data_source
stringclasses
9 values
question_number
stringlengths
14
17
problem
stringlengths
14
1.32k
answer
stringlengths
1
993
license
stringclasses
8 values
data_topic
stringclasses
7 values
solution
stringlengths
1
991
college_math.Corrals_Vector_Calculus
exercise.4.2.1
Evaluate the given double integral: $\int_{0}^{1} \int_{\sqrt{x}}^{1} 24 x^{2} y d y d x$
$1 $
GNU Free Documentation License
college_math.vector_calculus
1
college_math.Corrals_Vector_Calculus
exercise.1.4.5
Calculate $\mathbf{v} \times \mathbf{w}$: $\mathbf{v}=-\mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{w}=-3 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k}$
0
GNU Free Documentation License
college_math.vector_calculus
0
college_math.Corrals_Vector_Calculus
exercise.1.1.3
For the points $P=(0,0,0), Q=(1,3,2), R=(1,0,1), S=(2,3,4)$, does $\overrightarrow{P Q}=\overrightarrow{R S}$ ?
No
GNU Free Documentation License
college_math.vector_calculus
No
college_math.Corrals_Vector_Calculus
exercise.3.5.9
Find all local maxima and minima of the function $f(x, y) = 4x^{2} - 4xy + 2y^{2} + 10x - 6y$.
local min. $(-1,1 / 2) $
GNU Free Documentation License
college_math.vector_calculus
local min. $(-1,1 / 2)
college_math.Corrals_Vector_Calculus
exercise.5.6.3
Find the Laplacian of the function $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$.
$12 \sqrt{x^{2}+y^{2}+z^{2}} $
GNU Free Documentation License
college_math.vector_calculus
12 \sqrt{x^{2}+y^{2}+z^{2}}
college_math.Corrals_Vector_Calculus
exercise.1.4.31
Describe geometrically the set of points with position vector $\mathbf{x}$ satisfying the equation $$(\mathbf{v} \times \mathbf{x}) \times \mathbf{x}=\mathbf{v}$$ for given vector $\mathbf{v} \neq \mathbf{0}$
A circle of radius $\frac{1}{\|\mathbf{v}\|}$ centered at the origin in the normal plane to $\mathbf{v}$.
GNU Free Documentation License
college_math.vector_calculus
A circle of radius $\frac{1}{\|\mathbf{v}\|}$ centered at the origin in the normal plane to $\mathbf{v}$.
college_math.Corrals_Vector_Calculus
exercise.4.1.3
Find the volume under the surface $z=f(x, y)$ over the rectangle $R$: $f(x, y)=x^{3}+y^{2}, R=[0,1] \times[0,1]$
$\frac{7}{12} $
GNU Free Documentation License
college_math.vector_calculus
\frac{7}{12}
college_math.Corrals_Vector_Calculus
exercise.4.3.3
Evaluate the given triple integral: $\int_{0}^{\pi} \int_{0}^{x} \int_{0}^{x y} x^{2} \sin z d z d y d x$
$\left(2 \cos \left(\pi^{2}\right)+\pi^{4}-2\right) / 4 $
GNU Free Documentation License
college_math.vector_calculus
\left(2 \cos \left(\pi^{2}\right)+\pi^{4}-2\right) / 4
college_math.Corrals_Vector_Calculus
exercise.4.6.1
Find the center of mass of the region $R$ with the given density function $\delta(x, y)$: $R=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 4\}, \delta(x, y)=2 y$
$(1,8 / 3)$
GNU Free Documentation License
college_math.vector_calculus
(1,8 / 3)
college_math.Corrals_Vector_Calculus
exercise.3.1.5
State the domain and range of the given function: $f(x, y, z)=\sin (x y z)$
domain: $\mathbb{R}^{3}$, range: $[-1,1] $
GNU Free Documentation License
college_math.vector_calculus
domain: $\mathbb{R}^{3}$, range: $[-1,1]
college_math.Corrals_Vector_Calculus
exercise.5.5.7
Calculate $\int_{C} \mathbf{f} \cdot d \mathbf{r}$ for the given vector field $\mathbf{f}(x, y, z)$ and curve $C$: $\mathbf{f}(x, y, z)=(y-2 z) \mathbf{i}+x y \mathbf{j}+(2 x z+y) \mathbf{k} ; \quad C: x=t, y=2 t, z=t^{2}-1,0 \leq t \leq 1$
$67 / 15 $
GNU Free Documentation License
college_math.vector_calculus
67 / 15
college_math.Corrals_Vector_Calculus
exercise.4.3.7
Evaluate the given triple integral: $\int_{1}^{2} \int_{2}^{4} \int_{0}^{3} 1 d x d y d z$
6
GNU Free Documentation License
college_math.vector_calculus
6
college_math.Corrals_Vector_Calculus
