data_source
stringclasses
9 values
question_number
stringlengths
14
17
problem
stringlengths
14
1.32k
answer
stringlengths
1
993
license
stringclasses
8 values
data_topic
stringclasses
7 values
solution
stringlengths
1
991
college_math.A_First_Course_in_Linear_Algebra
exercise.7.2.1
Find the eigenvalues and eigenvectors of the matrix $$ \left[\begin{array}{rrr} 5 & -18 & -32 \\ 0 & 5 & 4 \\ 2 & -5 & -11 \end{array}\right] $$ One eigenvalue is 1. Diagonalize if possible.
The eigenvalues are $-1,-1,1$. The eigenvectors corresponding to the eigenvalues are: $$ \left\{\left[\begin{array}{c} 10 \\ -2 \\ 3 \end{array}\right]\right\} \leftrightarrow-1,\left\{\left[\begin{array}{c} 7 \\ -2 \\ 2 \end{array}\right]\right\} \leftrightarrow 1 $$ Therefore this matrix is not diagonalizable.
Creative Commons License (CC BY)
college_math.linear_algebra
The eigenvalues are $-1,-1,1$. The eigenvectors corresponding to the eigenvalues are: $$ \left\{\left[\begin{array}{c} 10 \\ -2 \\ 3 \end{array}\right]\right\} \leftrightarrow-1,\left\{\left[\begin{array}{c} 7 \\ -2 \\ 2 \end{array}\right]\right\} \leftrightarrow 1 $$ Therefore this matrix is not diagonalizable.
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.43
Suppose the coefficient matrix of a system of $n$ equations with $n$ variables has the property that every column is a pivot column. Does it follow that the system of equations must have a solution? If so, must the solution be unique? Explain.
Yes. It has a unique solution.
Creative Commons License (CC BY)
college_math.linear_algebra
Yes. It has a unique solution.
college_math.A_First_Course_in_Linear_Algebra
exercise.2.1.13
Let $X=\left[\begin{array}{lll}-1 & -1 & 1\end{array}\right]$ and $Y=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$. Find $X^{T} Y$ and $X Y^{T}$ if possible.
$X^{T} Y=\left[\begin{array}{rrr}0 & -1 & -2 \\ 0 & -1 & -2 \\ 0 & 1 & 2\end{array}\right], X Y^{T}=1$
Creative Commons License (CC BY)
college_math.linear_algebra
X^{T} Y=\left[\begin{array}{rrr}0 & -1 & -2 \\ 0 & -1 & -2 \\ 0 & 1 & 2\end{array}\right], X Y^{T}=1
college_math.A_First_Course_in_Linear_Algebra
exercise.2.1.42
Let $$ A=\left[\begin{array}{lll} 1 & 2 & 1 \\ 2 & 1 & 4 \\ 4 & 5 & 10 \end{array}\right] $$ Find $A^{-1}$ if possible. If $A^{-1}$ does not exist, explain why.
$\left[\begin{array}{rrrr}1 & 2 & 0 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 1 & -3 & 2 \\ 1 & 2 & 1 & 2\end{array}\right]^{-1}=\left[\begin{array}{rrrr}-1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 3 & \frac{1}{2} & -\frac{1}{2} & -\frac{5}{2} \\ -1 & 0 & 0 & 1 \\ -2 & -\frac{3}{4} & \frac{1}{4} & \frac{9}{4}\end{array}\right]$
Creative Commons License (CC BY)
college_math.linear_algebra
\left[\begin{array}{rrrr}1 & 2 & 0 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 1 & -3 & 2 \\ 1 & 2 & 1 & 2\end{array}\right]^{-1}=\left[\begin{array}{rrrr}-1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 3 & \frac{1}{2} & -\frac{1}{2} & -\frac{5}{2} \\ -1 & 0 & 0 & 1 \\ -2 & -\frac{3}{4} & \frac{1}{4} & \frac{9}{4}\end{array}\right]
college_math.A_First_Course_in_Linear_Algebra
exercise.4.12.12
A certain river is one half mile wide with a current flowing at 2 miles per hour from East to West. A man swims directly toward the opposite shore from the South bank of the river at a speed of 3 miles per hour. How far down the river does he find himself when he has swam across? How far does he end up traveling?
Water: $\left[\begin{array}{ll}-2 & 0\end{array}\right]$ Swimmer: $\left[\begin{array}{ll}0 & 3\end{array}\right]$ Speed relative to earth: $\left[\begin{array}{ll}-2 & 3\end{array}\right]$. It takes him $1 / 6$ of an hour to get across. Therefore, he ends up travelling $\frac{1}{6} \sqrt{4+9}=\frac{1}{6} \sqrt{13}$ miles. He ends up $1 / 3$ mile down stream.
Creative Commons License (CC BY)
college_math.linear_algebra
Water: $\left[\begin{array}{ll}-2 & 0\end{array}\right]$ Swimmer: $\left[\begin{array}{ll}0 & 3\end{array}\right]$ Speed relative to earth: $\left[\begin{array}{ll}-2 & 3\end{array}\right]$. It takes him $1 / 6$ of an hour to get across. Therefore, he ends up travelling $\frac{1}{6} \sqrt{4+9}=\frac{1}{6} \sqrt{13}$ miles. He ends up $1 / 3$ mile down stream.
college_math.A_First_Course_in_Linear_Algebra
exercise.4.12.22
An object moves 10 meters in the direction of $\vec{j}$. There are two forces acting on this object, $\vec{F}_{1}=\vec{i}+\vec{j}+2 \vec{k}$, and $\vec{F}_{2}=-5 \vec{i}+2 \vec{j}-6 \vec{k}$. Find the total work done on the object by the two forces. Hint: You can take the work done by the resultant of the two forces or you can add the work done by each force. Why?
$\left[\begin{array}{r}-4 \\ 3 \\ -4\end{array}\right] \bullet\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \times 10=30$ You can consider the resultant of the two forces because of the properties of the dot product.
