id
int64
-30,985
55.9k
text
stringlengths
5
437k
-4,416
5\cdot \left(-1\right) + x^2 + 4\cdot x = (5 + x)\cdot (x + (-1))
-11,928
\dfrac{1}{10}3.12 = 3.12\cdot 0.1
5,798
xE \cdot E = G_A x^2 - G_A E^2 = G_B x \cdot x - G_B E \cdot E = G_B x^2 - (G_A G_B - G_A E)^2
11,160
b^{n + 2\times (-1)}\times b^2 = b^{n + 2\times (-1) + 2} = b^n
25,152
\frac{1}{3} = 6/10 \cdot \dfrac59
-20,283
\frac{9}{9} \cdot \frac{7}{x + 4} = \tfrac{63}{x \cdot 9 + 36}
32,789
k + m*k = k*(m + 1)
20,599
\dfrac{d_1}{d_1 + d_2} = \frac{1}{d_1 + d_2}(d_1 + d_2) + \dfrac{(-1) d_2}{d_1 + d_2} = 1 - \frac{1}{d_1 + d_2}d_2
-10,408
-\frac{1}{3 + n} \cdot 3 \cdot 3/3 = -\tfrac{9}{9 + 3 \cdot n}
-19,932
\frac{1}{40}\times 29 = 0.725
-5,830
\frac{3\times (n + 7\times \left(-1\right))}{(n + 2)\times (n + 7\times (-1))\times 4} - \frac{(n + 2)\times 4}{\left(2 + n\right)\times (n + 7\times (-1))\times 4} + \frac{1}{4\times (2 + n)\times (n + 7\times (-1))}\times 16 = \frac{1}{4\times \left(n + 7\times (-1)\right)\times (n + 2)}\times ((n + 7\times \left(-1\right))\times 3 - 4\times (n + 2) + 16)
45,023
5 = 4 + (-1) + 2
16,007
-c \cdot a \cdot 3 + 2 \cdot \left(a + d + c\right)^2 - a \cdot d \cdot 3 - c \cdot d \cdot 3 = -\left(c + a + d\right) \cdot 6 \Rightarrow a \cdot d + c \cdot d + a \cdot c = 0
36,290
\binom{2}{2} \cdot \binom{8}{2} \cdot \binom{10}{2} \cdot \binom{6}{2} \cdot \binom{4}{2} = 113400
13,244
\frac{19!}{24!} \cdot 22! \cdot \dfrac{1}{17!} = \frac{342}{23 \cdot 24} \cdot 1 = 0.6196
-26,649
-r^2*25 + p^2*4 = (p*2)^2 - (5r) * (5r)
7,054
-\cos{x} = \sin(\frac{3\cdot \pi}{2} - x)
48,381
\frac{2}{(10 - y)^3} \cdot (10 - y + y)^2 = \dfrac{200}{(10 - y)^3} \cdot 1 = \frac{200}{(10 - y) \cdot (10 - y)}
18,704
-2 \times (1 + i) = -(i + 2) \times 2 - -2
-1,934
3/2\cdot \pi - \frac{11}{12}\cdot \pi = \pi\cdot 7/12
-1,900
\tfrac{11}{6}\cdot \pi - 7/6\cdot \pi = \pi\cdot \frac13\cdot 2
2,125
( r, i) + ( f, i') \coloneqq ( r + f, i' + i)
3,249
(-8)^{\frac16*2} = (-8)^{\frac{1}{3}}
32,017
13 + \left(-1\right) = 3*4
34,447
4^{2 + 2s} + 4 = 60 (-1) + 16\cdot (4^{2s} + 4)
-10,120
0.01 \cdot (-71) = -71/100 = -0.71
7,368
\mathbb{P}\left(x\right) = (x - f - b \cdot \sqrt{d}) \cdot (x - f + b \cdot \sqrt{d}) = x^2 - 2 \cdot f \cdot x + f^2 - b^2 \cdot d
16,988
E\cdot z\cdot y = y\cdot E\cdot z = y^X\cdot E\cdot z = (E^X\cdot y)^X\cdot z
-189
