index
int64 0
600
| image
stringlengths 4.59k
38.3k
| question
stringlengths 13
223
| answer
stringlengths 1
30
| category
stringclasses 1
value | l2-category
stringclasses 1
value | split
stringclasses 1
value |
|---|---|---|---|---|---|---|
0
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEJASkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjvEfxF07w74lsdEe3luJ7l0WR4yAsG9sLu9zycegrc8Sa7beGtAutVuuUhT5UHWRzwqj3JwK8o8VeHrvTvhZca5qI3a5c30OoXT90JbaqD2UNjH1oT1120/H+r/8ADjtpbqe2UVDZzrdWVvcKcrLGrg+xGamptWdiU7q4UUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWZqPiLR9JyL7UreFh/AXy3/fI5/SsBviRpczFdNsNT1Fumbe3JH68/pWsaFSavGOhlOvTg7SkrmNqdpF8SvGculzb38O6LkXGxiouLkjG0EdlGf8AJqr4p+EnhOw8KareWFhLHd29rJLExuHbDKCehOD0ro/+Es8Rz4Nr4Mutp6Ge4EZ/IjiqFp458Q6jd3NvYeHYZpbZts0X2oBkOcd8ZHHUVX1Wo42VvvX+YLEw+PWyt0f4aa+djc+H179v+H+hz7tx+yJGT7r8p/lXS1xv/CUeKIm/0jwZOV9YrpWI/ACkHxFtLf8A5Cmj6tp47vNbnaPx6/pVSw9STbSv6NP8jOOIpRSTdvVNfmdnRWLpvi3QdWKiz1S3Z26Ru2xz/wABbBrarCUJRdpKxvGcZq8XcKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQkKCSQAOSTWbrmv6f4esTdahMEXoiDl5D6KK5VNO17xuRNqzyaVopOUsojiWYf7Z9Pr+XetoUXJc0naPf/LuY1K3K+WKvLt/n2NDUfHdqt01hodrLrF/02W/+rX/AHn6Y+n51VHh/wAU6/8APrms/wBn27f8uen8HHoX/wD1iuq0zSbDR7UW2n2scEQ7KOT7k9Sfc1dqvbRh/CXzer/yRPsZT/iv5LRf5v8ArQ53TvA3h3TMGPTYppAc+ZcfvWJ9eeB+AroURY1CooVR0AGAKWispzlN3k7msKcYK0VYK8l0/RL+5vNb1fR5Nmr6fqswVSflnjzzGf1/P6EetVSsU02Oa7Ww+zCUylrkQlc+YepfHf61VKq6d2jo92VCpTkt7Wfaz3KXhnxJbeJNO8+MeVcxnbcW7H5om/w9D/WtogEEEZB7VxviXQbyx1D/AISbw8At/Gv+k24Hy3Sd+B/F/P61vaBr1n4i0xby0Yj+GSNvvRt3BqqlNW9pT2/L+uhx0qjv7Opv+fn/AJkGpeEdA1YE3elwFz1kjXy2/NcE1if8IjrWh/P4a12Xyl6WV988ePQHt+X4121FKNepFWvddnqhyw9OTvaz7rRnGWvjp7G6Wx8UabJpc7cLOPmgf3B7fr7muwimjuIUlhkSSNxlXQ5DD1Bpl3Z219bPb3cEc0LjDJIuQa4ufw1q3haZ73wrM01qTul0udsqR32Hsf1+vSrtTq7e6/w/4BF6tLf3l+P/AATuqKw/Dvimx8RQsIg0F5FxPaS8PGfp3Hv/ACrcrCcJQfLJam8JxmuaLugoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKbJIsUTyOcKilifQCvKvDDeP/ABjpJ1q28Xx2FrPPIIIG06KTCBiBzj8Pwo62Dpc9XorkNF0PxnaarDPq3jBL+yXPmWy6fFEX4OPmAyOcH8K6+gArE8SeJLfw9aITG1xeznZbWsf3pG/w6c1P4g1218PaTJfXJzj5Y4x1kc9FFYfhbw9cy3jeJdeG/VbgZijP3bZOygdjj8vqTW9OEUvaT2/N/wBbmFScm/Z09/yX9bCaB4Wubi8XXvEzC51R8NFCR+7th2AHTI/T3PNdjRRUVKkqjuy6dONNWX/DhRRRWZoFFFFABXHeFCy+MvF0W4lBPC4HoWVs/wAhXY1lafoUOna1qepxyyM+oFDIjY2rtBAx+dVFpJo6qFWMKVWMt5JW9eZP8kzVriNf0e88P6q3ifQI2fdzf2S/dmXuwHqP/r+ue3oqqdR03fp18zhq01UVnv0fYoaPq9prmmRX9lJuikHIPVD3UjsRV+uD1fTrrwZqcniDRYd+myc6hZKcAD++o7f0+nTstO1G11awivbKZZYJRlWH8j6EelVVppLnh8L/AA8mTSqNvkn8S/HzX9aFqiiuT+I+v3fhzwZdXunSiO+d44bdtobDMwHQgg8ZrBm6VybxJ4TXVZU1LTZjY6zBzFcpxv8A9l/Udv8AEcUeGPFDanLLpeqQi01q24lhPAkH95fUf56ViL4c+I7Qhv8AhPYQ5XO06VDgH0zisnRl1bxvpl/LdmCDxNoV40EV7bjaspX+E9sZz+fTqK6qc1NezqPbZ9v+Acs4OD9rT67rv/wf6Z6vRXP+FPEg1+xkS4j8jUrVvLu7c8FWHGR7HH8xXQVhODhJxlubwmpxUo7BRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHNfEHUv7J8BazdBtr/ZmjQ/7T/KP1Nch4Y0j4l6V4a0+z0+bwzHapCGjWcTFwG+b5sLjPPOK6L4j6JqfiLRbHS9Pt/Nilvomu28xV2Qg5J5IzzjgZNdiqhFCqMADAFC2b/rT/hxvov6/rQyvDya8mnMPEUthJemQ4NiGEYTjH3uc9a1WZUUsxAUDJJ7Clrhfibrx0/Rl0uAsbi9B3hRkrEPvH8en0zWlKm6s1BGVScacXKTGaVG3jbxO+t3Ck6Pp7mOxiYcSuOsn+fb0Nd7Xneg+KZvDWl2NlrWmiHTjGot9QtAXhcEZBbuCc/XPau+tLy2v7Zbi0njnhf7rxsGBq8Q25baLRf1+Zu8DVw0eaevNrzLVP0f6bk1FFFYEBRRRQAUUUUAFctpOo3U3xB8QWEtw7W8EUBhiJ4XKAsR+JrqawLTSruHxxqGqOi/ZZ7WOJG3DO4deKqNrO51YZwUail1jp63W3yub9FFFScohAZSCAQeCD3rgby1uPAGqPqdgjSeH7mTN3aoMm3Y/wAa+3/6vTHf02SNJY2jkRXRgVZWGQQexrWlU5HZ6p7oyq0udJrRrZkdpdwX9pFdWsqywSruR16EV5x8Vftup6v4W0DTfIN5PdtdKLgny/3YyN2Occnp6Vakab4caqGHmTeGbx8bc7mtZD6eo/z1HNTxBbeKG+I1p4k0XQU1ewgsfJt2+2xRqS2SWGTnocdKKtPklGS1i9n6f8EKNXnUovSS3Xr+ha1FfiwNPnMcvhjcEOPs3m+Z0/h3jbn61o/C2XTLjwPbT6bBNF5kjm48998jzZ+dmbvn19KpS3/xG1q2ksl8P2Oh+aNjXk16s5RT1Kqn8Xpmuq8M+H7Xwv4ftdJtCWjgX5nbq7E5Zj9TWa0uavoc/wCLrCfRNSi8XaWmZIcJfwr/AMtoumfqP8D2rrrK8g1GxhvLZw8MyB0b2NTSRpLG0cihkcFWUjgg9RXE+FGfw54jvvCkzE27ZutPZj1Q/eX8OfyY10fxafnH8v8Agfkc38Kp5S/P/g/n6ncUUUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBeH7SLxX4g17WrtBJaENp9qD08sD5iPrnP/AAI10Xi/UzpHhTULtWxIIikZ/wBpvlH6nP4UvhLSxo/hbT7MrhxEHk/32+Zv1OK6IPkpOa3en6v9DnmueqoPZa/ov1MXwJKRYah4av1WSXTJjEVcZDxMSVOD1HX8MV08NhFpemPbaTbQxbVZooslU3nJ5POBmuV1/wD4p/x3peuL8trfj7Ddntn+En8h+C129FfVqa2lr8+pWGnKMXSb+F7fl+Gn3nG2fjaSwuFsfFVi2mXJO1bgZaCX3Ddv19zXYRyxzRrJE6vGwyrKcgj2NRXdnbX9s1vdwRzwt1SRQQaq6fpVroGkta6XbHy03ukW/JZjzjJP4c1i3F7bno1p0KkeaEeWXb7P46r01NGiuU0zxxay3Q0/WreTSNR6eXcfcc/7L9P8966sEEAg5BpSi47mVbD1KDtUVvyfo9mFFFFIxCsUa83/AAmLaCbYBfsf2oTb+T823GMf1rarjZMp8Xounz6R/wC1D/hVwSd7nXhacanPzLaLa9UdlRRRUHIFZOv+IbHw5p5urx/mbiKJeWkb0A/rVfxL4otvD8KRrG11qE/FvaR8s59TjoKzvD/ha5kv/wC3vEki3OqtzFF/yzth2Cj1/l7nmt4U0lz1Nvxf9dzCdVuXs6e/4L+uxU07w3e+J7saz4rjxHg/ZdNydsSnoW9T/k+ghtpp/h7qi2V07S+HLqT/AEedjk2rH+E+3/6/WvQKr31jbalZS2d5EssEq7WRv89apYht2mvd7dvTzJ+rKKvB+937+vl/SJ1ZXRXRgysMgg5BFLXA6XfXPgbU00PV52l0eY4sb1x/q/8AYc9v6fTp31Z1afI+6ezNKVXnWujW67BXG/EC1lgtLLxDaLm60qYSEA/ejJAYfy/DNdlUF7aR39hcWcwzFPG0bfQjFKlPkmpDqw9pBx/q/Qda3MV5aQ3UDbopkWRG9QRkVLXI/Dq7lk8NNYXB/wBI064e1f8AA5H4c4/Cuuoqw5JuPYKU/aQUu4UUUVmaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGfED/S/7C0jgi91BN6+qL978PmBrs643XAbj4leGocZWGKeY+2VI/mBXZVvV0pwj5N/j/wDnpa1JvzS/Bf5mN4r0ca74avLEAGVk3RZ7OOR/h+NReDtYOueGLS6kObhB5M4PXevBz9eD+Nb1cRpI/4R34hX+lk7bTVV+1247CQZ3AfqfwFOHv0pQ6rVfr/n8gqe5VjPo9H+n+XzO3ooornOgo6po+n61am21C1juI+24cqfUHqD7iotI0mDw9pJtLVriaKMs6rI+9vUKPbsBWnRTu7WNfbVOT2d/d3t0Oc0XxppmrTmzl32GoqdrWl0NrZ9j3/n7V0dZWt+G9K8QQeXqFqsjAYSVeHT6N/TpTtH019D0r7NLfXN6IyzLJN8zhey8dcCnLleqNqyw8o89K6f8r1+5/o/vZp1Tk1Gyi1WHT3lAvZoy8abDyo684x+tUND8WaT4gBS0uNlyud9tMNkq468d/wzWLrs8UHxN8OO86xjyZ0kJfAwUbaD9TTjBt2YQwzjUlTr+60m9dNUm1952tcv4k8VnT510nSIftutTcJCvIi/2n9PXH8hVbXfFF1dX50Dwyqz6i3E1x1jth0JJ9R/nJ4rU8NeF7Xw9bswZri/m5uLuTl5G78noM9vzrWMI01z1Pkv8/L8zy5TlUfJT+b/AEXn+RR0Lw5HoMVxres3Au9VZDJcXL9IwByEz0GO/H4Dit3R9Vt9b0a01S2WRILmISoJQAwB9cEj9axfG3hu117Rrp7q6vkWG2kIiguWjjc4z8yjhunesrSbl7P4HRXEZIePRmZSOx2GsKlWU+act1b9f8jop0ow5YR6/wDAL3/Cx9E+0DMOoCwMvkjUzbH7KXzjG/68Zxj3rr+tedXFtD/woLy/LXYNFWQDH8WwNn8+a7Hw3O9z4X0meQ5eSziZj6koKbjZtdv+D/kF72ff/gf5k+q6Vaa1psthex74ZBz6qexB7EVyeh6reeGNUTw1rsjPA5xp983R17Ix9e36eldzWZruhWXiHTJLG9TKnlHH3o27MPetKVRJck/hf4eaMqtNt88PiX4+T/rQ06K4vw5rl5pWojwx4hcfakH+iXZPFynYZP8AF/nr17SpqU3Tdn/w5VOoqiuv+GOM0Ef2f8SPEVgDhLqOO8Re3ox/Nq7OuNvB9n+LOnSZx9q054sepUs39B+VdlV19XGXdL/L9DPD6KUezf46/qFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcbdfN8XrEMThNKZlGeMl3B/SuyrjdW2w/FPQZCo/f2s0W76Bm/r+tdlW9faD8v1ZhQ3mvP9EFch8QbKUaVb61aD/TNJmWdSO6ZG4fToT7A119MmhjuIJIJVDxyKUdT0IIwRUUp8k1IurD2kHEisL2HUdPt72A5injWRT7EZqxXF+ApnsG1PwzcOTLpk58onq0Tcg/rn/gQrtKK0OSbitv06BRnzwUnv+vUKKKjnuIbWBpriaOGJBlnkYKoHuTWZoSUVx134/gnuGs/DthPrF0OCYlKxJ7lj2/T3qD/hGfEXiI7/ABHq5tbZv+XGwO0fRm7/AK10LDta1Hy/n9xzvEJ6U1zfl95U8aXfhK5l2HzJ9ZHETabzMG7ZI4/A8+leQ3ktzNeTSXbSNcFz5hlJLbu+c819HaR4e0rQ4tmnWUUJIwzgZdvqx5NV77wf4f1K++23elwyXGcl8ldx/wBoAgN+Oa68NjKVBtJNrv8A1sYY2jisXTjCc9I7LWyuY/wvthD4NilNusbzSuxfbgyDOAT/ACrs647UPHNnY6g2iaDpVzrF9bjbJBYqBHB6BnPyr9KrWfxGeHVrXTfEnh+80Oa7bZBLI4lhduy7xjmuCpU9rUc+510qfsqah2R1euf8gDUf+vWX/wBBNc54VsRqnwjsLAnH2nTPKye25SP612VFZNXTXf8A4P8Amap2aa6f8D/I8kuPEKSfDhfBsdrdHxIbVdPax8h8qeEL7sbdmOd2cV6jptoLDS7SzBz9nhSLPrtUD+lWqKpu9292TbbyCiiikMx/Efh618R6abaf93Mp3QTqPmib1H9RWR4Y8R3S3z+HNfITVoP9XIRhblOzA9z/AJ7HHX1heJ/DUPiGzTbIbe/tzvtblOGjb/DpW9OpFr2dTb8v66mFSnJP2lPf81/n2Zla3/yU7wx/1yuP/RbV2VeYaTqOoap8QtGttWtzBqGmwTLNxxISpAYexBzxWv8AELWL5W0vwzpE5g1DWpjEZ1PzQwj77D3x/WqxMXHkh1t+rJwslPnn0v8AojU1fx/4V0K4a31DW7aOZTho03SMp9CEBI/GtTSNd0vX7U3OlX8F3EDhjE2dp9COoP1qpofhLRPD1gtpY2EIAGHldAzynuWY8k1n6f4Jg0jxxP4g02ZLW2ubfyp7GOLCu+c78g4H0x6+tc63szp6HV0UUUgCiiigAooooAKKKKACiiigAooooA4zxr/oeu+F9U6LFfeQ5zjiTA/kDXZ1zHxBsWvvBt6Y8iW2xcIR22HJP/fOa2tHv11TRrO/XpPCrkehI5H4HNbz96jF9rr9f1Zzw92tKPez/T9Ec3rvxG07Q9ek0b+ytY1C7iiWWQWFssoUN0z8wP6d6pf8LUtv+hS8Wf8AguH/AMXXJ6B4+8O6P488XalrF48UtxcrBAFhZ/3ceVzkA9cD8q7zRfiZ4X8Q6rDpmm3ss11LnYht3UcAk8kYHArCOqR0y0bKOvTnSvEeheK0ikht7pBa3iSDDIrjK7h2I78/wiut1TWtN0aDztQvIoExkBj8zfQDk/hUXiPSF1zw/eaecbpYz5ZPZxyp/MCuO8A6Bo+p6aNUvoJLvVI5Gin+1uZPLdTwADx0weckV2LkqU1Of2dNPwOJ+0p1XCH2tdfx/R/eXm8Xa1rxMfhfR3MJ4+33vyRj3A7/AOeKQ+CklR9S8W6rPqTQqZGiDeXCgAycAY9/T6V24AVQAAAOAB2rmPG3hu117Rrp7q6vkWG2kIiguWjjc4z8yjhunesZ4hwi/ZLl/P7/APKxtHDqcl7V835fd/nc0/Dt1p154es73TLYWtlPEJI49ioVB9QOM/jWL/wsfRPtAzDqAsDL5I1M2x+yl84xv+vGcY96o6TcvZ/A6K4jJDx6MzKR2Ow1XuLaH/hQXl+WuwaKsgGP4tgbP581lPSUm+n/AAf8jaCvGK7/APA/zPRetcr8Rdfm8OeCb69tTi7cCCA9w7nGR9Bk/hWt4bne58L6TPIcvJZxMx9SUFYnxJ8OXfiXwhLbWGDe28q3MCE43sufl/EE498Upxs7Pv8A8OFN3syx4f0zT/AngoGchFghNxez4JaR8Zdj3Pt+Fczqnjr4e+MltdJu7u4nZ7lGgVIJUPmZwuDjjrV2x+LOimGK31S11Gy1XbiSyazdn3DrtwORmsm/utW8U/Efwr9q02Ww0mNpbuCG44mcoo+d1/h5KgDr1z1qt5rt/X9IS0h5nqw4GKKKKkYUUUUAFFFFABRRSO6xozuQqqMknsKAON0/F78V9VnHK2Nilv0/iYhv8RWJ40u49C+LHhfW9Rby9MMElsZmHyxSENyT2+8PwB9K2/h4rXdrquuSAhtSvXdCevlqcKPwJYV1Oo6bY6tZvZ6haQ3Vu/3o5UDD68963xOlRJfZsvws/wBTDDa0239q7/HT9CrqHiTRdL05r+71O1jtgu4P5oO7/dx1PsKzfBuraxr1td6rqFuLWxnl/wCJfAybZBCOjP7mmaf8OPCGl3X2m10G2EwbcGkLSbT6gOSB+FdTWBuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkjSWJ45FDI6lWB7g1wHhjU/+Ec0PxDpN03z6IZZUJ/iiILA/nz/wIV6DXB+NLSHSdbsvEUtuk9jIPsWpROm9XiboSvf/AOstb0lzxlS77eq/qxhWfJKNXtv6Pf8ARmR8MPEvhvRfA9rFfa7p8N7PJJPOkk6hgzMevPXAFd7pvijQdYujbabq9ndzhSxjhmDNgd8DtzUCeDvCciK6eG9FZWGQRYxYI/75q5YeH9F0qcz6do+n2czLtMlvbJGxHplQOOBWLd2bGjXEWf8AxTvxJuLQ5Wz1uPzovQTL94fjyfxFdvXJ/EDT5Z9AXUrXi80uQXUTD0X734Y5/wCA1th2ubke0tP8vxMcQny863jr/n+B1lUNc/5AGo/9esv/AKCak0vUItV0q1v4D+7njDgemeo/A8VbrnnF2cWbwktJI43wrYjVPhHYWBOPtOmeVk9tykf1rlrjxCknw4XwbHa3R8SG1XT2sfIfKnhC+7G3ZjndnFet0VUnzN32f9fqEfdSXYq6baCw0u0swc/Z4Uiz67VA/pVqiihu7uxJWVkFFFFIYUUUUAFFFFABRRRQAVy/j7U3sPDEsEALXV+wtIVXqS3B/TP5iuorh7c/8JV8QWuR82maICkZ7POep/DH/jo9a3w8Vzc72jr/AJfiYYhvl5I7y0/zfyR1Oi6amkaLZ6emCIIlQkdz3P4nJq/RRWLbbuzZJJWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVbULCDU9PuLG5XdDOhRh9e49+9WaKabTuhNJqzOM8F6hPp9zceE9Tb/S7Hm2c8CaHtj6fy+hrs65nxf4em1SCHUdNbytYsT5lvION4HJQ+x/zwTVrwv4kh8R6b5m3ybyE+XdW7cNG468Ht/wDq6it6qVRe1j8/J/5M56TdN+yl8vNf5o3Ka6LJG0bqGRgQwPcGnUVznScV4HkOk6hq3haZjmzlM1tuP3oW5/TI/Fq7WuJ8Yg6J4g0fxPGCI43+y3mO8bdCfpz+OK7UEMAQQQeQRXRX961Tv+fX/P5nPh/dvS/l/Lp/l8haKKK5zoCiiigAooooAKKKKACiiigAoorO1vWrPQNLlv718RoMKo+87dlHuacYuTstxSkoq72Mnxnr02l2Edhp4L6tqDeTbIvVc8F/w/n9DWj4b0OLw9ocFhGQzqN00n99z1P+ewFYfhLSLu9vpPFWtpi+uVxbQHpbxdgPQkfoT3Jrsq3qtQj7KPz9f+AYUk5y9rL5en/BCiiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuQ8ReHbuDUR4j8PYTU4x++g/huk7gj1/n9a6+irp1HB3RFSmqiszF8OeJbPxHZGSH93cx8T2z/fib39vetquV8Q+EmvLwaxotx9g1mPkSL9yb2cf1/PNM0bxor3Q0rxBB/Zmqrxh+I5fdW6c+mfoTWsqSmuel93Vf5oyjVcHyVfv6P/J+X3G7rmlx61ol3p0mMTxlVJ/hbqp/A4NZHgPVJNQ8NRwXOReWDm1nUnkFeBn8MfiDXT1xAB8O/Es/w2Wux59hOv8Aj/NqKXv05U/mvlv+H5BV9ypGp8n89vx/M7eiiiuc6AooooAKKKKACiiigAoorm9f8Y2ejyixtUa/1WT5Y7SDk5/2iOn86uEJTdooic4wXNJmrrGs2Ohae97fzCOJeAOrOfQDua5TSNJvvFepxeINfiMVpEd1hp7dAOzuO5/n9KsaV4Vu9R1BNb8VOtxdrzBZrzFbj6dCf8812VbOUaS5YO76v/L/ADMVGVV801aPRfq/8gooormOkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs/V9D07XbQ22o2yTJ/Cx4ZD6qeorQopxk4u6FKKkrPY4UaZ4q8J/8gqf+2tMXpa3DYmQf7Ld/88Vk+KPFGmeINDZMzabrdg4uYYbpNjBl6gHoeOgOCSBxXqFc94guvCMj/YvEF5pCShciO7uI0kUHuMkEfUV1QxMeZSmte6/XozlqYaXI405aPo9fue6NLRNUj1rRbTUYsYnjDEA52t0Yfgcir9ed2fh3Q7idh4R8Ym3lHPk2t4s6fiobJ/EmtEQfEDT8CO70rU0HeZDG5/LA/WplSpyd4SXz0/4H4lRq1Iq04v1Wv/B/A7OiuM/4SHxjAcT+EFlx3hvFwf500+L/ABKr7T4Ius+11kfnspfVp9Lfev8AMf1mHVP/AMBf+R2tFcb/AMJJ4ulOIfBpQ/8ATS9X+oFIf+Fg32R/xKNNQj7wzI6/zBNL6u18TS+a/S4fWIv4Yt/Jr87HZ9K53V/HGhaQTE92Lm5ztFva/vHJ9OOAfqazf+EEu9R58QeI76+XvBF+6j+hAzn9K6DSfDmj6IoGn2EMLYx5mNzn6seafLRju+b00/F/5BzVp7Ll9dX9y/zOZLeL/FZ2qn9gaW3Vm5uHX/2X9Pqa6HQfDGmeHoSLOHMzD95cSfNI/wBT/QcVs0VM6zkuWOi7L+tSoUIxfNJ3fd/p2CiiisTYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8t8O6Npni/x94v1TVLG3vbeC4SzgWdA4UoMNjP0H516Vf3SWOn3N3IQEgiaRifRQT/SuL+EVq8XgWO+mH7/AFG5lu5D6lmwP0WiO7fZfn/TB/D6v+v0Mv4jeCdE0zwnca3o1lFpmo6cVnhmtF8s8MAQcdetd/oN7JqXh3Tb6YYluLWOVx7soJ/nXG/Eq8/tsWngjTnEl/qMqNchOfIgU7izenQfWu+treO0tYbaIYjiQIg9ABgUR+F+v/D/ANeQS3X9en6ktFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBS1jTIta0e70yeSWOG6iaJ3iIDBTwcEgj9K4u3+Emn2sUcMHibxRHDGMLEmoBVA9AAnAr0GigLmJ4f8J6P4ZSX+zbYiaY5muJWLyyH/aY8/h0rboooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=
|
<image>Chords $\overline{A C}$ and $\overline{D F}$ are equidistant from the center. If the radius of $\odot G$ is 26 find $A C$
|
48
|
Geometry
|
Geometry3K
|
test
|
1
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHDAccDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuE+K13rumeFxqeh30ts9u+ZggB3IfqO1X/AIc+JX8UeD7W8nk33aZjnPcsO/40LW/kD0t5nWUVj+KPENr4X0G51O6YYjX5E7u3YCuC+F2o+LPFF3ca3q2oyjSwxEFuFAVz+WcChatoHornqtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVNTsItU0u5sZ1BjnjKEH3FeLfCS/k8M+MtX8L3r7FJYruOAGXv+Ve6V8+fGzTP7O8YWeoWMpjuL2LDBDg5HGfxpJ8svXQq3NG3bUseIby7+K/j+LRNPdho9k3zyDoQPvN/QV7jpun22ladBY2kYjggQIij0Fcx8OPB8HhPw3EpAa9uVElxJjuRwPoK7GqtyrlRF+Z8wUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeC+NyfEfxt03TF+aO3aNCPTHzGveq5+DwToFt4jfX47EjU3JZpjM55PX5ScfpQtJJ9gfwtdzfACqAOgGBS0UdKACis278Q6NYZ+1anaRkdVMoLfkOaw7n4l+GLfIW8knI/55Qt/XFaxoVJ/DFv5GU69KHxSS+Z11FeezfF3Rlz5Njev/vBV/qaqn4wRMf3WiTP/ANt8f+y1ssDiH9kwePwy+3+Z6ZRXmX/C25uv/COTY/6+D/8AEUo+L8an99ocyD/rvn/2UUfUMR/L+K/zF/aGG/m/B/5HplFeeQ/F7R2P76xvI/8Ad2t/UVqW3xM8MXBAa7lgJ/56xH+maiWErx3iy443Dy2mjr6KzLPxHot+QLXVLSRj0USgN+R5rT61hKLjo1Y6IyjJXi7hRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKq3+o2el2zXF9cxwRD+JzjP09a4DUviZPe3BsvDGnSXMx4EroT+IUfzNbUsPUq/CtO/QwrYmnR+J69up6LNPFbxNLPKkUa8l3YAD8TXI6t8TNA03ckEj3so/hhHy/8AfR/pmsCHwJ4j8Ryrc+JdVeNDz5KtuI/D7q/hmuw0nwRoGjbWgsUklH/LWb52z689Pwrf2eHpfHLmflt95h7TE1fgjyru9/uOMm8a+Mdaid9H0c21uFLeaU3HA/2mwp/KszQdH1zx5FNNd+IJUiifa8bFmOf93IAr2UopQoQNpGCPavMfBDHRfHur6M5wshZkB9jn+RrelXTpzdKKi1r39dzmrYdqpBVZuSej6Ly2NOz+E2iQ4N1cXdy3cFwo/QZ/Wty28DeGrTGzSLdsf89QZP8A0LNdDRXFLE1pbyZ3wwlCG0EUodI023x5On2seP7kSj+lWxGgGAigfSnUVi5N7m6ilshNq/3R+VIY0IwUUj3FOopDKc2k6dcjE9hbSD/biU/0rLuvA/hq7BEmkW65/wCeQ8v/ANBxXQUVcas4/C2jOVKnL4opnBXnwn0OYE2s11at22vuH68/rWYfAXirRTv0TXy6j/lmzNHn8OQa9Qorojjay0buvPU55YCg3dKz8tDy7/hMPGnh441vR/tMI6yhMf8Ajy5X9K39J+JmgakVSeR7KU9px8uf94f1xXYkAjBGRXP6v4J0HWQzT2KRyn/lrD8jfp1/Gn7WhU+OFvNf5E+xxFP+HO67S/zN6GaK4iWWGVJI26OjAg/iKfXl0/gTxH4bla58M6o8qDkwsdrH8Put+lWdM+Jk9lcix8T6fJazDgyohH4lT/MUPCcyvRlzL8fuGsYovlrR5X+H3npFFVbDUbPU7YXFlcxzxH+JGzj6+lWq5GmnZnYmmroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorN1rXtP0CyNzfzBB/Cg5Zz6AU4xcnZbkykormk7I0XdY0LuwVVGSScACuA8QfEmKGc6f4fhN9eMdokAJQH2A+9/KsV7jxH8SLpo7fdYaMrYJOcH6/3j7dK73w94T0vw3AFtIQ05HzzuMu3+A9q7fZUqGtXWXb/M4va1cRpR92Pfv6I4zT/AOr+IbhdQ8VX0vPIt1b5senoo9hXoWmaPp+j24gsLWOBB12jk/U9TV6isKuIqVdHt26G9HDU6WqWvd7hRRRWB0BXl/jEHQ/iLpWrqMRzbVfHTrg/wA69Qrhfinp5ufDSXaD95ayhsjsDwa6sHJKqk9np95x46LdFyW61+47kEMAQcg8g0tZHhfUBqfhqwus5ZogG9iOK1655RcZOL6HVCSlFSXUKKKKkoKKKKACiiigAooooAKKKKACqOp6Np+s25gv7WOdO24cj6HqKvUU03F3QpRUlZo8vv8AwFrHh25bUPCl9IQOTbs3zY9PRh7GtHw/8SYZ5v7P1+E2N6p2lyCEJ9wfu/yrv6wvEPhLS/EcBF1CEnAwk6DDr/iPY12LExqrlrq/mt/+CcTws6T5sO7eT2/4BuI6ugdGDKRkEHIIpa8ljuvEnw3uRFcqb7Ri2FYdAPY/wn26V6Rouu2Gv2S3VhMHX+JDwyH0IrKth3TXMnePc1o4mNR8klaS6M0qKKK5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorkvGfjSHw7B9ltsTalKMJGOdme5/oKunTlUlyxWpnVqxpRc5vQseLPGNn4ZttvE184/dwA/q3oK5PQ/COpeK74a34od/JbmK2PGR247L7Vd8I+CZprka94iLT3sh3pFJzt929/btXonSuuVWOHXJS1l1f+RxwpTxL9pW0j0j+rI4IIbWBIYI1jiQYVFGABUlFFcJ6GwUUUUAFFFFABWfrliupaHe2bDPmxMAPfHFaFFOLcWmhSipJpnn3wovmbSLvTZD+8tZjgex6/rXoNeXaF/wASD4rX1gflhvASo9c8j+teo11Y1L2vMtpanJgZP2XI94tr7gooorkOwKKKKACiiigAooooAKKKKACiiigAooooAjuLeG6geCeNZInGGRhkEV5jrnhHUfCd6db8MSSGFeZbcc4HfjutepUda2o15Unpqnuu5hXw8ay10a2fVHNeE/GVl4mttoxDfIP3kBP6r6iulrzvxd4Jmhuv7e8OEwXsZ3vFHxu919/bvWv4M8ZxeIrf7NdYh1KIYeM8b8dx/UVrVoxlH2tHbqu3/AMaNeUZexrfF0fR/wDBOtooorkO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorK8Q67beHtJlvrggkDEad3bsKqMXJqK3JlJRi5S2Rm+MvFsPhqw2x4kv5hiGP0/wBo+1YfgnwhNJcHxDrwMt7Md8SSc7M/xH3/AJVS8HaBdeJtVbxRrgLoWzbxN0Poceg7V6hXZVmqEfZQ36v9DhpQeIn7ap8K+FfqwooorhPQCiiigAooooAKKKKACiiigDzH4jRtpfibRtcj+XDhXb6H/CvS4pFmhSVfuuoYfQ1yfxJ077f4QndVy9uwlH071c8Daj/aXhGxlLZdF8pz7iuyp7+GjLtp+pw0vcxU4fzJP9GdHRRRXGdwUUyaaK3iaWeVIo1GWd2CgfUmqlnrOl6jIY7HUrO6deqwTq5H4A0AXqKKQkKCSQAOSTQAtFVrPUbHUVdrG9t7pUba5glVwp9Dg8GrNABRRRQAUUUUAFFFFABRRRQAV55428HypP8A8JDoQaK+hO+RI+N+P4h7/wA69DorWjWlSlzRMa1GNaPLL/hjmPBvi6HxLYbZCI7+EYmj6Z/2h7V09eYeMdAufDeqp4o0NSiq2biJRwPU49D3ruvD2vW3iLSY723OCeJE7o3cVrXpRsqtP4X+D7GOHrSu6NX4l+K7mrRRRXKdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMllSCJ5ZWCxoCzMegArygCf4keMDksujWR/Aj/ABP8q1fiNrs08kHhnTSWublh5u3sD0X+tdb4Z0GDw9osNlEAXxulfuzd67qf+z0vafalt5LuefU/2mr7JfDHfzfY1YYY7eFIYkCRoAqqOgFPoorhPQCiiigAooooAKKKKACiiigAooooAr31st7YXFswBEsbJz7ivPvhXctbSaro0pO6CTcoPpnBr0mvLv8AkX/jB/dhvh+HzD/EV2Yb36c6flf7jhxXuVKdXzt956jRRRXGdx474lWf4g/E0eGDcSRaRp677hY2xvbv/hS+K/hWuixWmqeCLe5TUYJVJiWcncPXLH+tc7oetaxb/EXxHDoVolzq15KUjaX7kSg8sa6C/wDFHxF8DXMF34m+xahpcrhXa3UDZn3Cqc/UGlH4Yvb/ADKl8TW563YPPLp9u91H5dw0amRPRsc1LMqvBIrnClSCfQYqOyvIdQsYLy3bdDMgdD7Glu/+POf/AK5t/KnPqTHocz4F0bQdGtL5NC1Nr6OW4LzM0ivsf0+UDFaz+KNCSG5lbVrQJanbOfNH7s+h964L4Jf8gnW/+v4/1rn/AAB4Z0/xB448RSanELi3trhitu/KMxPUjoaNW0vK/wCQbJvz/wAz1fR/GPh7X7hrfS9Vt7iZRnywSrfgCBn8K3K8W8b6Lp/hv4i+GLvR7WKyaeXbIsChFPOOg4r2mhaxuD0dgooooAKKKKACiiigAooooAZLFHPC8UqB43BVlPQivKGW4+G3i8Mu5tGvW6dgP8R/KvWqyPEugweIdFmspQA5G6J+6t2NdOGrKD5Z/C9zlxVF1IqUPiW3+RqRSxzwpLEwaNwGVh0INPrzr4c65PbzT+GdSJW5tifJ3dwOo/rXotZ16TpTcWaUKyrQU1/TCiiisjYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqhrWqw6LpFxfzkbYlyB/ePYVfrzH4gXs2u+ILHwvZEnLhpiPU/4Ct8PS9rUSe3X0OfE1vZU3Jb7L1JPh1pU2p6hd+KdRBaWZyId36n+lelVW0+yi07T4LOBQscKBAB7VZpYir7Wbl06eg8PR9jTUevX1CiiisTcKKKKACiiigAooooAKKKKACiiigArzb4qWzW0mlazEDugk2sR6ZyK9JrnPHOnf2l4RvogMvGvmoPcV0YWfJWi2c2Mp89CSW/+Rt2Nyt7YW9yhBEsavx7irFch8NtR+3+EIEZsvbkxH6DpXX1nWhyVHDsaUantKcZ90eNfD+BbP4xeJYJQBL8xTPXGc11XxfaJfh1febjJZQmf72aqeMvAeq3PiGLxP4VvI7XVUG2RJOFkH5H9ayH8G+OfGd7bJ4vu7W30y3cOYLfGZD+H9TWNuaCj2N72m5dzufh+kkfgHRVkBDi2XOfxreu/wDjzn/65t/KnQQx20EcEShY41Cqo7AUToZLeSNcZZCBn3FVN3u0TDS1zzD4Jf8AIJ1v/r+P9ah+E/8AyNni3/r5/qa6T4c+EtQ8J2OpQ6hJbu1zcmVPIYsAPfIHNR+B/B+o+G9c1y9vZLZor+bfEInJIGe+QKa+Jen+QPZ+v+Zz/wAU/wDkd/CP/Xf+tes1w3jXwfqPiLxHoWoWclssNhJvlErkMRnPGAc/pWj460jX9Z0VLfw7qP2G7EoZpPPeLK+mVBNSnaPzf6Desvl/mdRRVTS4Lm20q1gvJfNuY4lWWTcW3MBycnk1bqnoyVsFFFFIYUUUUAFFFFABRRRQB5r8RtJl02+tfFGnArNC4E239D/Su60XVYda0i3v4SNsqAkf3T3FT39lDqNhPZzqGimQqwPvXnXw/vJdC8RX/hi8Ygby0OfUf4iu1fvqFvtQ/L/gHA/3GIv9mf5/8E9OoooriO8KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCtqN7Hp2nXF5KcJChc/hXnnw2sZdT1TUPEt2CXlcpET79f8KvfFPVHh0e30uA/vryQAgddo/wATXU+G9LXRvD9nZKOUjBc+rHrXbH91hm+svyRwy/e4pLpDX5s1aKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACmSxrNC8T/ddSp+hp9FAHmPw5kbS/E2s6HJxhy6L7g/4V6dXl2u/8SD4rWN+PlhvAAx9c8H+leo12Yz3pRqfzI4sD7sZUv5W/u6BRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmfxKsZNM1PTvEloCrxOElI9un+FemVleJNLXWPD95ZMMl4yV9mHIrfDVPZ1U3t19DnxVL2tJxW/T1LmnXseo6db3kRBSZA4x71ZrgPhZqbTaPcaXMcTWchAB67T/ga7+pr0/ZVHDsVh6vtaUZ9wooorI2CiiigAooooAKKKKACiiigAooooAKKKKACiiobu4FrZz3DdIo2c/gM0JX0E3ZXPM7wf8JL8W44D81vYdR2+Xk/rXqVeafC23a7utW1mXlpZNik/nXpddmNdpqmvspI48CrwdR7ybYUUUVxnaFFFFABRRRQAUUUUAV76+tdNtJLu9nSC3jGXkc4ArC/4WD4S/6GCx/7+Vtalptpq9hLY30ImtpRh0J4IrmD8LfBSqWbRIAAMkl24/WkPQ07Xxv4YvbmO2ttbs5ZpDtRFfJY+lX9V13S9Djjk1S+htEkOEMrYya8q8K+FdF1zx/LqWkWCWuj6S+yNkJ/fy+uT2FXfilax6z4y8K6LKu+KaUs6eo709+W3UXV36HZ/wDCwfCX/QwWP/fyrmreIbax8K3Wu2zLcQRwGWNlPD+lY/8AwqvwX/0A4f8Avtv8a35NC09tAfRFgCWLRGERg9F9qUvhdtxrdX2PNbLRPHGt6EPE3/CXT211Khnisox+5C9QpGcfpXb+BfEU3ibwvBfXKBLlWaKYL0LKcEiuRj8FePtPsW0PTvEdmNGOUSSSM+ciHsOP613nhrw/beGdCt9LtmZ1iGWdursepNVprbboS76X3OV+K9izaRaalGP3lrMMn2PT9a7HQ75dS0Oyu1OfNiUn645qDxRp41Pw1f2uMs0RK/Uc1znws1A3Php7Rz+8tZSuD6HkV1v38L/hf4M4l+7xflJfiv8AgHdUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeW2f8AxTfxblg+5b3/AEHb5uR+tepV5p8Urc2l5pGsR8NFJsYj65r0W1nW6s4bhfuyorj8RmuzE+/CFTurfccOF9ypUpdndfMmooorjO4KKKKACiiigAooooAKKKKACiiigAooooAK5rx7emx8G37g4aRRGp9ya6WvPvi1cFNAtLVes8/T6D/69dGFjzVorzOfFz5KEn5Gt8ObL7H4NtDj5psyk/U8V1dUdFthaaJZW46JCo/Sr1Z1pc9SUu7LoQ5KcY9kFFFFZmoUUUUAFFFFABRRRQAVw3xT8QyaL4WNraNi+1BxbwgdRnqa7mvH/EUn/CR/G/StKPzW+nJ5jL2z1P8ASlbmaj3GnZOXY9D8HaFH4c8L2WnouHVA0p7s55JrifHPhbxPrnxA0660gG1toYdhvty/us9SBnOa9TrkZPHcMPxATwpJYsrum9bky8HjONuP60370kxL3Ys4HxH4I8Q+CtPfxDpHie+uZbch545ifmHc9eR7GvUPCGvjxN4XstU2hXlT94o6Bh1qp8Q7uGy8B6vJOwAaAooPcnoKy/g/ayW3w7sfMBHmM0i59CeKIu912sEuj9Tu6KKKAEIDAgjIPBrzDweTofxF1XSGOI5txTPTrkfzr1CvL/G6nRfHukaygwshVXP0OP5GuzCe9zUu6/FHDjfd5Kv8r/B6HqFFIrB1DKcgjINLXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByfxHs/tfgy7IGWhIlB9MHmrHgO8+2+DbBycsimNj7g1q61bC70S9tyMh4WH6VxvwluC/h+6tj1hn6emR/wDWrsj72Fa7P8zil7uLT/mX5HoNFFFcZ2hRRRQAUUUUAFFFFABRRRQAVjX/AIs8P6Zdta32r2lvcL96OSQAitmuC1v4SeHtf1e41O9kvTcTtubbLgD6cUtbj0Nv/hPPCn/QwWH/AH+FH/CeeFP+hgsP+/wrjb34M+CtOspby7uLyKCJSzu04wB+VeWaD4Nh8aeL5LXQop4dHib555juIX6+p9Ka1dgeiufUVtcw3ltHcW8iywyLuR1OQw9RXm/xPYza3oVn2aQNj6sBXotjZxafYQWcAxFCgRc+grznxx+/+Imgw9l2/wDoWa7MFb2110T/ACODH39hbu1+Z6ZGmyNUH8IAp1FFcZ3BRRRQAUUUUAFFFFABRRRQAVxWj+An03x9f+KJtSWc3QYLB5O3Zn/a3HP5V2tFC0dw6WCuK8b/AA9h8Vz2+oWt6+n6rbf6u4QZz7Hp+ddrRSsNOx5I3wu8Ta5cQR+KPFT3dhCwbyYwcv8AnwPrzXqtpaQ2NnDa26COGJQiKOwFTUVV9LC8wooopAFcR8UdO+1+FvtKjL2sgcH0B4NdvWN4ruLGDw3ejUJVjhkjKZPOSegA+tbYeTjVi13MMTBToyi+wnhLUf7U8L2FznLGIK31HFbVeK+C/H8HhvT20+7tpZYfMLLJGwyoPXg/4167pWrWetWKXljMJIm/MH0I7GtcXh50pttaX0MsHioVqaSfvW1LtFFFch2BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkXfE6f3gRXmvwvbydY1206BZScfRiK9MrzHwN+5+IWvRDgHdx/wACzXZh9aNReS/M4sTpXpPzf5Hp1FFFcZ2hRRRQAUUUUAFFFFABRRRQAUyWWOCJ5ZXVI0BZmY4AA708kAEk4A6k14d8QfGd74v1lfB/hfdJG77J5UPDnuM/3RSbey3Gl1exU8VeIdS+KPiZPDfh8sulxP8AvJezY6u3t6CvYvC/hmw8K6LFp1igAUZkkI+aRu5NUfA/guy8G6MttCA91IA1xPjl2/wrqKrSKsiW+Z3YV5J8Qri5tfHmnT2kPnXEcYMcZBO456YFet15j41/d/EjQpPUL/PFdmAdqr9GcWYK9Jeq/MP+E18df9Cyn/gPL/8AFUf8Jr46/wChZT/wHl/+Kr06il9Zp/8APtfiP6rV/wCfr/A8x/4TXx1/0LKf+A8v/wAVR/wmvjr/AKFlP/AeX/4qvTqKPrNP/n2vxD6rV/5+v8DzH/hNfHX/AELKf+A8v/xVH/Ca+Ov+hZT/AMB5f/iq9Ooo+s0/+fa/EPqtX/n6/wADzH/hNfHX/Qsp/wCA8v8A8VR/wmvjr/oWU/8AAeX/AOKr06ij6zT/AOfa/EPqtX/n6/wPMf8AhNfHX/Qsp/4Dy/8AxVH/AAmvjr/oWU/8B5f/AIqvTqKPrNP/AJ9r8Q+q1f8An6/wPMf+E18df9Cyn/gPL/8AFUf8Jr46/wChZT/wHl/+Kr06ij6zT/59r8Q+q1f+fr/A8x/4TXx1/wBCyn/gPL/8VR/wmvjr/oWU/wDAeX/4qvTqKPrNP/n2vxD6rV/5+v8AA8x/4TXx1/0LKf8AgPL/APFUf8Jr46/6FlP/AAHl/wDiq9Ooo+s0/wDn2vxD6rV/5+v8DzH/AITXx1/0LKf+A8v/AMVR/wAJr46/6FlP/AeX/wCKr06ij6zT/wCfa/EPqtX/AJ+v8DzH/hNfHX/Qsp/4Dy//ABVcl4z17XtXa2j1mw+xBASkYRlDe/zE173XPeLfCsHijThC7+VcRndFLjOD6H2rahi6Uaibgl5mGIwdaVNpVG/I+ea9N+D9xP8AbdQt8sbfy1fHYNmsj/hVniL7V5WLbZn/AFvmcfyzXqPhLwrb+F9OMKP5txIcyy4xk+g9q7MdiqUqLjF3bOHL8JWjXU5KyRuySxwrulkRF9WbApY5ElQPG6up7qcisXxfoKeI/DF7pzffdCYz6OORXmXwR1+W3uL/AML3zESxOXiVjzkcMP614MdW0fRPRJntNRJdW8j7I54nf+6rgmvOvix46Ph/Tf7H0586peDb8vJjU8Z+p7VL8K/AzeHNK/tLUAW1S7Xc245Mant9fWiOt30CWlu56LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5j4S4+KOtAdMN/SvTq8x8F/vfiTrsg6AN/PFdmG/h1PT9TixX8Sl6/oenUUUVxnaFFFFABRRRQAUUUUAFFFFAHn/AMW77Xbfw1Ha6Fa3U0l25SZraFnZUx/sjjNeTeDtR8WeC/Oey8Fzz3E33p57Gcvj0GMYFfTNFJKzbG3dJHiX/C0viJ/0JTf+ANx/jXYeAfFfijxJd3S65oY02CJAUYwSRl2P++ea72iqQmFeY/EoeT4m0C66YcLn/gYNenV518W4SNM067Ucwznn6jiurAv9+l3/AMjjx6/2eT7W/M9EUhlDDoRmlqrpswuNMtZlOQ8Sn9KtVytWdjrTurhRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeA/Eu0uPA/xCtPE+mqAlwd+3sXHUH617pqOoW2lafPfXkojghUu7H0r59uLTWfjDr2oX8ZaHTrKNhACOOOij3Pepd+a66FK1nfqb3w08LXfirXJfGviAGQNIWt0ccMfXHoO1e3V5D8EPETyWN14bu2xcWbFolbrtzyPwNevVpKyslsQrttvcKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjEKpJ6AZrzL4bAzeKNfuuxcrn/gea9F1GYW+mXUzHASJjn8K4L4SQk6bqV2w5mnGD+HNdlHTD1H6I4q+uIpR9X+B6NRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyfxHs/tfgy7IGTCVl/I/wD166yqeq2gv9Ju7UjPmxMoHvjitKM+SpGXZmVaHPTlHujH8B3n23wbp75yUTyyfccV0ledfCe7IsNQ0xz89vNkD0B6/rXotaYqHJWkvMzwc+ehF+QUUUVznSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUEgAknAHeiigDwnx74ivPH/AIph8IaAxa0STE0i9HI6k+wr1/w14es/DGh2+mWaAJGvztjl27k1qLFGrblRQfUCn0LSNgerufP3jCGX4e/Fe21y2UrZ3b+YwHTB4cf1r3y1uYry1iuYWDRSoHUjuDT2jR/vorfUZpwAAwBgULSPKD1lcKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOc8d3gsvB2oPnBdPLU+5qr8N7M2ngy1JGDMzS/mf8A61ZHxYuydOsNMjP7y4myR7Dp+tdxpNoLHSLS1Ax5USqR745/WuyXuYVL+Z3+44o+/i5P+VW+8uUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlumf8U58Wbm0PywX2do7c8j+tepV5t8UbJ7WbTdftwRJbyBHI+uRXf6bepqOmW15GcrNGHB+tdmJ9+EKvdWfqjhwv7upOj2d16MtUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVV1K9j07TLm8lOEhjLk00m3ZCbSV2eb6of+Ei+LNraL80FjjeO3HJ/pXqVebfC6zkuptS16dfnuJCiE/XJr0muvGNKapr7Kt/mceBTcHVf2nf/IKKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigDL8RaUutaDd2LDLSIdnsw6Vyfwu1V5NOudGuDiezc7Qeu0n/GvQK8r8QI3g34hW2sRArZXp/egdOfvD+tduG/eQlR+a9UcOK/dVI1+i0foz1SimxussayIQVYAgjuKdXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn3xR1Vk0620a3OZ7xxuA67Qf6mu/kkWKJpHIVFBYk9gK8t8PI/jL4g3GsyrmysziLPTj7v+NdeEilJ1ZbR1+fQ4sbJuKpR3lp8up6B4d0pdG0C0sQMNGg3+7HrWpRRXLKTk3J9TrjFRioroFFFFIoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsDxjoK+IPD09sFHnoPMhP+0O341v0VUJuElKO6IqQU4uMtmcL8Ndfa+0p9Kumxd2R24bqV/+t0ruq8s8X2U3hHxXb+JbBCLaZ8TovTPcfjXpWn30GpWEN5bOHilUMpFdOKgm1WhtL8H1Ry4SbSdGfxR/FdGWaKKK5DtCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq2oX8GmWE15cuFiiUsxNNJt2Qm0ldnHfErX2stMTSbQk3d6duF6hf/AK9bfg/QV8P+HoLYgee48yY/7R7fhXGeD7Gfxb4puPE2oKfs8L4gQ9M9h+FepV2YhqlBUF6v1/4BxYZOrN4h7bL0/wCCFFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFPVdMt9X02exuVDRyrj6HsRXnHhDVLjwj4gm8M6qxW3d/3EjdAT0/A16nXKeOPCi+ItM823AXULcbom6bv9murDVI60qnwv8AB9zjxVKV1Wp/FH8V2Ororh/AXi1tShOkakSmpWw2/NwXA/qK7isatKVKbjI3o1Y1YKcQooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8s8W6nceMPEUPhrSnzbRvmeRehI6/gK2vH3ixtOhGj6aS+pXI2nZyUB/qaveB/Cq+HdM82cBr+4G6Vj/D/ALNd1GKoQ9tLd7L9TgryeIn7CGy+J/ob+labb6RpsFjbLtiiXA9z3Jq5RRXE227s7klFWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB59458JzmceIdEzHfwHfIqcF8dx7/wA62fBvi6DxLYhJCI9QiGJYumf9oV1FebeL/CN1pt9/wkfhzdHPGd80Mff1IH8xXbTnGtBUqj1Wz/RnBVpyoTdakrp7r9Uek0VzHhHxja+JbXy2xDfxj95Ce/uPaunrlqU5U5cslqdlOpGpFSg7oKKKKgsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxl4uh8NWOyPEl/KMRRdce5pfF3jG18NWhRSst/IP3UI7e59q57wh4RutSvv+Ej8RbpJ5Dvhhft6Ej+Qrro0YqPtavw9F3OKvXlKXsaPxdX2J/AvhOdZ28Q60DJfznfGr8lAe59/wCVeg0UVjWqyqy5pHRRoxow5YhRRRWRqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAee+LPA8y3f9ueHGMF9Gd7xIcbz6j39u9XPCPjyHViNP1QC11JPlIb5RIf6H2rtq5HxZ4Fs/EAN1bEW2orysqjAb/e/xrshWhUj7Ot8n2/4Bw1KE6UnUofNdH/wTrqK8u0fxpqnhi7XSPFMEhjXhLnGSB65/iH616VaXlvfWyXFrMk0LjKuhyDWVahOk9du/Q3oYiFZaaNbrqieiiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKhu7y3sbZ7i6mSGFBlnc4AppX0Qm0tWTVxPi7x5DpDHT9MAutTf5QF5EZ9/U+1YuseNdT8TXh0fwtDIEbh7jGCR9f4R+tdF4T8C2nh8C7uSLrUW5aVhkJ/u/412xowornr79F/mcMq8675KG3WX+RleE/A8z3X9ueIyZ72Q70ic52+59/btXodFFc1atKrLmkdNGhCjHlj/w4UUUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUNW0aw1uza2v7dZUPQnqp9Qe1ecXXhrxH4IuWvdAne7sc5eAjJx7r3+o5r1ait6OInT93ddmc9bDQqvm2l3W5xnh34jaXq5W3vP9BvOhWQ/KT7Ht+NdkCCAQQQehFcz4h8C6Rr+6V4vs912nhGCfqO9ch9k8aeB2zaudS05f4cFsD/d6j8K29lRra0nZ9n+jMPbVqGlVcy7r9UerUVxGi/E7R9QIivw1hcdCJOUz9e3412cFxDdRCW3mSWM9GRgwP4iuapRqU3aasdVKvTqq8HckooorM1CiiigAooooAKKKKACiiigAooooAKKKjnuIbaIyzypFGOrOwAH4mgNiSkJABJOAOpNcTrPxO0fTy0ViHv5+gEfCZ+vf8KwPsvjXxwc3DnTdOb+HBUEfTqfxrrhhJ25qnurz/yOOeNgny01zPy/zOk8Q/EXS9H3QWZF9edAkZ+UH3P+Fc3beHPEnji5S816d7SwzlIQMHHsvb6nmuv8P+BNH0ALKsX2m6HWeYZIPsO1dPVe3p0dKC17v9CPq9StrXenZbfPuUNJ0Ww0S0W2sLdYkHUjqx9Se9X6KK45ScndndGKirJaBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBg6z4O0TXMtd2aCU/wDLWP5W/Mdfxrjpvh3rmizGfw5rLgdfLkYqfpkcH8q9Porop4qrTVk7rs9Tmq4SlUfM1Z91ozy5fGni/QD5et6MbiNesqpj/wAeXIrZ0/4p6BdgC5E9o/feu5fzH+FduVDDDAEehrHv/CmhamS11pluznq4Xa35jmtPbUJ/HC3p/kZexxEP4c7+v+ZNZ+ItGvwDbanavnoPMAP5HmtIEMAQQQe4rg7v4UaJMS1rPdWp7BX3D9eazj8MtXsyTpviKRB2BDL+oNHssPL4alvVD9tiY/FTv6P/ADPTqK8w/wCEd+IlpxDrazL23TsT+opfL+J8PCzRSe/7s/zFH1SL2qR+8PrklvTl9x6dRXmPm/FHptj+uyGjyvidLw00SZ/65j+Qo+qf34/eH13/AKdy+49OpCwUEsQAO5rzH/hG/iHdf67XFiB67Z2H8hSj4Y6teHdqPiKR/UBWb9SaPq9JfFUXyuw+s1X8NJ/OyO6u/Emi2IP2nVLVCOoEgY/kOa5q/wDipoNrlbYT3bjpsXap/E8/pTLT4UaHCQbmW6uW77n2j9MV0lh4V0PTMG10y3Vh0crub8zzR/ssO8vwD/a59o/izhm8Z+MNfOzRNGMETdJWTP8A482BToPh3resyi48R6y5zz5aMWI9sngflXpwUKMKAB6Clo+uOOlKKj+f3i+pKWtaTl+C+5GDo3g7RNDANrZo0o/5ayfM35npW90oorlnOU3eTudcIRgrRVkFFFFSWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=
|
<image>Find the length of $\widehat {ZY}$. Round to the nearest hundredth.
|
7.85
|
Geometry
|
Geometry3K
|
test
|
2
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACiAZQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKCcDJrz3XPGV7qt5JpfhkhUQ7Z9QPRfZP8fy9a0p05VHZDSudRrvivSPDyYvbkGcjK28fzSN+Hb6nFclP4v8AFGrf8gzT4NOtz0lufmf64/8ArH61V07QbWwczvuubtjl7ib5mJ9R6fzrUrsjShHpcqyRiyadr142+98T3pY9VhJRfyBA/Sse50l18RWVhJqV/JHPGzMzTfNkA9Pyrsq56+/5HbS/+uL/AMmreDKQ/wD4RS2/6CGo/wDf8f4Uf8Ipbf8AQQ1H/v8Aj/Ct6ip52K5g/wDCKW3/AEENR/7/AI/wo/4RS2/6CGo/9/x/hW9RRzsLmD/wilt/0ENR/wC/4/wo/wCEUtv+ghqP/f8AH+Fb1FHOwuYP/CKW3/QQ1H/v+P8ACj/hFLb/AKCGo/8Af8f4VvUUc7C5g/8ACKW3/QQ1H/v+P8KP+EUtv+ghqP8A3/H+Fb1FHOwuYP8Awilt/wBBDUf+/wCP8KP+EUtv+ghqP/f8f4VvUUc7C5g/8Ipbf9BDUf8Av+P8KP8AhFLb/oIaj/3/AB/hW9RRzsLmD/wilt/0ENR/7/j/AAo/4RS2/wCghqP/AH/H+Fb1FHOwucboOipqentPPfXyuJCuEmwMDHqK1P8AhFLb/oIaj/3/AB/hSeERjRmz/wA9m/pW/TcmdWNioYicY6JMwf8AhFLb/oIaj/3/AB/hR/wilt/0ENR/7/j/AAreopc7OW5g/wDCKW3/AEENR/7/AI/wo/4RS2/6CGo/9/x/hW9RRzsLmD/wilt/0ENR/wC/4/wo/wCEUtv+ghqP/f8AH+Fb1FHOwuYP/CKW3/QQ1H/v+P8ACj/hFLb/AKCGo/8Af8f4VvUUc7C5g/8ACKW3/QQ1H/v+P8KP+EUtv+ghqP8A3/H+Fb1FHOwuYP8Awilt/wBBDUf+/wCP8KP+EUtv+ghqP/f8f4VvUUc7C5g/8Ipbf9BDUf8Av+P8KP8AhFLb/oIaj/3/AB/hW9RRzsLnGapo4sdR02CG/vttzKUctNyBx04961xoeoQnNr4j1OLHTMrH+RFReIP+Q1oX/Xwf/Za6GqcnZDuZ8Or+M9LxtubXVIh/BMm18fUY/Umt3SPiFp15OLTU4n0u86bJ/uH6N/jiqVVr2wtdQh8q6hWRe2RyPoe1YypwluvuFZM9FBBAIOQehFLXlVnf6x4MYNbu+oaMPv27nLwj1U/5Ht3r0jStVs9a0+O+sZRJC/5qe4I7EVyVaLhruiWrF2iiisSQooooAKKKKACiisPxbro8PeHp7xMG4b91Avq56flyfwqoxcmkhnN+MteuNSvz4Z0mTbx/p1wv8C/3B7+v5etRWNlBp9oltbptjX8yfU+9U9C006fY5mJa7nPmTuxySx7Z9v8AGtSvRUVBcsS/IKKKKACuevv+R20v/ri/8mroa56+/wCR20v/AK4v/JquHUaOhoooqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFb3MN1H5kEqyJnG5TkZqWsDwh/yBn/67N/St+mzfE0lRrSprowooopGAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz3iD/kNaF/18H/2WuhrnvEH/ACGtC/6+D/7LXQ1ctkAUUUVABWJDcz+C9W/tK0Vn0q4YC7t1/g/2l/z7d+NumSxJPE8UihkcFWU9waemz2A7u2uIbu2iuLeRZIZVDo69CD0NS1594C1CTTNTuvDFy5aNQZ7Jm7qeq/1/Bq9Brz6tPklYhqwUUUVmIKKKKACvOPGE/wDavjex0wHMGnxfaJR/tnpn/wAd/M16PXlWnyfbfE/iG/PO66MKH/ZXI/kBXVhV7zl2KibFFFFdJQUUUUAFc9ff8jtpf/XF/wCTV0Nc3fzRL440tWkQN5L8Fhno1VHqCOkoooqQCiiigAooooAKKKKACiiigAooooAKKKx/FOp3Gj+HLy9tIzJcooWNQu7kkDOPbOfwoA2KK811NfEvhbSbbX5delvHLJ59pMv7v5uw57ewFekRuJYkkAIDKGAPvSTEncoaLpr6VYm3eQSEyF8gY64rRrN0PUpdUsDcSoiMJCmEzjjFaVUzoxPtPbS9r8V9QooopGAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz3iD/AJDWhf8AXwf/AGWuhrm/Ec0Uet6EHkRT55OGYD+7XSVT2QBRRRUgFFFFAGHr8j6bdadrkIPmWU434/iQ9R/T8a9XjkWWNZEYMjgMpHcGvNdagFzol5ERnMTEfUDI/UV13gu7N74N0uZjkiERk/7hK/8AstY4lXgpClsb1FFFcRAUUUUAFeSeFubfUWP3jfSZ/IV63XlGip9l1fXrE8eTfOwHsScfoK68LtL5FxNqiiiugYUUUUAUNcu5rDQb+7t1zNDbvIgxnkKSK+cJp5rid55pXkmdtzOxySfXNfTrKGUqwBBGCD3rzTUfh9ox8W2ttGbiK2uFaR4kcYBAJwCRkDipcXLYiUW9jo/h7qN3qfhGCW8Znkjdolkbkuo6Env6fhXU1BZWVvp1nFaWkSxQRLtRB2FT1SKWwUUUUDCiiigAooooAKKKKACiiigApskiRLukdUX1Y4FOrC8X6HJ4g8OT2MLKs+VkiLHA3A9D9RkUCZynjqw1uFzqd9cRX+h29wshsR+7IUnAyQOeT6nrXoVpcR3dnBcxZ8uaNZEz6EZFcFqH/CZeI9KGiXOixWYkKrc3jTKVIBByAPcds13tpbpZ2cFtHnZDGsa59AMCpW4luY3hD/kDP/12b+lb9RQRQRR7bdI0TOcRgAZ/CpatnTiavta0qiVrsKKKKRgFFFFABRRRQAUUUUAFFFFABRRRQAVHO7RW8siJvdULKvqQOlSUUAfMt/fXOpXst3dytLPK25mY/p7D2r2H4W6ld33hyaK5dpEtpvLidjk7cA7c+39ao+JvAmkSa/YvF51uL6YiZI2G0cjJXIOOv09q7vStKs9G0+OxsYhHAnQZySe5J7mpUGtWZxi07suUUUVRoFFFFAEVyAbWYHpsP8q1fhoSfA9nns8mP++zWJqkwg0q7lJ+7CxH1xxXSeAbc23gjTEYYLI0n/fTFh+hFZ1/4XzE9jpKKKK4CAooooAK801+H+yviL5pGIdUgBB7eYvH9B/31Xpdcp4/0aXU9AF1ag/bbB/tEWOpA+8Py5/AVvh5cs9euhUXqZtFVNMv49T0+K6jx84+Zf7rdxVuu1qxQUUUUgCuevv+R20v/ri/8mroa56+/wCR20v/AK4v/JquHUaOhoooqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBgeEP+QM//XZv6Vv1leH7CfTdOaC4ChzIzfKc8HFatNnVjZxniJyi7psKKKKRyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHPeIP8AkNaF/wBfB/8AZa6Gue8Qf8hrQv8Ar4P/ALLXQ1ctkAUUUVABRRRQBh+KHklsoNNg5uL6ZYUH4j+uPzr1O0tksrKC1i/1cMaxr9AMD+Ved+E7U+IPF8urEZsdNBigPZ5D1I+gyf8AvmvSq58TLVQ7Ey7BRRRXISFFFFABRRRQB5dr2mv4N1tr2BCdEvn/AHiqP+PeQ/0//V2FaSOsiK6MGVhkEHIIrubu0t7+0ltbqJZYJV2ujdCK8wv9N1HwRM2UkvNCZspKoy8Gezf5wfbpXfSq+0XK9/zLTubFFQWl5b30AmtpVkjPdT0+vpU9aDCuevv+R20v/ri/8mroa56+/wCR20v/AK4v/JquHUaOhoooqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBg2Wo6rqsT3FoLOKEOUCyhi3GO4NWduvf89NN/wC+H/xqr4Q/5Az/APXZv6Vv02ehipqlWlTjFWT7GJc3es2Rgec2LRvMkbBFfPJx3NbdZWvf8e1r/wBfcX/oVatBhWalTjKyT12+QUUUUjmCiiigAooooAKKKKACiiigAooooA57xB/yGtC/6+D/AOy10Nc94g/5DWhf9fB/9lroauWyAKKKQkAEkgAdSagBaxNTnudTvk0DSfmu5/8AXSDpCnck9uP85Iol1W61W7OmeHovtNyeHn/5ZxD1J/z+Nd14X8MW/huxZQ3nXk3zXFw3Vz6D2pTmqau9wbsX9F0i20PSYNPtR+7iXlj1du7H3Jq/RRXnNtu7ICiiikIKKKKACiiigApGVXUqyhlIwQRkEUtFAHE6t8PYGna90C5Om3Z5MY5hf6jt+o9q5+e61/RiV1jRZnjXrc2g3qR6+34kfSvVqK6YYmS0lqUpHlEPivR5VBN15Z/uuhBH6YrNutUsZvFunXCXcJhSJwz7sBThuteuXWjaXfMWu9OtJ2P8UsKsfzIrPfwZ4cc5OjWg/wB1MfyraOJgujHzI5H+2dL/AOgja/8Af5f8aP7Z0v8A6CNr/wB/l/xrrf8AhCvDX/QHtvyNH/CFeGv+gPbfkaX1in5hdHJf2zpf/QRtf+/y/wCNH9s6X/0EbX/v8v8AjXW/8IV4a/6A9t+Ro/4Qrw1/0B7b8jR9Yp+YXRyX9s6X/wBBG1/7/L/jR/bOl/8AQRtf+/y/411v/CFeGv8AoD235Gj/AIQrw1/0B7b8jR9Yp+YXRyX9s6X/ANBG1/7/AC/40f2zpf8A0EbX/v8AL/jXW/8ACFeGv+gPbfkaP+EK8Nf9Ae2/I0fWKfmF0cl/bOl/9BG1/wC/y/40f2zpf/QRtf8Av8v+Ndb/AMIV4a/6A9t+Ro/4Qrw1/wBAe2/I0fWKfmF0cl/bOl/9BG1/7/L/AI0f2zpf/QRtf+/y/wCNdb/whXhr/oD235Gj/hCvDX/QHtvyNH1in5hdHJf2zpf/AEEbX/v8v+NH9s6X/wBBG1/7/L/jXW/8IV4a/wCgPbfkaP8AhCvDX/QHtvyNH1in5hdHJf2zpf8A0EbX/v8AL/jR/bOl/wDQRtf+/wAv+Ndb/wAIV4a/6A9t+Ro/4Qrw1/0B7b8jR9Yp+YXRxdpe6HYQmG2vbSOMsWx54PP4mp/7Z0v/AKCNr/3+X/Gut/4Qrw1/0B7b8jR/whXhr/oD235Gj6xT8ypVHJ80ndnAa1qmny29uI723ci5jYhZAcAHk1pf2zpf/QRtf+/y/wCNdb/whXhr/oD235Gj/hCvDX/QHtvyNH1in2ZUqt4KHa/4nJf2zpf/AEEbX/v8v+NH9s6X/wBBG1/7/L/jXW/8IV4a/wCgPbfkaP8AhCvDX/QHtvyNH1in5md0cl/bOl/9BG1/7/L/AI0f2zpf/QRtf+/y/wCNdb/whXhr/oD235Gj/hCvDX/QHtvyNH1in5hdHJf2zpf/AEEbX/v8v+NH9s6X/wBBG1/7/L/jXW/8IV4a/wCgPbfkaP8AhCvDX/QHtvyNH1in5hdHJf2zpf8A0EbX/v8AL/jR/bOl/wDQRtf+/wAv+Ndb/wAIV4a/6A9t+Ro/4Qrw1/0B7b8jR9Yp+YXRyX9s6X/0EbX/AL/L/jR/bOl/9BG1/wC/y/411v8AwhXhr/oD235Gj/hCvDX/AEB7b8jR9Yp+YXRyX9s6X/0EbX/v8v8AjR/bOl/9BG1/7/L/AI11v/CFeGv+gPbfkaP+EK8Nf9Ae2/I0fWKfmF0eba5qVjLqujyR3cDpFMS7LICFHy9a1X8S6PH96+jP+6C38hXaDwV4bBz/AGPbf98mrMPhnQrdg0Wj2KsOjfZ1JH44pvE07Wsw5kedR+IZdQby9G0q8vn6blQhB9T/AI4rUs/BGs60wk8Q3gtbbr9itTyf95un8/wr0VVVFCooVRwABgClrKWJf2VYXN2Kem6VY6RaLa2FskEQ7KOSfUnqT7mrlFFczbbuyQooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnnxj1e/wBK8J20dhcvafbLxLea4QkFEKsTyORnH5A16HXnfxZvZJbDSPDMEUBl127FuJZk3iIAqCwHrlhz9aqO4PY52+0H/hXnj7wouh6nfSpqlwYLuC4m3h1ygLEADsxP1HFezV4lqfhk/C3xF4e1u1vpdShmnWxmS9UM6Bh1jP8ADxu6dOnIJr22nLoJBRRRUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5Lx94Qn8V6fZvp92tpqunzi4tJnztDDscdOQDnB6V1tFNO2oHmK+EPGPifXdKufGF1psdhpkomS3st2ZpARgtntx6+owM5r06iihu4WCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==
|
<image>Find the area of the figure to the nearest tenth.
|
31.1
|
Geometry
|
Geometry3K
|
test
|
3
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEBAZgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3uiiiuYsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5nxp4iuND0yGDTUWbWL+UQWULcgserEeijk/hXSSSJDE8sjBI0UszMcAAdTXjek/ELwte+Nb/wARa3qgh8gG10yA28r7Iv4pPlUgFvzxTSu7Bsrnd/DrxDeeJvCUV9qBQ3izSRS7F2jKtxx9CK6uvL/g3qFtcx+Jbe0lElumpNNC2CMo+cHB5H3a9Qqp7/d+Ql19X+YUUUVAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8c6frOt2FtommRFLW9lC3935ijyYR1ABOSW6cA1v2mlWFlZw2tvaQpDCgRF2DgAYFXK5fV/GtvpWsfZFtZbi0tiv9pXkf3LIN9zd6+px90cmmtrITKHh7w/qWk/ErxHfmzCaTfxxNFKrpguoGRtByOrdq7ekVgyhlIKkZBHelovol2H1b7hRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorCsPE1tqXirUdEt1R/sMMckkyyZG5ifkxjsAO/ehah5m7RWX4h1y28O6Fd6pcsm2CMuqM+3zGxwoPqTgVb067/ALQ0y0vdnl/aIUl2Zzt3AHGe/WjzEWaKKy9e1uHQtP8APaNp7iVxFbW0f355T91F/qewBNAyn4j1q4tZINH0kLJrV8D5IYZWCMfemf8A2V7DucD1q5pGg2ekaP8A2ci+ej7jcSTDc1w7ffZ/Un/61VvDeiTadHNf6lIs+s3xD3cy/dX+7Enoi9B68k9a3aYjkNKkfwhqkWgXTs2kXLEaXcOc+Uev2dj7fwE9Rx1FdfVLVtKtNa0ybT72PfBKMHBwVPUMD2IOCD6isfw7qt3DeS+Htafdqdsu+G4xgXsHQSD/AGh0Ydjz0NG4HS0UUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXtlbajZS2d3Cs1vMu2SNujD0NcN4V0mw0T4meIbPTbWO2thZWzCOPpklsmvQK5LTLO6j+J2vXb20y20tlbrHMyEI5G7IDdCRTjv8AeJ/C/l+aK3xI8OaPfeF9X1W60+GW/t7F/KnYHcmASMfiTXR+HP8AkWNK/wCvOL/0AVU8a28134I1q3toZJppLORUjjUszErwAByTV3Qka38OaakymN47SIOrjBUhBkHPSmvha9P1B7r5/oWNQ1C10rT57+9mWG2gQvJI3QAf56d6wNAsLrVdQ/4SbWIWindClhZydbSE9yP+ejdW9BgetVrUN411dNQk/wCRdsZM2iEcXswP+tPqin7o7nJ7CuxpbAFFFFIYVj+IdCGtWkbQy/ZtRtX86yugOYpMY59VI4YdxWxRQBjeHdcOsWssdzD9m1O0byry1Jz5b+o9VYcg9x+NbNc34j0m7S5i8QaIgOrWq7XhztF5D1MTH17qex9ia1tI1a01vTIb+zctFKOjDDIw4KsOzA5BFNgXqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFcf4n8aXui+IbPRNK0FtXvbiBpzGt0Idig47qQeh9OlZd58RPEWj25vdZ8B3drYIR5s8V6kxQeu0KP5imlfUPI9EoqvYXsGpafb31q++C4jWWNsYypGRVihqzsxJ31CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5HVZ5PFeqy+H7KRl022bGq3KHG49fs6n1I+8R0HHU1a8R6tdvcxeH9EcDVrpdzzY3Czh6GVh69lHc+wNa2kaTaaJpkNhZoViiHVjlnY8lmPdickmnsItwwx28KQwxrHFGoVEUYCgcAAU+iikMKKKKACiiigArktVhk8K6rL4hsoi2m3BB1W2Qcqen2hR6gfeHcc9RXW0hAZSCAQeCD3poBsM0dxCk0MiyRSKGR1OQwPIINPrjrYnwTq8dg/Hh2+kxaOellMx/1R9I2PK+hyO4rsaGAUUUUgCiiigAooooAKKKKACiimyOsUbSMcKoLE+wobsB5BL4z0PSPjHrd/rF00S21qllb7Y2fJ4ZugOMHP51oeIvG0HjfRZvD/hK2ur64v8QyXDQMkMCEjcWYj0/z2rR+EiNc6DqWtuPn1XUZrgZ/u5wP1zXoFW0klGXRf8EL+82v6toUtH02PR9FstNiO5LWBIgT32jGau0UVLbbuxJWVgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDn/FPjCx8JR2bXdte3Ul3IYoYbOMO7EDPQkf5NYX/C07b/oU/Ff/AILh/wDF1ieOfEml6b8WNAOrTmK0022knYhC/wC8fIAwB7A1uL8YvBTsFXUZixOABayc/wDjtVFXSe9wejsdP4f1xfEGmm9TT7+xXeU8q+hEchxjnGTxzTPEOujRbSNYYvtOo3T+TZWoPMsmM8+igcsewrTmnWC1kuGViqIXIA5IAz+dc14TtZdU2+LNRKvd38INrGDlbW2b5lQf7R4LH146CloJGj4d0M6PayyXM32nU7tvNvLojHmP6D0VRwB2H41s0UUhhRRRQAUUUUAFFFFABRRRQBWv7C11Swnsb2FZradCkkbdCDWBoN/c6VqP/CM6vMZJlUtp9255uoR/Cf8Apovf1GD611FZevaJDrunfZ5HaGeNxLbXMf34JR911+np3BI700BqVyniPx9p/hvWIdKk0/VL68lh88R2EAlKrkjJBYHtWh4X1e61XT5o7+FY9QsZ2tLry+Y2kUA7kP8AdIIOOozg9K85XxnoOlfGDxBqGs3pgEECWVtiJ3zjBf7oOOR+tCV5WDo2dGPi1o0M0SajpWu6ZFI20T3tlsjz9QxP6V3qsroGUgqwyCOhFeUeKPF+j/ES0i8J+H7lZp76VDJPMpiWJFIYkB8Fm44AHrXqdtAttaxW6Z2RIEXPoBim1pewupLRRRUjCiiuInF74t8V6rpqarfadpulLHGTYyiKSaZhuOWwThRjihagdvRWL4Yg1m102S11uYXE0M7pDcEgtLDn5GbH8WOv0rapsRDd3cFjZzXd1KsVvCheSRjgKoGSTVDQPEFl4j077ZZ+Yu1ykkUq7JI2HZlPTgg/QisSX/itNcNuBu8PabN+9P8ADe3Kn7vvGh5PYtx2NT+ILO50e/8A+En0mBpZEUJqNpGObmEfxKO8idR6jI9KLAdTRUFle22o2MN7ZzLNbToHjkU8MDU9IYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlPh7xHosPxL8Xapqmq2lqQ6WcAnlCkqnDYz2yoruIfG/he4mjhh1/TpJZGCoi3CksTwABnrUsnhHw1NK8svh3SXkdizO1lGSxPUk7eTSw+E/DdvPHPB4f0qKWNgySJZRqykdCCBwapNWSfQT3bRsEAjBGQa5rwL+58OnTT97TLqeyxnOFRzs/8AHCldLXM6P/oXjfxDY4wlytvqCe5ZTE/6xKfxpDOmooopAFFFFABRRRQAUUUUAFFFFABSMwRSzEBQMknsKWsHxpdyWXg3VZIDid4DDCR18yT5Fx/wJhQBW8FPt8ILqkxIN9JNqDk9lkdnX8l2j8K434Y+KfD9louoXupazY217qOoS3LxzTKrKCeAc/j+den2lhBa6VBpwjRreKBYNhUbSoXbjHpjtWd/whnhb/oWtH/8AYv/AImqTs35g9jh/Fd9p3jvxBoWmeHWS8uLS8S6ub+FcpbxL23+p7AHtXqdQWllaWEAgs7WG2iHSOGMIo/AVPSb0shdbhRRRSGFeYaL4bttf8X+MYtVluHto75ClvFcPENxQfMdhBPAAGeOten1zGp+FLqTWptX0TWpdJvLlFjucQLNHMF6Eq3RgOM5prR/L/L/ACB7FTwBcXS/25pE9zNdRaXftBbzTNufy8AhSe5GcVb8RX91f3yeGNJmaK7uI995dJ1tIDwSD/fboo+p7VCY7bwJoAtbISX2qX07GJZCPMu7l+SzY6AdSewFavh3RP7GsnM8v2jULp/OvLkjmWQjt6KBwB2ApvuJF/T7C10rT7ewsolitoECRovYD/PWrNFFSM49z/whWsmTp4d1Gb5/SxuGPX2jcn8GPoa7Cobu0gvrOa0uollt5kKSRsMhlIwQa5vQbu40PUh4Y1SZpV2l9Lu5DzPEOsbHvIn6rg+tPcR1VFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXM6t/oXjvQLzot3FcWDn3IEqf8Aot/zrpq5rxzmDQYtTXG7TbyC7zjoquA//jjPTQHS0UUUgCiiigAooooAKKKKACiiigArmfFebrUPDulgZFxqKzSDH8EKtL/6EqfnjvXTVzP/AB+/Ek9SmmaZ+AeeT/4mH9aaA6aiiikAUUUUAFFZuu6Dp/iTS207U42ltXYMyK5TJByORzXkmq/DnwyPiXougWVlIls9tJc3q+e5JXkLyTxyO3rTiruwPRXPbarahf2ulafcX97KsVtAheR27Af56Vz+gfDzw14Z1L+0NLsniudhTc0zvwevBPtUEX/Faa4Jyd3h7TZv3Q/hvblT973jQ9PVhntRZCLPh2wutQvn8T6tC0V3cJ5dnav1tLfqAR/fbgt+A7V09FFIYUUUUAFZmvaLDrumtavI0MyMJLe4j+/BKPuuv09O4yO9adFAGF4a1ufUYprDU41g1mxIS7iX7rZ+7KnqjAZHpyO1btc/4j0i6mkg1nR9q6xZA7FY4W5jP3oXPoeoPY4PrWhousW2u6XFf2u4K+Q8bjDxOOGRh2YHgimwNCiuA1XU9W8XeJ7rw3oV6+n6fYgDUtQiH7wuf+WUZ7H1P+HK3Pwk0KSJpLe71SHUduFvvtjtJn1OeDz9KLaXYdbHfUVw/wANNc1LUtN1HTNYl8+/0i7a1ec9ZAOhPqeD+ldxQ1ZiQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU2R/LjZ9rNtBO1RyfYV5/Y+JtV1X4n2VnNp2oaXYrYSusF0wUzNuX5iqkjjoOvU00ruwPRXPQqpaxYJqui32nuMrdW7wn/gSkf1pdW1ODR9KudQuSfKgQuQOrHsB7k4A+tch8N77WL2TxD/AG1O73Md/jyjIWWEFAdi56AZxxQle/kD0Oj8J376p4S0q8kBEslsnmgjGHAww/MGtiuZ8HYtf7b0rp9h1ObavokuJl/9GEfhXTUMAooopAFFFFABRRRQAUUUUAFc14U/0q/8Q6oTkXGotDGf9iFVi/Lcrn8a3b+8j0/Trq9lIEVvC8rk9goJP8qyvBlnJZeDtKinGJ3gE0w/6aSfO/8A48xp9AN2iiikAUUUUAFee+Gv+Jr8W/FOpnmOxiisIj6d2H5qfzr0Kue8J+F/+EZi1Lfefa5r+8e7kk8rZgt/DjJ6f1pxdm35f1+FxPa39f1sdA6K6MjDKsMEeorm/AR2eD7S0PD2Ly2TDvmKRk5+oUH8a6Wua8NZtde8TaccAJerdRj/AGZo1JP/AH2sn45o6DOlooopAFFFFABRRRQAVzPgwLLaaxfooH2zVblxjuEbygfyjz+NdDdTra2k1w/3Yo2c/QDNYvgiCS38EaOJgRNJarNJkYO9/nbI9csafQDmPg7IkmhauZD/AKcdUma6B+8GOOv6/rXWaj4s0PSxfrc6lbrNYRCWeHeN6g9OO5PHHuPWsLVPh2smtz61oGtXeh39xzOYFDxSH1ZDjJ/GsnVPhJJqxN/f+Irm91qML5E88EYiG05AaMDkfj+dN2la+gdWafwu026h0S91m+iMVzrV294Yz1VCflH8z+IruqitkmjtYkuHR5lQB2Rdqs2OSBk4HtmpaJO70Er7sKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcZf/wDJX9I/7BU//oa12dYs+gef4ws9f+07fs9o9t5Hl53biDu3Z4xjpimviT9fyYPZr0/NHOeL/EWmW/ivTdN1aeWCwtVF7Ltt5JBNIDiNfkU8Agsc9wtVvh1r+m6j4k8UxWs7u9xem5iBhdcx7VGeQMc9jz7V6NWLoegf2Nf6xdfafO/tK7+07fL2+X8oG3OTnp14pxaW/Z/mv6+Qpa/16/18ynBmy+JF5HnEepadHMoz1eFyrf8Ajskf5e1dNXNeJc2mveGtTGAqXjWch/2JkIH/AI+sf6V0tJjCiiikAUUUUAFFFFABRRRQBzfjstJ4WlsEzv1GaGxGOuJZFVvyUsfwro1UIoVQAoGAB2Fc1rmL3xj4b0/qIWn1Bxj+4nlr/wCPTZ/Cump9ACiiikAUUUUAFFFFABXMnFn8Sx2XUdK/N4JP8Jv0rpq5rxMTa634Z1EEAJfm1kJ/uzRsoH/fYj/HFNAdLRRRSAKKKKACiiigDnvHUrx+CNXWM4kngNsn+9KRGP1YVuwQrb28UKfdjQIPoBiue8Y7ZxoennJ+16rBkD+7HmY/+i8fjXS0+gBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnfHMDy+DdRliXdNaIt5GP9qFhIP8A0HH41vW8yXNtFPGcxyoHU+oIyKWaJJ4ZIZBlJFKsPUEYNc/4FlZ/B1jbyMWmst9lIT13QsY/12g/jT6AdHRRRSAKKKKACiiigAooooA5rTT9t8f61dZyllbQWSezHdK/6NH+XtXS1zXgj9/pN5qhHOpX89yD6pvKR/8AjiLXS02AUUUUgCiiigAooooAK5vx4h/4Q69ukBMlkY71Mdcwusn8lI/GukqvfWqX2n3NnIAUniaJgfRgQf500BNG6yxrIhyrAMCO4NOrC8F3Ul54L0iWYkzLbJFLnrvQbGz75U1u0gCiiigAooooA5rUz9p8f6Ba4BFtbXV4fUH5IlP5SNXS1zdjuufiHrE2f3dpY21uv+8zSO36bP0rpKbAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcz4c/0TxH4l0wnAF0l7GMfwzIM/+PpJXTVzN1/oXxGsJsYTUdPlt2OerxMHT/x15Py9qaA6aiiikAUUUUAFFFFABWT4n1E6T4W1S/Xl4LWRkHq207R+eK1q5nxmftFvpOlDOdQ1KBGA/uIfOf8ADEePxprcDW0HTl0jw/p2nL0tbaOIk9yqgE/nWhRRSAKKKKACiiigAooooAKKKKAOa8H4t/7b03kfY9Um2g9llxMP/RhH4V0tc1Yj7H8RNXhwAl9Y290vu6F43P5eX+ldLTYBRRRSAKKKbI6xRtI5wqgsT6AUAc54SAnu/EWoZ3faNVkRT/sxKkX80aulrnPAaH/hCtOnZSr3atdsCc8yu0nX/gVdHTe4BRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ1v4g+F/Duotp+q6oLe6VQxj8iR8A9OVUiumrzrwLFHrHjPxjrkiLIhvFs4iwyMRjBx/wCO00rsHorm7pPxF8Ja3eLaWGtQvO5wiSI8RY+g3gZP0p3jQ/ZLfStX2sf7O1GKRyoJIjfMT8D0EmfwrH+K+i6dP4Dv71reKO6swssEyqFZG3AYB9811fh24nu/DOlXNySZ5bSJ5Ce7FATTVrXXQT0a8yl/wnHh3/oI/wDkCT/4mj/hOPDv/QR/8gSf/E10FFLQZz//AAnHh3/oI/8AkCT/AOJo/wCE48O/9BH/AMgSf/E1uTzJb28k8hxHGpdj6ADJrzxvHPiRNBXxY2macPDxYHyPMf7UIi+3fn7vvt/WhK4HT/8ACceHf+gj/wCQJP8A4mj/AITjw7/0Ef8AyBJ/8TW9HIssSSIcq6hgfUGnUCOf/wCE48O/9BH/AMgSf/E1nw6jaeJPHOnS2UhmtNOtJpWcxsoErlUXqBzt8z867CsPxh4gXwv4WvtWKhpIUxEh6M5OFH5mlew0ruxNrPifRPDyqdW1O3tSwyqO3zsPUKOT+VQaH4z8O+JJDFpOqwXEuM+Vyj49drAH9KyfBvg23srNNX1mNb7Xr0Ca4uZ1DlC3Oxc/dA6cVP4j8DWusanpeqWLxadqNjcLL9ojhyZEHVDgjr6nPf1qrJOzFe6ujrKKKKkYUUUUAFFFBzg460AY+t+K9C8OKp1fU4LVmGVRiWcj1CjJP5VHofjDw94kcx6TqsFzIF3GMZV8eu1gDj8K848FeJPDlnq2ry+LHjtfEs14/mNexH5I+NqqxGFA+oz712M3hnSde8TaP4o0a+s1Nkzea9qFcXCkYALKcDHPr1q1Ha4n1XYs+I5JNL8S6LrSWd5cxJHPaXAtLdpnVXCspKqCcbowP+BVJ/wmtp/0B/EP/gnn/wDia6WipGc1/wAJraf9AfxD/wCCef8A+Jo/4TW0/wCgP4h/8E8//wATXS0UaAc1/wAJraf9AfxD/wCCef8A+JrO1/xebjw9qUGn6L4gN5LbSJADpM4G8qQOSvqa7aijQDn77XNE8EaFp8erXa2luqJbRYiZ8lV6AKDjgVkr8XPAzMFGuDJOObWYf+yVkeNNQsJPin4YstRvLa3tLKKW8la5kVE3HhRljjOVrpLzxd4Kt7SWWTV9GmRVOY4po5Gb2CqSTQvhuwe9jf07UrLV7JLzT7qK5tn+7JE2Qf8A69Wq4T4U6NdaV4aup7m2a0F/ePcw2rDBijOAoI7cD+Vd3TkrOwkwoooqRhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFTVb1NN0i8vpDhLeB5T/wABBP8ASuO+FCRWXgG0lnmjFxeSSXUuXGSWY4J/ACuz1HT7XVdPnsL2MyW1whSVAxXcp6jIIIrkh8I/AykEaGMjnm6mP/s9OLtfzB6pf1/XUzPGeoR+NtQtvBmjSi4jaZZtUuIjlIIlOdu4cbiR09q9HijSGJIo1CoihVA7AdKp6Xo+m6JafZdMsoLSHOSkSAZPqfU+5q9RfSyFu7hRRRSGV7+S2h065lvCFtkiZpiegQA5/SvInt9YX4dqkkKN4LGJcBv9P+y7twyPuY79c7fevWtUsI9V0m80+UlY7mF4WI6gMCM/rXn50rxnJ4SXwa+l2aw+SLRtWF0CnkjjPl43btvGOnvTj176fqPsei2csE9lBLbEGB41aMjupHH6VNVextI7DT7azi/1cESxL9FGB/KrFErXdiI3srhXAfGO2uJ/AbSwoZEtrqKeZAM5QEg/zB/Cu/pHRZEZHUMrDBUjIIpbNNdCkZWm+JNG1PSY9QttRtTbMgYsZVGzjo2ehHvWJpHii88TeLJE0bY3h2zQrPeFMi4m7LGfQdz/AIipX+Gfgx737WdAtfM9AWCf98A7f0rp7a2gs7dLe2hjhhjG1I41Cqo9AB0qrq9xW0sS0UUVIwooooAKwPGmvXXhnwtd6taWi3UlvtJjbONpYAk49Ac1v02SNJY2jkRXRgVZWGQR6EUAvMwVuPDPinR4ru4/sy+tpEDZmCOF9jnoR+lcX4M03Tovilqtx4WG3Qo7MR3BicmFrgtnCnocD06c+tdM/wAL/BT3f2k6BB5mc4V3Cf8AfAbb+ldNZWNpptqlrY20Vtbp92OJAqj8BVppO6FZ2sWKKKKgYUUUUAFFFFAHmGk6Tp/i74neKr3U7KC9tbERWcKzIHUMB82M98g/nT/iP4S8L6X4E1K+t9GtLW5hVTDLbxhGVywA5H1ru9K0PTdEN2dPtvJN3O1xOS7MXkPU/MTj6Dinazoun+INNfTtUt/PtHIZo97Jkg5HKkHrTb0SXl/wRp+82xnh5J4/DelpdO0lwtpEJHY5JbaMk/jWlTIolhhSJM7EUKuSScD3PJp9OTvJsiKskgoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>If pentagons $A B C D E$ and $P Q R S T$ are similar, find $S R$
|
4 \frac { 4 } { 11 }
|
Geometry
|
Geometry3K
|
test
|
4
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAJBAo4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisvxJqA0rw1qV8TgwWzsD744/XFKTsmxpXdjl5/jD4Nt55IXv5t8bFTi3YjI/Cmp8ZfBTuFOoyoD3a2fH6CuD+Dng7SfEWn6nqOsWEd2vniOLzM8EDJ/mK9Lm+F3gyeJozoUCgjG5CykfQg1TTW4rp7HQaTrema9aC60u9huoehaNuh9COoP1q/Xz/AOCLeXwj8bJ/D9pO72cjSRMCeqhS659xj+dfQFGjSa6hZptMKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV598ZtS+wfD24iDYa7lSEfTO4/wDoNeg14l8er1p7nRNGiOXctKVHckhV/kamSvaK6lQ0d+xmeAPipoXhDwrDplxY30lwHZ5HjVdpJPbLemK6C9+P+krav9g0i8kuMfIJiqrn3wSa9D0zwrotppdpbtpVk7RxKpZoFJJA6k4q7FoWkQSCSHS7ONx0ZYFBH6VctWRHY8m+FHhnVtS8S3XjTW4niabcYA67S7N1YDsMcD617TR0oob0SXQOrbCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvI/E3g3xBr/wAXbHU208/2NbPF+/MqYwvzH5d2773HSvXKKFpJS7B0a7h0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuLl+JOlW3iWbSbmN44on8v7Vuyu4dcjsM966fWNQXStHu758YgiZxnuew/PFeZeCPB9p4k0G/vdTRjJdTEQyg/MmOrD8Sc/SuzD06bhKpV22+ZxYmrVU406O71+SPWI5EljWSN1dGGVZTkEU6vJIL7XvhrfLa3yte6K7fI46D/d/un2PH869N0rV7HWrFLuwnWWJuuOqn0I7Gs62HdP3lrF7M0oYmNX3WrSW6L1FFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef/FbUmh0S20yIky3kvKjqVXt+JI/Kut8PaaukaBZWKgZiiAbHdupP55rgLv/AIqf4uxQD5rbTuv/AADk/wDj5r1Kuyv7lKFL5v5nDh/3ladX5L5b/iQ3dpb39rJbXUKTQyDDI4yDXmGq+GNY8EXzax4bleWy6y25+YqvoR/EPfqP1r1WisqNeVLTdPdG1fDxra7NbPqjm/C3jLT/ABNAFQiC9UfvLdjz9V9RXSVwHin4fefOdW8Pt9k1BDvMaHarn1H90/pSeF/iAZLj+yPESfZL9DsErjaHPo3of0NazoRqR9pQ26rqv+AY08RKnL2eI0fR9H/kz0CijrRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVT1W/TS9Jur6TG2CJnwe5A4H4nFXK4H4rambfQINOiJ828l5A7qvP8yPyrahT9pUjDuY4ir7KlKfYrfCqweS31DWp8mW6l2Kx6kDkn8z+lej1leG9MGj+HrKxAAaOIb8d2PJP5k1q08TU9pVlInC0vZUYxe4UUUVgdAVznijwdp/ia3zKohvFH7u4Ucj2PqK6OirhOUJc0XZkVKcakeWaujynS/Eus+Bb5NI8RRvNYdIpx820eqnuPbqK9Ps7221C1jurSZJoZBlXQ5BqHVNJstZsntL6BZYm7Hqp9QexrzK50/XvhtfNeae7XmjO2XRugH+0Ox/2h/8AWrstTxW3uz/B/wDBOK9TCb+9D8V/mj1qisbw94m07xJZ+dZyYkUfvIW++h9x6e9bNcUoyg+WSszuhOM480XdBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5bqP/FT/FuC0HzW2nY3enycn/x4gV6Rqd8mm6XdXsmNsETPg98DgVwPwqsXmXUtcuMmW5l2Kx7jqx/En9K7MN7lOdXysvVnDiv3lSFHu7v0R6RRRRXGdwUUUUAFFFFABTXRZEZHUMjDBUjIIp1FAHmviHwJd6Vef234UkeGZDua2Q/nt9R/sn/61a3hLx9ba2RYaiBaamvylG4WQ+2eh9q7SuQ8W+A7TxADd2pW11JeRKowHP8Atf412xrwqrkr/J9fn3OCdCdGXtMP849H6dmdfRXmOg+N7/QL0aJ4rjkQp8qXLDJA7ZP8Q969LiljniWWJ1eNxlWU5BHtWFahKk9duj6M6KGIhWXu7rddUPooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOD+KuqG18OxWEZ/eXsoBA7qvJ/XbXS+GNLGjeG7GxxhkiBf/AHjyf1JrhNX/AOKm+LNrYj5rbT8F/T5fmP8A48QK9Srsr/u6MKffV/PY4cP+8rzq9vdXy3/EKKKK4zuCiiigAooooAKKKKACiiigDK17w7p/iKyNtfRAkfclXh0PqDXnMdxr/wANL4Q3Aa90SRvlYdB9P7re3Q163UVzawXlu9vcxJLDIMMjjIIrpo4hwXJNXi+n+Ry18Mpvng7SXX/Mq6RrNjrlit3YTiSM9R/Ep9COxq/Xlmr+E9W8G3zaz4Ykke2HMtv94qPQj+Jf1H611nhTxrYeJYRHkQX6j54GPX3X1FOrh1y+0pO8fxXqTRxLcvZVlaX4P0OnooorlOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq2oXkenadc3kv3II2kPvgdKs1wvxT1T7H4aSyQ/vL2QLgf3V5P67a1oU/aVFDuY16vsqUp9ih8LLOS5k1TXrjmW4lKKx/Nj+JI/KvSaxvCul/2N4ZsbIjDrGGk/3jyf1NbNViantKrkticJS9nRjF7/AKhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFcH4r+H6Xsx1TQm+yaih37UO1ZD6j+6a7yitaVadKXNFmVajCtHlmjzzwx8QJFuf7H8SobW9Q7BM42hj6N6H36V6GCCAQcg965/xP4R0/wATW2J18q6Ufu7hB8y+x9R7VxGneINa8A3y6Vr0b3Gmk4imXnaPVT3HseldLpQxC5qWkuq/yORVamGfLW1j0l/n/mer0VXsb+11K0jurOdJoXGVdTViuJpp2Z3ppq6CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry3XP+Km+Ktnpy/NbWOC/p8vzN+uFr0q+u47CwuLuX7kEbSN+AzXnnwttJLy61XX7gZknkMasfc7m/mPyrswvuQnV7Ky9WcOL/eThR7u79EelgYGKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpqWmWer2T2l9As0L9Qw6e4PY1bopptO6E0mrM8mvNJ134c3zX+lO93pDHMkbc4H+0O3+8K77w54p07xLaebaSbZlH7yBj8yf4j3raZVdSrKGUjBBHBrzjxH4CubC7/ALa8Ku0Fyh3NbocZ9dv/AMT/APqrtVSGIXLV0l37+v8AmcDp1MM+alrHt29P8j0iiuI8J+P4NWcadqqi01NTtw3yrIfbPQ+1dvXLVpTpS5Zo66VaFWPNBhRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHD/ABS1X7D4XFojYkvJAmP9kcn+n51u+EdK/sbwvY2hXEgjDyf7zcn9TXEeIj/wkvxSsNKX5reywZPTj5m/otepAYGBXZW/d0IU++r/AEOGh+8rzqdF7q/UKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS8WeBbLxEhuYMW2oqPlmUcP7N/j1rnND8Z6l4avhoniqOQKvEdyeSB2JP8Q9+teoVma5oGn+ILE2t9CGH8DjhkPqDXXSxC5fZ1VeP4r0OOrhnze1ou0vwfqX4ZoriFJoZFkicZV1OQRUleSK+v8Awzvdr7r7RJG4PYf/ABLfoa9K0XXLDXrFbqwmDr/Ep4ZD6Edqith3TXNF3i+pdDEqo+SStJdP8jRooornOkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8uo7GynupTiOGNpG+gGanrivihqv2DwqbZGxLeOIx67Ryf6D8a0o0/aVFDuZV6ipU5TfQyPhfayX+oat4huBmSaQxq3uTub+lemVheDtK/sfwrY2rLiTy/Mk/3m5P88Vu1piqntKra2/yM8JTdOjFPfd/MKKKK5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCO4t4bqB4LiJZYnGGRxkEV5jrPhDVPCd82teFpJDCOZLbqQPTH8S/qK9SorajXlSemqe66Mwr4eFZa6NbPqjlfCfjex8SRCF8W+oKPmgY/e919fp1rqq4bxZ8P4tSkOp6MwtNSU78KdqyH8Oh96p+GvH01tdf2N4oRra7Q7BO4wD/vf49K3nQjUj7Sh811X+aMIYidKXs8R8n0f+TPRaKRWDKGUgg8gjvS1xHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlvicnxJ8TtO0dfmt7TBkHb+839BXpl1cx2dpNcynEcKM7H2AzXnHwytpNS1bV/ENwMvLIY0PuTub/2WuzC+5GdXsrL1Zw4v35Qo93d+iPTQAAAOgooorjO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwfEvhPTvE1rsuU2XCj93cIPmX/ABHtW9RVQnKEuaLsyZwjOPLJXR5PYa3rfw9vk03Wo3udLY4ilXnaP9k/+ymvTtP1G01SzS7sp0mhccMp/Q+ho1DTrTVLN7S9gSaFxyrD9R6GvMb7RNc+Ht82paLI91pbHMsTc7R/tD/2YV2/u8V/dn+D/wCCcP7zCf3ofiv80esUVheGvFeneJrXfbPsuFH7y3c/Mv8AiPet2uKcJQlyyVmd0JxnHmi7oKKKKkoD04rxu++F/jW7v7i4XxcY1lkZwiySALk9OteyU2R1jjaRjhVBJPoBSdtxpvY+YjpnilvHn/CJxeJLqS5D7GmE77Bhcnvniu4t/hT4yS5iabxhI0QcFwJZMkZ571nfChG174n61rsgyEDsCexduP0Br3iqV1GLe4pfE10GouyNVznAAzTqKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcZ8TdV/s/wm8CNiW8cRD129W/kB+NangvSv7I8KWNuy4lZPMk9dzcn8s4/CuM8WE+JPiTpuir80Frgyjt/eb9ABXqIAAAHQV2Vv3dCFPq9X+hw0f3mInU6L3V+otFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKGUqwBB4IPelooA858S+AZra6/tnwu5trtDvMCHAP+76fTpV3wp8QItSkGm6yotNSU7MsNqyH8eh9q7gkKCSQAOpNcF430zwtq0TTS6pZ2mooPllWQEn2ZRya7qdVVl7Oqr9n1X+aPPq0nQbq0Xbuns/8md9RXkHhP4jyaZINO1iU3Nqp2JdLkso988kfrXrdvcQ3UCT28qyxOMq6HIIrCvhp0HaW3c6MPiqdeN479iSue8dal/ZPgjV7vOGFuyL9W+Ufzroa8t+Oup/ZfB1vZK2Gu7gZHqqjJ/UiuWfw2OuHxEHwG03yPDF7qLD5rq4wD6qox/PNes1y/w70z+yfAWk2xXDmASOPdvmP866itp/FbsZR2uFFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVzPHa2stxKcRxIXY+gAyalrjviXqv9neEpYUbEt2whHrjq36DH41pSpupNQXUzrVFTpub6GF8NYJNV13V/EVwMs7lEPux3N/7LXp1c74H0r+yPCVlCy4lkTzZPXc3P6dPwroq0xVRTqtrZaL5GWDpunRSe71fzCiiiuc6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqpdapp9jn7XfW0GO0koU/qawbz4ieGbPI+3+cw/hhQt+vT9a0hSqT+GLZnOtTh8UkjqaK84ufi5ZFtlhpdzcMem9gv6DNVv8AhMPHOqcadoPkKejNEf5uQK3WCrbyVvVnM8fR2i2/RM9QqOa4htk3zzRxL/edgo/WvM/7C+Iurc3eqraKeqrLtP5IMVLD8J3nfzNT1yeZj18tcH8yTT+r0o/HUXy1D6zWl8FJ/PQ6y88a+HLHPm6tbsR2iJk/9BzWBefFnRIci2t7q4Yd9oRT+Oc/pV2z+GPhq1wZLeW5Yd5ZT/IYFb9n4f0ewx9l021iI/iWIZ/Oi+Fj0cvwC2Ml1UfxOCPxG8Q6jxpHhxiD0ZleT9RgUmz4mat1dLGM9OUTH5ZavTwoXoAPpS0fWoR+Cml66h9UnL+JUb9NDzAfDXW9RIbV/ETue6jdJ+pI/lWpafCjQoSDcy3Vye4aTaP0AP613dFTLG13opW9NBxwFBauN/XU5mTwB4aeyktV02NA4x5gyXX3DHmuKK6/8M73cu690SRufQf/ABLfoa9bqOaCK5heGaNZI3GGRhkEUU8VJXVT3ovdMdXCQlaVP3ZLZooaHr+n+ILEXVjMGH8aHhkPoRUmpaHpWs+X/aem2l55edn2iFX2564yOK8+1zwZqXhm+OteFZJAi8yWw5IHcAfxD2rpPCfjmy8RILefFtqKj5oWPD+6/wCFOrh1y+0pO8fxXqKliWpeyrK0vwfodUiJHGqIoVFGAoGABTqKK5DsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8t8Yk+I/iJpehJ80NuQZR25+Zv8Ax0AV6dPMltbyTynbHGpdj6ADJrzT4bwvq/iPV/EU68s5RCexY5P5DH512YT3FOr2WnqzhxnvuFH+Z6+iPTlAVQo6AYpaKK4zuCiiigAooooAKKKKACiiigArETxf4fed4P7Vt0lRirLKSmCOv3sVt189eOrP7F4z1KPGA8vmj/gQ3f1rajTVRtM9fKMBSx1SVObaaV1Y9+t7y1uhm3uYZh6xyBv5VPXy0sjoQVdlI9DitS18T65ZY+z6rdoB/D5px+VbPCPoz1qnC0v+XdT70fSNFeF2HxG8VmRYI5xdO3CoYAzE/gMmujVPiXq6jMi2UbdMlU/llqlYV3tKSR4OZ5bXy+HPUs/JPX7tD1AkKCWIAHUmsu78S6JY5+0apaIR1USBj+Q5rhR8NNa1AhtX8RO57gbpP1JH8q1LT4UaDDg3Ml1dHuHk2j/x3BqvZYePxTv6L/M8P22Jl8NO3q/8ie8+KHhu2yIpZ7k9vKiwP/HsVjyfFW5u2KaToM0zdixL/oo/rXYWfg7w9Y48nSbbI6M6bz+ZzWzHDFEoWONEUdAoxR7TDR+GDfq/8g9lipfFNL0X+Z5l/a/xI1b/AI9tPWyQ9zGq4/77JNH/AAhPjPVP+Qn4g8tD1RZGfH4cCvUKKPrjXwRS+QfUlL+JNv5nnVr8I9OXDXuo3U7dwmEB/mf1res/h94Zs8FdNSVh3mYvn8DxXT0VnPF1pbyZpDB0IbRRWttOsrNdttaQQr6Rxhf5VZoorBtvc6EktEFFFFIYUUUUAFFFFABRRRQAUUUUAFcR4s8AQas51HSmFpqSndleFkPvjofeu3orSlVnSlzQZlVowqx5Zo838OePbmwu/wCxfFKNBcodq3DjGfTd/wDFV6OrK6hlYMpGQQcg1i+I/C2neJbTyruPbMo/dzqPmQ/1HtXA2era78Or5bDVUe70lmxHIvOB/snt/umup04Yhc1LSXbv6f5HIqlTDPlq6x79vX/M9Zoqppup2er2SXdjOs0L917exHY1briaadmd6aaugooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorm5hs7WW5uJFihiUu7seFA6mpa4T4wvcp8OL/wCz7sF4xIR/c3c/ripk7K5UVd2OW1D406jqGoyWnhLQHvghx5kiO5Yeu1eg+pqq3xf8X6LIj+IPCqxWxONwikiJ+jMSK6P4Jy6SfBMcVm0X28Oxul435zwT3xjFd/qmm22r6ZcWN3EskMyFGVhnr3qpJx21JTUtyl4Z8T6d4s0dNR05yUJ2ujcNG3cGtmvM/hb4H13wbd6muoyWxtLgKY1ikLEMCeSCB2NemU3boJX2ZyPxI1X+zfCM8atiW6YQr64PLfoMfjVrwJpX9k+EbKJlxLKvnSeuW5/QYH4VyXjZj4h8f6VoCHdFCQZR9fmb/wAdAr1BVCKFAwAMCuur+7w8YdXq/wBDipfvMTOp0jov1FopGYKpZiAB1JrLu/E2iWOftGq2qEdVEgY/kOa5YxlLSKudkpxjrJ2NWiuLvPij4ctsiKS4uT28qPA/8exWNJ8Vbq7YppOgSzN2JJf9FH9a6I4OvLXl+/Q5pY7Dx05r+mp6bRXl/wDa3xI1b/j209bJD38tVx/32SaP+EI8Zap/yFPEPloeqrIz4/DgVX1RR+OaX4k/XJS/h02/wPRbrVdPsc/a762gx2klCn8iawbz4ieGbPI+3+cw/hhjJ/XgfrWJa/CTTlwb3Ubqdu4XCg/zP61vWfw/8M2eCumpKR3mYvn8DxRy4WO8m/RWDmxctoqPq7/kc9c/FyzL7NP0q5uGPTewX9Bmq/8Awl3jnVONO0HyFPRmiIP5ucV6NbafZWabba0hhX0jQCrNHt6Mfgp/e7h9Xry+Op9yseX/ANhfETVubvVltEPVVl2n8kGK43xl4Zu/Dl5bi7vTdvcJuMhUjkHGOSc9q+gq4n4ieGbzxHb6cthGrTRysGLNgKrDqfy/Wqhi5SkotJLyR7XD8aWDx0as5PZptvyPDq63w38PtV14pNKps7M8+bIvLD/ZX+tei+Gvhvpmi7Li8Avbwc7nHyIfYf1NdqAAMAYFKpiukD6PMOJErwwi+b/Rf5/cYmgeFNK8OwhbOAGYjDTvy7fj2+grboorjbbd2fJ1as6snOo7t9wooopGYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVr6wtdStHtbyFJoXGGVhVmimm07oTSaszyjUdA1rwDfNqmgyPcaaTmWFudo9GHce/au38MeLtP8TW2YG8q6UfvLdz8w9x6it8gMCCMg9Qa898T+AJEuf7Y8NOba9Q7zCh2hj/ALPofbpXaqsMQuWrpLo/8zgdKphnzUdY9Y/5f5HodFcH4V+ICXsw0vXF+yaih2bnG1XPofQ13lctWjOlLlkjro1oVo80GFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5aW9/ZzWl1EssEylJEYZDA1PXiWpeMdW8PfGk2uq6ncpozS8RM58sIy/KcegJo3fL3HsnLsN1z4L6npd62o+D9TeNgdywPIUdfZXHX8fzqrpfxU8U+EtRTTPGNhJLEDgyOm2UD1BHDj/Oa93jkSWNZI3V0YZVlOQRXlnx0udLXwnDbzmM6g0ytbrxvUc7j9KTbiNJSPTbC+t9SsIL20kElvOgeNx3BqWaVIIJJpDhI1LMfQAZNcl8LrW4tPh1pEdyGDmMuA3UKzEj9CKk+I2q/2Z4QuFVsS3REC/Q9f0BH41tGnzVVTXcwnV5KTqPojzPSdY1uXxRfa3pmmNeXEzMoJjZ1jyc9RxnGBzXUeX8TNW+9IljGenKpj/vnJrqfAOlf2V4Rs0ZcSzjzpPXLcj9MCunrtr4uKm1GC00u9djgw+Ck6ac5vXWy03PMF+Gms6gwfV/ELue4G5/1J/pWpafCnQYcG5kuro9w8m0f+O4ru6K55Y2u9Oa3podEcBh1q439dTDs/B/h6xwYNJtsjozpvP5mtmOGKJQscaoB0CjFPornlOUvidzpjTjD4VYKKKKksKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5jxV4KsPEsJkwIL5R8k6jr7N6iuT0jxZq3g6+XRvE0bvbDiK46kD1B/iX9RXqdZevadpWp6c1vq3kiE9HkYKVPqCehrrpYj3fZ1VeP4r0OOthve9rSfLL8H6l+2uoLy2S4tpUlhcZV0OQRUteJRaxP4A1ow6dqcGp6ZIcmJJM8fh0b3FeuaJrNrr2lxX9oW8uTgqwwVI6g0sRhZUkpLWL6jw2LjWbg9JLdGjRRRXKdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcn41+H+leNbdPtW6C8iGIrmMfMB6EdxXWUUmrjTseIR/CbxxpYMGleLPLtugCzSRcfQZrU0L4KoNRTUfE+qvqcqkN5QztJ/2iTkj8q9boqk7aieo1EWNFRFCqowAOgFeYeO3PiDxzpPh6M5jjIaUD/a5b/x0CvT5JEhieSRgqIpZiewFeY/D+N9c8X6v4hmU7QxWPPYsf6AAfjXXhPd5qz+yvxZw4z3+SivtP8ABas9ORAiKijAUYAp1FFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVQu9b0uxz9q1G1iI7NKM/l1pqLeiE5KKu2X6K5G8+JXhq0yFu5LgjtDGT/ADxWHN8WVmcx6Zos879izc/98gH+ddEcHXltH9DmnjcPHeX3a/kelUV5f/wkPxD1b/jy0gWinoTEFx/32aP+ES8c6rzqOu+QjdUWVj/46MCr+qKPxzS/Ej645fw4N/K35no9zqNlZDN1eQQD/ppIF/nWDefEHw1Z5B1FZWH8MKFv16frXP2vwks87r/Vbmdup2AKD+ea3rP4eeGbPBGniZh3mYvn8DxRyYWO8m/RW/MOfFz2io+rv+Rh3XxcsA2yw025uGPA3kJn8Bmqn/CY+N9V403QPJU9HaI/zYgV6Na6ZY2S7bWzghX0jjC1axjpR7ehH4Kf3u4fV68vjqfcrHl/9h/EXVubvVVtEPVRLtP5IMVLD8J2nfzNT1ueZj18tcH8yTXpdFH12qvgsvRAsBSes7y9WcfZ/DPw1a4L20lww7yyH+QwK6mzsrbT7VLazgjghT7qIuAKnoJABJOAK56lapP45XOinRp0/gikYfinxZpnhHSze6jL14iiX78jegH9a8sTx38SPF7NL4Y0hbWyzhZCinI/3n4P4CsxI5Pir8WJVnZjpFkT8mePLU4A/wCBH+te+29vDaW8dvbxLFFGoVEUYAArJK65n1Nm7PlXQ8Qu/FnxW8JAXetWSXVkp+cmJCoHuU5H416f4L8Z2HjTSPtdqDFNGds8DHJjb+o966GeCK5gkgnRZIpFKurDIIPUV4N8Olbw58ZNS0WFj9mcyxbf905U/lmqi7vlYpLTmR77RRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOV+Ieq/wBl+ELra2JbnECfj1/QGl+H2lf2X4QtAy4luP37/wDAun6YrmPH7tr3jPSPDsRJRSGlA7buT+SjP416dGixRrGoAVQAAPSuyp+7w8YdZa/5HDS/eYmU+kdF+o6iiiuM7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimSzRQJvmkSNf7zsAP1rGvPGXh6xz52rW5I7Rtv/wDQc1UYSl8KuRKpCHxOxuUVwd58WNCgyLaG6uG9QoVT+JOf0rMPxH8QaicaR4dcg9GZXk/UYFdEcFXerVvXQ5pY+gnZSu/LU9PpGYKpZiAB1JNeYbfiXq/VksY26cqmPyyaVfhprWoMH1fxC7nuBuf9Sf6VX1aEfjqL5ai+t1Jfw6bfrodzd+JtDsc/aNVtVI6gSBj+QyawLz4peHbbIhe4uT28uPA/XFRWnwp0GDBuHuro998m0f8AjuK37Pwh4fsMGDSrYMOjMm4/maP9lj3l+Af7ZPtH8TjX+KV9ekrpHh+WU9i25/0Uf1pn9ofEnV/9TaJZRt32quP++stXpqRRxgBEVQOgAxT6PrNOPwU189Q+q1ZfxKr+Wh5f/wAID4r1T/kLeIiFPVVdpB+XAq/afCXSY8NeXl3cN3GQo/x/WvQaKTxtZ6J29NBrAUE7tXfm7nO2fgXw3Y48vSoXI7y5k/8AQs1uQ2lvbIEggjjUdAigCpqK55VJz+J3OmFKEPhSQUUUVBYUUUUAFFFFABRRRQAVna/K0Hh3U5kOHS1lYfUKa0ahu7dLyzntpPuTRtG30IxUzV4tIcXZpnjfwAgQxa3dH/WNIiZ9uT/Wvaq+fPh7ra/Dzxvqeha4fs8E77PNb7qsCdp+hB6/SvWvGPim40PwpLrGj28WolSOVkBVV/vHHUfSrlJcql0Eovmcep1DusaM7kBVGST2FeCfDgnX/jJq2sICYU82QH/ebA/TNXfFnxhg1jwnFp+ixSjU79PLnUKf3WeCo9Sf5Gux+FPgx/Cnhwy3iY1C9IkmHdB2X8P60RVpOT6aBJ+6l3O+ooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNd1jjZ3IVVBJJ7CnVzHxA1X+yvCF2ytiW4HkJ/wLr+maunBzmoLqRVqKnBzfQ5XwEja9411bxDKCUQlYs9ix4/JRj8a9RrlPh3pX9meELYsuJbnM7/AI9P0xXV1ti5qVV22Wi+RhgoOFFX3er+YUUUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcb4v8bzeFNSt4TYLcQTRb93mbSDkgjofaumutW06xz9qvraHHaSUA/lXlfxO1zRtagsRp96k88DsGCKcbSB3I9q3oUnKWq0O7Klh6mMhRr2alpa/lob1r8XNHkwLmzu4Sf7uHA/UVtWvxC8M3WANRETHtKjL+uMV4BRXU8LB7H2FThrBy+G6+f+Z9M22taXeY+z6jayk9lmUn8s1PcXtpaLuubmGFfWSQKP1r5s0zS7/VrsW+n28k0p67Og9ye1elaX8Jd8Kvq+pS7yMmKDoPbJzn8qxlQpwfvSPns1ymjgoNxq3l0jbV/idbeePPDVlkPqccjD+GIF8/iBj9a5+7+LmlodtnYXVw3QbiEB/nWvZ/Dfw1aYJsjOw7zOW/TpW/aaRptgMWljbwD/AKZxgU+bCx2Tl66HyvLi57yUfRX/ADPPT458YamcaX4eMano7RMf1OBSf2X8SNX/AOPi/WyU9QJAhA/4AK9QAAHAxRR9ajH4IJfiH1OUv4lRv8DzKL4V3N0/marrs0rHqEU5/Mk/yras/hf4ctsGWKa5Yd5ZT/IYFdnRUyxleX2vu0KjgcPHXlv66/mZdn4c0bT8G10y1jYfxCMZ/OtMKq/dAH0FLRXPKUpatnTGMYq0VYKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5fxZ4B0PxjGp1CFkuUGEuYTtcD09x9a4BvgFF5hC+IrgQ/3DECcfXOP0r2eiklYd2eE33w41XwB4j0vWPDcL6vEHCSRSoCwJ69uAfXtXucLO8KNImxyoLJnO0+lPoqr6WF1uFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry/wCIcja54t0jw7CSVDBpcdi3X8lGfxr09mVELMQFUZJPYV5f4HVvEHjvVfEEgJjiJWLPYtwPyUY/GuzCe7zVX9lfi9jhxvv8tFfaf4LVnp0UawwpEgAVFCgDsBT6KK4zuCiiigAoopryJEheR1RR1LHAoAdRWNeeLNAsc+fq1sCOoR95/Jc1z958VdAt8iBbm5bttQKD+JP9K2hh6s/hizCeJow+KSO5orzFvibrF+caP4dkkz0Zg0n/AKCBTfO+Jer/AHY0sY2/3U/xatvqU18bUfVmP1+m/gTl6I9QJAGTwKzbvxDo1iD9p1O1jI6r5oJ/Ic1wQ+HXiLUjnV/ETH1UM0n8yK0rT4T6JEQ11PdXLdwzhR+nP60exw8fiqX9EHtsTL4advVlu8+J3hu1yI55rk/9Moz/AOzYrFk+K090xj0nQpp27FiW/RR/Wuus/Bfh2xwYdKtyR0aRd5/M5rajghhULFEiKOgVQKPaYaPwwb9X/kHs8VL4ppei/wAzzP8Atj4j6v8A8e2nLZoe5jVcf99kmj/hCfGWq/8AIU8QeWh6qsjPj8OBXqFFH1xx+CKXyD6kpfxJuXz/AMjzu1+Emmrhr3ULq4buFwoP8z+tJ4q8CaLpvhG9n0+z23MShxIzljgEZ6n0zXotVtQtF1DTrmzc4WeJoyfTIxmoeLrSfvSdjswVGjha8KsYr3WmfMccbyyLHGjO7HCqoySfYV6F4a+F13e7LnWWNrAeRCv+sb6+n8/pXofh7wdpPhyMG2h8y4x808nLH6en4V0FVUxTekD6vMOJJzvDCqy79fl2KWmaTY6ParbWFskMY/ujk+5PertFFcrd9WfLynKbcpO7YUUUUiQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5rx7qv8AZXhC8dWxLOPIT6t1/TNV/hxpX9m+Ebd2XEt0TO30PT9AKy/ibo+ta0NPt9NtGngUszhWA+bjGcn0rNi8O/EG/hSKfVFsoVUKEWXbgemEGP1r0YU4vDKPOld3Z5k6k1inLkbsrL9T06e5t7VN9xPHEvrI4UfrWJeeN/DljkS6rCzDtFl8/lxXKQfCczPv1PW55mPXy1x+pzW5Z/DTw1a4L2slww7yyE/oOKy9nho7zb9F/mbe0xcvhgl6u/5GdefFrRoiRa2l1cN7gID/AD/lVA+P/FGpHGleHWVT0d0Zv14Fd/Z6HpWn4+yafbQ47pGAavgBRgAD6Ue2w8fhp39WHsMRL46lvRHmH2P4lav/AK26SxQ/7apj/vgE05PhfqN64k1bX5ZG7hQWP5k/0r06ij67UXwJR9EH1Cm/jbl6s4mz+Fnh63wZxcXR/wCmkmP/AEHFb9n4X0OwwbbS7VGH8Xlgt+Z5rXorGeIqz+KTN4YajD4YoaqKgwqhfoKdRRWJsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeO+LviX4ls/Hdx4f8PWkF0Y8KqGMszNty3ftSvrYdtLnsVFeKf8ACafFcf8AMtr/AOA5/wAafp3xl1jTNVisvF2h/ZEcgeYiMjKP72GzkfSmtXYR7RRTIZY54UmiYPG6hlYdCD3p9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIzBVLMcADJNeE/C1Tr/AMVtb1xxuWPzHU+hdsD9Aa9b8Zaj/ZXg3V7zODHbOFP+0RgfqRXgnw/8OeObvTLjUvDF9DaQTSbJC8hUuV/4CeOaUX77fZfmOS9y3d/kfS9eOfH6ay/sjS7c7DfGYsoH3gmMH8M4/Kq8/h74wpCzDW45CB92O4+Y/TKiuc+G1ja+IPH8sXitru51WAl40nfcpZTyGzzkflRy8zsF+VXPc/B1vPaeDdHguQRNHaRq4PUHaOK26AABgdKKqTu2yYqysFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAea/HDUvsfgQWqthru4VMeqjLH9QK3Phlpv8AZfw90mIrh5IvOb6ud39ak8Z+BLDxulol/d3cCWxYqsBUBicdcg+ldLa28dpaQ20QxHEgRR7AYojon5sJateRLXgvhICf9oLVHXgJLcHj64r3quK034a6dpXjGXxLa398LqWR3eIlDGd3JH3c4/GiOk0/Jg/ha9DtaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==
|
<image>In $\triangle PQR$, $\overline{ST} \| \overline{R Q}$ . If $PS=12.5$, $SR=5$, and $PT=15$, find $TQ$.
|
6
|
Geometry
|
Geometry3K
|
test
|
5
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACgAO4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooqhrGtafoFgb7U5zDbh1TcI2clmOAAFBJ59qAL9Fc1aeP/DN5fQ2ceotHPO22Jbi2lhDt6AuoBPtXS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXB/ECe4l1vwvptrZSX0n2w3rW8bqhZYlz1YgdWHU9q7yuN1rRfEj+N4dd0ldJlhhsjbJHeTSIVZm3M3yofQDrR1X9f1qPozL1/UbrW9Z0HSNb0a40a0lvVmSaaSOXzpU5WIeWxC59Se2K9GrlrfQtY1PWbHU/EU9kBYEvbWdiGKCQjG9nbBYgE4GBjNdTT6WF1CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYnjB3j8Iaq8bMjrbsVZTgg+oqhEfEOgwo3za5p+0HHC3UYx+Un6GrvjP8A5E3Vv+vZq2YP+PeP/cH8q3jLlprS+r/Qwceao9baL9SnpWt6frMbNZXAZ04kiYbZIz6Mp5FaFZGq+HLDVZVuWV7e9T/V3du2yVfx7j2ORWd/aOueHxt1aA6nZL0vbSPEqj1ePv8AVfypckZ/A/k/61K55R+NfNf1odRRVXT9SstVtVubC5juIT/Ehzj2PofY1arJpp2ZommroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMLxn/yJurf9ezVswf8AHvH/ALg/lWN4z/5E3Vv+vZq2YP8Aj3j/ANwfyrV/w16v9DJfxH6L9SSiiisjUwdQ8LWtxctfafNJpmon/l4tsAP/AL6dHH1qsPEGoaK3leI7MLDnC6jaKWhPpvXqh/MV09IQGUggEHgg961VW6tNXX4/eZOnZ3ho/wAPuGW9xDdwJPbypLE4yrxsGBHsRUlc5ceFjaTvd+Hro6ZcMdzwgbreU/7SdvquKSDxQ9lMlp4itP7OnY7UuAd1tKfZ/wCH6Nij2fNrB3/P+vQPacuk1b8v69TpKKRWV1DKQykZBByDS1kahRXF2d54k14LrWmX8MVj9s8uKxaJds0CvsZ2cjcGOGIxgdM5rtKOgdbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY2reK9E0O4FvqN75UpUOQsTvsUnAZyoIQe7YHFbNeN+Ktaa+j8Qxf2p9hle5FlNYwWalmiDBBLPIwJCkEkEbRjAyaFq7D6XPRvGLBvBeqspBU2zEEd62oP+PeP/cH8qxPFyKngfU0T7q2pA+mK24P+PeP/cH8q1l/DXq/0MY/xH6L9SSiiisjUKKKKACo5oIrmFoZ40kicYZHXII9xUlFAHMt4dvtHYzeG7zy485bT7oloD67T1Q/Tj2qxY+KLeW5Ww1SB9M1BuBBcEbZD/sP0b+ftW9Va+0+z1O1a2vraO4hbqki5H1HofetfaKWlRX8+v8Awf61MvZuP8N28un/AAP60Od0nwbNps9rFLrElxpdlM81nZ+SE2Mc43vk7wu444HvnFdXXL/2XrXh/LaNcnUbIf8ALheP86+0cp/k3FaGl+JLDVJja/vLW/X79ncrskH0H8Q9xmh03a8Xdf1v/XzGqivaWj/rb+vkbFFFFZGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGF4z/5E3Vv+vZq2YP+PeP/AHB/Ksbxn/yJurf9ezVswf8AHvH/ALg/lWr/AIa9X+hkv4j9F+pJRRRWRqFFFFABRRRQAUUUUAFZ+q6Jp+tQiO+tlkKnKSDh4z6qw5FaFFNScXdCcVJWZzG3xD4eyULa3pw/hOBdRj2PST9DWtpWu6frUbGznzIhxJC4KyRn0ZTyK0aydW8OafqzrPIrwXkf+ru7dtkqH6jr9DkVrzxn8as+6/yM+WUPhd12f+f9fI1qK5j7frugHbqcB1SwHS8tUxMg/wBuPv8AVfyrc07VLHVrVbmwuo7iI/xIensR1B9jUypuKvuu5Uaik7bPsW6KKKzLCiiigAooooAKKKKACiiigAooooAKKKKAMbxcAfCGrgjP+iSH/wAdNaViSbC2JOSYlyT9BWb4t/5FDWP+vST/ANBNNs4NdNjblNS04L5a4BsHJAx6+dWtr016v9CYRUqru0tF38+yZt0VitPrFnqOnR3V1Yzw3U7QsIrR42GIpHBBMjDqgHTvW1WbVjapT5La3v8A11CiiikZhRRRQAUUUUAFFFFABRRRQAVhaj4Xtbq5N9YzS6bqJ5+023G//fXo4+tbtFVGcou6JlCMlZnMf2/qOiMI/EVpm36DUbRS0X/A16p9eRXRW1zBeW6T200c0LjKvGwYH8RUpAIIIyD2rnbnwsLe4e80C6bS7pjl41XdBKf9qPpn3GDWl4T30f4f8Ai04bar8f8Ag/1qdFRXNxeKHsJVtvEdp/Z0rHC3KndbSH2f+H6NiujVldQykMpGQQcg1EoSjuVGcZbC0UUVBYUUUUAFFFFABRRRQAUUVn6rrmmaHAk2p30Nsjnam9uXPoo6k/SgCt4t/wCRQ1j/AK9JP/QTWjYf8g+2/wCuS/yFZNprmgeL7W80+1vVnDRlJ4cNHIqnjlWAYfXFMXwdYKoVb3VQAMAC/l4/WtU4uHLJ2MmpKfNFXLmrf8hLQv8Ar+b/ANJ5q1a51vBmnuyM15qpKHcpN/IdpwRkc+hI/Gnf8IfY/wDP9q3/AIMJf8aGqff8P+CaTqVJKK5Vou/m328zoKK5/wD4Q+x/5/tW/wDBhL/jR/wh9j/z/at/4MJf8aOWn/N+H/BM+ap/Kvv/AOAdBRXP/wDCH2P/AD/at/4MJf8AGj/hD7H/AJ/tW/8ABhL/AI0ctP8Am/D/AIIc1T+Vff8A8A6Ciuf/AOEPsf8An+1b/wAGEv8AjR/wh9j/AM/2rf8Agwl/xo5af834f8EOap/Kvv8A+AdBRXP/APCH2P8Az/at/wCDCX/Gj/hD7H/n+1b/AMGEv+NHLT/m/D/ghzVP5V9//AOgorn/APhD7H/n+1b/AMGEv+NH/CH2P/P9q3/gwl/xo5af834f8EOap/Kvv/4B0FFc/wD8IfY/8/2rf+DCX/Gj/hD7H/n+1b/wYS/40ctP+b8P+CHNU/lX3/8AAOgorn/+EPsf+f7Vv/BhL/jR/wAIfY/8/wBq3/gwl/xo5af834f8EOap/Kvv/wCAbs0MVxC0M0aSROMMjqCCPcGucbw5eaQ5m8NXggTJZtPuSXgb/d7ofpx7VN/wh9j/AM/2rf8Agwl/xo/4Q+x/5/tW/wDBhL/jVxlGO0tPT/gkyjKW8dfX/gC2PiiF7lbHVbeTS788CKc/JIf9h+jfz9q365i58CaRex+XdTajPHnO2W9kYZ+hNN8TakfCnheKy0mKSfUJR9l0+AHe7Njrz12jJ/Coquna8N+xVJVL2na3f/PQktPGlhe+Mp/DcEMzSxRsxuMDy2Zdu5Ae5G4Zrpa8hs5RpvizwXEmjatYRxNPbSz38aL57yLknKu2WLAnn1r16s7aI0vqFFFFIYUUUUAFcR4JRNev9U8U3SrLPJdSWtmWGfIgjO0BfQk5J9a7euKsPDviTw3Pd2+g3emTaZcTvOkV8sge3ZuSFKcMuexx9aFv8gex0E2k6ZceJbXU2YDU7aF0UK4BMbddw6kZ6e9atYmhaA2lz3V/e3RvdVvCPtFxs2KAPuoi87VHpk9cmtujyAKKKKACiiigAooooAKKKKAPOdQv9bg8V+KNW0mKxaHTbWGKRrvcd+xWlZFCkYOHHJ6ccGu+0+7F/p1reKhQTxJKFPUbgDj9a4tfCviOWTWrGe705dL1e7eaeRC5nSM4Xy1GAOUVRnPGTwa7qNFijWNAFRQFUDsBQvh+7/g/iEvi/r5DqKKKACiiigAooooAKKKKACsx9DtpfEUetyyTSXEUBghjYjy4gTlmUYzuPAJz0FadFAGVrWgWuutp7XEs8bWF2l3EYWAJdc8HIPBzz/OtWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>$a=14, b=48,$ and $c=50$ find $cosA$
|
0.96
|
Geometry
|
Geometry3K
|
test
|
6
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADWAYIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3uiiiuYsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuQ1T4hWem67daRDouualc2oQzHTrQTKm4ZAPzAjj2rr68n8I6vrv9p+I9Y07wxLqkN/qDhLhL2KIbI/lUYY5P1pxV2HS52Gh+O9O1vVjpTWWp6bqBQyJb6jbeS7qOpHJrqK848P3cviD4lTXGu2j6Zqmm2hW104kOPLc/NL5g4Y84wOnvXo9NrRC6sKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkkSGJpJXVI0BZmY4AA7k1yEvxJ0ksWsNO1rU7ZWKtdWNg8kK46ndxkfTNVPiBK+p6x4e8KB2SDVLhpLvacFooxuKfj/Su5hhit4EhhjWOKNQqIgwFA6ACmlpdg97FHRdc07xDpqX+mXAmt2JXOCCrDqCDyDWjWZpGjabpLXsmmxhBeTtcTbXLAyHqQO30FadDt0EFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1Q3I0m8NlF5t15L+Sm4Dc+DgZPA59a878Jy+NvDHh200dPAgm8ndunOrwruLMSSQAfX3r0+sTxdeavp3hi9vtESGS9tk80RzIWDqOWAAIOcZx7jFNafMGUPDugagmu3viTXDANSuo1gjggJZLeIHO3cfvEnkmuqrg9JuvHes6Ta6laan4caC5iWRD9lm6EdD83UdKufZviJ/0EfDn/AICzf/FU2I7CiuP+zfET/oI+HP8AwFm/+Ko+zfET/oI+HP8AwFm/+KpWGdhRXH/ZviJ/0EfDn/gLN/8AFUfZviJ/0EfDn/gLN/8AFUWA7CiuP+zfET/oI+HP/AWb/wCKo+zfET/oI+HP/AWb/wCKosB2FFcf9m+In/QR8Of+As3/AMVR9m+In/QR8Of+As3/AMVRYDsKK4/7N8RP+gj4c/8AAWb/AOKo+zfET/oI+HP/AAFm/wDiqLAdhRXH/ZviJ/0EfDn/AICzf/FUfZviJ/0EfDn/AICzf/FUWA7CiuP+zfET/oI+HP8AwFm/+Ko+zfET/oI+HP8AwFm/+KosB2FFcf8AZviJ/wBBHw5/4Czf/FUfZviJ/wBBHw5/4Czf/FUWAd4y8OalqN9pOuaJJCNV0uRmjjnJCTIwwykjoaryXHjrXbZ7FtIs9ASTKS3bXguHC9zGqgAH0yeKZqE/jrStPuL+91fw3FbQIXkdrabgD/gX6Uz4f+M9V12efT/ENpHaagYUvLVVQp5tu3AbaWPII/UU7aW3QX1udboukWmg6RbaZYoVt7dNq55J7kn3Jyav0UUm23diSsFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUEZGDRRQBw3hM/8ACNeKNT8IP8to2dQ0vjgROf3kY4x8rZwOuDXc1x/xB064Om2viHTU3anokv2qIDrJHjEsf0K5/Kun0+/t9U062v7R99vcRrLG3qCMim+4izRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcd4y1i8nurfwpocm3VtQUmaYf8ulv0aQ+/Ye/4U0rgULsf8LC8TmwX5vDOkS5umB+W8uR0j90XqfU/gauePrWXT47DxZYxlrnRZN8qL1ltW4lXrjgfMM9MGul0XR7PQNHttMsIxHb26bVHcnuT6knk1cliSaJ4pUDxupVlIyCDwRRcQy1uob20huraRZIJkWSN16MpGQR+FTVxHgV5NEvtT8HXTljp7+fYMx5e1c5X67Wyp/Cu3oaGFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQgEEEAg9Qa4fwcx8OeIdT8HTEiBCb7TCe8Dn5kH+62fzrua47x/ZzQWdp4nsY91/ochuNo6yQEYlT8V5/CmuwHY0VXsb2DUrC3vbWQSW9xGskbDupGRVikAUUUUAFFFFABRRRQAUUUUAFFFFABRRUc88VrbyXE8ixwxKXd2OAqgZJJoAyvFHiK38M6M97KplmZhFbW6/enlb7qD6/yzVHwd4euNKtrjUdWdZtd1JvOvJR0T+7Ev8AsqOP8isrw5DL4y18eL75HTTrfdHo1tIMcdGnI9W6D2/A13lN6aCCiiikM4rx7DNpcmneL7NGabSXIukXrLavgSD3xww9OTXY29xFd20VxBIskMqB0dTwykZBH4Us0MdzBJBMivFIpR0YZDKRgg1xvgSd9KuNR8HXTlpdKffaM3WW1flD77c7T+FPdCO1ooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGVXRkdQysMEEcEUtFAHD+Ci/h/WdU8HTt+6tj9s00seWtnJyo/3GyPxruK4z4gW1xZQWPiqwQtd6LIZZUXrLbNxKv5fN7YNdZZ3cF/ZQXltIJIJ41kjcdGUjINN9xE9FFFIYUUUUAFFFFABRRRQAUUUUAFcFrssnjfxGfC9o7jRrFlk1edOBK3BW3B/VsemOO+p4y1+6sI7bRtGAk13UyY7Ze0K/xTN6BR+Z9cGtPw34ftfDOixada5cjLzTPy80h+87HuSf6DtTWmojTiijhiSKJFSNFCqijAUDgACn0UUhhRRRQAVxHjuCTSLzTfGVohMmmP5V6qjmS0c4b67T8w/E129R3FvFd20tvPGskMqFHRhwykYIP4U07ALFKk0SSxOHjdQysDkEHkGn1xXgC5m077f4QvnZrnR32wO3WW1bmNvwHynHTAFdrQ1YAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADXRJY2jkUMjAqykZBB7VxXgeU6Hqep+C53P8AoDfaNPLHl7VzkDk5OxiVJ+ldvXFePrWbTzp/i6xQtc6PJm4Rf+Wtq3Ei/gPmHpg012EdrRUdvcRXdtFcQSLJDKgdHU8MpGQR+FSUhhRRRQAUUUUAFFFFABWbr2t2fh3RrjVL58QwrnaPvOx6KPUk8VosyopZiFUDJJOABXA6aD4/8TLrUy7vDulSldOQ9LqccNMR3Cnhf/1imkBo+DdDvFkufEmup/xO9SAJjzkWsP8ABEvp6n3/ADrrqKKG7gFFFFIAooooAKKKKAOI8cRnQ9T0zxpAhP2Bvs2oBRy9q5wT0ydjEMB9a7VHSWNZI2DIwDKwOQQe9RXlpBf2U9ncxiSCeNo5EPRlIwRXJ/D+5uLKC+8K37lrvRZBFE7dZbZuYm/L5fbAp7oR2dFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMliSaJ4pUDxupVlIyCDwRT6KAOI8CTSaPd6j4Nu3ZpNMbzLJ3PMtq5yp99p+U/gK7euK8dwvpM+neMbVC0ulPsu1UcyWrnDj32khh6c12UM0dzBHPC6vFIodHU5DKRkEU33EPooopDCiiigAoornPGHiN9B02OKxi+0axfP5FhbAZ3yH+Ij+6vUmgDJ8VXlx4l1keDNKmMaFRJq90h5ghPSMH++/wCgrsrOzt9PsobO0iWK3hQRxxr0VQMAVkeE/DaeGtIMLym4v7hzPe3Tfemlbkn6dh7VvU32AKKKKQBRRRQAUUUUAFFFFABXD+NQ/h/WdL8YwL+6tj9j1IKOWtnIwx/3GwfxruKr31lBqVhcWV1GJLe4jaORT3UjBppgTqyuiujBlYZBB4Ipa4/wBezQWd34ZvpN1/ocgt9x6yQEZif8V4/CuwoegBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI7i3iu7aW3njWSGVCjow4ZSMEH8K47wFNNpb6j4QvHLTaTJm1dustq/MZ98cqfTgV2tcR46STRL/AEzxlaoT/Z7eRfqo5ktXIB7ZO04YfjTXYR29FMilSaJJYnDxuoZWByCDyDT6QwooooAqanqVpo+mXGo30oitrdC8jn0Hp6k9AO5rlfCGmXerajL4y1qIpd3SbLC2f/l0t+w/3m6k+/viqsmfiF4oMQBPhjR5vnOflvrle3uifkT6139PYQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAcN4xVvDviLTPGMIxAhFjqYHQwOflc/7rY/Ou4BBAIIIPQiq+o2Fvqmm3NhdIHt7iNopF9QRiuY+H2o3B0268Pak+7U9El+yyk9ZI8Zik+hXH5U90I7CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACobq1hvbSa1uY1kgmRo5EboykYIP4VNRQBxngC5lsI7/wleyFrrRZAkLt1ltm5ibp2HynHTArs64bxvE+havpnjS2Q4s2+y6iqj79q56n12Nhq7hWV0V0YMrDIIPBFN9xC1xnjHVby+vIfCGiSlNRvk3XVwv/AC6W3Rn/AN49B9e3FbHirxHD4Z0Zrsx+fdSsIbS2X708zcKo/Hr7VV8HeHJdFs57zUXWfW9Qfzr6f/a7Iv8AsqOBQu4GxpGlWmh6VbabYxCO2t0CIvc+59SepNXaKKQwooooAKKKKACiiigAooooAKKKKACiiigArhvFgHhrxRpni9PltHxp+qc4Aic/u5Dzj5Wxk9cGu5qnq2mW2s6TdabdruguYmjcexHUe4600BczkZFV76+ttMsJ768lEVtAhkkcgnao5JwOTXM/D/UrqXSJ9E1Js6nosv2OcnrIgH7uT6MuOT1warfE7QrXUfCGpXs8t2HtbV3jjS4ZYyRyCyA4Y/Wk9BxV2dpFKk8KTRtujkUMpxjIPIqvYanZ6mLg2c4lFvO1vKQCNsi9RyOcZ7cVSTTotV8MWlnNNcxRvBHlreZon4UcblIOK5r4dQx6V4f8QQ2+7y7XVbpU3NuOFxjJPXpVNJOXl/miI3cYvv8A5M3p/Gvhy21f+y5dUjW78wREbGKBz0UvjaG9ic1X8T3+q2l1Gtm93FEYWaI2tn9o82fPEb8HYuO/y/7wxzwWiasB8M7Y6t4YluvD8reZfXn2oLIXMuTIIx8xUNjncDx0xXsUbI8SNGcoVBU+opuPL8hp32EhMjQRmVQshUF1ByAccin0UVAIKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBBeWkF/ZT2dzGJIJ42jkQ9GUjBFcd4I1Y6VpepaBrNwqT+HiUaaQ4D22MxyfTbx+FdxXC+Ofh/J4qvra+sr6OzmWPyblZELJcxhg6qwBHAYfrTXZiE8MWs3izXf+Ey1KJktYw0ejW0g5SM9ZiP7z9vQevBru645NL8dxxrGmu6KqKAFVdPYAAdvv07+zvHv/Qf0f8A8F7f/F03qB19Fch/Z3j3/oP6P/4L2/8Ai6P7O8e/9B/R/wDwXt/8XSsM6+iuQ/s7x7/0H9H/APBe3/xdH9nePf8AoP6P/wCC9v8A4uiwHX0VyH9nePf+g/o//gvb/wCLo/s7x7/0H9H/APBe3/xdFgOvorkP7O8e/wDQf0f/AMF7f/F0f2d49/6D+j/+C9v/AIuiwHX0VyH9nePf+g/o/wD4L2/+Lo/s7x7/ANB/R/8AwXt/8XRYDr6K5D+zvHv/AEH9H/8ABe3/AMXR/Z3j3/oP6P8A+C9v/i6LAdfRXIf2d49/6D+j/wDgvb/4uj+zvHv/AEH9H/8ABe3/AMXRYDr6K5D+zvHv/Qf0f/wXt/8AF0f2d49/6D+j/wDgvb/4uiwFXxQx8MeL9M8Up8tjdY0/U/QKT+6kP+63BPocVveL7C51Xwfq1jZR+bc3Fs8cSbgu5iOBkkAfjXP6t4a8Z63pN1pl7rmjvbXMZjcCwbOD3Hz9QeR7ipbLRPHdjYwWieI9LkWGNY1eWxZmIAwMnfyaGk0Cdnc63T4ng0y1hkXbJHCisM5wQADWD4R0e70611uK/g8sXeqXE8Y3K26NyMHgnGfQ81X/ALO8e/8AQf0f/wAF7f8AxdH9nePf+g/o/wD4L2/+LpvVvzElZJdjBHh/xQnhRvBC6bD9iLGEat9pXaIC+7/V/e344x0969JghW3t44U+5GoRfoBiuU/s7x7/ANB/R/8AwXt/8XR/Z3j3/oP6P/4L2/8Ai6G7hY6+iuQ/s7x7/wBB/R//AAXt/wDF0f2d49/6D+j/APgvb/4ulYZ19MSaKR2RJEZl4YKwJH1rznxbb/ECz8J6ncJrNhNshO5LW0aOXb0Yq244IGT68cV4d4Jl1lfGOnDQ5njv5JggYAsNpPzbx3XGSfpVKN0I+uicDNZ2l69pWtK506+hnaM4kjU4eM+jKeVPsRWD/Z3j3/oP6P8A+C9v/i68P1XRvEevePr+fQo3vLyOYiS90+I28XmAYYhi2Ac55yM8nvSUbgfT9Feb+GtB+Jtrt/tPxPY+UAAI5YPtDfifkP8A48a9FiEoiQTOjyAfMyKVBPsCTj8zSasMfRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuM8feItS062j0vw+yjWZ43n3lQwghjGWcggjnG0ZHU11Wo39vpenXF/dyCO3t4zJIx7ACvLdFu/GMt1qeunwQ18+rqPKmfU4YTHb4+RAhyR1yemTRa97f12GtNWd/wCDtVl1vwfpWo3Egknnt1MrgAZccMcDgcg1uVwXwfmkPgOOzmBWayuprd1JztIbOP8Ax6u9q6luZ2IjtqFFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHIeP9Y1PTrPSrPRrr7NqGpX8dsk3lrJsU5LHawIPaqF7o/xA0uymvYPGUGpSQIZBaz6VHEsmBnG5TkU7Wf+Jn8XtAsc5TTbOa9ce7fItbvjPW49C8L3lwTm4kQw20Q+9JKwwqgd+T+lPVQut3f/AC/Qa1lZ7af5/kTeFdeTxN4ZsdXSPyvtCZaPOdrAkMM/UGtmsDwVor+HvB2maZIMTRQgyj0djuYfmTW/TnbmdtiI35VcKKKKkoKKKKAOf8X+Jj4W0mG6isvttxPcJbQWwl8vzHY8fNg46elc5a6h4osbiW4tPhXaW80v+skh1S2Rn+pC5NR/EP8AtPUvF3hfSNHFo15FJJf4u93lAoBtLbecdfxrUh/4Wb58fnnwiIdw3lBcltuecZ74qorS/wDX9XuD0f8AX9djptLnvbzTIZtSsBY3Tg+ZbecJdnPTcAAeKtQwxW8SxQxpFGgwqIoUAewFPopMQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZOv+H7XxHZxWd7LOLZJlleKJgBNtOQr5ByuewxWqAFAAAAHAApaKPIDH0Hw3Z+HW1A2cs7i+unu5FlYEK7dQuAMD65rYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkNX+H1pq3iCbWl1zXLC7mjWJvsF0sQ2joPu5x369as6T4F0zTL6K/nudR1W9hz5Vxqd0Z2jz/dB4B98ZrpqKabWwPUKKKKQBRRRQAUUUUAcFrXh7xcfHr+ItEfRCgsxaRpfvKSozuY4QcHPueKv2H/Cxf7Qg/tE+FhZbx532cXBk299u7jP1rrqKadlYHqFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>$\overline{A C}$ is a diagonal of rhombus $A B C D$ If $m \angle C D E$ is $116,$ what is $m \angle A C D ?$
|
58
|
Geometry
|
Geometry3K
|
test
|
7
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAE2Ad0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4T4seKb7wp4SjudMuBBfT3KRRvsVtowWY4YEdFx0713deJfHCV9U8SeGvDsTHdK24qvUmRwin/x1vzNAHqvhSa/ufCelXGqTGa+mtklmcoFJZhuxgAAYzjp2rYpkUaQxJFGoVEUKqjsB0FPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzNe1/TvDWlPqWqTGK2VlQsELHJOBwOa0685+Nmm3mo/D8taIz/AGW6S4mVBkmMKyk49iwP0FAHd6XqVtrGmW+o2bM1tcIJI2ZSpKnocGvGZv8Aio/2kI1B3QacRye3lx5/9GHFa2ifGXwtpvg6xgdboXlpaJD9lWI/MyKF4bpjjr+lV/gxo1/earq/jLUoSjX5ZYSwxv3NvdhntkAA/WgZ7BLLHBC800iRxIpZ3dgFUDqST0FV4dV064/1F/ay/wC5MrfyNWJYknheKVQ8bqVZT0IPBFeF6d4QtZvG934cv7ia3ZS32eRADvx8wyD6pzXVh6EKqk5O1tfkceJxFSlKKjG99O2p7vRXmX/CpZ7c5svEUsXt5JH6hv6Ug8D+Nrb/AI9PFJYej3MoH5YIqvq9F/DVX3NE/WK6+Kk/k0z06ivMf7P+J9mP3V/FcAdt0bZ/77UUf2x8TLL/AF2kxT46/u1bP/fDUfVL/DOL+YfXbfFTkvkenUV5j/wn3i61/wCP3wq+B1KwSoPfk5pV+LvlMFvNBmhbvib+hUUfUa/RX+aD+0KH2nb1TPTaK8/h+LuhvxLZ38Z9kRh/6F/StGH4m+Fpfv3ksX+/A5/kDWbwldbwZpHGYd7TR19FYEPjbw1P9zWbUf77FP54rQh1vSbnHkapZS5/uXCN/I1k6U47pmsatOW0l95fopFZXUMrBgehBzS1BoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFVtRvodL0y61C5JEFtC80mOu1QSce/FZPhHxdY+M9Kk1HT7e7hgSYw/6SiqWIAJI2sePmH60Ab9FZPiPxJpvhXSJNS1SbZCvCovLyN2VR3P8Ak1U8J+LrbxhYvfWWnahb2qttSW7jRRIe+3DEnHr0oA6GiiigAooooAKKKKACiiigAooooAKKKKACiiigAo60UUAZJ8LeHmuftJ0HSzcZz5ps492fXOM1qgBQAAABwAO1LRQAV5l8TbKbTNU0vxPZjEkMixyEeoO5c/X5gfwr02svxFpKa5oF5pzY3SxnYT2ccqfzArfDVfZ1VJ7dfQ58VS9rScVv09S5YXsWo6fb3sBzFPGsi/QjNWK8++FWrNNpNzo1wSJ7GQlVbqEYnI/Bs/mK9Bqa9L2VRw7FYer7Wkp9wooorI2CkZVdSrKGB6gjNLRQBRm0XSrnPn6ZZy56+ZArZ/MVnTeCfDU/39GtR/uLs/lit+irVWcdmzOVKnLeK+45Cb4ZeFpfuWUsX+5O/wDUms+b4R6E/MV3fxn3dGH/AKD/AFrv6K1WLrrabMpYPDveCPMm+EIibdZ69NC3bMGT+YYUn/CAeLbT/jx8VPgdA00qD8hmvTqK0+vV+rv8kZ/2fQ+yrejZ5j/Y3xMsv9Tq8U+P+mit/wChrR9v+KFn/rbCK4A77Y2z/wB8kV6dRR9bv8UIv5B9St8NSS+Z5j/wm/je1/4+/CxYD+JLaUD88kUf8LZubfi98OSxe/nFf0K/1r06ij6xRfxUl97QfVq6+Gq/mkzzyH4v6O3+usL5P9wI3/swrQh+KPhiXG+e4h/66QE4/wC+c11E2l6fcf66wtZf9+FW/mKz5vB3hyfO/RbIf7kQT/0HFHPhXvFr5hyYtbTT9V/kQQePPC9xjZrEAz/z0Vk/9CArQh8Q6LcY8nV7GQnstwhP5ZrFm+G3hWbONOaMnuk7j9CcVnzfCXw/Jkxz38R7bZVI/VaOXCPZyXyQc2MW8Yv0bO5jljmXdFIjr6qwIp9eaSfB+2DbrXWriJh0LRBiPyIpn/CufEdr/wAePiqUenzyR/yJo9hQe1T70w9viFvS+5o9OorzE+HfiPaf6nXY5h/13Lf+hrR5/wAUrTl4IrkeuIT+gINH1RP4akfvD6418VOX3XPTqK8x/wCEv8fWv/Hz4ZEqjqUtpCfzBIo/4WnqVr/x/eGZUx1PmMmPwK+lH1Gq/hs/RoP7Qor4rr1TPTqK85g+MGmNjz9MvE/65sr/AMyK0Ifip4blxva7h/34c4/75JqHg663iy447Dy2mjtqK5mH4g+Fp8bdWjU+jxuv8xWhD4n0G4/1Ws2BPobhQfyJrJ0akd4v7jWNelLaS+81qKihure4/wBTPFJ/uOD/ACqWs7WNU7hRRRQAUUUUAcN8XtS/s74b6iFOHuSluv8AwJhn/wAdDVmeFNW034ffB/TL7U32tNGZ0iH35ncllCj/AHSvPYc1hftBaltsdF0tW/1kklw4/wB0BV/9CauK1nw94s8ReE28Xaivl2FnHHHaWmMbYOm5V7KPl5PJHPQUDOv0Hw7rPxX1uLxL4oBg0OMn7LZqSBIB2X/ZPdupxge3tdvbw2tvHb28SQwxqFSONQqqB0AA6Cuf8B+IoPE/g6wv4lRJFQQzRIABHIowQAOg6ED0IrpKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5Vqv/ABR3xTt9RHyWOo8yHoBuOHz9Gw3416rXG/EvRv7U8KyXEa5nsT5y+u3o4/Ln/gNX/A+tf254VtJ3fdPEPIm553Lxk/UYP4121v3tGNXqtH+hw0P3VedLo/eX6nR0UUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBBPY2lznz7WCXPXzIw386zpvCnh+4z5mi2GT1KwKp/MCtiiqU5R2ZEqcJbq5y83w78LT5J0sIT3jldf03YrPm+FHhyXOxr2H/cmB/wDQga7iitViqy2m/vMpYShLeC+482l+D2nk/uNVuk/30Vv5YqL/AIVjrVr/AMeXiiUfg8f8mNenUVp9er9ZX+SMnl+H6Rt82eY/8Ir8QrTmDxGswHQPcOx/8eX+tGPinad4rlR/1w/+sTXp1FP65J/FGL+QfUYr4ZyXzOF8FeL9S1TWL7R9bjiivYFyoRdpyDhgeSCeQePeu6ryzxwj+GfHemeJYQfKmIEwHcqNrD8UI/I16ijrJGsiMGRgCrDoQe9LFQj7tSCspL8eo8JOXvUpu7i/wex4p4jij8UftB6dpkirNbWMaCVGGVwqmUgjvksB+le0T20NzaSWs0SvBKhjeMjgqRgj6YrnNM8B6XpfjG98URz3kt/dhwyyupjTcQflAUEYAwMk8ZrqK5DsPDfAdxL8Pfihf+EL2Q/Yb5wLZ26Fusbf8CB2n3x6V7lXKeLPh9pHjC+s729mvLa6tBiOa0dUYjORncp6HJH1NdUgKoqlixAwWOMn34oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBskaSxtHIoZGBVlIyCD1FeXeCnfwv481Lw3MxEM5JhLdyBuU/ipP4gV6nXmnxQsJbG80zxNZjEtvIschHqDuQn/AMeH5V2YRqTlRe0l+PQ4sanFRrLeL/Dqel0VV02/i1TTLa+gP7ueNZF56ZHT8OlWq5GmnZnYmmroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmPHXjKHwRoS6jJbi6lklWKO383yy5OSTnB6AeldDeQy3FjcQwzmCWSNkSYDJjYjAbHfHWvnv4qeBtU0PSrfWtV8U3GsyPci2VJoSmwMrNkfOwA+XoAOtAH0VXCeI/iUml662haLot3rmqRLumitjhYhxwWAbnkZ4wMgZzXdMwVSzEBQMknoK8r+CAF/puva9MM3d9qLCRzycBQ+M/WQ0AdH4P+Idn4pv7jS7ixuNL1e3G6SzueuOM4OB0yOCAa1PFni7TfB+lC91DzHaRvLhgiGXlb0A/ma4Tx0I9K+Mng3U4fkmu2+zSlf4gW2DP4SY/AUvihl1L4++FtOuQWtre2adUbp5mJGyPxRPyoGXIfi5JaXluniPwrqOiWly22K6myy/8CBVce+M4rT+Juq3lroOm2theG0XVdQhs5L1D/qo3zlge3Tr6Zq58TbKC9+HOtJOARHAZkJ7Mp3DH5Y/GqXhCysvGPwk0mz1aIXEElsImyeQY2KAg9iNtAjm/FPha1+G9haeIvDl5ex3cd1HHNBLOXF8GOCrDux68e/fBr16uH0z4YaXZalbXt7qerat9kbdaw6hc+ZHCexC4HI/L2ruKAOb8d6N/bXhO7iVd08I8+H13L1H4jI/Gqfw11n+1PCcUDvmeyPkNnrt/hP5cfhXYV5XoP/FIfFG70lvks9Q/1XYc/Mn5HK/jXbR/eUJU+q1X6nDX/dYiFXo/df6HqlFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ2vaUmt6Feac+P30ZCk9mHKn8CBWjRTjJxaa6ClFSTi9meefCrVXbT7zQ7nKz2UhZFbqFJ5H4Nn/AL6r0OvKtdz4P+KFrqy5Sy1DmX054f8AI4f8a9VrqxkU5KrHaWvz6nHgpNQdKW8Xb5dAooorkO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8r+Pn/Ii2P8A2E4//RUteqV5X8fP+RFsf+wnH/6KloA9PuY2ltZo1xudGUZ9SK8x+AfHgW+/7Ccn/oqKvU68dsdXf4R6/rNlqun3cuhX9ybqzu7dAwQnqrZIGcYHrx0waALPxMQy/E7wEikbhdqxGewljP8AQ1q/Ebwnq97qml+KfDapJq+mHBgbA86POQBnHTLcZ5DHHPXG0J734ifE218UfYbi00LSoilsZxtMznOCPfLZOCQAo9a3fHmr+I/DOv6VrlklzeaCimO/s4EBI64c8Z/iHfGUGcZoGc34o1zxn4o8I6lbXXhw6DYQWzy3lxPKWaXYu4IgwCNzADPPHeuw+E0LQfDDRUbqUlf8Glcj9DXIeIvHr/ETRm8OeEdL1CSa9ZUuLieILHBHkE5IJ+h9umTXqmiaXFomh2OlwHdHawrEGP8AFgYJ/E8/jQBfooooEFedfFbTHFnY69bZWezkCM69QpOVP4N/6FXotU9V0+LVtJurCb7lxGUz6E9D+BwfwrbD1fZVFMwxNL2tJw/q4zRNTj1nRLPUY8YniDED+FujD8CCPwq/Xm3wr1CS3Oo+Hbv5Z7WQyKp7c7XH4ED869Jp4il7Kq49P0DDVfa0lN79fUKKKKwNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOQ+JGjf2t4TmljXM9kfPT3UfeH5c/gKs+Ata/trwnayO+6e3HkS+uV6H8Rg10rKroyOAysMEHoRXlvg9m8K/ELUfD0rEW1yT5OfUfMn/jpI+uK7af73Dyh1jqvTqcNX91iI1OktH69D1OiiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyvxSD4T+JNhrqAra3n+ux07K/6EN9a9UBBAIOQehFcp8RNG/tfwlcFE3T2n+kR468feH/AHzn8hTvh7rP9seErbe2Z7X/AEeT1+X7p/75x+Oa7av72hGp1jo/0OGj+6xEqfSWq/U6miiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNvilp8trLpviSzG2a1kVHYdsHch/PI/EV6TVDW9Mj1nRbvTpMbZ4yoJ/hbqp/AgH8K3w9X2VRSe3X0MMTS9rScVv09R+lahFq2lWt/D/AKu4jDgemeo/A8fhVyvOvhVqci2t9oF0Cs9nIXVG6gE4Yfg3/oVei0sRS9lUcAw1X2tJT/q4UUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIyhlKsAQRgg968s8IsfCnxF1Dw/ISLa6P7nPt8yf+Okj616pXmvxSsJbSXTPEdp8s9tII3YDpg7kP55H4iuzBtSbpPaS/HocWNTjGNZbxd/l1PSqKqaZfxappdrfw/6ueNZAPTI6fh0q3XI007M7E01dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5V4kB8IfEuz1tPls74/vsdOflk/mG+teqg5GR0rk/iJo39r+E52Rcz2n+kR46kD7w/75z+Qp/w+1n+2fCVsXbdPa/6PLnr8v3T+K4/HNdtX97QjU6rR/ocNH91iJUuktV+p1NFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ2vaWmtaFeac+P38ZVSezdVP4EA1o0U4ycWmugpRUk4vZnnfwp1R20+80O5ys9lIWVW6hSeR+DZ/wC+q9EryvWf+KQ+KltqY+Wy1H/WHsN3D5+hw3416pXVjIpyVWO0lf59TjwUmoOlLeLt8ugUUUVyHaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjKGUqwBBGCD3ryzwsT4S+JF/oTkraXh/c56f3k/QlfrXqlecfFTTZYV0/xFafLPaSBHYDkDOUP4Nkf8CrswbTk6T2krfPocWNTjFVo7xd/l1PR6Ko6PqUWsaPaahD9yeMPj+6e4/A5H4VerkaadmdkWpJNBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxnxM0b+0/Cklyi5nsW85cDnZ0cflz/wGtHwPrP8AbfhSzndt08S+TN67l4yfqMH8a6CSNJonikUMjqVZT0IPUV5f4Ekfw1421TwzcMfLlJaEnuV5B/FDn8BXbT/e4eUOsdV6dThqfusTGfSWj9en+R6lRRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLV9Ni1fSLvT5cbJ4ymSPunsfwOD+FXaKabTuhSSkrM84+FepSwrqHh67+We0kLopPIGcOPwbH/fVej15X4qVvCXxGsdfjG21vD++x0/uv+hDfWvU1YMoZSCCMgjvXXjEnJVVtJX+fU48E3GLoy3i7fLoLRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmXxMtJdK1fSvE9oMSRyCOT3K/MufqNw/AV6bWT4m0ga54cvbDAMkkZMWezjlf1ArfDVfZ1U3t19DnxVJ1aTit916ov2V3Ff2MF3A26KeNZEPsRmp64H4VaubrQptLmJE9jJgBuuxiSPyO4flXfVNel7Ko4disPVVWlGfcKKKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOW+IOjf2z4SuQi7p7X/AEiLHX5fvD8Vz+OKZ8O9Z/tfwnArtme0/wBHkz1IH3T/AN84/I11hGRg9K8r8Of8Uh8TbzRWylnfcQ56c/NH/Vfqa7aX72hKn1Wq/U4a37rERq9JaP8AQ9UoooriO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8qm/4o/wCLSy/dstU6+g3nn8nGfpXqtcN8UtHN/wCG1v4lJmsH35HXY3Df+yn8DW94S1j+3fDFles2Zimyb/fXg/n1/Gu2v+8owq9Vo/0OHD/uq06PR6r57/ibdFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFedfFXTJFtbHX7XKz2UgR3XqATlT+Df+hV6LVTVNPi1XS7qwm/1dxG0ZPpkcH8DzW2Hq+yqKZhiaXtaTh/VyLRNUj1rRbTUYsATxhiB/C3Rh+ByK0K81+FuoS2kupeG7w7Z7aRnRSfQ7XA+hAP4mvSqeIpeyqOK26egsLV9rSUnv19QooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIrm3iu7WW2mXdFKhR19QRg15p8ObiXQ/Emq+F7puQ5eLPGWXgkfVcH6CvUK8v+IcEmgeKtK8UWqnlwkuO7L2P+8uR+FdmE9/mov7S09VscOM9xxrr7L19HueoUVHBPHc28U8LBopUDow7gjINSVxnduFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUdxcRWltLczuEhiQyOx/hUDJP5Vz2heP/DHiXUPsGkan9puthk2eRInyjGTllA7igDpaKKzdc8QaX4a077fq92La23iPeUZssegAUEnoe3agDmvEXw1sde1abURey20s2C6qgZSQAM9vSsj/AIVfq1t/x5eJ5VHptdP5Ma7Tw94t0TxUlw+i3pultyolPkum0nOPvKM9D0rarqjja0Uop6fI5J4GhKTk46vzZ5j/AMIn8QbXmDxIso9HuZCf/HlNGz4pWnR4rlR2/cn+eDXp1FV9ck/ijF/In6jFfDOS+Z5j/wAJN8RbPifw+kwHXbbsx/8AHGo/4WVr1p/x/wDhaVcdeJI/5qa9Ooo+sUn8VNfK6D6rVXw1X87M81i+MFlnFxpFzGRwQkgbH5gVoQ/Fjw7J9+O+i/34lP8AJjXbS28M4xNDHIPR1B/nWfN4b0O4/wBbo9gx9Tbpn88Ue0wz3g18w9liltUT9V/kZUPxF8Kzcf2oEPo8Lj9duK0IfFvh6fGzWrHJ6Bp1U/riqc3gDwtP9/SIh/uO6fyIrPm+FnhqX7iXUP8AuTZ/mDRbCPrJfcF8YukX951sF/Z3OPIu4Jc9PLkDfyNWK86m+D+lNnyNSvE9PMCv/ICq3/Cq9QtebDxLKmOg8tkx+Iaj2OHe1T70w9tiVvS+5o9OorzH/hDvHlp/x6+JhIB0D3Mn8iCKPs3xStOEuIrkemYT+rAGj6rF/DUj+QfW5r4qUvlqenUV5j/wkPxItD+90OKb/tiW/wDQGo/4WN4ktf8Aj+8KyqO/ySR/zBo+pVH8LT+aD6/SXxJr1TPTqK80j+MFsG23Wi3ETDqFlDEfmBV+D4teH5MCSC+iPfdGpH6NUvBYhfZKWPwz+2d5RXKQfEjwtNjOomMntJA4/XGK0IfGHhyf7mtWQ/35Qn88Vk6FWO8X9xrHEUZbSX3m3RVWHU9PuP8AUX1tL/uSq38jVqs2mtzVNPYKKKKQwooooAKKKKACiiigAooooAKwvGGjf254XvLNV3TBPMh9d68j8+R+NbtFVCbhJSW6JnBTi4vZnD/C7WP7Q8MfYpGzPYv5eD12Hlf6j8K7ivK7P/ij/izJbfdstT+4Ow3nK/k4K/SvVK6MZFKpzx2lqcuCm3T5Jbx0+4KKKK5TsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOP+KWpDTPhxrEgbDzRC3UevmEKf0J/KvH/htZtoHxH8M793/EzsHlYkdnEm3H/fC12nx7v2XQNJ0qI5ku7sybQeWCLjH5uPyql40s18OfEP4euuAkKQ2RYDjajhT29HNAz2mvAviTqp8YeLLyxhYnSPDttLNcMD8rygYx+LbU9fvEV6j8RfFa+EvCNzeI4F5N+4tR38wj734DJ/AeteS6xpLeD/AIJqlzkap4guY5J8/eCDLqCfbAz7uaAR3XwM077J4BN2Vw17dSSBvVVwg/VW/OvTKwvBmm/2T4L0axIw8dpHvH+0Rub9Sa3aBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAySKOZdssaOvoygiqE3h7RbjPnaRYyE92t0J/PFaVFUpSWzJcYy3Rzs/gPwvcZ36PAM/8APNmT/wBBIrOm+F3hmX7kFxD/ALk5P/oWas+KviFoPhCaO2v5JpryQbltbVN8mPU5IA/E81J4U8eaH4x81NNllS5hG6S2uE2SKOmcZIIzxwa0WJrLaT+8ylhaMt4L7jCm+EGjt/qdQvk/3yjf0FVP+FT3VtzY+I5YyOg8or+of+lenUVqsdiF9r8jJ5fhn9n8zzH/AIQnxxa/8eniguB0V7mUD8iCKPsXxQs/9VexXIHbdE2f++gDXp1FP67N/FFP5C+owXwykvRnmP8AbnxKsv8AXaNFPjr+6DZ/74aj/hYPiu0/4/vCsgx1IilQfqDXp1FH1mm/ipr8UH1Wovhqv52Z5mnxfjRtt3oc8LegmBP6qKvQ/FvQZOJba/iPqY1I/Rq7x0WRdrqGHoRmqM2g6Pcf67SrGT/ft0P9KPa4Z702vRh7LFLaon6r/IwoPiX4Wmxuv3iJ7SQP/QGtCHxn4bnxs1q0Gf78mz/0LFMm8DeGZ879Htx/uZT/ANBIrOn+GHheXOy1nh/65zsf/Qs0f7I/5l9wf7Yv5X950kGr6Zc48jUbSXPTy51b+Rq6CCAQcg9CK8+m+EOivkw31/Gf9pkYf+giqZ+EkkBLWXiGWI9gYSP1DD+VHssM9qlvVB7bFLenf0Z6bRXmP/CC+M7b/jz8VMR6PcSqPy5o/s34nWf+q1KKf/gcbf8Aoa0fVYP4ai/IPrc18VKXysy98VdIa40W31aAET2Mg3MvXYxHP4Nj8zXV+G9WXXPD1lqAILyxjzAOzjhh+YNefX118R5LCezvtIiuYZozG4EaMSCP9hutaHwuXVdNW90rUdPu7eMkTwvLCyrngMASMf3Tj61tUpf7NZyTcXpZ30ZhSrf7VdRaUlrdW1R6NRRRXmnqBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHivjs/298cfDej/eitfKd19fmMjf+OqKufHhTb2Xh7U1Hz2t4wB+oDf+yV09l8Pfs/xKufGU+qee8oYR232fb5eUCD59xzhRjp3q/wCPPBy+N9Aj0xr37GY7hZ1l8rzOQrDGNw7Me9Azz2V1+KXxajiQ+d4d0QbmPVJGz/7Mwx7qho+L7HXPHvhbw0h3BmV5APSRwvP0CE/jXoXgTwVbeB9DewiuPtU0spkmuDHsLnoBjJwAPf1PeqE3w9+0/EyPxjcap5ixACOy+z4C4j2j593qS3SgDtwAAABgDtRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyb4ava6j4h8V+MdSkiDm9NvDPMwAijHYE9Pl2D6D3rq4vCmn3njyDxnp2ox48gwzRQKrJOcEbi4PXlf++RXlvwl8HWvi3S746809xp9rdEx2nmsimZlG92wQScBQOfWtl9Nj+GfxX0SDSJZU0jWj5Mlq7lgrFgoxn0JQgnnqM0DPZ6KKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3iT4i/2F430zwxBpX2ya98rdL9o2eVvcr02nOAM9RXc14dpJ/wCEk/aNvbk/PFpxkwB0HlqI/wD0M5+tAHuNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB414W1uz+GfivX9A8QM9paXVybqyuTGxR1OfTPbb9CCDUhv4viT8WNJudJR5dG0IebJdMhVWkzkAZ9wuM88Ma9XvtM0/VIhFqFjbXcY5CXESyAfgQafZ2Vpp9utvZWsNtAvSOGMIo/AcUAT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEN3cx2dlPdSnEcMbSN9AMn+VeN/Ae2kvL3xDr04zJNIsYb3JLv/Na7r4pakNM+HGsSBsPNELdR6+YQp/Qn8q474TeKPDHh3wNFb3+s2dvdzTyTSxM3zLztGfwUH8aBnsNFct/wsjwb/wBDDZf99n/CujtbqC9tIbq2kEkEyCSNx0ZSMgj2IoETUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZmu+HtL8TaeLDV7Y3FsJBJs8x0+YAgHKkHua5r/AIVB4E/6AX/k3P8A/F13FFAHD/8ACoPAn/QC/wDJuf8A+Lrs7a3is7WG2t0CQwoscaD+FQMAflUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z
|
<image>Use parallelogram $JKLM$ to find $m \angle KLM$
|
71
|
Geometry
|
Geometry3K
|
test
|
8
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACzAWADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuM1CiiigAooooAKKKKACiiigAopCQoJJAA5JPauTbx3A0ji30y7njViokQcNjvSbS3JlNR3Otorkv+E5/wCoLf8A/fNH/Cc/9QW//wC+aXPEn2sO51tFcl/wnP8A1Bb/AP75o/4Tn/qC3/8A3zRzxD2sO51tFcl/wnP/AFBb/wD75o/4Tn/qC3//AHzRzxD2sO51tFcl/wAJz/1Bb/8A75o/4Tn/AKgt/wD980c8Q9rDudbRXJf8Jz/1Bb//AL5o/wCE5/6gt/8A980c8Q9rDudbRXJf8Jz/ANQW/wD++aP+E5/6gt//AN80c8Q9rDudbRXJf8Jz/wBQW/8A++aP+E5/6gt//wB80c8Q9rDudbRXJf8ACc/9QW//AO+aP+E5/wCoLf8A/fNHPEPaw7nW0VyX/Cc/9QW//wC+aP8AhOf+oLf/APfNHPEPaw7nW0VyX/Cc/wDUFv8A/vmj/hOf+oLf/wDfNHPEPaw7nW0VyX/Cc/8AUFv/APvmj/hOf+oLf/8AfNHPEPaw7nW0VyX/AAnP/UFv/wDvmj/hOf8AqC3/AP3zRzxD2sO51tFcl/wnP/UFv/8Avmmv48SJC8mkXqKOrMMAUc8Q9rDudfRVLSr86pp0V59neBZeVVzkkdj+NXao0TvqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVr+9h06xmu52xHEu4+/oB7npQGxz3jHVJFii0a0b/AEm7++R/BH3/AD5/AGuU8KAxz6tBvZkiuSi5PQAkVo6Ys15cT6vdj/SLo5Uf3E7Afp+QqvoNlc2l5qrzxFFmumeMkg7lyeahSTjL+uoqU4yo1m97K33m3RRRWRwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZotm8Qa5HpiZ+yQESXTDv6L/n+lS6pffYbMuo3TOdkSjnLGul8M6N/Y+lKsvN1MfMnbvuPb8P8aqKuzSnDmkbCqqIEUBVUYAHQCloorY7AooooAKKKKACiiigAooooAKKKKACiiigArhvEl4da1pNJibNpanfckdGf+7+H+PpXQ+JdZGjaU0kfNzKfLgXrlj3/D/CuZ0uyNlaAOd08h3ysTkljWc5dDCtP7KLoAAAAwB2qlY6nBqE11FEsitbSmJ94ABIz056cVdrnPDP/H/rn/X438zSjFOMn2Ko0YzoVZveNrfN2OjoooqDkCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoJAGTwKKzNTea6mh0mz/4+Lo4J/up3J/X8jQBb8O2Z1zW21SUZs7M7LcHoz/3vw6/l6V3NVtPsYdNsIbOAYjiXA9z3J9yeas1vFWR204csbBRRRTLCiiigAooooAKKKKACiiigAooooAKRmCKWYgKBkk9hS1ynjHU5CkWi2jf6Rd/6wj+CPv+f8gfWk3ZXJlJRV2ZD3J8Qa7JqLZ+x2xMdsp7+rf59vStGora3jtbeOCIYRBgVLWG5xNtu7CqdlpsFhLcyQl91zIZH3HPJ9Pzq5WHoF3cXN5q6TSs6xXTJGD/AAjJ4FXFNxbR0UoVHRqSi7JWuu+uhuUUUVBzBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFc3EdrbyTynCIMmrfg7TJNkutXa/6Rd/6sH+CPt+f8gKyEtT4h16PTlz9jtiJLlh3PZf6fn6V6CqhVCqAFAwAO1XCPU3owu+Zi0UUVqdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBW1C+h02wmvJziOJcn3PYD3J4rhNMSa6mm1a85ubo5A/up2A/T8hVrxFeHXNbXS4jmzszvuCOjP/d/Dp+fpVkDAwOlYzld2OSrPmdl0CiiipMgrA8OwyxX2stJE6B7tmUspG4ZPI9a36rWt/bXkk6W8m9oHMcg2kbW9OetXFtRasdNKpONGpFRuna77almiiioOYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKpapemytCUG6eQ7IlAySxq6SACScAdTVfw3ZnWtZfVpVzaWp2WwP8AE3978P8AD0oSu7DjFydkdD4a0YaNpSxvzcynzJ265Y9vwrRjvLWW7ltI7mF7mEAywrIC6A9Mr1GfeqPiEa6dLI8OmxW/Ljm93bAvOfu856V5x8L4tVg+Ivi6PXLiO41ILF58kR+Uk5IxwOAMDp2rpUdDuSUbJHq9zdW9nA091PFBCvWSVwqj8TTbS9tb+AT2dzDcwk4EkMgdfzFeVeKv7O8SfFc6Zr93HDoOi2QuJo5pfLjeV8Yycjn51/75x3rb8D+GdM0zxLqWr+GdXtZtBu4lT7FbyGQRyjack5P+1wefmquXQLnoNVYdTsLm8ls4L62luohmSFJVZ05xyoORzVXxDqdzpGjTXlpp1xqEykAQQfeOe/4da8Z+G2ovpng7Ub228KX13eOkgfUIufNBYAqCf7vU/Sko3VwbPeqK8x+C+s3t54Vg0+fTrsQwrI638hzHMTIflHuM/pXp1JqzsNBRRRSAKKKKACiiigArF8Taz/Y+lFoubuY+XAvfce/4f4VssyojO7BVUZJPQCvPftLeINck1N8/ZYCY7VT39W/z/SpnKyM6s+Vabkul2P2GzCMd0znfI3XLGrtFFYnGFFFFABXOeGf+P/XP+vxv5mujrP03Sl06e9lEpf7VMZSCuNuSeP1q4ySjJdzroVYRoVYN6ytb5O5oUUUVByBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXVxHaW0k8hwqDP19qAKOpNNeXEGkWh/f3Rwx/uJ3J/X8q7ywsodOsYbSBcRxLtHv6k+561zvg7S5Fil1i7X/SbvlAf4I+358fgBXVVrCNlc6qMLK76hXmvg7/ksHjf6Qf8AoNelVzWj+Ev7J8Ya5r/23zf7UEf7jytvlbRj72TnP0Fap6M2ZwQ8P6frn7QWtQ6tbrcW6WUdzHDJyjsEiQEjuBlqt6Zp1t4Y+Ov9naNGILG+0zzri3j+4jAnGB2+6P8Avo+tdL4s8Dz61rFprujaq+k61bIYxOse9ZE/usM+59evTph3hLwRJoWqXmt6rqkmq61eKEe5dAgRBj5VH4D8hwO9c2grHWT/APHvJ/un+Veb/Cb/AJJE31uP5mvSnXfGy5xuBGa53wf4SXwr4UGhPeG7XdIWlEfl5DHpjJ/nUp6DMb4Nf8kx03/rpN/6Mau9rjvA/gu/8GxSWjeIHv8ATQD5Nq1qsflMWyTu3Envx712NEtwWwUUUVIBRRRQAUUVV1K/h0vT5ryc/JEucd2PYD6mgG7HO+MdSdxFodo2J7nmZh/BH/8AX/kPeq1vAltbpDGMIgwKwJ9TXSdLv/E2q5aWQb9o64Jwqj68fhiuebx14g06Gz1TWNChg0e6dVV45cyIGGQSM+nPQfhWXK56o45Nzdz0SiuZ8T+J7jSbmy03SrNb3Vb0kxRFsKqjqxP59x0PpUHh3xVfXet3Gha7YR2WpRoJU8ptySL7df5+vTFLkdrk8rtc1tQ8U6HpV8tlfalDBcMAdjE8Z6ZI4H41rAhgCCCDyCK8+17wjrU2q6w2nR6dPbauqCSS6z5luVGDt/n+XpXc6fafYNNtbPeZPIhSLeerbQBn9KJKKSswaVtCzWPouo3F9d6nHMVK29wY48DHAJ/wrYrnPDP/AB/65/1+N/M1UEnCTOvDwjLD1pNaq1vvOjooorM4gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs6K1PiHX0sRk2VqRJckdGPZf6fn6U/Vb02dp+7G64lOyJRySxrqPDmjjRtJSFubiT55365Y9vw6VUVdmlOHNLyNYAKAAAAOABS0UVsdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwviC8/t3XV06M5srI7piOjyen4dPzrf8T6ydI0s+Tzdzny4FHXJ7/h/PFc7pliLCzWMnMjfNI3qxrOcuhz1p/ZRx/xZl8rwjbqc+W97Grgd12scfpVbUvEXinR7aDUta0fTm0eR1DwR5MkIPTOTjP4Y7cVsfEfSLjV/CMq2sZkmtpFuFRerAZBx+BJ/Cub8SeMbPxf4di0TSIpptSvnjDwmMjysMGOT06jqO2auGsUrGcdkaqSrd/GKKQHfGmlBoj7E5yP++jS618nxe8OMv3ntZVb3G2Sq2tBfCHi/RtanRzposhYzyopbYR0JHvx+Ro0q9Txf8SY9YsEc6bplsYhM6lQ7sGHAPsx/L3ot16WDz8jrNakujeadbW101v58jKzqoJwFz3pf7J1D/oOXP/fpP8KNV/5DWjf9dZP/AEA1r1Lk4xVv61OyVaVKlTUEtU+if2n3Rkf2TqH/AEHLn/v0n+FXLAxiExLdpcyxsVlcFd27P8QHQ1brnPDP/H/rn/X438zRrOLb6CTlXoTlJr3bPRJbu3RI6OiiisjgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApCQoJJAA5JNLWZqJmvrqDR7Q/vrk/O39xO5P8An+dAFzwzZnWdYfWJlP2W2Pl2qnu3dv8AP9K7iq9lZw6fZQ2kC7YolCr/AI/WrFbxVkdsIcqsFFFFMsKKKKACiiigAooooAKKKKACiiigApruscbO7BUUEsT0Ap1Q3dpDfWsltcKWhkGGUMVyPqOaAPPjfx63rsupzSKsEP7u2RmA4/vY/wA9fatH7Vb/APPeL/vsVr/8IV4e/wCfD/yNJ/8AFUf8IV4e/wCfD/yNJ/8AFVlyM5XRm3dmR9qt/wDnvF/32KYslmjs6PArN95gQCfrW1/whXh7/nw/8jSf/FUf8IV4e/58P/I0n/xVHs2HsJmO09q6lWlhZT1BYEGkSa0iQJHJAijoqsABWz/whXh7/nw/8jSf/FUf8IV4e/58P/I0n/xVHs2HsJnJ6lLG+r6S6OrKkrl2ByFGw9fStX7Vb/8APeL/AL7Fa/8AwhXh7/nw/wDI0n/xVH/CFeHv+fD/AMjSf/FU3FtJdjScZzjGOnuq34t/qZH2q3/57xf99isrSLVNPudQlkurdhczmVQr9ASev511n/CFeHv+fD/yNJ/8VR/whXh7/nw/8jSf/FUKMkmu4QVWEJQTVpWv8tTI+1W//PeL/vsUfarf/nvF/wB9itf/AIQrw9/z4f8AkaT/AOKo/wCEK8Pf8+H/AJGk/wDiqXs2Z+wmZH2q3/57xf8AfYo+1W//AD3i/wC+xWv/AMIV4e/58P8AyNJ/8VR/whXh7/nw/wDI0n/xVHs2HsJmR9qt/wDnvF/32KPtVv8A894v++xWv/whXh7/AJ8P/I0n/wAVR/whXh7/AJ8P/I0n/wAVR7Nh7CZkfarf/nvF/wB9ij7Vb/8APeL/AL7Fa/8AwhXh7/nw/wDI0n/xVH/CFeHv+fD/AMjSf/FUezYewmZH2q3/AOe8X/fYo+1W/wDz3i/77Fa//CFeHv8Anw/8jSf/ABVH/CFeHv8Anw/8jSf/ABVHs2HsJmR9qt/+e8X/AH2KPtVv/wA94v8AvsVr/wDCFeHv+fD/AMjSf/FUf8IV4e/58P8AyNJ/8VR7Nh7CZkfarf8A57xf99ij7Vb/APPeL/vsVr/8IV4e/wCfD/yNJ/8AFUf8IV4e/wCfD/yNJ/8AFUezYewmZH2q3/57xf8AfYo+1W//AD3i/wC+xWv/AMIV4e/58P8AyNJ/8VR/whXh7/nw/wDI0n/xVHs2HsJmHcahbW9u8rTIQozgMMn2rT8HaXJHBJq92v8Apd5yoP8ABH2H4/yxVkeC/D6sCNP5BzzK5/8AZq3wAAABgCqjCzuy6dJxd5BRRRVm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2WRYonkc4VFLE+wrxzQrfxn8QNLvPEsPim40sGWRbKygX93hegbBHfjJB6Z9q9kIBBBGQeoNedeMvFUkE//AAhvg62SXWrkFZDCoWOzQ9WbHAbB/Dr6A3HyEzNh+IetXfwdXWbaLzNaaf7FvSPI35/1m3GPu/hn24qtrY8WfDhNL1u58UT6xDPcpb3dncJ8vzAk7OTj7pxjHb3FegeEfD9r4L8L2mkm4RmUkySsdvmSMcnGfyA9BXnHxCsvEWkaxaeIfEFzDrPhy11DfHYp+7MILHZkAAMQMDJJ9OhNUrN2Qme0V454p8ZQat8RbTSYPFsul6PBATPLasVLThyChPXsvt19a9hikSaJJYzlHUMp9Qa8wudL09vj3bQmwtTE2jmVkMK7S+9vmIx196mI2TaT8TbK8+I+oac+r2zaO0US2JCY3zNtBAOMnknrXpdeW6Hpenj45+IYRYWoihsYXiTyVwjYjOVGOD7ivUqUrdAQUUUVIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI52lW3laFA8oQlFJxubHArxvwhYfEHwlbXQTwVb3d5dzGW4vJdQiEkhPY/P06/ma9ooqk7BY848R6L4o8b+Bit7psOla3Z3q3NrALhZFfYvHzAkAnc3XuBnisvWYPHnj+yttA1Hw7Fo9n5yNfXZuFcMF5+RRz/PnHI5r1uimpCsNjjWKNY0GFUBQPQCuMm0HU3+MNvry22dMTSjbtP5i8Sb2ONud3QjnGK7WipTsM86l0nxLpXxbvNcsNHS+03UYYYJJftSRmFRsDNgnJxtJwBzXotFFDdwCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z
|
<image>Find the perimeter of the parallelogram.
