get("OECD/REV_NES_TOTALTAX_TAXUSD_USA") df_info(us_tax) us_tax_recent = quandl.get("OECD/REV_NES_TOTALTAX_TAXUSD_USA", start_date="2000-01-01") df_info(us_tax_recent) # For multiple data sources, it's useful to define a list/dict my_data = {"FRED/DFF": "risk_free_rate", "NVCA/VENTURE_3_09C": "vc_investments"} dfs = [] for k in my_data.keys(): dfs.append(quandl.get(k)) df_info(dfs[0]) quandl.get(['NVCA/VENTURE_3_09C.2', 'NVCA/VENTURE_3_09C.5']).head() quandl.get(['NSE/OIL.1', 'WIKI/AAPL.4']) mix = quandl.get(['NSE/OIL.1', 'WIKI/AAPL.4']) mix.plot(subplots=True) df_info(dfs[1]) dfs[1].rename(columns={"DFF": my_data["FRED/DFF"]}, inplace=True) df_info(dfs[1]) quart = quandl.get("FRED/DFF", collapse='quarterly') print(quart.head()) quart.plot() diff = quandl.get("FRED/DFF", transformation='rdiff') diff.plot() ffr = dfs[1] vc = dfs[0] today = dt.date.today() print("the type of today is ", type(today)) print("the day of the month is: ", today.day) print("we are curretly in month number", today.month) print("The year is", today.year) # construct a date by hand new_years_eve = dt.date(2017, 12, 31) until_nye = new_years_eve - today type(until_nye) until_nye.days def days_until(date): today = dt.date.today() numb_days = date - today return numb_days.days project_due = dt.date(2017, 5, 5) days_until(project_due) spencer_bday = dt.date(1989, 4, 25) # NOTE: add 7 for the 7 leap years between 1989 and 2019 thirty_years = dt.timedelta(days=365*30 + 7) # check to make sure it is still April 25th spencer_bday + thirty_years days_to_30 = (spencer_bday + thirty_years - today).days print("Spencer will be 30 in {} days".format(days_to_30)) now = dt.datetime.now() print("type of now:", type(now)) now print("the day of the month is: ", now.day) print("we are curretly in month number", now.month) print("The year is", now.year) now.weekday() # NOTE: we can only do arithmetic between many date objects or datetime obejcts # we cannot add or subtract a datetime to/from a date. So, we need to # re-create spencer_bday as a datetime object. # NOTE: The timedelta object is already compatible with date and datetime objects spencer_bday_time = dt.datetime(1989, 4, 25, 16, 33, 5) seconds_to_30 = (spencer_bday_time + thirty_years - now).seconds print("Spencer will be 30 in {} seconds".format(seconds_to_30)) print(today.strftime("Today is %Y-%m-%d")) spencer_bday_time.strftime("Spencer was born on %Y-%m-%d") spencer_bday_time.strftime("Spencer was born on a %A") spencer_bday_time.strftime("Spencer was born on %A, %b %dth") spencer_bday_time.strftime("Spencer was born on %A, %B %dth at %I:%M %p") type(ffr.index) ffr2008 = ffr["2008"] print("ffr2008 is a", type(ffr2008)) df_info(ffr2008) ffr2008.plot() ffr_sep2008 = ffr["2008-09"] df_info(ffr_sep2008) ffr_sep2008.plot() ffr2 = ffr["2007-06":"2011-03"] df_info(ffr2) ffr2.plot() vc['2013':'2016'].plot() # MS means "month start" ffrM_resample = ffr.resample("MS") type(ffrM_resample) ffrM = ffrM_resample.first() df_info(ffrM) ffr.resample("2w") ffr.resample("2w").mean() ffr.resample('QS').mean().head() ffr.resample('A').mean().head() ffr.resample("M").first().head() ffr.resample("M").last().head() ffr.resample("MS").first().head() ffr.resample("MS").last().head() ffr.index.year ffr.index.day ffr.index.month fig, ax = plt.subplots() ffr.rolling(window=7).max().plot(ax=ax) ffr.rolling(window=7).min().plot(ax=ax) ax.legend(["max", "min"]) ffr.rolling(window=7).max().head(10) ffr.resample("7D").max().head(10) # do a left merge on the index (date info) df = pd.merge(ffr, vc, left_index=True, right_index=True, how="left") df_info(df) vc.head() ffr_recent = ffr["1985":] ffr_recentM = ffr_recent.resample("M").first() vc_M = vc.resample("M").pad() vc_M.head() df = pd.merge(ffr_recentM, vc_M, left_index=True, right_index=True, how="left") print(df.head(6)) print("\n\n", df.tail(8)) # subset the data, then remove datetime index as we don't need it again post_dotcom = df["1995":].reset_index(drop=True) post_housing = df["2004":].reset_index(drop=True) # take logs so we can do growth rates as log(x_{t+N}) - log(x_t) post_dotcom = np.log(post_dotcom) post_housing = np.log(post_housing) dotcom_growth = post_dotcom - post_dotcom.iloc[0, :] housing_growth = post_housing - post_housing.iloc[0, :] fig, axs = plt.subplots(3, 1, figsize=(10, 5)) variables = ["risk_free_rate", "Early Stage", "Total"] for i in range(len(variables)): var = variables[i] # add dotcom line dotcom_growth[var].plot(ax=axs[i]) # add housing line housing_growth[var].plot(ax=axs[i]) # set title axs[i].set_title(var) # set legend and xlabel on last plot only axs[-1].legend(["dotcom", "housing"]) axs[-1].set_xlabel("Quarters since boom") # make subplots not overlap fig.tight_layout() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Quandl <a id=data></a> Step2: We can also pass start_date and end_date parameters to control the dates for the downloaded data Step3: Now, let's read in the data sets we found were interesting. Feel free to use the codes you looked up, or the ones I'm using here. Step4: To request specific columns use column indices (NOT 0-based) Step5: To combine variables from different datasets Step6: What happened to the first column? Step7: So, "FRED/DFF" is the federal funds rate, or the interest rate at which banks can trade federal assets with each other overnight. This is often used as a proxy for the risk free rate in economic analysis. Step8: We can change the sampling frequency Step9: Or we can perform elementary calculations on the data Step10: The other dataframe we dowloaded (using code NVCA/VENTURE_3_09C) contains quarterly data on total investment by venture capital firms in the US, broken down by the stage of the project. Step11: Usage Limits Step12: Given that we have an object of type datetime.date we can do things like ask for the day, month, and year Step13: timedelta Step14: We can get the number of days until new years eve by looking at until_nye.days Step15: Exercise Step16: We could also construct a datetime.timedelta by hand and add it to an existing date. Here's an example to see how many days until Spencer turns 30 Step17: datetime Step18: The numbers in the printout above are year, month, day, hour, minute, second, millisecond. Step19: Exercise Step20: Time deltas work the same way with datetime objects as they did with date objects. Step21: strftime Step22: Notice that the argument to strftime is a python string that can contain normal text (e.g. Today is) and a special formatters (the stuff starting with %). We haven't talked much about how to do string formatting, but in Python and many other languages using % inside strings has special meaning. Step23: "Spencer was born on a Tuesday" Step24: "Spencer was born on Tuesday, Apr 25th" Step25: (bonus) "Spencer was born on Tuesday, April 25th at 04 Step26: Dates in Pandas <a id=pandas_dates></a> Step27: Here we have a DatetimeIndex, which means pandas recogizes this DataFrame as containing time series data. Step28: Suppose we want to restrict to September 2008 Step29: We can use this same functionality to extract ranges of dates. To get the data starting in june 2007 and going until march 2011 we would do Step30: Exercise Using one of your datasets from quandl, plot one or more variables for the last 3 years (2013 through 2016) Step31: resampling Step32: Notice that when we call resample we don't get back a DataFrame at that frequency. This is because there is some ambiguity regarding just how the frequency should be converted Step33: Note that we can also combine numbers with the specification of the resampling frequency. As an example, we can resample to a bi-weekly frequency using Step34: Exercise Step35: An annual frequency -- use the end of the year Step36: more than you need Step37: Notice that the index is the same on both, but the data is clearly different. Step38: Notice how the data associated with "M" and first is the same as the data for "MS" and first. The same holds for last. Step39: Rolling computations Step40: Note that this is different from just resampling because we will have an observation for every date in the original dataframe (except the number of dates at the front needed to construct the initial window). Step41: Merging with dates Step42: Notice that we ended up with a lot of missing data. This happened for two reasons Step43: To resolve the second issue we will do two-steps Step44: Notice that using pad here just copied data forwards to fill in missing months (e.g. the data for March 1985 was applied to April and May) Step45: That looks much better -- we have missing data at the top and the bottom for months that aren't available in the venture capital dataset, but nothing else should be missing.
3,560
<ASSISTANT_TASK:> Python Code: %matplotlib inline # Arrays import numpy as np # Plotting import matplotlib.pyplot as plt # pairinteraction :-) from pairinteraction import pireal as pi qd = pi.QuantumDefect("Rb", 50, 0, 0.5) print("Core polarizability: ac =",qd.ac) print("Effective coulomb potential") print(" Z =",qd.Z,"(core charge)") print(" a1 =",qd.a1) print(" a2 =",qd.a2) print(" a3 =",qd.a3) print(" a4 =",qd.a4) print("Effective core radius: rc =",qd.rc) print("Effective quantum number: n* =",qd.nstar) print("State energy: E(n*) =",qd.energy) n = pi.Numerov(qd).integrate() w = pi.Whittaker(qd).integrate() plt.xlabel("$r$ ($a_0$)") plt.ylabel("$r^2|\Psi(r)|^2$ [a.u.]") plt.plot(n[:,0]**2,np.abs(np.sqrt(n[:,0])*n[:,1])**2,'-',label="numeric WF") plt.plot(w[:,0]**2,np.abs(w[:,1])**2,'--',label="Coulomb WF") plt.legend(); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Our code starts with loading the required modules for the computation. It is irrelevant whether we use the pireal or picomplex modules here, because we do not calculate any matrix elements. Step2: Keep in mind that pairinteraction is a Rydberg interaction calculator. All techniques presented below work well for the high-$n$ states of Rydberg atoms, but fail miserably for low-lying states. Step3: The parameters of the model potentials can be accessed like member variables of the qd object. They have mnemonic names to mirror their meaning in the model potentials presented above. Step4: The effective principal quantum number in quantum defect theory is defined as series expansion Step5: Even though these parameters can be accessed like member variables, they are read-only values and attempting to change them will result in an error. Step6: The wavefunctions which we obtain from these methods are unscaled, i.e. they have their original scaling as defined by the calculation. The $x$-axes are square root scaled. The result returned by the Coulomb wavefunction method is $r \;\Psi^{\text{rad}}(r)$. The result calculated by Numerov's method is $X(x)$, as defined above, and must be multiplied by $\sqrt{x}$ to get $r \;\Psi^{\text{rad}}(r)$.
3,561
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 import copy import os import pandas as pd import matplotlib.pyplot as plt import tsam.timeseriesaggregation as tsam %matplotlib inline raw = pd.read_csv('testdata.csv', index_col = 0) def plotTS(data, periodlength, vmin, vmax, label = 'T [°C]'): fig, axes = plt.subplots(figsize = [6, 2], dpi = 100, nrows = 1, ncols = 1) stacked, timeindex = tsam.unstackToPeriods(copy.deepcopy(data), periodlength) cax = axes.imshow(stacked.values.T, interpolation = 'nearest', vmin = vmin, vmax = vmax) axes.set_aspect('auto') axes.set_ylabel('Hour') plt.xlabel('Day') fig.subplots_adjust(right = 1.2) cbar=plt.colorbar(cax) cbar.set_label(label) aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 10, hoursPerPeriod = 24, clusterMethod = 'hierarchical') typPeriods = aggregation.createTypicalPeriods() predictedPeriods = aggregation.predictOriginalData() aggregation.accuracyIndicators() aggregationSeg = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 20, hoursPerPeriod = 24, clusterMethod = 'hierarchical', segmentation=True, noSegments=12) typPeriodsSeg = aggregationSeg.createTypicalPeriods() predictedPeriodsSeg = aggregationSeg.predictOriginalData() aggregationSeg.accuracyIndicators() fig, axes = plt.subplots(figsize = [6, 2], dpi = 100, nrows = 1, ncols = 1) raw['Load'].sort_values(ascending=False).reset_index(drop=True).plot(label = 'Original') predictedPeriods['Load'].sort_values(ascending=False).reset_index(drop=True).plot(label = '10 with 24 hours') predictedPeriodsSeg['Load'].sort_values( ascending=False).reset_index(drop=True).plot(label = '20 with 12 Seg') plt.legend() plt.xlabel('Hours [h]') plt.ylabel('Duration Load [MW]') param = 'GHI' plotTS(raw[param], 24, vmin = raw[param].min(), vmax = raw[param].max(), label = param) plotTS(predictedPeriods[param], 24, vmin = raw[param].min(), vmax = raw[param].max(), label = param) plotTS(predictedPeriodsSeg[param], 24, vmin = raw[param].min(), vmax = raw[param].max(), label = param) fig, axes = plt.subplots(figsize = [6, 2], dpi = 100, nrows = 1, ncols = 1) raw['Load']['20100210':'20100218'].plot(label = 'Original') predictedPeriods['Load']['20100210':'20100218'].plot(label = '10 with 24 hours') predictedPeriodsSeg['Load']['20100210':'20100218'].plot(label = '20 with 12 seg') plt.legend() plt.ylabel('Load [MW]') raw.mean() predictedPeriods.mean() predictedPeriodsSeg.mean() aggregation.createTypicalPeriods().loc[0,:].mean() aggregationSegTest = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 10, hoursPerPeriod = 24, clusterMethod = 'hierarchical', segmentation=True, noSegments=12) segmentDurations=aggregationSegTest.createTypicalPeriods().loc[0,:].reset_index(0, drop=True).index.values aggregationSegTest.createTypicalPeriods().loc[0,:].mul(segmentDurations, axis=0).sum()/segmentDurations.sum() aggregationSeg.createTypicalPeriods() aggregation.createTypicalPeriods() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Input data Step2: Create a plot function for the temperature for a visual comparison of the time series Step3: Hierarchical aggregation with medoid representation and 10 typical days with 24 hourly segments Step4: Create the typical periods Step5: Predict original data Step6: Get accuracy indicators Step7: Hierarchical aggregation with medoid representation and 20 typical days with 12 irregular segments Step8: Create the typical periods Step9: Predict original data Step10: Get accuracy indicators Step11: Comparison of the aggregations Step12: Validation Step13: Check that a segmented period has the same column-wise means as a non-segmented period for if the periods are the same. Step14: Print out the (segmented) typical periods.
3,562
<ASSISTANT_TASK:> Python Code: from os import path as op import numpy as np import matplotlib.pyplot as plt import mne from mne.forward import make_forward_dipole from mne.evoked import combine_evoked from mne.simulation import simulate_evoked data_path = mne.datasets.sample.data_path() subjects_dir = op.join(data_path, 'subjects') fname_ave = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif') fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif') fname_bem = op.join(subjects_dir, 'sample', 'bem', 'sample-5120-bem-sol.fif') fname_trans = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw-trans.fif') fname_surf_lh = op.join(subjects_dir, 'sample', 'surf', 'lh.white') evoked = mne.read_evokeds(fname_ave, condition='Right Auditory', baseline=(None, 0)) evoked.pick_types(meg=True, eeg=False) evoked_full = evoked.copy() evoked.crop(0.07, 0.08) # Fit a dipole dip = mne.fit_dipole(evoked, fname_cov, fname_bem, fname_trans)[0] # Plot the result in 3D brain with the MRI image. dip.plot_locations(fname_trans, 'sample', subjects_dir, mode='orthoview') fwd, stc = make_forward_dipole(dip, fname_bem, evoked.info, fname_trans) pred_evoked = simulate_evoked(fwd, stc, evoked.info, cov=None, nave=np.inf) # find time point with highest GOF to plot best_idx = np.argmax(dip.gof) best_time = dip.times[best_idx] print('Highest GOF %0.1f%% at t=%0.1f ms with confidence volume %0.1f cm^3' % (dip.gof[best_idx], best_time * 1000, dip.conf['vol'][best_idx] * 100 ** 3)) # remember to create a subplot for the colorbar fig, axes = plt.subplots(nrows=1, ncols=4, figsize=[10., 3.4]) vmin, vmax = -400, 400 # make sure each plot has same colour range # first plot the topography at the time of the best fitting (single) dipole plot_params = dict(times=best_time, ch_type='mag', outlines='skirt', colorbar=False, time_unit='s') evoked.plot_topomap(time_format='Measured field', axes=axes[0], **plot_params) # compare this to the predicted field pred_evoked.plot_topomap(time_format='Predicted field', axes=axes[1], **plot_params) # Subtract predicted from measured data (apply equal weights) diff = combine_evoked([evoked, -pred_evoked], weights='equal') plot_params['colorbar'] = True diff.plot_topomap(time_format='Difference', axes=axes[2], **plot_params) plt.suptitle('Comparison of measured and predicted fields ' 'at {:.0f} ms'.format(best_time * 1000.), fontsize=16) dip_fixed = mne.fit_dipole(evoked_full, fname_cov, fname_bem, fname_trans, pos=dip.pos[best_idx], ori=dip.ori[best_idx])[0] dip_fixed.plot(time_unit='s') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's localize the N100m (using MEG only) Step2: Calculate and visualise magnetic field predicted by dipole with maximum GOF Step3: Estimate the time course of a single dipole with fixed position and
3,563
<ASSISTANT_TASK:> Python Code: from os.path import basename, exists def download(url): filename = basename(url) if not exists(filename): from urllib.request import urlretrieve local, _ = urlretrieve(url, filename) print("Downloaded " + local) download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkstats2.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkplot.py") import numpy as np import thinkstats2 import thinkplot thinkplot.PrePlot(3) for lam in [2.0, 1, 0.5]: xs, ps = thinkstats2.RenderExpoCdf(lam, 0, 3.0, 50) label = r"$\lambda=%g$" % lam thinkplot.Plot(xs, ps, label=label) thinkplot.Config(title="Exponential CDF", xlabel="x", ylabel="CDF", loc="lower right") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/nsfg.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/analytic.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/babyboom.dat") import analytic df = analytic.ReadBabyBoom() diffs = df.minutes.diff() cdf = thinkstats2.Cdf(diffs, label="actual") thinkplot.Cdf(cdf) thinkplot.Config(xlabel="Time between births (minutes)", ylabel="CDF") thinkplot.Cdf(cdf, complement=True) thinkplot.Config( xlabel="Time between births (minutes)", ylabel="CCDF", yscale="log", loc="upper right", ) thinkplot.PrePlot(3) mus = [1.0, 2.0, 3.0] sigmas = [0.5, 0.4, 0.3] for mu, sigma in zip(mus, sigmas): xs, ps = thinkstats2.RenderNormalCdf(mu=mu, sigma=sigma, low=-1.0, high=4.0) label = r"$\mu=%g$, $\sigma=%g$" % (mu, sigma) thinkplot.Plot(xs, ps, label=label) thinkplot.Config(title="Normal CDF", xlabel="x", ylabel="CDF", loc="upper left") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/nsfg.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/first.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dct") download( "https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dat.gz" ) import nsfg import first preg = nsfg.ReadFemPreg() weights = preg.totalwgt_lb.dropna() # estimate parameters: trimming outliers yields a better fit mu, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) print("Mean, Var", mu, var) # plot the model sigma = np.sqrt(var) print("Sigma", sigma) xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=12.5) thinkplot.Plot(xs, ps, label="model", color="0.6") # plot the data cdf = thinkstats2.Cdf(weights, label="data") thinkplot.PrePlot(1) thinkplot.Cdf(cdf) thinkplot.Config(title="Birth weights", xlabel="Birth weight (pounds)", ylabel="CDF") n = 1000 thinkplot.PrePlot(3) mus = [0, 1, 5] sigmas = [1, 1, 2] for mu, sigma in zip(mus, sigmas): sample = np.random.normal(mu, sigma, n) xs, ys = thinkstats2.NormalProbability(sample) label = "$\mu=%d$, $\sigma=%d$" % (mu, sigma) thinkplot.Plot(xs, ys, label=label) thinkplot.Config( title="Normal probability plot", xlabel="standard normal sample", ylabel="sample values", ) mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = np.sqrt(var) xs = [-4, 4] fxs, fys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(fxs, fys, linewidth=4, color="0.8") xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label="all live") thinkplot.Config( title="Normal probability plot", xlabel="Standard deviations from mean", ylabel="Birth weight (lbs)", ) full_term = preg[preg.prglngth >= 37] term_weights = full_term.totalwgt_lb.dropna() mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = np.sqrt(var) xs = [-4, 4] fxs, fys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(fxs, fys, linewidth=4, color="0.8") thinkplot.PrePlot(2) xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label="all live") xs, ys = thinkstats2.NormalProbability(term_weights) thinkplot.Plot(xs, ys, label="full term") thinkplot.Config( title="Normal probability plot", xlabel="Standard deviations from mean", ylabel="Birth weight (lbs)", ) download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/brfss.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/CDBRFS08.ASC.gz") import brfss df = brfss.ReadBrfss() weights = df.wtkg2.dropna() def MakeNormalModel(weights): Plots a CDF with a Normal model. weights: sequence cdf = thinkstats2.Cdf(weights, label="weights") mean, var = thinkstats2.TrimmedMeanVar(weights) std = np.sqrt(var) print("n, mean, std", len(weights), mean, std) xmin = mean - 4 * std xmax = mean + 4 * std xs, ps = thinkstats2.RenderNormalCdf(mean, std, xmin, xmax) thinkplot.Plot(xs, ps, label="model", linewidth=4, color="0.8") thinkplot.Cdf(cdf) MakeNormalModel(weights) thinkplot.Config( title="Adult weight, linear scale", xlabel="Weight (kg)", ylabel="CDF", loc="upper right", ) log_weights = np.log10(weights) MakeNormalModel(log_weights) thinkplot.Config( title="Adult weight, log scale", xlabel="Weight (log10 kg)", ylabel="CDF", loc="upper right", ) def MakeNormalPlot(weights): Generates a normal probability plot of birth weights. weights: sequence mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = np.sqrt(var) xs = [-5, 5] xs, ys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(xs, ys, color="0.8", label="model") xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label="weights") MakeNormalPlot(weights) thinkplot.Config( title="Adult weight, normal plot", xlabel="Weight (kg)", ylabel="CDF", loc="upper left", ) MakeNormalPlot(log_weights) thinkplot.Config( title="Adult weight, lognormal plot", xlabel="Weight (log10 kg)", ylabel="CDF", loc="upper left", ) xmin = 0.5 thinkplot.PrePlot(3) for alpha in [2.0, 1.0, 0.5]: xs, ps = thinkstats2.RenderParetoCdf(xmin, alpha, 0, 10.0, n=100) thinkplot.Plot(xs, ps, label=r"$\alpha=%g$" % alpha) thinkplot.Config(title="Pareto CDF", xlabel="x", ylabel="CDF", loc="lower right") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/populations.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/PEP_2012_PEPANNRES_with_ann.csv") import populations pops = populations.ReadData() print("Number of cities/towns", len(pops)) log_pops = np.log10(pops) cdf = thinkstats2.Cdf(pops, label="data") cdf_log = thinkstats2.Cdf(log_pops, label="data") # pareto plot xs, ys = thinkstats2.RenderParetoCdf(xmin=5000, alpha=1.4, low=0, high=1e7) thinkplot.Plot(np.log10(xs), 1 - ys, label="model", color="0.8") thinkplot.Cdf(cdf_log, complement=True) thinkplot.Config( xlabel="log10 population", ylabel="CCDF", yscale="log", loc="lower left" ) thinkplot.PrePlot(cols=2) mu, sigma = log_pops.mean(), log_pops.std() xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=8) thinkplot.Plot(xs, ps, label="model", color="0.8") thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel="log10 population", ylabel="CDF", loc="lower right") thinkstats2.NormalProbabilityPlot(log_pops, label="data") thinkplot.Config(xlabel="Random variate", ylabel="log10 population", xlim=[-5, 5]) import random def expovariate(lam): p = random.random() x = -np.log(1 - p) / lam return x t = [expovariate(lam=2) for _ in range(1000)] cdf = thinkstats2.Cdf(t) thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel="Exponential variate", ylabel="CCDF", yscale="log") # Solution def sample_pareto(alpha, x_m, size): u = np.random.random(size) return x_m * pow(1 - u, -1 / alpha) # Solution sample = sample_pareto(1, 2, 1000) cdf = thinkstats2.Cdf(sample) thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel="Random values", ylabel="CCDF", xscale="log", yscale="log") import scipy.stats mu = 178 sigma = 7.7 dist = scipy.stats.norm(loc=mu, scale=sigma) type(dist) dist.mean(), dist.std() dist.cdf(mu - sigma) # Solution low = dist.cdf(177.8) # 5'10" high = dist.cdf(185.4) # 6'1" low, high, high - low alpha = 1.7 xmin = 1 # meter dist = scipy.stats.pareto(b=alpha, scale=xmin) dist.median() # Solution dist.mean() # Solution dist.cdf(dist.mean()) # Solution (1 - dist.cdf(1000)) * 7e9, dist.sf(1000) * 7e9 # Solution # One way to solve this is to search for a height that we # expect one person out of 7 billion to exceed. # It comes in at roughly 600 kilometers. dist.sf(600000) * 7e9 # Solution # Another way is to use `ppf`, which evaluates the "percent point function", which # is the inverse CDF. So we can compute the height in meters that corresponds to # the probability (1 - 1/7e9). dist.ppf(1 - 1 / 7e9) sample = [random.weibullvariate(2, 1) for _ in range(1000)] cdf = thinkstats2.Cdf(sample) thinkplot.Cdf(cdf, transform="weibull") thinkplot.Config(xlabel="Weibull variate", ylabel="CCDF") import analytic df = analytic.ReadBabyBoom() diffs = df.minutes.diff() cdf = thinkstats2.Cdf(diffs, label="actual") n = len(diffs) lam = 44.0 / 24 / 60 sample = [random.expovariate(lam) for _ in range(n)] 1 / lam, np.mean(sample) # Solution model = thinkstats2.Cdf(sample, label='model') thinkplot.PrePlot(2) thinkplot.Cdfs([cdf, model], complement=True) thinkplot.Config(xlabel='Time between births (minutes)', ylabel='CCDF', yscale='log') # Solution # If you plot distributions for a large number of samples, you get a sense # of how much random variation to expect. In this case, the data fall within # the range we expect, so there is no compelling reason to think it is # not exponential. for i in range(100): sample = [random.expovariate(lam) for _ in range(n)] thinkplot.Cdf(thinkstats2.Cdf(sample), complement=True, color="0.9") thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel="Time between births (minutes)", ylabel="CCDF", yscale="log") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/hinc.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/hinc06.csv") import hinc df = hinc.ReadData() df xs, ps = df.income.values, df.ps.values cdf = thinkstats2.Cdf(xs, ps, label="data") cdf_log = thinkstats2.Cdf(np.log10(xs), ps, label="data") # linear plot thinkplot.Cdf(cdf) thinkplot.Config(xlabel="household income", ylabel="CDF") xs, ys = thinkstats2.RenderParetoCdf(xmin=55000, alpha=2.5, low=0, high=250000) thinkplot.Plot(xs, 1 - ys, label="model", color="0.8") thinkplot.Cdf(cdf, complement=True) thinkplot.Config( xlabel="log10 household income", ylabel="CCDF", xscale="log", yscale="log", loc="lower left", ) median = cdf_log.Percentile(50) iqr = cdf_log.Percentile(75) - cdf_log.Percentile(25) std = iqr / 1.349 # choose std to match the upper tail std = 0.35 print(median, std) xs, ps = thinkstats2.RenderNormalCdf(median, std, low=3.5, high=5.5) thinkplot.Plot(xs, ps, label="model", color="0.8") thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel="log10 household income", ylabel="CDF") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exponential distribution Step2: Here's the distribution of interarrival times from a dataset of birth times. Step3: Here's what the CCDF looks like on a log-y scale. A straight line is consistent with an exponential distribution. Step4: Normal distribution Step5: I'll use a normal model to fit the distribution of birth weights from the NSFG. Step6: Here's the observed CDF and the model. The model fits the data well except in the left tail. Step7: A normal probability plot is a visual test for normality. The following example shows that if the data are actually from a normal distribution, the plot is approximately straight. Step8: Here's the normal probability plot for birth weights, showing that the lightest babies are lighter than we expect from the normal mode, and the heaviest babies are heavier. Step9: If we suspect that the deviation in the left tail is due to preterm babies, we can check by selecting only full term births. Step10: Now the deviation in the left tail is almost gone, but the heaviest babies are still heavy. Step11: Lognormal model Step13: The following function estimates the parameters of a normal distribution and plots the data and a normal model. Step14: Here's the distribution of adult weights and a normal model, which is not a very good fit. Step15: Here's the distribution of adult weight and a lognormal model, plotted on a log-x scale. The model is a better fit for the data, although the heaviest people are heavier than the model expects. Step17: The following function generates a normal probability plot. Step18: When we generate a normal probability plot with adult weights, we can see clearly that the data deviate from the model systematically. Step19: If we make a normal probability plot with log weights, the model fit the data well except in the tails, where the heaviest people exceed expectations. Step20: Pareto distribution Step21: The distribution of populations for cities and towns is sometimes said to be Pareto-like. Step22: Here's the distribution of population for cities and towns in the U.S., along with a Pareto model. The model fits the data well in the tail. Step23: The lognormal model might be a better fit for this data (as is often the case for things that are supposed to be Pareto). Step24: Here's a normal probability plot for the log-populations. The model fits the data well except in the right tail, where the biggest cities are bigger than expected. Step25: Random variates Step26: We can test it by generating a sample. Step27: And plotting the CCDF on a log-y scale. Step28: A straight line is consistent with an exponential distribution. Step29: Exercise Step30: For example <tt>scipy.stats.norm</tt> represents a normal distribution. Step31: A "frozen random variable" can compute its mean and standard deviation. Step32: It can also evaluate its CDF. How many people are below the mean by more than one standard deviation? About 16% Step33: How many people are between 5'10" and 6'1"? Step34: Exercise Step35: What is the mean height in Pareto world? Step36: What fraction of people are shorter than the mean? Step37: Out of 7 billion people, how many do we expect to be taller than 1 km? You could use <tt>dist.cdf</tt> or <tt>dist.sf</tt>. Step38: How tall do we expect the tallest person to be? Step39: Exercise Step40: Exercise Step41: Bonus Example Step42: Here's what the CDF looks like on a linear scale. Step43: To check whether a Pareto model describes the data well, I plot the CCDF on a log-log scale. Step44: For the lognormal model I estimate mu and sigma using percentile-based statistics (median and IQR). Step45: Here's what the distribution, and fitted model, look like on a log-x scale.
