markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
The one below should fail, because it's outside the prior:
print(lpost([-0.1, 0.1, 0.1])) print(lpost([0.1, -0.1, 0.1])) print(lpost([0.1, 0.1, -0.1]))
notebooks/SherpaResponses.ipynb
eblur/clarsach
gpl-3.0
Okay, cool! This works. Now we can run MCMC!
import emcee start_pars = np.array([0.313999, 1.14635, 0.0780871]) start_cov = np.diag(start_pars/100.0) nwalkers = 100 niter = 200 ndim = len(start_pars) burnin = 50 p0 = np.array([np.random.multivariate_normal(start_pars, start_cov) for i in range(nwalkers)]) # initialize the sampler sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False], threads=4) pos, prob, state = sampler.run_mcmc(p0, burnin) _, _, _ = sampler.run_mcmc(pos, niter, rstate0=state) plt.figure() plt.plot(sampler.flatchain[:,0]) plt.figure() plt.plot(sampler.flatchain[:,1]) plt.figure() plt.plot(sampler.flatchain[:,2]) import corner %matplotlib inline corner.corner(sampler.flatchain, quantiles=[0.16, 0.5, 0.84], show_titles=True, title_args={"fontsize": 12});
notebooks/SherpaResponses.ipynb
eblur/clarsach
gpl-3.0
Configurations
vocab = (" $%'()+,-./0123456789:;=?ABCDEFGHIJKLMNOPQRSTUVWXYZ" "\\^_abcdefghijklmnopqrstuvwxyz{|}\n") graph_path = r"./graphs" test_text_path = os.path.normpath(r"../Dataset/arvix_abstracts.txt") batch_size=50 model_param_path=os.path.normpath(r"./model_checkpoints")
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Data encoding Basic Assumption A full string sequence consists $START$ & $STOP$ signal with characters in the middle. Encoding policy A set $\mathcal{S}$ that consists of many characters is utilized to encode the characters. The $1^{st}$ entry of the vector corresponds to $UNKNOWN$ characters(l.e. characters that are beyond $\mathcal{S}$). The last entry of the vector corresponds to $STOP$ signal of the sequence. The entries in the middle corresponds to the indices of the characters within $\mathcal{S}$. The $START$ signal is represented as a zero vector. Implementation & Test Declaration
class TextCodec: def __init__(self, vocab): self._vocab = vocab self._dim = len(vocab) + 2 def encode(self, string, sess = None, start=True, stop=True): """ Encode string. Each character is represented as a N-dimension one hot vector. N = len(self._vocab)+ 2 Note: The first entry of the vector corresponds to unknown character. The last entry of the vector corresponds to STOP signal of the sequence. The entries in the middle corresponds to the index of the character. The START signal is represented as a zero vector. """ tensor = [vocab.find(ch) + 1 for ch in string] if stop: tensor.append(len(vocab)+1) # String + STOP tensor = tf.one_hot(tensor,depth=len(vocab) + 2,on_value=1.0,off_value=0.0,axis=-1, dtype=tf.float32) if start: tensor=tf.concat([tf.zeros([1, len(vocab) + 2],dtype=tf.float32),tensor],axis=0) # String + START if sess is None: with tf.Session() as sess: nparray=tensor.eval() elif type(sess) == tf.Session: nparray = tensor.eval(session=sess) else: raise TypeError('"sess" must be {}, got {}'.format(tf.Session, type(sess))) return nparray def decode(self, nparray, default="[UNKNOWN]",start="[START]",stop="[STOP]",strip=False): text_list = [] indices=np.argmax(nparray, axis=1) for v, ch_i in zip(nparray,indices): if np.all(v==0): text_list.append(start if not strip else "") elif ch_i==0: text_list.append(default) elif ch_i==len(self._vocab)+1: text_list.append(stop if not strip else "") else: text_list.append(vocab[ch_i-1]) return "".join(text_list) @property def dim(self): return self._dim
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Test See how encoding and decoding work.
test_codec=TextCodec(vocab) test_text_encoded=test_codec.encode("Hello world!") print("Encoded text looks like:\n{}".format(test_text_encoded)) test_text_decoded=test_codec.decode(nparray=test_text_encoded,strip=False) print("Decoded text looks like:\n{}".format(test_text_decoded))
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Load data set
with open(test_text_path, "r") as f: raw_text_list = "".join(f.readlines()).split("\n") print("Loaded abstract from a total of {} theses.".format(len(raw_text_list))) # See what we have loaded sample_text_no = random.randint(0, len(raw_text_list)-1) sample_text_raw = raw_text_list[sample_text_no] print("A sample text in the data set:\n{}".format(sample_text_raw)) sample_text_encoded=test_codec.encode(sample_text_raw) print("Encoded text:\n{}".format(sample_text_encoded)) print("Decoded text:\n{}".format(test_codec.decode(sample_text_encoded))) encoded_data = test_codec.encode("\n".join(raw_text_list), start=False, stop=False)
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Define Batch Generator
def batch_generator(data, codec, batch_size, seq_length, reset_every): if type(data) == str: data=codec.encode(data, start=False, stop=False) head = 0 reset_index = 0 batch = [] seq = [] increment = seq_length * reset_every - 1 extras = codec.encode("", start=True, stop=True) v_start, v_stop = extras[0: 1, :], extras[1: 2, :] while head < np.shape(data)[0] or len(batch) == batch_size: if len(batch) == batch_size: batch = np.array(batch) for offset in range(reset_every): yield (batch[:, offset * seq_length: (offset + 1) * seq_length, :], batch[:, offset * seq_length + 1: (offset + 1) * seq_length + 1, :]) batch = [] else: seq = np.concatenate([v_start, data[head: head + increment, :], v_stop], axis=0) if np.shape(seq)[0] == (increment + 2): batch.append(seq) head += increment
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Check the generator
seq_length = 100 reset_every = 2 batch_size = 2 batches = batch_generator(data=encoded_data, codec=test_codec, batch_size=batch_size, seq_length=seq_length, reset_every=reset_every) for (x, y), i in zip(batches, range(reset_every * 2)): print("Batch {}".format(i)) if (i % reset_every) == 0: print("Reset") for j in range(batch_size): decoded_x, decoded_y = test_codec.decode(x[j], strip=False), test_codec.decode(y[j], strip=False) print("Index of sub-sequence:\n{}\nSequence input:\n{}:\nSequence output:\n{}".format(j, decoded_x, decoded_y)) del seq_length, reset_every, batch_size, batches
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Define model class
class DRNN(tf.nn.rnn_cell.RNNCell): def __init__(self, input_dim, hidden_dim, output_dim, num_hidden_layer, dtype=tf.float32): super(tf.nn.rnn_cell.RNNCell, self).__init__(dtype=dtype) assert type(input_dim) == int and input_dim > 0, "Invalid input dimension. " self._input_dim = input_dim assert type(num_hidden_layer) == int and num_hidden_layer > 0, "Invalid number of hidden layer. " self._num_hidden_layer = num_hidden_layer assert type(hidden_dim) == int and hidden_dim > 0, "Invalid dimension of hidden states. " self._hidden_dim = hidden_dim assert type(output_dim) == int and output_dim > 0, "Invalid dimension of output dimension. " self._output_dim = output_dim self._state_is_tuple = True with tf.variable_scope("input_layer"): self._W_xh = tf.get_variable("W_xh", shape=[self._input_dim, self._hidden_dim]) self._b_xh = tf.get_variable("b_xh", shape=[self._hidden_dim]) with tf.variable_scope("rnn_layers"): self._cells = [tf.nn.rnn_cell.GRUCell(self._hidden_dim) for _ in range(num_hidden_layer)] with tf.variable_scope("output_layer"): self._W_ho_list = [tf.get_variable("W_h{}o".format(i), shape=[self._hidden_dim, self._output_dim]) for i in range(num_hidden_layer)] self._b_ho = tf.get_variable("b_ho", shape=[self._output_dim]) @property def output_size(self): return self._output_dim @property def state_size(self): return (self._hidden_dim,) * self._num_hidden_layer def zero_state(self, batch_size, dtype): if self._state_is_tuple: return tuple(cell.zero_state(batch_size, dtype)for cell in self._cells) else: raise NotImplementedError("Not implemented yet.") def __call__(self, _input, state, scope=None): assert type(state) == tuple and len(state) == self._num_hidden_layer, "state must be a tuple of size {}".format( self._num_hidden_layer) hidden_layer_input = tf.matmul(_input, self._W_xh) + self._b_xh prev_output = hidden_layer_input final_state = [] output = None for hidden_layer_index, hidden_cell in enumerate(self._cells): with tf.variable_scope("cell_{}".format(hidden_layer_index)): new_output, new_state = hidden_cell(prev_output, state[hidden_layer_index]) prev_output = new_output + hidden_layer_input # Should be included in variable scope of this layer or? final_state.append(new_state) _W_ho = self._W_ho_list[hidden_layer_index] if output is None: output = tf.matmul(new_output, _W_ho) else: output = output + tf.matmul(new_output, _W_ho) output = tf.tanh(output + self._b_ho) # output = tf.nn.relu(output) final_state = tuple(final_state) return output, final_state def inspect_weights(self, sess): val = self._W_xh.eval(sess) print("W_xh:\n{}\nF-norm:\n{}".format(val, norm(val))) val = self._b_xh.eval(sess) print("b_xh:\n{}\nF-norm:\n{}".format(val, norm(val))) for hidden_layer_index in range(self._num_hidden_layer): val = self._W_ho_list[hidden_layer_index].eval(sess) print("W_h{}o:\n{}\nF-norm:\n{}".format(hidden_layer_index, val, norm(val))) val = self._b_ho.eval(sess) print("b_ho:\n{}\nF-norm:\n{}".format(val, norm(val)))
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Make an instance of the model and define the rest of the graph Thoughts If GRU is used, then the outputs of GRU shall not be directly used as desired output without further transforms. (e.g. A cell accpet 2 inputs, a state from the previous cell and the input of this cell(which is approximated by the state input), then the RNN cell can be treated as a normal feed forward network. The proposal above is to be tested again due to the previous bug in training (Failed to feed the initial state given by the RNN output from last sequnce)
tf.reset_default_graph() input_dim = output_dim = test_codec.dim hidden_dim = 700 num_hidden_layer = 3 rnn_cell = DRNN(input_dim=input_dim, output_dim=output_dim, num_hidden_layer=num_hidden_layer, hidden_dim=hidden_dim) batch_size = 50 init_state = tuple(tf.placeholder_with_default(input=tensor, shape=[None, hidden_dim]) for tensor in rnn_cell.zero_state( batch_size=batch_size, dtype=tf.float32)) seq_input = tf.placeholder(name="batch_input", shape=[None, None, input_dim], dtype=tf.float32) target_seq_output = tf.placeholder(name="target_batch_output", shape=[None, None, output_dim], dtype=tf.float32) seq_output, final_states = tf.nn.dynamic_rnn(cell=rnn_cell,inputs=seq_input, initial_state=init_state, dtype=tf.float32) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=target_seq_output, logits=seq_output)) summary_op = tf.summary.scalar(tensor=loss, name="loss") global_step = tf.get_variable(name="global_step", initializer=0, trainable=False) lr = tf.get_variable(name="learning_rate", initializer=1.0, trainable=False)
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Training
