markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
|---|---|---|---|---|
๊ทธ๋ฆฌ๊ณ ๊ฐ ๋
ธ๋์ ๋ํด ์์ฑ๋ dict๋ค์ ์ ์ฅํ์.
|
for user in users:
user["shortest_paths"] = shortest_paths_from(user)
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
๊ทธ๋ฌ๋ฉด ์ด์ ๋งค๊ฐ ์ค์ฌ์ฑ์ ๊ตฌํ ์ค๋น๊ฐ ๋ค ๋์๋ค.
์ด์ ๊ฐ๊ฐ์ ์ต๋จ ๊ฒฝ๋ก์ ํฌํจ๋๋ ๊ฐ ๋
ธ๋์ ๋งค๊ฐ ์ค์ฌ์ฑ์ $1/n$์ ๋ํด ์ฃผ์.
|
for user in users:
user["betweenness_centrality"] = 0.0
for source in users:
source_id = source["id"]
for target_id, paths in source["shortest_paths"].items(): # python2์์๋ items ๋์ iteritems ์ฌ์ฉ
if source_id < target_id: # ์๋ชปํด์ ๋ ๋ฒ ์ธ์ง ์๋๋ก ์ฃผ์ํ์
num_paths = len(paths) # ์ต๋จ ๊ฒฝ๋ก๊ฐ ๋ช ๊ฐ ์กด์ฌํ๋๊ฐ?
contrib = 1 / num_paths # ์ค์ฌ์ฑ์ ๊ธฐ์ฌํ๋ ๊ฐ
for path in paths:
for id in path:
if id not in [source_id, target_id]:
users[id]["betweenness_centrality"] += contrib
for user in users:
print(user["id"], user["betweenness_centrality"])
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
์ฌ์ฉ์ 0๊ณผ 9์ ์ต๋จ ๊ฒฝ๋ก ์ฌ์ด์๋ ๋ค๋ฅธ ์ฌ์ฉ์๊ฐ ์์ผ๋ฏ๋ก ๋งค๊ฐ ์ค์ฌ์ฑ์ด 0์ด๋ค.
๋ฐ๋ฉด ์ฌ์ฉ์ 3, 4, 5๋ ์ต๋จ ๊ฒฝ๋ก์์ ๋ฌด์ฒ ๋น๋ฒํ๊ฒ ์์นํ๊ธฐ ๋๋ฌธ์ ๋์ ๋งค๊ฐ ์ค์ฌ์ฑ์ ๊ฐ์ง๋ค.
๋๊ฒ ์ค์ฌ์ฑ์ ์ ๋๊ฐ ์์ฒด๋ ํฐ ์๋ฏธ๋ฅผ ๊ฐ์ง์ง ์๊ณ , ์๋๊ฐ๋ง์ด ์๋ฏธ๋ฅผ ๊ฐ์ง๋ค.
๊ทธ ์ธ์ ์ดํด๋ณผ ์ ์๋ ์ค์ฌ์ฑ ์งํ ์ค ํ๋๋ ๊ทผ์ ์ค์ฌ์ฑ(closeness centrality)์ด๋ค.
๋จผ์ ๊ฐ ์ฌ์ฉ์์ ์์ ์ฑ(farness)์ ๊ณ์ฐํ๋ค. ์์ ์ฑ์ด๋ from_user์ ๋ค๋ฅธ ๋ชจ๋ ์ฌ์ฉ์์ ์ต๋จ ๊ฒฝ๋ก๋ฅผ ํฉํ ๊ฐ์ด๋ค.
|
#
# closeness centrality
#
def farness(user):
"""๋ชจ๋ ์ฌ์ฉ์์์ ์ต๋จ ๊ฑฐ๋ฆฌ ํฉ"""
return sum(len(paths[0])
for paths in user["shortest_paths"].values())
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
์ด์ ๊ทผ์ ์ค์ฌ์ฑ์ ๊ฐ๋จํ ๊ณ์ฐํ ์ ์๋ค.
|
for user in users:
user["closeness_centrality"] = 1 / farness(user)
for user in users:
print(user["id"], user["closeness_centrality"])
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
๊ณ์ฐ๋ ๊ทผ์ ์ค์ฌ์ฑ์ ํธ์ฐจ๋ ๋์ฑ ์๋ค. ๋คํธ์ํฌ ์ค์ฌ์ ์๋ ๋
ธ๋์กฐ์ฐจ ์ธ๊ณฝ์ ์์นํ ๋
ธ๋๋ค๋ก๋ถํฐ ๋ฉ๋ฆฌ ๋จ์ด์ ธ ์๊ธฐ ๋๋ฌธ์ด๋ค.
์ฌ๊ธฐ์ ๋ดค๋ฏ์ด ์ต๋จ ๊ฒฝ๋ก๋ฅผ ๊ณ์ฐํ๋ ๊ฒ์ ๊ฝค๋ ๋ณต์กํ๋ค. ๊ทธ๋ ๊ธฐ ๋๋ฌธ์ ํฐ ๋คํธ์ํฌ์์๋ ๊ทผ์ ์ค์ฌ์ฑ์ ์์ฃผ ์ฌ์ฉํ์ง ์๋๋ค.
๋ ์ง๊ด์ ์ด์ง๋ง ๋ณดํต ๋ ์ฝ๊ฒ ๊ณ์ฐํ ์ ์๋ ๊ณ ์ ๋ฒกํฐ ์ค์ฌ์ฑ(eigenvector centrality)์ ๋ ์์ฃผ ์ฌ์ฉํ๋ค.
21.2 ๊ณ ์ ๋ฒกํฐ ์ค์ฌ์ฑ
๊ณ ์ ๋ฒกํฐ ์ค์ฌ์ฑ์ ๋ํด ์์๋ณด๊ธฐ ์ ์ ๋จผ์ ๊ณ ์ ๋ฒกํฐ๊ฐ ๋ฌด์์ธ์ง ์ดํด๋ด์ผ ํ๊ณ , ๊ณ ์ ๋ฒกํฐ๊ฐ ๋ฌด์์ธ์ง ์๊ธฐ ์ํด์๋ ๋จผ์ ํ๋ ฌ ์ฐ์ฐ์ ๋ํด ์์๋ด์ผ ํ๋ค.
21.2.1 ํ๋ ฌ ์ฐ์ฐ
|
def matrix_product_entry(A, B, i, j):
return dot(get_row(A, i), get_column(B, j))
def matrix_multiply(A, B):
n1, k1 = shape(A)
n2, k2 = shape(B)
if k1 != n2:
raise ArithmeticError("incompatible shapes!")
return make_matrix(n1, k2, partial(matrix_product_entry, A, B))
def vector_as_matrix(v):
"""(list ํํ์) ๋ฒกํฐ v๋ฅผ n x 1 ํ๋ ฌ๋ก ๋ณํ"""
return [[v_i] for v_i in v]
def vector_from_matrix(v_as_matrix):
"""n x 1 ํ๋ ฌ์ ๋ฆฌ์คํธ๋ก ๋ณํ"""
return [row[0] for row in v_as_matrix]
def matrix_operate(A, v):
v_as_matrix = vector_as_matrix(v)
product = matrix_multiply(A, v_as_matrix)
return vector_from_matrix(product)
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
ํ๋ ฌ A์ ๊ณ ์ ๋ฒกํฐ๋ฅผ ์ฐพ๊ธฐ ์ํด, ์์์ ๋ฒกํฐ $v$๋ฅผ ๊ณจ๋ผ matrix_operate๋ฅผ ์ํํ๊ณ , ๊ฒฐ๊ณผ๊ฐ์ ํฌ๊ธฐ๊ฐ 1์ด ๋๊ฒ ์ฌ์กฐ์ ํ๋ ๊ณผ์ ์ ๋ฐ๋ณต ์ํํ๋ค.
|
def find_eigenvector(A, tolerance=0.00001):
guess = [1 for __ in A]
while True:
result = matrix_operate(A, guess)
length = magnitude(result)
next_guess = scalar_multiply(1/length, result)
if distance(guess, next_guess) < tolerance:
return next_guess, length # eigenvector, eigenvalue
guess = next_guess
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
๊ฒฐ๊ณผ๊ฐ์ผ๋ก ๋ฐํ๋๋ guess๋ฅผ matrix_operate๋ฅผ ํตํด ๊ฒฐ๊ณผ๊ฐ์ ํฌ๊ธฐ๊ฐ 1์ธ ๋ฒกํฐ๋ก ์ฌ์กฐ์ ํ๋ฉด, ์๊ธฐ ์์ ์ด ๋ฐํ๋๋ค. ์ฆ, ์ฌ๊ธฐ์ guess๋ ๊ณ ์ ๋ฒกํฐ๋ผ๋ ๊ฒ์ ์๋ฏธํ๋ค.
๋ชจ๋ ์ค์ ํ๋ ฌ์ ๊ณ ์ ๋ฒกํฐ์ ๊ณ ์ ๊ฐ์ด ์๋ ๊ฒ์ ์๋๋ค. ์๋ฅผ ๋ค์ด ์๊ณ ๋ฐฉํฅ์ผ๋ก 90๋ ํ์ ํ๋ ์ฐ์ฐ์ ํ๋ ๋ค์ ํ๋ ฌ์๋ ๊ณฑํ์ ๋ ๊ฐ์ง ์์ ์ด ๋๋ ๋ฒกํฐ๋ ์๋ฒกํฐ๋ฐ์ ์๋ค.
|
rotate = [[0, 1],
[-1, 0]]
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
์ด ํ๋ ฌ๋ก ์์ ๊ตฌํํ find_eignevector(rotate)๋ฅผ ์ํํ๋ฉด, ์์ํ ๋๋์ง ์์ ๊ฒ์ด๋ค.
ํํธ, ๊ณ ์ ๋ฒกํฐ๊ฐ ์๋ ํ๋ ฌ๋ ๋๋ก๋ ๋ฌดํ๋ฃจํ์ ๋น ์ง ์ ์๋ค.
|
flip = [[0, 1],
[1, 0]]
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
์ด ํ๋ ฌ์ ๋ชจ๋ ๋ฒกํฐ [x, y]๋ฅผ [y, x]๋ก ๋ณํํ๋ค. ๋ฐ๋ผ์ [1, 1]์ ๊ณ ์ ๊ฐ์ด 1์ธ ๊ณ ์ ๋ฒกํฐ๊ฐ ๋๋ค.
ํ์ง๋ง x, y๊ฐ์ด ๋ค๋ฅธ ์์์ ๋ฒกํฐ์์ ์ถ๋ฐํด์ find_eigenvector๋ฅผ ์ํํ๋ฉด x, y๊ฐ์ ๋ฐ๊พธ๋ ์ฐ์ฐ๋ง ๋ฌดํํ ์ํํ ๊ฒ์ด๋ค.
(NumPy๊ฐ์ ๋ผ์ด๋ธ๋ฌ๋ฆฌ์๋ ์ด๋ฐ ์ผ์ด์ค๊น์ง ๋ค๋ฃฐ ์ ์๋ ๋ค์ํ ๋ฐฉ๋ฒ๋ค์ด ๊ตฌํ๋์ด ์๋ค.)
์ด๋ฐ ์ฌ์ํ ๋ฌธ์ ์๋ ๋ถ๊ตฌํ๊ณ , ์ด์จ๋ find_eigenvector๊ฐ ๊ฒฐ๊ณผ๊ฐ์ ๋ฐํํ๋ค๋ฉด, ๊ทธ ๊ฒฐ๊ณผ๊ฐ์ ๊ณง ๊ณ ์ ๋ฒกํฐ์ด๋ค.
21.2.2 ์ค์ฌ์ฑ
๊ณ ์ ๋ฒกํฐ๊ฐ ๋ฐ์ดํฐ ๋คํธ์ํฌ๋ฅผ ์ดํดํ๋๋ฐ ์ด๋ป๊ฒ ๋์์ ์ค๊น?
