data_source
stringclasses
9 values
question_number
stringlengths
14
17
problem
stringlengths
14
1.32k
answer
stringlengths
1
993
license
stringclasses
8 values
data_topic
stringclasses
7 values
solution
stringlengths
1
991
college_math.PRECALCULUS
exercise.9.2.32
Express the repeating decimal as a fraction of integers: $-5.8 \overline{67}$
$-\frac{5809}{990}$
Creative Commons License
college_math.precalculus
-\frac{5809}{990}
college_math.PRECALCULUS
exercise.10.7.91
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $-2 \pi \leq x \leq 2 \pi$: $\sin (2 x) \geq \sin (x)$
$\left[-2 \pi,-\frac{5 \pi}{3}\right] \cup\left[-\pi,-\frac{\pi}{3}\right] \cup\left[0, \frac{\pi}{3}\right] \cup\left[\pi, \frac{5 \pi}{3}\right]$
Creative Commons License
college_math.precalculus
\left[-2 \pi,-\frac{5 \pi}{3}\right] \cup\left[-\pi,-\frac{\pi}{3}\right] \cup\left[0, \frac{\pi}{3}\right] \cup\left[\pi, \frac{5 \pi}{3}\right]
college_math.PRECALCULUS
exercise.10.7.84
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $-\pi \leq x \leq \pi$: $\sin ^{2}(x)<\frac{3}{4}$
$\left[-\pi,-\frac{\pi}{4}\right] \cup\left(0, \frac{3 \pi}{4}\right]$
Creative Commons License
college_math.precalculus
\left[-\pi,-\frac{\pi}{4}\right] \cup\left(0, \frac{3 \pi}{4}\right]
college_math.PRECALCULUS
exercise.6.1.35
Evaluate the expression: $\ln \left(e^{5}\right)$
$\ln \left(e^{5}\right)=5$
Creative Commons License
college_math.precalculus
\ln \left(e^{5}\right)=5
college_math.PRECALCULUS
exercise.6.3.10
Solve the equation analytically: $5^{-x}=2$
$x=-\frac{\ln (2)}{\ln (5)}$
Creative Commons License
college_math.precalculus
x=-\frac{\ln (2)}{\ln (5)}
college_math.PRECALCULUS
exercise.3.4.23
Simplify the given power of $i$: $i^{15}$
$i^{15}=\left(i^{4}\right)^{3} \cdot i^{3}=1 \cdot(-i)=-i$
Creative Commons License
college_math.precalculus
i^{15}=\left(i^{4}\right)^{3} \cdot i^{3}=1 \cdot(-i)=-i
college_math.PRECALCULUS
exercise.10.7.57
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\sin (6 x)+\sin (x)=0$
$x=0, \frac{2 \pi}{7}, \frac{4 \pi}{7}, \frac{6 \pi}{7}, \frac{8 \pi}{7}, \frac{10 \pi}{7}, \frac{12 \pi}{7}, \frac{\pi}{5}, \frac{3 \pi}{5}, \pi, \frac{7 \pi}{5}, \frac{9 \pi}{5}$
Creative Commons License
college_math.precalculus
x=0, \frac{2 \pi}{7}, \frac{4 \pi}{7}, \frac{6 \pi}{7}, \frac{8 \pi}{7}, \frac{10 \pi}{7}, \frac{12 \pi}{7}, \frac{\pi}{5}, \frac{3 \pi}{5}, \pi, \frac{7 \pi}{5}, \frac{9 \pi}{5}
college_math.PRECALCULUS
exercise.6.4.17
Solve the equation analytically: $\log _{169}(3 x+7)-\log _{169}(5 x-9)=\frac{1}{2}$
$x=2$
Creative Commons License
college_math.precalculus
x=2
college_math.PRECALCULUS
exercise.10.7.40
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\csc ^{3}(x)+\csc ^{2}(x)=4 \csc (x)+4$
$x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}
college_math.PRECALCULUS
exercise.3.4.13
Simplify the quantity $\sqrt{-25}\sqrt{-4}$
-10
Creative Commons License
college_math.precalculus
-10
college_math.PRECALCULUS
exercise.4.3.4
Solve the rational equation: $\frac{2 x+17}{x+1}=x+5$
$x=-6, x=2$
Creative Commons License
college_math.precalculus
x=-6, x=2
college_math.PRECALCULUS
exercise.2.3.23
The height $h$ in feet of a model rocket above the ground $t$ seconds after lift-off is given by $h(t)=-5 t^{2}+100 t$, for $0 \leq t \leq 20$. When does the rocket reach its maximum height above the ground? What is its maximum height?
