index
int64 0
600
| image
stringlengths 4.59k
38.3k
| question
stringlengths 13
223
| answer
stringlengths 1
30
| category
stringclasses 1
value | l2-category
stringclasses 1
value | split
stringclasses 1
value |
|---|---|---|---|---|---|---|
0
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEJASkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjvEfxF07w74lsdEe3luJ7l0WR4yAsG9sLu9zycegrc8Sa7beGtAutVuuUhT5UHWRzwqj3JwK8o8VeHrvTvhZca5qI3a5c30OoXT90JbaqD2UNjH1oT1120/H+r/8ADjtpbqe2UVDZzrdWVvcKcrLGrg+xGamptWdiU7q4UUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWZqPiLR9JyL7UreFh/AXy3/fI5/SsBviRpczFdNsNT1Fumbe3JH68/pWsaFSavGOhlOvTg7SkrmNqdpF8SvGculzb38O6LkXGxiouLkjG0EdlGf8AJqr4p+EnhOw8KareWFhLHd29rJLExuHbDKCehOD0ro/+Es8Rz4Nr4Mutp6Ge4EZ/IjiqFp458Q6jd3NvYeHYZpbZts0X2oBkOcd8ZHHUVX1Wo42VvvX+YLEw+PWyt0f4aa+djc+H179v+H+hz7tx+yJGT7r8p/lXS1xv/CUeKIm/0jwZOV9YrpWI/ACkHxFtLf8A5Cmj6tp47vNbnaPx6/pVSw9STbSv6NP8jOOIpRSTdvVNfmdnRWLpvi3QdWKiz1S3Z26Ru2xz/wABbBrarCUJRdpKxvGcZq8XcKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQkKCSQAOSTWbrmv6f4esTdahMEXoiDl5D6KK5VNO17xuRNqzyaVopOUsojiWYf7Z9Pr+XetoUXJc0naPf/LuY1K3K+WKvLt/n2NDUfHdqt01hodrLrF/02W/+rX/AHn6Y+n51VHh/wAU6/8APrms/wBn27f8uen8HHoX/wD1iuq0zSbDR7UW2n2scEQ7KOT7k9Sfc1dqvbRh/CXzer/yRPsZT/iv5LRf5v8ArQ53TvA3h3TMGPTYppAc+ZcfvWJ9eeB+AroURY1CooVR0AGAKWispzlN3k7msKcYK0VYK8l0/RL+5vNb1fR5Nmr6fqswVSflnjzzGf1/P6EetVSsU02Oa7Ww+zCUylrkQlc+YepfHf61VKq6d2jo92VCpTkt7Wfaz3KXhnxJbeJNO8+MeVcxnbcW7H5om/w9D/WtogEEEZB7VxviXQbyx1D/AISbw8At/Gv+k24Hy3Sd+B/F/P61vaBr1n4i0xby0Yj+GSNvvRt3BqqlNW9pT2/L+uhx0qjv7Opv+fn/AJkGpeEdA1YE3elwFz1kjXy2/NcE1if8IjrWh/P4a12Xyl6WV988ePQHt+X4121FKNepFWvddnqhyw9OTvaz7rRnGWvjp7G6Wx8UabJpc7cLOPmgf3B7fr7muwimjuIUlhkSSNxlXQ5DD1Bpl3Z219bPb3cEc0LjDJIuQa4ufw1q3haZ73wrM01qTul0udsqR32Hsf1+vSrtTq7e6/w/4BF6tLf3l+P/AATuqKw/Dvimx8RQsIg0F5FxPaS8PGfp3Hv/ACrcrCcJQfLJam8JxmuaLugoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKbJIsUTyOcKilifQCvKvDDeP/ABjpJ1q28Xx2FrPPIIIG06KTCBiBzj8Pwo62Dpc9XorkNF0PxnaarDPq3jBL+yXPmWy6fFEX4OPmAyOcH8K6+gArE8SeJLfw9aITG1xeznZbWsf3pG/w6c1P4g1218PaTJfXJzj5Y4x1kc9FFYfhbw9cy3jeJdeG/VbgZijP3bZOygdjj8vqTW9OEUvaT2/N/wBbmFScm/Z09/yX9bCaB4Wubi8XXvEzC51R8NFCR+7th2AHTI/T3PNdjRRUVKkqjuy6dONNWX/DhRRRWZoFFFFABXHeFCy+MvF0W4lBPC4HoWVs/wAhXY1lafoUOna1qepxyyM+oFDIjY2rtBAx+dVFpJo6qFWMKVWMt5JW9eZP8kzVriNf0e88P6q3ifQI2fdzf2S/dmXuwHqP/r+ue3oqqdR03fp18zhq01UVnv0fYoaPq9prmmRX9lJuikHIPVD3UjsRV+uD1fTrrwZqcniDRYd+myc6hZKcAD++o7f0+nTstO1G11awivbKZZYJRlWH8j6EelVVppLnh8L/AA8mTSqNvkn8S/HzX9aFqiiuT+I+v3fhzwZdXunSiO+d44bdtobDMwHQgg8ZrBm6VybxJ4TXVZU1LTZjY6zBzFcpxv8A9l/Udv8AEcUeGPFDanLLpeqQi01q24lhPAkH95fUf56ViL4c+I7Qhv8AhPYQ5XO06VDgH0zisnRl1bxvpl/LdmCDxNoV40EV7bjaspX+E9sZz+fTqK6qc1NezqPbZ9v+Acs4OD9rT67rv/wf6Z6vRXP+FPEg1+xkS4j8jUrVvLu7c8FWHGR7HH8xXQVhODhJxlubwmpxUo7BRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHNfEHUv7J8BazdBtr/ZmjQ/7T/KP1Nch4Y0j4l6V4a0+z0+bwzHapCGjWcTFwG+b5sLjPPOK6L4j6JqfiLRbHS9Pt/Nilvomu28xV2Qg5J5IzzjgZNdiqhFCqMADAFC2b/rT/hxvov6/rQyvDya8mnMPEUthJemQ4NiGEYTjH3uc9a1WZUUsxAUDJJ7Clrhfibrx0/Rl0uAsbi9B3hRkrEPvH8en0zWlKm6s1BGVScacXKTGaVG3jbxO+t3Ck6Pp7mOxiYcSuOsn+fb0Nd7Xneg+KZvDWl2NlrWmiHTjGot9QtAXhcEZBbuCc/XPau+tLy2v7Zbi0njnhf7rxsGBq8Q25baLRf1+Zu8DVw0eaevNrzLVP0f6bk1FFFYEBRRRQAUUUUAFctpOo3U3xB8QWEtw7W8EUBhiJ4XKAsR+JrqawLTSruHxxqGqOi/ZZ7WOJG3DO4deKqNrO51YZwUail1jp63W3yub9FFFScohAZSCAQeCD3rgby1uPAGqPqdgjSeH7mTN3aoMm3Y/wAa+3/6vTHf02SNJY2jkRXRgVZWGQQexrWlU5HZ6p7oyq0udJrRrZkdpdwX9pFdWsqywSruR16EV5x8Vftup6v4W0DTfIN5PdtdKLgny/3YyN2Occnp6Vakab4caqGHmTeGbx8bc7mtZD6eo/z1HNTxBbeKG+I1p4k0XQU1ewgsfJt2+2xRqS2SWGTnocdKKtPklGS1i9n6f8EKNXnUovSS3Xr+ha1FfiwNPnMcvhjcEOPs3m+Z0/h3jbn61o/C2XTLjwPbT6bBNF5kjm48998jzZ+dmbvn19KpS3/xG1q2ksl8P2Oh+aNjXk16s5RT1Kqn8Xpmuq8M+H7Xwv4ftdJtCWjgX5nbq7E5Zj9TWa0uavoc/wCLrCfRNSi8XaWmZIcJfwr/AMtoumfqP8D2rrrK8g1GxhvLZw8MyB0b2NTSRpLG0cihkcFWUjgg9RXE+FGfw54jvvCkzE27ZutPZj1Q/eX8OfyY10fxafnH8v8Agfkc38Kp5S/P/g/n6ncUUUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBeH7SLxX4g17WrtBJaENp9qD08sD5iPrnP/AAI10Xi/UzpHhTULtWxIIikZ/wBpvlH6nP4UvhLSxo/hbT7MrhxEHk/32+Zv1OK6IPkpOa3en6v9DnmueqoPZa/ov1MXwJKRYah4av1WSXTJjEVcZDxMSVOD1HX8MV08NhFpemPbaTbQxbVZooslU3nJ5POBmuV1/wD4p/x3peuL8trfj7Ddntn+En8h+C129FfVqa2lr8+pWGnKMXSb+F7fl+Gn3nG2fjaSwuFsfFVi2mXJO1bgZaCX3Ddv19zXYRyxzRrJE6vGwyrKcgj2NRXdnbX9s1vdwRzwt1SRQQaq6fpVroGkta6XbHy03ukW/JZjzjJP4c1i3F7bno1p0KkeaEeWXb7P46r01NGiuU0zxxay3Q0/WreTSNR6eXcfcc/7L9P8966sEEAg5BpSi47mVbD1KDtUVvyfo9mFFFFIxCsUa83/AAmLaCbYBfsf2oTb+T823GMf1rarjZMp8Xounz6R/wC1D/hVwSd7nXhacanPzLaLa9UdlRRRUHIFZOv+IbHw5p5urx/mbiKJeWkb0A/rVfxL4otvD8KRrG11qE/FvaR8s59TjoKzvD/ha5kv/wC3vEki3OqtzFF/yzth2Cj1/l7nmt4U0lz1Nvxf9dzCdVuXs6e/4L+uxU07w3e+J7saz4rjxHg/ZdNydsSnoW9T/k+ghtpp/h7qi2V07S+HLqT/AEedjk2rH+E+3/6/WvQKr31jbalZS2d5EssEq7WRv89apYht2mvd7dvTzJ+rKKvB+937+vl/SJ1ZXRXRgysMgg5BFLXA6XfXPgbU00PV52l0eY4sb1x/q/8AYc9v6fTp31Z1afI+6ezNKVXnWujW67BXG/EC1lgtLLxDaLm60qYSEA/ejJAYfy/DNdlUF7aR39hcWcwzFPG0bfQjFKlPkmpDqw9pBx/q/Qda3MV5aQ3UDbopkWRG9QRkVLXI/Dq7lk8NNYXB/wBI064e1f8AA5H4c4/Cuuoqw5JuPYKU/aQUu4UUUVmaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGfED/S/7C0jgi91BN6+qL978PmBrs643XAbj4leGocZWGKeY+2VI/mBXZVvV0pwj5N/j/wDnpa1JvzS/Bf5mN4r0ca74avLEAGVk3RZ7OOR/h+NReDtYOueGLS6kObhB5M4PXevBz9eD+Nb1cRpI/4R34hX+lk7bTVV+1247CQZ3AfqfwFOHv0pQ6rVfr/n8gqe5VjPo9H+n+XzO3ooornOgo6po+n61am21C1juI+24cqfUHqD7iotI0mDw9pJtLVriaKMs6rI+9vUKPbsBWnRTu7WNfbVOT2d/d3t0Oc0XxppmrTmzl32GoqdrWl0NrZ9j3/n7V0dZWt+G9K8QQeXqFqsjAYSVeHT6N/TpTtH019D0r7NLfXN6IyzLJN8zhey8dcCnLleqNqyw8o89K6f8r1+5/o/vZp1Tk1Gyi1WHT3lAvZoy8abDyo684x+tUND8WaT4gBS0uNlyud9tMNkq468d/wzWLrs8UHxN8OO86xjyZ0kJfAwUbaD9TTjBt2YQwzjUlTr+60m9dNUm1952tcv4k8VnT510nSIftutTcJCvIi/2n9PXH8hVbXfFF1dX50Dwyqz6i3E1x1jth0JJ9R/nJ4rU8NeF7Xw9bswZri/m5uLuTl5G78noM9vzrWMI01z1Pkv8/L8zy5TlUfJT+b/AEXn+RR0Lw5HoMVxres3Au9VZDJcXL9IwByEz0GO/H4Dit3R9Vt9b0a01S2WRILmISoJQAwB9cEj9axfG3hu117Rrp7q6vkWG2kIiguWjjc4z8yjhunesrSbl7P4HRXEZIePRmZSOx2GsKlWU+act1b9f8jop0ow5YR6/wDAL3/Cx9E+0DMOoCwMvkjUzbH7KXzjG/68Zxj3rr+tedXFtD/woLy/LXYNFWQDH8WwNn8+a7Hw3O9z4X0meQ5eSziZj6koKbjZtdv+D/kF72ff/gf5k+q6Vaa1psthex74ZBz6qexB7EVyeh6reeGNUTw1rsjPA5xp983R17Ix9e36eldzWZruhWXiHTJLG9TKnlHH3o27MPetKVRJck/hf4eaMqtNt88PiX4+T/rQ06K4vw5rl5pWojwx4hcfakH+iXZPFynYZP8AF/nr17SpqU3Tdn/w5VOoqiuv+GOM0Ef2f8SPEVgDhLqOO8Re3ox/Nq7OuNvB9n+LOnSZx9q054sepUs39B+VdlV19XGXdL/L9DPD6KUezf46/qFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcbdfN8XrEMThNKZlGeMl3B/SuyrjdW2w/FPQZCo/f2s0W76Bm/r+tdlW9faD8v1ZhQ3mvP9EFch8QbKUaVb61aD/TNJmWdSO6ZG4fToT7A119MmhjuIJIJVDxyKUdT0IIwRUUp8k1IurD2kHEisL2HUdPt72A5injWRT7EZqxXF+ApnsG1PwzcOTLpk58onq0Tcg/rn/gQrtKK0OSbitv06BRnzwUnv+vUKKKjnuIbWBpriaOGJBlnkYKoHuTWZoSUVx134/gnuGs/DthPrF0OCYlKxJ7lj2/T3qD/hGfEXiI7/ABHq5tbZv+XGwO0fRm7/AK10LDta1Hy/n9xzvEJ6U1zfl95U8aXfhK5l2HzJ9ZHETabzMG7ZI4/A8+leQ3ktzNeTSXbSNcFz5hlJLbu+c819HaR4e0rQ4tmnWUUJIwzgZdvqx5NV77wf4f1K++23elwyXGcl8ldx/wBoAgN+Oa68NjKVBtJNrv8A1sYY2jisXTjCc9I7LWyuY/wvthD4NilNusbzSuxfbgyDOAT/ACrs647UPHNnY6g2iaDpVzrF9bjbJBYqBHB6BnPyr9KrWfxGeHVrXTfEnh+80Oa7bZBLI4lhduy7xjmuCpU9rUc+510qfsqah2R1euf8gDUf+vWX/wBBNc54VsRqnwjsLAnH2nTPKye25SP612VFZNXTXf8A4P8Amap2aa6f8D/I8kuPEKSfDhfBsdrdHxIbVdPax8h8qeEL7sbdmOd2cV6jptoLDS7SzBz9nhSLPrtUD+lWqKpu9292TbbyCiiikMx/Efh618R6abaf93Mp3QTqPmib1H9RWR4Y8R3S3z+HNfITVoP9XIRhblOzA9z/AJ7HHX1heJ/DUPiGzTbIbe/tzvtblOGjb/DpW9OpFr2dTb8v66mFSnJP2lPf81/n2Zla3/yU7wx/1yuP/RbV2VeYaTqOoap8QtGttWtzBqGmwTLNxxISpAYexBzxWv8AELWL5W0vwzpE5g1DWpjEZ1PzQwj77D3x/WqxMXHkh1t+rJwslPnn0v8AojU1fx/4V0K4a31DW7aOZTho03SMp9CEBI/GtTSNd0vX7U3OlX8F3EDhjE2dp9COoP1qpofhLRPD1gtpY2EIAGHldAzynuWY8k1n6f4Jg0jxxP4g02ZLW2ubfyp7GOLCu+c78g4H0x6+tc63szp6HV0UUUgCiiigAooooAKKKKACiiigAooooA4zxr/oeu+F9U6LFfeQ5zjiTA/kDXZ1zHxBsWvvBt6Y8iW2xcIR22HJP/fOa2tHv11TRrO/XpPCrkehI5H4HNbz96jF9rr9f1Zzw92tKPez/T9Ec3rvxG07Q9ek0b+ytY1C7iiWWQWFssoUN0z8wP6d6pf8LUtv+hS8Wf8AguH/AMXXJ6B4+8O6P488XalrF48UtxcrBAFhZ/3ceVzkA9cD8q7zRfiZ4X8Q6rDpmm3ss11LnYht3UcAk8kYHArCOqR0y0bKOvTnSvEeheK0ikht7pBa3iSDDIrjK7h2I78/wiut1TWtN0aDztQvIoExkBj8zfQDk/hUXiPSF1zw/eaecbpYz5ZPZxyp/MCuO8A6Bo+p6aNUvoJLvVI5Gin+1uZPLdTwADx0weckV2LkqU1Of2dNPwOJ+0p1XCH2tdfx/R/eXm8Xa1rxMfhfR3MJ4+33vyRj3A7/AOeKQ+CklR9S8W6rPqTQqZGiDeXCgAycAY9/T6V24AVQAAAOAB2rmPG3hu117Rrp7q6vkWG2kIiguWjjc4z8yjhunesZ4hwi/ZLl/P7/APKxtHDqcl7V835fd/nc0/Dt1p154es73TLYWtlPEJI49ioVB9QOM/jWL/wsfRPtAzDqAsDL5I1M2x+yl84xv+vGcY96o6TcvZ/A6K4jJDx6MzKR2Ow1XuLaH/hQXl+WuwaKsgGP4tgbP581lPSUm+n/AAf8jaCvGK7/APA/zPRetcr8Rdfm8OeCb69tTi7cCCA9w7nGR9Bk/hWt4bne58L6TPIcvJZxMx9SUFYnxJ8OXfiXwhLbWGDe28q3MCE43sufl/EE498Upxs7Pv8A8OFN3syx4f0zT/AngoGchFghNxez4JaR8Zdj3Pt+Fczqnjr4e+MltdJu7u4nZ7lGgVIJUPmZwuDjjrV2x+LOimGK31S11Gy1XbiSyazdn3DrtwORmsm/utW8U/Efwr9q02Ww0mNpbuCG44mcoo+d1/h5KgDr1z1qt5rt/X9IS0h5nqw4GKKKKkYUUUUAFFFFABRRSO6xozuQqqMknsKAON0/F78V9VnHK2Nilv0/iYhv8RWJ40u49C+LHhfW9Rby9MMElsZmHyxSENyT2+8PwB9K2/h4rXdrquuSAhtSvXdCevlqcKPwJYV1Oo6bY6tZvZ6haQ3Vu/3o5UDD68963xOlRJfZsvws/wBTDDa0239q7/HT9CrqHiTRdL05r+71O1jtgu4P5oO7/dx1PsKzfBuraxr1td6rqFuLWxnl/wCJfAybZBCOjP7mmaf8OPCGl3X2m10G2EwbcGkLSbT6gOSB+FdTWBuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkjSWJ45FDI6lWB7g1wHhjU/+Ec0PxDpN03z6IZZUJ/iiILA/nz/wIV6DXB+NLSHSdbsvEUtuk9jIPsWpROm9XiboSvf/AOstb0lzxlS77eq/qxhWfJKNXtv6Pf8ARmR8MPEvhvRfA9rFfa7p8N7PJJPOkk6hgzMevPXAFd7pvijQdYujbabq9ndzhSxjhmDNgd8DtzUCeDvCciK6eG9FZWGQRYxYI/75q5YeH9F0qcz6do+n2czLtMlvbJGxHplQOOBWLd2bGjXEWf8AxTvxJuLQ5Wz1uPzovQTL94fjyfxFdvXJ/EDT5Z9AXUrXi80uQXUTD0X734Y5/wCA1th2ubke0tP8vxMcQny863jr/n+B1lUNc/5AGo/9esv/AKCak0vUItV0q1v4D+7njDgemeo/A8VbrnnF2cWbwktJI43wrYjVPhHYWBOPtOmeVk9tykf1rlrjxCknw4XwbHa3R8SG1XT2sfIfKnhC+7G3ZjndnFet0VUnzN32f9fqEfdSXYq6baCw0u0swc/Z4Uiz67VA/pVqiihu7uxJWVkFFFFIYUUUUAFFFFABRRRQAVy/j7U3sPDEsEALXV+wtIVXqS3B/TP5iuorh7c/8JV8QWuR82maICkZ7POep/DH/jo9a3w8Vzc72jr/AJfiYYhvl5I7y0/zfyR1Oi6amkaLZ6emCIIlQkdz3P4nJq/RRWLbbuzZJJWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVbULCDU9PuLG5XdDOhRh9e49+9WaKabTuhNJqzOM8F6hPp9zceE9Tb/S7Hm2c8CaHtj6fy+hrs65nxf4em1SCHUdNbytYsT5lvION4HJQ+x/zwTVrwv4kh8R6b5m3ybyE+XdW7cNG468Ht/wDq6it6qVRe1j8/J/5M56TdN+yl8vNf5o3Ka6LJG0bqGRgQwPcGnUVznScV4HkOk6hq3haZjmzlM1tuP3oW5/TI/Fq7WuJ8Yg6J4g0fxPGCI43+y3mO8bdCfpz+OK7UEMAQQQeQRXRX961Tv+fX/P5nPh/dvS/l/Lp/l8haKKK5zoCiiigAooooAKKKKACiiigAoorO1vWrPQNLlv718RoMKo+87dlHuacYuTstxSkoq72Mnxnr02l2Edhp4L6tqDeTbIvVc8F/w/n9DWj4b0OLw9ocFhGQzqN00n99z1P+ewFYfhLSLu9vpPFWtpi+uVxbQHpbxdgPQkfoT3Jrsq3qtQj7KPz9f+AYUk5y9rL5en/BCiiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuQ8ReHbuDUR4j8PYTU4x++g/huk7gj1/n9a6+irp1HB3RFSmqiszF8OeJbPxHZGSH93cx8T2z/fib39vetquV8Q+EmvLwaxotx9g1mPkSL9yb2cf1/PNM0bxor3Q0rxBB/Zmqrxh+I5fdW6c+mfoTWsqSmuel93Vf5oyjVcHyVfv6P/J+X3G7rmlx61ol3p0mMTxlVJ/hbqp/A4NZHgPVJNQ8NRwXOReWDm1nUnkFeBn8MfiDXT1xAB8O/Es/w2Wux59hOv8Aj/NqKXv05U/mvlv+H5BV9ypGp8n89vx/M7eiiiuc6AooooAKKKKACiiigAoorm9f8Y2ejyixtUa/1WT5Y7SDk5/2iOn86uEJTdooic4wXNJmrrGs2Ohae97fzCOJeAOrOfQDua5TSNJvvFepxeINfiMVpEd1hp7dAOzuO5/n9KsaV4Vu9R1BNb8VOtxdrzBZrzFbj6dCf8812VbOUaS5YO76v/L/ADMVGVV801aPRfq/8gooormOkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs/V9D07XbQ22o2yTJ/Cx4ZD6qeorQopxk4u6FKKkrPY4UaZ4q8J/8gqf+2tMXpa3DYmQf7Ld/88Vk+KPFGmeINDZMzabrdg4uYYbpNjBl6gHoeOgOCSBxXqFc94guvCMj/YvEF5pCShciO7uI0kUHuMkEfUV1QxMeZSmte6/XozlqYaXI405aPo9fue6NLRNUj1rRbTUYsYnjDEA52t0Yfgcir9ed2fh3Q7idh4R8Ym3lHPk2t4s6fiobJ/EmtEQfEDT8CO70rU0HeZDG5/LA/WplSpyd4SXz0/4H4lRq1Iq04v1Wv/B/A7OiuM/4SHxjAcT+EFlx3hvFwf500+L/ABKr7T4Ius+11kfnspfVp9Lfev8AMf1mHVP/AMBf+R2tFcb/AMJJ4ulOIfBpQ/8ATS9X+oFIf+Fg32R/xKNNQj7wzI6/zBNL6u18TS+a/S4fWIv4Yt/Jr87HZ9K53V/HGhaQTE92Lm5ztFva/vHJ9OOAfqazf+EEu9R58QeI76+XvBF+6j+hAzn9K6DSfDmj6IoGn2EMLYx5mNzn6seafLRju+b00/F/5BzVp7Ll9dX9y/zOZLeL/FZ2qn9gaW3Vm5uHX/2X9Pqa6HQfDGmeHoSLOHMzD95cSfNI/wBT/QcVs0VM6zkuWOi7L+tSoUIxfNJ3fd/p2CiiisTYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8t8O6Npni/x94v1TVLG3vbeC4SzgWdA4UoMNjP0H516Vf3SWOn3N3IQEgiaRifRQT/SuL+EVq8XgWO+mH7/AFG5lu5D6lmwP0WiO7fZfn/TB/D6v+v0Mv4jeCdE0zwnca3o1lFpmo6cVnhmtF8s8MAQcdetd/oN7JqXh3Tb6YYluLWOVx7soJ/nXG/Eq8/tsWngjTnEl/qMqNchOfIgU7izenQfWu+treO0tYbaIYjiQIg9ABgUR+F+v/D/ANeQS3X9en6ktFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBS1jTIta0e70yeSWOG6iaJ3iIDBTwcEgj9K4u3+Emn2sUcMHibxRHDGMLEmoBVA9AAnAr0GigLmJ4f8J6P4ZSX+zbYiaY5muJWLyyH/aY8/h0rboooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=
|
<image>Chords $\overline{A C}$ and $\overline{D F}$ are equidistant from the center. If the radius of $\odot G$ is 26 find $A C$
|
48
|
Geometry
|
Geometry3K
|
test
|
1
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHDAccDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuE+K13rumeFxqeh30ts9u+ZggB3IfqO1X/AIc+JX8UeD7W8nk33aZjnPcsO/40LW/kD0t5nWUVj+KPENr4X0G51O6YYjX5E7u3YCuC+F2o+LPFF3ca3q2oyjSwxEFuFAVz+WcChatoHornqtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVNTsItU0u5sZ1BjnjKEH3FeLfCS/k8M+MtX8L3r7FJYruOAGXv+Ve6V8+fGzTP7O8YWeoWMpjuL2LDBDg5HGfxpJ8svXQq3NG3bUseIby7+K/j+LRNPdho9k3zyDoQPvN/QV7jpun22ladBY2kYjggQIij0Fcx8OPB8HhPw3EpAa9uVElxJjuRwPoK7GqtyrlRF+Z8wUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeC+NyfEfxt03TF+aO3aNCPTHzGveq5+DwToFt4jfX47EjU3JZpjM55PX5ScfpQtJJ9gfwtdzfACqAOgGBS0UdKACis278Q6NYZ+1anaRkdVMoLfkOaw7n4l+GLfIW8knI/55Qt/XFaxoVJ/DFv5GU69KHxSS+Z11FeezfF3Rlz5Njev/vBV/qaqn4wRMf3WiTP/ANt8f+y1ssDiH9kwePwy+3+Z6ZRXmX/C25uv/COTY/6+D/8AEUo+L8an99ocyD/rvn/2UUfUMR/L+K/zF/aGG/m/B/5HplFeeQ/F7R2P76xvI/8Ad2t/UVqW3xM8MXBAa7lgJ/56xH+maiWErx3iy443Dy2mjr6KzLPxHot+QLXVLSRj0USgN+R5rT61hKLjo1Y6IyjJXi7hRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKq3+o2el2zXF9cxwRD+JzjP09a4DUviZPe3BsvDGnSXMx4EroT+IUfzNbUsPUq/CtO/QwrYmnR+J69up6LNPFbxNLPKkUa8l3YAD8TXI6t8TNA03ckEj3so/hhHy/8AfR/pmsCHwJ4j8Ryrc+JdVeNDz5KtuI/D7q/hmuw0nwRoGjbWgsUklH/LWb52z689Pwrf2eHpfHLmflt95h7TE1fgjyru9/uOMm8a+Mdaid9H0c21uFLeaU3HA/2mwp/KszQdH1zx5FNNd+IJUiifa8bFmOf93IAr2UopQoQNpGCPavMfBDHRfHur6M5wshZkB9jn+RrelXTpzdKKi1r39dzmrYdqpBVZuSej6Ly2NOz+E2iQ4N1cXdy3cFwo/QZ/Wty28DeGrTGzSLdsf89QZP8A0LNdDRXFLE1pbyZ3wwlCG0EUodI023x5On2seP7kSj+lWxGgGAigfSnUVi5N7m6ilshNq/3R+VIY0IwUUj3FOopDKc2k6dcjE9hbSD/biU/0rLuvA/hq7BEmkW65/wCeQ8v/ANBxXQUVcas4/C2jOVKnL4opnBXnwn0OYE2s11at22vuH68/rWYfAXirRTv0TXy6j/lmzNHn8OQa9Qorojjay0buvPU55YCg3dKz8tDy7/hMPGnh441vR/tMI6yhMf8Ajy5X9K39J+JmgakVSeR7KU9px8uf94f1xXYkAjBGRXP6v4J0HWQzT2KRyn/lrD8jfp1/Gn7WhU+OFvNf5E+xxFP+HO67S/zN6GaK4iWWGVJI26OjAg/iKfXl0/gTxH4bla58M6o8qDkwsdrH8Put+lWdM+Jk9lcix8T6fJazDgyohH4lT/MUPCcyvRlzL8fuGsYovlrR5X+H3npFFVbDUbPU7YXFlcxzxH+JGzj6+lWq5GmnZnYmmroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorN1rXtP0CyNzfzBB/Cg5Zz6AU4xcnZbkykormk7I0XdY0LuwVVGSScACuA8QfEmKGc6f4fhN9eMdokAJQH2A+9/KsV7jxH8SLpo7fdYaMrYJOcH6/3j7dK73w94T0vw3AFtIQ05HzzuMu3+A9q7fZUqGtXWXb/M4va1cRpR92Pfv6I4zT/AOr+IbhdQ8VX0vPIt1b5senoo9hXoWmaPp+j24gsLWOBB12jk/U9TV6isKuIqVdHt26G9HDU6WqWvd7hRRRWB0BXl/jEHQ/iLpWrqMRzbVfHTrg/wA69Qrhfinp5ufDSXaD95ayhsjsDwa6sHJKqk9np95x46LdFyW61+47kEMAQcg8g0tZHhfUBqfhqwus5ZogG9iOK1655RcZOL6HVCSlFSXUKKKKkoKKKKACiiigAooooAKKKKACqOp6Np+s25gv7WOdO24cj6HqKvUU03F3QpRUlZo8vv8AwFrHh25bUPCl9IQOTbs3zY9PRh7GtHw/8SYZ5v7P1+E2N6p2lyCEJ9wfu/yrv6wvEPhLS/EcBF1CEnAwk6DDr/iPY12LExqrlrq/mt/+CcTws6T5sO7eT2/4BuI6ugdGDKRkEHIIpa8ljuvEnw3uRFcqb7Ri2FYdAPY/wn26V6Rouu2Gv2S3VhMHX+JDwyH0IrKth3TXMnePc1o4mNR8klaS6M0qKKK5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorkvGfjSHw7B9ltsTalKMJGOdme5/oKunTlUlyxWpnVqxpRc5vQseLPGNn4ZttvE184/dwA/q3oK5PQ/COpeK74a34od/JbmK2PGR247L7Vd8I+CZprka94iLT3sh3pFJzt929/btXonSuuVWOHXJS1l1f+RxwpTxL9pW0j0j+rI4IIbWBIYI1jiQYVFGABUlFFcJ6GwUUUUAFFFFABWfrliupaHe2bDPmxMAPfHFaFFOLcWmhSipJpnn3wovmbSLvTZD+8tZjgex6/rXoNeXaF/wASD4rX1gflhvASo9c8j+teo11Y1L2vMtpanJgZP2XI94tr7gooorkOwKKKKACiiigAooooAKKKKACiiigAooooAjuLeG6geCeNZInGGRhkEV5jrnhHUfCd6db8MSSGFeZbcc4HfjutepUda2o15Unpqnuu5hXw8ay10a2fVHNeE/GVl4mttoxDfIP3kBP6r6iulrzvxd4Jmhuv7e8OEwXsZ3vFHxu919/bvWv4M8ZxeIrf7NdYh1KIYeM8b8dx/UVrVoxlH2tHbqu3/AMaNeUZexrfF0fR/wDBOtooorkO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorK8Q67beHtJlvrggkDEad3bsKqMXJqK3JlJRi5S2Rm+MvFsPhqw2x4kv5hiGP0/wBo+1YfgnwhNJcHxDrwMt7Md8SSc7M/xH3/AJVS8HaBdeJtVbxRrgLoWzbxN0Poceg7V6hXZVmqEfZQ36v9DhpQeIn7ap8K+FfqwooorhPQCiiigAooooAKKKKACiiigDzH4jRtpfibRtcj+XDhXb6H/CvS4pFmhSVfuuoYfQ1yfxJ077f4QndVy9uwlH071c8Daj/aXhGxlLZdF8pz7iuyp7+GjLtp+pw0vcxU4fzJP9GdHRRRXGdwUUyaaK3iaWeVIo1GWd2CgfUmqlnrOl6jIY7HUrO6deqwTq5H4A0AXqKKQkKCSQAOSTQAtFVrPUbHUVdrG9t7pUba5glVwp9Dg8GrNABRRRQAUUUUAFFFFABRRRQAV55428HypP8A8JDoQaK+hO+RI+N+P4h7/wA69DorWjWlSlzRMa1GNaPLL/hjmPBvi6HxLYbZCI7+EYmj6Z/2h7V09eYeMdAufDeqp4o0NSiq2biJRwPU49D3ruvD2vW3iLSY723OCeJE7o3cVrXpRsqtP4X+D7GOHrSu6NX4l+K7mrRRRXKdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMllSCJ5ZWCxoCzMegArygCf4keMDksujWR/Aj/ABP8q1fiNrs08kHhnTSWublh5u3sD0X+tdb4Z0GDw9osNlEAXxulfuzd67qf+z0vafalt5LuefU/2mr7JfDHfzfY1YYY7eFIYkCRoAqqOgFPoorhPQCiiigAooooAKKKKACiiigAooooAr31st7YXFswBEsbJz7ivPvhXctbSaro0pO6CTcoPpnBr0mvLv8AkX/jB/dhvh+HzD/EV2Yb36c6flf7jhxXuVKdXzt956jRRRXGdx474lWf4g/E0eGDcSRaRp677hY2xvbv/hS+K/hWuixWmqeCLe5TUYJVJiWcncPXLH+tc7oetaxb/EXxHDoVolzq15KUjaX7kSg8sa6C/wDFHxF8DXMF34m+xahpcrhXa3UDZn3Cqc/UGlH4Yvb/ADKl8TW563YPPLp9u91H5dw0amRPRsc1LMqvBIrnClSCfQYqOyvIdQsYLy3bdDMgdD7Glu/+POf/AK5t/KnPqTHocz4F0bQdGtL5NC1Nr6OW4LzM0ivsf0+UDFaz+KNCSG5lbVrQJanbOfNH7s+h964L4Jf8gnW/+v4/1rn/AAB4Z0/xB448RSanELi3trhitu/KMxPUjoaNW0vK/wCQbJvz/wAz1fR/GPh7X7hrfS9Vt7iZRnywSrfgCBn8K3K8W8b6Lp/hv4i+GLvR7WKyaeXbIsChFPOOg4r2mhaxuD0dgooooAKKKKACiiigAooooAZLFHPC8UqB43BVlPQivKGW4+G3i8Mu5tGvW6dgP8R/KvWqyPEugweIdFmspQA5G6J+6t2NdOGrKD5Z/C9zlxVF1IqUPiW3+RqRSxzwpLEwaNwGVh0INPrzr4c65PbzT+GdSJW5tifJ3dwOo/rXotZ16TpTcWaUKyrQU1/TCiiisjYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqhrWqw6LpFxfzkbYlyB/ePYVfrzH4gXs2u+ILHwvZEnLhpiPU/4Ct8PS9rUSe3X0OfE1vZU3Jb7L1JPh1pU2p6hd+KdRBaWZyId36n+lelVW0+yi07T4LOBQscKBAB7VZpYir7Wbl06eg8PR9jTUevX1CiiisTcKKKKACiiigAooooAKKKKACiiigArzb4qWzW0mlazEDugk2sR6ZyK9JrnPHOnf2l4RvogMvGvmoPcV0YWfJWi2c2Mp89CSW/+Rt2Nyt7YW9yhBEsavx7irFch8NtR+3+EIEZsvbkxH6DpXX1nWhyVHDsaUantKcZ90eNfD+BbP4xeJYJQBL8xTPXGc11XxfaJfh1febjJZQmf72aqeMvAeq3PiGLxP4VvI7XVUG2RJOFkH5H9ayH8G+OfGd7bJ4vu7W30y3cOYLfGZD+H9TWNuaCj2N72m5dzufh+kkfgHRVkBDi2XOfxreu/wDjzn/65t/KnQQx20EcEShY41Cqo7AUToZLeSNcZZCBn3FVN3u0TDS1zzD4Jf8AIJ1v/r+P9ah+E/8AyNni3/r5/qa6T4c+EtQ8J2OpQ6hJbu1zcmVPIYsAPfIHNR+B/B+o+G9c1y9vZLZor+bfEInJIGe+QKa+Jen+QPZ+v+Zz/wAU/wDkd/CP/Xf+tes1w3jXwfqPiLxHoWoWclssNhJvlErkMRnPGAc/pWj460jX9Z0VLfw7qP2G7EoZpPPeLK+mVBNSnaPzf6Desvl/mdRRVTS4Lm20q1gvJfNuY4lWWTcW3MBycnk1bqnoyVsFFFFIYUUUUAFFFFABRRRQB5r8RtJl02+tfFGnArNC4E239D/Su60XVYda0i3v4SNsqAkf3T3FT39lDqNhPZzqGimQqwPvXnXw/vJdC8RX/hi8Ygby0OfUf4iu1fvqFvtQ/L/gHA/3GIv9mf5/8E9OoooriO8KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCtqN7Hp2nXF5KcJChc/hXnnw2sZdT1TUPEt2CXlcpET79f8KvfFPVHh0e30uA/vryQAgddo/wATXU+G9LXRvD9nZKOUjBc+rHrXbH91hm+svyRwy/e4pLpDX5s1aKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACmSxrNC8T/ddSp+hp9FAHmPw5kbS/E2s6HJxhy6L7g/4V6dXl2u/8SD4rWN+PlhvAAx9c8H+leo12Yz3pRqfzI4sD7sZUv5W/u6BRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmfxKsZNM1PTvEloCrxOElI9un+FemVleJNLXWPD95ZMMl4yV9mHIrfDVPZ1U3t19DnxVL2tJxW/T1LmnXseo6db3kRBSZA4x71ZrgPhZqbTaPcaXMcTWchAB67T/ga7+pr0/ZVHDsVh6vtaUZ9wooorI2CiiigAooooAKKKKACiiigAooooAKKKKACiiobu4FrZz3DdIo2c/gM0JX0E3ZXPM7wf8JL8W44D81vYdR2+Xk/rXqVeafC23a7utW1mXlpZNik/nXpddmNdpqmvspI48CrwdR7ybYUUUVxnaFFFFABRRRQAUUUUAV76+tdNtJLu9nSC3jGXkc4ArC/4WD4S/6GCx/7+Vtalptpq9hLY30ImtpRh0J4IrmD8LfBSqWbRIAAMkl24/WkPQ07Xxv4YvbmO2ttbs5ZpDtRFfJY+lX9V13S9Djjk1S+htEkOEMrYya8q8K+FdF1zx/LqWkWCWuj6S+yNkJ/fy+uT2FXfilax6z4y8K6LKu+KaUs6eo709+W3UXV36HZ/wDCwfCX/QwWP/fyrmreIbax8K3Wu2zLcQRwGWNlPD+lY/8AwqvwX/0A4f8Avtv8a35NC09tAfRFgCWLRGERg9F9qUvhdtxrdX2PNbLRPHGt6EPE3/CXT211Khnisox+5C9QpGcfpXb+BfEU3ibwvBfXKBLlWaKYL0LKcEiuRj8FePtPsW0PTvEdmNGOUSSSM+ciHsOP613nhrw/beGdCt9LtmZ1iGWdursepNVprbboS76X3OV+K9izaRaalGP3lrMMn2PT9a7HQ75dS0Oyu1OfNiUn645qDxRp41Pw1f2uMs0RK/Uc1znws1A3Php7Rz+8tZSuD6HkV1v38L/hf4M4l+7xflJfiv8AgHdUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeW2f8AxTfxblg+5b3/AEHb5uR+tepV5p8Urc2l5pGsR8NFJsYj65r0W1nW6s4bhfuyorj8RmuzE+/CFTurfccOF9ypUpdndfMmooorjO4KKKKACiiigAooooAKKKKACiiigAooooAK5rx7emx8G37g4aRRGp9ya6WvPvi1cFNAtLVes8/T6D/69dGFjzVorzOfFz5KEn5Gt8ObL7H4NtDj5psyk/U8V1dUdFthaaJZW46JCo/Sr1Z1pc9SUu7LoQ5KcY9kFFFFZmoUUUUAFFFFABRRRQAVw3xT8QyaL4WNraNi+1BxbwgdRnqa7mvH/EUn/CR/G/StKPzW+nJ5jL2z1P8ASlbmaj3GnZOXY9D8HaFH4c8L2WnouHVA0p7s55JrifHPhbxPrnxA0660gG1toYdhvty/us9SBnOa9TrkZPHcMPxATwpJYsrum9bky8HjONuP60370kxL3Ys4HxH4I8Q+CtPfxDpHie+uZbch545ifmHc9eR7GvUPCGvjxN4XstU2hXlT94o6Bh1qp8Q7uGy8B6vJOwAaAooPcnoKy/g/ayW3w7sfMBHmM0i59CeKIu912sEuj9Tu6KKKAEIDAgjIPBrzDweTofxF1XSGOI5txTPTrkfzr1CvL/G6nRfHukaygwshVXP0OP5GuzCe9zUu6/FHDjfd5Kv8r/B6HqFFIrB1DKcgjINLXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByfxHs/tfgy7IGWhIlB9MHmrHgO8+2+DbBycsimNj7g1q61bC70S9tyMh4WH6VxvwluC/h+6tj1hn6emR/wDWrsj72Fa7P8zil7uLT/mX5HoNFFFcZ2hRRRQAUUUUAFFFFABRRRQAVjX/AIs8P6Zdta32r2lvcL96OSQAitmuC1v4SeHtf1e41O9kvTcTtubbLgD6cUtbj0Nv/hPPCn/QwWH/AH+FH/CeeFP+hgsP+/wrjb34M+CtOspby7uLyKCJSzu04wB+VeWaD4Nh8aeL5LXQop4dHib555juIX6+p9Ka1dgeiufUVtcw3ltHcW8iywyLuR1OQw9RXm/xPYza3oVn2aQNj6sBXotjZxafYQWcAxFCgRc+grznxx+/+Imgw9l2/wDoWa7MFb2110T/ACODH39hbu1+Z6ZGmyNUH8IAp1FFcZ3BRRRQAUUUUAFFFFABRRRQAVxWj+An03x9f+KJtSWc3QYLB5O3Zn/a3HP5V2tFC0dw6WCuK8b/AA9h8Vz2+oWt6+n6rbf6u4QZz7Hp+ddrRSsNOx5I3wu8Ta5cQR+KPFT3dhCwbyYwcv8AnwPrzXqtpaQ2NnDa26COGJQiKOwFTUVV9LC8wooopAFcR8UdO+1+FvtKjL2sgcH0B4NdvWN4ruLGDw3ejUJVjhkjKZPOSegA+tbYeTjVi13MMTBToyi+wnhLUf7U8L2FznLGIK31HFbVeK+C/H8HhvT20+7tpZYfMLLJGwyoPXg/4167pWrWetWKXljMJIm/MH0I7GtcXh50pttaX0MsHioVqaSfvW1LtFFFch2BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkXfE6f3gRXmvwvbydY1206BZScfRiK9MrzHwN+5+IWvRDgHdx/wACzXZh9aNReS/M4sTpXpPzf5Hp1FFFcZ2hRRRQAUUUUAFFFFABRRRQAUyWWOCJ5ZXVI0BZmY4AA708kAEk4A6k14d8QfGd74v1lfB/hfdJG77J5UPDnuM/3RSbey3Gl1exU8VeIdS+KPiZPDfh8sulxP8AvJezY6u3t6CvYvC/hmw8K6LFp1igAUZkkI+aRu5NUfA/guy8G6MttCA91IA1xPjl2/wrqKrSKsiW+Z3YV5J8Qri5tfHmnT2kPnXEcYMcZBO456YFet15j41/d/EjQpPUL/PFdmAdqr9GcWYK9Jeq/MP+E18df9Cyn/gPL/8AFUf8Jr46/wChZT/wHl/+Kr06il9Zp/8APtfiP6rV/wCfr/A8x/4TXx1/0LKf+A8v/wAVR/wmvjr/AKFlP/AeX/4qvTqKPrNP/n2vxD6rV/5+v8DzH/hNfHX/AELKf+A8v/xVH/Ca+Ov+hZT/AMB5f/iq9Ooo+s0/+fa/EPqtX/n6/wADzH/hNfHX/Qsp/wCA8v8A8VR/wmvjr/oWU/8AAeX/AOKr06ij6zT/AOfa/EPqtX/n6/wPMf8AhNfHX/Qsp/4Dy/8AxVH/AAmvjr/oWU/8B5f/AIqvTqKPrNP/AJ9r8Q+q1f8An6/wPMf+E18df9Cyn/gPL/8AFUf8Jr46/wChZT/wHl/+Kr06ij6zT/59r8Q+q1f+fr/A8x/4TXx1/wBCyn/gPL/8VR/wmvjr/oWU/wDAeX/4qvTqKPrNP/n2vxD6rV/5+v8AA8x/4TXx1/0LKf8AgPL/APFUf8Jr46/6FlP/AAHl/wDiq9Ooo+s0/wDn2vxD6rV/5+v8DzH/AITXx1/0LKf+A8v/AMVR/wAJr46/6FlP/AeX/wCKr06ij6zT/wCfa/EPqtX/AJ+v8DzH/hNfHX/Qsp/4Dy//ABVcl4z17XtXa2j1mw+xBASkYRlDe/zE173XPeLfCsHijThC7+VcRndFLjOD6H2rahi6Uaibgl5mGIwdaVNpVG/I+ea9N+D9xP8AbdQt8sbfy1fHYNmsj/hVniL7V5WLbZn/AFvmcfyzXqPhLwrb+F9OMKP5txIcyy4xk+g9q7MdiqUqLjF3bOHL8JWjXU5KyRuySxwrulkRF9WbApY5ElQPG6up7qcisXxfoKeI/DF7pzffdCYz6OORXmXwR1+W3uL/AML3zESxOXiVjzkcMP614MdW0fRPRJntNRJdW8j7I54nf+6rgmvOvix46Ph/Tf7H0586peDb8vJjU8Z+p7VL8K/AzeHNK/tLUAW1S7Xc245Mant9fWiOt30CWlu56LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5j4S4+KOtAdMN/SvTq8x8F/vfiTrsg6AN/PFdmG/h1PT9TixX8Sl6/oenUUUVxnaFFFFABRRRQAUUUUAFFFFAHn/AMW77Xbfw1Ha6Fa3U0l25SZraFnZUx/sjjNeTeDtR8WeC/Oey8Fzz3E33p57Gcvj0GMYFfTNFJKzbG3dJHiX/C0viJ/0JTf+ANx/jXYeAfFfijxJd3S65oY02CJAUYwSRl2P++ea72iqQmFeY/EoeT4m0C66YcLn/gYNenV518W4SNM067Ucwznn6jiurAv9+l3/AMjjx6/2eT7W/M9EUhlDDoRmlqrpswuNMtZlOQ8Sn9KtVytWdjrTurhRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeA/Eu0uPA/xCtPE+mqAlwd+3sXHUH617pqOoW2lafPfXkojghUu7H0r59uLTWfjDr2oX8ZaHTrKNhACOOOij3Pepd+a66FK1nfqb3w08LXfirXJfGviAGQNIWt0ccMfXHoO1e3V5D8EPETyWN14bu2xcWbFolbrtzyPwNevVpKyslsQrttvcKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjEKpJ6AZrzL4bAzeKNfuuxcrn/gea9F1GYW+mXUzHASJjn8K4L4SQk6bqV2w5mnGD+HNdlHTD1H6I4q+uIpR9X+B6NRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyfxHs/tfgy7IGTCVl/I/wD166yqeq2gv9Ju7UjPmxMoHvjitKM+SpGXZmVaHPTlHujH8B3n23wbp75yUTyyfccV0ledfCe7IsNQ0xz89vNkD0B6/rXotaYqHJWkvMzwc+ehF+QUUUVznSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUEgAknAHeiigDwnx74ivPH/AIph8IaAxa0STE0i9HI6k+wr1/w14es/DGh2+mWaAJGvztjl27k1qLFGrblRQfUCn0LSNgerufP3jCGX4e/Fe21y2UrZ3b+YwHTB4cf1r3y1uYry1iuYWDRSoHUjuDT2jR/vorfUZpwAAwBgULSPKD1lcKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOc8d3gsvB2oPnBdPLU+5qr8N7M2ngy1JGDMzS/mf8A61ZHxYuydOsNMjP7y4myR7Dp+tdxpNoLHSLS1Ax5USqR745/WuyXuYVL+Z3+44o+/i5P+VW+8uUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlumf8U58Wbm0PywX2do7c8j+tepV5t8UbJ7WbTdftwRJbyBHI+uRXf6bepqOmW15GcrNGHB+tdmJ9+EKvdWfqjhwv7upOj2d16MtUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVV1K9j07TLm8lOEhjLk00m3ZCbSV2eb6of+Ei+LNraL80FjjeO3HJ/pXqVebfC6zkuptS16dfnuJCiE/XJr0muvGNKapr7Kt/mceBTcHVf2nf/IKKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigDL8RaUutaDd2LDLSIdnsw6Vyfwu1V5NOudGuDiezc7Qeu0n/GvQK8r8QI3g34hW2sRArZXp/egdOfvD+tduG/eQlR+a9UcOK/dVI1+i0foz1SimxussayIQVYAgjuKdXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn3xR1Vk0620a3OZ7xxuA67Qf6mu/kkWKJpHIVFBYk9gK8t8PI/jL4g3GsyrmysziLPTj7v+NdeEilJ1ZbR1+fQ4sbJuKpR3lp8up6B4d0pdG0C0sQMNGg3+7HrWpRRXLKTk3J9TrjFRioroFFFFIoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsDxjoK+IPD09sFHnoPMhP+0O341v0VUJuElKO6IqQU4uMtmcL8Ndfa+0p9Kumxd2R24bqV/+t0ruq8s8X2U3hHxXb+JbBCLaZ8TovTPcfjXpWn30GpWEN5bOHilUMpFdOKgm1WhtL8H1Ry4SbSdGfxR/FdGWaKKK5DtCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq2oX8GmWE15cuFiiUsxNNJt2Qm0ldnHfErX2stMTSbQk3d6duF6hf/AK9bfg/QV8P+HoLYgee48yY/7R7fhXGeD7Gfxb4puPE2oKfs8L4gQ9M9h+FepV2YhqlBUF6v1/4BxYZOrN4h7bL0/wCCFFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFPVdMt9X02exuVDRyrj6HsRXnHhDVLjwj4gm8M6qxW3d/3EjdAT0/A16nXKeOPCi+ItM823AXULcbom6bv9murDVI60qnwv8AB9zjxVKV1Wp/FH8V2Ororh/AXi1tShOkakSmpWw2/NwXA/qK7isatKVKbjI3o1Y1YKcQooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8s8W6nceMPEUPhrSnzbRvmeRehI6/gK2vH3ixtOhGj6aS+pXI2nZyUB/qaveB/Cq+HdM82cBr+4G6Vj/D/ALNd1GKoQ9tLd7L9TgryeIn7CGy+J/ob+labb6RpsFjbLtiiXA9z3Jq5RRXE227s7klFWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB59458JzmceIdEzHfwHfIqcF8dx7/wA62fBvi6DxLYhJCI9QiGJYumf9oV1FebeL/CN1pt9/wkfhzdHPGd80Mff1IH8xXbTnGtBUqj1Wz/RnBVpyoTdakrp7r9Uek0VzHhHxja+JbXy2xDfxj95Ce/uPaunrlqU5U5cslqdlOpGpFSg7oKKKKgsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxl4uh8NWOyPEl/KMRRdce5pfF3jG18NWhRSst/IP3UI7e59q57wh4RutSvv+Ej8RbpJ5Dvhhft6Ej+Qrro0YqPtavw9F3OKvXlKXsaPxdX2J/AvhOdZ28Q60DJfznfGr8lAe59/wCVeg0UVjWqyqy5pHRRoxow5YhRRRWRqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAee+LPA8y3f9ueHGMF9Gd7xIcbz6j39u9XPCPjyHViNP1QC11JPlIb5RIf6H2rtq5HxZ4Fs/EAN1bEW2orysqjAb/e/xrshWhUj7Ot8n2/4Bw1KE6UnUofNdH/wTrqK8u0fxpqnhi7XSPFMEhjXhLnGSB65/iH616VaXlvfWyXFrMk0LjKuhyDWVahOk9du/Q3oYiFZaaNbrqieiiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKhu7y3sbZ7i6mSGFBlnc4AppX0Qm0tWTVxPi7x5DpDHT9MAutTf5QF5EZ9/U+1YuseNdT8TXh0fwtDIEbh7jGCR9f4R+tdF4T8C2nh8C7uSLrUW5aVhkJ/u/412xowornr79F/mcMq8675KG3WX+RleE/A8z3X9ueIyZ72Q70ic52+59/btXodFFc1atKrLmkdNGhCjHlj/w4UUUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUNW0aw1uza2v7dZUPQnqp9Qe1ecXXhrxH4IuWvdAne7sc5eAjJx7r3+o5r1ait6OInT93ddmc9bDQqvm2l3W5xnh34jaXq5W3vP9BvOhWQ/KT7Ht+NdkCCAQQQehFcz4h8C6Rr+6V4vs912nhGCfqO9ch9k8aeB2zaudS05f4cFsD/d6j8K29lRra0nZ9n+jMPbVqGlVcy7r9UerUVxGi/E7R9QIivw1hcdCJOUz9e3412cFxDdRCW3mSWM9GRgwP4iuapRqU3aasdVKvTqq8HckooorM1CiiigAooooAKKKKACiiigAooooAKKKjnuIbaIyzypFGOrOwAH4mgNiSkJABJOAOpNcTrPxO0fTy0ViHv5+gEfCZ+vf8KwPsvjXxwc3DnTdOb+HBUEfTqfxrrhhJ25qnurz/yOOeNgny01zPy/zOk8Q/EXS9H3QWZF9edAkZ+UH3P+Fc3beHPEnji5S816d7SwzlIQMHHsvb6nmuv8P+BNH0ALKsX2m6HWeYZIPsO1dPVe3p0dKC17v9CPq9StrXenZbfPuUNJ0Ww0S0W2sLdYkHUjqx9Se9X6KK45ScndndGKirJaBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBg6z4O0TXMtd2aCU/wDLWP5W/Mdfxrjpvh3rmizGfw5rLgdfLkYqfpkcH8q9Porop4qrTVk7rs9Tmq4SlUfM1Z91ozy5fGni/QD5et6MbiNesqpj/wAeXIrZ0/4p6BdgC5E9o/feu5fzH+FduVDDDAEehrHv/CmhamS11pluznq4Xa35jmtPbUJ/HC3p/kZexxEP4c7+v+ZNZ+ItGvwDbanavnoPMAP5HmtIEMAQQQe4rg7v4UaJMS1rPdWp7BX3D9eazj8MtXsyTpviKRB2BDL+oNHssPL4alvVD9tiY/FTv6P/ADPTqK8w/wCEd+IlpxDrazL23TsT+opfL+J8PCzRSe/7s/zFH1SL2qR+8PrklvTl9x6dRXmPm/FHptj+uyGjyvidLw00SZ/65j+Qo+qf34/eH13/AKdy+49OpCwUEsQAO5rzH/hG/iHdf67XFiB67Z2H8hSj4Y6teHdqPiKR/UBWb9SaPq9JfFUXyuw+s1X8NJ/OyO6u/Emi2IP2nVLVCOoEgY/kOa5q/wDipoNrlbYT3bjpsXap/E8/pTLT4UaHCQbmW6uW77n2j9MV0lh4V0PTMG10y3Vh0crub8zzR/ssO8vwD/a59o/izhm8Z+MNfOzRNGMETdJWTP8A482BToPh3resyi48R6y5zz5aMWI9sngflXpwUKMKAB6Clo+uOOlKKj+f3i+pKWtaTl+C+5GDo3g7RNDANrZo0o/5ayfM35npW90oorlnOU3eTudcIRgrRVkFFFFSWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=
|
<image>Find the length of $\widehat {ZY}$. Round to the nearest hundredth.