Creative Commons License (CC BY)
college_math.linear_algebra
\left[\begin{array}{r}-4 \\ 3 \\ -4\end{array}\right] \bullet\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \times 10=30$ You can consider the resultant of the two forces because of the properties of the dot product.
college_math.A_First_Course_in_Linear_Algebra
exercise.4.7.9
Find the angle between the vectors $$ \vec{u}=\left[\begin{array}{r} 1 \\ -2 \\ 1 \end{array}\right], \vec{v}=\left[\begin{array}{r} 1 \\ 2 \\ -7 \end{array}\right] $$
$\frac{-10}{\sqrt{1+4+1} \sqrt{1+4+49}}=-0.55555=\cos \theta$ Therefore we need to solve $-0.55555=\cos \theta$, which gives $\theta=2.0313$ radians.
Creative Commons License (CC BY)
college_math.linear_algebra
\frac{-10}{\sqrt{1+4+1} \sqrt{1+4+49}}=-0.55555=\cos \theta$ Therefore we need to solve $-0.55555=\cos \theta$, which gives $\theta=2.0313$ radians.
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.13
Find $h$ such that $$ \left[\begin{array}{ll|l} 1 & h & 3 \\ 2 & 4 & 6 \end{array}\right] $$ is the augmented matrix of a consistent system.
Any $h$ will work.
Creative Commons License (CC BY)
college_math.linear_algebra
Any $h$ will work.
college_math.A_First_Course_in_Linear_Algebra
exercise.2.1.15
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 1 & k\end{array}\right]$. Is it possible to choose $k$ such that $A B=B A$ ? If so, what should $k$ equal?
There is no possible choice of $k$ which will make these matrices commute.
Creative Commons License (CC BY)
college_math.linear_algebra
There is no possible choice of $k$ which will make these matrices commute.
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.1.4
Find solutions $y_{1}, y_{2}, \ldots, y_{n}$ of the equation $y^{(n)}=0$ that satisfy the initial conditions $y_{i}^{(j)}\left(x_{0}\right)=\left\{\begin{array}{ll}0, & j \neq i-1, \\1, & j=i-1,\end{array} \quad 1 \leq i \leq n .$
$y_{i}=\frac{\left(x-x_{0}\right)^{i-1}}{(i-1) !}, 1 \leq i \leq n$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{i}=\frac{\left(x-x_{0}\right)^{i-1}}{(i-1) !}, 1 \leq i \leq n
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.1.17
Find the Wronskian of a given set $\left\{y_{1}, y_{2}\right\}$ of solutions of $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$, given that $y_{1}=e^{x}$.
$y_{2}=x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{2}=x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.5.24
Find a curve $y=y(x)$ through $(2,1)$ such that the normal to the curve at any point $\left(x_{0}, y\left(x_{0}\right)\right)$ intersects the $y$ axis at $y_{I}=2 y\left(x_{0}\right)$.
$y=\sqrt{x^{2}-3}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\sqrt{x^{2}-3}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.30
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rrr}-4 & 0 & -1 \\ -1 & -3 & -1 \\ 1 & 0 & -2\end{array}\right] \mathbf{y}$
\mathbf{y}=\left[\begin{array}{r} -1 \\ 1 \\ 0 \end{array}\right] e^{-2 t}+c_{2}\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right] e^{-2 t}+c_{3}\left(\left[\begin{array}{r} -1 \\ 0 \\ 0 \end{array}\right] e^{-2 t}+\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right] t e^{-2 t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=\left[\begin{array}{r} -1 \\ 1 \\ 0 \end{array}\right] e^{-2 t}+c_{2}\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right] e^{-2 t}+c_{3}\left(\left[\begin{array}{r} -1 \\ 0 \\ 0 \end{array}\right] e^{-2 t}+\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right] t e^{-2 t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.2.2.26
Solve the equation $y^{\prime}=\frac{\cos x}{\sin y}, \quad y(\pi)=\frac{\pi}{2}$ explicitly. HINT: Use the identity $\cos (x+\pi / 2)=-\sin x$ and the periodicity of the cosine.
$y=-x+3 \pi / 2$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=-x+3 \pi / 2
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.5.28
Find the orthogonal trajectories of the given family of curves: $x y e^{x^{2}}=c$
$y^{2}=-\frac{1}{2} \ln \left(1+2 x^{2}\right)+k$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y^{2}=-\frac{1}{2} \ln \left(1+2 x^{2}\right)+k
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.3.6
A 3200-lb car is moving at $64 \mathrm{ft} / \mathrm{s}$ down a 30-degree grade when it runs out of fuel. Find its velocity after that if friction exerts a resistive force with magnitude proportional to the square of the speed, with $k=1 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}^{2}$. Also find its terminal velocity.
$v=-\frac{40\left(13+3 e^{-4 t / 5}\right)}{13-3 e^{-4 t / 5}} ;-40 \mathrm{ft} / \mathrm{s}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
v=-\frac{40\left(13+3 e^{-4 t / 5}\right)}{13-3 e^{-4 t / 5}} ;-40 \mathrm{ft} / \mathrm{s}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.10
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rrr}-1 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & 3 & -1\end{array}\right] \mathbf{y}$
\mathbf{y}=c_{1}\left[\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right] e^{2 t}+c_{2}\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right] e^{-2 t}+c_{3}\left(\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right] \frac{e^{-2 t}}{2}+\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right] t e^{-2 t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right] e^{2 t}+c_{2}\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right] e^{-2 t}+c_{3}\left(\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right] \frac{e^{-2 t}}{2}+\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right] t e^{-2 t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.6.11
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rr}3 & 2 \\ -5 & 1\end{array}\right] \mathbf{y}$
$\mathbf{y}=c_{1} e^{2 t}\left[\begin{array}{c}3 \sin 3 t-\cos 3 t \\ 5 \cos 3 t\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{c}-3 \cos 3 t-\sin 3 t \\ 5 \sin 3 t\end{array}\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1} e^{2 t}\left[\begin{array}{c}3 \sin 3 t-\cos 3 t \\ 5 \cos 3 t\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{c}-3 \cos 3 t-\sin 3 t \\ 5 \sin 3 t\end{array}\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.6.16
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rrr}1 & 2 & -2 \\ 0 & 2 & -1 \\ 1 & 0 & 0\end{array}\right] \mathbf{y}^{\prime}$
$\mathbf{y}=c_{1}\left[\begin{array}{r}6 \\ -3 \\ 3\end{array}\right] e^{8 t}+\left[\begin{array}{c}10 \cos 4 t-4 \sin 4 t \\ 17 \cos 4 t-\sin 4 t \\ 3 \cos 4 t-7 \sin 4 t\end{array}\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{r}6 \\ -3 \\ 3\end{array}\right] e^{8 t}+\left[\begin{array}{c}10 \cos 4 t-4 \sin 4 t \\ 17 \cos 4 t-\sin 4 t \\ 3 \cos 4 t-7 \sin 4 t\end{array}\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.1.19
Two objects suspended from identical springs are set into motion. The period of one object is twice the period of the other. How are the weights of the two objects related?
