benzlxs's picture
Upload folder using huggingface_hub
d4035c1 verified
/** @file mathop.h
** @brief Math operations
** @author Andrea Vedaldi
**/
/* AUTORIGHTS
Copyright (C) 2007-09 Andrea Vedaldi and Brian Fulkerson
This file is part of VLFeat, available in the terms of the GNU
General Public License version 2.
*/
#ifndef VL_MATHOP_H
#define VL_MATHOP_H
#include "generic.h"
#include <math.h>
/** @brief Logarithm of 2 (math constant)*/
#define VL_LOG_OF_2 0.693147180559945
/** @brief Pi (math constant) */
#define VL_PI 3.141592653589793
/** @brief IEEE single precision epsilon (math constant)
**
** <code>1.0F + VL_EPSILON_F</code> is the smallest representable
** single precision number greater than @c 1.0F. Numerically,
** ::VL_EPSILON_F is equal to @f$ 2^{-23} @f$.
**
**/
#define VL_EPSILON_F 1.19209290E-07F
/** @brief IEEE double precision epsilon (math constant)
**
** <code>1.0 + VL_EPSILON_D</code> is the smallest representable
** double precision number greater than @c 1.0. Numerically,
** ::VL_EPSILON_D is equal to @f$ 2^{-52} @f$.
**/
#define VL_EPSILON_D 2.220446049250313e-16
/*
For the code below: An ANSI C compiler takes the two expressions,
LONG_VAR and CHAR_VAR, and implicitly casts them to the type of the
first member of the union. Refer to K&R Second Edition Page 148,
last paragraph.
*/
/** @brief IEEE single precision quiet NaN constant */
static union { vl_uint32 raw ; float value ; }
const vl_nan_f =
{ 0x7FC00000UL } ;
/** @brief IEEE single precision infinity constant */
static union { vl_uint32 raw ; float value ; }
const vl_infinity_f =
{ 0x7F800000UL } ;
/** @brief IEEE double precision quiet NaN constant */
static union { vl_uint64 raw ; double value ; }
const vl_nan_d =
#ifdef VL_COMPILER_MSC
{ 0x7FF8000000000000ui64 } ;
#else
{ 0x7FF8000000000000ULL } ;
#endif
/** @brief IEEE double precision infinity constant */
static union { vl_uint64 raw ; double value ; }
const vl_infinity_d =
#ifdef VL_COMPILER_MSC
{ 0x7FF0000000000000ui64 } ;
#else
{ 0x7FF0000000000000ULL } ;
#endif
/** @brief IEEE single precision NaN (not signaling) */
#define VL_NAN_F (vl_nan_f.value)
/** @brief IEEE single precision positive infinity (not signaling) */
#define VL_INFINITY_F (vl_infinity_f.value)
/** @brief IEEE double precision NaN (not signaling) */
#define VL_NAN_D (vl_nan_d.value)
/** @brief IEEE double precision positive infinity (not signaling) */
#define VL_INFINITY_D (vl_infinity_d.value)
/** ------------------------------------------------------------------
** @{
** @brief Fast <code>mod(x, 2 * VL_PI)</code>
**
** @param x input value.
**
** The function is optimized for small absolute values of @a x.
**
** The result is guaranteed to be not smaller than 0. However, due to
** finite numerical precision and rounding errors, the result can be
** equal to 2 * VL_PI (for instance, if @c x is a very small negative
** number).
**
** @return <code>mod(x, 2 * VL_PI)</code>
**/
VL_INLINE
float vl_mod_2pi_f (float x)
{
while (x > 2 * VL_PI) x -= (float) (2 * VL_PI) ;
while (x < 0.0F ) x += (float) (2 * VL_PI);
return x ;
}
VL_INLINE
double vl_mod_2pi_d (double x)
{
while (x > 2 * VL_PI) x -= 2 * VL_PI ;
while (x < 0.0 ) x += 2 * VL_PI ;
return x ;
}
/** @} */
/** ------------------------------------------------------------------
** @{
** @brief Fast <code>(int) floor(x)</code>
**
** @param x argument.
** @return @c (int) floor(x)
**/
VL_INLINE
int
vl_floor_f (float x)
{
int xi = (int) x ;
if (x >= 0 || (float) xi == x) return xi ;
else return xi - 1 ;
}
VL_INLINE
int
vl_floor_d (double x)
{
int xi = (int) x ;
if (x >= 0 || (double) xi == x) return xi ;
else return xi - 1 ;
}
/* @} */
/** ------------------------------------------------------------------
** @{
** @brief Fast @c abs(x)
** @param x argument.
** @return @c abs(x)
**/
VL_INLINE float
vl_abs_f (float x)
{
#ifdef VL_COMPILER_GNU
return __builtin_fabsf (x) ;
#else
return fabsf(x) ;
#endif
}
VL_INLINE double
vl_abs_d (double x)
{
#ifdef VL_COMPILER_GNU
return __builtin_fabs (x) ;
#else
return fabs(x) ;
