id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
|---|---|
-8,776
|
16*5 = 80
|
17,305
|
a^x = g^z = (a \times g)^{x \times z}
|
-7,151
|
2/6\cdot \frac37/5 = 1/35
|
16,186
|
\left(-B = V\cdot Z - V \implies -B = (Z - c\cdot x)\cdot V\right) \implies \frac{1}{Z - c\cdot x}\cdot ((-1)\cdot B) = V
|
12,444
|
\frac{52!}{25! \cdot (25 \cdot (-1) + 52)!} = 477551179875952
|
-23,175
|
\tfrac{27}{4} = 3/2\cdot \frac92
|
-3,349
|
\sqrt{13}\cdot (5 + 3\cdot (-1) + 4) = 6\cdot \sqrt{13}
|
8,491
|
j \cdot 2 + 2 \cdot b + c \cdot 2 = 0 \Rightarrow j + b + c = 0
|
576
|
(b*4 - 4*x)/4 = -x + b
|
48,153
|
40 = 10 + 30
|
20,378
|
34 \cdot 34\cdot 4 = 4^2 + 48^2 + 48^2
|
19,216
|
E(\cos{\sigma}\cdot \cos{y}) - E(\sin{y}\cdot \sin{\sigma}) = E(\cos(y + \sigma))
|
-20,478
|
(5*r + 5*(-1))*\tfrac{1}{5*r + 5*(-1)}/7 = \frac{5*r + 5*\left(-1\right)}{35*r + 35*(-1)}
|
5,703
|
\left(\lambda + Y\right)\cdot \bar{y}\cdot \left(Y - \lambda\right) = \left(Y^2 - \lambda^2\right)\cdot \bar{y}
|
3,935
|
(h + d) * (h + d) = h^2 + 2*d*h + d^2
|
1,919
|
x = \frac{1}{9}x - 4/27 \Rightarrow x = -1/6
|
4,263
|
3^3 - 3\cdot 3 \cdot 3 + 3\cdot \left(-1\right) + 3 = 3 \cdot 3^2 - 3^3 + 0 = 0
|
35,620
|
\left(x \cdot 2 = x \implies x = x + x\right) \implies 0 = x
|
24,855
|
\left(1423*H\right)^2 = 1423 * 1423*H = 12*34*H = H
|
18,101
|
x = \frac66\cdot x
|
-4,549
|
\frac{7*y + 19*(-1)}{15*(-1) + y^2 - 2*y} = \frac{1}{y + 3}*5 + \frac{2}{5*(-1) + y}
|
23,823
|
\sqrt{64.1} \approx \sqrt{64} + \frac{0.1}{2\sqrt{64}} = 8 + 0.1/16 = 8.00625
|
-6,994
|
\frac13 \cdot 0 = 0
|
-20,010
|
\frac{4}{4}\cdot \frac{1}{-2\cdot s + 3\cdot (-1)}\cdot (6 + s) = \frac{24 + 4\cdot s}{-s\cdot 8 + 12\cdot \left(-1\right)}
|
5,983
|
1 + 2 \cdot y_1 + \cos{1} = 0\Longrightarrow y_1 = -\frac12 \cdot (\cos{1} + 1)
|
30,191
|
u^2 \cdot u = 3\cdot (y_1 + a)\cdot \left(y_2 - y_1\right)\cdot (y_2 - a) = 3\cdot (y_2 + u)\cdot (a - u)\cdot (y_1 - u)
|
-25,502
|
\pi\cdot \sin\left(\pi\cdot t\right)\cdot 2 = \frac{\mathrm{d}}{\mathrm{d}t} (-\cos(\pi\cdot t)\cdot 2)
|
32,099
|
|u^2 - v^2 + 2 \cdot i \cdot u \cdot v| = (\left(u^2 - v^2\right)^2 + (2 \cdot u \cdot v)^2)^{1/2} = u^2 + v^2
|
35,046
|
-\frac{1}{3} \cdot 8 = -\frac83
|
-27,484
|
28 c^2 = 2 \cdot 2 \cdot c c \cdot 7
|
33,045
|
|( h, c)| = |( c, h)| \leq \|h\|_2 \cdot \|c\|_2
|
3,381
|