The object with the longer period weighs four times as much as the other.
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
The object with the longer period weighs four times as much as the other.
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.4.10
Find the general solution of the given Euler equation on $(0, \infty)$: $3 x^{2} y^{\prime \prime}-x y^{\prime}+y=0$
$y=c_{1} x+c_{2} x^{1 / 3}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} x+c_{2} x^{1 / 3}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.3.30
Find the general solution of $y^{\prime \prime}+\omega_{0}^{2} y=M \cos \omega x+N \sin \omega x$, where $M$ and $N$ are constants and $\omega$ and $\omega_{0}$ are distinct positive numbers.
$y=\frac{1}{\omega_{0}^{2}-\omega^{2}}(M \cos \omega x+N \sin \omega x)+c_{1} \cos \omega_{0} x+c_{2} \sin \omega_{0} x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{1}{\omega_{0}^{2}-\omega^{2}}(M \cos \omega x+N \sin \omega x)+c_{1} \cos \omega_{0} x+c_{2} \sin \omega_{0} x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.2.1.1
Find the general solution: $y^{\prime}+a y=0(a=$ constant $)$
$y=e^{-a x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{-a x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.4.11
Find the general solution of the given Euler equation on $(0, \infty)$: $2 x^{2} y^{\prime \prime}-3 x y^{\prime}+2 y=0$
$y=c_{1} x^{2}+c_{2} x^{1 / 2}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} x^{2}+c_{2} x^{1 / 2}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.1.19
Find the Wronskian of a given set $\left\{y_{1}, y_{2}\right\}$ of solutions of $4 x^{2}(\sin x) y^{\prime \prime}-4 x(x \cos x+\sin x) y^{\prime}+(2 x \cos x+3 \sin x) y=0$, given that $y_{1}=x^{1 / 2}$.
$y_{2}=x^{1 / 2} \cos x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{2}=x^{1 / 2} \cos x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.1.13
A $2 \mathrm{lb}$ weight stretches a spring 6 inches in equilibrium. An external force $F(t)=\sin 8 t \mathrm{lb}$ is applied to the weight, which is released from rest 2 inches below equilibrium. Find its displacement for $t>0$.
$y=-t \cos 8 t-\frac{1}{6} \cos 8 t+\frac{1}{8} \sin 8 t \mathrm{ft}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=-t \cos 8 t-\frac{1}{6} \cos 8 t+\frac{1}{8} \sin 8 t \mathrm{ft}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.2.3
At $12: 00 \mathrm{PM}$ a thermometer reading $10^{\circ} \mathrm{F}$ is placed in a room where the temperature is $70^{\circ} \mathrm{F}$. It reads $56^{\circ}$ when it's placed outside, where the temperature is $5^{\circ} \mathrm{F}$, at $12: 03$. What does it read at 12:05 PM?
$\approx 24.33^{\circ} \mathrm{F}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\approx 24.33^{\circ} \mathrm{F}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.1.3
A spring with natural length $.5 \mathrm{~m}$ has length $50.5 \mathrm{~cm}$ with a mass of $2 \mathrm{gm}$ suspended from it. The mass is initially displaced $1.5 \mathrm{~cm}$ below equilibrium and released with zero velocity. Find its displacement for $t>0$.
$y=1.5 \cos 14 \sqrt{10} t \mathrm{~cm}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=1.5 \cos 14 \sqrt{10} t \mathrm{~cm}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.2.6
An object is placed in a room where the temperature is $20^{\circ} \mathrm{C}$. The temperature of the object drops by $5^{\circ} \mathrm{C}$ in 4 minutes and by $7^{\circ} \mathrm{C}$ in 8 minutes. What was the temperature of the object when it was initially placed in the room?
$(85 / 3)^{\circ} \mathrm{C}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
(85 / 3)^{\circ} \mathrm{C}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.5.27
Find the orthogonal trajectories of the given family of curves: $y=c e^{2 x}$
$y^{2}=-x+k$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y^{2}=-x+k
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.31
Find a fundamental set of solutions: $\left(D^{2}+9\right)^{3} D^{2} y=0$
$\left\{\cos 3 x, x \cos 3 x, x^{2} \cos 3 x, \sin 3 x, x \sin 3 x, x^{2} \sin 3 x, 1, x\right\}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\left\{\cos 3 x, x \cos 3 x, x^{2} \cos 3 x, \sin 3 x, x \sin 3 x, x^{2} \sin 3 x, 1, x\right\}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.5
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rr}4 & 12 \\ -3 & -8\end{array}\right] \mathbf{y}$
c_{1}\left[\begin{array}{r} -2 \\ 1 \end{array}\right]+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] \frac{e^{-2 t}}{3}+\left[\begin{array}{r} -2 \\ 1 \end{array}\right] t e^{-2 t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
c_{1}\left[\begin{array}{r} -2 \\ 1 \end{array}\right]+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] \frac{e^{-2 t}}{3}+\left[\begin{array}{r} -2 \\ 1 \end{array}\right] t e^{-2 t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.6.2
Find the general solution: $x^{2} y^{\prime \prime}+x y^{\prime}-y=\frac{4}{x^{2}} ; \quad y_{1}=x$
$y=\frac{4}{3 x^{2}}+c_{1} x+\frac{c_{2}}{x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{4}{3 x^{2}}+c_{1} x+\frac{c_{2}}{x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.32
Find a fundamental set of solutions: $(D-2)^{3}(D+1)^{2} D y=0$
$\left\{e^{2 x}, x e^{2 x}, x^{2} e^{2 x}, e^{-x}, x e^{-x}, 1\right\}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\left\{e^{2 x}, x e^{2 x}, x^{2} e^{2 x}, e^{-x}, x e^{-x}, 1\right\}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.5.29
Find the orthogonal trajectories of the given family of curves: $y=\frac{c e^{x}}{x}$
$y^{2}=-2 x-\ln (x-1)^{2}+k$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y^{2}=-2 x-\ln (x-1)^{2}+k
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.2.6
An $8 \mathrm{lb}$ weight stretches a spring $.32 \mathrm{ft}$. The weight is initially displaced 6 inches above equilibrium and given an upward velocity of $4 \mathrm{ft} / \mathrm{sec}$. Find its displacement for $t>0$ if the medium exerts a damping force of $1.5 \mathrm{lb}$ for each $\mathrm{ft} / \mathrm{sec}$ of velocity.
