File size: 13,963 Bytes
b6c95bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
classdef gymGame
% Defines the outcomes of a T period game with a commitment contract
% that imposes penalty p if a_star attendances are not achieved, or
% instead with a piece-rate incentive of r per attendance
properties
% Game properties
T; % number of periods in game
a_star; % commitment contract attendance threshold
p; % commitment contract penalty
r; % per attendance reward
% Parameters for individuals taking up the contract
lambda; % 1/mean of exponential cost distribution
min_cost; % lower bound on support of cost distribution
beta; % actual present focus
betatilde; % perceived present focus
b; % health benefit
mu; % fraction of people taking up the contract
% Outcomes under commitment contract
utilities; % utilities in each period for each g
t1_utility; % period 1 utility
utilities_tilde; % perceived utilities in each future period
att; % distribution of attendances in simulation
avg_att; % average attendance in simulation
avg_costs; % average aggregate costs incurred
avg_t1_att; % average first period attendance
prob_success; % likelihood of meeting threshold in simulation
prob_att_c_b; % likelihood of attending when cost > benefit
prob_att_day; % likelihood of attending each day
% Outcomes under piece-rate incentive(s)
prob_att_r; % probability of attending on a given day
att_r; % expected attendance under incentive r
change_att_r; % expected increase in attendance due to r
benefits_r; % expected health benefits under incentive r
costs_r; % expected costs under incentive r
net_surplus_r; % surplus under incentive r, net of incentive
surplus_r; % total surplus under incentive r
% Identifier
spec;
end
properties (Constant)
seed = 12345; % seed for simulation
rounds = 10000; % number of iterations of the simulation
end
methods
function obj = gymGame(properties, parameters, min_cost, title)
% input properties
obj.T = properties.T;
obj.a_star = properties.a_star;
obj.p = properties.p;
% set parameters from data
obj.lambda = parameters.lambda;
obj.min_cost = min_cost;
obj.beta = parameters.beta;
obj.betatilde = parameters.betatilde;
obj.b = parameters.b;
obj.mu = parameters.mu;
% set identifier
obj.spec = title;
% compute matrix of utilities
obj = obj.compute_utilities();
% simulate behavior of participants
obj = obj.simulate_behavior();
end
function obj = compute_utilities(obj)
V_n = NaN([obj.a_star+1 obj.T]);
V_tilde = NaN([obj.a_star+1 obj.T]);
% set last period utilities
for g = 0:obj.a_star
g1 = g + 1; % 1-indexed
V_n(g1,obj.T) = obj.compute_T_utility(g, 'actual');
V_tilde(g1,obj.T) = obj.compute_T_utility(g, 'perceived');
end
% set all other period utilities
for period = 1:obj.T-1
t = obj.T - period; % go backwards
start = max(obj.a_star - t + 1, 0);
% iterate through remaining attendances
for g = start:obj.a_star
g1 = g + 1; % 1-indexed
% expected utility difference from attending
delta_V_tilde = V_tilde(max(g1-1,1),t+1) - V_tilde(g1,t+1);
delta_V_n = V_n(max(g1-1,1),t+1) - V_n(g1,t+1);
% perceived expected utility at period t
V_tilde(g1,t) = (obj.F(obj.betatilde.*(obj.b + delta_V_tilde)).* ...
(obj.b + delta_V_tilde)) + V_tilde(g1,t+1) - ...
obj.C(obj.betatilde.*(obj.b + delta_V_tilde));
% actual expected utility at period t
V_n(g1,t) = (obj.F(obj.beta.*(obj.b + delta_V_tilde)).* ...
(obj.b + delta_V_n)) + V_n(g1,t+1) - ...
obj.C(obj.beta.*(obj.b + delta_V_tilde));
end
end
obj.utilities = V_n;
obj.t1_utility = V_n(obj.a_star+1,1); % period 1 utility
obj.utilities_tilde = V_tilde;
end
function V_T = compute_T_utility(obj, g, focus)
% compute utility in the last period
% set present focus parameter
if strcmp(focus, 'actual')
B = obj.beta;
elseif strcmp(focus, 'perceived')
B = obj.betatilde;
end
if g == 0 % no attendances left
V_T = (obj.F(B.*obj.b).*obj.b) - obj.C(B.*obj.b);
elseif g == 1 % one attendance left
V_T = (obj.F(B.*(obj.b + obj.p)).*obj.b) - ...
obj.C(B.*(obj.b + obj.p)) - ...