The rocket reaches its maximum height of 500 feet 10 seconds after lift-off.
Creative Commons License
college_math.precalculus
The rocket reaches its maximum height of 500 feet 10 seconds after lift-off.
college_math.PRECALCULUS
exercise.2.2.13
Solve the equation: $|x|=x^{2}$
$x=-1, x=0$ or $x=1$
Creative Commons License
college_math.precalculus
x=-1, x=0$ or $x=1
college_math.PRECALCULUS
exercise.7.3.19
The mirror in Carl's flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus of the mirror?
The bulb should be placed 0.625 centimeters above the vertex of the mirror. (As verified by Carl himself!)
Creative Commons License
college_math.precalculus
The bulb should be placed 0.625 centimeters above the vertex of the mirror. (As verified by Carl himself!)
college_math.PRECALCULUS
exercise.6.4.13
Solve the equation analytically: $6-3 \log _{5}(2 x)=0$
$x=\frac{25}{2}$
Creative Commons License
college_math.precalculus
x=\frac{25}{2}
college_math.PRECALCULUS
exercise.10.7.55
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\sin (5 x)=\sin (3 x)$
$x=0, \frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}, \frac{7 \pi}{8}, \pi, \frac{9 \pi}{8}, \frac{11 \pi}{8}, \frac{13 \pi}{8}, \frac{15 \pi}{8}$
Creative Commons License
college_math.precalculus
x=0, \frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}, \frac{7 \pi}{8}, \pi, \frac{9 \pi}{8}, \frac{11 \pi}{8}, \frac{13 \pi}{8}, \frac{15 \pi}{8}
college_math.PRECALCULUS
exercise.9.1.5
Write out the first four terms of the given sequence: $\left\{\frac{x^{n}}{n^{2}}\right\}_{n=1}^{\infty}$
$x, \frac{x^{2}}{4}, \frac{x^{3}}{9}, \frac{x^{4}}{16}$
Creative Commons License
college_math.precalculus
x, \frac{x^{2}}{4}, \frac{x^{3}}{9}, \frac{x^{4}}{16}
college_math.PRECALCULUS
exercise.6.3.36
Solve the inequality analytically: $2^{\left(x^{3}-x\right)}<1$
$(-\infty,-1) \cup(0,1)$
Creative Commons License
college_math.precalculus
(-\infty,-1) \cup(0,1)
college_math.PRECALCULUS
exercise.1.1.28
Find the distance $d$ between the points and the midpoint $M$ of the line segment which connects them: $(2 \sqrt{45}, \sqrt{12}),(\sqrt{20}, \sqrt{27})$.
$d=\sqrt{83}, M=\left(4 \sqrt{5}, \frac{5 \sqrt{3}}{2}\right)$
Creative Commons License
college_math.precalculus
d=\sqrt{83}, M=\left(4 \sqrt{5}, \frac{5 \sqrt{3}}{2}\right)
college_math.PRECALCULUS
exercise.6.1.19
Evaluate the expression: $\log _{6}\left(\frac{1}{36}\right)$
$\log _{6}\left(\frac{1}{36}\right)=-2$
Creative Commons License
college_math.precalculus
\log _{6}\left(\frac{1}{36}\right)=-2
college_math.PRECALCULUS
exercise.10.7.33
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\sin (2 x)=\tan (x)$
$x=0, \pi, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
Creative Commons License
college_math.precalculus
x=0, \pi, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
college_math.PRECALCULUS
exercise.10.1.41
Convert the angle from radian measure into degree measure: $\frac{\pi}{3}$
$60^{\circ}$
Creative Commons License
college_math.precalculus
60^{\circ}
college_math.PRECALCULUS
exercise.3.4.52
Create a polynomial $f$ that is degree 5 and has the following characteristics: - $x=6$, $x=i$, and $x=1-3i$ are zeros of $f$ - As $x \rightarrow -\infty$, $f(x) \rightarrow \infty$
$f(x)=a(x-6)(x-i)(x+i)(x-(1-3 i))(x-(1+3 i))$ where $a$ is any real number, $a<0$
Creative Commons License
college_math.precalculus
f(x)=a(x-6)(x-i)(x+i)(x-(1-3 i))(x-(1+3 i))$ where $a$ is any real number, $a<0
college_math.PRECALCULUS
exercise.11.4.23
Convert the point from polar coordinates into rectangular coordinates: $\left(9, \frac{7 \pi}{2}\right)$
