Unnamed: 0
int64
0
15.9k
cleaned_code
stringlengths
67
124k
cleaned_prompt
stringlengths
168
30.3k
9,000
<ASSISTANT_TASK:> Python Code: import re phoneRegex = re.compile(r'/d/d/d-/d/d/d-/d/d/d/d') #phoneRegex.search() # finds first match #phoneRegex.findall() # finds all matches import re phoneRegex = re.compile(r'(/d/d/d)-(/d/d/d-/d/d/d/d)') # Two groups, so returns tuples #phoneRegex.findall() # finds all matches in pairs; [('group1', 'group2'),...] #digitRegex = re.compile(r'(1|2|3|4...|n)`) is equivalent to #digitRegex = re.compile(r'\d\') # Example using lyrics from The Twelve Days of Christmas lyrics = ''' 12 Drummers Drumming 11 Pipers Piping 10 Lords a Leaping 9 Ladies Dancing 8 Maids a Milking 7 Swans a Swimming 6 Geese a Laying 5 Golden Rings 4 Calling Birds 3 French Hens 2 Turtle Doves and 1 Partridge in a Pear Tree ''' xmasRegex = re.compile(r'\d+\s\w+') # 1 or more digits, space, 1 or more words xmasRegex.findall(lyrics) # Returns all 'x gift', but stops at space because \w+ does not include spaces vowelRegex = re.compile(r'[aeiouAEIOU]') # RegEx for lowercase and uppercase vowels alphabetRegex = re.compile(r'[a-zA-Z]') # RegEx for lowercase and uppercase alphabet using ranges print(vowelRegex.findall('Robocop eats baby food.')) # Finds a list of all vowels in string doublevowelRegex = re.compile(r'[aeiouAEIOU]{2}') # RegEx for two lowercase and uppercase vowels in a row; {2} repeats. print(doublevowelRegex.findall('Robocop eats baby food.')) # Finds a list of all vowels in string consonantsRegex = re.compile(r'[^aeiouAEIOU]') # RegEx for finding all characters that are NOT vowels print(consonantsRegex.findall('Robocop eats baby food.')) # Output will include spaces and words. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: find.all() returns a list of strings. Step2: To get the total string, just wrap the total regex in its own group, so you get [(totalstring, group1, group2),...]. Step3: Other regex characters are Step4: It is possible to create your own character classes, outside of these shorthand classes, using [] Step5: A useful feature of custom character classes are negative character classes
9,001
<ASSISTANT_TASK:> Python Code: %%html <style> .example-container { background: #999999; padding: 2px; min-height: 100px; } .example-container.sm { min-height: 50px; } .example-box { background: #9999FF; width: 50px; height: 50px; text-align: center; vertical-align: middle; color: white; font-weight: bold; margin: 2px;} .example-box.med { width: 65px; height: 65px; } .example-box.lrg { width: 80px; height: 80px; } </style> from IPython.html import widgets from IPython.display import display button = widgets.Button( description='Hello World!', width=100, # Integers are interpreted as pixel measurements. height='2em', # em is valid HTML unit of measurement. color='lime', # Colors can be set by name, background_color='#0022FF', # and also by color code. border_color='red') display(button) from IPython.display import display float_range = widgets.FloatSlider() string = widgets.Text(value='hi') container = widgets.Box(children=[float_range, string]) container.border_color = 'red' container.border_style = 'dotted' container.border_width = 3 display(container) # Displays the `container` and all of it's children. container = widgets.Box() container.border_color = 'red' container.border_style = 'dotted' container.border_width = 3 display(container) int_range = widgets.IntSlider() container.children=[int_range] name1 = widgets.Text(description='Location:') zip1 = widgets.BoundedIntText(description='Zip:', min=0, max=99999) page1 = widgets.Box(children=[name1, zip1]) name2 = widgets.Text(description='Location:') zip2 = widgets.BoundedIntText(description='Zip:', min=0, max=99999) page2 = widgets.Box(children=[name2, zip2]) accord = widgets.Accordion(children=[page1, page2], width=400) display(accord) accord.set_title(0, 'From') accord.set_title(1, 'To') name = widgets.Text(description='Name:', padding=4) color = widgets.Dropdown(description='Color:', padding=4, options=['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']) page1 = widgets.Box(children=[name, color], padding=4) age = widgets.IntSlider(description='Age:', padding=4, min=0, max=120, value=50) gender = widgets.RadioButtons(description='Gender:', padding=4, options=['male', 'female']) page2 = widgets.Box(children=[age, gender], padding=4) tabs = widgets.Tab(children=[page1, page2]) display(tabs) tabs.set_title(0, 'Name') tabs.set_title(1, 'Details') display(widgets.Text(description="a:")) display(widgets.Text(description="aa:")) display(widgets.Text(description="aaa:")) display(widgets.Text(description="a:")) display(widgets.Text(description="aa:")) display(widgets.Text(description="aaa:")) display(widgets.Text(description="aaaaaaaaaaaaaaaaaa:")) display(widgets.Text(description="a:")) display(widgets.Text(description="aa:")) display(widgets.Text(description="aaa:")) display(widgets.Text()) buttons = [widgets.Button(description=str(i)) for i in range(3)] display(*buttons) container = widgets.HBox(children=buttons) display(container) container.width = '100%' container.pack = 'center' w1 = widgets.Latex(value="First line") w2 = widgets.Latex(value="Second line") w3 = widgets.Latex(value="Third line") display(w1, w2, w3) w2.visible=None w2.visible=False w2.visible=True form = widgets.VBox() first = widgets.Text(description="First Name:") last = widgets.Text(description="Last Name:") student = widgets.Checkbox(description="Student:", value=False) school_info = widgets.VBox(visible=False, children=[ widgets.Text(description="School:"), widgets.IntText(description="Grade:", min=0, max=12) ]) pet = widgets.Text(description="Pet's Name:") form.children = [first, last, student, school_info, pet] display(form) def on_student_toggle(name, value): if value: school_info.visible = True else: school_info.visible = False student.on_trait_change(on_student_toggle, 'value') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Widget Styling Step2: Parent/child relationships Step3: After the parent is displayed Step4: Fancy boxes Step5: TabWidget Step6: Alignment Step7: If a label is longer than the minimum width, the widget is shifted to the right Step8: If a description is not set for the widget, the label is not displayed Step9: Flex boxes Step10: Using hbox Step11: By setting the width of the container to 100% and its pack to center, you can center the buttons. Step12: Visibility Step13: Another example
9,002
<ASSISTANT_TASK:> Python Code: from IPython.display import Image Image(filename="ImagAnillosNewton.jpg") from IPython.display import Image Image(filename="PaperAnillosNewton.JPG") from IPython.display import Image Image(filename="esquemaAnillosNewton1.jpg") from IPython.display import Image Image(filename="esquemaAnillosNewton2.jpg") import numpy as np import matplotlib.pyplot as plt import ipywidgets as widgets from IPython.display import display,HTML %matplotlib inline #plt.style.use('fivethirtyeight') #Lambda = 5.5e-7;h0 = 0;R = 10.5 n = 1 I1 = 1; I2 = 1 x,y = np.mgrid[-100:100,-100:100]*5e-5 xcut = np.arange(-100*5e-5,100*5e-5,5e-5) def anillos(h,R,Color): fig, ax = plt.subplots(1,2,figsize=(16,8)) if(Color=='Azul (400nm)'): Lambda = 4e-7 elif(Color=='Verde (550 nm)'): Lambda = 5.5e-7 elif(Color=='Rojo (650 nm)'): Lambda = 6.5e-7 espesor = (x**2 + y**2)/(2*R) + h*1e-6 delta = (2*np.pi/Lambda)*2*n*espesor + np.pi Itot = I1 + I2 + 2*np.sqrt(I1*I2)*np.cos(delta) #x = np.sqrt(m*Lambda*r - 2*h*r) ax[0].imshow(Itot,cmap='copper') ax[1].plot(xcut*1e3,Itot[:,np.shape(Itot)[1]/2]) ax[1].set_xlabel('Distancia al centro (mm)') ax[1].set_ylabel('Intensidad') display(fig) return lambdawidgets = widgets.Dropdown(options=['Azul (400nm)','Verde (550 nm)','Rojo (650 nm)']) lambdawidgets.height = 30 widgets.interact(anillos,h=(0,0.5,0.01),R=(10.0,20.0,0.5),Color=lambdawidgets)#widgets.fixed(5.5e-7)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: El patrón de interferencias que aparece al reflejarse la luz entre dos superficies transparentes, una curva y otra plana, es conocido como Anillos de Newton. Step2: Teoría Step3: Vamos a calcular a que distancias del centro tenemos mínimos de luz, o lo que es lo mismo las posiciones de los anillos oscuros. Step4: Vemos en la figura que el espesor total de la lámina de aire será el espesor anterior $e=x^2 / (2 R)$ más el desplazamiento vertical $h$. Por lo tanto el desfase entre las dos ondas será
9,003
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd df = pd.read_csv('example') df df.to_csv('example',index=False) pd.read_excel('Excel_Sample.xlsx',sheetname='Sheet1') df.to_excel('Excel_Sample.xlsx',sheet_name='Sheet1') df = pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html') df[0] from sqlalchemy import create_engine engine = create_engine('sqlite:///:memory:') df.to_sql('data', engine) sql_df = pd.read_sql('data',con=engine) sql_df <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: CSV Step2: CSV Output Step3: Excel Step4: Excel Output Step5: HTML Step6: SQL (Optional)
9,004
<ASSISTANT_TASK:> Python Code: import numpy as np X = np.array([[1, 2, 3], [4, 5, 6]]) X X + 2*X np.matmul(X.transpose(), X) #X^t * X X[1,1] X[1, :] #1. Fila entera X[:, 1] #2. Columna entera X[0:2, 0:2] #3. Slice de n:m, n,n+1,...,m-1 X.shape #Dimensión de arrays vec = np.array([1, 2, 3]) print(vec) class Array: "Clase mínima para Álgebra Lineal" def __init__(self, list_of_rows): "Constructor" self.data = list_of_rows self.shape = (len(list_of_rows), len(list_of_rows[0])) A = Array([[1, 2, 3], [4, 5, 6]]) A.__dict__ # la propiedad oculta *dict* muestra las propiedades internas de la clase A.data #accediendo a la propiedad *data* de la clase A.shape #accediendo a la propiedad *shape* de la clase Array([[1,2,3], [4,5,6]]) print(Array([[1,2,3], [4,5,6]])) # Prueba de clase class JorgeClass: def __init__(self): pass # para no hacer nada def say_hi(self): print("¡Método de impresión simple!") def __repr__(self): return "Representación sin imprimir nada" def __str__(self): return "Método explícito para *print* como objeto" x = JorgeClass() x.say_hi() x print(x) import re class Array: "Clase mínima para Álgebra Lineal" data = list() def __init__(self, list_of_rows): "Constructor" self.data = list_of_rows nrow = len(list_of_rows) # ___caso vector: redimensionar correctamente if not isinstance(list_of_rows[0], list): nrow = 1 self.data = [[x] for x in list_of_rows] # ahora las columnas deben estar bien aunque sea un vector ncol = len(self.data[0]) self.shape = (nrow, ncol) # validar tamano correcto de filas if any([len(r) != ncol for r in self.data]): raise Exception("Ejercicio 1: Las filas deben ser del mismo tamano. ¡Validador funcionando!") def say_hi(self): print("Ejercicio 1: say_hi() method") def __repr__(self): retval = "[" for list in self.data: retval += "[" for x in list: retval += str(x) + ", " retval += "], " retval = retval + "]" return retval.replace(", ]", "]") def __str__(self): return self.__repr__() #return "Ejercicio 1: print" def __getitem__(self, index): return(self.data[index[0]][index[1]]) def __setitem__(self, index, newval): self.data[index[0]][index[1]] = newval return Array([[1,2,3],[4,5]]) vec = Array([1,2,3]) vec.data X = Array([[1,2],[3,4]]) X[1,0] X[0,0] = 0 X[0,0] X np.zeros((3,6)) import re import numpy as np class zeros: "Clase para llenar una matriz en Ceros" data = list() shape = None def __init__(self, shape): "Constructor" self.data = list() print(shape) for i in range(0, shape[1]): self.data.append(list()) for j in range(0, shape[0]): self.data[i].append(list()) self.data[i][j] = 0. #self.data[i].append(list()) # self.data[i][j] = 0 self.shape = shape #self.data = np.zeros(shape) def eye(self): if self.shape[0] != self.shape[1]: raise Exception("Ejercicio 3: las columnas y las filas deben ser de igual número n = m") for i in range(0,self.shape[1]): for j in range(0, self.shape[0]): if(i == j): self.data[i][j] = 1.0 def __repr__(self): retval = "[\n" for list in self.data: retval += "[" for x in list: retval += str(x) + ", " retval += "], \n" retval = retval + "]" return retval.replace(", ]", "]") def __str__(self): return self.__repr__() #return "Ejercicio 1: print" def __getitem__(self, index): return(self.data[index[0]][index[1]]) def __setitem__(self, index, newval): self.data[index[0]][index[1]] = newval return X = zeros([3,4]) X X.eye() X X = zeros((4, 4)) X.eye() X np.array([[1,2,3],[4,5,6],[7,8,9]]).transpose() import re class transpose: "Clase para llenar una matriz en Ceros" data = list() shape = None def __init__(self, list_of_rows): "Constructor" # obtener dimensiones self.data = list_of_rows nrow = len(list_of_rows) # ___caso vector: redimensionar correctamente if not isinstance(list_of_rows[0], list): nrow = 1 self.data = [[x] for x in list_of_rows] # ahora las columnas deben estar bien aunque sea un vector ncol = len(self.data[0]) self.shape = (nrow, ncol) # validar tamano correcto de filas if any([len(r) != ncol for r in self.data]): raise Exception("Las filas deben ser del mismo tamano") def transpose(self): transposed = list() for i in range(0, len(self.data[1])): transposed.append(list()) for j in range(0, len(self.data[0])): transposed[i].append(list()) transposed[i][j] = self.data[j][i] print(transposed) def eye(self): if self.shape[0] != self.shape[1]: raise Exception("Ejercicio 3: las columnas y las filas deben ser de igual número n = m") for i in range(0,self.shape[1]): for j in range(0, self.shape[0]): if(i == j): self.data[i][j] = 1.0 def __repr__(self): retval = "[\n" for list in self.data: retval += "[" for x in list: retval += str(x) + ", " retval += "], \n" retval = retval + "]" return retval.replace(", ]", "]") def __str__(self): return self.__repr__() #return "Ejercicio 1: print" def __getitem__(self, index): return(self.data[index[0]][index[1]]) def __setitem__(self, index, newval): self.data[index[0]][index[1]] = newval return def __add__(self, other): "Hora de sumar" if isinstance(other, transpose): if self.shape != other.shape: raise Exception("Las dimensiones son distintas!") rows, cols = self.shape suma = transpose([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): suma.data[r][c] = self.data[r][c] + other.data[r][c] return suma elif isinstance(2, (int, float, complex)): # en caso de que el lado derecho sea solo un numero rows, cols = self.shape newArray = Array([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): newArray.data[r][c] = self.data[r][c] + other return newArray else: return NotImplemented # es un tipo de error particular usado en estos metodos def __mul__(self, other): "Método de multiplicación" if isinstance(other, transpose): if self.shape[1] != other.shape[0]: raise Exception("Las dimensiones son distintas!") rows, cols = self.shape suma = transpose([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): suma.data[r][c] = self.data[r][c] + other.data[r][c] return suma elif isinstance(2, (int, float, complex)): # en caso de que el lado derecho sea solo un numero rows, cols = self.shape newArray = Array([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): newArray.data[r][c] = self.data[r][c] + other return newArray else: return NotImplemented # es un tipo de error particular usado en estos metodos X = transpose([[1,2,3],[4,5,6],[7,8,9]]) X.transpose() np.array([[1,2,3],[4,5,6],[7,8,9]]) + np.array([[10,11,12],[13,14,15],[16,17,18]]) Y = transpose([[10,11,12],[13,14,15],[16,17,18]]) X + Y Z = X + 10 Z Z.data transpose([[1,1],[1,1]]) + transpose([[2,2],[2,2]]) import re class transpose: "Clase para llenar una matriz en Ceros" data = list() shape = None def __init__(self, list_of_rows): "Constructor" # obtener dimensiones self.data = list_of_rows nrow = len(list_of_rows) # ___caso vector: redimensionar correctamente if not isinstance(list_of_rows[0], list): nrow = 1 self.data = [[x] for x in list_of_rows] # ahora las columnas deben estar bien aunque sea un vector ncol = len(self.data[0]) self.shape = (nrow, ncol) # validar tamano correcto de filas if any([len(r) != ncol for r in self.data]): raise Exception("Las filas deben ser del mismo tamano") def transpose(self): transposed = list() for i in range(0, len(self.data[1])): transposed.append(list()) for j in range(0, len(self.data[0])): transposed[i].append(list()) transposed[i][j] = self.data[j][i] print(transposed) def eye(self): if self.shape[0] != self.shape[1]: raise Exception("Ejercicio 3: las columnas y las filas deben ser de igual número n = m") for i in range(0,self.shape[1]): for j in range(0, self.shape[0]): if(i == j): self.data[i][j] = 1.0 def __repr__(self): retval = "[\n" for list in self.data: retval += "[" for x in list: retval += str(x) + ", " retval += "], \n" retval = retval + "]" return retval.replace(", ]", "]") def __str__(self): return self.__repr__() #return "Ejercicio 1: print" def __getitem__(self, index): return(self.data[index[0]][index[1]]) def __setitem__(self, index, newval): self.data[index[0]][index[1]] = newval return def __add__(self, other): "Hora de sumar" if isinstance(other, transpose): if self.shape != other.shape: raise Exception("Las dimensiones son distintas!") rows, cols = self.shape suma = transpose([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): suma.data[r][c] = self.data[r][c] + other.data[r][c] return suma elif isinstance(2, (int, float, complex)): # en caso de que el lado derecho sea solo un numero rows, cols = self.shape newArray = Array([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): newArray.data[r][c] = self.data[r][c] + other return newArray else: return NotImplemented # es un tipo de error particular usado en estos metodos def __rmul__(self, other): "Multiplicación escalar" if isinstance(2, (int, float, complex)): # en caso de que el lado derecho sea solo un numero rows, cols = self.shape newArray = transpose([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): newArray.data[r][c] = self.data[r][c] * other return newArray else: return NotImplemented # es un tipo de error particular usado en estos metodos def __mul__(self, other): "Multiplicación vectorial" if isinstance(other, transpose): if self.shape[1] != other.shape[0] or self.shape[0] != other.shape[1]: raise Exception("Las dimensiones son distintas!") rows, cols = self.shape[0], other.shape[1] rowsL, colsL = other.shape[0], self.shape[1] retval = transpose([[0. for c in range(cols)] for r in range(rows)]) for r in range(rows): for c in range(cols): print("R(" + str(r) + ", " + str(c) + ") = ", end=" ") for i in range(colsL): #for j in range(rowsL): print("A("+str(c) + "," + str(i) + ") * B(" + str(r) + "," + str(c)+")",end=" + ") print("") #retval.data[r][c] += self.data[i][j] * other.data[i][j] #print(str(r) + ", " + str(c) + " = ") return retval else: return NotImplemented # es un tipo de error particular usado en estos metodos transpose([[1,1,1],[1,1,1]]) * transpose([[2,2],[2,2],[2,2]]) np.matmul(np.array([[1,1,1],[1,1,1]]), np.array([[2,2,2],[2,2,2],[2,2,2]])) class Vector(transpose): "clase de Vectores Array" def __init__(self, list_of_numbers): self.vdata = list_of_numbers list_of_rows = [[x] for x in list_of_numbers] return transpose.__init__(self, list_of_rows) def __repr__(self): return "Vector(" + str(self.vdata) + ")" def __str__(self): return str(self.vdata) def __add__(self, other): if type(other) is Vector: new_arr = transpose.__add__(self, other) else: "Suma escalar" rows, cols = self.shape new_arr = transpose([0 for r in range(rows)]) for r in range(rows): new_arr.data[r][0] = self.data[r][0] + 10 print(new_arr.__dict__) return Vector([x[0] for x in new_arr.data]) Vector([1,2,3]).__dict__ Vector([1,2,3]) Vector([1,2,3]) + Vector([4,5,6]) Vector([1,2,3]) + 10 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Operaciones con arrays Step2: Multiplicación de matrices con numpy.matmul() Step3: Obteniendo datos específicos Step4: Selección y multi selección de elementos... Step5: Vectores Step6: Creando clases en Python Step7: ... implementando métodos que faciliten la utilización de dicha clase para nuestros fines de Álgegra Lineal Step8: <span style="color Step9: Prueba de validador Step10: Prueba con vectores Step11: Index & Item Assignment Step12: <span style="color Step13: Inicialización de una matriz en ceros con numpy Step14: <span style="color Step15: Transposición Step16: <span style="color Step17: Suma Step18: <span style = "color Step19: <span style = "color
9,005
<ASSISTANT_TASK:> Python Code: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) image_size = 28 num_labels = 10 def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 1 to [0.0, 1.0, 0.0 ...], 2 to [0.0, 0.0, 1.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) batch_size = 128 hidden_nodes = 1024 learning_rate = 0.5 beta = 0.005 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights_1 = tf.Variable( tf.truncated_normal([image_size * image_size, hidden_nodes])) biases_1 = tf.Variable(tf.zeros([hidden_nodes])) weights_2 = tf.Variable( tf.truncated_normal([hidden_nodes, num_labels])) biases_2 = tf.Variable(tf.zeros([num_labels])) # Training computation. def forward_prop(input): h1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1) return tf.matmul(h1, weights_2) + biases_2 logits = forward_prop(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Add the regularization term to the loss. loss += beta * (tf.nn.l2_loss(weights_1) + tf.nn.l2_loss(weights_2)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(forward_prop(tf_valid_dataset)) test_prediction = tf.nn.softmax(forward_prop(tf_test_dataset)) num_steps = 3001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) train_dataset_restricted = train_dataset[:130, :] train_labels_restricted = train_labels[:130, :] num_steps = 3001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels_restricted.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset_restricted[offset:(offset + batch_size), :] batch_labels = train_labels_restricted[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) batch_size = 128 hidden_nodes_1 = 1024 hidden_nodes_2 = 1024 learning_rate = 0.0001 beta = 0.005 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Placeholder to control dropout probability. keep_prob = tf.placeholder(tf.float32) # Variables. weights_1 = tf.Variable(tf.random_normal([image_size * image_size, hidden_nodes_1])) biases_1 = tf.Variable(tf.zeros([hidden_nodes_1])) weights_2 = tf.Variable(tf.random_normal([hidden_nodes_1, hidden_nodes_2])) biases_2 = tf.Variable(tf.zeros([hidden_nodes_2])) weights_out = tf.Variable(tf.random_normal([hidden_nodes_2, num_labels])) biases_out = tf.Variable(tf.zeros([num_labels])) # Training computation. def forward_prop(input): h1 = tf.nn.dropout(tf.nn.relu(tf.matmul(input, weights_1) + biases_1), keep_prob) h2 = tf.nn.dropout(tf.nn.relu(tf.matmul( h1, weights_2) + biases_2), keep_prob) return tf.matmul(h2, weights_out) + biases_out logits = forward_prop(tf_train_dataset) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Add the regularization term to the loss. loss += beta * (tf.nn.l2_loss(weights_1) + tf.nn.l2_loss(weights_2) + tf.nn.l2_loss(weights_out)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # optimizer = tf.train.AdamOptimizer(0.001).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(forward_prop(tf_valid_dataset)) test_prediction = tf.nn.softmax(forward_prop(tf_test_dataset)) num_steps = 5001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, keep_prob: 1.0} feed_dict_w_drop = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, keep_prob: 0.5} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict_w_drop) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(feed_dict=feed_dict), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(feed_dict=feed_dict), test_labels)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First reload the data we generated in 1_notmnist.ipynb. Step2: Reformat into a shape that's more adapted to the models we're going to train Step3: Problem 1 Step4: Problem 2 Step5: Problem 3
9,006
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt # if using a jupyter notebook: include %matplotlib inline. If constructing a .py-file: comment out %matplotlib inline # if high-resolution images are desired: include %config InlineBackend.figure_format = 'svg' %config InlineBackend.figure_format = 'svg' import SchemDraw as schem import SchemDraw.elements as e d = schem.Drawing(unit=2.5) R7 = d.add(e.RES, d='right', botlabel='$R_7$') R6 = d.add(e.RES, d='right', botlabel='$R_6$') d.add(e.LINE, d='right', l=2) d.add(e.LINE, d='right', l=2) R5 = d.add(e.RES, d='up' , botlabel='$R_5$') R4 = d.add(e.RES, d='up', botlabel='$R_4$') d.add(e.LINE, d='left', l=2) d.push() R3 = d.add(e.RES, d='down', toy=R6.end, botlabel='$R_3$') d.pop() d.add(e.LINE, d='left', l=2) d.push() R2 = d.add(e.RES, d='down', toy=R6.end, botlabel='$R_2$') d.pop() R1 = d.add(e.RES, d='left', tox=R7.start, label='$R_1$') Vt = d.add(e.BATTERY, d='up', xy=R7.start, toy=R1.end, label='$V_t$', lblofst=0.3) d.labelI(Vt, arrowlen=1.5, arrowofst=0.5) d.draw() d.save('7_resistors_3_loops.png') #d.save('7_resistors_3_loops.pdf') Vt = 5.2 R1 = 0.0132 R2 = 0.021 R3 = 0.00360 R4 = 0.0152 R5 = 0.0119 R6 = 0.0022 R7 = 0.00740 R45 = R4 + R5 R67 = R6 + R7 print(f'R45 = {round(R45,7)} Ohm, R67 = {round(R67,5)} Ohm') d = schem.Drawing(unit=2.5) R67 = d.add(e.RES, d='right', botlabel='$R_{67}$') d.add(e.LINE, d='right', l=2) d.add(e.LINE, d='right', l=2) R45 = d.add(e.RES, d='up', botlabel='$R_{45}$') d.add(e.LINE, d='left', l=2) d.push() R3 = d.add(e.RES, d='down', toy=R67.end, botlabel='$R_3$') d.pop() d.add(e.LINE, d='left', l=2) d.push() R2 = d.add(e.RES, d='down', toy=R67.end, botlabel='$R_2$') d.pop() R1 = d.add(e.RES, d='left', tox=R67.start, label='$R_1$') Vt = d.add(e.BATTERY, d='up', xy=R67.start, toy=R1.end, label='$V_t$', lblofst=0.3) d.labelI(Vt, arrowlen=1.5, arrowofst=0.5) d.draw() d.save('5_resistors_3_loops.png') #d.save('5_resistors_3_loops.pdf') Vt = 5.2 R1 = 0.0132 R2 = 0.021 R3 = 0.00360 R4 = 0.0152 R5 = 0.0119 R6 = 0.0022 R7 = 0.00740 R45 = R4 + R5 R67 = R6 + R7 R2345 = ((1/R2)+(1/R3)+(1/R45))**(-1) print(f'R2345 = {round(R2345,7)} Ohm') d = schem.Drawing(unit=2.5) R67 = d.add(e.RES, d='right', botlabel='$R_{67}$') R345 = d.add(e.RES, d='up' , botlabel='$R_{2345}$') R1 = d.add(e.RES, d='left', tox=R67.start, label='$R_1$') Vt = d.add(e.BATTERY, d='up', xy=R67.start, toy=R1.end, label='$V_t$', lblofst=0.3) d.labelI(Vt, arrowlen=1.5, arrowofst=0.5) d.draw() d.save('3_resistors_1_loop.png') #d.save('3_resistors_1_loop.pdf') Vt = 5.2 R1 = 0.0132 R2 = 0.021 R3 = 0.00360 R4 = 0.0152 R5 = 0.0119 R6 = 0.0022 R7 = 0.00740 R45 = R4 + R5 R67 = R6 + R7 R2345 = ((1/R2)+(1/R3)+(1/R45))**(-1) Rt = R1 + R2345 + R67 print(f'Rt = {round(Rt,7)} Ohm') d = schem.Drawing(unit=2.5) L2 = d.add(e.LINE, d='right') Rt = d.add(e.RES, d='up' , botlabel='$R_{t}$') L1 = d.add(e.LINE, d='left', tox=L2.start) Vt = d.add(e.BATTERY, d='up', xy=L2.start, toy=L1.end, label='$V_t$', lblofst=0.3) d.labelI(Vt, arrowlen=1.5, arrowofst=0.5) d.draw() d.save('1_resistor_no_loops.png') #d.save('1_resistor_no_loops.pdf') Vt = 5.2 R1 = 0.0132 R2 = 0.021 R3 = 0.00360 R4 = 0.0152 R5 = 0.0119 R6 = 0.0022 R7 = 0.00740 R45 = R4 + R5 R67 = R6 + R7 R2345 = ((1/R2)+(1/R3)+(1/R45))**(-1) Rt = R1 + R2345 + R67 It = Vt/Rt print(f'It = {round(It,2)} A') I6 = It I7 = It V6 = I6 * R6 V7 = I7 * R7 print(f'V6 = {round(V6,5)} V, V7 = {round(V7,5)} V') I2345 = It V2345 = I2345 * R2345 print(f'V2345 = {round(V2345,5)} V') V3 = V2345 I3 = V3 / R3 I6 = It print(f'I3 = {round(I3,2)} A, I6 = {round(I6,2)} A') I7 = It P7 = R7 * I7**2 print(f'P7 = {round(P7,2)} W') V45 = V2345 I45 = V45/R45 print(f'I45 = {round(I45,3)} A') I4 = I45 P4 = R4 * I4**2 print(f'P4 = {round(P4,4)} W') print(f'V6 = {round(V6,3)} V') print(f'V7 = {round(V7,2)} V') print(f'I3 = {round(I3,0)} A') print(f'I6 = {round(I6,0)} A') print(f'P4 = {round(P4,2)} W') print(f'P7 = {round(P7,0)} W') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we'll build the circuit diagram by creating a SchemDraw Drawing object and adding elements to it. Step2: Find R<sub>t</sub> Step3: Find R<sub>45</sub> and R<sub>67</sub> Step4: Let's redraw our circuit diagram to show the combined resistors. Step5: Find R<sub>2345</sub> Step6: OK, now let's construct a new SchemDraw diagram of the simplified the circuit. In this diagram, we'll combine $R_2$, $R_3$ and $R_{45}$ into one big resistor, $R_{2345}$. Step7: Find R<sub>t</sub> Step8: Last circuit diagram. The simplest one. This SchemDraw diagram just includes $V_t$ and $R_t$. Step9: Find V<sub>6</sub> and V<sub>7</sub> Step10: The total current of the circuit, $I_t$ is the same as the current running through resistor $R_6$ and resistor $R_7$. Step11: Find I<sub>3</sub> and I<sub>6</sub> Step12: The voltage drop across resistor $R_3$ is the same as the voltage drop across resistor $R_{2345}$. Step13: Find P<sub>7</sub> and P<sub>4</sub> Step14: Current $I_{45}$ is equal to current $I_4$. Voltage $V_{45} = V_{2345}$. Using Ohm's Law again Step15: One more time using the power law Step16: Final Answer
9,007
<ASSISTANT_TASK:> Python Code: !pip install nnabla-ext-cuda100 !git clone https://github.com/sony/nnabla-examples.git %cd nnabla-examples import nnabla as nn import nnabla.functions as F import nnabla.parametric_functions as PF import nnabla.solver as S from nnabla.logger import logger import nnabla.utils.save as save from nnabla.utils.data_iterator import data_iterator_simple from utils.neu.save_nnp import save_nnp import numpy as np import time import os import struct import zlib from nnabla.logger import logger from nnabla.utils.data_iterator import data_iterator from nnabla.utils.data_source import DataSource from nnabla.utils.data_source_loader import download def load_mnist(train=True): ''' Load MNIST dataset images and labels from the original page by Yan LeCun or the cache file. Args: train (bool): The testing dataset will be returned if False. Training data has 60000 images, while testing has 10000 images. Returns: numpy.ndarray: A shape of (#images, 1, 28, 28). Values in [0.0, 1.0]. numpy.ndarray: A shape of (#images, 1). Values in {0, 1, ..., 9}. ''' if train: image_uri = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz' label_uri = 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz' else: image_uri = 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz' label_uri = 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz' logger.info('Getting label data from {}.'.format(label_uri)) r = download(label_uri) data = zlib.decompress(r.read(), zlib.MAX_WBITS | 32) _, size = struct.unpack('>II', data[0:8]) labels = np.frombuffer(data[8:], np.uint8).reshape(-1, 1) r.close() logger.info('Getting label data done.') logger.info('Getting image data from {}.'.format(image_uri)) r = download(image_uri) data = zlib.decompress(r.read(), zlib.MAX_WBITS | 32) _, size, height, width = struct.unpack('>IIII', data[0:16]) images = np.frombuffer(data[16:], np.uint8).reshape( size, 1, height, width) r.close() logger.info('Getting image data done.') return images, labels class MnistDataSource(DataSource): ''' Get data directly from MNIST dataset from Internet(yann.lecun.com). ''' def _get_data(self, position): image = self._images[self._indexes[position]] label = self._labels[self._indexes[position]] return (image, label) def __init__(self, train=True, shuffle=False, rng=None): super(MnistDataSource, self).__init__(shuffle=shuffle) self._train = train self._images, self._labels = load_mnist(train) self._size = self._labels.size self._variables = ('x', 'y') if rng is None: rng = np.random.RandomState(313) self.rng = rng self.reset() def reset(self): if self._shuffle: self._indexes = self.rng.permutation(self._size) else: self._indexes = np.arange(self._size) super(MnistDataSource, self).reset() @property def images(self): Get copy of whole data with a shape of (N, 1, H, W). return self._images.copy() @property def labels(self): Get copy of whole label with a shape of (N, 1). return self._labels.copy() def data_iterator_mnist(batch_size, train=True, rng=None, shuffle=True, with_memory_cache=False, with_file_cache=False): ''' Provide DataIterator with :py:class:`MnistDataSource` with_memory_cache and with_file_cache option's default value is all False, because :py:class:`MnistDataSource` is able to store all data into memory. For example, .. code-block:: python with data_iterator_mnist(True, batch_size) as di: for data in di: SOME CODE TO USE data. ''' return data_iterator(MnistDataSource(train=train, shuffle=shuffle, rng=rng), batch_size, rng, with_memory_cache, with_file_cache) def mlp_net(x, n_h, n_y, test=False): Args: x(`~nnabla.Variable`): N-D array n_h(int): number of units in an intermediate layer n_y(int): number of classes test: operation type train=True, test=False Returns: ~nnabla.Variable: h h = x with nn.parameter_scope("fc1"): h = F.relu(PF.batch_normalization( PF.affine(h, n_h), batch_stat=not test), inplace=True) with nn.parameter_scope("fc2"): h = F.relu(PF.batch_normalization( PF.affine(h, n_h), batch_stat=not test), inplace=True) with nn.parameter_scope("fc3"): h = PF.affine(h, n_y) return h def distance(y0, y1): Distance function is Kullback-Leibler Divergence for categorical distribution return F.kl_multinomial(F.softmax(y0), F.softmax(y1)) def calc_validation_error(di_v, xv, tv, err, val_iter): Calculate validation error rate Args: di_v; validation dataset xv: variable for input tv: variable for label err: variable for error estimation val_iter: number of iteration Returns: error rate ve = 0.0 for j in range(val_iter): xv.d, tv.d = di_v.next() xv.d = xv.d / 255 err.forward(clear_buffer=True) ve += err.d return ve / val_iter # Get context. from nnabla.ext_utils import get_extension_context ctx = get_extension_context('cudnn') nn.set_default_context(ctx) # Load MNIST Dataset images, labels = load_mnist(train=True) rng = np.random.RandomState(706) inds = rng.permutation(len(images)) def feed_labeled(i): j = inds[i] return images[j], labels[j] def feed_unlabeled(i): j = inds[i] return images[j], labels[j] shape_x = (1, 28, 28) n_h = 1200 #number of units n_y = 10 #number of classes n_labeled = 100 n_train = 60000 batchsize_l = 100 batchsize_u = 250 batchsize_v = 100 di_l = data_iterator_simple(feed_labeled, n_labeled, batchsize_l, shuffle=True, rng=rng, with_file_cache=False) di_u = data_iterator_simple(feed_unlabeled, n_train, batchsize_u, shuffle=True, rng=rng, with_file_cache=False) di_v = data_iterator_mnist(batchsize_v, train=False) # Create networks # feed-forward-net building function def forward(x, test=False): return mlp_net(x, n_h, n_y, test) # Net for learning labeled data xl = nn.Variable((batchsize_l,) + shape_x, need_grad=False) yl = forward(xl, test=False) tl = nn.Variable((batchsize_l, 1), need_grad=False) loss_l = F.mean(F.softmax_cross_entropy(yl, tl)) # Net for learning unlabeled data xu = nn.Variable((batchsize_u,) + shape_x, need_grad=False) yu = forward(xu, test=False) y1 = yu.get_unlinked_variable() y1.need_grad = False xi_for_vat = 10.0 eps_for_vat = 1.5 noise = nn.Variable((batchsize_u,) + shape_x, need_grad=True) r = noise / (F.sum(noise ** 2, [1, 2, 3], keepdims=True)) ** 0.5 r.persistent = True y2 = forward(xu + xi_for_vat * r, test=False) y3 = forward(xu + eps_for_vat * r, test=False) loss_k = F.mean(distance(y1, y2)) loss_u = F.mean(distance(y1, y3)) # Net for evaluating validation data xv = nn.Variable((batchsize_v,) + shape_x, need_grad=False) hv = forward(xv, test=True) tv = nn.Variable((batchsize_v, 1), need_grad=False) err = F.mean(F.top_n_error(hv, tv, n=1)) # Create solver solver = S.Adam(2e-3) solver.set_parameters(nn.get_parameters()) # Monitor training and validation stats. model_save_path = 'tmp.monitor.vat' import nnabla.monitor as M monitor = M.Monitor(model_save_path) monitor_verr = M.MonitorSeries("Test error", monitor, interval=240) monitor_time = M.MonitorTimeElapsed("Elapsed time", monitor, interval=240) # Training Loop. t0 = time.time() max_iter = 24000 val_interval = 240 val_iter = 100 weight_decay = 0 n_iter_for_power_method = 1 iter_per_epoch = 240 learning_rate_decay = 0.9 for i in range(max_iter): # Validation Test if i % val_interval == 0: valid_error = calc_validation_error( di_v, xv, tv, err, val_iter) monitor_verr.add(i, valid_error) ################################# ## Training by Labeled Data ##### ################################# # forward, backward and update xl.d, tl.d = di_l.next() xl.d = xl.d / 255 solver.zero_grad() loss_l.forward(clear_no_need_grad=True) loss_l.backward(clear_buffer=True) solver.weight_decay(weight_decay) solver.update() ################################# ## Training by Unlabeled Data ### ################################# # Calculate y without noise, only once. xu.d, _ = di_u.next() xu.d = xu.d / 255 yu.forward(clear_buffer=True) ##### Calculate Adversarial Noise ##### # Do power method iteration noise.d = np.random.normal(size=xu.shape).astype(np.float32) for k in range(n_iter_for_power_method): r.grad.zero() loss_k.forward(clear_no_need_grad=True) loss_k.backward(clear_buffer=True) noise.data.copy_from(r.grad) ##### Calculate loss for unlabeled data ##### # forward, backward and update solver.zero_grad() loss_u.forward(clear_no_need_grad=True) loss_u.backward(clear_buffer=True) solver.weight_decay(weight_decay) solver.update() ##### Learning rate update ##### if i % iter_per_epoch == 0: solver.set_learning_rate( solver.learning_rate() * learning_rate_decay) monitor_time.add(i) # Evaluate the final model by the error rate with validation dataset valid_error = calc_validation_error(di_v, xv, tv, err, val_iter) print(valid_error) # If you need to save the model, please comment out the following lines: # parameter_file = os.path.join( # model_save_path, 'params_%06d.h5' % max_iter) # nn.save_parameters(parameter_file) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's start by importing dependencies. Step4: Let's also define data iterator for MNIST. You can disregard the details for now. Step6: We now define a multi-layer perceptron (MLP) network to be used later. Our MLP consists of 3 fully-connected layers, two of whiich are followed by batch normalization and non-linear activation. Step8: Let's also define a function to measure the distance between two distributions. In this example, we use a function called multinomial Kullback-Leibler divergence, commonly known as KL-divergence. Step10: Before we get into the main computational graph, let's also define a function to evaluate the network. This function simply returns error rate during validation, which is averaged over the number of iterations. Step11: Now we get into the main computational graph. We start by setting context to use cuDNN, and loading data iterator for MNIST. Step12: Let's define two functions for loading data for labeled and unlabeled settings respectively. Although feed_unlabeled function is also returning labels, we will later see that the labels are disregarded in the graph. Step13: We first define a simple forward function that calls the multi-layer perceptron network that we defined above. Step14: We now define variables for noise, which are added to the input variable xu and fed to MLP. The KL-divergence between the MLP outputs of noisy variable and noise-free variable is used to compute loss. Of the two losses, one is used to perform power method iteration, and another one is loss for unlabeled data. Step15: We define our solver and monitor variables. We will use Adam as our solver. Step16: Now we get into our training loop. We will have separate training stages for labeled and unlabeled data. We first start with labeled data, which is pretty much the same as usual training graph. Step17: Finally, we evaluate our model on the validation dataset. If the model was trained correctly, we should get an error rate of around 1.5%.
9,008
<ASSISTANT_TASK:> Python Code: from effect_demo_setup import * from concise.models import single_layer_pos_effect as concise_model import numpy as np # Generate training data for the model, use a 1000bp sequence param, X_feat, X_seq, y, id_vec = load_example_data(trim_seq_len = 1000) # Generate the model dc = concise_model(pooling_layer="sum", init_motifs=["TGCGAT", "TATTTAT"], n_splines=10, n_covariates=0, seq_length=X_seq.shape[1], **param) # Train the model dc.fit([X_seq], y, epochs=1, validation_data=([X_seq], y)) # In order to select the right output of a potential multitask model we have to generate a list of output labels, which will be used alongside the model itself. model_output_annotation = np.array(["output_1"]) import h5py dataset_path = "%s/data/sample_hqtl_res.hdf5"%concise_demo_data_path dataset = {} with h5py.File(dataset_path, "r") as ifh: ref = ifh["test_in_ref"].value alt = ifh["test_in_alt"].value dirs = ifh["test_out"]["seq_direction"].value # This datset is stored with forward and reverse-complement sequences in an interlaced manner assert(dirs[0] == b"fwd") dataset["ref"] = ref[::2,...] dataset["alt"] = alt[::2,...] dataset["ref_rc"] = ref[1::2,...] dataset["alt_rc"] = alt[1::2,...] dataset["y"] = ifh["test_out"]["type"].value[::2] # The sequence is centered around the mutatiom with the mutation occuring on position when looking at forward sequences dataset["mutation_position"] = np.array([500]*dataset["ref"].shape[0]) from concise.effects.ism import ism from concise.effects.gradient import gradient_pred from concise.effects.dropout import dropout_pred ism_result = ism(model = dc, ref = dataset["ref"], ref_rc = dataset["ref_rc"], alt = dataset["alt"], alt_rc = dataset["alt_rc"], mutation_positions = dataset["mutation_position"], out_annotation_all_outputs = model_output_annotation, diff_type = "diff") gradient_result = gradient_pred(model = dc, ref = dataset["ref"], ref_rc = dataset["ref_rc"], alt = dataset["alt"], alt_rc = dataset["alt_rc"], mutation_positions = dataset["mutation_position"], out_annotation_all_outputs = model_output_annotation) dropout_result = dropout_pred(model = dc, ref = dataset["ref"], ref_rc = dataset["ref_rc"], alt = dataset["alt"], alt_rc = dataset["alt_rc"], mutation_positions = dataset["mutation_position"], out_annotation_all_outputs = model_output_annotation) gradient_result from concise.effects.snp_effects import effect_from_model # Define the parameters: params = {"methods": [gradient_pred, dropout_pred, ism], "model": dc, "ref": dataset["ref"], "ref_rc": dataset["ref_rc"], "alt": dataset["alt"], "alt_rc": dataset["alt_rc"], "mutation_positions": dataset["mutation_position"], "extra_args": [None, {"dropout_iterations": 60}, {"rc_handling" : "maximum", "diff_type":"diff"}], "out_annotation_all_outputs": model_output_annotation, } results = effect_from_model(**params) print(results.keys()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As with any prediction that you want to make with a model it is necessary that the input sequences have to fit the input dimensions of your model, in this case the reference and alternative sequences in their forward and reverse-complement state have to have the shape [?, 1000, 4]. Step2: All prediction functions have the same general set of required input values. Before going into more detail of the individual prediction functions We will look into how to run them. The following input arguments are availble for all functions Step3: The output of all functions is a dictionary, please refer to the individual chapters further on for an explanation of the individual values. Every dictionary contains pandas dataframes as values. Every column of the dataframe is named according to the values given in the out_annotation_all_outputs labels and contains the respective predicted scores. Step4: Again the returned value is a dictionary containing the results of the individual calculations, the keys are the names of the executed functions
9,009
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mohc', 'hadgem3-gc31-lm', 'ocean') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OGCM" # "slab ocean" # "mixed layer ocean" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Primitive equations" # "Non-hydrostatic" # "Boussinesq" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # "Salinity" # "U-velocity" # "V-velocity" # "W-velocity" # "SSH" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Wright, 1997" # "Mc Dougall et al." # "Jackett et al. 2006" # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Practical salinity Sp" # "Absolute salinity Sa" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pressure (dbars)" # "Depth (meters)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Present day" # "21000 years BP" # "6000 years BP" # "LGM" # "Pliocene" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Enstrophy" # "Salt" # "Volume of ocean" # "Momentum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Z-coordinate" # "Z*-coordinate" # "S-coordinate" # "Isopycnic - sigma 0" # "Isopycnic - sigma 2" # "Isopycnic - sigma 4" # "Isopycnic - other" # "Hybrid / Z+S" # "Hybrid / Z+isopycnic" # "Hybrid / other" # "Pressure referenced (P)" # "P*" # "Z**" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Lat-lon" # "Rotated north pole" # "Two north poles (ORCA-style)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa E-grid" # "N/a" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite difference" # "Finite volumes" # "Finite elements" # "Unstructured grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Via coupling" # "Specific treatment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Preconditioned conjugate gradient" # "Sub cyling" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "split explicit" # "implicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flux form" # "Vector form" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.ALE') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ideal age" # "CFC 11" # "CFC 12" # "SF6" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Eddy active" # "Eddy admitting" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "GM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Non-penetrative convective adjustment" # "Enhanced vertical diffusion" # "Included in turbulence closure" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear implicit" # "Linear filtered" # "Linear semi-explicit" # "Non-linear implicit" # "Non-linear filtered" # "Non-linear semi-explicit" # "Fully explicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diffusive" # "Acvective" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Non-linear" # "Non-linear (drag function of speed of tides)" # "Constant drag coefficient" # "None" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Free-slip" # "No-slip" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "1 extinction depth" # "2 extinction depth" # "3 extinction depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Real salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Step9: 2. Key Properties --&gt; Seawater Properties Step10: 2.2. Eos Functional Temp Step11: 2.3. Eos Functional Salt Step12: 2.4. Eos Functional Depth Step13: 2.5. Ocean Freezing Point Step14: 2.6. Ocean Specific Heat Step15: 2.7. Ocean Reference Density Step16: 3. Key Properties --&gt; Bathymetry Step17: 3.2. Type Step18: 3.3. Ocean Smoothing Step19: 3.4. Source Step20: 4. Key Properties --&gt; Nonoceanic Waters Step21: 4.2. River Mouth Step22: 5. Key Properties --&gt; Software Properties Step23: 5.2. Code Version Step24: 5.3. Code Languages Step25: 6. Key Properties --&gt; Resolution Step26: 6.2. Canonical Horizontal Resolution Step27: 6.3. Range Horizontal Resolution Step28: 6.4. Number Of Horizontal Gridpoints Step29: 6.5. Number Of Vertical Levels Step30: 6.6. Is Adaptive Grid Step31: 6.7. Thickness Level 1 Step32: 7. Key Properties --&gt; Tuning Applied Step33: 7.2. Global Mean Metrics Used Step34: 7.3. Regional Metrics Used Step35: 7.4. Trend Metrics Used Step36: 8. Key Properties --&gt; Conservation Step37: 8.2. Scheme Step38: 8.3. Consistency Properties Step39: 8.4. Corrected Conserved Prognostic Variables Step40: 8.5. Was Flux Correction Used Step41: 9. Grid Step42: 10. Grid --&gt; Discretisation --&gt; Vertical Step43: 10.2. Partial Steps Step44: 11. Grid --&gt; Discretisation --&gt; Horizontal Step45: 11.2. Staggering Step46: 11.3. Scheme Step47: 12. Timestepping Framework Step48: 12.2. Diurnal Cycle Step49: 13. Timestepping Framework --&gt; Tracers Step50: 13.2. Time Step Step51: 14. Timestepping Framework --&gt; Baroclinic Dynamics Step52: 14.2. Scheme Step53: 14.3. Time Step Step54: 15. Timestepping Framework --&gt; Barotropic Step55: 15.2. Time Step Step56: 16. Timestepping Framework --&gt; Vertical Physics Step57: 17. Advection Step58: 18. Advection --&gt; Momentum Step59: 18.2. Scheme Name Step60: 18.3. ALE Step61: 19. Advection --&gt; Lateral Tracers Step62: 19.2. Flux Limiter Step63: 19.3. Effective Order Step64: 19.4. Name Step65: 19.5. Passive Tracers Step66: 19.6. Passive Tracers Advection Step67: 20. Advection --&gt; Vertical Tracers Step68: 20.2. Flux Limiter Step69: 21. Lateral Physics Step70: 21.2. Scheme Step71: 22. Lateral Physics --&gt; Momentum --&gt; Operator Step72: 22.2. Order Step73: 22.3. Discretisation Step74: 23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff Step75: 23.2. Constant Coefficient Step76: 23.3. Variable Coefficient Step77: 23.4. Coeff Background Step78: 23.5. Coeff Backscatter Step79: 24. Lateral Physics --&gt; Tracers Step80: 24.2. Submesoscale Mixing Step81: 25. Lateral Physics --&gt; Tracers --&gt; Operator Step82: 25.2. Order Step83: 25.3. Discretisation Step84: 26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff Step85: 26.2. Constant Coefficient Step86: 26.3. Variable Coefficient Step87: 26.4. Coeff Background Step88: 26.5. Coeff Backscatter Step89: 27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity Step90: 27.2. Constant Val Step91: 27.3. Flux Type Step92: 27.4. Added Diffusivity Step93: 28. Vertical Physics Step94: 29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details Step95: 30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers Step96: 30.2. Closure Order Step97: 30.3. Constant Step98: 30.4. Background Step99: 31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum Step100: 31.2. Closure Order Step101: 31.3. Constant Step102: 31.4. Background Step103: 32. Vertical Physics --&gt; Interior Mixing --&gt; Details Step104: 32.2. Tide Induced Mixing Step105: 32.3. Double Diffusion Step106: 32.4. Shear Mixing Step107: 33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers Step108: 33.2. Constant Step109: 33.3. Profile Step110: 33.4. Background Step111: 34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum Step112: 34.2. Constant Step113: 34.3. Profile Step114: 34.4. Background Step115: 35. Uplow Boundaries --&gt; Free Surface Step116: 35.2. Scheme Step117: 35.3. Embeded Seaice Step118: 36. Uplow Boundaries --&gt; Bottom Boundary Layer Step119: 36.2. Type Of Bbl Step120: 36.3. Lateral Mixing Coef Step121: 36.4. Sill Overflow Step122: 37. Boundary Forcing Step123: 37.2. Surface Pressure Step124: 37.3. Momentum Flux Correction Step125: 37.4. Tracers Flux Correction Step126: 37.5. Wave Effects Step127: 37.6. River Runoff Budget Step128: 37.7. Geothermal Heating Step129: 38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction Step130: 39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction Step131: 40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration Step132: 40.2. Ocean Colour Step133: 40.3. Extinction Depth Step134: 41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing Step135: 41.2. From Sea Ice Step136: 41.3. Forced Mode Restoring
9,010
<ASSISTANT_TASK:> Python Code: import pandas as pd # redefining the example DataFrame data = {'country': ['Belgium', 'France', 'Germany', 'Netherlands', 'United Kingdom'], 'population': [11.3, 64.3, 81.3, 16.9, 64.9], 'area': [30510, 671308, 357050, 41526, 244820], 'capital': ['Brussels', 'Paris', 'Berlin', 'Amsterdam', 'London']} countries = pd.DataFrame(data) countries countries['area'] # single [] countries[['area', 'population']] # double [[]] countries[0:4] countries['area'] > 100000 countries[countries['area'] > 100000] countries[countries['population'] > 50] s = countries['capital'] s.isin? s.isin(['Berlin', 'London']) countries[countries['capital'].isin(['Berlin', 'London'])] string = 'Berlin' string.startswith('B') countries['capital'].str.startswith('B') df = pd.read_csv("data/titanic.csv") df.head() males = df[df['Sex'] == 'male'] males['Age'].mean() df[df['Sex'] == 'female']['Age'].mean() len(df[df['Age'] > 70]) (df['Age'] > 70).sum() df[(df['Age'] > 30) & (df['Age'] <= 40)] name = 'Braund, Mr. Owen Harris' name.split(",")[0] df['Surname'] = df['Name'].str.split(",").str.get(0) df['Surname'] df[df['Surname'].str.startswith('Williams')] df[df['Surname'].str.len() > 15] cast = pd.read_csv('data/cast.csv') cast.head() titles = pd.read_csv('data/titles.csv') titles.head() len(titles) titles.sort_values('year').head(2) len(titles[titles['title'] == 'Hamlet']) titles[titles['title'] == 'Treasure Island'].sort_values('year') len(titles[(titles['year'] >= 1950) & (titles['year'] <= 1959)]) len(titles[titles['year'] // 10 == 195]) inception = cast[cast['title'] == 'Inception'] len(inception[inception['n'].isna()]) inception['n'].isna().sum() len(inception[inception['n'].notna()]) titanic = cast[(cast['title'] == 'Titanic') & (cast['year'] == 1997)] titanic = titanic[titanic['n'].notna()] titanic.sort_values('n') brad = cast[cast['name'] == 'Brad Pitt'] brad = brad[brad['year'] // 10 == 199] brad = brad[brad['n'] == 2] brad.sort_values('year') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Subsetting data Step2: Remember that the same syntax can also be used to add a new columns Step3: Subset observations (rows) Step4: Boolean indexing (filtering) Step5: An overview of the possible comparison operations Step6: This can then be used to filter the dataframe with boolean indexing Step7: Let's say we want to select all data for which the capital starts with a 'B'. In Python, when having a string, we could use the startswith method Step8: In pandas, these are available on a Series through the str namespace Step9: For an overview of all string methods, see Step10: <div class="alert alert-success"> Step11: We will later see an easier way to calculate both averages at the same time with groupby. Step12: <div class="alert alert-success"> Step13: <div class="alert alert-success"> Step14: <div class="alert alert-success"> Step15: <div class="alert alert-success"> Step16: <div class="alert alert-success"> Step17: [OPTIONAL] more exercises Step18: <div class="alert alert-success"> Step19: <div class="alert alert-success"> Step20: <div class="alert alert-success"> Step21: <div class="alert alert-success"> Step22: <div class="alert alert-success"> Step23: <div class="alert alert-success"> Step24: <div class="alert alert-success"> Step25: <div class="alert alert-success"> Step26: <div class="alert alert-success">
9,011
<ASSISTANT_TASK:> Python Code: import cv2 import numpy as np import sys import pandas as pd # typeData 为"train"或者"test" # labelsInfo 包含每一个图片的ID # 图片存储在trainResized和testResized文件夹内 def read_data(typeData, labelsInfo, imageSize): labelsIndex = labelsInfo["ID"] x = np.zeros((np.size(labelsIndex), imageSize)) for idx, idImage in enumerate(labelsIndex): # 得到图片文件名并读取 nameFile = typeData + "Resized/" + str(idImage) + ".Bmp" img = cv2.imread(nameFile) # 转化为灰度图 temp = np.mean(img, 2) # 将图片转化为行向量 x[idx, :] = np.reshape(temp, (1, imageSize)) return x imageSize = 400 trainlabels = pd.read_csv("trainLabels.csv") testlabels = pd.read_csv("sampleSubmission.csv") # 得到训练集的特征 xTrain = read_data('train', trainlabels, imageSize) # 得到测试集的特征 xTest = read_data("test", testlabels, imageSize) print trainlabels.head(2) print testlabels.head(2) yTrain = trainlabels["Class"] yTrain = [ord(x) for x in yTrain] from sklearn.ensemble import RandomForestClassifier %time rfc = RandomForestClassifier(n_estimators = 500, max_features = 50, max_depth=None) rfc.fit(xTrain, yTrain) predTest = rfc.predict(xTest) predResult = [chr(x) for x in predTest] testlabels["Class"] = predResult testlabels.to_csv("rf_500_50_result.csv",index = None) from sklearn.naive_bayes import GaussianNB as GNB model_GNB = GNB() model_GNB.fit(xTrain, yTrain) predTest = model_GNB.predict(xTest) predResult = [chr(x) for x in predTest] testlabels["Class"] = predResult testlabels.to_csv("gnb_result.csv",index = None) from sklearn.ensemble import GradientBoostingClassifier %time GBDT = GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, \ min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, init=None, \ random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto') %time GBDT.fit(xTrain, yTrain) %time predTest = GBDT.predict(xTest) predResult = [chr(x) for x in predTest] testlabels["Class"] = predResult testlabels.to_csv("gbdt_result.csv",index = None) import os from skimage.io import imread from lasagne import layers from lasagne.nonlinearities import softmax from nolearn.lasagne import NeuralNet, BatchIterator # Define functions def read_datax(typeData, labelsInfo, imageSize, path): x = np.zeros((labelsInfo.shape[0], imageSize)) for (index, idImage) in enumerate(labelsInfo['ID']): # use specially created 32 x 32 images nameFile = '{0}/{1}Resized32/{2}.Bmp'.format(path, typeData, idImage) img = imread(nameFile, as_grey = True) x[index, :] = np.reshape(img, (1, imageSize)) return x def fit_model(reshaped_train_x, y, image_width, image_height, reshaped_test_x): net = NeuralNet( layers = [ ('input', layers.InputLayer), ('conv1', layers.Conv2DLayer), ('pool1', layers.MaxPool2DLayer), ('dropout1', layers.DropoutLayer), ('conv2', layers.Conv2DLayer), ('pool2', layers.MaxPool2DLayer), ('dropout2', layers.DropoutLayer), ('conv3', layers.Conv2DLayer), ('hidden4', layers.DenseLayer), ('output', layers.DenseLayer), ], input_shape = (None, 1, 32, 32), conv1_num_filters=32, conv1_filter_size=(5, 5), pool1_pool_size=(2, 2), dropout1_p=0.2, conv2_num_filters=64, conv2_filter_size=(5, 5), pool2_pool_size=(2, 2), dropout2_p=0.2, conv3_num_filters = 128, conv3_filter_size = (5, 5), hidden4_num_units=500, output_num_units = 62, output_nonlinearity = softmax, update_learning_rate = 0.01, update_momentum = 0.9, batch_iterator_train = BatchIterator(batch_size = 100), batch_iterator_test = BatchIterator(batch_size = 100), use_label_encoder = True, regression = False, max_epochs = 100, verbose = 1, ) net.fit(reshaped_train_x, y) prediction = net.predict(reshaped_test_x) return prediction # 预处理数据,首先将图片保存为32*32的小图片 imageSize = 1024 # 32 x 32 image_width = image_height = int(imageSize ** 0.5) labelsInfoTrain = pd.read_csv\ ('trainLabels.csv'.format(path)) labelsInfoTest = pd.read_csv\ ('sampleSubmission.csv'.format(path)) # Load dataset nnxTrain = read_datax('train', labelsInfoTrain, imageSize, '.') nnxTest = read_datax('test', labelsInfoTest, imageSize, '.') nnyTrain = map(ord, labelsInfoTrain['Class']) nnyTrain = np.array(yTrain) # 归一化数据 nnxTrain /= nnxTrain.std(axis = None) nnxTrain -= nnxTrain.mean() nnxTest /= nnxTest.std(axis = None) nnxTest -= nnxTest.mean() # Reshape data train_x_reshaped = nnxTrain.reshape(nnxTrain.shape[0], 1, image_height, image_width).astype('float32') test_x_reshaped = nnxTest.reshape(nnxTest.shape[0], 1, image_height, image_width).astype('float32') # 进行训练和测试 predict = fit_model(train_x_reshaped, nnyTrain, image_width, image_height, test_x_reshaped) # 保存结果 yTest = map(chr, predict) labelsInfoTest['Class'] = yTest labelsInfoTest.to_csv('nnresult.csv'.format(path), index = False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 我们希望所有的图片最后存储在一个numpy的矩阵当中,每一行为图片的像素值。为了得到统一的表达呢,我们将RGB三个通道的值做平均得到的灰度图像作为每个图片的表示 Step2: 预处理训练集和测试集 Step3: 预览数据: Step4: 模型训练 Step5: 预测 Step6: 结果 Step7: 贝叶斯的训练非常的快,把结果提交kaggle后,得到0.02389的准确率,明显低于随机森林 Step8: 使用GBDT仅得到了0.31937的准确率,可能是我的默认参数没有调节好,关键是GBDT的训练时间太长,调试成本也比较高
9,012
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'inm', 'inm-cm5-0', 'seaice') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 2. Key Properties --&gt; Variables Step7: 3. Key Properties --&gt; Seawater Properties Step8: 3.2. Ocean Freezing Point Value Step9: 4. Key Properties --&gt; Resolution Step10: 4.2. Canonical Horizontal Resolution Step11: 4.3. Number Of Horizontal Gridpoints Step12: 5. Key Properties --&gt; Tuning Applied Step13: 5.2. Target Step14: 5.3. Simulations Step15: 5.4. Metrics Used Step16: 5.5. Variables Step17: 6. Key Properties --&gt; Key Parameter Values Step18: 6.2. Additional Parameters Step19: 7. Key Properties --&gt; Assumptions Step20: 7.2. On Diagnostic Variables Step21: 7.3. Missing Processes Step22: 8. Key Properties --&gt; Conservation Step23: 8.2. Properties Step24: 8.3. Budget Step25: 8.4. Was Flux Correction Used Step26: 8.5. Corrected Conserved Prognostic Variables Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Step28: 9.2. Grid Type Step29: 9.3. Scheme Step30: 9.4. Thermodynamics Time Step Step31: 9.5. Dynamics Time Step Step32: 9.6. Additional Details Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Step34: 10.2. Number Of Layers Step35: 10.3. Additional Details Step36: 11. Grid --&gt; Seaice Categories Step37: 11.2. Number Of Categories Step38: 11.3. Category Limits Step39: 11.4. Ice Thickness Distribution Scheme Step40: 11.5. Other Step41: 12. Grid --&gt; Snow On Seaice Step42: 12.2. Number Of Snow Levels Step43: 12.3. Snow Fraction Step44: 12.4. Additional Details Step45: 13. Dynamics Step46: 13.2. Transport In Thickness Space Step47: 13.3. Ice Strength Formulation Step48: 13.4. Redistribution Step49: 13.5. Rheology Step50: 14. Thermodynamics --&gt; Energy Step51: 14.2. Thermal Conductivity Step52: 14.3. Heat Diffusion Step53: 14.4. Basal Heat Flux Step54: 14.5. Fixed Salinity Value Step55: 14.6. Heat Content Of Precipitation Step56: 14.7. Precipitation Effects On Salinity Step57: 15. Thermodynamics --&gt; Mass Step58: 15.2. Ice Vertical Growth And Melt Step59: 15.3. Ice Lateral Melting Step60: 15.4. Ice Surface Sublimation Step61: 15.5. Frazil Ice Step62: 16. Thermodynamics --&gt; Salt Step63: 16.2. Sea Ice Salinity Thermal Impacts Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Step65: 17.2. Constant Salinity Value Step66: 17.3. Additional Details Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Step68: 18.2. Constant Salinity Value Step69: 18.3. Additional Details Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Step72: 20.2. Additional Details Step73: 21. Thermodynamics --&gt; Melt Ponds Step74: 21.2. Formulation Step75: 21.3. Impacts Step76: 22. Thermodynamics --&gt; Snow Processes Step77: 22.2. Snow Aging Scheme Step78: 22.3. Has Snow Ice Formation Step79: 22.4. Snow Ice Formation Scheme Step80: 22.5. Redistribution Step81: 22.6. Heat Diffusion Step82: 23. Radiative Processes Step83: 23.2. Ice Radiation Transmission
9,013
<ASSISTANT_TASK:> Python Code: # Import relevant modules %matplotlib inline %load_ext autoreload %autoreload 2 import numpy as np import corner import matplotlib.pyplot as plt from matplotlib import rcParams from NPTFit import nptfit # module for performing scan from NPTFit import create_mask as cm # module for creating the mask from NPTFit import psf_correction as pc # module for determining the PSF correction from NPTFit import dnds_analysis # module for analysing the output n = nptfit.NPTF(tag='non-Poissonian_Example') fermi_data = np.load('fermi_data/fermidata_counts.npy') fermi_exposure = np.load('fermi_data/fermidata_exposure.npy') n.load_data(fermi_data, fermi_exposure) analysis_mask = cm.make_mask_total(mask_ring = True, inner = 0, outer = 5, ring_b = 90, ring_l = 0) n.load_mask(analysis_mask) iso = np.load('fermi_data/template_iso.npy') n.add_template(iso, 'iso') n.add_poiss_model('iso','$A_\mathrm{iso}$', False, fixed=True, fixed_norm=1.47) n.add_non_poiss_model('iso', ['$A^\mathrm{ps}_\mathrm{iso}$','$n_1$','$n_2$','$S_b$'], [[-6,1],[2.05,30],[-2,1.95]], [True,False,False], fixed_params = [[3,22.]]) pc_inst = pc.PSFCorrection(psf_sigma_deg=0.1812) f_ary = pc_inst.f_ary df_rho_div_f_ary = pc_inst.df_rho_div_f_ary n.configure_for_scan(f_ary=f_ary, df_rho_div_f_ary=df_rho_div_f_ary, nexp=1) n.perform_scan(nlive=500) n.load_scan() cs=dnds_analysis.Analysis(n) cs.make_triangle() cs.plot_source_count_median('iso',smin=0.01,smax=10000,nsteps=1000,spow=2,color='forestgreen') cs.plot_source_count_band('iso',smin=0.01,smax=10000,nsteps=1000,qs=[0.16,0.5,0.84],spow=2,color='forestgreen',alpha=0.3) plt.yscale('log') plt.xscale('log') plt.xlim([1e-11,1e-7]) plt.ylim([1e-16,1e-10]) plt.tick_params(axis='x', length=5,width=2,labelsize=18) plt.tick_params(axis='y',length=5,width=2,labelsize=18) plt.ylabel('$F^2 dN/dF$ [counts cm$^{-2}$s$^{-1}$deg$^{-2}$]', fontsize=18) plt.xlabel('$F$ [counts cm$^{-2}$ s$^{-1}$]', fontsize=18) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: Step 2 Step3: Step 3 Step4: Step 4 Step5: Step 5 Step6: We also show a plot of the source count function, although a careful explanation of the details here are deferred until Example 8.
9,014
<ASSISTANT_TASK:> Python Code:: def skipIndices(N , T , arr): sum = 0 count = { } for i in range(N): d = sum + arr[i]- T k = 0 if(d > 0): for u in list(count . keys())[: : - 1]: j = u x = j * count[j] if(d <= x): k +=(d + j - 1)// j break k += count[j] d -= x sum += arr[i] count[arr[i]] = count . get(arr[i], 0)+ 1 print(k , end = " ▁ ") if __name__ == ' _ _ main _ _ ' : N = 7 T = 15 arr =[1 , 2 , 3 , 4 , 5 , 6 , 7] skipIndices(N , T , arr) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
9,015
<ASSISTANT_TASK:> Python Code: list_with_for_loop = [x for x in range(10)] print list_with_for_loop list_with_for_loop_conditional = [x for x in range(10) if x%2 == 1] print list_with_for_loop_conditional list_with_nested_loops = [ [x, y] for x in range(3) for y in range(3) ] print list_with_nested_loops list_with_nested_loops_2 = [ x for x in range(y) for y in range(3)] print list_with_nested_loops_2 matrix = [[11,12],[21,22]] row = [1,2] wrong_flatten_of_matrix = [x for x in row for row in matrix] print "matrix is", matrix print "flattened matrix is", wrong_flatten_of_matrix right_flatten_of_matrix = [x for row in matrix for x in row] print "matrix is", matrix print "flattened matrix is", right_flatten_of_matrix right_flatten_of_matrix_line_breaking = [ x for row in matrix for x in row ] print "matrix is", matrix print "flattened matrix is", right_flatten_of_matrix_line_breaking <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Even with conditions in the for loop Step2: Nested loops in a list Step3: Another example of nested loops Step4: The article gives an example of how to flatten a matrix using this trick. Semantically, one would using Step5: which is obviously WRONG. The correct code is given by the author as Step6: The key is to write the nested loops in a list as the normal nested loops.