$y=\frac{1}{2} e^{-3 t}\left(\cos \sqrt{91} t+\frac{11}{\sqrt{91}} \sin \sqrt{91} t\right) \mathrm{ft}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{1}{2} e^{-3 t}\left(\cos \sqrt{91} t+\frac{11}{\sqrt{91}} \sin \sqrt{91} t\right) \mathrm{ft}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.1.15
Find a power series solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for $\left(1+3 x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+4 y$.
$b_{n}=(n+2)(n+1) a_{n+2}+\left(3 n^{2}-5 n+4\right) a_{n}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
b_{n}=(n+2)(n+1) a_{n+2}+\left(3 n^{2}-5 n+4\right) a_{n}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.2.20
A mass of one $\mathrm{kg}$ stretches a spring $49 \mathrm{~cm}$ in equilibrium. It is attached to a dashpot that supplies a damping force of $4 \mathrm{~N}$ for each $\mathrm{m} / \mathrm{sec}$ of speed. Find the steady state component of its displacement if it's subjected to an external force $F(t)=8 \sin 2 t-6 \cos 2 t \mathrm{~N}$.
$y=-\frac{1}{2} \cos 2 t+\frac{1}{4} \sin 2 t \mathrm{~m}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=-\frac{1}{2} \cos 2 t+\frac{1}{4} \sin 2 t \mathrm{~m}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.3.7
Find the steady state current in the circuit described by the equation. $\frac{1}{20} Q^{\prime \prime}+2 Q^{\prime}+100 Q=10 \cos 25 t-5 \sin 25 t$
$I_{p}=\frac{20}{37}(\cos 25 t-6 \sin 25 t)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
I_{p}=\frac{20}{37}(\cos 25 t-6 \sin 25 t)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.1
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rr}3 & 4 \\ -1 & 7\end{array}\right] \mathbf{y}$
\mathbf{y}=c_{1}\left[\begin{array}{l} 2 \\ 1 \end{array}\right] e^{5 t}+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] e^{5 t}+\left[\begin{array}{l} 2 \\ 1 \end{array}\right] t e^{5 t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{l} 2 \\ 1 \end{array}\right] e^{5 t}+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] e^{5 t}+\left[\begin{array}{l} 2 \\ 1 \end{array}\right] t e^{5 t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.6.14
Find the general solution: $2 x y^{\prime \prime}+(4 x+1) y^{\prime}+(2 x+1) y=3 x^{1 / 2} e^{-x} ; \quad y_{1}=e^{-x}$
$y=e^{-x}\left(x^{3 / 2}+c_{1}+c_{2} x^{1 / 2}\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{-x}\left(x^{3 / 2}+c_{1}+c_{2} x^{1 / 2}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.6.19
Find a fundamental set of solutions: $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 ; \quad y_{1}=x^{2}$
$\{x^{2}, x^{3}\}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\{x^{2}, x^{3}\}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.14
Find the general solution: $y^{(4)}-4 y^{\prime \prime \prime}+7 y^{\prime \prime}-6 y^{\prime}+2 y=0$
$y=e^{x}\left(c_{1}+c_{2} x+c_{3} \cos x+c_{4} \sin x\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{x}\left(c_{1}+c_{2} x+c_{3} \cos x+c_{4} \sin x\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.3.60
Find the general solution: $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=e^{2 x}(10+3 x)$
$y=e^{2 x}(1+x)+c_{1} e^{-x}+e^{x}\left(c_{2}+c_{3} x\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{2 x}(1+x)+c_{1} e^{-x}+e^{x}\left(c_{2}+c_{3} x\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.1.20
Two objects suspended from identical springs are set into motion. The weight of one object is twice the weight of the other. How are the periods of the resulting motions related?
$T_{2}=\sqrt{2} T_{1}$, where $T_{1}$ is the period of the smaller object.
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
T_{2}=\sqrt{2} T_{1}$, where $T_{1}$ is the period of the smaller object.
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.3.3
Find the current in the $R L C$ circuit, assuming that $E(t)=0$ for $t>0$. $R=2$ ohms; $L=.1$ henrys; $C=.01$ farads; $Q_{0}=2$ coulombs; $I_{0}=0$ amperes.
$I=-\frac{200}{3} e^{-10 t} \sin 30 t$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
I=-\frac{200}{3} e^{-10 t} \sin 30 t
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.11
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rrr}4 & -2 & -2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right] \mathbf{y}$
\mathbf{y}=c_{1}\left[\begin{array}{r} -2 \\ -3 \\ 1 \end{array}\right] e^{2 t}+c_{2}\left[\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right] e^{4 t}+c_{3}\left(\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right] \frac{e^{4 t}}{2}+\left[\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right] t e^{4 t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{r} -2 \\ -3 \\ 1 \end{array}\right] e^{2 t}+c_{2}\left[\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right] e^{4 t}+c_{3}\left(\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right] \frac{e^{4 t}}{2}+\left[\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right] t e^{4 t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.2.4.16
Solve the equation explicitly: $y^{\prime}=\frac{y^{2}+2 x y}{x^{2}}$
$y=\frac{c x^{2}}{1-c x} \quad y=-x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{c x^{2}}{1-c x} \quad y=-x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.3.2
Find the current in the $R L C$ circuit, assuming that $E(t)=0$ for $t>0$. $R=2$ ohms; $L=.05$ henrys; $C=.01$ farads'; $Q_{0}=2$ coulombs; $I_{0}=-2$ amperes.