exercise.3.1.13
Evaluate the limit: $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}-y^{2}}{x-y}$
$2 $
GNU Free Documentation License
college_math.vector_calculus
2
college_math.Corrals_Vector_Calculus
exercise.3.1.17
Evaluate the limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$
does not exist
GNU Free Documentation License
college_math.vector_calculus
does not exist
college_math.Corrals_Vector_Calculus
exercise.4.2.5
Evaluate the given double integral: $\int_{0}^{\pi / 2} \int_{0}^{y} \cos x \sin y d x d y$
$\frac{\pi}{4} $
GNU Free Documentation License
college_math.vector_calculus
\frac{\pi}{4}
college_math.Corrals_Vector_Calculus
exercise.4.1.7
Evaluate the double integral: $\int_{0}^{2} \int_{0}^{1}(x+2) d x d y$
$5 $
GNU Free Documentation License
college_math.vector_calculus
5
college_math.Corrals_Vector_Calculus
exercise.4.2.3
Evaluate the given double integral: $\int_{1}^{2} \int_{0}^{\ln x} 4 x d y d x$
$8 \ln 2-3$
GNU Free Documentation License
college_math.vector_calculus
8 \ln 2-3
college_math.Corrals_Vector_Calculus
exercise.5.1.3
Calculate the line integral $\int_{C} f(x, y) d s$ for the given function $f(x, y)$ and curve $C$. $f(x, y)=2 x+y ; \quad C$ : polygonal path from $(0,0)$ to $(3,0)$ to $(3,2)$
23
GNU Free Documentation License
college_math.vector_calculus
23
college_math.Corrals_Vector_Calculus
exercise.4.1.1
Find the volume under the surface $z=f(x, y)$ over the rectangle $R$: $f(x, y)=4 x y, R=[0,1] \times[0,1]$
$1 $
GNU Free Documentation License
college_math.vector_calculus
1
college_math.Corrals_Vector_Calculus
exercise.3.5.13
Find three positive numbers $x, y, z$ whose sum is 10 such that $x^{2}y^{2}z$ is a maximum.
$x=y=4, z=2$
GNU Free Documentation License
college_math.vector_calculus
x=y=4, z=2
college_math.Corrals_Vector_Calculus
exercise.3.5.7
Find all local maxima and minima of the function $f(x, y) = \sqrt{x^{2} + y^{2}}$.
local min. $(0,0) $
GNU Free Documentation License
college_math.vector_calculus
local min. $(0,0)
college_math.Corrals_Vector_Calculus
exercise.3.5.3
Find all local maxima and minima of the function $f(x, y) = x^{3} - 3x + y^{3} - 3y$.
local min. $(1,1)$; local max. $(-1,-1)$; saddle pts. $(1,-1),(-1,1) $
GNU Free Documentation License
college_math.vector_calculus
local min. $(1,1)$; local max. $(-1,-1)$; saddle pts. $(1,-1),(-1,1)
college_math.Corrals_Vector_Calculus
exercise.5.1.7
Calculate the line integral $\int_{C} \mathbf{f} \cdot d \mathbf{r}$ for the given vector field $\mathbf{f}(x, y)$ and curve $C$. $\mathbf{f}(x, y)=y \mathbf{i}-x \mathbf{j} ; \quad C: x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$
$-2 \pi$
GNU Free Documentation License
college_math.vector_calculus
-2 \pi
college_math.Corrals_Vector_Calculus
exercise.4.7.2
For $\sigma>0$ and $\mu>0$, evaluate $$ \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x $$
1
GNU Free Documentation License
college_math.vector_calculus
1
college_math.Corrals_Vector_Calculus
exercise.4.6.5
Find the center of mass of the region $R$ with the given density function $\delta(x, y)$: $R=\left\{(x, y): y \geq 0, x^{2}+y^{2} \leq 1\right\}, \delta(x, y)=y$
$(0,3 \pi / 16) $
GNU Free Documentation License
college_math.vector_calculus
(0,3 \pi / 16)
college_math.Corrals_Vector_Calculus
exercise.4.6.9
Find the center of mass of the solid $S$ with the given density function $\delta(x, y, z)$: $S=\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\}, \delta(x, y, z)=x^{2}+y^{2}+z^{2}$
$(7 / 12,7 / 12,7 / 12)$
GNU Free Documentation License
college_math.vector_calculus
(7 / 12,7 / 12,7 / 12)
college_math.Corrals_Vector_Calculus
exercise.2.3.1
Find the tangent line, the osculating plane, and the curvature at each point of the curve $\mathbf{f}(t)= (\cos t, \sin t, t)$.
