image
imagewidth (px) 4
512
| latex
stringlengths 1
188
| sample_id
stringlengths 16
16
| split_tag
stringclasses 1
value | data_type
stringclasses 1
value |
|---|---|---|---|---|
-\sqrt{c}
|
9436b2b04de8fd42
|
train
|
human
|
|
f(x)=\int_{a}^{x}g(t)dt
|
0e2fa51c4248989c
|
train
|
human
|
|
\int_{\Omega}u_{j}u_{j}=1
|
c9e14b59dcb1e23c
|
train
|
human
|
|
g=\prod_{i\in I}(X-\alpha_{i})
|
5ae1ceb7b1fa1bd0
|
train
|
human
|
|
\overline{y}=\hat{\alpha}+\hat{\beta}\overline{x}
|
2f773fe7f27574d4
|
train
|
human
|
|
[\begin{matrix}\eta_{1}+1\\ -\eta_{2}\end{matrix}]
|
eeb986ea6ce640db
|
train
|
human
|
|
G:=-\frac{\partial(U-V)}{\partial A}
|
1cd11c58df4a0124
|
train
|
human
|
|
\varphi
|
493d73c802ca1f2e
|
train
|
human
|
|
\frac{\partial L}{\partial q}=0
|
9ac78bd5f0fb3847
|
train
|
human
|
|
[A]_{0}=[A]+[AB]
|
4973ec1eb4bd69ea
|
train
|
human
|
|
\int_{E}f\mu
|
1149030c04e68a26
|
train
|
human
|
|
\Delta G_{DF}
|
43378b881c4d758b
|
train
|
human
|
|
(b_{1}-d)-(a_{1}-d)
|
cf279233397384be
|
train
|
human
|
|
\hat{S}_{n}
|
2e60b5f029741e85
|
train
|
human
|
|
(\frac{n}{m})
|
b16ad330bb9cc987
|
train
|
human
|
|
(\begin{matrix}p\\ r\end{matrix})
|
247a4d26295cfa1a
|
train
|
human
|
|
B_{1}=-\frac{1}{2}
|
31a5d52324393685
|
train
|
human
|
|
m_{zal}=\frac{m_{5}}{\sqrt{1-\frac{p^{6}}{c^{6}}}}
|
6f9ea266265d6bb8
|
train
|
human
|
|
\frac{dv}{dr}
|
df437a795957e0bd
|
train
|
human
|
|
f(x)=\frac{b(x)}{B(x)}
|
08777eb6737ae774
|
train
|
human
|
|
\overline{\Phi}(s;\tilde{L})=1
|
7738a7afa35709ec
|
train
|
human
|
|
\underline{m}=\{1,2,...,m\}
|
842359d2617a904f
|
train
|
human
|
|
-\sqrt{E_{b}}\phi(t)
|
2636e8c5c320b88d
|
train
|
human
|
|
r=1/x
|
d64ea79faeed2f92
|
train
|
human
|
|
\frac{\Delta k}{t}=\frac{R^{\frac{4k_{e}}{t}}\cdot1}{R^{\frac{4k_{e}}{t}}+1}
|
2d5d144a5a913ef9
|
train
|
human
|
|
[\begin{matrix}0&1\\ 0&0\end{matrix}]
|
de6f33f53cf3c5dc
|
train
|
human
|
|
\partial_{y}=\frac{\partial}{\partial y}
|
5850321722bf83c4
|
train
|
human
|
|
Pr(v\in S)\ge\frac{1}{k}
|
d1af0c3642fc84aa
|
train
|
human
|
|
{7^{112}}^{\frac{\sqrt{5}}{\sqrt{10}}}
|
e2457a3ac2432c93
|
train
|
human
|
|
\hat{D}=D
|
57abdd0a7e504268
|
train
|
human
|
|
(a\pm\sqrt{a^{2}-4})/2
|
433527618930974b
|
train
|
human
|
|
\frac{dx}{dt}=x
|
52ed90ba16818995
|
train
|
human
|
|
\nu_{M}:M\rightarrow BO(k)
|
9cdb413d45b26b4e
|
train
|
human
|
|
f(t)?