$I=e^{-20 t}(2 \cos 40 t-101 \sin 40 t)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
I=e^{-20 t}(2 \cos 40 t-101 \sin 40 t)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.3.3
A boat weighs $64,000 \mathrm{lb}$. Its propellor produces a constant thrust of $50,000 \mathrm{lb}$ and the water exerts a resistive force with magnitude proportional to the speed, with $k=2000 \mathrm{lb}-\mathrm{s} / \mathrm{ft}$. Assuming that the boat starts from rest, find its velocity as a function of time, and find its terminal velocity.
$v=25\left(1-e^{-t}\right) ; 25 \mathrm{ft} / \mathrm{s}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
v=25\left(1-e^{-t}\right) ; 25 \mathrm{ft} / \mathrm{s}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.6.13
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rrr}1 & 1 & 2 \\ 1 & 0 & -1 \\ -1 & -2 & -1\end{array}\right] \mathbf{y}$
$\mathbf{y}=c_{1}\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right] e^{-2 t}+c_{2} e^{t}\left[\begin{array}{r}\sin t \\ -\cos t \\ \cos t\end{array}\right]+c_{3} e^{t}\left[\begin{array}{r}-\cos t \\ -\sin t \\ \sin t\end{array}\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right] e^{-2 t}+c_{2} e^{t}\left[\begin{array}{r}\sin t \\ -\cos t \\ \cos t\end{array}\right]+c_{3} e^{t}\left[\begin{array}{r}-\cos t \\ -\sin t \\ \sin t\end{array}\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.4.18
Find the general solution of the given Euler equation on $(0, \infty)$: $2 x^{2} y^{\prime \prime}+10 x y^{\prime}+9 y=0$
$y=\frac{1}{x^{2}}\left[c_{1} \cos \left(\frac{1}{\sqrt{2}} \ln x\right)+c_{2} \sin \left(\frac{1}{\sqrt{2}} \ln x\right)\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{1}{x^{2}}\left[c_{1} \cos \left(\frac{1}{\sqrt{2}} \ln x\right)+c_{2} \sin \left(\frac{1}{\sqrt{2}} \ln x\right)\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.2.1
Find the power series in $x$ for the general solution: $\left(1+x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+6 y=0$
$y=a_{0} \sum_{m=0}^{\infty}(-1)^{m}(2 m+1) x^{2 m}+a_{1} \sum_{m=0}^{\infty}(-1)^{m}(m+1) x^{2 m+1}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=a_{0} \sum_{m=0}^{\infty}(-1)^{m}(2 m+1) x^{2 m}+a_{1} \sum_{m=0}^{\infty}(-1)^{m}(m+1) x^{2 m+1}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.2.8
A mass of $20 \mathrm{gm}$ stretches a spring $5 \mathrm{~cm}$. The spring is attached to a dashpot with damping constant 400 dyne sec/cm. Determine the displacement for $t>0$ if the mass is initially displaced $9 \mathrm{~cm}$ above equilibrium and released from rest.
$y=e^{-10 t}\left(9 \cos 4 \sqrt{6} t+\frac{45}{2 \sqrt{6}} \sin 4 \sqrt{6} t\right) \mathrm{cm}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{-10 t}\left(9 \cos 4 \sqrt{6} t+\frac{45}{2 \sqrt{6}} \sin 4 \sqrt{6} t\right) \mathrm{cm}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.6.9
Find the general solution: $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=-6 x-4 ; \quad y_{1}=x^{2}$
$y=2 x+1+c_{1} x^{2}+\frac{c_{2}}{x^{2}}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=2 x+1+c_{1} x^{2}+\frac{c_{2}}{x^{2}}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.2.21
A mass $m$ is suspended from a spring with constant $k$ and subjected to an external force $F(t)=$ $\alpha \cos \omega_{0} t+\beta \sin \omega_{0} t$, where $\omega_{0}$ is the natural frequency of the spring-mass system without damping. Find the steady state component of the displacement if a dashpot with constant $c$ supplies damping.
$y_{p}=\frac{1}{c \omega_{0}}\left(-\beta \cos \omega_{0} t+\alpha \sin \omega_{0} t\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{p}=\frac{1}{c \omega_{0}}\left(-\beta \cos \omega_{0} t+\alpha \sin \omega_{0} t\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.5.23
Find a curve $y=y(x)$ through $(0,2)$ such that the normal to the curve at any point $\left(x_{0}, y\left(x_{0}\right)\right)$ intersects the $x$ axis at $x_{I}=x_{0}+1$.
$y=\sqrt{2 x+4}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\sqrt{2 x+4}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.1.6
Find the Wronskian of a given set $\left\{y_{1}, y_{2}\right\}$ of solutions of $y^{\prime \prime}+3\left(x^{2}+1\right) y^{\prime}-2 y=0$, given that $W(\pi)=0$.
0
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
0
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.30
Find a fundamental set of solutions: $(D-1)^{2}(2 D-1)^{3}\left(D^{2}+1\right) y=0$
$\left\{e^{x}, x e^{x}, e^{x / 2}, x e^{x / 2}, x^{2} e^{x / 2}, \cos x, \sin x\right\}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\left\{e^{x}, x e^{x}, e^{x / 2}, x e^{x / 2}, x^{2} e^{x / 2}, \cos x, \sin x\right\}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.6
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rr}-10 & 9 \\ -4 & 2\end{array}\right] \mathbf{y}$
\mathbf{y}=c_{1}\left[\begin{array}{l} 3 \\ 2 \end{array}\right] e^{-4 t}+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] \frac{e^{-4 t}}{2}+\left[\begin{array}{l} 3 \\ 2 \end{array}\right] t e^{-4 t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{l} 3 \\ 2 \end{array}\right] e^{-4 t}+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] \frac{e^{-4 t}}{2}+\left[\begin{array}{l} 3 \\ 2 \end{array}\right] t e^{-4 t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.2.4
Find the general solution: $y^{\prime \prime}-4 y^{\prime}+4 y=0$
$y=e^{2 x}\left(c_{1}+c_{2} x\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{2 x}\left(c_{1}+c_{2} x\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.1.7
Find the Wronskian $W$ of a set of three solutions of $y^{\prime \prime \prime}+2 x y^{\prime \prime}+e^{x} y^{\prime}-y=0$, given that $W(0)=2$.
