markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
|---|---|---|---|---|
Indexing Lists (...and Text objects)
|
text4[173]
text4.index('awaken')
text5[16715:16735]
text6[1600:1625]
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
Computing with Language: Simple Statistics
|
saying = 'After all is said and done more is said than done'.split()
tokens = sorted(set(saying))
tokens[-2:]
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
Frequency Distributions
|
fdist1 = FreqDist(text1)
print(fdist1)
fdist1.most_common(50)
fdist1['whale']
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
50 most frequent words account for almost half of the book
|
plt.figure(figsize=(18,10))
fdist1.plot(50, cumulative=True)
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
Fine-grained Selection of Words
Looking at long words of a text (maybe these will be more meaningful words?)
|
V = set(text1)
long_words = [w for w in V if len(w) > 15]
sorted(long_words)
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
words that are longer than 7 characters and occur more than 7 times
|
fdist5 = FreqDist(text5)
sorted(w for w in set(text5) if len(w) > 7 and fdist5[w] > 7)
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
collocation - sequence of words that occur together unusually often (red wine is a collocation, vs. the wine is not)
|
list(nltk.bigrams(['more', 'is', 'said', 'than', 'done'])) # bigrams() returns a generator
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
collocations are just frequent bigrams -- we want to focus on the cases that involve rare words**
collocations() returns bigrams that occur more often than expected, based on word frequency
|
text4.collocations()
text8.collocations()
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
counting other things
word length distribution in text1
|
[len(w) for w in text1][:10]
fdist = FreqDist(len(w) for w in text1)
print(fdist)
fdist
fdist.most_common()
fdist.max()
fdist[3]
fdist.freq(3)
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
words of length 3 (~50k) make up ~20% of all words in the book
Back to Python: Making Decisions and Taking Control
skipping basic python stuff
More accurate vocabulary size counting -- convert all strings to lowercase
|
len(text1)
len(set(text1))
len(set(word.lower() for word in text1))
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
Only include alphabetic words -- no punctuation
|
len(set(word.lower() for word in text1 if word.isalpha()))
|
01_language_processing_and_python.ipynb
|
sandipchatterjee/nltk_book_notes
|
mit
|
Structure Prediction
In this notebook, we aim to do a test of the structure substitution algorithm implemented in SMACT
Before we can do predictions, we need to create our cation mutator, database and a table, and a list of hypothetical compositions
Procedure
Create a list of hypothetical compositions
Create a database of structures
Create Cation Mutator
Predict structures
Part 1: Compositions
These compositions have generated in a different notebook and the results have been loaded in
|
comps=pd.read_csv("Li-Garnet_Comps_sus.csv")
comps.head()
|
examples/Structure_Prediction/Li-Garnets_SP-Pym-new.ipynb
|
WMD-group/SMACT
|
mit
|
Part 2: Database
Let's follow this procedure
1. Create a SMACT database and add a table which contains the result of our query
|
DB=StructureDB("Test.db")
SP=StructurePredictor(CM, DB, "Garnets")
|
examples/Structure_Prediction/Li-Garnets_SP-Pym-new.ipynb
|
WMD-group/SMACT
|
mit
|
Part 3: Cation Mutator
In order to set up the cation mutator, we must do the following:
1. Generate a dataframe of lambda values for all species we which to consider
2. Instantiate the CationMutator class with the lambda dataframe
|
#Create the CationMutator class
#Here we use the default lambda table
CM=CationMutator.from_json()
|
examples/Structure_Prediction/Li-Garnets_SP-Pym-new.ipynb
|
WMD-group/SMACT
|
mit
|
Part 4: Structure Prediction
Prerequisites: Part 1, Part 2 & Part 3
Procedure:
1. Instantiate the StructurePredictor class with the cation mutator (part 1), database (part 2) and table (part 2)
2. Predict Structures
3. Compare predicted structures with Database
|
#Corrections
cond_df=CM.complete_cond_probs()
species=list(cond_df.columns)
comps_copy=comps[['A','B','C','D']]
df_copy_bool=comps_copy.isin(species)
x=comps_copy[df_copy_bool].fillna(0)
x=x[x.A != 0]
x=x[x.B != 0]
x=x[x.C != 0]
x=x[x.D != 0]
x=x.reset_index(drop=True)
#x.to_csv("./Garnet_Comps_Corrected_Pym.csv", index=False)
x.head()
inner_merged=pd.merge(x, comps)
inner_merged.to_csv("./Li-Garnet_Comps_Corrected_Pym.csv", index=False)
inner_merged.head()
print(inner_merged.head())
print("")
print(f"We have reduced our search space from {comps.shape[0]} to {inner_merged.shape[0]}")
#x=x[:100]
#Create a list of test species
test_specs_list=[[parse_spec(inner_merged["A"][i]),parse_spec(inner_merged["B"][i]),parse_spec(inner_merged["C"][i]),parse_spec(inner_merged["D"][i]) ] for i in range(inner_merged.shape[0])]
#Set up a for loop to store
from datetime import datetime
start = datetime.now()
from operator import itemgetter
preds=[]
parents_list=[]
probs_list=[]
for test_specs in test_specs_list:
predictions=list(SP.predict_structs(test_specs, thresh=10e-4, include_same=False ))
predictions.sort(key=itemgetter(1), reverse=True)
parents = [x[2].composition() for x in predictions]
probs = [x[1] for x in predictions]
preds.append(predictions)
parents_list.append(parents)
probs_list.append(probs)
print(f"Time taken to predict the crystal structures of our search space of {inner_merged.shape[0]} with a threshold of 0.0001 is {datetime.now()-start} ")
#print(parents_list)
print("")
#print(probs_list)
|
examples/Structure_Prediction/Li-Garnets_SP-Pym-new.ipynb
|
WMD-group/SMACT
|
mit
|
Part 5: Storing the results
|
#Add predictions to dataframe
import pymatgen as mg
pred_structs=[]
probs=[]
parent_structs=[]
parent_pretty_formula=[]
for i in preds:
if len(i)==0:
pred_structs.append(None)
probs.append(None)
parent_structs.append(None)
parent_pretty_formula.append(None)
else:
pred_structs.append(i[0][0].as_poscar())
probs.append(i[0][1])
parent_structs.append(i[0][2].as_poscar())
parent_pretty_formula.append(mg.Structure.from_str(i[0][2].as_poscar(), fmt="poscar").composition.reduced_formula)
#Add prediction results to dataframe
inner_merged["predicted_structure"]=pred_structs
inner_merged["probability"]=probs
inner_merged["Parent formula"]=parent_pretty_formula
inner_merged["parent_structure"]=parent_structs
inner_merged[35:40]
#output the intermediary results into a dataframe
outdir="./Li-SP_results"
if not os.path.exists(outdir):
os.mkdir(outdir)
fullpath=os.path.join(outdir,"pred_results.csv")
inner_merged.to_csv(fullpath)
#Filter dataframe to remove blank entries from dataframe
results=inner_merged.dropna()
results=results.reset_index(drop=True)
results.head()
#Check if composition exists in our local database
in_db=[]