|
78
|
Geometry
|
Geometry3K
|
test
|
9
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFEAPoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooqAXtobw2YuoTdKu4wiQbwPXb1xQBPRUCXtrJdvaJcwtcxjc8IkBdRxyV6gcj86noAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArx34uXMnhDxZoPjLTzEbzZJayQuceau04JHUgbjk/wC7XsLEhSQCxA6Dqa8lu/h/rHjV9f1fxRbfZrySBrfSLLzlcWwHzKxKkjJOAee7e2ADqvh94Tfw/pkuoajKLnXdTPn3tzkHk8hAfQZ7dT7Yrsa5zwHDrNr4M06z161NvqFrH5DKZFfcq8KcqSPu4/EGujoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKWo6vp2kRpJqN7Baq5whlcLuPtWd/wm3hj/AKDlj/39Fcz8R7eK68R+DreeNZIZb4o6MMhgWjyDXTf8IV4Z/wCgFY/9+RXQoU4wUpX1Odzqym4wtp3D/hNvDH/Qcsf+/oo/4Tbwx/0HLH/v6KP+EK8M/wDQCsf+/IrB8L+FNAuhrHn6RaSeVqk8Ue6MHagIwo9hStR8/wADSNPEShKfu6W79Te/4Tbwx/0HLH/v6KP+E28Mf9Byx/7+ij/hCvDP/QCsf+/Io/4Qrwz/ANAKx/78ij9x5/gZ/wC0eX4h/wAJr4Y/6Dtj/wB/RR/wmvhj/oO2P/f4Uf8ACFeGP+gFY/8AfoUf8IT4Y/6AVj/36FH7jz/AP9o8vxD/AITXwz/0HbH/AL/Cj/hNfDP/AEHbH/v8KP8AhCfDH/QDsf8Av0KP+EJ8Mf8AQDsf+/Qo/cef4B/tHl+If8Jr4Z/6Dtj/AN/hR/wmvhn/AKDtj/3+FH/CE+GP+gHY/wDfoUf8IT4Y/wCgHY/9+hR+48/wD/aPL8Q/4TXwz/0HbH/v8KP+E18M/wDQdsf+/wAKP+EJ8Mf9AOx/79Cj/hCfDH/QDsf+/Qo/cef4B/tHl+Iv/Ca+Gf8AoO2P/f4Uf8Jr4Z/6Dth/3+FJ/wAIT4Y/6Adj/wB+hR/whPhj/oB2P/foUfuPP8A/2jy/EX/hNPDP/QdsP+/wo/4TTwz/ANB2w/7/AApP+EJ8Mf8AQDsf+/QpP+EJ8Mf9AOx/79Cj9x5/gH+0eX4jv+E08M/9B2w/7/Cj/hNPDP8A0HbD/v8ACm/8IT4Y/wCgHZf9+hVHWPDvg/RNIudSu9EshDAm4jyxlj2A9ycD8aEqLdlf8BN10ru34m5p2v6Rq0rxafqVtcyIu5kikDED1xWjXn/wy8OC0s5/EFxbJBc6iS0MSLgQwk5AH14P0Ar0CorRjCbjFmlCcpwUpK1wooorM1CiiigAooooAKKKKACiiigDgPH/APyNngr/ALCB/wDQo67+vPPiR56+IfCD20aSTresY0dtoZt0eAT2Fb/27xf/ANAbTv8AwMP/AMTXRUV6cPn+ZOGoupUqNNLVbtLp5nSVzfg/prv/AGGLn+Yo+3eL/wDoDad/4GH/AOJqfwtp99p9pfNqEcUc91ey3OyN9wUNjjP4GsbWR3+z9lRmpNa22af5G7RRRUnEFFFFABRRRQAUUUUAc14q8d6H4PMEepSyvczjMVtbx75GHrjoB9Tz+Bqbwr4y0bxjaTT6VM5aBgs0MqbJIyemR74PI9DXl7+KbDS/jR4j1K8s7y/vII47OwtLSLzZPujewHYcHJ/263tC1vwxfQeLvE+hwXdnraWkjXttc/IysqEhtuSOq9euc5xmgDU1T4weFNJ1ebTpZbuVoJPLnngg3RxtnBBOcnB9Aat+NPFlxpugaVNoL20k+sXcVra3M3MSCQEhz68D/wDXjFZHwz0Ozuvg3Faywqw1KOdrgkffJZlBPuAF/KqPwv0uw8XfCCDStZtxc20VxIigkhlw24EEcgjcfw46UAbnhnWvENn41ufCniK7tdQl+xC+gu7eLyyF37CrqOBz0/rnju65zwx4H0XwnJcTadFM9zcACS4uJTJIyjouT0H0/oK6OgArzrXWbxv41h8PQknSdMYTagynh5Oyf0/769K6Lxr4j/4RzQHlhG+/uD5NpGBks574746/kO9Hgrw5/wAI3oCQzfNfTnzruQnJaQ9s98dPzPeuin+7j7Trsv8AM5qv7yfsltu/0XzOiVQihVACgYAA4ApaKK5zpCiiigAooooAKKKKACiiigAooooA4Px7/wAjT4M/7CH/ALMld5XB+Pf+Rp8Gf9hD/wBmSu8rep/Dh8/zOel/Fqeq/IKKKKwOgKKKKACiiigAooooAKKKKAPKPDS2+lfHjxRBdtHHPeQJLas5xvU7WYLnqfb/AGT6VTitk1/4teNhpbLJA+iPaSyR8q0zKigZ9eD/AN8mvQvE/gjQPF4hOsWXmywgiOVHKOoPbIPI9jVrw94Y0fwtYGz0eyS2iZtzkEszn1Zjkn+lAHD/AA68S6dp/wAGkuJ7mON9NjnSdHbBVwzMq49SCMfWr3wWsZLP4aWTSqVNzLLMARg7S2B+YXP41d1L4U+DtV1d9SutK/fyPvlWOZ0SRu5Kg9/bGa7GGGK3gjghjWOKNQiIowFUDAAHpQA+kZlRSzEKoGSScAClrh/iBqtzP9l8KaU3/Ew1Q7ZCP+WUP8RP1wfwDVdODnLlM6tRU4uTKWgq3jfxrN4imBOk6Yxh09GHDv3f+v4r6V6LVHR9KttE0m2060XEMCBQe7HuT7k5P41eqqs1KWmy2FRpuEdd3qwooorI1CiiigAooooAKKKKACiiigAooooA4Px7/wAjT4M/7CH/ALMld5XB+Pf+Rp8Gf9hD/wBmSu8rep/Dh8/zOel/Fqeq/IKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAqapqVto+l3OoXb7YIELse59APcnAH1rkPAGm3N9Nd+L9UT/AE3Uj+4Q/wDLKHsB9cD8APU1V8SO3jTxhb+Frdj/AGbYkT6k6nhiOiZ/HH1J/u16EiJFGscahUUBVVRgADsK6H+7p26y/L/gnMv3tTm6R/P/AIA6iiiuc6QooooAKKKKACiiigAooooAKKKKACiiigDg/Hv/ACNPgz/sIf8AsyV3lcH49/5GnwZ/2ED/AOhJXeVvU/hw+f5nPS/i1PVfkFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAVz/jLxGvhrw/LdJhruT91ax4yWkPTjuB1/DHeugJABJOAO9edaSD468cya1IN2jaQxisgeksvUv8AyP8A3z71tRgm+aWy/qxhXm0lGO7/AKv8jf8AA/hxvD+hD7US+pXbefdyMckuedufbP55PeumoorOc3OTkzWEFCKiugUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfj3/kafBn/YQP8A6Eld5XB+Pf8AkafBn/YQP/oSV3lb1P4cPn+Zz0v4tT1X5BRRRWB0BRRRQAUUUUAFFFFABRRRQAUUVW1G/t9L064vrt9kECF3PsPT3ppXdkJtJXZyfxA1i5EFt4a0o51PVj5fB/1cX8TH0zyPoG9K6XQ9Ht9B0a2021H7uBMFscu3dj7k5Ncl4DsLjVr688ZammLi+JS0jP8AyyhHAx9cY+gz/FXe1tVfKlSXTf1/4Bz0U5t1X129P+DuFFFFYHSFFFFABRRRQAUUUUAFFFFABRRRQAUVzPi/xXceGYYRaeH9U1eedWKCzhLohGPvkZK5zxwehrC+Dms6jrvhC8vNUupri4OoyrmViSg2odoz0AJPFAHodFeV6gPE3if4na5o+l+J7jSLLTYICfLhEgLOoOMZHqe/au08LaHq+iQXKav4im1p5WBjeWAR+WAOQME5zQBh+PP+Rq8Gf9hA/wA0rvK4Px5/yNXgz/sIH+aV3lb1P4cPn+Zz0v4tT1X5BRRRWB0BRRRQAUUUUAFFFFABRRRQAV554qlk8X+KrbwjaORZW5FxqcinsOiZ9eR+JH92um8XeIo/DPh+e+OGnP7u3jP8ch6fgOp9hVPwJ4dk0PRWnvctql+32i7dvvbjyFP0yfxJrope5H2r+Xr3+RzVf3klSW279O3zOmiijghSGJFSONQqKowFA4AFPoornOkKKKKACiiigAooooAKKKKACiiigAooooAK8y+Bv/Il3/8A2FJv/QUr02uG+FXh7VPDXhi7s9Wtfs9xJfyzKnmK+UKqAcqSOxoAzLv4SDV/FOtapqmt3aWt/Irpb2T+WcqMAuSCDgdOO5pfhdfajZ6z4k8JahfS3qaTMv2aeU5cxtngn8FOO2TVV7Pxp4K8X65e6Ro39u6Zq8vnqv2kI0Dkk456DLHtjGORW18OfC+raTJrGueIBGmr6xOJZYY2DCFQThcgkfxHoTwBzQAnjz/kavBn/YQP80rvK4Px5/yNXgz/ALCB/mld5W9T+HD5/mc9L+LU9V+QUUUVgdAUUUUAFFFFABRRRQAUUVxnxA1u4t7KDQdL+bVdVbyYwDyiHhm9vTP1Parpwc5KKIqVFTi5MzLL/iu/Hjag3z6HorbLcfwzTf3vfsfoF9TXo1Znh/RLfw9oltpttysS/M+OXY/eY/U1p1VWak7R2WxFGm4xvLd6v+vIKKKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOD8ef8AI1eDP+wgf5pXeVwfjz/kavBn/YQP80rvK3qfw4fP8znpfxanqvyCiiisDoCiiigAooooAKKKKAIL28g0+xnvLqQRwQIXdj2AriPA1nPrurXnjTUoyr3JMVhG3/LKEcZH16f99HvUfjCeXxT4ktfBtk7C3Ui41KVf4UGCF+vQ/Ur6Gu+t4IrW3it4I1jhiUIiL0VQMACuj+HT85fl/wAE5v4tW/SP5/8AA/MkorP13VP7E0G/1UwNOLSBpjGrYLBRk8/SsebxxY23w+XxdNCy2726zLBuG4s3ATPrk4zXOdJ1FFU9JvZdS0i0vprVrWS4iWUwO2WjyM4J9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/kavBn/YQP8ANK7yuD8ef8jV4M/6/wA/zSu8rep/Dh8/zOel/Fqeq/IKKKKwOgKKKKACiiigArG8U+IIfDWgXGoy4Z1GyGM/xyHoP6n2BrZrzmP/AIrzx6Zfv6FobYT+7PP6+44/ID+9WtGCk7y2W/8AXmY1puK5Y7vb/P5G14C8PzaTpMl9qGW1bUm+0XLt94Z5C/hnJ9yfSusooqZzc5OTLpwUIqKM/XrX7f4d1OzAz59pLFj/AHkI/rXiXg6T/hOLDwf4WHz2GlpJf6mOxKyusUZ+oxx6N7V6/wCKvF+keENP+1apcbGkVzBEFJaZlGdowOOo68c1zvwi8Jnw14SFzcw+Vf6kwuJVI5jT+BPwBz9WNQWegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/kavBn/AF/n+cdd5XB+PP8Aka/Bf/X+f5x13lb1P4cPn+Zz0v4tT1X5BRRRWB0BRRRQAUUVFdXMNlaTXVxII4YULu56BQMk0bg3Y5Xx/r0+n6bFpOm5bVtUbyIFU8qp4ZvbrgH3z2rZ8NaFB4b0G202DBMa5kcD77n7zf57YrlfBVrN4k1278aahGVVyYNOib/lnGMgt/MfUt616BW9X3EqS+fr/wAA5qP7yTqv5en/AAQooorA6Std6dY37wveWVvcPC26Jpolcxn1XI4PA6VZoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4Px5/wAjX4L/AOv8/wA467yuD8ef8jX4L/6/z/OOu8rep/Dh8/zOel/Fqeq/JBRRRWB0BRRRQAV5/wCNbqbxHrtp4L0+QqshE+oyr/yziGCF/kfqV9a6rxLrsHhvQbnUp8ExriNCfvufur+f6ZrF8AaFPYabNq2pZbVtUbz52Ycqp5VfbrnHvjtW9L3E6r+Xr/wDmrPnkqS67+n/AATqrW1hsrSG1t4xHDCgREHQADAFTUUVgdKVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOD8ef8jX4L/6/z/OOu8rg/Hn/ACNfgv8A6/z/ADjrvK3qfw4fP8znpfxanqvyQUUUVgdAUUVyfj3xBNpGkR2On5fVtSb7Paov3hngt+GcD3I9KqEHOSiiKk1CLk+hiy/8V549EI+fQtDbL/3Z5/T3GR+QP96vRqxfCvh+HwzoFvp0eGkA3zSD+OQ9T/QewFbVXWmm7R2W39eZFGDiuaW73/y+QUUUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcH48/5GvwX/wBf5/nHXeVwfjz/AJGvwX/1/n+cdd5W9T+HD5/mc9L+LU9V+SCiiisDoI7ieK1t5bieRY4YlLu7dFUDJJrgfB8EvirxJdeMr1GFupNvpsTfwoMgt9ev4lvQVJ45vJ9c1Wz8F6bIVkuSJb6Rf+WUI5wfr1/75Heu3srODTrGCztYxHBAgRFHYCuj+HT85fl/wTmf72rbpH8/+B+ZPRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/ka/Bf8A1/n+cdd5XB+PP+Rr8F/9f5/nHXeVvU/hw+f5nPS/i1PVfkgrM8Qa1b+HtEudSueViX5Uzy7H7qj6mtOvOb7/AIrvx2unL8+h6K2+4P8ADNN/d9+4+gb1FTSgpO8tluVWqOMbR3ei/ryNP4f6LcW9lPr2qfNquqt50hI5SM8qvt64+g7V2dFFTUm5ycmXTpqnFRQUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfjz/kbPBf/AF/n+cdd5XB+PP8AkbPBf/X+f5x13MsscELzSuqRxqWdmOAoHJJrep/Dh8/zOel/Eqeq/JHM+O/EUmh6KILLLapft9ntEX7248Fh9Mj8SKueEfDsfhnw/BYjDTn95cSD+OQ9fwHQewrmfCsUni/xXc+LrtCLK3Jt9MjYdh1fHryfxJ/u16HTq+5H2S+fr2+QqX7yTqvbZenf5hRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcH48/5GzwX/wBf5/nHR48v7jVb2z8G6Y+Lm+Ie7kH/ACyhHJz9cZ+gx3qn8UdQTStW8L6hIhdLa5klKr1bGw4rS+H2kXPkXPiXVRnU9WPmcj/VxfwqPTPB+gX0ruVo0o1H0vb1u/yPPledadJdbX9LL8zrdOsLfS9Ot7G0TZBAgRB7D19+9WaKK4m7u7O9JJWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz/iXwjZeKLnTZL2SQJZSF/KXG2UHGVPt8o/DNdAAAAAMAdBRRVOTaSeyJUIpuSWrCiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
|
<image>Find x.
|
5 \sqrt { 3 }
|
Geometry
|
Geometry3K
|
test
|
10
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGAAhMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACisjQ9ZXVpNSVSP9Eu3g47gY5rXqpRcXZkxkpK6CiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC9uVs7G4un+7DG0h+gGanrkviPqy6Z4SuIwf3t2RCg9jyx/L+daUoOpNQXUzrVFTpub6HKfCfU2k1jVbaRstOonGfUHB/wDQhXrFfPPgjVV0fxZZXDnETt5Uh9A3Gfzwa+hhyM125lT5a3N3RwZVV56HL1TCiiivOPTCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxT4m6pJq3ihNNtg0i2g8sIgyWkPLYH5D8K9qOcHHWsTRvCunaNLJcpH517KxaS5l5dieT9PwrqwtaFGTqSV30OTGUJ14qnF2XU+eBBN5byCJ9kZAdgOFJ6ZPavoPwXrP8Abfhe0uWbMyL5Uv8AvLx+vX8a434WQRXM2vwzxrJGzIGVhkEZeu60bw5aaDcXTWBaO3uCGMGcqreo9M/0rszGvGd6bWq2OHLKE4Wqp6S3+RsUUUV5J7IUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF9dJZWFxdSHCQxNI30AzU9ch8UNS/sz4earIGw8sYhX/gRwf0zUzdosqKvJHjnhPTvGPjyfULiy8Q3FtHDIM75WwS2TgY9K6Ob4c/Eeyiae08UvLKgyEFw6lvYV0HwRtIrHwKbiR0WS7uHk5YA4Hyj+Vd/qWuaZpFlJd317BFDGpJJcZPsB3NXNKOiJi3JnnXwq8f6nrd9deH9e+a/tlLJKRhmAOGVvcV6rXg3wlik134l6z4hjiKWv7xs443O2QPyBr3mh6xTe9hbSaWx5j8Jf8Aj713/fj/AJvXp1eY/CX/AI+9d/34/wCb16dXXj/94l8vyRx5d/u8fn+bCiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIfj7qXlaBpumqfmuJzIR7KMfzavXq8H+KDHX/i3ouiL8yReVG4/3m3N+mKTXNKMe7KTsnLsixpvwMkuNMtpn16eF5Ildo1ThSRkjrV2H4CW7Sr9s1+6liB5VVAJ/PNexIoRFUdAMUtU3roQr21Mrw/4e03wzpaafpkAihXknqzn1J7mofFHiS28NaS91MQ0zfLDFnl2/w9avarqlro2nS315IEijGfdj2A96800TTbz4heIW1vVVK6ZA2Ioj0bHRR7eprpoUlK9Sp8K/HyOXEVnC1Kn8T/DzZj/DvxRDomtTxXgCwXxUGT+4wJxn25r28EMAQcg9DXiXhHwxb+JbPXrZsJcROjW8n90/Nx9DXT+BfE9xZ3beGNczHdQnZA7nr/sk/wAq7MdRjUlKUN1uv1OLL60qcIwqfC9n532PR6KKK8k9gKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArMbw7oz6uNWbTLU6iDkXJjHmZxjr9OK06KACo554raB55nWOKNSzMx4AFSdK8s8Va3d+MdbTw1obE2yt+/mHRsdSf9kfqa2oUXVlbZLd9jDEV1RjfdvZd2V7ma8+JniYW0BeLRbRss3qPX/eP6CvVLKzg0+zitbaMRwxKFVR2FU9C0S08P6XFY2i4VRl3PV27k1p1eIrKdoQ0itv8yMNQcLznrJ7/wCR5j8Jf+PvXf8Afj/m9bfjvwh/blqNQsRs1O3GUK8GQDt9fSsT4S/8feu/78f83r06t8VVlSxTnHy/JGGEpRq4RQltr+bOM8CeL/7btjp9+dmp24wwbgyAd/r612dec+OvC9xa3S+J9DzHdwnfMid8fxAfzFdN4S8UW/ibSxMuEuo8LPF/dPqPY1lXpRlH21PZ7rszTD1ZRl7Crutn3X+Z0FFFFch2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVyHjnxevh+yFraHfqVwMRqOdgP8AEff0rSnTlUkoR3M6tWNKDnLZGX488VTtOPDei5kvrg7JWTqoP8I9/X0roPB/hWDwzpYQ4e8lAaeX1PoPYVl+A/CDaVCdV1Ib9TuBu+bkxg9vqe9dvXRXqRhH2NPbq+7/AMjmw9KU5e3q7vZdl/mFFFFcZ2nmPwl/4+9d/wB+P+b16dXmPwl/4+9d/wB+P+b16dXZj/8AeJfL8kcWXf7vH5/mxCAQQRkHqK8r8S6Pd+CNdTxFoqn7E7YnhHRc9QfY9vQ16rUVzbw3dtJbzxrJFIpV1YcEGsqFZ0pd090a4igq0ezWz7FTRdZtNd0yK+tHyjj5l7o3cGtCvJHW8+GXibeu+bRLtuR6D/4ofqK9VtLqC+tYrm2kWSGRQysvQiniKKg1KGsXt/kLDV3UThPSS3/zJqKKK5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKpatqtroumy314+2KMfix7Ae9NJt2QpSUVd7FDxT4ltvDOlNcykNO3ywxZ5dv8AAVyPgjw3c6rft4p10GSaVt9vG4/8ex/IVR0LTLz4geIW1zVlK6bC2IoT0bHRR7evrXq6qqKFUAKBgAdq7ajWHh7OPxPd9vL/ADOCnF4qftZfCtl38/8AIWiiiuE9AKKKKAPMfhL/AMfeu/78f83r06vMfhL/AMfeu/78f83r06uzH/7xL5fkjiy7/d4/P82FFFFcZ2lHWNJtdb02WxvE3RyDg91PYj3rzbw/ql54C8QNoOrsTp0rZhmPRc9GHt6jtXq9YXirwzbeJtKa3kAW4TLQy45Vv8DXVh6ySdOp8L/DzOTE0ZSaq0/iX4+RuKwZQykEEZBHelrzbwP4mudNvm8L66THPE2yB3PX/Zz/ACr0ms61F0pcr/4c1oVo1ocy+a7MKKKKxNgooooA858X+OtWTxInhbwpax3GqFd00snKxDr9PrWM/jfxr4L1O0XxlbW1xp1y+z7RbqBsP4AdPQim/DdxL8WPF8lx/wAfIdgueu3ec/0rf+NEcL/Dq5aXG5JozHn+9nH8s1N+WMZdyrXk49jv4pEmiSWNgyOAykdwafXOeAbl7vwHosznLG1QE/QYro60krSaIi7pMKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQSAMngUARzzxWtvJPPIscUalmZjwAK8omkvPiZ4mEEReLRLRuT6j1/3j+gqfxRrV34z1xPDeiMfsit+/mHRsdSf9kfqa9C0PRbTQNLisbRcKoyzHq7dya74pYWHM/je3ku/qefJvFz5F8C38329C3Z2kFhaRWttGscMShVUdhU9FFcLd9Wd6SSsgooopDCiiigDzH4S/8feu/wC/H/N69OrzH4S/8feu/wC/H/N69Orsx/8AvEvl+SOLLv8Ad4/P82FFFFcZ2hRRRQBx/jrwgNfsxeWY2albjKMON4H8P19Kh8B+Lzq8B0vUTs1O3G0huDIB3+o7121ed+O/C08VwviXRMx3sB3zKnVgP4h7+vrXbRnGrH2NT5Pt/wAA4a9OVKft6a9V3Xf1PRKK53wh4pg8TaWJOEvIgFni9D6j2NdFXLOEoScZbo66dSNSKlF6MKKKKgs8u8VeBtesvFx8V+D5olu5R/pFvIcBz39jn0rmfHVh4x1Pwjd6n4rmgtbe02+RaQfxyFgNzfQE10Ou+MNV8F/El21mW4k8O3Uf7nauVQkD+RB/Osnxr4sj+JElj4X8MJNMksyyXM5TCqo/oMk1KV4pL/hi72k2/wDhz0X4dxND8PtERhg/ZUP5jNdPVbT7OPT9OtrOIYjgjWNfoBirNaTd5NmUVaKQUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnfjvxTPLcDw1omZL2c7JmTquf4R/WtTx14vGgWYs7M79TuBiNRyUB/i+vpUPgPwgdIgOqaiN+p3Ayd3JjB7fX1rtowjSj7ap8l3/4Bw16kqs/YU36vsu3qanhDwtB4Z0sR8Pdy4aeX1PoPYV0VFFcs5ynJyluzrp0404qMdkFFFFQWFFFFABRRRQB5j8Jf+PvXf9+P+b16dXmPwl/4+9d/34/5vXp1dmP/AN4l8vyRxZd/u8fn+bCiiiuM7QooooAKCARg8iiigDyvxRot34N1tPEmiKRas37+EdFz1B/2T+hr0LQtbtNf0uK+tGyrDDJ3Ru4NXp4IrmCSCZFeKRSrKwyCDXlFxFefDPxKLiEPLot22CvoPT6jt613xaxUOR/GtvNdjz5J4SfOvge/k+/oet0VBZ3kGoWcV1bSCSGVdysO4qeuFqzszvTTV0QXdla30Jiu7eOeM/wyKCKjstKsNNUrZWcFuD18tAuat0UhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4q8S23hnSmuZCGuHysMWeWb/AVf1fVrXRNNlvrx9sUY6d2PYD3rzbQNLvPH3iBte1dSNOibEMJ6Njoo9h39a6sPRUr1Knwr8fI5MTXlFqlT+J/h5l7wP4audTvm8Ua6DJPK2+BHHT/ax/IV6TSKoVQqgAAYAHalrOtWdWXM/+GNaFCNGHKvm+7CiiisTYKKKKACiiigAooooA8x+Ev/H3rv8Avx/zevTq8x+Ev/H3rv8Avx/zevTq7Mf/ALxL5fkjiy7/AHePz/NhRRRXGdoUUUUAFFFFABVLVdLtdZ06WxvIw8Ugx7g9iPertFNNp3QmlJWZ5PompXnw+8QtomqsW0ydsxS9lz0Ye3qK9XVldA6MGVhkEdCKxfFHhu28S6U9rMAsy/NDLjlG/wAK4/wT4kudH1BvC2ukpJG223kc/kufT0rtqJYmHtI/Et138zgpt4WfspfA9n28v8j0uiiiuE9AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK4uIrS3kuJ5FjijUs7MeAKlJABJOAO9eV+JtZu/G2up4c0Vj9jRv38w6NjqT7D9a3oUXVl2S3Zz4iuqMe7ey7kEj3nxM8TeWm+LRLRuT6j/4o/oK9VtLSCxtIrW2jWOGJQqqo4AqpomjWug6XFY2iYRB8zd3buTWjVYisp2jDSK2/wAycNQdNOc9ZPf/ACCiiiuY6gooooAKKKKACiiigAooooA8x+Ev/H3rv+/H/N69OrzH4S/8feu/78f83r06uzH/AO8S+X5I4su/3ePz/NhRRRXGdoUUUUAFFFFABRRRQAVyXjjwiniGx+02oCalAMxuON4/un+ldbRV06kqclKO5nVpRqwcJbM4bwH4ubU4zpGpkpqdv8vz8GQD+o713NefePPCkxlHiLRgY7+3O+RY+rgfxD3/AJ1ueDfFcPibTAWIS9iAE0fv/eHsa6a9OM4+2p7dV2f+RzYerKEvYVd+j7r/ADOlooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK47x14vGhWgsbI79TuBhFXkxg9/r6VpSpyqSUI7mdWrGlBzlsZfjvxTPcXI8M6JmS8nOyZk/hz/AAg/zrpPCPheDwzpYiGHu5MNPL6n0HsKy/AnhA6NbnUtQG/U7gZYtyYwe319a7WuivUjGPsaey3fdnNh6UpS9vV3ey7L/MKKKK4ztCiiigAooooAKKKKACiiigAooooA8x+Ev/H3rv8Avx/zevTq8x+Ev/H3rv8Avx/zevTq7Mf/ALxL5fkjiy7/AHePz/NhRRRXGdoUUUUAFFFFABRRRQAUUUUAHUYNeW+LNDu/CWsr4m0NSsBb/SIV6Lnrx/dP6V6lTJoY7iF4ZkDxuCrKwyCDW1Cs6Ur7p7ruYYigq0bbNbPszO0DXbXxDpUd7at1GHQnlG7g1qV5JeW958NfEovLUPLo102GT0Hp9R2r1OxvrfUrKK7tZBJDKu5WFXiKKhacNYvb/IjDV3O8J6SW/wDmWKKKK5jqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqhrGr2uh6ZLfXj7Y4xwO7HsB704pydkKUlFXexQ8V+JrfwzpTXEhD3D5WCLP3j6/QVyvgbwzc6het4o1zMlxMd8COOn+1j+Qqj4e0q78ea++v6wpGnxNiGE9Gx0A9h39a9VVQqhVAAAwAO1dtRrDw9lH4nu/0OClF4mftZ/Ctl+v+QtFFFcJ6AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5j8Jf+PvXf9+P+b16dXmPwl/4+9d/34/5vXp1dmP8A94l8vyRxZd/u8fn+bCiiiuM7QooooAKKKKACiiigAooooAKKKKAKmp6bbavp8tldxh4ZRgj09x715jpF/efDvxE2kakzPpVw2Y5ey5/iH9RXrNY3iXw7a+JNKe0nAWQcxS45Rv8ACunD1lG9Op8L/q5y4mg5WqU9JL8fI10dZI1dGDIwyCDwRTq8y8GeIrrQdTbwtrpKFG228jHgegz6HtXptRXoulKz26PuXQrqtG636rswooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkAEkgAdSaAI7m5hs7aS4uJFjhjUs7MeAK8pY3nxM8TbV3xaJaN9Mj/4o/oKm8Savd+ONeTw7ozH7FG2Z5h0bHUn2Hb1r0XRdHtdC0yKxtEwiDlu7HuTXfFfVYcz+N7eS7+p50m8XPlXwLfzfb0LVraw2VrHbW8axwxqFVVHAFTUUVwN31Z6KVtEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHi3gTS9T1O71X+ztWksPLZd+wZ35LY/LB/Ou1/4RXxN/wBDbcf981h/CT/j813/AHo/5vXqFd+OqNV2l5fkTlWNq0sJGEbWV/sp9X3Rxf8Awivib/obbj/vmqeq6F4m03Sbq9Hiq4fyImk2464GcV6BWR4p/wCRU1X/AK9ZP/QTXNGpJtL9D1qGYVpVYxajZtfZj/kJ4Vupr3wvp1zcyNJNJArO7dScVsVheC/+RN0r/r3X+VbtZz+JnFiklXml3f5hRRRUmAUUUUAFFFFABRRRQAUUUUAcp428Ix+I7DzrcBNRgGYnHG7/AGTWf4C8XSXynRNVJTUrf5QX4MgH9RXd1wHjzwnLOw1/RwY9Qt/ncJwXA7j3H612UKkakfY1Pk+z/wAjhr05U5+3pb9V3X+Z39Fcx4L8WReJdOxIQl/CMTR+v+0PaunrmqU5U5OMt0ddOpGpFTjswoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK858deKLi7ul8MaGTJdTHZO6Hp/s5/nWl4+8ZL4fsjZ2jg6jMvGP+WS/3j7+lZPgSDQ9EtjqF/qds+p3AyxZ8mMHt9fWu/D0eSHt5K/Zfr6Hn4mt7SfsIO3d9l29TqvCXhe38M6UsK4e6kw08uPvH0HsK6Csj/hKND/6Clt/33R/wlGh/wDQUtv++65pxqzk5STuzqpyo04qMWrLzNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6j2U/5WV7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+816KyP+Eo0P/oKW3/fdH/CUaH/0FLb/AL7o9lP+Vh7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+816KyP+Eo0P/oKW3/fdH/CUaH/0FLb/AL7o9lP+Vh7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+816KyP+Eo0P/oKW3/fdH/CUaH/0FLb/AL7o9lP+Vh7Wn/MvvNeisj/hKND/AOgpbf8AfdH/AAlGh/8AQUtv++6PZT/lYe1p/wAy+84b4Sf8fmu/70f83r1CvI/hhqthp91rLXl3FCJGj2F2xu5bp+dei/8ACUaH/wBBS2/77rsx1ObryaXb8jjwFSCw8U2uv5mvWR4p/wCRU1X/AK9ZP/QTR/wlGh/9BS2/77rM8R+I9Gn8NalFFqNu8j2zqqh+ScVyxpT5loz0sPWpqtBuS3XXzLngv/kTdK/691/lW9XH+EvEOkW3hTTYZ9Rt45UgUMrNyDWz/wAJRof/AEFLb/vunOlPmejKxdam682pLd9fM16KyP8AhKND/wCgpbf990f8JRof/QUtv++6j2U/5Wc/taf8y+816KyP+Eo0P/oKW3/fdH/CUaH/ANBS2/77o9lP+Vh7Wn/MvvNeisj/AISjQ/8AoKW3/fdH/CUaH/0FLb/vuj2U/wCVh7Wn/MvvNeisj/hKND/6Clt/33R/wlGh/wDQUtv++6PZT/lYe1p/zL7zXorI/wCEo0P/AKClt/33R/wlGh/9BS2/77o9lP8AlYe1p/zL7zXorI/4SjQ/+gpbf990f8JRof8A0FLb/vuj2U/5WHtaf8y+84bxfoF14Y1ZfFGhArGGzcRKOBnrx6Gu68O6/a+ItKjvbZsHpJGTyjdwaZL4j8PzRPFLqVo8bgqylsgivL5dQg8D+Khd6PeR3WmXJ+eFHzgdx9R2Nd0YSxEOSS95bPv5HBKccNU54P3Huuz7ntNFVdP1C21SxivLSQSQyruUirVee007M9JNNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFYOp+NfDejymK/1i1hkHVN2SPyo0zxr4b1iYRWGs2s0h6JvwT+dC12B6GdffDjRtSvZbu6e6kmlbczGU1W/4VX4d9Ln/AL+mu4oroWKrJWUmczwlBu7gjh/+FV+HfS5/7+mj/hVfh30uf+/pruKKPrdf+dh9Tw/8iOH/AOFV+HfS5/7+mj/hVfh30uf+/pruKKPrdf8AnYfU8P8AyI4f/hVfh30uf+/po/4VX4d9Ln/v6a7iij63X/nYfU8P/Ijh/wDhVfh30uf+/po/4VX4d9Ln/v6a7H7ba/8APzD/AN/BR9ttf+fmH/v4KPrdf+dh9Tw/8iOO/wCFV+HfS5/7+mj/AIVX4d9Ln/v6a7gEEZByKKPrdf8AnYfU8P8AyI4f/hVfh30uf+/po/4VX4d9Ln/v6a7iij63X/nYfU8P/Ijh/wDhVfh30uf+/po/4VX4d9Ln/v6a7iij63X/AJ2H1PD/AMiOH/4VX4d9Ln/v6aP+FV+HfS5/7+mu4oo+t1/52H1PD/yI4f8A4VX4d9Ln/v6aP+FV+HfS5/7+mu4rNu/EOj2Fw1vd6lbQzLjKPIARR9br/wA7D6lh/wCRHM/8Kr8O+lz/AN/TR/wqvw76XP8A39Nb/wDwlvh7/oM2X/f0VoWmo2V+u6zu4Jx38qQNj8qPrdf+Zh9Tw/8AIjkP+FV+HfS5/wC/po/4VX4d9Ln/AL+mu4oo+t1/52H1PD/yI4f/AIVX4d9Ln/v6aP8AhVfh30uf+/pruKKPrdf+dh9Tw/8AIjh/+FV+HfS5/wC/po/4VX4d9Ln/AL+mu4oo+t1/52H1PD/yI4f/AIVX4d9Ln/v6aP8AhVfh30uf+/pruKKPrdf+dh9Tw/8AIjh/+FV+HfS5/wC/po/4VX4d9Ln/AL+mu1kmihx5sqJnpuYDNR/bbX/n5h/7+Cj63X/nYfU8P/Ijjv8AhVfh30uf+/po/wCFV+HfS5/7+mu0jnhmJEcqOR12sDUlH1uv/Ow+p4f+RHD/APCq/Dvpc/8Af00f8Kr8O+lz/wB/TXcUUfW6/wDOw+p4f+RHD/8ACq/Dvpc/9/TR/wAKr8O+lz/39NdxRR9br/zsPqeH/kRw/wDwqvw76XP/AH9NH/Cq/Dvpc/8Af013FFH1uv8AzsPqeH/kRj6B4btPDkMkNlJMYnO7ZI+4A+o9K2KKbJLHDG0krqiKMlmOAPxrGc3J80nqbwhGC5YrQdRXMXXxE8JWUpin121Dg4IBJ/kK1NK8RaPriltM1G3ucdRG/P5danco06KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPvi/4nuvDnhELZOY7m9k8lZB1VcZYj36D8a9Bri/ib4Pl8YeGfs9qQL22fzYQ3RuMFfxqZ7FQ3OP8E/B/SL7QrXVdeea6uruMTbBIQFDcjPqcVH46+EGl6doVzq+gPNb3FohlaMuSGUcnB7EDmsjw38T9b8DxxaH4k0uV4Lf92jEbXVR29GAr1vw/wCNPD3i6Ax2N2kjsuHtpRh8d+D1q5Lm1gTFuPxGF8IPE1z4i8IFb2QyXNlJ5LSHqy4BUn8Dj8K9Bqva2NpYqy2ttFArHJEaBcn8KsUSd3cSVgooopDCiiigApsiCSN0JIDAjIp1FDVwPMW+CmkMxY6vqfJz/rK5DxF8PbK18Sad4d0XUr+fUbg+ZOXkJWCIdWPvXuGr6nBo2kXeo3JxDbRGRvfHb8elcL8KrCe/hv8AxfqIze6rKTGT/BEDwB7f4CiO/oNvS/c9CtoRbWsUAYsI0C5PU4GKlooobvqJK2gUUUUAFFFFABRRRQAV852miQfEb4v6zHdSSC0RpGLRnnapCrXvut3w0zQr++Y4FvbvJ+IUkV4F8JPFWheG7rVr7WbsxXFwVWP5SeMkn9SKUbOevRfmN3UNOrO5PwI8NY4ubwf8CFcL4w8LXvwp1TT9V0TU5mglcgBjggjBIIHBBFepN8YPBqqT/aLnHYRHNedeKNZu/i94gsNK0O0mXTrZyXnkXAGcZY+nA4FP3rrlDSz5tj3TSb0alo9nfBdv2iFJcem4A1cqvY2kdhp9vZxf6uCNY1+gGKsU5Wu7ExvbUKKKKQwooooAKKKKAOX8XeCLPxg1qbq8urf7OGC+Q2M5x1/KuPv/AIQ6BplhPe3et6lHBAhd2MvQCvWK8w+I15L4g8SaT4Hs3IW4cT3xU9Ixzj8gT+VK3RdSr9X0GfB3w9NaW99rjSTi1vW22kUzEt5YJwx9zXqVRW1vFaWsVtAgSKJQiKOgAqWqb7ELuwooopDCiiigAooooAiubiK0tZbmdwkMSF3Y9ABya8HudQ1/4weJpbDT5ns9Ct2+YjgbfU+rH0rt/jTq8mm+BHgiYq97MsJI/u9T/IVd+E2iR6P4CsXCATXi/aJG7nd0/TFKKu23svzG3ZJLd/kUrL4KeEre3CTw3FxJjDSNKRn8B0rh/HXw8m8BLH4k8M3k8cMMg8xC2Wjz0Oe47c179XL/ABGEZ+Hutebjb9nPX1yMfrSm2lzLoOCu+V9SbwP4kHirwpaamQFmYbJlHZxwa6KvLfgOG/4Qe53Zx9tfb9Nq16lWk9yI7BRRRUjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4zwz8RrDxP4jvNFt7SaKa2VmZ5CMNtYLx+ddnXhHi/wAKeIfBfjSTxX4bhae2lcyOqLu2bvvKw7g0r2kr7DtdO257TqejabrNuYNRsobmMjGJFB/WvA/iX4Li8AajYa3oFxJBHLKQqbuY3HPB9K6OH48MkOy68OXAucYIRsDP0IzWNPbeKfi/rtq11YvYaNbt1ZSAoPUjPVjiizuuULpJ8x7foN8+p+H9PvpRtkuLdJWHuVBNaNRWtvHZ2kNtCu2OJAij0AGBUtVJpt2JjdJXCiiikMKKKKACiiigDy7426nImhafodu377U7kKQO6gjj8yPyr0TSLCPStHs7CEYjt4VjA+gxXDeMPB2seIPiHoWpxJCdLsCjSbpMNkMWOB+VejUR+H1f/DBL4l5IKKKKACiiigAooooAKKKKAOE+L+pf2f8ADu+UNh7lkgX8Tk/oDXP/AA1+HmgX/gexvtV0uG4urjdJvcc7cnH6VF8dftt5aaRplnazzB5Glfy4ywHQDOPqa9Q0GwGl6BYWKjAt7dI/yAohtJ+Y5fZRztx8K/Bs8LR/2NDHuGN0ZII+lea/CU3GifE3VtBimZrRRKrKehKMAD9a98rwn4c291bfGHVp7y0uIlm89Ud4mCklweuMdAaIfH8mKXwP1R7tRRRQAUUUUAFFFFABRRRQAjMEQsxwoGSa8j+GDHxH468S+KJRuG/yICey56fkFr07W4bq50K/gsgv2qW3dItxwNxUgc1y/wAL/Cl94S8NzWmpLELqW4aVvLfcMYAHP4UR+Jvy/MJfCl5/kdvRRRQAUUUUAFFFFABRRRQB5L8fYJH8L6dMoJSO6Ib2yvH8q7nwLcxXfgbRZYSCv2SNeOxAwR+Yqx4q8PW/ijw7daVcHaJVyj4+446GvFdF17xb8KZpdK1DS5LvTd5ZCASB7qw9fQ0ou10+uo5K9muh7+08KzLC0qCVgSqFhkgdSBXlnxw8SR2fh6LQoXBur1wzqOojB/qcflXnfijxtc6/4ptNe0Gx1G0voFwwJLrx6AdB61ufDPQh468S3HiLX79bm4tpA32Vj8xPYkf3R6UKPNo/mF+XU9T+G2hP4f8AA2n2ky7Z3XzpR6M3OPw6V1lAGBgdKKqTu7kpWVgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKzafZM+5rO3LepiGf5VYVQqhVAAHQAUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNkijlXbIiuvowyKdRQBBHZWkJzFbQofVYwK5vTPh/pGkeLbjxBZ+ZFLMuPIU4jBPU4966uijrcOlgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
|
<image>Find $PS$.
|
9
|
Geometry
|
Geometry3K
|
test
|
11
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEGAgkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqvdX1tYmH7VKsSzOI0ZuFLHoM9ie35VYp2FdbBRRRSGFFFFABRVf7dbDUPsLSqtyU8xY24LL0yPXHf049RVinawk09goqvcX1tazW8M0qrNcPsij6s56nA9AOSe1WKLBdBRRRSGFFFFABRVdb62e/exSVWuY0DyIvOwHpu9M9h3wasUNWEmnsFFFFAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCjrOlW+t6PdabdD91cIVJxyp7MPcHB/CvJdB+IOp+ENRm0HxIkl1BbOYxIOZI8dMZ+8uORnnB/CvaK8X+MmimLWLHVYUJF0nkyYH8a9PxIOP+A12YNxm3Sns/zOHGqUEq0HqvyPWNI1zTNdtftGmXkVxH32n5l9mB5H41oV4j4G8LWsfiOfTtTvtR0zXLY5jSCVUEqdcq2Dn6dxz649tRSqKpYsQMbj1PvxWWIpRpytF3NsNWlVheSt/X4C0UUVgdBynj/QpNX8Ptc2btFqWnk3FtKjbWGB8yg9sgfmBXBaf8ZL2DRHhvLJbjUVGIp87Ub3dR3Ht19q7rx7o+m32jy3esavf2lnAuTFBIoRz2ypHzEnpzXgb6Xdm+t7eK0nD3eGto3HzSKxIU/jjrXqYSnCpTtPWx5GNqVKVW8NL/j8j2T4Z2V7qr3Pi3WJ2uLu5zDbluiRg/NgdBk8Y9j616NXmHwu0XTDa/b7HVdSjvIm23lk0iqit6Mm3kHnB+vQivT648V/FZ24P+Cv+HuFFFFc51EF5e2un2z3N5cRW8CfeklYKB+JryzxZ8W1aNrLw0GLt8rXjpjH+4p5z7n8u9TfFDQ9NWJbu61PU59RuH2WdkJFZST/AHV28Dp9eO9ch4L8K3T/ABEt9O1CAo1iRcXCHnG0AqPfJK/nXpYehSUPaz1t/XzPLxOIrOp7KGl/6+R694H8PyaD4fT7WWfUbs+fdyOcsXPYn2HH1z610tFFefOTnJyfU9GEFCKiugUUUVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1XSLXWIreO6XcLe4juU/3kOR+B5H41fopptO6E0pKzOX8ZeE/+Egtoryxk+zazZnfa3CnByOdpPp/I/jlPBviz+37eWzvo/s2s2fyXVuwwSRxuA9P5H8M9TXF+MvC91NcxeI9APla3aDOF6XCD+Ejucce449Mb05KcfZz+T7f8A56kJQl7WHzXf/gnaVFdXUFlay3VzKsUESl3djgKB3rG8L+KrPxLpBu0Ihnh+W6gc4MLd8+3XB/qDXJXU1x8TNdaxtXeLwvYyD7RMvBunH8I9v5dTyQKmNF8zU9EtxzrrlThq3t/X5hY29x8StcXVL6N4vDVnIRaW7cfaXH8Teo9fyH8Rrs7zw3Y3niHTtZdSLixRkjAA2kEYGfpkkfWtO3t4bS2jt7eNYoYlCIijAUDoBUtE6zb93RbIdOgkve1b1b8zgfFmg3ujar/AMJf4cT/AEqMf6daD7txH3OPX1+meo56vQNesvEekxahYvlH4dD96Nu6n3H/ANetOvONb0668B62/iXRomk0m4Yf2jZJ0Tn76jt1/A+x4uLVaPI/iW3+X+REk6EuePwvfy8/8z0esnxH4hsvDOkSX942QPljiB+aR+yj/PFD+JNKj8O/26btDp/l7xIO/wDs4/vZ4x61yHh7S7zxnrSeK9diKWUR/wCJZZN0A7OR39fc89AKinTWsp7L+rFVKr0jT1b/AC7lrwh4evb/AFFvFviNc6jOP9Ft2HFtH247HH5Z55Jx1kGj2tvrd3qyL/pN1FHFIfZM8/jkf98isvxVoOs64LT+yPEs2i+Tv83yoBL5uduM5YYxg/nXnep6f4x0zxZo+g2njy81G+u382aL7KsawW4PzOx3HryAO/r0zM6spu/9WLp0YwSXz+fc9nooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4Txd4hvdR1JfCXhxs6hMP9LuVPFtH357HHftnA5IxdOm5uyM6tRU43f/DnFeNEGp+JtVk8KwXLpFARq0ls+I5OeR7njn1wTjgk+p+DrnR7nwxZtoahLNV2+X/EjfxBv9rPX1znvU/h3w/ZeGtIj0+yXgcySEfNI/dj/niuN1iwufh/rT+ItIiaTRblh/aFknSPn76jt1/Dp0PHVKcay9kum3n6/p9xxxpyoS9rLrv5en6/eekUVW0+/tdUsIb2zmWW3mXcjr3H9D7VZrjaadmd6aaugqC8ltoLKeW8aNbZUJlMn3duOc+2KmZgqlmIAAySe1ea3s9x8StcbTbKR4vDNlIPtVwvH2lx/Cvt6fmf4RWlKnzu70S3ZlWq8isldvZHERRWy6nHqUtlf/8ACEf2gSkbMSobGNxX0z+mRkmvfreSGa2iltmR4HQNGyH5SuOMY7Yqu+lWEmknS2tYzYmPyvIx8u30rgdMu7n4c62uianK0nh+7cmyu3/5YMf4GPYev59zjoqT+sLTddO6/wAzmpw+qv3tn17P/L8j0eaaO3gknmcJFGpd2PRQBkmvOfhWkmuTa142vFP2jVbkxW4b/lnbx8AD8Rg/7ldR44tNS1DwRq1npEPn3tzAYY4w6ruDEBuWIH3Se9P8FaRLoPgvSNMnjEc8FsomQEHbIeWGRwfmJ5FcR3m9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc14w8Vx+GrBEgj+0apdHZaWyjJZjxkgc4H6nj6VCDnLljuROcYRcpbFTxn4qn05odE0VPP129+WJF58lT/Gf1xn0yeBzf8ACPhaDwxppQv59/Od91ctyZH+p5wMn+feqngzwpJo6S6rqsn2jXL35riVjnYD/AP649PQCusrWpNRXs4bdX3/AOAZUoSlL2tTfou3/BOG+IXizVdFm0jRdAihfWNXmMcTzDKRKMZYj/gQ/AGsez1/xZ4f8X6b4d8ZS2GpWWsq8cNxBHt2sBypGACOQDx/EOeorvdVsdGE8Ot6pFbrJpys8d1KceSCOTmvONLluvid8QrLxBFA8HhvQ3b7JJIuGuZT1I9shT7BQOpOMDoL5E/wx1zcvmS+Fb6TkcsbSQ/0/mB6jn0mKWOeFJoXWSKRQyOpyGB6EGor6xttSsZrO8hWa3mUq6N0Irxm/wBW1Xwld3Xgqx1WFrWaVFhu5Hw1ojnlSex55PbkjGeOuMfrP+Jb+a7+pxSn9V/wvbyfb0Oq8R6reeMdZfwnoMpS0jP/ABM71eir3QH9Pc8dAa7fStKtNF02HT7GIRwQrgDuT3JPcmqvhvw7ZeGdIjsLMZ/illI+aV+7H/DsK16yq1E1yQ2X4+ZtSptNzn8T/DyCqGs6PZ69pc2n30e+GUdR1Q9mB7EVforJNp3Rs0pKzPPfDGsXnhfV18IeIJdy9NNvG4WVOyE+vYenT0r0KsXxR4as/FGkPZXPySL80E4HzRP6j29R3rD8HeJbtbx/C/iL93rFqMRyMeLlB0YHucfmOeoNbzSqx5479V+v+ZzQboy9nLbo/wBP8jtqKKK5zqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqOsavZ6Hpk2oX0vlwRDJ9WPZQO5NNJt2Qm0ldlTxN4ks/C+kPfXR3P92GEH5pX7Af1PasDwf4cvJ75/FXiMb9WuRmGFhxaxnoAOxx+X1Jqp4Z0m88Wawni7X4tsK/8AINsm+7GvZyO57g9+vTFeh1vNqlHkjv1f6f5nNBOtJVJbLZfr/kFFFFc51HlfxgXU7670LTodI1XUdH81p7+LT4XYyAEbUJUcfxfnntWlofjqc3FhpMHgDxBp9oXSBXazKRQKTjJ44UdTXoVc54v8VReGdPXy0+0alcny7S2Xkux4yQOcD9elVCLm+WJM5xhFylsVPGfiqbS/K0fR0+0a7e/LDGvPlA/xn9cZ44yeBUWl/DvTYfDNxp2pD7VeXv7y6uzy/mdQVJ54JP15z1xUvgzwrNpQl1jWH+0a7e/NPI3PlA/wD9M444wOBWRqvxXWDVL+00Xw7qGsw6cxW8ubfiOMjOcHBzjB9Oh7c1tOp7NclN+r7v8AyOeFJ1H7Sqt9l2X+bJfC2tXnhzVl8IeIZMsONOvG+7MnZSfXsPy9M+gVx0sWjfFLwZBeWzNGHy1vKwxJbyjgg/iOR3HPoaj8HeJrtruTwz4h/d61ajCux4uUHRge5xz7jn1wTSqx9pHfqv1CEnRl7OW3R/p/kdrRRRXOdQVzPjHwoniOyjmtpPs2rWh32lypwQw52kjtn8jz6g9NRVQm4S5okThGcXGWxyng3xW+tRS6bqcf2bW7L5LmBhjdjjeB6euPX0Irq647xn4WuL2WHXtDbyNdsvmQrx56j+A++Onr0Pto+EvFNv4o0wyhfJvYTsurZuGjf6dcHBx+XatakFJe0ht1Xb/gGVKcoy9lU36Puv8APudBRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjusaM7sFRRlmY4AHqaAIru7t7C0lurqVYoIlLu7HhQK87061uPiRra6vqEbxeHLNyLO1f/l4YfxMO49fy9aSeW4+JuuNaW7PF4XsZP30oyDduOw9v5DnqRj0eCCK1t44II1jhjUKiKMBQOgFdP8Bf3n+H/BOT/eJX+wvxf+X5jwAAABgDoBS0UVzHWFFFUtW1Wz0TTJtQvpRHBEMk9yewA7k00m3ZCbSV2VfEniKz8MaRJf3ZyfuxRA/NK/ZR/j2rnfB/h29u9QbxX4jXdqlwP9HgYcWsfYAdjj8u/JNVPDmlXnjDWU8Wa9EUtUP/ABLLJuir2cjv6+556AV0d3400iz8Y2XhZ2lfUrpC6iNQUjGCfmOeCQp4we3rW82qUeSO73f6f5nNBOtJVJfCtl+v+Rs39wbTTrq5XBMMLyDPsCa8K+HHinWNK8FSR6L4Rn1hFmkm1C480ICx/hUYJc7Qp4z16V7vd24u7Ke2Y4EsbRk+mRivI/hd4r0Xwn4RvtH169i0/UNOupfOgmO13HHKj+I9Rgc8fSuc6jufh7qOg6p4Shu/D1kljaM7eZbKMeXLxuB/Q57gineMfCY8Q2sdzaSfZtXtDvtLlTg5HO0n0z+R/EHnvgnZzw+C7m8liaKPUL+W5hQ/3CFUH81P5CtvxN8R/DvhLU007VZp1uHiEwEUJcbSSByP901UJuEuaJE4RnHllsP8G+KzrsMthqEf2bWrP5LqBhgnHG8D09fT6EV1VeU3Goab47uZdf8ABU00eu6SEZw8RQToc4U56nCkfTg9sdx4T8UW3ijS/PjHlXcR2XNu33on/wADzg/1BrWpBSXtIbdV2/4BlSnKMvZVN+j7r/Pub1FFFYHQFcF4t0C90rVB4u8OJi9iH+mWoHFzH3OPXjn1xkcjnvaKunUcHdGdWmqkbP8A4Yy/D+v2XiTSItQsnyrcOh+9G3dT71qV5zrum3fgbW38T6JEZNMnI/tKyToBn76j8fwPsTju9N1K01fTob+ylEtvMu5WH8j6EdCKurTS9+Hwv+rEUqjbcJ/Evx80W6KKrX9/a6XYT319OkFrAheSR+igViblmiuB034w+FNT1WCwSS8gNw+yGe4g2RSNnAAOeOfUCu+oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5vxp4jv/Deiy3enaPLqEyxSSsdwWKFUGSzsT6dFHJwa6SuB+Muq/2X8Nr5FbbJeOlqh+py3/jqtQBx2lfEnx5qvge/1Kz0eKWW3aWaW/kQJDHCoB2xrnLsMMc9uOteh/DbxHe+KvBNnqeoBPtTM8cjIu0NtYgED6Y/HNct4onTwj8DrTR4/wDj+vLSOziiXlneQAyYHXu34ketdr4H0JvDfgrStKkGJoYczD0kYlmH4FiPwoA6CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOde1K78c62/hfRJTHpkJ/4mV8nQjP3FP4fifYHNrxbr97quqDwj4cfN7KP9MugeLaPuM+vPPpnA5PHUeHtAsvDekRafZJhV5dz96Ru7H3rpilSjzvd7f5/5HLNuvLkj8K3ffy/zLOm6baaRp0NhZRCK3hXaqj+Z9SepNW6KK5223dnSkkrIKKKRmVFLMQqgZJJwAKQyO6uoLK1lubmVYoIlLu7HAUDvXnNjb3HxK1xdTvo3i8NWUhFrbtx9pcfxN7ev5D+I0XU1x8TNcawtXeLwxZSD7RMvH2px/CPb+XU8kCvRre3htLaO3t41ihiUIiKMBQOgFdP8Bf3n+H/AATk/wB4l/cX4/8AA/MoeINbtPDHh671W7wILWPIQcbj0VR7k4FeMaTpF9ZfFTwhqmrsx1fWPtF5dKc/u8owSMDttXH06dq9D+IvhXXfFI0hdHu7GJLK4NxLFebikjjGzICnIHzcH1rzzXrTx6vxM8NR32paO+rtHL9jljRvKQbW3bxtz0z2rmOs97rG1Hwl4e1a9F7qGi2F1cjH72WBWY46Z45/GtmigBqIsaKiKFRQAqqMAD0FeN6n4lm0j436zPa6Le6xdRadFbR29ouSoIR2YnBwOQOnevZq5LSfF2nXnjvWdAeyjs7+0VT5zsoa5XAORwDwCO54NAEvg3xxY+MYbpYbeezvrN9lzZ3C4eM84/Dgj1BHIrJ8V6De6Lqv/CX+HE/0mMf6daD7txH3OPX1+meo5yfBssOpfGzxfqOnsslgtvFC8kfKtLhAefqj16pWlOo4O6M6tNVI2f8AwxmaBrtl4j0mLULF8xvwyH70bd1b3H/1606841rTrrwFrb+JNGiaTSLhh/aNknROfvqO3X8D7HjvdO1C11XT4b6ymWW3mXcjj/PB7YqqtNL3ofC/6sRSqN+5P4l+Pmi1RRRWJuNdFkRkdQyMMMrDII9DXm00Vx8Mtca6gV5fC19J+9jGSbRz3Ht/McdQM+l1Dd2lvf2ktpdRLLBKpR0YcMDWtKpyaPVPcxq0uezWjWzHQTxXVvHPBIskMihkdTkMD0INcn8UdJuda+Heq2loyiUKsuHcKrBHDEEngcA9axdOurn4b62uj6jK0vh28cmzun/5d2P8LHsPX8/Wl+OElwPhyxgZ/Ja7iFwU7x89fbdspVafI9NU9mOlV51ro1ujgtZ8UaX488MeFPCOkRGHU0mgV2m2xpDsjKttYnnJOQB1x0zgV9DV5D8WF8Nr8MLNtNWzDmSH+zDb43YzztxzjbnPvjvXquneeNMtPtRJuPJTzSf7+Bn9c1malmiiigAooooAKKKKACiiigAoqhHrWmS6hLYJew/a4m2tCWw+cZ4B6/hV+gqUJR+JWCiiqN5rGnadcw297eQ28swJjErbQ2MZ5PHcUBGMpO0Vdl6ikVgyhlIIIyCO9LQSFFVr6/tdMs3u72ZYbdCAztnAyQB+pFPtru3vYRNazxTxHo8ThgfxFBXJLl5raE1FFFBIV498YEPiHxb4T8Iq7qtzMZpynUISFDD3AEleu3EwtraWdkkcRoXKxoWZsDOAByT7V4ml7qtz8Yf+EsvPCfiP+z4YPJtUFiTIp2bcsM4AyzngnqKAO98MfDPRfDV1HeedeajdQrtt5L6QP9nX0jGAF+vX6V2dNRi6KxUqSAdrdR7GnUAFFFFABUVxcQ2kDz3EqRRIMs7nAFS0UAcXqHxT8K2OQl3LduOq28RP6tgfrXF638Zb64DRaNZJaqeBNP8AO/1A6D8c16vf6DpGqZ+3aZaXDH+KSJS359RXF638INGvg0mlzS6fL2XmSM/gTkfn+Fd1CeFT99P56nn14Ytr3JL5af195meCvG2iWFlLe6/r81xq1yfnEkUriJB0RcLgepxxyPSup/4Wh4P/AOgsf/AaX/4mofBfhu70mxl0rXNOsrgQHNvdqquHU9VORuyD6jocdq6j+x9M/wCgdZ/9+F/wqK0qLm9G/Rr/ACLoRrqmkml6p3/M53/haHg//oLH/wABpf8A4mj/AIWh4P8A+gsf/AaX/wCJrov7H0z/AKB1n/34X/Cj+x9M/wCgdZ/9+F/wrO9Ds/vX+RrbEd19z/zOd/4Wh4P/AOgsf/AaX/4mj/haHg//AKCx/wDAaX/4mui/sfTP+gdZ/wDfhf8ACj+x9M/6B1n/AN+F/wAKL0Oz+9f5BbEd19z/AMznf+FoeD/+gsf/AAGl/wDiaP8AhaHg/wD6Cx/8Bpf/AImui/sfTP8AoHWf/fhf8KP7H0z/AKB1n/34X/Ci9Ds/vX+QWxHdfc/8znf+FoeD/wDoLH/wGl/+Jo/4Wh4P/wCgsf8AwGl/+Jrov7H0z/oHWf8A34X/AAo/sfTP+gdZ/wDfhf8ACi9Ds/vX+QWxHdfc/wDM53/haHg//oLH/wABpf8A4msPxV8VtMTSjD4eujNezHZ5rROqwDu3zDk+mP8A6x2PGOp6T4bso4rbSrO41W6Oy0thApLMeNxAHTP5nj3C+D/A9vpNm93q0MF3qt0d87OisseedijoPfH8gK2iqMY+0afkr7/gYSlXnJ0otebs9Px3MLwl4n8D+GNMMQ1gzXsx33Vy1tKWkf6lc4GTj8+9dB/wtDwf/wBBY/8AgNL/APE10X9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4VnKdKT5pJ39V/kawp1oRUYtW9H/mc7/wtDwf/ANBY/wDgNL/8TR/wtDwf/wBBY/8AgNL/APE10X9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4VN6HZ/ev8irYjuvuf+Zzv/C0PB/8A0Fj/AOA0v/xNcd4w+IFh4guINFsdRa00mXBvb4xPll/uKuM4/Dk+2c7Hi66hv9TXwn4bsLQ6jMP9KuVhXFrH35A4Pv26DkjHVaJ4Q0fRNLiso7KCYoPnmliVmkbuST/LtW69jSSm079Fdfft9xzy9vWbppqy3dn92/3mFpfj3wJo2mw2FjqHlW8K4VRbS8+pPy8k+tXP+FoeD/8AoLH/AMBpf/ia6L+x9M/6B1n/AN+F/wAKP7H0z/oHWf8A34X/AArByot3af3r/I3Ua6Vk19z/AMznf+FoeD/+gsf/AAGl/wDiazLvxf8ADu+1uy1m5vC+oWIZbebypxsDAg8AYPU9Qa7X+x9M/wCgdZ/9+F/wo/sfTP8AoHWf/fhf8KL0Oz+9f5DtiO6+5/5nO/8AC0PB/wD0Fj/4DS//ABNH/C0PB/8A0Fj/AOA0v/xNdF/Y+mf9A6z/AO/C/wCFH9j6Z/0DrP8A78L/AIUXodn96/yC2I7r7n/mc7/wtDwf/wBBY/8AgNL/APE1y/iW/wDhV4suEudVmL3KgKJooZ0cr6HC8/jXpX9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4UXodn96/yC2I7r7n/AJnE6D4t+HPhjT/sOj3K2sBbcwFvMxZvUsVJJ+prU/4Wh4P/AOgsf/AaX/4mui/sfTP+gdZ/9+F/wo/sfTP+gdZ/9+F/wovQ7P71/kFsR3X3P/M5uT4meDJY2jk1MOjgqytaykEHqCNtcPpXjDR/CPiZ49Iv2u/Dt4294TG4a1b1G4DI+nJHuBn1z+x9M/6B1n/34X/Corjw/o91byQTaZaNHIpVh5Kjj6gcfWtIVaMU1Z2fmv8AIzqUa82pXV15P/Mwv+FoeD/+gsf/AAGl/wDiaP8AhaHg/wD6Cx/8Bpf/AImubsIIfAOvjSNZt4LjQ7xybO+miVjC39xzjp/+v1x6MNH0sjI06z/78L/hRUhRh0bT2d1/kKlUrzT1Sa3Vn/mc7/wtDwf/ANBY/wDgNL/8TR/wtDwf/wBBY/8AgNL/APE10X9j6Z/0DrP/AL8L/hR/Y+mf9A6z/wC/C/4Vneh2f3r/ACNbYjuvuf8AmcfrHjnwHrulzaffaiZIJRg/6NLlT2YHbwRXL+GvG2jW1neeGfEN0moaMqlLe6aByHj7IykbuO3HGOuMGvWP7H0z/oHWf/fhf8Ky9f8ABuka9pMtm1pBbyEZiniiAaNux46j1HetIVKNuRp2fnt57GU6Vfm9omrryevluee6XB8HdI1RNQtcmeNt8QlS4kWM+oBGD+Oa7T/haHg//oLH/wABpf8A4msrwfeQRXz+FvEen2iavbD9zM0K4uo+xBxycfn9Qa7f+x9M/wCgdZ/9+F/wpVI0oSs0/vX+Q6c61SPMmvuf+Zzv/C0PB/8A0Fj/AOA0v/xNH/C0PB//AEFj/wCA0v8A8TXRf2Ppn/QOs/8Avwv+FH9j6Z/0DrP/AL8L/hUXodn96/yNLYjuvuf+Zzv/AAtDwf8A9BY/+A0v/wATR/wtDwf/ANBY/wDgNL/8TXRf2Ppn/QOs/wDvwv8AhR/Y+mf9A6z/AO/C/wCFF6HZ/ev8gtiO6+5/5nO/8LQ8H/8AQWP/AIDS/wDxNH/C0PB//QWP/gNL/wDE10X9j6Z/0DrP/vwv+FH9j6Z/0DrP/vwv+FF6HZ/ev8gtiO6+5/5nO/8AC0PB/wD0Fj/4DS//ABNH/C0PB/8A0Fj/AOA0v/xNdF/Y+mf9A6z/AO/C/wCFH9j6Z/0DrP8A78L/AIUXodn96/yC2I7r7n/meA+KtRtdW8UX1/Yy+ZbzOGjfaVyMAdDg9qs6T458QaPtWG+aaEf8srj94uPTnkfgRU/irSri78c6la6bYvIVkGI4I8hRtHYdK1dJ+FOr3e19RmisYz1X/WP+Q4/WqbjY/RFWwsMJTWKa+FaP06Lc39J+LdlNtTVbKS3bvJCd6/l1H61zXxH8SaV4hubA6XcmcQK4kzEyYyRj7wGeh6V6BpPw68PaXtZ7U3ko/juTuH/fPT9K5D4qadDDeaRDYWcaM6SDZBEAW5XsBzURcL6HkYOeDlmEHhYtLW99tnt1/H5HFaV4j1fRWB0+/mhUHPl53If+Aniu60n4uSptj1ewWQd5bY4P/fJ4P5isDSfhv4g1Pa8sC2UJ/iuThv8Avkc/niu60n4V6LZbXv5Jb+QdmOxPyHP5mnJw6ndmOIyt39raUvLf71+rM3xl450DWfCN1Y2d25u5vLKRNC4PDqTk429Ae9eY2WoXmnTedZXU1vJ/eicrn64617J480fTbHwLftaafawMvlbWjhVSP3ijqBXmOk+DNe1na1tYSJEf+W03yJj1Gev4ZpxcbaCyapQhhZuWkOZ7tdkb+k/FbV7PamowxX0Y6t/q3/McfpXZWvxR8NTQeZcTz2jd0khZv1QGsjSfhHbR7ZNWvnmbvFbjav8A30eT+QrtLLwtoWnxCO30m0AH8Txh2P8AwJsmobhc8rMquWyT9hH3u60X9eiPM/Gnjexa6t9W8K6/NHej93PAInCSr2Yhl2kjpz2I9Kk0X40SIoj1vTvMx/y2tDgn6qxx+o+lb3jPwhf+I7q307TLSzsNPj/eTXRVQZG7KAoyQB64BJ9ql0b4TeHtOUNeiTUZ+5lO1AfZQf5k128+G9klNXf4/fofG+zxXtW4Oy/D7ncvad8S/C2osqDUDbytwEuI2X9eR+tdYjrIiujBkYZDA5BFVbHSdN0xcWNhbWw/6YxKufyFXK4JuDfuI9GmqiXvtP0CiiioNAooqK4uIbSB57iRY4kGWZjwKA2JaK4rUPir4WsciO5nu3HBW3hP82wK4rW/jJqFyGi0azSzQ8edN+8f6gfdH45rphhK0+lvU5amNow+1f0PaqK8l8FeN9E06ylvNe1ye41a5P7wyRSOIkHRF4wPU4459q6n/haXhD/oJv8A+A0n/wATSnhqkZWSb+Q4YqlKKbkl8zsaK47/AIWl4Q/6Cb/+A0n/AMTR/wALS8If9BN//AaT/wCJqfq9X+V/cX9Yo/zL7zsaK47/AIWl4Q/6Cb/+A0n/AMTR/wALS8If9BN//AaT/wCJo+r1f5X9wfWKP8y+87GiuO/4Wl4Q/wCgm/8A4DSf/E0f8LS8If8AQTf/AMBpP/iaPq9X+V/cH1ij/MvvOxrF8UeJbPwvpD3tz88h+WCAH5pX9B7ep7ViyfFTwkkTut/LIygkItu4LH0GQB+dcTo/izQ9W8Sv4i8U32ySFttjYrE7pCOzEgYJ/rz6Y0pYab96cXZfiY1cXBLlhJXfXojs/B/hq8e9fxR4iG/WLkZijYcWqHooHY4/Ie5NdvXHf8LS8If9BN//AAGk/wDiaP8AhaXhD/oJv/4DSf8AxNKpTrTldxf3FU6lCnHlUl952NFcd/wtLwh/0E3/APAaT/4mj/haXhD/AKCb/wDgNJ/8TUfV6v8AK/uNPrFH+ZfedjXH+M/FU+nNDomip5+u3vyxIvPkqf4z+uM8cZPA5z9Z+LOg22lzPpUzXd7jEUbQuqg+rEgcD06n9awvBvifwro4m1TVtXa51y9+a4mNvIdgP8Cnb+ePT0Aralh5xXPKLfl/XQwq4mEn7OEkr7u+3/BO88I+FYPDGmlC/n39wd91ctyZH+p5wMn+feuhrjv+FpeEP+gm/wD4DSf/ABNH/C0vCH/QTf8A8BpP/iaylSrTfNKLv6GsK1CEVGMlb1Oxorjv+FpeEP8AoJv/AOA0n/xNH/C0vCH/AEE3/wDAaT/4ml9Xq/yv7ivrFH+ZfedjRXHf8LS8If8AQTf/AMBpP/iaP+FpeEP+gm//AIDSf/E0fV6v8r+4PrFH+ZfedjRXHf8AC0vCH/QTf/wGk/8AiaP+FpeEP+gm/wD4DSf/ABNH1er/ACv7g+sUf5l952NFcd/wtLwh/wBBN/8AwGk/+Jo/4Wl4Q/6Cb/8AgNJ/8TR9Xq/yv7g+sUf5l952NFcd/wALS8If9BN//AaT/wCJo/4Wl4Q/6Cb/APgNJ/8AE0fV6v8AK/uD6xR/mX3nY0Vx3/C0vCH/AEE3/wDAaT/4mj/haXhD/oJv/wCA0n/xNH1er/K/uD6xR/mX3nRa1o1nr2lTadfR74ZR1HVD2YHsRXG+GNYvPDGrr4Q8Qy7h0028bhZU7IT69h+XpnQ/4Wl4Q/6Cb/8AgNJ/8TWJ4o8W+BfFGkPZ3OpOkq/NBOLaTdE/qPl6eo7/AJVtSp1Lck4uz8tvMwq1Kd/aQkuZee/kemUV5b4S+KdhFpps/EN232i3OxLpY3YTr2JwMg/Uc/XNdD/wtLwh/wBBN/8AwGk/+JrKWGqxduVmsMXRlFPmSOxorjv+FpeEP+gm/wD4DSf/ABNH/C0vCH/QTf8A8BpP/iaX1er/ACv7ivrFH+ZfeXPGPhSPxLYI8En2fVLU77S5U4KsOcEjnBP5Hn6weDPFcmsJLpeqx/Z9csvluIWGN4H8Y/rj19CKi/4Wl4Q/6Cb/APgNJ/8AE1yHjHxP4Y1OWDWtE1ZrfXbMgxOLeQCZR/A3y/XrxyQeDxvTpVJR9nOL8nbb/gHNUq04S9rTkr9Vff8A4J7BRXA6V8WfD1zpsMmozvaXhXEsQhdwD6ggHg1d/wCFpeEP+gm//gNJ/wDE1g8PVTtys6FiaLV+ZfedjRXHf8LS8If9BN//AAGk/wDiaP8AhaXhD/oJv/4DSf8AxNH1er/K/uH9Yo/zL7zsaK47/haXhD/oJv8A+A0n/wATR/wtLwh/0E3/APAaT/4mj6vV/lf3B9Yo/wAy+87GiuO/4Wl4Q/6Cb/8AgNJ/8TR/wtLwh/0E3/8AAaT/AOJo+r1f5X9wfWKP8y+86CHWdJbUZrCO8t1vEfEkJO1i2PQ9eMdM1o185+KdStdW8T31/ZSGS3mcMjlSuRgDoee1WdJ8ba/o21YL95YR/wAsp/3i49OeR+BFJ0mfU/2C6tGNWjO90nZ+a7n0HWffavpenXkEV9dQW88ynyjKduQMZG48enGa4bSvi5aSgJqtjJA3eSA71/I8j9a5v4jeJdL8RXNgdMuGmECuJMxsmMkY6gZ6Gkqbb1OOhlNX6zGjXTinfX5NntisrqGVgykZBByDS183aX4h1bRWB0+/mhXOdgbKH6qeP0rudJ+Lk8e2PV7BZV7y252t/wB8ng/mKHTa2N8Rw/iKetJqS+5/18z03Ur2y0+xe61CRI7ZCu53XIBLAD9SKktby2voRNaXEU8R6PE4YfmK848Y+O9B1rwjdWNpcy/ap9myJ4WHR1JycY6A968xs7+70+cTWdzNbyD+KJyp/SmqbtqGCyV4mjJybjJO1mvJP9T6corxfSfirrNntTUIor6MdWP7t/zHH6V2Vr8U/Dc0G+5kuLVh1R4S35Fc1Ps5HHispxWGTlKN0uq1/wCCdtRXjXjTxtYSXVvq3hbXJ4r5f3c8IidUlXsxDDaSOnPY+1SaL8Z5o1EetacJcf8ALa1O0/ip4/UfSuj6lVceZL5bM8D69SU3GT+e6PYaK5DTfib4X1JlQXr28rHAjniYH8xkfrXWo6yIrowZWGQQeCK5505w0krHVCrCfwO46iiioLCiiigChf6HpWqA/b9Ntbkn+KWJWP54yK4vW/hDol+Gk0yWXTpuyjMkZ/AnI/A/hXodFawrVKfwsyqUKdT4onGeC/Dl7o9lLpWtWNncJCd1tdoqsHU9VORuBHuOhx2rqP7K07/nwtf+/K/4VbopTqSnLmY4Uowiooqf2Vp3/Pha/wDflf8ACj+ytO/58LX/AL8r/hVusXxP4cTxPpyWUmp6jYIsm8vYTeWzjBG1jg5Xnp7Co5n3K5Y9inouq+Hdf1TVtPsbGJpdLlWGd2gTaWOfukdcbSO1bf8AZWnf8+Fr/wB+V/wrzD4OaZFoviDxtpkDyPDaXkcKNIQWIUyAE4A5r1hpERlVnUM5woJ5Y4zx+Ao5n3HyLsVv7K07/nwtf+/K/wCFQXlto2n2ct3d2tnFbwqXd2iXAH5VoO6RRtJIyoigszMcAAdSTXm0jz/E7XDBEZIvC1jJ+8cZU3cg7D2/kOepGNaUXLVuyW5jVlGFlFXk9kRaNpA8fa4Ncu7FLbw/bMVs7URhftBB+8+Oo9e3b1z6L/ZWnf8APha/9+V/wqeGGK2gjggjWOKNQqIowFA6ACpKVSq5vTRLYKVBQWure7Kn9lad/wA+Fr/35X/Cj+ytO/58LX/vyv8AhVumiRDIYw6lwASueQDnBx+B/Ks+Z9zbkXYrf2Vp3/Pha/8Aflf8KxvE1/oXhjSHvrqxtWb7sMIiXdK/YDj8z2rW1fVrPQ9Mm1C+l8uCIZPqx7ADuTXFeGtJvPFusJ4t1+LZAv8AyDbJuka9nI7+oPc89MVtSjdc83ovx8jnqys/ZwXvP8PMl8G+EHlnk8R+IbaFtQuhmK1MYCWyHoNvY4/L6k12f9lad/z4Wv8A35X/AAq3RUVKspyuzSnRhTjypFT+ytO/58LX/vyv+FH9lad/z4Wv/flf8Kt0VHM+5fLHsVP7K07/AJ8LX/vyv+FH9lad/wA+Fr/35X/CrdFHM+4csexU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFHM+4csexU/srTv+fC1/wC/K/4Uf2Vp3/Pha/8Aflf8Kt0Ucz7hyx7FT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0Ucz7hyx7FT+ytO/wCfC1/78r/hR/ZWnf8APha/9+V/wq3RRzPuHLHsVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3RRzPuHLHsVP7K07/nwtf8Avyv+FH9lad/z4Wv/AH5X/CrdFHM+4csexyfi3wRZ69pwayihtNStzvtpo0C8/wB1sdj+nX1B5B9T1jWtAnt9It7Oz8U6Xn7VYS2cbC6UdSuRwfpxk+4Net1x3jPwtcXssOv6G3ka7ZfMhXjz1H8B98cD16H26KdTmXs5v0fb/gHPVpckvawXqu//AATD8A6u97pcNz4qitIJLw4td1gkURwSCPM5G/II2naeOAetehf2Vp3/AD4Wv/flf8KxfC+v6f4t0SRHtokmUmO9spEBCuSd2VPUE5PPvnnNXrTQzptzGdPv7iKzB+aykPmx4/2C3zJ9Ado9KxlzxfLLc2hyTipR2OCvfE+r6p4g1PTvB/hHTb6DS5PJubi62oGkGcqoyO4I79PpXSeCNa0nxlobXq6PBa3MEpgubd4lPlyAAnBxyOaZ4hmuPBGnzXHhbwo2oz307zXKwMRtcjO9gAS2fQYrI+Cos38KXlzHdme/ub15r5ChQwyED5cHt3z7n0qeZ9yuWPYseMPCcljeR+J/D1pCbq35ubPywUuI+/y+uPz6jkc9D4du9C8S6RFqFlZWuG4kjMS7o37qeP8A9ddDXnPiDTLvwTrT+KdDiL6fKf8AiZWS9MZ++o/X2PsTjphL2seRvVbf5f5HLOCoy9ol7r3X6/5nd/2Vp3/Pha/9+V/wo/srTv8Anwtf+/K/4UaZqdprGnQ39jKJbeZdysP1B9COmKt1ztyTszqSi1dFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UuZ9w5Y9ip/ZWnf8+Fr/35X/Cj+ytO/wCfC1/78r/hVuijmfcOWPY8F8VaTdXvjnU7bTbGSUiQYSCPIX5R6cCtXSfhRq13tfUp4rKM9UH7x/04H517IqqudqgZOTgdTS1ftH0PelnteNKNKklGySvu9PwOV0n4eeHtLAZrT7ZKP47o7/8Ax37v6Vx/xU0+OO90iGxs0VnSQCOCLBblewHNetUm1d4faNwGM45xUqbTuceHzGrTxCxFRuTV933VjwzSfhr4g1La80KWMJ/iuDhv++Rz+eK7vSfhZoljte+eW/lHZzsT/vkc/mTXc0U3Ns2xGdYutopcq8v89zivHuladZeBL/7JYW0BUxbTFEqkfvF9BXmGk+Cdf1na1vYPHCf+Ws/7tcevPJ/AGvoNlVxhlDDIOCM0tCm0h4PN6mEounCN23e79F/kebaT8JLSLbJq1887d4oBsX8zyf0rtLLwzomnxCO20q1QDuYwzH6sck1q0UnJs48TjsRidKsm126fccB4z8I6j4lu7fTtOt7Sw06LEk1yVAaRuyhV5IA9cAk+1SaN8KPD2mqGvEk1Gfu0x2pn2Uf1Jru64H4peJ7/AEXT9O0nRpPK1XWbkW0MgHMa5AZh75ZQPqe4rX6zUUeROyPM+q0nNzkrs35dQ8J+Fg8b3WkaYyLuaMNHG5HX7o5P9an8MeIrXxVocerWaMlvLJIqByN2FYrkgdM4zj3ryL4seC/DXhnwhatY2BfV7q5SFbl5naSQ4JZjlsEnHPH8Vew+HNFt/D3h6x0u3jRFt4VVtgxufHzMfcnJrFtvVm6SWiNSiiikMKKKKACiiigAooooAKKKKAPMvhn/AMjz8Qv+wkv/AKFLWX8UNflfxHbWVpM0ZsAH3I2CJWwevsMfma9Gj0vRvCy6xrNvbeQ90Tc3j+YzeYy5OcEkDqeBjrXz9fXkuoX9xeTnMs8jSN9Sc1pTWtz6Hh7C+0qyrSWkdPm/+B+Z2qeKNU8c/wBn+Grm5hsopWxd3IbDTgdFA6An07n8q9d07TrXSdPhsbKFYreFdqIP5n1J65r550Xw/qmvXPladbO+D80p4RPq3+TXv2g2V/p+kQ22pXwvLlBgy7ccdhnvj1PWrqS91RWxz5xl2Gw1Z1aUvelvHt6dl5GlRRRWB4wE4GT0rwTVfGF9/wAJrc61p9wUAfy4x1Vo14AI7g4z9TXqvj3WP7G8J3To2J7gfZ4vXLdT+C5/SvAa1px6n1PD+DjKE601dPT/ADPTtHmb4l+JVn1Z4otO09VePTlfPmuerH1Gf6DuSfVQAAAAAB0Arwfwj4U1/U7yG+sC9lFG25bx8gf8BH8X8vWvdoVkSGNZZBJIFAZwu3ce5x2p1ZXsuiPHzLAYfCVn7CV77rdry9Ow+iiisTzgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDgvFugXuk6oPF3hxP9MiH+m2oHFzH3OPXjn6ZHI56nw/r9l4k0iLULF8o3DoT80bd1Pv/APrrUrzjXdNu/Autv4n0SIyaXOR/aVknQDP31Hbr+B9icdMWqseR/Etv8v8AI5Zp0Zc8fhe/l5/5mZovxJHhXUda0bxzd3S3cN28lrM0BYSQnhQu0dOMgn+914q/8JLa4uJPEviN7WS1tdZvzNaxyDDGMFjux77+vsa7yyutO13T7e/t/KubeQb42ZQcH8ehHSr9c7TTszpTTV0FIyq6FHUMrDBBGQRS0UhnmlzDcfDPXGvrVHl8L30g8+FeTauf4h7fzHB5ANej29xDd28dxbyLLDKodHU5DA9CKbdWsF7ay2tzEssEqlHRhkMDXnVhcXHw21xdKv5Hl8NXkhNpctz9mc/wt6D1/P1FdP8AHX95fj/wTk/3eX9x/g/8vyPS6KQEMAQQQeQR3pa5jrCiiigAooooAKKKKACiiigAooooAKKKKACvEfivqU2k/FfwrfvZTXdvbxK8cUYyZH8xshfVvuHH0r26kKqWDEAkdDjpQB4Nq114g8X/ABb8L6drdnFZQRsL2KwVtzRRglj5p/vERjjsCOhzXvVeSeDP+J/8bvFetkbobBfscZ7BshMj8I3/ADr1ugAooooAKKKKACiiigAooooAK4rXPiDb6F4sTTJ4t9osa+fKvLRueRx3GMZ78/gevvLqKxsp7udtsUMbSOfYDJr5r1G+l1PUrm+mP7yeRpG9snp+FaQjfc9vJcvhipTdVe6l+L/yPVfH+vpqljbaBoj/AGy6vysjLAd37scj8yM+wBzVbw58Ko49lzr0u9uotYm4H+83f6D864nwh4lPhfVzdfZkmilXy5RtG8Ln+E9vp0P5Ee+2d3FfWcN1Dv8AKlUOu9SpwfUGnP3VZG2MeKy2l7CnpFt+8t3/AJaf8OOtrW3srdLe1hjhhQYVI1CgfgKloorI+fbbd2FcLo/xJsL3X7rTrvZBD5xS1uM/K4HA3ehPUHpz+ev451j+xfCl3MjbZ5h5EXrubv8AgMn8K+fq0hC61PfyjK4YqjOdX0X+Z6V4xkvPHPiVNK0NPtFvYArJKDiMOTyS3oMY98HGa6Hw58M9M0rZcajtv7oc4YfukPsvf8fyFcn8OvGEejyDR7m2Bt7iXKSwx5cOePmA5YfqP5ey05u2i2M8dWxeDhHCfDFLdde7v+n5iAAAAAADoBS0UVkeGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXRZEZHUMjAhlYZBHoadRQB5pLFcfDPXTcwLJL4Xv5P3sa5Y2kh7j2/mOOoGc/W/ihNLrdsNM3JptvMGkJGGuADz9BjoPz9Ko/EfVteuNQNpfWstnp6t+5jBysuP4iw4J9u1cJXU3z2lLc+pybIqVKn7Wq+bm2W6V/wCvkfUMUqTwpLGwaN1DKw6EHkGn1xnwz1j+0/CyW0jZmsW8k567Oqn8uP8AgNdnXM1Z2PncTQdCtKlLowqlq2k2et6ZNp99EJIJRgjuD2IPYirtQ3ck0NpLJbwGeZVJSIMF3nsMngUJtO6MOXm919TzrSfENz4BuZfD3iMyzWcaF9PvEUtvQfwf056dOmDUHhz4hXereOI47oiGwuVMMMAPCN1Uk9ycY/GuI8U6lrGpazI2tJJFOnCwMpURr6KPT371jxSvBMk0TFZI2DKw6gjkGumaU3zNas+uy/IKVHDONR80pLR9u1u9u59Q0VQ0TU01nRLPUI8YnjDEDs3Rh+BBFX65T5OcHCTjLdBRRRQSFFFFABRRRQAUUUUAFFFFABWXr2lXWsWS29rrF5phDbmltAu5h6ZYHH4VqUUAcF4a+GKeFtRa6sfEmrbJZRLcQsY9s5H975fc+/Nd7RRQAUUUUAFFFFABWRpPijRdc1C9sdMv4rqay2+f5fKruzjDdD905xnFT6zrul+HrBr3Vr2K1t1/ikPLH0UdWPsK5j4d2XhWe1vPEPhuxmh+3TyCSSfIY4bJCjJAXPT9elAHb0UV5zJ8RrXT/G+uW97MRp9rbhIgvJaVD8wA9SWI/wCAitKdKVS/L0MqtaFK3M9yz8VNY+xeH49OjbEt6/zY/wCea4J/M7f1rzXQPCOr+I5B9jt9tvnDXEvyoPx7n2FeheH/AA/ceLr0+J/E0H7uXH2KxJ+VY+xb1HfHfJPfFehxxpFGscaKiKMKqjAA9hVSfs/d6n0GEziGGwkYYeN5PVt+fl6HKeHPh9pGg7J5V+23o582VeFP+yvQfXk11tFFZNt7nlV8RVry56srsKKjuJ47W2luJmCRRIXdj2UDJNeWaX8UXPhu6Jja51qa9dLO2ALEhzlc+y5Ix3wB9NKdGdRNxOOrXhSaUmU/ivrH2rW4NLjbMdom5wP77c/oMfmazvDnw71bXNk9wpsbM8+ZKvzsP9lf6nA+teh+FfBMVgBqmtKt3rU7ebI7/MsTHnA7Z9/yqbxV4zXRb+z0PTLcXviC/wCLa2JwiDn95IeyjBPHJwfrQ5cvuo+l/tr2GHjQwq2W779bL/P7jR0HwrpPh2LFlbgzEYaeT5pG/Ht9BgVtVx/hXR/Gdnq1zd+JvEUF7bumIrW2hCorE9SSoIAHA55zzXYVk3c8OpVnVlzzd2FFFFBAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF3Z21/bPb3cEc8L/eSRcg15r4j+FIO+50CXB6m1lb/wBBY/yP516jRTUmtjrwuOr4WV6Uvl0PE/AV7c+GfGQsNRikthdDyXSUYw38B/PjP+1XtlYviXw1ZeJtLe1uVCTAEwzgfNE3r7j1Hf8AI1w6+OL/AEHQNV0XXi0et2UBW2mz/wAfAPyqwPcjIPuB6g1tGm6usd/61JzTMqdeoqso8rtr2uj1KisTwhrH9veFdPv2bdK8QWX/AH1+VvzIz+NbdZSi4txfQ5ISUoqS6mdq+habrtt5Go2qTKPut0ZPoeoryrxH8MNQ07fcaSzX1sOfLx+9UfT+L8OfavZqKIyaPRweZYjCP3Hp2ex5n8J9YIivNDuCVkjbzolbg46MPwODj3NemVyHjHwpNqATWNEYW2uWh3xumB52P4W98cAn6Hg8cxqvxTH9jaXJGjW+pJeqL+1wQVVPvjns2R19x2raNF1dYf8ADHHmWYUp15VeXlur/PrY9WopsciSxJJGwZHAZWHQg9DTq5yAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOvjJaaUnge91O8s4Zr6OMW9rJIMlC7rkr2BwCc9eK3vh3pn9kfD7RLQjDfZVlcejP85H5tXG/Gt21Obwv4Yib5tRvwzAdgMICfb94fyr1dEWNFRFCqowAOwoAzfEOsw+H9Bu9SmIxCnyKf43PCr+JxXzjpeiax4mv3Fhay3MzOWkk6KpPOWY8CvcfE/hq78Yatb2l1I1tolmd77T89xIR29FA4z6k8d66fTtNs9Jso7Owt0gt4xhUQfqfU+5ruo144eHu6yf4Hn1sPLE1Pe0ivxOe8JeG9a0iNZNY8Q3V9Lj/AFG7dGv/AAJhuP6V1dFFcc5ub5mdtOChHlQUUUVJZwnxW15NL8KvYo+LrUD5agdQgwXP0xx/wKvK/CfhHxJrF1Fd6Ustmini9ZzGF7HaRyfTivVh4LPiPxLJr3iNd0KnZZ2GeFjHQye55O3359K7dEWNFRFCoowqqMAD0Fd8cSqFPkhq+p50sLLEVPaT0XTuZegaTeaTY+Ve6vc6lMcZkmAAH+6Ov5k15j4SubfV/i74u8V3k0aWOlIbeOaRsImPk3A/7sbf99V6j4j1VdD8N6lqjED7LbPKue7AHaPxOBXzb4Lhmi1fw5p3iKNj4f1m5a5WPdhbiTJjXzPUB1Hynj5s964ZScndnfGKirI9g0n4rprviu20nTfD1/NY3LsseoN8ilV+84Uj7o+uenGeK9FpqIkUaxxqqIoCqqjAAHQAU6kUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXi3x1ofg23D6lOzXDrujtYRukcZxnHQDPc4FdLXmvxsvhaeBzZwxq13qdxFargfMVDb/wAsqB/wKgB6fGXQYvCkGs38bQXNwX8nT45BJKwVioY9AoOOpx7Zpl58adBsPDlnfzxM2o3UXmDToZA7Rg9N74AXIwfXnpXJ/ELwvp/hzwt4e8I6PaxJqGrXaLNMBl5ioAOSecbnBA6DFP8AiH4a0qyu/CXgbRLRIEvLoS3DKMuwGEDs3U8GQ+2OKAPXLeWbxF4XtLlZLjTJby3jm/dMpeIsobGSMHr6D8K8e8aeB/FlvMby5up9at0B2zBmZ0X3Q5IH0yK92RFjRURQqqAAB0Ap1b0MRKi7o58Rho1lqzyD4Na8kct5oM74Mh8+3B7kDDj8gD+Br1+uK8R+AorvUY9c0N0sdZgkEoOMRzEdmA6E+o65Oc119pNJcWkUssLQSsoLxNyUbuM98HuOtViZQqS9pHruicLGdOPsp9Nn5E1FFFcx1GN4i0e+1ey8uw1m602ZQcNDja3+93/IivBfFXhTxFot3Jc6vHLcK7c3oYyK592PIP1xX0nTZI0miaKVFeNwVZWGQwPYiurD4qVHS10cmJwka2t7M4z4X68mseEobZnzdWGIJAeu3+A/THH1U1reKfGWjeD7JbjVbgq8gPlQRruklx12j29Tge9Y0Pg1vC/iZdZ8Pg/Y5v3d5YZ6IT96P6Hnb9QOuKj+L+px6R8PdQlCqLm6UWUTkDOJD84z7qrflWdflc+aGzNMPzqHJPdFSw+MugTeGpNY1CN7N/OeOCyVxLNMqgHcAMYHJGTxwea6PwP4tHjTQDqy2D2cfnvEiPJv3BcfNnA9cfhXm+vaHp/gL4IP5VpHFq2pQxQXE5Hzs74Z1yeQAoYYHHFeleA9I/sLwLo2nldsiWyvIPR3+dv1Y1ibnRUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVnarr2k6GITquo21kJ2KxmeQIGI5PJrRrE17whoPieW3k1nT1u2twRFvkcBc4zwCBzgflQBxunWaeN/ioPFELiTRNGh+zWko+7cTclmX1C7jz6qMZr02obS0t7C0itbSCOC3iXbHFGoVVHoAKmoAKKKKACiiigAooooAKKKKAOT+I2hat4m8IS6PpDQLLcyxiV5nKqsYO4ngE9Qtcx8SfBDH4Y2EenKTeeH40eJox8zIqgPj34Df8AAa9ToIyMGgDnPAvieLxd4SstUVl88r5dyg/glX7w/HqPYiujrhJPhqNPvry78Ka7d6AbwETwxRrLCT6qjfdPJ6Hjtiun8O6TLofh+z0ye+e+kt0Km4kXDPyTkjJ9cde1AGpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcT4o8IX/iXxx4evpJYE0jST9oZGJLyS7gcAYxj5F5J7mu2ooA4nUfB99q/xR07xFdSQDTNMt9sEOSXeU7vmxjAALDv/CKxPFXgDxH4g+J1trlnqcen2VvbrGlyh3Sp97cFX1O489Ofwr1GigDP0XRrbQtOWztWnkG4u8s8pkklc9WZj1JrQoooAKKKKACiiigAooooAK4nx14MvPGWpaFGbmCLSrKcz3SNkvKcrhQMY6bhkn+LpXbUUAeefFbwZrPjW10my0uW3jhinaS4MzkAcAK2ADnHzfnXReGvCq6E0l3d6hdanqs6BZ7y5c5IHO1F6IuewroaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>In the figure, $m∠1 = 50$ and $m∠3 = 60$. Find the measure of $\angle 8$.
|
120
|
Geometry
|
Geometry3K
|
test
|
12
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAENAcYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopskiRRtJI6oijLMxwAPUmuLk8f29/4kstG0UCYSzBZbph8u0csFHc4B56fWtKdKdS/KtjOpVhTtzPc7aiiiszQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimSyxwxNLK6pGgyzMcAD1JoAfWNr3ifTfD8X+kyGS4Yfu7aLmR/w7D3NYN34r1HxBdPp3hGDeFO2bUpRiKP/AHc9T/nB61d0zwFpdrBM1+X1C+uFxNdzE7s/7P8Ad+vX3ro9lGmr1fu6/Pt+ZjCqqk0o/D1f+Xd/h5mbHoet+MpFufEbtYaXkNHpkTYZvQyH/J9lp1rZWw+KMVrZwRxWul6dlURQArucfmVatiO81TQgINRgn1GzXhL23TdIo9JEHJP+0uc+grM8FONR8Q+JtYUkxzXKQxEjB2oOvPqCvFaqrJxk9kloltrp+Qq2DdJwa95N/F3sm/l6aeh2tFFFcRuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe9vrXTrR7q8nSCBBlnc4FYviDxfZaJItnCjXuqScRWcHLE/wC1joP19qx4PDF7qznWfGUyyCJTJHp0ZxFCBz83qf8AJJreFHTmqOy/F+n+ZhOtryU1d/gvX/Lc1/DPipPFF1ftaW7JY2xVElf70rHOTjsAAPz/AAro6434aW+3ws16V2tfXMk5AGABnbge3y/rXZUsRGMarjHZDw8pSpRlLd6hRRRWJsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBezvbWNxPHE0rxxs6xoCS5AyAAOpNeZ3lv4j0zwSfGNzruqJrCItzLYzHbbhSwzEYiOMA4z1zQO3Y9Toqm2p2kFtazXdzDa/aSqxiaQJudhkKM9T7VK95apeR2b3MK3Uil0hLgOyjqQvUgUWEndXJ6KKKACimTTRW8LzTSJHEgyzucAD3NcVc+KNT8SXD2HhOHEKnbNqcy4RP9wHqf8471pTpSntt36GdSrGG+/bqbniDxXpvh6NVnczXcnEVrD80jk9OOw9z+tYEXh/WfF8q3XieRrTTwd0Wlwtgn0Ln1/X/AHa2tA8H2GhyNduz3upScyXk53MT7en8/euhrX2kaelLfv8A5dvzMvZSq61du3+ff029SG0tLextktrSFIYUGFRFwBU1FFczd9WdKVtiG7uFtLOe5cgLDG0hz6AZrmPhvbtF4Ohnk/1t3LJO5x1JbGfyUVa8eXn2LwTqb95I/JH/AAMhT+hNaehWf9n+H9PtD1ht40Y+pCjP61utKD83+S/4JzvWuvJfm/8AgGhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXBx3/ijxR/aOoaJqkGnWVnPJBawtaiU3bR8MWYnKqTkDbzSuOx3lFUNEu7u+0W0ub+0a0vJIwZoG/gfuPpmr9U1Z2JTurhRRWJ4h8U6d4diUXDmW6k4itYuZJCenHYe/86cYSm+WKuxTnGC5pOyNeeeG1geeeVIokG53dsBR6k1xNx4j1bxVcPYeFYzDaKds2qTKQB6hB6/r9OtEHh7V/Fs6XvihmtrFW3Q6XE2PoXI7/r9Oldrb28NpbpBbxJFDGMKiLgKPYVv7lH+9L8F/n+XqYe/W/ux/F/5fn6HNWfgay06zBs7mdNTDiT+0Gbc7P/tDoVPOV/rzVHxVr9/YeFNRt9S0+SK4khMKXFv88Mm75c56qcHOD+BNdxXGfEDN5/Yejrz9tv03r6xr978PmB/CijJ1Kyc9f+AbVZqnhpU1FeXk3/wToPD1l/Z3hzTrQjDRW6Bv97HP65rToornk3JtsqMVFJIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI554ra3knnkWOKNS7uxwFA5JNcH47sr7UNGfXbXVorzRLeJbt9LaIeVdIvzZ81SG54OORwOK7yeCO5t5IJlDxSqUdT3BGCK4oeAL/AOwf2M/im8bw+BsFl9nQSeX/AM8zN129umcd6Wo1Yf45nsdV+GUt5KzQebDFcWmFy4mOGjVQOck4H40vw7T+1dK/4Sm9mFxqmoDZI23AgRCQIlHYAgk+pNa9x4ZS717T72e4DWGnR/6LYiPCrL0EhbPJA4Axx1pmiaLD4Tj1aV9QT7BcXT3apIuwW+77w3Z5Geegqlu7df6/H9CX8Kv0/r8DoawfEHizTvD4WKQtc30mBFZwfNI5PTjsP8jNYk/ibVvFFw9l4Ui8q2U7ZdUnXCj12A9T/njrWz4e8I2Ggk3GXu9Rk5lvJ/mdj3xnoP8AJJro9lGnrV37dfn2/M5/ayqaUtu/T5d/yMWHw5rHiqVLzxTMbezDbotLgbAx23n1/X6dK7W2tYLO3S3toUhhjGFRFwAKlorOpVlPTZduhpTpRhru+/UKKKKyNQooooA4z4g5u00PSRz9t1BA6+qL1/DkGuzrjNT/ANP+Kej23VbG0kuW+rZX/wCJNdnW9XSEI+V/vZz0tZzl52+5f5thRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACNnY2OuK8l8B6FrGreB1uY/EV9pzxzT/ZorUIE3b2JaQEEvls8ZAwBXrdcMvhjxPo/26x8P6jpqaXeTPMv2uNzLal+WCbeGGckZxj3pa627FJ6fP8AzNfwNrs/iPwfY6ldKouXDJLtGAWVipI+uM10LMqKWdgqgZJJwAK5mOfRfh54WtLGa5Iigj2xr1kmbqSB7k59BmsldO1zxw6zasZNL0TIZLJDiScdt57D/OO9dCpc15t2j3/yOaVblfJFXl2/zZPfeLr3Wrx9L8IwieQHE2oOP3MP0Pc/5Ga0/D/g+00aVr65ka+1WTmW7m5Of9nPQfrW1YafaaZZpaWVukECdEQY/H3PvVmiVZJclNWX4v1/yCFFt89R3f4L0/z3CiiisDcK4u8/4mPxX0+Hqmm2Tzn/AHm+X+RU12lcX4R/0/xb4o1Y8r9oW0jPsgwf5LW9HRTl2X56HPX1cId3+Wv52O0ooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqK5uoLO3e4uZkhhjGWd2wAK4qbxHrPiqV7TwtCbeyDbZdUnXA99g9f1+nWtadKU9dl36GVSrGGj1fbqbXiHxdYaCRb4e71GTiKzg+Z2PbOOg/yAaxoPDOreJ7hL3xZN5dsp3RaZA2FH++e5/zkdK2/D/hPTvD4aWMNc30mTLeT/NI5PXnsP8AJzW9WntY09KW/fr8u35mfspVNau3bp8+/wCRHb28NrAkFvEkUKDaqIuAo9hUlFFcx0hRRRQAUUUUARzyiCCSYq7CNSxWNSzHAzgAck+1Y/8AwlFt/wBA3Wf/AAWzf/E1uUjsqIzscKoyT7U1bqaQlTS9+N/nb9DzrRtbhl8c67qzWmoypsjtohFZSO0YAG4MAvynK5wa7Gz16G9ukt0stTjZ84eexkjQYGeWIwOlYXw3Uy6Dd6kwO/UL2Wfn0zj+YNdlW+Isqjj20+4zoToulzRg1e737/IKKKK5wCiiigAooooAKKKKACiiigAooooAKKKparq9jotk13qFwsMQ6Z6sfQDqTTSbdkJtJXZdrkNW8ZPNetpPhm3Go6j0eUcwwe7N3/z9KoE6948JC+bpHh9uN3Se5H9Afy/3q6/SdGsNDsha6fbJDGOWI+859WPc10ckKXx6y7dF6/5HPzzq/BpHv1fp/mYmh+DEtbv+1dauDqertyZZOUj9kHt6/kBXVUUVjOpKbvI2p0401aKCiiioLCq95f2enxLLe3cFtGx2hppAgJ9Mk9asVQ1J7hRGINNS9ByWDSKuz069e/5U0XTipSSf5pfiyrceK9BhtpZV1nTnZELBVukJYgdAM1zXw/1fSNP8Kxm91ewiu7iaSeZZLlFbJbGSM9cAUvjK9ubbwvdiXRIrQTARLMsqMQWPYAZ6ZrV02C+sdLtbT/hHI5DDCsZdriPLEDGTx1NdCsqPq/y/4c2eHouqn2X88Ov/AAxvWWp6fqW/7DfW115eN/kTK+3PTODx0P5VaqlpvmmJ2m09LJ92Nqurbh65H41drnZjUSUmo7et/wAUFFFFIgKKKKACiiigAooooAKKKKACiiigAooooAKKKhu7u3sbZ7m7mSGFBlndsAUJX0QN21ZNXPa/4vsdDkW0RXvdSk4js4Pmcn39P5+1YsviDWvF8rWvhmNrPT87ZNUmXBPqEH+T/u1v+H/Cmm+Ho2aBDNdycy3U3zSOT157D2H610+zjS1q79v8+35nN7WVXSlt3/y7+u3qYdt4X1PxJcJf+LJsQqd0OmQthE/3yOp/zntXawwxW8KQwxpHEgwqIMAD2FPorKpVlPfbt0NadKMNt+/UKKKKzNAooooAKKKKACiiigArG8W3n2DwlqlwG2MLdlVvRm+UfqRWzXHfElzJ4fttNQ4e/vYoB9M5z+YFa0I81WKfcxxEnGlJrsa/hCz+weEdKt9u0i3V2HoW+Y/qTW1TURY41RRhVAAHtTqicuaTk+ppCKjFRXQKKKKkoKKKKACiiigAooooAKKKKACiq97fWunWj3V5OkECDLO5wK4p9V1zxvIYNFEmmaNuKyX7jEko7hB2/wA8jpWtOk567LuZVKqhpu30NTXfGUVldf2XpEB1LV24EEXKxn1c9sen54qvpXg2W6vl1fxRcC/1DOY4P+WMHsB0P8vqea29C8Oad4dtPIsYcMf9ZM/LyH1J/p0rWq3VUFy0vv6v/IhUnN81XXy6L/Nh0ooornOgKKKKACiiigAooooA4vxx/p2r+GtHHPn3vnuO22Mc5/An8q7SuLOdR+LQHBj0ywz/ALsj/wBSrfpXaVvW0jCPlf7/APgWOejrKcvO33f8G4UUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBeXtrp9q9zeTxwQJ953OAK4qTXNb8ZSNbeHEaw0vJWTU5VwzeojH+T7rWtOlKeuy7mVStGGm77dTZ1/xjY6NKLKBHvtUfiOzg5bP+0R0/n7Vl2nhTUfEF0mo+Lp94U7odNiOIo/8Aex1P+cnpW7oHhbTfDsJFrGXuH5luZfmkc9+ew9hW1VurGnpS+/r8u35mapSqa1fu6fPv+QyKKOGJYokVI0GFVRgAegFPoornOkKKKKACiiigAooooAKKKKACiiigArjPEf8Ap3xA8M6cCCsPmXci+mB8p/NTXZ1xmnf6f8VNWuM5Wws47cfVsN/8UK3w+jlLsn+On6nPiNVGPdr8Nf0OzooorA6AooooAKKKKACiiigAooqOeeG1geeeVIokG53dsBR6k0ASVzviDxfZaJItnCjXuqScRWcHLE/7WOg/X2rEuvFOpeKLmTT/AAvtgtVO2fU5vlA9Qg9f1+nWt3w/4c0nw8jPDIJ7yTmW7mYNI5789h7fzrp9lGnrV37f59vzOb2squlLbv8A5d/y9TIsfCd/rt0mp+LphKRzDp0ZxFF/vep/ySa7VEWNFRFCoowFUYAFN8+H/nqn/fQo8+H/AJ6p/wB9CsqlSVTfbt0NadONPbfv1ZJRUfnw/wDPVP8AvoUefD/z1T/voVnY0JKKj8+H/nqn/fQo8+H/AJ6p/wB9CiwElFR+fD/z1T/voUefD/z1T/voUWAkoqPz4f8Anqn/AH0KPPh/56p/30KLASUVH58P/PVP++hVTVdShsNIvLvzUPkQvIAGHJAJpqLbshNpK7Ob8ED7brPiXVzkie98hD/sx9P0I/KuzrmPh7ZGy8FWG778waZj67iSP0xXT1tiHeq7dNPu0McMmqUb9dfv1CiiisDcKKKKACiiigAooooAKKKKACiiigAooooA80+JnhzULuSPVkuLi4sIsedbLyYV7sg78de/4dL+keH7rUtLgutN8Z6gbVlwgVANuP4cZ4I9K7wgEYPIrgdSsb3wNqUutaRE02izNuvbFf8All/toO3+e3TupV5TgqSdmtttfL1OCrRjTm6tm099Xp5+hf8A+EQ1j/ocdT/75H+NH/CIax/0OOp/98j/ABrpdO1G11WwivbKZZYJRlWH8j6H2q1WDr1E7P8AJf5HQqFNq6v97/zOQ/4RDWP+hx1P/vkf40f8IhrH/Q46n/3yP8a6+ij6xU8vuX+Q/q8PP73/AJnIf8IhrH/Q46n/AN8j/Gj/AIRDWP8AocdT/wC+R/jXX0UfWKnl9y/yD6vDz+9/5nIf8IhrH/Q46n/3yP8AGqU2kS298ljN8Qp47t/uQPKgkb6KWya7s5wcde1eLRWmjf8ACv8AXrfWoLZvFTzT7llQG6eYsfKKZ+YjpjHHX3pfWan9Jf5DWGg+/wB7/wAzu/8AhENY/wChx1P/AL5H+NH/AAiGsf8AQ46n/wB8j/Gt/Qku4/D+nJqBJvFtoxPnrv2jOfxrQqnXqJ2uvuX+RKoQavr97/zOQ/4RDWP+hx1P/vkf40f8IhrH/Q46n/3yP8a6+il9YqeX3L/If1eHn97/AMzkP+EQ1j/ocdT/AO+R/jR/wiGsf9Djqf8A3yP8a6+ij6xU8vuX+QfV4ef3v/M5D/hENY/6HHU/++R/jVX4aQs9pq+oSTtcPcXrIJ3+9KqDhj/30a6rW7z+z9Bv7zvDbu4+oU4/WsrwDZ/YvBOmoeskZlJ/3iWH6EVp7WUqEnLq0tl6/wCRl7OKrxS6Jvd+n+Z0lFFFch1hRRRQAUUUUAFFFFABWZr2h2niHSZLC73BW5V16ow6EVp0U4ycXdbilFSTi9meP6V4Z0TTNYGheKLArcSsTa3yzOsc4zwODgH/AOt7Z7P/AIVp4V/6B7/+BEn+NbeuaFY+IdNeyvo9yHlHXho2/vKexrmNI1y98MakmgeJJi8TcWWot92Rf7rHsfr/AIGu916tVc0JNS6q/wCK/wAjz1h6VF8s4px6Oy+5/wCZc/4Vp4V/6B7/APgRJ/jR/wAK08K/9A9//AiT/Gutorm+s1v5397Or6rQ/kX3I5L/AIVp4V/6B7/+BEn+NH/CtPCv/QPf/wACJP8AGutoo+s1v5397D6rQ/kX3I5E/DXwqASbBwB/08P/AI1TTwV4Dk05tRQwNYqCTcrfExAA4PzbscGu6rx3w7Ba6r481Tw2t3v8PwXb6jDb7CFuJMgMgPQoj5OB1IoWJrN25397B4WglfkX3I7NPhv4TkjV47JmRhlWW5cgj1HNO/4Vp4V/6B7/APgRJ/jXW0UfWa387+8X1Wh/IvuRyX/CtPCv/QPf/wACJP8AGj/hWnhX/oHv/wCBEn+NdbRR9Zrfzv72P6rQ/kX3I5L/AIVp4V/6B7/+BEn+Nc3438GaBovh1p7CyZLyWaOGEmZz8xOcYJx0Br1GuL8Xf6f4r8L6V1U3DXUg9kGR/wCzVth8RVdRXk7LXftqYYjDUVTdoK702XXQ6yxtVsdPtrRMbIIljXHooA/pViiiuNu7udyVtAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIQGUggEHgg96WigDgNQ0+88B6hJrGjxNNokzbr2xX/lj/tp6D/PTp2unaja6rYRXtlMssEoyrD+R9D7VZIDKQQCDwQe9cDf2Nx4C1J9X0tHl0Kd83tkvPkn++noP/wBXTGOpNV1Z/F+fk/PscjTw7uvg6rt5ry7rod/RVexvrbUrKK8s5llglXcrr3/+vViuZpp2Z1Jpq6CiiikMjuGkS2laJd0ioSo9TjivLNEsdF1b4XXWv6qkMureVPJcX8gHnwygtgK/3kxxgDHavV65y58BeFrzU21CfRbdrln3ucsFdvVkB2sfcik1e67/AIDTtYn8HXF7d+DdHuNRLNdyWqNIzdWJHU+5GK3KQAAAAYA6AUtVJ3bZMVZWCiiikMKKKKAOS+JFy0Pg24hjP726kjgQdyS2cD8Aa6aztls7G3tUACQxrGoHTAGP6VyfjP8A03xH4X0rgh7w3Lj2jAP6gtXZ1vPSlBd7v9P0OenrWm+1l+v6hRRRWB0BRRRQAUUUUAFFFFABRRRQAVR1bSLPW9Oksb6ISROPxU9iD2NXqKabTuhNJqzOE03Vr7wdfQ6Jr8nm6fIdtlqJ6Adkf0/p9OndggjI5FVNT0yz1iwksr6ESwSDkHqD2IPY+9cXY6je+BNQTStZlkuNElOLO/YZMP8AsP7f5HHA6WlXV4/F27+nn5HNzOg7S+Hv29fLz+87+ikVldFdGDKwyCDkEUtcp1Gfrdjd6npFxZWV+bGWZdn2gR72RT1wMjBxnB7VjnwVa29/4fudMn+xjR1eIII93nRMMMpORg55zzzXUUULQNwooooAKKKKACuMtP8AiY/Fe/m6x6dYpAPZmO7+RauzrjPh/wD6Y2u6yeftt+4RvWNfu/h8xH4VvS0hOXlb7/8AgXOetrOEfO/3L/Ox2dFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKroyOoZWGCCMgilooA4C8s7vwBqD6lpsbz+H52zdWi8m3P99fb/APUexHb2N9balZRXlnMssEq7lde//wBep2VXRkdQysMEEZBFcDeWd34A1B9S02N5/D87ZurReTbn++vt/wDqPYjqTVdWfxfn/wAH8zladB3Xwfl/wPyO/oqCyvbfUbKK7tJRLBKu5HHcVPXM007M6k76oKKKKQBRRRQAUUUUAFFFFAHGf8hD4t9mTTdP/wC+Xc/zKt+VdnXGeDP9N8R+KNV4Ie8Fsh9owR+oK12db4jSSj2SOfD6xcu7f52/IKKKKwOgKKKKACiiigAooooAKKKKACiiigAqvfWNtqVlLZ3kKywSrtZG7/8A16sUU02ndCaTVmcBbXV98PryOx1B3ufD0r7be6PLWxP8Le3/AOseld7HIksayRurowDKynIIPcVHd2lvf2ktrdRLLBKu10YcEVwiSXnw7vvKmMt14Zmb5JMFmtGPY+3+evXp0r7fH+f/AAfzOa7w+/wfl/wPy9D0Gio4J4rq3jngkWSKRQyOhyGB7ipK5TqCiiigAqvexXctsUsrmO3myMSSReYAO/y5H86sVU1DS7HVYVhv7WK5jVtyrIuQD0z+tNbl02lJN/lf8Gc9rg8Q6ZoV9eya5aMsMLNtGnlSxxwM+YcZPeqnhHR9btvCun/ZNWtbeGWITLG1iXI3/Ny3mDPX0qj488P6Np+hwxafpdrDeXd1HbxOkYyCTn+mPxrp08F+HFRV/sa0OBjJjGTXS2lSXm+3b/hzdYik6r97Zf8APuHXzv5F7T7bVIJHN/qMF0hGFWO18rB9c72zWhVHTtG03SPM/s+yhtvNxv8AKXG7GcZ/M/nV6uZ7mNWSlNtfkl+C0CiiikZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIyq6MjqGVhggjIIpaKAPP7iC7+Ht+97ZpJceHJ3zPbjlrVj/Evt/+o9jXc2l3b39pFdWsqywSruR1PBFSyRpLG0ciK6MCrKwyCD2NcDcW938Pb9ryzSS48OTvme3HLWrH+Jfb/wDUexrq0rqz+P8AP/g/mcutB3Xwfl/wPy9D0CioLS7t7+0iurWVZYJV3I6ngip65WraM6k76oKKKKACiiigCC8tVvbV7d5Jo1fGXglMbjBzww5HSsO98P2lnY3F0+p6wFhiaQ51ObGAM/3vaujrm/H159i8E6k46yRiID/eIU/oTWlJOU1FdWU8TUoU5OMrJamH4F8NR3HhW3vJrrUYZbp3lZbe9kjU/MQCQD1IA5rrrDRYdPuDMl5qExKldtxeSSr+TEjPHWn6JZ/2foVhZ4wYbdEP1CjP61fp1ajlOT6XHCvW9moTk3pqFFFFZEBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUc8EV1byQTxrJFIpV0cZDA9jUlFAHnxS9+HV2Xj8y78MzSfMn3nsyfT1XP+c9e8trmC9to7m2lWWGRQyOpyCKdLFHPC8MyLJG4KsjDIYHqCK4O4trz4fXz3tjHLc+HJm3T268tan+8vt/k9jXVpX3+P8AP/g/mctnh9vg/L/gfl6Hf0VXsb621KyivLOZZYJV3K69/wD69WK5mmnZnSmmroKKKKQzi/En/Ew8feGtNHKQF7yQemPun81I/Gu0ri9JxqPxP1u76rYW0dqn1bk/qGFdpW9fRRj2X56/qc9DVyn3b/DT9AooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbJGksbRyIrowKsrDIIPY06igDz+eK4+HmpG6tlln8N3L/AL6Ecm0c/wAQ9v8A9XXFd3bXMF5bR3NtKssMihkdTkEU6WKOeF4ZkWSNwVZGGQwPUEVwMkd38O78zQiS48M3D5kjHzNaMe49v89evV/HX9/8/wDg/mcutB3+x+X/AAPy9D0Giora5gvLaO5tpVlhkUMjqcgipa5WrHVuFFFFABXGfED/AEw6FpAAP2zUE3qe6L978PmBrs64zUf9P+Kmk2+MrYWclwfq2V/+JNb4bSfN2Tf4HPidYcvdpfj/AJHZ0UUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMqujI6hlYYIIyCKWigDgL2xvvAV5JqmkI9xoUr7ruxHJg/wBtPb/J45HVr4i0ptGTVheIbNwNrDklv7oXqW7Y61pkBlIIBB4IPevPdW8OyeE9aTxFo1klzZIS1xZY/wBVkcvH6cenT6dOpONfSXxd+/k/PzOeKVCV3dw6pbr08u/bddjplu9e1MFrS1h02A/dkvAZJWHr5akBfxbPtQ2k6xgu/ie5XAydlrCFH5qT+tVrXxDc+JFH/CPqkdsAPNvblCQjEA7FT+Jhnkk4HvVTxLY3Gl+GNRvp9f1KWVITtyyIm48AbVUcEkVmoPm5Nmeo60YU/aXila9rczt6tP8AP5DPhsrz6Rf6pMxeS/vZJd5GCwHH891dpWL4Qsv7O8I6XbFdrCBXYejN8x/UmtqivJSqya7nnUIuNKKe4UUUViahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlijnheGZFkjcFWRhkMD1BFPooA8+kju/h3fmaESXHhm4fMkY+ZrRj3Ht/nr1723uIbq3juLeRZIZFDI6nIYHvSzQx3ELwzIrxSKVdWGQQeorgP8AS/hzf/8ALW58MXD+7NZsT+q/z+vXq/jr+/8An/wfzOX/AHd/3Py/4H5em3oVFYc3iJbmQW2hxpqNyyhi6viGIEZBd+fyGTTRoN7e/Nq2s3MhPWCzJt4h/wB8/Ofxb8K5+W256MaKSUqjsn97+X+djerjPDf+n+P/ABNqOAVhMdpG3pgfMB+KitV/D2gQRt5kX3QSS9y5bjryWzWT8MoAPDU17tIN7dySjJycZ2gZ79DW1Oypzl6L9f0OTERh7SEYtvd6q2yt3fc7Siiiuc0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDhdW0W+8K30uveHEL2znde6cPuuO7IOx/wA9OKreLddsvEvhfTbfTpww1K+igZc/NHzkgj1B216HXIz+BbRfGNlrtnthRJC9xABhWbacMvockZ/P69lKtFtSqbrZ9+yf+ZxVqE0nGntLddr7tfqjrVVURUUYVRgD0FLRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwRXVvJBPGskUilXRxkMD2NSUUAecy/bfhpdSyQwveeHLhiwTPz20h6An0PAz/Xr0dppc+uW8d7qupNNDKodLaylKQAHpllwz/UnHtW/PBFdW8kE8ayRSKVdHGQwPY1wSNP8OtR8p/Nn8M3T/K5yzWbnt/u/569eu/t1/f8Az/4P5mNOrPB/D8L69Y+nZfl6Gh4o0LQNI8J6ldRaRYxyRwERyeSu5WPyqQcdckVseE7P7B4T0u3K7WFujMPRmG4/qTWH8Q7hL3w5Y2VvIHXU7yGJHQ5BUnOR69BXaIqoioowqjAHtUTbVFJ9W/w/pjdWdWu3OTdkt33/AKQtFFFc5qFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFc20F5bSW1zEssMilXRhkEVLRQnYNzzaLwhqOmeMNHtklkuNBhneeEMc+Q20nafxAx/wDrr0miitataVW3N0MqVGNK6j1CiiisjUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>Find x
|
4
|
Geometry
|
Geometry3K
|
test
|
13
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFDAi8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorE8W+Jrbwj4cudXuU8zy8LHCG2mVz0XPb684AJrnPh98TE8d317anS/sL20ayD/SfN3gnB/hXGOPzoA76iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooriPG/xN0nwa32Qo17qjDItYmxsz0Lt/Dn0wT7UAdvRXjn/CwPidNH9rg8FRi0xuCtbylyPb5gT/3zXReBvinZeK746Ve2jadqy5xCzZWTHUAkAgjn5T6dTQB6DRRRQAUUUUAFFFFABRRXKfEPxWvhHwlc3qOovZf3Nqp7yHvj0Ayfw96APP8AxbM/xH+Kdl4VtnLaTpjF7tlPDEY3n+SD0JNL4cjTQP2iNU0+NBFDdwusaLwMFEl4/wC+TVH4U+KvB3hTRbi41XWNur30haYG3mcogJ2ruCEEnljg9x6VW1jxTouo/G7w/rWjXn2m3doYZnETptYsyHhgP4WWgZ9A0UUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMjxTrkfhvwxqGryAN9miLIpOAznhR+LECvMfg54YOqPc+NtaH2m9uJm+zNKM4IPzSfXOVHpg1sfHa5aD4fxRr0nvo42+m12/morq/AVslr4A0COPobCKTp3dQx/UmgDoq8u8feANV1HxjpXiTw3HAl1CQ1yWk8vcyMCp9yRkH2Ar1Gqj6pp8d6LJ762W7OMQGZRIc8j5c5oAt0UUUAFFFFABRRRQAV4Zqcn/C0vi/DpqEvoekZ8zn5XCkbz/wACbC/QZr3CaJJ4JIZN2yRSrbWKnBGOCOR9RWN4e8H6D4V8/wDsXT1tTcY80+Y7lsZxyxOOp6UAQf8ACAeEf+hc03/wHWvK/jN4c0zw2mhano2nW9kVndZPJTaGYbWXOPTa3517vWTr/hrSPFFlHaazZi6gjk81F8xkIbBGcqQehPFAGjbTpdWsVxH9yVA6/QjIqWobS1hsbOC0t1KQQRrFGpYthVGAMnk8DvU1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGfFLw9P4j8CXltaxmS6gZbmFAOWK9QPcqWx71z/wAJ/H+k3Xhi00XUL2G01CyXyVWdwglQfdKk9SBwR14r1OuJ8Q/Cnwr4junu57SS1uX5eW0cIWPqQQVz74oAveJPiB4d8NWEk9xqEE84XMdtBIHkkPYYHQe54rz/AOFmiah4l8WXvj/WI9gkZ/sqkYDMRtJGf4VX5R/9aul0r4LeD9MuFmkhur9lOQt3KGX8QoUH8c16CiJFGscaqiKAqqowAB0AFADqKKKACiiigAooooAKKKKACiiigDgP+Fu6B/z56n/36j/+Lo/4W7oH/Pnqf/fqP/4uvPvA3h218T6xc2N3JLGq2rSo8ZGQwZQOvUcmtTVvhjrOlSefaJFqlupzsXKuR7rkH8jmvblhsHGfs5Oz9TwY4vHTh7SKuvQ63/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+Lrj9LvfBgm+y6/4alsZ1OGdJpioPupbcP1rutP8ABfgXVYPPsLSG4j7mO7lOPqN3H41lVpYal8cJfh/mbUq2Kq/BOP43/Iq/8Ld0D/nz1P8A79R//F0f8Ld0D/nz1P8A79R//F1q/wDCuPCf/QK/8mJf/iqP+FceE/8AoFf+TEv/AMVWPNgv5Zf18zbkx/8ANH8f8jK/4W7oH/Pnqf8A36j/APi6P+Fu6B/z56n/AN+o/wD4utX/AIVx4T/6BX/kxL/8VR/wrjwn/wBAr/yYl/8AiqObBfyy/r5hyY/+aP4/5GV/wt3QP+fPU/8Av1H/APF0f8Ld0D/nz1P/AL9R/wDxdav/AArjwn/0Cv8AyYl/+Ko/4Vx4T/6BX/kxL/8AFUc2C/ll/XzDkx/80fx/yMr/AIW7oH/Pnqf/AH6j/wDi6P8Ahbugf8+ep/8AfqP/AOLrV/4Vx4T/AOgV/wCTEv8A8VR/wrjwn/0Cv/JiX/4qjmwX8sv6+YcmP/mj+P8AkZX/AAt3QP8Anz1P/v1H/wDF0f8AC3dA/wCfPU/+/Uf/AMXWr/wrjwn/ANAr/wAmJf8A4qj/AIVx4T/6BX/kxL/8VRzYL+WX9fMOTH/zR/H/ACMr/hbugf8APnqf/fqP/wCLo/4W7oH/AD56n/36j/8Ai6k0fwr4B1+C4m0yz+0R287W8rebOu2RQCR8xGeo5HFaP/CuPCf/AECv/JiX/wCKo5sF/LL+vmPkx/8ANH8f8jK/4W7oH/Pnqf8A36j/APi6P+Fu6B/z56n/AN+o/wD4utX/AIVx4T/6BX/kxL/8VR/wrjwn/wBAr/yYl/8AiqObBfyy/r5i5Mf/ADR/H/Iyv+Fu6B/z56n/AN+o/wD4uj/hbugf8+ep/wDfqP8A+LrV/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqjmwX8sv6+YcmP/mj+P+Rlf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWr/wAK48J/9Ar/AMmJf/iqP+FceE/+gV/5MS//ABVHNgv5Zf18w5Mf/NH8f8jK/wCFu6B/z56n/wB+o/8A4uj/AIW7oH/Pnqf/AH6j/wDi61f+FceE/wDoFf8AkxL/APFUf8K48J/9Ar/yYl/+Ko5sF/LL+vmHJj/5o/j/AJGV/wALd0D/AJ89T/79R/8AxdH/AAt3QP8Anz1P/v1H/wDF1q/8K48J/wDQK/8AJiX/AOKo/wCFceE/+gV/5MS//FUc2C/ll/XzDkx/80fx/wAjK/4W7oH/AD56n/36j/8Ai6P+Fu6B/wA+ep/9+o//AIutX/hXHhP/AKBX/kxL/wDFUf8ACuPCf/QK/wDJiX/4qjmwX8sv6+YcmP8A5o/j/kZX/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdav/CuPCf/AECv/JiX/wCKo/4Vx4T/AOgV/wCTEv8A8VRzYL+WX9fMOTH/AM0fx/yMr/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+LrV/4Vx4T/6BX/kxL/8AFUf8K48J/wDQK/8AJiX/AOKo5sF/LL+vmHJj/wCaP4/5GV/wt3QP+fPU/wDv1H/8XR/wt3QP+fPU/wDv1H/8XWr/AMK48J/9Ar/yYl/+Ko/4Vx4T/wCgV/5MS/8AxVHNgv5Zf18w5Mf/ADR/H/Iyv+Fu6B/z56n/AN+o/wD4uj/hbugf8+ep/wDfqP8A+LrV/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqjmwX8sv6+YcmP/mj+P+Rlf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWr/wAK48J/9Ar/AMmJf/iqP+FceE/+gV/5MS//ABVHNgv5Zf18w5Mf/NH8f8jK/wCFu6B/z56n/wB+o/8A4uj/AIW7oH/Pnqf/AH6j/wDi61f+FceE/wDoFf8AkxL/APFUf8K48J/9Ar/yYl/+Ko5sF/LL+vmHJj/5o/j/AJGV/wALd0D/AJ89T/79R/8AxdH/AAt3QP8Anz1P/v1H/wDF1q/8K48J/wDQK/8AJiX/AOKo/wCFceE/+gV/5MS//FUc2C/ll/XzDkx/80fx/wAjK/4W7oH/AD56n/36j/8Ai6P+Fu6B/wA+ep/9+o//AIutX/hXHhP/AKBX/kxL/wDFUf8ACuPCf/QK/wDJiX/4qjmwX8sv6+YcmP8A5o/j/kZX/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdav/CuPCf/AECv/JiX/wCKo/4Vx4T/AOgV/wCTEv8A8VRzYL+WX9fMOTH/AM0fx/yMr/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+LrV/4Vx4T/6BX/kxL/8AFUf8K48J/wDQK/8AJiX/AOKo5sF/LL+vmHJj/wCaP4/5GV/wt3QP+fPU/wDv1H/8XR/wt3QP+fPU/wDv1H/8XWr/AMK48J/9Ar/yYl/+Ko/4Vx4T/wCgV/5MS/8AxVHNgv5Zf18w5Mf/ADR/H/Iyv+Fu6B/z56n/AN+o/wD4uj/hbugf8+ep/wDfqP8A+LrV/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqjmwX8sv6+YcmP/mj+P+Rlf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWr/wAK48J/9Ar/AMmJf/iqy9X8N/DzQ0J1C3iibGRH9plZz9FDZpx+pydoxk3/AF5il9dirynFL+vIT/hbugf8+ep/9+o//i6P+Fu6B/z56n/36j/+Lrh7yTRNWuDZ+F/Ccssh482WaVmHvtD4H1JrX0X4S39ztl1e5S0j6+TFh3+hPQfrXRLD4SEb1Lx8m9fwucscTjJytTtLzS0+92Ox0T4jaRr2rwaba218k027a0qIFGFLHOGJ6D0rr68e0jSrbRPjPBp1nv8AIhBC72yTm2JOT9Sa9hrhxdOnTlH2ezSZ6OCq1KkZe03Ta+4KKKK5DsCiiigAooooAKKKKACiiigAooooA8X+EX/I2XX/AF4v/wChx17RXi/wi/5Gy6/68X/9Djr2ivQzL+P8keblX+7r1Zn6poema1F5eo2UNwAMBmX5l+jDkfhXC6h8LpbSc3nhrVZbWYcrHI5GPYOvP5g/WvSqK5qWIqUtIvTt0OurhqVXWS179TyxPGfizws6w+I9La5twceeBtJ+jr8p+nWuw0XxzoOubUgvBDcN/wAsLj5Gz7dj+BroXRJEZJFV0YYKsMgiuP1r4aaDqu6S3iNhOf4rf7hPunT8sVt7TD1fjjyvutvuMPZYml/DlzLs9/v/AMzsqK8q/srx54N50+4OqWKdIxl8D02H5h/wE1q6R8VdOncW+sW0thODhmALpn3/AIh+R+tTLBztzU3zLy/yHHGwvy1Vyvz2+89AoqvZ31rqFus9ncRTxHo8bhh+lWK5WmtGdiaaugooopDCuB8aX/xENzc2PhjRLdrR0AS+NxGJASBnarOMEHPJBrvqKAPLPgGSfA18Sck6nJz/ANsoq9Tryv4B/wDIi33/AGE5P/RUVeqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWfqmuaZosXmajew24IyFZvmb6KOT+FcLqHxRlu5zZ+GtKlupjwskiE59wi8/mR9K3pYepV1itO/Qwq4mlS0k9e3U9Id0jRnkZURRksxwAK4/WviXoOlbo7eU384/ht/uA+79PyzXPJ4M8WeKXWbxHqjW1uTnyAdxH0RflH1612Gi+BtB0Pa8FmJrhf8AlvcfO2fbsPwFbezw9L45cz7Lb7zD2uJq/wAOPKu73+7/ADON/tXx54y40+3/ALLsX6Scx5HrvPzH/gIrV0j4VadA4uNYuZb+cnLKCUTPv/EfzH0r0CipljJ25aa5V5f5jjgoN81V8z89vuILSytdPgEFnbRQRDokSBR+lT0UVytt6s7EklZHln/Ne/8AP/PrXqdeWf8ANe/8/wDPrXqddeM/5d/4UcWB/wCXn+NhRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFAHi/wi/5Gy6/68X/APQ469orxf4Rf8jZdf8AXi//AKHHXtFehmX8f5I83Kv93Xqzi/in4lufC/gma6sn8u7uJVtoZB1QsCSR77VbHvXMp8GI30YXsmtap/wkhi8w3Pn8CXGdvTOM8Zznv7V6Xq+iaZr1otrqtlFdwI4kVJRkBgCM/kT+dYXj3xtZ+DtFd2YSajOpW0t15Zm6biP7o/8ArV556RR+E3ii78UeDBLfyGW8tJmt5JD1kAAZWPvhsfhXdVw3wo8MXPhfwVHFepsvLuU3MsZHMeQAqn3wAT6Emu5oAKytX8OaRriEahYxStjAkxtcfRhzWrRVRk4u8XZkyjGStJXR5lefDTUdJuDeeF9XlikHPlSttY+24cH6EVHD4/8AEXh2ZbbxRpLuvQTooRj7gj5W/DFeo1HNBFcwtDPEksTDDI6hgR7g11LF82laKl+D+843guR3oScfxX3GNovjDQ9eCrZ3qCY/8sJfkfP0PX8M1u1w+s/C7RNR3S2JfT5zz+7+aPP+6en4EVheX4/8G42H+1bBOwzLgf8Aoa/yFP2FKp/ClZ9n/mH1itS/jQuu61/A9VorhNG+Kej3xWHUY5NPn6Ev80ef94cj8R+Ndtb3MF3Cs1tNHNE33XjYMp/EVz1KNSk7TVjppV6dVXg7nmHwD/5EW+/7Ccn/AKKir1SsrQPDek+F7B7LRrT7NbvKZmTzHfLkAE5Yk9FH5Vq1kahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVU1DVLDSoPPv7uG3j7GRgM/QdT+FNJt2Qm0ldlugkAEk4A6k15zqfxUhaX7L4f0+W+uGOEd1IUn2UfMf0qiPDPjXxeQ+uX5sLNv+WPt/1zX/2Y5rrWDklzVXyrz3+445Y2LfLRTk/Lb7zqda+IegaPujFz9suB/wAsrb5ufdug/PPtXLHxJ428XkpolgbCzbjz+nH/AF0b/wBlGa6rRfh7oGj7X+zfbJx/y1ucN+S9B+WfeuqAAAAGAOgFP2tCl/DjzPu/8hexxFX+LLlXZf5nnWl/CqAzfatf1CW+nY5ZEYhSfdj8x/Su60/S7HSoPIsLSG3j7iNQM/U9/wAat0VhVxFSr8bN6WGpUvgX+YUUUVibmZ4h0u41rQ7nT7XUrjTZpdu26tyQ8eGDHGCDyBjr0NcKfhfrwBJ+JGvgDv5r/wDxyvTa4P4pa3c2mi2uhaY3/Ez1yYWkWM5VDgO3H1A/4ET2oAyPhba6tPr2rai/iLUtV0SENZ2z3kzsJ5AVLSKpYgAYwD33H3Fep1Q0TSLbQdEs9KtBiG1iEanGNxHVj7k5J9zV+gDyz/mvf+f+fWvU68s/5r3/AJ/59a9Trsxn/Lv/AAo4cD/y8/xsKKKK4zuCiiigAooooAKKKKACiiigAooooA8X+EX/ACNl1/14v/6HHXtFeL/CL/kbLr/rxf8A9Djr2ivQzL+P8keblX+7r1Zh+LvEtv4S8N3WrzoZPLwscQOPMcnAGe3v7A1yPgjwTc3l+PGPi5hdaxcYkt4G5S1XquB0yB0Hb681v+PvBr+ONEg0wal9hWO4E7P5PmbsKwAxuX+9n8K57/hXHi7/AKKZqX/gO3/x2vPPSPTKK57wnoGqaBa3EWqeIbjWpJXDJJMhUxjHQZZq6GgAooooAKKKKACiiigDF1nwnouvAm+sUMp/5bR/I/5jr+Oa4mf4ea7oE7XXhbWJDznyZG2MfY/wt+IFeoUV0U8VVpqyd12eqOarhKVR8zVn3WjPMLX4kato062nijSJUb/ntGmxiPXaeG/Aiu40fxPo2uqPsF9FJIRkxMdrj/gJ5rRurS2voGgu7eKeFuqSoGB/A1w+sfCvS7pjNpU8mnzjkAEumfxOR+B/CtebDVfiXI/LVfcZcuKo/C+deej+876ivKvtvj7wbxdRf2rYp/HzKAP94fMP+BcV0Gi/E7QtTCx3bNp857THKfg44/PFRPB1EuaHvLyKhjabfLP3X2eh2tFNjkSaNZInV0YZVlOQR9adXKdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVXvL600+3M95cxW8Q6vK4UfrXDav8VdPgkNvo1rLqE5O1WIKoT7D7x/IfWtaVCpV+BXMauIpUvjdj0Gub1rx1oGibkmvBPOP+WNvh2/HsPxNcd/ZPjvxiM6jcf2ZYv/AMsjlOPTYPmP/AjXSaL8NdB0rbJPE1/OOd1xyoPsnT8810exo0v4srvsv8zn9vXq/wAKNl3f+Rzr+MvFviqQw+HNMNtb5wZyAxH1dsKPoBmrOn/C2S7nF54k1SW6nblo43J/Au3J/AD616QiLGgRFCqowFUYAFOpPFuKtRSivx+8awSk+atJyf4fcUNL0TTNGh8rTrKG3GMEqvzN9W6n8av0UVyOTk7s7IxUVZKwUUUUhhRRRQAUUUUAFeVW7nxJ8f52b5rbQbMrHnp5hAB49cyN/wB816rXI+FfA/8AwjfiLXtZk1H7XLqs3mbfI2eUCzMRncc/eA7dPyAOuooooA8s/wCa9/5/59a9Tryz/mvf+f8An1r1OuzGf8u/8KOHA/8ALz/GwooorjO4KKKKACiiigAooooAKKKKACiiigDxf4Rf8jZdf9eL/wDocde0V4v8Iv8AkbLr/rxf/wBDjr2ivQzL+P8AJHm5V/u69WFFFFeeekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc9rXgnQdd3Pc2Sxzt/wAt4PkfPqccH8Qa6GiqhOUHeLsROnGatNXR5ZL4G8UeGJGuPDOqtPFnJgJCk/VT8rfXirFj8T7rT7j7H4m0mW3lHBkiQqfqUb+YP4V6XVa+06y1OAwX1rDcRH+GRA2Pp6V1/Wo1NK0b+ezOT6pKnrQlbyeqK2la/pWtxb9Ovop/VQcMPqp5FaVeear8KrRpPtOh3sthcKdyozFkB9j95f1rN/t7xz4Pwur2n9o2S/8ALY/Nx/vjkf8AAhR9Wp1P4Mvk9H/wQ+tVKX8eFvNar/NHqtFcjovxG0DV9sck5spz/wAs7nCgn2bp+eK61WDqGUgqRkEHgiuWpSnTdpqx1U6sKivB3FoooqDQKKKKACiiigAooooAKKKiuLmC0haa5mjhiX7zyMFUfiaLXBu25LRXCaz8U9IsiYdNjk1CfOAV+SPP1PJ/AfjWL5Xj7xl/rG/smwbtzFkfT77fjxXXHBztzVPdXn/kcc8bTvy0/efl/mdxrPjHQ9C3JeXqGdf+WEXzvn0IHT8cVxU3j7xH4jla28MaQ8adDOy72H1J+VfxzW1ovwv0TTtsl9v1Ccc/vPljB/3R1/Emu1hhit4ligiSKNRhURQoA9gKrnw9L4FzPu9vuJ9nia3xvkXZb/f/AJHmtn8M9Q1W4F54o1eWaQ8+VG5Yj23HgfQD8a7nSPDmkaEm3TrGKFsYMmMufqx5rUorGriatTST07dDalhaVJ3ite71YUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeWf817/AM/8+tep15Z/zXv/AD/z616nXZjP+Xf+FHDgf+Xn+NhRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFAHi/wi/5Gy6/68X/9Djr2ivF/hF/yNl1/14v/AOhx17RXoZl/H+SPNyr/AHderCiiivPPSCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOY1rwBoGtbne0+zTn/lrbYQk+46H8s1yTeE/GPhJmk0DUTeWoOfI7/98Nx+RzXqlFdNPF1ILleq7PU5amDpTfMtH3Wh5vpvxUWGb7J4i02aznXhnjU4B90PI/Wu703V9O1eHzdPvIbhO+xslfqOo/GjUtH07WIPJ1CzhuE7b15X6HqPwrhNS+FnkT/a/DmpzWc68qkjnA+jjkfrWn+zVf7j+9Gf+1Uf76+5/wCR6RRXla+LfGPhNhF4g043lqCB5+Mfk68H8Rmut0Xx9oGtbUS7FtcH/ljc/Ic+x6H8DWdTCVILmWq7rU0p4ylN8rdn2eh09FMkljhiaWWRUjUZLscAD61xutfE7QtM3R2jNqE47QnCZ93P9Aayp0Z1HaCua1a1OkrzdjtayNY8UaNoKn7ffRpJjiFTukP/AAEc/ieK4H7Z4+8ZD/RYv7LsH/j5iBH+8fmP4cVr6P8ACvSrRhNqk8uoTk5IPyJn6Dk/ifwrp+r0qf8AGlr2WrOb6zVq/wACGnd6L7tzOuviPq+tTtaeFtIkZunnSJvYe+B8q/iTSW/w71zXpluvFOrydc+TG29h7A/dX8Aa9KtbS3soFgtYIoIl6JEgUD8BU1L62oaUY8vnuwWDc9a8nLy2X3HOW+i+GfBenS6gYYLWKBd0l3P8zj8Tzk+g6+lc3F8bfCcl2kTrqMUDttF3Jbjyv0Yt+lVPjz9p/wCEGtvJz5H25POx6bWxn2zj8cVueO7XSh8J9RjjSH7DFZBrXAG0EY8sr75x+dcspym7yd2dkIRgrRVkdnDNHcQxzQyLJFIodHQ5DKRkEHuKfXIfC77R/wAK00P7VnzPJbGf7m9tn/ju2uvqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyz/mvf+f8An1r1OvLP+a9/5/59a9Trsxn/AC7/AMKOHA/8vP8AGwooorjO4KKKKACiiigAooooAKKKKACiiigDxf4Rf8jZdf8AXi//AKHHXtFeL/CL/kbLr/rxf/0OOvaK9DMv4/yR5uVf7uvVhRRRXnnpBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMwRSzEBQMkk8AUALRXI618R9A0nckU5vpx/Bbcj8W6flmuY/t3xz4xO3SbT+zbJv+Ww+Xj/roeT/AMBFdUMJUkuaXuru9DkqY2lF8sfefZanoWr69pGjQk6newwhh/q2OWYeyjk/lXjniG60fxJfeT4a8Ozrck5MkQxuH/XNcgD34rs9J+FVmkn2nXLyW/uGOWRWKoT7n7zfpXdWOn2emW4gsbWK3iH8MagD8fWtoVaOGd6bcn9y/wCCYVKNfFK1RKK+9/8AAPEr3wP4xTSYjNDNPAnItVn3mP8A4BnH5ZrT8IeIPC2iyrBqWjPaXyHDXUoMpB9cEZT8BXsdZuq6BpWtx7NRsYZzjAcjDj6MOR+dV9f9pHkqrTy0/wCHJ/s72cuei9fPX/hizY6hZ6nbiexuoriI/wAUbAj8fSrNeZ3vwwu9OnN54Z1aWCUdI5HKn6B1/kR+NQxeOfE/hmRbfxNpTTRdBOoCk/Rh8rfpWP1WM9aMr+WzNvrkqeleNvPdHqVFc/ovjXQtd2pa3qxzn/lhP8j/AEGeD+BNdBXLOEoO0lY64VIzV4O6OG+J/iKLSdFt9JXTodRvdYk+zW9vOMxk5HJ7nBZcYxyRzxXG6j8JNbsPDokXxAdQWzBnGkzCT7KdoJ2qN/5Z698Vs/GLT7yB/D/imzt2nGjXXmzovZdysCfbKYJ/2qs6v8YvCv8AwjNxPY3jT3ssLLFaGJg4cjADEjAAPU5+mak0Oj8A+JofFnhK21CK3S2ZCYJYI/uxsuOF9sYIHbOK6auE+Efh+68PeBIYr2Jobi6ma6eNuGXcAACOxwoOPeu7oEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeWf817/wA/8+tep15Z/wA17/z/AM+tep12Yz/l3/hRw4H/AJef42FFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAeL/CL/kbLr/rxf8A9Djr2ivF/hF/yNl1/wBeL/8Aocde0V6GZfx/kjzcq/3derCiiivPPSCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoormNa8f6Bou5Hu/tM4/5ZW2HIPueg/PNXCnOo7QVyKlSFNXm7HT1S1LWNO0eDztQvIbdO29uW+g6n8K84bxX4y8WsY9A042doePP74/324/IZq7pvwsWaf7X4i1Ka8nblkjY4J93PJ/DFdX1WFP+NK3ktWcn1udTShC/m9F/wAETUvin58/2Tw5pk15O3CvIhwfog5P6VTXwl4x8WMJfEGomztSc+RnP/ji8D8TmvR9N0jTtIh8rT7OG3TvsXBb6nqfxq7R9ahT/gxt5vVh9UnU1rzv5LRf8E5jRfAOgaLtdLQXNwvPnXPznPsOg/AZrp6KK5Z1J1HebuddOnCmrQVgrgfHHi7xDpHiXR9C8N2VldXl/HI5W6Dfw88EMuOA2c+ld9Xj/i3X00r422VwbG5vpbTS9lva2qbnklcv09PlY5PoKgs27LU/iu9/breaFoSWplUTMjncqZ+Yj96ecZr0WvPNG+KaXHiCDRNf0G80K8uSBB9obcrk9BkqvXp0IzxXodABTJYo5o2jljWSNhhlcZBHuKfRQBxWtfDHQtT3SWitp857wjKZ90P9CK5/7H4+8Gj/AEWX+1LBP4OZQB/un5h+HFeq0V1QxlRLln7y8zjngqbfND3X3RwOkfFPSrw/Z9VgksJvusSN8ef5j8R+NdLYaP4amlXU9P03SXlY5F1BBGWJ/wB4DNO1jwvo2vKft9jG8mOJlG2Qf8CHP4HiuHuvhvq+i3DXnhbV5Fb/AJ5SNsYj0yPlb8QKvlw9X4XyPz1X3k82Ko/EudeWj+49Pory+3+ImuaDMtr4p0iTrjzo12MfcD7rfgRXbaN4r0XXQBY30ZlP/LF/kk/75PX8M1lUwtWmrtXXdao1pYulUdk7Ps9GbVFFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeWf8ANe/8/wDPrXqdeWf817/z/wA+tep12Yz/AJd/4UcOB/5ef42FFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAeL/AAi/5Gy6/wCvF/8A0OOvaK8X+EX/ACNl1/14v/6HHXtFehmX8f5I83Kv93Xqwooorzz0gooooAKKKKACiiigAooooAKKKKACiue1rxtoOhbkub1ZJ1/5YQfO+fQ44H4kVx0njjxR4nka38M6U0EWcGcgMR9WPyr9OTXTTwtWa5rWXd6I5auMpU3y3u+y1Z6TfajZaZAZ766ht4h/FI4XP09a4XVfiraLJ9m0Oylv7hjtV2UqhPsPvN+lV7H4YXWoXH2zxNq0txKeTHE5Y/Qu38gPxrutK0DStEi2adYxQcYLAZY/VjyfzrS2Gpb++/uRnfFVtvcX3v8AyPO/7B8ceMPm1e8/s6yb/lifl4/65jk/8CNdPovw50DSNskkBvZx/wAtLnDAH2Xp+ea66ioni6klyx91dloXTwVKL5pe8+71EVQihVACgYAA4ApaKK5TrCiiigAooooAKxLa68N3Hiq5ht/sD6/DF+/Kxr56p8o5bGccr39K26828U+D/EVn41Xxh4Qe3kvZIxFdWlwcLKAAOvHBCr3HIBzQBQ+PUcaeF9Ku0+W7i1BVicfeAKMTj8VWvVYS7QxtIoWQqCwHY45rytPC3jHxt4k06+8Y29pp2mae/mJZQSBjI3Xkgt1IGTnpwBzmvV6ACiiigAooooAKKKKAIri2gu4WhuYY5om+8kihlP4GuJ1n4WaRekzabJJp8+cgL88efoeR+B/Cu7orWnWqUneDsZVaFOqrTVzyrzfH3g3/AFinVrBO/MuB9fvr+PFbui/FDRNR2x32/T5zx+8+aMn/AHh0/ECu4rC1nwdoeu7nvLJBO3/LeL5Hz6kjr+Oa6Pb0an8WNn3X+RzfV61L+DO67P8AzNmGeK5hWaCVJYmGVdGDAj2IqSvLZvAPiPw5K1z4Y1d5E6mBm2MfqD8rfjipbP4mahpVwtn4n0iWFxx5salT9dp4P1B/Ck8Jza0ZKX4P7gWN5HavFx/Ffeem0Vl6R4j0jXU3adfRTNjJjzhx9VPNalckouLtJWZ2RlGSvF3QUUUUigooooAKKKKACiiigApks0UETSzSJHGoyzuwAA9yafXmPxB0++8U+OvD/hh47tdDdTc3kkSsEYjcQrMBgHCYH+/9KAO+sdd0fU5Wi0/VbG7kXqlvcJIR+AJrQrx74jeANE8MeFm8ReHYH0zUNNkidZIpnO4FwvcnnLA5/PNeo6DfSap4e0zUJV2yXVpFM6+hZAxH60Aeef8ANe/8/wDPrXqdeWf817/z/wA+tep12Yz/AJd/4UcOB/5ef42FFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAeL/AAi/5Gy6/wCvF/8A0OOvaK8X+EX/ACNl1/14v/6HHXtFehmX8f5I83Kv93Xqwooorzz0gooooAKKKKACiisXWfFmi6CCL6+QSj/ljH87/kOn44qowlN2irsmc4wV5OyNqobq7trGBp7u4ighXq8rhQPxNeaz/EPXdfna18LaPIOcedIu9h7n+FfxJpbX4batrM63fijWJHb/AJ5RtvYe248L+ANdX1RQ1rS5fLdnG8Y56UIuXnsvvNHWPippdqxh0qCTUJzwCAUTP4jJ/AfjWR9i8feMubqX+yrF/wCDmIEf7o+Y/wDAuK0fE9zpXw10e3GhaTDNrN9KLezVwXd2PUk9SORwCOSKxdV1f4meC7KPXtavNO1HTw6i5tIowphDHHDBR3IGcnnHUU/rFKn/AAY693q/8g+rVav8aenZaL/M6rRfhjoWmbZLpW1Ccd5uEz7IOPzzXZRxpDGscSKiKMKqjAA+lRWd3Ff2NveQEmG4jWVCe6sMj9DU9c1SrOo7zdzppUadJWgrBRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXvLG01C3MF5bRXER6pKgYfrViimm07oTSaszz7V/hVp88huNGupdPnB3KpJZAfY/eH5n6Vl/2t478G8ajb/2nYp/y1JL4HrvHzD/gQrpPiR4vbwj4YkmtTnUrnMdouN2CBlnxzwo554zjNT/DjWL/AF/wDpmp6nP595N5vmSbFXdiV1HCgDoB2rqjjJ25ai5l5/5nJLBQT5qTcX5bfcQaL8StB1XbHPK1hOeNlx90n2fp+eK69HWRA6MGVhkMpyCK53WvAuga3ueazEE5/wCW1vhG/HsfxFcg/g3xb4VkM3hzUzc2+cmAkKT9UbKn6g5qvZ4er8EuV9nt95PtcTS/iR5l3W/3HqdFea6f8UpLSf7H4k0uW1nXhnjQjHuUbkfgT9K7vS9b0zWYfN069huBjJCt8y/Veo/GsauHqUtZLTv0N6WJpVdIvXt1L9FFFYG4UUUUAFFFcCfGV5YfFy48O6pPBDpc1oslkWQKWkIXgtn1En44FAHD+LtY8U38ljY+PtNfR/Dsk6+c9gqy726gM+9gB1PHPHQ9vcbaOGK0hjtgogRFWMKcjaBxj2xXB/Ge6tYfhxe28zqJ7mSJLdD95mEiscD/AHQa67w7bTWXhjSbW4LGeGzhjk3ddwQA5/EUAef/APNe/wDP/PrXqdeWf817/wA/8+tep12Yz/l3/hRw4H/l5/jYUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQB8/+BbfXLnW5k8P3kFpdi2Yu8wBBTcuR91uc7e3avQf7J+Jn/Qw6Z/37X/41XLfCL/kbLr/AK8X/wDQ469or08xqcte1lt2MskxsqOEUFCL1e8U397OA/sn4mf9DDpn/ftf/jVYHibWfHnhX7L9u1u2k+079nkQocbcZzmMf3hXr1eV/Gb/AJgn/bf/ANp1zUZ881FpfcfT5VilicXCjUpQs7/ZXZs9UorK1fxHpGhoTqF9FE2MiPO5z9FHNcPefEvUdWuDZ+F9IllkPHmyruYe+0cD6k1FLDVamsVp36HytXFUqTtJ69lqz0maeK2haaeVIolGWd2CgD3Jri9Z+KOiaduisQ+oTjj938sef949fwBrGh8AeIvEUy3PijVnRc5ECMHYfQD5V/DNdpovg/Q9BCtZ2SGYf8t5fnfP1PT8MVtyYel8b5n2W33mPPiavwLkXd7/AHf5nD7/AB/4y+6P7KsH78xZH/obfyNbWjfC3R7AiXUXk1CfqQ/yx5/3RyfxJ+ld3RUyxk7ctP3V5f5lQwVO/NU95+f+RFb20FpCsNtDHDEv3UjUKo/AVLRRXI3c7ErbHkXxC1Wysvi74XbUphHZ2NrJeOSCcH5yMDuSYwB74q5c/FmwZkh8QeE9Us9JuWAS4vbfKOOoJUjB7HgmqXjewiuPjp4Se5UNA8CgAjgsjyMP1K12nxJtoLr4da4twqsqWzSLnsy8qR+IFAzpLU25s4DaeX9mMa+V5WNmzHG3HGMYxU1cf8LZJ5fhpojXGd4iZRn+6HYL/wCOgV2FAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGZUUszBVUZJJwAKWuJ+Ks+sJ4KkttFsrq6nvJlt5RaxM7pEQxYgKD127f+BUActcK3jG08W+Mp1J0+1027stIVhwVEbB5R9TkD8R2rp/hB/yS3Rv+2/8A6Pkrjr/xrqVt4FvNDg+Hut2VkunyWwmkjfbEpjKl2Pljp1J+tbXwU1m6ufCVvpT6TdQ21ojtHfOD5c5aVyQpxjjJB5PSgZ6fRRRQIqahpdhqsHkX9pDcR9hIoOPoeo/CuE1T4VQrL9q0DUJbK4U5RJGJUH2YfMP1r0aitqWIqUvgZhVw1Kr8a/zPKx4m8a+ECE1ywN/Zr/y29v8Arov/ALMM11Wi/ELQNY2obn7HOf8Allc4XJ9m6H8811RAIIIyD1BrlNa+HmgaxukFt9juD/y1tvl5916H8s+9b+1oVf4keV91/kYexxFL+HLmXZ/5nVgggEHIPQiivKz4b8beEMvol+b+zX/liOeP+ubf+ynNX9L+KsAm+y6/p8tjOpwzopKg+6n5h+tKWDk1zUnzLy3+4ccbFPlrJxfnt956LXP+KfBWh+MII49Wti0kWfLmjbbImeoB7j2ORWrp+qWGqwedYXcNxH3Mbg4+o7fjVuuRpp2Z2Jpq6OD0X4ReGdG1KK/P22/mhIaL7bMHWMjoQAoHHvmu8oopDPLP+a9/5/59a9Tryz/mvf8An/n1r1OuzGf8u/8ACjhwP/Lz/GwooorjO4KKKKACiiigAooooAKKKKACiiigDxf4Rf8AI2XX/Xi//ocdezO6RozyMqIoyWY4AFfOfhvxHc+GL6e8tIopJpIDCPNyQuWU5wOv3akufEN1r12Dr+qXpts52W8asPwXcqj6817uKwU61ZzvZHz+Ex8KFFQtd/h956xrXxL0HSt0dvKb+cfw2/3Afd+n5ZrzXxf4h1fxD9jur+xWztR5gtcofmB27iCfvdF5AAra0XxJ4B0Pa8GkajNcL/y3uI43bPt8+B+ArO8f+LtP8Vf2d9hhuY/s3mb/AD1UZ3bcYwx/ums6dD2ckoU36v8AyPUy6tRrYmP1vEckNb8rt0fXfXZnZ6R8KtOgcXGsXMt/OTllBKJn3/iP5j6V3NpZWunwCCztooIh0SJAo/SuH/4W7oH/AD56n/36j/8Ai6P+Fu6B/wA+ep/9+o//AIuuWrSxdX402ZUq2CpL3Gkd/RXAf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XWP1Ov/ACs2+vYf+dHf0VwH/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdH1Ov/ACsPr2H/AJ0d/RXAf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XR9Tr/ysPr2H/nRc+IPg658TW1je6Vcra61pkvnWkrdD0JUn6gEfT3rl9T0v4meNbRdD1m007SdOZ1+1XMMgZpVBzwA7HqAccc45xW5/wALd0D/AJ89T/79R/8AxdH/AAt3QP8Anz1P/v1H/wDF0fU6/wDKx/XsP/OjtdN0+30nTLbT7RNlvbRrFGvfAGOferVcB/wt3QP+fPU/+/Uf/wAXR/wt3QP+fPU/+/Uf/wAXR9Tr/wArD69h/wCdHf0VwH/C3dA/589T/wC/Uf8A8XR/wt3QP+fPU/8Av1H/APF0fU6/8rF9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86O/orgP+Fu6B/wA+ep/9+o//AIuj/hbugf8APnqf/fqP/wCLo+p1/wCVh9ew/wDOjv6K4D/hbugf8+ep/wDfqP8A+Lo/4W7oH/Pnqf8A36j/APi6Pqdf+Vh9ew/86Oq8T2c+o+E9ZsrWPzLi4sZ4YkyBudkIAyeByR1rK+HGj3+geAdM0zU4PIvIfN8yPerbcyuw5UkdCO9ZX/C3dA/589T/AO/Uf/xdH/C3dA/589T/AO/Uf/xdH1Ov/Kx/XsP/ADo7+iuA/wCFu6B/z56n/wB+o/8A4uj/AIW7oH/Pnqf/AH6j/wDi6Pqdf+Vi+vYf+dHf0VwH/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABdH1Ov/ACsPr2H/AJ0d/RXAf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XR9Tr/ysPr2H/nR39Z+qaHpmtReXqNlDcADAZl+Zfow5H4VyH/C3dA/589T/wC/Uf8A8XR/wt3QP+fPU/8Av1H/APF1UcJiYu6ixSxmFkrSkmipqHwultJzeeGtVltZhyscjkY9g68/mD9arJ4z8W+FnWHxHpZuYAceeBtJ+jrlT9Otan/C3dA/589T/wC/Uf8A8XSP8WvDsiMkljqLowwVaKMgj/vuupLESVq1PmX4/ecbeGi+ajU5X+H3G7ovjnQdc2pBeCG4b/lhcfI2fbsfwNdHXh+tan4C1XdJb6fqlhOf4reKPYT7pvx+WKzNL8aazoMvl2F/LPaKcLFdLkEfTJ2/gaJZdzq9O68n/mOOZ8jtUs/Nf5HYf817/wA/8+tep14r4Y1h9f8AizaanJCsLzBtyKcgFYCvH5Zr2qsMfFxlCL3UV+pvl8lONSS2cn+gUUUVwnoBRRRQAUUUUAFFFFABRRRQAUUUUAZX/CMaB/0A9M/8BI/8KP8AhGNA/wCgHpn/AICR/wCFatFX7Sfdmfsofyoyv+EY0D/oB6Z/4CR/4Uf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGV/wjGgf9APTP8AwEj/AMKP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/wCEY0D/AKAemf8AgJH/AIUf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGV/wAIxoH/AEA9M/8AASP/AAo/4RjQP+gHpn/gJH/hWrRR7Sfdh7KH8qMr/hGNA/6Aemf+Akf+FH/CMaB/0A9M/wDASP8AwrVoo9pPuw9lD+VGV/wjGgf9APTP/ASP/Cj/AIRjQP8AoB6Z/wCAkf8AhWrRR7Sfdh7KH8qMr/hGNA/6Aemf+Akf+FH/AAjGgf8AQD0z/wABI/8ACtWij2k+7D2UP5UZX/CMaB/0A9M/8BI/8KP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/4RjQP+gHpn/gJH/hR/wjGgf9APTP/ASP/CtWij2k+7D2UP5UZX/CMaB/0A9M/wDASP8Awo/4RjQP+gHpn/gJH/hWrRR7Sfdh7KH8qMr/AIRjQP8AoB6Z/wCAkf8AhR/wjGgf9APTP/ASP/CtWij2k+7D2UP5UZX/AAjGgf8AQD0z/wABI/8ACj/hGNA/6Aemf+Akf+FatFHtJ92Hsofyoyv+EY0D/oB6Z/4CR/4Uf8IxoH/QD0z/AMBI/wDCtWij2k+7D2UP5UZX/CMaB/0A9M/8BI/8KP8AhGNA/wCgHpn/AICR/wCFatFHtJ92Hsofyoyv+EY0D/oB6Z/4CR/4Uf8ACMaB/wBAPTP/AAEj/wAK1aKPaT7sPZQ/lRlf8IxoH/QD0z/wEj/wo/4RjQP+gHpn/gJH/hWrRR7Sfdh7KH8qMr/hGNA/6Aemf+Akf+FH/CMaB/0A9M/8BI/8K1aKPaT7sPZQ/lRlf8IxoH/QD0z/AMBI/wDCj/hGNA/6Aemf+Akf+FatFHtJ92Hsofyoyv8AhGNA/wCgHpn/AICR/wCFH/CMaB/0A9M/8BI/8K1aKPaT7sPZQ/lRlf8ACMaB/wBAPTP/AAEj/wAKP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/4RjQP+gHpn/gJH/hR/wjGgf9APTP8AwEj/AMK1aKPaT7sPZQ/lRlf8IxoH/QD0z/wEj/wo/wCEY0D/AKAemf8AgJH/AIVq0Ue0n3Yeyh/KjK/4RjQP+gHpn/gJH/hR/wAIxoH/AEA9M/8AASP/AArVoo9pPuw9lD+VGV/wjGgf9APTP/ASP/Cj/hGNA/6Aemf+Akf+FatFHtJ92Hsofyoyv+EY0D/oB6Z/4CR/4Uf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGV/wjGgf9APTP8AwEj/AMKP+EY0D/oB6Z/4CR/4Vq0Ue0n3Yeyh/KjK/wCEY0D/AKAemf8AgJH/AIUf8IxoH/QD0z/wEj/wrVoo9pPuw9lD+VGfbaFpFncLcWulWMEyZ2yRW6KwyMHBAz0NaFFFS5N7stRUdEgooopDCiiigAooooAKKKKACuJ+LWojTvhtqhB+e4CW6++5gD/47urtq8d/aB1Hy9E0jTQ3M9w87KPRFwP/AEP9PagDD8HfBiz8R+FLHV7zU7m3lulZ/LjRSAu4gdfUAH8as+Ifg5N4Y0O71nQ/EF2s9nEZ3QjyyyqMnDKRggZNaukfGzwlpOi2OnR2GsbLW3SEEQxc7VAz/rPasnxX8Xl8Wae/h7w9YywNqH7h7i9lSLCngr1IGemSf50DO/8AhT4mvPFHgpLm/fzLu2na2klIwZMBWBPvhh+VdvXM+AvCo8H+FLfTGcSXBJluHXoZGxnHsAAPwrpqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXgnjPTR49+OCaCZnjt7e3EUkqAHYFQyE/99MFr3vpXifwjzr3xE8UeJG+Zcssbdh5jkjH0VMUAWX/Z/wBPVCbbX7uOYco7QqQD9AR/OqXh3X/Efw88c23hbxJeNeabdlUgndiwUMcKyk8gZ4Knp1+vuFeIfH1tmp+Gntzi7HnEY69Y9v65oGe30UUUCCiiigAooooAK8T8c/8AE/8Ajr4e0jaGitfKaReucEyt/wCOgV7ZXhWreF/iHD8TNR8UaRo0buZnW3kmuISDHt2A4Lgj5R39aAPbvsNp/wA+sH/fsV5v8aNE0UeBbjUXtLeK/hkjW3lRArsSwBXI6jbuOPas3+0Pjb/0B7L/AL7g/wDjlRx/Dbxj4x1KC58c6wos4TkWsDAk+oAUBV/3uTQM7n4Z3V3efDnRZr0sZjCVyxySqsyqf++QtdZUVrbQWVpDa20axQQoI40XoqgYAFS0CCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMLxpqR0fwXrF8p2vFavsOejkbV/UiuM+BWm/ZPA016w+a9unYH/AGVAUfqG/Otr4qaRrWveDH0vRLQ3M888fmqJUTEa5bOWIH3gtcLotv8AGHQNHttLsNFtFtbdSqBpICeSScnzPUmgZ7eSFBJIAHJJ7V4RPOPib8abU2e6XR9K2kyj7rKjbif+BNwPUc1o3Phn4q+MY/seu6jbaXp8nEscbJkj6R53Z9C2K9H8I+DtM8G6T9i09Czud09w/wB+VvU+gHYdvzNAHQUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>Quadrilateral $ABDC$ is a rectangle. If $m\angle1 = 38$, find $m \angle 2$
|
52
|
Geometry
|
Geometry3K
|
test
|
14
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAF7AR8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorO1zXNP8O6TNqmqTGG0hKh3CFsZIA4AJ6kUAaNFeZeCfiLN4z+IuqWlo7LokNlvgjkjUMXDIC5PXnJ4z6VoeO/FWt2Wu6R4X8MpANW1IM5nuBlYYxnnH4Meh4XoSaAO9orzXQfEvirRvHlt4U8Wy2d79vgaW0vLZNnKgkqRgDop7enXNelUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIQCMEAj3paKAPMtEAH7QfiMAAD+y4+n/bGu11a30KwuB4m1SO3imsYSovJOsaHOQPruIx3zXKaRpt9F8c9f1GSyuEsZdNjSO5aJhG7DyuA2ME8Hj2NY/wAV11G+8VaHZyaFq+q6Bbobm6hsIHYSyEsFViBjjA98MfWgCTwuL74gfEKLxtJbNaaJp0bwacsgw85IYFvp8xP1wOcE16vXCaD46ub3ULPSx4H17TbdsRrLLaFIoVA4zxgDjFd3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1nWLPQNKm1LUGkS1hwZHSNnKgnGcKCcVfqOeCK6t5LeeNZIZVKOjjIZSMEEemKAOE/4XR4F/6C0n/gJL/wDE0f8AC6PAv/QWk/8AASX/AOJrnPD1pbfD7x3J4V1S2hm0bVXMulXM0YYo54MZYj6D64P8Veq/2Ppf/QNs/wDvwv8AhQBxv/C6PAv/AEFpP/ASX/4mj/hdHgX/AKC0n/gJL/8AE12X9j6X/wBA2z/78L/hR/Y+l/8AQNs/+/C/4UAcb/wujwL/ANBaT/wEl/8AiaP+F0eBf+gtJ/4CS/8AxNdl/Y+l/wDQNs/+/C/4Uf2Ppf8A0DbP/vwv+FAHG/8AC6PAv/QWk/8AASX/AOJo/wCF0eBf+gtJ/wCAkv8A8TXZf2Ppf/QNs/8Avwv+FH9j6X/0DbP/AL8L/hQBxv8AwujwL/0FpP8AwEl/+Jo/4XR4F/6C0n/gJL/8TXZf2Ppf/QNs/wDvwv8AhR/Y+l/9A2z/AO/C/wCFAHG/8Lo8C/8AQWk/8BJf/iaP+F0eBf8AoLSf+Akv/wATXZf2Ppf/AEDbP/vwv+FH9j6X/wBA2z/78L/hQBxv/C6PAv8A0FpP/ASX/wCJo/4XR4F/6C0n/gJL/wDE12X9j6X/ANA2z/78L/hR/Y+l/wDQNs/+/C/4UAcb/wALo8C/9BaT/wABJf8A4mj/AIXR4F/6C0n/AICS/wDxNdl/Y+l/9A2z/wC/C/4Uf2Ppf/QNs/8Avwv+FAHG/wDC6PAv/QWk/wDASX/4mj/hdHgX/oLSf+Akv/xNdl/Y+l/9A2z/AO/C/wCFH9j6X/0DbP8A78L/AIUAcb/wujwL/wBBaT/wEl/+Jo/4XR4F/wCgtJ/4CS//ABNdl/Y+l/8AQNs/+/C/4Uf2Ppf/AEDbP/vwv+FAHG/8Lo8C/wDQWk/8BJf/AImj/hdHgX/oLSf+Akv/AMTXZf2Ppf8A0DbP/vwv+FH9j6X/ANA2z/78L/hQBxv/AAujwL/0FpP/AAEl/wDiaP8AhdHgX/oLSf8AgJL/APE05tMsP+FyRQ/Ybbyv+EfdtnlLt3faFGcY612H9j6X/wBA2z/78L/hQBxv/C6PAv8A0FpP/ASX/wCJrsNF1mx8Q6RBqmmymWzn3eW5QrnDFTweeoNZnifSNNXwlrLLp1oCLGcgiFeP3be1ZHwe/wCSVaL9Jv8A0dJQB3NFFFABRRRQAUUUUAFFFFABRRRQBzXjnwlB4x8NzWDER3aHzbSfvFKOhz6Hofr6gVm/DfxbPr+lzaZqwMWvaW3kXkb8M2OA/wCOOff2Irt68x+Imk3nh3Wbb4g6FEWuLUCPU4F4E8HQk/QcE+wP8NAHp1FUtH1az13SLXU7CXzLa5QOjd/cH0IOQR6irtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGN/yWqL/ALF1/wD0oWuzrj9e8O+IJvF8Ov6Df2FvItgbJ0u4mcEGTfkbSPQUz7H8R/8AoL+Hv/AOX/4qgDd8U/8AIo61/wBeE/8A6Lauc+D3/JKtF+k3/o6SqmvWfxA/4R3U/tOq6C1v9kl81UtJAxXYcgHd1xVz4PDHwr0X6Tf+jpKAO4ooooAKKKKACiiigAooooAKKKKACmyRpNE8UqK8bqVZWGQwPUEU6igDybQ5H+GHjtvDl07f8I3rEhk06VzxBKeDGT+Q/wC+T3Nes1z/AI08K2vjHw3caXPhJT89vNjmKUdG+nY+xNYnw18VXWrWNxoWt5j1/SD5NyjnmVRwJPf0J+h/iFAHd0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZfiX/kVdY/68pv/QDXN/B//kleifSb/wBHPXSeJf8AkVdY/wCvKb/0A1zfwf8A+SV6J9Jv/Rz0AdxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmnxI0W80jULbx9oMedQ04YvYR0uLfvn6Dr7c/wAIr0ukZVdSrKGVhggjIIoAz9C1qz8RaLa6rYSb7e4Tcueqnup9wcg/StGvJdOZvhZ49OlSsV8La5IXtHY/Laz9CpPYdB9Np7GvWqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMvxL/AMirrH/XlN/6Aa5v4P8A/JK9E+k3/o566TxL/wAirrH/AF5Tf+gGub+D/wDySvRPpN/6OegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMPxd4YtPF3hy50m7wvmDdFLjJikH3WH9fUEjvXN/DTxPd3cFz4X17Ka9o58qQMeZohwrg9+2T3yD3r0CvOPiVoF5aT2vjjQFxq2lczxgf8fEH8QPrgZ/An0FAHo9FZfhzX7PxPoNrq1i2YZ0yVJ5Ru6n3B4rUoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDL8S/8irrH/XlN/6Aa5v4P/8AJK9E+k3/AKOeuk8S/wDIq6x/15Tf+gGub+D/APySvRPpN/6OegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACggEYIyDRRQB5JET8KfH3ktlPCeuyZQ/wANpP6ew/pj+7XrdY/ijw7Z+KvD91pF6P3cy/JIBkxuPusPcH8+R3rk/hp4ivAbrwbr5263pHyKzH/Xwj7rA98Aj6gqfWgD0SiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAy/Ev/Iq6x/15Tf8AoBrm/g//AMkr0T6Tf+jnrpPEv/Iq6x/15Tf+gGub+D//ACSvRPpN/wCjnoA7iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK88+Jfhy8ItfGGgDbrej/ADkKP9fCPvIR3wCeO4LD0r0OigDH8LeI7PxX4etdXsjhJVw8ZOTE4+8p9wfzGD3rYryScH4U+PhcqCnhPXZMSgfdtJ/X2H9M/wB0V60CCAQcg9CKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAy/Ev/ACKusf8AXlN/6Aa5v4P/APJK9E+k3/o566TxL/yKusf9eU3/AKAa5v4P/wDJK9E+k3/o56AO4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDL8RaDZ+JtCutJv0zDcJjcOqN2Ye4PNcX8NdevLK5uvA2vvjVdL4t5CeLiD+Ej1wMfgR6GvSK4D4l+GLu9t7bxNoWU1/Rz5sRUczRjlkPr3IHfJHegDv6KwvCHie08X+HLbVrXClxtmizkxSD7yn+nqCDW7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBl+Jf+RV1j/rym/9ANc38H/+SV6J9Jv/AEc9dJ4l/wCRV1j/AK8pv/QDXN/B/wD5JXon0m/9HPQB3FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHkupq3ws8ejWIVI8L63IEvEUfLbTdQ4HYdT9Nw7CvWUdXRXRgysMhgcgiqGuaNZ+IdFutKv499vcoUb1U9mHuDgj6Vwnw41m80bUrnwBr0mb7TxusJm6XFv2x9B09sj+E0Ael0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBl+Jf+RV1j/rym/wDQDXN/B/8A5JXon0m/9HPXSeJf+RV1j/rym/8AQDXN/B//AJJXon0m/wDRz0AdxRTXdY0Z3YKiglmY4AHqahivrOa0N3FdQSWygkzJICgA6nd04oAsUVHb3EF3As9tNHNC33ZI2DKe3BFSUAFFFFABRRRQAUUUUAFFFFABRRRQBBe3ttp1lNe3kyw20CF5JHPCqOprhbL4zeEb3UI7XzbyBJX2R3M8G2Jj9c5H4ge9b3jrw5c+LPCV3o1rdJbSXDITI4JGFcNjj6VxnxaGm6V8M7Tw2saPfSmCGwgjXLZQrlgPpkfVvegDtvFPjPR/B0FtNq8sqLcMUj8uMuSQMnp9azvD3xO8N+J9XTS9NmuWuXVmUSQFRgDJ5rjPHWoyaN4n+H0N1aXF9c2MDyvb2y75JZdiqoA/3l/nXX+F/iNBr+uSaFf6TeaPqyJ5i210P9YvscDtz06dM0AdrXA3/wAYvCOnajdWM9xdedbSvDJttyRuUkHB78iu+6V4H4C+IE2g6BqdxF4Z1TUYJdQmu7u8gT93EGA4zg5wBk5xjNAHtWga7Y+JdGg1XTmdrWYsELoVPysVPB9wa5f4leFLnWLC31vRSY9f0lvOtXQcyKOTH7+oHrkdzXUaDrlj4k0W21bTpC9tcLldwwykHBUjsQQRWlQBz3grxXbeMfDcGpwgJN/q7mHvFKOo+ncexFdDXk2vRSfDHx0via1Rv+Ed1iQRalCg4hlPSQD8z/30O4r1aKWOaJJYnV43UMrqchgeQQaAH0UUUAFFFFABRRRQAUUUUAFFFFAGX4l/5FXWP+vKb/0A1zfwf/5JXon0m/8ARz10niX/AJFXWP8Arym/9ANc38H/APkleifSb/0c9AHbOiyRtG6hkYEMpGQQe1fO+jabqd54h1T4XWV6kejJqElzcTpIC/kLjMY9/u5HrnPANe1eM5vEEfh6aLwzZfaNSnPlI5lRBAD1f5iMkdgM81wA+GmpeE9Y8K6t4dgN9d2rsmrP5qqZlf7z/ORnhnA78LQB6vY2NtplhBY2cKw20CCOONeiqKsUUUAFFFFABRRRQAUUUUAFFFFABRRRQBieL/EUXhTwtfazJH5pt0GyPON7sQqj6ZIz7ZrifBGg281+vjLxXqtpd67cqHhiMy7LNCOFUZ64P4fXJPoGuaDpviTTG07Vrb7RaMwYx+YyZI5HKkGuW/4U54C/6AP/AJOT/wDxdAFzVPF+m6b490jRLqzj3X1uZINRdlCqfm+QEjvgd/4hXMeIZodR+PXheGxdZLiztpWumjIOxdr4VvTr0/2h612mr+CPD2u6NaaVf6cslrZoI7bDsHiUAAANnPQDqTnAzmjwz4H8P+ERI2j2AhllAWSZ3Luw9Mk8D2GBQBpSaxY/abuyguoJ9QtojLJZpKplAwCMr1Gcjt3Fc34V8b6DrXgyfV/Kt9OtYPMFzbFl/d49QAOo9uc1v2/hzSbXxFda/DabdUu4xFNP5jHeoCgDaTtH3F6DtXO3/wAJfBmpao+oT6TiWRi8iRTOiOT3Kg8fhigDL+BtvND8OxJIpWOe8lkhB/ucL/NWr0qobW1t7G0itbWFIbeJQkcaDCqB0AFTUAUtX0q01zSbnTL+ISWtyhR1/qPQg8g+orz34eareeG9bufh9rspaa2Bk0y4bgTwddo+gyQO2GH8Nen1xPxI8IzeIdJh1HSiYte0tvPspU4ZiOSn4449x6E0AdtRXM+BfF0HjHw3FfACO8jPlXcHQxyjrx6HqP8AEGumoAKKKKACiiigAooooAKKKKAMvxL/AMirrH/XlN/6Aa5v4P8A/JK9E+k3/o566TxL/wAirrH/AF5Tf+gGub+D/wDySvRPpN/6OegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8o8UQS/DjxsnjGwjY6JqTiHV4EHCMTxIB9efrkfxV6nBPFdW8VxBIskMqB0dTkMpGQQfTFQ6lp1rq2m3Gn3sQltriMxyIe4P9fevN/AOo3XhDxHcfD7WZS6LmbSLl+PNiOTs+vU/UMPSgD1KiiigAooooAKKKKACiiigDL8S/8AIq6x/wBeU3/oBrm/g/8A8kr0T6Tf+jnrpPEv/Iq6x/15Tf8AoBrm/g//AMkr0T6Tf+jnoA7iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuO+IvhB/FGiJPYMYtb09vtFhMpwwcc7c++B+IFdjRQByvgDxeni/w8txKoi1K2Pk30BGCkg747A9R+I7V1VeU+MbWf4f+MIvHOmRM2mXbCHWbdBxyeJAPXP6/wC8a9QtLqC+s4bu1lWW3mQSRyKeGUjIIoAmooooAKKKKACiiigDL8S/8irrH/XlN/6Aa5v4P/8AJK9E+k3/AKOeuk8S/wDIq6x/15Tf+gGub+D/APySvRPpN/6OegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIL6yttSsZ7K7iWW2nQxyRt0ZSMEV5l4IvbjwN4rm8BatKzWcpM2j3Ln7ykkmPPr1/EH1FeqVyXxB8IDxboG22bytWs28+wnBwVkHOM9gcD6EA9qAOtorkfh54vPivQSLtfK1exbyL+AjBWQcbsdgcH6EEdq66gAooooAKKKKAMvxL/yKusf9eU3/oBrm/g//wAkr0T6Tf8Ao566TxL/AMirrH/XlN/6Aa5v4P8A/JK9E+k3/o56AO4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPLPHNjc+CfFMHj/AEiJntXIh1i2T+NCQBJ9en4gHua9LsL621OwgvrOVZba4QSRuvRlI4p91bQXtpNa3MSywTIY5I2GQykYINeXeEbmf4e+MpPBGpSs2lXrGbR7hzwCTzGT65/X/eoA9WooooAKKKKAMvxL/wAirrH/AF5Tf+gGub+D/wDySvRPpN/6Oeuk8S/8irrH/XlN/wCgGub+D/8AySvRPpN/6OegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArlvHvhCPxh4de1RhFqEB86ynzgxyDpz2B6H8D2FdTRQBxnw58XyeJtGktdRUxa5prfZ76Fhhtw4D498HPuD7V2deXeP9Nu/CfiG3+IOixFvLxFq1un/AC2hOBu+o4H4Kexr0bTNStNY0y21GxlEtrcRiSNx3B/kexHY0AW6KKKAMvxL/wAirrH/AF5Tf+gGub+D/wDySvRPpN/6Oeuk8S/8irrH/XlN/wCgGub+D/8AySvRPpN/6OegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjnhiuYJIJ41kikUo6MMhlIwQR6V5X4aml+Gvjd/CN7Ix0HVHMukzueI3J5jJ+uB9dp/iNesVzfjjwlB4x8Nzae5Ed0n720n7xSjofoeh9j9KAOkoriPhv4tn17S5tL1cGLX9KbyLyN/vPjgP8Ajjn39iK7egDL8S/8irrH/XlN/wCgGub+D/8AySvRPpN/6Oeuk8S/8irrH/XlN/6Aa5v4P/8AJK9E+k3/AKOegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMfiLpN54e1i2+IOhRlrm0ATUoF4FxB0JP0HBPoAf4a9A0fVrPXdItdUsJPMtrlA6HuPUH0IOQR6irkkaSxvHIivG4KsrDIIPUEV5Rokj/C/x23h25dh4b1mQyadK54glPBjJ/If98nuaAPRfEv/ACKusf8AXlN/6Aa5v4P/APJK9E+k3/o566TxL/yKusf9eU3/AKAa5v4P/wDJK9E+k3/o56AO4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/wAZ+FbXxh4buNLuMJIfnt5scxSj7rfTsfYmugooA8v8NeKrrVfBHiDQNbzH4g0izmhuFc8yoEIEnv6E/Q/xVsfB/wD5JXon0m/9HPWH8WvDN3DE3jHQvkv7aB4b5FHE1uylWJHfaD+XP8Irc+D/APySvRfpN/6OegDuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGVXUqwDKRggjIIqhomjWnh/SY9MsVK2sTyNGh/hDuz7R7DdgewrQooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>What is the value of $x$ below to the nearest tenth?