|
7.85
|
Geometry
|
Geometry3K
|
test
|
2
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACiAZQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKCcDJrz3XPGV7qt5JpfhkhUQ7Z9QPRfZP8fy9a0p05VHZDSudRrvivSPDyYvbkGcjK28fzSN+Hb6nFclP4v8AFGrf8gzT4NOtz0lufmf64/8ArH61V07QbWwczvuubtjl7ib5mJ9R6fzrUrsjShHpcqyRiyadr142+98T3pY9VhJRfyBA/Sse50l18RWVhJqV/JHPGzMzTfNkA9Pyrsq56+/5HbS/+uL/AMmreDKQ/wD4RS2/6CGo/wDf8f4Uf8Ipbf8AQQ1H/v8Aj/Ct6ip52K5g/wDCKW3/AEENR/7/AI/wo/4RS2/6CGo/9/x/hW9RRzsLmD/wilt/0ENR/wC/4/wo/wCEUtv+ghqP/f8AH+Fb1FHOwuYP/CKW3/QQ1H/v+P8ACj/hFLb/AKCGo/8Af8f4VvUUc7C5g/8ACKW3/QQ1H/v+P8KP+EUtv+ghqP8A3/H+Fb1FHOwuYP8Awilt/wBBDUf+/wCP8KP+EUtv+ghqP/f8f4VvUUc7C5g/8Ipbf9BDUf8Av+P8KP8AhFLb/oIaj/3/AB/hW9RRzsLmD/wilt/0ENR/7/j/AAo/4RS2/wCghqP/AH/H+Fb1FHOwucboOipqentPPfXyuJCuEmwMDHqK1P8AhFLb/oIaj/3/AB/hSeERjRmz/wA9m/pW/TcmdWNioYicY6JMwf8AhFLb/oIaj/3/AB/hR/wilt/0ENR/7/j/AAreopc7OW5g/wDCKW3/AEENR/7/AI/wo/4RS2/6CGo/9/x/hW9RRzsLmD/wilt/0ENR/wC/4/wo/wCEUtv+ghqP/f8AH+Fb1FHOwuYP/CKW3/QQ1H/v+P8ACj/hFLb/AKCGo/8Af8f4VvUUc7C5g/8ACKW3/QQ1H/v+P8KP+EUtv+ghqP8A3/H+Fb1FHOwuYP8Awilt/wBBDUf+/wCP8KP+EUtv+ghqP/f8f4VvUUc7C5g/8Ipbf9BDUf8Av+P8KP8AhFLb/oIaj/3/AB/hW9RRzsLnGapo4sdR02CG/vttzKUctNyBx04961xoeoQnNr4j1OLHTMrH+RFReIP+Q1oX/Xwf/Za6GqcnZDuZ8Or+M9LxtubXVIh/BMm18fUY/Umt3SPiFp15OLTU4n0u86bJ/uH6N/jiqVVr2wtdQh8q6hWRe2RyPoe1YypwluvuFZM9FBBAIOQehFLXlVnf6x4MYNbu+oaMPv27nLwj1U/5Ht3r0jStVs9a0+O+sZRJC/5qe4I7EVyVaLhruiWrF2iiisSQooooAKKKKACiisPxbro8PeHp7xMG4b91Avq56flyfwqoxcmkhnN+MteuNSvz4Z0mTbx/p1wv8C/3B7+v5etRWNlBp9oltbptjX8yfU+9U9C006fY5mJa7nPmTuxySx7Z9v8AGtSvRUVBcsS/IKKKKACuevv+R20v/ri/8mroa56+/wCR20v/AK4v/JquHUaOhoooqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFb3MN1H5kEqyJnG5TkZqWsDwh/yBn/67N/St+mzfE0lRrSprowooopGAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz3iD/kNaF/18H/2WuhrnvEH/ACGtC/6+D/7LXQ1ctkAUUUVABWJDcz+C9W/tK0Vn0q4YC7t1/g/2l/z7d+NumSxJPE8UihkcFWU9waemz2A7u2uIbu2iuLeRZIZVDo69CD0NS1594C1CTTNTuvDFy5aNQZ7Jm7qeq/1/Bq9Brz6tPklYhqwUUUVmIKKKKACvOPGE/wDavjex0wHMGnxfaJR/tnpn/wAd/M16PXlWnyfbfE/iG/PO66MKH/ZXI/kBXVhV7zl2KibFFFFdJQUUUUAFc9ff8jtpf/XF/wCTV0Nc3fzRL440tWkQN5L8Fhno1VHqCOkoooqQCiiigAooooAKKKKACiiigAooooAKKKx/FOp3Gj+HLy9tIzJcooWNQu7kkDOPbOfwoA2KK811NfEvhbSbbX5delvHLJ59pMv7v5uw57ewFekRuJYkkAIDKGAPvSTEncoaLpr6VYm3eQSEyF8gY64rRrN0PUpdUsDcSoiMJCmEzjjFaVUzoxPtPbS9r8V9QooopGAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz3iD/AJDWhf8AXwf/AGWuhrm/Ec0Uet6EHkRT55OGYD+7XSVT2QBRRRUgFFFFAGHr8j6bdadrkIPmWU434/iQ9R/T8a9XjkWWNZEYMjgMpHcGvNdagFzol5ERnMTEfUDI/UV13gu7N74N0uZjkiERk/7hK/8AstY4lXgpClsb1FFFcRAUUUUAFeSeFubfUWP3jfSZ/IV63XlGip9l1fXrE8eTfOwHsScfoK68LtL5FxNqiiiugYUUUUAUNcu5rDQb+7t1zNDbvIgxnkKSK+cJp5rid55pXkmdtzOxySfXNfTrKGUqwBBGCD3rzTUfh9ox8W2ttGbiK2uFaR4kcYBAJwCRkDipcXLYiUW9jo/h7qN3qfhGCW8Znkjdolkbkuo6Env6fhXU1BZWVvp1nFaWkSxQRLtRB2FT1SKWwUUUUDCiiigAooooAKKKKACiiigApskiRLukdUX1Y4FOrC8X6HJ4g8OT2MLKs+VkiLHA3A9D9RkUCZynjqw1uFzqd9cRX+h29wshsR+7IUnAyQOeT6nrXoVpcR3dnBcxZ8uaNZEz6EZFcFqH/CZeI9KGiXOixWYkKrc3jTKVIBByAPcds13tpbpZ2cFtHnZDGsa59AMCpW4luY3hD/kDP/12b+lb9RQRQRR7bdI0TOcRgAZ/CpatnTiavta0qiVrsKKKKRgFFFFABRRRQAUUUUAFFFFABRRRQAVHO7RW8siJvdULKvqQOlSUUAfMt/fXOpXst3dytLPK25mY/p7D2r2H4W6ld33hyaK5dpEtpvLidjk7cA7c+39ao+JvAmkSa/YvF51uL6YiZI2G0cjJXIOOv09q7vStKs9G0+OxsYhHAnQZySe5J7mpUGtWZxi07suUUUVRoFFFFAEVyAbWYHpsP8q1fhoSfA9nns8mP++zWJqkwg0q7lJ+7CxH1xxXSeAbc23gjTEYYLI0n/fTFh+hFZ1/4XzE9jpKKKK4CAooooAK801+H+yviL5pGIdUgBB7eYvH9B/31Xpdcp4/0aXU9AF1ag/bbB/tEWOpA+8Py5/AVvh5cs9euhUXqZtFVNMv49T0+K6jx84+Zf7rdxVuu1qxQUUUUgCuevv+R20v/ri/8mroa56+/wCR20v/AK4v/JquHUaOhoooqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBgeEP+QM//XZv6Vv1leH7CfTdOaC4ChzIzfKc8HFatNnVjZxniJyi7psKKKKRyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHPeIP8AkNaF/wBfB/8AZa6Gue8Qf8hrQv8Ar4P/ALLXQ1ctkAUUUVABRRRQBh+KHklsoNNg5uL6ZYUH4j+uPzr1O0tksrKC1i/1cMaxr9AMD+Ved+E7U+IPF8urEZsdNBigPZ5D1I+gyf8AvmvSq58TLVQ7Ey7BRRRXISFFFFABRRRQB5dr2mv4N1tr2BCdEvn/AHiqP+PeQ/0//V2FaSOsiK6MGVhkEHIIrubu0t7+0ltbqJZYJV2ujdCK8wv9N1HwRM2UkvNCZspKoy8Gezf5wfbpXfSq+0XK9/zLTubFFQWl5b30AmtpVkjPdT0+vpU9aDCuevv+R20v/ri/8mroa56+/wCR20v/AK4v/JquHUaOhoooqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBg2Wo6rqsT3FoLOKEOUCyhi3GO4NWduvf89NN/wC+H/xqr4Q/5Az/APXZv6Vv02ehipqlWlTjFWT7GJc3es2Rgec2LRvMkbBFfPJx3NbdZWvf8e1r/wBfcX/oVatBhWalTjKyT12+QUUUUjmCiiigAooooAKKKKACiiigAooooA57xB/yGtC/6+D/AOy10Nc94g/5DWhf9fB/9lroauWyAKKKQkAEkgAdSagBaxNTnudTvk0DSfmu5/8AXSDpCnck9uP85Iol1W61W7OmeHovtNyeHn/5ZxD1J/z+Nd14X8MW/huxZQ3nXk3zXFw3Vz6D2pTmqau9wbsX9F0i20PSYNPtR+7iXlj1du7H3Jq/RRXnNtu7ICiiikIKKKKACiiigApGVXUqyhlIwQRkEUtFAHE6t8PYGna90C5Om3Z5MY5hf6jt+o9q5+e61/RiV1jRZnjXrc2g3qR6+34kfSvVqK6YYmS0lqUpHlEPivR5VBN15Z/uuhBH6YrNutUsZvFunXCXcJhSJwz7sBThuteuXWjaXfMWu9OtJ2P8UsKsfzIrPfwZ4cc5OjWg/wB1MfyraOJgujHzI5H+2dL/AOgja/8Af5f8aP7Z0v8A6CNr/wB/l/xrrf8AhCvDX/QHtvyNH/CFeGv+gPbfkaX1in5hdHJf2zpf/QRtf+/y/wCNH9s6X/0EbX/v8v8AjXW/8IV4a/6A9t+Ro/4Qrw1/0B7b8jR9Yp+YXRyX9s6X/wBBG1/7/L/jR/bOl/8AQRtf+/y/411v/CFeGv8AoD235Gj/AIQrw1/0B7b8jR9Yp+YXRyX9s6X/ANBG1/7/AC/40f2zpf8A0EbX/v8AL/jXW/8ACFeGv+gPbfkaP+EK8Nf9Ae2/I0fWKfmF0cl/bOl/9BG1/wC/y/40f2zpf/QRtf8Av8v+Ndb/AMIV4a/6A9t+Ro/4Qrw1/wBAe2/I0fWKfmF0cl/bOl/9BG1/7/L/AI0f2zpf/QRtf+/y/wCNdb/whXhr/oD235Gj/hCvDX/QHtvyNH1in5hdHJf2zpf/AEEbX/v8v+NH9s6X/wBBG1/7/L/jXW/8IV4a/wCgPbfkaP8AhCvDX/QHtvyNH1in5hdHJf2zpf8A0EbX/v8AL/jR/bOl/wDQRtf+/wAv+Ndb/wAIV4a/6A9t+Ro/4Qrw1/0B7b8jR9Yp+YXRxdpe6HYQmG2vbSOMsWx54PP4mp/7Z0v/AKCNr/3+X/Gut/4Qrw1/0B7b8jR/whXhr/oD235Gj6xT8ypVHJ80ndnAa1qmny29uI723ci5jYhZAcAHk1pf2zpf/QRtf+/y/wCNdb/whXhr/oD235Gj/hCvDX/QHtvyNH1in2ZUqt4KHa/4nJf2zpf/AEEbX/v8v+NH9s6X/wBBG1/7/L/jXW/8IV4a/wCgPbfkaP8AhCvDX/QHtvyNH1in5md0cl/bOl/9BG1/7/L/AI0f2zpf/QRtf+/y/wCNdb/whXhr/oD235Gj/hCvDX/QHtvyNH1in5hdHJf2zpf/AEEbX/v8v+NH9s6X/wBBG1/7/L/jXW/8IV4a/wCgPbfkaP8AhCvDX/QHtvyNH1in5hdHJf2zpf8A0EbX/v8AL/jR/bOl/wDQRtf+/wAv+Ndb/wAIV4a/6A9t+Ro/4Qrw1/0B7b8jR9Yp+YXRyX9s6X/0EbX/AL/L/jR/bOl/9BG1/wC/y/411v8AwhXhr/oD235Gj/hCvDX/AEB7b8jR9Yp+YXRyX9s6X/0EbX/v8v8AjR/bOl/9BG1/7/L/AI11v/CFeGv+gPbfkaP+EK8Nf9Ae2/I0fWKfmF0eba5qVjLqujyR3cDpFMS7LICFHy9a1X8S6PH96+jP+6C38hXaDwV4bBz/AGPbf98mrMPhnQrdg0Wj2KsOjfZ1JH44pvE07Wsw5kedR+IZdQby9G0q8vn6blQhB9T/AI4rUs/BGs60wk8Q3gtbbr9itTyf95un8/wr0VVVFCooVRwABgClrKWJf2VYXN2Kem6VY6RaLa2FskEQ7KOSfUnqT7mrlFFczbbuyQooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnnxj1e/wBK8J20dhcvafbLxLea4QkFEKsTyORnH5A16HXnfxZvZJbDSPDMEUBl127FuJZk3iIAqCwHrlhz9aqO4PY52+0H/hXnj7wouh6nfSpqlwYLuC4m3h1ygLEADsxP1HFezV4lqfhk/C3xF4e1u1vpdShmnWxmS9UM6Bh1jP8ADxu6dOnIJr22nLoJBRRRUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5Lx94Qn8V6fZvp92tpqunzi4tJnztDDscdOQDnB6V1tFNO2oHmK+EPGPifXdKufGF1psdhpkomS3st2ZpARgtntx6+owM5r06iihu4WCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==
|
<image>Find the area of the figure to the nearest tenth.
|
31.1
|
Geometry
|
Geometry3K
|
test
|
3
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEBAZgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3uiiiuYsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5nxp4iuND0yGDTUWbWL+UQWULcgserEeijk/hXSSSJDE8sjBI0UszMcAAdTXjek/ELwte+Nb/wARa3qgh8gG10yA28r7Iv4pPlUgFvzxTSu7Bsrnd/DrxDeeJvCUV9qBQ3izSRS7F2jKtxx9CK6uvL/g3qFtcx+Jbe0lElumpNNC2CMo+cHB5H3a9Qqp7/d+Ql19X+YUUUVAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8c6frOt2FtommRFLW9lC3935ijyYR1ABOSW6cA1v2mlWFlZw2tvaQpDCgRF2DgAYFXK5fV/GtvpWsfZFtZbi0tiv9pXkf3LIN9zd6+px90cmmtrITKHh7w/qWk/ErxHfmzCaTfxxNFKrpguoGRtByOrdq7ekVgyhlIKkZBHelovol2H1b7hRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorCsPE1tqXirUdEt1R/sMMckkyyZG5ifkxjsAO/ehah5m7RWX4h1y28O6Fd6pcsm2CMuqM+3zGxwoPqTgVb067/ALQ0y0vdnl/aIUl2Zzt3AHGe/WjzEWaKKy9e1uHQtP8APaNp7iVxFbW0f355T91F/qewBNAyn4j1q4tZINH0kLJrV8D5IYZWCMfemf8A2V7DucD1q5pGg2ekaP8A2ci+ej7jcSTDc1w7ffZ/Un/61VvDeiTadHNf6lIs+s3xD3cy/dX+7Enoi9B68k9a3aYjkNKkfwhqkWgXTs2kXLEaXcOc+Uev2dj7fwE9Rx1FdfVLVtKtNa0ybT72PfBKMHBwVPUMD2IOCD6isfw7qt3DeS+Htafdqdsu+G4xgXsHQSD/AGh0Ydjz0NG4HS0UUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXtlbajZS2d3Cs1vMu2SNujD0NcN4V0mw0T4meIbPTbWO2thZWzCOPpklsmvQK5LTLO6j+J2vXb20y20tlbrHMyEI5G7IDdCRTjv8AeJ/C/l+aK3xI8OaPfeF9X1W60+GW/t7F/KnYHcmASMfiTXR+HP8AkWNK/wCvOL/0AVU8a28134I1q3toZJppLORUjjUszErwAByTV3Qka38OaakymN47SIOrjBUhBkHPSmvha9P1B7r5/oWNQ1C10rT57+9mWG2gQvJI3QAf56d6wNAsLrVdQ/4SbWIWindClhZydbSE9yP+ejdW9BgetVrUN411dNQk/wCRdsZM2iEcXswP+tPqin7o7nJ7CuxpbAFFFFIYVj+IdCGtWkbQy/ZtRtX86yugOYpMY59VI4YdxWxRQBjeHdcOsWssdzD9m1O0byry1Jz5b+o9VYcg9x+NbNc34j0m7S5i8QaIgOrWq7XhztF5D1MTH17qex9ia1tI1a01vTIb+zctFKOjDDIw4KsOzA5BFNgXqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFcf4n8aXui+IbPRNK0FtXvbiBpzGt0Idig47qQeh9OlZd58RPEWj25vdZ8B3drYIR5s8V6kxQeu0KP5imlfUPI9EoqvYXsGpafb31q++C4jWWNsYypGRVihqzsxJ31CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5HVZ5PFeqy+H7KRl022bGq3KHG49fs6n1I+8R0HHU1a8R6tdvcxeH9EcDVrpdzzY3Czh6GVh69lHc+wNa2kaTaaJpkNhZoViiHVjlnY8lmPdickmnsItwwx28KQwxrHFGoVEUYCgcAAU+iikMKKKKACiiigArktVhk8K6rL4hsoi2m3BB1W2Qcqen2hR6gfeHcc9RXW0hAZSCAQeCD3poBsM0dxCk0MiyRSKGR1OQwPIINPrjrYnwTq8dg/Hh2+kxaOellMx/1R9I2PK+hyO4rsaGAUUUUgCiiigAooooAKKKKACiimyOsUbSMcKoLE+wobsB5BL4z0PSPjHrd/rF00S21qllb7Y2fJ4ZugOMHP51oeIvG0HjfRZvD/hK2ur64v8QyXDQMkMCEjcWYj0/z2rR+EiNc6DqWtuPn1XUZrgZ/u5wP1zXoFW0klGXRf8EL+82v6toUtH02PR9FstNiO5LWBIgT32jGau0UVLbbuxJWVgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDn/FPjCx8JR2bXdte3Ul3IYoYbOMO7EDPQkf5NYX/C07b/oU/Ff/AILh/wDF1ieOfEml6b8WNAOrTmK0022knYhC/wC8fIAwB7A1uL8YvBTsFXUZixOABayc/wDjtVFXSe9wejsdP4f1xfEGmm9TT7+xXeU8q+hEchxjnGTxzTPEOujRbSNYYvtOo3T+TZWoPMsmM8+igcsewrTmnWC1kuGViqIXIA5IAz+dc14TtZdU2+LNRKvd38INrGDlbW2b5lQf7R4LH146CloJGj4d0M6PayyXM32nU7tvNvLojHmP6D0VRwB2H41s0UUhhRRRQAUUUUAFFFFABRRRQBWv7C11Swnsb2FZradCkkbdCDWBoN/c6VqP/CM6vMZJlUtp9255uoR/Cf8Apovf1GD611FZevaJDrunfZ5HaGeNxLbXMf34JR911+np3BI700BqVyniPx9p/hvWIdKk0/VL68lh88R2EAlKrkjJBYHtWh4X1e61XT5o7+FY9QsZ2tLry+Y2kUA7kP8AdIIOOozg9K85XxnoOlfGDxBqGs3pgEECWVtiJ3zjBf7oOOR+tCV5WDo2dGPi1o0M0SajpWu6ZFI20T3tlsjz9QxP6V3qsroGUgqwyCOhFeUeKPF+j/ES0i8J+H7lZp76VDJPMpiWJFIYkB8Fm44AHrXqdtAttaxW6Z2RIEXPoBim1pewupLRRRUjCiiuInF74t8V6rpqarfadpulLHGTYyiKSaZhuOWwThRjihagdvRWL4Yg1m102S11uYXE0M7pDcEgtLDn5GbH8WOv0rapsRDd3cFjZzXd1KsVvCheSRjgKoGSTVDQPEFl4j077ZZ+Yu1ykkUq7JI2HZlPTgg/QisSX/itNcNuBu8PabN+9P8ADe3Kn7vvGh5PYtx2NT+ILO50e/8A+En0mBpZEUJqNpGObmEfxKO8idR6jI9KLAdTRUFle22o2MN7ZzLNbToHjkU8MDU9IYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlPh7xHosPxL8Xapqmq2lqQ6WcAnlCkqnDYz2yoruIfG/he4mjhh1/TpJZGCoi3CksTwABnrUsnhHw1NK8svh3SXkdizO1lGSxPUk7eTSw+E/DdvPHPB4f0qKWNgySJZRqykdCCBwapNWSfQT3bRsEAjBGQa5rwL+58OnTT97TLqeyxnOFRzs/8AHCldLXM6P/oXjfxDY4wlytvqCe5ZTE/6xKfxpDOmooopAFFFFABRRRQAUUUUAFFFFABSMwRSzEBQMknsKWsHxpdyWXg3VZIDid4DDCR18yT5Fx/wJhQBW8FPt8ILqkxIN9JNqDk9lkdnX8l2j8K434Y+KfD9louoXupazY217qOoS3LxzTKrKCeAc/j+den2lhBa6VBpwjRreKBYNhUbSoXbjHpjtWd/whnhb/oWtH/8AYv/AImqTs35g9jh/Fd9p3jvxBoWmeHWS8uLS8S6ub+FcpbxL23+p7AHtXqdQWllaWEAgs7WG2iHSOGMIo/AVPSb0shdbhRRRSGFeYaL4bttf8X+MYtVluHto75ClvFcPENxQfMdhBPAAGeOten1zGp+FLqTWptX0TWpdJvLlFjucQLNHMF6Eq3RgOM5prR/L/L/ACB7FTwBcXS/25pE9zNdRaXftBbzTNufy8AhSe5GcVb8RX91f3yeGNJmaK7uI995dJ1tIDwSD/fboo+p7VCY7bwJoAtbISX2qX07GJZCPMu7l+SzY6AdSewFavh3RP7GsnM8v2jULp/OvLkjmWQjt6KBwB2ApvuJF/T7C10rT7ewsolitoECRovYD/PWrNFFSM49z/whWsmTp4d1Gb5/SxuGPX2jcn8GPoa7Cobu0gvrOa0uollt5kKSRsMhlIwQa5vQbu40PUh4Y1SZpV2l9Lu5DzPEOsbHvIn6rg+tPcR1VFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXM6t/oXjvQLzot3FcWDn3IEqf8Aot/zrpq5rxzmDQYtTXG7TbyC7zjoquA//jjPTQHS0UUUgCiiigAooooAKKKKACiiigArmfFebrUPDulgZFxqKzSDH8EKtL/6EqfnjvXTVzP/AB+/Ek9SmmaZ+AeeT/4mH9aaA6aiiikAUUUUAFFZuu6Dp/iTS207U42ltXYMyK5TJByORzXkmq/DnwyPiXougWVlIls9tJc3q+e5JXkLyTxyO3rTiruwPRXPbarahf2ulafcX97KsVtAheR27Af56Vz+gfDzw14Z1L+0NLsniudhTc0zvwevBPtUEX/Faa4Jyd3h7TZv3Q/hvblT973jQ9PVhntRZCLPh2wutQvn8T6tC0V3cJ5dnav1tLfqAR/fbgt+A7V09FFIYUUUUAFZmvaLDrumtavI0MyMJLe4j+/BKPuuv09O4yO9adFAGF4a1ufUYprDU41g1mxIS7iX7rZ+7KnqjAZHpyO1btc/4j0i6mkg1nR9q6xZA7FY4W5jP3oXPoeoPY4PrWhousW2u6XFf2u4K+Q8bjDxOOGRh2YHgimwNCiuA1XU9W8XeJ7rw3oV6+n6fYgDUtQiH7wuf+WUZ7H1P+HK3Pwk0KSJpLe71SHUduFvvtjtJn1OeDz9KLaXYdbHfUVw/wANNc1LUtN1HTNYl8+/0i7a1ec9ZAOhPqeD+ldxQ1ZiQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU2R/LjZ9rNtBO1RyfYV5/Y+JtV1X4n2VnNp2oaXYrYSusF0wUzNuX5iqkjjoOvU00ruwPRXPQqpaxYJqui32nuMrdW7wn/gSkf1pdW1ODR9KudQuSfKgQuQOrHsB7k4A+tch8N77WL2TxD/AG1O73Md/jyjIWWEFAdi56AZxxQle/kD0Oj8J376p4S0q8kBEslsnmgjGHAww/MGtiuZ8HYtf7b0rp9h1ObavokuJl/9GEfhXTUMAooopAFFFFABRRRQAUUUUAFc14U/0q/8Q6oTkXGotDGf9iFVi/Lcrn8a3b+8j0/Trq9lIEVvC8rk9goJP8qyvBlnJZeDtKinGJ3gE0w/6aSfO/8A48xp9AN2iiikAUUUUAFee+Gv+Jr8W/FOpnmOxiisIj6d2H5qfzr0Kue8J+F/+EZi1Lfefa5r+8e7kk8rZgt/DjJ6f1pxdm35f1+FxPa39f1sdA6K6MjDKsMEeorm/AR2eD7S0PD2Ly2TDvmKRk5+oUH8a6Wua8NZtde8TaccAJerdRj/AGZo1JP/AH2sn45o6DOlooopAFFFFABRRRQAVzPgwLLaaxfooH2zVblxjuEbygfyjz+NdDdTra2k1w/3Yo2c/QDNYvgiCS38EaOJgRNJarNJkYO9/nbI9csafQDmPg7IkmhauZD/AKcdUma6B+8GOOv6/rXWaj4s0PSxfrc6lbrNYRCWeHeN6g9OO5PHHuPWsLVPh2smtz61oGtXeh39xzOYFDxSH1ZDjJ/GsnVPhJJqxN/f+Irm91qML5E88EYiG05AaMDkfj+dN2la+gdWafwu026h0S91m+iMVzrV294Yz1VCflH8z+IruqitkmjtYkuHR5lQB2Rdqs2OSBk4HtmpaJO70Er7sKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcZf/wDJX9I/7BU//oa12dYs+gef4ws9f+07fs9o9t5Hl53biDu3Z4xjpimviT9fyYPZr0/NHOeL/EWmW/ivTdN1aeWCwtVF7Ltt5JBNIDiNfkU8Agsc9wtVvh1r+m6j4k8UxWs7u9xem5iBhdcx7VGeQMc9jz7V6NWLoegf2Nf6xdfafO/tK7+07fL2+X8oG3OTnp14pxaW/Z/mv6+Qpa/16/18ynBmy+JF5HnEepadHMoz1eFyrf8Ajskf5e1dNXNeJc2mveGtTGAqXjWch/2JkIH/AI+sf6V0tJjCiiikAUUUUAFFFFABRRRQBzfjstJ4WlsEzv1GaGxGOuJZFVvyUsfwro1UIoVQAoGAB2Fc1rmL3xj4b0/qIWn1Bxj+4nlr/wCPTZ/Cump9ACiiikAUUUUAFFFFABXMnFn8Sx2XUdK/N4JP8Jv0rpq5rxMTa634Z1EEAJfm1kJ/uzRsoH/fYj/HFNAdLRRRSAKKKKACiiigDnvHUrx+CNXWM4kngNsn+9KRGP1YVuwQrb28UKfdjQIPoBiue8Y7ZxoennJ+16rBkD+7HmY/+i8fjXS0+gBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnfHMDy+DdRliXdNaIt5GP9qFhIP8A0HH41vW8yXNtFPGcxyoHU+oIyKWaJJ4ZIZBlJFKsPUEYNc/4FlZ/B1jbyMWmst9lIT13QsY/12g/jT6AdHRRRSAKKKKACiiigAooooA5rTT9t8f61dZyllbQWSezHdK/6NH+XtXS1zXgj9/pN5qhHOpX89yD6pvKR/8AjiLXS02AUUUUgCiiigAooooAK5vx4h/4Q69ukBMlkY71Mdcwusn8lI/GukqvfWqX2n3NnIAUniaJgfRgQf500BNG6yxrIhyrAMCO4NOrC8F3Ul54L0iWYkzLbJFLnrvQbGz75U1u0gCiiigAooooA5rUz9p8f6Ba4BFtbXV4fUH5IlP5SNXS1zdjuufiHrE2f3dpY21uv+8zSO36bP0rpKbAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcz4c/0TxH4l0wnAF0l7GMfwzIM/+PpJXTVzN1/oXxGsJsYTUdPlt2OerxMHT/x15Py9qaA6aiiikAUUUUAFFFFABWT4n1E6T4W1S/Xl4LWRkHq207R+eK1q5nxmftFvpOlDOdQ1KBGA/uIfOf8ADEePxprcDW0HTl0jw/p2nL0tbaOIk9yqgE/nWhRRSAKKKKACiiigAooooAKKKKAOa8H4t/7b03kfY9Um2g9llxMP/RhH4V0tc1Yj7H8RNXhwAl9Y290vu6F43P5eX+ldLTYBRRRSAKKKbI6xRtI5wqgsT6AUAc54SAnu/EWoZ3faNVkRT/sxKkX80aulrnPAaH/hCtOnZSr3atdsCc8yu0nX/gVdHTe4BRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ1v4g+F/Duotp+q6oLe6VQxj8iR8A9OVUiumrzrwLFHrHjPxjrkiLIhvFs4iwyMRjBx/wCO00rsHorm7pPxF8Ja3eLaWGtQvO5wiSI8RY+g3gZP0p3jQ/ZLfStX2sf7O1GKRyoJIjfMT8D0EmfwrH+K+i6dP4Dv71reKO6swssEyqFZG3AYB9811fh24nu/DOlXNySZ5bSJ5Ce7FATTVrXXQT0a8yl/wnHh3/oI/wDkCT/4mj/hOPDv/QR/8gSf/E10FFLQZz//AAnHh3/oI/8AkCT/AOJo/wCE48O/9BH/AMgSf/E1uTzJb28k8hxHGpdj6ADJrzxvHPiRNBXxY2macPDxYHyPMf7UIi+3fn7vvt/WhK4HT/8ACceHf+gj/wCQJP8A4mj/AITjw7/0Ef8AyBJ/8TW9HIssSSIcq6hgfUGnUCOf/wCE48O/9BH/AMgSf/E1nw6jaeJPHOnS2UhmtNOtJpWcxsoErlUXqBzt8z867CsPxh4gXwv4WvtWKhpIUxEh6M5OFH5mlew0ruxNrPifRPDyqdW1O3tSwyqO3zsPUKOT+VQaH4z8O+JJDFpOqwXEuM+Vyj49drAH9KyfBvg23srNNX1mNb7Xr0Ca4uZ1DlC3Oxc/dA6cVP4j8DWusanpeqWLxadqNjcLL9ojhyZEHVDgjr6nPf1qrJOzFe6ujrKKKKkYUUUUAFFFBzg460AY+t+K9C8OKp1fU4LVmGVRiWcj1CjJP5VHofjDw94kcx6TqsFzIF3GMZV8eu1gDj8K848FeJPDlnq2ry+LHjtfEs14/mNexH5I+NqqxGFA+oz712M3hnSde8TaP4o0a+s1Nkzea9qFcXCkYALKcDHPr1q1Ha4n1XYs+I5JNL8S6LrSWd5cxJHPaXAtLdpnVXCspKqCcbowP+BVJ/wmtp/0B/EP/gnn/wDia6WipGc1/wAJraf9AfxD/wCCef8A+Jo/4TW0/wCgP4h/8E8//wATXS0UaAc1/wAJraf9AfxD/wCCef8A+JrO1/xebjw9qUGn6L4gN5LbSJADpM4G8qQOSvqa7aijQDn77XNE8EaFp8erXa2luqJbRYiZ8lV6AKDjgVkr8XPAzMFGuDJOObWYf+yVkeNNQsJPin4YstRvLa3tLKKW8la5kVE3HhRljjOVrpLzxd4Kt7SWWTV9GmRVOY4po5Gb2CqSTQvhuwe9jf07UrLV7JLzT7qK5tn+7JE2Qf8A69Wq4T4U6NdaV4aup7m2a0F/ePcw2rDBijOAoI7cD+Vd3TkrOwkwoooqRhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFTVb1NN0i8vpDhLeB5T/wABBP8ASuO+FCRWXgG0lnmjFxeSSXUuXGSWY4J/ACuz1HT7XVdPnsL2MyW1whSVAxXcp6jIIIrkh8I/AykEaGMjnm6mP/s9OLtfzB6pf1/XUzPGeoR+NtQtvBmjSi4jaZZtUuIjlIIlOdu4cbiR09q9HijSGJIo1CoihVA7AdKp6Xo+m6JafZdMsoLSHOSkSAZPqfU+5q9RfSyFu7hRRRSGV7+S2h065lvCFtkiZpiegQA5/SvInt9YX4dqkkKN4LGJcBv9P+y7twyPuY79c7fevWtUsI9V0m80+UlY7mF4WI6gMCM/rXn50rxnJ4SXwa+l2aw+SLRtWF0CnkjjPl43btvGOnvTj176fqPsei2csE9lBLbEGB41aMjupHH6VNVextI7DT7azi/1cESxL9FGB/KrFErXdiI3srhXAfGO2uJ/AbSwoZEtrqKeZAM5QEg/zB/Cu/pHRZEZHUMrDBUjIIpbNNdCkZWm+JNG1PSY9QttRtTbMgYsZVGzjo2ehHvWJpHii88TeLJE0bY3h2zQrPeFMi4m7LGfQdz/AIipX+Gfgx737WdAtfM9AWCf98A7f0rp7a2gs7dLe2hjhhjG1I41Cqo9AB0qrq9xW0sS0UUVIwooooAKwPGmvXXhnwtd6taWi3UlvtJjbONpYAk49Ac1v02SNJY2jkRXRgVZWGQR6EUAvMwVuPDPinR4ru4/sy+tpEDZmCOF9jnoR+lcX4M03Tovilqtx4WG3Qo7MR3BicmFrgtnCnocD06c+tdM/wAL/BT3f2k6BB5mc4V3Cf8AfAbb+ldNZWNpptqlrY20Vtbp92OJAqj8BVppO6FZ2sWKKKKgYUUUUAFFFFAHmGk6Tp/i74neKr3U7KC9tbERWcKzIHUMB82M98g/nT/iP4S8L6X4E1K+t9GtLW5hVTDLbxhGVywA5H1ru9K0PTdEN2dPtvJN3O1xOS7MXkPU/MTj6Dinazoun+INNfTtUt/PtHIZo97Jkg5HKkHrTb0SXl/wRp+82xnh5J4/DelpdO0lwtpEJHY5JbaMk/jWlTIolhhSJM7EUKuSScD3PJp9OTvJsiKskgoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>If pentagons $A B C D E$ and $P Q R S T$ are similar, find $S R$