$\frac{3 \pi \sqrt{5}}{2} $
GNU Free Documentation License
college_math.vector_calculus
\frac{3 \pi \sqrt{5}}{2}
college_math.Corrals_Vector_Calculus
exercise.1.4.3
Calculate $\mathbf{v} \times \mathbf{w}$: $\mathbf{v}=(2,1,4), \mathbf{w}=(1,-2,0)$
$(8,4,-5) $
GNU Free Documentation License
college_math.vector_calculus
(8,4,-5)
college_math.Corrals_Vector_Calculus
exercise.2.1.5
Find the velocity $\mathbf{v}(t)$ and acceleration $\mathbf{a}(t)$ of an object with the given position vector $\mathbf{r}(t)$: $\mathbf{r}(t)=(t, t-\sin t, 1-\cos t)$
$\mathbf{v}(t)=(1,1-\cos t, \sin t)$, $\mathbf{a}(t)=(0, \sin t, \cos t) $
GNU Free Documentation License
college_math.vector_calculus
\mathbf{v}(t)=(1,1-\cos t, \sin t)$, $\mathbf{a}(t)=(0, \sin t, \cos t)
college_math.Corrals_Vector_Calculus
exercise.3.3.9
Find the equation of the tangent plane to the given surface at the point $P$: $x^{2}+y^{2}-z^{2}=0$, $P=(3,4,5)$.
$3 x+4 y-5 z=0$
GNU Free Documentation License
college_math.vector_calculus
3 x+4 y-5 z=0
college_math.Corrals_Vector_Calculus
exercise.4.3.1
Evaluate the given triple integral: $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} x y z d x d y d z$
$\frac{9}{2} $
GNU Free Documentation License
college_math.vector_calculus
\frac{9}{2}
college_math.Corrals_Vector_Calculus
exercise.3.3.1
Find the equation of the tangent plane to the surface $z=f(x, y)$ at the point $P$: $f(x, y)=x^{2}+y^{3}$, $P=(1,1,2)$.
$2 x+3 y-z-3=0 $
GNU Free Documentation License
college_math.vector_calculus
2 x+3 y-z-3=0
college_math.Corrals_Vector_Calculus
exercise.1.4.7
Calculate the area of the triangle $\triangle P Q R$: $P=(5,1,-2), Q=(4,-4,3), R=(2,4,0)$
$16.72 $
GNU Free Documentation License
college_math.vector_calculus
16.72
college_math.Corrals_Vector_Calculus
exercise.4.2.10
Evaluate the double integral: $\iint_{R} f(x, y) d A$, where $f(x, y)=x^{2}+y$ and $R$ is the triangle with vertices $(0,0),(2,0)$ and $(0,1)$.
$\frac{6}{5} $
GNU Free Documentation License
college_math.vector_calculus
\frac{6}{5}
college_math.Corrals_Vector_Calculus
exercise.4.6.7
Find the center of mass of the solid $S$ with the given density function $\delta(x, y, z)$: $S=\left\{(x, y, z): z \geq 0, x^{2}+y^{2}+z^{2} \leq a^{2}\right\}, \delta(x, y, z)=x^{2}+y^{2}+z^{2}$
$(0,0,5 a / 12) $
GNU Free Documentation License
college_math.vector_calculus
(0,0,5 a / 12)
college_math.Corrals_Vector_Calculus
exercise.5.5.13
State whether or not the vector field $\mathbf{f}(x, y, z)$ has a potential in $\mathbb{R}^{3}$ (you do not need to find the potential itself): $\mathbf{f}(x, y, z)=x y \mathbf{i}-\left(x-y z^{2}\right) \mathbf{j}+y^{2} z \mathbf{k}$
No
GNU Free Documentation License
college_math.vector_calculus
No
college_math.Corrals_Vector_Calculus
exercise.4.5.7
Evaluate $\iint_{R} \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) d A$, where $R$ is the triangle with vertices $(0,0),(2,0)$ and $(1,1)$. (Hint: Use the change of variables $u=(x+y) / 2, v=(x-y) / 2$.)
$1-\frac{\sin 2}{2}$
GNU Free Documentation License
college_math.vector_calculus
1-\frac{\sin 2}{2}
college_math.Corrals_Vector_Calculus
exercise.1.3.9
Let $\mathbf{v}=(8,4,3)$ and $\mathbf{w}=(-2,1,4)$. Is $\mathbf{v} \perp \mathbf{w}$ ? Justify your answer.
Yes, since $\mathbf{v} \cdot \mathbf{w}=0
GNU Free Documentation License
college_math.vector_calculus
Yes, since $\mathbf{v} \cdot \mathbf{w}=0
college_math.Corrals_Vector_Calculus
exercise.3.4.7
Compute the gradient $\nabla f$ for the function $f(x, y, z)=\sin (x y z)$.
$\quad(y z \cos (x y z), x z \cos (x y z), x y \cos (x y z))$
GNU Free Documentation License
college_math.vector_calculus
\quad(y z \cos (x y z), x z \cos (x y z), x y \cos (x y z))
college_math.Corrals_Vector_Calculus
exercise.5.7.5
For $\mathbf{f}(\rho, \theta, \phi)=\mathbf{e}_{\rho}+\rho \cos \theta \mathbf{e}_{\theta}+\rho \mathbf{e}_{\phi}$ in spherical coordinates, find $\operatorname{div} \mathbf{f}$ and curlf.
