id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
|---|---|
20,767
|
y \cdot x/100 = \frac{x}{100} \cdot y
|
-1,695
|
\pi*17/12 + \pi*\dfrac{11}{12} = \dfrac{7}{3}*\pi
|
21,296
|
|b_n a_n - ab| = |b_n a_n - ba + ba_n - a_n b|
|
10,767
|
x = x - \sum_{j=2}^n e_j*x_j + \sum_{j=2}^n e_j*x_j = \sum_{j=1}^n e_j*x_j
|
12,549
|
p^2 - p = p*(\left(-1\right) + p)
|
-7,737
|
\frac{1}{i\cdot 4 + 2}\cdot (-i\cdot 2 + 4)\cdot \tfrac{-i\cdot 4 + 2}{-i\cdot 4 + 2} = \frac{1}{2 + 4\cdot i}\cdot (4 - 2\cdot i)
|
36,798
|
-\frac{1}{15} \cdot 4 = -4/15
|
30,284
|
\{\} = \left( \left(-1\right) + z_1, \alpha\right) \implies \{\} = [z_1, \alpha]
|
-7,766
|
\frac{1}{3 - i \cdot 3}(-i \cdot 3 + 3) \frac{-3 - 3i}{3 + i \cdot 3} = \frac{-i \cdot 3 - 3}{i \cdot 3 + 3}
|
28,461
|
26 = 5^2 + 1^2 = 4^2 + 3^2 + 1^2 = 3^2 + 3 \cdot 3 + 2^2 + 2^2
|
25,964
|
108124016 = \left(2002\cdot (-1) + 15504\right)\cdot (2002 + 6006)
|
-22,547
|
\tfrac{8}{9}\cdot \frac78 = 8\cdot 7/\left(9\cdot 8\right) = 56/72 = \frac{1}{9}\cdot 7
|
-5,925
|
\frac{2*g}{(2 + g)*(g + 6)} = \frac{g*2}{g * g + 8*g + 12}
|
-23,599
|
\frac{1/3*2}{7} = 2/21
|
11,167
|
n^2 + n*3 + 2 - n*3 + 3*(-1) = n^2 + (-1)
|
24,533
|
\frac{1}{2} 109824 = 54912
|
15,694
|
(1 - q)^2 = 1 - 2q + q * q
|
-2,877
|
-(9*13)^{1/2} + (25*13)^{1/2} = 325^{1/2} - 117^{1/2}
|
21,892
|
\dfrac{1}{2} \cdot \left(2 + (-1) + 2 \cdot n + (-1)\right) = n
|
-25,952
|
0.58 = \tfrac{4.64}{8}
|
29,792
|
m \cdot (m + \left(-1\right))! = m!
|
21,276
|
0 = \frac1x rightarrow 1 = 0x
|
22,284
|
(3\cdot (-1) + x)\cdot (6\cdot (-1) + x) = 18 + x^2 - 9\cdot x
|
-13,838
|
\frac{72}{7 + 5} = \frac{72}{12} = \tfrac{72}{12} = 6
|
-20,843
|
-\frac{1}{7}\cdot 4\cdot \frac{4\cdot q}{4\cdot q} = ((-16)\cdot q)/(q\cdot 28)
|
6,615
|
\cos{x} = \sin{x}\Longrightarrow \frac12 \times \left(e^{x \times i} + e^{-i \times x}\right) = \frac{1}{2 \times i} \times (-e^{-i \times x} + e^{x \times i})
|
10,253
|
\dfrac{t_i - \frac{1}{t_i}}{t_i + (-1)} = 1 + \dfrac{1 - \dfrac{1}{t_i}}{t_i + (-1)} \geq 1 + \frac{1}{2 \times (t_i + (-1))}
|
25,978
|
(-1)^n\cdot \binom{-2}{n} = \binom{n + 1}{n} = \binom{n + 1}{1} = n + 1
|
11,006
|
2 = \sin^2{F_2} + \sin^2{F_1} + \sin^2{C} \Rightarrow 1 - \cos^2{F_2} + 1 - -\sin^2{C} + \cos^2{F_1} = 2
|
29,145
|
50 K = \dfrac{1}{20} 1000 K
|
24,255
|
\ln\left(r\right) + r = \int (r + 1)/r\,dr
|
15,584
|
\frac{1}{c*b} = \dfrac{1}{b*c}
|
18,935
|
\frac{1}{4}*5*t = 15 + t\Longrightarrow t = 60
|
30,197
|
x \cdot x \cdot x + (-1) = ((-1) + x) \cdot (1 + x^2 + x)
|
6,017
|
y = e^h + \left(-1\right) \implies \ln(1 + y) = h
|
32,390
|
k\cdot k! + k! = (k + 1)!