\frac{1}{(5\cdot \left(-1\right) + 10)!\cdot 5!}\cdot 10! = {10 \choose 5}
7,096
(x + 1)\cdot (x + 3) = 3 + x^2 + x\cdot 4
5,932
\arcsin(x) = y_1 rightarrow x = \sin(y_1)
14,692
\|v\| * \|v\| = (\sqrt{v_1^2 + v_2^2 + v_3 * v_3})^2 = v_1^2 + v_2 * v_2 + v_3 * v_3
-3,799
3*s^4/7 = \frac17*3*s^4
36,245
-103833 = -(8*9^5 + 9^6) + 10^5*9
32,773
2.3^6 < 2.1*0.1*0.1 = 2.1^3 = 2^{4.5} * 2^{4.5} * 2^{4.5}
22,885
(2rt)^2 + \left(r^2 - t^2\right)^2 = \left(t^2 + r^2\right) * \left(t^2 + r^2\right)
7,217
x + y = s \Rightarrow y = -x + s
7,753
\dfrac{x!}{\beta!*(-\beta + x)!} = {x \choose \beta}
-5,015
16.2*10^{3 + 2} = 16.2*10^5
21,827
2018 = (2 \cdot 2)^2 + (6^2)^2 + (5 \cdot 5)^2 + (3^2)^2
9,917
(-2 \cdot m)^2 = m^2 \cdot 4
6,549
3 + 2*\left(-1\right) + 4 = 5
6,987
\dfrac{1}{2} \cdot (-1 - (-3)^{1/2}) = \frac{1}{2 \cdot 4} \cdot (-\left(64 \cdot \left(-1\right) + 16\right)^{1/2} - 4)
24,108
(11 + 3) (11 + 7(-1)) = 56
1,872
\mathbb{P}(x) = (x + (-1) - 2\cdot i)\cdot (x + (-1) + 2\cdot i) = x^2 - 2\cdot x + 5
34,529
-2^{n + \left(-1\right)} + 2^n = 2^{(-1) + n}
6,380
x \lambda^2 = x \implies 0 = (-\lambda^2 + 1) x
-3,275
\sqrt{4\cdot 7} + \sqrt{16\cdot 7} - \sqrt{7} = \sqrt{112} - \sqrt{7} + \sqrt{28}
1,148
-\left(2(-1) + x\right) \cdot \left(2(-1) + x\right) = -(x + 2(-1)) (x + 2(-1))
21,361
\frac{x \cdot x + (-1)}{x + (-1)} = \frac{1}{x + \left(-1\right)} \cdot (x + 1) \cdot (x + (-1)) = x + 1
28,411
(-2)^2 \cdot 2 + 2^2 \cdot 4 + 3 \cdot 3 \cdot 6 = 78
32,306
(l + 2 (-1))*2 + 1 = 3 (-1) + l*2
-22,989
\frac{2 \cdot 9}{9 \cdot 7} = 18/63
-7,519
\frac{19}{3} = \dfrac{1}{9}\cdot 57
33,222
c^2 - 2 \cdot c \cdot b + b^2 = \left(-b + c\right)^2
16,232
h = h + d + (-1) \gt h + d + 2*(-1)
18,596
(X^3 + (-1)) \left(1 + X^6 + X^3\right) = X^9 + (-1)
-9,462
3 \cdot 3 \cdot 3 \cdot 3 \cdot r - 3 \cdot 3 \cdot 13 = r \cdot 81 + 117 \cdot (-1)
23,011
\dfrac{c_2}{c_1} = 1.2 \Rightarrow c_2 = 1.2\cdot c_1
-10,510
3/3*\frac{3}{4*\left(-1\right) + 4*x} = \frac{9}{12*(-1) + x*12}
-10,467
-\frac{15}{15 s} = -1/s \dfrac{15}{15}
3,503
{52 \choose 5} = \frac{52!}{5!\times \left(5\times (-1) + 52\right)!}
-1,419
\dfrac19 \cdot \tfrac{7}{8} = \frac{1}{9 \cdot \dfrac87}
2,601
x z i = i z x
23,724
\cos{\frac{2}{4} \cdot \pi} = 0
28,012
h + m \cdot h = h \cdot (m + 1)
24,925
\frac{1}{k \cdot 2 + \left(-1\right)} \cdot (10 \cdot (-1) + 2 \cdot k + \left(-1\right)) = \frac{1}{(-1) + 2 \cdot k} \cdot (11 \cdot (-1) + k \cdot 2)