|
4 \frac { 4 } { 11 }
|
Geometry
|
Geometry3K
|
test
|
4
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAJBAo4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisvxJqA0rw1qV8TgwWzsD744/XFKTsmxpXdjl5/jD4Nt55IXv5t8bFTi3YjI/Cmp8ZfBTuFOoyoD3a2fH6CuD+Dng7SfEWn6nqOsWEd2vniOLzM8EDJ/mK9Lm+F3gyeJozoUCgjG5CykfQg1TTW4rp7HQaTrema9aC60u9huoehaNuh9COoP1q/Xz/AOCLeXwj8bJ/D9pO72cjSRMCeqhS659xj+dfQFGjSa6hZptMKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV598ZtS+wfD24iDYa7lSEfTO4/wDoNeg14l8er1p7nRNGiOXctKVHckhV/kamSvaK6lQ0d+xmeAPipoXhDwrDplxY30lwHZ5HjVdpJPbLemK6C9+P+krav9g0i8kuMfIJiqrn3wSa9D0zwrotppdpbtpVk7RxKpZoFJJA6k4q7FoWkQSCSHS7ONx0ZYFBH6VctWRHY8m+FHhnVtS8S3XjTW4niabcYA67S7N1YDsMcD617TR0oob0SXQOrbCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvI/E3g3xBr/wAXbHU208/2NbPF+/MqYwvzH5d2773HSvXKKFpJS7B0a7h0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuLl+JOlW3iWbSbmN44on8v7Vuyu4dcjsM966fWNQXStHu758YgiZxnuew/PFeZeCPB9p4k0G/vdTRjJdTEQyg/MmOrD8Sc/SuzD06bhKpV22+ZxYmrVU406O71+SPWI5EljWSN1dGGVZTkEU6vJIL7XvhrfLa3yte6K7fI46D/d/un2PH869N0rV7HWrFLuwnWWJuuOqn0I7Gs62HdP3lrF7M0oYmNX3WrSW6L1FFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef/FbUmh0S20yIky3kvKjqVXt+JI/Kut8PaaukaBZWKgZiiAbHdupP55rgLv/AIqf4uxQD5rbTuv/AADk/wDj5r1Kuyv7lKFL5v5nDh/3ladX5L5b/iQ3dpb39rJbXUKTQyDDI4yDXmGq+GNY8EXzax4bleWy6y25+YqvoR/EPfqP1r1WisqNeVLTdPdG1fDxra7NbPqjm/C3jLT/ABNAFQiC9UfvLdjz9V9RXSVwHin4fefOdW8Pt9k1BDvMaHarn1H90/pSeF/iAZLj+yPESfZL9DsErjaHPo3of0NazoRqR9pQ26rqv+AY08RKnL2eI0fR9H/kz0CijrRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVT1W/TS9Jur6TG2CJnwe5A4H4nFXK4H4rambfQINOiJ828l5A7qvP8yPyrahT9pUjDuY4ir7KlKfYrfCqweS31DWp8mW6l2Kx6kDkn8z+lej1leG9MGj+HrKxAAaOIb8d2PJP5k1q08TU9pVlInC0vZUYxe4UUUVgdAVznijwdp/ia3zKohvFH7u4Ucj2PqK6OirhOUJc0XZkVKcakeWaujynS/Eus+Bb5NI8RRvNYdIpx820eqnuPbqK9Ps7221C1jurSZJoZBlXQ5BqHVNJstZsntL6BZYm7Hqp9QexrzK50/XvhtfNeae7XmjO2XRugH+0Ox/2h/8AWrstTxW3uz/B/wDBOK9TCb+9D8V/mj1qisbw94m07xJZ+dZyYkUfvIW++h9x6e9bNcUoyg+WSszuhOM480XdBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5bqP/FT/FuC0HzW2nY3enycn/x4gV6Rqd8mm6XdXsmNsETPg98DgVwPwqsXmXUtcuMmW5l2Kx7jqx/En9K7MN7lOdXysvVnDiv3lSFHu7v0R6RRRRXGdwUUUUAFFFFABTXRZEZHUMjDBUjIIp1FAHmviHwJd6Vef234UkeGZDua2Q/nt9R/sn/61a3hLx9ba2RYaiBaamvylG4WQ+2eh9q7SuQ8W+A7TxADd2pW11JeRKowHP8Atf412xrwqrkr/J9fn3OCdCdGXtMP849H6dmdfRXmOg+N7/QL0aJ4rjkQp8qXLDJA7ZP8Q969LiljniWWJ1eNxlWU5BHtWFahKk9duj6M6KGIhWXu7rddUPooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOD+KuqG18OxWEZ/eXsoBA7qvJ/XbXS+GNLGjeG7GxxhkiBf/AHjyf1JrhNX/AOKm+LNrYj5rbT8F/T5fmP8A48QK9Srsr/u6MKffV/PY4cP+8rzq9vdXy3/EKKKK4zuCiiigAooooAKKKKACiiigDK17w7p/iKyNtfRAkfclXh0PqDXnMdxr/wANL4Q3Aa90SRvlYdB9P7re3Q163UVzawXlu9vcxJLDIMMjjIIrpo4hwXJNXi+n+Ry18Mpvng7SXX/Mq6RrNjrlit3YTiSM9R/Ep9COxq/Xlmr+E9W8G3zaz4Ykke2HMtv94qPQj+Jf1H611nhTxrYeJYRHkQX6j54GPX3X1FOrh1y+0pO8fxXqTRxLcvZVlaX4P0OnooorlOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq2oXkenadc3kv3II2kPvgdKs1wvxT1T7H4aSyQ/vL2QLgf3V5P67a1oU/aVFDuY16vsqUp9ih8LLOS5k1TXrjmW4lKKx/Nj+JI/KvSaxvCul/2N4ZsbIjDrGGk/3jyf1NbNViantKrkticJS9nRjF7/AKhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFcH4r+H6Xsx1TQm+yaih37UO1ZD6j+6a7yitaVadKXNFmVajCtHlmjzzwx8QJFuf7H8SobW9Q7BM42hj6N6H36V6GCCAQcg965/xP4R0/wATW2J18q6Ufu7hB8y+x9R7VxGneINa8A3y6Vr0b3Gmk4imXnaPVT3HseldLpQxC5qWkuq/yORVamGfLW1j0l/n/mer0VXsb+11K0jurOdJoXGVdTViuJpp2Z3ppq6CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry3XP+Km+Ktnpy/NbWOC/p8vzN+uFr0q+u47CwuLuX7kEbSN+AzXnnwttJLy61XX7gZknkMasfc7m/mPyrswvuQnV7Ky9WcOL/eThR7u79EelgYGKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpqWmWer2T2l9As0L9Qw6e4PY1bopptO6E0mrM8mvNJ134c3zX+lO93pDHMkbc4H+0O3+8K77w54p07xLaebaSbZlH7yBj8yf4j3raZVdSrKGUjBBHBrzjxH4CubC7/ALa8Ku0Fyh3NbocZ9dv/AMT/APqrtVSGIXLV0l37+v8AmcDp1MM+alrHt29P8j0iiuI8J+P4NWcadqqi01NTtw3yrIfbPQ+1dvXLVpTpS5Zo66VaFWPNBhRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHD/ABS1X7D4XFojYkvJAmP9kcn+n51u+EdK/sbwvY2hXEgjDyf7zcn9TXEeIj/wkvxSsNKX5reywZPTj5m/otepAYGBXZW/d0IU++r/AEOGh+8rzqdF7q/UKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS8WeBbLxEhuYMW2oqPlmUcP7N/j1rnND8Z6l4avhoniqOQKvEdyeSB2JP8Q9+teoVma5oGn+ILE2t9CGH8DjhkPqDXXSxC5fZ1VeP4r0OOrhnze1ou0vwfqX4ZoriFJoZFkicZV1OQRUleSK+v8Awzvdr7r7RJG4PYf/ABLfoa9K0XXLDXrFbqwmDr/Ep4ZD6Edqith3TXNF3i+pdDEqo+SStJdP8jRooornOkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8uo7GynupTiOGNpG+gGanrivihqv2DwqbZGxLeOIx67Ryf6D8a0o0/aVFDuZV6ipU5TfQyPhfayX+oat4huBmSaQxq3uTub+lemVheDtK/sfwrY2rLiTy/Mk/3m5P88Vu1piqntKra2/yM8JTdOjFPfd/MKKKK5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCO4t4bqB4LiJZYnGGRxkEV5jrPhDVPCd82teFpJDCOZLbqQPTH8S/qK9SorajXlSemqe66Mwr4eFZa6NbPqjlfCfjex8SRCF8W+oKPmgY/e919fp1rqq4bxZ8P4tSkOp6MwtNSU78KdqyH8Oh96p+GvH01tdf2N4oRra7Q7BO4wD/vf49K3nQjUj7Sh811X+aMIYidKXs8R8n0f+TPRaKRWDKGUgg8gjvS1xHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlvicnxJ8TtO0dfmt7TBkHb+839BXpl1cx2dpNcynEcKM7H2AzXnHwytpNS1bV/ENwMvLIY0PuTub/2WuzC+5GdXsrL1Zw4v35Qo93d+iPTQAAAOgooorjO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwfEvhPTvE1rsuU2XCj93cIPmX/ABHtW9RVQnKEuaLsyZwjOPLJXR5PYa3rfw9vk03Wo3udLY4ilXnaP9k/+ymvTtP1G01SzS7sp0mhccMp/Q+ho1DTrTVLN7S9gSaFxyrD9R6GvMb7RNc+Ht82paLI91pbHMsTc7R/tD/2YV2/u8V/dn+D/wCCcP7zCf3ofiv80esUVheGvFeneJrXfbPsuFH7y3c/Mv8AiPet2uKcJQlyyVmd0JxnHmi7oKKKKkoD04rxu++F/jW7v7i4XxcY1lkZwiySALk9OteyU2R1jjaRjhVBJPoBSdtxpvY+YjpnilvHn/CJxeJLqS5D7GmE77Bhcnvniu4t/hT4yS5iabxhI0QcFwJZMkZ571nfChG174n61rsgyEDsCexduP0Br3iqV1GLe4pfE10GouyNVznAAzTqKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcZ8TdV/s/wm8CNiW8cRD129W/kB+NangvSv7I8KWNuy4lZPMk9dzcn8s4/CuM8WE+JPiTpuir80Frgyjt/eb9ABXqIAAAHQV2Vv3dCFPq9X+hw0f3mInU6L3V+otFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKGUqwBB4IPelooA858S+AZra6/tnwu5trtDvMCHAP+76fTpV3wp8QItSkGm6yotNSU7MsNqyH8eh9q7gkKCSQAOpNcF430zwtq0TTS6pZ2mooPllWQEn2ZRya7qdVVl7Oqr9n1X+aPPq0nQbq0Xbuns/8md9RXkHhP4jyaZINO1iU3Nqp2JdLkso988kfrXrdvcQ3UCT28qyxOMq6HIIrCvhp0HaW3c6MPiqdeN479iSue8dal/ZPgjV7vOGFuyL9W+Ufzroa8t+Oup/ZfB1vZK2Gu7gZHqqjJ/UiuWfw2OuHxEHwG03yPDF7qLD5rq4wD6qox/PNes1y/w70z+yfAWk2xXDmASOPdvmP866itp/FbsZR2uFFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVzPHa2stxKcRxIXY+gAyalrjviXqv9neEpYUbEt2whHrjq36DH41pSpupNQXUzrVFTpub6GF8NYJNV13V/EVwMs7lEPux3N/7LXp1c74H0r+yPCVlCy4lkTzZPXc3P6dPwroq0xVRTqtrZaL5GWDpunRSe71fzCiiiuc6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqpdapp9jn7XfW0GO0koU/qawbz4ieGbPI+3+cw/hhQt+vT9a0hSqT+GLZnOtTh8UkjqaK84ufi5ZFtlhpdzcMem9gv6DNVv8AhMPHOqcadoPkKejNEf5uQK3WCrbyVvVnM8fR2i2/RM9QqOa4htk3zzRxL/edgo/WvM/7C+Iurc3eqraKeqrLtP5IMVLD8J3nfzNT1yeZj18tcH8yTT+r0o/HUXy1D6zWl8FJ/PQ6y88a+HLHPm6tbsR2iJk/9BzWBefFnRIci2t7q4Yd9oRT+Oc/pV2z+GPhq1wZLeW5Yd5ZT/IYFb9n4f0ewx9l021iI/iWIZ/Oi+Fj0cvwC2Ml1UfxOCPxG8Q6jxpHhxiD0ZleT9RgUmz4mat1dLGM9OUTH5ZavTwoXoAPpS0fWoR+Cml66h9UnL+JUb9NDzAfDXW9RIbV/ETue6jdJ+pI/lWpafCjQoSDcy3Vye4aTaP0AP613dFTLG13opW9NBxwFBauN/XU5mTwB4aeyktV02NA4x5gyXX3DHmuKK6/8M73cu690SRufQf/ABLfoa9bqOaCK5heGaNZI3GGRhkEUU8VJXVT3ovdMdXCQlaVP3ZLZooaHr+n+ILEXVjMGH8aHhkPoRUmpaHpWs+X/aem2l55edn2iFX2564yOK8+1zwZqXhm+OteFZJAi8yWw5IHcAfxD2rpPCfjmy8RILefFtqKj5oWPD+6/wCFOrh1y+0pO8fxXqKliWpeyrK0vwfodUiJHGqIoVFGAoGABTqKK5DsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8t8Yk+I/iJpehJ80NuQZR25+Zv8Ax0AV6dPMltbyTynbHGpdj6ADJrzT4bwvq/iPV/EU68s5RCexY5P5DH512YT3FOr2WnqzhxnvuFH+Z6+iPTlAVQo6AYpaKK4zuCiiigAooooAKKKKACiiigArETxf4fed4P7Vt0lRirLKSmCOv3sVt189eOrP7F4z1KPGA8vmj/gQ3f1rajTVRtM9fKMBSx1SVObaaV1Y9+t7y1uhm3uYZh6xyBv5VPXy0sjoQVdlI9DitS18T65ZY+z6rdoB/D5px+VbPCPoz1qnC0v+XdT70fSNFeF2HxG8VmRYI5xdO3CoYAzE/gMmujVPiXq6jMi2UbdMlU/llqlYV3tKSR4OZ5bXy+HPUs/JPX7tD1AkKCWIAHUmsu78S6JY5+0apaIR1USBj+Q5rhR8NNa1AhtX8RO57gbpP1JH8q1LT4UaDDg3Ml1dHuHk2j/x3BqvZYePxTv6L/M8P22Jl8NO3q/8ie8+KHhu2yIpZ7k9vKiwP/HsVjyfFW5u2KaToM0zdixL/oo/rXYWfg7w9Y48nSbbI6M6bz+ZzWzHDFEoWONEUdAoxR7TDR+GDfq/8g9lipfFNL0X+Z5l/a/xI1b/AI9tPWyQ9zGq4/77JNH/AAhPjPVP+Qn4g8tD1RZGfH4cCvUKKPrjXwRS+QfUlL+JNv5nnVr8I9OXDXuo3U7dwmEB/mf1res/h94Zs8FdNSVh3mYvn8DxXT0VnPF1pbyZpDB0IbRRWttOsrNdttaQQr6Rxhf5VZoorBtvc6EktEFFFFIYUUUUAFFFFABRRRQAUUUUAFcR4s8AQas51HSmFpqSndleFkPvjofeu3orSlVnSlzQZlVowqx5Zo838OePbmwu/wCxfFKNBcodq3DjGfTd/wDFV6OrK6hlYMpGQQcg1i+I/C2neJbTyruPbMo/dzqPmQ/1HtXA2era78Or5bDVUe70lmxHIvOB/snt/umup04Yhc1LSXbv6f5HIqlTDPlq6x79vX/M9Zoqppup2er2SXdjOs0L917exHY1briaadmd6aaugooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorm5hs7WW5uJFihiUu7seFA6mpa4T4wvcp8OL/wCz7sF4xIR/c3c/ripk7K5UVd2OW1D406jqGoyWnhLQHvghx5kiO5Yeu1eg+pqq3xf8X6LIj+IPCqxWxONwikiJ+jMSK6P4Jy6SfBMcVm0X28Oxul435zwT3xjFd/qmm22r6ZcWN3EskMyFGVhnr3qpJx21JTUtyl4Z8T6d4s0dNR05yUJ2ujcNG3cGtmvM/hb4H13wbd6muoyWxtLgKY1ikLEMCeSCB2NemU3boJX2ZyPxI1X+zfCM8atiW6YQr64PLfoMfjVrwJpX9k+EbKJlxLKvnSeuW5/QYH4VyXjZj4h8f6VoCHdFCQZR9fmb/wAdAr1BVCKFAwAMCuur+7w8YdXq/wBDipfvMTOp0jov1FopGYKpZiAB1JrLu/E2iWOftGq2qEdVEgY/kOa5YxlLSKudkpxjrJ2NWiuLvPij4ctsiKS4uT28qPA/8exWNJ8Vbq7YppOgSzN2JJf9FH9a6I4OvLXl+/Q5pY7Dx05r+mp6bRXl/wDa3xI1b/j209bJD38tVx/32SaP+EI8Zap/yFPEPloeqrIz4/DgVX1RR+OaX4k/XJS/h02/wPRbrVdPsc/a762gx2klCn8iawbz4ieGbPI+3+cw/hhjJ/XgfrWJa/CTTlwb3Ubqdu4XCg/zP61vWfw/8M2eCumpKR3mYvn8DxRy4WO8m/RWDmxctoqPq7/kc9c/FyzL7NP0q5uGPTewX9Bmq/8Awl3jnVONO0HyFPRmiIP5ucV6NbafZWabba0hhX0jQCrNHt6Mfgp/e7h9Xry+Op9yseX/ANhfETVubvVltEPVVl2n8kGK43xl4Zu/Dl5bi7vTdvcJuMhUjkHGOSc9q+gq4n4ieGbzxHb6cthGrTRysGLNgKrDqfy/Wqhi5SkotJLyR7XD8aWDx0as5PZptvyPDq63w38PtV14pNKps7M8+bIvLD/ZX+tei+Gvhvpmi7Li8Avbwc7nHyIfYf1NdqAAMAYFKpiukD6PMOJErwwi+b/Rf5/cYmgeFNK8OwhbOAGYjDTvy7fj2+grboorjbbd2fJ1as6snOo7t9wooopGYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVr6wtdStHtbyFJoXGGVhVmimm07oTSaszyjUdA1rwDfNqmgyPcaaTmWFudo9GHce/au38MeLtP8TW2YG8q6UfvLdz8w9x6it8gMCCMg9Qa898T+AJEuf7Y8NOba9Q7zCh2hj/ALPofbpXaqsMQuWrpLo/8zgdKphnzUdY9Y/5f5HodFcH4V+ICXsw0vXF+yaih2bnG1XPofQ13lctWjOlLlkjro1oVo80GFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5aW9/ZzWl1EssEylJEYZDA1PXiWpeMdW8PfGk2uq6ncpozS8RM58sIy/KcegJo3fL3HsnLsN1z4L6npd62o+D9TeNgdywPIUdfZXHX8fzqrpfxU8U+EtRTTPGNhJLEDgyOm2UD1BHDj/Oa93jkSWNZI3V0YZVlOQRXlnx0udLXwnDbzmM6g0ytbrxvUc7j9KTbiNJSPTbC+t9SsIL20kElvOgeNx3BqWaVIIJJpDhI1LMfQAZNcl8LrW4tPh1pEdyGDmMuA3UKzEj9CKk+I2q/2Z4QuFVsS3REC/Q9f0BH41tGnzVVTXcwnV5KTqPojzPSdY1uXxRfa3pmmNeXEzMoJjZ1jyc9RxnGBzXUeX8TNW+9IljGenKpj/vnJrqfAOlf2V4Rs0ZcSzjzpPXLcj9MCunrtr4uKm1GC00u9djgw+Ck6ac5vXWy03PMF+Gms6gwfV/ELue4G5/1J/pWpafCnQYcG5kuro9w8m0f+O4ru6K55Y2u9Oa3podEcBh1q439dTDs/B/h6xwYNJtsjozpvP5mtmOGKJQscaoB0CjFPornlOUvidzpjTjD4VYKKKKksKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5jxV4KsPEsJkwIL5R8k6jr7N6iuT0jxZq3g6+XRvE0bvbDiK46kD1B/iX9RXqdZevadpWp6c1vq3kiE9HkYKVPqCehrrpYj3fZ1VeP4r0OOthve9rSfLL8H6l+2uoLy2S4tpUlhcZV0OQRUteJRaxP4A1ow6dqcGp6ZIcmJJM8fh0b3FeuaJrNrr2lxX9oW8uTgqwwVI6g0sRhZUkpLWL6jw2LjWbg9JLdGjRRRXKdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcn41+H+leNbdPtW6C8iGIrmMfMB6EdxXWUUmrjTseIR/CbxxpYMGleLPLtugCzSRcfQZrU0L4KoNRTUfE+qvqcqkN5QztJ/2iTkj8q9boqk7aieo1EWNFRFCqowAOgFeYeO3PiDxzpPh6M5jjIaUD/a5b/x0CvT5JEhieSRgqIpZiewFeY/D+N9c8X6v4hmU7QxWPPYsf6AAfjXXhPd5qz+yvxZw4z3+SivtP8ABas9ORAiKijAUYAp1FFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVQu9b0uxz9q1G1iI7NKM/l1pqLeiE5KKu2X6K5G8+JXhq0yFu5LgjtDGT/ADxWHN8WVmcx6Zos879izc/98gH+ddEcHXltH9DmnjcPHeX3a/kelUV5f/wkPxD1b/jy0gWinoTEFx/32aP+ES8c6rzqOu+QjdUWVj/46MCr+qKPxzS/Ej645fw4N/K35no9zqNlZDN1eQQD/ppIF/nWDefEHw1Z5B1FZWH8MKFv16frXP2vwks87r/Vbmdup2AKD+ea3rP4eeGbPBGniZh3mYvn8DxRyYWO8m/RW/MOfFz2io+rv+Rh3XxcsA2yw025uGPA3kJn8Bmqn/CY+N9V403QPJU9HaI/zYgV6Na6ZY2S7bWzghX0jjC1axjpR7ehH4Kf3u4fV68vjqfcrHl/9h/EXVubvVVtEPVRLtP5IMVLD8J2nfzNT1ueZj18tcH8yTXpdFH12qvgsvRAsBSes7y9WcfZ/DPw1a4L20lww7yyH+QwK6mzsrbT7VLazgjghT7qIuAKnoJABJOAK56lapP45XOinRp0/gikYfinxZpnhHSze6jL14iiX78jegH9a8sTx38SPF7NL4Y0hbWyzhZCinI/3n4P4CsxI5Pir8WJVnZjpFkT8mePLU4A/wCBH+te+29vDaW8dvbxLFFGoVEUYAArJK65n1Nm7PlXQ8Qu/FnxW8JAXetWSXVkp+cmJCoHuU5H416f4L8Z2HjTSPtdqDFNGds8DHJjb+o966GeCK5gkgnRZIpFKurDIIPUV4N8Olbw58ZNS0WFj9mcyxbf905U/lmqi7vlYpLTmR77RRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOV+Ieq/wBl+ELra2JbnECfj1/QGl+H2lf2X4QtAy4luP37/wDAun6YrmPH7tr3jPSPDsRJRSGlA7buT+SjP416dGixRrGoAVQAAPSuyp+7w8YdZa/5HDS/eYmU+kdF+o6iiiuM7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimSzRQJvmkSNf7zsAP1rGvPGXh6xz52rW5I7Rtv/wDQc1UYSl8KuRKpCHxOxuUVwd58WNCgyLaG6uG9QoVT+JOf0rMPxH8QaicaR4dcg9GZXk/UYFdEcFXerVvXQ5pY+gnZSu/LU9PpGYKpZiAB1JNeYbfiXq/VksY26cqmPyyaVfhprWoMH1fxC7nuBuf9Sf6VX1aEfjqL5ai+t1Jfw6bfrodzd+JtDsc/aNVtVI6gSBj+QyawLz4peHbbIhe4uT28uPA/XFRWnwp0GDBuHuro998m0f8AjuK37Pwh4fsMGDSrYMOjMm4/maP9lj3l+Af7ZPtH8TjX+KV9ekrpHh+WU9i25/0Uf1pn9ofEnV/9TaJZRt32quP++stXpqRRxgBEVQOgAxT6PrNOPwU189Q+q1ZfxKr+Wh5f/wAID4r1T/kLeIiFPVVdpB+XAq/afCXSY8NeXl3cN3GQo/x/WvQaKTxtZ6J29NBrAUE7tXfm7nO2fgXw3Y48vSoXI7y5k/8AQs1uQ2lvbIEggjjUdAigCpqK55VJz+J3OmFKEPhSQUUUVBYUUUUAFFFFABRRRQAVna/K0Hh3U5kOHS1lYfUKa0ahu7dLyzntpPuTRtG30IxUzV4tIcXZpnjfwAgQxa3dH/WNIiZ9uT/Wvaq+fPh7ra/Dzxvqeha4fs8E77PNb7qsCdp+hB6/SvWvGPim40PwpLrGj28WolSOVkBVV/vHHUfSrlJcql0Eovmcep1DusaM7kBVGST2FeCfDgnX/jJq2sICYU82QH/ebA/TNXfFnxhg1jwnFp+ixSjU79PLnUKf3WeCo9Sf5Gux+FPgx/Cnhwy3iY1C9IkmHdB2X8P60RVpOT6aBJ+6l3O+ooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNd1jjZ3IVVBJJ7CnVzHxA1X+yvCF2ytiW4HkJ/wLr+maunBzmoLqRVqKnBzfQ5XwEja9411bxDKCUQlYs9ix4/JRj8a9RrlPh3pX9meELYsuJbnM7/AI9P0xXV1ti5qVV22Wi+RhgoOFFX3er+YUUUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcb4v8bzeFNSt4TYLcQTRb93mbSDkgjofaumutW06xz9qvraHHaSUA/lXlfxO1zRtagsRp96k88DsGCKcbSB3I9q3oUnKWq0O7Klh6mMhRr2alpa/lob1r8XNHkwLmzu4Sf7uHA/UVtWvxC8M3WANRETHtKjL+uMV4BRXU8LB7H2FThrBy+G6+f+Z9M22taXeY+z6jayk9lmUn8s1PcXtpaLuubmGFfWSQKP1r5s0zS7/VrsW+n28k0p67Og9ye1elaX8Jd8Kvq+pS7yMmKDoPbJzn8qxlQpwfvSPns1ymjgoNxq3l0jbV/idbeePPDVlkPqccjD+GIF8/iBj9a5+7+LmlodtnYXVw3QbiEB/nWvZ/Dfw1aYJsjOw7zOW/TpW/aaRptgMWljbwD/AKZxgU+bCx2Tl66HyvLi57yUfRX/ADPPT458YamcaX4eMano7RMf1OBSf2X8SNX/AOPi/WyU9QJAhA/4AK9QAAHAxRR9ajH4IJfiH1OUv4lRv8DzKL4V3N0/marrs0rHqEU5/Mk/yras/hf4ctsGWKa5Yd5ZT/IYFdnRUyxleX2vu0KjgcPHXlv66/mZdn4c0bT8G10y1jYfxCMZ/OtMKq/dAH0FLRXPKUpatnTGMYq0VYKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5fxZ4B0PxjGp1CFkuUGEuYTtcD09x9a4BvgFF5hC+IrgQ/3DECcfXOP0r2eiklYd2eE33w41XwB4j0vWPDcL6vEHCSRSoCwJ69uAfXtXucLO8KNImxyoLJnO0+lPoqr6WF1uFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry/wCIcja54t0jw7CSVDBpcdi3X8lGfxr09mVELMQFUZJPYV5f4HVvEHjvVfEEgJjiJWLPYtwPyUY/GuzCe7zVX9lfi9jhxvv8tFfaf4LVnp0UawwpEgAVFCgDsBT6KK4zuCiiigAoopryJEheR1RR1LHAoAdRWNeeLNAsc+fq1sCOoR95/Jc1z958VdAt8iBbm5bttQKD+JP9K2hh6s/hizCeJow+KSO5orzFvibrF+caP4dkkz0Zg0n/AKCBTfO+Jer/AHY0sY2/3U/xatvqU18bUfVmP1+m/gTl6I9QJAGTwKzbvxDo1iD9p1O1jI6r5oJ/Ic1wQ+HXiLUjnV/ETH1UM0n8yK0rT4T6JEQ11PdXLdwzhR+nP60exw8fiqX9EHtsTL4advVlu8+J3hu1yI55rk/9Moz/AOzYrFk+K090xj0nQpp27FiW/RR/Wuus/Bfh2xwYdKtyR0aRd5/M5rajghhULFEiKOgVQKPaYaPwwb9X/kHs8VL4ppei/wAzzP8Atj4j6v8A8e2nLZoe5jVcf99kmj/hCfGWq/8AIU8QeWh6qsjPj8OBXqFFH1xx+CKXyD6kpfxJuXz/AMjzu1+Emmrhr3ULq4buFwoP8z+tJ4q8CaLpvhG9n0+z23MShxIzljgEZ6n0zXotVtQtF1DTrmzc4WeJoyfTIxmoeLrSfvSdjswVGjha8KsYr3WmfMccbyyLHGjO7HCqoySfYV6F4a+F13e7LnWWNrAeRCv+sb6+n8/pXofh7wdpPhyMG2h8y4x808nLH6en4V0FVUxTekD6vMOJJzvDCqy79fl2KWmaTY6ParbWFskMY/ujk+5PertFFcrd9WfLynKbcpO7YUUUUiQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5rx7qv8AZXhC8dWxLOPIT6t1/TNV/hxpX9m+Ebd2XEt0TO30PT9AKy/ibo+ta0NPt9NtGngUszhWA+bjGcn0rNi8O/EG/hSKfVFsoVUKEWXbgemEGP1r0YU4vDKPOld3Z5k6k1inLkbsrL9T06e5t7VN9xPHEvrI4UfrWJeeN/DljkS6rCzDtFl8/lxXKQfCczPv1PW55mPXy1x+pzW5Z/DTw1a4L2slww7yyE/oOKy9nho7zb9F/mbe0xcvhgl6u/5GdefFrRoiRa2l1cN7gID/AD/lVA+P/FGpHGleHWVT0d0Zv14Fd/Z6HpWn4+yafbQ47pGAavgBRgAD6Ue2w8fhp39WHsMRL46lvRHmH2P4lav/AK26SxQ/7apj/vgE05PhfqN64k1bX5ZG7hQWP5k/0r06ij67UXwJR9EH1Cm/jbl6s4mz+Fnh63wZxcXR/wCmkmP/AEHFb9n4X0OwwbbS7VGH8Xlgt+Z5rXorGeIqz+KTN4YajD4YoaqKgwqhfoKdRRWJsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeO+LviX4ls/Hdx4f8PWkF0Y8KqGMszNty3ftSvrYdtLnsVFeKf8ACafFcf8AMtr/AOA5/wAafp3xl1jTNVisvF2h/ZEcgeYiMjKP72GzkfSmtXYR7RRTIZY54UmiYPG6hlYdCD3p9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIzBVLMcADJNeE/C1Tr/AMVtb1xxuWPzHU+hdsD9Aa9b8Zaj/ZXg3V7zODHbOFP+0RgfqRXgnw/8OeObvTLjUvDF9DaQTSbJC8hUuV/4CeOaUX77fZfmOS9y3d/kfS9eOfH6ay/sjS7c7DfGYsoH3gmMH8M4/Kq8/h74wpCzDW45CB92O4+Y/TKiuc+G1ja+IPH8sXitru51WAl40nfcpZTyGzzkflRy8zsF+VXPc/B1vPaeDdHguQRNHaRq4PUHaOK26AABgdKKqTu2yYqysFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAea/HDUvsfgQWqthru4VMeqjLH9QK3Phlpv8AZfw90mIrh5IvOb6ud39ak8Z+BLDxulol/d3cCWxYqsBUBicdcg+ldLa28dpaQ20QxHEgRR7AYojon5sJateRLXgvhICf9oLVHXgJLcHj64r3quK034a6dpXjGXxLa398LqWR3eIlDGd3JH3c4/GiOk0/Jg/ha9DtaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==
|
<image>In $\triangle PQR$, $\overline{ST} \| \overline{R Q}$ . If $PS=12.5$, $SR=5$, and $PT=15$, find $TQ$.