for i in results["predicted_structure"]:
comp=SmactStructure.from_poscar(i).composition()
if len(DB.get_structs(comp, "Garnets"))!=0:
in_db.append("Yes")
else:
in_db.append("No")
results["In DB?"]=in_db
print(results["In DB?"].value_counts())
#Check the ratio of In DB?:Not in DB
in_db_count=results["In DB?"].value_counts()
from matplotlib import pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.axis('equal')
ax.pie(in_db_count,labels=["No","Yes"], autopct='%1.2f%%')
plt.savefig(f"{outdir}/Li-Garnets_Li-In_DB_SP.png")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(8,6))
ax1=sns.histplot(data=results, x="probability", hue="In DB?",multiple="stack")
#ax2=sns.histplot(new_series, label="New Garnets")
#plt.savefig("Prediction_Probability_Distribution_pym.png")
g=sns.FacetGrid(results, col="In DB?", height=6, aspect=1)
g.map(sns.histplot,"probability")
g.savefig("./Li-SP_results/Prob_dist.png")
results.head()
#new_structures=
#pym_Li_DB=StructureDB("pym_Li.DB")
#pym_Li_DB.add_table("New")
#pym_Li_DB.add_table("not_new")
#pym_Li_DB.add_structs(new_structures,"New")
#pym_Li_DB.add_structs(exist_structures,"not_new")
#pym_Li_DB.add_table("not_new")
#pym_Li_DB.add_structs(new_structures,"New")
#pym_Li_DB.add_structs(exist_structures,"not_new")
#Periodic table BS
#Get element names
from pymatgen.util.plotting import periodic_table_heatmap
A_els=pd.Series([parse_spec(i)[0] for i in results["A"]])
B_els=pd.Series([parse_spec(i)[0] for i in results["B"]])
C_els=pd.Series([parse_spec(i)[0] for i in results["C"]])
#get dict of counts
A_els_counts=A_els.value_counts().to_dict()
B_els_counts=B_els.value_counts().to_dict()
C_els_counts=C_els.value_counts().to_dict()
ax1=periodic_table_heatmap(elemental_data=A_els_counts, cbar_label="Counts")
ax1.savefig(f"{outdir}/periodic_table_A.png")
ax2=periodic_table_heatmap(elemental_data=B_els_counts, cbar_label="Counts")
ax2.savefig(f"{outdir}/periodic_table_B.png")
ax3=periodic_table_heatmap(elemental_data=C_els_counts, cbar_label="Counts")
ax3.savefig(f"{outdir}/periodic_table_C.png")
|
examples/Structure_Prediction/Li-Garnets_SP-Pym-new.ipynb
|
WMD-group/SMACT
|
mit
|
Accessing Text from the Web and from Disk
Electronic Books
Gutenberg上每一本電子書都有編號,只要知道編號就可以下載電子書,例如"Crime and Punishment"是第2554號,可以用下面的方法取得。
|
from urllib import urlopen
url = "http://www.gutenberg.org/files/2554/2554.txt"
raw = urlopen(url).read()
type(raw)
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
註:如果要使用proxy下載,可以用
proxy = {'http': 'http://www.someproxy.com:3128'}
raw = urlopen(url, proxies=proxy).read()
剛下載的raw是字串形態,包含許多不必要的字,所以需要tokenization,使單字分離。
|
tokens = nltk.word_tokenize(raw)
tokens[:10]
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
產生的token可以進一步轉換成nltk text形態,以便進一步處理。
|
text = nltk.Text(tokens)
text
text.collocations()
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
Dealing with HTML
|
url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
html = urlopen(url).read()
html[:60]
from bs4 import BeautifulSoup
bs = BeautifulSoup(html, "lxml")
tokens = nltk.word_tokenize(bs.get_text())
tokens[:5]
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
concordance列出單字出現的每個地方
|
text = nltk.Text(tokens)
text.concordance('gene')
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
Strings: Lowest Level Text
字串是一種immutable的資料形態,設定值之後就不能修改。因此所有字串函式都會產生複製後的字串,而不會修改原始的字串。
用三個引號"""來定義字串,可以將換行一起放進去。
|
s = """hello, my
friend"""
print s
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
str支援+和*兩個operator。+代表連接兩個字串,*代表重複一個字串。
|
'must' + 'maybe' + 'hello'
'bug-' * 5
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
用[i]可以存取第i+1個字元,如果字串長度是n,則i的範圍為0到n-1。
用[-i]可以存取後面數過來第i個字元,如果字串長度是n,則i的範圍為-1到-n。
|
s = 'hello, world'
s[0], s[1], s[:5], s[-5:]
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
其他常見的字串函式:
s.find(t): 找到字串s內第一個字串t的位置,介於0~n-1間,找不到傳回-1
s.rfind(t): 從右邊找字串s內第一個字串t的位置,介於0~n-1間,找不到傳回-1
s.index(t): 功能如s.find(t),但找不到時會產生ValueError
s.rindex(t): 功能如s.rfind(t),但找不到時會產生ValueError
s.join([a,b,c]): 將字串a,b,c結合,中間插入s,最後結果為asbsc
s.split(t): 用字串t為分隔,將s拆成多個字串,預設t為空白字元
s.splitlines(): 將字串s根據換行拆成多個字串
s.lower(): 將所有字母換成小寫
s.upper(): 將所有字母換成大寫
s.titlecase(): 每個單字第一個字母換成大寫
s.strip(): 刪除前後的空白字元
s.replace(t, u): 將s中的字串t替換成字串u
Text Processing with Unicode
|
path = nltk.data.find('corpora/unicode_samples/polish-lat2.txt')
import codecs
f = codecs.open(path, encoding='latin2')
for line in f:
print line, line.encode('utf-8'), line.encode('unicode_escape'), '\n'
# 傳回unicode的編號
print ord(u'許'), ord(u'洪'), ord(u'蓋')
print repr(u'許洪蓋')
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
unicodedata可以印出unicode中對字元的描述
|
import unicodedata
lines = codecs.open(path, encoding='latin2').readlines()
line = lines[2]
print line.encode('unicode_escape')
for c in line:
if ord(c) > 127:
print '%s U+%04x %s' % (c.encode('utf8'), ord(c), unicodedata.name(c))
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
Regular Expressions
.: 對應任意一個字元
^abc: 字串開頭為abc
abc$: 字串結尾為abc
[abc]: 對應[]內出現的字元,例如a或b或c
[A-Z0-9]: 對應範圍內的字元,例如A到Z以及0到9
ed|ing|s: 對應數種指定的字串
*: 前一個符號重複0次以上
+: 前一個符號重複1次以上
?: 前一個符號重複0次或1次
{n}: 前一個符號重複恰好n次
{n,}: 前一個符號重複至少n次
{,n}: 前一個符號重複最多n次
{m,n}: 前一個符號重複最少m次、最多n次
a(b|c)+: 括號表示|運算的範圍
|
import re
# 一般re.search傳回的是一個 _sre.SRE_Match 物件
# 將物件轉換成 bool 值,如果 True 代表有找到符合的字串
bool(re.search('ed$', 'played')), bool(re.search('ed$', 'happy'))
# re.findall 可以取出部分的字串,要取出的部分由()的範圍決定
re.findall('\[\[(.+?)[\]|\|]+', 'My Name is [[Bany]] Hung, this is my [[Dog|Animal]]')
# re.sub 會取代字串
re.sub('\[\[.+?[\]|\|]+', '###', 'My Name is [[Bany]] Hung, this is my [[Dog|Animal]]')
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
Normalize Text
正規化是指將文字變成統一的格式,例如轉成小寫、取字根。
|
porter = nltk.PorterStemmer()
lanc = nltk.LancasterStemmer()
w = ['I','was','playing','television','in','the','painted','garden']
[(a, porter.stem(a), lanc.stem(a)) for a in w]
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
作stemming之前,要將原始資料存在dict中,以方便使用。
|
class IndexedText(object):
def __init__(self, stemmer, text):
self._text = text
self._stemmer = stemmer
self._index = nltk.Index((self._stem(word), i) for (i, word) in enumerate(text))
def concordance(self, word, width=40):
key = self._stem(word)
wc = int(width/4) # words of context
for i in self._index[key]:
lcontext = ' '.join(self._text[i-wc:i])
rcontext = ' '.join(self._text[i:i+wc])
ldisplay = '%*s' % (width, lcontext[-width:])
rdisplay = '%-*s' % (width, rcontext[:width])
print ldisplay, rdisplay
def _stem(self, word):
return self._stemmer.stem(word).lower()
grail = nltk.corpus.webtext.words('grail.txt')
text = IndexedText(porter, grail)
text.concordance('lie')
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
Lemmatization
|
s = ['women', 'are', 'living']
wnl = nltk.WordNetLemmatizer()
zip(s, [wnl.lemmatize(t, 'v') for t in s], [wnl.lemmatize(t, 'n') for t in s])
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
Formatting: From Lists to Strings
|
s = ['We', 'called', 'him', 'Tortoise', 'because', 'he', 'taught', 'us', '.']