$(0,-9)$
Creative Commons License
college_math.precalculus
(0,-9)
college_math.PRECALCULUS
exercise.10.2.39
Find all of the angles which satisfy the given equation: $\cos (\theta)=-1.001$
$\cos (\theta)=-1.001$ never happens
Creative Commons License
college_math.precalculus
\cos (\theta)=-1.001$ never happens
college_math.PRECALCULUS
exercise.6.3.43
Use your calculator to help you solve the inequality: $e^{-x}-x e^{-x} \geq 0$
$(-\infty, 1]$
Creative Commons License
college_math.precalculus
(-\infty, 1]
college_math.PRECALCULUS
exercise.5.3.20
Solve the equation or inequality: $3 x+\sqrt{6-9 x}=2$
$x=-\frac{1}{3}, \frac{2}{3}$
Creative Commons License
college_math.precalculus
x=-\frac{1}{3}, \frac{2}{3}
college_math.PRECALCULUS
exercise.10.7.79
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $0 \leq x \leq 2 \pi$: $\sec (x) \leq \sqrt{2}$
$\left[0, \frac{\pi}{4}\right] \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \cup\left[\frac{7 \pi}{4}, 2 \pi\right]$
Creative Commons License
college_math.precalculus
\left[0, \frac{\pi}{4}\right] \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \cup\left[\frac{7 \pi}{4}, 2 \pi\right]
college_math.PRECALCULUS
exercise.3.3.41
Find the real solutions of the polynomial equation $x^{3}+x^{2}=\frac{11 x+10}{3}$.
$x= \pm \sqrt{3}$
Creative Commons License
college_math.precalculus
x= \pm \sqrt{3}
college_math.PRECALCULUS
exercise.6.2.7
Expand the given logarithm and simplify: $\log _{\sqrt{2}}\left(4 x^{3}\right)$
$3 \log _{\sqrt{2}}(x)+4$
Creative Commons License
college_math.precalculus
3 \log _{\sqrt{2}}(x)+4
college_math.PRECALCULUS
exercise.2.3.32
Solve the quadratic equation $y^{2}-4 y=x^{2}-4$ for $x$.
$x= \pm(y-2)$
Creative Commons License
college_math.precalculus
x= \pm(y-2)
college_math.PRECALCULUS
exercise.10.2.50
Approximate the given value to three decimal places: $\cos (-2.01)$
$\cos (-2.01) \approx-0.425$
Creative Commons License
college_math.precalculus
\cos (-2.01) \approx-0.425
college_math.PRECALCULUS
exercise.10.7.32
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\cos (x) \csc (x) \cot (x)=6-\cot ^{2}(x)$
$x=\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6}
college_math.PRECALCULUS
exercise.6.4.19
Solve the equation analytically: $2 \log _{7}(x)=\log _{7}(2)+\log _{7}(x+12)$
$x=6$
Creative Commons License
college_math.precalculus
x=6
college_math.PRECALCULUS
exercise.10.2.63
If $\theta=5^{\circ}$ and the hypotenuse has length 10 , how long is the side adjacent to $\theta$ ?
The side adjacent to $\theta$ has length $10 \cos \left(5^{\circ}\right) \approx 9.962$.
Creative Commons License
college_math.precalculus
The side adjacent to $\theta$ has length $10 \cos \left(5^{\circ}\right) \approx 9.962$.
college_math.PRECALCULUS
exercise.6.3.17
Solve the equation analytically: $70+90 e^{-0.1 t}=75$
$t=\frac{\ln \left(\frac{1}{18}\right)}{-0.1}=10 \ln (18)$
Creative Commons License
college_math.precalculus
t=\frac{\ln \left(\frac{1}{18}\right)}{-0.1}=10 \ln (18)
college_math.PRECALCULUS
exercise.8.7.13
Solve the system of nonlinear equations: $\left\{\begin{array}{rr}y & =x^{3}+8 \\ y & =10 x-x^{2}\end{array}\right.$
$(-4,-56),(1,9),(2,16)$
Creative Commons License
college_math.precalculus
(-4,-56),(1,9),(2,16)
college_math.PRECALCULUS
exercise.6.1.17
Evaluate the expression: $\log _{6}(216)$
$\log _{6}(216)=3$
Creative Commons License
college_math.precalculus
\log _{6}(216)=3
college_math.PRECALCULUS
exercise.3.3.35
Find the real solutions of the polynomial equation $9 x^{3}=5 x^{2}+x$.