9,016
<ASSISTANT_TASK:> Python Code: import numpy as np import os import gdal, osr import matplotlib.pyplot as plt import sys import matplotlib.pyplot as plt from scipy import ndimage as ndi %matplotlib inline #Import biomass specific libraries from skimage.morphology import watershed from skimage.feature import peak_local_max from skimage.measure import regionprops from sklearn.ensemble import RandomForestRegressor #Define plot band array function def plot_band_array(band_array,image_extent,title,cmap_title,colormap,colormap_limits): plt.imshow(band_array,extent=image_extent) cbar = plt.colorbar(); plt.set_cmap(colormap); plt.clim(colormap_limits) cbar.set_label(cmap_title,rotation=270,labelpad=20) plt.title(title); ax = plt.gca() ax.ticklabel_format(useOffset=False, style='plain') rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) def array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array,epsg): cols = array.shape[1] rows = array.shape[0] originX = rasterOrigin[0] originY = rasterOrigin[1] driver = gdal.GetDriverByName('GTiff') outRaster = driver.Create(newRasterfn, cols, rows, 1, gdal.GDT_Float32) outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight)) outband = outRaster.GetRasterBand(1) outband.WriteArray(array) outRasterSRS = osr.SpatialReference() outRasterSRS.ImportFromEPSG(epsg) outRaster.SetProjection(outRasterSRS.ExportToWkt()) outband.FlushCache() chm_file = 'C:/RSDI_2017/Day4/Biomass/NEON_D17_SJER_DP3_256000_4106000_CHM.tif' #Get info from chm file for outputting results just_chm_file = os.path.basename(chm_file) just_chm_file_split = just_chm_file.split(sep="_") #Open the CHM file with GDAL chm_dataset = gdal.Open(chm_file) #Get the raster band object chm_raster = chm_dataset.GetRasterBand(1) #Get the NO DATA value noDataVal_chm = chm_raster.GetNoDataValue() #Get required metadata from CHM file cols_chm = chm_dataset.RasterXSize rows_chm = chm_dataset.RasterYSize bands_chm = chm_dataset.RasterCount mapinfo_chm =chm_dataset.GetGeoTransform() xMin = mapinfo_chm[0] yMax = mapinfo_chm[3] xMax = xMin + chm_dataset.RasterXSize/mapinfo_chm[1] yMin = yMax + chm_dataset.RasterYSize/mapinfo_chm[5] image_extent = (xMin,xMax,yMin,yMax) #Plot the original CHM plt.figure(1) chm_array = chm_raster.ReadAsArray(0,0,cols_chm,rows_chm).astype(np.float) #PLot the CHM figure plot_band_array(chm_array,image_extent,'Canopy height Model','Canopy height (m)','Greens',[0, 9]) plt.savefig(just_chm_file_split[0]+'_'+just_chm_file_split[1]+'_'+just_chm_file_split[2]+'_'+just_chm_file_split[3]+'_'+just_chm_file_split[4]+'_'+just_chm_file_split[5]+'_'+'CHM.png',dpi=300,orientation='landscape',bbox_inches='tight',pad_inches=0.1) #Smooth the CHM using a gaussian filter to remove spurious points chm_array_smooth = ndi.gaussian_filter(chm_array,2,mode='constant',cval=0,truncate=2.0) chm_array_smooth[chm_array==0] = 0 #Save the smoothed CHM array2raster('C:/RSDI_2017/Day4/Biomass/chm_filter.tif',(xMin,yMax),1,-1,np.array(chm_array_smooth/10000,dtype=float),32611) #Calculate local maximum points in the smoothed CHM local_maxi = peak_local_max(chm_array_smooth,indices=False, footprint=np.ones((5, 5))) #Plot the local maximums plt.figure(2) plot_band_array(local_maxi,image_extent,'Maximum','Maxi','Greys',[0, 1]) plt.savefig(just_chm_file_split[0]+'_'+just_chm_file_split[1]+'_'+just_chm_file_split[2]+'_'+just_chm_file_split[3]+'_'+just_chm_file_split[4]+'_'+just_chm_file_split[5]+'_'+'Maximums.png',dpi=300,orientation='landscape',bbox_inches='tight',pad_inches=0.1) #Identify all the maximum points markers = ndi.label(local_maxi)[0] #Create a CHM mask so the segmentation will only occur on the trees chm_mask = chm_array_smooth chm_mask[chm_array_smooth != 0] = 1 #Perfrom watershed segmentation labels = watershed(chm_array_smooth, markers, mask=chm_mask) #Get the properties of each segment tree_properties = regionprops(labels,chm_array, ['Area','BoundingBox','Centroid','Orientation','MajorAxisLength','MinorAxisLength','MaxIntensity','MinIntensity']) #Determine how many individual trees were identified max_labels = labels.max() segment_labels = np.zeros(max_labels+1) segment_id = np.zeros(max_labels+1) for counter in range (1,max_labels+1): segment_labels[counter] = len(labels[labels==counter]) segment_id[counter]=counter #Remove the non-zero elements segment_id = segment_id[np.nonzero(segment_labels)] #Change the lebels to flow and plot them and save as raster labels = np.array((labels),dtype=float) plt.figure(3) array2raster('C:/RSDI_2017/Day4/Biomass/SegmentedData.tif',(xMin,yMax),1,-1,labels,32611) #Change the zero labels to nans so they won't show up in the plot labels[labels==0] = np.nan #Plot the segments plot_band_array(labels,image_extent,'Crown Segmentation','Tree Crown Number','Spectral',[0, max_labels]) plt.savefig(just_chm_file_split[0]+'_'+just_chm_file_split[1]+'_'+just_chm_file_split[2]+'_'+just_chm_file_split[3]+'_'+just_chm_file_split[4]+'_'+just_chm_file_split[5]+'_'+'Segmentation.png',dpi=300,orientation='landscape',bbox_inches='tight',pad_inches=0.1) #Define several of the predictor variables area=np.zeros(len(tree_properties)) diameter=np.zeros(len(tree_properties)) max_tree_height=np.zeros(len(tree_properties)) min_tree_height=np.zeros(len(tree_properties)) #Retreive the predictor variables from the region properties for counter in range(0,len(tree_properties)): area[counter] = tree_properties[counter]['Area'] diameter[counter] = tree_properties[counter]['MajorAxisLength'] max_tree_height[counter] = tree_properties[counter]['MaxIntensity'] min_tree_height[counter] = tree_properties[counter]['MinIntensity'] #Define the remaining predictor variables crown_geometric_volume_full=np.zeros(len(segment_id)) crown_geometric_volume_50th_percentile=np.zeros(len(segment_id)) crown_geometric_volume_60th_percentile=np.zeros(len(segment_id)) crown_geometric_volume_70th_percentile=np.zeros(len(segment_id)) percentile_50th=np.zeros(len(segment_id)) percentile_60th=np.zeros(len(segment_id)) percentile_70th=np.zeros(len(segment_id)) #Cycle through all of the tree segments counter=0 for segment in segment_id: #Pull out the tree of interest indexes_of_tree = np.asarray(np.where(labels==segment)).T tree_data = chm_array[indexes_of_tree[:,0],indexes_of_tree[:,1]] #Calculate the geometric volume crown_geometric_volume_full[counter]=np.sum([tree_data-np.min(tree_data)]) #Pull out 50th percentile stats percentile_50th[counter]=np.percentile(tree_data,50) tree_data_50th = chm_array[indexes_of_tree[:,0],indexes_of_tree[:,1]] tree_data_50th[tree_data_50th>percentile_50th[counter]] = percentile_50th[counter] crown_geometric_volume_50th_percentile[counter]=np.sum([tree_data_50th-min_tree_height[counter]]) #Pull out 60th percentile stats percentile_60th[counter]=np.percentile(tree_data,60) tree_data_60th = chm_array[indexes_of_tree[:,0],indexes_of_tree[:,1]] tree_data_60th[tree_data_60th>percentile_60th[counter]] = percentile_60th[counter] crown_geometric_volume_60th_percentile[counter]=np.sum([tree_data_60th-min_tree_height[counter]]) #Pull out 60th percentile stats percentile_70th[counter]=np.percentile(tree_data,70) tree_data_70th = chm_array[indexes_of_tree[:,0],indexes_of_tree[:,1]] tree_data_70th[tree_data_70th>percentile_70th[counter]] = percentile_70th[counter] crown_geometric_volume_70th_percentile[counter]=np.sum([tree_data_70th-min_tree_height[counter]]) counter=counter+1 #Define the file of training data training_data_file = 'C:/RSDI_2017/Day4/Biomass/training/SJER_Biomass_Training.csv' #Read in the training data from a CSV file training_data = np.genfromtxt(training_data_file,delimiter=',') #Grab the biomass (Y) from the first line biomass = training_data[:,0] #Grab the biomass prdeictors from the remaining lines biomass_predictors = training_data[:,1:12] #Define paraemters for Random forest regressor max_depth = 30 #Define regressor rules regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2) #Fit the biomass to regressor variables regr_rf.fit(biomass_predictors,biomass) #Stack the predictor variables for all the individual trees all_training_data = np.stack([area,diameter,max_tree_height,min_tree_height,percentile_50th,percentile_60th,percentile_70th,crown_geometric_volume_full,crown_geometric_volume_50th_percentile,crown_geometric_volume_60th_percentile,crown_geometric_volume_70th_percentile],axis=-1) #Apply the model to the pred_biomass = regr_rf.predict(all_training_data) #Set an out raster with the same size as the labels biomass_out = labels #Set counter to zero counter = 0 #Assign each tree by the associated biomass for segment in segment_id: biomass_out[biomass_out==segment] = pred_biomass[counter] counter = counter+1 #Get biomass stats for plotting mean_biomass = np.mean(pred_biomass) std_biomass = np.std(pred_biomass) min_biomass = np.min(pred_biomass) sum_biomass = np.sum(pred_biomass) print('Sum of biomass is ',sum_biomass,' kg') #Plot the biomass! plt.figure(5) plot_band_array(biomass_out,image_extent,'Biomass (kg)','Biomass (kg)','winter',[min_biomass+std_biomass, mean_biomass+std_biomass*3]) plt.savefig(just_chm_file_split[0]+'_'+just_chm_file_split[1]+'_'+just_chm_file_split[2]+'_'+just_chm_file_split[3]+'_'+just_chm_file_split[4]+'_'+just_chm_file_split[5]+'_'+'Biomass.png',dpi=300,orientation='landscape',bbox_inches='tight',pad_inches=0.1) array2raster('biomass.tif',(xMin,yMax),1,-1,np.array(biomass_out,dtype=float),32611) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Next we will add libraries from skilearn which will help with the watershed delination, determination of predictor variables and random forest algorithm Step2: Define a function that will allow us to plot our spatial data Step3: Define a function that will allow us to output geotiff files Step4: Now we will define the file path to our CHM file Step5: We will want to output the results with the same file information as the input, so we will gather the file name information Step6: Now we will get the CHM data, plot it and save the figure Step7: Now we will run a Gaussian smoothing kernal (convolution) across the data set to remove spurious high vegetation points. This will help ensure we are finding the treetops properly before running the watershed segmentation algorithm. For different forest types it may be necessary to change the input parameters. Information on the function can be found at (https Step8: Now save a copy of filtered CHM Step9: Now we will run an algorithm to determine local maximums within the image. Setting indices to 'False' returns a raster of the maximum points, as opposed to a list of coordinates. The footprint parameter is an area where only a single peak can be found. This should be approximately the size of the smallest tree. Information on more sophisticated methods to define the window can be found in Chen (2006). Step10: Plot the raster of local maximums. The following figure shows the difference in finding local maximums for a filtered vs. non-filtered CHM. Step11: Apply labels to all of the local maximum points Step12: Next we will create a mask layer of all of the vegettion points so that the watershed segmentation will only occur on the trees and not extend into the surrounding ground points. Since 0 represent ground points in the CHM, setting the mask to 1 where the CHM is not zero will define the mask Step13: Next we will perfrom the watershed segmentation, which produces a raster of labels Step14: Max_filtred_non_filtered.JPG Step15: It was found that occasionally the segmenting skippen an integer number. We want to be able to match our segments to the trees in later steps, so we will create an array with only the segment numbers used. Step16: Next we will save the segments as a geotiff and plot them Step17: Now we will define the predictor variables and begin to fill out their values Step18: Now we will define the remaining predictor variables Step19: We will now run through a loop of all tree segments and gather the remaining predictor variables which include height percentiles and crown geometric volume percentiles. Inside the loop, we use logical indexing to retrieve each individual tree. We then calculate our predictor variables of interest. Step20: We now bring in the training data file which is a simple CSV file with no header. The first column is biomass, and the remaining columns are the same predictor variables defined above. The tree diameter and max height were dfined in the TOS data along with the DBH. The field validated values are used for training, while the other were determined from the CHM and camera images by manually delineating the tree crowns and pulling out the relevant information from the CHM. Biomass was calculated from DBH accordaing to the formulas in Jenkins et al. (2003). Step21: We then define paraemters of the Random Forest classifier and fit the predictor variables from the training data to the Biomass estaimtes. Step22: Now we will gather the predictor variables gathered from all the segmented trees into a single array Step23: We know apply the Random Forest model to the predictor variables to retreive biomass Step24: For outputting a raster, copy the labels raster to a biomass raster, then cycle through the segments and assign the biomass estaimte to each individual tree segment. Step25: Collect some of the biomass statistics and then plot the results and save an output geotiff
9,017
<ASSISTANT_TASK:> Python Code: # variable assignment # https://www.digitalocean.com/community/tutorials/how-to-use-variables-in-python-3 # strings -- enclose in single or double quotes, just make sure they match my_name = 'Cody' # numbers int_num = 6 float_num = 6.4 # the print function print(8) print('Hello!') print(my_name) print(int_num) print(float_num) # booleans print(True) print(False) print(4 > 6) print(6 == 6) print('ell' in 'Hello') # addition add_eq = 4 + 2 # subtraction sub_eq = 4 - 2 # multiplication mult_eq = 4 * 2 # division div_eq = 4 / 2 # etc. # create a list: name, hometown, age # an item's position in the list is the key thing cody = ['Cody', 'Midvale, WY', 32] # create another list of mixed data my_list = [1, 2, 3, 'hello', True, ['a', 'b', 'c']] # use len() to get the number of items in the list my_list_count = len(my_list) print('There are', my_list_count, 'items in my list.') # use square brackets [] to access items in a list # (counting starts at zero in Python) # get the first item first_item = my_list[0] print(first_item) # you can do negative indexing to get items from the end of your list # get the last item last_item = my_list[-1] print(last_item) # Use colons to get a range of items in a list # get the first two items # the last number in a list slice is the first list item that's ~not~ included in the result my_range = my_list[0:2] print(my_range) # if you leave the last number off, it takes the item at the first number's index and everything afterward # get everything from the third item onward my_open_range = my_list[2:] print(my_open_range) # Use append() to add things to a list my_list.append(5) print(my_list) # Use pop() to remove items from the end of a list my_list.pop() print(my_list) # use join() to join items from a list into a string with a delimiter of your choosing letter_list = ['a', 'b', 'c'] joined_list = '-'.join(letter_list) print(joined_list) my_dict = {'name': 'Cody', 'title': 'Training director', 'organization': 'IRE'} # Access items in a dictionary using square brackets and the key (typically a string) my_name = my_dict['name'] print(my_name) # You can also use the `get()` method to retrieve values # you can optionally provide a second argument as the default value # if the key doesn't exist (otherwise defaults to `None`) my_name = my_dict.get('name', 'Jefferson Humperdink') print(my_name) # Use the .keys() method to get the keys of a dictionary print(my_dict.keys()) # Use the .values() method to get the values print(my_dict.values()) # add items to a dictionary using square brackets, the name of the key (typically a string) # and set the value like you'd set a variable, with = my_dict['my_age'] = 32 print(my_dict) # delete an item from a dictionary with `del` del my_dict['my_age'] print(my_dict) # this is a one-line comment This is a multi-line comment ~~~ 4 > 6 'Hello!' == 'Hello!' (2 + 2) != (4 * 2) 100.2 >= 100 whitespace_str = ' hello! ' print(whitespace_str.strip()) my_name = 'Cody' my_name_upper = my_name.upper() print(my_name_upper) my_name_lower = my_name.lower() print(my_name_lower) company = 'Bausch & Lomb' company_no_ampersand = company.replace('&', 'and') print(company_no_ampersand) date = '6/4/2011' date_split = date.split('/') print(date_split) mangled_zip = '2301' fixed_zip = mangled_zip.zfill(5) print(fixed_zip) num_zip = 2301 fixed_num_zip = str(num_zip).zfill(5) print(fixed_num_zip) my_string = 'supercalifragilisticexpialidocious' chunk = my_string[9:20] print(chunk) str_to_test = 'hello' print(str_to_test.startswith('hel')) print(str_to_test.endswith('lo')) print('el' in str_to_test) print(str_to_test in ['hi', 'whatsup', 'salutations', 'hello']) # date in m/d/yyyy format in_date = '8/17/1982' # split out individual pieces of the date # using a shortcut method to assign variables to the resulting list month, day, year = in_date.split('/') # reshuffle as yyyy-mm-dd using .format() # use a formatting option (:0>2) to left-pad month/day numbers with a zero out_date = '{}-{:0>2}-{:0>2}'.format(year, month, day) print(out_date) # construct a greeting template greeting = 'Hello, {}! My name is {}.' your_name = 'Pat' my_name = 'Cody' print(greeting.format(your_name, my_name)) # two strings of numbers num_1 = '100' num_2 = '200' # what happens when you add them without coercing? concat = num_1 + num_2 print(concat) # coerce to integer, then add them added = int(num_1) + int(num_2) print(added) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basic math Step2: Lists Step3: Dictionaries Step5: Commenting your code Step7: Comparison operators Step8: String functions Step9: upper() and lower() Step10: replace() Step11: split() Step12: zfill() Step13: slicing Step14: startswith(), endswith() and in Step15: String formatting Step16: Type coercion
9,018
<ASSISTANT_TASK:> Python Code: df = pd.read_csv('../data/wine.data') X_train = df[df.columns[1:]] y_train = df[df.columns[0]] kf = KFold(n_splits=5, random_state=42, shuffle=True) def test_accuracy(kf, X, y): means = list() means_range = range(1, 51) for r in means_range: knn = KNeighborsClassifier(n_neighbors=r) score = cross_val_score(knn, X, y, cv=kf, scoring='accuracy') score_mean = np.mean(score) means.append(score_mean) return pd.DataFrame(means, means_range).mean(axis=1).sort_values(ascending=False) accuracy_df = test_accuracy(kf, X_train, y_train) top_accuracy = accuracy_df.head(1) print(top_accuracy.index[0]) print("{:0.2f}".format(top_accuracy.values[0])) X_train_scaled = preprocessing.scale(X_train) accuracy_df = test_accuracy(kf, X_train_scaled, y_train) top_accuracy = accuracy_df.head() print(top_accuracy.index[0]) print("{:0.2f}".format(top_accuracy.values[0])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Извлеките из данных признаки и классы. Класс записан в первом столбце (три варианта), признаки — в столбцах со второго по последний. Более подробно о сути признаков можно прочитать по адресу https Step2: 3. Оценку качества необходимо провести методом кросс-валидации по 5 блокам (5-fold). Создайте генератор разбиений, который перемешивает выборку перед формированием блоков (shuffle=True). Для воспроизводимости результата, создавайте генератор KFold с фиксированным параметром random_state=42. В качестве меры качества используйте долю верных ответов (accuracy). Step3: 4. Найдите точность классификации на кросс-валидации для метода k ближайших соседей (sklearn.neighbors.KNeighborsClassifier), при k от 1 до 50. При каком k получилось оптимальное качество? Чему оно равно (число в интервале от 0 до 1)? Данные результаты и будут ответами на вопросы 1 и 2. Step4: 5. Произведите масштабирование признаков с помощью функции sklearn.preprocessing.scale. Снова найдите оптимальное k на кросс-валидации. Step5: 6. Какое значение k получилось оптимальным после приведения признаков к одному масштабу? Приведите ответы на вопросы 3 и 4. Помогло ли масштабирование признаков?
9,019
<ASSISTANT_TASK:> Python Code: # Load Module import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf # Load dataset. iris = datasets.load_iris() # 총 150개의 붓꽃 사진과 class load x_train, x_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) print('train and test ready') x_train[:10] # 각 열은 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비 y_train[:10] # 0,1,2는 꽃의 종 의미 # 10, 20, 10 단위로 각각 3층 DNN 생성 feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(x_train) # list feature column classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) # Train. classifier.fit(x_train, y_train, steps=200) predictions = list(classifier.predict(x_test, as_iterable=True)) # Score with sklearn. score = metrics.accuracy_score(y_test, predictions) print('Accuracy: {0:f}'.format(score)) new_samples = np.array( [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float) y = list(classifier.predict(new_samples, as_iterable=True)) print('Predictions: {}'.format(str(y))) input = ... with tf.name_scope('conv1_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(input, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(bias, name=scope) input = ... net = slim.conv2d(input, 128, [3, 3], scope='conv1_1') import tensorflow as tf a = tf.add(2, 3) a = tf.add(3, 5) print (a) sess = tf.Session() sess.run(a) a = tf.add(3, 5) with tf.Session() as sess: print (sess.run(a)) x = 2 y = 3 op1 = tf.add(x, y) op2 = tf.multiply(x, y) useless = tf.multiply(x, op1) op3 = tf.pow(op2, op1) with tf.Session() as sess: op3 = sess.run(op3) x = 2 y = 3 op1 = tf.add(x, y) op2 = tf.multiply(x, y) useless = tf.multiply(x, op1) op3 = tf.pow(op2, op1) with tf.Session() as sess: op3, not_useless = sess.run([op3, useless]) # Creates a graph. with tf.device("/cpu:0"): # 연산장치 선택 가능 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape = [2,3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape = [3,2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # tf.ConfigProto(log_device_placement=True) cpu와 gpu연산이 모두 가능할 때 gpu선택 # Runs the op. print (sess.run(a)) print (sess.run(b)) print (sess.run(c)) a = tf.constant(2) b = tf.constant(3) x = tf.add(a, b) with tf.Session() as sess: writer = tf.summary.FileWriter('./graphs', sess.graph) # 텐서보드에서 볼 수 있는 그래프 저장 print (sess.run(x)) # close the writer when you’re done using it writer.close() # constant of 1d tensor (vector) a = tf.constant([2, 2], name="vector") # constant of 2x2 tensor (matrix) b = tf.constant([[0, 1], [2, 3]], name="b") with tf.Session() as sess: print(sess.run(a)) print(sess.run(b)) with tf.Session() as sess: print (sess.run(tf.zeros([2, 3], tf.int32))) # [[0, 0, 0], [0, 0, 0]] import numpy as np np.zeros((2,3), dtype=np.int32) input_tensor = [[0, 1], [2, 3], [4, 5]] with tf.Session() as sess: print (sess.run(tf.zeros_like(input_tensor))) # [[0, 0], [0, 0], [0, 0]] np.zeros_like(input_tensor) with tf.Session() as sess: print(sess.run(tf.ones([2, 3], tf.int32))) # [[1, 1, 1], [1, 1, 1]] np.ones([2,3], dtype=np.int32) input_tensor = [[0, 1], [2, 3], [4, 5]] with tf.Session() as sess: print(sess.run(tf.ones_like(input_tensor))) # [[1, 1], [1, 1], [1, 1]] np.ones_like(input_tensor) with tf.Session() as sess: print(sess.run(tf.fill([2, 3], 8))) # [[8, 8, 8], [8, 8, 8]] with tf.Session() as sess: print(sess.run(tf.linspace(10.0, 13.0, 4, name="linspace"))) # [10.0 11.0 12.0 13.0] with tf.Session() as sess: print(sess.run(tf.range(3, 18, 3))) # [3, 6, 9, 12, 15] for _ in range(4):# OK a for _ in tf.range(4): # TypeError("'Tensor' object is not iterable.") a with tf.Session() as sess: print(sess.run(tf.random_normal(shape = [2,3]))) with tf.Session() as sess: print(sess.run(tf.truncated_normal(shape = [2,3]))) with tf.Session() as sess: print(sess.run(tf.multinomial(tf.random_normal(shape = [2,3]),5))) with tf.Session() as sess: print(sess.run(tf.random_gamma(shape = [2,3], alpha = 1))) a = tf.constant([[2,1], [3,2], [7,3]]) with tf.Session() as sess: print(sess.run(tf.random_shuffle(a))) with tf.Session() as sess: print(sess.run(tf.random_crop(a, [2,1]))) a = tf.constant([3, 6]) b = tf.constant([2, 2]) with tf.Session() as sess: print(sess.run(tf.add(a, b))) # >> [5 8], 2개의 input을 받아 덧셈 with tf.Session() as sess: print(sess.run(tf.add_n([a, b, b]))) # >> [7 10]. 모든 input을 덧셈 with tf.Session() as sess: print(sess.run(tf.multiply(a, b))) # >> [6 12] because mul is element wise # matmul: 2차원이상의 텐서간의 곱 with tf.Session() as sess: print(sess.run(tf.matmul(tf.reshape(a, shape=[1, 2]), tf.reshape(b, shape=[2, 1])))) with tf.Session() as sess: print(sess.run(tf.div(a, b))) # >> [1 3], 나눗셈 실행 with tf.Session() as sess: print(sess.run(tf.mod(a, b))) # >> [1 0], 나머지 반환 # 0차원 상수텐서 - 스칼라 t_0 = 19 with tf.Session() as sess: print(sess.run(tf.zeros_like(t_0))) # ==> 0 print(sess.run(tf.ones_like(t_0))) # ==> 1 # 1차원 텐서 - 벡터 t_1 = [b"apple", b"peach", b"grape"] with tf.Session() as sess: print(sess.run(tf.zeros_like(t_1))) # ==> ['' '' ''] print(sess.run(tf.ones_like(t_1))) # ==> TypeError: Expected string, got 1 of type 'int' instead. # 2차원 텐서 - 메트릭스 t_2 = [[True, False, False], [False, False, True], [False, True, False]] with tf.Session() as sess: print(sess.run(tf.zeros_like(t_2))) # ==> 2x2 tensor, 모든 원소값 False print(sess.run(tf.ones_like(t_2))) # ==> 2x2 tensor, 모든 원소값 True my_const = tf.constant([1.0, 2.0], name="my_const") print (tf.get_default_graph().as_graph_def()) # a를 스칼라 값으로 생성 a = tf.Variable(2, name="scalar") # b를 벡터로 생성 b = tf.Variable([2, 3], name="vector") # c를 2x2 matrix로 생성 c = tf.Variable([[0, 1], [2, 3]], name="matrix") # W를 0으로 채워진 784x10 tensor로 생성 W = tf.Variable(tf.zeros([784,10])) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) init_ab = tf.variables_initializer([a, b], name = "init_ab") with tf.Session() as sess: sess.run(init) W = tf.Variable(tf.truncated_normal([700, 10])) with tf.Session() as sess: sess.run(W.initializer) print (W) with tf.Session() as sess: sess.run(W.initializer) print (W.eval()) W = tf.Variable(10) W.assign(100) # 100이 W에 할당되지 않음 with tf.Session() as sess: sess.run(W.initializer) print (W.eval()) # >> 10 W = tf.Variable(10) assign_op = W.assign(100) # assign이 W를 initialize시킴 with tf.Session() as sess: sess.run(assign_op) print (W.eval()) # >> 100 # 값이 2인 변수 a 생성 a = tf.Variable(2, name="scalar") # a_times_two에 a * 2 할당 a_times_two = a.assign(a * 2) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) # a_times_two가 a에 따라 바뀌기 때문에 반드시 a를 initialize시켜줘야 함 sess.run(a_times_two) # >> 4 # sess.run(a_times_two) # >> 8 # sess.run(a_times_two) # >> 16 print (a_times_two.eval()) W = tf.Variable(10) with tf.Session() as sess: sess.run(W.initializer) # assign_add와 assign_sub는 assign과는 다르게 variable을 initialize시켜주지 않음 print(sess.run(W.assign_add(10))) print(sess.run(W.assign_sub(2))) W = tf.Variable(10) sess1 = tf.Session() sess2 = tf.Session() sess1.run(W.initializer) sess2.run(W.initializer) print(sess1.run(W.assign_add(10))) # ==> 20 print(sess2.run(W.assign_sub(2))) # ==> 8 print(sess1.run(W.assign_add(100))) # ==> 120 print(sess2.run(W.assign_sub(50))) # ==> -42 sess1.close() sess2.close() W = tf.Variable(tf.truncated_normal([700, 10])) U = tf.Variable(W * 2) sess = tf.InteractiveSession() a = tf.constant(5.0) b = tf.constant(6.0) c = a * b print(c.eval()) sess.close() # your graph g have 5 ops: a, b, c, d, e with g.control_dependencies([a, b, c]): d = .... e = .... # create a placeholder of type float 32-bit, shape is a vector of 3 elements a = tf.placeholder(tf.float32, shape=[3]) # create a constant of type float 32-bit, shape is a vector of 3 elements b = tf.constant([5, 5, 5], tf.float32) # use the placeholder as you would a constant or a variable c = a + b # Short for tf.add(a, b) with tf.Session() as sess: # feed [1, 2, 3] to placeholder a via the dict {a: [1, 2, 3]} # fetch value of c writer = tf.summary.FileWriter('./my_graph', sess.graph) # print(sess.run(c)) # ==> Error print(sess.run(c, {a: [1, 2, 3]})) # create Operations, Tensors, etc (using the default graph) a = tf.add(2, 5) b = tf.multiply(a, 3) # start up a `Session` using the default graph sess = tf.Session() # define a dictionary that says to replace the value of `a` with 15 replace_dict = {a: 15} # Run the session, passing in `replace_dict` as the value to `feed_dict` sess.run(b, feed_dict=replace_dict) # returns 45 # Normal loading x = tf.Variable(10, name='x') y = tf.Variable(20, name='y') z = tf.add(x, y) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter('./my_graph/l2', sess.graph) for _ in range(10): sess.run(z) writer.close() # Lazy loading x = tf.Variable(10, name='x') y = tf.Variable(20, name='y') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter('./my_graph/l2', sess.graph) for _ in range(10): sess.run(tf.add(x, y)) # someone decides to be clever to save one line of code writer.close() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. TF-slim(tf.contrib.slim) Step2: with TF-Slim Step3: Data Flow Graph Step4: How to get the value of a? Step5: More graphs Step6: Why graphs Step7: 텐서보드 실행법 Step8: 텐서의 원소로 특정한 값을 생성할 수 있음 Step9: tf.zeros_like(input, dtype=None, name=None, opitmize=True) Step10: tf.one(shape, dtype=tf.float32, name=None) Step11: tf.ones_like(input_tensor, dtype=None, name=None, optimize=True) Step12: tf.fill(dims, value, name=None) Step13: tf.linspace(start, stop, num, name=None) Step14: tf.range(start, limit=None, delta=1, dtype=None, name='range') Step15: 텐서는 반복문에 사용할 수 없음 Step16: 특정 분포에서 난수를 생성할 수 있음 Step17: 3. Math Operations Step18: 4. Data Types Step19: TensorFlow Native Types Step20: Declare variables Step21: 변수를 사용하기 전에는 항상 변수를 초기화해야함 Step22: To initialize only as subset of varuables Step23: Evaluate values of variables Step24: eval()함수를 사용하면 값까지 볼수 있음 Step25: Assign values to variables Step26: Tensorflow session은 각각 유지됨 Step27: 다른 변수를 사용해서 변수를 만들수 있음 Step28: 6. InteractiveSession Step29: 7. Control Dependencies Step30: 8. Placeholders and feed_dict Step31: 꼭 placeholder가 아니여도 feed 가능 Step32: 9. The trap of lazy loading
9,020
<ASSISTANT_TASK:> Python Code: %matplotlib inline # Required imports from wikitools import wiki from wikitools import category import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import gensim import numpy as np import lda import lda.datasets from time import time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import LatentDirichletAllocation import matplotlib.pyplot as plt import pylab from test_helper import Test site = wiki.Wiki("https://en.wikipedia.org/w/api.php") # Select a category with a reasonable number of articles (>100) # cat = "Economics" cat = "Pseudoscience" print cat # Loading category data. This may take a while print "Loading category data. This may take a while..." cat_data = category.Category(site, cat) corpus_titles = [] corpus_text = [] for n, page in enumerate(cat_data.getAllMembersGen()): print "\r Loading article {0}".format(n + 1), corpus_titles.append(page.title) corpus_text.append(page.getWikiText()) n_art = len(corpus_titles) print "\nLoaded " + str(n_art) + " articles from category " + cat # n = 5 # print corpus_titles[n] # print corpus_text[n] # You can comment this if the package is already available. # Select option "d) Download", and identifier "punkt" # Select option "d) Download", and identifier "stopwords" # nltk.download() stopwords_en = stopwords.words('english') corpus_clean = [] for n, art in enumerate(corpus_text): print "\rProcessing article {0} out of {1}".format(n + 1, n_art), # This is to make sure that all characters have the appropriate encoding. art = art.decode('utf-8') # Tokenize each text entry. # scode: tokens = <FILL IN> # Convert all tokens in token_list to lowercase, remove non alfanumeric tokens and stem. # Store the result in a new token list, clean_tokens. # scode: filtered_tokens = <FILL IN> # Remove all tokens in the stopwords list and append the result to corpus_clean # scode: clean_tokens = <FILL IN> # scode: <FILL IN> print "\nLet's check the first tokens from document 0 after processing:" print corpus_clean[0][0:30] Test.assertTrue(len(corpus_clean) == n_art, 'List corpus_clean does not contain the expected number of articles') Test.assertTrue(len([c for c in corpus_clean[0] if c in stopwords_en])==0, 'Stopwords have not been removed') # Select stemmer. stemmer = nltk.stem.SnowballStemmer('english') corpus_stemmed = [] for n, token_list in enumerate(corpus_clean): print "\rStemming article {0} out of {1}".format(n + 1, n_art), # Convert all tokens in token_list to lowercase, remove non alfanumeric tokens and stem. # Store the result in a new token list, clean_tokens. # scode: stemmed_tokens = <FILL IN> # Add art to the stemmed corpus # scode: <FILL IN> print "\nLet's check the first tokens from document 0 after stemming:" print corpus_stemmed[0][0:30] Test.assertTrue((len([c for c in corpus_stemmed[0] if c!=stemmer.stem(c)]) < 0.1*len(corpus_stemmed[0])), 'It seems that stemming has not been applied properly') # You can comment this if the package is already available. # Select option "d) Download", and identifier "wordnet" # nltk.download() wnl = WordNetLemmatizer() # Select stemmer. corpus_lemmat = [] for n, token_list in enumerate(corpus_clean): print "\rLemmatizing article {0} out of {1}".format(n + 1, n_art), # scode: lemmat_tokens = <FILL IN> # Add art to the stemmed corpus # scode: <FILL IN> print "\nLet's check the first tokens from document 0 after stemming:" print corpus_lemmat[0][0:30] # Create dictionary of tokens D = gensim.corpora.Dictionary(corpus_clean) n_tokens = len(D) print "The dictionary contains {0} tokens".format(n_tokens) print "First tokens in the dictionary: " for n in range(10): print str(n) + ": " + D[n] # Transform token lists into sparse vectors on the D-space corpus_bow = [D.doc2bow(doc) for doc in corpus_clean] Test.assertTrue(len(corpus_bow)==n_art, 'corpus_bow has not the appropriate size') print "Original article (after cleaning): " print corpus_clean[0][0:30] print "Sparse vector representation (first 30 components):" print corpus_bow[0][0:30] print "The first component, {0} from document 0, states that token 0 ({1}) appears {2} times".format( corpus_bow[0][0], D[0], corpus_bow[0][0][1]) print "{0} tokens".format(len(D)) print "{0} Wikipedia articles".format(len(corpus_bow)) # SORTED TOKEN FREQUENCIES (I): # Create a "flat" corpus with all tuples in a single list corpus_bow_flat = [item for sublist in corpus_bow for item in sublist] # Initialize a numpy array that we will use to count tokens. # token_count[n] should store the number of ocurrences of the n-th token, D[n] token_count = np.zeros(n_tokens) # Count the number of occurrences of each token. for x in corpus_bow_flat: # Update the proper element in token_count # scode: <FILL IN> # Sort by decreasing number of occurences ids_sorted = np.argsort(- token_count) tf_sorted = token_count[ids_sorted] print D[ids_sorted[0]] print "{0} times in the whole corpus".format(tf_sorted[0]) # SORTED TOKEN FREQUENCIES (II): plt.rcdefaults() # Example data n_bins = 25 hot_tokens = [D[i] for i in ids_sorted[n_bins-1::-1]] y_pos = np.arange(len(hot_tokens)) z = tf_sorted[n_bins-1::-1]/n_art plt.barh(y_pos, z, align='center', alpha=0.4) plt.yticks(y_pos, hot_tokens) plt.xlabel('Average number of occurrences per article') plt.title('Token distribution') plt.show() # SORTED TOKEN FREQUENCIES: # Example data plt.semilogy(tf_sorted) plt.xlabel('Average number of occurrences per article') plt.title('Token distribution') plt.show() # scode: <WRITE YOUR CODE HERE> # Example data cold_tokens = [D[i] for i in ids_sorted if tf_sorted[i]==1] print "There are {0} cold tokens, which represent {1}% of the total number of tokens in the dictionary".format( len(cold_tokens), float(len(cold_tokens))/n_tokens*100) # scode: <WRITE YOUR CODE HERE> # SORTED TOKEN FREQUENCIES (I): # Count the number of occurrences of each token. token_count2 = np.zeros(n_tokens) for x in corpus_bow_flat: token_count2[x[0]] += (x[1]>0) # Sort by decreasing number of occurences ids_sorted2 = np.argsort(- token_count2) tf_sorted2 = token_count2[ids_sorted2] # SORTED TOKEN FREQUENCIES (II): # Example data n_bins = 25 hot_tokens2 = [D[i] for i in ids_sorted2[n_bins-1::-1]] y_pos2 = np.arange(len(hot_tokens2)) z2 = tf_sorted2[n_bins-1::-1]/n_art plt.barh(y_pos2, z2, align='center', alpha=0.4) plt.yticks(y_pos2, hot_tokens2) plt.xlabel('Average number of occurrences per article') plt.title('Token distribution') plt.show() tfidf = gensim.models.TfidfModel(corpus_bow) doc_bow = [(0, 1), (1, 1)] tfidf[doc_bow] corpus_tfidf = tfidf[corpus_bow] print corpus_tfidf[0][0:5] # Initialize an LSI transformation n_topics = 5 # scode: lsi = <FILL IN> lsi.show_topics(num_topics=-1, num_words=10, log=False, formatted=True) # SORTED TOKEN FREQUENCIES (II): plt.rcdefaults() n_bins = 25 # Example data y_pos = range(n_bins-1, -1, -1) pylab.rcParams['figure.figsize'] = 16, 8 # Set figure size for i in range(n_topics): ### Plot top 25 tokens for topic i # Read i-thtopic # scode: <FILL IN> tokens = [t[0] for t in topic_i] weights = [t[1] for t in topic_i] # Plot # scode: <FILL IN> plt.barh(y_pos, weights, align='center', alpha=0.4) plt.yticks(y_pos, tokens) plt.xlabel('Top {0} topic weights'.format(n_bins)) plt.title('Topic {0}'.format(i)) plt.show() # On real corpora, target dimensionality of # 200–500 is recommended as a “golden standard” # Create a double wrapper over the original # corpus bow tfidf fold-in-lsi corpus_lsi = lsi[corpus_tfidf] print corpus_lsi[0] # Extract weights from corpus_lsi # scode weight0 = <FILL IN> # Locate the maximum positive weight nmax = np.argmax(weight0) print nmax print weight0[nmax] print corpus_lsi[nmax] # Get topic 0 # scode: topic_0 = <FILL IN> # Compute a list of tuples (token, wordcount) for all tokens in topic_0, where wordcount is the number of # occurences of the token in the article. # scode: token_counts = <FILL IN> print "Topic 0 is:" print topic_0 print "Token counts:" print token_counts ldag = gensim.models.ldamodel.LdaModel( corpus=corpus_tfidf, id2word=D, num_topics=10, update_every=1, passes=10) ldag.print_topics() # For testing LDA, you can use the reuters dataset # X = lda.datasets.load_reuters() # vocab = lda.datasets.load_reuters_vocab() # titles = lda.datasets.load_reuters_titles() X = np.int32(np.zeros((n_art, n_tokens))) for n, art in enumerate(corpus_bow): for t in art: X[n, t[0]] = t[1] print X.shape print X.sum() vocab = D.values() titles = corpus_titles # Default parameters: # model = lda.LDA(n_topics, n_iter=2000, alpha=0.1, eta=0.01, random_state=None, refresh=10) model = lda.LDA(n_topics=10, n_iter=1500, random_state=1) model.fit(X) # model.fit_transform(X) is also available topic_word = model.topic_word_ # model.components_ also works # Show topics... n_top_words = 8 for i, topic_dist in enumerate(topic_word): topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words+1):-1] print('Topic {}: {}'.format(i, ' '.join(topic_words))) doc_topic = model.doc_topic_ for i in range(10): print("{} (top topic: {})".format(titles[i], doc_topic[i].argmax())) # This is to apply the model to a new doc(s) # doc_topic_test = model.transform(X_test) # for title, topics in zip(titles_test, doc_topic_test): # print("{} (top topic: {})".format(title, topics.argmax())) # Adapted from an example in sklearn site # http://scikit-learn.org/dev/auto_examples/applications/topics_extraction_with_nmf_lda.html # You can try also with the dataset provided by sklearn in # from sklearn.datasets import fetch_20newsgroups # dataset = fetch_20newsgroups(shuffle=True, random_state=1, #  remove=('headers', 'footers', 'quotes')) def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print() print("Loading dataset...") # scode: data_samples = <FILL IN> data_samples = [" ".join(c) for c in corpus_clean] print 'Document 0:' print data_samples[0][0:200], '...' # Use tf (raw term count) features for LDA. print("Extracting tf features for LDA...") n_features = 1000 n_samples = 2000 tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) print tf[0][0][0] print("Fitting LDA models with tf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) # scode: lda = <FILL IN> learning_method='online', learning_offset=50., random_state=0) # doc_topic_prior= 1.0/n_topics, topic_word_prior= 1.0/n_topics) t0 = time() corpus_lda = lda.fit_transform(tf) print corpus_lda[10]/np.sum(corpus_lda[10]) print("done in %0.3fs." % (time() - t0)) print corpus_titles[10] # print corpus_text[10] print("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(lda, tf_feature_names, 20) topics = lda.components_ topic_probs = [t/np.sum(t) for t in topics] # print topic_probs[0] print -np.sort(-topic_probs[0]) # SORTED TOKEN FREQUENCIES (II): plt.rcdefaults() n_bins = 50 # Example data y_pos = range(n_bins-1, -1, -1) pylab.rcParams['figure.figsize'] = 16, 8 # Set figure size for i in range(n_topics): ### Plot top 25 tokens for topic i # Read i-thtopic # scode: <FILL IN> rank = np.argsort(- topic_i)[0:n_bins] tokens = [tf_feature_names[r] for r in rank] weights = [topic_i[r] for r in rank] # Plot # scode: <FILL IN> plt.barh(y_pos, weights, align='center', alpha=0.4) plt.yticks(y_pos, tokens) plt.xlabel('Top {0} topic weights'.format(n_bins)) plt.title('Topic {0}'.format(i)) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Corpus acquisition. Step2: You can try with any other categories. Take into account that the behavior of topic modelling algorithms may depend on the amount of documents available for the analysis. Select a category with at least 100 articles. You can browse the wikipedia category tree here, https Step3: Now, we have stored the whole text collection in two lists Step4: 2. Corpus Processing Step5: 2.2. Stemming vs Lemmatization Step6: Alternatively, we can apply lemmatization. For english texts, we can use the lemmatizer from NLTK, which is based on WordNet. If you have not used wordnet before, you will likely need to download it from nltk Step7: Task Step8: One of the advantages of the lemmatizer method is that the result of lemmmatization is still a true word, which is more advisable for the presentation of text processing results and lemmatization. Step9: In the second step, let us create a numerical version of our corpus using the doc2bow method. In general, D.doc2bow(token_list) transform any list of tokens into a list of tuples (token_id, n), one per each token in token_list, where token_id is the token identifier (according to dictionary D) and n is the number of occurrences of such token in token_list. Step10: At this point, it is good to make sure to understand what has happened. In corpus_clean we had a list of token lists. With it, we have constructed a Dictionary, D, which assign an integer identifier to each token in the corpus. Step11: Note that we can interpret each element of corpus_bow as a sparse_vector. For example, a list of tuples Step12: and a bow representation of a corpus with Step13: Before starting with the semantic analyisis, it is interesting to observe the token distribution for the given corpus. Step14: ids_sorted is a list of all token ids, sorted by decreasing number of occurrences in the whole corpus. For instance, the most frequent term is Step15: which appears Step16: In the following we plot the most frequent terms in the corpus. Step17: Exercise Step18: Exercise Step19: 3. Semantic Analysis Step20: From now on, tfidf can be used to convert any vector from the old representation (bow integer counts) to the new one (TfIdf real-valued weights) Step21: Or to apply a transformation to a whole corpus Step22: 3.1. Latent Semantic Indexing (LSI) Step23: From LSI, we can check both the topic-tokens matrix and the document-topics matrix. Step24: However, a more useful representation of topics is as a list of tuples (token, value). This is provided by the show_topic method. Step25: LSI approximates any document as a linear combination of the topic vectors. We can compute the topic weights for any input corpus entered as input to the lsi model. Step26: Task Step27: 3.2. Latent Dirichlet Allocation (LDA) Step28: 3.2.2. LDA using python lda library Step29: Document-topic distribution Step30: It allows incremental updates Step31: Now, we need a dataset to feed the Count_Vectorizer object, by joining all tokens in corpus_clean in a single string, using a space ' ' as separator. Step32: Now we are ready to compute the token counts. Step33: Now we can apply the LDA algorithm. Step34: Task Step35: Exercise
9,021
<ASSISTANT_TASK:> Python Code: # code for loading the format for the notebook import os # path : store the current path to convert back to it later path = os.getcwd() os.chdir(os.path.join('..', 'notebook_format')) from formats import load_style load_style(plot_style=False) os.chdir(path) # 1. magic to print version # 2. magic so that the notebook will reload external python modules %load_ext watermark %load_ext autoreload %autoreload 2 %watermark -a 'Ethen' -d -t -v class A: def __init__(self): self.__priv = "I am private" self._prot = "I am protected" self.pub = "I am public" x = A() print(x.pub) # Whenever we assign or retrieve any object attribute # Python searches it in the object's __dict__ dictionary print(x.__dict__) class Celsius: def __init__(self, temperature = 0): self.set_temperature(temperature) def to_fahrenheit(self): return (self.get_temperature() * 1.8) + 32 def get_temperature(self): return self._temperature def set_temperature(self, value): if value < -273: raise ValueError('Temperature below -273 is not possible') self._temperature = value # c = Celsius(-277) # this returns an error c = Celsius(37) c.get_temperature() class Celsius: def __init__(self, temperature = 0): self._temperature = temperature def to_fahrenheit(self): return (self.temperature * 1.8) + 32 # have access to the value like it is an attribute instead of a method @property def temperature(self): return self._temperature # like accessing the attribute with an extra layer of error checking @temperature.setter def temperature(self, value): if value < -273: raise ValueError('Temperature below -273 is not possible') print('Setting value') self._temperature = value c = Celsius(37) # much easier to access then the getter, setter way print(c.temperature) # note that you can still access the private attribute # and violate the temperature checking, # but then it's the users fault not yours c._temperature = -300 print(c._temperature) # accessing the attribute will return the ValueError error # c.temperature = -300 print(dict.fromkeys(['raymond', 'rachel', 'mathew'])) import time class Date: # Primary constructor def __init__(self, year, month, day): self.year = year self.month = month self.day = day # Alternate constructor @classmethod def today(cls): t = time.localtime() return cls(t.tm_year, t.tm_mon, t.tm_mday) # Primary a = Date(2012, 12, 21) print(a.__dict__) # Alternate b = Date.today() print(b.__dict__) class NewDate(Date): pass # Creates an instance of Date (cls=Date) c = Date.today() print(c.__dict__) # Creates an instance of NewDate (cls=NewDate) d = NewDate.today() print(d.__dict__) class Date: # Primary constructor def __init__(self, year, month, day): self.year = year self.month = month self.day = day # Alternate constructor @classmethod def today(cls): t = time.localtime() return cls(t.tm_year, t.tm_mon, t.tm_mday) # the logic belongs with the date class @staticmethod def show_tomorrow_date(): t = time.localtime() return t.tm_year, t.tm_mon, t.tm_mday + 1 Date.show_tomorrow_date() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Working with Python Classes Step2: When the Python compiler sees a private attribute, it actually transforms the actual name to _[Class name]__[private attribute name]. However, this still does not prevent the end-user from accessing the attribute. Thus in Python land, it is more common to use public and protected attribute, write proper docstrings and assume that everyone is a consenting adult, i.e. won't do anything with the protected method unless they know what they are doing. Step3: Instead of that, now the property way. Where we define the @property and the @[attribute name].setter. Step4: @classmethod and @staticmethod Step5: The cls is critical, as it is an object that holds the class itself. This makes them work with inheritance. Step6: The purpose of @staticmethod is to attach functions to classes. We do this to improve the findability of the function and to make sure that people are using the function in the appropriate context.
9,022
<ASSISTANT_TASK:> Python Code: %%capture !pip install git+https://github.com/jamesvuc/jax-bayes !pip install SGMCMCJax !pip install distrax import jax.numpy as jnp from jax.experimental import optimizers import jax import jax_bayes import sys, os, math, time import numpy as np from functools import partial from matplotlib import pyplot as plt os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow_datasets as tfds import sgmcmcjax from jax import jit, vmap from jax.random import split, PRNGKey import distrax from tqdm.auto import tqdm import tensorflow_probability.substrates.jax.distributions as tfd def load_dataset(split, is_training, batch_size): if batch_size == -1: ds = tfds.load("mnist:3.*.*", split=split, batch_size=-1) else: ds = tfds.load("mnist:3.*.*", split=split).cache().repeat() if is_training and batch_size > 0: ds = ds.shuffle(10 * batch_size, seed=0) if batch_size > 0: ds = ds.batch(batch_size) return iter(tfds.as_numpy(ds)) if batch_size > 0 else tfds.as_numpy(ds) # load the data into memory and create batch iterators train_batches = load_dataset("train", is_training=True, batch_size=1_000) val_batches = load_dataset("train", is_training=False, batch_size=10_000) test_batches = load_dataset("test", is_training=False, batch_size=10_000) # ========== # Functions to initialise parameters # initialise params: list of tuples (W, b) for each layer def random_layer(key, m, n, scale=1e-2): key, subkey = jax.random.split(key) return (scale * jax.random.truncated_normal(key, -2, 2, (n, m)), jnp.zeros((n,))) def init_network(key, sizes): keys = jax.random.split(key, len(sizes)) return [random_layer(k, m, n) for k, m, n in zip(keys, sizes[:-1], sizes[1:])] # =========== # predict and accuracy functions @partial(jit, static_argnames=("activation_fn")) def predict(params, x, activation_fn): # per-example predictions activations = x for w, b in params[:-1]: outputs = activations @ w.T + b activations = activation_fn(outputs) final_w, final_b = params[-1] logits = activations @ final_w.T + final_b return logits # ================= # Log-posterior @partial(jit, static_argnames=("activation_fn")) def loglikelihood(params, X, y, activation_fn): return jnp.sum(y * jax.nn.log_softmax(predict(params, X, activation_fn))) def logprior(params): logP = 0.0 dist = distrax.Normal(0, 1) for w, b in params: logP += jnp.sum(dist.log_prob(w)) logP += jnp.sum(dist.log_prob(b)) return logP # Accuracy for a single sample batch_predict = vmap(predict, in_axes=(None, 0, None)) @partial(jit, static_argnames=("activation_fn")) def accuracy(params, batch, activation_fn): X, target_class = batch["image"].reshape((-1, D)), batch["label"] predicted_class = jnp.argmax(batch_predict(params, X, activation_fn), axis=1) return jnp.mean(predicted_class == target_class) batch = next(train_batches) nclasses = 10 x = batch["image"] D = np.prod(x.shape[1:]) # 784 sizes = [D, 300, 100, nclasses] def loss(params, batch, activation_fn): logits = predict(params, batch["image"].reshape((-1, D)), activation_fn) labels = jax.nn.one_hot(batch["label"], nclasses) l2_loss = 0.5 * sum(jnp.sum(jnp.square(p)) for p in jax.tree_leaves(params)) softmax_crossent = -jnp.mean(labels * jax.nn.log_softmax(logits)) return softmax_crossent + reg * l2_loss @partial(jit, static_argnames=("activation_fn")) def train_step(i, opt_state, batch, activation_fn): params = opt_get_params(opt_state) dx = jax.grad(loss)(params, batch, activation_fn) opt_state = opt_update(i, dx, opt_state) return opt_state reg = 1e-3 lr = 1e-3 opt_init, opt_update, opt_get_params = optimizers.rmsprop(lr) initial_params = init_network(PRNGKey(0), sizes) opt_state = opt_init(initial_params) activation_fn = jax.nn.relu %%time accuracy_list_train, accuracy_list_test = [], [] nsteps = 2000 print_every = 100 for step in tqdm(range(nsteps + 1)): opt_state = train_step(step, opt_state, next(train_batches), activation_fn) params_sgd = opt_get_params(opt_state) if step % print_every == 0: # Periodically evaluate classification accuracy on train & test sets. train_accuracy = accuracy(params_sgd, next(val_batches), activation_fn) test_accuracy = accuracy(params_sgd, next(test_batches), activation_fn) accuracy_list_train.append(train_accuracy) accuracy_list_test.append(test_accuracy) fig, axes = plt.subplots(nrows=1, ncols=2, sharex=True, sharey=True, figsize=(20, 5)) for ls, ax in zip([accuracy_list_train, accuracy_list_test], axes.flatten()): ax.plot(ls[:]) ax.set_title(f"Final accuracy: {100*ls[-1]:.1f}%") from sgmcmcjax.kernels import build_sgld_kernel from sgmcmcjax.util import progress_bar_scan lr = 5e-5 activation_fn = jax.nn.softmax data = load_dataset("train", is_training=True, batch_size=-1) data = (jnp.array(data["image"].reshape((-1, D)) / 255.0), jax.nn.one_hot(jnp.array(data["label"]), nclasses)) batch_size = int(0.01 * len(data[0])) init_fn, my_kernel, get_params = build_sgld_kernel( lr, partial(loglikelihood, activation_fn=activation_fn), logprior, data, batch_size ) my_kernel = jit(my_kernel) # define the inital state key = jax.random.PRNGKey(10) key, subkey = jax.random.split(key, 2) params_IC = init_network(subkey, sizes) %%time # iterate the the Markov chain nsteps = 2000 Nsamples = 10 @partial(jit, static_argnums=(1,)) def sampler(key, Nsamples, params): def body(carry, i): key, state = carry key, subkey = jax.random.split(key) state = my_kernel(i, subkey, state) return (key, state), get_params(state) key, subkey = jax.random.split(key) state = init_fn(subkey, params) (_, state), samples = jax.lax.scan(body, (key, state), jnp.arange(Nsamples)) return samples, state accuracy_list_test, accuracy_list_val = [], [] params = params_IC for step in tqdm(range(nsteps)): key, sample_key = jax.random.split(key, 2) samples, state = sampler(sample_key, Nsamples, params) params = get_params(state) if step % print_every == 0: test_acc, val_acc = accuracy(params, next(test_batches), activation_fn), accuracy( params, next(val_batches), activation_fn ) accuracy_list_test.append(test_acc) accuracy_list_val.append(val_acc) fig, axes = plt.subplots(nrows=1, ncols=2, sharex=True, sharey=True, figsize=(20, 5)) for ls, ax in zip([accuracy_list_test, accuracy_list_val], axes.flatten()): ax.plot(ls[:]) ax.set_title(f"Final accuracy: {100*ls[-1]:.2f}%") def certainty_acc(pp, targets, cert_threshold=0.5): Calculates the accuracy-at-certainty from the predictive probabilites pp on the targets. Args: pp: (batch_size, n_classes) array of probabilities targets: (batch_size, n_calsses) array of label class indices cert_threhsold: (float) minimum probability for making a prediction Returns: accuracy at certainty, indicies of those prediction instances for which the model is certain. preds = jnp.argmax(pp, axis=1) pred_probs = jnp.max(pp, axis=1) certain_idxs = pred_probs >= cert_threshold acc_at_certainty = jnp.mean(targets[certain_idxs] == preds[certain_idxs]) return acc_at_certainty, certain_idxs @jit @vmap def entropy(p): computes discrete Shannon entropy. p: (n_classes,) array of probabilities corresponding to each class p += 1e-12 # tolerance to avoid nans while ensuring 0log(0) = 0 return -jnp.sum(p * jnp.log(p)) test_batch = next(test_batches) def plot_acc_vs_confidence(predict_fn, test_batch): # plot how accuracy changes as we increase the required level of certainty preds = predict_fn(test_batch) # (batch_size, n_classes) array of probabilities acc, mask = certainty_acc(preds, test_batch["label"], cert_threshold=0) thresholds = [0.1 * i for i in range(11)] cert_accs, pct_certs = [], [] for t in thresholds: cert_acc, cert_mask = certainty_acc(preds, test_batch["label"], cert_threshold=t) cert_accs.append(cert_acc) pct_certs.append(cert_mask.mean()) fig, ax = plt.subplots(1) line1 = ax.plot(thresholds, cert_accs, label="accuracy at certainty", marker="x") line2 = ax.axhline(y=acc, label="regular accuracy", color="black") ax.set_ylabel("accuracy") ax.set_xlabel("certainty threshold") axb = ax.twinx() line3 = axb.plot(thresholds, pct_certs, label="pct of certain preds", color="green", marker="x") axb.set_ylabel("pct certain") lines = line1 + [line2] + line3 labels = [l.get_label() for l in lines] ax.legend(lines, labels, loc=6) return fig, ax # plugin approximation to posterior predictive @partial(jit, static_argnames=("activation_fn")) def posterior_predictive_plugin(params, X, activation_fn): logit_pp = predict(params, X, activation_fn) return jax.nn.softmax(logit_pp, axis=-1) def pred_fn_sgd(batch): X = batch["image"].reshape((-1, D)) return posterior_predictive_plugin(params_sgd, X, jax.nn.relu) fig, ax = plot_acc_vs_confidence(pred_fn_sgd, test_batch) plt.savefig("acc-vs-conf-sgd.pdf") plt.show() def posterior_predictive_bayes(params_sampled, batch, activation_fn): computes the posterior_predictive P(class = c | inputs, params) using a histogram X = batch["image"].reshape((-1, D)) y = batch["label"] pred_fn = lambda p: predict(p, X, activation_fn) pred_fn = jax.vmap(pred_fn) logit_samples = pred_fn(params_sampled) # n_samples x batch_size x n_classes pred_samples = jnp.argmax(logit_samples, axis=-1) # n_samples x batch_size n_classes = logit_samples.shape[-1] batch_size = logit_samples.shape[1] probs = np.zeros((batch_size, n_classes)) for c in range(n_classes): idxs = pred_samples == c probs[:, c] = idxs.sum(axis=0) return probs / probs.sum(axis=1, keepdims=True) def pred_fn_sgld(batch): return posterior_predictive_bayes(samples, batch, jax.nn.softmax) fig, ax = plot_acc_vs_confidence(pred_fn_sgld, test_batch) plt.savefig("acc-vs-conf-sgld.pdf") plt.show() fashion_ds = tfds.load("fashion_mnist:3.*.*", split="test").cache().repeat() fashion_test_batches = tfds.as_numpy(fashion_ds.batch(10_000)) fashion_test_batches = iter(fashion_test_batches) fashion_batch = next(fashion_test_batches) fig, ax = plot_acc_vs_confidence(pred_fn_sgd, fashion_batch) plt.savefig("acc-vs-conf-sgd-fashion.pdf") plt.show() fig, ax = plot_acc_vs_confidence(pred_fn_sgld, fashion_batch) plt.savefig("acc-vs-conf-sgld-fashion.pdf") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Step2: The Bayesian NN is taken from SGMCMCJAX. However, there are couple of changes made. These can be listed as follows Step3: Model Step4: SGLD Step7: Uncertainty analysis Step8: SGD Step10: SGLD Step11: Distribution shift Step12: SGD Step13: SGLD
9,023
<ASSISTANT_TASK:> Python Code: import packages.initialization import pioneer3dx as p3dx p3dx.init() def forward(): # copy and paste your code here ... def turn(): # copy and paste your code here ... print('Pose of the robot at the start') p3dx.pose() for _ in range(4): forward() turn() print('Pose of the robot at the end') p3dx.pose() %matplotlib inline import matplotlib.pyplot as plt x, y = p3dx.trajectory() plt.plot(x,y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 3. Program Step2: The trajectory can also be displayed
9,024
<ASSISTANT_TASK:> Python Code: import IPython.display as IPdisplay import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np import pandas as pd import pynamical from pynamical import simulate, bifurcation_plot, save_fig %matplotlib inline title_font = pynamical.get_title_font() label_font = pynamical.get_label_font() # run the logistic model for 20 generations for 7 growth rates between 0.5 and 3.5 then view the output pops = simulate(num_gens=20, rate_min=0.5, rate_max=3.5, num_rates=7) pops.applymap(lambda x: '{:03.3f}'.format(x)) def get_colors(cmap, n, start=0., stop=1., alpha=1., reverse=False): '''return n-length list of rgba colors from the passed colormap name and alpha, limit extent by start/stop values and reverse list order if flag is true''' colors = [cm.get_cmap(cmap)(x) for x in np.linspace(start, stop, n)] colors = [(r, g, b, alpha) for r, g, b, _ in colors] return list(reversed(colors)) if reverse else colors # plot the results of the logistic map run for these 7 different growth rates #color_list = ['#cc00cc', '#4B0082', '#0066cc', '#33cc00', '#cccc33', '#ff9900', '#ff0000'] color_list = get_colors('viridis', n=len(pops.columns), start=0., stop=1) for color, rate in reversed(list(zip(color_list, pops.columns))): ax = pops[rate].plot(kind='line', figsize=[10, 6], linewidth=2.5, alpha=0.95, c=color) ax.grid(True) ax.set_ylim([0, 1]) ax.legend(title='Growth Rate', loc=3, bbox_to_anchor=(1, 0.525)) ax.set_title('Logistic Model Results by Growth Rate', fontproperties=title_font) ax.set_xlabel('Generation', fontproperties=label_font) ax.set_ylabel('Population', fontproperties=label_font) save_fig('logistic-map-growth-rates') plt.show() # run the model for 100 generations across 1000 growth rate steps from 0 to 4 then plot the bifurcation diagram pops = simulate(num_gens=100, rate_min=0, rate_max=4, num_rates=1000, num_discard=1) bifurcation_plot(pops, filename='logistic-map-bifurcation-0') # plot the bifurcation diagram for 200 generations, but this time throw out the first 100 rows # 200-100=100, so we still have 100 generations in the plot, just like in the previous cell # this will show us only the attractors (aka, the values that each growth rate settles on over time) pops = simulate(num_gens=100, rate_min=0, rate_max=4, num_rates=1000, num_discard=100) bifurcation_plot(pops, filename='logistic-map-bifurcation-1') # run the model for 300 generations across 1,000 growth rate steps from 2.8 to 4, and plot the bifurcation diagram # this plot is a zoomed-in look at the first plot and shows the period-doubling path to chaos pops = simulate(num_gens=100, rate_min=2.8, rate_max=4, num_rates=1000, num_discard=200, initial_pop=0.1) bifurcation_plot(pops, xmin=2.8, xmax=4, filename='logistic-map-bifurcation-2') # run the model for 200 generations across 1,000 growth rate steps from 3.7 to 3.9, and plot the bifurcation diagram # this plot is a zoomed-in look at the first plot and shows more detail in the chaotic regimes pops = simulate(num_gens=100, rate_min=3.7, rate_max=3.9, num_rates=1000, num_discard=100) bifurcation_plot(pops, xmin=3.7, xmax=3.9, filename='logistic-map-bifurcation-3') # run the model for 500 generations across 1,000 growth rate steps from 3.84 to 3.856, and plot the bifurcation diagram # throw out the first 300 generations, so we end up with 200 generations in the plot # this plot is a zoomed-in look at the first plot and shows the same structure we saw at the macro-level pops = simulate(num_gens=200, rate_min=3.84, rate_max=3.856, num_rates=1000, num_discard=300) bifurcation_plot(pops, xmin=3.84, xmax=3.856, ymin=0.445, ymax=0.552, filename='logistic-map-bifurcation-4') # plot the numeric output of the logistic model for growth rates of 3.9 and 3.90001 # this demonstrates sensitive dependence on the parameter rate1 = 3.9 rate2 = rate1 + 0.00001 pops = simulate(num_gens=40, rate_min=rate1, rate_max=rate2, num_rates=2) ax = pops.plot(kind='line', figsize=[10, 6], linewidth=3, alpha=0.6, style=['#003399','#cc0000']) ax.grid(True) ax.set_title('Logistic Model Results by Growth Rate', fontproperties=title_font) ax.set_xlabel('Generation', fontproperties=label_font) ax.set_ylabel('Population', fontproperties=label_font) ax.legend(title='Growth Rate', loc=3) save_fig('logistic-map-parameter-sensitivity') plt.show() # plot the numeric output of the logistic model at growth rate 3.9 for 2 similar starting population values # this demonstrates sensitive dependence on initial conditions, as they diverge through chaos r = 3.9 pops1 = simulate(num_gens=55, rate_min=r, rate_max=4.0, num_rates=1, initial_pop=0.5) pops2 = simulate(num_gens=55, rate_min=r, rate_max=4.0, num_rates=1, initial_pop=0.50001) pops = pd.concat([pops1, pops2], axis=1) pops.columns = ['0.5', '0.50001'] ax = pops.plot(kind='line', figsize=[10, 6], linewidth=3, alpha=0.6, style=['#003399','#cc0000']) ax.grid(True) ax.set_title('Logistic Model Results by Initial Conditions, r={}'.format(r), fontproperties=title_font) ax.set_xlabel('Generation', fontproperties=label_font) ax.set_ylabel('Population', fontproperties=label_font) ax.legend(title='Initial Population', loc=3) save_fig('logistic-map-initial-conditions') plt.show() # plot the numeric output of the logistic model at growth rate 3.65 for 2 similar starting population values # this demonstrates how very similar conditions do not diverge when the rate is not chaotic r = 3.65 pops1 = simulate(num_gens=55, rate_min=r, num_rates=1, initial_pop=0.5) pops2 = simulate(num_gens=55, rate_min=r, num_rates=1, initial_pop=0.50001) pops = pd.concat([pops1, pops2], axis=1) pops.columns = ['0.5', '0.50001'] ax = pops.plot(kind='line', figsize=[10, 6], linewidth=3, alpha=0.6, style=['#003399','#cc0000']) ax.grid(True) ax.set_title('Logistic Model Results by Initial Conditions, r={}'.format(r), fontproperties=title_font) ax.set_xlabel('Generation', fontproperties=label_font) ax.set_ylabel('Population', fontproperties=label_font) ax.legend(title='Initial Population', loc=3) save_fig('logistic-map-initial-conditions-stable') plt.show() # here's an example of the phase diagrams that I create in pynamical-demo-phase-diagrams.ipynb IPdisplay.Image(url='images/3d-logistic-map-attractor-1.png', width=500) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First, let's see the population values the logistic map produces for a range of growth rate parameters Step2: Now let's visualize the system attractors for a large range of growth rate parameters, using bifurcation diagrams Step3: In the chaotic regime (r=3.6 to 4=4.0), the system has a strange attractor with fractal structure Step4: Now let's visualize the system's sensitive dependence on initial conditions Step5: In part 2, I look at phase diagrams that let us visualize our strange attractors and disambiguate chaos from random noise
9,025
<ASSISTANT_TASK:> Python Code: %matplotlib notebook import os import numpy as np import tempfile import matplotlib.pyplot as pyplot import logging logging.basicConfig(level=logging.INFO) import minimask.mask as mask import minimask.healpix_projection as hp import minimask.io.mosaic as mosaic filename = "masks/mosaic.txt" try: os.mkdir(os.path.dirname(filename)) except: pass tile = np.array([[[-0.5, -0.5],[0.5, -0.5],[0.5,0.5],[-0.5,0.5]]])*8 grid = hp.HealpixProjector(nside=4) lon, lat = grid.pix2ang(np.arange(grid.npix)) centers = np.transpose([lon, lat]) mosaic.Mosaic(tile, centers).write(filename) M = mask.Mask(filename) print "The number of polygons in the mask is {}.".format(len(M)) import healpy healpy.mollview(title="") for x,y in M.render(1): healpy.projplot(x,y,lonlat=True) map = M.pixelize(nside=64, n=10, weight=False) healpy.mollview(map, title="") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Specify the location of the mask file to write Step2: Construct a mask using a tile pattern with centers specified by the healpix grid. Step3: Load the file as a mask object Step4: Plot the mask on a mollweide projection using healpy. Step5: Pixelize the mask onto the healpix grid
9,026
<ASSISTANT_TASK:> Python Code: %pylab notebook imax = 1 # Normalize imax to 1 freq = 50 # [Hz] w = 2*pi*freq # [rad/s] angluar velocity t = linspace(0, 1./50, 100) # 100 values for one period wt = w*t # we are going to use this quite often # amplitudes (change them to see effect of non-symmetry): I_amp = [[1.0], [1.0], [1.0]] # time variants I_time = array([sin(wt), sin(wt-2*pi/3), sin(wt+2*pi/3)]) # vectorial shifts I_shift = [[cos(0) + 1j*sin(0)], [cos(2*pi/3) + 1j*sin(2*pi/3)], [cos(-2*pi/3) + 1j*sin(-2*pi/3)]] # all combined I_ph = I_amp * I_time I = I_ph * I_shift Itot = I[0] + I[1] + I[2] # Its amplitude In_amp = (I_ph[0] + I_ph[1] + I_ph[2]) # Its angle: In_ang = angle(Itot) In = In_amp * exp(1j*In_ang) # combine to a complex In circle = 1.5 * (cos(wt) + 1j*sin(wt)) # First set up the figure, the axis, and the plot element we want to animate from matplotlib import animation fig = figure() ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.set_title('Space vectors in motion') ax1.set_xlabel('Real') ax1.set_ylabel('Imag') ax1.set_xlim(-1.6, 1.6) ax1.set_ylim(-1.6, 1.6) ax1.set_aspect('equal') ax2.set_title('Sinusoidal three-phase') ax2.set_xlabel('wt [rad]') ax2.set_xlim(0, 2*pi) ax2.set_ylim(-1.6, 1.6) # set up the different line colours la, lb, lc, ltot, ctot, ln, cn = ax1.plot([], [], 'red', [], [], 'green', [], [], 'blue', [], [], 'magenta', [], [], 'magenta', [], [], 'y', [], [], 'y', lw=2) # set up the moving dots da, db, dc, dn = ax2.plot([], [], 'ro', [], [], 'go', [], [], 'bo', [], [], 'yo', lw=2) tight_layout() # sometimes useful when sub-plots get a bit crowded # initialization function: plot the background of each frame def init(): ax1.plot(real(circle), imag(circle), 'black'); ax2.plot(wt, I_ph[0,], 'red', wt, I_ph[1,], 'green', wt, I_ph[2,], 'blue', wt, In_amp, 'y', lw=1); return # animation function. This is called sequentially def animate(simData): i = simData - 1 # python index starts at 0 re = [real(I[0,i]), real(I[1,i]), real(I[2,i])] im = [imag(I[0,i]), imag(I[1,i]), imag(I[2,i])] ren = real(In[i]) imn = imag(In[i]) la.set_data([0, re[0]], [0, im[0]]) lb.set_data([0, re[1]], [0, im[1]]) lc.set_data([0, re[2]], [0, im[2]]) ltot.set_data([0, real(Itot[i])], [0, imag(Itot[i])]) ctot.set_data(real(Itot[:i+1]),imag(Itot[:i+1])) ln.set_data([0, real(In[i])], [0, imag(In[i])]) cn.set_data(real(In[:i]), imag(In[:i])) da.set_data(wt[i], I_ph[0,i]) db.set_data(wt[i], I_ph[1,i]) dc.set_data(wt[i], I_ph[2,i]) dn.set_data(wt[i], In_amp[i]) return la, lb, lc, ltot, da, db, dc # call the animator: anim = animation.FuncAnimation(fig, animate, init_func=init, frames=100, interval=50) from IPython.display import HTML HTML(anim.to_html5_video()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set up the basic conditions Step2: First, generate the three component magnetic fields Step3: Calculate the combined current vector Step4: Calculate neutral current $I_n$ Step5: Calculate a circle representing the expected maximum value of Itot Step6: Generating the animation Step7: The animation above might be a bit "skippy" due to the browser performance trying to cope with the inline animation.
9,027
<ASSISTANT_TASK:> Python Code: import pandas as pd df = pd.DataFrame([[1,2,3,1],[0,0,0,0],[1,0,0,1],[0,1,2,0],[1,1,0,1]],columns=['A','B','C','D']) def g(df): return df.loc[(df.max(axis=1) != 2), (df.max(axis=0) != 2)] result = g(df.copy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
9,028
<ASSISTANT_TASK:> Python Code: import jax.numpy as jnp import jax import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 18}) import ott def create_points(rng, n, m, d): rngs = jax.random.split(rng, 4) x = jax.random.normal(rngs[0], (n,d)) + 1 y = jax.random.uniform(rngs[1], (m,d)) a = jax.random.uniform(rngs[2], (n,)) b = jax.random.uniform(rngs[3], (m,)) a = a / jnp.sum(a) b = b / jnp.sum(b) return x, y, a, b rng = jax.random.PRNGKey(0) n, m, d = 19, 35, 2 x, y, a, b = create_points(rng, n=n, m=m, d=d) geom = ott.geometry.pointcloud.PointCloud(x, y, epsilon=0.1) ot_prob = ott.core.problems.LinearProblem(geom, a, b) solver = ott.core.sinkhorn.Sinkhorn() ot_sink = solver(ot_prob) transp_cost = jnp.sum(ot_sink.matrix * geom.cost_matrix) plt.imshow(ot_sink.matrix, cmap='Purples') plt.title('Sinkhorn, Cost: ' + str(transp_cost)) plt.colorbar() plt.show() plott = ott.tools.plot.Plot() _ = plott(ot_sink) solver = ott.core.sinkhorn_lr.LRSinkhorn(rank=int(min(n,m)/2)) ot_lr = solver(ot_prob) transp_cost = ot_lr.compute_reg_ot_cost(ot_prob) plt.imshow(ot_lr.matrix, cmap='Purples') plt.colorbar() plt.title('LR, Cost: ' + str(transp_cost)) plt.show() plott = ott.tools.plot.Plot() _ = plott(ot_lr) n, m, d =10^6, 10^6+1, 7 x, y, a, b = create_points(rng, n=n, m=m, d=d) geom = ott.geometry.pointcloud.PointCloud(x, y, epsilon=0.1) ot_prob = ott.core.problems.LinearProblem(geom, a, b) costs = [] ranks = [1, 5, 10, 15, 20, 35, 50, 100, 500, 1000] for rank in ranks: solver = ott.core.sinkhorn_lr.LRSinkhorn(rank=rank) ot_lr = solver(ot_prob) costs.append(ot_lr.compute_reg_ot_cost(ot_prob)) plt.plot(ranks, costs) plt.xscale('log') plt.xlabel('rank') plt.ylabel('cost') plt.title('Transport cost as a function of rank') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create an OT problem comparing two point clouds Step2: Solve it with Sinkhorn and plot plan/map Step3: Experimentations with the Low-Rank approach Step4: Play with larger scales Step5: We compute plans satisfy a rank constraint $r$, for various values of $r$, Step6: As expected, the optimal cost decreases with rank, as shown in the plot below. Recall that, because of the non-convexity of the original problem, there may be small bumps along the way.