n_epoch=50 learning_rate=1e-3 train_op=tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss, global_step=global_step) print_every = 50 save_every = 1000 partition_size = 100 logdir = os.path.normpath("./graphs") seq_length = 100 reset_every = 100 visualize_every = 100 learning_rate_decay = 0.9 # batch_size has been specified when configuring the the tensors for initial states keep_checkpoint_every_n_hours = 0.5 model_checkpoint_dir = os.path.normpath("./model_checkpoints") model_checkpoint_path = os.path.join(model_checkpoint_dir, "DRNN") saver = tf.train.Saver(keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours) batches = list(batch_generator(data=encoded_data, codec=test_codec, batch_size=batch_size, seq_length=seq_length, reset_every=reset_every)) with tf.Session() as sess, tf.summary.FileWriter(logdir=logdir) as writer: sess.run(tf.global_variables_initializer()) feed_dict = dict() states = None sess.run(tf.assign(lr, learning_rate)) zero_states = sess.run(rnn_cell.zero_state(batch_size=1, dtype=tf.float32)) for epoch in range(n_epoch): assert lr.eval(sess) > 0, "learning_rate must be positive." for i, (x, y) in enumerate(batches): feed_dict = {seq_input: x, target_seq_output: y} if (i % reset_every) != 0 and states is not None: for j in range(len(init_state)): feed_dict[init_state[j]] = states[j] _, summary, states, step = sess.run(fetches=[train_op, summary_op, final_states, global_step], feed_dict=feed_dict) writer.add_summary(summary=summary, global_step=step) if ((step + 1) % save_every) == 0: saver.save(sess=sess, save_path=model_checkpoint_path, global_step=step) if (step % visualize_every) == 0: feed_dict = {seq_input: x[:1, : , :]} for key, value in zip(init_state, zero_states): feed_dict[key] = value sample_output = sess.run(seq_output, feed_dict=feed_dict) print(test_codec.decode(sample_output[0], strip=False)) sess.run(tf.assign(lr, lr.eval(sess) * learning_rate_decay))
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Test online inference
def online_inference(cell, prime, sess, codec, input_tensor, init_state_tensor_tuple, output_tensor, final_state_tensor_tuple, length): final_output = [prime] zero_states = sess.run(cell.zero_state(batch_size=1, dtype=tf.float32)) feed_dict = {input_tensor: codec.encode(prime, start=True, stop=False)[np.newaxis, :, :]} # prime for init_state_tensor, init_state_value in zip(init_state_tensor_tuple, zero_states): feed_dict[init_state_tensor] = init_state_value output, final_states = sess.run([output_tensor, final_state_tensor_tuple], feed_dict=feed_dict) final_output.append(codec.decode(output[0, -1:, :], strip=False)) for _ in range(length - len(prime)): feed_dict = {input_tensor: codec.encode(final_output[-1], start=False, stop=False)[np.newaxis, :, :]} for init_state_tensor, init_state_value in zip(init_state_tensor_tuple, final_states): feed_dict[init_state_tensor] = init_state_value output, final_states = sess.run([output_tensor, final_state_tensor_tuple], feed_dict=feed_dict) final_output.append(codec.decode(output[0], strip=False)) return "".join(final_output) saver = tf.train.Saver() with tf.Session() as sess: ckpt = saver.last_checkpoints print(ckpt) print(online_inference(rnn_cell, "We propose", sess, test_codec, seq_input, init_state, seq_output, final_states, 200))
RNN101/Text Generator.ipynb
BorisPolonsky/LearningTensorFlow
mit
Let's evaluate how much the membrane potential depends on Input resistance and membrane time constant and the sag ratio. We will create the following multivariate function: $f(k;x) = k_0 + k_1x_1 + k_2x_2 + k_3x_3$ where $k$ is a vector or parameters (contants) and $x$ is a vector of independent variables (i.e $x_1$ is the input resistance $x_2$ is membrane time constant and $x_3$ the sag ratio)
x = df[['InputR', 'Sag','Tau_mb']] y = df[['Vrest']] # import standard regression models (sm) import statsmodels.api as sm K = sm.add_constant(x) # k0, k1, k2 and k3... # get estimation est = sm.OLS(y, K).fit() # ordinary least square regression est.summary() # need more data for kurtosis :)
Optimization/Multivariate regression.ipynb
JoseGuzman/myIPythonNotebooks
gpl-2.0
Generate Mock Observed Luminosity
import numpy as np # original values # sigma_L = 1 # a1 = 12 # a2 = 1.4 # a3 = fov['mass_h'].min() # a4 = 10 # sigma_obs = 2 S = 0.155 a1 = 10.709 a2 = 0.359 a3 = 2.35e14 a4 = 1.10 sigma_obs = 0.01 mean_L = a1 + a2*np.log(fov['mass_h'] / a3) + a4 * np.log(1 + fov['z']) fov['lum'] = np.random.lognormal(mean_L, S, len(fov)) fov['lum_obs'] = np.random.lognormal(np.log(fov['lum']), sigma_obs, len(fov)) %matplotlib inline import matplotlib.pyplot as plt plt.scatter(fov[:1000]['mass_h'], fov[:1000]['lum_obs'], alpha=0.2) plt.gca().set_xscale("log", nonposx='clip') plt.gca().set_yscale("log", nonposx='clip') plt.title('Mass Luminosity Distribution') plt.xlabel('Mass[$M_{\odot}$]') plt.ylabel('Luminosity[$L_{\odot}h^{-2}$]')
MassLuminosityProject/GenerateMockDataAndImportanceSample_2017_01_22.ipynb
davidthomas5412/PanglossNotebooks
mit
Generate Q
fov['q_lum'] = np.random.lognormal(np.log(fov['lum_obs']), sigma_obs, len(fov)) fov['q_mass_h_mean'] = a3 * (fov['q_lum'] / (np.exp(a1) * (1+fov['z']) ** a4 )) ** (1 / a2) fov['q_mass_h'] = np.random.lognormal(np.log(fov['q_mass_h_mean']), 5*S, len(fov)) plt.scatter(fov[:500]['mass_h'], fov[:500]['lum_obs'], alpha=0.4, color='blue', label='P') plt.scatter(fov[:500]['q_mass_h'], fov[:500]['q_lum'], alpha=0.4, color='gold', label='Q') plt.gca().set_xscale("log", nonposx='clip') plt.gca().set_yscale("log", nonposx='clip') plt.title('Mass Luminosity Distribution') plt.xlabel('Mass[$M_{\odot}$]') plt.ylabel('Luminosity[$L_{\odot}h^{-2}$]') plt.legend()
MassLuminosityProject/GenerateMockDataAndImportanceSample_2017_01_22.ipynb
davidthomas5412/PanglossNotebooks
mit
Multiple Conditions So now we can deal with a scenario where there are two possible decisions to be made. What about more than two decision? Say hello to "elif"!
collection = [1,2,3,4,5] if collection[0] == 0: print ("Zero!") elif collection[0] == 100: print ("Hundred!") else: print("Not Zero or Hundred") x = ["George", "Barack", "Donald"] test = "Richard" if test in x: print(test, "has been found.") else: print(test, "was not found. Let me add him to the list." ) x.append(test) print(x)
07.Loop_it_up.ipynb
prasants/pyds
mit
Exercise Write some code to check if you are old enough to buy a bottle of wine. You need to be 18 or over, but if your State is Texas, you need to be 25 or over.
# Your code here
07.Loop_it_up.ipynb
prasants/pyds
mit
Adding your own input How about adding your own input and checking against that? This doesn't come in too handy in a data science environment since you typically have a well defined dataset already. Nevertheless, this is important to know.
age = int(input("Please enter your age:")) if age < 18: print("You cannot vote or buy alcohol.") elif age < 21: print("You can vote, but can't buy alcohol.") else: print("You can vote to buy alcohol. ;) ") mr_prez = ["Bill", "George", "Barack", "Donald"] name = input("Enter your name:") # Don't need to specify str type(name) if name in mr_prez: print("You share your name with a President.") else: print("You too can be president some day.")
07.Loop_it_up.ipynb
prasants/pyds
mit
Loops Time to supercharge our Python usage. Loops are in some ways, the basis for automation. Check if a condition is true, then execute a step, and keep executing it till the condition is no longer true.
numbers = [1,2,3,4,5,6,7,8,9,10] for number in numbers: if number % 2 == 0: print("Divisible by 2.") else: print("Not divisible by 2.") numbers = {1,2,3,4,5,6,7,8,9,10} for num in numbers: if num%3 == 0: print("Divisible by 3.") else: print("Not divisible by 3.")
07.Loop_it_up.ipynb
prasants/pyds
mit
When using dictionaries, you can iterate through keys, values or both.
groceries = {"Milk":2.5, "Tea": 4, "Biscuits": 3.5, "Sugar":1} print(groceries.keys()) print(groceries.values()) # item here refers to the the key in set name groceries for a in groceries.keys(): print(a) for price in groceries.values(): print(price) for (key, val) in groceries.items(): print(key,val) groceries.items() groceries.keys() groceries.values()
07.Loop_it_up.ipynb
prasants/pyds
mit
Exercise Print the names of the people in the dictionary 'data' Print the name of the people who have 'incubees' Print the name, and net worth of people with a net worth higher than 500,000 Print the names of people without a board seat Enter your responses in the fields below. This is solved for you if you scroll down, but you can't cheat yourself!
data = { "Richard": { "Title": "CEO", "Employees": ["Dinesh", "Gilfoyle", "Jared"], "Awards": ["Techcrunch Disrupt"], "Previous Firm": "Hooli", "Board Seat":1, "Net Worth": 100000 }, "Jared": { "Real_Name": "Donald", "Title": "CFO", "Previous Firm": "Hooli", "Board Seat":1, "Net Worth": 500 }, "Erlich": { "Title": "Visionary", "Previous Firm": "Aviato", "Current Firm": "Bachmannity", "Incubees": ["Richard", "Dinesh", "Gilfoyle", "Nelson", "Jian Yang"], "Board Seat": 1, "Net Worth": 5000000 }, "Nelson": { "Title": "Co-Founder", "Current Firm": "Bachmannity", "Previous Firm": "Hooli", "Board Seat": 0, "Net Worth": 10000000 }, } # Name of people in the dictionary data.keys() # Alternate way to get the name of the people in the dictionary for name in data.keys(): print(name) # Name of people who have incubees for name in data.items(): if "Incubees" in name[1]: print (name[0]) # Name and networth of people with a networth greater 500000 for name in data.items(): if "Net Worth" in name[1] and name[1]["Net Worth"]>500000: print (name[0], name[1]["Net Worth"]) # Name of people who don't have a board seat for name in data.items(): if "Board Seat" in name[1] and name[1]["Board Seat"] == 0: print (name[0])
07.Loop_it_up.ipynb
prasants/pyds
mit
Range of Values We often need to define a range of values for our program to iterate over.
# Generate a list on the fly nums = list(range(10)) print(nums)
07.Loop_it_up.ipynb
prasants/pyds
mit
In a defined range, the lower number is inclusive, and upper number is exclusive. So 0 to 10 would include 0 but exclude 10. So if we need a specific range, we can use this knowledge to our advantage.
nums = list(range(1,11)) print(nums)
07.Loop_it_up.ipynb
prasants/pyds
mit
We can also specify a range without explicitly defining an upper or lower range, in which case, Python does it's magic: range will be 0 to one less than the number specified.
nums = list(range(10)) print(nums)
07.Loop_it_up.ipynb
prasants/pyds
mit
We can also use the range function to perform mathematical tricks.
for i in range(1,6): print("The square of",i,"is:",i**2)
07.Loop_it_up.ipynb
prasants/pyds
mit
Or to check for certain other conditions or properties, or to define how many times an activity will be performed.
for i in range(1,10): print("*"*i)
07.Loop_it_up.ipynb
prasants/pyds
mit
Exercise Print all numbers from 1 to 20
# Your Code Here
07.Loop_it_up.ipynb
prasants/pyds
mit
Exercise Print the square of the first 10 natural numbers.
# Your Code Here
07.Loop_it_up.ipynb
prasants/pyds
mit
Become a Control Freak And now, it's time to become a master of control! A data scientist needs absolute control over loops, stopping when defined conditions are met, or carrying on till a solution if found. <img src="images/break.jpg"> Break
for i in range(1,100): print("The square of",i,"is:",i**2) if i >= 5: break print("Broken")
07.Loop_it_up.ipynb
prasants/pyds
mit
Continue Break's cousin is called Continue. If a certain condition is met, carry on.
letters = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"] for letter in letters: print("Currently testing letter", letter) if letter == "e": print("I plead the 5th!") continue print( letter)
07.Loop_it_up.ipynb
prasants/pyds
mit
List Comprehension Remember lists? Now here's a way to power through a large list in one line! As a Data Scientist, you will need to write a lot of code very efficiently, especially in the data exploration stage. The more experiments you can run to understand your data, the better it is. This is also a very useful tool in transforming one list (or dictionary) into another list. Let's begin by some simple examples First, we will write a program to generate the squares of the first 10 natural numbers, using a standard for loop. Next, we will contrast that with the List Comprehension approach.
# Here is a standard for loop numList = [] for num in range(1,11): numList.append(num**2) print (numList)
07.Loop_it_up.ipynb
prasants/pyds
mit
So far, so good!
