id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
|---|---|
50,849
|
\binom{10}{3} = 5!
|
22,558
|
(z + y)^2 = z^2 + 2*z*y + y * y
|
43,020
|
40000 = 6 \cdot z + 3 \cdot 0.3 \cdot z = 6 \cdot z + 0.9 \cdot z = 6.9 \cdot z
|
24,928
|
e^{Y + B} = e^Y e^B
|
23,745
|
|a + f|^2 = (a + f)\cdot \overline{a + f} = \left(a + f\right)\cdot (\overline{a} + \overline{f})
|
-4,201
|
\frac{1}{11} 88 \dfrac{1}{t} t = \dfrac{t*88}{t*11}
|
-10,386
|
\dfrac{1}{4}*4*\left(4*a + 5*(-1)\right)/a = \frac{1}{a*4}*(20*(-1) + 16*a)
|
26,185
|
\frac12\cdot (p + \left(-1\right))\cdot (p + \left(-1\right) + 1) = p\cdot (\left(-1\right) + p)/2
|
21,809
|
\frac{\sin^2(x)}{1 + \sin^2(x)} = 1 - \frac{1}{1 + \sin^2(x)} = 1 - \dfrac{\sec^2(x)}{2 \cdot \tan^2(x) + 1}
|
39,123
|
(g + f)^2 = g \cdot g + 2gf + f \cdot f \geq g^2 + f^2
|
38,508
|
A^T \cdot A = A \cdot A^T
|
7,237
|
w^2 + w + 2(-1) = (w + (-1)) (w + 2)
|
-9,204
|
-65\cdot x = -x\cdot 5\cdot 13
|
19,516
|
\frac{6}{50}*48/51 = \frac{1}{2550}288
|
1,713
|
\frac{\partial}{\partial x} \left(ze^{-x \cdot x}\right) = -e^{-x^2} z x \cdot 2 + e^{-x^2} \frac{\mathrm{d}z}{\mathrm{d}x}
|
31,391
|
\cos\left(x\right)\cdot \sin(x) = \sin(\pi/2 - x)\cdot \sin\left(x\right)
|
-28,767
|
\frac{x^3 + x}{1 + x} = x^2 - x + 2 - \frac{2}{x + 1}
|
8,876
|
\frac{1}{2}\cdot e^{((-1)\cdot x)/2} = \frac{\mathrm{d}}{\mathrm{d}x} (1 - e^{\frac{x\cdot (-1)}{2}})
|
-19,209
|
\frac{1}{18} = \frac{G_q}{9\cdot \pi}\cdot 9\cdot \pi = G_q
|
15,297
|
n\cdot y - (y + 2\cdot \left(-1\right))\cdot (n + (-1)) = y + 2\cdot ((-1) + n)
|
2,651
|
G \cdot 2 = G + G
|
17,519
|
g^2 + g*z*2 + z^2 = (g + z) * (g + z)
|
28,319
|
\frac{1 - y^{a_j + 1}}{-y + 1} = 1 + y + \cdots*y^{a_j}
|
5,944
|
a^2 + 4 n^2 + 4 a n = (a + 2 n)^2
|
-10,591
|
5 = 10 + 2*x + 16*\left(-1\right) = 2*x + 6*(-1)
|
14,452
|
g \cdot N \cdot x = g \cdot x \cdot N
|
4,930
|
(3 - \sqrt{3})^4 = 252 - 144*\sqrt{3}
|
-163
|
\frac{1}{3!\cdot (10 + 3\cdot (-1))!}\cdot 10! = \binom{10}{3}
|
32,896
|
A_1 A_2 = A_1 A_2
|
-10,021
|
0.01 (-84) = -\frac{1}{100} 84 = -0.84
|
-681
|
(e^{\pi i*4/3})^{13} = e^{13 \dfrac{4 i \pi}{3} 1}
|
55,494
|
\lfloor 5.2 \rfloor=5
|
-9,349
|
-n\times 30 = -n\times 2\times 3\times 5
|
22,138
|
1 - -1 - 1 = 1 + 0
|
-2,701
|
4\cdot 3^{\frac{1}{2}} - 3\cdot 3^{\frac{1}{2}} = -3^{\frac{1}{2}}\cdot 9^{\frac{1}{2}} + 16^{\frac{1}{2}}\cdot 3^{\frac{1}{2}}
|
-29,569
|