9,029
<ASSISTANT_TASK:> Python Code: # Here's a string representing a three-line SAM file. I'm temporarily # ignoring the fact that SAM files usually have several header lines at # the beginning. samStr = '''\ r1 0 gi|9626243|ref|NC_001416.1| 18401 42 122M * 0 0 TGAATGCGAACTCCGGGACGCTCAGTAATGTGACGATAGCTGAAAACTGTACGATAAACNGTACGCTGAGGGCAGAAAAAATCGTCGGGGACATTNTAAAGGCGGCGAGCGCGGCTTTTCCG +"@6<:27(F&5)9)"B:%B+A-%5A?2$HCB0B+0=D<7E/<.03#!.F77@6B==?C"7>;))%;,3-$.A06+<-1/@@?,26">=?*@'0;$:;??G+:#+(A?9+10!8!?()?7C> AS:i:-5 XN:i:0 XM:i:3 XO:i:0 XG:i:0 NM:i:3 MD:Z:59G13G21G26 YT:Z:UU r2 0 gi|9626243|ref|NC_001416.1| 8886 42 275M * 0 0 NTTNTGATGCGGGCTTGTGGAGTTCAGCCGATCTGACTTATGTCATTACCTATGAAATGTGAGGACGCTATGCCTGTACCAAATCCTACAATGCCGGTGAAAGGTGCCGGGATCACCCTGTGGGTTTATAAGGGGATCGGTGACCCCTACGCGAATCCGCTTTCAGACGTTGACTGGTCGCGTCTGGCAAAAGTTAAAGACCTGACGCCCGGCGAACTGACCGCTGAGNCCTATGACGACAGCTATCTCGATGATGAAGATGCAGACTGGACTGC (#!!'+!$""%+(+)'%)%!+!(&++)''"#"#&#"!'!("%'""("+&%$%*%%#$%#%#!)*'(#")(($&$'&%+&#%*)*#*%*')(%+!%%*"$%"#+)$&&+)&)*+!"*)!*!("&&"*#+"&"'(%)*("'!$*!!%$&&&$!!&&"(*"$&"#&!$%'%"#)$#+%*+)!&*)+(""#!)!%*#"*)*')&")($+*%%)!*)!('(%""+%"$##"#+(('!*(($*'!"*('"+)&%#&$+('**$$&+*&!#%)')'(+(!%+ AS:i:-14 XN:i:0 XM:i:8 XO:i:0 XG:i:0 NM:i:8 MD:Z:0A0C0G0A108C23G9T81T46 YT:Z:UU r3 16 gi|9626243|ref|NC_001416.1| 11599 42 338M * 0 0 GGGCGCGTTACTGGGATGATCGTGAAAAGGCCCGTCTTGCGCTTGAAGCCGCCCGAAAGAAGGCTGAGCAGCAGACTCAAGAGGAGAAAAATGCGCAGCAGCGGAGCGATACCGAAGCGTCACGGCTGAAATATACCGAAGAGGCGCAGAAGGCTNACGAACGGCTGCAGACGCCGCTGCAGAAATATACCGCCCGTCAGGAAGAACTGANCAAGGCACNGAAAGACGGGAAAATCCTGCAGGCGGATTACAACACGCTGATGGCGGCGGCGAAAAAGGATTATGAAGCGACGCTGTAAAAGCCGAAACAGTCCAGCGTGAAGGTGTCTGCGGGCGAT 7F$%6=$:9B@/F'>=?!D?@0(:A*)7/>9C>6#1<6:C(.CC;#.;>;2'$4D:?&B!>689?(0(G7+0=@37F)GG=>?958.D2E04C<E,*AD%G0.%$+A:'H;?8<72:88?E6((CF)6DF#.)=>B>D-="C'B080E'5BH"77':"@70#4%A5=6.2/1>;9"&-H6)=$/0;5E:<8G!@::1?2DC7C*;@*#.1C0.D>H/20,!"C-#,6@%<+<D(AG-).?&#0.00'@)/F8?B!&"170,)>:?<A7#1(A@0E#&A.*DC.E")AH"+.,5,2>5"2?:G,F"D0B8D-6$65D<D!A/38860.*4;4B<*31?6 AS:i:-22 XN:i:0 XM:i:8 XO:i:0 XG:i:0 NM:i:8 MD:Z:80C4C16A52T23G30A8T76A41 YT:Z:UU''' # I'll read this string in line-by-line as though it were a file. # I'll (lightly) parse the alignment records as I go. import string from io import StringIO # reading from string rather than file for ln in StringIO(samStr): qname, flag, rname, pos, mapq, cigar, rnext, \ pnext, tlen, seq, qual, extras = str.split(ln, '\t', 11) print(qname, len(seq)) # print read name, length of read sequence def cigarToList(cigar): ''' Parse CIGAR string into a list of CIGAR operations. For more info on CIGAR operations, see SAM spec: http://samtools.sourceforge.net/SAMv1.pdf ''' ret, i = [], 0 op_map = {'M':0, # match or mismatch '=':0, # match 'X':0, # mismatch 'I':1, # insertion in read w/r/t reference 'D':2, # deletion in read w/r/t reference 'N':3, # long gap due e.g. to splice junction 'S':4, # soft clipping due e.g. to local alignment 'H':5, # hard clipping 'P':6} # padding # Seems like = and X together are strictly more expressive than M. # Why not just have = and X and get rid of M? Space efficiency, # mainly. The titans discuss: http://www.biostars.org/p/17043/ while i < len(cigar): run = 0 while i < len(cigar) and cigar[i].isdigit(): # parse one more digit of run length run *= 10 run += int(cigar[i]) i += 1 assert i < len(cigar) # parse cigar operation op = cigar[i] i += 1 assert op in op_map # append to result ret.append([op_map[op], run]) return ret cigarToList('10=1X10=') def mdzToList(md): ''' Parse MD:Z string into a list of operations, where 0=match, 1=read gap, 2=mismatch. ''' i = 0; ret = [] # list of (op, run, str) tuples while i < len(md): if md[i].isdigit(): # stretch of matches run = 0 while i < len(md) and md[i].isdigit(): run *= 10 run += int(md[i]) i += 1 # skip over digit if run > 0: ret.append([0, run, ""]) elif md[i].isalpha(): # stretch of mismatches mmstr = "" while i < len(md) and md[i].isalpha(): mmstr += md[i] i += 1 assert len(mmstr) > 0 ret.append([1, len(mmstr), mmstr]) elif md[i] == "^": # read gap i += 1 # skip over ^ refstr = "" while i < len(md) and md[i].isalpha(): refstr += md[i] i += 1 # skip over inserted character assert len(refstr) > 0 ret.append([2, len(refstr), refstr]) else: raise RuntimeError('Unexpected character in MD:Z: "%d"' % md[i]) return ret # Each element in the list returned by this call is itself a list w/ 3 # elements. Element 1 is the MD:Z operation (0=match, 1=mismatch, # 2=deletion). Element 2 is the length and element 3 is the relevant # sequence of nucleotides from the reference. mdzToList('10A5^AC6') def cigarMdzToStacked(seq, cgp, mdp_orig): ''' Takes parsed CIGAR and parsed MD:Z, generates a stacked alignment: a pair of strings with gap characters inserted (possibly) and where characters at at the same offsets are opposite each other in the alignment. Only knows how to handle CIGAR ops M=XDINSH right now. ''' mdp = mdp_orig[:] rds, rfs = [], [] mdo, rdoff = 0, 0 for c in cgp: op, run = c skipping = (op == 4 or op == 5) assert skipping or mdo < len(mdp) if op == 0: # CIGAR op M, = or X # Look for block matches and mismatches in MD:Z string mdrun = 0 runleft = run while runleft > 0 and mdo < len(mdp): op_m, run_m, st_m = mdp[mdo] run_comb = min(runleft, run_m) runleft -= run_comb assert op_m == 0 or op_m == 1 rds.append(seq[rdoff:rdoff + run_comb]) if op_m == 0: # match from MD:Z string rfs.append(seq[rdoff:rdoff + run_comb]) else: # mismatch from MD:Z string assert len(st_m) == run_comb rfs.append(st_m) mdrun += run_comb rdoff += run_comb # Stretch of matches in MD:Z could span M and I CIGAR ops if run_comb < run_m: assert op_m == 0 mdp[mdo][1] -= run_comb else: mdo += 1 elif op == 1: # CIGAR op I rds.append(seq[rdoff:rdoff + run]) rfs.append("-" * run) rdoff += run elif op == 2: # D op_m, run_m, st_m = mdp[mdo] assert op_m == 2 assert run == run_m assert len(st_m) == run mdo += 1 rds.append("-" * run) rfs.append(st_m) elif op == 3: # N rds.append("-" * run) rfs.append("-" * run) elif op == 4: # S rds.append(seq[rdoff:rdoff + run].lower()) rfs.append(' ' * run) rdoff += run elif op == 5: # H rds.append('!' * run) rfs.append(' ' * run) elif op == 6: # P raise RuntimeError("Don't know how to handle P in CIGAR") else: raise RuntimeError('Unexpected CIGAR op: %d' % op) assert mdo == len(mdp) return ''.join(rds), ''.join(rfs) # Following example includes gaps and mismatches cigarMdzToStacked('GGACGCTCAGTAGTGACGATAGCTGAAAACCCTGTACGATAAACC', cigarToList('12M2D17M2I14M'), mdzToList('12^AT30G0')) # Following example also includes soft clipping (CIGAR: S) # SAM spec: Soft clipping: "clipped sequences present in SEQ" # We print them in lowercase to emphasize their clippedness cigarMdzToStacked('GGACGCTCAGTAGTGACGATAGCTGAAAACCCTGTACGAGAAGCC', cigarToList('12M2D17M2I8M6S'), mdzToList('12^AT25')) # Following example also includes hard clipping (CIGAR: H) # SAM spec: Hard clipping: "clipped sequences NOT present in SEQ" cigarMdzToStacked('GGACGCTCAGTAGTGACGATAGCTGAAAACCCTGTACGAGAAGCC', cigarToList('12M2D17M2I8M6S3H'), mdzToList('12^AT25')) # Note: don't see hard clipping in practice much # Following example also includes skipping (CIGAR: N), as seen in # TopHat alignments cigarMdzToStacked('GGACGCTCAGTAGTGACGATAGCTGAAAACCCTGTACGAGAAGCC', cigarToList('12M2D10M10N7M2I8M6S3H'), mdzToList('12^AT25')) def cigarize(rds, rfs): off = 0 oplist = [] lastc, cnt = '', 0 for i in range(len(rds)): c = None if rfs[i] == ' ': c = 'S' elif rds[i] == '-' and rfs[i] == '-': c = 'N' elif rds[i] == '-': c = 'D' elif rfs[i] == '-': c = 'I' elif rds[i] != rfs[i]: c = 'X' else: c = '=' if c == lastc: cnt += 1 else: if len(lastc) > 0: oplist.append((lastc, cnt)) lastc, cnt = c, 1 if len(lastc) > 0: oplist.append((lastc, cnt)) return ''.join(map(lambda x: str(x[1]) + x[0], oplist)) x, y = cigarMdzToStacked('ACGTACGT', cigarToList('8M'), mdzToList('4G3')) cigarize(x, y) x, y = cigarMdzToStacked('GGACGCTCAGTAGTGACGATAGCTGAAAACCCTGTACGAGAAGCC', cigarToList('12M2D10M10N7M2I8M6S3H'), mdzToList('12^AT25')) cigarize(x, y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: SAM fields Step2: Next we construct a function to parse the MD Step3: Now we can write a fucntion that takes a read sequennce, a parsed CIGAR string, and a parse MD Step4: From the stacked alignment, it's easy to do other things. E.g. we can turn a stacked alignment into a new CIGAR string that uses the = and X operations instead of the less specific M operation
9,030
<ASSISTANT_TASK:> Python Code: import argparse import logging import joblib import sys import pandas as pd from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from xgboost import XGBClassifier logging.basicConfig(format='%(message)s') logging.getLogger().setLevel(logging.INFO) import os import fairing # Setting up google container repositories (GCR) for storing output containers # You can use any docker container registry istead of GCR # For local notebook, GCP_PROJECT should be set explicitly GCP_PROJECT = fairing.cloud.gcp.guess_project_name() GCP_Bucket = os.environ['GCP_BUCKET'] # e.g., 'gs://kubeflow-demo-g/' # This is for local notebook instead of that in kubeflow cluster # os.environ['GOOGLE_APPLICATION_CREDENTIALS']= def gcs_copy(src_path, dst_path): import subprocess print(subprocess.run(['gsutil', 'cp', src_path, dst_path], stdout=subprocess.PIPE).stdout[:-1].decode('utf-8')) def gcs_download(src_path, file_name): import subprocess print(subprocess.run(['gsutil', 'cp', src_path, file_name], stdout=subprocess.PIPE).stdout[:-1].decode('utf-8')) def read_input(source_path, test_size=0.25): Read input data and split it into train and test. file_name = source_path.split('/')[-1] gcs_download(source_path, file_name) data = pd.read_csv(file_name) data.dropna(axis=0, inplace=True) y = data.Class X = data.drop(['Class', 'Amount', 'Time'], axis=1).select_dtypes(exclude=['object']) train_X, test_X, train_y, test_y = train_test_split(X.values, y.values, test_size=test_size, shuffle=True) imputer = SimpleImputer() train_X = imputer.fit_transform(train_X) test_X = imputer.transform(test_X) return (train_X, train_y), (test_X, test_y) def train_model(train_X, train_y, test_X, test_y, n_estimators, learning_rate): Train the model using XGBRegressor. model = XGBClassifier(n_estimators=n_estimators, learning_rate=learning_rate) model.fit(train_X, train_y, early_stopping_rounds=40, eval_set=[(test_X, test_y)]) print("Best loss on eval: %.2f with %d rounds", model.best_score, model.best_iteration+1) return model def eval_model(model, test_X, test_y): Evaluate the model performance. predictions = model.predict_proba(test_X) logging.info("auc=%.2f", roc_auc_score(test_y, predictions[:,1])) def save_model(model, model_file): Save XGBoost model for serving. joblib.dump(model, model_file) gcs_copy(model_file, GCP_Bucket + model_file) logging.info("Model export success: %s", model_file) class FraudServe(object): def __init__(self): self.train_input = GCP_Bucket + "train_fraud.csv" self.n_estimators = 50 self.learning_rate = 0.1 self.model_file = "trained_fraud_model.joblib" self.model = None def train(self): (train_X, train_y), (test_X, test_y) = read_input(self.train_input) model = train_model(train_X, train_y, test_X, test_y, self.n_estimators, self.learning_rate) eval_model(model, test_X, test_y) save_model(model, self.model_file) def predict(self, X, feature_names): Predict using the model for given ndarray. if not self.model: self.model = joblib.load(self.model_file) # Do any preprocessing prediction = self.model.predict(data=X) # Do any postprocessing return [[prediction.item(0), prediction.item(0)]] FraudServe().train() # In this demo, I use gsutil, therefore i compile a special image to install GoogleCloudSDK as based image base_image = 'gcr.io/{}/fairing-predict-example:latest'.format(GCP_PROJECT) !docker build --build-arg PY_VERSION=3.6.4 . -t {base_image} !docker push {base_image} DOCKER_REGISTRY = 'gcr.io/{}/fairing-job-xgboost'.format(GCP_PROJECT) BASE_IMAGE = base_image from fairing import TrainJob from fairing.backends import GKEBackend train_job = TrainJob(FraudServe, BASE_IMAGE, input_files=["requirements.txt"], docker_registry=DOCKER_REGISTRY, backend=GKEBackend()) train_job.submit() from fairing import TrainJob from fairing.backends import GCPManagedBackend train_job = TrainJob(FraudServe, BASE_IMAGE, input_files=["requirements.txt"], docker_registry=DOCKER_REGISTRY, backend=GCPManagedBackend()) train_job.submit() from fairing import PredictionEndpoint from fairing.backends import KubeflowGKEBackend # The trained_ames_model.joblib is exported during the above local training endpoint = PredictionEndpoint(FraudServe, BASE_IMAGE, input_files=['trained_fraud_model.joblib', "requirements.txt"], docker_registry=DOCKER_REGISTRY, backend=KubeflowGKEBackend()) endpoint.create() # Deploy model to gcp # from fairing.deployers.gcp.gcpserving import GCPServingDeployer # deployer = GCPServingDeployer() # deployer.deploy(VERSION_DIR, MODEL_NAME, VERSION_NAME) (train_X, train_y), (test_X, test_y) = read_input(GCP_Bucket + "train_fraud.csv") endpoint.predict_nparray(test_X) endpoint.delete() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Define the model logic Step6: Define functions to train, evaluate, and save the trained model. Step8: Define a class for your model, with methods for training and prediction. Step9: Train an XGBoost model in a notebook Step10: Make Use of Fairing Step11: Train an XGBoost model remotely on Kubeflow Step12: Train an XGBoost model remotely on Cloud ML Engine Step13: Deploy the trained model to Kubeflow for predictions Step14: Deploy to GCP Step15: Call the prediction endpoint Step16: Clean up the prediction endpoint
9,031
<ASSISTANT_TASK:> Python Code: import torch import numpy as np from torchvision import datasets import torchvision.transforms as transforms # convert data to torch.FloatTensor transform = transforms.ToTensor() # load the training and test datasets train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform) test_data = datasets.MNIST(root='data', train=False, download=True, transform=transform) # Create training and test dataloaders # number of subprocesses to use for data loading num_workers = 0 # how many samples per batch to load batch_size = 20 # prepare data loaders train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers) import matplotlib.pyplot as plt %matplotlib inline # obtain one batch of training images dataiter = iter(train_loader) images, labels = dataiter.next() images = images.numpy() # get one image from the batch img = np.squeeze(images[0]) fig = plt.figure(figsize = (5,5)) ax = fig.add_subplot(111) ax.imshow(img, cmap='gray') import torch.nn as nn import torch.nn.functional as F # define the NN architecture class Autoencoder(nn.Module): def __init__(self, encoding_dim): super(Autoencoder, self).__init__() ## encoder ## # linear layer (784 -> encoding_dim) self.fc1 = nn.Linear(28 * 28, encoding_dim) ## decoder ## # linear layer (encoding_dim -> input size) self.fc2 = nn.Linear(encoding_dim, 28*28) def forward(self, x): # add layer, with relu activation function x = F.relu(self.fc1(x)) # output layer (sigmoid for scaling from 0 to 1) x = F.sigmoid(self.fc2(x)) return x # initialize the NN encoding_dim = 32 model = Autoencoder(encoding_dim) print(model) # specify loss function criterion = nn.MSELoss() # specify loss function optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # number of epochs to train the model n_epochs = 20 for epoch in range(1, n_epochs+1): # monitor training loss train_loss = 0.0 ################### # train the model # ################### for data in train_loader: # _ stands in for labels, here images, _ = data # flatten images images = images.view(images.size(0), -1) # clear the gradients of all optimized variables optimizer.zero_grad() # forward pass: compute predicted outputs by passing inputs to the model outputs = model(images) # calculate the loss loss = criterion(outputs, images) # backward pass: compute gradient of the loss with respect to model parameters loss.backward() # perform a single optimization step (parameter update) optimizer.step() # update running training loss train_loss += loss.item()*images.size(0) # print avg training statistics train_loss = train_loss/len(train_loader) print('Epoch: {} \tTraining Loss: {:.6f}'.format( epoch, train_loss )) # obtain one batch of test images dataiter = iter(test_loader) images, labels = dataiter.next() images_flatten = images.view(images.size(0), -1) # get sample outputs output = model(images_flatten) # prep images for display images = images.numpy() # output is resized into a batch of images output = output.view(batch_size, 1, 28, 28) # use detach when it's an output that requires_grad output = output.detach().numpy() # plot the first ten input images and then reconstructed images fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(25,4)) # input images on top row, reconstructions on bottom for images, row in zip([images, output], axes): for img, ax in zip(images, row): ax.imshow(np.squeeze(img), cmap='gray') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Visualize the Data Step2: Linear Autoencoder Step3: Training Step4: Checking out the results
9,032
<ASSISTANT_TASK:> Python Code: #Check that you are using the correct version of Python (should be 3.4+, otherwise gdal won't work) import sys sys.version import numpy as np import h5py import gdal, osr import matplotlib.pyplot as plt %matplotlib inline import warnings warnings.filterwarnings('ignore') f = h5py.File('/Users/olearyd/Git/data/NEON_D02_SERC_DP1_20160807_160559_reflectance.h5','r') #list_dataset lists the names of datasets in an hdf5 file def list_dataset(name,node): if isinstance(node, h5py.Dataset): print(name) f.visititems(list_dataset) #ls_dataset displays the name, shape, and type of datasets in hdf5 file def ls_dataset(name,node): if isinstance(node, h5py.Dataset): print(node) f.visititems(ls_dataset) serc_refl = f['SERC']['Reflectance'] print(serc_refl) serc_reflArray = serc_refl['Reflectance_Data'] print(serc_reflArray) refl_shape = serc_reflArray.shape print('SERC Reflectance Data Dimensions:',refl_shape) #View wavelength information and values wavelengths = serc_refl['Metadata']['Spectral_Data']['Wavelength'] print(wavelengths) # print(wavelengths.value) # Display min & max wavelengths print('min wavelength:', np.amin(wavelengths),'nm') print('max wavelength:', np.amax(wavelengths),'nm') #show the band width print('band width =',(wavelengths.value[1]-wavelengths.value[0]),'nm') print('band width =',(wavelengths.value[-1]-wavelengths.value[-2]),'nm') serc_mapInfo = serc_refl['Metadata']['Coordinate_System']['Map_Info'] print('SERC Map Info:\n',serc_mapInfo.value) #First convert mapInfo to a string, and divide into separate strings using a comma separator mapInfo_string = str(serc_mapInfo.value) #convert to string mapInfo_split = mapInfo_string.split(",") #split the strings using the separator "," print(mapInfo_split) #Extract the resolution & convert to floating decimal number res = float(mapInfo_split[5]),float(mapInfo_split[6]) print('Resolution:',res) #Extract the upper left-hand corner coordinates from mapInfo xMin = float(mapInfo_split[3]) yMax = float(mapInfo_split[4]) #Calculate the xMax and yMin values from the dimensions #xMax = left corner + (# of columns * resolution) xMax = xMin + (refl_shape[1]*res[0]) yMin = yMax - (refl_shape[0]*res[1]) # print('xMin:',xMin) ; print('xMax:',xMax) # print('yMin:',yMin) ; print('yMax:',yMax) serc_ext = (xMin, xMax, yMin, yMax) print('serc_ext:',serc_ext) #Can also create a dictionary of extent: serc_extDict = {} serc_extDict['xMin'] = xMin serc_extDict['xMax'] = xMax serc_extDict['yMin'] = yMin serc_extDict['yMax'] = yMax print('serc_extDict:',serc_extDict) print('b56 wavelngth:',wavelengths[56],"nanometers") b56 = serc_reflArray[:,:,55].astype(np.float) print('b56 type:',type(b56)) print('b56 shape:',b56.shape) print('Band 56 Reflectance:\n',b56) # plt.hist(b56.flatten()) #View and apply scale factor and data ignore value scaleFactor = serc_reflArray.attrs['Scale_Factor'] noDataValue = serc_reflArray.attrs['Data_Ignore_Value'] print('Scale Factor:',scaleFactor) print('Data Ignore Value:',noDataValue) b56[b56==int(noDataValue)]=np.nan b56 = b56/scaleFactor print('Cleaned Band 56 Reflectance:\n',b56) plt.hist(b56[~np.isnan(b56)],50); plt.title('Histogram of SERC Band 56 Reflectance') plt.xlabel('Reflectance'); plt.ylabel('Frequency') serc_fig = plt.figure(figsize=(20,10)) ax1 = serc_fig.add_subplot(1,2,1) # serc_plot = ax1.imshow(b56,extent=serc_ext,cmap='jet',clim=(0,0.1)) serc_plot = ax1.imshow(b56,extent=serc_ext,cmap='jet') cbar = plt.colorbar(serc_plot,aspect=50); cbar.set_label('Reflectance') plt.title('SERC Band 56 Reflectance'); #ax = plt.gca(); ax1.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax1.get_xticklabels(),rotation=270) #rotate x tick labels 90 degree # plot histogram of reflectance values (with 50 bins) ax2 = serc_fig.add_subplot(2,2,2) ax2.hist(b56[~np.isnan(b56)],50); plt.title('Histogram of SERC Reflectance') plt.xlabel('Reflectance'); plt.ylabel('Frequency') # plot histogram, zooming in on values < 0.5 ax3 = serc_fig.add_subplot(2,2,4) ax3.hist(b56[~np.isnan(b56)],50); plt.title('Histogram of SERC Reflectance, 0-0.5') plt.xlabel('Reflectance'); plt.ylabel('Frequency') ax3.set_xlim([0,0.5]) # Plot in grayscale with different color limits # Higher reflectance is lighter/brighter, lower reflectance is darker serc_fig2 = plt.figure(figsize=(15,15)) ax1 = serc_fig2.add_subplot(1,3,1) serc_plot = ax1.imshow(b56,extent=serc_ext,cmap='gray',clim=(0,0.3)) cbar = plt.colorbar(serc_plot,aspect=50); cbar.set_label('Reflectance') plt.title('clim = 0-0.3'); #ax = plt.gca(); ax1.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax1.get_xticklabels(),rotation=270) #rotate x tick labels 90 degree ax2 = serc_fig2.add_subplot(1,3,2) serc_plot = ax2.imshow(b56,extent=serc_ext,cmap='gray',clim=(0,0.2)) cbar = plt.colorbar(serc_plot,aspect=50); cbar.set_label('Reflectance') plt.title('clim = 0-0.2'); #ax = plt.gca(); ax1.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax2.get_xticklabels(),rotation=270) #rotate x tick labels 90 degree ax3 = serc_fig2.add_subplot(1,3,3) serc_plot = ax3.imshow(b56,extent=serc_ext,cmap='gray',clim=(0,0.1)) cbar = plt.colorbar(serc_plot,aspect=50); cbar.set_label('Reflectance') plt.title('clim = 0-0.1'); #ax = plt.gca(); ax1.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax3.get_xticklabels(),rotation=270) #rotate x tick labels 90 degree def calc_clip_index(clipExtent, fullExtent, xscale=1, yscale=1): h5rows = fullExtent['yMax'] - fullExtent['yMin'] h5cols = fullExtent['xMax'] - fullExtent['xMin'] indExtent = {} indExtent['xMin'] = round((clipExtent['xMin']-fullExtent['xMin'])/xscale) indExtent['xMax'] = round((clipExtent['xMax']-fullExtent['xMin'])/xscale) indExtent['yMax'] = round(h5rows - (clipExtent['yMin']-fullExtent['yMin'])/xscale) indExtent['yMin'] = round(h5rows - (clipExtent['yMax']-fullExtent['yMin'])/yscale) return indExtent #Define clip extent clipExtent = {} clipExtent['xMin'] = 367400 clipExtent['xMax'] = 368100 clipExtent['yMin'] = 4305750 clipExtent['yMax'] = 4306350 serc_subInd = calc_clip_index(clipExtent,serc_extDict) print('SERC Subset Index:',serc_subInd) serc_subArray = serc_reflArray[serc_subInd['yMin']:serc_subInd['yMax'],serc_subInd['xMin']:serc_subInd['xMax'],:] serc_subExt = (clipExtent['xMin'],clipExtent['xMax'],clipExtent['yMin'],clipExtent['yMax']) print('SERC Reflectance Subset Dimensions:',serc_subArray.shape) serc_b56_subset = serc_subArray[:,:,55].astype(np.float) serc_b56_subset[serc_b56_subset==int(noDataValue)]=np.nan serc_b56_subset = serc_b56_subset/scaleFactor #print(serc_b56_subset) print('SERC Subsetted Band 56 Reflectance Stats:') print('min reflectance:',np.nanmin(serc_b56_subset)) print('mean reflectance:',round(np.nanmean(serc_b56_subset),2)) print('max reflectance:',round(np.nanmax(serc_b56_subset),2)) fig = plt.figure(figsize=(15,5)) ax1 = fig.add_subplot(1,2,1) serc_subset_plot = plt.imshow(serc_b56_subset,extent=serc_subExt,cmap='gist_earth') cbar = plt.colorbar(serc_subset_plot); cbar.set_label('Reflectance') plt.title('SERC Subset Band 56 Reflectance'); ax1.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax1.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree ax2 = fig.add_subplot(1,2,2) plt.hist(serc_b56_subset[~np.isnan(serc_b56_subset)],50); plt.title('Histogram of SERC Subset Band 56 Reflectance') plt.xlabel('Reflectance'); plt.ylabel('Frequency') from skimage import exposure # Contrast stretching p2, p98 = np.percentile(serc_b56_subset[~np.isnan(serc_b56_subset)], (2, 98)) img_rescale2pct = exposure.rescale_intensity(serc_b56_subset, in_range=(p2, p98)) fig = plt.figure(figsize=(15,5)) ax1 = fig.add_subplot(1,2,1) plt.imshow(img_rescale2pct,extent=serc_subExt,cmap='gist_earth') cbar = plt.colorbar(); cbar.set_label('Reflectance') plt.title('SERC Band 56 Subset \n Linear 2% Contrast Stretch'); rotatexlabels = plt.setp(ax1.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree p8, p92 = np.percentile(serc_b56_subset[~np.isnan(serc_b56_subset)], (8, 92)) img_rescale8pct = exposure.rescale_intensity(serc_b56_subset, in_range=(p8, p92)) ax2 = fig.add_subplot(1,2,2) plt.imshow(img_rescale8pct,extent=serc_subExt,cmap='gist_earth') cbar = plt.colorbar(); cbar.set_label('Reflectance') plt.title('SERC Band 56 Subset \n Linear 8% Contrast Stretch'); rotatexlabels = plt.setp(ax2.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree from IPython.html.widgets import * def linearStretch(percent): pLow, pHigh = np.percentile(serc_b56_subset[~np.isnan(serc_b56_subset)], (percent,100-percent)) img_rescale = exposure.rescale_intensity(serc_b56_subset, in_range=(pLow,pHigh)) plt.imshow(img_rescale,extent=serc_subExt,cmap='gist_earth') cbar = plt.colorbar(); cbar.set_label('Reflectance') plt.title('SERC Band 56 Subset \n Linear ' + str(percent) + '% Contrast Stretch'); ax = plt.gca() ax.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree interact(linearStretch,percent=(0,100,1)) #Adaptive Equalized Histogram img_nonan = np.ma.masked_invalid(serc_b56_subset) #first mask the image img_adapteq = exposure.equalize_adapthist(img_nonan, clip_limit=.05) print('img_adapteq min:',np.min(img_adapteq)) print('img_adapteq max:',np.max(img_adapteq)) # Display Adaptively Equalized Image fig = plt.figure(figsize=(15,6)) ax1 = fig.add_subplot(1,2,1) ax1.imshow(img_adapteq,extent=serc_subExt,cmap='gist_earth') rotatexlabels = plt.setp(ax1.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree plt.title('SERC Band 56 Subset \n Adaptive Equalized Histogram'); # Display histogram bins=100 ax_hist = fig.add_subplot(1,2,2) ax_hist.hist(img_adapteq.ravel(),bins); #np.ravel flattens an array into one dimension plt.title('SERC Band 56 Subset \n Adaptive Equalized Histogram'); ax_hist.set_xlabel('Pixel Intensity'); ax_hist.set_ylabel('# of Pixels') # Display cumulative distribution ax_cdf = ax_hist.twinx() img_cdf, bins = exposure.cumulative_distribution(img_adapteq,bins) ax_cdf.plot(bins, img_cdf, 'r') ax_cdf.set_ylabel('Fraction of Total Intensity') fig = plt.figure(figsize=(15,12)) #spectral Colormap, 0-0.08 ax1 = fig.add_subplot(2,2,1) serc_subset_plot = plt.imshow(serc_b56_subset,extent=serc_subExt,cmap='Spectral',clim=(0,0.08)) cbar = plt.colorbar(serc_subset_plot); cbar.set_label('Reflectance') plt.title('Subset SERC Band 56 Reflectance\n spectral colormap, 0-0.08'); ax1.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax1.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree #gist_earth colormap, 0-0.10 ax2 = fig.add_subplot(2,2,2) serc_subset_plot = plt.imshow(serc_b56_subset,extent=serc_subExt,cmap='gist_earth',clim=(0,0.1)) cbar = plt.colorbar(serc_subset_plot); cbar.set_label('Reflectance') plt.title('Subset SERC Band 56 Reflectance\n gist_earth colormap, 0-0.10'); ax2.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax2.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree #YlGn_r colormap, 0-0.08 ax3 = fig.add_subplot(2,2,3) serc_subset_plot = plt.imshow(serc_b56_subset,extent=serc_subExt,cmap='YlGn_r',clim=(0,0.08)) cbar = plt.colorbar(serc_subset_plot); cbar.set_label('Reflectance') plt.title('Subset SERC Band 56 Reflectance\n YlGn_r colormap, 0-0.08'); ax3.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax3.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree #For the last example, take the logarithm of the reflectance data to stretch the values: serc_b56_subset_log = np.log(serc_b56_subset); ax4 = fig.add_subplot(2,2,4) serc_subset_plot = plt.imshow(serc_b56_subset_log,extent=serc_subExt,cmap='jet',clim=(-5,-3)) cbar = plt.colorbar(serc_subset_plot); cbar.set_label('Log(Reflectance)') plt.title('Subset SERC log(Band 56 Reflectance)\n jet colormap'); ax4.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation # rotatexlabels = plt.setp(ax4.get_xticklabels(),rotation=90) #rotate x tick labels 90 degree <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First let's import the required packages and set our display preferences so that plots are inline and plot warnings are off Step2: Read hdf5 file into Python Step3: Explore the Files Step4: We can display the name, shape, and type of each of these datasets using the ls_dataset function defined below, which is also called with visititems Step5: Now that we see the general structure of the hdf5 file, let's take a look at some of the information that is stored inside. Let's start by extracting the reflectance data, which is nested under SERC/Reflectance/Reflectance_Data. Step6: The two members of the HDF5 group /SERC/Reflectance are Metadata and Step7: We can extract the shape as follows Step8: This corresponds to (y,x, # of bands), where (x,y) are the dimensions of the Step9: The wavelengths recorded range from 383.66 - 2511.94 nm, and each band covers a range of ~5 nm. Now let's extract spatial information, which is stored under SERC/Reflectance/Metadata/Coordinate_System/Map_Info Step10: Understanding the output Step11: Now we can extract the spatial information we need from the map info values, convert them to the appropriate data types (eg. float) and store it in a way that will enable us to access and apply it later Step12: Extract a Single Band from Array Step13: Scale factor and No Data Value Step14: Plot histogram Step15: Plot Single Band Step16: Note from both the plot and histogram of the reflectance values that almost all of the reflectance values range from 0.0-0.35. In order to see more contrast in the plot, we try out a couple things Step17: Extension Step18: Use this function to find the indices corresponding to the clip extent that we specified above for SERC Step19: We can now use these indices to create a subsetted array, with dimensions 600 x 700 x 426. Step20: Extract band 56 from this subset, and clean by applying the no data value and scale factor Step21: Take a quick look at the minimum, maximum, and mean reflectance values in this subsetted area Step22: Lastly, plot the data and a histogram of the reflectance values to see what the distribution looks like. Step23: Note that most of the reflectance values are < 0.5, but the colorbar scale Step24: Notice that the 8% stretch image (right) washes out some of the objects with higher reflectance (eg. the dock & buildings), but does a better job showing contrast of the vegetation (eg. grass, trees, shadows). Step25: Apply Adaptive Histogram Equalization to Improve Image Contrast Step26: With contrast-limited adaptive histogram equalization, you can see more detail in the image, and the highly reflective objects are not washed out, as they were in the linearly-stretched images.
9,033
<ASSISTANT_TASK:> Python Code: # general imports import pandas as pd import numpy as np from datetime import datetime from collections import defaultdict import pickle # imports for webscraping and text manipulation import requests import re import io import urllib # imports to convert pdf to text from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage # text cleaning imports import nltk nltk.download('punkt') from nltk.tokenize import word_tokenize # imports for cosine similarity with NMF from sklearn.decomposition import NMF from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import normalize from sklearn.feature_extraction import text from collections import namedtuple # imports for data visualization import matplotlib.pyplot as plt import seaborn as sns # special matplotlib argument for in notebook improved plots from matplotlib import rcParams sns.set_style("whitegrid") sns.set_context("poster") # import for data exploration nltk.download('stopwords') from nltk.corpus import stopwords import itertools from collections import Counter import seaborn as sns plt.style.use('ggplot') # load json twitter data twitter_json = r'data/twitter_01_20_17_to_3-2-18.json' # Convert to pandas dataframe tweet_data = pd.read_json(twitter_json) # helper functions # identify hash tags def hash_tag(text): return re.findall(r'(#[^\s]+)', text) # identify @mentions def at_tag(text): return re.findall(r'(@[A-Za-z_]+)[^s]', text) # set column 'created_at' to the index tweet_data.set_index('created_at', drop=True, inplace= True) # convert timestamp index to a datetime index pd.to_datetime(tweet_data.index) # tokenize all the tweet's text tweet_data['text_tokenized'] = tweet_data['text'].apply(lambda x: word_tokenize(x.lower())) # apply hash tag function to text column tweet_data['hash_tags'] = tweet_data['text'].apply(lambda x: hash_tag(x)) # apply at_tag function to text column tweet_data['@_tags'] = tweet_data['text'].apply(lambda x: at_tag(x)) tweet_data.head() # pickle data tweet_pickle_path = r'data/twitter_01_20_17_to_3-2-18.pickle' tweet_data.to_pickle(tweet_pickle_path) # Define the 2017 url that contains all of the Executive Office of the President's published documents executive_office_url_2017 = r'https://www.federalregister.gov/index/2017/executive-office-of-the-president' executive_office_url_2018 = r'https://www.federalregister.gov/index/2018/executive-office-of-the-president' # scrape all urls for pdf documents published in 2017 and 2018 by the U.S.A. Executive Office pdf_urls= [] for url in [executive_office_url_2017,executive_office_url_2018]: response = requests.get(url) pattern = re.compile(r'https:.*\.pdf') pdfs = re.findall(pattern, response.text) pdf_urls.append(pdfs) # writes all of the pdfs to the data folder start = 'data/' end = '.pdf' num = 0 for i in range(0,(len(pdf_urls))): for url in pdf_urls[i]: ver = str(num) pdf_path = start + ver + end r = requests.get(url) file = open(pdf_path, 'wb') file.write(r.content) file.close() num = num + 1 # helper functions # function to convert pdf to text from stack overflow (https://stackoverflow.com/questions/26494211/extracting-text-from-a-pdf-file-using-pdfminer-in-python/44476759#44476759) def convert_pdf_to_txt(path): rsrcmgr = PDFResourceManager() retstr = io.StringIO() codec = 'utf-8' laparams = LAParams() device = TextConverter(rsrcmgr, retstr, codec=codec, laparams=laparams) fp = open(path, 'rb') interpreter = PDFPageInterpreter(rsrcmgr, device) password = "" maxpages = 0 caching = True pagenos = set() for page in PDFPage.get_pages(fp, pagenos, maxpages=maxpages, password=password, caching=caching, check_extractable=True): interpreter.process_page(page) text = retstr.getvalue() fp.close() device.close() retstr.close() return text # finds the first time the name of a day appears in the txt, and returns that name def find_day(word_generator): day_list = ['Monday,', 'Tuesday,', 'Wednesday,', 'Thursday,', 'Friday,', 'Saturday,', 'Sunday,'] day_name_dict = {'Mon':'Monday,', 'Tue':'Tuesday,','Wed':'Wednesday,','Thu':'Thursday,','Fri':'Friday,','Sat':'Saturday,','Sun':'Sunday,'} day_name = [] for val in word_generator: if val in day_list: num_position = txt.index(val) day_name.append(txt[num_position] + txt[num_position + 1] + txt[num_position +2]) break return day_name_dict[day_name[0]] # takes text and returns the first date in the document def extract_date(txt): word_generator = (word for word in txt.split()) day_name = find_day(word_generator) txt_start = int(txt.index(day_name)) txt_end = txt_start + 40 date_txt = txt[txt_start:txt_end].replace('\n','') cleaned_txt = re.findall('.* \d{4}', date_txt) date_list = cleaned_txt[0].split() clean_date_list = map(lambda x:x.strip(","), date_list) clean_date_string = ", ".join(clean_date_list) date_obj = datetime.strptime(clean_date_string, '%A, %B, %d, %Y') return date_obj # create dictionary where: publication date = key, text = value start_path = r'data/' end_path = '.pdf' data_dict = defaultdict(list) for i in range(0,312): file_path = start_path + str(i) + end_path txt = convert_pdf_to_txt(file_path) date_obj = extract_date(txt) data_dict[date_obj].append(txt) # create list of tuples where: (date, text) tuple_lst = [] for k, v in data_dict.items(): if v != None: for text in v: tuple_lst.append((k, text)) else: print(k) # create dataframe from list of tuples fed_reg_dataframe = pd.DataFrame.from_records(tuple_lst, columns=['date','str_text'], index = 'date') # tokenize all the pdf text fed_reg_dataframe['token_text'] = fed_reg_dataframe['str_text'].apply(lambda x: word_tokenize(x.lower())) # final dataframe final_df = fed_reg_dataframe[fed_reg_dataframe.index > '2017-01-20'] # pickle final data fed_reg_data = r'data/fed_reg_data.pickle' final_df.to_pickle(fed_reg_data) # load federal document data from pickle file fed_reg_data = r'data/fed_reg_data.pickle' fed_data = pd.read_pickle(fed_reg_data) # load twitter data from csv twitter_file_path = r'data/twitter_01_20_17_to_3-2-18.pickle' twitter_data = pd.read_pickle(twitter_file_path) # find the most used hashtags hashtag_freq = Counter(list(itertools.chain(*(twitter_data.hash_tags)))) hashtag_top20 = hashtag_freq.most_common(20) # find the most used @ tags at_tag_freq = Counter(list(itertools.chain(*(twitter_data['@_tags'])))) at_tags_top20 = at_tag_freq.most_common(20) # frequency plot for the most used hashtags df = pd.DataFrame(hashtag_top20, columns=['Hashtag', 'frequency']) ax = df.plot(kind='bar', x='Hashtag',legend=None,figsize=(14,10)) # change tick markes plt.tick_params(top='off', bottom = 'on', left = 'on', right = 'off', labelleft = 'on', labelbottom = 'on') #plt.xticks(rotation=45) plt.ylabel('Frequency', fontsize=25) plt.xlabel('Hashtag', fontsize=25) plt.tight_layout() ax.set_ylim([0,27.5]) plt.show() # frequency plot for the most used @ tags df = pd.DataFrame(at_tags_top20, columns=['@ Tag', 'frequency']) ax = df.plot(kind='bar', x='@ Tag',legend=None, figsize=(14,10)) # change tick markes plt.tick_params(top='off', bottom = 'on', left = 'on', right = 'off', labelleft = 'on', labelbottom = 'on') #plt.xticks(rotation=45) plt.ylabel('Frequency', fontsize=25) plt.xlabel('@Tag', fontsize=25) plt.tight_layout() plt.show() # use nltk's list of stopwords stop_words = set(stopwords.words('english')) # add puncuation to stopwords stop_words.update(['.', ',','get','going','one', 'amp','like' '"','...',"''", "'","n't", '?', '!', ':', ';', '#','@', '(', ')', 'https', '``',"'s", 'rt' ]) # combine the hashtags and @ tags, flatten the list of lists, keep the unique items stop_twitter = set(list(itertools.chain(*(twitter_data.hash_tags + twitter_data['@_tags'])))) # stop words for federal documents stop_fed_docs = ['united', 'states', '1','2','3','4','5','6','7','8','9','10', '11','12','13','14','15', '16','17','18','19','20','21','22','23','24','25','26','27','28','29','30','31','2016', '2015','2014', 'federal','shall','1.','2.','3.', '4790', 'national', '2017', 'order','president', 'presidential', 'sep', 'register','po','verdate', 'jkt','00000','frm','fmt','sfmt','vol','section','donald', 'act','america', 'executive','secretary', 'law', 'proclamation','81','day','including', 'code', '4705','authority', 'agencies', '241001', 'americans','238001','year', 'amp', 'government','agency','hereby','people','public','person','state','american','two', 'nation', '82', 'sec', 'laws', 'policy','set','fr','appropriate','doc','new','filed', 'u.s.c','department','ii','also','office','country','within','memorandum', 'director', 'us', 'sunday','monday', 'tuesday','wednesday','thursday', 'friday', 'saturday', 'title','upon', 'constitution','support', 'vested','part', 'month', 'subheading','foreign','general','january', 'february', 'march', 'april','may','june','july','august', 'september', 'october', 'november', 'december', 'council','provide','consistent','pursuant','thereof','00001','documents', '11:15', 'area','management','following','house','white','week','therefore', 'amended', 'continue', 'chapter','must','years', '00002', 'use','make','date','one', 'many','12', 'commission','provisions', 'every','u.s.','functions','made','hand','necessary', 'witness','time','otherwise', 'proclaim', 'follows','thousand', 'efforts','jan', 'trump','j.', 'applicable', '4717','whereof','hereunto', 'subject', 'report','3—', '3295–f7–p'] # helper functions def remove_from_fed_data(token_lst): # remove stopwords and one letter words filtered_lst = [word for word in token_lst if word.lower() not in stop_fed_docs and len(word) > 1 and word.lower() not in stop_words] return filtered_lst def remove_from_twitter_data(token_lst): # remove stopwords and one letter words filtered_lst = [word for word in token_lst if word.lower() not in stop_words and len(word) > 1 and word.lower() not in stop_twitter] return filtered_lst # apply the remove_stopwords function to all of the tokenized twitter text twitter_words = twitter_data.text_tokenized.apply(lambda x: remove_from_twitter_data(x)) # apply the remove_stopwords function to all of the tokenized document text document_words = fed_data.token_text.apply(lambda x: remove_from_fed_data(x)) # flatten each the word lists into one list all_twitter_words = list(itertools.chain(*twitter_words)) all_document_words =list(itertools.chain(*document_words)) # create a dictionary using the Counter method, where the key is a word and the value is the number of time it was used twitter_freq = Counter(all_twitter_words) doc_freq = Counter(all_document_words) # determine the top 30 words used in the twitter data top_30_tweet = twitter_freq.most_common(30) top_30_fed = doc_freq.most_common(30) # frequency plot for the most used Federal Data df = pd.DataFrame(top_30_fed, columns=['Federal Data', 'frequency']) ax = df.plot(kind='bar', x='Federal Data',legend=None, figsize=(14,10)) # change tick markes plt.tick_params(top='off', bottom = 'on', left = 'on', right = 'off', labelleft = 'on', labelbottom = 'on') plt.ylabel('Frequency', fontsize=20) plt.xlabel('Top Federal Data Words', fontsize=20) plt.tight_layout() plt.show() # frequency plot for the most used words in the twitter data df = pd.DataFrame(top_30_tweet, columns=['Twitter Data', 'frequency']) ax = df.plot(kind='bar', x='Twitter Data',legend=None, figsize=(14,10)) plt.ylabel('Frequency') # change tick markes plt.tick_params(top='off', bottom = 'on', left = 'on', right = 'off', labelleft = 'on', labelbottom = 'on') plt.ylabel('Frequency', fontsize=20) plt.xlabel('Top Twitter Words', fontsize=20) plt.tight_layout() plt.show() # find the unique words in each dataset joint_words = list((set(all_document_words)).intersection(all_twitter_words)) # make array of zeros values = np.zeros(len(joint_words)) # create dictionary joint_words_dict = dict(zip(joint_words, values)) # create a dictionary with a word as key, and a value = number of documents that contain the word for Twitter twitter_document_freq = joint_words_dict.copy() for word in joint_words: for lst in twitter_data.text_tokenized: if word in lst: twitter_document_freq[word]= twitter_document_freq[word] + 1 # create a dictionary with a word as key, and a value = number of documents that contain the word for Fed Data fed_document_freq = joint_words_dict.copy() for word in joint_words: for lst in fed_data.token_text: if word in lst: fed_document_freq[word]= fed_document_freq[word] + 1 df = pd.DataFrame([fed_document_freq, twitter_document_freq]).T df.columns = ['Fed', 'Tweet'] df['% Fed'] = (df.Fed/len(df.Fed))*100 df['% Tweet'] = (df.Tweet/len(df.Tweet))*100 top_joint_fed = df[['% Fed','% Tweet']].sort_values(by='% Fed', ascending=False)[0:30] top_joint_tweet = df[['% Fed','% Tweet']].sort_values(by='% Tweet', ascending=False)[0:30] top_joint_fed = df[['% Fed','% Tweet']].sort_values(by='% Fed', ascending=False)[0:30] top_joint_tweet = df[['% Fed','% Tweet']].sort_values(by='% Tweet', ascending=False)[0:30] # plot the top words used in the fedaral data that are also in tweets ax = top_joint_fed.plot.bar(figsize=(14,9)) # change tick markes plt.tick_params(top='off', bottom = 'on', left = 'on', right = 'off', labelleft = 'on', labelbottom = 'on') plt.ylabel('Word Document Frequency of Documents(Tweets)', fontsize=20) plt.xlabel('Top Words that Occur in Both Tweets and Federal Documents', fontsize=20) plt.tight_layout() plt.show() # plot the top words used in tweets that are also in federal data ax = top_joint_tweet.plot.bar(figsize=(14,9)) # change tick markes plt.tick_params(top='off', bottom = 'on', left = 'on', right = 'off', labelleft = 'on', labelbottom = 'on') plt.ylabel('Word Document Frequency of Tweets(Documents)', fontsize=20) plt.xlabel('Top Words that Occur in Both Tweets and Federal Documents', fontsize=20) plt.tight_layout() plt.show() # plot the words that are used with the same frequency in both the twitter and federal data df['diff %'] = df['% Fed'] - df['% Tweet'] top_same = df[df['diff %'] == 0].sort_values(by='% Fed', ascending=False)[0:50] ax = top_same[['% Fed', '% Tweet']].plot.bar(figsize=(14,8)) # change tick markes plt.tick_params(top='off', bottom = 'on', left = 'on', right = 'off', labelleft = 'on', labelbottom = 'on') plt.ylabel('Document Frequency', fontsize=20) plt.xlabel('Top Words that Occur in Both Tweets and Federal Documents', fontsize=20) plt.tight_layout() plt.show() # load federal document data from pickle file fed_reg_data = r'data/fed_reg_data.pickle' fed_data = pd.read_pickle(fed_reg_data) # load twitter data from csv twitter_file_path = r'data\twitter_01_20_17_to_3-2-18.pickle' twitter_data = pd.read_pickle(twitter_file_path) # Change the index (date), to a column fed_data['date'] = fed_data.index twitter_data['date'] = twitter_data.index # keep text strings and rename columns fed = fed_data[['str_text', 'date']].rename({'str_text': 'texts'}, axis = 'columns') tweet = twitter_data[['text', 'date']].rename({'text': 'texts'}, axis = 'columns') # Add a label for the type of document (Tweet = 0, Fed = 1) tweet['label'] = 0 fed['label'] = 1 # concatinate the dataframes comb_text = pd.concat([fed,tweet]) # Re_index so that each doc has a unique id_number comb_text = comb_text.reset_index() comb_text['ID'] = range(0,len(comb_text)) # Look at the dataframe to make sure it works comb_text = comb_text[['texts','date','label', 'ID']] comb_text.head(3) # nonsense words, and standard words like proclimation and dates more_stop = set(['presidential', 'documents', 'therfore','i','donald', 'j', 'trump', 'president', 'order', 'authority', 'vested', 'articles','january','february','march','april','may','june','july','august','september','october', 'november','december','jan','feb','mar','apr','jun','jul','aug','sep','oct','nov','dec', '2017','2018','act','agencies','agency','wh','rtlwanjjiq','pmgil08opp','blkgzkqemw','qcdljff3wn','erycjgj23r ','fzep1e9mo7','m0hmpbuz6c','rdo6jt2pip','kyv866prde','aql4jlvndh', 'tx5snacaas','t0eigo6lp8','jntoth0mol','8b8aya7v1s', 'x25t9tqani','q7air0bum2','ypfvhtq8te','ejxevz3a1r','1zo6zc2pxt', 'strciewuws','lhos4naagl','djlzvlq6tj', 'theplumlinegs', '3eyf3nir4b','cbewjsq1a3','lvmjz9ax0u', 'dw0zkytyft','sybl47cszn','6sdcyiw4kt','¼ï','yqf6exhm7x','cored8rfl2','6xjxeg1gss','dbvwkddesd', 'ncmsf4fqpr','twunktgbnb','ur0eetseno','ghqbca7yii','cbqrst4ln4','c3zikdtowc','6snvq0dzxn','ekfrktnvuy', 'k2jakipfji','œthe ','p1fh8jmmfa','vhmv7qoutk','mkuhbegzqs','ajic3flnki','mvjbs44atr', 'wakqmkdpxa','e0bup1k83z','ðÿ','ºðÿ','µðÿ','eqmwv1xbim','hlz48rlkif','td0rycwn8c','vs4mnwxtei','75wozgjqop', 'e1q36nkt8g','u8inojtf6d','rmq1a5bdon','5cvnmhnmuh','pdg7vqqv6m','s0s6xqrjsc','5cvnmhnmuh','wlxkoisstg', 'tmndnpbj3m','dnzrzikxhd','4qckkpbtcr','x8psdeb2ur','fejgjt4xp9','evxfqavnfs','aty8r3kns2','pdg7vqqv6m','nqhi7xopmw', 'lhos4naagl','32tfova4ov','zkyoioor62','np7kyhglsv','km0zoaulyh','kwvmqvelri','pirhr7layt', 'v3aoj9ruh4','https','cg4dzhhbrv','qojom54gy8','75wozgjqop','aty8r3kns2','nxrwer1gez','rvxcpafi2a','vb0ao3s18d', 'qggwewuvek','ddi1ywi7yz','r5nxc9ooa4','6lt9mlaj86','1jb53segv4','vhmv7qoutk','i7h4ryin3h', 'aql4jlvndh','yfv0wijgby','nonhjywp4j','zomixteljq','iqum1rfqso','2nl6slwnmh','qejlzzgjdk', 'p3crvve0cy','s0s6xqrjsc','gkockgndtc','2nl6slwnmh','zkyoioor62','clolxte3d4','iqum1rfqso', 'msala9poat','p1f12i9gvt','mit2lj7q90','qejlzzgjdk','pjldxy3hd9','vjzkgtyqb9','b2nqzj53ft', 'tpz7eqjluh','enyxyeqgcp','avlrroxmm4','2kuqfkqbsx','kwvmqvelri','œi','9lxx1iqo7m','vdtiyl0ua7', 'dmhl7xieqv','3jbddn8ymj','gysxxqazbl','ðÿž','tx5snacaas','4igwdl4kia','kqdbvxpekk','1avysamed4', 'cr4i8dvunc','bsp5f3pgbz','rlwst30gud','rlwst30gud','g4elhh9joh', '2017', 'January', 'kuqizdz4ra', 'nvdvrrwls4','ymuqsvvtsb', 'rgdu9plvfk','bk7sdv9phu','b5qbn6llze','xgoqphywrt ','hscs4y9zjk ', 'soamdxxta8','erycjgj23r','ryyp51mxdq','gttk3vjmku','j882zbyvkj','9pfqnrsh1z','ubbsfohmm7', 'xshsynkvup','xwofp9z9ir','1iw7tvvnch','qeeknfuhue','riqeibnwk2','seavqk5zy5','7ef6ac6kec', 'htjhrznqkj','8vsfl9mzxx','xgoqphywrt','zd0fkfvhvx','apvbu2b0jd','mstwl628xe','4hnxkr3ehw','mjij7hg3eu', '1majwrga3d','x6fuuxxyxe','6eqfmrzrnv','h1zi5xrkeo','kju0moxchk','trux3wzr3u','suanjs6ccz', 'ecf5p4hjfz','m5ur4vv6uh','8j7y900vgk','7ef6ac6kec','d0aowhoh4x','aqqzmt10x7','zauqz4jfwv', 'bmvjz1iv2a','gtowswxinv','1w3lvkpese','8n4abo9ihp','f6jo60i0ul','od7l8vpgjq','odlz2ndrta', '9tszrcc83j','6ocn9jfmag','qyt4bchvur','wkqhymcya3','tp4bkvtobq','baqzda3s2e','March','April', 'op2xdzxvnc','d7es6ie4fy','proclamation','hcq9kmkc4e','rf9aivvb7g','sutyxbzer9','s0t3ctqc40','aw0av82xde']) # defines all stop words my_stop = text.ENGLISH_STOP_WORDS.union(more_stop) # Instantiate TfidfVectorizer to remove common english words, and any word used in 99% of the documents tfidf = TfidfVectorizer(stop_words = my_stop , max_df = 0.99) # create matrix representation of all documents text_mat = tfidf.fit_transform(comb_text.texts) # make a list of feature words words = tfidf.get_feature_names() # instantiate model NMF_model = NMF(n_components=200 , init = 'nndsvd') # fit the model NMF_model.fit(text_mat) # transform the text frequecy matrix using the fitted NMF model nmf_features = NMF_model.transform(text_mat) # create a dataframe with words as a columns, NMF components as rows components_df = pd.DataFrame(NMF_model.components_, columns = words) # create dictionary with the key = component, value = top 5 words topic_dict = {} for i in range(0,160): component = components_df.iloc[i, :] topic_dict[i] = component.nlargest() # look at a few of the component topics print(topic_dict[124].index) print(topic_dict[10].index) # normalize previouly found nmf features norm_features = normalize(nmf_features) #dataframe of document's NMF features, where rows are documents and columns are NMF components df_norms = pd.DataFrame(norm_features) # initialize empty dictionary similarity_dict= {} # loop through each row of the df_norms dataframe for i in range(len(norm_features)): # isolate one row, by ID number row = df_norms.loc[i] # calculate the top cosine similarities top_sim = (df_norms.dot(row)).nlargest() # append results to dictionary similarity_dict[i] = (top_sim.index, top_sim) # dataframe with document ID and labels doc_label_df = comb_text[['label', 'ID']].copy().set_index('ID') # inialize list for the sum of all similar documents label label_sums =[] similarity_score_sum = [] # loop through all of the documents for doc_num in doc_label_df.index: # sum the similarity scores similarity_sum = similarity_dict[doc_num][1].sum() similarity_score_sum.append(similarity_sum) #find the list of similar documents similar_doc_ID_list = list(similarity_dict[doc_num][0]) # loop through labels s_label = 0 for ID_num in similar_doc_ID_list: # sum the label values for each similar document s_label = s_label + doc_label_df.loc[ID_num].label # append the sum of the labels for ONE document label_sums.append(s_label) # add the similarity score sum to dataframe as separate column doc_label_df['similarity_score_sum'] = similarity_score_sum # add the similar document's summed label value to the dataframe as a separate column doc_label_df['sum_of_labels'] = label_sums # Filter dataframe for federal documents with similar tweets, and vice versa df_filtered = doc_label_df[doc_label_df['sum_of_labels'] != 0][doc_label_df['sum_of_labels'] != 5].copy().reset_index() # Look at the ones that have all top 5 documents with a cosine similarity score of 0.9 or above. #The sum of scores need to be 4.6 or higher similar_score_min = 4.6 highly_similar = df_filtered[df_filtered.similarity_score_sum >= similar_score_min] # create a list of all the group lists doc_groups = [] for doc_id in highly_similar.ID: doc_groups.append(sorted(list(similarity_dict[doc_id][0]))) # make the interior lists tuples, then make a set of them unique_groups = list(set([tuple(x) for x in doc_groups])) # make a list of groups that are similar similar_groups = [] for num1 in range(len(unique_groups)): for num2 in range(len(unique_groups)): crossover_count = len((set(unique_groups[num1]) & set(unique_groups[num2]))) if crossover_count == 4: lst = [num1, num2] lst.sort(key=int) if lst not in similar_groups: similar_groups.append(lst) # create list of document ID's of similar documents similar_docs = [] for group1, group2 in similar_groups: combo = list(set(unique_groups[group1]) & set(unique_groups[group2])) if combo not in similar_docs: similar_docs.append(combo) similar_docs # print document IDs grouped together print(comb_text.texts.loc[1471]) print(comb_text.texts.loc[111]) print(comb_text.texts.loc[2991]) print(comb_text.texts.loc[2997]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 1 Step2: Clean-up data types and identify hashtags and @mentions Step3: Save clean twitter data as pickle Step4: Scrape and format Data from Federal Register Step5: Create a dataframe with the published date and text for each pdf Step6: Save federal register data as a pickle file to use in later analysis Step7: Part 2 Step8: Most used hastags Step9: Most used @tags Step10: Top used words for the twitter data and the federal document data Step11: Frequency plots for most used words in the federal data and twitter data Step12: Part 2 Conclusions Step13: Identify nonsense words for both twitter and federal data Step14: Part 3B Step15: Topic analysis using NMF Step16: Find the top 5 topic words for each component Step17: Results of part 3 A and B Step18: Part 4 Step19: Part 4b Step20: Group Again Step21: Part 5
9,034
<ASSISTANT_TASK:> Python Code: import numpy as np objective = np.poly1d([1.3, 4.0, 0.6]) print objective import scipy.optimize as opt x_ = opt.fmin(objective, [3]) print "solved: x={}".format(x_) %matplotlib inline x = np.linspace(-4,1,101.) import matplotlib.pylab as mpl mpl.plot(x, objective(x)) mpl.plot(x_, objective(x_), 'ro') import scipy.special as ss import scipy.optimize as opt import numpy as np import matplotlib.pylab as mpl x = np.linspace(2, 7, 200) # 1st order Bessel j1x = ss.j1(x) mpl.plot(x, j1x) # use scipy.optimize's more modern "results object" interface result = opt.minimize_scalar(ss.j1, method="bounded", bounds=[2, 4]) j1_min = ss.j1(result.x) mpl.plot(result.x, j1_min,'ro') import mystic.models as models print(models.rosen.__doc__) import mystic mystic.model_plotter(mystic.models.rosen, fill=True, depth=True, scale=1, bounds="-3:3:.1, -1:5:.1, 1") import scipy.optimize as opt import numpy as np # initial guess x0 = [1.3, 1.6, -0.5, -1.8, 0.8] result = opt.minimize(opt.rosen, x0) print result.x # number of function evaluations print result.nfev # again, but this time provide the derivative result = opt.minimize(opt.rosen, x0, jac=opt.rosen_der) print result.x # number of function evaluations and derivative evaluations print result.nfev, result.njev print '' # however, note for a different x0... for i in range(5): x0 = np.random.randint(-20,20,5) result = opt.minimize(opt.rosen, x0, jac=opt.rosen_der) print "{} @ {} evals".format(result.x, result.nfev) # http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html#tutorial-sqlsp ''' Maximize: f(x) = 2*x0*x1 + 2*x0 - x0**2 - 2*x1**2 Subject to: x0**3 - x1 == 0 x1 >= 1 ''' import numpy as np def objective(x, sign=1.0): return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2) def derivative(x, sign=1.0): dfdx0 = sign*(-2*x[0] + 2*x[1] + 2) dfdx1 = sign*(2*x[0] - 4*x[1]) return np.array([ dfdx0, dfdx1 ]) # unconstrained result = opt.minimize(objective, [-1.0,1.0], args=(-1.0,), jac=derivative, method='SLSQP', options={'disp': True}) print("unconstrained: {}".format(result.x)) cons = ({'type': 'eq', 'fun' : lambda x: np.array([x[0]**3 - x[1]]), 'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])}, {'type': 'ineq', 'fun' : lambda x: np.array([x[1] - 1]), 'jac' : lambda x: np.array([0.0, 1.0])}) # constrained result = opt.minimize(objective, [-1.0,1.0], args=(-1.0,), jac=derivative, constraints=cons, method='SLSQP', options={'disp': True}) print("constrained: {}".format(result.x)) import scipy.optimize as opt # constrained: linear (i.e. A*x + b) print opt.cobyla.fmin_cobyla print opt.linprog # constrained: quadratic programming (i.e. up to x**2) print opt.fmin_slsqp # http://cvxopt.org/examples/tutorial/lp.html ''' minimize: f = 2*x0 + x1 subject to: -x0 + x1 <= 1 x0 + x1 >= 2 x1 >= 0 x0 - 2*x1 <= 4 ''' import cvxopt as cvx from cvxopt import solvers as cvx_solvers A = cvx.matrix([ [-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0] ]) b = cvx.matrix([ 1.0, -2.0, 0.0, 4.0 ]) cost = cvx.matrix([ 2.0, 1.0 ]) sol = cvx_solvers.lp(cost, A, b) print(sol['x']) # http://cvxopt.org/examples/tutorial/qp.html ''' minimize: f = 2*x1**2 + x2**2 + x1*x2 + x1 + x2 subject to: x1 >= 0 x2 >= 0 x1 + x2 == 1 ''' import cvxopt as cvx from cvxopt import solvers as cvx_solvers Q = 2*cvx.matrix([ [2, .5], [.5, 1] ]) p = cvx.matrix([1.0, 1.0]) G = cvx.matrix([[-1.0,0.0],[0.0,-1.0]]) h = cvx.matrix([0.0,0.0]) A = cvx.matrix([1.0, 1.0], (1,2)) b = cvx.matrix(1.0) sol = cvx_solvers.qp(Q, p, G, h, A, b) print(sol['x']) import scipy.optimize as opt # probabilstic solvers, that use random hopping/mutations print opt.differential_evolution print opt.basinhopping print opt.anneal import scipy.optimize as opt # bounds instead of an initial guess bounds = [(-10., 10)]*5 for i in range(10): result = opt.differential_evolution(opt.rosen, bounds) print result.x, # number of function evaluations print '@ {} evals'.format(result.nfev) import scipy.optimize as opt import scipy.stats as stats import numpy as np # Define the function to fit. def function(x, a, b, f, phi): result = a * np.exp(-b * np.sin(f * x + phi)) return result # Create a noisy data set around the actual parameters true_params = [3, 2, 1, np.pi/4] print "target parameters: {}".format(true_params) x = np.linspace(0, 2*np.pi, 25) exact = function(x, *true_params) noisy = exact + 0.3*stats.norm.rvs(size=len(x)) # Use curve_fit to estimate the function parameters from the noisy data. initial_guess = [1,1,1,1] estimated_params, err_est = opt.curve_fit(function, x, noisy, p0=initial_guess) print "solved parameters: {}".format(estimated_params) # err_est is an estimate of the covariance matrix of the estimates print "covarance: {}".format(err_est.diagonal()) import matplotlib.pylab as mpl mpl.plot(x, noisy, 'ro') mpl.plot(x, function(x, *estimated_params)) import numpy as np import scipy.optimize as opt def system(x,a,b,c): x0, x1, x2 = x eqs= [ 3 * x0 - np.cos(x1*x2) + a, # == 0 x0**2 - 81*(x1+0.1)**2 + np.sin(x2) + b, # == 0 np.exp(-x0*x1) + 20*x2 + c # == 0 ] return eqs # coefficients a = -0.5 b = 1.06 c = (10 * np.pi - 3.0) / 3 # initial guess x0 = [0.1, 0.1, -0.1] # Solve the system of non-linear equations. result = opt.root(system, x0, args=(a, b, c)) print "root:", result.x print "solution:", result.fun import numpy as np import scipy.stats as stats # Create clean data. x = np.linspace(0, 4.0, 100) y = 1.5 * np.exp(-0.2 * x) + 0.3 # Add a bit of noise. noise = 0.1 * stats.norm.rvs(size=100) noisy_y = y + noise # Fit noisy data with a linear model. linear_coef = np.polyfit(x, noisy_y, 1) linear_poly = np.poly1d(linear_coef) linear_y = linear_poly(x) # Fit noisy data with a quadratic model. quad_coef = np.polyfit(x, noisy_y, 2) quad_poly = np.poly1d(quad_coef) quad_y = quad_poly(x) import matplotlib.pylab as mpl mpl.plot(x, noisy_y, 'ro') mpl.plot(x, linear_y) mpl.plot(x, quad_y) #mpl.plot(x, y) import mystic.models as models print models.zimmermann.__doc__ <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The "optimizer" Step2: Additional components Step3: The gradient and/or hessian Step4: The penalty functions Step5: Optimizer classifications Step6: Notice how much nicer it is to see the optimizer "trajectory". Now, instead of a single number, we have the path the optimizer took. scipy.optimize has a version of this, with options={'retall' Step7: Gradient descent and steepest descent Step8: Not Covered Step9: Parameter estimation Step10: Standard diagnostic tools
9,035
<ASSISTANT_TASK:> Python Code: import pandas as pd # data handeling import numpy as np # numeriacal computing import matplotlib.pyplot as plt # plotting core import seaborn as sns # higher level plotting tools %matplotlib inline sns.set() def h(X,a) : # model h(X) = Xa h = np.dot(X,a) return h def a_opt(X,y) : # linear regression solution a = (X'X)^-1 X'y = pinv(X)y a_opt = np.dot( np.linalg.pinv(X), y) return a_opt def J(a,X,y) : # Cost function m = y.size J = 1/(2*m) * np.dot( ( h(X,a) - y ).T, ( h(X,a) - y ) ) return J def R2(a,X,y) : # R squared y_mean = y.mean() R2 = 1 - ( np.dot( ( h(X,a) - y ).T, ( h(X,a) - y ) ) / np.dot( ( y - y_mean ).T, ( y - y_mean ) ) ) return R2 x = np.array([1, 1.2, 1.4, 1.7, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10]) y = np.array([7, 6 , 5, 4, 3, 2, 1, .5, .4, .35, .3, .25 ,.2,.15]) plt.plot( x,y, "o", color='g', label='training data'); plt.legend(); X = np.column_stack( (np.ones((x.size,1)) , x )) # construct the augmented matrix X a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data xt = np.linspace(1,10,100) ax.plot(xt, a[0] + a[1]*xt , label='h(x) = %.2f + %.2f x' %(a[0], a[1])) # plot the model function ax.legend() print('a =', a) # print the values of a print('J =', J(a,X,y)) # value of Cost function print("R2 =", R2(a,X,y)) # R squared X = np.column_stack( (np.ones((x.size,1)) , x**2 )) # construct the augmented matrix X a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data xt = np.linspace(1,10,100) ax.plot(xt, a[0] + a[1]*xt**2 , label='h(x) = %.2f + %.2f x**2' %(a[0], a[1])) # plot the model function ax.legend() print('a =', a) # print the values of a print('J =', J(a,X,y)) # value of Cost function print("R2 =", R2(a,X,y)) # R squared X = np.column_stack( (np.ones((x.size,1)) , x, x**2 )) # construct the augmented matrix X a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data xt = np.linspace(1,11,100) ax.plot(xt, a[0] + a[1]*xt + a[2]*xt**2 , label='h(x) = %.2f + %.2f x + %.2f x**2' %(a[0], a[1], a[2])) # plot the model function ax.legend() print('a =', a) # print the values of a print('J =', J(a,X,y)) # value of Cost function print("R2 =", R2(a,X,y)) # R squared X = np.column_stack( (np.ones((x.size,1)) , 1/x )) # construct the augmented matrix X a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data xt = np.linspace(1,11,100) ax.plot(xt, a[0] + a[1]/xt , label='h(x) = %.2f + %.2f * 1/x' %(a[0], a[1])) # plot the model function ax.legend() print('a =', a) # print the values of a print('J =', J(a,X,y)) # value of Cost function print("R2 =", R2(a,X,y)) # R squared X = np.column_stack( (np.ones((x.size,1)) , np.exp(-x) )) # construct the augmented matrix X a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data xt = np.linspace(1,11,100) ax.plot(xt, a[0] + a[1]*np.exp(-xt) , label='h(x) = %.2f + %.2f * exp(-x)' %(a[0], a[1])) # plot the model function ax.legend() print('a =', a) # print the values of a print('J =', J(a,X,y)) # value of Cost function print("R2 =", R2(a,X,y)) # R squared def f(x) : # sourse of the data f = x*np.sin(x/2) return f np.random.seed(22) noise = np.random.randn(12) # some random "normal" noise x = np.linspace(0,10,6) # x for training-set y = f(x) + noise[0:6] # y for training-set xtest = np.linspace(-1,9,6) # x for test-set ytest = f(xtest) + noise[6:12] # y for test-set fig, ax = plt.subplots() ax.plot(x,y, 'o', color='g', label='training data' ) ax.plot(xtest,ytest, 'o', color='r',label='testset data') xt = np.linspace(-2,11,100) ax.plot(xt, f(xt), '.', color='c') plt.legend() X = np.column_stack( (np.ones((x.size,1)) , x )) # construct the augmented matrix X Xtest = np.column_stack( (np.ones((x.size,1)) , xtest )) # needed for error analysis a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data ax.plot(xtest,ytest, 'o', color='r', label='testset data') xt = np.linspace(-1,10,100) ax.plot(xt, f(xt), '.', color='c', label='source function') ax.plot(xt, a[0] + a[1]*xt , label='h(x) = %.2f + %.2f*x' %(a[0],a[1])) # plot the model function ax.legend() print('a =', a) # print the values of a print('training-set: ','J =', J(a,X,y), " R2 =", R2(a,X,y)) print('test-set: ','J =', J(a,Xtest,ytest), " R2 =", R2(a,Xtest,ytest)) X = np.column_stack( (np.ones((x.size,1)) , x, x**2 )) # construct the augmented matrix X Xtest = np.column_stack( (np.ones((x.size,1)) , xtest, xtest**2 )) # needed for error analysis a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data ax.plot(xtest,ytest, 'o', color='r', label='testset data') xt = np.linspace(-1,10,100) ax.plot(xt, f(xt), '.', color='c', label='source function') ax.plot(xt, a[0] + a[1]*xt + a[2]*xt**2 , label='h(x) = %.2f + %.2f*x + %.2f*x**2' %(a[0],a[1],a[2])) # plot the model function ax.legend() print('a =', a) # print the values of a print('training-set: ','J =', J(a,X,y), " R2 =", R2(a,X,y)) print('test-set: ','J =', J(a,Xtest,ytest), " R2 =", R2(a,Xtest,ytest)) X = np.column_stack( (np.ones((x.size,1)) , x, x**2, x**3 )) # construct the augmented matrix X Xtest = np.column_stack( (np.ones((x.size,1)) , xtest, xtest**2, xtest**3 )) # needed for error analysis a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data ax.plot(xtest,ytest, 'o', color='r', label='testset data') xt = np.linspace(-1,10,100) ax.plot(xt, f(xt), '.', color='c', label='source function') ax.plot(xt, a[0] + a[1]*xt + a[2]*xt**2 + a[3]*xt**3, label='h(x) = %.2f + %.2f*x + %.2f*x**2 + %.2f*x**3' %(a[0],a[1],a[2],a[3])) # plot the model function ax.legend() print('a =', a) # print the values of a print('training-set: ','J =', J(a,X,y), " R2 =", R2(a,X,y)) print('test-set: ','J =', J(a,Xtest,ytest), " R2 =", R2(a,Xtest,ytest)) X = np.column_stack( (np.ones((x.size,1)) , x, x**2, x**3, x**4 )) # construct the augmented matrix X Xtest = np.column_stack( (np.ones((x.size,1)) , xtest, xtest**2, xtest**3, xtest**4 )) # needed for error analysis a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data ax.plot(xtest,ytest, 'o', color='r', label='testset data') xt = np.linspace(-1,10,100) ax.plot(xt, f(xt), '.', color='c', label='source function') ax.plot(xt, a[0] + a[1]*xt + a[2]*xt**2 + a[3]*xt**3 + a[4]*xt**4, label='h(x) = %.2f + %.2f*x + %.2f*x**2 + %.2f*x**3 + %.2f*x**4' %(a[0],a[1],a[2],a[3],a[4])) # plot the model function ax.legend() print('a =', a) # print the values of a print('training-set: ','J =', J(a,X,y), " R2 =", R2(a,X,y)) print('test-set: ','J =', J(a,Xtest,ytest), " R2 =", R2(a,Xtest,ytest)) X = np.column_stack( (np.ones((x.size,1)) , x, x**2, x**3, x**4, x**5 )) # construct the augmented matrix X Xtest = np.column_stack( (np.ones((x.size,1)) , xtest, xtest**2, xtest**3, xtest**4, xtest**5 )) # needed for error analysis a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data ax.plot(xtest,ytest, 'o', color='r', label='testset data') xt = np.linspace(-1,10,100) ax.plot(xt, f(xt), '.', color='c', label='source function') ax.plot(xt, a[0] + a[1]*xt + a[2]*xt**2 + a[3]*xt**3 + a[4]*xt**4 + a[5]*xt**5, label='h(x) = %.2f + %.2f*x + %.2f*x**2 + %.2f*x**3 + %.2f*x**4 + %.2f*x**5' %(a[0],a[1],a[2],a[3],a[4],a[5])) # plot the model function ax.legend() print('a =', a) # print the values of a print('training-set: ','J =', J(a,X,y), " R2 =", R2(a,X,y)) print('test-set: ','J =', J(a,Xtest,ytest), " R2 =", R2(a,Xtest,ytest)) X = np.column_stack( (np.ones((x.size,1)) , x, x**2, x**3, x**4, x**5, x**6, x**7, x**8 )) # construct the augmented matrix X Xtest = np.column_stack( (np.ones((x.size,1)) , xtest, xtest**2, xtest**3, xtest**4, xtest**5, xtest**6, xtest**7, xtest**8 )) # needed for error analysis a = a_opt(X,y) # solve the regression fig, ax = plt.subplots() ax.plot( x,y, "o", color='g', label='training data') # plot the test data ax.plot(xtest,ytest, 'o', color='r', label='testset data') xt = np.linspace(-1,10,100) ax.plot(xt, f(xt), '.', color='c', label='source function') ax.plot(xt, a[0] + a[1]*xt + a[2]*xt**2 + a[3]*xt**3 + a[4]*xt**4 + a[5]*xt**5 + a[6]*xt**6 + a[7]*xt**7 + a[8]*xt**8, label='h(x) = %.2f + %.2f*x + %.2f*x**2 + %.2f*x**3 + %.2f*x**4 + %.2f*x**5 + %.2f*x**6 + %.2f*x**7 + %.2f*x**8' %(a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8])) # plot the model function ax.legend() print('a =', a) # print the values of a print('training-set: ','J =', J(a,X,y), " R2 =", R2(a,X,y)) print('test-set: ','J =', J(a,Xtest,ytest), " R2 =", R2(a,Xtest,ytest)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Here's the example data and a plot, Step2: To start lets just try fitting a straight line $h(x) = a_0 + a_1x$. We'll construct the augmented matrix $X$, solve the regression equation to find the best values of $a$, then plot the result and look at the value of $J$ and $R^2$ Step3: That's not so good! No surprise! Next lets try changing $x$ to $x^2$ thinking that a simple parabola may be a better fit. Step4: That's worse! It looks like the regression found a minimum for $a$ that has the curve opposite of what I expected. Step5: That is a better fit. The cost, $J$ has gone down and $R^2$ is closer to 1, However, he model is not behaving the way we want (it's rising at the end of the data). Step6: That is a significant improvement and now $R^2$ is getting closer to 1. It's still not converging to a constant value so lets try one more model function. Step7: That is a very good fit and the model has the behavior that we want. The $R^2$ is also very close to 1 indication that the fit to the training data is very good and the cost, $J$ is near 0. Step8: Here is a plot of all the data, Step9: Now we will start generating models with increasing powers of $x$ and looking at the goodness of fit. Step10: The fit is not very good as expected, but, note that $J$ and $R^2$ for training and test sets are similar. Step11: The value of $J$ has come down and $R^2$ is better for the training and test set. Step12: Notice that $R^2$ is improving for the training-set but getting worse for the test-set. Step13: Notice now that the training-set fit is looking very good but the test-set is not a good fit. Step14: Now the training-set fit is exact! The cost function $J$ is 0 and $R^2$ is 1. The test-set still has a poor fit. Even though the model function fits the training-set perfectly it is not a very good model overall. It's not as bad as it could be!