์๊ธฐ๋ฅผ ํ๊ธฐ ์ ์ ๋จผ์ ๋คํธ์ํฌ๋ฅผ ์ธ์ ํ๋ ฌ(adjacency matrix)์ ํํ๋ก ๋ํ๋ด ๋ณด์. ์ด ํ๋ ฌ์ ์ฌ์ฉ์ i์ ์ฌ์ฉ์ j๊ฐ ์น๊ตฌ์ธ ๊ฒฝ์ฐ (i, j)๋ฒ์งธ ํญ๋ชฉ์ 1์ด ์๊ณ , ์น๊ตฌ๊ฐ ์๋ ๊ฒฝ์ฐ 0์ด ์๋ ํ๋ ฌ์ด๋ค.
|
#
# eigenvector centrality
#
def entry_fn(i, j):
return 1 if (i, j) in friendships or (j, i) in friendships else 0
n = len(users)
adjacency_matrix = make_matrix(n, n, entry_fn)
adjacency_matrix
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
๊ฐ ์ฌ์ฉ์์ ๊ณ ์ ๋ฒกํฐ ์ค์ฌ์ฑ์ด๋ find_eigenvector๋ก ์ฐพ์ ์ฌ์ฉ์์ ๊ณ ์ ๋ฒกํฐ๊ฐ ๋๋ค.
|
eigenvector_centralities, _ = find_eigenvector(adjacency_matrix)
for user_id, centrality in enumerate(eigenvector_centralities):
print(user_id, centrality)
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
์ฐ๊ฒฐ์ ์๊ฐ ๋ง๊ณ , ์ค์ฌ์ฑ์ด ๋์ ์ฌ์ฉ์๋คํํ
์ฐ๊ฒฐ๋ ์ฌ์ฉ์๋ค์ ๊ณ ์ ๋ฒกํฐ ์ค์ฌ์ฑ์ด ๋๋ค.
์์ ๊ฒฐ๊ณผ์ ๋ฐ๋ฅด๋ฉด ์ฌ์ฉ์ 1, ์ฌ์ฉ์ 2์ ์ค์ฌ์ฑ์ด ๊ฐ์ฅ ๋์๋ฐ, ์ด๋ ์ค์ฌ์ฑ์ด ๋์ ์ฌ๋๋ค๊ณผ ์ธ๋ฒ์ด๋ ์ฐ๊ฒฐ๋์๊ธฐ ๋๋ฌธ์ด๋ค.
์ด๋ค๋ก๋ถํฐ ๋ฉ์ด์ง์๋ก ์ฌ์ฉ์๋ค์ ์ค์ฌ์ฑ์ ์ ์ฐจ ์ค์ด๋ ๋ค.
21.3 ๋ฐฉํฅ์ฑ ๊ทธ๋ํ(Directed graphs)์ ํ์ด์ง๋ญํฌ
๋ฐ์ดํ
์ด ์ธ๊ธฐ๋ฅผ ๋ณ๋ก ๋์ง ๋ชปํ์, ์์ด์ต ํ์ ๋ถ์ฌ์ฅ์ ์น๊ตฌ ๋ชจ๋ธ์์ ๋ณด์ฆ(endorsement)๋ชจ๋ธ๋ก ์ ํฅํ๋ ๊ฒ์ ๊ณ ๋ ค ์ค์ด๋ค.
์๊ณ ๋ณด๋ ์ฌ๋๋ค์ ์ด๋ค ๋ฐ์ดํฐ ๊ณผํ์๋ค๋ผ๋ฆฌ ์น๊ตฌ์ธ์ง์ ๋ํด์๋ ๋ณ๋ก ๊ด์ฌ์ด ์์์ง๋ง, ํค๋ํํฐ๋ค์ ๋ค๋ฅธ ๋ฐ์ดํฐ ๊ณผํ์๋ก๋ถํฐ ์กด๊ฒฝ ๋ฐ๋ ๋ฐ์ดํฐ ๊ณผํ์๊ฐ ๋๊ตฌ์ธ์ง์ ๋ํด ๊ด์ฌ์ด ๋ง๋ค.
์ด ์๋ก์ด ๋ชจ๋ธ์์ ๊ด๊ณ๋ ์ํธ์ ์ธ ๊ฒ์ด ์๋๋ผ, ํ ์ฌ๋(source)์ด ๋ค๋ฅธ ๋ฉ์ง ํ ์ฌ๋(target)์ ์ค๋ ฅ์ ๋ณด์ฆ์ ์์ฃผ๋ (source, target) ์์ผ๋ก ๋น๋์นญ์ ์ธ ๊ด๊ณ๋ฅผ ํํํ๊ฒ ๋๋ค.
|
#
# directed graphs
#
endorsements = [(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1), (1, 3),
(2, 3), (3, 4), (5, 4), (5, 6), (7, 5), (6, 8), (8, 7), (8, 9)]
for user in users:
user["endorses"] = [] # add one list to track outgoing endorsements
user["endorsed_by"] = [] # and another to track endorsements
for source_id, target_id in endorsements:
users[source_id]["endorses"].append(users[target_id])
users[target_id]["endorsed_by"].append(users[source_id])
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
๊ทธ๋ฆฌ๊ณ ๊ฐ์ฅ ๋ณด์ฆ์ ๋ง์ด ๋ฐ์ ๋ฐ์ดํฐ ๊ณผํ์๋ค์ ๋ฐ์ดํฐ๋ฅผ ์์งํด์, ๊ทธ๊ฒ์ ํค๋ํํฐ๋คํํ
ํ๋ฉด ๋๋ค.
|
endorsements_by_id = [(user["id"], len(user["endorsed_by"]))
for user in users]
sorted(endorsements_by_id,
key=lambda x: x[1], # (user_id, num_endorsements)
reverse=True)
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
์ฌ์ค '๋ณด์ฆ์ ์'์ ๊ฐ์ ์ซ์๋ ์กฐ์ํ๊ธฐ๊ฐ ๋งค์ฐ ์ฝ๋ค.
๊ฐ์ฅ ๊ฐ๋จํ ๋ฐฉ๋ฒ ์ค ํ๋๋, ๊ฐ์ง ๊ณ์ ์ ์ฌ๋ฌ ๊ฐ ๋ง๋ค์ด์ ๊ทธ๊ฒ๋ค๋ก ๋ด ๊ณ์ ์ ๋ํ ๋ณด์ฆ์ ์๋ ๊ฒ์ด๋ค.
๋ ๋ค๋ฅธ ๋ฐฉ๋ฒ์, ์น๊ตฌ๋ค๋ผ๋ฆฌ ์ง๊ณ ์๋ก๊ฐ ์๋ก๋ฅผ ๋ณด์ฆํด ์ฃผ๋ ๊ฒ์ด๋ค. (์๋ง ์ฌ์ฉ์ 0, 1, 2๊ฐ ์ด๋ฐ ๊ด๊ณ์ผ ๊ฐ๋ฅ์ฑ์ด ํฌ๋ค.)
์ข ๋ ๋์ ์ง์๋, '๋๊ฐ' ๋ณด์ฆ์ ์๋์ง๋ฅผ ๊ณ ๋ คํ๋ ๊ฒ์ด๋ค.
๋ณด์ฆ์ ๋ง์ด ๋ฐ์ ์ฌ์ฉ์๊ฐ ๋ณด์ฆ์ ์ค ๋๋, ๋ณด์ฆ์ ์ ๊ฒ ๋ฐ์ ์ฌ์ฉ์๊ฐ ๋ณด์ฆ์ ์ค ๋๋ณด๋ค ๋ ์ค์ํ ๊ฒ์ผ๋ก ๋ฐ์๋ค์ฌ์ง๋ ๊ฒ์ด ํ๋นํ๋ค.
๊ทธ๋ฆฌ๊ณ ์ฌ์ค ์ด๊ฒ์ ์ ๋ช
ํ ํ์ด์ง๋ญํฌ(PageRank) ์๊ณ ๋ฆฌ์ฆ์ ๊ธฐ๋ณธ ์ฒ ํ์ด๊ธฐ๋ ํ๋ค.
1. ๋คํธ์ํฌ ์ ์ฒด์๋ 1.0(๋๋ 100%)์ ํ์ด์ง๋ญํฌ๊ฐ ์๋ค.
2. ์ด๊ธฐ์ ์ด ํ์ด์ง๋ญํฌ๋ฅผ ๋ชจ๋ ๋
ธ๋์ ๊ณ ๋ฅด๊ฒ ๋ฐฐ๋นํ๋ค.
3. ๊ฐ ์คํ
์ ๊ฑฐ์น ๋๋ง๋ค ๊ฐ ๋
ธ๋์ ๋ฐฐ๋น๋ ํ์ด์ง๋ญํฌ์ ๋๋ถ๋ถ์ ์ธ๋ถ๋ก ํฅํ๋ ๋งํฌ์ ๊ท ๋ฑํ๊ฒ ๋ฐฐ๋นํ๋ค.
4. ๊ฐ ์คํ
์ ๊ฑฐ์น ๋๋ง๋ค ๊ฐ ๋
ธ๋์ ๋จ์ ์๋ ํ์ด์ง๋ญํฌ๋ฅผ ๋ชจ๋ ๋
ธ๋์ ๊ณ ๋ฅด๊ฒ ๋ฐฐ๋นํ๋ค.
|
def page_rank(users, damping = 0.85, num_iters = 100):
# ๋จผ์ ํ์ด์ง๋ญํฌ๋ฅผ ๋ชจ๋ ๋
ธ๋์ ๊ณ ๋ฅด๊ฒ ๋ฐฐ๋น
num_users = len(users)
pr = { user["id"] : 1 / num_users for user in users }
# ๋งค ์คํ
๋ง๋ค ๊ฐ ๋
ธ๋๊ฐ ๋ฐ๋
# ์ ์ ์์ ํ์ด์ง๋ญํฌ
base_pr = (1 - damping) / num_users
for __ in range(num_iters):
next_pr = { user["id"] : base_pr for user in users }
for user in users:
# ํ์ด์ง๋ญํฌ๋ฅผ ์ธ๋ถ๋ก ํฅํ๋ ๋งํฌ์ ๋ฐฐ๋นํ๋ค.
links_pr = pr[user["id"]] * damping
for endorsee in user["endorses"]:
next_pr[endorsee["id"]] += links_pr / len(user["endorses"])
pr = next_pr
return pr
for user_id, pr in page_rank(users).items():
print(user_id, pr)
|
notebook/ch21_network_analysis.ipynb
|
rnder/data-science-from-scratch
|
unlicense
|
Generating some data
Lets generate a classification dataset that is not easily linearly separable. Our favorite example is the spiral dataset, which can be generated as follows:
|
N = 100 #The number of "training examples" per class
D = 2 # The dimension i.e i think the feature set
K = 3 # The number of classes to classify into
X = np.zeros((N*K, D)) # The data matrix , each row is a single example
# In our case 100*3 amount of examples and each example has two dimensions
# so the Matrix is 300 * 2
Y = np.zeros(N*K , dtype = 'uint8') #Class Labels
for j in range(K):
ix = range (N*j,N*(j+1)) #filling the matrices made above with datapoints
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N) * 0.2 #theta
#numpy.linspace(start, stop, num = 50, endpoint = True, retstep = False, dtype = None)
#: Returns number spaces evenly w.r.t interval.
