|
|
close all |
|
|
|
|
|
set(groot, 'DefaultAxesLineWidth', 1.5); |
|
|
set(groot, 'DefaultLineLineWidth', 4); |
|
|
set(groot, 'DefaultAxesTickLabelInterpreter','latex'); |
|
|
set(groot, 'DefaultLegendInterpreter','latex'); |
|
|
set(groot, 'DefaultAxesFontSize',24); |
|
|
|
|
|
|
|
|
N = 2500; |
|
|
T = 450; |
|
|
|
|
|
A = zeros(2*N, T + 1); |
|
|
Th = zeros(2*N, T + 1); |
|
|
|
|
|
C = zeros(2*N, T); |
|
|
L = zeros(2*N, T); |
|
|
R = zeros(2*N, T); |
|
|
X = zeros(2*N, T); |
|
|
|
|
|
Age = zeros(2*N, T); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rng(100); |
|
|
|
|
|
Y = randn(N, T)*se; |
|
|
Y = exp([Y; -Y]); |
|
|
|
|
|
Th(:, 1) = p.thetam; |
|
|
A(:, 1) = 0; |
|
|
Age(:,1) = 1; |
|
|
|
|
|
|
|
|
for t = 1 : T |
|
|
|
|
|
unif = rand(2*N, 1); |
|
|
|
|
|
state = [(1 + p.rl)*A(:,t) + Y(:,t), Th(:,t)]; |
|
|
|
|
|
[~, pall, ~, Lall, thetall] = solveh(state, Winterp, p); |
|
|
|
|
|
R(:,t) = unif <= pall(:,1); |
|
|
|
|
|
L(:,t) = Lall(:,1).*R(:,t) + Lall(:,2).*(1 - R(:,t)); |
|
|
|
|
|
Th(:, t+1) = thetall(:,1).*R(:,t) + thetall(:,2).*(1 - R(:,t)); |
|
|
|
|
|
cmax = bisect('savings', 1e-13, 1e5, L(:,t), p, amin); |
|
|
cmin = bisect('savings', 1e-13, 1e5, L(:,t), p, amax); |
|
|
|
|
|
C(:,t) = max(min(Cinterp(L(:,t), Th(:,t+1)), cmax), cmin); |
|
|
|
|
|
[~, A(:, t+1)] = savings(C(:,t), L(:,t), p); |
|
|
|
|
|
Age(:, t+1) = (Age(:,t) + 1).*(1 - R(:,t)) + R(:,t); |
|
|
|
|
|
X(:,t) = (Th(:,t+1) - Th(:,t))./Th(:,t).*R(:,t); |
|
|
|
|
|
end |
|
|
|
|
|
|
|
|
|
|
|
A(:, 1 : 150) = []; |
|
|
Th(:, 1 : 150) = []; |
|
|
C(:, 1 : 150) = []; |
|
|
R(:, 1 : 150) = []; |
|
|
L(:, 1 : 150) = []; |
|
|
Y(:, 1 : 150) = []; |
|
|
X(:, 1 : 150) = []; |
|
|
Age(:, 1 : 150) = []; |
|
|
|
|
|
Asave = A; |
|
|
Thsave = Th; |
|
|
Csave = C; |
|
|
Lsave = L; |
|
|
Rsave = R; |
|
|
Ysave = Y; |
|
|
Xsave = X; |
|
|
Agesave = Age; |
|
|
|
|
|
|
|
|
A(:, end) = []; |
|
|
Th(:, end) = []; |
|
|
Age(:, end) = []; |
|
|
|
|
|
Age = floor(Age/4); |
|
|
|
|
|
D = Th.*p.hbar; |
|
|
W = A + p.hbar - D; |
|
|
|
|
|
Yh = p.phi^(1/p.gamma)*C.^(-p.sigma/p.gamma); |
|
|
|
|
|
|
|
|
|
|
|
figure(2) |
|
|
|
|
|
id = 1; |
|
|
|
|
|
subplot(1, 3, 1), plot([C(id, :)', Y(id, :)']); |
|
|
title('Consumption and Income', 'Interpreter','Latex'); |
|
|
h = legend('consumption', 'income'); |
|
|
set(gca, 'ygrid', 'on') |
|
|
set(h,'Interpreter','latex'); |
|
|
|
|
|
|
|
|