9,036
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mri', 'mri-esm2-0', 'ocnbgchem') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Geochemical" # "NPZD" # "PFT" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.elemental_stoichiometry') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Fixed" # "Variable" # "Mix of both" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.elemental_stoichiometry_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.damping') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.passive_tracers_transport.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "use ocean model transport time step" # "use specific time step" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.passive_tracers_transport.timestep_if_not_from_ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.biology_sources_sinks.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "use ocean model transport time step" # "use specific time step" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.biology_sources_sinks.timestep_if_not_from_ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline" # "Online" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Use that of ocean model" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.use_different_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.atmospheric_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "from file (climatology)" # "from file (interannual variations)" # "from Atmospheric Chemistry model" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.river_input') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "from file (climatology)" # "from file (interannual variations)" # "from Land Surface model" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.sediments_from_boundary_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.sediments_from_explicit_model') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.O2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.O2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.DMS_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.DMS_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2O_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2O_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC11_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC11_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC12_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC12_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.SF6_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.SF6_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.13CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.13CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.14CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.14CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.other_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other protocol" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.pH_scale') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea water" # "Free" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.constants_if_not_OMIP') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.sulfur_cycle_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nutrients_present') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Nitrogen (N)" # "Phosphorous (P)" # "Silicium (S)" # "Iron (Fe)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nitrous_species_if_N') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Nitrates (NO3)" # "Amonium (NH4)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nitrous_processes_if_N') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dentrification" # "N fixation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.upper_trophic_levels_definition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.upper_trophic_levels_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Generic" # "PFT including size based (specify both below)" # "Size based only (specify below)" # "PFT only (specify below)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.pft') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Diatoms" # "Nfixers" # "Calcifiers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.size_classes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Microphytoplankton" # "Nanophytoplankton" # "Picophytoplankton" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.zooplankton.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Generic" # "Size based (specify below)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.zooplankton.size_classes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Microzooplankton" # "Mesozooplankton" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.disolved_organic_matter.bacteria_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.disolved_organic_matter.lability') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Labile" # "Semi-labile" # "Refractory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diagnostic" # "Diagnostic (Martin profile)" # "Diagnostic (Balast)" # "Prognostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.types_if_prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "POC" # "PIC (calcite)" # "PIC (aragonite" # "BSi" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.size_if_prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "No size spectrum used" # "Full size spectrum" # "Discrete size classes (specify which below)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.size_if_discrete') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.sinking_speed_if_prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Function of particule size" # "Function of particule type (balast)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.carbon_isotopes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "C13" # "C14)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.abiotic_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.alkalinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Prognostic" # "Diagnostic)" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Type Step7: 1.4. Elemental Stoichiometry Step8: 1.5. Elemental Stoichiometry Details Step9: 1.6. Prognostic Variables Step10: 1.7. Diagnostic Variables Step11: 1.8. Damping Step12: 2. Key Properties --&gt; Time Stepping Framework --&gt; Passive Tracers Transport Step13: 2.2. Timestep If Not From Ocean Step14: 3. Key Properties --&gt; Time Stepping Framework --&gt; Biology Sources Sinks Step15: 3.2. Timestep If Not From Ocean Step16: 4. Key Properties --&gt; Transport Scheme Step17: 4.2. Scheme Step18: 4.3. Use Different Scheme Step19: 5. Key Properties --&gt; Boundary Forcing Step20: 5.2. River Input Step21: 5.3. Sediments From Boundary Conditions Step22: 5.4. Sediments From Explicit Model Step23: 6. Key Properties --&gt; Gas Exchange Step24: 6.2. CO2 Exchange Type Step25: 6.3. O2 Exchange Present Step26: 6.4. O2 Exchange Type Step27: 6.5. DMS Exchange Present Step28: 6.6. DMS Exchange Type Step29: 6.7. N2 Exchange Present Step30: 6.8. N2 Exchange Type Step31: 6.9. N2O Exchange Present Step32: 6.10. N2O Exchange Type Step33: 6.11. CFC11 Exchange Present Step34: 6.12. CFC11 Exchange Type Step35: 6.13. CFC12 Exchange Present Step36: 6.14. CFC12 Exchange Type Step37: 6.15. SF6 Exchange Present Step38: 6.16. SF6 Exchange Type Step39: 6.17. 13CO2 Exchange Present Step40: 6.18. 13CO2 Exchange Type Step41: 6.19. 14CO2 Exchange Present Step42: 6.20. 14CO2 Exchange Type Step43: 6.21. Other Gases Step44: 7. Key Properties --&gt; Carbon Chemistry Step45: 7.2. PH Scale Step46: 7.3. Constants If Not OMIP Step47: 8. Tracers Step48: 8.2. Sulfur Cycle Present Step49: 8.3. Nutrients Present Step50: 8.4. Nitrous Species If N Step51: 8.5. Nitrous Processes If N Step52: 9. Tracers --&gt; Ecosystem Step53: 9.2. Upper Trophic Levels Treatment Step54: 10. Tracers --&gt; Ecosystem --&gt; Phytoplankton Step55: 10.2. Pft Step56: 10.3. Size Classes Step57: 11. Tracers --&gt; Ecosystem --&gt; Zooplankton Step58: 11.2. Size Classes Step59: 12. Tracers --&gt; Disolved Organic Matter Step60: 12.2. Lability Step61: 13. Tracers --&gt; Particules Step62: 13.2. Types If Prognostic Step63: 13.3. Size If Prognostic Step64: 13.4. Size If Discrete Step65: 13.5. Sinking Speed If Prognostic Step66: 14. Tracers --&gt; Dic Alkalinity Step67: 14.2. Abiotic Carbon Step68: 14.3. Alkalinity
9,037
<ASSISTANT_TASK:> Python Code: #from imp import * #s=load_source('sygma','/home/nugrid/nugrid/SYGMA/SYGMA_online/SYGMA_dev/sygma.py') #%pylab nbagg import sys import sygma as s print (s.__file__) s.__file__ #import matplotlib #matplotlib.use('nbagg') import matplotlib.pyplot as plt #matplotlib.use('nbagg') import numpy as np from scipy.integrate import quad from scipy.interpolate import UnivariateSpline import os # Trigger interactive or non-interactive depending on command line argument __RUNIPY__ = sys.argv[0] if __RUNIPY__: %matplotlib inline else: %pylab nbagg k_N=1e11*0.35/ (1**-0.35 - 30**-0.35) #(I) N_tot=k_N/1.35 * (1**-1.35 - 30**-1.35) #(II) print (N_tot) Yield_tot=0.1*N_tot print (Yield_tot/1e11) s1=s.sygma(iolevel=0,mgal=1e11,dt=1e7,imf_type='salpeter',imf_bdys=[1,30],iniZ=0.02,hardsetZ=0.0001, table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',pop3_table='yield_tables/popIII_h1.txt') Yield_tot_sim=s1.history.ism_iso_yield[-1][0] #% matplotlib inline import read_yields as ry path = os.environ['SYGMADIR']+'/yield_tables/agb_and_massive_stars_nugrid_MESAonly_fryer12delay.txt' #path='/home/christian/NuGrid/SYGMA_PROJECT/NUPYCEE/new/nupycee.bitbucket.org/yield_tables/isotope_yield_table.txt' ytables = ry.read_nugrid_yields(path,excludemass=[32,60]) zm_lifetime_grid=s1.zm_lifetime_grid_current #__interpolate_lifetimes_grid() #return [[metallicities Z1,Z2,...], [masses], [[log10(lifetimesofZ1)], # [log10(lifetimesofZ2)],..] ] #s1.__find_lifetimes() #minm1 = self.__find_lifetimes(round(self.zmetal,6),mass=[minm,maxm], lifetime=lifetimemax1) print (Yield_tot_sim) print (Yield_tot) print ('ratio should be 1 : ',Yield_tot_sim/Yield_tot) Yield_agb= ( k_N/1.35 * (1**-1.35 - 8.**-1.35) ) * 0.1 Yield_massive= ( k_N/1.35 * (8.**-1.35 - 30**-1.35) ) * 0.1 print ('Should be 1:',Yield_agb/s1.history.ism_iso_yield_agb[-1][0]) print ('Should be 1:',Yield_massive/s1.history.ism_iso_yield_massive[-1][0]) print ('Test total number of SNII agree with massive star yields: ',sum(s1.history.sn2_numbers)*0.1/Yield_massive) print ( sum(s1.history.sn2_numbers)) s1.plot_totmasses(source='agb') s1.plot_totmasses(source='massive') s1.plot_totmasses(source='all') s1.plot_totmasses(source='sn1a') s1=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,imf_type='salpeter',alphaimf=2.35,\ imf_bdys=[1,30],iniZ=0,hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, \ sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s1.history.ism_iso_yield[-1][0] s1.plot_mass(specie='H',label='H, sim',color='k',shape='-',marker='o',markevery=800) m=[1,1.65,2,3,4,5,6,7,12,15,20,25] ages=[5.67e9,1.211e9,6.972e8,2.471e8,1.347e8,8.123e7,5.642e7,4.217e7,1.892e7,1.381e7,9.895e6,7.902e6] def yields(m,k_N): return ( k_N/1.35 * (m**-1.35 - 30.**-1.35) ) * 0.1 yields1=[] for m1 in m: yields1.append(yields(m1,k_N)) plt.plot(ages,yields1,marker='+',linestyle='',markersize=15,label='H, semi') plt.legend(loc=4) k_N=1e11*0.35/ (5**-0.35 - 20**-0.35) N_tot=k_N/1.35 * (5**-1.35 - 20**-1.35) Yield_tot=0.1*N_tot s1=s.sygma(iolevel=0,mgal=1e11,dt=1e9,tend=1.3e10,imf_type='salpeter',\ imf_bdys=[5,20],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, \ sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s1.history.ism_iso_yield[-1][0] print ('Sould be 1:' ,Yield_tot_sim/Yield_tot) k_N=1e11*0.35/ (1**-0.35 - 5**-0.35) N_tot=k_N/1.35 * (1**-1.35 - 5**-1.35) Yield_tot=0.1*N_tot s1=s.sygma(iolevel=0,mgal=1e11,dt=1e9,tend=1.3e10,imf_type='salpeter',alphaimf=2.35,\ imf_bdys=[1,5],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',\ sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s1.history.ism_iso_yield[-1][0] print ('Sould be 1: ',Yield_tot_sim/Yield_tot) alphaimf = 1.5 #Set test alphaimf k_N=1e11*(alphaimf-2)/ (-1**-(alphaimf-2) + 30**-(alphaimf-2)) N_tot=k_N/(alphaimf-1) * (-1**-(alphaimf-1) + 30**-(alphaimf-1)) Yield_tot=0.1*N_tot s1=s.sygma(iolevel=0,mgal=1e11,dt=1e9,tend=1.3e10,imf_type='alphaimf',alphaimf=1.5,imf_bdys=[1,30],hardsetZ=0.0001, table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s1.history.ism_iso_yield[-1][0] print ('Should be 1 :',Yield_tot/Yield_tot_sim) def imf_times_m(mass): if mass<=1: return 0.158 * np.exp( -np.log10(mass/0.079)**2 / (2.*0.69**2)) else: return mass*0.0443*mass**(-2.3) k_N= 1e11/ (quad(imf_times_m,0.01,30)[0] ) N_tot=k_N/1.3 * 0.0443* (1**-1.3 - 30**-1.3) Yield_tot=N_tot * 0.1 s1=s.sygma(iolevel=0,mgal=1e11,dt=1e9,tend=1.3e10,imf_type='chabrier',imf_bdys=[0.01,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s1.history.ism_iso_yield[-1][0] print (Yield_tot) print (Yield_tot_sim) print ('Should be 1 :',Yield_tot/Yield_tot_sim) plt.figure(11) s1.plot_mass(fig=11,specie='H',label='H',color='k',shape='-',marker='o',markevery=800) m=[1,1.65,2,3,4,5,6,7,12,15,20,25] ages=[5.67e9,1.211e9,6.972e8,2.471e8,1.347e8,8.123e7,5.642e7,4.217e7,1.892e7,1.381e7,9.895e6,7.902e6] def yields(m,k_N): return ( k_N/1.3 * 0.0443*(m**-1.3 - 30.**-1.3) ) * 0.1 yields1=[] for m1 in m: yields1.append(yields(m1,k_N)) plt.plot(ages,yields1,marker='+',linestyle='',markersize=20,label='semi') plt.legend(loc=4) def imf_times_m(mass): p0=1. p1=0.08**(-0.3+1.3) p2=0.5**(-1.3+2.3) p3= 1**(-2.3+2.3) if mass<0.08: return mass*p0*mass**(-0.3) elif mass < 0.5: return mass*p1*mass**(-1.3) else: #mass>=0.5: return mass*p1*p2*mass**(-2.3) k_N= 1e11/ (quad(imf_times_m,0.01,30)[0] ) p1=0.08**(-0.3+1.3) p2=0.5**(-1.3+2.3) N_tot=k_N/1.3 * p1*p2*(1**-1.3 - 30**-1.3) Yield_tot=N_tot * 0.1 s1=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,imf_type='kroupa',imf_bdys=[0.01,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s1.history.ism_iso_yield[-1][0] print ('Should be 1: ',Yield_tot/Yield_tot_sim) plt.figure(111) s1.plot_mass(fig=111,specie='H',label='H',color='k',shape='-',marker='o',markevery=800) m=[1,1.65,2,3,4,5,6,7,12,15,20,25] ages=[5.67e9,1.211e9,6.972e8,2.471e8,1.347e8,8.123e7,5.642e7,4.217e7,1.892e7,1.381e7,9.895e6,7.902e6] def yields(m,k_N): return ( k_N/1.3 *p1*p2* (m**-1.3 - 30.**-1.3) ) * 0.1 yields1=[] for m1 in m: yields1.append(yields(m1,k_N)) plt.plot(ages,yields1,marker='+',linestyle='',markersize=20,label='semi') plt.legend(loc=4) s1=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,sn1a_on=False,sn1a_rate='maoz',imf_type='salpeter', imf_bdys=[1,30],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt', sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') s2=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,sn1a_on=True,sn1a_rate='maoz',imf_type='salpeter', imf_bdys=[1,30],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt', sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') print ((s1.history.ism_elem_yield_1a[0]),(s1.history.ism_elem_yield_1a[-1])) print ((s1.history.ism_elem_yield[0]),(s1.history.ism_elem_yield[-1])) print ((s2.history.ism_elem_yield_1a[0]),(s2.history.ism_elem_yield_1a[-1])) print ((s2.history.ism_elem_yield[0]),(s2.history.ism_elem_yield[-1])) print ((s1.history.ism_elem_yield[-1][0] + s2.history.ism_elem_yield_1a[-1][0])/s2.history.ism_elem_yield[-1][0]) s2.plot_mass(fig=33,specie='H-1',source='sn1a') #plot s1 data (without sn) cannot be plotted -> error, maybe change plot function? plt.figure(99) #interpolate_lifetimes_grid=s22.__interpolate_lifetimes_grid #ytables=ry.read_nugrid_yields('yield_tables/isotope_yield_table_h1.txt') #zm_lifetime_grid=interpolate_lifetimes_grid(ytables,iolevel=0) 1e7 s1=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,sn1a_on=True,sn1a_rate='exp', imf_type='salpeter',imf_bdys=[1,30],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt', sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s1.history.ism_iso_yield_1a[-1][0] zm_lifetime_grid=s1.zm_lifetime_grid_current idx_z = (np.abs(zm_lifetime_grid[0]-0.0001)).argmin() #Z=0 grid_masses=zm_lifetime_grid[1][::-1] grid_lifetimes=zm_lifetime_grid[2][idx_z][::-1] spline_degree1=2 smoothing1=0 boundary=[None,None] spline_lifetime = UnivariateSpline(grid_lifetimes,np.log10(grid_masses),bbox=boundary,k=spline_degree1,s=smoothing1) plt.plot(grid_masses,grid_lifetimes,label='spline fit grid points (SYGMA)') plt.xlabel('Mini/Msun') plt.ylabel('log lifetime') m=[1,1.65,2,3,4,5,6,7,12,15,20,25] ages=[5.67e9,1.211e9,6.972e8,2.471e8,1.347e8,8.123e7,5.642e7,4.217e7,1.892e7,1.381e7,9.895e6,7.902e6] plt.plot(np.array(m),np.log10(np.array(ages)),marker='+',markersize=20,label='input yield grid',linestyle='None') plt.plot(10**spline_lifetime(np.log10(ages)),np.log10(ages),linestyle='--',label='spline fit SNIa') plt.legend() #plt.yscale('log') #following inside function wiersma09_efolding #if timemin ==0: # timemin=1 from scipy.integrate import dblquad def spline1(x): #x=t minm_prog1a=3 #if minimum progenitor mass is larger than 3Msun due to IMF range: #if self.imf_bdys[0]>3: # minm_prog1a=self.imf_bdys[0] return max(minm_prog1a,10**spline_lifetime(np.log10(x))) def f_wd_dtd(m,t): #print ('time ',t) #print ('mass ',m) mlim=10**spline_lifetime(np.log10(t)) maxm_prog1a=8 #if maximum progenitor mass is smaller than 8Msun due to IMF range: #if 8>self.imf_bdys[1]: # maxm_prog1a=self.imf_bdys[1] if mlim>maxm_prog1a: return 0 else: #Delay time distribution function (DTD) tau= 2e9 mmin=0 mmax=0 inte=0 #follwing is done in __imf() def g2(mm): return mm*mm**-2.35 norm=1./quad(g2,1,30)[0] #print ('IMF test',norm*m**-2.35) #imf normalized to 1Msun return norm*m**-2.35* np.exp(-t/tau)/tau a= 0.01 #normalization parameter #if spline(np.log10(t)) #a=1e-3/() a=1e-3/(dblquad(f_wd_dtd,0,1.3e10,lambda x: spline1(x), lambda x: 8)[0] ) n1a= a* dblquad(f_wd_dtd,0,1.3e10,lambda x: spline1(x), lambda x: 8)[0] # in principle since normalization is set: nb_1a_per_m the above calculation is not necessary anymore Yield_tot=n1a*1e11*0.1 *1 #7 #special factor print (Yield_tot_sim) print (Yield_tot) print ('Should be : ', Yield_tot_sim/Yield_tot) s1.plot_mass(specie='H',source='sn1a',label='H',color='k',shape='-',marker='o',markevery=800) yields1=[] ages1=[] a= 0.01 #normalization parameter a=1e-3/(dblquad(f_wd_dtd,0,1.3e10,lambda x: spline1(x), lambda x: 8)[0] ) for m1 in m: t=ages[m.index(m1)] yields= a* dblquad(f_wd_dtd,0,t,lambda x: spline1(x), lambda x: 8)[0] *1e11*0.1 #special factor yields1.append(yields) ages1.append(t) plt.plot(ages1,yields1,marker='+',linestyle='',markersize=20,label='semi') plt.legend(loc=4) print (sum(s1.wd_sn1a_range1)/sum(s1.wd_sn1a_range)) s1.plot_sn_distr(xaxis='time',fraction=False) s2=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,sn1a_rate='gauss',imf_type='salpeter', imf_bdys=[1,30],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s2.history.ism_iso_yield_1a[-1][0] zm_lifetime_grid=s2.zm_lifetime_grid_current idx_z = (np.abs(zm_lifetime_grid[0]-0.0001)).argmin() #Z=0 grid_masses=zm_lifetime_grid[1][::-1] grid_lifetimes=zm_lifetime_grid[2][idx_z][::-1] spline_degree1=2 smoothing1=0 boundary=[None,None] spline = UnivariateSpline(grid_lifetimes,np.log10(grid_masses),bbox=boundary,k=spline_degree1,s=smoothing1) from scipy.integrate import dblquad def spline1(x): #x=t return max(3.,10**spline(np.log10(x))) def f_wd_dtd(m,t): #print ('time ',t) #print ('mass ',m) mlim=10**spline(np.log10(t)) #print ('mlim',mlim) if mlim>8.: return 0 else: #mmin=max(3.,massfunc(t)) #mmax=8. #imf=self.__imf(mmin,mmax,1) #Delay time distribution function (DTD) tau= 1e9 #3.3e9 #characteristic delay time sigma=0.66e9#0.25*tau #sigma=0.2#narrow distribution #sigma=0.5*tau #wide distribution mmin=0 mmax=0 inte=0 def g2(mm): return mm*mm**-2.35 norm=1./quad(g2,1,30)[0] #imf normalized to 1Msun return norm*m**-2.35* 1./np.sqrt(2*np.pi*sigma**2) * np.exp(-(t-tau)**2/(2*sigma**2)) #a= 0.0069 #normalization parameter #if spline(np.log10(t)) a=1e-3/(dblquad(f_wd_dtd,0,1.3e10,lambda x: spline1(x), lambda x: 8)[0] ) n1a= a* dblquad(f_wd_dtd,0,1.3e10,lambda x: spline1(x), lambda x: 8)[0] Yield_tot=n1a*1e11*0.1 #special factor print (Yield_tot_sim) print (Yield_tot) print ('Should be 1: ', Yield_tot_sim/Yield_tot) s2.plot_mass(fig=988,specie='H',source='sn1a',label='H',color='k',shape='-',marker='o',markevery=800) yields1=[] ages1=[] m=[1,1.65,2,3,4,5,6,7,12,15,20,25] ages=[5.67e9,1.211e9,6.972e8,2.471e8,1.347e8,8.123e7,5.642e7,4.217e7,1.892e7,1.381e7,9.895e6,7.902e6] for m1 in m: t=ages[m.index(m1)] yields= a* dblquad(f_wd_dtd,0,t,lambda x: spline1(x), lambda x: 8)[0] *1e11*0.1 #special factor yields1.append(yields) ages1.append(t) plt.plot(ages1,yields1,marker='+',linestyle='',markersize=20,label='semi') plt.legend(loc=2) print (sum(s2.wd_sn1a_range1)/sum(s2.wd_sn1a_range)) s2=s.sygma(iolevel=0,mgal=1e11,dt=1e8,tend=1.3e10,sn1a_rate='maoz',imf_type='salpeter', imf_bdys=[1,30],special_timesteps=-1,hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt', sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim=s2.history.ism_iso_yield_1a[-1][0] from scipy.interpolate import UnivariateSpline zm_lifetime_grid=s2.zm_lifetime_grid_current idx_z = (np.abs(zm_lifetime_grid[0]-0.0001)).argmin() #Z=0 grid_masses=zm_lifetime_grid[1][::-1] grid_lifetimes=zm_lifetime_grid[2][idx_z][::-1] spline_degree1=2 smoothing1=0 boundary=[None,None] spline_lifetime = UnivariateSpline(grid_lifetimes,np.log10(grid_masses),bbox=boundary,k=spline_degree1,s=smoothing1) from scipy.integrate import quad def spline1(t): minm_prog1a=3 #if minimum progenitor mass is larger than 3Msun due to IMF range: return max(minm_prog1a,10**spline_lifetime(np.log10(t))) #funciton giving the total (accummulatitive) number of WDs at each timestep def wd_number(m,t): #print ('time ',t) #print ('mass ',m) mlim=10**spline_lifetime(np.log10(t)) maxm_prog1a=8 if mlim>maxm_prog1a: return 0 else: mmin=0 mmax=0 inte=0 #normalized to 1msun! def g2(mm): return mm*mm**-2.35 norm=1./quad(g2,1,30)[0] return norm*m**-2.35 #self.__imf(mmin,mmax,inte,m) def maoz_sn_rate(m,t): return wd_number(m,t)* 4.0e-13 * (t/1.0e9)**-1 def maoz_sn_rate_int(t): return quad( maoz_sn_rate,spline1(t),8,args=t)[0] #in this formula, (paper) sum_sn1a_progenitors number of maxm_prog1a=8 longtimefornormalization=1.3e10 #yrs fIa=0.00147 fIa=1e-3 #A = (fIa*s2.number_stars_born[1]) / quad(maoz_sn_rate_int,0,longtimefornormalization)[0] A = 1e-3 / quad(maoz_sn_rate_int,0,longtimefornormalization)[0] print ('Norm. constant A:',A) n1a= A* quad(maoz_sn_rate_int,0,1.3e10)[0] Yield_tot=n1a*1e11*0.1 #specialfactor print (Yield_tot_sim) print (Yield_tot) print ('Should be 1: ', Yield_tot_sim/Yield_tot) s2.plot_mass(fig=44,specie='H',source='sn1a',label='H',color='k',shape='-',marker='o',markevery=800) yields1=[] ages1=[] m=[1,1.65,2,3,4,5,6,7,12,15,20,25] ages=[5.67e9,1.211e9,6.972e8,2.471e8,1.347e8,8.123e7,5.642e7,4.217e7,1.892e7,1.381e7,9.895e6,7.902e6] for m1 in m: t=ages[m.index(m1)] #yields= a* dblquad(wdfrac,0,t,lambda x: spline1(x), lambda x: 8)[0] *1e11*0.1 yields= A*quad(maoz_sn_rate_int,0,t)[0] *1e11*0.1 #special factor yields1.append(yields) ages1.append(t) plt.plot(ages1,yields1,marker='+',linestyle='',markersize=20,label='semi') plt.legend(loc=2) plt.legend(loc=3) s1=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,special_timesteps=-1,imf_type='salpeter', imf_bdys=[1,30],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn', stellar_param_on=False) print ('Should be 0: ',s1.history.age[0]) print ('Should be 1: ',s1.history.age[-1]/1.3e10) print ('Should be 1: ',s1.history.timesteps[0]/1e7) print ('Should be 1: ',s1.history.timesteps[-1]/1e7) print ('Should be 1: ',sum(s1.history.timesteps)/1.3e10) s2=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.5e9,special_timesteps=200,imf_type='salpeter', imf_bdys=[1,30],hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') print ('Should be 0: ',s2.history.age[0]) print ('Should be 1: ',s2.history.age[-1]/1.5e9) print ('Should be 201: ',len(s2.history.age)) print ('Should be 1: ',s2.history.timesteps[0]/1e7) #print ('in dt steps: ',s2.history.timesteps[1]/1e7,s1.history.timesteps[2]/1e7,'..; larger than 1e7 at step 91!') print ('Should be 200: ',len(s2.history.timesteps)) print ('Should be 1: ',sum(s2.history.timesteps)/1.5e9) plt.figure(55) plt.plot(s1.history.age[1:],s1.history.timesteps,label='linear (constant) scaled',marker='+') plt.plot(s2.history.age[1:],s2.history.timesteps,label='log scaled',marker='+') plt.yscale('log');plt.xscale('log') plt.xlabel('age/years');plt.ylabel('timesteps/years');plt.legend(loc=4) s3=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,special_timesteps=-1,imf_type='salpeter',imf_bdys=[1,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',stellar_param_on=False) s4=s.sygma(iolevel=0,mgal=1e11,dt=1.3e10,tend=1.3e10,special_timesteps=-1,imf_type='salpeter',imf_bdys=[1,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',stellar_param_on=False) s5=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,special_timesteps=200,imf_type='salpeter',imf_bdys=[1,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',stellar_param_on=False) s6=s.sygma(iolevel=0,mgal=1e11,dt=1.3e10,tend=1.3e10,special_timesteps=200,imf_type='salpeter',imf_bdys=[1,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',stellar_param_on=False) #print (s3.history.ism_iso_yield[-1][0] == s4.history.ism_iso_yield[-1][0] why false?) print ('should be 1 ',s3.history.ism_iso_yield[-1][0]/s4.history.ism_iso_yield[-1][0]) #print (s3.history.ism_iso_yield[-1][0],s4.history.ism_iso_yield[-1][0]) print ('should be 1',s5.history.ism_iso_yield[-1][0]/s6.history.ism_iso_yield[-1][0]) #print (s5.history.ism_iso_yield[-1][0],s6.history.ism_iso_yield[-1][0]) s1=s.sygma(iolevel=0,mgal=1e7,dt=1e7,tend=1.3e10,hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt', sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') s2=s.sygma(iolevel=0,mgal=1e8,dt=1e8,tend=1.3e10,hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt', sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') s3=s.sygma(iolevel=0,mgal=1e9,dt=1e9,tend=1.3e10,hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt', sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') print ('At timestep 0: ',sum(s1.history.ism_elem_yield[0])/1e7,sum(s2.history.ism_elem_yield[0])/1e8,sum(s3.history.ism_elem_yield[0])/1e9) print ('At timestep 0: ',sum(s1.history.ism_iso_yield[0])/1e7,sum(s2.history.ism_iso_yield[0])/1e8,sum(s3.history.ism_iso_yield[0])/1e9) print ('At last timestep, should be the same fraction: ',sum(s1.history.ism_elem_yield[-1])/1e7,sum(s2.history.ism_elem_yield[-1])/1e8,sum(s3.history.ism_elem_yield[-1])/1e9) print ('At last timestep, should be the same fraction: ',sum(s1.history.ism_iso_yield[-1])/1e7,sum(s2.history.ism_iso_yield[-1])/1e8,sum(s3.history.ism_iso_yield[-1])/1e9) s1=s.sygma(iolevel=0,mgal=1e11,dt=7e6,tend=1e8,imf_type='salpeter',imf_bdys=[1,30],hardsetZ=0.0001, table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',pop3_table='yield_tables/popIII_h1.txt') s2=s.sygma(iolevel=0,mgal=1e11,dt=7e6,tend=1e8,special_timesteps=-1,imf_type='salpeter',imf_bdys=[1,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn', pop3_table='yield_tables/popIII_h1.txt') s3=s.sygma(iolevel=0,mgal=1e11,dt=1e6,tend=1e8,special_timesteps=-1,imf_type='salpeter',imf_bdys=[1,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',pop3_table='yield_tables/popIII_h1.txt') s4=s.sygma(iolevel=0,mgal=1e11,dt=3e7,tend=1e8,special_timesteps=-1,imf_type='salpeter',imf_bdys=[1,30],hardsetZ=0.0001, table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',pop3_table='yield_tables/popIII_h1.txt') s1.plot_sn_distr(rate=True,rate_only='sn2',label1='SN1a, rate, 1',label2='SNII, rate 1',marker1='o',marker2='s',shape2='-',markevery=1) s2.plot_sn_distr(rate=True,rate_only='sn2',label1='SN1a, rate, 2',label2='SNII rate 2',marker1='d',marker2='p',markevery=1,shape2='-.') s4.plot_sn_distr(rate=True,rate_only='sn2',label1='SN1a, rate, 2',label2='SNII rate 2',marker1='d',marker2='+',markevery=1,shape2=':',color2='y') s3.plot_sn_distr(rate=True,rate_only='sn2',label1='SN1a, rate, 2',label2='SNII rate 2',marker1='d',marker2='x',markevery=1,shape2='--') plt.xlim(6e6,7e7) plt.vlines(7e6,1e2,1e9) plt.ylim(1e2,1e4) print (s1.history.sn2_numbers[1]/s1.history.timesteps[0]) print (s2.history.sn2_numbers[1]/s2.history.timesteps[0]) #print (s1.history.timesteps[:5]) #print (s2.history.timesteps[:5]) s3=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,imf_type='salpeter',imf_bdys=[1,30],hardsetZ=0.0001, table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn',pop3_table='yield_tables/popIII_h1.txt', stellar_param_on=False) s4=s.sygma(iolevel=0,mgal=1e11,dt=1e7,tend=1.3e10,special_timesteps=-1,imf_type='salpeter',imf_bdys=[1,30], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=True, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn', pop3_table='yield_tables/popIII_h1.txt',stellar_param_on=False) s3.plot_sn_distr(fig=66,rate=True,rate_only='sn1a',label1='SN1a, rate',label2='SNII, rate',marker1='o',marker2='s',markevery=1) s4.plot_sn_distr(fig=66,rate=True,rate_only='sn1a',label1='SN1a, number',label2='SNII number',marker1='d',marker2='p') plt.xlim(3e7,1e10) s1.plot_sn_distr(fig=77,rate=True,marker1='o',marker2='s',markevery=5) s2.plot_sn_distr(fig=77,rate=True,marker1='x',marker2='^',markevery=1) #s1.plot_sn_distr(rate=False) #s2.plot_sn_distr(rate=True) #s2.plot_sn_distr(rate=False) plt.xlim(1e6,1.5e10) #plt.ylim(1e2,1e4) s1=s.sygma(iolevel=0,imf_bdys=[1.65,30],transitionmass=8,mgal=1e11,dt=1e7,tend=1.3e10,imf_type='salpeter', hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') s2=s.sygma(iolevel=0,imf_bdys=[1.65,30],transitionmass=10,mgal=1e11,dt=1e7,tend=1.3e10,imf_type='salpeter', hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') Yield_tot_sim_8=s1.history.ism_iso_yield_agb[-1][0] Yield_tot_sim_10=s2.history.ism_iso_yield_agb[-1][0] alphaimf=2.35 k_N=1e11*(alphaimf-2)/ (-1.65**-(alphaimf-2) + 30**-(alphaimf-2)) N_tot=k_N/(alphaimf-1) * (-1.65**-(alphaimf-1) + 8**-(alphaimf-1)) Yield_tot_8=0.1*N_tot N_tot=k_N/(alphaimf-1) * (-1.65**-(alphaimf-1) + 10**-(alphaimf-1)) Yield_tot_10=0.1*N_tot #N_tot=k_N/(alphaimf-1) * (-1.65**-(alphaimf-1) + 5**-(alphaimf-1)) #Yield_tot_5=0.1*N_tot print ('1:',Yield_tot_sim_8/Yield_tot_8) print ('1:',Yield_tot_sim_10/Yield_tot_10) #print ('1:',Yield_tot_sim_5/Yield_tot_5) s0=s.sygma(iolevel=0,iniZ=0.0001,imf_bdys=[0.01,100],imf_yields_range=[1,100], hardsetZ=0.0001,table='yield_tables/agb_and_massive_stars_h1.txt',sn1a_on=False, sn1a_table='yield_tables/sn1a_h1.txt', iniabu_table='yield_tables/iniabu/iniab_h1.ppn') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: IMF notes Step2: The total number of stars $N_{tot}$ is then Step3: With a yield ejected of $0.1 Msun$, the total amount ejected is Step4: compared to the simulation Step5: Compare both results Step6: Test of distinguishing between massive and AGB sources Step7: Calculating yield ejection over time Step8: Simulation results in the plot above should agree with semi-analytical calculations. Step9: Select imf_bdys=[1,5] Step10: Results Step11: Test of parameter imf_type Step12: Chabrier Step13: Simulation should agree with semi-analytical calculations for Chabrier IMF. Step14: Simulation results compared with semi-analytical calculations for Kroupa IMF. Step15: Test of parameter sn1a_rate (DTD) Step16: Small test Step17: Simulation results compared with semi-analytical calculations for the SN1 sources with Wiersma (exp) implementation. Step18: Wiersmagauss Step19: Simulation results compared with semi-analytical calculations for the SN1 sources with Wiersma (Gauss) implementation. Step20: SNIa implementation Step21: Check trend Step22: Test of parameter tend, dt and special_timesteps Step23: First timestep size of 1e7, then in log space to tend with a total number of steps of 200; Note Step24: Choice of dt should not change final composition Step25: Test of parameter mgal - the total mass of the SSP Step26: Test of SN rate Step27: Rate does not depend on timestep type Step28: Test of parameter transitionmass Step29: imf_yield_range - include yields only in this mass range
9,038
<ASSISTANT_TASK:> Python Code: import sys,os,glob from collections import OrderedDict import numpy as np from utils.misc import readPickle, createIfAbsent sys.path.append('../') from optvaedatasets.load import loadDataset as loadDataset_OVAE from sklearn.feature_extraction.text import TfidfTransformer default_params = readPickle('../optvaeutils/default_settings.pkl')[0] for k in default_params: print '(',k,default_params[k],')', print default_params['opt_type'] = 'finopt' #set to finopt to optimize var. params, none otherwise default_params['n_steps'] = 5 #temporary directory where checkpoints are saved default_params['savedir'] = './tmp' dset = loadDataset_OVAE('rcv2') #Visualize structure of dataset dict for k in dset: print k, type(dset[k]), if hasattr(dset[k],'shape'): print dset[k].shape elif type(dset[k]) is not list: print dset[k] else: print #Add parameters to default_params for k in ['dim_observations','data_type']: default_params[k] = dset[k] default_params['max_word_count'] =dset['train'].max() #Create IDF additional_attrs = {} tfidf = TfidfTransformer(norm=None) tfidf.fit(dset['train']) additional_attrs['idf'] = tfidf.idf_ from optvaemodels.vae import VAE as Model import optvaemodels.vae_learn as Learn import optvaemodels.vae_evaluate as Evaluate default_params['savedir']+='-rcv2-'+default_params['opt_type'] createIfAbsent(default_params['savedir']) pfile= default_params['savedir']+'/'+default_params['unique_id']+'-config.pkl' print 'Training model from scratch. Parameters in: ',pfile model = Model(default_params, paramFile = pfile, additional_attrs = additional_attrs) savef = os.path.join(default_params['savedir'],default_params['unique_id']) #Prefix for saving in checkpoint directory savedata = Learn.learn( model, dataset = dset['train'], epoch_start = 0 , epoch_end = 3, #epochs -- set w/ default_params['epochs'] batch_size = default_params['batch_size'], #batch size savefreq = default_params['savefreq'], #frequency of saving savefile = savef, dataset_eval= dset['valid'] ) for k in savedata: print k, type(savedata[k]), savedata[k].shape <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model Parameters Step2: For the moment, we will leave everything as is. Some worthwhile parameters to note Step3: Load dataset Step4: Setup Step5: Training the model
9,039
<ASSISTANT_TASK:> Python Code: x = np.arange(-5.0, 5.0, 0.1) y = np.array(x > 0, dtype=np.int) plt.plot(x, y) plt.show() x = np.arange(-5.0, 5.0, 0.1) y = 1 / (1 + np.exp(-x)) plt.plot(x, y) plt.show() x = np.arange(-5.0, 5.0, 0.1) y = np.maximum(0, x) plt.plot(x, y) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: シグモイド関数 Step2: ReLU関数
9,040
<ASSISTANT_TASK:> Python Code: query_url = 'https://data.sfgov.org/resource/wbb6-uh78.json?$order=close_dttm%20DESC&$offset={}&$limit={}' # query_url = "https://data.sfgov.org/resource/wbb6-uh78.json?$where=alarm_dttm>='2013-02-12 04:52:17'&$order=close_dttm%20DESC" # query_url = "https://data.sfgov.org/resource/wbb6-uh78.json?$where=alarm_dttm>='2013-02-12 04:52:17'" offset = 0 limit = 1000000 df = pd.read_json(query_url.format(offset, limit)) # df = pd.read_json(query_url) cols_to_drop = ["automatic_extinguishing_sytem_failure_reason", "automatic_extinguishing_sytem_type", "battalion", "box", "call_number", "detector_effectiveness", "detector_failure_reason", "ems_personnel", "ems_units", "exposure_number", "first_unit_on_scene", "ignition_factor_secondary", "mutual_aid", "no_flame_spead", "other_personnel", "other_units", "station_area", "supervisor_district"] df = df.drop(cols_to_drop, axis=1) for col in df.columns: if 'dttm' in col: df[col] = pd.to_datetime(df[col]) df.alarm_dttm.min() # The earliest timestamp of this dataset is 2013-02-12 04:52:17 df.estimated_property_loss.value_counts(dropna=False) df.shape # So we have 100,000 rows of data, going all the way back to February 10, 2013 # There is thoughts that there's a correlation with year and cost, especially in the mission df[df.estimated_property_loss.isnull()].__len__() # of the 100,000 rows, 96,335 are null 96335 / float(df.shape[0]) # wow, so where are these companies getting their data about the costs associated with fires? # it's not from the sfgov website. we'll need to table that and come back later. df['year'] = df.alarm_dttm.apply(lambda x: x.year) temp_df = df[df.estimated_property_loss.notnull()] temp_df.shape temp_df.groupby('year').sum()['estimated_property_loss'] mask = ((temp_df.zipcode.notnull()) & (temp_df.zipcode.isin([94103, 94110]))) temp_df[mask].groupby('year').sum()['estimated_property_loss'] # So based on the above data yes, the 2015 fires for those two zipcodes doubled, # and we can look into why, but could it be a symptom of population growth? # this article http://sf.curbed.com/2016/7/1/12073544/mission-fires-arson-campos # said that there were 2,788 blazes... but that's wrong, it's 2,788 units impacted. # One blaze could impact multiple units # # This infographic shows number of units impacted by fire by neighborhood, # but isn't this seriously misleading? https://infogr.am/sf_fires_by_zip-3 # # Ok, no seriously, I'm setting aside this mission research, because the upside for getting it right is low # but the downside for getting it wrong is very impactful. Not the sort of press we want # TODO: check this out and compare it to the data set # https://celestelecomptedotcom.files.wordpress.com/2015/04/15-04-05_wfs-greater-alarms-01-01-01-04-05-15.pdf mask = ((temp_df.zipcode.notnull()) & (temp_df.zipcode.isin([94103, 94110])) & (temp_df.year == 2014)) temp_df[mask].groupby('year').sum()['estimated_property_loss'] mask = ((df.estimated_property_loss.notnull())) sns.df[mask].groupby('year').sum()['estimated_property_loss'] # So based on the above data yes, the 2015 fires for those two zipcodes doubled, # and we can look into why, but could it be a symptom of population growth? # according to the document mentioned above and the report, it says that the population size shrunk. OK... # but the data that is being looked at is a HUGE period. There was a census report in 2000, and then another one # that's a large bucket of 2009-2013. The change reported was a 9% decrease, not exactly a huge boom. # My next theory is that the reason that the cost increased is simply that they got better about capturing records # for certain areas # Let's try a little experiment # let's look at which fire areas are better at keeping records, shall we? df['loss_recorded'] = 0 mask = ((df.estimated_property_loss.notnull())) df.loc[mask, 'loss_recorded'] = 1 mask = ((df.zipcode.notnull())) zipgroup = df[mask].groupby(['zipcode']) zipgroup.mean()['loss_recorded'].plot(kind='barh') # the above document shows the likelihood that the estimated_property_loss value # is recorded based on zipcode. # Mission District is within 94103, 94110 zipcodes # zipgroup.mean()['loss_recorded'][94103] zipgroup.mean()['loss_recorded'][94110] mask = ((df.estimated_property_loss.notnull()) & (df.zipcode == 94110)) sns.distplot(df[mask].estimated_property_loss) mask = ((df.estimated_property_loss.notnull()) & (df.zipcode == 94103)) sns.distplot(df[mask].estimated_property_loss) df['estimated_property_loss'] = pd.to_numeric(df['estimated_property_loss']) df['estimated_property_loss'] = df['estimated_property_loss'].fillna(0) df.info() mask = ((df.estimated_property_loss.notnull()) & (df.zipcode == 94103)) df[mask].estimated_property_loss.value_counts(dropna=False, normalize=True, bins=50) df['month'] = df.alarm_dttm.apply(lambda x: x.month) mask = ((df.month == 6) & (df.year == 2016)) df[mask].describe() df.describe() df.alarm_dttm.min() df.alarm_dttm.max() # what is odd is how the fire civilian fatalities have a max value of 1, which makes it concerning that the dataset # is inaccurate and needs to be cleaned more carefully before we proceed. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: According to wikipeda, the mission district falls into two zipcodes, 94103, 94110 Step2: Initial Conclusions Step3: Disclaimers from the Fire Marshal
9,041
<ASSISTANT_TASK:> Python Code: import os os.mkdir("/tmp/park-python") try: os.rmdir("/tmp/park-python") except IOError as err: print(err) path = "/tmp/park-python/lectures/04" if not os.path.exists(path): os.makedirs(path) os.rmdir("/tmp/park-python") import shutil shutil.rmtree("/tmp/park-python") import pprint pprint.pprint(list(os.walk(os.curdir))) # открываем дескриптор файла для записи f = open("/tmp/example.txt", "w") # записываем содержимое f.write("Технопарк\n") # обязательно закрываем f.close() # открываем дескриптор файла для чтения f = open("/tmp/example.txt", "r") # читаем содержимое полностью. data = f.read() # обязательно закрываем! f.close() print(data) # используя context-manager with open("/tmp/example.txt", "a") as f: f.write("МГТУ\n") with open("/tmp/example.txt", "r") as f: print(f.readlines()) # читаем файл по строке, не загружая его полность в память with open("/tmp/example.txt", "r") as f: for line in f: print(repr(line)) # Чтобы проверить целостность сохраненного файла import hashlib def hash_file(filename): h = hashlib.sha1() # открываем файл в бинарном виде. with open(filename,'rb') as file: chunk = 0 while chunk != b'': # читаем кусочками по 1024 байта chunk = file.read(1024) h.update(chunk) # hex-представление полученной суммы. return h.hexdigest() print(hash_file("/tmp/example.txt")) print(hash_file("/tmp/example.txt")) with open("/tmp/example.txt", "a") as f: f.write("1") print("После изменений:", hash_file("/tmp/example.txt")) import sys print(sys.stdin) print(sys.stdout) print(sys.stderr) print(sys.stdin.fileno()) print(sys.stdout.fileno()) sys.stdout.write("where am I") def get_max_length_word(sentence): longest_word = None words = sentence.split() for word in words: if not longest_word or len(word) > len(longest_word): longest_word = word return longest_word import unittest class LongestWordTestCase(unittest.TestCase): def test_sentences(self): sentences = [ ["Beautiful is better than ugly.", "Beautiful"], ["Complex is better than complicated.", "complicated"] ] for sentence, correct_word in sentences: self.assertEqual(get_max_length_word(sentence), correct_word) # Обычно в реальных проектах использует механизм автоматического нахождения тестов (discover). suite = unittest.defaultTestLoader.loadTestsFromTestCase(LongestWordTestCase) unittest.TextTestRunner().run(suite) class BoomException(Exception): pass class Material: def __init__(self, name, reacts_with=None): self.name = name self.reacts_with = reacts_with or [] def __repr__(self): return self.name class Alchemy: def __init__(self): self.materials = [] def add(self, material): for existing_material in self.materials: if material.name not in existing_material.reacts_with: continue self.materials = [] raise BoomException("{0} + {1}".format(existing_material.name, material.name)) self.materials.append(material) def remove(self, material): self.materials.remove(material) # 2Na + 2H2O = 2NaOH + H2 (Не повторять дома!!! Щелочь чрезвычайно опасна!) alchemy = Alchemy() material_ca = Material("Ca", reacts_with=[]) material_h20 = Material("H2O", reacts_with=["Na"]) material_na = Item("Na", reacts_with=["H2O"]) alchemy.add(material_ca) alchemy.add(material_h20) try: alchemy.add(material_na) except BoomException: print("We are alive! But all items lost!") import unittest class AlchemyTest(unittest.TestCase): def setUp(self): self.alchemy = Alchemy() def test_add(self): self.alchemy.add(Material("C")) self.alchemy.add(Material("F")) self.assertEqual(len(self.alchemy.materials), 2) def test_remove(self): material_c = Material("C") self.alchemy.add(material_c) self.assertEqual(len(self.alchemy.materials), 1) self.alchemy.remove(material_c) self.assertEqual(len(self.alchemy.materials), 0) def test_boom(self): material_na = Material("Na", reacts_with=["H2O"]) material_h20 = Material("H2O", reacts_with=["Na"]) self.alchemy.add(material_na) self.assertRaises(BoomException, self.alchemy.add, material_h20) self.assertEqual(len(self.alchemy.materials), 0) # Обычно в реальных проектах использует механизм автоматического нахождения тестов (discover). suite = unittest.defaultTestLoader.loadTestsFromTestCase(AlchemyTest) unittest.TextTestRunner().run(suite) import requests def get_location_city(ip): data = requests.get("https://freegeoip.net/json/{ip}".format(ip=ip)).json() return data["city"] def get_ip(): data = requests.get("https://httpbin.org/ip").json() return data["origin"] get_location_city(get_ip()) import math def fake_sqrt(num): return 42 original_sqrt = math.sqrt math.sqrt = fake_sqrt # вызываем ф-ю, которую мы запатчили. print(math.sqrt(16)) math.sqrt = original_sqrt math.sqrt(16) import unittest from unittest.mock import patch, Mock class FakeIPResponse: def json(self): return {"origin": "127.0.0.1"} class LongestWordTestCase(unittest.TestCase): @patch('requests.get', Mock(return_value=FakeIPResponse())) def test_get_ip(self): self.assertEqual(get_ip(), "127.0.0.1") suite = unittest.defaultTestLoader.loadTestsFromTestCase(LongestWordTestCase) unittest.TextTestRunner().run(suite) from unittest.mock import Mock mock = Mock() mock.method(1, 2, 3, test='wow') mock.method.assert_called_with(1, 2, 3, test='wow') mock.non_existing_method.assert_not_called() STEPS = 50000000 # Простая программа, складывающая числа. def worker(steps): count = 0 for i in range(steps): count += 1 return count %timeit -n1 -r1 worker(STEPS) print("Напомните преподавателю показать actvity monitor") import threading import queue result_queue = queue.Queue() STEPS = 50000000 NUM_THREADS = 2 def worker(steps): count = 0 for i in range(steps): count += 1 result_queue.put(count) def get_count_threaded(): count = 0 threads = [] for i in range(NUM_THREADS): t = threading.Thread(target=worker, args=(STEPS//NUM_THREADS,)) threads.append(t) t.start() for i in range(NUM_THREADS): count += result_queue.get() return count %timeit -n1 -r1 get_count_threaded() import multiprocessing NUM_PROCESSES = 2 STEPS = 50000000 result_queue = multiprocessing.Queue() def worker(steps): count = 0 for i in range(steps): count += 1 result_queue.put(count) def get_count_in_processes(): count = 0 processes = [] for i in range(NUM_PROCESSES): p = multiprocessing.Process(target=worker, args=(STEPS//NUM_PROCESSES,)) processes.append(p) p.start() for i in range(NUM_PROCESSES): count += result_queue.get() return count %timeit -n1 -r1 get_count_in_processes() import requests STEPS = 100 def download(): requests.get("http://127.0.0.1:8000").text # Простая программа, загружающая контент URL-странички. Типичная IO-bound задача. def worker(steps): for i in range(steps): download() %timeit -n1 -r1 worker(STEPS) import threading STEPS = 100 NUM_THREADS = 2 def worker(steps): count = 0 for i in range(steps): download() def run_worker_threaded(): threads = [] for i in range(NUM_THREADS): t = threading.Thread(target=worker, args=(STEPS//NUM_THREADS,)) threads.append(t) t.start() for t in threads: t.join() %timeit -n1 -r1 run_worker_threaded() import multiprocessing NUM_PROCESSES = 2 def worker(steps): count = 0 for i in range(steps): download() def run_worker_in_processes(): processes = [] for i in range(NUM_PROCESSES): p = multiprocessing.Process(target=worker, args=(STEPS//NUM_PROCESSES,)) processes.append(p) p.start() for p in processes: p.join() %timeit -n1 -r1 run_worker_in_processes() import concurrent.futures import requests STEPS = 100 def download(): return requests.get("http://127.0.0.1:8000").text def run_in_executor(): executor = concurrent.futures.ThreadPoolExecutor(max_workers=64) future_to_url = {executor.submit(download): i for i in range(STEPS)} for future in concurrent.futures.as_completed(future_to_url): i = future_to_url[future] try: data = future.result() except Exception as exc: print('%d generated an exception: %s' % (i, exc)) else: pass #print('%d page is %d bytes' % (i, len(data))) executor.shutdown() %timeit -n1 -r1 run_in_executor() counter = 0 def worker(num): global counter for i in range(num): counter += 1 worker(1000000) print(counter) import threading counter = 0 def worker(num): global counter for i in range(num): counter += 1 threads = [] for i in range(10): t = threading.Thread(target=worker, args=(100000,)) threads.append(t) t.start() for t in threads: t.join() #print(counter) import threading counter = 0 lock = threading.Lock() def worker(num): global counter for i in range(num): lock.acquire() counter += 1 lock.release() threads = [] for i in range(10): t = threading.Thread(target=worker, args=(100000,)) threads.append(t) t.start() for t in threads: t.join() print(counter) # deadlock example import threading counter = 0 lock = threading.Lock() def print_counter(): lock.acquire() print(counter) lock.release() def worker(): global counter lock.acquire() print_counter() counter += 1 lock.release() worker() import time def request(i): print(f"Sending request {i+1}") time.sleep(1) print(f"Got response from request {i+1}") print() for i in range(5): request(i) import time def request(i): print("Sending request %d" % i) def on_data(data): print("Got response from request %d" % i) return on_data callbacks = [] for i in range(5): cb = request(i) callbacks.append(cb) time.sleep(1) for cb in callbacks: cb("data") def simple_gen(): yield 1 yield 2 gen = simple_gen() print(next(gen)) print(next(gen)) print(next(gen)) gen = simple_gen() for i in gen: print(i) def fib(): a, b = 0, 1 while True: yield a a, b = b, a + b gen = fib() for i in range(6): print(next(gen)) def coro(): next_value = yield "Hello" yield next_value c = coro() print(next(c)) print(c.send("World")) import time def request(i): print("Sending request %d" % i) data = yield print("Got response from request %d" % i) generators = [] for i in range(5): gen = request(i) generators.append(gen) next(gen) time.sleep(1) for gen in generators: try: gen.send("data") except StopIteration: pass import asyncio loop = asyncio.get_event_loop() loop.run_forever() import asyncio def cb(): print("callback called") loop.stop() loop = asyncio.get_event_loop() loop.call_later(delay=3, callback=cb) print("start event loop") loop.run_forever() import asyncio @asyncio.coroutine def return_after_delay(): yield from asyncio.sleep(3) print("return called") loop = asyncio.get_event_loop() print("start event loop") loop.run_until_complete(return_after_delay()) import asyncio async def return_after_delay(): await asyncio.sleep(3) print("return called") loop = asyncio.get_event_loop() print("start event loop") loop.run_until_complete(return_after_delay()) import asyncio async def get_data(): await asyncio.sleep(1) return "boom" async def request(i): print(f"Sending request {i+1}") data = await get_data() print(f"Got response from request {i+1}: {data}") loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.gather(*[request(i) for i in range(5)])) import asyncio async def get_data(): await asyncio.sleep(1) raise ValueError async def request(i): print("Sending request %d" % i) try: data = await get_data() except ValueError: print("Error in request %d" % i) else: print("Got response from request %d" % i) loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.gather(*[request(i) for i in range(5)])) import aiohttp import asyncio STEPS = 100 async def download(loop): async with aiohttp.ClientSession(loop=loop) as session: async with session.get("http://127.0.0.1:8000") as response: return await response.text() async def worker(steps, loop): await asyncio.gather(*[download(loop) for x in range(steps)]) loop = asyncio.get_event_loop() %timeit -n1 -r1 loop.run_until_complete(worker(STEPS, loop)) # future example. import asyncio async def slow_operation(future): try: await asyncio.wait_for(asyncio.sleep(1), 2) except asyncio.TimeoutError: future.set_exception(ValueError("Error sleeping")) else: future.set_result('Future is done!') def got_result(future): if future.exception(): print("Exception:", type(future.exception())) else: print(future.result()) loop.stop() loop = asyncio.get_event_loop() future = asyncio.Future() future.add_done_callback(got_result) asyncio.ensure_future(slow_operation(future)) loop.run_forever() # выносим блокирующие вызовы в пул тредов import asyncio import requests async def main(): loop = asyncio.get_event_loop() future1 = loop.run_in_executor(None, requests.get, 'http://127.0.0.1:8000') future2 = loop.run_in_executor(None, requests.get, 'http://127.0.0.1:8000') response1 = await future1 response2 = await future2 print(response1.text) print(response2.text) loop = asyncio.get_event_loop() loop.run_until_complete(main()) # asyncio + multiprocessing import aiohttp import asyncio import multiprocessing NUM_PROCESSES = 2 STEPS = 100 async def download(loop): async with aiohttp.ClientSession(loop=loop) as session: async with session.get("http://127.0.0.1:8000") as response: return await response.text() async def worker(steps, loop): await asyncio.gather(*[download(loop) for x in range(steps)], loop=loop) def run(steps): loop = asyncio.new_event_loop() loop.run_until_complete(worker(steps, loop)) def run_in_processes(): processes = [] for i in range(NUM_PROCESSES): p = multiprocessing.Process(target=run, args=(STEPS//NUM_PROCESSES,)) processes.append(p) p.start() for p in processes: p.join() %timeit -n1 -r1 run_in_processes() import subprocess import os result = subprocess.run(["ls", "-l", os.getcwd()], stdout=subprocess.PIPE) print(result.stdout) # используя shell result = subprocess.run( "ls -l " + os.getcwd() + "|grep debug", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True ) print(result.stdout) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Работа с файлами Step2: "r" – открытие на чтение (является значением по умолчанию). Step3: stdin, stdout, stderr Step4: Так как дескрипторы stdout и stderr переопределены в Jupyter notebook. Давайте посмотрим куда они ведут Step5: А ведут они как раз в этот ноутбук Step6: Что может пойти не так? Да все что угодно Step7: <table border="1" class="docutils" align="left"> Step8: unittest.mock Step9: Для начала посмотрим что такое monkey patching. Step10: https Step11: <div style="float Step12: <div style="float Step13: Зачем тогда нужны потоки? Step14: <div style="float Step15: <div style="float Step16: Как мы видим - треды позволили получить лучший результат (Macbook Pro 2016 - 64 треда). Step17: Аналогично можно использовать ProcessPoolExecutor, чтобы вынести работу в пул процессов. Step18: Вернемся к примеру с загрузкой URL Step19: На запрос тратится 1 секунда, и мы ждем 5 секунд на 5 запросов - а ведь могли бы отправить их друг за другом и через секунду получить результаты для всех и обработать. Step20: Генераторы Step21: Первый плюс Step22: Второй плюс Step23: Можно работать с бесконечным потоком данных. Можно обмениваться результатами между отдельными генераторами по мере готовности - то есть иметь дело с несколькими параллельными задачами. При этом не обязательно эти задачи зависят друг от друга. Step24: В контексте лекции важно понять, что выполнение функции-генератора в Python можно приостановить, дождаться нужных данных, а затем продолжить выполнение с места прерывания. При этом сохраняется локальный контекст выполнения и пока мы ждем данных интерпретатор может заниматься другой полезной работой Step25: <div style="float Step26: В Python 3.4 вызов результата корутины выполнялся с помощью конструкции yield from (https Step27: В версии 3.5 появились специальные ключевые слова, позволяющие программировать в асинхронном стиле Step28: Чтобы программа стала работать асинхронно нужно использовать примитивы, которые есть в библиотеке asyncio Step29: Исключения при работе с корутинами работают точно так же как и в синхронном коде Step30: Примеры других реализаций Event Loop'ов Step31: Step32: Завершающий пример (asyncio + multiprocessing) Step33: Subprocess. Если останется время...
9,042
<ASSISTANT_TASK:> Python Code: # Syntax error x = 1; y = 2 b = x == y # Boolean variable that is true when x & y have the same value b = 1 == 2 # Syntax error b # Exception - invalid operation a = 0 5/a # Division by zero # Exception - invalid operation input = '40' float(input)/11 # Incompatiable types for the operation # Incorrect logic import math x = 55 math.sin(x)**2 + math.cos(x)**2 == 1 # Should be math.cos(x)**2 def entropy(ps): items = ps * np.log(ps) return -np.sum(items) ps = [0.1, 0.3, 0.5, 0.7, 0.9] entropy(ps) def entropy(ps): print ps items = ps * np.log(ps) return -np.sum(items) ps = "0.1, 0.3, 0.5, 0.7, 0.9" entropy(ps) def entropy(ps): print ps items = ps * np.log(ps) return -np.sum(items) ps = [0.1, 0.3, 0.5, 0.7, 0.9] entropy(ps) # Create a vector of probabilities. ps = np.arange(5.) ps /= ps.sum() ps entropy(ps) def entropy1(ps): print("ps=%s" % str(ps)) items = ps * np.log(ps) if np.isnan(items[0]): print(items) return -np.sum(items) entropy1([.1, .2]) np.isnan(np.nan) def entropy2(ps): ps = np.asarray(ps) # convert p to array if necessary print(ps) items = [] for val in ps: item = val * np.log(val) if np.isnan(item): print("%f makes a nan" % val) items.append(item) #items = ps * np.log(ps) return -np.sum(items) entropy2(ps) def entropy(ps): items = ps * np.log(ps) if np.isnan(items[0]): import pdb; pdb.set_trace() return -np.sum(items) ps = [0, .1, .1, .3] entropy(ps) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question Step2: What's the bug here and how do we resolve? Step3: We should have documented the inputs to the function! Step4: Now it works fine for the first set of inputs. Let's try other inputs. Step5: We get nan, which stands for "Not a Number". What's going on here? Step6: By printing some of the intermediate items, we see the problem Step7: Using a Debugger Step8: This can be a more convenient way to debug programs and step through the actual execution.
9,043
<ASSISTANT_TASK:> Python Code: # 加载必要的程序包 # PyTorch的程序包 import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # 数值运算和绘图的程序包 import numpy as np import matplotlib.pyplot as plt import matplotlib # 加载机器学习的软件包,主要为了词向量的二维可视化 from sklearn.decomposition import PCA #加载Word2Vec的软件包 import gensim as gensim from gensim.models import Word2Vec from gensim.models.keyedvectors import KeyedVectors from gensim.models.word2vec import LineSentence #加载正则表达式处理的包 import re #在Notebook界面能够直接显示图形 %matplotlib inline # 加载中文词向量,下载地址为:链接:http://pan.baidu.com/s/1gePQAun 密码:kvtg # 该中文词向量库是由尹相志提供,训练语料来源为:微博、人民日报、上海热线、汽车之家等,包含1366130个词向量 #word_vectors = KeyedVectors.load_word2vec_format('vectors.bin', binary=True, unicode_errors='ignore') #len(word_vectors.vocab) # 加载中文的词向量,下载地址为:http://nlp.stanford.edu/data/glove.6B.zip,解压后将glove.6B.100d.txt文件拷贝到与本notebook # 文件一致的文件夹洗面。 #f = open('glove.6B.100d.txt', 'r') #i = 1 # 将英文的词向量都存入如下的字典中 #word_vectors_en = {} #with open('glove.6B.100d.txt') as f: # for line in f: # numbers = line.split() # word = numbers[0] # vectors = np.array([float(i) for i in numbers[1 : ]]) # word_vectors_en[word] = vectors # i += 1 #print(len(word_vectors_en)) # 中文的一二三四五列表 #cn_list = {'一', '二', '三', '四', '五', '六', '七', '八', '九', '零'} # 阿拉伯数字的12345列表 #en_list = {'1', '2', '3', '4', '5', '6', '7', '8', '9', '0'} # 英文数字的列表 #en_list = {'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'zero'} # 对应词向量都存入到列表中 #cn_vectors = [] #中文的词向量列表 #en_vectors = [] #英文的词向量列表 #for w in cn_list: # cn_vectors.append(word_vectors[w]) #for w in en_list: # en_vectors.append(word_vectors_en[w]) # 将这些词向量统一转化为矩阵 #cn_vectors = np.array(cn_vectors) #en_vectors = np.array(en_vectors) # 降维实现可视化 #X_reduced = PCA(n_components=2).fit_transform(cn_vectors) #Y_reduced = PCA(n_components = 2).fit_transform(en_vectors) # 绘制所有单词向量的二维空间投影 #f, (ax1, ax2) = plt.subplots(1, 2, figsize = (10, 8)) #ax1.plot(X_reduced[:, 0], X_reduced[:, 1], 'o') #ax2.plot(Y_reduced[:, 0], Y_reduced[:, 1], 'o') #zhfont1 = matplotlib.font_manager.FontProperties(fname='/Library/Fonts/华文仿宋.ttf', size=16) #for i, w in enumerate(cn_list): # ax1.text(X_reduced[i, 0], X_reduced[i, 1], w, fontproperties = zhfont1, alpha = 1) #for i, w in enumerate(en_list): # ax2.text(Y_reduced[i, 0], Y_reduced[i, 1], w, alpha = 1) #original_words = [] #with open('dictionary.txt', 'r') as f: # dataset = [] # for line in f: # itm = line.split('\t') # eng = itm[0] # chn = itm[1].strip() # if eng in word_vectors_en and chn in word_vectors: # data = word_vectors_en[eng] # target = word_vectors[chn] # 将中英文词对做成数据集 # dataset.append([data, target]) # original_words.append([eng, chn]) #print(len(dataset)) # 共有4962个单词做为总的数据集合 # 建立训练集、测试集和校验集 # 训练集用来训练神经网络,更改网络的参数;校验集用来判断网络模型是否过拟合:当校验集的损失数值超过训练集的时候,即为过拟合 # 测试集用来检验模型的好坏 #indx = np.random.permutation(range(len(dataset))) #dataset = [dataset[i] for i in indx] #original_words = [original_words[i] for i in indx] #train_size = 500 #train_data = dataset[train_size:] #valid_data = dataset[train_size // 2 : train_size] #test_data = dataset[: train_size // 2] #test_words = original_words[: train_size // 2] # 开始训练一个多层神经网络,将一个100维度的英文向量映射为200维度的中文词向量,隐含层节点为30 #input_size = 100 #output_size = 200 #hidden_size = 30 # 新建一个神经网络,包含一个隐含层 #model = nn.Sequential(nn.Linear(input_size, hidden_size) # nn.Tanh() # nn.Linear(hidden_size, output_size) # ) # 构造损失函数 #criterion = torch.nn.MSELoss() # 构造优化器 #optimizer = torch.optim.Adam(model.parameters(), lr = 0.0001) # 总的循环周期 #num_epoch = 100 #开始训练500次,每次对所有的数据都做循环 #results = [] #for epoch in range(num_epoch): # train_loss = [] # for data in train_data: # 读入数据 # x = Var(torch.FloatTensor(data[0])).unsqueeze(0) # y = Var(torch.FloatTensor(data[1])).unsqueeze(0) # 模型预测 # output = model(x) # 反向传播算法训练 # optimizer.zero() # loss = criteri(output, y) # train_loss.append(loss.data.numpy()[0]) # loss.backwerd() # optimizer.step() # 在校验集上测试一下效果 # valid_loss = [] # for data in valid_data: # x = Var(torch.FloatTensor(data[0])).unsqueeze(0) # y = Var(torch.FloatTensor(data[1])).unsqueeze(0) # output = model(x) # loss = criterion(output, y) # valid_loss.append(loss.data.numpy()[0]) # results.append([np.mean(train_loss), np.mean(valid_loss)]) # print('{}轮,训练Loss: {:.2f}, 校验Loss: {:.2f}'.format(epoch, np.mean(train_loss), np.mean(valid_loss))) # 绘制图形 #a = [i[0] for i in results] #b = [i[1] for i in results] #plt.plot(a, 'o', label = 'Training Loss') #plt.plot(b, 's', label = 'Validation Loss') #plt.xlabel('Epoch') #plt.ylabel('Loss Function') #plt.legend() # 在测试集上验证准确度 # 检验标准有两个:一个是直接用预测的词和标准答案做全词匹配;另一个是做单字的匹配 #exact_same = 0 #全词匹配数量 #one_same = 0 #单字匹配数量 #results = [] #for i, data in enumerate(test_data): # x = Var(torch.FloatTensor(data[0])).unsqueeze(0) # 给出模型的输出 # output = model(x) # output = output.squeeze().data.numpy() # 从中文词向量中找到与输出向量最相似的向量 # most_similar = word_vectors.wv.similar_by_vector(output, 1) # 将标准答案中的词与最相似的向量所对应的词打印出来 # results.append([original_words[i][1], most_similar[0][0]]) # 全词匹配 # if original_words[i][1] == most_similar[0][0]: # exact_same += 1 # 某一个字匹配 # if list(set(list(original_words[i][1])) & set(list(most_similar[0][0]))) != []: # one_same += 1 #print("精确匹配率:{:.2f}".format(1.0 * exact_same / len(test_data))) #print('一字匹配率:{:.2f}'.format(1.0 * one_same / len(test_data))) #print(results) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 第一步:加载词向量 Step2: 第二步:可视化同一组意思词在两种不同语言的词向量中的相互位置关系 Step3: 结论:可以看出,中文的一、二、等数字彼此之间的关系与英文的数字彼此之间的关系很类似
9,044
<ASSISTANT_TASK:> Python Code: %load_ext sql %sql mysql://steinam:steinam@localhost/celko %%sql select * from Register; %%sql SELECT R1.course_nbr, R1.student_name, MIN(R1.teacher_name) as Teacher_1, NULL FROM Register AS R1 GROUP BY R1.course_nbr, R1.student_name HAVING COUNT(*) = 1 UNION SELECT R1.course_nbr, R1.student_name, MIN(R1.teacher_name) as Teacher_1, MAX(R1.teacher_name) as Teacher_2 FROM Register AS R1 GROUP BY R1.course_nbr, R1.student_name HAVING COUNT(*) = 2 UNION SELECT R1.course_nbr, R1.student_name, MIN(R1.teacher_name) as Teacher_1, '--More--' as Teacher_2 FROM Register AS R1 GROUP BY R1.course_nbr, R1.student_name HAVING COUNT(*) > 2; %%sql SELECT course_nbr, student_name, MIN(teacher_name) as Teacher_1, CASE COUNT(*) WHEN 1 THEN NULL WHEN 2 THEN MAX(teacher_name) ELSE '--More--' END as Teacher_2 FROM Register GROUP BY course_nbr, student_name; %%sql -- andere Syntax, evtl verständlicher SELECT course_nbr, student_name, MIN(teacher_name) as Teacher_1, CASE WHEN COUNT(*) = 1 THEN NULL WHEN COUNT(*) = 2 THEN MAX(teacher_name) ELSE '--More--' END as Teacher_2 FROM Register GROUP BY course_nbr, student_name; %%sql create table seats (seat integer) insert into seats(seat) values(0); insert into seats(seat) values(1001); insert into seats(seat) values(101); CREATE VIEW Firstseat (seat) AS SELECT (seat + 1) FROM seats WHERE (seat + 1) NOT IN (SELECT seat FROM seats) AND (seat + 1) < 1001; CREATE VIEW Lastseat (seat) AS SELECT (seat - 1) FROM seats WHERE (seat - 1) NOT IN (SELECT seat FROM seats) AND (seat - 1) > 0; -- nutzt die beiden Views SELECT F1.seat AS start, L1.seat AS finish, ((L1.seat - F1.seat) + 1) AS available FROM Firstseat F1, Lastseat L1 WHERE L1.seat = (SELECT MIN(L2.seat) FROM Lastseat AS L2 WHERE F1.seat <= L2.seat) order by start; -- braucht keinen view SELECT (R1.seat + 1) AS start, (MIN(R2.seat) - 1) AS finish, abs((R1.seat + 1) - (MIN(R2.seat))) as free FROM seats AS R1 INNER JOIN seats AS R2 ON R2.seat > R1.seat GROUP BY R1.seat HAVING (R1.seat + 1) < MIN(R2.seat); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lösung 1 Step2: Lösung 2 Step3: Lösung 3
9,045
<ASSISTANT_TASK:> Python Code: import numpy as np import cv2 import sys import os sys.path.insert(0, os.path.abspath('..')) import salientregions as sr %pylab inline #Load the image path_to_image = 'images/graffiti.jpg' img = cv2.imread(path_to_image) sr.show_image(img) det = sr.SalientDetector(SE_size_factor=0.20, lam_factor=4) regions = det.detect(img, find_holes=True, find_islands=True, find_indentations=True, find_protrusions=True, visualize=True) print(regions.keys()) num_regions, features_standard, features_poly = sr.binary_mask2ellipse_features(regions, min_square=False) print("number of features per saliency type: ", num_regions) sr.visualize_ellipses(regions["holes"], features_standard["holes"]) sr.visualize_ellipses(regions["islands"], features_standard["islands"]) sr.visualize_ellipses(regions["indentations"], features_standard["indentations"]) sr.visualize_ellipses(regions["protrusions"], features_standard["protrusions"]) #print "Elliptic polynomial features:", features_poly sr.visualize_elements_ellipses(img, features_standard); total_num_regions = sr.save_ellipse_features2file(num_regions, features_poly, 'poly_features.txt') print("total_num_regions", total_num_regions) import sys, os sys.path.insert(0, os.path.abspath('..')) import salientregions as sr total_num_regions, num_regions, features = sr.load_ellipse_features_from_file('poly_features.txt') print("total_num_regions: ", total_num_regions) print("number of features per saliency type: ", num_regions) #print "features: ", features <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First, we load the image and show it. Step2: Now we create a SalientDetector object, with some parameters. Step3: We ask the SalientDetector to detect all types of regions Step4: We can also output the regions as ellipses Step5: We can also save the elliptic parameters in text files. Below is an example of saving the polynomial coefficients of all regions represented as ellipses. Step6: To load the saved features from file, use the loading funciton
9,046
<ASSISTANT_TASK:> Python Code: print hash_obj([0, 1, 2]) bits = 64*2 n_elements = 200 np.log10(2*2**bits/(n_elements*(n_elements-1))) l = list(['zero', 'one', 'two']) l.__getitem__(0) [x for x in l.__iter__()] l.__setitem__(1, 1) print l l.__getslice__(1,3) l.__setslice__(1, 3, ('b', 'c')) print l from functools import total_ordering from collections import OrderedDict from pisa.core.param import Param, ParamSet p0 = Param(name='c', value=1.5, prior=None, range=[1,2], is_fixed=False, is_discrete=False, tex=r'\int{\rm c}') p1 = Param(name='a', value=2.5, prior=None, range=[1,5], is_fixed=False, is_discrete=False, tex=r'{\rm a}') p2 = Param(name='b', value=1.5, prior=None, range=[1,2], is_fixed=False, is_discrete=False, tex=r'{\rm b}') c = ParamSet(p0, p1, p2) print c.values print c[0] c[0].value = 1 print c.values print c.tex c.values = [3, 2, 1] print c.values print c.values[0] print c[0].value print 'priors:', c.priors print 'names:', c.names print c['a'] print c['a'].value c['a'].value = 33 print c['a'].value print c['c'].is_fixed c['c'].is_fixed = True print c['c'].is_fixed print c.are_fixed c.fix('c') print c.are_fixed c.unfix('a') print c.are_fixed c.unfix([0,1,2]) print c.are_fixed fixed_params = c.fixed print fixed_params.are_fixed free_params = c.free print free_params.are_fixed print c.free.values print c.values_hash print c.fixed.values_hash print c.free.values_hash print c[0].state print c.state_hash print c.fixed.state_hash print c.free.state_hash print 'fixed:', c.fixed.names print 'fixed, discrete:', c.fixed.discrete.names print 'fixed, continuous:', c.fixed.continuous.names print 'free:', c.free.names print 'free, discrete:', c.free.discrete.names print 'free, continuous:', c.free.continuous.names print 'continuous, free:', c.continuous.free.names print 'free, continuous hash:', c.free.continuous.values_hash print 'continuous, free hash:', c.continuous.free.values_hash print c.b.prior print c.priors_llh <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Testing out a container class but that
9,047
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np import pandas as pd from math import log from sklearn import linear_model #comment below if not using ipython notebook %matplotlib inline #read csv anscombe_i = pd.read_csv('../datasets/anscombe_i.csv') plt.scatter(anscombe_i.x, anscombe_i.y, color='black') plt.ylabel("Y") plt.xlabel("X") regr_i = linear_model.LinearRegression() #We need to reshape the data to be a matrix # with only one column X = anscombe_i.x.reshape((len(anscombe_i.x), 1)) y = anscombe_i.y.reshape((len(anscombe_i.y), 1)) #Fit a line regr_i.fit(X,y) # The coefficients print('Coefficients: \n', regr_i.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr_i.predict(X) - y) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr_i.score(X, y)) plt.plot(X,regr_i.predict(X), color='green', linewidth=3) plt.scatter(anscombe_i.x, anscombe_i.y, color='black') plt.ylabel("X") plt.xlabel("y") from pylab import * # determine the line-fit k,d = polyfit(anscombe_i.x,y,1) yfit = k*anscombe_i.x+d # plot the data figure(1) scatter(anscombe_i.x,y, color='black') plot(anscombe_i.x, yfit, 'green') #plot line from point to regression line for ii in range(len(X)): plot([anscombe_i.x[ii], anscombe_i.x[ii]], [yfit[ii], y[ii]], 'k') xlabel('X') ylabel('Y') import pylab as P figure(1) scatter(anscombe_i.x,y, color='black') plot(anscombe_i.x, yfit, 'green') #plot line from point to regression line for ii in range(len(X)): plot([anscombe_i.x[ii], anscombe_i.x[ii]], [yfit[ii], y[ii]], 'k') xlabel('X') ylabel('Y') residual_error= anscombe_i.y - yfit error_mean = np.mean(residual_error) error_sigma = np.std(residual_error) plt.figure(2) plt.scatter(anscombe_i.x,residual_error,label='residual error') plt.xlabel("X") plt.ylabel("residual error") plt.figure(3) n, bins, patches = plt.hist(residual_error, 10, normed=1, facecolor='blue', alpha=0.75) y_pdf = P.normpdf( bins, error_mean, error_sigma) l = P.plot(bins, y_pdf, 'k--', linewidth=1.5) plt.xlabel("residual error in y") plt.title("Residual Distribution") # load statsmodels as alias ``sm`` import statsmodels.api as sm y = anscombe_i.y X = anscombe_i.x # Adds a constant term to the predictor # y = mx +b X = sm.add_constant(X) #fit ordinary least squares est = sm.OLS(y, X) est = est.fit() est.summary() plt.scatter(anscombe_i.x, anscombe_i.y, color='black') X_prime = np.linspace(min(anscombe_i.x), max(anscombe_i.x), 100)[:, np.newaxis] # add constant as we did before X_prime = sm.add_constant(X_prime) y_hat = est.predict(X_prime) # Add the regression line (provides same as above) plt.plot(X_prime[:, 1], y_hat, 'r') import seaborn as sns #this just makes the plots pretty (in my opion) sns.set(style="darkgrid", color_codes=True) g = sns.jointplot("x", "y", data=anscombe_i, kind="reg", xlim=(0, 20), ylim=(0, 12), color="r", size=7) X = anscombe_i.x.reshape((len(anscombe_i.x), 1)) y = anscombe_i.y.reshape((len(anscombe_i.y), 1)) k,d = polyfit(anscombe_i.y,anscombe_i.x,1) xfit = k*y+d figure(2) # plot the data scatter(anscombe_i.x,y, color='black') plot(xfit, y, 'blue') for ii in range(len(y)): plot([xfit[ii], anscombe_i.x[ii]], [y[ii], y[ii]], 'k') xlabel('X') ylabel('Y') from scipy.odr import Model, Data, ODR from scipy.stats import linregress import numpy as np def orthoregress(x, y): # get initial guess by first running linear regression linregression = linregress(x, y) model = Model(fit_function) data = Data(x, y) od = ODR(data, model, beta0=linregression[0:2]) out = od.run() return list(out.beta) def fit_function(p, x): #return y = m x + b return (p[0] * x) + p[1] m, b = orthoregress(anscombe_i.x, anscombe_i.y) # determine the line-fit y_ortho_fit = m*anscombe_i.x+b # plot the data scatter(anscombe_i.x,anscombe_i.y, color = 'black') plot(anscombe_i.x, y_ortho_fit, 'r') xlabel('X') ylabel('Y') scatter(anscombe_i.x,anscombe_i.y,color = 'black') plot(xfit, anscombe_i.y, 'b', label= "horizontal residuals") plot(anscombe_i.x, yfit, 'g', label= "vertical residuals") plot(anscombe_i.x, y_ortho_fit, 'r', label = "perpendicular residuals" ) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now lets read the first set of data, and make a simple scatter plot. Step2: Luckly for us, we do not need to implement linear regression, since scikit learn already has a very efficient implementation. The straight line can be seen in the plot below, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Step3: Residuals Step4: Now let us plot the residual (y - y predicted) vs x. Step5: As seen the the histogram, the residual error should be (somewhat) normally distributed and centered around zero. This post explains why. Step6: The important parts of the summary are the Step7: If we want to be even more fancier, we can use the seaborn library to plot Linear regression with marginal distributions which also states the pearsonr and p value on the plot. Using the statsmodels approach is more rigourous, but sns provides quick visualizations. Step8: Usually we calculate the (vertical) residual, or the difference in the observed and predicted in the y. This is because "the use of the least squares method to calculate the best-fitting line through a two-dimensional scatter plot typically requires the user to assume that one of the variables depends on the other. (We caculate the difference in the y) However, in many cases the relationship between the two variables is more complex, and it is not valid to say that one variable is independent and the other is dependent. When analysing such data researchers should consider plotting the three regression lines that can be calculated for any two-dimensional scatter plot." Step9: Total Least Squares Regression Step10: Plotting all three regression lines gives a fuller picture of the data, and comparing their slopes provides a simple graphical assessment of the correlation coefficient. Plotting the orthogonal regression line (red) provides additional information because it makes no assumptions about the dependence or independence of the variables; as such, it appears to more accurately describe the trend in the data compared to either of the ordinary least squares regression lines.