# Now for List Comprehension sqList = [num**2 for num in range(1,11)] print(sqList) [num**2 for num in range(1,11)]
07.Loop_it_up.ipynb
prasants/pyds
mit
How's that for speed?! Here's the format for List Comprehensions, in English. ListName = [Expected_Result_or_Operation for Item in a given range]<br> print the ListName
cubeList = [num**3 for num in range(6)] print(cubeList)
07.Loop_it_up.ipynb
prasants/pyds
mit
List comprehensions are very useful when dealing with an existing list. Let's see some examples.
nums = [1,2,3,4,5,6,7,8,9,10] # For every n in the list named nums, I want an n my_list1 = [n for n in nums] print(my_list1) # For every n in the list named nums, I want n to be squared my_list2 = [n**2 for n in nums] print(my_list2) # For every n in the list named nums, I want n, only if it is even my_list3 = [n for n in nums if n%2 == 0] print(my_list3)
07.Loop_it_up.ipynb
prasants/pyds
mit
How about calculating the areas of circles, given a list of radii? That too in just one line.
radius = [1.0, 2.0, 3.0, 4.0, 5.0] import math # Area of Circle = Pi * (radius**2) area = [round((r**2)*math.pi,2) for r in radius] print(area)
07.Loop_it_up.ipynb
prasants/pyds
mit
Dictionary Comprehension Let's get back to our dictionary named Data. Dictionary Comprehension can be a very efficient way to extract information out of them. Especially when you have thousands or millions of records.
data = { "Richard": { "Title": "CEO", "Employees": ["Dinesh", "Gilfoyle", "Jared"], "Awards": ["Techcrunch Disrupt"], "Previous Firm": "Hooli", "Board Seat":1, "Net Worth": 100000 }, "Jared": { "Real_Name": "Donald", "Title": "CFO", "Previous Firm": "Hooli", "Board Seat":1, "Net Worth": 500 }, "Erlich": { "Title": "Visionary", "Previous Firm": "Aviato", "Current Firm": "Bachmannity", "Incubees": ["Richard", "Dinesh", "Gilfoyle", "Nelson", "Jian Yang"], "Board Seat": 1, "Net Worth": 5000000 }, "Nelson": { "Title": "Co-Founder", "Current Firm": "Bachmannity", "Previous Firm": "Hooli", "Board Seat": 0, "Net Worth": 10000000 }, } # Print all details for people who have incubees [(k,v) for k, v in data.items() if "Incubees" in v ] for name in data.items(): if "Net Worth" in name[1] and name[1]["Net Worth"]>500000: print (name[0], name[1]["Net Worth"]) high_nw = [(name[0], name[1]["Net Worth"]) for name in data.items() if "Net Worth" in name[1] and name[1]["Net Worth"]>500000] print(high_nw) type(high_nw) type(high_nw[0])
07.Loop_it_up.ipynb
prasants/pyds
mit
We can also use dictionary comprehension to create new dictionaries
name = ['George HW', 'Bill', 'George', 'Barack', 'Donald', 'Bugs'] surname = ['Bush', 'Clinton', 'Bush Jr', 'Obama', 'Trump', 'Bunny'] full_names = {n:s for n,s in zip(name,surname)} full_names # What if we want to exclude certain values? full_names = {n:s for n,s in zip(name, surname) if n!='Bugs'} print(full_names)
07.Loop_it_up.ipynb
prasants/pyds
mit
Problem Statement There are influenza viruses that are collected from the "environment", or have an "unknown" host. How do we infer which hosts it came from? Well, that sounds like a Classification problem.
# Load the sequences into memory sequences = [s for s in SeqIO.parse('data/20160127_HA_prediction.fasta', 'fasta') if len(s.seq) == 566] # we are cheating and not bothering with an alignment. len(sequences) # Load the sequence IDs into memory seqids = [s.id for s in SeqIO.parse('data/20160127_HA_prediction.fasta', 'fasta') if len(s.seq) == 566] len(seqids) # Cast the sequences as a MultipleSeqAlignment object, and then turn that into a pandas DataFrame. # Note: this cell takes a while. seq_aln = MultipleSeqAlignment(sequences) seq_df = pd.DataFrame(np.array(seq_aln)) seq_df.head() # Transform the df into isoelectric point features. seq_feats = seq_df.replace(isoelectric_points.keys(), isoelectric_points.values()) seq_feats.index = seqids seq_feats.head() # Quick check to make sure that we have no strings: for c in seq_feats.columns: letters = set(seq_feats[c]) for item in letters: assert not isinstance(item, str) # Let us now load our labels. labels = pd.read_csv('data/20160127_HA_prediction.csv', parse_dates=['Collection Date']) labels['Host Species'] = labels['Host Species'].str.replace('IRD:', '').str.replace('/Avian', '') labels['Sequence Accession'] = labels['Sequence Accession'].str.replace('*', '') labels.set_index('Sequence Accession', inplace=True) labels.head() # Let's join in the labels so that we have everything in one big massive table. data_matrix = seq_feats.join(labels['Host Species'], how='inner') data_matrix.head() # Quickly inspect the different labels under "host species" # set(data_matrix['Host Species']) # We will want to predict the labels for: "Avian", "Bird", "Environment", "Unknown", "null" unknown_labels = ['Avian', 'Bird', 'Environment', 'Unknown', 'null'] known_labels = set(data_matrix['Host Species']) - set(unknown_labels) # Let's further split the data into the "unknowns" and the "knowns" unknowns = data_matrix[data_matrix['Host Species'].isin(unknown_labels)] knowns = data_matrix[data_matrix['Host Species'].isin(known_labels)] # Finally, we want to convert the known host species into a matrix of 1s and 0s, so that we can use them as inputs # to the training algorithm. lb = LabelBinarizer() lb.fit([s for s in known_labels]) lb.transform(knowns['Host Species']) # note: this has not done anything to the original data.
03 Classification.ipynb
ericmjl/scikit-learn-tutorial
mit
Train/Test Split We're almost ready for training a machine learning model to classify the unknown hosts based on their sequence. Here's the proper procedure. Split the labelled data into a training and testing set. (~70 train/30 test to 80 train/20 test) Train and evaluate a model on the training set. Make predictions on the testing set, evaluate the model on testing set accuracy. This procedure is known as cross-validation, and is a powerful, yet cheap & easy method for evaluating how good a particular supervised learning model works.
# Split the data into a training and testing set. X_cols = [i for i in range(0,566)] X = knowns[X_cols] Y = lb.transform(knowns['Host Species']) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) # Train a Random Forest Classifier. # Note: This cell takes a while; any questions? # Initialize the classifier object. clf = RandomForestClassifier() # Train (i.e. "fit") the classifier to the training Xs and Ys clf.fit(X_train, Y_train) # Make predictions on the test X preds = clf.predict(X_test) preds lb.inverse_transform(preds)
03 Classification.ipynb
ericmjl/scikit-learn-tutorial
mit
How do we evaluate how good the classification task performed? For binary classification, the Receiver-Operator Characteristic curve is a great way to evaluate a classification task. For multi-label classification, which is the case we have here, accuracy score is a great starting place.
# Let's first take a look at the accuracy score: the fraction that were classified correctly. accuracy_score(lb.inverse_transform(Y_test), lb.inverse_transform(preds))
03 Classification.ipynb
ericmjl/scikit-learn-tutorial
mit
What about those sequences for which the hosts were unknown? We can run the predict(unknown_Xs) to predict what their hosts were likely to be, given their sequence.
unknown_preds = clf.predict(unknowns[X_cols]) # make predictions; note: these are still dummy-encoded. unknown_preds = lb.inverse_transform(unknown_preds) # convert dummy-encodings back to string labels. unknown_preds
03 Classification.ipynb
ericmjl/scikit-learn-tutorial
mit
What this gives us is the class label with the highest probability of being the correct one. While we will not do this here, at this point, it would be a good idea to double-check your work with a sanity check. Are the sequences that are predicted to be Human truly of a close sequence similarity to actual Human sequences? You may want to do a Multiple Sequence Alignment, or you might want to simply compute the Levenshtein or Hamming distance between the two sequences, as a sanity check. How do we interpret what the classifier learned? Depending on the classifier used, you can peer inside the model to get a feel for what the classifier learned about the features that best predict the class label. The RandomForestClassifier provides a feature_importances_ attribute that we can access and plot.
plt.plot(clf.feature_importances_)
03 Classification.ipynb
ericmjl/scikit-learn-tutorial
mit
シグモイド関数 ロジット関数の逆関数。 $$ \phi(z) = \frac{1}{1+e^(-z)} $$ ステップ関数とは異なり緩やかに上昇していくため、例えば結果が降水確率が0.8なら80%であるということができる。
import matplotlib.pyplot as plt import numpy as np def sigmoid(z): return 1.0 / (1.0 + np.exp(-z)) z = np.arange(-7, 7, 0.1) phi_z = sigmoid(z) plt.plot(z, phi_z) plt.axvline(0.0, color='k') plt.ylim(-0.1, 1.1) plt.xlabel('z') plt.ylabel('$\phi (z)$') # y axis ticks and gridline plt.yticks([0.0, 0.5, 1.0]) ax = plt.gca() ax.yaxis.grid(True) plt.tight_layout() # plt.savefig('./figures/sigmoid.png', dpi=300) plt.show()
python-machine-learning/ch03/logistic-regression.ipynb
hide-tono/python-training
apache-2.0
ロジスティック回帰の重みの学習 尤度L:結果から見たところの条件のもっともらしさ $$ L(w) = P(y|x;w) = \prod_{i=1}^nP(y^{(i)}|x^{(i)};w) = \prod_{i=1}^n(\phi(z^{(i)}))^{(y^{(i)})}(1-\phi(z^{(i)}))^{1-y^{(i)}} $$ \( P(y|x;w) \)の;wはwをパラメータに持つという意味。 対数尤度l: * アンダーフローの可能性低下 * 積が和に変換されるため加算を用いて微分できるようになる $$ l(w) = \log L(w) = \sum_{i=1}^n\bigl[(y^{(i)}\log(\phi(z^{(i)})))+({1-y^{(i)})\log(1-\phi(z^{(i)}))}\bigr] $$ 上記関数は勾配上昇するので、コスト関数Jとしてはマイナスにする $$ J(w) = \sum_{i=1}^n\bigl[(-y^{(i)}\log(\phi(z^{(i)})))-({1-y^{(i)})\log(1-\phi(z^{(i)}))}\bigr] $$ 1つのサンプルで計算されるコストは、上式から\( \sum \)と\( (i) \)を取って、 $$ J(\phi(z),y;w) = -y\log(\phi(z))-(1-y)\log(1-\phi(z)) $$ 上式から、y=0であれば1つ目の項が0になりy=1であれば2つ目の項が0になる。 $$ J(\phi(z),y;w) = \begin{cases} -\log(\phi(z)) & \text (y=1)\ -\log(1-\phi(z)) & \text (y=0)\end{cases}$$
from sklearn import datasets import numpy as np from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score # Irisデータセットをロード iris = datasets.load_iris() # 3,4列目の特徴量を抽出 X = iris.data[:, [2, 3]] # クラスラベルを取得 y = iris.target # print('Class labels:', np.unique(y)) # テストデータの分離 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # 特徴量のスケーリング sc = StandardScaler() # トレーニングデータの平均と標準偏差を計算 sc.fit(X_train) # 平均と標準偏差を用いて標準化 X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt import warnings def versiontuple(v): return tuple(map(int, (v.split(".")))) def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.6, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl) # highlight test samples if test_idx: # plot all samples if not versiontuple(np.__version__) >= versiontuple('1.9.0'): X_test, y_test = X[list(test_idx), :], y[list(test_idx)] warnings.warn('Please update to NumPy 1.9.0 or newer') else: X_test, y_test = X[test_idx, :], y[test_idx] plt.scatter(X_test[:, 0], X_test[:, 1], c='', alpha=1.0, edgecolor='black', linewidths=1, marker='o', s=55, label='test set') from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) #print(X_combined_std) # Pythonでの実装 from sklearn.linear_model import LogisticRegression # ロジスティック回帰のインスタンスを生成 lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) # 決定境界をプロット plot_decision_regions(X_combined_std, y_combined, classifier=lr, test_idx=range(105, 150)) # ラベル設定 plt.xlabel('petal width(標準化済み)') # 凡例を設定 plt.legend(loc='upper left') plt.show()
python-machine-learning/ch03/logistic-regression.ipynb
hide-tono/python-training
apache-2.0
過学習が発生…高バリアンス 学習不足…高バイアス 共線性:特徴量の間の相関の高さ 正則化:共線性を根拠に過学習を防ぐ。極端なパラメータの重みにペナルティを科す。 L2正則化 $$ \frac{\lambda}{2}||w||^2 = \frac{\lambda}{2}\sum_{j=1}^m w^2_j $$ \( \lambda \)は正則化パラメータという。 ロジスティック回帰のコスト関数に重みをつける $$ J(w) = \sum_{i=1}^n\bigl[(-y^{(i)}\log(\phi(z^{(i)})))-({1-y^{(i)})\log(1-\phi(z^{(i)}))}\bigr] + \frac{\lambda}{2}||w||^2 $$ 正則化パラメータ\( \lambda \)の逆数をCとする $$ C = \frac{1}{\lambda} $$ $$ J(w) = C\sum_{i=1}^n\bigl[(-y^{(i)}\log(\phi(z^{(i)})))-({1-y^{(i)})\log(1-\phi(z^{(i)}))}\bigr] + \frac{1}{2}||w||^2 $$
weights, params = [], [] # numpy.arange(-5, 5)はだめ。https://github.com/numpy/numpy/issues/8917 for c in range(-5, 5): lr = LogisticRegression(C=10**c, random_state=0) lr.fit(X_train_std, y_train) weights.append(lr.coef_[1]) params.append(10**c) weights = np.array(weights) plt.plot(params, weights[:, 0], label='petal length') plt.plot(params, weights[:, 1], linestyle='--', label='petal width') plt.ylabel('weight coefficient') plt.xlabel('C') plt.legend(loc='upper left') plt.xscale('log') plt.show()
python-machine-learning/ch03/logistic-regression.ipynb
hide-tono/python-training
apache-2.0
We use the sklearn.datasets.load_digits method to load the MNIST data.