|
6
|
Geometry
|
Geometry3K
|
test
|
5
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACgAO4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooqhrGtafoFgb7U5zDbh1TcI2clmOAAFBJ59qAL9Fc1aeP/DN5fQ2ceotHPO22Jbi2lhDt6AuoBPtXS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXB/ECe4l1vwvptrZSX0n2w3rW8bqhZYlz1YgdWHU9q7yuN1rRfEj+N4dd0ldJlhhsjbJHeTSIVZm3M3yofQDrR1X9f1qPozL1/UbrW9Z0HSNb0a40a0lvVmSaaSOXzpU5WIeWxC59Se2K9GrlrfQtY1PWbHU/EU9kBYEvbWdiGKCQjG9nbBYgE4GBjNdTT6WF1CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYnjB3j8Iaq8bMjrbsVZTgg+oqhEfEOgwo3za5p+0HHC3UYx+Un6GrvjP8A5E3Vv+vZq2YP+PeP/cH8q3jLlprS+r/Qwceao9baL9SnpWt6frMbNZXAZ04kiYbZIz6Mp5FaFZGq+HLDVZVuWV7e9T/V3du2yVfx7j2ORWd/aOueHxt1aA6nZL0vbSPEqj1ePv8AVfypckZ/A/k/61K55R+NfNf1odRRVXT9SstVtVubC5juIT/Ehzj2PofY1arJpp2ZommroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMLxn/yJurf9ezVswf8AHvH/ALg/lWN4z/5E3Vv+vZq2YP8Aj3j/ANwfyrV/w16v9DJfxH6L9SSiiisjUwdQ8LWtxctfafNJpmon/l4tsAP/AL6dHH1qsPEGoaK3leI7MLDnC6jaKWhPpvXqh/MV09IQGUggEHgg961VW6tNXX4/eZOnZ3ho/wAPuGW9xDdwJPbypLE4yrxsGBHsRUlc5ceFjaTvd+Hro6ZcMdzwgbreU/7SdvquKSDxQ9lMlp4itP7OnY7UuAd1tKfZ/wCH6Nij2fNrB3/P+vQPacuk1b8v69TpKKRWV1DKQykZBByDS1kahRXF2d54k14LrWmX8MVj9s8uKxaJds0CvsZ2cjcGOGIxgdM5rtKOgdbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY2reK9E0O4FvqN75UpUOQsTvsUnAZyoIQe7YHFbNeN+Ktaa+j8Qxf2p9hle5FlNYwWalmiDBBLPIwJCkEkEbRjAyaFq7D6XPRvGLBvBeqspBU2zEEd62oP+PeP/cH8qxPFyKngfU0T7q2pA+mK24P+PeP/cH8q1l/DXq/0MY/xH6L9SSiiisjUKKKKACo5oIrmFoZ40kicYZHXII9xUlFAHMt4dvtHYzeG7zy485bT7oloD67T1Q/Tj2qxY+KLeW5Ww1SB9M1BuBBcEbZD/sP0b+ftW9Va+0+z1O1a2vraO4hbqki5H1HofetfaKWlRX8+v8Awf61MvZuP8N28un/AAP60Od0nwbNps9rFLrElxpdlM81nZ+SE2Mc43vk7wu444HvnFdXXL/2XrXh/LaNcnUbIf8ALheP86+0cp/k3FaGl+JLDVJja/vLW/X79ncrskH0H8Q9xmh03a8Xdf1v/XzGqivaWj/rb+vkbFFFFZGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGF4z/5E3Vv+vZq2YP+PeP/AHB/Ksbxn/yJurf9ezVswf8AHvH/ALg/lWr/AIa9X+hkv4j9F+pJRRRWRqFFFFABRRRQAUUUUAFZ+q6Jp+tQiO+tlkKnKSDh4z6qw5FaFFNScXdCcVJWZzG3xD4eyULa3pw/hOBdRj2PST9DWtpWu6frUbGznzIhxJC4KyRn0ZTyK0aydW8OafqzrPIrwXkf+ru7dtkqH6jr9DkVrzxn8as+6/yM+WUPhd12f+f9fI1qK5j7frugHbqcB1SwHS8tUxMg/wBuPv8AVfyrc07VLHVrVbmwuo7iI/xIensR1B9jUypuKvuu5Uaik7bPsW6KKKzLCiiigAooooAKKKKACiiigAooooAKKKKAMbxcAfCGrgjP+iSH/wAdNaViSbC2JOSYlyT9BWb4t/5FDWP+vST/ANBNNs4NdNjblNS04L5a4BsHJAx6+dWtr016v9CYRUqru0tF38+yZt0VitPrFnqOnR3V1Yzw3U7QsIrR42GIpHBBMjDqgHTvW1WbVjapT5La3v8A11CiiikZhRRRQAUUUUAFFFFABRRRQAVhaj4Xtbq5N9YzS6bqJ5+023G//fXo4+tbtFVGcou6JlCMlZnMf2/qOiMI/EVpm36DUbRS0X/A16p9eRXRW1zBeW6T200c0LjKvGwYH8RUpAIIIyD2rnbnwsLe4e80C6bS7pjl41XdBKf9qPpn3GDWl4T30f4f8Ai04bar8f8Ag/1qdFRXNxeKHsJVtvEdp/Z0rHC3KndbSH2f+H6NiujVldQykMpGQQcg1EoSjuVGcZbC0UUVBYUUUUAFFFFABRRRQAUUVn6rrmmaHAk2p30Nsjnam9uXPoo6k/SgCt4t/wCRQ1j/AK9JP/QTWjYf8g+2/wCuS/yFZNprmgeL7W80+1vVnDRlJ4cNHIqnjlWAYfXFMXwdYKoVb3VQAMAC/l4/WtU4uHLJ2MmpKfNFXLmrf8hLQv8Ar+b/ANJ5q1a51vBmnuyM15qpKHcpN/IdpwRkc+hI/Gnf8IfY/wDP9q3/AIMJf8aGqff8P+CaTqVJKK5Vou/m328zoKK5/wD4Q+x/5/tW/wDBhL/jR/wh9j/z/at/4MJf8aOWn/N+H/BM+ap/Kvv/AOAdBRXP/wDCH2P/AD/at/4MJf8AGj/hD7H/AJ/tW/8ABhL/AI0ctP8Am/D/AIIc1T+Vff8A8A6Ciuf/AOEPsf8An+1b/wAGEv8AjR/wh9j/AM/2rf8Agwl/xo5af834f8EOap/Kvv8A+AdBRXP/APCH2P8Az/at/wCDCX/Gj/hD7H/n+1b/AMGEv+NHLT/m/D/ghzVP5V9//AOgorn/APhD7H/n+1b/AMGEv+NH/CH2P/P9q3/gwl/xo5af834f8EOap/Kvv/4B0FFc/wD8IfY/8/2rf+DCX/Gj/hD7H/n+1b/wYS/40ctP+b8P+CHNU/lX3/8AAOgorn/+EPsf+f7Vv/BhL/jR/wAIfY/8/wBq3/gwl/xo5af834f8EOap/Kvv/wCAbs0MVxC0M0aSROMMjqCCPcGucbw5eaQ5m8NXggTJZtPuSXgb/d7ofpx7VN/wh9j/AM/2rf8Agwl/xo/4Q+x/5/tW/wDBhL/jVxlGO0tPT/gkyjKW8dfX/gC2PiiF7lbHVbeTS788CKc/JIf9h+jfz9q365i58CaRex+XdTajPHnO2W9kYZ+hNN8TakfCnheKy0mKSfUJR9l0+AHe7Njrz12jJ/Coquna8N+xVJVL2na3f/PQktPGlhe+Mp/DcEMzSxRsxuMDy2Zdu5Ae5G4Zrpa8hs5RpvizwXEmjatYRxNPbSz38aL57yLknKu2WLAnn1r16s7aI0vqFFFFIYUUUUAFcR4JRNev9U8U3SrLPJdSWtmWGfIgjO0BfQk5J9a7euKsPDviTw3Pd2+g3emTaZcTvOkV8sge3ZuSFKcMuexx9aFv8gex0E2k6ZceJbXU2YDU7aF0UK4BMbddw6kZ6e9atYmhaA2lz3V/e3RvdVvCPtFxs2KAPuoi87VHpk9cmtujyAKKKKACiiigAooooAKKKKAPOdQv9bg8V+KNW0mKxaHTbWGKRrvcd+xWlZFCkYOHHJ6ccGu+0+7F/p1reKhQTxJKFPUbgDj9a4tfCviOWTWrGe705dL1e7eaeRC5nSM4Xy1GAOUVRnPGTwa7qNFijWNAFRQFUDsBQvh+7/g/iEvi/r5DqKKKACiiigAooooAKKKKACsx9DtpfEUetyyTSXEUBghjYjy4gTlmUYzuPAJz0FadFAGVrWgWuutp7XEs8bWF2l3EYWAJdc8HIPBzz/OtWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>$a=14, b=48,$ and $c=50$ find $cosA$
|
0.96
|
Geometry
|
Geometry3K
|
test
|
6
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADWAYIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3uiiiuYsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuQ1T4hWem67daRDouualc2oQzHTrQTKm4ZAPzAjj2rr68n8I6vrv9p+I9Y07wxLqkN/qDhLhL2KIbI/lUYY5P1pxV2HS52Gh+O9O1vVjpTWWp6bqBQyJb6jbeS7qOpHJrqK848P3cviD4lTXGu2j6Zqmm2hW104kOPLc/NL5g4Y84wOnvXo9NrRC6sKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkkSGJpJXVI0BZmY4AA7k1yEvxJ0ksWsNO1rU7ZWKtdWNg8kK46ndxkfTNVPiBK+p6x4e8KB2SDVLhpLvacFooxuKfj/Su5hhit4EhhjWOKNQqIgwFA6ACmlpdg97FHRdc07xDpqX+mXAmt2JXOCCrDqCDyDWjWZpGjabpLXsmmxhBeTtcTbXLAyHqQO30FadDt0EFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1Q3I0m8NlF5t15L+Sm4Dc+DgZPA59a878Jy+NvDHh200dPAgm8ndunOrwruLMSSQAfX3r0+sTxdeavp3hi9vtESGS9tk80RzIWDqOWAAIOcZx7jFNafMGUPDugagmu3viTXDANSuo1gjggJZLeIHO3cfvEnkmuqrg9JuvHes6Ta6laan4caC5iWRD9lm6EdD83UdKufZviJ/0EfDn/AICzf/FU2I7CiuP+zfET/oI+HP8AwFm/+Ko+zfET/oI+HP8AwFm/+KpWGdhRXH/ZviJ/0EfDn/gLN/8AFUfZviJ/0EfDn/gLN/8AFUWA7CiuP+zfET/oI+HP/AWb/wCKo+zfET/oI+HP/AWb/wCKosB2FFcf9m+In/QR8Of+As3/AMVR9m+In/QR8Of+As3/AMVRYDsKK4/7N8RP+gj4c/8AAWb/AOKo+zfET/oI+HP/AAFm/wDiqLAdhRXH/ZviJ/0EfDn/AICzf/FUfZviJ/0EfDn/AICzf/FUWA7CiuP+zfET/oI+HP8AwFm/+Ko+zfET/oI+HP8AwFm/+KosB2FFcf8AZviJ/wBBHw5/4Czf/FUfZviJ/wBBHw5/4Czf/FUWAd4y8OalqN9pOuaJJCNV0uRmjjnJCTIwwykjoaryXHjrXbZ7FtIs9ASTKS3bXguHC9zGqgAH0yeKZqE/jrStPuL+91fw3FbQIXkdrabgD/gX6Uz4f+M9V12efT/ENpHaagYUvLVVQp5tu3AbaWPII/UU7aW3QX1udboukWmg6RbaZYoVt7dNq55J7kn3Jyav0UUm23diSsFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUEZGDRRQBw3hM/8ACNeKNT8IP8to2dQ0vjgROf3kY4x8rZwOuDXc1x/xB064Om2viHTU3anokv2qIDrJHjEsf0K5/Kun0+/t9U062v7R99vcRrLG3qCMim+4izRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcd4y1i8nurfwpocm3VtQUmaYf8ulv0aQ+/Ye/4U0rgULsf8LC8TmwX5vDOkS5umB+W8uR0j90XqfU/gauePrWXT47DxZYxlrnRZN8qL1ltW4lXrjgfMM9MGul0XR7PQNHttMsIxHb26bVHcnuT6knk1cliSaJ4pUDxupVlIyCDwRRcQy1uob20huraRZIJkWSN16MpGQR+FTVxHgV5NEvtT8HXTljp7+fYMx5e1c5X67Wyp/Cu3oaGFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQgEEEAg9Qa4fwcx8OeIdT8HTEiBCb7TCe8Dn5kH+62fzrua47x/ZzQWdp4nsY91/ochuNo6yQEYlT8V5/CmuwHY0VXsb2DUrC3vbWQSW9xGskbDupGRVikAUUUUAFFFFABRRRQAUUUUAFFFFABRRUc88VrbyXE8ixwxKXd2OAqgZJJoAyvFHiK38M6M97KplmZhFbW6/enlb7qD6/yzVHwd4euNKtrjUdWdZtd1JvOvJR0T+7Ev8AsqOP8isrw5DL4y18eL75HTTrfdHo1tIMcdGnI9W6D2/A13lN6aCCiiikM4rx7DNpcmneL7NGabSXIukXrLavgSD3xww9OTXY29xFd20VxBIskMqB0dTwykZBH4Us0MdzBJBMivFIpR0YZDKRgg1xvgSd9KuNR8HXTlpdKffaM3WW1flD77c7T+FPdCO1ooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGVXRkdQysMEEcEUtFAHD+Ci/h/WdU8HTt+6tj9s00seWtnJyo/3GyPxruK4z4gW1xZQWPiqwQtd6LIZZUXrLbNxKv5fN7YNdZZ3cF/ZQXltIJIJ41kjcdGUjINN9xE9FFFIYUUUUAFFFFABRRRQAUUUUAFcFrssnjfxGfC9o7jRrFlk1edOBK3BW3B/VsemOO+p4y1+6sI7bRtGAk13UyY7Ze0K/xTN6BR+Z9cGtPw34ftfDOixada5cjLzTPy80h+87HuSf6DtTWmojTiijhiSKJFSNFCqijAUDgACn0UUhhRRRQAVxHjuCTSLzTfGVohMmmP5V6qjmS0c4b67T8w/E129R3FvFd20tvPGskMqFHRhwykYIP4U07ALFKk0SSxOHjdQysDkEHkGn1xXgC5m077f4QvnZrnR32wO3WW1bmNvwHynHTAFdrQ1YAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADXRJY2jkUMjAqykZBB7VxXgeU6Hqep+C53P8AoDfaNPLHl7VzkDk5OxiVJ+ldvXFePrWbTzp/i6xQtc6PJm4Rf+Wtq3Ei/gPmHpg012EdrRUdvcRXdtFcQSLJDKgdHU8MpGQR+FSUhhRRRQAUUUUAFFFFABWbr2t2fh3RrjVL58QwrnaPvOx6KPUk8VosyopZiFUDJJOABXA6aD4/8TLrUy7vDulSldOQ9LqccNMR3Cnhf/1imkBo+DdDvFkufEmup/xO9SAJjzkWsP8ABEvp6n3/ADrrqKKG7gFFFFIAooooAKKKKAOI8cRnQ9T0zxpAhP2Bvs2oBRy9q5wT0ydjEMB9a7VHSWNZI2DIwDKwOQQe9RXlpBf2U9ncxiSCeNo5EPRlIwRXJ/D+5uLKC+8K37lrvRZBFE7dZbZuYm/L5fbAp7oR2dFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMliSaJ4pUDxupVlIyCDwRT6KAOI8CTSaPd6j4Nu3ZpNMbzLJ3PMtq5yp99p+U/gK7euK8dwvpM+neMbVC0ulPsu1UcyWrnDj32khh6c12UM0dzBHPC6vFIodHU5DKRkEU33EPooopDCiiigAoornPGHiN9B02OKxi+0axfP5FhbAZ3yH+Ij+6vUmgDJ8VXlx4l1keDNKmMaFRJq90h5ghPSMH++/wCgrsrOzt9PsobO0iWK3hQRxxr0VQMAVkeE/DaeGtIMLym4v7hzPe3Tfemlbkn6dh7VvU32AKKKKQBRRRQAUUUUAFFFFABXD+NQ/h/WdL8YwL+6tj9j1IKOWtnIwx/3GwfxruKr31lBqVhcWV1GJLe4jaORT3UjBppgTqyuiujBlYZBB4Ipa4/wBezQWd34ZvpN1/ocgt9x6yQEZif8V4/CuwoegBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI7i3iu7aW3njWSGVCjow4ZSMEH8K47wFNNpb6j4QvHLTaTJm1dustq/MZ98cqfTgV2tcR46STRL/AEzxlaoT/Z7eRfqo5ktXIB7ZO04YfjTXYR29FMilSaJJYnDxuoZWByCDyDT6QwooooAqanqVpo+mXGo30oitrdC8jn0Hp6k9AO5rlfCGmXerajL4y1qIpd3SbLC2f/l0t+w/3m6k+/viqsmfiF4oMQBPhjR5vnOflvrle3uifkT6139PYQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAcN4xVvDviLTPGMIxAhFjqYHQwOflc/7rY/Ou4BBAIIIPQiq+o2Fvqmm3NhdIHt7iNopF9QRiuY+H2o3B0268Pak+7U9El+yyk9ZI8Zik+hXH5U90I7CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACobq1hvbSa1uY1kgmRo5EboykYIP4VNRQBxngC5lsI7/wleyFrrRZAkLt1ltm5ibp2HynHTArs64bxvE+havpnjS2Q4s2+y6iqj79q56n12Nhq7hWV0V0YMrDIIPBFN9xC1xnjHVby+vIfCGiSlNRvk3XVwv/AC6W3Rn/AN49B9e3FbHirxHD4Z0Zrsx+fdSsIbS2X708zcKo/Hr7VV8HeHJdFs57zUXWfW9Qfzr6f/a7Iv8AsqOBQu4GxpGlWmh6VbabYxCO2t0CIvc+59SepNXaKKQwooooAKKKKACiiigAooooAKKKKACiiigArhvFgHhrxRpni9PltHxp+qc4Aic/u5Dzj5Wxk9cGu5qnq2mW2s6TdabdruguYmjcexHUe4600BczkZFV76+ttMsJ768lEVtAhkkcgnao5JwOTXM/D/UrqXSJ9E1Js6nosv2OcnrIgH7uT6MuOT1warfE7QrXUfCGpXs8t2HtbV3jjS4ZYyRyCyA4Y/Wk9BxV2dpFKk8KTRtujkUMpxjIPIqvYanZ6mLg2c4lFvO1vKQCNsi9RyOcZ7cVSTTotV8MWlnNNcxRvBHlreZon4UcblIOK5r4dQx6V4f8QQ2+7y7XVbpU3NuOFxjJPXpVNJOXl/miI3cYvv8A5M3p/Gvhy21f+y5dUjW78wREbGKBz0UvjaG9ic1X8T3+q2l1Gtm93FEYWaI2tn9o82fPEb8HYuO/y/7wxzwWiasB8M7Y6t4YluvD8reZfXn2oLIXMuTIIx8xUNjncDx0xXsUbI8SNGcoVBU+opuPL8hp32EhMjQRmVQshUF1ByAccin0UVAIKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBBeWkF/ZT2dzGJIJ42jkQ9GUjBFcd4I1Y6VpepaBrNwqT+HiUaaQ4D22MxyfTbx+FdxXC+Ofh/J4qvra+sr6OzmWPyblZELJcxhg6qwBHAYfrTXZiE8MWs3izXf+Ey1KJktYw0ejW0g5SM9ZiP7z9vQevBru645NL8dxxrGmu6KqKAFVdPYAAdvv07+zvHv/Qf0f8A8F7f/F03qB19Fch/Z3j3/oP6P/4L2/8Ai6P7O8e/9B/R/wDwXt/8XSsM6+iuQ/s7x7/0H9H/APBe3/xdH9nePf8AoP6P/wCC9v8A4uiwHX0VyH9nePf+g/o//gvb/wCLo/s7x7/0H9H/APBe3/xdFgOvorkP7O8e/wDQf0f/AMF7f/F0f2d49/6D+j/+C9v/AIuiwHX0VyH9nePf+g/o/wD4L2/+Lo/s7x7/ANB/R/8AwXt/8XRYDr6K5D+zvHv/AEH9H/8ABe3/AMXR/Z3j3/oP6P8A+C9v/i6LAdfRXIf2d49/6D+j/wDgvb/4uj+zvHv/AEH9H/8ABe3/AMXRYDr6K5D+zvHv/Qf0f/wXt/8AF0f2d49/6D+j/wDgvb/4uiwFXxQx8MeL9M8Up8tjdY0/U/QKT+6kP+63BPocVveL7C51Xwfq1jZR+bc3Fs8cSbgu5iOBkkAfjXP6t4a8Z63pN1pl7rmjvbXMZjcCwbOD3Hz9QeR7ipbLRPHdjYwWieI9LkWGNY1eWxZmIAwMnfyaGk0Cdnc63T4ng0y1hkXbJHCisM5wQADWD4R0e70611uK/g8sXeqXE8Y3K26NyMHgnGfQ81X/ALO8e/8AQf0f/wAF7f8AxdH9nePf+g/o/wD4L2/+LpvVvzElZJdjBHh/xQnhRvBC6bD9iLGEat9pXaIC+7/V/e344x0969JghW3t44U+5GoRfoBiuU/s7x7/ANB/R/8AwXt/8XR/Z3j3/oP6P/4L2/8Ai6G7hY6+iuQ/s7x7/wBB/R//AAXt/wDF0f2d49/6D+j/APgvb/4ulYZ19MSaKR2RJEZl4YKwJH1rznxbb/ECz8J6ncJrNhNshO5LW0aOXb0Yq244IGT68cV4d4Jl1lfGOnDQ5njv5JggYAsNpPzbx3XGSfpVKN0I+uicDNZ2l69pWtK506+hnaM4kjU4eM+jKeVPsRWD/Z3j3/oP6P8A+C9v/i68P1XRvEevePr+fQo3vLyOYiS90+I28XmAYYhi2Ac55yM8nvSUbgfT9Feb+GtB+Jtrt/tPxPY+UAAI5YPtDfifkP8A48a9FiEoiQTOjyAfMyKVBPsCTj8zSasMfRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuM8feItS062j0vw+yjWZ43n3lQwghjGWcggjnG0ZHU11Wo39vpenXF/dyCO3t4zJIx7ACvLdFu/GMt1qeunwQ18+rqPKmfU4YTHb4+RAhyR1yemTRa97f12GtNWd/wCDtVl1vwfpWo3Egknnt1MrgAZccMcDgcg1uVwXwfmkPgOOzmBWayuprd1JztIbOP8Ax6u9q6luZ2IjtqFFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHIeP9Y1PTrPSrPRrr7NqGpX8dsk3lrJsU5LHawIPaqF7o/xA0uymvYPGUGpSQIZBaz6VHEsmBnG5TkU7Wf+Jn8XtAsc5TTbOa9ce7fItbvjPW49C8L3lwTm4kQw20Q+9JKwwqgd+T+lPVQut3f/AC/Qa1lZ7af5/kTeFdeTxN4ZsdXSPyvtCZaPOdrAkMM/UGtmsDwVor+HvB2maZIMTRQgyj0djuYfmTW/TnbmdtiI35VcKKKKkoKKKKAOf8X+Jj4W0mG6isvttxPcJbQWwl8vzHY8fNg46elc5a6h4osbiW4tPhXaW80v+skh1S2Rn+pC5NR/EP8AtPUvF3hfSNHFo15FJJf4u93lAoBtLbecdfxrUh/4Wb58fnnwiIdw3lBcltuecZ74qorS/wDX9XuD0f8AX9djptLnvbzTIZtSsBY3Tg+ZbecJdnPTcAAeKtQwxW8SxQxpFGgwqIoUAewFPopMQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZOv+H7XxHZxWd7LOLZJlleKJgBNtOQr5ByuewxWqAFAAAAHAApaKPIDH0Hw3Z+HW1A2cs7i+unu5FlYEK7dQuAMD65rYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkNX+H1pq3iCbWl1zXLC7mjWJvsF0sQ2joPu5x369as6T4F0zTL6K/nudR1W9hz5Vxqd0Z2jz/dB4B98ZrpqKabWwPUKKKKQBRRRQAUUUUAcFrXh7xcfHr+ItEfRCgsxaRpfvKSozuY4QcHPueKv2H/Cxf7Qg/tE+FhZbx532cXBk299u7jP1rrqKadlYHqFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>$\overline{A C}$ is a diagonal of rhombus $A B C D$ If $m \angle C D E$ is $116,$ what is $m \angle A C D ?$
|
58
|
Geometry
|
Geometry3K
|
test
|
7
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAE2Ad0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4T4seKb7wp4SjudMuBBfT3KRRvsVtowWY4YEdFx0713deJfHCV9U8SeGvDsTHdK24qvUmRwin/x1vzNAHqvhSa/ufCelXGqTGa+mtklmcoFJZhuxgAAYzjp2rYpkUaQxJFGoVEUKqjsB0FPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzNe1/TvDWlPqWqTGK2VlQsELHJOBwOa0685+Nmm3mo/D8taIz/AGW6S4mVBkmMKyk49iwP0FAHd6XqVtrGmW+o2bM1tcIJI2ZSpKnocGvGZv8Aio/2kI1B3QacRye3lx5/9GHFa2ifGXwtpvg6xgdboXlpaJD9lWI/MyKF4bpjjr+lV/gxo1/earq/jLUoSjX5ZYSwxv3NvdhntkAA/WgZ7BLLHBC800iRxIpZ3dgFUDqST0FV4dV064/1F/ay/wC5MrfyNWJYknheKVQ8bqVZT0IPBFeF6d4QtZvG934cv7ia3ZS32eRADvx8wyD6pzXVh6EKqk5O1tfkceJxFSlKKjG99O2p7vRXmX/CpZ7c5svEUsXt5JH6hv6Ug8D+Nrb/AI9PFJYej3MoH5YIqvq9F/DVX3NE/WK6+Kk/k0z06ivMf7P+J9mP3V/FcAdt0bZ/77UUf2x8TLL/AF2kxT46/u1bP/fDUfVL/DOL+YfXbfFTkvkenUV5j/wn3i61/wCP3wq+B1KwSoPfk5pV+LvlMFvNBmhbvib+hUUfUa/RX+aD+0KH2nb1TPTaK8/h+LuhvxLZ38Z9kRh/6F/StGH4m+Fpfv3ksX+/A5/kDWbwldbwZpHGYd7TR19FYEPjbw1P9zWbUf77FP54rQh1vSbnHkapZS5/uXCN/I1k6U47pmsatOW0l95fopFZXUMrBgehBzS1BoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFVtRvodL0y61C5JEFtC80mOu1QSce/FZPhHxdY+M9Kk1HT7e7hgSYw/6SiqWIAJI2sePmH60Ab9FZPiPxJpvhXSJNS1SbZCvCovLyN2VR3P8Ak1U8J+LrbxhYvfWWnahb2qttSW7jRRIe+3DEnHr0oA6GiiigAooooAKKKKACiiigAooooAKKKKACiiigAo60UUAZJ8LeHmuftJ0HSzcZz5ps492fXOM1qgBQAAABwAO1LRQAV5l8TbKbTNU0vxPZjEkMixyEeoO5c/X5gfwr02svxFpKa5oF5pzY3SxnYT2ccqfzArfDVfZ1VJ7dfQ58VS9rScVv09S5YXsWo6fb3sBzFPGsi/QjNWK8++FWrNNpNzo1wSJ7GQlVbqEYnI/Bs/mK9Bqa9L2VRw7FYer7Wkp9wooorI2CkZVdSrKGB6gjNLRQBRm0XSrnPn6ZZy56+ZArZ/MVnTeCfDU/39GtR/uLs/lit+irVWcdmzOVKnLeK+45Cb4ZeFpfuWUsX+5O/wDUms+b4R6E/MV3fxn3dGH/AKD/AFrv6K1WLrrabMpYPDveCPMm+EIibdZ69NC3bMGT+YYUn/CAeLbT/jx8VPgdA00qD8hmvTqK0+vV+rv8kZ/2fQ+yrejZ5j/Y3xMsv9Tq8U+P+mit/wChrR9v+KFn/rbCK4A77Y2z/wB8kV6dRR9bv8UIv5B9St8NSS+Z5j/wm/je1/4+/CxYD+JLaUD88kUf8LZubfi98OSxe/nFf0K/1r06ij6xRfxUl97QfVq6+Gq/mkzzyH4v6O3+usL5P9wI3/swrQh+KPhiXG+e4h/66QE4/wC+c11E2l6fcf66wtZf9+FW/mKz5vB3hyfO/RbIf7kQT/0HFHPhXvFr5hyYtbTT9V/kQQePPC9xjZrEAz/z0Vk/9CArQh8Q6LcY8nV7GQnstwhP5ZrFm+G3hWbONOaMnuk7j9CcVnzfCXw/Jkxz38R7bZVI/VaOXCPZyXyQc2MW8Yv0bO5jljmXdFIjr6qwIp9eaSfB+2DbrXWriJh0LRBiPyIpn/CufEdr/wAePiqUenzyR/yJo9hQe1T70w9viFvS+5o9OorzE+HfiPaf6nXY5h/13Lf+hrR5/wAUrTl4IrkeuIT+gINH1RP4akfvD6418VOX3XPTqK8x/wCEv8fWv/Hz4ZEqjqUtpCfzBIo/4WnqVr/x/eGZUx1PmMmPwK+lH1Gq/hs/RoP7Qor4rr1TPTqK85g+MGmNjz9MvE/65sr/AMyK0Ifip4blxva7h/34c4/75JqHg663iy447Dy2mjtqK5mH4g+Fp8bdWjU+jxuv8xWhD4n0G4/1Ws2BPobhQfyJrJ0akd4v7jWNelLaS+81qKihure4/wBTPFJ/uOD/ACqWs7WNU7hRRRQAUUUUAcN8XtS/s74b6iFOHuSluv8AwJhn/wAdDVmeFNW034ffB/TL7U32tNGZ0iH35ncllCj/AHSvPYc1hftBaltsdF0tW/1kklw4/wB0BV/9CauK1nw94s8ReE28Xaivl2FnHHHaWmMbYOm5V7KPl5PJHPQUDOv0Hw7rPxX1uLxL4oBg0OMn7LZqSBIB2X/ZPdupxge3tdvbw2tvHb28SQwxqFSONQqqB0AA6Cuf8B+IoPE/g6wv4lRJFQQzRIABHIowQAOg6ED0IrpKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5Vqv/ABR3xTt9RHyWOo8yHoBuOHz9Gw3416rXG/EvRv7U8KyXEa5nsT5y+u3o4/Ln/gNX/A+tf254VtJ3fdPEPIm553Lxk/UYP4121v3tGNXqtH+hw0P3VedLo/eX6nR0UUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBBPY2lznz7WCXPXzIw386zpvCnh+4z5mi2GT1KwKp/MCtiiqU5R2ZEqcJbq5y83w78LT5J0sIT3jldf03YrPm+FHhyXOxr2H/cmB/wDQga7iitViqy2m/vMpYShLeC+482l+D2nk/uNVuk/30Vv5YqL/AIVjrVr/AMeXiiUfg8f8mNenUVp9er9ZX+SMnl+H6Rt82eY/8Ir8QrTmDxGswHQPcOx/8eX+tGPinad4rlR/1w/+sTXp1FP65J/FGL+QfUYr4ZyXzOF8FeL9S1TWL7R9bjiivYFyoRdpyDhgeSCeQePeu6ryzxwj+GfHemeJYQfKmIEwHcqNrD8UI/I16ijrJGsiMGRgCrDoQe9LFQj7tSCspL8eo8JOXvUpu7i/wex4p4jij8UftB6dpkirNbWMaCVGGVwqmUgjvksB+le0T20NzaSWs0SvBKhjeMjgqRgj6YrnNM8B6XpfjG98URz3kt/dhwyyupjTcQflAUEYAwMk8ZrqK5DsPDfAdxL8Pfihf+EL2Q/Yb5wLZ26Fusbf8CB2n3x6V7lXKeLPh9pHjC+s729mvLa6tBiOa0dUYjORncp6HJH1NdUgKoqlixAwWOMn34oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBskaSxtHIoZGBVlIyCD1FeXeCnfwv481Lw3MxEM5JhLdyBuU/ipP4gV6nXmnxQsJbG80zxNZjEtvIschHqDuQn/AMeH5V2YRqTlRe0l+PQ4sanFRrLeL/Dqel0VV02/i1TTLa+gP7ueNZF56ZHT8OlWq5GmnZnYmmroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmPHXjKHwRoS6jJbi6lklWKO383yy5OSTnB6AeldDeQy3FjcQwzmCWSNkSYDJjYjAbHfHWvnv4qeBtU0PSrfWtV8U3GsyPci2VJoSmwMrNkfOwA+XoAOtAH0VXCeI/iUml662haLot3rmqRLumitjhYhxwWAbnkZ4wMgZzXdMwVSzEBQMknoK8r+CAF/puva9MM3d9qLCRzycBQ+M/WQ0AdH4P+Idn4pv7jS7ixuNL1e3G6SzueuOM4OB0yOCAa1PFni7TfB+lC91DzHaRvLhgiGXlb0A/ma4Tx0I9K+Mng3U4fkmu2+zSlf4gW2DP4SY/AUvihl1L4++FtOuQWtre2adUbp5mJGyPxRPyoGXIfi5JaXluniPwrqOiWly22K6myy/8CBVce+M4rT+Juq3lroOm2theG0XVdQhs5L1D/qo3zlge3Tr6Zq58TbKC9+HOtJOARHAZkJ7Mp3DH5Y/GqXhCysvGPwk0mz1aIXEElsImyeQY2KAg9iNtAjm/FPha1+G9haeIvDl5ex3cd1HHNBLOXF8GOCrDux68e/fBr16uH0z4YaXZalbXt7qerat9kbdaw6hc+ZHCexC4HI/L2ruKAOb8d6N/bXhO7iVd08I8+H13L1H4jI/Gqfw11n+1PCcUDvmeyPkNnrt/hP5cfhXYV5XoP/FIfFG70lvks9Q/1XYc/Mn5HK/jXbR/eUJU+q1X6nDX/dYiFXo/df6HqlFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ2vaUmt6Feac+P30ZCk9mHKn8CBWjRTjJxaa6ClFSTi9meefCrVXbT7zQ7nKz2UhZFbqFJ5H4Nn/AL6r0OvKtdz4P+KFrqy5Sy1DmX054f8AI4f8a9VrqxkU5KrHaWvz6nHgpNQdKW8Xb5dAooorkO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8r+Pn/Ii2P8A2E4//RUteqV5X8fP+RFsf+wnH/6KloA9PuY2ltZo1xudGUZ9SK8x+AfHgW+/7Ccn/oqKvU68dsdXf4R6/rNlqun3cuhX9ybqzu7dAwQnqrZIGcYHrx0waALPxMQy/E7wEikbhdqxGewljP8AQ1q/Ebwnq97qml+KfDapJq+mHBgbA86POQBnHTLcZ5DHHPXG0J734ifE218UfYbi00LSoilsZxtMznOCPfLZOCQAo9a3fHmr+I/DOv6VrlklzeaCimO/s4EBI64c8Z/iHfGUGcZoGc34o1zxn4o8I6lbXXhw6DYQWzy3lxPKWaXYu4IgwCNzADPPHeuw+E0LQfDDRUbqUlf8Glcj9DXIeIvHr/ETRm8OeEdL1CSa9ZUuLieILHBHkE5IJ+h9umTXqmiaXFomh2OlwHdHawrEGP8AFgYJ/E8/jQBfooooEFedfFbTHFnY69bZWezkCM69QpOVP4N/6FXotU9V0+LVtJurCb7lxGUz6E9D+BwfwrbD1fZVFMwxNL2tJw/q4zRNTj1nRLPUY8YniDED+FujD8CCPwq/Xm3wr1CS3Oo+Hbv5Z7WQyKp7c7XH4ED869Jp4il7Kq49P0DDVfa0lN79fUKKKKwNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOQ+JGjf2t4TmljXM9kfPT3UfeH5c/gKs+Ata/trwnayO+6e3HkS+uV6H8Rg10rKroyOAysMEHoRXlvg9m8K/ELUfD0rEW1yT5OfUfMn/jpI+uK7af73Dyh1jqvTqcNX91iI1OktH69D1OiiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyvxSD4T+JNhrqAra3n+ux07K/6EN9a9UBBAIOQehFcp8RNG/tfwlcFE3T2n+kR468feH/AHzn8hTvh7rP9seErbe2Z7X/AEeT1+X7p/75x+Oa7av72hGp1jo/0OGj+6xEqfSWq/U6miiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNvilp8trLpviSzG2a1kVHYdsHch/PI/EV6TVDW9Mj1nRbvTpMbZ4yoJ/hbqp/AgH8K3w9X2VRSe3X0MMTS9rScVv09R+lahFq2lWt/D/AKu4jDgemeo/A8fhVyvOvhVqci2t9oF0Cs9nIXVG6gE4Yfg3/oVei0sRS9lUcAw1X2tJT/q4UUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIyhlKsAQRgg968s8IsfCnxF1Dw/ISLa6P7nPt8yf+Okj616pXmvxSsJbSXTPEdp8s9tII3YDpg7kP55H4iuzBtSbpPaS/HocWNTjGNZbxd/l1PSqKqaZfxappdrfw/6ueNZAPTI6fh0q3XI007M7E01dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5V4kB8IfEuz1tPls74/vsdOflk/mG+teqg5GR0rk/iJo39r+E52Rcz2n+kR46kD7w/75z+Qp/w+1n+2fCVsXbdPa/6PLnr8v3T+K4/HNdtX97QjU6rR/ocNH91iJUuktV+p1NFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ2vaWmtaFeac+P38ZVSezdVP4EA1o0U4ycWmugpRUk4vZnnfwp1R20+80O5ys9lIWVW6hSeR+DZ/wC+q9EryvWf+KQ+KltqY+Wy1H/WHsN3D5+hw3416pXVjIpyVWO0lf59TjwUmoOlLeLt8ugUUUVyHaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjKGUqwBBGCD3ryzwsT4S+JF/oTkraXh/c56f3k/QlfrXqlecfFTTZYV0/xFafLPaSBHYDkDOUP4Nkf8CrswbTk6T2krfPocWNTjFVo7xd/l1PR6Ko6PqUWsaPaahD9yeMPj+6e4/A5H4VerkaadmdkWpJNBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxnxM0b+0/Cklyi5nsW85cDnZ0cflz/wGtHwPrP8AbfhSzndt08S+TN67l4yfqMH8a6CSNJonikUMjqVZT0IPUV5f4Ekfw1421TwzcMfLlJaEnuV5B/FDn8BXbT/e4eUOsdV6dThqfusTGfSWj9en+R6lRRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLV9Ni1fSLvT5cbJ4ymSPunsfwOD+FXaKabTuhSSkrM84+FepSwrqHh67+We0kLopPIGcOPwbH/fVej15X4qVvCXxGsdfjG21vD++x0/uv+hDfWvU1YMoZSCCMgjvXXjEnJVVtJX+fU48E3GLoy3i7fLoLRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmXxMtJdK1fSvE9oMSRyCOT3K/MufqNw/AV6bWT4m0ga54cvbDAMkkZMWezjlf1ArfDVfZ1U3t19DnxVJ1aTit916ov2V3Ff2MF3A26KeNZEPsRmp64H4VaubrQptLmJE9jJgBuuxiSPyO4flXfVNel7Ko4disPVVWlGfcKKKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOW+IOjf2z4SuQi7p7X/AEiLHX5fvD8Vz+OKZ8O9Z/tfwnArtme0/wBHkz1IH3T/AN84/I11hGRg9K8r8Of8Uh8TbzRWylnfcQ56c/NH/Vfqa7aX72hKn1Wq/U4a37rERq9JaP8AQ9UoooriO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8qm/4o/wCLSy/dstU6+g3nn8nGfpXqtcN8UtHN/wCG1v4lJmsH35HXY3Df+yn8DW94S1j+3fDFles2Zimyb/fXg/n1/Gu2v+8owq9Vo/0OHD/uq06PR6r57/ibdFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFedfFXTJFtbHX7XKz2UgR3XqATlT+Df+hV6LVTVNPi1XS7qwm/1dxG0ZPpkcH8DzW2Hq+yqKZhiaXtaTh/VyLRNUj1rRbTUYsATxhiB/C3Rh+ByK0K81+FuoS2kupeG7w7Z7aRnRSfQ7XA+hAP4mvSqeIpeyqOK26egsLV9rSUnv19QooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIrm3iu7WW2mXdFKhR19QRg15p8ObiXQ/Emq+F7puQ5eLPGWXgkfVcH6CvUK8v+IcEmgeKtK8UWqnlwkuO7L2P+8uR+FdmE9/mov7S09VscOM9xxrr7L19HueoUVHBPHc28U8LBopUDow7gjINSVxnduFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUdxcRWltLczuEhiQyOx/hUDJP5Vz2heP/DHiXUPsGkan9puthk2eRInyjGTllA7igDpaKKzdc8QaX4a077fq92La23iPeUZssegAUEnoe3agDmvEXw1sde1abURey20s2C6qgZSQAM9vSsj/AIVfq1t/x5eJ5VHptdP5Ma7Tw94t0TxUlw+i3pultyolPkum0nOPvKM9D0rarqjja0Uop6fI5J4GhKTk46vzZ5j/AMIn8QbXmDxIso9HuZCf/HlNGz4pWnR4rlR2/cn+eDXp1FV9ck/ijF/In6jFfDOS+Z5j/wAJN8RbPifw+kwHXbbsx/8AHGo/4WVr1p/x/wDhaVcdeJI/5qa9Ooo+sUn8VNfK6D6rVXw1X87M81i+MFlnFxpFzGRwQkgbH5gVoQ/Fjw7J9+O+i/34lP8AJjXbS28M4xNDHIPR1B/nWfN4b0O4/wBbo9gx9Tbpn88Ue0wz3g18w9liltUT9V/kZUPxF8Kzcf2oEPo8Lj9duK0IfFvh6fGzWrHJ6Bp1U/riqc3gDwtP9/SIh/uO6fyIrPm+FnhqX7iXUP8AuTZ/mDRbCPrJfcF8YukX951sF/Z3OPIu4Jc9PLkDfyNWK86m+D+lNnyNSvE9PMCv/ICq3/Cq9QtebDxLKmOg8tkx+Iaj2OHe1T70w9tiVvS+5o9OorzH/hDvHlp/x6+JhIB0D3Mn8iCKPs3xStOEuIrkemYT+rAGj6rF/DUj+QfW5r4qUvlqenUV5j/wkPxItD+90OKb/tiW/wDQGo/4WN4ktf8Aj+8KyqO/ySR/zBo+pVH8LT+aD6/SXxJr1TPTqK80j+MFsG23Wi3ETDqFlDEfmBV+D4teH5MCSC+iPfdGpH6NUvBYhfZKWPwz+2d5RXKQfEjwtNjOomMntJA4/XGK0IfGHhyf7mtWQ/35Qn88Vk6FWO8X9xrHEUZbSX3m3RVWHU9PuP8AUX1tL/uSq38jVqs2mtzVNPYKKKKQwooooAKKKKACiiigAooooAKwvGGjf254XvLNV3TBPMh9d68j8+R+NbtFVCbhJSW6JnBTi4vZnD/C7WP7Q8MfYpGzPYv5eD12Hlf6j8K7ivK7P/ij/izJbfdstT+4Ow3nK/k4K/SvVK6MZFKpzx2lqcuCm3T5Jbx0+4KKKK5TsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOP+KWpDTPhxrEgbDzRC3UevmEKf0J/KvH/htZtoHxH8M793/EzsHlYkdnEm3H/fC12nx7v2XQNJ0qI5ku7sybQeWCLjH5uPyql40s18OfEP4euuAkKQ2RYDjajhT29HNAz2mvAviTqp8YeLLyxhYnSPDttLNcMD8rygYx+LbU9fvEV6j8RfFa+EvCNzeI4F5N+4tR38wj734DJ/AeteS6xpLeD/AIJqlzkap4guY5J8/eCDLqCfbAz7uaAR3XwM077J4BN2Vw17dSSBvVVwg/VW/OvTKwvBmm/2T4L0axIw8dpHvH+0Rub9Sa3aBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAySKOZdssaOvoygiqE3h7RbjPnaRYyE92t0J/PFaVFUpSWzJcYy3Rzs/gPwvcZ36PAM/8APNmT/wBBIrOm+F3hmX7kFxD/ALk5P/oWas+KviFoPhCaO2v5JpryQbltbVN8mPU5IA/E81J4U8eaH4x81NNllS5hG6S2uE2SKOmcZIIzxwa0WJrLaT+8ylhaMt4L7jCm+EGjt/qdQvk/3yjf0FVP+FT3VtzY+I5YyOg8or+of+lenUVqsdiF9r8jJ5fhn9n8zzH/AIQnxxa/8eniguB0V7mUD8iCKPsXxQs/9VexXIHbdE2f++gDXp1FP67N/FFP5C+owXwykvRnmP8AbnxKsv8AXaNFPjr+6DZ/74aj/hYPiu0/4/vCsgx1IilQfqDXp1FH1mm/ipr8UH1Wovhqv52Z5mnxfjRtt3oc8LegmBP6qKvQ/FvQZOJba/iPqY1I/Rq7x0WRdrqGHoRmqM2g6Pcf67SrGT/ft0P9KPa4Z702vRh7LFLaon6r/IwoPiX4Wmxuv3iJ7SQP/QGtCHxn4bnxs1q0Gf78mz/0LFMm8DeGZ879Htx/uZT/ANBIrOn+GHheXOy1nh/65zsf/Qs0f7I/5l9wf7Yv5X950kGr6Zc48jUbSXPTy51b+Rq6CCAQcg9CK8+m+EOivkw31/Gf9pkYf+giqZ+EkkBLWXiGWI9gYSP1DD+VHssM9qlvVB7bFLenf0Z6bRXmP/CC+M7b/jz8VMR6PcSqPy5o/s34nWf+q1KKf/gcbf8Aoa0fVYP4ai/IPrc18VKXysy98VdIa40W31aAET2Mg3MvXYxHP4Nj8zXV+G9WXXPD1lqAILyxjzAOzjhh+YNefX118R5LCezvtIiuYZozG4EaMSCP9hutaHwuXVdNW90rUdPu7eMkTwvLCyrngMASMf3Tj61tUpf7NZyTcXpZ30ZhSrf7VdRaUlrdW1R6NRRRXmnqBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHivjs/298cfDej/eitfKd19fmMjf+OqKufHhTb2Xh7U1Hz2t4wB+oDf+yV09l8Pfs/xKufGU+qee8oYR232fb5eUCD59xzhRjp3q/wCPPBy+N9Aj0xr37GY7hZ1l8rzOQrDGNw7Me9Azz2V1+KXxajiQ+d4d0QbmPVJGz/7Mwx7qho+L7HXPHvhbw0h3BmV5APSRwvP0CE/jXoXgTwVbeB9DewiuPtU0spkmuDHsLnoBjJwAPf1PeqE3w9+0/EyPxjcap5ixACOy+z4C4j2j593qS3SgDtwAAABgDtRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyb4ava6j4h8V+MdSkiDm9NvDPMwAijHYE9Pl2D6D3rq4vCmn3njyDxnp2ox48gwzRQKrJOcEbi4PXlf++RXlvwl8HWvi3S746809xp9rdEx2nmsimZlG92wQScBQOfWtl9Nj+GfxX0SDSJZU0jWj5Mlq7lgrFgoxn0JQgnnqM0DPZ6KKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3iT4i/2F430zwxBpX2ya98rdL9o2eVvcr02nOAM9RXc14dpJ/wCEk/aNvbk/PFpxkwB0HlqI/wD0M5+tAHuNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB414W1uz+GfivX9A8QM9paXVybqyuTGxR1OfTPbb9CCDUhv4viT8WNJudJR5dG0IebJdMhVWkzkAZ9wuM88Ma9XvtM0/VIhFqFjbXcY5CXESyAfgQafZ2Vpp9utvZWsNtAvSOGMIo/AcUAT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEN3cx2dlPdSnEcMbSN9AMn+VeN/Ae2kvL3xDr04zJNIsYb3JLv/Na7r4pakNM+HGsSBsPNELdR6+YQp/Qn8q474TeKPDHh3wNFb3+s2dvdzTyTSxM3zLztGfwUH8aBnsNFct/wsjwb/wBDDZf99n/CujtbqC9tIbq2kEkEyCSNx0ZSMgj2IoETUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZmu+HtL8TaeLDV7Y3FsJBJs8x0+YAgHKkHua5r/AIVB4E/6AX/k3P8A/F13FFAHD/8ACoPAn/QC/wDJuf8A+Lrs7a3is7WG2t0CQwoscaD+FQMAflUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z
|
<image>Use parallelogram $JKLM$ to find $m \angle KLM$
|
71
|
Geometry
|
Geometry3K
|
test
|
8
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACzAWADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuM1CiiigAooooAKKKKACiiigAopCQoJJAA5JPauTbx3A0ji30y7njViokQcNjvSbS3JlNR3Otorkv+E5/wCoLf8A/fNH/Cc/9QW//wC+aXPEn2sO51tFcl/wnP8A1Bb/AP75o/4Tn/qC3/8A3zRzxD2sO51tFcl/wnP/AFBb/wD75o/4Tn/qC3//AHzRzxD2sO51tFcl/wAJz/1Bb/8A75o/4Tn/AKgt/wD980c8Q9rDudbRXJf8Jz/1Bb//AL5o/wCE5/6gt/8A980c8Q9rDudbRXJf8Jz/ANQW/wD++aP+E5/6gt//AN80c8Q9rDudbRXJf8Jz/wBQW/8A++aP+E5/6gt//wB80c8Q9rDudbRXJf8ACc/9QW//AO+aP+E5/wCoLf8A/fNHPEPaw7nW0VyX/Cc/9QW//wC+aP8AhOf+oLf/APfNHPEPaw7nW0VyX/Cc/wDUFv8A/vmj/hOf+oLf/wDfNHPEPaw7nW0VyX/Cc/8AUFv/APvmj/hOf+oLf/8AfNHPEPaw7nW0VyX/AAnP/UFv/wDvmj/hOf8AqC3/AP3zRzxD2sO51tFcl/wnP/UFv/8Avmmv48SJC8mkXqKOrMMAUc8Q9rDudfRVLSr86pp0V59neBZeVVzkkdj+NXao0TvqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVr+9h06xmu52xHEu4+/oB7npQGxz3jHVJFii0a0b/AEm7++R/BH3/AD5/AGuU8KAxz6tBvZkiuSi5PQAkVo6Ys15cT6vdj/SLo5Uf3E7Afp+QqvoNlc2l5qrzxFFmumeMkg7lyeahSTjL+uoqU4yo1m97K33m3RRRWRwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZotm8Qa5HpiZ+yQESXTDv6L/n+lS6pffYbMuo3TOdkSjnLGul8M6N/Y+lKsvN1MfMnbvuPb8P8aqKuzSnDmkbCqqIEUBVUYAHQCloorY7AooooAKKKKACiiigAooooAKKKKACiiigArhvEl4da1pNJibNpanfckdGf+7+H+PpXQ+JdZGjaU0kfNzKfLgXrlj3/D/CuZ0uyNlaAOd08h3ysTkljWc5dDCtP7KLoAAAAwB2qlY6nBqE11FEsitbSmJ94ABIz056cVdrnPDP/H/rn/X438zSjFOMn2Ko0YzoVZveNrfN2OjoooqDkCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoJAGTwKKzNTea6mh0mz/4+Lo4J/up3J/X8jQBb8O2Z1zW21SUZs7M7LcHoz/3vw6/l6V3NVtPsYdNsIbOAYjiXA9z3J9yeas1vFWR204csbBRRRTLCiiigAooooAKKKKACiiigAooooAKRmCKWYgKBkk9hS1ynjHU5CkWi2jf6Rd/6wj+CPv+f8gfWk3ZXJlJRV2ZD3J8Qa7JqLZ+x2xMdsp7+rf59vStGora3jtbeOCIYRBgVLWG5xNtu7CqdlpsFhLcyQl91zIZH3HPJ9Pzq5WHoF3cXN5q6TSs6xXTJGD/AAjJ4FXFNxbR0UoVHRqSi7JWuu+uhuUUUVBzBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFc3EdrbyTynCIMmrfg7TJNkutXa/6Rd/6sH+CPt+f8gKyEtT4h16PTlz9jtiJLlh3PZf6fn6V6CqhVCqAFAwAO1XCPU3owu+Zi0UUVqdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBW1C+h02wmvJziOJcn3PYD3J4rhNMSa6mm1a85ubo5A/up2A/T8hVrxFeHXNbXS4jmzszvuCOjP/d/Dp+fpVkDAwOlYzld2OSrPmdl0CiiipMgrA8OwyxX2stJE6B7tmUspG4ZPI9a36rWt/bXkk6W8m9oHMcg2kbW9OetXFtRasdNKpONGpFRuna77almiiioOYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKpapemytCUG6eQ7IlAySxq6SACScAdTVfw3ZnWtZfVpVzaWp2WwP8AE3978P8AD0oSu7DjFydkdD4a0YaNpSxvzcynzJ265Y9vwrRjvLWW7ltI7mF7mEAywrIC6A9Mr1GfeqPiEa6dLI8OmxW/Ljm93bAvOfu856V5x8L4tVg+Ivi6PXLiO41ILF58kR+Uk5IxwOAMDp2rpUdDuSUbJHq9zdW9nA091PFBCvWSVwqj8TTbS9tb+AT2dzDcwk4EkMgdfzFeVeKv7O8SfFc6Zr93HDoOi2QuJo5pfLjeV8Yycjn51/75x3rb8D+GdM0zxLqWr+GdXtZtBu4lT7FbyGQRyjack5P+1wefmquXQLnoNVYdTsLm8ls4L62luohmSFJVZ05xyoORzVXxDqdzpGjTXlpp1xqEykAQQfeOe/4da8Z+G2ovpng7Ub228KX13eOkgfUIufNBYAqCf7vU/Sko3VwbPeqK8x+C+s3t54Vg0+fTrsQwrI638hzHMTIflHuM/pXp1JqzsNBRRRSAKKKKACiiigArF8Taz/Y+lFoubuY+XAvfce/4f4VssyojO7BVUZJPQCvPftLeINck1N8/ZYCY7VT39W/z/SpnKyM6s+Vabkul2P2GzCMd0znfI3XLGrtFFYnGFFFFABXOeGf+P/XP+vxv5mujrP03Sl06e9lEpf7VMZSCuNuSeP1q4ySjJdzroVYRoVYN6ytb5O5oUUUVByBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXVxHaW0k8hwqDP19qAKOpNNeXEGkWh/f3Rwx/uJ3J/X8q7ywsodOsYbSBcRxLtHv6k+561zvg7S5Fil1i7X/SbvlAf4I+358fgBXVVrCNlc6qMLK76hXmvg7/ksHjf6Qf8AoNelVzWj+Ev7J8Ya5r/23zf7UEf7jytvlbRj72TnP0Fap6M2ZwQ8P6frn7QWtQ6tbrcW6WUdzHDJyjsEiQEjuBlqt6Zp1t4Y+Ov9naNGILG+0zzri3j+4jAnGB2+6P8Avo+tdL4s8Dz61rFprujaq+k61bIYxOse9ZE/usM+59evTph3hLwRJoWqXmt6rqkmq61eKEe5dAgRBj5VH4D8hwO9c2grHWT/APHvJ/un+Veb/Cb/AJJE31uP5mvSnXfGy5xuBGa53wf4SXwr4UGhPeG7XdIWlEfl5DHpjJ/nUp6DMb4Nf8kx03/rpN/6Mau9rjvA/gu/8GxSWjeIHv8ATQD5Nq1qsflMWyTu3Envx712NEtwWwUUUVIBRRRQAUUVV1K/h0vT5ryc/JEucd2PYD6mgG7HO+MdSdxFodo2J7nmZh/BH/8AX/kPeq1vAltbpDGMIgwKwJ9TXSdLv/E2q5aWQb9o64Jwqj68fhiuebx14g06Gz1TWNChg0e6dVV45cyIGGQSM+nPQfhWXK56o45Nzdz0SiuZ8T+J7jSbmy03SrNb3Vb0kxRFsKqjqxP59x0PpUHh3xVfXet3Gha7YR2WpRoJU8ptySL7df5+vTFLkdrk8rtc1tQ8U6HpV8tlfalDBcMAdjE8Z6ZI4H41rAhgCCCDyCK8+17wjrU2q6w2nR6dPbauqCSS6z5luVGDt/n+XpXc6fafYNNtbPeZPIhSLeerbQBn9KJKKSswaVtCzWPouo3F9d6nHMVK29wY48DHAJ/wrYrnPDP/AB/65/1+N/M1UEnCTOvDwjLD1pNaq1vvOjooorM4gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs6K1PiHX0sRk2VqRJckdGPZf6fn6U/Vb02dp+7G64lOyJRySxrqPDmjjRtJSFubiT55365Y9vw6VUVdmlOHNLyNYAKAAAAOABS0UVsdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwviC8/t3XV06M5srI7piOjyen4dPzrf8T6ydI0s+Tzdzny4FHXJ7/h/PFc7pliLCzWMnMjfNI3qxrOcuhz1p/ZRx/xZl8rwjbqc+W97Grgd12scfpVbUvEXinR7aDUta0fTm0eR1DwR5MkIPTOTjP4Y7cVsfEfSLjV/CMq2sZkmtpFuFRerAZBx+BJ/Cub8SeMbPxf4di0TSIpptSvnjDwmMjysMGOT06jqO2auGsUrGcdkaqSrd/GKKQHfGmlBoj7E5yP++jS618nxe8OMv3ntZVb3G2Sq2tBfCHi/RtanRzposhYzyopbYR0JHvx+Ro0q9Txf8SY9YsEc6bplsYhM6lQ7sGHAPsx/L3ot16WDz8jrNakujeadbW101v58jKzqoJwFz3pf7J1D/oOXP/fpP8KNV/5DWjf9dZP/AEA1r1Lk4xVv61OyVaVKlTUEtU+if2n3Rkf2TqH/AEHLn/v0n+FXLAxiExLdpcyxsVlcFd27P8QHQ1brnPDP/H/rn/X438zRrOLb6CTlXoTlJr3bPRJbu3RI6OiiisjgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApCQoJJAA5JNLWZqJmvrqDR7Q/vrk/O39xO5P8An+dAFzwzZnWdYfWJlP2W2Pl2qnu3dv8AP9K7iq9lZw6fZQ2kC7YolCr/AI/WrFbxVkdsIcqsFFFFMsKKKKACiiigAooooAKKKKACiiigApruscbO7BUUEsT0Ap1Q3dpDfWsltcKWhkGGUMVyPqOaAPPjfx63rsupzSKsEP7u2RmA4/vY/wA9fatH7Vb/APPeL/vsVr/8IV4e/wCfD/yNJ/8AFUf8IV4e/wCfD/yNJ/8AFVlyM5XRm3dmR9qt/wDnvF/32KYslmjs6PArN95gQCfrW1/whXh7/nw/8jSf/FUf8IV4e/58P/I0n/xVHs2HsJmO09q6lWlhZT1BYEGkSa0iQJHJAijoqsABWz/whXh7/nw/8jSf/FUf8IV4e/58P/I0n/xVHs2HsJnJ6lLG+r6S6OrKkrl2ByFGw9fStX7Vb/8APeL/AL7Fa/8AwhXh7/nw/wDI0n/xVH/CFeHv+fD/AMjSf/FU3FtJdjScZzjGOnuq34t/qZH2q3/57xf99isrSLVNPudQlkurdhczmVQr9ASev511n/CFeHv+fD/yNJ/8VR/whXh7/nw/8jSf/FUKMkmu4QVWEJQTVpWv8tTI+1W//PeL/vsUfarf/nvF/wB9itf/AIQrw9/z4f8AkaT/AOKo/wCEK8Pf8+H/AJGk/wDiqXs2Z+wmZH2q3/57xf8AfYo+1W//AD3i/wC+xWv/AMIV4e/58P8AyNJ/8VR/whXh7/nw/wDI0n/xVHs2HsJmR9qt/wDnvF/32KPtVv8A894v++xWv/whXh7/AJ8P/I0n/wAVR/whXh7/AJ8P/I0n/wAVR7Nh7CZkfarf/nvF/wB9ij7Vb/8APeL/AL7Fa/8AwhXh7/nw/wDI0n/xVH/CFeHv+fD/AMjSf/FUezYewmZH2q3/AOe8X/fYo+1W/wDz3i/77Fa//CFeHv8Anw/8jSf/ABVH/CFeHv8Anw/8jSf/ABVHs2HsJmR9qt/+e8X/AH2KPtVv/wA94v8AvsVr/wDCFeHv+fD/AMjSf/FUf8IV4e/58P8AyNJ/8VR7Nh7CZkfarf8A57xf99ij7Vb/APPeL/vsVr/8IV4e/wCfD/yNJ/8AFUf8IV4e/wCfD/yNJ/8AFUezYewmZH2q3/57xf8AfYo+1W//AD3i/wC+xWv/AMIV4e/58P8AyNJ/8VR/whXh7/nw/wDI0n/xVHs2HsJmHcahbW9u8rTIQozgMMn2rT8HaXJHBJq92v8Apd5yoP8ABH2H4/yxVkeC/D6sCNP5BzzK5/8AZq3wAAABgCqjCzuy6dJxd5BRRRVm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2WRYonkc4VFLE+wrxzQrfxn8QNLvPEsPim40sGWRbKygX93hegbBHfjJB6Z9q9kIBBBGQeoNedeMvFUkE//AAhvg62SXWrkFZDCoWOzQ9WbHAbB/Dr6A3HyEzNh+IetXfwdXWbaLzNaaf7FvSPI35/1m3GPu/hn24qtrY8WfDhNL1u58UT6xDPcpb3dncJ8vzAk7OTj7pxjHb3FegeEfD9r4L8L2mkm4RmUkySsdvmSMcnGfyA9BXnHxCsvEWkaxaeIfEFzDrPhy11DfHYp+7MILHZkAAMQMDJJ9OhNUrN2Qme0V454p8ZQat8RbTSYPFsul6PBATPLasVLThyChPXsvt19a9hikSaJJYzlHUMp9Qa8wudL09vj3bQmwtTE2jmVkMK7S+9vmIx196mI2TaT8TbK8+I+oac+r2zaO0US2JCY3zNtBAOMnknrXpdeW6Hpenj45+IYRYWoihsYXiTyVwjYjOVGOD7ivUqUrdAQUUUVIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI52lW3laFA8oQlFJxubHArxvwhYfEHwlbXQTwVb3d5dzGW4vJdQiEkhPY/P06/ma9ooqk7BY848R6L4o8b+Bit7psOla3Z3q3NrALhZFfYvHzAkAnc3XuBnisvWYPHnj+yttA1Hw7Fo9n5yNfXZuFcMF5+RRz/PnHI5r1uimpCsNjjWKNY0GFUBQPQCuMm0HU3+MNvry22dMTSjbtP5i8Sb2ONud3QjnGK7WipTsM86l0nxLpXxbvNcsNHS+03UYYYJJftSRmFRsDNgnJxtJwBzXotFFDdwCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z
|
<image>Find the perimeter of the parallelogram.
