id
int64
-30,985
55.9k
text
stringlengths
5
437k
-3,356
\sqrt{11}\cdot 4 - \sqrt{11} = \sqrt{16}\cdot \sqrt{11} - \sqrt{11}
16,836
2 \cdot \left(-1\right) + 2^4 + 2^3 = 22
8,821
l = \cos(\dfrac{\pi}{2}) + \sin(\pi/2) l
1,438
{n_0 \choose k_0} + {n_0 \choose k_0 + \left(-1\right)} = {n_0 + 1 \choose k_0}
3,473
\frac13\cdot (0 + 1 + 2) = \dfrac13\cdot 3 = 1
-10,433
20/20 \cdot (-\frac{4 \cdot r + (-1)}{r \cdot 4}) = -\frac{1}{80 \cdot r} \cdot (r \cdot 80 + 20 \cdot (-1))
22,038
\dfrac{1}{\sqrt{P}} = P^{-1/2}
7,371
\left(10 a^2 = 3m + 2 \Rightarrow m^2\cdot 9 + 12 m + 4 = 100 a^4\right) \Rightarrow 81 m^2 + m\cdot 108 + 36 = a^4\cdot 900
21,880
(-1) + 1 - k + k*2 - k*2 = -k
17,667
6*(y^2 + 4*y) = y^2*6 + 24*y
-14,214
\dfrac{4}{6 + 5 \cdot (-1)} = 4/1 = \dfrac{1}{1} \cdot 4 = 4
-3,694
\frac{n^5}{n^5}\times 66/22 = \frac{1}{n^5\times 22}\times n^5\times 66
3,193
40 \left(-1\right) + 2560 = 2520
17,122
1^2 + 0^2 + 2 \cdot 2 \cdot 2 = 9
19,495
a/b - \tfrac{c}{b}\cdot b = \frac{1}{b}\cdot (-b\cdot c + a)
-4,643
\tfrac{3\times y + 19\times \left(-1\right)}{12\times (-1) + y^2 - y} = -\frac{1}{y + 4\times (-1)} + \frac{4}{y + 3}
11,628
\tfrac{1}{2}*\left(-\cos(2*x) + 1\right) = \sin^2\left(x\right)
-2,213
\tfrac{2}{14} = \frac{1}{14}\cdot 3 - \frac{1}{14}
17,575
\frac{1}{z^2 - z\times 2} = \dfrac{1}{(-1) + \left((-1) + z\right)^2}
22,040
-1/(\sqrt{3}) = -\frac13\times \sqrt{3}
24,680
\mathbb{E}(x^2) = \mathbb{Var}(x) + \mathbb{E}(x) * \mathbb{E}(x)
-23,070
\frac{21}{2} = --3/2*7
30,092
\left(\frac{\partial}{\partial x} (w \cdot x) = e^x\Longrightarrow x \cdot w = \int e^x\,dx = e^x + h\right)\Longrightarrow w = \frac{1}{x} \cdot (e^x + h)
13,921
x^2 = 4 + (2 \cdot (-1) + x) \cdot (2 + x)
3,221
e^T = g\times T^2 = 2\times g\times T
17,864
140 + \binom{6}{2} + \binom{4}{1} + 2 = 161
26,041
-\pi + \frac{2}{3} \cdot \pi = ((-1) \cdot \pi)/3
24,990
2^{r/2}*(t - \frac{1}{2})^{r/2} = \left(2*t + (-1)\right)^{r/2}
760
-75 = 50 + 8 \cdot \left(-\dfrac{5}{2}\right)^3
-10,757
\frac{3}{3 + i}\cdot 4/4 = \frac{12}{i\cdot 4 + 12}
1,750
\theta + 2 \cdot \left(-1\right) + 2 = \theta
28,454
n * n + n + (-1) - (n + (-1)) * (n + (-1)) = n^2 + n + (-1) - n^2 - 2*n + 1 = 3*n + 2*(-1)
