id
int64
-30,985
55.9k
text
stringlengths
5
437k
8,559
-\frac{7!}{6!} + \dfrac{8!}{6!} = 49
-4,151
96/132 \cdot \frac{1}{y^4} \cdot y = \tfrac{y}{y^4 \cdot 132} \cdot 96
39,175
2 \cdot 2 \cdot 2 \cdot 43 = 344
31,026
1\% = \dfrac{1}{100}
-2,829
2^{1 / 2} + (9*2)^{\frac{1}{2}} = 18^{1 / 2} + 2^{1 / 2}
5,261
r_1 \times r_2 = 2/3 \Rightarrow r_2 = \frac{1}{r_1 \times 3} \times 2
18,686
z^2 \coloneqq zz
-1,966
\dfrac14\cdot \pi + \pi = \pi\cdot \frac{5}{4}
-30,256
\dfrac{1}{y + 6 \cdot \left(-1\right)} \cdot (y^2 + 36 \cdot (-1)) = \frac{1}{y + 6 \cdot \left(-1\right)} \cdot \left(y + 6\right) \cdot \left(y + 6 \cdot (-1)\right) = y + 6
16,377
(2 + \omega)^2 - \omega^2 = \omega\cdot 4 + 4
26,443
\left(l \cdot l + i^2 \cdot 7 = x^2 \Rightarrow x \cdot x - l^2 = 7i^2\right) \Rightarrow (x + l) (x - l) = i^2 \cdot 7
-26,356
1/16 = -\frac{1}{4}\times (-\frac{1}{4})
-20,470
100/\left(-70\right) = -10/(-10)*(-\frac17*10)
-20,010
\dfrac{q + 6}{3 \cdot (-1) - 2 \cdot q} \cdot \frac{1}{4} \cdot 4 = \frac{1}{-q \cdot 8 + 12 \cdot (-1)} \cdot (4 \cdot q + 24)
9,533
x + y + z = 4\Longrightarrow x + z = -y + 4
-24,103
6 + \frac18 \times 48 = 6 + 6 = 6 + 6 = 12
34,998
6\cdot 6\cdot 6\cdot 6\cdot 6\cdot 6 = 46656
7,649
\dfrac{b}{x} = \dfrac{b}{x}
29,574
\left(x^2 + z^2\right)^2 = x^4 + 2\cdot x^2\cdot z^2 + x^4 \geq x^4 + z^4
-19,622
\frac{8*\frac13}{1/3*5} = 8/3*3/5
3,430
A^2 + A \times z \times 2 + z^2 = \left(A + z\right)^2
-23,393
\frac{1}{35} \cdot 9 = \dfrac35 \cdot \frac{1}{7} \cdot 3
25,825
\mathbb{E}\left[U^2\right] - \mathbb{E}\left[U\right]^2 = \mathbb{E}\left[\left(U - \mathbb{E}\left[U\right]\right)^2\right]
34,155
n + n = 2\cdot n
22,322
\frac423 = 6
12,012
1 - -\frac{1}{2 \cdot \left(1 + 1 + (-1)\right)} - -\tfrac{1}{(1 + 1 + 1) \cdot 2} = 5/3
17,580
2\left(l + 1\right) = 2l + 2
-4,285
\frac65 = \dfrac{1}{5}6
5,439
\left(12\times (-1) + d\right)^2 = d \times d - 24\times d + 144
-30,872
54 = 9\times 6
6,582
0 = 8 \cdot c - a \cdot 16 \implies c = 2 \cdot a
54,474
5^{2012} = (5^4)^{503} = (313*2 + (-1))^{503} = (313*2)^{513}
17,951
p^2 = (p + 3\cdot (-1) + 3)^2 = (p + 3\cdot \left(-1\right))^2 + 2\cdot (p + 3\cdot (-1))\cdot 3 + 3 \cdot 3 = \left(p + 3\cdot (-1)\right)^2 + 6\cdot \left(p + 3\cdot (-1)\right) + 9