|
78
|
Geometry
|
Geometry3K
|
test
|
9
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFEAPoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooqAXtobw2YuoTdKu4wiQbwPXb1xQBPRUCXtrJdvaJcwtcxjc8IkBdRxyV6gcj86noAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArx34uXMnhDxZoPjLTzEbzZJayQuceau04JHUgbjk/wC7XsLEhSQCxA6Dqa8lu/h/rHjV9f1fxRbfZrySBrfSLLzlcWwHzKxKkjJOAee7e2ADqvh94Tfw/pkuoajKLnXdTPn3tzkHk8hAfQZ7dT7Yrsa5zwHDrNr4M06z161NvqFrH5DKZFfcq8KcqSPu4/EGujoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKWo6vp2kRpJqN7Baq5whlcLuPtWd/wm3hj/AKDlj/39Fcz8R7eK68R+DreeNZIZb4o6MMhgWjyDXTf8IV4Z/wCgFY/9+RXQoU4wUpX1Odzqym4wtp3D/hNvDH/Qcsf+/oo/4Tbwx/0HLH/v6KP+EK8M/wDQCsf+/IrB8L+FNAuhrHn6RaSeVqk8Ue6MHagIwo9hStR8/wADSNPEShKfu6W79Te/4Tbwx/0HLH/v6KP+E28Mf9Byx/7+ij/hCvDP/QCsf+/Io/4Qrwz/ANAKx/78ij9x5/gZ/wC0eX4h/wAJr4Y/6Dtj/wB/RR/wmvhj/oO2P/f4Uf8ACFeGP+gFY/8AfoUf8IT4Y/6AVj/36FH7jz/AP9o8vxD/AITXwz/0HbH/AL/Cj/hNfDP/AEHbH/v8KP8AhCfDH/QDsf8Av0KP+EJ8Mf8AQDsf+/Qo/cef4B/tHl+If8Jr4Z/6Dtj/AN/hR/wmvhn/AKDtj/3+FH/CE+GP+gHY/wDfoUf8IT4Y/wCgHY/9+hR+48/wD/aPL8Q/4TXwz/0HbH/v8KP+E18M/wDQdsf+/wAKP+EJ8Mf9AOx/79Cj/hCfDH/QDsf+/Qo/cef4B/tHl+Iv/Ca+Gf8AoO2P/f4Uf8Jr4Z/6Dth/3+FJ/wAIT4Y/6Adj/wB+hR/whPhj/oB2P/foUfuPP8A/2jy/EX/hNPDP/QdsP+/wo/4TTwz/ANB2w/7/AApP+EJ8Mf8AQDsf+/QpP+EJ8Mf9AOx/79Cj9x5/gH+0eX4jv+E08M/9B2w/7/Cj/hNPDP8A0HbD/v8ACm/8IT4Y/wCgHZf9+hVHWPDvg/RNIudSu9EshDAm4jyxlj2A9ycD8aEqLdlf8BN10ru34m5p2v6Rq0rxafqVtcyIu5kikDED1xWjXn/wy8OC0s5/EFxbJBc6iS0MSLgQwk5AH14P0Ar0CorRjCbjFmlCcpwUpK1wooorM1CiiigAooooAKKKKACiiigDgPH/APyNngr/ALCB/wDQo67+vPPiR56+IfCD20aSTresY0dtoZt0eAT2Fb/27xf/ANAbTv8AwMP/AMTXRUV6cPn+ZOGoupUqNNLVbtLp5nSVzfg/prv/AGGLn+Yo+3eL/wDoDad/4GH/AOJqfwtp99p9pfNqEcUc91ey3OyN9wUNjjP4GsbWR3+z9lRmpNa22af5G7RRRUnEFFFFABRRRQAUUUUAc14q8d6H4PMEepSyvczjMVtbx75GHrjoB9Tz+Bqbwr4y0bxjaTT6VM5aBgs0MqbJIyemR74PI9DXl7+KbDS/jR4j1K8s7y/vII47OwtLSLzZPujewHYcHJ/263tC1vwxfQeLvE+hwXdnraWkjXttc/IysqEhtuSOq9euc5xmgDU1T4weFNJ1ebTpZbuVoJPLnngg3RxtnBBOcnB9Aat+NPFlxpugaVNoL20k+sXcVra3M3MSCQEhz68D/wDXjFZHwz0Ozuvg3Faywqw1KOdrgkffJZlBPuAF/KqPwv0uw8XfCCDStZtxc20VxIigkhlw24EEcgjcfw46UAbnhnWvENn41ufCniK7tdQl+xC+gu7eLyyF37CrqOBz0/rnju65zwx4H0XwnJcTadFM9zcACS4uJTJIyjouT0H0/oK6OgArzrXWbxv41h8PQknSdMYTagynh5Oyf0/769K6Lxr4j/4RzQHlhG+/uD5NpGBks574746/kO9Hgrw5/wAI3oCQzfNfTnzruQnJaQ9s98dPzPeuin+7j7Trsv8AM5qv7yfsltu/0XzOiVQihVACgYAA4ApaKK5zpCiiigAooooAKKKKACiiigAooooA4Px7/wAjT4M/7CH/ALMld5XB+Pf+Rp8Gf9hD/wBmSu8rep/Dh8/zOel/Fqeq/IKKKKwOgKKKKACiiigAooooAKKKKAPKPDS2+lfHjxRBdtHHPeQJLas5xvU7WYLnqfb/AGT6VTitk1/4teNhpbLJA+iPaSyR8q0zKigZ9eD/AN8mvQvE/gjQPF4hOsWXmywgiOVHKOoPbIPI9jVrw94Y0fwtYGz0eyS2iZtzkEszn1Zjkn+lAHD/AA68S6dp/wAGkuJ7mON9NjnSdHbBVwzMq49SCMfWr3wWsZLP4aWTSqVNzLLMARg7S2B+YXP41d1L4U+DtV1d9SutK/fyPvlWOZ0SRu5Kg9/bGa7GGGK3gjghjWOKNQiIowFUDAAHpQA+kZlRSzEKoGSScAClrh/iBqtzP9l8KaU3/Ew1Q7ZCP+WUP8RP1wfwDVdODnLlM6tRU4uTKWgq3jfxrN4imBOk6Yxh09GHDv3f+v4r6V6LVHR9KttE0m2060XEMCBQe7HuT7k5P41eqqs1KWmy2FRpuEdd3qwooorI1CiiigAooooAKKKKACiiigAooooA4Px7/wAjT4M/7CH/ALMld5XB+Pf+Rp8Gf9hD/wBmSu8rep/Dh8/zOel/Fqeq/IKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAqapqVto+l3OoXb7YIELse59APcnAH1rkPAGm3N9Nd+L9UT/AE3Uj+4Q/wDLKHsB9cD8APU1V8SO3jTxhb+Frdj/AGbYkT6k6nhiOiZ/HH1J/u16EiJFGscahUUBVVRgADsK6H+7p26y/L/gnMv3tTm6R/P/AIA6iiiuc6QooooAKKKKACiiigAooooAKKKKACiiigDg/Hv/ACNPgz/sIf8AsyV3lcH49/5GnwZ/2ED/AOhJXeVvU/hw+f5nPS/i1PVfkFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAVz/jLxGvhrw/LdJhruT91ax4yWkPTjuB1/DHeugJABJOAO9edaSD468cya1IN2jaQxisgeksvUv8AyP8A3z71tRgm+aWy/qxhXm0lGO7/AKv8jf8AA/hxvD+hD7US+pXbefdyMckuedufbP55PeumoorOc3OTkzWEFCKiugUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfj3/kafBn/YQP8A6Eld5XB+Pf8AkafBn/YQP/oSV3lb1P4cPn+Zz0v4tT1X5BRRRWB0BRRRQAUUUUAFFFFABRRRQAUUVW1G/t9L064vrt9kECF3PsPT3ppXdkJtJXZyfxA1i5EFt4a0o51PVj5fB/1cX8TH0zyPoG9K6XQ9Ht9B0a2021H7uBMFscu3dj7k5Ncl4DsLjVr688ZammLi+JS0jP8AyyhHAx9cY+gz/FXe1tVfKlSXTf1/4Bz0U5t1X129P+DuFFFFYHSFFFFABRRRQAUUUUAFFFFABRRRQAUVzPi/xXceGYYRaeH9U1eedWKCzhLohGPvkZK5zxwehrC+Dms6jrvhC8vNUupri4OoyrmViSg2odoz0AJPFAHodFeV6gPE3if4na5o+l+J7jSLLTYICfLhEgLOoOMZHqe/au08LaHq+iQXKav4im1p5WBjeWAR+WAOQME5zQBh+PP+Rq8Gf9hA/wA0rvK4Px5/yNXgz/sIH+aV3lb1P4cPn+Zz0v4tT1X5BRRRWB0BRRRQAUUUUAFFFFABRRRQAV554qlk8X+KrbwjaORZW5FxqcinsOiZ9eR+JH92um8XeIo/DPh+e+OGnP7u3jP8ch6fgOp9hVPwJ4dk0PRWnvctql+32i7dvvbjyFP0yfxJrope5H2r+Xr3+RzVf3klSW279O3zOmiijghSGJFSONQqKowFA4AFPoornOkKKKKACiiigAooooAKKKKACiiigAooooAK8y+Bv/Il3/8A2FJv/QUr02uG+FXh7VPDXhi7s9Wtfs9xJfyzKnmK+UKqAcqSOxoAzLv4SDV/FOtapqmt3aWt/Irpb2T+WcqMAuSCDgdOO5pfhdfajZ6z4k8JahfS3qaTMv2aeU5cxtngn8FOO2TVV7Pxp4K8X65e6Ro39u6Zq8vnqv2kI0Dkk456DLHtjGORW18OfC+raTJrGueIBGmr6xOJZYY2DCFQThcgkfxHoTwBzQAnjz/kavBn/YQP80rvK4Px5/yNXgz/ALCB/mld5W9T+HD5/mc9L+LU9V+QUUUVgdAUUUUAFFFFABRRRQAUUVxnxA1u4t7KDQdL+bVdVbyYwDyiHhm9vTP1Parpwc5KKIqVFTi5MzLL/iu/Hjag3z6HorbLcfwzTf3vfsfoF9TXo1Znh/RLfw9oltpttysS/M+OXY/eY/U1p1VWak7R2WxFGm4xvLd6v+vIKKKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOD8ef8AI1eDP+wgf5pXeVwfjz/kavBn/YQP80rvK3qfw4fP8znpfxanqvyCiiisDoCiiigAooooAKKKKAIL28g0+xnvLqQRwQIXdj2AriPA1nPrurXnjTUoyr3JMVhG3/LKEcZH16f99HvUfjCeXxT4ktfBtk7C3Ui41KVf4UGCF+vQ/Ur6Gu+t4IrW3it4I1jhiUIiL0VQMACuj+HT85fl/wAE5v4tW/SP5/8AA/MkorP13VP7E0G/1UwNOLSBpjGrYLBRk8/SsebxxY23w+XxdNCy2726zLBuG4s3ATPrk4zXOdJ1FFU9JvZdS0i0vprVrWS4iWUwO2WjyM4J9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/kavBn/YQP8ANK7yuD8ef8jV4M/6/wA/zSu8rep/Dh8/zOel/Fqeq/IKKKKwOgKKKKACiiigArG8U+IIfDWgXGoy4Z1GyGM/xyHoP6n2BrZrzmP/AIrzx6Zfv6FobYT+7PP6+44/ID+9WtGCk7y2W/8AXmY1puK5Y7vb/P5G14C8PzaTpMl9qGW1bUm+0XLt94Z5C/hnJ9yfSusooqZzc5OTLpwUIqKM/XrX7f4d1OzAz59pLFj/AHkI/rXiXg6T/hOLDwf4WHz2GlpJf6mOxKyusUZ+oxx6N7V6/wCKvF+keENP+1apcbGkVzBEFJaZlGdowOOo68c1zvwi8Jnw14SFzcw+Vf6kwuJVI5jT+BPwBz9WNQWegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/kavBn/AF/n+cdd5XB+PP8Aka/Bf/X+f5x13lb1P4cPn+Zz0v4tT1X5BRRRWB0BRRRQAUUVFdXMNlaTXVxII4YULu56BQMk0bg3Y5Xx/r0+n6bFpOm5bVtUbyIFU8qp4ZvbrgH3z2rZ8NaFB4b0G202DBMa5kcD77n7zf57YrlfBVrN4k1278aahGVVyYNOib/lnGMgt/MfUt616BW9X3EqS+fr/wAA5qP7yTqv5en/AAQooorA6Std6dY37wveWVvcPC26Jpolcxn1XI4PA6VZoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4Px5/wAjX4L/AOv8/wA467yuD8ef8jX4L/6/z/OOu8rep/Dh8/zOel/Fqeq/JBRRRWB0BRRRQAV5/wCNbqbxHrtp4L0+QqshE+oyr/yziGCF/kfqV9a6rxLrsHhvQbnUp8ExriNCfvufur+f6ZrF8AaFPYabNq2pZbVtUbz52Ycqp5VfbrnHvjtW9L3E6r+Xr/wDmrPnkqS67+n/AATqrW1hsrSG1t4xHDCgREHQADAFTUUVgdKVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOD8ef8jX4L/6/z/OOu8rg/Hn/ACNfgv8A6/z/ADjrvK3qfw4fP8znpfxanqvyQUUUVgdAUUVyfj3xBNpGkR2On5fVtSb7Paov3hngt+GcD3I9KqEHOSiiKk1CLk+hiy/8V549EI+fQtDbL/3Z5/T3GR+QP96vRqxfCvh+HwzoFvp0eGkA3zSD+OQ9T/QewFbVXWmm7R2W39eZFGDiuaW73/y+QUUUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcH48/5GvwX/wBf5/nHXeVwfjz/AJGvwX/1/n+cdd5W9T+HD5/mc9L+LU9V+SCiiisDoI7ieK1t5bieRY4YlLu7dFUDJJrgfB8EvirxJdeMr1GFupNvpsTfwoMgt9ev4lvQVJ45vJ9c1Wz8F6bIVkuSJb6Rf+WUI5wfr1/75Heu3srODTrGCztYxHBAgRFHYCuj+HT85fl/wTmf72rbpH8/+B+ZPRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/ka/Bf8A1/n+cdd5XB+PP+Rr8F/9f5/nHXeVvU/hw+f5nPS/i1PVfkgrM8Qa1b+HtEudSueViX5Uzy7H7qj6mtOvOb7/AIrvx2unL8+h6K2+4P8ADNN/d9+4+gb1FTSgpO8tluVWqOMbR3ei/ryNP4f6LcW9lPr2qfNquqt50hI5SM8qvt64+g7V2dFFTUm5ycmXTpqnFRQUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/kbPBf/AF/n+cdd5XB+PP8AkbPBf/X+f5x13MsscELzSuqRxqWdmOAoHJJrep/Dh8/zOel/Eqeq/JHM+O/EUmh6KILLLapft9ntEX7248Fh9Mj8SKueEfDsfhnw/BYjDTn95cSD+OQ9fwHQewrmfCsUni/xXc+LrtCLK3Jt9MjYdh1fHryfxJ/u16HTq+5H2S+fr2+QqX7yTqvbZenf5hRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcH48/5GzwX/wBf5/nHR48v7jVb2z8G6Y+Lm+Ie7kH/ACyhHJz9cZ+gx3qn8UdQTStW8L6hIhdLa5klKr1bGw4rS+H2kXPkXPiXVRnU9WPmcj/VxfwqPTPB+gX0ruVo0o1H0vb1u/yPPledadJdbX9LL8zrdOsLfS9Ot7G0TZBAgRB7D19+9WaKK4m7u7O9JJWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz/iXwjZeKLnTZL2SQJZSF/KXG2UHGVPt8o/DNdAAAAAMAdBRRVOTaSeyJUIpuSWrCiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
|
<image>Find x.
|
5 \sqrt { 3 }
|
Geometry
|
Geometry3K
|
test
|
10
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGAAhMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACisjQ9ZXVpNSVSP9Eu3g47gY5rXqpRcXZkxkpK6CiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC9uVs7G4un+7DG0h+gGanrkviPqy6Z4SuIwf3t2RCg9jyx/L+daUoOpNQXUzrVFTpub6HKfCfU2k1jVbaRstOonGfUHB/wDQhXrFfPPgjVV0fxZZXDnETt5Uh9A3Gfzwa+hhyM125lT5a3N3RwZVV56HL1TCiiivOPTCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxT4m6pJq3ihNNtg0i2g8sIgyWkPLYH5D8K9qOcHHWsTRvCunaNLJcpH517KxaS5l5dieT9PwrqwtaFGTqSV30OTGUJ14qnF2XU+eBBN5byCJ9kZAdgOFJ6ZPavoPwXrP8Abfhe0uWbMyL5Uv8AvLx+vX8a434WQRXM2vwzxrJGzIGVhkEZeu60bw5aaDcXTWBaO3uCGMGcqreo9M/0rszGvGd6bWq2OHLKE4Wqp6S3+RsUUUV5J7IUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF9dJZWFxdSHCQxNI30AzU9ch8UNS/sz4earIGw8sYhX/gRwf0zUzdosqKvJHjnhPTvGPjyfULiy8Q3FtHDIM75WwS2TgY9K6Ob4c/Eeyiae08UvLKgyEFw6lvYV0HwRtIrHwKbiR0WS7uHk5YA4Hyj+Vd/qWuaZpFlJd317BFDGpJJcZPsB3NXNKOiJi3JnnXwq8f6nrd9deH9e+a/tlLJKRhmAOGVvcV6rXg3wlik134l6z4hjiKWv7xs443O2QPyBr3mh6xTe9hbSaWx5j8Jf8Aj713/fj/AJvXp1eY/CX/AI+9d/34/wCb16dXXj/94l8vyRx5d/u8fn+bCiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIfj7qXlaBpumqfmuJzIR7KMfzavXq8H+KDHX/i3ouiL8yReVG4/3m3N+mKTXNKMe7KTsnLsixpvwMkuNMtpn16eF5Ildo1ThSRkjrV2H4CW7Sr9s1+6liB5VVAJ/PNexIoRFUdAMUtU3roQr21Mrw/4e03wzpaafpkAihXknqzn1J7mofFHiS28NaS91MQ0zfLDFnl2/w9avarqlro2nS315IEijGfdj2A96800TTbz4heIW1vVVK6ZA2Ioj0bHRR7eprpoUlK9Sp8K/HyOXEVnC1Kn8T/DzZj/DvxRDomtTxXgCwXxUGT+4wJxn25r28EMAQcg9DXiXhHwxb+JbPXrZsJcROjW8n90/Nx9DXT+BfE9xZ3beGNczHdQnZA7nr/sk/wAq7MdRjUlKUN1uv1OLL60qcIwqfC9n532PR6KKK8k9gKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArMbw7oz6uNWbTLU6iDkXJjHmZxjr9OK06KACo554raB55nWOKNSzMx4AFSdK8s8Va3d+MdbTw1obE2yt+/mHRsdSf9kfqa2oUXVlbZLd9jDEV1RjfdvZd2V7ma8+JniYW0BeLRbRss3qPX/eP6CvVLKzg0+zitbaMRwxKFVR2FU9C0S08P6XFY2i4VRl3PV27k1p1eIrKdoQ0itv8yMNQcLznrJ7/wCR5j8Jf+PvXf8Afj/m9bfjvwh/blqNQsRs1O3GUK8GQDt9fSsT4S/8feu/78f83r06t8VVlSxTnHy/JGGEpRq4RQltr+bOM8CeL/7btjp9+dmp24wwbgyAd/r612dec+OvC9xa3S+J9DzHdwnfMid8fxAfzFdN4S8UW/ibSxMuEuo8LPF/dPqPY1lXpRlH21PZ7rszTD1ZRl7Crutn3X+Z0FFFFch2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVyHjnxevh+yFraHfqVwMRqOdgP8AEff0rSnTlUkoR3M6tWNKDnLZGX488VTtOPDei5kvrg7JWTqoP8I9/X0roPB/hWDwzpYQ4e8lAaeX1PoPYVl+A/CDaVCdV1Ib9TuBu+bkxg9vqe9dvXRXqRhH2NPbq+7/AMjmw9KU5e3q7vZdl/mFFFFcZ2nmPwl/4+9d/wB+P+b16dXmPwl/4+9d/wB+P+b16dXZj/8AeJfL8kcWXf7vH5/mxCAQQRkHqK8r8S6Pd+CNdTxFoqn7E7YnhHRc9QfY9vQ16rUVzbw3dtJbzxrJFIpV1YcEGsqFZ0pd090a4igq0ezWz7FTRdZtNd0yK+tHyjj5l7o3cGtCvJHW8+GXibeu+bRLtuR6D/4ofqK9VtLqC+tYrm2kWSGRQysvQiniKKg1KGsXt/kLDV3UThPSS3/zJqKKK5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKpatqtroumy314+2KMfix7Ae9NJt2QpSUVd7FDxT4ltvDOlNcykNO3ywxZ5dv8AAVyPgjw3c6rft4p10GSaVt9vG4/8ex/IVR0LTLz4geIW1zVlK6bC2IoT0bHRR7evrXq6qqKFUAKBgAdq7ajWHh7OPxPd9vL/ADOCnF4qftZfCtl38/8AIWiiiuE9AKKKKAPMfhL/AMfeu/78f83r06vMfhL/AMfeu/78f83r06uzH/7xL5fkjiy7/d4/P82FFFFcZ2lHWNJtdb02WxvE3RyDg91PYj3rzbw/ql54C8QNoOrsTp0rZhmPRc9GHt6jtXq9YXirwzbeJtKa3kAW4TLQy45Vv8DXVh6ySdOp8L/DzOTE0ZSaq0/iX4+RuKwZQykEEZBHelrzbwP4mudNvm8L66THPE2yB3PX/Zz/ACr0ms61F0pcr/4c1oVo1ocy+a7MKKKKxNgooooA858X+OtWTxInhbwpax3GqFd00snKxDr9PrWM/jfxr4L1O0XxlbW1xp1y+z7RbqBsP4AdPQim/DdxL8WPF8lx/wAfIdgueu3ec/0rf+NEcL/Dq5aXG5JozHn+9nH8s1N+WMZdyrXk49jv4pEmiSWNgyOAykdwafXOeAbl7vwHosznLG1QE/QYro60krSaIi7pMKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQSAMngUARzzxWtvJPPIscUalmZjwAK8omkvPiZ4mEEReLRLRuT6j1/3j+gqfxRrV34z1xPDeiMfsit+/mHRsdSf9kfqa9C0PRbTQNLisbRcKoyzHq7dya74pYWHM/je3ku/qefJvFz5F8C38329C3Z2kFhaRWttGscMShVUdhU9FFcLd9Wd6SSsgooopDCiiigDzH4S/8feu/wC/H/N69OrzH4S/8feu/wC/H/N69Orsx/8AvEvl+SOLLv8Ad4/P82FFFFcZ2hRRRQBx/jrwgNfsxeWY2albjKMON4H8P19Kh8B+Lzq8B0vUTs1O3G0huDIB3+o7121ed+O/C08VwviXRMx3sB3zKnVgP4h7+vrXbRnGrH2NT5Pt/wAA4a9OVKft6a9V3Xf1PRKK53wh4pg8TaWJOEvIgFni9D6j2NdFXLOEoScZbo66dSNSKlF6MKKKKgs8u8VeBtesvFx8V+D5olu5R/pFvIcBz39jn0rmfHVh4x1Pwjd6n4rmgtbe02+RaQfxyFgNzfQE10Ou+MNV8F/El21mW4k8O3Uf7nauVQkD+RB/Osnxr4sj+JElj4X8MJNMksyyXM5TCqo/oMk1KV4pL/hi72k2/wDhz0X4dxND8PtERhg/ZUP5jNdPVbT7OPT9OtrOIYjgjWNfoBirNaTd5NmUVaKQUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnfjvxTPLcDw1omZL2c7JmTquf4R/WtTx14vGgWYs7M79TuBiNRyUB/i+vpUPgPwgdIgOqaiN+p3Ayd3JjB7fX1rtowjSj7ap8l3/4Bw16kqs/YU36vsu3qanhDwtB4Z0sR8Pdy4aeX1PoPYV0VFFcs5ynJyluzrp0404qMdkFFFFQWFFFFABRRRQB5j8Jf+PvXf9+P+b16dXmPwl/4+9d/34/5vXp1dmP/AN4l8vyRxZd/u8fn+bCiiiuM7QooooAKCARg8iiigDyvxRot34N1tPEmiKRas37+EdFz1B/2T+hr0LQtbtNf0uK+tGyrDDJ3Ru4NXp4IrmCSCZFeKRSrKwyCDXlFxFefDPxKLiEPLot22CvoPT6jt613xaxUOR/GtvNdjz5J4SfOvge/k+/oet0VBZ3kGoWcV1bSCSGVdysO4qeuFqzszvTTV0QXdla30Jiu7eOeM/wyKCKjstKsNNUrZWcFuD18tAuat0UhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4q8S23hnSmuZCGuHysMWeWb/AVf1fVrXRNNlvrx9sUY6d2PYD3rzbQNLvPH3iBte1dSNOibEMJ6Njoo9h39a6sPRUr1Knwr8fI5MTXlFqlT+J/h5l7wP4audTvm8Ua6DJPK2+BHHT/ax/IV6TSKoVQqgAAYAHalrOtWdWXM/+GNaFCNGHKvm+7CiiisTYKKKKACiiigAooooA8x+Ev/H3rv8Avx/zevTq8x+Ev/H3rv8Avx/zevTq7Mf/ALxL5fkjiy7/AHePz/NhRRRXGdoUUUUAFFFFABVLVdLtdZ06WxvIw8Ugx7g9iPertFNNp3QmlJWZ5PompXnw+8QtomqsW0ydsxS9lz0Ye3qK9XVldA6MGVhkEdCKxfFHhu28S6U9rMAsy/NDLjlG/wAK4/wT4kudH1BvC2ukpJG223kc/kufT0rtqJYmHtI/Et138zgpt4WfspfA9n28v8j0uiiiuE9AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK4uIrS3kuJ5FjijUs7MeAKlJABJOAO9eV+JtZu/G2up4c0Vj9jRv38w6NjqT7D9a3oUXVl2S3Zz4iuqMe7ey7kEj3nxM8TeWm+LRLRuT6j/4o/oK9VtLSCxtIrW2jWOGJQqqo4AqpomjWug6XFY2iYRB8zd3buTWjVYisp2jDSK2/wAycNQdNOc9ZPf/ACCiiiuY6gooooAKKKKACiiigAooooA8x+Ev/H3rv+/H/N69OrzH4S/8feu/78f83r06uzH/AO8S+X5I4su/3ePz/NhRRRXGdoUUUUAFFFFABRRRQAVyXjjwiniGx+02oCalAMxuON4/un+ldbRV06kqclKO5nVpRqwcJbM4bwH4ubU4zpGpkpqdv8vz8GQD+o713NefePPCkxlHiLRgY7+3O+RY+rgfxD3/AJ1ueDfFcPibTAWIS9iAE0fv/eHsa6a9OM4+2p7dV2f+RzYerKEvYVd+j7r/ADOlooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK47x14vGhWgsbI79TuBhFXkxg9/r6VpSpyqSUI7mdWrGlBzlsZfjvxTPcXI8M6JmS8nOyZk/hz/AAg/zrpPCPheDwzpYiGHu5MNPL6n0HsKy/AnhA6NbnUtQG/U7gZYtyYwe319a7WuivUjGPsaey3fdnNh6UpS9vV3ey7L/MKKKK4ztCiiigAooooAKKKKACiiigAooooA8x+Ev/H3rv8Avx/zevTq8x+Ev/H3rv8Avx/zevTq7Mf/ALxL5fkjiy7/AHePz/NhRRRXGdoUUUUAFFFFABRRRQAUUUUAHUYNeW+LNDu/CWsr4m0NSsBb/SIV6Lnrx/dP6V6lTJoY7iF4ZkDxuCrKwyCDW1Cs6Ur7p7ruYYigq0bbNbPszO0DXbXxDpUd7at1GHQnlG7g1qV5JeW958NfEovLUPLo102GT0Hp9R2r1OxvrfUrKK7tZBJDKu5WFXiKKhacNYvb/IjDV3O8J6SW/wDmWKKKK5jqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqhrGr2uh6ZLfXj7Y4xwO7HsB704pydkKUlFXexQ8V+JrfwzpTXEhD3D5WCLP3j6/QVyvgbwzc6het4o1zMlxMd8COOn+1j+Qqj4e0q78ea++v6wpGnxNiGE9Gx0A9h39a9VVQqhVAAAwAO1dtRrDw9lH4nu/0OClF4mftZ/Ctl+v+QtFFFcJ6AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5j8Jf+PvXf9+P+b16dXmPwl/4+9d/34/5vXp1dmP8A94l8vyRxZd/u8fn+bCiiiuM7QooooAKKKKACiiigAooooAKKKKAKmp6bbavp8tldxh4ZRgj09x715jpF/efDvxE2kakzPpVw2Y5ey5/iH9RXrNY3iXw7a+JNKe0nAWQcxS45Rv8ACunD1lG9Op8L/q5y4mg5WqU9JL8fI10dZI1dGDIwyCDwRTq8y8GeIrrQdTbwtrpKFG228jHgegz6HtXptRXoulKz26PuXQrqtG636rswooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkAEkgAdSaAI7m5hs7aS4uJFjhjUs7MeAK8pY3nxM8TbV3xaJaN9Mj/4o/oKm8Savd+ONeTw7ozH7FG2Z5h0bHUn2Hb1r0XRdHtdC0yKxtEwiDlu7HuTXfFfVYcz+N7eS7+p50m8XPlXwLfzfb0LVraw2VrHbW8axwxqFVVHAFTUUVwN31Z6KVtEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHi3gTS9T1O71X+ztWksPLZd+wZ35LY/LB/Ou1/4RXxN/wBDbcf981h/CT/j813/AHo/5vXqFd+OqNV2l5fkTlWNq0sJGEbWV/sp9X3Rxf8Awivib/obbj/vmqeq6F4m03Sbq9Hiq4fyImk2464GcV6BWR4p/wCRU1X/AK9ZP/QTXNGpJtL9D1qGYVpVYxajZtfZj/kJ4Vupr3wvp1zcyNJNJArO7dScVsVheC/+RN0r/r3X+VbtZz+JnFiklXml3f5hRRRUmAUUUUAFFFFABRRRQAUUUUAcp428Ix+I7DzrcBNRgGYnHG7/AGTWf4C8XSXynRNVJTUrf5QX4MgH9RXd1wHjzwnLOw1/RwY9Qt/ncJwXA7j3H612UKkakfY1Pk+z/wAjhr05U5+3pb9V3X+Z39Fcx4L8WReJdOxIQl/CMTR+v+0PaunrmqU5U5OMt0ddOpGpFTjswoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK858deKLi7ul8MaGTJdTHZO6Hp/s5/nWl4+8ZL4fsjZ2jg6jMvGP+WS/3j7+lZPgSDQ9EtjqF/qds+p3AyxZ8mMHt9fWu/D0eSHt5K/Zfr6Hn4mt7SfsIO3d9l29TqvCXhe38M6UsK4e6kw08uPvH0HsK6Csj/hKND/6Clt/33R/wlGh/wDQUtv++65pxqzk5STuzqpyo04qMWrLzNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6j2U/5WV7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+816KyP+Eo0P/oKW3/fdH/CUaH/0FLb/AL7o9lP+Vh7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+816KyP+Eo0P/oKW3/fdH/CUaH/0FLb/AL7o9lP+Vh7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+816KyP+Eo0P/oKW3/fdH/CUaH/0FLb/AL7o9lP+Vh7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+84b4Sf8fmu/70f83r1CvI/hhqthp91rLXl3FCJGj2F2xu5bp+dei/8ACUaH/wBBS2/77rsx1ObryaXb8jjwFSCw8U2uv5mvWR4p/wCRU1X/AK9ZP/QTR/wlGh/9BS2/77rM8R+I9Gn8NalFFqNu8j2zqqh+ScVyxpT5loz0sPWpqtBuS3XXzLngv/kTdK/691/lW9XH+EvEOkW3hTTYZ9Rt45UgUMrNyDWz/wAJRof/AEFLb/vunOlPmejKxdam682pLd9fM16KyP8AhKND/wCgpbf990f8JRof/QUtv++6j2U/5Wc/taf8y+816KyP+Eo0P/oKW3/fdH/CUaH/ANBS2/77o9lP+Vh7Wn/MvvNeisj/AISjQ/8AoKW3/fdH/CUaH/0FLb/vuj2U/wCVh7Wn/MvvNeisj/hKND/6Clt/33R/wlGh/wDQUtv++6PZT/lYe1p/zL7zXorI/wCEo0P/AKClt/33R/wlGh/9BS2/77o9lP8AlYe1p/zL7zXorI/4SjQ/+gpbf990f8JRof8A0FLb/vuj2U/5WHtaf8y+84bxfoF14Y1ZfFGhArGGzcRKOBnrx6Gu68O6/a+ItKjvbZsHpJGTyjdwaZL4j8PzRPFLqVo8bgqylsgivL5dQg8D+Khd6PeR3WmXJ+eFHzgdx9R2Nd0YSxEOSS95bPv5HBKccNU54P3Huuz7ntNFVdP1C21SxivLSQSQyruUirVee007M9JNNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFYOp+NfDejymK/1i1hkHVN2SPyo0zxr4b1iYRWGs2s0h6JvwT+dC12B6GdffDjRtSvZbu6e6kmlbczGU1W/4VX4d9Ln/AL+mu4oroWKrJWUmczwlBu7gjh/+FV+HfS5/7+mj/hVfh30uf+/pruKKPrdf+dh9Tw/8iOH/AOFV+HfS5/7+mj/hVfh30uf+/pruKKPrdf8AnYfU8P8AyI4f/hVfh30uf+/po/4VX4d9Ln/v6a7iij63X/nYfU8P/Ijh/wDhVfh30uf+/po/4VX4d9Ln/v6a7H7ba/8APzD/AN/BR9ttf+fmH/v4KPrdf+dh9Tw/8iOO/wCFV+HfS5/7+mj/AIVX4d9Ln/v6a7gEEZByKKPrdf8AnYfU8P8AyI4f/hVfh30uf+/po/4VX4d9Ln/v6a7iij63X/nYfU8P/Ijh/wDhVfh30uf+/po/4VX4d9Ln/v6a7iij63X/AJ2H1PD/AMiOH/4VX4d9Ln/v6aP+FV+HfS5/7+mu4oo+t1/52H1PD/yI4f8A4VX4d9Ln/v6aP+FV+HfS5/7+mu4rNu/EOj2Fw1vd6lbQzLjKPIARR9br/wA7D6lh/wCRHM/8Kr8O+lz/AN/TR/wqvw76XP8A39Nb/wDwlvh7/oM2X/f0VoWmo2V+u6zu4Jx38qQNj8qPrdf+Zh9Tw/8AIjkP+FV+HfS5/wC/po/4VX4d9Ln/AL+mu4oo+t1/52H1PD/yI4f/AIVX4d9Ln/v6aP8AhVfh30uf+/pruKKPrdf+dh9Tw/8AIjh/+FV+HfS5/wC/po/4VX4d9Ln/AL+mu4oo+t1/52H1PD/yI4f/AIVX4d9Ln/v6aP8AhVfh30uf+/pruKKPrdf+dh9Tw/8AIjh/+FV+HfS5/wC/po/4VX4d9Ln/AL+mu1kmihx5sqJnpuYDNR/bbX/n5h/7+Cj63X/nYfU8P/Ijjv8AhVfh30uf+/po/wCFV+HfS5/7+mu0jnhmJEcqOR12sDUlH1uv/Ow+p4f+RHD/APCq/Dvpc/8Af00f8Kr8O+lz/wB/TXcUUfW6/wDOw+p4f+RHD/8ACq/Dvpc/9/TR/wAKr8O+lz/39NdxRR9br/zsPqeH/kRw/wDwqvw76XP/AH9NH/Cq/Dvpc/8Af013FFH1uv8AzsPqeH/kRj6B4btPDkMkNlJMYnO7ZI+4A+o9K2KKbJLHDG0krqiKMlmOAPxrGc3J80nqbwhGC5YrQdRXMXXxE8JWUpin121Dg4IBJ/kK1NK8RaPriltM1G3ucdRG/P5danco06KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPvi/4nuvDnhELZOY7m9k8lZB1VcZYj36D8a9Bri/ib4Pl8YeGfs9qQL22fzYQ3RuMFfxqZ7FQ3OP8E/B/SL7QrXVdeea6uruMTbBIQFDcjPqcVH46+EGl6doVzq+gPNb3FohlaMuSGUcnB7EDmsjw38T9b8DxxaH4k0uV4Lf92jEbXVR29GAr1vw/wCNPD3i6Ax2N2kjsuHtpRh8d+D1q5Lm1gTFuPxGF8IPE1z4i8IFb2QyXNlJ5LSHqy4BUn8Dj8K9Bqva2NpYqy2ttFArHJEaBcn8KsUSd3cSVgooopDCiiigApsiCSN0JIDAjIp1FDVwPMW+CmkMxY6vqfJz/rK5DxF8PbK18Sad4d0XUr+fUbg+ZOXkJWCIdWPvXuGr6nBo2kXeo3JxDbRGRvfHb8elcL8KrCe/hv8AxfqIze6rKTGT/BEDwB7f4CiO/oNvS/c9CtoRbWsUAYsI0C5PU4GKlooobvqJK2gUUUUAFFFFABRRRQAV852miQfEb4v6zHdSSC0RpGLRnnapCrXvut3w0zQr++Y4FvbvJ+IUkV4F8JPFWheG7rVr7WbsxXFwVWP5SeMkn9SKUbOevRfmN3UNOrO5PwI8NY4ubwf8CFcL4w8LXvwp1TT9V0TU5mglcgBjggjBIIHBBFepN8YPBqqT/aLnHYRHNedeKNZu/i94gsNK0O0mXTrZyXnkXAGcZY+nA4FP3rrlDSz5tj3TSb0alo9nfBdv2iFJcem4A1cqvY2kdhp9vZxf6uCNY1+gGKsU5Wu7ExvbUKKKKQwooooAKKKKAOX8XeCLPxg1qbq8urf7OGC+Q2M5x1/KuPv/AIQ6BplhPe3et6lHBAhd2MvQCvWK8w+I15L4g8SaT4Hs3IW4cT3xU9Ixzj8gT+VK3RdSr9X0GfB3w9NaW99rjSTi1vW22kUzEt5YJwx9zXqVRW1vFaWsVtAgSKJQiKOgAqWqb7ELuwooopDCiiigAooooAiubiK0tZbmdwkMSF3Y9ABya8HudQ1/4weJpbDT5ns9Ct2+YjgbfU+rH0rt/jTq8mm+BHgiYq97MsJI/u9T/IVd+E2iR6P4CsXCATXi/aJG7nd0/TFKKu23svzG3ZJLd/kUrL4KeEre3CTw3FxJjDSNKRn8B0rh/HXw8m8BLH4k8M3k8cMMg8xC2Wjz0Oe47c179XL/ABGEZ+Hutebjb9nPX1yMfrSm2lzLoOCu+V9SbwP4kHirwpaamQFmYbJlHZxwa6KvLfgOG/4Qe53Zx9tfb9Nq16lWk9yI7BRRRUjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4zwz8RrDxP4jvNFt7SaKa2VmZ5CMNtYLx+ddnXhHi/wAKeIfBfjSTxX4bhae2lcyOqLu2bvvKw7g0r2kr7DtdO257TqejabrNuYNRsobmMjGJFB/WvA/iX4Li8AajYa3oFxJBHLKQqbuY3HPB9K6OH48MkOy68OXAucYIRsDP0IzWNPbeKfi/rtq11YvYaNbt1ZSAoPUjPVjiizuuULpJ8x7foN8+p+H9PvpRtkuLdJWHuVBNaNRWtvHZ2kNtCu2OJAij0AGBUtVJpt2JjdJXCiiikMKKKKACiiigDy7426nImhafodu377U7kKQO6gjj8yPyr0TSLCPStHs7CEYjt4VjA+gxXDeMPB2seIPiHoWpxJCdLsCjSbpMNkMWOB+VejUR+H1f/DBL4l5IKKKKACiiigAooooAKKKKAOE+L+pf2f8ADu+UNh7lkgX8Tk/oDXP/AA1+HmgX/gexvtV0uG4urjdJvcc7cnH6VF8dftt5aaRplnazzB5Glfy4ywHQDOPqa9Q0GwGl6BYWKjAt7dI/yAohtJ+Y5fZRztx8K/Bs8LR/2NDHuGN0ZII+lea/CU3GifE3VtBimZrRRKrKehKMAD9a98rwn4c291bfGHVp7y0uIlm89Ud4mCklweuMdAaIfH8mKXwP1R7tRRRQAUUUUAFFFFABRRRQAjMEQsxwoGSa8j+GDHxH468S+KJRuG/yICey56fkFr07W4bq50K/gsgv2qW3dItxwNxUgc1y/wAL/Cl94S8NzWmpLELqW4aVvLfcMYAHP4UR+Jvy/MJfCl5/kdvRRRQAUUUUAFFFFABRRRQB5L8fYJH8L6dMoJSO6Ib2yvH8q7nwLcxXfgbRZYSCv2SNeOxAwR+Yqx4q8PW/ijw7daVcHaJVyj4+446GvFdF17xb8KZpdK1DS5LvTd5ZCASB7qw9fQ0ou10+uo5K9muh7+08KzLC0qCVgSqFhkgdSBXlnxw8SR2fh6LQoXBur1wzqOojB/qcflXnfijxtc6/4ptNe0Gx1G0voFwwJLrx6AdB61ufDPQh468S3HiLX79bm4tpA32Vj8xPYkf3R6UKPNo/mF+XU9T+G2hP4f8AA2n2ky7Z3XzpR6M3OPw6V1lAGBgdKKqTu7kpWVgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKzafZM+5rO3LepiGf5VYVQqhVAAHQAUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNkijlXbIiuvowyKdRQBBHZWkJzFbQofVYwK5vTPh/pGkeLbjxBZ+ZFLMuPIU4jBPU4966uijrcOlgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
|
<image>Find $PS$.