' '.join(s)
';'.join(s)
|
NLP_With_Python/Ch3.ipynb
|
banyh/ShareIPythonNotebook
|
gpl-3.0
|
Let's first get familiar with different unsupervised anomaly detection approaches and algorithms. In order to visualise the output of the different algorithms we consider a toy data set consisting in a two-dimensional Gaussian mixture.
Generating the data set
|
from sklearn.datasets import make_blobs
X, y = make_blobs(n_features=2, centers=3, n_samples=500,
random_state=42)
X.shape
plt.figure()
plt.scatter(X[:, 0], X[:, 1])
plt.show()
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Anomaly detection with density estimation
|
from sklearn.neighbors.kde import KernelDensity
# Estimate density with a Gaussian kernel density estimator
kde = KernelDensity(kernel='gaussian')
kde = kde.fit(X)
kde
kde_X = kde.score_samples(X)
print(kde_X.shape) # contains the log-likelihood of the data. The smaller it is the rarer is the sample
from scipy.stats.mstats import mquantiles
alpha_set = 0.95
tau_kde = mquantiles(kde_X, 1. - alpha_set)
n_samples, n_features = X.shape
X_range = np.zeros((n_features, 2))
X_range[:, 0] = np.min(X, axis=0) - 1.
X_range[:, 1] = np.max(X, axis=0) + 1.
h = 0.1 # step size of the mesh
x_min, x_max = X_range[0]
y_min, y_max = X_range[1]
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
grid = np.c_[xx.ravel(), yy.ravel()]
Z_kde = kde.score_samples(grid)
Z_kde = Z_kde.reshape(xx.shape)
plt.figure()
c_0 = plt.contour(xx, yy, Z_kde, levels=tau_kde, colors='red', linewidths=3)
plt.clabel(c_0, inline=1, fontsize=15, fmt={tau_kde[0]: str(alpha_set)})
plt.scatter(X[:, 0], X[:, 1])
plt.legend()
plt.show()
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
now with One-Class SVM
The problem of density based estimation is that they tend to become inefficient when the dimensionality of the data increase. It's the so-called curse of dimensionality that affects particularly density estimation algorithms. The one-class SVM algorithm can be used in such cases.
|
from sklearn.svm import OneClassSVM
nu = 0.05 # theory says it should be an upper bound of the fraction of outliers
ocsvm = OneClassSVM(kernel='rbf', gamma=0.05, nu=nu)
ocsvm.fit(X)
X_outliers = X[ocsvm.predict(X) == -1]
Z_ocsvm = ocsvm.decision_function(grid)
Z_ocsvm = Z_ocsvm.reshape(xx.shape)
plt.figure()
c_0 = plt.contour(xx, yy, Z_ocsvm, levels=[0], colors='red', linewidths=3)
plt.clabel(c_0, inline=1, fontsize=15, fmt={0: str(alpha_set)})
plt.scatter(X[:, 0], X[:, 1])
plt.scatter(X_outliers[:, 0], X_outliers[:, 1], color='red')
plt.legend()
plt.show()
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Support vectors - Outliers
The so-called support vectors of the one-class SVM form the outliers
|
X_SV = X[ocsvm.support_]
n_SV = len(X_SV)
n_outliers = len(X_outliers)
print('{0:.2f} <= {1:.2f} <= {2:.2f}?'.format(1./n_samples*n_outliers, nu, 1./n_samples*n_SV))
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Only the support vectors are involved in the decision function of the One-Class SVM.
Plot the level sets of the One-Class SVM decision function as we did for the true density.
Emphasize the Support vectors.
|
plt.figure()
plt.contourf(xx, yy, Z_ocsvm, 10, cmap=plt.cm.Blues_r)
plt.scatter(X[:, 0], X[:, 1], s=1.)
plt.scatter(X_SV[:, 0], X_SV[:, 1], color='orange')
plt.show()
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
<div class="alert alert-success">
<b>EXERCISE</b>:
<ul>
<li>
**Change** the `gamma` parameter and see it's influence on the smoothness of the decision function.
</li>
</ul>
</div>
|
# %load solutions/22_A-anomaly_ocsvm_gamma.py
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Isolation Forest
Isolation Forest is an anomaly detection algorithm based on trees. The algorithm builds a number of random trees and the rationale is that if a sample is isolated it should alone in a leaf after very few random splits. Isolation Forest builds a score of abnormality based the depth of the tree at which samples end up.
|
from sklearn.ensemble import IsolationForest
iforest = IsolationForest(n_estimators=300, contamination=0.10)
iforest = iforest.fit(X)
Z_iforest = iforest.decision_function(grid)
Z_iforest = Z_iforest.reshape(xx.shape)
plt.figure()
c_0 = plt.contour(xx, yy, Z_iforest,
levels=[iforest.threshold_],
colors='red', linewidths=3)
plt.clabel(c_0, inline=1, fontsize=15,
fmt={iforest.threshold_: str(alpha_set)})
plt.scatter(X[:, 0], X[:, 1], s=1.)
plt.legend()
plt.show()
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
<div class="alert alert-success">
<b>EXERCISE</b>:
<ul>
<li>
Illustrate graphically the influence of the number of trees on the smoothness of the decision function?
</li>
</ul>
</div>
|
# %load solutions/22_B-anomaly_iforest_n_trees.py
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Illustration on Digits data set
We will now apply the IsolationForest algorithm to spot digits written in an unconventional way.
|
from sklearn.datasets import load_digits
digits = load_digits()
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
The digits data set consists in images (8 x 8) of digits.
|
images = digits.images
labels = digits.target
images.shape
i = 102
plt.figure(figsize=(2, 2))
plt.title('{0}'.format(labels[i]))
plt.axis('off')
plt.imshow(images[i], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
To use the images as a training set we need to flatten the images.
|
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
data.shape
X = data
y = digits.target
X.shape
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Let's focus on digit 5.
|
X_5 = X[y == 5]
X_5.shape
fig, axes = plt.subplots(1, 5, figsize=(10, 4))
for ax, x in zip(axes, X_5[:5]):
img = x.reshape(8, 8)
ax.imshow(img, cmap=plt.cm.gray_r, interpolation='nearest')
ax.axis('off')
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Let's use IsolationForest to find the top 5% most abnormal images.
