image
imagewidth (px)
4
512
latex
stringlengths
1
188
sample_id
stringlengths
16
16
split_tag
stringclasses
1 value
data_type
stringclasses
1 value
Z_{\gamma}^{f}
b97b60bca7f63b12
train
human
\rho(u)=\frac{1}{\sqrt{1-\frac{u^{4}}{r^{4}}}}
161b48bbf22eda3a
train
human
F(X)=\prod_{i=1}^{s}f_{i}(x)
79863d2785203fdc
train
human
(X_{1}+\cdot\cdot\cdot+X_{n})/\sqrt{n}
c9dcf993c83c9c29
train
human
A^{*}=\sqrt{\gamma RT^{*}}
e1cbcb678c883f49
train
human
A=(\begin{matrix}0&1\\ 4&0\end{matrix})
53157f075aa240e3
train
human
\sqrt{-i}
517a83e45dad3b6f
train
human
\sqrt{4}^{\sqrt{4}^{\sqrt{4}^{\cdot^{\cdot^{\cdot}}}}}
8148403a559f05b4
train
human
\frac{\partial\phi}{\partial t}=D\Delta\phi
a6e8a2495fce7da7
train
human
\int\frac{dx}{lnx}
b9ca6860de1ad557
train
human
\frac{(\frac{MW}{N_{0}})}{\rho_{liquid}}
d5ddc36c479f1c20
train
human
Lan_{F}X
f4f0d5f69b753d1e
train
human
\tilde{\nu}=0
3e53453ad9f75dd9
train
human
A=(\begin{matrix}2&0\\ 0&1\end{matrix})
f067ca8917ce94ff
train
human
z=\frac{2+sT}{2-sT}
181651a0c7531e3e
train
human
Z=\int_{x}f(x)dx
1ff9d844a37ed20d
train
human
x=\sum_{k=1}^{3}\sqrt{k}
975ccfb9e3271c70
train
human
[\begin{matrix}17&23\\ 11&7\end{matrix}]
b1e731d929da1dad
train
human
R[Jt]\subseteq R[It]
ab8287e9d23e9d75
train
human
X=[\begin{matrix}w+ix\\ y+iz\end{matrix}]
f3dd3b99bba97261
train
human
\frac{\frac{7}{448}}{\frac{7}{47}}
663cba774a4b5960
train
human
(\frac{a}{b}-\frac{c}{d})rel0
119c5d792c0be2fb
train
human
\beta_{j}^{-}=-min(\beta_{j},0)
4fa431be7266a893
train
human
2^{2^{2^{f^{a}}}}
481587aeb4e85725
train
human
\frac{\partial}{\partial t}\rightarrow-i\omega
c033d71970a8b28f
train
human
nDCG_{p}=\frac{DCG_{p}}{IDCGp}
85921c1497949d7f
train
human
|\Lambda|_{M}^{-s}
60336c25ab6ba2ce
train
human
(266\cdot\sqrt{292})+263-\sqrt{10}^{7}
4903a17e477401f7
train
human
(\begin{matrix}1&N\\ 1&1\end{matrix})
11a805eee4a5bdc9
train
human
\hat{f}(t)
2e0b777d88f6c9af
train
human
A(x)>x^{\sqrt{2}-1-o(1)}
aba3561464048630
train
human
\frac{\partial f}{\partial\theta}=f\frac{\partial logf}{\partial\theta}
d77d201541b37190
train
human
f_{n}(r)=(1+r/n)^{n}
4863adf072f0240b
train
human
(-1)^{p_{4}r_{4}}
47ceff58ae802274
train
human
\sqrt{\frac{1}{m}}\sigma
63b76316a33efda5
train
human
f_{s}\sim\int f_{s+1}
4c12f876077a2bda
train
human
-\int E\cdot dl
cd3cf4f389d38baf
train
human
|t|=\frac{1}{2}
5ac693d7768b4c8d
train
human
Da=kC_{0}^{n-1}\tau
b1095afd612f734e
train
human
(\begin{matrix}5\\ 0\end{matrix})
6e8e6bbb31d8ab28
train
human
\hat{K}(n)
3023bc446923bc02
train
human
\frac{r^{\prime}}{\sqrt{0+\frac{r^{2}}{9}}}\ge0
21d00e750f28fb96
train
human
\underline{u}_{D}*\approx\underline{u}_{1}
60156eb43b892964
train
human
y^{n}<xB^{k}
23f4f2abe25381ab
train
human
\Sigma_{n=0}^{\infty}\frac{x_{n}}{2^{n}}\in X
d79e4f2cda76a50f
train
human
\frac{(\frac{89}{1})^{3}}{(413+2)}
c499dabf8c1eae8e
train
human
\hat{\phi}
eb718d184e86be40
train
human
\hat{r_{i}}
a976b260502e15ba
train
human
\frac{4}{8}+\frac{6+191}{5}
d1b5b47495d00df3
train
human
\int^{c\in C}F(c,c)