$2 e^{-x^{2}}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
2 e^{-x^{2}}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.4.14
Find the general solution of the given Euler equation on $(0, \infty)$: $x^{2} y^{\prime \prime}-x y^{\prime}+10 y=0$
$y=x\left[c_{1} \cos (3 \ln x)+c_{2} \sin (3 \ln x)\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=x\left[c_{1} \cos (3 \ln x)+c_{2} \sin (3 \ln x)\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.9
Find the general solution: $y^{(4)}-16 y=0$
$y=c_{1} e^{2 x}+c_{2} e^{-2 x}+c_{3} \cos 2 x+c_{4} \sin 2 x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} e^{2 x}+c_{2} e^{-2 x}+c_{3} \cos 2 x+c_{4} \sin 2 x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.2.2.24
Solve the equation $y^{\prime}=\frac{\left(1+y^{2}\right)}{\left(1+x^{2}\right)}$ explicitly. Hint: Use the identity $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$.
$y=\frac{x+c}{1-c x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{x+c}{1-c x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.2.4.2
Solve the given Bernoulli equation: $7 x y^{\prime}-2 y=-\frac{x^{2}}{y^{6}}$
$y=x^{2 / 7}(c-\ln |x|)^{1 / 7}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=x^{2 / 7}(c-\ln |x|)^{1 / 7}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.8
Find the general solution: $y^{(4)}+y^{\prime \prime}=0$
$y=c_{1}+c_{2} x+c_{3} \cos x+c_{4} \sin x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1}+c_{2} x+c_{3} \cos x+c_{4} \sin x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.6.5
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rrr}3 & -3 & 1 \\ 0 & 2 & 2 \\ 5 & 1 & 1\end{array}\right] \mathbf{y}$
$\mathbf{y}=c_{1}\left[\begin{array}{c} -1 \\ -1 \\ 2 \end{array}\right] e^{-2 t}+c_{2} e^{4 t}\left[\begin{array}{c} \cos 2 t-\sin 2 t \\ \cos 2 t+\sin 2 t \\ 2 \cos 2 t \end{array}\right]+c_{3} e^{4 t}\left[\begin{array}{c} \sin 2 t+\cos 2 t \\ \sin 2 t-\cos 2 t \\ 2 \sin 2 t \end{array}\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{c} -1 \\ -1 \\ 2 \end{array}\right] e^{-2 t}+c_{2} e^{4 t}\left[\begin{array}{c} \cos 2 t-\sin 2 t \\ \cos 2 t+\sin 2 t \\ 2 \cos 2 t \end{array}\right]+c_{3} e^{4 t}\left[\begin{array}{c} \sin 2 t+\cos 2 t \\ \sin 2 t-\cos 2 t \\ 2 \sin 2 t \end{array}\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.2.12
Find the general solution: $10 y^{\prime \prime}-3 y^{\prime}-y=0$
$y=c_{1} e^{-x / 5}+c_{2} e^{x / 2}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} e^{-x / 5}+c_{2} e^{x / 2}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.6.52
Find two linearly independent Frobenius solutions of the equation: $4 x^{2} y^{\prime \prime}+2 x\left(4-x^{2}\right) y^{\prime}+\left(1+7 x^{2}\right) y=0$
$y_{1}=x^{-1 / 2}\left(1-\frac{1}{2} x^{2}+\frac{1}{32} x^{4}\right)$ $y_{2}=y_{1} \ln x+x^{3 / 2}\left(\frac{5}{8}-\frac{9}{128} x^{2}+\sum_{m=2}^{\infty} \frac{1}{4^{m+1}(m-1) m(m+1)(m+1) !} x^{2 m}\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{1}=x^{-1 / 2}\left(1-\frac{1}{2} x^{2}+\frac{1}{32} x^{4}\right)$ $y_{2}=y_{1} \ln x+x^{3 / 2}\left(\frac{5}{8}-\frac{9}{128} x^{2}+\sum_{m=2}^{\infty} \frac{1}{4^{m+1}(m-1) m(m+1)(m+1) !} x^{2 m}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.4.2.2
A fluid initially at $100^{\circ} \mathrm{C}$ is placed outside on a day when the temperature is $-10^{\circ} \mathrm{C}$, and the temperature of the fluid drops $20^{\circ} \mathrm{C}$ in one minute. Find the temperature $T(t)$ of the fluid for $t>0$.
$T=-10+110 e^{-t \ln \frac{11}{9}}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
T=-10+110 e^{-t \ln \frac{11}{9}}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.4.16
Find the general solution for the equation: $y^{\prime \prime}-6 y^{\prime}+8 y=e^{x}(11-6 x)$
$y=e^{x}(1-2 x)+c_{1} e^{2 x}+c_{2} e^{4 x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{x}(1-2 x)+c_{1} e^{2 x}+c_{2} e^{4 x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.6.29
Find a fundamental set of solutions: $\left(x^{2}-2 x\right) y^{\prime \prime}+\left(2-x^{2}\right) y^{\prime}+(2 x-2) y=0 ; \quad y_{1}=e^{x}$
$\left\{e^{x}, x^{2}\right\}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\left\{e^{x}, x^{2}\right\}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.1.17
A mass of one $\mathrm{kg}$ is attached to a spring with constant $k=4 \mathrm{~N} / \mathrm{m}$. An external force $F(t)=$ $-\cos \omega t-2 \sin \omega t \mathrm{n}$ is applied to the mass. Find the displacement $y$ for $t>0$ if $\omega$ equals the natural frequency of the spring-mass system. Assume that the mass is initially displaced $3 \mathrm{~m}$ above equilibrium and given an upward velocity of $450 \mathrm{~cm} / \mathrm{s}$.