|
9
|
Geometry
|
Geometry3K
|
test
|
11
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEGAgkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqvdX1tYmH7VKsSzOI0ZuFLHoM9ie35VYp2FdbBRRRSGFFFFABRVf7dbDUPsLSqtyU8xY24LL0yPXHf049RVinawk09goqvcX1tazW8M0qrNcPsij6s56nA9AOSe1WKLBdBRRRSGFFFFABRVdb62e/exSVWuY0DyIvOwHpu9M9h3wasUNWEmnsFFFFAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCjrOlW+t6PdabdD91cIVJxyp7MPcHB/CvJdB+IOp+ENRm0HxIkl1BbOYxIOZI8dMZ+8uORnnB/CvaK8X+MmimLWLHVYUJF0nkyYH8a9PxIOP+A12YNxm3Sns/zOHGqUEq0HqvyPWNI1zTNdtftGmXkVxH32n5l9mB5H41oV4j4G8LWsfiOfTtTvtR0zXLY5jSCVUEqdcq2Dn6dxz649tRSqKpYsQMbj1PvxWWIpRpytF3NsNWlVheSt/X4C0UUVgdBynj/QpNX8Ptc2btFqWnk3FtKjbWGB8yg9sgfmBXBaf8ZL2DRHhvLJbjUVGIp87Ub3dR3Ht19q7rx7o+m32jy3esavf2lnAuTFBIoRz2ypHzEnpzXgb6Xdm+t7eK0nD3eGto3HzSKxIU/jjrXqYSnCpTtPWx5GNqVKVW8NL/j8j2T4Z2V7qr3Pi3WJ2uLu5zDbluiRg/NgdBk8Y9j616NXmHwu0XTDa/b7HVdSjvIm23lk0iqit6Mm3kHnB+vQivT648V/FZ24P+Cv+HuFFFFc51EF5e2un2z3N5cRW8CfeklYKB+JryzxZ8W1aNrLw0GLt8rXjpjH+4p5z7n8u9TfFDQ9NWJbu61PU59RuH2WdkJFZST/AHV28Dp9eO9ch4L8K3T/ABEt9O1CAo1iRcXCHnG0AqPfJK/nXpYehSUPaz1t/XzPLxOIrOp7KGl/6+R694H8PyaD4fT7WWfUbs+fdyOcsXPYn2HH1z610tFFefOTnJyfU9GEFCKiugUUUVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1XSLXWIreO6XcLe4juU/3kOR+B5H41fopptO6E0pKzOX8ZeE/+Egtoryxk+zazZnfa3CnByOdpPp/I/jlPBviz+37eWzvo/s2s2fyXVuwwSRxuA9P5H8M9TXF+MvC91NcxeI9APla3aDOF6XCD+Ejucce449Mb05KcfZz+T7f8A56kJQl7WHzXf/gnaVFdXUFlay3VzKsUESl3djgKB3rG8L+KrPxLpBu0Ihnh+W6gc4MLd8+3XB/qDXJXU1x8TNdaxtXeLwvYyD7RMvBunH8I9v5dTyQKmNF8zU9EtxzrrlThq3t/X5hY29x8StcXVL6N4vDVnIRaW7cfaXH8Teo9fyH8Rrs7zw3Y3niHTtZdSLixRkjAA2kEYGfpkkfWtO3t4bS2jt7eNYoYlCIijAUDoBUtE6zb93RbIdOgkve1b1b8zgfFmg3ujar/AMJf4cT/AEqMf6daD7txH3OPX1+meo56vQNesvEekxahYvlH4dD96Nu6n3H/ANetOvONb0668B62/iXRomk0m4Yf2jZJ0Tn76jt1/A+x4uLVaPI/iW3+X+REk6EuePwvfy8/8z0esnxH4hsvDOkSX942QPljiB+aR+yj/PFD+JNKj8O/26btDp/l7xIO/wDs4/vZ4x61yHh7S7zxnrSeK9diKWUR/wCJZZN0A7OR39fc89AKinTWsp7L+rFVKr0jT1b/AC7lrwh4evb/AFFvFviNc6jOP9Ft2HFtH247HH5Z55Jx1kGj2tvrd3qyL/pN1FHFIfZM8/jkf98isvxVoOs64LT+yPEs2i+Tv83yoBL5uduM5YYxg/nXnep6f4x0zxZo+g2njy81G+u382aL7KsawW4PzOx3HryAO/r0zM6spu/9WLp0YwSXz+fc9nooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4Txd4hvdR1JfCXhxs6hMP9LuVPFtH357HHftnA5IxdOm5uyM6tRU43f/DnFeNEGp+JtVk8KwXLpFARq0ls+I5OeR7njn1wTjgk+p+DrnR7nwxZtoahLNV2+X/EjfxBv9rPX1znvU/h3w/ZeGtIj0+yXgcySEfNI/dj/niuN1iwufh/rT+ItIiaTRblh/aFknSPn76jt1/Dp0PHVKcay9kum3n6/p9xxxpyoS9rLrv5en6/eekUVW0+/tdUsIb2zmWW3mXcjr3H9D7VZrjaadmd6aaugqC8ltoLKeW8aNbZUJlMn3duOc+2KmZgqlmIAAySe1ea3s9x8StcbTbKR4vDNlIPtVwvH2lx/Cvt6fmf4RWlKnzu70S3ZlWq8isldvZHERRWy6nHqUtlf/8ACEf2gSkbMSobGNxX0z+mRkmvfreSGa2iltmR4HQNGyH5SuOMY7Yqu+lWEmknS2tYzYmPyvIx8u30rgdMu7n4c62uianK0nh+7cmyu3/5YMf4GPYev59zjoqT+sLTddO6/wAzmpw+qv3tn17P/L8j0eaaO3gknmcJFGpd2PRQBkmvOfhWkmuTa142vFP2jVbkxW4b/lnbx8AD8Rg/7ldR44tNS1DwRq1npEPn3tzAYY4w6ruDEBuWIH3Se9P8FaRLoPgvSNMnjEc8FsomQEHbIeWGRwfmJ5FcR3m9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc14w8Vx+GrBEgj+0apdHZaWyjJZjxkgc4H6nj6VCDnLljuROcYRcpbFTxn4qn05odE0VPP129+WJF58lT/Gf1xn0yeBzf8ACPhaDwxppQv59/Od91ctyZH+p5wMn+feqngzwpJo6S6rqsn2jXL35riVjnYD/AP649PQCusrWpNRXs4bdX3/AOAZUoSlL2tTfou3/BOG+IXizVdFm0jRdAihfWNXmMcTzDKRKMZYj/gQ/AGsez1/xZ4f8X6b4d8ZS2GpWWsq8cNxBHt2sBypGACOQDx/EOeorvdVsdGE8Ot6pFbrJpys8d1KceSCOTmvONLluvid8QrLxBFA8HhvQ3b7JJIuGuZT1I9shT7BQOpOMDoL5E/wx1zcvmS+Fb6TkcsbSQ/0/mB6jn0mKWOeFJoXWSKRQyOpyGB6EGor6xttSsZrO8hWa3mUq6N0Irxm/wBW1Xwld3Xgqx1WFrWaVFhu5Hw1ojnlSex55PbkjGeOuMfrP+Jb+a7+pxSn9V/wvbyfb0Oq8R6reeMdZfwnoMpS0jP/ABM71eir3QH9Pc8dAa7fStKtNF02HT7GIRwQrgDuT3JPcmqvhvw7ZeGdIjsLMZ/illI+aV+7H/DsK16yq1E1yQ2X4+ZtSptNzn8T/DyCqGs6PZ69pc2n30e+GUdR1Q9mB7EVforJNp3Rs0pKzPPfDGsXnhfV18IeIJdy9NNvG4WVOyE+vYenT0r0KsXxR4as/FGkPZXPySL80E4HzRP6j29R3rD8HeJbtbx/C/iL93rFqMRyMeLlB0YHucfmOeoNbzSqx5479V+v+ZzQboy9nLbo/wBP8jtqKKK5zqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqOsavZ6Hpk2oX0vlwRDJ9WPZQO5NNJt2Qm0ldlTxN4ks/C+kPfXR3P92GEH5pX7Af1PasDwf4cvJ75/FXiMb9WuRmGFhxaxnoAOxx+X1Jqp4Z0m88Wawni7X4tsK/8AINsm+7GvZyO57g9+vTFeh1vNqlHkjv1f6f5nNBOtJVJbLZfr/kFFFFc51HlfxgXU7670LTodI1XUdH81p7+LT4XYyAEbUJUcfxfnntWlofjqc3FhpMHgDxBp9oXSBXazKRQKTjJ44UdTXoVc54v8VReGdPXy0+0alcny7S2Xkux4yQOcD9elVCLm+WJM5xhFylsVPGfiqbS/K0fR0+0a7e/LDGvPlA/xn9cZ44yeBUWl/DvTYfDNxp2pD7VeXv7y6uzy/mdQVJ54JP15z1xUvgzwrNpQl1jWH+0a7e/NPI3PlA/wD9M444wOBWRqvxXWDVL+00Xw7qGsw6cxW8ubfiOMjOcHBzjB9Oh7c1tOp7NclN+r7v8AyOeFJ1H7Sqt9l2X+bJfC2tXnhzVl8IeIZMsONOvG+7MnZSfXsPy9M+gVx0sWjfFLwZBeWzNGHy1vKwxJbyjgg/iOR3HPoaj8HeJrtruTwz4h/d61ajCux4uUHRge5xz7jn1wTSqx9pHfqv1CEnRl7OW3R/p/kdrRRRXOdQVzPjHwoniOyjmtpPs2rWh32lypwQw52kjtn8jz6g9NRVQm4S5okThGcXGWxyng3xW+tRS6bqcf2bW7L5LmBhjdjjeB6euPX0Irq647xn4WuL2WHXtDbyNdsvmQrx56j+A++Onr0Pto+EvFNv4o0wyhfJvYTsurZuGjf6dcHBx+XatakFJe0ht1Xb/gGVKcoy9lU36Puv8APudBRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjusaM7sFRRlmY4AHqaAIru7t7C0lurqVYoIlLu7HhQK87061uPiRra6vqEbxeHLNyLO1f/l4YfxMO49fy9aSeW4+JuuNaW7PF4XsZP30oyDduOw9v5DnqRj0eCCK1t44II1jhjUKiKMBQOgFdP8Bf3n+H/BOT/eJX+wvxf+X5jwAAABgDoBS0UVzHWFFFUtW1Wz0TTJtQvpRHBEMk9yewA7k00m3ZCbSV2VfEniKz8MaRJf3ZyfuxRA/NK/ZR/j2rnfB/h29u9QbxX4jXdqlwP9HgYcWsfYAdjj8u/JNVPDmlXnjDWU8Wa9EUtUP/ABLLJuir2cjv6+556AV0d3400iz8Y2XhZ2lfUrpC6iNQUjGCfmOeCQp4we3rW82qUeSO73f6f5nNBOtJVJfCtl+v+Rs39wbTTrq5XBMMLyDPsCa8K+HHinWNK8FSR6L4Rn1hFmkm1C480ICx/hUYJc7Qp4z16V7vd24u7Ke2Y4EsbRk+mRivI/hd4r0Xwn4RvtH169i0/UNOupfOgmO13HHKj+I9Rgc8fSuc6jufh7qOg6p4Shu/D1kljaM7eZbKMeXLxuB/Q57gineMfCY8Q2sdzaSfZtXtDvtLlTg5HO0n0z+R/EHnvgnZzw+C7m8liaKPUL+W5hQ/3CFUH81P5CtvxN8R/DvhLU007VZp1uHiEwEUJcbSSByP901UJuEuaJE4RnHllsP8G+KzrsMthqEf2bWrP5LqBhgnHG8D09fT6EV1VeU3Goab47uZdf8ABU00eu6SEZw8RQToc4U56nCkfTg9sdx4T8UW3ijS/PjHlXcR2XNu33on/wADzg/1BrWpBSXtIbdV2/4BlSnKMvZVN+j7r/Pub1FFFYHQFcF4t0C90rVB4u8OJi9iH+mWoHFzH3OPXjn1xkcjnvaKunUcHdGdWmqkbP8A4Yy/D+v2XiTSItQsnyrcOh+9G3dT71qV5zrum3fgbW38T6JEZNMnI/tKyToBn76j8fwPsTju9N1K01fTob+ylEtvMu5WH8j6EdCKurTS9+Hwv+rEUqjbcJ/Evx80W6KKrX9/a6XYT319OkFrAheSR+igViblmiuB034w+FNT1WCwSS8gNw+yGe4g2RSNnAAOeOfUCu+oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5vxp4jv/Deiy3enaPLqEyxSSsdwWKFUGSzsT6dFHJwa6SuB+Muq/2X8Nr5FbbJeOlqh+py3/jqtQBx2lfEnx5qvge/1Kz0eKWW3aWaW/kQJDHCoB2xrnLsMMc9uOteh/DbxHe+KvBNnqeoBPtTM8cjIu0NtYgED6Y/HNct4onTwj8DrTR4/wDj+vLSOziiXlneQAyYHXu34ketdr4H0JvDfgrStKkGJoYczD0kYlmH4FiPwoA6CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOde1K78c62/hfRJTHpkJ/4mV8nQjP3FP4fifYHNrxbr97quqDwj4cfN7KP9MugeLaPuM+vPPpnA5PHUeHtAsvDekRafZJhV5dz96Ru7H3rpilSjzvd7f5/5HLNuvLkj8K3ffy/zLOm6baaRp0NhZRCK3hXaqj+Z9SepNW6KK5223dnSkkrIKKKRmVFLMQqgZJJwAKQyO6uoLK1lubmVYoIlLu7HAUDvXnNjb3HxK1xdTvo3i8NWUhFrbtx9pcfxN7ev5D+I0XU1x8TNcawtXeLwxZSD7RMvH2px/CPb+XU8kCvRre3htLaO3t41ihiUIiKMBQOgFdP8Bf3n+H/AATk/wB4l/cX4/8AA/MoeINbtPDHh671W7wILWPIQcbj0VR7k4FeMaTpF9ZfFTwhqmrsx1fWPtF5dKc/u8owSMDttXH06dq9D+IvhXXfFI0hdHu7GJLK4NxLFebikjjGzICnIHzcH1rzzXrTx6vxM8NR32paO+rtHL9jljRvKQbW3bxtz0z2rmOs97rG1Hwl4e1a9F7qGi2F1cjH72WBWY46Z45/GtmigBqIsaKiKFRQAqqMAD0FeN6n4lm0j436zPa6Le6xdRadFbR29ouSoIR2YnBwOQOnevZq5LSfF2nXnjvWdAeyjs7+0VT5zsoa5XAORwDwCO54NAEvg3xxY+MYbpYbeezvrN9lzZ3C4eM84/Dgj1BHIrJ8V6De6Lqv/CX+HE/0mMf6daD7txH3OPX1+meo5yfBssOpfGzxfqOnsslgtvFC8kfKtLhAefqj16pWlOo4O6M6tNVI2f8AwxmaBrtl4j0mLULF8xvwyH70bd1b3H/1606841rTrrwFrb+JNGiaTSLhh/aNknROfvqO3X8D7HjvdO1C11XT4b6ymWW3mXcjj/PB7YqqtNL3ofC/6sRSqN+5P4l+Pmi1RRRWJuNdFkRkdQyMMMrDII9DXm00Vx8Mtca6gV5fC19J+9jGSbRz3Ht/McdQM+l1Dd2lvf2ktpdRLLBKpR0YcMDWtKpyaPVPcxq0uezWjWzHQTxXVvHPBIskMihkdTkMD0INcn8UdJuda+Heq2loyiUKsuHcKrBHDEEngcA9axdOurn4b62uj6jK0vh28cmzun/5d2P8LHsPX8/Wl+OElwPhyxgZ/Ja7iFwU7x89fbdspVafI9NU9mOlV51ro1ujgtZ8UaX488MeFPCOkRGHU0mgV2m2xpDsjKttYnnJOQB1x0zgV9DV5D8WF8Nr8MLNtNWzDmSH+zDb43YzztxzjbnPvjvXquneeNMtPtRJuPJTzSf7+Bn9c1malmiiigAooooAKKKKACiiigAoqhHrWmS6hLYJew/a4m2tCWw+cZ4B6/hV+gqUJR+JWCiiqN5rGnadcw297eQ28swJjErbQ2MZ5PHcUBGMpO0Vdl6ikVgyhlIIIyCO9LQSFFVr6/tdMs3u72ZYbdCAztnAyQB+pFPtru3vYRNazxTxHo8ThgfxFBXJLl5raE1FFFBIV498YEPiHxb4T8Iq7qtzMZpynUISFDD3AEleu3EwtraWdkkcRoXKxoWZsDOAByT7V4ml7qtz8Yf+EsvPCfiP+z4YPJtUFiTIp2bcsM4AyzngnqKAO98MfDPRfDV1HeedeajdQrtt5L6QP9nX0jGAF+vX6V2dNRi6KxUqSAdrdR7GnUAFFFFABUVxcQ2kDz3EqRRIMs7nAFS0UAcXqHxT8K2OQl3LduOq28RP6tgfrXF638Zb64DRaNZJaqeBNP8AO/1A6D8c16vf6DpGqZ+3aZaXDH+KSJS359RXF638INGvg0mlzS6fL2XmSM/gTkfn+Fd1CeFT99P56nn14Ytr3JL5af195meCvG2iWFlLe6/r81xq1yfnEkUriJB0RcLgepxxyPSup/4Wh4P/AOgsf/AaX/4mofBfhu70mxl0rXNOsrgQHNvdqquHU9VORuyD6jocdq6j+x9M/wCgdZ/9+F/wqK0qLm9G/Rr/ACLoRrqmkml6p3/M53/haHg//oLH/wABpf8A4mj/AIWh4P8A+gsf/AaX/wCJrov7H0z/AKB1n/34X/Cj+x9M/wCgdZ/9+F/wrO9Ds/vX+RrbEd19z/zOd/4Wh4P/AOgsf/AaX/4mj/haHg//AKCx/wDAaX/4mui/sfTP+gdZ/wDfhf8ACj+x9M/6B1n/AN+F/wAKL0Oz+9f5BbEd19z/AMznf+FoeD/+gsf/AAGl/wDiaP8AhaHg/wD6Cx/8Bpf/AImui/sfTP8AoHWf/fhf8KP7H0z/AKB1n/34X/Ci9Ds/vX+QWxHdfc/8znf+FoeD/wDoLH/wGl/+Jo/4Wh4P/wCgsf8AwGl/+Jrov7H0z/oHWf8A34X/AAo/sfTP+gdZ/wDfhf8ACi9Ds/vX+QWxHdfc/wDM53/haHg//oLH/wABpf8A4msPxV8VtMTSjD4eujNezHZ5rROqwDu3zDk+mP8A6x2PGOp6T4bso4rbSrO41W6Oy0thApLMeNxAHTP5nj3C+D/A9vpNm93q0MF3qt0d87OisseedijoPfH8gK2iqMY+0afkr7/gYSlXnJ0otebs9Px3MLwl4n8D+GNMMQ1gzXsx33Vy1tKWkf6lc4GTj8+9dB/wtDwf/wBBY/8AgNL/APE10X9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4VnKdKT5pJ39V/kawp1oRUYtW9H/mc7/wtDwf/ANBY/wDgNL/8TR/wtDwf/wBBY/8AgNL/APE10X9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4VN6HZ/ev8irYjuvuf+Zzv/C0PB/8A0Fj/AOA0v/xNcd4w+IFh4guINFsdRa00mXBvb4xPll/uKuM4/Dk+2c7Hi66hv9TXwn4bsLQ6jMP9KuVhXFrH35A4Pv26DkjHVaJ4Q0fRNLiso7KCYoPnmliVmkbuST/LtW69jSSm079Fdfft9xzy9vWbppqy3dn92/3mFpfj3wJo2mw2FjqHlW8K4VRbS8+pPy8k+tXP+FoeD/8AoLH/AMBpf/ia6L+x9M/6B1n/AN+F/wAKP7H0z/oHWf8A34X/AArByot3af3r/I3Ua6Vk19z/AMznf+FoeD/+gsf/AAGl/wDiazLvxf8ADu+1uy1m5vC+oWIZbebypxsDAg8AYPU9Qa7X+x9M/wCgdZ/9+F/wo/sfTP8AoHWf/fhf8KL0Oz+9f5DtiO6+5/5nO/8AC0PB/wD0Fj/4DS//ABNH/C0PB/8A0Fj/AOA0v/xNdF/Y+mf9A6z/AO/C/wCFH9j6Z/0DrP8A78L/AIUXodn96/yC2I7r7n/mc7/wtDwf/wBBY/8AgNL/APE1y/iW/wDhV4suEudVmL3KgKJooZ0cr6HC8/jXpX9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4UXodn96/yC2I7r7n/AJnE6D4t+HPhjT/sOj3K2sBbcwFvMxZvUsVJJ+prU/4Wh4P/AOgsf/AaX/4mui/sfTP+gdZ/9+F/wo/sfTP+gdZ/9+F/wovQ7P71/kFsR3X3P/M5uT4meDJY2jk1MOjgqytaykEHqCNtcPpXjDR/CPiZ49Iv2u/Dt4294TG4a1b1G4DI+nJHuBn1z+x9M/6B1n/34X/Corjw/o91byQTaZaNHIpVh5Kjj6gcfWtIVaMU1Z2fmv8AIzqUa82pXV15P/Mwv+FoeD/+gsf/AAGl/wDiaP8AhaHg/wD6Cx/8Bpf/AImubsIIfAOvjSNZt4LjQ7xybO+miVjC39xzjp/+v1x6MNH0sjI06z/78L/hRUhRh0bT2d1/kKlUrzT1Sa3Vn/mc7/wtDwf/ANBY/wDgNL/8TR/wtDwf/wBBY/8AgNL/APE10X9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4Vneh2f3r/ACNbYjuvuf8AmcfrHjnwHrulzaffaiZIJRg/6NLlT2YHbwRXL+GvG2jW1neeGfEN0moaMqlLe6aByHj7IykbuO3HGOuMGvWP7H0z/oHWf/fhf8Ky9f8ABuka9pMtm1pBbyEZiniiAaNux46j1HetIVKNuRp2fnt57GU6Vfm9omrryevluee6XB8HdI1RNQtcmeNt8QlS4kWM+oBGD+Oa7T/haHg//oLH/wABpf8A4msrwfeQRXz+FvEen2iavbD9zM0K4uo+xBxycfn9Qa7f+x9M/wCgdZ/9+F/wpVI0oSs0/vX+Q6c61SPMmvuf+Zzv/C0PB/8A0Fj/AOA0v/xNH/C0PB//AEFj/wCA0v8A8TXRf2Ppn/QOs/8Avwv+FH9j6Z/0DrP/AL8L/hUXodn96/yNLYjuvuf+Zzv/AAtDwf8A9BY/+A0v/wATR/wtDwf/ANBY/wDgNL/8TXRf2Ppn/QOs/wDvwv8AhR/Y+mf9A6z/AO/C/wCFF6HZ/ev8gtiO6+5/5nO/8LQ8H/8AQWP/AIDS/wDxNH/C0PB//QWP/gNL/wDE10X9j6Z/0DrP/vwv+FH9j6Z/0DrP/vwv+FF6HZ/ev8gtiO6+5/5nO/8AC0PB/wD0Fj/4DS//ABNH/C0PB/8A0Fj/AOA0v/xNdF/Y+mf9A6z/AO/C/wCFH9j6Z/0DrP8A78L/AIUXodn96/yC2I7r7n/meA+KtRtdW8UX1/Yy+ZbzOGjfaVyMAdDg9qs6T458QaPtWG+aaEf8srj94uPTnkfgRU/irSri78c6la6bYvIVkGI4I8hRtHYdK1dJ+FOr3e19RmisYz1X/WP+Q4/WqbjY/RFWwsMJTWKa+FaP06Lc39J+LdlNtTVbKS3bvJCd6/l1H61zXxH8SaV4hubA6XcmcQK4kzEyYyRj7wGeh6V6BpPw68PaXtZ7U3ko/juTuH/fPT9K5D4qadDDeaRDYWcaM6SDZBEAW5XsBzURcL6HkYOeDlmEHhYtLW99tnt1/H5HFaV4j1fRWB0+/mhUHPl53If+Aniu60n4uSptj1ewWQd5bY4P/fJ4P5isDSfhv4g1Pa8sC2UJ/iuThv8Avkc/niu60n4V6LZbXv5Jb+QdmOxPyHP5mnJw6ndmOIyt39raUvLf71+rM3xl450DWfCN1Y2d25u5vLKRNC4PDqTk429Ae9eY2WoXmnTedZXU1vJ/eicrn64617J480fTbHwLftaafawMvlbWjhVSP3ijqBXmOk+DNe1na1tYSJEf+W03yJj1Gev4ZpxcbaCyapQhhZuWkOZ7tdkb+k/FbV7PamowxX0Y6t/q3/McfpXZWvxR8NTQeZcTz2jd0khZv1QGsjSfhHbR7ZNWvnmbvFbjav8A30eT+QrtLLwtoWnxCO30m0AH8Txh2P8AwJsmobhc8rMquWyT9hH3u60X9eiPM/Gnjexa6t9W8K6/NHej93PAInCSr2Yhl2kjpz2I9Kk0X40SIoj1vTvMx/y2tDgn6qxx+o+lb3jPwhf+I7q307TLSzsNPj/eTXRVQZG7KAoyQB64BJ9ql0b4TeHtOUNeiTUZ+5lO1AfZQf5k128+G9klNXf4/fofG+zxXtW4Oy/D7ncvad8S/C2osqDUDbytwEuI2X9eR+tdYjrIiujBkYZDA5BFVbHSdN0xcWNhbWw/6YxKufyFXK4JuDfuI9GmqiXvtP0CiiioNAooqK4uIbSB57iRY4kGWZjwKA2JaK4rUPir4WsciO5nu3HBW3hP82wK4rW/jJqFyGi0azSzQ8edN+8f6gfdH45rphhK0+lvU5amNow+1f0PaqK8l8FeN9E06ylvNe1ye41a5P7wyRSOIkHRF4wPU4459q6n/haXhD/oJv8A+A0n/wATSnhqkZWSb+Q4YqlKKbkl8zsaK47/AIWl4Q/6Cb/+A0n/AMTR/wALS8If9BN//AaT/wCJqfq9X+V/cX9Yo/zL7zsaK47/AIWl4Q/6Cb/+A0n/AMTR/wALS8If9BN//AaT/wCJo+r1f5X9wfWKP8y+87GiuO/4Wl4Q/wCgm/8A4DSf/E0f8LS8If8AQTf/AMBpP/iaPq9X+V/cH1ij/MvvOxrF8UeJbPwvpD3tz88h+WCAH5pX9B7ep7ViyfFTwkkTut/LIygkItu4LH0GQB+dcTo/izQ9W8Sv4i8U32ySFttjYrE7pCOzEgYJ/rz6Y0pYab96cXZfiY1cXBLlhJXfXojs/B/hq8e9fxR4iG/WLkZijYcWqHooHY4/Ie5NdvXHf8LS8If9BN//AAGk/wDiaP8AhaXhD/oJv/4DSf8AxNKpTrTldxf3FU6lCnHlUl952NFcd/wtLwh/0E3/APAaT/4mj/haXhD/AKCb/wDgNJ/8TUfV6v8AK/uNPrFH+ZfedjXH+M/FU+nNDomip5+u3vyxIvPkqf4z+uM8cZPA5z9Z+LOg22lzPpUzXd7jEUbQuqg+rEgcD06n9awvBvifwro4m1TVtXa51y9+a4mNvIdgP8Cnb+ePT0Aralh5xXPKLfl/XQwq4mEn7OEkr7u+3/BO88I+FYPDGmlC/n39wd91ctyZH+p5wMn+feuhrjv+FpeEP+gm/wD4DSf/ABNH/C0vCH/QTf8A8BpP/iaylSrTfNKLv6GsK1CEVGMlb1Oxorjv+FpeEP8AoJv/AOA0n/xNH/C0vCH/AEE3/wDAaT/4ml9Xq/yv7ivrFH+ZfedjRXHf8LS8If8AQTf/AMBpP/iaP+FpeEP+gm//AIDSf/E0fV6v8r+4PrFH+ZfedjRXHf8AC0vCH/QTf/wGk/8AiaP+FpeEP+gm/wD4DSf/ABNH1er/ACv7g+sUf5l952NFcd/wtLwh/wBBN/8AwGk/+Jo/4Wl4Q/6Cb/8AgNJ/8TR9Xq/yv7g+sUf5l952NFcd/wALS8If9BN//AaT/wCJo/4Wl4Q/6Cb/APgNJ/8AE0fV6v8AK/uD6xR/mX3nY0Vx3/C0vCH/AEE3/wDAaT/4mj/haXhD/oJv/wCA0n/xNH1er/K/uD6xR/mX3nRa1o1nr2lTadfR74ZR1HVD2YHsRXG+GNYvPDGrr4Q8Qy7h0028bhZU7IT69h+XpnQ/4Wl4Q/6Cb/8AgNJ/8TWJ4o8W+BfFGkPZ3OpOkq/NBOLaTdE/qPl6eo7/AJVtSp1Lck4uz8tvMwq1Kd/aQkuZee/kemUV5b4S+KdhFpps/EN232i3OxLpY3YTr2JwMg/Uc/XNdD/wtLwh/wBBN/8AwGk/+JrKWGqxduVmsMXRlFPmSOxorjv+FpeEP+gm/wD4DSf/ABNH/C0vCH/QTf8A8BpP/iaX1er/ACv7ivrFH+ZfeXPGPhSPxLYI8En2fVLU77S5U4KsOcEjnBP5Hn6weDPFcmsJLpeqx/Z9csvluIWGN4H8Y/rj19CKi/4Wl4Q/6Cb/APgNJ/8AE1yHjHxP4Y1OWDWtE1ZrfXbMgxOLeQCZR/A3y/XrxyQeDxvTpVJR9nOL8nbb/gHNUq04S9rTkr9Vff8A4J7BRXA6V8WfD1zpsMmozvaXhXEsQhdwD6ggHg1d/wCFpeEP+gm//gNJ/wDE1g8PVTtys6FiaLV+ZfedjRXHf8LS8If9BN//AAGk/wDiaP8AhaXhD/oJv/4DSf8AxNH1er/K/uH9Yo/zL7zsaK47/haXhD/oJv8A+A0n/wATR/wtLwh/0E3/APAaT/4mj6vV/lf3B9Yo/wAy+87GiuO/4Wl4Q/6Cb/8AgNJ/8TR/wtLwh/0E3/8AAaT/AOJo+r1f5X9wfWKP8y+86CHWdJbUZrCO8t1vEfEkJO1i2PQ9eMdM1o185+KdStdW8T31/ZSGS3mcMjlSuRgDoee1WdJ8ba/o21YL95YR/wAsp/3i49OeR+BFJ0mfU/2C6tGNWjO90nZ+a7n0HWffavpenXkEV9dQW88ynyjKduQMZG48enGa4bSvi5aSgJqtjJA3eSA71/I8j9a5v4jeJdL8RXNgdMuGmECuJMxsmMkY6gZ6Gkqbb1OOhlNX6zGjXTinfX5NntisrqGVgykZBByDS183aX4h1bRWB0+/mhXOdgbKH6qeP0rudJ+Lk8e2PV7BZV7y252t/wB8ng/mKHTa2N8Rw/iKetJqS+5/18z03Ur2y0+xe61CRI7ZCu53XIBLAD9SKktby2voRNaXEU8R6PE4YfmK848Y+O9B1rwjdWNpcy/ap9myJ4WHR1JycY6A968xs7+70+cTWdzNbyD+KJyp/SmqbtqGCyV4mjJybjJO1mvJP9T6corxfSfirrNntTUIor6MdWP7t/zHH6V2Vr8U/Dc0G+5kuLVh1R4S35Fc1Ps5HHispxWGTlKN0uq1/wCCdtRXjXjTxtYSXVvq3hbXJ4r5f3c8IidUlXsxDDaSOnPY+1SaL8Z5o1EetacJcf8ALa1O0/ip4/UfSuj6lVceZL5bM8D69SU3GT+e6PYaK5DTfib4X1JlQXr28rHAjniYH8xkfrXWo6yIrowZWGQQeCK5505w0krHVCrCfwO46iiioLCiiigChf6HpWqA/b9Ntbkn+KWJWP54yK4vW/hDol+Gk0yWXTpuyjMkZ/AnI/A/hXodFawrVKfwsyqUKdT4onGeC/Dl7o9lLpWtWNncJCd1tdoqsHU9VORuBHuOhx2rqP7K07/nwtf+/K/4VbopTqSnLmY4Uowiooqf2Vp3/Pha/wDflf8ACj+ytO/58LX/AL8r/hVusXxP4cTxPpyWUmp6jYIsm8vYTeWzjBG1jg5Xnp7Co5n3K5Y9inouq+Hdf1TVtPsbGJpdLlWGd2gTaWOfukdcbSO1bf8AZWnf8+Fr/wB+V/wrzD4OaZFoviDxtpkDyPDaXkcKNIQWIUyAE4A5r1hpERlVnUM5woJ5Y4zx+Ao5n3HyLsVv7K07/nwtf+/K/wCFQXlto2n2ct3d2tnFbwqXd2iXAH5VoO6RRtJIyoigszMcAAdSTXm0jz/E7XDBEZIvC1jJ+8cZU3cg7D2/kOepGNaUXLVuyW5jVlGFlFXk9kRaNpA8fa4Ncu7FLbw/bMVs7URhftBB+8+Oo9e3b1z6L/ZWnf8APha/9+V/wqeGGK2gjggjWOKNQqIowFA6ACpKVSq5vTRLYKVBQWure7Kn9lad/wA+Fr/35X/Cj+ytO/58LX/vyv8AhVumiRDIYw6lwASueQDnBx+B/Ks+Z9zbkXYrf2Vp3/Pha/8Aflf8KxvE1/oXhjSHvrqxtWb7sMIiXdK/YDj8z2rW1fVrPQ9Mm1C+l8uCIZPqx7ADuTXFeGtJvPFusJ4t1+LZAv8AyDbJuka9nI7+oPc89MVtSjdc83ovx8jnqys/ZwXvP8PMl8G+EHlnk8R+IbaFtQuhmK1MYCWyHoNvY4/L6k12f9lad/z4Wv8A35X/AAq3RUVKspyuzSnRhTjypFT+ytO/58LX/vyv+FH9lad/z4Wv/flf8Kt0VHM+5fLHsVP7K07/AJ8LX/vyv+FH9lad/wA+Fr/35X/CrdFHM+4csexU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFHM+4csexU/srTv+fC1/wC/K/4Uf2Vp3/Pha/8Aflf8Kt0Ucz7hyx7FT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0Ucz7hyx7FT+ytO/wCfC1/78r/hR/ZWnf8APha/9+V/wq3RRzPuHLHsVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3RRzPuHLHsVP7K07/nwtf8Avyv+FH9lad/z4Wv/AH5X/CrdFHM+4csexyfi3wRZ69pwayihtNStzvtpo0C8/wB1sdj+nX1B5B9T1jWtAnt9It7Oz8U6Xn7VYS2cbC6UdSuRwfpxk+4Net1x3jPwtcXssOv6G3ka7ZfMhXjz1H8B98cD16H26KdTmXs5v0fb/gHPVpckvawXqu//AATD8A6u97pcNz4qitIJLw4td1gkURwSCPM5G/II2naeOAetehf2Vp3/AD4Wv/flf8KxfC+v6f4t0SRHtokmUmO9spEBCuSd2VPUE5PPvnnNXrTQzptzGdPv7iKzB+aykPmx4/2C3zJ9Ado9KxlzxfLLc2hyTipR2OCvfE+r6p4g1PTvB/hHTb6DS5PJubi62oGkGcqoyO4I79PpXSeCNa0nxlobXq6PBa3MEpgubd4lPlyAAnBxyOaZ4hmuPBGnzXHhbwo2oz307zXKwMRtcjO9gAS2fQYrI+Cos38KXlzHdme/ub15r5ChQwyED5cHt3z7n0qeZ9yuWPYseMPCcljeR+J/D1pCbq35ubPywUuI+/y+uPz6jkc9D4du9C8S6RFqFlZWuG4kjMS7o37qeP8A9ddDXnPiDTLvwTrT+KdDiL6fKf8AiZWS9MZ++o/X2PsTjphL2seRvVbf5f5HLOCoy9ol7r3X6/5nd/2Vp3/Pha/9+V/wo/srTv8Anwtf+/K/4UaZqdprGnQ39jKJbeZdysP1B9COmKt1ztyTszqSi1dFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UuZ9w5Y9ip/ZWnf8+Fr/35X/Cj+ytO/wCfC1/78r/hVuijmfcOWPY8F8VaTdXvjnU7bTbGSUiQYSCPIX5R6cCtXSfhRq13tfUp4rKM9UH7x/04H517IqqudqgZOTgdTS1ftH0PelnteNKNKklGySvu9PwOV0n4eeHtLAZrT7ZKP47o7/8Ax37v6Vx/xU0+OO90iGxs0VnSQCOCLBblewHNetUm1d4faNwGM45xUqbTuceHzGrTxCxFRuTV933VjwzSfhr4g1La80KWMJ/iuDhv++Rz+eK7vSfhZoljte+eW/lHZzsT/vkc/mTXc0U3Ns2xGdYutopcq8v89zivHuladZeBL/7JYW0BUxbTFEqkfvF9BXmGk+Cdf1na1vYPHCf+Ws/7tcevPJ/AGvoNlVxhlDDIOCM0tCm0h4PN6mEounCN23e79F/kebaT8JLSLbJq1887d4oBsX8zyf0rtLLwzomnxCO20q1QDuYwzH6sck1q0UnJs48TjsRidKsm126fccB4z8I6j4lu7fTtOt7Sw06LEk1yVAaRuyhV5IA9cAk+1SaN8KPD2mqGvEk1Gfu0x2pn2Uf1Jru64H4peJ7/AEXT9O0nRpPK1XWbkW0MgHMa5AZh75ZQPqe4rX6zUUeROyPM+q0nNzkrs35dQ8J+Fg8b3WkaYyLuaMNHG5HX7o5P9an8MeIrXxVocerWaMlvLJIqByN2FYrkgdM4zj3ryL4seC/DXhnwhatY2BfV7q5SFbl5naSQ4JZjlsEnHPH8Vew+HNFt/D3h6x0u3jRFt4VVtgxufHzMfcnJrFtvVm6SWiNSiiikMKKKKACiiigAooooAKKKKAPMvhn/AMjz8Qv+wkv/AKFLWX8UNflfxHbWVpM0ZsAH3I2CJWwevsMfma9Gj0vRvCy6xrNvbeQ90Tc3j+YzeYy5OcEkDqeBjrXz9fXkuoX9xeTnMs8jSN9Sc1pTWtz6Hh7C+0qyrSWkdPm/+B+Z2qeKNU8c/wBn+Grm5hsopWxd3IbDTgdFA6An07n8q9d07TrXSdPhsbKFYreFdqIP5n1J65r550Xw/qmvXPladbO+D80p4RPq3+TXv2g2V/p+kQ22pXwvLlBgy7ccdhnvj1PWrqS91RWxz5xl2Gw1Z1aUvelvHt6dl5GlRRRWB4wE4GT0rwTVfGF9/wAJrc61p9wUAfy4x1Vo14AI7g4z9TXqvj3WP7G8J3To2J7gfZ4vXLdT+C5/SvAa1px6n1PD+DjKE601dPT/ADPTtHmb4l+JVn1Z4otO09VePTlfPmuerH1Gf6DuSfVQAAAAAB0Arwfwj4U1/U7yG+sC9lFG25bx8gf8BH8X8vWvdoVkSGNZZBJIFAZwu3ce5x2p1ZXsuiPHzLAYfCVn7CV77rdry9Ow+iiisTzgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDgvFugXuk6oPF3hxP9MiH+m2oHFzH3OPXjn6ZHI56nw/r9l4k0iLULF8o3DoT80bd1Pv/APrrUrzjXdNu/Autv4n0SIyaXOR/aVknQDP31Hbr+B9icdMWqseR/Etv8v8AI5Zp0Zc8fhe/l5/5mZovxJHhXUda0bxzd3S3cN28lrM0BYSQnhQu0dOMgn+914q/8JLa4uJPEviN7WS1tdZvzNaxyDDGMFjux77+vsa7yyutO13T7e/t/KubeQb42ZQcH8ehHSr9c7TTszpTTV0FIyq6FHUMrDBBGQRS0UhnmlzDcfDPXGvrVHl8L30g8+FeTauf4h7fzHB5ANej29xDd28dxbyLLDKodHU5DA9CKbdWsF7ay2tzEssEqlHRhkMDXnVhcXHw21xdKv5Hl8NXkhNpctz9mc/wt6D1/P1FdP8AHX95fj/wTk/3eX9x/g/8vyPS6KQEMAQQQeQR3pa5jrCiiigAooooAKKKKACiiigAooooAKKKKACvEfivqU2k/FfwrfvZTXdvbxK8cUYyZH8xshfVvuHH0r26kKqWDEAkdDjpQB4Nq114g8X/ABb8L6drdnFZQRsL2KwVtzRRglj5p/vERjjsCOhzXvVeSeDP+J/8bvFetkbobBfscZ7BshMj8I3/ADr1ugAooooAKKKKACiiigAooooAK4rXPiDb6F4sTTJ4t9osa+fKvLRueRx3GMZ78/gevvLqKxsp7udtsUMbSOfYDJr5r1G+l1PUrm+mP7yeRpG9snp+FaQjfc9vJcvhipTdVe6l+L/yPVfH+vpqljbaBoj/AGy6vysjLAd37scj8yM+wBzVbw58Ko49lzr0u9uotYm4H+83f6D864nwh4lPhfVzdfZkmilXy5RtG8Ln+E9vp0P5Ee+2d3FfWcN1Dv8AKlUOu9SpwfUGnP3VZG2MeKy2l7CnpFt+8t3/AJaf8OOtrW3srdLe1hjhhQYVI1CgfgKloorI+fbbd2FcLo/xJsL3X7rTrvZBD5xS1uM/K4HA3ehPUHpz+ev451j+xfCl3MjbZ5h5EXrubv8AgMn8K+fq0hC61PfyjK4YqjOdX0X+Z6V4xkvPHPiVNK0NPtFvYArJKDiMOTyS3oMY98HGa6Hw58M9M0rZcajtv7oc4YfukPsvf8fyFcn8OvGEejyDR7m2Bt7iXKSwx5cOePmA5YfqP5ey05u2i2M8dWxeDhHCfDFLdde7v+n5iAAAAAADoBS0UVkeGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXRZEZHUMjAhlYZBHoadRQB5pLFcfDPXTcwLJL4Xv5P3sa5Y2kh7j2/mOOoGc/W/ihNLrdsNM3JptvMGkJGGuADz9BjoPz9Ko/EfVteuNQNpfWstnp6t+5jBysuP4iw4J9u1cJXU3z2lLc+pybIqVKn7Wq+bm2W6V/wCvkfUMUqTwpLGwaN1DKw6EHkGn1xnwz1j+0/CyW0jZmsW8k567Oqn8uP8AgNdnXM1Z2PncTQdCtKlLowqlq2k2et6ZNp99EJIJRgjuD2IPYirtQ3ck0NpLJbwGeZVJSIMF3nsMngUJtO6MOXm919TzrSfENz4BuZfD3iMyzWcaF9PvEUtvQfwf056dOmDUHhz4hXereOI47oiGwuVMMMAPCN1Uk9ycY/GuI8U6lrGpazI2tJJFOnCwMpURr6KPT371jxSvBMk0TFZI2DKw6gjkGumaU3zNas+uy/IKVHDONR80pLR9u1u9u59Q0VQ0TU01nRLPUI8YnjDEDs3Rh+BBFX65T5OcHCTjLdBRRRQSFFFFABRRRQAUUUUAFFFFABWXr2lXWsWS29rrF5phDbmltAu5h6ZYHH4VqUUAcF4a+GKeFtRa6sfEmrbJZRLcQsY9s5H975fc+/Nd7RRQAUUUUAFFFFABWRpPijRdc1C9sdMv4rqay2+f5fKruzjDdD905xnFT6zrul+HrBr3Vr2K1t1/ikPLH0UdWPsK5j4d2XhWe1vPEPhuxmh+3TyCSSfIY4bJCjJAXPT9elAHb0UV5zJ8RrXT/G+uW97MRp9rbhIgvJaVD8wA9SWI/wCAitKdKVS/L0MqtaFK3M9yz8VNY+xeH49OjbEt6/zY/wCea4J/M7f1rzXQPCOr+I5B9jt9tvnDXEvyoPx7n2FeheH/AA/ceLr0+J/E0H7uXH2KxJ+VY+xb1HfHfJPfFehxxpFGscaKiKMKqjAA9hVSfs/d6n0GEziGGwkYYeN5PVt+fl6HKeHPh9pGg7J5V+23o582VeFP+yvQfXk11tFFZNt7nlV8RVry56srsKKjuJ47W2luJmCRRIXdj2UDJNeWaX8UXPhu6Jja51qa9dLO2ALEhzlc+y5Ix3wB9NKdGdRNxOOrXhSaUmU/ivrH2rW4NLjbMdom5wP77c/oMfmazvDnw71bXNk9wpsbM8+ZKvzsP9lf6nA+teh+FfBMVgBqmtKt3rU7ebI7/MsTHnA7Z9/yqbxV4zXRb+z0PTLcXviC/wCLa2JwiDn95IeyjBPHJwfrQ5cvuo+l/tr2GHjQwq2W779bL/P7jR0HwrpPh2LFlbgzEYaeT5pG/Ht9BgVtVx/hXR/Gdnq1zd+JvEUF7bumIrW2hCorE9SSoIAHA55zzXYVk3c8OpVnVlzzd2FFFFBAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF3Z21/bPb3cEc8L/eSRcg15r4j+FIO+50CXB6m1lb/wBBY/yP516jRTUmtjrwuOr4WV6Uvl0PE/AV7c+GfGQsNRikthdDyXSUYw38B/PjP+1XtlYviXw1ZeJtLe1uVCTAEwzgfNE3r7j1Hf8AI1w6+OL/AEHQNV0XXi0et2UBW2mz/wAfAPyqwPcjIPuB6g1tGm6usd/61JzTMqdeoqso8rtr2uj1KisTwhrH9veFdPv2bdK8QWX/AH1+VvzIz+NbdZSi4txfQ5ISUoqS6mdq+habrtt5Go2qTKPut0ZPoeoryrxH8MNQ07fcaSzX1sOfLx+9UfT+L8OfavZqKIyaPRweZYjCP3Hp2ex5n8J9YIivNDuCVkjbzolbg46MPwODj3NemVyHjHwpNqATWNEYW2uWh3xumB52P4W98cAn6Hg8cxqvxTH9jaXJGjW+pJeqL+1wQVVPvjns2R19x2raNF1dYf8ADHHmWYUp15VeXlur/PrY9WopsciSxJJGwZHAZWHQg9DTq5yAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOvjJaaUnge91O8s4Zr6OMW9rJIMlC7rkr2BwCc9eK3vh3pn9kfD7RLQjDfZVlcejP85H5tXG/Gt21Obwv4Yib5tRvwzAdgMICfb94fyr1dEWNFRFCqowAOwoAzfEOsw+H9Bu9SmIxCnyKf43PCr+JxXzjpeiax4mv3Fhay3MzOWkk6KpPOWY8CvcfE/hq78Yatb2l1I1tolmd77T89xIR29FA4z6k8d66fTtNs9Jso7Owt0gt4xhUQfqfU+5ruo144eHu6yf4Hn1sPLE1Pe0ivxOe8JeG9a0iNZNY8Q3V9Lj/AFG7dGv/AAJhuP6V1dFFcc5ub5mdtOChHlQUUUVJZwnxW15NL8KvYo+LrUD5agdQgwXP0xx/wKvK/CfhHxJrF1Fd6Ustmini9ZzGF7HaRyfTivVh4LPiPxLJr3iNd0KnZZ2GeFjHQye55O3359K7dEWNFRFCoowqqMAD0Fd8cSqFPkhq+p50sLLEVPaT0XTuZegaTeaTY+Ve6vc6lMcZkmAAH+6Ov5k15j4SubfV/i74u8V3k0aWOlIbeOaRsImPk3A/7sbf99V6j4j1VdD8N6lqjED7LbPKue7AHaPxOBXzb4Lhmi1fw5p3iKNj4f1m5a5WPdhbiTJjXzPUB1Hynj5s964ZScndnfGKirI9g0n4rprviu20nTfD1/NY3LsseoN8ilV+84Uj7o+uenGeK9FpqIkUaxxqqIoCqqjAAHQAU6kUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXi3x1ofg23D6lOzXDrujtYRukcZxnHQDPc4FdLXmvxsvhaeBzZwxq13qdxFargfMVDb/wAsqB/wKgB6fGXQYvCkGs38bQXNwX8nT45BJKwVioY9AoOOpx7Zpl58adBsPDlnfzxM2o3UXmDToZA7Rg9N74AXIwfXnpXJ/ELwvp/hzwt4e8I6PaxJqGrXaLNMBl5ioAOSecbnBA6DFP8AiH4a0qyu/CXgbRLRIEvLoS3DKMuwGEDs3U8GQ+2OKAPXLeWbxF4XtLlZLjTJby3jm/dMpeIsobGSMHr6D8K8e8aeB/FlvMby5up9at0B2zBmZ0X3Q5IH0yK92RFjRURQqqAAB0Ap1b0MRKi7o58Rho1lqzyD4Na8kct5oM74Mh8+3B7kDDj8gD+Br1+uK8R+AorvUY9c0N0sdZgkEoOMRzEdmA6E+o65Oc119pNJcWkUssLQSsoLxNyUbuM98HuOtViZQqS9pHruicLGdOPsp9Nn5E1FFFcx1GN4i0e+1ey8uw1m602ZQcNDja3+93/IivBfFXhTxFot3Jc6vHLcK7c3oYyK592PIP1xX0nTZI0miaKVFeNwVZWGQwPYiurD4qVHS10cmJwka2t7M4z4X68mseEobZnzdWGIJAeu3+A/THH1U1reKfGWjeD7JbjVbgq8gPlQRruklx12j29Tge9Y0Pg1vC/iZdZ8Pg/Y5v3d5YZ6IT96P6Hnb9QOuKj+L+px6R8PdQlCqLm6UWUTkDOJD84z7qrflWdflc+aGzNMPzqHJPdFSw+MugTeGpNY1CN7N/OeOCyVxLNMqgHcAMYHJGTxwea6PwP4tHjTQDqy2D2cfnvEiPJv3BcfNnA9cfhXm+vaHp/gL4IP5VpHFq2pQxQXE5Hzs74Z1yeQAoYYHHFeleA9I/sLwLo2nldsiWyvIPR3+dv1Y1ibnRUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVnarr2k6GITquo21kJ2KxmeQIGI5PJrRrE17whoPieW3k1nT1u2twRFvkcBc4zwCBzgflQBxunWaeN/ioPFELiTRNGh+zWko+7cTclmX1C7jz6qMZr02obS0t7C0itbSCOC3iXbHFGoVVHoAKmoAKKKKACiiigAooooAKKKKAOT+I2hat4m8IS6PpDQLLcyxiV5nKqsYO4ngE9Qtcx8SfBDH4Y2EenKTeeH40eJox8zIqgPj34Df8AAa9ToIyMGgDnPAvieLxd4SstUVl88r5dyg/glX7w/HqPYiujrhJPhqNPvry78Ka7d6AbwETwxRrLCT6qjfdPJ6Hjtiun8O6TLofh+z0ye+e+kt0Km4kXDPyTkjJ9cde1AGpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcT4o8IX/iXxx4evpJYE0jST9oZGJLyS7gcAYxj5F5J7mu2ooA4nUfB99q/xR07xFdSQDTNMt9sEOSXeU7vmxjAALDv/CKxPFXgDxH4g+J1trlnqcen2VvbrGlyh3Sp97cFX1O489Ofwr1GigDP0XRrbQtOWztWnkG4u8s8pkklc9WZj1JrQoooAKKKKACiiigAooooAK4nx14MvPGWpaFGbmCLSrKcz3SNkvKcrhQMY6bhkn+LpXbUUAeefFbwZrPjW10my0uW3jhinaS4MzkAcAK2ADnHzfnXReGvCq6E0l3d6hdanqs6BZ7y5c5IHO1F6IuewroaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>In the figure, $m∠1 = 50$ and $m∠3 = 60$. Find the measure of $\angle 8$.
|
120
|
Geometry
|
Geometry3K
|
test
|
12
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAENAcYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopskiRRtJI6oijLMxwAPUmuLk8f29/4kstG0UCYSzBZbph8u0csFHc4B56fWtKdKdS/KtjOpVhTtzPc7aiiiszQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimSyxwxNLK6pGgyzMcAD1JoAfWNr3ifTfD8X+kyGS4Yfu7aLmR/w7D3NYN34r1HxBdPp3hGDeFO2bUpRiKP/AHc9T/nB61d0zwFpdrBM1+X1C+uFxNdzE7s/7P8Ad+vX3ro9lGmr1fu6/Pt+ZjCqqk0o/D1f+Xd/h5mbHoet+MpFufEbtYaXkNHpkTYZvQyH/J9lp1rZWw+KMVrZwRxWul6dlURQArucfmVatiO81TQgINRgn1GzXhL23TdIo9JEHJP+0uc+grM8FONR8Q+JtYUkxzXKQxEjB2oOvPqCvFaqrJxk9kloltrp+Qq2DdJwa95N/F3sm/l6aeh2tFFFcRuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe9vrXTrR7q8nSCBBlnc4FYviDxfZaJItnCjXuqScRWcHLE/wC1joP19qx4PDF7qznWfGUyyCJTJHp0ZxFCBz83qf8AJJreFHTmqOy/F+n+ZhOtryU1d/gvX/Lc1/DPipPFF1ftaW7JY2xVElf70rHOTjsAAPz/AAro6434aW+3ws16V2tfXMk5AGABnbge3y/rXZUsRGMarjHZDw8pSpRlLd6hRRRWJsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBezvbWNxPHE0rxxs6xoCS5AyAAOpNeZ3lv4j0zwSfGNzruqJrCItzLYzHbbhSwzEYiOMA4z1zQO3Y9Toqm2p2kFtazXdzDa/aSqxiaQJudhkKM9T7VK95apeR2b3MK3Uil0hLgOyjqQvUgUWEndXJ6KKKACimTTRW8LzTSJHEgyzucAD3NcVc+KNT8SXD2HhOHEKnbNqcy4RP9wHqf8471pTpSntt36GdSrGG+/bqbniDxXpvh6NVnczXcnEVrD80jk9OOw9z+tYEXh/WfF8q3XieRrTTwd0Wlwtgn0Ln1/X/AHa2tA8H2GhyNduz3upScyXk53MT7en8/euhrX2kaelLfv8A5dvzMvZSq61du3+ff029SG0tLextktrSFIYUGFRFwBU1FFczd9WdKVtiG7uFtLOe5cgLDG0hz6AZrmPhvbtF4Ohnk/1t3LJO5x1JbGfyUVa8eXn2LwTqb95I/JH/AAMhT+hNaehWf9n+H9PtD1ht40Y+pCjP61utKD83+S/4JzvWuvJfm/8AgGhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXBx3/ijxR/aOoaJqkGnWVnPJBawtaiU3bR8MWYnKqTkDbzSuOx3lFUNEu7u+0W0ub+0a0vJIwZoG/gfuPpmr9U1Z2JTurhRRWJ4h8U6d4diUXDmW6k4itYuZJCenHYe/86cYSm+WKuxTnGC5pOyNeeeG1geeeVIokG53dsBR6k1xNx4j1bxVcPYeFYzDaKds2qTKQB6hB6/r9OtEHh7V/Fs6XvihmtrFW3Q6XE2PoXI7/r9Oldrb28NpbpBbxJFDGMKiLgKPYVv7lH+9L8F/n+XqYe/W/ux/F/5fn6HNWfgay06zBs7mdNTDiT+0Gbc7P/tDoVPOV/rzVHxVr9/YeFNRt9S0+SK4khMKXFv88Mm75c56qcHOD+BNdxXGfEDN5/Yejrz9tv03r6xr978PmB/CijJ1Kyc9f+AbVZqnhpU1FeXk3/wToPD1l/Z3hzTrQjDRW6Bv97HP65rToornk3JtsqMVFJIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI554ra3knnkWOKNS7uxwFA5JNcH47sr7UNGfXbXVorzRLeJbt9LaIeVdIvzZ81SG54OORwOK7yeCO5t5IJlDxSqUdT3BGCK4oeAL/AOwf2M/im8bw+BsFl9nQSeX/AM8zN129umcd6Wo1Yf45nsdV+GUt5KzQebDFcWmFy4mOGjVQOck4H40vw7T+1dK/4Sm9mFxqmoDZI23AgRCQIlHYAgk+pNa9x4ZS717T72e4DWGnR/6LYiPCrL0EhbPJA4Axx1pmiaLD4Tj1aV9QT7BcXT3apIuwW+77w3Z5Geegqlu7df6/H9CX8Kv0/r8DoawfEHizTvD4WKQtc30mBFZwfNI5PTjsP8jNYk/ibVvFFw9l4Ui8q2U7ZdUnXCj12A9T/njrWz4e8I2Ggk3GXu9Rk5lvJ/mdj3xnoP8AJJro9lGnrV37dfn2/M5/ayqaUtu/T5d/yMWHw5rHiqVLzxTMbezDbotLgbAx23n1/X6dK7W2tYLO3S3toUhhjGFRFwAKlorOpVlPTZduhpTpRhru+/UKKKKyNQooooA4z4g5u00PSRz9t1BA6+qL1/DkGuzrjNT/ANP+Kej23VbG0kuW+rZX/wCJNdnW9XSEI+V/vZz0tZzl52+5f5thRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACNnY2OuK8l8B6FrGreB1uY/EV9pzxzT/ZorUIE3b2JaQEEvls8ZAwBXrdcMvhjxPo/26x8P6jpqaXeTPMv2uNzLal+WCbeGGckZxj3pa627FJ6fP8AzNfwNrs/iPwfY6ldKouXDJLtGAWVipI+uM10LMqKWdgqgZJJwAK5mOfRfh54WtLGa5Iigj2xr1kmbqSB7k59BmsldO1zxw6zasZNL0TIZLJDiScdt57D/OO9dCpc15t2j3/yOaVblfJFXl2/zZPfeLr3Wrx9L8IwieQHE2oOP3MP0Pc/5Ga0/D/g+00aVr65ka+1WTmW7m5Of9nPQfrW1YafaaZZpaWVukECdEQY/H3PvVmiVZJclNWX4v1/yCFFt89R3f4L0/z3CiiisDcK4u8/4mPxX0+Hqmm2Tzn/AHm+X+RU12lcX4R/0/xb4o1Y8r9oW0jPsgwf5LW9HRTl2X56HPX1cId3+Wv52O0ooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqK5uoLO3e4uZkhhjGWd2wAK4qbxHrPiqV7TwtCbeyDbZdUnXA99g9f1+nWtadKU9dl36GVSrGGj1fbqbXiHxdYaCRb4e71GTiKzg+Z2PbOOg/yAaxoPDOreJ7hL3xZN5dsp3RaZA2FH++e5/zkdK2/D/hPTvD4aWMNc30mTLeT/NI5PXnsP8AJzW9WntY09KW/fr8u35mfspVNau3bp8+/wCRHb28NrAkFvEkUKDaqIuAo9hUlFFcx0hRRRQAUUUUARzyiCCSYq7CNSxWNSzHAzgAck+1Y/8AwlFt/wBA3Wf/AAWzf/E1uUjsqIzscKoyT7U1bqaQlTS9+N/nb9DzrRtbhl8c67qzWmoypsjtohFZSO0YAG4MAvynK5wa7Gz16G9ukt0stTjZ84eexkjQYGeWIwOlYXw3Uy6Dd6kwO/UL2Wfn0zj+YNdlW+Isqjj20+4zoToulzRg1e737/IKKKK5wCiiigAooooAKKKKACiiigAooooAKKKparq9jotk13qFwsMQ6Z6sfQDqTTSbdkJtJXZdrkNW8ZPNetpPhm3Go6j0eUcwwe7N3/z9KoE6948JC+bpHh9uN3Se5H9Afy/3q6/SdGsNDsha6fbJDGOWI+859WPc10ckKXx6y7dF6/5HPzzq/BpHv1fp/mYmh+DEtbv+1dauDqertyZZOUj9kHt6/kBXVUUVjOpKbvI2p0401aKCiiioLCq95f2enxLLe3cFtGx2hppAgJ9Mk9asVQ1J7hRGINNS9ByWDSKuz069e/5U0XTipSSf5pfiyrceK9BhtpZV1nTnZELBVukJYgdAM1zXw/1fSNP8Kxm91ewiu7iaSeZZLlFbJbGSM9cAUvjK9ubbwvdiXRIrQTARLMsqMQWPYAZ6ZrV02C+sdLtbT/hHI5DDCsZdriPLEDGTx1NdCsqPq/y/4c2eHouqn2X88Ov/AAxvWWp6fqW/7DfW115eN/kTK+3PTODx0P5VaqlpvmmJ2m09LJ92Nqurbh65H41drnZjUSUmo7et/wAUFFFFIgKKKKACiiigAooooAKKKKACiiigAooooAKKKhu7u3sbZ7m7mSGFBlndsAUJX0QN21ZNXPa/4vsdDkW0RXvdSk4js4Pmcn39P5+1YsviDWvF8rWvhmNrPT87ZNUmXBPqEH+T/u1v+H/Cmm+Ho2aBDNdycy3U3zSOT157D2H610+zjS1q79v8+35nN7WVXSlt3/y7+u3qYdt4X1PxJcJf+LJsQqd0OmQthE/3yOp/zntXawwxW8KQwxpHEgwqIMAD2FPorKpVlPfbt0NadKMNt+/UKKKKzNAooooAKKKKACiiigArG8W3n2DwlqlwG2MLdlVvRm+UfqRWzXHfElzJ4fttNQ4e/vYoB9M5z+YFa0I81WKfcxxEnGlJrsa/hCz+weEdKt9u0i3V2HoW+Y/qTW1TURY41RRhVAAHtTqicuaTk+ppCKjFRXQKKKKkoKKKKACiiigAooooAKKKKACiq97fWunWj3V5OkECDLO5wK4p9V1zxvIYNFEmmaNuKyX7jEko7hB2/wA8jpWtOk567LuZVKqhpu30NTXfGUVldf2XpEB1LV24EEXKxn1c9sen54qvpXg2W6vl1fxRcC/1DOY4P+WMHsB0P8vqea29C8Oad4dtPIsYcMf9ZM/LyH1J/p0rWq3VUFy0vv6v/IhUnN81XXy6L/Nh0ooornOgKKKKACiiigAooooA4vxx/p2r+GtHHPn3vnuO22Mc5/An8q7SuLOdR+LQHBj0ywz/ALsj/wBSrfpXaVvW0jCPlf7/APgWOejrKcvO33f8G4UUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBeXtrp9q9zeTxwQJ953OAK4qTXNb8ZSNbeHEaw0vJWTU5VwzeojH+T7rWtOlKeuy7mVStGGm77dTZ1/xjY6NKLKBHvtUfiOzg5bP+0R0/n7Vl2nhTUfEF0mo+Lp94U7odNiOIo/8Aex1P+cnpW7oHhbTfDsJFrGXuH5luZfmkc9+ew9hW1VurGnpS+/r8u35mapSqa1fu6fPv+QyKKOGJYokVI0GFVRgAegFPoornOkKKKKACiiigAooooAKKKKACiiigArjPEf8Ap3xA8M6cCCsPmXci+mB8p/NTXZ1xmnf6f8VNWuM5Wws47cfVsN/8UK3w+jlLsn+On6nPiNVGPdr8Nf0OzooorA6AooooAKKKKACiiigAooqOeeG1geeeVIokG53dsBR6k0ASVzviDxfZaJItnCjXuqScRWcHLE/7WOg/X2rEuvFOpeKLmTT/AAvtgtVO2fU5vlA9Qg9f1+nWt3w/4c0nw8jPDIJ7yTmW7mYNI5789h7fzrp9lGnrV37f59vzOb2squlLbv8A5d/y9TIsfCd/rt0mp+LphKRzDp0ZxFF/vep/ySa7VEWNFRFCoowFUYAFN8+H/nqn/fQo8+H/AJ6p/wB9CsqlSVTfbt0NadONPbfv1ZJRUfnw/wDPVP8AvoUefD/z1T/voVnY0JKKj8+H/nqn/fQo8+H/AJ6p/wB9CiwElFR+fD/z1T/voUefD/z1T/voUWAkoqPz4f8Anqn/AH0KPPh/56p/30KLASUVH58P/PVP++hVTVdShsNIvLvzUPkQvIAGHJAJpqLbshNpK7Ob8ED7brPiXVzkie98hD/sx9P0I/KuzrmPh7ZGy8FWG778waZj67iSP0xXT1tiHeq7dNPu0McMmqUb9dfv1CiiisDcKKKKACiiigAooooAKKKKACiiigAooooA80+JnhzULuSPVkuLi4sIsedbLyYV7sg78de/4dL+keH7rUtLgutN8Z6gbVlwgVANuP4cZ4I9K7wgEYPIrgdSsb3wNqUutaRE02izNuvbFf8All/toO3+e3TupV5TgqSdmtttfL1OCrRjTm6tm099Xp5+hf8A+EQ1j/ocdT/75H+NH/CIax/0OOp/98j/ABrpdO1G11WwivbKZZYJRlWH8j6H2q1WDr1E7P8AJf5HQqFNq6v97/zOQ/4RDWP+hx1P/vkf40f8IhrH/Q46n/3yP8a6+ij6xU8vuX+Q/q8PP73/AJnIf8IhrH/Q46n/AN8j/Gj/AIRDWP8AocdT/wC+R/jXX0UfWKnl9y/yD6vDz+9/5nIf8IhrH/Q46n/3yP8AGqU2kS298ljN8Qp47t/uQPKgkb6KWya7s5wcde1eLRWmjf8ACv8AXrfWoLZvFTzT7llQG6eYsfKKZ+YjpjHHX3pfWan9Jf5DWGg+/wB7/wAzu/8AhENY/wChx1P/AL5H+NH/AAiGsf8AQ46n/wB8j/Gt/Qku4/D+nJqBJvFtoxPnrv2jOfxrQqnXqJ2uvuX+RKoQavr97/zOQ/4RDWP+hx1P/vkf40f8IhrH/Q46n/3yP8a6+il9YqeX3L/If1eHn97/AMzkP+EQ1j/ocdT/AO+R/jR/wiGsf9Djqf8A3yP8a6+ij6xU8vuX+QfV4ef3v/M5D/hENY/6HHU/++R/jVX4aQs9pq+oSTtcPcXrIJ3+9KqDhj/30a6rW7z+z9Bv7zvDbu4+oU4/WsrwDZ/YvBOmoeskZlJ/3iWH6EVp7WUqEnLq0tl6/wCRl7OKrxS6Jvd+n+Z0lFFFch1hRRRQAUUUUAFFFFABWZr2h2niHSZLC73BW5V16ow6EVp0U4ycXdbilFSTi9meP6V4Z0TTNYGheKLArcSsTa3yzOsc4zwODgH/AOt7Z7P/AIVp4V/6B7/+BEn+NbeuaFY+IdNeyvo9yHlHXho2/vKexrmNI1y98MakmgeJJi8TcWWot92Rf7rHsfr/AIGu916tVc0JNS6q/wCK/wAjz1h6VF8s4px6Oy+5/wCZc/4Vp4V/6B7/APgRJ/jR/wAK08K/9A9//AiT/Gutorm+s1v5397Or6rQ/kX3I5L/AIVp4V/6B7/+BEn+NH/CtPCv/QPf/wACJP8AGutoo+s1v5397D6rQ/kX3I5E/DXwqASbBwB/08P/AI1TTwV4Dk05tRQwNYqCTcrfExAA4PzbscGu6rx3w7Ba6r481Tw2t3v8PwXb6jDb7CFuJMgMgPQoj5OB1IoWJrN25397B4WglfkX3I7NPhv4TkjV47JmRhlWW5cgj1HNO/4Vp4V/6B7/APgRJ/jXW0UfWa387+8X1Wh/IvuRyX/CtPCv/QPf/wACJP8AGj/hWnhX/oHv/wCBEn+NdbRR9Zrfzv72P6rQ/kX3I5L/AIVp4V/6B7/+BEn+Nc3438GaBovh1p7CyZLyWaOGEmZz8xOcYJx0Br1GuL8Xf6f4r8L6V1U3DXUg9kGR/wCzVth8RVdRXk7LXftqYYjDUVTdoK702XXQ6yxtVsdPtrRMbIIljXHooA/pViiiuNu7udyVtAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIQGUggEHgg96WigDgNQ0+88B6hJrGjxNNokzbr2xX/lj/tp6D/PTp2unaja6rYRXtlMssEoyrD+R9D7VZIDKQQCDwQe9cDf2Nx4C1J9X0tHl0Kd83tkvPkn++noP/wBXTGOpNV1Z/F+fk/PscjTw7uvg6rt5ry7rod/RVexvrbUrKK8s5llglXcrr3/+vViuZpp2Z1Jpq6CiiikMjuGkS2laJd0ioSo9TjivLNEsdF1b4XXWv6qkMureVPJcX8gHnwygtgK/3kxxgDHavV65y58BeFrzU21CfRbdrln3ucsFdvVkB2sfcik1e67/AIDTtYn8HXF7d+DdHuNRLNdyWqNIzdWJHU+5GK3KQAAAAYA6AUtVJ3bZMVZWCiiikMKKKKAOS+JFy0Pg24hjP726kjgQdyS2cD8Aa6aztls7G3tUACQxrGoHTAGP6VyfjP8A03xH4X0rgh7w3Lj2jAP6gtXZ1vPSlBd7v9P0OenrWm+1l+v6hRRRWB0BRRRQAUUUUAFFFFABRRRQAVR1bSLPW9Oksb6ISROPxU9iD2NXqKabTuhNJqzOE03Vr7wdfQ6Jr8nm6fIdtlqJ6Adkf0/p9OndggjI5FVNT0yz1iwksr6ESwSDkHqD2IPY+9cXY6je+BNQTStZlkuNElOLO/YZMP8AsP7f5HHA6WlXV4/F27+nn5HNzOg7S+Hv29fLz+87+ikVldFdGDKwyCDkEUtcp1Gfrdjd6npFxZWV+bGWZdn2gR72RT1wMjBxnB7VjnwVa29/4fudMn+xjR1eIII93nRMMMpORg55zzzXUUULQNwooooAKKKKACuMtP8AiY/Fe/m6x6dYpAPZmO7+RauzrjPh/wD6Y2u6yeftt+4RvWNfu/h8xH4VvS0hOXlb7/8AgXOetrOEfO/3L/Ox2dFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKroyOoZWGCCMgilooA4C8s7vwBqD6lpsbz+H52zdWi8m3P99fb/APUexHb2N9balZRXlnMssEq7lde//wBep2VXRkdQysMEEZBFcDeWd34A1B9S02N5/D87ZurReTbn++vt/wDqPYjqTVdWfxfn/wAH8zladB3Xwfl/wPyO/oqCyvbfUbKK7tJRLBKu5HHcVPXM007M6k76oKKKKQBRRRQAUUUUAFFFFAHGf8hD4t9mTTdP/wC+Xc/zKt+VdnXGeDP9N8R+KNV4Ie8Fsh9owR+oK12db4jSSj2SOfD6xcu7f52/IKKKKwOgKKKKACiiigAooooAKKKKACiiigAqvfWNtqVlLZ3kKywSrtZG7/8A16sUU02ndCaTVmcBbXV98PryOx1B3ufD0r7be6PLWxP8Le3/AOseld7HIksayRurowDKynIIPcVHd2lvf2ktrdRLLBKu10YcEVwiSXnw7vvKmMt14Zmb5JMFmtGPY+3+evXp0r7fH+f/AAfzOa7w+/wfl/wPy9D0Gio4J4rq3jngkWSKRQyOhyGB7ipK5TqCiiigAqvexXctsUsrmO3myMSSReYAO/y5H86sVU1DS7HVYVhv7WK5jVtyrIuQD0z+tNbl02lJN/lf8Gc9rg8Q6ZoV9eya5aMsMLNtGnlSxxwM+YcZPeqnhHR9btvCun/ZNWtbeGWITLG1iXI3/Ny3mDPX0qj488P6Np+hwxafpdrDeXd1HbxOkYyCTn+mPxrp08F+HFRV/sa0OBjJjGTXS2lSXm+3b/hzdYik6r97Zf8APuHXzv5F7T7bVIJHN/qMF0hGFWO18rB9c72zWhVHTtG03SPM/s+yhtvNxv8AKXG7GcZ/M/nV6uZ7mNWSlNtfkl+C0CiiikZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIyq6MjqGVhggjIIpaKAPP7iC7+Ht+97ZpJceHJ3zPbjlrVj/Evt/+o9jXc2l3b39pFdWsqywSruR1PBFSyRpLG0ciK6MCrKwyCD2NcDcW938Pb9ryzSS48OTvme3HLWrH+Jfb/wDUexrq0rqz+P8AP/g/mcutB3Xwfl/wPy9D0CioLS7t7+0iurWVZYJV3I6ngip65WraM6k76oKKKKACiiigCC8tVvbV7d5Jo1fGXglMbjBzww5HSsO98P2lnY3F0+p6wFhiaQ51ObGAM/3vaujrm/H159i8E6k46yRiID/eIU/oTWlJOU1FdWU8TUoU5OMrJamH4F8NR3HhW3vJrrUYZbp3lZbe9kjU/MQCQD1IA5rrrDRYdPuDMl5qExKldtxeSSr+TEjPHWn6JZ/2foVhZ4wYbdEP1CjP61fp1ajlOT6XHCvW9moTk3pqFFFFZEBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUc8EV1byQTxrJFIpV0cZDA9jUlFAHnxS9+HV2Xj8y78MzSfMn3nsyfT1XP+c9e8trmC9to7m2lWWGRQyOpyCKdLFHPC8MyLJG4KsjDIYHqCK4O4trz4fXz3tjHLc+HJm3T268tan+8vt/k9jXVpX3+P8AP/g/mctnh9vg/L/gfl6Hf0VXsb621KyivLOZZYJV3K69/wD69WK5mmnZnSmmroKKKKQzi/En/Ew8feGtNHKQF7yQemPun81I/Gu0ri9JxqPxP1u76rYW0dqn1bk/qGFdpW9fRRj2X56/qc9DVyn3b/DT9AooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbJGksbRyIrowKsrDIIPY06igDz+eK4+HmpG6tlln8N3L/AL6Ecm0c/wAQ9v8A9XXFd3bXMF5bR3NtKssMihkdTkEU6WKOeF4ZkWSNwVZGGQwPUEVwMkd38O78zQiS48M3D5kjHzNaMe49v89evV/HX9/8/wDg/mcutB3+x+X/AAPy9D0Giora5gvLaO5tpVlhkUMjqcgipa5WrHVuFFFFABXGfED/AEw6FpAAP2zUE3qe6L978PmBrs64zUf9P+Kmk2+MrYWclwfq2V/+JNb4bSfN2Tf4HPidYcvdpfj/AJHZ0UUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMqujI6hlYYIIyCKWigDgL2xvvAV5JqmkI9xoUr7ruxHJg/wBtPb/J45HVr4i0ptGTVheIbNwNrDklv7oXqW7Y61pkBlIIBB4IPevPdW8OyeE9aTxFo1klzZIS1xZY/wBVkcvH6cenT6dOpONfSXxd+/k/PzOeKVCV3dw6pbr08u/bddjplu9e1MFrS1h02A/dkvAZJWHr5akBfxbPtQ2k6xgu/ie5XAydlrCFH5qT+tVrXxDc+JFH/CPqkdsAPNvblCQjEA7FT+Jhnkk4HvVTxLY3Gl+GNRvp9f1KWVITtyyIm48AbVUcEkVmoPm5Nmeo60YU/aXila9rczt6tP8AP5DPhsrz6Rf6pMxeS/vZJd5GCwHH891dpWL4Qsv7O8I6XbFdrCBXYejN8x/UmtqivJSqya7nnUIuNKKe4UUUViahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlijnheGZFkjcFWRhkMD1BFPooA8+kju/h3fmaESXHhm4fMkY+ZrRj3Ht/nr1723uIbq3juLeRZIZFDI6nIYHvSzQx3ELwzIrxSKVdWGQQeorgP8AS/hzf/8ALW58MXD+7NZsT+q/z+vXq/jr+/8An/wfzOX/AHd/3Py/4H5em3oVFYc3iJbmQW2hxpqNyyhi6viGIEZBd+fyGTTRoN7e/Nq2s3MhPWCzJt4h/wB8/Ofxb8K5+W256MaKSUqjsn97+X+djerjPDf+n+P/ABNqOAVhMdpG3pgfMB+KitV/D2gQRt5kX3QSS9y5bjryWzWT8MoAPDU17tIN7dySjJycZ2gZ79DW1Oypzl6L9f0OTERh7SEYtvd6q2yt3fc7Siiiuc0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDhdW0W+8K30uveHEL2znde6cPuuO7IOx/wA9OKreLddsvEvhfTbfTpww1K+igZc/NHzkgj1B216HXIz+BbRfGNlrtnthRJC9xABhWbacMvockZ/P69lKtFtSqbrZ9+yf+ZxVqE0nGntLddr7tfqjrVVURUUYVRgD0FLRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwRXVvJBPGskUilXRxkMD2NSUUAecy/bfhpdSyQwveeHLhiwTPz20h6An0PAz/Xr0dppc+uW8d7qupNNDKodLaylKQAHpllwz/UnHtW/PBFdW8kE8ayRSKVdHGQwPY1wSNP8OtR8p/Nn8M3T/K5yzWbnt/u/569eu/t1/f8Az/4P5mNOrPB/D8L69Y+nZfl6Gh4o0LQNI8J6ldRaRYxyRwERyeSu5WPyqQcdckVseE7P7B4T0u3K7WFujMPRmG4/qTWH8Q7hL3w5Y2VvIHXU7yGJHQ5BUnOR69BXaIqoioowqjAHtUTbVFJ9W/w/pjdWdWu3OTdkt33/AKQtFFFc5qFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFc20F5bSW1zEssMilXRhkEVLRQnYNzzaLwhqOmeMNHtklkuNBhneeEMc+Q20nafxAx/wDrr0miitataVW3N0MqVGNK6j1CiiisjUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>Find x
|
4
|
Geometry
|
Geometry3K
|
test
|
13