9,048
<ASSISTANT_TASK:> Python Code: import numpy as np import ipywidgets as widgets import bqplot.pyplot as plt y = np.random.randn(100).cumsum() # simple random walk # create a button update_btn = widgets.Button(description='Update', button_style='success') # create a figure widget fig1 = plt.figure(animation_duration=750) line = plt.plot(y) # define an on_click function def on_btn_click(btn): # update the y attribute of line mark line.y = np.random.randn(100).cumsum() # another random walk # register the on_click function update_btn.on_click(on_btn_click) # stack button and figure using VBox widgets.VBox([fig1, update_btn]) import pandas as pd # create a dummy time series for 5 dummy stock tickers dates = pd.date_range(start='20180101', end='20181231') n = len(dates) tickers = list('ABCDE') prices = pd.DataFrame(np.random.randn(n, 5).cumsum(axis=0), columns=tickers) # create a dropdown menu for tickers dropdown = widgets.Dropdown(description='Ticker', options=tickers) # create figure for plotting time series current_ticker = dropdown.value fig_title_tmpl = '"{}" Time Series' # string template for title of the figure fig2 = plt.figure(title=fig_title_tmpl.format(current_ticker)) fig2.layout.width = '900px' time_series = plt.plot(dates, prices[current_ticker]) plt.xlabel('Date') plt.ylabel('Price') # 1. create a callback which updates the plot when dropdown item is selected def update_plot(*args): selected_ticker = dropdown.value # update the y attribute of the mark by selecting # the column from the price data frame time_series.y = prices[selected_ticker] # update the title of the figure fig2.title = fig_title_tmpl.format(selected_ticker) # 2. register the callback by using the 'observe' method dropdown.observe(update_plot, 'value') # stack the dropdown and fig widgets using VBox widgets.VBox([dropdown, fig2]) # create two dropdown menus for X and Y attributes of scatter x_dropdown = widgets.Dropdown(description='X', options=tickers, value='A') y_dropdown = widgets.Dropdown(description='Y', options=tickers, value='B') # create figure for plotting the scatter x_ticker = x_dropdown.value y_ticker = y_dropdown.value # set up fig_margin to allow space to display color bar fig_margin = dict(top=20, bottom=40, left=60, right=80) fig3 = plt.figure(animation_duration=1000, fig_margin=fig_margin) # custom axis options for color data axes_options = {'color': {'tick_format': '%m/%y', 'side': 'right', 'num_ticks': 5}} scatter = plt.scatter(x=prices[x_ticker], y=prices[y_ticker], color=dates, # represent chronology using color scale stroke='black', colors=['red'], default_size=32, axes_options=axes_options) plt.xlabel(x_ticker) plt.ylabel(y_ticker) # 1. create a callback which updates the plot when dropdown item is selected def update_scatter(*args): x_ticker = x_dropdown.value y_ticker = y_dropdown.value # update the x and y attributes of the mark by selecting # the column from the price data frame with scatter.hold_sync(): scatter.x = prices[x_ticker] scatter.y = prices[y_ticker] # update the title of the figure plt.xlabel(x_ticker) plt.ylabel(y_ticker) # 2. register the callback by using the 'observe' method x_dropdown.observe(update_scatter, 'value') y_dropdown.observe(update_scatter, 'value') # stack the dropdown and fig widgets using VBox widgets.VBox([widgets.HBox([x_dropdown, y_dropdown]), fig3]) funcs = dict(sin=np.sin, cos=np.cos, tan=np.tan, sinh=np.sinh, tanh=np.tanh) dropdown = widgets.Dropdown(options=funcs, description='Function') fig = plt.figure(title='sin(x)', animation_duration=1000) # create x and y data attributes for the line chart x = np.arange(-10, 10, .1) y = np.sin(x) line = plt.plot(x, y ,'m') def update_line(*args): f = dropdown.value fig.title = f'{f.__name__}(x)' line.y = f(line.x) dropdown.observe(update_line, 'value') widgets.VBox([dropdown, fig]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Update the plot on a button click Step2: Let's look at an example where we link a plot to a dropdown menu Step3: Let's now create a scatter plot where we select X and Y data from the two dropdown menus Step4: In the example below, we'll look at plots of trigonometic functions
9,049
<ASSISTANT_TASK:> Python Code: from nipype import DataGrabber, Node # Create DataGrabber node dg = Node(DataGrabber(infields=['subject_id', 'task_id'], outfields=['anat', 'func']), name='datagrabber') # Location of the dataset folder dg.inputs.base_directory = '/data/ds102' # Necessary default parameters dg.inputs.template = '*' dg.inputs.sort_filelist = True dg.inputs.template_args = {'anat': [['subject_id']], 'func': [['subject_id', 'task_id']]} dg.inputs.field_template = {'anat': '%s/anat/*_T1w.nii.gz', 'func': '%s/func/*run-%d_bold.nii.gz'} # Using the IdentityInterface from nipype import IdentityInterface infosource = Node(IdentityInterface(fields=['subject_id', 'contrasts']), name="infosource") infosource.inputs.contrasts = 1 subject_list = ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05'] infosource.iterables = [('subject_id', subject_list)] # Specifying the input fields of DataGrabber directly dg.inputs.subject_id = 'sub-01' dg.inputs.task_id = 1 print dg.run().outputs from nipype import SelectFiles, Node # String template with {}-based strings templates = {'anat': '{subject_id}/anat/{subject_id}_T1w.nii.gz', 'func': '{subject_id}/func/{subject_id}_task-flanker_run-{task_id}_bold.nii.gz'} # Create SelectFiles node sf = Node(SelectFiles(templates), name='selectfiles') # Location of the dataset folder sf.inputs.base_directory = '/data/ds102' # Feed {}-based placeholder strings with values sf.inputs.subject_id = 'sub-01' sf.inputs.task_id = '1' print sf.run().outputs from nipype import SelectFiles, Node from os.path import abspath as opap # String template with {}-based strings templates = {'anat': '{subject_id}/anat/{subject_id}_T1w.nii.gz', 'func': '{subject_id}/func/{subject_id}_task-flanker_run-[1,2]_bold.nii.gz'} # Create SelectFiles node sf = Node(SelectFiles(templates), name='selectfiles') # Location of the dataset folder sf.inputs.base_directory = '/data/ds102' # Feed {}-based placeholder strings with values sf.inputs.subject_id = 'sub-01' # Print SelectFiles output print sf.run().outputs from nipype.interfaces.freesurfer import FSCommand from os.path import abspath as opap # Path to your freesurfer output folder fs_dir = opap('/data/ds102/freesurfer') # Set SUBJECTS_DIR FSCommand.set_default_subjects_dir(fs_dir) from nipype import Node from nipype.interfaces.io import FreeSurferSource # Create FreeSurferSource node fssource = Node(FreeSurferSource(subjects_dir=fs_dir), name='fssource') fssource.inputs.subject_id = 'sub001' result = fssource.run() print 'aparc_aseg: %s\n' % result.outputs.aparc_aseg print 'brainmask: %s\n' % result.outputs.brainmask print 'inflated: %s\n' % result.outputs.inflated fssource.inputs.hemi = 'lh' result = fssource.run() result.outputs.inflated <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Second, we know that the two files we desire are the the following location Step2: Now, comes the most important part of DataGrabber. We need to specify the template structure to find the specific data. This can be done as follows. Step3: You'll notice that we use %s, %02d and * for placeholders in the data paths. %s is a placeholder for a string and is filled out by subject_id. %02d is a placeholder for a integer number and is filled out by task_id. * is used as a wild card, e.g. a placeholder for any possible string combination. This is all to set up the DataGrabber node. Step4: Now you only have to connect infosource with your DataGrabber and run the workflow to iterate over subjects 1, 2 and 3. Step5: Now let's run the DataGrabber node and let's look at the output Step6: SelectFiles Step7: Let's check if we get what we wanted. Step8: Perfect! But why is SelectFiles more flexible than DataGrabber? First, you perhaps noticed that with the {}-based string, we can reuse the same input (e.g. subject_id) multiple time in the same string, without feeding it multiple times into the template. Step9: As you can see, now func contains two file paths, one for the first and one for the second run. As a side node, you could have also gotten them same thing with the wild card * Step10: To create the FreeSurferSource node, do as follows Step11: Let's now run it for a specific subject. Step12: Did it work? Let's try to access multiple FreeSurfer outputs Step13: It seems to be working as it should. But as you can see, the inflated output actually contains the file location for both hemispheres. With FreeSurferSource we can also restrict the file selection to a single hemisphere. To do this, we use the hemi input filed Step14: Let's take a look again at the inflated output.
9,050
<ASSISTANT_TASK:> Python Code: def example1(x_1, x_2): z = x_1**0.5*x_2*0.5 return z fig = pl.figure() ax = Axes3D(fig) X = np.arange(0, 1, 0.1) Y = np.arange(0, 1, 0.1) X, Y = np.meshgrid(X, Y) Z = example1(X, Y) ax.plot_surface(X, Y, Z, rstride=1, cstride=1) pl.show() nn = NN() x_1 = Symbol('x_1') x_2 = Symbol('x_2') f = x_1**0.5*x_2*0.5 nn.set_input_layer(2) nn.set_hidden_layer(2) nn.set_output_layer(2) nn.setup() nn.initialize() idata = [1, 2] nn.supervised_function(f, idata) nn.simulate(1, 0.1) X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) print X, Y X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) nn = NN() nn.set_network() for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) for i in range(100): l = np.random.choice([i for i in range(len(a))]) m = nn.main(1, f, [a[l], b[l]], 0.5) for x in X: for y in Y: idata = [x, y] c = np.append(c, nn.realize(f, idata)) a b c fig = pl.figure() ax = Axes3D(fig) ax.scatter(a, b, c) pl.show() X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) nn = NN() nn.set_network() for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) for i in range(10000): l = np.random.choice([i for i in range(len(a))]) m = nn.main(1, f, [a[l], b[l]], 0.5) for x in X: for y in Y: idata = [x, y] c = np.append(c, nn.realize(f, idata)) fig = pl.figure() ax = Axes3D(fig) ax.scatter(a, b, c) pl.show() ここで、 nn.hidden_layer x_1 = Symbol('x_1') x_2 = Symbol('x_2') f = (1+sin(4*math.pi*x_1))*x_2*1/2 X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) nn = NN() nn.set_network() for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) for i in range(1000): l = np.random.choice([i for i in range(len(a))]) m = nn.main(1, f, [a[l], b[l]], 0.5) for x in X: for y in Y: idata = [x, y] c = np.append(c, nn.realize(f, idata)) fig = pl.figure() ax = Axes3D(fig) ax.scatter(a, b, c) pl.show() X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) nn = NN() nn.set_network(h=5) for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) for i in range(1000): l = np.random.choice([i for i in range(len(a))]) m = nn.main(1, f, [a[l], b[l]], 0.5) for x in X: for y in Y: idata = [x, y] c = np.append(c, nn.realize(f, idata)) fig = pl.figure() ax = Axes3D(fig) ax.scatter(a, b, c) pl.show() X = np.arange(-1, 1, 0.1) Y = np.arange(-1, 1, 0.1) print X, Y fig = pl.figure() ax = Axes3D(fig) f = (1+sin(4*math.pi*x_1))*x_2*1/2 X = np.arange(-1, 1, 0.1) Y = np.arange(-1, 1, 0.1) a = np.array([]) b = np.array([]) c = np.array([]) fig = plt.figure() nn = NN() nn.set_network() for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) c = np.append(c, nn.main2(50, f, [x, y], 0.8)) for i in range(50): l = np.random.choice([i for i in range(len(a))]) m = nn.main2(20, f, [a[l], b[l]], 0.5) c[l] = m a = np.array([]) b = np.array([]) c = np.array([]) for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) c = np.append(c, nn.realize(f, [x, y])) ax.scatter(a, b, c) ax.set_zlim(0, 1) pl.show() def example2(x_1, x_2): z = (1+np.sin(4*math.pi*x_1))*x_2*1/2 return z fig = pl.figure() ax = Axes3D(fig) X = np.arange(-1, 1, 0.1) Y = np.arange(-1, 1, 0.1) X, Y = np.meshgrid(X, Y) Z = example2(X, Y) ax.plot_surface(X, Y, Z, rstride=1, cstride=1) ax.set_zlim(-1, 1) pl.show() X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) evl = np.array([]) for i in range(len(a)): nn = NN() nn.set_network() for j in range(1): l = np.random.choice([i for i in range(len(a))]) if l != i: m = nn.main(1, f, [a[l], b[l]], 0.5) idata = [a[i], b[i]] est = nn.realize(f, idata) evl = np.append(evl, math.fabs(est - nn.supervised_data)) np.average(evl) X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) nn = NN() nn.set_network(h=7) for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) evl = np.array([]) for i in range(len(a)): for j in range(10000): nn = NN() nn.set_network() l = np.random.choice([i for i in range(len(a))]) if l != i: m = nn.main(1, f, [a[l], b[l]], 0.5) idata = [a[i], b[i]] evl = np.append(evl, math.fabs(nn.realize(f, idata) - nn.supervised_data)) evl np.average(evl) X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) evl = np.array([]) for i in range(len(a)): for j in range(100): nn = NN() nn.set_network() l = np.random.choice([i for i in range(len(a))]) if l != i: m = nn.main(1, f, [a[l], b[l]], 0.5) idata = [a[i], b[i]] est = nn.realize(f, idata) evl = np.append(evl, math.fabs(est - nn.supervised_data)) np.average(evl) X = np.arange(0, 1, 0.2) Y = np.arange(0, 1, 0.2) a = np.array([]) b = np.array([]) c = np.array([]) for x in X: for y in Y: a = np.append(a, x) b = np.append(b, y) evl = np.array([]) for i in range(len(a)): for j in range(100): nn = NN() nn.set_network(h=5) l = np.random.choice([i for i in range(len(a))]) if l != i: m = nn.main(1, f, [a[l], b[l]], 0.5) idata = [a[i], b[i]] est = nn.realize(f, idata) evl = np.append(evl, math.fabs(est - nn.supervised_data)) np.average(evl) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <P>課題の例で使われた関数は以下の通りである。</P> Step2: 以下に使い方を説明する。 Step3: 入力層、中間層、出力層を作る関数を実行する。引数には層の数を用いる。 Step4: <p>nn.set_hidden_layer()は同時にシグモイド関数で変換する前の中間層も作る。</p> Step5: nn.supervised_function(f, idata)は教師データを作成する。引数は関数とサンプルデータをとる。 Step6: nn.simulate(N, eta)は引数に更新回数と学習率をとる。普通はN=1で行うべきかもしれないが、工夫として作成してみた。N回学習した後に出力層を返す。 Step7: nn.calculation()は学習せずに入力層から出力層の計算を行う。nn.simulate()内にも用いられている。 Step8: の組み合わせである。 Step9: 例えば(0, 0)を入力すると0.52328635を返している(つまりa[0]とb[0]を入力して、c[0]の値を返している)。 Step10: 確率的勾配降下法を100回繰り返したが見た感じから近づいている。回数を10000回に増やしてみる。 Step11: 見た感じ随分近づいているように見える。 Step12: 同様のことを課題の例で使われた関数でも試してみる。 Step13: 上手く近似できないので中間層の数を変えてみる。5層にしてみる。 Step14: 目標と比べると大きく異なる。 Step15: で取り、学習の際にランダムに一個選ばれたサンプルを何十回も学習させてみた。 Step16: 本来ならば下のような形になるべきであるので上手くいっているとは言い難い。 Step17: 同じ方法でコブ・ダグラス型生産関数を学習させた様子をアニメーションにしてみた。この方法が何の意味を持つかは分からないが学習はまあまよくできていた。 Step18: 次に十分大きく(1000回に)してみる。 Step19: 誤差の平均であるので小さい方よい。
9,051
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from random import random, randint, choice from itertools import cycle, ifilter, imap, islice, izip, starmap, tee from collections import defaultdict from operator import add, mul from pymonad.Maybe import * from pymonad.Reader import * a = range(0, 9) zip(*[iter(a)]*4) def zip_with_(f, a, b): return (f(*z) for z in izip(a, b)) def zip_with(f, *a): return starmap(f, izip(*a)) b = range(10, 20) list(zip_with(add, a, reversed(b))) @curry def take(n, a): return islice(a, None, n) @curry def drop(n, a): return islice(a, n, None) def double_every_other(a): return zip_with(mul, a, cycle([1,2])) x = cycle([1, 2, 3]) take15 = take(15) list(take15(x)) y = double_every_other(x) list(take15(y)) def rotate(n, a): return (x for x, _ in izip(islice(cycle(a), n , None), a)) h = "_hello_lazy_world" r = rotate(6, h) ''.join(list(r)) def const(x, y): return x def rotate1(n, a): return zip_with(const, drop(n, cycle(a)), a) r1 = rotate1(6, h) ''.join(list(r1)) class Stream(object): def __init__(self, data): self.data = iter(data) def __iter__(self): class iterator(object): def __init__(self, it): self.it = it.data def next(self): return next(self.it) return iterator(self) def filter(self, pred): return Stream(ifilter(pred, self)) def map(self, fn): return Stream(imap(fn, self)) s = Stream(range(20)). \ filter(lambda x: x % 7 == 0). \ map(lambda x: x * x) list(s) def make_stream(data): try: return Just(iter(data)) except TypeError: return Nothing @curry def filter_stream(pred, stream): return Just(ifilter(pred, stream)) @curry def map_stream(fn, stream): return Just(imap(fn, stream)) def eval_stream(stream): if isinstance(stream, Just): return stream.value else: return () my_filter = filter_stream(lambda x: x % 7 == 0) my_map = map_stream(lambda x: x * x) st = make_stream(range(20)) st1 = st >> my_filter >> my_map list(eval_stream(st1)) @curry def filter_stream1(pred, stream): return ifilter(pred, stream) @curry def map_stream1(fn, stream): return imap(fn, stream) my_filter1 = filter_stream1(lambda x: x % 7 == 0) my_map1 = map_stream1(lambda x: x * x) my_transform = my_filter1 * my_map1 st2 = make_stream(range(20)) st3 = my_transform * st2 list(eval_stream(st3)) def repeatedly(f, *args, **kwargs): return (f(*args, **kwargs) for _ in iter(int, 1)) def generate_data(): return (choice(['a', 'b', 'c']), float("{:.2f}".format(random())), randint(1, 20)) data = take(100, repeatedly(generate_data)) sample = take(10, repeatedly(generate_data)) list(sample) def bin_labels(bins, label_format=None): a, b = tee(bins) next(b) label_format = label_format or '>= %.2f, < %.2f' return [label_format % b for b in izip(a, b)] def bin_data(x, y, bin_edges): data_to_bins = izip(np.digitize(x, bin_edges), y) bin_sums = defaultdict(int) for index, count in data_to_bins: bin_sums[index] += count return [bin_sums.get(index, 0) for index in xrange(len(bin_edges))] by_label = defaultdict(list) d1, d2 = tee(data) for label, score, count in d1: by_label[label].append([score, count]) num_bins = 20 _, score, _ = izip(*d2) bins = np.linspace(min(score), max(score), num_bins) bin_lbl = bin_labels(bins) series = [] for label, records in by_label.iteritems(): _, count = izip(*records) series.append({'label': label, 'data': bin_data(score, count, bins)}) result = {'series': series, 'bins': bin_lbl} fig, ax = plt.subplots(figsize=(18,6)) bar_width = 0.2 colors = ['r', 'g', 'b'] for k, item in enumerate(result['series']): index = np.arange(len(item['data'])) plt.bar(index + k * bar_width, item['data'], color = colors[k], width = bar_width, label = item['label']) plt.xlabel('Scores') plt.ylabel('Count') plt.title('Count by scores') plt.xticks(index + bar_width, result['bins'], rotation=70) plt.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The ubiquitous zip Step2: In fact, it is mentioned in the documentation in the section on built-in functions. I guess, it is one of those bits that are easily skipped on first reading. The reason this example works the way it does, namely, partitioning the iterable into chunks of the given length, is that zip evaluates its arguments strictly left-to-right. Hence, all the copies of the iterator get advanced together and dereferenced one by one. Step3: Another, more generic, implementation is possible using the starmap function. Step4: Using zip_with we can express operations on sequences in a more functional way Step5: Before we proceed, let's introduce another bit of syntactical convenience Step6: @curry will be explained later, for now just think of it as a fancy way of applying the idea behind functools.partial to forge partial application in Python. Step7: Lazy evaluation allows us to work with infinite lists without much trouble Step8: In another amazing example which I first came across in a SO answer zip is used to rotate a (potentially empty or infinite) sequence. In order to emphasize the Haskell influence, let us first write it without all of the convenience functions defined above Step9: Now we rewrite the same with more Haskell flavour Step10: Contextual iterators and monads Step11: We may notice that the resulting flow has certain traits of a composable contextual computation - something that monads were introduced to deal with. Indeed, we start by putting the original data in a "streaming context". Each public method then extracts the actual data, applies some transformation and wraps it back into the context before passing on. This document is not going to descend into yet another tutorial on monads. Instead we will use the PyMonad in a somewhat crude manner to demonstrate how the same goal can be achieved in a more functional way. Step12: Now express the operations performed by the methods as monadic functions. Step13: At the end of the chain we will also need a way out of the context to continue working with the data. We do not intend to be 100% pure after all. Step14: Now we can also partially apply our function for better readability and potential reuse. Step15: Finally, execute the flow. Step16: We can take a different approach and work with ordinary functions instead Step17: We can partially apply them, as before, and then use the overloaded * operator to denote curried function composition. Step18: Finally the transformation is applied to the "contextualized" data using the applicative style instead of the bind operator. Step19: Splitting and unpacking Step20: Now let's produce some mock data. Although using effectful functions in comprehensions is generally frowned upon in Python, here it allows us to achieve a clean separation of the generating (repeatedly) and consuming (take) parts of the logic. Step21: Now we define a function formatting labels for the plot. This is a typical example of using tee to traverse a sequence in a pairwise manner. Step22: Here we aggregate data in the bins Step23: Finally we put together a dictionary containing all the data for the plot
9,052
<ASSISTANT_TASK:> Python Code: # Install the SDK !pip3 install 'kfp>=0.1.31.2' --quiet import kfp.deprecated as kfp import kfp.deprecated.components as components #Define a Python function def add(a: float, b: float) -> float: '''Calculates sum of two arguments''' return a + b add_op = components.create_component_from_func(add) #Advanced function #Demonstrates imports, helper functions and multiple outputs from typing import NamedTuple def my_divmod(dividend: float, divisor:float) -> NamedTuple('MyDivmodOutput', [('quotient', float), ('remainder', float), ('mlpipeline_ui_metadata', 'UI_metadata'), ('mlpipeline_metrics', 'Metrics')]): '''Divides two numbers and calculate the quotient and remainder''' #Imports inside a component function: import numpy as np #This function demonstrates how to use nested functions inside a component function: def divmod_helper(dividend, divisor): return np.divmod(dividend, divisor) (quotient, remainder) = divmod_helper(dividend, divisor) from tensorflow.python.lib.io import file_io import json # Exports a sample tensorboard: metadata = { 'outputs' : [{ 'type': 'tensorboard', 'source': 'gs://ml-pipeline-dataset/tensorboard-train', }] } # Exports two sample metrics: metrics = { 'metrics': [{ 'name': 'quotient', 'numberValue': float(quotient), },{ 'name': 'remainder', 'numberValue': float(remainder), }]} from collections import namedtuple divmod_output = namedtuple('MyDivmodOutput', ['quotient', 'remainder', 'mlpipeline_ui_metadata', 'mlpipeline_metrics']) return divmod_output(quotient, remainder, json.dumps(metadata), json.dumps(metrics)) my_divmod(100, 7) divmod_op = components.create_component_from_func(my_divmod, base_image='tensorflow/tensorflow:1.11.0-py3') import kfp.deprecated.dsl as dsl @dsl.pipeline( name='calculation-pipeline', description='A toy pipeline that performs arithmetic calculations.' ) def calc_pipeline( a=7, b=8, c=17, ): #Passing pipeline parameter and a constant value as operation arguments add_task = add_op(a, 4) #Returns a dsl.ContainerOp class instance. #Passing a task output reference as operation arguments #For an operation with a single return value, the output reference can be accessed using `task.output` or `task.outputs['output_name']` syntax divmod_task = divmod_op(add_task.output, b) #For an operation with a multiple return values, the output references can be accessed using `task.outputs['output_name']` syntax result_task = add_op(divmod_task.outputs['quotient'], c) #Specify pipeline argument values arguments = {'a': 7, 'b': 8} #Submit a pipeline run kfp.Client().create_run_from_pipeline_func(calc_pipeline, arguments=arguments) # Run the pipeline on a separate Kubeflow Cluster instead # (use if your notebook is not running in Kubeflow - e.x. if using AI Platform Notebooks) # kfp.Client(host='<ADD KFP ENDPOINT HERE>').create_run_from_pipeline_func(calc_pipeline, arguments=arguments) #vvvvvvvvv This link leads to the run information page. (Note: There is a bug in JupyterLab that modifies the URL and makes the link stop working) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Simple function that just add two numbers Step2: Convert the function to a pipeline operation Step3: A bit more advanced function which demonstrates how to use imports, helper functions and produce multiple outputs. Step4: Test running the python function directly Step5: Convert the function to a pipeline operation Step6: Define the pipeline Step7: Submit the pipeline for execution
9,053
<ASSISTANT_TASK:> Python Code: # Authors: Jean-Remi King <jeanremi.king@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Denis Engemann <denis.engemann@gmail.com> # # License: BSD (3-clause) import matplotlib.pyplot as plt from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression import mne from mne.datasets import sample from mne.decoding import GeneralizingEstimator print(__doc__) # Preprocess data data_path = sample.data_path() # Load and filter data, set up epochs raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' events_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' raw = mne.io.read_raw_fif(raw_fname, preload=True) picks = mne.pick_types(raw.info, meg=True, exclude='bads') # Pick MEG channels raw.filter(1., 30., fir_design='firwin') # Band pass filtering signals events = mne.read_events(events_fname) event_id = {'Auditory/Left': 1, 'Auditory/Right': 2, 'Visual/Left': 3, 'Visual/Right': 4} tmin = -0.050 tmax = 0.400 # decimate to make the example faster to run, but then use verbose='error' in # the Epochs constructor to suppress warning about decimation causing aliasing decim = 2 epochs = mne.Epochs(raw, events, event_id=event_id, tmin=tmin, tmax=tmax, proj=True, picks=picks, baseline=None, preload=True, reject=dict(mag=5e-12), decim=decim, verbose='error') clf = make_pipeline(StandardScaler(), LogisticRegression(solver='lbfgs')) time_gen = GeneralizingEstimator(clf, scoring='roc_auc', n_jobs=1, verbose=True) # Fit classifiers on the epochs where the stimulus was presented to the left. # Note that the experimental condition y indicates auditory or visual time_gen.fit(X=epochs['Left'].get_data(), y=epochs['Left'].events[:, 2] > 2) scores = time_gen.score(X=epochs['Right'].get_data(), y=epochs['Right'].events[:, 2] > 2) fig, ax = plt.subplots(1) im = ax.matshow(scores, vmin=0, vmax=1., cmap='RdBu_r', origin='lower', extent=epochs.times[[0, -1, 0, -1]]) ax.axhline(0., color='k') ax.axvline(0., color='k') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel('Testing Time (s)') ax.set_ylabel('Training Time (s)') ax.set_title('Generalization across time and condition') plt.colorbar(im, ax=ax) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will train the classifier on all left visual vs auditory trials Step2: Score on the epochs where the stimulus was presented to the right. Step3: Plot
9,054
<ASSISTANT_TASK:> Python Code: !hybridizer-cuda ./01-vector-add/01-vector-add.cs -o ./01-vector-add/vectoradd.exe -run !hybridizer-cuda ./01-vector-add/01-vector-add.cs -o ./01-vector-add/parallel-vectoradd.exe -run !hybridizer-cuda ./02-gpu-vector-add/02-gpu-vector-add.cs -o ./02-gpu-vector-add/gpu-vectoradd.exe -run <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Introduce Parallelism Step2: Run Code on the GPU
9,055
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import os SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data') from modshogun import * #Needed lists for the final plot classifiers_linear = []*10 classifiers_non_linear = []*10 classifiers_names = []*10 fadings = []*10 shogun_feats_linear = RealFeatures(CSVFile(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_linear_features_train.dat'))) shogun_labels_linear = BinaryLabels(CSVFile(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_linear_labels_train.dat'))) shogun_feats_non_linear = RealFeatures(CSVFile(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_nonlinear_features_train.dat'))) shogun_labels_non_linear = BinaryLabels(CSVFile(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_nonlinear_labels_train.dat'))) feats_linear = shogun_feats_linear.get_feature_matrix() labels_linear = shogun_labels_linear.get_labels() feats_non_linear = shogun_feats_non_linear.get_feature_matrix() labels_non_linear = shogun_labels_non_linear.get_labels() def plot_binary_data(plot,X_train, y_train): This function plots 2D binary data with different colors for different labels. plot.xlabel(r"$x$") plot.ylabel(r"$y$") plot.plot(X_train[0, np.argwhere(y_train == 1)], X_train[1, np.argwhere(y_train == 1)], 'ro') plot.plot(X_train[0, np.argwhere(y_train == -1)], X_train[1, np.argwhere(y_train == -1)], 'bo') def compute_plot_isolines(classifier,features,size=200,fading=True): This function computes the classification of points on the grid to get the decision boundaries used in plotting x1 = np.linspace(1.2*min(features[0]), 1.2*max(features[0]), size) x2 = np.linspace(1.2*min(features[1]), 1.2*max(features[1]), size) x, y = np.meshgrid(x1, x2) plot_features=RealFeatures(np.array((np.ravel(x), np.ravel(y)))) if fading == True: plot_labels = classifier.apply(plot_features).get_values() else: plot_labels = classifier.apply(plot_features).get_labels() z = plot_labels.reshape((size, size)) return x,y,z def plot_model(plot,classifier,features,labels,fading=True): This function plots an input classification model x,y,z = compute_plot_isolines(classifier,features,fading=fading) plot.pcolor(x,y,z,cmap='RdBu_r') plot.contour(x, y, z, linewidths=1, colors='black') plot_binary_data(plot,features, labels) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Linear Features") plot_binary_data(plt,feats_linear, labels_linear) plt.subplot(122) plt.title("Non Linear Features") plot_binary_data(plt,feats_non_linear, labels_non_linear) plt.figure(figsize=(15,5)) c = 0.5 epsilon =1e-3 svm_linear = LibLinear(c,shogun_feats_linear,shogun_labels_linear) svm_linear.set_liblinear_solver_type(L2R_L2LOSS_SVC) svm_linear.set_epsilon(epsilon) svm_linear.train() classifiers_linear.append(svm_linear) classifiers_names.append("SVM Linear") fadings.append(True) plt.subplot(121) plt.title("Linear SVM - Linear Features") plot_model(plt,svm_linear,feats_linear,labels_linear) svm_non_linear = LibLinear(c,shogun_feats_non_linear,shogun_labels_non_linear) svm_non_linear.set_liblinear_solver_type(L2R_L2LOSS_SVC) svm_non_linear.set_epsilon(epsilon) svm_non_linear.train() classifiers_non_linear.append(svm_non_linear) plt.subplot(122) plt.title("Linear SVM - Non Linear Features") plot_model(plt,svm_non_linear,feats_non_linear,labels_non_linear) gaussian_c=0.7 gaussian_kernel_linear=GaussianKernel(shogun_feats_linear, shogun_feats_linear, 100) gaussian_svm_linear=LibSVM(gaussian_c, gaussian_kernel_linear, shogun_labels_linear) gaussian_svm_linear.train() classifiers_linear.append(gaussian_svm_linear) fadings.append(True) gaussian_kernel_non_linear=GaussianKernel(shogun_feats_non_linear, shogun_feats_non_linear, 100) gaussian_svm_non_linear=LibSVM(gaussian_c, gaussian_kernel_non_linear, shogun_labels_non_linear) gaussian_svm_non_linear.train() classifiers_non_linear.append(gaussian_svm_non_linear) classifiers_names.append("SVM Gaussian Kernel") plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("SVM Gaussian Kernel - Linear Features") plot_model(plt,gaussian_svm_linear,feats_linear,labels_linear) plt.subplot(122) plt.title("SVM Gaussian Kernel - Non Linear Features") plot_model(plt,gaussian_svm_non_linear,feats_non_linear,labels_non_linear) sigmoid_c = 0.9 sigmoid_kernel_linear = SigmoidKernel(shogun_feats_linear,shogun_feats_linear,200,1,0.5) sigmoid_svm_linear = LibSVM(sigmoid_c, sigmoid_kernel_linear, shogun_labels_linear) sigmoid_svm_linear.train() classifiers_linear.append(sigmoid_svm_linear) classifiers_names.append("SVM Sigmoid Kernel") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("SVM Sigmoid Kernel - Linear Features") plot_model(plt,sigmoid_svm_linear,feats_linear,labels_linear) sigmoid_kernel_non_linear = SigmoidKernel(shogun_feats_non_linear,shogun_feats_non_linear,400,2.5,2) sigmoid_svm_non_linear = LibSVM(sigmoid_c, sigmoid_kernel_non_linear, shogun_labels_non_linear) sigmoid_svm_non_linear.train() classifiers_non_linear.append(sigmoid_svm_non_linear) plt.subplot(122) plt.title("SVM Sigmoid Kernel - Non Linear Features") plot_model(plt,sigmoid_svm_non_linear,feats_non_linear,labels_non_linear) poly_c = 0.5 degree = 4 poly_kernel_linear = PolyKernel(shogun_feats_linear, shogun_feats_linear, degree, True) poly_svm_linear = LibSVM(poly_c, poly_kernel_linear, shogun_labels_linear) poly_svm_linear.train() classifiers_linear.append(poly_svm_linear) classifiers_names.append("SVM Polynomial kernel") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("SVM Polynomial Kernel - Linear Features") plot_model(plt,poly_svm_linear,feats_linear,labels_linear) poly_kernel_non_linear=PolyKernel(shogun_feats_non_linear, shogun_feats_non_linear, degree, True) poly_svm_non_linear = LibSVM(poly_c, poly_kernel_non_linear, shogun_labels_non_linear) poly_svm_non_linear.train() classifiers_non_linear.append(poly_svm_non_linear) plt.subplot(122) plt.title("SVM Polynomial Kernel - Non Linear Features") plot_model(plt,poly_svm_non_linear,feats_non_linear,labels_non_linear) multiclass_labels_linear = shogun_labels_linear.get_labels() for i in range(0,len(multiclass_labels_linear)): if multiclass_labels_linear[i] == -1: multiclass_labels_linear[i] = 0 multiclass_labels_non_linear = shogun_labels_non_linear.get_labels() for i in range(0,len(multiclass_labels_non_linear)): if multiclass_labels_non_linear[i] == -1: multiclass_labels_non_linear[i] = 0 shogun_multiclass_labels_linear = MulticlassLabels(multiclass_labels_linear) shogun_multiclass_labels_non_linear = MulticlassLabels(multiclass_labels_non_linear) naive_bayes_linear = GaussianNaiveBayes() naive_bayes_linear.set_features(shogun_feats_linear) naive_bayes_linear.set_labels(shogun_multiclass_labels_linear) naive_bayes_linear.train() classifiers_linear.append(naive_bayes_linear) classifiers_names.append("Naive Bayes") fadings.append(False) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Naive Bayes - Linear Features") plot_model(plt,naive_bayes_linear,feats_linear,labels_linear,fading=False) naive_bayes_non_linear = GaussianNaiveBayes() naive_bayes_non_linear.set_features(shogun_feats_non_linear) naive_bayes_non_linear.set_labels(shogun_multiclass_labels_non_linear) naive_bayes_non_linear.train() classifiers_non_linear.append(naive_bayes_non_linear) plt.subplot(122) plt.title("Naive Bayes - Non Linear Features") plot_model(plt,naive_bayes_non_linear,feats_non_linear,labels_non_linear,fading=False) number_of_neighbors = 10 distances_linear = EuclideanDistance(shogun_feats_linear, shogun_feats_linear) knn_linear = KNN(number_of_neighbors,distances_linear,shogun_labels_linear) knn_linear.train() classifiers_linear.append(knn_linear) classifiers_names.append("Nearest Neighbors") fadings.append(False) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Nearest Neighbors - Linear Features") plot_model(plt,knn_linear,feats_linear,labels_linear,fading=False) distances_non_linear = EuclideanDistance(shogun_feats_non_linear, shogun_feats_non_linear) knn_non_linear = KNN(number_of_neighbors,distances_non_linear,shogun_labels_non_linear) knn_non_linear.train() classifiers_non_linear.append(knn_non_linear) plt.subplot(122) plt.title("Nearest Neighbors - Non Linear Features") plot_model(plt,knn_non_linear,feats_non_linear,labels_non_linear,fading=False) gamma = 0.1 lda_linear = LDA(gamma, shogun_feats_linear, shogun_labels_linear) lda_linear.train() classifiers_linear.append(lda_linear) classifiers_names.append("LDA") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("LDA - Linear Features") plot_model(plt,lda_linear,feats_linear,labels_linear) lda_non_linear = LDA(gamma, shogun_feats_non_linear, shogun_labels_non_linear) lda_non_linear.train() classifiers_non_linear.append(lda_non_linear) plt.subplot(122) plt.title("LDA - Non Linear Features") plot_model(plt,lda_non_linear,feats_non_linear,labels_non_linear) qda_linear = QDA(shogun_feats_linear, shogun_multiclass_labels_linear) qda_linear.train() classifiers_linear.append(qda_linear) classifiers_names.append("QDA") fadings.append(False) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("QDA - Linear Features") plot_model(plt,qda_linear,feats_linear,labels_linear,fading=False) qda_non_linear = QDA(shogun_feats_non_linear, shogun_multiclass_labels_non_linear) qda_non_linear.train() classifiers_non_linear.append(qda_non_linear) plt.subplot(122) plt.title("QDA - Non Linear Features") plot_model(plt,qda_non_linear,feats_non_linear,labels_non_linear,fading=False) # create Gaussian kernel with width = 2.0 kernel = GaussianKernel(10, 2) # create zero mean function zero_mean = ZeroMean() # create logit likelihood model likelihood = LogitLikelihood() # specify EP approximation inference method inference_model_linear = EPInferenceMethod(kernel, shogun_feats_linear, zero_mean, shogun_labels_linear, likelihood) # create and train GP classifier, which uses Laplace approximation gaussian_logit_linear = GaussianProcessClassification(inference_model_linear) gaussian_logit_linear.train() classifiers_linear.append(gaussian_logit_linear) classifiers_names.append("Gaussian Process Logit") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Gaussian Process - Logit - Linear Features") plot_model(plt,gaussian_logit_linear,feats_linear,labels_linear) inference_model_non_linear = EPInferenceMethod(kernel, shogun_feats_non_linear, zero_mean, shogun_labels_non_linear, likelihood) gaussian_logit_non_linear = GaussianProcessClassification(inference_model_non_linear) gaussian_logit_non_linear.train() classifiers_non_linear.append(gaussian_logit_non_linear) plt.subplot(122) plt.title("Gaussian Process - Logit - Non Linear Features") plot_model(plt,gaussian_logit_non_linear,feats_non_linear,labels_non_linear) likelihood = ProbitLikelihood() inference_model_linear = EPInferenceMethod(kernel, shogun_feats_linear, zero_mean, shogun_labels_linear, likelihood) gaussian_probit_linear = GaussianProcessClassification(inference_model_linear) gaussian_probit_linear.train() classifiers_linear.append(gaussian_probit_linear) classifiers_names.append("Gaussian Process Probit") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Gaussian Process - Probit - Linear Features") plot_model(plt,gaussian_probit_linear,feats_linear,labels_linear) inference_model_non_linear = EPInferenceMethod(kernel, shogun_feats_non_linear, zero_mean, shogun_labels_non_linear, likelihood) gaussian_probit_non_linear = GaussianProcessClassification(inference_model_non_linear) gaussian_probit_non_linear.train() classifiers_non_linear.append(gaussian_probit_non_linear) plt.subplot(122) plt.title("Gaussian Process - Probit - Non Linear Features") plot_model(plt,gaussian_probit_non_linear,feats_non_linear,labels_non_linear) figure = plt.figure(figsize=(30,9)) plt.subplot(2,11,1) plot_binary_data(plt,feats_linear, labels_linear) for i in range(0,10): plt.subplot(2,11,i+2) plt.title(classifiers_names[i]) plot_model(plt,classifiers_linear[i],feats_linear,labels_linear,fading=fadings[i]) plt.subplot(2,11,12) plot_binary_data(plt,feats_non_linear, labels_non_linear) for i in range(0,10): plt.subplot(2,11,13+i) plot_model(plt,classifiers_non_linear[i],feats_non_linear,labels_non_linear,fading=fadings[i]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <a id = "section1">Data Generation and Visualization</a> Step5: Data visualization methods. Step6: <a id="section2" href="http Step7: SVM - Kernels Step8: <a id ="section2c" href="http Step9: <a id ="section2d" href="http Step10: <a id ="section3" href="http Step11: <a id ="section4" href="http Step12: <a id ="section5" href="http Step13: <a id ="section6" href="http Step14: <a id ="section7" href="http Step15: <a id ="section7b">Probit Likelihood model</a> Step16: <a id="section8">Putting It All Together</a>
9,056
<ASSISTANT_TASK:> Python Code: import pickle dataset = pickle.load(open('data/cafe.pkl','r')) # or 'pofa.pkl' # This is the neural network class, for your information. from sklearn.decomposition import PCA from sklearn.learning_curve import learning_curve from sklearn.cross_validation import train_test_split from numpy.linalg import pinv from numpy.random import random_sample class NeuralNetwork(object): def __init__(self, dataset, target_name): self.dataset = dataset self.targets = self.dataset[target_name] def _activation(self, x): Funny tanh function. z = x*2/3 y = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) return 1.7159*y def _da(self, x): return (1.7159 - multiply(x, x) / 1.7159) * 2/3 def _inverse_activation(self, x): z = x / 1.7159 return z #z[z<-.999] = -.999; z[z>.999] = .999 #return arctanh(z)*3/2 def feed_forward(self, X): From the input X, calculate the activations at the hidden layer and the output layer. Z = self._activation(dot(c_[X, ones((X.shape[0], 1))], self.W_hidden)) return self._activation(dot(c_[Z, ones((X.shape[0], 1))], self.W_output)), Z def back_propagate(self, inputs, hidden, output, errors): Back-propagate the errors and update the weights. d_output = self._da(output) * errors d_hidden = self._da(hidden) * dot(d_output, self.W_output[:-1].T) n_samples = inputs.shape[0] bias = ones((n_samples, 1)) # Update momentum and weights self.V_output = self.output_learning_rate * dot(c_[hidden, bias].T, d_output) / n_samples self.W_output+= self.V_output self.V_hidden = self.hidden_learning_rate * dot(c_[inputs, bias].T, d_hidden) / n_samples self.W_hidden+= self.V_hidden def train(self, epochs = 100, n_input = 10, n_hidden = 40, hidden_learning_rate = 0.1, output_learning_rate = 0.1, momentum_learning_rate = 0.9, test_size=0.2, cv=3): Initialize the network and start training. # Initialize variables self.n_input = n_input self.n_hidden = n_hidden self.hidden_learning_rate = hidden_learning_rate self.output_learning_rate = output_learning_rate self.momentum_learning_rate = momentum_learning_rate self.n_output = len(unique(self.targets)) self.V_hidden = zeros((self.n_input + 1, self.n_hidden)) self.W_hidden = random_sample(self.V_hidden.shape) self.V_output = zeros((self.n_hidden + 1, self.n_output)) self.W_output = random_sample(self.V_output.shape) data = self.dataset.data # Preprocess the data using PCA self.pca = PCA(n_components = self.n_input, whiten=True, copy=True) X = self.pca.fit_transform(data) self.X = X # Start the training rmse=zeros((epochs,2)) cerr=zeros((epochs,2)) for t in arange(epochs): # Test then Train, since we'll use the training errors for i, (inputs, y) in enumerate([[X_test, y_test], [X_train, y_train]]): outputs, hidden = self.feed_forward(inputs) target=ones(outputs.shape)*(-1.0) target[arange(target.shape[0]),y-1]=1.0 errors = target - outputs rmse[t, i] = sqrt((errors**2).mean()) # RMSE cerr[t, i] = (y == argmax(outputs,axis=1)).mean() yield rmse, cerr, t, epochs # Update weights using backpropagation self.back_propagate(inputs, hidden, outputs, errors) def predict(self, n): Returns the prediction and the reconstruction for the sample n. X = self.X[n:n+1] outputs, hidden = self.feed_forward(X) pca_reconstruction = self.pca.inverse_transform(X) hidden_expected = dot(self._inverse_activation(outputs), pinv(self.W_output))[:,:-1] hidden_reconstruction = self.pca.inverse_transform(dot(self._inverse_activation(hidden_expected), pinv(self.W_hidden))[:,:-1]) return (argmax(outputs) + 1, pca_reconstruction.reshape(self.dataset.images.shape[1:]), hidden_reconstruction.reshape(self.dataset.images.shape[1:])) def plot_training(axs, rmse, cerr, t, epochs): Draw the plot to the specified axis. axs[0].set_title("RMSE") axs[0].set_xlabel("Training epoch") axs[0].set_ylabel("RMSE") axs[0].grid() axs[0].plot(arange(t), rmse[:t]) axs[0].set_xlim([0, epochs]) axs[0].set_ylim([0, 2.0]) axs[0].legend(['Test', 'Training'], loc="best") axs[1].set_title("Classification Error") axs[1].set_xlabel("Training epoch") axs[1].set_ylabel("Classification Error Rate [\%]") axs[1].grid() axs[1].plot(arange(t), cerr[:t]*100.0) axs[1].set_xlim([0, epochs]) axs[1].set_ylim([0, 100.0]) axs[1].legend(['Test', 'Training'], loc="best") def train_network(dataset, target_name, **kwargs): global net net = NeuralNetwork(dataset, target_name) fig, axs = plt.subplots(1,2,figsize=(10,5)) for rmse, cerr, t, epochs in net.train(**kwargs): if mod(t, 10) != 0: continue plot_training(axs, rmse, cerr, t, epochs) clear_output(wait=True) display(fig) axs[0].cla() axs[1].cla() plt.close() plot_training(axs, rmse, cerr, t, epochs) clear_output(wait=True) display(fig) net = None # Global interact_manual(train_network, dataset=fixed(dataset), target_name={'Identity': 'target', 'Gender': 'gender', 'Expression': 'expression'}, epochs= IntSlider(min=10, max=500, step=10, value=100), n_input = IntSlider(min=1, max=(dataset.data.shape[0]-1), value=40), n_hidden = IntSlider(min=1, max=40, value=10), hidden_learning_rate = FloatSlider(min=0.01, max=0.3, value=0.1), output_learning_rate = FloatSlider(min=0.01, max=0.3, value=0.1), momentum_learning_rate = FloatSlider(min=0.5, max=0.99, value=0.9), test_size=FloatSlider(min=0.1, max=0.5, value=0.2)) @interact def plot_classification(image_id=(0, dataset.images.shape[0]-1)): global net if net is None: print("Please train the network first!") return f, axs = plt.subplots(1,3, figsize=(10,5)) axs[0].imshow(dataset.images[image_id],cmap='gray') axs[0].set_title('Id = %d, Target = %d' % (dataset.target[image_id], net.targets[image_id])) axs[0].axis('off') prediction, pca_r, hidden_r = net.predict(image_id) axs[1].imshow(pca_r,cmap='gray') axs[1].set_title('PCA reconstruction') axs[1].axis('off') axs[2].imshow(hidden_r,cmap='gray') axs[2].set_title('Reconstruction (predicted %d)' % prediction) axs[2].axis('off') outputs, hidden = net.feed_forward(net.X) model=PCA(n_components=2) outputs_2d = model.fit_transform(outputs) hidden_2d = model.fit_transform(hidden) fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].scatter(hidden_2d[:,0],hidden_2d[:,1],c=net.targets,lw=0) axs[0].set_title('Hidden Nodes') axs[1].scatter(outputs_2d[:,0],outputs_2d[:,1],c=net.targets,lw=0) axs[1].set_title('Output Nodes') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step6: Backpropagation Demo Step7: Then train the net using the controls here Step8: After the network is trained, use it to classify test images. Step9: Let's plot the output node representation in 2D
9,057
<ASSISTANT_TASK:> Python Code: # Load a useful Python libraries for handling data import pandas as pd from IPython.display import Markdown, display # Read the data data_filename = r'gapminder.csv' data = pd.read_csv(data_filename, low_memory=False) data = data.set_index('country') display(Markdown("General information on the Gapminder data")) display(Markdown("Number of countries: {0}".format(len(data)))) display(Markdown("Number of variables: {0}".format(len(data.columns)))) display(Markdown("The first records of the data.")) data.head() # Convert interesting variables in numeric format for variable in ('internetuserate', 'suicideper100th', 'employrate'): data[variable] = pd.to_numeric(data[variable], errors='coerce') data['internetuserate'].value_counts(sort=False, dropna=False) import numpy as np display(Markdown("Internet Use Rate (min, max) = ({0:.2f}, {1:.2f})".format(data['internetuserate'].min(), data['internetuserate'].max()))) internetuserate_bins = pd.cut(data['internetuserate'], bins=np.linspace(0, 100., num=21)) internetuserate_bins.value_counts(sort=False, dropna=False) internetuserate_bins.value_counts(sort=False, normalize=True, dropna=False) display(Markdown("Cumulative sum for Internet use rate percentages")) internetuserate_bins.value_counts(sort=False, normalize=True, dropna=False).cumsum() display(Markdown("Suicide rate (min, max) = ({0:.2f}, {1:.2f})".format(data['suicideper100th'].min(), data['suicideper100th'].max()))) suiciderate_bins = pd.cut(data['suicideper100th'], bins=np.linspace(0, 40., num=21)) suiciderate_bins.value_counts(sort=False, dropna=False) suiciderate_bins.value_counts(sort=False, normalize=True, dropna=False) display(Markdown("Employment rate (min, max) = ({0:.2f}, {1:.2f})".format(data['employrate'].min(), data['employrate'].max()))) employment_bins = pd.cut(data['employrate'], bins=np.linspace(0, 100., num=21)) employment_bins.value_counts(sort=False, dropna=False) employment_bins.value_counts(sort=False, normalize=True, dropna=False) high_employment_set = data[data['employrate'] > 60.0] high_employment_set.head() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will now have a look at the frequencies of the variables. Step2: This is useless as the variable does not take discrete values. So before researching the frequency count on the data, I will group the data in intervals of 5% using the cut function. Step3: Counts of Internet Use Rate Step4: Percentages of Internet Use Rate Step5: Suicide rate per 100,000 frequencies Step6: Counts of Suicide Rate Step7: Percentages of Suicide Rate Step8: Employment rate frequencies Step9: Counts of Employment Rate Step10: Percentages of Employment Rate Step11: Summary
9,058
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd %pylab inline pylab.style.use('ggplot') import tensorflow as tf X_val = numpy.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y_val = np.atleast_2d(np.array([0, 0, 0, 1])).T X_val y_val tf.reset_default_graph() n_iter = 500 threshold = 0.5 with tf.variable_scope('inputs'): X = tf.placeholder(name='X', shape=(4, 2), dtype=np.float64) y = tf.placeholder(name='y', shape=y_val.shape, dtype=np.float64) with tf.variable_scope('weights'): w = tf.get_variable(name='w', shape=(2, 1), dtype=np.float64, initializer=tf.truncated_normal_initializer()) b = tf.get_variable(name='b', shape=(1, 1), dtype=np.float64, initializer=tf.constant_initializer(1.0)) with tf.variable_scope('train'): output = tf.matmul(X, w) + b loss_func = tf.reduce_mean(tf.squared_difference(y, output)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.2) train_op = optimizer.minimize(loss_func) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) feed_dict = {X: X_val, y: y_val} for i in range(1, n_iter+1): _, out_val = sess.run([train_op, output], feed_dict=feed_dict) out_val = np.where(out_val > threshold, 1, 0) if i % 50 == 0: result = np.column_stack([X_val, y_val, out_val]) result_df = pd.DataFrame(result, columns=['x1', 'x2', 'x1 and x2', 'output']) print('loss_function: {}'.format(loss_func.eval(session=sess, feed_dict=feed_dict))) print('iteration {}\n{}'.format(i, result_df)) X_val = numpy.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y_val = np.atleast_2d(np.array([0, 1, 1, 0])).T X_val y_val tf.reset_default_graph() n_iter = 500 threshold = 0.5 def make_layer(name, x): with tf.variable_scope(name, reuse=None): if name == 'hidden': w_shape = (2, 3) b_shape = (4, 3) elif name == 'output': w_shape = (3, 1) b_shape = (1, 1) else: assert False w = tf.get_variable(name='w', shape=w_shape, dtype=np.float64, initializer=tf.truncated_normal_initializer()) b = tf.get_variable(name='b', shape=b_shape, dtype=np.float64, initializer=tf.constant_initializer(1.0)) mm = tf.matmul(x, w) + b return tf.sigmoid(mm) if name == 'hidden' else mm with tf.variable_scope('inputs'): X = tf.placeholder(name='X', shape=(4, 2), dtype=np.float64) y = tf.placeholder(name='y', shape=(4, 1), dtype=np.float64) hidden = make_layer('hidden', X) output = make_layer('output', hidden) with tf.variable_scope('train'): loss_func = tf.reduce_mean(tf.squared_difference(y, output)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.2) train_op = optimizer.minimize(loss_func) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) feed_dict = {X: X_val, y: y_val} for i in range(1, n_iter+1): _, out_val = sess.run([train_op, output], feed_dict=feed_dict) out_val = np.where(out_val > threshold, 1, 0) if i % 50 == 0: result = np.column_stack([X_val, y_val, out_val]) result_df = pd.DataFrame(result, columns=['x1', 'x2', 'x1 XOR x2', 'output']) print('loss_function: {}'.format(loss_func.eval(session=sess, feed_dict=feed_dict))) print('iteration {}\n{}'.format(i, result_df)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The idea of variable scoping in TensorFlow is to be able to organize the names and initializations of variables that play the same role in a multilayer network. For example, consider an ANN with multiple hidden layers. All of them have a weight matrix $w$. Using variable scoping allows us to structure and initialize them in a systematic way. Step2: AND Gate with TensorFlow Step3: XOR Gate with TensorFlow
9,059
<ASSISTANT_TASK:> Python Code: from fretbursts import * sns = init_notebook(apionly=True) print('seaborn version: ', sns.__version__) # Tweak here matplotlib style import matplotlib as mpl mpl.rcParams['font.sans-serif'].insert(0, 'Arial') mpl.rcParams['font.size'] = 12 %config InlineBackend.figure_format = 'retina' url = 'http://files.figshare.com/2182601/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5' download_file(url, save_dir='./data') full_fname = "./data/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5" d = loader.photon_hdf5(full_fname) loader.alex_apply_period(d) d.calc_bg(bg.exp_fit, time_s=1000, tail_min_us=(800, 4000, 1500, 1000, 3000)) d.burst_search(L=10, m=10, F=6) ds = d.select_bursts(select_bursts.size, add_naa=True, th1=30) alex_jointplot(ds) alex_jointplot(ds, vmax_fret=False) alex_jointplot(ds, vmax_fret=False, marginal_color=8) alex_jointplot(ds, vmax_fret=False, marginal_color=7) alex_jointplot(ds, kind='kde') alex_jointplot(ds, vmax=40) alex_jointplot(ds, cmap='plasma') alex_jointplot(ds, cmap='plasma', marginal_color=83) alex_jointplot(ds, kind='scatter') alex_jointplot(ds, kind='kde') dsf = ds.select_bursts(select_bursts.naa, th1=40) alex_jointplot(dsf, kind='kde', joint_kws={'shade': False, 'n_levels': 12, 'bw': 0.04}) plt.figure(figsize=(5,5)) hexbin_alex(ds) g = alex_jointplot(ds) g.ax_marg_x.grid(False) g.ax_marg_y.grid(False) g.ax_joint.set_xlim(-0.1, 1.1) g.ax_joint.set_ylim(-0.1, 1.1) g = alex_jointplot(ds) g.ax_marg_x.grid(False) g.ax_marg_y.grid(False) g.ax_joint.set_xlim(-0.19, 1.19) g.ax_joint.set_ylim(-0.19, 1.19) plt.subplots_adjust(wspace=0, hspace=0) g.ax_marg_y.spines['bottom'].set_visible(True) g.ax_marg_x.spines['left'].set_visible(True) g.ax_marg_y.tick_params(reset=True, bottom=True, top=False, right=False, labelleft=False) g.ax_marg_x.tick_params(reset=True, left=True, top=False, right=False, labelbottom=False) g = alex_jointplot(ds) g.ax_marg_x.grid(False) g.ax_marg_y.grid(False) g.ax_joint.set_xlim(-0.19, 1.19) g.ax_joint.set_ylim(-0.19, 1.19) plt.subplots_adjust(wspace=0, hspace=0) g.ax_marg_y.tick_params(reset=True, bottom=True, top=False, right=False, labelleft=False) g.ax_marg_x.tick_params(reset=True, left=True, top=False, right=False, labelbottom=False) g = alex_jointplot(ds) g.ax_marg_x.grid(False, axis='x') g.ax_marg_y.grid(False, axis='y') g.ax_joint.set_xlim(-0.19, 1.19) g.ax_joint.set_ylim(-0.19, 1.19) plt.subplots_adjust(wspace=0, hspace=0) alex_jointplot(ds, marginal_kws={'show_kde': False}) from ipywidgets import widgets, interact, interactive, fixed from IPython.display import display, display_png, display_svg, clear_output from IPython.core.pylabtools import print_figure cmaps = ['viridis', 'plasma', 'inferno', 'magma', 'afmhot', 'Blues', 'BuGn', 'BuPu', 'GnBu', 'YlGnBu', 'coolwarm', 'RdYlBu', 'RdYlGn', 'Spectral',]# 'icefire'] uncomment if using seaborn 0.8 @interact(overlay = widgets.RadioButtons(options=['fit model', 'KDE'], value='KDE'), binwidth = widgets.FloatText(value=0.03, min=0.01, max=1), bandwidth = widgets.FloatText(value=0.03, min=0.01, max=1), gridsize = (10, 100), min_size=(10, 500, 5), cmap=widgets.Dropdown(value='Spectral', options=cmaps), reverse_cmap = True, vmax_fret = True, ) def plot_(min_size=50, overlay='KDE', binwidth=0.03, bandwidth=0.03, gridsize=50, cmap='Spectral', reverse_cmap=False, vmax_fret=True): dx = d.select_bursts(select_bursts.size, add_naa=True, th1=min_size) bext.bursts_fitter(dx, 'E', binwidth=binwidth, bandwidth=bandwidth, model=mfit.factory_three_gaussians()) bext.bursts_fitter(dx, 'S', binwidth=binwidth, bandwidth=bandwidth, model=mfit.factory_two_gaussians()) if reverse_cmap: cmap += '_r' if binwidth < 0.01: binwidth = 0.01 if bandwidth < 0.01: bandwidth = 0.01 if overlay == 'fit model': marginal_kws = dict(binwidth=binwidth, show_model=True, pdf=True, show_kde=False) else: marginal_kws = dict(binwidth=binwidth, show_kde=True, bandwidth=bandwidth) alex_jointplot(dx, cmap=cmap, gridsize=gridsize, vmax_fret=vmax_fret, marginal_kws=marginal_kws,) fig = gcf() plt.close() display(fig) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Get and process data Step2: ALEX joint plot Step3: The inner plot in an hexbin plot, basically a 2D histogram with hexagonal bins. Step4: Or you can manually choose the max value mapped by the colormap (vmax) Step5: Changing the colormap will affect both inner and marginal plots Step6: To pick a different color from the colormap for the marginal histograms use histcolor_id Step7: Kinds of joint-plots Step8: No marginals Step9: Figure layout Step10: alex_jointplot returns g which contains the axis handles (g.ax_join, g.ax_marg_x, g.ax_marg_y). Step11: Arguments of inner plots Step12: Interactive plot
9,060
<ASSISTANT_TASK:> Python Code: %load_ext watermark %watermark -a 'Sebastian Raschka' -v -p tensorflow import tensorflow as tf ########################## ### WRAPPER FUNCTIONS ########################## def fc_layer(input_tensor, n_output_units, name, activation_fn=None, seed=None, weight_params=None, bias_params=None): with tf.variable_scope(name): if weight_params is not None: weights = tf.constant(weight_params, name='weights', dtype=tf.float32) else: weights = tf.Variable(tf.truncated_normal( shape=[input_tensor.get_shape().as_list()[-1], n_output_units], mean=0.0, stddev=0.1, dtype=tf.float32, seed=seed), name='weights',) if bias_params is not None: biases = tf.constant(bias_params, name='biases', dtype=tf.float32) else: biases = tf.Variable(tf.zeros(shape=[n_output_units]), name='biases', dtype=tf.float32) act = tf.matmul(input_tensor, weights) + biases if activation_fn is not None: act = activation_fn(act) return act def mlp_graph(n_input=784, n_classes=10, n_hidden_1=128, n_hidden_2=256, learning_rate=0.1, fixed_params=None): # fixed_params to allow loading weights & biases # from NumPy npz archives and defining a fixed, non-trainable # TensorFlow classifier if not fixed_params: var_names = ['fc1/weights:0', 'fc1/biases:0', 'fc2/weights:0', 'fc2/biases:0', 'logits/weights:0', 'logits/biases:0',] fixed_params = {v: None for v in var_names} found_params = False else: found_params = True # Input data tf_x = tf.placeholder(tf.float32, [None, n_input], name='features') tf_y = tf.placeholder(tf.int32, [None], name='targets') tf_y_onehot = tf.one_hot(tf_y, depth=n_classes, name='onehot_targets') # Multilayer perceptron fc1 = fc_layer(input_tensor=tf_x, n_output_units=n_hidden_1, name='fc1', weight_params=fixed_params['fc1/weights:0'], bias_params=fixed_params['fc1/biases:0'], activation_fn=tf.nn.relu) fc2 = fc_layer(input_tensor=fc1, n_output_units=n_hidden_2, name='fc2', weight_params=fixed_params['fc2/weights:0'], bias_params=fixed_params['fc2/biases:0'], activation_fn=tf.nn.relu) logits = fc_layer(input_tensor=fc2, n_output_units=n_classes, name='logits', weight_params=fixed_params['logits/weights:0'], bias_params=fixed_params['logits/biases:0'], activation_fn=tf.nn.relu) # Loss and optimizer ### Only necessary if no existing params are found ### and a trainable graph has to be initialized if not found_params: loss = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=tf_y_onehot) cost = tf.reduce_mean(loss, name='cost') optimizer = tf.train.GradientDescentOptimizer( learning_rate=learning_rate) train = optimizer.minimize(cost, name='train') # Prediction probabilities = tf.nn.softmax(logits, name='probabilities') labels = tf.cast(tf.argmax(logits, 1), tf.int32, name='labels') correct_prediction = tf.equal(labels, tf_y, name='correct_predictions') accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy') from tensorflow.examples.tutorials.mnist import input_data ########################## ### SETTINGS ########################## # Hyperparameters learning_rate = 0.1 training_epochs = 10 batch_size = 64 ########################## ### GRAPH DEFINITION ########################## g = tf.Graph() with g.as_default(): mlp_graph() ########################## ### DATASET ########################## mnist = input_data.read_data_sets("./", one_hot=False) ########################## ### TRAINING & EVALUATION ########################## with tf.Session(graph=g) as sess: sess.run(tf.global_variables_initializer()) saver0 = tf.train.Saver() for epoch in range(training_epochs): avg_cost = 0. total_batch = mnist.train.num_examples // batch_size for i in range(total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size) _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x, 'targets:0': batch_y}) avg_cost += c train_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.train.images, 'targets:0': mnist.train.labels}) valid_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.validation.images, 'targets:0': mnist.validation.labels}) print("Epoch: %03d | AvgCost: %.3f" % (epoch + 1, avg_cost / (i + 1)), end="") print(" | Train/Valid ACC: %.3f/%.3f" % (train_acc, valid_acc)) test_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.test.images, 'targets:0': mnist.test.labels}) print('Test ACC: %.3f' % test_acc) ########################## ### SAVE TRAINED MODEL ########################## saver0.save(sess, save_path='./mlp') import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("./", one_hot=False) with tf.Session() as sess: saver1 = tf.train.import_meta_graph('./mlp.meta') saver1.restore(sess, save_path='./mlp') test_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.test.images, 'targets:0': mnist.test.labels}) print('Test ACC: %.3f' % test_acc) import tensorflow as tf import numpy as np tf.reset_default_graph() with tf.Session() as sess: saver1 = tf.train.import_meta_graph('./mlp.meta') saver1.restore(sess, save_path='./mlp') var_names = [v.name for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)] params = {} print('Found variables:') for v in var_names: print(v) ary = sess.run(v) params[v] = ary np.savez('mlp', **params) import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data ########################### ### LOAD DATA AND PARAMS ########################### mnist = input_data.read_data_sets("./", one_hot=False) param_dict = np.load('mlp.npz') ########################## ### GRAPH DEFINITION ########################## g = tf.Graph() with g.as_default(): # here: constructs a non-trainable graph # due to the provided fixed_params argument mlp_graph(fixed_params=param_dict) with tf.Session(graph=g) as sess: test_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.test.images, 'targets:0': mnist.test.labels}) print('Test ACC: %.3f' % test_acc) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model Zoo -- Saving and Loading Trained Models Step2: Train and Save Multilayer Perceptron Step3: Reload Model from Meta and Checkpoint Files Step4: Working with NumPy Archive Files and Creating Non-Trainable Graphs Step5: Load NumPy .npz files into the mlp_graph
9,061
<ASSISTANT_TASK:> Python Code: from __future__ import division import graphlab products = graphlab.SFrame('amazon_baby_subset.gl/') import json with open('important_words.json', 'r') as f: important_words = json.load(f) important_words = [str(s) for s in important_words] # Remote punctuation def remove_punctuation(text): import string return text.translate(None, string.punctuation) products['review_clean'] = products['review'].apply(remove_punctuation) # Split out the words into individual columns for word in important_words: products[word] = products['review_clean'].apply(lambda s : s.split().count(word)) products train_data, validation_data = products.random_split(.9, seed=1) print 'Training set : %d data points' % len(train_data) print 'Validation set: %d data points' % len(validation_data) import numpy as np def get_numpy_data(data_sframe, features, label): data_sframe['intercept'] = 1 features = ['intercept'] + features features_sframe = data_sframe[features] feature_matrix = features_sframe.to_numpy() label_sarray = data_sframe[label] label_array = label_sarray.to_numpy() return(feature_matrix, label_array) feature_matrix_train, sentiment_train = get_numpy_data(train_data, important_words, 'sentiment') feature_matrix_valid, sentiment_valid = get_numpy_data(validation_data, important_words, 'sentiment') ''' produces probablistic estimate for P(y_i = +1 | x_i, w). estimate ranges between 0 and 1. ''' def predict_probability(feature_matrix, coefficients): # Take dot product of feature_matrix and coefficients score = np.dot(feature_matrix, coefficients) # Compute P(y_i = +1 | x_i, w) using the link function predictions = 1. / (1.+np.exp(-score)) return predictions def feature_derivative(errors, feature): # Compute the dot product of errors and feature ## YOUR CODE HERE derivative = np.dot(errors, feature) return derivative def compute_avg_log_likelihood(feature_matrix, sentiment, coefficients): indicator = (sentiment==+1) scores = np.dot(feature_matrix, coefficients) logexp = np.log(1. + np.exp(-scores)) # Simple check to prevent overflow mask = np.isinf(logexp) logexp[mask] = -scores[mask] lp = np.sum((indicator-1)*scores - logexp)/len(feature_matrix) return lp j = 1 # Feature number i = 10 # Data point number coefficients = np.zeros(194) # A point w at which we are computing the gradient. predictions = predict_probability(feature_matrix_train[i:i+1,:], coefficients) indicator = (sentiment_train[i:i+1]==+1) errors = indicator - predictions gradient_single_data_point = feature_derivative(errors, feature_matrix_train[i:i+1,j]) print "Gradient single data point: %s" % gradient_single_data_point print " --> Should print 0.0" j = 1 # Feature number i = 10 # Data point start B = 10 # Mini-batch size coefficients = np.zeros(194) # A point w at which we are computing the gradient. predictions = predict_probability(feature_matrix_train[i:i+B,:], coefficients) indicator = (sentiment_train[i:i+B]==+1) errors = indicator - predictions gradient_mini_batch = feature_derivative(errors, feature_matrix_train[i:i+B,j]) print "Gradient mini-batch data points: %s" % gradient_mini_batch print " --> Should print 1.0" print len(sentiment_train) from math import sqrt def logistic_regression_SG(feature_matrix, sentiment, initial_coefficients, step_size, batch_size, max_iter): log_likelihood_all = [] # make sure it's a numpy array coefficients = np.array(initial_coefficients) # set seed=1 to produce consistent results np.random.seed(seed=1) # Shuffle the data before starting permutation = np.random.permutation(len(feature_matrix)) feature_matrix = feature_matrix[permutation,:] sentiment = sentiment[permutation] i = 0 # index of current batch # Do a linear scan over data for itr in xrange(max_iter): # Predict P(y_i = +1|x_i,w) using your predict_probability() function # Make sure to slice the i-th row of feature_matrix with [i:i+batch_size,:] ### YOUR CODE HERE predictions = predict_probability(feature_matrix[i:i+batch_size,:], coefficients) # Compute indicator value for (y_i = +1) # Make sure to slice the i-th entry with [i:i+batch_size] ### YOUR CODE HERE indicator = (sentiment[i:i+batch_size]==+1) # Compute the errors as indicator - predictions errors = indicator - predictions for j in xrange(len(coefficients)): # loop over each coefficient # Recall that feature_matrix[:,j] is the feature column associated with coefficients[j] # Compute the derivative for coefficients[j] and save it to derivative. # Make sure to slice the i-th row of feature_matrix with [i:i+batch_size,j] ### YOUR CODE HERE derivative = feature_derivative(errors, feature_matrix[i:i+batch_size,j]) # compute the product of the step size, the derivative, and the **normalization constant** (1./batch_size) ### YOUR CODE HERE coefficients[j] += (1./batch_size)*(step_size * derivative) # Checking whether log likelihood is increasing # Print the log likelihood over the *current batch* lp = compute_avg_log_likelihood(feature_matrix[i:i+batch_size,:], sentiment[i:i+batch_size], coefficients) log_likelihood_all.append(lp) if itr <= 15 or (itr <= 1000 and itr % 100 == 0) or (itr <= 10000 and itr % 1000 == 0) \ or itr % 10000 == 0 or itr == max_iter-1: data_size = len(feature_matrix) print 'Iteration %*d: Average log likelihood (of data points in batch [%0*d:%0*d]) = %.8f' % \ (int(np.ceil(np.log10(max_iter))), itr, \ int(np.ceil(np.log10(data_size))), i, \ int(np.ceil(np.log10(data_size))), i+batch_size, lp) # if we made a complete pass over data, shuffle and restart i += batch_size if i+batch_size > len(feature_matrix): permutation = np.random.permutation(len(feature_matrix)) feature_matrix = feature_matrix[permutation,:] sentiment = sentiment[permutation] i = 0 # We return the list of log likelihoods for plotting purposes. return coefficients, log_likelihood_all sample_feature_matrix = np.array([[1.,2.,-1.], [1.,0.,1.]]) sample_sentiment = np.array([+1, -1]) coefficients, log_likelihood = logistic_regression_SG(sample_feature_matrix, sample_sentiment, np.zeros(3), step_size=1., batch_size=2, max_iter=2) print '-------------------------------------------------------------------------------------' print 'Coefficients learned :', coefficients print 'Average log likelihood per-iteration :', log_likelihood if np.allclose(coefficients, np.array([-0.09755757, 0.68242552, -0.7799831]), atol=1e-3)\ and np.allclose(log_likelihood, np.array([-0.33774513108142956, -0.2345530939410341])): # pass if elements match within 1e-3 print '-------------------------------------------------------------------------------------' print 'Test passed!' else: print '-------------------------------------------------------------------------------------' print 'Test failed' coefficients, log_likelihood = logistic_regression_SG(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-1, batch_size=1, max_iter=10) # YOUR CODE HERE coefficients_batch, log_likelihood_batch = logistic_regression_SG(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-1, batch_size = len(feature_matrix_train), max_iter=200) # number of passes is number to complete the whole dataset # For each batch size, we update 1 gradient, so 2*(50000/100) step_size = 1e-1 batch_size = 100 num_passes = 10 num_iterations = num_passes * int(len(feature_matrix_train)/batch_size) coefficients_sgd, log_likelihood_sgd = logistic_regression_SG(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=1e-1, batch_size=100, max_iter=num_iterations) import matplotlib.pyplot as plt %matplotlib inline def make_plot(log_likelihood_all, len_data, batch_size, smoothing_window=1, label=''): plt.rcParams.update({'figure.figsize': (9,5)}) log_likelihood_all_ma = np.convolve(np.array(log_likelihood_all), \ np.ones((smoothing_window,))/smoothing_window, mode='valid') plt.plot(np.array(range(smoothing_window-1, len(log_likelihood_all)))*float(batch_size)/len_data, log_likelihood_all_ma, linewidth=4.0, label=label) plt.rcParams.update({'font.size': 16}) plt.tight_layout() plt.xlabel('# of passes over data') plt.ylabel('Average log likelihood per data point') plt.legend(loc='lower right', prop={'size':14}) make_plot(log_likelihood_sgd, len_data=len(feature_matrix_train), batch_size=100, label='stochastic gradient, step_size=1e-1') make_plot(log_likelihood_sgd, len_data=len(feature_matrix_train), batch_size=100, smoothing_window=30, label='stochastic gradient, step_size=1e-1') step_size = 1e-1 batch_size = 100 num_passes = 200 num_iterations = num_passes * int(len(feature_matrix_train)/batch_size) ## YOUR CODE HERE coefficients_sgd, log_likelihood_sgd = logistic_regression_SG(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=step_size, batch_size=batch_size, max_iter=num_iterations) make_plot(log_likelihood_sgd, len_data=len(feature_matrix_train), batch_size=100, smoothing_window=30, label='stochastic, step_size=1e-1') make_plot(log_likelihood_batch, len_data=len(feature_matrix_train), batch_size=len(feature_matrix_train), smoothing_window=1, label='batch, step_size=5e-1') batch_size = 100 num_passes = 10 num_iterations = num_passes * int(len(feature_matrix_train)/batch_size) coefficients_sgd = {} log_likelihood_sgd = {} for step_size in np.logspace(-4, 2, num=7): coefficients_sgd[step_size], log_likelihood_sgd[step_size] = logistic_regression_SG(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=step_size, batch_size=batch_size, max_iter=num_iterations) for step_size in np.logspace(-4, 2, num=7): make_plot(log_likelihood_sgd[step_size], len_data=len(train_data), batch_size=100, smoothing_window=30, label='step_size=%.1e'%step_size) for step_size in np.logspace(-4, 2, num=7)[0:6]: make_plot(log_likelihood_sgd[step_size], len_data=len(train_data), batch_size=100, smoothing_window=30, label='step_size=%.1e'%step_size) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and process review dataset Step2: Just like we did previously, we will work with a hand-curated list of important words extracted from the review data. We will also perform 2 simple data transformations Step3: The SFrame products now contains one column for each of the 193 important_words. Step4: Split data into training and validation sets Step5: Convert SFrame to NumPy array Step6: Note that we convert both the training and validation sets into NumPy arrays. Step7: Are you running this notebook on an Amazon EC2 t2.micro instance? (If you are using your own machine, please skip this section) Step8: Derivative of log likelihood with respect to a single coefficient Step9: Note. We are not using regularization in this assignment, but, as discussed in the optional video, stochastic gradient can also be used for regularized logistic regression. Step10: Quiz Question Step11: Quiz Question Step12: Quiz Question Step13: Averaging the gradient across a batch Step14: Note. In practice, the final set of coefficients is rarely used; it is better to use the average of the last K sets of coefficients instead, where K should be adjusted depending on how fast the log likelihood oscillates around the optimum. Step15: Compare convergence behavior of stochastic gradient ascent Step16: Quiz Question. When you set batch_size = 1, as each iteration passes, how does the average log likelihood in the batch change? Step17: Quiz Question. When you set batch_size = len(train_data), as each iteration passes, how does the average log likelihood in the batch change? Step18: Log likelihood plots for stochastic gradient ascent Step19: We provide you with a utility function to plot the average log likelihood as a function of the number of passes. Step20: Smoothing the stochastic gradient ascent curve Step21: Checkpoint Step22: We compare the convergence of stochastic gradient ascent and batch gradient ascent in the following cell. Note that we apply smoothing with smoothing_window=30. Step23: Quiz Question Step24: Plotting the log likelihood as a function of passes for each step size Step25: Now, let us remove the step size step_size = 1e2 and plot the rest of the curves.