|
-15,682
|
\frac{1}{\frac{1}{\dfrac{1}{r^2} x^4}}x^4 = \frac{x^4}{r^2 \frac{1}{x^4}}
|
-23,721
|
\frac37 \cdot 3/4 = \tfrac{9}{28}
|
-6,094
|
\frac{3}{z^2 + 8*z + 9*(-1)} = \frac{3}{\left(z + 9\right)*(z + (-1))}
|
21,647
|
-\sin{s} \cos{x} + \cos{s} \sin{x} = \sin(-s + x)
|
15,102
|
w^9 = \left(w^3\right)^3
|
6,876
|
x^2 - 2\cdot x\cdot a + a^2 + b^2 = b^2 + (-a + x)^2
|
9,446
|
1 = x \cdot 12 + 5 \cdot y\Longrightarrow x = -2\wedge y = 5
|
12,908
|
\dfrac{v^2}{x^2} = (\frac{1}{x}\times v)^2
|
-26,582
|
\left(7x + 4\right) (-7x + 4) = 16 - 49 x^2
|
26,732
|
\frac{1}{4}\cdot π + \dfrac{π\cdot \left(-1\right)}{4} - q = -q
|
47,755
|
120^2\cdot 25\cdot 4 = 1440000
|
-1,856
|
7/12 \cdot π + \frac{π}{4} = 5/6 \cdot π
|
33,138
|
G_x\cdot G_\rho = G_\rho\cdot G_x
|
32,354
|
(x + z)^3 = (x + z) \cdot (x + z) \cdot (x + z) = (x + z) \cdot \left(x^2 + 2 \cdot x \cdot z + z \cdot z\right)
|
17,757
|
\left(3\cdot (-1) + y\right)\cdot (4\cdot (-1) + y)\cdot (y + 5\cdot (-1)) = 60\cdot (-1) + y^3 - 12\cdot y^2 + 47\cdot y
|
17,463
|
y^{\frac73} = y^{4/3 + \dfrac33} = y^{\dfrac43}*y^{\frac{3}{3}} = y^{\frac13*4}*y
|
28,283
|
\frac16 \cdot (-i + 6) = -\frac16 \cdot i + 1
|
6,470
|
\tan(y \cdot 3) = \tan\left(y \cdot 3\right)
|
19,282
|
z*H*x = H*z*x
|
32,066
|
4004001 = 2001 * 2001
|
45,117
|
x\cdot v = v\cdot x
|
31,602
|
\cos(-2 \cdot 2 + 2^2) = \cos\left(-2 \cdot 0 + 0^2\right)
|
33,181
|
L_k + L_l = L_l + L_k
|
40,019
|
25 = 68 + 43\times (-1)
|
14,631
|
1/7 + \dfrac{1}{42} = \frac{1}{6}
|
26,324
|
(g\cdot f)^2 \cdot (f\cdot g) = f \cdot f^2\cdot g^3
|
35,910
|
\frac{1}{24}7 = 91/24 + 2(-1) - 1^{-1} - 1/2
|
16,989
|
(x\times 3)^2 = 9\times x^2
|
498
|
6\cdot 252 = 1512
|
7,092
|
g^2 - b^2 = (g + b)*\left(-b + g\right)
|
12,926
|
0 = (c \cdot 2 + \left(-1\right)) \cdot 2 \Rightarrow \frac12 = c
|
8,009
|
\tfrac32\cdot 1/2\cdot 3 = \tfrac{9}{4}
|
974
|
\left(9 = y \times y \Rightarrow 9^{1/2} = y\right) \Rightarrow 3 = y
|
32,782
|
Z \cup Y \setminus Z = Z \cup \left(Y \cap Z^c\right) = (Y \cup Z) \cap (Z \cup Z^c) = Y \cup Z
|
-4,731
|
-\frac{1}{z + 3}\cdot 4 + \frac{2}{5\cdot (-1) + z} = \frac{26 - 2\cdot z}{z^2 - 2\cdot z + 15\cdot \left(-1\right)}
|
7,092
|
h \cdot h - g \cdot g = (g + h)\cdot (h - g)