c36aa10ca7a5a515
train
human
\tilde{B}
3af273e5d0a6f1a6
train
human
A=(\begin{matrix}2&0\\ 0&1\end{matrix})
a738e2f0a74e6d0a
train
human
3(16-8\sqrt{2})r^{2}
4b5d20bd7a303a10
train
human
\frac{x}{x+1}
4eb072227025c60e
train
human
\delta\int d\tau=0
ab0282700b26c181
train
human
(\begin{matrix}n\\ 2k\end{matrix})
d7623899e34dcae9
train
human
\sigma Q_{D}(l_{A}a_{B}+l_{B})l_{D}
cb1f14f961a3f461
train
human
\sqrt{390}^{\sqrt{7}}+\frac{6}{\sqrt{10}}
021225c29dd01fc2
train
human
J^{(\zeta_{9})}
f1899a0a11181395
train
human
p_{i}(s_{h})\ne p_{j}(s_{h})
ebfc08147cfe996b
train
human
\frac{d}{dt}\frac{\partial L}{\partial\dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0
1667544d13ac8846
train
human
\int_{\gamma}dz=0
dc83e7e744d44dce
train
human
e^{X}=\sum_{k=0}^{\infty}\frac{1}{k!}X^{k}
7ac772ae3bd635f8
train
human
A=\frac{s^{2}n(tan(i/2))}{4}
89985e6bbdd76548
train
human
\overline{S}_{p}
777fa31b37c8818a
train
human
3/\tilde{4}
9095877d9b04ca5c
train
human
\varphi=(1+\sqrt{5})/2
f63ad7c982dfc470
train
human
\int_{-\infty}^{x_{1}}
d79132485c104738
train
human
\frac{x:\alpha\in\Gamma}{\Gamma\vdash x:\alpha}
4439d1af0a3c745e
train
human
\frac{\frac{\frac{\sqrt{352}}{\sqrt{111}}}{7}}{{4^{336}}^{294}}
88599f913bed3db2
train
human
7^{7^{\cdot^{\cdot^{\cdot^{u}}}}}
d59240e1201d4d4f
train
human
V^{+}-V^{-}
2c9c806bd440ba34
train
human
|z|=\sqrt{a^{2}+b^{2}}
f691e3697a5a5fb6
train
human
\frac{\partial H(x)}{\partial x}B(x)
1fcc9bcb6a0aa488
train
human
(\begin{matrix}i\\ u\end{matrix})
4029121b67f5329d
train
human
\frac{\nabla F}{|\nabla F|}
ad442ca72ed03db8
train
human
f_{xx}=\frac{d^{2}f}{dx^{2}}
f1e69fffa644afcd
train
human
\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}
b5630a5feaaeb586
train
human
X:=\prod_{i=1}^{n}X_{i}
d8adcd2eaca1dab2
train
human
(122\cdot80)/\frac{4^{409}}{\sqrt{449}}
e6bfd1e30238d1d2
train
human
\frac{(\frac{7}{51}\cdot3)}{464-480^{\sqrt{86}}}
6a177be75c9b1ea4
train
human
s_{n}=\prod_{i=1}^{n}\pi_{i}
181e1768472c3a8d
train
human
(1+x)^{\alpha}\approx1+\alpha x
ad2a5c1ce68067cb
train
human
\frac{11}{10}480
3ecb574ebf494991
train
human
J=(\begin{matrix}0&1\\ -1&0\end{matrix})
28b787f83e5a2435
train
human
(\begin{matrix}m\\ r\end{matrix})
196450110bc59882
train
human
2(\begin{matrix}n\\ k\end{matrix})
162906c7cad7fbfc
train
human
[\begin{matrix}A&U\\ V&C\end{matrix}]
d5e05ce10bfe612e
train
human
\varphi=(1+\sqrt{5})/2
a34427f1ec7caac3
train
human
\frac{\partial f_{i}}{\partial x_{j}}
ac18462299fc2a09
train
human
z_{t+k}
97a82067f41af334
train
human
\int F(x,y,y^{\prime})dx
fe85a5b503a08454
train
human
\overline{x_{i}}
3d60255516a27795
train
human
((107\cdot51)^{155}\cdot(1+8))
08b6c4f02e06d90b
train
human
|p|
66c2fef466a461a8
train
human
\Rightarrow\frac{\partial P(z)}{\partial z}=\rho g
039bb2ed5fce8bbe
train
human
-\frac{8}{x^{6}\sqrt{8-\frac{8}{x^{6}}}}
054b6a5e6788f08d
train
human
\tilde{E}_{0}^{a}=0
7947461f906d6d96
train
human
f(x,y,z)=w^{2}
265a44fe8a006296
train
human
w[T^{*}]y
a7538678e6baa27d
train
human