id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
|---|---|
-2,014
|
π \cdot \frac{1}{12} \cdot 11 = -\frac{π}{6} + π \cdot 13/12
|
19,024
|
0 = 1 + x^2 - x \implies 0 = 1 + x * x * x
|
10,882
|
c\cdot a + 0\cdot b = c\cdot (0\cdot b + a)
|
-10,559
|
8/(y\cdot 25)\cdot 3/3 = \frac{1}{y\cdot 75}\cdot 24
|
19,739
|
2*3 = (-\sqrt{-5} + 1)*(1 + \sqrt{-5})
|
16,677
|
\cos\left(2\pi - x\right) = \cos(2\pi - x) = \cos\left(-x\right)
|
22,927
|
8 + 5*(-1) = 3 = 3
|
14,165
|
\frac{1}{10}6 = 0.6
|
-9,272
|
-y \cdot y \cdot 55 = -y \cdot y \cdot 5 \cdot 11
|
5,026
|
0 = 5 \cdot \tan^4{\frac{\pi}{10}} - \tan^2{\frac{\pi}{10}} \cdot 10 + 1
|
41,111
|
2016 = \frac{2017}{1/2016 + 1}
|
-21,594
|
-0.5 = \sin{\pi*\frac16*11}
|
-28,792
|
\int x^9\,dx = \dfrac{x^{9 + 1}}{9 + 1} + Y = x^{10}/10 + Y
|
-9,604
|
0.01\cdot (-70) = -70/100 = -0.7
|
9,445
|
4^x + x^4 = \left(2^x\right)^2 + (x^2)^2 = (x^2 + 2^x)^2 - 2\cdot 2^x\cdot x^2
|
-4,725
|
\frac{1}{10\cdot \left(-1\right) + J^2 + 3\cdot J}\cdot (2\cdot J + 25\cdot (-1)) = -\frac{3}{J + 2\cdot (-1)} + \frac{1}{5 + J}\cdot 5
|
-19,046
|
\dfrac{4}{9} = \frac{1}{81\cdot \pi}\cdot A_x\cdot 81\cdot \pi = A_x
|
5,941
|
Var(\bar{B}) = \mathbb{E}((\bar{B} - F*\bar{B})^2) = \mathbb{E}(\bar{B}^2) - (F*\bar{B})^2
|
26,179
|
\dfrac{{3 \choose 3}*{7 \choose 0}}{{10 \choose 3}}*1 = 1/120
|
31,465
|
q + q = q\cdot 2
|
13,852
|
\dfrac{1}{\frac1Z} = Z
|
-9,286
|
-n \cdot 49 + 21 = 3 \cdot 7 - n \cdot 7 \cdot 7
|
23,763
|
-\tfrac{1}{-(Z + 2) + 1} = \tfrac{1}{1 + Z}
|
13,517
|
\alpha^{13}=\alpha\cdot\alpha^3\cdot\alpha^9
|
-2,108
|
\pi/6 = -5/12\cdot \pi + \pi\cdot \frac{1}{12}\cdot 7
|
960
|
-(4/5)^5 + 1 = \dfrac{2101}{3125}
|
-1,646
|
0 + 13/12*\pi = 13/12*\pi
|
36,617
|
(\frac{1}{1 + s} - e^s)/(2\times s) = \left(\frac{1}{1 + s} + (-1) + 1 - e^s\right)/(2\times s) = -\dfrac{1}{2\times (1 + s)} - \frac{1/s}{2}\times (e^s + (-1))
|
33,155
|
2 \cdot x + x \cdot x = (\left(-1\right) + x)^2 + 4 \cdot x + (-1)
|
4,194
|
\dfrac{1}{\pi*54} = 4*1/27/(8*\pi)
|
3,083
|
(2*z + 3)^2 + 9*(-1) = 12*z + 4*z^2
|
18,769
|
6^x = 36\cdot 9.75^{x + 2\cdot \left(-1\right)}\cdot 6^x = 6 \cdot 6\cdot (9 + \frac{3}{4})^{x + 2\cdot (-1)}
|
302
|
68 \cdot (-1) + 5 \cdot t^2 = 0 \Rightarrow t = \sqrt{68/5}