|
22.5
|
Geometry
|
Geometry3K
|
test
|
15
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFSAcUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKK8yu/iJq+i/FOPw1rFtYppdy4FvcRo6uVfhCSWI+98p4HQmvSppY7eGSaZ1jijUu7scBQBkkmgB9FeYeGPiHr3jPxpc2mj2Vknh+2bMl1NE5kKdBjDAbmIOBjgdc4r0+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiqmp6naaNps+o38pitYF3SOEZ9ozjOFBP6VX0LxDpXibTzf6Pdi5tg5jLhGXDDBIIYA9x+dAGnRRXP6Z428Pazrc2j6dqH2m+h3eZGkEm1dpwTv27cZ4znmgDoKKKKACiiigAooooAKKKKACiiigDyz43+GjqPhuHXLZT9q0xsuV6mJiM/kcH2Ga5LXPH+p+P8ARtF8K6LG5v72NRqDj5csOCPZeN5Ppgetd98V/GcXh/QX0m2VZ9U1ONoY4du7ajfKWI75zgDufpXnvwtWbwV8Sm0TW7RIbq9tlSN25KMQHUA+/Kn3A9KBns/hLwvZ+EfD8Gl2YBK/NNLjmWQ9WP8AT0GK3aKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ3lrDfWU9pcIHgnjaORT3Vhgj8jXi3wjuJvDHjrXPBt4/wB5maHP8TJ3H+8hDfRa9vrxT4t2s3hfxpofjayjJ/eLHOAcBmToCf8AaTcv0WgDpfi141bw9oy6Rpzk6vqI2IEyWjjPBYY7noPfJ7VofDPwSng7w6onUHU7sCS6f+76Rj2XP55rkPhrod54v8S3Pj/XkJBkIsIm5UEcZGf4V6D3yeor2WgAooooAKKKKACiiigAooooAKxvFHiSy8KaDcarfN8sYxHGD80rnoo+v6DJrZqlqGkaZq6ImpadaXqxklFuYFkCk9xuBxQB5L8NPDt74t8QTePvEQ3lpCbGNvu5HG4D+6vQe+T25sfHHQpUtdO8V2OY7qwkWOWReqqWyjfg3H/Aq9bgghtoI4LeJIoY1CpHGoVVA6AAcAU26tbe9tpLa7giuIJBh4pUDqw9CDwaAMvwnr8XifwxY6tFgGeP94gP3JBww/MH8MVtVRt7PTNB0+b7JaW1jaR7ppFt4Qi8Dltqjk4H6Vk/8J/4W/6C8X/ft/8ACrjTnP4U2ROrCHxSSOkorm/+E/8AC3/QXi/79v8A4Uf8J/4W/wCgvF/37f8Awq/q9X+V/cyPrNH+dfejpKK5v/hP/C3/AEF4v+/b/wCFH/Cf+Fv+gvF/37f/AAo+r1f5X9zD6zR/nX3o6Siub/4T/wALf9BeL/v2/wDhR/wn/hb/AKC8X/ft/wDCj6vV/lf3MPrNH+dfejpKK5v/AIT/AMLf9BeL/v2/+FH/AAn/AIW/6C8X/ft/8KPq9X+V/cw+s0f5196Okorm/wDhP/C3/QXi/wC/b/4Uf8J/4W/6C8X/AH7f/Cj6vV/lf3MPrNH+dfejpKK5v/hP/C3/AEF4v+/b/wCFH/Cf+Fv+gvF/37f/AAo+r1f5X9zD6zR/nX3o6Siub/4T/wALf9BeL/v2/wDhR/wn/hb/AKC8X/ft/wDCj6vV/lf3MPrNH+dfejpKK5v/AIT/AMLf9BeL/v2/+FH/AAn/AIW/6C8X/ft/8KPq9X+V/cw+s0f5196Okorm/wDhP/C3/QXi/wC/b/4Uf8J/4W/6C8X/AH7f/Cj6vV/lf3MPrNH+dfejpKK5v/hP/C3/AEF4v+/b/wCFH/Cf+Fv+gvF/37f/AAo+r1f5X9zD6zR/nX3o6Siub/4T/wALf9BeL/v2/wDhR/wn/hb/AKC8X/ft/wDCj6vV/lf3MPrNH+dfejpKK5v/AIT/AMLf9BeL/v2/+FH/AAn/AIW/6C8X/ft/8KPq9X+V/cw+s0f5196Okorm/wDhP/C3/QXi/wC/b/4Uf8J/4W/6C8X/AH7f/Cj6vV/lf3MPrNH+dfejpKK5v/hP/C3/AEF4v+/b/wCFH/Cf+Fv+gvF/37f/AAo+r1f5X9zD6zR/nX3o6Siub/4T/wALf9BeL/v2/wDhR/wn/hb/AKC8X/ft/wDCj6vV/lf3MPrNH+dfejpKK5v/AIT/AMLf9BeL/v2/+FH/AAn/AIW/6C8X/ft/8KPq9X+V/cw+s0f5196Okorm/wDhP/C3/QXi/wC/b/4Uf8J/4W/6C8X/AH7f/Cj6vV/lf3MPrNH+dfejpKK5v/hP/C3/AEF4v+/b/wCFH/Cf+Fv+gvF/37f/AAo+r1f5X9zD6zR/nX3o6Siub/4T/wALf9BeL/v2/wDhR/wn/hb/AKC8X/ft/wDCj6vV/lf3MPrNH+dfejpKK5v/AIT/AMLf9BeL/v2/+FH/AAn/AIW/6C8X/ft/8KPq9X+V/cw+s0f5196Okrx/4/agw0bR9JjJL3Ny0xVep2LtA/N/0r1TTdUstYtPtVhOJoNxXeFIBI69RXKeKfh7/wAJT4v0nWp9U8q30/Z/of2fd5m19x+bcMZ4HQ9Kyaadmaxkmro6jRNOXSNC0/TkAAtbeOHj/ZUDNX6KKQwooooAKKKKACiiigAooooAKKKKACiiigBGVXUqwBUjBB7ivGtC0DS7P4h3vh/V7NZ4X3fZi7EY/iXoR1XP4ivZq8z+J9nLp2o6V4ltBiWCQRuR6g7kz/48D+FduCm+Z007cy/HocGPguWNVq/K/wAOp1H/AAgHhb/oERf9/H/xo/4QDwt/0CIv+/j/AONbtjeRahYW95AcxTxrIp9iM1PWDr1k7OT+9nQsPQauoL7kc3/wgHhb/oERf9/H/wAaP+EA8Lf9AiL/AL+P/jXSVk+J4r2fwpq0Wnbvtr2cqw7fvFypxj39Pej6xV/mf3sf1aj/ACL7kcRNP8J7fVDpss9ityG2sN8uxTnGC/3R+ddQPAPhVgCNJiIPIIkfn9a4PR9Y8AQ/CZbO8awSZbQpc2rgC4a4A5IH3id3Q9uORiu5+HEN/b/D3RYtSDi5WDlXBBVNx2A59E2ij6xV/mf3sPq1H+RfciT/AIQDwt/0CIv+/j/40f8ACAeFv+gRF/38f/Gukoo+sVf5n97D6tR/kX3I5v8A4QDwt/0CIv8Av4/+NH/CAeFv+gRF/wB/H/xrpKKPrFX+Z/ew+rUf5F9yOb/4QDwt/wBAiL/v4/8AjR/wgHhb/oERf9/H/wAa6Sij6xV/mf3sPq1H+Rfcjm/+EA8Lf9AiL/v4/wDjR/wgHhb/AKBEX/fx/wDGukoo+sVf5n97D6tR/kX3I5v/AIQDwt/0CIv+/j/40f8ACAeFv+gRF/38f/Gukoo+sVf5n97D6tR/kX3I5v8A4QDwt/0CIv8Av4/+NH/CAeFv+gRF/wB/H/xrpKKPrFX+Z/ew+rUf5F9yOb/4QDwt/wBAiL/v4/8AjR/wgHhb/oERf9/H/wAa6Sij6xV/mf3sPq1H+Rfcjm/+EA8Lf9AiL/v4/wDjR/wgHhb/AKBEX/fx/wDGukoo+sVf5n97D6tR/kX3I5v/AIQDwt/0CIv+/j/40f8ACAeFv+gRF/38f/Gukoo+sVf5n97D6tR/kX3I5v8A4QDwt/0CIv8Av4/+NH/CAeFv+gRF/wB/H/xrpKKPrFX+Z/ew+rUf5F9yOb/4QDwt/wBAiL/v4/8AjR/wgHhb/oERf9/H/wAa6Sij6xV/mf3sPq1H+Rfcjm/+EA8Lf9AiL/v4/wDjR/wgHhb/AKBEX/fx/wDGukoo+sVf5n97D6tR/kX3I5v/AIQDwt/0CIv+/j/40f8ACAeFv+gRF/38f/Gukoo+sVf5n97D6tR/kX3I5v8A4QDwt/0CIv8Av4/+NH/CAeFv+gRF/wB/H/xrZ1LVLDRrJ73UruG1tk6ySttGfT3PtWHpPxE8J63fCy0/WoJLhjtWN1eMsfRd4Gfwo+sVf5n97D6tR/kX3If/AMIB4W/6BEX/AH8f/Gj/AIQDwt/0CIv+/j/410lFH1ir/M/vYfVqP8i+5HN/8IB4W/6BEX/fx/8AGj/hAPC3/QIi/wC/j/40zxz4lufDej250+3W41O/uUs7ONz8vmPnBPsMfyrmdQ1Xxv4HFtq2v6nZatpMkyx3iRW4ia2DHAZCANwB9f65B9Yq/wAz+9h9Wo/yL7kdT/wgHhb/AKBEX/fx/wDGuG+I2i6Ho8FjY6VpqR391JnKsxO0cYwT3JH5GvXa8r03/irvixPen57LTfuenycLj6tlq6sJVqOTnKTtFX3+448ZRpqKpwik5O2y+Z6FoGlJomhWenJjMMYDkd3PLH8STWlRRXBKTk231PRjFRSitkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVk+J9JGueHL2wwC8kZMeezjlf1ArWoqoycZKS6EzipxcXszgfhVqxutAm0yUnzrGTAB67GyR+R3fpXfV5WP+KR+Ln9yy1T8h5h/o4/AV6pXTjIr2ntI7S1/zOXAyfs/Zy3i7f5HC6r4z1LRvifpvh+7gtBpGoxjyJwjCQSYI2k7sH5gB06MKdqfjHUrnx5beF/DkNrM0S+ZqVzOrOtuvHACsPmx79SB61znx2nsoNI0iVZtmrw3Xm2oUZYIBlifQAhPxH1x0Xwp0qytPBdvqcEpuLzVM3N3ct955MnK/8BOR9cnvXIdp0kvhjQZ9S/tGXRrB73O7z2t1Lk+ucdfetWiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeWeO9Nm8S/FTwxod1BNJo6RNczYU+WzfOcMR6iMD/AIF70vxb8KaJbeArjU7LTrWzu7F4mhltoljbBdVxlcZHzZ/CvUXdY0Z3YKqjJYnAA9a8b8Qard/FjXl8M6DuTw/ayh77UMcPg/w/rgdzz0FAz07wrfzap4S0e+uc+fcWcUkhI6sVGT+J5o0LxRo3iT7UNJvPtDWriOdTE8ZRjnghgD2P5Vo2lrDY2cFpboEggjWKNR/CqjAH5CvEPEOoX/w3+JurSaVamca9b77aILkeezYBx3Ifccf7QoEd94r/ALG8Z3D+GLTVTDr9hIt5C8ULuLeRehZgNo64xnqR34rOm8K+NPFMtrZeLb7Sk0i3mWWWOwVt90V6BtwwB9MfTpjc8A+EP+EW0dmu38/WL1vOvrgnJZzztz6DJ+pye9dZQBg+MtY/sPwte3atiZk8qH13twD+HJ/Csf4X6P8A2d4XF3IuJr5/MOeuwcKP5n/gVYvxEnk17xTpXhi2b+MPLjszdz/urk/8Cr0yCCO2t4oIVCxRIERR2AGAK7Z/usOo9Za/LocMP3uJlPpDRer3/wAiSiiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOB+Kukm60CHU4gfOsZMkjrsbAP5Hb+tdDo3iBL/wAHwayY5ZmEG6WOCMu7OvDBVHJJI4HvWrfWcWoWFxZzjMU8bRt9CMV538L7yXTtR1Xw1dnEsEhkQH1B2vj/AMdP512x/e4ZrrB/gzhl+6xSfSat81/wBPCHhm98S6pqfivxbZSRT3iPaWljOpU28BBU8HkEgkdB1Y/xU74R2mr6FDrHhzU7K6jhs7pntbmSFljlUkg7WIwR8ob/AIFXpdFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeXfFHVpr7XNI8FR6hHp9tqKmW+uXYLiEE8ZOAM7G+pwPr1mh3XhHw7pMOm6bqmmQ20Q4H2uPLHuzHPJPrS694B8M+JtQF9rGm/ablYxGH+0SphQSQMKwHc1l/8ACoPAn/QC/wDJuf8A+LoA6i/1zTdN0ObWZ7qM2EUZkMyMGDD/AGcdSTwPevB/EOla54k8O3fxKuXkt7iO4jewth/yytlYgH/vog59mPcV7TeeC9Av9BtdDubFn021wYrcXEqgY6ZIbLde5Na1xp9pdaZJpssCGzkhMDQjhdhGNox0GOOKAKvh7WItf8O2GqxY23UKyED+Fv4l/A5H4VfnnjtreWeZgsUSF3Y9gBkmqei6Hp3h3TU07SrcwWiMWWMyM+CTk8sSetcx8UNY/s7wv9jjbE18/lj/AHByx/kP+BVpRpupUUF1Mq9VUqbm+hjfDuCTXfFGreKLlT98pFnszdh/urgfjXqFYPg7R/7D8LWVoy7Zivmzeu9uSD9OB+Fb1aYqoqlVtbLReiM8JSdOkk93q/VhRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlnjJT4X+IWm+IowRBcECfHcj5X/NSD9Qa9TrlviFo/wDa/hG6CLuntf8ASI+Ofl+8P++c/jiunCTUaqUtno/mcuMpudJuO61XyOoVg6hlIKkZBB4Ipa5T4eax/a/hG2Dtme1/0eTP+z90/wDfOP1rq6xqQdObg+htSqKpBTXUKKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvK9R/4q/4sQ2Q+ey037/cHYctn6thfwr0LX9VTRNBvNRbGYYyUB7ueFH5kVx/wp0p49Lu9auMtPeyEKzdSqk5P4tn8q7cP+7pzrfJerOHE/vKsKPzfov+CehUUUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIyhlKsAQRgg96WigDyzwgT4W+IupeH5CVt7knyc+3zJ/46SPrXqdeafFGylsLzS/EloMTW8gjcj1B3IT/AOPD8q9DsL2LUdPt72A5injWRfoRmuzFe/GNburP1Rw4T93KdDs7r0ZYooorjO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooJABJOAOpNAHmvxSv5bubTPDloczXMgkdR3ydqD88n8BXoGmWEWl6Za2MP8Aq7eNYwfXA6/j1rzXwmD4r+JGoa843W1p/qc9P7qf+Ogn616pXbiv3cY0e2r9WcOE/eTnX7uy9EFFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBleJNJXW/D17p5A3Sxnyyezjlf1ArlfhTqzXOhz6VMSJrGT5QeuxiTj8Du/Su/ryuT/ikfi4r/AHLLU+vp+8PP5OM/Su3D/vKU6XzXy/4Bw4n91VhW6bP0e34nqlFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFct8QdY/sfwjdFGxPc/6PHzz83U/985/SupryzxiW8U/EPTvD0ZJt7bHnY7E/M/8A46APrXThIKVVOWy1fyOXGVHCk1Hd6L5nUfDvR/7J8I2xdcT3f+kSZ/2vuj/vkD8zXV0iqEUKoAUDAAHAFLWNSbqTc31NqVNU4KC6BRRRUGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcH8VdI+2eHY9RiX99YyZJHXY2Af12n867yoL20iv7Ge0nGYp42jcexGDWtCo6VRT7GNekqtKUH1M/wvq41zw3ZX5OZHj2y/744b9RWvXmXwxu5dM1XVvDN0cSRSGSMe6na2Pr8p/A16bVYmn7Oq0tunoThKrq0lJ77P1QUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVtQvYtN065vZziKCNpG9wBnFee/C6ylv7zVPEl2MzXEhjQn1J3OR/46Pzq38VtWaDRrbSICTNfSAso6lFPT8W2/ka6zw7pK6J4fstPAG6KMbyO7nlj+ZNdq/dYZvrP8kcL/e4pLpBfi/8AgGpRRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5Z42RvDPj7TPEcSkQzkCbHcr8rD8UI/KvUlZXRXQhlYZBHQiuZ8f6P/bHhG7VFzNbj7RF9V6j8VzUXw51j+1vCNurtma0P2d/oPun/AL5I/I12VP3mHjPrHR/ocNL91iZU+ktV69TrKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisTxdrH9h+GL29VtsoTZD6724H5dfwqoRc5KK6kzmoRcnsjhrT/AIq/4tSXH37LTPunt8hwPzck/SvVK4b4W6P9g8Mm+kXE18+/J67Bwv8A7MfxFdzXTjJJ1OSO0dDlwUGqfPLeWv3hRRRXIdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAEAggjIPUGvK/ChPhX4k6hoLkra3efJB6f3k/8dJH1r1SvNPilYy2dxpfiO0G2a2kEbt7g7kP5hvzFdmDalJ0ntJfj0OLGpxjGst4u/wAup6XRVbTr6LU9Ntr6H/VzxrIvtkZxVmuRpp2Z2Jpq6CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzD4kXEuteItJ8MWrcs4eXHQM3Az9Fyfxr0yaVIIJJpWCxxqWZj2AGSa8x+H8L+IPGGq+J7hTtVisOexbjH4IAPxrswi5Oas/sr8XscONfPy0F9p6+i3PTLa3itLWG2hXbFEgRF9ABgVLRRXG9TuStoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWZ4h0pdb8P3unEDdNGQhPZxyp/MCtOinGTi1JdCZRUouL2Z5/8KdVafRbnSZiRNYyEqp6hGJ4/Bt35ivQK8ruf+KR+LaT/cs9T+96fOcH8nGfpXqldWMiudVI7S1/zOXAyfs3TlvF2/yCiiiuQ7AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOL+J2s/2Z4Ve1jbE183kjB52dWP5YH/AAKtTwTo/wDYnhSztnXbNIvnTeu9ucH6DA/CuL1j/irvirbaaPnstO/1g7Hb8z5+pwv4V6pXbW/d0Y0ur1f6HDQ/e151ei91fqFFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcJ8VNHN94bTUIx++sX3EjrsbAb9dp/A10XhTV/7c8M2V8WzKybZf99eG/UZ/GtO7tYr2zntZl3RTRtG49QRg15v8M7qXSda1bwzdNh45DJHnuVO1sfUbT+Fdkf3uGcesdfk9zhl+6xSl0mrfNbHp1FFUdZ1iy0HSbjU9Ql8q1t13O3UnsAB3JOAPrXGdxeoryz/hb999m/tL/hCNW/sbG77bk/d/vY24x77se9eh6LrVj4g0i31PTpvNtp1ypxgg9CCOxB4oA0KKK5D4oXl/Y/DrVp9OZ0nCKpeM/MqFwGI/An6daAOgh1vSbm+ayg1Sylu1+9AlwjSD6qDmr9eQeKfC3gnS/hp/amlmCC4hiSWxv4ZcSyS8Y5zkknqO3tivUNEmurnQNOnvl23clrE864xiQqCw/PNAF+iiigAooooAKKKKACiiigAooooAKK4o/EW1f4lweDra084sGE12JsCN1RnK7dvPCgZyOSfSu1oAKhury2sbdri7uIbeFfvSTOEUfUnipq8y8T21nrPxc0vSfELA6QuntPaQSPtjmuN5Bz6nb29h68gHotlf2epW4uLG7guoScCSCQOv5g4qvrmppo2h3moyYxBGWAPduij8SQK8/tbHTvD3xlsbDw2Ehhu7KVtTtIW/dx7QSjbf4TnA/H35sfFTUJJxp3h61+ae6kEjqOpGdqD8Tn/vmt8PS9rVUen6GGKq+ypOa36eo/4U6W4sL3XLnLT3khVWPUqDlj+LZ/75r0WqelafFpOk2thD9y3jCZ9SOp/E5P41cpYir7Wo5hhqXsqUYf1cKKKKxNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvLfHKN4a8daX4khUiKUgTbe5X5WH4of0r1KuZ8e6P/AGz4Su40XdNAPtEXHOV6j8RkfjXThKihVV9no/mcuMpudJ8u61XqjpEdZI1kRgyMAVYdCD3rl/H/AITn8Z+HU0qC/WzxcLK7tGXDKA3y4yO5B/Co/hvrH9q+EoI3bM9mfs75POB90/lgfga6mW5ggeNJZ443kOEV3ALn0Hr1FZVabpzcH0NqNRVIKa6lTUZtN0rQ52vTFDp0MBVwxwoQDG38uMVw3wOtbm2+Hxe4Vgk95JLCGGPkwo49sq1O8bfCm18S395rUGo3cepOFeOGTa8G5ECqNpHQ7Rnk9Tx2rV+F/iaXxT4KgurhUW5t5Day7FCqSoBBAHA+Vl4HFZmhJpfjg3vj/UvCd3p32Sa1QyQzefvE68EcbRg7WB6nofSkPjFNT8bzeFLDS1voYYz/AGhdPLiOHPVNu07j2xkc5HY1wXxnuT4c8V6J4g0u6SHVvJkjZRy2wDAYj/gTDn074NeieAvC9t4Y8NQxxyi5uroC4urrOfOdhnOepAzx+fUmgCCz+F/g6x1UajBo0YnVt6K0jsit1yFJx/hXX0UUAFFFFABRRRQAUUUUAFFFFABXO+NfEn/CMeHJruJfMvpmFvZwgZMkzcKMd8dfwroq8guvGGgX/wAVLi513Uo7Wx0AtBZwSKx8y4zh5CAD93BA+gIoAydH8Onwz8aPCVnK5kvZdOkuLyUnJkmdbgsc9+w/CvY/EGpz6N4fvtTt7P7ZJaxGXyPM2bwOTzg9snp2rx/V/Gnh24+N2g65FqcbaZbWDRS3ARsIxWfjGM/xr2717ajQ3dqrjEkMyZGRwyken0oA5zRPHGn6r4GHim4AtLZEdp4y+8xlSQVzgZJ4xxzkVQ0xbL4o+GFutf8ADiwWbSE2gectIy/3wQFKg+gJzj0xnybwvpC6140u/A6aoreHIL+W8KIx/wBICYUKD34xn6E84FfRsUUcMSRRIqRooVUUYCgcAAUAY3h7wjoXhSGRdHsEtzJ/rJCxZ2x6sxJx7dK4fwyD4t+Jl9rbfNaWX+pz0/up+gZvrXXePdY/sbwldyI22e4H2eLHXLdT+C5NV/hxo/8AZXhKCR1xNeH7Q+euD90flg/ia7aX7uhKp1ei/U4a373EQp9I+8/0OuoooriO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCMjB6UUUAeWeGD/wAIp8TL/Q3+W0vM+T6f3k/Qsv1rQ+K+hane2mj65o9ubm+0W6FwsKruZlypOB3wUXj0zUHxUsJbZ9M8RWnyz20gjZgOnO5D+BB/MV3+mX8WqaXa38P+ruI1kA9Mjp+HSu3FfvIQrd9H6o4cJ+7nOh2d16M82f42WM9i9vZaJqja2yFY7QwggSdskHJGfbPtWh4OtYvhn8Lzc64RDIC11PGMbt7YCoPVsBR9fpXolFcR3HjWmeC7zxz4d1zxPrsWdU1eA/2bCelvGvzR4z0yQBn+7z/Ea6f4P68dZ8CW9vMxNzpzG1kB67Ryn/jpA/4Ca76igAooooAKKKKACiiigAooooAKKKKACsebwl4buZ5J5/D2kyzSsXkkkso2Z2JySSRkknvWxRQB41rXh/RYvj34d06PSLBLGXT3eS2W2QRO22fkrjBPyrzjsPSui+IviO5gW08G+HQP7Z1MCICPgW0PduOnAP0AJ7CvQ6KAPDvF/hq3+Gd14R8QaWhMdjILa9kAwZs5Yk+7AyD2+Udq9uilSaJJY2DRuoZWHQg9DT6gvryLT7C4vJziKCNpGPsBmmld2QN2V2eZ+NnbxN490zw3ESYYCDNjsW+ZvyQD8zXqKIsaKiKFVQAAOgFeafDG0l1LU9V8TXYzJNIY0PuTubH/AI6Pzr02uvGPlcaK+yvx6nDgk5KVZ/af4LYKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDN1/Sk1rQb3TnAzNGQhPZxyp/AgV5rpEnxC8O6ZHp9to4eBCxTeocjJyRw3TJNeuUV0UsQ6cXBpNb6nNWwyqTU1Jp7aHmP/CQ/Ej/AKAcX/fg/wDxVH/CQ/Ej/oBxf9+D/wDFV6dRWn1qP/PuJn9Un/z9keY/8JD8SP8AoBxf9+D/APFUf8JD8SP+gHF/34P/AMVXp1FH1qP/AD7iH1Sf/P2R5oniT4jKuD4dt3Pq0Lf0elPif4iAE/8ACNW3H/TF/wD45XpVFL6zD/n2vxH9Vn/z9l+H+R5j/wAJd8Qv+hZi/wDASX/4uj/hLviF/wBCzF/4CS//ABdenUU/rNP/AJ9r8RfVan/P1/geY/8ACXfEL/oWYv8AwEl/+Lo/4S74hf8AQsxf+Akv/wAXXp1FH1mn/wA+1+IfVan/AD9f4HmS+L/iAGG7wxGR3AtZR/7NUn/CYeOv+hU/8gyf416TRS+s0/8An2vxD6rU/wCfr/A8zfxt44RsHwm5P+zazH+Rpv8AwnPjf/oU5f8AwEmr06in9Zp/8+1+IfVav/P1/geY/wDCc+N/+hTl/wDASaj/AITnxv8A9CnL/wCAk1enUUfWaX/PtfiH1Wr/AM/X+B5j/wAJz43/AOhTl/8AASapF8deMNo3eD7gnuRbzD+lelUUvrFL/n2vxD6tV/5+v7keat498WopZvCFwoHUmCUf0rH8QeK/E+v6PLpreHri3SUrvaOGQkgHOOnqBXsVFVHFU4tSVNXXmxTwlWScXVdn5IyfDOkDQ/Dtlp+AHjjzIR3c8t+pNa1FFckpOUnJ9TshFQiorZBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE+APiCfHE2qRPpYsHsDGCPtHm792/P8K4xs9+tdB4m16Dwz4dvdYuF3pbR7lj3bd7HhVz2ySBXlfwZX7P428XWwUALJjjoNsjj+tXPizdy+IvE+g+BrNzm4mWe6KnoOQM/RQ7Y+lAHV/D7x8vjy0vpv7O+wtauqlfP83cGBOc7Vx0NbPivxHB4U8N3esXEfmiADZFu2mRycBc4OOT6HjNea/BdE0/xR4x0yNSscVwoRSeVCPIvT8R+VN+MF3N4h8T6D4JsWy8sqzT452luFJ/3V3sfYigZ6R4O8Qz+KfDcGsT6d9gE7N5cRm8wlAcBs7V6kHt0x61vVXsbKDTdPtrG2XbBbxLFGvoqjA/lVigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB554v+Jl54Z199MtfC9zqapGrNPHKyjJGduBG3bHfvWD/wuvVv+hCvf/Ah/wD41XsNcN8SfiBD4M0rybYrJrFypFvF12Dp5jD0HYdz+NAHKW/x0u7jVYdNHhCRLqWRYxG16QwLEY48rPevZK8v+F/w/m05m8UeIQ0ut3mZEWXkwhuST/tn9AceteoUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeK+BLiHS/jD44M8hSFFublyeAFEwYn8A1WvhRazeJfFmu+Or1CPNkaC1Dfwg4z+ShF/E1wfjq7utM+JPiuytUczanGlqMdcOYn4+oXH/Aq+gvCWgx+GfC1hpMYG6CIeaw/ikPLH8yfwoGea+CZ4dK+MfjdJnWOEJLdO3YKJAxOf+B034VW0virxvrvje8Q7fMMNqG/hLD/2VNq/8CrjviReXOjfEzxNFah92pW0dv8AKeSrrEWGO+dpGPevd/BHh5fDHhDT9LIHnJHvnI7yNy35E4+gFAHQUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKzPEGu2fhrQ7nVr9iIIFyQoyzE8BR7k4FAGb428ZWXgvQnvbjEly+VtrfODK/9FHc/1Irz/wCHHg698SaufHXivMs0z+ZZwuMDjo+OyjGFH4+meS0fVdM8d+NZde8a6ra2tjbkeRZO5ww7IB/dHVj3J+uPaF+I3gxVCr4gsQoGAA3A/SgZ1VFZmj+ItI8QLM2k38N2sJAkMRJCk5x/I1p0CCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOen8D+HLrxKPEU2mh9VDpIJzNJ95QFU7d23gAdu1dDRRQBz9/4I8Oapr8WuXumrLqMTIyTGVxyn3cqG2nGO4roKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs/W9D07xFpr6dqtubi0dgzR+YyZIORypBrQooA4f/hUHgT/oBf8Ak3P/APF0f8Kg8Cf9AL/ybn/+LruKKAMjw/4X0bwtbS2+jWQtYpn3uPMd9zYx1Yk1r0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z
|
<image>Find $m\angle W$
|
108
|
Geometry
|
Geometry3K
|
test
|
16
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADeAb0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXE+Jfit4V8L3jWV1dS3N2hxJDaIHKH0JJCg+2c0AdtRXEeGfiv4W8U3yWNrcTWt3JxHDdoELn0BBIJ9s5rt6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5D4meJpPCvge9vbdit3Ni2t2H8Ltn5vwAY/UCsn4V+BbLQvDdrqt5apLrN6gnkmlXc0YbkKuenBGe5JOegrL/AGgIpn8E2DpkxJqCmQAdMo4B/p+Nem6TdW19o9ldWbBraaBHiI6bSBigDifiT8Om8Vw2l7ogtLPWrecN9pcmPcmD1KgkkEKQe3PrXe2onFpCLoobgRr5pT7u7HOPbNcR4k+Ib6Z430vwrpNlFf3t0wFwWkIEAJGM4B6Llj7Y9a7ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKy9Y8RaRoEXmanfwwZGVQnLt9FHJ/KmouTshSkoq7ZLrWjWPiDSLnS9Ri821uF2uucHrkEHsQQCPpXl8Hwm8U6OGs9B8c3NrpjEkRkMGTPoAcZ9xitPU/iPrN3YXF74d0CY2EC75L27X5do67VB5/M+4Feg6XqMOraVa6hbn91cRrIoz0yOh9x0/CtJ0ZwV5GdOvCo7ROV8EfDbTfBsst61xLqGrTgiS8mGDgnJCjJxnuSST612tFFZGoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUF3eW1hbtcXdxFbwr1klcKo/E1xl38SIru4ay8MaZc6xdDjeqlIl9yTzj8h71pClOfwoznVhT+JndVyutfELQdHkMC3BvrzO0W9mPMbPoT0H0zn2rI/wCET8UeJvn8Ua0bW1brYWHAx6M3T8931rqtF8L6N4fjC6bYRRPjBlI3SN9WPP4dK05aUPid35bfeZc9WfwrlXd7/d/mcPdax408QalZ2GxfDdpfb/KdxumYKMkeoOOn3frXQaP8ONC02X7Vdo+p3pO5p7078n129PzyfetLxZYS3uiNNaD/AE2ycXVsf9tOcfiMj8a0tMv4tU0y2v4D+7njDgemeo+oPFEq0uW0NF5HS8HT9nGq/eezv33Vlsrr8mTzW8U9tJbSxq0MiGNkI4KkYI/KuE+Hc8mkX2r+ELpyZNPlMtsW6tCxz/UH/gdd/XnHj24h8OeLND8SxzIJFb7PdwhhveI5+bb3wC3Prtooe9en3/NGFZNNVF039Ov3bno9FIjrIiujBlYZBB4Ipa5zcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKOgyaACiqVrrOl31w1vaalZ3Ey/ejhnV2H1AOau0AFFV4L+zubme2gu4JZ7cgTRRyBmjJ6bgDkdO9WKACiiigAooooAKKKQkAEkgAdSaAForktY+IuhaZL9ltpH1K9J2rb2Q35Ppu6flk+1Zfl+PPFX+sePw5p7fwr81wR/MH/vmtlQla8tF5mEsRG/LD3n5f57HVa14n0bw/GW1K/iifGREDukb6KOfx6Vyv/CW+J/E3yeF9FNrat0v7/gY9VXp+W76Vr6L8PdB0eQXDW7X14Tua4vD5jZ9QOg+uM+9dVVc1KHwq789vuJ5Ks/ifKvLf7/8AI4W0+G8d5cLe+KNTudYuhyI2YpEvsAOcfTA9q7O0srWwt1t7O3it4V6RxIFA/AVPRWc6s5/EzWnShT+FBRRRWZoFcTZ6mfCmpahon2K7ulaT7TYRW0e47HyWX0UKwPJ9a7aimnY3o1lBSjJXT6barZ/13OY+y+J9a/4+rmPRbQ/8sbYiScj0LnhfwpbjwLo0mjXtklsGnuoyrXUxMku7s2489cHj0rpqKam07oKmIlODprSL6LT7+r+bZx3w31aW98OHTrvIvtKkNpMp6gD7v6DH/ATXY159ff8AFK/FG2vh8un66nkTeizDAB/E7f8Avpq9BrWulzc62ev+f4nDh2+Xke8dP8vwCiiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArivipa63f+CZbDQYJpri6mSKUQ/eEXJb8OAD7Gu1rO17XLHw5otzq2oyFLa3XLYGSx6BQO5JIFAHkHxH8F6H4E8MaZq+gRvZ6taXcSRziVi0xwScgnGeM8e46V6d4x8TDwx4Yl1ARb72TENpb9TJO3Crjv6n2BrjPD+gar8QNdtvF/iqIwabAd+laWTwB1Ej+ucA/7XHRQAYfFuo6xH8Ure7n8LatqulaTEDZLaQMyNO6gmQnBBxnHsVBoAr/BuwvdM8X+L7TUZvOvkMBuJM53SNvZue/JPNex14r8N/EF1dfFXxJv0O/g/tGRDN5iEfY9quQJOON3Qe9e1UAFFFYmt+LdE8PKf7Qv40lAyIE+aQ/8BHI+pwKqMXJ2irkylGKvJ2Nuq19qFnplsbi+uobaEdXlcKPpz3rh/wDhJfF3ij5fDmkDTrNul9f9SPVV/wAA1WbH4bWktyL3xHf3OtXn/TZiI19guc4/HHtW3sYw/iO3ktWYe2lP+FG/m9F/mR3PxGfUZ2tPCekXGqzg4M7KUhT3JPP57frUQ8GeIPEZEnivXHS3PP2Cx+VPoT0P5H613ltbQWcCwW0EcMKDCxxqFUfQCpaPbKP8NW892P2Dn/Fd/LZf16mXo/h3SNBi8vTLCKDIwXAy7fVjyfzrUoorBycndm8YqKskFFFFIYUUUUAFFFFABRRRQAUUUUAc1480M674UuoYlJuoP9ItyOu9ecD3IyPxqz4Q1weIfDFlqBYGZk2TAdpF4b8+v0Ircrz7w7/xS/xD1Pw+3y2WpD7ZZDsG53KPyI+iCuiHv03HqtV+pzT9yqp9Ho/0/wAj0Giorqf7NaTXHlSS+UjP5cS7nbAzhR3J7V5BL4+1rW/ih4asV03VdF04u4aK7VomusryWXoQMDA56muc6T2SiuJ+JfiTUNE0eysdGYLq2rXSWds5x+7JPLc/UD8c9q5ed/E/w48TaE+o+JLjW9J1ScWtyLkY8lzjDLkkgc547Aj0oA9eooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fx74Qbxt4eTSV1E2IFwszSeT5m4AMNuNy9yD17V1FFAHnI8B+NQMD4l3QH/YOX/4uvQ4UeOCNJJPMdVAZ8Y3HHJxVfUdUsNJtjcahdw20X96VwM+w9T7CuMm+IV1q8z2vhHRZ9RcHBuplMcKn8cfqVrSFKc9UtPwMqlaENG9e3U19D8JroHijxDrzagJF1VkcxGLYIQuf4txz19BVXVviRo1lP9k08S6tfE4WCyXeCf8Ae6flmqC+BtZ8QMJvF2uSSx5yLGzOyIfU45/LPvXX6ToWl6HB5Om2MNsuMEovzN9WPJ/E1palDd8z8tvvM+atU+Fcq89/uOP+xeOvFXN5dR+HtPb/AJZQfNOw9z1H5j6Vt6H4C0DQ2E0dp9pu85NzdHzHz6jsD9BmumoqZV5NWWi8io4eCfNLV92FFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcR8SrCZdMs/EFkP9N0iYTDHeMkbgfbgH6Zrt6juIIrq2lt50DxSoUdT0KkYIrSnPkmpGdWn7SDiQ6bfw6ppltf25zDcRrIvsCOh96888bf8AJXvAn1n/AJCtD4dzy6Xc6r4Su3Jl02YvAW6tCxzn9Qf+B1J4p8PapqPxH8J6taWvmWNgZftMvmKPLyBjgnJ/AGirDkm0thUZ88FJ79fUy/iYD/wnHw9/u/2k2fruixSfGznQ9AUffOsw7f8Avl//AK1bnxG8M6h4g0iyudGZBq+l3SXlqHIAcr1XJ4HY8+lcydO8X+PfFWiza/oa6LpOkzC5dTMshnlGCAPbI9OATyeKzNT1iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbJJHDG0krqiKMszHAA9zQA6iuL1P4k6VBcfY9Ihn1m+PCxWikrn/ex/IGqX9leN/FPOq36aFYN/wAu1pzKw92B4/P8K3VCVrz91ef+RzvERbtBcz8v89jotd8Z6D4eDLfXyGcf8u8XzyfkOn44rnf7d8aeKfl0TTF0exbpeXv3yPVVx/Q/Wt/QvA+geHyslrZCW5HP2i4+eTPqCeB+AFdFT56cPgV33f8AkHJVn8bsuy/z/wAjidO+GunLci9126uNavj1e5Y7B9Fz09iSPauzhhit4VhgiSKJBhURQoA9gKfRWU6k5/EzSFKFP4UFFFFQaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/wCN1Ph3xPo3i2IEQq/2S+x3jbOCfoM/iFrv1YMoZSCpGQR0NZ2v6RFrug3mmS4AnjKqx/hbqp/AgGsL4cavLqHhoWN3lb7THNpOjdRt+7n8OPqprol79JS6x0+XQ5o/u6zj0lr8+p19FFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXOa5450DQC0dzeCW5HH2e3+eTPoQOB+JFVGEpu0Vcmc4wV5Ox0dUdT1nTdFt/P1K9hto+3mNgt9B1P4Vxn9qeOPFPGmWCaFYN/y8XXMrD2Ujj8vxq9pnw20m3uPtmryz6zfHlpbxiVz/u5/mTW3sow/iP5LX/gGHtpz/hx+b0X+ZTk8falrkjW/hDQ5rsZwby5GyFf5Z/Eg+1EfgDUdbkW48X65NeYORZ2x2Qr/ACz+AB9672ONIo1jjRURRhVUYAHsKdS9vy/w1b8/v/yH9X5tarv+C+7/ADKOmaPp2jW/kadZQ20fcRrgt9T1P41eoorFtt3ZukkrIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArz66/4pX4pwXQ+XT9eTypPRZx0P4nH/fbV6DXMeP9EbXPClykIP2u2/0m3K9dy9h9RkfXFbUJJS5Xs9DDERbhzR3Wp09FYvhPW18Q+GbLUcjzXTbMB2kHDfrz9CK2qzlFxbi+hrGSlFSXUKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKztW17StDg83U76G3XGQGb5m+ijk/gK5BvHOteIGMPhHQ5JI84+3Xg2Rj6DPP559q1hRnNXW3foZTrwg7N69up3k08VtC008qRRIMs7sFUD3JrjdQ+JWni5NloNpca1e9ltlOwfVsdPcAj3qvD8PLnVpluvF2sz6lIDkW0TFIVPtjH6Ba7PT9LsdJthb6faQ20Q/hiQDPufU+5q7Uob+8/uX+ZnetU291fe/8jif7B8Z+KPm1zVF0ixbrZ2P3yPRmz/U/Suj0LwZoXh4K1jYp54/5eJfnkP4np+GK3qKmVaclZaLsi4UIRfM9X3YUUUVibBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB594Y/wCKX8f6p4bb5bO//wBNsh2B/iUfgCP+AV6DXD/EmxmisbLxHZL/AKZpE4l4/ijJG4H2zj8M11+n30OpadbX1u26G4jWRD7EZ/Ouit78VU76P1RzUfclKl21Xo/8mWaKKK5zpCiiigAooooAKKKKACiiq9xfWloVFzdQQlvuiSQLn6ZoAsUUV5T4n0T4i67eXMIljTT/ADGWKKGdY1dM8FsHJyMcE1rSpqbs5JepjWqumrqLfodfrfj7QNDcwvdfarvOBb2o8x8+h7A+xOaxftfjvxVxaW0fh7T2/wCWs3zTsPYdR+Q+tZWiaF4y8PKP7O8M+H0lxgzOzNIf+BGTI+gwK2vt/wATf+gRof8A323/AMcrp5IQ+Cz821+Ry+0nP47pdkn+f/DFzSfhxotjP9rv/N1a+Jy09628E/7vT88116qqKFVQqgYAAwAK4T7f8Tf+gRof/fbf/HKPt/xN/wCgRof/AH23/wAcrOcJzd5TT+ZrCpCmrRg18jvKK4P7f8Tf+gRof/fbf/HKPt/xN/6BGh/99t/8cqPYP+ZfeX9YX8r+47yiuD+3/E3/AKBGh/8Afbf/AByj7f8AE3/oEaH/AN9t/wDHKPYP+ZfeH1hfyv7jvKK4P7f8Tf8AoEaH/wB9t/8AHKPt/wATf+gRof8A323/AMco9g/5l94fWF/K/uO8org/t/xN/wCgRof/AH23/wAco+3/ABN/6BGh/wDfbf8Axyj2D/mX3h9YX8r+47yiuD+3/E3/AKBGh/8Afbf/AByj7f8AE3/oEaH/AN9t/wDHKPYP+ZfeH1hfyv7jvKK4P7f8Tf8AoEaH/wB9t/8AHKPt/wATf+gRof8A323/AMco9g/5l94fWF/K/uO8org/t/xN/wCgRof/AH23/wAco+3/ABN/6BGh/wDfbf8Axyj2D/mX3h9YX8r+47yiuD+3/E3/AKBGh/8Afbf/AByj7f8AE3/oEaH/AN9t/wDHKPYP+ZfeH1hfyv7jvKK4P7f8Tf8AoEaH/wB9t/8AHKPt/wATf+gRof8A323/AMco9g/5l94fWF/K/uO8org/t/xN/wCgRof/AH23/wAco+3/ABN/6BGh/wDfbf8Axyj2D/mX3h9YX8r+47yiuD+3/E3/AKBGh/8Afbf/AByj7f8AE3/oEaH/AN9t/wDHKPYP+ZfeH1hfyv7jvKK4P7f8Tf8AoEaH/wB9t/8AHKPt/wATf+gRof8A323/AMco9g/5l94fWF/K/uO8org/t/xN/wCgRof/AH23/wAco+3/ABN/6BGh/wDfbf8Axyj2D/mX3h9YX8r+47yiuD+3/E3/AKBGh/8Afbf/AByj7f8AE3/oEaH/AN9t/wDHKPYP+ZfeH1hfyv7jvKK4P7f8Tf8AoEaH/wB9t/8AHKPt/wATf+gRof8A323/AMco9g/5l94fWF/K/uO8org/t/xN/wCgRof/AH23/wAco+3/ABN/6BGh/wDfbf8Axyj2D/mX3h9YX8r+47yiuD+3/E3/AKBGh/8Afbf/AByj7f8AE3/oEaH/AN9t/wDHKPYP+ZfeH1hfyv7jvKK4P7f8Tf8AoEaH/wB9t/8AHKPt/wATf+gRof8A323/AMco9g/5l94fWF/K/uO8org/t/xN/wCgRof/AH23/wAco+3/ABN/6BGh/wDfbf8Axyj2D/mX3h9YX8r+47e5tory0mtp0DwzIY3U91IwRXEfDm5l06TVPCd25M+mTFoSf44WOQR+Jz/wMUfb/ib/ANAjQ/8Avtv/AI5WfaaT41l8c2XiC902wh2qILgW0uA8Z6kgsckZz/wEVrCnaEoykvv6mU6l5xlGL08ujPTKKjnuIbaIy3E0cUY4LSMFH5mqw1nS2IA1KzJPQCdf8a4ztLtFIrK6hlIIPQg9aWgAooooAKKKKAGySJDE8sjqkaKWZmOAAOpNfL/jOW/8etr/AIyUsukabJHa2qkfeUtj/wBm3H/fFem/G7xa2l6DH4esWJvtTH7wJyyw9/8Avo8fQNXFy+M9Ct/hTN4RtdD1lJGt/mnkt1CtNkMXJ3ZxuH4DHpQB7t4bvv7U8MaVflsm4tIpWPuUBP61p1wvwfvvt3wy0rJy8HmQN7bXOP8Ax0rXdUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXk2p6HefED4narpuq3OoW2haXCghigYxrK7AEnJGDyW59AKAPWaK8t+Hk91oPjbxN4Qm1Ce807T0S4tpLh9zRKQCVz9GHtlT0yaw/D/huT4oWeoeJtc1i9t3uLl4tMhin2JCF+7wRzzxxjoT1NAHt1Fc54Gs9f0/wrbWfiSVJr+EsnmrJvLJn5cnuccfhXR0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeR/Hq7kfQ9G0WDma/vdwA77RjH5yL+VaH/CivB3lBSL/AHYwXFx39elc38Q7Kbxh8Z9G8O215JaG2tt5uIxloXw0m4cjnATHPWta++EOv3VnJEfiHq8xIOI7gyMjH0P7zpQBn/CLzdJ+IPiXw5ZX0t3otqrGNmbIDhwB7ZwWBxjO2vaq8j+BE8MelazpJsYYb2wuVWe4jyTNncBk+xVgMcYPTrn1ygAooooAKDwOmfaiigDy3wl4Q16++JGpeMPFVj9ldRtsIDMkmwHIH3CQNq8e5YmvTLu3S8s57aT7k0bRt9CMGpqKAPPPg/4e13wv4bvdN1yy+zN9rMsP71H3KVUH7pOOV7+teh0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXF+OfHJ8O+TpOk25v/EV6MWtogztz/G/t1+uD0AJrtK8tv8AwZ44g+IGq+JtEvNCU3arFH9s8xnSMBRgAJgfd7GgDT8LeCrjw14a1m91G4N3r+pwvJdzZyA21sIvsCfxPsBXC/DT4b6N4u8DC91iW6ll8ySG22TFRbKDn5R0yWJPORzXp3hi38cxahKfFF3o01mYiI1sQ4cSZGM7lAxjd+lcnb+DfHfhOTUNN8I3+mHRryVpYTebvMtSw5xgew9emcA5oA1Pg1ql9f8Ag2e1v53nfTr2S0SViSWRQpAyeuNxH0xXodc54I8KReDfDMOlJN58u5pZ5sY8yRupx6YAH4V0dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHiN1ofxF074n6x4o0nw7bXfns8MDXNxHt8obVVgBIpB2oOvqeK07i7+NGrxNajS9K0kSDabiOVSyg9x+8fH4DPpXrdFAHI/D3wPF4H0SS3a4+031y/mXM+CAx7AD0HPuck+w66iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>Express the ratio of $\cos B$ as a decimal to the nearest hundredth.
|
0.38
|
Geometry
|
Geometry3K
|
test
|
17
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFJAUUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigApCQqlmIAHJJpaa6LIjI6hkYEMpGQR6UAOory+XxZffD/xI+jasJbvRpPntJzzJFGe2f4gvTB54/CvRNN1Ww1i1F1p93Fcwn+KNs49iOoPsa1qUZQSfR9TGnWjNuPVdC5RRRWRsFFFFABRUUF1b3QY288UoU4JjcNg/hUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcL8VtEGqeEXu0TNxYN5ykDnZ0cfTGD/wGvH/CcOpPrlqun6mNMlnYpHcSMyo7DHyZAIJ5HB45HqK+lp4I7m3lt5lDRSoUdT3BGCK5GH4fWDeCY/D9yQ0kbPIlyo+ZJCSQw/DAI7gV34fFKFNwkeficI6lVVI9jpNJi1OGxVNVuoLm5HWSGIxg/UZPP0x9KvVxHhLxHeW2oN4V8RnbqsA/cTk8XUfYg9zj8/qDXb1yVYOMtTspTUo6BWT4o1L+xvCuq6iGw1taySIf9oKdv64pus+KNG8P3Vha6neeRPfyeXbIIncyNkDHyg45ZeuOtch8b9T+wfDieANhr24jgHrgHef/AEDH41maEXwK037F8PRdMvzX11JLn/ZGEH6qfzr0ysPwZpv9keC9GsCu14rSPeP9sjLfqTW5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz3i3wtB4m09Qr/AGfULc77S6Xho369Rzg//Xql4O8VT6i8uia0n2fXbP5ZUPHnKP41/rj6jg8ddXH+O/Dhv7D+2tPc2+s6ahmgmTqyryUPr3x/gTW9OSkvZz+T7f8AAOepFxftYb9V3/4JjfFDwvrmp6joPiDQbeO7utHmMptXbG/5lYEdM8ryM59K5+/0Xxp8Tde0pde0RNG0Syk8yVGkDNJyMjHUkgYHAAyetbGgfGK0nRYtcs3t3GA1xAC8efUr1H4Zr0XTtW0/V7fz9PvIbmPuY3Bx9R1B+tTUoVKfxIqlXp1fgZcooorI2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIDKVYAgjBB70tFAHh2neF7mK91uHSgBq+jXRMcLjK3Vu2cIQeDwM++7HpjodH8OaB4ts/7V0Ga40HVojtnjtnI8p/Qpxx6Yx/OtPUP+JJ8XdPu/uwaxatbufWRcY/kg/Gl8U6De6Nqh8W+HE/0pB/p1ov3blO5x6//r69fRlVcmtbNrR/mn8zzI0YxT0uk9V+TXyI/wC0vHPhjjUbCPXrFf8AlvafLMB7rjn8vxrb0Tx54f1xhFDeC3us4NvdDy3z6DPBP0JrS0DXrLxHpMWoWL5RuHQ/ejbup96r634S0PxAp/tCwjeUjiZBtkH/AAIcn8eK5nKDdqkbPy/y/wCGOqMZpXpyuvP/AD/4c26K8/8A+EX8V+Gvm8N619utF6WOoc8eit/htqa1+JEVpcLZ+J9LutHuTwHZS8Te4Yc/zHvS9g3rB3/P7iliEtKi5fy+87qioLO+tNQt1uLO5iuIW6PE4YfmKnrBq25unfVBRRRQAUUUUAFFcH8Vtb1DTNAsdP0q4Nve6tepZrOpw0at1I9D0H4muR8TeHX+FS6X4m0fV9RmVbpIb+G6l3rOjA5OOPQ+vUEdOQD2qis3UNf0vSruxtb69jgnvn8u2V8/vWyBgHp/EPzpZ9e0u21q30eW8jXUbhS8VvyWZRnnjoOD19KANGiiigAooooAKK8e1TTrbxP8UvEcOqeIL7TNO06G2jQ294IFMjpnHzZH96vQPCfhi08NWky2WqahqEVywffeXAmxgY+UgDigDoaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOI+KFrIPDlvq1uP8ASNLuo7hT7Zwf1Kn8K7Gzuo76ygu4TmKeNZEPswyP51Dq1gmqaReWEmNtxC0WT2yMZrmvhlfvd+DorWbIuLCV7WQHqNpyP0IH4Vv8VH0f5nP8Nb/EvxRma7pl34J1iTxPoURk06U/8TKxXpj++o7evt9Ccdzpep2msadDf2Molt5lyrDt6g+hHpVplDKVYAqRgg9DXm95b3Hw21ltSsY3l8NXkg+1W68m1c/xL7f/AKvSmv3y5X8S28/L17Cf7h8y+F7+Xn6dz0mobq0tr63aC7t4p4W+9HKgZT+BotbqC9tYrq2lWWCVQ6OpyGBqasNUzo0aOHvPhtawXDXnhvUbrRbs84ictG3sVJzj8ce1V/8AhI/GHhn5fEGjjU7Net7p/wB4D1Zf/rKK9AorZV29Jq/5/eYvDpa03y+m33GFofjHQvEIVbC/jMx/5YSfJIPwPX8M1u1zuueB9A18tJdWSxXJ5+0W/wC7kz6kjg/iDWD/AGN428Mc6Rqcet2S9LW94kA9A2efzH0o5Kc/gdvJ/wCYuepD41dd1/l/w56BRXFWHxK043AstdtbnRb3ulyh2H6Njp7kAe9djBPDcwrNbypLE4yrxsGUj2IrOdOUPiRpCrCfws5T4i+ErnxboEUWnzrBqVlOt1au/A3rngntnPX1ArzH4nP461HwhD/wklpYWFtFcoqRWz73upiCAeCcADccev6erePfCsvi/wAMPp1td/ZbtJFnt5SSAHXIwcc4IJHHTrz0rlk8IeM/FGr6VJ4zutMTTtMlEywWW4m4kHQtnj/6xIwM1BoS/Gi3tU+H8d1NcrBfWVxFJZtn5mk6FR+GT/wEVL8K9N/tCwm8a6jcJeaxq5bdIo4gjVtojX0+7z9AO2ToXHg6/wBc8fLrXiCW0l0qwXGm2MbM2GPWSQFQM98DPb05f8PvCepeDYNV064uLebTHu2msBG7F0Q5yHBAA4C9Cec0AafizxT/AMIrZQXP9k6hqPmybNlnFvKcZy3pXI/8LiP/AEJniH/wHr06igDzmw+K5vtQtrT/AIRDxBH50ix72tuFycZPsK9GoooA8+Hwz8J6z4o1jVr+YarPPJiS387C27dMHYQc8Y56YrP+FqPovijxb4Wimkk07T7hJLUO2fLD7srn8vxBPepbrwj4w8PeK9W1fwfdabJbas4luLa/3fu5OSWGOvJY9e+MHFbngLwdc+GINQvNUvEvNZ1Ofz7uaMfLnnCrkDjknoOvTigDsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuC8P/APEl+KGvaUflh1CNb6EHu38WPxLf9813tcF47/4lHiXw14jHypFcfZLhv9h/8Bvrehq3Duv+Cc+I0Sn2f4bM72o54Irq3kgnjWSGRSrowyGB6g1JRWB0Hm0Mlx8M9ZFtM0k3ha9k/dSHLG0c9j7fz69Qc+jo6SxrJGyujAMrKcgg9xUGoafa6pYTWV7CstvMu10bv/gfeuC0i/uvAGsJ4e1iZpNFuGP9n3r/APLP/YY9v6deh46X++V18S/H/gnMv3Ds/hf4f8A9GooormOkKKKKAKt/ptjqlube/tIbmI/wyoGx9PQ1xs/w6k0yZrrwnrNzpUpOTA7GSFj7g/13V3lFaQqzhonoZzownq1r+JwA8Y+IvDh2eKtCaS3Xg39h8yY9SO35j6V1OjeJtG1+Pdpt/FM2MmPO11+qnmtYjIwa5XWfh7oGryeetu1jdg5W4sz5bA+uBwfyz71fNSn8Ss/L/Iz5asPhfMvPf7zqqK8/+z+PPC//AB7zxeIrBf4JfknA+vf82+laGlfEfRb2f7JqHm6TfA4aC9XYAf8Ae6fnik6ErXjqvL+rjWIje0/dfn/nsdhRTUdZEDowZWGQwOQRTqxNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArm/Hul/2t4K1KBVzIkXnR+u5Pm4+oBH410lIyhlKsAQRgg96qEnGSkuhM4qcXF9TG8Jap/bPhTTb4tueSACQ/7a/K36g1tVwfw4Y6bPr3huQnOn3haLPeN+n8s/8CrvKutFRqNLYihJyppvcKz9b0Wy1/SptPv498Mg4I+8jdmU9iK0KKzTad0aNJqzOA8M61e+G9WXwl4ik3Hpp1633Zk7KT69h+Xpnv6xvE3huz8T6S1ldDZIPmhmUfNE/Yj+o71heEfEl5Dfv4X8RnZq1uP3MxPF1H2IPc4/P6g1vJKqueO/Vfr/AJnPBulLklt0f6P9DtqKKK5zpCiiigAooooAKz9V0PTNbg8nUrGG5XGAXX5l+jdR+FaFFNNp3Qmk1ZnAv4C1TQ3M3hHXZrVc5+xXR8yE/wCH5E+9CePdT0N1h8XaFNarnH221HmQn/D8yfau+prosiMjqGVhgqwyCK29tzfxFf8AP7/8zD2HL/DdvxX3f5FLS9b0zW4PO02+huU6kI3zL9R1H41frj9U+G+i3s/2vT/O0m+HKz2TbAD/ALvT8sVn/aPHnhfi4gi8RWC/xxfJOB9O/wCTfWj2cJfBL5PT/gB7WcP4kfmtfw3PQKK5XRviFoGryeQ1ybG7Bw1veDy2B9Mng/nn2rqutZThKDtJWNYTjNXi7hRRRUlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwV9/wAST4vWF392DWbU27nsZF6fyQfjXe1xHxQtpB4ettXtx/pGl3Udwp9s4P67T+FdjaXMd7ZQXUJzFPGsiH1BGR/Ot6nvQjL5fd/wDnpe7UlD5/f/AMEmooorA6ArnfF3hWHxLYIY3+z6lbHfaXS8FGHOCRzg/p1roqKqMnB8yJnBTjyy2OS8HeKptTabRtYj+z67ZfLNGePNA/jX+uPXI4NdbXKeMfCsmsLDqmlSfZtcsvmt5l43gfwN7fX19Can8IeK4/EdnJFcR/ZtVtTsu7VuCrDjIB7fy6fXWcVJe0h812/4BjTm4y9nP5Pv/wAE6SiiisDoCiiigAooooAKKKKACiiigDJ1nwzo2vx7dSsIpmxgSY2uv0Yc1y3/AAh3iPw4d/hXXWkt15Fhf/MmPQHt+n1rv6K1hWnFW3XZmU6MJO+z7rc4OD4iyabMtr4s0e50qYnAnRTJCx9iP6bq7Kw1Kx1S3FxYXcNzEf4onDAfX0NTTwQ3ULQ3EUcsTjDJIoZSPcGuNv8A4a6cbg3uhXdzot72e2c7D9Vz09gQPaqvSnv7r+9f5/mRatDb3l9z/wAvyO2orz/+2fG3hjjV9MTWrJet1ZcSAepXH9B9a3tD8caBr5WO1vVjuDx9nuP3cmfTB4P4E1MqMkrrVeRUa8G+V6PszoqKKKyNgoory/R/EWr618ctV02K/lGjadCd1uMbSwVVOeOu9ifwoA9QooooAKKKKACiiigAooooAKKKKACiiigAooooAp6tYJquj3lhJjbcQtFk9sjAP4VzXwyv3u/BsNtNkXFhI9rID1G05H6ED8K7GuC8Pf8AEl+J2v6Sflh1BFvoQe5/ix+LN/3zW9P3qco9tTnqe7VjLvp/kd7RRRWB0BRRRQAVxfi/wzdm8j8S+Hv3WtWoy6AcXSDqpHc4/Pp6Y7SirhNwd0RUpqcbMxPC/ia08UaULqD93Oh2XFux+aJ/Q+3of/r1t1wXijQr3Q9VPi3w5HmdRm/s1+7cJ3bHr6/n1znq9B12y8RaTFqFjJujfhlP3o27q3uKupBW54bfl5GdKo78k91+PmaVFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABWDrng3QvEIZr6wjMx/5bxfJIPxHX8c1vUVUZSi7xdiZQjJWkrnn/wDwjvjDwz82gawNTs16WWofeA9Fb/66irFj8SbWO8XT/EOnXWj3xwAJULRt2yCBn9Me9afivxfb+HY47aGM3mrXHy21nHyzE8AnHQfz7e1Dwz4QuFv/APhIfEsgu9ak5RDylsOyqOmR69u3qeq6lDmqr06N/wBdzks4z5KL9eqX9djsZZkhgeaRtsaKXYnsAMmvIfgZC+oS+JvEsy/vL682gnseXb/0Nfyrt/iVqf8AZPw61y5BwzWxhU98yEJ/7NXlPw8+LHhrwd4Pt9KurLVJLoSPJM8MUZQszcYJcH7u0dO1cZ2n0BRXE+D/AIoaL411aXTtMs9RjljhMzPcRoqBQQOocnOWHau2oAKKKKACiiuF8b+KtYs9d0rwv4ajgOsaiDIZrgEpBEM/MR+Dfl0JIoA7qivP/C+teL7LxjL4b8UJFeo9v59vqNrAVTP91jgDsffjvmvQKACiiigAoqnJq1hFq0WlSXcS380Zljty3zsg6kD04P5GrlABRVe/W7bTrpbBokvTE4t2lzsEmDtLY7ZxmvOtQb4paXp9xf3us+Fora3jMkjskvAH/AKAPTa4Lx1/xKPE/hrxGPlSK4NpcN/sP/gC9avw/wBT1vWfCFrqWvJGl1ckyIsabf3R+6SPfr9CKk8e6X/a3grUoFXMkcfnx+uU+bj6gEfjWtCSVRX2en3mOIi3Tdt1r92p0lFY3hPVP7Z8KabfltzyQASH/bX5W/UGtms5RcW0+hpGSlFSXUKKKKRQUUUUAFed65pt34G1iTxLokJk0yY/8TKxToB/z0Udv6fQnHolIyq6lWUMrDBBGQRWlOpyPye5nUpqa7NbMq6bqVpq+nw31lMJbeZdysP5H0I9Kt15tdQXHw01lr+0R5fDF5IPtEC8m1c/xD2//V6GvRLa5hvLaK5tpVlhlUOjqchge9OpT5fejqmKlUcvdlpJf1f0JaKKKyNQooooAKKKKACiiigAooooAK5HxT4xbTrlNF0WH7drs/CRLysOf4n/AJ4/E4HWt4j8W3d1qJ8OeFVFxqjcT3PWO1Hck9Mj9Pc8VreFvCVp4ZtnYMbnUJ/mubyTl5D1P0Gf/r1vGEaa5qnyX+fkc8pyqPkp/N/5ef5Fbwp4OXRpJNU1Kb7drlxzNcvzsz/CnoO2f5DiuqoorKc3N3kawhGC5YhRRRUlhRRRQAUUUUAFeM+JP7cuvjuLXQ54ra8fS1iW6mTeLdMlmYKeCeoAP96vZq8z8aWepeHvH+meNrDTJ9RtVtzZ3tvbKWlC8kOB+I/757ZzQAaFrfifw78Qrfwn4l1KLVYNQt2ls7xYRGylQSVIH+63r257VS+JOo3Pgfxvo3jCESzWc0T2l1bK+FdgpKn0yc/+OVNoo1Lxr8S7XxXNpF7pmkaVavHbi8i2yTyMGBO30wx6Z+6O54y9b8M618TW1vVdQtbywtbKF4tFsp42jeSQYJkZTz82APx/2eQDsvh/oGp2sNz4g8QSyPrWqnzJIix220f8MYHbjGfoB253dW8VaDoVwlvqurWlnM6b1jmkAYrkjOPTIP5VT8BX2oX/AIL019VtLm1v44/JmjuYmjclPl3YYA8gA/jV3VvCug67cJcarpNpeTImxZJowzBc5xn0yT+dAHl2qeLvD0vxx0TVo9YtG0+HTXikuBJ8iufN4J9eR+demab4x8OaxerZ6drVlc3LAlYo5QWIAycDvxXmeqeEfD0Xxx0TSY9HtF0+bTHlktxGNjMPN5I9eB+Vem6b4O8OaPereadotlbXKghZY4gGUEYOD24oA26838fSt4k8X6D4HjY/Zpm+3ajg9YUJKofqQfx216RXnPhLTtQuPix4u1y/sbmCJQlpaSTxMiyIDglCRgj92DkevvQB6KqqihVAVQMAAYAFDKGUqwBUjBB70tFAHB/Ddjp0uu+HJCc6deFos9426fyz/wACrvK4K9/4knxesbr7sGs2pgc9jInT+SD8a72t6+slPur/AOf4mGH0i4dnb/L8AooorA3CiiigAooooAjuLeG7t5Le4jWWGRSrowyGB6g151by3Hwz1lbO5aSXwveSfuJTybRz/Cfb+fXrnPpNVdR0611bT5rG9hWW3mXa6H+Y9D71rTqcvuy1TMqtPm96Oklt/XYso6yIrowZGGVYHII9aWvOtG1G68B6xH4c1qZpNInb/iXXz9E/2GPb+n0PHotKpT5H3T2HSqc67NboKKKqalqVppNjJeXswihTuepPYAdyfSszWMXJ8sVdluis7RtZtdcsvtNtvUqxSSKQbXiYdVYdjWjQOcJQk4yVmgrG17Tr64EF9pdw0d/aZMcbMfLmU9UYdOcde1bNMlljhieWV1SNAWZ2OAoHUk00OnUdOXMjP0XW4NZs2lRWhnibZcW8nDwuOoP9D3rktY8Sah4q1GTw/wCE32xL8t5qg+5EO4Q9z7jr29axNYe98d6veS+F7Z4rOKFobm9Ehi+2dCEHY9OM9jzgYFd54P8A7ITQIodHg+zxxEpNC4xIkg+8H77veujlVLWS17dvX/IitBV4+0oP3OvdPt6dn123J/DnhvT/AAzpotLGPk8yzN9+VvUn+natiiiueUnJ3e4oxUVaOwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFOTSrCXVYtUktIWv4YzFHcFfnVD1APpyfzNXKKKACiiigAooooA4j4oW0i+H7XWLcf6RpV3HcKfbOD+u0/hXY2lzHe2cF1CcxTRrIh9QRkfzqDV9PTVdHvNPfG24haPJ7EjAP4Hmub+GWoPeeDYLebInsZHtZAeo2nIH5ED8K3+Kj6P8AM517tb/EvxR2NFFFYHQFFFFABRRRQAUUUUAZ2uaJZeIdKl0++j3ROMhh95G7Mp7EVyXhjW73w/qq+EvEUmZBxp9633Z07KT69h+XpnvqxfE/hqz8T6U1pc/JKvzQTqPmif1Ht6jvW1OatyT2f4eZhVpu/PDdfj5FrWNZtNFtBPclmdzsihjGXlfsqjuay9N0a71C+j1nXwpuE5tbIHMdqPX/AGn9+3aub8GXLReKLjT/ABO0kniKBQltLM2UeEDrH7nkk9Tz716RUzg6bsdtPEwVP9zu931XdLt5vr6b85rWmXVjfHX9Gj3XSqBd2o4F1GP/AGcdj+FbGmana6vp8V7Zyb4pB34KnuCOxFW65PV1i8J6g+vR3MVvp87f6dbucB2xw8YH8fbHf261KXNp1L9pGpTtUdnFaPy7P9H8trW6W9vbbTrOW7vJkht4l3PI5wAK88J1L4m3eB51h4Vifr92S8IP8v0Huej7PTdS+Il7HqetJJaeH423WthnDT+jv7f5HqfRIoo4IUihjWONAFVFGAoHQAVvpR21l+X/AATzLOvvpH8/+B+ZFZWVtp1nFaWcKQ28S7UjQYAFU20OFdfTV7eV4JWUpcImNtwMfLuHqPXr2rUornu9zshNwuo6dPkFFFFIkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuC8O/8SX4m6/pB+WG/Rb6Ee/8WPxZv++a72uC8c/8SjxT4a8Rj5UjuDaXDf7D9PyBc1vQ1bh3X/BOfEaJT7P8Nmd7RRRWB0BRRRQAUUUUAFFFFABRRRQBzni7wrF4kskeGT7Nqdsd9pdLwUYc4JHY/p1qt4O8VS6r52k6vH9m12y+WeJuPMA/jX+uPXPQ11lec/E4WFm9hqVrcPB4kjkUWawLueUZxhh6cn+XOa6KT9ovZS+Xl/wDmrL2b9rH5+f/AATr/EXiTT/DOmm8vpOTxFEv35W9AP69q5XSPDmo+LNRj8QeLI9sK/NZaWfuxjsXHc+x69+OKo+BbaHxPrV3rWvzm41q0k2LZSJtW1APBCn3z9D7816fTm/Ye5H4ur/y/wAxQXt/fl8PRf5/5HL/ABB8RS+FPBN9qlrsFzHsSAOuRuZgOnsCT+FZPwo8c3PjXQrp9RMX9oWk22QRrtBRhlTj8GH4VhfHOd7y08PeHYW/e6jfA4HthB+sn6VTt4k8AfHZYIx5Wla/CFQdg56fjvX8nrmOo6bxp4w1XS/Hnhnw7pJhBv3DXXmR7j5ZcDI9OFevQa8gsh/b/wC0feT/AHodGs9qnsDtCkf99St+Vev0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXj7S/7W8FalCq5kjj8+P1ynzcfUAj8a6WkZQ6lWAKkYIPcVUJOMlJdCZxU4uL6mR4U1T+2fCum35bc8kAEh/2x8rfqDWxXB/DZjpz654ckJ3adeMY89426fyz/AMCrvKutFRqNLYihJyppvcKKKKyNQooooAKKKKACiiuM8TeL7hL8eH/DcQu9al4ZhylsO7MemR6du/obhBzdkRUqRgrss+K/GKaK8em6dD9u1u44htU525/if0HfH8hzUXhbwc+n3T63rk327XZ+WlblYR/dT+WfwHHW14U8IW/h1JLqeU3mrXHzXN5JyST1C56D+f5AdLWkpqK5Kfzff/gGUKcpvnqfJdv+CcV4u8NXa3qeJ/Dv7vWLYfvIgOLpB1Ujucfn9QK2/DHiW08T6Ut3bfJKvyzwMfmif0Pt6GtquB8T6Je+H9Vbxb4cjzIOdQsl+7OndgPXufz9cuDVRckt+j/QU06UvaR26r9V+pzmun+3/wBojRrD70Ok24lcf3WCtID+ZjrW+NmhyX/hGLWbTIvdImE6OvUISA2Podrf8BrrfD8uga2g8RaZZ2gurhdktwIVEwPGUdgM8YHfsPatqaCK5gkgniSWGRSjxyKGVlIwQQeCCO1YNNOzOhNSV0eR/A4TarP4m8T3Sjzr+8C8dFPLsB7fOv5V7BVWw02w0q3Nvp1lbWcBYsY7eJY1yepwoAzwKtUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHBXn/Ek+L9lc/dg1m0MLnsZE6fyQfjXe1w/xQtpE0C11m3H+kaVdx3Cn2yAf12/lXZWtzHeWcF1CcxTRrIh9QRkfzrep70Iy+X3f8A56Xu1JQ+f3/wDBJqKKKwOgKKKKAMPT9clOrzaRqkKW94Cz25UnZcRZ4Kk/xAdR+NblZmuaRa6vYFLhzC8R8yG5U4aBx0YGvO18Sa340nj8M2N3bQAb1vNRif8A1yKcHyxweRzx1z2FaQp8/kjatyyh7SmtVvH9V5d+3obeu+Kb/W9Sfw54SIe4HF3qA/1duvfB9ff8uenQeGfC1h4XsDDbAyXEnzT3L/flb1PoPQf/AK6s6FoOn+HdNSx0+EJGOWY8tI395j3NadVOorckNvz9Tip03fnnq/y9AooorE3CiiigDzrWtOuvAesSeI9FhaTSJ2/4mNinRP8AbUdv6fQ8d3p2o2urafDfWUyy28y7kYfyPofarLosiMjqGRhhlIyCPSvN7iK4+GmsteWyyS+F7yT9/COTaOf4h7fz6dcV0r98rP4l+P8AwTlf7h3Xwv8ADz9D0miuKsvGsF78Rn0aGdJLKSzQwupyGlxvyD7o3/jtdrWM6coW5upvCpGd3HpoFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBS1jT01bRr3T3xi4haPJ7Ejg/gea5z4Z6g974Mgt5siexke1kB6jacgfkQPwrsK4Lw5/xJfiZ4g0g/LDfIt9CD0z/Fj8WP8A3zW8Pepyj21Oep7tWMu+n+R3tFFFYHQFRXNzDaW0lxcypFDGpZ3c4Cj1JqHUtSs9IsJb2+nWG3iGWdv5D1PtXAw2upfEu7S7vllsfDET7obbOHuiO7e3+R61rTp83vS0SMqlXlfLHWT6f5+QTXWpfEu7e1sWlsfDET4muMYe7I7L7f5PPFdVdeEtObR7exsUFi9od9pPEPmif1z3z3z1rat7eG0to7e3iSKGNQqIgwFHoBUtE6t9I6JFUIyoy9pf3u/6en9Mz9Gm1GbTwNVtlhu42MblGBWTH8a+gPoa0KKKyNZy5pN2sFFFFBIUUUUAFcT420DxTqltMuj6urW0ikPYyxIu4dwHxz9Dj6121FXTm4S5kRUpqpHlZ8uxLqXhXxBbTXNrLb3VrKsgSRSu7B/UHpX0zp9/b6np9vfWr74J0DofY/1qvrWhad4gsGs9StlljPKnoyH1U9jWH4R0TUPCks+jySG60tyZbSfvGf4kcdvUEcdehOK6q9aNeCe0l+JyYehLDzcVrF/gdbRRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBeOP+JR4r8NeIh8qJObO4b/AGH6fkC5rva5rx/pf9reCdShVcyRR+fH65T5uPqAR+NbUJJVFfZ6feY4iLdN23Wv3anS1ma7r2n+HdNe+1CYJGOFUctI391R3Nc9H49sLDwPpmq3Tma7uYQsduhy8so+Vseg3A8/14qvoXha/wBa1JPEfi0B7nra6ef9Xbr2yPX2/Pno1R5byqaJfj6Eyrc1o09W/wAPUr6boeo+OL+LW/E0bQaYh3WWmZ4I7M/r/X2HB9DVVRAqqFVRgADAApaKipUc/JLoaU6Sgu7e7CiiiszQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGVXUqwBVhgg9xWR4q1g6B4U1TVV2+ZbWzvHu6F8YUH/gWKxPBnim4uvh1D4k8TXNvAHEkjyBdiqgYqOPU4/HIoAi8I/Dmz8PXb3124urpXYW2eVhTJxjP8WOc9s8ep7ivL/DPjHxT478TST6PDFp/he3fa088O6SbHULzjcfyUep6+oVdSpKo+aTIp04048sUFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZfHXU/sXw9NorYa+uo4iP9lcuf1UfnXk8mtz6+/hXT9bhurDwdGyWsWz5RKUAV5Gbucnn0BOOcmvQ/ilGniL4leD/DDjfCWM9wgP3kZuf/HY2/Oux+IHg2DxJ4Gm0qzt445rVBLYoihQroOFA7AjK/j7UAdTY2NrptjDZWUEcFtCoSOOMYCirFcD8I/FZ8SeD47e5cnUdNItpw33iAPkY/UDH1U131ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBTbSdNfU01N9PtW1BF2pdGFTKowRgPjIGCe/c1coooApWej6Xp9zPc2Wm2dtPOczSwwKjSHOfmIGTySeau0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==
|
<image>Find the measure of $JK$.
|
31
|
Geometry
|
Geometry3K
|
test
|
18
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADVAPMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3iiiisSwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5rxDpXiO6ujc6X4sGk2iRfND/AGdHPkjJLbmOfw9qTdgSudLRXl3hKHx34o8PQaufG5tVmZwkZ0mB8qGIBzx1xXpsKvHBGkknmyKoDOQBuOOTgdM1TjYVySiiikMO9FHeigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuR+IGs6jpemafbaPc/Z9Q1C+itYpfLV9gJ5O1gQeBVSbw/wCOreGSceP0kMaltkmjwqrYHQkHIFHS7C2tjuaK53wLr114l8IWWqXsSR3Eu4OEBCttYjIz64roqbVnZiTugooopDCiiigArm/H2o/2X4E1i5Bw/wBnaND/ALT/ACj+ddJWT4h8P2niXTVsL2SZIBKkrCJgCxU5AOQeM0mr6MadncTwtp39k+FdKsCMNDaorf72Mn9c1r1HLNDbRGSaRIoxwWdgoH4mq/8Aa+mf9BG0/wC/6/41bvJtpGatFJNlyiqf9r6b/wBBG0/7/L/jR/a+m/8AQRtP+/y/40ckuw+Zdy3S1T/tfTP+gjaf9/l/xo/tfTf+gjaf9/1/xo5Jdg5l3LlFUv7X03/oI2n/AH/X/Gl/tfTf+gjaf9/l/wAaOSXYOZdy5RVP+19M/wCgjaf9/l/xo/tfTP8AoI2n/f5f8aOSXYOZdy5RVL+19M/6CNp/3+X/ABo/tfTf+gjaf9/l/wAaOSXYOaPcu0VS/tfTf+gjaf8Af9f8aX+19M/6CNp/3+X/ABo5Jdg5l3LlFU/7X0z/AKCNp/3+X/Gj+19N/wCgjaf9/l/xo5Jdg5o9y5RVP+19M/6CNp/3/X/Gk/tfTP8AoI2n/f8AX/Gjkl2DmXcu0VT/ALX03/oI2n/f9f8AGj+19M/6CNp/3/X/ABo5Jdg5l3LlFUv7X0z/AKCNp/3+X/GrEFzBdKWt545lBwTG4YA/hScWt0NNPY888a219r3xD0DR9M1EWE9nBLfG48kTeWchVOwkA9CPxrP8caf4w0TwtcXt74yOo2isiTWgsI7YyozBSu9DkZzXoUPh60h8T3PiASTPeT2625VmGxEBz8oxnk9eTR4j8PWvifSv7PvJZ4ofNSXMBUNlTkdQRj8KFokvv+//ACHfVv8Arb/MuabbQWemWtvbW628EcSqkS9EGOlWqQDAA9KWhu7uJKysFFFFIYUUUUAFFFFAFTVNPi1XS7mwnH7ueMoT6eh/A4Ncr4T0bRr/AEYRXujWP2+zdra5zCpJdeM9O4wc12tcrcf8SPxzDcfds9ZQQyeizoPlP4jj6100ZycJQi7dV8t/w/I5q0I88ZtX6P5/8H8zS/4RXw//ANAWw/78L/hR/wAIr4f/AOgLYf8Afhf8K2KKy9tU/mf3mvsaf8q+4x/+EU8P/wDQFsP+/C/4Uf8ACKeH/wDoC2H/AH4X/Ctiij21T+Z/eHsaf8q+4yP+EV8P/wDQFsP+/C/4Un/CK+H/APoC2H/fhf8ACtiij21T+Z/eHsaf8q+4x/8AhFPD/wD0BbD/AL8L/hR/wivh/wD6Ath/34X/AArYoo9tU/mf3h7Gn/KvuMf/AIRTw/8A9AWw/wC/C/4Uf8Ip4f8A+gLYf9+F/wAK2KKPbVP5n94exp/yr7jH/wCEV8P/APQFsP8Avwv+FH/CK+H/APoC2H/fhf8ACtiij21T+Z/eHsaf8q+4x/8AhFPD/wD0BbD/AL8L/hR/winh/wD6Ath/34X/AArYoo9tU/mf3h7Gn/KvuMf/AIRTw/8A9AWw/wC/C/4Uf8Ir4f8A+gLYf9+F/wAK2KKPbVP5n94exp/yr7jI/wCEV8P/APQFsP8Avwv+FJ/winh//oC2H/fhf8K2KKPbVP5n94exp/yr7jH/AOEV8P8A/QFsP+/C/wCFZ3gCGFPD0txboqRXV5NMiqMALu2jHthRW5q90LLRb66P/LG3kk49lJqn4StvsnhLSoipU/ZkYgjoWG4/zrXnk6L5nu1+v/AMuSKrLlXR/p/wTZooormOkKKKKACiiigAooooAKKKKACsjxNpT6voU9vCdtymJbdu6yLyv+H41r0VUJOElJdCZRUouL6mboGqrrWh2t+BhpE/eL/dccMPzBrSrldL/wCJJ4xvtKPFrqIN7begfpIv8mrqqutFRl7uz1X9fgRRk5R97daP+vPcKKKKyNQooooAKKKKACiiigAooooAKKKKACiiigAooooA53xzK8fg++SMZkn2QIPUuwX+RNb0MSwQRxL92NQo+gGK53xcDcTaFYqf9fqUbMPVEBY/yFdNW09KUV6v8l+hjHWrJ+i/N/qFFFFYmwUUUUAFFFFABRRRQAUUUUAFFFFAHOeMbWU6XFqloubzTJBcxj+8o++v0K5/Ktyzu4r+ygu4G3RTIJEPsRmpiAylSAQRgg1zHhQnS7zUfDkhOLSTzrXPeBzkD8DkVuvfpW6x/J/5P8zB+5Vv0l+a/wCB+R1FGKKKwNwooooAKKKKACiiigAooooAKKKKACiiigAooooA5nUh9p8f6JDk/wCi289wV7fNhBn9a6auZsCt18RNXmHLWdnDb/TeS+P5V01bVtOWPZL8df1MKOvNLu3+Gn6BRRRWJuFFFFABRRRQAUUUUAFFFFAGRrnijRvDZthq96Lb7SxSH9277iMZ+6DjqOta9eP/ABOtzrniK9twMpo+iyXYx2kZxj9Frs9d16ceF9Oh0186prCJFaH+7uUFpPoq5P5U0rxut/6S/IHpK39dH+praV4o0bW9RvLDTr0XFzZHbcKsbAIckfeIweQehNZvisNpd9p3iOMHbaP5N1jvA5wT/wABOD+NYPwn0q3s01+6tlxC98baJjyWSIbd2fckmvQLy0iv7Ke0nXdFMhRx7EYrSnJQmnuuvzWplUi5xaW/T5f8EmBDAMCCDyCO9LXCaBq/iOG2l0iLSre7l0xvszyvdeWWA+6dpB4K45rX/tPxV/0Llr/4Hj/4mrnhpRla6+9f5kQxEZRvZ/c/8jpKK5v+0/Ff/Qu2v/geP/iaP7T8V/8AQu2v/geP/ian2Eu6+9f5le2j2f3P/I6Siub/ALT8V/8AQu2v/geP/iaP7T8V/wDQu2v/AIHj/wCJo9hLuvvX+Ye2j2f3P/I6Siub/tPxX/0Ltr/4Hj/4mj+0/Ff/AELtr/4Hj/4mj2Eu6+9f5h7aPZ/c/wDI6Siub/tPxX/0Ltr/AOB4/wDiaP7T8V/9C5a/+B4/+Jo9hLuvvX+Ye2j2f3P/ACOkorm/7T8V/wDQu2v/AIHj/wCJo/tPxX/0Ltr/AOB4/wDiaPYS7r71/mHto9n9z/yOkorm/wC0/Ff/AELlr/4Hj/4mj+0/Ff8A0Llr/wCB4/8AiaPYS7r71/mHto9n9z/yOkorm/7T8V/9C7a/+B4/+Jpr6t4pjjZ28O2oVQST9vHT/vmj2Eu6+9f5h7ePZ/c/8g8KH7RfeIL0gjzNReJSe4jUKD/OqXiH4hW3h7xjpugzWZkS7CmS583Ah3MVXK7Tnkeoq/4ERx4StZpBiS4eSdv+BOSP0xXHvoa+NdX8ducEjy7G0f8AuSRjd1/38UV2vbPsvyWgYdXop9X+b1/zO+8T67H4a8OXmryRecLdMiPdt3kkADODjJI7VoWkz3FlBNLF5Ukkau0e7dsJGSM98V5VqGuP4r8FeF9Ok/4+73UorW9jPUGI5kyPwB/GvWwABgVm1ZP1/r8zS97f1/WwUUUVJQUUUUAFFFFABRRRQB5/pekXWo3/AI6vbu0uIjfE2dussZUvGkZUMueoJPUVR8F2OsJoUmv6vp9yl5Yad9j0+zaJvMCovzNtIzudgB06AV6dRR0t5JB1v5/1+SOY+Huly6R4G0y2uY3juWQyzJIpVg7ksQQeh5rp6KKcnd3ElY5XU/8AiSeMrHVBxa6kBZXPoJOsbf8Asv0rqqzdf0pda0O6sSdryJmNv7rjlT+YFReGdVbWNBt7iUbblMxXCngrIvDAjt6/jW0/fpqXVaP9P8vkYw9yo49Hqv1/z+Zr0UUVgbhRRRQAUUUUAFFFFABRRRQAUUUd6ACsnxRcm08LapMDtYWzhT6EjA/U1rVzPjrEvh1bLdg3t1BbjnBOXBx+QNa0FerFPuZV3anJrsa2h2psvD+n2v8AFFbRoe2SFGf1rM8F+H7rw9o88N/JDJe3N3LdTvCSVLO3YkA9Mdq6MYAwOBRUOTbb7lqKUVHsef2vw9uLT4mnxDHcQ/2VukuEttx3rO67WIGMYPXOfwr0Ciipvol2K63CiiigAooooAKKKKACiiigAooooAKKKKACuVt/+JH45mtvu2esIZo/RZ0HzD8Rz9a6qsHxdp815ojT2g/06xcXVucfxJyR+IyMVtQa5uV7PT/L8TGsny8y3Wv+f4G9RVTS9Qi1XS7a/gP7ueMOBnp6j8DkVbrJpp2ZqmmroKKKKQwooooAKKKKACiiigAooooAK5nxIRceIfDViRnddvcY/wCuaE5/M101czKTc/Ei3jxlbTTWkz6M7gY/IVtQ0k32T/Ixr6xS7tfmdNRRRWJsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBy3h3/AIk+u6l4fbiEt9ssgf8Anmx+ZR9G/nXU1zHjCJ7NbLxBbqTLpsuZQvV4G4cfyP4V0kUqTRJLEweN1DKw6EHkGt63vJVO+/qv89zCl7rdPtt6P+rD6KKKwNwooooAKKKKACiiigAooooAK5nRN1x4z8R3RwUj8i2j/BCW/U101c14LBkstTvSc/a9RnkB/wBkHaB/47W1PSnN+i/G/wChjU1nBer/AAt+p0tFFFYmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHeiiigCOeGO4gkglUNHIpR1PQgjBFc74Omktre70G5ctcaXL5ak9WhPMbflx+FdNWFqvha31TURfrf6jY3HliJnsp/L3qDkZ4OetbU5R5XCb0f5mNSMrqcFdr8jdorl/8AhC/+pm8Sf+B//wBjR/whf/UzeI//AAP/APsafs6X8/4E+0q/yfijqKK5f/hC/wDqZvEn/gf/APY0f8IX/wBTN4k/8D//ALGj2dL+f8A9pV/k/FHUUVy//CF/9TN4k/8AA/8A+xo/4Qv/AKmbxJ/4H/8A2NHs6X8/4B7Sr/J+KOoorl/+EL/6mbxJ/wCB/wD9jR/whf8A1M3iT/wP/wDsaPZ0v5/wD2lX+T8UdRRXL/8ACF/9TN4k/wDA/wD+xo/4Qv8A6mbxH/4H/wD2NHs6X8/4B7Sr/J+KOgv7gWenXNyTgQxPIT6YBNZPgq2Fp4N0qMDG6ASf99kt/WqUvgWOeF4pvEXiGSJwVZHvchgeoIK8iumtoEtbWG2iGI4kCKD6AYFE3CNPli73f5f8OEFOVTmkrWX5/wDDEtFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH+Gda1K78a+KdIv7jzYrKSJrVSirsR1JxkAZ7dc12Febahqlv4W+KOr6hdnZbT6Ktwcfxuj7QB7ngfjQt9ez/AM/0C11p5fnb9Ta17WdSufF2m+HNEuPIlH+lahOEV/KgHRfmBALGuvrlfA+j3NpYXGr6muNX1aT7Tc/9M1/gj+ir+ua6qm1bQV7u6CiiikMKKKKACiiigAooooAKKKKACuA8daykfiTRtDv9RfS9Iu0klubpX8vzCvSPzP4Qe/4V39cQ3i3SLvWtX0HxXFp1mttIPs632AlxERw+X+U0LcOhQn8A6ckNvqXgW7W0v0nSRpVv5JIpkz8wbls5Fei9q8oXTfD8vj/RpfA3liWKQvqUthITbiDH3WwduSegFesVT2J6hRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXPa34M0rxBrmnarf+c0th9yNWAjk5BG8YycEZ6iuhooWjuHSwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVTv9J03VFC6hp9pdqvQXEKyAfmDVyigCG2tLayhENrbxQRDokSBVH4CpqBRQIKKKKBhRRR3oAKKKKACiiigAooooEFFFFAwooooAKKKKACiiigAooooAKKKKACkoooAWiiigQUUUUDCiiigAooooAKKKKACiiigAooooA//Z
|
<image>For trapezoid $T R S V, M$ and $N$ are midpoints of the legs. If $T R=32$ and $M N=25,$ find $V S$
|
18
|
Geometry
|
Geometry3K
|
test
|
19
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADRAPEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisXxXrq+HtAnvOs5/dwJ/ekPT8uv0FVCLnJRW7JnJQi5S2RtUV5H4P8HWGrXWrWuvwyvqVtKrORKRw4zz6nIP511X/AAq/wx/z7T/9/wBq6KlGlTlyub+7/gnNTrVqkeZQX3/8A7KiuN/4Vf4Y/wCfaf8A7/tR/wAKv8Mf8+0//f8Aao5KH8z+7/gl89f+Vf8AgT/+ROyorjf+FX+GP+faf/v+1H/Cr/DH/PtP/wB/2o5KH8z+7/ghz1/5V/4E/wD5E7KivN9X8GeGNNuYLSDRtR1C8mRpBBbTgEIuNzEuygDJA65Oauad8P8AwjqmnQX1tbXPlTLuUPMwYeoI7EHijko/zP7v+CHPX/lX/gT/APkTvKK43/hV/hj/AJ9p/wDv+1H/AAq/wx/z7T/9/wBqOSh/M/u/4Ic9f+Vf+BP/AOROyorjf+FX+GP+faf/AL/tR/wq/wAMf8+0/wD3/ajkofzP7v8Aghz1/wCVf+BP/wCROyorjf8AhV/hj/n2n/7/ALVS1jwH4R0bSbnUbi3n8uBC2PPbLHsB7k4H401Tot2Un93/AAROpWiruK/8Cf8A8id/RXF/Dbw8NJ0I30sey5v8SbT1SP8AhX9c/j7V2lZ1YKE3FO9jWlNzgpSVrhRRRWZoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcKv/FXePy33tK0M4H92S4/rjH/jvvWx4z1x9E0JvswLX90wt7VF6l24yPp1+uB3qz4X0NPD2gW9iMGUDfM/96Q9T/T6AV0U/wB3TdTq9F+r/Q5qn7yoqfRav9F+piJ/xLfi069E1SwDfWRP/sVP512E7OlvK8Sb5FQlV9TjgVyHjb/Qda8NawMgQ3vkOf8AZkGD+gP512ZIAyelKv70Iy7q33aflYqh7s5x7O/36/nc8pl8HiLwFd+ItZe8i8UJby3bXZuXDwuMsqABtoUYAx0q7q2o3ms6Z4KhudSutMOoIbi9mtrg27bFh3HLDGBkirbrP8R7orueDwnby4OOG1F1P6RAj8f5bGsad4X1HxJpNjqkEc1/FFJJZW8kbGPYMBuMbDjA4P4Vj+vT0v8A18jf/g/iO8L6RYWpe+0/xFqOrwyLszcaibqMc5yOwNaEHiPSbiLUZUvFCaa7R3hkRk8oqMnO4DIx3HB7VyljaW2jfGF7PSYY7e2u9K8+6ghUKm8SYVto4B5Irnb82Op/FryFM40O/lW3uyuBDc3cKlghPcDgH1IxSWtvP/P+vwC1r36f5f19zPRbjT7LxLBZaraXt7av5R8m5t8xO0b4JUq69DgHkZ7jFaen2NvplhBZWqlYIVCoCST9ST1PvVkAAAAYA6Cij0D1CiiigAooooAK4XxBnxV4wtPDkeTYWOLq/YdCf4U/X9T6V03iLWotA0O51GXBMa4jQn77nhR+f6ZrN8EaNLpmjG6vcnUdQf7Tcsw5BPIX8AfzJropfu4ur8l6/wDAOar+8kqXzfp2+f5XOmAAAAGAO1FFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXL+ONYmsNJTT7HLalqT/Z4FU8gHhm/DOM+4q6cHOSiiKk1CLk+hm6WD4s8cT6ww3abpJMFp6SS/xP/n/Z9K7qs7QdIh0LRbbToOREnzN/eY8sfxNaNVWmpS93ZaIijBxj7271f9eWxzHxBszeeCr/AG/fhCzKfTaQT+ma1rCddZ8PW8+5kF3aqxK/eXcvOPcZq1e2yXtjcWsgBSaJo2z6EY/rXM/Di5ebwhDby8TWcslvID1BDZx+AIFVbmoNdn+a/wCAK/LiE+6/J/8ABK1n8N49PtIrSz8WeJ4LeIbUjju4wqj2Hl1rX/g+x1OwsYbq6v2urEfuNQWfbcqSME7wBnPfjHtXQUVgbnO6b4NsdLt77yLy/e+vk2TajNMJLgjGBhiMDHbAxSTeCdJk0LTtJjM8EWnzpcQSxMBIJFOdxJByTk545zXR0Uf19wBRRRQAUUUUAFFFYnizXR4f0Ce7XDXLfurdMZ3SHpx3x1/CqhFzkordkzmoRcpbIwL/AP4q7x3Dpy/NpejES3BHSSbsv4f0au6rA8H6EdC0GOKbJvZz5905OSZG6jPt0rfrSvJNqMdlp/wfmZUINJylu9f+B8gooorE3CiiigAooooAKKKKACiiigAooooAKKKKAEZlRSzEBQMknsK4fw2reJ/FV54nmXNnbZtdOB6EDO5/1/U+lWvHWpTm2tvD+nn/AImGqt5X+5F/Ex/l9M+lc58RNQufDXhOLQfDs0lu9rCk1zPE5R44t4UcjkM7E/gGroj+7p36y0Xp1/r1Oe3tavL0j+fRf15HqVFcl4w1S+t7bRtL064Nvd6tdJb/AGgAFok2lnYZ74HH1qham+8J+ONM0h9XvtR03VoZdgvpPNkiljG7hsZ2kHoa50ru39dzo6X+Z0dz4p0m01T+z5ppRKHWN3WB2ijdsbVeQDapORgE9x61i+FM2HjHxPpR4QzJdxj/AHxlvw5Wr154Vluby7EeptFp17Ok91a+QGZmXaMK+flB2DIwfYiqGoD+zvirpdz0TUbN7Zv95fm/+JFdFDWMo91+Wv8Amc9fSUZdn+en+R2lFFFc50BRRRQAUUUUAFFFFABXCxj/AIS7x6ZT8+k6IcJ6SXB7++Mf+Oj1rY8Z64+i6GRa/NqF2wt7VB1Ltxn8P54q14Y0NPD+g29iMGUDfM4/jkP3j/T6AV0Q/d03U6vRfq/0Oep+8qKn0Wr/AEX6mxRRRXOdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUyaaO3gkmmcJFGpd2PQAck0+uL8cXc+oXFl4UsH23GoNuuGH/LOAdSfrj9CO9aUqfPLl/qxnVqezi5f1cg8LltTv9T8a3yN5RVo7JMcpCmckD1OP5+tcJr3irRr7wBrby3Uza3qsqSyRNaygRqrrsj3FduFUevJJ9a9wtLSGxs4bS3QJDCgRFHYCsvxXoH/AAk/hu60f7T9m+0bf3vl79u1g3TIz09aKtTnnzLbS3kkOhD2cUnvu/U5bXLyDVNc8A6naSF7R7uRVZkZMkxkDhgCPunqKs+Kl8z4l+CUX7ytdOR7CMV0eu+H4Nd0yK1kmkgmgkSa3uYsb4ZF6MM8fgexqho3hS4tNb/trWNYl1bUVhMELmFYUiQnJ2ovc9zmoW/zb/ApXUflb+vvOmrjPiGPslrpGsLwbC/jd29EPX+Qrs6wvGdiNQ8H6pBt3MIDIo90+YfyrXDyUasWzLERcqUktzdBBAIOQe9FZHhe+/tHwtpl0W3M9uoc/wC0Bhv1BrXrOUXGTi+hpGSlFSXUKKKKkoKKKKACiiuW8c6vNZaXFptgSdS1N/s8AHUA8M35HGferpwc5KKIqTVOLk+hnaT/AMVb42n1pvn0zSyYLMdnk/if/P8As+ld1WdoWkQ6Fottp0GCsKYZsffbu34mtGqrTUpe7stETRg4x97d6v8Ar8AooorI1CiiigAooooAKKKKACiiigAooooAKKKKAIL27hsLKe7uH2QwoXc+gArk/A9nNfzXviq/XFzqLYgVv+WUIPAH1wPyB71H4wlk17W7HwlauypKRcXzr/DEOi/j/wDE12kUUcEKQxIEjRQqqOgA6Cuh/u6Vusvy/wCCcy/eVb9I/n/wF+Y+iiiuc6QooooAKa6LIjIwyrDBHqKdRQBxvw3dodEvdLc/Pp17LB+Gc5/MtXZVxmi/8S74l69YnhL2CO7Qdsjg/qx/Kl8S+PrDSdS03SrC7s7nUbm/itpYA28xIWwxbaflPpnv2rfEa1br7Vn9/wDwTDDaUrfy3X3f8A7KisfxPry+HNEkvvIa4mLrFBApwZZGOFXPbk1i2niLxBpviDT9M8TWenrHqW5ba4sHchJAM+W4bvjOCOuOlYLU3eh2VIzKilmIAHUk9KWue8WaZNqUFiUsE1K3t7jzbiwdlAnXawA+b5SQxBw3HFAG+XVULlgEAyWzxj1riPDKnxN4ovPFEwJtICbXT1Ydh95/x5/M+lZ2o/btO0C38L20S2t7q91J5VtG+4WluWyVyOMYzwOBlsdK7/TNPg0rTLawtxiKBAi+/qT7k8/jXSv3dK/WX5df8vvOZ/vavL0j+fT/AD+4t0UUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU9V1KDSNLudQuTiKBC5Hc+gHuTgfjVyuG8SE+KPFln4ZiJNla4utQZTwf7qfr+vtWtGCnLXZav0Mq1Rwjpu9F6lvwJp0/2O41+/BN/qrec2f4I/4FHtjn6Y9K66kACqAAABwAO1LU1JucnJlU4KnFRQUUUVBYUUUUAFFFFAHF+Iv+Jf8QfDeojhLgSWch9c/dH5t+lVfiLZWsT+HLiO2hSZ9dtt0ixgM2Sep61e+JELDwzHqEYPm6fdRXC49jt/9mH5U/xhpt5r9p4fl02Hzlh1S3u5PnVdsQyS3JGeo4HNdE9YU5dnb7nf9TClpUqR7q/3q36FP4lFtvhhR9w67bbv1o+Ie7+0vB5T739txfltbNbfi7Q5te0UQ2kiR3ttPHdWzSfd8xGyAcdjyPxrFTT/ABF4l8SaTe61pUOlWWlO0wiF0s7TzEYBG0cKOTzz7VhHp63/AC/yN5ar5W/P/MsPqE9l8ULiGe6lGnvo32gRtIfLRkkwzBegOCMmpvCN3c3OlX3iPUriZYb6RriCKVzsgtlGEwpOBkDcfXNYfjvTLnVvG+gWFo4UXltPBekHlbbcjN9M42/jV/xnK95Jp3g/Tf3bXm0zlP8Allbr/LOP0x3q6EOey9fuu23/AF5mdep7NNry++1kvv8A0Yvg2GTW9WvvFt2jL55MFkjfwQjv+OP5+tdtUNpaw2NnDa26BIYUCIvoAMCpqKtTnldbdPQKVPkjZ79fUKKKKzNAooooAKKKKACiiigAooooAKKKKACiiigDN1/WIdB0S51GbB8pfkUn77HhR+JrJ8D6NLp+kPfXuTqWpP8AaLhmHIzyF/DOcepNZup/8Vb45g0kfPpmkET3Xo8p+6p+n/xVd1XRP93TUOr1fp0X6/cc0P3lRz6R0Xr1f6feFFFFc50hRRRQAUUUUAFFFFAGb4gsv7S8PajZj70tu6r/AL2OP1xWf4EvRfeCtMk7xxeSR6bCV/kBXRVxfgH/AEKbXtFOB9jv2aNfSN/u/wDoP61vH3qMl2af6f5HPP3a0X3TX6/5naUUUVgdBg22k6f4aGo6zcXd3czMhaW4u5d7LGCSEXgAKM8AD86yvA1nNfSXnim/j23WpMfJU/8ALOEfdA+uB+AFReL5X8Qa5Y+ErZj5bkXGoMv8MSnIX8ePx212sUSQQpFEoSNFCqo6ADgCuh/u6Vusvy/4JzL95Vv0j+f/AAF/Wg+iiiuc6QooooAKKKKACiiigAooooAKKKKACiiigArG8U64nh7QZ73gzkeXAh/jkPQY7+v0BrZrhf8AkbvH39/SdDP/AAGS4P8APGP/AB33rajBSlzS2Wr/AMvmY15uMeWO70X+fyNnwbobaHoKLcZN9ct5907HJLt2P06fXPrXQ0UVnObnJyfU0hBQiorZBRRRUlBVQanZnV20oTD7asAuDFtPEZO3OcY69s5qW7ilmtJooLhreZ0KpMqhjGezAHg496888M6XdaV8W9VivNUn1KaTSo5DPOqqRmTG0BeABjt60LWVv62YPSN/63R2+s6/pXh62W41W8S2jdtqAgszn0VQCT+AqTSdZ07XbFb3S7yK6tycb4z0PoR1B9jXLKVvfjNIko3Cw0gNCD0Vnk+Zh74AFZM94dC8V+PfsmY1/sxL4KvQShGBYe54pXsr+v4f8MO13ZeX42/zOt/4Tjwz/bH9lf2xb/bN/l7edu/+7vxt3e2c1J4k1S7sBp9tZy21vLfXHkC5ulLRxfIzfdBGSduAMjk1x9xplqPgCI/KX5dLW6Bxz5uA+7Pru712ulCHXPCmntqFvFcx3NpE8kcyB1YlQTkHg1TjZtdv6/QlPZ9/6/UTw3qk+q6bJJctBJLDcSW7TW4Ijl2HG5QScD2ycEHmsS3/AOJd8WLqPGI9TsVlHu6ccfgp/OuvhgitoUhgiSKJBhUjUKqj0AHSuP8AGf8AoHiLwxrA4Ed2baQ+0gx/LdW+H1k4901+v5owxGkVPs0/0/JnaVS1bU4NH0q51C5bEUCFjz1PYD3JwPxq7XDeIifFPi6z8NxEmxs8XWoEdD/dQ/n09/aoowU5a7LV+hdao4R03ei9S54E0ydbK413UB/xMdVfzmz/AAx/wqPTjn8vSutpAAqgAAAcADtS1NSbnJyZVOmqcVFBRRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHPeMtdbQ9CdrfJvrlhBaooyS7d/w6/XHrU/hbQk8PaBBZcGcjzJ3H8ch6nPf0+grmrG5t/E/jubU5p4v7N0j9zaB2ADyn7zjPp/8TXb/b7P/n7g/wC/grpqJ04Kmt93+i+RzUmqk3Ue2y/V/N/gixRVf7fZ/wDP3B/38FH2+z/5+4P+/grnszouixRVf7fZ/wDP3B/38FH2+z/5+4P+/goswuixXFWv/JZ9Q/7AsX/o011v2+z/AOfuD/v4KgDaSt616GshdMgjacFN5QHIUt1xntQk7p/1tYG01b+t7nKXk1toPxWGo6hNHbWmo6YII55WCp5qPnaSeASpyPpWdZ2yeLNe8b3tiyy2dxZJp0E6nKyuEO7aehAJArvLw6RqFu1vemyuYG6xzbHU/geKfbzabawLBby2kMKDCxxsqqo9gKXK2rPz/EfMk7ry/C3+R5pc+JNNPwZXSkuYm1V7JdO+whh5wmwEK7Ouc89K9K0e0On6LYWbY3QW8cRx6qoH9Kg8jQhqH9oCLTvtpGPtG1PMx/vdaufb7P8A5+4P+/gqnd3dtydNF2LFct8RLNrvwXeNH/rLcrOhBxjaRk/kTXQ/b7P/AJ+4P+/gqvqEljf6ddWb3VvtniaM5kHcEVdJuE1LsyasVODj3RSvvElvYeD112Qgq9uska/3nYDav5mqvgfRptO0dr2+G7UtRf7RcuRzzyF/AHp6k1w/hMXPiyXSNIuUP9n6KDLcA8iR9x2L+XH0DV6/W9ePsU6S3b19On+f3HPh5+3aqvZLT16v9PvCiiiuM7AooooAKKKKACiiigAooooAKKKKACiiigApksazQvE+djqVbBIOD7jkU+igDlf+FceE/wDoFf8AkxL/APFUf8K48J/9Ar/yYl/+KrqqK2+s1v5397MPqtD+Rfcjlf8AhXHhP/oFf+TEv/xVH/CuPCf/AECv/JiX/wCKrqqKPrNb+d/ew+q0P5F9yOV/4Vx4T/6BX/kxL/8AFUf8K48J/wDQK/8AJiX/AOKrqqKPrNb+d/ew+q0P5F9yOV/4Vx4T/wCgV/5MS/8AxVH/AArjwn/0Cv8AyYl/+KrqqKPrNb+d/ew+q0P5F9yOV/4Vx4T/AOgV/wCTEv8A8VR/wrjwn/0Cv/JiX/4quqoo+s1v5397D6rQ/kX3I5X/AIVx4T/6BX/kxL/8VR/wrjwn/wBAr/yYl/8Aiq6qij6zW/nf3sPqtD+Rfcjlf+FceE/+gV/5MS//ABVH/CuPCf8A0Cv/ACYl/wDiq6qij6zW/nf3sPqtD+RfcjO0jQ9N0G2e30y1EEbtvYbmYk4x1Yk1o0UVlKTk7t3ZtGKirRVkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z
|
<image>Find $x$ so that each quadrilateral is a parallelogram.
|
4
|
Geometry
|
Geometry3K
|
test
|
20
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGaA4EDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA898dfFSy8J3f9mWdsb/VCBmMNhY89ASOSfYVyh+JXxMCfaj4PX7N1/wCPKfp6/erG8EXVlF8aNSl19kS5MswhafoJd3HXocZxX0N1HtSj8Kl3HLSTj2POvAvxXsvFl4NMvbU2Gp4O1N2Ukx1AzyD7GvRa8q8V/DXU734g2XiLQjaQIjxyTh3KEurckAA9RXqgzgZ61W6v1E9HboLRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorzf4zahrOleGbW90i8uLXZcbZngcqcEcZx2yKTdhpXdibx18KNN8XTtqFtMbHUyPmkC5ST03D19x+teeM/xL+GA3OzXulxnqSZoQP8A0JP0r1z4f+I7fxJ4RsZ0uvOuo4ljuQzZcOBg7u/PWt/UbiztdOuJtQeJLRUJlMuNu3vnNOScL2BPm3Oa8BePrLxvp7tHH9nvYMefbk5xnoVPcV19eCfBS38/xzrN7ZoyaesbKvp8z5UfkDXvdN7J9ydm12CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqGn2uq2E1jewrNbTLtdG6EVZooauGx4vf8AwPvbG+a68MeIJLQE8JIWVlHpvXr+VRr8G/E+ryqPEXix5oFOSoeSY/hvIAr2yihDuY/hrwxpnhTSl0/TISkedzuxy0jerH1rYoopt3ElYKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVh634u0bQFIvLtTMOkEXzOfw7fjiqhCU3aKuyZzjBc0nZG5Wbq+v6XocPmaheRw8ZCZy7fRRzXn0vjHxT4sla38Oae1rbk4M56j6ueB+HNX9J+F0Jm+1+IL2S+uGO5o1Yhc+7dT+ldf1aFPWvK3ktX/wAA4/rU6umHjfzei/4JR1D4tyfaA2m6Zus0cCSSfOWHtg4U9eua9Ls7uK+sobuBg0UyB1PqCKy9V8NWN74auNIt7eKCNk/dhFACuOQfzrl/hfq8n2W60C7JW4snJRW67c8j8D/MU6kaVSk50o25d/TuKnOrSrKFaV1Lb17HodFFFcJ3hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUN3P9lsp7jG7yo2fHrgZpN2VxpXdiG+1bTdMCm/1C0tN3T7RMsefzNTWt5a30AntLmG4iPSSJw6n8RXiPw+8J2XxFk1XxD4nea8kNyY0i81kC8A9iD3AA9qsaBZnwJ8aF8P6dPK2mX0W7yXbO35Sw/EEEZ9DVJapPd/8ADieza6HtlFFFIAooooAKKKKACiiigAopGdUQu7BVAySTgCuM134laNpRaK0Y39yONsJ+QH3b/DNaU6U6jtBXM6tanSV5ux2lcxrvj3Q9D3Rtcfarkf8ALGA7sH3PQfzrkPJ8ceOP9a39l6a/8OCgI+n3m/Hiun0L4daJo+2WaM3tyOfMnGQD7L0/nXT7GjS/iyu+y/zOX29at/BjZd3+iOYOr+NfGx2aZAdN09v+WuSuR/v9T/wEVuaJ8MNLsWE+pu2oXPUh+Iwfp3/Gu5ACgAAADsKWpni5W5aa5V5f5lQwUL81V8z8/wDIZFDHBEsUMaxxqMBVGABT6KK5DsCvLPF8T+EvHVl4it1ItrlsThfXow/Ec/WvU6w/F2iLr/hy5swuZgPMhPo46fnyPxrowtVU6nvbPR+hzYuk6lP3d1qvVGzDKk8KTRsGR1DKR3Bp9cL8MNba90R9LuGP2mxOwA9Snb8uR+AruqitTdKbg+hpQqqrTU11CiiisjUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprqrxsrgFSCCD6U6sLxpNPb+CdZltyRKtpJtI6jjn9KmTtFscVdpHkOkarqPhPxJqtj4FhfX9PeQvLGYG2wv6BwefT3xWr8P7iHXfiNeat4ime38RohSLT3hMYjXGMqSeeP5k810XwVit0+HkEkQXzZJpDMR1Lbsc/gBWD4/VYfjN4UltflunMYlK9Su8jn8M1olyzjF69PwE3zRk/63PYqKKKkAooooAKKq3+o2WmW5nvrmK3iH8UjYz9PWuC1T4nm4n+xeG9PkvJ24EjoSPqFHJ/HFbUsPUq/Cv8jCtiadH43r26noVxcQWkLTXE0cUS8s8jBQPxNcNrXxRsLaQ22jQPqFyTtVgCEz7d2/zzWXb+B/EfieZbrxPqTxR9RApBYfQD5V/Wu60XwvpGgRgWFmiyYwZW+Zz+Jrfkw9H4nzPstvvMOfE1vgXIu73+44JfDvjHxm4l1u7NhZE5EOMceyD+bc12WheCNE0EK8FsJrgf8t5vmbPt2H4V0dFZ1MVUmuVaLsjSlhKcHzPWXd6hRRRXMdQUUUUAFFFFABRRRQB5VrKnwV8SINUQbbC/J8zHQZPzfkcNXqisGUMpyCMg1zXjvQv7d8Mzoi5ubf8AfRepI6j8R/Sqvw413+1/DaW8rZubL90+epX+E/lx+FdtX97RVTrHR/ocNH9zXlS6S1X6o7CiiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo7iCK6tpbeZA8UqFHU9wRgipKKGrgePW/gjx34JvblPCN9a3OmTvvEFwRlT7gjGfcHn0rW8JeAdZ/4SlvFXi69iudSAxDDFysfGM9AOB0Ar0uihOwPUKKxdb8V6NoCn7bdr5oHEMfzOfw7fjiuGm8aeJ/FUrW3hrTnt4M4M5GSPqx4H4c10UsLUqLm2Xd6I5quLp03y7vstWehatrumaJD5uoXkcIxkKTlm+ijk1wV78RdV1q4ay8K6ZIzHjznXcw98dF/EmrOlfC9JJvtniK+kvbhjlo1Y7c+7Hk/pXe2VhaadbrBZ28UES9FjUAVrfD0dvff4f8Eytia2/uL73/wDzuw+G+oatcC98U6nLLIefJjfJ+hY9PoPzrvdL0XTdGg8nT7SKBe5Uct9T1NX6Kxq4ipV0k9O3Q2o4alS1ite/UKKKKwOgKKKKACiiigAooooAKKKKACiiigAryn/AJEf4m4+5puo/kAx/o36V6tXHfEfQv7X8NvcRLm5ssypjqV/iH5c/hXVhJpT5JbS0ZyYym3Dnh8UdV+p2I5GRRXM+BNd/t3wzBJI2bmD9zNnqSOh/EYNdNWFSDpycX0OinUVSCnHZhRRRUFhRXCfFLxpeeDdFtJtPEJuribaBKu4bQOePxFcXD41+LFxAk0Ph+N45FDKwtuoPQ/epJ3G1Y9vorw6f4mfEXQlFzrXhqP7ID87NbuoH/AgSB+Neo+D/Ftj4y0VdQsw0bA7JYWOTG3p7/WqtfYT0OgooopAFFFFABRRRQAUUUUAFFFFAHl/j/xVrk3iqy8HeGZhb3lwoae47oDzgHtxznrWLrumePvAFiuvJ4rm1a3iZftEFxuIAJx0YnjtkYNehr4Jsh47fxZ9pnN00fl+ScbANoGeme3rWL8YdctNO8EXNg8gN3fbY4Yh944YEnHpx+tS24xTW/8AWhStKVuh1+gaxFr+g2WqQjalzEH2/wB0nqK0q5r4f6ZPpHgXSbO5UrMsIZ1PVSecfrXM6P4t1qz+K194Z1u7WW1kUvZExKmB94cgDPGfyrSSXPyrzIj8HMz0uivOIfFeteK/Hzad4duRBomnnF5dCJX81v7qlgfpx7n0r0epW1xvR2Cop7iC2QPcTRxISFDSMFBJ7c1LXlHx5Zl8L6dgkf6X2P8Asmk3YaVz1frRVbTiTplqT18pf5VZqmrOxKd1cK4D4k+Mb/QxY6NoahtY1J9sbEZ8tc4zj1z/ACNd/XifirWbLT/jjFfam5Frp1oGAAySdvAA9SWqd2kyls2iTWfD3xC8K6O/iBfGM95JbgST2r7igHfAJIP5CvTPCGvjxP4XsdW2BHmT51HQMOD+orhZfjMLeVDqnhHU7TTZThbmUHDD12lQD+del6bd2d/p0F3YOj2syh42QYBBqlsyXui3RRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIzKilmIVQMkk4AoAWiuN134k6LpO6K2c39yONsJ+QH3b/DNc3jxx44+9/wASvTX7coCPp95v5V1Qwk2uafurzOSeMgnyw96XZf5nYa7470PQgySXAuLkf8sYPmIPuegrkG1zxn41Yx6TbHTrBuPNyVyP9/qf+Aiuk0L4caLpBWW4Q31yOd84+UH2Xp+ea7BVCqFUAAdAKv2tCl/DXM+7/wAiPZV638WXKuy/VnCaJ8L9Ns3Fxqsrahc9SG4jz9Op/H8q7iGCK3iWKCNI41GFVFwAPpUlFc9WtUqu83c6aVCnSVoKwUUUVkahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKGUqwBUjBB70tFAHlWisfBXxHn0uQlbC/I8onpzyh/PK16rXC/E/RGvdFj1S3BFzYtuJXrsPX8jg/nW94R1tdf8OW15kecF2TAdnHX/H8a7cR+9pxrLfZ+pw4b91VlQe269P+AblFFFcR3HhfxmlbWPHWg6DGc8KCB2Lvj+QFe4W8SwW8USjCooUD6CvnPXYNY8XfGW/XQpkjvLZz5UrtgIIwFznB711P/CLfGD/oZIP/AAIP/wARSg/cXnqOa9/00PTvFtxZ2vhPVJL8oLf7M4bf0JIIA+ucV5n8ALaZdN1i5KkW8kyLHnoSAc/zFcD4qg8TWOvWVj46vr6aydg2Yp9ylc4JXPGfwr6R0HS9P0fRbay0uIR2iICgHU55yT3JqorRy76Ck9o/M0qKKKQBRRRQAUUUUAFFFFABRRRQBzHjbxrZeDtLE0o869m+W2tl6yN/hXI+D/Auoazq48XeMyZb1yHtrNvuwjsSPbsO31rG8Y3GsWvxcXV/+EX1HV7OxiVIEjhfZu25yGCsOCTW1/wtfxF/0TfWfzk/+NUoPTm6/kOS+z0PVK8E+OV7ZDxDp5sJnGq20RE7RfwIfu5I6Hk/nXpFz4x1MeBP7ZTw5qEWpy7kisBC8jq2SAWwoIHGelYXhr4dyT+EdVm1wGTW9ajZpXk6xE8qvtzgmlJPfsOLX3nU+ANK0zS/B2nrpZ3xTRCZpT96RmGST7109ecfB99WtfD1xo2rWF3bPZTEQtPCyB0PPBI5wc9PavR60nq7ozirKzPLNb8dePrHWbu2svBvnW0chWKXy5H3r2OVOOa8++IninxXrmk2sGveHv7NgSbcknlOu5sdPmNfSleTfHv/AJFjTf8Ar7/9lrPa3y/M1Wr+8oWvxC+IsdpCkfgreioArfZ5eRjr1rufA3iHxJryXZ1/Qf7M8or5TYZd+evDHPHr710um/8AIMtf+uS/yq1Wj0bMo6xQV4jrWnxXf7RVnHcoGiZUkCsOCVj4/UV7dXmPxK8O6tHrmmeL9Atzc3lh8s0CjLOnPQd+CRUJ2kpMu14tI7PxfY29/wCENVt7iNWj+yyNyOhCkg/mK5H4IXEs3gPy5CSsNy6R59Ov8yawtZ+I2t+LNIl0HRvC1/DfXa+VK8gO2MHr2GPqcV6L4J8Njwr4VtNLLBpUG6Vh0Lnk1UVbmfewpO6SOhooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAyaUQQSSsCQiliB7DNeNP8AGrXFkZR4QlIBIBy/P/jte0VV1C4jsNNurtwu2CJpDx6DNJu2o1roeMR/HjU5pmhi8MB5V6osrFh+G2tvw78Vtb1zX7PTX8LvbpO+1pWL4QYyTytYfwOszf69rmtyjcThFY+rEk/0r3EKB0A/KqtazZL1ukLRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVWvdQs9NtzPe3MUEQ/ikbH5etNJt2Qm0ldlmo554baFpp5UiiUZZ3YKB+Jrz3Vfigss/wBj8OWMl7cNwsjIcfgo5P44qnB4K8S+KZluvE2ovBDnIgUgsPoB8q/rXXHCOK5qz5V+P3HHLGKT5aK5n+H3mrrXxQ060c22kwvqFyTgEAhM/wAz+H51jroPjLxowk1i6On2LHIhxjj2Qf8As3Nd3ovhXR9AQfYbNBLjBmf5nP4n+lbVP6xTpaUY693uL6tUq615adlov+Cc1oXgbRNB2yRW3n3I/wCW8/zNn27D8K6WiiuWdSU3eTuzrp04U1ywVkFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJoY7iCSGVQ0cilWU9weCK8v8ISyeE/HN74duWIt7hswk9Ceqn8R+oFep1558UNIk+zWuv2mVubJwHZeu3OVP4H+ddeEkm3SltL8+hxYyLSVaO8fy6nodQXtytlYXF0/CQxNIfoBmqfh7V49c0K11CPGZE+cD+FhwR+dT6tp0er6TdadLLJFHcxmNniIDAHrjIIrkqRlG8ep2U5RklLozxr4G2rX/iDXdbl5Y4QMfViWP8AIV7jXO+D/BuneC9NmstPluJUll81nnKls4A7AccV0VN2skuga3bfU8P/AGgGBn0KID5sSH9Vr2bTU8vS7VP7sSj9K5zxj8PdL8bT2s2oXN5A9spVPs7KM5OedymuntLc2tnDbmV5fLQJ5kmNzYHU4AGfwpR0jbzHLWSfkTUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFQvdW8X+suIk/wB5wKrvrelRf6zU7JP964Uf1qlFvZEuUVuy9WJ4m8K6Z4tsYrTVEkaOKQSrsfac/wCFSSeKtAj+9rNl/wABmU/yqrJ468Mx/e1eH/gIY/yFUqNR7Rf3EuvTW8l95vxxrDEkaDCoAoHsKdXKSfEfwsnTUi/+7C/9RVaT4peGk6SXL/7sP+Jq1hq7+y/uM3iqC+2vvO0orgZPi3oK/ctr9vqij/2aqsnxg04f6vTLlv8AecD/ABq1gsQ/skPH4ZfbR6OAB0AFLXmX/C23k/49/D8z+/nZ/ktJ/wALK16X/j38MSn/AIC7fyFV9Rr9Vb5on+0MP0d/k/8AI9OorzD/AITfxvN/qfDG3/ftpf6kUv8Ab/xHn/1ejRx/9sgP/Qmo+pT6tL5h9fp9It/Jnp1FeY+f8UpukEcI+kP/ANej+z/ibP8Afv4o/wDgaD+Qo+qd6kfvD67fanL7j06ivMf+EW+Ic3+s8QpGP9m5cH9Fo/4QLxbN/wAfHiiT/v7I38zR9WpreovxD61Ve1J/genUx5Y4/vyKv+8cV5p/wqzUpv8Aj48SyH28pj/Nqcnwhh/5a61O3+7GB/U0exw63q/gw9viXtS/FHoL6rp0X+sv7VP96ZR/Wq0niXQ4/vaxYD2Fwh/rXIJ8ItJ/5aajfN/ulR/7Kasx/Cfw+n3pLx/96Uf0FHs8Kvtv7g9pi3tBL5m7J408Nx/e1i2/4CxP8qqyfEPwtH11VSfRYnP/ALLVWP4Y+GE+9aSv/vTt/Q1g+EfCeiXGp63YX1isstndER7mbiM9O/saajhLN3lp6G0KWOqQlNcqUbX36uxvSfE7wynS5mf/AHYT/Wq0nxY8PJ92K+f6RL/Vq3I/BfhuPpo1of8Aejz/ADrN1a78EeHQRcWmnCYf8sYbdGf8gOPxxTgsPJ2jGTZzzeKirznFIy5Pi9pI/wBXp943+9tH9TVWT4xW4/1ejSt/vTgf+ymqT+KdU16U23hXw9FBHnHn+SpI/Ejav61e0/4YXV/OLvxJqTyyHkxRNk/Qsf5AV0+ywtNXqxt5Xu/wOT22LqO1GV/O1l97IU+LtxcXEcUGhhmdgAgmLMfYYXrXqETmSJHZShYAlT1HtVDStA0vRYvL0+yih9WAyx+pPJrSrgrzpSf7qNkejh6daKftZXYVxnxU1P8Asz4e6k4bDzKIF/4Eef0zXZ1458fNRK6ZpWlofmmlaVlHtwP5muSeqt3OyG9+xufBPTPsPgJLhlw93M8p+nQfoK9HrI8LacNJ8LaZYgY8m3RT9cc1r1rP4mZQ2CiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK4Dwx8Rpte8c6h4cl05IBaeZiUSEltjBemPeu/JAGT0o6J9w6tdgoryqx+Ma6j46j0G305DaSXJgS5805I5w2Md8V6rQtVcHo7BRXn1z8SJn+I6eE9N05LkBwktwZCNmBl+Mdv516DQtVcHo7BRRRQAUUVja14p0fQEJvrxBJjiFPmc/h2/HFVGEpu0VdkznGC5pOyNms/VNb03RYPN1C8jgGMhWPzN9AOTXns/jfxJ4oma18M6c8MOcGdhkj6sflX+dZV/4On0nVNJvPEdyb6K8uPKucO3yE/dy3U/p0rsjhIx/jSt5LcwpVauKn7PCxu+70Wn5m1ffEfUtXuDZeFtMkkc8ec6biPfHQfUmiy+HOp6zcC98U6nI7nnyUfcR7Z6D6CvQ7HT7PTbZYLK2igiHRY1Aq1UvFKCtRjy+fUyWDc3evLm8tl9xnaVoWmaJB5Wn2ccI7sBlm+p6mtGiiuSUnJ3bO2MVFWirIKKKKQwooooAKKKKACiiigAooooAKKKKACiimPNFH/rJUX/eYCgB9FU31bTYv9ZqFon+9Mo/rVaTxNoUf3tYsPwuFP8jVKEnsiHUgt2atFYMnjXw3H97V7f8A4CSf5CqsnxE8LR/8xQMfRYXP/stWqFV7Rf3EPEUVvNfejqKK42T4n+GU6XE7/wC7Cf61Wk+LPh9fuw3z/SJf/iqtYSu/sMh4zDr7aO7orzqT4v6UP9Xp923+8VH+NQH4vRucQaHNJ/23/wAFNWsDiH9n8iHmGGX2vzPTKK8y/wCFn6vL/wAe/hmU/wDfbfyWk/4TzxjL/qPCzD3a3lP+FP6jW62XzQv7Qo9Lv5M9OorzH/hJviHP/q9Bjj/7Ykf+hNR9u+KE/wByyjjHrti/qaPqcusor5h9ej0hJ/I9OqC9tIr+yntJ13RTIUYexFecfZvihP8Afuo4/wAYx/IUf8I78Rp/v65HH/28MP5LQsKk7+0j94ni3JWVKX3CfD+7l0DxLqHha8bGXLQ57sPT6jB/CvT68M8UeFPEWixJrV/qAuZA4UzJKzOnHByR0rZ0rwHqeu6Zb3//AAk8hinQMBtZiPUH5u1dOIoUqlqzmlffTqcuGr1ad6Kpt221S0PWWZVGWYAepNV31Cyi/wBZeW6f70qj+tedr8ItxzNrsrn2hx/7ManT4Q6d/wAtNTvG/wB3aP6Gub2WHX/Lz8Dr9tiXtS/FHaP4g0WP7+r2C/W4T/Gq0njDw7H97WLT/gL5/lXOp8JdBX71xfP/AL0i/wBFq1H8LvDSfegnf/emP9KOTCr7T+4OfFv7KXzL0nj/AMLx/e1aM/7sbn+QqtJ8S/C6dL2R/wDdhb+oqSP4c+Fo+mmZ/wB6Zz/WrUfgfw1H00i3P+8M/wA6P9kX834B/tj/AJV95jyfFbw4nQXj/wC7EP6tVaT4u6KP9XZXrf7wUf1NdVH4W0CL7mjWA9/s6/4Vaj0fTIv9Xp9qn+7Eo/pRz4VfYf3h7PFv7aXyOCf4wWmcRaRO595QP6Gmf8LVvZf+Pfw3Mf8AtoW/ktekpBDGMJEij2UCn7VH8I/Kj22HW1P8WHsMS96v4I8y/wCFh+KJf+PfwtIf+2Mrfyo/4S/x7P8A6vw4ifW3cfzavTsUUfWaS2pr8Q+q1XvVf4HmP9rfEuf/AFemRx/8AQf+hGjHxSm6tHEPpD/QGvTqKPra6U4/cH1NvepL7zzH+xviVP8Af1WOP/trj+S0f8If49m/13iXb7Jcyf4CvTqKPrs+kUvkH1GHWUn8zzH/AIV14km/4+PE8nv8zt/Wj/hU1zJ/x8eIZH/7Yn+rV6dRR9er9Hb5IP7Pw/VX+bPNk+ENn/y11a5b/dUD/GrKfCPRR9+9v3/4Gg/9lr0CipeNxD+0UsBhl9g4iP4VeHE+8Lp/96X/AAq1H8NPCydbB3P+1O/+NdbRUvFV39t/eWsJQX2F9xzcfgLwxH00mI/7zM38zVqPwh4dj+7otif96FT/ADraoqHWqPeT+8tUKS2ivuM6PQdHi/1el2af7sCj+lWo7K1i/wBXbRJ/uoBU9FQ5Se7LUIrZDdi/3R+VLgegpaKkoKKKKACiiigAooooAKKKKACis/VNd0zRYvM1C9ig4yFJyx+ijk1wt/8AE65v5zZ+GtLluJTwJJFJP1Cj+ZNb0sNUq6xWnfoc9XFUqWknr26no800VvE0s0iRxqMs7sAB+JryjUfGVhofjq91HTSt/DdQKjpGSo8wcDnHP4etWIfA/iXxLKtx4l1R4Y858hTuI+gHyr+tdpovg3RNCCta2atMP+W0vzP+Z6fhW6jQo35nzPstvvFTxOLakqS5VJWd9Xb0OI3ePPGX3R/Zdg/1jyP/AEI/yrc0b4YaPYFZb9n1CfqfM4TP+73/ABzXc0VEsXO3LD3V5f5kQwVNPmqe8/P/ACI4YIbaJYoIkjjUYCouAKkoorkOwKKKKACuC8XfDd/Fniqw1eXVRDb2mwfZvI3bgG3H5twxn6V3tFHVPsHRoRQFUKOgGKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwrwoPsn7QmrxdPMe4/Uhq774p+Kf+EZ8HzeU2Lu9zbw88jI5b8B/MVwsK/ZP2lHHTzST+cOaj8UCT4i/F6DRIDu07TDiYg8YBHmH8T8v4VKXNCEO6/wCHKb5Zyk+n9I5Cy0R/DXiLwVdTArNetFcSZ7bpSB/47ivpDxFrEWgeHr7VJiNtvEXAPdv4R+JxXlHxriWy13wrdooVY3KjHYKykfzqx8a9ZluYdJ8LWJLXF66ySKvfnCD8Tk/gKpvmhZdW0JK07vshnwR0aW7n1PxXegtNcyNFEzdTzlz+eB+Br2asrw1osXh7w5Y6XCBtt4grH+83c/ic1q1UrbLZEq71fUK5vXfHGiaCGSa5E9wP+WEHzNn3PQVy/jG38danqdxaWEEi6aDiPyZETePckg/hXL2nw98WQzrMtjCrjkea6OPyORXfQwlJpSqzXpc82vjKybjSpv1t+Rvt4g8ZeM2MejWp0+xbjzs7eP8AfPX/AICK19F+F+n2ri51eZ9QuSclTkJn6dT+P5VmroPxHkUL/asMKjgAS7cf98rTv+EN8dzf67xMVHotzIf6CtpSSXLTnGK8t/vMIRbfNUpym/O1vuPSoLeG1hWG3iSKNRhURQAPwrm/iFafavBd6R9+DbMh9CCP6E1zP/CuPEM3/Hx4nk/N2/8AZqP+FSTS/wDHx4gkk9f3J/q1c0aVGMuZ1fwZ6WHxuIo1Y1I0fhae6Wx3el6tbXOjWV1LcwoZYEc7nA6gGpH1zSI/9Zqlkv8AvXCD+tcNH8IbIACTVbo/7qqP8asp8I9EX795fv8AV1H/ALLUunhr/G/uInWxMpNxppfM6eTxX4fj+9rFl/wGUH+VVZPHfhiP72rw/wDAVY/yFZcfwr8OJ95bl/8AelP9Ksx/DXwsnXT2Y/7U7/40Wwi6y/Anmxj6RXzY6T4keFk6agz/AO7C/wDUVVk+KfhtOjXT/wC7F/ia0o/AfhmPppMJ/wB4k/zNWo/CXh6P7ui2P4wKf5ii+EXSX4BbGPrFfeczJ8XNCX7lrft9UUf+zVWk+MGnj/V6XcN/vSAf413EehaTF/q9Ms0/3YVH9KtR2ltF/q7eJf8AdQCj2mGX2H94eyxT/wCXiXyPOP8AhbUsv/Hv4emb0PnE/wAlpP8AhZHiGX/j38Lyn/gEjfyFembF/uj8qXAHYUe3oLal+LD6viHvV/BHmX/Ca+OZv9V4ZCj/AGraQfzIo/t34kT/AOr0eOP/ALZgf+hNXp1FH1mC2poPqlR71ZfgeY+d8UpukUcI+kP/ANej+zfiZP8Af1GKP/gaj+S16dRR9c7Qj9wfUl1qS+88x/4RX4gzf6zxEqA/3bmQfyWj/hAPFc3/AB8eJ5P+/kjf1r06ij67U6JL5IPqFLq2/mzzH/hVeoS/8fHiSRvUeUT/ADanp8IYP+Wus3Df7sYH9TXpdFL69iP5vwQf2fh/5fxZ56nwi0gf6zUL9voyD/2WrEfwo8PJ957x/wDelH9BXUya/o0V19lk1ewS4zjymuUD59MZzWjnIyKl4yu/tMtYHDr7COPj+GPhdPvWcr/707/0NWo/h94Xj6aUh/3pGP8AM101FQ8TWe8395awtBbQX3GFH4M8OR9NGsz/AL0YP86tR+HNEi/1ekWK/wC7Ao/pWnRUurN7yZao01tFfcVY9OsYv9XZwJ/uxgVYEaAYCKPwp1FQ23uWklsJtA7CloopDCiiigAooooAp6tp0WraVc2E4+SdCufQ9j+Bwa4H4aajNp97f+GL07ZYHZ4gfY4YD+f4mvSq8w+IFpLoHiXT/FNmpwXCzAdyPX6rkfhXZhXzqVB9dvVHDi06co4hfZ39Gen0VBZXcV/ZQ3cDBopkDqR6EVPXI1Z2Z2p3V0FFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFV7y+tNPgM95cRQRD+KRgBTSb0Qm0ldligkAZJwBXn2rfFOyik+zaLayX9wThWIIUn2HU/pWWNF8b+MTu1S6OnWTf8svu8f7g6/8AAjXVHByS5qr5V57/AHHJLGwb5aS5n5bfedbrXj/QdF3Ibn7VOP8Allb/ADc+56CuTbxN4y8XMY9EsTY2jced04/3z/7KK6fRfh1oWkbZHgN5cDnzLjkA+y9K6xVVFCqAAOgAqva0KX8OPM+7/wAifZYir/Elyrsv8zzvS/hZC0v2rXr6W9nY5ZFYhc+56n9K7uw0yy0yAQ2NrFBGO0agVaorCriKlX42b0sPSpfAv8wooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+ffiHqf/AAjfxm/tcD5ktg6e7GIqP1xXX/BPQHttCudfulJutSkJVm6+WD/U5P5Vb8d/Cn/hNNfi1MasLQLCsTR/Z95bBJzncPX0rv7Cyh03T7eyt1CwwRrGgHYAYohpHXf9Ljnq1Y8p+PsP/El0e5H/ACzuWXP1AP8ASsjwBE/jn4oXniS4UtaWCjydw4zjag/IE/WvTPH3g3/hNtDi04XotGjnEokMXmdARjGR60/wL4Oh8FaD/ZyTi5leQySz7Nm8npxk4wMDrRDRtv5fgE9Ukjp6KKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV478QhL4S+JWieKomZbS5YRXIB4yPlP/AI6Qfwo6pdw6NnsVFePapc3nxU8XrpemzPH4a05wbqdGwJm9Ae/oPzr1y2torO1itoECRRKERR2AoW12D3sS1Q1rWLPQNIuNTv3ZLaAAuVGTycDA+pq/XE/Fr/kmuq/SP/0NamTsrlRV3Y6rStUtda0u31GycvbXCB0JGDg+oq5XJfDL/knOi/8AXAfzNdbWk1aTREXdJhXnvxc8R3ejeHbew012S+1OXyEZTghe+Pc5A/GvQq8X+MuoLY+MPC80qNJFbt55jXq2HHA/Kodm0ns2WtLtdDVh+CWgHw75cxuH1Vosm6Ezf6zH93OMZ9q3PhfbeIbDwy2n+IbeWOS2lKQNI4YtHjjkE9Oa5y8uvi49q2s240+G2C+YNOCq0gXrg5Xk4/2q67wB4zTxnoRuniEF5A/l3EQ6BvUexqlfX8iHsvzOsooopDCiiigAooooAKKKKACiiigAooooAKzPEOkR65oV1p7gZkT5Cf4XHIP51p0U4ycWpLdEyipJxezPPPhfq8n2a60C7JW4snJRW67c8j8D/MV6HXlni+F/Cfjmy8RW6kW1y2JwOmejD8Rz9a9QhmS4gSaNgyOoZSO4NdWLim1VjtL8+pyYOTinRlvH8ug+iiiuQ7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimySRwxtJK6oijJZjgD8a43WviZommbo7Vmv5xxti4TPu3+Ga0p0p1HaCuZVa1OkrzdjtKxdZ8V6NoSkXt6glH/LFPmc/gOn44rhPtXjvxlxbx/wBl2Dfxcx5H1+8fw4ra0b4XaVZsJtTkfUJ+pD/Kmfp3/E10/V6VP+NLXsjm+s1av8GGnd6fhuZVx8QNd1+ZrXwxpTgZx5zruI/9lX8c0+z+G2patOLvxPqssjnkxRtuP03HgfQCvSLe2gtIVht4Y4o1GAiKAB+VS0ni+RWox5fxf3gsHzu9eTl5bL7jL0nw5pOhx7bCyiiOMF8Zc/VjzWpRRXLKTk7ydzsjGMVaKsgoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIfi/qp1xovB+k2ovL9c3U5HPkqqk4+pH9PWvU9U+3/2ZcDSxCb4oRD57FUDepwD0+lcr4B8Ey+Goru+1aaO71q+ctcTqSwAz90EgH3pNcw07amf8Fr2zuPAccFvCkU9tKyXAXqzZyGP1BFei1554Q8Eax4T8Z6rcwS2jaHfOWEQkbzE5JXjbjuR1r0OrbvZ9yUrNo888YeF/HGq641zofiYWVkUULBvZNpA5+6Oeea4Lxl4S8e6b4VvLvWPE/2ywTb5kHnO27LADgjHXFfQFcV8WgT8NdWwM8R/+hrWUtImkdZI858KeEPiBf8AhiwutK8U/ZbGSPMUPnuNg9MAYrvPBnhnxrpGsNca/wCJBfWZjK+RvZ8t2PzDitP4Zgj4daLkY/0cfzNdZW0tJMyjrFBXjfxkgVPFnhO8lH7jzwjk9OHU/wAjXslc1448IW/jLQGsJJPJnRvMgmxnY/8Agaz2al2Za1TT6nRqR5YPG3FeR/BcBtZ8WSwj/RmuVEeOnV/6EU3+x/i2dP8A7DN9YfZSvlG83Dds6dcZ6e2feu+8F+E7bwdoCadC/mys3mTzEY8xz1P0qktWxX0sdFRRRSAKKKKACiiigAooooAKKKKACiiigAooooAw/FuiLr/hy5swoMwHmQn0cdPz6fjWB8MNba90V9LuGP2mxOwA9Snb8uR+Aru68q1pT4K+I8GqRjbYX5/eY6DJ+b8jhq7cP+9pyovfdepw4n91VjXW2z9P+Aeq0UisHUMpyCMg0tcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXNa1470LRNySXQuJx/wAsrf5jn3PQfnXIv4s8X+K3MWgaebS2PHnnrj/fPH5DNdNPCVJrmei7vQ5amMpQfKtX2Wp6LqWs6do8Pm6heRQLjIDN8x+g6muE1D4oSXc5s/DmmS3Ux4EjqT+IUf1NO034XLNN9q8Q6hLeTNyyIxwT7seT+ld3p+k2GlQCGxtIoE9EXGfqe9af7NS/vv7kZ/7VW/uL72ecR+DPFXiiRZ/EWpNbwk5EIOSPoo+UfrXZaL4J0PQ9r29osk4/5bTfO34en4V0NFZ1MVUmuW9l2WhpSwdKD5rXfd6sOlFFFcx1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUyaGK4haGeNJInGGRxkEe4p9FADIoo4YliiRUjUYVVGAB7Cn0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcz470L+3fDM6IubiD99F65HUfiP6V01FXTm6clJdCKlNVIOEtmcd8ONdOr+G0t5mzc2R8p89Sv8J/Lj8K7GvKf+RH+Jn9zTdR/IBj/Rv0r1YHIyK3xcEp88dpao58HUbhyT+KOjCiiiuU6wooooAKKKKACiiigAooooAKKKKACiisjWPE+j6Ep+3XsaSDpEp3OfwH9aqMZSdoq7JlOMFeTsjXqG6vLaxgM11PHBEOryMFH615tdfEXWNbma18L6TIT08513Ee/wDdX8c0tr8OtX1qcXfifVpGJ58mNtxHtk8D8BXUsIoa1pcvluzjeMc9KEebz2X3mhq/xS063c2+k28l/cE4UgFUz7dzWR/Znjnxkc38/wDZti3/ACz+5x/ujk/8CNd9pHhjR9DQCwso0fHMhG5z+J5rXp/WKdP+DHXu9WH1arV/jz07LRf5nH6L8N9D0orJPEb64HO+flc+y9PzzXXIixoFRQqjgADAFOormqVZ1HebudVOjCkrQVgqrqWoQaTplzqFySILeMyPt64A7e9Wq8Q8faZ8SbvQL2XVL7T10qEb5IrdtpZQeM/Lz24zWMnZG0Vdnrnh/XbTxJosGq2Syrbz52iVQG4OOQCfSrl5eW+n2ct3dzJDbxLueRzgKK5D4S/8k20r6P8A+hmsL403k0tnougwuVGo3YWTHcAgD9W/SrmrS5V3sTDVXZc/4Xd4P+2/Z997szjz/IGz69c/pXoFle22o2cV3ZzJNbyruSRDkMKxpPB+jTeF/wCwzYQC28nYo2DKnH3s+uec1xHwQvZl0/V9FlcsLG5+QE9Ac8fmDQrXa7A9kz1eiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBx/xH0L+1/Db3ES5ubLMqY6lf4h+XP4Va8Ca7/bvhmCSRs3MH7mbPXI6H8Rg10rKGUqwBUjBB715VozHwV8R59LclbC/I8snpz9w/nla7aX72i6fWOq/U4K37mvGr0lo/wBGerUUUVxHeFFFFABRRRQAUUUUAFFU9R1bT9Jh86/u4rdO29uT9B1P4VwmpfFETTfZPD2nS3k54V3U4/BRyf0ralh6lX4UYVcTSpfG9e3U9Fd0jQu7KqKMlmOAK5DWviToWlbo4JDfTj+GD7ufdun5ZrnU8JeLvFbibX9RNpbE5EIOT/3yOBXX6L4F0LRNrxWonnH/AC2n+Zs+3YfhW/s6FL45cz7Lb7zD2uIq/wAOPKu73+4446l468YnbZQHTLFv4+UyP94/Mfw4rX0f4W6bbOJ9Wnkv5+pBO1M/TqfxNd8AAMAYFFTLGTty01yry/zKjgoX5qr5n5/5ENraW1lCsNrBHDEvRI1CgflU1FFcjd9WdaSWiCiiigYUUUUAFcv8Rf8Aknutf9e/9RXUVy/xF/5J7rX/AF7/ANRUVPhZUPiRR+Ev/JNtK+j/APoZrlvizk+OvBw7faF/9GLXU/CX/km2lfR//QzWB8ZYGtZvDmu7SYrK8HmkdhkEf+gmtZ6VU/MiGsGvI9UH3RXj/wAHM/8ACUeLPTzx/wChNXqc2rWcGiPqrTp9kWHzvMDcEYz1rzP4IW0ktrrerupC3d1hCe4GT/M1Mfifkv1Q38C82j1qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhfidojX2iJqluCLmxbdleuw9fyOD+dd1TJoo7iGSGVQ0cilWU9weCK1o1HSmproZV6Sq03B9TG8I62uv8Ahy2vMjzguyYDs46/4/jW5XlnhCWTwn45vfDtwxFvctmEnpnqp/Efyr1OrxVJU6nu7PVehnhKrqU/e3Wj9UFFFRXFzBaQtNczRwxL1eRgoH4mudK50t23JaK4TWPijpVmxg0yKS/nzgFRtTP16n8qxfsnjrxlzcyf2ZYP/BymR/u/eP411xwc7c1R8q8/8jjnjYX5aa5n5f5nZ61420LQwyz3ayzj/ljB87fj2H41x8njLxV4pcw+HdNa2gJx55GT/wB9HgfhzW/ovw00TTCst0rX9wOS033c+y9PzzXYxxpEgSNFRAMBVGAKr2mHpfBHmfd7fcT7PE1v4kuVdlv955zp3wvkupvtfiPUpbqZuWjRjg/VjyfwxXdabo2naRD5VhZxQL32ryfqepq9RWFXEVKvxPT8DelhqVLWK179QooorE3CiiigAooooAKKKKACiiigAqhrekw67ot1pdw8iQ3KbHaMgMB7ZBq/RSavowTtqZXhzQbbwzoVvpNpLLJBACFaUgscnPOAB3qxq2k2et6ZPp1/CJbaZcMp/mPQ1dopvXcFpseUn4IWZcQHxBqR04NkWu4flnp+lek6TpNnoemQadYQiK2hXaqj+Z9TV2ii+lg8wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPPPihpEn2a11+0BW5snAdl67c5B/A/wA627Tx1ov/AAj9tqN5exRPJHlogdzhh1G0c9a6G8tIr+ymtJ13RTIUYexrh9M+FGkWk5lvZ5bwA5WM/IoHvjk12wqUZ0lGs37u1u3Y4KlOtCs50Uve3v37lG7+JGp6vO1p4Y0qSRjx5si7iPfHQfiaZb/D7XdfmW68T6rIAefJRtzD29F/DNekWdja2ECw2lvFBEvRY1AFWKTxahpRjy+e7GsG5615c3lsjG0fwpo2hKPsVlGsmOZX+Zz+JrZoorllOU3eTuzshCMFaKsgoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4z4meJdU8KeGo9T0tYWcTrHIJV3DaQf6ik3YaVzs6KwfBeuS+I/CWn6rOEE08eZAgwNwODj8q3SQqliQAOSTVNWdmSndXForyvQPiFrfir4iz6XpkduNGt2YvKYyWKDjOc9Sa9UpdE+43o2gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArj/ijY/b/h1qyAZaNBKP8AgLA/yzXYVR1m0F/od/ZkZ8+3ePH1Uion8LKh8SOC+B979p8BeQTk21y6fgfm/rV74teKf+Ed8HywwvtvL7MMWDyF/iP5cfjXJfAO68tdc09zjy5EkAP4g/yFULnd8T/i+IVy+j6Yef7pVT/7M36VpNc8lHv+XUmHupt9Dt/hD4V/4R/wml3cJi91DE0mRyq/wr+XP416FSKoRQqjCgYApaJO7ElZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfL0mtzeB/FPi20gDLJcCS3iI/hy/X/AL5Jr2H4R+Fj4f8ACaXVwmL7UMTSZHIX+Ffy5/Gn6v8ACXQda8Utr11Peea8iyPArL5bEY4I25wcc813iqEUKowAMAUQ0hZ77DnrLTbcWiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z
|
<image>Find $WR$.