subplot(1, 3, 2), plot([A(id, :)', p.hbar.*(1 - Th(id, :)')]); |
|
|
title('Wealth', 'Interpreter','Latex'); |
|
|
set(gca, 'ygrid', 'on') |
|
|
h = legend('liquid', 'illiquid'); |
|
|
set(h,'Interpreter','latex'); |
|
|
|
|
|
|
|
|
subplot(1, 3, 3), plot(Th(id, :)'); |
|
|
title('Debt', 'Interpreter','Latex'); |
|
|
set(gca, 'ygrid', 'on') |
|
|
set(h,'Interpreter','latex'); |
|
|
|
|
|
|
|
|
fextract = mean(vec(X >= 0.05))*4; |
|
|
medianextract = median(X(X >= 0.05)); |
|
|
|
|
|
HY = p.hbar./Y/4; |
|
|
PTI = p.mbar*p.hbar./Y; |
|
|
|
|
|
|
|
|
|
|
|
moment_model = zeros(60, 1); |
|
|
|
|
|
moment_model(1) = mean(W(:)) /mean(vec(Y))/4; |
|
|
moment_model(2) = p.hbar /mean(vec(Y))/4; |
|
|
moment_model(3) = mean(D(:)) /mean(vec(Y))/4; |
|
|
moment_model(4) = mean(A(:)) /mean(vec(Y))/4; |
|
|
|
|
|
moment_model(5) = fextract; |
|
|
moment_model(6) = mean(vec(Yh))/mean(vec(C)); |
|
|
|
|
|
|
|
|
moment_model(7 : 11) = prctile( A(:), [10; 25; 50; 75; 90])/mean(vec(Y))/4; |
|
|
moment_model(12 : 16) = prctile(Th(:), [10; 25; 50; 75; 90]); |
|
|
moment_model(17 : 21) = prctile((1 - Th(:)).*p.hbar./W(:), [10; 25; 50; 75; 90]); |
|
|
moment_model(22 : 26) = prctile( W(:), [10; 25; 50; 75; 90])/mean(vec(Y))/4; |
|
|
moment_model(27 : 31) = prctile(PTI(:), [10; 25; 50; 75; 90]); |
|
|
moment_model(32 : 36) = prctile(HY(:), [10; 25; 50; 75; 90]); |
|
|
moment_model(37 : 41) = prctile(Age(:), [10; 25; 50; 75; 90]); |
|
|
moment_model(42) = medianextract; |
|
|
|
|
|
|
|
|
moment_data = [1.45; 1.82; 0.83; 0.46; 0.08; 0.23; -0.04; 0.01; 0.15; 0.68; 1.69; |
|
|
0.18; 0.39; 0.62; 0.77; 0.88; 0.36; 0.64; 0.87; 0.99; 1.04; 0; 0.04; 0.73; 2.34; 3.94; |
|
|
0.05; 0.08; 0.11; 0.17; 0.24; 1.02; 1.62; 2.48; 3.78; 6.43; 0; 1; 3; 6; 10; 0.23]; |
|
|
|
|
|
|
|
|
|
|
|
fprintf('\n') |
|
|
fprintf('Aggregate Wealth to Income = |
|
|
fprintf('Aggregate Housing to Income = %9.2f %9.2f\n', [moment_model(2), moment_data(2)]); |
|
|
fprintf('Aggregate Debt to Income = %9.2f %9.2f\n', [moment_model(3), moment_data(3)]); |
|
|
fprintf('Aggregate Liquid assets to Income = %9.2f %9.2f\n', [moment_model(4), moment_data(4)]); |
|
|
fprintf('Non-Market Production to Consumption = %9.2f %9.2f\n', [moment_model(6), moment_data(6)]); |
|
|
fprintf('\n') |
|
|
fprintf('Fraction Borrowers who extract = %9.2f %9.2f\n', [moment_model(5), moment_data(5)]); |
|
|
fprintf('Median Change in the Balance = %9.2f %9.2f\n', [moment_model(42), moment_data(42)]); |