3,564
<ASSISTANT_TASK:> Python Code: config = configparser.ConfigParser() config.sections() config.read('example.ini') config.sections() 'bitbucket.org' in config 'bytebong.com' in config config['bitbucket.org']['User'] config['DEFAULT']['Compression'] topsecret = config['topsecret.server.com'] topsecret['ForwardX11'] topsecret['Port'] for key in config['bitbucket.org']: print(key) config['bitbucket.org']['ForwardX11'] type(topsecret['Port']) type(int(topsecret['Port'])) type(topsecret.getint('Port')) type(topsecret.getfloat('Port')) int(topsecret['Port']) - 22.0 int(topsecret['Port']) - 22 try: topsecret.getint('ForwardX11') except ValueError: print(True) topsecret.getboolean('ForwardX11') config['bitbucket.org'].getboolean('ForwardX11') config.getboolean('bitbucket.org', 'Compression') topsecret.get('Port') topsecret.get('CompressionLevel') topsecret.get('Cipher') topsecret.get('Cipher', '3des-cbc') topsecret.get('CompressionLevel', '3') 'BatchMode' in topsecret topsecret.getboolean('BatchMode', fallback=True) config['DEFAULT']['BatchMode'] = 'no' topsecret.getboolean('BatchMode', fallback=True) import yaml with open("config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile) for section in cfg: print(section) print(cfg['mysql']) print(cfg['other']) # Load the configuration file with open("config.yml") as f: sample_config = f.read() config = configparser.RawConfigParser(allow_no_value=True) config.readfp(io.BytesIO(sample_config)) # List all contents print("List all contents") for section in config.sections(): print("Section: %s" % section) for options in config.options(section): print("x %s:::%s:::%s" % (options, config.get(section, options), str(type(options)))) # Print some contents print("\nPrint some contents") print(config.get('other', 'use_anonymous')) # Just get the value print(config.getboolean('other', 'use_anonymous')) # You know the datatype? <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Please note that default values have precedence over fallback values. For instance, in our example the 'CompressionLevel' key was specified only in the 'DEFAULT' section. If we try to get it from the section 'topsecret.server.com', we will always get the default, even if we specify a fallback Step2: The same fallback argument can be used with the getint(), getfloat() and getboolean() methods, for example
3,565
<ASSISTANT_TASK:> Python Code: import pandas as pd url = 'https://raw.githubusercontent.com/henriquepgomide/caRtola/master/data/2019/2019-medias-jogadores.csv' medias = pd.read_csv(url) medias.head() medias.shape medias.columns qtd_atletas = len(medias['player_id'].unique()) print(qtd_atletas) posicoes = medias['player_position'].unique() medias['Rank'] = None for posicao in posicoes: rank = medias[medias['player_position'] == posicao].player_id.rank(method='min') rank = rank - 1 medias.iloc[rank.index,-1] = rank colunas_unicos = ['Rank','player_id','player_position'] atletas = medias[colunas_unicos].drop_duplicates() atletas.head() atletas.shape partidas = pd.read_csv(r'https://raw.githubusercontent.com/henriquepgomide/caRtola/master/data/2019/2019_partidas.csv') partidas['home_score_norm'] = partidas['home_score'] / max(partidas['home_score']) partidas['away_score_norm'] = partidas['away_score'] / max(partidas['away_score']) partidas.head() partidas.shape df_partidas = pd.DataFrame() for rodada in range(1,39): df_rodada = pd.read_csv(f'https://raw.githubusercontent.com/henriquepgomide/caRtola/master/data/2019/rodada-{rodada}.csv') df_rodada['round'] = rodada df_partidas =df_partidas.append(df_rodada,sort=False) df_partidas.shape df_partidas = df_partidas[df_partidas['atletas.posicao_id'] != 'tec'] df_partidas = df_partidas.set_index('atletas.atleta_id').join(atletas.set_index('player_id')) df_partidas.head() df_partidas['Rank'] df_partidas.drop(df_partidas[df_partidas['Rank'].isnull()].index, inplace=True) df_partidas['Rank'] = df_partidas['Rank'].astype(int) import numpy as np posicao = 'ata' qtd_atletas = len(atletas[atletas.player_position == posicao]) M = np.zeros((qtd_atletas,qtd_atletas)) M M.shape df_partidas_posicao = df_partidas[df_partidas['atletas.posicao_id'] == posicao].copy() for partida in range(len(partidas)-1): #Vamos deixar a última partida de fora para testes df_rodada = df_partidas_posicao[df_partidas_posicao['round'] == partidas['round'][partida]] jogadores_casa = df_rodada[df_rodada['atletas.clube_id'] == partidas['home_team'][partida]] jogadores_visitantes = df_rodada[df_rodada['atletas.clube_id'] == partidas['away_team'][partida]] for j_casa in range(len(jogadores_casa)): for j_visitante in range(len(jogadores_visitantes)): score_casa = 0 score_visitante = 0 pontos_j_casa = jogadores_casa['atletas.pontos_num'].iloc[j_casa] pontos_j_visitante = jogadores_visitantes['atletas.pontos_num'].iloc[j_visitante] soma = pontos_j_casa + pontos_j_visitante if soma != 0: score_casa = pontos_j_casa / soma score_visitante = pontos_j_visitante / soma j1 = jogadores_casa['Rank'].iloc[j_casa] j2 = jogadores_visitantes['Rank'].iloc[j_visitante] M[j1,j1] = M[j1,j1] + partidas['home_score_norm'][partida] + score_casa M[j1,j2] = M[j1,j2] + partidas['away_score_norm'][partida] + score_visitante M[j2,j1] = M[j2,j1] + partidas['home_score_norm'][partida] + score_casa M[j2,j2] = M[j2,j2] + partidas['away_score_norm'][partida] + score_visitante M M = M / np.sum(M,axis=1) evals, evecs = np.linalg.eig(M.T) evec1 = evecs[:,np.isclose(evals, 1)] evec1 = evec1[:,0] stationary = evec1 / evec1.sum() stationary = stationary.real stationary medias[medias.player_position == posicao][list(stationary > 0.015)] stationaries = {} for posicao in posicoes: qtd_atletas = len(atletas[atletas.player_position == posicao]) M = np.zeros((qtd_atletas,qtd_atletas)) df_partidas_posicao = df_partidas[df_partidas['atletas.posicao_id'] == posicao].copy() for partida in range(len(partidas)-1): #Vamos deixar a última partida de fora para testes df_rodada = df_partidas_posicao[df_partidas_posicao['round'] == partidas['round'][partida]] jogadores_casa = df_rodada[df_rodada['atletas.clube_id'] == partidas['home_team'][partida]] jogadores_visitantes = df_rodada[df_rodada['atletas.clube_id'] == partidas['away_team'][partida]] for j_casa in range(len(jogadores_casa)): for j_visitante in range(len(jogadores_visitantes)): score_casa = 0 score_visitante = 0 pontos_j_casa = jogadores_casa['atletas.pontos_num'].iloc[j_casa] pontos_j_visitante = jogadores_visitantes['atletas.pontos_num'].iloc[j_visitante] soma = pontos_j_casa + pontos_j_visitante if soma != 0: score_casa = pontos_j_casa / soma score_visitante = pontos_j_visitante / soma def_n_vazada_casa = 0 if partidas['away_score_norm'][partida] > 0 else 1 def_n_vazada_visitante = 0 if partidas['home_score_norm'][partida] > 0 else 1 if posicao == 'ata': pontos_casa = partidas['home_score_norm'][partida] + score_casa pontos_visitante = partidas['away_score_norm'][partida] + score_visitante elif posicao == 'mei': pontos_casa = partidas['home_score_norm'][partida] + def_n_vazada_casa + score_casa pontos_visitante = partidas['away_score_norm'][partida] + def_n_vazada_visitante + score_visitante else: pontos_casa = def_n_vazada_casa + score_casa pontos_visitante = def_n_vazada_visitante + score_visitante j1 = jogadores_casa['Rank'].iloc[j_casa] j2 = jogadores_visitantes['Rank'].iloc[j_visitante] M[j1,j1] = M[j1,j1] + pontos_casa M[j1,j2] = M[j1,j2] + pontos_visitante M[j2,j1] = M[j2,j1] + pontos_casa M[j2,j2] = M[j2,j2] + pontos_visitante M = M / np.sum(M,axis=1) evals, evecs = np.linalg.eig(M.T) evec1 = evecs[:,np.isclose(evals, 1)] evec1 = evec1[:,0] stationary = evec1 / evec1.sum() stationary = stationary.real stationaries[posicao] = stationary rodada = 38 df_rodada = df_partidas[df_partidas['round'] == rodada].copy() df_rodada['Rank'] = df_rodada['Rank'].astype(int) df_rodada['probs'] = 0 for jogador in range(len(df_rodada)): posicao = df_rodada.iloc[jogador]['player_position'] rank = df_rodada.iloc[jogador]['Rank'] if rank: df_rodada.iloc[jogador,-1] = stationaries[posicao][rank] df_rodada = df_rodada[df_rodada['atletas.status_id'] == 'Provável'].copy() df_rodada.head() formacao = { 'ata': 3, 'mei': 3, 'lat': 2, 'zag': 2, 'gol':1 } cartoletas = 140 df_rodada.set_index('atletas.slug',inplace=True) z = df_rodada['probs'].to_dict() c = df_rodada['atletas.preco_num'].to_dict() dummies_posicao = pd.get_dummies(df_rodada['atletas.posicao_id']) dummies_posicao = dummies_posicao.to_dict() !pip install pulp from pulp import LpMaximize, LpProblem, lpSum, LpVariable prob = LpProblem("Melhor_Escalacao", LpMaximize) y = LpVariable.dicts("Atl",df_rodada.index,0,1,cat='Binary') prob += lpSum([z[i] * y[i] for i in y]) prob += lpSum([c[i] * y[i] for i in y]) <= cartoletas, "Limite de Cartoletas" prob += lpSum([dummies_posicao['ata'][i] * y[i] for i in y]) == formacao['ata'], "Quantidade Atacantes" prob += lpSum([dummies_posicao['lat'][i] * y[i] for i in y]) == formacao['lat'], "Quantidade Laterais" prob += lpSum([dummies_posicao['mei'][i] * y[i] for i in y]) == formacao['mei'], "Quantidade Meio" prob += lpSum([dummies_posicao['zag'][i] * y[i] for i in y]) == formacao['zag'], "Quantidade Zagueiros" prob += lpSum([dummies_posicao['gol'][i] * y[i] for i in y]) == formacao['gol'], "Quantidade Goleiro" prob.solve() escalados = [] for v in prob.variables(): if v.varValue == 1: atleta = v.name.replace('Atl_','').replace('_','-') escalados.append(atleta) print(atleta, "=", v.varValue) colunas = ['atletas.posicao_id','atletas.clube.id.full.name','atletas.pontos_num','atletas.preco_num'] df_rodada.loc[escalados][colunas] df_rodada.loc[escalados]['atletas.pontos_num'].sum() df_rodada.loc[escalados]['atletas.preco_num'].sum() jogar_em_casa = 5 times = { 'Internacional':3, 'Fortaleza':2 } times_casa = partidas[partidas['round'] == rodada]['home_team'] df_rodada.loc[df_rodada['atletas.clube_id'].isin(times_casa),'probs'] = df_rodada.loc[ df_rodada['atletas.clube_id'].isin(times_casa),'probs'] * (jogar_em_casa / 10 + 1) for time in times: df_rodada.loc[df_rodada['atletas.clube.id.full.name'] == time,'probs'] = df_rodada.loc[ df_rodada['atletas.clube.id.full.name'] == time,'probs'] * (times[time] / 10 + 1) z = df_rodada['probs'].to_dict() prob = LpProblem("Melhor_Escalacao", LpMaximize) y = LpVariable.dicts("Atl",df_rodada.index,0,1,cat='Binary') prob += lpSum([z[i] * y[i] for i in y]) prob += lpSum([c[i] * y[i] for i in y]) <= cartoletas, "Limite de Cartoletas" prob += lpSum([dummies_posicao['ata'][i] * y[i] for i in y]) == formacao['ata'], "Quantidade Atacantes" prob += lpSum([dummies_posicao['lat'][i] * y[i] for i in y]) == formacao['lat'], "Quantidade Laterais" prob += lpSum([dummies_posicao['mei'][i] * y[i] for i in y]) == formacao['mei'], "Quantidade Meio" prob += lpSum([dummies_posicao['zag'][i] * y[i] for i in y]) == formacao['zag'], "Quantidade Zagueiros" prob += lpSum([dummies_posicao['gol'][i] * y[i] for i in y]) == formacao['gol'], "Quantidade Goleiro" prob.solve() escalados = [] for v in prob.variables(): if v.varValue == 1: atleta = v.name.replace('Atl_','').replace('_','-') escalados.append(atleta) print(atleta, "=", v.varValue) colunas = ['atletas.posicao_id','atletas.clube.id.full.name','atletas.pontos_num','atletas.preco_num'] df_rodada.loc[escalados][colunas] df_rodada.loc[escalados]['atletas.pontos_num'].sum() df_rodada.loc[escalados]['atletas.preco_num'].sum() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Quantidade única de jogadores é do mesmo tamanho do Dataframe. Step2: Para o contexto desse estudo, vamos analisar cada posição utilizada no Cartola separadamente. Sendo assim criamos uma lista com todas as posições existentes no arquivo médias. Step3: Para facilitar a localização de cada jogador nas matrizes que construirmos, vamos criar um índice baseado no rankeamento do "player_id". Como teremos matrizes para cada posição, criamos um ranking para cada posição. Step4: Partidas Step5: Uma das hipóteses testadas nesse estudo, é o impacto da quantidade de gols do time na performance do jogador. Para facilitar a utilização desses dados, vamos normalizar as colunas de quantidade de gols dos time de casa e visitante. Step6: Dados das rodadas Step7: Para o contexto desse estudo não vamos analisar a performance de técnicos. Step8: Para colocar cada jogador em uma posição específica na matriz, vamos trazer a informação de ranking que criamos para o dataframe de partidas. Step9: Removendo jogadores não cadastrados Step10: Matriz M de estados Step11: Atualizando a matriz Step12: Depois de processar todas as partidas de todos os jogadores, vamos normalizar M para que todas as colunas somem 1. Step13: Distribuição estacionária Step14: Por final geramos uma array de tamanho d, lembrando que uma posição i aqui está relacionada a posição i no ranking de ids que criamos no começo do estudo. Step15: Podemos verificar por exemplo quem teve probabilidade maior que 1.5%. Step16: Calculando a distribuição para todas posições Step17: Escalando para a rodada Step18: Primeiro vamos criar um DataFrame somente com as informações da rodada e colocar as probabilidades que encontramos referente a cada jogador. Step19: Vamos utilizar também do recurso de status e só trabalhar com jogadores em status Provável. Step20: Otimizando a escalação Step21: Programação Linear Step22: Primeiro, iniciamos o problema de otimização e definimos uma função objetivo. Step23: Agora adicionamos todas as restrições e calculamos. Step24: Os jogadores escalados que maximizam as probabilidades dentro das restrições, ficam com o valor 1 para a variável de atletas. Step25: Podemos verificar qual foi o total de pontos que essa escalação somaria na última rodada. Step26: Também o custo total. Step27: Incluindo Palpites Step28: Agora, aumentamos as probabilidades dos jogadores que se enquadram nessa regra, multiplicando o seu valor atual, pela porcentagem de pontos que demos a ele, por exemplo Step29: Programação Linear Step30: Por fim geramos uma nova escalação, que levou em consideração os pesos que colocamos acima. Step31: Ao avaliar a escalação abaixo, geramos dessa vez uma pontuação de 81 pontos, 60% a mais que o resultado anterior.