#endif
}
/** @} */
/** ------------------------------------------------------------------
** @{
** @brief Fast @c atan2 approximation
** @param y argument.
** @param x argument.
**
** The function computes a relatively rough but fast approximation of
** @c atan2(y,x).
**
** @par Algorithm
**
** The algorithm approximates the function @f$ f(r)=atan((1-r)/(1+r))
** @f$, @f$ r \in [-1,1] @f$ with a third order polynomial @f$
** f(r)=c_0 + c_1 r + c_2 r^2 + c_3 r^3 @f$. To fit the polynomial
** we impose the constraints
**
** @f{eqnarray*}
** f(+1) &=& c_0 + c_1 + c_2 + c_3 = atan(0) = 0,\\
** f(-1) &=& c_0 - c_1 + c_2 - c_3 = atan(\infty) = \pi/2,\\
** f(0) &=& c_0 = atan(1) = \pi/4.
** @f}
**
** The last degree of freedom is fixed by minimizing the @f$
** l^{\infty} @f$ error, which yields
**
** @f[
** c_0=\pi/4, \quad
** c_1=-0.9675, \quad
** c_2=0, \quad
** c_3=0.1821,
** @f]
**
** with maximum error of 0.0061 radians at 0.35 degrees.
**
** @return Approximation of @c atan2(y,x).
**/
VL_INLINE
float
vl_fast_atan2_f (float y, float x)
{
float angle, r ;
float const c3 = 0.1821F ;
float const c1 = 0.9675F ;
float abs_y = vl_abs_f (y) + VL_EPSILON_F ;
if (x >= 0) {
r = (x - abs_y) / (x + abs_y) ;
angle = (float) (VL_PI / 4) ;
} else {
r = (x + abs_y) / (abs_y - x) ;
angle = (float) (3 * VL_PI / 4) ;
}
angle += (c3*r*r - c1) * r ;
return (y < 0) ? - angle : angle ;
}
VL_INLINE
double
vl_fast_atan2_d (double y, double x)
{
double angle, r ;
double const c3 = 0.1821 ;
double const c1 = 0.9675 ;
double abs_y = vl_abs_d (y) + VL_EPSILON_D ;
if (x >= 0) {
r = (x - abs_y) / (x + abs_y) ;
angle = VL_PI / 4 ;
} else {
r = (x + abs_y) / (abs_y - x) ;
angle = 3 * VL_PI / 4 ;
}
angle += (c3*r*r - c1) * r ;
return (y < 0) ? - angle : angle ;
}
/** @} */
/** ------------------------------------------------------------------
** @{
** @brief Fast @c resqrt approximation
** @param x argument.
**
** The function quickly computes an approximation of @f$ x^{-1/2}
** @f$.
**
** @par Algorithm
**
** The goal is to compute @f$ y = x^{-1/2} @f$, which we do by
** finding the solution of @f$ 0 = f(y) = y^{-2} - x@f$ by two Newton
** steps. Each Newton iteration is given by
**
** @f[
** y \leftarrow
** y - \frac{f(y)}{\dot f(y)} =
** y + \frac{1}{2} (y-xy^3) =
** \frac{y}{2} \left( 3 - xy^2 \right)
** @f]
**
** which yields a simple polynomial update rule.
**
** The clever bit (attributed to either J. Carmack or G. Tarolli) is
** the way an initial guess @f$ y \approx x^{-1/2} @f$ is chosen.
**
** @see <a href="http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf">Inverse Sqare Root</a>.
**
** @return Approximation of @c resqrt(x).
**/
VL_INLINE
float
vl_fast_resqrt_f (float x)
{
/* 32-bit version */
union {
float x ;
vl_int32 i ;
} u ;
float xhalf = (float) 0.5 * x ;
/* convert floating point value in RAW integer */
u.x = x ;
/* gives initial guess y0 */
u.i = 0x5f3759df - (u.i >> 1);
/*u.i = 0xdf59375f - (u.i>>1);*/
/* two Newton steps */
u.x = u.x * ( (float) 1.5 - xhalf*u.x*u.x) ;
u.x = u.x * ( (float) 1.5 - xhalf*u.x*u.x) ;
return u.x ;
}
VL_INLINE
double
vl_fast_resqrt_d (double x)
{
/* 64-bit version */
union {
double x ;
vl_int64 i ;
} u ;
double xhalf = (double) 0.5 * x ;
/* convert floating point value in RAW integer */
u.x = x ;
/* gives initial guess y0 */
#ifdef VL_COMPILER_MSC
u.i = 0x5fe6ec85e7de30dai64 - (u.i >> 1) ;
#else
u.i = 0x5fe6ec85e7de30daLL - (u.i >> 1) ;
#endif
/* two Newton steps */
u.x = u.x * ( (double) 1.5 - xhalf*u.x*u.x) ;
u.x = u.x * ( (double) 1.5 - xhalf*u.x*u.x) ;
return u.x ;