from sklearn.datasets import load_digits digits_data = load_digits() from IPython.display import display display(dir(digits_data)) display(digits_data.data.shape) display(digits_data.target.shape)
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
This dataset contains data for 1797 images. Each image is an 8*8 matrix stored as a flat-packed array. Next we combine the data and target into a single dataframe.
mnist_df = pd.DataFrame(index=digits_data.target, data=digits_data.data) mnist_df.head()
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
Next we find out How many images we have per label.
image_counts = mnist_df.groupby(mnist_df.index)[0].count() ax = image_counts.plot(kind='bar', title='Image count per label in data')
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
Next we scale mnist_df so that every feature has zero mean and unit variance. Pairwise Distances, P and $\sigma_i$s
from sklearn.preprocessing import scale mnist_df_scaled = pd.DataFrame(index=mnist_df.index, columns=mnist_df.columns, data=scale(mnist_df)) mnist_df_scaled.head()
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
From the scaled data, we must calculate the $P_{ij}$s. To do this we first calculate the pairwise distances between each pair of rows in the input data. For efficiency's sake, we use the sklearn.metrics.pairwise_distances library function. Next, we start with a given purplexity target and then calculate the individual sigmas based on that.
MACHINE_PRECISION = np.finfo(float).eps from sklearn.metrics import pairwise_distances def optimal_sigma(dist_i, i, target_entropy, n_iter=100, entropy_diff=1E-7): """ For the pairwise distances between the i-th feature vector and every other feature vector in the original dataset, execute a binary search for ``sigma`` such the entropy of the conditional probability distribution ${P_i}$ equals ``target_entropy`` at ``entropy_diff`` precision. Return the optimal sigma. Assume that the distances are not squared. Execute at most ``n_iter`` searches. Raise ``ValueError`` if we haven't found a decent enough value of ``sigma``. Note that dist_i.loc[i] is the distance of the i-th feature vector to itself, i.e. 0. """ assert dist_i.loc[i] == 0 # initial value of sigma sigma = 1.0 # initial left and right boundaries for the binary search sigma_min, sigma_max = -np.inf, np.inf for _ in range(1, n_iter+1): # Evaluate the Gaussian kernel with current sigma r = dist_i.pow(2).div(2 * (sigma ** 2)) s = np.exp(-r) # Recall that p(j|i) = 0 if i = j s.loc[i] = 0 p = s / s.sum() # the np.maximum trick below avoids taking log of very small (< MACHINE_PRECISION) numbers # and ending up with -inf entropy = - p.dropna().dot(np.log(np.maximum(p.dropna(), MACHINE_PRECISION))) if np.fabs(target_entropy - entropy) <= entropy_diff: break if entropy > target_entropy: # new boundary is [sigma_min, sigma] sigma_max = sigma # if sigma_min is still open if not np.isfinite(sigma_min): sigma *= 0.5 else: # new boundary is [sigma, sigma_max] sigma_min = sigma # if sigma_max is still open if not np.isfinite(sigma_max): sigma *= 2.0 # If both the left and right boundaries are closed, new sigma # is the midpoint of sigma_min and sigma_max if np.all(np.isfinite([sigma_min, sigma_max])): sigma = (sigma_min + sigma_max) / 2 else: raise ValueError("Unable to find a sigma after [{}] iterations that matches target entropy: [{}]".format( n_iter, target_entropy)) return sigma def calc_optimal_sigmas(df, target_purplexity): """ From the DataFrame of feature vectors, ``df``, calculate pairwise distances and then find the optimal values for the Gaussian kernels for each conditional probability distribution {P_i} """ target_entropy = np.log(target_purplexity) paired_dists = pd.DataFrame(data=pairwise_distances(df.values, metric='l2')) optimal_sigmas = paired_dists.apply(lambda row: optimal_sigma(row, row.name, target_entropy), axis=1) # p_joint = (p_cond + p_cond.T) / (2 * df.shape[0]) # return p_joint return paired_dists, optimal_sigmas def calc_p(df, target_purplexity=30): """ Calculate the joint distribution of P_{ij} for the original input vectors x. Assume ``pairwise_dist`` are squared. """ paired_dists, optimal_sigmas = calc_optimal_sigmas(df, target_purplexity) exps = np.exp(-paired_dists) p_cond = exps.div(2 * optimal_sigmas.pow(2), axis=1) p_cond.values[np.diag_indices_from(p_cond)] = 0 p_cond = p_cond.div(p_cond.sum(axis=1), axis=0) n_points = p_cond.shape[0] p_joint = (p_cond + p_cond.T) / (2 * n_points) return p_joint p_joint = calc_p(mnist_df_scaled)
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
Now we're going to set up TensorFlow for the KLD minimization problem.
import tensorflow as tf display(tf.__version__) def pairwise_dist(tf_y): """Calculate pairwise distances between each pair of vectors in tf_y.""" tf_norms = tf.square(tf.norm(tf_y, axis=1)) tf_r1 = tf.expand_dims(tf_norms, axis=1) tf_r2 = tf.expand_dims(tf_norms, axis=0) tf_y_dot_yT = tf.matmul(tf_y, tf_y, transpose_b=True) tf_dot = tf.cast(tf_y_dot_yT, dtype=tf.float32) tf_r = tf_r1 + tf_r2 tf_d1 = tf_r - 2 * tf_dot return tf_d1 def calc_q(tf_y): """ Calculate the joint distribution of two embeddings y_i and y_j in tensorflow. Call from inside an active tensorflow session only. """ tf_pdist = pairwise_dist(tf_y) tf_d = 1 / (1 + tf_pdist) tf_d = tf.matrix_set_diag(tf_d, tf.zeros(tf.shape(tf_d)[0])) tf_q = tf.div(tf_d, tf.reduce_sum(tf_d)) return tf_q embedding_size = 2 n_points = p_joint.shape[0] losses = [] n_iter = 1000 loss_epsilon = 1E-8 learning_rate = 0.2 current_graph = tf.Graph() with current_graph.as_default(): # Placeholder for the joint distribution P of feature vectors in original space # This is a constant w.r.t the KLD minimization tf_p_joint = tf.placeholder(dtype=tf.float32, name='p_joint', shape=[n_points, n_points]) # Feature vectors in the embedding space - initialized by sampling from random distribution tf_y = tf.Variable(name='y', validate_shape=False, dtype=tf.float32, initial_value=tf.random_normal([n_points, embedding_size])) # One step for iterative KLD minimization # calculate joint distribution Q of embeddings tf_q_joint = calc_q(tf_y) # Both P and Q have zeros in the diagonals. Since we want to calculate log{P/Q}, # We temporarily replace the 1s with 0s, so the log of the diagonals are zeros # and they don't contribute to the KLD value. p_diag_1 = tf.matrix_set_diag(tf_p_joint, tf.ones(n_points)) q_diag_1 = tf.matrix_set_diag(tf_q_joint, tf.ones(n_points)) tf_log_p_by_q = tf.log(tf.div(p_diag_1, q_diag_1)) kld = tf.reduce_sum(tf.multiply(tf_p_joint, tf_log_p_by_q)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, name='Adam') train_op = optimizer.minimize(kld, name='KLD_minimization') with tf.Session() as sess: # initialize tensorflow variables init = tf.global_variables_initializer() sess.run(init) feed_dict = {tf_p_joint: p_joint.astype(np.float32).values} # run the optimization step n_iter times, breaking out if two successive steps # produce an absolute change in the value of the loss function <= loss_epsilon for i in range(1, n_iter+1): _, loss_val = sess.run([train_op, kld], feed_dict=feed_dict) losses.append(loss_val) if i % 100 == 0: print("After iteration: {}, loss: {}".format(i, loss_val)) if len(losses) >= 2: last_loss = losses[-2] loss_delta = np.abs(last_loss-loss_val) if loss_delta < loss_epsilon: print("Exiting after %s iterations, loss_delta [{}] <= loss_epsilon [{}".format( n_iter, loss_delta, loss_epsilon)) break y_embeddings = sess.run(tf_y, feed_dict=feed_dict) pd.Series(losses).rolling(10).mean().plot() embeddings_df = pd.DataFrame(index=mnist_df_scaled.index, data=y_embeddings) plot_source = embeddings_df.reset_index().rename(columns={ 'index': 'label', 0: 'x', 1:'y'}) fg = sns.FacetGrid(data=plot_source, hue='label', size=10) fg.map(plt.scatter, 'x', 'y').add_legend()
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
Let's compare that against what the sklearn implementation gives us:
from sklearn.manifold import TSNE # Extract the embeddings and convert into a DataFrame sk_embedded = TSNE(n_components=2).fit_transform(mnist_df_scaled.values) sk_embedded = pd.DataFrame(index=mnist_df_scaled.index, data=sk_embedded) # Display sk_embedded = sk_embedded.reset_index().rename(columns={'index': 'label', 0: 'x', 1:'y'}) fg = sns.FacetGrid(data=sk_embedded, hue='label', size=10) fg.map(plt.scatter, 'x', 'y').add_legend()
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
Appendix: Vectorized Calculation of $Q_{ij}$ in TensorFlow$
y = pd.DataFrame(index=range(3), columns=range(5), data=np.random.uniform(1, 5, size=[3, 5])) y
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
First we calculate Q using the direct iterative algorithm which requires iterating over rows and columns of y this gives us a reference to test our vectorized implementation for correctness.
Q_simple = pd.DataFrame(index=y.index, columns=y.index, data=0.0) for i in range(0, y.shape[0]): for j in range(0, i): assert i != j, (i, j) md = y.loc[i, :].sub(y.loc[j, :]) d = 1 + np.linalg.norm(md)**2 Q_simple.loc[i, j] = 1 / d Q_simple.loc[j, i] = 1 / d Q_simple
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
To calculate Q in a vectorized way, we note that $D[i, j] = (y[i] - y[j]) (y[i] - y[j])^T = norm(y[i])^2 + norm(y[j])^2 - 2 \times dot(a[i], a[j])$ For the entire 2D array y, we can generalize this to: D = np.atleast_2d(r) + np.atleast_2d(r).T - 2 * np.dot(y, y.T) where r is (vector) of norms of each vector in y.
norms = y.apply(np.linalg.norm, axis=1).values r1 = np.atleast_2d(norms**2) r2 = r1.T d1 = r1 + r2 d2 = d1 - 2 * np.dot(y, y.T) d2 += 1 d3 = 1 / d2 d3[np.diag_indices_from(d3)] = 0 Q_vectorized = pd.DataFrame(d3) Q_vectorized from pandas.util.testing import assert_frame_equal assert_frame_equal(Q_simple, Q_vectorized, check_less_precise=True)
simple_implementations/t-sne.ipynb
dipanjank/ml
gpl-3.0
First we load the iris data from task 1 and split it into training and validation set.