3,566
<ASSISTANT_TASK:> Python Code: print(" pi ~= 3.14 (two first digits).") print(" pi ~= 22/7 = {} (two first digits).".format(22.0 / 7.0)) print(" pi ~= 355/113 = {} (six first digits).".format(355.0 / 113.0)) def mathpi(): from math import pi return pi print("First method: using math.pi gives pi ~= {:.17f} (17 digits are displayed here).".format(mathpi())) from decimal import Decimal bigpi = Decimal('3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679') print("The first 100 digits of pi are {}.".format(bigpi)) from random import uniform def montecarlo_pi(nbPoints=10000): Returns a probabilist estimate of pi, as a float number. nbInside = 0 # we pick a certain number of points (nbPoints) for i in range(nbPoints): x = uniform(0, 1) y = uniform(0, 1) # (x, y) is now a random point in the square [0, 1] × [0, 1] if (x**2 + y**2) < 1: # This point (x, y) is inside the circle C(0, 1) nbInside += 1 return 4 * float(nbInside) / floor(nbPoints) print("The simple Monte-Carlo method with {} random points gave pi = {}".format(10000, montecarlo_pi(10000))) import mpmath # from sympy import mpmath # on older sympy versions mp = mpmath.mp mp.dps = 1000 # number of digits my_pi = mp.pi # Gives pi to a thousand places print("A lazy method using the mpmath module:\npi is approximatly {} (with {} digits).".format(my_pi, mp.dps)) mp.dps = 100000 # number of digits len(str(mp.pi)) mpmath_pi = Decimal(str(mp.pi)) mp.dps = 140330 print(str(mp.pi)[2:][140317:140317+10]) %timeit mp.dps=140330;print(str(mp.pi)[2:][140317:140317+10]) %timeit mp.dps=1403230;print(str(mp.pi)[2:][1403217:1403217+10]) import math def gauss_legendre_1(max_step): Float number implementation of the Gauss-Legendre algorithm, for max_step steps. a = 1. b = 1./math.sqrt(2) t = 1./4.0 p = 1. for i in range(max_step): at = (a + b) / 2.0 bt = math.sqrt(a*b) tt = t - p*(a-at)**2 pt = 2.0 * p a, b, t, p = at, bt, tt, pt my_pi = ((a+b)**2)/(4.0*t) return my_pi my_pi = gauss_legendre_1(4) my_pi print("pi is approximately: {:.15f} (as a float number, precision is limited).".format(my_pi)) accuracy = 100*abs(math.pi - my_pi)/math.pi print("Accuracy % with math.pi: {:.4g}".format(accuracy)) accuracy = 100*abs(float(mpmath_pi) - my_pi)/float(mpmath_pi) print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) my_pi = gauss_legendre_1(40) my_pi print("pi is approximately: {:.15f} (as a float number, precision is limited).".format(my_pi)) accuracy = 100*abs(math.pi - my_pi)/math.pi print("Accuracy % with math.pi: {:.4g}".format(accuracy)) accuracy = 100*abs(float(mpmath_pi) - my_pi)/float(mpmath_pi) print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) from decimal import Decimal, getcontext def gauss_legendre_2(max_step): Decimal number implementation of the Gauss-Legendre algorithm, for max_step steps. # trick to improve precision getcontext().prec = 3 + 2**(max_step + 2) cst_2 = Decimal(2.0) cst_4 = Decimal(4.0) a = Decimal(1.0) b = Decimal(0.5).sqrt() t = Decimal(0.25) p = Decimal(1.0) for i in range(max_step): new_a = (a+b)/cst_2 new_b = (a*b).sqrt() new_t = Decimal(t - p*(a - new_a)**2) new_p = cst_2*p a, b, t, p = new_a, new_b, new_t, new_p my_pi = Decimal(((a+b)**2)/(cst_4*t)) return my_pi my_pi = gauss_legendre_2(5) print("pi is approximately: {}.".format(my_pi.to_eng_string()[:2**(5+1)])) accuracy = 100*abs(Decimal(math.pi) - my_pi)/Decimal(math.pi) print("Accuracy % with math.pi: {:.4g}".format(accuracy)) accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) %timeit gauss_legendre_1(8) %timeit gauss_legendre_2(8) def leibniz(max_step): Computing an approximation of pi with Leibniz series. my_pi = Decimal(0) for k in range(max_step): my_pi += Decimal((-1)**k) / Decimal(2*k+1) return Decimal(4) * my_pi getcontext().prec = 20 # trick to improve precision my_pi = leibniz(1000) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 20 # trick to improve precision my_pi = leibniz(10000) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) def bbp(max_step): Computing an approximation of pi with Bailey-Borwein-Plouffe series. my_pi = Decimal(0) for k in range(max_step): my_pi += (Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6))) return my_pi getcontext().prec = 20 # trick to improve precision my_pi = bbp(10) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 200 # trick to improve precision my_pi = bbp(200) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 500 # trick to improve precision my_pi = bbp(500) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 10 + 1000 # trick to improve precision %timeit bbp(1000) getcontext().prec = 10 + 2000 # trick to improve precision %timeit bbp(2000) def bellard(max_step): Computing an approximation of pi with Bellard series. my_pi = Decimal(0) for k in range(max_step): my_pi += (Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1) + Decimal(1)/(10*k+9) - Decimal(64)/(10*k+3) - Decimal(32)/(4*k+1) - Decimal(4)/(10*k+5) - Decimal(4)/(10*k+7) -Decimal(1)/(4*k+3)) return my_pi * Decimal(1.0/(2**6)) getcontext().prec = 40 # trick to improve precision my_pi = bellard(10) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 800 # trick to improve precision my_pi = bellard(200) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 10 + 1000 # trick to improve precision %timeit bellard(1000) getcontext().prec = 10 + 2000 # trick to improve precision %timeit bellard(2000) from math import factorial def ramanujan(max_step): Computing an approximation of pi with a Ramanujan's formula. my_pi = Decimal(0) d_1103 = Decimal(1103) d_26390 = Decimal(26390) d_396 = Decimal(396) for k in range(max_step): my_pi += ((Decimal(factorial(4 * k))) * (d_1103 + d_26390 * Decimal(k))) / ( (Decimal(factorial(k)))**4 * (d_396**(4*k))) my_pi = my_pi * 2 * Decimal(2).sqrt() / Decimal(9801) my_pi = my_pi**(-1) return my_pi getcontext().prec = 40 # trick to improve precision my_pi = ramanujan(4) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 400 # trick to improve precision my_pi = ramanujan(40) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 2000 # trick to improve precision my_pi = ramanujan(200) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 10 + 2000 # trick to improve precision %timeit ramanujan(200) getcontext().prec = 10 + 5000 # trick to improve precision %timeit ramanujan(400) %%time getcontext().prec = 140350 # trick to improve precision i = 140317 my_pi = ramanujan(10000) print(str(my_pi)[2:][i:i+10]) mp.dps=140330 print(str(mp.pi)[2:][i:i+10]) from math import factorial def chudnovsky(max_step): Computing an approximation of pi with Bellard series. my_pi = Decimal(0) for k in range(max_step): my_pi += (Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))* (13591409+545140134*k)/(640320**(3*k))) my_pi = my_pi * Decimal(10005).sqrt()/4270934400 my_pi = my_pi**(-1) return my_pi getcontext().prec = 3000 # trick to improve precision my_pi = chudnovsky(200) my_pi accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 6000 # trick to improve precision my_pi = chudnovsky(400) accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 3000 # trick to improve precision %timeit chudnovsky(200) getcontext().prec = 6000 # trick to improve precision %timeit chudnovsky(400) def arccot(x, unity): Compute arccot(x) with a certain level of precision. x = Decimal(x) unity = Decimal(unity) mysum = xpower = unity / x n = 3 sign = -1 while True: xpower = xpower / (x*x) term = xpower / n if not term: break mysum += sign * term sign = -sign # we alternate the sign n += 2 return mysum def machin(digits): Compute pi with Machin's formula, with precision at least digits. unity = 10**(digits + 10) my_pi = Decimal(4) * (Decimal(4)*arccot(5, unity) - arccot(239, unity)) return my_pi / Decimal(unity) getcontext().prec = 10000 # trick to improve precision my_pi = machin(100) accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy)) getcontext().prec = 5000 # trick to improve precision %timeit machin(50) getcontext().prec = 10000 # trick to improve precision %timeit machin(100) %%time i = 14031 getcontext().prec = i + 20 # trick to improve precision mp.dps = i + 20 print(str(mp.pi)[2:][i:i+10]) my_pi = machin(11) print(str(my_pi)[2:][i:i+10]) %%time i = 140317 getcontext().prec = i + 20 # trick to improve precision mp.dps = i + 20 print(str(mp.pi)[2:][i:i+10]) my_pi = machin(50) print(str(my_pi)[2:][i:i+10]) def next_pi_digit(max_step): q, r, t, k, m, x = 1, 0, 1, 1, 3, 3 for j in range(max_step): if 4 * q + r - t < m * t: yield m # More details on Python generators can be found here http://stackoverflow.com/a/231855 q, r, t, k, m, x = 10*q, 10*(r-m*t), t, k, (10*(3*q+r))//t - 10*m, x else: q, r, t, k, m, x = q*k, (2*q+r)*x, t*x, k+1, (q*(7*k+2)+r*x)//(t*x), x+2 def generator_pi(max_step): big_str = ''.join(str(d) for d in next_pi_digit(max_step)) return Decimal(big_str[0] + '.' + big_str[1:]) getcontext().prec = 50 # trick to improve precision generator_pi(1000) getcontext().prec = 5000 # trick to improve precision generator_pi(1000) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This method is extremely limited, and will not give you more than 13 correct digits, as math.pi is stored as a float number (limited precision). Step2: If we know the digits, we can directly print them Step4: A simple Monte-Carlo method Step5: It is an interesting method, but it is just too limited for approximating digits of $\pi$. Step6: We can arbitrarily set the precision, with the constant mp.dps (digit numbers). Step7: Let save it for further comparison of simpler methods. Step8: We can solve the initial challenge easily Step9: And it will most probably be the quickest method presented here Step10: Asking for $10$ times more digits take about $100$ more of time (that's a bad news). Step12: The Gauss–Legendre iterative algorithm Step14: This first implementation of the Gauss-Legendre algorithm is limited to a precision of 13 or 14 digits. But it converges quickly ! (4 steps here). Step15: The second implementation of the Gauss-Legendre algorithm is now working better (when we adapt the precision). And it converges quickly ! (8 steps give a precision upto the 697th digits). Step17: Methods based on a convergent series Step19: This first formula is very inefficient! Step20: That's pretty impressive, in only $10$ steps! Step21: It is, of course, slower than the optimized algorithm from mpmath. Step23: Bellard's formula (hard) Step24: That's pretty impressive, in only $10$ steps! Step25: It is, of course, slower than the optimized algorithm from mpmath. Step27: It is also slower than BBP formula. Step28: $1595$ correct digits with $200$ terms, that's quite good!! Step29: Let's try to answer my initial question, using this naive implementation. Step31: ... It was too slow! Step32: It is very efficient, as Ramanujan's formula. Step33: It gets $2834$ correct numbers in $200$ steps! Step35: About $2$ seconds to find correctly the first $5671$ digits? That's slow! But hey, it's Python (dynamic typing etc). Step37: Applying Machin's formula Step38: So we got the first $9995$ digits correctly... in $45$ seconds. Step39: The program can be used to compute tens of thousands of digits in just a few seconds on a modern computer. Step40: It was too slow too! But at least it worked! Step41: It does not use Decimal numbers.
3,567
<ASSISTANT_TASK:> Python Code: # You want to be able to rotate scatterplots in 3D, so don't show them inline %matplotlib tk # 'pip install bunch' if you do not have 'bunch' package import bunch # Our utility code resides in module dim_reduce.py, which we import here: import dim_reduce from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() # a JavaScript-like object ('Bunch'), holding the training data for the built-in 'iris' dataset y = data.target # labels X = data.data # features (4 features for each sample) pca = PCA(n_components=3) # reduce feture set to 3 dimensions reduced_X = pca.fit_transform(X) # reduced 3D feature set visData = bunch.Bunch() visData.target = data.target visData.data = reduced_X dim_reduce.vis3D(visData, title="3D PCA", dotsize=30) pca = PCA(n_components=2) visData.data = pca.fit_transform(X) dim_reduce.vis2D(visData, title="2D PCA", dotsize=30) from sklearn.manifold import TSNE tsne = TSNE(n_components=3, random_state=0, learning_rate = 100) visData.data = tsne.fit_transform(X) dim_reduce.vis3D(visData, title="3D t-SNE", dotsize=30) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now let us apply a PCA dimensionality reduction method to the "iris" dataset (which is 4D). Step2: A 3D scatterplot should display in a separate window. Rotating it by clicking and dragging you can observe that 2D is enough to separate the classes in this case! Indeed, let's transform directly to 2D Step3: Similarly for t-SNE
3,568
<ASSISTANT_TASK:> Python Code: from auxi.tools.chemistry import thermochemistry as thermo #TODO: The following line of code is not working, and must be fixed. #thermo.convert_fact_file_to_auxi_thermo_file("path/to/factsage_file", "path/to/new_auxi_thermo_file") thermo.list_compounds() thermo.load_data_auxi('data') thermo.list_compounds() thermo.load_data_auxi() Cp_H2O = thermo.Cp("H2O[L]", 70.0) print("The Cp of 1 kg of water at 70 °C is", Cp_H2O, "kWh/K.") Cp_H2O = thermo.Cp("H2O[G]", 70.0) print("The Cp of 1 kg of water vapour at 70 °C is", Cp_H2O, "kWh/K.") m_ZrO2 = 2.34 Cp_ZrO2 = thermo.Cp("ZrO2[S1]", 893.5, m_ZrO2) print("The Cp of 2.34 kg of ZrO2[S1] at 893.5 °C is", Cp_ZrO2, "kWh/K.") H_H2O = thermo.H("H2O[L]", 70.0) print("The enthalpy of 1 kg of water at 70 °C is", H_H2O, "kWh.") H_H2O = thermo.H("H2O[G]", 70.0) print("The enthalpy of 1 kg of water vapour at 70 °C is", H_H2O, "kWh.") m_ZrO2 = 2.34 H_ZrO2 = thermo.H("ZrO2[S1]", 893.5, m_ZrO2) print("The enthalpy of 2.34 kg of ZrO2[S1] at 893.5 °C is", H_ZrO2, "kWh.") S_H2O = thermo.S("H2O[L]", 70.0) print("The entropy of 1 kg of water at 70 °C is", S_H2O, "kWh/K.") S_H2O = thermo.S("H2O[G]", 70.0) print("The entropy of 1 kg of water vapour at 70 °C is", S_H2O, "kWh/K.") m_ZrO2 = 2.34 S_ZrO2 = thermo.S("ZrO2[S1]", 893.5, m_ZrO2) print("The entropy of 2.34 kg of ZrO2[S1] at 893.5 °C is", S_ZrO2, "kWh/K.") G_H2O = thermo.G("H2O[L]", 70.0) print("The Gibbs free energy of 1 kg of water at 70 °C is", G_H2O, "kWh.") G_H2O = thermo.G("H2O[G]", 70.0) print("The Gibbs free energy of 1 kg of water vapour at 70 °C is", G_H2O, "kWh.") m_ZrO2 = 2.34 G_ZrO2 = thermo.G("ZrO2[S1]", 893.5, m_ZrO2) print("The Gibbs free energy of 2.34 kg of ZrO2[S1] at 893.5 °C is", G_ZrO2, "kWh.") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Loading Thermochemical Data Step2: The result lists all the compounds with the phases for which data are available. Taking the compound SiO2 as an example, data are available for eight solid phases (S1 to S8), for the liquid phase and for the gas phase. Step3: Calculating Heat Capacity Step4: The first parameter to the function must specify both the compound's formula and phase. If the phase is not specified it is impossible to calculate a result. The heat capacity of water is clearly significantly different from that of water vapour. Step5: The parameters to the auxi.tools.chemistry.thermochemistry.H function works the same as that of the auxi.tools.chemistry.thermochemistry.Cp function. Both formula and phase are required in the first parameter, the second is temperature in °C and the third is mass, which is optional with a default value of 1 kg. Step6: The parameters to the
3,569
<ASSISTANT_TASK:> Python Code: !pip install -q -U apache-beam[gcp] # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) import os from datetime import datetime import apache_beam as beam from apache_beam.io.gcp.datastore.v1new.datastoreio import WriteToDatastore PROJECT_ID = 'yourProject' # Change to your project. BUCKET = 'yourBucketName' # Change to the bucket you created. BQ_REGION = 'yourBigQueryRegion' # Change to your BigQuery region. DF_REGION = 'yourDataflowRegion' # Change to your Dataflow region. BQ_DATASET_NAME = 'recommendations' BQ_TABLE_NAME = 'playlist' DS_KIND = 'song' !gcloud config set project $PROJECT_ID try: from google.colab import auth auth.authenticate_user() print("Colab user is authenticated.") except: pass !bq mk --dataset \ --location={BQ_REGION} \ --project_id={PROJECT_ID} \ --headless=True \ {PROJECT_ID}:{BQ_DATASET_NAME} def run_copy_bq_data_pipeline(args): schema = 'list_Id:INT64, track_Id:INT64, track_title:STRING, track_artist:STRING' query = ''' SELECT id list_Id, tracks_data_id track_Id, tracks_data_title track_title, tracks_data_artist_name track_artist FROM `bigquery-samples.playlists.playlist` WHERE tracks_data_title IS NOT NULL AND tracks_data_id > 0 GROUP BY list_Id, track_Id, track_title, track_artist; ''' pipeline_options = beam.options.pipeline_options.PipelineOptions(**args) with beam.Pipeline(options=pipeline_options) as pipeline: _ = ( pipeline | 'ReadFromBigQuery' >> beam.io.Read(beam.io.BigQuerySource( project=PROJECT_ID, query=query, use_standard_sql=True)) | 'WriteToBigQuery' >> beam.io.WriteToBigQuery( table=BQ_TABLE_NAME, dataset=BQ_DATASET_NAME, project=PROJECT_ID, schema=schema, create_disposition='CREATE_IF_NEEDED', write_disposition='WRITE_TRUNCATE' ) ) DATASET = 'playlist' RUNNER = 'DataflowRunner' job_name = f'copy-bigquery-{datetime.utcnow().strftime("%y%m%d%H%M%S")}' args = { 'job_name': job_name, 'runner': RUNNER, 'project': PROJECT_ID, 'temp_location': f'gs://{BUCKET}/dataflow_tmp', 'region': DF_REGION } print("Pipeline args are set.") print("Running pipeline...") %time run_copy_bq_data_pipeline(args) print("Pipeline is done.") %%bigquery --project $PROJECT_ID CREATE OR REPLACE VIEW `recommendations.vw_item_groups` AS SELECT list_Id AS group_Id, track_Id AS item_Id FROM `recommendations.playlist` def create_entity(song_info, kind): from apache_beam.io.gcp.datastore.v1new.types import Entity from apache_beam.io.gcp.datastore.v1new.types import Key track_Id = song_info.pop("track_Id") key = Key([kind, track_Id]) song_entity = Entity(key) song_entity.set_properties(song_info) return song_entity def run_export_to_datatore_pipeline(args): query = f''' SELECT track_Id, MAX(track_title) track_title, MAX(track_artist) artist FROM `{BQ_DATASET_NAME}.{BQ_TABLE_NAME}` GROUP BY track_Id ''' pipeline_options = beam.options.pipeline_options.PipelineOptions(**args) with beam.Pipeline(options=pipeline_options) as pipeline: _ = ( pipeline | 'ReadFromBigQuery' >> beam.io.Read(beam.io.BigQuerySource( project=PROJECT_ID, query=query, use_standard_sql=True)) | 'ConvertToDatastoreEntity' >> beam.Map(create_entity, DS_KIND) | 'WriteToDatastore' >> WriteToDatastore(project=PROJECT_ID) ) import os from datetime import datetime DATASET = 'playlist' RUNNER = 'DataflowRunner' job_name = f'load-datastore-{datetime.utcnow().strftime("%y%m%d%H%M%S")}' args = { 'job_name': job_name, 'runner': RUNNER, 'project': PROJECT_ID, 'temp_location': f'gs://{BUCKET}/dataflow_tmp', 'region': DF_REGION } print("Pipeline args are set.") print("Running pipeline...") %time run_export_to_datatore_pipeline(args) print("Pipeline is done.") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import libraries Step2: Configure GCP environment settings Step3: Authenticate your GCP account Step4: Copy the public playlist data into your BigQuery dataset Step5: Define the Dataflow pipeline Step6: Run the Dataflow pipeline Step7: Create the vw_item_groups view Step8: Export song information to Datastore Step9: Run the Dataflow pipeline
3,570
<ASSISTANT_TASK:> Python Code: # TFlearn libraries import tflearn from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.estimator import regression import tflearn.datasets.mnist as mnist # General purpose libraries import matplotlib.pyplot as plt import numpy as np import math # Extract data from mnist.load_data() x, y, x_test, y_test = mnist.load_data(one_hot = True) # View number of samples in data sets print 'x has shape {}'.format(x.shape) print 'y has shape {}'.format(y.shape) print 'x_test has shape {}'.format(x_test.shape) print 'y_test has shape {}'.format(y_test.shape) # Get first image of training set x_first = x[0] print 'x_first has shape {}'.format(x_first.shape) # Reshape the array into 28 x 28 array (2-dimensional array) x_first_reshaped = x_first.reshape((28, 28)) print 'x_first_reshaped has the shape {}'.format(x_first_reshaped.shape) # Plot plt.imshow(x_first_reshaped, cmap='gray') plt.show() # Reshape x x_reshaped = x.reshape([-1, 28, 28, 1]) print 'x_reshaped has the shape {}'.format(x_reshaped.shape) # Get first reshaped image of x x_reshaped_first = x_reshaped[0] # View x_reshaped_first x_reshaped_first # Reshape x_test x_test_reshaped = x_test.reshape([-1, 28, 28, 1]) print 'x_test_reshaped has the shape {}'.format(x_test_reshaped.shape) print 'x_reshaped has the shape {}'.format(x_reshaped.shape) print 'x_test_reshaped has the shape {}'.format(x_test_reshaped.shape) print 'y has the shape {}'.format(y.shape) print 'y_test has the shape {}'.format(y_test.shape) # sentdex's code to build the neural net using tflearn # Input layer --> conv layer w/ max pooling --> conv layer w/ max pooling --> fully connected layer --> output layer convnet = input_data(shape = [None, 28, 28, 1], name = 'input') convnet = conv_2d(convnet, 32, 2, activation = 'relu') convnet = max_pool_2d(convnet, 2) convnet = conv_2d(convnet, 64, 2, activation = 'relu') convnet = max_pool_2d(convnet, 2) convnet = fully_connected(convnet, 1024, activation = 'relu') # convnet = dropout(convnet, 0.8) convnet = fully_connected(convnet, 10, activation = 'softmax') convnet = regression(convnet, optimizer = 'sgd', learning_rate = 0.01, loss = 'categorical_crossentropy', name = 'targets') model = tflearn.DNN(convnet) model.fit( {'input': x_reshaped}, {'targets': y}, n_epoch = 1, validation_set = ({'input': x_test_reshaped}, {'targets': y_test}), snapshot_step = 500, show_metric = True ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Gathering Data Step2: It looks like each sample (55k samples in the training set and 10k samples in the test set). Let's just try to output 1 image if we can. Step3: Okay, so it's a 7. Here, we reshaped the data from being a single array of 784 elements to 28 arrays of 28 elements each. Step4: Here, I'm a bit confused as to exactly what the 4 elements in reshape are. Through a bit of research, I've learned that the -1 input means "unknown / undisclosed parameter" which will be figured out by the rest of the parameters. Step5: I think I'm right... Step6: Build Model Step7: That's all sentdex does to build his 2D CNN. I've obviously have yet to play around with any of the parameters yet, but let's just try to understand his code for a second.
3,571
<ASSISTANT_TASK:> Python Code: %%file sq.py def square(n): return n*n import firefly remote_sq = firefly.Client("http://127.0.0.1:8000") remote_sq.square(n=4) %%file add.py # your code here %%file credit_grade.py Program to find the credit grade of a person. import zlib import random def find_credit_grade(email): Returns the credit grade of the person identified by the given email address. The credit grade can be either A, B, C, D, E, F or G. # since we need to give the same grade everytime the function is called # with the same email. Using the checksum of the string as random seed # to get the same result everytime when used with the same email. seed = zlib.adler32(email.encode("utf-8")) r = random.Random(seed) return r.choice(["A", "B", "C", "D", "E", "F", "G"]) credit_grade_api = firefly.Client("http://127.0.0.1:8000/") credit_grade_api.find_credit_grade(email="alice@example.com") %%file credit_risk_service.py Service to expose the credit risk model as an API. from sklearn.externals import joblib # read the encoders and the model grade_encoder = joblib.load("../notebooks/le_grade.pkl") ownership_encoder = joblib.load("../notebooks/le_ownership.pkl") model = joblib.load("../notebooks/model.pkl") def predict(amount, years, age, ownership, income, grade): Returns the probablity of default for given features. # encoders work on a vector. Wrapping in a list as we only have a single value ownership_code = ownership_encoder.transform([ownership])[0] grade_code = grade_encoder.transform([grade])[0] # important to pass the features in the same order as we built the model features = [amount, grade_code, years, ownership_code, income, age] # probablity for not-defaulting and defaulting # Again, wrapping in a list as a list of features is expected p0, p1 = model.predict_proba([features])[0] return p1 import firefly credit_risk_api = firefly.Client("http://127.0.0.1:9000") credit_risk_api.predict(amount=10000, years=2, age=35, ownership='RENT', income=12345, grade='A') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let us run it as a service using firefly by running the following command in your terminal. Step2: The function will be available with the same name in the client. Please note that the client functions takes parameters only by name. Step5: Credit Grade Service Step6: Deploy it as a servive using Firefly. Step9: Deploying the ML model Step10: Run it as a service using firefly, again from your terminal. Let us use port 9000 now as port 8000 is used by the credit grade service.