X[ix] = np.c_[r*np.sin(t),r*np.cos(t)]
# the above line is written so as to give the dataset a spiral structure
# which will be clear in the dataset plot below
# i think this can be played with different kinds of datasets and check how our neural network reacts
# np.c_ slices objects to concatenation along the second axis.
Y[ix] = j
plt.scatter(X[:, 0], X[:, 1], c=Y, s=40, cmap = plt.cm.Spectral)
plt.xlim([-1,1])
plt.ylim([-1,1])
plt.show()
|
Deep Learning.ai/Numpy - Understanding Backprop.ipynb
|
Shashi456/Artificial-Intelligence
|
gpl-3.0
|
Training a Simple Softmax Linear Classifer
Initialize the Parameters
|
# initialize parameters randomly
W = 0.01 * np.random.randn(D,K) #randn(D,K) D * K Matrix
# in our case 2 * 3 Matrix
b = np.zeros((1,K)) # in our case 1 * 3
# some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength
|
Deep Learning.ai/Numpy - Understanding Backprop.ipynb
|
Shashi456/Artificial-Intelligence
|
gpl-3.0
|
Compute the Class Scores
|
# compute class scores for a linear classif
scores = np.dot(X,W) + b #scores will be 300 *3 and remember numpy broadcasting for b
|
Deep Learning.ai/Numpy - Understanding Backprop.ipynb
|
Shashi456/Artificial-Intelligence
|
gpl-3.0
|
Compute the loss
|
# Using cross - entropy loss
# Softmax loss = data loss + regularization loss
# Study about the Softmax loss and how it works before seeing how it works
#in this case it could be intuitive
num_examples = X.shape[0]
# get unnormalized probabilities
exp_scores = np.exp(scores)
# normalize them for each example
'''We now have an array probs of size [300 x 3], where each row now contains the class
probabilities. In particular, since weโve normalized them every row now sums to one. We
can now query for the log probabilities assigned to the correct classes in each example:'''
probs = exp_scores / np.sum(exp_scores, axis=1 , keepdims=True)
# Calculating the correct_log probability
'''The array correct_logprobs is a 1D array of just the probabilities assigned to the
correct classes for each example. The full loss is then the average of these log
probabilities and the regularization loss:'''
correct_logprobs = -np.log(probs[range(num_examples),y])
# compute ths loss : average cross-entropy loss and regularization
data_loss = np.sum(correct_logprobs)/ num_examples
reg_loss = 0.5*reg*np.sum(W*W)
'''โLiโfk=pkโ1(yi=k)
Notice how elegant and simple this expression is. Suppose the probabilities we
computed were p = [0.2, 0.3, 0.5], and that the correct class was the middle
one (with probability 0.3). According to this derivation the gradient on the
scores would be df = [0.2, -0.7, 0.5]. Recalling what the interpretation of the
gradient, we see that this result is highly intuitive: increasing the first or
last element of the score vector f (the scores of the incorrect classes) leads to
an increased loss (due to the positive signs +0.2 and +0.5) - and increasing the
loss is bad, as expected. However, increasing the score of the correct class has
negative influence on the loss. The gradient of -0.7 is telling us that increasing
the correct class score would lead to a decrease of the loss Li, which makes sense.'''
dscores = probs
dscores[range(num_examples),y]-=1
dscores/=num_examples
dW = np.dot(X.T,dscores)
db = np.sum(dscores, axis=0, keepdims=True)
dW += reg*W # Not forgetting the regularization gradient
#Updating Parameters
W += -step_size *dW
b += -step_size *db
|
Deep Learning.ai/Numpy - Understanding Backprop.ipynb
|
Shashi456/Artificial-Intelligence
|
gpl-3.0
|
Putting it all Together
Till now we just looked at individual elements
|
#Train a Linear Classifier
# initialize parameters randomly
W = 0.01 * np.random.randn(D,K)
b = np.zeros((1,K))
# some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength
# gradient descent loop
num_examples = X.shape[0]
for i in range(200):
# evaluate class scores, [N x K]
scores = np.dot(X, W) + b
# compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K]
# compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),Y])
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W)
loss = data_loss + reg_loss
if i % 10 == 0:
print ("iteration %d: loss %f" % (i, loss))
# compute the gradient on scores
dscores = probs
dscores[range(num_examples),Y] -= 1
dscores /= num_examples
# backpropate the gradient to the parameters (W,b)
dW = np.dot(X.T, dscores)
db = np.sum(dscores, axis=0, keepdims=True)
dW += reg*W # regularization gradient
# perform a parameter update
W += -step_size * dW
b += -step_size * db
# evaluate training set Accuracy
scores = np.dot(X,W) + b
predicted_class = np.argmax(scores, axis=1)
print("training_accuracy: %.2f" % (np.mean(predicted_class==Y)))
# plot the resulting classifier
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b
Z = np.argmax(Z, axis=1)
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=Y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()
|
Deep Learning.ai/Numpy - Understanding Backprop.ipynb
|
Shashi456/Artificial-Intelligence
|
gpl-3.0
|
Using SQL for Queries
Note that SQL is case-insensitive, but it is traditional to use ALL CAPS for SQL keywords. It is also standard to end SQL statements with a semi-colon.
Simple Queries
|
pdsql('SELECT * FROM tips LIMIT 5;')
q = """
SELECT sex as gender, smoker, day, size
FROM tips
WHERE size <= 3 AND smoker = 'Yes'
LIMIT 5"""
pdsql(q)
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Filtering on strings
|
q = """
SELECT sex as gender, smoker, day, size , time
FROM tips
WHERE time LIKE '%u_c%'
LIMIT 5"""
pdsql(q)
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Ordering
|
q = """
SELECT sex as gender, smoker, day, size , time
FROM tips
WHERE time LIKE '%u_c%'
ORDER BY size DESC
LIMIT 5"""
pdsql(q)
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Aggregate queries
|
pdsql('select * from tips limit 5;')
q = """
SELECT sex, smoker, sum(total_bill) as total, max(tip) as max_tip
FROM tips
WHERE time = 'Lunch'
GROUP BY sex, smoker
ORDER BY max_tip DESC
"""
pdsql(q)
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Matching students and majors
Inner join
|
pdsql("""
SELECT * from student s
INNER JOIN major m
ON s.major_id = m.major_id;
""")
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Left outer join
SQL also has RIGHT OUTER JOIN and FULL OUTER JOIN but these are not currently supported by SQLite3 (the database engine used by pdsql).
|
pdsql("""
SELECT s.*, m.name from student s
LEFT JOIN major m
ON s.major_id = m.major_id;
""")
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Emulating a full outer join with UNION ALL
Only necessary if the database does not proivde FULL OUTER JOIN
Using linker tables to match students to classes (a MANY TO MANY join)
Using SQLite3
SQLite3 is part of the standard library. However, the mechanics of using essentially any database in Python is similar, because of the Python DB-API.
|
import sqlite3
c = sqlite3.connect('data/Chinook_Sqlite.sqlite')
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Standard SQL statements with parameter substitution
Note: Using Python string substitution for Python defined parameters is dangerous because of the risk of SQL injection attacks. Use parameter substitution with ? instead.
Do this
|
t = ['%rock%', 10]
list(c.execute("SELECT * FROM Album WHERE Title like ? AND ArtistID > ? LIMIT 5;", t))
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Not this
|
t = ("'%rock%'", 10)
list(c.execute("SELECT * FROM Album WHERE Title like %s AND ArtistID > %d LIMIT 5;" % t))
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
User defined functions
Sometimes it is useful to have custom functions that run on the database server rather than on the client. These are called User Defined Functions or UDF. How do to do this varies with the database used, but it is fairly simple with Python and SQLite.
A standard UDF
|
def encode(text, offset):
"""Caesar cipher of text with given offset."""
from string import ascii_lowercase, ascii_uppercase
tbl = dict(zip(map(ord, ascii_lowercase + ascii_uppercase),
ascii_lowercase[offset:] + ascii_lowercase[:offset] +
ascii_uppercase[offset:] + ascii_uppercase[:offset]))
return text.translate(tbl)
c.create_function("encode", 2, encode)
list(c.execute("SELECT Title, encode(Title, 2) FROM Album limit 5;"))
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
Using SQL magic functions
We will use the ipython-sql notebook extension for convenience. This will only work in notebooks and IPython scripts with the .ipy extension.
|
%load_ext sql
|
scratch/Lecture08.ipynb
|
cliburn/sta-663-2017
|
mit
|
3. Open the file and use .read() to save the contents of the file to a string called fields. Make sure the file is closed at the end.
|
# Write your code here:
# Run fields to see the contents of contacts.txt:
fields
|
nlp/UPDATED_NLP_COURSE/00-Python-Text-Basics/03-Python-Text-Basics-Assessment.ipynb
|
rishuatgithub/MLPy
|
apache-2.0
|
Working with PDF Files
4. Use PyPDF2 to open the file Business_Proposal.pdf. Extract the text of page 2.
|
# Perform import
# Open the file as a binary object
# Use PyPDF2 to read the text of the file
# Get the text from page 2 (CHALLENGE: Do this in one step!)
page_two_text =
# Close the file
# Print the contents of page_two_text
print(page_two_text)
|
nlp/UPDATED_NLP_COURSE/00-Python-Text-Basics/03-Python-Text-Basics-Assessment.ipynb
|
rishuatgithub/MLPy
|
apache-2.0
|
5. Open the file contacts.txt in append mode. Add the text of page 2 from above to contacts.txt.
CHALLENGE: See if you can remove the word "AUTHORS:"
|
# Simple Solution:
# CHALLENGE Solution (re-run the %%writefile cell above to obtain an unmodified contacts.txt file):
|
nlp/UPDATED_NLP_COURSE/00-Python-Text-Basics/03-Python-Text-Basics-Assessment.ipynb
|
rishuatgithub/MLPy
|
apache-2.0
|
Regular Expressions
6. Using the page_two_text variable created above, extract any email addresses that were contained in the file Business_Proposal.pdf.
|
import re
# Enter your regex pattern here. This may take several tries!
pattern =
re.findall(pattern, page_two_text)
|
nlp/UPDATED_NLP_COURSE/00-Python-Text-Basics/03-Python-Text-Basics-Assessment.ipynb
|
rishuatgithub/MLPy
|
apache-2.0
|
Exercise: Compute the velocity of the penny after t seconds. Check that the units of the result are correct.
|
# Solution goes here
|
notebooks/chap01.ipynb
|
AllenDowney/ModSimPy
|
mit
|
Exercise: Why would it be nonsensical to add a and t? What happens if you try?
|
# Solution goes here
|
notebooks/chap01.ipynb
|
AllenDowney/ModSimPy
|
mit
|
Exercise: Suppose you bring a 10 foot pole to the top of the Empire State Building and use it to drop the penny from h plus 10 feet.
Define a variable named foot that contains the unit foot provided by UNITS. Define a variable named pole_height and give it the value 10 feet.
What happens if you add h, which is in units of meters, to pole_height, which is in units of feet? What happens if you write the addition the other way around?
|
# Solution goes here
# Solution goes here
|
notebooks/chap01.ipynb
|
AllenDowney/ModSimPy
|
mit
|
Exercise: In reality, air resistance limits the velocity of the penny. At about 18 m/s, the force of air resistance equals the force of gravity and the penny stops accelerating.
As a simplification, let's assume that the acceleration of the penny is a until the penny reaches 18 m/s, and then 0 afterwards. What is the total time for the penny to fall 381 m?
You can break this question into three parts:
How long until the penny reaches 18 m/s with constant acceleration a.
How far would the penny fall during that time?
How long to fall the remaining distance with constant velocity 18 m/s?
Suggestion: Assign each intermediate result to a variable with a meaningful name. And assign units to all quantities!
|
# Solution goes here
# Solution goes here
# Solution goes here
# Solution goes here
# Solution goes here
|
notebooks/chap01.ipynb
|
AllenDowney/ModSimPy
|
mit
|
Filtering and resampling data
Some artifacts are restricted to certain frequencies and can therefore
be fixed by filtering. An artifact that typically affects only some
frequencies is due to the power line.
Power-line noise is a noise created by the electrical network.
It is composed of sharp peaks at 50Hz (or 60Hz depending on your
geographical location). Some peaks may also be present at the harmonic
frequencies, i.e. the integer multiples of
the power-line frequency, e.g. 100Hz, 150Hz, ... (or 120Hz, 180Hz, ...).
This tutorial covers some basics of how to filter data in MNE-Python.