|
11,113
|
-\frac12 + \sqrt{13}/2 = \tfrac12\cdot (\sqrt{13} - 1)
|
35,778
|
x = 2*x - x
|
13,706
|
\dfrac{1}{1 - x}(1 - x^4) = 1 + x + x^2 + x^3
|
710
|
-3x * x + 3x + 6 = -3(x^2 - x + 2(-1)) = -3((x - \tfrac{1}{2})^2 - \frac94)
|
15,416
|
\sqrt{-6} = \alpha\cdot x\Longrightarrow \alpha, x
|
2,304
|
e^{x + a} = e^a\cdot e^x
|
15,329
|
l + 1 + l = 2l + 1
|
26,375
|
\tan(\frac{x}{2}) = \frac{\sin\left(x\right)}{1 + \cos(x)} = \dfrac{1}{\sin(x)}\cdot \left(1 - \cos\left(x\right)\right)
|
-15,811
|
6*\frac{4}{10} - 9*6/10 = -\frac{1}{10}30
|
7,730
|
\frac{1}{2} ((x + g)^2 - g^2 + x^2) = g x
|
5,094
|
\dfrac{1}{d + b} \cdot (a + c) = \frac{b}{d + b} \cdot \dfrac{1}{b} \cdot a + \tfrac{c}{d} \cdot \tfrac{d}{b + d}
|
30,790
|
n = \left\{1, 3, 2, n, \ldots\right\}
|
-5,972
|
\frac{1}{t \cdot t + 11 \cdot t + 30} \cdot t = \frac{1}{(6 + t) \cdot (t + 5)} \cdot t
|
6,761
|
16/225 = \frac{2}{15}\cdot \frac{8}{15}
|
37,985
|
7 = 1 + 2 \cdot 2 + 1 + 1^2
|
-20,763
|
\frac{1}{-12} \cdot (6 \cdot r + 54 \cdot (-1)) = \frac{1}{-2} \cdot (9 \cdot (-1) + r) \cdot 6/6
|
4,710
|
\tfrac{1}{(27 \cdot 27)^{\frac{1}{3}}\cdot (16 \cdot 16^2)^{1/4}} = \frac{1}{27^{2/3}\cdot 16^{\dfrac{1}{4}\cdot 3}}
|
29,068
|
y*\left(-z\right) = -z*y
|
-16,003
|
0 = \frac{4}{10}*9 - 6*\frac{6}{10}
|
48,114
|
2 = 14^g = 2^g\cdot 7^g
|
-642
|
e^{8\cdot \frac{\pi}{3}\cdot i} = (e^{\frac{\pi}{3}\cdot i})^8
|
14,430
|
(\sigma + x)^2 = \sigma^2 + \sigma*x*2 + x^2
|
21,887
|
z^{u + \sigma} = z^u z^\sigma
|
33,369
|
\sum_{l=1}^3 A_l = \sum_{l=1}^3 A_l
|
-17,518
|
31 = 73 + 42*(-1)
|
-20,720
|
-\frac{2}{1} \times \frac{-a \times 5 + 5}{-a \times 5 + 5} = \dfrac{a \times 10 + 10 \times (-1)}{5 - a \times 5}
|
37,809
|
2^{x + 1} = 2*2^x
|
20,558
|
-2 \times \sin^2{x} + 1 = \cos{2 \times x}
|
-5,341
|
5.7 \times 10^{2 + (-1)} = 5.7 \times 10^1
|
11,396
|
5\cdot 2^1/2 = \frac14\cdot 20
|
21,825
|
5/9 = -1/9 + \dfrac{2}{3}
|
22,808
|
x^{x^{x^{x^{\dotsm}}}} = 2 \Rightarrow x^2 = 2
|
9,113
|
A^2x = 0 \implies Ax = 0
|
993
|
1 = x\cdot z\cdot y\Longrightarrow x = 1, 1 = y, 1 = z
|
17,291
|
1 - \dfrac{1}{\lambda + 1} = \dfrac{1}{1 + \lambda} \lambda
|
15,450
|
0 = \lim_{n \to \infty} |a_n|\Longrightarrow 0 = \lim_{n \to \infty} a_n