3,572
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # Use seaborn for pairplot !pip install -q seaborn import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns # Make numpy printouts easier to read. np.set_printoptions(precision=3, suppress=True) import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing print(tf.__version__) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'] raw_dataset = pd.read_csv(url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True) dataset = raw_dataset.copy() dataset.tail() dataset.isna().sum() dataset = dataset.dropna() origin = dataset.pop('Origin') dataset['USA'] = (origin == 1)*1.0 dataset['Europe'] = (origin == 2)*1.0 dataset['Japan'] = (origin == 3)*1.0 dataset.tail() train_dataset = dataset.sample(frac=0.8, random_state=0) test_dataset = dataset.drop(train_dataset.index) sns.pairplot(train_dataset[["MPG", "Cylinders", "Displacement", "Weight"]], diag_kind="kde") train_stats = train_dataset.describe() train_stats.pop("MPG") train_stats = train_stats.transpose() train_stats train_features = train_dataset.copy() test_features = test_dataset.copy() train_labels = train_features.pop('MPG') test_labels = test_features.pop('MPG') train_dataset.describe().transpose()[['mean', 'std']] normalizer = preprocessing.Normalization(axis=-1) normalizer.adapt(np.array(train_features)) print(normalizer.mean.numpy()) first = np.array(train_features[:1]) with np.printoptions(precision=2, suppress=True): print('First example:', first) print() print('Normalized:', normalizer(first).numpy()) horsepower = np.array(train_features['Horsepower']) horsepower_normalizer = preprocessing.Normalization(input_shape=[1,], axis=None) horsepower_normalizer.adapt(horsepower) horsepower_model = tf.keras.Sequential([ horsepower_normalizer, layers.Dense(units=1) ]) horsepower_model.summary() horsepower_model.predict(horsepower[:10]) horsepower_model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.1), loss='mean_absolute_error') %%time history = horsepower_model.fit( train_features['Horsepower'], train_labels, epochs=100, # suppress logging verbose=0, # Calculate validation results on 20% of the training data validation_split = 0.2) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch hist.tail() def plot_loss(history): plt.plot(history.history['loss'], label='loss') plt.plot(history.history['val_loss'], label='val_loss') plt.ylim([0, 10]) plt.xlabel('Epoch') plt.ylabel('Error [MPG]') plt.legend() plt.grid(True) plot_loss(history) test_results = {} test_results['horsepower_model'] = horsepower_model.evaluate( test_features['Horsepower'], test_labels, verbose=0) x = tf.linspace(0.0, 250, 251) y = horsepower_model.predict(x) def plot_horsepower(x, y): plt.scatter(train_features['Horsepower'], train_labels, label='Data') plt.plot(x, y, color='k', label='Predictions') plt.xlabel('Horsepower') plt.ylabel('MPG') plt.legend() plot_horsepower(x,y) linear_model = tf.keras.Sequential([ normalizer, layers.Dense(units=1) ]) linear_model.predict(train_features[:10]) linear_model.layers[1].kernel linear_model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.1), loss='mean_absolute_error') %%time history = linear_model.fit( train_features, train_labels, epochs=100, # suppress logging verbose=0, # Calculate validation results on 20% of the training data validation_split = 0.2) plot_loss(history) test_results['linear_model'] = linear_model.evaluate( test_features, test_labels, verbose=0) def build_and_compile_model(norm): model = keras.Sequential([ norm, layers.Dense(64, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(1) ]) model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam(0.001)) return model model = build_model() model.summary() %%time history = dnn_horsepower_model.fit( train_features['Horsepower'], train_labels, validation_split=0.2, verbose=0, epochs=100) plot_loss(history) x = tf.linspace(0.0, 250, 251) y = dnn_horsepower_model.predict(x) plot_horsepower(x, y) test_results['dnn_horsepower_model'] = dnn_horsepower_model.evaluate( test_features['Horsepower'], test_labels, verbose=0) dnn_model = build_and_compile_model(normalizer) dnn_model.summary() %%time history = dnn_model.fit( train_features, train_labels, validation_split=0.2, verbose=0, epochs=100) plot_loss(history) test_results['dnn_model'] = dnn_model.evaluate(test_features, test_labels, verbose=0) pd.DataFrame(test_results, index=['Mean absolute error [MPG]']).T test_predictions = dnn_model.predict(test_features).flatten() a = plt.axes(aspect='equal') plt.scatter(test_labels, test_predictions) plt.xlabel('True Values [MPG]') plt.ylabel('Predictions [MPG]') lims = [0, 50] plt.xlim(lims) plt.ylim(lims) _ = plt.plot(lims, lims) error = test_predictions - test_labels plt.hist(error, bins=25) plt.xlabel('Prediction Error [MPG]') _ = plt.ylabel('Count') dnn_model.save('dnn_model') reloaded = tf.keras.models.load_model('dnn_model') test_results['reloaded'] = reloaded.evaluate( test_features, test_labels, verbose=0) pd.DataFrame(test_results, index=['Mean absolute error [MPG]']).T <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basic regression Step2: Auto MPG 数据集 Step3: 数据清洗 Step4: 为了保证这个初始示例的简单性,删除这些行。 Step5: "Origin" 列实际上是分类的,而不是数字。因此,使用 pd.get_dummies 将其转换为独热码: Step6: 拆分训练数据集和测试数据集 Step7: 数据检查 Step8: 也可以查看总体的数据统计 Step9: 从标签中分离特征 Step10: 归一化 Step11: 使用不同的尺度和范围对特征归一化是好的实践。尽管模型可能 在没有特征归一化的情况下收敛,它会使得模型训练更加复杂,并会造成生成的模型依赖输入所使用的单位选择。 Step12: 然后对其执行 .adapt() 以适应数据: Step13: 这将计算均值和方差,并将它们存储在层中。 Step14: 当层被调用时,它会返回输入数据,每个特征独立归一化: Step15: 线性回归 Step16: 构建序贯模型: Step17: 此模型将根据 Horsepower 预测 MPG。 Step18: 构建模型后,使用 Model.compile() 方法配置训练过程。要编译的最重要参数是 loss 和 optimizer,因为它们定义了将要优化的内容 (mean_absolute_error) 以及优化的方法(使用 optimizers.Adam)。 Step19: 训练配置完成后,使用 Model.fit() 执行训练: Step20: 使用 history 对象中存储的统计信息可视化模型的训练进度。 Step21: 收集测试集上的结果,以便稍后使用: Step22: 由于这是一个单变量回归,因此很容易将模型的预测视为输入的函数: Step23: 多个输入 Step24: 当您对一批输入调用此模型时,它会为每个样本生成 units=1 输出。 Step25: 当您调用模型时,将构建其权重矩阵。现在,您可以看到 kernel($y=mx+b$ 中的 $m$)的形状为 (9,1)。 Step26: 使用与单输入 horsepower 模型相同的 compile 和 fit 调用: Step27: 使用所有输入可以实现比 horsepower 模型低得多的训练和验证误差: Step28: 收集测试集上的结果,以便稍后使用: Step29: 模型 Step30: 一个变量 Step31: 使用 .summary 方法来打印该模型的简单描述。 Step32: 对模型进行1000个周期的训练,并在 history 对象中记录训练和验证的准确性。 Step33: 此模型略优于线性马力模型。 Step34: 如果您将预测值绘制为 Horsepower 的函数,则将看到此模型如何利用隐藏层提供的非线性: Step35: 收集测试集上的结果,以便稍后使用: Step36: 完整模型 Step37: 收集测试集上的结果: Step38: 性能 Step39: 这些结果与训练期间看到的验证误差相匹配。 Step40: 看起来模型预测得相当出色。 Step41: 如果您对模型感到满意,请将其保存以备以后使用: Step42: 如果您重新加载模型,它会给出相同的输出:
3,573
<ASSISTANT_TASK:> Python Code: # Load libraries from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_classification # Generate features matrix and target vector X, y = make_classification(n_samples = 10000, n_features = 3, n_informative = 3, n_redundant = 0, n_classes = 2, random_state = 1) # Create logistic regression logit = LogisticRegression() # Cross-validate model using precision cross_val_score(logit, X, y, scoring="f1") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate Features And Target Data Step2: Create Logistic Regression Step3: Cross-Validate Model Using F1
3,574
<ASSISTANT_TASK:> Python Code: from ggplot import * import pandas as pd from sklearn import datasets # import iris data iris = datasets.load_iris() df1 = pd.DataFrame(iris.data, columns = iris.feature_names) df2 = pd.DataFrame(iris.target_names[iris.target]) df = pd.concat([df1, df2], axis = 1) df.head() df.columns = ['sl', 'sw', 'pl', 'pw', 'species'] p1 = ggplot(aes(x = 'sl', y = 'sw', color = 'species'), data = df) + geom_point() p1 p2 = ggplot(aes(x = 'sl', y = 'sw', group = 'species', color = 'species'), data = df) + \ geom_point() + geom_smooth(alpha = 0.5) + theme_bw() p2 p3 = ggplot(aes(x = 'sl', y = 'sw', color = 'species'), data = df[df.species != 'setosa']) + \ geom_point() + theme_538() p3 p3 = ggplot(aes(x = 'sl'), data = df) + geom_histogram() + facet_wrap('species', ncol = 1) p3 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Step2: geom_point (scatter plot) Step3: The plot shows that setosa class can be linearly separated from other two classes. Step4: geom_points with subsetting Step5: geom_histogram with facetting
3,575
<ASSISTANT_TASK:> Python Code: import opsimsummary as oss from opsimsummary import Tiling, HealpixTiles # import snsims import healpy as hp %matplotlib inline import matplotlib.pyplot as plt class NoTile(Tiling): pass noTile = NoTile() class MyTile(Tiling): def __init__(self): pass @property def tileIDSequence(self): return np.arange(100) def tileIDsForSN(self, ra, dec): x = ra + dec y = np.remainder(x, 100.) return np.floor(y) def area(self, tileID): return 1. def pointingSequenceForTile(self, tileID, pointings): return None def positions(self): pass myTile = MyTile() issubclass(HealpixTiles, Tiling) help(HealpixTiles) datadir = os.path.join(oss.__path__[0], 'example_data') opsimdb = os.path.join(datadir, 'enigma_1189_micro.db') NSIDE = 4 hpOpSim = oss.HealPixelizedOpSim.fromOpSimDB(opsimdb, NSIDE=NSIDE) NSIDE hpTileshpOpSim = HealpixTiles(healpixelizedOpSim=hpOpSim, nside=NSIDE) hpTileshpOpSim.pointingSequenceForTile(1, allPointings=None) phi, theta = hpTileshpOpSim.positions(1, 10000) mapvals = np.ones(hp.nside2npix(NSIDE)) * hp.UNSEEN mapvals[1] = 100 hp.ang2pix(NSIDE, np.radians(theta), np.radians(phi), nest=True) theta_c, phi_c = hp.pix2ang(4, 1, nest=True) hp.mollview(mapvals, nest=True) hp.projscatter(np.radians(theta), np.radians(phi), **dict(s=0.0002)) hp.projscatter(theta_c, phi_c, **dict(s=8., c='r')) %timeit hpTileshpOpSim.pointingSequenceForTile(33, allPointings=None) preCompMap = os.path.join(oss.__path__[0], 'example_data', 'healpixels_micro.db') hpTilesMap = HealpixTiles(nside=1, preComputedMap=preCompMap) hpTilesMap.pointingSequenceForTile(10, allPointings=None) %timeit hpOpSim.obsHistIdsForTile(34) hpTiles = HealpixTiles(healpixelizedOpSim=hpOpSim) hpTiles.pointingSequenceForTile(34, allPointings=None) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This section pertains to how to write a new Tiling class Step2: ``` Step4: Using the class HealpixTiles
3,576
<ASSISTANT_TASK:> Python Code: import seaborn as sns; sns.set(color_codes=True) tips = sns.load_dataset("tips") ax = sns.barplot(x="day", y="total_bill", data=tips) ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips) from echarts import Echart, Legend, Bar, Axis, Line from IPython.display import HTML chart = Echart('GDP', 'This is a fake chart') chart.use(Bar('China', [2, 3, 4, 5])) chart.use(Legend(['GDP'])) chart.use(Axis('category', 'bottom', data=['Nov', 'Dec', 'Jan', 'Feb'])) chart = Echart('GDP', 'This is a fake chart') chart.use(Line('China', [2, 5, 4, 7])) chart.use(Legend(['GDP'])) chart.use(Axis('category', 'bottom', data=['Nov', 'Dec', 'Jan', 'Feb'])) chart.plot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: https
3,577
<ASSISTANT_TASK:> Python Code: import numpy as np import itertools pop_size = 60 seq_length = 100 alphabet = ['A', 'T', 'G', 'C'] base_haplotype = "AAAAAAAAAA" pop = {} pop["AAAAAAAAAA"] = 40 pop["AAATAAAAAA"] = 30 pop["AATTTAAAAA"] = 30 pop["AAATAAAAAA"] mutation_rate = 0.0001 # per gen per individual per site def get_mutation_count(): mean = mutation_rate * pop_size * seq_length return np.random.poisson(mean) get_mutation_count() pop.keys() [x/float(pop_size) for x in pop.values()] def get_random_haplotype(): haplotypes = pop.keys() frequencies = [x/float(pop_size) for x in pop.values()] total = sum(frequencies) frequencies = [x / total for x in frequencies] return np.random.choice(haplotypes, p=frequencies) get_random_haplotype() def get_mutant(haplotype): site = np.random.randint(seq_length) possible_mutations = list(alphabet) possible_mutations.remove(haplotype[site]) mutation = np.random.choice(possible_mutations) new_haplotype = haplotype[:site] + mutation + haplotype[site+1:] return new_haplotype get_mutant("AAAAAAAAAA") def mutation_event(): haplotype = get_random_haplotype() if pop[haplotype] > 1: pop[haplotype] -= 1 new_haplotype = get_mutant(haplotype) if new_haplotype in pop: pop[new_haplotype] += 1 else: pop[new_haplotype] = 1 mutation_event() pop def mutation_step(): mutation_count = get_mutation_count() for i in range(mutation_count): mutation_event() mutation_step() pop def get_offspring_counts(): haplotypes = pop.keys() frequencies = [x/float(pop_size) for x in pop.values()] return list(np.random.multinomial(pop_size, frequencies)) get_offspring_counts() def offspring_step(): counts = get_offspring_counts() for (haplotype, count) in zip(pop.keys(), counts): if (count > 0): pop[haplotype] = count else: del pop[haplotype] offspring_step() pop def time_step(): mutation_step() offspring_step() generations = 500 def simulate(): for i in range(generations): time_step() simulate() pop pop = {"AAAAAAAAAA": pop_size} history = [] def simulate(): clone_pop = dict(pop) history.append(clone_pop) for i in range(generations): time_step() clone_pop = dict(pop) history.append(clone_pop) simulate() pop history[0] history[1] history[2] pop def get_distance(seq_a, seq_b): diffs = 0 length = len(seq_a) assert len(seq_a) == len(seq_b) for chr_a, chr_b in zip(seq_a, seq_b): if chr_a != chr_b: diffs += 1 return diffs / float(length) get_distance("AAAAAAAAAA", "AAAAAAAAAB") def get_diversity(population): haplotypes = population.keys() haplotype_count = len(haplotypes) diversity = 0 for i in range(haplotype_count): for j in range(haplotype_count): haplotype_a = haplotypes[i] haplotype_b = haplotypes[j] frequency_a = population[haplotype_a] / float(pop_size) frequency_b = population[haplotype_b] / float(pop_size) frequency_pair = frequency_a * frequency_b diversity += frequency_pair * get_distance(haplotype_a, haplotype_b) return diversity get_diversity(pop) def get_diversity_trajectory(): trajectory = [get_diversity(generation) for generation in history] return trajectory get_diversity_trajectory() %matplotlib inline import matplotlib.pyplot as plt import matplotlib as mpl plt.plot(get_diversity_trajectory()) def diversity_plot(): mpl.rcParams['font.size']=14 trajectory = get_diversity_trajectory() plt.plot(trajectory, "#447CCD") plt.ylabel("diversity") plt.xlabel("generation") diversity_plot() def get_divergence(population): haplotypes = population.keys() divergence = 0 for haplotype in haplotypes: frequency = population[haplotype] / float(pop_size) divergence += frequency * get_distance(base_haplotype, haplotype) return divergence def get_divergence_trajectory(): trajectory = [get_divergence(generation) for generation in history] return trajectory get_divergence_trajectory() def divergence_plot(): mpl.rcParams['font.size']=14 trajectory = get_divergence_trajectory() plt.plot(trajectory, "#447CCD") plt.ylabel("divergence") plt.xlabel("generation") divergence_plot() def get_frequency(haplotype, generation): pop_at_generation = history[generation] if haplotype in pop_at_generation: return pop_at_generation[haplotype]/float(pop_size) else: return 0 get_frequency("AAAAAAAAAA", 4) def get_trajectory(haplotype): trajectory = [get_frequency(haplotype, gen) for gen in range(generations)] return trajectory get_trajectory("AAAAAAAAAA") def get_all_haplotypes(): haplotypes = set() for generation in history: for haplotype in generation: haplotypes.add(haplotype) return haplotypes get_all_haplotypes() haplotypes = get_all_haplotypes() for haplotype in haplotypes: plt.plot(get_trajectory(haplotype)) plt.show() colors = ["#781C86", "#571EA2", "#462EB9", "#3F47C9", "#3F63CF", "#447CCD", "#4C90C0", "#56A0AE", "#63AC9A", "#72B485", "#83BA70", "#96BD60", "#AABD52", "#BDBB48", "#CEB541", "#DCAB3C", "#E49938", "#E68133", "#E4632E", "#DF4327", "#DB2122"] colors_lighter = ["#A567AF", "#8F69C1", "#8474D1", "#7F85DB", "#7F97DF", "#82A8DD", "#88B5D5", "#8FC0C9", "#97C8BC", "#A1CDAD", "#ACD1A0", "#B9D395", "#C6D38C", "#D3D285", "#DECE81", "#E8C77D", "#EDBB7A", "#EEAB77", "#ED9773", "#EA816F", "#E76B6B"] def stacked_trajectory_plot(xlabel="generation"): mpl.rcParams['font.size']=18 haplotypes = get_all_haplotypes() trajectories = [get_trajectory(haplotype) for haplotype in haplotypes] plt.stackplot(range(generations), trajectories, colors=colors_lighter) plt.ylim(0, 1) plt.ylabel("frequency") plt.xlabel(xlabel) stacked_trajectory_plot() def get_snp_frequency(site, generation): minor_allele_frequency = 0.0 pop_at_generation = history[generation] for haplotype in pop_at_generation.keys(): allele = haplotype[site] frequency = pop_at_generation[haplotype] / float(pop_size) if allele != "A": minor_allele_frequency += frequency return minor_allele_frequency get_snp_frequency(3, 5) def get_snp_trajectory(site): trajectory = [get_snp_frequency(site, gen) for gen in range(generations)] return trajectory get_snp_trajectory(3) def get_all_snps(): snps = set() for generation in history: for haplotype in generation: for site in range(seq_length): if haplotype[site] != "A": snps.add(site) return snps def snp_trajectory_plot(xlabel="generation"): mpl.rcParams['font.size']=18 snps = get_all_snps() trajectories = [get_snp_trajectory(snp) for snp in snps] data = [] for trajectory, color in itertools.izip(trajectories, itertools.cycle(colors)): data.append(range(generations)) data.append(trajectory) data.append(color) plt.plot(*data) plt.ylim(0, 1) plt.ylabel("frequency") plt.xlabel(xlabel) snp_trajectory_plot() pop_size = 50 seq_length = 100 generations = 500 mutation_rate = 0.0001 # per gen per individual per site seq_length * mutation_rate 2 * pop_size * seq_length * mutation_rate base_haplotype = ''.join(["A" for i in range(seq_length)]) pop.clear() del history[:] pop[base_haplotype] = pop_size simulate() plt.figure(num=None, figsize=(14, 14), dpi=80, facecolor='w', edgecolor='k') plt.subplot2grid((3,2), (0,0), colspan=2) stacked_trajectory_plot(xlabel="") plt.subplot2grid((3,2), (1,0), colspan=2) snp_trajectory_plot(xlabel="") plt.subplot2grid((3,2), (2,0)) diversity_plot() plt.subplot2grid((3,2), (2,1)) divergence_plot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Make population dynamic model Step2: Setup a population of sequences Step3: Add mutation Step4: Walk through population and mutate basepairs. Use Poisson splitting to speed this up (you may be familiar with Poisson splitting from its use in the Gillespie algorithm). Step5: Here we use Numpy's Poisson random number. Step6: We need to get random haplotype from the population. Step7: Here we use Numpy's weighted random choice. Step8: Here, we take a supplied haplotype and mutate a site at random. Step9: Putting things together, in a single mutation event, we grab a random haplotype from the population, mutate it, decrement its count, and then check if the mutant already exists in the population. If it does, increment this mutant haplotype; if it doesn't create a new haplotype of count 1. Step10: To create all the mutations that occur in a single generation, we draw the total count of mutations and then iteratively add mutation events. Step11: Add genetic drift Step12: Here we use Numpy's multinomial random sample. Step13: We then need to assign this new list of haplotype counts to the pop dictionary. To save memory and computation, if a haplotype goes to 0, we remove it entirely from the pop dictionary. Step14: Combine and iterate Step15: Can iterate this over a number of generations. Step16: Record Step17: Analyze trajectories Step18: First, we need to calculate the number of differences per site between two arbitrary sequences. Step19: We calculate diversity as a weighted average between all pairs of haplotypes, weighted by pairwise haplotype frequency. Step20: Plot diversity Step21: Here, we make a simple line plot using matplotlib's plot function. Step22: Here, we style the plot a bit with x and y axes labels. Step23: Analyze and plot divergence Step24: Plot haplotype trajectories Step25: We want to plot all haplotypes seen during the simulation. Step26: Here is a simple plot of their overall frequencies. Step27: We can use stackplot to stack these trajectoies on top of each other to get a better picture of what's going on. Step28: Plot SNP trajectories Step29: Find all variable sites. Step30: Scale up Step31: In this case there are $\mu$ = 0.01 mutations entering the population every generation. Step32: And the population genetic parameter $\theta$, which equals $2N\mu$, is 1.
3,578
<ASSISTANT_TASK:> Python Code: from collatex import * collation = Collation() witness_1707 = open( "../data/sonnet/Lope_soneto_FR_1707.txt", encoding='utf-8' ).read() witness_1822 = open( "../data/sonnet/Lope_soneto_FR_1822.txt", encoding='utf-8' ).read() collation.add_plain_witness( "wit 1707", witness_1707 ) collation.add_plain_witness( "wit 1822", witness_1822 ) alignment_table = collate(collation, output='html2') import glob, re, os path = '../data/sonnet/' # put the path into a variable os.makedirs(path + 'norm', exist_ok=True) # create a new folder, if does not exist files = [os.path.basename(x) for x in glob.glob(path+'*.txt')] # take all txt files in the directory for file in files: # for each file in the directory ### READ THE FILE CONTENT file_opened = open(path+file, 'r', encoding='utf-8') # open the file in mode 'r' (read) content = file_opened.read() # read the file content ### ALL TO LOWER CASE lowerContent = content.lower() ### REMOVE PUNCTUATION # replace everything that is not alphanumeric character (\w) or space (\s) with nothing or whitespace, depending on languages noPunct_lowerContent = re.sub(r'[^\w\s]','',lowerContent) ### REMOVE MULTIPLE WHITESPACES regularSpaces_noPunct_lowerContent = " ".join(noPunct_lowerContent.split()) ### CREATE A NEW FILE filename = file.split('.')[0] new_file = open(path+'norm/' + filename + '_norm.txt', 'w', encoding='utf-8') # open the new file in mode 'w' (write) ### WRITE THE NEW CONTENT INTO THE NEW FILE new_file.write(regularSpaces_noPunct_lowerContent) ### CLOSE THE FILE new_file.close() print('Finished! All normalized!') from collatex import * collation = Collation() witness_1707 = open( "../data/sonnet/norm/Lope_soneto_FR_1707_norm.txt", encoding='utf-8' ).read() witness_1822 = open( "../data/sonnet/norm/Lope_soneto_FR_1822_norm.txt", encoding='utf-8' ).read() collation.add_plain_witness( "wit 1707", witness_1707 ) collation.add_plain_witness( "wit 1822", witness_1822 ) alignment_table = collate(collation, output='html2') # first tercet only from collatex import * collation = Collation() collation.add_plain_witness( "wit 1707", "Je commence au hasard; et si je ne m'abuse,") collation.add_plain_witness( "wit 1822", "Je commence au hasard, et, si je ne m'abuse,") alignment_table = collate(collation, output='html2', segmentation=False) print( alignment_table ) # first tercet only # normalize with nothing will give errors in the svg output from collatex import * import json collation = Collation() json_input = { "witnesses": [ { "id": "wit1707", "tokens": [ { "t": "Je", "n": "je" }, { "t": "commence", "n": "commence" }, { "t": "au", "n": "au" }, { "t": "hasard;", "n": "hasard" }, { "t": "et", "n": "et" }, { "t": "si", "n": "si" }, { "t": "je", "n": "je" }, { "t": "ne", "n": "ne" }, { "t": "m'abuse,", "n": "m'abuse" } ] }, { "id": "wit1822", "tokens": [ { "t": "Je", "n": "je" }, { "t": "commence", "n": "commence" }, { "t": "au", "n": "au" }, { "t": "hasard,", "n": "hasard" }, { "t": "et,", "n": "et" }, { "t": "si", "n": "si" }, { "t": "je", "n": "je" }, { "t": "ne", "n": "ne" }, { "t": "m'abuse,", "n": "m'abuse" } ] } ] } collate(json.loads(json_input), segmentation=False, output="html2") import re from collatex import * import json witness_1707 = open( "../data/sonnet/Lope_soneto_FR_1707.txt", encoding='utf-8' ).read() witness_1822 = open( "../data/sonnet/Lope_soneto_FR_1822.txt", encoding='utf-8' ).read() A = ["wit 1707", witness_1707] B = ["wit 1822", witness_1822] listWitnesses = [A,B] # create a list of witnesses data = {} data["witnesses"] = [] for witness in listWitnesses: # for each witness in the list tokens = [] # create empty list for tokens data["witnesses"].append({ "id": witness[0], # give as id the first item in A or B "tokens" : tokens # and as tokens the empty list }) for w in witness[1].split(): # for each word in witness (second item in A or B) t = w # t is the original word # N is w with no upper-case and no punctuation # Replace everything that is not alphanumeric character (\w) or space (\s) with nothing. # Attention: if replaced with whitespace, it will create differences --> avoid. # This does not happen in the previous method (Normalization 1), # because the tokenization happens afterwards and strip whitespaces. n = re.sub(r'[^\w\s]','',w.lower()) tokens.append({ # populate the empty token list with values for t and n "t" : t, "n" : n }) json_input = json.dumps(data) # data created turned into json string with double quotes print(json_input) collation = Collation() # if segmentation=True there are no whitespaces between words, because input is given with single tokens without whitespaces collate(json.loads(json_input), segmentation=False, output="html2") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Imagine that we are not interested in punctuation and capitalization Step2: Now, let's collate the normalized copies. Step3: Normalization 2. Annotate Step5: Now we want to arrive at the same results that we reached in Normalization 1, but using the 't' and 'n' properties. They become visible if we input the data for collation as json (an open-standard file format for storing and exchanging data widely used in web development and beyond). Step6: This is wonderful, but very time consuming!