9,062
<ASSISTANT_TASK:> Python Code: # setup import numpy as np import sympy as sp import pandas as pd import scipy from pprint import pprint sp.init_printing(use_latex='mathjax') import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (12, 8) # (width, height) plt.rcParams['font.size'] = 14 plt.rcParams['legend.fontsize'] = 16 from matplotlib import patches get_ipython().magic('matplotlib') # seperate window get_ipython().magic('matplotlib inline') # inline plotting import glob as gb from matplotlib.pyplot import * %matplotlib inline csvdir='./examples/' e=[] y=[] for s in specimen: files = gb.glob(csvdir + '*.csv') # select all csv files fig, ax = subplots() title(s) Pult = [] for f in files: d1 = pd.read_csv(f, skiprows=1) d1 = d1[1:] # remove first row of string d1.columns = ['t', 'load', 'ext'] # rename columns d1.head() # remove commas in data for d in d1.columns: #d1.dtypes d1[d] = d1[d].map(lambda x: float(str(x).replace(',',''))) Pult.append(np.max(d1.load)) plot(d1.ext, d1.load) ylabel('Pult, lbs') xlabel('extension, in') e.append(np.std(Pult)) y.append(np.average(Pult) ) show() # bar chart barwidth = 0.35 # the width of the bars fig, ax = subplots() x = np.arange(len(specimen)) ax.bar(x, y, width=barwidth, yerr=e) #ax.set_xticks(x) xticks(x+barwidth/2, specimen, rotation='vertical') title('Pult with sample average and stdev of n=3') ylabel('Pult, lbs') margins(0.05) show() f = 'Aluminum_loops.txt' d1 = pd.read_csv(f, skiprows=4,delimiter='\t') d1 = d1[1:] # remove first row of string d1.columns = ['time', 'load', 'cross','ext','strain','stress'] # rename columns d1.head() # remove commas in data for d in d1.columns: #d1.dtypes d1[d] = d1[d].map(lambda x: float(str(x).replace(',',''))) plot(d1.ext, d1.load) ylabel('stress') xlabel('strain') d1.head() f = 'al_MTS_test.csv' d1 = pd.read_csv(f, skiprows=3,delimiter=',') d1 = d1[1:] # remove first row of string d1 = d1[['Time','Axial Force', 'Axial Fine Displacement', 'Axial Length']] d1.columns = ['time', 'load', 'strain','cross'] # rename columns # remove commas in data for d in d1.columns: #d1.dtypes d1[d] = d1[d].map(lambda x: float(str(x).replace(',',''))) plot(d1.strain, d1.load) ylabel('stress') xlabel('strain') %matplotlib inline from scipy import signal from pylab import plot, xlabel, ylabel, title, rcParams, figure import numpy as np pltwidth = 16 pltheight = 8 rcParams['figure.figsize'] = (pltwidth, pltheight) csv = np.genfromtxt('./stress_strain1.csv', delimiter=",") disp = csv[:,0] force = csv[:,1] print('number of data points = %i' % len(disp)) def moving_average(x, window): Moving average of 'x' with window size 'window'. y = np.empty(len(x)-window+1) for i in range(len(y)): y[i] = np.sum(x[i:i+window])/window return y plt1 = plot(disp, force); xlabel('displacement'); ylabel('force'); figure() mywindow = 1000 # the larger the filter window, the more agressive the filtering force2 = moving_average(force, mywindow) x2 = range(len(force2)) plot(x2, force2); title('Force smoothed with moving average filter'); # Find f' using diff to find the first intersection of the 0 # mvavgforce = mvavgforce[:len(mvavgforce)/2] force2p = np.diff(force2) x2p = range(len(force2p)) plot(x2p, force2p); title('Slope of the smoothed curve') i = np.argmax(force2p<0) ### or # i = where(force2p<0)[0][0] #### or # for i, f in enumerate(force2p): # if f < 0: # break plot(x2p, force2p, i,force2p[i],'o', markersize=15); title('find the point at which the slope goes negative, indicating a switch in the slope direction'); plot(x2, force2, i,force2[i],'o',markersize=15); title('using that index, plot on the force-displacement curve'); #Now, we need to find the next point from here that is 10 less. delta = 1 i2 = np.argmax(force2[i]-delta > force2[i:]) # If that point does not exist on the immediate downward sloping path, #then just choose the max point. In this case, 10 would exist very #far away from the point and not be desireable if i2 > i: i2=0 plot(x2, force2, i,force2[i],'o', i2+i, force2[i2+i] ,'*', markersize=15); disp # remove nan disp = disp[~np.isnan(force)] force = force[~np.isnan(force)] A = 0.1 # area stress = force/A / 1e3 strain = disp/25.4 * 1e-3 plt.plot(strain, stress) stress_range = np.array([5, 15]) PL = 0.0005 E_tan = stress/strain assert(len(stress)==len(strain)) i = (stress > stress_range[0]) & (stress < stress_range[1]) stress_mod = stress[i] strain_mod = strain[i] fit = np.polyfit(strain_mod,stress_mod,1) fit_fn = np.poly1d(fit) fit_fn PLi = np.argmax( (stress - (fit_fn(strain-PL)) < 0) ) PLi # fit_fn is now a function which takes in x and returns an estimate for y #plt.text(4,4,fit_fn) plt.plot(strain ,stress, 'y') plot(strain, fit_fn(strain-PL) , '--k', strain[PLi], stress[PLi],'o') plt.xlim(0, np.max(strain)) plt.ylim(0, np.max(stress)) print('ultimate stress %f' % np.max(stress)) print('ultimate strain %f' % np.max(strain)) print('strain proportion limit %f' % strain[PLi]) print('stress proportion limit %f' % stress[PLi]) E_tan = E_tan[~np.isinf(E_tan)] strainE = strain[1:] plot(strainE, E_tan,'b', strainE[PLi], E_tan[PLi],'o') plt.ylim([0,25000]) plt.title('Tangent Modulus') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Reading raw test data example 1 Step2: Reading test data - example 2 Step3: another example of plotting data Step5: Finding the "first" peak and delta-10 threshhold limit on force-displacement data of an aluminum coupon Step6: Modulus
9,063
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format = 'svg' from ipywidgets import interact from ipywidgets import widgets, FloatSlider, Checkbox, RadioButtons, fixed from exact_solvers import shallow_water from exact_solvers import shallow_demos from IPython.display import IFrame g = 1. interact(shallow_water.plot_hugoniot_loci, y_axis=widgets.fixed('hu'), plot_1=widgets.Checkbox(description='Plot 1-loci',value=True), plot_2=widgets.Checkbox(description='Plot 2-loci',value=False)); interact(shallow_water.plot_hugoniot_loci, y_axis=widgets.fixed('u'), plot_1=widgets.Checkbox(description='Plot 1-loci',value=True), plot_2=widgets.Checkbox(description='Plot 2-loci',value=False)); shallow_water.plot_riemann_SW(h_l=2, h_r=2, u_l=1, u_r=-1) shallow_water.plot_riemann_SW(h_l=4, h_r=1, u_l=0, u_r=0, plot1=True, force_waves='shock', particle_paths=False); interact(shallow_demos.plot_int_curves, y_axis=widgets.fixed('hu'), plot_1=widgets.Checkbox(description='1-wave curves', value=True), plot_2=widgets.Checkbox(description='2-wave curves', value=False)); interact(shallow_demos.plot_int_curves, y_axis=widgets.fixed('u'), plot_1=widgets.Checkbox(description='1-wave curves', value=True), plot_2=widgets.Checkbox(description='2-wave curves', value=False)); interact(shallow_demos.compare_curves, wave_family=RadioButtons(options=[1,2], description='Wave family:'), y_axis=RadioButtons(options=['u','hu'], description='Vertical axis:'), h0=FloatSlider(min=1.e-1,max=3.,value=1., description='$h_*$'), u0=FloatSlider(min=-3,max=3,description='$u_*$')); shallow_water.plot_riemann_SW(h_l=1, h_r=1, u_l=-1., u_r=1.) shallow_water.plot_riemann_SW(h_l=4, h_r=1, u_l=0, u_r=0, plot2=True, force_waves='raref', particle_paths=False) shallow_water.plot_riemann_SW(h_l=4, h_r=1, u_l=0, u_r=0) interact(shallow_demos.connect_states, h_l=widgets.FloatSlider(min=0.001,max=2,value=1), u_l=widgets.FloatSlider(min=-5,max=5,value=-1), h_r=widgets.FloatSlider(min=0.001,max=2,value=1), u_r=widgets.FloatSlider(min=-5,max=5,value=1)); shallow_water.plot_riemann_SW(h_l=0.5, h_r=0.5, u_l=-1.9, u_r=1.9) shallow_water.plot_riemann_SW(h_l=1, h_r=0, u_l=0, u_r=0, particle_paths=False) IFrame(src='phase_plane/shallow_water_verysmall.html', width=600, height=530) def plot_exact_riemann_solution(h_l=3.,u_l=0.,h_r=1.,u_r=0.,t=0.2, fig=0): plot_function = shallow_water.make_demo_plot_function(h_l,h_r,u_l,u_r, hlim=(0,6),ulim=(-3,3)) plot_function(t,fig) interact(plot_exact_riemann_solution, h_l=FloatSlider(min=0.,max=5.,step=0.1,value=3., description=r'$h_l$'), u_l=FloatSlider(min=-2.5,max=2.5,step=0.1,value=0., description=r'$u_l$'), h_r=FloatSlider(min=0.,max=5.,step=0.1,value=1., description=r'$h_r$'), u_r=FloatSlider(min=-2.5,max=2.5,step=0.1,value=0., description=r'$u_r$'), t=FloatSlider(min=0., max=0.6, step=0.1,value=0.), fig=fixed(0)); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If you wish to examine the Python code for this chapter, see Step2: The Riemann problem Step3: The plot above shows the Hugoniot loci in the $h$-$hu$ plane, the natural phase plane in terms of the two conserved quantities. Of course, they all approach the origin as $h \rightarrow 0$. Alternatively, we can plot these same curves in the $h$-$u$ plane Step4: Note that in this plane the curves in each family are simply vertical translates of one another, and all curves asymptote to $\pm \infty$ as $h \rightarrow 0$. This means that it is impossible to have a shock with an adjacent dry ($h=0$) state. Step5: In the interactive notebook you can check the boxes to plot the characteristic families, and notice that the 1-characteristics impinge on the 1-shock; the 2-characteristics impinge on the 2-shock. Thus these shocks satisfy the entropy condition. You can also check a box to show the particle paths, which show how the water is decelerated to 0 speed as it goes through each shock. Step6: Notice that the 1-characteristics (which are plotted as thin lines) don't impinge on the 1-shock; instead, characteristics are diverging away from it. This shock does not satisfy the entropy condition and should be replaced with a rarefaction. The corresponding part of the Hugoniot locus is plotted with a dashed line to remind us that it is unphysical. Step7: We can also plot the integral curves in the $h$--$u$ plane Step8: Note that in this plane the integral curves of each family are simply vertical translates of one another due to the form of the functions $w_1$ and $w_2$. Unlike the Hugoniot loci, the integral curves do not asymptote to $\pm\infty$ as $h \rightarrow 0$ and instead each approaches a finite value. Step9: Near the point of intersection, the curves are very close; indeed, they must be tangent at this point since their direction is parallel to the corresponding eigenvector there (and in fact they also have the same curvature). Far from this point they diverge; for small depths they must diverge greatly, since the Hugoniot locus never reaches $h=0$ at any finite velocity. Step10: Notice that the segment of each integral curve that connects to states with a smaller depth is plotted as a solid line, while the segment connecting to states with greater depth is plotted with a dashed line. This again is to remind us that states connected by a rarefaction through the solid part are physical (entropy-satisfying), while states connected by the dashed part would be unphysical (entropy-violating). Step11: Notice that the 2-characteristics (plotted as thin lines) impinge on the 2-rarefaction; in fact they intersect at the left edge of the rarefaction. This means that the solution we constructed is triple-valued and nonsensical as a solution to this one-dimensional conservation law, and so this portion of the solution is omitted in the plots of depth and momentum. In this case a rarefaction wave is not physical and should be replaced with a shock; the corresponding part of the integral curve is hence shown as a dashed line. Step12: In the interactive notebook you can confirm that 1-charactersitics spread out across the rarefaction fan while 2-characteristics converge on the shock. View the particle paths and note that between the two waves the fluid velocity is constant, with the fluid accelerating across both the rarefaction and shock to the same intermediate value $u_m$. Step13: You should find that by making the initial states flow sufficiently fast away from each other, there is no intersection in the $h-u$ plane. In the $h-hu$ plane, the integral curves always intersect at the origin. The reason for this ambiguity is that for zero depth it isn't meaningful to assign a velocity. Thus in the $h-u$ plane we could think of the entire $u$-axis as being part of every integral curve. That means that we can always connect the left and right states via an intermediate state with depth $h=0$ (a dry state). Step14: Dry initial states Step15: Interactive phase plane Step16: Interactive solution
9,064
<ASSISTANT_TASK:> Python Code: %matplotlib inline from matplotlib.ticker import MultipleLocator import scipy from scipy import interpolate from scipy.interpolate import interp1d import scipy.io.wavfile as wf import matplotlib.pyplot as plt import numpy as np def wav2file(fname, data, sr): Write wave data to file `fname`. Sample rate is `sr`. #Write it to a file. wf.write(fname, sr, data.astype(np.int16)) def plot_wav(sig, sr=16000, unit_time=False, **kwds): Function for quickly plotting a WAV signal. Returns the time series used to plot the signal. num_samples = len(sig) start = 0 if unit_time: stop = 1.0 else: stop = float(num_samples) / float(sr) t = np.linspace(start, stop, num=num_samples) figsize = kwds.get('figsize', None) if figsize is None: figsize = (float(stop)/3.5*17.0, 5.5) fig = plt.figure(figsize=figsize) ax = fig.gca() ax.plot(t, sig) ax.set_xlabel("Time (s)") ax.set_ylabel("Amplitude") return t def move_legend(ax=None, rpad=0): Move the legend outside the data area of the axes. if ax is None: ax = gca() ax.legend(loc="center left", bbox_to_anchor=(1+rpad, 0.5)) def center_ylims(ax): Set the Y-axis limits so the data is centered vertically. l, u = ax.get_ylim() b = max(abs(l), u) ax.set_ylim(-b, b) def draw_vlines(ax, xcoords, color='k', linestyle='--', linewidth=1): Draw a series of vertical lines. for x in xcoords: ax.axvline(x, color=color, linestyle=linestyle, linewidth=linewidth) def draw_tangent(ax, x,y,a, pointcolor='m', linecolor='r'): Plot the line tangent to data series (x, y) at X-position `a`. # interpolate the data with a spline spl = interpolate.splrep(x,y) small_t = arange(a-5,a+5) fa = interpolate.splev(a,spl,der=0) # f(a) fprime = interpolate.splev(a,spl,der=1) # f'(a) tan = fa+fprime*(small_t-a) # tangent ax.plot(a,fa,'o'+pointcolor) ax.plot(small_t, tan, '--' + linecolor, label='tangent at %0.3f' % a) def norm_series(s, max_magnitude=None): if max_magnitude is None: max_magnitude = max(abs(s.max()), abs(s.min())) return s.astype(np.float64) / np.float64(max_magnitude) def abs_series(s): Make series `s` poisitive by inverting any negative values. return np.abs(s) def signal_to_freq_domain(signal, sr): Take the Fourier Transform of a signal. #Take the Fourier Transform of the signal. sp = np.fft.fft(signal) #Get frequencies. freqs = np.fft.fftfreq(signal.shape[-1], d=(1.0 / sr)) #Get the total number of samples in the signal. n = len(signal) #Only take the positive half of the frequencies and signals. freqs = freqs[:int(n / 2)] signal = sp.real[:int(n / 2)] signal = np.abs(signal) return (signal, freqs) def compute_tangent_slope(x, y, a): Return the slope of the line tangent to the data series (x, y) at X position `a`. spl = interpolate.splrep(x,y) small_t = arange(a-5,a+5) fa = interpolate.splev(a,spl,der=0) # f(a) fprime = interpolate.splev(a,spl,der=1) # f'(a) tan = fa+fprime*(small_t-a) # tangent return (tan[0]-tan[1])/(small_t[0]-small_t[1]) def compute_tangent_slopes(x, series): Return an array of slopes of lines tangent to (x, series) at each position in `x`. tans = np.array([compute_tangent_slope(x, series, a) for a in x]) return tans %%bash sox -c 1 -r 44100 -t alsa default ./wavs/recording.wav silence 1 0.1 5% 1 1.0 5% #filename = "./wavs/A4-440.wav" #filename = "./wavs/middle-c.wav" filename = "./wavs/recording.wav" sr, signal = wf.read(filename) signal_norm = norm_series(signal) with plt.style.context(('seaborn-whitegrid')): x = plot_wav(signal_norm, sr, figsize=(14, 5)) ax = plt.gca() rval = ax.set_xlim(0.0, x.max()) center_ylims(ax) rval = plt.title("Normalized Signal (Time Domain)") sr, signal = wf.read(filename) freq_signal, freqs = signal_to_freq_domain(signal, sr) with plt.style.context(('ggplot')): fig = plt.figure(figsize=(14, 5)) ax = plt.gca() rval = ax.plot(freqs, freq_signal) max_freqs = freqs[freq_signal == freq_signal.max()] max_freq_str = ', '.join(['{0:.2f}'.format(r) for r in max_freqs]) rval = plt.title("Frequency Domain of Signal - Max. Freq. {0} Hz".format(max_freq_str)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import the required modules Step3: Functions for working with signals Step9: Plot signals Step14: Signal processing functions Step15: Analyze a Sound Wave Step16: Plot the signal in the time domain Step17: Plot the signal in the frequency domain
9,065
<ASSISTANT_TASK:> Python Code: import npfl103 import os dpath = os.path.join('.', 'tutorial-assignment') dlist = os.path.join(dpath, 'documents.list') qlist = os.path.join(dpath, 'topics.list') from npfl103.io import Collection coll_docs = Collection(dlist) from npfl103.io import Topic coll_queries = Collection(qlist, document_cls=Topic) from npfl103.io import BinaryVectorizer, TermFrequencyVectorizer vectorizer = TermFrequencyVectorizer(field='lemma') vdocs = (vectorizer.transform(d) for d in coll_docs) cw_vectorizer = TermFrequencyVectorizer(field='lemma', token_filter=lambda t: t.pos in 'NADV') vdocs = [vectorizer.transform(d) for d in coll_docs] # This actually parses the documents. cw_docs = [cw_vectorizer.transform(d) for d in coll_docs] d = vdocs[0] cw_d = cw_docs[0] # Print the top 10 most frequent tokens import pprint, operator print('All words:') pprint.pprint({w: n for w, n in sorted(d.items(), key=operator.itemgetter(1), reverse=True)[:10]}) print('----------------------\nContent words:') pprint.pprint({w: n for w, n in sorted(cw_d.items(), key=operator.itemgetter(1), reverse=True)[:10]}) from npfl103.transform import TransformCorpus # This is the transformation we want to apply. def normalize(vec): doc_length = sum(vec.values()) return {k: v / doc_length for k, v in vec.items()} normalized_docs = TransformCorpus(corpus=cw_docs, transform=normalize, name='normalized_docs') cw_queries = (cw_vectorizer.transform(q) for q in coll_queries) # Generator, again normalized_queries = TransformCorpus(corpus=cw_queries, transform=normalize, name='normalized_queries') cw_docs = TransformCorpus(corpus=coll_docs, transform=cw_vectorizer.transform, name='vectorized_docs') cw_queries = TransformCorpus(corpus=coll_queries, transform=cw_vectorizer.transform, name='vectorized_queries') normalized_docs = TransformCorpus(corpus=cw_docs, transform=normalize, name='normalized_docs') normalized_queries = TransformCorpus(corpus=cw_queries, transform=normalize, name='normalized_docs') from npfl103.similarity import Similarity # The similarity is initialized with the document corpus. similarity = Similarity(corpus=normalized_docs, k=10) # Returning the top 10 documents. Use None for all docs. similarity_corpus = TransformCorpus(corpus=normalized_queries, transform=similarity, name='sim') import io # The system io, not npfl103.io hdl = io.StringIO() # Technical workaround, so that the tutorial does not create files at this point. # This is what writes the output. In practice, you'll probably use "with open(...) as hdl:" to write to a file. Similarity.write_trec(similarity_corpus, similarity, hdl) from npfl103.evaluation import do_eval, print_eval results_file = 'tutorial-assignment/tutorial-output.dat' with open(results_file, 'w') as outstream: Similarity.write_trec(similarity_corpus, similarity, outstream) qrels_file = 'tutorial-assignment/qrels.txt' print_eval(qrels_file, results_file) print_eval(qrels_file, results_file, results_by_query=True) results = do_eval(qrels_file, results_file, results_by_query=True) pprint.pprint([q for q in results]) pprint.pprint(results['10.2452/401-AH']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tutorial data Step2: Loading documents and queries Step3: Notice that creating the Collection was fast. This is because the whole pipeline in npfl103 is lazy Step4: Caching Step5: The purpose of a Vectorizer is to take a stream of a document's tokens and convert it into one vector representing this document in some vector space. Each token is used as a dimension of the vector space. If your tokens are just part of speech tags (noun, verb, etc.), then your space will have just some 10 dimensions; if your tokens are word forms, then there will be thousands of dimensions. Step6: The vectorizer provides a transform method that does the processing. Step7: (Notice that we're still using generator expressions, so nothing really gets computed so far.) Step8: We can compare the results of the "plain" vectorizer and the content word vectorizer Step9: We can see that token filtering can make a pretty large difference. Step10: These "pipeline" components get two parameters Step11: The corpus is an iterable that contains dictionary-like objects as sparse document vectors. Step12: Vectorization as transformation Step13: Chaining transformations Step14: How would you implement TF-IDF in this system? Step15: Recapitulation Step16: Evaluation Step17: Since trec_eval (which is called inside these functions) needs an input file, not a stream, Step18: The tutorial assignment has its ground truth file Step19: You can also break down the results by query, by setting results_by_query=True Step20: If you want to do further processing with the results, use do_eval().
9,066
<ASSISTANT_TASK:> Python Code: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) image_size = 28 num_labels = 10 def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) # With gradient descent training, even this much data is prohibitive. # Subset the training data for faster turnaround. train_subset = 10000 graph = tf.Graph() with graph.as_default(): # Input data. # Load the training, validation and test data into constants that are # attached to the graph. tf_train_dataset = tf.constant(train_dataset[:train_subset, :]) tf_train_labels = tf.constant(train_labels[:train_subset]) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. # These are the parameters that we are going to be training. The weight # matrix will be initialized using random values following a (truncated) # normal distribution. The biases get initialized to zero. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) # Training computation. # We multiply the inputs with the weight matrix, and add biases. We compute # the softmax and cross-entropy (it's one operation in TensorFlow, because # it's very common, and it can be optimized). We take the average of this # cross-entropy across all training examples: that's our loss. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) # Optimizer. # We are going to find the minimum of this loss using gradient descent. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. # These are not part of training, but merely here so that we can report # accuracy figures as we train. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax( tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) num_steps = 1000 def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) with tf.Session(graph=graph) as session: # This is a one-time operation which ensures the parameters get initialized as # we described in the graph: random weights for the matrix, zeros for the # biases. tf.global_variables_initializer().run() print('Initialized') for step in range(num_steps): # Run the computations. We tell .run() that we want to run the optimizer, # and get the loss value and the training predictions returned as numpy # arrays. _, l, predictions = session.run([optimizer, loss, train_prediction]) if (step % 100 == 0): print('Loss at step %d: %f' % (step, l)) print('Training accuracy: %.1f%%' % accuracy( predictions, train_labels[:train_subset, :])) # Calling .eval() on valid_prediction is basically like calling run(), but # just to get that one numpy array. Note that it recomputes all its graph # dependencies. print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) batch_size = 128 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) # Training computation. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax( tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) num_steps = 10001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) image_size = 28 num_labels = 10 def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) # Network Parameters n_hidden_1 = 1024 # 1st layer number of features #n_hidden_2 = 256 # 2nd layer number of features #n_hidden_3 = 256 # 3nd layer number of features n_input = 784 # notMNIST data input (img shape: 28*28) n_classes = 10 # notMNIST total classes (0-9 digits) # tf Graph input x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) # Create model def multilayer_perceptron(x, weights, biases): # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) # Hidden layer with RELU activation # layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) # layer_2 = tf.nn.relu(layer_2) # Hidden layer with RELU activation # layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3']) # layer_3 = tf.nn.relu(layer_3) # Output layer with linear activation out_layer = tf.matmul(layer_1, weights['out']) + biases['out'] return out_layer # Parameters learning_rate = 0.001 # Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), # 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), # 'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])), 'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), # 'b2': tf.Variable(tf.random_normal([n_hidden_2])), # 'b3': tf.Variable(tf.random_normal([n_hidden_3])), 'out': tf.Variable(tf.random_normal([n_classes])) } # Construct model pred = multilayer_perceptron(x, weights, biases) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #Parameters training_epochs = 20 batch_size = 100 display_step = 1 # Launch the graph with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(train_dataset.shape[0]/batch_size) # Loop over all batches for i in range(total_batch): offset = (i * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_x = train_dataset[offset:(offset + batch_size), :] batch_y = train_labels[offset:(offset + batch_size), :] # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y}) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if epoch % display_step == 0: print("Epoch %d: cost=%.1f valid_accuracy=%.1f%% train_accuracy=%.1f%%" % (epoch+1, avg_cost, (accuracy.eval({x: valid_dataset, y: valid_labels})*100), (accuracy.eval({x: train_dataset, y: train_labels})*100))) print("Optimization Finished!") print("test_accuracy: %.1f%%" % (accuracy.eval({x: test_dataset, y: test_labels})*100)) #pickle_file = 'notMNIST_sanitized.pickle' pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) image_size = 28 num_labels = 10 def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) batch_size = 128 hidden_nodes = 1024 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights_1 = tf.Variable( tf.truncated_normal([image_size * image_size, hidden_nodes])) biases_1 = tf.Variable(tf.zeros([hidden_nodes])) weights_2 = tf.Variable( tf.truncated_normal([hidden_nodes, num_labels])) biases_2 = tf.Variable(tf.zeros([num_labels])) # Training computation. def forward_prop(input): h1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1) return tf.matmul(h1, weights_2) + biases_2 def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) logits = forward_prop(tf_train_dataset) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. optimizer = tf.train.AdamOptimizer(learning_rate=0.002).minimize(loss) # optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(forward_prop(tf_valid_dataset)) test_prediction = tf.nn.softmax(forward_prop(tf_test_dataset)) num_steps = 5001 with tf.Session(graph=graph) as session: init = tf.global_variables_initializer() session.run(init) print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First reload the data we generated in 1_notmnist.ipynb. Step2: Reformat into a shape that's more adapted to the models we're going to train Step3: We're first going to train a multinomial logistic regression using simple gradient descent. Step4: Let's run this computation and iterate Step5: Let's now switch to stochastic gradient descent training instead, which is much faster. Step6: Let's run it Step7: Problem Step8: Problem - second version
9,067
<ASSISTANT_TASK:> Python Code: x = [1,3,5] x.append(7) x.insert(0,2) x.pop(-2) print(x) x = [5,3,1] y = [2,3] z = x + y z.sort() print(z) x = { 'a' : 'b', 'b' : 2, '2' : 6} x['b'] x = { 'a' : 'b', 'b' : 2, '2' : 6} x[2] students = [ { 'Name':'bob','GPA':3.4 }, { 'Name':'sue','GPA':2.8 }, { 'Name':'kent','GPA':4.0 } ] #chaining students[0]['Name'] s = [ { 'a':'bob','b':3.4 }, { 'a':'sue','b':2.8 }, { 'a':'kent','b':4.0 } ] s[0]['c'] s = [ { 'a':'bob','b':3.4 }, { 'a':'sue','b':2.8 }, { 'a':'kent','b':4.0 } ] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A. [1,3,5,7] Step2: A. [1,2,3,3,5] Step3: A. 2 Step4: A. 2 Step5: Watch Me Code 3 Step6: A. 3.4
9,068
<ASSISTANT_TASK:> Python Code: import os import discoursegraphs as dg ddg = dg.corpora.pcc.get_document('maz-6728') dg.DATA_ROOT_DIR # dg.corpora.pcc.get_files_by_layer('syntax') tdg = dg.read_tiger(os.path.join( dg.DATA_ROOT_DIR, 'potsdam-commentary-corpus-2.0.0/syntax/maz-11766.xml')) # dg.info(tdg) # %load_ext gvmagic # %dotstr dg.print_dot(tdg) syntax_nodes = set(dg.select_nodes_by_layer(ddg, 'tiger:syntax')) cat_nodes = set(dg.select_nodes_by_attribute(ddg, 'tiger:cat')) # token_map = dg.util.TokenMapper(ddg) # token_map.id2index['rst:rst:9_0'] token_map = dg.util.TokenMapper(ddg) cat_spans = {} for cat_node in cat_nodes: # print ddg.node[cat_node]['tiger:cat'], dg.get_span_offsets(ddg, cat_node) first_token_index = token_map.id2index[dg.get_span(ddg, cat_node)[0]] last_token_index = token_map.id2index[dg.get_span(ddg, cat_node)[-1]] # print ddg.node[cat_node]['tiger:cat'], token_map.id2index[first_token_id], token_map.id2index[last_token_id] cat_spans[(first_token_index, last_token_index)] = { 'node': cat_node, 'cat': ddg.node[cat_node]['tiger:cat']} def get_syntax_spans(docgraph): token_map = dg.util.TokenMapper(docgraph) cat_nodes = set(dg.select_nodes_by_attribute(docgraph, 'tiger:cat')) syntax_spans = {} for cat_node in cat_nodes: first_token_index = token_map.id2index[dg.get_span(docgraph, cat_node)[0]] last_token_index = token_map.id2index[dg.get_span(docgraph, cat_node)[-1]] syntax_spans[(first_token_index, last_token_index)] = { 'node': cat_node, 'cat': docgraph.node[cat_node]['tiger:cat']} return syntax_spans # cat_spans def get_rst_span_map(docgraph): rst_spans = {} for rel_id, span_type, rel_type, tok_onset, tok_offset in dg.readwrite.rst.rs3.get_rst_spans(docgraph): rst_spans[(tok_onset, tok_offset)] = { 'rel_id': rel_id, 'span_type': span_type, 'rel_type': rel_type} return rst_spans for doc_id in dg.corpora.pcc.document_ids: ddg = dg.corpora.pcc.get_document(doc_id) syntax_spans = get_syntax_spans(ddg) for syntax_span in syntax_spans: if syntax_spans[syntax_span]['cat'] not in ('S', 'CS'): if syntax_span in rst_spans: print doc_id, syntax_span, syntax_spans[syntax_span]['cat'] from collections import Counter cat_counter = Counter() subord_counter = Counter() for doc_id in dg.corpora.pcc.document_ids: ddg = dg.corpora.pcc.get_document(doc_id) syntax_spans = get_syntax_spans(ddg) subord_nodes = get_subordinate_clauses(ddg) for syntax_span in syntax_spans: if syntax_span in rst_spans: # print doc_id, syntax_span, syntax_spans[syntax_span]['cat'] cat = syntax_spans[syntax_span]['cat'] cat_counter[cat] += 1 if syntax_spans[syntax_span]['node'] in subord_nodes: subord_counter[cat] += 1 cat_counter.most_common() subord_counter def get_subordinate_clauses(tiger_docgraph): given a document graph of a TIGER syntax tree, return all node IDs of nodes representing subordinate clause constituents. Parameters ---------- tiger_docgraph : dg.DiscourseDocumentGraph document graph from which subordinate clauses will be extracted Returns ------- subord_clause_nodes : list(str) list of node IDs of nodes directly dominating subordinate clauses subord_clause_rels = \ dg.select_edges_by_attribute( tiger_docgraph, attribute='tiger:label', value=['MO', 'RC', 'SB']) subord_clause_nodes = [] for src_id, target_id in subord_clause_rels: src_cat = tiger_docgraph.node[src_id].get('tiger:cat') if src_cat == 'S' and not dg.istoken(tiger_docgraph, target_id): subord_clause_nodes.append(target_id) return subord_clause_nodes for node_id in get_subordinate_clauses(ddg): print node_id, ddg.node[node_id] # rst_spans for cat_span in cat_spans: if cat_span in rst_spans: print cat_span, cat_spans[cat_span][1], rst_spans[cat_span][1:] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: There are only very few RST spans that match to non-S/CS nodes Step3: Are there any 'S'/'CS' that are not sentence root nodes?
9,069
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') from libs import utils # utils.<tab> files = utils.get_celeb_files() img = plt.imread(files[50]) # img.<tab> print(img) # If nothing is drawn and you are using notebook, try uncommenting the next line: #%matplotlib inline plt.imshow(img) img.shape # (218, 178, 3) plt.imshow(img[:, :, 0], cmap='gray') plt.imshow(img[:, :, 1], cmap='gray') plt.imshow(img[:, :, 2], cmap='gray') imgs = utils.get_celeb_imgs() plt.imshow(imgs[0]) imgs[0].shape data = np.array(imgs) data.shape mean_img = np.mean(data, axis=0) plt.imshow(mean_img.astype(np.uint8)) std_img = np.std(data, axis=0) plt.imshow(std_img.astype(np.uint8)) plt.imshow(np.mean(std_img, axis=2).astype(np.uint8)) flattened = data.ravel() print(data[:1]) print(flattened[:10]) plt.hist(flattened.ravel(), 255) plt.hist(mean_img.ravel(), 255) bins = 20 fig, axs = plt.subplots(1, 3, figsize=(12, 6), sharey=True, sharex=True) axs[0].hist((data[0]).ravel(), bins) axs[0].set_title('img distribution') axs[1].hist((mean_img).ravel(), bins) axs[1].set_title('mean distribution') axs[2].hist((data[0] - mean_img).ravel(), bins) axs[2].set_title('(img - mean) distribution') fig, axs = plt.subplots(1, 3, figsize=(12, 6), sharey=True, sharex=True) axs[0].hist((data[0] - mean_img).ravel(), bins) axs[0].set_title('(img - mean) distribution') axs[1].hist((std_img).ravel(), bins) axs[1].set_title('std deviation distribution') axs[2].hist(((data[0] - mean_img) / std_img).ravel(), bins) axs[2].set_title('((img - mean) / std_dev) distribution') axs[2].set_xlim([-150, 150]) axs[2].set_xlim([-100, 100]) axs[2].set_xlim([-50, 50]) axs[2].set_xlim([-10, 10]) axs[2].set_xlim([-5, 5]) import tensorflow as tf x = np.linspace(-3.0, 3.0, 100) # Immediately, the result is given to us. An array of 100 numbers equally spaced from -3.0 to 3.0. print(x) # We know from numpy arrays that they have a `shape`, in this case a 1-dimensional array of 100 values print(x.shape) # and a `dtype`, in this case float64, or 64 bit floating point values. print(x.dtype) x = tf.linspace(-3.0, 3.0, 100) print(x) g = tf.get_default_graph() [op.name for op in g.get_operations()] g.get_tensor_by_name('LinSpace' + ':0') # We're first going to create a session: sess = tf.Session() # Now we tell our session to compute anything we've created in the tensorflow graph. computed_x = sess.run(x) print(computed_x) # Alternatively, we could tell the previous Tensor to evaluate itself using this session: computed_x = x.eval(session=sess) print(computed_x) # We can close the session after we're done like so: sess.close() sess = tf.Session(graph=g) sess.close() g2 = tf.Graph() sess = tf.InteractiveSession() x.eval() # We can find out the shape of a tensor like so: print(x.get_shape()) # %% Or in a more friendly format print(x.get_shape().as_list()) # The 1 dimensional gaussian takes two parameters, the mean value, and the standard deviation, which is commonly denoted by the name sigma. mean = 0.0 sigma = 1.0 # Don't worry about trying to learn or remember this formula. I always have to refer to textbooks or check online for the exact formula. z = (tf.exp(tf.negative(tf.pow(x - mean, 2.0) / (2.0 * tf.pow(sigma, 2.0)))) * (1.0 / (sigma * tf.sqrt(2.0 * 3.1415)))) res = z.eval() plt.plot(res) # if nothing is drawn, and you are using ipython notebook, uncomment the next two lines: #%matplotlib inline #plt.plot(res) # Let's store the number of values in our Gaussian curve. ksize = z.get_shape().as_list()[0] # Let's multiply the two to get a 2d gaussian z_2d = tf.matmul(tf.reshape(z, [ksize, 1]), tf.reshape(z, [1, ksize])) # Execute the graph plt.imshow(z_2d.eval()) # Let's first load an image. We're going to need a grayscale image to begin with. skimage has some images we can play with. If you do not have the skimage module, you can load your own image, or get skimage by pip installing "scikit-image". from skimage import data img = data.camera().astype(np.float32) plt.imshow(img, cmap='gray') print(img.shape) # We could use the numpy reshape function to reshape our numpy array img_4d = img.reshape([1, img.shape[0], img.shape[1], 1]) print(img_4d.shape) # but since we'll be using tensorflow, we can use the tensorflow reshape function: img_4d = tf.reshape(img, [1, img.shape[0], img.shape[1], 1]) print(img_4d) print(img_4d.get_shape()) print(img_4d.get_shape().as_list()) # Reshape the 2d kernel to tensorflow's required 4d format: H x W x I x O z_4d = tf.reshape(z_2d, [ksize, ksize, 1, 1]) print(z_4d.get_shape().as_list()) convolved = tf.nn.conv2d(img_4d, z_4d, strides=[1, 1, 1, 1], padding='SAME') res = convolved.eval() print(res.shape) # Matplotlib cannot handle plotting 4D images! We'll have to convert this back to the original shape. There are a few ways we could do this. We could plot by "squeezing" the singleton dimensions. plt.imshow(np.squeeze(res), cmap='gray') # Or we could specify the exact dimensions we want to visualize: plt.imshow(res[0, :, :, 0], cmap='gray') xs = tf.linspace(-3.0, 3.0, ksize) ys = tf.sin(xs) plt.figure() plt.plot(ys.eval()) ys = tf.reshape(ys, [ksize, 1]) ones = tf.ones((1, ksize)) wave = tf.matmul(ys, ones) plt.imshow(wave.eval(), cmap='gray') gabor = tf.multiply(wave, z_2d) plt.imshow(gabor.eval(), cmap='gray') # This is a placeholder which will become part of the tensorflow graph, but # which we have to later explicitly define whenever we run/evaluate the graph. # Pretty much everything you do in tensorflow can have a name. If we don't # specify the name, tensorflow will give a default one, like "Placeholder_0". # Let's use a more useful name to help us understand what's happening. img = tf.placeholder(tf.float32, shape=[None, None], name='img') # We'll reshape the 2d image to a 3-d tensor just like before: # Except now we'll make use of another tensorflow function, expand dims, which adds a singleton dimension at the axis we specify. # We use it to reshape our H x W image to include a channel dimension of 1 # our new dimensions will end up being: H x W x 1 img_3d = tf.expand_dims(img, 2) dims = img_3d.get_shape() print(dims) # And again to get: 1 x H x W x 1 img_4d = tf.expand_dims(img_3d, 0) print(img_4d.get_shape().as_list()) # Let's create another set of placeholders for our Gabor's parameters: mean = tf.placeholder(tf.float32, name='mean') sigma = tf.placeholder(tf.float32, name='sigma') ksize = tf.placeholder(tf.int32, name='ksize') # Then finally redo the entire set of operations we've done to convolve our # image, except with our placeholders x = tf.linspace(-3.0, 3.0, ksize) z = (tf.exp(tf.negative(tf.pow(x - mean, 2.0) / (2.0 * tf.pow(sigma, 2.0)))) * (1.0 / (sigma * tf.sqrt(2.0 * 3.1415)))) z_2d = tf.matmul( tf.reshape(z, tf.stack([ksize, 1])), tf.reshape(z, tf.stack([1, ksize]))) ys = tf.sin(x) ys = tf.reshape(ys, tf.stack([ksize, 1])) ones = tf.ones(tf.stack([1, ksize])) wave = tf.matmul(ys, ones) gabor = tf.multiply(wave, z_2d) gabor_4d = tf.reshape(gabor, tf.stack([ksize, ksize, 1, 1])) # And finally, convolve the two: convolved = tf.nn.conv2d(img_4d, gabor_4d, strides=[1, 1, 1, 1], padding='SAME', name='convolved') convolved_img = convolved[0, :, :, 0] convolved_img.eval() convolved_img.eval(feed_dict={img: data.camera()}) res = convolved_img.eval(feed_dict={ img: data.camera(), mean:0.0, sigma:1.0, ksize:100}) plt.imshow(res, cmap='gray') res = convolved_img.eval(feed_dict={ img: data.camera(), mean: 0.0, sigma: 0.5, ksize: 32 }) plt.imshow(res, cmap='gray') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: I'll be using a popular image dataset for faces called the CelebFaces dataset. I've provided some helper functions which you can find on the resources page, which will just help us with manipulating images and loading this dataset. Step2: Let's get the 50th image in this list of files, and then read the file at that location as an image, setting the result to a variable, img, and inspect a bit further what's going on Step3: When I print out this image, I can see all the numbers that represent this image. We can use the function imshow to see this Step4: <a name="understanding-image-shapes"></a> Step5: This means that the image has 218 rows, 178 columns, and 3 color channels corresponding to the Red, Green, and Blue channels of the image, or RGB. Let's try looking at just one of the color channels. Step6: We use the special colon operator to say take every value in this dimension. This is saying, give me every row, every column, and the 0th dimension of the color channels. What we're seeing is the amount of Red, Green, or Blue contributing to the overall color image. Step7: We now have a list containing our images. Each index of the imgs list is another image which we can access using the square brackets Step8: <a name="the-batch-dimension"></a> Step9: It turns out we'll often use another convention for storing many images in an array using a new dimension called the batch dimension. The resulting image shape will be exactly the same, except we'll stick on a new dimension on the beginning... giving us number of images x the height x the width x the number of color channels. Step10: This will only work if every image in our list is exactly the same size. So if you have a wide image, short image, long image, forget about it. You'll need them all to be the same size. If you are unsure of how to get all of your images into the same size, then please please refer to the online resources for the notebook I've provided which shows you exactly how to take a bunch of images of different sizes, and crop and resize them the best we can to make them all the same size. Step11: This is the first step towards building our robot overlords. We've reduced down our entire dataset to a single representation which describes what most of our dataset looks like. There is one other very useful statistic which we can look at very easily Step12: So this is incredibly cool. We've just shown where changes are likely to be in our dataset of images. Or put another way, we're showing where and how much variance there is in our previous mean image representation. Step13: This is showing us on average, how every color channel will vary as a heatmap. The more red, the more likely that our mean image is not the best representation. The more blue, the less likely that our mean image is far off from any other possible image. Step14: We first convert our N x H x W x C dimensional array into a 1 dimensional array. The values of this array will be based on the last dimensions order. So we'll have Step15: The last line is saying give me a histogram of every value in the vector, and use 255 bins. Each bin is grouping a range of values. The bars of each bin describe the frequency, or how many times anything within that range of values appears.In other words, it is telling us if there is something that seems to happen more than anything else. If there is, it is likely that a neural network will take advantage of that. Step16: When we subtract an image by our mean image, we remove all of this information from it. And that means that the rest of the information is really what is important for describing what is unique about it. Step17: What we can see from the histograms is the original image's distribution of values from 0 - 255. The mean image's data distribution is mostly centered around the value 100. When we look at the difference of the original image and the mean image as a histogram, we can see that the distribution is now centered around 0. What we are seeing is the distribution of values that were above the mean image's intensity, and which were below it. Let's take it one step further and complete the normalization by dividing by the standard deviation of our dataset Step18: Now our data has been squished into a peak! We'll have to look at it on a different scale to see what's going on Step19: What we can see is that the data is in the range of -3 to 3, with the bulk of the data centered around -1 to 1. This is the effect of normalizing our data Step20: Let's take a look at how we might create a range of numbers. Using numpy, we could for instance use the linear space function Step21: <a name="tensors"></a> Step22: Instead of a numpy.array, we are returned a tf.Tensor. The name of it is "LinSpace Step23: <a name="operations"></a> Step24: So Tensorflow has named each of our operations to generally reflect what they are doing. There are a few parameters that are all prefixed by LinSpace, and then the last one which is the operation which takes all of the parameters and creates an output for the linspace. Step25: What I've done is asked for the tf.Tensor that comes from the operation "LinSpace". So remember, the result of a tf.Operation is a tf.Tensor. Remember that was the same name as the tensor x we created before. Step26: We could also explicitly tell the session which graph we want to manage Step27: By default, it grabs the default graph. But we could have created a new graph like so Step28: And then used this graph only in our session. Step29: Now we didn't have to explicitly tell the eval function about our session. We'll leave this session open for the rest of the lecture. Step30: <a name="many-operations"></a> Step31: Just like before, amazingly, we haven't actually computed anything. We *have just added a bunch of operations to Tensorflow's graph. Whenever we want the value or output of this operation, we'll have to explicitly ask for the part of the graph we're interested in before we can see its result. Since we've created an interactive session, we should just be able to say the name of the Tensor that we're interested in, and call the eval function Step32: <a name="convolution"></a> Step33: <a name="convolving-an-image-with-a-gaussian"></a> Step34: Notice our img shape is 2-dimensional. For image convolution in Tensorflow, we need our images to be 4 dimensional. Remember that when we load many iamges and combine them in a single numpy array, the resulting shape has the number of images first. Step35: Instead of getting a numpy array back, we get a tensorflow tensor. This means we can't access the shape parameter like we did with the numpy array. But instead, we can use get_shape(), and get_shape().as_list() Step36: The H x W image is now part of a 4 dimensional array, where the other dimensions of N and C are 1. So there is only 1 image and only 1 channel. Step37: <a name="convolvefilter-an-image-using-a-gaussian-kernel"></a> Step38: There are two new parameters here Step39: <a name="modulating-the-gaussian-with-a-sine-wave-to-create-gabor-kernel"></a> Step40: We then calculate the sine of these values, which should give us a nice wave Step41: And for multiplication, we'll need to convert this 1-dimensional vector to a matrix Step42: We then repeat this wave across the matrix by using a multiplication of ones Step43: We can directly multiply our old Gaussian kernel by this wave and get a gabor kernel Step44: <a name="manipulating-an-image-with-this-gabor"></a> Step45: What we've done is create an entire graph from our placeholders which is capable of convolving an image with a gabor kernel. In order to compute it, we have to specify all of the placeholders required for its computation. Step46: It's saying that we didn't specify our placeholder for img. In order to "feed a value", we use the feed_dict parameter like so Step47: But that's not the only placeholder in our graph! We also have placeholders for mean, sigma, and ksize. Once we specify all of them, we'll have our result Step48: Now, instead of having to rewrite the entire graph, we can just specify the different placeholders.
9,070
<ASSISTANT_TASK:> Python Code: import numpy as np incomes = np.random.normal(27000, 15000, 10000) # (center around, stdev, population ) np.mean(incomes) # calculate mean %matplotlib inline import matplotlib.pyplot as plt # segment the income data into 50 buckets and plot as a histogram plt.hist(incomes, 50) plt.show() np.median(incomes) # append the value to the end of numpy array incomes = np.append(incomes, [1000000000]) np.median(incomes) np.mean(incomes) # mean has shifted to the rights ages = np.random.randint(18, high=90, size=500) ages from scipy import stats stats.mode(ages) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We can segment the income data into 50 buckets, and plot it as a histogram Step2: Now compute the median - since we have a nice, even distribution it too should be close to 27,000 Step3: Now we'll add Donald Trump into the mix. Darn income inequality! Step4: The median won't change much, but the mean does Step5: Mode
9,071
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import os import sys import pandas as pd import numpy as np %matplotlib inline from matplotlib import pyplot as plt import seaborn as sns import datetime #set current working directory os.chdir('D:/Practical Time Series') #Read the dataset into a pandas.DataFrame df = pd.read_csv('datasets/PRSA_data_2010.1.1-2014.12.31.csv') print('Shape of the dataframe:', df.shape) #Let's see the first five rows of the DataFrame df.head() Rows having NaN values in column pm2.5 are dropped. df.dropna(subset=['pm2.5'], axis=0, inplace=True) df.reset_index(drop=True, inplace=True) df['datetime'] = df[['year', 'month', 'day', 'hour']].apply(lambda row: datetime.datetime(year=row['year'], month=row['month'], day=row['day'], hour=row['hour']), axis=1) df.sort_values('datetime', ascending=True, inplace=True) #Let us draw a box plot to visualize the central tendency and dispersion of PRES plt.figure(figsize=(5.5, 5.5)) g = sns.boxplot(df['pm2.5']) g.set_title('Box plot of pm2.5') plt.figure(figsize=(5.5, 5.5)) g = sns.tsplot(df['pm2.5']) g.set_title('Time series of pm2.5') g.set_xlabel('Index') g.set_ylabel('pm2.5 readings') #Let's plot the series for six months to check if any pattern apparently exists. plt.figure(figsize=(5.5, 5.5)) g = sns.tsplot(df['pm2.5'].loc[df['datetime']<=datetime.datetime(year=2010,month=6,day=30)], color='g') g.set_title('pm2.5 during 2010') g.set_xlabel('Index') g.set_ylabel('pm2.5 readings') #Let's zoom in on one month. plt.figure(figsize=(5.5, 5.5)) g = sns.tsplot(df['pm2.5'].loc[df['datetime']<=datetime.datetime(year=2010,month=1,day=31)], color='g') g.set_title('pm2.5 during Jan 2010') g.set_xlabel('Index') g.set_ylabel('pm2.5 readings') from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) df['scaled_pm2.5'] = scaler.fit_transform(np.array(df['pm2.5']).reshape(-1, 1)) Let's start by splitting the dataset into train and validation. The dataset's time period if from Jan 1st, 2010 to Dec 31st, 2014. The first fours years - 2010 to 2013 is used as train and 2014 is kept for validation. split_date = datetime.datetime(year=2014, month=1, day=1, hour=0) df_train = df.loc[df['datetime']<split_date] df_val = df.loc[df['datetime']>=split_date] print('Shape of train:', df_train.shape) print('Shape of test:', df_val.shape) #First five rows of train df_train.head() #First five rows of validation df_val.head() #Reset the indices of the validation set df_val.reset_index(drop=True, inplace=True) The train and validation time series of scaled pm2.5 is also plotted. plt.figure(figsize=(5.5, 5.5)) g = sns.tsplot(df_train['scaled_pm2.5'], color='b') g.set_title('Time series of scaled pm2.5 in train set') g.set_xlabel('Index') g.set_ylabel('Scaled pm2.5 readings') plt.figure(figsize=(5.5, 5.5)) g = sns.tsplot(df_val['scaled_pm2.5'], color='r') g.set_title('Time series of scaled pm2.5 in validation set') g.set_xlabel('Index') g.set_ylabel('Scaled pm2.5 readings') def makeXy(ts, nb_timesteps): Input: ts: original time series nb_timesteps: number of time steps in the regressors Output: X: 2-D array of regressors y: 1-D array of target X = [] y = [] for i in range(nb_timesteps, ts.shape[0]): X.append(list(ts.loc[i-nb_timesteps:i-1])) y.append(ts.loc[i]) X, y = np.array(X), np.array(y) return X, y X_train, y_train = makeXy(df_train['scaled_pm2.5'], 7) print('Shape of train arrays:', X_train.shape, y_train.shape) X_val, y_val = makeXy(df_val['scaled_pm2.5'], 7) print('Shape of validation arrays:', X_val.shape, y_val.shape) #X_train and X_val are reshaped to 3D arrays X_train, X_val = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)),\ X_val.reshape((X_val.shape[0], X_val.shape[1], 1)) print('Shape of arrays after reshaping:', X_train.shape, X_val.shape) from keras.layers import Dense from keras.layers import Input from keras.layers import Dropout from keras.layers import Flatten from keras.layers.convolutional import ZeroPadding1D from keras.layers.convolutional import Conv1D from keras.layers.pooling import AveragePooling1D from keras.optimizers import SGD from keras.models import Model from keras.models import load_model from keras.callbacks import ModelCheckpoint #Define input layer which has shape (None, 7) and of type float32. None indicates the number of instances input_layer = Input(shape=(7,1), dtype='float32') #Add zero padding zeropadding_layer = ZeroPadding1D(padding=1)(input_layer) #Add 1D convolution layers conv1D_layer1 = Conv1D(64, 3, strides=1, use_bias=True)(zeropadding_layer) conv1D_layer2 = Conv1D(32, 3, strides=1, use_bias=True)(conv1D_layer1) #Add AveragePooling1D layer avgpooling_layer = AveragePooling1D(pool_size=3, strides=1)(conv1D_layer2) #Add Flatten layer flatten_layer = Flatten()(avgpooling_layer) #A couple of Dense layers are also added dense_layer1 = Dense(32)(avgpooling_layer) dense_layer2 = Dense(16)(dense_layer1) dropout_layer = Dropout(0.2)(flatten_layer) #Finally the output layer gives prediction for the next day's air pressure. output_layer = Dense(1, activation='linear')(dropout_layer) ts_model = Model(inputs=input_layer, outputs=output_layer) ts_model.compile(loss='mean_absolute_error', optimizer='adam')#SGD(lr=0.001, decay=1e-5)) ts_model.summary() save_weights_at = os.path.join('keras_models', 'PRSA_data_PM2.5_1DConv_weights.{epoch:02d}-{val_loss:.4f}.hdf5') save_best = ModelCheckpoint(save_weights_at, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='min', period=1) ts_model.fit(x=X_train, y=y_train, batch_size=16, epochs=20, verbose=1, callbacks=[save_best], validation_data=(X_val, y_val), shuffle=True) best_model = load_model(os.path.join('keras_models', 'PRSA_data_PM2.5_1DConv_weights.18-0.0128.hdf5')) preds = best_model.predict(X_val) pred_pm25 = scaler.inverse_transform(preds) pred_pm25 = np.squeeze(pred_pm25) from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(df_val['pm2.5'].loc[7:], pred_pm25) print('MAE for the validation set:', round(mae, 4)) #Let's plot the first 50 actual and predicted values of pm2.5. plt.figure(figsize=(5.5, 5.5)) plt.plot(range(50), df_val['pm2.5'].loc[7:56], linestyle='-', marker='*', color='r') plt.plot(range(50), pred_pm25[:50], linestyle='-', marker='.', color='b') plt.legend(['Actual','Predicted'], loc=2) plt.title('Actual vs Predicted pm2.5') plt.ylabel('pm2.5') plt.xlabel('Index') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In this notebook, we will use a multi-layer perceptron to develop time series forecasting models. Step2: To make sure that the rows are in the right order of date and time of observations, Step3: Gradient descent algorithms perform better (for example converge faster) if the variables are wihtin range [-1, 1]. Many sources relax the boundary to even [-3, 3]. The pm2.5 variable is mixmax scaled to bound the tranformed variable within [0,1]. Step6: Before training the model, the dataset is split in two parts - train set and validation set. Step8: Now we need to generate regressors (X) and target variable (y) for train and validation. 2-D array of regressor and 1-D array of target is created from the original 1-D array of columm standardized_pm2.5 in the DataFrames. For the time series forecasting model, Past seven days of observations are used to predict for the next day. This is equivalent to a AR(7) model. We define a function which takes the original time series and the number of timesteps in regressors as input to generate the arrays of X and y. Step9: The input to convolution layers must be of shape (number of samples, number of timesteps, number of features per timestep). In this case we are modeling only pm2.5 hence number of features per timestep is one. Number of timesteps is seven and number of samples is same as the number of samples in X_train and X_val, which are reshaped to 3D arrays. Step10: Now we define the MLP using the Keras Functional API. In this approach a layer can be declared as the input of the following layer at the time of defining the next layer. Step11: ZeroPadding1D layer is added next to add zeros at the begining and end of each series. Zeropadding ensure that the downstream convolution layer does not reduce the dimension of the output sequences. Pooling layer, added after the convolution layer is used to downsampling the input. Step12: The first argument of Conv1D is the number of filters, which determine the number of features in the output. Second argument indicates length of the 1D convolution window. The third argument is strides and represent the number of places to shift the convolution window. Lastly, setting use_bias as True, add a bias value during computation of an output feature. Here, the 1D convolution can be thought of as generating local AR models over rolling window of three time units. Step13: AveragePooling1D is added next to downsample the input by taking average over pool size of three with stride of one timesteps. The average pooling in this case can be thought of as taking moving averages over a rolling window of three time units. We have used average pooling instead of max pooling to generate the moving averages. Step14: The preceeding pooling layer returns 3D output. Hence before passing to the output layer, a Flatten layer is added. The Flatten layer reshapes the input to (number of samples, number of timesteps*number of features per timestep), which is then fed to the output layer Step15: The input, dense and output layers will now be packed inside a Model, which is wrapper class for training and making Step16: The model is trained by calling the fit function on the model object and passing the X_train and y_train. The training Step17: Prediction are made for the pm2.5 from the best saved model. The model's predictions, which are on the standardized pm2.5, are inverse transformed to get predictions of original pm2.5.
9,072
<ASSISTANT_TASK:> Python Code: from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm vgg_dir = 'tensorflow_vgg/' # Make sure vgg exists if not isdir(vgg_dir): raise Exception("VGG directory doesn't exist!") class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(vgg_dir + "vgg16.npy"): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='VGG16 Parameters') as pbar: urlretrieve( 'https://s3.amazonaws.com/content.udacity-data.com/nd101/vgg16.npy', vgg_dir + 'vgg16.npy', pbar.hook) else: print("Parameter file already exists!") import tarfile dataset_folder_path = 'flower_photos' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile('flower_photos.tar.gz'): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='Flowers Dataset') as pbar: urlretrieve( 'http://download.tensorflow.org/example_images/flower_photos.tgz', 'flower_photos.tar.gz', pbar.hook) if not isdir(dataset_folder_path): with tarfile.open('flower_photos.tar.gz') as tar: tar.extractall() tar.close() import os import numpy as np import tensorflow as tf from tensorflow_vgg import vgg16 from tensorflow_vgg import utils data_dir = 'flower_photos/' contents = os.listdir(data_dir) classes = [each for each in contents if os.path.isdir(data_dir + each)] # Set the batch size higher if you can fit in in your GPU memory batch_size = 10 codes_list = [] labels = [] batch = [] codes = None with tf.Session() as sess: # TODO: Build the vgg network here for each in classes: print("Starting {} images".format(each)) class_path = data_dir + each files = os.listdir(class_path) for ii, file in enumerate(files, 1): # Add images to the current batch # utils.load_image crops the input images for us, from the center img = utils.load_image(os.path.join(class_path, file)) batch.append(img.reshape((1, 224, 224, 3))) labels.append(each) # Running the batch through the network to get the codes if ii % batch_size == 0 or ii == len(files): # Image batch to pass to VGG network images = np.concatenate(batch) # TODO: Get the values from the relu6 layer of the VGG network codes_batch = # Here I'm building an array of the codes if codes is None: codes = codes_batch else: codes = np.concatenate((codes, codes_batch)) # Reset to start building the next batch batch = [] print('{} images processed'.format(ii)) # write codes to file with open('codes', 'w') as f: codes.tofile(f) # write labels to file import csv with open('labels', 'w') as f: writer = csv.writer(f, delimiter='\n') writer.writerow(labels) # read codes and labels from file import csv with open('labels') as f: reader = csv.reader(f, delimiter='\n') labels = np.array([each for each in reader if len(each) > 0]).squeeze() with open('codes') as f: codes = np.fromfile(f, dtype=np.float32) codes = codes.reshape((len(labels), -1)) labels_vecs = # Your one-hot encoded labels array here train_x, train_y = val_x, val_y = test_x, test_y = print("Train shapes (x, y):", train_x.shape, train_y.shape) print("Validation shapes (x, y):", val_x.shape, val_y.shape) print("Test shapes (x, y):", test_x.shape, test_y.shape) inputs_ = tf.placeholder(tf.float32, shape=[None, codes.shape[1]]) labels_ = tf.placeholder(tf.int64, shape=[None, labels_vecs.shape[1]]) # TODO: Classifier layers and operations logits = # output layer logits cost = # cross entropy loss optimizer = # training optimizer # Operations for validation/test accuracy predicted = tf.nn.softmax(logits) correct_pred = tf.equal(tf.argmax(predicted, 1), tf.argmax(labels_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) def get_batches(x, y, n_batches=10): Return a generator that yields batches from arrays x and y. batch_size = len(x)//n_batches for ii in range(0, n_batches*batch_size, batch_size): # If we're not on the last batch, grab data with size batch_size if ii != (n_batches-1)*batch_size: X, Y = x[ii: ii+batch_size], y[ii: ii+batch_size] # On the last batch, grab the rest of the data else: X, Y = x[ii:], y[ii:] # I love generators yield X, Y saver = tf.train.Saver() with tf.Session() as sess: # TODO: Your training code here saver.save(sess, "checkpoints/flowers.ckpt") with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: test_x, labels_: test_y} test_acc = sess.run(accuracy, feed_dict=feed) print("Test accuracy: {:.4f}".format(test_acc)) %matplotlib inline import matplotlib.pyplot as plt from scipy.ndimage import imread test_img_path = 'flower_photos/roses/10894627425_ec76bbc757_n.jpg' test_img = imread(test_img_path) plt.imshow(test_img) # Run this cell if you don't have a vgg graph built if 'vgg' in globals(): print('"vgg" object already exists. Will not create again.') else: #create vgg with tf.Session() as sess: input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) vgg = vgg16.Vgg16() vgg.build(input_) with tf.Session() as sess: img = utils.load_image(test_img_path) img = img.reshape((1, 224, 224, 3)) feed_dict = {input_: img} code = sess.run(vgg.relu6, feed_dict=feed_dict) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: code} prediction = sess.run(predicted, feed_dict=feed).squeeze() plt.imshow(test_img) plt.barh(np.arange(5), prediction) _ = plt.yticks(np.arange(5), lb.classes_) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Flower power Step2: ConvNet Codes Step3: Below I'm running images through the VGG network in batches. Step4: Building the Classifier Step5: Data prep Step6: Now you'll want to create your training, validation, and test sets. An important thing to note here is that our labels and data aren't randomized yet. We'll want to shuffle our data so the validation and test sets contain data from all classes. Otherwise, you could end up with testing sets that are all one class. Typically, you'll also want to make sure that each smaller set has the same the distribution of classes as it is for the whole data set. The easiest way to accomplish both these goals is to use StratifiedShuffleSplit from scikit-learn. Step7: If you did it right, you should see these sizes for the training sets Step9: Batches! Step10: Training Step11: Testing Step12: Below, feel free to choose images and see how the trained classifier predicts the flowers in them.
9,073
<ASSISTANT_TASK:> Python Code: import graphlab sales = graphlab.SFrame.read_csv('Philadelphia_Crime_Rate_noNA.csv/') sales graphlab.canvas.set_target('ipynb') sales.show(view="Scatter Plot", x="CrimeRate", y="HousePrice") crime_model = graphlab.linear_regression.create(sales, target='HousePrice', features=['CrimeRate'],validation_set=None,verbose=False) import matplotlib.pyplot as plt %matplotlib inline plt.plot(sales['CrimeRate'],sales['HousePrice'],'.', sales['CrimeRate'],crime_model.predict(sales),'-') sales_noCC = sales[sales['MilesPhila'] != 0.0] sales_noCC.show(view="Scatter Plot", x="CrimeRate", y="HousePrice") crime_model_noCC = graphlab.linear_regression.create(sales_noCC, target='HousePrice', features=['CrimeRate'],validation_set=None, verbose=False) plt.plot(sales_noCC['CrimeRate'],sales_noCC['HousePrice'],'.', sales_noCC['CrimeRate'],crime_model.predict(sales_noCC),'-') crime_model.get('coefficients') crime_model_noCC.get('coefficients') sales_nohighend = sales_noCC[sales_noCC['HousePrice'] < 350000] crime_model_nohighend = graphlab.linear_regression.create(sales_nohighend, target='HousePrice', features=['CrimeRate'],validation_set=None, verbose=False) crime_model_noCC.get('coefficients') crime_model_nohighend.get('coefficients') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load some house value vs. crime rate data Step2: Exploring the data Step3: Fit the regression model using crime as the feature Step4: Let's see what our fit looks like Step5: Above Step6: Refit our simple regression model on this modified dataset Step7: Look at the fit Step8: Compare coefficients for full-data fit versus no-Center-City fit Step9: Above Step10: Do the coefficients change much?
9,074
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import math def velocity(radius, model='galaxy'): describe the streaming velocity as function of radius in or around an object such as a star or a galaxy. We usually define the velocity to be 1 at a radius of 1. if model == 'star': # A star has a keplerian rotation curve. The planets around our sun obey this law. if radius == 0.0: return 0.0 else: return 1.0/np.sqrt(radius) elif model == 'galaxy': # Most disk galaxies have a flat rotation curve with a linear slope in the center. if radius > 1.0: # flat rotation curve outside radius 1.0 return 1.0 else: # solid body inside radius 1.0, linearly rising rotation curve return radius elif model == 'plummer': # A plummer sphere was an early 1900s description of clusters, and is also not # a bad description for the inner portions of a galaxy. You can also view it # as a hybrid and softened version of the 'star' and 'galaxy' described above. # Note: not quite 1 at 1 yet # return radius / (1+radius*radius)**0.75 return radius / (0.5+0.5*radius*radius)**0.75 else: return 0.0 #model = 'star' #model = 'galaxy' model = 'plummer' rad = np.arange(0.0,4.0,0.05) vel = np.zeros(len(rad)) # this also works: vel = rad * 0.0 for i in range(len(rad)): vel[i] = velocity(rad[i],model) print("First, peak and Last value:",vel[0],vel.max(),vel[-1]) plt.plot(rad,vel) plt.xlabel("Radius") plt.ylabel("Velocity") plt.title("Rotation Curve (%s)" % model); # set the inclination of the disk with the line of sigh inc = 60 # (0 means face-on, 90 means edge-on) # some helper variables cosi = math.cos(inc*math.pi/180.0) sini = math.sin(inc*math.pi/180.0) # radius of the disk, and steps in radius r0 = 4.0 dr = 0.1 dr = 0.5 x = np.arange(-r0,r0,dr) y = np.arange(-r0,r0,dr) xx,yy = np.meshgrid(x,y) # helper variables for interpolations rr = np.sqrt(xx*xx+(yy/cosi)**2) if r0/dr < 20: plt.scatter(xx,yy) else: print("not plotting too many gridpoints/dimension",r0/dr) def velocity2d(rad2d, model): convenient helper function to take a 2d array of radii and return the same-shaped velocities (ny,nx) = rad2d.shape vel2d = rad2d.copy() # could also do np.zeros(nx*ny).reshape(ny,nx) for y in range(ny): for x in range(nx): vel2d[y,x] = velocity(rad2d[y,x],model) return vel2d vv = velocity2d(rr,model) vvmasked = np.ma.masked_where(rr>r0,vv) vobs = vvmasked * xx / rr * sini print("V_max:",vobs.max()) vmax = 1 vmax = vobs.max() if vmax > 0: plt.imshow(vobs,origin=['Lower'],vmin=-vmax, vmax=vmax) #plt.matshow(vobs,origin=['Lower'],vmin=-vmax, vmax=vmax) else: plt.imshow(vobs,origin=['Lower']) plt.colorbar() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Initialize the data Step3: Plotting the Rotation Curve Step4: This curve of velocity as function of radius is called a Rotation Curve, and extracting such a curve from an observation is crucial to understanding the mass distribution within a galaxy, or the mass of the young star at the center of the disk. We are assuming the gas is on circular orbits, which turns out is not always correct for galaxies. However, for this experiment we will keep that assumption. Step5: Backwards Projection Step7: Although we have defined a function velocity to compute the rotation velocity at any radius, this function cannot easily compute from a numpy array, as we just created on a grid on the sky. Thus we need a convenience function to do just that.