|
8
|
Geometry
|
Geometry3K
|
test
|
21
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGCAfUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5zxLca7pSHU9JCXkCDM9lIvOB/EhHOfUc+wrM0b4oaHqW2O8L6fOeMS8pn2Yf1Artq8l+IvgZLVJNc0qPbFnNzAo4TP8AGvt6jt16dO3DKjV/d1FZ9GcGKdej+9pO66p/oerQzw3MQlglSWM9HRgwP4ipK+Xre7ubSTzLa4lhf+9G5U/mK9E8H3Pj7VVSW1vibHODNegOpx1xkbj+H51tWy101zc6t56GFDNFVly8jv5anrtFR26zLbxrcSJJMF+d0TaGPqBk4/OpK8w9ZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNkjSWNo5FDo4KsrDIIPUGnUUAeDeJ/CB0PxZb2iIzWF5MvkHPYsAUz6jP5YroLzw54i8A3T6joE73enZ3SwsNxA/wBtR1/3hz9K9L1PSbTV4YY7pCfJmSeNl4KupyCP5fQ1er0ZZhJximr90+p5kcthGUnF26procv4X8c6Z4lRYg32a+x81vIev+6f4v5+1dRXEeKfh1Z6u7X2lstjqIO7K8JIfUgdD7j9axdI8dar4cvV0jxdby4HC3WMsB6nHDj3HP1rN4eFVc1D7uvy7mkcTOi+TEf+BdPn2PUaKhtbu3vrZLm1mSaGQZV0bINTVxNW0Z3Jp6oKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFI7rGjO7BVUZLE4AHrWJ4W8Rf8JRpsupRWhgszO8drIz5M8anHmYwNoJB456UAblFFFABRRRQAUUUUAFFFFABRRTXLBGKAM+DtDHAJ9zg4oAdVDVtGsNcsza6hbLNGehP3kPqp6g1R8K+JU8TabNM1sbS8tp3tru0Z9zQyKeRnAyMYOcfyqbxL4jsfC2jSanflyikJHHGMvK56Ko9TTUnF3QpRUlZrQ89u9C8R/D26e/0SZ7zSyd0kTDOB/tqP8A0IfpXZ+F/G+meJkEaN9nvgMtbSHk+6n+Ifr7VkWvxHuYNQtIPEXhi+0W2vZBFb3UsgdCx6B8AbCffP5ZIk8T/Dm01OQ3+juLDUFO8bPljdvXj7p9x+Xeu1VqdfSto+/+ZwuhVw75qGsf5X+h3NFeYaP4+1LQL0aR4ut5VZOFutuWx6nH3h/tDn616VbXUF7bJcW0yTQuMq6NkEfWuetQnSfvbd+h0UMRCsvd3W66olooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDhPi3q82m+Cns7RiLrVJlso8HnDZ3fmAR/wKuv0nTodH0ez023AEVrCsS47hRjNec/FV9/i7wBatzFLqgLDJ5xJCP8A2Y16lQAUV45qV1B8PfjTJqVy3k6TrVszyt2VxyTjudyg/wDA61PBWm3PjLxJL491mFkgBMekWsnPlxjjzMevXHuSfSgD0+iiigDMuPEGlWmu2uiT3iJqV0hkhgIOXUZyc4wOh6nnBrTryTxT/wAnDeFv+vEfznr1ugAooqtqN/baVp1zf3kgjt7eNpJGPYAZ/OgDgPi54guYNFk8PaV819eW0s9wR/yytY1LOT6bsFR+PtWh8IP+SW6N/wBt/wD0fJWDY2FzqHgjxd4z1SMrfavptx9njb/lhaiNtij68E+vFb3wg/5Jbo3/AG3/APR8lAygJv8AhHPjc1uuFtPEVmHYdB58YPP5KfqWrW+Iuiahq2j2F1pUS3F7pV9FfJbMcCbZnK/Xn+Y71z3xMY2/xD+H1xHxI980RP8Asl4h/JjXqVAjyfxBquqfEiyt/Dtn4Z1XTke4je9ur+HylgVTkhT3P5H2549YoooAztY0PTtesza6hbrKn8LdGQ+qntXm9xo3iT4d3L3ukStfaSTuljIzgf7Sjp/vD8fSvWaK6KOIlTXK9Y9mc1bDRqvmWkl1RznhnxppfiaIJC/kXgGXtpD831U/xD/OBXR1418Qrfw1Y34m0i4aHVlfLxWn+rU+pIPyN9Py71qeHfiNd6c8Wn+KreaMsoKXTxlW2noWXHI9x+vWuipguaHtKK0fR7/Luc1PHck3SrNXXVbfPseo0VHb3EN3bpPbypLDIMo6NkMPY1JXn7HpJ3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK4/QfEH/CR+NNQNs+7T9Pg8qMjo7swy/8A46QPb612FaVKbpvlluZ0qqqLmjsFFFFZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmfxjga3sNB15QcaXqUcjkZyqkg5/NV/OvS1ZXUMrBlYZBByCKz9e0e38QaDe6Tc/wCquoihOM7T2b6g4P4Vyvh4azrfgCbQZLx9L1myzYT3LQFzheA6crncuPmz1zQB5/8AFK+u/HN1fpo8CS6X4ajZ7i5x/rJGIDBT6AAn0+Un0r2DwfqsGt+ENK1C2RI45LdR5aABUZflZQB2BBH4VD4c8H6d4d8JjQI1E0MkbLcyFcGdmGGJHbI4x2AAqv4E8IS+CtGm0xtUN/C0xliJg8sx5AyPvHPTPbvQB1NeVXfwz8ZTXk0sfxF1JY3csq75RgE9MB8D8K9VooA+btY8H6/afE/R9Fn8VXdxqNzbh4dRZ5N8K5k+UEtn+FuhH3jXbf8ACr/Gv/RR9S/7+zf/AByr/iLRNTufjj4b1SGymewhsystwqEohBlJBPQH5lx65r0ygZXsLeW0062tp7lrqaKJUkncYMrAAFiPUnmuZ+I/hvVvFfhlNL0m5t4Ha5SSb7QzKjxqCdvyqT97YfwrrqKBHj+v6T8Ubfwrqn23WtCbT47KXz4oYyGMQQ7lX90MHbkDkVo/BSDXl8JW813dWr6K6OLKBB+8RvNfeWO3uc45Neg61p39r6FqGmeb5X2y2kt/M27tm9SucZGcZ6Zqh4S0BfCHhO00drv7StoJCZ/L2bgzs/3cnGN2OvagDj/F0Z1f4y+ENOQ5+wxSXsnoozx+ZjA/EV6bXDeBrCfUdZ1jxjewyRS6k/kWcUq7WjtkOBkHkFiASPYV3NABRTZJEhjaSV1SNRlmY4AHqTXnuvfEsNcf2b4Zga9vHOwTbCVB/wBlerH36fWtaVCdV2gjGtXp0VebOy1nXtN0C0+0ajcrEp+6nVnPoo6mvObnxH4m8eXD2OgW72Wn52yTE7Tj/acdP91efrV3Rvh1d6pd/wBq+LbqSed+fs4fJ+jMOg9l/OvRra2gs7dLe2hSGFBhURcAD6V081HD/D70u/Rf5nLy18T8fuR7dX69jlvDPw/0vw/suJQLy/HPnSLwh/2V7fXk/StzWtB07X7I2uoW4kX+Bxw6H1U9q0qK5pVqkp87ep1xoU4Q9mo6Hkk+l+JfhzcPd6ZKb7SCcyIQSAP9pf4T/tD8fSu68NeMdL8TQgW8nlXYGXtpD8w+n94e4/HFdCRkYPSuB8TfDiG7l/tHQHFhfqd+xTtRj6jH3T9OPp1rp9rTxGlbSXf/ADOT2NXD60dY/wAv+R31FeZ6H8Qr3SrwaR4tt5IZkwouSvP1YDqP9of/AF69JhmiuIUmgkSWJxuV0bIYeoIrnrUJ0n723fozpo4iFZe7v26ofRRRWJuFFFFABRRRQAUUUUAFFFFABRXI678RtF0PVX0zyb/UL2MBporCDzTCD3bkAfzra0DxDpnibS01HSrgTQElWyMMjDqrA9DQBqV598SvFyabYNo9lMPttwuJip5ijPb2J/ln2rS8ceNIvDVmbe2ZJNTlX92h5EY/vN/Qd68LnnlubiSeeRpJZGLO7HJYnqa9TAYNzaqz26eZ5GY45QTpQ3e/keufB+12aLqN3j/W3Ajz67Vz/wCz16PXDfCf/kT3/wCvp/5LXc1y413ry9TswKth4W7BRRRXKdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVNS1Sy0i0a6v7mOCFf4nPX2A6k+wppNuyE2krst1zfiXxvpPhtGjlk+0XmPltoj83/Aj/AA/jz7VyF/4113xbdtpnhS0lih6PcHh8epPRB+v8q2/Dfw2sNLYXmqsNQvidx3jMaN7A/ePufyFdiw8KS5q7+S3+fY4XiZ1ny4dafzPb5dznY7DxV8RpVmvpDp+j53ImCFYey9XPuePT0r0LQfDGl+HLfy7C3AkIw878yP8AU/0HFbFFZ1cTKa5VpHsjWjhYU3zy96Xd/wBaBRRRXMdQUUUUAFFFFAGXrfh/TfENp9n1C3DgfckXh0Pqp7fyrziax8S/Da4a4sZDf6MWy6EHao/2h/Cf9ocdM+let0hAYEEAg8EGuijiZU1yvWPZnNWwsaj51pLuv61MHw34w0vxNCPs0nl3QGXtpDh19x/eHuPxxW/Xn/iP4bxzT/2l4dl+wXyHeI1bajH/AGSPun9PpVXQviJc6fd/2R4sge3uEO37Ttx/32B/6EOP51rLDxqLnoO/l1X+ZlHEypPkxCt2fR/5HpVFMhmiuIUmhkWSNxuV0OQw9QafXEdwVyvxD8T3XhHwlNqtlHBJcrKkaLOCU5POQCD0z3rqq8w+Nt3DDoGjQXBIgl1SNpsDJ2KrZ4/GgBy6v8X2UMPD2ggEZwXIP/o2u8sry6g8PxXuuLDbXMdv5t2Iz8kZAy2OTwOe5rgrj4uz6dNHNq3g7VrDSpWCpeSg557lSoA+m41t/EXVIW+FWrX9pOskFxaqI5FPDLIyqMfUNQBy+n618RfHUc+r+Hrqx0jSVkZLWO4jDPOFPUkq30JGOeOcZrqPh14vu/FGnXsGq26watps/wBnukQYBPODjschgR7Vyfh34hQ6D4R0nTdJ8P6nrAtbSNrua0iPlQsy72BYA8jJz0+tdx4L8RaB4nsbjUtFt47eZ3AvI/KVJA/J+fH3upwfr70DOO0XxFp3w78QeJLLxOJrWS+1CS9t73yWdbiNui5UHkc8dixrX+GkE1xfeJPEC2ktnp2q3ayWcEi7SVUEGTHbcTn8K7940kADorAHIDDPNOoEYF94d8OwNeavfadBK4DTTST5k4AyeGJHQcDpXmPh3wm3jS31vUztt3LkWqqMIr53bcD+EDA/H2rsvinrBsvDsenRE+dfvtIHXYuCf12j8TXReFdHGheGrKxK4lVN0v8Avty35E4/CvRhVnRoc99W9PRf1Y8ypRp1sR7O2kVd+r/q5ifDC2ms/DE9tcRtHNFeyI6N1UgLkV2lIqKpYqoBY5YgdT0yfyFLXFVqe0m59zuo0/ZU1DsFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUEgAknAHUmsTxB4r0rw3BuvZ8zEZS3j5kb8Ow9zXn7T+K/iPIUgX+ztFJwTkhWHuern2HH0rppYaU1zy0j3f8AWpy1sVGm+SK5pdl+vY6DxJ8SrPT5DY6NGNQvidgK5Mat6cfePsPzrJ03wLrPia7XVPFt3KqnlbYHD49PRB7Dn6V2HhzwbpPhqMNbxebdY+a5lALn6f3R9P1roa0eIhSXLQXze/8AwDJYadZ82IfyW3z7lWw06z0u0W1sbeOCBeiIP1Pqfc1aoorjbbd2dySSsgooopDCiiigAooooAKKKKACiiigArJ13w5pniK08jUIAxA+SVeHj+h/p0rWoqoycXeLsyZRjNcsldHkj2vib4aztNbMdQ0UtllIO0fUdUPuODxn0rvvDnizS/EsG6zl2XCjMlvJw6/4j3FbjKGUqwBBGCD3rz3xH8Nw1x/afhqU2V6h3iFW2qT/ALJ/hP6fSuz2tPEaVdJd/wDM4fZVcNrR96Pbt6f5HodYmt3XhtNQ0211v7A13LKPsKXUau2/IHyZBwclentXJaB8RZrO5/snxXC9tdIdv2gpgH/fHb6jj+daPxB8ITeMdNsL3R7yOLU9Pk+0WcpOUbODjIz/AHVIPPT3rnrUJ0naX/AOqjiIVleL+XVGr4+gguPh/r6XCqUFjK43f3lUsv8A48BXm0C3F7+zHKsmSUQlCeSUS5z/AEI/Cr2q6f8AFLxdp39g6lZabptnIQLm8jlBMqg+gYnt0wM+wr0a28N6fb+FF8OBGawFqbZgT8zKRgn6nJP1rE2Mv4a28Ft8OdDW3UBXthI2O7MSWP5k1yHgiP7H8bvF9paKEs2i8x1XoJNyH/2Z6TTNL+Jngq0bQ9GtNO1fTVdvs1xNIEaJSc8guvck457810/w+8GXHhmC+v8AVrhbrW9Tk826lXovJO0fiSSeP0oGdpRRWR4o1caF4bvb/IEiJti93PC/qc/hVRi5SUVuyJyUIuT2RwTf8Vh8WgB89jpf5HYf6ufxAr1SuC+FekG08Py6nMCZr6TIJ67FyB+Z3H8q72unGSXP7OO0dP8AM5cFF+z9pLeWv+QUUUVyHYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVx3ib4iaZoRe2tcX1+OPLjPyIf9pv6Dn6VpTpTqS5YK7M6tWFKPNN2R1V3eW1hbPc3c8cEKDLPI2AK851b4hahrV2dK8I2kkkjcG5KfNj1UHhR7t+QqtaeFfEfje5S/8AElzJaWWcpbgbWx/sp0X6nn616PpOi6fodoLbTrZIY/4iOWY+pPUmuq1HD/F70vwX+Zx81fE/D7kfxf8Akcb4f+GkUc39oeI5jf3rncYmYsgP+0Ty5/T6136IsaKiKFRRgKowAKdRXNVrTqu82dVGhToq0EFFFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGRr/hrTPEdp5N/AC4H7uZOHj+h/oeK86aLxP8NJy8ZOoaIW5HO0fUdUPv0PvXrlIyq6MjqGVhggjIIrpo4mUFySV49n/Why1sLGo+eL5Zd1+vcxfD3inTPEtt5llNiZRmS3fh0/DuPccVt1534i+HBS4/tXwvKbO9Q7hArbVJ/wBg/wAJ9un0pvh/4jyQXP8AZXimFrS7Q7PtBTaCf9sdvqOPpVyw0ai56Duu3Vf5mcMVKnLkxCs+/R/5Ho1FNR1kRXRgyMMhlOQRTq4zuCvMfiXdS6trWleGLQ5eRxJJjkAt8q5+g3H6GvS5ZUhieWRgsaKWZj0AHJNeYeA4n8R+NdU8TXCkpGxEO7sW4A/BBj8RXZhFy81Z/ZX4vY4ca+floL7T/BbnplnaxWNlBaQLtihjWNB6ADAqaiiuNu+rO1KysgooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMlljgieWaRI40GWd2ACj1JNAD6zNa8QaZ4ftfP1C5WPI+SMcu/+6O/8q4vXviU01x/Zvhe3e7umJUT7Cwz/sL/ABfU8fWsTwP4ftvGV3d6nrl7NdzwSANAzH5gRwSeuOowMdK7oYPlj7Stol06/wDAPPqY3mn7Khq316f8EtXGu+J/H872eiQNY6Zna8xYrkf7T/8Asq/rXW+GfAOleHQs7L9rvh/y3lXhT/sr2+vX3rp7e3htYEgt4kihQYREUKqj2AqSs6mKbjyU1yx/rdmtLCJS9pVfNL8vRBRRRXKdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWN4g8L6Z4ktvLvof3qjEc6cOn0Pp7HitmiqjOUHzRdmTOEZrlkro8kJ8TfDScA51DRC3vtX/AOIP6H3r0Lw/4o0zxJbeZYzfvVGZIH4dPqPT3HFa8kaSxtHIiujDDKwyCPQivO9f+HMkF1/avhWZrS7Q7vs4faCf9g9voePpXZ7SliNKnuy79H6nD7OrhtaXvR7dV6f5Gn8TNZ/szwpJbRvie+byR67Orn8uP+BVpeCNG/sTwpaW7LiaUefN/vNzj8BgfhXmtlPqvjjxrptlrEag2GftCBNvCtltw7EnapxXtdGIj7GlGj1er/QMNL29WVfotF+oUUUVwnoBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVLVNWsNGs2utQuUgiHQseWPoB1J9hXnF94x8QeMbt9N8LWstvbdHuDw2PUt0QfTn+Vb0cPOrqtF3exz1sTClo9X2W51vibxzpXhtWiZ/tN8BxbRHkf7x/h/n7VxkWleKfiHKtxqcpsNJzuSPaQCP9lerH/aP4eldJ4a+HGnaOy3WokX9997c4zGh9gep9z+ldtW/tqdDSirvu/0Rh7CriNa7tH+VfqzJ0Lw1pfh228rT7cKxGHmbl3+p/p0rgLb/ijviw8B+Sx1P7voN54/JwR9DXqtcD8VNIN3oUOqQgiexfJK9djEA/kdp/OlhajlUcaj+LT/ACHi6ShSU6a1hr/md9RWR4Y1ga74csr/ACDI6YlA7OOG/UVr1ySi4ycXujshJTipLZhRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWfruqJouh3moyYxBGWUH+Juij8SQK0K82+KeoS3Mmm+HLT5p7qQSOo787UH4nJ/AVvhqXtaqi9uvoc+Kq+ypOS36epL8KdLddPvNcuctPeyFUdupUH5j+LZ/wC+a9EqppenxaVpdrYQ/wCrt41jB9cDk/ieat0sRV9rUcx4al7KlGAUUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXjvbaa9ns45Va4t1RpUH8AbO3P1weP8AEVkeLfE0HhjRnuW2vcyZS3iP8Tep9h1P/wBevNvBHjK10Ua7qGrTSTXV00TKijLSt8+fYDkV10sJOpTdRL089TjrYyFKrGm36+Wh7OzBVLMQABkk9q4LxF8S7a0lNhoUX9oXzHYHUExqfbHLn6ce9YRbxX8SJMKP7O0Un32sP5yH8hx2rvPDvg/SfDUQNpD5lyRh7mXlz9PQew/Wr9lSoa1dZdl+rI9rWxGlH3Y93+iOO0vwFq3iK8GqeLruXnlbYN82PQ44Qew5+lekWNhaabaJa2VvHBAnREGB/wDXPvViisK2InV327dDoo4anR+Hfu9wrA8X+J4/Cmii8+zvdXM0q29rbJwZZWztX2HBrfrlvHfhu78Q6RbNpsscWp6ddR3toZPus6fwn2OfzArA3MN/GXi3w7cWk/i7RbCLSrqURG4sZSzWpbp5gJII9SP/AKx7+8tYr6yntJ13RTRtG49QRg15rqdp4z8exW2i6voEGi6YsySXs5ullMwU52oF6ZP1+vr6hQnbVA0mrM8x+Gl1LpGtar4Yu2w8bmSPPGWXhsfUbSPYV6dXl3j6GTw74x0vxPbKdjsFmA7leCP+BIcfhXp0M0dxBHNEwaORQ6MOhBGQa7MWuflrL7S/FbnDgnyc1B/Zf4PYfRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhIUEkgAckmvLPCgPiv4kahrzjdbWn+pyOP7qfoCfrXVfELWf7H8JXOxsT3X+jx4PPzD5j/3zn8cUfDzRv7H8JW/mLtnuv9Ik9Ru+6P8AvnH45rtpfuqEqnWWi/U4a373ERp9I6v9DqqKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArP1nWrHQdOe9v5Qka8KByzt2VR3NWrqdre2eVIJJ2UfLFHjcx9BkgfnXn994H1zxbqQvtfv47SEcRWkH7wxr6Z4GfU85/lvQpwk71HZfic9epUirUo3k/u+Z5v4m8RXPibV3vbgbEA2wxA5Ea+n17k1nWEkkN9DLFbpcOjBhFJHvVvYr3Fe86Z8P/AA3pijbp6XL93uv3hP4H5fyFdDBbW9qmy3gihT+7GgUfpXpvMqUI8lOOn3HlLKqs5c9Sev3nPeFPEd5rEKw3uhXenyKvDmIiFgPQnBH0/WumooryKklKV4qx7VOMoxtJ3CvOvjNob6l4MGpW4Iu9KlFwjL1CdGx+jf8AAa9FriPiV4lOlaKNGsYRdaxrANrbW+M8N8rMR6c457n0BqCzktQ8R3PxT/snwzpDvFbSwR3OtXCdIx3jHvn8zj0Net6fYWulafb2FlEsVtboI40XsB/nrXlHwZVtA1jxF4Tvo4l1C3lE3mKOZFHynnqV5Uj/AHzXsFABRRRQBg+MtG/t3wveWirunVfNh9d68gD68j8ax/hfrP8AaXhgWcjZnsW8s567Dyp/mP8AgNdtXlVn/wAUd8WJLY/JY6n930G85X8nBX6Gu2h+8oypdVqv1OHEfuq8K3R+6/0PVaKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKqanfxaXpdzfzn93BGZD74HT8elNJt2Qm0ldnm/i0nxX8RtP0CMlra1P77HTn5n/wDHQB9a9SVQqhVAAAwAO1ebfCywlupdT8R3fzT3MhjVj3ydzn88D8DXpVdeMai1SW0V+PU48EnKMqz3k7/LoFFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyOmeCDb+NbzxTqmo/2heyL5dqnkeWtqnPC/M2eOM8dW9a66igDkbvwP5nxFtfF9pqP2aRIvKuLbyNwnGCud24Y4K9j90V11FFABRRRQAVwHxV0g3OhwarCCJ7GT5mHXYxA/Q7f1rv6gvbSLULGeznXMU8bRuPYjFa0Kvsqin2McRSVWk4dyh4Z1ddd8O2WoZG+SPEgHZxw36g1rV5l8M7uXStX1XwxeNiSKQyR57kHa2PqNpH0Nem1WJpezqtLbp6E4Wq6tJSe+z9UFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnnxW1R006z0S3y097IGZR1Kg8D8WI/wC+a9DryvSP+Kv+KtxqR+ey07/Vnt8vCY+rZb8K68HFKbqS2ir/AORxY2TcFSjvJ2+XU9D0HS00XQrPTkx+4jAYju3Vj+JJNaNFFcspOTbfU7IxUUorZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5b49ifw34z0vxPbodkjBZgvcrwR+KHH4V6fFLHPCk0TB45FDKw6EHkGsPxpo39ueFry1VczIvnQ+u9ecfiMj8ayfhhrP8AafhdbSRsz2LeUc9dh5Q/zH/Aa7Z/vcOp9Y6P06HDT/dYmUOktV69f8ztaKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnvG2s/2J4UvLhX2zyL5MPrvbjI+gyfwrM+GWjf2Z4VS5dcT3zecT32dFH5ZP/AqwvH0r+I/Gel+GLdzsRg023sW5J/BBn8a9OiiSGJIo1CxooVVHQAcAV2z/dYeMOstX6dDhp/vcTKfSOi9ev8AkPorifCep3XijxTrOtLczDRrVvsFjCrkRyleZJSOhOcAH04rtq4juCiiigAooooAKKKKACiioby6isbKe7nOIoI2lc+iqMn9BQBNRWV4b1+18UaBbazZRzR29xv2LOoDjaxU5AJHVT3qHxN4s0fwjYLd6tcGNZDtijRdzyHuFH9en50AbdFcP4e+K/hvxDqiabGbuyu5TiKO9iCeYewBBIyewPWtDx9HqaeGpNT0e5mhvdMYXaxo7BZ0Xl43UH5gVzx6gUAdRRVDRdVg1zRLPVLb/U3USyqM5K5HIPuDkfhXn9nDrnxC1nWrhfEd9o+madevZW8Fg2x3ZOruepzkcf4cgHp9FcV4B1nVLi51vQNZuVvL3Rp0j+1quPOjcEqSP7w2nP4fU9rQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeV2P/ABR3xXltCNljqf3PQbzlfycFfoa9Urz/AOK2kNcaLb6tACJrGT5mXrsYjn8Gx+ZrrwclzunLaWn+Rx42L5FVjvF3/wAz0Cisrw3qy654estQBG6WMeYB2ccMPzBrVrmlFxbi+h1RkpRUlswoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACobu6isrOe6mbbFDG0jn0AGTU1cH8VNXNn4fj02Inzr58EDrsXBP5naPzrWhTdWooLqY16qpU3N9DN+GtrLq+t6r4nu1y8jmOP2ZuWx9BtH411/jjU30fwRrN9GxWWO1cRsOzN8qn8yKn8LaONC8N2VgVAlRN0vu55b9Tj8Kw/i1E8vwv1pYxkhYmP0EqE/oDV4qoqlVtbbL0JwlJ0qST33fqyf4ZWC6d8OdFjVdplg89uOpcl8/kRVrW/GmneH/EOl6PfQXYk1JgsE6qpiDbtuGJYEckdj1FS+CXWTwH4fKnIGnW4/ERqD+ormPjPpK3vgc6kjiO50yZJ4nLYOCQpAPryD9VFc50HS+KPGGm+E47T7alxPPdy+Vb21qgeWQ+wJAxyO/cVvRsXjVmRoywBKNjK+xwSPyNeW/DqxvPGOqHx7rxR3wYNOtwcrCq8M/1J3fmT6V6pQAVxXjjxpd+Fda8NWVtbQzJql0YpmkzlUDIPlwevz989OlT6l8TvB2k6jPYXusiO5gcpKgt5X2sOoyqkfrXmPxJ8ceHNf8AEHhK60zUfPhsLppLlvIkXy1LxHOGUE8K3TPSgD3yiuH/AOFv+BP+g7/5KT//ABFdXpWrWOuaZDqOm3C3FpOCY5FBGcEg8HBHII5oAu15L8RtD+IGoabrMn9sabHoEKST/Z4yyyvEgLbWOzk4HTdg969arD8af8iL4h/7Blz/AOimoAw/hB/yS3Rv+2//AKPkrAmiTxH+0G1rdqJYNFsRLHG4yu4hCDj1zKD/AMBHpW/8IP8Aklujf9t//R8lc94ZRk/aI8UBhg/YM/gfIIoGW/jdpkMnhCLWUUR32n3MbRTrwwVjjGfqQfqK7/SrpdW8P2V3IFZbu1jkYdiHQE/zrj/jP/yTO/8A+usP/owV0vg5Gj8EaAjjDLp1uCPQ+WtAjj/g3cPDpOtaE7EjStRkijz2Qk8f99Bj+NaOpeA9Si1u81Twt4jl0Z79t93AbdZo3fu4DfdJ/wAkVjfCpd/jD4gXKnMUmqYU+uJJj/7MK9SoAwPCnhW38LWM8a3M15eXUpmu7uY/PM57n0HtW/RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFV76zi1CwuLOcZinjaNx7EYqxRTTad0JpNWZ5l8MryXTNU1TwxeHEkMjSRg+oO1sfX5SPxr02vLfHcb+G/G2meJrdT5crBZgO5Xgj8UOPwNenxSpNEksbBo3UMrDoQeQa68WlJxrL7S/HqcWCbgpUH9l/g9h9FFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeV/wDI4fFr+/Y6Z+XyH+rn8QK7zxTrA0Lw3e34IEqJtiz/AHzwv6nP4Vzfwr0c2Xh6TUpR++vnyCeuxcgfmdx/Ku2h+7pTq9dl89zhxH72tCj03fy2/E7yqGt6ZHrWhX+mSEBbqB4snsSCAfwPNX6K4juOH+E9683geHT7hdl5pc0llcR91ZWJGR9CB+BrA1KQ/FHxx/Y0DMfDGjOHvZFJAupuyAjt1H0DHuK7O18MvY+MdQ1a2liFhqcCreWjLndKuQHHbkHBHfrW1YaZp+lQNBp1jbWcLNvMdvEsalumcKBzwPyoA8x+Es8mg694i8E3TktZzme23fxJwCfxHlt+Jr1iqY0rThqZ1Iafai/K7TdCFfNIxjG/GcY461coAw7zwZ4a1G7ku7zQrCa4lOXkeBSzH1J715X8UvDWiaV4k8Gw2GlWltFdXbpOkUQUSDfCMN6/eP517hXLeLPBUPirVNCvpbx7c6VcGYIqbvNBKkrnIxyg5578UATf8IB4R/6FzTf/AAHWtyysrXTrOO0sreK3tohhIolCqo9gKnooAKw/Gn/Ii+If+wZc/wDopq3KZNDFcwSQTxJLDKpSSORQyupGCCDwQR2oA4r4Qf8AJLdG/wC2/wD6PkrC8TzjwN8V7fxZdRSf2RqVr9kup40LeU4xjIHsifkcZxXp1nZWunWqWtlbQ21umdkMMYRFycnAHA5JP40+eCG6geG4ijlicYZJFDKw9wetAHjfxD8W2Pjy30/wn4Wla/uLu5V5ZFjYJGgz13AeoJPYCvWJ5rXw94feaQ7bWwtsnt8qL/gKdp+i6VpO7+zdMs7Pd977NAsefrtArO8W6DceJdLi0tLpYLOSdGvOu6SJTkouOmSBzQBgfCLSprLwadRulAutWuHvX/3W+7+YGf8AgVd9TIokhiSKJAkaKFVVGAAOgFPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5/xro39ueFbu2Rd08a+dD6715wPqMj8ay/hjrP9p+FltZGzNYt5J9dnVT+WR/wGu0rxbULrUvAXju+j0mCOVb3BhhdGYMGOQAFIOQ2VFd2Hj7alKj13X6nn4mXsKsa/R6P9D2mivLP+E38ff9Cv/wCSE/8A8VR/wm/j7/oV/wDyQn/+KqfqNTuvvK/tCl2f3HqdFeWf8Jv4+/6Ff/yQn/8AiqP+E38ff9Cv/wCSE/8A8VR9Rqd194f2hS7P7j1OivLP+E38ff8AQr/+SE//AMVR/wAJv4+/6Ff/AMkJ/wD4qj6jU7r7w/tCl2f3HqdFeWf8Jv4+/wChX/8AJCf/AOKo/wCE38ff9Cv/AOSE/wD8VR9Rqd194f2hS7P7j1OivLP+E38ff9Cv/wCSE/8A8VR/wm/j7/oV/wDyQn/+Ko+o1O6+8P7Qpdn9x6nRXln/AAm/j7/oV/8AyQn/APiqP+E38ff9Cv8A+SE//wAVR9Rqd194f2hS7P7j1OivLP8AhN/H3/Qr/wDkhP8A/FUf8Jv4+/6Ff/yQn/8AiqPqNTuvvD+0KXZ/cep0V5Z/wm/j7/oV/wDyQn/+Ko/4Tfx9/wBCv/5IT/8AxVH1Gp3X3h/aFLs/uPU6K8s/4Tfx9/0K/wD5IT//ABVH/Cb+Pv8AoV//ACQn/wDiqPqNTuvvD+0KXZ/cS/Eq6l1jXNK8MWhy7uJJMdAzcLn6Dcfoa9ItLWKys4bWBdsUKLGg9ABgV4lbz+L4PFMviE+Hbma9fOBJZSlEyMcAYPA4HPSug/4Tfx9/0K//AJIT/wDxVdNbDScIU4NWXn1Zy0MXBVJ1Jp3b7dFsep0V5Z/wm/j7/oV//JCf/wCKo/4Tfx9/0K//AJIT/wDxVc31Gp3X3nV/aFLs/uPU6K8s/wCE38ff9Cv/AOSE/wD8VR/wm/j7/oV//JCf/wCKo+o1O6+8P7Qpdn9x6nRXln/Cb+Pv+hX/APJCf/4qj/hN/H3/AEK//khP/wDFUfUandfeH9oUuz+49TPTjrXDxfEe1sdUm0vX7SSxuYX2tLHl429G9QCORwaxP+E38ff9Cv8A+SE//wAVXH+MNT1jVry3uda0gWE4QorC3kiMig995OcZ7etdGHwN5ctS1n2epzYnMLRUqV7rutGe9WWoWepQCeyuobiI/wAUThh+nSrNfMFnfXenziezuZbeUfxxOVP6V2ei+O/GkjBLaJ9TA/ha1L/qmD+dOrlco6wkreegUc2hLScXfy1PbKK5vQtX8R3xQan4eW0Q9ZftI/8AQOTXSV5s4ODs/wA7nqQmpq6/FW/MKKKKgsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArz74q6S02k22s24InsZAGZeoRiMH8Gx+Zr0Gq9/ZRajp9xZTjMU8bRt9CMVtQq+yqKfYxxFL2tJw7lPw7qya5oFnqK43SxjeB2ccMPzBrUrzP4Y3sum6lqnhm8OJYZGkjHuDtfH/jpH416ZTxNL2dVxW3T0JwtX2tJSe/X1CqOpavYaT9m+2z+UbqdbeBQjMzyN0ACgn8egq9XndhN/wlXxevZ2+ex8Nw+RCO32iT7zfUAMv4CsDoPRKKKKACiiigAooooAKKKKACiuH8eeMNR0e907QPD1vHca7qZPlCTlYk7uR+B9vlJPTFc7deIvHXgPUtOm8VXtjqmkXs4gkkgjCNAx9MKvbJ5znB6UAel3Os6fZ6rZ6ZcXHl3d6GNujI2JNoywDY25A7ZzV+uO+JmmSXvg24vbUlL/AEphf2sqjlGj5P8A47n9K3NC1hfEPhqz1W1wv2qAOAeQj45B+jZH4UAZ+q/EDwroupf2fqGswQ3QOGjCs2w+jFQQv44robe4hureO4t5UmhkUMkkbBlYHoQR1FeR/D/UfCWl+E72x8SyWNvrCTzDU0vwPNlbcfXlxjHAzzn1ro/hFFNH4LkYpLHZSXs0lgkmcrbkjb199x/GgDvaKKKACiiigAooooAKKKKAAnAzXl+peCte8Za9JqOpSLp1n9yCJzvkWMdPlBwCepyepr1CitqNeVFtw3MK+HjWSU9uxy2jfD7w/o21xa/a5x/y1ufn59l6D8s+9dQqqihVUKo6ADAFLRUTqTqO83cunShTVoKwUUUVBoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlvjmN/DPjjTPE0CnypWAmC9yoww/FD+hr1CORJokljYMjqGVh0IPQ1geN9G/tzwrd26LunjHnQ+u5ecD6jI/Gs34Zaz/AGp4VS2kbM9i3ktnrs6ofy4/4DXbU/e4eM+sdH6dDhp/usTKHSWq9ev+Z2deX/BJ/tuia7qrHMt3qshY45+6rf8As5r1CvL/AIKxnT9N8Q6M4w9lqrgg9fuhf/ZK4juOo+Id1rVh4Mvb/Qbo297aATEiNX3Rj74wwI6En/gNc5ffEtk+HOlX9jtuNf1RBBbwKoJM4+V22+gPb3Fdzr+pafpGg3t9qjAWUcR80H+IHjaB3Jzj8a8P+ClnYt40ulv4JUu4LUTadFOchEc5LDPcqykEdiTQB7b4cttWtdCto9cvvtupFd08gREAY/wgKAMDpnvWrRXGeNdX8b6bd2q+FtEtNQt3jJmeY5Ktnpjevb60AdnRXkn/AAlPxg/6FDTf++T/APHqP+Ep+MH/AEKGm/8AfJ/+PUAet0VyngnVPF+pR3h8V6NbaeUK+QYW/wBZnO7I3N045yOvtXV0AeM6v4hsNI+Omo6hqBd107TVjgiiXdJJIwTCIO5Pmn9a2E+Juk6hqVvpXirwveaZHO4Nu2pW4ZC3QEhgMdTzzjPWs+3sIm/aUvJbhQx+xrPDkdGESJn8t1bHxttoJvh1NNKqmWC4iaJj1BLbTj8CaBnoF5bi7sp7ZsYljaM59xivO/gbeNc/Dzymzi1vJYlz6EK/83NdfpF7LD4HsL+7P75NNjmmLH+IRgtn8c1yXwOs2tfh2srKQLq7lmGe4G1M/wDjlAjtL/w1oeqXi3d/o9jdXK4xLNbqzcdOSOa01VUUKqhVUYAAwAKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvKtK/4o/4q3Gnt8llqP+rHQDccp+TZWvVa89+KulPLpVrrVvlZ7GQBmXqEYjB/Bsfma68HJObpy2lp/kcWNi1BVY7xd/l1PQq8+WEeFfi48xG3T/EsIXdnCrdRjgH/AHhnHqWNdd4e1ZNb0Cz1FcZmjBcDs44YfmDT7mz0vX7dBPFDdxQT70J52SoSMg9iDmuaUXFtPodcZqSTXU43xP4d1vxn4xsrG/tDb+FLFvPkYyoTeSDoNoJIHOOQON3cio/FPhbV4viNoHifw/ZCZYh5F9GkiR4jHGcMRn5WYcf3RXo1FSUFFFFABRRRQAUUUUAcF448H6te63p/inwxPDFrVivlmObhJ4+eCf8AgTDnqD1GBWHd+HPHPj+8srbxZa2ek6NbSiWWG3kDtOR9GbHBI6jGSeeK9ZooA4z4kXslr4ROjacgN/qzLp9rEvHDcMfYBM89siuj0LSYNC0Ky0q3/wBVawrGD/eIHJ/E5P41LNpllcajb6hNbI93bKywysMmMNw2PTNW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuR1Pxf4au473RdTuJLSR1aGSOeFgRkYzkAj3Bz7111cl428Fw+J7Tz4NsWpQriKQ9HH91v6HtW+H9nz2qXS7roc+J9ryN00m+z6nmWkeMbrw54f1PR7dw8skv7idDlUByHYfkMfXNel/DMk+B7Qk5Jklyf+BmvDLi3mtLiS3uImimjYq6MMFSO1e5/DI/8UNae0kn/oZr1cxpxjR5o9WvyPHyypOVbll0Tt96Ovooorwz6AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4H4leEhqunnV7OL/TbZcyBRzLGP5kfyyPSm/CO783w1dWxOWguSR7Kyj+oNegVy+heH/8AhHvFGp/ZUxp9/GsyAdI3UkMv0+fI/LtXbGvzYd0pdNV/kcMsPyYmNaPXR/5nUUUUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=
|
<image>Find the value of $x$
|
74
|
Geometry
|
Geometry3K
|
test
|
22
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADQAQkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKwvGXiNfCfhS/1kxCVoFAjjJwGdiFUH2yRn2zQBu0V49eeI/iT4b0G38V6tLpl1prmN57COPa8SORj5sdeQOpwSOvNdB4x8Y6sNS0LQfCiwHUtYjM6z3AysUWM7sfQMe/Toc0Aeg0V5voXiTxTo/ju28KeLJbO8+3wNLaXlsmzlQSVYYA6Ke3p1zXo0kscMbSSuqRqMszHAA9zQA6ivNPC3i/Vdf8Y6xPca3p1roWn3UlsloQgaYDID7zzjoeDjmt34f+Mj4w0WS6uRaw3SzyR+RE+TsXGGwTnvQB11FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVPVNKsNasXsdStY7m1cgtFIMgkHIq5XJ/Em41aDwJqI0O3upr+YLEgtY2eRQzAMQFGfu557UAcj421WTx1fDwB4YVZIFdDqd6BmK3RCCFB7nIH4jHrjvbrTvD+iRwa3fRwQnS7XyY7yX70cYGMZ98kY75rzzwp4oPhLQYNNsfhz4oUqoM0osW3SyY5YnHP9BxSfEifUtZ1rw0s/hvXL3QlgF7d2drbuWMjA7Y3wMArgZHXDGgC54YF94/8AiDF41kt3tdE06N4NNWQYeckEFz7fMf0HODXpt9Y22pWM1leQrNbToUkjboynqK47QfHVxfajZ6WvgjX9Ot2/drLNZmOGFQOM8YA4xXc0AeM/DnwV4c1O78WJe6VDMttq01tCGLfJEDwo56cCr3wP0PTY/D9xq6WiDUPtU1v5+Tny/lO3rjHFbXw0069sL3xc15Z3Fus+tTSwmaIp5iE8MuRyPcVnfCN9R0i3vPDmo6FqdrIlxNcC7ltysDjKgKHPU9+OwoA9PooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIbu4W0s5rh/uxoW+uK52HW9cnhSWOwtijjIJbHH51Z8VTMbOCxjPz3UoX/gI6/ripkRY41RRhVAAHtXm4mtP2nLF2sddKEeS7V7lT+1df/wCfC2/77/8Ar0f2rr//AD4W3/ff/wBertFYe0q/zs05Yfyopf2rr/8Az4W3/ff/ANej+1df/wCfC2/77/8Ar1doo9pV/nYcsP5UUv7V1/8A58Lb/vv/AOvR/auv/wDPhbf99/8A16u0Ue0q/wA7Dlh/Kil/auv/APPhbf8Aff8A9ej+1df/AOfC2/77/wDr1doo9pV/nYcsP5UUv7V1/wD58Lb/AL7/APr0f2rr/wDz4W3/AH3/APXq7RR7Sr/Ow5Yfyopf2rr/APz4W3/ff/16P7V1/wD58Lb/AL7/APr1doo9pV/nYcsP5UUv7V1//nwtv++//r0f2rr/APz4W3/ff/16u0Ue0q/zsOWH8qM2HxPdRazBYahDBEZAG+RskAkgHr0yK6mvMdet2uvH9pAhwzae2PchmI/UV3mhX/8AaOlRSsf3qfJJ/vD/AB6/jXbh5yUuSbvdXX6hjMPGnGE49UaVFFFdhwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUVxOttbSzv92NCx/AUm7K7BK5zlw/27xU56x2Ue0f7x/wD1n8q0ay9Cjb7G91J/rbmQyMfx/wD1/nWpXiKXM3N9dT0Gre72CiiimIKKKKACiiigAooooAKKKKACiiigAooooAyZtEE3ie21r7QQYYDD5WzrnPOc+/pUthJ/ZfiNoTxb3wyvoHH+f1FUrnWLmLxrZ6Soj+zTWplbK/NuBbv+Aq9rFq1xYl48iaE+ZGR1yKubnBxn229DerGbUY1Ho1p6dPxOnoqnpd8uo6dDcrjLr8w9GHUfnVyvXjJSSkup5TTTswooopiCiiigAooooAKKKKACiiigAooooAKwvFU7LpsdpGf3l1IIwPbqf6fnW7XMXj/bvFQXrHZR/huP/wCv9K5cZPlpNLrp/XyNqEbzv21LsUawwpEv3UUKPwp9FFecdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcle/8lQ03/rxb+b11tQNJai8SNnh+0lcqpI3lfYdcdanrScua3kjatU51HS1lb8yhokn9nazcaa3EM/72H2Pcf59K6auV1qJxDHewcT2rCQH2710lpcpeWkVzH9yRQw9vaunBT0dN9NvQ48RHafcmoooruOYKKKKACiiigAooooAKKKKACiiigBk0qwQySucIilmPsK5fQ1aS3mvZB+8upS5+mf8A9daHim4aLSfs8f8ArblxEo/n/h+NEEK29vHCvRFCj8K8zFy5qij2/U66KtC/ckooornNAooooAKKKKACiiigArk/E/jqHQNUt9ItNNutV1WdPMW1tuqrzyTzjoe3btXWVz8fhu0sfF994rlu2EktqIWSTASJBtJOf+A/qauHLf3hSv0IPCvjW28S3F3YyWVxp2p2mDPaXI+YA9x6jp2HUetYlz8U0867k0zw9qWo6bZuUnvoRhBjqRxyB9RxzVTwlMPE/wAT9c8SWSONJW1Fkk+Mec+V5H/fOf8AvmpvEGraV8MfDB0Wx06+nWaKRonwGjVm4+d/qemK15I81ra6aEczte53WkatZ67pVvqVhL5ltOu5Gxg9cEEeoII/CqXirxJbeFNBl1S5ikmVWVEij4LsTwM9v/rVm/DXT003wDpsKXUV0GVpDJC2VyzE4B9uh9wa5r40afdSaFBfLqUyW6zRxG0CjYzEt8+fUdKmMIupy9Ljcny3OrXxgtppul3Gt6bcadc6jci1jtiRIVYnC7jxgHr7V01eN+PfDuq2T+Gln8TXt20moxwo0kagxuWJEg9xnH4V6xpdpPYaZBa3N7JezRjDXEoAZ+epxSnGKSa6hFtuzOevf+Soab/14t/N662sO40a4l8Y2msLJEIIbYwshJ3Ekt04xjn1rcoqyTUbdjsxE4yULPaP6sRlDKVYZBGCKqeHJjZ3d1pMh4Q+ZCT3U9R/L9auVlasHtJrbVIRl7dgHA7oeo/z61nGfs5qfb8jn5eZOPc6yimRSpNCksZ3I6hlPqDT69rc88KKKKACiiigAooooAKKKKACiimyOsUbSOcKoLE+gFAHN6i/27xRFD1js495/wB4/wCR+VX6ytE3Trc38g+e5lLD6A8f1rVrxObnbn3PQa5Uo9gooooEFFFFABRRRQAUUUUAFeUePNag1jxknhO/1dNL0WCFZ76QttadjgiMH6EH8zzgV6vWZd+G9C1C5e5vdF065uHxulmtUdmwMDJIz0GK0pyUXdkyTasjL0bW/DjWH9keF72xeWGBjb28LZ6DqfXk8n3rE8N/EjSNQ8KSP4lvrS31CLzI7u1cbS2CeFQ8tlcDAzzmuxsvD+i6bcfaLDSLC1mwV8yC2RGwe2QM1Bd+FPD1/em8u9FsJ7knLSSW6ksffjn8afNDrcVpHM/B61mt/AaPKrpHPcySwK3aM4A/UE034x/8iQn/AF+w/wBa79VVECIoVVGAAMACoLyws9Rg8i+tILqHcG8ueMOuR0OD3o9p+85x8vu8pwfxWmjth4XuJnCQxaxE7u3AUDkk/gDXfWl3b31rHdWk8c8EgykkbBlYexFMvdPstSt/s9/aW91DkN5c8Ydc+uCMVJbWtvZW6W9rBFBBGMJFEgVVHsBwKlyTil2GlrczJ9baHxXbaN5AKzW5mMu7kY3cY/CtiuSvf+Soab/14t/N662qqRSUbdUdOIhGKhy9Vf8AFhTJYlmieJxlXBUj2p9FZHOV/DFyyRT6ZMf3tq3y57oen+fcVv1yd8503VLXVF+5nyp8d1Pf/PoK6sEMAQcg8giu/B1Lw5Huvy6HPiI2lzLqLRRRXYYBRRRQAUUUUAFFFFABWN4nujBozxp/rLhhEoHv1/TP51s1zOqv9t8S21sOY7VPNf8A3j0/9lrmxc+Wk7bvT7zahG815alq1gFtaxQjoigfWpaKK81Kx0hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV2sbV75L1oEN0ibFlI+YLzx+pqxXJ3rsPibpy7jtNixxnjq9dZWk4uNrvdG1aDgo3d7q/5hRRRWZiQ3Vut3ayQP0dcfQ9jT/DV40+nm1m/19o3lMPbt/h+FPrLaT+yvEEF30guv3UvoD2P8vyNXSn7OopdNmKUeeDidXRRRXsHCFFFFABRRRQAUUUUAI7KiM7HCqMk+grlNHLXMl3qLjm5lO3PZR0/z7VqeJro22iyqn+snIiUeuev6ZqK0gFrZxQD+BQD9e9ebjJ81RR7anXQVoN9yaiiiuY0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5fVtK1aTxfaarp0VsyRWxiJnkKjJLegJ7iru/xT/zw0f8A7/S//EVPNrUcPiO30YwsZJoTMJM8ADPGPwrUraU5JLmS2OqdWajFTittPT7zE3+Kf+eGj/8Af6X/AOIqxoOpTarpn2i4jjjlErxssZJXKsRxn6Vp1g+Ef+QLJ/19z/8Aow0XUoN27CbjOlJ8qTTX6m9VXUbQX1jJBxuIypPYjpVqisWrqzOdOzuP0C/N/paeZnz4f3coPXI7/wCfetSuWt5P7L8SKTxb3w2n0D9v8+9dTXpYWpz07PdaHLXhyyutmFFFFdJiFFFFABRRRQBy+uXEc/iGztXkVYrdfNfccDceg/l+dWvtlr/z8w/9/BU407Q9XlmuUEN06yGOV45S2114KnB4I6Y7U7/hGtH/AOfJf++2/wAa82eFrSnKWmvr/kdca1NRS10K32y1/wCfmH/v4KPtlr/z8w/9/BVn/hGtH/58l/77b/Gj/hGtH/58l/77b/Gp+qVvL8f8h+2p+ZW+2Wv/AD8w/wDfwUfbLX/n5h/7+CrP/CNaP/z5L/323+NH/CNaP/z5L/323+NH1St5fj/kHtqfmVvtlr/z8w/9/BR9stf+fmH/AL+CrP8AwjWj/wDPkv8A323+NH/CNaP/AM+S/wDfbf40fVK3l+P+Qe2p+ZW+2Wv/AD8w/wDfwUfbLX/n5h/7+CrP/CNaP/z5L/323+NH/CNaP/z5L/323+NH1St5fj/kHtqfmVvtlr/z8w/9/BR9stf+fmH/AL+CrP8AwjWj/wDPkv8A323+NH/CNaP/AM+S/wDfbf40fVK3l+P+Qe2p+ZW+2Wv/AD8w/wDfwUfbLX/n5h/7+CrP/CNaP/z5L/323+NH/CNaP/z5L/323+NH1St5fj/kHtqfmVvtlr/z8w/9/BR9stf+fmH/AL+CrP8AwjWj/wDPkv8A323+NH/CNaP/AM+S/wDfbf40fVK3l+P+Qe2p+ZW+2Wv/AD8w/wDfwUfbLX/n5h/7+CrP/CNaP/z5L/323+NH/CNaP/z5L/323+NH1St5fj/kHtqfmVvtlr/z8w/9/BR9stf+fmH/AL+CrP8AwjWj/wDPkv8A323+NH/CNaP/AM+S/wDfbf40fVK3l+P+Qe2p+Zxt5LG3xI0+4DqYVsmUyA/KDl+M9K6n7Za/8/MP/fwVZ/4RrR/+fJf++2/xo/4RrR/+fJf++2/xq54evK22nr/ka1MXTqKKs9FYrfbLX/n5h/7+CsPwndW6aPIHniU/apzguB/y0NdL/wAI1o//AD5L/wB9t/jSL4Y0ZRhbFAPZm/xoWGrKLWn4/wCRKxNNQcNdbfhf/Mr/AGy1/wCfmH/v4KPtlr/z8w/9/BVn/hGtH/58l/77b/Gj/hGtH/58l/77b/Go+qVvL8f8iPbU/MyNWNteWDqlzD5qfPGRIM5FbujX41LS4bjI342yD0Ydf8fxqH/hGtH/AOfJf++2/wAal02PTLeS5tdOeLfC4E8aSbjGxGQGGTg4wa2w9CrTnzStZkVakJRsr3NCiiiu45gooooAKKKKAOO+HX/IP13/ALDt7/6Mrqru8tbC2a5vLmG3gT70kzhFH1J4rzfw5pWvalpWuro3iL+ym/tu9B/0RJsnzD3PT8K838ZfDP4hec13ezTa8i8iSGZpGUeyNyPooNAH0nBNFc28c8LrJFKodHXoykZBFSV5/ofhzxl/wj+m7PGrWyfZYtsDaRETGNg+UknJx05q/wD8I540/wCh9/8AKPD/AI0AdjRXHf8ACOeNP+h9/wDKPD/jR/wjnjT/AKH3/wAo8P8AjQB2NFcd/wAI540/6H3/AMo8P+NH/COeNP8Aoff/ACjw/wCNAHY0Vx3/AAjnjT/off8Ayjw/40f8I540/wCh9/8AKPD/AI0AdgzBVLHoBnivHdOtvG/i/RL7xUfE93o7K8rWenpFiNVToHzjOcYyQfX2r1TSba/sdOWLVNT/ALQuFJLXJgWHI7DavAxXKfEDRvFXiHTCnhjW4ILR4HSa3wM3B9BIASOMjqKAINDvdc+Ifw4029tdYbRdRaU+dcQQBw4QspAUkYB4P1GK5rxVpvjPw99gtrbx/eX+qahOIbWzFmqb/wC8xbccKo5JxXY/CnVLHU/AFkLCy+xpas1vJAGLYcHJOTyc7t341leD3/4Sz4ka/wCJ5fntdNP9maf3Axy7D3P8noA9EtI5YbKCKeXzpkjVXkxjewHJ/E15D4p8Zwat8SbPR4PF0ul6PbwEzy2rFS1wHIMZP4Lx06+teyV5bc6Xp7fH+3hNjbGJtFMpQwrtL+Y3zYx196AJ9J+J1je/EjUNMfWLVtHaKJbEhcb5m2gqDjJ5Jr0uvLdC0vTx8dPEcQsbURw2MDxJ5K4RsRnKjHB9xXpV9DcT2M8VpdfZbh0Kxz+WH8tuzbTwcehoAsUVx3/COeNP+h+P/gnh/wAaP+Ec8af9D8f/AATw/wCNAHY0Vx3/AAjnjT/ofT/4J4f8aP8AhHPGn/Q/H/wTw/40AdjRXHf8I540/wCh+P8A4J4f8aP+Ec8af9D8f/BPD/jQB2NVYtTsZ7+exivIHvIMebAsg3pkAjK9RwQa5j/hHPGn/Q/H/wAE8P8AjXj3ib4f+NdY+I+oPaCe8ljaLdqjILZGPlJyMHHHT5cnigD6SrjvCX/I5+Nf+v2D/wBELWf4T8J+OdKiQar4089B1t/s4n/8iPhqv+EQR4x8aAnJ+2wZPr+4WgDsqKKKACiiigAooooA474df8g/Xf8AsO3v/oyuxrjvh1/yD9d/7Dt7/wCjK7GgAooooAKKKKACiiigAooooAiurdLu0mtpM+XMjRtj0Iwa8l0JfiJ4I0Z/DNl4Zg1SKJ5BZX63SogDEtllJ9STg7fTmvX6KAOL8H+GNQ8IfDyawQrcau6TXDBGADTsPlUE4HZRk074XeHL3wx4GtrHUoBBfNLJLPHvVsEsQOVJB+UL3rsqKACuKm0DU2+McGvC2zpiaSbYz+YvEm9jt253dCOcYrtaKAPOZdJ8TaT8XLzXLDRkv9M1GGC3lm+1JGYFG0M20nLY2k4A5r0aiigAooooAKKKKACiiigAooooAK47wl/yOfjX/r9g/wDRC12Ncd4S/wCRz8a/9fsH/ohaAOxooooAKKKKACiiigCC2s7ayWRbW3igWSRpXEaBdzscsxx1JPU1PRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBDZ21vPPPDbxRy3DBpnRAGkIGAWPc445qeigAooooAKKKKAP/Z
|
<image>Find the area of the trapezoid.
|
678.5
|
Geometry
|
Geometry3K
|
test
|
23
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAESAb4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimTTRW8TSzSJFGoyzuwUAe5Ncnd/EGxa4a00S0udYuh2t1wg+renuARWkKU5/CjOdWFP4mdfTXdI1LOyqo6ljgVxn2bx1rQzNeWeiQN/BCvmy49z0/Iinx/DjTZm8zVr7UdUk/6eJzgfQDn9a09lCPxz+7X/gfiZ+1nL4Iffp/m/wADZufFnh+0JWbWLMMOqrKGI/AZrLk+JXhWPONQd8f3YJP6itO18I+HbML5OjWeV6F4g5H4tk1qR2ltCAIreJAOgVAKV6C6N/NL9GFq76pfJv8AVHJ/8LQ8Mf8APzP/AN+Gp6fE3wsx5vZU/wB6B/6CuvpkkMUv+siR/wDeUGjmofyv7/8AgBy1/wCZfc//AJIw7fxt4auseXrNquf+erGP/wBCxW1BdW90m+3nimX+9G4YfpVC58N6HeHNxpFk7f3jAufzxmsW4+G/h93MtolzYTdpLWdgR+eaLUH1a/H/ACC9ddE/vX+Z11FcUdC8YaR82leIEv4l6W+oJyR/v8k/mKVfHVzpbiLxNolzp/OPtEQ82E/iOn0Gaf1dy/htS/P7mH1hR/iJx9dvvWn3naUVUsNTsdVtxPYXUVxF/ejbOPr6fjVusGmnZm6aaugooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqmpanZ6RYyXl9OsMCDlm7+wHc+1NJt2Qm0ldlskAZPArkNT8bq14dM8OWh1XUOhKH9zF7s3+R71nhda8ftljLpfhw9AOJrof0U/l9e3ZaXpFhotmtrp9skEQ6herH1J6k/WujkhS+PWXbovX/ACOfnnV+DSPfq/T/ADf3HLw+C7zWZVuvFmpPeMDlbKAlIU/Lk/p9TXW2djaadbi3sraK3hHRIkCj9KsUVlOrOejenboawpQhqlr36/eFFFFZmgUUUUAFFFFABRRRQAU10SRCkiqyMMFWGQadRQByWoeArIzm90OeXR78dHtjiM+xTpj6frVSLxXq3h2ZLXxZZ/uSdqalbKWjP+8AOP8APFdxTJoYriF4Z40kicYZHGQR7it1XurVFdfj95zugk70nyv8Pu/pjba5gvLdLi2mSaFxlXRsgj61LXDXfhrU/C9w+o+E3L25O6fS5GJVx3Keh/X69K3/AA74nsfEdszW5aK5i4ntpOHjPuO496U6Vlzwd1+XqOFa8uSatL8/Q2qKKKxNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKqanqVrpGnzX15KI4IlyxPf0A9SelNJt2Qm0ldlfXddsvD2mPfX0mFHCIPvSN2UD1rmdL0G+8UX0eueJ49kC/NZ6aT8qD1cdz/k+lJoOl3XinVI/E2uRlYEJOnWTchF7OfUnr+vpXdV0ykqK5Y/F1fbyX6s5oxdZ80vh6Lv5v9EAAAAAwB2ooorlOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuW8SeFGvbldY0aUWWtQ8pIvCzf7Ljp+P511NFXCpKDvEipTjNWkc74X8UJrkclpdxfZdWtvlubZuDkfxL7fy/Inoq5fxV4ZfUWj1bSn+z63a/NFKpx5gH8Dev+R0q34W8SReIrBy6eRfW7eXdW54Mb/Trg4P5Edq0qQjKPtKe3Vdv+AZU5yjL2dTfo+//BN2iiisDoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAophljU4aRAR2LClV0fOx1bHXBzQA6iiigA6VwOD4+8SncM+HdMkxjtdTD+aj+X140PHGqXPlW3h7TG/4mOqN5eQf9XF/E35Z/DPpXQaPpVtoulW+n2q4ihXGe7HuT7k810w/dQ5+r29O/wCiOaf72fJ9lb+b7fq/kXQAoAAAA4AFLRRXMdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxPivTrjRNSTxdpCfvYRi/gHSaLufqMfoD257akZQ6lWAKkYII4IrSlUdOV/vM6tNVI2+7yZW07ULfVdOgvrR98EyBlP9D7jpVquE0Yt4P8XyaBISNL1EmawYnhH7p/n29a7unWpqEtNnqhUajnHXdaP1CiiisjUKKCQASTgDvUfnw/8APVP++hQBJRSAggEEEHuKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsfXPE+leHog1/cASsPkgT5pH+g/qeKxtc8U3dzqJ0HwwiXGo9Jrhv9XbDocnuf5e54q5oPgyy0mY3127ahqrndJdz/ADEH/ZB6fzroVKMFzVfu6/8AAOd1ZTfLS+b6f8FmauqeMvEPOmWEOj2bdJ7z5pSPUL2/EfjTx4Cnvfm1rxJql4x+8kb+VH9NvP6YrtKKPrEl8CS/rvuH1eL1m3L+uy0OQT4ZeFlXBspXPq07/wBDTX+GXhvO6CK6tnA4eK4bcPcZzXY0UvrVb+d/eH1Wh/IvuOKbwjr+mjfonim6OORDfjzVPtnt+Apv/CY6voMixeKtHMcJOPt1nl4vxHb88+1dvXIfEG8l/si30a0P+l6rOtuoHUJkbj9OgPsa0pVPazUJpO/XZ/ev1M6tP2MHOm2rdN19z/SxW8EKdd1XUvFdxgtO5t7VCcmOJf5E8fr613FcLdeCrrQimoeErloLqNAJbWRiY7gAd8ngn/OK3PDXii38QQyRtG1rqEHFxaScMh9R6ilXip/vIax/L+u48PJw/d1FaX59/wDhjeooorlOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOd8aaI2teH5PI3C+tT9otWX7wdecD69Prj0q34Y1tPEHh611AYEjrtlUfwuOG/x+hFaN3d29hayXV1MsMEY3O7nAArx/SVk17xNeaTZXt1p2ialI90i7drTAcMFPocH2wvNdlGn7Wk09FHW/5r9TjrVPZVU1q5aW/J/od1qnjyxtrv+z9Jgl1bUDx5Vtyqn/ab/DOO+Kqrp/jjW/nvdSt9Fgb/AJY2qb5Me7dj7g/hXTaTomnaHaC2061SFP4iOWc+rHqa0Kz9rCGlOPzer/yNPZTnrUl8lovv3OMHw20yf5tS1DU9Qfrme4yM+3Gf1qb/AIVp4V/6B7/+BEn+NdbRS+s1v5mH1Wh/IvuOMPw10mH5tOvdSsH9be4Iz9cj+tMOmeNtEy9hq0GsQLz5F4myQj0DZ5PuTXbUU/rNR/Fr66/8EPq1NfD7vpp/wDktN8eWkl2NP1q2l0i/6bLj7jfR/wDH8zXWgggEHIPeqWqaRYazaG21C2SeI9Nw5U+oPUH6VxjLq/w+kDB5dS8OE4KnmW1Ht6j9Pp3fJCr8Gj7d/R/oxOc6Xx6x79vVfqvuPQKKr2N9balZRXlnMssEq7lde/8A9erFc7TTszoTTV0FFFFIYUUUUAFFFFABRRRQAUUUUAFcl4u128Se38P6Ic6te9XH/LCPu59O/wDnFdFqeoQaVplzf3BxFAhdvf0A9yePxrmfAumTPBceJNQAbUNUPmA/884v4VH4Y/DHpW9FKKdWXTbzZz1pOTVKPXfyRteHfD1n4c04WtqN0jfNNM33pW9T/QVr0UVlKTk+aW5tGKiuWOwUUUVJRU1TUrbR9LudRvJNlvbxmR29h2Hv2rE8FeM7fxpp9zdQWc1obebyXimILZwDnj6/pWNrzHxn40g8MxEtpWmFbrVGHSR+scP9T/8AWqt4GIsfiX430sfKrTRXSL/vAk/+hCiOvzWnyt/wQlov66/0vvPSK4qMf218U5XJ3W+jWwVfTzX7/kT/AN812jMEUsxwAMk1xvw5U3OmajrDg79RvZJRnrtBwB+B3V0UvdhOfy+//gXOet704Q+f3f8ABsdnXJ+LPDtxPImvaIRFrNoNwwOJ1HVG9Tjp+X06yisqdR05cyNalNVI8rMjw3r8HiPR472EbJPuTRE8xuOo/wA9q164S9T/AIQ/xzBfxDZpest5VwoHypN2b8c/q1d3V1oKLUo7Pb/L5EUZuScZbrf/AD+YUUUVibBRRRQAUUUUAFFFBIAJPQUAcHqXj7Vk8U6homh+FX1drAIZpVvViwWGQMFT/OoV+JOo6dqdla+JfCV1pEN5KIYrkXKzpvPY4Ax/P2rl/BXjB7HUPEWqf8I3r+pf2lqDulxYWRlj8tSQq7sjkZNaN1rsfxA8Y6Rol7Z3Oi21nML37PqMRjnu3XOFUdABznnJ7dKI/Z+V/wBRy05vI9ZooooEFFFFABRRRQAUUUUAFBIAJJwB3orkfHWo3H2W10HT2xf6q/lA5+5H/E39Ppn0q6cHUkooipUVOLkzMbzPiHrrxh2Xw1YSYJU4+1Sj3/u/0+vFrx1bppMOja5axrGNLuVVlQYAhbgjA+gH411WkaXb6Npdvp9quIoV257se5PuTzVfxNYf2n4Z1KzCgtJbtsB/vAZX9QK6FXXtYpfCtPl1+853QfspN/E9fmtvkjUVldAynKsMgjuKWsHwVff2j4O0ycsWYQiJiepKfL/St6uacXCTi+h0wkpxUl1EZgqlmICgZJPQVxE3xFN7cTQeF9Avte8k7XuImEVvu9BI3X8BUXxTv7kaRp2g2crRT61eJaM69VjJ+b+YH0JrstM0200fTbfT7GFYraBAiIo7f41K11KemhzWgePo9U1v+wtV0m70bVynmJBcEMso77HHXoe3auwrMvtA03UdWsNUurffeWBY28gdl2buvAOD+NadHQOoUjKroyOoZWGCCMgilooA8/mjf4ea2LmHc3hy/kCyxjn7LIf4h7f047Cu/VldA6sGVhkEHgiq2o6fb6rp09jdJvgmQqw/qPcda5jwNez2pvfDN+2brS2xEx/jhP3T+HH4EV0yftYc/wBpb+a7nNFeynyfZe3k+36o7GiiiuY6QooooAKKKKACiiigAooooA4rx4zaldaL4bjYgX9zvnx/zyTk/wCP/Aa7NEWNFRFCqoAAHQCuOiH274t3Dk5TT9PVB/suxz/JjXZ10VtIwh5X+/8A4Fjno6ynPzt93/BuFFFFc50BXP8AjLxIvhjw9NeKvm3chENpCOTLK3CgD9fwroKKTV9Bp2PNdK+D2gz6bDceIYJrzV5gZbub7Q65kY5PAIHGcVnaHoen+C/jXFpmmRtDZ32lkqjOW+YMSeT/ALlep3d/Z6fGJL27gtoycBppAgJ+pqSGeK5hWaCVJYmGVdGDKfoRV6p8yWn/AACbp+63qZvie5Nn4W1SdThltZNp9CVIH6mq/gu2W08GaTGowGt1k/F/m/rVT4jSmLwJqO04LeWv4GRc/pmuh0+LyNNtYgMbIUXH0AFavSgvN/kv+CYLWu/Jfm3/AJFiiiisDoMPxhpI1rwtfWm3MojMkX++vI/PGPxp3hLVTrPhawvWbMjR7JD/ALa/KT+JGfxrarjPh8ptF13S8YWz1GQIPRT0x+Wfxroj71Frs7/fo/0OeXu1k+6t92q/U7Oiiiuc6AooooAKKKKACsXxfqX9keD9XvwQGhtZCmf7xGB+pFbVFKSumhxdmmePeA/iT4O8OeDNN0u41CVbmNCZlFtIcOxLEZA561sQfaPHvjvSNat7C5tdF0cO6XFzGY2uZGA4VTztGAc/Wu9udW06ynWC61C1glf7scsyqzfQE1cBBGRyKt3vzNEK1nFMKKKKkoKKKKACiiigAooooAK4nQR/bfxA1nWH+aHT8WNtnoCPvkfjn8GrsbmYW1rNO3SNGc/gM1yvw1gaPwdFcyZMt3NJO5I5Y7tuf/Ha6Kfu0py9F9//AAxz1Peqwj6v7v8Ahzr6OtFFc50HGfDn/R9N1TTe1lqMsSj0Xj+ua7OuN8JfufGHi22AAUXMcoGMcsGJ/pXZVvif4rfez+9XOfC/wku119zscF8TtI1K4h0fXdJtWu7rRrsXBt1+9InG4Adz8o/Wkh+LehXMRSCy1aXUAObBLJjKG9D2/Wu+qm+rabHeCzk1C1S6PAgaZQ5/4DnNYxT2XqdDklZv0Oc8JaZrc2pXviPxAWgubsCO309ZCyWsQ6Z7Fz3P+OB19FFIAooooAK4nxUBovjDQtfT5Umk+w3PurfdJ+nJ/AV21ct8RbT7X4Jvio+eHZMp9MMM/pmt8M/3iT2en36GGJX7ptbrX7tTqaKq6ZdC+0mzux0ngSX/AL6UH+tWqxas7M2TuroKKKKQwooooAKKKKACiiigDzVL3WrX4ieI20fS01CRhCJA86x7AEGOpGf/AK1bH9t+OP8AoUoP/A6P/GksSLT4sarEePttjHMufVcL/Q12ddtapFON4p6Lv29Tio0pNStNrV9u/ocb/bfjj/oUoP8AwOj/AMaP7b8cf9ClB/4HR/412VFY+2j/ACL8f8zX2M/+fj/D/I43+2/HH/QpQf8AgdH/AI0f2344/wChSg/8Do/8a7Kij20f5F+P+Yexn/z8f4f5Hz946vNYvPETHWbY2kqxr5duHDqi47EcHJz/AJFa/wAO9R8R2kd9Ho+mf2hb5UujzCNY255BJHJHXHoK9V1vStFv7fz9Zt7Z4oAW82chQg7/ADcYFcFq954ls73T7HwLbR2+m3UuxTPZBVBAy0mT8xTA+8yjORgtmuyWPg6Cp8n+X+ZxQy+ccQ6vP/n/AJCeNtU8U3Hhe4i1Pw/FZ2jOm+ZblJCPmBHAPrit+LWvG4hQL4TgI2jB+3R8/rR47trmL4a3Ud1dG6uIxEZZigTefMXJCjgDnp6dz1rrbOQS2NvIMYeNWGD6isZVY+xi+Rbvv5eZvGjL20lzvZdu78jlP7b8cf8AQpQf+B0f+NH9t+OP+hSg/wDA6P8AxrsqKx9tH+Rfj/mbexn/AM/H+H+Rxv8Abfjj/oUoP/A6P/Guc0DUvE8HiXxC9n4fimuZJImuYDdIohOGxgk4OeenpXqtcZ4EYXWoeJtRABWbUWjVgOqp0/RhW1OrH2c3yLp37+pjUpS9pBc73fbs/IX+2/HH/QpQf+B0f+NH9t+OP+hSg/8AA6P/ABqfWPGf9h+M9K0O80/baakCIb7zuBJ02FNvrtGc/wAQrS8T+JbLwto7393l2J2QQJ9+aQ9EUeprH20bX5F+P+Zv7Cd7e0f/AJL/AJGN/bfjj/oUoP8AwOj/AMaP7b8cf9ClB/4HR/410mj3V9faVBc6jYLYXMi7mthN5hjz0BbaOfUY4q9TdWK+wvx/zEqMn/y8f4f5HG/2344/6FKD/wADo/8AGj+2/HH/AEKUH/gdH/jXZUUvbR/kX4/5h7Gf/Px/h/kcb/bfjj/oUoP/AAOj/wAaP7b8cf8AQpQf+B0f+NdlRR7aP8i/H/MPYz/5+P8AD/I+YtTmu59Uupb8sbtpW87d1DZ5H4dK9O8Hav4vi8M20dnoS31qu4RTSXKxnbnpgnOByK7i+8LaHqV39qvNMt5Zz1crgt9cdfxrVjijhiWKJFSNBtVVGAB6AV2V8fCpTUVD7/8AgHFh8vnSqOfPv23+d7nH/wBt+OP+hSg/8Do/8aP7b8cf9ClB/wCB0f8AjXZUVx+2j/Ivx/zO32M/+fj/AA/yON/tvxx/0KUH/gdH/jR/bfjj/oUoP/A6P/Guyoo9tH+Rfj/mHsZ/8/H+H+Rxv9t+OP8AoUoP/A6P/Gj+2/HH/QpQf+B0f+NdlRR7aP8AIvx/zD2M/wDn4/w/yON/tvxx/wBClB/4HR/40f2344/6FKD/AMDo/wDGrZ8XmH4gDwtdWPkia28+1uvOyJsdV27RgjDdz0961Nf12y8N6NcapqEm2CFeg6u3ZR6kmj28bX5F+P8AmP2E729o/wDyX/I5PWNa8ZnRL8T+GYYIfs0nmTC8RjGu05bGecDnFVvDGq+LLfw1YRWHhuG5tVi/dzG8RS4yecE8V1mmXd/4g8KtPf6Z/Z013CwW2M3mMqsMDcdowTnpjiqHw4uPtHgexBPzwl4m9sOcfoRW/tF7J+4tGu/Z+Zz+yl7Ze+9U+3deRB/bfjj/AKFKD/wOj/xo/tvxx/0KUH/gdH/jXZUVh7aP8i/H/M39jP8A5+P8P8jyvR9T8Tx+L9fmtvD8Ut5J5P2iA3SARYX5cHODkeldF/bfjj/oUoP/AAOj/wAaPCwMvjfxbPyVEsMYOO4VgfywKyNdvPHuk+MbO0tLlbzSL12Mbi1jMiYVnMZ5UbtqnBJAP1zW1erFTtyLZd+y8zHD0ZOHxtavt3fkaVzrXjo2k2zwtDG2xsOLxGKnHXGefpXiMjvJK7yszSMxLMxySe5PvX0xpup2upRN9nmLSxYWaORdkkbejqcEH8Oe3FU5vCXh+e9N5LpNq05bcWKcE+pHQ1rhcdCje8LX7f8ABZji8BOva0727/8AASOW0LWvGw0KxCeHUu08ldk8l2itIuOCQTnpjrWh/bfjj/oUoP8AwOj/AMa7IAAYHAorllXi23yL8f8AM640JJJe0f4f5HG/2344/wChSg/8Do/8aP7b8cf9ClB/4HR/412VFL20f5F+P+Y/Yz/5+P8AD/I43+2/HH/QpQf+B0f+NZviDVvF8/h3UIrzwxDDbNbuJJReI2xccnAPOK9Erm/H10LTwRqbnq8YiA9SzAf1rSlVjKpFKC3Xf/MzrUpRpybqPZ9v8i54T/5FDR/+vOL/ANBFbFUNEtjZaDp1qesNtGh+oUA1frnqO8213OmmrQSfYKKKKgsKKKKACiiigAooooA4rxgf7J8T+HvEHSJJTaXDeiuDgn2GWNdrWX4j0dNe0C7058BpU/dsf4XHKn8wKzvBGtPqmhi3u8rqNgfs9yjfeBHAJ+oH5g10S9+kpdY6fLp+pzx9ys49Ja/PZ/p+J0tFFFc50BVTUdRg0y186bcxLBI40GXlc9FUdyf/AK54FWmZUQu7BVUZJJwAKw9IjfVbr+3blWCMCthEwx5cR/jI/vP19lwODnIA620me/nS+1vY8qkNDZqd0Nuex/23/wBo9P4cck7eBnOOaKKAMXxfbm68IatEASfszsAO5Ubv6U7wpcfavCWkyk5JtY1J9SBg/qK1ZolngkhflXUqfoRiuR+G0pXw1Lp0nEun3Utu4/4Fuz+ZP5VutaD8mvxOd6V15p/gdjRRRWB0Gb4g1NdG0C+1BiAYYiUyernhR+JIrO8Caa+meD7GOXPmzKZ3yMHLnIz74wKyfFD/APCS+JrDwvAd1vCwutQYHgKOiH65/UV12o6hZ6Pps19ezJBawJud24AA/wA9K6J/u6Ki93r8un6nPD95WclstPn1/Q434vWFpc+BZrqa4S2ubKRZ7SQnB8wH7o9yM/jj0rN+H8MvjieLxnrk0U8tvmCytEzstiMbnIP8ZPP0x7Yt6DYXfjvWYfFOtwNFpVu2dJ0+Qdf+mzjuT2/zmloj/wDCFfFm/wBCfKaZro+1Wn91Zedyj/x4f981hFWdnu/wf+bR0S1WnT8v8rnqNFFFIAooooAKKKKACiiigAooooAKKKKACiiigDz74qWM1vYad4pskJvNEuVmOOrQkgOP5fhmo9HtpviFrcHiTUYXi0GzbOl2cox5z95nH8h/k3fi3eva/D+7giP769kjtYx6lmGR+QNdbpVkmm6RZ2KDC28CRD/gKgf0ojs32en3a/p94S6L+rf1ct1xXhD/AIlPinxDoL/Kpm+2249VfGfy+UV2tcV41gl0nUtN8WWqFjZt5V2q9XhY4/TJ/MeldFD3r0/5vz6f5HPX921T+X8uv+fyO1oqK2uIru2iuYHDwyoHRh0IIyDVbWr0abol9ek48iB3H1AOP1rBRbdjdySV+hzfw/BnXXtQPS51OUqfVR0/DmuywDjI6dK5n4f2RsfBOnK33pUMx/4ESR+hFdNWuIadWVv6sY4ZNUo37fmZ2paPBqEiXCO9tfRDEV3Dw6ex7MvqpyPxwai0zVZnujpmqRxw6kil12H93cIDjzI8/UZXqpI6ggnWqhq2mLqVqFV/JuoW8y2uAMmKQdD7jsR3BI71ibl+iqGkagdRsd8kYiuYnMVxEDny5F6j6dCD3BB71foAKKKKACuK8cH+1NU0Lw4nP2q5E84/6ZJ1z9ef++a7KWWOCF5ZXCRopZmY4AA6muL8Ho+va9qPiyZSIpD9msVbtGp5P4kfnurooe7eq+n59P8AP5HPiPetSXX8lv8A5fM7eiiiuc6AooooAKKKKACiiigAooooAK4fxPaXPhzWl8W6ZE0kRAj1K3X+NP7/ANR6+wPrXcUjKHUqwBUjBBHBFaUqnJK+66mdWn7SNtn0fZlfT9QttUsIb2zlEkEq7lYf54NWa4K60vUvBF9JqOhxtdaLK2+508fei/2k/wA/X1HV6Nruna/ZC50+4WRf4k6Mh9GHaqqUrLnhrH+tGRTq3fJPSX5+aIPEP+lpaaQASNQl2TY7QqN0mfYgBP8AgdbAAAAAAA6AVjoPtHjKZmQYs7BFR/eV2Lj8oY62axNwooooAK4rSv8AiT/EzVrBvlh1SFbuH0LDO78fvH8K7WuM8fRSWH9l+JIFJk0y4HmgdTE/BH9P+BGujD6ycP5lb59PxOfEaRVT+V3+XX8Ds6wPFXiWLw9YLsXztQuD5drbryXc8Zx6DI/l3qvrnjWx01IrewH9oalcKDBbQfMTkZBbHQY59f51D4b8MXKX7a/4gkW41iUfIo5S2X+6vv7/AP1ySFJRXPV26Lv/AMDzFOq5P2dLfq+3/B8i14Q8PyaLYST3z+bqt63m3cp5OT0X6DP55ro6KKynNzk5M2hBQioxCiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjuLeK6t5LeeNZIZVKOjDIYHgipKKAOC0K7l8G62fDWpOx06dy2m3LdBk/6sn1yfz9iKufEWd5NGtdGgJFxqlykC47KCCT9M7fzrf13Q7LxDpj2N6mUPKOPvRt2YH1ry/T9VbTvHNtF4iv2urbSd9rBdhDtDkcbz64yO/3fbNehRSqy9qviWrXfs/v3POrN0Y+yfwy0T7Lqn8tj16CFLa3igiGI4kCKPQAYFSUyKWOaJZYnV43GVZTkEeoNPrz35nohRRRQBizH+zvFNvKDiDU0MLjt5yAsh+pQOCf9ha2qyPEgKaT9pVtrWs8VxnGflV1Lj8U3D8a16ACimu6RRtJI6oijLMxwAPUmuH1LxJf+Jrp9H8KZ8v7tzqZBCRj0Q9z7/l6jSnSlUem3fsZ1Ksaa136LqxPEd/N4q1f/AIRTSZGECENqV0nRF/uA+v8AXjsa7W0tILGzhtLaMRwwoERR2AqjoGgWXh3TVs7Ncn70krfekb1P+eK1KqrUTShD4V+PmTSptNzn8T/DyCiiisTYKKKKACiiigAooooAKKKKACiiigArldW8EW1ze/2npFzJpWpjnzYPuP8A7y9/85zXVUVcKkoO8WROnGorSR5xZeIvEGgavqQ1vR5L1QY1kutPXPRMglffPsMiuisvH3hq9HGpxwP3S4BjI/E8frV60cp4q1OAg4a2t5gexyZFI/DYPzFWL3RNK1E5vdOtZ2/vSRKT+eM1pz0pfFG3p/kZ8lWPwyv6/wCYsWtaVOAYdTs5AehSdTn8jUc/iLRbZczavYpnpm4XJ+gzWZN4A8LT/f0iIc5+SR0/kRUsPgbwzBjZo9ucDHz5f/0Imi1Du/uX+YXr9l97/wAild/EbQYZPJs3uNRuOgitISxJ+pwD+GaoXMfi7xfDJbSW0OiaXKNriUeZM6+mO36fU12trY2ljH5dpaw26f3Yowo/Sp6aqwhrTjr3ev8AwBOjOelSWnZaf8H8jz/4b2Vnpk2qaZNbRprFnMVklx80kZ+6RnoPYe3rXoFcT4wt5tD1a08XWSFvIxDfRqOZISev4f4eldja3MN5axXNvIJIZVDo46EGniG5tVe/59RYZKmnR7fl0/yfmS0UUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGT4l1qPQNAutQfBdFxEp/ic8KPz/QGs3wr4ajtPCgtdUhWee9Jnu1lXOXbnB9wMfjmsuY/8Jn44SBfm0fRW3yH+GWfsPcDH6H1rvK6Z/uoKC3er/T/ADOaH72o5vZaL9X+hw7eE9Y8Ou83hPUf3BOTp14S0Z/3T2/T60+Px+dPYReI9GvdNk6GUJ5kR+jD+ma7WkZVdSrKGU9QRkGl7dS/iq/ns/69R+wcP4Tt5br7v8mYtr4w8O3iqYdZs/m6CSQRn8mwav8A9rabt3f2habc4z5y4z+dU7nwn4fvGLTaPZlj1ZYgpP4jFUf+Fe+FfN8z+yE3enmyY/Ldilag+rX3P/Id666J/ev0ZV8aeJtDHg/XIF1aze4exnREjmDNv2MAMDoc1HJ8QUvmMPh3SL3VJem8IUiB92PT8QKl13wl4etfDt6kOk2iPNH9nVzHlgZDsGCeQct1rrkRY1CooVR0AGAKOajF6Jv1/wCB/mHLWktWl6f8H/I4ceF9e8SSLL4p1AQ2mcjTrI4X/gTd/wBfYiuxsbC0020S1sreOCBPuogwP/rn3qxRU1K0pqz27LYqnRjB3W/d7hRRRWRqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFGSxkOuW9/HIAiwSQyof4ssrKfww3/fVXq47V9C8bXeqzz6Z4xisbNyPKtjp0cmwYH8R5POT+NcVeX3xBXxbD4c0rximpXYG67dNOhSO1X1Ztp59vpQtWkD01PZqKRAVRQzbmAwT60tABRRRQAyaGO4gkgmQPFIpV1PQg8EVw+gXEnhDXz4YvnY2Fyxk02dzxyeYyfXP6/UV3dZHiPQLbxFpT2cx2SA74Zh1jcdCK2pTSvCfwv8PMxqwbtOHxL8fI16K5Pwp4huZJ5NA1weVrFqMZPS4QdHU9zj/H1x1lRUpunLlZdOoqkeZBRRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcr4y164tI4dG0n59Y1D5IgP8Almvdz6cZx+J7VoeJfEdt4c07z5R5tzJ8tvbr96V/T6dMms/wl4fubV5tb1kiTWb3l8/8sU7IPTtn8u3PRSior2s9ui7v/JdfuOerJyfsob9X2X+b6fea3h7Q4PD2jQ2EB3FfmkkxzI56sf8APTFalFFYSk5Nye5vGKilFbIKKKKQwooridE17VLr4p+ItFubnfp9rBFJbxGNRsJC55Ayep6k0LV2B6K51Gp2LagLSPKeVHdRzyhu4Q7lx77wh/Cr1eYfErxtrGj6jBZ6BMIxZhJ9Sl2KwVHcKifMDgnJPHNdn4t8QR+GvCt9qzkFoo/3Sn+KQ8KPzIpX93mHb3uU3KKxPCI1j/hF7GTXrk3GpSp5kxMapt3chcKAOBgVt1TVnYlO6uFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVznjeXxInh2SPwtaCfUZWEe4yInlIQcuNxAJ6AfWk3ZDSuzK8UeKL661T/AIRXwrtk1iQf6TddY7FD1Zj/AHvQVueF/C9j4V0v7JabpJpDvuLmTmSdz1Zj/SuB8Lp428K6Z9ktPh/HJNId9xcyatCZJ3PVmOf0ruPDeqeJdQmuBr3h2PSY0UGJlvEnMh7j5emP61SVtEJ6nRUUUUgCiiigAooooAwPE/hiLX4I5oZDbanbfNbXS8FT1wfb+VU/DfiqS5uTouuR/ZNahGCrcLOP7yevrj8vbq6xfEXhmx8R2yrPmK5iO6C5j4eI+x9Pat4VIuPs6m3R9v8AgeRhOnJS56e/Vd/+D5m1RXDWXijUPDd2ml+LVwhO231NBlJR/teh9/z9a7dHSWNZI3V0YZVlOQR6g1FSlKG+3foXTqxqbbrddUOooorM0CiiigAooooAKKKKACiiigAooooAKKKKACsXxH4ls/DlkJJ8y3MnEFsh+eVvb296ztd8YrbXf9k6JB/aOsPwI05SL3c+3p+eKXw94Sa0vDrOtzi+1mTnzDykPsg/r+WO/RGkornq7dF1f+S8znlVcnyUt+r6L/N+X3kPh7w9e3Wp/wDCR+I8NqDD/R7b+G1X0x/e/wA9a7CiisqlRzd2a06agrIKKKKgsKKKKACvM1v7bQviv4s1O6YrDFpMU7e4GBx+WK9MrzDxH4H1XXfijFeNDt8PywRC8k8xf3vlsWEe3O7BIXtilb3l8/yYfZfy/NGbrGj3C/B7Xda1BMapq0kd9P6ovmKUT6Kv8zWzq5/4THxromgqd+n6ZEmo3+DkM5H7tD/P6Gup8a6Xcax4K1XTbKISXE1uVijyFy3UDJIA6VnfDrw3e6BoUk2r86xfSebdElWK4G1UyOMADt6mqT1fZbfl+G/yB/Cu7v8Ajb+vmdhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAILyyttQtXtbyBJoJBhkcZBrjG8Pa74TkabwzP8AbNPyWbTLlunrsb/P413VFa06soabrt0MqlGM9dn3W5zOjeONK1WX7LcF9O1AHa1rdjY2fQE9f0PtXTVl6x4d0rXotmo2ccxAwsnR1+jDmucHhrxLoHPh7WRdWw6Weo/MB7Bh/IYq+WlP4Xyvs9vv/wA/vI5qsPiXMu63+7/L7jt6K4pfHd1prCPxHoF5Yes8Q82L8x/TNbdh4u8P6ntFtq1sWbojvsY/g2DUyoVIq7WnlqvwKjiKcnZPXs9H9zNqikVgyhlIIPQilrE2CiiigAoorOvdf0jTf+PzUrWE/wB15RuP4daai5OyQnJRV2zRorjZviLYzyGHRNPvtWn6DyIiqZ9yRkfXFRG08beIOLq5g0KzbrHB88xH+9nj6gj6Vv8AV5LWfu+v+W5h9Zi9Kfven+exv634o0jw9Huv7tVkxlYU+aRvov8AU4Fc6X8UeMvljV9C0hurN/x8TL7f3c/5zWzo3gvRtGkFwkBubzO43Nyd759RngfhXQ0e0p0/4au+7/Rf5h7OpU/iOy7L9X/kZeh+HtN8PWn2fT7cJn78jcvIfUn+nStSiisJScneTuzaMVFcsVZBRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooACAQQRkHtWLfeEfD+pFmutJtmduromxj+K4NbVFVGcou8XYmUIyVpK5xp+G2kxNu0+91PTznOLe5wD+YJ/Wj/AIQ3WoQBaeMtSTB489fN4x7sK7KitfrNXq7+tn+Zl9VpdFb0uvyOMPhbxVuGPGspXuTZrn/0Kl/4RHxBJkXHjS9ZSMfuoBGfzDV2VFH1mp5fcv8AIX1an5/e/wDM4z/hXVtP/wAhDXNZvF7pLc/K314z+taFl4D8M2P+r0mGRvWfMmfwYkV0dFJ4iq1bmY1hqSd+VDIoo4IxHFGkaDoqDAH4U+iisTcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z
|
<image>The diameters of $\odot A, \odot B,$ and $\odot C$ are 10, 30 and 10 units, respectively. Find ZX if $\overline{A Z} \cong \overline{C W}$ and $C W=2$.
|
3
|
Geometry
|
Geometry3K
|
test
|
24
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC/AVIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqtfajZ6Zbm4vrqK3iH8UjAZ+nrXJP41vtakaDwppMl0AdpvbkbIV9/U/ofatYUZz1S079DKdaEHZvXt1+47OaaK3haaeRIokGWd2AAHuTSW9xDdwJPbzRzQuMrJGwZWHsRXCXvgq7vtPub/xNq019PFC8kdvEdkMbBT0Hf68VQ+E+sSJDLo1zkB1Nzalv4lyVcD8R/Otnhouk5xldrcxWJkqsYTjZPb/gnp1FFFch1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFYWteMNG0ImO5uhJc9BbQDfIT6YHT8cVifavGPicf6JCmgWDf8ALWYbp2HsO36fWto0JNcz0Xd/1r8jGVeKfKtX2X9afM6bVvEGlaHD5mo3scPGQhOXb6KOTXM/8JH4k8R/L4d0v7FaH/l+vxjI9VXv9ea0tI8DaPpc32qZHv74nLXN2d7Z9QDwPr1966aq5qUPhXM+72+7/P7ieWrU+J8q7Lf7/wDL7zkLHwBZG4F7rl1NrF7/AHrg/u19gnp7Hj2rR8OM1k13ocp+axfMBPVoHyUP4fMv/Afet6sDX/8AiW3llrq8JA3kXeO8DkDJ/wB1sN9N1RKpOppJnbhKUFelFfF+a2+/b5mlrH/IEv8A/r2k/wDQTXmFpaS2nw/8PeJrNN11pcshkA/jhMrhh+v5E12+teI7OXT7+009ZNQmEMiyfZhuSLg53v8AdGPTOfasHwTotzq/gqxjvNRkXTGEgFpbrsLjzGyJH5JGc8DHHXNdFGXs6Tk+6+6zOSthXKso1Hy+62r+sbaf0jvbS6hvrOG6t3DwzIHRvUEZFTVxfgW4k0241HwrduTNp8he3LdXhY5B/DI/76FdpXNVhyTcen6FUantIKXXr69QooorM0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK888Yv4m024A03xZMby+mKWGmpYQN+bMCdqjksaB2PQ6KqaZDeW+l20WoXQurxIwJpwgUO+OSAOBVum9BIKKKZLNFBE0s0iRxqMs7sAB9SaQD6CQBk8CuOvPH1vNcNZeHrKfWLwcExAiJfct/ke9Qjwvr/iIh/E2qmC2PP9n2J2qR6M3f9frW6oNa1Hy/n9xzvEJ6U1zfl9//AA5f1Xx3pNhP9ks/M1O/J2rb2Y38+hI4H4ZPtWf/AGf4v8Tc6jdrodg3/LvbHdMw9C3b/wCv0rqNK0PTdEg8nTrOKBSMMyj5m+rHk/jWhT9rCH8NfN/5bB7Kc/4j+S0/Hd/gYmi+E9G0ABrK0Uz45nl+eQ/ien4YrboorGU5Td5O7NowjBWirIKKKKkoKjnhiuYJIJo1kikUo6MMhgeCDUlFA07aoztRt4bXw7ewW8SRRJayBUjUKoG09AKxvhx/yIOmf9tf/Rr1u6x/yBL/AP69pP8A0E1hfDj/AJEHTP8Atr/6Neuhf7u/Vfkzmk28Sm+z/NFPxqj6LqumeK7dSRbOLe8C/wAULdz9CfzI9K7SORJYkkjYMjgMrDoQehqDULGHUtOuLK4GYp4zG30I61zPgG9mSwudBvj/AKbpMphOf4o/4T9O30xQ/wB5Sv1j+X/Af5gv3da3SX5r/Nfkzr6KKK5zoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr390bHT7i6EE1wYY2cQwoWd8DO1QOpNeb+GtelGqTavrPhzxG+s3h8sEaXJ5VrFniNScYHct3NeoVm6tr2l6HD5uo3kcPGVQnLN9FHJpwi3LRXFKSUdXY0qrX2oWem25uL25it4h/FIwA+nvXIf8JJ4j8SfL4c0v7JaN/wAv98MZHqq9/rzVmy8AWbXQvtdu5tYvfWc4jX6J6ex49q39jGH8V28lq/8AgGHtpT/hK/m9F/m/61IJPG19rDtB4U0mW85wby4BjhX88Z+nB9jSw+B7nVZVufFWqy37jkWsJKQJ+Axn68V2ccccMaxxIqIowFUYA/CnUe35dKSt59fv/wArB7Dm1qu/l0+7/O5Xs7G0063W3sraK3hHRIkCj9KsUUVg23qzdJJWQUUUUhhRRRQAUUVzfiXxBfWGoado+j20E+qahvKG5YiKJEGWdscnqBgUAdJRXMeHvEGo3OtX2g65bW0Op2kSTiS0ZjFNG3G5Q3IwRgg1mS+KvEuoxX+p+H9O06XSbGSSPFzI4mu/L++Y9vCjIIGc5x2oBI63WP8AkCX/AP17Sf8AoJrC+HH/ACIOmf8AbX/0a9aUl+mqeD5b9I3jW4sWkEcgwy5QnB9x0rN+HH/Ig6Z/21/9GvXTa1CS/vL8mczd8RF/3X+aOqrh/E3/ABTfi3TvEqDba3H+h3+PQ/dY/TH/AI6PWu4rP1zSotb0W606bAWeMqGIztbqp/A4NZ0ZqE/e2ej9DStBzh7u61XqaAIIyORUN1eWtjCJru5ht4iwXfK4QZJwBk9ya53wJqst9oRsrvIv9Oc2s6sefl4B/IY+oNQ/E6Ey/D7U2X70AjnHH9x1b+lTUg6c+V9C6UlUipLqdRcXltaeV9puIYfNcRx+Y4Xe56KM9SfSpq422P8Awkvjpbn72n6HEAno91IoJP8AwFCB9Wrsqm2g73CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijpXMar470jT5vstqZNSvicC3sx5hz7kcfzPtVwpym7RVyJ1IwV5Ox09YWt+L9G0HKXV0Hue1tCN8hPpgdPxxWJ9g8YeJjnULpdDsG/wCXe2O6Zh7t2/T6Vu6L4S0bQfns7RTcd7iX55Cfqen4YrXkpw+N3fZf5/5XMvaVKnwKy7v/AC/zsYRu/GPifizgXQdPb/ltON07D1C9v0+taWkeBdI02b7VcK+oXxO5rm7O9ifUA8D9T7101FKVeVuWHury/wA9xxw8b80/efn+i2QdKKKKwNwooooAKKKKACiiigAooooAKpX1uihtQg06C61GCJhb79quc/wByDtBOM1drmPEdnrsOs2GtaJGLz7PG8U+nvceUJlbBDKT8u4Ed/XrSGYfh27uLjxhrt1rVq2n661kqxWWQ6i3UnDLID8+WPPAxxxWP4IXxdJ8ObO+0m/sbWG3SVo7Sa2MhuSGYks+4bcnIGB+NdZo2latqPiqXxHrdlDYEWf2O3s0mEzBS25mdgMZ6DAzWVZaZ4u8N6Rc+G9L0q1u7RmlFnqDXYQQI5JxIhG4lcn7uc+1N3Sst7fq/wDP8w0v5X/Q6Gw1tPEfw/8A7XRPL+02UjMmc7W2kEfmDUHw4/5EHTP+2v8A6NerNnosfh7wCdJjfeLWxdC+Mbm2kk/iSarfDj/kQdM/7a/+jXrqdvYyt/MvyZya+3jf+V/mjqqKKK5TqOG1T/imPiBa6qMrYauBbXPoso+6348f+PGtLx5fWcPhTULCWVDdX1u0Ftbhh5kzuNqhV6nkj6Vf8U6Kuv8Ah26sCB5jLuhJ7SDlf8PoTWf4RvLTxDpNpqN1awPqtmDbSyvGDJGw64PUZ4PFb1F7SkpdtH6dP8jCm/ZVXHvqvXr/AJ/Mu+EtC/4R3w1aaezmSdV33EpOS8rcsc9+f0ArboorFu7ubJWVgooopDCiiigAooooAKKKKACiiigAooooAKKrXt/aabbNcXtzFbwr1eRgBXJS+N7zV5Gt/Cmky3pzg3c4McK+/OCfpwa0hRnPVLTv0Mp1oQ0b17dfuOzlljgiaWaRI41GWdzgAe5Ncle+P7aS4Nl4fsp9YvP+mIIiX3Len6e9RReB7vVpVufFeqy3zZyLSElIUP4Yz9cA/WutsrC0063W3sraK3hXokahRWlqNPf3n9y/zf4EXrVNvdX3v/Jficf/AMIx4h8Rnf4l1X7Pat/y4WJwPozd/wBfrXUaVoWmaJB5WnWcUA7sBlm+rHk1oUVE605rl2XZbFwowg+bd93uFFFFZGoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFLWP+QJf/8AXtJ/6Cawvhx/yIOmf9tf/Rr1u6x/yBL/AP69pP8A0E1hfDj/AJEHTP8Atr/6Neuhf7u/Vfkznl/vEf8AC/zR1VFFFc50BXDj/il/iMV+7p2ujIA6JcD/ABz+be1dxXPeNNGfWfDkyQA/bLci4tiv3t684H1GRW1CSUuWWz0/r0MK8W480d1qv8vmjoaKyPDGtJr/AIetNQGBI67ZVH8Ljhv8foRWvWcouMnF7o1jJSipLZhRRRUlBRRRQAUUUUAFFFFABRWHrfi7RtByl3dhrjtbw/PIT9B0/HFYf23xj4m4sbZdCsG/5b3A3TsPZe36fWto0JNcz0Xd/wBa/IxnXjF8q1fZf1p8zp9W17S9Dh83UbyKAYyqk5Zvoo5Ncx/wk3iHxGdnhvSza2rf8xC+GBj1Ve/61o6T4E0jTpvtVyJNRvictcXjbzn2B4/mfeun6VXNSh8K5n57fd/n9xPLVn8T5V2W/wB/+X3nIWXgG1e5F7r95PrF51/fnEa+wT09jx7V1kUUcESxRRrHGowqIMAD2FPorOdWc/iZpClCn8KCiiiszQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAo6nqkOlRwNLHNIZ5RDGkKbmZiC3T6Karf2/wD9QnVf/Ab/AOvUXiH/AI/NA/7Ca/8AomWtyqdkkdLVOEItxu35+djnNV13fo96p0vU1Bt5Bua3wB8p5PPSoPhx/wAiDpn/AG1/9GvW3rn/ACL+pf8AXrL/AOgGsT4cf8iDpn/bX/0a9bL/AHd+q/JnDUcXiI8qto/zidVRRRXOahRRRQBw+k58M+PrzSW+Ww1YG6tc9FlH3l/n+S+tdxXLePNLmvNDF/Z8X+muLqBgOfl5YfkM49hW1ouqQ61o1rqMH3J0DEf3W6EfgQRXRV9+CqfJ+v8AwUc9L3Jul816P/J/oX6KKK5zoCiiigAooproskbI4yrAgj1FAHMa34/0TR3MEcrX13naILb5ufQnoP1PtWRu8S+Jub3U7bQrBv8Aljbyhp2HoWzx+n0rT/4Vp4V/6B7/APgRJ/jR/wAK08K/9A9//AiT/Gu6M8NBe7e/dpP9bHBKGJm/ftbsm19+l/yLOi+H/DWg4e0+ztcd7iaUPIT9T0/DFbn2+z/5+4P+/grmv+FaeFf+ge//AIESf40f8K08K/8AQPf/AMCJP8azk6U3eU236f8ABNYqtBWjCKXq/wD5E6X7fZ/8/cH/AH8FH2+z/wCfuD/v4K5r/hWnhX/oHv8A+BEn+NH/AArTwr/0D3/8CJP8anlofzP7l/mVzYj+Vfe/8jpft9n/AM/cH/fwUfb7P/n7g/7+Cua/4Vp4V/6B7/8AgRJ/jR/wrTwr/wBA9/8AwIk/xo5aH8z+5f5hzYj+Vfe/8jpft9n/AM/cH/fwUfb7P/n7g/7+Cua/4Vp4V/6B7/8AgRJ/jR/wrTwr/wBA9/8AwIk/xo5aH8z+5f5hzYj+Vfe/8jpft9n/AM/cH/fwUfb7P/n7g/7+Cua/4Vp4V/6B7/8AgRJ/jTl+G3hRRg6YW9zcS/8AxVHLQ/mf3L/MObEfyr73/wDInR/b7P8A5+4P+/go+32f/P3B/wB/BXO/8K48J/8AQK/8mJf/AIqj/hXHhP8A6BX/AJMS/wDxVK1D+Z/cv8w5sR/Kvvf/AMidF9vs/wDn7g/7+Cj7fZ/8/cH/AH8Fc7/wrjwn/wBAr/yYl/8AiqP+FceE/wDoFf8AkxL/APFUWofzP7l/mHNiP5V97/8AkTovt9n/AM/cH/fwUfb7P/n7g/7+Cud/4Vx4T/6BX/kxL/8AFVUtPBvgG/mlhs4bW4liOJEhv3dk+oD8UWofzP7l/mHNiP5V97/+ROt+32f/AD9wf9/BR9vs/wDn7g/7+Cud/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqi1D+Z/cv8w5sR/Kvvf/yJ0X2+z/5+4P8Av4KPt9n/AM/cH/fwVzv/AArjwn/0Cv8AyYl/+Ko/4Vx4T/6BX/kxL/8AFUWofzP7l/mHNiP5V97/APkTovt9n/z9wf8AfwUfb7P/AJ+4P+/grnf+FceE/wDoFf8AkxL/APFUf8K48J/9Ar/yYl/+KotQ/mf3L/MObEfyr73/APInRfb7P/n7g/7+Cj7fZ/8AP3B/38Fc7/wrjwn/ANAr/wAmJf8A4qj/AIVx4T/6BX/kxL/8VRah/M/uX+Yc2I/lX3v/AOROi+32f/P3B/38FH2+z/5+4P8Av4K53/hXHhP/AKBX/kxL/wDFUf8ACuPCf/QK/wDJiX/4qi1D+Z/cv8w5sR/Kvvf/AMiT+ILy1a60JhcwkJqSsxDjgeVKMn8xWz/aVh/z+23/AH9X/Guf/wCFceE/+gV/5MS//FUf8K48J/8AQK/8mJf/AIqm1Q7v7l/maSq4iUYx5Vp5vvf+U0tb1GybQdRVby3LG1lAAlXJ+U+9Y/w7u7aLwJpqSXESMPNyrOAR+9epv+FceE/+gV/5MS//ABVH/CuPCf8A0Cv/ACYl/wDiqtSoezcLve+y8/Mwca7qKdlomt31t/d8jovt9n/z9wf9/BR9vs/+fuD/AL+Cud/4Vx4T/wCgV/5MS/8AxVH/AArjwn/0Cv8AyYl/+KrO1D+Z/cv8y+bEfyr73/8AInRfb7P/AJ+4P+/go+32f/P3B/38Fc7/AMK48J/9Ar/yYl/+Ko/4Vx4T/wCgV/5MS/8AxVFqH8z+5f5hzYj+Vfe//kTojfWZBBuoCD28wVxnhKePQ/FOp+GhKr2sp+12JDAgKfvKPp/7KTWj/wAK48J/9Ar/AMmJf/iqt6d4J8O6TfR3tlpwiuI87HM0jYyMdCxHQ1alRjCUU27+S36dSHGtKcZNJW83t16G/RRRXKdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAch8R7yWDwxHaRTmBtRvIbJpFOCqO3zc/wC6CPxrO0238D6n4g03/hGtQ0+3v9MY/JZqqtPHjDITxvHfPNS/Fe0juPDVhLcDNpbanbyXGegj3bWJ9vmpvj2OE6h4Q+wrGL/+1YvIMYGRCAS+Mfw4xntRD9f8v6+8ctvl/mdPceIbS18TWuhTRzJcXUDTQykDyn2/eXOc7gOenTvT9F1y216O4ms4pvs0MzQrO6gJMV4JTnJXPGSB04rzz4sXLaiY7XToHmuNHU3t7NHIUMMJG0xgj+JgScei16VpH2P+x7L+zkRLIwIYFQcBMDGPwoWqv/X9dBS0dv6/rqXKKKKACiiigAooooAKKKKACiiigAooooAK57xnrN/4e0BtVsYYZktpUa6SRST5OcOVwRhhnPORx0roa5DxfezarcR+ENNfF1fxk3kwGfs1t0Zv95vuj65pO/Qat12LmjeIZ/EOtTtpqwNoVuuw3RBLTzdxGc42qOpwcngdK6OuK+GczQaBc6DP/wAfOi3Ulo/GNy5yjfiD+ldrVO3QlX6hRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFc20F5bSW9zEk0EqlXjkUMrA9QQax9H8G+HtBu2u9N0yKC4YbfM3M5Uei7ido9hgVu0UAZttoGl2kF9DDajZfuz3W92cylhg5LEnpxjoO1WNN0610jToNPsozHawLsjQuzbV9MsSf1q1RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=
|
<image>Find x
|
6 \sqrt { 6 }
|
Geometry
|
Geometry3K
|
test
|
25
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADgANsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiikAUUUUAFFFFABRRRQAUUUUAFFFZj6/p8fiGPQ3mC30kPnIp6MMnj68E49BTSb2E5JbmnRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkdIo2kkYKigszHoAO9eP2ugX3jVNY8XWs0kN+LoNpnOPlj7fiMD6qfU12PxJ1SWz8NDTrTLXuqSC0iUdSG+9+nH/Aq6LRNLi0TRLPTYcbbeIISP4j3P4nJ/GuqnJ0qfOt3+S3OSpBVqnI9l+b2M3wf4mj8TaOJnXyr6A+VdwEYKOPb0P8AiO1dDXnviuxufCevJ4x0mItAxCanbJ0dT/H9f64Pc13VhfW2p2EF7aSiS3mQOjjuP8azqwWk4bP8PI0ozetOfxL8V3LFFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZPiXWE0Dw7e6k2N0MZ8sH+Jzwo/MinGLk0kKUlFOT6HKW//FUfFWaf71hoEflp6Gc9fxBz/wB8CvQa5T4d6O+k+E4JJwTd3pN1OzdSW6Z/DH45rq61ryTlyrZaGOHi1Dme71GSxRzwvFKivG6lXVhkMDwQa860qWT4e+Kf7EunY6BqLl7KZzxBIeqE+nQfke5r0isnxHoFr4l0WbTroYDjdHJjJjcdGH+emRRSmleMtn/Vx1qblaUPiW3+RrUVxXgbX7pnn8M62dusad8oZj/r4x0YHvxj6gg+tdrUVIOEuVl06iqR5kFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFef+NSfEXi3RfCkZzAH+2XuP7gzgH6jP/fS13s00dvBJNK4SONS7segAGSa4DwI32ttd8a3wKi7dhEW6pBH/APqA/wCAV0UfdTqdtvVnPX95xpd9/Rf1Y9CAAAAGAKK8X0u38c+PNCvPFdt4kutN3NIdO063X5HVMgBjkZywK5IPTPtW9rnjHxFofwrsr2+tPs/iW8kFkqMq/LKSwD46cqucdMkdq5zoPSqyNd8U6H4Zijk1nUobQSkiMPks2OuFAJI98V5lqn/CW/DS40jWdQ8TXGs6fcXC29/BOPlQsM5TJPTBwRjkDscVueLdO1XTfH9t4ot/D51+z/s82bW6lTJA+8tuUEdwccep6dwC74o06PxFptn4s8LXMc2oWY8yCaE5E6DOUPqevH1Heui8L+IrbxPokV/BhX+5NFnmNx1H9R7GsT4aaHqGi6FfPqFolg9/fy3kdijAi2R8YTjjt0+nTms3XYJfAfib/hJLGNm0e+cJqMCD7jE8OB9T+eR/FXRD97H2b3W3+X+RzVP3UvaLZ7/5/wCZ6NRUdvcRXVvHcQSLJDKodHU5DA8gipK5zpCiioLe9tbt5ktrmGZoHMcojkDGNh1VsdD7GgCeimSyxwQvNNIscUalndzhVA5JJPQUkFxDdQJPbzRzQyDckkbBlYeoI4NAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHF/ErUZodBh0ezOb3V5hbRqDztJG7+YH/Aqu63p0ej/DHVdPtvuW2kzop6ZIibn6k8/jWLp3/FUfFK81A/NY6HH9nh9DKcgn/0L8lru7u1ivbKe0mGYp42jceqsMH9DXRV9yMafzfz/wCAc9H35yqfJei/4J4j4K8Ea1r/AMOrTU4fFWp2MyJINPtrWUxxJtZh8wHUswbJ9D36VU1DxJd+KvBXge+v2D3MeuJBPJjAdlPDfipGffNbmmW3xE8HaJc+E9N0GLUYA0i2OpC4VBGjknJUnrkk4JGD61p3XwwuovhPaeH7O4j/ALXs5hfRyZwrTgkkAnthiAfYZrnOgf8AHYj/AIV1g9TexY/Jq9LQEIobrgZryO+sPG3xC1DSNO17QU0fSrK4W4vJPOV/PdR0UZ6HJHcDOcnFevUAFQ3dpBfWk1pdRLLBMhR0boQamooTsDV9Dzvw1dz+C/EZ8JalKzWFwxfS7h/c/wCrJ9c/r/vCvRKwvFvhqHxPor2jER3KHzLabvG46fgeh/8ArCs/wP4lm1W2m0vVQYta08+XcI3VwOA49ff8+4roqfvI+0W/X/M5qb9lL2T26f5f5F3xUniuS0hTwrLpkUxLCZ74MdoxwUwCM9eorivggl1HY+JEvZfNu11RxPJnO9wPmOfc5r1WvMvhB/rPF3/YalrnOkT4qw+NZtE1Y2F1pkGgJbbph84uXUD516EYPPTHFdP8Of8AknWgf9eafyp3xD/5J34g/wCvGT+VN+HP/JOtA/680/lQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY3ivWl8P+Gb7UcgSJHtiB7yHhf1OfoDWzXn3i3/ipfHGjeGF+a1tz9tvR2wPuqfw4/wCBitaMVKeuy1ZjXm4w93d6L1ZteANFbRPCVqkoP2q5/wBJnJ67m5wfcDA+oNdPRRUTk5ycn1LhBQioroFFFFSWFFFFABRRRQAVw3jjRLu1uofFuiLjUrEZnjA4uIh1BHcgfp7gV3NFXTm4SujOpTVSPKzN0HW7TxDo8GpWbZjlHzKTyjd1PuKy/CHhH/hFG1c/bvtX9o3r3f8Aqtnl7v4epz9ePpXOXSN8OfFX26JT/wAI3qkm2dFHFtL6gdh/TI7CvSEdZEV0YMrDIYHII9aqrBR96Oz2Jo1HJOMviW/+fzM3xDpH9veHdQ0nz/I+1wND5uzdsyMZxkZ/Ok8OaP8A8I/4c0/SfP8AP+yQrF5uzbvx3xk4/OtSisjYKKKKACiiigAooooAKKKKACiiigAooooAiubiK0tZrmdwkMKGR2PZQMk1xHw4t5dQOqeKrtSJ9UnIiB/hiU4AH48f8BFS/Eu/mOk2mg2Z/wBM1edYFHomRuP0yVH0JrrdOsIdL022sLcYit41jX3AGM/Wt/gpecvyX/BOd+/W8o/m/wDgfmWqKKKwOgKKKKACiiigAooooAKKKKAKmp6ba6xps9hexiS3nXaw/kR7g8iuL8HaldeHtXk8GazIWaMbtOuG6TRdl+o5x9COwrv65rxn4Y/4SPS1a2bytUtG82zmBwVcc4z6HA+hwa2pTVuSez/B9zCtB3VSG6/Fdv8AI6Wiua8F+J/+Ei0tkul8nVLRvKvISMEMON2PQ4P0ORXS1nODhJxZrCanFSjswoooqSgooooAKKKKACiiigAooooAKKKwfGWtjw/4Wvb5WxNs8uD/AK6NwPy6/hVRi5SUV1JnJQi5Poc5ov8AxU/xN1HWD81lpCfZLY9jIchiPX+L81r0Guc8C6IdB8JWdtIuLiUefPnrvbnB9wMD8K6OtK8k52Wy0Rlh4tQvLd6v5hRRRWJuFFFFABRRRQAUUUUAFFFFABRRRQBwHjHTLrw/q0fjPRo9zxDbqNuvSaLu31Hf6A9jXaaXqdrrGmQahZSeZbzruU9x6g+4PBq0yq6MjqGVhggjIIrze2Zvhx4q+xysf+Eb1STMLk8W0voT2H9MHsa6V++hy/aW3muxyy/cz5vsvfyff59T0miiiuY6gooooAKKKKACiiigAooooAK8+8S/8VN8QtJ8PL81pp4+23g7E/wqf0H/AAOu6vLuGwsp7y4bbDBG0jn0AGTXGfDa0mubXUPEt4uLrVrhnXP8MakgAe2c/gBW9H3YyqdtF6s56/vyjS76v0X/AATuqKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKztd0W08QaPPpt4uY5Rww6o3Zh7itGimm07oUoqSszhvBGtXdpdzeEdbbGo2Q/wBHkPS4hHQg9yB+n0NdzXJeOPDU2rWsOp6WTFrWnnzLaRergclD/TPf6mr/AIS8Sw+J9FS6UCO6jPl3MHeNx149D1H/ANY1vVSmvax+fr/wTnpScJeyl8vNf5o3qKKK5zpCiiigAooooAKKKKAOG+JV5NcWVh4bs2xdavcLGcfwxggkn2zj8Aa7Kys4dPsbezt12wwRrGg9gMCuF8Of8VN8RdV8QN81npw+xWZ7FudzD/x78HFeg10VvdjGn21fqzno+/KVXvovRf8ABCiiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAoqnqGrafpUXm6hewWydjLIFz9Aev4VyVz8TtPmmNtoOnX2sXA6CCIqn4kjP6VpClOfwoynWpw+Jnc15x4phfwT4kj8WaeB9junEWo2oIG7P8aj1/r9TVjyviJr/APrJbPQLVuyDzJsfrz+K1Ys/hhpHni51i6vNYuu73Up2/kDn8ya3pqNJ3nK/ktf+AYVHOsrQjbs3p/wTsbO7gv7OG7tZVlgmQOjr0INTVDaWdtYWqW1pBHBAgwscahVH4Cpq5Xa+h1q9tQooopDCiiigArnfHGuf2B4TvLtG23Dr5MGOu9uAR9Bk/hXRV59rn/FT/EvTdFHzWWkr9suh2L8FQf8Ax3/vo1tQinO72WrMcRJxhaO70XzOi8GaH/wj/hWysWXE+3zJ/XzG5P5dPwrfoorOUnKTk+ppCKhFRXQKK4gfFfwu2qizE115Bm+zi/8AIP2bzP7vmf1xjvnHNdvUlBRRRQAUUUUAFFFFABRWRq3ijRNEB/tHUreFx/yz3bn/AO+Rk/pXMN8RbrVWMXhfw7e6gc48+UeXED9f8SK1jRnJXS0Mp16cHZvXt1O+rO1PXtJ0ZN2o6hb23GQruNx+i9T+Arkf7B8da9zq+vRaVbt1t9PX5h7Fs5/8eNaOmfDXw3pz+bLavf3GcmW8fzMn/d+7+lV7OnH4pX9P8yPaVZfBG3r/AJFGX4lx30rQeG9Fv9WlBx5gQpGPcnBP5gUz+zfiDr//AB/ana6HbN1itBvk/PP8m/Cu8iijgiWKGNI41GFVFAA+gFPo9tGPwR+/X/gfgHsZS/iSb9NF/n+Jxmn/AAy0C2l+0XwuNUujy0t5IWyfoOv45rrba1t7OEQ2sEUES9EiQKo/AVNRWc6k5/E7mkKUIfCrBRRRUGgUUUUAFFFFABRRRQBW1C+h0zTrm+uDiG3jaR/oBn865D4aWMz6XeeILwf6Zq87TE+iAnaPpkk/TFM+JFzLfLpnha0bFxqs48wj+GJTkk/jz/wE121rbRWdpDawLshhRY0UdlAwBXR8FLzl+S/4P5HP8dbyj+b/AOB+ZyXjHxjd+E9d0GOS1hfSdQn+zz3DEhoWyMH0xg5/4Cabovi668VeLNRsNMtYn8P2KmGa/LHdLNj7seOMD19s9xXNfF6+fxCI/BWj2gvdTI+2zkf8u6IpI+jNnH0I/vCuh+EV3YXfw30z7DCkPkhorhF/56g/Mx924b8RXOdByv8AwgnjT/hGh4EP9lHQPO3f2lk+aIvM8zGz+/n8O2e9ewqoVQozgDHJpaCQBknAoAKK5vVvHvhvRtyz6nFLKP8Allb/ALxs+nHA/EisT/hMvE+uceHPDEkcLdLrUDsXHqBkZ/Amto0JtXtZeehjLEU4u17vstTv6wtW8ZeH9E3Le6pAJV6xRnzHz9FyR+Nc7/whPiLW+fEvieYxN961sBsTHpnAB/FTW7pPgbw5ou1rbTIXlH/LWceY2fUFun4Yp8lKPxSv6f5v/InnrS+GNvX/ACX+Zhf8J7rOtfL4X8M3M6H7t1efu4/54P8A31R/wivi/Xede8Sm0gbra6cu3j0Lcfrurv6KPbKPwRS/F/iHsHL+JJv8F+By+lfDzw1pJDpp63Mw/wCWt0fNJPrg/KD9BXTqqooVQFUDAAGAKWis5TlN3k7msKcYK0VYKKKKgsKKKKACiiigAooooAKKKKACiiigAoormPH+uf2D4Qu50fbcTj7PD67m7/gMn8KqEHOSiupE5qEXJ9DF8Kf8VL471jxM3zWtr/oNke3H3mH4c/8AAzXoNea6J4x8N+EfDllpFvNJqF6qZkjsk37pG5b5uh5OOCeBVv8Atnx7r/GmaLBo9u3Se+bLj324/wDZTXVVpSlK+0Vor6HLRrQhG28nq7a6s6fTvDmi6Fe6hqdpbLDc3reZdXEkrOW5J6sTgc9BgflXLweIfAfgYXUGkuGe5l82SCyd5tzn0ySq+mAR+lPT4by6m4m8Ta/fak2c+SjeXED9Of0xXU6V4b0bRFA07TbeBgMbwuXP1Y8n86ytRju2/TT+vuNeatPZKPrq/u/4Jyn/AAk3jPXeNE8OrYQN0udRbBx6heP5NQPh/qesHf4o8S3d2p5Nta/u4v8AA/8AfIrv6KPbtfAkvz+8Pq6l/Ebl+X3IxNJ8I6Bom02GmQJIvSVxvf8A76bJH4Vt0UVlKTk7ydzaMYxVoqwUUUVJR5T8Rvi7Z6Ja3elaFcOdcjlETOYfkgwfmzuGGOBjjPXPau51jxAuheCp9duF80wWglKjje5AwPbLEVzHxrVf+FZXx2jPnQ84/wBsV2CadZ6t4agsb+3S4tZreMSROOGwAR+oFAHlsviP4m2PhePxpcT6VJprKk7acIsMIWIwc4z0IP3jwfwr1rSdRi1fR7LUoAViu4EnQHqAyg4PvzXmfjrWTrhT4b+EYEmndViu5V/1VnCpHyk+owAfTpyTx6Xo+mx6NoljpkTFo7S3SBWIwWCqBn8cUAXaKKKACiiigAooooAKKKKACiiigAooooAKw9f8Kad4mmtW1MzSQ224rAsm1GJxknHPb19a3KKqMnF3juTKMZq0ldFDTdE0vR49mnWFvbDGCY0AJ+p6n8av0UUm23djSSVkFFFRRXVvNI8cU8Ujp95UcEr9R2pDJaKKKACiiigAooooA4X4vWF5qfw7vbWwtJ7u4aWIrFBGXcgOM4A5rQ8UT6rYfDa6fSbe5k1NbNI4o4I2aUM21SQAM5AJPtiuqooA8W8FeIJfB2gxWUHw78TPduoa7ufsbbppO5zjOAc4HYe+a9d0q+fU9Ktr2S0ns3mjDm3uF2yRn0YdjVyigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q==
|
<image>Find x. Round to the nearest tenth.
|
52.5
|
Geometry
|
Geometry3K
|
test
|
26
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACZAYwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3iiiisSwooooAO9FFFABSUtFABRRRQAUUUUAFFFcvP8QvDVtcSQPqBLxsVYrE7DI9CBg1cKU6nwJv0M51YU9ZtL1Ooork/wDhZHhf/n/f/vw/+FH/AAsjwv8A8/7/APfh/wDCtfqtf+R/czP63Q/nX3o6yiuT/wCFkeF/+f8Af/vw/wDhR/wsjwv/AM/7/wDfh/8ACl9Vr/yP7mH1uh/OvvR1lFcn/wALI8L/APP+/wD34f8Awo/4WR4X/wCf9/8Avw/+FH1Wv/I/uYfW6H86+9HWUVyf/CyPC/8Az/v/AN+H/wAKX/hZHhf/AJ/3/wC/D/4UfVa/8j+5h9bofzr70dVS1yf/AAsjwv8A8/7/APfh/wDCj/hZHhf/AJ/3/wC/D/4U/qtf+R/cw+t0P5196Osork/+FkeF/wDn/f8A78P/AIUf8LI8L/8AP+//AH4f/Cl9Vr/yP7mH1uh/OvvR1lFcp/wsjwv/AM/7/wDfh/8ACj/hZHhf/n/f/vw/+FH1Wv8AyP7mH1uh/OvvR1dFcp/wsjwv/wA/7/8Afh/8KT/hZHhf/n/f/vw/+FH1Wv8AyP7mH1uh/OvvR1lFcn/wsjwv/wA/7/8Afh/8KP8AhZHhf/n/AH/78P8A4UfVa/8AI/uYfW6H86+9HWUVyf8Awsjwv/z/AL/9+H/wo/4WR4X/AOf9/wDvw/8AhR9Vr/yP7mH1uh/OvvR1lFcn/wALI8L5/wCP9/8Avw/+FL/wsjwv/wA/7/8Afh/8KPqtf+R/cw+t0P5196Orork/+FkeF/8An/f/AL8P/hR/wsjwv/z/AL/9+H/wo+q1/wCR/cw+t0P5196Osork/wDhZHhf/n/f/vw/+FH/AAsjwv8A8/7/APfh/wDCj6rX/kf3MPrdD+dfejrKK5P/AIWR4X/5/wB/+/D/AOFH/CyPC/8Az/v/AN+H/wAKPqtf+R/cw+t0P5196OsorlP+FkeF/wDn/f8A78P/AIUn/CyPC/8Az/v/AN+H/wAKPqtf+R/cw+t0P5196Osork/+FkeF/wDn/f8A78P/AIVp6N4p0nX55ItNmkmaNdzkwsoUduSMUpYerFXlFpehUcRRm+WMk36mzRRRWJsFFFFABRRRQAUUUUAFFFHegAooooAKKKKACiiuf8VeIjolmkNonnapdHy7WADJLf3iPQVcISqSUY7kTmoRcpbGd4p1a61C/TwtosmL2cZuph0t4u+fcg/qPUVqaPDpelTJ4ds4Cz20AmlfaCBk4G49dzEE/QduKb4V8OjQbF3uH87Urk+ZdTk5LMecA+gz+PWs3wRci403Wtem5a7v53z/ANM4/kUfgF/WtatSKXs4fCtfV9/8jKlTk37SfxPT0Xb/AD8/Q63yYv8Ankn/AHyKPIi/55J/3yK8x0zQ7HxT4fj1jU9R8nxJqQeeymN2yNb5J8sRqCPlAAzgc13x1OLSbfS7bV7tftl0y26sqNtlm284wOM4J5xWLTWnU206bGh5EX/PJP8AvkUeTF/zyT/vkVXm1Szt9TttNkmxeXKs8UQRjlV6kkDAHI64q5Suxkfkxf8APJP++RR5EX/PJP8AvkVJRSuwsR+TF/zyT/vkUeRF/wA8k/75FV9XuvsWjX13nb5NvJJnOMYUmuB8MaHaX+naabvxnrTatJbxzzWqay2QSAfuZzimrv8Ar+uwPRHo3kxf88k/75FMnWOGCSUW3mFFLbEUbmx2GcDNY2seFo9WvTdvret2fyBfLs79oY+O+0d/esvwLYy+fqGpx6rql3psreTZrfXbTbghIaQZ6ZOQPYZ70K76hsdLYXlhqWlw6jbhDbyx+YCygEDuCOxHII9qzNK8Q2up3cER0q5tY7qMy2c06JtuFGCSMMSvBBwwBxVLwlIsOt+KNCODFbXgmjQ9kmXeR9N27861NM8L2ml3UU6XN5OtuhjtYp5dyW6HGQgwD2AyxJxxmnfr/X9f8ELdDX8mL/nkn/fIo8iL/nkn/fIqSipuFiPyIv8Ankn/AHyKPJi/55J/3yKkoouwsU7i4sbW4toJtiy3LlIUCZLEAk9BwAAeTxVnyYv+eSf98iuW02U6p8RdYmfmPSreK0hHYPIN7n64CD8KpSN4j13xhrVnp3iGTTLLTxCiqlnFLvdk3Nywz6d6eugWWp2vkxf88k/75FL5MX/PJP8AvkVR0+O40rSSdX1YXjxbnku5Y0hAXryFwoAHep31Owjs4rx762W1l2+XOZVCPu+7hs4Oe3rRqBN5MX/PJP8AvkUeRF/zyT/vkVJRSuwI/Ji/55J/3yKPJi/55J/3yKkoouwI/Ji/55J/3yKPIi/55J/3yK4DV/FGq3Hjjw7pyaZqOnWLXjiSachBcYRsKApOV78+3FbHjLU72K60bQ9OuTa3OrXJja4UAtHEq7nK5/i6AH3pq7S8wtrY6fyYv+eSf98iq1lc2OowNNa7JEWRom+TaVZThgQRkEEVylob7wr4107R5NVvdR07VYZfL+3SeZJDLGNxw+ASpB6GrljN/Z3xI1LTRxDqNml8o9JFPlv+Y2flT/X9P+GYM0YvEOiz6r/ZyFjKZGiWQ2ziJpF6osm3aWGDwD2NbHkxf88k/wC+RXPW/haWG8hB1Nn0yC6a7itPJAYSEs2DJnlQWJAwD7mrfiXxBD4e0s3DL5tzIfLt4B1kc9Pw9f8A69OEZTajHdkzlGCcpbIy/FmryQNFoejxI+r3owuFH7lO7n07/wA61/D2g23h7So7OD5n+9LKRzI/cms/wn4fm09JtU1NvN1i9O+dz/yzHZB9P/rdq6atq01GPsoPTq+7/wAl0MaUHKXtZrXouy/zfX7gooormOkKKKKACiiigAooooAKKKKACiiigAooqOeeK2gknmkWOKNSzuxwFA6k0CKetaxa6Fpc1/dthIxwo6u3ZR7msDwro9zd3j+J9aT/AImFyP3ER6W8XYAdiR/nk1T02GXxvrq6zeIy6LZsRZQOP9cw6uR6f/q7HPd11T/cR9mvie/l5f5/cc0P30vaP4Vt5+f+X3hXCeDbZovBWs6QM+fa3V5bkd+SWU/iGBru6yrfSXs/EV3qEEii3vIl8+I9fNXgOPqvB/3RXJa6a7o672s+zPPfDvhfQLz4QLe3lnby3RspJGvHUebGy7sYc8qFwBgccVbvri6ufh74N1a8djcQXtlLI7HkgnZk/UMDXQT/AA80eaebFzqMNlPIZJtPiuittIxOSSnv3AIFU/Gxs9bs18FWOTe3DQ70jQ7baEMGLk4wOFwB3JFac15XXVp/d/X4EpWVvJ/iXPC0Z1fWNT8USjKXDfZLHI6W8ZPzD/ebJ+gFa/iC21q609Y9Cv4LK78wEyzReYpXByMflV6ztIbCygs7dAkMEaxoo7KBgVPUu2yBd2cH/Y3xI/6GrTP/AABH+FbHh2w8V2t5K+v6zZ31uY8IkFuIyrZHOcema6Sii4WM3xA+nR+H79tXdk04wstwyhiQhGD93nv2rh/G2g+H9L+HR1HR7K2tprQQzWVzEgWTcWXB3feJOec9a9FubaG8tZba4iWWCVCkiMMhlIwQa5e2+HekQT25kutTurS1cPb2NzdmSCIjphTycdsk0Lf7h3/r+vxG+OdUubTwYkER2X+ptFZR47PJw35DdXT2FlDp2n21lbqFht41jQDsAMVS1fQLXWrvTbi5kmU6fcC5iSNgFZwMDdkHI+mK0pvM8mTydvm7Ts39M9s+1F9H6/1+oktl/X9bHJeFojN408X6iv8Aq3uIbZT6mOMbv1auwrN0HSV0XSYrTzPNly0k0uMeZIx3O34kmtKh9uwb6hRRRSGFFFFAHHeFkNt428YW7/ee4guFz3Vo8fzUim/8IR4Z1vU9Wu57l9Rea4/exJdnbbyKoGMIRhgAOvIrZutLnj8U2esWiqQ8RtbxScZj+8jD1KtkfRj6VmXfg+9j1S9vdC8QTaUL9991CLdJlZ8YLLu+6x9efpT7elv6+4O/3/18yv4Cu5brw5qljqU7XEOn3txZCadsl4l6bj3wDjPtXM/DWGLWb+S2uLpp7DQZSdMgdCu5XZikxz1wvC+nWuwfwRDH4Xh8PWd9LBZtLvvXZd8t0CcuC2RtLHqcHjirkXhiO28WQ63Zzi3jWy+xy2qx/LIoOUIOeMdOh4pp63/rbf8AruJ7W/rfb7jW1B7uPT7hrCOOS8EZMKSnCs+OAT6ZrjP7R+Jv/QC0L/wJb/Gu8oqRnH6XfePpdTt01TSNIhsi376SGdmdV9hmuwooptiOM8Yf8jb4M/6/5P8A0WaueL9DvtRk0rU9KaH+0tMuPOijmO1ZlIwyZ7ZHer2saB/a2raNf/afK/s2dptnl7vMypXGcjHX3o8ReHo/EFrbqLqW0urWYT21zEAWikHfB4IwTkGktEvX/IfX5f5nF3za5f8AxH8I3GrWsFiVNx5dpDN5xAEfzOz4A54AAH41uTqbj4u2hQcWukO0h9N8gAH6Gr2j+GJ7TVjrGr6rJqupCLyI5DCsKRJnJCovQnuSSasaNpstrfapq1/sS5vJMAbgRFCnCLn6ZY+7VSa08r/jf/MT1v8AL/M0tQv7bS7Ca9u5BHBCu5j/AEHvXJeG7C58Q6r/AMJVq6FUIxp1s3SNOz/U9j+PpiDD+Ptdycjw5YPwP+fqUf8Asv8Anvx3gUKoVQAAMADtXRL9xHl+09/JdvV9fuOWP7+XN9lbeb7+i6ff2FooorlOsKKKKACiikoAWiiigAooooAKKKKACiiigArhNVnm8a662hWTldHtGDX9wp/1jA8Rqfw/mewzd8V6zdTXUXhvRTnUrofvZB0t4+7H0OP85Ird0PRbXQNKisLRflTlnPV2PVjXVD9zH2j+J7eXn/l95yz/AH0vZr4Vv/l/n9xdt7eK1t47eCNY4Y1CoijAUDtUlFFcu507BRRRQMKKKKACiig0AFFFFABRRRQAUUUUAFFFHegAooooAKKKKACiikoAWiiigAoo70UAFFFFABRRRQAVxPiK/n8Sat/wi2lSFYwM6jcr0jT+4Pc//W9av+LfEE1gsOk6UPN1m++WFR/yzU9XP64+hPar/hvQIPD2lrbo3mXDnfcTnrI/c/T0rqppUo+1lu9l+v8Al5nLUbqy9lHbr/l/n5F/T7C20yxhsrSMRwRLtVR/M+pqzRRXM227s6UklZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAVheKPEK6DYKIk87ULk+XawDku3rj0GRWhq2qWujabNf3j7YohnA6sewHua5rwvpVzql+3inWY8XMw/wBDgPIgj7H6kfzPrXRRhG3tJ7L8X2/zOerOV/Zw3f4Lv/kaHhTw62jWslzev5+q3Z8y5mPJyedo9h/ntXRUUVlUnKpJyka04RhFRjsFFFFQWFHeiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikoAWiiigAooooAKKKKACsnxFr1v4e0p7ub55CdkMQ6yOegFX728t9Pspbu6kEcESlnY9hXHaBZz+KdYXxPqkRS1iyNOtn/hH/PQj1//AF9hW9GmmnUn8K/HyMKtRq0IfE/w8y/4T0G5tjNresfvNYveXz/yxTsg9O2fwHbnqaKKzqVHUlzMunTVOPKgoooqDQKKKKACiiigAooooAKKKKADvRRRQAU2SRIYnlkdUjQFmZjgADqTTq4bW7qfxfrJ8OadKU0+BgdRuU74P+rB9ePz+hrWjS9o9dEt32MqtT2a01b2XcjtI38e66NQuEYaBYORbRNwLmQfxEdx/wDq9a72udurk2OraP4c0kLACpnmKqD5dumBjnPLMQM/XvRq/jKx0rUm09LPUdQu40Ek0VhbmUwqehfkAfTr7U61TnatpFbL+vxFSpcid9W9W/6/A6KiqWk6tZa3pkOoafMJbaUZVsYIxwQQehB4xV2sWrGoUUUUDCiijvQAUVzGp+OtM02+ntVtdRvfsv8Ax9y2VsZY7bv859cdhkiptb1p4/DUWv6TcLNaw7bmQKARNB/GORkEAlhjHK4o8w8joaK5vxPqckFhp8sN+9jYXEwFxfxIrGKMozAgsCFBIUbiCBmrPha8ub7RzJcTPcqs0iQ3LxhGniBwrkAAc+oABxnvTsK+xt0UUUhhRRRQAUUVha1qlxHq+laPYvsubyQySPgHy4I8Fzg8ZJKr/wAC9qN3YDdorB1rxZZaNex2H2W+v76RPNFrYwebIqZxuPIAGfU1d0XW7HX7D7ZYOzIHMbo6FHjcdVZTyCPSi2lxbGjRRRQMKKKKACiiuZ1Pxzp2nahcWaWepXzWuPtUllbGVLfIz85z6c4GTQB01FUBremnQxrP2uP+zvK87z8/Ls9f/rVk6Z4307UdSgsXs9SspLkE2r3tsYkuABk7D9OcHBp2d7Cvpc6WisK11K5g8W3ekXkodJoRd2TEAEKPldOOuDg564b2rA1XWtQg1+7jXVJ4byK5ijstLWBSl1EQm5iSpY8luQwC7efcSvYHpc7ygnAyeBRXF+J9Rutb1IeFdHk2yOM39wOkMfdfqf647nF0qTqStsur7Izq1FTjf7l3ZWmZ/H2u/Z4mI8O2D/vXHS6kHYH0H/1+4x3iIsaKiKFVRgKBgAVV0zTbbSNOhsbOPZDEuB6k9yfc1bqq1RStGPwrb/P1YqNNxvKXxPf/AC9EFFFFYmwUUUUAFFFFABRRRQAUUUUAFFFFABRRWL4n8Qx+HtM84J5t3KfLtoByZHPTjrgf561UISnJRjuyJzjCLlLZGd4s125SaHQNG+fVrzgsD/qI+7n0P/6/TOvoGh23h/So7K3GSPmlkI5kfuxrP8J+HpdLhl1DUn87V7077iQ87M9EHsPb+QFdJW1WcYr2UNlu+7/y7GVKEpP2s9+i7L/PucdpTmf4q+IGcc29jbRJ7KxZj+tWb2XQ/A76nrt9c3C/2lMrSExmTDKmAqhVyBgHr+dNmh/sz4kwXp4g1WzNsW9JoyWUfipb/vmoJvGseha7qVj4lJtYN6tp8y27ss0ZXkZUHLA5GOK5+it2/X+mdD3fy/Ib4FtruHwVcXVs0Hn309xeWyMwkRN7Eop2n6ZAPrVbRfHF94gt9Ls9Pt7cau5J1JXVjHZqjFXyAc5JGFGfftVPQ9Tfwz4Z1TUBZyo+qanK2k6e67XffgINvVQSCx9BR4Ns7rwt43vdI1G4E82r2y6h520AGYEiVR7c5HtVrf7vwV7fduS9F83+L3/yPRnkSKNpJHVEUFmZjgADqSa8++J/iKxPgO9/s3Wbc3W+Lb9mul3/AH1zjac9K764t4ru2lt50EkMqFHQ9GUjBFeW/E3wX4b0jwJe3un6RbW9yjxBZEByMuoPf0NQviXqvzLR6HZ69pE6QRR6rYyTOFUItwhZj6Yz1rUrmdN8CeF7OS1vLbRbWO5i2yJIoOVYc56101OVrkR2Rwfw8ube30jX0vJI47iDVLl7zzDjGTncc9sd6h+HTxX/AMMrmEDNt5l1Eit/cLMQPyNVtW1LwmdfvX8TeHkj1i2lItB5Dym9QAbGUhcMT0wc4q9psN34Z+Fk5u4imo3CyuIB1E0zHYn1yyik1eD9Ev6/rQtaSXrf8/68zW+HdxJdfD7RJJc7hbBOfRSVH6AV09Znh3Sxonh3T9MBBNtAkbEdyByfzzWnVVHebaIhpFBRRRUlBRRRQAVx1sxn+L19vyfs+kRqntukJP8AIflXY1ymoQf2b8RNN1Q8Q39q9hI3pID5ifnhh+VOPxL5/kxP4X/XVFm/j0jwxf6j4pv7m4Q3McUMnyGRUC5wFVVLck89fwrM8BE3Gn65rduY/J1O+kubZAwbC4ABYA8EkZI6+tT6h4u/4R7xLdW+vn7NpMkUbWV0sDspbnejMM85xjgVF4GiabUvEWrwwSwabqF0j2qSxmMuFQBpAp5AY+vXFCV0/T9UNuzXr+g238a3Unw4tdeaCBtTusQw26AhHnLlFXBOcZGTz0BrsIDMtrGbpo/OCDzSgIXdjnAJOB+NeZeBLOXUdXe0mjYWPh28uRHkcSTvI2D/AMBQ/m1eosoZSrDIIwRTltddRbO3b+v6+ZxnjrxFpp8D6uLLWbT7T9nPl+TdLvz7YOc1o+HPEGlP4e0pJdXsmuDaxBla5UuW2jIPOc5rmfHPgXwvp3gnV7yz0W1huIrctHIoOVPr1rS8NeBPCz6FpN62i2puTbQymXBzv2g569c0RtZ/L9RS6fP9Dt64++u9B+HlhfT3dxcsdSuZbnDoXLSMBlQVXCjoBuP412FcQnjmDS7rUdO8Vbre5S4cWqpauy3MB+5twCGPYio3ui0cxqUB0L4R+HbG+cPFPfweeIj5gMbSGQqNvXgAcV1L+IYbnXNLtfEHhq607zJ86bczyI6+bjgHYx2MRng1z3/CP6ivwvs3FhMZrTUhqUNiV/eLCJSwQL67STj8K0NZ1iz8daloOn6GZp/s2oR3l3KYXQW6oCdrFgMMScYrXeXz+7b8v0Ie3y+/f8zV8UsYPG/g+eP77TzwN7q0eT+oBrsa5S+h/tX4jaYq8xaRbSXEp7CSX5UH1wGP5Vsa/rlt4f0qS9uTnHyxxg8yOeiipjFytGO7CclG8nskZ3izxDJpUEVhp6edq96dlvGOduf4z7D/ADwDVnwx4ei8P6cYy3m3k58y5nPJkc+/oP8APWs/wnol0JpfEGs/Nqt4MqhH/HvH2Uehx/nrXV1vVkoR9lD5vu/8l/wTClFzl7WfyXZf5v8A4AUUUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVNS1G20nT5r68kEcES5Y9z6Ae56Vy3hvTbnXNUPirV0Klhiwtm6Qx9m+p/+v6Y39b8PWPiCKOHUPNaKM7giSFRn1OOtYn/Cs/DP/PtP/wB/2rrozpRptNtSflfT70claFWVRNJOK87a/c/kdfS1x/8AwrPwz/z7T/8Af9qP+FZ+Gf8An3n/AO/7VHJQ/nf/AID/AMErnxH8i/8AAn/8idTdWdverGtxEsgjkWVM/wALKcgj3qeuP/4Vn4Z/59p/+/7Uf8Kz8M/8+0//AH/ajkofzv8A8B/+2Dnr/wAi/wDAn/8AInYUVx//AArPw1/z7T/9/wBqP+FZ+Gf+faf/AL/tRyUP53/4D/wQ56/8i/8AAn/8idhTXRZF2uoZfQjIrkf+FZ+Gf+faf/v+1H/Cs/DX/PtP/wB/2o5KH87/APAf+CHPiP5F/wCBP/5E7CiuP/4Vn4Z/59p/+/7Uf8Kz8M/8+8//AH/ajkofzv8A8B/4Ic9f+Rf+BP8A+ROwqC4s7e6aFp4lkMEglj3fwsAQD9eTXLf8Kz8M/wDPtP8A9/2o/wCFZ+Gf+faf/v8AtRyUP53/AOA/8EOev/Iv/An/APInYUVx/wDwrPw1/wA+0/8A3/aj/hWfhn/n2n/7/tRyUP53/wCA/wDBDnxH8i/8Cf8A8idhRXH/APCs/DP/AD7T/wDf9qP+FZ+Gv+faf/v+1HJQ/nf/AID/AMEOev8AyL/wJ/8AyJ2FFcf/AMKz8M/8+0//AH/aj/hWfhn/AJ9p/wDv+1HJQ/nf/gP/AAQ58R/Iv/An/wDInYVBd2dvfQiK5iWRA6uAezKcgj0IIrlv+FZ+Gf8An2n/AO/7Uf8ACs/DP/PtP/3/AGo5KH87/wDAf+CHPX/kX/gT/wDkTsKo6t/ahsGGj/YxeFgAbvdsC9z8vJPoK53/AIVn4Z/59p/+/wC1H/Cs/DX/AD7T/wDf9qOSh/O/u/8Ath8+I/kX/gX/ANqbmgaMmh6UloJDNMzNLcTEYMsrHLMfqf0xWpXH/wDCs/DP/PtP/wB/2o/4Vn4Z/wCfaf8A7/tTcaD+2/8AwH/gi5q/8i/8Cf8A8ideyq6lWUMp6gjIoAAAAAAHAArkP+FZ+Gf+faf/AL/tR/wrPwz/AM+0/wD3/alyUP53/wCA/wDBDnr/AMi/8Cf/AMidhRXH/wDCs/DP/PtP/wB/2o/4Vn4Z/wCfaf8A7/tRyUP53/4D/wAEOfEfyL/wJ/8AyJ2FFcf/AMKz8M/8+0//AH/aj/hWfhn/AJ9p/wDv+1HJQ/nf/gP/AAQ58R/Iv/An/wDInSOljpMV5fMEgRyZriU/xEADJ/AAVyOi20/jHWh4i1GIpptuxXTrZ/4sHmQj8Pz+nNsfDPwyCP8ARpj7ee1dZFFHDEkUSKkaKFVVGAoHQCq9pTpRfs2231atZeWrFyVKkl7VJJdE73fnoth9FFFcp1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUd6KACiiigAooooASloooAKKKKACiikoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkpaKACiiigAooooAKKQ0tABRRRQAUUgpaACiiigAooooAKKKKBBRRRQMKKKKACiig0AFFApKAFooo70CCiiigYUUCjvQAUUhpaACiiigQUUUUDCiiigAoo70UAFFFFABRRQKACiiigAooooAKKKKACiiigAooooA//9k=
|
<image>Find $y$ so that each quadrilateral is a parallelogram.
|
31
|
Geometry
|
Geometry3K
|
test
|
27
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADbATsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAoopCQASTgDqaAForzxNX17x5qNzF4fvhpWgW0hibUVjDy3TjqI88Bff/8AVVTXNC8V+D7Bta0XxLqerCBg09hf/vvNUnB2kcjr0FHmx21sj06iq9jdfbdPtrry3j86JZNjjDLkZwferFNqzsSndXCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ+Id/Lpvw/wBauYCwlFuUUr1XcQufwzXTVW1CwttU0+4sbuMSW9xGY5EPdSMGpkrxaKi7STZjeCLKOw8A6PBaBP8AjyRwezOy7iT9STXFeJfEHxI8LWMN3fT+GZBNOsEUUCTM7s3QAHA/WtPT/C/jvw1Cum6Hrul3WlxsRCNRhfzYU/ugr97HuR+FOvvh7qWq6po+p6trIv7y0vUmlypiiSJcnZHGM8ltuSxycfhWjalPm6NkJcsbHoEW/wApPMIL7RuIHGe9OooqRoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxvFerPonhi+v4mAmjTEZIz8zEKOPqaTwx4ig8SaSt1GPLnQ7LiE9Y37/ge1Yvj8/bpdC0Mcm+vlaRfWNPvZ/76B/CovEmn3HhrV/8AhK9IjLR4xqNqvSRP74HqP/r+tdcKUJU1F/E72/K3z1OOdWcarkvhVr/nf5aHc0VW0/ULbVLCG9s5BJBMu5WH8j6GrNcrTTszrTTV0FFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHFt/wATT4sIPvRaTZZ9hI//ANi36V2bKHUqwBUjBBHBFcZ4D/0+81/XCdwvL0xxt6xp93H4N+ldpXRiNJKPZJf5/ic+G1i5923/AJfhY4D5/h9r+OT4b1CTj/p1lP8A7Kf5fTnvlYMoZSCCMgjvVbUdPttV0+ayvIxJBMu1l/qPQ1yPhrULjw3qw8J6vIWTGdOum6SJ2Q+47fl6Zb/fR5vtLfzXf17kx/cy5fsvbyfb07fcdxRRRXMdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZfiO//szw3qN4CA0UDFM/3iML+pFalcb8R3afR7HSYz+81K9ig+i5zn89ta0IqVSKZlXm4U5SW5peCLD+zvBumQkEM8XnNnrlzu/rj8K6CmoixxrGgwqgAD0Ap1ROTnJyfUqnBQioroFYvifw7B4j0o27t5VzGd9vOOsb9j9PX/ECtqiiMnCSlHdDnBTi4y2Zy/hHxFNqKzaVqi+VrNj8k6H/AJaDs4+vH55711Fcp4u0C5uGh13RsJrFl8y4H+uTuh9e+Py71q+HdftvEWlJeQfJIPkmhPWNx1BrarFSXtIbdV2f+XYxpScX7Oe/R91/muv3mtRRRXOdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxepY1P4paTadU061e5b/eb5R/7Ka7SuL8If8THxT4m1g5Km4FpGT6IMH8/lNb0NFKfZfnoc9fVxh3f5a/5HaUUUVgdAUUUUAFcL4gs7jwlrLeKNLiZ7OXC6lap3Gf9YB6/57mu6prokkbRuoZGBDKwyCD2NaUqnI+6e6M6tPnXZrZ9mRWV5b6hZQ3lrIJIJlDI47ip68/t3k+H/iAWkrMfDmoSfuXbn7LKf4SfT+nPY59ABBGRyKdWnyO61T2FSqc6tLRrf+uwUUUVkahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAU9VvV03SLy9Y8QQvJ+QzWH8PbJrPwZZM+TJcbrhyep3Hg/liofiPcvH4VNnCcTX88dsg9cnJ/QY/GuotLZLOygtYxiOGNY1A9AMD+Vb/DQ9X+X/AA5z/FX9F+f/AAxNRRRWB0BRRRQAUUUUAU9U0y11jTZrC8j3wyrg+oPYj3Fct4W1O70XUm8Ka1JuljGbC4PSeLsPqP8A63bntawvFPhyPxDpoRX8m9gbzLWccGNx/Q//AF+1b0pq3s57P8H3/wAzCrB39pDdfiu3+Ru0VzXhHxHJq8EtjqCeTq9kfLuYjxuxxvHsf88EV0tZzg4S5ZGkJqceaIUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWNrHiay0XVNJ06eKeW51OYxQLCoO3GMs2SMAZ7ZrZryPxf4ksdP8AjBYS3vmSJpWns0MEK7nlnkOAijuSCKL6pDtoz1HU9TstH0+W/wBQuEt7aIZeRzgD29z7VT8Pa/H4j0/7fBYX1rbsf3TXaKhlH95QGJx9cVwfhGJfiXdyeIPEEokisbhorfRsHy7dh/FID99vrx1+g9TAAAAGAKdrbi9Di/EWdS+IHh3TBzHbB72UfT7p/Nf1rtK84s/EOk2/xH12+1K9jg8lEtIN2TkD7+Mf7S/rXS/8J34Y/wCgxB+Tf4V1VqVS0YqL0Xbvr+px0atO8pOS1fftp+h0VFc7/wAJ34Y/6DEH5N/hR/wnfhj/AKDEH5N/hWPsKv8AK/uN/b0v5l950VFcdrnjbw/P4f1KK11eI3D2sqxBdwJYoQMHHXNeZ6T8RfEWlbUN2LuEfwXQ38f73X9auOGqNXtb1PXy/LKmYUpVKEk+V2se+0V55pPxb0u5wmp2stm/d0/eJ+nI/I10I8d+GGTcNXh2+pVh/Ss3RqJ2sc+KwWIwmteLiu/T79joqK53/hO/DH/QYg/Jv8KP+E78Mf8AQYg/Jv8ACn7Cr/K/uOD29L+ZfeU/F2hXXnxeI9EG3VrMZZAP+PiMdVI7nH+HpW14f1208RaTFf2hwG+WSMnmN+6n/PTFUf8AhO/DH/QYg/Jv8K4u88R6P4d8ULrGh38U9lettv7OMEEHr5i5H1/H68dEaVSrDklF3W2n4f5HNOtTpT54yVnvr+P+Z6tRUVrdQXtrFc20iyQyqGR16EGpa4npudydzOi13TZ9dn0SK53ajbxCaWEI3yqcYO7G3uOM5q5c3EVpay3M7hIYUMkjn+FQMk/lXlfg/wATaFB408YatqmrWdrLPeC3hWeYKTHHkZGex4/KtH4g+O9Al8C6rb6ZrNldXdxF5CRQzBmO4hTwPYmk2+VNbtfmUl71nsd5pWq2et6ZBqOnzGa0nBMchRk3DOOjAHt6VcrL8OacNJ8M6Zp4629tHGfqFGf1zWpVSSTaREXdJsKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNfAlnba1458WeJZoUkkjvfslrIwyUCDDFfTI216VVez0+y06JorG0gtY3cuywRhAzHqSAOvvQtHfy/yB7WPMbhv+EB+Lqz/c0bxH8r/3Y589fzP/AI+fSvUbq4S0tJrmQ4SGNpG+gGTUN/pen6rGkeo2FreIjb0W4hWQK3qAwODWF8QLw2Xgu9EY+ecLboB33HBH5Zq6UOdxh52+RFWfJGVTyuUfh/pNvceGRqF9aQS3F9PJcM0kYY8nHGe3Gfxrqf7H0z/oHWf/AH4X/CjSLEabo1lYr/ywhSP6kAAmrtXVquU3JMmjTUKai+iKX9j6Z/0DrP8A78L/AIUf2Ppn/QOs/wDvwv8AhV2is+aXc05V2MDxFpFgPDOqmHTrYSizm2FIF3Z2HGMDrXkOj/DvxDq+1za/Y4T/AMtLrKcey9f0r32itIV5QVkergM1q4GlKFFK7e5wGj/CjSLLbJqM0t/KOdv+rj/IHJ/P8K6+LQdHgjEcWlWSIOgEC/4VoUVEqk5O7Zy4nG4jFO9abf5fdsUv7H0z/oHWf/fhf8KP7H0z/oHWf/fhf8Ku0UuaXc5OVdil/Y+mf9A6z/78L/hSNoulOpVtNsyCMEeQv+FXqKOaXcOVdjgbCWTwFry6VcszaDfOTaTMc/Z3PVCfT/8AX612Gs36aXod/qDnC21u8v5KTRrGk2uuaXNYXibopB17qezD3Fcho0pmW68C+KgZn8srDIXZRdQ+gYEHIA9egPoa2qL28HJfEt/Pz/z+8wpv2E1B/C9vLy/y+4qfDXwdo0/gTT7vVdG0+7vLrdO8txapI5DMSOWBPTFUfHvh3RE17wno+naPp9rNeagJJXt7VI2MUfLDKgHHP6V6fZ2cGn2UFnaxiO3gjWONASdqgYA59qq3Ghabd61aaxPbb7+zVkglLt8gbg/LnH4kVi2udNbXN1flae7/AFNGiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXF+Mf+Jh4n8M6MOVa5N1KPaMZH5/NXaVxenf8TP4qapdcGPTbRLZf95vm/wDixXRh9G59k/8AL9TnxGqUO7X+b/BHaUUUVznQFFFFABRRXLz+PtDs9auNKvpZLaaB9hd0yjcA9RnHXvimouWxtRoVazapRbtrodRRUNrd217CJrW4inibo8bhgfxFTUjJpp2YUUUUCCiiigArn/Ffhwa9YI9u/kananzLS4BwVYc4J9Dj8ODXQUVUJuElKO5M4KcXGWxzvhLxG2uWUkF5H5Gq2h8u6gPBBHG4D0P6H8K6KuO8WaLdWt4nijRF/wCJjbL+/iHS4iHUEdyB/nIFdBoms2uvaVDqFo3ySD5lPVG7qfcVrVgmvaQ2f4P+tjKlNp+znuvxXf8AzNGiiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPLLQfG+l3uoz2Mukj7bcNO/mszHknA6ds11XiTxLZeF7CG7vY55RPOlvHHAoZ2dumASPT1rZ7VrTquCdknfuZVaSm1dtW7HFeX8Rv+e+ifk3+FHl/Eb/AJ76J+Tf4V2tFX9Y/ur7iPq/95/ecV5fxG/576J+Tf4UeX8Rv+e+ifk3+FdrRR9Y/ur7g+r/AN5/ecV5fxG/576J+Tf4V5L4rF6PE98NRMRvN480xfdztHSvo+uRuPh5o9/r11quoGW5edw3k7tqLgAduT09auniUndpL0R7uQ4qll9adWq201bv1R4ppL6qt6o0c3YujyBa7tx/LtXq+kJ8SWtAbiSyXj5RdY3/AI7R/Pmu5stPs9NgEFlaw28Q/hiQKP0qzU1MRzP4UdGZ5ysYnGNNLzer+/p+JxXl/Eb/AJ76J+Tf4UeX8Rv+e+ifk3+FdrRS+sf3V9x819X/ALz+84ry/iN/z30T8m/wo8v4jf8APfRPyb/Cu1oo+sf3V9wfV/7z+84ry/iN/wA99E/Jv8KPL+I3/PfRPyb/AArtaKPrH91fcH1f+8/vOK8v4jf899E/Jv8ACqnhnw54p0TxBNeTNp32O7bNzbwuwUH+8o28EV6BWP4m8SWXhXRn1O+jnkiV1jCQKGdmY4AAJA/Wj6y7OKitdNhfVVzKTk9PM2KKajb0VtpXIBweop1c50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXn9p48jsfHniHSvEOowWNrb+UbFJwEDKV+Y7u/OKOtg6XI/HP8AxNPH/g3RByi3D30o9oxlc/k1eiV5z4YkHiv4l6j4ptgzaTaWosbOZlIErZy7LnsORn3r0amtIr7/AOvlYH8X4f18wooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFed/Ej/iZa/wCENAHIudR+0SL6pGMnP5n8q9Erztf+Jv8AHRj96LRtMx/uySH+e1v0oXxL7/u1B/C/630/U9EooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKpX2j6XqbI2oabZ3bRnKG4gWQr9Mg4q7RQA2ONIo1jjRURRgKowAPpTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvDp9lb3c93DaW8VzcY86ZIwryY6bmAyce9WKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q==
|
<image>Find $K J$ if $G J=8, G H=12,$ and $H I=4$
|
2
|
Geometry
|
Geometry3K
|
test
|
28
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHTAgkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5zxzrx8OeEr6+R9k2wpC3o5BxXkfw28feJtT8cWFjq2pzT2tyj4R1UAkAkHge1bvx+1LytG0vTVbmaZpWHsowP/QjXMPp/wDwjPjbwE+NpktYN/8AvMSG/wDQqVPWV31dvwY56Qt1s2fRNcn8RPFY8JeFJ7uNwLyb91bD/bPf8Bz+VdZnjNeEavcj4j/E9oyxbQNEVpJW/hYLyx/4ERj6Ck9dP6sOOmoz4a+LPF+u+O4LDUtVnkto43lmiZVGQBwDgepFe9V4p8Ebc6hr3iHXZF5dhGp/3iWP9K9rrR7Ij7TCiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8+fFqRtd+KenaOh3LGIYCB6u2T+jCtr42QjT77wtqCDAgkK5HbaVI/rWZ4OhXxV8bdV1F/mit3eVD/usAv6Cun+PNr5vg6zuQOYbsDPsyn/AUk+WnCXnf72V8VSUfK34Gv8AFDxePDvg3bbSYvtQXyoMdQCPmb8jj6muXt9H/wCED+Ceo3M67NS1GIeaT1BfgL+Ck/jmsPwnHc/E7x5aXt7G39maTBGNjdCVHA/Fsk/Sui+PmpeVoemaUh5uJjIVHoowP1b9KJqyfeX5BB3a8vzNr4Kab9i8AR3DLh7yZ5T9M7R/6DXo1Y/hXThpPhTS7HGDDbIrfXHP61sVpP4mZw2uFFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMoZSp6EYNLRQBg6B4M0DwxcXFxpFibeW4AErGV33YOf4icdaua5oOm+I9NbT9Vt/PtWYMU3svI6cqQa0qKHruHmZHh/wzo/heze10ezFtDI+9xvZyT06sSar674L0DxJfW95q1ibie3GIj5zqFGc9FIB5rfoo63AQAKAB0HFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV538UNeurWOz0jTpZVurhvMfySdxXooGOeTn8q9DZgilmICgZJPavLfC6nxZ8Rr7XJATa2h/c56f3U/QE/WuvCRSk6sto/n0OLGybiqUXrJ2+XU6XwB4nOv6L5Vy+b+1wkuerDs34/zFddXlPiO2m8C+NINeskP9n3bETRr0BP3l/qP/rV6ja3MV5axXMDh4pVDow7g0sVTimqkPhl+HdFYSpJp0qnxR/FdGS0UUVynWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcn8RNa/sjwrOqNie7/AHCeuD94/lx+NP8Ah/ov9jeFbcOuJ7n9/Lnrk9B+AxXKeIifF3xLtNHT5rOxP73045f+i16mAFUAcAcCu2r+6oRp9Xq/0OGj+9xEqvSOi/Uzte0eDXtHuNPnAxIvytj7jdjXD/DvWJ9Nv7nwpqZ2TQuxg3H81H8x+NelV538SdCmjMHibTcpd2jL5pXqQDw34dD7fSlhpKadCez28mPFRcGsRDeO/mj0SisfwzrsPiLQ4L6PAcjbKg/gcdRWxXLKLjJxlujrhNTipR2YUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ+uaomjaJd6hJj9zGSoPdugH54rQrzb4oX8t5cad4btDma4kDuB7nCg/qfyrfD0va1FF7dfQwxNX2VJyW/T1JfhZpbm1vNductPeSFUZupUHk/if5V6JVTS7CLS9LtrGEYjgjCD3wOtW6WIq+1qOYYal7Kkof1cKZLFHPC8UqB43UqynoQeop9FYm55Ppssnw98cyafOx/sm+I2O3QAn5T+B4P516wDkZHSuZ8ceG18R6C6RqPtlvmSA9ye6/j/PFZ/w58SNq2knTrtj9ushsbd1ZOgP1HQ//Xrtrfv6arLdaP8ARnBQ/wBnqug/hesf1R21FFFcR3hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2SRYo2kdgqKCzE9ABXl3g2NvFHj3UPEMykwW5IhB7E8KPwUfrXRfEnWv7K8LSQRtie9Pkr67f4j+XH41d8DaL/Ynha1hdds8w86X13N2/AYH4V20/wB1h5T6y0Xp1OGr+9xEafSOr9eh0lFFFcR3BRRRQAV5Z4wsZ/CHiu38T6ch+zTvi4Rem4/eH/Ahz9RXqdUtX0y31nS7iwuVzHMuM91PYj3BrfD1vZTu9no/Q58TR9rCy3Wq9SWwvYNSsYby2cPDMgdT7GrFeYeAtUuPD+uXPhPU224cm3Y9M9cD2I5H/wBevT6MRR9lO3Tp6Dw1b20Obr19QooorA3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKy/EWrLomgXl+xG6KM7Ae7nhf1qoxcmorqTKSjFyeyPP9WP/AAmHxRg09fmstP8A9Z6fKct+bYWvVAMDA6V598LNJaLS7nWbgEz3sh2s3XYD1/E5/SvQa6cZJKapx2jp/mcmCi3B1Zbyd/l0CiiiuQ7QooooAKKKKAOB+JPh6S5tItesAVvbHDOU6lAc5+oPP0roPCPiGPxHoUV2CBOvyToOzj+h61usquhR1DKwwQehFeTrv+HXjsqSRo9+evZRn+ak/ka7qf7+l7J/FHVfqjgq/wCz1var4ZaP16M9ZopFYOoZSCCMgjvS1wneFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFYniXxZpPhK0hudWleOOZ9ibELEnGe1cz/wunwZ/wA/lz/4DtRcdj0GiqWkara63pVvqVkzNbTruQsuCR9Ku0NWEFeZ/Ey8l1PVNM8M2jZklkDyY7E8Ln6DJr0maaO3gkmlYLHGpdmPYAZJrzHwJDJ4j8Zal4luFOyNisOexPAH4Lx+NdmEXLzVn9lfj0OLGtz5aC+0/wAFuekWFnFp2n29nCuI4Ywij2AqzRRXI227s7EklZBRRRSGFFFFABRRRQAVgeMPDqeJNBltgB9pj+eBj2Ydvoelb9FVCbhJSjuiKkI1IuMtmcH8NvET3ljJol8St7Y/KobqyDj8x0/Ku8ry/wAd6bceHPEFt4s0xcAuBcKOm739mHH1r0TStSt9X0y3v7Zt0UyBh7HuD7g104qCdq0Npfg+py4Sco3oT3j+K6MuVyvxC8UN4S8JXF/Dg3TkQ24PI3nv+ABNdVXkXx1nRbXw/BK22B7tmk+g2/0Jril0Xc7473INL+Edz4h0mLVte1/URqtynmja4Kx55AORk/gRW78Lb3xBEdT0LXkupPsEm23up42AkXJGAx6jjI+tUJPHfjq8g+2+HvCCSaQq/u5Lg/vJFHcKGB59ga6jwJ46tvGljMfs5tb+2IW4t2OdvuPbrWi3dtuxD2V9+511FFFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8s+KsY1LxX4N0llDJLdl3U8gqCuf0BrtYtK8KzTm3istIkmXrGkcZYfh1rl/HXgHVvFni3S7y3vo7Swt4jHK6uRMMk7toxjkHHWsHxb8I9N0bw9Pq+g3V7Bf2KeeGaUneF5P0PfiknaOvdlNXlZdkewQW8NrCsNvEkUSDCoigAfQCpK5T4c+IpvE3guyv7k7roZimb+8ynGfx4NdXVSVnYhO6OJ+J2s/wBm+GvscTYnvW8sY67By39B+Na/gzRv7D8MWlqy4mZfMm/325P5dPwrirr/AIrH4qJAPnsdN+96HYefzb9K9U6V2V/3dGNLq9X+hxUP3tadbotF+oUUUVxHcFFFFABRRRQAUUUUAFFFFAFbULCDU9PnsrlN0MyFWH9frXm3gy/n8J+KLnwvqL/uZXzbuem7tj2YfrXqVcR8R/Dbappa6pZqRfWI3Ar1ZByfxHUfjXXhZp3oz2l+D6M48XTkrVofFH8V1R29ePfHuDfYaFKw/drcOjH6hf8AA13vgnxIviPQkkkYfa4cRzr7+v40njrwqnjDwxNpu8RzgiSCRuiuOmfY5IrlqwlTlZrVM66NSNSKlF6NG9ZIkdjbpEAI1jUKB0AxXk3gxFh+OvieO3GIDE5YDpu3L/UmksvEXxO0TT00eTwut5PCvlRXecggcAkg4P6V0vw48GXvh+O91XWpFk1nUX3zYOdgznGfXJ5o+3zdNfxDaHL10O8ooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOD1nx5d6N8SrDw7cwW0em3aAi5fIbJBwM5x94Y6Vr+P9VttJ8D6rNcSKvmW7wxgnlmYYAH50vi7wTpPjK0ji1FXSWLJiuIjh0/xHsa5G1+CdgbuJ9U1vUNQt4jlIJGwv0J9PpiptzR5WVdKXMjT+DdhLY/Dy0aVSpuJHmAP90nj9Bmun8UauND8OXl9nEipti93PA/x/CtSGGO3gSGFFSKNQqKowAB0Fea/Ea5k1rxBpfhi1Y5Zw8uOxPTP0XJ/GuuhBVayT2/RHHiajpUW1u9vVmj8LdINrocuqTD9/fPuBPXYOn5nJ/Ku9qG0tY7KzhtYVCxQoEUDsAMVNWdeo6tRzfU0oUlSpqC6BRRRWRsFFFFABRRRQAUUUUAFFFFABQQCMHpRRQB5NfRyfDzx0l5EpGkXx+ZR0UE8j6qeR7V6vHIk0SSxsGRwGVgeCDWR4o0GLxFoc1i+BJjfC5/hcdP8AD8a5X4ba9KEm8N6jlLuzJEQfqVB5X8P5fSu6p+/pe0+1Hf06M4Kf+z1vZ/ZlqvJ9Ueh0UUVwneFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFc3Edpay3MzbYokLufQAZNeafD23k13xPqfia6XPzlIs9ieuPouB+Na3xR1g2Xh9NOhJ8++fbgddg5P5nA/Oug8J6ONC8N2dkQBKE3yn1c8n/Cu2H7rDuXWWny6nDP97iVHpDV+r2NqiiiuI7gooooAKKKKACiiigAooooAKKKKACiiigArzT4haRPpOp23izSxtlicCcD16Bj7Hofwr0uobu1hvrSW1uEDwyqUdT3BrahWdKfN06+hhiKKrU3Hr09Spoerwa5pFvqFufllXle6t3B+hrRrynwzdTeCPGU/h6+c/Ybp8wu3TJ+6349D716tVYmiqc/d2eq9CcLWdWHvfEtH6hRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVh+L9ZGh+Gbu7DYlK+XF/vtwPy5P4VUIuclFdSZzUIuT2Rw6f8Vj8VS/37HTenodh4/NufpXqlcP8L9GNh4dN/KuJ75vMyeuwfd/qfxruK6cZJOfJHaOhy4KDVP2kt5a/5BRRRXIdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcf8QvDX9uaKbm2T/TrMF48dWXuv9R/9epPAPiX/hINDVJ3zfWuI5gerejfj/PNdZXlGu28vgLxtDrVoh/s28YiVF6DP3l/qK7aH76m6L3Wq/VHBXXsKqrrZ6S/Rnq9FR29xFdW0dxC4eKRQyMOhBqSuLY707hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXl/j+eTxB4s0zwzbMdqsGmx2J5P5Lz+Nek3t3FYWM93McRQoXY+wGa85+G9pLq+t6n4muxlncpHn1PLY+gwPzrswnuKVZ/Z29WcOM/eONBfaevoj0m3gjtreOCJQscahFA7AVJRRXGdy0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKy/EGiwa/os+nzADeMo39xx0NalFOMnFqS3RMoqScXszzf4c61PY3Vx4V1MlLi3ZvI3eg6r/Ue1ekV5z8R9DmtpbfxRpuUubZl84r3A6N/Q+1dh4c1yHxDokF/DgMwxIn9xx1FdeJipxVePXfyf8AwTjwsnTk8PPdbea/4BrUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwPxT1drfRoNJgJM984yq9dgPT8Tj8jXUeGdIXQ/D1nYADeiAyEd3PJP51wNh/xWPxTlvD89jp33PQ7ThfzbLfhXqlduI/d040eu79WcOG/e1Z1umy9F/wAEKKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI54Y7mCSCZA8UilXU9CD1FeV6PNL4A8cS6Vcuf7LvWBjdugz91v6GvWK5bx34aHiHQm8pc3ttmSE9z6r+P88V1YWpFN05/DL+rnJi6UpJVIfFHVfqjqeozRXGfDvxKdZ0f7FdN/p1nhH3dWXsf6GuzrGrTdObhLob0asasFOPUKKKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorivHXxI03wXGICv2vUpBlLZGxtHYsew9uppN2Glc7WivEY9d+MHiFPten2CWNq/KAxRrx/20y1Rf8ACyPHng2+ij8X6YJ7Vzjf5aqT/usnyk+xp+ovQ9zoqjo2r2evaTb6lYS+ZbzruU9x6g+4q9Q1bQE7hXPeNtZ/sTwtd3CtiaQeTF/vN3/AZP4V0NeW+N5X8TeN9N8NwMTDCwM2OxPLfko/M104Wmp1VzbLV/I5cZUdOk+Xd6L1ZvfDPRv7N8MLdSLie9bzWJ67f4R+XP412lMiiSGJIo1CoihVA7AU+sqtR1Jub6mtGmqVNQXQKKKKzNQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8r8V2c3gzxdb+JLBD9kuHxOi9Mn7w/HqPcV6bZXkOoWUN3buHhlQOrD0NV9Z0q31vSbjT7kfJKuAccqexH0NcD8P9VuNE1e58J6mdro5NuT0z1IHsRyPxruf+0Ub/aj+K/4BwL/Zq9vsz/B/8E9NooorhO8K4r4neMLrwd4dhu7ERG7mnEaCVcjGCScflXa14h8ap21TxZ4e0CM53EFgPV2C/wAhSd21FdWUrK7fQ7L4XeObjxppN0b8RLfW0mGWIYBQjg4/MfhXe14HoC/8K++NMuln93YX37tB2w3KfkeK9r16/GmeH9QviceRbu4PuFOP1pykuTnX9WJinzcpwXg/x9rHib4halpW23Gl2vmFWVPmIDYXnNenV4z8BLAtbazqzj5ppViUn25P/oVezU2rJLyFe7bWwUUUUhhRRVTUNV0/SoRLqF7b2sZ4DTSBAfpnrQBboqpYapYarCZtPvbe6jHBaGQOB9cVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzte1aLQtCvdUm5S2iaTHqew/E4FeNfCnw+3i/xDf+L9cH2jZN+6V+QZOuceijGP8A61dt8Z53h+HF2qHAkmjRvpnP9Km+D9ukHw204oBmUyOx9TvP+FEN5S7aBP4VHud0BgYFYPjPR7fXPCOpWdxGGzAzxkjlXUZBH4it6sTxjqUekeD9VvZGACWzhc92IwB+ZFRU+FlQ+JHnHwBv5ZNK1fT3YmO3mR0B7bgQf/Qa9irx74A2MkejatfsCFnnWNffaM/+zV7DWs9/u/IiPkVdRvotN024vZjiOCMuffA6fjXn3wysZdQv9S8S3YzLPIUjJ9zlj/Ifgas/FPVXWwtNEtstPeyAso6lQcAfi38q7Dw/pSaLoVpp6Y/dRgMR3bqT+ea61+6w1+s/yRxP97ikukPzZpUUUVxHcFFFRtPEn35UX6sBQBJRVVtSsU+/e2y/WVR/WoW13SE+/qtiv1uEH9apQk+hLnFbs0KKyX8UaCnXWLL8JlP8jUD+M/DiddXtvwJP8hVKlUe0X9xLrU1vJfebtFc2/j/wunXVo/wjc/0qB/iR4XXpqBb6Qv8A4VX1er/K/uEq9JvlUk36nV0EgDJOAK871b4taZbxldMtpbmXs0g2IP6n9K871vxnreullubtkgP/ACxi+VPy7/jVQw05b6H0ODyDFYi0prkj57/d/nY9f1v4gaFou5Dcfargf8srf5ufc9BWB4a+IN/4j8XQ2Zhit7NkciMfMxIGRk/4YryCtjwvrKaB4gt9SkiaVItwKKcE5Uj+tdKwsVFpas9ytkmEwmDq1Hq1Fu76WXRH0fRXmf8Awt6Nv9VoUz/9t/8A7Gk/4WnqEn+p8NzH/gTH+S1j9Rr9Y/ij86/tDD9Jfg/8j02ivMf+FjeI5P8AU+F5T/2ykP8AIUf8Jx41k/1fhjH+9by/40/qNXrb70H1+j0v9zPTqK8x/wCEo+IMv3NBRf8AtiR/NqP7W+Jcv3NMRP8AgMY/maPqUuso/eH16HSMvuPTqK8x834pSf8ALOOP8If/AK9H2P4nS/evIk/4Eg/kKPqnepH7w+u9qcvuPTqK8x/sH4jy/e1mJP8AtuR/JaP+ER8fSf6zxLt/3bqT/AUfVYdaiD63PpSkenV5/wDEnw/LJBF4h08FbyyIMhTqVB4b8D+n0qj/AMID4sl/13id/wDv45/rSH4YaxMCJ/ErkHqCjN/7NWtGFKjNT9ovuZjXnVrQcPZP70dp4U8QReI9ChvFIEwGyZB/C46/4/jW3XkGmLdfDbxfHaXk/m6deKA0u3aD/tYzwQevsa9eBDKCDkHkGufFUlCV4fC9UdOErSqQ5Z/EtGLXhAP/AAkv7RBP3obKQ/gI1x/6FXuN5cpZ2U91IcJDG0jfQDNeJfBG3fUvFOva5KMtjaGPq7Fj/IVzQ/iX7L/hjql8D89DS+OmiP8AZNO8SWoKzWkgikZeoGcqfwOfzq3418VpqXwSTUY3Ae/WOFgOzZ+Yf+OmvQvEejx6/wCHb7S5QMXERVSezdVP54r5Wn1K+GiJ4RlRgYdQZwp7Mfl2/nn86lK6cPRr9S+qn2/pH0J8I9N/s74d6flcPcbp299x4/TFdzVLSLJdO0ays0GFghSMfgMVdrSbvJ2Mo7BRRRUlBXl8fhGXxZ8SNYvPE1jNJplqFisY5CRG455GOvTP416hWbr0WrTaNcR6HcQ2+okDypJlyq8jORg9s9qWzuPdWPMZtLtvBXxh0W30JWgtdShIuLZWJX+LnH4A17BXi2iNqPh74mWzeOI/tepXy+VZX6SZiTttC4GM9Px969pql8K+f/DCfxP5BRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmfiDocniLwTqNhAu6coJIh6spyB+OMfjXn3wa8bWNrpTeGtUuEtbmCRjAZjtDAnJXJ6EHPFez1wXiv4TaB4nunvR5ljeuctLb4w59WU8flikvdb7Mbs0l2HePfHt14NuNMlj00XOmzv+/uA+cD+6oHfvk9a888e+M5viLqNn4Y8MRyTWzuGdypHmN7+irWzF8Abcyj7V4guZIQfupEAfzJP8qPCHhXXvAHxDextLH7fo96uTdlQDGo7luxHp3ppJtKQNtK6PTPCvh+Dwx4cs9JgOfJT53/vueWP51sk4GT0ormfHms/2L4VuXRsTzjyIvXLdT+AzWkIurNRW7MpzVKDk9kedXEOr+OPG17faPIiC0YCKV2ICqDhccHk4Jrd/wCEU+IEn3/EYX/duZP8K3/hxo39leFopZFxPeHz3z1wfuj8sfnXX121sW4T5IJWWi0OChglOHtKjd5avW255j/wgvjCX/XeJ3/7/SGj/hWuuy/67xM/5Mf/AGavTqKy+vVulvuRt/Z9Hrf72eY/8KmuX/13iGRv+2J/+Kp6/CKH+PWbg/RAP616XRS+v4j+b8EH9n4b+X8WedL8ItN/j1O9P02j+lTL8JNDH3ru/b6uv/xNd/RS+u1/5ilgcOvsHDp8KvDq9ftTfWX/AAFTp8MPDC/etZW+s7f0NdjRUvF139tlLB4dfYX3HKp8OfCydNNz9ZnP9alPw/8ADBQr/ZUeD3DNn8810tFQ69V7yf3m1KnCjJTpqzXVaM871L4SaXPltPu57Vuyt+8Uf1/WuP1L4Y+IbHLQRxXkY7wvhsfQ4/TNe6UVUcRUj1ue7h8/xtHRy5l5/wCe58wXdhd2Enl3drNA/pKhX+dbHgchfGml7gCDKRg+6kV9BT2sF1GY7iGOVD1V1BBrBHgfQY9Tg1C3sxbXELh1MLFVz/u9K2+tJxaaPVfElOtRlTqwabTWmq1R0Plxj+Bfypdij+EflS0VxHyAmAO1LRRQAUUUUAFFFFABRRRQAUUUUAc74z8OJ4j0GSBVH2qLMkDf7Xp9D/hWP8N/Eb6hpz6ResRfWXygN1ZBx+Y6flXdV5d430+fwv4ktvFWmqRG74uEHTd3z7MP1rtw7VWDoS9V6/8ABOHEp0ZrER9H6d/kei6tpyavpN1p0sskUdzGY2eIgMAeuMg1j+DvBeneCrCe00+a4mWaTzHecqWzgDHAHHFbOmajBqumwX1s26KZAwPp7fWrdcbTi2up2pqSTWwVwd78J9BvfFv/AAkTz3aXHnrcGFGXyywIPTbnkj1rvKKS0dx9LBTZHWKNpHOFUFifQCnUyaJJ4JIZBlJFKsM9QRg0ne2gLzPG7C68Y/E7Ub+70zXX0TSLaUxReSDuYj1wQTxjv3q94d8Q+JPC3jyHwl4lvv7Rhu03W10fvZwcc9exGDnmuyz4X+G2icsNPsZJied8m5yPxPauDspT8RvirZ67psbjR9KQL58g2mRuSMDr1P6VUbcyS26/cEvhbfyPY68u0Dxi+h+Odf0bxTqbxI03mWT3LfIEJPAPQcEV3eo+J9D0i5+zahqtrazbQ2yWQKcetc/rGq/DvxAqjVb7R7op91pHUsv0PWl1uPpY5bxbqtj4z+IPhjTdEmW8NjObi4mi5RFBU9f+A/rXr9cVo+sfDzQI2TSr/R7UN94xuoLfU9TW3Z+LvD2o3cdpZ6zZz3EhwkccoLNxngfhQtFZCerubVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5Z4udvFXxBsNAiJa2tTmbHT1f8AQAfWvR9W1GPSdJur+XGyCMvj1PYficCuD+F2nSXL6h4iu8tNdSFEY9xnLH8Tx+FdmF/dxlWfTRerOHF/vJxoLrq/RHoyIsaKigBVGAB2p1FFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVU1LT4NV06exuV3RTIVPt6Ee4q3RTTad0JpNWZ5d4I1C48L+JLnwrqTYjdybdz03dsezD9frXqNcL8SPDj6hpyaxZAi+sfmJXqyDn8x1/OtjwZ4jTxHoMc7EC6i/dzr/tDv9D1rsxCVWCrx9H6/8E4sM3Rm8PL1Xp2+R0VFFFcR3BUV1cw2VpLdXEgjhhQvI5H3VHJNS1W1CzTUNOubKT7lxE0TfRhj+tJ3toNWvqZqHw/420dJfLttTsC5KmSPK7hxkBh1615b4p0mD4e/ELw/f6AGtbe/lEU9ujHYfmAPH0bp6io/DniLW/haLnQdX0G6u7MTM9vcW4JBB9DjBB6+oq5ax618TfHGmardaTNp2iaY3mIJwQZGBzxkDOSB7YFVG3PFx26id1FqR6ZqXhXQdauRdalpNpdT7QvmSxBjj0yayLrwl4AspBHd6bolvIRkLKI0OPXBrsK8l1PQdP8AF/xnv7TVYjNZ2VgmVDlcMcEcgj1NLqkh9G2dPB4X+HlzMsNvYaFLK33Uj8tmP0ArWsfBnhvTb2O8stFsoLmIkpLHEAy8Y4P0NZ+kfDjwpo+owalp2nmO5hJMcn2h2AyMdC2O9dbTEFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMPxd4hk8L+Hp9XSxa9WAr5kaybCFJxnOD7U3TfFunX/AIPj8SyOILMwmWQM2dhHVfc54rU1Kxh1PTLqxuADDcRNG+fQjFfOfhCw1HxHqR8CG+QaPa3UlzOY25kVSBgeoz/PNJXbcf68/wDMbskpf15HuPgzxVN4v06XUP7KeytN5WB5JdxlA6nGBgV0tQ2lpBY2kVrbRrHBEoREUYAAqVmCqWYgADJJ7VTtfQleZ518U9SkkisfD9r8093IGdR3GcKPxP8AKu30XTY9H0a0sIvuwxhSfU9z+Jrzrwyp8W/Ee91uQFrWzP7rPT+6n6An616pXZif3cI0e2r9WcWF/eTnXfXRei/zCiiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIDAggEHgg15PcK/w78drOgI0e/PIHRQTyPqpP5GvWaxPFfh+LxHoU1mwAmHzwuf4XHT8D0rpw1VQlyz+F6M5cVRc4qUPijqv8vmbMbrLGsiMGRhkEdCKdXn/w28QSyQS+HtQJW8ssiMP1KA4I+o/lXoFZ1qTpTcGaUKyrU1NBRRRWRsIVVuoB+opQABgDAoooAK8yvPhfc614y1bUtU1J49NuypWC1kKs+0YAc46D2r02vNdM8e3GmePda0TxTex21urbrB5ECLsyf4gPTHX0pK3MPXlZiHT5vhf8QNItrC9uJdG1ZvKeCZ921s4/mRzXsteP+I9TtfHPxN8O6do0ourfTXNxcTx8oOQcZ/4CB+NewVSvyK/n9wn8WnkFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOPiR4nu2mg8H6Ad+r6j8srKf9TGeufTI/SuL1vQI/hX4r8M6vZs5tWUQ3bn+Jujk/UHP4V7ZFomlwanJqUWnWqX0gIe4WICRs+rdafqOk6drECwalY293Erbgk8YcA+uDRHSz63/AKQ3rp0/rUtRuskauhBVgCCO4rlviHrX9j+FJ1RsT3X7iP1wfvH8s/nXURRRwRJFEipGihVVRgKB0Ary7xGT4t+JNnoyHdaWR/e+nHL/ANFrqwkFKrd7LV/I48ZUcaXLH4paL5nVfD7Rf7H8K2+9cT3P7+TPXnoPwGK6qkUBVCgYAGBS1hUm6k3N9TelTVOCgugUUUVBoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZfEDSp9E1e28WaYNro4FwB0z0yfYjg/wD1677RtVt9b0m3v7Y5SVckd1PcH6GrF7Zw6hZTWlwgeGZCjKfQ15l4UvJ/Bni648N37n7JcPmBz0yfun8Rx9a7l/tFG32o/iv+AcD/ANnr832Z/g/+CeqUUUVwneFFFFABWVrHhrRvECquq6db3Wz7rSICy/Q9RWrRQBmaP4e0jQIWi0rT4LVW+95aYLfU9TWnRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ+t6nHo2i3eoSYxDGWAPdugH4nFcV8LNMka2vdeuctPeSFUY9SoPJ/E/wAqj+KGoS3c2neHLQ5muZA7ge5woP6n8q73StPi0rSraxhGEgjCD3wOtdv8LDec/wAkcK/fYryh+b/4BcoooriO4KKKKACiiigAoqN7iGP78sa/VgKgfVNPj+/f2q/WZR/Wmot7Cckt2W6KzX8Q6LH97V7Ef9vCf41Xfxd4ej+9q9r+D5/lVKlN7JkOrTW8l95tUVzr+PPDEf3tXi/BGP8AIVWf4j+F06aiX/3Yn/qKtYes/sv7iXiaK3mvvR1dFcY/xQ8NJ0luG/3Yv8TVd/iz4eX7sN83/bJf/iqr6rW/lYQxFKpJQhK7fRav8Du6ZLLHBE0s0iRxqMsztgD8TXl+q/F5TGU0qwIc/wDLS4PT/gI/xrz/AFbxFquty77+9klGchM4UfQDinDCzfxaH02D4dxNa0qvuLz3+7/M9c1v4naNpm6Oz3X044/d8ID/AL3+FYfhTxzq3iHxnBBcukVqyPiCNcDOM8nqa8rrW8NaldaTr1veWVsbm4TcFhCk7sgjoOa6VhoqLS3Pbr5PhMJg6s1G7UW7vV6LofSNFeY/8Jv42l/1XhkL/vW8n9TR/wAJH8Q5v9XoiJ/2yx/M1j9SqdWvvPzf6/T6Jv5M9OorzH7f8T5fu2SRj/di/qaPK+KE33po4/8Av2P5Cj6n3nH7w+u9qcvuPTqK8x/sX4kzfe1aJP8Attj+S0f8Il4+l/1viTb/ALtzJ/gKPqsOtRB9bm9qUj06ivMf+Ff+Kpf9d4mf/vt2/rSf8Kt1OX/XeJHP/bNj/wCzUfV6K3qr7mH1iu9qT+9HprSIn33VfqcVA+oWUf37y3X6yqP6154vwjB/1mtzN9I8f1qZPhFp/wDy01S8P02j+lHssOv+Xn4B7bEval+J2z67pEf39VsV+twn+NV38VaBH97V7P8ACUH+Vcwnwk0Mfeu75/q6/wDxNWE+FfhxfvLcv9ZT/Sjkwq+0/uDnxb+wvvNd/G/hqP72rwfgGP8AIVXf4ieFk/5igb/dif8AwqBPhn4XXrYyN9Z3/wAasp8PvDEfTS0P+87H+Zo/2T+9+AXxj/l/Eqv8TfDKdLmZ/wDdiP8AWq7/ABW8Op0W9b/diH/xVbSeCvDcfTR7U/7yA/zqwnhfQY/uaPYr9IF/wo5sKvsv70HLjH9qP3M5R/i5oo+5Z3jfUKP61x/jTxhpvieG3a3sZobyBvlmLD7vpx717GmjaZH9zT7ZfpEKsJa28f3II1+iirp4ihSkpQg7+pFTDYirFwnNWfkYngrV7jWvDFtc3UbLOuY2Zhjfj+IfWuhpAAowAAPalrjnJSk2lY7acXGCi3doK5rVPiB4U0eYw3ut2yyrwUjzIR9doOK86+IHjDVvEviYeC/C7soLeXcTIcbj/EM9lHf1re0L4J+G7G1Q6qkuo3ZGXd5GVQfYA9Prms1dq/Q0dk7dTptK+IPhTWZ1gstat2mY4CSZjJPoNwGa6avJvF3wW0abS5rnw/HJZ30Sl0jEhZJMdueh+lS/Bjxfd6xp1zoupSNJdWGPLdzlmj6YP0P9KpWd11Qnpr0PVKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFeKa18T/Fj+NdR0Xw7YwXaW0jIiiIsxC8E9fWkbxx8VYVMj+GVZV5I+zMf5HNJO6uNqzse2UV5t4D+KyeJ9SOj6pZCx1PnaFztcjqMHkH2r0mqaFc8a1KDxRF49utYh0eSeSOVhDvQsgXG1SOfStf+3fiPN/q9IRP+2aj+Zr06iux4xNK8E7aHAsC4ttVGru55j9p+KMvSCOL/AIDD/wDXo+yfE2b713En/AkH8hXp1FL632hH7ivqXepL7zzH/hHviNN97W40/wC3hh/JaP8AhDPHEv8ArvEzD2FxIa9Ooo+uz6JfcH1Cn1k382eY/wDCuvEUv+u8TP8A+Pt/Wj/hVF5J/r/EUjf9sj/8VXp1FH16v0f4IP7PodU/vZ5qnwjh/wCWms3DfRAKnT4RaX/y01K+b6FR/SvQ6KTx2If2hrAYZfZODT4TaCv3p71/rIP6CrCfC3w0v3oZ3+sx/pXaUVDxdd/bZawWHX2Ecmnw28LJ/wAw9m/3pnP9asJ4C8Mx9NKiP+8Sf5mukoqXiKz3k/vKWGoraC+5GGng7w5H00ayP+9ED/Opj4X0EpsOj2O308hf8K1qKh1Zvds1hCMHzQVn5HFal8L/AA/e5a3SWzc94myPyOf0rj9S+EurW+WsLqC6Ufwt8jf1H617LRVxr1I9T2MPneNo6Kd156/8E+atR8PavpRP23T54QOrFMr/AN9Dir3gd/L8aaW3/TXH5qRX0Myqwwygj0IrJk8MaLJfxX39nwpcxOHWSNdpz7461t9avFqSPV/1lVWjKnWhq01dea7P/M16KKK4z5QKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArM8R6idJ8N6lqCnDW9u7r/ALwHH64rTrnfHlu914E1qKMEubViAPbn+lTP4WVD4keb/AfSxcNq2vzjfO8nkox6j+JvzyPyr2qvJfgJdxP4Wv7QEedFdFmXvgqMH9DXrVaT0svJGcdbsD0rwb4RBT8UtdaH/U+VLjHT/WDFeq+O/EkPhfwneXruBOyGO3XPLORgY+nX8K4T4E6FLBpl/rtwpDXjhIie6rnJ/En9KmGs2+y/MuWkLd3+R6/RRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLy5Szsbi6kOEhjaRvoBmp65H4nal/Znw81aUNh5YxCv1c4P6ZqZu0WVFXkkedfA62fUPEuu65KMtjYGPq7Fj/ACFe5182+BdJ+IsGhfa/DDJFY3Tl8kpliPlz8wz2rpJdM+Mt5GbeS+WNH4LLIiEfiozVy0sl0JWrbfUztTEN3+0RbDTMHZcRmUx9Nyp8/wDI5r3+vOvh18Mh4Smk1PUrhbrVZVK7l5WMHrgnkk+tei0JcsVEG7ycgooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNkRZY2jdQyMCrA9CDTqKAPBNT8L+Kfhn4nm1jwzA95pkpJaNVL4XOdrqOePUVoj46agYvJHhSU3fT/WNjP+7tz+te1UzyY858tM+u0UK9rDbTdzwq18KeL/ifrUWo+J1ew0uM5WEqUO30VTyM+pr3CxsrfTrGGztIlighQIiL0AFWKKeyshbu7CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeRfHzUvJ8Pabpynm4uDIR7KMfzavXa5Dxb8PNN8ZalZ3moXd3H9lXakURUKecnOQTzSavZFRdtTS8Gab/ZPg3SbLGGjtk3D/aIyf1JrdpFUIgUdAMClqpO7bIirJIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>Find $QP$.