3,579
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('../../metal') import metal %load_ext autoreload %autoreload 2 %matplotlib inline import pickle with open("data/basics_tutorial.pkl", 'rb') as f: X, Y, L, D = pickle.load(f) X.shape Y.shape L.shape from metal.utils import split_data Xs, Ys, Ls, Ds = split_data(X, Y, L, D, splits=[0.8, 0.1, 0.1], stratify_by=Y, seed=123) from metal.analysis import lf_summary lf_summary(Ls[1],Y=Ys[1]) from metal.label_model import LabelModel label_model = LabelModel(k=2, seed=123) %%time label_model.train_model(Ls[0], Y_dev=Ys[1], n_epochs=500, log_train_every=50) score = label_model.score((Ls[1], Ys[1])) print('Trained Label Model Metrics:') scores = label_model.score((Ls[1], Ys[1]), metric=['accuracy','precision', 'recall', 'f1']) from metal.label_model.baselines import MajorityLabelVoter mv = MajorityLabelVoter(seed=123) print('Majority Label Voter Metrics:') scores = mv.score((Ls[1], Ys[1]), metric=['accuracy','precision', 'recall', 'f1']) # Y_train_ps stands for "Y[labels]_train[split]_p[redicted]s[oft]" Y_train_ps = label_model.predict_proba(Ls[0]) Y_train_ps from metal.analysis import confusion_matrix Y_dev_p = label_model.predict(Ls[1]) cm = confusion_matrix(Ys[1], Y_dev_p) try: from metal.contrib.visualization.analysis import ( plot_predictions_histogram, plot_probabilities_histogram, ) plot_predictions_histogram(Y_dev_p, Ys[1], title="Label Distribution") Y_dev_ps = label_model.predict_proba(Ls[1]) plot_probabilities_histogram(Y_dev_ps[:,0], title="Probablistic Label Distribution") except ModuleNotFoundError: print("The tools in contrib/visualization/ require matplotlib. Try `conda/pip install matplotlib`.") from metal.end_model import EndModel import torch if torch.cuda.is_available(): device = 'cuda' else: device='cpu' end_model = EndModel([1000,10,2], seed=123, device=device) end_model.train_model((Xs[0], Y_train_ps), valid_data=(Xs[1], Ys[1]), lr=0.01, l2=0.01, batch_size=256, n_epochs=5, checkpoint_metric='accuracy', checkpoint_metric_mode='max') print("Label Model:") score = label_model.score((Ls[2], Ys[2]), metric=['accuracy','precision', 'recall', 'f1']) print() print("End Model:") score = end_model.score((Xs[2], Ys[2]), metric=['accuracy','precision', 'recall', 'f1']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: If you need to divide your data into splits, you can do so with the provided utility function. We split our data 80/10/10 into train/dev/test, stratifying by the labels in Y to ensure a similar class balance in each split. Step3: Investigate Label Matrices Step4: If you're interested in more graphical investigative tools, you can take a look at the Visualization tutorial. Step 2 Step5: The only required argument to LabelModel.train_model() is a label matrix. All other keyword arguments are optional. Step6: You can test the quality of our label model on our dev set as a sanity check, but we'll see if we can do better in Step 3 by using the predictions of the label model to train a discriminative model over a larger feature set than just the outputs of these ten labeling functions. Step7: We can see that our trained LabelModel outperforms the baseline of taking the majority vote label by approximately 4 accuracy points. Step8: We can see that our trained LabelModel outperforms the baseline of taking the majority vote label by approximately 0.04 in accuracy and 0.03 in F1 on the dev set. However, it has lower recall. Which of these metrics matters most will vary by application. Step9: Analysis tools Step10: If matplotlib is installed, we can also use some of the visualization tools provided in the contrib/ directory to plot the label distributions. Step11: Step 3 Step12: Once initiated, the network structure is printed so you can confirm that it captured the architecture you want. Step13: Step 4
3,580
<ASSISTANT_TASK:> Python Code: import numpy as np import os import matplotlib.pyplot as plt %matplotlib inline from cycler import cycler from pylab import rcParams rcParams['figure.figsize'] = 8, 6 rcParams.update({'font.size': 15}) # color and linestyle cycle #colors = [x['color'] for x in list(rcParams['axes.prop_cycle'])] colors_base = ['b', 'g', 'r', 'c', 'm', 'y', 'k', '0.3', '0.5', '0.75', 'chartreuse'] print 'colors_base', colors_base colors = [item for sublist in [colors_base]*len(colors_base) for item in sublist] # replicate and flatten print 'colors', colors, len(list(rcParams['axes.prop_cycle'])) lnstyl = [[l] * len(colors_base) for l in ['-', '--', ':', '.', '-.', '*', 'x']] # replicate per color print 'lnstyl', lnstyl lnstyl = [item for sublist in lnstyl for item in sublist] # flatten plt.rc('axes', prop_cycle=(cycler('color', colors) + cycler('linestyle', lnstyl))) # define cycler from nideep.eval.learning_curve import LearningCurve from nideep.eval.eval_utils import Phase import nideep.eval.log_utils as lu def moving_avg(x, window_size): window = np.ones(int(window_size)) / float(window_size) return np.convolve(x, window, 'valid') classnames = ['alarm', 'baby', 'crash', 'dog', 'engine', 'femaleSpeech', 'fire', 'footsteps',\ 'knock', 'phone', 'piano'] classnames_scalar = ['alarm', 'baby', 'crash', 'dog', 'engine', 'femaleSpeech', 'fire', 'footsteps', 'general'\ 'knock', 'phone', 'piano'] print("Done importing") from nideep.proto.proto_utils import Parser from nideep.nets.net_merge import merge_indep_net_spec # select network definitions to merge into a single prototxt # You can also just repeat the same network over and over if you want to train the same network with different random initializations p0 = './train_val_00.prototxt' p1 = './train_val_01.prototxt' p2 = './train_val_02.prototxt' # load each network definition from file nets = [Parser().from_net_params_file(p) for p in [p0,p1,p2]] # merge and save merged prototxt to file p_dst = './train_val_00_01_02.prototxt' with open(p_dst, 'w') as f: f.write(merge_indep_net_spec(nets)) # use p_dst file in your solver and train this 'network ensemble' like you would any single network. logs = [\ './xD/caffe.eltanin.kashefy.log.INFO.20160818-105955.20804', './xE_03/caffe.eltanin.kashefy.log.INFO.20160818-145600.31621', './xE_04/caffe.eltanin.kashefy.log.INFO.20160818-150354.710', ] print("Found %d logs" % (len(logs),)) for phase in [Phase.TRAIN, Phase.TEST]: print phase plt.figure() for p in logs: e = LearningCurve(p) lc_keys = e.parse()[phase == Phase.TEST] num_iter = e.list('NumIters', phase) print('%s: %d %s iterations' % (os.path.basename(os.path.dirname(p)), num_iter.size, phase)) for lck_idx, lck in enumerate(lc_keys): if 'nidx' in lck or ('NumIters' not in lck and 'rate' not in lck.lower() and 'seconds' not in lck.lower()): try: loss = e.list(lck, phase) plt.plot(num_iter, loss, label='%s %s' % (os.path.basename(os.path.dirname(p)), lck)) except KeyError as kerr: print("Inavlid values for %s %s" % (phase, lck)) ticks, _ = plt.xticks() plt.xticks(ticks, ["%dK" % int(t/1000) for t in ticks]) plt.title(phase) plt.xlabel('iterations') plt.ylabel(' '.join([phase, 'cross entropy loss'])) #plt.xlim([0,20e3]) #plt.xlim([0,300e3]) plt.ylim([1,20]) plt.title('on %s set' % phase) plt.legend(loc='upper right') plt.grid() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Merge multiple network definitions that share the same data layers into a single definition to train within the same single process Step2: After training, we look at the learning curves of the individual sub-networks
3,581
<ASSISTANT_TASK:> Python Code: # Load pickled data import pickle import pandas as pd # TODO: Fill this in based on where you saved the training and testing data training_file = 'data/train.p' validation_file= 'data/valid.p' testing_file = 'data/test.p' with open(training_file, mode='rb') as f: train = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_train, y_train = train['features'], train['labels'] X_test, y_test = test['features'], test['labels'] from sklearn.model_selection import train_test_split X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=0.2, random_state=0) print("Updated Image Shape: {}".format(X_train[0].shape)) import random import numpy as np import matplotlib.pyplot as plt %matplotlib inline index = random.randint(0, len(X_train)) image = X_train[index].squeeze() plt.figure(figsize=(1,1)) plt.imshow(image) print(y_train[index]) from sklearn.utils import shuffle X_train, y_train = shuffle(X_train, y_train) import tensorflow as tf EPOCHS = 10 BATCH_SIZE = 128 from tensorflow.contrib.layers import flatten def LeNet(x): # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer mu = 0 sigma = 0.1 # SOLUTION: Layer 1: Convolutional. Input = 32x32x1. Output = 28x28x6. conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 3, 6), mean = mu, stddev = sigma)) conv1_b = tf.Variable(tf.zeros(6)) conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b # SOLUTION: Activation. conv1 = tf.nn.relu(conv1) # SOLUTION: Pooling. Input = 28x28x6. Output = 14x14x6. conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Layer 2: Convolutional. Output = 10x10x16. conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma)) conv2_b = tf.Variable(tf.zeros(16)) conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b # SOLUTION: Activation. conv2 = tf.nn.relu(conv2) # SOLUTION: Pooling. Input = 10x10x16. Output = 5x5x16. conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Flatten. Input = 5x5x16. Output = 400. fc0 = flatten(conv2) # SOLUTION: Layer 3: Fully Connected. Input = 400. Output = 120. fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma)) fc1_b = tf.Variable(tf.zeros(120)) fc1 = tf.matmul(fc0, fc1_W) + fc1_b # SOLUTION: Activation. fc1 = tf.nn.relu(fc1) # SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 84. fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma)) fc2_b = tf.Variable(tf.zeros(84)) fc2 = tf.matmul(fc1, fc2_W) + fc2_b # SOLUTION: Activation. fc2 = tf.nn.relu(fc2) # SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 10. fc3_W = tf.Variable(tf.truncated_normal(shape=(84, 43), mean = mu, stddev = sigma)) fc3_b = tf.Variable(tf.zeros(43)) logits = tf.matmul(fc2, fc3_W) + fc3_b return logits x = tf.placeholder(tf.float32, (None, 32, 32, 3)) y = tf.placeholder(tf.int32, (None)) one_hot_y = tf.one_hot(y, 43) rate = 0.001 logits = LeNet(x) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, one_hot_y) loss_operation = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer(learning_rate = rate) training_operation = optimizer.minimize(loss_operation) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1)) accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() def evaluate(X_data, y_data): num_examples = len(X_data) total_accuracy = 0 sess = tf.get_default_session() for offset in range(0, num_examples, BATCH_SIZE): batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE] accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y}) total_accuracy += (accuracy * len(batch_x)) return total_accuracy / num_examples with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_examples = len(X_train) print("Training...") print() for i in range(EPOCHS): X_train, y_train = shuffle(X_train, y_train) for offset in range(0, num_examples, BATCH_SIZE): end = offset + BATCH_SIZE batch_x, batch_y = X_train[offset:end], y_train[offset:end] sess.run(training_operation, feed_dict={x: batch_x, y: batch_y}) validation_accuracy = evaluate(X_validation, y_validation) print("EPOCH {} ...".format(i+1)) print("Validation Accuracy = {:.3f}".format(validation_accuracy)) print() saver.save(sess, './lenet') print("Model saved") with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) test_accuracy = evaluate(X_test, y_test) print("Test Accuracy = {:.3f}".format(test_accuracy)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The MNIST data that TensorFlow pre-loads comes as 28x28x1 images. Step2: Visualize Data Step3: Preprocess Data Step4: Setup TensorFlow Step5: SOLUTION Step6: Features and Labels Step7: Training Pipeline Step8: Model Evaluation Step9: Train the Model Step10: Evaluate the Model
3,582
<ASSISTANT_TASK:> Python Code: %matplotlib inline from matplotlib import pyplot as plt import numpy as np def tokenize(s, stop_words=[] or '', punctuation='`~!@#$%^&*()_-+={[}]|\:;"<,>.?/}\t'): Split a string into a list of words, removing punctuation and stop words. a = s.splitlines() b = [] for n in a: b.append(n.split(' ')) c = [] for n in b: for m in n: c.append(m) e = [] for n in c: e.append(n.lower()) f = [] for i in e: f.append(''.join([j for j in i if j not in punctuation])) d = [] if type(stop_words) == list: for x in f: if x not in stop_words: d.append(x) if type(stop_words) == str: stp = stop_words.split() for x in f: if x not in stp: d.append(x) g = [] for t in d: if t != '': g.append(t) return g assert tokenize("This, is the way; that things will end", stop_words=['the', 'is']) == \ ['this', 'way', 'that', 'things', 'will', 'end'] wasteland = APRIL is the cruellest month, breeding Lilacs out of the dead land, mixing Memory and desire, stirring Dull roots with spring rain. assert tokenize(wasteland, stop_words='is the of and') == \ ['april','cruellest','month','breeding','lilacs','out','dead','land', 'mixing','memory','desire','stirring','dull','roots','with','spring', 'rain'] def count_words(data): Return a word count dictionary from the list of words in data. a = {} for n in data: if n in data: i = data.count(n) a[n] = i return a assert count_words(tokenize('this and the this from and a a a')) == \ {'a': 3, 'and': 2, 'from': 1, 'the': 1, 'this': 2} def sort_word_counts(wc): Return a list of 2-tuples of (word, count), sorted by count descending. w = wc.items() q = sorted(w, key = lambda w: w[1], reverse=True) return q assert sort_word_counts(count_words(tokenize('this and a the this this and a a a'))) == \ [('a', 4), ('this', 3), ('and', 2), ('the', 1)] f = open('mobydick_chapter1.txt','r') r = f.read() re = r.replace('--',' ') tok = tokenize(re, stop_words = ['the', 'of', 'and', 'a', 'to', 'in', 'is', 'it', 'that', 'as']) wcount = count_words(tok) swc = sort_word_counts(wcount) f.close() print(len(swc)) assert swc[0]==('i',43) assert len(swc)==848 top50 = [] for n in range(0,51): top50.append(swc[n]) lett = [] num = [] for n in top50: lett.append(n[0]) num.append(n[1]) yax = range(0,51) f = plt.figure(figsize=(7,12)) plt.scatter(num,yax) plt.ylim(-1,51) plt.yticks(range(0,51),lett) plt.tick_params(right=False,left=False) plt.title('Top 50 Words') plt.xlabel('Count') plt.ylabel('Word') plt.grid(True); assert True # use this for grading the dotplot <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Word counting Step5: Write a function count_words that takes a list of words and returns a dictionary where the keys in the dictionary are the unique words in the list and the values are the word counts. Step7: Write a function sort_word_counts that return a list of sorted word counts Step8: Perform a word count analysis on Chapter 1 of Moby Dick, whose text can be found in the file mobydick_chapter1.txt Step9: Create a "Cleveland Style" dotplot of the counts of the top 50 words using Matplotlib. If you don't know what a dotplot is, you will have to do some research...
3,583
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 %matplotlib inline import freqopttest.util as util import freqopttest.data as data import freqopttest.kernel as kernel import freqopttest.tst as tst import freqopttest.glo as glo import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats import sys # sample source m = 800 dim = 2 n = m ss = data.SSGaussMeanDiff(dim, my=0.5) #ss = data.SSBlobs() tst_data = ss.sample(m, seed=2) tr, te = tst_data.split_tr_te(tr_proportion=0.5, seed=10) # plot test data xte, yte = te.xy() plt.plot(xte[:, 0], xte[:, 1], 'xr', label='X te') plt.plot(yte[:, 0], yte[:, 1], 'xb', label='Y te') plt.legend(loc='best') plt.title('Test set') print(te) # test locations T = np.array([[0, 0], [1, 0]]) gwidth = 1.0 alpha = 0.01 met = tst.MeanEmbeddingTest(T, gwidth, alpha) met.perform_test(te) t1 = np.array([0, 0]) t2x_list = np.linspace(-7, 7, 200) # add an x very close to 0 t2x_list = np.append(t2x_list, [1e-9]) t2x_list.sort() stats = np.zeros(len(t2x_list)) for i, t2x in enumerate(t2x_list): t2 = np.array([t2x, 0]) T = np.vstack((t1, t2)) met_i = tst.MeanEmbeddingTest(T, gwidth, alpha) test_i = met_i.perform_test(te) stats[i] = test_i['test_stat'] # plot location shift vs. test stat plt.plot(t2x_list, stats) plt.title('t1 = %s, t2 = [x, 0]'%(str(t1)) ) plt.xlabel('x in $1^{st}$ dim. of t2') plt.ylabel('Test statistic') t1 = np.array([0, 0]) t3 = np.array([1, 0]) t2x_list = np.linspace(-7, 8, 200) # add an x very close to 0 t2x_list = np.append(t2x_list, [1e-12, 1+1e-9]) t2x_list.sort() stats = np.zeros(len(t2x_list)) for i, t2x in enumerate(t2x_list): t2 = np.array([t2x, 0]) T = np.vstack((t1, t2, t3)) met_i = tst.MeanEmbeddingTest(T, gwidth, alpha) test_i = met_i.perform_test(te) stats[i] = test_i['test_stat'] # plot location shift vs. test stat plt.plot(t2x_list, stats) plt.title('t1 = %s, t2 = [x, 0], t3 = %s'%(str(t1), str(t3)) ) plt.xlabel('x in $1^{st}$ dim. of t2') plt.ylabel('Test statistic') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: mean embedding test. J=2 locations Step2: This showed that if both the test locations are the same at [0, 0], then the covariance matrix is singular, and the test statistic cannot be computed. If $t_1 = [0, 0], t_2 = [x, 0]$ where $x$ approaches 0, then test statistic drops significantly as shown.
3,584
<ASSISTANT_TASK:> Python Code: import vcsn %%automaton a context = "lal_char(abc), b" $ -> 0 0 -> 1 a 1 -> $ 2 -> 0 a 1 -> 3 a a.is_accessible() a.accessible() a.accessible().is_accessible() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The following automaton has states that cannot be reached from the initial(s) states Step2: Calling accessible returns a copy of the automaton without non-accessible states
3,585
<ASSISTANT_TASK:> Python Code: import numpy as np from sklearn.model_selection import train_test_split # Let X be our input data consisting of # 5 samples and 2 features X = np.arange(10).reshape(5, 2) # Let y be the target feature y = [0, 1, 2, 3, 4] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) from sklearn.linear_model import LinearRegression lr = LinearRegression(normalize=True) print(lr) # outputs the name of the estimator and its hyperparameters <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Validation Data Step2: Estimators
3,586
<ASSISTANT_TASK:> Python Code: import numpy as np A = np.array([1,1,2,3,3,3,4,5,6,7,8,8]) B = np.array([1,2,8]) C = A[~np.in1d(A,B)] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
3,587
<ASSISTANT_TASK:> Python Code: # Installs the vit_jax package from Github. !pip install -q git+https://github.com/google-research/vision_transformer import jax import jax.numpy as jnp from matplotlib import pyplot as plt import numpy as np import pandas as pd import tensorflow as tf import tensorflow_datasets as tfds import tqdm from vit_jax import models # Currently available LiT models [name for name in models.model_configs.MODEL_CONFIGS if name.startswith('LiT')] model_name = 'LiT-B16B' lit_model = models.get_model(model_name) # Loading the variables from cloud can take a while the first time... lit_variables = lit_model.load_variables() # Creating tokens from freeform text (see next section). tokenizer = lit_model.get_tokenizer() # Resizing images & converting value range to -1..1 (see next section). image_preprocessing = lit_model.get_image_preprocessing() # Preprocessing op for use in tfds pipeline (see last section). pp = lit_model.get_pp() # Let's load some sample images from tfds. # Alternatively you can also load these images from the internet / your Drive. ds = tfds.load('imagenette', split='train') images_list = [ example['image'].numpy() for _, example in zip(range(5), ds) ] # Note that this is a list of images with different shapes, not a four # dimensional tensor. [image.shape for image in images_list] # Note that our preprocessing converts to floats ranging from -1..1 ! images = image_preprocessing(images_list) images.shape, images.min(), images.max() plt.figure(figsize=(15, 4)) plt.imshow(np.hstack(images) * .5 + .5) plt.axis('off'); texts = [ 'itap of a cd player', 'a photo of a truck', 'gas station', 'chainsaw', 'a bad photo of colorful houses', ] tokens = tokenizer(texts) tokens.shape # Embed both texts and images with a single model call. # See next section for embedding images/texts separately. zimg, ztxt, out = lit_model.apply(lit_variables, images=images, tokens=tokens) plt.imshow(ztxt @ zimg.T) probs = np.array(jax.nn.softmax(out['t'] * ztxt @ zimg.T, axis=1)) pd.DataFrame(probs, index=texts).style.background_gradient('Greens', vmin=0, vmax=1).format('{:.2%}') # Load dataset and create array of class names. builder = tfds.builder('cifar100') builder.download_and_prepare() ds_test = builder.as_dataset('test') info = builder.info classnames = [ info.features['label'].int2str(id_) for id_ in range(info.features['label'].num_classes) ] classnames[:10] # "best prompts" from CLIP paper (https://arxiv.org/abs/2103.00020) PROMPTS = [ 'itap of a {}.', 'a bad photo of the {}.', 'a origami {}.', 'a photo of the large {}.', 'a {} in a video game.', 'art of the {}.', 'a photo of the small {}.', '{}', ] texts = [ prompt.format(classname) for classname in classnames for prompt in PROMPTS ] len(texts) # Tokenize the texts using numpy like before. tokens = tokenizer(texts) tokens.shape _, ztxt, _ = lit_model.apply(lit_variables, tokens=tokens) ztxt.shape # `pp` from above (section "Load model") is a TensorFlow graph that can # efficiently be added to the input pre-processing. imgs = next(iter(ds_test.map(pp).batch(4)))['image'] # Note that `pp` would also tokenize "texts" to "tokens", if such a feature was # present in the dataset (which is not the case for cifar). plt.figure(figsize=(15, 4)) plt.imshow(np.hstack(imgs) * .5 + .5) plt.axis('off'); # JIT-compile image embedding function because there are lots of images. @jax.jit def embed_images(variables, images): zimg, _, _ = lit_model.apply(variables, images=images) return zimg # Compute all images embeddings & collect correct labels. zimgs = [] labels = [] for batch in tqdm.tqdm(ds_test.map(lit_model.get_pp()).batch(500)): labels += list(batch['label'].numpy()) zimg = embed_images(lit_variables, batch['image'].numpy()) zimgs.append(np.array(zimg)) zimgs = np.concatenate(zimgs) zimgs.shape # Compute similarities ... sims = zimgs @ ztxt.reshape([len(classnames), len(PROMPTS), -1]).mean(axis=1).T sims.shape # ... and use most similar embedding to predict label. (sims.argmax(axis=1) == np.array(labels)).mean() # Expected accuracy for model "LiT-B16B" : 79.19 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Use model Step2: tfds zero-shot evaluation