$\operatorname{div} \mathbf{f}=\frac{2}{\rho}-\frac{\sin \theta}{\sin \phi}+\cot \phi, \operatorname{curl} \mathbf{f}=\cot \phi \cos \theta \mathbf{e}_{\rho}+$ $2 \mathbf{e}_{\theta}-2 \cos \theta \mathbf{e}_{\phi} \mathbf{6}$
GNU Free Documentation License
college_math.vector_calculus
\operatorname{div} \mathbf{f}=\frac{2}{\rho}-\frac{\sin \theta}{\sin \phi}+\cot \phi, \operatorname{curl} \mathbf{f}=\cot \phi \cos \theta \mathbf{e}_{\rho}+$ $2 \mathbf{e}_{\theta}-2 \cos \theta \mathbf{e}_{\phi} \mathbf{6}
college_math.Corrals_Vector_Calculus
exercise.4.1.11
Evaluate the double integral: $\int_{0}^{2} \int_{1}^{4} x y d x d y$
$15 $
GNU Free Documentation License
college_math.vector_calculus
15
college_math.Corrals_Vector_Calculus
exercise.5.7.3
Let $f(x, y, z)=\frac{z}{x^{2}+y^{2}}$ in Cartesian coordinates. Find $\nabla f$ in cylindrical coordinates.
$-\frac{2 z}{r^{3}} \mathbf{e}_{r}+\frac{1}{r^{2}} \mathbf{e}_{z}$
GNU Free Documentation License
college_math.vector_calculus
-\frac{2 z}{r^{3}} \mathbf{e}_{r}+\frac{1}{r^{2}} \mathbf{e}_{z}
college_math.Corrals_Vector_Calculus
exercise.3.4.9
Compute the gradient $\nabla f$ for the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
$\quad(2 x, 2 y, 2 z) $
GNU Free Documentation License
college_math.vector_calculus
\quad(2 x, 2 y, 2 z)
college_math.Corrals_Vector_Calculus
exercise.4.1.9
Evaluate the double integral: $\int_{0}^{\pi / 2} \int_{0}^{1} x y \cos \left(x^{2} y\right) d x d y$
$\frac{1}{2} $
GNU Free Documentation License
college_math.vector_calculus
\frac{1}{2}
college_math.Corrals_Vector_Calculus
exercise.5.3.7
Is there a potential $F(x, y)$ for $\mathbf{f}(x, y)=(8 x y+3) \mathbf{i}+4\left(x^{2}+y\right) \mathbf{j}$ ? If so, find one.
Yes. $F(x, y)=4 x^{2} y+2 y^{2}+3 x$
GNU Free Documentation License
college_math.vector_calculus
Yes. $F(x, y)=4 x^{2} y+2 y^{2}+3 x
college_math.Corrals_Vector_Calculus
exercise.5.2.1
Evaluate $\oint_{C}\left(x^{2}+y^{2}\right) d x+2 x y d y$ for $C: x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.
$0 $
GNU Free Documentation License
college_math.vector_calculus
0
college_math.Corrals_Vector_Calculus
exercise.4.2.7
Evaluate the given double integral: $\int_{0}^{2} \int_{0}^{y} 1 d x d y$
$2 $
GNU Free Documentation License
college_math.vector_calculus
2
college_math.Corrals_Vector_Calculus
exercise.3.3.7
Find the equation of the tangent plane to the given surface at the point $P$: $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}=1$, $P=\left(1,2, \frac{2 \sqrt{11}}{3}\right)$.
$\frac{1}{2}(x-1)+\frac{4}{9}(y-2)+\frac{\sqrt{11}}{12}(z-\frac{2 \sqrt{11}}{3})=0 $
GNU Free Documentation License
college_math.vector_calculus
\frac{1}{2}(x-1)+\frac{4}{9}(y-2)+\frac{\sqrt{11}}{12}(z-\frac{2 \sqrt{11}}{3})=0
college_math.Corrals_Vector_Calculus
exercise.2.3.3
Find the tangent line, the osculating plane, and the curvature at each point of the curve $\mathbf{f}(t)= (t \sin t, t \cos t)$.
$2\left(5^{3 / 2}-8\right) $
GNU Free Documentation License
college_math.vector_calculus
2\left(5^{3 / 2}-8\right)
college_math.Corrals_Vector_Calculus
exercise.3.4.3
Compute the gradient $\nabla f$ for the function $f(x, y)=\sqrt{x^{2}+y^{2}+4}$.
$\left(\frac{x}{\sqrt{x^{2}+y^{2}+4}}, \frac{y}{\sqrt{x^{2}+y^{2}+4}}\right) $
GNU Free Documentation License
college_math.vector_calculus
\left(\frac{x}{\sqrt{x^{2}+y^{2}+4}}, \frac{y}{\sqrt{x^{2}+y^{2}+4}}\right)
college_math.Corrals_Vector_Calculus
exercise.3.4.5
Compute the gradient $\nabla f$ for the function $f(x, y)=\ln (x y)$.