|
|
fprintf('\n') |
|
|
|
|
|
fprintf('10 pctile liquid assets owners = %9.2f %9.2f\n', [moment_model(7), moment_data(7)]); |
|
|
fprintf('25 pctile liquid assets owners = %9.2f %9.2f\n', [moment_model(8), moment_data(8)]); |
|
|
fprintf('50 pctile liquid assets owners = %9.2f %9.2f\n', [moment_model(9), moment_data(9)]); |
|
|
fprintf('75 pctile liquid assets owners = %9.2f %9.2f\n', [moment_model(10), moment_data(10)]); |
|
|
fprintf('90 pctile liquid assets owners = %9.2f %9.2f\n', [moment_model(11), moment_data(11)]); |
|
|
|
|
|
fprintf('\n') |
|
|
|
|
|
|
|
|
fprintf('10 pctile LTV, borrowers = %9.2f %9.2f\n', [moment_model(12), moment_data(12)]); |
|
|
fprintf('25 pctile LTV, borrowers = %9.2f %9.2f\n', [moment_model(13), moment_data(13)]); |
|
|
fprintf('50 pctile LTV, borrowers = %9.2f %9.2f\n', [moment_model(14), moment_data(14)]); |
|
|
fprintf('75 pctile LTV, borrowers = %9.2f %9.2f\n', [moment_model(15), moment_data(15)]); |
|
|
fprintf('90 pctile LTV, borrowers = %9.2f %9.2f\n', [moment_model(16), moment_data(16)]); |
|
|
fprintf('\n') |
|
|
fprintf('10 Share Housing Wealth in Owner Wealth = %9.2f %9.2f\n', [moment_model(17), moment_data(17)]); |
|
|
fprintf('25 Share Housing Wealth in Owner Wealth = %9.2f %9.2f\n', [moment_model(18), moment_data(18)]); |
|
|
fprintf('50 Share Housing Wealth in Owner Wealth = %9.2f %9.2f\n', [moment_model(19), moment_data(19)]); |
|
|
fprintf('75 Share Housing Wealth in Owner Wealth = %9.2f %9.2f\n', [moment_model(20), moment_data(20)]); |
|
|
fprintf('90 Share Housing Wealth in Owner Wealth = %9.2f %9.2f\n', [moment_model(21), moment_data(21)]); |
|
|
fprintf('\n') |
|
|
fprintf('10 pctile Wealth = %9.2f %9.2f\n', [moment_model(22), moment_data(22)]); |
|
|
fprintf('25 pctile Wealth = %9.2f %9.2f\n', [moment_model(23), moment_data(23)]); |
|
|
fprintf('50 pctile Wealth = %9.2f %9.2f\n', [moment_model(24), moment_data(24)]); |
|
|
fprintf('75 pctile Wealth = %9.2f %9.2f\n', [moment_model(25), moment_data(25)]); |
|
|
fprintf('90 pctile Wealth = %9.2f %9.2f\n', [moment_model(26), moment_data(26)]); |
|
|
fprintf('\n') |
|
|
fprintf('10 pctile PTI = %9.2f %9.2f\n', [moment_model(27), moment_data(27)]); |
|
|
fprintf('25 pctile PTI = %9.2f %9.2f\n', [moment_model(28), moment_data(28)]); |
|
|
fprintf('50 pctile PTI = %9.2f %9.2f\n', [moment_model(29), moment_data(29)]); |