3,588
<ASSISTANT_TASK:> Python Code: mondat="A " mondat+="mezőn legelésző " mondat+="bárányok " mondat+="mélyen " mondat+="hallgatnak." print(mondat) kisbetuk='qwertzuiopasdfghjklyxcvbnm' nagybetuk='QWERTZUIOPASDFGHJKLYXCVBNM' extra='+- %=.~' kicsi=['al',9,'+',42.137,'szoveg',69,1j] telefon_konyv={'Alonzo Hinton': '(855) 278-2590', 'Cleo Hennings': '(844) 832-0585', 'Daine Ventura': '(833) 832-5081', 'Esther Leeson': '(855) 485-0624', 'Gene Connell': '(811) 973-2926', 'Lashaun Bottorff': '(822) 687-1735', 'Marx Hermann': '(844) 164-8116', 'Nicky Duprey': '(811) 032-6328', 'Piper Subia': '(844) 373-4228', 'Zackary Palomares': '(822) 647-3686'} tesztelendo=[7,5,0,-2] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 02-egyszerű számolás Step2: 04-lista manipulálás Step3: 05-szótár kezelés Step4: 06-logikai
3,589
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np s = pd.Series([1,3,5,np.nan,6,8]) s dates = pd.date_range('20130101', periods=6) dates df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) df df2 = pd.DataFrame({ 'A' : 1., 'B' : pd.Timestamp('20130102'), 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), 'D' : np.array([3] * 4,dtype='int32'), 'E' : pd.Categorical(["test","train","test","train"]), 'F' : 'foo' }) df2 df2.dtypes wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) wp df.head() df.tail(3) df.index df.columns df.values df.describe() df.T df.sort_index(axis=1, ascending=False) df['A'] # By index df[0:3] #By Value df['20130102':'20130104'] df.loc[dates[0]] # Limit columns df.loc[:,['A','B']] df_stock = pd.DataFrame({'Stocks': ["AAPL","CA","CTXS","FIS","MA"], 'Values': [126.17,31.85,65.38,64.08,88.72]}) df_stock df_stock = df_stock.append({"Stocks":"GOOG", "Values":523.53}, ignore_index=True) df_stock df_stock[df_stock["Values"]>65] df_stock.mean() # Per column df.mean() # Per row df.mean(1) big_dates = pd.date_range('20130101', periods=60000) big_dates big_df = pd.DataFrame(np.random.randn(60000,4), index=big_dates, columns=list('ABCD')) big_df big_df['20200102':'20200104'] big_df.loc['20130102':'20130104'] %timeit big_df['20200102':'20200104'] %timeit big_df.loc['20200102':'20200104'] big_df[30000:30003] big_df.iloc[30000:30003] %timeit big_df[30000:30003] %timeit big_df.iloc[30000:30003] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Series Step2: DataFrame Step3: Creating a DataFrame by passing a dict of objects that can be converted to series-like. Step4: Panel Step5: Viewing data Step6: See NumPy data Step7: Statistic Summary Step8: Transposing data Step9: Sorting Step10: Selection Step11: Get rows Step12: Selection by Label Step13: Adding data Step14: Boolean indexing Step15: Stats operations Step16: Optimized pandas data access
3,590
<ASSISTANT_TASK:> Python Code: # Jupyter setup to expand cell display to 100% width on your screen (optional) from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) # Import relevant modules and setup for calling glmnet %reset -f %matplotlib inline import sys sys.path.append('../test') sys.path.append('../lib') import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings from glmnet import glmnet; from glmnetPlot import glmnetPlot from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict # parameters baseDataDir= '../data/' # load data x = scipy.loadtxt(baseDataDir + 'QuickStartExampleX.dat', dtype = scipy.float64) y = scipy.loadtxt(baseDataDir + 'QuickStartExampleY.dat', dtype = scipy.float64) # create weights t = scipy.ones((50, 1), dtype = scipy.float64) wts = scipy.row_stack((t, 2*t)) # call glmnet fit = glmnet(x = x.copy(), y = y.copy(), family = 'gaussian', \ weights = wts, \ alpha = 0.2, nlambda = 20 ) glmnetPrint(fit) glmnetPlot(fit, xvar = 'lambda', label = True); glmnetPlot(fit, xvar = 'dev', label = True); any(fit['lambdau'] == 0.5) glmnetCoef(fit, s = scipy.float64([0.5]), exact = False) fc = glmnetPredict(fit, x[0:5,:], ptype = 'response', \ s = scipy.float64([0.05])) print(fc) warnings.filterwarnings('ignore') cvfit = cvglmnet(x = x.copy(), y = y.copy(), ptype = 'mse', nfolds = 20) warnings.filterwarnings('default') cvfit['lambda_min'] cvglmnetCoef(cvfit, s = 'lambda_min') cvglmnetPredict(cvfit, newx = x[0:5,], s='lambda_min') foldid = scipy.random.choice(10, size = y.shape[0], replace = True) cv1=cvglmnet(x = x.copy(),y = y.copy(),foldid=foldid,alpha=1) cv0p5=cvglmnet(x = x.copy(),y = y.copy(),foldid=foldid,alpha=0.5) cv0=cvglmnet(x = x.copy(),y = y.copy(),foldid=foldid,alpha=0) f = plt.figure() f.add_subplot(2,2,1) cvglmnetPlot(cv1) f.add_subplot(2,2,2) cvglmnetPlot(cv0p5) f.add_subplot(2,2,3) cvglmnetPlot(cv0) f.add_subplot(2,2,4) plt.plot( scipy.log(cv1['lambdau']), cv1['cvm'], 'r.') plt.hold(True) plt.plot( scipy.log(cv0p5['lambdau']), cv0p5['cvm'], 'g.') plt.plot( scipy.log(cv0['lambdau']), cv0['cvm'], 'b.') plt.xlabel('log(Lambda)') plt.ylabel(cv1['name']) plt.xlim(-6, 4) plt.ylim(0, 9) plt.legend( ('alpha = 1', 'alpha = 0.5', 'alpha = 0'), loc = 'upper left', prop={'size':6}); cl = scipy.array([[-0.7], [0.5]], dtype = scipy.float64) tfit=glmnet(x = x.copy(),y= y.copy(), cl = cl) glmnetPlot(tfit); pfac = scipy.ones([1, 20]) pfac[0, 4] = 0; pfac[0, 9] = 0; pfac[0, 14] = 0 pfit = glmnet(x = x.copy(), y = y.copy(), penalty_factor = pfac) glmnetPlot(pfit, label = True); scipy.random.seed(101) x = scipy.random.rand(100,10) y = scipy.random.rand(100,1) fit = glmnet(x = x, y = y) glmnetPlot(fit); %%capture # Output from this sample code has been suppressed due to (possible) Jupyter limitations # The code works just fine from ipython (tested on spyder) c = glmnetCoef(fit) c = c[1:, -1] # remove intercept and get the coefficients at the end of the path h = glmnetPlot(fit) ax1 = h['ax1'] xloc = plt.xlim() xloc = xloc[1] for i in range(len(c)): ax1.text(xloc, c[i], 'var' + str(i)); # Import relevant modules and setup for calling glmnet %reset -f %matplotlib inline import sys sys.path.append('../test') sys.path.append('../lib') import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings from glmnet import glmnet; from glmnetPlot import glmnetPlot from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict # parameters baseDataDir= '../data/' # load data x = scipy.loadtxt(baseDataDir + 'MultiGaussianExampleX.dat', dtype = scipy.float64, delimiter = ',') y = scipy.loadtxt(baseDataDir + 'MultiGaussianExampleY.dat', dtype = scipy.float64, delimiter = ',') mfit = glmnet(x = x.copy(), y = y.copy(), family = 'mgaussian') glmnetPlot(mfit, xvar = 'lambda', label = True, ptype = '2norm'); f = glmnetPredict(mfit, x[0:5,:], s = scipy.float64([0.1, 0.01])) print(f[:,:,0], '\n') print(f[:,:,1]) warnings.filterwarnings('ignore') cvmfit = cvglmnet(x = x.copy(), y = y.copy(), family = "mgaussian") warnings.filterwarnings('default') cvglmnetPlot(cvmfit) cvmfit['lambda_min'] cvmfit['lambda_1se'] # Import relevant modules and setup for calling glmnet %reset -f %matplotlib inline import sys sys.path.append('../test') sys.path.append('../lib') import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings from glmnet import glmnet; from glmnetPlot import glmnetPlot from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict # parameters baseDataDir= '../data/' # load data x = scipy.loadtxt(baseDataDir + 'BinomialExampleX.dat', dtype = scipy.float64, delimiter = ',') y = scipy.loadtxt(baseDataDir + 'BinomialExampleY.dat', dtype = scipy.float64) fit = glmnet(x = x.copy(), y = y.copy(), family = 'binomial') glmnetPlot(fit, xvar = 'dev', label = True); glmnetPredict(fit, newx = x[0:5,], ptype='class', s = scipy.array([0.05, 0.01])) warnings.filterwarnings('ignore') cvfit = cvglmnet(x = x.copy(), y = y.copy(), family = 'binomial', ptype = 'class') warnings.filterwarnings('default') cvglmnetPlot(cvfit) cvfit['lambda_min'] cvfit['lambda_1se'] cvglmnetCoef(cvfit, s = 'lambda_min') cvglmnetPredict(cvfit, newx = x[0:10, ], s = 'lambda_min', ptype = 'class') # Import relevant modules and setup for calling glmnet %reset -f %matplotlib inline import sys sys.path.append('../test') sys.path.append('../lib') import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings from glmnet import glmnet; from glmnetPlot import glmnetPlot from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict # parameters baseDataDir= '../data/' # load data x = scipy.loadtxt(baseDataDir + 'MultinomialExampleX.dat', dtype = scipy.float64, delimiter = ',') y = scipy.loadtxt(baseDataDir + 'MultinomialExampleY.dat', dtype = scipy.float64) fit = glmnet(x = x.copy(), y = y.copy(), family = 'multinomial', mtype = 'grouped') glmnetPlot(fit, xvar = 'lambda', label = True, ptype = '2norm'); warnings.filterwarnings('ignore') cvfit=cvglmnet(x = x.copy(), y = y.copy(), family='multinomial', mtype = 'grouped'); warnings.filterwarnings('default') cvglmnetPlot(cvfit) cvglmnetPredict(cvfit, newx = x[0:10, :], s = 'lambda_min', ptype = 'class') # Import relevant modules and setup for calling glmnet %reset -f %matplotlib inline import sys sys.path.append('../test') sys.path.append('../lib') import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings from glmnet import glmnet; from glmnetPlot import glmnetPlot from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict # parameters baseDataDir= '../data/' # load data x = scipy.loadtxt(baseDataDir + 'PoissonExampleX.dat', dtype = scipy.float64, delimiter = ',') y = scipy.loadtxt(baseDataDir + 'PoissonExampleY.dat', dtype = scipy.float64, delimiter = ',') fit = glmnet(x = x.copy(), y = y.copy(), family = 'poisson') glmnetPlot(fit); glmnetCoef(fit, s = scipy.float64([1.0])) glmnetPredict(fit, x[0:5,:], ptype = 'response', s = scipy.float64([0.1, 0.01])) warnings.filterwarnings('ignore') cvfit = cvglmnet(x.copy(), y.copy(), family = 'poisson') warnings.filterwarnings('default') cvglmnetPlot(cvfit) optlam = scipy.array([cvfit['lambda_min'], cvfit['lambda_1se']]).reshape([2,]) cvglmnetCoef(cvfit, s = optlam) # Import relevant modules and setup for calling glmnet %reset -f %matplotlib inline import sys sys.path.append('../test') sys.path.append('../lib') import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings from glmnet import glmnet; from glmnetPlot import glmnetPlot from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict # parameters baseDataDir= '../data/' # load data x = scipy.loadtxt(baseDataDir + 'CoxExampleX.dat', dtype = scipy.float64, delimiter = ',') y = scipy.loadtxt(baseDataDir + 'CoxExampleY.dat', dtype = scipy.float64, delimiter = ',') fit = glmnet(x = x.copy(), y = y.copy(), family = 'cox') glmnetPlot(fit); glmnetCoef(fit, s = scipy.float64([0.05])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As an example, we set $\alpha = 0.2$ (more like a ridge regression), and give double weights to the latter half of the observations. To avoid too long a display here, we set nlambda to 20. In practice, however, the number of values of $\lambda$ is recommended to be 100 (default) or more. In most cases, it does not come with extra cost because of the warm-starts used in the algorithm, and for nonlinear models leads to better convergence properties. Step2: We can then print the glmnet object. Step3: This displays the call that produced the object fit and a three-column matrix with columns Df (the number of nonzero coefficients), %dev (the percent deviance explained) and Lambda (the corresponding value of $\lambda$). Step4: Now when we plot against %deviance we get a very different picture. This is percent deviance explained on the training data. What we see here is that toward the end of the path this value are not changing much, but the coefficients are "blowing up" a bit. This lets us focus attention on the parts of the fit that matter. This will especially be true for other models, such as logistic regression. Step5: We can extract the coefficients and make predictions at certain values of $\lambda$. Two commonly used options are Step6: The output is for False.(TBD) The exact = 'True' option is not yet implemented. Step7: gives the fitted values for the first 5 observations at $\lambda = 0.05$. If multiple values of s are supplied, a matrix of predictions is produced. Step8: does 20-fold cross-validation, based on mean squared error criterion (default though). Step9: Users can control the folds used. Here we use the same folds so we can also select a value for $\alpha$. Step10: There are no built-in plot functions to put them all on the same plot, so we are on our own here Step11: We see that lasso (alpha=1) does about the best here. We also see that the range of lambdas used differs with alpha. Step12: These are rather arbitrary limits; often we want the coefficients to be positive, so we can set only lower.limit to be 0. Step13: We see from the labels that the three variables with 0 penalty factors always stay in the model, while the others follow typical regularization paths and shrunken to 0 eventually. Step14: We wish to label the curves with the variable names. Here's a simple way to do this, using the matplotlib library in python (and a little research into how to customize it). We need to have the positions of the coefficients at the end of the path. Step15: We have done nothing here to avoid overwriting of labels, in the event that they are close together. This would be a bit more work, but perhaps best left alone, anyway. Step16: We fit the data, with an object "mfit" returned. Step17: For multiresponse Gaussian, the options in glmnet are almost the same as the single-response case, such as alpha, weights, nlambda, standardize. A exception to be noticed is that standardize.response is only for mgaussian family. The default value is FALSE. If standardize.response = TRUE, it standardizes the response variables. Step18: Note that we set type.coef = "2norm". Under this setting, a single curve is plotted per variable, with value equal to the $\ell_2$ norm. The default setting is type.coef = "coef", where a coefficient plot is created for each response (multiple figures). Step19: The prediction result is saved in a three-dimensional array with the first two dimensions being the prediction matrix for each response variable and the third indicating the response variables. Step20: We plot the resulting cv.glmnet object "cvmfit". Step21: To show explicitly the selected optimal values of $\lambda$, type Step22: As before, the first one is the value at which the minimal mean squared error is achieved and the second is for the most regularized model whose mean squared error is within one standard error of the minimal. Step23: The input matrix $x$ is the same as other families. For binomial logistic regression, the response variable $y$ should be either a factor with two levels, or a two-column matrix of counts or proportions. Step24: Like before, we can print and plot the fitted object, extract the coefficients at specific $\lambda$'s and also make predictions. For plotting, the optional arguments such as xvar and label are similar to the Gaussian. We plot against the deviance explained and show the labels. Step25: Prediction is a little different for logistic from Gaussian, mainly in the option type. "link" and "response" are never equivalent and "class" is only available for logistic regression. In summary, Step26: For logistic regression, cvglmnet has similar arguments and usage as Gaussian. nfolds, weights, lambda, parallel are all available to users. There are some differences in ptype Step27: It uses misclassification error as the criterion for 10-fold cross-validation. Step28: coef and predict are simliar to the Gaussian case and we omit the details. We review by some examples. Step29: As mentioned previously, the results returned here are only for the second level of the factor response. Step30: Like other GLMs, glmnet allows for an "offset". This is a fixed vector of N numbers that is added into the linear predictor. Step31: The optional arguments in glmnet for multinomial logistic regression are mostly similar to binomial regression except for a few cases. Step32: We plot the resulting object "fit". Step33: The options are xvar, label and ptype, in addition to other ordinary graphical parameters. Step34: Note that although mtype is not a typical argument in cvglmnet, in fact any argument that can be passed to glmnet is valid in the argument list of cvglmnet. We also use parallel computing to accelerate the calculation. Step35: [Back to <a href='#toc'>Table of Contents</a>] Step36: We apply the function glmnet with the "poisson" option. Step37: The optional input arguments of glmnet for "poisson" family are similar to those for others. Step38: Like before, we can extract the coefficients and make predictions at certain $\lambda$'s by using coef and predict respectively. The optional input arguments are similar to those for other families. In function predict, the option type, which is the type of prediction required, has its own specialties for Poisson family. That is, Step39: We may also use cross-validation to find the optimal $\lambda$'s and thus make inferences. Step40: Options are almost the same as the Gaussian family except that for type.measure, Step41: We can also show the optimal $\lambda$'s and the corresponding coefficients. Step42: The predict method is similar and we do not repeat it here. Step43: The Surv function in the package survival can create such a matrix. Note, however, that the coxph and related linear models can handle interval and other fors of censoring, while glmnet can only handle right censoring in its present form. Step44: All the standard options are available such as alpha, weights, nlambda and standardize. Their usage is similar as in the Gaussian case and we omit the details here. Users can also refer to the help file help(glmnet). Step45: As before, we can extract the coefficients at certain values of $\lambda$.
3,591
<ASSISTANT_TASK:> Python Code: # from qiita_db.study import Study # from shutil import copy # from os import mkdir # ffp = '/home/qiita/emp-sample-info-files' # study_ids = [ 550, 632, 638, 659, 662, 678, 713, 714, 722, 723, # 755, 776, 804, 805, 807, 808, 809, 810, 829, 846, # 861, 864, 865, 889, 894, 895, 905, 910, 925, 933, # 940, 945, 958, 963, 990, 1001, 1024, 1030, 1031, 1033, # 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1043, 1056, 1064, # 1098, 1197, 1198, 1222, 1235, 1240, 1242, 1288, 1289, 1453, # 1481, 1521, 1526, 1578, 1579, 1580, 1621, 1622, 1627, 1632, # 1642, 1665, 1673, 1674, 1692, 1694, 1696, 1702, 1711, 1713, # 1714, 1715, 1716, 1717, 1721, 1734, 1736, 1747, 1748, 1773, # 1774, 1795, 1799, 1883, 1889, 2080, 2182, 2192, 2229, 2300, # 2318, 2338, 2382, 10145, 10146, 10156, 10171, 10172, 10180, 10245, # 10246, 10247, 10248, 10273, 10278, 10308, 10323, 10346, 10363, 10522, # 10533, 10581] # studies = [Study(s) for s in study_ids] # mkdir(ffp) # [copy(s.sample_template.get_filepaths()[0][1], ffp) # for s in studies if s.sample_template is not None] import pandas as pd import numpy as np pd.set_option("display.max_rows", 200) pd.set_option("display.max_columns", 80) path_refined = '../../data/metadata-refine/emp_qiime_mapping_refined_YYYYMMDD.tsv' path_ids = '../../data/metadata-refine/refine_emp_studies_ct112.txt' path_plan = '../../data/metadata-refine/qiita_add_replace_columns.xlsx' path_sample_info = '../../data/metadata-refine/metadata-sample-info' studies = set([line.rstrip('\n') for line in open(path_ids)]) # remove studies where mapping file has fewer samples than sample info file -- ignore studies = studies - {'10246', '10278', '10346'} # remove studies where mapping file has fewer samples than sample info file -- these will be fixed manually studies = studies - {'1033', '1696', '2229'} # remove studies where sample names don't match (10146 is prepended twice!) studies = studies - {'10146'} # NOW: DON'T remove these studies bc sample info files ARE in Qiita (studies not in EMP paper) #studies = studies - {'1889'} # convert to sorted list of strings studies = list(studies) studies = [int(x) for x in studies] studies.sort() studies = [str(x) for x in studies] problem_studies = ['1033', '1696', '2229', '10146', '10246', '10278', '10346'] df_refined = pd.read_csv(path_refined, sep='\t', index_col=0, dtype=object, low_memory=False) df_plan = pd.read_excel(path_plan) for study_id in studies: df = pd.read_csv('%s/%s_sample_info.tsv' % (path_sample_info, study_id), sep='\t', index_col=0) df_new = df.copy(deep=True) df_diff = pd.DataFrame(index=df.index) for index, row in df_plan.iterrows(): old_cols = row.old_column.split(',') newcol = '' if row.action == 'replace always': # drop all old columns if they exist for old_col in old_cols: if old_col in df_new.columns: df_new.drop(old_col, axis=1, inplace=True) # add new column always newcol = [df_refined.loc[i, row.new_column] for i in df_new.index] df_new[row.new_column] = newcol df_diff[row.new_column] = newcol elif row.action == 'replace if': # check if any old columns exist if np.any([x in df_new.columns for x in old_cols]): # drop old column if it exists for old_col in old_cols: if old_col in df_new.columns: df_new.drop(old_col, axis=1, inplace=True) # add new column if old column exists newcol = [df_refined.loc[i, row.new_column] for i in df_new.index] df_new[row.new_column] = newcol df_diff[row.new_column] = newcol elif row.action == 'add always': # add new column always newcol = [df_refined.loc[i, row.new_column] for i in df_new.index] df_new[row.new_column] = newcol df_diff[row.new_column] = newcol elif row.action == 'add if': # add new column if old column exists if np.any([x in df_new.columns for x in old_cols]): newcol = [df_refined.loc[i, row.new_column] for i in df_new.index] df_new[row.new_column] = newcol df_diff[row.new_column] = newcol # fill NaNs with 'Not applicable' (Qiita terminology) df_new.fillna('Not applicable', inplace=True) df_diff.fillna('Not applicable', inplace=True) # reorder columns alphabetically (Qiita style) df_new = df_new[df_new.columns.sort_values()] df_diff = df_diff[df_diff.columns.sort_values()] # write to tsv df_new.to_csv('../../data/metadata-refine/metadata-sample-info-refined/%s_sample_info.tsv' % str(study_id), sep='\t', index=True) df_diff.to_csv('../../data/metadata-refine/metadata-sample-info-diff/%s_sample_info_diff.tsv' % str(study_id), sep='\t', index=True) new_cols = list(df_plan.new_column) df_refined[df_refined.study_id.isin(problem_studies)][new_cols].to_csv( '../../data/metadata-refine/qiita_metadata_for_problem_studies.tsv', sep='\t') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Porting refined EMP metadata to Qiita sample info files Step2: Replace or add columns Step3: Export action columns for problem studies