# load dataset from task 1 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = pandas.read_csv(url, names=names) # split-out dataset array = dataset.values X = array[:,0:4] y = array[:,4]
notebooks/robin_ue1/03_Cross_validation_and_grid_search.ipynb
hhain/sdap17
mit
Next we run a performance test on GridSearchCV. Therefor we search mulitple times to maximize the precision save the best time for later comparison. Each time we use a different number of jobs.
# parameter for performance test max_jobs = 8 best_in = 3 # performance test measurements = [] i = 1 while i <= max_jobs: min_t = float("inf") for j in range(best_in): kneighbors = KNeighborsClassifier() grid_search = GridSearchCV(kneighbors, parameter_grid, cv=cross_val, scoring=scoring, n_jobs=i) start = timer() grid_search.fit(X, y) stop = timer() min_t = min(min_t, stop - start) measurements.append(min_t) i += 1
notebooks/robin_ue1/03_Cross_validation_and_grid_search.ipynb
hhain/sdap17
mit
Finally we plot our results:
fig = plt.figure() fig.suptitle('Visualization of the runtime depending on the number of used jobs.') plt.xticks(range(1, max_jobs + 1)) ax = fig.add_subplot(111) ax.set_xlabel('used jobs') ax.set_ylabel('runtime in seconds') ax.plot(range(1, max_jobs + 1), measurements, 'ro') plt.show() neighbors = [s[0]["n_neighbors"] for s in grid_search.grid_scores_] val_score = [s[1] for s in grid_search.grid_scores_] fig = plt.figure() fig.suptitle('Visualization of the precision depending on the used parameter n_neighbors.') plt.xticks(range(1,max_n + 1)) ax = fig.add_subplot(111) ax.set_xlabel('n_neighbors') ax.set_ylabel('mean test score') ax.plot(neighbors, val_score, 'ro') plt.show() max_score = max(val_score) i = val_score.index(max_score) n = neighbors[i] print("Maximum precision:", max_score) print("Is reached with:","n_neighbors =", n)
notebooks/robin_ue1/03_Cross_validation_and_grid_search.ipynb
hhain/sdap17
mit
Then we can display the final result:
t = algorithm.linspace(0, duration_secs, samples) plt.plot(t, data) plt.show()
notebooks/Oscillators.ipynb
mohabouje/eDSP
gpl-3.0
Sawtooth Signal A sawtooth waveform increases linearly from -1 to 1 in $ [0, 2 \pi wi] $ interval, and decreases linearly from 1 to -1 in the interval $ \left[ 2 \pi w, 2 \pi \right] $, where $ w $ is the width of the periodic signal. If $ w $ is 0.5, the function generates a standard triangular wave. The triangle wave shares many geometric similarities with the sawtooth wave, except it has two sloping line segments. A more general form, and with period T, is: $$ {\displaystyle 2\left({\frac {t}{T}}-\left\lfloor {\frac {1}{2}}+{\frac {t}{T}}\right\rfloor \right)} $$ The class sawtooth_oscillator implements a basic square signal oscillator. In this example we generate a square signal with a period of 10KHz sampled at 42.1KHz:
width = 0.7 sawtooth = oscillator.Sawtooth(amp=amplitude, sr=sample_rate, f=frequency, width=width) data = sawtooth.generate(N=samples)
notebooks/Oscillators.ipynb
mohabouje/eDSP
gpl-3.0
Then, to display:
plt.plot(t, data) plt.show()
notebooks/Oscillators.ipynb
mohabouje/eDSP
gpl-3.0
Interactive mode
from __future__ import print_function from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets @interact(dtype=widgets.Dropdown( options=['square', 'sinusoidal', 'sawtooth'], value='square', description='Type:', disabled=False), frequency=widgets.IntSlider(min=1,max=20,step=1,value=10), duration=widgets.IntSlider(min=1,max=5,step=1,value=1), alpha=widgets.FloatSlider(min=0.0,max=1.0, value=0.3)) def display_oscillator(dtype, frequency, duration, alpha): sr = 42000 g = None if dtype == "square": g = oscillator.Square(amp=1, sr=sr, f=frequency, duty=alpha) elif dtype == "sinusoidal": g = oscillator.Sinusoidal(amp=1, sr=sr, f=frequency, p=0) else: g = oscillator.Sawtooth(amp=1, sr=sr, f=frequency, width=alpha) samples = int(duration * sr) data = g.generate(N=samples) t = algorithm.linspace(0, duration, samples) plt.plot(t, data) plt.show()
notebooks/Oscillators.ipynb
mohabouje/eDSP
gpl-3.0
Note that this works in the opposite direction too: let's say you want to find "rare" objects in 10 dimensions, where we'll define rare as <1% of the population. Then you'll need to accept objects from 63% of the distribution in all 10 dimensions! So are those really "rare" or are they just a particular 1% of the population?
import numpy as np p = 10**(np.log10(0.01)/10.0) print p
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
N.B. Dimensionality isn't just measuring $D$ parameters for $N$ objects. It could be a spectrum with $D$ values or an image with $D$ pixels, etc. In the book the examples used just happen to be spectra of galaxies from the SDSS project. But we can insert the data of our choice instead. For example: the SDSS comprises a sample of 357 million sources: - each source has 448 measured attributes - selecting just 30 (e.g., magnitude, size..) and normalizing the data range $-1$ to $1$ yields a probability of having one of the 357 million sources reside within a unit hypersphere of 1 in 1.4$\times 10^5$. Principal Component Analysis (PCA) In Principal Component Analysis (PCA) we seek to take a data set like the one shown below and apply a transform to the data such that the new axes are aligned with the maximal variance of the data. As can be seen in the Figure, this is basically just the same as doing regression by minimizing the square of the perpendicular distances to the new axes. Note that we haven't made any changes to the data, we have just defined new axes.
# Execute this cell # Ivezic, Figure 7.2 # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general %matplotlib inline import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Ellipse #------------------------------------------------------------ # Set parameters and draw the random sample np.random.seed(42) r = 0.9 sigma1 = 0.25 sigma2 = 0.08 rotation = np.pi / 6 s = np.sin(rotation) c = np.cos(rotation) X = np.random.normal(0, [sigma1, sigma2], size=(100, 2)).T R = np.array([[c, -s],[s, c]]) X = np.dot(R, X) #------------------------------------------------------------ # Plot the diagram fig = plt.figure(figsize=(5, 5), facecolor='w') ax = plt.axes((0, 0, 1, 1), xticks=[], yticks=[], frameon=False) # draw axes ax.annotate(r'$x$', (-r, 0), (r, 0), ha='center', va='center', arrowprops=dict(arrowstyle='<->', color='k', lw=1)) ax.annotate(r'$y$', (0, -r), (0, r), ha='center', va='center', arrowprops=dict(arrowstyle='<->', color='k', lw=1)) # draw rotated axes ax.annotate(r'$x^\prime$', (-r * c, -r * s), (r * c, r * s), ha='center', va='center', arrowprops=dict(color='k', arrowstyle='<->', lw=1)) ax.annotate(r'$y^\prime$', (r * s, -r * c), (-r * s, r * c), ha='center', va='center', arrowprops=dict(color='k', arrowstyle='<->', lw=1)) # scatter points ax.scatter(X[0], X[1], s=25, lw=0, c='k', zorder=2) # draw lines vnorm = np.array([s, -c]) for v in (X.T): d = np.dot(v, vnorm) v1 = v - d * vnorm ax.plot([v[0], v1[0]], [v[1], v1[1]], '-k') # draw ellipses for sigma in (1, 2, 3): ax.add_patch(Ellipse((0, 0), 2 * sigma * sigma1, 2 * sigma * sigma2, rotation * 180. / np.pi, ec='k', fc='gray', alpha=0.2, zorder=1)) ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Note that the points are correlated along a particular direction which doesn't align with the initial choice of axes. So, we should rotate our axes to align with this correlation. We'll choose the rotation to maximize the ability to discriminate between the data points: * the first axis, or principal component, is direction of maximal variance * the second principal component is orthogonal to the first component and maximizes the residual variance * ... PCA is a dimensional reduction process because we can generally account for nearly "all" of the variance in the data set with fewer than the original $K$ dimensions. See more below. We start with a data set ${x_i}$ which consists of $N$ objects for which we measure $K$ features. We start by subtracting the mean for each feature in ${x_i}$ and write $X$ as a $N\times K$ matrix. The covariance of this matrix is $$C_X=\frac{1}{N-1}X^TX.$$ There are off-diagonal terms if there are correlations between the measurements (e.g., maybe two of the features are temperature dependent and the measurements were taken at the same time). If $R$ is a projection of the data that is aligned with the maximal variance, then we have $Y= X R$ with covariance $$ C_{Y} = R^T X^T X R = R^T C_X R.$$ $r_1$ is the first principal component of $R$, which can be derived using Langrange multipliers with the following cost function: $$ \phi(r_1,\lambda_1) = r_1^TC_X r_1 - \lambda_1(r_1^Tr_1-1). $$ If we take derivative of $\phi(r_1,\lambda)$ with respect to $r_1$ and set it to 0, then we have $$ C_Xr_1 - \lambda_1 r_1 = 0. $$ $\lambda_1$ (the largest eigenvalue of the matrix) is the root of the equation $\det(C_X - \lambda_1 {\bf I})=0$ for which the eigenvalue is $$ \lambda_1 = r_1^T C_X r_1.$$ The columns of the full matrix, $R$ are the eigenvectors (known here as principal components). We aren't going to go through the linear algebra more than that here. But it would be a good group project for someone. See the end of 7.3.1 starting at the bottom on page 294 or go through Karen Leighly's PCA lecture notes if you want to walk through the math in more detail. Preparing data for PCA Subtract the mean of each dimension (to "center" the data) Divide by the variance in each dimension (to "whiten" the data) (For spectra and images) normalize each row to yield an integral of unity.
#Example call from 7.3.2 import numpy as np from sklearn.decomposition import PCA X = np.random.normal(size=(100,3)) # 100 points in 3D R = np.random.random((3,10)) # projection matrix X = np.dot(X,R) # X is now 10-dim, with 3 intrinsic dims pca = PCA(n_components=4) # n_components can be optionally set pca.fit(X) comp = pca.transform(X) # compute the subspace projection of X mean = pca.mean_ # length 10 mean of the data components = pca.components_ # 4x10 matrix of components
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Scikit-Learn's decomposition module has a number of PCA type implementations. Let's work through an example using spectra of galaxies take during the Sloan Digital Sky Survey. In this sample there are 4000 spectra with flux measurements in 1000 bins. 15 example spectra are shown below and our example will use half of the spectra chosen at random.
%matplotlib inline # Example from Andy Connolly # See Ivezic, Figure 7.4 import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) print len(spectra), len(wavelengths) #---------------------------------------------------------------------- # Compute PCA np.random.seed(500) nrows = 2000 # We'll just look at 2000 random spectra n_components = 5 # Do the fit with 5 components, which is the mean plus 4 ind = np.random.randint(spectra.shape[0], size=nrows) spec_mean = spectra[ind].mean(0) # Compute the mean spectrum, which is the first component # spec_mean = spectra[:50].mean(0) # use Randomized PCA for speed pca = RandomizedPCA(n_components - 1) pca.fit(spectra[ind]) pca_comp = np.vstack([spec_mean,pca.components_]) #Add the mean to the components evals = pca.explained_variance_ratio_ print evals # Print the eigenvalues
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Now let's plot the components. See also Ivezic, Figure 7.4. The left hand panels are just the first 5 spectra for comparison with the first 5 PCA components, which are shown on the right. They are ordered by the size of their eigenvalues.