$x=0, \frac{5 \pm \sqrt{61}}{18}$
Creative Commons License
college_math.precalculus
x=0, \frac{5 \pm \sqrt{61}}{18}
college_math.PRECALCULUS
exercise.6.2.14
Expand the given logarithm and simplify: $\log _{\frac{1}{2}}\left(\frac{4 \sqrt[3]{x^{2}}}{y \sqrt{z}}\right)$
$-2+\frac{2}{3} \log _{\frac{1}{2}}(x)-\log _{\frac{1}{2}}(y)-\frac{1}{2} \log _{\frac{1}{2}}(z)$
Creative Commons License
college_math.precalculus
-2+\frac{2}{3} \log _{\frac{1}{2}}(x)-\log _{\frac{1}{2}}(y)-\frac{1}{2} \log _{\frac{1}{2}}(z)
college_math.PRECALCULUS
exercise.3.3.44
Find the real solutions of the polynomial equation $2 x^{5}+3 x^{4}=18 x+27$.
$\left\{-\frac{1}{2}\right\} \cup[1, \infty)$
Creative Commons License
college_math.precalculus
\left\{-\frac{1}{2}\right\} \cup[1, \infty)
college_math.PRECALCULUS
exercise.1.1.22
Find the distance $d$ between the points and the midpoint $M$ of the line segment which connects them: $(1,2),(-3,5)$
$d=5, M=\left(-1, \frac{7}{2}\right)$
Creative Commons License
college_math.precalculus
d=5, M=\left(-1, \frac{7}{2}\right)
college_math.PRECALCULUS
exercise.9.1.1
Write out the first four terms of the given sequence: $a_{n}=2^{n}-1, n \geq 0$
$0,1,3,7$
Creative Commons License
college_math.precalculus
0,1,3,7
college_math.PRECALCULUS
exercise.9.1.10
Write out the first four terms of the given sequence: $c_{0}=-2, c_{j}=\frac{c_{j-1}}{(j+1)(j+2)}, j \geq 1$
$-2,-\frac{1}{3},-\frac{1}{36},-\frac{1}{720}$
Creative Commons License
college_math.precalculus
-2,-\frac{1}{3},-\frac{1}{36},-\frac{1}{720}
college_math.PRECALCULUS
exercise.11.4.52
Convert the equation from rectangular coordinates into polar coordinates: $x^{2}+y^{2}=x$
$\left(\frac{1}{3}, \pi+\arctan (2)\right)$
Creative Commons License
college_math.precalculus
\left(\frac{1}{3}, \pi+\arctan (2)\right)
college_math.PRECALCULUS
exercise.9.2.29
Express the repeating decimal as a fraction of integers: $0 . \overline{7}$
$\frac{7}{9}$
Creative Commons License
college_math.precalculus
\frac{7}{9}
college_math.PRECALCULUS
exercise.10.7.66
Solve the equation: $9 \arccos ^{2}(x)-\pi^{2}=0$
$x=-1,0$
Creative Commons License
college_math.precalculus
x=-1,0
college_math.PRECALCULUS
exercise.6.3.21
Solve the equation analytically: $\frac{150}{1+29 e^{-0.8 t}}=75$
$t=\frac{\ln \left(\frac{1}{29}\right)}{-0.8}=\frac{5}{4} \ln (29)$
Creative Commons License
college_math.precalculus
t=\frac{\ln \left(\frac{1}{29}\right)}{-0.8}=\frac{5}{4} \ln (29)
college_math.PRECALCULUS
exercise.10.7.86
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $-\pi \leq x \leq \pi$: $\cos (x) \geq \sin (x)$