35,876
3/1 = 3 \cdot (-1) + p \Rightarrow 6 = p
8,327
\left(e = e^{-4B + 4} \Rightarrow 4 - 4B = 1\right) \Rightarrow B = 3/4
-4,355
t^3/(t t) = \frac{t}{t t} t t = t
8,277
g + x + o = g + x + o
14,088
r = x\cdot \frac1r/(z\cdot 1/r)\cdot \tfrac1r\cdot x = x^2/(z\cdot r)
31,748
x = \sin\left(\arcsin{x}\right)
17,294
5/34*5/34*34 = 25/34
33,605
k + 2\cdot (-1) + 3 = k + 1
16,868
(2 - \sqrt{x}) \cdot \left(2 + \sqrt{x}\right) = -x + 4
-20,709
-6/5 \cdot \dfrac{t \cdot 9 + 4 \cdot (-1)}{t \cdot 9 + 4 \cdot (-1)} = \frac{1}{20 \cdot (-1) + t \cdot 45} \cdot (24 - t \cdot 54)
13,658
123456789 + 111111111\cdot (-1) = 999999999 + 987654321\cdot (-1)
29,905
15 = \dfrac{1}{2} \cdot (31 + (-1))
17,282
-(p^3 \cdot 2 + p)/3 + p^3 = (-p + p^3)/3
31,815
3 + 4\cdot 15 = 63
2,407
\mathbb{E}(Y)^2 + Var(Y) = \mathbb{E}(Y^2)
14,222
1 - 3/7 = \frac{1}{7}*4
26,367
3 \cdot 3\cdot 2^8\cdot 5^7 = 10^6\cdot 6^2\cdot 5
-11,471
i \cdot 7 + 6 + 20 = 7 \cdot i + 26
20,503
(W^2)^{1/2} = |W| = -W
38,792
\var\left( \frac{X_1+\cdots+X_n}{n} \right) = \frac{1}{n^2} \var(X_1+\cdots+X_n) = \frac{1}{n^2}\left(\var(X_1)+\cdots+\var(X_n)\right)
-9,571
\dfrac44 = 1
21,467
\left(n + x\right) \cdot \left(n + x\right) = n^2 + x^2 + 2\cdot n\cdot x
23,286
\cos{k*z}*(1 + i*\tan{k*z}) = e^{i*k*z} = (e^{i*z})^k
25,997
y + (-1) = (\sqrt{y} + (-1)) (\sqrt{y} + 1)
22,226
g/x\cdot \tfrac{c}{d} = g\cdot c/(x\cdot d)
28,712
\frac{1}{48} + 1/6 = 1/8 + 1/16
33,771
0 = y^2 + 3 \times y = y \times (y + 3)
-2,966
-\sqrt{99} + \sqrt{176} = \sqrt{16\cdot 11} - \sqrt{9\cdot 11}
76
y \cdot p_1 + y \cdot p_2 = (p_1 + p_2) \cdot y
12,321
\frac12 \cdot (g_1 + 0) = g_2,\frac12 \cdot (b + 0) = j rightarrow g_1 = g_2 \cdot 2, j \cdot 2 = b
51,046
\int \tfrac{1}{y}\cdot \sqrt{1 + y^2}\,\text{d}y = \int \frac{1}{y\cdot \sqrt{1 + y^2}}\cdot \left(1 + y \cdot y\right)\,\text{d}y = \int \frac{1}{y\cdot \sqrt{1 + y \cdot y}}\,\text{d}y
-14,302
10 \times (8 + 2) = 10 \times 10 = 100
18,083
-3\cdot (1 + 2 + 3 + 4 + 5 + \dots) = \frac{1}{4}
6,497
x + 1 + (x + 2\cdot (-1))^m < 2\cdot x^2 - x = x + 2 \Rightarrow \left(x + 2\cdot (-1)\right)^m \lt 1
-12,134