#Make plots fig = plt.figure(figsize=(10, 8)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) titles = 'PCA components' for j in range(n_components): # plot the components ax = fig.add_subplot(n_components, 2, 2*j+2) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: ax.set_xlabel('wavelength (Angstroms)') ax.plot(wavelengths, pca_comp[j], '-k', lw=1) # plot zero line xlim = [3000, 7999] ax.plot(xlim, [0, 0], '-', c='gray', lw=1) ax.set_xlim(xlim) # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) # plot the first j spectra ax2 = fig.add_subplot(n_components, 2, 2*j+1) ax2.yaxis.set_major_formatter(plt.NullFormatter()) ax2.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax2.xaxis.set_major_formatter(plt.NullFormatter()) else: ax2.set_xlabel('wavelength (Angstroms)') ax2.plot(wavelengths, spectra[j], '-k', lw=1) # plot zero line ax2.plot(xlim, [0, 0], '-', c='gray', lw=1) ax2.set_xlim(xlim) if j == 0: ax.set_title(titles, fontsize='medium') if j == 0: label = 'mean' else: label = 'component %i' % j # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax2.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) ax.text(0.02, 0.95, label, transform=ax.transAxes, ha='left', va='top', bbox=dict(ec='w', fc='w'), fontsize='small') plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Now let's make "scree" plots. These plots tell us how much of the variance is explained as a function of the each eigenvector. Our plot won't look much like Ivezic, Figure 7.5, so I've shown it below to explain where "scree" comes from.
# Execute this cell import numpy as np from matplotlib import pyplot as plt #---------------------------------------------------------------------- # Plot the results fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(121) ax.plot(np.arange(n_components-1), evals) ax.set_xlabel("eigenvalue number") ax.set_ylabel("eigenvalue ") ax = fig.add_subplot(122) ax.plot(np.arange(n_components-1), evals.cumsum()) ax.set_xlabel("eigenvalue number") ax.set_ylabel("cumulative eigenvalue") plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
How much of the variance is explained by the first two components? How about all of the components?
print("The first component explains {:.3f} of the variance in the data.".format(# Complete print("The second component explains {:.3f} of the variance in the data.".format(# Complete print("All components explain {:.3f} of the variance in the data.".format(# Complete
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
This is why PCA enables dimensionality reduction. How many components would we need to explain 99.5% of the variance?
for num_feats in np.arange(1,20, dtype = int): # complete print("{:d} features are needed to explain 99.5% of the variance".format(# Complete
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Note that we would need 1000 components to encode all of the variance. Interpreting the PCA The output eigenvectors are ordered by their associated eigenvalues The eigenvalues reflect the variance within each eigenvector The sum of the eigenvalues is total variance of the system Projection of each spectrum onto the first few eigenspectra is a compression of the data Once we have the eigenvectors, we can try to reconstruct an observed spectrum, ${x}(k)$, in the eigenvector basis, ${e}_i(k)$, as $$ \begin{equation} {x}i(k) = {\mu}(k) + \sum_j^R \theta{ij} {e}_j(k). \end{equation} $$ That would give a full (perfect) reconstruction of the data since it uses all of the eigenvectors. But if we truncate (i.e., $r<R$), then we will have reduced the dimensionality while still reconstructing the data with relatively little loss of information. For example, we started with 4000x1000 floating point numbers. If we can explain nearly all of the variance with 8 eigenvectors, then we have reduced the problem to 4000x8+8x1000 floating point numbers! Execute the next cell to see how the reconstruction improves by adding more components.
# Execute this cell import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import PCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) #------------------------------------------------------------ # Compute PCA components # Eigenvalues can be computed using PCA as in the commented code below: #from sklearn.decomposition import PCA #pca = PCA() #pca.fit(spectra) #evals = pca.explained_variance_ratio_ #evals_cs = evals.cumsum() # because the spectra have been reconstructed from masked values, this # is not exactly correct in this case: we'll use the values computed # in the file compute_sdss_pca.py evals = data['evals'] ** 2 evals_cs = evals.cumsum() evals_cs /= evals_cs[-1] evecs = data['evecs'] spec_mean = spectra.mean(0) #------------------------------------------------------------ # Find the coefficients of a particular spectrum spec = spectra[1] coeff = np.dot(evecs, spec - spec_mean) #------------------------------------------------------------ # Plot the sequence of reconstructions fig = plt.figure(figsize=(8, 8)) fig.subplots_adjust(hspace=0) for i, n in enumerate([0, 4, 8, 20]): ax = fig.add_subplot(411 + i) ax.plot(wavelengths, spec, '-', c='gray') ax.plot(wavelengths, spec_mean + np.dot(coeff[:n], evecs[:n]), '-k') if i < 3: ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.set_ylim(-2, 21) ax.set_ylabel('flux') if n == 0: text = "mean" elif n == 1: text = "mean + 1 component\n" text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] else: text = "mean + %i components\n" % n text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] ax.text(0.01, 0.95, text, ha='left', va='top', transform=ax.transAxes) fig.axes[-1].set_xlabel(r'${\rm wavelength\ (\AA)}$') plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Caveats I PCA is a linear process, whereas the variations in the data may not be. So it may not always be appropriate to use and/or may require a relatively large number of components to fully describe any non-linearity. Note also that PCA can be very impractical for large data sets which exceed the memory per core as the computational requirement goes as $\mathscr{O}(D^3$) and the memory requirement goes as $\mathscr{O}(2D^2)$. Missing Data We have assumed so far that there is no missing data (e.g., bad pixels in the spectrum, etc.). But often the data set is incomplete. Since PCA encodes the flux correlation with wavelength (or whatever parameters are in your data set), we can actually use it to determine missing values. An example is shown below. Here, black are the observed spectra. Gray are the regions where we have no data. Blue is the PCA reconstruction, including the regions where there are no data. Awesome, isn't it?
# Execute this cell %matplotlib inline import numpy as np from matplotlib import pyplot as plt from matplotlib import ticker from astroML.datasets import fetch_sdss_corrected_spectra from astroML.datasets import sdss_corrected_spectra #------------------------------------------------------------ # Get spectra and eigenvectors used to reconstruct them data = fetch_sdss_corrected_spectra() spec = sdss_corrected_spectra.reconstruct_spectra(data) lam = sdss_corrected_spectra.compute_wavelengths(data) evecs = data['evecs'] mu = data['mu'] norms = data['norms'] mask = data['mask'] #------------------------------------------------------------ # plot the results i_plot = ((lam > 5750) & (lam < 6350)) lam = lam[i_plot] specnums = [20, 8, 9] subplots = [311, 312, 313] fig = plt.figure(figsize=(8, 10)) fig.subplots_adjust(hspace=0) for subplot, i in zip(subplots, specnums): ax = fig.add_subplot(subplot) # compute eigen-coefficients spec_i_centered = spec[i] / norms[i] - mu coeffs = np.dot(spec_i_centered, evecs.T) # blank out masked regions spec_i = spec[i] mask_i = mask[i] spec_i[mask_i] = np.nan # plot the raw masked spectrum ax.plot(lam, spec_i[i_plot], '-', color='k', lw=2, label='True spectrum') # plot two levels of reconstruction for nev in [10]: if nev == 0: label = 'mean' else: label = 'N EV=%i' % nev spec_i_recons = norms[i] * (mu + np.dot(coeffs[:nev], evecs[:nev])) ax.plot(lam, spec_i_recons[i_plot], label=label) # plot shaded background in masked region ylim = ax.get_ylim() mask_shade = ylim[0] + mask[i][i_plot].astype(float) * ylim[1] plt.fill(np.concatenate([lam[:1], lam, lam[-1:]]), np.concatenate([[ylim[0]], mask_shade, [ylim[0]]]), lw=0, fc='k', alpha=0.2) ax.set_xlim(lam[0], lam[-1]) ax.set_ylim(ylim) ax.yaxis.set_major_formatter(ticker.NullFormatter()) if subplot == 311: ax.legend(loc=1, prop=dict(size=14)) ax.set_xlabel('$\lambda\ (\AA)$') ax.set_ylabel('normalized flux') plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
The example that we have been using above is "spectral" PCA. Some examples from the literature include: - Francis et al. 1992 - Connolly et al. 1995 - Yip et al. 2004 One can also do PCA on features that aren't ordered (as they were for the spectra). E.g., if you have $D$ different parameters measured for your objects. The classic example in astronomy is Boroson & Green 1992 Caveats II One of the things that I don't like about PCA is that the eigenvectors are just mathematical constructs. They often don't look anything like the spectra themselves. Whereas it is often the case that you might expect that the components would look like, well, the physical components. For example, quasars are fundamentally galaxies. So, part of their flux comes from the galaxy that they live in. But PCA doesn't return any component that looks like a typical galaxy. Essentially this is because the components can be both positive and negative. Non-negative Matrix Factorization (NMF) This is where Non-negative Matrix Factorizaiton (NMF) comes in. Here we are treating the data as a linear sum of positive-definite components. NMF assumes any data matrix can be factored into two matrices, $W$ and $Y$, with $$\begin{equation} X=W Y, \end{equation} $$ where both $W$ and $Y$ are nonnegative. So, $WY$ is an approximation of $X$. Minimizing the reconstruction error $|| (X - W Y)^2 ||$, nonnegative bases can be derived through an iterative process. Note, however, that the iterative process does not guarantee nonlocal minima (like $K$-means and EM), but using random initialization and cross-validation can be used to find the global minimum. An example from the literature is Allen et al. 2008 In Scikit-Learn the NMF implementation looks like:
# Execute this cell import numpy as np from sklearn.decomposition import NMF X = np.random.random((100,3)) # 100 points in 3D nmf = NMF(n_components=3) nmf.fit(X) proj = nmf.transform(X) # project to 3 dimension comp = nmf.components_ # 3x10 array of components err = nmf.reconstruction_err_ # how well 3 components capture the data
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
An example (and comparison to PCA) is given below.
# Execute the next 2 cells # Example from Figure 7.4 # Author: Jake VanderPlas # License: BSD %matplotlib inline import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import NMF from sklearn.decomposition import RandomizedPCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) #---------------------------------------------------------------------- # Compute PCA, and NMF components def compute_PCA_NMF(n_components=5): spec_mean = spectra.mean(0) # PCA: use randomized PCA for speed pca = RandomizedPCA(n_components - 1) pca.fit(spectra) pca_comp = np.vstack([spec_mean, pca.components_]) # NMF requires all elements of the input to be greater than zero spectra[spectra < 0] = 0 nmf = NMF(n_components) nmf.fit(spectra) nmf_comp = nmf.components_ return pca_comp, nmf_comp n_components = 5 decompositions = compute_PCA_NMF(n_components) #---------------------------------------------------------------------- # Plot the results fig = plt.figure(figsize=(10, 10)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) titles = ['PCA components', 'NMF components'] for i, comp in enumerate(decompositions): for j in range(n_components): ax = fig.add_subplot(n_components, 3, 3 * j + 1 + i) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: ax.set_xlabel('wavelength (Angstroms)') ax.plot(wavelengths, comp[j], '-k', lw=1) # plot zero line xlim = [3000, 7999] ax.plot(xlim, [0, 0], '-', c='gray', lw=1) ax.set_xlim(xlim) if j == 0: ax.set_title(titles[i]) if titles[i].startswith('PCA') or titles[i].startswith('ICA'): if j == 0: label = 'mean' else: label = 'component %i' % j else: label = 'component %i' % (j + 1) ax.text(0.03, 0.94, label, transform=ax.transAxes, ha='left', va='top') for l in ax.get_xticklines() + ax.get_yticklines(): l.set_markersize(2) # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Independent Component Analysis (ICA) For data where the components are statistically independent (or nearly so) Independent Component Analysis (ICA) has become a popular method for separating mixed components. The classical example is the so-called "cocktail party" problem. This is illustrated in the following figure from Hastie, Tibshirani, and Friedman (Figure 14.27 on page 497 in my copy, so they have clearly added some stuff!). Think of the "source signals" as two voices at a party. You are trying to concentrate on just one voice. What you hear is something like the "measured signals" pattern. You could run the data through PCA and that would do an excellent job of reconstructing the signal with reduced dimensionality, but it wouldn't actually isolate the different physical components (bottom-left panel) ICA on the other hand can (bottom-right panel). ICA is a good choice for a complex system with relatively indepent components. For example a galaxy is roughly a linear combination of cool stars and hot stars, and a quasar is just a galaxy with others component from an accretion disk and emission line regions. Ideally we want "eigenvectors" that are aligned with those physical traits/regions as opposed to mathematical constructs. The basic call to the FastICA algoirthm in Scikit-Learn looks like:
# Execute this cell import numpy as np from sklearn.decomposition import FastICA X = np.random.normal(size=(100,2)) # 100 objects in 2D R = np.random.random((2,5)) # mixing matrix X = np.dot(X,R) # 2D data in 5D space ica = FastICA(2) # fit 2 components ica.fit(X) proj = ica.transform(X) # 100x2 projection of the data comp = ica.components_ # 2x5 matrix of independent components ## sources = ica.sources_ # 100x2 matrix of sources
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Execute the next 2 cells to produce a plot showing the ICA components.