-2\cdot x^3 = -\dfrac{2}{x}\cdot x^4
|
11,694
|
2\cos^2{z} + \left(-1\right) = -\sin^2{z} + \cos^2{z}
|
1,274
|
1/a = \frac{1}{a} := \dfrac1a
|
150
|
\left(\varepsilon, 0 \leq x \implies \varepsilon \cdot 2 = x \cdot 2\right) \implies x = \varepsilon
|
18,634
|
e^{1 + |-z + x|} = e^{|x - z|} e^1
|
-4,327
|
\frac{49}{35} \cdot \frac{1}{n^2} \cdot n = \frac{49 \cdot n}{35 \cdot n^2}
|
3,983
|
x^8 + 1 = x^8 + 2 x^4 + 1 - 2 x^4 = \left(x^4 + 1\right)^2 - 2 x^4 = (x^4 + 2^{\frac{1}{2}} x^2 + 1) \left(x^4 - 2^{\frac{1}{2}} x^2 + 1\right)
|
32,027
|
x\cdot y\cdot r = y\cdot r\cdot x
|
-10,308
|
\frac{1}{i \cdot 6 + 6} \cdot (14 \cdot (-1) + 2 \cdot i) = 2/2 \cdot \tfrac{1}{i \cdot 3 + 3} \cdot (7 \cdot (-1) + i)
|
20,118
|
\sin^2(x) + \cos^2(x) + \tan^2\left(x\right) = d/dx \tan(x)
|
30,240
|
1^2 + 2^2 + 3^2 + 4^2 = \left(1 + 2 + 3 + 4\right)\cdot 3
|
26,216
|
-Q \times Q + z^2 = (z - Q)\times (z + Q)
|
14,089
|
\cos{b}\cdot \sin{a} + \sin{b}\cdot \cos{a} = \sin\left(b + a\right)
|
25,504
|
0 = (6 \cdot (-1) + 7 \cdot r) \cdot (r^2 + 3) \Rightarrow r = \frac17 \cdot 6
|
28,533
|
(-1) + 2\cdot \cos^2{Y} = \cos{Y\cdot 2}
|
8,288
|
B^6 = (B^2 \cdot B)^2
|
24,917
|
(a + b)*(b + b) = (a + b)*b + (a + b)*b = a*b + b^2 + a*b + b^2
|
8,740
|
c_1*a_1 + a_2*c_2 = a_1*c_1 + c_2*a_2
|
-23,146
|
-16/27 = -8/9 \cdot 2/3
|
14,608
|
1 = 7479 - 204 \cdot 37 + 14 \cdot \left(7479 - 202 \cdot 37\right)
|
21,489
|
(g^l)^1*1^{l + (-1)} = g^l
|
27,898
|
\dfrac{1}{x + 2 \cdot (-1)} \cdot (2^x - x^2) = \frac{1}{x + 2 \cdot (-1)} \cdot (2^x + 4 \cdot (-1) + 4 - x^2) = 4 \cdot \frac{1}{x + 2 \cdot (-1)} \cdot \left(2^{x + 2 \cdot \left(-1\right)} + \left(-1\right)\right) - x + 2
|
24,144
|
2^{n + 5 \cdot (-1)} = 2 \cdot 2^{n + 6 \cdot \left(-1\right)}
|
5,129
|
z + 3 - 4\cdot (z + (-1))^{1 / 2} = z + (-1) + 4 - 4\cdot (z + \left(-1\right))^{\frac{1}{2}} = z + \left(-1\right) - 4\cdot (z + (-1))^{1 / 2} + 4 = ((z + (-1))^{1 / 2} + 2\cdot (-1)) \cdot ((z + (-1))^{1 / 2} + 2\cdot (-1))
|
43,772
|
-5/3 = -\dfrac{1}{3}5
|
24,242
|
1007 = \frac12\left(2013 + 1\right)
|
-11,472
|
-i\cdot 5 - 3 = 0 + 3\cdot (-1) - i\cdot 5
|
25,060
|
I = L \cdot L^x rightarrow L \cdot L^x = I
|
-9,983
|
28\% = \dfrac{28}{100} = \dfrac{7}{25}
|
-24,806
|
199 = \frac{1}{3}\cdot 597
|
-25,231
|
\frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y^3} = y\cdot 3/2
|
-22,281
|