\frac{11}{20} = s/\left(16*\pi\right)*16*\pi = s
-2,832
125^{1/2} + 80^{1/2} = (25\cdot 5)^{1/2} + (16\cdot 5)^{1/2}
6,347
(z + (-1)) (1 + z^2 + z) = z \cdot z \cdot z + (-1)
-1,719
-\pi\times 7/6 = -\pi\times \frac{1}{6}\times 7 + 0
-5,573
\dfrac{x*2}{x * x - x + 2*(-1)} = \frac{2*x}{(x + 1)*(x + 2*\left(-1\right))}*1
34,213
y = e y = e^2 e y = (y^5)^3 y = y^{16} = (y^2)^8
-2,156
-\frac{1}{3}*5*\pi + \dfrac{1}{6}*\pi = -\pi*\dfrac12*3
-7,292
\frac18 \cdot 4 \cdot 5/9 = \frac{5}{18}
11,515
\arccos(4/5) = y \Rightarrow \cos(y) = 4/5,\sin(y) = \sqrt{1 - (4/5)^2} = \frac{3}{5}
77
(a * a - ba*2 + 2b^2) \left(a^2 + 2ab + 2b^2\right) = a^4 + b^4*4
10,500
y \times (n + 1) = y \times n + y
2,513
Z^k \cdot y = Z \cdot y \cdot Z^{(-1) + k}
-22,832
130/39 = 10\cdot 13/\left(13\cdot 3\right)
9,785
\left(y + 2\right)\cdot (y + 3\cdot (-1))\cdot ((-1) + y) = 6 + y^3 - y^2\cdot 2 - y\cdot 5
28,106
\|\lambda*x\| = \|\lambda*x - V*x + V*x\| \leq \|\lambda*x - V*x\| + \|V*x\|
-20,607
\dfrac{-7}{5} \times \dfrac{5z - 1}{5z - 1} = \dfrac{-35z + 7}{25z - 5}
18,242
\ln(B) = \ln(A)\Longrightarrow A = B
-3,069
\sqrt{11}\cdot 4 = \sqrt{11}\cdot (5 + (-1))
-104
-23 + 5 \cdot \left(-1\right) = -28
32,244
3 (x + f) = 3 f + 3 x
35,820
{4 \choose 1} = {4 \choose 3} = 4
39,913
\frac{2\cdot 2^{1/2}}{2^{1/2} + 2} = -2 + 2^{1/2}\cdot 2
-1,899
-\dfrac12\cdot \pi + \pi\cdot 4/3 = \pi\cdot \frac16\cdot 5
50,675
1/\sin{2 x} + \frac{1}{\tan{2 x}} = \dfrac{1}{2 \sin{x} \cos{x}} (2 \cos^2{x} + (-1) + 1) = 1/\tan{x}
12,219
\tfrac{1}{x_1} \cdot (S_1 - x_1) = \frac14 \Rightarrow S_1 = \frac54 \cdot x_1
3,919
\sin(A + B) = \cos{B} \cdot \sin{A} + \cos{A} \cdot \sin{B}
10,989
x^n = x^{2 \cdot n/2} = \left(x^{2 \cdot n}\right)^{\dfrac12} = \sqrt{x^{2 \cdot n}}
35,459
R_l/(C_l) = \tfrac{R_l}{C_l}
10,928
z^2 + z + 1 = (z + 2) (z + 2) = (z + \left(-1\right)) (z + (-1))
23,564
95^8 = 95 \cdot 95 \cdot \dotsm
1,659
(-1) + \cos^2{y} \cdot 2 = \cos{y \cdot 2} \implies \frac12 \cdot (\cos{2 \cdot y} + 1) = \cos^2{y}
-15,400
\frac{\frac{1}{k^6} z^{15}}{k^8 \frac{1}{z^{20}}} = \frac{1}{k^6 k^8} \frac{z^{15}}{\frac{1}{z^{20}}} = \tfrac{1}{k^{14}}z^{15 - -20} = \frac{1}{k^{14}}z^{35}
26,160
\frac{1}{2}*x = \frac{x}{2^x}*2^{x + (-1)}