$\left[-\frac{3 \pi}{4}, \frac{\pi}{4}\right]$
Creative Commons License
college_math.precalculus
\left[-\frac{3 \pi}{4}, \frac{\pi}{4}\right]
college_math.PRECALCULUS
exercise.6.4.27
Solve the inequality analytically: $10 \log \left(\frac{x}{10^{-12}}\right) \geq 90$
$\left[10^{-3}, \infty\right)$
Creative Commons License
college_math.precalculus
\left[10^{-3}, \infty\right)
college_math.PRECALCULUS
exercise.6.3.4
Solve the equation analytically: $4^{2 x}=\frac{1}{2}$
$x=-\frac{1}{4}$
Creative Commons License
college_math.precalculus
x=-\frac{1}{4}
college_math.PRECALCULUS
exercise.6.3.34
Solve the inequality analytically: $e^{x}>53$
$(\ln (53), \infty)$
Creative Commons License
college_math.precalculus
(\ln (53), \infty)
college_math.PRECALCULUS
exercise.10.7.103
Express the domain of the function using the extended interval notation: $f(x)=\csc (2 x)$
$\bigcup_{k=-\infty}^{\infty}\left(\frac{k \pi}{2}, \frac{(k+1) \pi}{2}\right)$
Creative Commons License
college_math.precalculus
\bigcup_{k=-\infty}^{\infty}\left(\frac{k \pi}{2}, \frac{(k+1) \pi}{2}\right)
college_math.PRECALCULUS
exercise.10.4.80
Write the given sum as a product: $\cos (3 \theta)+\cos (5 \theta)$
$2 \cos (4 \theta) \cos (\theta)$
Creative Commons License
college_math.precalculus
2 \cos (4 \theta) \cos (\theta)
college_math.PRECALCULUS
exercise.3.3.46
Solve the polynomial inequality $x^{4}-9 x^{2} \leq 4 x-12$ and state your answer using interval notation.
$\{2\} \cup[4, \infty)$
Creative Commons License
college_math.precalculus
\{2\} \cup[4, \infty)
college_math.PRECALCULUS
exercise.11.4.47
Convert the equation from rectangular coordinates into polar coordinates: $x=3 y+1$
$\left(10, \arctan \left(\frac{4}{3}\right)\right)$
Creative Commons License
college_math.precalculus
\left(10, \arctan \left(\frac{4}{3}\right)\right)
college_math.PRECALCULUS
exercise.8.7.15
Solve the system of nonlinear equations: $\left\{\begin{aligned} x^{2}+y^{2} & =25 \\ 4 x^{2}-9 y & =0 \\ 3 y^{2}-16 x & =0\end{aligned}\right.$
$(3,4)$
Creative Commons License
college_math.precalculus
(3,4)
college_math.PRECALCULUS
exercise.10.7.78
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $0 \leq x \leq 2 \pi$: $\cos (3 x) \leq 1$
$[0,2 \pi]$
Creative Commons License
college_math.precalculus
[0,2 \pi]
college_math.PRECALCULUS
exercise.6.3.9
Solve the equation analytically: $3^{2 x}=5$
$x=\frac{\ln (5)}{2 \ln (3)}$
Creative Commons License
college_math.precalculus
x=\frac{\ln (5)}{2 \ln (3)}
college_math.PRECALCULUS
exercise.1.1.32
Find all of the points on the $x$-axis which are 2 units from the point $(-1,1)$.