(-1) + {l + 1 \choose 2} + l = \frac{1}{2}\left(l^2 + 3l + 2(-1)\right)
|
39,433
|
3^2\cdot 2 + 6\cdot (-1) = 18 + 6\cdot (-1) = 12
|
37,813
|
\frac{3}{2}\cdot 2 = 3 = \frac{1}{3}\cdot 9
|
12,714
|
\tfrac{q^2}{q + 1} + 1 - q = \dfrac{1}{1 + q}
|
4,229
|
\cos^l(π*2 + z) = \cos^l(z)
|
-2,043
|
7/12\cdot \pi + \dfrac{1}{12}\cdot 11\cdot \pi = \pi\cdot \frac{3}{2}
|
-2,263
|
\dfrac{1}{14}\cdot 4 = 5/14 - 1/14
|
13,232
|
|z^3 y| = |z \cdot z yz| \leq \frac{1}{2}((z \cdot z)^2 + y^2) |z|
|
-12,777
|
\dfrac{4}{7} = 12/21
|
6,756
|
1/(DG) = \frac{1}{DG}
|
29,437
|
\left(-1 - y + y^2\right) \cdot (2 \cdot y \cdot y + 1 - y) = 2 \cdot y^4 - 1 - y^3 \cdot 3
|
8,192
|
\sqrt{f \cdot x} = \sqrt{f \cdot x}
|
25,471
|
\frac{96}{97} = \dfrac{0.96}{0.96 + 0.01}
|
9,595
|
3^3 + 6\cdot (-1) = 21
|
-22,306
|
30 + y^2 - 11*y = (y + 6*(-1))*(y + 5*(-1))
|
8,438
|
10 = 6*2 + 2 (-1)
|
17,467
|
3 \cdot (-1) + 1 \cdot 1 = -2
|
2,579
|
f^3 - x^3 = (f^2 + x*f + x^2)*(-x + f)
|
18,206
|
E\left[X + Q\right] = E\left[X\right] + E\left[Q\right]
|
21,578
|
\left(1 + \sin{A}\right)^2 + \cos^2{A} = 1 + 2 \cdot \sin{A} + \sin^2{A} + \cos^2{A} = 2 + 2 \cdot \sin{A}
|
28,637
|
\cos{\pi \cdot m \cdot 2} = \cos{\pi \cdot 6 \cdot m/3}
|
-8,419
|
-\dfrac{10}{-5} = 2
|
12,380
|
\pi = 2\cdot x \Rightarrow \frac{1}{2}\cdot \pi = x
|
47,752
|
6*36 + 11*23 = 469
|
2,356
|
\lim_{n \to \infty} n\cdot a_n = 0\Longrightarrow \infty \gt \sum_{n=1}^\infty a_n
|
6,470
|
\tan(3y) = \tan(3y)
|
16,109
|
\dfrac{2^4}{2}\cdot \pi = 8\cdot \pi
|
-28,843
|
z*7.4 + 8 z + 12 (-1) = 12 (-1) + 7.4 z + 8 z
|
25,350
|
-7/4 = -2 + \dfrac{1}{4}
|
-6,672
|
\frac{4}{r^2 - r + 20 \cdot \left(-1\right)} = \dfrac{4}{(r + 4) \cdot \left(r + 5 \cdot \left(-1\right)\right)}
|
-16,816
|
-7 = -7\left(-2t\right) - -56 = 14 t + 56 = 14 t + 56
|
16,117
|
\frac{\dfrac{1}{3}}{\frac{1}{3}}2*40 = 2*40 = 80
|
30,139
|
\left((1 + \frac{a}{x^3})/2 = 1\Longrightarrow a = x^3\right)\Longrightarrow a^{\frac13} = x
|
26,108
|
b^2 + a^2 + 2 \times a \times b = \left(a + b\right) \times \left(a + b\right)
|
-10,663
|
\frac{24}{h^2*12} = 12/12*\frac{1}{h * h}2
|
-6,522
|
\frac{2}{12\cdot (-1) + x\cdot 3} = \dfrac{1}{3\cdot (4\cdot (-1) + x)}\cdot 2
|
39,805
|
\frac{1}{2}(7.5 + 4) = 5.75
|
25,780
|
\frac{1}{1 - y} = \frac{1}{1 - y + 3*(-1) + 3*(-1)} = \frac{1}{-2 - y + 3*(-1)} = \dfrac{(-1)*1/2}{1 + \frac{1}{2}*(y + 3)}
|
-4,048
|