9,075
<ASSISTANT_TASK:> Python Code: from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) import tensorflow as tf # Creates a graph. a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c)) # Creates a graph. with tf.device('/cpu:0'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c)) with tf.device('/gpu:0'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) with tf.Session() as sess: print (sess.run(c)) import time import tensorflow as tf def tf_benchmark(a=None, shape_a=None, b=None, shape_b=None, enable_GPU = False): device = 'cpu' if enable_GPU: device = 'gpu' start_time = time.time() with tf.device('/{}:0'.format(device)): a = tf.constant(a, shape=shape_a, name = 'a') b = tf.constant(b, shape=shape_b, name='b') c = tf.matmul(a, b) sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) output = sess.run(c) execution_time = time.time()-start_time return {'output': output, 'execution time': execution_time} a=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0] b=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0] shape_a=[2, 3] shape_b=[3,2] CPU_exec_time = tf_benchmark(a=a, b=b, shape_a=shape_a, shape_b=shape_b, enable_GPU=False) GPU_exec_time = tf_benchmark(a=a, b=b, shape_a=shape_a, shape_b=shape_b, enable_GPU=True) print ("CPU execution time: {}".format(CPU_exec_time['execution time'])) print ("GPU execution time: {}".format(GPU_exec_time['execution time'])) print ("GPU vs CPU execution time delta: {}".format(GPU_exec_time['execution time'] - CPU_exec_time['execution time'])) print ("GPU acceleration factor: {}".format(CPU_exec_time['execution time'] / GPU_exec_time['execution time'])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 02 -- Manually specifying devices for running Tensorflow code Step2: Setting up Tensorflow to run on CPU Step3: Setting up Tensorflow to run on GPU Step4: Part 03 -- Benchmarking Tensorflow GPU vs CPU
9,076
<ASSISTANT_TASK:> Python Code: database_path = os.path.join('..', 'data', 'Ana', 'database', 'Garmin-Ana-180226-1.csv') print(os.path.abspath(database_path)) data = pd.read_csv(database_path) data.columns = [s.replace('_', ' ') for s in data.columns] data = data.set_index('file name') data.head() data.shape data.groupby('sport').agg({'activity':'count'}) data = data[data['sport'].isin(['cycling', 'walking', 'running', 'hiking', 'driving', 'train', 'squash', 'yoga'])].copy() data.groupby('sport').agg({'activity':'count'}) # these are the columns we want to use for the machine learning model columns = ['avg speed', 'total distance', 'total elapsed time', 'avg heart rate', 'max heart rate', 'avg cadence', 'max cadence', 'total calories'] # for column in ['avg cadence', 'max cadence']: # data[column] = data[column].fillna(data[column].mean()) # fill cadence NaNs with the average of that column # data[column] = data[column].fillna(0) # fill NaN values with 0 (this is not ideal as cadence values are typically 50-60) data = data.dropna(axis=0, subset=['avg cadence', 'max cadence']) # drop rows in which the cadence is NaN # data = data[data['avg cadence'].isna()] # keep rows in which the cadence is NaN # data = data.dropna(axis=1) # remove columns with NaN values (should be just the cadence columns) data.groupby('sport').agg({'activity':'count'}) features = data[list(set(columns) & set(data.columns))].copy() features.shape features_scaler = preprocessing.MinMaxScaler() # features_scaler = preprocessing.StandardScaler() features_scaler.fit(features) sports = data['sport'].copy() sports_encoder = preprocessing.LabelEncoder() sports_encoder.fit(sports) features_train, features_test, sports_train, sports_test = model_selection.train_test_split(features, sports) # sport_classifier = tree.DecisionTreeClassifier() sport_classifier = ensemble.RandomForestClassifier(n_estimators=10) sport_classifier.fit(features_scaler.transform(features_train), sports_encoder.transform(sports_train)) predictions = features_test.copy() predictions['real sport'] = sports_test predictions['predicted sport'] = sports_encoder.inverse_transform( sport_classifier.predict(features_scaler.transform(features_test))) # add columns indicating the probabilities for each sport probablities = sport_classifier.predict_proba(features_scaler.transform(features_test)) for i, column in enumerate(['%s probability' % s for s in sports_encoder.classes_]): predictions[column] = probablities[:, i] # only keep rows in which the prediction was wrong predictions = predictions[predictions['real sport'] != predictions['predicted sport']] # predictions = predictions.sort_values('cycling probability', ascending=False) # predictions = predictions[predictions['cycling probability'] < 1] predictions.head(20) x = 'avg speed' y = 'avg heart rate' sport_colours = {'walking': 'g', 'cycling': 'b', 'driving': 'k', 'yoga': 'm', 'mixed':'y', 'hiking': 'orange', 'running': 'r', 'train': 'c', 'other': 'purple', 'squash': 'grey', 'water': 'pink'} fig, ax = plt.subplots(1, 1, figsize=[15,10]) for sport in sorted(predictions['real sport'].unique()): ax.scatter(predictions[predictions['real sport'] == sport][x], predictions[predictions['real sport'] == sport][y], marker='o', s=100, alpha=0.5, color=sport_colours[sport], label="REAL - %s" % sport) for sport in sorted(predictions['predicted sport'].unique()): ax.scatter(predictions[predictions['predicted sport'] == sport][x], predictions[predictions['predicted sport'] == sport][y], marker='o', s=500, alpha=0.5, linewidth=5, color=sport_colours[sport], facecolors='none', label="PREDICTED - %s" % sport) ax.set_xlabel(x) ax.set_ylabel(y) # ax.set_xlim([0,5]) # ax.set_ylim([0,5000]) ax.legend() ax.grid() sport_classifier.score(features_scaler.transform(features_test), sports_encoder.transform(sports_test)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Filter the data Step2: Scale and encode the data Step3: Split the data Step4: Train the model Step5: Test the model
9,077
<ASSISTANT_TASK:> Python Code: import pandas as pd invocations = pd.read_csv("datasets/test_code_invocations.csv", sep=";") invocations.head() invocation_matrix = invocations.pivot_table( index=['test_type', 'test_method'], columns=['prod_type', 'prod_method'], values='invocations', fill_value=0 ) # show interesting parts of results invocation_matrix.iloc[4:8,4:6] from sklearn.metrics.pairwise import cosine_distances distance_matrix = cosine_distances(invocation_matrix) # show some interesting parts of results distance_matrix[81:85,60:62] distance_df = pd.DataFrame(distance_matrix, index=invocation_matrix.index, columns=invocation_matrix.index) # show some interesting parts of results distance_df.iloc[81:85,60:62] invocations[ (invocations.test_method == "void readRoundtripWorksWithFullData()") | (invocations.test_method == "void postCommentActuallyCreatesComment()")] invocations[ (invocations.test_method == "void readRoundtripWorksWithFullData()") | (invocations.test_method == "void postTwiceCreatesTwoElements()")] from sklearn.manifold import MDS model = MDS(dissimilarity='precomputed', random_state=10) distance_df_2d = model.fit_transform(distance_df) distance_df_2d[:5] %matplotlib inline from matplotlib import cm import matplotlib.pyplot as plt relative_index = distance_df.index.labels[0].values() / distance_df.index.labels[0].max() colors = [x for x in cm.hsv(relative_index)] plt.figure(figsize=(8,8)) x = distance_df_2d[:,0] y = distance_df_2d[:,1] plt.scatter(x, y, c=colors) from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps=0.08, min_samples=10) clustering_results = dbscan.fit(distance_df_2d) plt.figure(figsize=(8,8)) cluster_members = clustering_results.components_ # plot all data points plt.scatter(x, y, c='k', alpha=0.2) # plot cluster members plt.scatter( cluster_members[:,0], cluster_members[:,1], c='r', s=100, alpha=0.1) tests = pd.DataFrame(index=distance_df.index) tests['cluster'] = clustering_results.labels_ cohesive_tests = tests[tests.cluster != -1] cohesive_tests.head() test_measures = cohesive_tests.reset_index().groupby("cluster").test_type.agg({"nunique", "count"}) test_measures test_list = cohesive_tests.reset_index().groupby("cluster").test_type.apply(set) test_list test_analysis_result = test_measures.join(test_list) test_analysis_result test_analysis_result.iloc[0].test_type <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: What we've got here are all names of our test types (test_type) and production types (prod_type) as well as the signatures of the test methods (test_method) and production methods (prod_method). We also have the amount of calls from the test methods to the production methods (invocations). Step2: What we've got now is the information for each invocation (or non-invocation) of test methods to production methods. In mathematical words, we've got now a n-dimensional vector for each test method where n is the number of tested production methods in our code base! That means we've just transformed our software data to a representation that we can now work on with standard Data Science tools Step3: From this data, we create a DataFrame to get a better representation. You can find the complete DataFrame here as excel file as well. Step4: Visualization Step5: Next, we plot the now two-dimensional matrix with matplotlib. We colorize all data points according to the name of the test types. We can achieve this by assigning each type a number within 0 and 1 (relative_index) and draw a color from a predefined color spectrum (cm.hsv) for each type. With this, each test class gets its own color. This enables us to quickly reason about test classes that belong together. Step6: We now have the visual information about which test methods call similar production code! Let's discuss this plot
9,078
<ASSISTANT_TASK:> Python Code: from sklearn.tree import DecisionTreeClassifier as dtc X = [[0, 0], [1, 1]] Y = [0, 1] clf = dtc() clf = clf.fit(X, Y) clf.predict([[2., 2.]]) clf.predict_proba([[2., 2.]]) from sklearn.datasets import load_iris from sklearn import tree iris = load_iris() print(iris.DESCR) print(iris.data) clf = tree.DecisionTreeClassifier() clf = clf.fit(iris.data, iris.target) import graphviz dot_data = tree.export_graphviz(clf, out_file=None) graph = graphviz.Source(dot_data) graph.render("iris") dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph clf.predict(iris.data[:1, :]) clf.predict_proba(iris.data[:1, :]) print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "ryb" plot_step = 0.02 # Load data iris = load_iris() # permutation of 2 features from 4 features for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features print(pairidx, pair) X = iris.data[:, pair] y = iris.target print(len(X), len(y)) print(X[1]) # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.RdYlBu, edgecolor='black', s=15) plt.suptitle("Decision surface of a decision tree using paired features") plt.legend(loc='lower right', borderpad=0, handletextpad=0) plt.axis("tight") plt.show() from sklearn import tree X = [[0, 0], [2, 2]] y = [0.5, 2.5] clf = tree.DecisionTreeRegressor() clf = clf.fit(X, y) clf.predict([[1, 1]]) print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=3) regr_2 = DecisionTreeRegressor(max_depth=9) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show() # Quadratic training set + noise np.random.seed(42) m = 200 X = np.random.rand(m, 1) y = 4 * (X - 0.5) ** 2 y = y + np.random.randn(m, 1) / 10 # To support both python 2 and python 3 from __future__ import division, print_function, unicode_literals # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "decision_trees" def image_path(fig_id): return os.path.join("files", fig_id) def save_fig(fig_id, tight_layout=True): print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(image_path(fig_id) + ".png", format='png', dpi=300) from sklearn.tree import DecisionTreeRegressor tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42) tree_reg.fit(X, y) from sklearn.tree import DecisionTreeRegressor tree_reg1 = DecisionTreeRegressor(random_state=42, max_depth=2) tree_reg2 = DecisionTreeRegressor(random_state=42, max_depth=3) tree_reg1.fit(X, y) tree_reg2.fit(X, y) def plot_regression_predictions(tree_reg, X, y, axes=[0, 1, -0.2, 1], ylabel="$y$"): x1 = np.linspace(axes[0], axes[1], 500).reshape(-1, 1) y_pred = tree_reg.predict(x1) plt.axis(axes) plt.xlabel("$x_1$", fontsize=18) if ylabel: plt.ylabel(ylabel, fontsize=18, rotation=0) plt.plot(X, y, "b.") plt.plot(x1, y_pred, "r.-", linewidth=2, label=r"$\hat{y}$") plt.figure(figsize=(11, 4)) plt.subplot(121) plot_regression_predictions(tree_reg1, X, y) for split, style in ((0.1973, "k-"), (0.0917, "k--"), (0.7718, "k--")): plt.plot([split, split], [-0.2, 1], style, linewidth=2) plt.text(0.21, 0.65, "Depth=0", fontsize=15) plt.text(0.01, 0.2, "Depth=1", fontsize=13) plt.text(0.65, 0.8, "Depth=1", fontsize=13) plt.legend(loc="upper center", fontsize=18) plt.title("max_depth=2", fontsize=14) plt.subplot(122) plot_regression_predictions(tree_reg2, X, y, ylabel=None) for split, style in ((0.1973, "k-"), (0.0917, "k--"), (0.7718, "k--")): plt.plot([split, split], [-0.2, 1], style, linewidth=2) for split in (0.0458, 0.1298, 0.2873, 0.9040): plt.plot([split, split], [-0.2, 1], "k:", linewidth=1) plt.text(0.3, 0.5, "Depth=2", fontsize=13) plt.title("max_depth=3", fontsize=14) save_fig("tree_regression_plot") plt.show() from sklearn.tree import export_graphviz export_graphviz( tree_reg1, out_file=image_path("regression_tree.dot"), feature_names=["x1"], rounded=True, filled=True ) tree_reg1 = DecisionTreeRegressor(random_state=42) tree_reg2 = DecisionTreeRegressor(random_state=42, min_samples_leaf=10) tree_reg1.fit(X, y) tree_reg2.fit(X, y) x1 = np.linspace(0, 1, 500).reshape(-1, 1) y_pred1 = tree_reg1.predict(x1) y_pred2 = tree_reg2.predict(x1) plt.figure(figsize=(11, 4)) plt.subplot(121) plt.plot(X, y, "b.") plt.plot(x1, y_pred1, "r.-", linewidth=2, label=r"$\hat{y}$") plt.axis([0, 1, -0.2, 1.1]) plt.xlabel("$x_1$", fontsize=18) plt.ylabel("$y$", fontsize=18, rotation=0) plt.legend(loc="upper center", fontsize=18) plt.title("No restrictions", fontsize=14) plt.subplot(122) plt.plot(X, y, "b.") plt.plot(x1, y_pred2, "r.-", linewidth=2, label=r"$\hat{y}$") plt.axis([0, 1, -0.2, 1.1]) plt.xlabel("$x_1$", fontsize=18) plt.title("min_samples_leaf={}".format(tree_reg2.min_samples_leaf), fontsize=14) save_fig("tree_regression_regularization_plot") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: After being fitted, the model can then be used to predict the class of samples Step2: Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class in a leaf Step3: DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass (where the labels are [0, …, K-1]) classification. Step4: After being fitted, the model can then be used to predict the class of samples Step5: Example Step6: Regression
9,079
<ASSISTANT_TASK:> Python Code: !pip install git+https://github.com/google/starthinker from starthinker.util.configuration import Configuration CONFIG = Configuration( project="", client={}, service={}, user="/content/user.json", verbose=True ) FIELDS = { 'auth_read':'user', # Credentials used for reading data. 'query':'', # SQL with newlines and all. 'dataset':'', # Existing BigQuery dataset. 'view':'', # View to create from this query. 'legacy':True, # Query type must match source tables. } print("Parameters Set To: %s" % FIELDS) from starthinker.util.configuration import execute from starthinker.util.recipe import json_set_fields TASKS = [ { 'bigquery':{ 'auth':{'field':{'name':'auth_read','kind':'authentication','order':1,'default':'user','description':'Credentials used for reading data.'}}, 'from':{ 'query':{'field':{'name':'query','kind':'text','order':1,'default':'','description':'SQL with newlines and all.'}}, 'legacy':{'field':{'name':'legacy','kind':'boolean','order':4,'default':True,'description':'Query type must match source tables.'}} }, 'to':{ 'dataset':{'field':{'name':'dataset','kind':'string','order':2,'default':'','description':'Existing BigQuery dataset.'}}, 'view':{'field':{'name':'view','kind':'string','order':3,'default':'','description':'View to create from this query.'}} } } } ] json_set_fields(TASKS, FIELDS) execute(CONFIG, TASKS, force=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Set Configuration Step2: 3. Enter BigQuery Query To View Recipe Parameters Step3: 4. Execute BigQuery Query To View
9,080
<ASSISTANT_TASK:> Python Code: strat_train_set_copy = strat_train_set.copy() housing.plot(kind="scatter", x='longitude', y='latitude') housing.plot(kind="scatter", x='longitude', y='latitude', alpha=0.1) strat_train_set_copy.plot(kind='scatter', x='longitude', y='latitude', alpha=0.4, s=strat_train_set_copy.population/100, c=strat_train_set_copy.median_house_value, cmap=plt.get_cmap("jet"), label="population", figsize=(15, 15), colorbar=True) plt.legend() corr_matrix = strat_train_set_copy.corr() corr_matrix.median_house_value.sort_values(ascending=False) from pandas.plotting import scatter_matrix attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"] scatter_matrix(housing[attributes], figsize=(12, 8)) strat_train_set_copy.plot.scatter(x="median_income", y="median_house_value", alpha=0.1) housing["rooms_per_household"] = housing["total_rooms"] / housing["households"] housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"] housing["population_per_household"]=housing["population"]/housing["households"] housing.info() corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False) housing = strat_train_set.drop('median_house_value', axis=1) housing_labels = strat_train_set['median_house_value'].copy() housing.info() housing.dropna(subset=['total_bedrooms']).info() housing.drop('total_bedrooms', axis=1).info() housing['total_bedrooms'].fillna(housing['total_bedrooms'].median()).describe() from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy='median') housing_num = housing.drop("ocean_proximity", axis=1) imputer.fit(housing_num) imputer.statistics_ imputer.strategy housing.drop("ocean_proximity", axis=1).median().values X = imputer.transform(housing_num) X housing_tr = pd.DataFrame(X, columns=housing_num.columns) housing_tr.head() from sklearn.preprocessing import LabelEncoder encoder = LabelEncoder() housing_cat = housing.ocean_proximity housing_cat.describe() housing_cat.value_counts() housing_cat_encoded = encoder.fit_transform(housing_cat) housing_cat_encoded type(housing_cat_encoded) print(encoder.classes_) from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder() print(housing_cat_encoded.shape) print(type(housing_cat_encoded)) (housing_cat_encoded.reshape(-1, 1)).shape housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1, 1)) housing_cat_1hot type(housing_cat_1hot) housing_cat_1hot.toarray() from sklearn.preprocessing import LabelBinarizer encoder = LabelBinarizer(sparse_output=False) housing_cat_1hot = encoder.fit_transform(housing_cat) housing_cat_1hot type(housing_cat_1hot) rooms_ix, bedrooms_ix, population_ix, households_ix = 3, 4, 5, 6 housing.head() housing.iloc[:, 3] X = housing.values # This can be achieved by the iloc, with using .values housing.iloc[:, [rooms_ix, bedrooms_ix, households_ix, population_ix]].head() rooms_per_household = X[:, rooms_ix] / X[:, households_ix] population_per_household = X[:, population_ix] / X[:, households_ix] bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix] np.c_[X, rooms_per_household, population_per_household] np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room] from sklearn.base import BaseEstimator, TransformerMixin rooms_ix, bedrooms_ix, population_ix, households_ix = 3, 4, 5, 6 class CombinedAttributesAdder(BaseEstimator, TransformerMixin): def __init__(self, add_bedrooms_per_room=False): self.add_bedrooms_per_room = add_bedrooms_per_room def fit(self, X, y=None): return self def transform(self, X, y=None): rooms_per_household = X[:, rooms_ix] / X[:, households_ix] population_per_household = X[:, population_ix] / X[:, households_ix] if self.add_bedrooms_per_room: bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix] return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room] else: return np.c_[X, rooms_per_household, population_per_household] attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False) housing_extra_attribs = attr_adder.transform(X) print(housing_extra_attribs.shape) print(housing.shape) # Convert back to data frame -- My way new_columns = housing.columns.append( pd.Index(['rooms_per_household', 'population_per_household']) ) new_columns housing_extra_attribs_df = pd.DataFrame(housing_extra_attribs, columns=new_columns) housing_extra_attribs_df.head() housing.describe() housing.total_rooms.describe() from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() scalar.fit(housing["total_rooms"].values.reshape(-1, 1)) pd.DataFrame(scalar.transform(housing["total_rooms"].values.reshape(-1, 1)), columns=["total_rooms"])["total_rooms"].describe() from sklearn.preprocessing import StandardScaler scalar = StandardScaler() scalar.fit(housing["total_rooms"].values.reshape(-1, 1)) pd.DataFrame(scalar.transform(housing["total_rooms"].values.reshape(-1, 1)), columns=["total_rooms"])["total_rooms"].describe() from sklearn.pipeline import Pipeline num_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy="median")), ('attr_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler()) ]) # I want to verify the pipelined version # doest the same thing as the separated steps num_pipeline_stage1 = Pipeline([ ('imputer', SimpleImputer(strategy="median")), ]) X_pipeline = num_pipeline_stage1.fit_transform(housing_num) X = imputer.transform(housing_num) X_pipeline np.array_equal(X, X_pipeline) num_pipeline_stage2 = Pipeline([ ('imputer', SimpleImputer(strategy="median")), ('attr_adder', CombinedAttributesAdder()), ]) Y = attr_adder.fit_transform(X) Y_pipeline = num_pipeline_stage2.fit_transform(housing_num) np.array_equal(Y, Y_pipeline) num_pipeline_stage3 = Pipeline([ ('imputer', SimpleImputer(strategy="median")), ('attr_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler()) ]) Z = scalar.fit_transform(Y) Z.std(), Z.mean() Z_pipeline = num_pipeline_stage3.fit_transform(housing_num) np.array_equal(Z, Z_pipeline) from sklearn.base import BaseEstimator, TransformerMixin class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names].values class CustomizedLabelBinarizer(BaseEstimator, TransformerMixin): def __init__(self, sparse_output=False): self.encode = LabelBinarizer(sparse_output = sparse_output) def fit(self, X, y=None): return self.encode.fit(X) def transform(self, X): return self.encode.transform(X) num_attribs = list(housing_num) cat_attribs = ["ocean_proximity"] num_pipeline = Pipeline([ ('selector', DataFrameSelector(num_attribs)), ('imputer', SimpleImputer(strategy="median")), ('attr_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler()), ] ) cat_pipeline = Pipeline([ ('selector', DataFrameSelector(cat_attribs)), ('label_binarizer', CustomizedLabelBinarizer()), ] ) # LabelBinarizer().fit_transform(DataFrameSelector(cat_attribs).fit_transform(housing)) # num_pipeline.fit_transform(housing) # cat_pipeline.fit_transform(housing) from sklearn.pipeline import FeatureUnion full_pipeline = FeatureUnion(transformer_list=[ ('num_pipeline', num_pipeline), ('cat_pipeline', cat_pipeline), ]) housing_prepared = full_pipeline.fit_transform(housing) print(housing_prepared.shape) housing_prepared from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(housing_prepared, housing_labels) some_data = housing[:5] some_data some_labels = housing_labels[:5] some_labels some_data_prepared = full_pipeline.transform(some_data) some_data_prepared print(f'Prediction:\t{lin_reg.predict(some_data_prepared)}') print(f'Lables:\t\t{list(some_labels)}') from sklearn.metrics import mean_squared_error housing_prediction = lin_reg.predict(housing_prepared) lin_mse = mean_squared_error(housing_prediction, housing_labels) lin_rmse = np.sqrt(lin_mse) lin_rmse from sklearn.tree import DecisionTreeRegressor tree_reg = DecisionTreeRegressor() tree_reg.fit(housing_prepared, housing_labels) tree_predictions = tree_reg.predict(housing_prepared) tree_mse = mean_squared_error(tree_predictions, housing_labels) tree_rmse = np.sqrt(tree_mse) tree_rmse from sklearn.model_selection import cross_val_score scores = cross_val_score(tree_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10) rmse_scores = np.sqrt(-scores) rmse_scores def display_scores(scores): print(f'Scores: {scores}') print(f'Mean: {scores.mean()}') print(f'STD: {scores.std()}') display_scores(rmse_scores) from sklearn.ensemble import RandomForestRegressor forest_reg = RandomForestRegressor() forest_reg.fit(housing_prepared, housing_labels) forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10) forest_rmse_scores = np.sqrt(-forest_scores) display_scores(forest_rmse_scores) forest_prediction = forest_reg.predict(housing_prepared) forest_rmse = np.sqrt(mean_squared_error(forest_prediction, housing_labels)) forest_rmse # Follow the example here: https://scikit-learn.org/stable/auto_examples/plot_kernel_ridge_regression.html from sklearn.svm import SVR from sklearn.model_selection import GridSearchCV param_grid = [ {'kernel': ['linear'], 'C': [0.1, 1.0, 10.0]}, {'kernel': ['rbf'], 'C': [0.1, 1.0, 10.0], 'gamma': np.logspace(-2, 2, 5)}, ] param_grid = [ {'kernel': ['rbf'], 'C': [0.1, 1.0, 10.0], 'gamma': np.logspace(-2, 2, 5)}, ] svm_reg = SVR() grid_search = GridSearchCV(svm_reg, param_grid, cv=5, scoring="neg_mean_squared_error") grid_search.fit(housing_prepared, housing_labels) cvres = grid_search.cv_results_ for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]): print(np.sqrt(-mean_score), params) # from sklearn.externals import joblib # joblib.dump(forest_reg, 'forest_reg.pkl') # forest_reg_loaded = joblib.load('forest_reg.pkl') # np.sqrt(mean_squared_error(forest_reg_loaded.predict(housing_prepared), housing_labels)) # from sklearn.model_selection import GridSearchCV # param_grid = [ # {'n_estimators': [3, 10, 30], 'max_features': [2,4,6,8]}, # {'bootstrap': [False], 'n_estimators': [3, 10, 30], 'max_features': [2,4,6,8]} # ] # forest_reg = RandomForestRegressor() # grid_search = GridSearchCV(forest_reg, param_grid, cv=5, scoring="neg_mean_squared_error") # grid_search.fit(housing_prepared, housing_labels) # grid_search.best_params_ # grid_search.best_estimator_ # cvres = grid_search.cv_results_ # for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]): # print(np.sqrt(-mean_score), params) # feature_importances = grid_search.best_estimator_.feature_importances_ # feature_importances # extra_attribs = ['rooms_per_hhold', 'pop_per_hhold'] # cat_one_hot_attribs = list(encoder.classes_) # cat_one_hot_attribs # attributes = num_attribs + extra_attribs + cat_one_hot_attribs # attributes, len(attributes) # sorted(zip(feature_importances, attributes), reverse=True) # final_model = grid_search.best_estimator_ # X_test = strat_test_set.drop("median_house_value", axis=1) # y_test = strat_test_set.median_house_value.copy() # X_test_prepared = full_pipeline.transform(X_test) # final_predictions = final_model.predict(X_test_prepared) # final_mse = mean_squared_error(final_predictions, y_test) # final_rmse = np.sqrt(final_mse) # final_rmse <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Experimenting with Attribute Combinations Step2: 2.5 Prepare the Data for Machine Learning Algorithms Step3: Handling Text and Categorical Attributes Step4: One hot encoding Step5: Combine Step6: Custom Transformers Step7: 2.5.4 Feature Scaling Step8: 2.5.5 Transformation Pipeline Step9: 2.6.1 Training and Evaluating on the Training Set Step10: Tree model Step11: 2.6.2 Better Evaluation Using Cross-Validation Step12: Random Forest Step13: Ex01 Step14: From the above results, we can see it doesn't do a very good job. Step15: 2.7.1 Grid Search Step16: 2.7.4 Analyze the best models and their errors Step17: 2.7.5 Evaluate Your System on the Test Set
9,081
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import datetime from matplotlib import pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler df = pd.read_csv('data/pm25.csv') print(df.shape) df.head() df.isnull().sum()*100/df.shape[0] df.dropna(subset=['pm2.5'], axis=0, inplace=True) df.reset_index(drop=True, inplace=True) df['datetime'] = df[['year', 'month', 'day', 'hour']].apply( lambda row: datetime.datetime(year=row['year'], month=row['month'], day=row['day'],hour=row['hour']), axis=1) df.sort_values('datetime', ascending=True, inplace=True) df.head() df['year'].value_counts() plt.figure(figsize=(5.5, 5.5)) g = sns.lineplot(data=df['pm2.5'], color='g') g.set_title('pm2.5 between 2010 and 2014') g.set_xlabel('Index') g.set_ylabel('pm2.5 readings') scaler = MinMaxScaler(feature_range=(0, 1)) df['scaled_pm2.5'] = scaler.fit_transform(np.array(df['pm2.5']).reshape(-1, 1)) df.head() plt.figure(figsize=(5.5, 5.5)) g = sns.lineplot(data=df['scaled_pm2.5'], color='purple') g.set_title('Scaled pm2.5 between 2010 and 2014') g.set_xlabel('Index') g.set_ylabel('scaled_pm2.5 readings') # 2014 data as validation data, before 2014 as training data split_date = datetime.datetime(year=2014, month=1, day=1, hour=0) df_train = df.loc[df['datetime']<split_date] df_val = df.loc[df['datetime']>=split_date] print('Shape of train:', df_train.shape) print('Shape of test:', df_val.shape) df_val.reset_index(drop=True, inplace=True) df_val.head() # The way this works is to have the first nb_timesteps-1 observations as X and nb_timesteps_th as the target, ## collecting the data with 1 stride rolling window. def makeXy(ts, nb_timesteps): Input: ts: original time series nb_timesteps: number of time steps in the regressors Output: X: 2-D array of regressors y: 1-D array of target X = [] y = [] for i in range(nb_timesteps, ts.shape[0]): X.append(list(ts.loc[i-nb_timesteps:i-1])) y.append(ts.loc[i]) X, y = np.array(X), np.array(y) return X, y X_train, y_train = makeXy(df_train['scaled_pm2.5'], 7) print('Shape of train arrays:', X_train.shape, y_train.shape) print(X_train[0], y_train[0]) print(X_train[1], y_train[1]) X_val, y_val = makeXy(df_val['scaled_pm2.5'], 7) print('Shape of validation arrays:', X_val.shape, y_val.shape) print(X_val[0], y_val[0]) print(X_val[1], y_val[1]) X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_val = X_val.reshape((X_val.shape[0], X_val.shape[1], 1)) print('Shape of arrays after reshaping:', X_train.shape, X_val.shape) import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import SimpleRNN from tensorflow.keras.layers import Dense, Dropout, Input from tensorflow.keras.models import load_model from tensorflow.keras.callbacks import ModelCheckpoint from sklearn.metrics import mean_absolute_error tf.random.set_seed(10) model = Sequential() model.add(SimpleRNN(32, input_shape=(X_train.shape[1:]))) model.add(Dropout(0.2)) model.add(Dense(1, activation='linear')) model.compile(optimizer='rmsprop', loss='mean_absolute_error', metrics=['mae']) model.summary() save_weights_at = 'basic_rnn_model' save_best = ModelCheckpoint(save_weights_at, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='min', save_freq='epoch') history = model.fit(x=X_train, y=y_train, batch_size=16, epochs=20, verbose=1, callbacks=[save_best], validation_data=(X_val, y_val), shuffle=True) # load the best model best_model = load_model('basic_rnn_model') # Compare the prediction with y_true preds = best_model.predict(X_val) pred_pm25 = scaler.inverse_transform(preds) pred_pm25 = np.squeeze(pred_pm25) # Measure MAE of y_pred and y_true mae = mean_absolute_error(df_val['pm2.5'].loc[7:], pred_pm25) print('MAE for the validation set:', round(mae, 4)) mae = mean_absolute_error(df_val['scaled_pm2.5'].loc[7:], preds) print('MAE for the scaled validation set:', round(mae, 4)) # Check the metrics and loss of each apoch mae = history.history['mae'] val_mae = history.history['val_mae'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(mae)) plt.plot(epochs, mae, 'bo', label='Training MAE') plt.plot(epochs, val_mae, 'b', label='Validation MAE') plt.title('Training and Validation MAE') plt.legend() plt.figure() # Here I was using MAE as loss too, that's why they lookedalmost the same... plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and Validation loss') plt.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Note Step3: Note
9,082
<ASSISTANT_TASK:> Python Code: import scipy import numpy as np a = np.array([[26, 3, 0], [3, 195, 1], [0, 1, 17]]) a = 1-np.sign(a) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
9,083
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division %matplotlib inline import matplotlib import numpy as np import pandas as pd import matplotlib.pyplot as plt # use matplotlib style sheet plt.style.use('ggplot') # import the t-distribution from scipy.stats from scipy.stats import t y = np.array([35,34,38,35,37]) y n = len(y) n estimate = np.mean(y) estimate se = np.std(y, ddof=1)/np.sqrt(n) se int50 = estimate + t.ppf([0.25, 0.75], n-1)*se int50 int95 = estimate + t.ppf([0.025, 0.975], n-1)*se int95 from scipy.stats import norm y = 700 y n = 1000 n estimate = y/n estimate se = np.sqrt(estimate*(1-estimate)/n) se int95 = estimate + norm.ppf([.025,0.975])*se int95 y = np.repeat([0,1,2,3,4], [600,300, 50, 30, 20]) y n = len(y) n estimate = np.mean(y) estimate se = np.std(y, ddof=1)/np.sqrt(n) se int50 = estimate + t.ppf([0.25, 0.75], n-1)*se int50 int95 = estimate + t.ppf([0.025, 0.975], n-1)*se int95 %%bash head ../../ARM_Data/death.polls/polls.dat # Data is available in death.polls directory of ARM_Data data = [] temp = [] ncols = 5 with open("../../ARM_Data/death.polls/polls.dat") as f: for line in f.readlines(): for d in line.strip().split(' '): temp.append(float(d)) if (len(temp) == ncols): data.append(temp) temp = [] polls = pd.DataFrame(data, columns=[u'year', u'month', u'perc for', u'perc against', u'perc no opinion']) polls.head() # --Note: this give the (percent) support for thise that have an opinion # --The percentage with no opinion are ignored # --This results in difference between our plot (below) and the Gallup plot (link above) polls[u'support'] = polls[u'perc for']/(polls[u'perc for']+polls[u'perc against']) polls.head() polls[u'year_float'] = polls[u'year'] + (polls[u'month']-6)/12 polls.head() # add error column -- symmetric so only add one column # assumes sample size N=1000 # uses +/- 1 standard error, resulting in 68% confidence polls[u'support_error'] = np.sqrt(polls[u'support']*(1-polls[u'support'])/1000) polls.head() fig, ax = plt.subplots(figsize=(8, 6)) plt.errorbar(polls[u'year_float'], 100*polls[u'support'], yerr=100*polls[u'support_error'], fmt='ko', ms=4, capsize=0) plt.ylabel(u'Percentage support for the death penalty') plt.xlabel(u'Year') # you can adjust y-limits with command like below # I will leave the default behavior #plt.ylim(np.min(100*polls[u'support'])-2, np.max(100*polls[u'support']+2)) N = np.array([66030000, 81083600, 60788845]) p = np.array([0.55, 0.61, 0.38]) se = np.array([0.02, 0.03, 0.03]) w_avg = np.sum(N*p)/np.sum(N) w_avg se_w_avg = np.sqrt(np.sum((N*se/np.sum(N))**2)) se_w_avg # this uses +/- 2 std devs int_95 = w_avg + np.array([-2,2])*se_w_avg int_95 # import the normal from scipy.stats # repeated to make sure that it is clear that it is needed for this section from scipy.stats import norm # also need this for estimating CI from samples from scipy.stats.mstats import mquantiles n_men = 500 n_men p_hat_men = 0.75 p_hat_men se_men = np.sqrt(p_hat_men*(1.-p_hat_men)/n_men) se_men n_women = 500 n_women p_hat_women = 0.65 p_hat_women se_women = np.sqrt(p_hat_women*(1.-p_hat_women)/n_women) se_women n_sims = 10000 n_sims p_men = norm.rvs(size=n_sims, loc=p_hat_men, scale=se_men) p_men[:10] # show first ten p_women = norm.rvs(size=n_sims, loc=p_hat_women, scale=se_women) p_women[:10] # show first ten ratio = p_men/p_women ratio[:10] # show first ten # the values of alphap and betap replicate the R default behavior # see http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html int95 = mquantiles(ratio, prob=[0.025,0.975], alphap=1., betap=1.) int95 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: CI for continuous data, Pg 18 Step2: Numpy uses a denominator of N in the standard deviation calculation by Step3: CI for proportions, Pg 18 Step4: CI for discrete data, Pg 18 Step5: See the note above about the difference different defaults for standard Step6: Plot Figure 2.3, Pg 19 Step7: Using knowledge of the file layout we can read in the file and pre-process into Step8: Weighted averages, Pg 19 Step9: CI using simulations, Pg 20
9,084
<ASSISTANT_TASK:> Python Code: import cv2 import matplotlib.pyplot as plt %matplotlib inline # TODO: Feel free to try out your own images here by changing img_path # to a file path to another image on your computer! img_path = 'data/udacity_sdc.png' # load color image bgr_img = cv2.imread(img_path) # convert to grayscale gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY) # normalize, rescale entries to lie in [0,1] gray_img = gray_img.astype("float32")/255 # plot image plt.imshow(gray_img, cmap='gray') plt.show() import numpy as np ## TODO: Feel free to modify the numbers here, to try out another filter! filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]]) print('Filter shape: ', filter_vals.shape) # Defining four different filters, # all of which are linear combinations of the `filter_vals` defined above # define four filters filter_1 = filter_vals filter_2 = -filter_1 filter_3 = filter_1.T filter_4 = -filter_3 filters = np.array([filter_1, filter_2, filter_3, filter_4]) # For an example, print out the values of filter 1 print('Filter 1: \n', filter_1) # visualize all four filters fig = plt.figure(figsize=(10, 5)) for i in range(4): ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[]) ax.imshow(filters[i], cmap='gray') ax.set_title('Filter %s' % str(i+1)) width, height = filters[i].shape for x in range(width): for y in range(height): ax.annotate(str(filters[i][x][y]), xy=(y,x), horizontalalignment='center', verticalalignment='center', color='white' if filters[i][x][y]<0 else 'black') import torch import torch.nn as nn import torch.nn.functional as F # define a neural network with a single convolutional layer with four filters class Net(nn.Module): def __init__(self, weight): super(Net, self).__init__() # initializes the weights of the convolutional layer to be the weights of the 4 defined filters k_height, k_width = weight.shape[2:] # assumes there are 4 grayscale filters self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False) self.conv.weight = torch.nn.Parameter(weight) def forward(self, x): # calculates the output of a convolutional layer # pre- and post-activation conv_x = self.conv(x) activated_x = F.relu(conv_x) # returns both layers return conv_x, activated_x # instantiate the model and set the weights weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor) model = Net(weight) # print out the layer in the network print(model) # helper function for visualizing the output of a given layer # default number of filters is 4 def viz_layer(layer, n_filters= 4): fig = plt.figure(figsize=(20, 20)) for i in range(n_filters): ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[]) # grab layer outputs ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray') ax.set_title('Output %s' % str(i+1)) # plot original image plt.imshow(gray_img, cmap='gray') # visualize all filters fig = plt.figure(figsize=(12, 6)) fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05) for i in range(4): ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[]) ax.imshow(filters[i], cmap='gray') ax.set_title('Filter %s' % str(i+1)) # convert the image into an input Tensor gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1) # get the convolutional layer (pre and post activation) conv_layer, activated_layer = model(gray_img_tensor) # visualize the output of a conv layer viz_layer(conv_layer) # after a ReLu is applied # visualize the output of an activated conv layer viz_layer(activated_layer) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define and visualize the filters Step2: Define a convolutional layer Step3: Visualize the output of each filter Step4: Let's look at the output of a convolutional layer, before and after a ReLu activation function is applied. Step5: ReLu activation
9,085
<ASSISTANT_TASK:> Python Code: labVersion = 'cs190.1x-lab3-1.0.4' print labVersion # load testing library from test_helper import Test import os.path baseDir = os.path.join('mnt', 'spark-mooc') inputPath = os.path.join('cs190', 'millionsong.txt') fileName = os.path.join(baseDir, inputPath) numPartitions = 2 rawData = sc.textFile(fileName, numPartitions) # TODO: Replace <FILL IN> with appropriate code numPoints = rawData.count() print numPoints samplePoints = rawData.take(5) print samplePoints # TEST Load and check the data (1a) Test.assertEquals(numPoints, 6724, 'incorrect value for numPoints') Test.assertEquals(len(samplePoints), 5, 'incorrect length for samplePoints') len(samplePoints) from pyspark.mllib.regression import LabeledPoint import numpy as np # Here is a sample raw data point: # '2001.0,0.884,0.610,0.600,0.474,0.247,0.357,0.344,0.33,0.600,0.425,0.60,0.419' # In this raw data point, 2001.0 is the label, and the remaining values are features # TODO: Replace <FILL IN> with appropriate code def parsePoint(line): Converts a comma separated unicode string into a `LabeledPoint`. Args: line (unicode): Comma separated unicode string where the first element is the label and the remaining elements are features. Returns: LabeledPoint: The line is converted into a `LabeledPoint`, which consists of a label and features. list = line.split(',') return (LabeledPoint(list[0],list[1:])) parsedSamplePoints = map(parsePoint, samplePoints) firstPointFeatures = parsedSamplePoints[0].features firstPointLabel = parsedSamplePoints[0].label print firstPointFeatures, firstPointLabel d = len(firstPointFeatures) print d # TEST Using LabeledPoint (1b) Test.assertTrue(isinstance(firstPointLabel, float), 'label must be a float') expectedX0 = [0.8841,0.6105,0.6005,0.4747,0.2472,0.3573,0.3441,0.3396,0.6009,0.4257,0.6049,0.4192] Test.assertTrue(np.allclose(expectedX0, firstPointFeatures, 1e-4, 1e-4), 'incorrect features for firstPointFeatures') Test.assertTrue(np.allclose(2001.0, firstPointLabel), 'incorrect label for firstPointLabel') Test.assertTrue(d == 12, 'incorrect number of features') import matplotlib.pyplot as plt import matplotlib.cm as cm sampleMorePoints = rawData.take(50) # You can uncomment the line below to see randomly selected features. These will be randomly # selected each time you run the cell. Note that you should run this cell with the line commented # out when answering the lab quiz questions. # sampleMorePoints = rawData.takeSample(False, 50) parsedSampleMorePoints = map(parsePoint, sampleMorePoints) dataValues = map(lambda lp: lp.features.toArray(), parsedSampleMorePoints) def preparePlot(xticks, yticks, figsize=(10.5, 6), hideLabels=False, gridColor='#999999', gridWidth=1.0): Template for generating the plot layout. plt.close() fig, ax = plt.subplots(figsize=figsize, facecolor='white', edgecolor='white') ax.axes.tick_params(labelcolor='#999999', labelsize='10') for axis, ticks in [(ax.get_xaxis(), xticks), (ax.get_yaxis(), yticks)]: axis.set_ticks_position('none') axis.set_ticks(ticks) axis.label.set_color('#999999') if hideLabels: axis.set_ticklabels([]) plt.grid(color=gridColor, linewidth=gridWidth, linestyle='-') map(lambda position: ax.spines[position].set_visible(False), ['bottom', 'top', 'left', 'right']) return fig, ax # generate layout and plot fig, ax = preparePlot(np.arange(.5, 11, 1), np.arange(.5, 49, 1), figsize=(8,7), hideLabels=True, gridColor='#eeeeee', gridWidth=1.1) image = plt.imshow(dataValues,interpolation='nearest', aspect='auto', cmap=cm.Greys) for x, y, s in zip(np.arange(-.125, 12, 1), np.repeat(-.75, 12), [str(x) for x in range(12)]): plt.text(x, y, s, color='#999999', size='10') plt.text(4.7, -3, 'Feature', color='#999999', size='11'), ax.set_ylabel('Observation') display(fig) pass # TODO: Replace <FILL IN> with appropriate code parsedDataInit = rawData.map(parsePoint) onlyLabels = parsedDataInit.map(lambda p: p.label) minYear = onlyLabels.min() maxYear = onlyLabels.max() print maxYear, minYear # TEST Find the range (1c) Test.assertEquals(len(parsedDataInit.take(1)[0].features), 12, 'unexpected number of features in sample point') sumFeatTwo = parsedDataInit.map(lambda lp: lp.features[2]).sum() Test.assertTrue(np.allclose(sumFeatTwo, 3158.96224351), 'parsedDataInit has unexpected values') yearRange = maxYear - minYear Test.assertTrue(yearRange == 89, 'incorrect range for minYear to maxYear') # TODO: Replace <FILL IN> with appropriate code parsedData = parsedDataInit.map(lambda p: LabeledPoint(p.label-1922,p.features)) # Should be a LabeledPoint print type(parsedData.take(1)[0]) # View the first point print '\n{0}'.format(parsedData.take(1)) # TEST Shift labels (1d) oldSampleFeatures = parsedDataInit.take(1)[0].features newSampleFeatures = parsedData.take(1)[0].features Test.assertTrue(np.allclose(oldSampleFeatures, newSampleFeatures), 'new features do not match old features') sumFeatTwo = parsedData.map(lambda lp: lp.features[2]).sum() Test.assertTrue(np.allclose(sumFeatTwo, 3158.96224351), 'parsedData has unexpected values') minYearNew = parsedData.map(lambda lp: lp.label).min() maxYearNew = parsedData.map(lambda lp: lp.label).max() Test.assertTrue(minYearNew == 0, 'incorrect min year in shifted data') Test.assertTrue(maxYearNew == 89, 'incorrect max year in shifted data') # get data for plot oldData = (parsedDataInit .map(lambda lp: (lp.label, 1)) .reduceByKey(lambda x, y: x + y) .collect()) x, y = zip(*oldData) # generate layout and plot data fig, ax = preparePlot(np.arange(1920, 2050, 20), np.arange(0, 150, 20)) plt.scatter(x, y, s=14**2, c='#d6ebf2', edgecolors='#8cbfd0', alpha=0.75) ax.set_xlabel('Year'), ax.set_ylabel('Count') display(fig) pass # get data for plot newData = (parsedData .map(lambda lp: (lp.label, 1)) .reduceByKey(lambda x, y: x + y) .collect()) x, y = zip(*newData) # generate layout and plot data fig, ax = preparePlot(np.arange(0, 120, 20), np.arange(0, 120, 20)) plt.scatter(x, y, s=14**2, c='#d6ebf2', edgecolors='#8cbfd0', alpha=0.75) ax.set_xlabel('Year (shifted)'), ax.set_ylabel('Count') display(fig) pass # TODO: Replace <FILL IN> with appropriate code weights = [.8, .1, .1] seed = 42 parsedTrainData, parsedValData, parsedTestData = parsedData.randomSplit(weights,seed) parsedTrainData.cache() parsedValData.cache() parsedTestData.cache() nTrain = parsedTrainData.count() nVal = parsedValData.count() nTest = parsedTestData.count() print nTrain, nVal, nTest, nTrain + nVal + nTest print parsedData.count() # TEST Training, validation, and test sets (1e) Test.assertEquals(parsedTrainData.getNumPartitions(), numPartitions, 'parsedTrainData has wrong number of partitions') Test.assertEquals(parsedValData.getNumPartitions(), numPartitions, 'parsedValData has wrong number of partitions') Test.assertEquals(parsedTestData.getNumPartitions(), numPartitions, 'parsedTestData has wrong number of partitions') Test.assertEquals(len(parsedTrainData.take(1)[0].features), 12, 'parsedTrainData has wrong number of features') sumFeatTwo = (parsedTrainData .map(lambda lp: lp.features[2]) .sum()) sumFeatThree = (parsedValData .map(lambda lp: lp.features[3]) .reduce(lambda x, y: x + y)) sumFeatFour = (parsedTestData .map(lambda lp: lp.features[4]) .reduce(lambda x, y: x + y)) Test.assertTrue(np.allclose([sumFeatTwo, sumFeatThree, sumFeatFour], 2526.87757656, 297.340394298, 184.235876654), 'parsed Train, Val, Test data has unexpected values') Test.assertTrue(nTrain + nVal + nTest == 6724, 'unexpected Train, Val, Test data set size') Test.assertEquals(nTrain, 5371, 'unexpected value for nTrain') Test.assertEquals(nVal, 682, 'unexpected value for nVal') Test.assertEquals(nTest, 671, 'unexpected value for nTest') # TODO: Replace <FILL IN> with appropriate code averageTrainYear = parsedTrainData.map(lambda p: p.label).mean() print averageTrainYear print type(averageTrainYear) # TEST Average label (2a) Test.assertTrue(np.allclose(averageTrainYear, 53.9316700801), 'incorrect value for averageTrainYear') # TODO: Replace <FILL IN> with appropriate code def squaredError(label, prediction): Calculates the squared error for a single prediction. Args: label (float): The correct value for this observation. prediction (float): The predicted value for this observation. Returns: float: The difference between the `label` and `prediction` squared. return (label-prediction)**2 def calcRMSE(labelsAndPreds): Calculates the root mean squared error for an `RDD` of (label, prediction) tuples. Args: labelsAndPred (RDD of (float, float)): An `RDD` consisting of (label, prediction) tuples. Returns: float: The square root of the mean of the squared errors. return np.sqrt(labelsAndPreds.map(lambda r: squaredError(r[0],r[1])).mean()) labelsAndPreds = sc.parallelize([(3., 1.), (1., 2.), (2., 2.)]) # RMSE = sqrt[((3-1)^2 + (1-2)^2 + (2-2)^2) / 3] = 1.291 exampleRMSE = calcRMSE(labelsAndPreds) print exampleRMSE # TEST Root mean squared error (2b) Test.assertTrue(np.allclose(squaredError(3, 1), 4.), 'incorrect definition of squaredError') Test.assertTrue(np.allclose(exampleRMSE, 1.29099444874), 'incorrect value for exampleRMSE') # TODO: Replace <FILL IN> with appropriate code labelsAndPredsTrain = parsedTrainData.map(lambda p: (p.label,averageTrainYear)) rmseTrainBase = calcRMSE(labelsAndPredsTrain) labelsAndPredsVal = parsedValData.map(lambda p: (p.label,averageTrainYear)) rmseValBase = calcRMSE(labelsAndPredsVal) labelsAndPredsTest = parsedTestData.map(lambda p: (p.label,averageTrainYear)) rmseTestBase = calcRMSE(labelsAndPredsTest) print 'Baseline Train RMSE = {0:.3f}'.format(rmseTrainBase) print 'Baseline Validation RMSE = {0:.3f}'.format(rmseValBase) print 'Baseline Test RMSE = {0:.3f}'.format(rmseTestBase) # TEST Training, validation and test RMSE (2c) Test.assertTrue(np.allclose([rmseTrainBase, rmseValBase, rmseTestBase], [21.305869, 21.586452, 22.136957]), 'incorrect RMSE value') from matplotlib.colors import ListedColormap, Normalize from matplotlib.cm import get_cmap cmap = get_cmap('YlOrRd') norm = Normalize() actual = np.asarray(parsedValData .map(lambda lp: lp.label) .collect()) error = np.asarray(parsedValData .map(lambda lp: (lp.label, lp.label)) .map(lambda (l, p): squaredError(l, p)) .collect()) clrs = cmap(np.asarray(norm(error)))[:,0:3] fig, ax = preparePlot(np.arange(0, 100, 20), np.arange(0, 100, 20)) plt.scatter(actual, actual, s=14**2, c=clrs, edgecolors='#888888', alpha=0.75, linewidths=0.5) ax.set_xlabel('Predicted'), ax.set_ylabel('Actual') display(fig) pass predictions = np.asarray(parsedValData .map(lambda lp: averageTrainYear) .collect()) error = np.asarray(parsedValData .map(lambda lp: (lp.label, averageTrainYear)) .map(lambda (l, p): squaredError(l, p)) .collect()) norm = Normalize() clrs = cmap(np.asarray(norm(error)))[:,0:3] fig, ax = preparePlot(np.arange(53.0, 55.0, 0.5), np.arange(0, 100, 20)) ax.set_xlim(53, 55) plt.scatter(predictions, actual, s=14**2, c=clrs, edgecolors='#888888', alpha=0.75, linewidths=0.3) ax.set_xlabel('Predicted'), ax.set_ylabel('Actual') display(fig) from pyspark.mllib.linalg import DenseVector # TODO: Replace <FILL IN> with appropriate code def gradientSummand(weights, lp): Calculates the gradient summand for a given weight and `LabeledPoint`. Note: `DenseVector` behaves similarly to a `numpy.ndarray` and they can be used interchangably within this function. For example, they both implement the `dot` method. Args: weights (DenseVector): An array of model weights (betas). lp (LabeledPoint): The `LabeledPoint` for a single observation. Returns: DenseVector: An array of values the same length as `weights`. The gradient summand. return (weights.dot(lp.features) - lp.label) * lp.features exampleW = DenseVector([1, 1, 1]) exampleLP = LabeledPoint(2.0, [3, 1, 4]) # gradientSummand = (dot([1 1 1], [3 1 4]) - 2) * [3 1 4] = (8 - 2) * [3 1 4] = [18 6 24] summandOne = gradientSummand(exampleW, exampleLP) print 'SummandOne ...' print summandOne exampleW = DenseVector([.24, 1.2, -1.4]) exampleLP = LabeledPoint(3.0, [-1.4, 4.2, 2.1]) summandTwo = gradientSummand(exampleW, exampleLP) print 'SummandTwo ...' print summandTwo print type(summandTwo) print summandOne + summandTwo # TEST Gradient summand (3a) Test.assertTrue(np.allclose(summandOne, [18., 6., 24.]), 'incorrect value for summandOne') Test.assertTrue(np.allclose(summandTwo, [1.7304,-5.1912,-2.5956]), 'incorrect value for summandTwo') # TODO: Replace <FILL IN> with appropriate code def getLabeledPrediction(weights, observation): Calculates predictions and returns a (label, prediction) tuple. Note: The labels should remain unchanged as we'll use this information to calculate prediction error later. Args: weights (np.ndarray): An array with one weight for each features in `trainData`. observation (LabeledPoint): A `LabeledPoint` that contain the correct label and the features for the data point. Returns: tuple: A (label, prediction) tuple. return ( observation.label, weights.dot(observation.features) ) weights = np.array([1.0, 1.5]) predictionExample = sc.parallelize([LabeledPoint(2, np.array([1.0, .5])), LabeledPoint(1.5, np.array([.5, .5]))]) labelsAndPredsExample = predictionExample.map(lambda lp: getLabeledPrediction(weights, lp)) print labelsAndPredsExample.collect() # TEST Use weights to make predictions (3b) Test.assertEquals(labelsAndPredsExample.collect(), [(2.0, 1.75), (1.5, 1.25)], 'incorrect definition for getLabeledPredictions') # TODO: Replace <FILL IN> with appropriate code def linregGradientDescent(trainData, numIters): Calculates the weights and error for a linear regression model trained with gradient descent. Note: `DenseVector` behaves similarly to a `numpy.ndarray` and they can be used interchangably within this function. For example, they both implement the `dot` method. Args: trainData (RDD of LabeledPoint): The labeled data for use in training the model. numIters (int): The number of iterations of gradient descent to perform. Returns: (np.ndarray, np.ndarray): A tuple of (weights, training errors). Weights will be the final weights (one weight per feature) for the model, and training errors will contain an error (RMSE) for each iteration of the algorithm. # The length of the training data n = trainData.count() # The number of features in the training data d = len(trainData.take(1)[0].features) w = np.zeros(d) # 1-dimensional ndarray alpha = 1.0 # We will compute and store the training error after each iteration errorTrain = np.zeros(numIters) for i in range(numIters): # Use getLabeledPrediction from (3b) with trainData to obtain an RDD of (label, prediction) # tuples. Note that the weights all equal 0 for the first iteration, so the predictions will # have large errors to start. labelsAndPredsTrain = trainData.map(lambda lp: getLabeledPrediction(w,lp)) errorTrain[i] = calcRMSE(labelsAndPredsTrain) # Calculate the `gradient`. Make use of the `gradientSummand` function you wrote in (3a). # Note that `gradient` should be a `DenseVector` of length `d`. # The next three operations represent the complete formula for the Gradient Descent weight update described in 3(a) above gradient = trainData.map(lambda lp: gradientSummand(w, lp) ) # Update the weights (where did this equation come from?) alpha_i = alpha / (n * np.sqrt(i+1)) w -= alpha_i * gradient.sum() return w, errorTrain # create a toy dataset with n = 10, d = 3, and then run 5 iterations of gradient descent # note: the resulting model will not be useful; the goal here is to verify that # linregGradientDescent is working properly exampleN = 10 exampleD = 3 exampleData = (sc .parallelize(parsedTrainData.take(exampleN)) .map(lambda lp: LabeledPoint(lp.label, lp.features[0:exampleD]))) print 'Two sample points ...' print exampleData.take(2) exampleNumIters = 5 exampleWeights, exampleErrorTrain = linregGradientDescent(exampleData, exampleNumIters) print 'Weights ...' print exampleWeights print type(exampleWeights) 54# TEST Gradient descent (3c) expectedOutput = [48.88110449, 36.01144093, 30.25350092] Test.assertTrue(np.allclose(exampleWeights, expectedOutput), 'value of exampleWeights is incorrect') expectedError = [79.72013547, 30.27835699, 9.27842641, 9.20967856, 9.19446483] Test.assertTrue(np.allclose(exampleErrorTrain, expectedError), 'value of exampleErrorTrain is incorrect') # TODO: Replace <FILL IN> with appropriate code numIters = 50 print 'Rows in parsedTrainData: %d' % parsedTrainData.count() weightsLR0, errorTrainLR0 = linregGradientDescent(parsedTrainData, numIters) print 'Weights ...' print weightsLR0 print len(weightsLR0) print 'Rows in parsedValData: %d' % parsedValData.count() # labelsAndPreds = parsedValData.<FILL IN> labelsAndPreds = parsedValData.map(lambda lp: getLabeledPrediction(weightsLR0,lp) ) print 'Rows in labelsAndPreds: %d' % labelsAndPreds.count() rmseValLR0 = calcRMSE(labelsAndPreds) print 'Validation RMSE:\n\tBaseline = {0:.3f}\n\tLR0 = {1:.3f}'.format(rmseValBase, rmseValLR0) # TEST Train the model (3d) expectedOutput = [22.64535883, 20.064699, -0.05341901, 8.2931319, 5.79155768, -4.51008084, 15.23075467, 3.8465554, 9.91992022, 5.97465933, 11.36849033, 3.86452361] Test.assertTrue(np.allclose(weightsLR0, expectedOutput), 'incorrect value for weightsLR0') norm = Normalize() clrs = cmap(np.asarray(norm(np.log(errorTrainLR0))))[:,0:3] fig, ax = preparePlot(np.arange(0, 60, 10), np.arange(2, 6, 1)) ax.set_ylim(2, 6) plt.scatter(range(0, numIters), np.log(errorTrainLR0), s=14**2, c=clrs, edgecolors='#888888', alpha=0.75) ax.set_xlabel('Iteration'), ax.set_ylabel(r'$\log_e(errorTrainLR0)$') display(fig) pass norm = Normalize() clrs = cmap(np.asarray(norm(errorTrainLR0[6:])))[:,0:3] fig, ax = preparePlot(np.arange(0, 60, 10), np.arange(17, 22, 1)) ax.set_ylim(17.8, 21.2) plt.scatter(range(0, numIters-6), errorTrainLR0[6:], s=14**2, c=clrs, edgecolors='#888888', alpha=0.75) ax.set_xticklabels(map(str, range(6, 66, 10))) ax.set_xlabel('Iteration'), ax.set_ylabel(r'Training Error') display(fig) pass from pyspark.mllib.regression import LinearRegressionWithSGD # Values to use when training the linear regression model numIters = 500 # iterations alpha = 1.0 # step miniBatchFrac = 1.0 # miniBatchFraction reg = 1e-1 # regParam regType = 'l2' # regType useIntercept = True # intercept # TODO: Replace <FILL IN> with appropriate code firstModel = LinearRegressionWithSGD.train(data=parsedTrainData, iterations=numIters, intercept=useIntercept, regType=regType, regParam=reg, miniBatchFraction=miniBatchFrac) # weightsLR1 stores the model weights; interceptLR1 stores the model intercept weightsLR1 = firstModel.weights interceptLR1 = firstModel.intercept print weightsLR1, interceptLR1 # TEST LinearRegressionWithSGD (4a) expectedIntercept = 13.3763009811 expectedInterceptE = 13.3335907631 expectedWeights = [15.9789216525, 13.923582484, 0.781551054803, 6.09257051566, 3.91814791179, -2.30347707767, 10.3002026917, 3.04565129011, 7.23175674717, 4.65796458476, 7.98875075855, 3.1782463856] expectedWeightsE = [16.682292427, 14.7439059559, -0.0935105608897, 6.22080088829, 4.01454261926, -3.30214858535, 11.0403027232, 2.67190962854, 7.18925791279, 4.46093254586, 8.14950409475, 2.75135810882] Test.assertTrue(np.allclose(interceptLR1, expectedIntercept) or np.allclose(interceptLR1, expectedInterceptE), 'incorrect value for interceptLR1') Test.assertTrue(np.allclose(weightsLR1, expectedWeights) or np.allclose(weightsLR1, expectedWeightsE), 'incorrect value for weightsLR1') # TODO: Replace <FILL IN> with appropriate code samplePoint = parsedTrainData.take(1)[0] samplePrediction = firstModel.predict(samplePoint.features) print samplePoint.label print samplePrediction # TEST Predict (4b) Test.assertTrue(np.allclose(samplePrediction, 56.5823796609) or np.allclose(samplePrediction, 56.8013380112), 'incorrect value for samplePrediction') # TODO: Replace <FILL IN> with appropriate code labelsAndPreds = parsedValData.map(lambda lp: (lp.label, firstModel.predict(lp.features) ) ) rmseValLR1 = calcRMSE(labelsAndPreds) print ('Validation RMSE:\n\tBaseline = {0:.3f}\n\tLR0 = {1:.3f}' + '\n\tLR1 = {2:.3f}').format(rmseValBase, rmseValLR0, rmseValLR1) # TEST Evaluate RMSE (4c) Test.assertTrue(np.allclose(rmseValLR1, 19.8730701066) or np.allclose(rmseValLR1, 19.6912473416), 'incorrect value for rmseValLR1') # TODO: Replace <FILL IN> with appropriate code bestRMSE = rmseValLR1 bestRegParam = reg bestModel = firstModel numIters = 500 alpha = 1.0 miniBatchFrac = 1.0 for reg in [1e-10, 1e-5, 1]: model = LinearRegressionWithSGD.train(parsedTrainData, numIters, alpha, miniBatchFrac, regParam=reg, regType='l2', intercept=True) labelsAndPreds = parsedValData.map(lambda lp: (lp.label, model.predict(lp.features))) rmseValGrid = calcRMSE(labelsAndPreds) print rmseValGrid if rmseValGrid < bestRMSE: bestRMSE = rmseValGrid bestRegParam = reg bestModel = model rmseValLRGrid = bestRMSE print ('Validation RMSE:\n\tBaseline = {0:.3f}\n\tLR0 = {1:.3f}\n\tLR1 = {2:.3f}\n' + '\tLRGrid = {3:.3f}').format(rmseValBase, rmseValLR0, rmseValLR1, rmseValLRGrid) # TEST Grid search (4d) Test.assertTrue(np.allclose(17.4831362704, rmseValLRGrid) or np.allclose(17.0171700716, rmseValLRGrid), 'incorrect value for rmseValLRGrid') predictions = np.asarray(parsedValData .map(lambda lp: bestModel.predict(lp.features)) .collect()) actual = np.asarray(parsedValData .map(lambda lp: lp.label) .collect()) error = np.asarray(parsedValData .map(lambda lp: (lp.label, bestModel.predict(lp.features))) .map(lambda (l, p): squaredError(l, p)) .collect()) norm = Normalize() clrs = cmap(np.asarray(norm(error)))[:,0:3] fig, ax = preparePlot(np.arange(0, 120, 20), np.arange(0, 120, 20)) ax.set_xlim(15, 82), ax.set_ylim(-5, 105) plt.scatter(predictions, actual, s=14**2, c=clrs, edgecolors='#888888', alpha=0.75, linewidths=.5) ax.set_xlabel('Predicted'), ax.set_ylabel(r'Actual') display(fig) pass # TODO: Replace <FILL IN> with appropriate code reg = bestRegParam modelRMSEs = [] for alpha in [1e-5, 10]: for numIters in [500, 5]: model = LinearRegressionWithSGD.train(parsedTrainData, numIters, alpha, miniBatchFrac, regParam=reg, regType='l2', intercept=True) labelsAndPreds = parsedValData.map(lambda lp: (lp.label, model.predict(lp.features))) rmseVal = calcRMSE(labelsAndPreds) print 'alpha = {0:.0e}, numIters = {1}, RMSE = {2:.3f}'.format(alpha, numIters, rmseVal) modelRMSEs.append(rmseVal) # TEST Vary alpha and the number of iterations (4e) expectedResults = sorted([56.972629385122502, 56.972629385122502, 355124752.22122133]) expectedResultsE = sorted([56.892948663998297, 56.96970493238036, 355124752.22122133]) actualResults = sorted(modelRMSEs)[:3] Test.assertTrue(np.allclose(actualResults, expectedResults) or np.allclose(actualResults, expectedResultsE), 'incorrect value for modelRMSEs') from matplotlib.colors import LinearSegmentedColormap # Saved parameters and results, to save the time required to run 36 models numItersParams = [10, 50, 100, 250, 500, 1000] regParams = [1e-8, 1e-6, 1e-4, 1e-2, 1e-1, 1] rmseVal = np.array([[ 20.36769649, 20.36770128, 20.36818057, 20.41795354, 21.09778437, 301.54258421], [ 19.04948826, 19.0495 , 19.05067418, 19.16517726, 19.97967727, 23.80077467], [ 18.40149024, 18.40150998, 18.40348326, 18.59457491, 19.82155716, 23.80077467], [ 17.5609346 , 17.56096749, 17.56425511, 17.88442127, 19.71577117, 23.80077467], [ 17.0171705 , 17.01721288, 17.02145207, 17.44510574, 19.69124734, 23.80077467], [ 16.58074813, 16.58079874, 16.58586512, 17.11466904, 19.6860931 , 23.80077467]]) numRows, numCols = len(numItersParams), len(regParams) rmseVal = np.array(rmseVal) rmseVal.shape = (numRows, numCols) fig, ax = preparePlot(np.arange(0, numCols, 1), np.arange(0, numRows, 1), figsize=(8, 7), hideLabels=True, gridWidth=0.) ax.set_xticklabels(regParams), ax.set_yticklabels(numItersParams) ax.set_xlabel('Regularization Parameter'), ax.set_ylabel('Number of Iterations') colors = LinearSegmentedColormap.from_list('blue', ['#0022ff', '#000055'], gamma=.2) image = plt.imshow(rmseVal,interpolation='nearest', aspect='auto', cmap = colors) display(fig) # Zoom into the bottom left numItersParamsZoom, regParamsZoom = numItersParams[-3:], regParams[:4] rmseValZoom = rmseVal[-3:, :4] numRows, numCols = len(numItersParamsZoom), len(regParamsZoom) fig, ax = preparePlot(np.arange(0, numCols, 1), np.arange(0, numRows, 1), figsize=(8, 7), hideLabels=True, gridWidth=0.) ax.set_xticklabels(regParamsZoom), ax.set_yticklabels(numItersParamsZoom) ax.set_xlabel('Regularization Parameter'), ax.set_ylabel('Number of Iterations') colors = LinearSegmentedColormap.from_list('blue', ['#0022ff', '#000055'], gamma=.2) image = plt.imshow(rmseValZoom,interpolation='nearest', aspect='auto', cmap = colors) display(fig) pass p = LabeledPoint(0.0, [1, 2, 3]) print p print type(p) print type(p.features) np.square(p.features) # TODO: Replace <FILL IN> with appropriate code import itertools def twoWayInteractions(lp): Creates a new `LabeledPoint` that includes two-way interactions. Note: For features [x, y] the two-way interactions would be [x^2, x*y, y*x, y^2] and these would be appended to the original [x, y] feature list. Args: lp (LabeledPoint): The label and features for this observation. Returns: LabeledPoint: The new `LabeledPoint` should have the same label as `lp`. Its features should include the features from `lp` followed by the two-way interaction features. prod = np.empty([0]) # sqr = np.square(lp.features) for i in itertools.product(lp.features, lp.features): prod = np.append(prod, i[0] * i[1]) return LabeledPoint(lp.label, np.hstack((lp.features,prod))) p = twoWayInteractions(LabeledPoint(0.0, [1, 2, 3])) print p # Transform the existing train, validation, and test sets to include two-way interactions. trainDataInteract = parsedTrainData.map(lambda lp: twoWayInteractions(lp)) valDataInteract = parsedValData.map(lambda lp: twoWayInteractions(lp)) testDataInteract = parsedTestData.map(lambda lp: twoWayInteractions(lp)) print 'Count trainDataInteract: %d' % trainDataInteract.count() print 'Count valDataInteract: %d' % valDataInteract.count() print 'Count testDataInteract: %d' % testDataInteract.count() print 'All done.' # TEST Add two-way interactions (5a) twoWayExample = twoWayInteractions(LabeledPoint(0.0, [2, 3])) Test.assertTrue(np.allclose(sorted(twoWayExample.features), sorted([2.0, 3.0, 4.0, 6.0, 6.0, 9.0])), 'incorrect features generatedBy twoWayInteractions') twoWayPoint = twoWayInteractions(LabeledPoint(1.0, [1, 2, 3])) Test.assertTrue(np.allclose(sorted(twoWayPoint.features), sorted([1.0,2.0,3.0,1.0,2.0,3.0,2.0,4.0,6.0,3.0,6.0,9.0])), 'incorrect features generated by twoWayInteractions') Test.assertEquals(twoWayPoint.label, 1.0, 'incorrect label generated by twoWayInteractions') Test.assertTrue(np.allclose(sum(trainDataInteract.take(1)[0].features), 40.821870576035529), 'incorrect features in trainDataInteract') Test.assertTrue(np.allclose(sum(valDataInteract.take(1)[0].features), 45.457719932695696), 'incorrect features in valDataInteract') Test.assertTrue(np.allclose(sum(testDataInteract.take(1)[0].features), 35.109111632783168), 'incorrect features in testDataInteract') # TODO: Replace <FILL IN> with appropriate code numIters = 500 alpha = 1.0 miniBatchFrac = 1.0 reg = 1e-10 modelInteract = LinearRegressionWithSGD.train(trainDataInteract, numIters, alpha, miniBatchFrac, regParam=reg, regType='l2', intercept=True) labelsAndPredsInteract = valDataInteract.map(lambda lp: (lp.label, modelInteract.predict(lp.features))) rmseValInteract = calcRMSE(labelsAndPredsInteract) print ('Validation RMSE:\n\tBaseline = {0:.3f}\n\tLR0 = {1:.3f}\n\tLR1 = {2:.3f}\n\tLRGrid = ' + '{3:.3f}\n\tLRInteract = {4:.3f}').format(rmseValBase, rmseValLR0, rmseValLR1, rmseValLRGrid, rmseValInteract) # TEST Build interaction model (5b) Test.assertTrue(np.allclose(rmseValInteract, 15.9963259256) or np.allclose(rmseValInteract, 15.6894664683), 'incorrect value for rmseValInteract') # TODO: Replace <FILL IN> with appropriate code labelsAndPredsTest = testDataInteract.map(lambda lp: (lp.label, modelInteract.predict(lp.features))) rmseTestInteract = calcRMSE(labelsAndPredsTest) print ('Test RMSE:\n\tBaseline = {0:.3f}\n\tLRInteract = {1:.3f}' .format(rmseTestBase, rmseTestInteract)) # TEST Evaluate interaction model on test data (5c) Test.assertTrue(np.allclose(rmseTestInteract, 16.5251427618) or np.allclose(rmseTestInteract, 16.3272040537), 'incorrect value for rmseTestInteract') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: WARNING Step3: (1b) Using LabeledPoint Step5: Visualization 1 Step6: (1c) Find the range Step7: (1d) Shift labels Step8: Visualization 2 Step9: (1e) Training, validation, and test sets Step10: Part 2 Step13: (2b) Root mean squared error Step14: (2c) Training, validation and test RMSE Step15: Visualization 3 Step17: Part 3 Step19: (3b) Use weights to make predictions Step21: (3c) Gradient descent Step22: (3d) Train the model Step23: Visualization 4 Step24: Part 4 Step25: (4b) Predict Step26: (4c) Evaluate RMSE Step27: (4d) Grid search Step28: Visualization 5 Step29: (4e) Vary alpha and the number of iterations Step30: Visualization 6 Step32: Part 5 Step33: (5b) Build interaction model Step34: (5c) Evaluate interaction model on test data
9,086
<ASSISTANT_TASK:> Python Code: import sys import math import numpy as np import pandas as pd import scipy.optimize as so import scipy.integrate as si import matplotlib.pyplot as plt import nest %matplotlib inline plt.rcParams['figure.figsize'] = (12, 3) def Vpass(t, V0, gNaL, ENa, gKL, EK, taum, I=0): tau_eff = taum/(gNaL + gKL) Vinf = (gNaL*ENa + gKL*EK + I)/(gNaL + gKL) return V0*np.exp(-t/tau_eff) + Vinf*(1-np.exp(-t/tau_eff)) def theta(t, th0, theq, tauth): return th0*np.exp(-t/tauth) + theq*(1-np.exp(-t/tauth)) nest.ResetKernel() nest.SetDefaults('ht_neuron', {'g_peak_NaP': 0., 'g_peak_KNa': 0., 'g_peak_T': 0., 'g_peak_h': 0., 'tau_theta': 10.}) hp = nest.GetDefaults('ht_neuron') V_0 = [-100., -70., -55.] th_0 = [-65., -51., -10.] T_sim = 20. nrns = nest.Create('ht_neuron', n=len(V_0), params={'V_m': V_0, 'theta': th_0}) nest.Simulate(T_sim) V_th_sim = nrns.get(['V_m', 'theta']) for (V0, th0, Vsim, thsim) in zip(V_0, th_0, V_th_sim['V_m'], V_th_sim['theta']): Vex = Vpass(T_sim, V0, hp['g_NaL'], hp['E_Na'], hp['g_KL'], hp['E_K'], hp['tau_m']) thex = theta(T_sim, th0, hp['theta_eq'], hp['tau_theta']) print('Vex = {:.3f}, Vsim = {:.3f}, Vex-Vsim = {:.3e}'.format(Vex, Vsim, Vex-Vsim)) print('thex = {:.3f}, thsim = {:.3f}, thex-thsim = {:.3e}'.format(thex, thsim, thex-thsim)) def t_first_spike(gNaL, ENa, gKL, EK, taum, theq, tI, I): tau_eff = taum/(gNaL + gKL) Vinf0 = (gNaL*ENa + gKL*EK)/(gNaL + gKL) VinfI = (gNaL*ENa + gKL*EK + I)/(gNaL + gKL) return tI - tau_eff * np.log((theq-VinfI) / (Vinf0-VinfI)) nest.ResetKernel() nest.SetKernelStatus({'resolution': 0.001}) nest.SetDefaults('ht_neuron', {'g_peak_NaP': 0., 'g_peak_KNa': 0., 'g_peak_T': 0., 'g_peak_h': 0.}) hp = nest.GetDefaults('ht_neuron') I = [25., 50., 100.] tI = 1. delay = 1. T_sim = 40. nrns = nest.Create('ht_neuron', n=len(I)) dcgens = nest.Create('dc_generator', n=len(I), params={'amplitude': I, 'start': tI}) sdets = nest.Create('spike_detector', n=len(I)) nest.Connect(dcgens, nrns, 'one_to_one', {'delay': delay}) nest.Connect(nrns, sdets, 'one_to_one') nest.Simulate(T_sim) t_first_sim = [t[0] for t in sdets.get('events', 'times')] for dc, tf_sim in zip(I, t_first_sim): tf_ex = t_first_spike(hp['g_NaL'], hp['E_Na'], hp['g_KL'], hp['E_K'], hp['tau_m'], hp['theta_eq'], tI+delay, dc) print('tex = {:.4f}, tsim = {:.4f}, tex-tsim = {:.4f}'.format(tf_ex, tf_sim, tf_ex-tf_sim)) def Vspike(tspk, gNaL, ENa, gKL, EK, taum, tauspk, I=0): tau_eff = taum/(gNaL + gKL + taum/tauspk) Vinf = (gNaL*ENa + gKL*EK + I + taum/tauspk*EK)/(gNaL + gKL + taum/tauspk) return ENa*np.exp(-tspk/tau_eff) + Vinf*(1-np.exp(-tspk/tau_eff)) def thetaspike(tspk, ENa, theq, tauth): return ENa*np.exp(-tspk/tauth) + theq*(1-np.exp(-tspk/tauth)) def Vpost(t, tspk, gNaL, ENa, gKL, EK, taum, tauspk, I=0): Vsp = Vspike(tspk, gNaL, ENa, gKL, EK, taum, tauspk, I) return Vpass(t-tspk, Vsp, gNaL, ENa, gKL, EK, taum, I) def thetapost(t, tspk, ENa, theq, tauth): thsp = thetaspike(tspk, ENa, theq, tauth) return theta(t-tspk, thsp, theq, tauth) def threshold(t, tspk, gNaL, ENa, gKL, EK, taum, tauspk, I, theq, tauth): return Vpost(t, tspk, gNaL, ENa, gKL, EK, taum, tauspk, I) - thetapost(t, tspk, ENa, theq, tauth) nest.ResetKernel() nest.SetKernelStatus({'resolution': 0.001}) nest.SetDefaults('ht_neuron', {'g_peak_NaP': 0., 'g_peak_KNa': 0., 'g_peak_T': 0., 'g_peak_h': 0.}) hp = nest.GetDefaults('ht_neuron') I = [25., 50., 100.] tI = 1. delay = 1. T_sim = 1000. nrns = nest.Create('ht_neuron', n=len(I)) dcgens = nest.Create('dc_generator', n=len(I), params={'amplitude': I, 'start': tI}) sdets = nest.Create('spike_detector', n=len(I)) nest.Connect(dcgens, nrns, 'one_to_one', {'delay': delay}) nest.Connect(nrns, sdets, 'one_to_one') nest.Simulate(T_sim) isi_sim = [] for ev in sdets.events: t_spk = ev['times'] isi = np.diff(t_spk) isi_sim.append((np.min(isi), np.mean(isi), np.max(isi))) for dc, (isi_min, isi_mean, isi_max) in zip(I, isi_sim): isi_ex = so.bisect(threshold, hp['t_ref'], 50, args=(hp['t_ref'], hp['g_NaL'], hp['E_Na'], hp['g_KL'], hp['E_K'], hp['tau_m'], hp['tau_spike'], dc, hp['theta_eq'], hp['tau_theta'])) print('isi_ex = {:.4f}, isi_sim (min, mean, max) = ({:.4f}, {:.4f}, {:.4f})'.format( isi_ex, isi_min, isi_mean, isi_max)) nest.ResetKernel() class Channel: Base class for channel models in Python. def tau_m(self, V): raise NotImplementedError() def tau_h(self, V): raise NotImplementedError() def m_inf(self, V): raise NotImplementedError() def h_inf(self, V): raise NotImplementedError() def D_inf(self, V): raise NotImplementedError() def dh(self, h, t, V): return (self.h_inf(V)-h)/self.tau_h(V) def dm(self, m, t, V): return (self.m_inf(V)-m)/self.tau_m(V) def voltage_clamp(channel, DT_V_seq, nest_dt=0.1): "Run voltage clamp with voltage V through intervals DT." # NEST part nest_g_0 = {'g_peak_h': 0., 'g_peak_T': 0., 'g_peak_NaP': 0., 'g_peak_KNa': 0.} nest_g_0[channel.nest_g] = 1. nest.ResetKernel() nest.SetKernelStatus({'resolution': nest_dt}) nrn = nest.Create('ht_neuron', params=nest_g_0) mm = nest.Create('multimeter', params={'record_from': ['V_m', 'theta', channel.nest_I], 'interval': nest_dt}) nest.Connect(mm, nrn) # ensure we start from equilibrated state nrn.set(V_m=DT_V_seq[0][1], equilibrate=True, voltage_clamp=True) for DT, V in DT_V_seq: nrn.set(V_m=V, voltage_clamp=True) nest.Simulate(DT) t_end = nest.GetKernelStatus('time') # simulate a little more so we get all data up to t_end to multimeter nest.Simulate(2 * nest.GetKernelStatus('min_delay')) tmp = pd.DataFrame(mm.events) nest_res = tmp[tmp.times <= t_end] # Control part t_old = 0. try: m_old = channel.m_inf(DT_V_seq[0][1]) except NotImplementedError: m_old = None try: h_old = channel.h_inf(DT_V_seq[0][1]) except NotImplementedError: h_old = None try: D_old = channel.D_inf(DT_V_seq[0][1]) except NotImplementedError: D_old = None t_all, I_all = [], [] if D_old is not None: D_all = [] for DT, V in DT_V_seq: t_loc = np.arange(0., DT+0.1*nest_dt, nest_dt) I_loc = channel.compute_I(t_loc, V, m_old, h_old, D_old) t_all.extend(t_old + t_loc[1:]) I_all.extend(I_loc[1:]) if D_old is not None: D_all.extend(channel.D[1:]) m_old = channel.m[-1] if m_old is not None else None h_old = channel.h[-1] if h_old is not None else None D_old = channel.D[-1] if D_old is not None else None t_old = t_all[-1] if D_old is None: ctrl_res = pd.DataFrame({'times': t_all, channel.nest_I: I_all}) else: ctrl_res = pd.DataFrame({'times': t_all, channel.nest_I: I_all, 'D': D_all}) return nest_res, ctrl_res nest.ResetKernel() class Ih(Channel): nest_g = 'g_peak_h' nest_I = 'I_h' def __init__(self, ht_params): self.hp = ht_params def tau_m(self, V): return 1/(np.exp(-14.59-0.086*V) + np.exp(-1.87 + 0.0701*V)) def m_inf(self, V): return 1/(1+np.exp((V+75)/5.5)) def compute_I(self, t, V, m0, h0, D0): self.m = si.odeint(self.dm, m0, t, args=(V,)) return - self.hp['g_peak_h'] * self.m * (V - self.hp['E_rev_h']) ih = Ih(nest.GetDefaults('ht_neuron')) V = np.linspace(-110, 30, 100) plt.plot(V, ih.tau_m(V)); ax = plt.gca(); ax.set_xlabel('Voltage V [mV]'); ax.set_ylabel('Time constant tau_m [ms]', color='b'); ax2 = ax.twinx() ax2.plot(V, ih.m_inf(V), 'g'); ax2.set_ylabel('Steady-state m_h^inf', color='g'); ih = Ih(nest.GetDefaults('ht_neuron')) nr, cr = voltage_clamp(ih, [(500, -65.), (500, -80.), (500, -100.), (500, -90.), (500, -55.)]) plt.subplot(1, 2, 1) plt.plot(nr.times, nr.I_h, label='NEST'); plt.plot(cr.times, cr.I_h, label='Control'); plt.legend(loc='upper left'); plt.xlabel('Time [ms]'); plt.ylabel('I_h [mV]'); plt.title('I_h current') plt.subplot(1, 2, 2) plt.plot(nr.times, (nr.I_h-cr.I_h)/np.abs(cr.I_h)); plt.title('Relative I_h error') plt.xlabel('Time [ms]'); plt.ylabel('Rel. error (NEST-Control)/|Control|'); nest.ResetKernel() class IT(Channel): nest_g = 'g_peak_T' nest_I = 'I_T' def __init__(self, ht_params): self.hp = ht_params def tau_m(self, V): return 0.13 + 0.22/(np.exp(-(V+132)/16.7) + np.exp((V+16.8)/18.2)) def tau_h(self, V): return 8.2 + (56.6 + 0.27 * np.exp((V+115.2)/5.0)) /(1 + np.exp((V+86.0)/3.2)) def m_inf(self, V): return 1/(1+np.exp(-(V+59.0)/6.2)) def h_inf(self, V): return 1/(1+np.exp((V+83.0)/4.0)) def compute_I(self, t, V, m0, h0, D0): self.m = si.odeint(self.dm, m0, t, args=(V,)) self.h = si.odeint(self.dh, h0, t, args=(V,)) return - self.hp['g_peak_T'] * self.m**2 * self.h * (V - self.hp['E_rev_T']) iT = IT(nest.GetDefaults('ht_neuron')) V = np.linspace(-110, 30, 100) plt.plot(V, 10 * iT.tau_m(V), 'b-', label='10 * tau_m'); plt.plot(V, iT.tau_h(V), 'b--', label='tau_h'); ax1 = plt.gca(); ax1.set_xlabel('Voltage V [mV]'); ax1.set_ylabel('Time constants [ms]', color='b'); ax2 = ax1.twinx() ax2.plot(V, iT.m_inf(V), 'g-', label='m_inf'); ax2.plot(V, iT.h_inf(V), 'g--', label='h_inf'); ax2.set_ylabel('Steady-state', color='g'); ln1, lb1 = ax1.get_legend_handles_labels() ln2, lb2 = ax2.get_legend_handles_labels() plt.legend(ln1+ln2, lb1+lb2, loc='upper right'); iT = IT(nest.GetDefaults('ht_neuron')) nr, cr = voltage_clamp(iT, [(200, -65.), (200, -80.), (200, -100.), (200, -90.), (200, -70.), (200, -55.)], nest_dt=0.1) plt.subplot(1, 2, 1) plt.plot(nr.times, nr.I_T, label='NEST'); plt.plot(cr.times, cr.I_T, label='Control'); plt.legend(loc='upper left'); plt.xlabel('Time [ms]'); plt.ylabel('I_T [mV]'); plt.title('I_T current') plt.subplot(1, 2, 2) plt.plot(nr.times, (nr.I_T-cr.I_T)/np.abs(cr.I_T)); plt.title('Relative I_T error') plt.xlabel('Time [ms]'); plt.ylabel('Rel. error (NEST-Control)/|Control|'); nest.ResetKernel() class INaP(Channel): nest_g = 'g_peak_NaP' nest_I = 'I_NaP' def __init__(self, ht_params): self.hp = ht_params def m_inf(self, V): return 1/(1+np.exp(-(V+55.7)/7.7)) def compute_I(self, t, V, m0, h0, D0): return self.I_V_curve(V * np.ones_like(t)) def I_V_curve(self, V): self.m = self.m_inf(V) return - self.hp['g_peak_NaP'] * self.m**3 * (V - self.hp['E_rev_NaP']) iNaP = INaP(nest.GetDefaults('ht_neuron')) V = np.arange(-110., 30., 1.) nr, cr = voltage_clamp(iNaP, [(1, v) for v in V], nest_dt=0.1) plt.subplot(1, 2, 1) plt.plot(nr.times, nr.I_NaP, label='NEST'); plt.plot(cr.times, cr.I_NaP, label='Control'); plt.legend(loc='upper left'); plt.xlabel('Time [ms]'); plt.ylabel('I_NaP [mV]'); plt.title('I_NaP current') plt.subplot(1, 2, 2) plt.plot(nr.times, (nr.I_NaP-cr.I_NaP)); plt.title('I_NaP error') plt.xlabel('Time [ms]'); plt.ylabel('Error (NEST-Control)'); nest.ResetKernel() class IDK(Channel): nest_g = 'g_peak_KNa' nest_I = 'I_KNa' def __init__(self, ht_params): self.hp = ht_params def m_DK(self, D): return 1/(1+(0.25/D)**3.5) def D_inf(self, V): return 1250. * self.D_influx(V) + 0.001 def D_influx(self, V): return 0.025 / ( 1 + np.exp(-(V+10)/5.) ) def dD(self, D, t, V): return (self.D_inf(V) - D)/1250. def compute_I(self, t, V, m0, h0, D0): self.D = si.odeint(self.dD, D0, t, args=(V,)) self.m = self.m_DK(self.D) return - self.hp['g_peak_KNa'] * self.m * (V - self.hp['E_rev_KNa']) iDK = IDK(nest.GetDefaults('ht_neuron')) D=np.linspace(0.01, 1.5,num=200); V=np.linspace(-110, 30, num=200); ax1 = plt.subplot2grid((1, 9), (0, 0), colspan=4); ax2 = ax1.twinx() ax3 = plt.subplot2grid((1, 9), (0, 6), colspan=3); ax1.plot(V, -iDK.m_DK(iDK.D_inf(V))*(V - iDK.hp['E_rev_KNa']), 'g'); ax1.set_ylabel('Current I_inf(V)', color='g'); ax2.plot(V, iDK.m_DK(iDK.D_inf(V)), 'b'); ax2.set_ylabel('Activation m_inf(D_inf(V))', color='b'); ax1.set_xlabel('Membrane potential V [mV]'); ax2.set_title('Steady-state activation and current'); ax3.plot(D, iDK.m_DK(D), 'b'); ax3.set_xlabel('D'); ax3.set_ylabel('Activation m_inf(D)', color='b'); ax3.set_title('Activation as function of D'); nr, cr = voltage_clamp(iDK, [(500, -65.), (500, -35.), (500, -25.), (500, 0.), (5000, -70.)], nest_dt=1.) ax1 = plt.subplot2grid((1, 9), (0, 0), colspan=4); ax2 = plt.subplot2grid((1, 9), (0, 6), colspan=3); ax1.plot(nr.times, nr.I_KNa, label='NEST'); ax1.plot(cr.times, cr.I_KNa, label='Control'); ax1.legend(loc='lower right'); ax1.set_xlabel('Time [ms]'); ax1.set_ylabel('I_DK [mV]'); ax1.set_title('I_DK current'); ax2.plot(nr.times, (nr.I_KNa-cr.I_KNa)/np.abs(cr.I_KNa)); ax2.set_title('Relative I_DK error') ax2.set_xlabel('Time [ms]'); ax2.set_ylabel('Rel. error (NEST-Control)/|Control|'); nest.ResetKernel() class SynChannel: Base class for synapse channel models in Python. def t_peak(self): return self.tau_1 * self.tau_2 / (self.tau_2 - self.tau_1) * np.log(self.tau_2/self.tau_1) def beta(self, t): val = ( ( np.exp(-t/self.tau_1) - np.exp(-t/self.tau_2) ) / ( np.exp(-self.t_peak()/self.tau_1) - np.exp(-self.t_peak()/self.tau_2) ) ) val[t < 0] = 0 return val def syn_voltage_clamp(channel, DT_V_seq, nest_dt=0.1): "Run voltage clamp with voltage V through intervals DT with single spike at time 1" spike_time = 1.0 delay = 1.0 nest.ResetKernel() nest.SetKernelStatus({'resolution': nest_dt}) try: nrn = nest.Create('ht_neuron', params={'theta': 1e6, 'theta_eq': 1e6, 'instant_unblock_NMDA': channel.instantaneous}) except: nrn = nest.Create('ht_neuron', params={'theta': 1e6, 'theta_eq': 1e6}) mm = nest.Create('multimeter', params={'record_from': ['g_'+channel.receptor], 'interval': nest_dt}) sg = nest.Create('spike_generator', params={'spike_times': [spike_time]}) nest.Connect(mm, nrn) nest.Connect(sg, nrn, syn_spec={'weight': 1.0, 'delay': delay, 'receptor_type': channel.rec_code}) # ensure we start from equilibrated state nrn.set(V_m=DT_V_seq[0][1], equilibrate=True, voltage_clamp=True) for DT, V in DT_V_seq: nrn.set(V_m=V, voltage_clamp=True) nest.Simulate(DT) t_end = nest.GetKernelStatus('time') # simulate a little more so we get all data up to t_end to multimeter nest.Simulate(2 * nest.GetKernelStatus('min_delay')) tmp = pd.DataFrame(mm.get('events')) nest_res = tmp[tmp.times <= t_end] # Control part t_old = 0. t_all, g_all = [], [] m_fast_old = (channel.m_inf(DT_V_seq[0][1]) if channel.receptor == 'NMDA' and not channel.instantaneous else None) m_slow_old = (channel.m_inf(DT_V_seq[0][1]) if channel.receptor == 'NMDA' and not channel.instantaneous else None) for DT, V in DT_V_seq: t_loc = np.arange(0., DT+0.1*nest_dt, nest_dt) g_loc = channel.g(t_old+t_loc-(spike_time+delay), V, m_fast_old, m_slow_old) t_all.extend(t_old + t_loc[1:]) g_all.extend(g_loc[1:]) m_fast_old = channel.m_fast[-1] if m_fast_old is not None else None m_slow_old = channel.m_slow[-1] if m_slow_old is not None else None t_old = t_all[-1] ctrl_res = pd.DataFrame({'times': t_all, 'g_'+channel.receptor: g_all}) return nest_res, ctrl_res nest.ResetKernel() class PlainChannel(SynChannel): def __init__(self, hp, receptor): self.hp = hp self.receptor = receptor self.rec_code = hp['receptor_types'][receptor] self.tau_1 = hp['tau_rise_'+receptor] self.tau_2 = hp['tau_decay_'+receptor] self.g_peak = hp['g_peak_'+receptor] self.E_rev = hp['E_rev_'+receptor] def g(self, t, V, mf0, ms0): return self.g_peak * self.beta(t) def I(self, t, V): return - self.g(t) * (V-self.E_rev) ampa = PlainChannel(nest.GetDefaults('ht_neuron'), 'AMPA') am_n, am_c = syn_voltage_clamp(ampa, [(25, -70.)], nest_dt=0.1) plt.subplot(1, 2, 1); plt.plot(am_n.times, am_n.g_AMPA, label='NEST'); plt.plot(am_c.times, am_c.g_AMPA, label='Control'); plt.xlabel('Time [ms]'); plt.ylabel('g_AMPA'); plt.title('AMPA Channel'); plt.subplot(1, 2, 2); plt.plot(am_n.times, (am_n.g_AMPA-am_c.g_AMPA)/am_c.g_AMPA); plt.xlabel('Time [ms]'); plt.ylabel('Rel error'); plt.title('AMPA rel error'); ampa = PlainChannel(nest.GetDefaults('ht_neuron'), 'AMPA') am_n, am_c = syn_voltage_clamp(ampa, [(25, -70.)], nest_dt=0.001) plt.subplot(1, 2, 1); plt.plot(am_n.times, am_n.g_AMPA, label='NEST'); plt.plot(am_c.times, am_c.g_AMPA, label='Control'); plt.xlabel('Time [ms]'); plt.ylabel('g_AMPA'); plt.title('AMPA Channel'); plt.subplot(1, 2, 2); plt.plot(am_n.times, (am_n.g_AMPA-am_c.g_AMPA)/am_c.g_AMPA); plt.xlabel('Time [ms]'); plt.ylabel('Rel error'); plt.title('AMPA rel error'); gaba_a = PlainChannel(nest.GetDefaults('ht_neuron'), 'GABA_A') ga_n, ga_c = syn_voltage_clamp(gaba_a, [(50, -70.)]) plt.subplot(1, 2, 1); plt.plot(ga_n.times, ga_n.g_GABA_A, label='NEST'); plt.plot(ga_c.times, ga_c.g_GABA_A, label='Control'); plt.xlabel('Time [ms]'); plt.ylabel('g_GABA_A'); plt.title('GABA_A Channel'); plt.subplot(1, 2, 2); plt.plot(ga_n.times, (ga_n.g_GABA_A-ga_c.g_GABA_A)/ga_c.g_GABA_A); plt.xlabel('Time [ms]'); plt.ylabel('Rel error'); plt.title('GABA_A rel error'); gaba_b = PlainChannel(nest.GetDefaults('ht_neuron'), 'GABA_B') gb_n, gb_c = syn_voltage_clamp(gaba_b, [(750, -70.)]) plt.subplot(1, 2, 1); plt.plot(gb_n.times, gb_n.g_GABA_B, label='NEST'); plt.plot(gb_c.times, gb_c.g_GABA_B, label='Control'); plt.xlabel('Time [ms]'); plt.ylabel('g_GABA_B'); plt.title('GABA_B Channel'); plt.subplot(1, 2, 2); plt.plot(gb_n.times, (gb_n.g_GABA_B-gb_c.g_GABA_B)/gb_c.g_GABA_B); plt.xlabel('Time [ms]'); plt.ylabel('Rel error'); plt.title('GABA_B rel error'); class NMDAInstantChannel(SynChannel): def __init__(self, hp, receptor): self.hp = hp self.receptor = receptor self.rec_code = hp['receptor_types'][receptor] self.tau_1 = hp['tau_rise_'+receptor] self.tau_2 = hp['tau_decay_'+receptor] self.g_peak = hp['g_peak_'+receptor] self.E_rev = hp['E_rev_'+receptor] self.S_act = hp['S_act_NMDA'] self.V_act = hp['V_act_NMDA'] self.instantaneous = True def m_inf(self, V): return 1. / ( 1. + np.exp(-self.S_act*(V-self.V_act))) def g(self, t, V, mf0, ms0): return self.g_peak * self.m_inf(V) * self.beta(t) def I(self, t, V): return - self.g(t) * (V-self.E_rev) nmdai = NMDAInstantChannel(nest.GetDefaults('ht_neuron'), 'NMDA') ni_n, ni_c = syn_voltage_clamp(nmdai, [(50, -60.), (50, -50.), (50, -20.), (50, 0.), (50, -60.)]) plt.subplot(1, 2, 1); plt.plot(ni_n.times, ni_n.g_NMDA, label='NEST'); plt.plot(ni_c.times, ni_c.g_NMDA, label='Control'); plt.xlabel('Time [ms]'); plt.ylabel('g_NMDA'); plt.title('NMDA Channel (instant unblock)'); plt.subplot(1, 2, 2); plt.plot(ni_n.times, (ni_n.g_NMDA-ni_c.g_NMDA)/ni_c.g_NMDA); plt.xlabel('Time [ms]'); plt.ylabel('Rel error'); plt.title('NMDA (inst) rel error'); class NMDAChannel(SynChannel): def __init__(self, hp, receptor): self.hp = hp self.receptor = receptor self.rec_code = hp['receptor_types'][receptor] self.tau_1 = hp['tau_rise_'+receptor] self.tau_2 = hp['tau_decay_'+receptor] self.g_peak = hp['g_peak_'+receptor] self.E_rev = hp['E_rev_'+receptor] self.S_act = hp['S_act_NMDA'] self.V_act = hp['V_act_NMDA'] self.tau_fast = hp['tau_Mg_fast_NMDA'] self.tau_slow = hp['tau_Mg_slow_NMDA'] self.instantaneous = False def m_inf(self, V): return 1. / ( 1. + np.exp(-self.S_act*(V-self.V_act)) ) def dm(self, m, t, V, tau): return ( self.m_inf(V) - m ) / tau def g(self, t, V, mf0, ms0): self.m_fast = si.odeint(self.dm, mf0, t, args=(V, self.tau_fast)) self.m_slow = si.odeint(self.dm, ms0, t, args=(V, self.tau_slow)) a = 0.51 - 0.0028 * V m_inf = self.m_inf(V) mfs = self.m_fast[:] mfs[mfs > m_inf] = m_inf mss = self.m_slow[:] mss[mss > m_inf] = m_inf m = np.squeeze(a * mfs + ( 1 - a ) * mss) return self.g_peak * m * self.beta(t) def I(self, t, V): raise NotImplementedError() nmda = NMDAChannel(nest.GetDefaults('ht_neuron'), 'NMDA') nm_n, nm_c = syn_voltage_clamp(nmda, [(50, -70.), (50, -50.), (50, -20.), (50, 0.), (50, -60.)]) plt.subplot(1, 2, 1); plt.plot(nm_n.times, nm_n.g_NMDA, label='NEST'); plt.plot(nm_c.times, nm_c.g_NMDA, label='Control'); plt.xlabel('Time [ms]'); plt.ylabel('g_NMDA'); plt.title('NMDA Channel'); plt.subplot(1, 2, 2); plt.plot(nm_n.times, (nm_n.g_NMDA-nm_c.g_NMDA)/nm_c.g_NMDA); plt.xlabel('Time [ms]'); plt.ylabel('Rel error'); plt.title('NMDA rel error'); nest.ResetKernel() sp = nest.GetDefaults('ht_synapse') P0 = sp['P'] dP = sp['delta_P'] tP = sp['tau_P'] spike_times = [10., 12., 20., 20.5, 100., 200., 1000.] expected = [(0., P0, P0)] for idx, t in enumerate(spike_times): tlast, Psend, Ppost = expected[idx] Psend = 1 - (1-Ppost)*math.exp(-(t-tlast)/tP) expected.append((t, Psend, (1-dP)*Psend)) expected_weights = list(zip(*expected[1:]))[1] sg = nest.Create('spike_generator', params={'spike_times': spike_times}) n = nest.Create('parrot_neuron', 2) wr = nest.Create('weight_recorder') nest.SetDefaults('ht_synapse', {'weight_recorder': wr, 'weight': 1.0}) nest.Connect(sg, n[:1]) nest.Connect(n[:1], n[1:], syn_spec='ht_synapse') nest.Simulate(1200) rec_weights = wr.get('events', 'weights') print('Recorded weights:', rec_weights) print('Expected weights:', expected_weights) print('Difference :', np.array(rec_weights) - np.array(expected_weights)) nest.ResetKernel() nrn = nest.Create('ht_neuron') ppg = nest.Create('pulsepacket_generator', n=4, params={'pulse_times': [700., 1700., 2700., 3700.], 'activity': 700, 'sdev': 50.}) pr = nest.Create('parrot_neuron', n=4) mm = nest.Create('multimeter', params={'interval': 0.1, 'record_from': ['V_m', 'theta', 'g_AMPA', 'g_NMDA', 'g_GABA_A', 'g_GABA_B', 'I_NaP', 'I_KNa', 'I_T', 'I_h']}) weights = {'AMPA': 25., 'NMDA': 20., 'GABA_A': 10., 'GABA_B': 1.} receptors = nest.GetDefaults('ht_neuron')['receptor_types'] nest.Connect(ppg, pr, 'one_to_one') for p, (rec_name, rec_wgt) in zip(pr, weights.items()): nest.Connect(p, nrn, syn_spec={'synapse_model': 'ht_synapse', 'receptor_type': receptors[rec_name], 'weight': rec_wgt}) nest.Connect(mm, nrn) nest.Simulate(5000) data = nest.GetStatus(mm)[0]['events'] t = data['times'] def texify_name(name): return r'${}_{{\mathrm{{{}}}}}$'.format(*name.split('_')) fig = plt.figure(figsize=(12,10)) Vax = fig.add_subplot(311) Vax.plot(t, data['V_m'], 'k', lw=1, label=r'$V_m$') Vax.plot(t, data['theta'], 'r', alpha=0.5, lw=1, label=r'$\Theta$') Vax.set_ylabel('Potential [mV]') Vax.legend(fontsize='small') Vax.set_title('ht_neuron driven by sinousiodal Poisson processes') Iax = fig.add_subplot(312) for iname, color in (('I_h', 'blue'), ('I_KNa', 'green'), ('I_NaP', 'red'), ('I_T', 'cyan')): Iax.plot(t, data[iname], color=color, lw=1, label=texify_name(iname)) #Iax.set_ylim(-60, 60) Iax.legend(fontsize='small') Iax.set_ylabel('Current [mV]') Gax = fig.add_subplot(313) for gname, sgn, color in (('g_AMPA', 1, 'green'), ('g_GABA_A', -1, 'red'), ('g_GABA_B', -1, 'cyan'), ('g_NMDA', 1, 'magenta')): Gax.plot(t, sgn*data[gname], lw=1, label=texify_name(gname), color=color) #Gax.set_ylim(-150, 150) Gax.legend(fontsize='small') Gax.set_ylabel('Conductance') Gax.set_xlabel('Time [ms]'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Neuron Model Step2: Agreement is excellent. Step3: Agreement is as good as possible Step5: ISIs are as predicted Step6: I_h channel Step7: The time constant is extremely long, up to 1s, for relevant voltages where $I_h$ is perceptible. We thus need long test runs. Step8: Agreement is very good Step9: Time constants here are much shorter than for I_h Step10: Also here the results are in good agreement and the error appears acceptable. Step11: Perfect agreement Step structure is because $V$ changes only every second. Step12: Properties of I_DK Step13: Note that current in steady state is Step15: Looks very fine. Step16: AMPA, GABA_A, GABA_B channels Step17: Looks quite good, but the error is maybe a bit larger than one would hope. Step18: Looks good for all Step19: Looks good Step20: Looks fine, too. Step21: Perfect agreement, synapse model looks fine.