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFDAi8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorE8W+Jrbwj4cudXuU8zy8LHCG2mVz0XPb684AJrnPh98TE8d317anS/sL20ayD/SfN3gnB/hXGOPzoA76iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooriPG/xN0nwa32Qo17qjDItYmxsz0Lt/Dn0wT7UAdvRXjn/CwPidNH9rg8FRi0xuCtbylyPb5gT/3zXReBvinZeK746Ve2jadqy5xCzZWTHUAkAgjn5T6dTQB6DRRRQAUUUUAFFFFABRRXKfEPxWvhHwlc3qOovZf3Nqp7yHvj0Ayfw96APP8AxbM/xH+Kdl4VtnLaTpjF7tlPDEY3n+SD0JNL4cjTQP2iNU0+NBFDdwusaLwMFEl4/wC+TVH4U+KvB3hTRbi41XWNur30haYG3mcogJ2ruCEEnljg9x6VW1jxTouo/G7w/rWjXn2m3doYZnETptYsyHhgP4WWgZ9A0UUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMjxTrkfhvwxqGryAN9miLIpOAznhR+LECvMfg54YOqPc+NtaH2m9uJm+zNKM4IPzSfXOVHpg1sfHa5aD4fxRr0nvo42+m12/morq/AVslr4A0COPobCKTp3dQx/UmgDoq8u8feANV1HxjpXiTw3HAl1CQ1yWk8vcyMCp9yRkH2Ar1Gqj6pp8d6LJ762W7OMQGZRIc8j5c5oAt0UUUAFFFFABRRRQAV4Zqcn/C0vi/DpqEvoekZ8zn5XCkbz/wACbC/QZr3CaJJ4JIZN2yRSrbWKnBGOCOR9RWN4e8H6D4V8/wDsXT1tTcY80+Y7lsZxyxOOp6UAQf8ACAeEf+hc03/wHWvK/jN4c0zw2mhano2nW9kVndZPJTaGYbWXOPTa3517vWTr/hrSPFFlHaazZi6gjk81F8xkIbBGcqQehPFAGjbTpdWsVxH9yVA6/QjIqWobS1hsbOC0t1KQQRrFGpYthVGAMnk8DvU1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGfFLw9P4j8CXltaxmS6gZbmFAOWK9QPcqWx71z/wAJ/H+k3Xhi00XUL2G01CyXyVWdwglQfdKk9SBwR14r1OuJ8Q/Cnwr4junu57SS1uX5eW0cIWPqQQVz74oAveJPiB4d8NWEk9xqEE84XMdtBIHkkPYYHQe54rz/AOFmiah4l8WXvj/WI9gkZ/sqkYDMRtJGf4VX5R/9aul0r4LeD9MuFmkhur9lOQt3KGX8QoUH8c16CiJFGscaqiKAqqowAB0AFADqKKKACiiigAooooAKKKKACiiigDgP+Fu6B/z56n/36j/+Lo/4W7oH/Pnqf/fqP/4uvPvA3h218T6xc2N3JLGq2rSo8ZGQwZQOvUcmtTVvhjrOlSefaJFqlupzsXKuR7rkH8jmvblhsHGfs5Oz9TwY4vHTh7SKuvQ63/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+Lrj9LvfBgm+y6/4alsZ1OGdJpioPupbcP1rutP8ABfgXVYPPsLSG4j7mO7lOPqN3H41lVpYal8cJfh/mbUq2Kq/BOP43/Iq/8Ld0D/nz1P8A79R//F0f8Ld0D/nz1P8A79R//F1q/wDCuPCf/QK/8mJf/iqP+FceE/8AoFf+TEv/AMVWPNgv5Zf18zbkx/8ANH8f8jK/4W7oH/Pnqf8A36j/APi6P+Fu6B/z56n/AN+o/wD4utX/AIVx4T/6BX/kxL/8VR/wrjwn/wBAr/yYl/8AiqObBfyy/r5hyY/+aP4/5GV/wt3QP+fPU/8Av1H/APF0f8Ld0D/nz1P/AL9R/wDxdav/AArjwn/0Cv8AyYl/+Ko/4Vx4T/6BX/kxL/8AFUc2C/ll/XzDkx/80fx/yMr/AIW7oH/Pnqf/AH6j/wDi6P8Ahbugf8+ep/8AfqP/AOLrV/4Vx4T/AOgV/wCTEv8A8VR/wrjwn/0Cv/JiX/4qjmwX8sv6+YcmP/mj+P8AkZX/AAt3QP8Anz1P/v1H/wDF0f8AC3dA/wCfPU/+/Uf/AMXWr/wrjwn/ANAr/wAmJf8A4qj/AIVx4T/6BX/kxL/8VRzYL+WX9fMOTH/zR/H/ACMr/hbugf8APnqf/fqP/wCLo/4W7oH/AD56n/36j/8Ai6k0fwr4B1+C4m0yz+0R287W8rebOu2RQCR8xGeo5HFaP/CuPCf/AECv/JiX/wCKo5sF/LL+vmPkx/8ANH8f8jK/4W7oH/Pnqf8A36j/APi6P+Fu6B/z56n/AN+o/wD4utX/AIVx4T/6BX/kxL/8VR/wrjwn/wBAr/yYl/8AiqObBfyy/r5i5Mf/ADR/H/Iyv+Fu6B/z56n/AN+o/wD4uj/hbugf8+ep/wDfqP8A+LrV/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqjmwX8sv6+YcmP/mj+P+Rlf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWr/wAK48J/9Ar/AMmJf/iqP+FceE/+gV/5MS//ABVHNgv5Zf18w5Mf/NH8f8jK/wCFu6B/z56n/wB+o/8A4uj/AIW7oH/Pnqf/AH6j/wDi61f+FceE/wDoFf8AkxL/APFUf8K48J/9Ar/yYl/+Ko5sF/LL+vmHJj/5o/j/AJGV/wALd0D/AJ89T/79R/8AxdH/AAt3QP8Anz1P/v1H/wDF1q/8K48J/wDQK/8AJiX/AOKo/wCFceE/+gV/5MS//FUc2C/ll/XzDkx/80fx/wAjK/4W7oH/AD56n/36j/8Ai6P+Fu6B/wA+ep/9+o//AIutX/hXHhP/AKBX/kxL/wDFUf8ACuPCf/QK/wDJiX/4qjmwX8sv6+YcmP8A5o/j/kZX/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdav/CuPCf/AECv/JiX/wCKo/4Vx4T/AOgV/wCTEv8A8VRzYL+WX9fMOTH/AM0fx/yMr/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+LrV/4Vx4T/6BX/kxL/8AFUf8K48J/wDQK/8AJiX/AOKo5sF/LL+vmHJj/wCaP4/5GV/wt3QP+fPU/wDv1H/8XR/wt3QP+fPU/wDv1H/8XWr/AMK48J/9Ar/yYl/+Ko/4Vx4T/wCgV/5MS/8AxVHNgv5Zf18w5Mf/ADR/H/Iyv+Fu6B/z56n/AN+o/wD4uj/hbugf8+ep/wDfqP8A+LrV/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqjmwX8sv6+YcmP/mj+P+Rlf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWr/wAK48J/9Ar/AMmJf/iqP+FceE/+gV/5MS//ABVHNgv5Zf18w5Mf/NH8f8jK/wCFu6B/z56n/wB+o/8A4uj/AIW7oH/Pnqf/AH6j/wDi61f+FceE/wDoFf8AkxL/APFUf8K48J/9Ar/yYl/+Ko5sF/LL+vmHJj/5o/j/AJGV/wALd0D/AJ89T/79R/8AxdH/AAt3QP8Anz1P/v1H/wDF1q/8K48J/wDQK/8AJiX/AOKo/wCFceE/+gV/5MS//FUc2C/ll/XzDkx/80fx/wAjK/4W7oH/AD56n/36j/8Ai6P+Fu6B/wA+ep/9+o//AIutX/hXHhP/AKBX/kxL/wDFUf8ACuPCf/QK/wDJiX/4qjmwX8sv6+YcmP8A5o/j/kZX/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdav/CuPCf/AECv/JiX/wCKo/4Vx4T/AOgV/wCTEv8A8VRzYL+WX9fMOTH/AM0fx/yMr/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+LrV/4Vx4T/6BX/kxL/8AFUf8K48J/wDQK/8AJiX/AOKo5sF/LL+vmHJj/wCaP4/5GV/wt3QP+fPU/wDv1H/8XR/wt3QP+fPU/wDv1H/8XWr/AMK48J/9Ar/yYl/+Ko/4Vx4T/wCgV/5MS/8AxVHNgv5Zf18w5Mf/ADR/H/Iyv+Fu6B/z56n/AN+o/wD4uj/hbugf8+ep/wDfqP8A+LrV/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqjmwX8sv6+YcmP/mj+P+Rlf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWr/wAK48J/9Ar/AMmJf/iqy9X8N/DzQ0J1C3iibGRH9plZz9FDZpx+pydoxk3/AF5il9dirynFL+vIT/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+Lrh7yTRNWuDZ+F/Ccssh482WaVmHvtD4H1JrX0X4S39ztl1e5S0j6+TFh3+hPQfrXRLD4SEb1Lx8m9fwucscTjJytTtLzS0+92Ox0T4jaRr2rwaba218k027a0qIFGFLHOGJ6D0rr68e0jSrbRPjPBp1nv8AIhBC72yTm2JOT9Sa9hrhxdOnTlH2ezSZ6OCq1KkZe03Ta+4KKKK5DsCiiigAooooAKKKKACiiigAooooA8X+EX/I2XX/AF4v/wChx17RXi/wi/5Gy6/68X/9Djr2ivQzL+P8keblX+7r1Zn6poema1F5eo2UNwAMBmX5l+jDkfhXC6h8LpbSc3nhrVZbWYcrHI5GPYOvP5g/WvSqK5qWIqUtIvTt0OurhqVXWS179TyxPGfizws6w+I9La5twceeBtJ+jr8p+nWuw0XxzoOubUgvBDcN/wAsLj5Gz7dj+BroXRJEZJFV0YYKsMgiuP1r4aaDqu6S3iNhOf4rf7hPunT8sVt7TD1fjjyvutvuMPZYml/DlzLs9/v/AMzsqK8q/srx54N50+4OqWKdIxl8D02H5h/wE1q6R8VdOncW+sW0thODhmALpn3/AIh+R+tTLBztzU3zLy/yHHGwvy1Vyvz2+89AoqvZ31rqFus9ncRTxHo8bhh+lWK5WmtGdiaaugooopDCuB8aX/xENzc2PhjRLdrR0AS+NxGJASBnarOMEHPJBrvqKAPLPgGSfA18Sck6nJz/ANsoq9Tryv4B/wDIi33/AGE5P/RUVeqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWfqmuaZosXmajew24IyFZvmb6KOT+FcLqHxRlu5zZ+GtKlupjwskiE59wi8/mR9K3pYepV1itO/Qwq4mlS0k9e3U9Id0jRnkZURRksxwAK4/WviXoOlbo7eU384/ht/uA+79PyzXPJ4M8WeKXWbxHqjW1uTnyAdxH0RflH1612Gi+BtB0Pa8FmJrhf8AlvcfO2fbsPwFbezw9L45cz7Lb7zD2uJq/wAOPKu73+7/ADON/tXx54y40+3/ALLsX6Scx5HrvPzH/gIrV0j4VadA4uNYuZb+cnLKCUTPv/EfzH0r0CipljJ25aa5V5f5jjgoN81V8z89vuILSytdPgEFnbRQRDokSBR+lT0UVytt6s7EklZHln/Ne/8AP/PrXqdeWf8ANe/8/wDPrXqddeM/5d/4UcWB/wCXn+NhRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFAHi/wi/5Gy6/68X/APQ469orxf4Rf8jZdf8AXi//AKHHXtFehmX8f5I83Kv93Xqzi/in4lufC/gma6sn8u7uJVtoZB1QsCSR77VbHvXMp8GI30YXsmtap/wkhi8w3Pn8CXGdvTOM8Zznv7V6Xq+iaZr1otrqtlFdwI4kVJRkBgCM/kT+dYXj3xtZ+DtFd2YSajOpW0t15Zm6biP7o/8ArV556RR+E3ii78UeDBLfyGW8tJmt5JD1kAAZWPvhsfhXdVw3wo8MXPhfwVHFepsvLuU3MsZHMeQAqn3wAT6Emu5oAKytX8OaRriEahYxStjAkxtcfRhzWrRVRk4u8XZkyjGStJXR5lefDTUdJuDeeF9XlikHPlSttY+24cH6EVHD4/8AEXh2ZbbxRpLuvQTooRj7gj5W/DFeo1HNBFcwtDPEksTDDI6hgR7g11LF82laKl+D+843guR3oScfxX3GNovjDQ9eCrZ3qCY/8sJfkfP0PX8M1u1w+s/C7RNR3S2JfT5zz+7+aPP+6en4EVheX4/8G42H+1bBOwzLgf8Aoa/yFP2FKp/ClZ9n/mH1itS/jQuu61/A9VorhNG+Kej3xWHUY5NPn6Ev80ef94cj8R+Ndtb3MF3Cs1tNHNE33XjYMp/EVz1KNSk7TVjppV6dVXg7nmHwD/5EW+/7Ccn/AKKir1SsrQPDek+F7B7LRrT7NbvKZmTzHfLkAE5Yk9FH5Vq1kahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVU1DVLDSoPPv7uG3j7GRgM/QdT+FNJt2Qm0ldlugkAEk4A6k15zqfxUhaX7L4f0+W+uGOEd1IUn2UfMf0qiPDPjXxeQ+uX5sLNv+WPt/1zX/2Y5rrWDklzVXyrz3+445Y2LfLRTk/Lb7zqda+IegaPujFz9suB/wAsrb5ufdug/PPtXLHxJ428XkpolgbCzbjz+nH/AF0b/wBlGa6rRfh7oGj7X+zfbJx/y1ucN+S9B+WfeuqAAAAGAOgFP2tCl/DjzPu/8hexxFX+LLlXZf5nnWl/CqAzfatf1CW+nY5ZEYhSfdj8x/Su60/S7HSoPIsLSG3j7iNQM/U9/wAat0VhVxFSr8bN6WGpUvgX+YUUUVibmZ4h0u41rQ7nT7XUrjTZpdu26tyQ8eGDHGCDyBjr0NcKfhfrwBJ+JGvgDv5r/wDxyvTa4P4pa3c2mi2uhaY3/Ez1yYWkWM5VDgO3H1A/4ET2oAyPhba6tPr2rai/iLUtV0SENZ2z3kzsJ5AVLSKpYgAYwD33H3Fep1Q0TSLbQdEs9KtBiG1iEanGNxHVj7k5J9zV+gDyz/mvf+f+fWvU68s/5r3/AJ/59a9Trsxn/Lv/AAo4cD/y8/xsKKKK4zuCiiigAooooAKKKKACiiigAooooA8X+EX/ACNl1/14v/6HHXtFeL/CL/kbLr/rxf8A9Djr2ivQzL+P8keblX+7r1Zh+LvEtv4S8N3WrzoZPLwscQOPMcnAGe3v7A1yPgjwTc3l+PGPi5hdaxcYkt4G5S1XquB0yB0Hb681v+PvBr+ONEg0wal9hWO4E7P5PmbsKwAxuX+9n8K57/hXHi7/AKKZqX/gO3/x2vPPSPTKK57wnoGqaBa3EWqeIbjWpJXDJJMhUxjHQZZq6GgAooooAKKKKACiiigDF1nwnouvAm+sUMp/5bR/I/5jr+Oa4mf4ea7oE7XXhbWJDznyZG2MfY/wt+IFeoUV0U8VVpqyd12eqOarhKVR8zVn3WjPMLX4kato062nijSJUb/ntGmxiPXaeG/Aiu40fxPo2uqPsF9FJIRkxMdrj/gJ5rRurS2voGgu7eKeFuqSoGB/A1w+sfCvS7pjNpU8mnzjkAEumfxOR+B/CtebDVfiXI/LVfcZcuKo/C+deej+876ivKvtvj7wbxdRf2rYp/HzKAP94fMP+BcV0Gi/E7QtTCx3bNp857THKfg44/PFRPB1EuaHvLyKhjabfLP3X2eh2tFNjkSaNZInV0YZVlOQR9adXKdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVXvL600+3M95cxW8Q6vK4UfrXDav8VdPgkNvo1rLqE5O1WIKoT7D7x/IfWtaVCpV+BXMauIpUvjdj0Gub1rx1oGibkmvBPOP+WNvh2/HsPxNcd/ZPjvxiM6jcf2ZYv/AMsjlOPTYPmP/AjXSaL8NdB0rbJPE1/OOd1xyoPsnT8810exo0v4srvsv8zn9vXq/wAKNl3f+Rzr+MvFviqQw+HNMNtb5wZyAxH1dsKPoBmrOn/C2S7nF54k1SW6nblo43J/Au3J/AD616QiLGgRFCqowFUYAFOpPFuKtRSivx+8awSk+atJyf4fcUNL0TTNGh8rTrKG3GMEqvzN9W6n8av0UVyOTk7s7IxUVZKwUUUUhhRRRQAUUUUAFeVW7nxJ8f52b5rbQbMrHnp5hAB49cyN/wB816rXI+FfA/8AwjfiLXtZk1H7XLqs3mbfI2eUCzMRncc/eA7dPyAOuooooA8s/wCa9/5/59a9Tryz/mvf+f8An1r1OuzGf8u/8KOHA/8ALz/GwooorjO4KKKKACiiigAooooAKKKKACiiigDxf4Rf8jZdf9eL/wDocde0V4v8Iv8AkbLr/rxf/wBDjr2ivQzL+P8AJHm5V/u69WFFFFeeekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc9rXgnQdd3Pc2Sxzt/wAt4PkfPqccH8Qa6GiqhOUHeLsROnGatNXR5ZL4G8UeGJGuPDOqtPFnJgJCk/VT8rfXirFj8T7rT7j7H4m0mW3lHBkiQqfqUb+YP4V6XVa+06y1OAwX1rDcRH+GRA2Pp6V1/Wo1NK0b+ezOT6pKnrQlbyeqK2la/pWtxb9Ovop/VQcMPqp5FaVeear8KrRpPtOh3sthcKdyozFkB9j95f1rN/t7xz4Pwur2n9o2S/8ALY/Nx/vjkf8AAhR9Wp1P4Mvk9H/wQ+tVKX8eFvNar/NHqtFcjovxG0DV9sck5spz/wAs7nCgn2bp+eK61WDqGUgqRkEHgiuWpSnTdpqx1U6sKivB3FoooqDQKKKKACiiigAooooAKKKiuLmC0haa5mjhiX7zyMFUfiaLXBu25LRXCaz8U9IsiYdNjk1CfOAV+SPP1PJ/AfjWL5Xj7xl/rG/smwbtzFkfT77fjxXXHBztzVPdXn/kcc8bTvy0/efl/mdxrPjHQ9C3JeXqGdf+WEXzvn0IHT8cVxU3j7xH4jla28MaQ8adDOy72H1J+VfxzW1ovwv0TTtsl9v1Ccc/vPljB/3R1/Emu1hhit4ligiSKNRhURQoA9gKrnw9L4FzPu9vuJ9nia3xvkXZb/f/AJHmtn8M9Q1W4F54o1eWaQ8+VG5Yj23HgfQD8a7nSPDmkaEm3TrGKFsYMmMufqx5rUorGriatTST07dDalhaVJ3ite71YUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeWf817/AM/8+tep15Z/zXv/AD/z616nXZjP+Xf+FHDgf+Xn+NhRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFAHi/wi/5Gy6/68X/9Djr2ivF/hF/yNl1/14v/AOhx17RXoZl/H+SPNyr/AHderCiiivPPSCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOY1rwBoGtbne0+zTn/lrbYQk+46H8s1yTeE/GPhJmk0DUTeWoOfI7/98Nx+RzXqlFdNPF1ILleq7PU5amDpTfMtH3Wh5vpvxUWGb7J4i02aznXhnjU4B90PI/Wu703V9O1eHzdPvIbhO+xslfqOo/GjUtH07WIPJ1CzhuE7b15X6HqPwrhNS+FnkT/a/DmpzWc68qkjnA+jjkfrWn+zVf7j+9Gf+1Uf76+5/wCR6RRXla+LfGPhNhF4g043lqCB5+Mfk68H8Rmut0Xx9oGtbUS7FtcH/ljc/Ic+x6H8DWdTCVILmWq7rU0p4ylN8rdn2eh09FMkljhiaWWRUjUZLscAD61xutfE7QtM3R2jNqE47QnCZ93P9Aayp0Z1HaCua1a1OkrzdjtayNY8UaNoKn7ffRpJjiFTukP/AAEc/ieK4H7Z4+8ZD/RYv7LsH/j5iBH+8fmP4cVr6P8ACvSrRhNqk8uoTk5IPyJn6Dk/ifwrp+r0qf8AGlr2WrOb6zVq/wACGnd6L7tzOuviPq+tTtaeFtIkZunnSJvYe+B8q/iTSW/w71zXpluvFOrydc+TG29h7A/dX8Aa9KtbS3soFgtYIoIl6JEgUD8BU1L62oaUY8vnuwWDc9a8nLy2X3HOW+i+GfBenS6gYYLWKBd0l3P8zj8Tzk+g6+lc3F8bfCcl2kTrqMUDttF3Jbjyv0Yt+lVPjz9p/wCEGtvJz5H25POx6bWxn2zj8cVueO7XSh8J9RjjSH7DFZBrXAG0EY8sr75x+dcspym7yd2dkIRgrRVkdnDNHcQxzQyLJFIodHQ5DKRkEHuKfXIfC77R/wAK00P7VnzPJbGf7m9tn/ju2uvqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyz/mvf+f8An1r1OvLP+a9/5/59a9Trsxn/AC7/AMKOHA/8vP8AGwooorjO4KKKKACiiigAooooAKKKKACiiigDxf4Rf8jZdf8AXi//AKHHXtFeL/CL/kbLr/rxf/0OOvaK9DMv4/yR5uVf7uvVhRRRXnnpBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMwRSzEBQMkk8AUALRXI618R9A0nckU5vpx/Bbcj8W6flmuY/t3xz4xO3SbT+zbJv+Ww+Xj/roeT/AMBFdUMJUkuaXuru9DkqY2lF8sfefZanoWr69pGjQk6newwhh/q2OWYeyjk/lXjniG60fxJfeT4a8Ozrck5MkQxuH/XNcgD34rs9J+FVmkn2nXLyW/uGOWRWKoT7n7zfpXdWOn2emW4gsbWK3iH8MagD8fWtoVaOGd6bcn9y/wCCYVKNfFK1RKK+9/8AAPEr3wP4xTSYjNDNPAnItVn3mP8A4BnH5ZrT8IeIPC2iyrBqWjPaXyHDXUoMpB9cEZT8BXsdZuq6BpWtx7NRsYZzjAcjDj6MOR+dV9f9pHkqrTy0/wCHJ/s72cuei9fPX/hizY6hZ6nbiexuoriI/wAUbAj8fSrNeZ3vwwu9OnN54Z1aWCUdI5HKn6B1/kR+NQxeOfE/hmRbfxNpTTRdBOoCk/Rh8rfpWP1WM9aMr+WzNvrkqeleNvPdHqVFc/ovjXQtd2pa3qxzn/lhP8j/AEGeD+BNdBXLOEoO0lY64VIzV4O6OG+J/iKLSdFt9JXTodRvdYk+zW9vOMxk5HJ7nBZcYxyRzxXG6j8JNbsPDokXxAdQWzBnGkzCT7KdoJ2qN/5Z698Vs/GLT7yB/D/imzt2nGjXXmzovZdysCfbKYJ/2qs6v8YvCv8AwjNxPY3jT3ssLLFaGJg4cjADEjAAPU5+mak0Oj8A+JofFnhK21CK3S2ZCYJYI/uxsuOF9sYIHbOK6auE+Efh+68PeBIYr2Jobi6ma6eNuGXcAACOxwoOPeu7oEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeWf817/wA/8+tep15Z/wA17/z/AM+tep12Yz/l3/hRw4H/AJef42FFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAeL/CL/kbLr/rxf8A9Djr2ivF/hF/yNl1/wBeL/8Aocde0V6GZfx/kjzcq/3derCiiivPPSCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoormNa8f6Bou5Hu/tM4/5ZW2HIPueg/PNXCnOo7QVyKlSFNXm7HT1S1LWNO0eDztQvIbdO29uW+g6n8K84bxX4y8WsY9A042doePP74/324/IZq7pvwsWaf7X4i1Ka8nblkjY4J93PJ/DFdX1WFP+NK3ktWcn1udTShC/m9F/wAETUvin58/2Tw5pk15O3CvIhwfog5P6VTXwl4x8WMJfEGomztSc+RnP/ji8D8TmvR9N0jTtIh8rT7OG3TvsXBb6nqfxq7R9ahT/gxt5vVh9UnU1rzv5LRf8E5jRfAOgaLtdLQXNwvPnXPznPsOg/AZrp6KK5Z1J1HebuddOnCmrQVgrgfHHi7xDpHiXR9C8N2VldXl/HI5W6Dfw88EMuOA2c+ld9Xj/i3X00r422VwbG5vpbTS9lva2qbnklcv09PlY5PoKgs27LU/iu9/breaFoSWplUTMjncqZ+Yj96ecZr0WvPNG+KaXHiCDRNf0G80K8uSBB9obcrk9BkqvXp0IzxXodABTJYo5o2jljWSNhhlcZBHuKfRQBxWtfDHQtT3SWitp857wjKZ90P9CK5/7H4+8Gj/AEWX+1LBP4OZQB/un5h+HFeq0V1QxlRLln7y8zjngqbfND3X3RwOkfFPSrw/Z9VgksJvusSN8ef5j8R+NdLYaP4amlXU9P03SXlY5F1BBGWJ/wB4DNO1jwvo2vKft9jG8mOJlG2Qf8CHP4HiuHuvhvq+i3DXnhbV5Fb/AJ5SNsYj0yPlb8QKvlw9X4XyPz1X3k82Ko/EudeWj+49Pory+3+ImuaDMtr4p0iTrjzo12MfcD7rfgRXbaN4r0XXQBY30ZlP/LF/kk/75PX8M1lUwtWmrtXXdao1pYulUdk7Ps9GbVFFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeWf8ANe/8/wDPrXqdeWf817/z/wA+tep12Yz/AJd/4UcOB/5ef42FFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAeL/AAi/5Gy6/wCvF/8A0OOvaK8X+EX/ACNl1/14v/6HHXtFehmX8f5I83Kv93Xqwooorzz0gooooAKKKKACiiigAooooAKKKKACiue1rxtoOhbkub1ZJ1/5YQfO+fQ44H4kVx0njjxR4nka38M6U0EWcGcgMR9WPyr9OTXTTwtWa5rWXd6I5auMpU3y3u+y1Z6TfajZaZAZ766ht4h/FI4XP09a4XVfiraLJ9m0Oylv7hjtV2UqhPsPvN+lV7H4YXWoXH2zxNq0txKeTHE5Y/Qu38gPxrutK0DStEi2adYxQcYLAZY/VjyfzrS2Gpb++/uRnfFVtvcX3v8AyPO/7B8ceMPm1e8/s6yb/lifl4/65jk/8CNdPovw50DSNskkBvZx/wAtLnDAH2Xp+ea66ioni6klyx91dloXTwVKL5pe8+71EVQihVACgYAA4ApaKK5TrCiiigAooooAKxLa68N3Hiq5ht/sD6/DF+/Kxr56p8o5bGccr39K26828U+D/EVn41Xxh4Qe3kvZIxFdWlwcLKAAOvHBCr3HIBzQBQ+PUcaeF9Ku0+W7i1BVicfeAKMTj8VWvVYS7QxtIoWQqCwHY45rytPC3jHxt4k06+8Y29pp2mae/mJZQSBjI3Xkgt1IGTnpwBzmvV6ACiiigAooooAKKKKAIri2gu4WhuYY5om+8kihlP4GuJ1n4WaRekzabJJp8+cgL88efoeR+B/Cu7orWnWqUneDsZVaFOqrTVzyrzfH3g3/AFinVrBO/MuB9fvr+PFbui/FDRNR2x32/T5zx+8+aMn/AHh0/ECu4rC1nwdoeu7nvLJBO3/LeL5Hz6kjr+Oa6Pb0an8WNn3X+RzfV61L+DO67P8AzNmGeK5hWaCVJYmGVdGDAj2IqSvLZvAPiPw5K1z4Y1d5E6mBm2MfqD8rfjipbP4mahpVwtn4n0iWFxx5salT9dp4P1B/Ck8Jza0ZKX4P7gWN5HavFx/Ffeem0Vl6R4j0jXU3adfRTNjJjzhx9VPNalckouLtJWZ2RlGSvF3QUUUUigooooAKKKKACiiigApks0UETSzSJHGoyzuwAA9yafXmPxB0++8U+OvD/hh47tdDdTc3kkSsEYjcQrMBgHCYH+/9KAO+sdd0fU5Wi0/VbG7kXqlvcJIR+AJrQrx74jeANE8MeFm8ReHYH0zUNNkidZIpnO4FwvcnnLA5/PNeo6DfSap4e0zUJV2yXVpFM6+hZAxH60Aeef8ANe/8/wDPrXqdeWf817/z/wA+tep12Yz/AJd/4UcOB/5ef42FFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAeL/AAi/5Gy6/wCvF/8A0OOvaK8X+EX/ACNl1/14v/6HHXtFehmX8f5I83Kv93Xqwooorzz0gooooAKKKKACiisXWfFmi6CCL6+QSj/ljH87/kOn44qowlN2irsmc4wV5OyNqobq7trGBp7u4ighXq8rhQPxNeaz/EPXdfna18LaPIOcedIu9h7n+FfxJpbX4batrM63fijWJHb/AJ5RtvYe248L+ANdX1RQ1rS5fLdnG8Y56UIuXnsvvNHWPippdqxh0qCTUJzwCAUTP4jJ/AfjWR9i8feMubqX+yrF/wCDmIEf7o+Y/wDAuK0fE9zpXw10e3GhaTDNrN9KLezVwXd2PUk9SORwCOSKxdV1f4meC7KPXtavNO1HTw6i5tIowphDHHDBR3IGcnnHUU/rFKn/AAY693q/8g+rVav8aenZaL/M6rRfhjoWmbZLpW1Ccd5uEz7IOPzzXZRxpDGscSKiKMKqjAA+lRWd3Ff2NveQEmG4jWVCe6sMj9DU9c1SrOo7zdzppUadJWgrBRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXvLG01C3MF5bRXER6pKgYfrViimm07oTSaszz7V/hVp88huNGupdPnB3KpJZAfY/eH5n6Vl/2t478G8ajb/2nYp/y1JL4HrvHzD/gQrpPiR4vbwj4YkmtTnUrnMdouN2CBlnxzwo554zjNT/DjWL/AF/wDpmp6nP595N5vmSbFXdiV1HCgDoB2rqjjJ25ai5l5/5nJLBQT5qTcX5bfcQaL8StB1XbHPK1hOeNlx90n2fp+eK69HWRA6MGVhkMpyCK53WvAuga3ueazEE5/wCW1vhG/HsfxFcg/g3xb4VkM3hzUzc2+cmAkKT9UbKn6g5qvZ4er8EuV9nt95PtcTS/iR5l3W/3HqdFea6f8UpLSf7H4k0uW1nXhnjQjHuUbkfgT9K7vS9b0zWYfN069huBjJCt8y/Veo/GsauHqUtZLTv0N6WJpVdIvXt1L9FFFYG4UUUUAFFFcCfGV5YfFy48O6pPBDpc1oslkWQKWkIXgtn1En44FAHD+LtY8U38ljY+PtNfR/Dsk6+c9gqy726gM+9gB1PHPHQ9vcbaOGK0hjtgogRFWMKcjaBxj2xXB/Ge6tYfhxe28zqJ7mSJLdD95mEiscD/AHQa67w7bTWXhjSbW4LGeGzhjk3ddwQA5/EUAef/APNe/wDP/PrXqdeWf817/wA/8+tep12Yz/l3/hRw4H/l5/jYUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQB8/+BbfXLnW5k8P3kFpdi2Yu8wBBTcuR91uc7e3avQf7J+Jn/Qw6Z/37X/41XLfCL/kbLr/AK8X/wDQ469or08xqcte1lt2MskxsqOEUFCL1e8U397OA/sn4mf9DDpn/ftf/jVYHibWfHnhX7L9u1u2k+079nkQocbcZzmMf3hXr1eV/Gb/AJgn/bf/ANp1zUZ881FpfcfT5VilicXCjUpQs7/ZXZs9UorK1fxHpGhoTqF9FE2MiPO5z9FHNcPefEvUdWuDZ+F9IllkPHmyruYe+0cD6k1FLDVamsVp36HytXFUqTtJ69lqz0maeK2haaeVIolGWd2CgD3Jri9Z+KOiaduisQ+oTjj938sef949fwBrGh8AeIvEUy3PijVnRc5ECMHYfQD5V/DNdpovg/Q9BCtZ2SGYf8t5fnfP1PT8MVtyYel8b5n2W33mPPiavwLkXd7/AHf5nD7/AB/4y+6P7KsH78xZH/obfyNbWjfC3R7AiXUXk1CfqQ/yx5/3RyfxJ+ld3RUyxk7ctP3V5f5lQwVO/NU95+f+RFb20FpCsNtDHDEv3UjUKo/AVLRRXI3c7ErbHkXxC1Wysvi74XbUphHZ2NrJeOSCcH5yMDuSYwB74q5c/FmwZkh8QeE9Us9JuWAS4vbfKOOoJUjB7HgmqXjewiuPjp4Se5UNA8CgAjgsjyMP1K12nxJtoLr4da4twqsqWzSLnsy8qR+IFAzpLU25s4DaeX9mMa+V5WNmzHG3HGMYxU1cf8LZJ5fhpojXGd4iZRn+6HYL/wCOgV2FAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGZUUszBVUZJJwAKWuJ+Ks+sJ4KkttFsrq6nvJlt5RaxM7pEQxYgKD127f+BUActcK3jG08W+Mp1J0+1027stIVhwVEbB5R9TkD8R2rp/hB/yS3Rv+2/8A6Pkrjr/xrqVt4FvNDg+Hut2VkunyWwmkjfbEpjKl2Pljp1J+tbXwU1m6ufCVvpT6TdQ21ojtHfOD5c5aVyQpxjjJB5PSgZ6fRRRQIqahpdhqsHkX9pDcR9hIoOPoeo/CuE1T4VQrL9q0DUJbK4U5RJGJUH2YfMP1r0aitqWIqUvgZhVw1Kr8a/zPKx4m8a+ECE1ywN/Zr/y29v8Arov/ALMM11Wi/ELQNY2obn7HOf8Allc4XJ9m6H8811RAIIIyD1BrlNa+HmgaxukFt9juD/y1tvl5916H8s+9b+1oVf4keV91/kYexxFL+HLmXZ/5nVgggEHIPQiivKz4b8beEMvol+b+zX/liOeP+ubf+ynNX9L+KsAm+y6/p8tjOpwzopKg+6n5h+tKWDk1zUnzLy3+4ccbFPlrJxfnt956LXP+KfBWh+MII49Wti0kWfLmjbbImeoB7j2ORWrp+qWGqwedYXcNxH3Mbg4+o7fjVuuRpp2Z2Jpq6OD0X4ReGdG1KK/P22/mhIaL7bMHWMjoQAoHHvmu8oopDPLP+a9/5/59a9Tryz/mvf8An/n1r1OuzGf8u/8ACjhwP/Lz/GwooorjO4KKKKACiiigAooooAKKKKACiiigDxf4Rf8AI2XX/Xi//ocdezO6RozyMqIoyWY4AFfOfhvxHc+GL6e8tIopJpIDCPNyQuWU5wOv3akufEN1r12Dr+qXpts52W8asPwXcqj6817uKwU61ZzvZHz+Ex8KFFQtd/h956xrXxL0HSt0dvKb+cfw2/3Afd+n5ZrzXxf4h1fxD9jur+xWztR5gtcofmB27iCfvdF5AAra0XxJ4B0Pa8GkajNcL/y3uI43bPt8+B+ArO8f+LtP8Vf2d9hhuY/s3mb/AD1UZ3bcYwx/ums6dD2ckoU36v8AyPUy6tRrYmP1vEckNb8rt0fXfXZnZ6R8KtOgcXGsXMt/OTllBKJn3/iP5j6V3NpZWunwCCztooIh0SJAo/SuH/4W7oH/AD56n/36j/8Ai6P+Fu6B/wA+ep/9+o//AIuuWrSxdX402ZUq2CpL3Gkd/RXAf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWP1Ov/ACs2+vYf+dHf0VwH/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdH1Ov/ACsPr2H/AJ0d/RXAf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XR9Tr/ysPr2H/nRc+IPg658TW1je6Vcra61pkvnWkrdD0JUn6gEfT3rl9T0v4meNbRdD1m007SdOZ1+1XMMgZpVBzwA7HqAccc45xW5/wALd0D/AJ89T/79R/8AxdH/AAt3QP8Anz1P/v1H/wDF0fU6/wDKx/XsP/OjtdN0+30nTLbT7RNlvbRrFGvfAGOferVcB/wt3QP+fPU/+/Uf/wAXR/wt3QP+fPU/+/Uf/wAXR9Tr/wArD69h/wCdHf0VwH/C3dA/589T/wC/Uf8A8XR/wt3QP+fPU/8Av1H/APF0fU6/8rF9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86Oq8T2c+o+E9ZsrWPzLi4sZ4YkyBudkIAyeByR1rK+HGj3+geAdM0zU4PIvIfN8yPerbcyuw5UkdCO9ZX/C3dA/589T/AO/Uf/xdH/C3dA/589T/AO/Uf/xdH1Ov/Kx/XsP/ADo7+iuA/wCFu6B/z56n/wB+o/8A4uj/AIW7oH/Pnqf/AH6j/wDi6Pqdf+Vi+vYf+dHf0VwH/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdH1Ov/ACsPr2H/AJ0d/RXAf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XR9Tr/ysPr2H/nR39Z+qaHpmtReXqNlDcADAZl+Zfow5H4VyH/C3dA/589T/wC/Uf8A8XR/wt3QP+fPU/8Av1H/APF1UcJiYu6ixSxmFkrSkmipqHwultJzeeGtVltZhyscjkY9g68/mD9arJ4z8W+FnWHxHpZuYAceeBtJ+jrlT9Otan/C3dA/589T/wC/Uf8A8XSP8WvDsiMkljqLowwVaKMgj/vuupLESVq1PmX4/ecbeGi+ajU5X+H3G7ovjnQdc2pBeCG4b/lhcfI2fbsfwNdHXh+tan4C1XdJb6fqlhOf4reKPYT7pvx+WKzNL8aazoMvl2F/LPaKcLFdLkEfTJ2/gaJZdzq9O68n/mOOZ8jtUs/Nf5HYf817/wA/8+tep14r4Y1h9f8AizaanJCsLzBtyKcgFYCvH5Zr2qsMfFxlCL3UV+pvl8lONSS2cn+gUUUVwnoBRRRQAUUUUAFFFFABRRRQAUUUUAZX/CMaB/0A9M/8BI/8KP8AhGNA/wCgHpn/AICR/wCFatFX7Sfdmfsofyoyv+EY0D/oB6Z/4CR/4Uf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGV/wjGgf9APTP8AwEj/AMKP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/wCEY0D/AKAemf8AgJH/AIUf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGV/wAIxoH/AEA9M/8AASP/AAo/4RjQP+gHpn/gJH/hWrRR7Sfdh7KH8qMr/hGNA/6Aemf+Akf+FH/CMaB/0A9M/wDASP8AwrVoo9pPuw9lD+VGV/wjGgf9APTP/ASP/Cj/AIRjQP8AoB6Z/wCAkf8AhWrRR7Sfdh7KH8qMr/hGNA/6Aemf+Akf+FH/AAjGgf8AQD0z/wABI/8ACtWij2k+7D2UP5UZX/CMaB/0A9M/8BI/8KP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/4RjQP+gHpn/gJH/hR/wjGgf9APTP/ASP/CtWij2k+7D2UP5UZX/CMaB/0A9M/wDASP8Awo/4RjQP+gHpn/gJH/hWrRR7Sfdh7KH8qMr/AIRjQP8AoB6Z/wCAkf8AhR/wjGgf9APTP/ASP/CtWij2k+7D2UP5UZX/AAjGgf8AQD0z/wABI/8ACj/hGNA/6Aemf+Akf+FatFHtJ92Hsofyoyv+EY0D/oB6Z/4CR/4Uf8IxoH/QD0z/AMBI/wDCtWij2k+7D2UP5UZX/CMaB/0A9M/8BI/8KP8AhGNA/wCgHpn/AICR/wCFatFHtJ92Hsofyoyv+EY0D/oB6Z/4CR/4Uf8ACMaB/wBAPTP/AAEj/wAK1aKPaT7sPZQ/lRlf8IxoH/QD0z/wEj/wo/4RjQP+gHpn/gJH/hWrRR7Sfdh7KH8qMr/hGNA/6Aemf+Akf+FH/CMaB/0A9M/8BI/8K1aKPaT7sPZQ/lRlf8IxoH/QD0z/AMBI/wDCj/hGNA/6Aemf+Akf+FatFHtJ92Hsofyoyv8AhGNA/wCgHpn/AICR/wCFH/CMaB/0A9M/8BI/8K1aKPaT7sPZQ/lRlf8ACMaB/wBAPTP/AAEj/wAKP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/4RjQP+gHpn/gJH/hR/wjGgf9APTP8AwEj/AMK1aKPaT7sPZQ/lRlf8IxoH/QD0z/wEj/wo/wCEY0D/AKAemf8AgJH/AIVq0Ue0n3Yeyh/KjK/4RjQP+gHpn/gJH/hR/wAIxoH/AEA9M/8AASP/AArVoo9pPuw9lD+VGV/wjGgf9APTP/ASP/Cj/hGNA/6Aemf+Akf+FatFHtJ92Hsofyoyv+EY0D/oB6Z/4CR/4Uf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGV/wjGgf9APTP8AwEj/AMKP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/wCEY0D/AKAemf8AgJH/AIUf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGfbaFpFncLcWulWMEyZ2yRW6KwyMHBAz0NaFFFS5N7stRUdEgooopDCiiigAooooAKKKKACuJ+LWojTvhtqhB+e4CW6++5gD/47urtq8d/aB1Hy9E0jTQ3M9w87KPRFwP/AEP9PagDD8HfBiz8R+FLHV7zU7m3lulZ/LjRSAu4gdfUAH8as+Ifg5N4Y0O71nQ/EF2s9nEZ3QjyyyqMnDKRggZNaukfGzwlpOi2OnR2GsbLW3SEEQxc7VAz/rPasnxX8Xl8Wae/h7w9YywNqH7h7i9lSLCngr1IGemSf50DO/8AhT4mvPFHgpLm/fzLu2na2klIwZMBWBPvhh+VdvXM+AvCo8H+FLfTGcSXBJluHXoZGxnHsAAPwrpqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXgnjPTR49+OCaCZnjt7e3EUkqAHYFQyE/99MFr3vpXifwjzr3xE8UeJG+Zcssbdh5jkjH0VMUAWX/Z/wBPVCbbX7uOYco7QqQD9AR/OqXh3X/Efw88c23hbxJeNeabdlUgndiwUMcKyk8gZ4Knp1+vuFeIfH1tmp+Gntzi7HnEY69Y9v65oGe30UUUCCiiigAooooAK8T8c/8AE/8Ajr4e0jaGitfKaReucEyt/wCOgV7ZXhWreF/iHD8TNR8UaRo0buZnW3kmuISDHt2A4Lgj5R39aAPbvsNp/wA+sH/fsV5v8aNE0UeBbjUXtLeK/hkjW3lRArsSwBXI6jbuOPas3+0Pjb/0B7L/AL7g/wDjlRx/Dbxj4x1KC58c6wos4TkWsDAk+oAUBV/3uTQM7n4Z3V3efDnRZr0sZjCVyxySqsyqf++QtdZUVrbQWVpDa20axQQoI40XoqgYAFS0CCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMLxpqR0fwXrF8p2vFavsOejkbV/UiuM+BWm/ZPA016w+a9unYH/AGVAUfqG/Otr4qaRrWveDH0vRLQ3M888fmqJUTEa5bOWIH3gtcLotv8AGHQNHttLsNFtFtbdSqBpICeSScnzPUmgZ7eSFBJIAHJJ7V4RPOPib8abU2e6XR9K2kyj7rKjbif+BNwPUc1o3Phn4q+MY/seu6jbaXp8nEscbJkj6R53Z9C2K9H8I+DtM8G6T9i09Czud09w/wB+VvU+gHYdvzNAHQUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>Quadrilateral $ABDC$ is a rectangle. If $m\angle1 = 38$, find $m \angle 2$
|
52
|
Geometry
|
Geometry3K
|
test
|
End of preview. Expand
in Data Studio
No dataset card yet
- Downloads last month
- -