%matplotlib inline #Example from Andy Connolly import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import FastICA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) #---------------------------------------------------------------------- # Compute PCA np.random.seed(500) nrows = 500 n_components = 5 ind = np.random.randint(spectra.shape[0], size=nrows) spec_mean = spectra[ind].mean(0) # spec_mean = spectra[:50].mean(0) ica = FastICA(n_components - 1) ica.fit(spectra[ind]) ica_comp = np.vstack([spec_mean,ica.components_]) #Add the mean to the components #Make plots fig = plt.figure(figsize=(10, 8)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) titles = 'ICA components' for j in range(n_components): # plot the components ax = fig.add_subplot(n_components, 2, 2*j+2) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: ax.set_xlabel(r'wavelength ${\rm (\AA)}$') ax.plot(wavelengths, ica_comp[j], '-k', lw=1) # plot zero line xlim = [3000, 7999] ax.plot(xlim, [0, 0], '-', c='gray', lw=1) ax.set_xlim(xlim) # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) # plot the first j spectra ax2 = fig.add_subplot(n_components, 2, 2*j+1) ax2.yaxis.set_major_formatter(plt.NullFormatter()) ax2.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax2.xaxis.set_major_formatter(plt.NullFormatter()) else: ax2.set_xlabel(r'wavelength ${\rm (\AA)}$') ax2.plot(wavelengths, spectra[j], '-k', lw=1) # plot zero line ax2.plot(xlim, [0, 0], '-', c='gray', lw=1) ax2.set_xlim(xlim) if j == 0: ax.set_title(titles, fontsize='medium') if j == 0: label = 'mean' else: label = 'component %i' % j # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax2.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) ax.text(0.02, 0.95, label, transform=ax.transAxes, ha='left', va='top', bbox=dict(ec='w', fc='w'), fontsize='small') plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
As with PCA and NMF, we can similarly do a reconstruction:
# Execute this cell #------------------------------------------------------------ # Find the coefficients of a particular spectrum spec = spectra[1] evecs = data['evecs'] coeff = np.dot(evecs, spec - spec_mean) #------------------------------------------------------------ # Plot the sequence of reconstructions fig = plt.figure(figsize=(8, 8)) fig.subplots_adjust(hspace=0) for i, n in enumerate([0, 2, 4, 8]): ax = fig.add_subplot(411 + i) ax.plot(wavelengths, spec, '-', c='gray') ax.plot(wavelengths, spec_mean + np.dot(coeff[:n], evecs[:n]), '-k') if i < 3: ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.set_ylim(-2, 21) ax.set_ylabel('flux') if n == 0: text = "mean" elif n == 1: text = "mean + 1 component\n" #text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] else: text = "mean + %i components\n" % n #text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] ## GTR: had to comment this out for some reason ## ax.text(0.01, 0.95, text, ha='left', va='top', transform=ax.transAxes) fig.axes[-1].set_xlabel(r'${\rm wavelength\ (\AA)}$') plt.show()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Ivezic, Figure 7.4 compares the components found by the PCA, ICA, and NMF algorithms. Their differences and similarities are quite interesting. If you think that I was pulling your leg about the cocktail problem, try it yourself! Load the code instead of running it and see what effect changing some things has.
%run code/plot_ica_blind_source_separation.py
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Let's revisit the digits sample and see what PCA, NMF, and ICA do for it.
# Execute this cell to load the digits sample %matplotlib inline import numpy as np from sklearn.datasets import load_digits from matplotlib import pyplot as plt digits = load_digits() grid_data = np.reshape(digits.data[0], (8,8)) #reshape to 8x8 plt.imshow(grid_data, interpolation = "nearest", cmap = "bone_r") print grid_data X = digits.data y = digits.target
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Do the PCA transform, projecting to 2 dimensions and plot the results.
# PCA from sklearn.decomposition import PCA pca = # Complete # Complete X_reduced = # Complete plt.scatter(# Complete, c=y, cmap="nipy_spectral", edgecolor="None") plt.colorbar()
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Similarly for NMF and ICA
# NMF # Complete # ICA from sklearn.decomposition import FastICA # Complete
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Take a second to think about what ICA is doing. What if you had digits from digital clocks instead of handwritten? I wasn't going to introduce Neural Networks yet, but it is worth noting that Scikit-Learn's Bernoulli Restricted Boltzman Machine (RBM) is discussed in the (unsupervised) neural network part of the User's Guide and is relevant here as the data input must be either binary or values between 0 and 1, which is the case that we have here. We could think about doing dimensional reduction of the digits data set in another way. There are 64 pixels in each of our images. Presumably all of them aren't equally useful. Let's figure out exactly which pixels are the most relevant. We'll use Scikit-Learn's RandomForestRegressor. We won't get to regression until next week, but you don't need to understand the algorithm to do this, just look at the inputs and outputs. Which pixels are the most important? As a bonus see if you can plot digit images with those pixels highlighted.
from sklearn.ensemble import RandomForestRegressor RFreg = RandomForestRegressor()# Complete or leave blank as you see fit # Do Fitting importances = # Determine importances np.argsort( # Complete to rank importances
DimensionReduction.ipynb
gtrichards/PHYS_T480
mit
Data-MC comparison Table of contents Data preprocessing Weight simulation events to spectrum S125 verification $\log_{10}(\mathrm{dE/dX})$ verification
from __future__ import division, print_function import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from icecube.weighting.weighting import from_simprod from icecube import dataclasses import comptools as comp import comptools.analysis.plotting as plotting color_dict = comp.analysis.get_color_dict() %matplotlib inline
notebooks/data-MC-comparison.ipynb
jrbourbeau/cr-composition
mit
Data preprocessing [ back to top ] 1. Load simulation/data dataframe and apply specified quality cuts 2. Extract desired features from dataframe 3. Get separate testing and training datasets 4. Feature selection Load simulation, format feature and target matrices
config = 'IC86.2012' # comp_list = ['light', 'heavy'] comp_list = ['PPlus', 'Fe56Nucleus'] june_july_data_only = False sim_df = comp.load_dataframe(datatype='sim', config=config, split=False) data_df = comp.load_dataframe(datatype='data', config=config) data_df = data_df[np.isfinite(data_df['log_dEdX'])] if june_july_data_only: print('Masking out all data events not in June or July') def is_june_july(time): i3_time = dataclasses.I3Time(time) return i3_time.date_time.month in [6, 7] june_july_mask = data_df.end_time_mjd.apply(is_june_july) data_df = data_df[june_july_mask].reset_index(drop=True) months = (6, 7) if june_july_data_only else None livetime, livetime_err = comp.get_detector_livetime(config, months=months)
notebooks/data-MC-comparison.ipynb
jrbourbeau/cr-composition
mit
Weight simulation events to spectrum [ back to top ] For more information, see the IT73-IC79 Data-MC comparison wiki page. First, we'll need to define a 'realistic' flux model
phi_0 = 3.5e-6 # phi_0 = 2.95e-6 gamma_1 = -2.7 gamma_2 = -3.1 eps = 100 def flux(E): E = np.array(E) * 1e-6 return (1e-6) * phi_0 * E**gamma_1 *(1+(E/3.)**eps)**((gamma_2-gamma_1)/eps) from icecube.weighting.weighting import PowerLaw pl_flux = PowerLaw(eslope=-2.7, emin=1e5, emax=3e6, nevents=1e6) + \ PowerLaw(eslope=-3.1, emin=3e6, emax=1e10, nevents=1e2) pl_flux.spectra from icecube.weighting.fluxes import GaisserH3a, GaisserH4a, Hoerandel5 flux_h4a = GaisserH4a() energy_points = np.logspace(6.0, 9.0, 100) fig, ax = plt.subplots() ax.plot(np.log10(energy_points), energy_points**2.7*flux_h4a(energy_points, 2212), marker='None', ls='-', lw=2, label='H4a proton') ax.plot(np.log10(energy_points), energy_points**2.7*flux_h4a(energy_points, 1000260560), marker='None', ls='-', lw=2, label='H4a iron') ax.plot(np.log10(energy_points), energy_points**2.7*flux(energy_points), marker='None', ls='-', lw=2, label='Simple knee') ax.plot(np.log10(energy_points), energy_points**2.7*pl_flux(energy_points), marker='None', ls='-', lw=2, label='Power law (weighting)') ax.set_yscale('log', nonposy='clip') ax.set_xlabel('$\log_{10}(E/\mathrm{GeV})$') ax.set_ylabel('$\mathrm{E}^{2.7} \ J(E) \ [\mathrm{GeV}^{1.7} \mathrm{m}^{-2} \mathrm{sr}^{-1} \mathrm{s}^{-1}]$') ax.grid(which='both') ax.legend() plt.show() simlist = np.unique(sim_df['sim']) for i, sim in enumerate(simlist): gcd_file, sim_files = comp.simfunctions.get_level3_sim_files(sim) num_files = len(sim_files) print('Simulation set {}: {} files'.format(sim, num_files)) if i == 0: generator = num_files*from_simprod(int(sim)) else: generator += num_files*from_simprod(int(sim)) energy = sim_df['MC_energy'].values ptype = sim_df['MC_type'].values num_ptypes = np.unique(ptype).size cos_theta = np.cos(sim_df['MC_zenith']).values weights = 1.0/generator(energy, ptype, cos_theta) # weights = weights/num_ptypes sim_df['weights'] = flux(sim_df['MC_energy'])*weights # sim_df['weights'] = flux_h4a(sim_df['MC_energy'], sim_df['MC_type'])*weights MC_comp_mask = {} for composition in comp_list: MC_comp_mask[composition] = sim_df['MC_comp'] == composition # MC_comp_mask[composition] = sim_df['MC_comp_class'] == composition def plot_rate(array, weights, bins, xlabel=None, color='C0', label=None, legend=True, alpha=0.8, ax=None): if ax is None: ax = plt.gca() rate = np.histogram(array, bins=bins, weights=weights)[0] rate_err = np.sqrt(np.histogram(array, bins=bins, weights=weights**2)[0]) plotting.plot_steps(bins, rate, yerr=rate_err, color=color, label=label, alpha=alpha, ax=ax) ax.set_yscale('log', nonposy='clip') ax.set_ylabel('Rate [Hz]') if xlabel: ax.set_xlabel(xlabel) if legend: ax.legend() ax.grid(True) return ax def plot_data_MC_ratio(sim_array, sim_weights, data_array, data_weights, bins, xlabel=None, color='C0', alpha=0.8, label=None, legend=False, ylim=None, ax=None): if ax is None: ax = plt.gca() sim_rate = np.histogram(sim_array, bins=bins, weights=sim_weights)[0] sim_rate_err = np.sqrt(np.histogram(sim_array, bins=bins, weights=sim_weights**2)[0]) data_rate = np.histogram(data_array, bins=bins, weights=data_weights)[0] data_rate_err = np.sqrt(np.histogram(data_array, bins=bins, weights=data_weights**2)[0]) ratio, ratio_err = comp.analysis.ratio_error(data_rate, data_rate_err, sim_rate, sim_rate_err) plotting.plot_steps(bins, ratio, yerr=ratio_err, color=color, label=label, alpha=alpha, ax=ax) ax.grid(True) ax.set_ylabel('Data/MC') if xlabel: ax.set_xlabel(xlabel) if ylim: ax.set_ylim(ylim) if legend: ax.legend() ax.axhline(1, marker='None', ls='-.', color='k') return ax
notebooks/data-MC-comparison.ipynb
jrbourbeau/cr-composition
mit
$\log_{10}(\mathrm{S_{125}})$ verification [ back to top ]
sim_df['log_s125'].plot(kind='hist', bins=100, alpha=0.6, lw=1.5) plt.xlabel('$\log_{10}(\mathrm{S}_{125})$') plt.ylabel('Counts'); log_s125_bins = np.linspace(-0.5, 3.5, 75) gs = gridspec.GridSpec(2, 1, height_ratios=[2,1], hspace=0.0) ax1 = plt.subplot(gs[0]) ax2 = plt.subplot(gs[1], sharex=ax1) for composition in comp_list: sim_s125 = sim_df[MC_comp_mask[composition]]['log_s125'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] plot_rate(sim_s125, sim_weights, bins=log_s125_bins, color=color_dict[composition], label=composition, ax=ax1) data_weights = np.array([1/livetime]*len(data_df['log_s125'])) plot_rate(data_df['log_s125'], data_weights, bins=log_s125_bins, color=color_dict['data'], label='Data', ax=ax1) for composition in comp_list: sim_s125 = sim_df[MC_comp_mask[composition]]['log_s125'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] ax2 = plot_data_MC_ratio(sim_s125, sim_weights, data_df['log_s125'], data_weights, log_s125_bins, xlabel='$\log_{10}(\mathrm{S}_{125})$', color=color_dict[composition], label=composition, ax=ax2) ax2.set_ylim((0, 2)) ax1.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0., frameon=False) plt.savefig(os.path.join(comp.paths.figures_dir, 'data-MC-comparison', 's125.png')) plt.show()