\frac{54}{a \cdot a\cdot 30}a^4 = \frac{a^4}{a^2}\cdot 54/30
|
1,628
|
b \cdot d + e \cdot a + d \cdot a + b \cdot e = (a + b) \cdot \left(e + d\right)
|
-6,730
|
3/100 + \frac{1}{10}\cdot 3 = 30/100 + 3/100
|
-9,511
|
20\cdot y + 16 = 2\cdot 2\cdot 2\cdot 2 + y\cdot 2\cdot 2\cdot 5
|
4,000
|
(z^2 + z\times 2 + 4)\times (z + 2\times (-1)) = z \times z \times z + 8\times (-1)
|
19,238
|
a^2 - b \cdot b = (a - b) \left(a + b\right)
|
-4,476
|
-\frac{4}{z + 5\cdot (-1)} - \frac{1}{2\cdot (-1) + z}\cdot 5 = \dfrac{33 - 9\cdot z}{10 + z \cdot z - z\cdot 7}
|
20,255
|
1 \gt 1 - 1/8 = \dfrac18 \cdot 7 = 28/32 \gt 1/2 + 1/32 = \dfrac{17}{32} > \dotsm
|
24,951
|
-(y + 1) \cdot (y \cdot y - 2 \cdot y + 2) = 2 \cdot (-1) - y^3 + y^2
|
39,547
|
132\Longrightarrow 11 = 13 + 2(-1)
|
5,913
|
\left(By = \lambda y\Longrightarrow yB^2 = yB \lambda\right)\Longrightarrow By = \lambda By = \lambda^2 y
|
11,164
|
\mathbb{E}\left[X_1 + X_2 + \ldots + X_x\right] = \mathbb{E}\left[X_1\right] + \mathbb{E}\left[X_2\right] + \ldots + \mathbb{E}\left[X_x\right]
|
-18,447
|
-\frac{1}{6}*15 = -5/2
|
-18,421
|
\frac{1}{-6\cdot p + p \cdot p}\cdot (p^2 - p + 30\cdot (-1)) = \frac{1}{p\cdot (p + 6\cdot (-1))}\cdot (6\cdot (-1) + p)\cdot \left(p + 5\right)
|
12,372
|
\dfrac{\pi}{6} = \arctan(\dfrac{1}{\sqrt{3}})
|
24,727
|
2/3 = \dfrac{1}{2} + 1/3 - \dfrac{1}{6}
|
15,062
|
\frac12 \cdot \sum_{j=1}^x (x + j) \cdot (-j + x + 1) = \sum_{j=1}^x j^2
|
9,421
|
189 = 6^3 - 3 * 3 * 3 = 5^3 + 4^3
|
33,855
|
\left(x + 1\right)! = (x + 1)\cdot x!
|
34,922
|
2 \cos{0} \cos{\pi} = -2
|
1,963
|
(-C + \tau_i \cdot I) \cdot (\tau_k \cdot I - C) = (-C + I \cdot \tau_k) \cdot (-C + \tau_i \cdot I)
|
24,308
|
A\cdot A^Z = A^Z\cdot A
|
25,069
|
\left(2(-1) + y\right)^4 (y + 2(-1))^2 = (y + 2(-1))^6
|
-20,667
|
-\dfrac{1}{10} \cdot \frac33 = -\frac{1}{30} \cdot 3
|
-3,063
|
2^{1/2}\cdot (2\cdot (-1) + 5) = 2^{1/2}\cdot 3
|
19,571
|
(2\left(-1\right) + n) (n + 3(-1)) = \binom{2(-1) + n}{2}*2
|
-17,328
|
0.845 = 84.5/100
|
30,520
|
\frac{x}{(\dfrac{y}{l} \cdot x)^{1/2}} = x \cdot (\frac{l}{x \cdot y})^{1/2} = (\frac{l}{y} \cdot x)^{1/2}
|
29,925
|
i \cdot 625 + 125 = (1 + 5 \cdot i) \cdot 5^3
|
24,086
|
\sin^2{x} = \cos^2{x}/4 = \frac14\times (1 - \sin^2{x})
|
-18,483
|
4*x + 2 = 10*(3*x + 7*(-1)) = 30*x + 70*(-1)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.