$\left(\frac{1}{x}, \frac{1}{y}\right)$
GNU Free Documentation License
college_math.vector_calculus
\left(\frac{1}{x}, \frac{1}{y}\right)
college_math.Corrals_Vector_Calculus
exercise.1.6.9
Find the trace of the hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}$ in the $x y$-plane
lines $\frac{x}{a}=\frac{y}{b}, z=0$ and $\frac{x}{a}=-\frac{y}{b}, z=0$
GNU Free Documentation License
college_math.vector_calculus
lines $\frac{x}{a}=\frac{y}{b}, z=0$ and $\frac{x}{a}=-\frac{y}{b}, z=0
college_math.Corrals_Vector_Calculus
exercise.4.5.1
Find the volume $V$ inside the paraboloid $z=x^{2}+y^{2}$ for $0 \leq z \leq 4$.
$8 \pi$
GNU Free Documentation License
college_math.vector_calculus
8 \pi
college_math.Corrals_Vector_Calculus
exercise.1.3.7
Find the angle $\theta$ between the vectors $\mathbf{v}=-\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=-3 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k}$.
$0^{\circ} $
GNU Free Documentation License
college_math.vector_calculus
0^{\circ}
college_math.Corrals_Vector_Calculus
exercise.3.1.1
State the domain and range of the given function: $f(x, y)=x^{2}+y^{2}-1$
domain: $\mathbb{R}^{2}$, range: $[-1, \infty) $
GNU Free Documentation License
college_math.vector_calculus
domain: $\mathbb{R}^{2}$, range: $[-1, \infty)
college_math.Corrals_Vector_Calculus
exercise.1.4.1
Calculate $\mathbf{v} \times \mathbf{w}$: $\mathbf{v}=(5,1,-2), \mathbf{w}=(4,-4,3)$
$(-5,-23,-24) $
GNU Free Documentation License
college_math.vector_calculus
(-5,-23,-24)
college_math.Corrals_Vector_Calculus
exercise.3.3.3
Find the equation of the tangent plane to the surface $z=f(x, y)$ at the point $P$: $f(x, y)=x^{2} y$, $P=(-1,1,1)$.
$-2 x+y-z-2=0$
GNU Free Documentation License
college_math.vector_calculus
-2 x+y-z-2=0
college_math.Corrals_Vector_Calculus
exercise.5.2.3
Is there a potential $F(x, y)$ for $\mathbf{f}(x, y)=y \mathbf{i}-x \mathbf{j}$ ? If so, find one.
No
GNU Free Documentation License
college_math.vector_calculus
No
college_math.Corrals_Vector_Calculus
exercise.3.5.1
Find all local maxima and minima of the function $f(x, y) = x^{3} - 3x + y^{2}$.
local min. $(1,0)$; saddle pt. $(-1,0)$
GNU Free Documentation License
college_math.vector_calculus
local min. $(1,0)$; saddle pt. $(-1,0)
college_math.Corrals_Vector_Calculus
exercise.1.3.1
Let $\mathbf{v}=(5,1,-2)$ and $\mathbf{w}=(4,-4,3)$. Calculate $\mathbf{v} \cdot \mathbf{w}$.
$10 $
GNU Free Documentation License
college_math.vector_calculus
10
college_math.Corrals_Vector_Calculus
exercise.3.5.11
For a rectangular solid of volume 1000 cubic meters, find the dimensions that will minimize the surface area. (Hint: Use the volume condition to write the surface area as a function of just two variables.)
width $=$ height $=\operatorname{depth}=10$
GNU Free Documentation License
college_math.vector_calculus
width $=$ height $=\operatorname{depth}=10
college_math.Corrals_Vector_Calculus
exercise.1.6.1
Determine if the given equation describes a sphere. If so, find its radius and center: $x^{2}+y^{2}+z^{2}-4 x-6 y-10 z+37=0$
radius: 1 , center: $(2,3,5)$
GNU Free Documentation License
college_math.vector_calculus
radius: 1 , center: $(2,3,5)
college_math.Corrals_Vector_Calculus
exercise.3.4.1
Compute the gradient $\nabla f$ for the function $f(x, y)=x^{2}+y^{2}-1$.