3,592
<ASSISTANT_TASK:> Python Code: import math def funcion(x): return (math.pow(math.e,6*x))+(1.44*math.pow(math.e,2*x))-(2.079*math.pow(math.e,4*x))-(0.333) def biseccion(intA, intB, errorA, noMaxIter): if(funcion(intA)*funcion(intB)<0): noIter = 0 errorTmp = 1 intTmp = 0 oldInt = intA while(noIter<noMaxIter and errorTmp>errorA and funcion(intTmp)!=0): intTmp = (intB+intA)/2 if(funcion(intA)*funcion(intTmp)<0): intB = intTmp else: intA = intTmp noIter+=1 errorTmp=abs((intTmp-oldInt)/intTmp)*100 oldInt = intTmp #print('Error: ',errorTmp) print('La raíz es: ',intTmp) print('F(raiz) es:' ,funcion(intTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) else: print('En el intervalo dado la función no presenta cambio de signo') print('No hay raices que encontrar') biseccion(-1,0,math.pow(10,-7),1000) import math def funcion(x): return (math.pow(math.e,6*x))+(1.44*math.pow(math.e,2*x))-(2.079*math.pow(math.e,4*x))-(0.333) def reglaFalsa(intA, intB, errorA, noMaxIter): if(funcion(intA)*funcion(intB)<0): noIter = 0 errorTmp = 1 intTmp = 0 oldInt = intA while(noIter<noMaxIter and errorTmp>errorA and funcion(intTmp)!=0): intTmp = intB-((funcion(intB)*(intA+intB))/(funcion(intA)-funcion(intB))) if(funcion(intA)*funcion(intTmp)<0): intB = intTmp else: intA = intTmp noIter+=1 errorTmp=abs((intTmp-oldInt)/intTmp)*100 oldInt = intTmp #print('Error: ',errorTmp) print('La raíz es: ',intTmp) print('F(raiz) es:' ,funcion(intTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) else: print('En el intervalo dado la función no presenta cambio de signo') print('No hay raices que encontrar') reglaFalsa(-1,0,math.pow(10,-6),1000) import math def funcion(x): return math.pow(x,10)-1 def funcionDeriv(x): return 10*math.pow(x,9) def niuton(valorIn, errorA, noMaxIter): noIter = 0 errorTmp = 1 intTmp = 0 oldInt = valorIn while(noIter<noMaxIter and errorTmp>errorA and funcion(intTmp)!=0): intTmp = oldInt-((funcion(oldInt))/(funcionDeriv(oldInt))) errorTmp=abs((intTmp-oldInt)/intTmp)*100 print('Noiter: ',noIter,' oldval:',oldInt,' error:',errorTmp) oldInt = intTmp noIter+=1 print('La raíz es: ',intTmp) print('F(raiz) es:' ,funcion(intTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) niuton(0.5,math.pow(10,-10),1000) import math def funcion(x): return math.pow(x,10)-1 def niutonConSecante(primerVal, segundoVal, errorA, noMaxIter): noIter = 0 errorTmp = 1 intTmp = 0 while(noIter<noMaxIter and errorTmp>errorA and funcion(segundoVal)!=0): valTmp = segundoVal-((funcion(segundoVal)*(primerVal-segundoVal))/(funcion(primerVal)-funcion(segundoVal))) primerVal = segundoVal segundoVal = valTmp errorTmp=abs((segundoVal-primerVal)/segundoVal)*100 print('Noiter: ',noIter, ' primVal:', primerVal,' segunVal:',segundoVal,' error:',errorTmp) noIter+=1 print('La raíz es: ',valTmp) print('F(raiz) es:' ,funcion(valTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) niutonConSecante(0.5,-0.9990234375,math.pow(10,-10),1000) import math def funcion(x): return (math.pow(math.e,6*x))+(1.44*math.pow(math.e,2*x))-(2.079*math.pow(math.e,4*x))-(0.333) def funcionDeriv(x): return (6*math.pow(math.e,6*x))-(8.316*math.pow(math.e,4*x))+(2.88*math.pow(math.e,2*x)) def niuton(valorIn, errorA, noMaxIter): noIter = 0 errorTmp = 1 intTmp = 0 oldInt = valorIn while(noIter<noMaxIter and errorTmp>errorA and funcion(intTmp)!=0): intTmp = oldInt-((funcion(oldInt))/(funcionDeriv(oldInt))) errorTmp=abs((intTmp-oldInt)/intTmp)*100 print('Noiter: ',noIter,' oldval:',oldInt,' error:',errorTmp) oldInt = intTmp noIter+=1 print('La raíz es: ',intTmp) print('F(raiz) es:' ,funcion(intTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) niuton(-1, math.pow(10,-10),1000) import math def funcion(x): return (math.pow(math.e,6*x))+(1.44*math.pow(math.e,2*x))-(2.079*math.pow(math.e,4*x))-(0.333) def funcionDeriv(x): return (6*math.pow(math.e,6*x))-(8.316*math.pow(math.e,4*x))+(2.88*math.pow(math.e,2*x)) def niuton(valorIn, errorA, noMaxIter): noIter = 0 errorTmp = 1 intTmp = 0 oldInt = valorIn while(noIter<noMaxIter and errorTmp>errorA and funcion(intTmp)!=0): intTmp = oldInt-((funcion(oldInt))/(funcionDeriv(oldInt))) errorTmp=abs((intTmp-oldInt)/intTmp)*100 print('Noiter: ',noIter,' oldval:',oldInt,' error:',errorTmp) oldInt = intTmp noIter+=1 print('La raíz es: ',intTmp) print('F(raiz) es:' ,funcion(intTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) niuton(-3, math.pow(10,-10),1000) import math def funcion(x): return (math.pow(math.e,6*x))+(1.44*math.pow(math.e,2*x))-(2.079*math.pow(math.e,4*x))-(0.333) def niutonConSecante(primerVal, segundoVal, errorA, noMaxIter): noIter = 0 errorTmp = 1 intTmp = 0 while(noIter<noMaxIter and errorTmp>errorA and funcion(segundoVal)!=0): valTmp = segundoVal-((funcion(segundoVal)*(primerVal-segundoVal))/(funcion(primerVal)-funcion(segundoVal))) primerVal = segundoVal segundoVal = valTmp errorTmp=abs((segundoVal-primerVal)/segundoVal)*100 print('Noiter: ',noIter, ' primVal:', primerVal,' segunVal:',segundoVal,' error:',errorTmp) noIter+=1 print('La raíz es: ',valTmp) print('F(raiz) es:' ,funcion(valTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) niutonConSecante(-3,-1,math.pow(10,-6),100000) import math def funcion(x): return (math.pow(math.e,6*x))+(1.44*math.pow(math.e,2*x))-(2.079*math.pow(math.e,4*x))-(0.333) def niutonConSecante(primerVal, segundoVal, errorA, noMaxIter): noIter = 0 errorTmp = 1 intTmp = 0 while(noIter<noMaxIter and errorTmp>errorA and funcion(segundoVal)!=0): valTmp = segundoVal-((funcion(segundoVal)*(primerVal-segundoVal))/(funcion(primerVal)-funcion(segundoVal))) primerVal = segundoVal segundoVal = valTmp errorTmp=abs((segundoVal-primerVal)/segundoVal)*100 #print('Noiter: ',noIter, ' primVal:', primerVal,' segunVal:',segundoVal,' error:',errorTmp) noIter+=1 print('La raíz es: ',valTmp) print('F(raiz) es:' ,funcion(valTmp)) print('Error: ',errorTmp) print('No. de iteraciones realizadas: ',noIter) niutonConSecante(-3,-0.32944335545310327,math.pow(10,-10),1000) def funcion(x): return math.pow(x,10)-1 funcion(0.5) def funcion(x): return (math.pow(math.e,6*x))+(1.44*math.pow(math.e,2*x))-(2.079*math.pow(math.e,4*x))-(0.333) funcion(-1) math.pow(math.e,-1)-1 %matplotlib notebook import matplotlib.pyplot as plt import numpy as np import math def funcion(x): return (10*(math.sin(x+3))*(math.exp((x/2)+1))) fig = plt.figure() ax = fig.add_subplot(111) ax.spines['left'].set_position('zero') # ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('zero') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') x = np.linspace(-10,10,30000) plt.plot(x, np.exp(x)) y = [funcion(punto) for punto in x] plt.plot(x, y) import math def funcion(x): return (10*(math.sin(x+3))*(math.exp((x/2)+1))) a = -4 b = -2 max = 1000 epsilon = 0 iter = 0 xold = b while iter<=max: x = a-((funcion(a)*(b-a))/(funcion(b)-funcion(a))) iter += 1 if abs(x-xold)<epsilon*abs(x): print("ajá",x) else: print(iter,a,b,x) xold = x if funcion(a)*funcion(x) > 0: a = x else: b = x import math def funcion(x): return (10*(math.sin(x+3))*(math.exp((x/2)+1))) def funcionDeriv(x): return (5*(math.exp((x/2)+1))*(math.sin(x+3)+(2*math.cos(x+3)))) def newtonRaphson(val, errorA, noMaxIter): noIter = 0 errorTmp = 1 intTmp = 0 while(noIter<noMaxIter): valTmp = val-((funcion(val))/(funcionDeriv(val))) if abs(valTmp-val) < errorA: print('es >:V : ',valTmp) break val = valTmp noIter+=1 newtonRaphson(-5, math.pow(10,-15),10000) newtonRaphson(0, math.pow(10,-15),10000) import math import numpy as np def cuadratica(r,s): discrim = math.pow(r,2)+(4*s) raices = [] if discrim > 0: #raiz real raices.append((r+math.sqrt(discrim))/(2)) raices.append((r-math.sqrt(discrim))/(2)) else: #raiz compleja raices.append(str(r/2)+'+'+str(math.sqrt(abs(discrim))/2)) raices.append(str(r/2)+'-'+str(math.sqrt(abs(discrim))/2)) return raices def generateb(a, r, s): b = [] b.append(a[0]) b.append(a[1]+(r*b[-1])) for i in a[2:]: b.append(i+(r*b[-1])+(s*b[-2])) return b def generatec(b, r, s): c = [] c.append(b[0]) c.append(b[1]+(r*c[-1])) for i in b[2:-1]: c.append(i+(r*c[-1])+(s*c[-2])) return c r = 0 s = 0 a = [1,-5,10,-10,4] #a4, a3, a2, a1, a0 grado = len(a) errorA = 0.000001 noMaxIter = 1000 listaRaices = [] rerror = 100 serror = 100 noIter = 1 while len(listaRaices) < len(a): print('=-='+str(len(listaRaices))) while rerror>errorA or serror>errorA: b = generateb(a,r,s) #b4, b3, b2, b1, b0 ... c = generatec(b,r,s) #c4, c3, c2, c1 eq1 = np.array([[c[-2],c[-3]],[c[-1],c[-2]]]) eq2 = np.array([-b[-2],-b[-1]]) solEq = np.linalg.solve(eq1,eq2) rdelta = solEq[0] sdelta = solEq[1] r += rdelta s += sdelta rerror = abs(rdelta/r)*100 serror = abs(sdelta/s)*100 noIter+=1 listaRaices.extend(cuadratica(r,s)) b = b[:-2] if len(a)-len(listaRaices) == 2: listaRaices.extend(cuadratica(b[0],b[1])) print('==2') elif len(a)-len(listaRaices) == 1: listaRaices.append(-s/r) print('==1') print(noIter) print(r) print(s) print(noIter) print('---------------') for i in listaRaices: print(i) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <h1>Intento de algoritmo de regla falsa</h1> Step2: <h1>(testing) Intento de algoritmo de Newton - Raphson (en x^10 -1)</h1> Step3: <h1>Intento de algoritmo de secante (en x^10 -1)</h1> Step4: <h1>Intento de algoritmo de Newton - Raphson (en exp(6x)+1.44 exp(2x)- 2.079 exp(4x)- 0.333) con punto inicial de -1</h1> Step5: <h1>Intento de algoritmo de Newton - Raphson (en exp(6x)+1.44 exp(2x)- 2.079 exp(4x)- 0.333) con punto inicial de -3</h1> Step6: <h1>Intento de algoritmo de secante (en exp(6x)+1.44 exp(2x)- 2.079 exp(4x)- 0.333) con punto inicial de -1</h1> Step7: <h1>Intento de algoritmo de secante (en exp(6x)+1.44 exp(2x)- 2.079 exp(4x)- 0.333) con punto inicial de -3</h1>
3,593
<ASSISTANT_TASK:> Python Code: from __future__ import division import google.datalab.bigquery as bq import matplotlib.pyplot as plot import numpy as np %bq tables list --project cloud-datalab-samples --dataset httplogs %bq tables describe -n cloud-datalab-samples.httplogs.logs_20140615 %%bq query -n logs SELECT timestamp, latency, status, method, endpoint FROM `cloud-datalab-samples.httplogs.logs_20140615` ORDER by timestamp %%bq sample --query logs --count 7 %%bq query -n timeseries SELECT DIV(UNIX_SECONDS(timestamp), 300) * 300 AS five_minute_window, APPROX_QUANTILES(latency, 99)[SAFE_ORDINAL(99)] as latency FROM `cloud-datalab-samples.httplogs.logs_20140615` WHERE endpoint = 'Recent' GROUP BY five_minute_window ORDER by five_minute_window %%bq sample --query timeseries --count 10 # Execute and convert the results to a Pandas dataframe timeseries_df = timeseries.execute(output_options=bq.QueryOutput.dataframe()).result() timeseries_values = timeseries_df['latency'].values timeseries_len = len(timeseries_values) plot.plot(np.array(range(timeseries_len)), timeseries_values) plot.yscale('log') plot.grid() class AnomalyDetector(object): def __init__(self, window = 10): self._index = 0 self._window = window self._values = np.zeros(window) self._valuesSq = np.zeros(window) self._mean = 0 self._variance = 0 self._count = 0 def observation(self, value): anomaly = False threshold = 3 * np.sqrt(self._variance) if self._count > self._window: if value > self._mean + threshold: value = self._mean + threshold anomaly = True elif value < self._mean - threshold: value = self._mean - threshold anomaly = True else: self._count += 1 prev_value = self._values[self._index] self._values[self._index] = value self._valuesSq[self._index] = value ** 2 self._index = (self._index + 1) % self._window self._mean = self._mean - prev_value / self._window + value / self._window self._variance = sum(self._valuesSq) / self._window - (self._mean ** 2) return anomaly, self._mean anomalies = np.zeros(timeseries_len) means = np.zeros(timeseries_len) anomaly_detector = AnomalyDetector(36) for i, value in enumerate(timeseries_values): anomaly, mean = anomaly_detector.observation(value) anomalies[i] = anomaly means[i] = mean ticks = np.array(range(timeseries_len)) plot.plot(ticks, timeseries_values) plot.plot(ticks[anomalies == 1], timeseries_values[anomalies == 1], 'ro') plot.plot(ticks, means, 'g', linewidth = 1) plot.yscale('log') plot.grid() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Understanding the Logs Data Step2: Transforming Logs into a Time Series Step3: Visualizing the Time Series Data Step4: Anomaly Detection Step5: With the anomaly detector implemented, let's run the timeseries through it to collect any anomalies and the expected mean along each point. Step6: Then, plot the same time series, but overlay the anomalies and the mean values as well.
3,594
<ASSISTANT_TASK:> Python Code: from dx import * import numpy as np import pandas as pd from pylab import plt plt.style.use('seaborn') h5 = pd.HDFStore('./data/vstoxx_march_2014.h5', 'r') vstoxx_index = h5['vstoxx_index'] vstoxx_futures = h5['vstoxx_futures'] vstoxx_options = h5['vstoxx_options'] h5.close() %matplotlib inline vstoxx_index['V2TX'].plot(figsize=(10, 6)) vstoxx_futures.info() vstoxx_futures.tail() vstoxx_options.info() vstoxx_options.tail() import datetime as dt import calendar def third_friday(date): day = 21 - (calendar.weekday(date.year, date.month, 1) + 2) % 7 return dt.datetime(date.year, date.month, day) third_fridays = {} for month in set(vstoxx_futures['EXP_MONTH']): third_fridays[month] = third_friday(dt.datetime(2014, month, 1)) third_fridays V0 = 17.6639 # VSTOXX level on 31.03.2014 futures_data = vstoxx_futures[vstoxx_futures.DATE == '2014/3/31'].copy() options_data = vstoxx_options[(vstoxx_options.DATE == '2014/3/31') & (vstoxx_options.TYPE == 'C')].copy() me = market_environment('me', dt.datetime(2014, 3, 31)) me.add_constant('initial_value', 17.6639) # index on 31.03.2014 me.add_constant('volatility', 2.0) # for initialization me.add_curve('discount_curve', constant_short_rate('r', 0.01)) # assumption options_data['IMP_VOL'] = 0.0 # initialization new iv column %%time tol = 0.3 # tolerance level for moneyness for option in options_data.index: # iterating over all option quotes forward = futures_data[futures_data['MATURITY'] == \ options_data.loc[option]['MATURITY']]['PRICE'].values # picking the right futures value if (forward * (1 - tol) < options_data.loc[option]['STRIKE'] < forward * (1 + tol)): # only for options with moneyness within tolerance call = options_data.loc[option] me.add_constant('strike', call['STRIKE']) me.add_constant('maturity', call['MATURITY']) call_option = BSM_european_option('call', me) options_data.loc[option, 'IMP_VOL'] = \ call_option.imp_vol(call['PRICE'], 'call', volatility_est=0.6) options_data[60:70] import matplotlib.pyplot as plt %matplotlib inline plot_data = options_data[options_data.IMP_VOL > 0] plt.figure(figsize=(10, 6)) for maturity in sorted(set(options_data['MATURITY'])): data = plot_data.isin({'MATURITY': [maturity,]}) data = plot_data[plot_data.MATURITY == maturity] # select data for this maturity plt.plot(data['STRIKE'], data['IMP_VOL'], label=maturity.date(), lw=1.5) plt.plot(data['STRIKE'], data['IMP_VOL'], 'r.') plt.xlabel('strike') plt.ylabel('implied volatility of volatility') plt.legend() plt.show() tol = 0.2 def get_option_selection(pricing_date, maturity, tol=tol): ''' Function selects relevant options data. ''' forward = vstoxx_futures[(vstoxx_futures.DATE == pricing_date) & (vstoxx_futures.MATURITY == maturity)]['PRICE'].values[0] option_selection = \ vstoxx_options[(vstoxx_options.DATE == pricing_date) & (vstoxx_options.MATURITY == maturity) & (vstoxx_options.TYPE == 'C') & (vstoxx_options.STRIKE > (1 - tol) * forward) & (vstoxx_options.STRIKE < (1 + tol) * forward)] return option_selection, forward def get_option_models(pricing_date, maturity, option_selection): ''' Models and returns traded options for given option_selection object. ''' me_vstoxx = market_environment('me_vstoxx', pricing_date) initial_value = vstoxx_index['V2TX'][pricing_date] me_vstoxx.add_constant('initial_value', initial_value) me_vstoxx.add_constant('final_date', maturity) me_vstoxx.add_constant('currency', 'EUR') me_vstoxx.add_constant('frequency', 'W') me_vstoxx.add_constant('paths', 10000) csr = constant_short_rate('csr', 0.01) # somewhat arbitrarily chosen here me_vstoxx.add_curve('discount_curve', csr) # parameters to be calibrated later me_vstoxx.add_constant('kappa', 1.0) me_vstoxx.add_constant('theta', 1.2 * initial_value) me_vstoxx.add_constant('volatility', 1.0) vstoxx_model = square_root_diffusion('vstoxx_model', me_vstoxx) # square-root diffusion for volatility modeling # mean-reverting, positive process # option parameters and payoff me_vstoxx.add_constant('maturity', maturity) payoff_func = 'np.maximum(maturity_value - strike, 0)' option_models = {} for option in option_selection.index: strike = option_selection['STRIKE'].ix[option] me_vstoxx.add_constant('strike', strike) option_models[option] = \ valuation_mcs_european_single( 'eur_call_%d' % strike, vstoxx_model, me_vstoxx, payoff_func) return vstoxx_model, option_models def calculate_model_values(p0): ''' Returns all relevant option values. Parameters =========== p0 : tuple/list tuple of kappa, theta, volatility Returns ======= model_values : dict dictionary with model values ''' kappa, theta, volatility = p0 vstoxx_model.update(kappa=kappa, theta=theta, volatility=volatility) model_values = {} for option in option_models: model_values[option] = \ option_models[option].present_value(fixed_seed=True) return model_values i = 0 def mean_squared_error(p0): ''' Returns the mean-squared error given the model and market values. Parameters =========== p0 : tuple/list tuple of kappa, theta, volatility Returns ======= MSE : float mean-squared error ''' if p0[0] < 0 or p0[1] < 5. or p0[2] < 0 or p0[2] > 10.: return 100 global i, option_selection, vstoxx_model, option_models, first, last pd = dt.datetime.strftime( option_selection['DATE'].iloc[0].to_pydatetime(), '%d-%b-%Y') mat = dt.datetime.strftime( option_selection['MATURITY'].iloc[0].to_pydatetime(), '%d-%b-%Y') model_values = calculate_model_values(p0) option_diffs = {} for option in model_values: option_diffs[option] = (model_values[option] - option_selection['PRICE'].loc[option]) MSE = np.sum(np.array(list(option_diffs.values())) ** 2) / len(option_diffs) if i % 150 == 0: # output every 0th and 100th iteration if i == 0: print('%12s %13s %4s %6s %6s %6s --> %6s' % \ ('pricing_date', 'maturity_date', 'i', 'kappa', 'theta', 'vola', 'MSE')) print('%12s %13s %4d %6.3f %6.3f %6.3f --> %6.3f' % \ (pd, mat, i, p0[0], p0[1], p0[2], MSE)) i += 1 return MSE import scipy.optimize as spo def get_parameter_series(pricing_date_list, maturity_list): global i, option_selection, vstoxx_model, option_models, first, last # collects optimization results for later use (eg. visualization) parameters = pd.DataFrame() for maturity in maturity_list: first = True for pricing_date in pricing_date_list: option_selection, forward = \ get_option_selection(pricing_date, maturity) vstoxx_model, option_models = \ get_option_models(pricing_date, maturity, option_selection) if first is True: # use brute force for the first run i = 0 opt = spo.brute(mean_squared_error, ((0.5, 2.51, 1.), # range for kappa (10., 20.1, 5.), # range for theta (0.5, 10.51, 5.0)), # range for volatility finish=None) i = 0 opt = spo.fmin(mean_squared_error, opt, maxiter=200, maxfun=350, xtol=0.0000001, ftol=0.0000001) parameters = parameters.append( pd.DataFrame( {'pricing_date' : pricing_date, 'maturity' : maturity, 'initial_value' : vstoxx_model.initial_value, 'kappa' : opt[0], 'theta' : opt[1], 'sigma' : opt[2], 'MSE' : mean_squared_error(opt)}, index=[0,]), ignore_index=True) first = False last = opt return parameters %%time pricing_date_list = pd.date_range('2014/3/1', '2014/3/31', freq='B') maturity_list = [third_fridays[7]] parameters = get_parameter_series(pricing_date_list, maturity_list) paramet = parameters.set_index('pricing_date') paramet.tail() %matplotlib inline paramet[['kappa', 'theta', 'sigma', 'MSE']].plot(subplots=True, color='b', figsize=(10, 12)) plt.tight_layout() index = paramet.index[-1] opt = np.array(paramet[['kappa', 'theta', 'sigma']].loc[index]) option_selection = get_option_selection(index, maturity_list[0], tol=tol)[0] model_values = np.sort(np.array(list(calculate_model_values(opt).values())))[::-1] import matplotlib.pyplot as plt %matplotlib inline fix, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(10, 8)) strikes = option_selection['STRIKE'].values ax1.plot(strikes, option_selection['PRICE'], label='market quotes') ax1.plot(strikes, model_values, 'ro', label='model values') ax1.set_ylabel('option values') ax1.grid(True) ax1.legend(loc=0) wi = 0.25 ax2.bar(strikes - wi / 2., model_values - option_selection['PRICE'], label='market quotes', width=wi) ax2.grid(True) ax2.set_ylabel('differences') ax2.set_xlabel('strikes') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: VSTOXX Futures & Options Data Step2: VSTOXX index for the first quarter of 2014. Step3: The VSTOXX futures data (8 futures maturities/quotes per day). Step4: The VSTOXX options data. This data set is quite large due to the large number of European put and call options on the VSTOXX. Step5: As a helper function we need a function to calculate all relevant third Fridays for all relevant maturity months of the data sets. Step6: Implied Volatilities from Market Quotes Step7: The following loop now calculates the implied volatilities for all those options whose strike lies within the defined tolerance level. Step8: A selection of the results. Step9: And the complete results visualized. Step10: Market Modeling Step11: Options Modeling Step12: The function calculate_model_values estimates and returns model value estimates for all relevant options given a parameter set for the square_root_diffusion risk factor model. Step13: Calibration Functions Step14: Implementing the Calibration Procedure Step15: The Calibration Itself Step16: Calibration Results Step17: This is also illustrated by the visualization of the time series data for the calibrated/optimal parameter values. The MSE is below 0.01 throughout. Step18: The following generates a plot of the calibration results for the last calibration day. The absolute price differences are below 0.10 EUR for all options.