35*(-1) + y^2 + y*2 = (y + 7)*(5*(-1) + y)
|
-20,243
|
\tfrac{64 + 48 q}{30 q + 40} = \frac85 \frac{q \cdot 6 + 8}{8 + 6q}
|
12,172
|
\sin(\alpha*0) - \cos(\alpha) = -\cos(\alpha)
|
-7,234
|
6/16*\frac{5}{15} = 1/8
|
13,126
|
\sin\left(z\right)/z = \frac1z\left(z - z^3/3! + z^5/5! - \dots\right) = 1 - \tfrac{z^2}{3!} + \frac{z^4}{5!} - \dots
|
5,913
|
\left(H\cdot x = x\cdot \lambda \Rightarrow H^2\cdot x = H\cdot x\cdot \lambda\right) \Rightarrow H\cdot x = \lambda\cdot H\cdot x = \lambda^2\cdot x
|
2,263
|
|5 + \pi |x| \cdot 3| = 3|x| \pi + 5
|
20,417
|
\frac12*(-1^{1/2} + (2*k + 1)^{1/2}) = \left((1 + 2*k)^{1/2} + (-1)\right)/2
|
22,455
|
1 - \frac{7}{18} = 11/18
|
-13,445
|
\dfrac{6}{10 + 4 \cdot (-1)} = 6/6 = 6/6 = 1
|
4,535
|
\frac{13}{24} = \frac16 \cdot 13/4
|
4,421
|
p^3 + (-1) = ((-1) + p)\cdot (p^2 + p + 1)
|
-18,214
|
22 = 32 (-1) + 54
|
10,116
|
\dfrac{1}{A*x} = 1/(x*A)
|
-18,476
|
3*l + 7 = 5*(l + 3*\left(-1\right)) = 5*l + 15*\left(-1\right)
|
-603
|
(e^{\pi i/2})^{11} = e^{11 \pi i/2}
|
-2,807
|
-\sqrt{16} \sqrt{2} + \sqrt{2} \sqrt{25} = -\sqrt{2} \cdot 4 + 5 \sqrt{2}
|
15,394
|
\frac{7^{55}}{5^{72}} = 7\cdot (\tfrac{1}{5^4}\cdot 7^2 \cdot 7)^{18}
|
9,782
|
(2\cdot x + 2\cdot \left(-1\right))! = \dfrac{1}{(-1) + 2\cdot x}\cdot (2\cdot x + \left(-1\right))!
|
23,676
|
E(Z_1 \cdot Z_2) = E(Z_2) \cdot E(Z_1)
|
4,380
|
(S + T)\times (v_1 + v_2) = v_1\times (S + T) + v_2\times \left(T + S\right)
|
-5,415
|
37.8 \cdot 10^{1 + 2} = 10^3 \cdot 37.8
|
34,707
|
\alpha^{1/2} = (-(-1) \cdot \alpha)^{1/2} = i \cdot \left(-\alpha\right)^{1/2}
|
17,368
|
{2 \times k \choose k} \times k!^2 = (2 \times k)!
|
49,989
|
\dfrac{1}{16} \cdot 5 = 0.3125
|
-26,471
|
(x \cdot 7 + 5)^2 = 25 + x \cdot 70 + 49 \cdot x^2
|
-23,496
|
\frac{1}{3} = \frac{5}{9}*3/5
|
-2,257
|
\dfrac{5}{18} - 3/18 = 2/18
|
17,747
|
\dfrac{1}{X^W*X} = \tfrac{1}{X^W*X}
|
10,552
|
\frac{1}{5 \cdot (-1) + n} \cdot 6 + 1 = \frac{1}{5 \cdot \left(-1\right) + n} \cdot (n + 1)
|
5,512
|
\tfrac{1}{-2^{\dfrac{1}{2}}*6 + 11} = \frac{1}{(3 - 2^{1 / 2})^2}
|
-20,554
|
\tfrac{1}{8 \times y} \times (7 \times y + 6) \times 10/10 = \frac{1}{80 \times y} \times (60 + 70 \times y)
|
-5,887
|
\tfrac{1}{(2*(-1) + p)*(p + 3*\left(-1\right))}*5*\frac{6}{6} = \frac{1}{6*(3*\left(-1\right) + p)*(p + 2*(-1))}*30
|
887
|
g + kq + f + xk = (q + x) k + f + g
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.