$(-1+\sqrt{3}, 0),(-1-\sqrt{3}, 0)$
Creative Commons License
college_math.precalculus
(-1+\sqrt{3}, 0),(-1-\sqrt{3}, 0)
college_math.PRECALCULUS
exercise.10.7.74
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $0 \leq x \leq 2 \pi$: $\sin \left(x+\frac{\pi}{3}\right)>\frac{1}{2}$
$\left(0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \pi\right) \cup\left(\pi, \frac{4 \pi}{3}\right] \cup\left[\frac{5 \pi}{3}, 2 \pi\right)$
Creative Commons License
college_math.precalculus
\left(0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \pi\right) \cup\left(\pi, \frac{4 \pi}{3}\right] \cup\left[\frac{5 \pi}{3}, 2 \pi\right)
college_math.PRECALCULUS
exercise.3.4.18
Simplify the quantity $-\sqrt{(-9)}$
$-3 i$
Creative Commons License
college_math.precalculus
-3 i
college_math.PRECALCULUS
exercise.11.4.62
Convert the equation from polar coordinates into rectangular coordinates: $\theta=\pi$
$\theta=\frac{\pi}{3}$
Creative Commons License
college_math.precalculus
\theta=\frac{\pi}{3}
college_math.PRECALCULUS
exercise.6.3.2
Solve the equation analytically: $3^{(x-1)}=27$
$x=4$
Creative Commons License
college_math.precalculus
x=4
college_math.PRECALCULUS
exercise.10.7.88
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $-2 \pi \leq x \leq 2 \pi$: $\cos (x) \leq \frac{5}{3}$
$[-2 \pi, 2 \pi]$
Creative Commons License
college_math.precalculus
[-2 \pi, 2 \pi]
college_math.PRECALCULUS
exercise.6.4.4
Solve the equation analytically: $\log _{5}\left(18-x^{2}\right)=\log _{5}(6-x)$
$x=-3,4$
Creative Commons License
college_math.precalculus
x=-3,4
college_math.PRECALCULUS
exercise.6.1.34
Evaluate the expression: $\log _{36}\left(36^{216}\right)$
$\log _{36}\left(36^{216}\right)=216$
Creative Commons License
college_math.precalculus
\log _{36}\left(36^{216}\right)=216
college_math.PRECALCULUS
exercise.8.5.17
Find the inverse of the given matrix: $B=\left[\begin{array}{rr}12 & -7 \\ -5 & 3\end{array}\right]$
$B^{-1}=\left[\begin{array}{rr}3 & 7 \\ 5 & 12\end{array}\right]$
Creative Commons License
college_math.precalculus
B^{-1}=\left[\begin{array}{rr}3 & 7 \\ 5 & 12\end{array}\right]
college_math.PRECALCULUS
exercise.6.1.56
Find the domain of the function: $f(x)=\frac{\sqrt{-1-x}}{\log _{\frac{1}{2}}(x)}$
No domain
Creative Commons License
college_math.precalculus
No domain
college_math.PRECALCULUS
exercise.2.2.10
Solve the equation: $|2 x-1|=x+1$
$x=0$ or $x=2$
Creative Commons License
college_math.precalculus
x=0$ or $x=2
college_math.PRECALCULUS
exercise.6.3.29
Solve the equation analytically: $e^{2 x}=e^{x}+6$
$x=\ln (3)$
Creative Commons License
college_math.precalculus
x=\ln (3)
college_math.PRECALCULUS
exercise.10.7.49
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\sqrt{2} \cos (x)-\sqrt{2} \sin (x)=1$
$x=\frac{\pi}{12}, \frac{17 \pi}{12}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{12}, \frac{17 \pi}{12}
college_math.PRECALCULUS
exercise.9.4.17
Simplify the power of a complex number: $\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)^{4}$
-1
Creative Commons License
college_math.precalculus
-1
college_math.PRECALCULUS
exercise.6.4.23
Solve the equation analytically: $(\log (x))^{2}=2 \log (x)+15$
$x=10^{-3}, 10^{5}$
Creative Commons License
college_math.precalculus
x=10^{-3}, 10^{5}
college_math.PRECALCULUS
exercise.4.3.11
Solve the rational inequality and express your answer using interval notation: $\frac{x^{2}-x-12}{x^{2}+x-6}>0$
$(-\infty,-3) \cup(-3,2) \cup(4, \infty)$
Creative Commons License
college_math.precalculus
(-\infty,-3) \cup(-3,2) \cup(4, \infty)
college_math.PRECALCULUS
exercise.8.2.22
Solve the following system of linear equations: $\left\{\begin{aligned} x-3 y-4 z & =3 \\ 3 x+4 y-z & =13 \\ 2 x-19 y-19 z & =2\end{aligned}\right.$
$\left(\frac{19}{13} t+\frac{51}{13},-\frac{11}{13} t+\frac{4}{13}, t\right)$ for all real numbers $t$
Creative Commons License
college_math.precalculus
\left(\frac{19}{13} t+\frac{51}{13},-\frac{11}{13} t+\frac{4}{13}, t\right)$ for all real numbers $t