Let's plot them !
|
from sklearn.ensemble import IsolationForest
iforest = IsolationForest(contamination=0.05)
iforest = iforest.fit(X_5)
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Compute the level of "abnormality" with iforest.decision_function. The lower, the more abnormal.
|
iforest_X = iforest.decision_function(X_5)
plt.hist(iforest_X);
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Let's plot the strongest inliers
|
X_strong_inliers = X_5[np.argsort(iforest_X)[-10:]]
fig, axes = plt.subplots(2, 5, figsize=(10, 5))
for i, ax in zip(range(len(X_strong_inliers)), axes.ravel()):
ax.imshow(X_strong_inliers[i].reshape((8, 8)),
cmap=plt.cm.gray_r, interpolation='nearest')
ax.axis('off')
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Let's plot the strongest outliers
|
fig, axes = plt.subplots(2, 5, figsize=(10, 5))
X_outliers = X_5[iforest.predict(X_5) == -1]
for i, ax in zip(range(len(X_outliers)), axes.ravel()):
ax.imshow(X_outliers[i].reshape((8, 8)),
cmap=plt.cm.gray_r, interpolation='nearest')
ax.axis('off')
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
<div class="alert alert-success">
<b>EXERCISE</b>:
<ul>
<li>
Rerun the same analysis with all the other digits
</li>
</ul>
</div>
|
# %load solutions/22_C-anomaly_digits.py
|
notebooks/22.Unsupervised_learning-anomaly_detection.ipynb
|
amueller/scipy-2017-sklearn
|
cc0-1.0
|
Select
Directories and file paths
|
start_year = interactive(return_input,
value = widgets.Dropdown(
options=[2009, 2010, 2011, 2012, 2013],
value=2009,
description='Select start year:',
disabled=False)
)
end_year = interactive(return_input,
value = widgets.Dropdown(
options=[2011, 2012, 2013, 2014, 2015, 2016],
value=2015,
description='Select start year:',
disabled=False)
)
from IPython.display import display
display(start_year, end_year)
print(start_year.result, end_year.result)
test_widget = core.jupyter_eventhandlers.MultiCheckboxWidget(['Bottenfauna', 'Växtplankton','Siktdjup','Näringsämnen'])
test_widget # Display the widget
if __name__ == '__main__':
nr_marks = 60
print('='*nr_marks)
print('Running module "lv_test_file.py"')
print('-'*nr_marks)
print('')
#root_directory = os.path.dirname(os.path.abspath(__file__)) # works in
root_directory = os.getcwd() # works in notebook
resources_directory = root_directory + '/resources'
filter_directory = root_directory + '/workspaces/default/filters'
data_directory = root_directory + '/workspaces/default/data'
# est_core.StationList(root_directory + '/test_data/Stations_inside_med_typ_attribute_table_med_delar_av_utsjö.txt')
core.ParameterList()
#--------------------------------------------------------------------------
print('{}\nSet directories and file paths'.format('*'*nr_marks))
raw_data_file_path = data_directory + '/raw_data/data_BAS_2000-2009.txt'
first_filter_data_directory = data_directory + '/filtered_data'
first_data_filter_file_path = filter_directory + '/selection_filters/first_data_filter.txt'
winter_data_filter_file_path = filter_directory + '/selection_filters/winter_data_filter.txt'
summer_data_filter_file_path = filter_directory + '/selection_filters/summer_data_filter.txt'
tolerance_filter_file_path = filter_directory + '/tolerance_filters/tolerance_filter_template.txt'
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Set up filters
TODO: Store selection filters as attributes or something that allows us to not have to call them before calculating indicators/qualityfactors
|
print('{}\nInitiating filters'.format('*'*nr_marks))
first_filter = core.DataFilter('First filter', file_path = first_data_filter_file_path)
winter_filter = core.DataFilter('winter_filter', file_path = winter_data_filter_file_path)
winter_filter.save_filter_file(filter_directory + '/selection_filters/winter_data_filter_save.txt') # mothod available
summer_filter = core.DataFilter('summer_filter', file_path = summer_data_filter_file_path)
summer_filter.save_filter_file(filter_directory + '/selection_filters/summer_data_filter_save.txt') # mothod available
tolerance_filter = core.ToleranceFilter('test_tolerance_filter', file_path = tolerance_filter_file_path)
print('done\n{}.'.format('*'*nr_marks))
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Load reference values
|
print('{}\nLoading reference values'.format('*'*nr_marks))
core.RefValues()
core.RefValues().add_ref_parameter_from_file('DIN_winter', resources_directory + '/classboundaries/nutrients/classboundaries_din_vinter.txt')
core.RefValues().add_ref_parameter_from_file('TOTN_winter', resources_directory + '/classboundaries/nutrients/classboundaries_totn_vinter.txt')
core.RefValues().add_ref_parameter_from_file('TOTN_summer', resources_directory + '/classboundaries/nutrients/classboundaries_totn_summer.txt')
print('done\n{}.'.format('*'*nr_marks))
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Data
Select data and create DataHandler instance
|
# Handler (raw data)
raw_data = core.DataHandler('raw')
raw_data.add_txt_file(raw_data_file_path, data_type='column')
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Apply filters to selected data
|
# Use first filter
filtered_data = raw_data.filter_data(first_filter)
# Save filtered data (first filter) as a test
filtered_data.save_data(first_filter_data_directory)
# Load filtered data (first filter) as a test
loaded_filtered_data = core.DataHandler('first_filtered')
loaded_filtered_data.load_data(first_filter_data_directory)
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Calculate Quality elements
Create an instance of NP Qualityfactor class
|
qf_NP = core.QualityFactorNP()
# use set_data_handler to load the selected data to the QualityFactor
qf_NP.set_data_handler(data_handler = loaded_filtered_data)
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Filter parameters in QualityFactorNP
THIS SHOULD BE DEFAULT
|
print('{}\nApply season filters to parameters in QualityFactor\n'.format('*'*nr_marks))
# First general filter
qf_NP.filter_data(data_filter_object = first_filter)
# winter filter
qf_NP.filter_data(data_filter_object = winter_filter, indicator = 'TOTN_winter')
qf_NP.filter_data(data_filter_object = winter_filter, indicator = 'DIN_winter')
# summer filter
qf_NP.filter_data(data_filter_object = summer_filter, indicator = 'TOTN_summer')
print('done\n{}.'.format('*'*nr_marks))
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Calculate Quality Factor EQR
|
print('{}\nApply tolerance filters to all indicators in QualityFactor and get result\n'.format('*'*nr_marks))
qf_NP.get_EQR(tolerance_filter)
print(qf_NP.class_result)
print('-'*nr_marks)
print('done')
print('-'*nr_marks)
|
.ipynb_checkpoints/lv_notebook-checkpoint.ipynb
|
ekostat/ekostat_calculator
|
mit
|
Creating features
Next, we need to create a set of features for the development set. py_entitymatching provides a way to automatically generate features based on the attributes in the input tables. For the purposes of this guide, we use the automatically generated features.
|
# Generate features
feature_table = em.get_features_for_matching(A, B)
|
notebooks/guides/end_to_end_em_guides/.ipynb_checkpoints/Basic EM Workflow Restaurants - 2-checkpoint.ipynb
|
anhaidgroup/py_entitymatching
|
bsd-3-clause
|
Selecting the best matcher using cross-validation
Now, we select the best matcher using k-fold cross-validation. For the purposes of this guide, we use five fold cross validation and use 'precision' and 'recall' metric to select the best matcher.
|
# Select the best ML matcher using CV
result = em.select_matcher([dt, rf, svm, ln, lg, nb], table=H,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
k=5,
target_attr='gold', metric='precision', random_state=0)
result['cv_stats']
result = em.select_matcher([dt, rf, svm, ln, lg, nb], table=H,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
k=5,
target_attr='gold', metric='recall', random_state=0)
result['cv_stats']
|
notebooks/guides/end_to_end_em_guides/.ipynb_checkpoints/Basic EM Workflow Restaurants - 2-checkpoint.ipynb
|
anhaidgroup/py_entitymatching
|
bsd-3-clause
|
1. Model-based parametric regression
1.1. The regression problem
Given an observation vector ${\bf x}$, the goal of the regression problem is to find a function $f({\bf x})$ providing good predictions about some unknown variable $s$. To do so, we assume that a set of labelled training examples, ${{\bf x}^{(k)}, s^{(k)}}_{k=1}^K$ is available.
The predictor function should make good predictions for new observations ${\bf x}$ not used during training. In practice, this is tested using a second set (the test set) of labelled samples.
1.2. The i.i.d. assumption
Most regression algorithms are grounded on the idea that all samples from the training and test sets have been generated independently by some common stochastic process. This is the reason why a model adjusted with the training data can make good predictions over new test samples.
Mathematically, this means that all pairs $({\bf x}^{(k)}, s^{(k)})$ from the training and test sets are independent and identically distributed (i.i.d.) samples from some distribution $p_{{\bf X}, S}({\bf x}, s)$. Unfortunately, this distribution is generally unknown.