|
3.6
|
Geometry
|
Geometry3K
|
test
|
29
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEMAO4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCQoJJAA5JNYn/CZ+Fv+hl0b/wPi/8Aiq2nRZEZHAZWBBB7iuG8S6P4C8LaS19feHtNJJ2QwpbKXmc9FUY5NJuw0rnS2nijw/f3KW1nrumXFxIcJFDdxuzfQA5Na1ebeAfAK2epv4p1Wwt7O/mybawt0CJaIRjBA6vjr/nHpNU1Ym9wooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMbxL4lsPC2ktfXzkknZDCnLzOeiqO5rnfDXhq/1XVl8WeLEB1Aj/QrHqlkh6cd39T/kXPFPw703xbq1tqV5qOqW89sgSEWkyoE5zuGVJB989hVD/hVdt/0Nviz/AMGI/wDiKI6a9Rvsd9RWboWjR6DpaWEd5eXgVi3nXkvmSNk92wK0qBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVFcXMFpbvPczJDCgyzyMFAHuTRuGxLTJZY4Y2klkWONRlmY4AHua42Xxlfa1M9r4T05rradrX1wCkKfTuf88Glh8ByajKtz4o1W41OUHIgRjHCp9gP6Yro9go61Xby6/d/mc/t3L+Er+ey+/8AyuW774heHrSXyYbl76c9I7OMyFj7HofzqqPFPia/P/Es8IzpGekl7KIvx2nH866iw0qw0uLy7Gzgt1/6ZoBn6nvVuj2lKPwxv6v/ACsHs6svinb0X+dzjP8Ai4lwM/8AEjtc9jvJH86ztRvPGum6tpWnSatYNJqLOqMtvwhUAnPHvXolcb4q/wCR38H/APXW4/8AQUrSjVUpWcVs+nkzKtScI3UnuuvdpAbb4hQsdl9otwueN6OpP4Af1pDrXjexGbvw3a3ijq1pcbf0JJ/So9c17VdN+KXh3TFusaTqEMgkg8teZFDHO7G7uvGa6rV9UttE0i61K8fbBbRmRz647D3PSsvbrl5pRVv8vQ2+rvmtGbv63/O5zcfxF06GURavYahpUh4zcQHaT7Ec/pXTWGqWGqRebYXkFwncxuDj6jtXO+B5NZ1nw62o+I3WX7e5lgtHhQLBCfurwMtkc857U7UPh9o1zL9psPO0q7H3ZrJymP8AgPT8sU37F6O8X96/r7xfvo6pqS+5/wCX5HV0Vwx1Hxb4WP8AxM7ca3pq9bm2XEyD1Ze/+cmul0XxDpniC287TrlZMffjPDp9V6/0qZ0ZRXMtV3X9afMqFaMnyvR9n/WvyNSiiisTYKKKKACiiigAooooAKKKKACiiigCodU09dSGmm+tRfMu8WxmXzSvrtznH4VZkkSGJpZXVI0BZmY4CgdSTXm/xW0+fTzpfjTT0P2vSJl84D+OEnkH8Tj6Mabd6lL8Ub5dK0mSSLwzDtbUbtcqbhiAfJT+p/yRarTf+tRvR67f1oeiWV/Z6lbLc2N3BdW7EgSwSB1OOvI4qxUNpaW9hZw2lrCkNvCgSONBgKB0FYfijxQmhxx2lpF9q1a5+W2tl5OT/E3t/P8AMi4wc5csTOc1CPNIn8ReKLHw7AnnbpruXiC1i5eQ9B9Bnv8AzrBtfDGp+JrhNQ8WSFYQd0OmRMQif7/qf857Vo+GvChsJm1bV5ftmtzcvKxyIs/wp6emfy4rqK2dSNL3ae/f/L/MxVOVX3qu3b/Pv6bEcFvDawJBbxJFEgwqIoAUewFSUUVzHSFFFFABXG+Kv+R38H/9dbj/ANBSuyrjfFX/ACO/g/8A663H/oKVvhv4nyf5M58T/D+cf/SkZ3xJX7L4g8F6qP8AljqqwMfaTH/xNO8Ug+MfGFn4SiJOnWW281VlPB/55xH69SPT6VpfEjRNR1zwqItItxPqFvdRXEEZdVyVbnliB0J71a8FeH59E0h5dRIfV7+Q3N9IDn9438IPoo4FYR8+jv8AkdEvLqrfi/6/4Y6RVCKFUAKBgAdhS0UUAFctrfgu3vbn+0tJmOmaspys8Iwrn/bHfPr+ea6mirhUlB3iyJ04zVpI4/RvF08OoLoviaFbLUukU3SK49Cp6An/ADg8V2FZuuaFYeINPazv4Q69UccNGfVT2rmdG1q98Namnh7xHKXic4sdQbpIOysfX/Poa2cI1VzQVn1X+X+RipypPlqO66P9H/mdxVW+1Kw0uJZdQvba0jZgivcSrGCx7Akjn2q1XPeN/D6+JvCGoaYADM8e+A+ki8r+ox+Ncrdlc6krux0NVW1KwTUV09r22W+dd62xlUSMvqFznHB5rgdG+IcVv8M7HUJ0a41Yf6CloP8AWTXC/KBj34J+tbfgvwtPpK3GsaxILjxBqJ33UvURjtGnoo4/L2FU1q+yJvp5nW0UUUhhRRRQAUUVV1KyOo6dPZi6uLXzlKma3KiRQeu0kEA++KGCOG8Q6lc+N9Xm8I6HKUsIvl1fUEGQq/8APFD0LHofT86rfC+4fQtS1nwPeN+906YzWrHrJCxzn9Qf+Be1dx4f8P6f4Z0iLTdNjKwpyWc5eRj1Zj3Jqlf+E9NuPFdp4pa4ube9s4ihMTqI5E54cEHI5PQj9Ka0dvvB6r8iz4l8QQeHNJe7kXzJmOyCEdZHPQf415n4d1zV7bxPetPoRvdfmJ3efcCJkX+6isOn0PT2rqNCibxh4mk8R3Sk6bZMYtOjboxB5kx/nnH92ug8ReF7LxFApkLW95FzBdxcPGe31Ht+WK7oSp0f3c1dvfy8tPxPPnGrX/ewdktl389b/L/gmV/wkXi//oTf/J5KP+Ei8X/9Cb/5PJUOmeKL7Q79NF8WARu3FvqI/wBXMP8AaPY+/wCeOp7cEEZHIrOo1TesF666/iaU06i0qP093T8Djv8AhIvF/wD0Jv8A5PJR/wAJF4v/AOhN/wDJ5K7Gis/bQ/kX4/5mnsZ/8/H/AOS/5HHf8JF4v/6E3/yeSq0PjHxLcXt1ZxeEw1xa7POQXq5TcMrnjuK7quV0H/kfvF3/AG5/+ijVRqQab5Fp6/5nRRwkpwqSdR+6r/Z/miu3mQf8JF4v/wChN/8AJ5K5zXtY8QzeJ/Ds1z4c8i5hklNvD9qVvPJC5Ge2OPzr1SuN8Vf8jv4P/wCutx/6ClaUKsXP4Fs+/Z+Zw4ilNQ+N7rt3XkL/AMJF4v8A+hN/8nko/wCEi8X/APQm/wDk8ldjRWPtofyL8f8AM29jP/n4/wDyX/I47/hIvF//AEJv/k8lH/CReL/+hN/8nkrsaKPbQ/kX4/5h7Gf/AD8f/kv+Rx3/AAkXi/8A6E3/AMnko/4SLxf/ANCb/wCTyV2NFHtofyL8f8w9jP8A5+P/AMl/yOO/4SLxf/0Jv/k8lZ2t3HiPX9MlsL3wVmNxlWF6m5G7MOOtehUU414xd1BX+f8AmKWHlJWc3b/t3/I4bwTr2oQz/wDCN+IY2h1GGMNA0hyZo/TPQkevfB7g13Nc14x0CTVrCO8sD5eq2LedayL1JHJX8f51c8M69H4j0OK9UBJf9XPGP+Wcg6j+o9jRWSmvaxVu67P/ACYUW6b9lJ37Puv80cJ8P9D0+88f+KtcS3Bjtb94bQHlUc/6xgPU8c+9eqVjeGvDVl4WsJrSyknlE073Ekk7Auzt1yQAO3pWzXP0S7JHS9W33YUUUUAFFFFABRRRQAVx/jy9nmgs/Dli2LzVZPLJ/uRD75P4fpmuwriPDI/t3xnrHiB/mgtz9htD2wPvEfz/AOBGt6CSbqP7P59DnxDbSpr7X5dTrtOsINL063sbZdsMCBFH07n3PWrNFFYttu7N0klZFPU9LstYsXs7+BZoH7HqD6g9j71xiz6t8PpViufN1Hw4ThJhzLajsD6j/Ix0Pf010SSNkkVWRhhlYZBHoa1p1eVcslePb+uplUpcz5ou0u/+fdEVle22o2kd1ZzJNBIMq6HINT1wt54f1Lwldyap4XUzWbndc6WxOD6lPQ/556V0mg+IrDxFZ+dZyESLxLA/Dxn0I/rRUpWXPB3j+XqFOrd8k1aX5+hrVwEfiTSfD3j7xP8A2pd/Z/P+y+X+7d922Ln7oOOorv6KiMkr36nfh60KfPGcW1JW0duqfZ9uxyv/AAsjwn/0Fv8AyXl/+JrC1HxJpPiHxv4W/su7+0eRLN5n7t027lXH3gM9DXo9cb4q/wCR38H/APXW4/8AQUrfDuPPouj6+T8jnxssM6NoQkneO8k/tLpyr8zsqKKK5RBRRRQAUUUUAFFFFABXDMD4U+IKsvy6XrvDDtHcD/En/wAePpXc1zvjfSDq/he6SIH7Tbj7RAy9Q688e5GR+Nb0JJS5ZbPR/wBeRhiItx5o7rVf5fM6Kisrw3qw1vw9Zahkb5Yx5gHZxw36g1q1jKLi3F9DWMlJKS2YUUUUigooooAKKKKAMrxLqX9k+G9QvgwVooW2E/3zwv6kVU8E6aNL8H6dAQQ7xec+eu5/m/TOPwrN+JDGbQ7LTVODf30UBwe2Sf5gV2KqqIqKMKowB6Cuh+7QS7v8v+HZzr3q7fZfnv8AkhaKKK5zoCiiigArlNf8ItPe/wBtaFMLHWE53Lwk/s49/X866uirp1JQd4kVKcaitI5jw74tXUpzpeqwGw1mLh7d+BJ7oe/0/n1rp6xPEXhix8R2yrcAxXMXMFzHw8Z+vce1YeneJb/w/fJo3ivgMdttqQ+5KP8Aa9D7/n6nZ041VzU9+3+X9XMVUlSfLV26P/Pt+R29cb4q/wCR38H/APXW4/8AQUrsQQygggg8gjvXHeKv+R38H/8AXW4/9BSpw38T5P8AJjxP8P5x/wDSkdlRRRWB0BRRRQAUUUUAFFFFABR1oooA4vwN/wAS3Utf8PnhLS682EekbjIA+mB+ddpXGSD7D8W4WBwmoacVPPV1Of5KK7Ot8RrJS7pP/P8AE58PpFw7Nr/L8AooorA6AooooAKKKKAON8XETeLfCVqcFTdSTH6oFI/rXZVx3iL/AJKF4U/7eP8A0AV2Nb1fggvL9Wc9H46nr+iCiiisDoCiiigAooooAKq6jptnq1lJZ30CTQOOVb+YPY+4q1RTTad0JpNWZ5/v1b4eyBZPN1Lw2TgP1ltPr6r+n06GDxL4m0WfxT4VvYdRhkt4WleV0OfLDBQNwHI6Hjt3r0ZlV0ZHUMrDBBGQRXzNq9jPp2rXVpcxeXLHKwKhdo68ED09PavUwcY4iTctJJfffQ8nHTnhoJR1i2vlZp/cfS0E8VzAk8EiSxSKGR0OQwPcGuQ1jxV4qsNRuYbLwPLe2cR+S6/tFIxIMcnaVJHej4XwXcHg1PtQYJJM7wBu0Zx/M7j+NaXjvUv7J8DazeBtrrasiH/ab5R+pFeZiI+ylJJ3seph5+1hGTVr2OU0n4k+KNd09L/TPAElxauSFkGpoASDg9UHevQdMuLq7023uL2z+x3MiBpLfzA/ln03ADNZHgPTf7J8C6NZldrLbK7j/ab5j+proqJJJtDi7pMKKKKkoKKKKACiiigDjPFH7nx14SuACA0k0ROPVQAP1NdnXIeL/wDkYvCn/X8f5Cuvrer8EPR/mzCkrTn6/ogooorA3CiiigAooooA43xhiHxV4Su2wFW7eE8d3Cgfyrsq434ko0fh621FBlrC9in+ozjH5kV2EbrLGsiHKsAwPqDW9TWlB+q/G/6nPT0qzXo/wt+g6iiisDoCiiigAooooAKKKKACuK8XQQy+NvCQkiRw0s4YMoOQAhGa7WuN8Vf8jv4P/wCutx/6Clb4b+J8n+TOfE/w/nH/ANKR2XSvPfi25utG0nQ0Pz6rqUMBA/ug5J/PFehUVh1TOgaiLHGqKMKoAA9qdRRQAUUUUAFFFFABRRRQBxnif9/498J2452vPKR9FB/9lNdnXGZ+3/FvjlNO07B/2Xc/zKt+ldnW9bSMI+X5ts56Gspy7v8AJJfoFFFFYHQFFFFABRRRQBm+INO/tbw/f2AGWmhZUz/exlf1ArP8C6j/AGl4O0+Qk+ZCnkSZ6gpxz+AB/GuiriNAP9geO9W0Rhttr/8A0619Mn74H6/gtdFP3qUo9tf8/wCvI56nuVYz76f5f15nb0UUVznQFFFFABRRRQAUUUUAFcb4q/5Hfwf/ANdbj/0FK7KuN8Vf8jv4P/663H/oKVvhv4nyf5M58T/D+cf/AEpHZUUUVgdAUUUUAFFFFABRRRQAUhIUEkgAckmlrmvHWqvpnhiZIMm7vCLaBV6lm4OPwz+OKunBzkorqRUmoRcn0KHgIHULrXPEDDi+uykJPeNOFx+ePwrtKzdA0pNF0Gy05cZhjAcjux5Y/iSa0qqvNTqNrbp6dCaEHCmk9+vq9WFFFFZGoUUUUAFFFFABXJeO9Onaxt9csF/0/SpPPXH8Sfxr+XP4H1rraQgMpBAIPBB71dObhJSRFSCnFxZU0rU7fWNLt9QtmzFOgYc9D3B9wcj8KuVwWmOfBPip9HmJXRtScyWUhPEUh6p7dv09672qrU1CXu7PYmjUc4+9utwooorI1CiiigAooooAK43xV/yO/g//AK63H/oKV2Vcb4q/5Hfwf/11uP8A0FK3w38T5P8AJnPif4fzj/6UjsqKKKwOgKKKKACiiigAooooAK4a3YeLPHz3P3tM0TKR+kk56n8MfoPWtDxnrs9jbQ6Vpnz6vqB8qBQeUU9XPp/k9q1fDuiQeHtEt9PgwdgzI+Pvuep/z2xXRD93Tc3u9F+r/Q55/vKigtlq/Xov1+41KKKK5zoCiiigAooooAKKKKACiiigDM1/Q7bxBpMthc8bvmjkHWNx0YVh+FNfukun8N678mq2oxHIx4uY+zA9zj/Oc46+sHxN4Zg8Q2qMrm31CA7ra6Tho26/lW9OcWvZz2/J/wBbmFWEk/aQ3/Nf1sb1Fcj4d8VzG9/sHxCgtdYjACseEuR2ZT0yfTv29B11Z1KcqbtI0p1I1FeIUUUVBYUUUUAFcb4q/wCR38H/APXW4/8AQUrsq43xV/yO/g//AK63H/oKVvhv4nyf5M58T/D+cf8A0pHZUUUVgdAUUUUAFFFFABWT4h1+08OaW95dNlvuxRA/NI3YCk8QeI7Dw5ZefdsWlfiGBOXlPoB/WsLQfD97qmpjxH4lQfav+XSzP3bZexI/vf8A6+vTenTVuept+fp/mYVKjv7On8X5ev6Im8JaFdi5m8Ra582q3g+WM9LePsoHY/565z11FFZ1KjqS5maU6apx5UFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQBk694d0/xFZ/Z72M7l5imTh4z6g/0rmYtc1nwbItr4iR73S87YtTiXJUdhIP8AJ+td5TZI0ljaORFdGGGVhkEe4raFWy5JK6/rYxnSu+eDtL+t+5DZX9pqVql1ZXEc8D9HjbI//X7VYrjrvwMbK6e/8MX76XdNy0P3oJPYr2/X6VCPGWraIwi8UaLLGg4+22Y3xH3I7fnn2qvYKetJ38uv/B+RPt3DSqrefT/gfM7eisvTPEejawoNhqNvKxGdm7D/APfJ5/StSsJRcXaSsbxkpK8XcK43xV/yO/g//rrcf+gpXZVxvir/AJHfwf8A9dbj/wBBStsN/E+T/JmGJ/h/OP8A6UjsqKKKwOgKKr3l/Z6fCZb26ht4/wC9K4UfrXLXXxCspZmtdCsrrV7ocYgQiMfViOnvjHHWtIUpz+FGc60IfE/69DsSQASTgDvXIar41D3Z0rw3b/2nqRyCyf6qH3Zuh/PHvVb/AIR7xH4m+bxHf/YrI/8AMPsjjcPR25z+v4V1el6RYaNaC10+2SCIdQo5Y+pPUn61panT+L3n26ff1+X3mXNVq/D7q79fu6fP7jC0Hwgba9/tjW7j+0NYcf6xvuQ+yD+v5AV1VFFZTqSm7yNqdONNWiFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQCCCMg9qKKAOe1LwP4d1Ul59MiSQ/xwfuzn1O3AP41m/8INfWX/II8U6nbAdI5yJlHtjgV2dFbRxFVK19PPX8zGWHpN3tr5afkcb/AGb4+thiHXNNuxnrcQbDj/gK1nX2ieOdQ1LTr+d9G87T2dotpcAlgAdwxz0HpW9pniz+0PG+r+GzY+UdPjSQXHm7vMDAH7uBjr6mqPjj4g2/gy50+1+xG8uLtvmQS7PKTIG4/Ke5wB9auOJkmmorXy7kSwsXdOT08/mKLb4hTHDX2i26nuiMxH0BGKT/AIRTxJecaj4wudh6raQiI/8AfQI/lXT6rqdvo+kXWpXTYgtomlf3AGcfWqfhbWrjxD4dtNWubD7Cbld6Q+b5h2fwknA6jnpU/WJfZSXyQ/q8ftNv5sy7T4daBBKJrqO41Ccf8tLyYvn6gYB/EV01taW9nCIbWCKCJeiRoFA/AVNRUTqzn8TuaQpQh8KsFFFFZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnWkmO0+NHimeVlSP8As6GRmPAAAXJP5Vy/iC3l1rwH4m8Z3KsHvpYlsVbgx2scq7fpuOWP4VL4vhv774uXOg2OVGs2EMNxKP8AlnCGJc/98qR+Ndz4/sYYPhdq1nbxhIYLPEaj+FUxj+VJPlgpdv0f9fiUtalu9vyX9fcZPjqV/El7oXg62Y7b8rd3xX+G3Tnn0yenuK9CiiSCFIolCRooVVA4AHQVwHwvtLjUbe58W6jHtudRVIbdSc+XbxgKB+JBP5V6FVtW0/r+rGcdbf1/X/DBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z
|
<image>In $\odot T, Z V=1,$ and $T W=13$. Find XY
|
10
|
Geometry
|
Geometry3K
|
test
|
30
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGnAdcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA57WfEsfh7WrOHUcJp96CiXHaKUdm/2SCMHtg9unQAggEEEHoRXNeP9E/t3wfeQIu6eEefD67l5wPqMj8a828AfEhtHCaVrUjPYDiGflmh9j3K/wAvp06o0Pa0uaG63RyTxHsqvJPZ7M9voqO3uIbu3S4t5UlhkG5JEYFWHqCKkrlOsKKKKACiiigAooooAKKKKACiiigAoorgvil4q/sTQ/7OtZMX18pXIPMcXRj+PQfj6VdOm6k1FdTOrUVODnLodfpOqQaxZfbLU5t2kdI3/vhWKlh7Eg49qvVzvgO3+zeBdHjxjNuH/wC+iW/rXRUVElNpDptygm9woooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvl3xPYf2X4o1OyC7UiuXCD/AGScr+hFfUVeU+IvB/8AbPxetg8ebOaBLq4PYhPlK/jtUfjXdgaqpylfa35HBmFJ1Ix5d7/mcd4K1nxXoz+bo9heX1iW/eQLC7xk98ED5W9x+Oa930fU21awW4exu7KTo8F1EUZT+PUe4rzS3aT4ZeOWt5C39gak2VY9Izn+a9PpXrSsGUMpBUjII70sZJSaklv1DAwcU4t7dBaKKK4jvCiiigAooooAKKKKACiikJwCcZ9hQBl+Idfs/DekS6het8q8JGD80j9lFfN2u63d+IdXn1G9bMsh4UdEUdFHsK9O8U+EfE/iy/l1HU5rbTtOtlYxQPJvaNBySQvBY4yefbtXlp0i8/sg6ssDtYecYPNx0bAPP517OCp04K97v+tDxMfUqTdrWj/Wp9L+HAo8MaSE+4LKHb9NgrTrF8ISeb4N0Vv+nKIfkgH9K2q8ifxM9inrBBRRRUlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFN8tPM8zYu/G3djnHpmnUUAYfizw5B4n0KaxlAWUfPBIR9xx0/Dsa5n4beI53Wbwxq25NRsCVTf1dB2+o/lXoVeb/EfQbi0uIPF2jjZe2ZBnC/xKP4vw6H2rpoyU17KXXbyZy14uEvbR6b+a/4B6RRWT4b1628SaJBqNuQN4xIndHHUVrVzyi4uzOmMlJJrYKKKKQwooooAKKKKACiiigDivilq/8AZngyeFGxNesIFHseW/QY/Gr/AIZ8N21r4FtdHvIEkSaDNwjd2fk/iM/pXJeK/wDip/inpOhKd1tYgSzgNxn7zZ/AKPxr1Ouqo+SlGK3ev+RyU17StOb2Wn+ZR0fTU0fSLbTopGkjt02IzdSM8Z/Cr1FFczbbuzqSSVkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2REljaORQyMCrKehB7U6igDySBpPhl45MDlv7A1JsqT0jP+K/yr1pWDKGUgqRkEHgisXxX4cg8T6FNYSgLLjdDIR9xx0P07GuX+G3iOdhN4X1bcmo2BKx7+roO34fyrqn++h7RfEt/8zjp/uans38L2/yPQ6KKK5TsCiiqmpapYaPZtealeQ2luvBkmcKM+nPU+1AFuiud0nx54W1y8Fpp2t2s1yxwsW4qzH/ZDAZ/CuioAKjuJ47W2luJTiOJC7n0AGTUlcT8U9X/ALN8GzW6Nia+cQKP9nq36DH41dOHPNRXUzqzVODm+hj/AAtt5NV1TW/FFyp33MxjjJHQE7mx/wCOj8K9OrC8G6QND8J6fZFQJBGHl/325P8APH4Vu1eInz1G1sRh4OFNJ7hRRRWJuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5v8SNAuLWeDxdo42XtkQZwv8Sj+L8Oh9q9IproskbRuoZGBDKehB7VpSqOnLmRlVpKpDlZleGtft/EmhwajbkAsMSR90cdRWvXkcRk+GXjkxMW/sDUmyCekZ/xXP5V62rK6hlIZSMgg5BFVWpqLvHZ7E0KrmuWXxLcWvE/iLbN4t+MXh/wtcyONOWISOinGSdzPz6lUA9q9spk00VvBJPPIkcUalndzhVA6knsKxNzxX4teAPD+geEo9Y0SzGn3drPGu6J2+dScdz1Bwc9etereFdQl1bwlo+oXBzPc2cUkhxjLFQSfzzXj/iTWNQ+MXiOLw54fRo9BtJRJcXjLwx5G8+2M7V6nqfb2+xs4dO0+2sbZdsFtEsMa+iqAB+goAsV5Z4o/4qj4raVoindbWAEswB4z95v0Cj8a9OubiO0tZrmU4jiQux9ABk15t8LLeTU9Q1rxPcqfMupjHGSOgzubH/jo/Cumh7sZVOy/FnLiPflGl3d36I9OooormOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMTxV4dt/E+hTWEwAkxuhkI+446H/ABrlvht4iuP33hbVspqNgSse/q6Dt+H8q6XTvGGl6p4q1Hw7a+cb2wTdMxQbOwwDnkgsB09a5f4keH7i3mg8W6OCl9ZEGbb/ABKP4vw6H2rpoyU17KXXbyZy14uDVaPTfzX/AAD0evF/i9rUmp+KtK8FnVI9N06ZVmvriRtq4JOAxPYBcgdCSK9Q8M+ILfxLocGoQEAsMSx90cdRWfrnw78K+JNSbUdW0v7TdsoQyfaJU4HThWArnlFxdmdMZKSUlsUfD2t/D/wvpEWm6Xr2kRQJyT9rQtI3dmOeSf8APFdhaXdtf2kd1aTxz28o3JLGwZWHqCOtcX/wpzwF/wBAH/ycn/8Ai66/TNNtNH02306wh8m1t02RR7i20fUkk/jSGcn8VNX/ALN8HSWyH99fOIFHfb1b9Bj8a2/B+kDQ/Cmn2JUCRYg8n++3J/U4/CuI8S/8VR8WNL0YfPa6eBJMAeM/eb/2UV6jJIkMTyyuqRopZnY4CgdST2FdNX3KUYd9f8jlpe/WlPtov1HUV53c/GzwXbXptxeXMygkGaK3JTj36ke4Fdxpeq2OtadDqGm3MdzazDKSIeD/AIH2Ncx1FyiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuM8b6f45v5YE8J6rZWNuYyJ/PHzls8bTsbHH0rs6KAPBvgzYXml/E3xFY6hKs15Bbuk0isWDv5q5OTyee5r3d0WRGR1DIwIZSOCK8d+H//ACXPxn/uy/8Ao1a9koA8jQyfDHxwUbd/YGpHg9oz/iufyr1tWV1DKQykZBByCKxvFPh238TaFNYTACQjdDIR9xx0Ncr8NvEVwDP4W1fKahYErHu6sg7fh/Kuqf76HOviW/8AmccP3FT2b+F7f5HolQ3VzHZ2c11McRwo0jH2Ayamrh/irqx07we9rGf3184hUDrt6t+gx+NYUoc81HudFWfs4Ob6GV8KraXUb3WvE9yD5l3MY4yfTO5v5qPwrpfiHpmraz4H1HTdFTdeXISMDeEym4bhk8cqCPxq74R0gaH4W0+x2gSJEGk4/jblv1NbdXXnz1G1sTh4clNJ7nFeG/AeiaV4FttN1TSrIyG1BvnkRWO8jLkv7HODnjHFcn+z8039h63EGZrNLtfJJ6bivzfoErV+I/gDxN4qu5Z9K8QtBaNAEOnPI6xuwzknBxz7iovgrr8d3ot54ek02KwvNKcLKsQIEmSQWbJJ3ZUg8+n0rE2PUaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKo32taXpgJvtRtbbHaWVVP5E5rkdX+LPh3T0Isml1CbssSlFz7sw/kDWkKNSfwoynWpw+J2O8orwa7+InifxTqEWnWM8enRzuEAhO0gHuznkY7kYr2DRxpWjaVBYQ38DiJfmkaZS0jHlmPPUnJrSrh5Ukubd9DOjiY1W+XZdTZoqr/AGnYf8/1t/39X/Gj+07D/n+tv+/q/wCNYcrOjmXczL7xhoumaw2mX1ybecKrBnU7CD7jp+OK2Le5gu4RNbzRzRN0eNgwP4ivEPiZNFP4xkeGRJE8mMbkYEdPauZsdSvtMm82xu5rd+5icrn6+ta+zuj6alkUK+HhVpys2k9dV/X3n01RXjOlfFbWLTamoQQ30Y6t/q3/ADHH6V3GlfEfw9qe1JLhrKU/w3I2j/vocfmRUOEkeZiMoxdDVxuu61/4J11FU11XTnUMmoWrKehEykH9ad/adh/z/W3/AH9X/Gp5WeY2loy1RVX+07D/AJ/rb/v6v+NH9p2H/P8AW3/f1f8AGjlYcy7lqiqv9p2H/P8AW3/f1f8AGj+07D/n+tv+/q/40crDmXctUVV/tOw/5/rb/v6v+NH9p2H/AD/W3/f1f8aOVhzLuWqKq/2nYf8AP9bf9/V/xo/tOw/5/rb/AL+r/jRysOZdzyX4f/8AJc/Gf+7L/wCjVr2Ssi3j8O2l9NfWyaXDeT5864jEaySZOfmYcnn1q7/adh/z/W3/AH9X/GjlYcy7lqvOfiR4fuIZYPFmkApf2RBm2/xKP4vw6H2rvP7TsP8An+tv+/q/4019Q06RGR7y1ZWGCDKpBH51pSnKnLmSMqsI1IcrZT8MeILfxLocGoQEBmG2WPujjqK4TxF/xVHxb03SBh7XTlEkwzxkfMf/AGUVnx3sfw28ayeRMs+g6h822Nw3ln8O4P5g1ofC54bi81nxHf3EUc95MUQSSAHGdzdfqB+FdapKlzVY7W0+f+Rxuq6vLSlvfX5f5nqdcL8XbPUbr4f3UmmSTJcWsiXB8lirFBkNjHoDn8K7D+07D/n+tv8Av6v+NH9p2H/P9bf9/V/xrg5WejzLuec+HPjJ4VHhO0fUr+SG/t7dUmtzE7O7qMEqQMHJGevfnFUPgraXN/qfibxXLbmCDUrk+Qp75dnbHqBuUZ9QfSuzm8K+A57v7VLpWiNKTknZHgn1I6H8RW/De6XbwpDDdWccSKFREkUKoHQADoKOVhzLuXaKq/2nYf8AP9bf9/V/xo/tOw/5/rb/AL+r/jRysOZdy1RVX+07D/n+tv8Av6v+NH9p2H/P9bf9/V/xo5WHMu5aoqr/AGnYf8/1t/39X/Gj+07D/n+tv+/q/wCNHKw5l3LVFVf7TsP+f62/7+r/AI0f2nYf8/1t/wB/V/xo5WHMu5aoqr/adh/z/W3/AH9X/Gj+07D/AJ/rb/v6v+NHKw5l3LVFVf7TsP8An+tv+/q/40f2nYf8/wBbf9/V/wAaOVhzLuWqKq/2nYf8/wBbf9/V/wAaP7TsP+f62/7+r/jRysOZdy1RVX+07D/n+tv+/q/40f2nYf8AP9bf9/V/xo5WHMu5aoqr/adh/wA/1t/39X/Gj+07D/n+tv8Av6v+NHKw5l3LVFVf7TsP+f62/wC/q/40f2nYf8/1t/39X/GjlYcy7lqivKviFNeaHex+IvDmrCPzSEu4YpQylv4XKcg56Hj09araH8Z2G2LXLDcOhnteD+KH+h/CulYScoc8NTleMpxm4T0/I9eorndP8d+GNSwINYtlY/wzHyj9PmxXQRyRzIHjdXQ9GU5BrnlCUfiVjpjOMvhdx1FFFSUFFFFABVLUtKtdWtjb3YlMZ7RzPH/6CRmrtFNNp3Qmk1ZnnGofBvRbks9nfXlq57MRKv5HB/WuQ1f4Q67YIZLCWDUEH8Kfu3/I8frXu1FdUMbWj1uck8DQn0t6HyvFZLY6xDba5b3dvCHAnQLskVe5G4H69Oa9hi+D3hieFJor/UnjkUMjLNGQwPII+Su71HSrDVrfyNQs4bmLssqA4+nofpRpemW+kWEdjabxbx58tHctsBOcAnnA960q42U0nHRmdHARg2pWa/E4f/hTPhz/AJ/NU/7+x/8AxFH/AApnw5/z+ap/39j/APiK9EorD61W/mOj6pQ/lR88+L/D9p4a159OspJnhWNXBmYFskewFY1ta3F5MsNrBJNK3RI0LE/gK941PwLpWta62qagZpiVVRCG2px645P5it2x02x0yHybG0ht4+4jQLn6+tJ1r6vVn19HO6OGwsKNON2kl2R47pHwu1u/2vemOwiP/PQ7n/75H9SK6tfhDohjUSX+pF8fMUdFB/DYcfnXoNFR7WV7o8rFZtisQnFysuy0/wCD+J52fg14dJybzVP+/sf/AMRR/wAKZ8Of8/mqf9/Y/wD4ivRKKv61W/mPFeFovVxPO/8AhTPhz/n81T/v7H/8RR/wpnw5/wA/mqf9/Y//AIivRKKf1qt/MH1Sh/Kjzv8A4Uz4c/5/NU/7+x//ABFH/CmfDn/P5qn/AH9j/wDiK9Eoo+tVv5g+qUP5Ued/8KZ8Of8AP5qn/f2P/wCIo/4Uz4c/5/NU/wC/sf8A8RXolFH1qt/MH1Sh/Kjzv/hTPhz/AJ/NU/7+x/8AxFH/AApnw5/z+ap/39j/APiK9Eoo+tVv5g+qUP5Ued/8KZ8Of8/mqf8Af2P/AOIo/wCFM+HP+fzVP+/sf/xFd3qOoW2labc6heSCO2t42kkc9gBmuD+GfxGvPHd9q6XFlBbQ2mxofLJLEMW+8ScZwo6Yo+tVv5g+qUP5UL/wpnw5/wA/mqf9/Y//AIij/hTPhz/n81T/AL+x/wDxFeiUUfWq38wfVKH8qPD/AB74E0Pwpo8M9pcX8t5PMI40ldCuOpOAoPp+dU/BnhDR9Z1O70bW3v7TVIDlUjdVDAdRgqTkdfpXU6/jxT8XdO0oYe101RJKM8ZHzH/2UVd+JHh64ieDxXpAKX9iQ0u3+JB3/Dv7V3RrS5Y05S1kr3/I8+VCPNKpGPuxdrfmO/4Uz4c/5/NU/wC/sf8A8RR/wpnw5/z+ap/39j/+Irq/DHiG38TaHBqEBAZhtlj7o46itmuKWIrxdnJndHDYeSUlFWPO/wDhTPhz/n81T/v7H/8AEUf8KZ8Of8/mqf8Af2P/AOIr0SvMPEfxUvo/Es3h7wlobaxfW+RO/OxGHUYHoeCSRzxS+tVv5ivqlD+VFv8A4Uz4c/5/NU/7+x//ABFH/CmfDn/P5qn/AH9j/wDiKTwR8TJtf16bw7ruktpWsxqWWMk7XwMkYPIOOR1yOc16LR9arfzB9Uofyo87/wCFM+HP+fzVP+/sf/xFH/CmfDn/AD+ap/39j/8AiK9Eoo+tVv5g+qUP5Ued/wDCmfDn/P5qn/f2P/4ij/hTPhz/AJ/NU/7+x/8AxFeiUUfWq38wfVKH8qPO/wDhTPhz/n81T/v7H/8AEUf8KZ8Of8/mqf8Af2P/AOIr0Sij61W/mD6pQ/lR53/wpnw5/wA/mqf9/Y//AIij/hTPhz/n81T/AL+x/wDxFeiUUfWq38wfVKH8qPO/+FM+HP8An81T/v7H/wDEUf8ACmfDn/P5qn/f2P8A+Ir0Sij61W/mD6pQ/lR53/wpnw5/z+ap/wB/Y/8A4ij/AIUz4c/5/NU/7+x//EV6JRR9arfzB9Uofyo87/4Uz4c/5/NU/wC/sf8A8RR/wpnw5/z+ap/39j/+Ir0Sij61W/mD6pQ/lR53/wAKZ8Of8/mqf9/Y/wD4ij/hTPhz/n81T/v7H/8AEV6JRR9arfzB9Uofyo87/wCFM+HP+fzVP+/sf/xFH/CmfDn/AD+ap/39j/8AiK9Eoo+tVv5g+qUP5UeD/EDwh4e8JWlvHZ3N9LqE5yqSyIVVB1YgKD14H4+lc/ongnX/ABBtaysHEDf8t5vkjx6gnr+Ga+gW8MaRLq8mq3FmlzevjEk/z7AOgUHhfwGa166Fj5RgktX3ZyvLozm5PRdkeR6f8FDw2o6x9Utov/ZmP9K7HRPh5oWhSCW2+2NKOd7XTqfyQqP0rq6K554qrPRyOqnhKMNVEKKKK5zoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKzvEGqf2J4d1HVBH5ptLaSYJnG4qpIFAHnvxCup/GHirT/h/p0rLCSt1q0qf8s4hghfr0P1KVlfBa3itPGPjW2gQJDDcLHGo/hUSSgD8q57wB8TvDvhqPUL/WINTu9c1Kcy3M8UMZUDPCqS4OOSeg647Cn/AAo8Z6daePtZSSG6J167AtdqL8mXc/P83H3h0zQB9DVBe3cdjYz3cxxFBG0jHPYDNT1wnxX1Y2HhE2cRPnX8ghAA5Kjlv6D8a0pQ55qPczq1PZwc+xnfCi1lvpdY8S3QPm3s5RCT2zub9SB+FeluiujI6hlYYIIyCK4ifV7H4X/D3TpL63mlVCkTpAo3GRwWPUjuDXOf8NAeH/8AoEat/wB8x/8AxVVXnz1G0Th6fJTUXuJ+8+GPjj+L/hH9SP4Rn/FSfyNetqyuiujBlYZBByCK5a6trH4i+BophE8KXcQmtzKBvibsTj9aw/ht4huI3n8KauSl/YkrFu/iQdvw7e1aT/fQ5/tLf/Mxh+4qezfwvb17Hf3lyLOxuLphkQxtIR64Gf6V4F8LvGXh/wAIaDqera1cM2o6heFRHEm+VkVQc+w3O3UjOPavdNdQyeHtTRfvNaSgfXYa8d+AvhzSr3S9T1a8s4Lm5W4EEfnIH8tQoYkA9Cd3X2rlOw7Lw7eeBfG/ilfEmmOz65aIBh2eN1XBXOzOGGGIyM9R7V6BXh3iHTbbwp8evDsujQrbJqGzzoYRtX52aNuOgBGD9RmvcaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQgMpVgCD1BpaKAIvstv8A88Iv++BXlfwr0S/0/wAZ+Mbi+0u5toZrrdbyTwMiuPMkOUJHIwR09RXrNFABXlmuY8U/F/T9MGHtdMUSSjnGR8x/XaK9LvruLT7C4vJiBFBG0jEnHAGa88+E9pLeNq/iS6BM17OUUk54zub9SB+FdND3YyqdtF6s5cR78o0u7u/RGf8AHmVJdI0DTpZVjjudQDMzHAUKu0knsBvrpLT4s+B7i9Wxi1pEbIRGeF0jJ6Y3FcD6nAq140+H+neOZdObUbm6iSyZyI4SAHDbcg5B/u9vWsH4ifD3w3/wgWozWOkWlnc2MBnimgiCN8gyQxH3sjI5z61zHUelggjIOQa86+JPh64RoPFekApqFiQ0u3qyDv8Ah/Krnwh1KfU/hrpj3DF5IN9vuPdUYhfyXA/Cu4ZVdCjqGVhggjIIrSlUdOXMjOrTVSHKzG8MeILbxPoUN/FtDMNs0f8AcfuK8g02TxH8Htf1S1XQbjVdCu5PMhkg3YXGdpyAcHBwQfQY990+Z8MfHORu/wCEf1I/hGf8VJ/KvW0dZEV0YMrDIIPBFXXpqL5o/C9iKFRzTjL4lueOeFdJ1/xx8R4/GmvaZLpljZJstLeUEMSAdoGQCQCzMWwMnAHfHslFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcH8WNWax8JiyiJ86/lEQAHJUct/QfjXS+F9JGh+GrDT8APFEPM4xlzy36k1wes48U/GGx04Ye10tQ8g5xkfMf12j8K9Trpq+5SjDvq/0OWj79WdTtov1PJfjFb61p2o6F4p0xZ5bbTpAbmKNiF4cMpYD+E4IJ7cetYvi/4wWfirw0+g+HtNv31HUgIWV0HygnlVwSWJ6dBwc+1e6VXhsLO2laWC0gikbq6RhSfxArmOowvAPh6Twv4J03Sp8faY0LzAHOHYliMjrjOPwrpaKKAMfxP4ft/Euhz6fOAGYbopO6OOhrkfhv4guIZJ/Cerkpf2JIh3fxKP4fw6j2r0avO/iT4duFMHirSMpqFiQ0u3qyDv+H8q6aElJeyls9vJnLXi4NVobrfzR6JRWL4W8RW/ibQob+EgORtmjz9xx1FbVc8ouLszojJSSktgooopFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFV7+8i07T7m9mIEUEbSNk44AzViuC+LOqtZeFVsISfP1CURADqVHJ/oPxrSlDnmo9zOtU9nTc+xS+E1nLdLq3iO6BM19OVUk54zub9SB+FelVk+GdKGieG7DTwMNFEN/HVzy36k1rU68+eo5InD0/Z01F7hRRRWRsFFFFABSMqupVlDKRggjIIpaKAPI3Enwx8cBxu/sDUjyO0Z/xXP5V60jrIiujBkYAqQeCKyfE3h+38S6HPp84AZhuik7o46GuQ+G/iC4gln8JauSl9ZEiHd/Eo/h/DqPauqf76nz/aW/p3OOH7ip7P7L28n2PR6KKK5TsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivKbnVfjKt1MLfw/pTQh2EZMkfK54/wCWvpQB6tRXh+pePfijomp6dYalpGlRXF/II4IkxIz8gdFkOOvU8V7hQAV5Zq2PFPxis7AYe00pQ8gxxuHzH9So/CvStQvYtN025vZiBHBE0jZPYDNeffCWyluYtV8RXIJnvpyqsT2By36n9K6aHuwlU+S+Zy4j35wp/N+iPSqK4L4leP7jwhFY2OlWi3Wr6gxWBHBKqMgZwOpJOAM/4HjtS8bfEvwRJaaj4nsrO40yeQIyRBcocZ2hlPDYBxnI4rmOo9uoqG0uor6ygu4G3QzxrLG2OqsMg/kamoAKKKKACiiuP+InjmPwPocc6QrcX905itYCeCccscc4HHTrkDvmgDsK87+JPh24/c+KdIymo2BDSbOroO/4fyrlb/xd8WPDdjHr2saZZvppKmWEIuYwemdp3L9TnB6+letaBrVp4n8O2mq2y5t7uLdsfnB5DKfoQR+FaUqjpy5kZ1aaqQcWQeFfEVv4m0KG/hIEmNs0YP3HHUf4Vt15HIJPhl44Eqhv7A1JsEDpGf8AFc/lXrSOskayIwZGAKsOhBq69NRfNH4XsRQqOScZfEt/8x1FFcH48+JGkeHfD159g1W0m1cqY7eGF1lZX6ZYDOAOTz6YrA3O8ormvAGr3uveBtL1TUJBJd3CMZHChQSHYdBx0ArnPiB4/wBU0nXLHwv4YtI7rW7wBiZBlYwc4GMgZ4JJPAHPfgA9IorxiL4heNPBviSxsPHVtbPY3pwtzCqjYM4LArwQMjIIzj9fZ6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorq5hsrSa6uJBHBCjSSO3RVAyT+VS15l8cddbTPA406FiJ9TmEOB18tfmb/2Uf8AAqAKfw1gm8ZeKtU8fakjFRIbXTI36RIOpHvggZ9S9es1jeEtGXw94S0vSgoVre3VZMd5CMufxYmtmgDgfizqrWnhePToSfP1CURgDqVHJ/XA/Gup8N6UuieHLDTgMNDEA/ux5b9Sa4HU/wDiqfjHaWX37TSUDuMcbh8x/wDHio/CvU66avuU4w+b/Q5aPv1Z1PkvlueRfGPS72z1jQPGVrCJ4dJlU3EZYAgK4dT9DyPyrB8e+P7H4j6Xp/hrw5a3D3l1co7faAsYTAPy5z1yevTj3rS8eJ/wlHxp0Dwvfu/9lRxiVockCRsO56eoUL7c4rR+Lngvw/a+AbnU7HTLSxu7Bo2iktoljJBdVKnbjP3s89xXMdR6Xo9gNK0Sw04NuFpbRwZ9dqhf6Vdrmvh/qVzq3gHRb28ZnuJLcB3bq5Uldx9zjP410tABRRRQAV4t8X5Vg+I3gqa8wLBJ1Zy3TAlQvn8MV7TXKePfCekeMNHjsNSultJ1Yvaz5G5G6HgkbhyMj6dKALPjyS2j8Aa+10VERsJh8394qQv47iMe9cp8CLh5vh2Y2YkQXssaj0GFb+bGuc1b4XaxY+Hb2bxB4wur/SNNtpJ4rMM4DlEJUHcxA5wOM+gxXS/Aq2eD4crIwwLi8lkX3Awv81NAHaeJdAt/Euhz6dcAAsMxyd0cdDXH/DfX7i2mn8Jawdl9ZEiEt/Eo/h/DqPavR688+JPh24Ih8UaTlNRsCGk2dXQd/wAP5V00JKSdKWz28mcteLi1Whut/NHodeRfEX4a+FNM8HazrNpprR36L5qy/aJDhi4ycFsdz2r0Lwp4jg8T6FDfxECXG2aMH7jjqPp3FZPxU/5Jlrv/AFxX/wBDWsJRcW4vc6IyUkpLZjfhP/yS/Q/+uT/+jGrjvDh/tH9o/wAQTS8m1tWEf+ztEUf8ifzrsfhP/wAkv0P/AK5P/wCjGrj/AApGbP8AaL8TxSDDS2jsvvuMLj9Kkou/H62jk8DWc5UeZDfoFbHOCj5H6D8q9F0C4e78OaXcyHc8tpFIx9SUBNed/H6ZY/AdrET80moJgewRyf6V6J4fga28N6VA67Xis4kYehCAUAaNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVb3UrHTYhLfXlvbIejTSBAfpmmk3ohNpastUVxt/8AFHwrY5C3sl04/ht4if1OB+tcjq/xoldDHo+miIn/AJa3TbiP+Aj/ABNbwwtae0TnnjKMN5HrssscMbSSuscajLMxwAPc1FZX1rqNsLiznSeAkhZEOVbBwcHvz3FfNk+u33iXVYF1/WJhatIPMcglI17lUUYz9BXs1n8RPBFhZw2ltqYjghQIiC2l4AHH8NaVcHOmla7fkjOjjYVG72S83qdrRXIf8LP8H/8AQXP/AIDS/wDxNH/Cz/B//QXP/gNL/wDE1h7Cr/K/uN/rFH+Zfei/4x1+fw3oi39vFHK3nKhSTOCDnPTvxWJpPxU0W92pfRzWMh6lhvT8xz+lYnjzxr4f1/w59i0y/wDPuPOV9nkyLwM5OWUDvXmNUqTStJWZ9XlOX4XG4Tnlvd6p/wBI+nLO/s9RhE1ldQ3Ef96Jww/SrFfMNtd3NlMJrWeWCUdHicqR+IrsNK+KGu2G1Lvyr+If89RtfH+8P6g1LpPoRiOHasdaMr+uj/y/I9uorhNP+LPhy4T/AE15rGQDkNGZFP0Kgn8wKuf8LP8AB/8A0Fz/AOA0v/xNHsKv8r+4+bqzhSm4Tkk15o6+iuQ/4Wf4P/6C5/8AAaX/AOJo/wCFn+D/APoLn/wGl/8AiaPYVf5X9xn9Yo/zL70dfRXIf8LP8H/9Bc/+A0v/AMTR/wALP8H/APQXP/gNL/8AE0ewq/yv7g+sUf5l96Ovry74keEte8U+NvDT2lj5ukWbq1xMZkXZukG/5SwJ+VQeBXRf8LP8H/8AQXP/AIDS/wDxNH/Cz/B//QXP/gNL/wDE0ewq/wAr+4PrFH+Zfejr6q6lfRaZpl1fTECO3iaRs+wzXNf8LP8AB/8A0Fz/AOA0v/xNcr8QviDo2q+GH07Rr1p5biRRLiJ0wg5P3gOpAFXTw1SU0nF29CKmKpRg2pJv1ND4S2Uk9vqniG5GZ7+cqGJ7A5P6n9K9Jrz3w7468G6J4esdOGrcwRBX/wBGl5bqx+76k1p/8LP8H/8AQXP/AIDS/wDxNVXp1Z1HLlf3E0KlKnTUXJfejA+JngbWdV1jTvFPhh1GsWACmJmClwGypXPGRlsg9QfwPN6zZ/FD4hwQaLqej22k2AlDXEwO0MR0JBclgOwXv1Pp6H/ws/wf/wBBc/8AgNL/APE0f8LP8H/9Bc/+A0v/AMTWXsKv8r+41+sUf5l96Oi0fTINF0az0y2B8m1hWJCepAGMn3PWrtch/wALP8H/APQXP/gNL/8AE0f8LP8AB/8A0Fz/AOA0v/xNHsKv8r+4PrFH+Zfejr6K5D/hZ/g//oLn/wABpf8A4mj/AIWf4P8A+guf/AaX/wCJo9hV/lf3B9Yo/wAy+9HX1wHxW8E3vi/RLSTSmUalp8plhVmC7wQMqCehyFIzxxWh/wALP8H/APQXP/gNL/8AE0f8LP8AB/8A0Fz/AOA0v/xNHsKv8r+4PrFH+Zfejz7VB8VvG2mL4dvdFt9OtnZVursnYHAOefmPGRnCjn6V674d0S38N+HrHR7UlorWIJuIwXPVm/Ekn8aw/wDhZ/g//oLn/wABpf8A4mj/AIWf4P8A+guf/AaX/wCJo9hV/lf3B9Yo/wAy+9HX0jKHUqwBUjBBHBFcj/ws/wAH/wDQXP8A4DS//E0f8LP8H/8AQXP/AIDS/wDxNHsKv8r+4PrFH+Zfejk5lk+GXjgTIG/sDUmwwHSM/wCK5/Ku18eaddeIPAOp2Olxi4uLqFfJUOqh/mU9SQOg9awPEvjHwN4k0SfTrjVsFxmN/s0uUcdD92sbwB8RbDS9LfStcvCkducW04jdgy/3eATx2yOldNSlUqw53F8y303OWnWp0qnIpLle2u3kdx8PdJvdD8B6VpuoweRdwIwkj3q20l2I5UkHgjvXLePfCXiGHxbZ+NPCKRy6jCnlXFq5A81QCM8kA8HBGQeARzXQf8LP8H/9Bc/+A0v/AMTR/wALP8H/APQXP/gNL/8AE1zewq/yv7jq+sUf5l96PP5/Dnjj4l+ItOk8U6bHpWj2TbmjU438jcANxJY4AyeAP19vrkP+Fn+D/wDoLn/wGl/+Jo/4Wf4P/wCguf8AwGl/+Jo9hV/lf3B9Yo/zL70dfRXIf8LP8H/9Bc/+A0v/AMTR/wALP8H/APQXP/gNL/8AE0ewq/yv7g+sUf5l96OvorkP+Fn+D/8AoLn/AMBpf/iaP+Fn+D/+guf/AAGl/wDiaPYVf5X9wfWKP8y+9HX0VyH/AAs/wf8A9Bc/+A0v/wATR/ws/wAH/wDQXP8A4DS//E0ewq/yv7g+sUf5l96OvorkP+Fn+D/+guf/AAGl/wDiaP8AhZ/g/wD6C5/8Bpf/AImj2FX+V/cH1ij/ADL70dfRXIf8LP8AB/8A0Fz/AOA0v/xNH/Cz/B//AEFz/wCA0v8A8TR7Cr/K/uD6xR/mX3o6SHU7Ge9mso7qJrqE4kg3YdeM529cY71brxD4j634a137NqmjamTqkBCMFhkQunY5KgZB/Q+wrM0P4peItI2xzzLqFuP4Lnlsez9fzzXSsDOUFKO/Z6HM8fCE3GW3dan0FRXnGn/GTQ7jC3tpd2jHqQBIo/EYP6V1On+NPDeplRa6xalm6JI/lsfwbBrnnQqw+KLOmGIpT+GSN6iiisTYKKKKACmSxRzxmOWNJEPVXUEH8KfRQBzd/wCAvC+pZM2j26Mf4oAYj/47iuR1f4MWUqF9H1CWCTtHc4dD7ZABH616lRW8MTVhtIwnhqM94nzhd+E9c8J6jFd6lo4urSJwzkDzInXuCR0yPXFey6b4X8H6tptvf2mjWTwToHQ+X+h9x0rqqigtoLVClvDHEhYsVjUKMnqcCtKuLlUS6PyMqODhSb6p9zE/4Qbwv/0A7P8A790f8IN4X/6Adn/37roKKw9rP+Z/edHsqf8AKvuPM/iJ4Z0TSfDAubDTLe3m89F3xrg4IORXnWleHtX1pgNPsJplzjzMYQfVjxX0Td2NrfxLFd28U8asHCSKGGR0ODU6qqKFRQqgYAAwBT9q7a6nu4HNvqWG9jThrdvy+48q0j4RyNtk1i/CDvDbDJ/76PT8jXZW/gHwxbwiP+yopfVpiXJ/M10lFTzy7nHicxxOJ0qS07dP69Tn/wDhBvC//QDs/wDv3R/wg3hf/oB2f/fuugop+1n/ADP7zzvZU/5V9xz/APwg3hf/AKAdn/37o/4Qbwv/ANAOz/791uzTR28Ek0rbY41Lsx7ADJNeLfEn4wadNoo0/wAKalO15JIpe6hVoxGo5wCQCSeBx2zR7Wf8z+8PZU/5V9x6Z/wg3hf/AKAdn/37o/4Qbwv/ANAOz/791d8OTS3PhjSZ5pGklks4Xd2OSzFASTXKeMvit4f8N29/ZxXbT6xCrRrbRxt8smONzEYwOO9HtZ/zP7w9lT/lX3G9/wAIN4X/AOgHZ/8Afuj/AIQbwv8A9AOz/wC/dc58GNW1DWfA8l1qd7Pdzi8kQSTOWbaFXAyfqa9Do9rP+Z/eHsqf8q+45/8A4Qbwv/0A7P8A79152+gaTrHxaXS7Kwgi06wTNwiJhXIGTn8SB+FetanfR6Zpd1fTECO3iaQ59hnFcB8JLGSWz1LxBcjM9/OQG9gcn/x4n8q6KNSahKbfkvVnNWpwlUhTSXd+iOp/4Qbwv/0A7P8A790f8IN4X/6Adn/37qn4o+I/hvwlLLbaheMb5EDi1jjZmbPTnG0Z9zXK/BfxLqniY+IrrUryacC4jaKORywiDbztX0HT8q5/az/mf3nT7Kn/ACr7jtv+EG8L/wDQDs/+/dH/AAg3hf8A6Adn/wB+65z4seNr/wAK6bY2WjAf2rqUhSJyobYowCQDxuJZQM+9cfq+nfFPwdox8RzeJlvBDte5tCxkCqSOxGCOecY9vWj2s/5n94eyp/yr7j1P/hBvC/8A0A7P/v3R/wAIN4X/AOgHZ/8AfupvCPiBPFPhXT9ZSPyzcx5dB0VwSrAe24HHtW1R7Wf8z+8PZU/5V9xz/wDwg3hf/oB2f/fuj/hBvC//AEA7P/v3XQUUe1n/ADP7w9lT/lX3HP8A/CDeF/8AoB2f/fuj/hBvC/8A0A7P/v3XQUUe1n/M/vD2VP8AlX3HP/8ACDeF/wDoB2f/AH7o/wCEG8L/APQDs/8Av3W7NNHbwSTSttjjUuzHsAMk14t8SfjBp02ijT/CmpTteSSKXuoVaMRqOcAkAkngcds0e1n/ADP7w9lT/lX3Hpn/AAg3hf8A6Adn/wB+6P8AhBvC/wD0A7P/AL91d8OTS3PhjSZ5pGklks4Xd2OSzFASTXluo694w8eeOtU0HwvqS6VpulsY5rgDDMwO0kkAnJYNgDAwKPaz/mf3h7Kn/KvuPRf+EG8L/wDQDs/+/dcb8QfAFnBpa6todjFFJafNNAi5WRPXHt/Ks7w/4k8WeEfiJa+EvFV8upW18oNvc9SCchSDgE5KlSD9R7+xMoZSrAFSMEHoaqniKkJKVyKmHpzi42scJ4T0nwh4n0KG+i0OxWXGyeMJ9xx1H07itz/hBvC//QDs/wDv3XCXCyfDLxyLhA39gak2GUdIzn+a9fpXrMciSxrJGwZHAZWHQg960ruUWpRk+V7amdBQknGcVzLfT8TB/wCEG8L/APQDs/8Av3R/wg3hf/oB2f8A37roK5PxR8R/DfhKWW21C8Y3yIHFrHGzM2enONoz7msfaz/mf3m/sqf8q+4uf8IN4X/6Adn/AN+6P+EG8L/9AOz/AO/dcT8F/EuqeJj4iutSvJpwLiNoo5HLCINvO1fQdPyr1aj2s/5n94eyp/yr7jn/APhBvC//AEA7P/v3R/wg3hf/AKAdn/37ryj4xfEbUbbXE0XQL+e1Wy5u57dypaRhwmR6D9SfSvcrZi1rCzHJKKST34o9rP8Amf3h7Kn/ACr7jE/4Qbwv/wBAOz/790f8IN4X/wCgHZ/9+66Cij2s/wCZ/eHsqf8AKvuOf/4Qbwv/ANAOz/790f8ACDeF/wDoB2f/AH7roKKPaz/mf3h7Kn/KvuOf/wCEG8L/APQDs/8Av3R/wg3hf/oB2f8A37roKKPaz/mf3h7Kn/KvuPGfiNYaTb3NvoHh7Q4W1KTEkxt4dzovZRjoT1Ptj1qjofwh1m/2y6nLHp8J52/6yQ/gOB+J/Cvb47aCGSSSKGNHlO6RlUAufUnvUtdCxs4w5Y/fucrwMJzc5/ctDh9P+E/heywZoLi8Yd55SBn6LiuosND0nSwPsOm2tuR/FHEoP59a0KK551ak/idzqhRpw+GKQUUUVmaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkjSWNo5FDo4KsrDIIPUGvHvjP4Y0HSfAgudO0awtJ/tca+ZBbojYIbIyB0r2OvMvjv/yTsf8AX7F/JqAO38Lf8ijov/XhB/6LWsrxV4V8PT6LrF/NoenSXhtZpDO1shcsEOG3Yzn3rV8Lf8ijov8A14Qf+i1p3iX/AJFbV/8Arym/9ANAHB/AX/knsv8A1/y/+gpXqFeX/AX/AJJ7L/1/y/8AoKV6hQB5/wDFvVHtvDcOlwEmfUJgm0HkqOT+u0V13h/S10Xw/Y6cv/LCFVb3bqx/MmvPrwf8JT8ZoLbG+00hNzZGRuXk/wDjxA/CvU66a3uU40/m/mctH36s6nyXy3/EydQ8L6Bqt0brUdF0+7uCAplntkdiB0GSK8w+AiqjeKUVQqrdRgAdAP3ley1438B/9b4q/wCvuP8A9qVzHUd/4h8D6Z4l1zSdWvZrtZ9MkEkKROoRiGDfMCpJ5UdCK574x+KbHRvBt1pTSK+oalH5UUA5IQn5nPoMZA9T+ONj4heN4fBGgC6EQnvrhjFawnozY5J9hx9cgd81yvgP4c3l1qf/AAl/jRmutXmIlhtpeRD6Fh0yOy9F+vQA6r4ZaNc6D8PdKsrxGS52NLIjdULsWAI7EAjPvmuuoooAKKKKACiiigBskaSxtHIodHBVlYZBB6g1498Z/DGg6T4EFzp2jWFpP9rjXzILdEbBDZGQOlex15l8d/8AknY/6/Yv5NQB2/hb/kUdF/68IP8A0WtY+pHw38NdN1LxAmnSxi6lQ3Rt8u8jljg4ZsdWPp1rY8Lf8ijov/XhB/6LWsjwh40sPHUepRJYPF9ilEUsc5Vt2c4OP+AmgDzbQ9VT4o/F+y1mPyrOy0mIGKCaVfOl2lmBC/7x5xwAB3r3avDvibpNp4e+I/hHUtFgitbu6uQJEgUIGKugBIHHIcg+uK9xoAyfEmg23iTRJ9OuABvGY37o46GuN+HGvXFncz+ENYOy8syRAW/iUfw/1HtXpFee/Enw5PIkPibSdyalYEM5Tq6Dv9R/LNdNCSknSls9vJnLXi4tVobrfzR6FWTqHhfQNVujdajoun3dwQFMs9sjsQOgyRUPhLxHB4n0GG+jIWYfJPGD9xx1/DuK3KwlFxbi9zojJSipLZnjXwEVUbxSiqFVbqMADoB+8rv/AB54rj8H+FbnUeGum/dWsZ/jlPTj0HJPsK4H4D/63xV/19x/+1Kn+JejeMNQ8c6TqGj6Mmp2GnRCSKKZ1EXnFjksN6k9EP4D3qSji/HHhWTw18LNLmv8tq+o6j9qvpH5bcY3IUn2zz7lq+i7T/jzg/65r/KvnH4oav471HQ7OPxXoVnp9otzuikg6s+08H943GM9q9y8FXmvX3hyOXxHYQ2V6HKrFD0MYA2n7zcnnvQB0VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx/xL8KX3jLwoNL06W2inFwku64ZlXABzyoJzz6V2FFAFHRbOTTtC0+xmZWltraOFyhypKqAcZ7cU7V7SS/0W+s4iqyXFvJEpboCykDPtzVyigDjfhn4Sv8AwZ4WfS9RmtpZ2uXmDW7My4IUD7wBzwe1dPql/HpelXd/KQEt4mkOe+B0q3Xn3xb1R7fw7b6VASZ9QmCbQeSq4J/M7RWlGHtJqJlWqezpuXYg+EdhI9hqOvXIzPfzkBv9kHJ/Nifyr0is7QNMXRtAsdOX/l3hVW92/iP55rRp1p89RyFQp+zpqIVwPw08D6l4NfWjqM9pKL6dZIvs7s2AN33tyj+8Oma76isjY81+JngPxB4u1jSL3Rr2xtxp4LL9qdgRIWByAEYH7o6+lZ3/AAjXxl/6G/Sfy/8AtFet0UAYfhKz1+x0JIfEt/BfakJGLTQj5dvYfdX+VblFFABRRRQAUUUUAFcf8S/Cl94y8KDS9OltopxcJLuuGZVwAc8qCc8+ldhRQBR0Wzk07QtPsZmVpba2jhcocqSqgHGe3FeYar8OPFeheKr3XfAuqW8CXpLzWs3HJOSACpUjOSM4IzgV67RQB5V4e+HPiK+8X2/ifxxqkF3cWmDbW0PKqRnGeAAAecDOTyT6+q0UUAFIyhlKsAQRgg96WigDyS5WT4Z+OVuow39g6k2HUdIznn8R1HtXrMciSxJJGwZHAZWHQg9DWX4j0G28R6JPp1wMbxmN+6OOhrjPhzr1xY3U/hDWDsu7QkW5b+JR/D/Ue1dUv31Pn+0t/Ndzjh+4qcn2ZbeT7Fv4aeB9S8GvrR1Ge0lF9OskX2d2bAG7725R/eHTNd9RRXKdhwvxS8F6j430KzsdNntYpYLnzmNy7KpG1hxtU88120CGKCOMkEqoU49hUlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5Zc/8VT8Z4oMF7TR0y2Rkbl5/9DIH4V6Pq2oR6VpF3fykbLeJpDnvgcD8a4T4R6e7abqGu3AzPfznDeqgkn82J/Kumj7kJVPkvmctf36kKfzfyPR6KKK5jqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPviT4bnljh8S6TuTUrAh3KdXQc5+o/lmvQaQgMpVgCCMEHvWlKo6clJGdWmqkHFmH4S8SQeKNBhvoyqzD5J4wfuOOv4HqK3a8ku0k+GfjlbuIN/YOpNh1HSM55/EdR7V6zHIk0SSxsGR1DKw6EHoauvTUWpR+F7f5GdCo5Jxn8S3/wAx1FFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnvxb1N4dAttIgJM+oTBdoPJVSD+pK12WhaYmjaFZacnS3hVD7t3P55rzybPin4zpFy1po6ZORkbl5/9DI/KvU66a3uU40/m/mctH36k6nyXy/4IUUUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGV4i0K28R6JcadcjAkGUfujjoRXFfDnXbjT7ufwfrB2XdoxFuW/iUfwj+Y9q9Krz74k+G55oofEmlbk1LT8OxQcug5z9R/LNdNCSknSls9vJnLXi4tVobrfzR6DRWD4R8SQeKNBivYyqzr8k8YP3HHX8D1Fb1YSi4txe50RkpxUo7MKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqlq+ox6To95qEpGy3iaTnuQOB+Jq35ieaIt6+YV3BM849celeffFzU3j0K00e3OZ9QnC7QeSqkfzYrWtGnz1FEyrVPZ03LsM+EenP/ZV9rlwMz6hOcN6qCcn8WJ/KvRqoaJpqaPodlpydLeFUPuccn881forT56jkFCn7OmohRRRWRqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEBlIIBB4IPelooA8kvEk+Gfjhb2IN/YOpNiRB0jOeR9R1HtXrMUiTRJLGwaN1DKw6EHoazfEWh23iLRLjTrkYEgyj90cdGFcT8OtcudOvZ/B2sHZdWrEWxb+JR/CP5j2rql++p8/wBpb+a7nHD9xU5Psy28n2PSqKZJLHCm6R1RchcscDJOAPxJAp9cp2BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZ/FTVbzQdU8ParYybJojOpB6OPk+U+oPNc3/wlmmeJPiJYavqUws9OsYFcJLz84GcADk/MfyFb3xrjzpWlSf3Z3X81H+FeX+HfD954l1iLT7NeW5kkI+WNO7H/ADya9jDQg6ClLTRq54mKqTWIcI63adj6B0Lxjp3iW8lh0uK6mihGZLlo9kYPYcnOT9K6Gs7Q9Es/D2kw6dYptijHLH7zt3Y+5rRryp8vN7mx7FPn5ff3CiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8/+JPhqa4hi8R6UGTU9Pw7GMfM6Dnt3H8s137KHRlOcEYOCQfzHSvJ/GngvxLaiW90XWdUvLXkvavdO0iD25+Yfr9a6cLb2ifNY5cXf2bXLf8AQyfF/wARzrOgaRDZkx3O9Z7tR0V0Pyj6Ejd+Ar2m1uEu7OC5j5jmjWRfoRkV8nMGDENkNnnPXNfR3w61Aah4F0xy2XhQwMPTYSB+mK6sbQjTpx5e/wCZyYDESqVJc/ZfgdTRRRXmHqhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5P8AGuVnXRLRAWZ3lbaOST8oH8zXYeA/CyeF/D0cUiL9unAkuW77uy59B0+uT3p1/wCHRqvjiy1O6TNrp1tuiB6NMzH/ANBAB+pFdNXTOt+5jSXzOWnR/fSqy9EFFFFcx1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxHjb4d2XiOCS7skjttVAyHHCzez+/v1rl/hLf3Ok63qPhrUI3hlb96kb8FXXhh+K4P0WvX6wNc8NQ6jf2er2u2HVbJw8UvQSL3jf2IyM9s/hXVTxF6bpT26eRyVMOlUVWnv18zfooorlOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>In the figure, $m∠11 = 62$ and $m∠14 = 38$. Find the measure of $\angle 1$.
|
38
|
Geometry
|
Geometry3K
|
test
|
31
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIVA0UDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorJ8S69B4a0C71a4jaWO3Xd5akAsewGaTdldjSvojWorzSL4rahPEksXgPXnjcBlZQpBB6EVoaL8T7DUdZh0jUtMvtHv5/wDUxXaY3+nIqkm3YV9Lnd0UUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8x+Nl9HH4asdNeZYlvbxFZ2OAqqckn2r06vLPFtvD4k+L+g6JcRLPaWsDXE0bDKk9QCPcUrXkl5/lr+g07Jvy/wCAdRb+PvBdtbRQJ4l0sJGgQD7QvQDFcnfyw/ET4h6NLo487S9HfzZ75R8jP1CKe9dqfAXhMgj/AIR7Tv8AwHX/AArjPhhaR2Pjfxda6ezrpUE4jihLEqrgnOKqLvO76a/195LVoWXoeq0UUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYFr4Ss7XxjeeJvPuJLu5iWIxuV2IB/d4z+tb9FGzuHSwHkVz3hvwja+GbvU7i2urmY6hObiRZtuFY+mADj610NFHmHkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhIUEkgAckmgBajnuIbaFpp5UjjUZLOcAVyutePbOzuPsGlQtqeongRw8qp9zWdB4Q1jxJMt34svmEPVLC3O1R9f85966I0LLmqPlX4v0Rzyr3fLTXM/wXqztrDULTVLRbqynSeBiQrr0OKs15zalvh94q+xsX/sHUWzEzHIgf0z/AJ4r0YHIyOlTWpqDTjqnsVRqOaalo1uFFFFYmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVm6xr+m6DbGfULpIhj5U6s30Fce2reJ/GTGPSIDpOlng3cw/eOPYf5+tbU6Eprmei7sxqV4wfKtX2R0Wv+MdK0AeXLIZ7s8JbQ/M5P9K5SL/hIPHOozWd/cnR7ONVdrSPPmuh5Bz/AF/Suo0HwXpWhETBGur08tcz/MxPt6fz96uazoz30kV7ZXH2XUYP9VNjIYd0cd1NaKpTp6U1r3f6IdKj7aVsRLlT6L9Xu16fiP0Xw7pegW4i0+1SM4+aQ8u31Nalc7B4n+yOLfXrV9Pn6eaMvA/uGHT8cVuwXMF1GJLeaOVD0ZGDD9Kwm5N3kdMsNKirctl5bfJrQo6/olt4g0iawuB98ZR8co3Yiue8Ea3cK0vhvV/l1Kw+VCT/AK2MdCD34/Su0rgviDaxW81nrNjcLFrNs4Eca8tMvpgVtQkpr2Mtnt5P+tzkqU58yqU1drdd1/wDvaKyvDuu2/iHR4b+AgFhiSPPKOOorVrCUXFuL3NYyUkpLZhRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTXdI0LuyqijJZjgCuN1Tx9G10dO8O2r6pfnjKD92h9z3/l71pTpTqO0UZ1KsKavJnWXl9a6fbNcXc8cMKjJZzgVxVz4y1TxBO1l4SsS69Gv5xtRfcf5/CnWfgi+1i4W/8AFl81y+crZxHEaex9f88121tawWcCw20SRRKMBUGAK2/dUv7z/D/gmP72r/dX4/8AA/M5PR/ANtBcjUNbuH1TUDyWl+4p9h/n6V2CqFUKoAUDAAHApaKxqVZ1HeTNqdKFNWigooorM0GSxRzxmOWNZEPVXGQfwrGm8I6LLJ5iWzW8nXdbytHj8AcfpW5RTTa2NKdapT+CTXoYP/CKwlznU9TMZH+r+0DaP0z+tWtO8O6XpbmS2tR5p6yyMXf82Jx+FalFHMy5YmtJcrk7HnV8j+AfFQ1GFf8AiR6i+J0HSFz3A/z6dq9DR0ljWRGDIwBVgeCD3qrqmmW2sabNY3aBopVwfY+o965Dwdqdxo2pzeEtWkJmgJNnK3Akj7D/AD9O1dMv30Ob7Ud/Nd/kedH9zU5fsy28n2+fQ7uiiiuU6jPv9b07S7uztb26WGa9cx26sp+dh2yBgfjTpdY0+HVodKe5X7dMhkSEAk7R3OBgD61yXxZFqvgxriSTZeW8yS2e0ZZpQeAAPbNT/Dq2S80b/hJLm4F1qepjdNNjGwDgRqOwGD+NEdb+X9IJaW8ze8Q+IrLwzpyX1+JTC0yw/u1BILdCckcVl/8ACwNETUEtrgXdrHJnybqeApDKR1Ct1zx3Az2zWb8WwG8JWwIyDqFuCD/vVB8UY0OkeHUKKV/ta3GMcYwaI6/fb77f5jen3N/cbln470q71iHTWhvraS4z9mluYCkc+P7pz/MCunrgviGANW8I44xqYx/3ya72haq/nb8v8yetvL/P/IKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWPrnifSvD0O6+uQJD92FPmdvw/qeKqMZSdoq7JlKMVeTsjYrmNe8caZo0n2WHdfag3C21v8xz7nt/P2rDMvirxtlYUbRdIbgu/+tkH0/8A1fWun0HwlpXh6PNrBvnI+eeX5nb8e1dHs6dL+I7vsv1Zz+0qVf4asu7/AEX+ZzSaB4j8Xus3iC5On6eTlbKA/Mw/2j2/zxXZaVo2n6LbC30+1SFB1IHLfU1forOpWlNcuy7LY0p0IwfNu+73CiiisTYKKKKACiiigAooooAKKKKACuW8beHZNYsEvbE7NUsj5kDjgnHJWupoq6c3TkpRIqU1Ui4yMHwn4ij8R6OszAJdxHy7mLoVce3oa3q898RW03g7xIniaxRjYXJCX8KDgf7X+e+fWu9tbmG8tYrm3cPDKodGHcGtK0ErTh8L/DyM6M27wn8S/HzOcfw3d6l4xOravJBJZWibLC2jJbBP3nfIA3dhjNHgzw7feGYdSsp5oZLKS7ee0CE7kVuSrAgAc+ma6iisFp/XzN3qc1448PXfibRIbKzkhjkS7inJmJA2qcnoDzUfjLw3eeIbPSobSWBGtL6K5kMpIBVc5AwDzzXU0ULT77/19wPX7rHM+KvDt3rl9oc9tJCi2F4LiUSEgsuCMLgHnnviumooo6WDrcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACobq7trG2e5u544IEGWkkYKoHuTU1eS+NNQsNR+KWm6H4inW30OCHz9szbI55CONx6YHSjdpLqPo32OqX4peCmvDajX4PN/3H2/8AfWMfrXWW9xDdW6T28qSwyDckiMGVh6gisWTw94b1jSntUsbCe0dNoMSqQB7EVR+H3hm/8J+HDpd9cxzlZnaMxkkKpOQORTXW4n3R1lFFFIAooooAKKKjmnit4WmnkSONRlndsAD60ASVU1HVLHSbU3F/cxwRDu56+wHeuRv/AB3NqFy2n+FLJ7+4HDXBGIk98nr/ACp2neAnuroah4nvG1G66iHP7pPb3rpVBQV6rt5df+B8zmddzdqKv59P+D8itL4n17xXI1t4XtGt7POG1C4G0Y/2f8k+1auheBNP0uUXl67ajqBOWnn5APsK6iKKOGNY4kVEUYCqMAU+lKu7ctNcq/H5scaCvzVHzP8ABeiDoMCiiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAooooAhu7WG+tJbW4QPDKpV1PcGuE8NXU3hHxA/hbUHJs5iZLCdjxg/w/5759a9Brn/ABf4cTxFpJRPkvYD5ltKOqsO30Nb0ZrWnP4X+HmYV4PSpD4l+K7HQUVzHgvxG2tac1tejy9Usz5VzG3UkcBv8966es6kHTk4yNKc1UipR6hRRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkcRRtI3RQSa5O2Xwv8TdGW9m09LqCORo0M8eHUg4OPSutIBBBGQeorzR/hxruhajdXPg3xAlhBcvve0uULRqfbFLrqPpoZfi74aaf4Y0S817w/ql9ptzaIZQvnkq2P4RnpXovg+/u9U8IaVe3/8Ax9TWyPIcYySOuK5lPAGsa1JC3jDxC+oW8bBjZW6eXC5HTd3Nd/GiRRrHGoVFGFUDgCqWiaZL1aHUUUUhhRWDr/i/SfDy7bmbzLk/dt4vmc/h2/GuM1CfxL4klsxqYk0jR7ycQrHHxI2em7vg+9b08PKS5paLv/l3MnVvP2dNc0uy/XsdJrfj2xsJzY6ZG+p6ieBDbjcAfcj+lZkXhLW/E8y3Xiq8aK3zlLCBsAfUir0GgWXhbXtJOmx7I5w8E+45LnAKsT65zXZVbrRp6UV83v8A8AU8LKSjKs7pq9ltvbXv+RVsNOs9Mtlt7K3jgiXoqDFWqKK5m23dmqSSsgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOC8Yafc6Fq0Xi3SkJaPC3sQ6SJ6/59q7PTdRt9V06C+tXDwzLuB9PUH3FTyxpNE8UihkcFWU9CDXnumyv4D8UvpVw2NF1B99rIekT/wB3+n5V1L99T5ftR2812+Ryv9zU5vsy38n3+f5notFFFcp1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3inVNZu/E1t4a0q4SzFxEZHuOdwHfHp+FdzXB33/ACWHTv8Arzb+RrowyXM21smznxLfKknu0jY0DwVpehv9o2G6vjy1zN8zZ749Kfr5+1a1oenrnP2j7S2Oyx88/XNb7uscbO7BUUZJPQCud0DOqahd+IpV2xyjybTd/wA8VJ+b/gRyfoRUOcpvnk7nfg6caMXUirJL8Xov8/kS6s5m8U6LaKM7BLO59AAAPzOa365zw+Tqmq6hrpH7pz9ltfeNCct+LFvwro6iWmhWJXK40/5Vr67v7r2+QUUUVJzBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyHjM22t27aBb273eonEi+XwLb0Zm6D6d61fEGp3FskFhp4DajeMUiz0jUfec+wz+tMjj0/whozSSOzMzZkkPMlxKf5k+laQbi1Jb9Dphh4yh+8XNzaJd/N+X5mZ4H16e5jm0LVPl1XT/kYN1kTsf5fpXYV5rruka9uXxgipDf25DC0jXnyR2Y9255/+tXcaFrNtr+kQahbMCrjDL3Ru4Na14Jr2sNnv5M4IJ0puhN3a691/wADZmlRRRXMbBRWLY+KtJ1DxFeaDbzOdQs13TRtEwAHHQkYPUdK2qOlw62CisbSfFOla5qd9p+nzSTTWLbZz5TBFPoGxg/hWzR5h5BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV59q1zBafFqxnuJUiiSzYs7nAHBr0GvPNYFqfizYG8ERhW0Zj5oG0EA4PNdOG3l6MwrpPkv/ADL8zYmkn8YyC3gWSHQgcyzsNpu/9lf9j1PepdbuXu54/DWlHy5HQfaJE6W8PT8z0ApZ9fuNUY2fhyISn7r3zr+5i+n94+wrU0fR4NGtTHGzSTSNvnnkOXlc9WJrJux7U5+yScla3wx8+8v617WLlrbQ2drFbQIEhiQIijsAMCpaKKzPNbbd2FFFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo6UVn67dix0K9uM42RHB9CeB/OhK5UIuclFdTM0Bf7T1XUNdkGQzm1tc9o0OCR9W3fkKbp6/29r82qSHdZ2TGCzXsXH35Pz+UfQ05m/sDwCvJEkNooJ6newAJ/wC+jVi3QeH/AAemAN9va7jj+KQjJ/Nj+taPuvQ9Ccr80odXyx9F/wAC33sp3jS+JdYl0yKR49LsyPtbocGaQ8iMH0A5P1FctFeweB/G01vbOzaLcsqzKAStvKegz/ng+1ddpg/sLwX9pdf35ha5k9Wkf5sH8SB+FZd7ptrafDqWO+h86a7xK+77zTSEYOfUZA+gralNRbi/hen/AATDFYf20eWlvF2j5vq36/qux2qsrqGUgqRkEdxS1wvgfV7qynk8Laz8l9ajMDMc+YnoD3x/npXdVjVpunLlZwUqiqR5v6ueXRJ/Z37QUmOFvtN/Mg5P/oNdL8QvEj+HfDT/AGXLalesLazjHUyNxn8OtYHjFfsPxY8H6jnaknnQO3/AeM/nTtEjPjf4gXHiCUbtJ0gtb2APSSX+J/wrJLmjGPrf0v8Ardfeat8snL0t62/4DOk8C+GE8K+GYLM4a7k/e3Mnd5Dya6Wiiqbu7kpWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn2rW0F38W9PhuYY5ojaMSkihgSAexr0GuDvv+Sw6d/15t/I104beXoznxDa5Wv5l+Z3aIsaBEUKo4AAwBS0UVzHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz3jZiPCt0OzMin6bxXQ1z/jVN3hO8b+5sf8AJhVQ+JHTg/8AeafqvzE8Ypv8PeQp2+ZNEmT0+8Dz+VO8af8AIqXa9iYwfpvWm+MFM/hK4kQE7fLkAHcBgal8Ux/bPCV2Yz1jWUHrwCG/kKqPT1/yOjDu3sW+k3/7aReMVA8I3CD7uYgfp5i0/wATKv8AZ1iuAV+1xdfxqTVUGreEJmjXf51sJUHqcBh/IVQ1V21XwCl3FzKkUVxgdihBYfowpLZLzHQ2gn0m0/ml/kyDx7orXFjHrdk/k6lpv7xJBxuXup/z6+tbnh3VTregWeolNjTR5ZfQ9D/Kq2t3KXngq7uYzlJbQuPxGarfD7/kRtM/65n/ANCNbP3sPr0djxeXkxLj3WvqnYp/ELwVceM7GyitNQWxntpvMEpUk7SCCBgjB5rodC0e20DRbbTLRcRQIFz3Y9yfcmtGiuZaJpdToeoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXB33/JYdO/682/ka7yuDvv+Sw6d/15t/I104beX+FnNido/wCJfmd5RRRXMdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVTVLb7ZpV1b4yZImA+uOKt0UFRk4yUl0MLRiNZ8GQRSHLPbGCT2dQUb9QaTw1L9v8ADKWlwP3kAazmU9cr8vP1XB/Go9IP9leIdQ0l+Irhvtlr6YPDqPowz/wKmXDjw/4m+1N8un6mQkh7RzgYBPsw4/4DWj6pHoTjzOcI9fej/l934qxN4UlaOwm0qc5uNPlMJz3Q8ofptOPwqHRSulapeeHp/wDVOWuLPd0aNj86/gxP4NT9dt7jTb6PX7GMyNGojvIFHMsWc5H+0uSfoTVi9tLTxPpdvdWdzslQ+ba3UfWNv8OxFHn0YOUZXm/hnv5S/r8Hpqc9q4uvDuh6lpslvLPpkkbm2nT5vJzyUcdhnoa1fh9/yI2mf9cz/wChGqOt65dQeHr+x1iyliuTAyieJd0Mpx1B7fSr3w+/5EbTP+uZ/wDQjWz/AN3fr+h5uK5vrac1q4vVbPVanTUUUVygFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVVutSs7G4tYLm4SOW6fy4Fbq7YJwPwBqeWWOCJ5ZXWONBlmY4AHqTQA+isTTPF/h/Wb17PTtWtri4TrGrc/hnr+FbdABRRRQAVwd9/yWHTv+vNv5Gu8rg77/AJLDp3/Xm38jXTht5f4Wc2J2j/iX5neUUUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3iHTZ7u3iu7EhdQsm82A/3v7yH2I/kKdbz2PirQWEkZ8qUFJom4aNx1B9CDWvXPalpd3p9+2saKoaV/8Aj6sycLcAdx6OPXvVJ30OujNTiqbdpL4X+n+T6P1I7DU5tDuY9I1mXKH5bS9bpKP7rnsw/WpbjQbiyuXvdAuEtpJDuktpBmCU+uByp9x+VWba90vxLYyW8kauOk1rMMOh9CO31FU00jV9GAGj3q3FqOlpfEttHosg5H45p3+835rSd/dn1T+F/wCX5dU0Z+va7fLoF/bahot1BI0LL5sJEkXT+9wR+VXfh9/yI2mf9cz/AOhGqeva5ff8I/fQXuhXcDtAwMkTLJGv/AuD+lXPh9/yI2mf9cz/AOhGt2v9nfr+jPMxMeXFL3Uvdezut15v8zpqKKK5RhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXlfxI+IOr6ReS2fhxY2NhGJb+Zl3BAxAVfrk16Vpl2L/S7W7BBE0Svke4zQtVcHo7FqiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmyb/Lby8b8Hbu6Z7Zp1FAHkmr23iWP4keFptdvrOWFriRYYbSNkVTtPJyTk4rpPitFcy+CpFhWRofPiNysYJJi3jd07etReNP+R68G/wDX1J/6AasfEfVruw03TbK1kMP9p30dpLMAMojH5sZ7kcUlrFJd/wBUP7Xy/wAzB8XW2lSS+Ez4ditfty38RjNoq5WL+Ldt/hx1zXqQ6DPWvLPFnhzTPAOm2mu+G4DZ3sVzFG4Vi32hGYAqQSeue2K9RjYtGrEYJAOKr7Pzf6E9V6fqzk7nxvLH4o1DQLTR5ru7tokkj2SgCTd/eyPlA9efpUFp4+mvzcWNroF0+t2zFZ7EyqFj/wBoyYxg9uPwqpon/JZ/En/XjB/SneFP+SmeL/8Aei/9BFKKvbzVxydr+q/FHQeF/FEXiW3us2ktneWcxgubaQgmNx2yOo96wb7/AJLDp3/Xm38jTfAX/I2eNP8AsJf0p19/yWHTv+vNv5GunDa3feP6HNilay7SX5neUUUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGVqXh+y1KUXBElveL925t22OPr2P0Oap/wDFTaaMKLXVYgeCxMEuPfqCfyroaKfMbxxEkuWXvLs/0e6+TON1/wAQzSaBfwXGh6lbs8LLvKIyDjqSG6fhVz4ff8iNpn/XM/8AoRrQ8T/8ivqX/Xu38qz/AIff8iNpn/XM/wDoRrpv/s79f0Zx1ZRliU4xt7r/ADXc6aiiiuU1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwfGPiWDwp4budTlwZFG2CMn78h4Ufn+lbxOBk9K8qe1g+KfjacXAMvhrR8xqobC3E54JyOwpNN+6hqy1ZUbSrGz+E+ti81Kzn1nUIWu7oi4Qs0n3go55xXafDS8+3fDzRpC2WSARsfdeKzbj4PeCfs8vlaKiybDtYSNwccHrVH4IXYk8FzWe7LWl3IhGemTkVaafN8vw0/Ul3ST83+Ov6HplFFFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAwda8NjV9d0bU/tZi/s2VpPL8vd5mVIxnIx196seI/D1l4n0h9Ovt4QkOkkZw8bDkMp9a1qKLaWC+tzibfwDdTX1pLr3iO61e2spBJb20kKxqGHQuQfmI/Cu2oop3AwLLwyLPxnqXiH7WXN7AkPkeXjZt77s8/lS6V4aGl+JdX1j7WZDqJQ+V5ePL2jHXPP5Ct6iktPyB6mDoPhoaHqutXwuzN/adz5+zy9vl8YxnJz+lYN9/wAlh07/AK82/ka7yuDvv+Sw6d/15t/I104b7S/uv8jmxP2X/eX5neUUUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk+J/+RX1L/r3b+VZ/wAPv+RG0z/rmf8A0I1oeJ/+RX1L/r3b+VZ/w+/5EbTP+uZ/9CNdK/3d+v6M5n/vK/wv80dNRRRXMdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAARkYPSooLa3tUKW8EUKE5KxoFGfXipawte8XaT4fQrcz+ZcnhbeL5nY/Tt+NVCEpu0VdkznGCvJ2Ru1Db2ltaBhb28UIY5by0C5PqcVy3hjxo+s6pPp2oWRsLrHmQRPnLp+OOa6+nUpypy5ZCp1I1I80dgoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArg77/ksOnf9ebfyNd5XB33/ACWHTv8Arzb+Rrpw28v8LObE7R/xL8zvKKKK5jpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCQoJJAA7mgDK8T/8ivqX/Xu38qz/AIff8iNpn/XM/wDoRqx4mvrNvDepRrdwFzAw2iQZ6elV/h9/yI2mf9cz/wChGulf7u/X9Gc8k1iVf+V/mjpqKKK5joCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiobm6t7K3ae5mSGJeru2AKErhsTVQ1XW9O0S2M+oXUcKdgTlm+g6muSu/G1/rdw1j4SsXuG6NeyrtjT6Z/z7GrGk+AYluRqPiC6fVL88/Of3an2HeulUFDWs7eXX/gfM5nXc9KKv59P+D8jNbxLr3jK7ax0GIadabdz3M5xIU9QP8M/UV0Gg+CNL0V/tMga9vjy1zPyc+w7Vf1XQkvfJntJjZXtuMQzRrwB/dI7r7VVTV9ZsD5ep6O86j/l5sWDqfcqSGH4A0SrNx5aei/rd9Tqp4GM0p83NLs7K3otv1KXjfw9Nf20Wr6ZlNWsD5kTL1dRyV9/8itTwx4hg8R6PHdx4WZflnizyj9xUJ8Y6cB/x76kX/ufYJs/+g1xktxeeFvEbeIo9NmtNFvZAlxDJjcM/x4BOOen5VUIurD2ct1t/l/kZV8NVwz9tKNove/5r9fI9TopkM0dxCk0Lh43UMrKcgg96fXIaBRXF+M01PVda0fQLV7y3sLpme9ubdSMIo+5vxhc1mWVnJ4L+IGmaRYXl1NpepQOWt7iQyeW6/wASk9BRHUHoej0UVzs3jrw1BDLLJqiBYpmgcCNywdThvlAzgeuMe9AHRUVg3vjXw5p9tBcXGrQeVOoeNowZMqf4iFBwPc8VsWt1b31rHc2syTQSruSRDkMKAJqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4O+/5LDp3/Xm38jXeVwd9/wAlh07/AK82/ka6cNvL/CzmxO0f8S/M7yiiiuY6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqG6u7extnubqZIYUGWdzgCo9R1G20qxkvLuQJEg/EnsB6k1hW2mz6xMur6/hIE+e3sWPyRD+8/q38qpLqzopUVJc83aP4vyX9aDhqmsa6SNIg+xWfa9uk+Z/dI+pHucVHdaBo9tEJ/EGotdHqXvJ9qfguRj6U86pqOvSNDoQFvYqdr6hIv3vaJe/wBelMksPDnh+RbjUplnvpBxJct5ksn+6vU/gKrY7leD5Y+6+0dZfN9P60Rl6zP4RPh68WxW2L+SwiMaEjPscYrX+H3/ACI2mf7h/wDQjVHXdbFx4fvUt9CvxA0DDzmhWNV9yGIb9KvfD7/kRtM/65n/ANCNbP8A3d+v6M8rFJrFK9/he7u919x01FFFcogooooAKKKKACiiigAooooAKKK858YeJfE48cWHhrwvLZxzS2xnle5j3gYP6cUdUh20uejUV5hd/wDC29PtZLtrrQ7pYQXaGKIqzgdQCa6vwN4oPi/wvb6q8HkSsWSRAcgMDjimle4nodJRRRSAKKKKACkZgqlmICgZJPQVzmv+NdK0Jvs+83d8eFtrf5mz6H0/nWENG8S+MmWXW5zpmmHkWcR+dh23f/X/ACreFBtc03yr+tkYTrpPlguZ/wBbvoX9X8fW8dydO0G3fVdQPAEQyin3b/I96qWvgvUtduFvvFt6ZccpZQnCJ7Gus0jQtO0K2EGn2yRL3bGWY+pPetGqdeMNKKt59f8AgEqhKetZ38un/BILSztrG3W3tYEhiUYCIMAVPRRXM3fVnSlbRBRRRQAVWv7G31Kwms7pA8MylWBqzRTTad0JpNWZwPhO+uPDmtSeEtUclMlrCZujr/d/z9K76ub8ZeGzr2mCS2Pl6janzLaUcHI5xn3pfB3iQeINJ/f/ACahbny7mIjBDDvj3rpqpVI+1jv19e/z/M5qTdOXsZbdPTt8vyN64LmJ0hkRZyp8vfyM9jj0rzayGq6N8Q7Cbxe9veXN7G1vp91a5WOI9SpQ9CfXmug8V6Jq0usab4g0IRTX1iGQ200mxZkbqM9jVO20nxF4j8SabqviCwt9MtdNLSQ2yTCV3kIxkkcACuWPxJnVLax3R6V5z8NrS3f/AISqZ4UaRtWuFLMM8Z6V6Melch4H0PUdGi14X8AiN3qU08OHVtyN0PB4+hoW79P1Q3svVfkzG+Gljajwlq7fZ4yWvblDlc/KGIA+ntWh8JSf+FfWi54WaZVHoPMbirHgjQ9R0fw5qFpfwCKea7uJEUOrZVmJU5Bqb4eaNf6D4RgsNShENyssrFA4bguSOQSOhpr9ELp83+p1VFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuDvv+Sw6d/15t/I13lcHff8lh07/rzb+Rrpw28v8LObE7R/xL8zvKKKK5jpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCcDJ6UVh+KruWDSPs1s2Lq9kW2hPoW6n8gaaV3Y0pU3UmoLqVLRB4l1ltQl+bTbGQx2qHpLIOGkPrg5A+hpk2/xZqclqrEaJaPtmZTj7VKP4R/sr39T9Kn1k/wBi+HLXStN+WacpZ2/qMjlvyBP1p+oSL4b8OQWWnKDcvtt7Zf7znqx/VjV+nyPQjJtqVPd6R8l1l6+fe76IS/1G4kuv7E0KNFnRR505X93bL2+regp9vpek+HLeTULyVWmxma9uTl2P1P6AU+2hs/CXh55J3LbAZJ5Ty00h6/Uk8D8KradpM+q3Mesa2n7z71rZnlIF7Eju/v2pfkReKi7O0O/WT/r5Lze9DXda1HUvD981lpTpYmFsz3R8ssuOqp1/MCrvw+/5EbTP+uZ/9CNaHif/AJFfUv8Ar3b+VZ/w+/5EbTP+uZ/9CNbX/wBnfr+jPJqzjLErljZcr/NbnTUUUVzGoUUUUAFFFFABRRRQAUUUUAFeIx+JprX4u+INWh0HVNXSFRaJ9gh8zyiowc+mcV7ReTra2U87nCxoWJ+gryP4VeKPD+naLqF5qesWdte6heyXDxyygMATx1pR+K/Zfnp/mN/D6v8A4P8AkTeJfijqLaU9svhrVdGFz+6a+1G3ZY4geCeAcmu+8GaLY6B4UsLHT51uIBHvE4PEpbkt+Oa4/wAd+NNI13QJ/DugzLq2paivlRx2w3hAerEjgYruPDGlPofhnTtMkbdJbwKjkf3sc/rVR+F/1/VhS3SNaiqt/qNnplq1ze3EcES/xO2M/T1riLnxdrXiR5LbwpYstuuQ9/OML/wHP/660p0ZVNVt36GVStGDs9X26nWa34j0vw/b+ZqF0iMRlYgcu30FcibzxV41O2xjbR9IbrPJxJIPb/OPes600C1ttHsvFFxPLeXpu1MzXHzAjcUIx9e/tXqgAAwBgVs5U6PwK77v9F/mOphq7SdX3Vdqy3ut7v8Ay+8wNA8H6V4fUPBF5t0fvXEvLn/Ct+iiuac5TfNJ3ZUIRguWKsgoooqSgooooAKKKKACiiigArz/AMVWVx4Y12PxZpsbNCxC38KfxKf4v89+a9ArM13ULGw01xfIZln/AHS26ruaYn+EL3rWjUcJd0915EToOvaEfi6epbsr2DUbKG7tpBJDKoZGHoasV5p4VvLvwhrKaHqsTQWV8fMtN77vKY/wE9P/AK9el061L2ctNU9hU5uSalutH6/1sFFFFYmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeeaxeW1h8WbC4u544IVtGBkkbAGQe9eh15zr13Z2XxVsZ7+RI7YWjBmk+6Mg9a6cLvL0ZjWXM4K1/eW3qegW93b3cYktp45kP8UbBh+lTVzp0DQNWT7bpxSGVuVurCTYx/FetRG+1nw8c6oDqOnAf8fcKYljH+2o6j3FYct9j0fq8Zu1N69no/l0f4PyOnoqK2uYLy3S4tpUlhkG5XQ5BFS1JytNOzCiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz2qfvvGeiQN9yOKebHYsNoH5ZNbk1zBbrummjjHqzAVx2q+JdFt/F+mXZ1O2eKOCaKQpIG2E7SM49cGtKcJSeiNsPUhCbcmlpL8ma18puPGulxnmO3tppSP8AaJUD+RouQLvxxaRMcrZWjTbe2522g/8Ajh/OuW1Dx/oi+J7K/tpZ544oZIZVWIjOSpXGevQ01/Fmo3Wvx6ppfhrUZF8gwOGi++N2VOR0xk/nW6w1W2qt66fmH1/DpK018LWmtm2+3f8AU6jUYxqvi+ysZebexh+2Oh6M5JVM+uMP+ddHXnIk8c3esHUrfRbW1kaEQN5knVQxIJBPUZP51c/sfx7eD/SNetbZT1EUXI/EUnQ7zS+d/wAjnrYxTUYwi2ku1teu9up0nif/AJFfUv8Ar3b+VZ/w+/5EbTP+uZ/9CNZR+Ht3eKV1PxNqVwp+8m/5T+ddbpGlwaLpcGn2xYwwjCljk9c0TcI0uSMru9zngqkqvPKNla34l6ikyM4zzS1ynUFFJkZxnmloAKKKKACiiigAooooAjngiuYJIJ41kikUq6OMhgexFYH/AAgHhD/oWdK/8BU/wro6KAKGm6JpWjoU03TrW0U9RBEE/lV+iigDzy80q2174oz2uoh57a3tkkSEsdueO1ddrFzBonh+d4o1jVE8uKNBj5jwoA+tc1DPFbfFTU5ppFjjSxUs7HAAwKvLcLr96ur3GYdDsMyQGTjz3H/LTH90dB68111m3yp7JIeXUFKUqslom7+fZer/AOCRXNo9vYeHNB4M0koluBx91Ruc/wDfTCuxrnfD8cupXtx4guUKfaFEVojdVhB4P1Y5P0xXRVzS7HVi5PmUHur39Xq/u2+QUUUVJyBRRRQAUUUUAFFFFABRRRQAE4GT0rkLW7t55Lvxbfkm1gDJYrjOEHG4D1bt7GtbxVdPa+G7wwsFmkTyYj/tv8o/U1m31nG2paBoEQAtbcfaJEHdYx8n4bgKuK0PQwsEoOT63+5K7+/RGJ4h0dtS0KXUdckkGp3OBY2sWT5J6qgHcnua2/BPiGbU7SXTdSBj1WxPlzK3VgOA1SxMt94qv76cZg0pBFED03ldzN9cHFcVqou9Pi03xnBK39o3bmVoD0aE8hcey4zXTTtUj7KXy8n29GcuOoyX+0wWqS5kuzV0kv7qV/vPW6Ko6RqttrWlwX9o4aKVc47qe4PuDV6uRpxdmYJpq6MvUfEuhaRcC31LWLC0nK7hHPcKjY9cE1T/AOE68J/9DLpP/gZH/jXCaXpGn+Mviz4ludTtIbyzsUjt4klXcoYDB/HINdn/AMK68Hf9C9p//fkUleyb6lO12uxu6dqun6vbm4029t7yENtMkEgdQfTIq3VLS9I0/RbT7JptpFa2+4t5cS7Rk96u03boJBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPtVmhh+LmntO6JGbRlJc4GSDxXoNefatawXnxZsbe5hjmhezYNHIoZTwexrpw28vRmFe3uX25l+Z0l34Zs5ZDd6a7afeHkT23yhv8AeXow+tM0/WrmG+XStciSG7fIhmQfurge3o3qKhl0a+0Im40CRpLccvp0rZQj/pmT90+3SrYbTfF+iMjK2M4ZW+WSCQfqGBrLprsew2nD33zQ7/aj/XbZ9HcoXtu/hS7bU7FGOlSNm8tV5EZP/LRB29wK6eKWOeJJYnDxuoZWU5BB6GsTQ76aQ3Gi6od97ajBdhxPEfuv/Q+4NRaBu0rUrvQHP7mIefZk/wDPJifl/wCAnI+mKTV99ya8HOL5vij17x7/ANdPQ6OiiioOAKKKKACiiigAoprSIgyzqo9zis268SaLZf8AHzqlrEfRpRVKMpbITko7s1KK5O5+I/hq3OBePMf+mMZf+VUf+Fkx3Jxpuh6hee6rtrVYWs9eX9DF4qitOZfmd1RXC/8ACSeM70/6H4YWBfW6YqaPsvxDvjmS+sdPX+6iK/64p/Vmvikl8/8AK4vrKfwxb+X+djuqZJNFEpaSRFA7scVxA8F6/d86j4tvP922JRfyqRPhhozNvvbi9vH/AL0sxz+lHs6K3n9y/wA7B7Ss/hh97/yub114q0GyJWfVrRGH8PmjP5VkXPxL8NwEqlxLMw/55REg/jV218C+GrQAJpMD4/565k/9CzWvbaZYWYAtrK3hA6eXEq4/IUXw66N/cv8AMLYh9Uvvf+RyH/CxZrr/AJBvhzUboHo4Xg0f2745vRm08OwW6np9ofa36mu6oo9tTXwwXzuw9jUfxTfysjhRp/xBveZtWsrIH+BIw238QKP+EE1a651DxXqLk9VichfwBruqKPrM18KS9Eg+qwfxNv1bOKh+F+gA7rn7VdOerSTEE/lWvb+CvDlsBs0i1bHeRA/863qKmWIqy3kyo4ejHaK+4ggs7W2GILeKIf7CAfyqeiisW7mwUUUUAFFFIxCqWPQDJoA8yi/4nXx5lb70Wk2HHs7HB/Q16dXmPwp/4mWreKtfbk3V95SewTIP9K7vxFqC6V4c1G+ZtvkW7uD74OP1xSk+WmvS/wB+v6jtzTfrb7tDhPhr/wATXxh4t18/MslyLeFj/dHUfmBXp1cH8IdPaz8A207riS9ke5bPX5jXeVcly2j2SRKfM3LuwoooqRhRRRQAUUUUAFFFFABRRRQB5pqTaWvxOvG1WATxLbIY4jHv3PjjC9zXRpY3viSeOTUrdrTSYiGism4eYjoZB2A/u1Rs/wDkrWof9eSf0rtq6a8rOPoh4TEOnTaitbvXtr0XR+YgAVQqgAAYAHaloormEFFFFABRRRQAUUUUAFFFFABRRRQBz/i/nTrIHkHULYEev7xaOvxAGe2mcf8Afyl8Yof+EcmuBnNo6XPHX5GDf0qLUXFt4r0a/HMVyj2rN6ZG5fzNaLb7z0qOtFJf3/yTKthuk0XxLnJkN3cjHfAJA/TFNby5bjwhIQHgeJl6ZHzRDFXdPUW3ijWNOlJK3ardRA9MEbWx+INZENtcSeHn06AZ1LQrkGFM8uqHKf8AfS4pre/9am6s5N9Hb7pRt+D0IdFgk8LfECXQ7dw2m38bXMcf/PIjsP5fTFd1dzrbWc07HAjQsfwFcDFqltq/xO0i7tWyrWD7lPVGycqR2IrqvF1pqGoeFNSs9LVWvZ4WjiDPtGT71WMu0pdWvxPBw1N05Spy0tJr0PJ/AngafxVpV14h/wCEi1XTGvruWTy7OQKrDceTxyc5rroPhZPDcRyt418RSBGDFGnGGx2PFZGgWnxR8OaHbaTZ6Johgt1KqXuuTkkkn863tKvfiZLqtsmqaTo8NiXHnyRTlmVfYetZaJ2iaXbTbO9AwMUUUVIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuDvv+Sw6d/wBebfyNd5XmnifUjo/xMsr/AOyTXKpaldkS8knIrqwqcpSS7M5cU1GMW+6/M9LrmdbhOiaiviG1GIiQmoRjo6dA/wBV/lWX/wAJl4kuwPsHhK4UHo07fL+mKjuF+IGr20lvLbaZaQyqVbnccfQ5oWHlF+80vmjehjowndRbT0ej1Xz/AKubfiYC0+x+IIOWs2Hmlf44W+8P6ijxAyWuraJqalRif7MzZ/gkH/2NYK+C/E9zYpZXvifFqsYj8qOLkqOACe9WF+GVpKAL/WNTu1Axskm+WhQpR+Kf3J/8A1jjqiUeWm9LrVpaPppfuzqbrXNKsVLXOoW0QHXdIKx7n4h+GrYHGoCY+kKlz+lNtfhz4XtWDDTvMYd5JGYflnFbFt4f0a0ObfS7OM/3hAufzxU/7Ou7+5f5nL/tD7L73/kcw/xNs5WK6dpV/eN6CPb/ADpP+Er8WXhxY+FXiz0a6JA/TFdyqqi7VUKB2AxS0e1pL4Yfe3/wA9lVfxT+5L/gnC7fiJe8GTT7BT3UBz+RzR/wiHie8/5CHi24VTg7bUGP+Vd1RR9ZkvhSXyD6tF/E2/mziF+GWnSnOoajqN90OJpuB+VaNr8P/DFp9zTEc+srM/8AM1t6pqMGk6Xc6hcnENvGXb3x2HuelR6LdXd7o9tdX0SRTzLvMaZwoPQc98YpPE1pfaY1hqMdeVC22i6XZgC2060h/wByFR/SrwAAwOlFFYtt7mySWiCiiikMKKKKACimJNFIxVJUZh1AYEisfWNam0fVNNWWOM6fdyeQ8vO6OQ/c9sE8UdbAbdFFFABRRRQAUUUUAFFFFABRRRQAUjqHRkPRhg0tFD1A8g0ux8YfDbUNQgsdFbW9HuZjNH5DYkQk+n+elaN9p3jD4g+XZarZJoehbleeLfunnAOdp9BXp1FC6X1sHpoRWttDZ2sVtboEhiUIijsBUtFFD1BKwUUUUAFFFFABRUF5dwWFnNd3MgjghQu7HsB1qroWt2fiLSINUsC5tpwShkXaeDjpQBo0UUUAFFFFAHE2f/JWtQ/68k/pXbVxNn/yVrUP+vJP6V21dGI3j6Iww+0vV/mFFFFc5uFFFFABRRRQAUUUUAFFFFABRRRQBFcQR3VtLbyjdHKhRh6gjFcnY20mr+FZ9FlkKalpj+UsjdQ6HMb/AI4Brsa57W7a406+XXtPiaV0XZdwL1ljHcf7Q7VUX0OzC1H8CdndNeq/z2+4pyTTa7plrq9gmzWNOciS3PBLDh4j7HnFOb/icNDr+gyKmoRDyp7eXjzFB5jcdiD0NSS27XUqeIvDc0cksqjzoScJcKOx/uuPWqiy6RrF800NzPoutrxKudjk/wC0p+Vx7kVZ2Rta8VovK9r7xkt+W+z/AF2yoLr7Z8VdPmbT5LGY2biWORQCW55z/EPevR688SO9i+KumrfXUd0/2J9siJtyvPUdM/SvQ60xG0PT9WeHG3tKltub9F31CiiiuY0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK57xT4z0zwilu2oxXknnkhBbQGQjHrjpXMH42+FlcIbfVw56KbI5P0GaE7jsekUYGc45ritD+KGh+INXh02ztdVWebO0zWhRRj1OeK7WnYQUUUUgCiiigAooooAKKKKACiiigDiPiRM0lroulqcLf6nCkg9UXLkfmorsLm5ttOspLm5kWG2gTc7twFUd6434jxGM+HdRx8lpqkXmHsFYFc/mRXTeIbf7Z4a1O3HPm2sij8VNJu1Nvzf5IaV5pPsvzZZGpWTaZ/aQuY/sXl+b5+fl2YznPpUlpd29/aRXVrKssEq7kdejD1ryu0uZda8CeFvC8DfvdQUfaiD9y3jOX6euAv416tBClvBHDEoWONQqgdgKuSs36/wBf16kpuyuSHpXM+CvFbeLdPurprUW/kXDQbQ2c4PWsW+174iRX08dp4ZsJbZXIjkaZgWXsTzXDfDrV/GdnpV8ujaFaXcLXbtI0shUq+eQOamLvf0/VFNWXz/RnvNcr8Qn1X/hF3t9HEwubmVITJD96NGYBmHpxnmtPw3d6ze6SJtdsYrK93sDFExZdvY5NaVzcwWdtJc3MqxQxKWd2OAoHeiSS3Em+h5b4z8Lad4I8PReINBE9rqVrNFulE7sbjLAEOCSGzXWePoje/D3UZcFZI7f7QnqrL8w/WsWGG8+JGqwXtxG1v4XtJRJbxMMPeuDwzDsldB8QJ1tvAOtMf4rV0A9SRgUpNqHnv+RULOa/E1dCv/7U0DT7/P8Ax8W6SH6lQar6z4m03QLmxg1CR4zeOUjYLlQQMnJ7U/wzZtp3hfS7Nxh4bWNGHuFFcl8QY0l8W+CkkUMp1A5BGR0FaTX7yy7mcPgv5G1bfEDw/cTTxSXEts8KeZtuYihkT+8n94VY0XxlpOu6hLYW7Tw3ka7vJuIjGzL/AHgD1Fc/4uijk+Jng/eithpSMjuBxS6wMfGfQCOCdPmBPtmpjrbzv+Fyn18rM7+iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjEhSQMnHSgDiPGrtrt4nhmFj5AiN1qBU4xGPup/wI/pUnwo/5JvpX+63/AKEa5yx1DxVpcOrzXPgu4uLq+d5JrkXaqAvIUAbTwoxWt8Hru6n8DWsE1g8EMORFOXBEwJOSBjjHSnDZ/L9RT+JfP9DpPGOt3Hh3wrfaraxxyTW6blWUEqfrgg1zupeNdf0jTrbXbzSLYaLLsDojk3Chujen4dR61ofFD/knerf9c/61j/EP/kk0H+7bf0qV19V+JaV2l3uW9T8YeINEkstQ1HSrRNFupliwkhM8W77pbsfpjiu8rzv4qf8AIl6d/wBftt/OvQ1+6PpV20fq1+CIvs+6OKs/+Stah/15J/Su2ribP/krWof9eSf0rtq2xG8fRGOH2l6v8wooornNwooooAKKKKACiiigAooooAKKKKACiiigDn7vQJ7W7kv9BuFtLiQ7pYHXdBMfUr/CfcYqle6lBPGIPE3h11x/y0EYniHuG6iutoqubudcMU9OdXa67P7/APO55jpraS3xO05tHdmtzaOW3O7Ybnj5uR9K9Orh78AfF3TMDGbF/wCZruK3xDuoen6s8+E+epUlr8XV3ey6hRRRXMahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAct4k0nxLfa/pFxo+rJaWEDZuomXJcf144rqaKKOlg63CiiigAooooAKKKKACiiigAooooAayI/3lU/UZrzFY01n48sAimHSLLpjjc4/wATXqBOASe1eY/CwHU9b8VeIG5F1fNHE3qgNEfj9E3+n6g/gfnZfr+h6YI41OVRQfUCnUUUAFFFFABRRRQAUUUUAFFFFABRRRQBna7pMeuaJdadKcCZMK391hyrfgQDUelvcjw7GNWQQzRxFJiTkYAxuz6Ec1q1j6/4ctvEUMMF3dXkUCNl4reXYso/uvxkj24pNaNdxrdHHfCTQpbfT7nWLpi5ndorPcPuQBiePqf5V6TUcEEVtbxwQoEijUKqjoAKkqm77EruB6Vxnw58Oaj4a0q+t9RWNZJrt5U8t9w2k8V2dFJaO43tb+uv+YVyvxB0XVfEHho6dpIgMjzI0izyFFZAckEgHrjFdVRSaGnY4WKf4kQxJFHpHhtI0AVVW5kAAHpxWtr2l3uuzaVYzxqtksi3F6ynhivIQeoJ6+1dJRVX6iCuV8U+Hr7WPEHhu9tTD5OnXZmn3uQduP4Rjk11VFJaNPsHSxy2u+H73UfGWgarAYvs1gZPO3MQ3I4wMc0mo+H766+Imla5GYvsdrayQyZY79zHjAx0/GuqooWlvK/4h38wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI54lngkhYkK6lSR15rP8PaFbeG9Et9Ks5JZIIAQrTEFjk55wAP0rUooAzde0W28Q6LcaXdvKkE67WaIgMPpkEfpVbWfC9lrnh1NEuZZ0tlCAPGwD/J05II7elbdFAX1uYviDwzZ+I9Lh0+7lnSKGVJVMTAMSnTOQeK2hwMUUUXA4mz/wCStah/15J/Su2ribP/AJK1qH/Xkn9K7aujEbx9EYYfaXq/zCiiiuc3CiiigAooooAKKKKACiiigAooooAKKK5rUr661m+l0fTJTBDFxe3o/wCWY/uJ/te/amlc1pUnUdtkt32LN74kjS7aw0y3fUL5fvJGcJH/AL79v1qhcSasF3ar4gtNMLciG1QFlHpufOfqAKgtGe5hew8OBNP0qEkTaiwy0hHXZnqf9o5qGyWw8xl0HRzqsynD396/yE98OwJP4ACtLJHpwowhpFbd7N/Nv3Y+mrMnTZ4bj4m6c8Gqzakn2Rx50qgEdeOFH8q9OrztBeD4q6aL1LZJPsT4FvnbjnrnvXolaYn7Hp+rPETTq1Gv5n+S7JL8AooormLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhu4XuLOaGOTynkQqr4ztJHXHesTwX4WTwf4dj0pbn7UyuztN5ezcWOemT/ADroaKFpfzB6hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE2f/JWtQ/68k/pXbV55Ol6/xTvhYXcFtN9lTmaPerDA4xkV0La9qGlMBren7YM4+2WhLoPdlxlf1rprq7jbshYShKpGTg03d6dd/wAfkdFRUcFxDdQJPBKksTjKuhyCKkrmKaadmFFFFAgooooAKKKKACiiigAooooAyfEWpS6bpTG1UNezsILZT08xjgE+wzk1iS6f5S2fhSykYCRDNqFwD85Tvk/3mP8AOtDUCLnxppVs2dtvDJcgdifuD+dUYLz7PbeKtbUFpY5JEXPYRLtwPyrRLQ9WhFwppR33+bdo/dq/Uc0UetXUlhFi28P6afLl2HaJnXqueyjv60ts134jUR2DPpmhxHYjxKFkuAOPl/up79TVe4sRHomheHkkYJfMPtLjguoG+Tn1bmuyREijVEUKijAAGABQ3bYVaqqcVy672/Jy823f0+63nyaXa6T8VNMgtFdUNk7MXkZyTk8kkmvQ64a9dX+LumbWVsWLg4Occmu5rTEbQv2/Vni0pOcpyk7vm/RBRRRXObBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmmp/2UfiZeprB227WyBXyw2tjg5Xp9TxXQMt/oEH2m2nfV9GYZeJyGliQ90YcOvsefc1St445vitqMcqK6GyQFWGQeBV65spfCkrX+nBn0pjm6syc+V/tx/1FddZ6xXkjoy6acJU93zPR7PXp2fn1IN8Wgqmt6O4m0O5Ia5t05EWf+WienutdfHIksSSRsGRwGVh0IPQ1ykawaTrMaRbX0XWwdqj7qTEZ49nX9QfWrvhZmtVvtGkbJsJ9sWTyYmG5Py+Yf8BrCSurnViqanDn3a69WttfNPR9zoKKjluIIBmaaOMersB/Osy58VaDaKTNq1qAOu2QN/LNTGEpbK55cpxju7GvRXITfEzwzGcQ3Uty3ZYYWyfpnFVT8RJbg407w1qk5PTzI9g/MZrZYWs/s29dPzMXiqPSV/TX8juaK4X+3fHN9xa+G4LUHo88wYD8ODR/Z3xBvv8AX6rp9mp/54qSw/TFH1dr4pJfP/K4fWE/hi38rfnY7qoJry1twTPcwxAdS7hf51xh8B6rd/8AIS8V3synqsabf1z/AEqaH4ZaGpDXEt7dHuJp8qfwxR7Oit539F/nYPaVntC3q/8AK5s3XjDw9ZAmfVrYAf3SX/8AQc1kzfE3w8hK2xurxv7tvCSf1xWla+CfDlmwaHSYA3TcwJ/nWvDp9nbjENpBH/uxgUXw66N/cgtiH1S+9/5Hns3iy9vdeg1LTPDeoyvFA0JWZfLDAnPXmmJD40u7fUraLQ7W2t9Qd3kW4lDY3fexg16bjHSin7eC+GC+d2a/v2knVfystnftf8TzseFfGd6LM3ms2lubT/UtApZl4xzkDtVr/hX17dHOp+KL+4/2Yx5f9a7qij61U+zZeiRm8PGXxtv1b/4Y5rRfA2k6HqC30D3U1yoIDzy7sAjntW9dXtpYxCW8uobeMnAaaQIM/U1PXlvxQhj13xV4V8NSLvinnM06eqdP6GsJ1J1JLmd29DWFOFOL5VZLU78eItDJAGs6cSegF0n+NaKOkiB0YMp5DKcg1xTfCPwQykDQ4kJ6MrEEfTmuf8DG68K/EfVPBv2qW504xfabbzW3GPgHGfxx+FJauxT0Vz1eiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFVbzUrDTl3Xt7bWy+s8qoP1NSW13bXsQltbiKeM9HicMPzFAHnup6ldaJ8SLy8i0q7vVktkjAgjJGcDvirr+IfGOoI0dt4UWONwVzPOOnuDiu7wM5xzRXS8RFpXgm0ra3OZUJpu02le+ljzSHw142uNNg097nTra2hk8yMEkuhySMEA9M4HtVxfAOsz3ElxeeKZ/NlAWQxR4LAdBnI6ZNd/RR9an9lJfJGkqXPfnk3fu2cTF8MdHyDc3eoXB775zg/hWnbeBPDVqVZNKhZl6M+Sa6Oioliast5MUcNRjtFFSHS7C3AENlAmOmIxVoAKMAAD2paKybb3NUktite6jY6bGsl9eW9rGx2hp5VQE+mSagtNe0e/nEFnq1jcTEZEcNwjsfwBzXFfEWXS5PEnhi01mSBbASy3Ewn+6QqED68sOK1PCn/CC3949z4bisPtcIIby4zHIoPB+VgDj8KUdRy0OxoorhbHxxq+rnUotK8Pi5nsbloX3XARCo6ckfePoAR70XA7qiuGtfHmoa3pX2zw/4flujCCLlZ5liCMOqKedzfp710fhrX7fxNoVvqlsjxpKDlH6ow4IP407Aa1FFFIAooooAK8xtP+J18eLyb70WkWSxD/eYZ/mTXppzg45NeO6TafEHw94j13UbXwnFeHUblnEkl9EhCAnaPvelCdp38n/kN/C16f5nsRIAJJwB1NeYeDF/4SH4oeI/EsfzWcGLKB+zEABsfl+tT3EHxG8V2xsby2s/D1pJ8s8kc4mlK9wu3gV22gaFZeG9Gg0uwj2wwjqerHux9zTjo+Z/1cT25UadFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjPH3iu60OC00vSEEutak/lWykZCern6V2deWyuL39oSOOf7tnYfuQehJAOR+dCV5KP9aK49k32/wCGNPTfhTo5iM/iFpdZ1GX5p5rhyV3f7K9hWfJ4FvvCfjPTNR8IxTf2dM2zULUyjYieoBP8q9PrGj8TadP4ml8Pwu8l9DGJJQqkrGD0yegPtTT95WE/hdzZooopAFFFFABRRRQAUUUUAc9qH/CN3Xi3T7W/ijl1mOJ5LVZImOF/iIONtc34khjsvit4UmsUWO5uFmjnCDG+MLnn6V0viPwna+IZLW6FzPZahaEm3u7dsOmeo9wfSq2g+CotJ1VtXv8AUbnVdUKeWtzc4+RfRQOBRHdN9L/1/mD2fn/X/DHU1wPwz6+Jf+wpJXfVheHPDUfh06jsunn+23LXB3KBsJ7D1oW79P1QPZev6M5r4Wf8ilqX/X9cfzqf4Q/8iBB/18Tf+hmt3wx4Yj8NaVcWMd09ws08kxdlCkbznHFP8J+HI/CuhJpcdy9wqO7+Y6hSdxz0FNPf0X4Dlq/m3+Zt0UUUhBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwfjXwTqOp61Z+I/Dt6lprNouz94PklX0Nd5RR5juecpN8U9Rha1ey0nTD903ZlEhI9Qoziuk8JeEbXwraS7ZXur+5bzLq7l5eVv8Pauiop3EFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z
|
<image>The two polygons are similar. Find UT.
|
22.5
|
Geometry
|
Geometry3K
|
test
|
32
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEUAPIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoryD4r+NtYg1iHw74XuJI7y3he8vZIcZVFQttyenygsfqtdj8MtbuPEHw/02/vJ2nuyHjmkbqWV2HP4YoA66iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyfE2v23hjw7e6vdYKW8eVTOC7nhVH1OBWtXi3j+6l8f/EbTvA1jI32Czfzr90PGQMt/3ypwP9psUAUvhndaBJZa3r3iXX9Nj1bWvMiZJrlFaOI53cE8ZPb0Va3PgBe+b4R1GwLAtbXpYYP8LqMfqrV1P/Cq/BH/AEL1v/32/wD8VXF/CuKPQvif4y8Pwp5cAYyxR/3USQhR+UgoA9looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiis3XdcsvD2ky6hfSbY0GFUfeduyqPU00m3ZClJRV2aVFee/DjXtQ8Q6z4ivNQDRt/o6xwnIES/vMKAf5969Cq6tN05crIpVVVhzoKKKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopk00VvBJPNIscUalndjgKB1JNAEOoaha6XYTX17MsVvCu53bt/ifauB0bT7rx9rSeItYiaPR7dj/AGfZP0fn77Dv0/Hp0HMcaXHxN1sTSCSLwtYyfIhypu5B3+n8hx1Jx6THGkUaxxoqIgCqqjAAHQAV0v8Acq32n+H/AATlX793fwr8f+AcL4I/5Hbxr/19Rf8AtSu8rg/BH/I7eNf+vqL/ANqV3lTiP4nyX5IrC/w/m/zYUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAEgAknAFebald3PxG1ptG02VovD1o4+23af8t2H8CnuP8A9fpmfxJq954r1d/CXh+XbCvGpXq8rGvdAfXsfXp0zXaaPpFnoWmQ6fYxeXBEPxY92J7k10xXsVzP4nt5ef8Akcsn7eXKvhW/n5f5k9nZ2+n2cVpaRLFBCoVEUcAVPRRXM3c6kraI4PwR/wAjt41/6+ov/ald5XB+CP8AkdvGv/X1F/7UrvK3xH8T5L8kc+F/h/N/mwooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuH8X+I7y4v08K+HDv1W4H7+ZTxax9yT2OPy+pFW/GXiqXSvJ0jSE+0a7e/LBGvPlA/xt+uM+mTwKteEPCsXhqwYyP9o1K5O+7uW5LsecAnnA/XrXRCKhH2kvkv19DmqSdSXs4fN/p6/kW/DXhyz8MaQljaDc33ppiPmlfuT/AEHatiiisJScnd7m8YqK5Y7BRRRSKOD8Ef8AI7eNf+vqL/2pXeVwfgj/AJHbxr/19Rf+1K7yt8R/E+S/JHPhf4fzf5sKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiqV5rGmafKkV7qNpbSP9xJp1Qt9ATzViW5gghE0s8ccRxh3cBeenNAEtFUv7Y0v/AKCVn/3/AF/xq2jpLGskbq6MMqynII9QaAHUUUUAFc54v8VReGrBRGn2jUrk7LS2Xkux4yQOcD9elW/EviOz8MaQ99dnc33YYQfmlfsB/U9q5/wh4cvLi/fxV4jG/VbgfuIWHFrH2AHY4/L6k1tTgkvaT2/P+upz1akm/Z09/wAl/Wxb8G+FZdK87V9Xf7Rrt7808jc+UD/Av6Zx6YHArraKKic3OXMzWnTjTjyxCiiioLCiiigDg/BH/I7eNf8Ar6i/9qV3lcH4I/5Hbxr/ANfUX/tSu8rfEfxPkvyRz4X+H83+bCiiisDoCiiigAooooAKKKKACiiigAooooAKKKKACiiigDyPwn8OIPECa1rHjjTZ31K8u32CaRl8uLAwVwfcj2Cij4W6ZaeK/h1eaNrSNf6baak8VvukZcooVlwVIOAWJ696s+Jtb1bx7rV14O8LOYLCBvL1bVCOFHQxr69CPfkcDJPoHh/QLDwzolvpWnR7LeEdTyzserMe5JoA8m8ceAPCVpdaZ4c0DRkTXNVkwkpuJmFtCvLyEF8HgHAPofSvYdL06HSNJs9Ntt3kWsKQx7jk7VAAz78V554Af/hJ/H/ijxXJ88MMg02xY9FReWx6Z+U/8CNenUAFUdY1ez0LTJtQvpfLgiH4seygdyanvLy30+zlu7uVYoIVLO7HgCvPdOtLn4ja0us6lE0fh60ciytH/wCW7D+Nh3H/AOr1zrTpqXvS2X9WMatRxtGGsn/V2T+G9IvPFerp4t8QRbYV502ybkRr2cj17j169MV6FQAAAAMAUUqlRzd+hVKmqatu+r7hRRRWZoFFFFABRRRQBwfgj/kdvGv/AF9Rf+1K7yuD8Ef8jt41/wCvqL/2pXeVviP4nyX5I58L/D+b/NhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5Xpfwq8R6JFPFpnxAntY55mmkVNOB3OcZJzJ7Cuz8OaJrWkaddwan4jk1a4lOYp5LcR+VxjGAxzzz1roaKAOY8CeD18EeHm0oXv2xmnad5vK8vJIA6ZPZR3rpZJEijaSR1REBZmY4AA6kmnV5xrOoXXj7Wn8O6PK0ej27D+0L1Oj8/cU9/wCvXoOdKdPnfZLdmVWryLu3siOR7j4m62YYzJF4WsZPncZU3cg7D2/kOepGPSIYYraCOCGNY4o1CoijAUDoAKh0/T7XSrCGxsoVit4V2og/zyferNOpU5tI6JbCpUuW8paye/8AXYKKKKyNgooooAKKKKACiiigDg/BH/I7eNf+vqL/ANqV3lcH4I/5Hbxr/wBfUX/tSu8rfEfxPkvyRz4X+H83+bCiiisDoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoori/GPie6juo/Dfh8ebrV2MMyni2Q9WJ7HHPsOfTNwg5uyIqVFTjzMq+Kdcvde1U+EfDsmJmGL+8H3YE7rn19fy65x1mhaHZeHtJi0+xj2xoMsx+87d2Y+pqr4V8MWvhfShawnzLiQ77i4YfNK/r9PQf1zW5V1Jq3JDZfj5mdKm7+0n8T/DyCiiisTcKKKKACiiigAooooAKKKKAOD8Ef8jt41/6+ov/AGpXeVwfgj/kdvGv/X1F/wC1K7yt8R/E+S/JHPhf4fzf5sKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKwPFnii28L6YJmXzryY7LW2X70r/4DjP+Jqoxcnyrcmc1CLlLYq+MfFZ0KGKw0+P7TrV58ltAozjPG8j0/n9Aad4O8KDw9ayXN5J9p1i7O+6uWOSSedoPp/M/gBV8HeF7m0ml8Qa63na5ecsW5ECn+BfQ44Pp0Hv2NazkoR9nD5vv/wAAxpwc5e1n8l2/4IUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFAHB+CP+R28a/8AX1F/7UrvK4PwR/yO3jX/AK+ov/ald5W+I/ifJfkjnwv8P5v82FFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUVU1PU7TR9Omv76URW8K7mY/oB6k9MU0m3ZCbSV2VvEGv2XhvSZdQvXwq8IgPzSN2Ue9cv4T0C91XU/+Et8Rp/pko/0O1b7ttH2OPX09M5PJ4raDpl3431lPFGuRGPToT/xLbF+hH99h3/qfYDPotbyapLkW73/y/wAzmgnWlzy+FbL9f8gooornOoKKKKACiiigAooooAKKKKACiiigAooooA4PwR/yO3jX/r6i/wDald5XB+CP+R28a/8AX1F/7UrvK3xH8T5L8kc+F/h/N/mwooorA6AooooAKKKKACiiigAooooAKKKRmCqWYgKBkk9BQBHcXENpbSXFxIsUMSl3djgKB1Jrzq1huPiXrYvrpHi8MWUh8iFuDdOP4j7fy6dcmi8uLj4la22m2TvF4Zs5B9puF4+0uP4V9v8A9Z7CvRba2gsrWK2toligiUIiKMBQO1dP8Ff3n+H/AATl/jv+4vx/4H5kiqqIERQqqMAAYAFLRRXMdQUUUUAFFFFABRRRQAUUUUAFFFFABRRWfq+sW2iWiXN0JWR5FiVYk3sWPQAUFQhKclGKu2aFFc3/AMJpZf8AQN1j/wAAXo/4TSy/6Busf+AL0+Vm/wBTxH8jMfwR/wAjt41/6+ov/ald5Xnvw8uVvPFfjG4RJEWS4iYLIpVh/rOoPQ16FW2I/ifJfkjz8Mmqdn3f5sKKKKwNwooooAKKKKACiiigAooooAK878Qapd+M9ZfwroUpSyjP/Eyvl6Af3FPf09zx0Bq14t8QXuo6kPCXhxs6hMP9LuVPFtH357HH5ZwOTx0nh3w/ZeGtIj0+yXgcySEfNI/dj/niuiKVJc73e3+f+RyzbrScI/Ct3+n+Za0vS7TRtNhsLGIR28K4Udz6k+pPrVyiisG23dnSkkrIKKKKQwooooAKKKKACiiigAooooAKKKKACub8Y/6jRv8AsL23/oVdJXN+Mf8AUaN/2F7b/wBCpx3OnB/x4nSUUUUjmOB8C/8AI6+Nv+vuP+cld9XA+Bf+R18bf9fcf85K76t8R/E+S/JGGG/h/N/mwooorA3CiiigAooooAKKwvGetv4c8Harq0W3zreAmLcMjeSFXI7/ADEV5ro2s/F/XtHttUsl0o21wpaPeqqxGSOmfagD2eqmpw3lxp00NhdJa3LrtSdo9+z3xkZPpXmvhz4g+KLXxxb+FPGWmW0FxdLugmt+OxIJ+Ygg7SOMYNeq007O4mrqx5pp3w113SXnew8WtA853SutrlnPuS2T1P51f/4Q/wAX/wDQ8zf+Ao/+KrvKK3eJqN3dvuX+RzrC00rK/wB7/wAzg/8AhD/F/wD0PM3/AICj/wCKo/4Q/wAX/wDQ8zf+Ao/+KrvKKX1ifl9y/wAh/Vqfn97/AMzg/wDhD/F//Q8zf+Ao/wDiqP8AhD/F/wD0PM3/AICj/wCKrvKKPrE/L7l/kH1an5/e/wDM4P8A4Q/xf/0PM3/gKP8A4qj/AIQ/xf8A9DzN/wCAo/8Aiq7yij6xPy+5f5B9Wp+f3v8AzOD/AOEP8X/9DzN/4Cj/AOKo/wCEP8X/APQ8zf8AgKP/AIqu8rzvxV8VdN0y/wBL07Q7qz1C8ubxIZwrF0ijJwTlTjdkjA+uaPrE/L7l/kH1an5/e/8AMsf8If4v/wCh5m/8BR/8VR/wh/i//oeZv/AUf/FV0ninxDbeFfDd5rN0jSR26jEanBdiQqj2ySOe1ee/8LN8VaSml6r4j8N2ttoOouipNDNukjDDIJGT2ycYHTtR9Yn5fcv8g+rU/P73/mb3/CH+L/8AoeZv/AUf/FUf8If4v/6Hmb/wFH/xVd5RR9Yn5fcv8g+rU/P73/mcH/wh/i//AKHmb/wFH/xVH/CH+L/+h5m/8BR/8VXeUUfWJ+X3L/IPq1Pz+9/5nB/8If4v/wCh5m/8BR/8VUFz4D8T3giFx40kkEUiypm1+668g/e7V6HRR9Yn5fcv8hrDwTum/vf+Zwf/AAh/i/8A6Hmb/wABR/8AFUf8If4v/wCh5m/8BR/8VXeUUfWJ+X3L/IX1an5/e/8AM5Xwf4SufDV1qlzd6p9vn1Bkd3MWwgruyTyc53fpXVVheLvFVj4O0CbVb7cwUhIol+9LIeij06E57AGvOrDUPi74vthqunSadotjKN0EU0Yy69j8yuefU4B6jispzc5c0tzWEIwjyx2PYqK8w8G+PtcHix/B/jK0ig1QqWt54hhZcDODjg5AJBGOmMZr0+pLCiiigAooooA8s+POom28EW9hGT5l9eIpUd1UFj/49sqjpPjnxdougWWmQfDTUitpbpCrmR/m2qBnAj74z1qh8XtWsT8SfCtjqM4i0+yK3Vy20sAGkGQQAT0jHbvXZz/GXwLDEzprDzMBwkdrLk/moH60AcT4CuJ/H/xSn1/XZ4ra+0qPbBpgRlZQMjJz2Usc99xHQV7nXjPw7S78W/FHV/HC2UtnpbxGKDeMGU4VR7HhSTjoSBzXs1ABRRRQAUUUUAFFFFABRRRQAV5D8UtA0fSpfDNxp2lWVpPLrMQkkggVGYdeSBzzXr1eZ/GL/V+FP+w1D/WgDc+KMOmT/DzVI9VuzawFVKyqu5vMDAqAvfJGPoT0rybV9V8Qan4d8L6d4y0uTS/DiTQ779IyzyBVIXcM/LkE5yPcDjFek/GTR73V/AMgsYXmktbiO5aJASXQAg8Drjdn8K5Dxv8AEHS/H3hO28PeH4Li51bUJYs25hI8jBDHJxg9MZHGMk4oA9uBDKGUggjII70tV7C2Nnp1taltxhiSPd64AGf0qxQAUUUUAFFFFABRRRQB418Soz4l+LXhbwtK5ayCi4ljHfJYsD/wGP8ADNeyABVCqAABgAdq8b+KCXXhb4iaB45jtnmsYVEFz5Y5XlgcnsSrkD3WuqufjD4Kg0w3iar5zbcrbxxN5pPpggAH6nHvQB0N/wCFNF1PxBZ67d2ZfUrMBYJhK67QCSBgEA8k9R3raryn4YRa94j8Qal411h7iGzucpY2jSNsA4+YL0wAAAcckk16tQAUUUUAFFFFAGXfeGtB1S5NzqGiabdzkBTLcWqSNgdBkgmoY/B/hiFw8XhzSEcdGWxiB/8AQa2qKAERFjRURQqqMBQMACloooAKKKKACiiigAooooAKKKKACiiigAqNLeGOR5I4Y0d/vMqgFvqe9SUUAFFFFABRRRQAUUUUAFFFFAEc9vDdQPBcRRzQuMPHIoZWHoQetc/D8PvCFvdG5j8OacJCc8wBgD7KeB+ArpKKAAAAAAYA6CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
|
<image>Find the measure of $∠A$ to the nearest tenth.
|
41.8
|
Geometry
|
Geometry3K
|
test
|
33
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGwAnoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8b+Nut38OoaJpGm3c8E0pZ28mQqW3EKo4+hr1i38vTNIi+0zhY7eECSWVuwHJJNeH+JLu31f49Q/apkjstMKmSRzhVWNd5z/wLioPE3jO8+Jvia28MaPcrZaVLLt3yHBmxzub8uFpRu4pLdv/AIYckua72S/4c0PEXjPXPiJ4hXw94OaaCxjbMt0pKFgP4mI6L6Dqa9Z8MeH18OaQlo15cXk5+aW4nkLM7e2TwPameFPCem+EdJSx0+Pk8yzMPnlb1J/pW7VaJWQm23dhRRRSAKKKKACiiigAooooAKKKKAEZ1UgMwBPTJ60tZ+taRZa1pslpfoDERkPnBQ/3gexrwbWYrzw5qslpa6v50a8pLbT5498Hg+1dmGwqr3SlZ+hxYvFvD2bjdep9E0V84xeLfEMIwms3uPRpmP8AOtnRv+E28Ty4tNR1Dyc4aZ52WMfj3/Ct5ZZKCvKaSOaGaxm+WMG2e60Vy+g+DY9M2z6hfXOo3Y53TSEop9lz/Ouorz5xjF2i7np05SkryVgoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJCjJIA9TQAtFU5tX023/1+o2kX+/Mo/marHxNoI66zYf+BCf41ShJ7Ih1ILdmrRWWviTQmOBrOn/+BKf41chv7O4/1F3BL/uSBv5Ghwkt0NTi9mWKKKKkoKKKKACmyOsUbSOcKoLE+gFOrnfHmpf2T4F1i73YYWzIp/2m+UfzqZO0WxxV2kfPWieGdS+JHjTUZbd/KtpJ2lubg9EVmJAx3PoPauu+JfgC38IabpWueHkaL7CypM4OWLZyshPrng/hXS/AjTfs3g+5v2X5ru5OD6qox/PNekatplvrOk3WnXS7oLiMxsPTPf6jrVSTgko9LApc0m5bO5n+EPEMPijwzZ6pERukTEqj+Bxww/OtyvCfhbqdx4O8c6h4O1Ntsc0hERPTzB0I9mX+le7VTs/eWzJSa919AoooqRhRRQTgZPSgAorD1LxhoGlZFzqcO8fwRne35DOPxrk7z4rxyy+Roukz3Up+6ZP/AIlck/nW9PC1qmsYnPUxdGnpKWp6RVW81Gy06PzL27ht19ZXC5+meteb/wDFx/EfcaZbt7+Vj+b1as/hRHLJ52s6rPdSHlhHxn6k5J/Stfq1OH8Sa9FqY/Wqs/4VN+r0NLUvij4fssrbNNeyDp5S7V/M/wCBrEPjXxjr526HopgibpKybv8Ax5sL+ldrpvg/QdJwbXTYd46SSDe35nNbYAAwAAKPbYeHwQv6/wCQexxFT+JO3lH/ADZ5evgLxRrrB9e1woh58pWL4/DhR+Fc3458M6b4aewsrJp5rqYF5GkbJIzhQAPfNe61knw9Yya++s3CeddbVSLfyIgB/CPXOTn3rSlj5xleWy6LQzrZdCULQ3fV6nnng74ZtN5eoa8hWP7yWh6t7v6fT8/SvVooo4IliijWONRhVUYAFPormr4ideV5M6sPhqdCPLBBRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVLU9XsNGtjcahdRwR9tx5b2A6mmk27ITkoq7LtRXFzBaQma5mjhiHV5GCgfia83vPiRqWrXDWfhfSpJG6ec67iPfHQfiaZbfD3XNenW68T6tIO/ko25h7f3V/AGutYTkV60uX8X9xxPGc7tQjzeey+86DVPiX4e0/csU73kg/hgXjP+8cD8s1z/APwn3inWSf7D0ArEekjIz/8Aj3C112l+B/D2k7Wh0+OSQf8ALSb52z689PwroVUKMKAB6Cj2uHh8EL+v+SD2WJqfHPl8l/mzzD+x/iPrH/H3qS2SHqolCHH/AGzH9acvwourgh77xBJIx6gRk/qWr06ij69VXwWj6If1Ck/jvL1bPPYfhFpK8z397IfQFVH8qsD4UeHh1e8P/bUf4V3VFQ8ZXf2mWsDh19hHCN8J/D5HEl4vuJB/hVSb4Q6ef+PfVLxP98K38gK9GoprG119oTwOHf2EeYH4Za1YfPpfiR1cdAQ0f6gn+VJt+JejdGS/iXryr5/PDV6hRVfXZv40peqJ+oU1/Dbj6M8yh+J+oadKIfEGhSQE/wAUYKH/AL5br+ddVpfjrw9qu0RagkMh/wCWdx+7P5nj9a3p7aC6iMVxDHLGequoIP51ymqfDXw9qO5ordrOU/xW7YH/AHyeKOfDVPii4vy1QuTFU/hkpLz0f3nXghgCCCDyCKgvrCz1O1a1vrWG6t2ILRTIHU46cGvMz4e8aeD2L6PeG/s158nrx/uH/wBlOa1NG+KFrLOLTXLV9PuAcM+Dsz7g8r+tKWDk1zU3zLy3+4qONiny1U4vz2+87iysbTTbVLWxtoba3TO2KFAirnngDirFRwzxXMKzQSpLE4yrowII9jWXqXirQ9JyLvUoFcdUVt7fkMmuZQlJ2SuzplOMVduyJrnw9o15qC6hc6VZTXiEFbiSBWcEdMMRnitKvOr74sWhk8nSNNuLuU8KX+UH6AZJ/Sqf2r4jeI/9VCNMgbvjysfnl66VgqiV52ivNnK8dTbtTvJ+SPSrq9tbGLzLu5hgT+9K4UfrXKal8TfDthlYZZbyQdoU4z9Tj9M1j2vwqe5l8/XNZnuJD95Y/wD4ps5/Kuq03wT4e0rBg02JpB/y0mHmN+vT8KfLhobtyflohc+LqfDFRXnqzjm8e+KddOzQdDMaN0lZS/8A48cLQPBXjDXzu1zWvJibkxBi2P8AgIwor1BVCjCgAegpaPrfL/Cgo/i/xD6nz/xpuX4L7kcTpvwu0Cyw9ys17IO8r4XP0GP1zXWWenWWnxeXZ2kMCekaBf5VaorCpWqVPjlc6adClT+CKQUUUVkahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTZJEijaSR1RFGWZjgAepNUNZ1uw0Gwa7v5giD7qjlnPoB3Neal/EfxLumEZNhoitj2P/wAWf0FdFHDuouaTtFdTmr4lU3yRV5Pp/Wxr698RpJbv+y/C9uby7Y7fO27gD/sjv9TxVfTPhzfatcjUfFd9JNI3PkK+T9C3b6D867Pw/wCGNM8N23lWUP7wj55n5d/qf6Vs1rLExprloK3n1f8AkZRwsqj5sQ7+XRf5lax06z0y2W3sreOCJeiouKs0UVxttu7O1JJWQUUUUhhRRRQAUUUUAFFFFABRWVqPiTRtJB+26jbxMOqbtzf98jJrkdQ+LOnI/laZY3F5IeAW+QE+w5J/St6eGq1PhiYVMVRp/HJHodRXF1b2kRluZ4oYx1aRwo/M15l/afxE8RcWloNOgb+Ir5fH1bLflU1v8Lbu+lE+va3NO5+8sZLH/vpv8K1+rQh/Fml6asw+tzn/AAqbfm9Eb2pfEnw5p+VS5e7kH8NumR+ZwPyriNb1+78cL5Nh4WEmOFuCrM6/8CGAPoa9B03wJ4d0vDRadHLIP45/3h/XgfhXRIiRqFRQqjgADFVGvQou9OLb7t/5ClQxFZWqySXZL9WeGT+C/GGnaM7hZfs5O6S2hmyR7lRwfwzV7wPpXhDVXWHUTP8A2jnHk3Em1GP+zjGfoa9nrj/FPgDT9e3XVtiz1DqJUHyuf9of161tHH+0ThU92/VfqYSy72TU6a5rdH+h0ljpOn6bHssrKC3X/pmgGauV5dpHi/VvCmoro3ipHaHpHc/eIHrn+Jf1H6V6bBPFcwJNBIskTjcrqcgiuKvRnTd5ap9e53YevCorRVmt12JKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5T4i+J5/CXhGbUrQRm6MiRxCQZGSeePoDU3gLWNR1/wfZarqgiFxcbmxGu0BdxA4+grzz4/wCoH7Lo2lIctJI8zKPbCr/M16t4e08aV4c02wAx9ntkjP1CjP60Q1i35hLRpGlRRRQAVheKPFFn4Y04zzkPcOCIYAeXP9B70vijxNa+GNLNzP8APM+VhhB5dv8AAdzXFeGPDF74q1L/AISTxJl4mO6C3YYDDtx2Udh3/n1UKMeX2tX4V+PkcdevLm9lS1k/w82R6L4Y1TxtfrrniSR1szzDbjjcvYAfwr+p/WvUbe3htYEgt41iiQbVRBgAU8AKAAMAdAKWorV5VX2S2XY0oYeNFd2933CiiisDoCiiigAoorO1HX9J0oE32oW8JH8JfLf98jmnGLk7JClJRV5Oxo0V5/qPxY0mBjHp9rcXknQE/Ip/mf0rO/tz4geIeNP0/wCwQN/GU2cfV+fyFdUcFVteXurz0OSWOpXtC8n5K56bNPDbRGSeVIox1Z2Cgfia5nUviJ4c03K/bDcyD+C3Xd+vA/Wubh+GWp6lKJtf12WVu6xkuf8Avpv8K6fTfh/4c03DLYLcSD+O4O/9Dx+lPkw0Pik5en/BJ9piqnwxUV56/gjl5PiTrOrOYvD+hO/bzHBkx+WAPxpv/CN+PPEPOq6p9ihbrGH7f7qcH8TXp0cUcKBIo1RRwAowBT6PrUYfwoJfiw+pyn/Gm35bI4LTvhTo1sQ99NcXr9wW2L+Q5/Wuu0/RNM0tNtjYwQepRACfqepq/RWNTEVanxyudFPD0qXwRSCiiisTYKKKKACiiigDN1vQrDxBYNaX8IdequOGQ+oPavNop9a+GWpLDcbrzQ5n+UjoPp/db26H+XrdVdQ0+11Sxls7yJZYJBhlP8x6GumhiORck1eL6f5HLXw3O+eDtNdf8xdP1C11SyivLOVZYJBlWH8vrVmvIx/afww1vB33Wh3L/wCfow/X+Xqlle2+o2UV3ayCSCVdyMO4pV6Hs7Si7xezHh8R7S8ZK0luv66Fiiiiuc6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAa8kcQBkdUB7scUoIYAggg9CK8X+P88oj0GAMyws8rMR0z8o/kTXq9rc2GneHoJ/tES2MFupEpYbdgXrmhP3XIGrNLueLeOD/wAJH8dNM0sfNHbvDEw9h+8b9Ca97HAxXgnwxR/FHxZ1XxGVJgiMkqsexc7VH/fOfyr3uiKtTin6/eEtZv7gqlq2q2ui6bNf3kmyKMZ92PYD3NXeleTazczfEPxjHpFk7DSrNsySL0OPvN+PQfn610Yej7SXvaRWrObE13Sj7usnokLoGmXfxA8Qvr2roRpsLYhhPRsdFHsO57mvVwAqhVAAHAAqGztILC0itbaNY4YlCoq9AKnpV63tZaaJbIeHoeyjrrJ7sKKo3+taZpalr6+ggxztdxuP0HU1yOpfFbRbUlLKGe9fsQNin8Tz+lKnQq1PgjcqpiKVL45JHeUySWOGMySuqIOrMcAfjXmP/CS+O/EPGlaV9ihbpIUxx/vP1/AU6P4b63q0gm8Qa67HrsRi5/M8D8q2+qxh/Fml+LOf65Kf8KDf4L8TqdS8f+HNMyrX4uJB/Bbjf+vT9a5ib4najqUhh8P6HJK3Te4L/ovT866LTfh14c07DGz+1SD+K4bfn8On6V08NvDbRiOCJI0HRUUACjnw0Phi5eoezxVT4pKK8tfxZ5l/YvxB8Rc3+oCwgbqgfbx/up1/E1o6d8J9KhIfUbu4vX7jOxT+XP616BRSljatrQ91eWhUcDSved5PzdzN07w/pOkqBY6fBCf7yoNx+p6mtKiiuWUnJ3bOqMVFWirBRRRSKCiiigAooooAKKKKACiiigAooooAKKKKAKeqaZa6xp01jeRh4ZRgjuD2I9xXmWi6jefDzxG+i6oxfSp23RTdlz0Yf1H+T6zWH4r8OQeJdGktXCrcKC0Eh/hb/A9DXVh6yjenU+F/h5nJiaMpWqU/iX4+RtqyuoZSGUjII6EUteefDnxFMDL4a1TKXloSsW/qVHVfqP5fSvQ6yrUnSm4s1oVlWgpoKKKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDC8V+E9N8YaT9g1JWAVt8csZw8beorzgfAWMkRv4lujag/6oRDP88fpXslVL7VdP01N97eQW4xn944BP0HU0Rjd6IHKy1Zn+F/Cul+EdKFhpkRVCd0kjnLyN6k1t1w2pfFTQbPK2gmvXHTYu1fzPP6Vh3PjbxjqtvLNpulCytEUu07p0Uck7m4P4CuuODrS1kreuhxyx1COkXd+WpufErxI+laSmm2j4vL35Tt6rH0P59Pzql4d1Tw14H0MQz38U1/Lh7j7P8AvCW/u5HGB06+tcn4c8N6l4+vri+1G/lEUWFaZhuLH+6vpgfzFeh6b8NfDun4aS2e7kH8Vw24f98jj9K66ioUafsZt3626nHTeIr1PbwirbK/T5GFcfFK6vpTBoOiSzv2aQFj/wB8r/jUP9nfETxF/wAfV2NOt2/hDBOPovJ/E16Zb2lvaRCK2gjhQdFjUKB+VTVy/WYQ/hQS9dWdX1SpP+LUb8lojzyw+E9gjCTVL+4vJOpC/Ip/mf1rrtN8NaNpIH2LToImH8e3Lf8AfR5rVorKpiatT4pG9PC0afwxDGOlFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnHxG0KW1mh8U6ZmO6tmXztvcdm/ofauy8Oa1Fr+h2+oR4BdcSKP4XHUVoXFvFd20tvOgeKVSjqe4PBry/wpPL4N8bXXh27c/ZLp8wM3TP8ACfxHH1xXdH9/R5ftR29P+AcEv9nrqX2Z7+v/AAT1WiiiuE7wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKzLLxDo+pX8tjZajbz3UWTJFG+WXBwcj60AadFFUdT1nTdFhSbU72G0jdtqtK20E+lAF6io7e4hu7aO4t5FkhlUOjqchgehFSUAFFFFABRRRQAUVWvNQstPj8y8u4bdfWVwufzrk9S+KHh+xytu015IP+eS4X8z/ga1p0alT4FcyqV6dP45JHa0hIVSzEADqTXl58beL9eO3Q9EMMbfdlZN3/AI82F/SgeBPFWusH17XDGh58pWL4/DgCt/qnL/Fmo/i/wOb67z/wYOX4L72dlqXjXw9peRPqUTuP4IT5h/TgfjXKXXxVa5lMGh6PPcyH7pkBJ/75Xn9a19N+GPh6xw08Ut5IO878fkMD866u1sbSxiEVpbQwIOixoFH6Uc2GhsnJ+eiDlxdTeSivLVnmvkfEbxH/AKyUaZbt23CPj8Mt+dXLH4T2xfzdW1O4upDywT5QfqTkn9K9GopPG1ErQtFeSGsDTbvUbk/NmNpvhTQ9JwbPTYEcdJGXc35nmub+KWsGz0OHSrf/AF98+Cq9dgP9TgfnXe15XZL/AMJd8V5rh/ms9MPyDsdhwv5tlqrDNyqOrUd1HX/IWLShTVKmrOWn+Z3nhbRl0Hw7aWIA8xU3Skd3PJ/X+VbFFV72+tdOtHur24it7eMZaSRgqj8a5Jzcm5S6nZCCjFRj0LFFcra/Erwde3YtYdetzKTgB1ZAT/vMAP1rqgQRkHINSUFFYut+LdA8OFV1bU4LZ2GQhyzEeu1QTipNE8TaL4jieTSNRhugn3ghIZfqpwR+VC12B6GtRXAeN9Y1m58TaX4R0K7FjPextPPd4yyRjPC+/B/SsvzfEfw/8TaRBf67NrWk6pN9mb7TzJFIcYIJJ45oWvzB6HqdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/wDFPSGm0u31m2BFxZONzL12E8H8Dj869AqC9tIr+xntJ1zFMhRh7EYrWhV9lUUzHEUlVpuHco+G9XTXNAtL9SN0iDeB2ccMPzrVrzL4a3Mul61q3hq5bmJzJH9QdrY+vymvTarE0lTquK26ehOFqurSUnvs/VBRRRWB0BRXLX3xH8IadeNa3Ou26zKcEIGcA/VQRXQWOoWmp2iXdjcxXFvIMrJG2QaN9Q2LNFZ+r65peg2v2nVL6G1iJwDI3LH2HU/hWdo/jrwxr919l0zWIJpz0jIZGb6BgM/hQtdg2OhorlfiD4kufC/hd7uyRWvJpVt4Nw4V2zyfpg1x2qaN438K6K3iX/hLZ76e3AlubOYEwsvcKM8dfQfhSv1ew7dOp63RVHRtRTV9FstRRSq3MKShT2yM4q9VNWdmSndXCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKmqXq6bpF5fOcLbwPKf8AgIJ/pXjfwEsmuLzXNZlGXYrEGPcklm/9lruPi1qX9m/DnUsNh7jbbr77jz+gNeTeAficvgvw82nL4fmu2kmaZpln2A5AA42HsPWlB+9J+Vv6+Q5J8qXn/X4n0hXhvx2unvtc0HQ4TlyDJtHq7BV/kat/8L9b/oU5/wDwL/8Atdcvperv8RPjTpl/JaG2jRlbyWffsWNS3XA7j0701HmlFdLhfli35H0PYWqWOn21pGMJBEsaj2AxVikY7VLYJwM4HU15Dq/xZ1NpZIbGxjtNpIzMCzj8OAPyroo4epiG+Q5a+Jp4eK5z18nAyaxNS8X6DpQIutSg3j+CM72/IZx+Nebadpus+NcNfeKoAj8+QsuW/wC/fAFddpvwu0Czw9yJr2Qd5XwufoMfrmtpYejSdqsrvsl+rMY4mvWV6ULLu3+iM68+K8UsnkaNpU91KfumTj/x1ck/nVXd8RvEfQDTLdv+2WP5vXo9nptjp8fl2dpDAnpGgX+VWqn6xTh/DgvV6j+rVZ/xaj9Foeb2fwpWaTztZ1ae5kPLLHxn6k5J/Sur03wdoGlYNtpsO8dJJBvb8zW7RWdTFVqmkpG1PCUaesY6/eIAFGAAB7UtFFc50BRRRQAUUUUAZniHUhpHh6+v84aKIlP948L+pFcn8KNNNvoFxqMg/eXkpwT3VeP57qT4t3pg8N21opw1xcAkeqqMn9StdfoNiNN0CwswuDDAit/vY5/XNdnwYX/E/wAF/wAE4f4mL8oL8X/wDRrx74qebr3j3w14UeVkspyJZQpxuyxB/IKcfWvYajaCF5VlaJDIv3WKjI/GuO2qb6HffR2OA8X/AA38Mf8ACG3/ANk0q3tZ7W2eWKeJdr5UZ5PU5x3o+Fuvyz/DBby+dn+wCVC7HkogyP04/CqfxN8aExv4P0FDeaxfDyZBHz5SnqPqR+Qq8vh4+EPgzqGmlw06WMzzMvQuwOcfnj8KltqMpf1cdk5Rj/Vjmvhp4btfGk2p+LfEdul9LcXLJDHONyKB14PHcAemK2x8O7nRfiRY654bjt7XTCm28gDlc5yDtXGMdDj1Fcb8PNP8V+JvCcdhpGrnRdNtJHD3EakyTSE7jjBBAAI71uaTr3ifwN44s/DviXUTqdhqGBBdPksCTgHJ568EEnrWlrSSWnb7v1IbvFt/M7Hxn4PutcvLHWNGvxYa1YZEMrDKup6q3t1/M1l6b4L8Sap4istX8ZapbXI0877W1tFwgf8AvHgfyr0SipWg3qFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeW+KR/wjnxP03WF+WC72iQ9v7jfpg16kDkZrg/ivYi48LxXQXL204OfRWGD+u2uo8N3v8AaPhvTrsnLSQIWP8AtY5/Wuyt79CFTtp/kcND3MRUp9Hr9+5qVyPxN1C5034e6rcWjMkpRY9y9VDMAf0JrrqxvFcukw+F9QbXCBpxiKzDuQegHvnGPeuGfws9CHxI4n4feAPDN54Dsbm90u3u7i8i8yWaVdzAnsD2x7Vm/Bwyad4l8UaHFIz2NrNmPJyAQzL+oA/KsXw4vxCi0CUeEY5l0JtxtBeGMy7T3XIrq/g5Poy2OoWlulzFrSy7r9boguW5HHTgHNabzb8tv67EbRt57/13MbVbKLxZ8eW0vVwZbGzgDRwMflbCg/qWz+FR/F/wxpPhvT9M1rRLSLT7yO6CD7OuwNwSDgdwR+tWviG0M/j6yHhdbp/F0SjcYCojVMf8tM+x/I1ia7Jr8evaVP8AEuCV9JjkHlG0KeUH/wBsAZP+HSojtFLTX9S3u29dP0PW9c0CHxn4PWxvGaJ5o0lWRRzHIBkGuQm8FePNZtE0XW/EVodGBAkeBD50yjoDwP5n8a9OgkilgjkhZWiZQUK9CO1SVT3ZCbsiCztIbCygtLddkMCCNF9ABgVPRRSbuNKwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjXx/1Erp2j6Wh5mleZlH+yNo/9CNem+GtKj0rwxpliY13QW0aNx32jP65ryvx9o+qeJPi9pMC6bePp1uYY3nEDGLG7ex3Yx0OPwr2wcCiHwX7v8gn8SXZfmQyiCGF5XRAiKWY4HAFeHfBiJtY8e69r0i9FYg+jSPn+SmvV/HE11B4J1c2UE09y9u0cccKF2Jb5eAOe+a5L4JaDdaP4Wu5r60mtrm5uSdk0ZRtqgAcHnrmiHxN9l+YS+FLu/yPTaz9Q0PS9VXbfWEE/u6DI+h6itCimpOLumKUVJWaucBqPwo0icl9PubiyfsAd6j8+f1rM/sLx/4d507URfQL0jL54/3X6fga9SorqjjatrS95eepySwNK94e6/LQ8yh+Jup6ZIIfEGhyRHpvQFP0bg/ga6fTPH/hzU8Kt+LeQ/wXA2fr0/Wuimt4biMxzRJIh4KuoINcxqfw68OajlhZ/ZZD/HbnZj8On6U+fDT+KLi/In2eKp/DJSXnp+KOpjljmjEkTq6HoynIP406vMJPhxrmkSGbw/rrr32OxQn8Rwfypo8UeOfD526tpX2yFesgTPH+8nA/EUfVVP8AhTT/AAYfXJQ/jQa/Ffgeo0Vwum/FXQ7vC3kc9k/csN6j8Rz+lddY6tp2ppusb2CcYziNwSPqOorCpQqU/jjY6KeIpVfgkmXKKKKyNgooooA8v8e/8TXx/oOkD5kUqzj/AHm+b/x1RXqHQV5g3+l/HId1t0/lD/ia9PrsxWkKcPK/3nFhPenUn/et9wVwXxJ8W3+jx2Oh6Gu7WdVby4m/55rnG7689e2DXe15940+HF94p8S2utWfiBtNltoRHHshLMpyTkMGGOtcT1a7Hcupf8C+ALTwlbNczt9r1ecZuLp+Tk8kLnoP51ueKbR7/wAJ6taRjLy2kqqB3O04rgf+FZ+Mv+ik6l/3zJ/8crtPCOhaloGly2uq65PrEzylxPMDlVwBt5Y+h/OnJcyaFF8rTOS+BlxFJ4FkgUjzYbtxIvcZwR/n2rL+K+L/AMfeD9Ot/muhOHYDqFLrg/8AjpNaOpfC7U7HW7nVPB+vNpZujultyDsz14x29iK0vCHw5k0fWpNf13U31XWHGFlcHbGOnGepxxTTvKMn0/QLWTS6/qd8OgooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3i2y/tDwnqdvjJMDOB7r8w/UVhfCy9+0+EBATzbTPH+B+b/2auzmjE0MkR6OpU/iK82+EUhWPWLU8GOVGx9cj/2Wuyn72GmuzT/Q4qvu4qD7pr9T0yvMvjoJj4DjMefLF4nmY9MNj9cV6bVDWtHs9f0i40y/j32867WA6j0I9wa4ZK60O+LsyHwxJby+FtLe1KmA2sezb0xtFeY+Eytx8fPEM1mf9HWJxIV6FsqD+oNTQ/DHxho8T2GieMXh01idqMGBQH0wf5YrsfA/gWz8F2MypM11e3B3XFy4wWPoB2FaXvPn9fxItaHJ6fgcT4AdY/jL4sjuyPtTM/l7upXf2/DbW98a5bdPh3OkxXzHnjEQPXdnPH4ZqTxj8NTrmtR69o2pPperoBmVAcPjgE4IIOOM1kwfCzWtZ1O2ufGPiJ9Rt7ZspbIDhvqT09+KzSvGMX0/zLvaTl3O38ERzReB9FSfPmCzjznr90Vv01EWNFRAFVRgAdhTquTu2yIqySCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACggEYIzRRQBkal4X0TV8m906CRz1cLtb/voc1yN/wDCe03+bpOo3FpIOQr/ADAfQ8H+dei0VvTxNWn8MjnqYWjU+KJ5b9m+Ivhz/VTDUrde27zOP+BYb8qsWvxVa2lEGuaPPbSDqYwR/wCOtz+telVXurC0vojFd20M6HqsiBh+ta/Wac/4sF6rQx+q1IfwqjXk9UZOm+M/D+q4FvqUSuf4JjsP69fwrdBDAEEEHoRXG6l8MfD99loI5bOQ94W4/I5H5VgnwP4s0El9C1syxjnymYpn8DlTR7LDz+CdvX/MPbYmn8cL+a/yY7wx/pXxe1yZv+WSygfg6r/KvT68G0PxJf8AhvxXqV9e2Rubly6XSg7drb8scgEDkfSvR9M+Jvh6/wALNLJZyHtMuRn6jP64rfGYaq5KUVdJLYwwOKpKLjJ2bbep2VFQWt9aX0XmWlzDOn96Jww/Sp681prRnqJp6oKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMPh7/o3jfxFaD7odv/HXI/rXp9eY+CuPif4jA6b5v/RtdmH/AIVReX6nFif41J+b/I9OooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5rx34pTwj4WudSwGuD+7t0P8Uh6fgOT+FJuyuNK7sJ4p8eaD4RQDUbotcMMrbQjdIR647D61wT/H60Dlk8O3TQZ/1hnA/Tb/WqPwx8Cf8ACUSSeLvE4a8M8hMEU3IkOeXYdxngDpxXta2dssIhW3iEQG0IEGMemKdmt9xXT2OU8JfEvQPF8n2a1ke3vcZ+zTgAt/unof5+1djXhvxQ8Ey6HrWneIvCthMsxlzJFaRFgrjkMAo4B5zXtOn3D3em2tzJG0byxK7IwwVJGcEU1Zq4PR2POfCiiP4seIIpADvEzAH/AK6Kf5Guw1PwV4f1XJuNOiWQ/wDLSIbG/Mda4+D/AEP44zJ0Fwhx75iDfzFen124qcozjKLteKPPwlOEoThJXtJnmt38K5LWXz9D1ie3kHKrJ/8AFLjH5VX+2fEXw5/r4RqcC98eZn8Rhq9SoqVjZvSolL1RbwMFrTbj6P8AQ87sPixZ7/J1bTri0lHDFPmAPuDgj9a67TfE+iasB9j1KB2PRC21vyODVm/0fTtTj2XtlBOP9tASPpXI6l8KtFuSXspJ7KTsFbcv5Hn9aL4Wp0cX96/zFbF09mpr7n/kd3RXlv8AwjPjrw7zpOq/bIV6Rl//AGVuP1p8fxI1rSHEXiDQnXt5iKUz+eQfwo+puX8KSl+f3D+uxjpVi4/l96PT6K5XTPiJ4c1LC/bDbSH+C4Xb+vT9a6aGeG4jEkEqSxnoyMGB/EVzTpTg7TVjpp1YVFeDuSUUUVBoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5h4C/ffEHxHcL90u/P1kJ/pXpzMERmboBk15n8JVMs+t3jdZJEGf++if512UNKNV+n5nFiNa9KPm3+B6bRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4b8frySW+0TS1PylXlI9SSFH8j+de5V4d8fbGWK90XVkUmNQ0JPYMDuH55P5VLtzRvtcqOztvY9j0awi0rRbKwhUCO3hSMAewxXDeLPi3b+F/EE+k/2PcXjQhS0qSbRkjOOh9a7bQtVt9b0Oz1G1cPFPErAg9DjkH3B4q66RAF3VMAZLMBVzvzakQtynj7fH61UgN4cuRnpm4A/9lr1+1ma4tIZnjMbSIGKE52kjOK+fPGOsW3jn4q6Tplhtext50gDKOH+bLsPbjH4V9DgYAA7ULWHMOWkrHmHi3/iVfFTRNR6RzBFY+nJQ/oRXqFec/F20Y6Vp2oJw8E5TI7bhn+a13mm3a3+l2l2v3Z4VkH4gGuuv71GnP1X3HFh/dr1Iej+8tUUUVxnaFFFFABTJIo5kKSxq6nghhkGn0UAcvqfw/8ADmp5ZrFbeQ/x252foOP0rmZvhnqmmSGbQNckjbsshKH/AL6X/CvTqK6YYutBWvdeepy1MHRm78tn5aHl3/CQePvD3Go6d9ugX+MJu4+qf1FaenfFfR7ghL+3nspOhON6j8uf0rvutZeo+HNH1YH7bp8ErH+MphvzHNX7ejP+JC3mtPwM/q9en/DqX8nr+JLp+t6Xqqg2N/BOT/Crjd+XWr9ee6h8J9OdjJpl7cWcnUAneo/r+tZ/9m/EPw5zaXY1G3X+Etv4+jcj8DR9Xoz/AIc/k9A+sVofxafzWv4HqVFeaW3xSubKQQa9ossD92jBU/8AfLf411Om+OfD2qYEWoxxSH+Cf5D+Z4/Ws54WtDVx0+81p4yjU0UtfPQ6KikV1dQyMGU8gg5Bpa5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzPEV2LDw5qNyTgpbvj6kYH6kVyvwntDD4YmuWHNxcMw+gAH8was/FG9+y+DpIQcNczJHj2Hzf+yitjwdZf2f4R0yAjDeQHYehb5j+prsXu4V/wB5/kcT9/GL+6vzNyiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArL8Q+H7HxNo0+l6hHuhlHDD7yN2YH1FalFJq+jGnY8Mg8B/EXwVcyJ4X1JLmzZshNwGfqj/AC59xVx/DHxR8WAWmvarFYWDcSrGVBYemEHP4mvZ6KfrqL0PKvD3wnfw/wDEK31W3aA6Vaw4jDOTK8mzBZhjHUsevpXqtFFO+lgtrcwvGWmf2v4T1C2C5kEfmR+u5eR+eMfjWP8ADDU/t3hNbZ2zJZyGI567eq/zx+Fdr1ryzwk3/CMfEfUtEk+SC6J8nPTj5k/8dJH1rro/vKE6fVar9Thrfu8RCp0fuv8AQ9TooorjO4KKKKACiiigAooooAKKKKACiiigCG4tLa8jMdzBHMh6rIoIP51yupfDXw7f5aO3e0kP8Vu2B+R4/SuworSFWpT+B2M6lGnU+OKZ5e3gDxLojGTQdcZlHPlsxTP8waQeMvGWgHbrejG4iXrKqY/8eXK/pXqNIQCMEAj3ro+uc38WKl+D+9HL9SUP4MnH8V9zOK0z4o6Be4W5M1nIevmLuX8x/hXWWeo2Wox77O7hnX1jcNj6+lZupeENB1bJutNhLnrIg2N+Y5rk7z4UpFJ52jarPbSDlVk5A+hGCP1o5cLPZuL89UHNi6e6Ul5aM9Iory3f8RvDnUDU7df+2uf5NVuy+K8Mcnkazpc9rKOGKc/+OnBFJ4Ko1eDUl5Max1NO1ROL80ej0Vi6b4t0LVQBa6lAXP8AA52N+R6/hW1XNKEou0lY64zjNXi7hRRRUlBRRRQAUUUUAFFFFABRRTZJEijaSRgqICzMegAoA8x+IDtrvjPR/D0ZJRSGlA7bjk/koz+NenIixoqKAFUYAFeYeBlbxD471XxC6kxRkrET2LcD8lH616jXZi/c5aX8q/F7nDg/f5638z/BaIKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvN/ijpsts2n+I7P5Z7WRUdh25yp/PI/EV6RVPVtOh1fSrmwn/1c6FCfQ9j+Bwa2w9X2VRS6foYYml7Wk4denqJpGpRavpFrfw/cnjD49D3H4HIq7Xmfw51OfSNVvPCmonbJE7NBn1H3gPYj5h+NemU8RS9lUcVt09Aw1b2tNSe/X1CiiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACql7pdhqMfl3lnDOnpIgNW6KabTuhNJqzOH1L4W6FdkvaGayk7eW2Vz9D/Ssb/hEPGnh/5tF1j7TEvSItjP8AwFsr+teo0V0xxlVK0ndeepyywNFu8Vyvy0PL0+IXiLRWEev6GxUcGVVKZ/HlT+FdFpnxI8O6jhXuXtJD/DOuB+YyK6x40kUq6qynqCM1zup+BPDuqZaTT0ikP8cHyHP4cH8ar2mHn8cben+TI9liafwT5l5/5o37e6t7uIS208c0Z6NG4YfmKlrzO4+F97YSmfQdblhcfdWQlT/30v8AhUX9r/EHw7xe2Q1CBf4gu/j6r8350fVYT/hTT9dGH1ucP4tNrzWqPUaK8+0/4saZK3lalZ3FnIOCR86g+/Qj8q6/TvEGkasB9h1CCYnogbDf98nmsamHq0/iib08TRq/BJGlRRRWJuFcZ8S9b/svww1tG2J70+UuOu3+I/yH412RIAJJAA6k15TEW8ffEXzeW0rTiCPRgDx/30efoK6sJBOfPLaOr/Q48ZUah7OPxS0X6na+CNE/sPwvawOu2eUedN67m7fgMD8K6KjoKKwnNzk5PqdNOCpwUFsgoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA83+JWjz2lxaeKNOBW4tnUTFR2B+Vj/I/UV2uga1b6/o0GoW5GHGHTujDqDV+4giureSCdA8UilXVuhB6ivKdOmm+HPjN7C5Zjo96co56KOzfUdD7c+ld0P9opcn2o7ea7HBP/AGat7T7Mt/J9z1qikBDKGBBB5BFLXCd4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGdqGg6Vqq4vrCCb/aZBkfQ9RXI6j8KNKmJfTrm4spOwzvUfnz+td/RW1PEVafwyMKmGpVfjimeW/2J4/8ADvOn3/2+BeiF93H+63T8DUsPxO1HTZBDr+hyRN03oCn6N1/OvTazddvLDTtHuLvUUjeCNclXAO49gM9zW6xMajtUgm/LRnPLCypLmp1Gku+qOE8VfEjT73w1Jb6RJL9quf3bB02mNO/tz0/Oum8CaFHofhuFco1xP+9mdSDye2fYcVwPhTwZH4vmvdVvYzZ2UjkQR24CjOe3HQdK1pPh1r2juZdA1xx32OxQn8RwfyrpqwoRj7CMuV7u/wCV/I5aM68p/WJw5layt+dvM9Pory4eKvHHh87dX0n7XCvWRU7f7ycfmK19N+Kmh3eFvEmsn77hvUfiOf0rjlg6qV4q68tTtjjqLdpPlfnod1RVOx1bT9TTdZXsE464jcEj6jqKuVzNNOzOtNNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4r8NW/ibSGtZMJOnzQS/wBxv8D3rdoqoTlCSlHdEzhGcXGWzPN/Avia50+9bwtrmY7mFtlu7nr/ALGf5H/61ekVx3jnwd/b9st7Y4j1S3GUYHHmAfwk+voareCfGzai39jaxmHVIfkBcY83HY/7X86660FWj7anv1X6+hxUakqEvYVXp9l9/L1O6oooriO8KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikd1jRndgqqMlicACgBssscETyyuqRoCzMxwAB3rye9uLz4l+JhZWjPFoto2Xf1H976nt6VN4j8QX3jbVP+Ee8Pg/Y8/vp+gcDufRR+tegeH9BtfDulR2NqvTmSQjl27k13xX1WPPL43t5eZ50n9bnyR+Bbvv5ehesrODT7KG0toxHDEoVFHYCp687+MuuT6N4KC2k7wXFzcLGrxttYAZY4I+g/OuI0f4e+OtY0e01FPFEkSXMSyqjzyZAIyM1wXcm2ejyqKSPeyARgjIrH1LwtomrZN5p0DuerhdrfmOa8p/4VX48/6G0/8Af+SvW/D2nXGk+H7Kxu7hri4hiCyzMSd7dzk+9XGTjrF2ZM4RlpJXRxl98KLYP5uk6lPaSDkK/wAwH0Iwap+R8RfDn+rlGpW69s+Zx+OG/KvUqK6FjajVp2kvM5Hgaad6bcX5M82tPiqbeUQa5pE9tIPvGMEf+Otz+tdZpvjLQNVwLfUoVc/wSnYf16/hWpd6fZ38Rju7WGdD/DIgYfrXKal8MPD96S9uktnIe8Lcfkcj8qfNhp7pxflqhcuLp7NSXnozswQwBBBB6EVx2t+MW8M+KUtNRTdptzGrxyqOYj0P1GRn15rAPgnxboJL6HrRmjHIiZiufwOQa5Lxjq2uXr21nr9okV1b5KuFAZgcdcHGOO1b4fCQnPSSkn8n9xz4nG1IU7uLjJfNfee821zBeW6XFtKksLjKuhyCKlr578L+MdQ8M3AETGazY/vLdjwfcehr2nQfFek+IYgbO4AmxloJOHH4d/wrDE4KdB33Xc6MLjqddW2l2/yNuiiiuM7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4vxt4JXW1/tLTcQ6rFyCpx5uOgJ9fQ12lFaUqsqUuaJnVpQqx5J7HAeEfHhmmGjeIAbbUYzsEkg2hz6N6H+dd/XMeLPBdl4mgMgxBfoP3c6jr7N6iuT0bxhqnhG7GjeKIZWhXiK46kL9f4l/UfpXVKlCuuejo+q/yOONaeHfJX1j0l/mep0VBZ3ltf2yXNpMk0LjKuhyDU9cTTWjO9NNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVla54i03w9aGe/nCkj5Il5d/oKqMXJ2irsmUoxXNJ2Ro3FxDaW7z3EixRIMs7HAAry3W/EepeOtQOh+Ho3Wxz++nPG4ep9F9u9RM2vfEy/CgNY6JG3Xsf8A4pv0FelaNoljoNgtpYwhEH3m/ic+pPeu1RhhdZaz7dF6+ZwOU8XpHSHfq/TyK/hvw3ZeGtNW2tl3SNzLMR8zt/h7Vs0UVxTnKcnKT1O+EIwioxVkjwr48X4udc0XSPMCqqGVyTwN7YyfwWvTbLxj4Ss7G3to9esAkMaoB5o6AYryPWNPh8d/HWfTrgubOImOTYcELGnPP+9/Ou7/AOFH+Ef7l5/3/NRC/J66lztzW7HX2fi7w9qF3Ha2esWc9xIcJGkgJb6CtquJ0D4WeHPDesQ6pYpcfaYc7PMlLAZGOn4121VoIKKKKQBRRRQBna1PqUOnt/ZVqs923C72AVPc+v0ryuf4a+KdVvJLu/urUyyHLM8pJ/lXstFdNDFTor3Ejlr4SFd++3bseQxfB++YfvdVgQ/7MRb+opR8JdWtpRJa6rAHU5VgGUg/hXrtFa/2jiO/4GP9mYbt+LOX0GHxbp+231VrO+gHAlWQiUfX5cH/ADzXUUUVyTnzu9reh204ci5bt+oUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUdV0ew1qza1v7dJoz0z1U+oPY1eoppuLuhSipKz2PKbnw94j8CXbXugyveaeTl4CNxA/2l7/Uc10vh74i6TrO2C6P2G8PGyU/Kx9m/wAa7GuX8Q+BNI18NKYvs12ek8IwSfcdDXZ7enW0rrXuv1OH6vUo60Hp/K/07HUA5GR0orylbfxx4JGID/aWnJ0UAuAPp94fhW7o3xP0i/Ih1BHsLjod/KZ+vUfiKmeEnbmp+8vL/IuGNg3y1Fyvz/zO5oqG2u7a8iEtrPFNGf4o3DD9Kmrkatudad9UFFFFAwooooAKKKKACiiigAooqjqGs6bpSF769ggwM4d/mP0HU00nJ2QnJRV2y9UVxcQ2kDT3EqRRKMs7tgD8a891L4oieY2nh7Tpbuc8B3U4/BRyapw+D/FHiydLjxJfNb22ciBSN34KOBXXHCOK5qz5V+P3HHLGqT5aK5n+H3l/WviYJJzYeG7V7y6b5RLsJGf9lep/GotD+H11qV3/AGt4rneeZzuFuWz/AN9H+grtNF8OaXoEHl2FqiEj5pDy7fU1q0SxMYLloK3n1/4Ao4WVR8+Id/Lov8xkMMVvCsUMaxxoMKqjAAp9FFcZ3BUV1cJaWk1zIcJEjOx9gM1LTJoYrmCSCeNZIpFKujDIYHqCKTvbQa31PDvglbvqni3XtelGWxtDH+87Fj/KvdKo6Zoul6NHJHpmn21mkh3OsEYQMfU4q9VaWSXQXVt9QooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYeseEdE1wE3lknm/89Y/lf8x1rcoqozlB3i7EzhGatJXR5nc/DC9sJTPoGtSwuPurISp/76X/AAqIav8AEPQfkurAahEvR9m/I+q8/nXqNFdX1yUtKiUvU5HgYR1pScfR6fcebQfFlYXEeqaNPbv3Kn/2UgfzrZg+JvhmYDdczQ5/56RHj8s11M9nbXSFJ7eKVT1DqDWPP4K8N3BJfSLZSf7ibf5Uc+FlvFr0f+Yezxcdpp+q/wAgh8beG7jHl6vB/wACyv8AMVaHibQj01ey/wC/y/41iTfDLwxLnbaSRH1SZv6mqx+FPh49DdD/ALaUcuEf2pfcg5sYvsxfzZ0beKNBUZOr2f4Sg1Sm8e+GIM7tViJ9ERm/kKyl+FXh0Hn7SfrLVyH4b+GIcf6AXPq8rH+tHLhF1k/uDmxj6RXzZVuvin4dgU+UbmduwSPA/U1kP8UNSviV0fw/JKegZt0n6KB/Ou0tvCegWjBodJtAw6MYwT+ZrWSKOMAIiqB2AxR7XDR+GDfq/wDIPZYqXxTS9F/meYmH4ieIziRxptufQiPj8Mt+dXdP+FFmHEurahPeSHkqp2qf6/rXolFJ4ypa0LRXkCwNO96jcn5so6bo2naPCIrC0igXuVXk/U9TV6iiuVycndnZGKirJBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==
|
<image>Find $m \angle H$.
|
31
|
Geometry
|
Geometry3K
|
test
|
34
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACrAYcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjqd3fWlvvsNNa+l/wCeYmWP9WppXdhN2Vy9QSACScAd68n1/wAeeOLLcF8N/YIx/wAtGiabH/Ah8v6V5zq/i7X9cUpqOpzSxnrEuET8VXAP41208DOerat95w1cwpw0Sd/uPcdc+I/hzRN0Zu/tlwP+WVrh+fdvuj8810OlXVzfaZBdXdr9llmXeYC24oD0BOBzjGfTpXzLoBmTXbR7ewF/Mj70tiCRIRyOByfXHtXq/wDwm/jv/oTX/wC/MlXXwaglGG/mzOhjXNuU9uyR6fRXmH/Cb+O/+hNf/vzJR/wm/jv/AKE1/wDvzJXP9Vn3X3o6frdPs/uZ6fRXmH/Cb+O/+hNf/vzJR/wm/jv/AKE1/wDvzJR9Vn3X3oPrdPs/uZ6fRXmH/Cb+O/8AoTX/AO/MlH/Cb+O/+hNf/vzJR9Vn3X3oPrdPs/uZ6fRXmH/Cb+O/+hNf/vzJR/wm/jv/AKE1/wDvzJR9Vn3X3oPrdPs/uZ6fRXmH/Cb+O/8AoTX/AO/MlH/Cb+O/+hNf/vzJR9Vn3X3oPrdPs/uZ6fRXmH/Cb+O/+hNf/vzJR/wm/jv/AKE1/wDvzJR9Vn3X3oPrdPs/uZ6fRXmH/Cb+O/8AoTX/AO/MlH/Cb+O/+hNf/vzJR9Vn3X3oPrdPs/uZ6fRXmH/Cb+O/+hNf/vzJR/wm/jv/AKE1/wDvzJR9Vn3X3oPrdPs/uZ6fRXmH/Cb+O/8AoTX/AO/MlH/Cb+O/+hNf/vzJR9Vn3X3oPrdPs/uZ6fRXkll8TfFepSTx2XhqO4eAhZViSRihOeDg8dD+VXP+E38d/wDQmv8A9+ZKHhKi0dvvQLGU3qr/AHM9PorzD/hN/Hf/AEJr/wDfmSoJ/iJ4ytZIY5/CoiedtkSvHIC7eg9TR9Vn5fehrFQbsk/uZ6tRXmH/AAm/jv8A6E1/+/MlH/Cb+O/+hNf/AL8yUfVZ9196F9bp9n9zPT6K8w/4Tfx3/wBCa/8A35ko/wCE38d/9Ca//fmSj6rPuvvQfW6fZ/cz0+ivMP8AhN/Hf/Qmv/35ko/4Tfx3/wBCa/8A35ko+qz7r70H1un2f3M9PorzD/hN/Hf/AEJr/wDfmSj/AITfx3/0Jr/9+ZKPqs+6+9B9bp9n9zPT6K8w/wCE38d/9Ca//fmSj/hN/Hf/AEJr/wDfmSj6rPuvvQfW6fZ/cz0+ivMP+E38d/8AQmv/AN+ZKP8AhN/Hf/Qmv/35ko+qz7r70H1un2f3M9PorzD/AITfx3/0Jr/9+ZKP+E38d/8AQmv/AN+ZKPqs+6+9B9bp9n9zPT65bxD41h8LarDBqllMLK4XMV3D8wBH3lZe2OvGeDXM/wDCb+O/+hNf/vzJWH4u8QeJ9Z8PzQav4UNvbIRJ9oMbr5TA8HJ474/GtKWFfMlO1vVGdXFrkbhe/oz1rStd0rXIfN02+huVxkhG+Zfqp5H4itGvkuCea2mWaCV4pVOVeNirD6EV2ej/ABG8ZRusEEzaiR0jkg8wn8Vwx/OtamXNawf3mNLM4vSa+4+gaK4vQPE3izUNov8Awi8SHrL54ix/wB+f1rs1JKgkYJHI9K4JwcHZnowqKauvyFoooqCwooooAKyNY8LaJrqFdR06GVj/AMtANrj/AIEOa16KcZOLumKUVJWkrnk2p/CG4srpL7w3qZWWJxJHHccFSDkYcD+Y/GvTNJuLu50yCS/tTbXm3E0WQQGHBwRkEHqPY1dorWpXnUSU9bGVOhCk24aXCiiisTYKKKKACiiigAooooAKKKKACiiigAooooAK8+1/4rWmma5caRpWi6hrV1af8fX2NMrFjqCQCcjvxgdM16DXi9jqmo/C7xT4ihvfD99qFnql0bq1u7RNxbJJCsf+BfUHPBzQB6V4S8W6b4y0cajpzOoVtksMgAeJ/Qj9Qa3q85+FGjapax67rmqWRsH1m8+0R2bDBiXLHkds7sc88V6NQB5h8J/+Qz4r/wCvmP8A9Clr0+vMPhP/AMhnxX/18x/+hS16fXTi/wCM/l+SOXB/wV8/zYVyHjH/AJDvhX/sIf4V19ch4x/5DvhX/sIf4VhHc9bAfx16P/0lnX0UUVJxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXC+O9D17xZPBpFgI7bTYyJJ7iVsCRuygDk4HPpk+1d1RV05unLmW5nUpqpHlexwOh/CXQdM2yX5k1Gcf89fljB/3R/Umu5t7W3tIRDbQRQxDokaBQPwFS0U51Z1HeTuFOlCmrQVgooorM0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjPii2s2/gi6v8AQ72a1u7JhOxi6vGOGB+gO7/gNdnXO+N/EeneGPCt5e6kqyo6GGO3J/17MCNn0659BmgDzm8+LFzP8OtHt9Kcz+KdSUW21AC8bA7C5Hq3UfXPavTvCmnanpfh62g1nUZL/USN88rkEBj/AAr7Dp79e9eE/BK3tbL4hPbarZtHqDWnmWfmjBUkBuAe5Q5B9M+tfSFABRRRQB5R8ML60stZ8U/arqCDfcpt82QLnDS5xn616R/bmkf9BSy/8CE/xry/4daHpms6x4m/tGzjuPKuV2b8/LlpM/yFegf8IR4a/wCgPb/kf8a6sVb2r+X5IWXrDfV487lfXZLu/M0P7c0j/oKWX/gQn+Ncv4o1CyvPEHhdbW8t52W/BIilViBx6Gtj/hCPDX/QHt/yP+NS23hHQLO5jubfS4I5omDI4zlSO/WudNI9GlUwtKXPFybs+i6q3c2qKKKk88KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvONa8A6t4r+IFtqevXNm3h6x5trGJ3ZnPH3wVA5PJ5PAA969HooA858YeANV1Px3o/inQLiyguLTaLhbh2TzArcY2qc5Usp6cYr0aiigAooooA8w+E//ACGPFf8A18p/6FLXp9eYfCf/AJDHiv8A6+U/9Clr0+unF/xn8vyRy4P+Cvn+bCiiiuY6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMPhP/wAhjxX/ANfKf+hS16fXmHwn/wCQx4r/AOvlP/Qpa9Prpxf8Z/L8kcuD/gr5/mwooormOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzD4T/8AIY8V/wDXyn/oUten15h8J/8AkMeK/wDr5T/0KWvT66cX/Gfy/JHLg/4K+f5sKKKK5jqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorAtPF2mT65c6JcP8AZNRgk2CKY4Eo6qUPQ5BBx1qlFyvZbEynGNrvc4/4T/8AIY8V/wDXyn/oUten15T8NL610698XXV7cRwQJcIWkkbAHzS13/h/xDbeJLae7sopBaJKYo5ZBjzSByQOoHOOfeujFRbqOVtNPyRzYOcVSjG+uv5s16KKK5TrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArx/wCM2ibJ7LXIVwHH2eYj1GSh/LcPwFewVh+MdLTWPCWpWjLucws8f++vzL+orfDVPZ1VI58VS9pScT5ojWe6mWFN8kkzgBc5LMTgfjz+tfUPh/SY9C0Cy02PH7iIKxH8TdWP4kk14d8LNLXUvG0Eki7o7ONrgjtkYC/qwP4V9B115jUvJQRx5ZStF1H10CiiivNPUCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoIyMHpRRQB5v8MNB/srVvEjsuBFdfZIz7KST+YKV6RUMFrDbPO8S7TPJ5snu2AM/koqatKtR1J8zMqNNUociCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>Find $x$.