$(2 x, 2 y)$
GNU Free Documentation License
college_math.vector_calculus
(2 x, 2 y)
college_math.Corrals_Vector_Calculus
exercise.3.4.13
Find the directional derivative of $f(x, y)=\sqrt{x^{2}+y^{2}+4}$ at the point $P=(1,1)$ in the direction of $\mathbf{v}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
$\quad \frac{1}{\sqrt{3}}$
GNU Free Documentation License
college_math.vector_calculus
\quad \frac{1}{\sqrt{3}}
college_math.Corrals_Vector_Calculus
exercise.3.4.15
Find the directional derivative of $f(x, y, z)=\sin (x y z)$ at the point $P=(1,1,1)$ in the direction of $\mathbf{v}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
$\sqrt{3} \cos (1) ; 1$. increase: $(45,20)$, decrease: $(-45,-20)$
GNU Free Documentation License
college_math.vector_calculus
\sqrt{3} \cos (1) ; 1$. increase: $(45,20)$, decrease: $(-45,-20)
college_math.Corrals_Vector_Calculus
exercise.1.4.11
Find the volume of the parallelepiped with adjacent sides $\mathbf{u}, \mathbf{v}, \mathbf{w}$: $\mathbf{u}=(1,1,3), \mathbf{v}=(2,1,4), \mathbf{w}=(5,1,-2)$
$9 $
GNU Free Documentation License
college_math.vector_calculus
9
college_math.Corrals_Vector_Calculus
exercise.3.5.5
Find all local maxima and minima of the function $f(x, y) = 2x^{3} + 6xy + 3y^{2}$.
local min. $(1,-1)$, saddle pt. $(0,0) $
GNU Free Documentation License
college_math.vector_calculus
local min. $(1,-1)$, saddle pt. $(0,0)
college_math.Corrals_Vector_Calculus
exercise.5.2.5
Is there a potential $F(x, y)$ for $\mathbf{f}(x, y)=x y^{2} \mathbf{i}+x^{3} y \mathbf{j}$ ? If so, find one.
No
GNU Free Documentation License
college_math.vector_calculus
No
college_math.Corrals_Vector_Calculus
exercise.5.5.9
Calculate $\int_{C} \mathbf{f} \cdot d \mathbf{r}$ for the given vector field $\mathbf{f}(x, y, z)$ and curve $C$: $\mathbf{f}(x, y, z)=x y \mathbf{i}+(z-x) \mathbf{j}+2 y z \mathbf{k} ; \quad C$ : the polygonal path from $(0,0,0)$ to $(1,0,0)$ to $(1,2,0)$ to $(1,2,-2)$
6
GNU Free Documentation License
college_math.vector_calculus
6
college_math.Corrals_Vector_Calculus
exercise.4.5.3
Find the volume $V$ of the solid inside both $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}=1$.
$\frac{4 \pi}{3}\left(8-3^{3 / 2}\right)$
GNU Free Documentation License
college_math.vector_calculus
\frac{4 \pi}{3}\left(8-3^{3 / 2}\right)
college_math.Corrals_Vector_Calculus
exercise.5.2.4
Is there a potential $F(x, y)$ for $\mathbf{f}(x, y)=x \mathbf{i}-y \mathbf{j}$ ? If so, find one.
Yes. $F(x, y)=\frac{x^{2}}{2}-\frac{y^{2}}{2} $
GNU Free Documentation License
college_math.vector_calculus
Yes. $F(x, y)=\frac{x^{2}}{2}-\frac{y^{2}}{2}
college_math.Corrals_Vector_Calculus
exercise.2.1.1
Calculate $\mathbf{f}^{\prime}(t)$ and find the tangent line at $\mathbf{f}(0)$ for the following function: $\mathbf{f}(t)=\left(t+1, t^{2}+1, t^{3}+1\right)$
$\mathbf{f}^{\prime}(t)=\left(1,2 t, 3 t^{2}\right), \quad x=1+t, \quad y=z=$ $1 $
GNU Free Documentation License
college_math.vector_calculus
\mathbf{f}^{\prime}(t)=\left(1,2 t, 3 t^{2}\right), \quad x=1+t, \quad y=z=$ $1
college_math.Corrals_Vector_Calculus
exercise.5.1.11
Calculate the line integral $\int_{C} \mathbf{f} \cdot d \mathbf{r}$ for the given vector field $\mathbf{f}(x, y)$ and curve $C$. $\mathbf{f}(x, y)=\left(x^{2}+y^{2}\right) \mathbf{i} ; \quad C: x=2+\cos t, y=\sin t, 0 \leq t \leq 2 \pi$
0
GNU Free Documentation License
college_math.vector_calculus
0
college_math.Corrals_Vector_Calculus
exercise.3.4.11
Find the directional derivative of $f(x, y)=x^{2}+y^{2}-1$ at the point $P=(1,1)$ in the direction of $\mathbf{v}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
$\quad 2 \sqrt{2} $
GNU Free Documentation License
college_math.vector_calculus
\quad 2 \sqrt{2}
college_math.Corrals_Vector_Calculus
exercise.5.5.5
Calculate $\int_{C} \mathbf{f} \cdot d \mathbf{r}$ for the given vector field $\mathbf{f}(x, y, z)$ and curve $C$: $\mathbf{f}(x, y, z)=y \mathbf{i}-x \mathbf{j}+z \mathbf{k} ; \quad C: x=\cos t, y=\sin t, z=t, 0 \leq t \leq 2 \pi$
$2 \pi(\pi-1)$
GNU Free Documentation License
college_math.vector_calculus
2 \pi(\pi-1)
college_math.Corrals_Vector_Calculus
exercise.2.1.3
Calculate $\mathbf{f}^{\prime}(t)$ and find the tangent line at $\mathbf{f}(0)$ for the following function: $\mathbf{f}(t)=(\cos 2 t, \sin 2 t, t)$
$\mathbf{f}^{\prime}(t)=(-2 \sin 2 t, 2 \cos 2 t, 1) ; \quad x=1$, $y=2 t, \quad z=t $
GNU Free Documentation License
college_math.vector_calculus
\mathbf{f}^{\prime}(t)=(-2 \sin 2 t, 2 \cos 2 t, 1) ; \quad x=1$, $y=2 t, \quad z=t
college_math.Corrals_Vector_Calculus
exercise.1.1.2
For the points $P=(1,-1,1), Q=(2,-2,2), R=(2,0,1), S=(3,-1,2)$, does $\overrightarrow{P Q}=\overrightarrow{R S}$ ?