<img src="figs/DataModel.png", width=180>
NOTE: In the following, we will use capital letters, ${\bf X}$, $S$, ..., to denote random variables, and lower-case letters ${\bf x}$, s, ..., to the denote the values they can take. When there is no ambigüity, we will remove subindices of the density functions, $p_{{\bf X}, S}({\bf x}, s)= p({\bf x}, s)$ to simplify the mathematical notation.
1.3. Model-based regression
If $p({\bf x}, s)$ were know, we could apply estimation theory to estimate $s$ from $p$. For instance, we could apply any of the following classical estimates:
Maximum A Posterior (MAP): $$\hat{s}_{\text{MAP}} = \arg\max_s p(s| {\bf x})$$
Minimum Mean Square Error (MSE): $$\hat{s}_{\text{MSE}} = \mathbb{E}{S |{\bf x}}$$
Note that, since these estimators depend on $p(s |{\bf x})$, knowing the posterior distribution of the target variable is enough, and we do not need to know the joint distribution.
Model based-regression methods exploit the idea of using the training data to estimate the posterior distribution $p(s|{\bf x})$ and then apply estimation theory to make predictions.
<img src="figs/ModelBasedReg.png", width=280>
1.4. Parametric model-based regression
How can we estimate the posterior probability function of the target variable $s$? In this section we will explore a parametric estimation method: let us assume that $p$ belongs to a parametric family of distributions $p(s|{\bf x},{\bf w})$, where ${\bf w}$ is some unknown parameter. We will use the training data to estimate ${\bf w}$
<img src="figs/ParametricReg.png", width=300>
The estimation of ${\bf w}$ from a given dataset $\mathcal{D}$ is the goal of the following sections
1.5. Maximum Likelihood parameter estimation.
The ML (Maximum Likelihood) principle is well-known in statistics and can be stated as follows: take the value of the parameter to be estimated (in our case, ${\bf w}$) that best explains the given observations (in our case, the training dataset $\mathcal{D}$). Mathematically, this can be expressed as follows:
$$
\hat{\bf w}{\text{ML}} = \arg \max{\bf w} p(\mathcal{D}|{\bf w})
$$
To be more specific: let us group the target variables into a vector
$$
{\bf s} = \left(s^{(1)}, \dots, s^{(K)}\right)^\top
$$
and the input vectors into a matrix
$$
{\bf X} = \left({\bf x}^{(1)}, \dots, {\bf x}^{(K)}\right)^\top
$$
To compute the likelihood function we will assume that the inputs do not depend on ${\bf w}$ (i.e., $p({\bf x}|{\bf w}) = p({\bf x})$. This means that ${\bf w}$ is a parameter of the posterior distribution of $s$ and not a parameter of the marginal distribution.
Then we can write
$$p(\mathcal{D}|{\bf w})
= p({\bf s}, {\bf X}|{\bf w})
= p({\bf s} | {\bf X}, {\bf w}) p({\bf X}|{\bf w})
= p({\bf s} | {\bf X}, {\bf w}) p({\bf X})
$$
and we can express the estimation problem as the computation of
$$
\hat{\bf w}{\text{ML}} = \arg \max{\bf w} p({\bf s}|{\bf X},{\bf w})
$$
1.6. Summary.
Let's summarize what we need to do in order to design a regression algorithm:
Assume a parametric data model $p(s| {\bf x},{\bf w})$
Using the data model and the i.i.d. assumption, compute $p({\bf s}| {\bf X},{\bf w})$.
Find an expression for ${\bf w}_{\text{ML}}$
Assuming ${\bf w} = {\bf w}_{\text{ML}}$, compute the MAP or the minimum MSE estimate of $s$ given ${\bf x}$.
2. ML estimation for a Gaussian model.
2.1. Step 1: The Gaussian generative model
Let us assume that the target variables $s^{(k)}$ in dataset $\mathcal{D}$ are given by
$$
s^{(k)} = {\bf w}^\top {\bf z}^{(k)} + \varepsilon^{(k)}
$$
where ${\bf z}^{(k)}$ is the result of some transformation of the inputs, ${\bf z}^{(k)} = T({\bf x}^{(k)})$, and $\varepsilon^{(k)}$ are i.i.d. instances of a Gaussian random variable with mean zero and varianze $\sigma_\varepsilon^2$, i.e.,
$$
p_E(\varepsilon) = \frac{1}{\sqrt{2\pi}\sigma_\varepsilon}
\exp\left(-\frac{\varepsilon^2}{2\sigma_\varepsilon^2}\right)
$$
Assuming that the noise variables are independent on ${\bf x}$ and ${\bf w}$, then, for a given ${\bf x}$ and ${\bf w}$, the target variable is gaussian with mean ${\bf w}^\top {\bf z}^{(k)}$ and variance $\varepsilon^2$
$$
p(s|{\bf x}, {\bf w}) = p_E(s-{\bf w}^\top{\bf z}) =
\frac{1}{\sqrt{2\pi}\sigma_\varepsilon}
\exp\left(-\frac{(s-{\bf w}^\top{\bf z})^2}{2\sigma_\varepsilon^2}\right)
$$
2.2. Step 2: Likelihood function
Now we need to compute the likelihood function $p({\bf s}, {\bf X} | {\bf w})$. If the samples are i.i.d. we can write
$$
p({\bf s}| {\bf X}, {\bf w})
= \prod_{k=1}^{K} p(s^{(k)}| {\bf x}^{(k)}, {\bf w})
= \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi}\sigma_\varepsilon}
\exp\left(-\frac{\left(s^{(k)}-{\bf w}^\top{\bf z}^{(k)}\right)^2}{2\sigma_\varepsilon^2}\right) \
= \left(\frac{1}{\sqrt{2\pi}\sigma_\varepsilon}\right)^K
\exp\left(-\sum_{k=1}^K \frac{\left(s^{(k)}-{\bf w}^\top{\bf z}^{(k)}\right)^2}{2\sigma_\varepsilon^2}\right) \
$$
Finally, grouping variables ${\bf z}^{(k)}$ in
$${\bf Z} = \left({\bf z}^{(1)}, \dots, {\bf z}^{(K)}\right)^\top$$
we get
$$
p({\bf s}| {\bf X}, {\bf w})
= \left(\frac{1}{\sqrt{2\pi}\sigma_\varepsilon}\right)^K
\exp\left(-\frac{1}{2\sigma_\varepsilon^2}\|{\bf s}-{\bf Z}{\bf w}\|^2\right)
$$
2.3. Step 3: ML estimation.
The <b>maximum likelihood</b> solution is then given by:
$$
{\bf w}{ML} = \arg \max{\bf w} p({\bf s}|{\bf w}) = \arg \min_{\bf w} \|{\bf s} - {\bf Z}{\bf w}\|^2
$$
Note that this is exactly the same optimization problem of the Least Squares (LS) regression algorithm. The solution is
$$
{\bf w}_{ML} = ({\bf Z}^\top{\bf Z})^{-1}{\bf Z}^\top{\bf s}
$$
2.4. Step 4: Prediction function.
The last step consists on computing an estimate of $s$ by assuming that the true value of the weight parameters is ${\bf w}\text{ML}$. In particular, the minimum MSE estimate is
$$
\hat{s}\text{MSE} = \mathbb{E}{s|{\bf x},{\bf w}\text{ML}}
$$
Knowing that, given ${\bf x}$ and ${\bf w}$, $s$ is normally distributed with mean ${\bf w}^\top {\bf z}$ we can write
$$
\hat{s}\text{MSE} = {\bf w}_\text{ML}^\top {\bf z}
$$
Exercise 1:
Assume that the targets in the one-dimensional dataset given by
|
X = np.array([0.15, 0.41, 0.53, 0.80, 0.89, 0.92, 0.95])
s = np.array([0.09, 0.16, 0.63, 0.44, 0.55, 0.82, 0.95])
|
R4.ML_Regression/.ipynb_checkpoints/Regression_ML_student-checkpoint.ipynb
|
ML4DS/ML4all
|
mit
|
1.1. Represent a scatter plot of the data points
|
# <SOL>
# </SOL>
|
R4.ML_Regression/.ipynb_checkpoints/Regression_ML_student-checkpoint.ipynb
|
ML4DS/ML4all
|
mit
|
1.2. Compute the ML estimate.
|
# Note that, to use lstsq, the input matrix must be K x 1
Xcol = X[:,np.newaxis]
# Compute the ML estimate using linalg.lstsq from Numpy.
# wML = <FILL IN>
|
R4.ML_Regression/.ipynb_checkpoints/Regression_ML_student-checkpoint.ipynb
|
ML4DS/ML4all
|
mit
|
1.3. Plot the likelihood as a function of parameter $w$ along the interval $-0.5\le w \le 2$, verifying that the ML estimate takes the maximum value.