|
10,440
|
\binom{m + 3 + (-1)}{3 + (-1)} = \binom{m + 2}{2} = (m + 2)\cdot (m + 1)/2
|
-2,947
|
\sqrt{2} \cdot 8 = \sqrt{2} \cdot (1 + 2 + 5)
|
30,710
|
482\cdot \frac{1}{2} = 241
|
40,501
|
\frac{0^2}{0} = 0^{2 + (-1)}
|
4,038
|
\cos(2 \cdot z + 3 \cdot z) = \cos(5 \cdot z)
|
-10,579
|
-\frac{3}{6\cdot (-1) + 9\cdot n} = -\dfrac{1}{n\cdot 3 + 2\cdot (-1)}\cdot \frac{3}{3}
|
33,282
|
15 = 60/4
|
10,453
|
\cos^2\left(x\right) - \sin^2\left(x\right) = \cos(x*2)
|
25,026
|
1/9 + \frac19 = \dfrac{2}{9}
|
15,461
|
\tan\left(π/2 - \zeta\right) = \cot{\zeta}
|
-9,356
|
50 (-1) + p \cdot 10 = -5 \cdot 2 \cdot 5 + 2 \cdot 5 p
|
42,798
|
\tan(z) = \dfrac{1}{\cos(z)}\times \sin(z)
|
30,906
|
h*2 + (-1) = h \implies h = 1
|
13,290
|
k \times 2 + 2 = (k + 1) \times 2
|
-15,545
|
\frac{1}{\tfrac1s \cdot x^2 \cdot x} \cdot s^9 = \frac{s^9}{x^3} \cdot 1/(1/s) = \dfrac{s^{9 - -1}}{x \cdot x^2} = \frac{1}{x \cdot x \cdot x} \cdot s^{10}
|
24,287
|
H^{j + 1} z^{j + 1} = H^j H z^{j + 1} = (j + 1) H^j z^j
|
22,293
|
x^{1/2} \cdot T = T \cdot x^{1/2}
|
13,776
|
(h^2 + 1 - h)*(1 + h) = h * h^2 + 1
|
352
|
\sum_{d=1}^x \mathbb{E}[\alpha_d * \alpha_d] = \mathbb{E}[\sum_{d=1}^x \alpha_d^2]
|
11,814
|
\left(8(-1) + t\right) \left(4\left(-1\right) + t\right) = t^2 - 12 t + 32
|
-2,274
|
\frac{1}{12} \cdot 4 = -5/12 + \tfrac{9}{12}
|
11,919
|
\left(\left(2\cdot x + 2\cdot (-1) = \frac{x}{2} rightarrow 4\cdot x + 4\cdot (-1) = x\right) rightarrow 3\cdot x = 4\right) rightarrow x = 4/3
|
25,106
|
(x - z) \cdot (x^{l + (-1)} + x^{2 \cdot (-1) + l} \cdot z + x^{3 \cdot (-1) + l} \cdot z^2 + \ldots + x \cdot z^{l + 2 \cdot (-1)} + z^{l + (-1)}) = -z^l + x^l
|
19,936
|
\frac17*14 = \frac{7*2}{7}
|
5,080
|
-k + X = m \Rightarrow m + k = X
|
-4,762
|
\frac{1}{12 \cdot (-1) + x^2 - x} \cdot (-x \cdot 6 + 10) = -\dfrac{4}{x + 3} - \frac{2}{x + 4 \cdot (-1)}
|
4,863
|
\cos(b) \cdot \sin(a) + \cos(a) \cdot \sin(b) = \sin(a + b)
|
11,349
|
\frac{1}{5 \cdot (-1) + 10} \cdot 180 = 36
|
817
|
yb + c = 0 rightarrow y = -\frac{c}{b} = \frac{\frac12}{b}b = \dfrac12
|
35,539
|
\sin\left(e + b\right) = \cos{b}*\sin{e} + \sin{b}*\cos{e}
|
24,144
|
2^{l + 5(-1)} = 2^{l + 6(-1)}*2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.