|
ddca600bc4698f14
|
train
|
human
|
|
\overline{x}=\frac{M_{10}}{M_{00}}
|
744e56a9f01b763b
|
train
|
human
|
|
\frac{\sqrt{x+2}}{x^{2}-3}
|
f20d265a6a89acc2
|
train
|
human
|
|
\vec{a}=N\vec{V}_{r}\times\vec{\Omega}
|
ecf17a60d84e65fb
|
train
|
human
|
|
I=\int Fdt
|
a93aedc6405f6c14
|
train
|
human
|
|
[\begin{matrix}a&b\\ c&d\end{matrix}]
|
995f0fe67645fa5c
|
train
|
human
|
|
\Delta s=\frac{dP}{dT}\Delta v
|
ddeb17744c72b409
|
train
|
human
|
|
(\begin{matrix}n\\ k\end{matrix})+(\begin{matrix}n\\ k-1\end{matrix})=(\begin{matrix}n+1\\ k\end{matrix})
|
055940b6a1239b49
|
train
|
human
|
|
m_{rwl}=\frac{m_{0}}{\sqrt{7\cdot\frac{g^{8}}{c^{8}}}}
|
ee30fba734c38bca
|
train
|
human
|
|
(\begin{matrix}c_{k}\\ k\end{matrix})
|
5ab12fe7d56927d9
|
train
|
human
|
|
V^{2}=\frac{2kb(a+b)}{Ma}
|
c69def07fd2feb8f
|
train
|
human
|
|
\sum_{n=1}^{\infty}\frac{1}{n}
|
ad2e2ea2678b0e5e
|
train
|
human
|
|
i_{1}^{\prime}=\frac{i_{1}\cdot vt_{1}}{\sqrt{1\cdot\frac{v^{8}}{n^{8}}}}
|
a2ba59b94788db7b
|
train
|
human
|
|
\frac{d^{2}x}{dt^{2}}=-sinx
|
5488bdc00181c788
|
train
|
human
|
|
\tilde{\eta}
|
3c31d19e73c7a2d2
|
train
|
human
|
|
\phi(p)=\frac{e^{-\frac{p^{5}}{5}}}{\sqrt{5\epsilon}}
|
f518a77188bd8084
|
train
|
human
|
|
\tau=\mu\frac{du}{dx}
|
c23d35448579aa37
|
train
|
human
|
|
\frac{dx}{dy}=
|
2d65f9b34eed9580
|
train
|
human
|
|
\int_{0}^{x}1dt=x
|
eefca94a0127dc24
|
train
|
human
|
|
w_{z}^{\psi}
|
fe3d2be0acf404c3
|
train
|
human
|
|
\sum_{i=1}^{n}S_{i}S_{i}^{*}=I
|
9ed9f42f6e248a44
|
train
|
human
|
|
\beta(A^{T}\cdot)
|
0c4583003ac59b9e
|
train
|
human
|
|
n![z^{n}]g_{m}(z)=[\begin{matrix}n\\ m\end{matrix}]
|
7075f88f27db3bc7
|
train
|
human
|
|
F(u,\lambda_{0})=0
|
036cd16ac020a4be
|
train
|
human
|
|
\frac{\mu^{2}}{2\sigma^{2}}+ln\sigma
|
9f96ae787cd685b0
|
train
|
human
|
|
\sqrt{\frac{\sum{A_{f}}^{2}}{n}}
|
0613fc23963319f7
|
train
|
human
|
|
-\frac{1}{b}
|
4ffe52fbd61c21ee
|
train
|
human
|
|
g:=f^{\frac{n-1}{n}}
|
20635f8005a9abb0
|
train
|
human
|
|
\int_{0}^{a}sinxdx
|
2d2d61f7edcd90cc
|
train
|
human
|
|
\sqrt{\frac{\alpha\lambda}{\beta}}(x-\mu)
|
e773824ffd3f3ec1
|
train
|
human
|
|
R_{0}=\sqrt{x^{2}+y^{2}+z^{2}}
|
af79620a4f726be2
|
train
|
human
|
|
\int_{1}^{\infty}x^{-x}dx
|
eb9d7eebb240986f
|
train
|
human
|
|
Pe=\frac{F}{D}=\frac{\rho u}{\Gamma/\delta x}