For more in-depth information about filter design in general and in
MNE-Python in particular, check out
sphx_glr_auto_tutorials_plot_background_filtering.py.
|
import numpy as np
import mne
from mne.datasets import sample
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
proj_fname = data_path + '/MEG/sample/sample_audvis_eog_proj.fif'
tmin, tmax = 0, 20 # use the first 20s of data
# Setup for reading the raw data (save memory by cropping the raw data
# before loading it)
raw = mne.io.read_raw_fif(raw_fname)
raw.crop(tmin, tmax).load_data()
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # bads + 2 more
fmin, fmax = 2, 300 # look at frequencies between 2 and 300Hz
n_fft = 2048 # the FFT size (n_fft). Ideally a power of 2
# Pick a subset of channels (here for speed reason)
selection = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, meg='mag', eeg=False, eog=False,
stim=False, exclude='bads', selection=selection)
# Let's first check out all channel types
raw.plot_psd(area_mode='range', tmax=10.0, picks=picks, average=False)
|
0.17/_downloads/1a57f50035589ab531155bdb55bcbcb5/plot_artifacts_correction_filtering.ipynb
|
mne-tools/mne-tools.github.io
|
bsd-3-clause
|
The same care must be taken with these results as with partial derivatives. The formula for $Y$ is ostensibly
$$X_1 + X_2 = X_1 + X^2 + X_1 = 2 X_1 + X^2$$
Or $2X_1$ plus a parabola.
However, the coefficient of $X_1$ is 1. That is because $Y$ changes by 1 if we change $X_1$ by 1 <i>while holding $X_2$ constant</i>. Multiple linear regression separates out contributions from different variables.
Similarly, running a linear regression on two securities might give a high $\beta$. However, if we bring in a third security (like SPY, which tracks the S&P 500) as an independent variable, we may find that the correlation between the first two securities is almost entirely due to them both being correlated with the S&P 500. This is useful because the S&P 500 may then be a more reliable predictor of both securities than they were of each other. This method allows us to better gauge the significance between the two securities and prevent confounding the two variables.
|
# Load pricing data for two arbitrarily-chosen assets and SPY
start = '2014-01-01'
end = '2015-01-01'
asset1 = get_pricing('DTV', fields='price', start_date=start, end_date=end)
asset2 = get_pricing('FISV', fields='price', start_date=start, end_date=end)
benchmark = get_pricing('SPY', fields='price', start_date=start, end_date=end)
# First, run a linear regression on the two assets
slr = regression.linear_model.OLS(asset1, sm.add_constant(asset2)).fit()
print 'SLR beta of asset2:', slr.params[1]
# Run multiple linear regression using asset2 and SPY as independent variables
mlr = regression.linear_model.OLS(asset1, sm.add_constant(np.column_stack((asset2, benchmark)))).fit()
prediction = mlr.params[0] + mlr.params[1]*asset2 + mlr.params[2]*benchmark
prediction.name = 'Prediction'
print 'MLR beta of asset2:', mlr.params[1], '\nMLR beta of S&P 500:', mlr.params[2]
|
notebooks/lectures/Multiple_Linear_Regression/notebook.ipynb
|
quantopian/research_public
|
apache-2.0
|
The Laplacian Matrix is a matrix that is extremely important in graph theory and numerical analysis. It is defined as $L=D-A$. Where $D$ is the degree matrix and $A$ is the adjecency matrix. For the purpose of this problem you don't need to understand the details of these matrices, although their definitions are relatively simple.
The degree matrix for $K_n$ is an $n \times n$ diagonal matrix with the value $n-1$ along the diagonal and zeros everywhere else. Write a function to compute the degree matrix for $K_n$ using NumPy.
|
def complete_deg(n):
a = np.identity((n), dtype = np.int)
for element in np.nditer(a, op_flags=['readwrite']):
if element > 0:
element[...] = element + n - 2
return a
complete_deg(3)
D = complete_deg(5)
assert D.shape==(5,5)
assert D.dtype==np.dtype(int)
assert np.all(D.diagonal()==4*np.ones(5))
assert np.all(D-np.diag(D.diagonal())==np.zeros((5,5),dtype=int))
|
assignments/assignment03/NumpyEx04.ipynb
|
geoneill12/phys202-2015-work
|
mit
|
The adjacency matrix for $K_n$ is an $n \times n$ matrix with zeros along the diagonal and ones everywhere else. Write a function to compute the adjacency matrix for $K_n$ using NumPy.
|
def complete_adj(n):
b = np.identity((n), dtype = np.int)
for element in np.nditer(b, op_flags=['readwrite']):
if element == 0:
element[...] = 1
else:
element[...] = 0
return b
complete_adj(3)
A = complete_adj(5)
assert A.shape==(5,5)
assert A.dtype==np.dtype(int)
assert np.all(A+np.eye(5,dtype=int)==np.ones((5,5),dtype=int))
|
assignments/assignment03/NumpyEx04.ipynb
|
geoneill12/phys202-2015-work
|
mit
|
Use NumPy to explore the eigenvalues or spectrum of the Laplacian L of $K_n$. What patterns do you notice as $n$ changes? Create a conjecture about the general Laplace spectrum of $K_n$.
|
def L(n):
L = complete_deg(n) - complete_adj(n)
return L
print L(1)
print L(2)
print L(3)
print L(4)
print L(5)
print L(6)
|
assignments/assignment03/NumpyEx04.ipynb
|
geoneill12/phys202-2015-work
|
mit
|
ๅจๆฐไธๆฟๆ็็ๅ
ฌๅธ่ฟๅ
ๆฌไบๅไธค็ฝ็ๅ
ฌๅธ๏ผNETๅSTAQ๏ผ๏ผไธค็ฝ็ๅ
ฌๅธๆฏๅจ90ๅนดไปฃๆไธญๅฝไบบๆฐ้ถ่กๆนๅ่ฎพ็ซ็๏ผๆป็จ9ๅฎถๅ
ฌๅธ๏ผ็ฒคไผ ๅช(400003)ไธๅธๅๅฉไฝ8ๅฎถๅ
ฌๅธ๏ผ๏ผ็ฑไบๆฟ็ญๆน้ข็็บฆๆ๏ผๆญค็ฑปๅ
ฌๅธๅณไพฟๅจไธๆฟๅธๅบไธไพ็ถไธ่ขซๅ
่ฎธ่ฟ่กๆฐ็่่ต่ๅช่ฝ่กไปฝ่ฝฌ่ฎฉใ่ฟไบๅ
ฌๅธๅ
ๅซไบ๏ผ
* ๅคง่ช็ถ๏ผ400001๏ผ๏ผ่ฏฅ่ก็ฅจๅทฒ็ปๅจๅจๆฐไธๆฟ้ๅธ๏ผๅนถไปฅ834019ไธบไปฃ็ ๆไธบๅ
จๅฝ่ก่ฝฌๅ
ฌๅธ็ๆ็ไผไธใๅฏ่ฝๅบ็ฐ็้ฎ้ขๆฏ๏ผๆฐๆฎๅบๆ400001ๅ
ฌๅธ็่ดขๅกไฟกๆฏไนไฝไธบไบๆฐๆ็ๅ
ฌๅธ็่ดขๅกไฟกๆฏ๏ผๅ ๆญค๏ผๅค็ๆถ็ดๆฅไปฅๆฐๆ็็ๅ
ฌๅธ่ฝฌ่ฎฉๅ
ฌๅไนฆไธญๆซ้ฒ็่ดขๅกไฟกๆฏไฝไธบๆฃ้ชๆ ๅ๏ผTo-do: ไฝไธบๅฏนๆฏ็ดๆฅ่ธข้ค่ฟๅฎถๅ
ฌๅธ็ๆฐๆฎใ๏ผ
* ้ฟ็ฝ5 (400002)
* ๆตทๅฝๅฎ5(400005)
* ไบฌไธญๅ
ด5(400006)
* ๅๅฏ1 (400007)
* ๅนฟๅปบ1 (400009)
* ้นซๅณฐ5 (400010)
* ๆธฏๅฒณ1 (400013)
|
stkcs_net_staq = ["400001.OC", "400002.OC", "400005.OC", "400006.OC", "400007.OC", "400009.OC", "400010.OC", "400013.OC"]
stocks_neeq = stocks_neeq[~stocks_neeq["่ฏๅธไปฃ็ "].isin(stkcs_net_staq)]
len(stocks_neeq)
stocks_neeq[stocks_neeq["่ฏๅธไปฃ็ "] == "834019.OC"]
stocks_neeq = stocks_neeq.drop(6644)
stocks_neeq[stocks_neeq["่ฏๅธไปฃ็ "] == "834019.OC"]
|
src/Stocks.ipynb
|
januslian/neeqem
|
gpl-3.0
|
้ๅธ่ก็ฅจๅค็๏ผ11ไธช่ฝฌๆฟไธๅธๅ
ฌๅธ๏ผ1ไธช่ฟ็ปญๅๅนดไบๆ๏ผ16ไธชๅธๆถๅๅนถ็ๅ
ฌๅธ๏ผ3ๅฎถๅ
ฌๅธๅฐๅ
ฌๅธๅไธบๆ้่ดฃไปปๅ
ฌๅธ๏ผ6ๅฎถๅ
ฌๅธๆช่ฏดๆ้ๅธๅๅ ใๅจๆฐๆฎๅบ้ๅธ่ก็ฅจๅ่กจ้ๆไธคๅฎถๅ
ฌๅธ400001ๅ400003ๅฑไบไธค็ฝๅ
ฌๅธ่ฝฌๆฟ๏ผไธไฝไธบ็ ็ฉถๆ ทๆฌๅค็ใ
|
delisting = pandas.read_excel("../data/raw/้ๅธ่ก็ฅจไธ่ง.xlsx") #2016ๅนด4ๆ15ๆฅไนๅ้ๅธ็ๅ
ฌๅธ
delisting = delisting[:-2]
delisting.head()
delisting = delisting[~delisting["ไปฃ็ "].isin(["400001.OC", "400003.OC"])]
stkcd = stocks_neeq["่ฏๅธไปฃ็ "].append(delisting["ไปฃ็ "])
stkcd[stkcd.duplicated()]
delisting = pandas.read_excel("../data/delist.xls")
delisting.head()
stocks_neeq_all = pandas.concat([stocks_neeq, delisting], ignore_index=True)
len(stocks_neeq_all)
len(stocks_neeq), len(delisting)
stocks_neeq_all.iloc[0]
stocks_neeq_all[stocks_neeq_all["ๆๅฑ่ฏ็ไผ่กไธ"].isnull()]
stocks_neeq_all.loc[stocks_neeq_all["่ฏๅธไปฃ็ "] == "835458.OC", "ๆๅฑ่ฏ็ไผ่กไธ"] = "่ดงๅธ้่ๆๅก"
stocks_neeq_all.loc[stocks_neeq_all["่ฏๅธไปฃ็ "] == "830806.OC", "ๆๅฑ่ฏ็ไผ่กไธ"] = "่ฝฏไปถๅไฟกๆฏๆๆฏๆๅกไธ"
stocks_neeq_all.loc[stocks_neeq_all["่ฏๅธไปฃ็ "] == "430217.OC", "ๆๅฑ่ฏ็ไผ่กไธ"] = "ไบ่็ฝๅ็ธๅ
ณๆๅกไธ"
stocks_neeq_all[stocks_neeq_all["ๆๅฑ่ฏ็ไผ่กไธ"].isnull()]
finance_sector = ["่ดงๅธ้่ๆๅก", "่ตๆฌๅธๅบๆๅก", "ไฟ้ฉไธ", "ๅ
ถไป้่ไธ"]
print(len(stocks_neeq_all[stocks_neeq_all["ๆๅฑ่ฏ็ไผ่กไธ"].isin(finance_sector)]))
stocks_neeq_all = stocks_neeq_all[~stocks_neeq_all["ๆๅฑ่ฏ็ไผ่กไธ"].isin(finance_sector)]
stocks_neeq_all.to_csv("../data/NEEQ_sample.csv", index=False)
a = len(stocks_neeq_all[stocks_neeq_all["ๆ็ๆฅๆ"] <= pandas.Timestamp('2009-10-30 00:00:00')])
|
src/Stocks.ipynb
|
januslian/neeqem
|
gpl-3.0
|
็ฑๆญคๅพๅฐ็โๆฐไธๆฟโๅ
ฌๅธ็ๆๆๆ ทๆฌๆฐ้ไธบ{{len(stocks_neeq_all)}}ใ
โๆฐไธๆฟโๆ ทๆฌๅ
ฌๅธๆๆฉ็ๆ็ๆถ้ดไธบ{{stocks_neeq_all["ๆ็ๆฅๆ"].min()}}๏ผๆไปฅๅจ้ๆฉไธไนๅฏนๆฏ็A่กไธปๆฟใไธญๅฐๆฟๅๅไธๆฟๅ
ฌๅธๆถไน้ๆฉไป2006ๅนดไปฅๅ๏ผๅ
ถไธญๅไธๆฟๅผๅงไบ2009ๅนด10ๆ๏ผๅจ2006ๅฐ2009ๅนด10ๆไน้ดๆ็็ๆฐไธๆฟๅ
ฌๅธๆ{{a}}ๅฎถๅ
ฌๅธใ
็ฑไบๆๆ้ๅๆฌ็ ็ฉถ็โๆฐไธๆฟโๅ