college_math.PRECALCULUS
exercise.6.3.1
Solve the equation analytically: $2^{4 x}=8$
$x=\frac{3}{4}$
Creative Commons License
college_math.precalculus
x=\frac{3}{4}
college_math.PRECALCULUS
exercise.6.4.28
Solve the inequality analytically: $5.6 \leq \log \left(\frac{x}{10^{-3}}\right) \leq 7.1$
$\left[10^{2.6}, 10^{4.1}\right]$
Creative Commons License
college_math.precalculus
\left[10^{2.6}, 10^{4.1}\right]
college_math.PRECALCULUS
exercise.6.3.42
Use your calculator to help you solve the equation: $e^{\sqrt{x}}=x+1$
$x=0$
Creative Commons License
college_math.precalculus
x=0
college_math.PRECALCULUS
exercise.6.4.29
Solve the inequality analytically: $2.3<-\log (x)<5.4$
$\left(10^{-5.4}, 10^{-2.3}\right)$
Creative Commons License
college_math.precalculus
\left(10^{-5.4}, 10^{-2.3}\right)
college_math.PRECALCULUS
exercise.8.4.2
Find the inverse of the matrix or state that the matrix is not invertible: $B=\left[\begin{array}{rr}12 & -7 \\ -5 & 3\end{array}\right]$
$B^{-1}=\left[\begin{array}{rr}3 & 7 \\ 5 & 12\end{array}\right]$
Creative Commons License
college_math.precalculus
B^{-1}=\left[\begin{array}{rr}3 & 7 \\ 5 & 12\end{array}\right]
college_math.PRECALCULUS
exercise.6.2.29
Use the properties of logarithms to write the expression as a single logarithm: $\log _{2}(x)+\log _{\frac{1}{2}}(x-1)$
$\log _{2}\left(\frac{x}{x-1}\right)$
Creative Commons License
college_math.precalculus
\log _{2}\left(\frac{x}{x-1}\right)
college_math.PRECALCULUS
exercise.6.3.35
Solve the inequality analytically: $1000(1.005)^{12 t} \geq 3000$
$\left[\frac{\ln (3)}{12 \ln (1.005)}, \infty\right)$
Creative Commons License
college_math.precalculus
\left[\frac{\ln (3)}{12 \ln (1.005)}, \infty\right)
college_math.PRECALCULUS
exercise.6.2.25
Use the properties of logarithms to write the expression as a single logarithm: $\log _{7}(x)+\log _{7}(x-3)-2$
$\log _{7}\left(\frac{x(x-3)}{49}\right)$
Creative Commons License
college_math.precalculus
\log _{7}\left(\frac{x(x-3)}{49}\right)
college_math.PRECALCULUS
exercise.10.7.21
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\sin (2 x)=\cos (x)$
$x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}
college_math.PRECALCULUS
exercise.10.2.59
If $\theta=12^{\circ}$ and the side adjacent to $\theta$ has length 4 , how long is the hypotenuse?
The hypotenuse has length $\frac{4}{\cos \left(12^{\circ}\right)} \approx 4.089$.
Creative Commons License
college_math.precalculus
The hypotenuse has length $\frac{4}{\cos \left(12^{\circ}\right)} \approx 4.089$.
college_math.PRECALCULUS
exercise.10.2.19
Find the exact value of the cosine and sine of the given angle: $\theta=\frac{10 \pi}{3}$
$\cos \left(\frac{10 \pi}{3}\right)=-\frac{1}{2}, \sin \left(\frac{10 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$
Creative Commons License
college_math.precalculus
\cos \left(\frac{10 \pi}{3}\right)=-\frac{1}{2}, \sin \left(\frac{10 \pi}{3}\right)=-\frac{\sqrt{3}}{2}
college_math.PRECALCULUS
exercise.1.1.34
Let's assume for a moment that we are standing at the origin and the positive $y$-axis points due North while the positive $x$-axis points due East. Our Sasquatch-o-meter tells us that Sasquatch is 3 miles West and 4 miles South of our current position. What are the coordinates of his position? How far away is he from us? If he runs 7 miles due East what would his new position be?
(-3, -4), 5 miles, $(4,-4)$
Creative Commons License
college_math.precalculus
(-3, -4), 5 miles, $(4,-4)
college_math.PRECALCULUS
exercise.8.2.8
Solve the following system of linear equations: $\left\{\begin{aligned} x+y+z & =3 \\ 2 x-y+z & =0 \\ -3 x+5 y+7 z & =7\end{aligned}\right.$
$(-3,20,19)$
Creative Commons License
college_math.precalculus
(-3,20,19)
college_math.PRECALCULUS
exercise.1.1.26
Find the distance $d$ between the points and the midpoint $M$ of the line segment which connects them: $\left(\frac{24}{5}, \frac{6}{5}\right),\left(-\frac{11}{5},-\frac{19}{5}\right)$.