|
90
|
Geometry
|
Geometry3K
|
test
|
35
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHBAe0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5/xp4li8KeF7vU3IMqrsgQ/wAUh6D+v4Um7K40ruxYm8V6BbXxsZtXs0ulfYYmlG4N6Y9a2K+R9S0TUbXQdP8AFt47mXULt2Xd1OMEN+J3flX1fp1yt7plrdKcrNEsg/EA1VtNdxN66bFmiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeEeNbub4j/Eyz8L2Lk6fZORM69Mj/AFjfh90f/Xr0f4k+LF8J+E5543AvbjMNsO+4jlvwHP5V4/4L8P8AxE0mE6xoVjEPt8YbzZtjMy9f4uRnrSjrK72X5lPSOm7PQPjNpEMfw1hS2jCRWE8WxQPurgr/AFFdL8Nb7+0Ph5o0xOSsAiP1Qlf6V5j4mj+K2o+HL631i2t20/yy8+1YwQq/NkY57V1XwKvvtHgaW2J5trp1A9AQG/mTVR+19/6Ey+z936np9FFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8K8Radq/xE+KVvaTafewaJaPsEksDIhRTliCRjLHge2K9yiiSCFIo1CxooVVHQAU+o5p4reMyTypFGOrOwUD8TQtI8oPWVyO/theadc2rDImiaM/iCK8j+B1nqelXWt2V9YXdtGxR0aaFkUkEg4JHPau81H4ieEtLyLjW7ZmH8MJMhP8A3zkVzF78dfC9vkW0F9csPSMKp/En+lC0bfcHqrHp9FeNN8d5LjjT/C9zKex80t+gWmH4ueMJf+PfwXMfrBKf5CgD2iivFv8AhaPj/wD6Es4/69pv8aUfFzxjF/x8eC5h9IJR/OgD2iivGl+O0ttxqHhe5i9T5hXH4Fa1bL46+GJ8C5t762Y/7AYD8c/0oA9QorltO+I3hLVMCDW7ZWP8MxMZH/fWBXSwzw3MQlgljljPRo2DA/iKAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqG5ureyt3uLqaOGFBlpJGCqPxNeWeI/jNF9p/szwlZPqV6x2rLsJTP+yo5P6UAeqz3ENrC01xNHFEoyzyMFUfUmvPtf+M3hnSC0Vm8mpXA42wDCZ/3j/QGuWg+HfjXxrMt34u1h7W3JyLdTlgPQKPlX9a9D8P/AA58M+HFRrXTo5bhf+W843vn6np+FAHnp8X/ABN8Xnbomkf2dat0lKbePXc/81FPT4Qa9qpN14q8UyEKCzhGL4Hf5m4/SvaQAoAAAA7CvH/ij4uu9W1KPwP4cJlu7hgl08Z6f7Gew7sfw9aBnnumeDLHxZ44Ok+HDOdJtj+/vZTksoPLegz0A/GvoXTfBnhzSYY0tNHs0KKBvMQLHHcnqTUPgnwjaeDtAisIAHnb57ibHMj9/wAOwrpKBES20CfdhjX6KBUgAHQAUtFABSEA9QDS0UARtbwP96GNvqoNZN74R8O6jn7XotjMT3aFc1tUUAee6j8GPCF9kxWs1m5/iglPH4HIrmZ/g3rujyGfwz4nmjYfdSQlD/30v+Fe0UUAeJDxX8T/AAedus6V/adqnWUJu49dy8/iRXTaB8aPDWrFYr4y6ZcHgiYbkz/vD+or0YgEYIBB7GuX8QfDzw14kVzeadGk7f8ALeEbHz9R1/GgDpLe5gu4Fntpo5omGVeNgyn8RUteJXHw28Y+DJ2vPB+syXEI5Nu7bWI9CD8rfpWl4d+Moiuv7M8YWMmnXinaZghC/wDAl6j6jNAHrdFQ2l5bX9slzaTxzwOMrJGwYH8RU1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJporaF5p5FjiQFndzgKPUmgB9cN41+J+keEle2iIvdT6LbxnhD/tnt9Otch4l+I2seLdWPhzwLHIVbKy3gGCR3IP8K+/U10fgr4T6d4edNQ1RhqOqn5jI4ykZ/wBkHqfc0AchZ+EPGXxLnTUfE19JYaYx3R24GDj/AGU7fU816t4b8G6J4VthFplkiOR88zfNI/1at7pRQAUUVieK/E9l4S0GbU7xgdo2xRZ5lfso/wA9KAOd+J3jxfCWkC0smDaxdrtgUcmMdN5H8vf6VU+FfgNvD9i2s6qpfWb0bmL8mJTzj6nqa574c+GL3xdr8vjnxIpcM+60iccEjo2P7o6D869poAKKKKACiiigAooooAKKKKACiiigAooooAKw/EXhHRfFNqYdUskkYD5ZQMOn0Yc1uUUAeG33grxh8OJ31Lwrfy3unqd0lsRlse6dG+o5rtfBPxS0nxUEtLkix1ToYJDhXP8Ask/y6/Wu9rz3xt8KtM8Sl77TyNP1UfMJYxhZD/tAfzHNAHoVFeKeHfiDrfgrVl8O+OI5DCPlivD8xA7HP8S+/UV7Pb3EN3bx3FvKksMihkdDkMPUGgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpqWpWekadNf386w20K7ndj0/+vQAalqVno+nzX9/OsFtCu53Y/5ya8RvdU8R/GLVm0/Slew8PQviSRuje7f3m9F7U2abWvjR4k8iDzLPw1aP8zevv7uf0/n7Zo2jWOg6XDp2nQLDbxDAUd/cnuT60AUfC3hLSvCOmLZ6bCATzLM3LyH1JrdoooAKKKKAILy8t9Ps5ry7lWK3hQvI7HhQK8Mt4r34y+OTczCSLw3p7YC9Mj0/3m6n0H4Vb8d+IL34g+KIvBfh182aSf6VOv3WI6kn+6v6n8K9a8OeH7Lwxolvpdgm2KIfMx6u3dj7mgDRggitbeOCCNY4o1CoijAUDoBUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYvibwtpfizTGstSgDDrHKOHjPqpryC2vvEnwb1ZbS+D3/AIcmf5HHQfT+63t0Ne81S1XSrLW9Nm0/UIFmtplwyt/Meh96ADStVstb02HUNPnWa2mXKsv8j6GrteC/8Tr4L+JP+Wl54au3/L/Bx+v8vbdK1Wy1vTYdQ0+dZraZdysv8j6GgC7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEhieWR1SNAWZmOAAOpNeE67qV/8XvGCaFpLvFoFm+6WYDhuxc+56KPx9a1fih4ovtd1qDwJ4dYtPOwW7dT367CewA5b8q9C8G+ErLwfoUen2oDSn5p5iOZX7n6egoA0tG0ax0DS4dO0+BYbeJcADqT3J9Sav0UUAFFFFABXl/xW8cy6dEvhnRC0mr3uEfy+WjVuAB/tH9BXS+PvGlt4M0B7klXvpspawn+JvU+wrkPhV4LuXnfxj4gDS6leEvAsvVAf4z7nt6D60AdN8OPA0Xg7RAZgr6pcgNcy9ceiA+g/nXaUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFLVtJstb02bT9QgWa3mXaysP1Hoa8T0q9v8A4O+Mm0rUWebw9evujlxwo/vD3HQj/wCtXvNYXi3wtY+LtCl068UBj80MoHMT9iKANqGaO4gSaF1kikUMjqchgehFPrxn4aeJL7wx4hm8CeIX2tG5WzkY8Z67QfQjkV7NQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8RfGcXg7w286Mp1C4zHaxn+93Y+w/wrrXdY0Z3YKqjJYnAArwvTY2+K3xXlv5lL6FpeNit91gD8o/4EcsfYYoA6f4ReDJdMsJPEeqqzarqI3qZPvRxnnn3bqfwr0+kAAAAGAOgpaACiiigArP1rWbPQNIuNTv5RHbwLuPqx7AepNXpHSKNpJGCooLMzHAAHUmvCdav734v+Nk0XTXePQLFt0sw6MOhc+56KPx9aAJPCekXvxS8YS+KdcjI0i2fbbwH7rYPCD2HU+p/GvcwAoAAAA4AFVdM0210jTYLCyiWK3gQIiD0q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5r8W/Bb63paa5pildV08bwU+9Ig5x9R1H41rfDXxonjDw6rTMBqVqBHcp6ns/wBD/PNdoRkYNeFa7C3wt+KdvrFshXRdSJEqKOFBPzj8Dhh+VAHutFMilSeFJY2DRuoZWByCDT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKCcDJ6UAeafGXxTJpHh2PRrJj9u1QmPC9RH0b884/Oug+HnhRPCXhO3s2UfbJf3103q5HT8BgfhXnGiD/hYvxpuNVb95pek4MXodpwn5tl/wr3KgAooooAKKK4H4n+PF8J6SLOxYNrF4NsKjkxg8b8fy9/pQBzfxQ8XXesanH4G8OEy3U7hLt0PT/Yz2A6t+XrXf+CvCNp4O0CKwtwHnb57ibHMj9z9Owrm/hZ4Dbw9YNrGqLv1m9G5i/JiU87fqepr0egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5nx74Wj8W+FLqw2j7So822Y9pB0/Pp+NdNRQB5f8GPE8uoaJN4fviRfaWdgDdTHnAH4Hj8q9Qrw7xOp+Hvxjs9ejGzTdUP7/HT5iBJ+Rw1e4KwdQynIIyDQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyPxM1//hHvAmoXCPtuJ1+zQ+u5+Mj6Dcfwrrq8W+MU8mv+L/D3hK3Y/O4klx2LttBP0UMfxoA6f4N6B/Y3gWG5kTFxqLfaHJHO08IPy5/GvQqjt4I7W2it4lCxxIEVR2AGAKkoAKKKgvby30+ymvLuVYreFC8jseABQBleLPE9l4S0GbU7xgSo2xRZ5lfsorzL4ceGL3xZr0njrxIDJvfdaROOCR0bH90dB+dZ1rFe/GXxybqdZIvDmnthU6ZHp/vN1PoPwr3aCCK2gjggjWOKNQqIowFA6AUASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfxd8PjXPAl1JGm64sT9pj45wPvD/vnJ/CrHws1/wDt/wAB2LyPuuLUfZps9cr0J+q4NdjLEk8LxSKGjdSrKehB4Irxf4TyP4b8f+IPCc7EKWLxZ7lDjI+qkH8KAPa6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxPwn/AMVR8edY1c/NBp4dY27ZGIl/MbjXsGrXw0zRr6/bpbW8kx/4CpP9K8s+Adi39jaxqsmS9zdCPcepCjOfzc0Aev0UUUAFeH+OtfvfiH4pi8GeHXzZRyZup1+6xHUk/wB1f1P4Vv8AxW8czWEaeGNDLSave4R/L5aNW4AH+0f0Fbvw58DQ+DdDHmhX1O5Ae5l9D2UH0FAG/wCHdAsvDOiW+l2CbYol5Y9Xbux9zWrRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4n45H/CM/GzQtcX5YbzYsjds/wCrb/x0qa9sryX496eZfDWm6kg+e1uimR1AcZz+aCgD1oHIzRWdoF+NV8Padfj/AJebaOX81BrRoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOP+KV79h+G2syA4Z4liHvvYKf0Jqr8H7L7H8NdNJGGnMkzfi5x+gFZ/xyuPI+Hoj/AOe95HH+jN/7LXV+B7f7L4E0KHGCLGEn6lQT+poA365Px/41t/BmgtcEq99MClrCe7f3j7CtzW9ZsvD+kXGp38gS3gXJ9WPYD1Jrxvwlo998UfGEvirXYyNJtn228B+62Dwo9h1PqfxoA2/hV4KuDM/jHxAGl1O8JeAS9UB/jPue3oK9ZpAAoAAAA4AFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcX8V7L7b8NtWUDLRKkq/wDAXGf0zXaVjeLrf7V4N1qHGS1jNj67CR+tAGF8Jb37b8NtKJOWiV4j7bWIH6Yrtq8v+BFx5vga4iJ/1F66fmqt/WvUKACisnxNq/8AYPhnUdUAUtbQs6BuhbsPzxXj2nfFH4g6vbfadP0KK5g3Fd8cRIyO3WlfWw7aXPd6K8Rk+JPxGsUM114YUxLy37h+B+Brtvh/8RrXxvHNC1v9lv4AGeLOQy+oqkr7Ceh3FFFFIAooooAKKKKACiiigAooooAKKKKAGSSxxAGSRUB7scVH9stf+fmH/v4K8b+POoytcaJpFu7CRy0rBTgnJCr/AFqSP4Es0alvEdyGIBI29D+dJaq42raHsH2y1/5+Yf8Av4KmVldQyMGU9CDkGvG/+FEH/oZLr/vn/wCvXq2i6YmjaJZaajmRbaFY97dWwOv41XQXU81+P0mPCOnR/wB6+Dfkjf416Po2y08N2HmMqJFaR7mY4AAQc15n+0B/yLWlH/p7P/oBqh478XXetJp/gfw2TLczxxpduh9h8mewHVj+FIZU1m+vfjB42TR9Nd4/D9i26WUdGHQv9T0Uf/Xr27TdOtdI06Cwsolit4ECIg7AVj+C/CVp4O0CLT7cBpj89xNjmR+5+nYV0VAgooooAKKKKACiiigAooooAKKKKACimNLGn3pFH1NRNfWifeuoB9ZBQBYoqm2r6Yn3tRtB9Z1/xqJvEGip97V7AfW5T/GgDRorHfxX4eT72t6f+Fwp/rUD+N/DCfe1yy/CUGgDformX+IXhJPva9afgSf6VA/xO8GJ97X7f8Fc/wBKAOtori3+LHgtemtI30jb/CoH+MHgxf8AmIu30iNAHd0V56/xp8HL/wAvNy30h/8Ar1A/xx8IL0+3t9IB/wDFUAek0V5e/wAd/C4+7b37fWMD+tV3+Pfh8fd0+9b64FAHrFFeQt8ftIH3NHu2/wC2gH9KjPx7t2/1Xhu7f/tsP/iaAPYqK8bPxyuX/wBV4Uuj/wACJ/8AZaafjRrb/wCq8IXB/wCAuf6UAezUV4ufi94tf/VeDJj9YZaT/haPj6T/AFfg0D6wy/40Ae00V4t/wsD4ly/6vwoq/wDbJv6mj/hL/ixL/q/Dqr/2yH9TQB7TRXi39u/GSX7mjIg/65x/40fbvjRL/wAu0Kf9soqAPaaqapH5ukXsf9+B1/NTXkPl/GaXrLCn/fA/pUc+k/F+S3lMupQrGEJYeaBxjntQBf8AgFJ/xINXi/u3gb81H+FevV458AAf7J1nPX7Sv/oNex0Azzf43al9i8BG2DYa8uEjx6gfMf5Ctf4W6b/Znw70qMrh5YzO3/Azn+RFef8Ax1uXv9d0LQoTl2BbH+07BR/KrcXwd8SRwokfjN0RVAVRG+APT71KGzfd/kOe6Xb9T12+vbTT7KW5vZo4bdFJdpDgYrw/4PW7X/xF1rV7SIpp4WQLxgfO4Kj8hVXxX8KPFFjpM182tnVIrdS8kTblO0cnAJOa9B+D+tadqvhLybKxisprV9k8cfRjjhvXmnDdy7L8xS+FLv8AoehUUUUAFFFFABRRRQAUUUUAFFFFABRRSMwRSzHAAyTRsB87+PtZspfjZbyX8hFjp0kKSEDPC/ORj6nFelf8Ll8G/wDP5N/35Nec/DzR7Lxz8RNe1DVLZLm0G+XY4yNzv8v6A16z/wAKz8Hf9AK1/wC+aIpqCT9fvHK3O/LQZonxK8N+IdVi03TriaS5lyVUxEDgZPP4V19YGleCvDuh3wvdN0qC3uApUSIvIB61v09BHlPx8j3eDLCX+7fqv5o/+FeSeDfHEngy4uLuHTLe6vZhjzrgtlV9Bg969t+Nlt5/w4nkxnyLiKT6c7f/AGarHhHw/oXiX4eaG+o6Za3B+xpGWaMZyo29fXikM8/t/jf4ov3CWmjaeznooZsn8C1aY8d/E+YZj8MKAen7o/1NbWqfA7w7dMZNOnurCTqNj7lz+P8ASsI/D/4ieGTu0HxD9qhXnymcrn/gJyDQA/8A4Sj4uS/6vQFX/tkn9TR/bHxmk6aWkf1ii/xpq/Enx74dYR+IfDbTov3pUjKn81ytdBpPxv8ADF9tS9W4sJD18xdyj8R/hQBg/aPjRL1jhT/gEYo+yfGWXrdQp/wJR/SvVdN8R6LrCqdP1O1uN3RVkG78utalAjxb+wfjFL11iFP+2+P/AGWj/hEfi3J9/wASqn+7dN/hXtNFAHi3/CA/E6X/AFvi1h/28MaP+FY+PJf9b4vb/vtz/WvaaKAPFv8AhUHiuX/W+MW/75c/+zUf8KS1l/8AXeLpG+iN/wDFV7TRQB4yvwLuT/rPE9wfop/xqVfgREf9Z4ivT9AK9hooA8jX4C6Yf9Zruon6bf8ACpF+AmgD7+p6g/1K/wCFesUUAeXJ8CfDK/euL1vq4FTp8D/CS/eW7b6zEV6VRQB54nwV8GL960uW+ty/+NTp8HfBaf8AMNkP1nY/1rvKKAOKT4T+DE/5hCH/AHnJqdPhj4OT/mB2x+ozXXUUAcwnw78IJ08PWB+sQNTp4H8LR/d0GwH0hFdBRQBjp4T8Px/c0ayH0hFTpoGkR/d0y0H0iFaNFAFVdMsE+7ZW4/7ZD/CniytR0toR/wBsxU9FAEQtoB0hjH/ABTxFGOiKPwp1FAAAB0FFFFABRRRQAUUUUAFUdak8nQtQl/uW0jfkpq9WB44ufsngXXJc4/0KVQfdlK/1oA4P4BR/8Uzqsv8Aevtv5Ip/rXrdea/A628n4f8Am4/191I/1xhf/Za9KoA8C1W5g1r9oOIXE0aW1lKqlpGCqPLXPU/7Ve3f25pH/QUsf/AhP8a881H4HaTqWp3N/NrGoia4laV8BOpOfSq3/Cg9F/6DOpf+Of4Uo3UEmOVnJs3PHnxE0LSPD97bwX0N3fTwtFHFCwfBYYySOMDNZHwM0K607w7eajcxtH9vkBiVhglFHX8STWno3wa8LaTcLPLFNfSIcj7Q2Vz9Bwa9BREjRURQqKMBQMACqWl31YnrZdh1FFFIAooooAKKKKACiiigAooooAKwfG2o/wBk+CtYvA21ktXCn/aYbR+pFb1NkjSVCkiK6HqrDINKSumhxdmmfM/w2+Ien+B7W/W40+a5mupFO9HC4VQcDkepNdz/AMNAaX/0Bbr/AL+r/hXrH9nWP/Pnb/8Afpf8KP7Osf8Anzt/+/S/4VTdxKyOU8DfES38cXF5HbadNbLaqrM8jhgSScDgexrtKiit4LfPkwxx567FAz+VS0OwHMfESy+3/D3XIMZItWlA/wBz5/8A2WsP4KXv2v4c28Ocm1nlhPt82/8Ak1d9c26XdpNbSjMcqNGw9QRg1498C7h7K78RaBOcSW8wkC+4JRv5LSA9mooooARkV1KuoZT2IzXP6t4G8Na1uN7pFs7n/loqbW/MV0NFAHk2pfArSnYy6PqV3YydlLb1H9f1rM/4Rj4p+FudK1YajAn3Yy+c/wDAW4/WvbKKAPFovi74n0NvL8S+GJAq8NLGpT9eVrqNJ+MnhLUtqzXMtlIeonTjP1Ga76WGKddssaSL6MoIrltW+G3hPWdxuNIhSRuskP7tvzFAHQWOradqaB7G+t7gEZ/dSBj+VXK8fvvgZHA5m0HXbm0kByFk5A/EYNU/sXxc8Lf6i4Gq269iwkOPo3I/CgD2yivGrb416jpsgh8SeG5rds4Lxgp+jdfwrr9J+K/hHVtqjUfs0h/guVKn8+lAHbUVBbXlrex+Za3MM6f3onDD9KnoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgvjJe/Y/hvfJnBuZI4R/wB9bv5Ka72vHPjxdvcQ6FocJzLczmQr78Kv6s1AHbfDKy+wfDnRYsYLwed/32S39a62q9hapY6dbWkYwkMSxqPYDFWKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxOM/8Ip+0Q6n5LbVlOD6+YM/+jFxXtleP/HPTZbeLRvEtoCs9lP5bOO3O5D+BB/OgD2CiqOjanDrOi2WpQHMdzCso9sjOPwq9QAUUUUAFFFFABRRRQAUUUUAQXNla3kZS5t4plIwQ6A1yGrfCfwjq25jpotpD/HbMU5+g4NdtRQB4zc/BTUdNk8/w54kngZeVSXI/Uf4VD9u+LfhX/j4gXVbdOrcSZ/Hhq9sooA8fsfjnHbyCDxBoVzZyfxFAf8A0Fuf1rtdJ+JPhPWdot9XhjkP/LOf92R+fH61vX2kadqUZjvbG3uFPUSRg5ri9W+DXhLUtzQ20ljIf4rd8Af8BPFAHfRTRTxiSGRJEPRkYEH8RT68Wl+EfijRJDN4a8TyDH3UkYofzHH6Uz/hKPin4X41TSRqMC/xiPdkfVeaAPbKK8n03466S8gh1jTLuxlHDEDcAfpwRXb6V458M6yB9i1i2Zj/AAO+xvyOKAOhopFYMoZSCD0I70tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4nqZ/4Sr9oS0th89tpQXd6DYNx/8AH2Ar2HVNQh0rSrvUJziK2iaVvoBnFeT/AAQsJb+71zxTdjMt1MYkc98nc5/Mr+VAHsdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVi+LdDXxH4V1HSmALTwnyyezjlT+YFbVFAHlHwO11p9CvPD10St1p0pKo3XYx5H4Nn8xXq9eHeJQfh58ZbTXEGzTNUP77HQbiBJ+Rw/417grK6hlIKkZBHegBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDL1Lw3ourxlL/TLW4B/vxjNcRqvwR8M3pL2TXNhL1BifIz9D0r0uigDxRvht488OMX8PeJDNGOfLZymfbByDQvxA+InhshNe8PG6jHWRYznHrlePzr2ukZQwIYAg9QaAPMdK+OPhy8Ij1CC5sJOh3Deo+pH+FdxpnirQdYUGw1W1mz0USAN+R5qHVfBvh3Wgft+k2sjH+PYAw/EVw+p/AvRJmMulX13YSfwgNuX9eaAPVaK8T/4Q34m+F+dG1sX0CdI2fr/wFsj9adH8VfGGgN5fiTwy7Kv3pUQofzGVoA9qorzrSfjT4U1HatzLNYyHr5yZUfiP8K7bT9b0vVUDWGoW1wD0EcgJ/LrQBfooooAKKKKACiiigAoopCQoJJAA5JNAHl3xv182XhqDRLck3WpSAFV6+Wpz+rYH4Guz8FaEPDfhDTtM2gSRxBpcd3blv1JryzSP+Li/GmfUm/eaXpODF6HacJ+bZb8K9yoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5H4keFF8WeEri2jUG9gzNbH/AGgPu/iOPyrE+Dfittd8MHTLpib3TMRknq0Z+6fwwR+Fek14Vrccnws+KkWsQIw0TUyfNVRwoJ+ZfqDhh7cUAe60VHBPFdW8dxBIskUih0dTkMDyDUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2SOOVdsiK6+jDIp1FAHMat8PPC2tbjd6RAJG6yRDY35iuJ1D4F2iOZdD1m6spOoV/mA/EYNeu0UAeJ/2R8WfC3NlfDVLdeiFg/H0bp+dNtPjnf6dcm08Q6GFlQ4YwttI98HNe3Vm6joGkatGY7/Tba4U/34waAOX0j4ueEtWKp9te1lbgJcIRk+gIzXbxSpNEskbBkYZDDuK861b4J+F78l7QXFhIecwvkD8DxXOP8MPG3h5jJ4c8StIo5EbuU/DuDQB7XRXiY8c/ErwyQut6D9thXjzFj7euV/rW1pfxz0C5YR6laXVhL0ORvAPv0xQB6lXnnxg8WHw74UNnbuVvdRzEhH8Kfxn8iB+NdNp/jPw5qcBmtNZtHVV3HMgUgfQ815NYB/it8VWvnVm0LSyNgYcMAflH1Y8n2oA9C+GPhMeFfCUKSqBfXWJ7g9wSOF/Af1rtKAAAAOAKpalq+naRB52o3kNtH6yOBn6DvQBdork4/iZ4Nlm8pNettxOBkMB+eK6e3uYLuBZ7aZJonGVeNgwP4igCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwvF/hi18W+HbjS7kAMw3QyY5jkHQ/wCe1btFAHj3wn8T3WlajceBtdJjurZ2FqXPp1T+o9q9hrzD4reCLjUki8TaHuTV7EBmEfDSKvII/wBofqK2fhx48h8ZaPsnKx6rbALcRdN3+2B6H9DQB21FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhAIwQCD2NY2qeEdA1lSL/SbWYn+IxgEfjW1XG/EPxzb+DNFLIVk1K4BW2h9P9o+w/WgDx34h+FND0/xVZ6D4WinbUZjiWMSFlQt0H9T6Cvc/BfhW28IeHINOhAaXG+eXHMjnqf6CuM+FXgm6tnl8V69ufVb3LRiT70atyWPuf0FeqUAYHjHxRb+EfDk+pzgM4+SGPP33PQf1ryLwt4K1X4m3T+IvE95Mtk7Hyo1OC4/2fRR0qx8a7qbVvF2ieHImIU7SQP78jbR+g/WvatNsYdM022sbdAkMEaxqo9AKIq6cn6Icna0V8zhrr4L+D57QxRWs8MmMLKsxJB9eetcP4QvdS+HPxKPhW9uGm0+6cImTxlvuMPT0Ne91kX/AIX0XU9Th1K906Ca8h2+XMy/MuDkfkaE7Sv06iesWjXooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxT4geFr7wZr6eNvDClIw+67gQcLnqcf3T39K9rpskaTRNFKiujjDKwyCKAMHwh4u0/xho6Xtk4WVQBPAT80Teh9vQ10FeG+KvCuqfDXXP+Eq8K7jpxbNzbDkID1BHdf5V6l4R8X6d4w0hL2ycLKBiaBj80beh9vegDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKwvFfizTvCOkPfX8g3YxFCD80reg/xoAPFfivTvCOjvf38g3ciKEH5pW9B/jXl3gXw1f+PfEb+M/EqFrYPm1gYfK2OmB/dH6mofDXhrVvijr3/CTeJtyaUjf6PbdA4HQAf3fU969xhhjt4UhhRY40AVVUYAFAx4AAwOlFFFAjwT4iMLH436PdXHEJa2bcemA2D+or3sHIBFeefFTwHL4u0yG708D+07POwE48xeu3Pr6Vx2j/FzXPDdomm+ItBuZ5oBsEvKMwHrkYP1pRfu8r7v8RyV3zLt+R7jLKkMTyysEjRSzMTwAOprz/wZ8SLnxj4ovbC305EsLYM32jcckZwv4n+lcRq/jDxh8SE/sfRNIlsrKXiVzkZH+0x4x9K9R8B+DLbwXoQtEYSXUp33E2PvN6D2FVFdWJ7WW51NFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBskaTRNFKiujjDKwyCK8W8U/D/VvBmqN4m8FSSCNTums152jvgfxL7V7XRQBxPgT4j6d4xtxBJttdVQfvLZj971K+o9q7avMPG/wqXUrs634alFhqyHeVQ7Vkb146Gs3wz8Vr3SL4aF44tpLa5Q7RdFcZ/3h3+ooA9hoqO3uIbuBJ7eVJYnGVdDkEfWpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACio5p4raF5p5EjiQZZ3OAB7mvJPFHxYudQvTofgm3e7u3O03SrkD/dH9TQB1njr4iab4NtTHlbnUnH7q2U9PdvQVwvhrwJrHjvVF8S+NJJBbsd0NoeNw7DH8K+3etvwV8KjaXo13xTN9v1RzvEbncsbepz1NepAADA6UAMhhjt4UhhRY40AVVUYAFPoooAKKKKACopLaCY5lhjc/7Sg1LRQA2OOOJdsaKg9FGKdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4m8I6P4ssTb6nbKzAfu5l4dD6g1u0UAeFyaH46+F0zT6PM2qaMDlocFsD3XqPqK7Xwn8WdC8Rlba6f+zr/AKGKY4Vj7N/jXfkZGDXD+LPhboHifdOsX2G+PIngGMn3HQ0AdwCCAQcg96K8NOn/ABK+HZ3Wcx1jTE/g5fA+h5H4V0Wg/GzRL1hb6zBLplyOGLAlAf5igD1CiqlhqthqkIlsLyC4QjOY3B//AFVboAKKKKACiiigAooooAKKKKACiiigAoqrfanY6ZCZb67ht0AzmVwted698a9BsC0GkRS6ncnhdgwmfr1NAHpxOBk9K4PxZ8VtB8Nb7eGT7ffjgQwHIB92rifsvxK+IpzcOdH0t/4eUyPp1P412/hP4VaD4aK3Esf2+/HJnnGQD7DtQBwqaV47+KUqy6nI2laKTkR4K5HsvU/U16r4X8G6P4SshBptuBIR+8nfl3Pua6AAAYAwBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz+ueCPDviJCNQ0yFpD/AMtUG1x+IroKKAPHL74J3FjKbnwzr09rIDlY5CfyyP61W+3/ABb8LcXFsuqW6dWwJM/j1r2yigDxy2+OUlqwj1zw5c2zdCyZUD8GFdDZfGfwfd4D3U9ue/mxYA/EV3VxYWd2pW5tYZQeu9Aa5+9+HXhK/wAmbRLUMerIu0/pQA+2+IPhO7x5Ou2hz6sR/MVox+JNDl+5q9if+26j+tcdc/BTwfNkpb3MJP8AdnOPyrPk+A3h1vuXt6n0INAHo39t6T/0FLL/AMCE/wAajk8R6JF9/V7Ef9vCn+tecf8AChNF/wCgvf8A5LUsfwG8Or9++vZPqQKAOxufiB4TtM+drtoMejE/yFYV78ZvB9pkJdz3B7eTESD+dR23wT8Hw4MkFzMR/enP8q3LL4ceErDBi0S2Zh0aRdx/WgDhrn45tcsY9E8O3Ny/Yvkg/gozVX+0/i14p4tbRdLt36MQI8fiea9jttPs7NQttawwgdNiAVZoA8bsvgpeajKLnxPr89y5OWjjJP6n+lehaF4F8OeHVH2DTIRIP+Wsg3ufxNdFRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z
|
<image>$m \widehat{AC}=160$ and $m \angle BEC=38$. What is $m \angle AEB$?
|
42
|
Geometry
|
Geometry3K
|
test
|
36
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFKAv0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMPxh4i/4RTwte639l+1fZtn7nzNm7c6p97Bx97PTtXFW/wAUPE91bRXUPw41GS3lQSJJHcMwZCMgj91zxWz8X/8Aklus/wDbD/0fHW54L/5EXw9/2DLb/wBFLQBneEPiDpfi6WezjinstTt8mWyuVw4AOCR64PXoR6V1teP+PYxoHxi8J63bjyjfSLbzkcBxuCMT6/LIPyFdx408WS+GoLG2sLMX2r6jN5FnbFtoY92J9Bkfn260AdRRXnujeNvEFp4utvDfi/S7O1nvUL2lzZsTG5H8JBJ9D36445zV/wAZ+M7zRNS07Q9E09L/AFvUMtFHI+1EUfxN09D3HQ0AdnRXnen+N/Eel+KNO0PxjpNlbHUsra3VlIShcfwkEk9SB17j149EoAw/GHiL/hFPC17rf2X7V9m2fufM2btzqn3sHH3s9O1ZHgHx8PG6XwfTfsE1r5bGMz+ZuRwSrZ2j0qL4v/8AJLdZ/wC2H/o+OuQ8Ej+wfiBoAHywa94ctj7eakS/riP/AMeoA9c1XUI9J0i81GYZjtYHmYZxkKCcfpXEeBvie/jLxBNpUmifYGjtPtQk+1eZkZTAxsHUODnNSfGHUHtPAM1pBzcajPHaRqOpydxA+oUj8a5zwVpyaR8c9Z06PGy10WGEY77Y7YZ/SgD2GiuD8R+N9VXxQPC/hTTIb/VY4/NuZLhiIoFOCM4IzwR37gck8Hh3xvqreKP+EX8V6bDYapJF5ttJbsTFOvJOMk46Hv2PTuAavjrxbJ4M0SHUYtMfUGkuVg8pZNhGVZt2drf3cdO9dPXF/E7xfqHgvw3b6jp0NtLNLeLAVuFZl2lHbPysDnKjvR8TvF+oeC/DdvqOnQ20s0t4sBW4VmXaUds/KwOcqO9AHaUV5lq/jXx1Bp0mv2Phm0j0ONfN2XUh+0tF/fKhht45xgkV2WjeJ7HVvCEPiQnyLR7dp5Nxz5e3O8E98FSPwoA26K8nl+IvjQ6O3im38NWZ8OBiwR5T9oMYON/BwB/wE+vI5ru5/FenQeDD4oyxsfswuAP4jkcL9ckD60AbtFeVf8Jx8QP7EPib/hGtN/sTy/tAi85vP8nruznHTn7vvivRNA1m28Q6DZ6taAiG6jDhW6qehU+4II/CgDRooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4f4v/wDJLdZ/7Yf+j463PBf/ACIvh7/sGW3/AKKWsP4v/wDJLdZ/7Yf+j465jw78ZvDGl+GNK0+aLUWuLWzhgcRwKQWVApx83qKALPxVh+1+OPAFsp+Y3zFgOoXfDz+QP5VV8fX2qwfGfw2uk6el/eQ2LyQW0kgRXZvNDfMSAMBc9e1W/Ddvqfjv4gQ+L7/T5rDSNPiMenwzjDSscjdj8Sc9OFHODV34h213pHinw940tbSa7h05nhvI4V3OsTAjcB9Gf8cUDMi/sPH3iTxh4Y1HUfC0FjBpl2HkkjvIn+RmTcSN+eApOB61uePPC2uzeJdK8XeGRBNqenxmJraY4EqfN0JIH8bDqOvWs5fFV38QPGWhJ4ZbUrfR7CUz39zloklxgiM4OG6Ywf7x7A1e8S+JtZ8HeO1vtQW7ufCtzbbAIIgwt5eMk8Z7evRjjpQBFYeP9H1TW7HTvGHhw6VrMUgNq97AHRXJGDG5GVJIHPTgc16XXivizW4PivNpOi+GrG7kWK7E0+oSRbFgTBBAP45+qjGa9qoEcP8AF/8A5JbrP/bD/wBHx1yPiZTpngn4c+J0HOmLaCUj/nm8SE59vkx/wKuu+L//ACS3Wf8Ath/6Pjqrf6V/bXwHt7MLuk/sSCWMdyyRq4A+pXH40DK3jBhrvxW8I6GpV4LQNqMw6g45TP4p/wCPVW0L/k43xP8A9gxP/QbeqHwfkl8QeI9T8RXB3G3sLWwjJHcIu/H4pn/gVX9C/wCTjfE//YMT/wBBt6AHfDTM/wARfiBcTL+9S9WJT/s75R/JVo+JeYPiL8PriIfvXvWiY/7O+IH9Gaq97eSfDb4k6rq95aXEuga0iu9xAm7yZR/e/Et+Dd8GizvZfiT8StK1aytLiLQNFRnW4njK+dKf7v47fwX3FAE3x8/5EWx/7Ccf/oqWj4+f8iLY/wDYTj/9FS0fHz/kRbH/ALCcf/oqWj4+f8iLY/8AYTj/APRUtAHceMwB4E8QADAGmXPH/bJq8xtp3tv2X2dOpjdPwa7Kn9Ca9O8af8iL4h/7Blz/AOimrivBmjN4g+AMOlRkCS5guFjJOBvE0hXPtkCgDKsbvx/qHw7t9GtPB1rJYXOlrbxXH22MFkaLAfaW4JB3YPeum0nwbfX3wbj8K6sgs71oWQjcHCMJS6ElSQeing1zFl8R303wNH4XbTNTTxTBafYYrdICDuA2K4I54GDxzkfjXR6hp/jHTPhLax2F/dS+IbdRNOzN50sgJJZMtnJAbH/AcCgDEsvFHiDwRosWieMvC73ekQQi2+22gEsbRY2gOp4Ixxzt47V6T4avNFv9Btrjw+LddNYHykt4xGqHJLDaANpznIxXDSfGXQ59MaBtL1CXVHiKNpxts5cjBU/7Ofxx27VrfCbw7f8AhvwRHb6kjRXNxO9wYW6xAhQFPocLnHvQI7miiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqve39pp1ubi9uYreIfxyMFFNJt2Qm0ldlikZlRC7sFUDJJOABXnmrfFO3837JoFjJf3DHarspCk+yj5m/Ss5PCvjDxe6y+IL82VoTkQd8eyDgfVjmuqOEklzVXyrz3+445Y2LfLRXM/Lb7zotc+Jeh6TujtnOoXA42wH5Afd+n5ZrnPP8AHfjb/Ur/AGVpz/xcxgj6/ebj04NdnofgbQtC2vBaia4X/lvP87Z9R2H4Cujqvb0aX8KN33f+QvYVq38aVl2X+Z5XoHijUvBupf8ACP8AicObYYENx97YM8HP8SfqOnsPUkdZEV0YMjAFWU5BHqKyvEPhyx8Sac1reIAwyYpgPmib1H9R3rz3Sda1T4d6qNG1tWl0l2JinAJ2j+8vt6r1Hb3qUI4pc0NJ9V380RGcsI+SprDo+3k/8z1miore4hu7eO4t5VlhkUMjqchge9S1wbHop3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5fXPH+g6Juja5+1XA48m2wxB9z0H559quFOdR2grkVKsKa5puyOorK1jxJpGgx7tQvY4nxkRA7nb6KOfx6V5+fEHjbxmdmjWh06xY484Hbx/10PX/gIzWpo/wrsIJBc61cyahcE7mQEqmfc9W/T6V1fVqdP+NL5LV/8AAOT61Uq6UI6d3ov82ULr4ia1rtw1n4V0qTPTzpFDsB64+6v4k0+y+GupatcLe+KdVllc8+TG+5h7bjwPoB+Nej2tpbWNusFpBHBCvRI1CgfgKmpPF8itRjy+e7+8Fg+d3ry5vLZfcZuk6BpehxeXp1lFBxguBl2+rHk1pUUVySk5O8nc7YxUVaKsgooopDCs/WdFsde057K/i3xtypHDI3ZlPY1oUU4ycXdbilFSVpbHkVre6v8ADHVxZ3we70WdiUZeg56r6N6r3/WvVbG+tdSs47uzmSaCQZV0OQf8D7UzUtNtNXsJbK9hEsEgwVPb3HoR615ayax8L9Y3pvu9BuH5z/n5XA/Bsfl3e7i12n+f/BPP97BvvT/9J/4B67RVLStVs9a06K+sZRJDIPxU9wR2Iq7XC007M9BNSV1sFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWJ4q8U2Hg/RjqmopM8PmLEEgCl2Y56AkDsT17UAbdFFFABRWJ4Y8U2HiyyurvTkmWK2untWMoUbmUA5XBOVIYY/lVnXNe03w3pcmo6rcrBbIQMkZLMeiqBySaANKivPtM+MvhXUtQjtH+22JlOI5buEJG2ehyGOB7nFeg0AFFFFABRRRQAUUUUAFFFZ+ta3p3h7TJNS1S4+z2kZAaTYzYJOBwoJ6n0oA0KK4f/hb/AIE/6Dv/AJKT/wDxFddZalZ6hpcOpW04azmjEqSsCoKEZyc4I49aALVFec3Xxs8J2928Ma6hcxRtta5ggBiH4lgf0rttF1rT/EGlxajplytxbSdGHBB7gg8gj0NAGhRRRQAUUUUAFFFFABRRRQAUVR1PWdO0aDztRvIrdO288t9B1P4VwWofE+4v7j7F4Y0uW5mbgSSIT+IQdvcn8K3pYepV1itO/QwrYmlS0k9e3U9HnuIbWFpriaOKJRlnkYKo+pNcPrXxS0qyYwaXE+o3BO0FcrHn69T+A/GsmDwH4i8SzLdeKNVeOPORArBmH0A+VfwzXcaL4U0bQFBsbJBKBgzyfNIfxPT6DArbkw9L4nzPstvvMOfE1vgXIu73+44P+zPHPjXnUJ/7M09/+WZBQEf7g+Zv+BHFdRofw50LR9skkJvrkc+ZcAEA+y9B+OT7111FRPF1JLlj7q7Iung6cXzS96Xd6iABQAAABwAKWiiuU6wooooAKKKKACiiigAooooAKgu7O3v7SS1u4UmgkGHRxkEVPRQnbVCaTVmeR3+m6t8NNWOpaWWutHmOJY2zgDPCt6H0b/8AUfStD12x8Q6ct5YS7lPDoeGjb0Iq/NDFcQPDNGskUilXRhkMD1BFeVa1oGp+ANUOu6AzPppI86AknYP7req+h6j9T3qUcUuWWk+j7+vmee4ywj5oaw6rt5ryPWKKxfDfiax8TaeLm0bbKoAmgY/NGf6j0PetquKcJQlyyVmd8JxnFSi7phRRRUlBRRXnmpfGHRNM1S7sJdJ1x5LWZ4XeO2QqxViCQd/I44oA9DorzF/jn4diXdJpGvIvTLW0Y/8Aaldp4o8Uad4R0WTU9SdvLBCRxoMvK56Kv5H8qANqivLz8XryzWO71jwXqthpcjALeHLAA9CQVAH589q9Ks7u31CzhvLSVZredBJHIvRlIyDQBNRRXnWp/FU/2vdab4b8OX2vSWh23EkBKop6EAhWJ5GOgzg4zQB6LRXL+DPHOn+M7a4+zwy2t5asFuLSb7yE5wfccEdjkciuooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCG8Fw1jcLZsi3RjYQtJ90Pj5SfbOK+efipovjeDTbXU/FOrWF1bC4EMMFoWARmVmztKKOinkkmvoyvK/j5/yItj/wBhOP8A9FS0Aj1SuB8aaH8QNaubm20PWNNs9JlQJtcssxyBuBYIcc56Gu+ooA8r+Af/ACIt9/2E5P8A0VFTfHsa698W/CXhu5G+yVGvJIj91/vnB9eIsfifWnfAP/kRb7/sJyf+ioqi1dGX9pLQCRgNYMR7jy5x/Q0DOk+KmjWuqfDzUjLEnmWcX2iB8DMZXk4+oyPxqz4F1iS8+Gml6nKslxJHaEMI8F5DHlcDJ5Y7e561Z8f/APJPtf8A+vGX/wBBrM+ESMnwu0UMMHEx/AzORQI2PCfi7TfGOkPqWnLNHFHKYnS4VVdSADyASMYI70zw34y0/wAV3V/HpkF21vZyeW126KIpG9EO7J9eg7eorxq8t9W0fx9r3gXQbiOKHXJ0O/f/AKiMguwHp8pIx1IHuK900DQ7Lw3oltpVgm2CBcZPV27sfcnmgDSoqpqep2ejabPqGoTiC0gXdJIQTtGcdByeTXJf8Lf8Cf8AQd/8lJ//AIigB/hDxpd+IvFnifSLi2hii0q58qF487mAZlO7J6/LnjHWu1rwPwH448OaL438X6jqGo+TaahdNJayeRI3mKZHbOApI4Ydcda9NsPij4M1PUILG01pXuLhxHEjW8qBmPAGWUAZ+tAHX15x8aSZvB9lp6H95falDAo/Bjn8wK9Hrk/HPgk+NYNOgbU3so7S485vLj3M/GODuG09ecGgCeC08ESXn9nwwaBJdJ8pt1WFpB9V60/xfot3qXgi/wBG0RYIJ5ohDEp+RFQsNw4HA27h0rjPGvwr8N2Xg69vtHtGsr7T4GuY5kmcltg3EHJ9AeeoP5V1vw71yfxF4E0vULpy9yUMczHqzIxXJ9zgH8aALnhTQItA8I6fpDwwho7dVuVUZV5CPnPTnJz17Vw3wdjWDVfGUFmR/ZcepbbXb93AaQcf8BCVueO/BeveJ5vM0rxRPp0P2cRNZAMI5WyxLMyt3BA+6elV/hJqsNx4fu9G/s6CwvNJuDBcxQZ2s3I3HJJJJVgck/d/IA9BooooAKKKR3WNGd2CqoyWJwAKAForjNc+Jeh6TujtnOoXA42wH5Afd+n5ZrnPP8d+NuIl/srTn78xhl+v3m49ODXVDCTa5p+6u7OOeNpp8sPefZHca34x0TQAy3d4rTj/AJYQ/PJ+I7fjiuKk8aeKfFUrW/hrTWtoM4M5AYj6sflX6cmtvRPhho2mlZr8tqNwOT5gxGD/ALvf8Sa7WKKOGJYoo1jjUYVUGAB7Cr58PS+Bcz7vb7ifZ4mt8b5V2W/3/wCR51pnwt8+f7Z4k1GW8nblo0c4P1c8n8MfWu90/S7DSbcQWFpFbx9xGuM+5PUn3NW6Kwq4ipV+J6fgb0cNSo/Ate/UKKKKxNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKRlDqVYAqRggjgilooA8t8SeE7/wpqB8ReFyyxJlp7dedg78d09R26/TsfCni6y8UWW+LEV3GB51uTyvuPVfeuhrzTxX4KutLvv+Ei8L7op4jvktol/MoO49V+v0ruhUjiFyVXaXR/ozz5054aTqUlePVfqv8j0uiuV8HeNbXxPbCGXbDqUa5kh7N/tL7e3UfrXVVyVKcqcnGS1OynVjVipwd0FFFc3498QHwz4L1HUo223Aj8uD/ro3yqfwzn8Kg0OcjkHj74iSAkPoHhxxheq3F3zz7hefy9Gra8Y+DZPFepaDObxIrbTbr7RNA8ZbzxlDjqMcKw/4FS/DbQxoHgTTbdlxPOn2mfPUu/PPuBgfhXTtcwLcLbtPGJ3GVjLjcR6gdex/KgDnPiLd2Nr8P9b+3SRqstpJHErn70hU7AB3O7B/Covhha3Nn8N9Fhu1ZZvKZ8OMEKzsy/8AjpFcf45+GMNmmpeL9L1K5bULZpL8w3apNF1LsFBXgAZxnPQfWvQfB2vHxN4S03WGQI9xF+8VegdSVbHtlTQBsyqzxOqNtYqQG9D615T8DnhsdI1rSborFqsF+zTxOcPt2qB9QCrfn716bq2oxaRo97qU4zFaQPMwBwSFBOB7nFeTeH/BcfxSsm8WeJ55I2undLaCyVIwkanby20ljkEc+nvQBc8BgX3xj8X6nYMH00J5RdPuPIWXkHv9x/zrq/FPjg+FvEWi6fc6dvstTcR/bPP2+U24A5XacgblPUd/SuW8HXN34K+ILeAZZ0udNnhNxYyeUqOp2liG2gZ4Vsk+gPfFanxosbS6+H09xcSpFNazJJbs3VnzgqPqCfyz2oGbHi7xqvhq607TrSwbUtW1CTbDaJLsO3uxODgZ9ux9K6mMuY1MiqshA3KrbgD3AOBn8hXl/wAJtOfW0n8b6tcreapdE28XcW8afLjHYnH5H3NepUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryv4+f8iLY/9hOP/wBFS16pVXUNM0/VoFg1GxtryFW3iO4iWRQ2CM4YEZwTz70AWqKKKAPK/gH/AMiLff8AYTk/9FRVN8SYptB8V+HfHEdvJNbWDG3vfLGWSNsgN9Pnf8ceteiafpmn6TA0GnWNtZws28x28SxqWwBnCgDOAOfarLosiMjqGVhgqRkEelAHkfj74kaLrvhWTRPDk76jqOplYUjjhYbQSM53AckcAe9b99q0Xwx+Gen28gWXUUgWC3gXnzJyMngdVBJJ/wATXXWWg6Nptw09jpNhazN1kgtkRj+IGakutJ02+uoLq70+0uLi3OYZZYVd4znOVJGRyM8UAeFeIvB+peE/Dek+NZ5ZJfEEd+Lq/ZmzjeQVU9uCAD7ue2K940++g1PTba/tm3QXMSyxn/ZYZH86fd2dtf2r2t5bw3FvJw8UyB0bnPIPB5pba1t7K2jtrWCKCCMYSKJAqqPQAcCgBLu0t761ktbuCOe3lXa8UihlYehBrC/4QDwj/wBC5pv/AIDrXR0UAeH/AA78NaJqPj7xpaXulWk9vaXbJbxSRArEPNkGFHbgAfhXqdp4K8MWN3FdWug6fFPE26ORYFyp7Ee9U/DXgqHw54i1/V0vHnbV5/O8sptEWWZiM5+blj6V1NABXnfxR1TXfDz6LremzXH9mW1yP7Rhhxh03KRn2OGXPuK9EpHRZEZHUMrDBUjII9KAPKfGnxU8Paj4Nu7HRLmS91DUoTbJAkLhl3ja2cjrgkYGcn86h1zwhq+mfA+x0+y89NRsWW7nS3chzksXX5euN/8A47Xplr4f0WxujdWmkWFvcHrNFbIjn8QM1o0Aee6b8ZfCNzo6XV5fNa3QQGW2MLlg2OQuAQRnpz9cVB8I7G4lj8QeJbi3a3XW75p4Y36+WGZgfplyPfH0rtZfDehT3X2qbRdNkuc5857VC+fXJGabrHiTR9Aizf3kcTY+WFeXP0Uc/wBKqMZSdoq7JlOMFeTsjWqve39pptubi9uYreIfxyMFH09zXm918RNa16drPwrpUnp5zruYe+Pur+JNPsvhrqOrXAvfFOrSyyHnyo33ED03HgfQD8a6lhVDWvLl8t2cbxjqaUI83nsizq3xTt/N+yaBZSX9wx2q7KQpPso+Zv0rPXwp4w8XuJfEF+bK0JyIO+PZBwPqxzXoek6DpehxeXp1lFBkYLAZZvqx5NaNP6zCnpQjbzer/wCAH1WdXWvK/ktF/mznND8DaFoW14LUTXC/8t5/nbPqOw/AV0dFFcs6kpu8nc64U4U1ywVkFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB574x8CyyXJ13w6Tb6jGfMeKM48w/wB5fRvbv9et/wAF+OoteX7BqG231WPgqeBNjqQOx9R/kdnXD+NPAo1dzq2kHyNWjIb5W2iUjpz2b0P5+o7adWNWPsq3yfb18jgqUZ0ZOrQ+a7+nmdxXk3xqlN7N4X8PjJF/f5dR7FUH/ow/lW74M8dG/lGja4DBqsZKB3G0SkdiOze3f9K7yuarSlSlyyOqjWhWjzQEVQqhVACgYAHQV5j8R7DVdJ8W6H430uxe+Gno0FzDGMsIzu5wOcYdxntxXp9FZmp5BrvxVtvFPh+80Lw9o2qXGq38LWxieEARBxtYkgnsT/XFdto9p/wgvw2SOVBM+l2Mk8qIcB3AaRgD9cjNdTRQBymkapD8RvAFxN9nNpHqEU1vsZt5Tqmc4H1rz7wn44k+GulN4a8WaVfQm1lf7PPDGGSRWJYgEkZ5JII9e2K9sooA8l8IwX/i34jXPju9sZNP0u2gMNmLhdrMNuN3PbBYk9Occ4NOs8/FTxyb2Rd/hXRJNsKMPlu5/UjuO/0x/eNesUUAeSfDJ28L+OfEfgqYkQiQ3VmGPVeP1KFD/wABNet0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVHPcQ2sLTXEqRRKMs8jBQPqTXD618UtKsmMGlxPqNxnaCvyx5+vU/gOfWtaVGpVdoK5lVr06SvN2O8rl9c8f6Dom6M3P2q5HHk2+Gwfdug/PPtXI/2X458a86hP8A2Xp7/wDLMgoCP9wfM3/AjXU6H8OtB0fbJJAb24HPmXHIB9l6D8cn3ro9jRpfxZXfZf5nN7evW/hRsu7/AMjlzr/jXxmSmj2h06xY484Hbx/10PJ/4CM1q6P8K7CCT7TrVzJqFwTuZclUz792/MfSvQAAAABgDoBRUyxckuWkuVeW/wB444KLfNVfM/Pb7iG1tLaygWC1gjghXokahQPwFTUUVyN31Z2JJaIKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAch4z8D2/iOI3drtg1SMfLJjAlx0Df0Pasnwh44nhu/wDhH/EwaC+jIjjmlGNx7K/v6Hv/AD9FrmPF/g208UWm4bYdQjXEU+Ov+y3qP5foeylXjKPsq23R9V/wDirUJRl7ah8XVdH/AME6eivMfC/jK80G/wD+Ec8U7o2jO2K5kP3fQMe6+jf5HpwIIBByD0IrGtQlSlZ7dH3NqFeNaN1v1XYKKKKxNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorB1vxlomgBlu7xWnH/LCH53z7jt+OK4qXxp4q8VyNb+GtNa2t87TORkj6uflX6dfQ10U8LUmubZd3ojlq4ulTfLe77LVnoup6zpujQedqN5Fbr2Dty30HU/hXBah8T7m/uDZeGNLluZm4EsiEn6hB/Mn6ipNM+Fvnz/bPEmoy3lwxy0cbnB+rnk/hiu80/S7HSrfyLC0it4+4jXGfcnufc1r/ALPS/vv7kZ/7VW/uL73/AMA84g8BeIvEky3XinVHjTORAjBmH0A+VfwzXc6L4U0bQFH2GyRZe8z/ADSH/gR6fQYFbNFZVcVUqLlbsuy0RrSwlKm+ZK77vVhRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBg+KPCtj4osPKuB5dxGD5M6jlD7+o9RXEeH/E+o+C9SHh7xMG+yjAgn+8EXsQe6fqP0HqtZPiHw7Y+JNOa0vEww5imUfNG3qP6jvXVRrpR9lV1j+Xmjkr4duXtaWkvwfkzUR0ljWSNldGGVZTkEeop1eS6TrWqfDrVRo2tq02kuxMMygnaP7y+3qvb+fqtvcQ3dvHcW8qywyKGR1OQwPeor0HSd909mXh8Qqqa2kt12JaKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqte6hZ6bbG4vbmK3hH8cjBR9Pc+1NJt2Qm0ldlmkd1jRndgqqMlicACvO9W+KcHm/ZPD9jLfXDHajspCk+yj5m/SqC+FPGHi9xL4gvzZWhORB3x7IOB9WOa644SSXNVfKvPf7jjljYt8tFcz8tvvOh1z4l6HpO6O2c6hcDjbAfkB936flmuc87x5424iX+ytOfvzGCPr95uPTiuz0PwPoWhbXgtBNcDnz7j52B9uw/AV0dP29Gl/Cjd93/kL2Fat/GlZdl/mcRonww0bTSst8W1G4HP70YjB/3e/wCJNdrHFHDGscSKkajCqowAPYU6iuapWnVd5u500qNOkrQVgooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM/WdFsde057K/iDxtypHDI3ZlPY15lbXmr/DHVxZ3oa70Wdsoy9B6lfRvVe/6167VTUtNtNXsJbK9hEsEgwVPb3HoR6100K/IuSavF9P1Ry4jD8754O01s/0Y+xv7XU7OO7s5lmgkGVdTwf8A69WK8idNY+F+seZHvu9CuH6E/wA/7rj16HH5eoaVq1nrWnx3tjMJIXH4qe4I7GivQ9nacXeL2f8AmGHxHtLwmrSW6/VeRdooormOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorltc+IGg6JvjNz9ruV48m3w2D7t0H559quFOdR2grkVKsKa5puyOprJ1jxLpGgxltQvY43xkRA7pG+ijn8elcAde8beMyU0e0OnWLHHnA7eP8AroeT/wABFauj/CzT4JPtOtXMmoXBO5lyVTPv/E35j6V1fVqdP+NL5LVnJ9aqVdKEdO70X+bM+6+Iet69O1n4V0qT08913MB64+6v4k0+y+Gmo6tci98U6rJLIefKjfccem48D6AfjXo9raW9lAsFrBHBCvRI1CgfgKmpPF8itRjy+e7+8Fg+d3ry5vLZfcZ2k6DpehxeXp1lFBkYLAZZvqx5NaNFFckpOTu3c7YxUVaKsgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIbu0t7+1ktbqFJoJBtdHGQRXlN/pmrfDTVjqWll7nR5iBKjdAM/db0Po3/wCo+uUyaGK4geGaNZIpFKujDIYHqCK6KFd0tHrF7o5sRh1Vs07SWzM/QtesfEOnLe2Mm5ejo3DRt6EVp15Rrfh/U/AWqHXvD5Z9PJ/fQHJCL6N6r6HqP1rvfDXiax8TaeLi1bbKoHnQMfmjP9R6GqrUEl7SnrF/h5MmhiHKXsqqtNfj5o2qKKK5TrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuD174paXprSW+nxPfXCkqT9yNT9TyfwH413lcpcfDnwzc3Ms8llJvlcu2JnAyTk8Zrow7oqV6yb9DmxKruNqLSfmeeNrGseMnI1LxDY6XYMeYjMEGPTYDlv8AgRrp9D0n4f6Ntkk1Sxvbkc+ZcTKQD7L0H45PvWq/wv8ADDHIt509lnb+tN/4Vb4Z/wCeVz/3+Nds8TQkuWLcV2SRwQwuIjLmlFSfdts3l8TeHwoxremAY4H2qMf1pf8AhJ9A/wCg5pn/AIFx/wCNc8/wq8NsBgXaf7s3+Ipn/Cp/Dv8Afvv+/o/+Jrm5cL/M/uOvnxf8q+86hdf0Z1DLq9gwPQi5Q/1pf7d0j/oK2P8A4EJ/jXKN8JvDrLgTX6n1Eq/1Wo/+FRaB/wA/mp/9/Y//AIijkwv87+4PaYv+Rfedmmr6ZIMpqNow6ZWdT/Wnf2np/wDz/W3/AH+X/GuKPwi0HBxeakD2zJH/APEVF/wqDSP+ghff+Of4UvZ4b+d/cHtcV/z7X3neJf2cmdl3A2Ou2QGn/arf/nvF/wB9iuA/4VBpH/QQvv8Axz/Cov8AhT2n/wDQVuf+/a0eyw3/AD8f3B7XFf8APtfeeipPFI21JUY+gYGpK82/4U9p/wD0Fbn/AL9rUbfBy23HbrMwHYGAH+tP2OH/AOfn/krD22J/59f+TI9NorzIfB6BWDLrcoI6EQD/AOKpX+Ekpb5PEkwHo1uT/wCz0exw/wDz9/8AJWHt8T/z6/8AJkemUV5j/wAKkuP+hll/8Bj/APHKc/wu1MY8vxVO3rujYf8As5o9hQ/5+/gw9viP+fX/AJMj0yivMf8AhV+r/wDQ0S/98v8A/FU4/DjxCiAReLJ+OACZAMf99UvYUf8An6vuYfWK/wDz6f3o9MorzH/hXfif/oapf+/sv+NOHgLxdGhEXi6cegE8oH86Pq9L/n4vuYfWa3/Pp/ej0yivMf8AhBvG/wD0Nkv/AIFzU5PBfjiMHb4rY5/vXMp/mKf1an/z8X4h9aq/8+n+B6ZRXmP/AAiPxC/6GaL/AMC5f/iKcnhT4hocjxLCf965kP8ANKPq0P8An4vxD61U/wCfT/A9MorzE+HfiQCQNdiPuJzz/wCO0q6B8SVYMNchyPWbP/stH1WP/PyIfW5/8+pHptFeZNpXxOVsDVIWHqHT+q0g0z4ng5/tKL/vuP8A+Jo+qr/n5H7w+uS/59y+7/gnp1FeZvb/ABUUjF5A/wDuiD+q03yfir/z8Rflb/4UfVP+nkfv/wCAH13/AKdy+7/gnp1FeZs3xTRRhIJD7eRn9cU3zvir/wA+8X52/wDjR9U/6eR+8Prv/TuX3Hp1FeZ/bPilHHlrCBsd/wBySfwDU3+0/if/ANA2L/viP/4ql9Tf88fvD66v5JfcenUV5mur/ExFO7SIH75KLn9Hpv8AwkPxI/6AcX/fg/8AxVH1OX80fvD69H+WX3Hp1FeZp4j+I6k58PwP/vQt/R6afF3xCBx/wjMX/gLL/wDF0/qU/wCZfeH16H8svuZ6dRXmS+L/AB+G+fwwhHoLaUf+zUN438bqxU+E5Mj0tZjR9Sqd196D6/S7P7mem0V5iPHPjbIz4SlI74tJqc/xA8VRnD+EplPXDQyj+lH1Kr5feg+v0fP7memUV5j/AMLE8T/9CrL/AN+pf8Kc/wAS9cjA8zwpOuf7xcZ/8dpfUa3Zfeg/tCh3f3M9MorzH/haGr/9CvL/AN9P/wDE04/FS/jQGXwtOPU+cwH/AKLo+o1+34r/ADD+0MP3/B/5HplFeY/8LbuP+hal/wDAk/8AxunD4tkIWl8PTpjrifIx9dgp/UMR/L+K/wAw/tHDfzfg/wDI9MorzH/hcdv/ANAWX/wIH/xNOT4xWZzv0idfTbMD/QUfUMR/L+Qf2jhv5vzPTKK82/4XDp//AECrn/v4tOT4waaW+fTLsD1VlP8AhS+o4j+Uf9oYb+f8z0eivO/+Fv6R/wBA++/8c/xpV+L+jbhusL8DuQEP/s1L6liP5R/X8N/Oeh0VwH/C3dA/589T/wC/Uf8A8XS/8Ld0D/n01L/v1H/8XS+p1/5WP69h/wCdHfUVw3/C2PDv9y+/79D/AOKo/wCFseHf7l9/36H/AMVR9Ur/AMrD67h/50dzRXFD4p+GiATJdD2MPT9aX/haXhn/AJ63P/fk0vqlf+Rj+uYf+dfedmyh1KsAVIwQRwRXl3iTwnfeFdQPiLwuWSJMtPbrzsHfjunqO38uiX4neF2XJu5lPoYG/oKX/hZvhb/n9l/78P8A4VrRhiKUrqDa6q25jXnhq0bOaTWzvqi74U8XWXiiy3R4hvIx++tyeR7j1X3roq8N8RX+g2+qJrvhXUmt7xX3NbeS6jJ6leMY9VPH8q9H8G+NbXxPbCGXbDqUa5ki7P8A7S+3t2/WniMI4x9rBO3Z7oWFxilL2U2ubutn/wAHyOrooorhPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4H4jeMdc8MajoFjodrZXFxqsrwhbpWI3AxhQCGXGS/OazLjxF8WNPge6uvC2k3EEY3Ols5L49h5hJ/AGmfFP/kevh3/ANhM/wDo2CvTrq7t7G2kubqeOCCMbnkkYKqj3JoAwfBXjGz8a6H/AGhbRNBLG/lzwM2TG/Xr3BB4NZ/wx8X6h408N3Go6jDbRTRXjQBbdWVdoRGz8zE5yx71zXwUU3Fx4r1OFWFjdXw+z5XA4Lsf0da5z4T/APCWXvhS70/w7Na6fCt68s2oXCeYdxRAEReRkbckn1FAz3yivO/AninX5vFmr+EfE0kFxqFhGJkuYUC70+XqAAOjoRwOppmueJ/EWt+NZvCnhGW3tGsoxJe386BwhOPlUEEdx25OemDQI9HorznRPE3iLRPGsHhXxbNb3ZvYjJZX8CBA5GcqwAAzwe3XHXNb3jzxTL4W0BZrOJJtSu5ltbOJujSN3PsBn8cDvQB1FFeU3WveN/A+saTL4m1Gy1PStRnEEphhEZt2PoQBkDrznIB6Vr/F3xJq3hfwna3ujXf2a4e+SFn8tHyhSQkYYEdVH5UAd/VLWLi7tNEv7mwhE97FbSSW8RUsHkCkquBgnJwMCvO9duviXHotx4lhvtPsLeCI3B0oQiRhEBk73I5YDkgECugtvFdxq/wnuPE1sBb3f9mzzLtGQksauCQDnI3KcA5/GgDX8J3+rap4Zs7zXLJbLUpN/nQKjIEw7BeGJIyoB6962q8007VvFmu/Bq21rT9SP9ugSys4gjPnqkrrs27cA7QMYA5A9a1LX4kabL8N28VybQ0abJLcHn7R08sfUkH6HNAHb0Vy/gGTxBd+GYtQ8R3Xm3d4fOSLylQQxn7q4UA5xzzk8gdq6igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCL7Lb/wDPCL/vgUfZbf8A54Rf98CpaKd2KyKp02xZizWVsSepMS/4Uf2Zp/8Az423/flf8KtUU+Z9xcsexRfRdKkbc+mWbH1MCn+lN/sLSP8AoFWP/gOn+FaFFHPLuL2cexmv4d0OTG/RtPbHTdaof6Uz/hGNA/6Aemf+Akf+FatFP2k+7D2UOyMh/Cvh9xg6Jpw/3bZB/IUz/hEPDv8A0BbH/vyKk8S+IrLwroU+r6gJWt4SoKxAF2LEAAAkDv61D4V8VWHi/SG1LT0njiWVoXjnUK6sMEggEjoR370/a1P5n94vY0/5V9wreDvDjKVOi2WD6RAVH/whHhn/AKA1t+R/xrV1HUrPSLCW+1C4S3tYsb5XOAuSAP1IFS21zDeWkN1bSLLBMiyRuvRlIyCPqDR7ap/M/vF7Cl/KvuMQ+B/DJGP7GtvyP+NLbeCfDtncx3NtpqxTRtuR0lcFT+dHhDxfp/jTSZdR06G5ihinMBW4VVbcFVs/KxGMMO9b9P29Xbmf3h7Cl/KvuQUUUVkahRRVCXW9Mg1qDR5b2JNRnQyRW5PzOo3cj/vlvyoAv0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeRfGWxj1PxN4GsJXkSO6vJIXeM4ZQzwgkHseeK00+B/hneDcXusXSjkJNcrj9EBpfiTpmoX3jPwHPZ2NzcQ22oF55IYmdYl8yE5YgYUYB5Poa9JoAp6XpVjomnRafptslvaxDCRoPzPufc15v8A/8AkRb7/sJyf+ioq9Urzb4JaZqGk+DLyDUbG5s5m1B3EdxE0bFfLjGcMAcZB59qAKmhf8nG+J/+wYn/AKDb074ZBm+IPxCeUfvBfqFJ/u75sfoFqzoumahF8e/EWoyWNyljLp6JHctEwidtsHAbGCflbjPY+lQatZa54K+IF74k0nR59W0vVY1F3b23Mkcg7gDk9M/8CI44oGN+JoZfiD8PXiH7w37BiP7u+HP6Fqh+MRv21/wTDp7RrcPqB8lpQdgl3RBC2O2Sc8dM1PpVlrvjX4g2XiTVtIuNI0vSo2Frb3IxJJIe5B5HXPT+EDnmtz4leHNQ1zR7K80dQ2q6VdJd26E4346qPfgH8KAOX8SeC/iX4qsYLPUtT8PGKGdbhPL8xTvAIH/LP/aNWfj5/wAiLY/9hOP/ANFS1W1uXxH8TG07RJfC97o9hFcrPf3F4MDC5G1Mgbup5Ht0Fanxt0zUNW8GWcGnWNzeTLqCOY7eJpGC+XIM4UE4yRz70Adb40/5EXxD/wBgy5/9FNXD+E/+Tcrj/sGX/wD6FNXeeLYZbnwZrsEETyzS6fcJHHGpZnYxsAAByST2rjvDOmahb/ASfTprG5jvjp98gtniYSlmaXaNpGcnIwMc5FAjR+EH/JLdG/7b/wDo+SvI9Qi0M/FiS28yceFm1VDcKB+4+0YPHpt3bh/u57Cu70m48QeHPghp9lYaPqLa3OZoI4ltn3wbpXO9xj5QAcgnuR2rbt/hnZL8Mm8LSbPtMiec9xjpc9d/0B4/3aBnfdKK5H4dahq914ZS016xu7bUbBvs7vcRMomUfddSRhuOCRnkZ7111AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIby6isbG4u5s+VBG0r4GTtUZP8AKvn74ofFOx8V6VHo2jwzi280STTzKFL7egUZPHfJx0FfQ9eV/Hz/AJEWx/7Ccf8A6KloBHqleS69a614p+Ld5odj4k1LSbW009JX+yzOq7sj+EMBk7+vtXrVeOjT/G03xN8UXOhWqWIuTHGNRv4WCBEULiPK4YnA7Ece9AHTaH4A1jSNatr+58cazqEMLEtazyOUk4IwcufXPTtVP4m6xqc+p6L4P0a6e0udWk/f3CHDJEDjgjn+8T/u47mq2jeLfFPh7xra+GPGbW10t+MWl/AgUM3YHAA5PGMAgkdjVfWZDJ+0h4fRgMR2DAf9+5z/ADNAzP8AFPw6bwJoreJfC2r6jHe2RWSdZZAwmXOCSAB65IOQRmvVvDurrr/hzT9VVQn2qBZGUfwsRyPwORWd8QP+Sfa//wBeUn/oNZHwshS/+Eel29yokiminidT3UyyLj8uKBHd0V4N4X8Xt8ONO8S+G7pGnv7S7xp0OMmZn+UcenCt+J7mvRfh54Rl8P6dNqOqMZte1I+deTPyy55CA+2eff6CgDtKKKKAMzTvEGlatqF/YWN4k11p7iO6jAIMbc8cjB6EcZ6Vp15J8L/+SlePv+v5/wD0dJXrdABXA/FPxJqGj6Xp+laPIYtU1i4FvDIpwUGQCQexyyj8TXfV5N8Y9+na34P8QSBms7C+zNjPyncjj8wjflQBFqvwiXRdEn1jR9c1Qa/axmcztKMTMoyRgDIzjjk++a7LwZ4tGt/D+DX74Ykihc3Wxe8edxA9wM496v674i0yw8KXWrNeQPbNAxhdXBErEfKq+pJwK4v4CyM/gO6U9E1GRR9PLjP9aAOJ+KHxTsfFelR6No8M4tvNEk08yhS+3oFGTx3ycdBX0PXlfx8/5EWx/wCwnH/6Klr1SgAooooAKKKKACiiigAooooAKKKKACiiigAooooA80+KEh1XXPCfhZORe34uJwO0af8A1ix/4DUfgN/7E+JnjDw23yxyyi/t17ANgnH4Oo/4DWJP4p0ZPjve6hrF/HbWulWptbZnDNmTADAYBxy8lQ6r4u0R/jR4f1vR9RjuIJ4xZ3W1WABYlQTkD+8p/wCA0DOh+NOq6jD4UvNNh0aSawnjiebUBLhYGEykKVxznAHUferX+Ges6rqHhyxtL7QZbC2tbG3S3unmDi6XYBuAwNvAB6nrR8X/APklus/9sP8A0fHW54L/AORF8Pf9gy2/9FLQI4T4EzR2/wAPdSnmcJFHqErux6KBFESau/8AC0tTvLd9Q0jwRqV9pKliLsy7CyjqVTac9D3rN+Cdva3fwy1i2vtps5b2aOfc5UeWYYw2SCMcZ5zWzYeOdIt7eLQ/BOi32sLbDyoxACsEfs0snTr15+tAzqvC/iWx8WaFDqthvEbkq8bj5o3HVT/nvXEaL8YJdf01203wteXeprIw+xwTblWMAEO8hUBckkAYP3TSfAd/N8FajJgDdqkjYHQZjiqL4BRoPBN/IFG9tRdS3cgRx4H6n86AOn8GePYfFlze2E+nT6Zqll/rrSY7iBnGQcDoeuQOorzLWPEmvSfGbR9SbwpOl/BaPHDp5uRunTEw3htvH3mOMH7vvXUaCAP2jPE+Bj/iWp/6Db0a7/ycb4Y/7Bj/APoNxQB1Os+Nl0Dw9p19qGl3I1K/Kxw6ZEd8hlI5XOB09cdxxWInxRu7DUrS38S+FL3Rbe7kEcV08okQMf73yjH61v8Ai+48LaW+na34jkSOWxdzZMXfcHIGdqKfm6DqCB7V5h8WPFtx4h8Hw+RoF9a6Wb1Nl7egRmRtj4CJ1IIz83t70Ae7UUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvK/j5/yItj/wBhOP8A9FS16pXK+PvBn/CcaFBpn2/7F5Vytx5nk+ZnCsuMbh/e657UAdVXMeGfGtt4k1vWtKS0ltrjSpfKcSMD5nzMpIx2BX9RXT1wfiP4ZQatrza9pGr3eiaq64kmtuQ/uQCDnHXnB9KAMH4oEX3xG8C6fbMPtcd15r7TyqGSMg/hsc/hU/iqNdO+OvhLVJsJBc272wY8AyYkUc+v71BW74U+HNv4f1iTW7/U7nWNYdSv2q5GNgPB2jJIOOOvTitnxX4T07xfpH2DUA6FG8yGeI4eJ/UH+Y/+saBmf8Tr6Kw+HOtPKwHmweSoPdnIUAfn+lReBDB4c+FWlz37i3ghszcyswxtViX6evzfjWJF8Ipby8tm8R+K9R1qztn3R2soKr9CSzZ98YNdH4x8HS+LrWy046obLSopFe4tooMmcAjC7tw2gfQ84PagR43dareyeONI+I2pafHFpF5f+TCrqMrGgChz74yQfVD0AFfR3Wua8WeDLPxP4S/sBGWzjj8s27pHuEOzgYXI/hyOvetfRrGbTNFsrG4uvtUtvCsTT7NnmbRjOMnB/GgBmvafdapod3Y2WoSafczJtjuovvRnPUcj6de9ea/8Kv8AGv8A0UfUv+/s3/xyvW6KAPm7wf4P1/VvFniWxsfFV3YXVlcMlzcxvIGuWDuNzYYHqCeSeteiaL8O/Funa1Z3l34+1C5t4JVeSBmkYSqDypDORg9OlL8PNE1PTfH3ja7vLKaC3ubwtBJIhCygySMCp7jBHT1r0ygYVznizU/DsMdno3iJQ8OrSeRFG8bFWbKjlh93lhzkevaujrB8W+EtO8Y6P/Z+ob12t5kU0ZAeN8YyM/XkUCOUk+Gng3wfb3fiH7PLIbGJp41uZd6IyjIwMcnOMZzzipvgrYSWXw5t5JEKm6nknGe4yFB/8dqonwkvLwJba94z1XU9NRgwtDlAcdAxLtn8h7Yr0m2t4bS2itreNYoIkCRoowFUDAA/CgDzD4+f8iLY/wDYTj/9FS16pXK+PvBn/CcaFBpn2/7F5Vytx5nk+ZnCsuMbh/e657V1VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVbUb2LTdMur+c4itoXmf6KCT/ACqzUVzbQXlvJb3UEc8Eg2vFKgZWHoQeDQB5N8IvDWn63oGoa7rmmWV9cX987q1zbrJgDqRuBxli35Cpfi74P0qz8FHU9H0qzsbmxuI5WktLdI2KE7eSoHQlT+FepWdla6dapa2VtDbW6Z2QwxhEXJycAcDkk/jTrm2t7y2ktrqCKeCQbXilQMrD0IPBoA878eal/b3wLuNSjGTc21tMwA6HzYyw/A5/Ktz4ea9pWqeEtKsrG9inubPT7dLiNDzGwQDB/EH8q6OLTbCDT/7PhsraOy2lfsyRKI8HkjaBjByai07Q9J0hpG03S7KyaQAOba3SMtjpnaBmgDw7whb3Vz+z74ois9xm+2M2EGSUCwlx/wB8hq7Dwn8Q/Cuk+ANLtra4DX0NskX2CGNjLLPjBAAHO5s89Oa9G0/TNP0mBoNOsbazhZt5jt4ljUtgDOFAGcAc+1Q2+haPZ3rXttpVjBdN96eK3RXP1YDNAHnHwLmitPD+qaNPKialBqMryWxb51UJGpOPTcCPwp/wD/5EW+/7Ccn/AKKir0mDS9Ptr2a9t7C1iu5+JZ44VWST/eYDJ/Gl0/TNP0mBoNOsbazhZt5jt4ljUtgDOFAGcAc+1AHmuhf8nG+J/wDsGJ/6Db1W8YahaaN8evDmo6jOttZx6cytM/3QSJx/Nl/OvU49M0+LUpdRjsbZL6VdklysSiV144LYyR8q8Z7D0qPUNF0rV9n9paZZ3vl52faYFk259NwOKAPK/GuqafD8UfB/iG/lEvh5rYmObYWjD/OQ35tGfwql8YPFemeJvDMdnokpvo7S4S6uriJT5cIwyKpYjBJL9B6GvY5NJ02bT10+TT7R7JAFW2aFTGAOgC4xSR6NpcOntp8Wm2aWT/etlgURt9VxigCWxvrXUrKK8sriO4tpRlJYzlWGccGrFQ2tpbWNsltaW8VvbxjCRRIEVR7AcCpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
|
<image>A plane travels from Des Moines to Phoenix, on to Atlanta, and back to Des Moines, as shown below. Find the distance in miles from Phoenix to Atlanta if the total trip was 3482 miles.
|
1591
|
Geometry
|
Geometry3K
|
test
|
37
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAG7AbEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4H4g/Eu18HKtjaRLd6vKMrDn5YwehbHP0Fdjq+oxaRo95qM3+rtoWlI9cDOK8Q+E+jP4w8Yaj4r1cef5Em5A3IMrcj/vkdPqKSXNK33j2Vy/baH8WvFUQvrjWzpMcg3JD5rQtjt8qDj8TmqWoal8TfhvJHd6neDVNNLBXZ3MqH2JIDKffp9a96qhrelRa5od7pk+NlzC0eSM7SRwcexwfwoba1iC1+IreGPEVp4p0C21azyElHzITyjDqp+hrYrkPh94Lm8EaVc2EmpC9SWbzVIi2bOACOp9K6+qla+hKvbUKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDjPitI8fw01gpnJRFOPQuuax/gbFGngAuuN0l1IX+vA/kBXbeJdHXX/AA3qGlMQPtMLIpPZuqn88V4r8MfGMfgXUL/wz4kD2kZm3LIykiN+hB9jgc0Q0lJd0OXwp9meseONJ8RazpUNt4c1NNPnEu+SYyMhK4PAKg9z+leXeIPD3xH8N6Hc6te+MyYLcAlUu5dzEkAAZHXmvW5PGnheK2Nw3iDTPLxni5Qn8gc/hXiHxS+ILeLoPsekRy/2LbSjzLhlIE0hBx9BgHA696l6bFR13PS/g9d6rqPg5tQ1a+uLuSe4by2nkLEIMDAz7g16DXO+A9N/snwNo9oVwwtldh/tN8x/U10Vaz+KxlDa4UUUVBQUVDNdW9v/AK6eKP8A33A/nVCXxLoUJxJrFgD6faFJ/nVKEnsiXOMd2atFYv8Awl3h7P8AyGbL/v6Klj8T6DKcJrNgT6G4Uf1qvZT/AJWT7Wm/tL7zVoqGG8tbj/UXMMv+44b+VTVm1bctNPYKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFc14o8d6J4TeKG/kmlupRlLa2TfIR64yAPxNP8L+NtF8XLKNOlkWeH/W286bJE9yP8DQtdgem50VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz3iTwR4f8VgHVbBZJlGFnQlJAPqOv0NdDRRa4XseawfA3wjFMHf7fMoP+refA/QA/rXTXXgLwxeaNBpMulRixgk8xIo3aMbsYySpBJ+tWde8V6R4djJvbkGbGVgj+Z2/Dt9TiuGfxZ4v8WuYvD+nmztScef3x/vnj8hmumlhqlRc20e72Oari6dOXLvLstWeiX2raXoluv228gtkC4VXbkgeg6muP1L4saXCxi020nvZDwCRsU/TqT+Vcl4Y8O2+reMb7TPEcs8t3Bk4804kIODk9T1BHSvW9N0DSdIUCwsIIT03KnzH6seTW1SnQoO07yf3I56dXEYhXhaK27v8AyOAGu/ETWxusdMWyiboxjC8f9tD/ACFL/wAIN4w1bnVvEJjRuqLIz4/4DwK9QoqPrjj/AA4pfI0+pKX8Sbl89PwPNofhBZ/8vGr3L+uxAv8APNX4vhP4ejHzyXsp9WlA/kBXdUVLxtd/aKWBw6+wjiv+FW+Gsf6u5/7/ABqOX4UeHnGEe8jPqso/qDXc0VP1uv8Azsr6nh/5EebzfCCxP/Hvqt0npvVW/liq/wDwgPivSudI8RFlH8DO8efw5FeoUVax1bZu/qkZvL6G8VZ+TZ5edW+I+ijN3YLfRL3Eavkf8AIP51d074sWDv5Oq2M9nKOGK/OoPuOCP1r0OqGo6JpmrJtv7GCfsC6DI+h6in7ejP8AiU/u0F9XrQ/h1Pk9fxG6Zrulaym7T76Gc4yVVsMPqp5FaNeeap8K7Qv9o0O9lsZ15VWYsufY/eH61nDxF408HkJrVmb+yXjzuvH++P8A2YU/q0Kn8GV/J6MPrVSl/HhbzWq/zR6pRXP+H/GWj+IkC2s/l3OObeX5X/D1/CugrknCUHyyVmdcKkai5oO6CiiipLCiikOcHGM9s0ALRXA+CfHWoa34l1jQdatrW2vLFjsEAYB1BwT8xPt+dO0zxvqPiPxzcaXodtbPotlxdXsisSzeiYIH8+hNC1tbqD0vfoYc+o2PhT4xalf+Iv3VvfW6Cyu3QsiYADLkdOn+c07SL6z8T/GRdW8PKXsLWzMd5dKhVJXOcD37flXpt9p1jqcHkX9nBdRZzsnjDr+RpbKws9Otxb2NrDbQjpHDGEUfgKI6W8v6/UJa3t1/r9CxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVh+JfFOn+GbLzbp987D91Ap+Zz/Qe9VCEpy5Yq7JnOMIuUnZGreXttp9q9zeTpDAgyzucCvNtS8b6z4nvm0vwnbyInR7kjDY9c9EH61WsND1z4h3a6lrU72ulg5iiXjcP9kf+zGvTNL0mx0azW1sLdIYl7KOWPqT3NdlqWG+L3p/gv8zh5quK+H3Yfi/8jjtB+GVpbSC81yY6hdk7ihJ8sH3zy34/lXeRxpDGscaKiKMBVGABTqK5qtadV3mzrpUKdFWgrHlvjhG8OeOtL8RxAiKUgTY7kfK35qR+VeoI6yRq6EFWGQR3Fc14/wBI/tfwjdKq5mtx58f/AAHr+mai+HWr/wBq+ErdXbM1qfIf8Pu/pit6n7zDxn1jo/0Oal+6xModJar16nWUUUVxncFFFFABRRRQAUUUUAFFFFABSMqupVlDKRggjINLRQBwviD4Z6dqDm60p/7PvAdwCf6sn6dvw/Ksay8Xa/4OvU07xRBJcWx4S4HLY9Q38Q9jzXqdVdQ06z1S0e1vrdJ4X6q4/Ueh9664YptclZcy/FejOKphEnz0Xyy/B+qDTtSs9Vs0urG4SeFujKensR2PtVqvKdU8L6z4Gu21fw5PJNZA5lgbkqv+0P4h79R+tdp4W8X2Hie1/dEQ3iD97bseR7j1FKrh7R9pTd4/l6lUcTeXs6q5Zfg/Q6KiiuX8d+MIPB+gPdHEl7N+7tYe7v649B/nrXI3Y7Ers8i+LU8ekfEZbjSNQFvd3VsIrwp/yz3fKc/VcH1r2jwh4csfDHh22sLLDjbvkm7yuerGvNG+Gs9z8N9V1HVFM3iO9H21nflk2/NsHvjOfc+1dh8J/EH9veBrUSvuubL/AEaXPX5fun8sVUVZOPVf1+DFJ3al0/r9DuKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXN+MfFcHhfTN42yXsoIgiPr/ePsP1q4QlUkox3ZFSpGnFzk9ER+MfGNt4Ys9ibZdQlH7qH0/2m9v51znhfwRc6vdDX/FLPNNKd8dtJ+hYenov/AOqpPBvg+4vbseJPERaa7lPmQxSfw+jMP5Dt/L0euudSNCPs6T16v9EcVOlLES9rWWnRfqxFUKoVQABwAO1LRRXCegFFFFACMoZSrAEEYIPevLvCDHwx8RNS0CQkQXJJhz7fMv8A46TXqVeZ/E60l07UtK8SWoxJDII3I9Qdy5+vzCuzBvmcqT+0vx6HFjU4qNZfZf4dT0yioLK7jv7GC7hOY5o1kU+xGanrkas7M7E01dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAda868V+BJIbg654aLW97GfMaCPjd6lfQ+3Q/z9ForWjWlSleJjWoQrR5Zf8Mch4K8axeIYPsd5iHVIhh0PHmY7j+orriobqAfrXAeNfBcs039vaFmHUYT5jpHx5mP4h/tfz/nq+CPF6eJbExXG2PUYBiVOm4f3gP5+lb1qUZR9tS26rt/wDChWnCfsa2/R9/+CdXSBQvQAfSlorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkAEk4A6k0AZ+uaza6BpM2oXR+SMYVR1duyivPfCmiXfjDW38T64u62Vv9HhP3WI6YH90fqah1Oeb4jeM0021dhpFkcvIvRh3b6noPbn1r1S3t4rS2jt4ECRRqFRV6ADpXe/9mp8q+OW/kjz4r61V5n8EdvN9/REtFFFcB6AUUUUAFFFFABWP4p0ka34avbILmRoy0f++OR+ox+NbFFVCTjJSXQmcVOLi9mcJ8LNWN54dk0+Rv31jJtweuxuR+uR+Fd3Xllp/wAUn8WpLc/JZ6l930+fkfkwIr1OunGRXtOeO0tTlwUm6fJLeOgUUUVyHYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZeNfD11oOpr4r0IFGRt1xGo4Hq2PQ9/zr02myRpLG0cihkcFWUjIIPatqFZ0pXW3VdzDEUFWhyvfo+zMrw34gtvEmjx30Hyt92WPPKP3Fa9eS/vfht41/iOi3x+uBn+a5/I16xHIksayRsGRgCrA5BFXiaKg1KHwvb/IjC1nUi4z+KOj/wA/mOooormOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAriPiV4hbS9FGnWzH7ZffIAvUJ3/Pp+ddrJIkUbSSMFRAWZj0AHevK/DML+NfHl1r10pNnZsPJQ9M/wAA/D7x9668LBXdWe0dfn0OPGTlZUofFLT5dWdn4K8Op4d0CKF0H2uYCS4bvuPb6DpXR0UVz1JucnKW7OmnTjTioR2QUUUVBYUUUUAFFFFABRRRQB578VtMd9MtNYgyJrOUBmHUKTwfwYD867HQdTTWdCs9QTH76IFgOzdCPwOal1bT49V0m6sJcbZ4ymT2PY/gcGuE+FeoSRR6hoNzlZrWQuqnqBnDD8CP1rsX7zDecH+D/wCCcL/dYrymvxX/AAD0eiiiuM7gooooAKKKKACiiigAooooAKKKKACiiigAooooAxfFWgReItCns2A84DfA5/hcdPz6fjXM/DLXZJrObQb0lbuxJCK3UpnGPwPH4ivQK8t8cWkvhbxXZeKLFcRyvidR0Ldx/wACH6gmu3DP2sHQfXVev/BOHFL2U1iI9NH6f8A9SoqK1uY7y0huYWDRSoHRh3BGRUtcTVjuTvqgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOM+Jet/wBl+GGto2xPfHylx1CfxH8sD8a0fBGif2F4Xtbd12zyjzpvXc3b8BgfhXH62P8AhJvizZ6d9+2sQPMHb5fnb9cLXqVdtb93QjT6vV/ocND97XnVey91fqFFFFcR3BRRRQAUUUUAFFFFABRRRQAV5Zrn/FKfFO01NfktL/HmenzfK364avU64r4naR/aPhZrpFzNZP5ox12nhv6H8K6sHNKpyy2lp95yY2DdLmjvHVfI7XqKKwPBmr/214WsrpmzKqeXL67l4P59fxrfrnnBwk4vodFOanFSWzCiiipLCiiigAooooAKKKKACiiigAooooAKKKKACsfxTo6674du7HAMjJuiPo45H+H41sUVUJOMlJbomcVOLi9mcF8LdYa70SXS5yfPsXwAeuw9PyOR+Vd7XluB4Y+MGB8ltqI/D5//ALMV6lXTjIrn547SVzlwUn7N05bxdv8AIKKKK5DsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorq4S0tJrmT7kSNI30Ayalrm/Ht79h8F6i4OGkQRL77iAf0zV04c81HuRVnyQcuyOX+Fts9/f6xr9wMyTSGMN7k7m/mtemVyfw3svsfgqzJGHnLTN+J4/QCusrbGT5q0vLT7jDBQ5KEb9dfvCiiiuY6gooooAKKKKACiiigAooooAKjuII7q2lt5V3RyoUceoIwakoo2Bq55h8OZ5NF8R6t4auW5Dl489ypwcfUYP4V6fXl3jyNvD3jXSvEkIISQhZsdyvB/NTj8K9PjkWWJJEYMjgMCO4NdmL97lrL7S/FbnDgnyc1F/Zf4PYdRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAec/FixZbLT9Yh+WW1m2Fh1weQfwI/Wu60q9XUtJtL1eBPCsmPTIzWV44svt3g3UogMskXmj22nd/IGqPw0vftfgu2QnLW7tEfwOR+hFdkvfwqf8AK7fecMfcxbX8yv8ANaHX0UUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFee/F24KeHrO3Bx5tzuPuFU/416FXmPxXP2nUNBsR/HI2R9SoH9a68Cr14/10OPHu2Hl/XU9B0i2Fno1lbKMCKBEx9FAq7SLwoHtS1yt3dzrirJIKKKKQwooooAKKKKACiiigAooooAKKKKAOa8eaR/bHhK7jVczQDz4/qvX9M1W+HGr/ANqeEoI3bM1ofIf6D7v6Y/KutIBBBGQeory3woT4X+JGoaG52291nys+3zJ/46SPrXZS/eUJU+q1X6nDW/dYiFTpLR/oep0UUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEdxCtzbSwPysiFD9CMV5x8I5mWHV7Mn/VTK+PQkEf+y16XXmHw+/0Txz4isunzNx/uuR/WuyhrQqR9H+JxYjTEUpeq/A9PooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8x+IHzePfDSf9NI//Ror06vMfiD8vjvw256eZHz9JRXZgf4vyf5HFj/4PzX5np1FFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmnxQs5LG80vxHajEsEgjcj1B3L/7MK9LrJ8TaUNa8OXtjjLvGTH/vjlf1Fb4ap7OqpPbr6HPiqXtaTit+nqXbC8j1DT7e8hOY541kX6EZqzXBfCvVTdaBNpsp/fWUmAD12NyP1yK72pr0/ZVHDsVh6vtaUZ9wooorI2CiiigAooooAKKKKACiiigAooooAKKKKACvMfC3y/F7XR6pMf8Ax9a9OrzHwr83xd11uoCzD/yItdmG+Cp6HFi/4lL1PTqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMfiyPs91oV6P+Wcj5P0Kkf1r06vP/AIuWxk8N2twBnyrkA+wKn+oFdeBdq8Tjx6vh5W/rU79TlAR3FLVDRLoXuhWFypyJbdH/ADUVfrlkrNo64u6TQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlkX/FJ/Fpo/uWepdPT5zkfk4xXqdef/FXS2m0e21aAETWUgDMOoVu/wCBA/Out8Paous6BZX6kZljBYDsw4YfmDXZiP3lKFX5P5HDhv3dWdH5r0f/AATToorG1vxVougWc9xfajbRtEpPleYC7H0C9c1xN2O9K5s0VwPwp8U6n4s0O/vdTnErpeNHFiNV2ptUgcAZ613U9xBax+ZcTRxRjjdIwUfmapq24lqSUV5b4w+JXkeLNC0bw9qUMglukW9eMLIpVmA2gkHnr0r1IdKS1VwejsFFeZ+J/GniC+8Wt4U8GxQfa4V3XN1MAVj9ucjjI7Hms618beL/AAj4ms9L8bJbT2l622O8gUAKc4zkAcZIyCM0R1t5g9D1DVtXsdD02XUNRuFgtoh8zt/IDua5PSfix4Z1bUorFWu7V5jiF7qHYkh7YOT+uKpfF2CRtI0i/aB7jTrO+Sa8iUZzH6kenX86w/iD4p8N+KPDNrpGhOt9qlxNH9ljhiIaI55J4444pLf52G1+R7FRUFnHJFYwRzNulWNQ59Tjmp6p6MlO6CiiikMK8w+Hf+l+NPEV91yx5/3nJ/pXpN3cLaWc9y/3Yo2kP0AzXnnwigY2eq3h6SzKmfXAz/7NXZQ0oVJei/E4q+uIpR9X+B6TRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz3jmy+3+DNTiAyyReaPbaQ38ga6Go54UuLeSCQZSRSjD1BGDV05ck1LsRUhzwce6OU+Gl79r8FWyE5a3d4j+ByP0Irr68x+GU76Xres+Hpz80bl1Hup2t+fy16dW2Mhy1pW2ev3mGCnzUI33Wn3BRRRXMdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1Owj1TS7qxl+5PGyE+mRwfwPNcD8LL+S3bUvD9z8s1tIXVT25ww/AgfnXpNeWeIR/wAIr8T7LVl+W1vseae3Pyv/AEauzDfvITo99V6o4cX+7nCt2dn6M9Trhte+F3hbVLi+1S6s5XupQ0rMLhwN2M9AcV3IORmoL7/jwuf+uTfyNcM/hbPQhukeX/AUAeFNSA6C/b/0Ba9D1/w9p3ibTDp+pxNJblw+1XKHI6cj61578Bv+RV1P/r/b/wBAWvVq0nq/u/IiOl/meB+M/B2jeEvG3hJdIt3iFxdoZN0rPnEiY6n3r3vtXkfxZ/5HnwV/19D/ANGJXrnVfwqU37P5scvj+SPI/g8RfeJPFupycyyXIG4+hZj/AIVa+O8CN4Ns7nH7yG9UK3cZVs/yFVPgkhju/FEbcMt2oI/76q/8dmA8CQL3a9TH/fLVM9Ixt/d/QuPxy+Z3+kSC90CxllAYTW6MwIyDlRSWWgaPptw1xY6VZ20zfekhgVWP4gUnh9DH4c0xG6raxg/98itKtJ6TdjKHwoKKKKkoKKKKAOb8e3v2HwXqLg4aRBEvvuIB/TNV/hvZfY/BVmSMNOWlP4nj9MVh/Fa8eddM0ODmW5l3lf8Ax1f1J/Ku/wBOs00/Tbazj+5BEsY+gGK7Je5hYr+Z3+7Q4Ye/i5P+VW+/Us0UUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVm3fiDSLDUYtPutRt4byXHlwu4DNk4GB7mgDSoorN1TxBpGitGup6lbWjSAlBLIFLD6UAef+Jz/wAI18UNP1j7ltd481u39xvyGDXqQORkdK4vx1YW/ifwW17Yus5gH2iGROQyj72PbHP4CrngDW/7a8K27SNm4tv3EueuR0P4jH6121f3lCNTrHR/ocNH91iJU+kveX6nUUUUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcb8TNI/tLwo9wi5msm80Y67ejD8ufwrsqjnhjuIJIJVDRyKUZT3BGDWlKo6c1NdDKtTVWm4PqYXgnV/7a8KWdwzbpkXypfXcvGT9Rg/jW1ff8eFz/1yb+Rrzb4eTSaH4p1bw1cMcbi8We5X0+q4P4V6hV4yko1JJbPVfMjBVXOlFvdaP1R5T8Bv+RV1P/r/AG/9AWvVqRVVRhVAHsKWsW7m6VjyL4s/8jz4K/6+h/6MSvXR0pCisQSoJHTIpaS0jb1/Eb1dzxo6h/wqz4i6rcahbTNoesHzUniXOx8k4/Ak8fSqPinX1+K+v6ToOgQTvYQS+bdXDptAHc+wAz16k17dcW0F1EYriGOWM9VdQQfwNMtbG0sY9lpbQwIf4YkCj9KI6Wv0G3u11Joo1iiSNRhVAAp1FFAtgooooAKKKwfGOtDQvDN3dq2JmXyof99uB+XJ/CqhBzkorqTOahFyeyOKsyPFHxdluR89rp4O09vl4H/jxJr1OuH+GGinT/Dpv5VxPfN5mT12D7v9T+NdVqes6bosKTalew2sbttVpW2gn0roxk06nJHaOhzYKDVPnlvLUvUVFbXMN5bR3NvIssMqhkdTkMD0IqWuU6worMs/EOj6hfyWNnqNvPdRZ3xRvllwcHI+tadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4Qn/FTftFMfvQ2Mh/Dylx/wChV7jdXCWlnNcyHCQxtIx9gM18x+EPGsHhvUNd1+WPz9UugUtoj03OxZmJ9BgfWlF2nfsv+GG1eDXf+me6+OvHmn+CtNLyFZtQlB8i2B5P+03ov86898G+BNS8bat/wlnjEu8Mh3wWz8eYO2R2T0Hf+eD8Oobbxd8RribxY8s+oKplihmGFZweQQfQdB7V9GABQABgDoBVJW957ibv7q2GrFGkIiVFEYXaEA4x6YryGO/l+GnjC+t3hebTrpd6KpxkZ+Uj3HINew1x/wARPDn9ueH2ngTdeWeZI8Dll/iX+v4V1YSpFT5Knwy0Zx4ylJwVSn8UdV+pkf8AC39O/wCgbc/99ij/AIW/p3/QNuf++xWr4C1iz8QaCiTRQm+tQI5gVGW9G/H+ea6v7Fa/8+0X/fArSo6FObhKm7rzMqSxFSCnGqrPyPP/APhb+nf9A25/77FH/C39O/6Btz/32K9A+xWv/PtF/wB8Cj7Fa/8APtF/3wKj2uG/59v7zT2WK/5+L7jz/wD4W/p3/QNuf++xR/wt/Tv+gbc/99ivQPsVr/z7Rf8AfAo+xWv/AD7Rf98Cj2uG/wCfb+8PZYr/AJ+L7jz/AP4W/p3/AEDbn/vsUf8AC39O/wCgbc/99ivQPsVr/wA+0X/fAo+xWv8Az7Rf98Cj2uG/59v7w9liv+fi+48//wCFv6d/0Dbn/vsUf8Lf07/oG3P/AH2K9A+xWv8Az7Rf98Cj7Fa/8+0X/fAo9rhv+fb+8PZYr/n4vuPP/wDhb+nf9A25/wC+xR/wt/Tv+gbc/wDfYr0D7Fa/8+0X/fAo+xWv/PtF/wB8Cj2uG/59v7w9liv+fi+48/8A+Fv6d/0Dbn/vsUf8Lf07/oG3P/fYr0D7Fa/8+0X/AHwKPsVr/wA+0X/fAo9rhv8An2/vD2WK/wCfi+48/wD+Fv6d/wBA25/77FH/AAt/Tv8AoG3P/fYr0D7Fa/8APtF/3wKPsVr/AM+0X/fAo9rhv+fb+8PZYr/n4vuPD9Y8YW114ys/EFhbSQvFt81GI+fHB5HqvFdh/wALf07/AKBtz/32K6DxroEGp+FbyOGBBPEvnRlVAOV5x+IyKz/hvd22q+FY4pYYmntGML5UZI6qfy4/CumVShUoqbh8Om5yQp4inXdNTtza7dTP/wCFv6d/0Dbn/vsUf8Lf07/oG3P/AH2K9A+xWv8Az7Rf98Cj7Fa/8+0X/fArm9rhv+fb+86/ZYr/AJ+L7jz/AP4W/p3/AEDbn/vsUf8AC39O/wCgbc/99ivQPsVr/wA+0X/fAo+xWv8Az7Rf98Cj2uG/59v7w9liv+fi+48//wCFv6d/0Dbn/vsUf8Lf07/oG3P/AH2K9A+xWv8Az7Rf98Cj7Fa/8+0X/fAo9rhv+fb+8PZYr/n4vuPP/wDhb+nf9A25/wC+xR/wt/Tv+gbc/wDfYr0D7Fa/8+0X/fAo+xWv/PtF/wB8Cj2uG/59v7w9liv+fi+48/8A+Fv6d/0Dbn/vsUf8Lf07/oG3P/fYr0D7Fa/8+0X/AHwKPsVr/wA+0X/fAo9rhv8An2/vD2WK/wCfi+48/wD+Fv6d/wBA25/77FYWpazN8SfEOnaZawyQWcZLyBjk4/iY/hwPc+9d54y1Wx8OaDLOIYftUoMduuwZ3ev0HX8qzfhn4ebTdIbVLpCLu9+Ybhyqdvz6/lXRCVGnTdaMLPZa3/qxyzhWqVVQnO63eltP+CdvDClvBHDEoWONQqqOwFeJfHe7e81XQtEiOXbMhUerMFX+Rr3Cvmz4geIET4xm+a3a7i02WNRCrY3bACRnBx82e1eVo5xT7nsrSLa7H0TptolhpdraRjCQxLGPoBik1S8XTtJvL1zhbeF5T+AJryP/AIX63/Qpz/8AgX/9rrI8UfGmTW/Dd7pieH5bRrqPy/Oa43BQTzxsGeMjrRNtp23FBJNJ7F74D2bXWpa5rMoyzFYgx9SSzf0r3CvOvgrpv2H4fwzlcNdzPMfpnaP0WvRauStZdiE73fcKKKKkoKKKKACiiigAooooAKKKKACiiigAooooA5L4m6l/Zfw81eYNh5IvIX6uQv8AImvPfg98OrK5sYPFGqKJ3ZibWBh8q4ONx9TkcVvfG6LU77w5Yadpthd3ZluDJJ9nhaTaFHGcA45b9K7jwnpn9j+E9K08rteG2RXBH8WMn9c0Q+1L5Dnso/M8m+LekXHhjxZp3jTS12bpFE20cCRemfZl4/A17Foer2+vaJaanatmK4jDj2PcH3ByKg8T6DB4l8OXulTgYnjIRj/A45U/ga85+DcmuaNNf+HNW0y+hgRjJbzSQOIwQcMoYjGD1H40Q2cPmhT6S+TPXaKKKAPKPEdlP4D8Ww6/p6H+z7lsTRL0BP3l/HqPce1en2N7BqNlDeWsgkhmUMjD0qPVdMttY02awu03Qyrg+oPYj3FeZ6FqV38PvET6FqzltMnbMUx6Lnow9vUdv59/+80/78fxX+aPP/3Wr/cl+D/yZ6xRSKwZQykEEZBHelrgPQCiiigAooooAKKKKACiiigAryP456/d6Zp+lWVjdS2808jyMYnKnaoAA49yfyr1yvA/iMT4j+M+laMvzRwmGJh9Tvb9D+lK3NKMe7KTsnLsj2fwzbTWfhjTILmR5J0tk8x3Yli2Ock+9atIoCqAOgGKWqk7u5EVZWAjIweleWeGT/wivxMv9Gb5ba8z5Xp/eT9CR9a9TrzX4pWMlpPpniG1GJbeQRsw9juX9c114NqUnSe0lb59DjxqcYxrLeLv8up6VRVXTb6PUtNtr2E5jnjVx+Iq1XI007M7E01dBRRRSGFFFFABRRRQAVHcXEVrbyXE7iOKNSzs3QAVJXlnirWrvxlrieGdDbNqrfv5h91sdST/AHR+p/Ct6FF1ZW2S3fYwxFdUY33b2XdkOnQzfEbxm+oXKsNIsjhEPQgdF+p6mvWAAqgAYA4ArP0PRbXQNKhsLRcIg+Zj1du5NaNPEVlUlaPwrYnDUXTi3LWT1YyWRYYnlc4VFLE+gFeE/CCE658RNc1yZdwUO2SM/NI+f5A16540muYPBmrNZwSz3LW7RxxwoXYlvl4A571xvwS0C70fw3e3F/aTW1zc3H3JoyjbVAA4PPUmueHxN9l+Z0y+BLu/yPTPKj/55p/3yK8d+Pl6sel6TpkYAaaZpWAHZRgf+hGvZa8T+IOkap4j+LWk26abePp1uYUecQMYsbtzfNjHfFK3NKMfMpOyb7I9W8L6cNJ8LaZYgYMNsin645/WtakAwoA7cUtVJ3bZEVZWCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKw/FPhq28TaU1rNhJl+aGbHKN/ge4rcoqoTlCSlHdEzhGcXGS0Z5f4V8U3nhrUP+Ea8SZjVDtgnY8KOwz3X0Pb+XqAIIBByDWB4q8K2fifTzFKBHcoCYZwOVPofUe1cXoPivUfCF6ug+Jo3+zrxDcddq9uf4l/UfpXZKEcSuen8XVfqjhhUlhX7Oq7x6Pt5M9TopkM0dxCk0MiyRuNyupyCPUU+uE9AKKKKACiiigAooooAOleB+Ah/wAJJ8btT1c/NHA00qn8di/of0r2bxRqI0nwtql/nBhtnZT/ALWMD9cV4D8LPG+h+Djqc+qpdPcXRQIYYw2FGSc5I7miD9+/ZfmOS9y3d/kfSlFeZf8AC9fCX/PLU/8Avwv/AMXXTeEvHek+NDdDS47tRbbd5njCjnOMYJ9KLCeh09ZfiPSl1rw9e2BALSxnZns45X9QK1KKqMnFqS6EyipRcXszgPhVqrXGiXGlzE+dZSHAPXY3P88139eWH/ik/i3/AHLPU/y+c/8AxY/KvU66cZFc/tI7S1/zOXBSfs/Zy3i7f5BRRRXIdgUUUUAFFNd1jRndgqKMszHAArzPxJ4zvPEF4dA8LI8hk+WW4XjI74PZff8AydqNCVV2W3V9jCvXhRV3v0XVkvjDxfc6nef8I34czLPKdk00f6qD6eprpvB/hSDwxpnl/LJeS8zy46n0HsKZ4Q8H23hiyycS38o/fTY/8dHtXTVrWrRUfZUvh79zKhRk5e2rfF0XYKKKK5DsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKy9d0Cw8Q2DWt9EGHVJBwyH1BrUopxk4u8dyZRUlyyV0eSRzeIfhpdGKVDfaKzcN2H0/un26GvRtD8Rab4htPPsJwxA+eJuHT6itKaGK4haKaNZI3GGVhkEV51rXw8urC8/tTwpcNbzqdxt9+P++T/Q8V289LEfxPdl36P1OH2dXDfw/eh26r0PSKK830j4lTWdyNP8UWcltOvBmVMfiV/qPyr0G0vLa/t1uLSeOaFujo2RXPVoVKXxL59Dpo4inWXuvXt1J6KKKxNwooooAgvLK11C1ktby3iuLeQYeKVQyt35BrG/4QXwn/ANC3pX/gIn+FdBRQBz//AAgvhP8A6FvSv/ARP8K0dM0TS9GSRNM061s1kILi3iCBiPXFX6KACiiigDgPirpTXGiQapCCJrKTlh1Ct3/A4/Ouq8N6quteHrK/BG6SMb8dmHDD8wat6jZR6lptzZS/6ueNoz7ZHWvP/hdeyWk+p+HrriW3kMiKfrtYfnj867F+8wzXWD/BnC/3WKT6TX4r/gHpVFFRXFzBaQNPcTJFEoyzuwAH41xpXO5u25LWdrGuafoVmbnULhY1/hXqzn0A71xmtfEwPP8AYPDdq97csdolKEr/AMBXqfxqvpPgHUdbvRqni25eRjyLYNz9CRwB7CuyOFUFz13ZdurOKeLc3yYdcz79F8yjdan4g+I90bPToms9IVsSSHoR/tHuf9kf/Xr0Hw74a0/w3YiCzjzI3+smb7zn3/wrUtraCzt0gtokiiQYVEGABUtRWxHOuSCtHt/mXRw3JL2k3zS7/wCQUUUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBnavoWm65bGDULVJl7MRhl+h6iuBuvh5rWhTtd+GNVk458l22k+2eh/ECvT6K3pYmpTVk9Oz2OethadV3kte63PMbT4j6ro0wtPE+lSKw482NdpPvjofwIrr9M8a+H9WwINRjSQ/wDLOb5G/Xg/hWzc2ltexGK6gjmjPVZFDA/nXJan8MvD9/l4I5LKU94G4/I8flWvPhqnxJxflt9xjyYql8MlJee/3nZAggEEEHoRS15f/wAIF4q0jP8AY3iAmMchGdo/05Bo/tf4j6P/AMfOnrexjuIw2f8Avgg0fVYy/hzT/Af1yUf4lNr8T1CivMR8TdYtv+P3w1KuOuA6fzBqaP4v2B4m0u4jb0WQN/QUnga/SN/mgWYYfrK3yZ6RRXnn/C3dIx/x43f/AI7/AI1HJ8X9PA/daZcO3ozhf8aX1LEfyj+v4b+c9HorzI/E/Vbn/jy8NStnp95/5AUz+3PiLrHFppi2SHuYwuP++zmq+pVF8TS9WhfX6T+BN+iZ6h0ryLxHqFp4c+Jtvq9rcRywygG5SJwxXPysCB36H61d/wCEH8X6x/yF9f2Rt1RZGf8ATgVtaZ8L9BsiHuhLeyDvK2Fz9B/XNa0vY0G3KfNdWsv8zGt7fEJKMOWzvdv9DJvfiZe6nMbTwzpUs0h/5aSLuI99o4H1JqKDwH4h8RTLc+JtUeNOvko25h7f3V/DNek2lhaWEQitLaKCMfwxoFH6VYrL60oaUY2892a/U3U1ry5vLZGVovhzS9Ag8qwtUjJHzSHl2+prVoorllJyd5O7OyMYxVoqyCiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoJwMnpRXl/xa1m+kudH8JabO0M2qyATSKcEITtA+nUn6UuqS3Y13Z6BFrukTXP2aLVbGS4zjykuELZ+mc1fZlRSzEKoGSScAV5Xq3wU0KPw9KdNa5j1SKIulwZid7gZwR059q0PhjrMvjHwDcWGpyu88O+zmkz8zKV4OfXBx+FPe9t0Ls3szu/7T0//AJ/rb/v6v+NA1OwJAF9bEn/pqv8AjXn3/Cj/AAx/z31H/v8A/wD1q5C4+HmjzfEG00DQZbtvsmJ9RuJJdwjXIIQf7R/r7ULVpA9mz0fxv4p1LSrvTdD0GCOXWNSY+U0v3IkHVj/ntWKniHxj4Q1rTofFc1nf6bqEogW4t0CGGQ9AQAOK1/HHhjVL6+0vX/D7xDVtMJCRy/dlQ9V/n+dYp0fxj421rTX8S2FtpWl6fMLgwxyB2mcdOhPFEN/nr6f8N+I5bfL8T1CiiigQhVT1UH6ioZLO2l/1lvE/+8gNT0U7tCaTKn9lafnP2K3z/wBcxUkdlaxHMdtEh/2UAqeijmfcXKuwgVR0UD6CloopFBRRRQAUUUUAeJfEHV9Rv/i3pOhWF9cQxKYUlSKQqDubc2cf7Jr2wDAA9K8F8If8VJ8edQ1I/NFbPNIp9h8i/wA697oj/DXnqEvjfloFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV458Vy2i+P/C3iOZWNlEyxyMBnbtfJ/Rv0r2Ouf8Uy+G5rWLSfEclv5d622KKXOXbIHykdDyOfelrdNbpjVrNPqO1PxfodjoMuqHUrV4REWQJKCZDjgAdSTXnHwCkZ7fxBuBH7+NsHsSGro7b4U+ENAlfVmhmlW2UzKk8pZE2jOcd8e9ZXwMgdtH1nUWXC3V6dvuAM/wDs1VG15en6ifwr1/Q73xbr8fhnwxfarJgtDH+7U/xOeFH51z/wr0SXT/DH9qXuW1HVnN1O7dcH7o/Ln8a574v3L6rrnhvwpExxd3CyzAehbaP/AGavWIYkggjijUKiKFUDsBSjs5fL7t/xCXSPz/yH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBgDxloZ8T/wDCOrdk6nnBiEbHHy7uuMdKva9fjS/D+oX5OPs9u8g+oU4/WvEI9TtvCfx41G910vDBI0hSUqSFD42tx2xxxW38T/iZouoeF5dG0O7+2XF4VV2jRgETOe4GScAVL1pq27LStOz2RD8ArAv/AG1qzjJd1hVvzY/zFe11xfwt8PS+HfA1pBcxlLmcmeVSOQW6A/QYrtK0nvbsZR117hRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx3xD8FHxlpECW04t9QtJPNtpW6Z7g+nQc+1djRSauNOx49daH8VPEFh/YmpXdjb2TgJNcKRudfwGT+ma9M8OaDa+GdBtdKs8mKBcFj1djyWP1NatFVcR57f+CdVv8A4t2nieWS1OmWyBUQufM4QjpjH3jnrXoVFFJaKwPV3CiiigAooooAKKKKACiiigAooooAKKKKAMfXPC2ieI0VdW06G5KcK7DDL9COaz9K+HfhTRrpbmy0eBZkOVd8uVPqN2cV1FFC02B67hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z
|
<image>Find $x$.
|
123
|
Geometry
|
Geometry3K
|
test
|
38
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAoQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5Hxx42/wCEVjs7Szsm1DWL99lraqcZ7bj7ZI+v5mgDrqK8vi+IHivQNYsLbxroNpaWd/IIo7m0fIjY4+98zdM89PbOK9QoAKKKKACiiigAooooAKKKKACivN/E/wAS5dL+IWj+F9MitpvOuIYr6SUElPMdQFXDDDBTnnPUe9ekUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXkOqatp9t8drrUNWuY4rTRdKDBnOdpYAYAHJJ87p15r16vGf7Ht9Q/aQvvt0SSxJbJcJG4yrERRqMg9cHJ/AUAbq+Ofh/wDECeHRb7e584PAl0jRq8nIG1gevzHAOK7bxHdahY+HNQu9KjhkvoIWlijmUsrleSMAg8gEDnriuG+NulWk3gg6mYlW8s54zFMowwBbaRn05z9RXc6DeveeF9MvrshZJrKKaYvxglAWz+ZoA5jQ/iPa3Xw1PirU/Kjkh3xzQxZAMoPyouSTyCp/GtbwTqeva1oCanrtta2r3J328ECMCsXYsWY5J69uPrx4j4N0/SNe+J8ujC6d/D63c17aWxGEnZfujHptz9QpHGTX0l0oAKKw/FuvXXhzQ21Cz0i41WUSKn2eAkHB/iOATgfTvXAf8Lh17/onepf9/ZP/AIzQBf8Agrrep654b1GbVL2a7lS9IV5nLFQVU4Gegz27V6ZXzd8NPHOpeFdGvLWy8L3erpLceY0sLsAh2gbThG9M9e9eoeFfiNq3iLX4dNuvBl/p0MisWundmVMDPOY169OvUigZ6DWJ4t8RQ+F/Dd1qci75EGyCLvLK3CqPx/QGtuvGfGvjTSrb4q21rrq3B03Q0WaOGKMP5ty6qwY8jhQwx7j3oEZOr+HZtA1v4dvfnfq1/qzXV/IepkaWA7fw6fXPrXvlfPnjf4k6F4h8TeEtQsluxBpV559x5kQBK74m+UZ5OEP6V7ro2rW+uaPa6paCQW9ym+MSDDY9xQBeooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK848caBrdj4t0/xp4btReXNvH5F3Z5wZY+eR68Ej2wpwea9HooA8d1h/FfxRez0aTw5d6DpCTLLeT3eQzY7KCoz1OODk46Yre8fDWdQSw8F+HrG6it7sLHd34hfyYIB/DvxjJA5GenH8VeiUUAeR+OvCE/h3/hFdX8LabPcSaPIIGht4jI7x53ZIUdzvyfV69ZikEsSSBWUOobDrgjPqD0NLJIIonkbO1FLHHoK53QvHvhjxEVTT9XgaZuBBKfLkJ9ArYJ/DNAHSUUUUAeSfAD/AJFTU/8Ar+/9kWvW6zNE8P6V4dtZbbSbNLWGWUzOqknLnGTyT6DjoK06ACiiigDzb4k6ZqF94z8Bz2djc3ENtqBeeSGJnWJfMhOWIGFGAeT6GvSaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArAuPG/ha1uJbefxBp0c0TFHRrhQVYHBB981U+IfikeEvCF1fRuBeSfubUH/AJ6N3/AZP4VwHw9+E+kat4Vh1XxHbzTXd6xmjHnMm2M/dzg8k8tn0IoA9G/4T/wj/wBDHpn/AIELR/wn/hH/AKGPTP8AwIWsP/hTHgj/AKBs3/gVJ/jR/wAKY8Ef9A2b/wACpP8AGgDc/wCE/wDCP/Qx6Z/4ELR/wn/hH/oY9M/8CFrD/wCFMeCP+gbN/wCBUn+NH/CmPBH/AEDZv/AqT/GgDc/4T/wj/wBDHpn/AIELR/wn/hH/AKGPTP8AwIWsP/hTHgj/AKBs3/gVJ/jR/wAKY8Ef9A2b/wACpP8AGgDc/wCE/wDCP/Qx6Z/4ELR/wn/hH/oY9M/8CFrD/wCFMeCP+gbN/wCBUn+NH/CmPBH/AEDZv/AqT/GgDc/4T/wj/wBDHpn/AIELR/wn/hH/AKGPTP8AwIWsP/hTHgj/AKBs3/gVJ/jR/wAKY8Ef9A2b/wACpP8AGgDc/wCE/wDCP/Qx6Z/4ELR/wn/hH/oY9M/8CFrD/wCFMeCP+gbN/wCBUn+NH/CmPBH/AEDZv/AqT/GgDc/4T/wj/wBDHpn/AIELR/wn/hH/AKGPTP8AwIWsP/hTHgj/AKBs3/gVJ/jR/wAKY8Ef9A2b/wACpP8AGgDWu/HvhJ7OdV8RaaWMbAAXC8nFfJNfTdz8HPBUdpNIunTBlRiP9Kk6gfWvmSgaOp0P4i+KvD+1bPV5ngX/AJYXB81MegDdPwxXpmh/H+B9sevaQ0R7zWbbh/3wxyP++jXidjp17qdyttYWk91O3SOGMu35CvR/D/wO8Rantl1WWHS4DyVY+ZLj/dBwPxOfagD2Sz+JXg29gEsfiCzQH+GZjEw/BsGrH/Cf+Ef+hj0z/wACFrmbD4H+ELW3CXKXl5J3kknK/kFx/WrX/CmPBH/QNm/8CpP8aBG5/wAJ/wCEf+hj0z/wIWj/AIT/AMI/9DHpn/gQtYf/AApjwR/0DZv/AAKk/wAaP+FMeCP+gbN/4FSf40Abn/Cf+Ef+hj0z/wACFo/4T/wj/wBDHpn/AIELWH/wpjwR/wBA2b/wKk/xo/4Ux4I/6Bs3/gVJ/jQBuf8ACf8AhH/oY9M/8CFo/wCE/wDCP/Qx6Z/4ELWH/wAKY8Ef9A2b/wACpP8AGj/hTHgj/oGzf+BUn+NAG5/wn/hH/oY9M/8AAhaP+E/8I/8AQx6Z/wCBC1h/8KY8Ef8AQNm/8CpP8aP+FMeCP+gbN/4FSf40Abn/AAn/AIR/6GPTP/AhaP8AhP8Awj/0Memf+BC1h/8ACmPBH/QNm/8AAqT/ABo/4Ux4I/6Bs3/gVJ/jQBuf8J/4R/6GPTP/AAIWj/hP/CP/AEMemf8AgQtYf/CmPBH/AEDZv/AqT/Gj/hTHgj/oGzf+BUn+NAG5/wAJ/wCEf+hj0z/wIWj/AIT/AMI/9DHpn/gQtYf/AApjwR/0DZv/AAKk/wAaP+FMeCP+gbN/4FSf40AdBb+N/C93cxW9vr+nSTSsERFnUlmPAA96368e8bfBvSoPDk154YtpotRtv3oTzmfzVHVRk/e7jHpjvXT/AAu8ar4u8NqlzJnVLICO5B6uP4ZPxxz7g+1AHdUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVx/xK8V/8Il4QuLmFwL64/cWo7hiOW/4CMn649aAPOvEMj/E/wCLlvoMLFtG0osJmU8EKR5jZ9zhAfoa9zjjSKNY41CogCqqjAAHQCvO/g54U/sHwoNSuUIv9UxMxbqsf8A/EHd+PtXo1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHPGZreWIHBdCufqK8t0D4FaDYbZdZuZtSmHWMExRfkDuP5/hXq1FAFPTtK0/R7YW2m2VvaQj+CGMID9cdTVyiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCvGOn3Pwv+IFt4s0mInSr2QrcQrwATy6ewONy+hHoK91rM8QaHZ+JNDutJvlzBcJtyOqN2Ye4ODQBZ07ULXVtOt7+ylEttcRiSNx3B/rVqvFPhhrt54Q8UXXgLXW2jzT9kcngOecDP8AC45Hv7mva6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8K1Rj8VPi9FpqEtoekbhIQeHVSN5/4E2F+gzXf/FLxZ/wivhCZoH2397m3tsHlSR8z/8AAR+pFVfhD4T/AOEb8IpdXCYv9S2zy5HKJj5F/Ik/Vj6UAd+qhVCqAFAwAO1LRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5n8X/BkmtaQmu6apGq6aN+Y/vSRDkgY7qfmH4+ora+G3jNPGPhlJZnX+0rXEV2g4yez49GAz9QR2rsq8H8Q2c/wl+IsGv6fEx0LUGKywp0UHl0/D7y/THY0Ae8UVBZ3dvf2UN5ayrLbzoJI5FPDKRkGp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPPF+KKaTrcul+LNHudGJlYW9yf3kUiZ4JI9sZIyPXFd9bXVve2yXFrPHPBIMpJE4ZWHsR1qO/06y1Sze0v7WG5t3+9HMgZT+B714l8RNDi+G1qLrwzrd5p66iWhbTd29GUr8zKSeMAgZOTkjBFABL/AMXW+L6xqfM0HSOp/hdVPP8A323H+6PavduleH/DLxBpngG1fSfElhd6Te3sgmF3cRny5Vx8oyOgGT6jJOSOle2W9xBd26T200c0MgykkbBlYeoI4NAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4n8O2finw/daTeDCSrlJMZMbj7rD3B/MZHetiorm6t7K2e4up44IIxl5JXCqo9yelAHjvwn8RXfh/WrrwDr2Y5oZG+yFjwG6lAe4b7y/U+or1+9vrTTbR7q+uYra3QZaSVwqj8TXgXxJ1jT/ABdrUOo+ELW+uL7TFL3OoW8JEYRfmBz1ypBwSB+PFbXgXw/bfEyA694o1q51SeCUodOz5ccJ7ZA7Ec8Y7g5waBnVQfE065r8GneFdFudUtVmVbu+I8uKNM8kZxk455IzjgGvQagtLO2sLVLazt4re3jGEiiQKqj2AqegQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAASACScAV4TbA/FT4wNdY8zQdIxj+66qTt/wC+2yf90e1dp8YPFf8Awj3hB7K3kxf6lmCMA8rH/G35HH1b2q98L/Cn/CKeDoIp49t/d/6Rc5HKkjhP+AjA+uaAOo1PStP1myaz1Kzhurduscqhhn1Hofcc1wafDjVfDWoJc+CteeztXlBm0+8zLDtJ5K984/H/AGq9IooAKKKKACiiigAooooAKKKKACiiigAooooA8u8Rat4y1T4mT+HPDOswWEVvYrcSebAjrnIzyUJz8y8Vq6Ho3xGttatptZ8UWN3pysfOgjtkVnGDjBEYxzjvXIRaxrqfFzxa/h3SE1G/ZYoA0sgSKBFUAljkdSo4yM8103hz4g6t/wAJWnhjxfpEWnajMu63lgYmOXrx1PXBwcnkY60DPRaK5X4jWmo3PgfUH0m8urW9tl+0RvbStGzBeWXKkE5XPHriuKl+I93qPgDRNP0aRpvFGqp9lG0/NEV+V5Se2cZB9ye1Aj1+isrw5pM2i6FbWVzf3N/couZrm4laRnc9eWJIHoPStWgCK5ubeztpLm6niggjG55ZXCqo9STwKdFLHPEksTrJG6hkdDkMDyCD3FcV8X+PhbrP/bD/ANHR1q+AOfh9oH/XjF/6CKAOjooooAwfEPjPQPC2F1fUFglZN6RBWZ3HI4AHqMVxnwm8U3nivXfFl7PPcG2MsDW1vLKWWBD5vCjOBwBnHUivQdQ0HRtWlWXUtJsLyRF2q9zbJIVHXALA8V5x8JYYrbxn8QIIIkihi1BUjjjUKqKJJwAAOAAO1AHTfEjxbceFPDivp6B9TvJRb2oK5wx6tjvjsPUiuQ1Pwl490HQ5PEEPjS8utRt4/Pnsny0RAGWCgkg4AP8ACM+1WPipJ5nj3wBasMxnUAzDPDZliH9D+deoagobTbpWGQYXBH4GgDI8F+I18V+FLHV9ipLKpWZF6LIpw2PbIyPYit+vLvgNK0ngK5VukeoyKv02Rn+ZNeo0AFFFFABRRRQAUUUUAFFFFABRRRQA1wxRgjBWI4JGQD9K82t/hpqXiC9F9481p9R2tmOwtWMcCfy7egB9zXpdFAFWx02x0yyWzsbSG2tlGBFEgVfyFeIajDN8H/iVHqNsrnw7qZIeNRwq5+ZceqE5Htx617zWF4v8MWvi7w5c6Vc4VmG+GXGTFIPut/Q+oJFAGzbzxXVvFcQSLJDKodHU5DKRkEVJXj3wi8T3OnX1z4E1zMd5aO4td5645aP37sPbPoK9hoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkZgqlmICgZJPalrzb4zeKjofhT+y7Z8XuqZiG3qsX8Z/HIX8T6UAcno6t8UPjBNqsgL6LpJBiBHysFJ2D/gTZf6Aivda5H4b+FR4T8HWtrKm29n/f3XqHYfd/4CMD6g+tddQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYeheLNL8RahqdjYPKZ9NkEVwskZXDZYcevKGuB+KgMnxA8Bpa/wDH4LzJx1C+ZFgn24b9a09a+HutW3im58R+Ddai066uxm5t7hcxSN3PQ9evI4OSDzUvhr4f6pH4p/4SjxbqsWpapGmyBIVxFD2yOB0BOBgdSeTQB1PirxDY+F/D11ql/ho0XakXeVz0QfX+WT2rx34N2yaR49vrLVdPFtqNxZrNahs/u0bDlR9VYdeRtI9a9C1jwdqfiXxzZ3+sTWp8P6f89tZRuzNLLx80gKgdfc8DHc0nivwZqWpeNtB8TaNPaw3NidlwJ3ZfMjz0G1TzhnHPqKBndVxnjWz8eXN5bN4S1OztLYRkTJMili+euWRuMfSuzooEeB+ONP8AifB4Ov5PEWsWNxpQ8vz4okjDN+8XbjEYP3tp61c8Nab8WJfDOmvpOt2EWnNbobeN0jLKmOAcxk/qa7r4uRvJ8LtaVFLECFsAZ4EyEn8ACa1fAcbxeAdBSRSrCxiyGGCPlFAyr4JtfGVrDef8JfqFpduzL9n8hVBUYO7O1VHpj8a6uiigQV5X8LP+R6+In/YTH/o2evVK4vwX4Q1Dw54k8V6jeTWzw6veefAsLMWVd8jYbKgA4cdCe9AHP/FeEQ+LfAmpvxFDqSpK3p+8jYforV6PrFzHZ6Jf3MrBY4baSRiTgABSTVDxb4Xs/F/h+bSrxmjDEPFMoyYpB0YDv1Ix6E1wd14E+Imr2Q0XVfF1o2kcK7xxnzpEHZvlGfxY575oAvfA21Nv8PPNK4FxeSyg+uAqf+yV6VVHR9JtNC0e10uxQpbW0YRATkn1J9yck/Wr1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5L8YfCdwFg8Z6Luj1HTyrXDR9Sin5X+q9/b6V23gbxZB4x8Mwakm1bgfu7mIf8s5B1/A9R7GuidEkjaORVdGBDKwyCD2Irwcib4OfEsN858N6ofchUz/AOhIT+Kn3oA96opsciTRJJG6ujgMrKcgg9CKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2SRIo2kkYKiAszMcAAdSa8N8MI/xM+Ld14gnVm0nSyDArDjgnyh+JBc/lXTfGnxS+k+HI9Es3b7dqh2EJ94Qj73/fRwvuN1chpXwk+Iem2gXT/EVvp6S4keGG/nj+Yj+IKmM9u/SgZ77RXiH/AArb4p/9Dr/5Vbr/AOJo/wCFbfFP/odf/Krdf/E0CPb6K8Q/4Vt8U/8Aodf/ACq3X/xNH/Ctvin/ANDr/wCVW6/+JoA9vorxD/hW3xT/AOh1/wDKrdf/ABNH/Ctvin/0Ov8A5Vbr/wCJoA9vorxD/hW3xT/6HX/yq3X/AMTR/wAK2+Kf/Q6/+VW6/wDiaAPb6K8Q/wCFbfFP/odf/Krdf/E0f8K2+Kf/AEOv/lVuv/iaAPb6K8Q/4Vt8U/8Aodf/ACq3X/xNH/Ctvin/ANDr/wCVW6/+JoA9vorxD/hW3xT/AOh1/wDKrdf/ABNH/Ctvin/0Ov8A5Vbr/wCJoA9vorxD/hW3xT/6HX/yq3X/AMTR/wAK2+Kf/Q6/+VW6/wDiaAPb6K8Q/wCFbfFP/odf/Krdf/E0f8K2+Kf/AEOv/lVuv/iaAPb6K8Q/4Vt8U/8Aodf/ACq3X/xNH/Ctvin/ANDr/wCVW6/+JoA9vorxD/hW3xT/AOh1/wDKrdf/ABNH/Ctvin/0Ov8A5Vbr/wCJoA9vorxD/hW3xT/6HX/yq3X/AMTR/wAK2+Kf/Q6/+VW6/wDiaAPb6K8Q/wCFbfFP/odf/Krdf/E0f8K2+Kf/AEOv/lVuv/iaAPb6K8Q/4Vt8U/8Aodf/ACq3X/xNH/Ctvin/ANDr/wCVW6/+JoA9vorxD/hW3xT/AOh1/wDKrdf/ABNH/Ctvin/0Ov8A5Vbr/wCJoA9vorxD/hW3xT/6HX/yq3X/AMTR/wAK2+Kf/Q6/+VW6/wDiaAPb6K8Q/wCFbfFP/odf/Krdf/E0f8K2+Kf/AEOv/lVuv/iaAPb6K8Q/4Vt8U/8Aodf/ACq3X/xNH/Ctvin/ANDr/wCVW6/+JoA9vorxD/hW3xT/AOh1/wDKrdf/ABNH/Ctvin/0Ov8A5Vbr/wCJoA9vorxD/hW3xT/6HX/yq3X/AMTR/wAK2+Kf/Q6/+VW6/wDiaAPb6K8Q/wCFbfFP/odf/Krdf/E0f8K2+Kf/AEOv/lVuv/iaAPb6K8Q/4Vt8U/8Aodf/ACq3X/xNH/Ctvin/ANDr/wCVW6/+JoA9vorxD/hW3xT/AOh1/wDKrdf/ABNH/Ctvin/0Ov8A5Vbr/wCJoA9vrnPG/hO38Y+Gp9Nl2pOP3ltKf+Wcg6H6HofY15n/AMK2+Kf/AEOv/lVuv/iaP+FbfFP/AKHX/wAqt1/8TQM1Pg94snTz/BetbotQsCy24k6lVPzR/Ve3t9K9br5t1/4f+N/CR/4S651OC9ubWVJHninkllXHAZt6jKjgHk8H0zXung7xPbeLvDdtqtvhXYbJ4gc+VIPvL/UexFAG9RRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmTTR20Ek8zrHFGpd3Y4CqBkk0+vLPjX4nksdGt/DlgS19qhw6pywizjH/Am4+gagDn/BcMvxI+Kd74qvELabpzD7MjjgEZ8pfw5c++PWvc65zwN4Yj8JeFLTTAF+0Y8y5cfxSt978BwB7AV0dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJoYrmCSCaNZIpFKOjDIZSMEH2xXhFhJP8HviU9jcO3/CO6mcq7chVz8rfVCcH2Oe4r3quW8f+D4vGXhmWy+VbyL97aSH+GQDofY9D+fagDqFYMoZSCpGQR3pa8q+Dvi+W7s5fCmrFo9T03KxCThmjU4K/VDx9Mehr1WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorLTxJo0muS6KupW/wDaUQBe2LYfkZGM9eCDxmtSgCK6uYbK0muriQRwQo0kjt0VQMk/lXifgC2m+IXxJv8AxjqEZ+x2TgWsbdA3/LNf+Ar8x/2iD3rZ+NXiWWKwtPCmnBnvtTZTIqH5vL3YVfqzcfRT613Xg3w1D4T8L2elR4aRF3zyD+OQ8sf6D2AoA3qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxn4seHLrQNZtfH2gjy54JF+1hRwD0DkehHyt9R6mvTfC3iO08VeHrXVrThZVxJHnJjcfeU/Q/mMHvWnd2sF9aTWl1EstvMhjkjYcMpGCDXhvh+6uPhJ8RptC1CVv7B1FgYpn+6oPCP9R91vz7CgD3iijrVTUdTsdIs3u9Ru4bW3TrJK4UfT3PtQBborE8NeK9K8WW1zc6TJJJDBMYmZ4ym44ByM9ua26ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGt3V9ZaLd3OmWX229jjJht9wXe31JH1/Dir9FAHj9xqXgf4gTmy8Q2Uvh/xGuF3TDyZVbthyMN7Bhn0HerUk/jr4cQPNcyJ4m8PxDc0jNsuIEHck5JH/AH107V3niHwnonim28nV7COcqMJL92RP91hyPp0rwvx7Z6v4Vli8E6Xr13qVjfqrJYOgaSL5/kQMPUjoMfSgZq/DiaDxv8UtQ8TapcQpND89pZu43dNq4HcIo546kGvea8J8N6X8P/EGi2WhXiT6J4ks1CNLL+4naXOSQTw3J4B+YDgY610f234geATi/hPijRE/5bxZ+0xr6kdT687v94UAep0VV02+TU9Mtb+OKWKO4iWVUmXa6hhkZHY1aoEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXD/ABV8NWPiDwfM9zPBa3Nnma2uJnCKGxyhJ7N0+uD2rS8Yax4h0yK0g8OaH/aN3dMy+a74it8Y5fpwee46fhXEXng+1g2678UPEwumU7o7JZCkKn+6qjlvooHvmgDD8GfE3xRf6Ja+GtH0pL/WYlKrdTy/IsIwAzDjJGcZz2HUmt298I6XpoTXvid4jOo3I5jtixWJT/dRBy34AD1FefeI7149dPjLwTpN7pWmW4WL7V5ISIuQVyq4wARgEc89cE16Z4C8E6BrWm2vinUruXxBf3K7mlvTuWJh1TYSeQcjnPqMUDLHh7xfrXiHUbKDwt4ZjsfDMLgSXN0vlB488iNV4B69M++K9JpFUKoVQAoGAB2paBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBV1LUbbSdMudQvH2W9tG0kjewGePevHfhdp1z4w8ban471NPkSVktlPIDkYGPZEwPqR6Vb+M+u3F/Pp/gnSsyXd7Kjzop9T8iH6n5j6YBr0vwzoVv4a8O2WkW+CtvGAzAffc8s34kk0AQeJPB2heK7YxarYpJIBhJ0+WVPo3X8Dx7Vh+FfCniXwtrIth4gGoeHNjbYbpSZoz/AAhT6fjjj7o613NFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkVnidUcxsykB1AJU+ozxXA6T8K7AX39qeJ76fxBqR533X+qX2CZPHsePYV6BRQBUvNNs7/S5tNuLdGs5YjE0WMDaRjA9Pb0rxXwhf3Xwu+IVx4U1SVjpF9IGt5n4AJ4ST0GcbW9x6Cvda4f4oeCh4w8NsbZAdUs8yWx7v8A3o/x7e4HvQB3FFec/CTxqfEehHS7+Q/2tpwCPv8AvSR9A31HQ++D3r0agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqlq+qWui6RdanePst7aMyOfXHYe5PA9zV2vGvjJrNzrGqaZ4H0o77i4lSS4VT3P3FPt1Y+200ARfCXS7rxN4q1Tx3qqZZpGS2B6BzwSPZVwo+p9K9qrN0DRrbw9oNlpNqP3VtEEzjG49Sx9ycn8a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8Q+I2j3fgPxlaeOtET/R5pv9LiH3d5+8D/suM/RvqK9g0TWLPX9GtdUsZN9vcIHX1HqD7g5B+lP1bS7TWtKudNvo/MtrlCki+3qPQg8g+orxnwFqt38OvHV14K1mQ/YbqXNrM3Chj9xh7OMA+jAe9AHuVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ+uavbaBod5qt2cQWsRkYZ5Y9lHuTgD615R8HdHudc1vVPHWqrumnldLckcbj99h7AYUf8CHaqHx28VCa8tfDFvKRHCRPeFefmI+RfwB3Y9x6VqaN8Z/Bmh6NaaXaadrKwWsQjX9zFk46k/vOpOSfrQM9ioryv8A4X54V/6B+s/9+Yv/AI5R/wAL88K/9A/Wf+/MX/xygR6pRXlf/C/PCv8A0D9Z/wC/MX/xyj/hfnhX/oH6z/35i/8AjlAHqlFeV/8AC/PCv/QP1n/vzF/8co/4X54V/wCgfrP/AH5i/wDjlAHqlFeV/wDC/PCv/QP1n/vzF/8AHKP+F+eFf+gfrP8A35i/+OUAeqUV5X/wvzwr/wBA/Wf+/MX/AMco/wCF+eFf+gfrP/fmL/45QB6pRXlf/C/PCv8A0D9Z/wC/MX/xyj/hfnhX/oH6z/35i/8AjlAHqlFeV/8AC/PCv/QP1n/vzF/8co/4X54V/wCgfrP/AH5i/wDjlAHqlFeV/wDC/PCv/QP1n/vzF/8AHKP+F+eFf+gfrP8A35i/+OUAeqUV5X/wvzwr/wBA/Wf+/MX/AMco/wCF+eFf+gfrP/fmL/45QB6pRXlf/C/PCv8A0D9Z/wC/MX/xyj/hfnhX/oH6z/35i/8AjlAHqlFeV/8AC/PCv/QP1n/vzF/8co/4X54V/wCgfrP/AH5i/wDjlAHqlFeV/wDC/PCv/QP1n/vzF/8AHKP+F+eFf+gfrP8A35i/+OUAeqUV5X/wvzwr/wBA/Wf+/MX/AMco/wCF+eFf+gfrP/fmL/45QB6pRXlf/C/PCv8A0D9Z/wC/MX/xyj/hfnhX/oH6z/35i/8AjlAHY+N/FJ8HeHjq/wBkF0FmSNot+zIbuDg/yrC0L4x+EtYKxz3UmmztxsvF2rn/AHxlcfUiuA+IvxW0Lxd4Tk0qwtNRjnaZJA08aBcA88hyf0rx+gdj7bgnhuYVmt5Y5YmGVeNgyn6EVJXxjpWvatoU3m6XqNzaNnJ8qQgN9R0P416Rofx51uz2x6zY2+oRjrJH+5k/TKn8hQFj6Gorytfj74X2jdp+sBscgRRH/wBqUf8AC/PCv/QP1n/vzF/8coEeqUV5X/wvzwr/ANA/Wf8AvzF/8co/4X54V/6B+s/9+Yv/AI5QB6pRXlf/AAvzwr/0D9Z/78xf/HKP+F+eFf8AoH6z/wB+Yv8A45QB6pRXlf8Awvzwr/0D9Z/78xf/AByj/hfnhX/oH6z/AN+Yv/jlAHqlFeV/8L88K/8AQP1n/vzF/wDHKP8AhfnhX/oH6z/35i/+OUAeqUV5X/wvzwr/ANA/Wf8AvzF/8co/4X54V/6B+s/9+Yv/AI5QB6pRXlf/AAvzwr/0D9Z/78xf/HKP+F+eFf8AoH6z/wB+Yv8A45QB6pRXlf8Awvzwr/0D9Z/78xf/AByj/hfnhX/oH6z/AN+Yv/jlAHqlFeV/8L88K/8AQP1n/vzF/wDHKP8AhfnhX/oH6z/35i/+OUAeqUV5X/wvzwr/ANA/Wf8AvzF/8co/4X54V/6B+s/9+Yv/AI5QB6pRXlf/AAvzwr/0D9Z/78xf/HKP+F+eFf8AoH6z/wB+Yv8A45QB6pRXlf8Awvzwr/0D9Z/78xf/AByj/hfnhX/oH6z/AN+Yv/jlAHqlFeV/8L88K/8AQP1n/vzF/wDHKP8AhfnhX/oH6z/35i/+OUAeqUV5X/wvzwr/ANA/Wf8AvzF/8co/4X54V/6B+s/9+Yv/AI5QB6pXn/xX8EnxV4e+12UedVsAZIdo5lTqyfXuPcY71l/8L88K/wDQP1n/AL8xf/HKP+F+eFf+gfrP/fmL/wCOUAa3wq8bf8JZ4dFveSZ1WxAjnz1kX+F/x6H3HuK76vly58babpfxIXxR4Xhu4beVt11a3Cqm7cf3ijazDB6+x+gr6joAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpLpenTytLLYWskjcszwqSfqcUz+xdK/6Bln/34X/Cr1FAFH+xdK/6Bln/AN+F/wAKP7F0r/oGWf8A34X/AAq9RQBR/sXSv+gZZ/8Afhf8KP7F0r/oGWf/AH4X/Cr1FAFH+xdK/wCgZZ/9+F/wo/sXSv8AoGWf/fhf8KvUUAUf7F0r/oGWf/fhf8KP7F0r/oGWf/fhf8KvUUAUf7F0r/oGWf8A34X/AAo/sXSv+gZZ/wDfhf8ACr1FAFH+xdK/6Bln/wB+F/wo/sXSv+gZZ/8Afhf8KvUUAUf7F0r/AKBln/34X/Cj+xdK/wCgZZ/9+F/wq9RQBR/sXSv+gZZ/9+F/wo/sXSv+gZZ/9+F/wq9RQBR/sXSv+gZZ/wDfhf8ACj+xdK/6Bln/AN+F/wAKvUUAUf7F0r/oGWf/AH4X/Cj+xdK/6Bln/wB+F/wq9RQBR/sXSv8AoGWf/fhf8KP7F0r/AKBln/34X/Cr1FAFH+xdK/6Bln/34X/Cj+xdK/6Bln/34X/Cr1YnhjxTYeLLK6u9OSZYra6e1YyhRuZQDlcE5Uhhj+VAF3+xdK/6Bln/AN+F/wAKP7F0r/oGWf8A34X/AAqPXNe03w3pcmo6rcrBbIQMkZLMeiqBySa5DTPjL4V1LUI7R/ttiZTiOW7hCRtnochjge5xQB2f9i6V/wBAyz/78L/hR/Yulf8AQMs/+/C/4VeooA8w+M+m2Nt8PZZLeytopPtMQ3RxKp6nuBXzpb2095OkFrBJPM5wscSFmY+wHJr7F8QeHtP8T6Z/Z2po8lr5iyMiOV3FegJHOPpT9I8P6RoEHk6Vp1taIRgmJAGb6t1P4mgdz540D4LeKdY2SXscel2553XJzIR7IOc+zYr1PQPgt4W0fZLepLqlwvObg4jz7IOMezE16NRQK5nx6Do0MYji0mwRB0VbZAB+GKd/Yulf9Ayz/wC/C/4VeooAo/2LpX/QMs/+/C/4Uf2LpX/QMs/+/C/4UaxrOn6Bpkuo6ncrb2sX3nbJ57AAck+wrh7b41+FJ7tIZF1G2ic4W5ntwIz+IYn9KAO4/sXSv+gZZ/8Afhf8KP7F0r/oGWf/AH4X/CrcUsc0SSxOrxuoZXU5DA8gg0+gCj/Yulf9Ayz/AO/C/wCFH9i6V/0DLP8A78L/AIVeooAo/wBi6V/0DLP/AL8L/hR/Yulf9Ayz/wC/C/4VeooAo/2LpX/QMs/+/C/4Uf2LpX/QMs/+/C/4VeooAo/2LpX/AEDLP/vwv+FH9i6V/wBAyz/78L/hV6igCj/Yulf9Ayz/AO/C/wCFH9i6V/0DLP8A78L/AIVeooAo/wBi6V/0DLP/AL8L/hR/Yulf9Ayz/wC/C/4VeooAo/2LpX/QMs/+/C/4Uf2LpX/QMs/+/C/4VeooAo/2LpX/AEDLP/vwv+FH9i6V/wBAyz/78L/hV6igCj/Yulf9Ayz/AO/C/wCFH9i6V/0DLP8A78L/AIVeooAo/wBi6V/0DLP/AL8L/hR/Yulf9Ayz/wC/C/4VeooAo/2LpX/QMs/+/C/4Uf2LpX/QMs/+/C/4VeooAo/2LpX/AEDLP/vwv+FH9i6V/wBAyz/78L/hV6igCj/Yulf9Ayz/AO/C/wCFXqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4HxpofxA1q5ubbQ9Y02z0mVAm1yyzHIG4FghxznoayfgH/yIt9/2E5P/AEVFXqleV/AP/kRb7/sJyf8AoqKgBvj2Nde+LfhLw3cjfZKjXkkR+6/3zg+vEWPxPrXQ/FTRrXVPh5qRliTzLOL7RA+BmMrycfUZH41zeroy/tJaASMBrBiPceXOP6Gu28f/APJPtf8A+vGX/wBBoGR/DvUpNW+H+i3cr75DbiNmJySUJTJ9/lqTwv4007xXcajbWkF3b3GnyiKeK6VVYHJHG1jxlSKzPhEjJ8LtFDDBxMfwMzkV5742n1Lwb8UrpvD7xi48Q2qxqu8Dy5XYLu56HcuQTxlj70CPVtO8Zadq3im90Gwgup5bEf6Rcqi+Qjf3d27JOeMAdj6V0Vc94M8KW3hDw/Fp8REtwx8y5uMcyyHqfp2HtWtqepWej6dPqF/OILWBd0khBO0dOg5NAFuiuH/4W/4E/wCg7/5KT/8AxFH/AAt/wJ/0Hf8AyUn/APiKAO4orj7H4peC9Sv4LK11tWuJ3EcatbyoGY9BllAH4muwoA86+KGg6n4j1DwvYW9pNcaZ9u335ToiZQZP/AWf9a3fHthYzfDvWoJoYhDDZSSRLtACOikpj05Arp3dY0Z3YKqjJYnAA9a8e1/WdS+KmsP4a8Ns0Xh+Fx9v1HHyyYOcD1HHA7nngCgDrPhHcT3Hwy0hrgklRJGjHuiyMB+QGPwrtqqaXptro+l22nWUfl21tGI416nA9fU9yat0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeV/AP/AJEW+/7Ccn/oqKvVKq6fpmn6TA0GnWNtZws28x28SxqWwBnCgDOAOfagDzv4kxTaD4r8O+OI7eSa2sGNve+WMskbZAb6fO/449aoePviRouu+FZNE8OTvqOo6mVhSOOFhtBIzncByRwB71646LIjI6hlYYKkZBHpVCy0HRtNuGnsdJsLWZuskFsiMfxAzQBgwXNp8OfhtaHUWGLC1VGRSMySkZKr9WJ/nXl2s+DtU1jwHqPjrVWkGuTSJexRqSPJtl42gdvlO72Cjvmvc9Q0rTtWjSPUtPtbxEbci3MKyBT6gMDg1ZlhinheGWNJInUo6OoKspGCCO4oAyPCOuL4k8KabqwILzwjzQO0g4cf99A1qXdpb31rJa3cEc9vKu14pFDKw9CDTLHT7LTLYW2n2dvaQAlhFbxLGuT1OAMVZoA5z/hAPCP/AELmm/8AgOtH/CAeEf8AoXNN/wDAda6OigDBtfBPheyuorq20DT4p4mDxyLAuVYdCOOCK3qKKAPMPjNrj2enaToi3ps4dVuCl1OM5SFSobOOcfOCfUDFXtD8cfDnw7pMOm6brFvDbRDgeXJlj3Zjt5J9a7LUdD0nV2jbUtLsr1owQhubdJCueuNwOKpf8IX4V/6FrRv/AAAi/wDiaALuj61p2v2AvtLulubYsVEiggEjr1Aq/Vax0+y0y2FtYWdvaQAkiKCIRqCepwBirNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==
|
<image>Solve for x in the figure. Round to the nearest tenth if necessary.
|
3
|
Geometry
|
Geometry3K
|
test
|
39
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD3AfYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcX8TPGj+DfDiyWYV9Uu5BFaRsN3P8TY7gD9SKpfCjxjqni3S9SGs+X9us7ry2CJswpXgEeuQ1AHoNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIzKilmICgZJJ4Apa80+MnimXSvD8Wg6cWbVNYPkqifeEROGx7sSFH1PpQBz+gSL8SvizceIJ2B0TRMJZq5wHcE7T+Jy/4KDVv4auNN+LfjbSFI2TSG5QDpgSEjH4SirGm/Abw2umWo1GS9e98pfPaKYBd+OcDb0zWFo+hWngH49afpdi0osr2zbaZW3H5lbvgfxR0Ae60UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVRuNF0q71CLULnTLOa9hx5VzJArSJg5GGIyMEk8VeooAKpz6Rpt1qEN/cafaS3sAxFcSQq0kY5PysRkdT09auV4bD8R/F+t+P9XXwpFDqGm2iblspMDzI0IUujcHJJyOehHBxQB7lRXCeHviroWrXP9n6ksuiaqp2vaX42fN6Bjgfng+1d31GRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBw/xU8RS6J4SazsctqmquLK1RPvZbhiPwOPqwrkfhzoCeF/izqOjo242+ixiRh/E5MTOfpuJrS0n/iu/i7d6u3z6R4cH2e17q856sPXByc+yVY0f/k4TxD/ANgmP/2lQB2XiHwnofim28nV9PiuMDCS42yJ/usOR9OlcKfCXjbwMfM8I6r/AGvpa8/2XqB+ZR6I3A/Ir9DXqlFAHA6D8V9Gv7v+zdbhm0HVVOGt74bVz7OQP1x+Nd6rBlDKQQRkEd6yte8M6N4mtPs2safDdIB8rMMOn+6w5H4GuCPgrxh4JYzeCtYN/p6nJ0nUTkY9Ebgflt/GgD1OivPdE+LOlz3g0zxHaz+H9VHDRXgIjY+ocgYH1wPc16AjrIiujBkYZVlOQR6igB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8SvEzeGPBtzPbsft90fstoq/e8xu4+gyfqB6119eVx/8V98XnkPz6L4X4T+7JdE/wBCv/jg9aAOv8A+GV8J+D7LTSB9p2+bcsP4pW5b644X6KK5jR/+ThPEP/YJj/8AaVemV5no/wDycJ4h/wCwTH/7SoA9MooooAKKKKAMzW/D2keI7M2ur2EN3F28xfmX3Vhyp+hrz9/AXinwa7XHgXWmntAdx0nUG3IfZW6D/wAdPua9TooA860j4s2IvBpfiuwn8PamOCLkHyX9w/Ye549zXoUUsc8SSwyLJG43K6HIYeoIqlq+h6Xr9kbTVbGC7gPRZVztPqD1B9xXBn4c614VZrnwJr0sKZLNpmoHzIH9geq/z/2hQB6ZRXmlh8VZNLvE03xzo8+iXh4W4VS9vJ7gjJA+hYepFeiWl5a6hapdWdxFcW8gyksThlYexFAE9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHL/ABB8Tjwn4OvNQRsXbjyLUdzK3A/Llv8AgNR/DnwwfCvg20tJlP26f/SLsnqZW6g/QYH4Vy+of8V38YLfTh8+j+Gh51x3V7g9F/AgDB/uP616pQAV5no//JwniH/sEx/+0q9MrzPR/wDk4TxD/wBgmP8A9pUAemUUUUAFFFFABRRRQAUUUUAVr/TrLVLN7S/tYbq3f70cyBlP4GvOrv4XXuhXT6h4C1ubSpmO5rGdjJbye3OcfiG/CvTqKAPMrP4pXmh3Sad490WbSZ2O1b2FS9vJ78Zx+Bb8K9EsdQs9UtEu7C6hubd/uywuGU/iKdeWVrqFq9re20VxbyDDxSoGVvqDXnV98K5tJu31LwLrM+i3Z5a1di9vJ7EHOPxDD0AoA9MorzC2+J2p+HLhLDx9okunsTtTUbVTJBJ78Zx+BJ9hXomm6pYaxZpeadeQ3Vu/SSFww+nHQ+1AFuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8h8UfGK1l1bStK8L3LtM9+iXc7wYXy920oA4zkk9ccY969erzH4wqqp4VIUA/21F0H1oA7Dxn4lj8JeFb3WHQSPEoWKM9HkY4UH2ycn2Brzy78UfELwhbad4g8SvY3WkXUiLc2sEWJLYMMjnA5A9yM8d81qfHPJ8E2KfwvqkKsPUbXrQ+M4U/C3VSRyGgI+vmp/9egDvFYOoZSCpGQR3FYXjPxHH4U8J32rOVMkSbYEP8cp4UfnyfYGrugEnw5pZb7xtIs/XYK888T/APFc/FPTfC6fPpWjAXuof3Xk42ofXqB/wJvSgDf+F3hyTQPCEc14GOp6kxvLt3+9ubkA/Qdfcmu1oooAK8z0f/k4TxD/ANgmP/2lXpleZ6P/AMnCeIf+wTH/AO0qAPTKKKKACiiigAooooAKKKKACiiigAooooAiubW3vLd7e6gjngkGHjlQMrD0IPBrzvUfhQtjePqngnVp9BvzyYQxa3k9ivOB+Y9q9JooA8ug+JGt+Fp0s/H2hyW6E7V1SyXfC/uQOnrxz/sivQ9K1jTdcslvNLvYLu3b+OJ84PofQ+x5q1PBFcwPDPEksTja6SKGVh6EHrXnmq/Ce2hvW1TwfqM/h/UuuIWJgf2K9h7cj2oA9Hory2P4heI/CEq2vjzRHNvnaurWC7om92Hb9D/s16Do+u6V4gsxd6TfwXcJ6mNslfZh1U+xxQBo0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV558VtNvtRj8NCxsri68nV4pJfIiZ9iDOWbA4Hua9DooA5D4meHLnxR4Iu7KyUNexss9upONzKen1IyB7muC8Q69r/xI0ux8KW/hvUrC5lljOo3NzAUiiC9ce2eecHjGDmvbKKAMbxBrFr4S8KXWoyKBDZQYjjz949EX8TgVzXwn0KfT/DUms6jltV1uU3lw7DnaclB+RLf8CrK8dMfGfj7R/BEJLWVsRf6oV/uj7qH8D/4+vpXqSqEUKoAUDAAHAFAC0UUUAFeZ6P8A8nCeIf8AsEx/+0q9MrzPR/8Ak4TxD/2CY/8A2lQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkjjmiaKVFeNxhlYZBHoRXnusfCbT2vDqnha9n8PaoOQ1qT5TexTsPpx7GvRKKAPLF8d+K/BbiDxxopubIHaNX05dyn3ZeAP/HT7Gu/0TxHo/iS0+1aRqEN3H/Fsb5k9mU8qfqK03RXRkdQysMFSMgivP9c+E+lXV5/afh65m8P6qvKzWRKxk+6AjA+mPoaAPQaK8rHjPxl4IIi8Z6QdS05eP7W04ZwPV14H57fxrvdA8UaL4ntftGj6hDcqBlkU4dP95TyPxFAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUNa1a20LRbzVLtsQWsTSN6nHQD3JwB9av15f8SZpPFHiXRfAVm7BLhxd6iyH7kK8gH8ifrt9aALfwl0m5bS73xXqa51LXZjOSR9yLJ2gegPJ+m30r0WmQwx28EcEKKkUahERRgKoGABT6ACiiigArzPR/wDk4TxD/wBgmP8A9pV6ZXmej/8AJwniH/sEx/8AtKgD0yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCAwIIBB4INcHr/wAKNF1K6/tHR5ZtB1VTuS5sTtXPugwPyxXe0UAeV/8ACVeOPAvyeK9L/tnSk/5ienj51Hq68D8wv1Ndz4d8XaF4qtvO0jUIpyBl4s7ZE/3lPI+vStuuG8Q/CvQdZuft+n+bouqqdyXdgdnzepUYB+owfegDuaK8r/4SDx74D+XxFp48QaQn/MQsh++RfV1+nqB/vGu18N+NNA8WQb9J1COWQDL27/LKn1U8/iMj3oA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArahf2+l6dc392+y3tomlkb0UDJrz34U2Nxqb6r441JMXmszEQA/8s4FOAB7ZAH0QU34qXk+s3mkeBNOkIuNWlEl0y/8ALO3U5JP4gn/gHvXo1lZwadY29laxiO3t41ijQfwqowBQBPRRRQAUUUUAFeZ6P/ycJ4h/7BMf/tKvTK8z0f8A5OE8Q/8AYJj/APaVAHplFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4k+F/h/X5/tsEb6XqgO5LyxPltu9SBwfrwfeu1ooA8r/tb4g+Avl1i0HibRk/5fLYYuI19WHU/iD/vV2Phnx14e8Wxj+y79DPjLWsvySr/AMBPX6jI966OuO8TfDPw74lkN00DWGpA7lvbM+W+71OOG+p59xQB2NFeV/bPiJ4B4vYR4r0ZP+W8WRcxr7jkn1/i/wB4V1vhj4geHfFihNPvgl3j5rSf5JR+Hf8AAmgDp6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKiuLiK0tZbm4kEcMKGSR26KoGST+FS15x8WdTubiz0/wfpjf8THXJhG2P4IQfmJ9j/INQBX+GNvL4j13WvH19GQb6Q21grfwQKccfkB9Vb1r0+qek6ZbaLpFpplou23tYliQdyAOp9z1P1q5QAUUUUAFFFFABXmej/8nCeIf+wTH/7Sr0yvM9H/AOThPEP/AGCY/wD2lQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcl4n+HHhzxSxnubU21/nK3tqfLlB9T2b8QfwrraKAPK93xF8A/eA8WaKncZF1Gv6k/8Aj34V1Hhj4i+HPFRENpd+RfdGs7oeXKD6AdG/AmusrlvE/wAPfDviwGS/shHefw3lv8koP1/i/EGgDqaK8r+z/ETwDzbSDxXoqf8ALKTIuo19jyT/AOPfQV0nhj4leHfE8gto7k2Wo52tZXg8uTd6Ds30HPsKAOwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAa7rGjO7BUUEsxOAB615f8P0bxh421nx1cKTaoxsdLDDpGOrD04/V2rR+LOt3Fr4fg8P6b82qa7KLSJQeQhIDn6chf+BH0rrvDuiW/hzw9Y6Ra/6q1iCbsY3N1ZvqSSfxoA06KKKACiiigAooooAK8z0f/k4TxD/2CY//AGlXpleZ6P8A8nCeIf8AsEx/+0qAPTKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACua8T+A/Dvi2MnU7BftOMLdQ/JKv/AAIdfociulooA8r/ALM+IXgLnS7keKNGT/l1uDi5jX0U9T6cZ/3RXQeGvif4e8QzCzklfTdTB2tZXo8t93oCeD9OvtXaVz/iXwT4f8WQldW0+OSXGFuE+SVPow5/A5HtQB0FFeV/2F4+8B/NoF8PEejp/wAuF4cTRr6K3fj0P/Aa3PDvxT0DW7j7BemTR9VU7Xs78bDu9AxwD9Dg+1AHcUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU13WKNpHYKigsxPYCvn3wR4Wv/AIkvrWt3PiDUrGI3rCNYXJBLZYjrxgMtAH0JRXgPjLQNf+FltY63pfi++uY2uRC1tcMcE4LcjcQw+Ug8dxXvFpMbmzgnKFDLGrlT2yM4oA8+8VfDnWvEHjKPxFaeJxYSW8YjtUW13mFcEHndySWY5x39qi/4QPx5/wBFIuP/AADH/wAVXplFAHmf/CB+PP8AopFx/wCAY/8AiqP+ED8ef9FIuP8AwDH/AMVXplFAHmf/AAgfjz/opFx/4Bj/AOKo/wCED8ef9FIuP/AMf/FVZ1rxx4lTxrfeHfDnh631J7OGOWVpLkREbgD/ABEDuK6PwtqHiS/guW8R6JDpciMBCsdwsvmDHJ+UnGKAOT/4QPx5/wBFIuP/AADH/wAVR/wgfjz/AKKRcf8AgGP/AIqvTKKAPM/+ED8ef9FIuP8AwDH/AMVVGL4U+KodZm1iPx5IuoTxiKS4Fn8zIMYB+f2H5V6F4l8Tab4T0r+0tVkdLfzFiGxNxLHOBj8DXIp8cPBTOAbq7QH+JrZsD8qAIf8AhA/Hn/RSLj/wDH/xVH/CB+PP+ikXH/gGP/iq73R9b0zxBp63+lXkV1bMcb4z0PoQeQfY81foA8z/AOED8ef9FIuP/AMf/FUf8IH48/6KRcf+AY/+Kr0yigDzP/hA/Hn/AEUi4/8AAMf/ABVH/CB+PP8AopFx/wCAY/8Aiq9MooA8z/4QPx5/0Ui4/wDAMf8AxVH/AAgfjz/opFx/4Bj/AOKr0yigDzP/AIQPx5/0Ui4/8Ax/8VR/wgfjz/opFx/4Bj/4qvTKKAPM/wDhA/Hn/RSLj/wDH/xVH/CB+PP+ikXH/gGP/iq9MooA8z/4QPx5/wBFIuP/AADH/wAVR/wgfjz/AKKRcf8AgGP/AIqvTKKAPM/+ED8ef9FIuP8AwDH/AMVR/wAIH48/6KRcf+AY/wDiq9MooA8z/wCED8ef9FIuP/AMf/FUf8IH48/6KRcf+AY/+Kr0yigDzP8A4QPx5/0Ui4/8Ax/8VR/wgfjz/opFx/4Bj/4qvTKKAPM/+ED8ef8ARSLj/wAAx/8AFUf8IH48/wCikXH/AIBj/wCKr0yigDzP/hA/Hn/RSLj/AMAx/wDFUf8ACB+PP+ikXH/gGP8A4qvTKKAPM/8AhA/Hn/RSLj/wDH/xVH/CB+PP+ikXH/gGP/iq9MooA8z/AOED8ef9FIuP/AMf/FUf8IH48/6KRcf+AY/+Kr0yigDzP/hA/Hn/AEUi4/8AAMf/ABVH/CB+PP8AopFx/wCAY/8Aiq9MooA8z/4QPx5/0Ui4/wDAMf8AxVH/AAgfjz/opFx/4Bj/AOKr0yigDzP/AIQPx5/0Ui4/8Ax/8VR/wgfjz/opFx/4Bj/4qvTKKAPM/wDhA/Hn/RSLj/wDH/xVH/CB+PP+ikXH/gGP/iq9MooA8z/4QPx5/wBFIuP/AADH/wAVWRrPwb1/xCUOreM1u2T7ryWA3Aem7dnHtXsdFAHJ+AvCN94O0qexvNbm1NWcGEOpVYVAxtUFjgfSusorF8WeIrfwp4ZvdYuAHECfu4848xzwq/if0yaANqivENB8C658S7RfEHjDW7yG1ufntbK2IUBOxAOVUHtwSRyTVbV7DVPgtremX2n6tdXvh66l8qe1nOdvcj0zjJDADoR06gHvFFICGAIOQeQRS0AFFFFABRRRQAUUUUAcz8Q9S/sn4fa5dg4b7K0Sn0Z/kB/NhXl3gDwr8RIvCFpcaD4isNPsbsm4WCWBWbJ4ySYz1Cjv0rrvjZBql94Mg0/StPvL2S4u1Mq20DSbUUE87QcfNtrG0n4ieJ9K0ay0yD4Y60VtbdIEYiUA7VAyf3PtQBzGt6XrelfEHQB8Rro6xp9xLthaGXEQbIByu0cAlSRgZHc4xX0TXjVtoHi/4i+L9M1jxPpy6RpGmSeZDat99zkNjB55IUEnAwOBXstABRRRQAUUUUAeRHRPH7/EPxRf6Gtnp0V28QW8vl3eYqLtUIADwe+R2FdL8PPF2pa+2q6TrtvFDrOkzCKfyvuSA5ww/wC+T7dD3rGX4lSeF/GOu6X4zlkgtRJ5mmSpbEq0WTgZUZJwVGfUHJFO+FcVxq2ueJ/F8ltJb2mq3CrZrIMFo1z83/oI+oNAHp9FFFAHj/xud9U1Dwt4Yib5r283OB2yQin/AMff8q9Kn8LeH7m3ME+iadJFjG1rZDj9K8yuv+Kh/aRtovvw6NagtjoCELA/g8q/lXrOo6jZ6Rp89/f3CQWsCl5JHOAB/U+3egDx/wABW6+EfjXr3heydv7Olh8xIySdp2q6/kHZfevaq8Z+FEdz4n8feIvG80TR2spa3t9w65KkD6qiqD/vV7NQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4/8fJWl03w/pu4rHc3rMx7DaAoz/32a9grhvin4MuPGPhhY7AqNRs5POtwzbQ/GGXPbPb3A6UAdrb28VpbRW0CCOGJBGiDoqgYA/KqN9r2kafqFtp99f28N3dECCCRhukJOBgfXivLrH4teI9Os49O1bwVqU+rxKEJRWUTEfxY2kjPtkGrXgvwn4g1/wAZHxx4xh+zTIuLGyIwYxggZU8qBk4B5ycnHcA9ZooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5reG4AE0McgU5AdQ2D681JRRQAUUUUAeUXnwg1WXxPqWu2Hja50+4vpXdvs9qylVZshNwlGQMD8qcvwYk1CeNvEvjDVtYhjORE5KjP1Zmx+GK9VooAq6dptnpGnw2Gn26W9rCu2OJBgAf5796tUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==
|
<image>In the figure, $\overline{A D}$ is perpendicular to $\overline{B C}$ and $\overline{A B}$ is perpendicular to $\overline{A C}$. What is $B C ?$
|
20
|
Geometry
|
Geometry3K
|
test
|
40
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADKAM4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiisa/8AE+nWJKCQzyj+GLkD6npUTqQpq83YqMJSdoo2aK5Ftc1y/wD+POzW3jPR2GT+Z4/Som0rVLvm81R+f4VJI/LgVxyx8fsRb/A3WGf2mkde88MX+slRP95gKiOo2IODeW4PvKv+Ncqnhe0H35pmPsQP6VKPDdgP+ep/4HWf12r0ivvL+rw/m/A6dby1f7tzC30cGpwQRkHIrj28M2J6POPow/wqIeHZIDm01CWI/l+oNNY6fWH4i+rw6S/A7WiuPWfxJYdJEu0HZuf8DVq28XxiQRajayWz92AJH5dR+tbQx1J6S09SJYaa1Wp01FRW91BdxCW3lSRD3U5qWutNNXRztW3CiiimAUUUUAFFFFABRRRQAUUUUAFFFFABWbqut2mkp+9bfMR8sS9T9fQVn614haCX7Dpw827Y7SwGQh/qf5VT0/RRHJ9qvW8+5Y7juOQD/U1wV8XZ8lLfv0R006GnNPYgdtX1/mZ/stmeiDjI+nU/jWhZ6RZ2WDHGGkH8b8n/AOtV6iuHlu+aTuzo5tLLRBRRRVEhRRRQAUUUUAFRT28NymyaNXX0YVLRRuBhy6JPZy/aNKuXikH8Bbr7Z/xq9p3igrMLXVo/ImHHmYwp+vp9elXqrXljBfxbJkz6MOq/SiDnSd6b+XQcuWek/wDgm+CGAIIIPII70tcXbXt74amWKfdPYMcAjqv09PpXX29xFdQJPA4eNxkMK9OhiI1l2fY5KtJw9CWiiiugyCiiigAooooAKKKKACue8Q608DDTrHLXcnBK9UB/r/Kruu6suk2JcYM7/LEp9fX6CsXRtOaFWvLnLXU3zEt1UH+tcGLrtP2UN+vkdNCmvjlsc9FdXXhHWs6qiSafd4VLpF/1Lf3T7f8A6/au3R1kRXRgysMhgcgiobyzt7+0ktbqJZYZBhlauOtrm68D3yWN87z6HM2Le4PJgP8Adb2//WO4rGMIzjaCs1+P/BPT5Y4mPuq0107+nn5dTuKKRHWRFdGDKwyGByCKWsTiCiiigAooooAKKKKACiiigAooooAZLFHPE0cqhkYYINYcE8/hi/wS0mnzHkf3f/r/AM636iubeO6geGVcow/L3pNNNSjo0UmrWexsxSpNEssbBkcZVh0Ip9cjoV7JpGonSbtswucwuegJ/of5111erh6yrQ5uvU4qtN05WCiiitzMKKKKACkZgqlmIAAySe1LWF4rvja6SYUP7y4OwY67e/8Ah+NZ1aipwc30LhBzkoox4mOv67JeyAm1gOI1Pf0/xNb1VNNtBZWEUOPmxl/949at140b/FLdndJrZbIKgvLO3v7SS1uollhkGGVqnoq07aoSbTujh7a5uvBF8ljfO8+hzNi3uTyYD/db2/8A1juK7dHWRFdGDKwyGByCKhvLO3v7SS1uollhkGGVq462ubrwRfJY3zvPoczYt7k8mA/3W9v/ANY7it2lWV18X5/8E7WlildfxP8A0rzXn5dTuKKRHWRFdGDKwyGByCKWuc4QooooAKKKKACiiigAooooAKKKKAM3WtP+22ZZB++i+ZCOp9RWn4e1P+09MVnOZ4vkk9/Q/j/jSViWT/2R4q8vpb3nGOwJ6fr/ADqqNT2VVS6PR/oE488Guq1Oyooor2TgCiiigArj9Tb+0fF0cHWK1UE/Xqf1IH4V15IAJJwB1rjNAJubq+vm6yScficn+lcGPlpGHd/kdWGW8u36m7RRRXGahRRRQAVBeWdvf2klrdRLLDIMMrVPRTTtqhptO6OHtrm68EXyWN87z6HM2Le5PJgP91vb/wDWO4rt0dZEV0YMrDIYHIIqG8s7e/tJLW6iWWGQYZWrjra5uvBF8lhfO8+iTNi3uTyYD/db2/8A1juK3aVZXXxfn/wTtaWKV1/E/wDSvNefddTt2ZUUsxAUDJJ7CvH9C8PyfEe0vvEWs6tewNPcPHp0UU2xIVXpxjnn09Ce9eq6ifN0a7MTBt9u5Uqcg5U4xXkHw7+H+k+KfBS3mrSXMsm+SK32ylRbqDn5R0yWJPOaVKyi3ex5s020j0zwbaa3YeGre08QSpNfQkr5ivvLJn5cnuccfhWJ8SZtWni0bRdLkuIBqd4Iri4gBzHHwDkjoPmz+GKT4TaleX3hOe2vZmnfT7yS0SVjksihSOfbcR9MV1Wua5YeHdJm1LUZvLgiHblnbsqjuTSd41Nrj0cTzXUdFPw58VeG5dH1G+kttRuxa3VtcS7w4JUbsYHPP54r1uvNvDukap4x8RW/i/xDE1taW/Ol6eTyo7SN79D7nHQAZ9JoqvZPcIL7jkdc+I2h6FqkmnSJeXdzCu+cWkPmCEerHIxxzV678aaJZ+GoPEDXDSadOyqkkaZOSSOR2wQQfTFc38LUW4bxTeyqGuJ9XlSQkclRyB9PmNZPj7R9J0X4WfYNHl82zXUEP+tEmGJORkfyquSHMoC5na51EXxP8NPfrbSTXFvFJu8q7uISkEuOu1j1+uPSn6Z8SNC1TWbfTI1vYJLkf6NLc25jjn/3Sf6gVkfFm0t20nw7CYU8oatDEE28BCrArj04FSfERFHibwOwUArqqqD6AlOP0FChBpedwbkj0KsbxHAWskuU4eBwcjsD/wDXxWzUN5D9os5ocffQgfXHFcs1zRaNouzTNSwuhe6fBcj/AJaIGPse/wCtWa57wdceboxiJ5hkIA9jz/Mmuhr2KE/aU4y7o4aseWbiFFFFakFTVJPJ0q7kHVYXI+uDXO+HE2aSG/vux/p/StzXzjQrz/rmayNBGNFt/wDgX/oRry8Y/wB8l5fqdlD+G/U0aKKKwLCiiigAooooAKgvLO3v7SS1uollhkGGVqnopp21Q02ndHD21zdeCL5bC/d59DmbFvcHkwE/wt7f/rHcVk23hXxl4c+22XhK/wBMfR7yQywNdFt9vuHO3Awe2OvTOOtd14kltLfw1qVxfQC4tobd5Xi/vbRnA9Dx17V8yweO/E9qyC11m6gijJ8uJX+RR6bTwR9a7IJ1U5Lfr2f/AAS8VXp1EpSVp9bbPz9e/c98sPCWpeHPAD6N4fv4o9XZhJ9smX5TIWBckEN/CCo4PaqnjLwn4i8Rad4eS3utOe5sGWa6+1FvLmlAXnCqcjO/jA4Na3gDxNL4r8J2+o3CKlyrNDNtGAWXuPqCDXT1zucoy13MEk0cNbW3xNF1Cbm+8OG3Dr5gRZdxXPOPl64ruaKKiUr9CkrHncnhfxZ4f1vVrnwrcaY9nqkpmeK93AwSHOWXHBHP8uOKZefDi8/4Vtb+G7O7t2vRcrczTTFlRmyS2MAnuAOO1ej0VftZC5Ecv438N3niW10qKzkgja01GK6k85iAUUNkDAPPNHivw3ea7q3h27tpYEj02+FzMJWILKCOFwDk8d8V1FFSptW8huKYUUUVAzL8JHytQ1O37BwQPoSP8K6uuT8O8eJdSHsT/wCPCusrvwL/AHKXr+Zhif4n3BRRRXYc5n64u/Q70f8ATJj+XNYugNu0aAehYf8AjxrpbqLz7SaH/npGy/mMVyXhmTdYSRnqkh49iB/9evMxqtVi+6Z2UNabXmbdFFFc5YUUUUAFFFFABRRRQBDd2sN9ZT2lygeCeNo5FP8AErDBH5GvELz4EaoNSK2Wq2hsS3DzBhIo/wB0DBP4j8K91orSFWUPhJlBS3PPNDhm+Gxi0m7Yz6NM2Y7wJgpIeu4f59u9ehKyuiujBlYZBByCKhvLO31C0ktbqJZYZBhlauOtbq68EXyWF+7zaJM2Le5PJgP91vb/APWO4rSyrK6+L8/+Cd0YRxELQVprp3Xl5+XU7iikVldFdGDKwyCDkEUtc5xhRRRQAUUUUAFFFIzBVLHgAZNAGX4a+fxBqknYEj/x7/61dZXL+DELx310R/rJAPyyf/Zq6ivQwKtQT73/ADOfEv8AeMKKKK6zAK4yyX7B4mv7M8LIS6D9R+hNdnXKeKYms9RstUQcA7Hx7c/qM/lXDjo+4p9mdOGfvOPc1KKRWDoGU5VhkH1FLXEbBRRRQAUUUUAFFFFABRRRQAVBeWdvqFpJa3USywyDDK1T0U07aoabTujh7W6uvBF8lhfu82iTNi3uTyYD/db2/wD1juK7dWV0V0YMrDIIOQRUN5Z2+oWklrdRLLDIMMrVx1rdXXgi+Swv3ebRJmxb3J5MB/ut7f8A6x3FbtKsrr4vz/4J2tLFK6/idv5vNefddTuKKRWV0V0YMrDIIOQRS1znCFFFFABVHWJ/s+lTtnll2D8eKvVha1uvtRs9MjPLsGfHb/8AUMmpm3y6blQWupu+Gbb7NoVuCMNJmQ/j0/TFa9NRFjRUUYVQAB6CnV7VOHJBRXQ4Jy5pOQUUUVZIVS1axGo6bNbHG5hlCezDpV2iplFSTi9mNNp3RyHh+7Mlq1pLkTW52kHrj/63StisnxBaSaXqSaxbL+7c4mUev/1/51pQTx3MCTRNlHGQa8XldOTpy3X5HoNqS511JKKKKZIUUUUAFFFFABRRRQAUUUUAFQXlnb6haSWt1EssMgwytU9FNO2qGm07o4e1urrwRfJYX7vNokzYt7k8mA/3W9v/ANY7iu3VldFdGDKwyCDkEVDeWdvqFpJa3USywyDDK1cda3V14IvksL93m0SZsW9yeTAf7re3/wCsdxW7SrK6+L8/+CdrSxSuv4nVfzea8+66ncUUisrorowZWGQQcgilrnOEZLKkELyyHCIMk1neF7d7y+udXmXqSkef1/IYH51V1SWXU7+PSbQ5y2ZW7D/9VdfaWsdnax28Iwka4H+Na4Wn7SpzdI/n/wAAmtLkhbq/yJqKKK9Y4gooooAKKKKAI54Y7iB4ZVDRuMMD3FcYol8N6kbWclrKU5jf09/8a7equoafBqVo1vOuQeVYdVPqK5cTh/aq8fiW3+RtRq8js9mUQQwBBBB5BFLXPwz3Ph+6+w34LW5/1coHGP8AD27Vvo6yIHRgykZBB4NeanfR6NHW1bVbC0UUUyQooooAKKKKACiiigAooooAKgvLO31C0ktbqJZYZBhlap6KadtUNNp3RxFrdXXgi+Swv3ebRJmxb3J5MB/ut7f/AKx3FdDqurC3hSK1YSXEwGzZzgHof8Kj8QXdo9nJp8sK3LzDb5RGceh+vp3q14W8MJpcEc9wn75VxGh58sf41o74h8sd+r6f8OdNetTlFVZr3vz8/wDMveH9G/sy2Mk3zXcvMh67fatmiivTp0404qMdkeRObnLmYUUUVZIUUUUAFFFFABRRRQBXvbK3v7doLmMOh/MH1FclPZ6j4bkLxZubAnJ/2fr6fXpXa0EAjB5Fc9fDRq67Pua06zhpujnbLUra/TML/N3RuGFW6raj4VtrlzNZubWfqNv3Sfp2/Cst7nWNHO2/tzPCP+Wq/wCP+NebUhUpfGtO6OuLhP4X8jdorNt9dsLjAMvlN6SDH69K0EdJF3IysvqpyKlST2YNNbjqKKKYgooooAKKqz6lZ22fNuIwR2ByfyFZr6+9xJ5Om2kk0h6Ej+gqXOK0KUGzakkSJC8jqijqWOAKxJ9WuNQm+yaTEzsesuOg9fb6mp7fw1fag4m1e5Kr1EKHn/AfrXTWllbWMIitoljT26n6nvW9PDVavxe6vx/4BEqsIbav8DL0bw9Dpp+0TsJ7s8lz0X6f41t0UV6dOnGnHlitDjnOU3eQUUUVZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm3Wg6ZeEmS0QMf4o/lP6VkyeDY0YtZ380J/wBoZ/UYrqKKwnhaM9ZRNY1qkdmcmdA12L/U6mjj/bZs/wAjTf7L8TLwLqE/iP8A4muuorF4Cl0b+8v6zPy+45L+xfEb/ev4VH+8f6LTh4TvJ/8Aj71V2HdQCf5muroprA0et38w+s1OmnyMO28J6Xb4Lo87D/no3H5DFbEMENumyGJI0/uooAqSiuiFKnT+BWMpVJS+JhRRRWhAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==
|
<image>Find the area of the figure. Round to the nearest tenth.