$y=\frac{t}{2} \cos 2 t-\frac{t}{4} \sin 2 t+3 \cos 2 t+2 \sin 2 t \mathrm{~m}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{t}{2} \cos 2 t-\frac{t}{4} \sin 2 t+3 \cos 2 t+2 \sin 2 t \mathrm{~m}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.6.3
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rr}1 & 2 \\ -4 & 5\end{array}\right] \mathbf{y}$
$\mathbf{y}=c_{1} e^{3 t}\left[\begin{array}{c} \cos 2 t+\sin 2 t \\ 2 \cos 2 t \end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c} \sin 2 t-\cos 2 t \\ 2 \sin 2 t \end{array}\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1} e^{3 t}\left[\begin{array}{c} \cos 2 t+\sin 2 t \\ 2 \cos 2 t \end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c} \sin 2 t-\cos 2 t \\ 2 \sin 2 t \end{array}\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.1
Find the general solution: $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$
$y=e^{x}\left(c_{1}+c_{2} x+c_{3} x^{2}\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{x}\left(c_{1}+c_{2} x+c_{3} x^{2}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.5.8
Find a fundamental set of Frobenius solutions for the equation: $18 x^{2}(1+x) y^{\prime \prime}+3 x\left(5+11 x+x^{2}\right) y^{\prime}-\left(1-2 x-5 x^{2}\right) y=0$. Compute $a_{0}, a_{1} \ldots, a_{N}$ for $N$ at least 7 in each solution.
$y_{1}=x^{1 / 3}\left(1-\frac{1}{3} x+\frac{2}{15} x^{2}-\frac{5}{63} x^{3}+\cdots\right)$ $y_{2}=x^{-1 / 6}\left(1-\frac{1}{12} x^{2}+\frac{1}{18} x^{3}+\cdots\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{1}=x^{1 / 3}\left(1-\frac{1}{3} x+\frac{2}{15} x^{2}-\frac{5}{63} x^{3}+\cdots\right)$ $y_{2}=x^{-1 / 6}\left(1-\frac{1}{12} x^{2}+\frac{1}{18} x^{3}+\cdots\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.6.7
Find the general solution: $y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \sec x ; \quad y_{1}=e^{x} \cos x$
$y=e^{x}\left(x \sin x+\cos x \ln |\cos x|+c_{1} \cos x+c_{2} \sin x\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{x}\left(x \sin x+\cos x \ln |\cos x|+c_{1} \cos x+c_{2} \sin x\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.1.2
An object stretches a string 1.2 inches in equilibrium. Find its displacement for $t>0$ if it's initially displaced 3 inches below equilibrium and given a downward velocity of $2 \mathrm{ft} / \mathrm{s}$.
$y=-\frac{1}{4} \cos 8 \sqrt{5} t-\frac{1}{4 \sqrt{5}} \sin 8 \sqrt{5} t \mathrm{ft}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=-\frac{1}{4} \cos 8 \sqrt{5} t-\frac{1}{4 \sqrt{5}} \sin 8 \sqrt{5} t \mathrm{ft}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.2.2
Find the general solution: $y^{\prime \prime}-4 y^{\prime}+5 y=0$
$y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.3
Find the general solution: $y^{\prime \prime \prime}-y^{\prime \prime}+16 y^{\prime}-16 y=0$
$y=c_{1} e^{x}+c_{2} \cos 4 x+c_{3} \sin 4 x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} e^{x}+c_{2} \cos 4 x+c_{3} \sin 4 x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.3.64
Find the general solution: $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=e^{x}(1+x)$
$y=\frac{x^{3} e^{x}}{24}(4+x)+e^{x}\left(c_{1}+c_{2} x+c_{3} x^{2}\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{x^{3} e^{x}}{24}(4+x)+e^{x}\left(c_{1}+c_{2} x+c_{3} x^{2}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.4.5
Find the general solution of the given Euler equation on $(0, \infty)$: $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$
$y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.6.2.1
A $64 \mathrm{lb}$ object stretches a spring $4 \mathrm{ft}$ in equilibrium. It is attached to a dashpot with damping constant $c=8 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$. The object is initially displaced 18 inches above equilibrium and given a downward velocity of $4 \mathrm{ft} / \mathrm{sec}$. Find its displacement and time-varying amplitude for $t>0$.
$y=\frac{e^{-2 t}}{2}(3 \cos 2 t-\sin 2 t) \mathrm{ft} ; \sqrt{\frac{5}{2}} e^{-2 t} \mathrm{ft}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=\frac{e^{-2 t}}{2}(3 \cos 2 t-\sin 2 t) \mathrm{ft} ; \sqrt{\frac{5}{2}} e^{-2 t} \mathrm{ft}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.6.9
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rr}5 & -4 \\ 10 & 1\end{array}\right] \mathbf{y}$
$\mathbf{y}=c_{1} e^{3 t}\left[\begin{array}{c}\cos 6 t-3 \sin 6 t \\ 5 \cos 6 t\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c}\sin 6 t+3 \cos 6 t \\ 5 \sin 6 t\end{array}\right]$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1} e^{3 t}\left[\begin{array}{c}\cos 6 t-3 \sin 6 t \\ 5 \cos 6 t\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c}\sin 6 t+3 \cos 6 t \\ 5 \sin 6 t\end{array}\right]
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.2.4.32
Solve the given homogeneous equation implicitly: $y^{\prime}=\frac{y}{y-2 x}$
$y^{2}(y-3 x)=c ; \quad y \equiv 0 ; y=3 x$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y^{2}(y-3 x)=c ; \quad y \equiv 0 ; y=3 x
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.2.1
Find the general solution: $y^{\prime \prime}+5 y^{\prime}-6 y=0$
$y=c_{1} e^{-6 x}+c_{2} e^{x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} e^{-6 x}+c_{2} e^{x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.2.1.5
Find the general solution: $x^{2} y^{\prime}+y=0$
$y=c e^{1 / x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c e^{1 / x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.4.9
Find the general solution of the given Euler equation on $(0, \infty)$: $4 x^{2} y^{\prime \prime}+8 x y^{\prime}+y=0$
$y=x^{-1 / 2}\left(c_{1}+c_{2} \ln x\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=x^{-1 / 2}\left(c_{1}+c_{2} \ln x\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.2.4
Find the power series in $x$ for the general solution: $\left(1-x^{2}\right) y^{\prime \prime}-8 x y^{\prime}-12 y=0$
$y=a_{0} \sum_{m=0}^{\infty}(m+1)(2 m+1) x^{2 m}+\frac{a_{1}}{3} \sum_{m=0}^{\infty}(m+1)(2 m+3) x^{2 m+1}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=a_{0} \sum_{m=0}^{\infty}(m+1)(2 m+1) x^{2 m}+\frac{a_{1}}{3} \sum_{m=0}^{\infty}(m+1)(2 m+3) x^{2 m+1}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.1.11
Find the Wronskian of a given set $\left\{y_{1}, y_{2}\right\}$ of solutions of $y^{\prime \prime}-6 y^{\prime}+9 y=0$, given that $y_{1}=e^{3 x}$.