}
/** @} */
/** ------------------------------------------------------------------
** @{
** @brief Fast @c sqrt approximation
** @param x argument.
** @return Approximation of @c sqrt(x).
**
** The function computes a fast approximation of @c sqrt(x).
**
** @par Floating-point algorithm
**
** For the floating point cases, the function uses ::vl_fast_resqrt_f
** (or ::vl_fast_resqrt_d) to compute <code>x *
** vl_fast_resqrt_f(x)</code>.
**
** @par Integer algorithm
**
** We seek for the largest integer @e y such that @f$ y^2 \leq x @f$.
** Write @f$ y = w + b_k 2^k + z @f$ where the binary expansion of the
** various variable is
**
** @f[
** x = \sum_{i=0}^{n-1} 2^i a_i, \qquad
** w = \sum_{i=k+1}^{m-1} 2^i b_i, \qquad
** z = \sum_{i=0}^{k-1} 2^i b_i.
** @f]
**
** Assume @e w known. Expanding the square and using the fact that
** @f$ b_k^2=b_k @f$, we obtain the following constraint for @f$ b_k
** @f$ and @e z:
**
** @f[
** x - w^2 \geq 2^k ( 2 w + 2^k ) b_k + z (z + 2wz + 2^{k+1}z b_k)
** @f]
**
** A necessary condition for @f$ b_k = 1 @f$ is that this equation is
** satisfied for @f$ z = 0 @f$ (as the second term is always
** non-negative). In fact, this condition is also sufficient, since
** we are looking for the @e largest solution @e y.
**
** This yields the following iterative algorithm. First, note that if
** @e x is stored in @e n bits, where @e n is even, then the integer
** square root does not require more than @f$ m = n / 2 @f$ bit to be
** stored. Thus initially, @f$ w = 0 @f$ and @f$ k = m - 1 = n/2 - 1
** @f$. Then, at each iteration the equation is tested, determining
** @f$ b_{m-1}, b_{m-2}, ... @f$ in this order.
**/
VL_INLINE float
vl_fast_sqrt_f (float x)
{
return (x < 1e-8) ? 0 : x * vl_fast_resqrt_f (x) ;
}
VL_INLINE double
vl_fast_sqrt_d (float x)
{
return (x < 1e-8) ? 0 : x * vl_fast_resqrt_d (x) ;
}
VL_INLINE vl_uint32 vl_fast_sqrt_ui32 (vl_uint32 x) ;
VL_INLINE vl_uint16 vl_fast_sqrt_ui16 (vl_uint16 x) ;
VL_INLINE vl_uint8 vl_fast_sqrt_ui8 (vl_uint8 x) ;
/** @} */
#define VL_FAST_SQRT_UI(T, SFX) \
T \
vl_fast_sqrt_ ## SFX (T x) \
{ \
T y = 0 ; /* w / 2^k */ \
T tmp = 0 ; \
int twok ; \
\
for (twok = 8 * sizeof(T) - 2 ; \
twok >= 0 ; twok -= 2) { \
y <<= 1 ; /* y = 2 * y */ \
tmp = (2*y + 1) << twok ; \
if (x >= tmp) { \
x -= tmp ; \
y += 1 ; \
} \
} \
return y ; \
}
#ifdef __DOXYGEN__
#undef VL_FAST_SQRT_UI
#define VL_FAST_SQRT_UI(T,SFX)
#endif
VL_FAST_SQRT_UI(vl_uint32, ui32)
VL_FAST_SQRT_UI(vl_uint16, ui16)
VL_FAST_SQRT_UI(vl_uint8, ui8 )
/** @} */
/* ---------------------------------------------------------------- */
#ifndef __DOXYGEN__
typedef float (*VlFloatVectorComparisonFunction)(vl_size dimension, float const * X, float const * Y) ;
typedef double (*VlDoubleVectorComparisonFunction)(vl_size dimension, double const * X, double const * Y) ;
#else
typedef void VlFloatVectorComparisonFunction ;
typedef void VlDoubleVectorComparisonFunction ;
#endif
/** @brief Vector comparison types */
enum _VlVectorComparisonType {
VlDistanceL1, /**< l1 distance */
VlDistanceL2, /**< l2 distance */
VlDistanceChi2, /**< Chi2 distance */
VlKernelL1, /**< l1 kernel */
VlKernelL2, /**< l2 kernel */
VlKernelChi2 /**< Chi2 kernel */
} ;
/** @brief Vector comparison types */
typedef enum _VlVectorComparisonType VlVectorComparisonType ;
VL_EXPORT VlFloatVectorComparisonFunction
vl_get_vector_comparison_function_f (VlVectorComparisonType type) ;
VL_EXPORT VlDoubleVectorComparisonFunction
vl_get_vector_comparison_function_d (VlVectorComparisonType type) ;
VL_EXPORT void
vl_eval_vector_comparison_on_all_pairs_f (float * result, vl_size dimension,
float const * X, vl_size numDataX,
float const * Y, vl_size numDataY,
VlFloatVectorComparisonFunction function) ;
VL_EXPORT void
vl_eval_vector_comparison_on_all_pairs_d (double * result, vl_size dimension,
double const * X, vl_size numDataX,
double const * Y, vl_size numDataY,
VlDoubleVectorComparisonFunction) ;
/* VL_MATHOP_H */
#endif