|
30.2
|
Geometry
|
Geometry3K
|
test
|
41
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADZAVsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD27yfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tHpRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAEmKMUtFACYoxS0UAJijFLRQBnahruj6TIkeparY2Ujjcq3NwkZYeoDEZqK08TeH7+4W3s9c0y4mb7scN3G7H6AHNcKdP07xX8ZNXGpW0F1Z6VYR24jnUMvmMd2cHvy1VPiX4Y8L22hQ2mjaZaQ69cXEaWKWahZC24ZOF/hAzyeBxQtk+/8AmO2rXb/K561ijFRWkckVnBHM++VI1V29WA5NTU3uSndCYoxS0UhiYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAFFFFABRRRQAUhIUEk4A5NLUVzCLm1lgLugkQoWQ/MuRjIz3pO9tBrzPJPBXgzQfHCaz4i1ywN213qU32dvOkTEYPHCsP19KPE3hbSvBOv+HZ/CKy2erXV8sJt0neQSwn7+4MScDj863LX4P6bYwCC08S+J7eFckRxXyooz7BMV0GgeBtG8P3bX0K3F3qDLtN5ezGaXHoCeB+AFUrJq3S34f5ibvfzv/XyOkopCyhgpYbiCQM8kD/8AWKWkAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwXj61uL3xH4YtrW8ktJpHuAk8fVDhD6j0qSPxRrHhiRbbxXamW2ztTU7VMqf98Dofy+hqfxV/yO/g//AK63H/oKV2EkaTRtHKiujDDKwyCPcV2SqKNOEZK6s/Xd9TijTcqlSUXZ3Xpst0RWd7a6hbJc2c8c8L9HjbIqeuLvPBM+m3T6h4TvTp9weXtXOYJfbHb/ADjFSab44SO7Gm+JLRtJv+gZ/wDUye6t0H8ves3R5lzUnfy6/d/kaqvyvlqq3n0+/wDzOwopAQygggg8gjvS1znQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG+Kv8Akd/B/wD11uP/AEFK7KuN8Vf8jv4P/wCutx/6CldhJIkMbSSOqIoyzMcAD3Nb1f4cPR/mzno/xKnqv/SUOqnqWl2Or2ptr+2jniPZx09weoP0p1jqVjqcJmsL22u4gcF7eVZFB9Mg02fVtNtbyOzuNQtYbmX/AFcMkyq7/RScmsU2ndbm7SaszkW0PxB4RJl8PTnUdNBy2nXDfOg/2G/z9DW1oPjHTNdc24L2l+uQ9pcDa4I649f5+wq9rmqNpGm/aI4PPmeWOGGIvsDO7BVy3OBk8nBrAk0q08Xtd2ut6dHZ6tYuoM9nNvwGXKsrlVJ+jDjH410KrGp/FWvdfr3/ADOf2Uqf8J6dn+nb8jsaK4T7d4m8G/LqMb63pK9LqIfv4l/2h3/H866vSNc07XbX7Rp10ky/xKOGX2I6is50ZRXMtV3X9aFwrRk+V6Ps/wCtfkaFFFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG+Kv+R38H/9dbj/ANBSq3j26tZdb8PaRqU0cWlTSS3V75rAI6RLkK3qpYjj2qz4q/5Hfwf/ANdbj/0FKp+MrS3b4ieDLy9VTaiSeLL42iUqCgOfcce4rep8NL0f5v8AUwo/FV9f/bUWfDkfhW98QXGueGNQtQq23kXVpaIEV+cq7LxyOgOKxPC2gaX4q8Bajq2p2kNxe6pJcStcyIGkTDMqbWPK7QBjFamqRI/xg0kWYUTHTZ/txQcmM4Cbv+BdKg8C3MGkfC66iupVRtNa6iuAxwUZXY4P4EfnXPL4G/L9Xf8AQ6V8VvNfkavguSPxR8NtLOqILkTQBJfM53FGxnPXOVBz610OmaRY6PA8NjCY1dt7szs7u2MZZmJZjgAcntWD8NbR7L4daLFIpVzB5hB/2iWH6GurrSek2Zw+FBXKav4HtLm6Oo6RO+lamORNBwrn/aXpz/8ArzXV0UQqSg7xYp041FaSOIt/F+o6DOln4usvKBO1NQt1LRSfUDp/ngV2VvcwXluk9tNHNC4yrxsGB+hFLcW8N1A8FxEksLjDI6hlYe4NcbceDr/Q53vfCN6bcsdz2E53QyfTPQ/5yK2/dVf7r/D/AIH5GP72l/eX4/8AB/P1O2ork9J8cW092NO1qB9J1IceXPwj9vlbpz/+rNdZWM6coO0kbQqRqK8WUtV1ay0XT3vb+byoUIHQksx4CqByST0ArN0XxdZa1qM2nC0v7G9ijEvkX1uYmeMnG9eTkZ/GsvxE6z/EbwrY3GPsyrcXKBujzKoC/iASa27S60nUfEV2beIS39gggluAvCBvm8sN68AkduKhd/X+vvLf9f16GxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV729ttNspry8mWG3hQvJI3RQKwdP8cWF9q1vp0lhqljJdAm1kvbUxJPgZO05645wQKPGOotDFp+kw2tpcXWqXAhiF4u6FNo3l2X+LGBgcc4rn4or+5+KGkWWo61DqMthaz3ckcFuIkhZsIvGWOcMepojq/67XB6L+vQ1PFX/ACO/g/8A663H/oKV02p6VYa1YvZalaRXVs/JjkXIz6j0PvXM+Kv+R38H/wDXW4/9BSuyret/Dp+n6swo/wASp6/+2oydE8NaP4dSRdKsUtzLjzH3M7vjplmJJ/Oq2oeCPDWq6n/aN7pEE10SCznIDkdNyg4b8Qa36Kw8zcQAKoVQAAMADtS0UUAFFFFABRRRQBn6tomna5am31G1SdP4SRhkPqD1Fcp/Z3ibwcd2lStrOkr1s5j++jH+ye/+eO9d3RWsK0orleq7MynRjJ8y0fdf1r8zkY7zwr8QrRbO8gSWaJtxtZ8xzRMOpUgg/iprotM0qx0axSy061jtrdMkRxjAyepPqfc1ma94Q0zXiJ3Vra+XlLu3O2RT7+v4/pWGNa8ReECI9egbVNMHA1C3X50H+2v+fqa09lCp/CevZ/p3/Mz9rOn/ABVp3X6rp+R3dFUtM1aw1i0W60+5jniPdTyp9COoPsau1ztNOzOhNNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbrWgaX4htFtdVs1uYkcOgLFSrDuGUgg/Q1BZ+FNC068truz02KCe2Ro4njJGAxyc8/MSe5ya2aKNgON8Vf8jv4P/663H/oKV2Vcb4q/wCR38H/APXW4/8AQUrsq3q/w6fo/wA2c9H+JU9f/bUFFFFYHQFFFFABRRRQAUUUUAFFFFABQQCCCMg9qKKAOQ1PwNGLo6l4dum0jUev7r/VSezL0/p7GorTxpc6XdJp/iyy+wzHhLyMEwS/j2/z0rtKgu7O2v7Z7a7gjnhf7ySKCDXQq3MuWqrr8fv/AMzndDlfNSdn+D+X+RJFLHPEssMiyRuMq6HII9jT64aXwrq/hqV7rwneFoPvPply25G/3Seh/L61paL42sdRufsF/FJpmpqcNbXPGT/st3/Q0pUbrmpu6/FeqHGvZ8tRWf4P0f8ATOnooorA3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAON8Vf8AI7+D/wDrrcf+gpXZVxfi6RIfGfhGSV1RFluCWY4A+VO9dR/a2m/9BC1/7/L/AI10Vf4dP0f5sxoQlKdSy6/+2ouUVT/tbTf+gha/9/l/xq5XOdDjKO6CiiigkKKKKACiiigAooooAKKKKACivOYtW8Wa7pWo+JNM1a1tLO2kmFrYNaiQTpGSCXcnIJwemMe9aWoeMLqfwvoNzpUUaajrrxRQCUblhLDLMRxkKAfrxR/wPx2B6P7/AMNztK5zxDD4X1e6i0fV7iy+3SD9zE0yrOM9Nvf8O9ZthqWuaH4vs9C1zUYtTt9Rhke1uhbrC6yJyyELwRg5B61Nf+GNSuL3UIYZLH7BqF1HcyzSBvPiKBBtUAYP3OCSNuehqoycWpJkyipJxkin5Xijwaf3JfXdHX+Bj/pEI9v7w/P6Cuk0PxNpfiGHfY3AMij54H+WRPqP6jiteub1zwXp2sTi9hL2GpKdyXdt8rZ9WA6/z9639pCp/E0fdfqv8jD2dSn/AA3ddn+j/wA/wOkorhU8R674WdYPFFqbqyzhNStVzj/fX/8AV+NdjYahZ6narc2NzHcQt0eNs/gfQ+1Z1KMoa7rutjSnWjPTZ9nuWaKKKyNQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4vxdGk3jPwjHKiujS3AKsMg/Knauo/snTf+gfa/9+V/wrmfFX/I7+D/APrrcf8AoKV2VdFX+HT9H+bMaE5RnUs+v/tqOZ8X6bYReENVeOytkdbZiGWJQQcfSumrD8Zf8ibq/wD17P8AyrcrF/CjvqScqEbvrL8ohRRRUnMFFFFABRRRQAUUUUAFFFB5GKAOU8aQ+I77SJY9AksGtZIXW5Dswmde4iYZUHGRyDzXMvdWV9N8NbjSo3j07zXSONz8yYjxg+4wa1rbwz4s0S2n0jQ9Q0ldJkeRopbmKQz24ckkAA7WwScZx+NXrnwSieFtK0vTbryLrSZEmtLmRdw8xc53AdQ2TkD1oWmvmv8Agjfb1KXiwFviT4IC9RJdE/TyxXdVyWleHtaufE0Wv+JLmxa4tYGgtbexVvLTd95yX5LEDHtXW0+iQm7sKKKKQDXRZEKOoZWGCrDIIrj7/wAEPZ3Taj4WvDpl31aDrBL7Fe36j2rsqK0p1ZU/hM6lKNRe8cbYeODa3Sad4otDpd6eFlP+ol9w3b8yPeuxVldQyMGUjIIOQRVa/wBOs9UtGtb62juIW6o4z+I9D7iuPbw9r3hRzN4ZujeWGctpt02ceuxv8/jWtqdXb3X+H/A+f3mV6lLf3l+P/B+X3HdUVzmheMtO1mU2cgey1JeHtLj5WB9B6/z9q6OsJwlB2krG0JxmrxdworB8XeJF8MaIbpIftN5K6w2lsDzNK3Qf1P0qLwN4mk8W+F4dVmgSCZpHjkiQkhSrY7+2Kla3t0Leh0dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXE6t4s1XUNfm8PeEbW3nu7YD7ZfXRPkW2f4cDlm9v8A6+MzWD8RfC9hPrT61p+sW1uPNns2tBCQg+9sZeTgep/PpSvpfoO2tup1XiPwuniGexnN/dWc1mXMclucNlsZ57fd/Wsz/hBbz/ob9e/8CT/jXSaLqkOt6JZapApWK6hWVVbquR0P0q9XQq9SC5E9jndClN87W5xU3w/nuYXhn8Va3LE4wyPOWVh6EHrT/wDhBbz/AKG/Xv8AwJP+NdlRR9Zq9/wQfVqW1vxZxv8Awgt5/wBDfr3/AIEn/Gj/AIQW8/6G/Xv/AAJP+NdlRR9Zq9/wQvqtLt+LON/4QW8/6G/Xv/Ak/wCNH/CC3n/Q369/4En/ABrsqKPrNXv+CD6rS7fizjf+EFvP+hv17/wJP+NH/CC3n/Q369/4En/Guyoo+s1e/wCCD6rS7fizjf8AhBbz/ob9e/8AAk/40f8ACC3n/Q369/4En/Guyoo+s1e/4IPqtLt+LON/4QW8/wChv17/AMCT/jR/wgt5/wBDfr3/AIEn/Gr3inVrrT7zQbW0uBC15fqkrFVP7lVZ36jjgDmtyzv7PUYjLY3cFzGCVLwSBwCO2QetCxNXv+CB4Wkun4s5X/hBbz/ob9e/8CT/AI0f8ILef9Dfr3/gSf8AGuyoo+s1e/4IPqtLt+LON/4QW8/6G/Xv/Ak/40f8ILef9Dfr3/gSf8a7Kij6zV7/AIIPqtLt+LON/wCEFvP+hv17/wACT/jR/wAILef9Dfr3/gSf8a7Kij6zV7/gg+q0u34s43/hBbz/AKG/Xv8AwJP+NH/CC3n/AEN+vf8AgSf8a7Kij6zV7/gg+q0u34s43/hBbz/ob9e/8CT/AI0f8ILef9Dfr3/gSf8AGuyoo+s1e/4IPqtLt+LOBuvhfDfSrLea9qdxIvCvM4cj6E11WjaZcaRamCfVJ72NR8rXAG5R/vDqPrWpXI+PptXn0yDRNFtrhrnVJPIkukjYpbRfxszDgHHA5qamIqzjyt3Lp4elCXNFWOZ0/wAS6F4j8e3OtalrWnW+n6TuttNhuLpEMkh+/NgkcdgasfB25hNp4isIJUlht9UkaJo2DKUboQRwQdtdJafDrwla2cNudBsJTGgTzJYFZnwOpPcmsHwbok3h/wCJfii2t9MlttJuI4ZLd1hKw5AGVVsYzljx7VnGydvJ/ozWWqv5r/L9T0aiiikAUUUUAFFFFABRRRQAUUUUAFFFFABVPVrz+ztGvr3Gfs9u8v8A3ypP9KuVHcQR3VtLbyrujlQo49QRg1Mk3FpDjZNXOI+EVoIvANvev81zqEstzPJ3di5HP4AV2GpanY6TaG51G5it7fcE3ynAJPQV53o2leOvAkT6Tpen2eu6QJWa2LXIgliUnOG3cEZ9M/0rWtvDGueIdZtdU8XyWqQWb+ZaaXaEtGr9nkY/eI9Bx+oOjak7rYmzS13O4XG0bRgduKWiipGFFFFABRRRQAUUUUAFFFFABRRRQBwviLTbXxF8SNG028US29jZTXkkLfdkLMqKGHcdeO9P0SwtrH4o6zHplvFb2Y0+D7RHCoVPOLMQcDjO0VZ1Twbe3fiibxDYa9LYXphS3j226yKsYyWVgxw2SQe2Md62dC0KLQ7aVRPLdXVxIZrm6mxvmc8ZOOAAMAAcACiOiXz/AB/4H5BLX8P6+81aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z
|
<image>If $c=5,$ find $b$
|
2.5 \sqrt { 3 }
|
Geometry
|
Geometry3K
|
test
|
42
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGnAb8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2GGzQP/x7gcf3K0IYFVV/dAYPpVlYsHrUgXFAAAB2paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq1/qNnpdqbq+uY7eAEAySNgA1ZryT49aj5Phyw09T81xOXI9lH/wBelJ22Kirs7v8A4Trwr/0H7D/v8Kkh8Z+GbiQJFrunlj0BnUZ/M1wOifBTw5c6JZT3v2v7TJCrSbZcDcR6VNffAjw7LbSCzubyCfHyMXDAH3BFN6bkqzVz1NHWRA6MGUjIIOQaWvEvgxrOo2uval4Xu5mlhgDNHuOdhU4OPY17bTeya6hrdp9AooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfP/wAZNTt5viFplpcuRa2ioZcDOAWyePpX0BXz/pNlbeNfjfqLXkKXNlCzko4ypC/KAaS1mrev3D2i38jvY/jJ4MiiSMXVxhVAH7g1n6x8cdBis5E0iG6u7xhtiBj2rk9M85/DFdb/AMK88If9C9p//fkV5l8XvA2h6DocGr6TaLZzicIyxkhSCPTt0ok+44rsbfwh8I6jYzXviPWImhur3IjjcYYKTkkjtmvWK5vwDe3GoeBtJubpy8zwLuY9T710lXNWduxnF3V+4UUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk+GL+fVPC2lX90wae4tY5ZCBgFioJ4rWqtYWNvpmn29jaoUt7eNY41JJwoGAMnrVmm99ACiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVdTne20u7njRnkjhZlVBkkgcAAV5P8FNCvra91nVNRsri2llYIgniZCeSSRke9exUULRtg9VYK8z+Ntjf6h4TtYbG0nuW+0gssMZcgY9BXplFJq407O5zPw+Vo/AukwyQzQyRQBHjmjKMrDrwRXTUUVUnd3JSsrBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU13SNGd2CooyWY4AFADqydd8Sab4etjLfTgMR8kS8u30Fcn4h+Iv+kHTPDkJvLxjt80LlQfYd/r0rEufAl8+h3+t6/dyS3wiLpEGztPuf6V3UsKlZ1nZPp1ZwVcY3eNBXa3fRHo/hzWh4g0WLURF5QkZgEznABxWtXGfC993gqBf7ssg/8AHq7OuavBQqyitkzpw83OlGT3aCiiisjYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopskiQxtJK6oijLMxwAK881/4iPNcnS/DMLXV0x2+cFyB/uj+prWlRnVdooxrV4UVeb/zOs1/xPpnh22Ml7MPMI+SFeXb8O31rz4yeJviNPhAbDR89eQGH/sx/StXQPh289wNT8TTNdXTHd5JbIB/2j3+lehxxpDGscaKiKMBVGAK6faUsPpT96XfovQ5fZ1cTrU92Pbq/UxfD3hTTPDluEtIQ0xHzzvyzfj2qz4iTzPDepL/ANO7n9K06qaqu/R71P71vIP/AB01yqcpVFKTuzrdOMabjFWVjjvhO+7wrIv92dhXeV558I2/4kmoR/3bn/2UV6HW2MVq8vUxwLvh4egUUUVynWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByfxC8Wnwf4Ye9hRXu5WEUCt03HufpXE23hn4l6hpa6wfFckN1InmrZDIX1AODgflXd+M/Blt4ztbSC5upYFtpfNHlgHcfQ5rbvb210XSpLq7lWK3t48szHHAFLZNse7SRxfww8b3nimzvLLVVUalYuFkZRjeD3x68GvQK8a+CtvNe614g13yyltcSbIyRwTkk/zFd14wh8aTSWw8KXFjCgB843OCSe2MqapvRNrViSV2lsjq6K8L8ReKPib4au7Szu9T0ya7um2xW9tErufcjaMCvZtG+3f2NZnU2DXxiUzlQAN+OeBQtVcHo7F6iiikAUUUUAFVr/ULTS7N7u+uEgt0+9I5wBVmquo6bZ6tZPZ39vHcW743RyDIOKH5AvM8h8e/FCC71LStN8M6nL/AMfKm4ngJUMMgbfevZYiTEhPJKivEvip4Z0XQLrw4+ladb2jS3mHMSY3AFcZr22H/Ux/7o/lTj8HzCXxfI8p8V6t4r1H4lHw74d1QWipbCRtw+XOAT29xU8Hhv4oLcRtL4ntmjDguuOozz2rnpfE8mlfF/xBdWmmz6lfFBbwQRD0xkk9hwK6TSvixcR65DpXifQ5dKechY5STtyemc/zzShqlbdjno2emoGCKGOWxyfenUAggEHINFAgooooAKKKZNNHbxNLNIscajLMxwAKAH1ieIfFWmeHLctdyhpiPkgQ5Zv8BXJ678Q57y6Ol+F4GuLhjt88LnH+6P6mpfD3w6zONS8Rym8u2O7ymOVB9z3rsjh401z13by6v/I4ZYqVR8mHV/Pov8zHCeJviNOGcmw0cHgcgMP/AGY/pXoOgeF9M8O2wjs4R5hHzzNy7fjWuiJGgRFCqBgADAFOqKuJlNckVaPY0o4WMHzyfNLu/wBOwUUUVzHUFRXS77SZP7yMP0qWgjIwaEDPNvhM2I9Xi9J816TXmPwsOzV9dhP8Lg/+PGvTq68d/Hfy/I4sv/3ePz/MKKKK5DtCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArahqFrpdhNe3syxW8K7nduwryBk1j4w6wCfNsfCts/HZpyP5n+VbXxr/tGfw7Y2VjaXVyk1xumW3jZjtUdDgcdaoaf8ULvTNPgsrb4favHDCgRVVWA4/4BSjZtt9Bu6St1PUdL0qy0XT4rGwgSG3iGFRR+tZPjLxbZ+ENFe8nw9w/y28A6yP8A4Vl+F/Ht34iurmG48M6hpqwQmUPOGw+P4R8o5ryw6/q1944fXte8K6tfxwHFnbJC6pFg8HlTmm7t2YJJK56F4B8JXkt7J4u8S5k1e7+aKN/+WCHoAOxx+Vej159oPxJvta1q205/CGp2aTEgzzBgiADPOVFeg03t5E9ddzifHHivxD4dubaPRvD7ajHIhZ5AGIU56YFcn/ws/wAdf9CU3/fqT/GvYqKlFXPHf+Fn+Ov+hKb/AL9Sf41q+G/H3i7VddtrK/8ACb21tI2Hm2uuwY688V6bRVITCiiikB5L8bP9f4X/AOv0/wA1r1eH/Ux/7o/lXmHxisLy9n8Nm0tJ7gR3ZL+VGX2jK8nA4r0+IYhQH+6KI/B82Et16fqzL06x0BNTu7vTYrH7dIf9IkgKlyc/xY5rhfjpawv4Ot7sgCeG6URt3AIOf5CsR21b4YeO9Tv/AOy7i/0bUW3b4QSV5yPoRk1Freqar8WtUsNLsdJubPSYZRJPNOpGf8jt71NuZRt5fIq/K23/AMOev+HppLjw5p0sufMe3Qtn1xWlUdvAltbRQRjCRqFH0FSVcndtoiKskgoqOeeK2haaeRY4kGWdzgCvOtb+IN3qV0dK8KwPNM3ym4C/y9Pqa1o0J1X7v39DKtiIUV72/bqzq/EXi7TPDcJNzLvuCPkgQ5Y/X0FcIlr4l+ItwJblmsNIByqjgEew7n3NbPh34cpFMNR8QS/bL1ju8tjlVPv6mu/VVRQqKFUcAAcCuj2tPD6UtZd/8jm9lVxGtb3Y9v8AMydC8N6b4etRDZQAMR88rcsx9zWvRRXHKTk7yd2dsYRguWKsgoooqSgooooAKKKKAPMfh9+58ba/D6n+TGvTq8w8J/ufiprkPqZP0avT67Mb/FT7pfkcWA/hNdm/zCiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGVWGGAI9CKRURBhFVR6AYp1RXNzBaQPPcSpFEgyzucAUJX2Bu25LXPeJPGOmeG4iJ5BLdEfLAh+b8fSuU1nx9faxdnSvClu8jtwbjbz9R6D3NX/AA38OobWUahrkn22+Y7trHKqf6mu2OHjTXNXdvLr/wAA4ZYmdV8mHV/Pov8AMw4tP8S/EO4We/drHSQcqgGMj2Hf6mvRdE8Pad4ftRBYwKh/ikPLMfc1pqoVQqgADoBS1lWxMqi5VpHsjWjhY03zPWXdhRRRXOdIUUUUAFFFFABRRRQAUUUUAeYaP+5+MuoL/fR/1wa9PrzAfuPjWw6b0/moNen12YzeD/uo4sFtNf3mFFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFQ3V3b2Nu9xdTJFCgyzucAV5vq/jvUteuzpXhW3kYtw1xjnHqPQe9bUaE6r0279DCtiIUV72/bqdV4l8aaZ4cjKSOJ7vHywIefx9K4uDSfEnxAuVutUkay0vOUjAxkew/qa3vDXw6trCQX+sP9tvyd2G5VT/U13IAUAAAAdAK6HVp0NKOr7/5HOqNXEa1tI/yr9TO0bQdO0G0FvYW6xj+J+rMfUmtKiiuKUnJ3b1O2MVFWirIKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFAHmGq/ufjTYP2kVR/44a9PrzDxV+5+KujS/3gv9RXp9dmK1hTf904sJpOqv7wUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl7bafbPc3cyQwoMlnOKaTbshNpK7J65jxN430zw6jRlhcXn8MCHof9o9q5fVfG+q+JLttL8K28gU8NcYwceuf4RWx4Z+Hlppbre6owvb8/Nl+VQ+3qfeuxYeFJc1f7uvz7HFLETrPlw6/wC3uny7nP2uh+IvHtyt7rMr2enZykQGMj2H9TXo+kaJp+h2gtrC3WJR1P8AE3uT3rQAAGAMAUVlWxEqi5do9ka0cNCk+Z6y7sKKKK5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigDzHx/+68eeHpvXYP8Ax+vTq8y+Jw8vXtAm9JAPyYGvS0O6NT6gGuzEa0ab8n+ZxYfSvVXmvyHUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVWvr+1021a5vJ0hiXqzGvNNT8b6r4pvzpHhiFo1bO6YnDFfX2Fb0cPOrqtF36GFbEQpaPV9ludV4n8dab4eVoUYXN90EKHof8AaNcnZ+HfEHjm6W/16Z7WwzlIRwSPYdvqa6Lwx8PbLR2W8vyL2/PJZ+VU+w/rXaYwMCtnWp0NKOr7/wCRzqhUrvmr6L+VfqUdK0ex0W0W2sLdYox1wOW9ye9XqKK423J3Z3RioqyCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzX4tDYNGm/uzN/Q16LbHdaxH1QH9K8/+LyZ0Wxk/uzH9RXeac/mabav6xKf0rsq64am/U4qOmKqL0LNeb/EzxNqVveab4Y0OUxahqTYaUdUTOOP1r0ivG/Gso0v42eH7+7O21dFUO3QdR/OuK15RT6s7r2i2uiGav8M9a8OaRJrWleJb6XUbZfNkV2+V8cnH/wBeu/8Ah/4nbxX4Ut7+YAXIzHMB/eHf8a0/EV7bWPhrULq4kVYRbvyTwcqcCvPfgNJ5nhjU/wC6L04/FQacXq0DWiZ6vRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzbxh8XLLQNRbStLtG1HUFO1gp+VW9OOSfpXoV60iWFy8IzKsTFB74OK8H+CrabL4r1STUmjOpN/qPO6nk7sZ79KS96VhvSNzSb4ueNLZftF14SC23UnypBgfWu78EfEXTPGsbxQo1tfRjL27nPHqD3FdgyK6FHUMp4IIyDXk0Hw61bSPiuuuaTFBFpJk3OokwQGX5hjHrVR3sxPa6PW6KKq6hqVnpVq1zezpDEvdj1+nrQk27ITaSuy1XJeJ/HunaCGt4CLu+6CJDkKfc/0rmdR8Xa34vu20zw1byRWxOHuDwSPc9hXReGPh/YaIVurvF5fnkyOMhT7D+tdioQormr79v8+xwvEVK75cPt/M9vl3ObsfC+veNbpdR8RTyW9n1SAcEj2HatPxFpFt4QudJ1vS4RDDbuILhF/iRu5/X9K9CrG8V2a33hXUoGXP7hnH1Xn+lRLEyqSSeke3Q9LK6VPDYiMnrfRt9U9Ga6OJI1dTkMARTqwvBt2b3wjpsrHLeSFYnuRwa3a5pKzaHWpulUlTfRtBRRRSMwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDg/iym7wrE/8AduFH5g11Xh9/M8Pae/rAp/Sue+KKb/Bkh/uzI3862PB7+Z4Q0pv+nZf5V2S1wsfVnFDTFy9Ebdcz4x8L6N4sso7HU5VhnB3QSK4DqfbPWumrzz4m+FtV1b+ztZ0P59Q059wizjeM5ridtLncvIyx8Kl0+0ludY1+8v7K0jaRLZ2wnygkZqb4GwlPC2oTBcJNesyfQACsvU9f8feMNNOhQ+G208z4S4uXJAC9+tel+FPD8Phjw5aaVEd3lL87/wB5j1NUurYm9kbVFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvJ/GXwcj1S/k1bw/dCyvHO9ojwjN6gjpSfGXxDr3h2bSp9LvJre2k3LJ5ZwCwI6/hXo+g6va65o1rf2k6yxyxgkg5IOOQfeklzLm7Db5XbueIReMPiB8PJkg122e7sgcBpvmBHs4/rXsnhPxXp/i/R11CxJGDtkib70behpfF76ZH4V1E6t5f2XyGBEmOTjjHvmvMvgDBMIdauAGFq0iKmehIzn9CKqLvdPoKSsk0e015V478H+ILy7e/juX1C3ByIehQegHQ16rRWtCvKjLmiYYjDxrw5ZHnfg/xtosMEel3FoulTp8pBGFY+56g/WvQkdZEDowZSMgg5BrB1/wbpHiFCbiAR3GOJ4xhh9fWuIa08W+AZC9s51DTAeVwWAH06j8K6HTpYh3pu0uz/RnMqlXDK1RXj3X6o9Xqnq7BNGvmboLeQn/AL5NYXh3x7pOvBYjJ9luz1hlOMn2PepvHWoCw8I3pU/vJlEMY9S3GPyzXM6U4TUZKzPTwTjiKsFTd7tEXw8Ur4Kss9y5H0LGuorM8O2P9m+HrCzI+aKFQ31xzWnUTd5NmuMmqmInNbNv8woooqTnCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOV+Iyb/BN6f7pVv1qbwE/meC9OPpHt/Kn+Ok8zwVqi/9Mgf/AB4VT+Gz+Z4Is/ZnX8mNdm+E/wC3v0OLbGf9u/qdbRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZXiLw9p/ifSZNO1GLfE/IYfeRuxB9a8lb4ReK9CuHPhrxEUhY5ALmMj644r2+ilbW6HfSx4pH8I/FOuXCHxP4jaSBTkorlyfpnivWdC0Kw8OaTDp2nRCOCMfix7kn1rSoqr6WF5hRRRSAKQgEEEZB7GlooA4/xF8PNL1ktcWw+xXnUSRjgn3FcHqkfiLQLqwj15Jb3TLOYSoVOQ2OnP+Ne2UyWKOeNo5UV0YYKsMg110sXKK5ZrmX9bM5/YOFT2tCXJPuv8jI0LxVpPiCEGyuFEuOYX4Yfh3rargNd+GkEspvdCmNjdg7ggOEJ9vSs2x8ca34ZuVsPFFnI8Y4W4A5x656GqeGhUV6Dv5Pf/AIJisVOk+XEK3mtv+Aeo0VR0vWdP1m2E9hcpMh6gHkfUVerjacXZnbGSkroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMbxWnmeFNTX/pgxrC+Fj7vByL/dmcfrXTa6nmaBqK+ttJ/wCgmuQ+Er7vDVwn9y4I/QV2Q1wsvVHFPTFw80zv6KKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq19p9pqVu1veW8c0TdVcZqzRTTad0JpNWZ5pqnw8vtJuTqHha8kikXnyC2PwB7/jUmj/ABIltLgaf4mtHtp1484LgfiP6ivR6zdY0DTddtzDf2ySej4wy/Q11rEqa5a6v59TilhJU3zYd28un/ALlrd297As9rMk0TdGQ5FTV5ZdeEfEXhCdrzw5dvcWw5aA9ce46GtnQPiTZX0gtNWjNheA7Tu4Qn+lKeFbXPSfMvx+4qGLSfJWXK/wfozuqKajrIgdGDKRkEHINOrkOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK2orv0y7T+9C4/wDHTXB/CRsaZqcX925z+gr0KZd8Mif3lI/SvN/hQ2JtZi9JQf512UtcPUXocVbTE036npdFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/r/g7SfEMZNxAI7jHE8Yww/wAa6CiqhOUHzRdmROnGa5ZK6PKGs/FvgKQvaudQ0wHJXk4H06j8K63w7490nXQsTSfZbvvFKcZPse9dUQCCCMg9q5DxF8PdL1otPbj7HedRJGMAn3FdftqVbSsrPuv1Rx+wq0NaLuuz/RnX0V5RFrHirwLKINUha+04HCyZzgex7fjXeaF4r0rxDEDZ3AEuPmhfhh+HesquGnBcy1j3RtSxUKj5XpLszbooornOkKKKKACiiigAooooAKKKKACiiigArzH4ZfuvEWvwejAj/vpq9OrzHwN+5+IOvQ+pb9Grsw+tGqvJfmcWJ0rUn5v8j06iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAZLFHPG0cqK6MMFWGQa4PXfhrbzSm90OY2N2DuCA4Un29K7+itaVadJ3gzKrQp1VaaPLrLxvrnhi5Wx8T2ckkQ4W4A5x656GvQtL1nT9ZthPYXKSqeoB5H1FTXthaajbtb3kCTRN1VxmvPdU+Hd7pdydQ8LXkkUi8+QWx+AP8AjXRehX392X4f8A5bYjD7e/H8f+Cel0V5xpHxHms7gaf4ntHtp1484LgfiP6ivQLW8t76BZ7WZJom6MhyKwq0J0n7y/yOijiKdZe69e3UnooorE3CiiigAooooAKKKKACvMfDX7r4u6zH03iQ/qK9OrzHT/3Hxoux/fRv1ANdmF+Gov7pxYvSVN/3j06iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzjWviLrmmazdWVv4TurqKGQosy5w4Hesyf4t67awPPceDrqKJBlnckACvWq808XXcni7xja+DbRyLOHE+pOp6gdEpK+i6j01Z2XhXXH8R+HLTVXtjbG4Ut5ZOcDNbNR28EVrbxwQoEijUKqgcACpKp2voSr21CiiikMzdX0HTdctzDf2ySejYwy/Q159deEfEPhG4a98OXb3FsOWgPXHuOhr1OiuiliZ01bddnsc9bC06r5tn3W5wugfEmyvZBaavGbC8B2ksMIT/Su4R0kQPGwZWGQynINYWv+D9J8Qxk3MAjnxxNGMMP8a4drLxZ4CkMlo51DTAclOTgfTqPwrX2dGv/AA3yvs/0Zh7WtQ/irmj3W/zR6vRXKeHvH2k66Fid/st33ilOMn2NdXXLUpzpvlmrHXTqwqR5oO6CiiioNAoorJ1nxJpehR7r65VXP3Yl5dvoKaTbsi6dOdSXLBXfka1eYXH7n42R/wDTRF/VK2R4q8Rasf8AiS6AyRHpNdttB/CuVP8Aa0PxU0uXWfJ+1OR/qfugbSBXdhYNOd/5WY5phJ0KcJTavzLS6b+5HsFFFFcBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBQ1vU49G0S81GUjZbxM/Pc9h+eK4T4P2Ekuk33iO7y13qk7PuPXYDx/Wk+N2ptZ+CFtEbD3k6ocd1HJ/pXZ+FLBdM8KaZZqMeVboD9cUR+0/l+oS6L5mxRRRQAUUUUAFFFFABQQCMEZBoooA5DxF8PdL1otPbj7HedRJGMAn3FcvHq/ivwLKIdTha/04HAk64Hse3416vTJYo5o2jlRXRhgqwyDXVTxUkuSouaPn+jOSphIuXPTfLLy/VGPoXivSfEMQNpcAS4+aF+GH4d6264HXfhrbTym90OY2N2DuCg4Un29KwZvGninw1azafq9oXm2FYblh0Prnoav6tCrrQfye/wDwSYYidOShiFa/2unz7HXeIfE10b8aHoCCfUnH7yT+GAep96n0PwXZ6fJ9sv2N/qL8vNNzg+w7VB4BttMi0fz7W6juryf57mXPzbj29cV11YTbh7i0Pcq4uEIeywr93rLrL/gdl94AADAGBXmHjL9z8TNCl/vBf/QiK9PrzH4ijy/GXh6b/aQf+RP/AK9bYH+Lbyf5Hh4/+Ffs1+Z6dRQORmiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDN1bQNK11Yl1Sxhu1hO6MSjO0+1aKKqIqKAFUYAHYUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFV72wtdRt2gvIEmibqrjNWKKabTuhNJqzPNdV+Hd5plydQ8L3kkMi8+QWx+AP+NO0j4jz2VwNP8T2j28y8ecFwPxH+FekVm6voOm65bmG/tkkHZsYZfoa644lTXLXV/PqcUsI6b5sO7eXQt2l5bX1us9rMk0TdGQ5FedfFIeXqehTekv8AIg1Bd+EPEPhK4a98N3bz245aA9cfToa53xZ4vbxDa2EVzaNbXtpKTIOx6fl0rpwuHtVU6bvH8Vp1OXF4m9Fwqx5Zaej16M9yiO6FD6qDT6htDus4D6xqf0qavLe5662CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsDX/B+k+IYz9pgCT44mjGGH+Nb9FVCcoPmi7MicIzXLJXRHbxeRbRQ7t2xQuT3xUlee+M/icfCet/2bHpE94RGHZ06DPauZk+PXkgGXw9OgPTc+M1N76mnLbQ9oorxofHaQgEeGrkg9w3/wBavTPC2uSeIvD9vqklo1qZskRMeQM07dRGzRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIntoJG3SQxu3qyAmvDfjKY7/xhomh28aKTt3BFA5dsfyr3evBYP8Aipv2gnf78NnIT7YQYH60krzivmO9oSZ7baaZaW9nDCLaHEaBfuDsKuKiooVFCqOgAwKWim3clKwUUUUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCtqN0tjpt1dscLDE0h/AZrxf4H2rX/iDXNbkGSTsVj6sST/AEr1vxNpdzrXhy+020nSCa5j2CRwSFz16Vj/AA88GP4K0KSxmuI7iaWUyPJGpAPp1ojpJvyCXwpeZ11FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==
|
<image>Find $z$.
|
12
|
Geometry
|
Geometry3K
|
test
|
43
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADhAOMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiisDQKKWkoAKKKO1ABRRRQAUVR1nVrbQ9JuNRu2xFCucDqx7KPcniuX0/4peHbvat01xYSEA4njO059CuePc4rWFGpNc0VdGU69OEuWUrM7aiqtlqVjqUfmWN5Bcp3MMgbH1xVqs2mnZmiaauhaSlpKQw7UUuKSgAooooAM0UUUAFFFFABRQKO9ABRRiigAooooAMUUUUAFFFFAAaKKKACiiigAoorjvH/AIil02wi0nTiTquofu4wp5jToW9vQH6ntV06bqSUUZ1aipwc5HOeIb//AITLxQNPibdo2mPmUjpNL6e4HI/P1Fak9pbXUfl3FvFKn910DD9araPpcWj6bFaRYJUZd8ffbuasXV5bWUXm3U8cKertjNetorRhsjyNXec92Y0/g7S3kEtsJrOYch7eQjB/HP6VNCfGWk/8eOurfRD/AJZXq5J9t3J/UVXHitLyUw6Npt7qco/54xEL+eMj8qvw6R491HlLKw02M9DcSbm/TP8AKrle1qlvn/VyI2venf5f1Ysw/EbVbDC654cmCj701m29fyP/AMVW7pvxB8M6nhU1JIJD/BcjyyPxPH61hp4B8Vzc3PiiGI+kNvkf0qvdfCC6vCXuPEolkP8AE9iM/nvrnlSwst3b0v8A5HTGpjI7K/rb/M9JjljmjEkTq6NyGU5B/GnV5XD8KfEOlN5mkeJEif23xZ+uM1fWX4m6GP31raaxCvUoRux7Y2k/ka55YWL/AIc0/XQ6I4qa/iQa9NT0WlFefW/xUtYJvs+u6RfaZP3DLuA9zkA/oa6nTPFWhavgWOqW0rt0jL7X/wC+Wwf0rGeHqw1lE2hiaU9IyNeijNFYm4CigUUAFLSUUAFFFFAB3ooooAKKKKACiiigAoopaAEooooAp6pqVto+mXGoXb7IIE3N6n0A9ycAfWvLtJMt/d3XirWGWOW4/wBSHOFhi7Yz7f55o8d+I7fWNaOnvMRo+mvuuCp5nm7IPXuP++j6Vf0Pwhf+Lni1HX1e00kYa309CVMg7FvQfr6Y7+rQpKjS556X/Lt8zyK9V16vJDW359/kU4NR1fxLcPa+GLPdGp2yX842xp9M/wD1z7V0+kfDHT4pRea7cy6vedT5pIiX2C9/x49q7W1tbeyto7a1hSGCMYSONcAD6VNWU8TJ6Q0X4/edFPCRWtTV/h9xHb28FrCsNvDHDEv3UjUKo+gFSUUVynWFFFFABRRRQBXvLG01CAwXttDcRHqkqBh+RrzzxD8INPvA8+iTmym6+TIS0R/Hqv6/SvS6K1p1p03eLMqtCnVVpo+f438T+Er1bG61S80t+kRlPm2z/Q8gdux98V1tv408W6eqm/0i21KHH+ts32sw9cc5/IV6RqWmWWr2T2d/bR3Fu/VHH6g9j7ivLtW0HU/AcjXNoZdQ8Pk5dDzJbf8A1vfp64612RqU6+korm/P5nBOjVw+sJPl/L5G/Y/E/QJ5PKvftOnTd1uYjjP1Gf1xXV2Wp2GpR+ZY3lvcr3MMgbH1x0rg420/WrJJgkN1buMjeoYfkehrLuPB2lSSCW2E1nMOQ9vIRg/jn9KylhaT2uvxNI4qqt7SX3HrVFeQXOqeJ/CawTLrjX1o0yxtHcpuYZ9zk9vUV6/XJWoOlZ3umdlDEKrdWs0FFFFYHQLSUUUAFFFFABRRRQAUUdqKACuO+Ifiv/hHNEMFtJjULsFIsHmNe7/0Hv8ASuo1C/t9L0+e+u5NkECF3b29B79q8l8M6VcfEbxhca7qiH+zbdwBGehx92IewHJ+vvXXhaUW3Un8Mfx8jjxdWSSpU/il+HmXvhv4D+0xwa5rMW6EfPaWzjhj/wA9GH8vXg9MV67SABQAAABwAO1LRWrSqy5mVQoRow5YhRRRWRsFFFFABRRRQAUUUUAFFFFABSMquhR1DKwwQRkEUtFAHk3iTQZvA+otq+mRs+h3Dj7Tbrz9nY/xD2//AFelacE8VzAk8Lh43AZWHQivQriCK6t5LeeNZIZFKOjDIYHqDXkTWcvgrxKdGmZm0u8JexlY/dPdCf0/I969ClU9qrP4l+J5tal7GV18L/B/5EPjoZ8OFh1WZD/P/GvXkYOiuOjAGvJvGq7vC10f7rIf/HgP616hpr+bpdnJ/ehRvzUVjjP4cfV/oa4P+JL0X6lqilpK889EKKKKACiiigBaSiigAoo7Vy3jnxK2g6QsNn82p3p8q1QdQTwW/DP5kVdODqSUY7sipUjTi5S2RxHxH8QTeINcg8L6Ud6LMqSbTxJMTgL9F/nn0r1Xw/otv4f0S2022A2wr8zY5dj95j9TXl/ww0BZPFd5fSHzF01fLDnndO2Qx98fMPyr2Ou/EtQSow2X5nBhE5uVee7/ACCiiiuM7gooooAKKKKACiiigAooooAKKKKACiiigArnvGnh1fEvh2e1UAXUf722foVkHQZ9D0/H2roaKqEnCSkuhM4KcXF7M8Mu9RbV/h/dvLkXMQEcynghlZefx616z4dfzPDOkyf3rOE/+OCvLPHFl/YXiXWIFG201e1Nyg7CQZLfqGP/AAIV6X4PfzPBujN6Wca/koH9K68bZ0oyWzf6HBgrqtKL3St9zNukoorzD1QNAoooAKKKKACijtRQBDeXkGn2U13dSCOCFC7sewFeQrezavdah4wv0KpHGwsYW/gQA4/E/wAyfatjxrqb+JNdTwxZyEWdswk1CRT1I6Jn2/n/ALtZ3jBltPCkkEKhFYpEir2GQcD8BXq4SjyJN7y/L/gnkYutztpbR/F/8A7T4Y6cbDwTayuD5147XMhPU5OB/wCOgfnXY1V020FhpdpZr0ghSIf8BUD+lWq46s+ebl3O+lDkgo9goooqDQKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOvjFpv2jwzb6gg/eWc2CfRHGD+oWtrwC/meBtJPpDt/JiP6Vd8a2YvvBWsQkZxbPIB7oNw/Vayvhq+/wBpnPI80f+RGroqSvhUuz/Q5YR5cW33j+p1dFFHeuE7g70UUUAFFFFABXNeNfEv8Awjmi5t/n1C6PlWsY5JY/xY9s/ngd66WvIvtMus/EPUZtVUw3Fj+7tbV/4U5+b3PQ/wDAvpXVhaSnO8tlqcmLqunBKO70L3h/Sf7J0/bK2+7mPmXEhOSzH39v8fWqPi9fMg0uE9JL+IH9f8a6Ouc8XHy4dLmPRNQiJ/X/AAr0oNud2ebNKNOyPZaKKK8k9kKKKKACiiigAooooAw/Fvie08IeHLjV7tWkEeFjiU4MjnooPb69gDXjdl+0LqX9qA32jWh08nBSBmEqj13E4P0wPqK9R+JXhSfxh4Nn060ZRdxyLPAHOFZlyNpPbIJ/HFfNU3gTxJZ3KR6hpVzZRGZYWuJ0IiUnvu6EcE8Z6U0VGMpvlirs+vrS6hvrKC7tnDwTxrLG4/iVhkH8jU1UdF01NH0Ow0yNy6WlvHAHP8W1QM/jir1IkKKKKACiiigAooooAq6nGJdKvIz0eB1P4qa4v4UymTwPEp/5ZzyL+uf612mpOItKvJD0WB2P4Ka4P4Qtu8HSj+7eOP8Ax1K2t/s8vVfqc7f+0R9H+h31FFFcZ2BRR3ooAKKKKACuP8ceFpNVhj1bS/3esWY3Rkf8tVHVD+uPxHeuwoq6dSVOSlEzq041IuMjzLRNYi1mx80Dy50O2aI9Ub/CqPjWEy+GpnXrC6SDH1x/WtTxroM+i6i3irSIsof+Qhbr0de7j+v5+tRytBr2gy/Z3Dx3MLBT6Ejv7g169OcXapHb8vI8epCSvTlv+fmelafdLfaba3i/dnhSUY9GAP8AWrNch8M9S/tDwRaIxPm2jNbOD22nj/x0rXX151SPJNx7HqUp88FLuFFFFQaBRRRQAUUUUAFZXiTSF1zw/eaeQN8iZjJ7OOVP5gVq0U07F05ypzU47rU5rwLq7at4YgExP2q1P2aYN1yvQn8Mfjmulrhbf/imviXNB92y1tPMT0Ew6/mc/wDfQruqclrc6cdCKq88Phlqvnuvk7oKK84+Jn9rarrHh3wxYT3VrZ6jM5vri3BBEa4+XcOnBbg98VhnSG+GvxH8NWekalezabrLPDcWtzLvAIwN3Qd2B6dj2OKk4z2OivJfi5rPi+PQ9Vs7TQlh0RQgl1P7SpZ0O3OEyCvzHb34r0LwkSfBmhknJOn2/P8A2zWgDYooooAwvGd2LHwXrExOP9FdAfdhtH6kVyHwdf8A4pi9j7resfzRP8KvfFe7Y6HY6PE2JtRulTH+ypyf1KVU+F6rE/iK2XhYr44HtyP6V2ctsI33f/AOFzvjIrsv+Ceg0UUV5p6QUUUUAFFFFABRRRQAjKroVZQykYIIyCK8o1jTX8B6358SsfD99J0HP2aQ9vp/T6c+s1U1HT7bVdPmsbyISW8y7XU/zHoR1zW+Hreylrs9znxFD2sdN1scB4IvF0fxzf6UWH2bVEF1bEHguMkgfUbv++RXqNfP2uWmo+EtTt7OSQtLYy/aNNuiOJI88ofyHH1HcV7hoWsW+vaLa6lbH93MmSueUbup9wciuzFw2qLVM5MFU3pS0aNGiiiuI7wooooAKKKKACiiigDlPiBpkl54e+3WuReaa4uomHUAfe/Tn/gIrc0XU49Z0a01CLG2eMMQP4W6Efgcj8KvMqujI4DKwwQehFcP4KZtF1zV/C0pO2GT7RaZ7xtjj9V/HNVvE74fvsK4dYar0e/3Oz+83/FHijTvCOiyanqUhCA7Y41+/K/ZVHr/ACrjfB3h3WPEXiVfHPiuMwTBdum6f2t0IPzMD3wT75OTjgC38QvB/iHxJrWh3+jT6Yi6YzSiO+LbTISuDgKc42jrUum2nxRXU7VtS1Dw49iJVNwsKybzHn5guUxnGcVJwFj4tf8AJL9c/wCucf8A6MStvwj/AMiXoX/YPt//AEWtQeONCuvE3g3UdHspIY7i5VQjTEhBh1bkgE9B6Vo6HYy6Z4f02wmZGltbWKFyhJUsqAHGe3FAF+iisHxj4iTw14duL3INww8u3Q/xSHp+A6n6VUYuUlFdSZyUIuT2Rw2r3X/CQfEqZ1O600ePyV9DKc7v1yP+Airnw4O3XvFUfpcRt+e+qHhvTH03SVE+TdTkzTs3J3Hsfp/PNXfAR8vxr4li/vCJ/wCf+NehXt7GUVskvzR5lBt1ozlu2/yZ6LRRQa8c9kKKKKAFopKKACiiigAopaSgDF8UeG7bxPo72c+ElX54Jscxv2P09RXmPgfxDc+CfElxoWtDybWWTbJu6RSdnH+yRjJ9MHtXtHauL+IPgxfEmnfa7RANTt1+Tt5q9dh9/T3+tduFrpJ0qnwv8DhxVCTarUviX4o7wHIyOlFeTfDfx75fl+HtakKOh8u1mk46ceW2eh9Py9K9Zqa1GVKXLI0oVo1oc0QooorI2CiiigAooooAK4fxzG+kappPimBSfssohuQP4om//Ww+rCu4qnq2nRavpN1p833J4ymfQ9j+BwfwpxdmdOErKjWUpbbP0ejLUciSxrJGwZHAZWHQg9DTq5L4fajLcaE+mXfF5pkhtpFPXA+7/Ij/AIDXW0NWdiMRRdGrKm+n9IKKKQkKCSQAOSTSMRs00dvC80zrHFGpZ3Y4CgdSTXkU99J438T/ANquGGkWDFLKNhjzG7uR+R/ADsateJ/EEvjTUG0PSZWXR4WH2y6X/lsR/CvqP59egGb9vbxWlvHbwIEijXaqjsK76VP2Su/if4Hm1qvtZcsfhX4v/Ilqj4OO34la4n9+0jb8tg/rT77VLHTU3Xl1HFxkAn5j9B1NU/Alw2p+Pr7VLa3uPsL2RiEzRkKWDJxnp2NVNP2U29rEQa9rBLe56jRRRXkHshQKKKACiiigAooooAO1FHaigAooooA8t+JXg1d0niGxg3L1voU4JH/PQehHf8/Wjwp8QLjR4La012RrnTJOLbUlBJX/AGZB14/MY7jmvUWAZSrAEEYIPevJfEOir4O1R5PJ83w3qD4kjI3C3c+3p6e3uBn08NWVWHsamvb+u55eJoyoz9tT0vv/AF2PX4LiG6gSe3lSWGQbkdGBVh6gipK8ds7bWvDMn2rwxeCazf52sJ23I2e6n+uQfc11ejfE3SbyUWmrxyaRejgpcfcJ9m7fjis54aS1hqvx+41p4uL0no/w+87eimRSxzRrJE6yRsMqyHII9jT65jrCiiigAooooA4W+/4pv4k2t6PlstZTyJfQSjAB/wDQfzau6rmPH2nxX/hK6LypFLbYnhd2C4Ze2fUjI/GuUufjFa2+j2y21q91qZiAl3fLGj4556nnnA/OtoUp1bcqOrGV6bw8K03qvdfy2f3afI9Jvr+00yzku724jgt4xlnc4A/xPtXleu+Kb7xmJLaxdtN8PKcTXUh2tOO4HoPb8/SsQ6T428d3iXd7CwgBzGbnMUKD/ZTqfrg575rsdP8AhdasUk13UJ9QdBxCh8uJfYAc4+mPpXTGNHD6zleXlrb+vM8OU6+J0hG0fPS/9eRzkGv6Xp8aaZodpNfyrwsVshOT6k45+oBrUt/DnjHXcG7nh0W1b+FPnlI/Dp+Y+leh2GmWOlQeRYWkNtH/AHYkC5+vr+NW6wnjf5F83q/8jaGB/wCfj+S0X+ZyWk/Djw/priaaBtQuepluzv5/3en5g11iIsahEUKqjAAGAKdSVyTqTqO83c7KdKFNWgrBRRRUGgUUUtACUUUUAFFFFAB2opaSgAooooAKrahYW2qWE1leRCW3mXa6n/PX3qzRTTad0JpNWZ5HbJc+Etb/AOEf1Fy9pId1hct0Zc/dPv8A19iK2bzT7TUIvKu7eOZe24cj6HqK6rxP4ctfE2jyWU/ySD5oZgOY37H6eorgdE1G6S5m0TVl8vU7T5Tn/lqvZh68Y+vWvVpVfax5l8S3/wAzyKtL2MuV/C9v8iOPwxNp0hk0PWL3TmJyUVyyH6jIz+Oa0IvEHj3ThtY6dqi+rrsb9No/nWjTXdY0LuwVRySxwBVuXN8STIUeX4W16ESfEXxBCNt14Rd29Ybnj8tp/nT/APhZ2o9B4Pvt3/XQ4/PZWLdeLdPimFvZiW/uWOFitl3ZP1/wzVi30Txnr2C6w6JaN3f55SPp/wDs0OnSirzil82NVq0naEm/kvzJtQ+Kes28W7/hG4rT0N1dDn6DC5rDTxz488TyGHSIFQdC1pB8o+rvnH5iu00v4a6HZSC4vhLql11Ml22Vz/u9PzzXXxRRwRrFDGkcajCoi4AHsBWEsTQh/Dhf1N44bET/AIk7LyPLrT4YaxrEq3PijW5XPXy0kMjj23NwPwBruNG8HaFoO1rLT4/OH/LaX53/ADPT8MVuUVy1MVVqaN6dkdVLC0qeqWvdhRRRXOdIUUUGgAooo70AFFFFABRRRQAUUUUAFFFFAAaKKWgBKKKKACiil7UAJXJeN/Cr61bR6jpv7vWLP5oXHHmAc7D/AE/+ua62irp1JU5KUTOpTjUi4yPJLG68Wa5Eiadof2Y4xJc3RKoD3IBxn9a2rT4Zm7dZvEmrz3zg58iE7Igf5/kFr0GiumeMm/gXL/Xc5oYKC+N835fcUdM0bTdGh8rTrKG2XGCY15b6nqfxq9RRXI227s60lFWQUUUtIoSiiigAooooABRRRQACjvRRQAUZoooAKWkooAKKKKACiiigBaSiigA7UUUUAFLSUUAFFFFABRRRQAtJS0lAC0lFFABRRRQAUtJRQAUUDrRQAUUUUAFFFFABRRRQAUUUUAFFFFABSiiigBDRRRQAUvaiigBKXtRRQAlFFFAB2ooooAUUlFFABS0UUAJRRRQAd6KKKAFpO9FFABRRRQAtJRRQAUUUUAf/2Q==
|
<image>Find the area of the shaded region. Assume that the polygon is regular unless otherwise stated. Round to the nearest tenth.
|
216.6
|
Geometry
|
Geometry3K
|
test
|
44
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHqAisDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKztd1q08PaNcapesRBAuSB1Y9gPeuY8IfE/SfGOrPp1nbXMMqxGTMuMEAgdj70LV2QPRXZ3FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc/408SxeFfDF1qTkeaF2QKf4pD0/x/Ck3ZXGld2PMvihqtx4u8X2HgrS3JRJAbhl6bu+f90frWbo2nw+DvjtBptuNls6CNfcNHn+Yrofgv4cldLvxZqILXV6zCFn67c/M34n+VZPxVH9k/FTQNVHAbyix/3Xwf0qorklFPd7/MUnzRlbZLT5HulFNRt6Kw6EZp1IAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvBPHl7cfEX4iW3hbTZcWdqxV5ByA38bfh0r2nX49Tl0O7i0fyhfyRlImlYqqk8ZyAelcX8Mfh5deETe32rPBLqNw20NExYKnXqQOSaSV5a7Ibdo6bswE+BlzEgRPFNwqjoFjIA/WuO+Inw7ufB+n2eoPq8t8Hl8v51xsOMjua+lq4/4k+Fbvxf4W/s+xMK3KzLIhlYqvGQeQD60SbWqHG19Td8O3g1Dw5p12DnzrdH/MCtOsDwVpN9ofhKw0zUmia5t02MYmLLgHjBIHat+rnbmdjOPwq4UUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGPqniOx0fU7OzvW8sXQOyU/dBHY1rgggEHIPevLvi1EZ7/RoVODIWUH0yQKTw94p1DwlfroXiRW+zjAhuDztHbnuv8q7vqnPRjOG/b/I8/67yV5U6i93TX5dT1OimxyJNGskbq6MMqynIIp1cJ6AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV5p8XPGdzoOlppukzSJqM48x5Ijhooweue2TXRfDq9utR8CaZdXtxJcXEkeXkkbczHPc0LVN9gelvM6mivI9a8Q+JvF/jm68M+G78aba2QInuR94kcHnr17VUOr+Lvh34r02z1zV21fTL9wnmSZyCTjvkjGR3ojrbz2B6X8j1DxH4jsPC+ktqGoM2wHaiIMtIx6ACuUsPipE+oW9vq+g3+kwXTBYLiflGJ6Z4GKd8UdPvJ7LSNXtLZruPTboTzW6jJdOOQO+MVzfivxjZ/EHS7bw/oFhdzXk0yM7SRbRbgdSTRHf5je3yPYwQQCDkHpS1DaxNBZwxMcsiBSfXAqahkrYKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5l8UP+Q1oH/XX/2Za7XXfDtj4j0z7NeR/MFzHKPvIfUVxXxQ/wCQ1oH/AF1/9mWvS0/1a/QV21ZONGlKL11/M4KUIzrVYyV1p+R5Rpusar8PNUGlawHn0pz+6lHO0eq/1Fep2t1Be20dzbSrLDIMq6nIIqvq+kWWt2D2d9EJI26Hup9QexrzKOXWPhnqvly77vRJm4Pp/g386pqOKV1pP8/+CSnLCO0taf5f8A9boqppup2mr2Md5ZTLLC44I7ex9DVuuFpp2Z6CaaugooopDCiiigAooooAKKKKACiiigAoqOe4htozJPNHFGOrSMFA/E1hy+NNDRykFzJeOO1pC8w/NQR+tAHQUVzn/CVTTcWfh3Vpvd40jH/jzZ/StDSr/UL1pftulNYqoGwtMHLfgBxQBp1U1TUrfSNLudQu3CQQIXYn27Vbryf4waxLFd6TpMltcS6a7Ce6ECkmQA8L+lJ9u40jKu9OuNS8A+JfGOqIRd6jGBbo3/LKEMMAfWu9+Fv/ACTnSP8Arl/WvPfFfxQsNV8GXuj2+h39sJIhGjOmFQAjrx7V0vwe8SxX/hiPSVtJ43sIQWlcfK+SelUrJSttoJ30b8/0Ma4lb4Z/ErUNY1CIvpGqZIkjILISc/dzn1qHWdUh+K3jDR7XRVYWOnyebPNKQpPIPC5yelTeALOHxz4t1zXNcjW7NvL5VvDLykY9h9Kd8WdFtPC40zxJokKWN5FcBH8kbQ468gfjSj7qhzf12Kerkl/Xc9jVQqBewGKYkEUbFkiRSepVQKi0+4N3p1tcMMGSNXI+oqzTasyE7oKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5XxhofiPWfs40LXv7LRVYS4QkuT05B4pMaFHja2bx/8A8IpHbF5RD5rziQYU4ztxjrz611NeB+CNDuvDvxtfT728+2XC27O8+CNxZQe/1r3yq+ymJ/E1/WwUUUUgCiiigAooooAKKKKACiiigDzL4of8hrQP+uv/ALMtelp/q1+grzT4of8AIa0D/rr/AOzLXpaf6tfoK7K/8Cn8/wAziw/+8Vfl+Q6q99Y22pWclrdwrLDIMMrCuZ8V/EXRPCJMV558tzjiKOM8/wDAjx/OsnwD461Xx1q93OtnHZ6RartA+88jnoCfYenqK5E2ndHY0mrMybuw1f4baob2wL3Ojyt86HsPQ+h9DXpGh67Y6/p63dlKGU/eQ/eQ+hFXp4IrmB4Zo1kjcYZWGQRXlus+HtT8Dakdb0BmexJzLB12j0I7j37V3KUcUuWWk+/f18zz3GWEfNDWHVdvTyPVqKxPDXiex8S2ImtmCzKP3sJPzIf8PetuuKcJQlyyVmd8JxnFSi7oKKKKkoKKKKACikZgilmICgZJJ4Arl5NXv/EUrW2gkwWQO2XUmXr6iIHqf9o8UAauq+ILDSGWKZ2lun/1dtAu+V/oo6D3OBWaD4n1nkGPRbU9BgSzkfj8q/rWlpOgWGjqzW8Zed+ZLiU7pJD6ljzWpQBz0Hg3SVkE96kuo3H/AD1vJDIfwB4H4Vuw28NugSGJI1HACKBUlFABRRRQAU1o0c5dFb6jNOooA5P4i2LXHgHVorW1MkzRAKkUeWPzDoBzTfhraSWngHS4ri3eGYRYdJEKsOe4PNddRQtL+YPW3keIQtq/wp8YalL/AGVPfaJfvvV4ATt5yPoee9N1rUdW+LWsadp1lpFzZ6RbyeZPNOpGfX9O1e4MqsMMAR6EUioqDCqFHoBihaWv0G3u11GwRLBBHCn3UUKPwqSiigWwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5DB/ycfc/wDXoP8A0WtevV5DB/ycfc/9eg/9FrXr1Ef4cf66hL4n8vyRk6rr0WjXMP2y3mWzkHzXajckbejAcge/StKGaK5hSaCRJInGVdDkEexp7IrqVdQynggjINc3N4buNMme78N3AtXY7ns5ObeU/T+E+4oA6Wiucg8WwwSLb63ay6VOeN03MLH2kHH54roUkSVFeN1dGGQynIIoAdRRRQAUUUUAFFFI7rGhd2CqBkknAFAHmfxQ/wCQ1oH/AF1/9mWvQb3UbTSrD7VezrDCoHLdz6Adz7CvKfiTrtvqOuaPFpTLdSRSYMgz5QbcON3f8K9A03w473Mepa1cC+vlH7sbcRQeyL/U8111nejTXr+Zx0E1Xqv0/Iyb/Rbrx3azNqMJs9MMbfZrZhiSRsHa8h7DuF/OtLwF4YXwp4UttPKj7QcyTkd3PX8un4V01Fch2BSMqupVgGUjBB70tFAHmPiXwhe+H78+IPDJZNh3S26dh3wO49q6jwl4xtPE1rsOIb5B+8hJ/Ue1dN1rzzxb4Imjujrvh0mC9jO94o+N3uPf2713QqRrx9nV0fR/ozgnSnh5OpRV11X6o9DorjvB3jiHXV+w3wFvqcfDIeBJjuPf2rsa5alKVKXLJanXSqwqx5oPQKCQASTgCiuZ16abV9Tj8OWcjIjJ5t/Kh5SLsgPYt/L61maEDtN4yupIY3aLQIX2uynBvGHUA/3B+v0rqoYY7eFIYUVI0GFVRgAU22tobO2jt7eNY4o1CoqjAAFS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGIvhPSF8Uv4kED/2m6eWZPMOMYA+706AVt0UUdLAFFFFAEc0EVxE0U0aSRsMFXGQawH8H21u5l0e8utLkJzi3fMZPuhyv6V0dFAHN48XWPAbTtTQf3gYH/MZH6Uv/AAkWrQ/8fXhi9HqbeVJR+pWujooA5z/hLgPvaDrSn0+zqf8A2ej/AISXUJP+PfwxqbDsZTGg/wDQjXR0UAc353i69+5badpyHvIzTuPywKE8Ix3biXW7651Nwc+XI22IH2QYFdJRQB5d8SbeG11Tw9DbxJFGsmAqDAHzLXp6f6tfoK80+KH/ACGtA/66/wDsy16Wn+rX6Cuyv/Ap/P8AM4sP/vFX5fkOooorjO0KKKKACiiigDh/GPgZdUb+1NJP2fU4/m+U4EhH8j71F4P8ctdTDR9cH2fUYzsDuMCQ+h9DXe1yfjDwVbeIoTc2+INRjGUlHG72P+NdlOtGcfZVtuj7f8A4atCVOXtaG/VdH/wToNW1GLSdJub+XlIIy2P7x7AfU4H41Q8MaZJY6cbm7O7UL1vPuX/2j/CPYDAH0rzex8S30usad4W8THyUt5xLJLJ1fb9xSfTdzn2FexAggEYx2xWFWlKnKzOmjWjVjzL7haKKKyNQooooAKx7nxZ4fs7iS3uNXs4poztdGlAKn0Nas0qwQSTOcLGpYn2AzXzl4H8KWvxE8Wa3dam0ogVzJmNsEszH/CkruVkPRRuz3MeM/DROBrlj/wB/hWraX9nqEfmWd3BcJ/eikDD9K84b4FeFypAmvVPr5lcDNpt38MPifp1pYX0strcOnDH7yMcEMBxVKzaXcT2bXQ+jaKQHIB9aWkAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFRPcQRttkmjRvRmANN+2Wv/AD8w/wDfYoAnoqJLm3kYKk8TMegDgmpaAPL/AIreZ/amh+VjzN52Z6Z3DFbSt8QdowmlYx/eP+FZHxQ/5DWgf9df/Zlr0tP9Wv0Fd1WVqFPTv+Zlga/ssRW9xSvbdX6HG7viF/c0n/vo/wCFG74hf3NJ/wC+j/hXaUVy+08kep9e/wCnUPu/4Jx3h3XNcn8T3ej6ytsHghEn7jpzjHP0NdjXF2H/ACVjVv8Ar0j/AJCu0oqWurdhZgoqpFxSV4xendoKKKKzOEKKK5Lx34ruPB1rY6mIPPsWm8m5QfeAIyCD7YNAGTdeF7bxpf67ezMY5o5/strKP4RGMH6gtuqh4f8AFOoeE9QGg+JA3kg4huDztHbnuv8AKrHwv8XDXLf7BZ2Mnlw7pru6kOB5jsW2qO/U812fiHw5Y+I7A212nzj/AFcoHzIfauqjXSj7KrrH8vQ5K+Hk5e1pO0vwfqasciSxrJGwdGGVZTkEU6vJ9M1nVfh9qY0rWQ82mOf3Uo52j1H9RXqVrdQXttHcW0qyQyDKspyCKivQdJ33T2ZdDEKqrbSW6JqKKKwOg5vx/qP9leBdWuc4byCi/Vvl/rXiHw1+Iml+CtNvIrqyuJ57iXeXjIAwBwP516B8dtS+zeD7ayVsNdXAyPUKP/riun8BaFbWHgfSoZbWJpTAruWQE5PJpQ+1L0X6jla0V8zjJ/j9pSxMYdIunkxwGcAfyrJ8HaZffEnxoPFmqywJa2rgx26PlgR90Y7Dvk9a9nuNG0y7haGewtpI2GCpiHNeH+D0XQfjjd6XpTEWLPJGyA5AUDP6Gqh8fmKXwM9+ooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhIUEkgAdSazn8Q6LHL5b6vYK/TabhM/wA6ANKimRSxzxiSKRJEPRkbIP40+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqupXa2Gl3d45wsELyH8ATSbsrjSu7Hz/AKnp1z8QfjDqenw3slvChYeYpJCqmF6fWuj/AOFES/8AQyT/APfB/wAa5f4V+KNF0PX9X1XW7zypZxtj+UknJJb+ler/APC3fBn/AEFP/IbU0rRS8gbbkzM8I/Cc+GPEMOqyazLd+UrBY2GBkjGetel1maHr+n+I9P8At2mTGa33FQ+0jkdetadN32ZK7nmXxQ/5DWgf9df/AGZa9LT/AFa/QV5p8UP+Q1oH/XT/ANmWvS0I8teewrrr/wACn8/zOPD/AO8Vfl+Q6ijI9aMj1rjO04uw/wCSsat/16R/yFdpXFWB/wCLsat/16R/yFdrketaVN16I78f8VP/AAR/IKKMj1oyPWszgCuZ+IOhyeIfBOoWECb7gqHhH+0Dn+Wa6bI9aMj1oA5vwN4Wh8JeGLbT0AM5G+dx/E56/wCFdJRketGR60AUNX0ey1ywezvYg8bdD3U+oNeZxTav8M9V8mbfdaLM3B9Pp6H+det5HrVa/sbXUrOS0u4llhkGGVq6aFfkXJNXi+n+Ry18P7R88HaS2f8AmN03UrTVrKO7s5llhcZBHb2PvVuvJLqy1b4baqbyxLXOjyt86Ht7H0PvXpOia5Y69YJd2UoZT95D95D6EUVsPyLng7xfX/MKGI53yTVpLp+qPHvjfHqWo+INNt7TTru5gt4t7GKFmUsT0yB6AVLB8WPF0EEcKeDJdqKFH7iboK9uyPWjI9a5UrKx1t3dzxC48f8AxH16I2mmeG3s3cY80QsCPxfgV03w1+HM/hqabWNYlE2rXAIwDkRg8nnuTXpOR60ZHrVLTVCeugUUZHrRketIAooyPWjI9aAMO68XaNY6xJpd5deRcIFPzjCnIyOa2IbiG5jEkEqSoejIwI/SvC/ib/yPF3/1zj/9BFc9YaxqOlyCSyvJoSP7jECuxYZSimmfV0+HI18NCrSnZtJ67bH0zRXjek/FjU7bamo28d0g6svyN/hXc6T8RPD+qbVNybWU/wAE4x+vSsZ0Jx6HkYnJsZh9ZQuu61/4J1dFMjmimQPFIjoejKwINPyPWsTy3oFFGR60ZHrQAUUZHrRketABRRketGR60AFFGR60ZHrQAUUZHrRketABRRketGaACorm4itLaW4ncJFEpd2PQAVLXm3xr1p9M8F/ZYmKyXsgjJH90cn+lTJ2RUVdnG3+ueI/iv4il0vRJns9GhPzuCQMerY6k+ldBH8BNG+z4m1W+e4I5kG3Gfpiuk+FWgR6H4Hs22AT3a+fK3ck9B+VdvVuKj7pKk5anz4smu/B/wAXW1tPePdaNcsPvE7SucE47EV9AQypPAk0ZyjqGU+xrD8UeDtI8XwwRarE7rAxZCjlSCfpWxZ2sdjZQ2sO7y4UCLuOTge9Cfu2YPe6J6KKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxW1L+zPh5qTBsPOFgX/gR5/QGu0ryX45i/vNL0zTrGzubgPK0snkxM4GBgZwPc1M9VbuVDe5W+GPw60HVfBVtqGraek9xcOzBmJ4XOB/Kux/4VX4N/wCgNF+Zrd8M6cNJ8M6bYYwYLdEI98c1q1pO3M7Gcb2KOkaPYaFp6WOnW6wWyElUX1JyavUUVJR5V8XY2kvdJEYJkYMq4PfIxXJ6Fpv9pai2nX+rz6ddA4VZc4Y+nXg12nxQ/wCQ1oH/AF1/9mWuj8UeCrLxJbCZMQX6r8kyjr7N617NLEKlQhGWl769tTw6uGdXEVJR1tbTvoc3/wAKqvP+hgl/I/40f8KqvP8AoYJfyP8AjRoXizVPC92NH8Twy+Qp2R3RBIH49xXpNvcwXcImt5o5Yz0ZGBFYVsRiaT1d10dlY6KGGwtVaRs+qu7o80HwmuRIZP7dfeeC2w5P45p3/Cqrz/oPy/kf8a9OorH6/X7/AII3/s/D9vxZ5j/wqq8/6D8v5H/Gj/hVV5/0H5fyP+NenUUfX6/f8EH9n4f+X8WeY/8ACqrz/oPy/kf8aP8AhVV5/wBB+X8j/jXp1cl4p+IOmeGblLEQz6hqLjcLW1XcwHvjpS+v1+/4IP7Ow/8AL+LOe/4VVef9B+X8j/jR/wAKqvP+g/L+R/xq3pPxasbq+itdW0i/0fzm2xy3SkIT6ZIGK9CBDKGUgg8gjvT+vV+/4IP7Pw/b8WeZf8KqvP8AoPy/kf8AGj/hVV5/0H5fyP8AjXp1FH1+v3/BB/Z+H/l/Fnl7/Ce5kUq+uyMp7MpI/nSR/CSeIER62yZ67UI/rXqNFH1+v3/BB/Z2H/l/FnmP/Cqrz/oPy/kf8aP+FVXn/Qfl/I/416dRR9fr9/wQf2fh/wCX8WeY/wDCqrz/AKD8v5H/ABo/4VVef9B+X8j/AI16dRR9fr9/wQf2fh/5fxZ5j/wqq8/6D8v5H/Gj/hVV5/0H5fyP+NenUUfX6/f8EH9n4f8Al/FnmP8Awqq8/wCg/L+R/wAaP+FVXn/Qfl/I/wCNenUUfX6/f8EH9n4f+X8WfOPinR30HXprCS5NwyKp8w98jNY1et+KPAOpeI/GFxeJJFBaMqASMck4UA4Fa+j/AAy0PTtr3KteyjvL938q2+sx5U5O7P0bDZxg8HgqVO92opWXoeN6fo+o6rIEsbOWcnuq8D8eldrp3wl1O4iD3t3DbE/wAbzXr8FtBaxiOCJIkHAVFwKlrnlipP4dDycVxJiKl40Vyr72eYL8J7pF2rr0ij0Ckf1pf+FVXn/Qfl/I/wCNenUU1jqy0T/BHylfDU69R1Kt5SfVtnmP/Cqrz/oPy/kf8aP+FVXn/Qfl/I/416dRT+v1+/4Iy/s/D/y/izzH/hVV5/0H5fyP+NH/AAqq8/6D8v5H/GvTqKPr9fv+CD+z8P8Ay/izzH/hVV5/0H5fyP8AjR/wqq8/6D8v5H/GvTqKPr9fv+CD+z8P/L+LPMf+FVXn/Qfl/I/41jeI/A93oFpbz/2zLN506w45GN3frXs9cb8Rv+QRp/8A1/xfzq6eNrOSTf4I6sDlWFq4iEJx0b7v/MwV+Fd6yg/2/JyM9D/jTv8AhVV7/wBDBJ+R/wAa9Mj/ANWn0FOqPr9fv+COV5fh/wCX8WeY/wDCqr3/AKGCT8j/AI1kaZpdz4f+J2n6bJfSXABDFiSAcqT0zXsteX6r/wAlqsPon/oBrfD4mpV5ozenKznxGFpUuSUFZ8y6s9Qrxf8AaAD/AGPRm58vzHz9cCvaK5H4jeEz4u8LS2kOBdxHzYCe7Dt+NeVLv2PXhubfh145PDmnPEQUNumMfStOvDfBnxC1Lwdpy6N4l0bUPJtyUinSE8D054P51saz8Ymu7KSLwxouoXNywwJXgOE98DNXN3baIhFpWZ0l/wDEmws/GcfhmGzmubp3VC8bDapPXP0rtq8o+F3gK+sr2XxP4gBOo3GTHG/3kz1J969XotZJPcL3emwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5l8UP+Q1oH/XX/ANmWvS0/1a/QV5p8UP8AkNaB/wBdf/Zlr0tP9Wv0Fdlf+BT+f5nFh/8AeKvy/Iq6npdnq9k9pewrLE46HqPcehrzG5sdb+G+oG7sWa70d2+dD2Hv6H3r1qmSxRzRNFKiujDDKwyCKzo4h0/desXujSvhlV95O0lszM0DxFYeIrIXFnINw+/EfvIfcVrV5jr/AINv/Dt8dc8Lu6hTukt15wO+B3HtXR+E/G9n4ijFvNi31BR88LHG73X/AAq6uHXL7SlrH8V6kUcS1L2VZWl+D9Dq6KKK5DsCvO/Dfg/U7L4ma34g1COI29xuFswfLAE+nbgCvRKyfEXiLT/DGkyahqMwSNR8qfxO3oBSvyvmHa65Thvjo0A8FQK+3zzdL5Xr0OcfpXeeHBKvhrTRPnzRbJvz64FeXaHomr/EzxBF4k8QI1vo0DbrS0P8fPHHp7969jVQqhQMADAFUlaLv1E3dq3QWiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXG/Eb/kEaf/ANf8X867KuK+Jciw6HZSOcIl7GzH2BrSl8aO7LNcXT9Ts4/9Wn0FOrlk+IPhkRqDqK5AH8Bpf+FheGf+gkv/AHwaXs59iXgMV/z7l9zOory/Vf8AktVh9E/9ANdR/wALC8M/9BJf++DXFnVbPWPi9p93YzCWA7VDAY5CGuvCQknNtfZZ52ZYWvShCVSDS5lumeuUUUVwmoySKOUYkjVx6MM0kcEMP+qiRP8AdUCpKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMvih/wAhrQP+uv8A7Mtelp/q1+grzT4of8hrQP8Arr/7Mtelp/q1+grsr/wKfz/M4sP/ALxV+X5DqKKK4ztCuF8WeAk1CQ6nozfZdSQ7sKdoc/0Nd1RWlKrOlLmizKtRhVjyzR574W8eyC5GjeI1NteodiyuMBj7+/vXoQIIBByDXOeKfB9j4ltiXAivFH7udRyPY+orjtI8T6r4Lv10bxGjyWmcRT9do9Qe4rqlShiFzUtJdV/kckas8O+StrHpL/M9UrwnV9Z0XXfixdr4o1BIdJ0s7IIZM7XcHB4A9cmvcba5gvLdLi3lWWJxlXU5BrDufAnhW8uZLm50GylmlYs7tHksT1Jrhs1JPsegmnH1KEfxL8ERRrHHr1qqKMBQrAAflXU2d5b6hZxXdrKJbeZQ8bjowPQ1gf8ACu/B/wD0Lun/APfqugtbWCxtYrW1iWKCJQqRoMBQOwpgTUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKint4blNk8SSLnOHGRUtFA02ndFL+yNO/58bf8A79ij+yNO/wCfG3/79irtFO7L9rU/mf3lL+yNO/58bf8A79ivOr+CG2+MthHDGkaYU7VGB9w16lXmOq/8lpsP91f/AEA114Nvmn/hZwY+cpRgm/tI9OooorjOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMvih/yGtA/wCuv/sy16Wn+rX6CvNPih/yGtA/66/+zLXpaf6tfoK7K/8AAp/P8ziw/wDvFX5fkOooorjO0KKKKACs/WNFsddsWtL6EOh6N3U+oNaFFOMnF3QpRUlZ7HkhXXPhpqGV3XmiyN+A/wADXpWja5Y69YrdWMwdT95f4kPoRVy4t4buB4LiNZInGGVhkEV5jrPhbVPB1+2s+G3d7YHMtv1wPTHcV3KUMTpLSffo/U4HGeE1hrDt1Xp5HqdFc34V8ZWPiW3CqRDeqP3kDHn6j1FdJXHOnKnLlkrM7adSNSPNB3QUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeY6r/AMlpsP8AdX/0A16dXmOq/wDJabD/AHV/9ANdmD+Kf+FnFjvhh/iR6dRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZfFD/AJDWgf8AXX/2Za9LT/Vr9BXmnxQ/5DWgf9df/Zlr0tP9Wv0Fdlf+BT+f5nFh/wDeKvy/IdRRRXGdoUUUUAFFFFABQQCMEZBoooA8/wDFXgJmuDrHh5jbXyHeY0OA59R6GpfCfj1b2UaXra/ZdRQ7dzjaHP8AQ13dct4s8E2fiOIzR4t79R8kyjr7GuyFeNSPs6/yfVf8A4amHnTl7Sh810f/AATqaK8v0LxhqHhm+GieJ0cIp2x3B5wO3PcV6bDNHPEssLq8bjKspyCKxrUJUnrt0fc3oYiNZabrddUPooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMdV/5LTYf7q/+gGvTq8x1X/ktNh/ur/6Aa7MH8U/8LOLHfDD/Ej06iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8y+KH/Ia0D/AK6/+zLXpaf6tfoK80+KH/Ia0D/rr/7Mtelp/q1+grsr/wACn8/zOLD/AO8Vfl+Q6iiiuM7QooooAKKKKACiiigAooooAyte8PWHiGxNtexAn+CQfeQ+oNedQXet/DbUBb3Ya70aRvlYdB9PQ+1etVBeWVtqFq9tdQrLC4wysM100cRyLkmrxfT/ACOWvhud88HaS6/5kOl6tZ6zZJd2UyyxN6dQfQjtV2vKNS0HWPAV+2q6G7z6cTmWE87R6EenvXc+GvFdh4ltA8DhLhR+8gY/Mv8AiKdbD8q9pTd4/l6io4nml7OqrS/P0N6iiiuU6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMdV/5LTYf7q/8AoBr06vMdV/5LTYf7q/8AoBrswfxT/wALOLHfDD/Ej06iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8y+KH/Ia0D/rr/wCzLXpaf6tfoK80+KH/ACGtA/66/wDsy16Wn+rX6Cuyv/Ap/P8AM4sP/vFX5fkOooorjO0KKKKACiiigAooooAKKKKACiiigBGUOpVgCp4IPevOfEvgW4srs634ZZoLlDuaBDjP+7/hXo9Fa0a0qTvExrUIVo2l/wAMcX4S8eQ6wRYakBa6knylW4Dn29D7V2lcf4t8C22ug3lkRbakvKyLwHPv/jWL4c8b3ek3g0TxQjRSodqXDD8s+v1ronRhWXPR+a/yOaFedGXs6+3SX+fmelUU1HWRFdGDKwyCDkEU6uI7wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8x1X/AJLTYf7q/wDoBr06vMdV/wCS02H+6v8A6Aa7MH8U/wDCzix3ww/xI9OooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMvih/wAhrQP+uv8A7Mtelp/q1+grzT4of8hrQP8Arr/7Mtelp/q1+grsr/wKfz/M4sP/ALxV+X5DqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACsTxH4X0/xJZmK6QLKo/dzKPmU/4Vt0VUJyg+aLsyZwjOPLJXR5PY6xrXw9v107V1e50tj+7lHOB6g/0r0+w1C11O0S6s5llhcZDKabqOm2mrWb2l7CssTjkEdPcV5jd6brXw51A3ums91pDt88Z5wPf0+tdvuYryn+D/AOCcH7zCf3ofiv8AgHrNFY/h/wASWHiOyE9pIN4H7yJj8yGtiuKUZQfLJWZ3wnGceaLugoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMdV/5LTYf7q/+gGvTq8x1X/ktNh/ur/6Aa7MH8U/8LOLHfDD/ABI9OooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMvih/yGtA/66/+zLXpaf6tfoK80+KH/Ia0D/rr/wCzLXpaf6tfoK7K/wDAp/P8ziw/+8Vfl+Q6iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKbJGksbRyKHRhgqwyCKdRQB5l4g8F32hXp1vwu7oVO6S3X074Hce1dB4S8cWviBBa3OLbUV4aJuA3uP8K62uI8W+AotTc6lpJFrqSfN8vAc/0Ndsa0Ky5K2/R/5nBOhOhL2lDbrH/I7eivO/DHjuaG6GjeJFNvdodizOMBvr/jXoYIYAggg9CK561GdKVpHTRrwrRvH/AIYWiiisjYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMdV/wCS02H+6v8A6Aa9OrzHVf8AktNh/ur/AOgGuzB/FP8Aws4sd8MP8SPTqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzL4of8AIa0D/rr/AOzLXpaf6tfoK80+KH/Ia0D/AK6/+zLXpaf6tfoK7K/8Cn8/zOLD/wC8Vfl+Q6iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnvE/hGw8S2pEqiK6Ufu51HI+vqK4vSvEereB79dI8QI8tjnEU/XaPUHuPavVaoato9lrdi9pfQrJG3Q91PqDXVRxCUfZ1FeP5ehyVsM3L2lJ2l+fqWbW7gvrZLi2lWWJxlWU5BqavJHh1z4a6h5kJa80aRuR2H+Br0jRNesNfsVurKUMP4kP3kPoRSrYdwXPF3i+v8AmOhiVN8k1aS6f5GnRRRXMdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5jqv/JabD/dX/wBANenV5jqv/JabD/dX/wBANdmD+Kf+FnFjvhh/iR6dRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZfFD/kNaB/11/8AZlr0tP8AVr9BXmnxQ/5DWgf9df8A2Za9LT/Vr9BXZX/gU/n+ZxYf/eKvy/IdRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARzwRXMDwzxrJE4wysMgivMNc8K6j4QvW1zw5K32dfmlgz90f1Fep010WRCjqGVhggjINb0a8qT01T3RhXw8ay10a2fY5vwn4xs/E9vtUeVeIMyQn+Y9q6avNfEfgi70q8Ot+F3aKVDue3U/nj1HtWz4S8dW+uAWV6BbaknBRuA59v8K1q0IyXtaOse3VGNHESjL2VfSXR9GdjRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABXmOq/8lpsP91f/QDXp1eY6r/yWmw/3V/9ANdmD+Kf+FnFjvhh/iR6dRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZfFD/kNaB/11/9mWvS0/1a/QV5p8UP+Q1oH/XX/wBmWvS0/wBWv0Fdlf8AgU/n+ZxYf/eKvy/IdRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXF+LfAkGsk3+nEW2pJ8wZeA59/Q+9dpRWlKrKlLmizOrShVjyzR5x4a8c3NhdjRPE6tDcIdiTuMZ/3v8AGvRlZXUMpDKRkEd6w/EvhSw8S2hS4QJcKP3c6j5lP9RXC6druseAb9dL1tHn04nEcw52j1B/pXU6cMQualpLqv8AI41Unhny1dY9H/n/AJnq9FV7K9ttRtUubSZZYXGVZTViuJpp2Z3ppq6CiiikMKKKKACiiigAooooAK8x1X/ktNh/ur/6Aa9OrzHVf+S02H+6v/oBrswfxT/ws4sd8MP8SPTqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzL4of8hrQP8Arr/7Mtelp/q1+grzT4of8hrQP+uv/sy16Wn+rX6Cuyv/AAKfz/M4sP8A7xV+X5DqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqWqaVZ6xZPaXsKyxMO/UH1B7VdopptO6E0pKzPJbiz1v4b6gbmzL3eju3zIew9/Q+9eiaD4hsPENkLiylBP8AHGfvIfcVpyxRzxNFKivGwwysMgivM9e8Hah4bvjrfhh3Cqd0luOcDvx3FdynDEq09J9+/qcDhPCu9PWHbqvQ9PorlfCfjaz8RRCCXFvqCj54WON3uK6quOpTlTlyyVmdlOrCpHmg7oKKKKg0Ciiub8ea5N4e8G3+oW/+vVNsZ9GPGaTdlcaV3Y25dQsoJPLlu7eN/wC68gB/LNWFYMoZSCD0Irx7w18J7DxB4et9W1y9vZtQvE83eJSNmen1q38LdS1Cw8R614Svbl7mOxYmGRzkgZxiqtryvcm+nMtj1evMdV/5LTYf7q/+gGvTq8x1X/ktNh/ur/6Aa68H8U/8LOPHfDD/ABI9OooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMvih/yGtA/66/+zLXpaf6tfoK80+KH/Ia0D/rr/wCzLXpaf6tfoK7K/wDAp/P8ziw/+8Vfl+Q6iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKry39nDJ5ct3BG/91pAD+WawvH2uTeHvBt/qFt/x8KoSM+jHjNcF4b+E1hr/AIet9W1u+vZdRvE87eJSNmeR9aS1v5D2t5nsIIYAqQQehFI8iRIXkdUUdWY4Aryv4V6nqFlr+teE725e5Swc+TI5yQM4Iqt4pmvfHfxHHhGC8kttMs033JiOC57/AM8U97W6i2vfoesQXtrckiC5hlI6iOQN/KqHibXoPDWgXWq3Cl1hX5UHVmPQV5P4x8ADwFp0fiPwxfXUT2rqZo3k3Bh6/wD1q7u/tR8RPhrGI3EUt3CsqHssg5/nSesW10GtJK/U52TxL8RrTTR4gudOsW0wDzXtF/1qx+ufpXo2jarBrmj2upW3+puIw4B7Z7V5pPe/EK/0Q+Gn8PJFI8fkPfl/3ezoSPwr0Xw3oy+H/D1lpavv+zxhS3qe5qtNfwJ1079TmfFngJb6U6porfZdRQ7sIcBz/Q1D4W8eObgaP4hU218h2CVxgMff0Neg1zfinwdY+JbclgIbxR+7nUc/Q+orrp14zj7Ott0fVHHUw8oS9rQ0fVdH/wAE6QEEAg5BoryvR/FGqeDb9dG8Ro72ucRXHXA+vcV6fbXMN3bpPbyLJE4yrKcg1lWoSpPXVPZm1DERrLTRrddUS1HNBFcRmOaJJEPVXUEfkakrB8XeKbfwho39p3VvLNF5gj2x4zk/WudnQlfYw/Gvj8eC5YrSHRbi6LRb0eIYjTtg4rF+EdrBfXOq+JZb6CfUb58yQxn/AFIznBr0q1mh1PT4bjy1aKeMOFYA8EV5NoVumj/HrULLT1EdrNAXkjT7oOAen1qo6Ts99RSacLrbQ9jrzHVf+S02H+6v/oBr06vMdV/5LTYf7q/+gGuvB/FP/Czix3ww/wASPTqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzL4of8hrQP+uv/sy16Wn+rX6CvMfiszJqmhuiF2ViQo7ncOK2l8VeJQox4SuTx/eruqwcqFO3n+ZlgcNOtiK3JbS27S6ebO2oriv+Eq8Tf9Clc/8AfVH/AAlXib/oUrn/AL6rl9lL+mep/Ztf+7/4FH/M7WiuU0HxZeapr0ulX2lPYzRw+aQ7ZOOP8a6uplFxdmc1ehOhLkqb79/yCiiipMQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5oIbiMxzxJKh6q6hh+RrifG3xAHguaOzh0W4ui0O9HiGI07YNbfi7xVbeD9HGpXVvLNEZBHtjxkE59fpWtbyw6lYQz+WrRTIHCsAeCKVr7D23PNfhFaQXs2qeJJb6CfUL+TMsUZ/1IznBrL0q6j8OfHfVU1FxDHfqTFI5wDnBHNSeHrdNH+POp2OngR2ksBeSNPug4B6fU12Xirw74W8YXqadqEyDU4lynlPiVR1/EU0/hku2wmviiyh8WdcsLXwHe2puI3nugI441YEnkEn9Ks/CRy/w30wntuH/jxrlPFPgDQ/BvgvVdR82e6vGiEUUlw+duSPuj867T4ZWjWfw90mNxhmi34+vNEdpfIJdPmddRRRQAUUUUAZ2s6JY67Yta30IdT91v4lPqDXmv/E8+GuofxXmjSN+A/wADXrdRXNtDeW7wXESyROMMrDINdFHEOC5JK8X0OavhlUfPF2kuv+ZT0bW7HXbFbqxmDqfvL3U+hFVvFfh6HxR4dutKmbZ5oyj/AN1h0NcLrHhfVPBt+2s+HHd7XOZYOuB6EdxXYeFvGNj4ltwFIhvFH7yBjz9R6inWwy5eem7x/FepNDFPm9nVVpfg/Q4HTl+KfhqzXR7extb2CIbIZ2OcL2rovAPgnUNI1G81/wAQTrNrF594KciMema9AornvrfqdbXToFeY6r/yWmw/3V/9ANenV5jqv/JabD/dX/0A114P4p/4WcWO+GH+JHp1FFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5l8UP+Q1oH/XX/2Za9LT/Vr9BXmnxQ/5DWgf9df/AGZa9LT/AFa/QV2V/wCBT+f5nFh/94q/L8h1FFFcZ2nF23/JW73/AK8F/wDZa7SuLtv+St3v/Xgv/stdpWlTp6I78fvT/wAEfyCiiiszgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxPFvh2HxT4cutKlbYZBmN/7rDoa8404fFPw3ZLo8FhbXsMQ2QzsQcL2r2EOpYqGBYdRnkUtK1h+pwHgDwTqGj397r2vzrNrF797aciMemap+N/B2uHxRbeLPC7Rm/iXZLC5xvA4/HivS6Kb6W6CXW/U8eufD3jrx9d2tv4khh07SoHDyRxnmQ/SvXLe3jtbaK3hULHGoVQOwFS0U+lg63CiiikAUUUUAFFFFAAQCCCMg9q8+8U+A3+0HWPDrG3vUO8xIcBj7e/tXoNFa0q06UrxMq1CFaPLI4Twn49W+lGl60v2XUUO3LDAc/wBDXd1yvizwTZ+IojPFi31BRlJl43ex/wAa5rQfGOoeG74aJ4nRwqnbHcHnA7ZPce9dEqMK656O/Vf5HLGtOg+Svqukv8z0+vMdV/5LTYf7q/8AoBr0uKWOeJZYnV42GVZTkEV5pqv/ACWmw/3V/wDQDSwfxT/wsrG/DD/Ej06iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGNNEpw0iA+hYUn2iH/ntH/30K+dItP1D4ifE3Wbe21Se1gR3cOrtgKpCgYBrqP8AhSOp/wDQ1T/m3+NJapPuNpJtdj2QTRMQBKhJ7BhT68t8NfCa80PxBaalceIJrqO3YsYSWwxwQO9epVXQXU8y+KH/ACGtA/66/wDsy16Wn+rX6CuL8eeFNR8Rz2EunvGjW+4ku2OcjGPyrGHhr4gAYGtD/v4P8K7+WFWjBc6TV9/U83nqUq83yNp229D0+ivMP+Ea+IH/AEGx/wB/B/hR/wAI18QP+g2P+/g/wrP6rD/n4jX63P8A59S/A27b/krd7/14L/7LXaV5OvgrxsuoNfjVEF0ybGl8zkr6dKs/8I18QP8AoNj/AL+D/Cqlh4O37xHTicxlVcbUpaRS6dD0+ivMP+Ea+IH/AEGx/wB/B/hR/wAI18QP+g2P+/g/wqfqsP8An4jm+tz/AOfUvwPT6K8w/wCEa+IH/QbH/fwf4Uf8I18QP+g2P+/g/wAKPqsP+fiD63P/AJ9S/A9PorzD/hGviB/0Gx/38H+FH/CNfED/AKDY/wC/g/wo+qw/5+IPrc/+fUvwPT6K8w/4Rr4gf9Bsf9/B/hR/wjXxA/6DY/7+D/Cj6rD/AJ+IPrc/+fUvwPT6K8w/4Rr4gf8AQbH/AH8H+FH/AAjXxA/6DY/7+D/Cj6rD/n4g+tz/AOfUvwPT6K8w/wCEa+IH/QbH/fwf4Uf8I18QP+g2P+/g/wAKPqsP+fiD63P/AJ9S/A9PorzD/hGviB/0Gx/38H+FH/CNfED/AKDY/wC/g/wo+qw/5+IPrc/+fUvwPT6K8w/4Rr4gf9Bsf9/B/hR/wjXxA/6DY/7+D/Cj6rD/AJ+IPrc/+fUvwPT6K8w/4Rr4gf8AQbH/AH8H+FH/AAjXxA/6DY/7+D/Cj6rD/n4g+tz/AOfUvwMH4ganfad49upLO6lgYJGfkbH8I7VJpPxV1ez2pfRR3cY/i+635965rxTa6lZa9NBq1x594FUtJnORjj9Kxq6VSg4pPU/UsFg8PisBRdaC+Feu3c930n4k6BqW1JZmtJT/AAzDj866yC4huYxJBKkiHujZFfLldD4esPE88o/sZbtB/eUlUH58VhPCx3TseZjeHKEYudOpy+u33/8ADn0NRXl6eHPiEygtrO0+nmA/0pf+Ea+IH/QbH/fwf4VCw0Gv4iPhq9WdKo4KDlbqtj0+ivMP+Ea+IH/QbH/fwf4Uf8I18QP+g2P+/g/wp/VYf8/EY/W5/wDPqX4Hp9FeYf8ACNfED/oNj/v4P8KP+Ea+IH/QbH/fwf4UfVYf8/EH1uf/AD6l+B6fRXmH/CNfED/oNj/v4P8ACj/hGviB/wBBsf8Afwf4UfVYf8/EH1uf/PqX4Hp9FeYf8I18QP8AoNj/AL+D/Cj/AIRr4gf9Bsf9/B/hR9Vh/wA/EH1uf/PqX4Hp9ZOveHrDxFZG3vYgSB8kg+8h9q4b/hGviB/0Gx/38H+FH/CNfED/AKDY/wC/g/wpxw8YvmjVVyZYiU1yypNr5FS3vdb+G+oC2vFa70d2+Vxzge3ofahtTtdX+LWmXtnKJIZFXBHb5DxUt34P8cX1u0F1qsc0TdUdwR/Kl8L/AA61fR/Ednf3DwGKFyWCtk9CK7XKjyynKS5rNadThUK/NGEYvkunr0/4B6pRRQSACT0FeKe6MaaJThpEB9CwoE0THCyIT7MK+dLbTNR+IvxG1mK31Se1gR2cMrtgAHAGAa6SX4K65Eha18VS+aORuZwP0NJbJvqNqza7HtVFeFeG/GXiTwT4si8OeKpGntpGCJI5yVz0YN3Fe6AhgCDkHkVVtLoXWzFooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdr18NM8P6hfE48i3dwfcA4/WtGuC+MWpf2f8ADy7QNh7p0hH4nJ/QVE/hZUPiR5l8I/FGg+HLjVb3WLzyZ7gqsY2kkjkn+dep/wDC2/Bn/QU/8hmuY+HXw18Pan4Jsb7VtPWa6uA0hYsR8pJx+mK6r/hU/gz/AKA6f99mtZXTt2IVnr3N/QfEemeJrN7vSp/OhR9hbaRzjP8AWtWs3RNB03w7Y/YtLtlgg3F9oOeTWlSdugIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPEPiFYXd/49uYrS2lmcpHgIuf4RU2j/CrVrzbJfyJZxn+E/M/5V7OI41kaQIodurAcn8adXR9ZkoqMT3/APWCvChGjRSVklfd6HKaP8PNB0na5t/tUw/jm55+ldTHGkSBI0VFHRVGAKdRWMpSlq2eNWxNWvLmqybfmFFFFSYhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4lvxpnhnUr0nHlW7kH3xgfrWrXnnxn1L7B4BmhDYe6kWID1HU1E/hZUPiRz3wFsCbPVtWcfNPKIwfXHJ/U17JXE/CjTf7N+H2ngrh5wZm/4Ea7atZ6O3Yzjqr9zxD4+xRxzaLdqAJ8suR1wORXsOiytNodjI/3mgQn8hXh/wATLs+L/iVp2gWJ81bdlicryMk5b8hXvNtCLa1igXpGgUfgMVMPg9WXP415IlooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXif7QGpYi0jTFbqXncfoP617ZVW50ywvXD3dlbTuBgNLErED8RSavYcXY8i0b42eH9J0Wy09dNvSLaFY8jbzgYq9/wvzQf+gbff+O/416R/YGjf9Aiw/wDAZP8ACj+wNG/6BFh/4DJ/hVN3d2JJJWDQtWj13RbXU4oXijuUEipJ1APStGmxxxwxrHEipGowqqMAD2FOodr6CXmFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXhnx91MG60nTN3yqGmcD3OP6V7nVS50vT7yQSXVjbTuBgNLCrHH1IpNXsNOx5Tpvxu8OadpltZpYXuIYlQYA7Cquq/F/VfEER0/wrol0J5htEzjcR9AOK9a/sDRv+gRYf+Ayf4Vat7O1tARbW0MIPaNAv8qb13EtNjzv4afDmXw676zrLCXVpweCc+UD159a9Loopt3EkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=
|
<image>Find $m \angle 2$.
|
39
|
Geometry
|
Geometry3K
|
test
|
45
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHRAT8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzHxB8RTeFfBN/qtqUF1HsSHeMgszAdO/BJ/CuE03UvjFqml2uo20ekmC5iWaPeFUlWGRxnjin/AB+vZDoejaNArPNe3ZcIgyW2DAGPcyD8qkg+Ifi/T9Lhtbf4ZakiW8SxoTI7YCjA4EY9KALfg/4g+IZvGreEfFumW9tqDRl4pLfocLuweSCCoJyD2xj09QrxL4XO/jP4gal4t1e7iTU7RfKj09EKmJSNu7nsBuHc5POOM+20AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeGfEPXNNT436CNUuhBp+lRpLK5Vn2vkyDhQTziMdK7S6+M/ga3gaSPVZLhgMiOK1k3H6blA/M11N54X8P6jdvdX2haZdXL43zT2kbu2BgZJGTwAPwpkPhDwzbuHh8O6TG4/iSyjB/RaAPOPhRaX+s+NPEHjaWyezsb8NHbo/G/cytkeuAoyemSfevYKAAAABgDoKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjOelcf4y8U3FjJFoWiL5+u3vyxqvPkKf4z/TP1PHWp8Nb26httS8PalJuvtMuWBJYncrEnIJ5Pzbjn0Irb2EvZ87/pdzD28faezX9Psd3RRRWJuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXjDxWnhyySK3j+0ardHZaWyjJZjxkgdh+p4+lzxP4ks/DGkPe3R3SH5YYQfmlfsB7ep7VheD/Dd5Jev4o8RDfq9yMxRMOLWM9AB2OPyHuTW9OCS9pPb8/wCupz1Zyb9nT3/Jf1sW/BvhR9Gjl1PVJPtOuXvzXEzHOzPOwe3rj09AKytf/wCKb+Jela2vy2mqL9iuj23cBSf/AB38FNegVzXj3RTrnhC9gjXNxCPtEGOu9OePcjI/GnTquVS8+un9egqlFRpWhutV/XmdLRWJ4Q1oa/4WsL8tmVo9k3/XReG/MjP41t1jKLi3F9DeMlKKkuoUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABOATjPtXL6Z4/0HVPD2oa2k0sFpp7slyLhNjowAONue+cD1PFdRXzhHDo/iD4y3Wlw3cw8Oajf+bIi8R3M8aFioPcF2bp/eHsaAPftC1mDxBo9vqlrFPFb3A3RidNjFc8HGeh6j2rRpqIsaKiKFRQAqqMAD0FOoAKo6xq9noWlzahfS7IIh+LHsoHcmrF3d29hZy3d1KsUESl3djwAK88020uPiNra6zqMTR+HbRyLK1f/AJeGH8TDuP8A9XrnalTUvel8K/qxjVqONow1k/6uyx4Z0i88U6uvi7xBHtjHOm2TcrEnZyPXuPXr6V6DQAAMAYAoqalRzd+hVKmqat16vuFFFFZmh5/4O/4p7xrrnhhvlt5W+22Y7bT1A/DA/wCAGvQK4H4hxvpGoaL4sgUlrCcRXG3q0Tf/AK2H/Aq7yORJYkkjYMjgMrDoQehret7yVTv+aOeh7rlT7bejHUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY/ijSL3XvD9zpljqf8AZr3A2PcCHzGCH7wA3LgnpnPTNczqvwusrjQtB0/Sb06bcaLOJoLryfMZm6sSNy8lgpzntXfUUAFNd1jRndgqKCWZjgAepp1ec67qN1451p/DOizGPS4D/wATK9To3P3FPf8AqfYHOlOnzvsluzKrU5F3b2RFNJP8TdcNtC0kXhaxk/eyDIN3IOw9v5DnqRj0eCCK2gjggjWOKNQqIowFA6ACodN0610nT4bGyiEVvCu1FH8z6k9c1ap1anN7sdEthUqXLeUtZPf+uwUUUVkbBRRRQBn65pcetaHe6bLjbcRFAT/C3Y/gcH8K5/4bapJfeFVsrnIvNNkNpKrdRt+7+nH/AAE12Fefx/8AFM/Fl0+7Za/DuHYCZf69f++63p+9CUPmvlv+Bz1fcqRqfJ/Pb8fzPQKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuO8ZeKLiyli0HQ18/Xbz5UC8+Qp/jPocdPzPvcIOcuVEVKipx5mVPFmvXuramPCPhx/9MlH+m3Q6W0fcZ9fX646njqPD+g2XhvSYtPskwi8u5+9I3dj7/8A6qqeE/C9v4Y0wwq3nXkx33Vy3LSP9fQc4/xNb9XUmrckNvzM6VN39pPd/gu3+YUUUVibhRRRQAUUUUAFcZ8S9NlufDa6na8XmlTLdRMOoAPzf0b/AIDXZ0yaGO4gkhlUPHIpR1PQgjBFXTnyTUuxnVh7SDj3KukalFrGj2mow/cuIlkx/dJHI/A5H4VdrgvhxNJpsur+FbliZdNuC0O7+KJjkEfz/wCB13tOrDkm0thUZ88FJ7/qFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWL4n8S2nhfSWvLn55G+WCAH5pX7Ae3qe1VGLk7LcmUlFOUtip4w8Vp4ds44baP7Tq12dlpbKMkseNxHoD+Z49cReDfCj6JFLqOpSfadbvfnuZ2OduedgPp64/kBVPwf4au2vJPE/iH95rF0MxxsOLZD0UDscfkOOpNdtW05KEfZw+b/roYU4upL2k/ku3n6hRRRXOdIUUUUAFFFFABRRRQAUUUUAef8Air/inPH2i+I1+W2u/wDQbw9Bz90n+f8AwCvQKwPGmi/2/wCE76yVd02zzIfXevIA+vT8ab4I1r+3vCVjdu26dU8mbPXevBJ+vB/Gt5+/SUu2n+Rzw9yrKPR6/wCZ0NFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUNa1e10HRbvVb19tvaxmR8dT6Ae5OAPc1zPgP4kWPjya+itrKa1e0VGIlYHeGz0x6Y/WuT+Jl9ceMfGOl/D7TJCI/MWfUZF/gGM4P+6uWx3JXvUXhS0t/DHx91bR7WMRWdxYqIIx0GEjb+j0AezUUVBeXlvp9nLd3cqxQQqWd26AU0r6A3bVlfWdYs9B0ubUL6TZDEOg6seygdya43wxo954n1dfF3iCPavXTbJvuxJ2cj17j8/TFfTLS5+IutrrepxNH4ftHIsrR/8Aluw/jYdx/wDq9c+kgYGB0rok/YrlXxPfy8v8zlivby538K28/P8AyGySxwxtJK6pGoyzMcAD3NV7LUrDUlZrG9trpUOGMEquAffBrzn4m7tb8XeFPCUs0kenX0zzXaoxXzQnIXP4N+JB7CszXdC0/wCHfxD8J33h6NrODUrg2V3brIzK6llGfmJ/vZ+qiuY6j1h9V06N2SS/tVdThlaZQQfQ81FPremW9jdXjX0DQ2sTTTGNw5VFGScCuW1v4b+A/wDiYa3qukrk+ZdXMxuZhk8szYD49eBXO/DbwPp19oet6s1k1jZa9G9vbWiuzGG15AOWJJYnnPsMdcUAbml/E77ZqGnLf+HdQ07TtUkEVhfTEFZWb7gYD7u7tyfy5rv6810/4eeIGudHs9b8RxXmiaNNHNawR24SSRoxhN59AOOpyPzr0qgAooooAKKKKACiiigArz/wz/xTnxD1nw+3y2t8Pt1oO2T94D9R/wAAr0CuD+JEEmn/ANk+KbZSZtLuFEuP4omOCD+PH/AjW9DVum+v59DnxHupVF9n8up3lFRwTx3NvFcQsHilQOjDuCMg1JWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYvi3xHb+FPDN7q9xg+Sn7qMn/WSHhV/E/pk1tVzPjHwPp/jeC0t9Tu76KC2cyCK2kVVdjxlsqc4GQMY6mgDyXwT4J8d38L+LtO1y10+61Xc7tPFvkdS2c8qQASM8dsUs1j4i8MfGbwxeeI9Uh1C6vGEKzxIEG1sx7SAB/f/AFr3uCGK2t44IUWOKJQiIowFUDAA/Cue8T+CdN8V3+lXt7Pdwz6ZIZYGt3VcklT82VORlB0x3oA6WuU+IPhu78TeHTb2Vw6Twt5qw5ws2B90+/p2z+Y6uirhNwkpLoRUgqkXGWzOZ8F+JLTXtJEKQLZ3lmBDcWYG3yiOOB/d4/DpXTVw/i7w5eW1+virw4Nmq24/fwKOLqPuCO5x+f1AroPDXiOz8T6Sl9aHaw+WaEn5on7g/wBD3rSpBNe0ht+RlSm0/Zz3/Nf1uc98Q/DMGvS6RNb61b6VrtrOX0+SVwPMbK5UA8nnb0z9Oa4HxRoviRfGfgxvEuswX9/NqKLDBaptjijV0Lt0BJPHOO35em+OPBaeMLOzMd9JYahYTefaXSLu2Nx1GRxwD14IH0OZ4f8Ah/fweJovEnifXW1nUreMx2wEIjjhByCcDqeT2HXPJ6YHQU/i9eTXVnovhS1kKTa5epFIR2iUjd+pU/ga9EtraGztYbW3jEcMKLHGg6KoGAPyFc1qvg3+1fHuj+JZL/bFpkTItn5Od7Hd82/dx95eMH7vvXVUAFFFFABRRRQAUUUUAFFFFABVPVdOi1bSbvT5/wDV3ETRk+mRwfw61copptO6E0mrM4v4Z6jLN4el0m74vNJma1kU9QoJ2/1H/Aa7SvP7j/imvixDP92y16Hy29BMuMfj93/vs16BW1dLm51s9f8AP8TDDt8vI946f5fgFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn3iXR73wtq7+LfD0e6M86lZL92Ve7gevc+nX1r0GgjIwelaU6jg79DOrTVRW69H2KGjaxZ69pcOoWEu+GQdD1U91I7EVfrzfVLK5+HesvrmlRNLoN04+3Waf8ALEn+NR2H/wCroRj0CxvrbUrKG8s5lmt5l3I69CKqrTS96Pwv+rE0qjl7k9JL+rosUUUVibBRRRQAUUUUAFFFFABRRRQAUUUUAch8SNKk1DwpJdW2Rd6c4u4WXqNv3v0yfwFb2g6rHrmg2WpR4xcRBmA/hbow/Agj8KvuiyIyOoZGBDA9CK4P4fO2jarrfhOZj/ocxnts9TE2P8VP1Y1uvfpNdY6/JnPL3KyfSWnzWx31FFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAyWKOeJ4pUV43UqyMMhgeoIrzci4+GOtZHmTeFb2TkcsbSQ/0/mPcc+l1Be2VtqNlNZ3cKy28ylXRuhFa0qnLo9U9zGrS59Y6SW39diSKWOeFJoXWSKRQyOpyGB6EGn15tpl5c/DrWU0XVJWl8P3Tn7Fdv8A8sCf4GPYf/r9cekggjIOQaVSnyPTVPZjpVeda6NboKKKKzNQooooAKKKKACiiigAooooAK8/8af8U94w0PxSvywM/wBivD22NnBP4Fj/AMBFegVjeLNGGv8Ahi+0/AMkkZaL2kXlf1GPxrWjJRmr7PRmNeDlB23Wq9UbNFcx4A1k614Ps5ZCTcW4+zTZ67k459yMH8a6eonFwk4voXCanFSXUKxPD3inTvEzaiNOMjLYXLW0jsBtdh3UgnK+9ReKvCkXiu0htptU1OxjjLbhYziPzQRjD5ByP8a4r4I2iafZeJbKJmaO31V4lLdSFGBn34qSzq/FPxC0HwjcxWl/JPNeSrvW2tY/Mk2+p5AHT1q/4Y8WaR4u05r3SZ2dEbZJG67Xjb0Yf5FeT6V4usdI+J3jHU7rT77UtUa5+yWsFnD5jrFGSrk+g+VP85rufh1deFtVm1rWPD0dzBd3k4bULe44aOTLEfLkgZJbof5UAd1RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBR1jSLPXdLm0++i8yCUfip7MD2Iri/Der3nhPV08J+IJd0Lcabet92ReyE+vb26dMV6FWP4k8OWXifSHsbsYP3opQPmifsR/Ud62p1ElyT2f4eZhVptvnh8S/HyNiiuG8I+I7201BvCniQ7dTgH+jzseLqPsQe5x+ffkGu5qKlNwdmXTqKpG6CiiioNAooooAKKKKACiiigAooooA8/0T/im/idqejn5bTVk+2Ww7BxksB/4/+Qr0CuF+JdrLb2On+I7Rc3Ok3KyH3jJAIP47fwJrtLO6ivrKC7gbdDPGsiH1UjIret70Y1Pk/Vf8A56PuSlT7ar0f/BJq8y+EH+s8Xf9hqWvTazNH8PaXoJvDplr5BvJzcT/ALxm3yHqfmJx9BxWB0Hnfw/+zaV8VPHdleNHFe3FyLiAOcFo2Z3OM/76H/8AVUngRob74u+NdQ04q2nYijLp9x5cDcQe/KufxrrfE3gHw54uniuNXsfMuI12LNHIyNt64JB5H1rU0Lw/pfhrTlsNIs0tbcEsVUklmPck8k/WgDSooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOe8W+FYPE2nKqv5GoW532tyvBjb6jnBwP59qo+DfFU+oPLomtJ9n12z+WRG485R/Gv9cfUcHjr65Txj4UfWki1LTJPs2uWfzW86nG/HOxj6emfX0JrenNSXs57dH2/4Bz1ISjL2lPfqu/8AwTq6K5nwf4rTxFaSQXMf2bVrQ7Lu2YYII43AemfyPHoT01ZTg4S5ZG0JxnHmjsFFFFSUFFFFABRRRQAUUUUAV7+yh1LTrmynGYbiNo3+hGK4/wCGd7MukXmg3Z/0vSLhoGHqhJ2n8ww+gFdxXn+p/wDFNfFSw1EfLZ61H9mm9BKMBT/6B/49W9L3oyp/Neq/4Bz1vcnGp8n6P/gnoFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHFeMPDF213H4l8PHytatRl0UcXKDqpHc449xx6Y2fC3ia08UaULqAeXOnyXFux+aJ/T6eh/+vW5XA+KdDvdB1U+LvDiZmUZv7MfdnTu2PX1/PrnPRBqrHklv0f6HNOLpS9pHbqv1X6nfUVm6Drll4i0mLULGTdG/DKfvRt3Vh6itKsGnF2Z0RkpK62CiiikMKKKKACiiigArlfiJo7at4QujCD9ps8XUJXqCnXH/Ac/jiuqpCAQQRkHqDVwm4SUl0IqQU4uL6mV4Z1hde8OWOpAjdNEPMA7OOGH5g1rV5/4FJ0HxLrvhSQkRxyfa7QHvG2Mj8AV/HNegVVaCjNpbdPQihNzgm99n6oKKKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA851vTrrwHrL+JNFhMmkzkf2jYp0X/AG1Hb+n0PHeabqNpq2nw31lMstvMu5GH8j6EdMVYdFkRkdQyMMMrDII9DXm9xFcfDPWjd26yS+F72T99EOTaOe49v59DyAT0r98rP4l+P/BOV/uHdfC/w8/Q9KoqO3uIbu3juLeRZYZFDI6nIYHoRUlcx1BRRRQAUUUUAFFFFAHAePFOh+INC8WRghIJfst3jvE2f5At+JFd8rBlDKQQRkEd6zPEmkLrvh2+01sZniIQns45U/mBWP8ADrV21Xwjbxz5F1ZE2syt1BXpn/gOPxzW8vfpJ9Vp8uhzx9ys49Ja/Nb/AKHWUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXVrBe2sttcxLLBKpV0YZDA1LRRsDVzzWzuLj4a60unXrvL4ZvJD9muG5Ns5/hb2/8A1juK9JVldQykMpGQQcgiqmqaZaazp01hfRCW3mXDKeo9CPQj1rhtB1O78E6ynhfXZS+nyn/iW3zdMf3GPb09voRjpf75cy+Jb+fn6nKv3D5X8L28vL07HotFFMm8zyZPKx5m07M9M44rmOo53UviD4T0jUm0++1y2iulO14/mbYfRiAQD9a6GCeG6gjnt5UlhkUMkiMGVgehBHUV5n4W8Bab4f8AAuoyeMbKylu5TLNeXMu2RgvbDnkHvx3PrUPwutNa1H4PR21lqb6bctcOLW6MIl2RhwThW4OTvHtQB6NHrmmy67Nokd0rajDCJ5IApyqEgA5xjuOM55rn/FXirVLDXbDw94e0+C71a7iacm5kKRRRrxk45OTnp6Vxfw/0m80T40+ILLUNTk1O6GnB5LqRdpfc0R6ZOMZx17V3vinwZD4jurPUINRu9M1SzDLBeWp+YK3VWHcflQAeDPFFz4hh1C11KyWy1XTZ/s93Cj7kzjIZT6H+lY2n/wDFNfFa8sT8tnrkX2iL0EoySP8A0P8AMV0PhTwpa+FbGeKK5uLy6upTPdXdy26SZz3PtWP8TLGb+xbXXLQf6ZpFwtwh/wBnI3D8wp+gNb0GnLke0tP8vxOfEJqKmt46/wCf4Hb0VW06+h1PTba+gOYriJZF+hGcVZrFqzszdNNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVl+INAsvEmky6ffJlW5Rx96NuzD3rUopxk4u6FKKkrPY4Pwpr97pGqf8Il4kf/S4x/oV0fu3Kdhn19Py6jnvKwfFfhe28UaX5EjeVdRHfbXC/eif/A9x/UCsbwt4iuNQ+0+F/EO631qBDGWBx56Y++p9cc+/X1xvOKqR9pHfqv1OeEnSl7Oe3R/o/P8AM5lxqHxi1eSNZJLPwXZT7GKnD37r/Jf5fXp6vaWlvYWcNpaQpDbwoEjjQYCqOgFedW/wU0Wzi8q28QeJIIwc7IrxFGfoI67Lwz4ch8L6Y9jBfX94jSmXzL6YSOCQBgEAccdPc1znScXov/JwniP/ALBcX/tGvTawrXwpY2njG98Txy3Bvry3W3kjZl8sKNuCBjOfkHf1rdoAKhuraK9s5rWdd0M0bRuvqpGDU1FGwNXOF+GtzLa2upeGrts3Gk3LIuf4o2JII/HJ+hFd1Xn+vf8AFN/EvStaHy2mqJ9iuj238BSf/HfwU16BW9fVqa+1r8+pz4d2i6b+zp8un4BRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcv4x8KDxBbxXdlJ9m1izO+1uFODkc7SfT+R/HPUUVUJuEuaJE4RnHlkct4O8VnXYZbHUI/s2tWfyXVuwwTjjco9P5fiK6muO8Y+Fri7mi1/Qm8jXLPlSvAnUfwN6nHA9eh9tLwn4pt/E+mmVV8m9hOy6tm4aN/p6HnH+IrWpBSXtIbdV2/4BlTnKMvZ1N+j7/8AB7m/RRRWB0BRRRQBzXj3RTrnhC9gjXNxCPtEGOu9OePcjI/GrXhHWhr/AIWsNQLZlaPbN/10XhvzIz+Nbdef+Dv+Ke8aa54Yb5beVvttmO209QPwwP8AgJrePv0nHqtf8znn7lZS6PT/AC/U9AooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhPFnh+903Uh4t8Nri/iH+l2yj5bmPvx3P88ZHI57uirp1HB3RnUpqpGzMnw74gsvEukx39k3B4kjJ+aNu6n/PNa1ed+IdKvPBusP4q0GIvZyH/AImVivQr3cDt6+3XoTXb6VqtnrWmw39jKJIJRkHuD3BHYirqU0lzw+F/h5EUqjb5J/Evx8y7RRRWJuFcD8Q430jUdF8WQKS1jOIbjb1aJv8A9bD/AIFXfVn65pcetaHe6bLjbcRFAT/C38J/A4P4VrRnyTTe36GVaDnBpb9PUvRyJLGskbBkcBlYdCD0NOrj/htqkl94VWyuci802Q2kqt1G37v6cf8AATXYVNSDhJxfQqnNTgpLqFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIQGUqwBBGCD3rza/tbn4b602q6fG8vhu7cfa7ZefszH+JR6f/AKj2NelVHPBFcwSQTxrJFIpV0YZDA9QRWtOpyOz1T3RlVpc6utGtmNtLu3v7SK6tZVlglUOjqeGBqavNInuPhlrQglMk3ha9k/ducsbRz2Pt/Mc9Qc+kxyJLGskbq6OAyspyCD0INFSny6rVPYKVXn0ejW6HUUUVkann8f8AxTPxZkj+7Za/DuHYCZf69f8AvuvQK4z4l6bLceG01O04vNKmW6iYdQAfm/o3/Aa6bSNSi1jR7TUYfuXESyAehI5H4HI/Ct6vvQjP5P5f8A56XuTlT+a+f/BLtFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFbUNPtdVsJrG9hWW3mXa6N3/AMD71wOj6hdeANZTw9rEzSaNcMf7PvX6R/7DHt/Tr0PHo9Z2uaJZeINKl0++j3RSDhh95G7Mp7EVtSqJe7L4X/VzGrTb9+HxL+rM0aK4Dwxrd74d1ZfCPiKTLDjT70/dmTspPr2H5eme/qalNwdiqVRVFfr18hk0MdxBJBKoeORSjqehBGCK4X4cTSabLq/hW5YmXTbgtDu/iiY5BH8/+B13tef+Kf8AinPH+i+Il+W2vP8AQbw9Bz90n+f/AACro+8pU++3qjOv7rjU7b+jPQKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDF8UeGrPxRpLWdz8kq/NBOo+aJ/Ue3qO/5Vh+EPEt4t6/hjxF+71i2GI5GPF0g6MD3OPz+oNdtXN+L/CkfiSySSCT7Pqlqd9pcqcFWHOCRzjP5dfrvTmmvZz2/L+upz1YST9pT3/P+uh0lYHjXRf7f8J31kq7pgnmw+u9eQB9en41S8G+K5NXEulatH9m1yy+WeJhjzAP41/rj1yOCK6yoalSn5otONanpsznvBGtf294Ssbt23TqnlTZ6714JP14P410Nef+Gf8AinPiHrPh5vltb4fbrQdsn7wH6j/gFegVVeKjPTZ6r5iw8nKFnutH8gooorE2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Hxl4Vl1Qw6xo7/Z9dsvmhkXjzQP4G/pn1weDVvwj4qh8S2DCRPs+pWx2Xds3BRhxkA84P6dK6OuI8XeG7yC/TxT4cGzVrcZnhUcXSdwR3OPz+oFdEJKpH2c/k/09DmqRdOXtIfNfr6/mRfEiCTT/AOyfFNspM2l3AEuP4omOCD+PH/AjXcQTx3NvFcQsHilQOjDuCMg1z2nanp3j7wncJGdoniaGeJuWhcj+h5Bqh8M9Rlm8Oy6TdnF5pMzWsinqFBO3+o/4DTnFunZ7xf4P/gihJKreO0lf5r/gfkdpRRRXMdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB594m0a88Mau/i3w9HuU86jZL92VO7gevc/n65oabrNlB8RLPV7CTOmeIofLcHjZcLj5SOzZ2/99mvUOteMfEPwbc6DIdY0XcmnmZZpYU/5d5R0cei8/h9MY7sPONT3J72t/Xp0PPxNOVL95Da97dv+H6/eez0VnaBq0euaDZanFjFxEGYD+FujD8CCPwrRriaadmd8WpK6CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApk0MVxDJDNGskUilHRxkMDwQR3FPooAjgghtYEgt4kihjG1I41Cqo9AB0rH8S+L9E8JWiz6xerDvz5cSgtJJ9FHP49PetqSRYonkc7UQFmPoBXiPgLSo/iX4z1fxjrkBnsbeUQ2VtN8yDHIBHQ7VwSOhLZoA6Sz+O3g+6uhDINRtVJx500A2f+OsT+lekW9xDd28dxbSpNBKodJI2DKwPQgjqKyfEXhjTfEWg3Gl3VpAUeMrCxQZhbHDKe2D6Vk/DXw5rHhTwr/ZOs3FvO8U7NAYHZlWMgHb8yj+LcfxoA7CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM7xBFNP4b1SK3z572kqx4GTuKED9a88+Ad1byeBrm2jYefDeuZU7/Mq7T+OCPwNeqV5brHwjuItdn1nwhr02i3E5JlhUHYSTk4IPAzztII+nSgDrPHfjG28FeHJNRkVJbhmCW9uzbTKxPP4AZJP+NaHhnUrzWPDdhqV/aLaXF1EJTArFginleT324P41wmlfCB5tZi1bxfr1xrtxDgxwuCIwQc4OScr7YA9c16jQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z
|
<image>Find x. Round to the nearest tenth.
|
5.8
|
Geometry
|
Geometry3K
|
test
|
46
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIUAgsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4rVfiVpei+LI/D99a3MU0jqqzEDYQ3Q/SjrYOlztaKAcjI6VyHi/4i6P4OuoLW7Wa4uZhkRQAEqO2frRcLXOvoqrp121/p8F09vJbmVA/lSfeXPr71aoasG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5P8cPDJvtEg162T/SLE7ZCvUxk9fwP869YqhrhsRod9/abKtkYWExboFxzUz2v2KjucLovxKs4fhdFrl7IGuoF+ztFnmSUDgfjwa5b4b+F7zxh4hm8aeIAZI/MLW6OOHb1x/dHavNPDlhZax4vs9InvHj0ya6IBPGR247E4Ar62s7SCws4rS1jWOCJQiIowABWnX2nch6LkJ6KKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4b8QvEl5458Sw+DPD7F7dZMXEq9GYdSf8AZX+deo+M7XX77QJbLw8beO6n+R5ZpCuxe+MA81ifDX4fDwdYSz3xjl1W4P72RDkKvZQTSSu9dl+I27LTdnCfEv4fW/hnwtpOo6QhWTTyEnkH3mJOQ5/4F/MV6r4H8RJ4o8J2WogjzSmyYDs44NamsaZDrOj3em3ABiuIih9s9D+Brgvhh4M8R+DLq+t7+S0k02f508uUllcd8Y7j+VVF7p+opLRNeh6XRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArN1LWrbTbyys3O64vJNkaA847k+1T6nqVtpOnTX10+2KJcn1PoB714vpet3Wv/Emwv7nIDzfu07KoBwBXXhsM6qlN7JHHisUqLjBbtr7j3OiiiuQ7AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoJABJOAKK4H4h+J5beNNA0wl7+7wr7Oqqe31P8q1o0pVZqMTKtWjRg5yMbX7648feKY9D05yNNtmzLKOhx1b+gpNSsLfTPijodnaxhIYo0VQPo1dr4N8MReGtHWNgGu5cPPJ6n0+grlPEP/JX9J/3V/k1ejTqxc3Tp/Cov5+Z5lWjKMFVqfFKS+XkenUUUV5J7AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUV1cw2drLc3DiOGJSzsewFCV9AbtqzJ8U+IoPDejSXchDTN8sMf95v8BXKfD/w7Pc3EnifVwXurgloQ/YH+L8e3tWXYw3HxH8XNfXKsuj2bYVD0I7L9T1NesIixoqIAqqMADsK7qj+r0/ZL4nv5eR59JfWantX8K28/P8AyHV5j4h/5K/pP+6v8mr06vMfEP8AyV/Sf91f5NU4L45f4WXjvgj/AIkenUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5f4z1i58T65F4W0dsxh/9IkXoSOufYfzrf8AH3ir+w9OFlZtnUbobUC9UU8Z+vpS+AvCv9g6b9qulzqF0N0hPVB/d/xrtoRVGHt5b9F+pwV5OvP6vDb7T/T5nQaJo9toWlQ2FquEjHLd2PcmtCiiuOUnJ3e53RiopJbBXmPiH/kr+k/7q/yavTq8x8Q/8lf0n/dX+TV14L45f4WceO+CP+JHp1FFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVna5rNtoOkzX9y3yoPlXPLt2Aq+7rFG0jsFRQSzE8AV5Pdy3HxI8XLaQFl0azOWb1Hr9T/ACrow9FVHeWkVuc2JrunFRjrJ7FvwVo1z4k1qXxVrA3Lv/0dG6E+v0HavT6itreK0to7eBAkUahVUDgAVLU16zqzv06LyKw9BUYW3fV92FFFFYm4V5j4h/5K/pP+6v8AJq9OrzHxD/yV/Sf91f5NXZgvjl/hZxY74I/4kenUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc3408UR+GtHZ0IN5MCsCe/976CrpwlUkox3ZFSpGnFzlsjnPiB4hnvLqPwtpBL3M7BZyh6f7P8AU11vhfw9B4b0eOziAaU/NNJjl271zvw98LyWcL65qQLahd/Mu/qinn8zXeV04icYx9hT2W/mzlw1OU5OvU3ey7IKKKK4ztCiikLKOpH50ALXmPiH/kr+k/7q/wAmr03ev94fnXmPiEj/AIW/pJyMbV/k1dmC+OX+FnFjl7kf8SPT6KTev94fnRuX+8PzrjO2wtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUdBk0AVdR1C30uwmvbpwkMS7mPr7D3rzLw7YXPjvxRJr+pIf7Pt3xDEehI6D6Dqfel8Sahc+OvE8Xh/THP2CBszSjocdW/DoK9M03TrfStPhsrVAkMS7QB3967v92p/wB+X4L/AIJ5/wDvVX+5H8X/AJItAAAADAFFFFcJ6AUUUUAFczq3gjT9X1GW9nuLtJJMZEcpA4GOldNRTjJxd0a0a9SjLmpuzOM/4VrpX/P3f/8Af81xGr+GLS0+IVhpKTXBgmVSzNISwyD0P4V7VXmPiH/kr+k/7q/yau3CTlKUrvoycZm2NjCLjUe6Nv8A4VrpX/P3f/8Af80+H4daXBPHKt1fFkYMAZzjg5rsKK5faz7nW8yxb09owAwMUUUVmcIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcJ8QvFEllAuiaaS2oXfyts6op7fU10XifxBb+HNHkvJSDIflhj/AL7f4VyHgDw/cX15J4p1cF7idi0Aftn+L/CuzDwjFOtU2W3mzixNSU5KhT3e/kjovBXhePw3pAVwGvZsNO/v6fQV01FFc1ScqknKW7OqnTjTioR2QUUUVBYUUUUAFFFFABXmPiH/AJK/pP8Aur/Jq9OrzHxD/wAlf0n/AHV/k1dmC+OX+FnFjvgj/iR6dRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVSv9W0/Sghv7yG2EmdnmuF3Y9KALtFNR1kRXRgysMgjuKrX+qWGloj393DbK5wplcLk0AW6KitrmC8t0uLeVJYXGVdDkEUy8vrXT7c3F5cRwQg4LyNgZoAsUVBaXltf2y3FpOk0LfddDkGp6ACo7i4itbeS4ncJFGpZmPQAVJXmPjfWrnxFrEXhXR23Av/AKQ69M+h9h3rahRdWdunX0MMRXVGHNu+i7sp20dx8SPFzXMwZdGszgKehHp9T3r1iONIo1jjUKijAA6AVn6DottoGkw2FsvCD5m7u3cmtKqxFZVGox+FbE4ag6cXKesnuFFFFc50hRRRQAUUUUAFFFFABXmPiH/kr+k/7q/yavTq8x8Q/wDJX9J/3V/k1dmC+OX+FnFjvgj/AIkenUUVQvtb0zTJUivr+C3kcZVZHCkiuM7S/RSAhlDAgg8gihmCKWYgKBkk9qAForPstc0vUp2hsr+C4kUZZY3DECtCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8d/aAh3aLpE2PuTuv5gf4V7FXlvx4h3+CbaX/nneL+qtUT2+4uG/3nfeGpPO8MaXJ/etYz/46K8H+MGrz+I/FVxY2hL2mjwkyY6bsgMfzIH4V6nY+IY9B+D9lq8jDdFp8ewHu5UBR+dedeF/Dks3ws8UeILsFrrUI2ZGbrsVsk/ic/lV1fjk+12TS0jFd7L/ADPSvhRP5/w30k5+6jJ+TEVxXxq1WbVNV0nwlYndLLIskij+8xwoP6n8a3/g5fRw/DJZZnCx2skpcnsASxrlvhxbSeMviXqniu6UmC3c+TnoGPCj8F/nVTXNUs9tyYPlg38j2LQdJh0PQrPTYBhLeJU+pxyfzrRorP1rV7bQ9Kmv7psJGOF7s3YChJzlZbsTahG72Rg+PPFQ0DTPs1q2dQuRtjA6oOm7/Co/AHhU6Jp5vrxc6jdDc5bqint/jWB4N0i58U67L4p1dd0Qf/R426Ejpj2Feo111pKjD2Ed+r/Q4qEXXn7ee32V+vzCiiiuI7wooooAKKKKACiisDxhrtx4d0Rb21hSaVpljCPnHOf8KcU5OyNKNKVaoqcN2b9FcUNW8dMoI0SxwRn/AFppf7V8df8AQEsf+/pq/ZvuvvOv+z5/zx/8CR2leY+If+Sv6T/ur/Jq2v7V8df9ASx/7+muSmn1S4+KOkvq9tFb3PyjZE2RjBwa68JBqUnfozzc0wkqVKMnKL95bNM9hry344eHf7S8LxatCmZ7B/mI6+W3X8jj869SqtqNjDqWnXNjOu6KeNo2HsRivOkrrQ1i7PU5j4Za/wD8JB4HsZnfdPAvkS+u5eM/iMGuc+L/AIzfTbFPDmlsW1G+AWTZ1RDxj6muJ8F+Kf8AhWureI9J1IMVjDNEn96RTgD8QR+Vb/wu8NXXiTXJ/G+uqZGeQm2Vx1P976DoKt2qO/Tdkr92rddkdn8M/BSeEfD6tOoOpXQD3D+nov4V29FFDd2JKwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR1ooAKKKKACiiigArzz40w+b8Orhsf6ueNv1I/rXodcf8UbOW++HeqwwxPLLtRlRFJJw46AVE9i4fEeP6rqU/iDwz4N8H2TEvNGrzY7HJAz9Bk17hqOkQ2XgG80q3QCKLT3iUD2Q15T8E/Cl2dYudb1O2mi+yoIbdZkKnJHJAPoOPxr3G6i860miP8AHGy/mKur8D87v/IiD95eWn+Z81aX4lbSvg9qGmxPi4vL9oVA67Nqlv6D8a9s+Gvh0eG/Bdnbum25mHnz+u5ucfgMD8K8N8C+DtR1bxva2t7ZXMdhbzNPJ5sTKpwenI7kCvp8AAADgCq6X7/khPfl7fqDMqIzuQqqMknoBXk2o3Fx8RvFqafasy6RaNl3HQjufqegrV+IPiOeeaPwxpJL3dwQsxTsD/D/AI11PhXw5B4b0aO1QBp2+aaT+83+FdlNfV6ftX8T2/zOCq/rNT2S+Fb+fl/ma1raw2VrFbW6BIolCqo7AVNRRXC3fVnelbRBRRRQMKKKKACiiigArjfiX/yLMH/X7F/WuyrjfiX/AMizB/1+xf1rSl8aO7LP98p+p2EX+qT/AHRTqbF/qk/3RTqzOJ7hXmPiH/kr+k/7q/yavTq8x8Q/8lf0n/dX+TV2YL45f4WcOO+CP+JHp1FFFcZ2nzz8Q9Nttd+NNtpkMePOMKXBXvxkn/vmvf7O0gsLOG0to1jhiQIiqOABXingzTr3WPjTqOs3dncRwRNLJG8sZUHnauCR6V7lRHSmvPUJazfloFFFFABRRRQAUUUUAFFFFABRSMwRSzEBQMknsK8z8ZfGCy0KMxaVaSXsrZUTspWHPsf4vwoA9Norh/DXjYDwNZ614muYYJ7jcyIi4Z13HbtUcnjFcxbfF298QeNrDR9FslhtHmxNJcD5ygBLcfw8CgD1+iuC8V/FbRPDscsdrnUbtOCsPKIf9pulL8MPFmr+MdOv9R1KOKOFZ/LgWNcYGATz360Ad5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFV7m/s7NSbm6hiA/vuBXP654Z1TU9xt/EN1bg/8ALPA2/pzXnup/DPxIrF1nS9HqZDk/ga7KNClP4qiRxV8RWp/BTbO21n4maJpu5LZmvZh2j4X864+Lxh4j8ZaxDpllILOGVvm8nqqdyT9K4rUdG1HSZTHfWcsB9WXj86t+GLGXU9ZSyh1H7DLKCEk5+Y/3eK9WGDoU4OcdfN6njTxuIq1FCWi7LQ+iLO2Sys4raPOyNQoJOSamrzH/AIVt4g/6GU/+P/40f8K28Qf9DKf/AB//ABrynQovV1V9zPYWIrJWVJ/ej06ivMf+FbeIP+hlP/j/APjR/wAK28Qf9DKf/H/8aPq9H/n6vuY/rNf/AJ9P70enUV5j/wAK28Qf9DKf/H/8aP8AhW3iD/oZT/4//jR9Xo/8/V9zD6zX/wCfT+9Hp1FeY/8ACtvEH/Qyn/x//Gj/AIVt4g/6GU/+P/40fV6P/P1fcw+s1/8An0/vR6dRXmP/AArbxB/0Mp/8f/xo/wCFbeIP+hlP/j/+NH1ej/z9X3MPrNf/AJ9P70enVzvjHxNF4a0dpgQ13LlYE9T6/QVyf/CtvEH/AEMp/wDH/wDGuX8YeENX0KKC7u7030JO3zBn92fQ5rWhhqEqiTqX8rGOIxdeNNtU2vO60O3+HvhmWBX8QaoC9/dZZN/VVPf6mu/ryXS/A+rarp0F7aeKN0Mqgrjfx7dauf8ACtvEH/Qyn/x//GivTp1Kjcqi+56Bh6lSnTUYUnb1WvmenUV5j/wrbxB/0Mp/8f8A8aP+FbeIP+hlP/j/APjWX1ej/wA/V9zNvrNf/n0/vR6dRXmP/CtvEH/Qyn/x/wDxo/4Vt4g/6GU/+P8A+NH1ej/z9X3MPrNf/n0/vR6dRXmP/CtvEH/Qyn/x/wDxo/4Vt4g/6GU/+P8A+NH1ej/z9X3MPrNf/n0/vR6dRXmP/CtvEH/Qyn/x/wDxo/4Vt4g/6GU/+P8A+NH1ej/z9X3MPrNf/n0/vR6dXG/Ev/kWYP8Ar9i/rWH/AMK28Qf9DKf/AB//ABqKb4X61coEm8QrIoOcMGIz+dVCjRjJP2i+5nRhcfWoVo1XRbs+6PUYv9Un+6KdXmH/AArXXx/zMp/8f/xo/wCFbeIP+hlP/j/+NT9Xo/8AP1fczn+s1/8An0/vR6fXmPiH/kr+k/7q/wAmpP8AhW3iD/oZT/4//jXLaj4Y1G08ZWeky6p5l1MAVuOflzn8e1dOFo0oydql9H0Zy4uvVlGPNTa1XVHvFFeY/wDCtvEH/Qyn/wAf/wAaP+FbeIP+hlP/AI//AI1zfV6P/P1fczq+s1/+fT+9Hp1FeY/8K28Qf9DKf/H/APGj/hW3iD/oZT/4/wD40fV6P/P1fcw+s1/+fT+9Hp1FeY/8K28Qf9DKf/H/APGj/hW3iD/oZT/4/wD40fV6P/P1fcw+s1/+fT+9Hp1cf48s9SisV1nSLiWK6tR+8VDw8f09qwf+FbeIP+hlP/j/APjVHV/A+r6VpVxe3fib9zGhJU7vm9uvetKNKlGaaqJ+VmZV61WdNp02vO60HaN8W549sWr2glHQyxcH8RXfaZ4v0LVYw1vqESsf4JDtYfnXzqAWbCgkk8Ad66DTPBHiDVFWSCwdIz0eX5BXfiMDh/ivynnYbMMTflS5j6ESRJF3I6sp7qcinV5fo3w68QWjK8muta4/hhYsf8K9C0yxuLGDy7i/mvG/vygA/pXj1qVOHwzue3Rq1J/HDlLrKroyMAVYYIPcV4x8bCl1eeHvDVnGiSTS7gqrjG4hV6fjXtFeK23/ABVf7QM0v37bSlIHplBt/wDQiTWB0He+HvA2keGrKOafdd3MEQBuLk7tigdFHRRx2ryLwH4aTx5421rVLiWW3s0lZ2WE7S+9iduR0GBXsHxH1b+x/AOq3AbEjxeSnuX+X+RNYnwX0b+zPAkVy64lvpGnOf7vRf0AP40AZHxct9L8M/D2PTNOs4bf7VOqgKoyQvJOevXFdh8NdI/sXwDpduy7ZJI/Ok9dz/N/WvOvi5MuufEPw/4e3jylZPMBPQuwz/46BXry6vpsF9BpMdwj3RXAij+YqAOpx0HHegDTooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCK4tYLuIxXEKSoequuRXG6p8M9KuZhc6a76fcq25THyoI6cdq7eitadapT+B2MqtCnVXvq5BZrcJZxLdMjThQHZOhPqKnoorNu7NErKwUUUUhhRRRQAUUUUAFFFFABVbULC31Owms7pA8Mq7WB/nVmimm07oTSaszyjw/fXHgLxTJoWouTp1w2YpT0Gejf0NergggEHINc54z8MR+JdHaNQBeQ5aB/f0+hrF+HvieS6ifQtTJW/tMqu/q6jt9RXbVSr0/bR+Jb/5nDRbw9T2Mvhfw/wCR3tFFFcJ3hRRRQAUUUUAFFFFABRRRQAUUUUAFeY+If+Sv6T/ur/Jq9OrzHxD/AMlf0n/dX+TV2YL45f4WcWO+CP8AiR6dRRRXGdoUUUUAFFFFABXNeKPDM/id4LaW8MGnx/O6IMs7f4V0tFXCcoS5o7kVKcakeWWxg6P4O0TRFBtrNGlH/LWT5m/Wt7pRRSnOU3eTuEIRgrRVkFFFFSWMmMggkMShpAp2AnAJxxXEfD7wJP4Ul1C/v7pLi/v2DOVHCDJOM9+td1RQBxvxD8J3/jLT7LS7a5S3tRN5txI3J4GAAO/U11Gm2MWmabbWMAxFbxrGv0AxVqigDxvxP8KdY8TfEW41N7yODTpCjCZW/eAAAYA7HjrXpnh/wzpnhu08ixh+c/6yZzukkPqWPJrYooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOfiB4entLmPxRpAKXMBDThO4H8X9DXo1NdFkjZHUMjDBB6EVrRqulPmRjXoqtDlf8AwzMfwv4hg8SaNHdxkLKPlmj7q1bVeS3kVx8N/Fy3cAZtHvDhlHQDuPqO3tXqttcxXdtHcQOHikUMrDoQa0xNFQanD4Xt/kZ4Ws5pwn8Ud/8AMlooormOoKKKKACiiigAooooAKKKKACvMfEP/JX9J/3V/k1enV5j4h/5K/pP+6v8mrswXxy/ws4sd8Ef8SPTqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDO1zRrbXtJmsLlflcfK3dG7EVwPgrWbnw3rUvhXWG2rv/wBHdugPp9D2r0+uO8feFf7c04XtmuNRtRuQr1dRzj6+ldeGqRadGp8L/B9zjxNKSarU/iX4rsdjRXIeAvFX9vab9lumxqFqNsgPVx/e/wAa6+sKtOVObhLdHRSqxqwU47MKKKKzNAooooAKKKKACiiigArzHxD/AMlf0n/dX+TV6dXmPiH/AJK/pP8Aur/Jq7MF8cv8LOLHfBH/ABI9OooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDy7xnpFz4X1yLxTpC4jL/6RGvQE9c+x/nXoOi6vba5pUN/atlJByO6nuDVq6tYb21ltrhA8MqlXU9wa8r0+e4+HPi57C6Zm0i7bKOeg9G+o6Gu6P8AtNPl+3HbzR58v9lq832Jb+T7/M9aopEdXQOhDKwyCO4pa4T0AooooAKKKKACiiigArzHxD/yV/Sf91f5NXp1eY+If+Sv6T/ur/Jq7MF8cv8ACzix3wR/xI9OooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArD8VeHYPEmjSWrgLOvzQyf3W/wNblFVCbhJSjuiZwjOLjLZnnXw+8RTwTSeGdWJS7tyVhL9SB/D+Hb2r0WuA+IXhmWZU8QaWCl9a4Z9nVlHf6j+Vbvg7xNF4l0dZSQt3F8s8fofX6GurEQVSPt4dd12f8AwTjw05U5fV6nTZ91/wAA6KiiiuM7gooooAKKKKACvMfEP/JX9J/3V/k1enV5j4h/5K/pP+6v8mrswXxy/wALOLHfBH/Ej06iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCAQQRkHqDXlGuWVx8P/FUetaehOmXLYljHQZ6r/UV6xVPVdMttY02axuk3RSrg+oPYj3row9b2ctdYvc58TQ9rH3dJLVMksL6DUrGG8tnDwyqGVhVivK/C2pXPgvxJL4b1Vj9klfMEh6AnoR7H+deqdaWIo+ylpqns/IMNX9rC70a0a8wooorA6ArmNWv/ABXBqUsem6VbT2gxskeTBPHPH1rp6KqLs9jajVVOV3FS9f8AgWOL/tXxz/0A7P8A7/VxOr3evP8AEGwmubCFNSVV8uFXyrcHqfzr2qvMfEP/ACV/Sf8AdX+TV2YSV5S0toycZjqcYR/cQeq7/wCZtf2r45/6Adn/AN/qfDqfjZp41l0W0WMsA5E3QZ5rsaK5edfyo6njIf8APmP4/wCYDoM9aKKKzOEKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5bxx4WXxHpJaFQL+3BaFu5/2aofD7xS+p2jaTqDFdRtBt+bq6jjP1Heu4rzTx5oNxpGoxeKtHBSSNgbhV/wDQvoehrtoSVWPsJ/J9n/wThxEXSn9Yh813Xf5HpdFZPhzXrfxDo8V9AQGIxIndG7itauSUXFuL3R2RkpxUo7MKKKKkoK8x8Q/8lf0n/dX+TV6dXmPiH/kr+k/7q/yauzBfHL/Czix3wR/xI9OooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSxRzwvFKgeNwVZT0INPooA8lPn/AA28X5+ZtGvT+Q/xH8q9XhmjuIUmicPG4DKwPBBrN8RaFb+IdIlsZwASMxvjlG7GuJ8Ca7caPqUvhXWCUkjYi3Zv/Qfp3Fd0/wDaafOvijv5ruefD/Zavs38EtvJ9j0uiiiuE9AK8x8Q/wDJX9J/3V/k1enV5j4h/wCSv6T/ALq/yauzBfHL/Czix3wR/wASPTqKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4j4g+Fm1WzXVbAFdRtBuBXq6jn8x2rt6K0pVZUpqcTKtSjVg4SOV8D+KV8RaUEmIF/bgLMvr/tfjXVV5X4r0y58GeI4vEulIfskr4niHQE9R9D/ADr0fStTttY02G+tXDRSrn3B7g1tiaUdKtP4X+D7GGFqyd6VT4o/iu5drzHxD/yV/Sf91f5NXp1eY+If+Sv6T/ur/JqrBfHL/CxY74I/4kenUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV76yg1GymtLlA8MqlWU15fot5cfD7xXJo1+5OmXTZikPQZ6N/Q16xXPeMPDMXiXR3hwFuo8tA/ofT6GurDVVG9Ofwv8PM5MVRlK1Sn8Ufx8joAQygg5B5BFeZeIf+Sv6T/ur/ACar3w98TSyh/D2qEpfWuVj39WUdvqKo+If+Sv6T/ur/ACat6FJ0qsov+VnPiK0a1GE4/wAyPTqKKK849MKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPO/iD4cmilj8TaSCl3bENME6kD+L/AB9q5u315PEXxC0O+C7JNqpKvowBzXs7KroUYBlYYIPQivJ7jwm3h74j6ZPbp/oFxOTGR/AcHKmvUwteMoOE90nb07Hk4zDyhNThs2r+t9z1miiivLPWCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqOWCKfZ5qK2xgy5HQjvUlFABXmHjL4g+JNE8RzWGlaCbu2jVf3pRuSRk9BXp9FIaZ4h/wtfxv/ANCt/wCOP/hVK6+N/iWxmEN1ocEMpGQj7gfyr1Pxz41s/BmjNcSlZLyQEW8GeWPqfYV518O/Bd74p1dvGPigNKHffbxSD757HH90dhTjq/IHornrfh29u9S8P2N7fQrDczxLI8Y/hJ5xWnQAAMDgUU3qyVsFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJ4q8UWHhPRZdRvnHAxFGD80jdgKt61rNloGkz6jfyiOCJcn1J7Ae5rwezW8+LvjFr3U7hbXRbVsBGkAwvZRnue5payfKh6JXZd8JeHNS+J3iV/E/iEMNNjf91Eej46KP9kd695jjSGJY41CIowqgYAFUbKTSdPs4rS1ntYoIlCoiyKAAPxq1Fd207bYriKRuuEcE1WlrLYnVu73JqKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmfG/g+Pxro8WnS3sloiSiXciBs4BGOT71wA/Z+sh08Q3Q/wC3df8A4qvZaKSVh3Z43/wz/Z/9DFdf9+B/8VXT+CPhha+CtUnv49SmvJJIvLAkjC7RnJ7n0rvaKpOwnqFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z
|
<image>$m$ is the perpendicular bisector of $XZ$, $WZ=14.9$. Find $WX$.
|
14.9
|
Geometry
|
Geometry3K
|
test
|
47
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACuAN8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKZNNHbwSTzOqRRqXd2PCgck0yzuVvbKC6QFUmjWRQ3UAjIz+dOztcV1exNRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzHjDXr/AE60+xaNZXF1qU6/KYoi4hX+8cDGfQf5N04OclFEVKipxcpHL/E/xPu2eHbCTdJIQboqen91P6n8PevS7eFbe2igX7saBB9AMV80qtxDq6tdB/OW4xIznJLhhuye5zX01XfjqSo04Qj5/oedl9aVepUqS8vluFFFFeaeoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVl+I9VXRPD17qBI3RRnZnu54UfmRWpXDeNidZ17RPDCHKTS/aboD/nmuf54b8QK2oQU6iT23fojHETcKbcd9l6sbovgq3vfAFvZ3o23c5+2edjLJI3IP5YBH1ru6AAAABgDoKKmpVlUd5eb+8dKjGmrR7JfcFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV438TvibqdjbnTNH0nWrCRb1YZdTntjHFgN0jbndux144r0Txp4kHhPwdqOt7BJJbxfu0bozsQqg+2SKV/d5v66f5jt73KdBRXjGqv8AELwj4at/Gd34n/tDb5ct/pT2yrGsbkZVGHIIyBnj19j7DZ3Ud9Y293CcxTxrIh9mGR/Oqtv5E328yauG8Hf8TvxPrfiVuYjJ9ktT/sLjJH1wv5mtfxxqx0fwneSocTzDyIcddzcce4GT+FW/C+kjRPDdjYYxJHGDJ/vnlv1JreHuUXLrLT5bv9Dnn79eMekdfnsv1Neiiiuc6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8z+On/Igwf9hG3/mad8c93/CrbrHT7RBu+m8Vo/Ffw9qniXwhFY6Ra/ablb2GUp5ip8qk5OWIFbXjTw2vizwfqOiFxG9xF+7c9FdSGUn2yBS+z/29f/0n/Ir7S9LfizG+KWB8I9bz0+yL/wChLW54Mz/wg+g7uv8AZ8H/AKLWvN9Xi+IXjHw9B4OvfDK6crtHHf6q12jxtGhBJRRzk4Bxz6e49bjS30vTUQER21rCBk/woo/wFX/N5tfhf/Mz2UU+l/0/yOP13/if/EPSdGHzW2nL9tuR23cbQf8Ax38GNdzXE/D2GS+XVPElwpEupXB8vP8ADGpwB+eR/wABFdtW2J91qmvs6fPr+Jhhfei6j+07/Lp+AUUUVznSFFFFABRRRQAUUUUAFFFFABRRRQAUUVDdQG5gaITywlv44iAw+hINCBkpIUEkgAdSa5rWfHvh/RdySXguJx/yxtvnP4noPxNYet/DS41Mll8SX0ncJeEyj8wRj8q4LWfh/wCING3O1p9qgH/LW2y4/EdR+WK9HD4bDzfvVPlt+Z5mJxWJpr3afz3/ACPY/DGtXfiDT21GazW0tpGxboW3OyjqxPuegx271uV5d4U8Of2/oMFzb+J9YgKfupIFnIETDsBnpjGPatv/AIV/cf8AQ163/wB/z/jWVWjSU2ua3lZmtGtWdNPlv53R21FcT/wr+4/6GvW/+/5/xo/4V/cf9DXrf/f8/wCNZ+zpfz/gzX2tb/n3+KO2orif+Ff3H/Q163/3/P8AjR/wr+4/6GvW/wDv+f8AGj2dL+f8GHta3/Pv8UdtRXE/8K/uP+hr1v8A7/n/ABo/4V/cf9DXrf8A3/P+NHs6X8/4MPa1v+ff4o7auR+Il/Jb+HRp1tzd6nKtrGo6kE/N/h/wKq//AAr+4/6GvW/+/wCf8a5m38Kzav42utOGu6jLBpkYY3TylnSVscKe3/2JrahSpKfPz3Uddn/W5hiKtZw5OSzlpuv62PUdLsI9K0q1sIvuW8Sxg+uByfxPNW64n/hX9x/0Net/9/z/AI0f8K/uP+hr1v8A7/n/ABrJwpN3dT8GbKpVSsqf4o7aiuJ/4V/cf9DXrf8A3/P+NH/Cv7j/AKGvW/8Av+f8aXs6X8/4Mfta3/Pv8UdtRXE/8K/uP+hr1v8A7/n/ABo/4V/cf9DXrf8A3/P+NHs6X8/4MPa1v+ff4o7akbO07SA2OCRkVxX/AAr+4/6GvW/+/wCf8aP+Ff3H/Q163/3/AD/jR7Ol/P8Agw9rW/59/ihsXxHtbLU5tL1+1ksbqF9jSJl4z6H1AIwRwa6+y1Gy1KETWV1DcRn+KJw38uleD6no17q/iO4tdIa/1dYT5RuZTuyR1+Y8AZ6ZNdJpXwm1QlJrzU47J+u2AF3H45AB+ma7a2Fw6ipOfK/v/Dc4KGMxMpOKhzLvt+Ox67RWLovh+TR1AfWdSvOPu3MoZfwGMj862q8ySSdk7nrQbavJWCiiipKCiiigAooooAijtoIppJo4Y0klx5jqoBfHTJ79TUtFFAWsFFFFABRRTJQxhcJ98qdv1pN2VwRwOp/Fe1tdTvrXS9A1jWYdPYpe3VjCGjiYdQD3I79K67w/r+n+JtEttX0ubzbWdcqSMFSOCpHYg8V518FtW02w8BXltf3cFte2d7Ob9Z5AjKc/ebPtxn2NL8CbyK60TxCLb/jzXWJWtxjGEYAgY7VSXTyT/L/PT0E+/m1+f+R6Zqd/Fpel3V9N/q7eJpCPXA6fj0rm/h3YSQ+Hn1K55u9Tma5kY9SCeP6n/gVQ/EKaS9j0zw5bsRNqdwofHaNSCT+eD/wE12MEMdtbxwRKFjjUIijsAMAVu/coW6yf4L/g/kc69+u30ivxf/A/MkooornOkKKKKACiiigApGUMpVhkEYIpaKAI4YIbaFYYIkiiUYVEUKB9AKkoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPHxdfC/xLqGq6v4i0qw0/VdNuXjuIrufY8hT+LYCBJnp0OcVs/BizlTwpfatLAYBrGozXsUZGMRsQF49ODj2rrNR8HeGtXvxf6joWn3V2MfvZbdWY46Z45/GpPEmppoHhm8vECoYYtsKgYG48KMfUiqpxbait3p/XqTUkknJ7LU53RP+J/8AEXVdXPzW2mp9jtz23c7iP/Hv++hXc1zngXSTpHhO0jkBE84+0TE9dzc8+4GB+FdHWuIknOy2Wi+RjhotU7y3er+YUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADWkRHRGdVZzhATyxxnj8Aa4jxn/AMTvxJonhleY3k+13Q/2FzgH64b9KPincz2WgWF5bSNHPDfoyOvUHY9cboXjmRfEt5qs+mve6neqkEEUTbVUcAgcE8kDt616OFw03H20dd/v/rU8zF4qCn7Cem33f1oe19KKgsmuXs4nvI44rhly8cbbgp9M9/rU9ee1ZnpJ3VwooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8/wDi7Kq+F7WI/ee7Uj6BGz/MU/4d+DE0izj1a+jzfzpmNWH+pQ/+zEdfTp61u67oA13W9Ja4UGysi80ino7/AChF+nBJ/LvXQV2PEOOHVKPXf/I4lhlLEutNbWS/zCiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>$m∠9 = 2x - 4$, $m∠10 = 2x + 4$. Find the measure of $∠10$.
|
94
|
Geometry
|
Geometry3K
|
test
|
48
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFlAfwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikZgqlmIAHJJ7U2OaKYExSI4HUqwNAD6KKiW6t3fYs8TP8A3Q4JoAlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDjvijqZ0v4fanIrbZJVEKEerHn9M1mfBewaz8AxXEhO+6leUlj2zgfoKxvj7ePHoOlWKni4uGY/wDAQMf+hVynin4jDTfDNn4U8PS4WG3WK5ukPU45VT/M0k7KT6vQpq/KvmdV8QPiPc3d7/wi3hLdcX0x8uWeLnHqqn+Zrofh58O4vCtsL2/kNzq0o+dyciPP8K/4034YeDNK0LQoNTgkW7vLyMO10R2POF9BXf1VuTTqRfm9AooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8O+McVz4j8baJ4cstpn8skZPALHkn8FzXTR/CHSrTwLd6VGqzalMm83TDnzByAPQdvxrG8P/wDFQfHrVr4/NFp6Min0Iwo/rXslJL92vMbfv+h478FPEcka3fhS/JW4tWZoVbrjPzL+B/nXsVeEfE3Tp/Bfjyw8XachWGeQNKF6bx94H6iva9K1KDV9KttQtnDQzxh1I96pPmjzddmJrllZbdC5RRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBiwxoxZI0Vm6kKATT6K5jxF42sPDuqWdlON7THMpB/wBUvYmrhTlUfLFXZFSpGnHmm7I6WSKOUYkRXHowzSqiooVFCqOgAwKbFKk0SyxsHRxlWByCKfUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIzBVLMQFAySe1AGbr+tW+gaPNf3BHyDCJ/fbsK828PeEJvGUF/resSOr3Wfsxz0P8Aex6dsU/UJpviL4ySxt2YaRZHLsOhHc/U9B7V6rbwRWtvHBCgSKNQqqOgArvcnhaaUfje/kux5yisXUcpfBHbzfc818Ga/deHdVfwtrhKhW228jHgegz6HtXp1cp438JJ4i0/zrcBdRgGYnHG4f3TVHwF4tfUYm0fUyU1K2+Ub+DIB/UVNaKrQ9tDfqv1KoydCfsJ7fZf6Hc0UUVxHeFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXAfEXxHLDHH4f00l767wsgTqqnoPqf5V1PiPXYPD2jTX0xBYDEaf327CuN+H2hT6hezeKtVBeediYA3bPVv6CuzDQUU689lt5s4sVOU2qFPd7+SOp8IeHIvDeix2+AbmT5539W9PoK36KK5Zzc5OUt2dVOEacVGOyCvPPHvheZZl8SaMDHe253yqnVgP4vr616HQQCCCMg1dGrKlPmRFejGtDll/wxzvhDxRB4m0oSZCXcQCzx+h9R7GuiryrxNpF34J15PEWjKfscjYniHRc9QfY/pXoujaxa65pkV9aPuRxyO6nuDWuIpRSVWn8L/DyMsNWk26VT4l+K7mhRRRXKdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXdY0Z3YKqjJJ6AU6vPfiL4hmJi8N6YS95dECXZ1APRfx/lWtGk6s1FGNesqMHNmPcPN8R/GYgjLDR7I8nsR/if5V6vDDHbwpDEoSNAFVR0AFY3hTw9D4b0WO0QAzN88z/wB5q3K0xNVTahD4Vt/mZ4Wi4Jzn8Ut/8vkFFFFcx1BRRRQBDdW0N7ayW1xGJIZFKsp6EV5UjXfw08UbG3y6LdtwfQf4j9a9brN1zRbXX9Llsbpcqwyrd0bsRXTh6yg3GesXv/mcuJoOolOGklt/kXre4iureOeBw8UihlZTwRUleWeFNauvCGtv4a1piLdm/cSnoM9PwNepg5GRU16LpStunsy8PXVaN9mt12YUUUVgbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcv4y8LXvieG1Sz1mfTTCzFmiz8+cdefauPl+FesQxPLL44vkjRSzMc4AHU9a9Yrzn4paxcSpp/hLTXIvdXkCSFeqRZ5P48/kaXkt2UvPZGb8JLLVJdS1PU5dUurzSgTb2zTk/vSDy4HYcV6xVLR9Lt9G0m1061QLDBGEUD271578VdU1rw1faPrlhfXCWCyiO6t0c7G5zyPcZH4VUmrpfIlJu7PT6K8y8Y+ML3VbvTvDXhO4I1C9CyzXMR/1EZ569v8APrXoWmWklhptvbTXMtzJGgDzStuZz3JNK2lwLdFFFABRRTZJEhiaSRgqICzMegAoAyPE+vweHNFlvZCDJjbCn95u1cl8PNAnuZ5fE+qgvdXJJh39gerfj29qy/33xH8afxDRrI/gw/xP8q9YjjSGJY41CoowoHYV3VP9npezXxS38l2PPp/7TV9q/hjt5vuOooorhPQCiiigAooooAKKKKAOa8ZeFYvEulkIAl7CN0Mn/sp9jWJ4C8VSys3h/VyUv7fKxl+rgdj7ivQK4Px94Tkuwuu6UCmo23zME4Lgd/qK7KFSM4+xqbdH2f8AkcWIpypy9vS36ruv8zvKK5fwV4sj8SabtlIS/gGJk9f9oV1Fc1SnKnJxlujqp1I1IqcdmFFFFQWFct4p8f6H4QmSDU3m8+SPzESNM5Gcf0rqarz2NpdMGuLaKVgMAugOKTuNWPG/hx4nm8VfFfVNSbfHDJbHy4i2QqggD8a9mu7mKys5rqc4ihQyOQOgAya8k8IxRw/HXxBHEioixNhVGAORXsDKrqVYAqRgg96f2I27fqxP43fueG/Eb4t6Zq+gS6Tofns85AknYbAqg5wO9er+DWLeDNHZiSTaR5JPXiuR+MOn2Vv8PrmSG0hjfzk+ZEAPeut8Gf8AIl6N/wBekf8AKiPwy9V+QS3j8zdorj/iWurJ4OubvRr2e1urUiUmFipZe4/rXON8Ttnw2sLyFvP1y8X7PFEOWMo4LEUr7+Q7beZ6nRXOeCtM1bTtBjOt6hPeX837yTzXLCPP8I+ldHVNW0JTuFFFFIYUUUUAcf8AEvxNceFvCE15ZkC6kcQxN/dJ71w1p8LNS1Xw+mtXPiW//taWLz1Af5AcZAPeu9+I3h6PxJ4PubV7iO3aIiZJZThQR6n0rzqx+MMum+GP7Nk0xp7u3j+zrdxuTCTjAbOKnpLv0/r1K7dup13wk8TX+vaDc2upyGW6sJvKMrdWHbNeh15/8JdBj0nw1Jd/bILqe/lM0jwtlV/2a9ArSW5EfIKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5F4Qk/4Sr4w63rb/Pb6cvkW/oOdoI/AH869U1Ezrpl0bZC84hfy1HUtg4H51wPwh8Nan4f0nUW1eze2u7m53bXIJKgDB4J75oj8V+y/PQJfDbuz0evP/i9qVhD4Pk0ueMz3t8ypawp94sCPm/z613s0jRQSSLG0jKpIRerewrzfwx4Y1jWvGVz4q8VWpgeJtljaOwYRr/e4JH+TSa5nYafLqZPwIgsP7P1KRoz/AGtHKI5S/wB4JjgD0HX8q9hry7TPDWs+HPi7d31jYPJomoqTLIrKFRjz0zng5/OvUSQASTgDqapvmSZNrNoKKq2Oo2epQmWzuY50BwShzg1apWsVKLi7SVmFedfEPX57ieLwxpRL3VyQJtvYHov9TXU+K/EMPhvRZLtiDO3yQIf4m/wFcx8O/D0zGTxJqYL3l0SYt/UKerfU/wAq7MPFQi689lt5v/gHBiZupJYeG738l/wTqvDGgQeHNFis4gDJjdK/95u5rZoorlnJzk5S3Z2QgoRUY7IKKKKkoKKKKACiiigAooooAKKKKAPLvF+h3XhbWE8T6IpWLdm4iXoM9ePQ13uga7a+INKivbZvvDDp3Ru4NaM0MdxC8MyB43UqysMgg15PcxXfw18Ti5hDyaNdthl9B6fUV3xf1mHI/jW3mux5808LPnXwPfyfc9boqCzu4L+0iuraQSQyqGVh3FT1wNW0Z3ppq6CisSHxTYXPiD+x7XfPKqkySRjKRkdia26bTW5rUpTp2U1a+p5D4W/5Lz4i/wCuTfzFevV5r4f8OavafF/WtYnsnTT542EU5YYY5HbOa9KpL4I+n6mcvjkeffGf/knVz/12j/rXSeDP+RL0b/r0j/lWT8UdH1DXfBM9jpls1xctKjCNSASBnPU1ueF7Sex8LaXa3MZjnitkR0PVSByKI7S9V+QS3j8xfE2q2GjeHry81Ij7MIyrKf48jG0fWvCfhHa2LeP2TUbZ0l8ozWMcvRc85x64PFega9oGueNvG8FvqNnJa+G7Ft43MP8ASGHsD/kVF488KarH4s0PxD4csGmltiI5o4iq/IPqR2JFENJKT66f8EctYuK/ryPUa5bxvP4rgsID4UghlnLnzfMwSF7YzxXTxsWjVmUqxAJU9jTqGhJnjv8AaXxl/wCfC2/74jo/tL4y/wDPhbf98R17FRQB5Np+ofF1tRt1u7G1FuZB5hKoBtzz056V6wM7Rnrjmlop30A8q+N17Oum6PpiSMkF7dbZiDjIGOP1r0Gx0PTYNEh09LOH7L5QQpsGCMVhfEfwfJ4v8OiC1cJe27+bAW4BPcfjXHQeL/iNZaaNJk8KtLeonlJc9vQE84qVs15je6Y74Ru9j4t8T6NCxNjBLujXPCncRxXsFcH8MvBt34Z0+6vNUYNqd+/mTAHO0ema7yqeiS7IndtrqwooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCAQQeQaKKAOM1PwdPZXjap4YuPsd31e3P+ql9sdqn0jxvbzSPZa1H/ZuoRAl0l4Vsd1NdZXl3xIvY9Y1az8PafbxzX28b5AMlM/w5+nJrpoxdaXI/v7HXUzCl7NRxmvRSXxL/ADXk/kytAk3xH8ZtPIGGj2RwFPRh2H1PU+1esIixoqIAqqMADsK85006p8Oo/s95areaQ7bjcQJ88ZPXcO9d7p2pWeq2i3VlOk0Td1PT2PpTxM+Zrl+FbHMsunhY+0b5lL7S29PL0ZbooorlJCiiigAooooAKKKKACiiigAooooAKo6vpVrrWmy2N2gaOQde6nsR71eqlqurWWi2L3d9MscS9PVj6AdzVRbTTjuNU3VfIle/Q818P6rdeAtfk0LV2P8AZ8jZhlPRc9CPY962rvWNT8Z3L6foJa20xTtnvyMFx3C1n32j6t8RM3kyCwsYlb7Ijr88h9T7VL8P/ET2E7eF9WQQXMDFYSRjd/s/4V31F7VOql7y3/zNKfsspapTfNN7dVHyfd/gvM7XRNBsdBshbWcQHd5Dyzn1JrToorz223dk1KkqknObu2FFFFIgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio7ieK1t5J5nCRRqWZj0AFG4bGJ4v8RxeG9EkuMg3MnyQIe7ev0Fc/wDDrw5LDHJ4g1IFr27yyb+qqe/1NYthFN8RfGT31wrDSLI4RD0OOg/Hqa9YVQihVAAAwAK7qv8As9P2S+J7/wCRwUl9Yq+2fwrb/MR0WRCjqGUjBBGQa5KfwbLYasmoeHbs2JZx59ueY3XPOB2NdfRXHGTjsetRxNSjfkej3XR+qAZwM9aKKKkwCiiigAooooAKKKKACiiigAooooARs7TtxuxxmuOsfCl5qeqnVPE0qzujHyLVD+7jHY+9dlRVRk47G9HEzoqSho316/J9LiABVCqAAOgFcV498JNq1uNU04FNSthuBXgyAf1FdtRVUqsqU1OJyVqUasHCRyPgbxauv2P2W6ITUbcYkU8bx/eH9a66vM/G3h650TUl8U6GCjo264jUce5x6HvXZ+GvENt4k0mO7gIEg4ljzyjVviKUWvbU/hf4M58NVkpexq/EvxXc2aKKK5DsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzTx9rVxq+pQ+FNJO6SRwLgr6+h9h1NdR4z8Sx+G9FeVSDdy5SBPf1+grG+HXhqSztn1vUAWv7z5l39VU8/ma7cPFU4+3n8vN/8A4cTJ1ZrDw67+S/4J1Hh/RLfQNHhsLcfcGXbu7dya1KKK45Scm5Pc7IxUUox2QUUUUigooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGyRpLG0cihkYYZSOCK8o1Szu/h14lXU7FWfSblsSR9h/s/wCFes1V1LTrbVbCWyu4w8Mq4IPb3HvXRh63s3aWsXujmxND2sbx0ktmGn39vqljFeWsgeGVdykVarybSL67+HniRtJ1BmfSrhsxyHoPRh/WvV0dZEV0YMrDII6EUsRR9m7rWL2Y8PX9rG0tJLdDqKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK6uYbO1lubhwkUSlnY9gKlrzHx3rFxr2sQeFNJbcWcfaGXpn0PsOprahRdWdunX0MMRWVGHN16LuyrpFvP8QvGEmq3akaXZtiND0OOi/1NergBQABgDgCs/Q9Ht9C0mCwtlwsY+Zu7N3JrRqsRWVSVo/CtEThqLpxvLWT1YUUUVznSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGL4n8O23iTSXtZgFlHzQyY5Rv8K47wR4iudI1BvC+tkpJG22B3P/jufT0r0uuP8deEhr1kLyzGzUrcZRhwXA7f4V14erFr2NT4X+DOPEUpKXtqXxLfzR2FFcV4D8WnWLY6bqB2albDawbgyAd/r612tYVaUqU3CR0UqsasFOIUUUVmaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUF5dwWFnNd3LhIYlLOx7Cmld2Qm0ldmB428TJ4c0VmjYG9nykC+nq34Vm/Dvww+m2TatfqTqF4N3zdUU8/meprA0G0n8e+LpdbvkI061bEUZ6HHRf6mvVwABgdBXbWfsKfsVu9/8jhop4ip7eXwr4f8AMKKKK4TvCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOPHXhm4srtfE+igx3MJ3TInf/a/xrqfCnia38S6Us6ELcJ8s0XdW/wrdZQylWAKkYIPevKdf0278BeIU13SlJ06ZsTRDoueqn29K7qbWIh7KXxLZ/oefVTw0/ax+F7r9f8AM9XoqlpWqWus6dFe2jhopBn3B7g1driaadmd8WpK6CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry/wAbarceJteg8K6U2UD/AOkOvTI659h/Oum8deKF8O6OVhYfbrgFIVHVfVqqfD3ww2kacdRvVzqF2NzFuqKeQPr3NdtBKlD28vl69/kcGIk60/q8dvtenb5nT6PpVvoulwWFquI4lxnux7k1eoorjbcndndGKirLYKKKKQwooooAKKKKACiiigAooooAKKKKACuP+HVxNcaJdNNK8jC7cAsc8V2FcV8NP+QFd/8AX5JWkfgfyO6il9Uqvzj+p2tFFFZnCFFFFABRRRQAUUUUAFFFFABRRRQAVBe2cGoWctpcxiSGVdrKanopptO6E0mrM8ltJ7v4beJzaXBeTRrpsq3YD1+o716vDLHPCksTh43AZWB4IrN8Q6Da+IdKksrlRk8xvjlG7GuF8H67deGtXfwvrZKoGxbyN0HoM+hrtmliYc6+Nb+a7nBBvCz9m/ge3k+x6fRRRXCegFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYfjHUzo/g/Vb5X2PFbtsYdmPA/UityvM/jhqX2PwMtqrYa7uFTHqo5P64qJ/CVD4hnwUudT1Hw9fahqV5PcmS42R+axOAoHT8Sa9OPAJAzXI/DDTf7M+HulRFcNJH5zfVju/rXX1tPSVjOOqueSa94R8X61r7am8cClXBhXzchADwOlXP7O+JQ/wCX2L/v4P8ACvT6K6vrsrJOK08jj+oQu5KTu/M8x/s/4lf8/sX/AH8H+FH9n/Er/n9i/wC/g/wr06il9cf8kfuH9RX88vvPMf7P+JX/AD+xf9/B/hR/Z/xK/wCf2L/v4P8ACvTqKPrj/kj9wfUV/PL7zzH+z/iV/wA/sX/fwf4Uf2f8Sv8An9i/7+D/AAr06ij64/5I/cH1Ffzy+88x/s/4lf8AP7F/38H+FH9n/Er/AJ/Yv+/g/wAK9Ooo+uP+SP3B9RX88vvPMf7P+JX/AD+xf9/B/hR/Z/xK/wCf2L/v4P8ACvTqKPrj/kj9wfUV/PL7zzH+z/iV/wA/sX/fwf4Uf2f8Sv8An9i/7+D/AAr06ij64/5I/cH1Ffzy+88x/s/4lf8AP7F/38H+FH9n/Er/AJ/Yv+/g/wAK9Ooo+uP+SP3B9RX88vvPMf7P+JX/AD+xf9/B/hWH4XtPGcthMdGuUSATMHBfHz9+1e1VxXw0/wCQFd/9fklUsU3FvlWnkejh8Ilgq0eeWrh1/wARjf2f8Sv+f2L/AL+D/Cj+z/iV/wA/sX/fwf4V6dRU/XH/ACR+4876iv55feeY/wBn/Er/AJ/Yv+/g/wAKP7P+JX/P7F/38H+FenUUfXH/ACR+4PqK/nl955j/AGf8Sv8An9i/7+D/AAo/s/4lf8/sX/fwf4V6dRR9cf8AJH7g+or+eX3nmP8AZ/xK/wCf2L/v4P8ACj+z/iV/z+xf9/B/hXp1FH1x/wAkfuD6iv55feeY/wBn/Er/AJ/Yv+/g/wAKP7P+JX/P7F/38H+FenUUfXH/ACR+4PqK/nl955j/AGf8Sv8An9i/7+D/AAo/s/4lf8/sX/fwf4V6dRR9cf8AJH7g+or+eX3nmP8AZ/xK/wCf2L/v4P8ACj+z/iV/z+xf9/B/hXp1FH1x/wAkfuD6iv55feeY/wBn/Er/AJ/Yv+/g/wAKytV8GeNdaljlv2glkj4VvMwR+lex0U446cXeMUvkTLL4SVpSk16mF4UTWoNJW21tE8+L5VkV929ff3rdoorknLmk5WO2EeSKje9jxb4sa/qf/CbaRoml309uWCCQRPjJZu/4V7LboY7aJGJLKgBJ7nFeDWv/ABU37QMkn34bWVj7YQYH64r32pj/AA0++pUvja7BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1bV7HQ9Okv9RnEFtHjc5HTJwKu1578aLe4uPh5P5CswjnR5AP7vP9SKmTsrlRV3Y7TSNXstd06O/06bzraTIVwCM4OD1rxn45XLah4l0PQ4jlsbsD+87bR/Kui+H3j7wrpvgTT7W51OK2ntotssTg53dyOOc1yGiu/wARfjP/AGvDE/8AZ1o4kDMOioML+JPNW4r2iXREqTUG+p7zYWy2en29sgwsUaoB7AYqxRRQ3d3ElZWCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuW8C6XeaTpNzDewmKR7l3UE9QehrqaKpSsmjaFaUaUqS2lb8L/wCYUUUVJiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVXUrtbDS7q7Y4EMTSfkM1arjPipqX9mfD3UmDYeYCFfxP+ANTN2iyoK8kcB8DrRr7xBretSDJ+4rH1Ykn+le5V4F8L/iB4a8IeG5LXUHuRdyzGR/Li3DHQc59K7f/hd3g7/npe/9+P8A69aStol0IV2231PRqKxfDPinTvFmnvfaZ5xgV9hMqbSTW1U2sMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZLFHPE8UqK8bjaysMgin0UAcTcfCbwbc3BmbSghJyVjcqv5V0uj6FpmgWn2XS7OK2i6kIMZPqfWtGigHqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcx4/1DWNI8J3Oo6I6Lc2xDsHjD5TvwfzpN2VxpXdjp6K4K3+I9rH8NYPEl0yNcunliJeN8w4wB9ea1vA1x4hvtDW/8QvGJrg74oUjC+WnbPvVW1a7E30T7nT0UUHoaQxkc0UpYRyI5Q4YKwOD6Gn15D8Gp5Zdc8UiSR2Hng/Mc85avXqOifcHu12K99f2mm2jXV7OkECfekc4AryLx78T4Z9S0rTfDOpvn7SpuJoCQCCQNue/evWtT0uy1ixey1C3S4tnwWjccHFeMfFLwvovh688OPpWnw2rS3mHMYxuAK4pL4lfuh9Hbsz3CMkxIT1KivJ9e8T+JfFHje48L+FrpbKG0H+kXWOcjrz9eK9Xi/1Kf7orl/Dfgi38O+INW1eO7kmk1FtzK4ACck8fnTt72uwk/d03ODvtW8a/DbU7GbW9VGr6TcyeW7sOV/PpXskUqzQpKhyrqGB9jXk3xuv4byz0zw9bES6hPcq4jXkqOgz9c16lpsDWumWsDHLRxKp+oFNO8de4S0a9C1RRRSAKKKKACiiigAooooAKKKKACqOqaPp2t2ottTs4rqANuEcq5GfWr1FAHM/8K78H/wDQu2H/AH6o/wCFd+D/APoXbD/v1XTUUAUtM0nT9GtPsum2kVrBkt5cS4GTV2iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqerSWcWkXb6gyrZ+U3nFum3HNXK8s8ZvqnjbxRB4SsYbmDSomD310Yyqvj+EE9aTV/dXUa01fQ89+GWn2Gt+N1sLu4kewtWe5tLd/uu2Rzj6YNfSgAAAAwBXjnjzw/L4V8TeHNf0KxlaK32wSx28ZY7V45A9VJH4V7DDIJoI5QCA6hsEYPNVe8VboS/i9TnfGviHU/DmlxXOl6Q+oyvJtZFz8gx1OOa4E/FXxjj/kS5P++JK9joPQ1Pco+ZvAnjDW9B1DV5tO0Jr6S5kDSoFY+Wcnjj613tn8UPF095DDJ4MlCO4ViFcYBPvUPwW/5Dvin/AK7r/Nq9iqlsn5IT3a8xFJZFJGCRkj0ryX41/wDHz4X/AOv0/wA0r1uvK/jHZXV3ceGjbW00wS8Jfy4y20ZXk46VP2o+qGtn6P8AI9Ri/wBSn+6K4zx548TwzEmn6fH9q1q5+WCBRnbn+I12cXEKf7orwO28QXejfEjWtcvvDOpai7yNHbMkTARqDjjIPbFD1lYFpG53HgT4fz2V4fEfiSQ3Wtz/ADAOciHP9a9Hryv/AIXHc/8AQk6z/wB8n/4mvS9Puzf6db3ZheEzRhzG/wB5cjoarp5E9ddyzRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94b8Hab4XutQuLEyF76TzJN7Zx7D866GiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==
|
<image>Find $JL$.
|
14
|
Geometry
|
Geometry3K
|
test
|
49
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADJAXEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGsa1p2gWP23VLpba33rHvYE/MegwATV4kKCSQAOST2rw34veHddt7OLVtR8TyX1kdRVYLD7MI1iDFiOQfmIAxkjNeueKdLutb8MajpdncrbT3UJiWVs4UHg9PbI/GgCjbfEDwneaoum2+vWcl2zbFQMcM3oGxtJ+hrpa8V8e6R4U0P4cx+GraPT5vEkQgjijtlVrlpsqWYgfMNw3Hnrke1eu6PHcw6JYRXpJukto1mJOSXCjd+uaALtFctpniq4ufiBq/hi7tY4vssCXNtKrHMsZxkkH0LAfgarx+Nmbxlr+mPBGul6JZie5u8ktvKhtuOnTd/3zQB1N9fW2mWE99eSiK2t0MkshBO1QMk4HNFhfW2p2EF9ZyiW2uEEkUgBG5TyDg8147rvjfxXrfw/1TVn8O20fh28gkhjdZj9oRTlBIw6EZx0A9enNejfD7/knnh//rwi/wDQRQB0lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5p8cP+RHtP+wlD/J67PxR4gh8LeHLvWriCWeG227o4sbjuYL3/wB6o/FXhWx8X6VHp2oS3EcMc6zg27Krblzgcg8c1p6hp9rqunXFhewia2uEMcsZ/iU/yoA86+Ifhzw9q3gy98XxQC31P7NHdwX0chVyQF2DIODkYX8sV2fg69utR8GaLe3rFrmezieRj1YlRz+PX8a5GL4MaQvl20+ta5c6VE4dNOkuv3Oc5xgDp9MH3r0eKNIYkiiRUjRQqqowAB0AoA8+8abNB+IHhbxO7CO3kd9Mu3PTa4Jjz7Btx/Cuf0a0mu/hD4x8QuhFzrn2q756iIbgo/DDfga0Pipruma3YXXgiySW78QyzwLHAsTYjJKvvLYxjaeee9eiaZpNtpug2ukKivbQW62+1hwyhcHI9/60AcA09sP2dd+5fL/sYJntvxtx9d3FdV8Pv+SeeH/+vCL/ANBFc2vwY0byJrF9Z1s6U5Zo9PF0BFGxz8wGOSCcjPcc5ru9H0uDRNGs9LtnkeC0iWFGkILEAYGcADP4UAXaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxm8W+HlYq2tWIYHBBmXINbNefeOPAovZTrek28b3qHdPbFcrcDuQP738/r1uCi3aRUUm9Tp/+Eu8Of8AQbsP+/6/40f8Jd4c/wCg3Yf9/wBf8a800q10PVbXzI9PgWReJImX5kPoav8A9g6T/wBA+D/vmtHTit7mns0d5/wl3hz/AKDdh/3/AF/xo/4S7w5/0G7D/v8Ar/jXB/2DpP8A0D4P++aP7B0n/oHwf980uSHmHs0d5/wl3hz/AKDdh/3/AF/xo/4S7w5/0G7D/v8Ar/jXB/2DpP8A0D4P++aP7B0n/oHwf980ckPMPZo7z/hLvDn/AEG7D/v+v+NH/CXeHP8AoN2H/f8AX/GuD/sHSf8AoHwf980f2DpP/QPg/wC+aOSHmHs0d5/wl3hz/oN2H/f9f8aP+Eu8Of8AQbsP+/6/41wf9g6T/wBA+D/vmj+wdJ/6B8H/AHzRyQ8w9mjvP+Eu8Of9Buw/7/r/AI0f8Jd4c/6Ddh/3/X/GuD/sHSf+gfB/3zR/YOk/9A+D/vmjkh5h7NHd/wDCW+G927+2tPyeM+ctL/wl3hz/AKDdh/3/AF/xrg/7B0n/AKB8H/fNH9g6T/0D4P8Avmjkh5h7NHef8Jd4c/6Ddh/3/X/Gj/hLvDn/AEG7D/v+v+NcH/YOk/8AQPg/75o/sHSf+gfB/wB80ckPMPZo7z/hLvDn/QbsP+/6/wCNH/CXeHP+g3Yf9/1/xrg/7B0n/oHwf980f2DpP/QPg/75o5IeYezR3n/CXeHP+g3Yf9/1/wAaP+Eu8Of9Buw/7/r/AI1wf9g6T/0D4P8Avmj+wdJ/6B8H/fNHJDzD2aO8/wCEu8Of9Buw/wC/6/40f8Jd4c/6Ddh/3/X/ABrg/wCwdJ/6B8H/AHzR/YOk/wDQPg/75o5IeYezR3n/AAl3hz/oN2H/AH/X/Gj/AIS7w5/0G7D/AL/r/jXB/wBg6T/0D4P++aP7B0n/AKB8H/fNHJDzD2aO8/4S7w5/0G7D/v8Ar/jR/wAJd4c/6Ddh/wB/1/xrg/7B0n/oHwf980f2DpP/AED4P++aOSHmHs0emWOpWOpwtLYXcNzGp2lonDAH04q1XhHhqfUtDi/tvSyZAshS5tO0qD+oz/nkH2XQ9csvEGmR31jJuRuGQ/ejbupHrUzhy6rYrE4d0Kjg3expUUUVmc4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfi/wjOLltf0Bdt+vNxbgcXC9+P738/r1yNK1SDVbXzYvldeJIz1Q+hr1OuC8X+EZ0um8QaAm29Xm4tlHFwO5A/vfz+vXaE7+6zWE+jK9FUdL1SDVbUTQnaw4kjPVD6Gr1U1Y0CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYvhe3mttJZJ4njfzWO11wccUpF74Y1Nta0Zd0bf8fdn/AAyL6j0P8vzFaFlfQahAZrdiyBiuSMcirNO9jfEzlOrKU1Zt6o7TRNbstf0yO+sZN0bcMp+8jd1YdjWjXkP+m+FtTbWdHXfC3/H3Z/wyL6j0P8vpkV6doutWWvabHfWMm+N+Cp+8jd1YdjWc4W1WxxSjY0KKKKzICiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOB8XeEZ4rp/EHh9MXY5ubVRxOO5A/vfz+vXL0vVINVtBNCcMOHjPVD6GvUq4Dxd4SuLe7fxB4fTF0Obq1UcTjuQP73t369eu0J391msJ9GQ0VS0zU7fVbQTwHBHDoeqH0NXapqxoFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB8I/8AIGb/AK7N/St6qWl6dHpdobeN2dS5fLdeau02dGLqRqV5Tjs2FYwN74V1JtY0dd9u/wDx92f8Lr6j0P8AL6ZFbNFCdjnO20bWbLXtNjvrGXfE/BB+8jd1YdjV+vIVa98J6k2r6Qpe1f8A4/LMdGH94eh/l9MivT9H1iy13TY76xlDxP1HdD3UjsRWc4W1WxjKNi/RRRWZAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVQ1XWtO0SO3k1G6W3W5nW3iJBO+Rs4XgH0NXZJEijaSR1REBZmY4AA6kmgB1Fc5pvj3wrq+pjTrDW7Wa7JIWMEjefRSRhvwzXR0AFFFFAHn/i7wlcWt2/iHw/H/pA5urRRxMO5A/ve3fr1652manb6raCeA+zoeqH0NehaxrOn6Bpsmo6pci3tIyA0hUtgk4HABPU1xnirwrPb3J8R+HI90rDdc2iDideu5R6+3fr167QnzaM1hPoxlFU9N1O31S1E0Dcjh0P3kPoRVyqasaBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDJ8PX0+oaa01y4ZxKy5AA4GPStasLwmjJo7B1Knzm4Ix6Vu02dWNjGOImorS4UUUUjlCsZHvPCOpNq2koZLN/+PyzHQj+8vpj9PpWzRTTsB2+kavZ65psV9YyiSFx+KnupHYir1eQxPe+EdTbVdJQy2Uh/0uyHQj+8vpj9PpXqGkavZa5p8d7YTCSJ+vqh7qw7Gs5wtqtjGUbF6iiisyAooooAKKKKACiiigAooooAKKKKAPDPiD4d13T9b8Oalq/ieTVY31aKKG3NsIliy2cjBwTgY6ZrsvjPfz2fw+lgt3KPfXEdqWBx8rZJH0IXH41V+L/3PCn/AGG4f60/43Qs3gOK4AylrfwzP9PmX+bCgDM+KHhHSdB+HcN9pFnFZ3mjywtDcwoFkPzBeWHJOSG57ivU7C5+26da3RGPOhSTHpkA/wBa4L4z30H/AAq66CyKwvJIFhIP3/nD8evCk13Wl27WmkWVs4w8MCRsPcKBQBg+E/FVxr2qa/pl7ax291pN35OI2JDxnOx+fXB/Ssq3+I/+ieLdUubRF0vRJ/s8MkbHdcSA4I54HJXH+9WX4l1BfA/xKutbOFt9W0eU4PRriBdw/NQB+NYOs6JNpH7OAVwfPuGivbknqTJKpGffBQfhQBV+IHibxdqPw6Mmt6DaW2nak0TW8tvKS8XzB1EgPqAeeO2a9zsv+PC3/wCuS/yFecfFye2Pwf3Ky7JTbeR78gjH/AQa9Hsv+PC3/wCuS/yFAHEeLvCU8N0/iDw+mLsc3Nqo4nHcgf3vbv8AXrl6XqcGq2gnhOCOHQ9UPoa9SrgPF3hK4trt/EPh+PFyObq0UcTjuQP73t369eu0J391msJ9GQ0VS0zU7fVbQTwHB6Oh6ofQ1dqmrGgUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigCG2uoLyLzbeQSJnGR61NWD4R/5Azf8AXZv6VvU2b4mkqVaVNbJhRRRSMAooooAKxg174U1JtY0hd9s//H5Z/wALr6j0P8vpkVs0U07Adto+sWWu6bHfWMu+J+oP3kPdSOxFX68hV73wlqTavpKF7R/+PyzHRh/eHoR+n0yK9Q0jV7PXNNivrGUSQv27qe6kdiKznC2q2MZRsXqKKKzICiiigAooooAKKKKACiiigDD8SeFbHxQNPF7LcR/YbpbuLyWUZdegbIPH0x9a0dU0y01nTLjTr+ETWtwhSRD3H9D3zVuigDz3TPhDpNjqlndXOq6rqMFiwa0tLuYPFER04x0HoMCvQqKKAPIfH19pPxC1jTPCWlrNc31rqZ+3OImUW0SZWTLEYOe2PQe1epajpdnqmk3Gl3cIe0niMTxjj5SMcemO3pVsKASQACevvS0AeaH4LaRcWAsb7XNdurWIYtYpLkbbcZH3VKkZwMdMYJ4716RFGIYUjUkqihRn2p9FABRRRQB594u8JXFpdv4h8Px/v/vXVoo4mHdgPX279evXP0zU7fVbQTwN7Oh6ofQ16jXnvi3wncWN3J4h8Px/vfvXdmo4mHdgPX2/Hr12hPm0ZrCfRjKKp6bqVvqlotxbtx0ZT1U+hq5VNWNAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ+j6adKsjbmXzcuX3bcda0KzNC1GbU9PM86oriRlwgIGB9TWnQzfEqoq0va/FfUKKKKDAKKKKACiiigArGSS88I6k2raUhkspD/AKZZjoR/eX0x+n0rRv72HTrC4vbgkQwRmR8DJwB2rA0fxedS1C3s7rS7ixN3EZrVpGDCZQM9uhxzimpW0FdbM9e0jVrPW9OivrGUSQyD8VPcEdiKvV5DHLeeD9SbVdLQyWMh/wBMsweMf3l9Mfp9K9R0nVbPWtOivrGUSQyD8VPcEdiKznC2q2MpRsXaKKKzICiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPPPFvhO40+7k8Q+H48v967s1HEo7so9fb8frS03UrfVLRbi3bIPDKeqn0NeoV534s8KXGmXcniDw/Fkn5ryzUcSDuyj19vx9c7QnzaM1hPoxKKqadqNvqlotxbtlTwynqp9DVuqasaBRRRSAKKKKACiiigAooooAKimuYLfHnTRxbum9gufzqWsjU4Yp9c0qOaNJEImyrqCPujsaDWhBTnaW1m/uTZd/tKx/wCf22/7+r/jR/aVj/z+23/f1f8AGk/svT/+fG2/78r/AIUf2Xp//Pjbf9+V/wAKZf8As/n+BmeEf+QM3/XZv6VvVFbrbpFtthEIwekYGM/hUtDFiavta0p2tdhRRRSMArF8Uay+j6STbL5l/csILSMdWkbgfgOtbVea3HirTV8eXV1q3niPTc29nEsRYbs4dz78YHt9KTdhN2ND4Y+bFo2prcyF5I751dyxOSFXJyayPDWiWmu6Wl/qWvahb3N1LIY4o7wJlQxHAIJ6g1Z+Huq2V1Brmn+a8bzTTXW8rgLGQq5JPAIzVv8A4V34eTw1OImNzN5bvHeeZ0IzjGDtxUrYhapHWxaPbJof9kSvNcW5iMTNM+XZTnOT681l6P4Og0rUIbyTUL29e3jMVstw4IhU8YGPbijwFfz6j4NsZrl2eVQ0ZdjksFYgfpiukqtHqWrPUKxoprzwdqTappiGXT5Dm7sweMf3l9Mfp9OmzR1GDVJ2GdzpWq2es6dFfWMokgkHB7g9wR2Iq5XkMM954N1FtT01DLpspzd2YPAH95fT/Pbp6lpeqWmsafFfWMwlgkGQR1B7gjsRWc4W1WxjKNi5RRRWZAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB514s8K3GlXcniDQIsg/NeWS9HHdlHr/wDr9RVXTtQt9TtFuLdsqeCD1U+hr0+vPPEvg+8sNROteGoQ5lb/AEqxBwH/ANpfT/PuK2jPm0ZrCfRjaKzc+K/+hWm/7/CjPiv/AKFab/v8KvlNNDSorNz4r/6Fab/v8KM+K/8AoVpv+/wo5Q0NKis3Piv/AKFab/v8KM+K/wDoVpv+/wAKOUNDSorNz4r/AOhWm/7/AAoz4r/6Fab/AL/CjlDQ0qy77/kP6V/uzf8AoIp2fFf/AEK03/f4VVntPFU1/a3X/CMzA24cbfNHzbgB/SjlNaE4xk230f4po3KKzc+K/wDoVpv+/wAKM+K/+hWm/wC/wo5TLQp+Ef8AkDN/12b+lb1c9pOneKdKszbjw3PKC5fcZAOtX8+K/wDoVpv+/wAKLHTjZxniJyi7ps0qKzc+K/8AoVpv+/woz4r/AOhWm/7/AAo5Tm0NKis3Piv/AKFab/v8KM+K/wDoVpv+/wAKOUNDL8PeGZtO0zV7K/eJ0v7iV/3LE4R1Awcgc9aw4fDfjGx0mTQLS+086c25FuHDCRUYnIxj3Pr1612GfFf/AEK03/f4UZ8V/wDQrTf9/hU8n9XJsh+i6VDomj22nQEskC43EYLEnJP4kmr9ZufFf/QrTf8Af4UZ8V/9CtN/3+FPlHoaVFZufFf/AEK03/f4UZ8V/wDQrTf9/hT5R6GkRkYPSsa3uLzwXqLajpyNLpkpzd2YP3f9pfT/AD26T58V/wDQrTf9/hSH/hKiCD4VlIP/AE2H+FNKwaHpumanaavp8V9ZTCWCUZBHb1BHYj0q3XkXh2DxZ4e1p7i18P3KafOwM9oJFI/3l6YP/wCr6etxv5kavtZdwBwwwR9awnDlehhKNnoOoooqCQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q==
|
<image>Find the area of the parallelogram. Round to the nearest tenth if necessary.