ฌๅธๅไธบ2006ๅนดไนๅๆ็ไบคๆ็๏ผๆไปฅๅฏนๅบ็ไธปๆฟใไธญๅฐๆฟๅๅไธๆฟๅ
ฌๅธไนๅฐไผ้ๆฉ2005ๅนดไนๅIPOs็ๅ
ฌๅธไฝไธบๅฏนๆฏ็ๅฏน่ฑกใๅ็ปญ็ๆฃ้ชไนไผๅฐไธปไธญๅไธไธชๆฟๅ็ๅฎๅๅขๅไฝไธบๅฏนๆฏๅฏน่ฑก๏ผไปฅไฟ่ฏๅจๅ่ก่ฟ็จไธๆไบ่ฎธ็ๅฏๆฏๆงใ
To-do: ้่ฆ็กฎๅฎไผฐ่ฎกๆ ทๆฌ็ๆฅๆบ๏ผๅค้็ๆนๆกๅ
ๆฌไบ๏ผ๏ผ1๏ผๅฏไปฅไฝฟ็จๅฝๅนดๆๆๅทฒ็ปไธๅธ็ๅ
ฌๅธไฝไธบไผฐ่ฎกๆ ทๆฌ๏ผ๏ผ2๏ผๅฏไปฅไฝฟ็จๅฝๅนดๆๆไธๅธๅทฒ็ป่ถ
่ฟไธๅนด็ๅ
ฌๅธไฝไธบๆ ทๆฌ๏ผ๏ผ3๏ผไฝฟ็จ่งๆจกๅๅฑ็ไผฐ่ฎกๆนๆณ๏ผ
|
stocks_neeq_all.iloc[0]
year = lambda x: x.year
stocks_neeq_all["ๆ็ๅนดๅบฆ"] = stocks_neeq_all["ๆ็ๆฅๆ"].apply(year)
stocks_neeq_all["ๆ็ๅนดๅบฆ"].value_counts().sort_index()
sns.barplot(stocks_neeq_all["ๆ็ๅนดๅบฆ"].value_counts().sort_index().index,
stocks_neeq_all["ๆ็ๅนดๅบฆ"].value_counts().sort_index(), palette="Blues_d");
sns.countplot(x="ๆ็ๅนดๅบฆ", data=stocks_neeq_all, palette="Blues_d");
stocks_neeq_all["ๆๅฑ่ฏ็ไผ่กไธ"].value_counts()
|
src/Stocks.ipynb
|
januslian/neeqem
|
gpl-3.0
|
2. Hypothesis tests
|
#California burritos vs. Carnitas burritos
TODO
# Don Carlos 1 vs. Don Carlos 2
TODO
# Bonferroni correction
TODO
|
burrito/.ipynb_checkpoints/Burrito_bootcamp-checkpoint.ipynb
|
srcole/qwm
|
mit
|
3. Burrito dimension distributions
Distribution of each burrito quality
|
import math
def metrichist(metricname):
if metricname == 'Volume':
bins = np.arange(.375,1.225,.05)
xticks = np.arange(.4,1.2,.1)
xlim = (.4,1.2)
else:
bins = np.arange(-.25,5.5,.5)
xticks = np.arange(0,5.5,.5)
xlim = (-.25,5.25)
plt.figure(figsize=(5,5))
n, _, _ = plt.hist(df[metricname].dropna(),bins,color='k')
plt.xlabel(metricname + ' rating',size=20)
plt.xticks(xticks,size=15)
plt.xlim(xlim)
plt.ylabel('Count',size=20)
plt.yticks((0,int(math.ceil(np.max(n) / 5.)) * 5),size=15)
plt.tight_layout()
m_Hist = ['Hunger','Volume','Tortilla','Temp','Meat','Fillings',
'Meat:filling','Uniformity','Salsa','Synergy','Wrap','overall']
for m in m_Hist:
metrichist(m)
|
burrito/.ipynb_checkpoints/Burrito_bootcamp-checkpoint.ipynb
|
srcole/qwm
|
mit
|
Test for normal distribution
|
TODO
|
burrito/.ipynb_checkpoints/Burrito_bootcamp-checkpoint.ipynb
|
srcole/qwm
|
mit
|
Changes implemented
From most important to least important:
* pre-compute PSF parameters across multiple spectra and wavelengths to
enable vectorized calls to legval instead of many scalar calls [~25% faster]
* hoist wavelength -> [-1,1] for legendre calculations out of loop [~8% faster]
* replace np.outer with numba optimized version [~5% faster (?)]
* cast astropy.io.fits.Header to dict() before many many key/value lookups [~4% faster]
* Avoid intermediate memory allocations by using out=... [<~1% faster]
Note: amount of improvement was different for Haswell vs. KNL vs. Core i7 Laptop and varies with extraction problem size; above numbers are approximate; see below for before/after Haswell and KNL results.
Before / after comparison
|
h1 = Table.read('data/portland/hsw-before.txt', format='ascii.basic')
h2 = Table.read('data/portland/hsw-after.txt', format='ascii.basic')
k1 = Table.read('data/portland/knl-before.txt', format='ascii.basic')
k2 = Table.read('data/portland/knl-after.txt', format='ascii.basic')
plot(h1['nproc'], h1['rate'], 's:', color='C0', label='Haswell original')
plot(h2['nproc'], h2['rate'], 's-', color='C0', label='Haswell')
plot(h2['nproc'], h2['nproc']*h2['rate'][0], color='0.5', alpha=0.5, label='_none_')
plot(k1['nproc'], k1['rate'], 'd:', color='C1', label='KNL original')
plot(k2['nproc'], k2['rate'], 'd-', color='C1', label='KNL')
plot(k2['nproc'], k2['nproc']*k2['rate'][0], color='0.5', alpha=0.5, label='perfect scaling')
semilogx()
semilogy()
xticks([1,2,4,8,16,32,64,128], [1,2,4,8,16,32,64,128])
legend(loc='upper left')
ylim(20, 20000)
xlabel('Number of Processes')
ylabel('Extraction Rate')
title('25 spectra x 300 wavelengths')
savefig('desi-extract-improvements.pdf')
|
doc/portland-extract.ipynb
|
sbailey/knltest
|
bsd-3-clause
|
Build in plots for storytelling
|
def labelit(title_=''):
semilogx()
semilogy()
xticks([1,2,4,8,16,32,64,128], [1,2,4,8,16,32,64,128])
legend(loc='upper left')
title(title_)
ylim(20, 20000)
xlabel('Number of Processes')
ylabel('Extraction Rate')
figure()
plot(h1['nproc'], h1['rate'], 's-', color='C0', label='Haswell')
plot(h1['nproc'], h1['nproc']*h1['rate'][0], color='0.5', alpha=0.5, label='_none_')
plot(k1['nproc'], k1['rate'][0]*np.ones(len(k1['nproc'])), 'd-', color='C1', label='KNL')
plot(k1['nproc'], k1['nproc']*k1['rate'][0], color='0.5', alpha=0.5, label='_none_')
labelit('Starting point: no KNL scaling')
savefig('portland1.pdf')
figure()
plot(h1['nproc'], h1['rate'], 's-', color='C0', label='Haswell')
plot(h1['nproc'], h1['nproc']*h1['rate'][0], color='0.5', alpha=0.5, label='_none_')
plot(k1['nproc'], k1['rate'], 'd-', color='C1', label='KNL')
plot(k1['nproc'], k1['rate'][0]*np.ones(len(k1['nproc'])), ':', color='C1', label='_none_', alpha=0.8)
plot(k1['nproc'], k1['nproc']*k1['rate'][0], color='0.5', alpha=0.5, label='_none_')
labelit('After OpenMP bug workaround')
savefig('portland2.pdf')
figure()
plot(h1['nproc'], h1['rate'], ':', color='C0', label='_none_', alpha=0.8)
plot(h2['nproc'], h2['rate'], 's-', color='C0', label='Haswell')
plot(h2['nproc'], h2['nproc']*h2['rate'][0], color='0.5', alpha=0.5, label='_none_')
plot(k1['nproc'], k1['rate'], ':', color='C1', label='_none_', alpha=0.8)
plot(k2['nproc'], k2['rate'], 'd-', color='C1', label='KNL')
plot(k2['nproc'], k2['nproc']*k2['rate'][0], color='0.5', alpha=0.5, label='_none_')
labelit('After Portland Hackfest')
savefig('portland3.pdf')
print('For 25 spectra x 300 wavelengths...')
print('Starting point ratios of HSW/KNL')
print(' per processes {:.2f}'.format(h1['rate'][0]/k1['rate'][0]))
print(' per node {:.2f}'.format(np.max(h1['rate'])/np.max(k1['rate'])))
print('Ending ratios of HSW/KNL')
print(' per processes {:.2f}'.format(h2['rate'][0]/k2['rate'][0]))
print(' per node {:.2f}'.format(np.max(h2['rate'])/np.max(k2['rate'])))
print('Haswell per-node improvement {:.2f}'.format(np.max(h2['rate'])/np.max(h1['rate'])))
print('KNL per-node improvement {:.2f}'.format(np.max(k2['rate'])/np.max(k1['rate'])))
print('Original HSW / Current KNL {:.2f}'.format(np.max(h1['rate'])/np.max(k2['rate'])))
print('Original HSW rate {:.1f}'.format(np.max(h1['rate'])))
|
doc/portland-extract.ipynb
|
sbailey/knltest
|
bsd-3-clause
|
Configuration parameters
|
import GAN.utils as utils
# reload(utils)
class Parameters(utils.Parameters):
# dataset to be loaded
load_datasets=utils.param(["moriond_v9","abs(ScEta) < 1.5"])
c_names = utils.param(['Phi','ScEta','Pt','rho','run'])
x_names = utils.param(['EtaWidth','R9','SigmaIeIe','S4','PhiWidth','CovarianceIetaIphi',
'CovarianceIphiIphi'])
# generate variables in MC to be distributed like in data
sample_from_data = ['run']
# MC reweighting
reweight = ['rewei_zee_5d_barrel_m_cleaning_xgb']
mcweight = utils.param('') # if empty ignore original weight
use_abs_weight = utils.param(True) # negative weights are notoriously nasty
# cleaning cuts
cleaning = utils.param('cleaning_zee_m_barrel.hd5')
# input features transformation
feat_transform = utils.param('minmax')
global_match = utils.param(False)
# generator and discriminator (aka as 'critic' in wGAN)
g_opts=utils.param(dict(name="G_512to64x8",
kernel_sizes=[64,64,128,128,256,256,512,512],
do_weight_reg=1e-5,do_last_l1reg=1e-5
))
pretrain_g = utils.param(False)
d_opts=utils.param(dict(name="D_1024to32x6",kernel_sizes=[1024,512,128,64,32],do_bn=False,
do_dropout=False,hidden_activation="relu",
clip_weights=2.e-2,activation=None)) # weights clipping and no actication
# optimizers
dm_opts=utils.param(dict(optimizer="RMSprop",opt_kwargs=dict(lr=1e-5,decay=1e-6)))
am_opts=utils.param(dict(optimizer="RMSprop",opt_kwargs=dict(lr=1e-5,decay=1e-6)))
loss = utils.param("wgan_loss") # use WGAN loss
gan_targets = utils.param('gan_targets_hinge') # hinge targets are 1, -1 instead of 0, 1
schedule = utils.param([0]*5+[1]*1) # number of critic iterations per generator iterations
# schedule training
epochs=utils.param(200)
batch_size=utils.param(4096)
plot_every=utils.param(10)
frac_data=utils.param(10) # fraction of data to use
monitor_dir = utils.param('log') # folder for logging
batch = utils.param(False) # are we running in batch?