9,087
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.2,<2.3" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b['ecc'] = 0.2 b['dperdt'] = 2.0 * u.deg/u.d b.add_dataset('lc', times=np.linspace(0,1,101), dataset='lc01') b.add_dataset('lc', times=np.linspace(4,5,101), dataset='lc02') b.add_dataset('orb', compute_times=np.linspace(0,5,401), dataset='orb01') b.run_compute(irrad_method='none') afig, mplfig = b['orb01@model'].plot(y='ws', time=[0,1,2,3,4,5], show=True) afig, mplfig = b['lc01@model'].plot() afig, mplfig = b['lc02@model'].plot(time=[0,1,4,5], show=True) afig, mplfig = b['lc01@model'].plot(x='phases') afig, mplfig = b['lc02@model'].plot(x='phases', show=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: In order for apsidal motion to be apparent, we need an eccentric system that is precessing. Step3: Let's set a very noticeable rate of precession. Step4: We'll add lc and orb datasets to see how the apsidal motion affects each. We'll need to sample over several orbits of the binary (which has a period of 3 days, by default). Step5: Influence on Orbits (positions) Step6: Influence on Light Curves (fluxes)
9,088
<ASSISTANT_TASK:> Python Code: %pylab inline %matplotlib inline import os SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data') # import all shogun classes from shogun import * import shogun as sg #number of data points. n=100 #generate a random 2d line(y1 = mx1 + c) m = random.randint(1,10) c = random.randint(1,10) x1 = random.random_integers(-20,20,n) y1=m*x1+c #generate the noise. noise=random.random_sample([n]) * random.random_integers(-35,35,n) #make the noise orthogonal to the line y=mx+c and add it. x=x1 + noise*m/sqrt(1+square(m)) y=y1 + noise/sqrt(1+square(m)) twoD_obsmatrix=array([x,y]) #to visualise the data we must plot it. rcParams['figure.figsize'] = 7, 7 figure,axis=subplots(1,1) xlim(-50,50) ylim(-50,50) axis.plot(twoD_obsmatrix[0,:],twoD_obsmatrix[1,:],'o',color='green',markersize=6) #the line from which we generated the data is plotted in red axis.plot(x1[:],y1[:],linewidth=0.3,color='red') title('One-Dimensional sub-space with noise') xlabel("x axis") _=ylabel("y axis") #convert the observation matrix into dense feature matrix. train_features = features(twoD_obsmatrix) #PCA(EVD) is choosen since N=100 and D=2 (N>D). #However we can also use PCA(AUTO) as it will automagically choose the appropriate method. preprocessor = sg.transformer('PCA', method='EVD') #since we are projecting down the 2d data, the target dim is 1. But here the exhaustive method is detailed by #setting the target dimension to 2 to visualize both the eigen vectors. #However, in future examples we will get rid of this step by implementing it directly. preprocessor.put('target_dim', 2) #Centralise the data by subtracting its mean from it. preprocessor.fit(train_features) #get the mean for the respective dimensions. mean_datapoints=preprocessor.get('mean_vector') mean_x=mean_datapoints[0] mean_y=mean_datapoints[1] #Get the eigenvectors(We will get two of these since we set the target to 2). E = preprocessor.get('transformation_matrix') #Get all the eigenvalues returned by PCA. eig_value=preprocessor.get('eigenvalues_vector') e1 = E[:,0] e2 = E[:,1] eig_value1 = eig_value[0] eig_value2 = eig_value[1] #find out the M eigenvectors corresponding to top M number of eigenvalues and store it in E #Here M=1 #slope of e1 & e2 m1=e1[1]/e1[0] m2=e2[1]/e2[0] #generate the two lines x1=range(-50,50) x2=x1 y1=multiply(m1,x1) y2=multiply(m2,x2) #plot the data along with those two eigenvectors figure, axis = subplots(1,1) xlim(-50, 50) ylim(-50, 50) axis.plot(x[:], y[:],'o',color='green', markersize=5, label="green") axis.plot(x1[:], y1[:], linewidth=0.7, color='black') axis.plot(x2[:], y2[:], linewidth=0.7, color='blue') p1 = Rectangle((0, 0), 1, 1, fc="black") p2 = Rectangle((0, 0), 1, 1, fc="blue") legend([p1,p2],["1st eigenvector","2nd eigenvector"],loc='center left', bbox_to_anchor=(1, 0.5)) title('Eigenvectors selection') xlabel("x axis") _=ylabel("y axis") #The eigenvector corresponding to higher eigenvalue(i.e eig_value2) is choosen (i.e e2). #E is the feature vector. E=e2 #transform all 2-dimensional feature matrices to target-dimensional approximations. yn=preprocessor.transform(train_features).get('feature_matrix') #Since, here we are manually trying to find the eigenvector corresponding to the top eigenvalue. #The 2nd row of yn is choosen as it corresponds to the required eigenvector e2. yn1=yn[1,:] x_new=(yn1 * E[0]) + tile(mean_x,[n,1]).T[0] y_new=(yn1 * E[1]) + tile(mean_y,[n,1]).T[0] figure, axis = subplots(1,1) xlim(-50, 50) ylim(-50, 50) axis.plot(x[:], y[:],'o',color='green', markersize=5, label="green") axis.plot(x_new, y_new, 'o', color='blue', markersize=5, label="red") title('PCA Projection of 2D data into 1D subspace') xlabel("x axis") ylabel("y axis") #add some legend for information p1 = Rectangle((0, 0), 1, 1, fc="r") p2 = Rectangle((0, 0), 1, 1, fc="g") p3 = Rectangle((0, 0), 1, 1, fc="b") legend([p1,p2,p3],["normal projection","2d data","1d projection"],loc='center left', bbox_to_anchor=(1, 0.5)) #plot the projections in red: for i in range(n): axis.plot([x[i],x_new[i]],[y[i],y_new[i]] , color='red') rcParams['figure.figsize'] = 8,8 #number of points n=100 #generate the data a=random.randint(1,20) b=random.randint(1,20) c=random.randint(1,20) d=random.randint(1,20) x1=random.random_integers(-20,20,n) y1=random.random_integers(-20,20,n) z1=-(a*x1+b*y1+d)/c #generate the noise noise=random.random_sample([n])*random.random_integers(-30,30,n) #the normal unit vector is [a,b,c]/magnitude magnitude=sqrt(square(a)+square(b)+square(c)) normal_vec=array([a,b,c]/magnitude) #add the noise orthogonally x=x1+noise*normal_vec[0] y=y1+noise*normal_vec[1] z=z1+noise*normal_vec[2] threeD_obsmatrix=array([x,y,z]) #to visualize the data, we must plot it. from mpl_toolkits.mplot3d import Axes3D fig = pyplot.figure() ax=fig.add_subplot(111, projection='3d') #plot the noisy data generated by distorting a plane ax.scatter(x, y, z,marker='o', color='g') ax.set_xlabel('x label') ax.set_ylabel('y label') ax.set_zlabel('z label') legend([p2],["3d data"],loc='center left', bbox_to_anchor=(1, 0.5)) title('Two dimensional subspace with noise') xx, yy = meshgrid(range(-30,30), range(-30,30)) zz=-(a * xx + b * yy + d) / c #convert the observation matrix into dense feature matrix. train_features = features(threeD_obsmatrix) #PCA(EVD) is choosen since N=100 and D=3 (N>D). #However we can also use PCA(AUTO) as it will automagically choose the appropriate method. preprocessor = sg.transformer('PCA', method='EVD') #If we set the target dimension to 2, Shogun would automagically preserve the required 2 eigenvectors(out of 3) according to their #eigenvalues. preprocessor.put('target_dim', 2) preprocessor.fit(train_features) #get the mean for the respective dimensions. mean_datapoints=preprocessor.get('mean_vector') mean_x=mean_datapoints[0] mean_y=mean_datapoints[1] mean_z=mean_datapoints[2] #get the required eigenvectors corresponding to top 2 eigenvalues. E = preprocessor.get('transformation_matrix') #This can be performed by shogun's PCA preprocessor as follows: yn=preprocessor.transform(train_features).get('feature_matrix') new_data=dot(E,yn) x_new=new_data[0,:]+tile(mean_x,[n,1]).T[0] y_new=new_data[1,:]+tile(mean_y,[n,1]).T[0] z_new=new_data[2,:]+tile(mean_z,[n,1]).T[0] #all the above points lie on the same plane. To make it more clear we will plot the projection also. fig=pyplot.figure() ax=fig.add_subplot(111, projection='3d') ax.scatter(x, y, z,marker='o', color='g') ax.set_xlabel('x label') ax.set_ylabel('y label') ax.set_zlabel('z label') legend([p1,p2,p3],["normal projection","3d data","2d projection"],loc='center left', bbox_to_anchor=(1, 0.5)) title('PCA Projection of 3D data into 2D subspace') for i in range(100): ax.scatter(x_new[i], y_new[i], z_new[i],marker='o', color='b') ax.plot([x[i],x_new[i]],[y[i],y_new[i]],[z[i],z_new[i]],color='r') rcParams['figure.figsize'] = 10, 10 import os def get_imlist(path): Returns a list of filenames for all jpg images in a directory return [os.path.join(path,f) for f in os.listdir(path) if f.endswith('.pgm')] #set path of the training images path_train=os.path.join(SHOGUN_DATA_DIR, 'att_dataset/training/') #set no. of rows that the images will be resized. k1=100 #set no. of columns that the images will be resized. k2=100 filenames = get_imlist(path_train) filenames = array(filenames) #n is total number of images that has to be analysed. n=len(filenames) # we will be using this often to visualize the images out there. def showfig(image): imgplot=imshow(image, cmap='gray') imgplot.axes.get_xaxis().set_visible(False) imgplot.axes.get_yaxis().set_visible(False) from PIL import Image from scipy import misc # to get a hang of the data, lets see some part of the dataset images. fig = pyplot.figure() title('The Training Dataset') for i in range(49): fig.add_subplot(7,7,i+1) train_img=array(Image.open(filenames[i]).convert('L')) train_img=misc.imresize(train_img, [k1,k2]) showfig(train_img) #To form the observation matrix obs_matrix. #read the 1st image. train_img = array(Image.open(filenames[0]).convert('L')) #resize it to k1 rows and k2 columns train_img=misc.imresize(train_img, [k1,k2]) #since features accepts only data of float64 datatype, we do a type conversion train_img=array(train_img, dtype='double') #flatten it to make it a row vector. train_img=train_img.flatten() # repeat the above for all images and stack all those vectors together in a matrix for i in range(1,n): temp=array(Image.open(filenames[i]).convert('L')) temp=misc.imresize(temp, [k1,k2]) temp=array(temp, dtype='double') temp=temp.flatten() train_img=vstack([train_img,temp]) #form the observation matrix obs_matrix=train_img.T train_features = features(obs_matrix) preprocessor= sg.transformer('PCA', method='AUTO') preprocessor.put('target_dim', 100) preprocessor.fit(train_features) mean=preprocessor.get('mean_vector') #get the required eigenvectors corresponding to top 100 eigenvalues E = preprocessor.get('transformation_matrix') #lets see how these eigenfaces/eigenvectors look like: fig1 = pyplot.figure() title('Top 20 Eigenfaces') for i in range(20): a = fig1.add_subplot(5,4,i+1) eigen_faces=E[:,i].reshape([k1,k2]) showfig(eigen_faces) #we perform the required dot product. yn=preprocessor.transform(train_features).get('feature_matrix') re=tile(mean,[n,1]).T[0] + dot(E,yn) #lets plot the reconstructed images. fig2 = pyplot.figure() title('Reconstructed Images from 100 eigenfaces') for i in range(1,50): re1 = re[:,i].reshape([k1,k2]) fig2.add_subplot(7,7,i) showfig(re1) #set path of the training images path_train=os.path.join(SHOGUN_DATA_DIR, 'att_dataset/testing/') test_files=get_imlist(path_train) test_img=array(Image.open(test_files[0]).convert('L')) rcParams.update({'figure.figsize': (3, 3)}) #we plot the test image , for which we have to identify a good match from the training images we already have fig = pyplot.figure() title('The Test Image') showfig(test_img) #We flatten out our test image just the way we have done for the other images test_img=misc.imresize(test_img, [k1,k2]) test_img=array(test_img, dtype='double') test_img=test_img.flatten() #We centralise the test image by subtracting the mean from it. test_f=test_img-mean #We have already projected our training images into pca subspace as yn. train_proj = yn #Projecting our test image into pca subspace test_proj = dot(E.T, test_f) #To get Eucledian Distance as the distance measure use EuclideanDistance. workfeat = features(mat(train_proj)) testfeat = features(mat(test_proj).T) RaRb = sg.distance('EuclideanDistance') RaRb.init(testfeat, workfeat) #The distance between one test image w.r.t all the training is stacked in matrix d. d=empty([n,1]) for i in range(n): d[i]= RaRb.distance(0,i) #The one having the minimum distance is found out min_distance_index = d.argmin() iden=array(Image.open(filenames[min_distance_index])) title('Identified Image') showfig(iden) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Some Formal Background (Skip if you just want code examples) Step2: Step 2 Step3: Step 3 Step4: Step 5 Step5: In the above figure, the blue line is a good fit of the data. It shows the most significant relationship between the data dimensions. Step6: Step 6 Step7: Step 5 and Step 6 can be applied directly with Shogun's PCA preprocessor (from next example). It has been done manually here to show the exhaustive nature of Principal Component Analysis. Step 7 Step8: The new data is plotted below Step9: PCA on a 3d data. Step1 Step10: Step 2 Step11: Step 3 & Step 4 Step12: Steps 5 Step13: Step 7 Step15: PCA Performance Step16: Lets have a look on the data Step17: Represent every image $I_i$ as a vector $\Gamma_i$ Step18: Step 2 Step19: Step 3 & Step 4 Step20: These 20 eigenfaces are not sufficient for a good image reconstruction. Having more eigenvectors gives us the most flexibility in the number of faces we can reconstruct. Though we are adding vectors with low variance, they are in directions of change nonetheless, and an external image that is not in our database could in fact need these eigenvectors to get even relatively close to it. But at the same time we must also keep in mind that adding excessive eigenvectors results in addition of little or no variance, slowing down the process. Step 5 Step21: Step 7 Step22: Recognition part. Step23: Here we have to project our training image as well as the test image on the PCA subspace. Step24: Shogun's way of doing things
9,089
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np, matplotlib.pyplot as plt, matplotlib.gridspec as gridspec from mpl_toolkits.basemap import Basemap from ipywidgets import interact, interactive, fixed import ipywidgets as widgets [ra, dec, z], [ra_isol, dec_isol, z_isol], [ra_pair, dec_pair, z_pair], [ra_trip, dec_trip, z_trip] = [np.loadtxt(filename+'.txt', usecols = (0, 1, 2), unpack=True) for filename in ['SDSS_DR10_galaxy_local', 'table1', 'table2', 'table3']] decstart, decrange, alpha0, raCen, raDelta = 0., 5., .2, 0., 180. ra_tot, dec_tot, z_tot = [ra, ra_isol, ra_pair, ra_trip], [dec, dec_isol, dec_pair, dec_trip], [z, z_isol, z_pair, z_trip] rad_tot = [np.radians(raval) for raval in ra_tot] def plotSkymap(SDSS=True, Isolated=True, Pairs=False, Triplets=False, Opacity=alpha0, DecRange=decrange, Declination=decstart): plt.figure(figsize=(15, 15)) gs = gridspec.GridSpec(1, 2) ax1, ax2 = [plt.subplot(gs[i], polar=val, projection=pj) for i, val, pj in zip(range(0, 2), [True, False], [None, 'mollweide'])] [ax.grid(True) for ax in [ax1, ax2]] cond_dec = [((decval > Declination) & (decval < Declination + DecRange)) for decval in dec_tot] xyplt = [ax1.plot(rad_tot[i][cond_dec[i]], z_tot[i][cond_dec[i]], krgb, ms=mval, alpha=alpval, visible=visi)[0] for i, krgb, mval, alpval, visi in zip(range(0, 4), ['k.', 'ro', 'go', 'bo'], [1, 4, 4, 4], [Opacity, .7, .7, .7], [SDSS, Isolated, Pairs, Triplets])] x, y = [np.radians(val) for val in [-1*(ra - 180), dec]] H, xedges, yedges = np.histogram2d(x.T, y.T, bins=50) extent, levels = [xedges[0], xedges[-1], yedges[0], yedges[-1]], [100, 10000] ax2.contourf(H.T, levels, origin='lower', colors='b', lw=1, extent=extent, alpha=.3) [plt.setp(gtval, fontsize=fontval, alpha=.6) for gtval, fontval in zip([ax2.get_xticklabels(), ax2.get_yticklabels()], [8, 12])] x_rect, y_rect = [np.radians(val) for val in [raCen + np.array([-1, -1, 1, 1, -1])*raDelta, Declination + np.array([0, 1, 1, 0, 0])*DecRange]] ax2.fill(x_rect, y_rect, 'r', lw=0, alpha=.5) plt.show() interact(plotSkymap, SDSS=True, Isolated=True, Pairs=False, Triplets=False, Declination=widgets.FloatSlider(min=-20.0, max=90.0, step=2.0, value=decstart), DecRange=widgets.FloatSlider(min=0.0, max=90.0, step=1.0, value=decrange), Opacity=widgets.FloatSlider(min=0.0, max=1.0, step=0.1, value=alpha0)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Run the following code to load the catalogues of galaxies that will be represented. In this case we represent the LSS by all the galaxies in the local Universe (with redshift less than 0.1) from the SDSS. We will visualize where are located isolated galaxies, isolated pairs, and isolated triplets with respect to SDSS galaxies. We also set the default values of the visualization at declination 0 degrees, with a declination range 5., for the wedge diagram representation. This ranges will be also shown by a red line in the complemented Mollweide projection. We select a default value of 0.2 for the transparency. Step2: The following code creates the representation. Step3: Run the following code to interact with the representation.
9,090
<ASSISTANT_TASK:> Python Code: %%cython cpdef noop(): pass %load_ext Cython %%cython cimport numpy cpdef cysum(numpy.ndarray[double] A): Compute the sum of an array cdef double a=0 for i in range(A.shape[0]): a += A[i] return a def pysum(A): Compute the sum of an array a = 0 for i in range(A.shape[0]): a += A[i] return a import numpy as np for sz in (100, 1000, 10000): A = np.random.random(sz) print("Python %i" % sz, end=' ') %timeit pysum(A) print("np.sum %i" % sz, end=' ') %timeit A.sum() print("Cython %i" % sz, end=' ') %timeit cysum(A) import Cython Cython.load_ipython_extension?? from Cython.Build.IpythonMagic import CythonMagics CythonMagics?? %pycat soln/mymagics.py %install_ext soln/mymagics.py %load_ext mymagics import time %tic time.sleep(0.1) %toc %nbrun _Sample <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Customizing IPython - Extensions Step3: Let's see what Cython's load_ipython_extension function looks like Step4: Our own extension Step5: %install_ext is a function that can take any file path or URL, and puts the target into IPYTHONDIR/extensions
9,091
<ASSISTANT_TASK:> Python Code: import numpy as np d = 5e-9 # particle radius in meters eta = 1.0e-3 # viscosity of water in SI units (Pascal-seconds) at 293 K kB = 1.38e-23 # Boltzmann constant T = 293 # Temperature in degrees Kelvin D = kB*T/(3*np.pi*eta*d) # [m^2 / s] D Du = D*(1e6)**2/(1e3) # [um^2 / ms] Du Du = D*(1e9)**2/(1e6) # [nm^2 / us] Du S_spot = 0.8e-6 N = 3 tau_spot = 1e-3 D = S_spot**2 / (2*N*tau_spot) # [m^2 / s] D Du = D*(1e6)**2/(1e3) # [um^2 / ms] Du time = 10. # seconds sigma = np.sqrt(2*D*3*time) print('Displacement (std_dev): %.2f um' % (sigma*1e6)) space = 1e-6 # m time = 1.*space**2/(2*D*3) print('Time for %.1f um displacement: %.1g s' % (space*1e6, time)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Or expressing $D$ in $\textrm{nm}^2 /\mu s$ Step2: We can also estimate $D$ experimentally from the knowledge of the PSF and the diffusion time $\tau_{spot}$ Step3: not very different from what we obtained before from the viscosity model. Step4: How long we need to diffuse an X distance?
9,092
<ASSISTANT_TASK:> Python Code: %%capture %matplotlib inline import numpy as np import sympy as sp import matplotlib.pyplot as plt # To get equations the look like, well, equations, use the following. from sympy.interactive import printing printing.init_printing(use_latex=True) from IPython.display import display # Tools for manipulating quaternions. import Q_tools as qt; TimeReversal = np.array([[-1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]) display(TimeReversal) t, x, y, z = sp.symbols("t x y z") Vector = np.array([t, x, y, z]) display(Vector) display(Vector * TimeReversal) display(Vector * TimeReversal * TimeReversal) display(Vector * TimeReversal * TimeReversal * TimeReversal) P = qt.QH([t, x, y, z]) Tr = P.flip_signs().invert().product(P.conj()) display(Tr.t) display(Tr.x) display(Tr.y) display(Tr.z) PFlip = P.product(Tr) display(sp.simplify(PFlip.t)) display(sp.simplify(PFlip.x)) display(sp.simplify(PFlip.y)) display(sp.simplify(PFlip.z)) PFlipFlip = P.product(Tr).product(Tr) display(sp.simplify(PFlipFlip.t)) display(sp.simplify(PFlipFlip.x)) display(sp.simplify(PFlipFlip.y)) display(sp.simplify(PFlipFlip.z)) Classical_subs = {t:1, x:0.0000000002, y:0.00000000012, z:-0.0000000003} display(sp.simplify(PFlip.t.subs(Classical_subs))) display(sp.simplify(PFlip.x.subs(Classical_subs))) display(sp.simplify(PFlip.y.subs(Classical_subs))) display(sp.simplify(PFlip.z.subs(Classical_subs))) print() display(sp.simplify(PFlipFlip.t.subs(Classical_subs))) display(sp.simplify(PFlipFlip.x.subs(Classical_subs))) display(sp.simplify(PFlipFlip.y.subs(Classical_subs))) display(sp.simplify(PFlipFlip.z.subs(Classical_subs))) def reverse_n_times(P1, T1, sub_1, n): Given a symbolic expression P, applies symbolic space-time reversal using a dictionary of values n times. P1_t, P1_x, P1_y, P1_z = P1.t.subs(sub_1), P1.x.subs(sub_1), P1.y.subs(sub_1), P1.z.subs(sub_1) P_result = qt.QH([P1_t, P1_x, P1_y, P1_z]) T1_t, T1_x, T1_y, T1_z = T1.t.subs(sub_1), T1.x.subs(sub_1), T1.y.subs(sub_1), T1.z.subs(sub_1) T_sub = qt.QH([T1_t, T1_x, T1_y, T1_z]) for i in range(n): P_result = P_result.product(T_sub) return P_result print(reverse_n_times(P, Tr, Classical_subs, 100)) print(reverse_n_times(P, Tr, Classical_subs, 101)) print(reverse_n_times(P, Tr, Classical_subs, 1000)) print(reverse_n_times(P, Tr, Classical_subs, 1001)) print(reverse_n_times(P, Tr, Classical_subs, 10000)) print(reverse_n_times(P, Tr, Classical_subs, 100000)) print(reverse_n_times(P, Tr, Classical_subs, 1000000)) print(reverse_n_times(P, Tr, Classical_subs, 10000000)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The member of the Lorentz group that reverses time is remarkably simple Step2: Create a 4-vector. Step3: Do the time reversal a bunch of times. Step4: It comes as no surprise that if the time-reversal member of the Lorentz group is done an even number of times, then nothing changes, but an odd number of times reverses time exactly. Step5: Does this considerably more complicated expression than the Lorentz group do its job? Of course is should, but let's just show this is the case Step6: Apply Tr twice to see if one gets back to the start point. Step7: This may not look "right" to the eye, so test it. Use "classical" values, meaning time $t >>> x, y, z$. Step9: The value for t returned to unity as it should, but the same cannot be said for the spatial terms. This is due to the cross product. See what happens if one does this many, many times. Define a function to do the work.
9,093
<ASSISTANT_TASK:> Python Code: # The Python Spark (pyspark) libraries include functions designed to be run on columns of data # stored in Spark data frames. They need to be imported in order to use them. Here we # are going to use from pyspark.sql.functions import year # The matplotlib package is used for graphing. The next line tells Jupyter that when a # graphing function is used, it should draw the graph here inline in the notebook. import matplotlib.pyplot as plt %matplotlib inline df = sqlContext.read.load("/guoda/data/idigbio-20190612T171757.parquet") df.count() df.printSchema() df.head(1) # The outer "(" and ")" surround the chain of Python method calls to allow them to # span lines. This is a common convention and makes the data processing pipeline # easy to read and modify. # # The persist() function tells Spark to store the data frame in memory so it can be # accessed repeatedly without having to be reloaded. year_summary = (df .groupBy(year("datecollected").cast("integer").alias("yearcollected")) .count() .orderBy("yearcollected") .persist() ) year_summary.count() year_summary.printSchema() year_summary.head(10) year_summary.describe().show() pandas_year_summary = (year_summary .filter(year_summary.yearcollected >= 1817) .filter(year_summary.yearcollected <= 2017) .orderBy("yearcollected") .toPandas() ) pandas_year_summary.head() plt.bar(pandas_year_summary["yearcollected"], pandas_year_summary["count"], edgecolor='none', width=1.0 ) plt.title("Specimens in iDigBio by Collection Year and Continent") plt.ylabel("Number of Specimen Records") plt.xlabel("Year") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Loading the data set Step2: Examining the data Step3: Next we can look at the first row of data. The (1) after head tells Python how many rows to print. Since this is all iDigBio data, the rows are pretty big so we'll only show one. Step4: Summarizing the data Step5: Let's take a look at this new data frame using some of the commands from above Step6: Now that our data is both much smaller and mostly numeric, we can use the describe() method to quickly make summary statistics. This method returns a data frame so we have to use show() to actually print the whole contents of the data frame. Step7: Spark data frames, Pandas data frames, and filtering Step8: (Notice that the display of the first rows looks different from when we ran head() on the Spark data frame? That's because we're looking at the display generated by the Pandas library instead of the Spark library.)
9,094
<ASSISTANT_TASK:> Python Code: # Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== %%capture !pip3 install seaborn #@title Load the Universal Sentence Encoder's TF Hub module from absl import logging import tensorflow as tf import tensorflow_hub as hub import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re import seaborn as sns module_url = "https://tfhub.dev/google/universal-sentence-encoder/4" #@param ["https://tfhub.dev/google/universal-sentence-encoder/4", "https://tfhub.dev/google/universal-sentence-encoder-large/5"] model = hub.load(module_url) print ("module %s loaded" % module_url) def embed(input): return model(input) #@title Compute a representation for each message, showing various lengths supported. word = "Elephant" sentence = "I am a sentence for which I would like to get its embedding." paragraph = ( "Universal Sentence Encoder embeddings also support short paragraphs. " "There is no hard limit on how long the paragraph is. Roughly, the longer " "the more 'diluted' the embedding will be.") messages = [word, sentence, paragraph] # Reduce logging output. logging.set_verbosity(logging.ERROR) message_embeddings = embed(messages) for i, message_embedding in enumerate(np.array(message_embeddings).tolist()): print("Message: {}".format(messages[i])) print("Embedding size: {}".format(len(message_embedding))) message_embedding_snippet = ", ".join( (str(x) for x in message_embedding[:3])) print("Embedding: [{}, ...]\n".format(message_embedding_snippet)) def plot_similarity(labels, features, rotation): corr = np.inner(features, features) sns.set(font_scale=1.2) g = sns.heatmap( corr, xticklabels=labels, yticklabels=labels, vmin=0, vmax=1, cmap="YlOrRd") g.set_xticklabels(labels, rotation=rotation) g.set_title("Semantic Textual Similarity") def run_and_plot(messages_): message_embeddings_ = embed(messages_) plot_similarity(messages_, message_embeddings_, 90) messages = [ # Smartphones "I like my phone", "My phone is not good.", "Your cellphone looks great.", # Weather "Will it snow tomorrow?", "Recently a lot of hurricanes have hit the US", "Global warming is real", # Food and health "An apple a day, keeps the doctors away", "Eating strawberries is healthy", "Is paleo better than keto?", # Asking about age "How old are you?", "what is your age?", ] run_and_plot(messages) import pandas import scipy import math import csv sts_dataset = tf.keras.utils.get_file( fname="Stsbenchmark.tar.gz", origin="http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz", extract=True) sts_dev = pandas.read_table( os.path.join(os.path.dirname(sts_dataset), "stsbenchmark", "sts-dev.csv"), error_bad_lines=False, skip_blank_lines=True, usecols=[4, 5, 6], names=["sim", "sent_1", "sent_2"]) sts_test = pandas.read_table( os.path.join( os.path.dirname(sts_dataset), "stsbenchmark", "sts-test.csv"), error_bad_lines=False, quoting=csv.QUOTE_NONE, skip_blank_lines=True, usecols=[4, 5, 6], names=["sim", "sent_1", "sent_2"]) # cleanup some NaN values in sts_dev sts_dev = sts_dev[[isinstance(s, str) for s in sts_dev['sent_2']]] sts_data = sts_dev #@param ["sts_dev", "sts_test"] {type:"raw"} def run_sts_benchmark(batch): sts_encode1 = tf.nn.l2_normalize(embed(tf.constant(batch['sent_1'].tolist())), axis=1) sts_encode2 = tf.nn.l2_normalize(embed(tf.constant(batch['sent_2'].tolist())), axis=1) cosine_similarities = tf.reduce_sum(tf.multiply(sts_encode1, sts_encode2), axis=1) clip_cosine_similarities = tf.clip_by_value(cosine_similarities, -1.0, 1.0) scores = 1.0 - tf.acos(clip_cosine_similarities) / math.pi Returns the similarity scores return scores dev_scores = sts_data['sim'].tolist() scores = [] for batch in np.array_split(sts_data, 10): scores.extend(run_sts_benchmark(batch)) pearson_correlation = scipy.stats.pearsonr(scores, dev_scores) print('Pearson correlation coefficient = {0}\np-value = {1}'.format( pearson_correlation[0], pearson_correlation[1])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ユニバーサルセンテンスエンコーダー Step2: Tensorflow のインストールに関する詳細は、https Step3: セマンティックテキストの類似性タスクの例 Step4: 類似性の視覚化 Step5: 評価 Step7: 文章埋め込みの評価
9,095
<ASSISTANT_TASK:> Python Code: import os import tensorflow.compat.v1 as tf import pprint assert 'COLAB_TPU_ADDR' in os.environ, 'Did you forget to switch to TPU?' tpu_address = 'grpc://' + os.environ['COLAB_TPU_ADDR'] with tf.Session(tpu_address) as sess: devices = sess.list_devices() pprint.pprint(devices) device_is_tpu = [True if 'TPU' in str(x) else False for x in devices] assert True in device_is_tpu, 'Did you forget to switch to TPU?' import json import os import pprint import re import time import tensorflow.compat.v1 as tf import tensorflow_gcs_config # Google Cloud Storage bucket for storing the training dataset. bucket = '' #@param {type:"string"} assert bucket, 'Must specify an existing GCS bucket name' print('Using bucket: {}'.format(bucket)) assert 'COLAB_TPU_ADDR' in os.environ, 'Missing TPU; did you request a TPU in Notebook Settings?' tpu_address = 'grpc://{}'.format(os.environ['COLAB_TPU_ADDR']) from google.colab import auth auth.authenticate_user() # Upload credentials to TPU. tf.config.experimental_connect_to_host(tpu_address) tensorflow_gcs_config.configure_gcs_from_colab_auth() # Now credentials are set for all future sessions on this TPU. # Check that imports for the rest of the file work. import os import tensorflow as tf !pip install tensorflow-gan import tensorflow_gan as tfgan from tensorflow.keras import layers import tensorflow_datasets as tfds import numpy as np import matplotlib.pyplot as plt from PIL import Image # Allow matplotlib images to render immediately. %matplotlib inline Params = { 'batch_size' : 32, # Number of image samples used in each training step 'hr_dimension' : 256, # Dimension of a High Resolution (HR) Image 'scale' : 4, # Factor by which Low Resolution (LR) Images will be downscaled. 'data_name': 'div2k/bicubic_x4', # Dataset name - loaded using tfds. 'trunk_size' : 11, # Number of Residual blocks used in Generator, 'init_lr' : 0.00005, # Initial Learning rate for networks. 'ph1_steps' : 10000, # Number of steps required for phase-1 training 'ph2_steps' : 100000, # Number of steps required for phase-2 training 'decay_ph1' : 0.2, # Factor by which learning rates are modified during phase-1 training 'decay_ph2' : 0.5, # Factor by which learning rates are modified during phase-2 training 'model_dir' : 'gs://{}/SavedModels' # Path to save the model after training. (inside the cloud bucket) .format(bucket), 'ckpt_dir' : '/content/ckpts/', # Path to save the training checkpoints. (outside the cloud bucket) 'lambda' : 0.005, # To balance adversarial loss during phase-2 training. 'eta' : 0.01, # To balance L1 loss during phase-2 training. 'val_steps' : 100 # Number of steps required for validation. } dataset_dir = 'gs://{}/{}'.format(bucket, 'datasets') def input_fn(mode, params): assert 'batch_size' in params bs = params['batch_size'] split = 'train' if mode == 'train' else 'validation' shuffle = True def scale(image, *args): hr_size = params['hr_dimension'] scale = params['scale'] hr_image = image hr_image = tf.image.resize(hr_image, [hr_size, hr_size]) lr_image = tf.image.resize(hr_image, [hr_size//scale, hr_size//scale], method='bicubic') hr_image = tf.clip_by_value(hr_image, 0, 255) lr_image = tf.clip_by_value(lr_image, 0, 255) return lr_image, hr_image dataset = (tfds.load(params['data_name'], split=split, data_dir=dataset_dir, as_supervised=True) .map(scale, num_parallel_calls=4) .cache() .repeat()) if shuffle: dataset = dataset.shuffle( buffer_size=10000, reshuffle_each_iteration=True) dataset = (dataset.batch(bs, drop_remainder=True) .prefetch(tf.data.experimental.AUTOTUNE)) return dataset train_ds = input_fn(mode='train', params=Params) img_lr, img_hr = next(iter(train_ds)) lr = Image.fromarray(np.array(img_lr)[0].astype(np.uint8)) lr = lr.resize([256, 256]) display(lr) hr = Image.fromarray(np.array(img_hr)[0].astype(np.uint8)) hr = hr.resize([256, 256]) display(hr) def _conv_block(input, filters, activation=True): h = layers.Conv2D(filters, kernel_size=[3,3], kernel_initializer="he_normal", bias_initializer="zeros", strides=[1,1], padding='same', use_bias=True)(input) if activation: h = layers.LeakyReLU(0.2)(h) return h def dense_block(input): h1 = _conv_block(input, 32) h1 = layers.Concatenate()([input, h1]) h2 = _conv_block(h1, 32) h2 = layers.Concatenate()([input, h1, h2]) h3 = _conv_block(h2, 32) h3 = layers.Concatenate()([input, h1, h2, h3]) h4 = _conv_block(h3, 32) h4 = layers.Concatenate()([input, h1, h2, h3, h4]) h5 = _conv_block(h4, 32, activation=False) h5 = layers.Lambda(lambda x: x * 0.2)(h5) h = layers.Add()([h5, input]) return h def rrdb(input): h = dense_block(input) h = dense_block(h) h = dense_block(h) h = layers.Lambda(lambda x:x * 0.2)(h) out = layers.Add()([h, input]) return out def upsample(x, filters): x = layers.Conv2DTranspose(filters, kernel_size=3, strides=2, padding='same', use_bias = True)(x) x = layers.LeakyReLU(alpha=0.2)(x) return x def generator_network(filter=32, trunk_size=Params['trunk_size'], out_channels=3): lr_input = layers.Input(shape=(None, None, 3)) x = layers.Conv2D(filter, kernel_size=[3,3], strides=[1,1], padding='same', use_bias=True)(lr_input) x = layers.LeakyReLU(0.2)(x) ref = x for i in range(trunk_size): x = rrdb(x) x = layers.Conv2D(filter, kernel_size=[3,3], strides=[1,1], padding='same', use_bias = True)(x) x = layers.Add()([x, ref]) x = upsample(x, filter) x = upsample(x, filter) x = layers.Conv2D(filter, kernel_size=3, strides=1, padding='same', use_bias=True)(x) x = layers.LeakyReLU(0.2)(x) hr_output = layers.Conv2D(out_channels, kernel_size=3, strides=1, padding='same', use_bias=True)(x) model = tf.keras.models.Model(inputs=lr_input, outputs=hr_output) return model def _conv_block_d(x, out_channel): x = layers.Conv2D(out_channel, 3,1, padding='same', use_bias=False)(x) x = layers.BatchNormalization(momentum=0.8)(x) x = layers.LeakyReLU(alpha=0.2)(x) x = layers.Conv2D(out_channel, 4,2, padding='same', use_bias=False)(x) x = layers.BatchNormalization(momentum=0.8)(x) x = layers.LeakyReLU(alpha=0.2)(x) return x def discriminator_network(filters = 64, training=True): img = layers.Input(shape = (Params['hr_dimension'], Params['hr_dimension'], 3)) x = layers.Conv2D(filters, [3,3], 1, padding='same', use_bias=False)(img) x = layers.BatchNormalization()(x) x = layers.LeakyReLU(alpha=0.2)(x) x = layers.Conv2D(filters, [3,3], 2, padding='same', use_bias=False)(x) x = layers.BatchNormalization()(x) x = layers.LeakyReLU(alpha=0.2)(x) x = _conv_block_d(x, filters *2) x = _conv_block_d(x, filters *4) x = _conv_block_d(x, filters *8) x = layers.Flatten()(x) x = layers.Dense(100)(x) x = layers.LeakyReLU(alpha=0.2)(x) x = layers.Dense(1)(x) model = tf.keras.models.Model(inputs = img, outputs = x) return model def pixel_loss(y_true, y_pred): y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(y_pred, tf.float32) return tf.reduce_mean(tf.reduce_mean(tf.abs(y_true - y_pred), axis = 0)) # Function for calculating perceptual loss def vgg_loss(weight=None, input_shape=None): vgg_model = tf.keras.applications.vgg19.VGG19( input_shape=input_shape, weights=weight, include_top=False ) for layer in vgg_model.layers: layer.trainable = False vgg_model.get_layer("block5_conv4").activation = lambda x: x vgg = tf.keras.Model( inputs=[vgg_model.input], outputs=[vgg_model.get_layer("block5_conv4").output]) def loss(y_true, y_pred): return tf.compat.v1.losses.absolute_difference(vgg(y_true), vgg(y_pred)) return loss # To display images in the order : LR Image -> Generated Image -> HR Image def visualize_results(image_lr, generated, image_hr): size = 128 resized_lr = tf.image.resize(image_lr, [size, size], method=tf.image.ResizeMethod.BILINEAR) resized_gen = tf.image.resize(generated, [size, size], method=tf.image.ResizeMethod.BILINEAR) resized_hr = tf.image.resize(image_hr, [size, size], method=tf.image.ResizeMethod.BILINEAR) stack = tf.stack([resized_lr[0], resized_gen[0], resized_hr[0]]) image_grid = tfgan.eval.python_image_grid(stack, grid_shape=(1, 3)) result = Image.fromarray(image_grid.astype(np.uint8)) return result # Define the TPU strategy tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) train_ds = iter(strategy.experimental_distribute_dataset(train_ds)) with strategy.scope(): metric = tf.keras.metrics.Mean() psnr_metric = tf.keras.metrics.Mean() generator = generator_network() g_optimizer = tf.optimizers.Adam( learning_rate = 0.0002, beta_1 = 0.9, beta_2 = 0.99 ) @tf.function def train_step(image_lr, image_hr): with tf.GradientTape() as tape: fake = generator(image_lr) loss = pixel_loss(image_hr, fake) * (1.0 / Params['batch_size']) psnr_value = tf.image.psnr(fake, image_hr,max_val = 256.0) metric(loss) gradient = tape.gradient(loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(gradient, generator.trainable_variables)) return psnr_value def val_steps(image_lr, image_hr): fake = generator(image_lr) result = visualize_results(image_lr, fake, image_hr) display(result) step_count = 0 while step_count < Params['ph1_steps']: lr, hr = next(train_ds) psnr_loss = strategy.run(train_step, args = (lr, hr)) loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, psnr_loss, axis=None) psnr_metric(loss) if step_count%1000 == 0: lr = np.array(lr.values)[0] hr = np.array(hr.values)[0] print("step {} PNSR = {}".format(step_count, psnr_metric.result())) val_steps(lr, hr) if step_count%5000 == 0: g_optimizer.learning_rate.assign( g_optimizer.learning_rate * Params['decay_ph1']) step_count+=1 # Save the generator network which is then used for phase-2 training os.makedirs(Params['model_dir'] + '/Phase_1/generator', exist_ok = True) generator.save(Params['model_dir'] + '/Phase_1/generator') with strategy.scope(): optimizer = tf.optimizers.Adam( learning_rate = 0.0002, beta_1 = 0.9, beta_2 = 0.99 ) generator = tf.keras.models.load_model(Params['model_dir'] + '/Phase_1/generator/') discriminator = discriminator_network() g_optimizer = optimizer g_optimizer.learning_rate.assign(0.00005) d_optimizer = optimizer checkpoint = tf.train.Checkpoint(G=generator, D = discriminator, G_optimizer=g_optimizer, D_optimizer=d_optimizer) local_device_option = tf.train.CheckpointOptions(experimental_io_device="/job:localhost") with strategy.scope(): perceptual_loss = vgg_loss( weight = "imagenet", input_shape = [Params['hr_dimension'], Params['hr_dimension'], 3]) with strategy.scope(): gen_metric = tf.keras.metrics.Mean() disc_metric = tf.keras.metrics.Mean() psnr_metric = tf.keras.metrics.Mean() @tf.function def train_step(image_lr, image_hr): with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: fake = generator(image_lr) percep_loss = tf.reduce_mean(perceptual_loss(image_hr, fake)) l1_loss = pixel_loss(image_hr, fake) real_logits = discriminator(image_hr) fake_logits = discriminator(fake) loss_RaG = tfgan.losses.losses_impl.relativistic_generator_loss(real_logits, fake_logits) disc_loss = tfgan.losses.losses_impl.relativistic_discriminator_loss(real_logits, fake_logits) gen_loss = percep_loss + Params['lambda'] * loss_RaG + Params['eta'] * l1_loss gen_loss = gen_loss / Params['batch_size'] disc_loss = disc_loss / Params['batch_size'] psnr_loss = tf.image.psnr(fake, image_hr, max_val = 256.0) disc_metric(disc_loss) gen_metric(gen_loss) psnr_metric(psnr_loss) disc_grad = disc_tape.gradient(disc_loss, discriminator.trainable_variables) d_optimizer.apply_gradients(zip(disc_grad, discriminator.trainable_variables)) gen_grad = gen_tape.gradient(gen_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(gen_grad, generator.trainable_variables)) return [disc_loss, gen_loss, psnr_loss] def val_step(image_lr, image_hr): fake = generator(image_lr) result = visualize_results(image_lr, fake, image_hr) display(result) step_count = 0 decay_step = [9000, 30000, 50000] while step_count < Params['ph2_steps']: lr, hr = next(train_ds) if tf.train.latest_checkpoint(Params['ckpt_dir']): checkpoint.restore(tf.train.latest_checkpoint(Params['ckpt_dir'])) disc_loss, gen_loss, psnr_loss = strategy.run(train_step, args = (lr, hr)) if step_count % 1000 == 0: print("step {}".format(step_count) + " Generator Loss = {} ".format(gen_metric.result()) + "Disc Loss = {}".format(disc_metric.result()) + " PSNR : {}".format(psnr_metric.result())) lr = np.array(lr.values)[0] hr = np.array(hr.values)[0] val_step(lr, hr) checkpoint.write(Params['ckpt_dir'], options=local_device_option) if step_count >= decay_step[0]: decay_step.pop(0) g_optimizer.learning_rate.assign( g_optimizer.learning_rate * Params['decay_ph2']) d_optimizer.learning_rate.assign( d_optimizer.learning_rate * Params['decay_ph2']) step_count+=1 os.makedirs(Params['model_dir'] + '/Phase_2/generator', exist_ok = True) os.makedirs(Params['model_dir'] + '/Phase_2/discriminator', exist_ok = True) generator.save(Params['model_dir'] + '/Phase_2/generator') discriminator.save(Params['model_dir'] + '/Phase_2/discriminator') def network_interpolation(alpha=0.2, phase_1_path=None, phase_2_path=None): psnr_gen = tf.keras.model.load_model(phase_1_path) gan_gen = tf.keras.models.load_model(phase_2_path) for var_1, var_2 in zip(gan_gen.trainable_variables, psnr_gen.trainable_variables): var_1.assign((1 - alpha) * var_2 + alpha * var_1) return gan_gen generator = network_interpolation(phase_1_path = Params['model_dir'] + '/Phase_1/generator', phase_2_path = Params['model_dir'] + '/Phase_2/generator') generator.save(Params['model_dir'] + '/InterpolatedGenerator/') val_ds = input_fn(mode='validation', params=Params) def val_steps(image_lr, image_hr): fake = generator(image_lr) result = visualize_results(image_lr, fake, image_hr) display(result) for i in range(3): lr, hr = next(iter(val_ds)) val_steps(lr, hr) @tf.function def get_fid_score(real_image, gen_image): size = tfgan.eval.INCEPTION_DEFAULT_IMAGE_SIZE resized_real_images = tf.image.resize(real_image, [size, size], method=tf.image.ResizeMethod.BILINEAR) resized_generated_images = tf.image.resize(gen_image, [size, size], method=tf.image.ResizeMethod.BILINEAR) num_inception_images = 1 num_batches = Params['batch_size'] // num_inception_images fid = tfgan.eval.frechet_inception_distance(resized_real_images, resized_generated_images, num_batches=num_batches) return fid @tf.function def get_inception_score(images, gen, num_inception_images = 8): size = tfgan.eval.INCEPTION_DEFAULT_IMAGE_SIZE resized_images = tf.image.resize(images, [size, size], method=tf.image.ResizeMethod.BILINEAR) num_batches = Params['batch_size'] // num_inception_images inc_score = tfgan.eval.inception_score(resized_images, num_batches=num_batches) return inc_score with strategy.scope(): generator = tf.keras.models.load_model(Params['model_dir'] + '/InterpolatedGenerator') fid_metric = tf.keras.metrics.Mean() inc_metric = tf.keras.metrics.Mean() psnr_metric = tf.keras.metrics.Mean() count = 0 i = 0 while i < Params['val_steps']: lr, hr = next(iter(val_ds)) gen = generator(lr) fid = strategy.run(get_fid_score, args = (hr, gen)) real_is = strategy.run(get_inception_score, args=(hr, gen)) gen_is = strategy.run(get_inception_score, args=(gen, hr)) val_steps(lr, hr) fid_metric(fid) inc_metric(gen_is) psnr_metric(tf.reduce_mean(tf.image.psnr(gen, hr, max_val = 256.0))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Authentication Step2: Check imports Step3: Training ESRGAN Step4: Load Training Dataset Step5: Visualize the dataset Step6: Network Architecture Step7: Discriminator Step8: Loss Functions Step9: Training Step10: Phase - 1 Training Steps Involved Step11: Phase - 2 Step12: Load VGG weights Step13: Training step Step14: Network Interpolation Step15: Evaluation Step16: Visualize Generated Images Step17: FID and Inception Scores are two common metrices used to evaluate the performance of a GAN model and PSNR value is used to quantify the similarity between two images and is used for benchmarking super resolution models.
9,096
<ASSISTANT_TASK:> Python Code: purity_coll = client['run']['purity'] purity_coll.count() d = purity_coll.find_one() for d in purity_coll.find(sort=(('calculation_time', -1), )): print(str(d['calculation_time']), parse_expr(d['function'])) import numpy as np data = np.array([ 4, 0.9948, # Julien 5, 1.1224, # Julien 6, 1.2137, # Julien 7, 1.2833, # Julien 8, 1.3323, # Julien 9, 1.371, # Jelle 12, 1.4401, # Jelle & Julien (same value, well Julien had 1.4402 and I had 1.440...) 13, 1.456, 15, 1.482 ]) cathode_kv, vdrift_kmpers = data.reshape(-1, 2).T import matplotlib import matplotlib.pyplot as plt %matplotlib inline vs = np.linspace(0, 20, 100) deg = len(cathode_kv) - 4 coeffs = np.polyfit(cathode_kv, vdrift_kmpers, deg=deg) plt.plot(vs, np.polyval(coeffs, vs), label='%dth degree polynomial fit' % deg) plt.scatter(cathode_kv, vdrift_kmpers, marker='x', c='k', label='Datapoints') plt.ylim(0.5, 1.7) plt.legend(loc='lower right') plt.xlabel("Cathode voltage (kV)") plt.ylabel("Drift velocity (km/sec)") plt.plot(cathode_kv, 100 * (np.polyval(coeffs, cathode_kv) - vdrift_kmpers)/vdrift_kmpers, linestyle='', marker='x') plt.ylabel('Relative fit error (%)') plt.xlabel("Cathode voltage kV") v = sympy.Symbol('v') sp_poly = sympy.Poly.from_list(coeffs.tolist(), gens=v) # Sanity check: sp_poly.subs(dict(v=7.5)) # Try converting to and from serialization format, repeat sanity check serialized_fit = sympy.srepr(sp_poly) parse_expr(serialized_fit).subs(dict(v=7.5)) drift_coll = client['run']['drift_velocity'] from datetime import datetime # Uncomment this, adjust versions and comments to do actual insertion # drift_coll.insert_one(dict( # version='1.0.0', # calculation_time=datetime.now(), # function=serialized_fit, # comment="5th degree polynomial fit to Julien&Jelle's Drift velocity results. Jelle, 1 April 2017." # )) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Try to add drift velocity correction function Step2: Systematic error on drift velocity estimates is around 0.2%, see Step3: Insert in runs db
9,097
<ASSISTANT_TASK:> Python Code: # Add tools # NOTE: This should only be needed if you do not store the notebook on the lxmls root import sys sys.path.append('../../') from pdb import set_trace # Location of Part-of-Speech WSJ Data WSJ_TRAIN = "../../data/train-02-21.conll" WSJ_TEST = "../../data/test-23.conll" WSJ_DEV = "../../data/dev-22.conll" # Load Part-of-Speech data import lxmls.readers.pos_corpus as pcc corpus = pcc.PostagCorpus() train_seq = corpus.read_sequence_list_conll(WSJ_TRAIN, max_sent_len=15, max_nr_sent=1000) test_seq = corpus.read_sequence_list_conll(WSJ_TEST, max_sent_len=15, max_nr_sent=1000) dev_seq = corpus.read_sequence_list_conll(WSJ_DEV, max_sent_len=15, max_nr_sent=1000) # Redo indices so that they are consecutive. Also cast all data to numpy arrays # of int32 for compatibility with GPUs and theano and add reverse index train_seq, test_seq, dev_seq = pcc.compacify(train_seq, test_seq, dev_seq, theano=True) # Get number of words and tags in the corpus nr_words = len(train_seq.x_dict) nr_tags = len(train_seq.y_dict) import lxmls.deep_learning.rnn as rnns reload(rnns) # RNN configuration SEED = 1234 # Random seed to initialize weigths emb_size = 50 # Size of word embeddings hidden_size = 20 # size of hidden layer np_rnn = rnns.NumpyRNN(nr_words, emb_size, hidden_size, nr_tags, seed=SEED) x0 = train_seq[0].x y0 = train_seq[0].y # Forward pass p_y, y_rnn, h, z1, x = np_rnn.forward(x0, all_outputs=True) # Compute gradients numpy_rnn_gradients = np_rnn.grads(x0, y0) import numpy as np import theano import theano.tensor as T theano.config.optimizer='None' def square(x): return x**2 # Python def np_square_n_steps(nr_steps): out = [] for n in np.arange(nr_steps): out.append(square(n)) return np.array(out) # Theano nr_steps = T.lscalar('nr_steps') h, _ = theano.scan(fn=square, sequences=T.arange(nr_steps)) th_square_n_steps = theano.function([nr_steps], h) print np_square_n_steps(10) print th_square_n_steps(10) # Configuration nr_states = 3 nr_steps = 5 # Transition matrix A = np.abs(np.random.randn(nr_states, nr_states)) A = A/A.sum(0, keepdims=True) # Initial state s0 = np.zeros(nr_states) s0[0] = 1 # Numpy version def np_markov_step(s_tm1): s_t = np.dot(s_tm1, A.T) return s_t def np_markov_chain(nr_steps, A, s0): # Pre-allocate space s = np.zeros((nr_steps+1, nr_states)) s[0, :] = s0 for t in np.arange(nr_steps): s[t+1, :] = np_markov_step(s[t, :]) return s np_markov_chain(nr_steps, A, s0) # Theano version # Store variables as shared variables th_A = theano.shared(A, name='A', borrow=True) th_s0 = theano.shared(s0, name='s0', borrow=True) # Symbolic variable for the number of steps th_nr_steps = T.lscalar('nr_steps') def th_markov_step(s_tm1): s_t = T.dot(s_tm1, th_A.T) # Remember to name variables s_t.name = 's_t' return s_t s, _ = theano.scan(th_markov_step, outputs_info=[dict(initial=th_s0)], n_steps=th_nr_steps) th_markov_chain = theano.function([th_nr_steps], T.concatenate((th_s0[None, :], s), 0)) th_markov_chain(nr_steps) rnn = rnns.RNN(nr_words, emb_size, hidden_size, nr_tags, seed=SEED) # Compile theano function x = T.ivector('x') th_forward = theano.function([x], rnn._forward(x).T) assert np.allclose(th_forward(x0), np_rnn.forward(x0)), \ "Numpy and Theano forward pass differ!" # Compile function returning the list of gradients x = T.ivector('x') # Input words y = T.ivector('y') # gold tags p_y = rnn._forward(x) cost = -T.mean(T.log(p_y)[T.arange(y.shape[0]), y]) grads_fun = theano.function([x, y], [T.grad(cost, par) for par in rnn.param]) # Compare numpy and theano gradients theano_rnn_gradients = grads_fun(x0, y0) for n in range(len(theano_rnn_gradients)): assert np.allclose(numpy_rnn_gradients[n], theano_rnn_gradients[n]), \ "Numpy and Theano gradients differ in step n" rnn_prediction = theano.function([x], T.argmax(p_y, 1)) # Lets test the predictions def test_model(sample_seq, rnn_prediction): words = [train_seq.word_dict[wrd] for wrd in sample_seq.x] tags = [train_seq.tag_dict[pred] for pred in rnn_prediction(sample_seq.x)] print ["/".join([word, tag]) for word , tag in zip(words, tags)] test_model(train_seq[0], rnn_prediction) lrate = 0.5 n_iter = 5 # Get list of SGD batch update rule for each parameter updates = [(par, par - lrate*T.grad(cost, par)) for par in rnn.param] # compile rnn_batch_update = theano.function([x, y], cost, updates=updates) nr_words = sum([len(seq.x) for seq in train_seq]) for i in range(n_iter): # Training cost = 0 errors = 0 for n, seq in enumerate(train_seq): cost += rnn_batch_update(seq.x, seq.y) errors += sum(rnn_prediction(seq.x) != seq.y) acc_train = 100*(1-errors*1./nr_words) print "Epoch %d: Train cost %2.2f Acc %2.2f %%" % (i+1, cost, acc_train), # Evaluation errors = 0 for n, seq in enumerate(dev_seq): errors += sum(rnn_prediction(seq.x) != seq.y) acc_dev = 100*(1-errors*1./nr_words) print " Devel Acc %2.2f %%" % acc_dev sys.stdout.flush() # Embeddings Path EMBEDDINGS = "../../data/senna_50" import lxmls.deep_learning.embeddings as emb import os reload(emb) if not os.path.isfile(EMBEDDINGS): emb.download_embeddings('senna_50', EMBEDDINGS) E = emb.extract_embeddings(EMBEDDINGS, train_seq.x_dict) # Reset model to remove the effect of training rnn = rnns.reset_model(rnn, seed=SEED) # Set the embedding layer to the pre-trained values rnn.param[0].set_value(E.astype(theano.config.floatX)) lstm = rnns.LSTM(nr_words, emb_size, hidden_size, nr_tags) lstm_prediction = theano.function([x], T.argmax(lstm._forward(x), 1)) lstm_cost = -T.mean(T.log(lstm._forward(x))[T.arange(y.shape[0]), y]) # Get list of SGD batch update rule for each parameter lstm_updates = [(par, par - lrate*T.grad(lstm_cost, par)) for par in lstm.param] # compile lstm_batch_update = theano.function([x, y], lstm_cost, updates=lstm_updates) nr_words = sum([len(seq.x) for seq in train_seq]) for i in range(n_iter): # Training cost = 0 errors = 0 for n, seq in enumerate(train_seq): cost += lstm_batch_update(seq.x, seq.y) errors += sum(lstm_prediction(seq.x) != seq.y) acc_train = 100*(1-errors*1./nr_words) print "Epoch %d: Train cost %2.2f Acc %2.2f %%" % (i+1, cost, acc_train), # Evaluation: errors = 0 for n, seq in enumerate(dev_seq): errors += sum(lstm_prediction(seq.x) != seq.y) acc_dev = 100*(1-errors*1./nr_words) print " Devel Acc %2.2f %%" % acc_dev sys.stdout.flush() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model configuration Step2: Exercise 6.2 Step3: The following example should help you understand about matrix multiplications and passing values from one iteration to the other. It at each step it we multiply the output of the previous step by a matrix A. We start with an initial vector s0. The matrix and vector are random but normalized to result on a Markov chain. Step4: Exercise 6.3 Step5: When working with theano, it is more difficult to localize the source of errors. It is therefore extremely important to work step by step and test the code frequently. To debug we suggest to implement and compile the forward pass first. You can use this code for testing. If it raises no error you are good to go. Step6: Once you are confident the forward pass is working you can test the gradients Step7: Finally, its time to test our network!. For this, lets first compile a function that does predictions Step8: Now lets define the optimization parameters and compile a batch update function Step9: Finally it is time to run SGD. You can use the following code for this purpose Step10: Test the effect of using pre-trained embeddings. Run the following code to download the embeddings, reset the layer parameters and initialize the embedding layer with the pre-trained embeddings. Then run the training code above. Step11: Exercise 6.4
9,098
<ASSISTANT_TASK:> Python Code: !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst !pip install --user google-cloud-bigquery==1.25.0 !pip install --user apache-beam[interactive]==2.24.0 import apache_beam as beam print(beam.__version__) import tensorflow as tf print("TensorFlow version: ",tf.version.VERSION) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' PROJECT = 'cloud-training-demos' REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi # Create SQL query using natality data after the year 2000 query = SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 # Call BigQuery and examine in dataframe from google.cloud import bigquery df = bigquery.Client().query(query + " LIMIT 100").to_dataframe() df.head() # TODO 1 import datetime, os def to_csv(rowdict): # Pull columns from BQ and create a line import hashlib import copy CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks'.split(',') # Create synthetic data where we assume that no ultrasound has been performed # and so we don't know sex of the baby. Let's assume that we can tell the difference # between single and multiple, but that the errors rates in determining exact number # is difficult in the absence of an ultrasound. no_ultrasound = copy.deepcopy(rowdict) w_ultrasound = copy.deepcopy(rowdict) no_ultrasound['is_male'] = 'Unknown' if rowdict['plurality'] > 1: no_ultrasound['plurality'] = 'Multiple(2+)' else: no_ultrasound['plurality'] = 'Single(1)' # Change the plurality column to strings w_ultrasound['plurality'] = ['Single(1)', 'Twins(2)', 'Triplets(3)', 'Quadruplets(4)', 'Quintuplets(5)'][rowdict['plurality'] - 1] # Write out two rows for each input row, one with ultrasound and one without for result in [no_ultrasound, w_ultrasound]: data = ','.join([str(result[k]) if k in result else 'None' for k in CSV_COLUMNS]) key = hashlib.sha224(data.encode('utf-8')).hexdigest() # hash the columns to form a key yield str('{},{}'.format(data, key)) def preprocess(in_test_mode): import shutil, os, subprocess job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: print('Launching local job ... hang on') OUTPUT_DIR = './preproc' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) os.makedirs(OUTPUT_DIR) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc/'.format(BUCKET) try: subprocess.check_call('gsutil -m rm -r {}'.format(OUTPUT_DIR).split()) except: pass options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'region': REGION, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'num_workers': 4, 'max_num_workers': 5 } opts = beam.pipeline.PipelineOptions(flags = [], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' p = beam.Pipeline(RUNNER, options = opts) query = SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 AND month > 0 if in_test_mode: query = query + ' LIMIT 100' for step in ['train', 'eval']: if step == 'train': selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) = 3'.format(query) (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query = selquery, use_standard_sql = True)) | '{}_csv'.format(step) >> beam.FlatMap(to_csv) | '{}_out'.format(step) >> beam.io.Write(beam.io.WriteToText(os.path.join(OUTPUT_DIR, '{}.csv'.format(step)))) ) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(in_test_mode = False) %%bash gsutil ls gs://${BUCKET}/babyweight/preproc/*-00000* <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Kindly ignore the deprecation warnings and incompatibility errors related to google-cloud-storage. Step2: NOTE Step3: You may receive a UserWarning about the Apache Beam SDK for Python 3 as not being yet fully supported. Don't worry about this. Step5: <h2> Save the query from earlier </h2> Step7: <h2> Create ML dataset using Dataflow </h2> Step8: The above step will take 20+ minutes. Go to the GCP web console, navigate to the Dataflow section and <b>wait for the job to finish</b> before you run the following step.
9,099
<ASSISTANT_TASK:> Python Code: from EQTransformer.utils.plot import plot_data_chart plot_data_chart('preproc/time_tracks.pkl', time_interval=10) from EQTransformer.utils.plot import plot_detections, plot_helicorder plot_helicorder(input_mseed='downloads_mseeds/CA06/GS.CA06.00.HHZ__20190901T000000Z__20190902T000000Z.mseed', input_csv=None, save_plot=True) plot_helicorder(input_mseed='downloads_mseeds/CA06/GS.CA06.00.HH2__20190901T000000Z__20190902T000000Z.mseed', input_csv='detections1/CA06_outputs/X_prediction_results.csv', save_plot=True) plot_detections(input_dir ="detections1", input_json="json/station_list.json", plot_type='station_map', marker_size=50) plot_detections(input_dir ="detections1", input_json="json/station_list.json", plot_type='hist', time_window=120) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Check your current directory for 'data_chart.png' Step2: Now you can mark those events that you have detected in your helicorder plot to check if you have catched most of them or you are missing too many of them (high false negativ). This togather with the events plots (in the Figure subfolders in your station_output folders) can give you a sense that if you are using a too high or too low threshold levels. Step3: 3) map plot Step4: check for 'station_map.png'