|
K = len(s)
wGrid = np.arange(-0.5, 2, 0.01)
p = []
for w in wGrid:
d = s - X*w
# p.append(<FILL IN>)
# Compute the likelihood for the ML parameter wML
# d = <FILL IN>
# pML = [<FILL IN>]
# Plot the likelihood function and the optimal value
plt.figure()
plt.plot(wGrid, p)
plt.stem(wML, pML)
plt.xlabel('$w$')
plt.ylabel('Likelihood function')
plt.show()
|
R4.ML_Regression/.ipynb_checkpoints/Regression_ML_student-checkpoint.ipynb
|
ML4DS/ML4all
|
mit
|
1.4. Plot the prediction function over the data scatter plot
|
x = np.arange(0, 1.2, 0.01)
# sML = <FILL IN>
plt.figure()
plt.scatter(X, s)
# plt.plot(<FILL IN>)
plt.xlabel('x')
plt.ylabel('s')
plt.axis('tight')
plt.show()
|
R4.ML_Regression/.ipynb_checkpoints/Regression_ML_student-checkpoint.ipynb
|
ML4DS/ML4all
|
mit
|
Exercise 2:
Assume the dataset $\mathcal{D} = {(x^{(k)}, s^{(k)}, k=1,\ldots, K}$ contains i.i.d. samples from a distribution with posterior density given by
$$
p(s|x, w) = w x \exp(- w x s), \qquad s\ge0, \,\, x\ge 0, \,\, w\ge 0
$$
2.1. Determine an expression for the likelihood function
Solution:
<SOL>
</SOL>
2.2. Draw the likelihood function for the dataset in Exercise 1 in the range $0\le w\le 6$.
|
K = len(s)
wGrid = np.arange(0, 6, 0.01)
p = []
Px = np.prod(X)
xs = np.dot(X,s)
for w in wGrid:
# p.append(<FILL IN>)
plt.figure()
# plt.plot(<FILL IN>)
plt.xlabel('$w$')
plt.ylabel('Likelihood function')
plt.show()
|
R4.ML_Regression/.ipynb_checkpoints/Regression_ML_student-checkpoint.ipynb
|
ML4DS/ML4all
|
mit
|
2.3. Determine the coefficient $w_\text{ML}$ of the linear prediction function (i.e., using ${\bf Z}={\bf X}$).
(Hint: you can maximize the log of the likelihood function instead of the likelihood function in order to simplify the differentiation)
Solution:
<SOL>
</SOL>
2.4. Compute $w_\text{ML}$ for the dataset in Exercise 1
|
# wML = <FILL IN>
print(wML)
|
R4.ML_Regression/.ipynb_checkpoints/Regression_ML_student-checkpoint.ipynb
|
ML4DS/ML4all
|
mit
|
Series Validator
|
# Create validator's instance
validator = pv.IntegerSeriesValidator(min_value=0, max_value=10)
series = pd.Series([0, 3, 6, 9]) # This series is valid.
print(validator.is_valid(series))
series = pd.Series([0, 4, 8, 12]) # This series is invalid. because that includes 12 number.
print(validator.is_valid(series))
|
example/pandas_validator_example_en.ipynb
|
c-bata/pandas-validator
|
mit
|
DataFrame Validator
DataFrameValidator class can validate panda's dataframe object.
It can define easily like Django's model definition.
|
# Define validator
class SampleDataFrameValidator(pv.DataFrameValidator):
row_num = 5
column_num = 2
label1 = pv.IntegerColumnValidator('label1', min_value=0, max_value=10)
label2 = pv.FloatColumnValidator('label2', min_value=0, max_value=10)
# Create validator's instance
validator = SampleDataFrameValidator()
df = pd.DataFrame({'label1': [0, 1, 2, 3, 4], 'label2': [5.0, 6.0, 7.0, 8.0, 9.0]}) # This data frame is valid.
print(validator.is_valid(df))
df = pd.DataFrame({'label1': [11, 12, 13, 14, 15], 'label2': [5.0, 6.0, 7.0, 8.0, 9.0]}) # This data frame is invalid.
print(validator.is_valid(df))
df = pd.DataFrame({'label1': [0, 1, 2], 'label2': [5.0, 6.0, 7.0]}) # This data frame is invalid.
print(validator.is_valid(df))
|
example/pandas_validator_example_en.ipynb
|
c-bata/pandas-validator
|
mit
|
Step 2: Fetch BTE response mapping file using BTE client
|
from biothings_explorer.registry import Registry
reg = Registry()
mapping = reg.registry['DISEASES']['mapping']
mapping
|
jupyter notebooks/Demo of JSON Transform.ipynb
|
biothings/biothings_explorer
|
apache-2.0
|
Step 3: Transform the output from DISEASES API to Biolink model
|
from biothings_explorer.json_transformer import Transformer
tf = Transformer(json_doc, mapping)
tf.transform()
|
jupyter notebooks/Demo of JSON Transform.ipynb
|
biothings/biothings_explorer
|
apache-2.0
|
Use Case 2: Stanford Biosample API
Step 1: Fetch API response from Stanford Biosample API
|
import requests
json_doc = requests.get('http://api.kp.metadatacenter.org/biosample/search?q=biolink:Disease=MONDO:0007915&limit=10').json()
json_doc
|
jupyter notebooks/Demo of JSON Transform.ipynb
|
biothings/biothings_explorer
|
apache-2.0
|
Step 2: Fetch BTE response mapping file using BTE client
|
from biothings_explorer.registry import Registry
reg = Registry()
mapping = reg.registry['stanford_biosample_disease2sample']['mapping']
mapping
|
jupyter notebooks/Demo of JSON Transform.ipynb
|
biothings/biothings_explorer
|
apache-2.0
|
Step 3: Transform the output from Stanford Biosample API to Biolink model
|
from biothings_explorer.json_transformer import Transformer
tf = Transformer(json_doc=json_doc, mapping=mapping)
tf.transform()
|
jupyter notebooks/Demo of JSON Transform.ipynb
|
biothings/biothings_explorer
|
apache-2.0
|
Downloading RR Lyrae Data
gatspy includes loaders for some convenient datasets.