class MyApp(utils.MyApp):
classes = utils.List([Parameters])
# Read all parameters above from command line.
# Note: names are all converted to be all capital
notebook_parameters = Parameters(MyApp()).get_params()
# copy parameters to global scope
globals().update(notebook_parameters)
DM_OPTS.update( {"loss":LOSS} )
AM_OPTS.update( {"loss":LOSS} )
plotting.batch = BATCH
notebook_parameters
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Load datasets
Apply cleaning and reweight MC to match data
|
data,mc = cms.load_zee(*LOAD_DATASETS)
data.columns
mc.columns
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Cleaning
|
if not CLEANING is None:
print('cleaning data and mc')
thr_up = pd.read_hdf(CLEANING,'thr_up')
thr_down = pd.read_hdf(CLEANING,'thr_down')
nevts_data = data.shape[0]
nevts_mc = mc.shape[0]
data = data[ ((data[thr_down.index] >= thr_down) & (data[thr_up.index] <= thr_up)).all(axis=1) ]
mc = mc[ ((mc[thr_down.index] >= thr_down) & (mc[thr_up.index] <= thr_up)).all(axis=1) ]
print('cleaning eff (data,mc): %1.2f % 1.2f' % ( data.shape[0] / nevts_data, mc.shape[0] / nevts_mc ))
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Generate extra variables for MC (eg run number) distributed like data
|
for col in SAMPLE_FROM_DATA:
print('sampling', col)
mc[col] = data[col].sample(mc.shape[0]).values
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Select target and conditional features
|
c_names = C_NAMES
x_names = X_NAMES
data_c = data[c_names]
data_x = data[x_names]
mc_c = mc[c_names]
mc_x = mc[x_names]
data_x.columns, data_x.shape, data_c.columns, data_c.shape
data_x.columns, data_c.columns
mc_x.columns, mc_c.columns
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Reweight MC
|
# reload(preprocessing)
# reload(utils)
# iniliatlize weights to default
if MCWEIGHT == '':
mc_w = np.ones(mc_x.shape[0])
else:
mc_w = mc[MCWEIGHT].values
print(mc_w[:10])
# take care of negative weights
if USE_ABS_WEIGHT:
mc_w = np.abs(mc_w)
# reweighting
if not REWEIGHT is None:
for fil in REWEIGHT:
# apply weights from n-dimnesional histograms
if 'npy' in fil:
info = np.load(fil)
inputs = info[0]
weights = info[1]
bins = info[2:]
# print(bins[1])
print('weighting',inputs)
mc_w *= preprocessing.reweight(mc,inputs,bins,weights,base=None)
else:
# or use a classifier
clf = utils.read_pickle(fil,encoding='latin1')
if hasattr(clf,'nthread'):
clf.nthread = min(4,clf.nthread)
clf.n_jobs = clf.nthread
mc_w *= preprocessing.reweight_multidim(mc[clf.features_],clf)
data_w = np.ones(data_x.shape[0])
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Features transformation
|
# reload(preprocessing)
if GLOBAL_MATCH:
_,data_c,mc_x,mc_c,scaler_x,scaler_c = preprocessing.transform(None,data_c,mc_x,mc_c,FEAT_TRANSFORM)
_,_,data_x,_,scaler_x_data,_ = preprocessing.transform(None,None,data_x,None,FEAT_TRANSFORM)
else:
data_x,data_c,mc_x,mc_c,scaler_x,scaler_c = preprocessing.transform(data_x,data_c,mc_x,mc_c,FEAT_TRANSFORM)
data_x.shape,mc_x.shape
data_x[2].max(),mc_x[2].max()
print(mc_c.max(axis=0),mc_c.min(axis=0))
print(data_c.max(axis=0),data_c.min(axis=0))
print(mc_w.shape,mc_c.shape)
for ic in range(len(c_names)):
plotting.plot_hists(data_c[:,0,ic],mc_c[:,0,ic],generated_w=mc_w,bins=100,range=[-2.0,2.0])
plt.xlabel(c_names[ic])
plt.show()
for ix in range(len(x_names)):
plotting.plot_hists(data_x[:,0,ix],mc_x[:,0,ix],generated_w=mc_w,bins=100,range=[-3,3])
plt.xlabel(x_names[ix])
plt.show()
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Prepare train and test sample
|
nmax = min(data_x.shape[0]//FRAC_DATA,mc_x.shape[0])
data_x_train,data_x_test,data_c_train,data_c_test,data_w_train,data_w_test = cms.train_test_split(data_x[:nmax],data_c[:nmax],data_w[:nmax],test_size=0.1)
mc_x_train,mc_x_test,mc_c_train,mc_c_test,mc_w_train,mc_w_test = cms.train_test_split(mc_x[:nmax],mc_c[:nmax],mc_w[:nmax],test_size=0.1)
wscl = data_w[:nmax].sum() / mc_w[:nmax].sum()
mc_w_train *= wscl
mc_w_test *= wscl
print(nmax,mc_w_train.sum()/data_w_train.sum())
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Instantiate the model
Create the model and compile it.
|
# reload(models)
xz_shape = (1,len(x_names))
c_shape = (1,len(c_names))
gan = models.MyFFGAN( xz_shape, xz_shape, c_shape=c_shape,
g_opts=G_OPTS,
d_opts=D_OPTS,
dm_opts=DM_OPTS,
am_opts=AM_OPTS,
gan_targets=GAN_TARGETS
)
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
This will actually trigger the instantiation of the generator
(if not done here, it will happen befor compilation).
|
gan.get_generator()
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Same as above for the discriminator.
Two discriminator models are created: one for the discriminator training phase and another
for the generator trainin phase.
The difference between the two is that the second does not contain dropout layers.
|
gan.get_discriminator()
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
model compilation
|
gan.adversarial_compile(loss=LOSS,schedule=SCHEDULE)
gan.get_generator().summary()
gan.get_discriminator()[0].summary()
gan.get_discriminator()[1].summary()
# sanity check
set(gan.am[0].trainable_weights)-set(gan.am[1].trainable_weights)
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
Training
Everything is ready. We start training.
|
from keras.optimizers import RMSprop
if PRETRAIN_G:
generator = gan.get_generator()
generator.compile(loss="mse",optimizer=RMSprop(lr=1.e-3))
generator.fit( [mc_c_train,mc_x_train], [mc_c_train,mc_x_train], sample_weight=[mc_w_train,mc_w_train], epochs=1, batch_size=BATCH_SIZE )
# reload(base)
initial_epoch = 0
# if hasattr(gan.model,"history"):
# initial_epoch = gan.model.history.epoch[-1] + 1
do = dict(
x_train=data_x_train,
z_train=mc_x_train,
c_x_train=data_c_train,
c_z_train=mc_c_train,
w_x_train = data_w_train,
w_z_train = mc_w_train,
x_test=data_x_test,
z_test=mc_x_test,
c_x_test=data_c_test,
c_z_test=mc_c_test,
w_x_test = data_w_test,
w_z_test = mc_w_test,
n_epochs=EPOCHS + initial_epoch - 1,
initial_epoch=initial_epoch,
batch_size=BATCH_SIZE,
plot_every=PLOT_EVERY,
monitor_dir=MONITOR_DIR
)
exc = None
try:
gan.adversarial_fit(**do)
except Exception as e:
exc = e
if not exc is None:
print(exc)
|
cms_zee_conditional_wgan.ipynb
|
musella/GAN
|
gpl-3.0
|
### Clustering pearsons_r with HDBSCAN
|
# Clustering the pearsons_R with N/A vlaues removed
hdb_t1 = time.time()
hdb_pearson_r = hdbscan.HDBSCAN(metric = "precomputed", min_cluster_size=10).fit(df3_pearson_r)
hdb_pearson_r_labels = hdb_pearson_r.labels_
hdb_elapsed_time = time.time() - hdb_t1
print("time to cluster", hdb_elapsed_time)
print(np.unique(hdb_pearson_r_labels)) # unique bins, zero is noise
print(np.bincount(hdb_pearson_r_labels[hdb_pearson_r_labels!=-1]))
pearson_clusters = {i: np.where(hdb_pearson_r_labels == i)[0] for i in range(2)}
pearson_clusters
#pd.set_option('display.height', 500) #These two commands allow for the display of max of 500 rows - exploring genes
#pd.set_option('display.max_rows', 500)
df2_TPM.iloc[pearson_clusters[1],:] #the genes that were clustered together [0,1]
|
data_explore_failed_clstr_mthds/HDBSCAN_clustering.ipynb
|
gilmana/Cu_transition_time_course-
|
mit
|
Looks like there are two clusters, some expression and zero expression across samples.
### Clustering mean centered euclidean distance with with HDBSCAN
|
df3_euclidean_mean.hist()
# Clustering the mean centered euclidean distance of TPM counts
hdb_t1 = time.time()
hdb_euclidean_mean = hdbscan.HDBSCAN(metric = "precomputed", min_cluster_size=10).fit(df3_euclidean_mean)
hdb_euclidean_mean_labels = hdb_euclidean_mean.labels_
hdb_elapsed_time = time.time() - hdb_t1
print("time to cluster", hdb_elapsed_time)
print(np.unique(hdb_euclidean_mean_labels))
print(np.bincount(hdb_euclidean_mean_labels[hdb_euclidean_mean_labels!=-1]))
euclidean_mean_clusters = {i: np.where(hdb_euclidean_mean_labels == i)[0] for i in range(2)}
df2_TPM.iloc[euclidean_mean_clusters[1],:]
|
data_explore_failed_clstr_mthds/HDBSCAN_clustering.ipynb
|
gilmana/Cu_transition_time_course-
|
mit
|
Looks like 2 clusters - both with zero expression.
looks like wether it is a numpy array or pandas dataframe, the result is the same. lets now try to get index of the clustered points.