|
|
fprintf('75 pctile PTI = %9.2f %9.2f\n', [moment_model(30), moment_data(30)]); |
|
|
fprintf('90 pctile PTI = %9.2f %9.2f\n', [moment_model(31), moment_data(31)]); |
|
|
fprintf('\n') |
|
|
fprintf('10 pctile housing to income = %9.2f %9.2f\n', [moment_model(32), moment_data(32)]); |
|
|
fprintf('25 pctile housing to income = %9.2f %9.2f\n', [moment_model(33), moment_data(33)]); |
|
|
fprintf('50 pctile housing to income = %9.2f %9.2f\n', [moment_model(34), moment_data(34)]); |
|
|
fprintf('75 pctile housing to income = %9.2f %9.2f\n', [moment_model(35), moment_data(35)]); |
|
|
fprintf('90 pctile housing to income = %9.2f %9.2f\n', [moment_model(36), moment_data(36)]); |
|
|
fprintf('\n') |
|
|
fprintf('10 pctile mortgage age = %9.2f %9.2f\n', [moment_model(37), moment_data(37)]); |
|
|
fprintf('25 pctile mortgage age = %9.2f %9.2f\n', [moment_model(38), moment_data(38)]); |
|
|
fprintf('50 pctile mortgage age = %9.2f %9.2f\n', [moment_model(39), moment_data(39)]); |
|
|
fprintf('75 pctile mortgage age = %9.2f %9.2f\n', [moment_model(40), moment_data(40)]); |
|
|
fprintf('90 pctile mortgage age = %9.2f %9.2f\n', [moment_model(41), moment_data(41)]); |
|
|
|
|
|
|
|
|
|
|
|
T = size(C, 2); |
|
|
|
|
|
U = C.^(1 - p.sigma)/(1 - p.sigma) - p.phi^(1 + 1/p.gamma)/(1 + p.gamma)*C.^(-p.sigma*(1 + 1/p.gamma)); |
|
|
|
|
|
V = sum(p.beta.^(0 : 1 : T -1).*U, 2); |
|
|
|
|
|
V = ((1 - p.sigma)*(1 - p.beta)*mean(V))^(1/(1 - p.sigma)); |
|
|
|
|
|
fprintf('\n') |
|
|
fprintf('Life Time Value, CEV = %9.4f \n', V); |
|
|
|
|
|
|
|
|
|
|
|
S = (1 - Th(:)).*p.hbar./W(:); |
|
|
R = R(:) == 1; |
|
|
|
|
|
fprintf('\n'); |
|
|
fprintf('Mean Liquid Assets = %9.2f %9.2f %9.2f \n', [mean(A(:)), mean(A(R)), mean(A(~R))]); |
|
|
fprintf('Mean Income = %9.2f %9.2f %9.2f \n', [mean(Y(:)), mean(Y(R)), mean(Y(~R))]); |
|
|
fprintf('Mean Liquid Asset to Income = %9.2f %9.2f %9.2f \n', [mean(A(:)./Y(:)), mean(A(R)./Y(R)), mean(A(~R)./Y(~R))]); |
|
|
fprintf('Mean Share Housing Wealth = %9.2f %9.2f %9.2f \n', [mean(S(:)), mean(S(R)), mean(S(~R))]); |
|
|
fprintf('Mean Wealth = %9.2f %9.2f %9.2f \n', [mean(W(:)), mean(W(R)), mean(W(~R))]); |
|
|
fprintf('Mean LTV = %9.2f %9.2f %9.2f \n', [mean(Th(:)), mean(Th(R)), mean(Th(~R))]); |
|
|
fprintf('Mean Age = %9.2f %9.2f %9.2f \n', [mean(Age(:)), mean(Age(R)), mean(Age(~R))]); |
|
|
|
|
|
fprintf('\n'); |
|
|
fprintf('\n'); |
|
|
|