((1 - obj.F(B.*(obj.b + obj.p))).*obj.p);
else % more than one attendance left
V_T = (obj.F(B.*obj.b).*obj.b) - obj.C(B.*obj.b) - obj.p;
end
end
function obj = simulate_behavior(obj)
% simulate behavior through T periods for a number of rounds to
% generate estimates of average attendance and the likelihood
% of meeting the contract threshold
rng(obj.seed); % set seed
obj.att = zeros(1,obj.rounds); % default no attendances
t1_att = obj.att;
att_day = zeros(obj.T,obj.rounds); % default no attendances
costs_day = zeros(obj.T,obj.rounds); % default no costs
met_goal = zeros(1,obj.rounds); % default failed to meet goal
obj.prob_att_c_b = zeros(1,obj.rounds); % default never attend
for round = 1:obj.rounds
c = obj.cost_draws(); % generate cost draws
g = obj.a_star; % all attendances initially left
a = 0; % total number of attendances
c_b = 0; % events where cost > benefit
att_c_b = 0; % attendance in those events
% check if the DM wants to go to the gym in each period
for t = 1:obj.T
g1 = g + 1; % 1-indexed
if t == obj.T && (g == 0 || g >= 2) % last period, case i
if c(t) <= (obj.beta * obj.b)
% update attendances & costs incurred
g = max(g - 1, 0);
a = a + 1;
att_day(t,round) = 1;
costs_day(t,round) = c(t);
if c(t) > obj.b
% cost is greater than benefit
att_c_b = att_c_b + 1;
end
end
elseif t == obj.T && g == 1 % last period, case ii
if c(t) <= (obj.beta * (obj.b + obj.p))
% update attendances & costs incurred
g = max(g - 1, 0);
a = a + 1;
att_day(t,round) = 1;
costs_day(t,round) = c(t);
if c(t) > obj.b
% cost is greater than benefit
att_c_b = att_c_b + 1;
end
end
else % all other periods
if c(t) <= (obj.beta * (obj.b + ...
obj.utilities_tilde(max(g1-1,1),t+1) - ...
obj.utilities_tilde(g1,t+1)))
% update attendances & costs incurred
g = max(g - 1, 0);
a = a + 1;
att_day(t,round) = 1;
costs_day(t,round) = c(t);
if c(t) > obj.b
% cost is greater than benefit
att_c_b = att_c_b + 1;
end
end
end
if c(t) > obj.b
% cost is greater than benefit
c_b = c_b + 1;
end
if t == 1 && g < obj.a_star
% period one attendances
t1_att(round) = 1;
end
end
if g == 0
met_goal(round) = 1; % input outcome
end
obj.att(round) = a; % input attendances
obj.prob_att_c_b(round) = att_c_b ./ c_b;
end
% return means
obj.avg_att = mean(obj.att);
obj.avg_t1_att = mean(t1_att);
obj.prob_success = mean(met_goal);
obj.prob_att_c_b = mean(obj.prob_att_c_b);
obj.prob_att_day = sum(att_day,2) ./ obj.rounds;
obj.avg_costs = mean(sum(costs_day,1));
end
function obj = compute_incentive_behavior(obj, r)
% compute expected attendance and total surplus given
% piece-rate incentive r
obj.r = r;
% compute expected attendance on a given day
obj.prob_att_r = obj.F(obj.beta .* (obj.b + r));
prob_att_no_r = obj.F(obj.beta .* (obj.b)); % without incentive
% compute expected attendance
obj.att_r = obj.T .* obj.prob_att_r;
% compute expected increase in attendance
obj.change_att_r = obj.T .* (obj.prob_att_r - prob_att_no_r);
% compute expected benefits
obj.benefits_r = obj.att_r .* obj.b;
% compute expected costs
obj.costs_r = obj.T .* obj.C(obj.beta .* (obj.b + r));
% compute surplus net of incentive
obj.net_surplus_r = obj.benefits_r - obj.costs_r;
% compute total surplus
obj.surplus_r = obj.net_surplus_r + (obj.att_r .* r);
end
function probability = F(obj, x)
% cumulative distribution function of costs
z = x - obj.min_cost;
z = gymGame.minzero(z);
probability = 1 - exp(-obj.lambda.*z);
end
function density = f(obj, x)
% cost density function
% returns zero when given x < lower bound on costs
z = x - obj.min_cost;
density = obj.lambda.*exp(-obj.lambda.*z);
density = density.*heaviside(heaviside(z));
end
function expectation = C(obj, x)
% expected cost function
z = x - obj.min_cost;
z = gymGame.minzero(z);
expectation = (1 ./ obj.lambda).*(1 - exp(-obj.lambda.*z)) ...
- (z.*exp(-obj.lambda.*z)) + obj.min_cost.*obj.F(x);
end
function c = cost_draws(obj)
% vector of random cost draws for each period
mean = 1 ./ obj.lambda;
c = exprnd(mean, [1 obj.T]) + obj.min_cost;
end
end
methods(Static)
function y = minzero(x)
% returns x if x is positive, 0 otherwise
y = x .* heaviside(heaviside(x));
end
end
end
|