3,595
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt from gatspy.periodic import LombScargle import sys %matplotlib inline from toy_simulator import simulate_LSST from trilegal_models import random_stars import simple_gyro as sg import pandas as pd fname = "output574523944248.dat" N = 100 logAges, bvs, logTeff, rmag = random_stars(fname, N) teff = 10**logTeff m = bvs > .4 # select only cool stars cool_ages = 10**logAges[m] * 1e-9 cool_ps = sg.period(cool_ages, bvs[m]) cool_teffs = teff[m] cool_rmags = rmag[m] hot_ages = 10**logAges[~m] * 1e-9 # select hot stars hot_teffs = teff[~m] hot_rmags = rmag[~m] # copy parameters for two Gaussians from hot_stars ipython notebook A1, A2, mu1, mu2, sig1, sig2 = 254.11651209, 49.8149765, 3.00751724, 3.73399554, 2.26525979, 8.31739725 hot_ps = np.zeros_like(hot_ages) hot_ps1 = np.random.randn(int(len(hot_ages)*(1 - A2/A1)))*sig1 + mu1 # mode 1 hot_ps2 = np.random.randn(int(len(hot_ages)*(A2/A1)))*sig2 + mu2 # mode 2 hot_ps[:len(hot_ps1)] = hot_ps1 hot_ps[len(hot_ps1):len(hot_ps2)] = hot_ps2 tot = len(hot_ps1) + len(hot_ps2) hot_ps[tot:] = np.random.randn(len(hot_ps)-tot)*sig2 + mu2 # make up the total number of Ps # combine the modes age = np.concatenate((cool_ages, hot_ages)) ps = np.concatenate((cool_ps, hot_ps)) teff = np.concatenate((cool_teffs, hot_teffs)) rmag = np.concatenate((cool_rmags, hot_rmags)) plt.hist(age) plt.xlabel("Age (Gyr)") plt.hist(ps) plt.xlabel("Period (days)") plt.hist(rmag) plt.xlabel("r mag") ## Arrays of random (log-normal) periods and (uniform) amplitudes. #min_period, max_period = 1, 100 # days #ps = np.exp(np.random.uniform(np.log(min_period), np.log(max_period), N)) # periods #amps = np.random.uniform(10, 300, N) # ppm # Column headings: log10P, log10R, stdR, Nbin teff_bins = [3500, 4000, 4500, 5000, 5500, 6000] d35 = pd.read_csv("data/rot_v_act3500.txt") d40 = pd.read_csv("data/rot_v_act4000.txt") d45 = pd.read_csv("data/rot_v_act4500.txt") d50 = pd.read_csv("data/rot_v_act5000.txt") d55 = pd.read_csv("data/rot_v_act5500.txt") d60 = pd.read_csv("data/rot_v_act6000.txt") plt.step(d35["log10P"], d35["log10R"], label="T=3500") plt.step(d40["log10P"], d40["log10R"], label="T=4000") plt.step(d45["log10P"], d45["log10R"], label="T=4500") plt.step(d50["log10P"], d50["log10R"], label="T=5000") plt.step(d55["log10P"], d55["log10R"], label="T=5500") plt.step(d60["log10P"], d60["log10R"], label="T=6000") plt.legend() plt.xlabel("log Period") plt.ylabel("log Range") def find_nearest (array, value): Match a period to a bin. array: array of bin heights. value: the period of the star. Returns the value and index of the bin. m = np.abs(array-value) == np.abs(array-value).min() return array[m], m def assign_amps(ps, log10P, log10R, stdR): Take periods and bin values and return an array of amplitudes. npi = np.array([find_nearest(10**log10P, p) for p in ps]) # match periods to bins nearest_ps, inds = npi[:, 0], npi[:, 1] log_ranges = np.array([log10R[i] for i in inds])[:, 0] # array of ranges for each * std_ranges = np.array([stdR[i] for i in inds])[:, 0] # array of stdevs in range for each * return np.random.randn(len(ps))*std_ranges + log_ranges # draw amps from Gaussians def make_arrays(data, temp_bin): Amplitude arrays for each temperature bin P, R, std = np.array(data["log10P"]), np.array(data["log10R"]), np.array(data["stdR"]) if temp_bin == 3500: m = teff < 3750 elif temp_bin == 6000: m = teff > 6000 else: m = (temp_bin - 250 < teff) * (teff < temp_bin + 250) periods, teffs, rmags = ps[m], teff[m], rmag[m] amplitudes = assign_amps(periods, P, R, std) return periods, amplitudes, teffs, rmags def LSST_sig(m): Approximate the noise in figure 2 of arxiv:1603.06638 from the apparent r-mag. Returns the noise in magnitudes and ppm. if m < 19: return .005 mags = np.array([19, 20, 21, 22, 23, 24, 25]) sigs = np.array([.005, .007, .01, .02, .03, .1, .2]) return sigs[np.abs(mags - m) == np.abs(mags-m).min()][0] pers, logamps, teffs, rmags = np.concatenate((make_arrays(d35, 3500), make_arrays(d40, 4000), make_arrays(d45, 4500), make_arrays(d50, 5000), make_arrays(d55, 5500), make_arrays(d60, 6000)), axis=1) amps = 10**logamps # parts per million noise = LSST_sig(rmag[0]) noises_mag = np.array([LSST_sig(mag) for mag in rmags]) noises_ppm = (1 - 10**(-noises_mag/2.5)) * 1e6 %%capture # amps = np.random.uniform(10, 300, N) # ppm path = "simulations" # where to save the lcs [simulate_LSST(i, pers[i], amps[i], path, noises_ppm[i]) for i in range(len(pers))] # simulations # save the true values ids = np.arange(len(pers)) data = np.vstack((ids, pers, amps)) np.savetxt("{0}/truth.txt".format(path), data.T) id = 0 sid = str(int(id)).zfill(4) path = "results" # where to save results x, y, yerr = np.genfromtxt("simulations/{0}.txt".format(sid)).T # load a fake light curve plt.errorbar(x, y, yerr=yerr, fmt="k.", capsize=0) ps = np.linspace(2, 100, 1000) # the period array (in days) model = LombScargle().fit(x, y, yerr) pgram = model.periodogram(ps) # find peaks peaks = np.array([i for i in range(1, len(ps)-1) if pgram[i-1] < pgram[i] and pgram[i+1] < pgram[i]]) if len(peaks): period = ps[pgram==max(pgram[peaks])][0] else: period = 0 plt.plot(ps, pgram) # plot the pgram plt.axvline(period, color="r") # plot the position of the highest peak # load and plot the truth ids, true_ps, true_as = np.genfromtxt("simulations/truth.txt").T plt.axvline(true_ps[id], color="g") # plot the position of the highest peak print(period, true_ps[id]) ids = np.arange(len(pers)) periods = np.zeros_like(ids) for i, id in enumerate(ids): sid = str(int(id)).zfill(4) x, y, yerr = np.genfromtxt("simulations/{0}.txt".format(sid)).T # load a fake light curve model = LombScargle().fit(x, y, yerr) # compute pgram pgram = model.periodogram(ps) # find peaks peaks = np.array([i for i in range(1, len(ps)-1) if pgram[i-1] < pgram[i] and pgram[i+1] < pgram[i]]) if len(peaks): period = ps[pgram==max(pgram[peaks])][0] else: period = 0 periods[i] = period data = np.vstack((true_ps, periods, teffs, rmags, true_as, noises_ppm)) np.savetxt("rotation_results{0}.txt".format(fname), data.T) plt.plot(true_ps, periods, "k.") xs = np.linspace(min(true_ps), max(true_ps), 100) plt.plot(xs, xs, "r") tau = .1 # the recovery must be within a factor of *threshold* of the truth plt.plot(xs, xs-tau*xs, "r--") plt.plot(xs, xs+tau*xs, "r--") m = (true_ps - tau*true_ps < periods) * (periods < true_ps + tau*true_ps) plt.hist(true_ps, 15, color="b", label="all") plt.hist(true_ps[m], 15, color="r", alpha=.5, label="recovered") plt.legend(loc="best") print(len(true_ps), "injected", len(true_ps[m]), "recovered") print(len(true_ps[m])/len(true_ps)*100, "percent success") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Randomly select targets from a TRILEGAL output. Step2: Calculate periods from ages and colours for cool stars Step3: Draw from a sum of two Gaussians (modelled in another notebook) that describes the period distribution for hot stars. Approximations Step4: Make histograms of the ages and periods Step5: Use Derek's results to calculate amplitudes Step10: Assign amplitudes Step11: Simulate light curves Step12: Load and plot an example light curve Step13: Compute a periodogram Step14: Now compute LS pgrams for a set of LSST light curves and save the highest peak . Step15: Save the data Step16: Plot the recovered periods vs the true periods. Step17: Decide whether the recovery was successful or not
3,596
<ASSISTANT_TASK:> Python Code: import pysal.lib import numpy as np from pysal.explore.giddy.directional import Rose %matplotlib inline f = open(pysal.lib.examples.get_path('spi_download.csv'), 'r') lines = f.readlines() f.close() lines = [line.strip().split(",") for line in lines] names = [line[2] for line in lines[1:-5]] data = np.array([list(map(int, line[3:])) for line in lines[1:-5]]) sids = list(range(60)) out = ['"United States 3/"', '"Alaska 3/"', '"District of Columbia"', '"Hawaii 3/"', '"New England"','"Mideast"', '"Great Lakes"', '"Plains"', '"Southeast"', '"Southwest"', '"Rocky Mountain"', '"Far West 3/"'] snames = [name for name in names if name not in out] sids = [names.index(name) for name in snames] states = data[sids,:] us = data[0] years = np.arange(1969, 2009) rel = states/(us*1.) gal = pysal.lib.io.open(pysal.lib.examples.get_path('states48.gal')) w = gal.read() w.transform = 'r' Y = rel[:, [0, -1]] Y.shape Y np.random.seed(100) r4 = Rose(Y, w, k=4) r4.plot() r4.plot(Y[:,0]) # condition on starting relative income r4.plot(attribute=r4.lag[:,0]) # condition on the spatial lag of starting relative income r4.plot_vectors() # lisa vectors r4.plot_vectors(arrows=False) r4.plot_origin() # origin standardized r4.cuts r4.counts np.random.seed(1234) r4.permute(permutations=999) r4.p r4.permute(alternative='positive', permutations=999) r4.p r4.expected_perm r4.permute(alternative='negative', permutations=999) r4.p <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Visualization Step2: Inference Step3: Here all the four sector counts are signficantly different from their expectation under the null. Step4: Finally, a directional alternative reflecting negative association between the movement of the focal unit and its lag has the complimentary interpretation to the positive alternative
3,597
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt from qutip import * from qutip.piqs import * N = 10 system = Dicke(N = N) [jx, jy, jz] = jspin(N) jp = jspin(N,"+") jm = jp.dag() w0 = 1 h0 = w0 * jz gCE = 1 gP = N * gCE system.hamiltonian = h0 system.collective_emission = gCE system.pumping = gP L = system.liouvillian() rhoss = steadystate(L, method="direct") jpjm_ss = expect(jp*jm, rhoss) # time evolution parameters nt = 1000 td = np.log(N)/(N*gCE) tmax = 5 * td t = np.linspace(0, tmax, nt) # initial state rho0= dicke(N, N/2, -N/2) # calculate g2(tau) A = jp*jm rhoA = jm*rhoss*jp #g2(tau) result1 = mesolve(L, rhoA, t, [], e_ops = [A], options = Options(store_states=True)) g2t = result1.expect[0] #rho(t) result2 = mesolve(L, rho0, t, [], e_ops = A, options = Options(store_states=True)) rhot = result2.states jpjmt = result2.expect[0] j2max = (0.5 * N + 1) * (0.5 * N) plt.rc('text', usetex = True) label_size = 20 plt.rc('xtick', labelsize=label_size) plt.rc('ytick', labelsize=label_size) fig1 = plt.figure() plt.plot(t/td, g2t/jpjm_ss**2, '-') plt.plot(t/td, 1+0*g2t, '--') plt.xlabel(r'$\tau/t_\mathrm{D}$', fontsize = label_size) plt.ylabel(r'$g^{(2)}(\tau)$', fontsize = label_size) plt.xticks([0,(tmax/2)/td,tmax/td]) plt.show() plt.close() fig2 = plt.figure() plt.plot(t/td, jpjmt/j2max, '-') plt.xlabel(r'$t/t_\mathrm{D}$', fontsize = label_size) plt.ylabel(r'$\langle J_{+}J_{-}\rangle (t)$', fontsize = label_size) plt.xticks([0,(tmax/2)/td,tmax/td]) plt.title(r'Light emission', fontsize = label_size) plt.show() plt.close() # Cycle on Coefficients gCE = 1 gP0 = 1 gP_min_exp = -20 gP_max_exp = 20 gP_stepsize = 0.5 gP_list = np.arange(gP_min_exp, gP_max_exp+1, gP_stepsize)*0.1 gP_list_log = 10**(gP_list) jpjmss_max_list = [] for i in gP_list_log: gP = i*gP0 system = Dicke(hamiltonian = jz, N = N, pumping = gP, collective_emission = gCE) liouv = system.liouvillian() #steadystate rho_ss = steadystate(liouv,method="direct") jpjm_ss = expect(jp*jm, rho_ss) jpjmss_max_list.append(jpjm_ss) intensity_max = float(N)*gCE/2*(float(N)*gCE/2+1) normalized_intensity = np.array(jpjmss_max_list)/intensity_max plt.semilogx(gP_list_log/(gCE*N), normalized_intensity, '-') label_size = 20 plt.xlabel(r'${\gamma_\mathrm{P}}/\left({N\gamma_\mathrm{CE}}\right)$', fontsize = label_size) plt.ylabel(r'$\langle J_{+}J_{-}\rangle_\mathrm{ss}$', fontsize = label_size) plt.title(r'Steady-state light emission', fontsize = label_size) plt.show() plt.close() qutip.about() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1) Time evolution Step2: Liouvillian and steady state $\rho_\text{ss}$ Step3: Time integration for $g^{(2)}(\tau)$ and $\langle J_{+}J_{-}\rangle (t)$ Step4: Visualization Step5: 2) Maximum of light emission as a function of $\frac{\gamma_\text{P}}{N\gamma_\text{CE}}$ Step6: Visualization Step7: References
3,598
<ASSISTANT_TASK:> Python Code: %load_ext watermark %watermark -a '' -u -d -v -p numpy,pandas,matplotlib,scipy,sklearn %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version import numpy as np from sklearn.datasets import load_digits digits = load_digits() X = digits.data # data in pixels y = digits.target # digit labels print(X.shape) print(y.shape) print(np.unique(y)) import matplotlib.pyplot as plt import pylab as pl num_rows = 4 num_cols = 5 fig, ax = plt.subplots(nrows=num_rows, ncols=num_cols, sharex=True, sharey=True) ax = ax.flatten() for index in range(num_rows*num_cols): img = digits.images[index] label = digits.target[index] ax[index].imshow(img, cmap='Greys', interpolation='nearest') ax[index].set_title('digit ' + str(label)) ax[0].set_xticks([]) ax[0].set_yticks([]) plt.tight_layout() plt.show() if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=1) num_training = y_train.shape[0] num_test = y_test.shape[0] print('training: ' + str(num_training) + ', test: ' + str(num_test)) import numpy as np # check to see if the data are well distributed among digits for y in [y_train, y_test]: print(np.bincount(y)) ## Note: We do not guarantee that there is a one-to-one correspondence, and therefore the toy result is different. ## See Explanation for more information def clustering_accuracy_score(y_true, y_pred): n_labels = len(list(set(y_true))) n_clusters = len(list(set(y_pred))) Pre = np.zeros((n_clusters, n_labels)) Rec = np.zeros((n_clusters, n_labels)) F = np.zeros((n_clusters, n_labels)) w = np.zeros((n_clusters)) F_i = np.zeros((n_clusters)) P = np.zeros((n_labels)) C = np.zeros((n_clusters)) for i in range(n_clusters): C[i] = sum(y_pred == i) for j in range(n_labels): P[j] = sum(y_true == j) for i in range(n_clusters): F_i_max = 0 for j in range(n_labels): if (C[i]): Pre[i][j] = sum(y_pred[y_true == j] == i) / C[i] if (P[j]): Rec[i][j] = sum(y_true[y_pred == i] == j) / P[j] if (Pre[i][j]+Rec[i][j]): F[i][j] = 2*Pre[i][j]*Rec[i][j]/(Pre[i][j]+Rec[i][j]) F_i_max = max(F_i_max, F[i][j]) F_i[i] = F_i_max w[i] = sum(y_pred == i) / len(y_pred) return F_i.dot(w) # toy case demonstrating the clustering accuracy # this is just a reference to illustrate what this score function is trying to achieve # feel free to design your own as long as you can justify # ground truth class label for samples toy_y_true = np.array([0, 0, 0, 1, 1, 2]) # clustering id for samples toy_y_pred_true = np.array([1, 1, 1, 2, 2, 0]) toy_y_pred_bad1 = np.array([0, 0, 1, 1, 1, 2]) toy_y_pred_bad2 = np.array([2, 2, 1, 0, 0, 0]) toy_accuracy = clustering_accuracy_score(toy_y_true, toy_y_pred_true) print('accuracy', toy_accuracy, ', should be 1') toy_accuracy = clustering_accuracy_score(toy_y_true, toy_y_pred_bad1) print('accuracy', toy_accuracy, ', should be', 5.0/6.0) toy_accuracy = clustering_accuracy_score(toy_y_true, toy_y_pred_bad2) print('accuracy', toy_accuracy, ', should be', 4.0/6.0, ', this will be explained in the following content') from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import KernelPCA from sklearn.cluster import KMeans from sklearn.metrics import make_scorer from scipy.stats import mode pipe = Pipeline([('scl', StandardScaler()), ('pca', KernelPCA()), ('km', KMeans(random_state=1))]) # map cluster number to acutal label def cluster_mapping(y_true, y_pred): mapping = {} n_labels = len(list(set(y_true))) n_clusters = len(list(set(y_pred))) Pre = np.zeros((n_clusters, n_labels)) Rec = np.zeros((n_clusters, n_labels)) F = np.zeros((n_clusters, n_labels)) P = np.zeros((n_labels)) C = np.zeros((n_clusters)) for i in range(n_clusters): C[i] = sum(y_pred == i) for j in range(n_labels): P[j] = sum(y_true == j) for i in range(n_clusters): F_i_max = 0 F_i_max_label = 0 for j in range(n_labels): if (C[i]): Pre[i][j] = sum(y_pred[y_true == j] == i) / C[i] if (P[j]): Rec[i][j] = sum(y_true[y_pred == i] == j) / P[j] if (Pre[i][j]+Rec[i][j]): F[i][j] = 2*Pre[i][j]*Rec[i][j]/(Pre[i][j]+Rec[i][j]) if (F_i_max < F[i][j]): F_i_max_label = j F_i_max = F[i][j] mapping[i] = F_i_max_label return mapping if Version(sklearn_version) < '0.18': from sklearn.grid_search import GridSearchCV else: from sklearn.model_selection import GridSearchCV pcs = list(range(1, 60)) kernels = ['linear', 'rbf', 'cosine'] initTypes = ['random', 'k-means++'] clusters = list(range(10, 20)) tfs = [True, False] param_grid = [{'pca__n_components': pcs, 'pca__kernel': kernels, 'km__init' : initTypes, 'km__n_clusters' : clusters, 'scl__with_std' : tfs, 'scl__with_mean' : tfs}] gs = GridSearchCV(estimator=pipe, param_grid=param_grid, scoring=make_scorer(clustering_accuracy_score), cv=10, n_jobs=-1, verbose=False) gs = gs.fit(X_train, y_train) print(gs.best_score_) print(gs.best_params_) best_model = gs.best_estimator_ print('Test accuracy: %.3f' % clustering_accuracy_score(y_test, best_model.predict(X_test))) mapping = cluster_mapping(y_train, best_model.predict(X_train)) y_test_pred = np.array(list(map(lambda x: mapping[x], best_model.predict(X_test)))) miscl_img = X_test[y_test != y_test_pred][:25] correct_lab = y_test[y_test != y_test_pred][:25] miscl_lab = y_test_pred[y_test != y_test_pred][:25] fig, ax = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True) ax = ax.flatten() for i in range(25): img = miscl_img[i].reshape(8, 8) ax[i].imshow(img, cmap='Greys', interpolation='nearest') ax[i].set_title('%d) t: %d p: %d' % (i+1, correct_lab[i], miscl_lab[i])) ax[0].set_xticks([]) ax[0].set_yticks([]) plt.tight_layout() plt.show() # Functions to build a user-defined wide resnet for cifa-10 # Author: Somshubra Majumdar https://github.com/titu1994/Wide-Residual-Networks # Modified By: Gao Chang, HKU from keras.models import Model from keras.layers import Input, merge, Activation, Dropout, Flatten, Dense from keras.layers.convolutional import Convolution2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras import backend as K def initial_conv(input): x = Convolution2D(16, 3, 3, border_mode='same')(input) channel_axis = 1 if K.image_dim_ordering() == "th" else -1 x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) return x def conv1_block(input, k=1, dropout=0.0): init = input channel_axis = 1 if K.image_dim_ordering() == "th" else -1 # Check if input number of filters is same as 16 * k, else create convolution2d for this input if K.image_dim_ordering() == "th": if init._keras_shape[1] != 16 * k: init = Convolution2D(16 * k, 1, 1, activation='linear', border_mode='same')(init) else: if init._keras_shape[-1] != 16 * k: init = Convolution2D(16 * k, 1, 1, activation='linear', border_mode='same')(init) x = Convolution2D(16 * k, 3, 3, border_mode='same')(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) if dropout > 0.0: x = Dropout(dropout)(x) x = Convolution2D(16 * k, 3, 3, border_mode='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) m = merge([init, x], mode='sum') return m def conv2_block(input, k=1, dropout=0.0): init = input channel_axis = 1 if K.image_dim_ordering() == "th" else -1 # Check if input number of filters is same as 32 * k, else create convolution2d for this input if K.image_dim_ordering() == "th": if init._keras_shape[1] != 32 * k: init = Convolution2D(32 * k, 1, 1, activation='linear', border_mode='same')(init) else: if init._keras_shape[-1] != 32 * k: init = Convolution2D(32 * k, 1, 1, activation='linear', border_mode='same')(init) x = Convolution2D(32 * k, 3, 3, border_mode='same')(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) if dropout > 0.0: x = Dropout(dropout)(x) x = Convolution2D(32 * k, 3, 3, border_mode='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) m = merge([init, x], mode='sum') return m def conv3_block(input, k=1, dropout=0.0): init = input channel_axis = 1 if K.image_dim_ordering() == "th" else -1 # Check if input number of filters is same as 64 * k, else create convolution2d for this input if K.image_dim_ordering() == "th": if init._keras_shape[1] != 64 * k: init = Convolution2D(64 * k, 1, 1, activation='linear', border_mode='same')(init) else: if init._keras_shape[-1] != 64 * k: init = Convolution2D(64 * k, 1, 1, activation='linear', border_mode='same')(init) x = Convolution2D(64 * k, 3, 3, border_mode='same')(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) if dropout > 0.0: x = Dropout(dropout)(x) x = Convolution2D(64 * k, 3, 3, border_mode='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) m = merge([init, x], mode='sum') return m def WRN(nb_classes, N, k, dropout): Creates a Wide Residual Network with specified parameters :param nb_classes: Number of output classes :param N: Depth of the network. Compute N = (n - 4) / 6. Example : For a depth of 16, n = 16, N = (16 - 4) / 6 = 2 Example2: For a depth of 28, n = 28, N = (28 - 4) / 6 = 4 Example3: For a depth of 40, n = 40, N = (40 - 4) / 6 = 6 :param k: Width of the network. :param dropout: Adds dropout if value is greater than 0.0 init = Input(shape=(3, 32, 32)) x = initial_conv(init) for i in range(N): x = conv1_block(x, k, dropout) x = MaxPooling2D((2,2))(x) for i in range(N): x = conv2_block(x, k, dropout) x = MaxPooling2D((2,2))(x) for i in range(N): x = conv3_block(x, k, dropout) x = AveragePooling2D((8,8))(x) x = Flatten()(x) x = Dense(nb_classes, activation='softmax')(x) model = Model(init, x) return model import numpy as np import sklearn.metrics as metrics from keras.datasets import cifar10 from keras.models import Model from keras.layers import Input from keras.optimizers import SGD import keras.callbacks as callbacks import keras.utils.np_utils as kutils from keras.preprocessing.image import ImageDataGenerator from sklearn.metrics import accuracy_score batch_size = 64 nb_epoch = 5 (X_train, y_train), (X_test, y_test) = cifar10.load_data() X_train = X_train.astype('float32') X_train /= 255.0 X_test = X_test.astype('float32') X_test /= 255.0 y_train = kutils.to_categorical(y_train) y_test = kutils.to_categorical(y_test) generator = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True, rotation_range=10, width_shift_range=5./32, height_shift_range=5./32, horizontal_flip=True) generator.fit(X_train, seed=0, augment=True) test_generator = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True) test_generator.fit(X_test, seed=0, augment=True) model = WRN(nb_classes=10, N=4, k=10, dropout=0.0) model.summary() print ("Start Training:") sgd = SGD(lr = 0.001, decay = 0.1, momentum = 0.9, nesterov = True) model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=["acc"]) # model.load_weights("WRN-28-10.h5") model.fit_generator(generator.flow(X_train, y_train, batch_size=batch_size), samples_per_epoch=len(X_train), nb_epoch=nb_epoch, # callbacks=[callbacks.ModelCheckpoint("WRN-28-10-Best.h5", monitor="val_acc", save_best_only=True)], validation_data=test_generator.flow(X_test, y_test, batch_size=batch_size), nb_val_samples=X_test.shape[0], verbose = True) print ("Start Testing:") # model.load_weights("WRN-28-10.h5") results = model.evaluate_generator(test_generator.flow(X_test, y_test, batch_size=batch_size), X_test.shape[0]) print ("Results:") print ("Test loss: {0}".format(results[0])) print ("Test accuracy: {0}".format(results[1])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load data Step2: Visualize data Step3: Data sets Step4: Answer Step5: Explanation Step6: Use GridSearchCV to tune hyper-parameters. Step7: Visualize mis-clustered samples, and provide your explanation. Step9: Explanation
3,599
<ASSISTANT_TASK:> Python Code: # Setup, just putting together what we will need to do the analysis import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib.spines import Spine from matplotlib.projections.polar import PolarAxes from matplotlib.projections import register_projection %matplotlib inline pokemon_data = pd.read_csv('../datasets/pokemon-stats.csv') damage_mul = pd.read_csv('./damage_multipliers.csv') status = ['HP','Attack','Defense','Sp. Atk','Sp. Def','Speed'] pokemon_data.head() damage_mul.head() # Setup your team! Choose 6 pokemon in the list below team = ["Milotic", "Aggron", "Vigoroth", "Raichu", "Breloom", "Alakazam"] # Let's gather only your team's data team_data = pokemon_data.query("Name in @team") team_data # First, let's see your types matchups # Primary types team_types = team_data["Type1"].unique().tolist() # Secundary types may be NaN, let's deal with it team_types.extend(team_data["Type2"].dropna().unique().tolist()) all_types = damage_mul["Attacking"].unique() attack_matchups = {} defense_matchups = {} for p in team: t1 = pokemon_data[pokemon_data["Name"] == p]["Type1"].item() t2 = False if pokemon_data[pokemon_data["Name"] == p]["Type2"].any(): t2 = pokemon_data[pokemon_data["Name"] == p]["Type2"].item() for t in all_types: att_mul =damage_mul[damage_mul["Attacking"] == t1][t].item() def_mul = damage_mul[damage_mul["Attacking"] == t][t1].item() if t2: # In case you have a dual type poke, we get the max multiplier for the attack # and the product for the defense att_mul = max(att_mul,damage_mul[damage_mul["Attacking"] == t2][t].item()) def_mul *=damage_mul[damage_mul["Attacking"] == t][t2].item() attack_matchups[t] = attack_matchups.get(t, 0) + att_mul defense_matchups[t] = defense_matchups.get(t,0) + def_mul attack_matchups = pd.DataFrame(attack_matchups, index=['Score']).T.sort_values('Score', ascending=False).T defense_matchups = pd.DataFrame(defense_matchups, index=['Score']).T.sort_values('Score', ascending=False).T status_data = pd.melt(team_data, id_vars=['#','Name','Type1', 'Type2','Legendary','Generation', 'Total'], var_name="Stat") plt.figure(figsize=(10,3)) plt.subplot(121) plt.suptitle("Types Matchups") plt.title("Attack Matchups") plt.xlabel("Defending Type") plt.ylabel("Score") plt.xticks(range(18), attack_matchups.columns,rotation=65) att_color = lambda x:(1,0.3,0.3) if x <= 5 else (0.2,0.3,1) if x <= 7 else (0.3, 0.8, 0.1) def_color = lambda x:(1,0.3,0.3) if x > 8 else (0.2,0.3,1) if x >= 6 else (0.3, 0.8, 0.1) for x, v in zip(range(18), attack_matchups.values[0]): plt.bar(x,v, color=att_color(v)) plt.subplot(122) plt.title("Defense Matchups") plt.xlabel("Attacking Type") plt.xticks(range(18), defense_matchups.columns[::-1],rotation=65) for x, v in zip(range(18), defense_matchups.values[0][::-1]): plt.bar(x,24-v, color=def_color(v)) plt.show() plt.figure(figsize=(10,5)) plt.title("Status values for your team") sns.swarmplot(x="Stat", y="value", data=status_data, hue="Name") plt.ylabel("Value") plt.xlabel("Status") colors = ['r','g','b','y','c','k'] for stat,c in zip(status,colors): plt.hlines(team_data[stat].mean(),-1,6, linestyles='dotted', color=c, label="%s Avg"%stat) plt.legend(loc=(1.05,0.05)) plt.show() print(pokemon_data[status].mean()) print(team_data[status].mean()) fig = plt.figure( figsize=(4,4)) ax = plt.subplot(111) sns.heatmap(team_data[status], cmap='gist_heat_r') plt.yticks(range(6), team_data["Name"][::-1], rotation=0) plt.xticks(rotation=90) plt.show() # Let's get you 3 worst attack and defense matchups att_w = attack_matchups.columns[-3:].tolist() def_w = defense_matchups.columns[-3:].tolist() archenemy = pokemon_data.query("Type1 in @att_w or Type2 in @att_w") archenemy.query("Type1 in @def_w or Type2 in @def_w") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Types Matchups Step2: Status Analysis Step3: Archenemies