Here we'll take a look at some RR Lyrae light curves from Sesar 2010
|
from gatspy.datasets import fetch_rrlyrae
rrlyrae = fetch_rrlyrae()
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
This dataset object has an ids attribute showing the light curve ids available, and a get_lightcurve method which returns the light curve:
|
len(rrlyrae.ids)
lcid = rrlyrae.ids[0]
t, y, dy, filts = rrlyrae.get_lightcurve(lcid)
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
Let's quickly visualize this data, to see what we're working with:
|
for filt in 'ugriz':
mask = (filts == filt)
plt.errorbar(t[mask], y[mask], dy[mask], fmt='.', label=filt)
plt.gca().invert_yaxis()
plt.legend(ncol=3, loc='upper left');
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
The dataset has a metadata attribute, which can tell us things like the period (as determined by Sesar 2010:
|
period = rrlyrae.get_metadata(lcid)['P']
period
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
Let's fold the lightcurve on this period and re-plot the points:
|
phase = t % period
for filt in 'ugriz':
mask = (filts == filt)
plt.errorbar(phase[mask], y[mask], dy[mask], fmt='.', label=filt)
plt.gca().invert_yaxis()
plt.legend(ncol=3, loc='upper left');
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
Now the characteristic shape of the RR Lyrae light curve can be seen!
Lomb-Scargle Fits to the Data
Lomb-Scargle Period finding
We can now use the Lomb-Scargle periodogram to attempt to fit the period.
We'll use the classic (single-band) version, and examine the best period for each band individually. Because of the large (~10 year) baseline, the fit takes a few seconds per band:
|
from gatspy.periodic import LombScargle, LombScargleFast
# LombScargleFast is slightly faster than LombScargle for the simplest case
# Both have the same interface.
model = LombScargleFast()
model.optimizer.set(quiet=True, period_range=(0.2, 1.2))
print("Sesar 2010:", period)
for filt in 'ugriz':
mask = (filts == filt)
model.fit(t[mask], y[mask], dy[mask])
print(filt + ': ', model.best_period)
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
We see that within each band, the lomb-scargle periodogram lands on the correct peak.
This model.best_period hides some computation. To find the best period, the model optimizer determines the required resolution for a linear scan search, and computes the periodogram at each of these values.
We can view the periodogram for each model by calling the periodogram method.
We'll put this in a function for later use
|
def plot_periodogram(model, lcid):
plt.figure()
rrlyrae = fetch_rrlyrae()
t, y, dy, filts = rrlyrae.get_lightcurve(lcid)
period = rrlyrae.get_metadata(lcid)['P']
periods = np.linspace(0.2, 1.0, 5000)
for i, filt in enumerate('ugriz'):
mask = (filts == filt)
model.fit(t[mask], y[mask], dy[mask])
power = model.periodogram(periods)
plt.plot(periods, i + power, lw=1, label=filt)
plt.xlim(periods[0], periods[-1])
plt.ylim(0, 5)
plt.legend(ncol=3)
plot_periodogram(LombScargle(), lcid)
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
The periodogram has very narrow peaks, of width approximately $\Delta P \approx P^2 / T$, where $T = (t_{max} - t_{min})$ is the baseline of the measurements. For 10 years of data, the width near the 0.6 day peak turns out to be around $10^{-4}$ days (about 8 seconds), which is why we need such fine sampling of the periodogram to see the peaks.
Lomb-Scargle Model Fitting
The Lomb-Scargle model corresponds to a single-term sinusoid fit to the data.
We can plot these model fits using the predict() method.
We'll encapsulate this in a function in order to reuse it below:
|
def plot_model(model, lcid):
plt.figure()
rrlyrae = fetch_rrlyrae()
t, y, dy, filts = rrlyrae.get_lightcurve(lcid)
period = rrlyrae.get_metadata(lcid)['P']
phase = t % period
tfit = np.linspace(0, period, 100)
for filt in 'ugriz':
mask = (filts == filt)
pts = plt.errorbar(phase[mask], y[mask], dy[mask], fmt='.', label=filt)
model.fit(t[mask], y[mask], dy[mask])
yfit = model.predict(tfit, period=period)
plt.plot(tfit, yfit, color=pts[0].get_color(), alpha=0.5)
plt.gca().invert_yaxis()
plt.legend(ncol=3, loc='upper left');
plot_model(LombScargle(), lcid)
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
The model is clearly fairly biased: that is, it doesn't have enough flexibility to truly fit the data. We can do a bit better by adding more terms to the Fourier series with the Nterms parameter
|
plot_model(LombScargle(Nterms=4), lcid)
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
This model can also be used within the periodogram, using the same interface as above:
|
plot_periodogram(LombScargle(Nterms=4), lcid)
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
Supersmoother periodogram and fits
The package includes the SuperSmoother algorithm using the same API.
Here we'll plot the periodogram and the model fits for the same data using this model.
Because the interface is identical, we can simply swap-in the supersmoother model in the function from above:
|
from gatspy.periodic import SuperSmoother
plot_periodogram(SuperSmoother(), lcid)
plot_model(SuperSmoother(), lcid)
|
examples/SingleBand.ipynb
|
astroML/gatspy
|
bsd-2-clause
|
2. Usando indexação
Também é possível realizar a translação periódica usando indexação por arrays. A operação que permite a periodicidade no cálculo dos índices é o módulo, implementado pelo operador % do NumPy. Esta é a forma que a função está implementada na toolbox ia898: ptrans.
|
def ptrans(f,t):
import numpy as np
g = np.empty_like(f)
if f.ndim == 1:
W = f.shape[0]
col = np.arange(W)
g = f[(col-t)%W]
elif f.ndim == 2:
H,W = f.shape
rr,cc = t
row,col = np.indices(f.shape)
g = f[(row-rr)%H, (col-cc)%W]
elif f.ndim == 3:
Z,H,W = f.shape
zz,rr,cc = t
z,row,col = np.indices(f.shape)
g = f[(z-zz)%Z, (row-rr)%H, (col-cc)%W]
return g
def ptrans2d(f,t):
rr,cc = t
H,W = f.shape
r = rr%H
c = cc%W
g = np.empty_like(f)
g[:r,:c] = f[H-r:H,W-c:W]
g[:r,c:] = f[H-r:H,0:W-c]
g[r:,:c] = f[0:H-r,W-c:W]
g[r:,c:] = f[0:H-r,0:W-c]
return g
f = mpimg.imread('../data/cameraman.tif')
f5=ptrans(f, np.array(f.shape)//3)
plt.imshow(f,cmap='gray')
plt.title('Original 2D image - Cameraman')
plt.imshow(f5,cmap='gray')
plt.title('Cameraman periodically translated')
|
2S2018/09 Translacao periodica.ipynb
|
robertoalotufo/ia898
|
mit
|
The Leibniz formula states that:
$$
1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \ldots = \frac{\pi}{4}
$$
So in other words:
$$
\sum^{\infty}_{n = 0}\frac{(-1)^n}{2n + 1} = \frac{\pi}{4}
$$
Let's see if we can understand the sum formula first. What we'll do is just take the top part of the fraction $(-1)^n$ and the bottom part $2n + 1$ and plot them seperately for some values of $n$:
|
with plt.xkcd():
x = np.arange(0, 10, 1)
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
for ax in axes: pu.setup_axes(ax)
axes[0].plot(x, (-1)**x, 'bo', zorder=10)
axes[0].set_xlim(0, 9)
axes[0].set_ylim(-5, 5)
axes[1].plot(x, (2*x) + 1)
axes[1].set_xlim(0, 9)
axes[1].set_ylim(0, 10)
|
leibniz_formula.ipynb
|
basp/notes
|
mit
|
So as $n$ gets bigger and bigger we have two things. One flips between $1$ and $-1$ and the other is just a linear value $y = 2n + 1$ that just keeps on getting bigger and bigger. Now the equation above tells us that if we take an near infinite sum of these values we will get closer and closer to the value of $\frac{\pi}{4}$ so let's see if that's true.