### Clustering log transformed euclidean distance with with HDBSCAN
|
df3_euclidean_log2
# Clustering the log2 transformed euclidean distance of TPM counts
hdb_t1 = time.time()
hdb_euclidean_log2 = hdbscan.HDBSCAN(metric = "precomputed", min_cluster_size=10).fit(df3_euclidean_log2)
hdb_euclidean_log2_labels = hdb_euclidean_log2.labels_
hdb_elapsed_time = time.time() - hdb_t1
print("time to cluster", hdb_elapsed_time)
print(np.unique(hdb_euclidean_log2_labels))
print(np.bincount(hdb_euclidean_log2_labels[hdb_euclidean_log2_labels!=-1]))
euclidean_log2_clusters = {i: np.where(hdb_euclidean_log2_labels == i)[0] for i in range(2)}
df2_TPM.iloc[euclidean_log2_clusters[1],:]
|
data_explore_failed_clstr_mthds/HDBSCAN_clustering.ipynb
|
gilmana/Cu_transition_time_course-
|
mit
|
Clustering using built-in HDBSCAN euclidean distance metric (mean centered and scaled to unit variance)
|
df2_TPM_values = df2_TPM.loc[:,"5GB1_FM40_T0m_TR2":"5GB1_FM40_T180m_TR1"] #isolating the data values
df2_TPM_values_T = df2_TPM_values.T #transposing the data
standard_scaler = StandardScaler()
TPM_counts_mean_centered = standard_scaler.fit_transform(df2_TPM_values_T) #mean centering the data
TPM_counts_mean_centered = pd.DataFrame(TPM_counts_mean_centered) #back to Dataframe
#transposing back to original form and reincerting indeces and columns
my_index = df2_TPM_values.index
my_columns = df2_TPM_values.columns
TPM_counts_mean_centered = TPM_counts_mean_centered.T
TPM_counts_mean_centered.set_index(my_index, inplace=True)
TPM_counts_mean_centered.columns = my_columns
# Clustering the pearsons_R with N/A vlaues removed
hdb_t1 = time.time()
hdb_euclidean = hdbscan.HDBSCAN(metric = "euclidean", min_cluster_size=5).fit(TPM_counts_mean_centered)
hdb_euclidean_labels = hdb_euclidean.labels_
hdb_elapsed_time = time.time() - hdb_t1
print("time to cluster", hdb_elapsed_time)
print(np.unique(hdb_euclidean_labels))
print(np.bincount(hdb_euclidean_labels[hdb_euclidean_labels!=-1]))
|
data_explore_failed_clstr_mthds/HDBSCAN_clustering.ipynb
|
gilmana/Cu_transition_time_course-
|
mit
|
lets look at some clusters
Euclidean_standard_scaled_clusters = {i: np.where(hdb_euclidean_labels == i)[0] for i in range(7)}
df2_TPM.iloc[Euclidean_standard_scaled_clusters[0],:]
|
Euclidean_standard_scaled_clusters = {i: np.where(hdb_euclidean_labels == i)[0] for i in range(7)}
df2_TPM.iloc[Euclidean_standard_scaled_clusters[1],:]
|
data_explore_failed_clstr_mthds/HDBSCAN_clustering.ipynb
|
gilmana/Cu_transition_time_course-
|
mit
|
Euclidean_standard_scaled_clusters
Clustering log2 transformed data using built-in HDBSCAN euclidean distance metric (mean centered and scaled to unit variance)
|
df2_TPM_log2_scale= df2_TPM_log2.T #transposing the data
standard_scaler = StandardScaler()
TPM_log2_mean_scaled = standard_scaler.fit_transform(df2_TPM_log2_scale) #mean centering the data
TPM_log2_mean_scaled = pd.DataFrame(TPM_log2_mean_scaled) #back to Dataframe
#transposing back to original form and reincerting indeces and columns
my_index = df2_TPM_values.index
my_columns = df2_TPM_values.columns
TPM_log2_mean_scaled = TPM_log2_mean_scaled.T
TPM_log2_mean_scaled.set_index(my_index, inplace=True)
TPM_log2_mean_scaled.columns = my_columns
# Clustering the pearsons_R with N/A vlaues removed
hdb_t1 = time.time()
hdb_log2_euclidean = hdbscan.HDBSCAN(metric = "euclidean", min_cluster_size=5).fit(TPM_log2_mean_scaled)
hdb_log2_euclidean = hdb_log2_euclidean.labels_
hdb_elapsed_time = time.time() - hdb_t1
print("time to cluster", hdb_elapsed_time)
print(np.unique(hdb_log2_euclidean))
print(np.bincount(hdb_log2_euclidean[hdb_log2_euclidean!=-1]))
|
data_explore_failed_clstr_mthds/HDBSCAN_clustering.ipynb
|
gilmana/Cu_transition_time_course-
|
mit
|
DM -- Piece by piece (as coded)
$\rho_b = \Omega_b \rho_c (1+z)^3$
$\rho_{\rm diffuse} = \rho_b - (\rho_* + \rho_{\rm ISM})$
$\rho_*$ is the mass density in stars
$\rho_{\rm ISM}$ is the mass density in the neutral ISM
Number densities
$n_{\rm H} = \rho_{\rm diffuse}/(m_p \, \mu)$
$\mu \approx 1.3$ accounts for Helium
$n_{\rm He} = n_{\rm H}/12$
$n_e = n_{\rm H} [1-f_{\rm HI}] + n_{\rm He} Y$
$f_{\rm HI}$ is the fraction atomic Hydrogen [value betwee 0-1]
$Y$ gives the number of free electrons per He nucleus [value between 0-2]
Integrating
$DM = \int \frac{n_e \, dr}{1+z} = \frac{c}{H_0} \int \frac{n_e \, dz}{(1+z)^2 \sqrt{(1+z)^3 \Omega_m +
\Omega_\Lambda}}$
DM -- Altogether (using the code)
|
reload(igm)
DM = igm.average_DM(1.)
DM
|
docs/nb/DM_cosmic.ipynb
|
FRBs/FRB
|
bsd-3-clause
|
Cumulative plot
|
DM_cumul, zeval = igm.average_DM(1., cumul=True)
# Inoue approximation
DM_approx = 1000. * zeval * units.pc / units.cm**3
plt.clf()
ax = plt.gca()
ax.plot(zeval, DM_cumul, label='JXP')
ax.plot(zeval, DM_approx, label='Approx')
# Label
ax.set_xlabel('z')
ax.set_ylabel(r'${\rm DM}_{\rm IGM} [\rm pc / cm^3]$ ')
# Legend
legend = plt.legend(loc='lower right', scatterpoints=1, borderpad=0.2,
handletextpad=0.1, fontsize='large')
plt.show()
plt.clf()
ax = plt.gca()
ax.plot(zeval, DM_approx/DM_cumul, label='Approx/JXP')
#ax.plot(zeval, DM_approx, label='Approx')
# Label
ax.set_xlabel('z')
ax.set_ylabel(r'Ratio of ${\rm DM}_{\rm IGM} [\rm pc / cm^3]$ ')
# Legend
legend = plt.legend(loc='upper right', scatterpoints=1, borderpad=0.2,
handletextpad=0.1, fontsize='large')
plt.show()
DM_cumul[0:10]
DM_approx[0:10]
zeval[0]
|
docs/nb/DM_cosmic.ipynb
|
FRBs/FRB
|
bsd-3-clause
|
The Longley dataset is a time series dataset:
|
data = sm.datasets.longley.load()
data.exog = sm.add_constant(data.exog)
print(data.exog[:5])
|
examples/notebooks/gls.ipynb
|
ChadFulton/statsmodels
|
bsd-3-clause
|
While we don't have strong evidence that the errors follow an AR(1)
process we continue
|
rho = resid_fit.params[1]
|
examples/notebooks/gls.ipynb
|
ChadFulton/statsmodels
|
bsd-3-clause
|
2x2 Grid
You can easily create a layout with 4 widgets arranged on 2x2 matrix using the TwoByTwoLayout widget:
|
from ipywidgets import TwoByTwoLayout
TwoByTwoLayout(top_left=top_left_button,
top_right=top_right_button,
bottom_left=bottom_left_button,
bottom_right=bottom_right_button)
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
If you don't define a widget for some of the slots, the layout will automatically re-configure itself by merging neighbouring cells
|
TwoByTwoLayout(top_left=top_left_button,
bottom_left=bottom_left_button,
bottom_right=bottom_right_button)
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
You can pass merge=False in the argument of the TwoByTwoLayout constructor if you don't want this behavior
|
TwoByTwoLayout(top_left=top_left_button,
bottom_left=bottom_left_button,
bottom_right=bottom_right_button,
merge=False)
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
You can add a missing widget even after the layout initialization:
|
layout_2x2 = TwoByTwoLayout(top_left=top_left_button,
bottom_left=bottom_left_button,
bottom_right=bottom_right_button)
layout_2x2
layout_2x2.top_right = top_right_button
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
You can easily create more complex layouts with custom widgets. For example, you can use bqplot Figure widget to add plots:
|
import bqplot as bq
import numpy as np
size = 100
np.random.seed(0)
x_data = range(size)
y_data = np.random.randn(size)
y_data_2 = np.random.randn(size)
y_data_3 = np.cumsum(np.random.randn(size) * 100.)
x_ord = bq.OrdinalScale()
y_sc = bq.LinearScale()
bar = bq.Bars(x=np.arange(10), y=np.random.rand(10), scales={'x': x_ord, 'y': y_sc})
ax_x = bq.Axis(scale=x_ord)
ax_y = bq.Axis(scale=y_sc, tick_format='0.2f', orientation='vertical')
fig = bq.Figure(marks=[bar], axes=[ax_x, ax_y], padding_x=0.025, padding_y=0.025,
layout=Layout(width='auto', height='90%'))
from ipywidgets import FloatSlider
max_slider = FloatSlider(min=0, max=10, default_value=2, description="Max: ",
layout=Layout(width='auto', height='auto'))
min_slider = FloatSlider(min=-1, max=10, description="Min: ",
layout=Layout(width='auto', height='auto'))
app = TwoByTwoLayout(top_left=min_slider,
bottom_left=max_slider,
bottom_right=fig,
align_items="center",
height='700px')
jslink((y_sc, 'max'), (max_slider, 'value'))
jslink((y_sc, 'min'), (min_slider, 'value'))
jslink((min_slider, 'max'), (max_slider, 'value'))
jslink((max_slider, 'min'), (min_slider, 'value'))
max_slider.value = 1.5
app
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
AppLayout
AppLayout is a widget layout template that allows you to create an application-like widget arrangements. It consist of a header, a footer, two sidebars and a central pane:
|
from ipywidgets import AppLayout, Button, Layout
header_button = create_expanded_button('Header', 'success')
left_button = create_expanded_button('Left', 'info')
center_button = create_expanded_button('Center', 'warning')
right_button = create_expanded_button('Right', 'info')
footer_button = create_expanded_button('Footer', 'success')
AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=footer_button)
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
However with the automatic merging feature, it's possible to achieve many other layouts:
|
AppLayout(header=None,
left_sidebar=None,
center=center_button,
right_sidebar=None,
footer=None)
AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=None)
AppLayout(header=None,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=None)
AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=None,
footer=footer_button)
AppLayout(header=header_button,
left_sidebar=None,
center=center_button,
right_sidebar=right_button,
footer=footer_button)
AppLayout(header=header_button,
left_sidebar=None,
center=center_button,
right_sidebar=None,
footer=footer_button)
AppLayout(header=header_button,
left_sidebar=left_button,
center=None,
right_sidebar=right_button,
footer=footer_button)
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
You can also modify the relative and absolute widths and heights of the panes using pane_widths and pane_heights arguments. Both accept a sequence of three elements, each of which is either an integer (equivalent to the weight given to the row/column) or a string in the format '1fr' (same as integer) or '100px' (absolute size).
|
AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=footer_button,
pane_widths=[3, 3, 1],
pane_heights=[1, 5, '60px'])
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
Grid layout
GridspecLayout is a N-by-M grid layout allowing for flexible layout definitions using an API similar to matplotlib's GridSpec.
You can use GridspecLayout to define a simple regularly-spaced grid. For example, to create a 4x3 layout:
|
from ipywidgets import GridspecLayout
grid = GridspecLayout(4, 3)
for i in range(4):
for j in range(3):
grid[i, j] = create_expanded_button('Button {} - {}'.format(i, j), 'warning')
grid
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
To make a widget span several columns and/or rows, you can use slice notation:
|
grid = GridspecLayout(4, 3, height='300px')
grid[:3, 1:] = create_expanded_button('One', 'success')
grid[:, 0] = create_expanded_button('Two', 'info')
grid[3, 1] = create_expanded_button('Three', 'warning')
grid[3, 2] = create_expanded_button('Four', 'danger')
grid
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
You can still change properties of the widgets stored in the grid, using the same indexing notation.
|
grid = GridspecLayout(4, 3, height='300px')
grid[:3, 1:] = create_expanded_button('One', 'success')
grid[:, 0] = create_expanded_button('Two', 'info')
grid[3, 1] = create_expanded_button('Three', 'warning')
grid[3, 2] = create_expanded_button('Four', 'danger')
grid
grid[0, 0].description = "I am the blue one"
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
Note: It's enough to pass an index of one of the grid cells occupied by the widget of interest. Slices are not supported in this context.
If there is already a widget that conflicts with the position of the widget being added, it will be removed from the grid:
|
grid = GridspecLayout(4, 3, height='300px')
grid[:3, 1:] = create_expanded_button('One', 'info')
grid[:, 0] = create_expanded_button('Two', 'info')
grid[3, 1] = create_expanded_button('Three', 'info')
grid[3, 2] = create_expanded_button('Four', 'info')
grid
grid[3, 1] = create_expanded_button('New button!!', 'danger')
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
Creating scatter plots using GridspecLayout
In these examples, we will demonstrate how to use GridspecLayout and bqplot widget to create a multipanel scatter plot. To run this example you will need to install the bqplot package.