$y_{2}=x e^{3 x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{2}=x e^{3 x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.7
Find the general solution: $\mathbf{y}^{\prime}=\left[\begin{array}{rr}-13 & 16 \\ -9 & 11\end{array}\right] \mathbf{y}$
\mathbf{y}=c_{1}\left[\begin{array}{l} 4 \\ 3 \end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] \frac{e^{-t}}{3}+\left[\begin{array}{l} 4 \\ 3 \end{array}\right] t e^{-t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{l} 4 \\ 3 \end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{r} -1 \\ 0 \end{array}\right] \frac{e^{-t}}{3}+\left[\begin{array}{l} 4 \\ 3 \end{array}\right] t e^{-t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.2.13
Find the general solution: $4 y^{(4)}+12 y^{\prime \prime \prime}+3 y^{\prime \prime}-13 y^{\prime}-6 y=0$
$y=c_{1} e^{x}+c_{2} e^{-2 x}+c_{3} e^{-x / 2}+c_{4} e^{-3 x / 2}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=c_{1} e^{x}+c_{2} e^{-2 x}+c_{3} e^{-x / 2}+c_{4} e^{-3 x / 2}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.10.5.9
Find the general solution: $\mathbf{y}^{\prime}=\frac{1}{3}\left[\begin{array}{rrr}1 & 1 & -3 \\ -4 & -4 & 3 \\ -2 & 1 & 0\end{array}\right] \mathbf{y}$
\mathbf{y}=c_{1}\left[\begin{array}{r} -1 \\ 1 \\ 1 \end{array}\right] e^{t}+c_{2}\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right] e^{-t}+c_{3}\left(\left[\begin{array}{l} 0 \\ 3 \\ 0 \end{array}\right] e^{-t}+\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right] t e^{-t}\right)
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\mathbf{y}=c_{1}\left[\begin{array}{r} -1 \\ 1 \\ 1 \end{array}\right] e^{t}+c_{2}\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right] e^{-t}+c_{3}\left(\left[\begin{array}{l} 0 \\ 3 \\ 0 \end{array}\right] e^{-t}+\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right] t e^{-t}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.9.3.66
Find the general solution: $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=e^{-2 x}[(23-2 x) \cos x+(8-9 x) \sin x]$
$y=e^{-2 x}\left[\left(1+\frac{x}{2}\right) \cos x+\left(\frac{3}{2}-2 x\right) \sin x\right]+c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{-2 x}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=e^{-2 x}\left[\left(1+\frac{x}{2}\right) \cos x+\left(\frac{3}{2}-2 x\right) \sin x\right]+c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{-2 x}
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.5.2
Find a fundamental set of Frobenius solutions for the equation: $3 x^{2} y^{\prime \prime}+2 x\left(1+x-2 x^{2}\right) y^{\prime}+\left(2 x-8 x^{2}\right) y=0$. Compute $a_{0}, a_{1} \ldots, a_{N}$ for $N$ at least 7 in each solution.
$y_{1}=x^{1 / 3}\left(1-\frac{2}{3} x+\frac{8}{9} x^{2}-\frac{40}{81} x^{3}+\cdots\right)$ $y_{2}=1-x+\frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\cdots$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{1}=x^{1 / 3}\left(1-\frac{2}{3} x+\frac{8}{9} x^{2}-\frac{40}{81} x^{3}+\cdots\right)$ $y_{2}=1-x+\frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\cdots
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.5.1
Find a fundamental set of Frobenius solutions for the equation: $2 x^{2}\left(1+x+x^{2}\right) y^{\prime \prime}+x\left(3+3 x+5 x^{2}\right) y^{\prime}-y=0$. Compute $a_{0}, a_{1} \ldots, a_{N}$ for $N$ at least 7 in each solution.
$y_{1}=x^{1 / 2}\left(1-\frac{1}{5} x-\frac{2}{35} x^{2}+\frac{31}{315} x^{3}+\cdots\right)$ $y_{2}=x^{-1}\left(1+x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\cdots\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y_{1}=x^{1 / 2}\left(1-\frac{1}{5} x-\frac{2}{35} x^{2}+\frac{31}{315} x^{3}+\cdots\right)$ $y_{2}=x^{-1}\left(1+x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\cdots\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.2.8
Find the power series in $x$ for the general solution: $\left(1+x^{2}\right) y^{\prime \prime}-10 x y^{\prime}+28 y=0$
$y=a_{0}\left(1-14 x^{2}+\frac{35}{3} x^{4}\right)+a_{1}\left(x-3 x^{3}+\frac{3}{5} x^{5}+\frac{1}{35} x^{7}\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=a_{0}\left(1-14 x^{2}+\frac{35}{3} x^{4}\right)+a_{1}\left(x-3 x^{3}+\frac{3}{5} x^{5}+\frac{1}{35} x^{7}\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.7.4.3
Find the general solution of the given Euler equation on $(0, \infty)$: $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$
$y=x\left(c_{1}+c_{2} \ln x\right)$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
y=x\left(c_{1}+c_{2} \ln x\right)
college_math.ELEMENTARY_DIFFERENTIAL_EQUATIONS
exercise.5.6.21
Find a fundamental set of solutions: $4 x y^{\prime \prime}+2 y^{\prime}+y=0 ; \quad y_{1}=\sin \sqrt{x}$
$\{\sin \sqrt{x}, \cos \sqrt{x}\}$
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0)
college_math.differential_equation
\{\sin \sqrt{x}, \cos \sqrt{x}\}