-20,555
-\frac{5}{-5}\cdot (-10/1) = 50/(-5)
30,754
n\binom{8}{n} = 8\dfrac{7!}{\left(n + (-1)\right)! (7 - n + (-1))!} = 8\binom{7}{n + (-1)}
8,750
\left(m + 1\right)^2 - m \cdot m = m \cdot m + 2 \cdot m + 1 - m^2 = 2 \cdot m + 1
20,015
(b,\infty) = \left(b, \infty\right)
30,312
D \cdot f = D \cdot f
2,161
\binom{n + 2}{n} = 78 = \binom{n + 2}{2} = \dfrac12\cdot (n + 1)\cdot (n + 2)
4,262
\left(-a = x \Rightarrow -a^k = x^k\right) \Rightarrow x^k + a^k = 0
-404
3/2 \cdot \pi = \pi \cdot \tfrac{51}{2} - 24 \cdot \pi
22,289
\frac{k^2 + 1}{k^2 + k} = \frac{1}{k^2 + k} + \frac{1}{1 + \frac{1}{k}}
22,130
\frac{{1 \choose 1}\cdot {19 \choose 2}}{{20 \choose 3}}\cdot 1 = 3/20
47,958
\frac{521 + 509 \cdot (-1)}{509 + 503 \cdot \left(-1\right)} \cdot \dfrac{509 \cdot (-1) + 521}{509 + 503 \cdot (-1)} \cdot 503 = 2012
29,742
m \times 0 = m \times 0
4,592
k^2*4 + k*7 + 3 = 4*k^2 - k + 8*k + 3
1,882
(x_2 + x_1) t_1 = x_1 t_1 + t_1 x_2
5,119
30*\left(-1\right) + 6*12 \Rightarrow 30*(-1) + 72 = 42
11,005
4 \cdot (n^2 + m) = (n \cdot 2 + (-1)) \cdot (2 \cdot n + 1) + m \cdot 4 + 1
21,978
\left(f_2 + f_1 \cdot i\right) \cdot \left(m + n \cdot i\right) = f_2 \cdot m - f_1 \cdot n + \left(f_2 \cdot n + f_1 \cdot m\right) \cdot i = f_2 \cdot m - f_1 \cdot n + i
25,648
-\sin{f}\cdot \sin{b} + \cos{b}\cdot \cos{f} = \cos(f + b)
34,979
z^{\frac{1}{2}}\cdot z^{\frac{1}{2}} = z
12,463
-2^8 = 2^9\cdot \cos(\frac{1}{3}\cdot 2\cdot \pi)
4,175
n - r + \left(-1\right) = r + (-1) + n - r\cdot 2
-9,178
-x \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot x = -x^2 \cdot 96
-15,789
\frac{1}{10}\cdot 21 = -7\cdot 3/10 + 6\cdot \frac{1}{10}\cdot 7
23,216
|x| |d| = |xd|
28,527
q = (-1) + y \implies y = 1 + q
12,390
c\cdot g^2 + h^2\cdot c + g\cdot h\cdot c + c\cdot h\cdot g + c\cdot g + c\cdot h = g^2\cdot c + c\cdot h^2 + h\cdot c\cdot g + g\cdot c\cdot h + g\cdot c + h\cdot c
30,311
-\tfrac{1}{2} + \frac{j}{2} \cdot 23^{1 / 2} = (-1 + \left(-23\right)^{1 / 2})/2
-20,968
\frac{1}{12\cdot y}\cdot (4\cdot y + 12\cdot (-1)) = \frac{1}{3\cdot y}\cdot \left(3\cdot (-1) + y\right)\cdot 4/4
20,732
pX^3 = (Xp^{1/3})^3
-72
5 \cdot \left(-1\right) - 9 = -14
-16,607
6*176^{\dfrac{1}{2}} = 6*(16*11)^{1 / 2}
18,879
1 + \frac{1}{100}(74 + 1) + \frac14 + 1 + \left(74 + 1\right)/100 = 3.75
17,563
\frac14 \cdot (8 - x) = -\left(x + 4 \cdot (-1)\right)/4 + 1