Below are two lines, one line represents $y = \frac{(-1)^n}{2n + 1}$ and the other line is the sum of all the values of that equation for $y$ at $n = 0, 1, 2, \ldots, n$. You can see that it (slowly) converges to some value, namely the value $\frac{4}{\pi}$.
|
n = np.arange(0, 10, 1)
f = lambda x: ((-1)**x) / (2*x + 1)
with plt.xkcd():
fig, axes = plt.subplots(1, figsize=(8, 8))
pu.setup_axes(axes, xlim=(-1, 9), ylim=(-0.5, 1.2), yticks=[1], yticklabels=[1], xticks=[1,2,3,4,5,6,7,8])
plt.plot(n, f(n), zorder=10, label='THE INFINITE SERIES')
plt.plot(n, [nsum(f, [0, n]) for n in n], label='SUMMATION OF THE SERIES')
plt.annotate('THE LEIBNIZ FORMULA FOR PI', (1, 1))
axes.set_aspect(4.0)
axes.legend(loc=4)
|
leibniz_formula.ipynb
|
basp/notes
|
mit
|
Now if we sum up all the terms of that line above for $x = 0, 1, 2, 3, \ldots, n$ we'll get closer and closer to $\frac{4}{\pi}$. Using mpmath we can calculate $\pi$ with pretty good detail using the mp.dps setting to control the precision.
|
leibniz = lambda n: ((-1)**n) / (2 * n + 1)
mp.dps = 50
nsum(leibniz, [0, inf]) * 4
|
leibniz_formula.ipynb
|
basp/notes
|
mit
|
Of course we can compute it symbolically as well. These fractions get pretty crazy real quickly.
|
leibniz = S('((-1)^n)/(2*n+1)')
n = S('n')
sum([leibniz.subs(n, i) for i in range(100)])
|
leibniz_formula.ipynb
|
basp/notes
|
mit
|
Řešení bonusu - vlastní metody repr
Metoda __repr__ vrací řetězec, který reprezentuje objekt například při výpisu v interaktivní konzoli. Tato metoda může vracet libovolný řetězec.
|
class CeleCislo(int):
def je_sude(self):
return self % 2 == 0
def __repr__(self):
return "<Cele cislo {}>".format(self)
y = 5
y
x = CeleCislo(5)
x
|
original/v1/s014-class/ostrava/Feedback_homeworks.ipynb
|
PyLadiesCZ/pyladies.cz
|
mit
|
Kompatibilita
Kompatibilita zůstala díky dědění zachována.
|
a = 5
b = CeleCislo(7)
a + b
a - b
a < b
b >= a
|
original/v1/s014-class/ostrava/Feedback_homeworks.ipynb
|
PyLadiesCZ/pyladies.cz
|
mit
|
Vlastní objekty a speciální metody
Pro domácí projekt to nebylo potřeba, ale pojďme si zkusit vytvořit vlastní třídu s implementovanými metodami pro využití operátorů v Pythonu.
|
class Pizza:
def __init__(self, jmeno, ingredience):
self.jmeno = jmeno
self.ingredience = ingredience
def __repr__(self):
return "<Pizza '{}' na které je '{}'".format(self.jmeno, self.ingredience)
p = Pizza("salámová", ["sýr", "paprikáš", "suchý salám"])
p
|
original/v1/s014-class/ostrava/Feedback_homeworks.ipynb
|
PyLadiesCZ/pyladies.cz
|
mit
|
Matematika
Pro matematické operátory existují speciální metody, jejichž názvy odpovídají použitým operátorům/operacím.
|
class Pizza:
def __init__(self, jmeno, ingredience):
self.jmeno = jmeno
self.ingredience = ingredience
def __repr__(self):
return "<Pizza '{}' na které je '{}'".format(self.jmeno, self.ingredience)
def __add__(self, other):
jmeno = self.jmeno + " " + other.jmeno
ingredience = self.ingredience + other.ingredience
return Pizza(jmeno, ingredience)
p1 = Pizza("salámová", ["sýr", "paprikáš", "suchý salám"])
p2 = Pizza("hawai", ["máslo", "ananas"])
p1 + p2
p2 - p1
|
original/v1/s014-class/ostrava/Feedback_homeworks.ipynb
|
PyLadiesCZ/pyladies.cz
|
mit
|
Porovnávání
Pro porovnání máme také speciální metody - pro každý operátor jednu.
|
class Pizza:
def __init__(self, jmeno, ingredience):
self.jmeno = jmeno
self.ingredience = ingredience
def __repr__(self):
return "<Pizza '{}' na které je '{}'".format(self.jmeno, self.ingredience)
def __add__(self, other):
jmeno = self.jmeno + " " + other.jmeno
ingredience = self.ingredience + other.ingredience
return Pizza(jmeno, ingredience)
def __lt__(self, other):
return len(self.ingredience) < len(other.ingredience)
p1 = Pizza("salámová", ["sýr", "paprikáš", "suchý salám"])
p2 = Pizza("hawai", ["máslo", "ananas"])
p3 = Pizza("pro chude", ["eidam"])
p4 = p1 + p2
p3 < p1
p3 > p1
p4 < p2
|
original/v1/s014-class/ostrava/Feedback_homeworks.ipynb
|
PyLadiesCZ/pyladies.cz
|
mit
|
Řazení
Řazení je jen speciální případ porovnávání, kdy se mezi sebou porovnají všechny prvky a podle výsledku jednotlivých porovnání se seřadí. K tomu nám stačí mít implementovánu alespoň metodu __lt__.
|
pizzy = [p1, p2, p3, p4]
pizzy
sorted(pizzy)
|
original/v1/s014-class/ostrava/Feedback_homeworks.ipynb
|
PyLadiesCZ/pyladies.cz
|
mit
|
The first part of this tutorial shows you how to get the data you need from the FHD output directories. This relies mostly on functions in the fhd_pype module.
The function fp.fhd_base() returns the full path to the directory where the FHD output is located. It defaults to the common Aug23 output folder on the MIT cluster, but this can be assigned to another string using fp.set_fhd_base(<new_path>).
|
print 'The default path: '+fp.fhd_base()
fp.set_fhd_base(os.getcwd().strip('scripts')+'katalogss/data')
print 'Our path: '+fp.fhd_base()
|
scripts/source-finding.ipynb
|
EoRImaging/katalogss
|
bsd-2-clause
|
We also need to define the version specifying the name of the run. This is equivalent to the case string in eor_firstpass_versions.pro, or the string following "fhd_" in the output directory name.
The katalogss data directory includes a mock FHD output run and the relevant files for a single obsid.
|
fhd_run = 'mock_run'
s = '%sfhd_%s'%(fp.fhd_base(),fhd_run)
!ls -R $s
|
scripts/source-finding.ipynb
|
EoRImaging/katalogss
|
bsd-2-clause
|
Next we want to define the list of obsids we want to process. You can do this manually, or you can easily grab all obsids with deconvolution output for your run using:
|
obsids = fp.get_obslist(fhd_run)
obsids
|
scripts/source-finding.ipynb
|
EoRImaging/katalogss
|
bsd-2-clause
|
Next we'll grab the source components and metadata for each obsid in the list. Note that if you don't supply the list of obsids, it will automatically run for all obsids.
|
comps = fp.fetch_comps(fhd_run, obsids=obsids)
meta = fp.fetch_meta(fhd_run,obsids=obsids)
|
scripts/source-finding.ipynb
|
EoRImaging/katalogss
|
bsd-2-clause
|
This returns a dictionary of dictionaries. Since it takes some work to run, let's cache it a new katalogss output directory.
|
kgs_out = '%sfhd_%s/katalogss/'%(fp.fhd_base(),fhd_run)
if not os.path.exists(kgs_out): os.mkdir(kgs_out)
print 'saving %scomponent_arrays.p'
pickle.dump([comps,meta], open(kgs_out+'components.p','w'))
comps
|
scripts/source-finding.ipynb
|
EoRImaging/katalogss
|
bsd-2-clause
|
If you need to come back to this later, restore it with
comps, meta = pickle.load(open(kgs_out+'component_arrays.p'))
|
#comps, meta = pickle.load(open(kgs_out+'components.p'))
|
scripts/source-finding.ipynb
|
EoRImaging/katalogss
|
bsd-2-clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.