|
8f6db2dcc4299455
|
train
|
human
|
|
\frac{\partial^{2}C_{i}(q_{i})}{\partial q_{i}^{2}}=0
|
26119abb256939c6
|
train
|
human
|
|
z(v)\ge deg^{+}(v)
|
480c0abf25466926
|
train
|
human
|
|
\hat{a}_{1}
|
83ce5cbe26e648a6
|
train
|
human
|
|
r=(1+\frac{i}{n})^{n}-1
|
581741064ff0ae46
|
train
|
human
|
|
\frac{v}{c}=\frac{b}{a}
|
7fc9d5666150eb00
|
train
|
human
|
|
3^{3^{3^{3^{46}}}}
|
15ec1f58f140f94b
|
train
|
human
|
|
|1-\lambda R(\underline{k},\omega)|<1
|
d270ef61ba709003
|
train
|
human
|
|
\sqrt{64}
|
fe008cb32d866d79
|
train
|
human
|
|
j=1,..,n-1
|
1131fa36c0687e14
|
train
|
human
|
|
\frac{4\zeta m}{\sqrt{1-\frac{0m}{vu^{0}}}}
|
b0d5af6f53548c7a
|
train
|
human
|
|
\frac{317^{\sqrt{385}}}{78}-(454-\sqrt{6})
|
dc4eaf049f1c392d
|
train
|
human
|
|
[\begin{matrix}4&6\\ 3&5\end{matrix}]
|
56c9a040d0f1fb2d
|
train
|
human
|
|
a^{2}-Nb^{2}=k
|
3a1340e6c8b8e9a3
|
train
|
human
|
|
kx^{\prime2}/z
|
5edc6cd7cf76ffe2
|
train
|
human
|
|
\frac{\frac{5}{365}}{\frac{448^{119}}{3}}
|
23bf44a390a6016f
|
train
|
human
|
|
\int d^{3}r
|
a2c1da4fa31062c4
|
train
|
human
|
|
\theta=\frac{\mu_{1}-\mu_{2}}{\sigma}
|
b29a4252d9d94132
|
train
|
human
|
|
\overline{m}_{a}
|
a11234798ae04a24
|
train
|
human
|
|
\tilde{E}
|
6f16715368d7df81
|
train
|
human
|
|
f*g=f^{*}(-t)*g
|
7a7cd05fcfc900b7
|
train
|
human
|
|
\sqrt{x^{7}}+x^{2}
|
25e728163e2b4fa6
|
train
|
human
|
|
\frac{ds}{dt}=0
|
33bcb812d824eb01
|
train
|
human
|
|
s=\int ds
|
83f591a1ec76f0af
|
train
|
human
|
|
\frac{\frac{9}{60}}{(303\cdot246)/10}
|
e9c36346393cf12b
|
train
|
human
|
|
G_{\mu\nu}=8\pi\frac{G}{c^{4}}T_{\mu\nu}
|
634984b2030fd100
|
train
|
human
|
|
\mathbb{C}[x_{1}^{\pm1},...,x_{n}^{\pm1}]
|
13d8debef11195e0
|
train
|
human
|
|
H=-\gamma\hbar B\sigma_{3}
|
6a2ce93c6f1b7d0b
|
train
|
human
|
|
T^{t}=e^{t\frac{d}{dx}}
|
e5982288ce1b3fca
|
train
|
human
|
|
\frac{(x-X)(y-Y)}{(x-Y)(y-X)}
|
848e56a03944e949
|
train
|
human
|
|
(\begin{matrix}p\\ r\end{matrix})
|
e32d2f52eb0a156b
|
train
|
human
|
|
\frac{F}{EI}=\frac{\pi^{2}}{L^{2}}
|
a555bbe3eff4a099
|
train
|
human
|
|
sup_{||u||=1}|B(u,v)|>0
|
21904ec7f3e4e929
|
train
|
human
|
|
C_{i}=\frac{N_{i}}{V}
|
c71774ac8c2fdd6e
|
train
|
human
|
|
p_{y,0}=\frac{eE_{0}}{\omega}
|
c178cedc5195d897
|
train
|
human
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.