$d=\sqrt{74}, M=\left(\frac{13}{10},-\frac{13}{10}\right)$
Creative Commons License
college_math.precalculus
d=\sqrt{74}, M=\left(\frac{13}{10},-\frac{13}{10}\right)
college_math.PRECALCULUS
exercise.10.7.8
Find all of the exact solutions of the equation and then list those solutions which are in the interval $[0,2 \pi)$: $\cos (9 x)=9$
No solution
Creative Commons License
college_math.precalculus
No solution
college_math.PRECALCULUS
exercise.6.4.33
Solve the equation or inequality using your calculator: $\ln \left(x^{2}+1\right) \geq 5$
$\approx(-\infty,-12.1414) \cup(12.1414, \infty)$
Creative Commons License
college_math.precalculus
\approx(-\infty,-12.1414) \cup(12.1414, \infty)
college_math.PRECALCULUS
exercise.10.2.7
Find the exact value of the cosine and sine of the given angle: $\theta=\pi$
$\cos (\pi)=-1, \sin (\pi)=0$
Creative Commons License
college_math.precalculus
\cos (\pi)=-1, \sin (\pi)=0
college_math.PRECALCULUS
exercise.10.2.53
Approximate the given value to three decimal places: $\sin \left(\pi^{\circ}\right)$
$\sin \left(\pi^{\circ}\right) \approx 0.055$
Creative Commons License
college_math.precalculus
\sin \left(\pi^{\circ}\right) \approx 0.055
college_math.PRECALCULUS
exercise.8.4.11
Use one matrix inverse to solve the following system of linear equations: $\left\{\begin{aligned} 3 x+7 y & =-7 \\ 5 x+12 y & =5\end{aligned}\right.$
$\left[\begin{array}{rr}12 & -7 \\ -5 & 3\end{array}\right]\left[\begin{array}{r}-7 \\ 5\end{array}\right]=\left[\begin{array}{r}-119 \\ 50\end{array}\right]$ So $x=-119$ and $y=50$.
Creative Commons License
college_math.precalculus
\left[\begin{array}{rr}12 & -7 \\ -5 & 3\end{array}\right]\left[\begin{array}{r}-7 \\ 5\end{array}\right]=\left[\begin{array}{r}-119 \\ 50\end{array}\right]$ So $x=-119$ and $y=50$.
college_math.PRECALCULUS
exercise.8.4.5
Find the inverse of the matrix or state that the matrix is not invertible: $E=\left[\begin{array}{rrr}3 & 0 & 4 \\ 2 & -1 & 3 \\ -3 & 2 & -5\end{array}\right]$
$E^{-1}=\left[\begin{array}{rrr}-1 & 8 & 4 \\ 1 & -3 & -1 \\ 1 & -6 & -3\end{array}\right]$
Creative Commons License
college_math.precalculus
E^{-1}=\left[\begin{array}{rrr}-1 & 8 & 4 \\ 1 & -3 & -1 \\ 1 & -6 & -3\end{array}\right]
college_math.PRECALCULUS
exercise.6.2.24
Use the properties of logarithms to write the expression as a single logarithm: $3-\log (x)$
$\log \left(\frac{1000}{x}\right)$
Creative Commons License
college_math.precalculus
\log \left(\frac{1000}{x}\right)
college_math.PRECALCULUS
exercise.8.2.23
Solve the following system of linear equations: $\left\{\begin{aligned} x+y+z & =4 \\ 2 x-4 y-z & =-1 \\ x-y & =2\end{aligned}\right.$
Inconsistent
Creative Commons License
college_math.precalculus
Inconsistent
college_math.PRECALCULUS
exercise.10.7.20
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\sin (2 x)=\sin (x)$
$x=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
Creative Commons License
college_math.precalculus
x=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}
college_math.PRECALCULUS
exercise.3.4.25
Simplify the given power of $i$: $i^{117}$
$i^{117}=\left(i^{4}\right)^{29} \cdot i=1 \cdot i=i$
Creative Commons License
college_math.precalculus
i^{117}=\left(i^{4}\right)^{29} \cdot i=1 \cdot i=i