-25,063
\frac{1}{8}*3*2/7 = \frac{6}{56} = \dfrac{3}{28}
-24,849
\int \frac{1}{x^7}\,\mathrm{d}x = \frac{1}{x^6*(-7 + 1)} + C = -\frac{1}{6x^6} + C
38,162
1/|2| = \frac12
32,190
\left(1 + y + \dotsm + y^4\right)^m \cdot (1 + y + \dotsm + y^4) = (1 + y + \dotsm + y^4)^{m + 1}
-29,007
\frac{1}{2} \cdot (12 + 4 \cdot \left(-1\right)) = 4
27,690
\frac{1 - \tan^2{x}}{1 + \tan^2{x}} = \cos{x \times 2}
-3,311
\sqrt{2} \cdot 4 + \sqrt{2} \cdot 2 + 5 \cdot \sqrt{2} = \sqrt{16} \cdot \sqrt{2} + \sqrt{4} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{25}
-17,689
11 + 6 = 17
43,366
1/90 = \dfrac{8}{720}
4,428
\frac34 \cdot \dfrac{5}{4} = 15/16 = 0.9375
-22,292
(d + 10 \cdot (-1)) \cdot (d + 7) = 70 \cdot (-1) + d \cdot d - 3 \cdot d
-10,285
-\frac{q*5 + 25*(-1)}{15*\left(-1\right) + q*15} = \frac15*5*(-\frac{5*(-1) + q}{q*3 + 3*(-1)})
14,615
\left(-1\right) + z^{2^n} = (z^{2^{n + (-1)}} + \left(-1\right))*(z^{2^{n + (-1)}} + 1)
-14,307
5 - 8*5 + \frac{42}{6} = 5 - 8*5 + 7 = 5 + 40*(-1) + 7 = -35 + 7 = -28
21,007
(1 + 1) (3 + 1) (3 + 1) = 32
50,947
2 \cdot 1009 = 2018
18,130
37 * 37 - 35^2 = 13^2 - 5 * 5 = 12 * 12
22,674
{52 \choose 2} = \frac{52}{2}51
-2,105
\tfrac{\pi}{6} - \pi\cdot 11/6 = -\dfrac{5}{3}\cdot \pi
-7,296
\frac{\frac18}{2} \cdot 5 = \frac{5}{16}
-10,411
\frac{1}{r*10 + 10 (-1)}(50 \left(-1\right) + 20 r) = \frac{1}{5}5 \frac{1}{r*2 + 2(-1)}\left(r*4 + 10 \left(-1\right)\right)
-1,719
-\pi\cdot 7/6 = -7/6\cdot \pi + 0
4,606
\frac{1}{\epsilon}\cdot U\cdot y = U\cdot y/\epsilon
15,462
y + 2 = \frac{1}{y + 2\cdot \left(-1\right)}\cdot (y + 2)\cdot (y + 2\cdot (-1)) = \frac{y^2 + 4\cdot \left(-1\right)}{y + 2\cdot (-1)}
12,002
n\cdot 4 + (-1) + 1 + 1 = 1 + 4\cdot n
-3,956
4/(7*l) = \frac{\frac{1}{7}*4}{l}
19,813
1 = 4^{1/2} - 1^{\tfrac{1}{2}}
19,366
|y| > 1 \implies \frac{1}{|y|} < 1
27,889
\mathbb{E}[\beta + S] = \mathbb{E}[\beta] + \mathbb{E}[S]
22,304
255 = (1 + 2^2) \cdot (2^{2^2} + 1) \cdot \left(2 + 1\right) \cdot (2 + (-1))
26,045
0 = u^k + (-1) = (u + (-1))*(1 + u + u^2 + \dotsm + u^{k + (-1)})
-2,912
(2 + 5 + 4(-1)) \sqrt{10} = \sqrt{10} \cdot 3
30,929
2/3 \cdot 1/3 \cdot 1/3 = 2/27
-1,172
\phantom{- \dfrac{3}{7} \times \dfrac{7}{8}} = \dfrac{-3 \times 7}{7 \times 8} = \dfrac{-21}{56}