|
19,131
|
(-8/3 + 3)^2*\frac{2}{9} = \frac{2}{81}
|
26,575
|
\frac124 = \frac21 = \frac{6}{3} = \dots
|
32,700
|
((1 + p)/2)^2 - \left(\dfrac{1}{2}\left(p + \left(-1\right)\right)\right)^2 = p
|
-24,660
|
\frac{12}{30} = \frac{2 \cdot 6}{6 \cdot 5}
|
18,102
|
N\cdot x\cdot b = b\cdot N\cdot N\cdot x
|
12,835
|
x^2 + x + 2(-1) + 2\sqrt{x^3 - x^2 - x + 1} = x * x * x \Rightarrow 4(x^3 - x^2 - x + 1) = (x^3 - x * x - x + 2) * (x^3 - x * x - x + 2)
|
3,293
|
-x^2 + (1 + x) * (1 + x) = 2*x + 1
|
4,106
|
(\int_0^1 (-\sigma + b)\,\text{d}\sigma) \cdot 2 = \frac{\partial}{\partial b} \int\limits_0^1 (\sigma - b)^2\,\text{d}\sigma
|
-14,041
|
7 + \frac{1}{5}50 = 7 + 10 = 17
|
20,269
|
(i + 1)! = i! (i + 1) < 2^i\cdot (i + 1)
|
39,323
|
4 \cdot (-1) + 3 + 1 = 0
|
1,404
|
5 \cdot y^3 + y^2 \cdot 20 - y \cdot 195 + 270 = (y + 9) \cdot (2 \cdot (-1) + y) \cdot (y + 3 \cdot (-1)) \cdot 5
|
5,467
|
-\tfrac{1}{2 + x} \cdot \left(2 \cdot \left(-1\right) + x\right) = \frac{1}{2 + x} \cdot \left(-x + 2\right)
|
17,482
|
-\left(a^2 + c \cdot c\right)^2 + (a^2 - c^2)^2 = -a^4 - 2\cdot a^2\cdot c^2 - c^4 + a^4 - 2\cdot a^2\cdot c^2 + c^4 = -4\cdot a^2\cdot c \cdot c
|
966
|
(2 \cdot (-1) + z) \cdot 5 = 10 \cdot \left(-1\right) + z \cdot 5
|
20,273
|
(-\sqrt{x^2 + 1} + t + x) \cdot (t + x + \sqrt{x \cdot x + 1}) = t \cdot t + 2 \cdot x \cdot t + (-1)
|
18,968
|
zz = z \cdot z = z + 1
|
27,569
|
d \cdot x \cdot f = d \cdot x \cdot f = \frac{d}{x \cdot f}
|
6,208
|
34658 = 1^3 + 14^3 + 17^3 + 30^2 \times 30
|
34,920
|
\sqrt{-4} = \sqrt{4}*\sqrt{-1} = 2i
|
5,919
|
258\cdot 4 + 147 \left(-7\right) = 3
|
1,423
|
\binom{5}{1} \times 6! \times 5! \times 2 = 864000
|
28,480
|
0 = \frac{z^2 - y^2}{z^2 + y \cdot y} \implies z \cdot z = y \cdot y
|
-30,287
|
\frac12(0 + 8) = \frac82 = 4
|
-26,654
|
3\times z^2 - z\times 20 + 7\times (-1) = (z\times 3 + 1)\times (z + 7\times (-1))
|
15,878
|
(n * n + \frac{n}{2})^2 = n^4 + n^3 + \tfrac{1}{4}n^2 < n^4 + n^3 + n * n + n + 1
|
-20,225
|
-\frac72\cdot (-\frac{1}{-9}\cdot 9) = \frac{63}{-18}
|
18,049
|
\frac{1}{2} \cdot (\frac{10303}{63} + 9 \cdot \left(-1\right)) = \dfrac{1}{63} \cdot 4868 \approx 77.27
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.