Yes
GNU Free Documentation License
college_math.vector_calculus
Yes
college_math.Corrals_Vector_Calculus
exercise.5.6.5
Find the Laplacian of the function $f(x, y, z)=x^{3}+y^{3}+z^{3}$.
$6(x+y+z) $
GNU Free Documentation License
college_math.vector_calculus
6(x+y+z)
college_math.Corrals_Vector_Calculus
exercise.5.5.2
Calculate $\int_{C} f(x, y, z) d s$ for the given function $f(x, y, z)$ and curve $C$: $f(x, y, z)=\frac{x}{y}+y+2 y z ; \quad C: x=t^{2}, y=t, z=1,1 \leq t \leq 2$
$(17 \sqrt{17}-5 \sqrt{5}) / 3 $
GNU Free Documentation License
college_math.vector_calculus
(17 \sqrt{17}-5 \sqrt{5}) / 3
college_math.Corrals_Vector_Calculus
exercise.4.1.5
Evaluate the double integral: $\int_{0}^{1} \int_{1}^{2}(1-y) x^{2} d x d y$
$\frac{7}{6} $
GNU Free Documentation License
college_math.vector_calculus
\frac{7}{6}
college_math.Corrals_Vector_Calculus
exercise.5.6.1
Find the Laplacian of the function $f(x, y, z)=x+y+z$.
$0 $
GNU Free Documentation License
college_math.vector_calculus
0
college_math.Corrals_Vector_Calculus
exercise.3.7.1
Find the constrained maxima and minima of $f(x, y)=2 x+y$ given that $x^{2}+y^{2}=4$.
$\max .\left(\frac{4}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) $
GNU Free Documentation License
college_math.vector_calculus
\max .\left(\frac{4}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)
college_math.Corrals_Vector_Calculus
exercise.5.5.4
Calculate $\int_{C} \mathbf{f} \cdot d \mathbf{r}$ for the given vector field $\mathbf{f}(x, y, z)$ and curve $C$: $\mathbf{f}(x, y, z)=\mathbf{i}-\mathbf{j}+\mathbf{k} ; \quad C: x=3 t, y=2 t, z=t, 0 \leq t \leq 1$
2
GNU Free Documentation License
college_math.vector_calculus
2
college_math.Corrals_Vector_Calculus
exercise.5.1.1
Calculate the line integral $\int_{C} f(x, y) d s$ for the given function $f(x, y)$ and curve $C$. $f(x, y)=x y ; \quad C: x=\cos t, y=\sin t, 0 \leq t \leq \pi / 2$
$1 / 2$
GNU Free Documentation License
college_math.vector_calculus
1 / 2
college_math.Corrals_Vector_Calculus
exercise.3.1.3
State the domain and range of the given function: $f(x, y)=\sqrt{x^{2}+y^{2}-4}$
domain: $\left\{(x, y): x^{2}+y^{2} \geq 4\right\}$, range: $[0, \infty) $
GNU Free Documentation License
college_math.vector_calculus
domain: $\left\{(x, y): x^{2}+y^{2} \geq 4\right\}$, range: $[0, \infty)
college_math.Corrals_Vector_Calculus
exercise.4.3.10
Find the volume $V$ of the solid $S$ bounded by the three coordinate planes, bounded above by the plane $x+y+z=2$, and bounded below by the plane $z=x+y$.
$\frac{1}{3}$
GNU Free Documentation License
college_math.vector_calculus
\frac{1}{3}
college_math.Corrals_Vector_Calculus
exercise.5.3.5
Is there a potential $F(x, y)$ for $\mathbf{f}(x, y)=\left(y^{2}+3 x^{2}\right) \mathbf{i}+2 x y \mathbf{j}$ ? If so, find one.