34,041
y*2 = d/dy y^2
9,426
3^5 - \left((-1) + 3\right)^5\cdot {3 \choose 1} + (3 + 2\cdot (-1))^5\cdot {3 \choose 2} = 150
-7,543
\frac{7 + 9 \cdot i}{-1 - 5 \cdot i} = \dfrac{7 + 9 \cdot i}{-i \cdot 5 - 1} \cdot \dfrac{i \cdot 5 - 1}{-1 + 5 \cdot i}
-5,492
\dfrac{3}{(4\cdot (-1) + t)\cdot 2} = \frac{1}{2\cdot t + 8\cdot \left(-1\right)}\cdot 3
28,371
\frac{1}{36*(1/36 + 895/7776)} = \frac{216}{1111} \approx 0.1944
12,109
(m + 1)^3 - m^3 = 1 + m^2\cdot 3 + 3\cdot m
23,563
0 = \sin{\frac{1}{4}\pi} \sin{0}*2
12,733
360 (-1) + 1260 = 900
-558
e^{16 \cdot 7 \cdot \pi \cdot i/6} = (e^{7 \cdot \pi \cdot i/6})^{16}
26,037
\frac{\pi}{2} \cdot \sqrt{2} = \tfrac{\pi}{\sqrt{2}}
33,934
B^2 - 2 \cdot B \cdot z + z^2 + 9 \cdot \left(-1\right) = (B - z)^2 - 3^2 = (B - z + 3 \cdot (-1)) \cdot (B - z + 3)
-19,671
\dfrac{6}{7}\cdot 8 = 48/7
9,726
y = y = 0*y = (0 + 0)*y = 0*y + 0*y
37,374
\dfrac{d}{d \cdot d} = \frac1d
9,514
-y \cdot y + x^2 = (x + y) (-y + x)
42,944
x^{24} = x^{2\cdot 9 + 2\cdot 3} = x^9 x^9 x^3 x^3
-18,965
13/15 = C_s/\left(36*\pi\right)*36*\pi = C_s
19,995
\frac{1}{3} = (-1) + 2/3\cdot 2
10,880
(x + z)^2 = \left(x + z\right) \left(x + z\right) = x^2 + 2xz + z^2
-23,721
3/4*\frac{1}{7}3 = \frac{1}{28}9
-9,750
0.01\cdot (-15) = -\frac{15}{100} = -0.15
30,203
6\cdot \left(-1\right) + 2 + 0 + 1 + 6 + 2\cdot (-1) + 0\cdot (-1) + 1 = 2
7,234
(a - b)*(a^5 + b*a^4 + b^2*a^3 + b^3*a * a + a*b^4 + b^5) = a^6 - b^6
21,127
x \cdot x + 6\cdot x + 6 - x = (2 + x)\cdot (x + 3)
-14,580
4 + 8*10 = 4 + 80 = 84
7,012
\frac{1}{S v} v = \frac{1}{v \frac1v S}
19,266
\dfrac12 \cdot 10 = \frac{5}{1}
42,780
720 \cdot (-1) + 7776 = 7056
14,229
(Z*z - g)^R*(Z*z - g) = (z^R*Z^R - g^R)*\left(Z*z - g\right) = z^R*Z^R*Z*z - z^R*Z^R*g - g^R*Z*z + g^R*g
14,025
{7 + n \choose n}\cdot 7 = (7 + n)\cdot {n + 6 \choose n}
4,358
l! + \left(l + 2 \cdot (-1)\right)! + (l + (-1))! = (2 \cdot (-1) + l)! \cdot l^2
-6,716
7/10 + 4/100 = 70/100 + 4/100
25,724
\left|{A}\right|\cdot \left|{A}\right|^l = \left|{A}\right|^{1 + l}
17,775
60 \cdot (-1) + z^3 - z^2 \cdot 12 + 47 \cdot z = \left(z + 3 \cdot (-1)\right) \cdot (z + 4 \cdot (-1)) \cdot (z + 5 \cdot (-1))