For example, you can use the following snippet to obtain a scatter plot across multiple dimensions:
|
import bqplot as bq
import numpy as np
from ipywidgets import GridspecLayout, Button, Layout
n_features = 5
data = np.random.randn(100, n_features)
data[:50, 2] += 4 * data[:50, 0] **2
data[50:, :] += 4
A = np.random.randn(n_features, n_features)/5
data = np.dot(data,A)
scales_x = [bq.LinearScale() for i in range(n_features)]
scales_y = [bq.LinearScale() for i in range(n_features)]
gs = GridspecLayout(n_features, n_features)
for i in range(n_features):
for j in range(n_features):
if i != j:
sc_x = scales_x[j]
sc_y = scales_y[i]
scatt = bq.Scatter(x=data[:, j], y=data[:, i], scales={'x': sc_x, 'y': sc_y}, default_size=1)
gs[i, j] = bq.Figure(marks=[scatt], layout=Layout(width='auto', height='auto'),
fig_margin=dict(top=0, bottom=0, left=0, right=0))
else:
sc_x = scales_x[j]
sc_y = bq.LinearScale()
hist = bq.Hist(sample=data[:,i], scales={'sample': sc_x, 'count': sc_y})
gs[i, j] = bq.Figure(marks=[hist], layout=Layout(width='auto', height='auto'),
fig_margin=dict(top=0, bottom=0, left=0, right=0))
gs
|
docs/source/examples/Layout Templates.ipynb
|
SylvainCorlay/ipywidgets
|
bsd-3-clause
|
<a id='index'></a>
Index
Back to top
1 Introduction
2 ScatterPlot components
2.1 The scatter plot marker
2.2 Internal structure
2.3 Data structures
2.3.1 Original data
2.3.2 Tooltip data
2.3.3 Mapper data
2.3.2 Output data
3 ScatterPlot interface
3.1 Data mapper
3.2 Tooltip selector
3.3 Colors in Hex format
4 Taking a snapshot of the current plot
5 Plotting pandas Panel and Panel4D
<a id='introduction'></a>
1 Introduction
Now that we are familiar with the framework's basics, we can start showing the full capabilities of Shaolin. In order to do that I will rewiev one of the most "simple" and widely used plots in data science: The scatter plot. We provide in the dashboards section of the Shaolin framework several Dashboards suited for complex data processing, and the Bokeh Scatterplot is the one on which we are going to center this tutorial. All the individual components of this Dashboard will be explained deeply in further tutorials.
<a id='components'></a>
2 ScatterPlot components
<a id='scatter_marker'></a>
2.1 The scatter plot marker
Back to top
A scatter plot, as we all know is a kind of plot in which we represent two datapoint vectors (x and y) against each other and assign a marker(by now just a circle) to each pair of data points. Althoug the x and y coordinates of the marker are the only two compulsory parameters, it is also possible to customize the following parameters for a circle marker:
x: x coordinate of the marker.
y: y coordinate of the marker.
size: Marker size.
fill_alpha: Transparency value of the interior of the marker.
fill_color: Color of the interior of the marker.
line_color: Color of the marker's border.
line_alpha: Transparency of the marker's border.
line_width: Width of the marker's boder.
It is possible to fully customize what data from the data structure we want to plot willn be mapped to a marker parameter and how that mapping will be performed. In order to assign values to a marker parameter we have to follow this process:
Select a chunk of data from your pandas data structure that has the correct shape. (In this case each parameter must be a datapoint vector)
Select how the data will be scaled to fit in the range of values that the marker parameter can have. (For example, for the line_width param all the values should be between 1 and 4.)
Select if the values of the parameter will be a mapping of the data or a default value that will be the same for all the data points.
This means that we could theoretically plot 8 dimensional data by mapping each parameter to a coordinate of a data point, but in practise it is sometime more usefull to use more than one parameter to map the same vector of data points in order to emphatise some feature of the data we are plotting. For example, we could map the fill_color parameter and the fill_alpha parameter to the same feature so it would be easy to emphatise the higher values of the plotted vector.
<a id='internals'></a>
2.2 Internal structure
Back to top
The scatter plot is a Dashboard with the following attributes:
data: The pandas data structure that we will use for the plot.
widget: GUI for selecting the plot parameters.
plot: Bokeh plot where the data is displayed.
mapper: Dashboard in charge of mapping data to every marker parameter.
tooltip: Dashboard in charge of managing the information displayed on the tooltip.
output: DataFrame with all the information available to the plot.
bokeh_source: Bokeh DataSource that mimics the infromation contained in the source df.
In the following diagram you can se the process of how data is mapped into visual information.
<img src="scatter_data/structure.svg"></img>
For this example we will use the classic Iris dataset imported from the bokeh data samples.
|
from IPython.display import Image #this is for displaying the widgets in the web version of the notebook
from shaolin.dashboards.bokeh import ScatterPlot
from bokeh.sampledata.iris import flowers
scplot = ScatterPlot(flowers)
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
<a id='data_structures'></a>
2.3 Data structures
Back to top
The data contained in the blocks described in the above diagram gcan be accessed the following way:
<a id='original_data'></a>
2.3.1 Original data
|
scplot.data.head()
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
<a id='tooltip_data'></a>
2.3.2 Tooltip data
Back to top
|
scplot.tooltip.output.head()
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
<a id='mapper_data'></a>
2.3.3 Mapper data
|
scplot.mapper.output.head()
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
<a id='output_data'></a>
2.3.4 output data
|
scplot.output.head()
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
<a id='plot_interface'></a>
3 Scatter plot Interface
Back to top
The scatter plot Dashboard contains the bokeh scatter plot and a widget. That widget is a toggle menu that can display two Dashboards:
- Mapper: This dashboard is in charge of managing how the data is displayed.
- Tooltip: The BokehTooltip Dashboard allows to select what information will be displayed on the plot tooltips.
The complete plot interface can be displayed calling the function show.
As you will see, the interface layout has not been yet customized, so any suggestion regarding interface desing will be appreciated.
<a id='data_mapper'></a>
3.1 Data Mapper
Back to top
This is the Dashboard that allows to customize how the data will be plotted. We will color each of its components so its easier to locate them. This is a good example of a complex Dashboard comprised of multiple Dashboards.
|
mapper = scplot.mapper
mapper.buttons.widget.layout.border = "blue solid"
mapper.buttons.value = 'line_width'
mapper.line_width.data_scaler.widget.layout.border = 'yellow solid'
mapper.line_width.data_slicer.widget.layout.border = 'red solid 0.4em'
mapper.line_width.data_slicer.columns_slicer.widget.layout.border = 'green solid 0.4em'
mapper.line_width.data_slicer.index_slicer.widget.layout.border = 'green solid 0.4em'
mapper.line_width.default_value.widget.layout.border = 'purple solid 0.4em'
mapper.line_width.apply_row.widget.layout.border = "pink solid 0.4em"
scplot.widget
Image(filename='scatter_data/img_1.png')
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
A plot mapper has the following components:
- Marker parameter selector(Blue): A dropdown that allows to select which marker parameter that is going to be changed.
- Data slicer(Red): A dashoard in charge of selecting a datapoint vector from a pandas data structure. We can slice each of the dimensions of the data structure thanks to an AxisSlicer(Green) Dashboard.
- Data scaler(Yellow): Dashboard in charge of scaling the data. Similar to the data scaler from the tutorials.
- Activate mapping(pink): If the value of the checkbox is True the value of the marker parameter will be the output of the scaler, otherwise it will be the default value(Purple) for every data point.
<a id='tooltip_selector'></a>
3.1 Tooltip selector
Back to top
It is possible to choose what information from the data attribute of the ScatterPlot will be shown when hovering above a marker.
In the above cell we click in the "tooltip" button of the toggleButtons in order to make the widget visible. As we can see there is a SelectMultiple widget for every column of the original DataFrame.
|
scplot.widget
Image(filename='scatter_data/img_2.png')
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
<a id='snapshot'></a>
4 Taking a snapshot of the current plot
Back to top
Although it is possible to save the bokeh plot with any of the standard methods that the bokeh library offers by accessing the plot attribute of the ScatterPlot, shaolin offers the possibility of saving an snapshot of the plot as a shaolin widget compatible with the framework, this way it can be included in a Dashboard for displaying purposes.
This process is done by accessing the snapshot attribute of the scatterPlot. This way the current plot is exported and we can keep working with the ScatterPlot Dashboard in case we need to make more plots. An snapshot is an HTML widget which value is an exported notebook_div of the plot.
|
widget_plot = scplot.snapshot
widget_plot.widget
Image(filename='scatter_data/img_3.png')
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
<a id='plot_pandas'></a>
5 Plotting pandas Panel and Panel4D
Back to top
It is also possible to plot a pandas Panel or a Panel4d the same way as a DataFrame. The only resctriction for now is that the axis that will be used as index must be the major_axis in case of a Panel and the items axis in case of a Panel4D. The tooltips are disabled, custom tooltips will be available in the next release.
It would be nice to have feedback on how would you like to display and select the tooltips.
|
from pandas.io.data import DataReader# I know its deprecated but i can't make the pandas_datareader work :P
import datetime
symbols_list = ['ORCL', 'TSLA', 'IBM','YELP', 'MSFT']
start = datetime.datetime(2010, 1, 1)
end = datetime.datetime(2013, 1, 27)
panel = DataReader( symbols_list, start=start, end=end,data_source='yahoo')
panel
sc_panel = ScatterPlot(panel)
#sc_panel.show()
Image(filename='scatter_data/img_4.png')
|
examples/Scatter Plot introduction.ipynb
|
HCsoft-RD/shaolin
|
agpl-3.0
|
The following blocks will be used to define the functions that computes the accumulative sum by the chosen three approaches.
Native implementation using Python for command
|
def native_acc(x):
"""
Calculate accumulative sum using Python native loop approach
:param x: Numpy array
:return: Accumulative sum (list)
"""
native_acc_sum = []
sum_aux = 0
for val in x:
native_acc_sum.append(val + sum_aux)
sum_aux += val
return native_acc_sum
|
accumulative_sum_benchmark.ipynb
|
ESSS/notebooks
|
mit
|
Just a binding for numpy.cumsum
|
def np_acc(x):
"""
Calculate accumulative sum using numpy.cumsum
:param x: Numpy array
:return: Accumulative sum (Numpy array)
"""
return np.cumsum(x)
|
accumulative_sum_benchmark.ipynb
|
ESSS/notebooks
|
mit
|
Now using sci20 implementation
|
def sci20_acc(x):
"""
Calculate accumulative sum using sci20 Array
:param x: Numpy array
:return: Accumulative sum (sci20 array)
"""
x_array = Array(FromNumPy(x))
return AccumulateArrayReturning(x_array)
|
accumulative_sum_benchmark.ipynb
|
ESSS/notebooks
|
mit
|
Here we use the timeit standard lib to obtain the elapsed time of each method
|
def do_benchmark(n=1000, k=10):
"""
Compute elapsed time for each accumulative sum implementation (Native loop, Numpy and sci20).
:param n: Number of array elements. Default is 1000.
:param k: Number of averages used for timing. Default is 10.
:param dtype: Array data type. Default is np.double.
:return: A tuple (dt_native, dt_sci20, dt_np) containing the elapsed time for each method.
"""
x = np.linspace(1, 100, n)
dt_native = timeit.Timer(functools.partial(native_acc, x,)).timeit(k)
dt_sci20 = timeit.Timer(functools.partial(sci20_acc, x,)).timeit(k)
dt_np = timeit.Timer(functools.partial(np_acc, x,)).timeit(k)
return dt_native, dt_sci20, dt_np
|
accumulative_sum_benchmark.ipynb
|
ESSS/notebooks
|
mit
|
And finally we have the results. sci20 and Numpy implementations are almost equivalent, while native loop has demonstrated its inefficiency
|
"""
Computes and prints the elapsed time for each accumulative sum implementation (Native loop, Numpy and sci20).
"""
n_values = [10**x for x in range(1, 8)] # [10, 100, ..., 10^7]
for n in n_values:
print("Computing benchmark for n={}...".format(n))
dt_native, dt_sci20, dt_np = do_benchmark(n)
print("Native: {:.8f}s / sci20: {:.8f}s / Numpy: {:.8f}s.".format(dt_native, dt_sci20, dt_np))
|
accumulative_sum_benchmark.ipynb
|
ESSS/notebooks
|
mit
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.