Yes. $F(x, y)=x y^{2}+x^{3}$
GNU Free Documentation License
college_math.vector_calculus
Yes. $F(x, y)=x y^{2}+x^{3}
college_math.Corrals_Vector_Calculus
exercise.4.6.3
Find the center of mass of the region $R$ with the given density function $\delta(x, y)$: $R=\left\{(x, y): y \geq 0, x^{2}+y^{2} \leq a^{2}\right\}, \delta(x, y)=1$
$\left(0, \frac{4 a}{3 \pi}\right) \quad$
GNU Free Documentation License
college_math.vector_calculus
\left(0, \frac{4 a}{3 \pi}\right) \quad
college_math.Corrals_Vector_Calculus
exercise.4.2.6
Evaluate the given double integral: $\int_{0}^{\infty} \int_{0}^{\infty} x y e^{-\left(x^{2}+y^{2}\right)} d x d y$
$\frac{1}{4} $
GNU Free Documentation License
college_math.vector_calculus
\frac{1}{4}
college_math.Corrals_Vector_Calculus
exercise.3.1.11
Evaluate the limit: $\lim _{(x, y) \rightarrow(1,-1)} \frac{x^{2}-2 x y+y^{2}}{x-y}$
$2 $
GNU Free Documentation License
college_math.vector_calculus
2
college_math.Corrals_Vector_Calculus
exercise.3.1.7
Evaluate the limit: $\lim _{(x, y) \rightarrow(0,0)} \cos (x y)$
$1 $
GNU Free Documentation License
college_math.vector_calculus
1
college_math.Corrals_Vector_Calculus
exercise.5.5.3
Calculate $\int_{C} f(x, y, z) d s$ for the given function $f(x, y, z)$ and curve $C$: $f(x, y, z)=z^{2} ; \quad C: x=t \sin t, y=t \cos t, z=\frac{2 \sqrt{2}}{3} t^{3 / 2}, 0 \leq t \leq 1$
$2 / 5 $
GNU Free Documentation License
college_math.vector_calculus
2 / 5
college_math.Corrals_Vector_Calculus
exercise.5.7.2
Let $f(x, y, z)=e^{-x^{2}-y^{2}-z^{2}}$ in Cartesian coordinates. Find the Laplacian of the function in spherical coordinates.
$\left(4 \rho^{2}-6\right) e^{-\rho^{2}} $
GNU Free Documentation License
college_math.vector_calculus
\left(4 \rho^{2}-6\right) e^{-\rho^{2}}
college_math.Corrals_Vector_Calculus
exercise.1.3.5
Find the angle $\theta$ between the vectors $\mathbf{v}=(2,1,4)$ and $\mathbf{w}=(1,-2,0)$.
$90^{\circ} $
GNU Free Documentation License
college_math.vector_calculus
90^{\circ}
college_math.Corrals_Vector_Calculus
exercise.3.7.5
Find the constrained maxima and minima of $f(x, y, z)=x+y^{2}+2 z$ given that $4 x^{2}+9 y^{2}-36 z^{2}=36$.
$\frac{8 a b c}{3 \sqrt{3}}$
GNU Free Documentation License
college_math.vector_calculus
\frac{8 a b c}{3 \sqrt{3}}
college_math.Corrals_Vector_Calculus
exercise.4.5.9
Find the volume inside the elliptic cylinder $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$ for $0 \leq z \leq 2$.
$2 \pi a b$
GNU Free Documentation License
college_math.vector_calculus
2 \pi a b
college_math.Corrals_Vector_Calculus
exercise.1.4.9
Calculate the area of the parallelogram $P Q R S$: $P=(2,1,3), Q=(1,4,5), R=(2,5,3), S=(3,2,1)$
4 \sqrt{5}
GNU Free Documentation License
college_math.vector_calculus
4 \sqrt{5}
college_math.Corrals_Vector_Calculus
exercise.4.3.5
Evaluate the given triple integral: $\int_{1}^{e} \int_{0}^{y} \int_{0}^{1 / y} x^{2} z d x d z d y$
$\frac{1}{6} $
GNU Free Documentation License
college_math.vector_calculus
\frac{1}{6}
college_math.Corrals_Vector_Calculus
exercise.5.5.11
State whether or not the vector field $\mathbf{f}(x, y, z)$ has a potential in $\mathbb{R}^{3}$ (you do not need to find the potential itself): $\mathbf{f}(x, y, z)=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}(a, b, c$ constant $)$
Yes
GNU Free Documentation License
college_math.vector_calculus
Yes
college_math.Corrals_Vector_Calculus
exercise.5.1.9
Calculate the line integral $\int_{C} \mathbf{f} \cdot d \mathbf{r}$ for the given vector field $\mathbf{f}(x, y)$ and curve $C$. $\mathbf{f}(x, y)=\left(x^{2}-y\right) \mathbf{i}+\left(x-y^{2}\right) \mathbf{j} ; \quad C: x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$
$2 \pi$
GNU Free Documentation License
college_math.vector_calculus
2 \pi