notebooks/data-MC-comparison.ipynb
jrbourbeau/cr-composition
mit
$\log_{10}(\mathrm{dE/dX})$ verification
sim_df['log_dEdX'].plot(kind='hist', bins=100, alpha=0.6, lw=1.5) plt.xlabel('$\log_{10}(\mathrm{dE/dX})$') plt.ylabel('Counts'); log_dEdX_bins = np.linspace(-2, 4, 75) gs = gridspec.GridSpec(2, 1, height_ratios=[2,1], hspace=0.0) ax1 = plt.subplot(gs[0]) ax2 = plt.subplot(gs[1], sharex=ax1) for composition in comp_list: sim_dEdX = sim_df[MC_comp_mask[composition]]['log_dEdX'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] plot_rate(sim_dEdX, sim_weights, bins=log_dEdX_bins, color=color_dict[composition], label=composition, ax=ax1) data_weights = np.array([1/livetime]*len(data_df)) plot_rate(data_df['log_dEdX'], data_weights, bins=log_dEdX_bins, color=color_dict['data'], label='Data', ax=ax1) for composition in comp_list: sim_dEdX = sim_df[MC_comp_mask[composition]]['log_dEdX'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] ax2 = plot_data_MC_ratio(sim_dEdX, sim_weights, data_df['log_dEdX'], data_weights, log_dEdX_bins, xlabel='$\log_{10}(\mathrm{dE/dX})$', color=color_dict[composition], label=composition, ylim=[0, 5.5], ax=ax2) ax1.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0., frameon=False) plt.savefig(os.path.join(comp.paths.figures_dir, 'data-MC-comparison', 'dEdX.png')) plt.show()
notebooks/data-MC-comparison.ipynb
jrbourbeau/cr-composition
mit
$\cos(\theta)$ verification
sim_df['lap_cos_zenith'].plot(kind='hist', bins=100, alpha=0.6, lw=1.5) plt.xlabel('$\cos(\\theta_{\mathrm{reco}})$') plt.ylabel('Counts'); cos_zenith_bins = np.linspace(0.8, 1.0, 75) gs = gridspec.GridSpec(2, 1, height_ratios=[2,1], hspace=0.0) ax1 = plt.subplot(gs[0]) ax2 = plt.subplot(gs[1], sharex=ax1) for composition in comp_list: sim_cos_zenith = sim_df[MC_comp_mask[composition]]['lap_cos_zenith'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] plot_rate(sim_cos_zenith, sim_weights, bins=cos_zenith_bins, color=color_dict[composition], label=composition, ax=ax1) data_weights = np.array([1/livetime]*len(data_df)) plot_rate(data_df['lap_cos_zenith'], data_weights, bins=cos_zenith_bins, color=color_dict['data'], label='Data', ax=ax1) for composition in comp_list: sim_cos_zenith = sim_df[MC_comp_mask[composition]]['lap_cos_zenith'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] ax2 = plot_data_MC_ratio(sim_cos_zenith, sim_weights, data_df['lap_cos_zenith'], data_weights, cos_zenith_bins, xlabel='$\cos(\\theta_{\mathrm{reco}})$', color=color_dict[composition], label=composition, ylim=[0, 3], ax=ax2) ax1.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0., frameon=False) plt.savefig(os.path.join(comp.paths.figures_dir, 'data-MC-comparison', 'zenith.png')) plt.show() sim_df['avg_inice_radius'].plot(kind='hist', bins=100, alpha=0.6, lw=1.5) # plt.xlabel('$\cos(\\theta_{\mathrm{reco}})$') plt.ylabel('Counts'); inice_radius_bins = np.linspace(0.0, 200, 75) gs = gridspec.GridSpec(2, 1, height_ratios=[2,1], hspace=0.0) ax1 = plt.subplot(gs[0]) ax2 = plt.subplot(gs[1], sharex=ax1) for composition in comp_list: sim_inice_radius = sim_df[MC_comp_mask[composition]]['avg_inice_radius'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] plot_rate(sim_inice_radius, sim_weights, bins=inice_radius_bins, color=color_dict[composition], label=composition, ax=ax1) data_weights = np.array([1/livetime]*len(data_df)) plot_rate(data_df['avg_inice_radius'], data_weights, bins=inice_radius_bins, color=color_dict['data'], label='Data', ax=ax1) for composition in comp_list: sim_inice_radius = sim_df[MC_comp_mask[composition]]['avg_inice_radius'] sim_weights = sim_df[MC_comp_mask[composition]]['weights'] ax2 = plot_data_MC_ratio(sim_inice_radius, sim_weights, data_df['avg_inice_radius'], data_weights, inice_radius_bins, xlabel='$\cos(\\theta_{\mathrm{reco}})$', color=color_dict[composition], label=composition, ylim=[0, 3], ax=ax2) ax1.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0., frameon=False) # plt.savefig(os.path.join(comp.paths.figures_dir, 'data-MC-comparison', 'zenith.png')) plt.show() sim_df.columns
notebooks/data-MC-comparison.ipynb
jrbourbeau/cr-composition
mit
Search for hierarchy identifiers: FeatureSet and PhenotypeAssociationSet The G2P dataset exists within the hierarchy of Ga4GH datasets and featuresets. This call returns phenotype association sets hosted by the API. Observe that we are querying all datasets hosted in the endpoint. The identifiers for the featureset and phenotype association set are used by all subsequent API calls.
datasets = c.search_datasets() phenotype_association_set_id = None phenotype_association_set_name = None for dataset in datasets: phenotype_association_sets = c.search_phenotype_association_sets(dataset_id=dataset.id) for phenotype_association_set in phenotype_association_sets: phenotype_association_set_id = phenotype_association_set.id phenotype_association_set_name = phenotype_association_set.name print 'Found G2P phenotype_association_set:', phenotype_association_set.id, phenotype_association_set.name break assert phenotype_association_set_id assert phenotype_association_set_name feature_set_id = None datasets = c.search_datasets() for dataset in datasets: featuresets = c.search_feature_sets(dataset_id=dataset.id) for featureset in featuresets: if phenotype_association_set_name in featureset.name: feature_set_id = featureset.id print 'Found G2P feature_set:', feature_set_id break assert feature_set_id
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Use case: Find evidence for a Genomic Feature Search for Features by location Using the feature set id returned above, the following request returns a list of features that exactly match a location
feature_generator = c.search_features(feature_set_id=feature_set_id, reference_name="chr7", start=55249005, end=55249006 ) features = list(feature_generator) assert len(features) == 1 print "Found {} features in G2P feature_set {}".format(len(features),feature_set_id) feature = features[0] print [feature.name,feature.gene_symbol,feature.reference_name,feature.start,feature.end]
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Search features by name Alternatively, if the location is not known, we can query using the name of the feature. Using the feature set id returned above, the following request returns a list of features that exactly match a given name - 'EGFR S768I missense mutation'.
feature_generator = c.search_features(feature_set_id=feature_set_id, name='EGFR S768I missense mutation') features = list(feature_generator) assert len(features) == 1 print "Found {} features in G2P feature_set {}".format(len(features),feature_set_id) feature = features[0] print [feature.name,feature.gene_symbol,feature.reference_name,feature.start,feature.end]
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Get evidence associated with that feature. Once we have looked up the feature, we can then search for all evidence associated with that feature.
feature_phenotype_associations = c.search_genotype_phenotype( phenotype_association_set_id=phenotype_association_set_id, feature_ids=[f.id for f in features]) associations = list(feature_phenotype_associations) assert len(associations) >= len(features) print "There are {} associations".format(len(associations)) print "\n".join([a.description for a in associations])
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Display evidence Explore the evidence. For example, a publication.
from IPython.display import IFrame IFrame(associations[0].evidence[0].info['publications'][0], "100%",300)
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Use Case: Find evidence for a Phenotype Search a phenotype Alternatively, a researcher can query for a phenotype. In this case by the phenotype's description matching 'Adenosquamous carcinoma .*'
phenotypes_generator = c.search_phenotype( phenotype_association_set_id=phenotype_association_set_id, description="Adenosquamous carcinoma .*" ) phenotypes = list(phenotypes_generator) assert len(phenotypes) >= 0 print "\n".join(set([p.description for p in phenotypes]))
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Get evidence associated with those phenotypes. The researcher can use those phenotype identifiers to query for evidence associations.
feature_phenotype_associations = c.search_genotype_phenotype( phenotype_association_set_id=phenotype_association_set_id, phenotype_ids=[p.id for p in phenotypes]) associations = list(feature_phenotype_associations) assert len(associations) >= len(phenotypes) print "There are {} associations. First five...".format(len(associations)) print "\n".join([a.description for a in associations][:5])
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Further constrain associations with environment The researcher can limit the associations returned by introducing the evironment contraint
import ga4gh_client.protocol as protocol evidence = protocol.EvidenceQuery() evidence.description = "MEK inhibitors" feature_phenotype_associations = c.search_genotype_phenotype( phenotype_association_set_id=phenotype_association_set_id, phenotype_ids=[p.id for p in phenotypes], evidence = [evidence] ) associations = list(feature_phenotype_associations) print "There are {} associations. First five...".format(len(associations)) print "\n".join([a.description for a in associations][:5])
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Use Case: Association Heatmap The bokeh package should be installed for graphing. Find features First, we collect a set of features.
feature_generator = c.search_features(feature_set_id=feature_set_id, name='.*KIT.*') features = list(feature_generator) assert len(features) > 0 print "Found {} features. First five...".format(len(features),feature_set_id) print "\n".join([a.description for a in associations][:5])
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Get all associations Then we select all the associations for those features.
feature_phenotype_associations = c.search_genotype_phenotype( phenotype_association_set_id=phenotype_association_set_id, feature_ids=[f.id for f in features]) associations = list(feature_phenotype_associations) print "There are {} associations. First five...".format(len(associations)) print "\n".join([a.description for a in associations][:5])
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Association Heatmap Developers can use the G2P package to create researcher friendly applications. Here we take the results from the GA4GH queries and create a dataframe showing association counts.
from bokeh.charts import HeatMap, output_notebook, output_file, show from bokeh.layouts import column from bokeh.models import ColumnDataSource from bokeh.models.widgets import DataTable, TableColumn from bokeh.models import HoverTool feature_ids = {} for feature in features: feature_ids[feature.id]=feature.name phenotype_descriptions = [] feature_names = [] association_count = [] association_descriptions = [] for association in associations: for feature_id in association.feature_ids: phenotype_descriptions.append(association.phenotype.description) feature_names.append(feature_ids[feature_id]) association_count.append(1) association_descriptions.append(association.description) output_notebook() output_file("g2p_heatmap.html") data = {'feature': feature_names , 'association_count': association_count, 'phenotype': phenotype_descriptions, 'association_descriptions': association_descriptions } hover = HoverTool( tooltips=[ ("associations", "@values") ] ) hm = HeatMap(data, x='feature', y='phenotype', values='association_count', title='G2P Associations for KIT', stat='sum', legend=False,width=1024, tools=[hover], #"hover,pan,wheel_zoom,box_zoom,reset,tap", toolbar_location="above") source = ColumnDataSource(data) columns = [ TableColumn(field="association_descriptions", title="Description"), ] data_table = DataTable(source=source, columns=columns,width=1024 ) show( column(hm,data_table) )
python_notebooks/g2p-example-notebook.ipynb
david4096/bioapi-examples
apache-2.0
Now that we have our electrode positions in MRI coordinates, we can create our measurement info structure.
info = mne.create_info(ch_names, 1000., 'ecog').set_montage(montage)
0.20/_downloads/f760cc2f1a5d6c625b1e14a0b05176dd/plot_ecog.ipynb
mne-tools/mne-tools.github.io
bsd-3-clause