|
91.9
|
Geometry
|
Geometry3K
|
test
|
50
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEnAOADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAormbn4heErPVDptxr1ol0H2Mu4lVb0LAbR+JrpQQwBBBB5BHegBaKKKACiiigAooqpqOp2OkWbXeoXUdvAvV3OM+w9T7Cmk27ITaSuy3XO+I/GmkeGx5U8pnvW+5aQfNIxPTPp+P4Zrnn8Sa942ka08MW8mn6YTtk1WcYYjvsHr+v+7W3ofg/RfCcEt8QZ7tVaSa+uPmfpliP7vfpz6k1uqcYfxN+y/Xsc7qyqfwtu7/Tv+RyWlax4j8VfECCy1KN7Cys1F1JYocYAAKbz1JyUODj6CvVa4P4aQyXsGq+JbhSJtVumKZ7RqSAB+JI/4CK7yjEtc/Kla39MMInyczd76/5BRRRXOdIUUUUAFFFFABRRRQAUUUUAcvdeM4bLx9a+FbqzeM3cBmt7syDY+ASVxjg/K3f09aXwz4yi8V6pqcWn2Uh02yfyl1AuNk79wg7jvnPp615l8c9Qg1G+tdP02GWbUdKje5u54T/x7xPtG1sepKn2BHrXq/g2DS7fwdpS6NHssGtkeIZyTuGSWP8AeyTn3zQBu0Vx/i3/AIT3+0Yf+EVOlfYvK/efas7/ADMnPtjG39a5/Hxk9dA/WgD1Cq99FNPp9zDbS+VO8TLHJ/cYggH8DXHeGf8AhZH9txf8JEdG/sza3mfZ8+ZnHy7fxx17ZrrdW1BNJ0a+1KSN5EtLd52RPvMFUsQPfigDynU/DvhPwR8MLzRtafS59cktZXVsAzyysW8tlB+fAOBnpwfeu6+HNtfWfw90S31FXS5S35WT7yrklQfTC7RjtWNqmk+F/iP4N/4SW6shHK9k5iuWch4Am48kHHDZPNWvhJqN7qfw302e/keWUGSNZHOWZFcgZPtjH4UAdvRRRQAUjMqIXdgqqMkk4AFc34j8b6V4eb7MzNd6i3CWdv8AM5J6Z/u/z9AawF8PeJfGribxLcNpmlk5XTbc4dh23n/HP0FbRou3NN2X9bGE66T5YK7/AK3Zb1T4gfaLxtL8KWZ1fUOhlX/URe5bv+YHvTdO8AS394uqeL706peDlbcHEEXsB3/QexrrtL0jT9Fs1tNOtY7eEdkHJPqT1J9zV2m6yirUlbz6iVByd6rv5dP+D8xscaRRrHGioijCqowAPQCuP+JmpSWnhRrG2ybvUpVtYlHUhj836cf8Crsq4C8/4qL4t2lr9600ODzn9PNbBH80P/ATSoL3+Z7LUeIfucq3en9fI7HR9Nj0fRrPTosbbeJY8j+Igcn8Tk/jV6iism23dmySSsgooopDCiiigAooooAKKKKACkYEqQCVJHUdRS0UAcvo/gLR9I07V7QPc3b6uX+23N06tLKGBBGQAMck9OpNaHhjw5beFNCh0izuLme2hZjGbllZlDHJGVAGMk9u9bFFABRRRQAU2SNJY2jkUOjgqysMgg9QadRQB5o/wW0gGa3ttb1u10uZy8mnxXP7on05HT65PvXoOm6daaRptvp9jCsNrboEjjHYD+f1qS6ureytnuLqaOGFBlpJGCqB7k1xE3jjUfEF1JYeDtONxtO19RuQVhj9wO/48+xrSFKU9tjOpVjDR79up1msa7pug2ZutSu44I/4QTlnPoo6k1xZ1bxT45JTRYn0XRm4N9MP3so/2B/h/wB9dq0tJ+H1sl9/aniC7fWdSPO6cfu09gvt78ewrswABgDAFac1On8Or79Pu/zMuWpV+P3V2W/zf+Rz/hzwbpHhpd9rCZbxvv3c3zSMT157D6fjmugoorGUpSd5O5vCEYLlirIKKKKkohvLqKxsp7udtsUEbSOfRQMn+VcZ8MrWWXSr7X7pcXOrXTzH/cBIA/Mt+GKtfEe4f/hF/wCzICftWqXEdpCAe5YE/hgEfjXS6bYxaZplrYwf6q3iWJfcAYzW692j6v8ABf8ABOdrnreUV+L/AOB+ZaooorA6AooooAKKKKACiiigAooooAKKKKACiiigAoorD8Q+LdI8Mw7r+4zMwylvH80j/Qdh7nAqoxcnaKJlKMFeTsjcrjtc+IFnZXX9m6NA+r6qx2iG35VD/tMPT0H44rL+y+LPHfN4z6Dob/8ALBP9fMvv6D64Hsa7DQ/DmleHbX7PptqsWR88h5d/95up/lW3JCn8er7f5v8AyMOepV+DRd3+i/zOUtvBOqeI7lNQ8aXplCndHptu22KP6kdfw59zXdWtrb2VslvawRwwoMLHGoVQPoKmorOdWU99uxpTpRp7b9+oUUUVmahRRRQAUUVFdXMVnaTXU7bYoUaR29FAyTQDdjiLuZtb+LljaJhrbRbZ5pQRx5jjA/HlD+BrvK4X4ZW0txp+o+IrlcXGrXTSD2RSQB+Zb8hXdVvX0lyLpp/n+Jz4e7i5v7Tv/l+AUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFIzBVLMQFAySegoAWquoalZaVaPd39zHbwJ1eRsD6D1PsK5LVviCst42l+FrRtX1E8Fk/1MfuW7j8QPeotP8Az6leJqnjG+OpXQ5S1U4gi9sd/0Hrmt1R5Veo7fmc7ruT5aSu+/T+vQgl8Va/4vla18JWhtbHO19UulwPfYP8A9Z+lbPh7wJpmiTfbbhn1HVGO57y5+Zt3qoOcfXk+9dPFFHDEsUSLHGgwqKMAD0Ap9KVbTlgrL+t2ONDXmqO7/BeiCiiisTcKKKKACiiigAooooAK4v4m6hLD4aTTLXm71SdLWNR1IJyf6D/gVdpXAS/8VF8XIo/vWmhW+89x5zf15H/fFbUF7/M9lr/XzOfEt8nIt5af18jtNL0+LStKtLCH/V28Sxg+uBjP49at0UVk3d3ZukkrIKKKKQwooooAKKKKACiiigAorP1fW9N0KzN1qV3Hbxdtx+Zj6KOpP0rgb7xD4u8X2Vw/hqxk0/TERmF1Kdss+B0T0z7en3h0rWFKU1fZdzOVVKSgtZPp/W3zOq8R+NtJ8OHyJXa5v24Szt/mkJPTPp+PPoDXPLoXifxswl8QztpOkk5XTrc4kcf7Z/x/IVr+CPDug2Wl2+qaehuLi4Tc93P80u4/eH+zzkHH6111X7SNPSmte7/TsZyoVJSaraW6f59yjpWjadodmLXTbSO3iHUKOWPqT1J9zV6iisG23dm6SSsgooopDCiiigAooooAKKKKACiiigCvf3kWnafc3s5xFbxNK/0AzXIfDGzl/sO61q6H+l6tcvcOf9nJAH57j+NJ8TryVtFtNDtT/pWrXKQKP9kEEn89o+hNdhY2cWn2FvZwDEUEaxIPYDArf4aP+J/gv+Cc/wAdf/Cvxf8AwPzLFFFFYHQFFFFABRRRQAUUUUAFcb458V6joEljY6bZo1xqDeXHdTsBFG2QMEevIPOB9ea7KsTxb4ei8TeHrjT3wJcb4HP8Eg6H6dj7E1pScVNc+xlWU3B8j1MPSPh7Gbwap4nu21jUzziTmGP2C9x16gD2FdsAFAAAAHAArlfAPiGXWtEa1vsrqmnt9nukb72RwGP1wc+4NdXTrOfPafQVBQ5E4df61OVt/wDimvFTWh+XTNWcyQekVx/EnsGHI9+BXVVy3jS902TTH0uR5JdRlw1rBbLvmWQcqwA6AHuccZrc0iS+l0i1fUoRFemMecgIIDfhxz1qHtc9LERc6Ua0tG9PW2z/AEfmvMu0UUVJxhRRRQAUUUUAFFFFABRRRQAUUVT1XUI9J0m71Cb7lvE0hHrgdPx6U0m3ZCbSV2cZB/xUXxcmm+9aaFb+Wvcec2f15b/vgV39cX8MtPlt/DDalc83eqTNdSMepBPH9T/wKu0rWu1z8q2Wn9fMwwyfJzPeWv8AXyCiiisToCiiigAooooAKKKKACiiigDzrxXG/g/xda+LrVGNjckW+pRoOx6Pj8B+Kj+9W0t7rfidQdOVtJ0txkXcq5nmX1Rf4QfU/UV0Gp6db6vplxp92m6CdCjD09x7g8j6VyHw/wBRuLGW88I6o+b3TD+4Y/8ALWHsR9Mj8CPSui/tKd+sfy/4BnRqrDVX7qfNtfo+um2vmdPpGg6fosbC0hJlk5lnkO6WQ+rMeT/KtOiiuc2nOU5c0ndhRRRQSFFFFABRRRQAUUUUAFFFFABXC/Ey4lurLTfDls2J9WulQ47RqQST+JU/ga7quA0z/iofixqF+fmtdFhFrEe3mnIP/s4/AVvQ0k5vpr/l+Jz4l3ioL7Wn+f4HdW1vFaWsNtCu2KFFjRfRQMAVLRXGeI/GV14b8b6FplzbQDSNUzH9qJIdJemOuMZKfmfSsDo2OzorjvCvjC88W67qbWNpEvh20byYrxs77iQYztHTb1/MevHY0AFFFFABRRRQAUUUUAFFFFABXC/EDTbizks/F2lr/p2mH98o/wCWsPcH6ZP4E+ld1TZI0ljaORQyMCrKwyCD1Bq6c+SXMZ1aaqRcStpepW+r6XbahaNuguEDqe49QfcHg/SrdeeeF3fwf4vuvClwx+wXZNxprsemeqZ/D8x/tV6HTqw5JabPYVGo5x13Wj9QooorM1CiiigAooooAKKKKACiiigDP13U00XQr3UpMYt4WcA92/hH4nA/GsD4a6Y9h4QhuZ8m51B2u5WPU7vu/oAfxNUfiRK+ovo/hiBiJNSugZdv8MSnkn+f/Aa7qKJIIUiiULGihVUdABwBW792il/N+SOde/Wb6RVvm/8AgD68Y+Md8/ieQ+F9HtFu7jTI21G+nH/LBVQ/ID6kHp/u++PZ6yNH8MaNoJvDp1kImvZDJcu8jyNK3P3mcknqeOnJ9awOgzPhvd2F78PdGl06FIYRbhGjT+GReH/NgTz1zmuqrL0Dw5pXhiwex0e1NtbPIZTH5ruNxABI3E46DgcVqUAFFFFABRRRQAUUUUAFFFFABRRRQByvjzw9JreiC4ssrqlg32i0dfvbhyVH1wPxAq94S8QxeJvD1vqC4WbGydB/BIOo/qPYityvOpv+KF+IAnHyaJrjYf8Auwz+vsCT+TH+7XRD95Dk6rVfqjmqfuqiqdHo/wBH+h6LRRRXOdIUUUUAFFFFABRRRQAUUVleJdWGh+HL/UiQGhiJTPdzwo/76IpxTk0kKUlFNvocroP/ABUPxP1jWD81tpaCytz/ALXIYj/x/wD76Fd/XKfDrSW0rwbaeaD9ou83UpPUl+mf+A7a6uta7TnZbLT7jHDxap3e71+8KKKKxNwooooAKKKKACiiigAooooAKKKKACiiuL+Jfie+8N+HoE0kL/amo3KWlszAEIWzlsH6Y+pFAHaVj+J9Bh8SaBc6bLgM43ROf4JB90/4+xNea6v/AMJZ8Mp9L1u+8UT61ps9wtvf29wuAm4E5TJOBwemOQOoNexU4ycXdEyipJxezOR8Aa9NqmkSadqGV1XTH+z3Kt1OOA36YPuPeuurz3xfDJ4V8T2fjG0RjbSEW+pRqPvIeA38vxC+td/DNHcQRzwuHikUOjqchgRkEVrWitJx2f59TGhJq9OW6/FdGPooorE6AooooAKKKKACuB+IbNq+qaF4ViJ/024E1wB1ES/5Y/8AAa76uA8Lf8T/AOIOu+IG+a3tMWNqeo4+8R+Wf+B1vQ0bn2/Poc+I95Kn/M/w6nfKqooVQAoGAB0ApaKKwOgKKKKACiiigAooooAKKKKACiiigAooooAK4X4peGtS1/QbO50ZQ+paZdLdwxkj95jqBnv0P4V3Vcv4/wBL13VfDDx+G76W01OGVZo/Ll8vzQMgoW98554yBn1oA8n+J/iXxH4i8Hxx3vhe40a0guEaaS5Y5lkwQqoCASOSc+35++whlgjVvvBQD9cV5Pd2HjP4h6jpFpruhLoukWFwtxdkzhzcOvZQOQOo7gZJyeK9boArahY2+p6fcWN0m+CdCjr7H+tcX4CvrjSr298G6k+biwJe0c/8tYTyMfTOfocdq72uI+IOlXEcdr4p0tcajpJ3tj/lpD/ED7DJ/AtW9FqV6b6/mc9dONqsd1v6df8AM7eiqOj6rb63pFtqVq2YZ0DAd1PcH3ByPwq9WLTTszdNNXQUUUUhhRRRQBi+LtY/sLwrqF+G2ypEVi/32+Vf1IP4VU8A6P8A2L4NsIHXE0q+fL67n559wMD8KxfHZ/tzxL4f8LLzHLL9ruh/0zXOPzAf8cV3/St5e7SUe+v+X6nPH36zl20/V/oFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKrqVYBlIwQRkEUtFAHnfh5m8F+Nbjw1MSNL1Em409mPCt3T+n4D+9Xolcz458Ov4g0E/ZcrqNm3n2jrwwcfwg++Pzx6VP4O8RL4l8PQ3jYW6T91cx9Nsg68eh6/jXRU/eRVTrs/8AP5nNS/dzdJ7br/L5G/RRRXOdIUUVz3jfWP7D8Iahdq22Zo/Ki9d7cAj6ZJ/CqjFykorqTOShFyfQwfBf/E+8ZeIPEzfNCr/YrQ9tq4yR+AU/8CNd/WB4L0f+w/COn2bLtm8vzJeOd7fMQfpnH4Vv1deSlN22Wn3GeHi401fd6v5hRRRWRsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFedX//ABQ3j5NSX5NF1pvLuf7sU3Zv5n8W9K9FrL8RaJB4i0K5024wBKvyPj7jjlW/A/pmtaU1GVpbPcxrU3KN47rVf15mpRXHfD7W57zTZtG1LK6rpTeRMrHllHCt79MZ9ge9djU1IOEnFl05qpFSQVwHjH/ifeNvD/htfmgjf7ddjttXOAfyYf8AAhXfkgDJOAK4DwEDrfiHX/FLjKTzfZbUn/nmuP5gJ+INaUfd5qnZfizLEe9y0+7/AAWp39FFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5941t5fDev2fjOxjJRSINRjX+OM8Bv5D6ha7y2uIbu2iubeQSQyoHRx0ZSMg028tIL+ymtLmMSQTIUdT3BGK4jwLdz6Hqt74M1Fyz2xMtjI3/AC1hPOB9Ov8A30O1dH8Sn5x/L/gHN/Cq+Uvz/wCCa/xA1c6N4NvpUbE86/Z4sddz8ce4G4/hV7wppA0Lwvp+nlcSRxAy/wC+3zN+pNcz4m/4qD4jaHoK/Nb2IN9dDqMj7oP5Af8AA67+lP3acY99f8h0/fqyn20/VhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8QtIuHtLfxFpny6npLeaCB9+Icsp9cdfpuHeu1oIBBBGQe1XTm4SUkRUpqpFxZ5/8ADYS6xdaz4ruo9kt/P5cSk52Rr2B7joP+A16BVXTtOtdJsY7KyiEVvGTsQdBkkn9SatU6s+eba2Jo03Tgovfr6hRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=
|
<image>Find x.
|
15
|
Geometry
|
Geometry3K
|
test
|
51
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGiAc0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKwfE/jDSfCNvDPqskirMSqCNNxJFeSad43/4TL4y6TcWySQ2UWY4kY8kYPJFC1dkD0V2e80VFczrbWs1w/3YkZz9AM14joWj6p8Wb+/1TVNYurXTYpTHBBbtj8s8Uat2Q+l2e50V4vpz6r8NfiBY6HNqc19o+oDCCY5KHp+BzXtFPpdC2dmFFFFIAoqidZ01dWGlG8iF+U3iDPzY9avUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARTW0FyAJ4Y5AOm9QcV5Fq8EVv8AH7R0hjSNfJBwowPumvYq8h13/k4HR/8AriP/AEE0R+OP9dGD+GX9dUetXECXVtLbygmOVCjAHHBGDWX4e8N6Z4U017PTUaO3LGRt7lue/JrYryXxR4j1XxzrUvhPwqSlrGdt9fDoB3APp/Oi72W47aXexQ1a7Tx58X9Mh0v97Z6VzNOv3cg5PP14r2msDwn4S07wjpS2dimXPMszfekb1Nb9PRLlQt3cKKoa02opo902krG1+EPkiT7pb3ryw3vxnz/x6Wv/AHzFU31sO2gXP/JxUP8A1wH/AKDXsVfM0s/jn/hZqSPDF/wkfljamE27cfl0rt/tvxn/AOfS2/75ipx+BIJfE36HsVFZugNqj6JatrSRJqBT98I/ug1pU2rCWp5Quvap4b+ML6bqWo3EulX6FoFmkJSPPPGemKmt9Z1fx346aPSL65tPD+mtiaWFyv2hvTI6iuZ+N+o2mpalbWNhE817YIZLiWPpGh7GvTfhzFpsfgbTW0tAsLxhn7kv3z75pU9Y37Dno7dzqgMACiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcD8S/iA3g+1htbCNZdTuv8AVhhkIOmcdzmuMtvDPxX16Bb6fX3svMG5YjcMhH/AVGBSTvsNq257jRXgdx4k+IXw31CD+35jqNhI2Czv5gYd8MeQa9v0nU7fWdKttRtWzDcRh1/GqtdXQtnZl2iiikAUUUUAFFFFABXm2reG9XuPjJpmtRWTNp0UQV59y4U4PbOf0r0mihbp9g6NFXUlmfS7tbcEzmFxGB3bacfrXivhOH4k+ELKe2s/CFvMZpTK8s0i7iT9HFe6UUB0seZWXib4oS30Ed14QsordpAJHEnKrnk/6yvTR05oop9ACiiikB47c/8AJxUP/XAf+g17FWY3h/S210a0bOM6iE2CfvitOhaRSB6ybCsfxRd6rZ6FO+i2L3l+w2xIrKNpP8RyR0rYopNXVhp2dzz/AMH+APsPhq+GsAS6rqqN9qdjkrnoufaovhVo+veHbTUNI1ayeK1jmL2spdSGB+hz716LRVX1v8hdLBRRRSAKKKKACiiigAorldb+Inhrw9qTafqV8Y7lQGKiMtgH6Vnf8Lg8F/8AQSf/AL8tRe47Hd0Vwn/C4PBf/QSf/vy1dfpep2us6bDqFk5e3mXcjFcZH0oEXKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopskiQxtJK6oijLMxwAPc0AeE/GSC60vxxpOvPCZbNAmOOMqcla9U8N+OdA8TW8Zsb6ITkDNvIdrqfTB6/hWlcwaR4k0+W2l+y39q3DqrBwD+HQ15d4g+Bds7tc+Hb97SXqIZSSv4N1H60l7q5XsN2k79T0Xxd4WtfF+iNpl3K8SFw4kjA3Aj0zU/hjQIvDGg2+kwzyTxw52vJjPJ9q8c8K+NPEvgvxVD4a8Ts81u7iNTIdxTPAKt3Fe9A5GR0qrWV1sxPez6BRXFeLfHreGtUjsU05p2dAwcvgHPYcVj/8LR1H/oXJv/Hv8K6YYOtOKklo/NHJPG0IScW9V5M9NorzP/haOo/9C5N/49/hR/wtHUf+hcm/8e/wp/Ua/b8UT/aGH7/gz0yivM/+Fo6j/wBC5N/49/hR/wALR1H/AKFyb/x7/Cj6jX7fig/tDD9/wZ6ZRXmf/C0dR/6Fyb/x7/Cj/haOo/8AQuTf+Pf4UfUa/b8UH9oYfv8Agz0yivM/+Fo6j/0Lk3/j3+FH/C0dR/6Fyb/x7/Cj6jX7fig/tDD9/wAGemUV5n/wtHUf+hcm/wDHv8KP+Fo6j/0Lk3/j3+FH1Gv2/FB/aGH7/gz0yivM/wDhaOo/9C5N/wCPf4Uf8LR1H/oXJv8Ax7/Cj6jX7fig/tDD9/wZ6ZRXmf8AwtHUf+hcm/8AHv8ACj/haOo/9C5N/wCPf4UfUa/b8UH9oYfv+DPTKK8z/wCFo6j/ANC5N/49/hR/wtHUf+hcm/8AHv8ACj6jX7fig/tDD9/wZ6ZRXmf/AAtHUf8AoXJv/Hv8KP8AhaOo/wDQuTf+Pf4UfUa/b8UH9oYfv+DPTKK8z/4WjqP/AELk3/j3+FH/AAtHUf8AoXJv/Hv8KPqNft+KD+0MP3/BnplFeZ/8LR1H/oXJv/Hv8KP+Fo6j/wBC5N/49/hR9Rr9vxQf2hh+/wCDPTKK8vl+LF3bgGbQXjB6F2Iz+Yr0XTL3+0dMtrzymi85A+xuq5rOrh6lJJzW5rRxVKs2oPYxtU8A+GdZv5L7UNLinuZPvOxOTXivxI8N6PZ+OdK0PRrFIPM2+aE7lj/hX0dXgum/8VN8f5p/vw2kjEemEGBXPFe/FHS37rZ6PH8LPByxIraNCzBQCcnk11llZW+nWUVnaRCKCJdqIOgFT0VVxBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACszxFp76r4c1CwjOJJ4GRfrjitOik1dWGnZ3Pn/4V+MrXwdeX+ga+WtQ8uRI6nCMOCDXsUvjXwzDb+e+u2Hl4zxMCfyHNVvEnw/8O+KX83ULIfaMY8+I7H/Ejr+NctH8CfC6S7nnvpF/uGQAfoM07t7isk9Ditb1BPiV8VdPXR4ne1tSoabbjKqclj6D0r6EVdqhR0AxWRoHhfR/DNsYNKso4AfvMOWb6k8mtinoo8qB3buzhfidopvdDTUoF/0iybdkddv/ANY1ueEdWi13w5a3e1fNC7JRjow4NbU8EdzbyQSrujkUqw9Qa8x8FTyeGfGd/wCHLhsRTMWhz0J7fmP5V2Q/e4dw6x1Xp1OGp+5xKn0lo/XoeoeWn9xfyo8tP7i/lTqK4juG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqyfEurpoegXV8xwyriMerHpVRi5SUV1JnJQi5PZHAeIT/wAJd8QrXR4MG0sz+9IHHHLf4V6nGixRrGgwqgAAdhXA/DDSHjsLjWrkZuL1jtJ67c9fxNegV04uSUlSjtHT59TkwUW4urLeWvy6FPVbtbDSbu7Y4EMLPn6CvHfgZaNeavretyDJZtgJ9ScmvSPH9tqV74Lv7PSbZri7nURqikA4J5PJFZnwp8NXnhnwiLfULcwXksrPIhIJHp0rkh8TfkdsvhS8zuaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK84+JumyWstj4jtBia2cLIR6dQf6V6PVPVdPi1XSrmxlAKTIV57HsfzrbD1fZVFLp+hhiaXtaTj16eo3RtSj1fSLa+iOVmQMfY9xV6vNvhpqEtjeX/AIbuyRLA5aMH68j+tek08RS9lUcenT0DDVfa0lJ79fUKKKKwNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMPH11Jr/ibT/DNqxKhw02PU/4CvRNU1CLS9MuL2YgJChbnuewrz/4bafLqOoX/AIlvATJM5WIn9T/SuzCrkUqz6berOHFv2jjQX2t/RHolnax2VnDawqFjiQIoHtU9FFcbd9WdqVlZBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPL/HVvJ4c8W6f4ktlIjkYLNj1HX8xXpdtcR3drFcRMGjkUMpHoay/FWjLrvh66syMyFd8Z9GHSuc+GGstc6RLpVwf9Ism2gHrt/8ArdK7Z/vcOpdY6fLocMP3OJcOk9V69TvKKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqO4njtbaSeVtscalmPsKNweh558TdTkuZLLw7aEma5cNIB6dh/Wu40XTI9H0e2sYhgRIAfc9zXnvgqCTxN4yvvEdyuYoWIhz0z2/IV6jXbiv3cY0F01fqzhwn7yUq766L0QUUUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5Vqynwb8SYNQQbbK+Pz46DPB/XmvVa5X4g6H/bPhmYxrm4tv3sfrx1H5fyrqwlRRqcstpaM5MZTcqfNHeOqOpVgyhlOQRkGlrlPh9rn9s+GYlkbNxbfupM9eOh/KurrCpTdObg+hvSqKpBTXUKKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACuE+J2staaPHpduT9pvW24HXb/wDXNd0zBFLMQFAySe1eV6Up8Z/EibUHG6xsT8gPTjgf4114SK5nUltHX/I48bN8ipR3lp/md14T0ZdC8O2tpgeZt3yH1Y9a26KK5pyc5OT6nVCChFRWyCiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRlDKVYZBGCDS0UAeVaUx8G/EmbT3O2xvz8hPTnkfrxXqtcH8T9Ga60eLVbcEXFk24kdduf6Gui8Kayuu+HbW8BHmbdsg9GHBrtxH72nGt12fqcOG/dVZUHtuvRm1RRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByfxC1z+x/DUiRti4uv3UeOuO5p3gDQ/wCxfDUXmLi4uf3snrz0H5Vyl+T40+JUVop3WFgfmx0OOv5mvVAAqhQMADAFdtb91RjS6vV/ocNH99XlV6LRfqLRRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZJEijaSRgqKCzMegAoAdRXkfh/4l6l4h+KJ0u3kRdGO8Inljc23+Ld1r1yjon3B6NoKKKKACiiigAooooAKKKKACimyOsUbSOwVFBLE9AK8l0H4l6l4g+KP9l20iLox3hF8sZbb/ABbutC1fKD0Vz1yiiigCK5t47u2lt5V3RyKUYexrzPwNcSeHPF1/4buWxHIxaHPcjpj6ivTpZY4I2klkWNFGSzHAFePePNZsLnXrXVNEkeW4tCBNKiHZweOf0rswj5lKk9n+fQzngq9eUatFXcd3srdbt6I9hlljgjaSV1RFGSzHAFc4njfT7rWItO06Ka9LNtkliX5Ix6k1iaVoF74wtYNU13VGmtZRuS0tztQfWu3sNNs9Mt1gsraOCMdkXFYSjGGj1Z6TjhaUdXzy8tIr57v5aFqiiisjhCiiigAooooAKKKKACsLXvE8Ph6eAXVpcPbSD57iNcrH9a3abJGkqFJEV1PBDDINOLSeppSlCM71I3XrYq6dqtjq1uJ7G5jnjP8AdPI+o7VneL9aXQvDlzdBsSsvlxD/AGjWbqPgS3+0G90O5k0u865iPyMfda888TavqV/rFtpGuyxtHZSfvpLdc7h3JH0rqw9KE6id9Fua4nCqpTbwUuaT2i9JfLo/lr5Hc/DLRWsdEfUp1/0m9bfk9dvb/Gu5rP0e/wBNvrCI6ZcRSwIoUBDyo9x2rQrGvUdSo5M46dB4eCpNWaCiivNfFHjfXp/FJ8MeEbaKS9jXdPPLyqf0rG+tjS3U9KoryRPG3jHwjrNnbeM7e1msrt9i3NuANp/AD+VetKyuiupyrDIPtVdLi62FooopAFFFFABRRRQAUUUUAFFec+L/ABxrMfiWPwv4VtY5tSK75ZZOVjFZEnjPxv4M1G0/4S+3tLjT7lwnnW4A2H8AKFqNqx67RTIpUnhSWM5R1DKfUGn0CCiiigAooooAKKKKACiiigArgviLqtxcfZPCeluft+qNiRl/5ZQ/xE1293crZ2U9y4JSGNpCB6AZrxPwl4/8Oxa7qfiLXrtxqNy5jhjEZYQxDoBS0bsx6pXRNpulW+ifHSy061ULFBZKo9/kHNex6hLcQ6dcS2iJJcJGzRo+cMwHAOK8Hk8c6E/xlTxCLh/7OEATfsOc7QOle+wTJcQRzRnKSKGU+xp6uC+YtFP7vyON8BePP+Eq0m+uNQihs7iykKzIhO1VHfmjwl4y1DxbrV81rYwx6HbsUjuWzvlb25xXkXiCAQ/E/UdA0nU1gstVmWO4ZDwuTkr+dfQei6PaaDpNvp1lGEhhUKMdz6n3px1Sn/Vwlo+X+rGhRUVzOLW1muGVmESFyqjJOBnAryqT462SSMn/AAj9/wAHHLY/pU31sOz3PWqK8j/4XvZf9C9ff99j/Cj/AIXvZf8AQvX3/fY/wpiseuUVl+Htbj8Q6Jb6nHby26zDIjlGGFabMEQsegGTQ9NwWuxwvxG1S6lWz8LaYSL7VW2sw/5Zwg/M1cbp+k2+h/HKw061ULFBZKo9zs5NS6J8R/Dw8W6trWuTvHch/s9ogQt5cQ/qTWNN450KT4yReIFuH/s4QBC+w5ztx0oh8UX3/wAtByWjX9bo+gaydf1DUNPsVfTdPN5cO2wLuwF9z7VpQTJc28c8ZykihlPsakprR6lU5xjJSauuxw8XhHVNdkW48UaizpnIs7c7UX6+tdBc+HNOk0G40q3tooYZIyoCrjB7H862KKv2krp9jXEYqpiI8k/h7LRfceb/AAy1KS0mvvDl2SJbdy0YPpnkf1r0ivLvG0D+GfGVh4jtwRFKwE2Ome/5ivTbeeO5t454mDJIoZSPQ10YtKTVaO0vz6nlYNuKlRlvH8uhJRRRXGdoUUUUAFFFFABRRRQAUUUUAZ2uapHo2i3V/IR+6QlR6t2FcT8NNHN1Fe67foJJLtyqbxnjuai+I99Lquraf4ZsyS0jhpQPfp+nNehabYxabptvZQgCOFAoxXa/3OHt1n+Rwr99ib9Ifn/wDm9R8CWxuDe6JcyaXedcxH5GPutT6DfeJE1D+ztasUdQpK3sRwrY9R6109FcvtG1Z6ntPGznT5KqUuze6+e/yYVzGmeEtN8Pa/qniE3knmXnMpnZQkYz2PaunrOvYdN8QWF3psk8c8Mi+XMkUoyB74PFZ+a3OTyex5f8U9Us/FU2kaDokyX14bkO5gO8Rr6kjivWIIpbfTY4kw0scQUZ6FgK8a8Y+DE+G1vD4l8L3U8HlSqk0LvuDKfrXsGjagNV0WzvwMfaIlfHoSKa+F27ifxL0OT8D+PLjxHqWq6bqlrBaXli+NsZOCo4J5NO0bxvfeI/GVzp2k2cD6RafLNePnJb0XnFeX/Eh/7I+Jkq6PqC28uoxCK6Kn/VluDmvbfCnh2z8M6Db2FmAQFDPJ3kY9SaI6pSf9MJaNpf0jbopsjiOJ5CCQqk4HU4ryq4+OVlb3MkP/CP352MVyWxnHtilfWw7dRfilqt9Y+LvC8VrdSwxvMCyo2A3zAc16sOlfNPjb4hQeJde0a/j024t1sXDFJGyX5zxxXdf8L3ssf8i9ff99j/AApx+G3mwl8XyPXKK57wf4ri8X6U19DZz2oV9hSYdfcHvXQ02rCTuczZ+ENO0nxVf+J2upPPuUxIJSAiD2PauI+LOs2PiLT7Hw/o08d/fzXCtttzv2AdyRxXp9z/AGfrFtdac08UyuhSaOOQbgD645FeReMfAUPgHTx4l8LXVxbTWzr5kbPuDKT71Gml9lYpX1tuewaXbPZ6TaWznLxQojfUCrdZXhvVTrfhyw1Irta4hDsB6961a0le7uRG1lYKKKKkYUUUUAFFFFABRRRQA10WSNkdQyMMEHoRWT/wiugH/mD2X/fkVsUUAeKTaPpo+PiWIsYBafZgfJ2DbnaO1dl8Q/Fx8OaXFpelrv1e9/dW0SdUB43f4V2vkQ+b5vlJ5n9/aM/nQ0ELyCR4o2dejFQSPxpW91RY7+9zHh3ir4dNoHw8t9UjJfWLWYXNzN3JPX8jivWvCOtp4h8LWGpIQTLEN49GHBFbLosiFXUMp6gjINJHFHCmyJFRfRRgVV9xdh9Qm0ticm3i/wC+BU1FICH7Ha/8+0P/AHwKPsdr/wA+0P8A3wKmooARVVFCqAAOgApSARg9DRRQBkN4W0F2LNpFmSTkkxDmvK7jR9NX49w2IsYBam2B8nYNudvpXtdR+RCZfN8pPM/v7Rn86FpJMHs0ORFjRURQqqMADsKdRRQAUUUUAYfi3Rl13w5dWmMyhd8R9GHSsH4Y6y15osmmTt/pFk23B67e35dK7qvKtQB8GfEuK8UbbG/PzY6DPX8jXbh/3tOVHrujhxP7qrGv02foeq0UgIZQwOQRkGlriO4KKKKACiiigAooooAKr313FYWM93MQI4ULsfpVivPfifqzi0ttCtTm4vHG4D+7ngfia1oUva1FAxxFVUqbmU/h7aS634g1DxNdgnLlYc+p/wABXp1Zfh3SU0TQrWxQcog3n1Y9TWpVYmr7So2ttl6E4Wk6VJJ77v1CiiisDoCvEbHWf+FY/ELV49Ygm/s3UX8yKdFyBzmvbqr3dhaX8XlXdtFOn92RQwpbO6H0szxvx142tfHtpb+GfDMM91LcTK0shTAQCu18SeIIfh/4LtbaPEl/5SwW0Q5LPjGceldXZaTp+mgiysoLfPXy0AqxJBDMVMsSOV6FlBxTtpZdQvrd9DxS/wDhvO3w4vtWv90viCYi8dzyyjrtH4V6D8NdfHiHwVZTu2Z4V8mX1ytdaQGUqQCDwQabFDFApWKJIweyKBTvv2E9bdx9Qm0ticm3iJPcoKmopAeM/FqCKPxl4WVIkUGUZAUDPzCvXxZ2uB/o0P8A3wK5rxV4Hh8UaxpOoSXTwmwfdtUZ3jOcV1lEdI282EtZX8hqRpGu1EVV9FGKdRRQB4o+qN8Nfifqd3qdvM2lan8yzIudven+OviBY+MtJXw34ainvLm8dQzeXgKua9hurK1vojFdW8c0Z/hkUEVDZaPpunEmysbeAnqY4wKSWii9kO+rktyDw5pf9i+HbDTictbwqjfXvWpRRVN3dyUrKwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJfEPQ/7Y8NSSRrm4tf3qY647iutpGUOpVgCpGCD3FXSqOnNTXQzq01Ug4Pqcv4B1z+2vDMJkbNxb/upPXjofyrqa8r0Rm8HfEe40yQlbK+P7snpzyv+FeqVti6ajU5o7PVGODqOdPllvHRhRRRXMdQUUUUAFFFFADZJEhieSQhUQFmJ7AV5d4Xjfxb4+u9cmGbW1bEQPTPRf8a3/iVrZ03w/wDY4W/0m9PlqB12960vBWiDQ/DVvAy4nkHmSn3NdtP91QdTrLRenU4av77EKn0jq/XodFRRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHA/E/R3n0uDWLYEXFkwJI67c/0NdN4X1hNc8P2t6D87LtkHow4NaV3bR3lpNbTDMcqFGHsa818BXMnh/xTqHhq6bCs5aHPqPT6iu2P73DuPWOvy6nDP8Ac4lS6T0+fQ9QoooriO4KKKKACgnAyelFc1461waH4ZnkRsTzDyovqep/Krpwc5KK6kVKipwc5bI4+PPjX4mGT71hp549Dg/1Neq9K474caGdK8OLcTLi5vD5rk9QOwrsa3xc058kdo6HPg6bUOeW8tWFFFFcp1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFea/Eqwl07ULDxLaAiSFwspHt0/wr0qqGt6ZHrGj3VhIBiVCAfQ9jW+Hq+yqKT26+hz4ml7Wk4rfp6kml38WqaZb3sJBSZAwq3XnPwx1OSA3vh67JE1q5aMH0zyK9GpYil7Ko4jw1X2tJT69fUKKKKxNwryvxA7eMPiHbaREd1nZnMmOnHLf4V3vibWE0PQLq9Y4dV2xj1Y9K5f4YaO8OnT6zcjNxesSpPXb/8AXNduG/dwlWfovU4cT+9qRoL1fojvURY41RBhVGAPQU6iiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8t8Ywv4X8b2PiG3XEE7Ymx0z0P6c16dBMlxBHNGQyOoZSPQ1i+MNFGu+G7m2C5lVfMiP8AtCsX4Z601/oTafO3+kWTbCD129v8K7Z/vaCn1jo/TocNP9ziHDpLVevU7iiiqeq6hFpWl3N9MQEhQt9T2FcaTbsjtbSV2ed+PbmTxB4o0/w1asSquGmx6n/AV6VaW0dlZw20KhY4kCqB6CvO/hrp8uoX1/4lvATJM5WIn9T/AEr0quvFtRtRW0fz6nHg0581eW8vy6BRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeVXQPgz4mJOvy2GoHn0GTz+Rr1WuP+I2if2t4beeJc3FofNTHXHcV1YSaU+SW0tGcmMpuVPnjvHVHXgggEHINecfE3Upbuax8OWZzNcOGkA9Ow/rW74N8Rx6j4QW7uJB5lohSck/3R1/KuZ8EW8niXxhf+JLlcxRMVhz0z2/IVrQpeynKc/sfn0MsRV9tCFOH2/y6noejabFpGkW1jEAFiQKfc9zV6iiuFtyd2d8YqKsgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprosiMjgFWGCD3FOooA8F12O/wDDGrapodqSLe+Zdo9VJ4x/KvYPCmjLoXh61swB5m3dIfVjyas3uh6bqF/b3t1apJcW/wDq3PatGuzEYr2sIxS9fNnDhsH7GpKTfp5IKKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKOlFYni/UP7K8I6peZwY7dsH3IwP50pOyuNK7sav2u2/5+Iv8AvsUq3MDHCzxk+gcV86eA/h1eeNdIm1KXWbi1USlFAJO71NdRJ8DLxUJg8TTiTtuBx+hptW3Fo9j2iivDPAviPX/C/jz/AIRDW7lrmF28tCzbtpxkEE9jXudPomg62YUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf426l9i8Cm3DYa6mVPqBya9IrxD443LX+vaHokZyWO4gerHFTJXtHuyou132Oj+G+v+HND8DafaT6vaRTlTJIjPyGJ710l58RPCdlbtNJrVswUZ2xncT9BXOQ/BHwn5EfmRXRfaN3789cc1zvjn4P6JpPhi71PSpJ45rZd5R33Bh+NVOW7ZMI7IqeE4bjx58WZfE6W7xadbPuV2HXAwo+te8V5z8F9Ul1HwQEmVAbaUxhlXGR2zXo1U1ypRXQSfM3JhRRRUjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArwe+/4qT9oGKL70Vo4B9gg/xr3ioVtLZJjMlvEsp6uEAY/jQtJKXYH8LXcmrk/iXIY/h5rBUcmHH6iuspskaSoUkRXQ9VYZBpSV1YcXZ3PMPgS0R8FzKrqZBctuXPI9K9RqKG1t7YEQQRRA9fLQLn8qlqpO7JSsFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==
|
<image>Find $ST$.
|
19
|
Geometry
|
Geometry3K
|
test
|
52
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEDATYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8h+IHxhtrDOleGrlzqkd15U8rQfJEFJDL845ORjgY680AevUVQ1vVI9E0K/wBUlQulpA8xQHBbaCcfj0ryKTxd8R4/CKeOWuNK/sosHOnCE7vLL7Ac4z1/2unPtQB7ZRVTSr9NV0iy1GJSsd3BHOqnqAyhgP1q3QBBeXcNhY3F5cPsgt42lkb0VRkn8hXnNl8WNS1G0S7tPAWuz28mTHLEhZXGcZB21c+LmoTjw1a+H7I/6drt0lnGO+3ILH6fdB9mqXxfrVz4I8PaHofh63jk1C7kj0+yE33UAAG4+p6fnntQBW/4WXrX/RPPEX/fk/8AxNH/AAsvWf8AonniL/vyf8Kq2viPxj4U8XaRpPiy4sdRtNZcxQz2qbGikBAxjAyMsvbvnPBFen0ARW0rT2sMzxPC0iBjG/3kJGcH3HSpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8x+OSqPBFoQoB/tKHnH+y9enV558ZdNvtU8HWsGn2VxdzLqETmO3iaRgoV8nAB45HNAHV+K7jTbXwnqsurhjp4tnWdU+8ykYwPc5wPc14RJp3jWP4WxeemfB4ZZzaiRRd/Zi+8ZbbjHIP9MV7f440ObxJ4K1XSbcgTzw/usnALqQyjPbJUD8a8wm8V+ILrwAvgtPB+rrrRtVsGcwEQhAAm/d7gfTnOcUAd9dHVtZ8FaZ/wAIRdWtjbT2y7ZrgEyRRhPlVByN3Yknj3rK+EPiu713QbrS9XlkfV9LmMUxmOZGUk4LZ6kEMp+g9a67wpo7eH/Cml6VIwaS2t1SQjoXxlse2Sa8q8bSS/DT4nweLbWBn07VYnjuok4BkxyPxIRvchqAOitv+Kq+NtxcffsfDVt5KdwbiTOfxA3D6oK9Fmtbe4eN5oIpHibdGzoCUPqM9DXF/CbSZrHwWmo3mTf6vM9/O5HJ3n5f0wf+BGo/iTBr1vc6Dr+hwXN4umXDNdWNuzZmjbb/AAjrjaR0ON2ccGgDj7q78QD4m+Grn4hWUdvbrIyad9gIMInYgZYkluu3qR0HbNe3V4/qWoal8TvEPh+2tPDupWGm6fdrd3d1fw+X93HyL69x1zyOABXsFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ2u6vFoOiXWpzxtJHbruKJ1YkgAfmRWjXJfE1tvw91T1PlD/yKlXSipTUX1ZnVk405SXRMzYvigrQpLJ4Z1pY3UMrpDuDA8gg8ZFK3xa0WM4m0zWIj/t26j/2eut0CPyvDmlx/3LSJfyQVo1q50k7cn4mcYVrX5/wOFi+LfheT7z3cX+/B/gTVuP4oeEH66oyH0a3l/otWWjSb4ksHRXVNIHDDPWY/4VtSaRpkv+s060f/AHoFP9KTdH+V/f8A8A1q0a9O3vJ3V9v+CYsfxD8Jyfd1qAf7yuv8xVqPxn4Zl+7rtgP96dV/nUz+F/D8n39D01vc2if4VWk8D+GJfvaHZD/dj2/yo/cef4GX+0eX4lxPEehS/wCr1rTn/wB26Q/1qzHqVjL/AKu9tn/3ZVP9awJPhx4Sk+9o0Y/3ZZF/k1VpPhZ4Rf7unyR/7txJ/Umi1Hu/uX+YXr9l97/yOxVgwypBHqDS1wjfCTwznMZvoj6pP/iKT/hVWmR/6jWdbiP+zcrj/wBBo5KX834f8EOet/J+P/AO8rI8SeGdM8V6SdN1WFpLfzFkG1trKw7g/QkfQmua/wCFc3Uf/Hv4w1yL/tuT/Iij/hBfEKf6rx5qQ/66Rl/5vR7On/P+DD2tX+T8UdzDFHbwxwxIEjjUIijooAwBT64P/hFfGsP+p8al/wDrpaj+uaP7H+I8f3PE+ny/9dLZR/JKPYx6TX4/5B7aS3g/w/zO8org/s3xNh/5ftDn/wCAsP8A2UUfa/ibF/zDtEm+jMP/AGcUew/vL7w+sd4v7jvKK4P+2viNH9/wtYSD/pncqP5vR/wlnjOH/XeCHf8A653Q/oDR7CXRr70H1mPVP7md5RXB/wDCea+n+u8CaoP+ubF/5JR/wsieP/j58I65F6/uD/UCj6vU7fig+tUu/wCD/wAjvKK4P/ha2lJ/r9I1qI991suP/Qqcvxb8ME4c3sZ/24P8CaPq1X+UPrVH+ZHdUVyNr8TPCl3PHCuosjyMFUPA4GT05xgV11ZyhKHxKxrCpCfwu4UUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxPxXk2eA7lf780S/wDj2f6V21cF8XBu8IQRZx5t9Gn6N/hW2G/ix9TDFP8Acy9Dt7SPyrOCP+5Gq/kKmrm/+EZ1FP8AVeKdUH/XQRv/AOy0f2H4iX/V+LZcf7dhE3+FZ2T6noKhS6VV90v8mFn+8+Iept/zzsIU/NmNdJWFomhXmm6lf39/qYvp7tY13C3EW0JnsCfWt2kxYqUXNKLukkvwV9/MKKKKRzhRRRQAUUUUAFFFFABRRXGx/EKyuPiR/wAIfbWxldI2Mt0JPlRwpYptxzjgE565HagDsqK4rxN8Qx4f8SJodtoOo6tdm2Fyy2SbyqliOQOew59xV/wz4pvfEa3ol8OanpLwKpj/ALQiKCUnPTjtgZ+ooA6aivm1dQtRoa6oNZ1X/hYwvtn2Ys+S/m48vZjbs29vXjpxX0iu4qNwAbHIHrQAtFFFABXPeLPFNj4bsl86P7TezfLb2ijLSN06dhnvUPizxhD4fWOytIjeaxc8W9onJyejNjoP5/mRV8LeD5rW8bXvEEovNcm53NytuP7q9s9sjp0Hqd4U1Fc9Tbou/wDwDnqVHJ+zp79X2/4PkU/DHgyefUf+Ek8TJHJqTkNDahQI7YduP7w/Tryea72iis6lSU3dmlOlGmrRCiiioNAooooAKKKKACiiigAooooAKKKKACiiigArg/ij+807RLf/AJ6arF/Jh/Wu8rg/iJ+81bwlB2fVYz+TKP61vhv4qOfFfwn/AF1O8ooorA6AooooAKKKKACiiigAooooAKKKKAOb8ceJT4Y8OyXFunm6jcMLaxgAyZJm4Xjvjr+GO9ebaB4bHhf4x+G7KR/NvJNJknvJicmWdjKWOe/p9AK7nxp4Fu/FWraXqNpr8ulzaeH8rZB5nzNj5hlhg4FeeT+GNdtfjPothP4tubm8axM63zW4DLGGkzHt3dDtPOf4ulAGrqN14otvjNrlz4e0H7fOLGK3WS4by4kTCOeTgE7sDAPY12HgfxvN4muNR0vVNOOm61pzhbi33blIP8Sn/wDX1Byc1Ui+I0Nj491fw94he002C3VZLO4lYoJlIycsTjPPH0NY/gO5j8RfFnxZ4lsMtphijtI5sECRgEGR6/6sn6EetAHpv2G0N4Lz7LB9qA2ibyxvx6butWKKKACuQ8V+MX065TRdEh+267ccJEvIhz/E/wDPH4njrB4m8XXT6j/wjnhhBc6xJxLKOUtR3JPTI/T3PFafhTwja+GbZ3Lm61Kf5rm7k5ZyeSBnoM/n3rojBU1z1Pkv8/L8zmlOVR8lP5v9F5/kQeE/ByaI0mpajN9t1u5+ae6fnbn+Fc9vfv7DiuqoorGc3N3kbQhGEeWIUUUVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcH45+fxl4Li/6fHf8jGa7yuD8U/vfib4Rh/u+c/6Z/8AZa3w/wAd/J/kznxP8O3mvzR3lFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAVWfTbGTUY9Reyt2vo08tLkxKZFXn5Q2Mgcnj3NWaKAMvV/Dmi68E/tbS7S8Mf3GmiDMvsD1Aq5Y2FnplqtrYWsFrbp92KCMIo/AVYpCQoJJAA5JPagBa4HXvFF/rmpv4b8JMGn6XeoA/Jbr3APr7/lz0h1XXtR8a6hLoPheQxWCHbe6mOmO6oe/wDX2HJ7DQdAsPDmmJY6fFtQcu55aRv7zHua6FFUlzT+Lt/n/kcrk6z5YaR6vv5L/Mg8M+F7Dwvp/wBntFLzPzPcOPnlb1Pt6D/65rboorGUnJ3e50RioLlitAoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuD1j5/jJ4dT/nnZyv+ayCu8rg7r978bLH/plpR/8AQn/xrehvL0Zz4jaPqvzO8ooorA6AooooAKKKKACiiigAooooAKKKKACiiobu7t7C0luruZIYIl3PI5wAKErg3bVj5ZY4IXlmkWONFLM7HAUDqSa85vNR1H4j30mmaO8lp4dibbdX2MNcf7K+3t+J7AtZtR+J17tQzWPhWF+W+694Qf5foPc9PQ7KyttOs4rOzhSG3iXakaDAArp0o76y/L/gnLd4jbSH5/8AA/Mi0rSbLRNOisbCBYYIxwB1J7knuT61doornbbd2dKSSsgooopDCiiigAooooAKKKKACiiigAoorhPiD42v/DlpdWmm6Bql3cNamRb2GEmCHO4ZZhnlcZx9OaAO7orkfhhfXepfDnSLu+uZbm5kWQvLK5ZmxI4GSfYCuA02bxb8QLbX9et/FNxpMNjPJHaWUAwvyLuAc5HYgZOec+mKAPbaK5H4aeIrzxR4GstR1DBu9zxSOFwJCpxux7jGffNddQAV5m3jvxdq+v6vbeFvDtnqGnafcfZjPLcCMs4+91YAjOenbHrXX+MtdXw14Q1PVsgSQQnys95D8qf+PEVyvh6C58BfBk3kVu02pG3a8dCCS00mMbh1OMqD/u0AO/t/4o/9CZp3/gen/wAVR/b/AMUf+hM07/wPT/4quY1CDxx4e8GQ+OJvF1xPchYrifTpov3O2QgbMZxkbhnAHfHQV7DpV7/aekWV/s2faYI5th/h3KDj9aAKnh261q80oS6/p0NhfbyDDDMJBt7HI/lXM237342Xn/THSh/6Ev8A8VXeVwekfP8AGXxA3/POyiT8xGa3o7S9P8jnr7w9f0Z3lFFFYHQFFFFABRRRQAUUUUAFFFFABRRWbrmu2Hh7TXvtQmEcS8Ko5Z27Ko7mmk27IUpKKuyfU9Ts9H0+W+v51ht4hlmb+QHc+1cBbWWo/Eq9S/1NJbPw1E263tM4a5I/ib29/wAB3NSaZouo+O9Qi1zxJG0GlRndZabnhh2Z/X+vsOvoqqqKFVQqqMAAYAFdF1R0Xxfl6eZzJOvrLSPbv6+XkMggitoI4II0iijUKiIMBQOgAqSiiuY6gooooAKKKKACiiigAooooAKKKKACiiigArI8V/8AIn63/wBeE/8A6Lates7xBazX3hvVLS3TfPPZyxRrkDczIQBk8Dk0Acx8J5Fi+FOjSOdqJHKzE9gJXrzrRPDOveNbPX9c8NaiNA0zUZpFSwVmIuCOpY5wmckce4xjr6l8P9EvNH+HmnaRq1v5NzHHIk0W9Wxudj1UkHgjvXEaJafED4f2N54e0zw/Fq9o0rtY3ouFQJu/vqT+ODjnPJFAG78N75td+F4s9HWPRby0Z7MssfmrHKMMXCsec7s8nqT1rnfDM9/4C+Lt14e1XULi8s9aRZILq4bLPJj5SfckMn/fNdz8N/Clx4Q8JJY3sivfTzNc3O05AdsDAPfAUfjmsX4y+HJNU8LJrNiGXUdGf7RG6fe8vjdj6YDf8BPrQAz4i/8AFR+LvDPgxPmilm+33w/6YpnAP1w4+uK9IkljgjMkrrGi9WY4A/GvLPhPLdeKtZ1rxxqMQSW4EdlAo6KqqpfHsTt/HNdv418PN4p8H6jo0cixy3EY8t26B1YMufbKgH2oA4D4s6N4pntrrVDqEN74Xt3infSgfLZkAXdl1GWGctyeO3SvTdA1C21bw9p1/ZxeVbXFukkcf9wED5fw6fhXlt03xK1jwoPCEvheC2d4ltptSe6UoYxgE7QTyQOcZ6ngV6noelx6HoNhpcbF0tLdIQ5GN20AZ/HrQBoVwfhj978T/Fs390Qp/wCO4/8AZa7yuD8D/vPGnjSX/p7jQfgZBW9L4Jvy/VHPW/iQXn+jO8ooorA6AooooAKKKKACiiigAoorn/FXiyz8MWi71NxfTfLbWkfLyN0H0Ge/5VUYuT5Y7kznGEeaT0J/Eniaw8Maabu9fLtxDAv35W9B/U9q5jQ/DN/4k1KPxH4tTkc2emn7kK9iw9fY/j6Cx4b8JXl1qQ8SeKmE+qNzBbn7lqOwA9R+nXk813FbOSpLlhv1f+RzxhKs+apoui/V/wCQUUUVznUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNkRJY2jkUOjAqysMgg9QadRQBT0zS7HRbCOx021jtrWPOyKMYAycn9TVyiigAooooAK4P4efPrPi+fs+qOB+DN/jXeVwfwv/AHllrtx/z01WX+Sn+tb0/wCFP5fmc9T+LD5/kd5RRRWB0BRRRQAUUUUAFFFch4r8YPp9ymiaHD9t12fhI15WEH+Jv54/E8dbhCU3ZEVKkaceaRP4s8YRaAI7GziN7rNz8tvaJycnozY6D27/AJkVvCvg+Wzu213X5ftmuz8lm5WAf3V7Z7ZHToPex4T8HpoZk1HUJvtut3PzT3T87c/wrnoPfv7DiuprSU1BclP5vv8A8AxhTlN89T5Lt/wQpkzvHBI8UfmSKpKpnG444Ge2afUV1cwWVrLdXMqxQQoXkkc4CqBkk1gdJwtr8V9Jm8D3XiSe3kt2t5zbfYmcGRpeCFH1Bz04wfSuz0m7uL/Sra7urJ7KaZA7W7tuaPPQE+uMZ9K8A8Jf2Xq3xli1C6sZ4dK1Kaa70uOU4R5QThyOnVWwOxwOe/0XQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwfwl+bwncy/8APW/lf9FH9K7e5k8q1mk/uIzfkK434Tx7PAdu39+aRv8Ax7H9K3h/Bl6r9TnnrXh6P9Dt6KKKwOgKKKKACiiuB17xPf69qb+G/CTBphxd6gD8kC9wp9ff8ueRdOm5uyM6lVU1d/8ADk/ibxddS6j/AMI34XQXGrvxLMOUtR3JPTI/T3PFavhTwjaeGbZ23m51Gf5rm7k5ZyeSBnoM/n3qx4Z8MWHhfTvs1ou+V+Z7hx88rep9vQdvzNbVXOokuSnt+ZnTpNy9pU3/AC/ruFFFFYnQFYninwzbeLdI/su9u7y3tWcPItq6qZQOisSp4zg8Y6CtuigDmdZ8CaRrH9inNxZNozh7M2jKuwDGFOVOR8q/lXTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUdafytB1GT+7bSN+Smuf+GKbPh7pnHLeaT/39etfxU/l+EdZb0sZsfXYao/D5PL8B6QvrCW/Nif61uv4D9V+TOd/7wvR/mjpaKKKwOgKRmCqWYgADJJ7U2aaO3heaaRY4kUs7ucBQOpJrzm71DUfiRfSabpDyWnhyJtt1e4w1x/sr7e34nsK0p03PXZLdmVWqoaLVvZEmqa7qPjfUJdB8MSGLTkO291MdMd1T1/r7Dk9loOgWHhzTEsdPi2IOXc8tI395j3NT6VpVlounxWNhAsMEY4UdSe5J7k+tXKqpUTXJDRf1uTTpNPnnrL8vJBRRRWJuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc/45k8vwPrDetsy/nx/WpPBsfl+C9FX1s42/NQf61S+I7+X8P9Wb1RF/N1H9a1vDieV4X0iP+7ZQr+SCt/8Alx8/0Of/AJiPl+pp1BeXlvp9pLd3cyQwRLueRzgAVFqmqWejafLfX86w28YyWPf2A7n2rgbWx1H4k3seoaokln4bibdbWecNcn+83t7/AIDuamnT5lzS0S/rQqrV5XyxV5P+rvyEJ1H4nXmB51j4Vhfk/de8IP8AL9B7np6JZWVtp1nFaWcKQ28S7UjQYAFSQwxW0CQwRrHFGoVEQYCgdABT6KlTm0WiXQKVLk96Wsn1/roFFFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcb8UpNnw/v1/vvEv/AJEU/wBK1bnWrDwx4XtrrUJfLjjgRFUcs7bRhVHc1hfFot/wg7qqk7riMHA9zUGgeFr/AF6/i8Q+LEyyAfY9OI+SBexYevt+foOuMY+xTk9Lv9DinOSrtQWtl6Lci0zRNR8c6hFrviWMw6Yh3WWmZ4I7M/r/AF9hwfRVVUUKoAUDAAHAFLRWFSo5vslsjopUlTXdvdhRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhAIwQCPeloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>Find x.
|
18 \sqrt { 6 }
|
Geometry
|
Geometry3K
|
test
|
53
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAF+AroDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD33y4/7i/lR5cf9xfyp1FFxWQ3y4/7i/lR5cf9xfyp1FFwshvlx/3F/Kjy4/7i/lTqKLhZDfLj/uL+VHlx/wBxfyp1FFwshvlx/wBxfyo8uP8AuL+VOoouFkN8uP8AuL+VHlx/3F/KnUUXCyG+XH/cX8qPLj/uL+VOoouFkN8uP+4v5UeXH/cX8qdRRcLIb5cf9xfyo8uP+4v5U6ii4WQ3y4/7i/lR5cf9xfyp1FFwshvlx/3F/Kjy4/7i/lTqKLhZDfLj/uL+VHlx/wBxfyp1FFwshvlx/wBxfyo8uP8AuL+VOoouFkN8uP8AuL+VHlx/3F/KnUUXCyG+XH/cX8qPLj/uL+VOoouFkN8uP+4v5UeXH/cX8qdRRcLIb5cf9xfyo8uP+4v5U6ii4WQ3y4/7i/lR5cf9xfyp1FFwshvlx/3F/Kjy4/7i/lTqKLhZDfLj/uL+VHlx/wBxfyp1FFwshvlx/wBxfyo8uP8AuL+VOoouFkN8uP8AuL+VHlx/3F/KnUUXCyG+XH/cX8qPLj/uL+VOoouFkN8uP+4v5UeXH/cX8qdRRcLIb5cf9xfyo8uP+4v5U6ii4WQ3y4/7i/lR5cf9xfyp1FFwshvlx/3F/Kjy4/7i/lTqKLhZDfLj/uL+VHlx/wBxfyp1FFwshvlx/wBxfyo8uP8AuL+VOoouFkN8uP8AuL+VHlx/3F/KnUUXCyG+XH/cX8qPLj/uL+VOoouFkN8uP+4v5UeXH/cX8qdRRcLIb5cf9xfyo8uP+4v5U6ii4WQ3y4/7i/lR5cf9xfyp1FFwshvlx/3F/Kjy4/7i/lTqKLhZDfLj/uL+VHlx/wBxfyp1FFwshvlx/wBxfyo8uP8AuL+VOoouFkN8uP8AuL+VHlx/3F/KnUUXCyG+XH/cX8qPLj/uL+VOoouFkN8uP+4v5UeXH/cX8qdRRcLIb5cf9xfyo8uP+4v5U6ii4WQ3y4/7i/lR5cf9xfyp1FFwshvlx/3F/Kjy4/7i/lTqKLhZDfLj/uL+VHlx/wBxfyp1FFwsgooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVzPjLxtYeCrO3uL6Gabz3KKkWM8d+a4z/hfugf9A2//wDHf8aSdx2Z6zRXmNj8dPC9zMsdxDfWoJxveMMo+uDn9K9Hs7y21C0iu7SZJoJV3JIhyCKq3URPRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwv4zTHVfG2h6GhyBt3D3Zv8ACvXrfw1o0VvFGdLsyVQLkwrzgfSvA/EE+s658Y7ufQLYXd7aSfukJXGEGM/MQK6/+1vjP/0Brf8A8g//ABVKHwLz1HNe/wChtfFHwt4eTwTfXv8AZ9rb3MKgxSxxhG3Z6ZHWl+CL3D+AUE24os7iPPpmvLfEep+JdR1yzsviBLe2WnlwSsUShfqMcH6819E6FY2GnaJaW2lqoskjHlbe49aqCsm+4pbpdjRooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe/uVstOubpjhYYmc/gM1YrG8V6ffar4Xv7DTmiW6uIjGhlYqoz1yQD2qZX5XYcbXVzyj4IWzX/iLXNak5JOxWPqxJP6Yr3CvBdJ+F/wASNDheLS9bs7SN23MsV1IoJ9fuVof8IP8AFiUbJfFaKh6lb2TP/oNW9kl0F1bfUs/HnUbE6LZaduR78zbwo5ZVx+ma9B8DW1xaeCdIgusiZbZdwPUcVxfhn4NQWWppqniHUG1O7Vt4Qg7N3qSeWr1MAKAAMAdBQvdi13Bu7XkLRRRSAKKKKACiivMvjB4u1Lw3Y6dDpFyYLq4kJLKATtH196TdhpXPTaK8OhtfjLPCkqXg2uoYZeMcH8KkWw+MxdQ14AueTvj/AMKdhHttFQ2iypZwrO++YIA7erY5qahggooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKj8+HzvJ81PNxnZuG7Hris3xFrtv4e0iW9nILAYjTu7dhXhsp1jU9etryaZ4Lm/bfDKzFe+Bj0FdmGwjrJybsjhxWNVBqKV2fRFFeW2/jPxJ4VmW18SWD3EAOBOOv4N0P4813ei+JtJ16INY3aM+OYm4cfhWdXDVKa5t13WxrSxVOo+XZ9nua9FFFc50hRRRQAV4N8S5hrfxc0nSt48uAxq2TwMnca95JABJ6Cvm2z8P8A/CyfifrIa6kt4Vd381BkgA4ApL415aj+w/uPohLyyjRUW6gwoAH7wVLHdW8rbY54nb0VwTXkX/ChLX/oYLz/AL4FdL4K+GNt4O1aTUE1Ke7do/LCyAAL71S13FstDvaKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWB4015/DXhO+1SIIZolHlhxwWJrynT/AIj/ABJ1WzW7sNDhuLdiQsiQEg4/GkncdtLnutFeKf8ACbfFb/oWl/8AAc/416B4E1PxJqulTz+JLJbS4Eu2OMJt+XHU81SQnodXRRRSAKjnnjtoJJ5nCRxqWZj0AFSV5l431u51/Vo/CujktubFw69Pp9B3rahRdWdunX0MMRXVGHNu+i7spILj4k+LS7Bk0azbp2I/xNXvijZLYw6PqFvGFFrJsAHYDBFdx4f0S28P6TFY26j5Rl37u3cmsr4h2P23wbeYGWhxKPwP/wBeuuGJTxEFH4VojjnhWsPNy1m9X8jdiFvqulxNNGk0U0YJVxkHIri9a+GFrLKbvQ7h7C5B3BMnZn27itn4f3327wbYsTlolMR/4DxXT1z+0qYeo4xezOn2dPE04ymr3R5ZD4u8UeEZVtvEVk91bA4E4649m6H8ea7rRPFWka/GDZXS+bjmF/lcfh3/AArVmgiuYminjSSNhgq4yDXC638MbK4kN1o0zWFyDkKCdhP8x+Fac9Ct8a5X3W33GXJiKHwPnXZ7/ed9RXlcXijxV4OkW316za8tAcCfqcezf413Gh+LdH19B9julEx6wyfK4/Dv+FZVcLUgubdd0bUsXTqPl2l2e5P4lvxpnhrUr0nHlW7kH3xgfrXl/wABbAta6tq0g+aaURg+vc/qa9Y1fSbPXNMm06/jaS2mGHVXKkj6jmoNB8PaZ4Z04WGlQGG3DFtpcscn3JzXPHRt+R0y1SXmalFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5R8eNS+z+FrOwVvmuZ8keyj/AOvXaeA9N/srwRpVqRhhArN9Tya8o+MjS67490nQbd8OEVPXDOev5VdX4OeKlUKvi0gAYAAfj/x6lD4W+7/Ic1ql2X5nttFeM2vwh8TxXcMk3ix3iV1Z1G/kA8j71eyRrsjVM52gDNV0F1HUUVna5rNtoWlTX1y2FQfKvdm7AURi5Oy3FKSinJ7GD488VDQdN+y2rbtQuRtjUdVHTP8AhUfgHwqdFsDf3q7tRuhuctyUB7f41heDdHufE+ty+KdYUtHv/wBHjboSOh+gr1CuytJUYewjv1f6HDQi68/bz2+yv1+YVW1C2F5ptzbEZ82Jk/MVZorjTs7nc1dWZ5x8J7kpb6npjn5oJtwB7Dp/MV6PXl+g/wDEm+LOo2R+WO5DFR+o/rXqFdWNX73mXVJnHgH+65H9ltBRRRXIdoyWGOeNo5Y1dGGCrDINeNeNNFsIvFtppugQmG9lIMgjYhVJ6YHb1r1zVdRh0nS7i+nICQoW+p7CvP8A4c6dNquq33ii+BZ5HKw5/U/0rvwcnSjKrfRfizz8bFVZRopav8EVo/EXi3wY4h1u1a+shwJs549n/wAa7bQvGOja+qi1uQk56wS/K34ev4VuyRpNGUkRXQjBVhkGuI134Z6Zfs1xprmwuuo2fcJ+nb8Kn2lCt/EXK+62+4fs8RQ/hvmXZ7/Jnc0V5SmueL/BLiLVrc39gvAlzuwPZuo/Gu10Lxpo2vqqwXAiuD1gm+Vvw9azqYWcFzLVd0a0sXTm+V6S7M6GiiiuY6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikYblIyRkYyO1AHgFheWur/Hq4vbu5hit7WRyryuFX5RtHJr27/hIdF/6DGn/APgSn+Nee3HwI0K5uZbh9W1TfIxZsNH1J/3aj/4UFoH/AEFtV/76j/8AiaFpFR7DlZybPSotb0m4lWKHU7KSRjhUS4Qk/QA1erzvw78HtF8Oa5b6rBf388sBJVJim3OMdlFeiU9BDZJEijaSRgqKCWY9AK8nu5bj4keLVtYSy6PZtlm7Eev1NaPj7xBcahex+FtHJeeZgs7Ken+z/jWRaPrvwyvNtxAt1pczAuyDjP17GvTw1Fwhzr42tF+v+R5OKrqpPkd+RP3n+np3PW7a2is7aO3gQJFGoVVHYVLWdo2uWGvWQubCcOv8S/xIfQitGvNkpJtS3PUi4uKcdgoooqSjzDxuDpXxB0XVVGBIVVj+OP5GvTgQwBHQ8iuB+LFmZfD9veKPmtphyOwP/wCquu0C8GoaBY3QOfMhU/pXZW96hTn2ujioe5iKkO9n/maNFFVNU1CHStMuL6cgRwoWPv6CuRJt2R2NpK7PP/iPqUup6lZeGLEkySuGlx79B+A5rvtJ02HSdKt7GAYSFAv1Pc15L4O1qxXxVca3rryRSXJP2eV0OzJPPP6V7HDPFcxLLBIkkbDIZDkH8a7MWvZxjRWy39Tnw1Co19aqRaU9vQkoooriOk5rxvq39m6A8UQD3d2fIgTrknjNc+/wqspdIt/KuJLfUVQF5Qchm9x/hVuz/wCKq8eS3p+bT9K/dxejSdzXdV0Rqzo2UHZ9Trx+HpKjDDzjd/E+6b2XyX4s8pXVvGPghhHqMJ1DT14EmS2B/vdR+NdloPjjRdeCpFcCC4P/ACxmODn2PQ10bKrqVdQynqCK43XvhvpOqlp7MGxujzuiHyk+6/4Vr7WjW/iLlfdfqjxfZV6P8J8y7P8ARnZ0V5St/wCMvA7BLyI6jpy/x8sAPr1H48V1+g+O9F10Kizi2uT/AMsZjjJ9j0NZ1MLOK5o+8u6NKeMhN8kvdl2Z09FFFcx1hRRRQAUUVXv7X7dYT2vmvF5qFPMQ4Zc9xQwRznj/AMYp4O8PteR+RJeMwWGGUn5j3OAQcVuaLfSanollfSqqyTxLIyr0BI7V4d8R/hnbeHfDr6x/bF/eTrIqYuGBHP4V7P4T/wCRS0r/AK9k/lRHVP1QS3XzMPxx8QY/Ck1vp9nZtf6rc/6qBT09zjn8K5p/if4r0KaGXxT4VW1sJWC+dCTlc+vzEfhxWw3g3U5/i6PEk4hbTo4dseXywbGBxirfxae3T4daiJyuWCiPP97PGKm/LHmZVk5cp2Nndw39nDd27h4ZkDow7g1NXJ/DRJk+HukCfIbycjPp2rrK0krNoiLurhRRRUjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxv4pTw5pJETA304Kwr6f7VberapbaNps19dOFiiGfdj2Arzfwtplz408RyeI9VUm0if9xGehI6Aew/nXVh6UXerU+Ffi+xyYmrJWpU/il+C7m38PvCz6fbtrGoqW1C6+YbuqKf6mu1uLaG7t3guIllicYZGGQalHAwKKyq1ZVJ87NqVGNKCgtjy/WfBmp+GL06x4Wlk2Ly9sDkgegH8Q9q6Hwp48stfC2t1i11EcGNuA5/2f8K6+vNPiRoelo1vc2itFrE8gWJIeDIfUj+tdMKsa9oVt+j/AMzGGDrRn/sqvf7P+XY9LorzHQfHN/oV0uj+KoZEIwEuGHIHv6j3r0qGaK4hSaGRZI3GVZTkEVz1qE6T1279DSjiIVl7u63XVGR4vsf7Q8KajBjLeUWX6jn+lYvwvvvtXhJISctbyMh+nUV2UsayxPG3KupU/Q15p8NJGsPEGtaRJwVfco9wcfyxW1L3sNOPaz/Qxq+5ioS7pr9T06vNfiRqUuo39l4YsSTLM4aXHv0H9a7/AFO/h0vTbi9nIEcKFj7+1ee/Dywm1nWr7xReglncrDn17kfTpRhUoJ1pfZ29Qxbc3GhHeW/p1O3tPD2nw6FBpUttFNBGgUq6g5Pc1z03gy/0aVrrwtqL2/OTaTHdG3t7V29FcyqSu33PVw+JqYePJB+72eq+44y08dNZTrZ+JbCTTp84EwBaJ/x7frV3xX4hisvDbTWMyTT3f7m2MbZ3MeMit+7sra/gaC6gjmibgq65Fcxa/DzSLPXIdRgaZUiO5bctlA3qM1adNu70OylUwUpqpOLi1rZap+XdfiavhbRl0PQbe1PMxG+Vu7OeTWzRRWTbbuzz6tSVWbnLd6hRRRSMxGUMpVgCD1BrkNe+HWj6uWmt1NldHnfCMAn3FdhRWlOrOm7wdjOpShVXLNXPKRceM/Ax2zIdS01e/LAD+a/yrrNB8f6LrgWMzfZbk/8ALKY4yfY9DXUkBgQQCD2Nclr3w80fWS00Uf2O6PPmQjAJ9xXT7ajW/iqz7r9Ucnsa1H+DK67P9Gdd1orynPjPwKcHOpaav1YAfzX+VdToPxC0bWtsUkn2O5PHlzHAJ9m6VFTCTiuaHvLujSnjISfJP3ZdmdbRQCCMg5BorlOs86+Nn/JPZf8Ar4j/AK11nhP/AJFLSv8Ar2T+Vcn8bP8Aknsv/XxH/Wus8J/8ilpX/Xsn8qIbS9V+QS3j6P8AQt6vq9loemy3+oTrDbxDJJ7+w9TXklvaav8AF7XEvb1JLPwxayZiiPBmx/P61F4/1jTdT+JtrpGv3xttEskDyLhiHfrggA129t8TfAVnbR29vrVvFDGNqosMgAH/AHzSjZ+8/kOV17qOzggjtreOCFAkUahVUdABUlUtK1ax1vT0v9NuBcWsmdsgBAOPqAau1Tv1EvIKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjMEUsxAUDJJ7Utee/EHxJM0ieG9JJe8uSFlKdVB/h/wAa1o0nVnyoxr1o0YObMbXLq8+IfiX+yNNkKadbZLS4ypP94/0re0XXrjwo0OheILdIIV+S3vIlxG49/Q1veEvDcPhrR0t1Aa4f5ppP7zf4Vq6hp1pqlo9rewJNC4wVYVvWrwf7uK9xf1c1y1Qp80sTG7nv3Xo/06lhHWRFdGDIwyGByCKdXANbaz4EkMtn5mo6HnLQE5kgHt7V1+k63Ya1Yi7srhXjx8wJwU9iO1c0oW1WqOyvhHTj7Sm+aD6r8muj/pEup6lb6Tp017dOFiiXJ9z6D3rlPCum3OsajJ4p1ZCJJeLSFv8AllH2P1qtIX8eeJPLXP8AYWnv8x7TyD+ld8qqiBFACgYAHaqfuK3Vm8/9jpezX8SW/ku3q+v3GZrnh/T/ABBZm3voQ39yQcMh9Qa85x4g+G15kbr7Rmb8B/8AEn9K9apk0MVxC0U0ayRsMMrDIIrSjiHBcklePY8OvhlUfPF2kuv+Zm6F4h0/xDZi4sZgxH34z95D7iuEk/4kvxkVvux3o5P+8Of1FP13wNfaHeHWfCsroync1sD29vUe1cnr/i06rf6ZqEtuYNQsmCzKBgNg5/D6V24ehFtuk7xkmvNHBicRKMUqqtKLT8n6HYfEnU5b+9svDFicyzuGlA/Qf1ru9H0yLR9JtrGEYWJAPqe5rz/4eWE2t63e+KL4ZZnKw59e5H06V6dXLimoJUF039TrwidRyxEvtbegUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAEAjBGRXKa94A0bW90qxfZbo8+bDxk+46Guroq6dSdN3g7GdSlCouWaueU+T4z8DNmJjqWmr2wWAH06j8K6fQfiLo+sbYp3+xXR42Sn5SfZv8a68gEYPSuX17wHo2u7pDD9muT/AMtoeDn3HQ11e3pVf4ys+6/VHJ7CtR1oyuuz/Rm7f6bYaxZ/Z7+1gu7ZiG2SqGUnsanggitoEggjWOJBtRFGAo9BXlpsvGfgZt1pIdS05T9zBbA/3eo/Cuk0H4j6RqxWG6JsbroVlPyk+x/xqJ4SSXNTfMvL9UaQxkG+SouWXn+jNi+8I+HdTu3ur7RLG4uH+9JLArMfqTVf/hAfCP8A0Lmmf+Ay/wCFdCrK6hlYMp5BByDS1ynXcrWGn2el2i2thbRW1un3Y4lCqPwFWaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqtqF/b6ZYTXl04SGJdzE/yppNuyE2krsx/GHiaLw1o7S5DXUuVgT1Pr9BWB8PvDMse/xBqoL311low/VVPf6msjQrG58feKJNb1BSNNt2xFGehx0H+NerABVCgYA4AFdtVrD0/ZR+J7/wCRwUU8RU9tL4V8P+YtFFFcJ6AEAjBGQa4vXPASXVw9zo14+myzfLOseQkinrwO9dpRVRm4u6N8PiauHlzU3b+uxR0jSrbRdMhsbVdscYxnux7k1eoopN31ZlOcpycpO7YUVDdXdvY27XF1MkMSDJdzgCvOdX+IF/rF0dM8KW0kjtwbjbz9R6D3Na0aE6r93bv0OatiIUV72/bqdh4g8V6X4chLXcwaYj5YEOXb/CvGfE9zfa+z68+mJaWZYRq6rjefr3PvXoXh/wCG8aTDUPEExvbxjuMZOVB9/Wj4rKkXhW3ijUKonACgYA4rvw0qVKqoU9W93/kedi4Vq1GU6nupbLr8zB0nS/HOiaXbz6TOtxaOgkWEMDgHno39K0YfibqOnOIte0SSI9C6Ap+h4Nd5oK7dAsB6QL/Krk1vDcIUmiSRTwQyg1hPEwlJqpBP00Z0Qwk4RTpTa8nqjndN+IHh3UsKt6IJD/BONv69P1rpIporiMSQypIh6MjAj9K5jUvh34d1HLfY/s0h/igO39Olc3L8NtX0uQzaDrkiEdEclT+Y/wAKn2eGn8MnH1K9piqfxQUl5f5M9Oory7+3/Hvh/jUNO+3Qr/GE3cfVefzrS0/4raVMwj1C1ns5Oh43Af1FKWCq2vH3l5alRx1K9p+6/PQ7+is3T/EGk6oAbLUIJSeih8N+R5rSrllFxdmrHVGSkrxdwooopFBRRRQAUUUUAFFFFABRRRQAda5rXvA2ja8GeSAQXJ6TQ/Kfx9a6WirhUlB3i7MipThUXLNXR5S2meMfBDl9PmOo6epyY8FsD/d6j8K6HQviTpWpssF8DYXXQiT7hP17fjXa1zuveCtG19Wae3EVwek0Xyt+PrXV7enV0rR17r9Tk+r1aOtCWnZ/ozoEdZEDowZSMhlOQadXlL6L4w8EuZdLuDf2AOTFjPHuv+Fb2hfEvTNQYW+oqbC66Hf9wn69vxqZ4SVuam+ZeX+RUMZG/JVXK/P/ADO4opsciSxrJG6ujDIZTkGnVyHYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABIAyeBXlPiTUbnxz4lj8P6Y5+wQNmaUdDjqf8K2viD4oktIl0PTCXv7r5W2dUU9vqa1/BfhePw3pCq4DXk2Gmf39PoK7qSVCHtpbvb/M4KzeIqewj8K+J/obWmadb6Tp0NlaoEiiXA9/erdFFcTbbuzuSSVkFFFFIYUUVn6vrmn6Ham4v7hYl/hXqzfQU4xcnZClJRV5PQ0K5HxL4/03Qt1vbkXl90EUZyFPuf6Vy914k8ReOLhrLQYHtLDOHmJxke7f0FdR4a8AaboW24nH2u+6mWQcKfYV2KhTo613r2X6nC8RUr6UFZfzP9Dl7Xw34i8cXK3uvTva2OcpCOCR7L2+pr0XSND0/Q7UW9hbrEvdsfM3uT3rRorKtiJ1Fy7LsjajhoUnzby7vcK89+LjY8PWo9Z/6V6FXnXxeONFsV9Zj/KqwX+8RJx/+7TO40hduj2Y9IV/lWJ4y8daV4MshJdsZbqQfurZD8ze59BWuLuLTfDq3cxxHBbB2+gXNeG+CdLl+Jfj6813VwZLK2fcIz90n+FfoK5pXlNpHVG0YJs14fGfxQ8TKbrQ9HjtrQ/cZo15H1fr+FMHxP8AGvhW+jj8XaMGt3OC6oFP4FflP0r21ESJFSNQqKMBQMACsfxXoEPiTw5eabJGjPJGfKLfwv2Oe1S3bVFLXRlzSdVtNc0qDULKQSW867lP9DUWoeHtJ1RSLywglP8AeKDI/GuZ+F/hnWfCmgz6dq7QsPO3w+U5YAEc9h3rua05nF3izNxUlaSucBqHwp0uUmTTrq4s5OwzuX9ef1rN/sLx94e50/UPtsK9ELZ4/wB1v8a9RorojjatrS95eepzSwNK94Xi/LQ8xi+JWraY4i17Q5ExwXQFP58H8K6XTfiF4d1LC/bPs8h/hnXb+vSullginQpNEkinghlzXN6l8PvDupZY2QgkP8UB2fp0p+0w0/ii4+hPs8VT+GSkvP8AzR0kNxDcxiSCWOVD0ZGDD9KkrzKb4Z6np0hm0HW5Y2HRZCVP5j/Co/7a8f8Ah7i+sRfwr/EF3fqvP50fVYz/AIU0/XRh9bnD+LBr01R6jRXn+n/FfTZG8rUbOezkHBI+YD+RFdZp/iPR9UANnqMEhPRd2G/I81jUw9Wn8UTeniaNT4JI1KKKKxNwooooAKKKKACiiigArn9d8G6Nr6k3NsEn7TRfKw/xroKKqE5Qd4uzInTjNcsldHlUnh/xd4LkM2jXTX1kDkxdTj3X/CtvQ/ibp164ttVjawugcHcDsz/MfjXdVha54Q0fX0P2u1VZscTR/Kw/HvXX9Yp1dK0de63OT6tUpa0Jadnt/wAA2opY541kikWRGGQynINPryuXwz4r8HStcaFdteWgOTCeTj3Xv+Fa+ifE2xupBa6xC1hdA4JIOzP8xUywja5qT5l5b/cVDGRT5ay5X57fed7RUcM8VxEssEiSRsMhkOQakrkOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxPFPiKDw3o8l1IQZm+WGP+83+Fat3dw2NpLdXDhIYlLMx7CvLNPt7j4i+LG1C6Vl0i0bCIeh9B+PU104ekpNzn8K3/AMjlxNZwShT+KW3+Zp+APDs91cyeJ9XBe6nJaEP2B/i/wr0amoixoqIoVVGAB2FOrOtVdWfMzShRVGHKv+HCiiisjYKbJIkUbSSMqIoyWY4AFYPiLxhpfhyIi4lElzj5YIzlj9fSuGEXij4hzBpCdP0jPA5AI+n8RrppYaUlzzfLHu/0OWriowfJBc0uy/XsbPiD4kIk50/w9Cb28Y7RIFyoPsO9U9I+H99rF0NT8VXLyO3zC33foT2+grsPD/hTS/DsAW0hDTEfNM/LN+PatytJYmNNctBW8+v/AADOOFlVfNiHfy6L/MhtbS3sbdYLWFIolGAqDAFTUUVxN31Z2pJaIKKKKBhXm/xdOdP0pf707fyFekV5t8WjmPRk/wCm7f0rrwP+8R/roceYf7tL+upo/Ead7b4WXpQkFrdE/A4rK+BtrHD4GadQN81wxY/Tiuq8U6O2ueBrzToxmSS2Gwf7QAI/lXmfwY8V2ulR3XhrVZVtZ1lLReadoJ7rz3zXLH4pLudj+CPkej+N7nxRb6XD/wAIrbLNeNJ85YKQq/8AAq831LxJ8XNI0+a/vrW3htoRudzHEcCvbXmijiMryIsYGS5YAY+teFfGD4hW2p239gaPL50KsDczpypPZQah6bblLXc9A+F3iHWPE/hqTUtXkR2aYrHsjC/KPp713Fct8OdN/svwHpUBXDNEJG+rc11NaTVpWM46q4UUUVJQUUUUAFFFZfiDX7Lw1o8up6gX+zx4BEYyxJ9BkUN2BK4+/wBB0rVF23lhBN7sgyPxrktQ+FWkzkvYXE9nJ2Abcv68121hexajYQXkG7ypkDruGDg+tZ3iLxTpHhazFzqt0IlbhEAyz/QVtDEVaWilYwnhqVb4opnD/wDCO+O/D3Omal9shXpGW/8AZW4/WnxfEjWtKYR69obqBwZEBT/EH8K1dG+LfhPWr5LOK6mt5XO1PtEe0MfTIJrtpIop02yIjqR0YZFb/WlL+LBPz2Zh9UlD+FNry3Ry+m/EXw7qOFN0baQ/wzrj9RxXTQXMF1GJLeaOVD/FGwYfpXPal4B8O6llnsVhkP8AHCdh/SuZn+GN/YSGbQtbliYfdWQkH8x/hS5MNP4ZOPqHtMVT+KKkvLT8z0yivLv7V+IPh7i7sxqEC/xBd+fxHNX7D4r6ez+VqdjPaSDgkfMB+HBFJ4Kpa8LSXkVHHUr2neL80ehUVk6f4m0XVAPsmowOx/hLbW/I1rVzSjKLtJWOqM4yV4u4UUUVJQUUUUAFYmt+FNI1+Mi8tV8zHEqfK4/GtuiqjOUHeLsyZwjNcsldHlc3hTxR4Rla58P3r3VsOTCeuPdehrV0X4nWk0otNbt3sLkHBYg7c+46iu/rH1rwvpOvRFb21RnxxKvDj8a6/rMKulePzW//AATj+qzpa4eVvJ7f8A04LiG6hWa3lSWNujI2Qalryyfwf4l8KTNdeHL57iAcmBjzj6dDWlo3xOgaUWevWr2NyOC+07c+46iplhG1zUnzL8fuHHGJPlrLlf4feeg0VDbXVveQLNbTJNE3RkbIqauRq252p31QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVxPxA8VNpNmNMsCW1G6G0BeqKePzNaUqUqs1CJlWqxpQc5GH4u1a58W69F4Z0hiYFf9/IvQkdfwFeh6NpNtomlw2NqoCRjk92PcmsLwN4VXw9pfnXADX9wN0rHqv8As11lb4irGypU/hX4vuYYalK7rVPif4LsFFHSuN8S/ELT9HLWtkBe33QIhyqn3I6/QVhTpTqPlgrnRVqwpR5pux1V7fWunWzXN5OkMS9Wc4rznVPHeqeILptM8K2snPDXBHOPX/ZFQ2XhTX/GVyuoeI7mS3teqQDg49h2/nXo2l6RY6NarbWNukMY64HJ9ye9dVqOH396X4L/ADOS9bE7e5H8X/kch4d+HFvayi+1uT7dek7irHKKf6mu8VVRQqqFUcAAdKWiuarWnVd5s6qVCFJWggooorI1CiiigAooooAK80+KpzdaInrMf5ivS68z+KBzq+hJ6yj/ANCFdeB/jr5/kcWYf7u/l+Z6RAMW8Y/2B/KuH8XfCnRPFNy16pksr5uWlhxhj7iu6jGIkHsKdXI1dnanZHjcXwLlLBLnxPcvb5+4ikHH4kiukn+EHh2TQ4dLhae3RJRLJMhBeUj+8SDxXoFFAEVtAlrbRQR/cjQIv0AxUtFFAbBRRRQAUUUUAVr83Q0+c2IQ3Ww+Vv8Au7u2a8C+JVl8QJdGF34jntBp8cgAit243HoSMc19DV5z8bP+Seyf9fEf9aiemvoXDex13hT/AJFPSv8Ar2T+VcZqvhPUde+LMF9qViZdDtYf3ZdgVL49M5612fhT/kU9K/69k/lWnciY2sotyBNsPlk9A2OP1rWppUcu1zKHwJdzzX4yaNpieCWvUtoYbq3lTypEUKR7cV2nhCee68IaVNckmZ7ZCxPXpXjni238ZW1xbXvjeM6hokMoZ47RwqjnjIAFe36LfWeo6NaXen4+ySRAxAdh6VMfhfqVLdF+iiigAqhf6JpmpptvLGCYerIM1fopqTi7pilFSVmjg9Q+Fej3BL2M09nJ22tuX9ayv+EY8ceH+dK1T7XCvSMt/wCytxXqNFdUcZVStL3l56nJLA0W7x91+Wh5hH8RNe0hhHr2hvgcGRVKfryK6LTfiP4d1DCvctayH+GZcD8xXVSRRyrtkRXU9mGa57UvAnh7U8mSwSKQ/wAcPyH9KftMPP4o29P8ifZYmn8E1L1/zRvW93bXcfmW08Uyf3o3DD9KmrzS5+F93ZSedoetTQsOVWQ4/UVD/aHxC8O8XNsNQgX+LG/P4j5qPq0J/wAKafroH1ucP4tNrzWqPUaK87sfivZ7xFqunz2kg4JUZH5HBFdZp3inRNUA+y6jAzH+Bm2t+RrKphqtP4om1PFUanwyNiijqMiisDoCsnWfDela7CUvrRHbtIBhh9DWtRVRlKLvF2ZMoRmrSV0eW3PgrxD4Xna78NX7zRDkwMecemOhq9pHxORZhZ+IbR7K4HBkCnH4jqK9ErL1fw9peuQmO/tEkPZ8YYfQ11rExqaV4381ucbws6WuHlbye3/ALtpeW19As9rPHNE3RkbIqevL7vwLrvhudrzwxqEjoOTAxwcenoataT8TTBOLLxHZSWk44MgUgfiP8KUsJzLmovmX4/cOOM5Xy11yv8PvPRqKr2d9a6hbie0uI5oj0ZGzViuRprRnYmmroKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio554raCSeZwkUalmY9ABQGxm+I9et/D2kS3s5BYDEad3bsK4rwLoNxrGpSeKtYBeSRibdW/9C+npVBFuPiT4tLsGTRrM9OxHp9TXqn+j2NoASkMES4yTgKBXdP8A2en7NfHLfyXY8+H+01PaP4I7eb7k1ZmteINN0G2M1/cKnHyoOWb6CuO134jmS4Om+GoGu7pjt80LkD6Dv9TUWi/Dy51C5Gp+Kbl7iZju8jdn/vo/0FTHDKC567su3VlzxTm+TDq779EUbjW/Evj2drXR4WstNzh5ScZHu3f6Cut8NeBNM8PhZmX7Ve95pBnB9h2rpbe2htIFht4kiiUYVVGAKlqamJbjyU1yx/rcqlhEpe0qPml+XogooorlOsKKKKACiiigAooooAKKKKACvMfiYR/wkmgKTx5in/x8V6dXlnxNhW68V6HbPnZIArYOOC+K7MD/ABl6P8jjx/8ABs+6/M9PSaIqAJUP0YU8EHoQa48/DXQuzXa/S4b/ABph+Gmj/wANzfL9JzXPyw7/AIHt+xwf/P1/+A//AGx2lFcV/wAK208fc1LUV+k1VvClpJpXjjVNMS8uJ7eKFGHnPk5NHJFptPYf1ShKEpUql3FXty26pd/M76iiiszzwooooAKKKKACvOfjZ/yT2T/r4j/rXo1YXizwvbeLtEbS7ueaGIur74sbsj6ipkroqLs7kvhT/kU9K/69k/lXK2XjLUU+K974c1GaJLLZutVKAEntz3ruNNsU03TbeyjZnSCMRqzdSB61zXjL4e6Z4veK5klltL6IYS5hOGx6H1q5v3+ZbakRXuWYfE67tbX4f6oLp1Hmx7IwerNnjFN+FttNa/DzS0mBDMhcA+hPFYFn8G4Hu4ptb1y91KKI5WFzhT9a9NiijghSKJAkaAKqgcAChaJ+Y3rZdh9FFFIAooooAKKKKACiiigAooooAo32jabqSFLyygmH+2gNcnqPws0W5Jezeezk7bGyPyNd1RWtOvUp/DKxjUw9Kp8cUzy7/hE/GugHdpGrfaYl6RlsZ/4CcinJ8QfEWjNs13Q2KjrIqlf15Fen0140kXa6Kw9GGa3+tqf8WCf4M5/qbh/Cm1+K/E5LTfiV4ev8LJO9rIe0y8fmK6i2vbW9j32txFMvrG4b+VYmpeB/D2qZM2nxo5/ji+Q/pXL3PwtmtJPO0TWJoHHIWT/EUcmGntJx9dQ58VT+KKkvLRnpVFeXfa/iH4d/10I1GBe/38/j96rll8V7ZZBDq+mz2sg6lRn9Dg0ngqlrwtJeTGsdSvapeL80ei1m6toOma3AYr+0jlHZiMMPoag07xZoeqAfZdRhLH+B22n9a2QQRkHIrntOnLqmdN4VY9GjzC88A6z4fuDe+F9QkIHPkM2D9PQ/jVjS/iXLaTiy8S2MltMODKq4/Ej/AAr0es/VNE07WYDDf2scy9iRyPoa6Vio1NK8b+fU5XhJU3fDyt5dCex1Gz1K3E9lcRzxnujZ/P0qzXmN98PtV0O4N74X1CRSOfIdsH6Z6H8al034k3NhcCx8T2EkEo4Myrj8SP8ACh4XnXNRfMu3UaxnI+WvHlffp956TRVTT9TstUtxPY3Mc8Z7oen1HardcjTTszsTTV0FFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5l431u51/Vo/CujsW3Ni4demfT6Ct3x94sXw/pZt7dx9vuAQgH8C92rzDw1NrEzS22hW7Ne3HE12eqj0B7fzr08Fh2o+2fyv8AmeVjsSnJUI9d7b+nzPSJNZ0L4e6LHp0bia6UZMUZ+Zm7lj2rno7HxR8QphNeO1hpWcqgGMj2Hf6mt/w58ObPTpFvdWf7dfE7jv5VT/Wu4ChVAUAAdAKzlXhSbdPWX8z/AENIYepVSVX3Y/yr9WZGheGNM8PW4jsoAHI+aVuWb8a2KKK4pSlN3k7s74QjBcsVZBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFeYePvn8feH19Av/oden15j40+f4laEvoF/wDQjXZgf4vyf5HFj/4S9V+Z6dRRRXGdoVxeh/N8Stfb+7DGK7SuK8Oc/ELxI3osY/U1pDaXod+D/hVn/d/9uR2tFFFZnAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVO90nT9RQpeWcEyn++gNXKKabTuhNJqzOH1H4W6HdEvaGazk6gxtkfkaxj4P8Y6Cd2j6x58Q6RliM/gcg16jRXTHGVUrN3XnqcssDRbvFcr8tDy9PHvibRW2a5ojOo6yKpX9RkVvab8TPD99hZpZLRz2lXj8xXYOiSLtdQw9CM1g6l4K8P6pkz6fGrn+OL5G/MVXtcPP44W9P8iPZYmn8E7+v+aNi1v7S+Tfa3MUy+sbg1Dqej6frFuYb+1jmQ/3hyPoa4S6+Fb27+dourzW7jkK/wDiKr+d8RPDv30GowL3/wBZ/wDXpqhBu9Gpr56MUsRNK1am7eWqJb/4dajpFwb3wvqEkbDnyWbB+gPf8aXTviPfaXcCx8UafJFIOPOVcH6kdD+FS2fxWijkEOsaXPaydyg/oea3v7a8J+KrbyJbi1mDfwTfKw+me/0rebq2tiIXXdb/AHmEFSvfDVOV9nt9zNzTtWsNWtxPY3Uc6H+6eR9R2q5XmeofDm706b7f4W1B4nHzCJn/AJN/jSWHxE1LR7gWXijT5EYcecq4J98dD+Fc7wqmr0Hfy6nQsW4Plrx5fPoem0VR0zWNP1iATWF1HMvcKeR9R1FXq5GnF2Z2xkpK6CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4LxL8WdB8M6zJplxHcTzRAbzCAQp9PrSuOxh+Jfh74j1jXrq9We2ljkclC8hBC9hjFLY+GPHukwCCxuLaKMfwo4/wr0/Tr6LU9Ot76DPlTxiRc9cGrNd/16qo8kkrLyPP/ALPpcznFtN+Z5j9k+JadLmJv+BA/0o/4uanRom/BDXp1FT9b/uR+4r6l2nL7zzH7V8T0/wCWMbf8Ajo/tP4mL109W/4BH/jXp1FH1tf8+4/cH1N/8/JfeeY/258Rk+9pCn/gC/40f8JN4/T72iKf+2f/ANevTqKPrUP+faD6pPpVkeY/8Jh44T73h9T/ANs2/wAaP+E68Yp97w0p/wC2T/416dRR9Zp/8+1+IfVav/P1/geY/wDCwvFC/f8ADLfhFJR/wsjXl+/4alH/AGzkH9K9OpMA9QKPrFH/AJ9r72H1av8A8/X9yPNP+Fnaov3/AA5MPwYf0pf+FqXS/f8AD04/Ej+lek7EPVF/Kk8mI9Y0/wC+RR7eh/z7/Fh7DEf8/fwR5x/wtoL9/Qbgf9tP/saX/hb1qPv6PcL/ANtB/hXov2eE9YY/++RSfZbc9YIv++BR7bD/APPv8WHscT/z9/BHnw+L+mnrp1wP+Bj/AAp6/FzSD1srkflXdtY2jdbWE/8AABUbaVp7dbK3P/bMUe0w38j+8PZYr/n4vuONX4taGetvdj/gI/xrj9b8X6dqfjXTtXjWYW1vjeGUbuPQZr15tD0puun2x/7Zio28N6I/3tLtD/2yFaU8Rh6bvGL+8zq4bE1FaU132OcHxV8OH/n8H1iH+NSL8UPDbf8ALW4H1i/+vW0fCfh9uuj2Z/7ZCmHwb4cb/mDWf4RCs+bCfyv70acuM/mj9zM1fiX4ZP8Ay9SD6xmuc0Dxhotr4r1y+uLvZBcsvlMVPIFdifBHhtv+YRbD6LUbeAvDTf8AMLiH0pqWFSatLX0NadXHU4yiuX3lbr3v+g1fiD4XP/MUQfVG/wAKkXx54Ybpq8P/AHy3+FQt8PPDLf8AMOUfRjUbfDfww3/Liw+krf40rYT+9+BlfGf3fxLy+NfDbdNWg/X/AAqRfF3h9umrW3/fVZLfDHwuf+XSUfSdv8ajb4XeGj0hnH/bZqOXCd5fgHNjO0fvZvL4o0Jumq2v/fwVIviHRm6apZ/9/l/xrmW+FXh49PtA/wC2hqNvhPoJ6S3Q/wCB0cmF/mf3Bz4v+VfedcNb0pump2Z/7br/AI04arpx6ahan6TL/jXFn4SaKel3eD8R/hTD8I9L/h1K+H4r/hR7PDfzv7g9ri/+fa+87oahZN0vLc/SVf8AGni7tj0uIj9HFefn4SWX8OrXg+u3/CmH4Sxfw6zdD6gUeyw//Pz8A9tiv+ff4nowmibpIh+jCngg9DmvND8J3/h1ycfUf/Xph+FN2Pua/KPqp/xo9jh/+fn4MPb4j/n1+KPTqK8x/wCFX6qv3PEjj/gDf/FUf8K319PueJW/Jh/Wj2FH/n7+DD6xX/59P70enUV5j/wgHilPueJG/Nh/Wj/hCvGafc8Rt/38YUfV6X/PxfiH1mr1pP70enUV5j/wifj1PueIm/7/ALUf8I58RF+7rit9bg/4UfVof8/EH1up/wA+pHp1FeY/2L8SE6arE3/bYn+lH9n/ABKTpexN/wADB/pR9Vj/AM/I/eH1yXWnL7j06ivMfK+JidJYm/75P9KPN+JydFib/gCGj6p/fj94fXe9OX3Hp1FeY/b/AInL1tEb/gEdH9r/ABKT72lqf+AJ/jR9Tf8APH7w+vR/kl9x6dRXmP8AwkXxDT72jKf+AD/Gj/hLPHife0FT/wBsz/jR9Sn/ADL7w+vQ/ll9zPTqK8x/4Tbxon3vDin/ALZv/jR/wn/i1fv+Gfyiko+o1fL70H1+l5/cz06ivMf+FjeI1+/4Zk/CKSl/4WZrK/f8NzD/AIA4/pR9Rrdl96D+0KHd/cz02ivM/wDhaN+v3/Ds4/76H9KX/ha8i/f0C4H/AAMj+lL6jX7fig/tDD/zfgz0uivNv+FuQj7+h3C/9tf/AK1KPi/Y/wAWl3C/9tB/hR9RxH8v5D/tDDfzfmekUV52vxe0s9bC5H/AhUi/FvRj1tLofgKX1LEfyj+v4b+dHa3ml2GoRlLu0hmU9nQGuU1H4X6DeEvbCWzk9Ym4/I1CvxZ0E9Ybsf8AAB/jUg+K3hw9VvB/2yH+NaQpYun8KaM6lbBVfjaZjHwX4u0Il9F1kzRjny2Yrn8DkGqt74m16CE2vijw4l3B/E5jx+o4rp1+KXhs/wAdyPrF/wDXpx+JXhiVdrzSkHs0VbKVdu9SlfztZ/ejnccOlalVt5XuvuZ5oZdIFwLvQNSuNLuQc+TOTtz6Bh/UV0+jfFC7snW212ATIOPtEJGfxxwauajq3w71bJuI0Vz/ABpEUb8xXKahovhCQFtN8RNEeyTRFh+YFdX7uquWrB/NfqjkftKL5qU4/J/o/wBD2XStb07WoBLYXUcwxyoPzD6itCvmgtNo92stjqSM4OVkt2YfzArudB+K91b7YdYh+0R9POThx9R3rlrZbNe9Sd1+J2UM1g3y1VZ/gevUVn6Rren67afadPnEsYOGGMFT6EVoV5kouLsz1YyUleL0CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMPxf4ih8L+GrvU5SN6LtiU/xOegr59PhS51H4e6t4w1AM11POrxFuu3J3H8Sf0rqfH1/P4++IVl4U09ybO2fEzL0z/EfwHFem+KNFgT4c6hpVtGFiisyEUD+6M/0qH8Dn93oWviUPvK3wtvvt/wAPNKcnJjjMR/4CcV2NeU/Ae987wld2hPNvcnA9iM16tW0/iuZR2sFFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmXxe8Yan4ag0230e48m6uHJYhQSV6Dr71z0cfxkkiSVZ0KsAw5Tp+VVvHzHxD8Z9J0lfmS3aNSPx3GvdlUKoUdAMClFe7zd2xydpW8jwwfEfx14Pvoo/FmmiW1c43bApx7MvGfrXs2kataa5pVvqNlJvgnXcp9PY+9Y/xA0uDVvBOpwzorFITIhI+6y85FcX8Bb6SfwzfWbsStvcfID2BGaqLvdPoKStZrqetUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQqp6qPypaKAGeVGeqL+VJ5EJ6xJ/3yKkoouKxF9mgPWCP/vgUhs7U9baH/vgVNRTuwsiq2m2LdbOA/8AbMVG2jaY3Wwtz/2zFXqKfNLuLkj2M1vD+jt1021P/bMVG3hjQm66TaH/ALZCtain7Sfdi9lDsjFbwj4dbro1mf8AtkKjbwX4bb/mD2o+iCt6in7ap/M/vJ9hS/lX3HOt4F8NN/zCoB9BUbfD/wAMt/zDUH0JrpqKft6v8z+8X1ej/KvuOVb4c+GG/wCYfj6SGo2+Gnhdv+XKQfSZv8a66iq+s1v5n94vqtD+RfcZeieHtN8PQSQ6dCY1kbc25ixJ+prRmmit4mlmkSONRlndsAfjRNKkELzSsFjRSzMewFeB6jqOtfFzxbJpWnTvbaLbt8zDptH8R9SewrGUpTlrqzaMIwjpokeqXPxL8HWkxil1233g4O0Mw/MDFbWla/pOuRGTTL+C6UdfLbkfUda42y+C/hC2tRFNazXEmPmleUgk/h0rz/xn4TuPhfqtnr/h66mW0aTayM2dp9D6g0rpOzKs3sfQdFZ+harHreh2epRcLcRB8eh7j860KbVnZkp3VwooopDCiiigAooooAKKKKACiiigArlPiH4pTwp4UuLpWAupQYrde+49/wAK6uvK/HPgPxF4z8XWkkr20eiW5AC+ad5Xqxxjqalq/u9yotLVnG+EPhPqfiHSI9dl1eSxluiWUBSWKk9Sc966F/gnqbIwPiy4YEYIKnn9a9gtreK0tYreFQsUShFUdgKlq5W6EpvqeGfA2VrDxFrmkSNllAP1Kkg/0r3OvL/DvgHWtD+KF9roNt/ZlwZMASHfhjkcY/rXqFF7xi3vYGrSdtgooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISFUk9ByaWsjxVqA0vwrqd4Tjy7d8H3IwP50pOybHFXdjx7wCD4i+M2q6s3zJAZGU+mTgf1r3ivBPgzrmhaJbapearqUFtc3EgCrJnJUc56epr0u8+KHg6ygaQ6zFKQOEiUsx+nFU/dio9kLeTY74l6vHo/gPUpGYB5o/JjHqW/+tmua+BWmPaeEbi8kUj7XOSue4AxXH6pfax8ZPEsNpYW8lvolu3LsOAO7E+vtXu+labb6Ppdtp9qgWGBAij6Uoqycn1/IJO9oroXKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDhvi3qz6V4AvDExWS4IhBHoetU/gzosem+B4rvYBNesZGbvjoKq/HSGSTwRE6glY7lS3410fw0uYrn4e6Q0RBCRbGx2IJohtJ+gT+yvU6yqOqaPp+t2n2TUrSK5gyG2SDIyKvV514r+Jkui+LrXw9pljFe3EpVZMsflJPTj2o3aXcfRs7ywsLXTLKOzsoEgt4xhI0GAoqzSJuKKXADY5A9aWhiQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1nRrPX9Lm02/V3tpsB1RypP4ir9FDVwvY8+/4Ut4K/wCfG4/8Cn/xqe2+EHgu1kDrpjSEdpZmcfkTXdUUAVrKwtNNtlt7K2it4V6JGoAFWaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAy/EWh2/iLQbrS7n7k6YDf3T2NeIaTqni34S3k+n3WmSXuls5ZSoJX6qw6fQ19B010SRdrorD0YZpLR3Q73VmeKXvxm1vV4TaeH/Dk6XMg2h2zIV9xgAfnWx8N/h1e2Gov4k8SHzNUlJZI2OShPc+9eox28MRzHDGh9VUCpKpaarcT106BRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>Find $EG$ if $G$ is the incenter of $\triangle ABC$.
|
5
|
Geometry
|
Geometry3K
|
test
|
54
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADCAUgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArNv/EOiaVcC31HWNPs5iu4R3FykbY9cMQccVpV5fd6lpifEbxHJfaJd6w8ENtCkNvY/aDGu0szc8D7w75OOM0dR20PR7HUbHVLf7Rp97b3cG4r5lvKsi5HUZBIzVmuYg8Q6RB4IvNd0G0iktbeKSY20aiD5lHzKwx8rcelS6h4qW00PSr6C0+0XOqPCltbCTbuZwCctg8KuSTjtTtrb0/En/g/gdFRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFctb+M9Nh8QavpeqfZtKms2VkeecL9pjIzvGQOnTGTXU1TvtJ07U9n2/T7W72HKefCsm0+2RxQBw3gy0/tTw74tuUQix1a9uXtQy4Dxldu4D0JzVf4cFvEi6XqkoJtdGsUsrcMPvXBUea/4DC59zXaa9Lq1tYJb6Fpsc80uYg7yrHHbDHDkHlgPQCpvD2iW/h3QrTS7blIEwXxy7HlmPuSSaa0v8l9ya/Jg9fx/E06KKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFV7+9h06wuL24bEMEZkc+wGaaTbshNpK7Oa1vxFrP/CSpofh62s57hIPOuWud21ASMDgjB/xFRfaPiH/z56D+cn/xVO8A2U0ljda/ej/TNWlMvP8ADGPuge39MV2FdNScab5FFO359TlpwlVXO5NX/Locb9o+If8Az56D+cn/AMVR9o+If/PnoP5yf/FV2VFR7f8Aur7i/Yf3395xv2j4h/8APnoP5yf/ABVH2j4h/wDPnoP5yf8AxVdlRR7f+6vuD2H99/ecb9o+If8Az56D+cn/AMVR9o+If/PnoP5yf/FV2VFHt/7q+4PYf3395xv2j4h/8+eg/nJ/8VR9o+If/PnoP5yf/FV2VFHt/wC6vuD2H99/ecb9o+If/PnoP5yf/FUfaPiH/wA+eg/nJ/8AFV2VFHt/7q+4PYf3395xv2j4h/8APnoP5yf/ABVH2j4h/wDPnoP5yf8AxVdlRR7f+6vuD2H99/ecb9o+If8Az56D+cn/AMVVOLxH4vi8VWGiXltpAe4/eOYVkYpGM5J+bjoce9d3LKkELyysEjRSzMegA5JrjfA8Mmq3+p+K7lSGvZDFagjlIVOP1wP++fetYTi4SlKKsvzf9XMp05KcYxk7vz6Lf/I7WiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuK8cTSare6b4Vtmw99IJbkj+CFTk/ng/9812cjrFG0jsFRQWZj0AFcX4KR9a1XVPFc6EC5cwWYb+GFeMj6kD8Qa6KHu3qvp+fT/P5HPX961Jfa/Lr/l8zs4YkghjhiULHGoVVHQAcAU+iiuc6AooooAKKKKACiiigAooooAKKKKACiiigDkPH97O+n2ug2R/0zVpRCMfwx/xH6dB9Ca6bT7KHTdPt7K3XEUEYjUewFch4c/4qPxnqXiJvmtLT/Q7L0OPvMPz/APHq7iuit7kVS7av1f8Akjno+/J1e+i9F/m/0Ciiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAorA8V+IZdBs7RbO1W61C+uVtbWF32qXbux7AAEms6w8Ra5YeJbPQ/Ettp4fUEdrS5sGfYWQZZGV+Qcd+9C1B6HYUUUUAFFFFABRRXOeJvEt3ot7pdhp2lLqV7qDyLHE1yIQAi7iclTQB0dFYuh6jrt7JMusaDHpiKAY2S+Wfee4wFGK2qAOR8f38q6VBotmc3urSi3QDsmRuJ9uQPoTXSabYQ6XpttY24xFBGEX3x3PuetcjoP/ABUnjjUNeb5rOw/0OyPYt/Ew/M/gw9K7iuit7kVT+b9X/kjno+/KVX5L0X+b/QKKKK5zoCiiigAooooAKKKKACiiigAooooAK5rxzrD6V4dkjtsm9vWFtbqvUs3BI+gz+OK6WuHhP/CTfEeSX72n6EuxfRpz1/LB/FR61vQiubmlstf6+ZhiJPl5Y7y0/wA/uR0vh7SE0LQbTTkwTCg3sP4nPLH8ya06KKxlJybk92bRiopRWyCiiikMKKKKACiiigAooooAKKKKACiiigAooooAp31pYTGG7vooW+xsZo5Zf+WRA5bPbjNcdpxk8a+M7PxBHC0eiaSsiWcrjBu5HG1nA/uADg96u/EKw1fU9OsLTTdNfULY3avfW6XCQ+ZEozsJYjgnGfpU+ma14ia4gtZvBMtjaAbTIL+BhGoHGFU/QUR3v/XqD2/r7jD8S6zq/hnx0kdm0t4uuW3lWltLMfLhuUIG7BPyrtOTgc4rtND06bStJhtbm+nvbgZaW4ncsXc8nGeg9AOAK4PV/B+t63p934huLcL4lW4jm06281SLaON8iPdnblhkk5xkj0r0mB3eCN5YzHIygshIO045GRxQvh8/6f8AX/DBLf8Ar0OW1v4haZoOqy6dc2GrSyxhSXt7QuhyAeDn3rP/AOFtaL/0Ctd/8AD/AI13tFCGUdH1SHWtKg1C3iniimBKpOmxxgkcjt0rB8R6Drep+KdK1DS722s4rSCaNppY/NZC+3lU4BOFxknjPQ11lctr9r4htdftNa0UNfQRwNBcaY90YlfJyHXPy7h057d6Ha4lsV/Dusava+K7zwvrl3FfTx2y3dteJEIjJGTtIZRwCD6Vf8baw+keG5jb5N5dEW1uo6l24yPcDJ+uKpeHdH1afxRfeJ9ct4bO4mt1tbazjkEhiiB3Esw4LE+lVv8AkZviR/esNCX8Gnb/AAx+a1vQim+aWy1f6ffoYV5NLlju9F92r+Wp0fhvRk0Hw/aaeuN0aZkYfxOeWP51q0UVlKTk3J7s1jFRiorZBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAY/ijWl0Dw7d35I8xV2xA93PC/rz9AaxNLa38BeA1u79JZLiQiWVEG6SWaQgBBnv0H4E1FrI/wCEl8e2Ojqd1lpYF3dDsZP4VP6fgTXV6npNjrEUMV/B5yQzJPGN7Lh1OVPBGceh4ron7lJQ6vV+nT/P7jnh79Vz6LRevX/L5MwtO8XXja1a6VrmhS6TPeqzWjG4SZJNoyVJX7rY5x+tdVXnd1qq+IPiLolrc2d3pcenSTSxG+iKG8fbtAiIyCAMnrnpxWj4t8SXnhTxDpd9cTSPoNyklvNCkQYrNjcjAgbstgrjOK576J9/6/4B0W1aOzorG8N/2xLp73etSbZ7lzKlqFUC1Q/dTIGWOOpJPPSodZ8a+HPD16LPVdUitbgoJAjKxO05APAPoaHpuC12N+iuQ/4Wl4J/6D9v/wB8P/8AE10Okazp+vWC32mXK3NszFRIoIBI69RQBblljgiaWWRY41GWZjgAe5rI8LeIovFGjnUoIvLhM8sSYfdvVWIDdB1xnFWNZ0DSvEEEcOrWMV3HG29FkBwpxjNc18Ko0h8GGKNQqJe3Kqo7ASHAoW7uD2X9dx9547u/tOonR/D1xqdlpkjR3lytwkeGUZYIp5cj8K6jStTttZ0q11KzYtb3MYkQkYOD6+9eaQXep6Qniiz8OaY2r6bNdzSPeK4QW0rAeYu08y7evy/Su38EQ2Fv4K0mHTLr7VaJAAk23bvPc47c547UR1jf0/Hf/gBLR/f/AF/mdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk+JdZTQfD93qDEb40xGD/ABOeFH5/pVPwTo76P4bhFxk3l0TcXDN1Ltzg+4GB9c1k68f+Ek8c6foK/NZ6eBeXnoW/hU/mPwY+ldxXRP3KSj1er/T/ADOeH7yq59FovXr/AJfeFFFFc50BRRRQAUUUUAFFFFABRRRQAUUUUAFU9V1GHSdKur+c/u4Iy5Hr6D8TgfjVyuI8ZM2ua5pfhWEny5XFzelT0iXoPx5/HFa0YKc0nt19DKtNwg2t+nqW/AOnTQaNLqt6M32qyG5lPcKfuj6YOfxq/wCKxrK6VHcaGWa5t7iOWSBSoM8QPzoCeMkfyrcVVRAqgBVGAB2FLU1ZupNyKpQVOCijgLu4vfGmtaEIdC1PTrbTrwXlxcahEITlVICIMktknkjjAqn4q0XVfHA1SXyru0tdLRhpkTK0bXFyvPm4PJXjavrkmvS6Kjpp/T7miet/6sZ2g3s+oaDY3d1bS21zLCrSwzIUZHxyCDyOc1YuNOsbqTzLizt5nxjdJErHH1IqzRTbu7kpWVij/Yulf9Ayy/78L/hVqC3gtY/Lt4Y4o852xqFH5CpKKQwrkfhzZ3Vj4Wkhu7aa3lN7cNslQo2DISDg9iK66igOljzXRbvV/BVjqGhy+HNTv3NzNJZXFnGJIpVc5G9s/IQTzmuo8C6FP4c8HWGm3RU3KBnlCnIVmYsQPpnFdFRQtFb0/AHqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdSv4dL0y5vrg4igjLt747D3PSrVcT41dta1bS/CsDHFzILi8K/wwrzg/Ug/iB61rRhzzSe3X0Mq03CDa36evQseALCVdKn1q8Gb3VpTcOfROdoHtyT9CK66mxosUaxooVFAVVHQAU6pqT55uQ6UFTgohRRRUGgUUUUAFFFFABRRRQAUUUUAFFFFAEdxPFa20txO4SKJC7segUDJNcf4Ehk1GbUvFN0pEuoylYA3VIVOAP0x/wEU/x9dzXFvZeHLNsXWqzBGI/hiByx/wA9ga6uztYrGygtIF2wwoI0HoAMV0fBR85fkv8AN/kc/wDEreUfzf8AkvzJqKKK5zoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAZNKkEMk0rBY41LMx6ADkmuN8Dwyareal4quVIe+kMVsD/BCpwPzwP++al8f3k0llaaBZN/pmrSiLj+GMfeJ9un4ZrqLCyh06wt7K3XEMEYjQewGK6F7lG/WX5L/N/kc7/eVrdI/m/8l+ZYooornOgKKKKACiiigAooooAKKKKACiiigAoJAGTwKK5fx5qslh4fNpakm+1FxawAHBy3BP5cfUirpwc5KK6kVJqEXJ9Ch4WH/CQ+K9T8TOM28R+x2JP90feYfX/2Y129Z+h6VFomi2mnRYIhjALAY3N1J/E5NaFVWmpz02Wi9CaMHCGu71fqwooorI1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooproskbRuMqwII9QaAPO9E1rS9U8b6lr1/qdnDDbD7JYpNOikr/E4BPfnn/aPpXY/8JPoH/Qc0z/wLj/xqv/whnhv/AKAtn/37o/4Qzw3/ANAWz/79111J0Ju+vboclOFeCtprr1LH/CT6B/0HNM/8C4/8aP8AhJ9A/wCg5pn/AIFx/wCNV/8AhDPDf/QFs/8Av3VJ9E8Dx34sHt9IW8bpbs6CQ/8AAc5rP9x5/gX/ALR5fiav/CT6B/0HNM/8C4/8aP8AhJ9A/wCg5pn/AIFx/wCNV/8AhDPDf/QFs/8Av3R/whnhv/oC2f8A37o/cef4B/tHl+JY/wCEn0D/AKDmmf8AgXH/AI0f8JPoH/Qc0z/wLj/xqv8A8IZ4b/6Atn/37o/4Qzw3/wBAWz/790fuPP8AAP8AaPL8Sx/wk+gf9BzTP/AuP/Gj/hJ9A/6Dmmf+Bcf+NV/+EM8N/wDQFs/+/dH/AAhnhv8A6Atn/wB+6P3Hn+Af7R5fiWP+En0D/oOaZ/4Fx/40f8JPoH/Qc0z/AMC4/wDGqR8LeExdraHTdPFyyGRYSBvKg4LAdcZI596beeGvCGnW5uL2w022hHWSbaij8ScUfuPP8A/2jy/Ev/8ACT6B/wBBzTP/AALj/wAaP+En0D/oOaZ/4Fx/41StvC3hO9gWe103T54W+7JEAyn6EcVL/wAIZ4b/AOgLZ/8Afui1Dz/AP3/l+JY/4SfQP+g5pn/gXH/jXNae6+KviBNqSOsum6OnlW7Kcq8rdWB79/yWt3/hDPDf/QFs/wDv3Wlp+mWOlW5gsLWK3iZt5SNcAnpn9BVKdOCfJe701E4VZtc9rLXQt0UUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc/mfZ5fJx5uw7M9N2OK80vPB2m6L8Kr99atLRtWW3lnmvCA0huDkqQ+M5yQBXpzMEQsxwqjJJ7CuD061l+IN3DrepAp4fhkLafY5/4+Cpx50vqMj5V/Ola90NO1mamneIW0zw74XXV47hrzUlhtyyqDtlKZy+Tx0PrzWtNrltD4httECSyXc8LTkoAViRTjLknIyTgYBrA+JGyDRtM1CQhUsdVtZ2YnAVd+0n8mqfwbC9/LqHie4UiTVJALYN/BbJxGPx5b/gVXfmbfm/yVvz/AAJtypLyX6/odXXKa74hvtO8deGtHg8r7LqIn8/cuW+RcjB7Vq+IdIuda05ba01a60uQSBzPan5iAD8v05/SvKfEHhHU7bx/4XsZPFuqzzXQuPLupCN8G1cnb9ehqY/Ev66FP4X6HtlRz+cbeT7OYxPtPlmQEqGxxnHOM1z3hzwxqGiXks934m1LVUePYIrojapyDuHvxj8a6WhoSPNNFi1yH4yONdvba5mbR2aMWsbJHGvmgYAJJ6gnOa6DUvDD6z46ttQ1KC3udItLIrDDLhgJ2blipGD8o61Tb/ktkf8A2Aj/AOjqu+J9X1GXU7fwzobLFqN3EZpbp+RawA4Lgd2J4A9afSNvP82N7v5fkjM8JQwWPxE8U2OlokWlokDtFEMRxzkHcFA4BI64rvay/D/h+x8N6WtjYqxG4vLLId0kznq7nuTWpR0SF1bCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJokuIJIZBmORSrAEjIIweRXIp8LfB8aBE0yZVHQC/uAB/wCRK7GigDh/EWljU7KDwRYaZeJYZiM93IrGKOFW3FVdjlnO0DvjOTXawwx28EcMSBI41Coo6ADgCn0UXAKzbzQtPv8AWLDVbiJmvLDf9ncOQF3jDcdDx61pUUAFFFFAFE6PYHWxrPkf8TAQfZhNvb/V7t23Gcde+M1maz4I8PeINRGoalYvLdCMRCRbmWP5QSQMIwHUmuhooC5h6J4Q0Tw7cyXGl2skMsibGL3MsmRnPR2IFblFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=
|
<image>Find $x$ so that each quadrilateral is a parallelogram.
|
13
|
Geometry
|
Geometry3K
|
test
|
55
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGmAgkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqWq6tY6Hp0t/qVylvbRD5nb+QHc+1Ddg3LtFebwfHDwhNeCBjfxITjz5IBs+vDE/pXokE8V1bxzwSLJDIoZHU5DA9CKLaXDyJKKKKACiiigAooooAKKKKACis3XNf0zw5prX+q3S28CnAJ5LH0AHJNcTa/HDwhc3Ygf7fbqTjzpYBs/Rif0oWrsFtLnpFFRwTxXMEc8EiyRSKGR0OQwPQg1JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeRfEvd4j+IfhvwmzN9kY+fOoP3uTn/wAdU/nXrteD+Om1J/jfawaVKIb2aBIYpiM+UGUgsPcAk0vtR9R/Zl6HrOveEtN1rwxPoi21vDGYtkDCIYhbswHtS+DdAuPDHhm20i4vReNBuCyhNvykkgYyema85134QyaVpdxrWk+IdTbWLdDO0ksg/eEDJwQAQfxNdp8NPE8/ivwdDeXZBu4XME7AY3MuOfxBFUuvfqJ9Oxr2virRL3Xp9Dt74NqUAJkgMbqRjryRg9R0NO1nxPo3h+W2i1O9WCW5bbDGEZ2c+wUE968x+JSt4P8AiFo3jKCNjBKfKugn8WBg/iVP/jtafgXR7vxZr8njvXoiA526ZbN0jTs3+H4mlH3kvx/rzHLT9P68j1EEMAR0NLRVC51zSbKcw3WqWUEo6pLcIrD8CaBGN4+8VS+DvDLapBbJcS+asao5IXnPJx9K29Iv/wC1NGsr/Z5f2mBJdmc7dwBxXmvxm1rSr/wJ5NnqdncS/aozshnV2xg84Brq/CviLQ4fCekRS6zp6SJaRKytdICDtHBGaI6qV+6/IJbr0OsoqpZ6pp+o7vsN9bXWz73kTK+Prg1boA8m+JGlXviD4ieGtNktLibSVw8zLGxjBLHIYjgcKB+Ndj4z0HS7vwPqVtLZwLFBau8WEA8sqpIK+nSuoryPx34vu/FF+/gnwkn2maY7Ly6U/Ii9xn09T+AqWvd5Fu7/ANfIpP3ud7L+vxNj4K3c1z8PoUmYsIJ5I4yf7uc/1r0SsXwp4dg8LeG7TSYW3+Svzvj77nkn862q0m7szjsFFFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUc88VtbyTzyLHFGpd3Y4CgckmpK5j4iQ3Fx8P9ZjtQxlNuThepAIJ/QGpk7JscVdpHJXHxnE1xN/YfhbUtUtISQ9ymVA98BWwPriuv8G+NtM8aafJcWQkimhIWa3l+8h/qPesf4QTWT/DmxW3aPfGXE4HUPuJOfwxXM/DJFm+KHiy7sAP7O3soZPuklyRj9a0taXL5E3vHm8z2OiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUyEyGFDLt8wqN20YGaAH0UUUAFFFFABRRRQAUUUUAFFFFABXjnjrZofxo8Oa3cnZZzKI2kPRT8ynJ9tymvY6xvE3hfS/Fmlmw1SEsgO5HQ4eNvVTS1TUl0Humn1DxRqltpXhXUb64lRYlt32kn7xIIAH1JFcd8E7OSx8APc3A8tLm6knUtx8uAuf/HTVa2+CGmieIX2t6leWURylq7AL9CfT6YrvNV8O22p+HW0OOeextGQR/wChlVYIP4RkHAp7Xa3YXvZdDyPxO2pfFjUNSTSnZND0aJ2ibHFzMB2+vb0H1rtvhFr/APbXgeCCVs3Ngfs0gPXA+6fyx+VdR4e8P2HhnRodL05CIIh958FnJ6sx7k1m+GvA2m+FdV1C+064u8XzbpIJGUxqckjaAoIxkjqaasrrp+onrr1/Q6euC1z4ReG9f1i41O6a9Se4bdIIpgFJ9cEGu9opW6jueBfEn4YaD4T8K/2lp0l40/npHiaQMuDnsAPSt/Qfgv4Y1Lw/p99PLqAluLdJXCzKBkqCcfLXR/FvRtQ1zwQ1rptq9zOtwj+WnUgZBx+ddR4ctZrHwzplrcJsmhtY0dfRgoBFEdpX7r8glurdjG8J/DvRPBt3Pc6ablpZk2M00m7AzngACusooouI82+KGvakLnTPCeiy+Te6s22SbOCkeccfXnPsK6fwh4N03wdpYtbJN874M9ww+eVvf29BWZ4u+GWj+M9Vj1DULzUIpY4hEq27oFwCT3U881gf8KF8M/8AQT1n/v8AR/8AxulHRPuOVm0eqUVz/hHwhY+DNMlsLCe5miklMpa4ZWbJAHYDjiugqmIKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVh+LvEUHhbw1d6rPH5nlrtSP8AvseAK3K4L4w6dPqPw8u/IUs1vIk7KOu0cH+efwqZuyKgrs4vRfhZd+LNNOvXepJpL6gvmJa2MAWNVPTcMjOa2vhnq0+h+IL7wLqNtax3FrmSKe3jCecOOWx1JBBzXQ+AvF+i3/gvTy2o2sMttbrFPHLKqFCowcgnpx1rj/Ck6eKfjhqmuWPz2FrFsEoHDHAQfngmtLWqcq21/wCARe8OZ76Hs1FFFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAory3xpqvjLwzeebFqbS6dK37qT7PHlT/db5ev86g06++JGrWMd5ZXsMsEgyGAg/I8cGu1YKTgp88bPz/4BwvHxU3T5JXXl/wAE9ZorzHy/in/z3i/KD/Cjy/in/wA94vyg/wAKX1T/AKeR+/8A4A/rv/TuX3f8E9OorzHy/in/AM94vyg/wo8v4p/894vyg/wo+qf9PI/f/wAAPrv/AE7l93/BPTqK8x8v4p/894vyg/wo8v4p/wDPeL8oP8KPqn/TyP3/APAD67/07l93/BPTqK8x8v4p/wDPeL8oP8KPL+Kf/PeL8oP8KPqn/TyP3/8AAD67/wBO5fd/wT06ivMfL+Kf/PeL8oP8KPL+Kf8Az3i/KD/Cj6p/08j9/wDwA+u/9O5fd/wT06ivMfL+Kf8Az3i/KD/Cjy/in/z3i/KD/Cj6p/08j9//AAA+u/8ATuX3f8E9OorzHy/in/z3i/KD/Cjy/in/AM94vyg/wo+qf9PI/f8A8APrv/TuX3f8E9OorzHy/in/AM94vyg/wo8v4p/894vyg/wo+qf9PI/f/wAAPrv/AE7l93/BPTqK8x8v4p/894vyg/wo8v4p/wDPeL8oP8KPqn/TyP3/APAD67/07l93/BPTqK8x8v4p/wDPeL8oP8KPL+Kf/PeL8oP8KPqn/TyP3/8AAD67/wBO5fd/wT06ivMfL+Kf/PeL8oP8KPL+Kf8Az3i/KD/Cj6p/08j9/wDwA+u/9O5fd/wT06ivMfL+Kf8Az3i/KD/Cjy/in/z3i/KD/Cj6p/08j9//AAA+u/8ATuX3f8E9OorzHy/in/z3i/KD/Cjy/in/AM94vyg/wo+qf9PI/f8A8APrv/TuX3f8E9OorzHy/in/AM94vyg/wrI0nxD8QNaurm2sr1Gmt/8AWI0cKkckd19qawLabU46ef8AwCXj4ppOErvy/wCCey0V5j5fxT/57xflB/hR5fxT/wCe8X5Qf4Uvqn/TyP3/APAK+u/9O5fd/wAE9OorzHy/in/z3i/KD/Cjy/in/wA94vyg/wAKPqn/AE8j9/8AwA+u/wDTuX3f8E9OorzHy/in/wA94vyg/wAKPL+Kf/PeL8oP8KPqn/TyP3/8APrv/TuX3f8ABPTqK8x8v4p/894vyg/wo8v4p/8APeL8oP8ACj6p/wBPI/f/AMAPrv8A07l93/BPTqR0V0ZHUMrDBBGQRXmXl/FP/nvF+UH+FHl/FP8A57xflB/hR9T/AOnkfv8A+AH13/p3L7v+CaF/8HfB99dtcfYprcscskExVSfp2/DFdXofh/S/DdgLLSbRLaHOSFySx9STyT9a4Ty/in/z3i/KD/Cjy/in/wA94vyg/wAKFhLK3tI/f/wAeNvq6cvu/wCCenUV5j5fxT/57xflB/hR5fxT/wCe8X5Qf4UfVP8Ap5H7/wDgB9d/6dy+7/gnp1FeY+X8U/8AnvF+UH+FHl/FP/nvF+UH+FH1T/p5H7/+AH13/p3L7v8Agnp1FeY+X8U/+e8X5Qf4UeX8U/8AnvF+UH+FH1T/AKeR+/8A4AfXf+ncvu/4J6dRXmPl/FP/AJ7xflB/hR5fxT/57xflB/hR9U/6eR+//gB9d/6dy+7/AIJ6dRXmPl/FP/nvF+UH+FReEvEHivUvGJ0u/vw0VtvNyqxR4+XjGQvqRQ8G+VyU4u3Z/wDABY6PMouElfuv+Cep0UUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV72yttRs5bS7iWWCVdrI3evK2XUvhhr25d9zod03T/PRh+o/T1yquo6fa6rYy2d5EssEowyn+Y9DXRQr+zvGSvF7o5sRh/aWlF2ktn/XQWwv7bU7GK8s5VlglGVYf561ZryOKTUvhhr3lS77nQ7lsg/19mH6/y9Vs7y31Cziu7WVZYJV3I6ngiivQ9naUXeL2YYfEe0vGStJbr+uhPRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXl+mf8SP4x3lt92O+DEemWAf+hFeoV5h8R1OleK9D1teAGCuR/stk/o2K7MH70pU/5kzix3uxjU/laf6Hp9FIrB0DDoRmlrjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAoa1qK6Tot5fsR+5iLDPduw/PFcV8KdOYade6xMCZbuXarHuq9T+ZP5U74rakyaVaaTBkzXkuSo6lR0H4kj8q7HQtNXSNDs7FcfuYgpPqe5/Ouz+HhvOT/Bf8E4f4mL8oL8X/wAA0aKKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigCnqml2msafLZXsQkhkGCO4PYj0NeYWl1qXwy137Heb7jRLhso4HT3How7jvXrdUdX0iz1zTpLG9jDxOOD3U9iD2NdNCuoXhPWL3/wA0cuIw7nacHaS2f6PyLNrdQXttHc20qywyKGR1OQRUteS6dqGo/DbXP7M1IvPo87ZjlA4X/aH9R/k+rQTxXUEc8EiyRSKGR1OQQamvQdN3WsXsysPiFVTTVpLdElFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfFKw+1+EGnA+a1lWTPsflP8AMflXa1Q1yx/tLQr6zxkzQMq/72OP1xWtCfJUjLszHEU/aUpQ7op+EL/+0vCem3JOWMIRj6svB/UVt1598Jr7zdBurFj81tOSB6Kwz/MGvQarEw5K0o+ZOFqe0oxl5BRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVQ1vUV0nRLy/Yj9zEWXPdugH54pxTk7IUpKKbfQ88b/iqPi6B961038vk/8AszmvUq88+FOnMum3mrzAmW7l2qx7qvU/mT+Veh11Yxr2ipraKsceBi/Zuo95O/8AkFFFFch2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ2t6LZ6/psljex7kblWH3kbsQfWvN9I1XUPh3rX9jawWl0qVsxTAZCj+8vt6j/J9ZrL17QbPxFpj2V4nB5SQfejb1FdNCuop06msX+HmjlxFByaqU9Jr8fJmjFLHPEksTq8bgMrKcgg9xT68o0LWr/wAA6wdB1ws2nO2YZ+oQE/eH+z6jtXqqOksayRsGRhlWU5BHrU16DpPunsysPiFWXZrddh1FFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHl/hH/AIkvxO1jSj8sc+4oPody/wDjpNeoV5f4xH9jfEzRtWX5Un2K7fjsP/jpFeoA5Ga7MX73JU7r8VocWC93npdn+D1CiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAK89+K2ouml2ekwZM13LkqOpA6D8Sf0r0KvLT/wAVR8Xf79rpv5fJ/wDZnNdeDS9p7R7RVzjx0n7NU1vJ2/zPQtC05NJ0OzsUx+5iCkjue5/OtCiiuWTcm2zrjFRSS6BRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiLw9Z+JNMa0u1ww5ilA+aNvUf4VwPh3X77wTq3/CO+ICfsZP7ic8hAehB/un9K9VrF8TeGrPxNprW1yNsq5MMwHMbf4eorqoVkl7KprF/h5o5MRQk37WlpJfj5M2VZXUMpBUjII6Glry3wx4kvfCWqf8I14iJWAHEE7HhR257qfXt/L1EEEAg5B6EVnXoulKz1T2fc0oV41o3WjW67C0UUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/xasTN4etr1R89tPjPoGH+IFdfoV8NS0GxvM5M0Ksfrjn9ar+LbH+0fCmpW2MsYS6j3X5h/KsH4WX32rwkLdj81rM0ePY/MP5/pXY/fwq/uv8GcS9zFv+8vxX/AO3ooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKAM/XNRXSdEvL9iB5MRZc926AfniuM+FOnMumXmrzAmW8lwrHuq//XJ/Kj4rai66ZZ6RBkzXcuSo6kDgD8Sf0rs9D05NJ0SzsUx+5iVSfU45P512fw8N5yf4L/gnD/FxflBfi/8AgGhRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGD4p8L2nifTTBMAlwmTDOByh/qPauO8KeKLzw5qX/CM+I8oEO2Cdzwo7DPdT2Pb+Xp9c94t8J2vijT/LfEd3GCYZ8dD6H2rroVo8vsqvwv8ADzOOvQlze2o/Evx8joetFeaeEPFd1o1//wAIz4jzHJGdkE0h6eik9x6GvS6yrUZUpWfyfc2oV41o3W/VdgooorE2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQgMpUjIIwQa8w+HROk+L9c0RzwCWTP+wxH6givUK8v1f/AIknxhsrv7sV6FB9DuGz+YBrswvvRnT7r8jhxnuyp1ezt8meoUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ+uaiukaHeX7EDyYiy57t0A/PFOKcmkhSkopt9Dz3/kaPi7/ftdN/L5P/ALM5r1KvPPhTpzJpd5q0wJlvJcKx7qv/ANcn8q9DrqxjXtPZraKscmBi/Zuo95O/+QUUUVyHYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc14w8I23iew42xX0Q/czY/8dPt/Kuc8G+Lrmxvf+Ea8RborqI+XDLJ39FJ/ke9ekVy3jPwdB4msvMi2xajEP3Uv97/Zb2/lXXRrRcfZVfh6PscVejKMvbUfi6rv/wAE6mivPPBXjGeO6/4R3xBuivoj5cUknV/9kn19D3/n6HWNajKlLlkb0K0a0eaP/DBRRRWRsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXm/xZtXjttL1WLh7eYpu+vzL/AOgmvSK5vx7Yf2h4N1BAMvEgmX22nJ/TNdGEnyVos5sZDnoSXl+WpuWF0l7p1tdJ9yaJXH0IzViuT+HF/wDbvBloCcvbloW9sHj9MV1lZ1YclRx7M1oz9pTjPugooorM0CiiigAooooAKKKKACiiigAooooAK88+K2ouum2WkQZM13LuKjqQOAPxJ/SvQ68tH/FUfF0n79rpv5fJ/wDZnNdeDS9o6j2irnFjpP2apreTt/mehaJpyaTolnYpjEMSqT6nHJ/OtCiiuWTcm2zsjFRSSCiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS8a+DIvEdr9pttsWpwj93J03j+6f6HtWZ4J8Zyyzf2Bru6LUoTsR5ODJj+E/wC1/OvQK47xt4LTX4ft1jiLVIRlGHHmAdifX0NdlGrGcfY1duj7f8A4q1GUJe2o79V3/wCCdjRXB+CPGj3z/wBiazmLVIfkVpODLjsf9r+dd5XPVpSpS5ZHRRrRrQ5ohRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFR3EKXNtLBIMpIhRh7EYNSUUBueZ/CuZ7S91nRpTh4pd4X3BKt/IV6ZXl8f8AxI/jO6/div1PPruG7/0IV6hXZjdaimvtJM4sBpTdN/ZbQUUUVxnaFFFFABRRRQAUUUUAFFFFABRRRQBn67qS6Rod7fsQDDESue7dF/UiuN+FOmsmlXerTAmW8lIVj3Vf/rk/lSfFbUXGnWWjwZM13LuKjqQOAPxJ/Su00TTk0nRbOxTGIYlUn1OOT+ddn8PDecn+C/4Jw/xMX5QX4v8A4BfooorjO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4rxv4KGtJ/aem/utVh+YFTjzcdBn+96GmeCPGh1Yf2Tqv7rVYfl+cY83HXj+8O4ruK4bxv4LbUz/bGkZi1SH5iEOPNx/7MOxrspVY1I+xq/J9v+AcNalKlP21H5rv/AME7miuL8EeNF1yP+ztR/darCMMrDHm46kD19RXaVz1aUqUuWR1UqsasFOGwUUUVmaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmXxQjaw1jRNbjHzRPtYj/AGWDD+Zr0qGRZoUkU5V1DAjvmuT+Jdh9t8GXDgZa2dZh+eD+hq94Hv8A+0fB2nSk5ZI/Kb6r8v8ASuyp7+GhLs2v1OKn7mKnH+ZJ/odDRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFZ2u6kukaFe37EAwxErn+90X9SKcYuTSQpSUU5PoefJ/xVHxdZvv2um9PT5OP/AEI5r1KvPfhTprR6Td6tKCZbyUhWPdV/+uTXoVdWMkvaci2irHJgYv2ftHvJ3/yILm8tbJA91cwwIf4pZAo/WvNZviM+o/FbS9D0W/jl0shluSiKyyPtY8NjOBgdDXa+JPCWkeLIIIdXgeVIWLIFkZME9ehFeT/8I1pnhb456FY6VC0UDRGQqzl+Sr9yfauSPxq/9aHZL4G12PdK8p1Dxj4t8VeJ73R/BP2WC2sTtmvZ1BDN07g8cHHFel6rObXR724XrFA7j6hSa84+BcK/8Ipf3RGZJ71tzdzgCkleT8kN6L1Ynhvxz4j0zxfH4X8aQw+fcD/R7qJQAx7dMAg49BzXqdeQfGcC11vwpqCcTJckbh1wGQj+Zr11DmNT6gGmneN/VCatIdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcF438FyXcn9uaJmLU4TvZY+DJjuP9r+dXfBPjSPxDb/Y7zEWqQjDoePMA/iH9RXYV59428GzNcf8JBoO6LUITvkSPgvj+Ie/t3/n20qka0fZVX6Pt5ehwVaUqM3WpL1XfzXmeg0VyfgvxlD4ktPIuNsWpQj97H03/wC0v+HausrlqU5U5OMtzrpVY1YqcHoFFFFQaBRRRQAUUUUAFFFFABRRRQAUUUUAVdTsxqGlXdm2MTwtHz7jFcH8Jbw/2dqOmv8Aft594B7Bhj+amvRq8v0D/iSfFzUrA/LHdhyg7c4cfpmuzD+9RqQ+f3HFiPcrU6nnb7z1CiiiuM7QooooAKKKKACiiigAooooAK87+K2ouNPstHgyZruXcVHUgcAfiT+leiV5ZH/xVHxdZ/v2um9PT5OP/QjmuvBpc7qPaKucWOk3TVNbydv8z0TRdOTSdFs7FOkMSqT6nHJ/Or9FFcsm5O7OyMVFJIK8i8Rf8nCaB/17/wDsr167XkXiL/k4TQP+vf8A9lekvjj/AF0Y38EvQ9N15DJ4d1NF6taygf8AfJrgfgZx4InHcXr5/IV6Y6LJGyMMqwII9q8W8O6/H8KNc1XQteguF0+ecz2lzGm4EH/62OnQ0RdpO/VfqNq8Vboy78bh5l54WiHLNdNgfileuRjESD/ZFeJnUH+KnxK0yfT7aZdF0kiRppFxuYHP5kgDHoK9uoirQ17sUvi9EFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVwXjL4hy6Lq8OgaFpx1TWpRuMQJ2xjqM47456jApXGkd7RXlNr8UNe0bWLax8a+H006K5O1LiEnav15YEeuDxXqqsGUMpyCMgiqtpcXWwtFFFIAooooAKKKKACiiigAorgPGnxGl0LWIdA0TTTqesygHy8nameRnHJOOe2BWMvxP8AEugajbReNPDcdjaXDbVuLckhfc/MwP0yDQtQasafjTwfcW93/wAJH4e3RXsR8yWKP+L1YD19R3/nu+DvGFv4mstj7YtQiH76L1/2l9v5V00ciSxrIjBkYAgjoQa848Y+ErnTb7/hJfDu6K4iO+aGMdfVgP5iu6nONePsqu62f6M4KkJUJOtSV091+qPSaK5vwh4ttvE9hn5Yr2Ifvoc/qPaukrknCVOTjJanZTqRqRUou6YUUUVBYUUUUAFFFFABRRRQAUUUUAFeX+Ph/ZHjnQ9aHyoxVXP+62G/8davUK4X4rWH2nwqlyo+a1mDE+ing/riurBSSrJPZ6feceOi3QbW61+47kHKgjvS1k+GL/8AtPwzp12TlngXcf8AaAwf1BrWrnlFxk4vodUJKUVJdQoooqSgooooAKKKKACiiigDO17Ul0jQr2/YgGGIlc/3ui/qRXHfCnTWj0i61WUHzbyUhSe6r/8AXJpvxW1B/sFjo0HM13KGKjqQOAPxJ/Su10XT00rRrSxTpDEqk+pxyfzrs/h4bzk/wX/BOH+Li/KC/F/8Av0UUVxncFJtUtu2jPrilooAKgurK1vY/LureKdP7siBh+tT0UARW9tBaRCK3hjijHRY1CgfgKloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArx74cML74seL7y45uEdkTPULvI4/75Few15H4i8M+JfCvjmbxZ4VtVvobsH7Ta55yevGRkE88cg0k7TTfZjesWvQ1/jXawz/DyaaQDzIJ42jPcEnB/Q10ngu9lvfAekXRHmTNZpwTjcwXHX8K8o8eXnjDxN4Rub3WtNTRtLsyrrDnLzyFgoz6AAn0r1H4dRmP4e6GrDB+yofz5pxXuy9V+QpPWPzK/gnx5F4wm1G2awawu7FwrwvLvJHIz0HcEUWHjtNX8aXGgaXpzXMFoP9Jv/NwkZ9AMHPPHX1ryvx3Je+E/ifef2DcxRTa1AEcbseW0hAJPocjOfevYfBfhS18I6BFZQ4e4f57ibvI56n6elEdUpf1cJaNpf0joqKa7rGjOxwqgkn2rzmT44eEY5GT/AE9tpxkQDB/8eov0HY9IorzT/hefhH+7qP8A34X/AOKo/wCF5+Ef7uo/9+F/+KoEel0VieGPFWmeLtNa/wBLaUxJIY2EqbWDAA/1FbdDVgPP9D8GalZ/FLV/Et75D2twjLbkOS65IxkY44HrVX44y26eAQkpXzXuk8oHrkA5x+Fdp4j8R6d4X0iTUdSmCRrwqD70jdlUdzXmGhaFq/xO1+LxL4jRrfRYGzZWR/jGePw9T3+lK3MlHoir2bm+p6Z4TSaPwho6XGfNWziD5652itmkACgADAHAFLVSd22RFWSR5l4u8K3ehah/wk3hzMbRnfPCg4HqQO49RXW+FPFVr4n04Sx4juowBNDnlT6j2roCARg8ivL/ABV4ZvPDGp/8JL4cBRFO6eBRwo78d1Pcdv5dsJxxEVTqP3ls/wBGcFSEsNJ1aavF7r9UeoUVh+F/E9p4m00XEBCTpgTQk8of8PQ1uVxzhKEnGS1O6E4zipRd0woooqSgooooAKKKKACiiigArL8R2P8AaXhzULTGTJA20f7QGR+oFalFOMnFproTKKlFxfU4L4UX3n+GprNj81rOwA/2Tz/Mmu9ry/wP/wASb4g63o5+WOTcUHrtbj9Gr1CurGxSrNrZ6/ecuBk3QUXutPuCiiiuQ7AooooAKKKKACiis7X9SXSNBvb8kAwxErn+90X9SKcYuTSXUUpKKcn0PPov+Ko+LrP9+103p6fJwP8Ax45r1KvPvhTprRaPdarKD5t5KQpPdV/+uTXoNdWMkvaci2irHJgYv2ftJbydwooorkOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzO/+IF74b+Jk2leIJUh0SWPdazeV0JxjJHJGdwr0ys7V9B0rXrcQarYQXcanKiVMlfoe1LW9x6WseV/EvxZZ+MIbHwp4anF9cXc6tK8QO1VHQZ/U+mK7nXtdsvh74KhZ8O8EKwW0XeRwMAfTua09G8KaF4eZn0rS7e2dhhnRfmI9Mnmrd/o2l6pJDJqGn2t08JzE00SuUPtkcU7aWXUL63fQ8P1bwBqF58P7/wAWaq0j6/NILwg9Y4v7uO3Bz7YAr1nwFr48SeDdPvy2ZvL8ub/fXg/4/jXRSwxzQvDLGrxOpVkYZBB4II9KradpWn6RA0Gm2NvaRM24pBGEBPrgd6adrroJ62b3LlZL+F9Akcu+i6ezMckm2Qkn8q1qKQGP/wAIp4d/6Aenf+Ayf4Uf8Ip4d/6Aenf+Ayf4VsUUAQWlla6fAILO2it4gc7IkCjP0FT0UUAeEeINc0PVfi9cp4qvfK0jShsghZGZXkGM5Cg98n8BXoKfFjwJGgRNcjVVGABbSgAf98VuXPg/w1eXMlxc6Bpk08jFnkktUZmJ7kkc1F/wg/hP/oW9J/8AAOP/AApRuopDdm7mtp+oWuq6fBfWUvm206h43AI3A98HmrNRWtrb2VtHbWsMcEEY2pHGoVVHoAOlS1Tt0EvMKRlDKVYAg8EHvS0UgPLPEvh298H6r/wkfh4EWwOZ4B0UHrx3U/pXdeG/Eln4l0xbq2bbIOJYSfmjb/D0NbDosiMjqGVhggjIIryrxBoN94G1f/hINBBNix/fQdQgPUH/AGT+ld8JLEx5J/Gtn38mefOMsLJ1Iawe67eaPVqKyfD3iCz8R6Yl5aNz0kjJ+aNvQ1rVxSi4vllud0ZKcVKL0YUUUVJQUUUUAFFFFABRRRQB5f4m/wCJL8V9K1IcJdbA57c5jP6YNeoV538W7Jm0ex1CPh7afbkdgwzn81/Wu30i9XUdHs7xek0Kv+Yrsr+/Rpz+X3HFh/cr1Kfo/v3LtFFFcZ2hRRRQAUUUUAFed/FbUH+w2OjQczXcoYqOpA4A/En9K9EryyH/AIqj4uvJ96107p6fJwP/AB45rrwaSm6j2ir/AORxY6TdNU1vJ2/zPRdG09NK0a0sY+kMSrn1OOTV6iiuVtt3Z2RSikkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTZI0mjaORFdHBVlYZBHpTqKAPJ9b0fUPh/rP9uaKGfTJGxND1Cg/wn29D2/n6LoWu2fiDTUvbN8qeHQ/eRu4NaE0MdxC8MyLJG4KsrDIIPavKdV0zUPhzrf9raSGl0mZsSxE5Cj+6f6H/J74tYqPLL41s+/k/M86UXhJc8fge67ea8j1mis/RtZs9d02O+spN0bdVPVD3B960K4ZRcXZ7noRkpK62CiiikMKKKKACiiigDB8aWH9o+ENSgAyyxGRfqvzf0rL+GN/9s8HRRE5e2kaI/nkfoRXYSIssbRuMqwKkeoNeZ/DN203xDrmiSHlH3KPdWKn+Yrsp+/hpx7NP9Diq+5ioS7pr9T06iiiuM7QooooAKKKKAM3X9SXR9Bvb8nBhiJX/ePC/qRXIfCnTWi0a61SUHzbyU4J7qv/ANfNR/FbUHNlYaNBzNdyhio6kDhR+JP6V2+jaemlaPaWMfSGJUz6nHJrs/h4bzk/wX/BOH+Li/KC/F/8AvUUUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVxbw3dvJb3EayRSKVdGGQRUtFGwNXPJL+x1H4a65/aGn759GnbDxk9P9k+/oa9N0nVrTWtOjvrKUPE4/FT3BHY1Yu7SC+tZLa5iWWGRdrow4Iryq5t9S+GWu/arbfcaJcthlPb2Pow7HvXemsVGz+Nfj/wAE85p4OV1/Df4f8A9boqppmp2mr2EV7ZSiSGQZBHb2Poat1wtNOzPQTTV0FFFFIYUUUUAFeX3n/Ej+MsEv3Yr5Rn33DH/oQr1CvNPivA9tJpGsRD54JdpPuCGX+RrswTvUcH9pNHFj1akqi+y0z0uiobSdLqzhuIzlJEDg+xFTVxtWOxO+oUUUUDCiis3xBqY0fQL2/JwYoiU/3jwv6kU4xcmkupMpKKcn0PP4P+Ko+Lskv37XTunp8nA/8eJNepV5/wDCnTDDo1zqko/e3kpwT3Vf/r5r0CurGSXtORbRVjlwMX7P2kt5O4UUUVyHYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXvbK31GzltLuJZYJV2srVYopptO6E0mrM8jZdS+GGu7l33Oh3Lcj0/wYfr/AC9T0+/ttUsYryzlWWCUZVh/nrSajp9rqtjLZ3kQlgkGGU/zHvXlscmpfDHXfKk33Oh3LcH09/Zh+v8ALu0xcf76/H/gnn64OX/Tt/8Akv8AwD1yioLK9t9Qs4ru1lWWCVdyuvep64WmnZnoJpq6CiiikMK5b4h2H2/wZegDLwbZl/A8/oTXU1j69q2j2lhcW2p38ECzRMhVmy2CMfdHNaUZONRSXRkyoSrxdOKu2uhxfhfx28Phyys4dG1C+uLdPLZoY8oMcDnntitf/hKPFVz/AMenhCRR/wBNrgD+eKx/hFfKYdT0/cCEkEqe4PB/kPzr02ujFKNOtJcv9M2wGLo/VoXopySs7t7rTZNHF/2544HJ8LwEeguV/wDiqT/hLvEdvzd+D7kgdTDMG/QA12tFc/PH+Vfidf1ui/iox+Tkv/bjjYviRpKOI9RtL/TnP/PxAQP05/SsD4i+JbTWNLsNM0i6juTdTAt5Z544UEe5P6V6bLBDOhSaJJFPUMoINeT6Vp9nq/xYnaztoorKxYvtjUBSy8A8erc/hXVhOTndS3wq552Z1MPOiqdKLjKTS3urdelz07R9PTStHtLGP7sESpn1OOTV6iiuJtt3Y4pRVkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVT1TS7TWNPlsr2ISQyDBHcH1HoauUU02ndCaUlZnklpdal8M9d+x3e+40W4bKuB09x6Edx3r1W1uoL21jubaVZYZF3I6nIIqvq+kWet6dJY3sYeJxwe6nsQexrzPTr/Ufhtrn9m6kXm0edsxyAcD/aH9RXc0sVG6+Nfj/wAE89N4OVn/AA3+H/APWqw9d8WaXoA2XMxkum+5bRfNIx7cdvxrF1LxZd6zdnSfCaCaXH76+I/dwg+nqa1PD/hCx0XNzKTeai/Ml1NyxJ64z0FcvIo6z+4+ghh6VGCqYl76qK3fm+y/FmOsXi/xT+8km/sLT2+7GgzMw9z2/T6VqaZ4D0PTm82S3N7cHkzXR3kn1weB+VdNRSdR7LRCnj6rXJT9yPaOn3vd/NnlumqugfGK4tVUJBeq20DgfMA/8wRXqVeYfEpTpnibQ9bUYCsFcj/ZYH9QTXpqMHjVwchhkV0Yr3oU6ndW+48TCe7OpT7O/wB46iiiuM7TM8QamNH0C9vycGKIlP8AePC/qRXJfCnTDDotzqko/e3kpwT3VeP55qL4rag7Wmn6Lb8zXcoYqO4HCj8Sf0ruNHsE0vR7Sxj+7BEqZ9SBya7H+7w3nJ/gv+CcK/e4vygvxf8AwC7RRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdrei2ev6bJZXse5G5Vh95G7Ee9aNFOMnF3W4pRUlZ7HkmjahefDjXX0nVV36ZcPuSdV/DcP6j/ACfWIpY54UlidXjcBlZTkEHvWdr2g2fiHTHsrxMg8o4+8jeorzzQ9av/AADrH9ha4WbTnbMM3UKD/EPb1Hau6SWKjzx+Nbrv5o4IylhJck3eD2fbyfker0U2ORJY1kjYOjDKspyCKdXAegcX8ULD7X4PkmAy1rKsmfY/Kf5j8q1/Bt//AGl4S024Jy3khGP+0vyn9RV/WbIajot7Z4yZoWQfXHH64ri/hLemTRbywY/NbT5A9FYf4g12L38K1/K/wZxP3MWn/MvxR6FRRWZ4h1MaP4fvb8nDRRHZ/vHhf1IrkjFyaiup1ykoxcn0OAtv+Ko+Lks337XTs7fT5eB/48Sa9Srz/wCFOmGDRLjU5R+9vJTgn+6vH8816BXVjJL2nItoqxy4GL9n7SW8ncKKKK5DsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsjxF4es/EmmNaXS4YcxSgfNG3qP8K16KqMnFqUdyZwjOLjJaM8q8O6/feCdW/4R7XyfsZP7ic8hAehB/un9K9UVldAysGUjII6EVjeJfDVn4l01ra4AWVeYZgOUb/D2rh/DHiO98I6p/wjfiLKwA4gnboo7c91P6fy7ZxWJjzw+Jbrv5o4YSlhZKnN3g9n28mepV5f4W/4knxS1bTD8sdxuKD8dy/oTXp4IYAggg8givMPGg/sb4j6Lq6/Kku1Xb6Ha3/jpFRhPecqfdfii8b7qhV/la+56HqFec/Fa/d7XT9Et+ZrqUMVHcdFH4kn8q9GByAR3ryy0/4qj4uSz/etdOzt9Pl4H/jxJpYNJTdR7RV/8gxzbpqmt5O3+Z6NpFgml6RaWMf3YIlT64HWrtFFcrbbuzsilFWQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVheKfC9p4n00wTAJcJkwzAcof8Pat2iqhOUJKUXqTOEZxcZK6Z5h4U8T3nhvUv+Ea8R5RUO2Cdjwo7DPdT2Pb+Wh8WLH7R4bt7xBlraYcjsrDn9QK3vFnhS18T6eY3xHdxgmGbHIPofavPYdcu4NG1Hwf4iVlmWIi2lf1HKqT3BIGDXpUuWrNVqekluv1R5VZSpU5UKmsWvdf6M75vEKxfD9daLDf9kDD/roRgD/vqsX4U6YYNDuNTlH728lOCf7q8fzzXAtrct54J0/w7CS0xvGUr6jgqPzY/lXuGk2CaXpFpYxj5YIlT64HWpxEPYUnD+Z/gi8NU+sVYz6RX4su0UUV5p6gUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXjDwjbeJ7DjbHfRD9zNj/x0+38q6Wirp1JU5KUXqRUpxqRcZK6Z4h4F8N3I8drBfQNG1hmWRWHccL+pz+Fe31GIIlnacRqJWUKzgckDOBn8TUlbYnEOvJSfYwwmGWHg4p31CiiiuY6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>Find $x$.
|
3
|
Geometry
|
Geometry3K
|
test
|
56
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAErATgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZw1aL/hI20dsCX7ItynuN5U/yH61o15J4t8QDR/ixZ3m8+XaxRxTAf3GyW/R8/lXrMciSxrJGwZGAZWByCD0Nb1aXIoy7owpVedyj2Y6iiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKpXWpwWeoWdpMdpu96xsehdQDt+pGcfSrtcR8U4XPhNLuJiktpdRyq6nBB5Xj8SPyrSlBTmovqZ1ZuEHJdDt6K5XwR4vg8T6YqSuq6lCoE8fTd/tr7H9D+FdVSnCUJOMtxwnGcVKOwUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4Jr2i6lq+qPrs6iCy1HURb28knUqxIVsf3dqjnv2r1XwVa6xpWlnSNXiBNqcW9wjbkkjPQeoI9wOMVW+JUR/wCEMmnQfNazRTL7EMB/7NXWQyLNDHKv3XUMPoa7a1dzpJW0/wArHFRoKFVu+v8AncfRRRXEdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyXxKQv4EvgoJbfFgAdf3i11tMlhjnQJKiuoZXAYZ5ByD+BANXTlyTUuxFSPPBx7niPhnwfqtv4nNr/aH9marBAl1CCm8Op6gnI6ZwRznn0r2y38/7PH9p8vz9vz+Xnbn2zziuR8cxvplzpfiiBSW0+YR3AXq0L8H8s8f71djHIksSSRsGRwGVh0IPQ1viakqqjNmGGpxpOUF/X9bDqKKK5TqCiiigAooooAKKKKACiiigAooooAKKKKAMXxfbfavB+rRYyfsruB7qNw/lT/Ctz9r8J6TMTkm1jBPuFAP6itK5hFzazQN92RGQ/iMVy/w2maTwRaRv9+B5Im9sOT/IitlrRfk/z/4YxelZea/L/hzraKKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArahYw6lp1xYzjMU8bRt9CMZrnPAF9M2jTaRdn/TdJlNrIPVR9w/THA+ldZXFan/xT3xDsdTHy2erp9kuPQSj7hP14H51tT96Lh818v8AgGFX3ZKfyfz/AOCdrRRRWJuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcb4C/wBHm8Raf/z76pIyj0Vun/oNdlXG6F/ovxI8S2vRbiOC4UfRcH9WranrCa8v1Mamk4Pz/Q7KiiisTYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKaJEZ2RXUumNyg8jPTNOoAKwvGGjHXPDN3axg/aEHnQEdRIvIx9eR+NbtFVGTjJSXQmUVKLi+pj+FtZGveG7O/JHmsm2Yekg4b9Rn8a2K4rQv+Kf8danoh+W11AfbrQdg38aj8j+C12tXWilLTZ6oijJyjrutGFFFFZGoUUUUAFFFVb7UrLTEje+uordJH8tWkbaC2CcZ7dDQOMXJ2Suy1RTY5EljWSN1dGGQynIP406gQUUUUAFFFFABXG3H+ifFuzccC80xovqVYt/ICuyrjfFn+jeMPCd8OP8ASZLcn/fAA/rW1D4mu6f5GNfSKfZr8zsqKKKxNgooooAKKKKACimvIkSF5HVEUZLMcAU4HIyOlABRRRQAUUUUAFFFFABRRRQAUhOFJAJI7DvS0UAcfrvjLVNK3CHwpqMoH/LRyNo98pu/pXmut/EjxFqZaFZhYRdDHbgq34sefyxXvVZWr+G9H11CNRsIpmxgSY2uPow5rsoV6UH70P6+Zx16FWa92f8AXyOH8Ja7eaP4fgitvCuqXRl/fSXK8+czfxZx06AfStz/AITTVv8AoTdW/L/61bfh/Ql8PWT2MF1LNaBy0KS4LRg9VyOozz09a1qipVpubfLf7y6dKooJc1vuOO/4TTVv+hN1b8v/AK1H/Caat/0Jurfl/wDWrsaKj2kP5PxZfs6n8/4I8r8U67ql02n6snhnUrOfTJvO86Vfl8v+JTxwDgc/Wt+Dx1qNzBHPB4R1SSKRQyOmCGB6EHFdjPBHdW8tvMoeKVCjqe4IwRXJeAp5LOPUPDd0xM+lTlYyerQtyp/n+YrXnhKn8Pw+b2/4cx5JxqfF8Xkt1/wA/wCE01b/AKE3Vvy/+tR/wmmrf9Cbq35f/WrsaKy9pD+T8Wbezqfz/gjjv+E01b/oTdW/L/61H/Caat/0Jurfl/8AWrsaKPaQ/k/Fh7Op/P8Agjjv+E01b/oTdW/L/wCtXJ/EDxBe6tolvDc6Dfaei3AcS3A+VjtYbRx15z+Feu1zHjjw5d+JtLtbO0kijZLkSO8hOAu1h2HJ5FONSF/ht953Za3SxcJ1J6J+R4jp2talpEm+wvp7c5yQjfKfqOh/Gu80H4ma7O4t5dJ/tNwOtspV/qQAR+grd0j4V6PZbZNQklvpR/Cfkj/Ic/rXa2lla2EAhtLeKCIdEiQKP0pzqQfS57uYZngqt1GnzPvt/wAE5X/hNNW/6E3Vvy/+tR/wmmrf9Cbq35f/AFq7Gip9pD+T8WfKuE27qVvkjjv+E01b/oTdW/L/AOtR/wAJpq3/AEJurfl/9auxoo9pD+T8WL2dT+f8Ecd/wmmrf9Cbq35f/Wrm/GXiW/u7CxuJvDmoWQsr2O5E0w+XjPGccZyK9Vrm/H9t9q8DaomOVjEn/fLBv6VpRqQ9ovd/FmdanP2b978EUv8AhNNV/wChN1b8v/rUf8Jpq3/Qm6t+X/1q6TRrn7ZolhdZz51tHJ+ag1dqHOCduT8WWoTavz/gjjv+E01b/oTdW/L/AOtR/wAJpq3/AEJurfl/9auxpsjpFG0kjBUUFmZjgADqTS9pD+T8WP2dT+f8Ech/wmmrf9Cbq35f/Wo/4TTVv+hN1b8v/rV0+nalZ6vYRX2n3CXFrLnZLGcq2CQcfiCKtUe0h/J+LD2dT+f8EcXL4v1KaJ4pfBeqvG6lWVlyCD1B4ry6DxTrXhrVLiDT7i4t7eOVgLO5O8IM/dIPQjpxivoG4SSS3kSGXypGUhZNu7afXHeuc0jwFoOkyeebY3l0Tuae7PmMT646A++M10UcRSgnzR+X/DnPWw9WbXLLbr/wxz+hfEfWdS2B/C9xcA9ZbTdt/UY/8erv7O4kurdZZbSa1Y/8s5iu4f8AfJI/WrAGBgdKK5qk4SfuxsdNOE4r3pXCiiisjUKKKKACiiigAorE1zxf4f8ADciR6vqtvayuNyxsSWI6Z2gE4960dP1Gy1ayjvdPuYrm2kGUlibcpoAtUUUUAFFFFABRRWDrPjTw34eu1tdV1e3trhgCImJLAHoSADgfWgDerivEv/Eg8YaT4iX5ba4P2G9PbB5Vj9D/AOgiuwtrmC8to7m2mSaCVQySRsGVgehBHWqHiPSE13w/eac2N0sZ8sn+Fxyp/MCtaUlGWuz0ZnVi5R03WqNSiue8Fau+seGbd58/a7fNvcBuodOOfcjB/GtmW/tILiO3luoUnlOI42cBmPsOpqJQcZOL6F037RJxLFFFFSMKKKKACiiigAooooAKKKKACqWs232zQ7+1xnzraSP81Iq7RTTs7iaurHN+ALn7V4G0t88rGY/++WK/0rpK434b/udEv7A8Gy1CaHHoAQf6muyrSurVJepnQd6UfQK43xpNLrN1b+D7ORla9Qz6hIh5itFPI9i5+Ue26uyrjtW+H1tqGt32sxa7r1jc3ioJUsbsRoQi7VGNpPqevUn1rI1IfhB/ySzRfpN/6Oeu3rhfhHo13o3gCzS9+3R3ErO7213lfI+dgAqkAqCAGx3JJ713VABRRRQAUVWstRstRSV7G7guVikMUhhkDhHHVTjoRkce9WaACiqt/qdjpVu1xqF5BawqCS80gUcdetZXg/xRF4w0EatBbtBE0zxqrNuJCnGeg6+lAG/RRRQAUUUUAcbZ+EobLxh4i8T609ncQ3SRi3Moz9niRcPncMDOB09DWR8IY/8AiVeILqxTbpVxq0z6cjAqPL6Agdh0H4Gs3xXrVl4p8a3XhnVtcttJ8PaZ5bXSPOInvpCN2wEkfKO+O/1BHcweJvC2neG7i7sNRsW0vTIgHFpIrrGMfKoAPU9AO5oA5uD4qLL4eMx0onXzftp0ekpNlmmBGfmxwoB5OOvFehQGZreJrhESYoDIqNuVWxyAcDIz3xXiXhPz7T4sWev63pkNqPE0E0liuPmgbjAP+0yAZ9d/bJFe4MoZSp6EYNAHLeO9Wjt/AutS2eoLHcpauY3hmw6t7EHOas+EdUhn8G6FJc38clw+n27SNJMC7MY1ySSck5riPGnws8HaR4L1fULHSTFdW9s0kT/aZW2sO+CxBq14T+Ffg288L6HqU+kF7uayguJJPtMoy5RWJwGx1PSgD06vPtQs/DPge61rXfE11FctrM5KCW0LsFC8RD72eO/A6eleg1wVj420jUb7XtH8VnS7OXT7t444bsqFlgx8r4fgkj07EetAD/hDZXVj8O7JbkbVlkkmgTcG2RsxKjI/E/jW4+qa7eOyafoogQHHn6hKFH4IuSf0rmPg0hHhXUZIVdNOl1SdrBW7Q8AY9sg/iDXZak+tGZItLisghXLz3Lsdp9Aijn8xTRtRavZpP1OGi0m503xz/Z+pajNHb6yjT5sWMCPMOqnknpnoRnIrqP8AilPC8n/Lnb3J/wC2k7H9XNYfjLwxqNxoEuo3Gqy3l7Zfv441jWKNQPvYA+bOM857V03hq30dtItb/SrKCBLiIPlEG7nqC3UkHI/Ct6j5oqfyf9eharRi3TlNtb2iuVf1/wBumpa3KXdrHcRrIqSDcBIhRse4PIqaiiuc53a+gUUUUCCiiigAooooAKKKKAEJCqSSABySe1YknjHw+jFV1OKZv7sCtKf/AB0GtzqMGmxxpEu2NFRfRRgU1bqaQdNfGm/R2/RnnXhrXBZ+I/EkVtpuoXSz3K3CJFDtZdwJJYOV254xXW22p6zcXMatoD29uzAPJNdJuUeu1c5+mRWPb/6J8W7xDwLzTFl+pVgv8ga7Ktqz1T7pfkRSq0lFxjDZvdt/5fkQ3Uc8ttIltOIJiPkkZN4U/TIzWJNaa7bpvm8T2ka5xl7BQM/i9dDXB+LPD+jSa+/iHxfdW76JBai3t7afdtjkLZL4HUkcf5FYCOgi0/Xw6M3iCB48gkCwA3D676xrLxBd23xE8UWOo3v/ABLLSyhu4FZQBCm394cgZPOTzSfCpLlfBSeZ5v2RrmVtPExJb7KW/d5zz0zj2xXK+O9KvtT+K1ppNkxSDWdLSC9deqQpMXc+2QoX8cUAdr4Av9X1nRJtb1WVtmoTvNZ25UDyLfOEHA5JHOT6iq+t/FLwr4e1i40rUbyZLuAgSKtu7AZUMOQPQiuwhhjt4I4IUVIo1CIijhVAwAKcVUnJUH8KAPDfh38TPDHh7T9Zi1G7mje61ae6iCwM2Y2CAHgcdDxXsuj6vZ69pNvqdg7Pa3Clo2ZSpIyR0P0rkvhfpV5pmma8l/Zy27za1cTRCVNpaMhMMM9jg13YAAwKAMvWfDmj+IVhXV9PgvFhJMYlXO3OM4/IVyPwXUL8PkVRgC7nAH/Aq9CrhvhNYXmm+CFt760ntZvtUzeXPGUbBbg4POKAO5ooooAKKKKAMi68KeHL25kubvQNKuJ5Dl5ZbON2Y+pJGTSp4W8PR2r2qaDpa27uHeFbOMIzDoSMYJGTg1rUUAVrnTrG9kt5Luyt53tn8yBpYlYxN/eUkfKeByKs0UUARzwQ3MDwXESSxOMPHIoZWHoQetLFFHBCkMMaxxIoVEQYCgcAADoKcHUuUDAsuCRnkZpaACsrU/DOhazcJcano9jdzIMCSeBXbHpkjp7Vq0UAMhhit4UhgjSKJFCoiKFVQOgAHQU+iigBGUOpVgCpGCD3FcZ4KY6PqureFpSdtrJ9otM94X5wPoSPxJrtK4vxop0bV9I8UxA7baT7Nd47wv3P0JP4kVtR969Pv+fT/Ixre7ap2/Lr/mdpRSKwZQykFSMgjvS1ibBRRRQAUUVXvL+00+NJLy5it43cIrysFBY5wMn6GgaTk7IsUU1HWRA6MGUjIZTkGnUCCiiigAooooA43Xf9F+JPhq66LcRT27H6Lkfq1dlXG+Pf9Hm8O6h/z76pGrH0Vuv/AKDXZVtU1hB+X6mNPSc15/oFcNrXjKz0fxZdaR4qjtoNHlt0lsp5YGdZG5Dqx5GR2GBx9RXc0140kXa6KwznDDNYmxwfwsicaDq09tC1tpl1qc82mRuhAWA42kA9FJzgVq+FvCd1pF/d6trOrHVtYuUWE3JhEQjiXoiqOAM8n1NdTRQAUUjOqKWdgqjqScAUtABRRRQAUUUUAFFFFABRRRQAUhOFJAJIHQd6WigDj9d8b3ekbhH4Y1SUL/y0dQsf/fS7q841r4m+INT3RQSLp8J422/3/wAWPP5Yr3esfWPC2i68p+32ETyH/lso2yD/AIEOfzrsoVqMH70P69Djr0a017szifCfiGbR9Bhji8Ma3dyTfvpbpYS3nMf4ge4xgD2rc/4Tm9/6E/Xf/Ac1t+HtD/4R6wawiu5Li1Vy0AlA3Rg9VyOozz0HU1r1FSrTc2+W/wA2XTpVFBLmt8kcb/wnN7/0J+u/+A5o/wCE5vf+hP13/wABzXZUVHPT/k/Fl+zqfz/gjjf+E5vf+hP13/wHNH/Cc3v/AEJ+u/8AgOa7Kijnp/yfiw9nU/n/AARxv/Cc3v8A0J+u/wDgOap6t4ouNX0m60+fwfrvl3EZQn7MeCeh/A4P4V31FNVIJ3UfxYnTm1Zy/BHmnhfxxf2+jRadN4e1S8urEeRK0ERO3HADDqDgY59K2f8AhOb3/oT9d/8AAc0y5/4p34kQXI+Wy1yPyZPQTr90/jwPxNdrWlWVO/Ny767szpRqWcebbTZHG/8ACc3v/Qn67/4Dmj/hOb3/AKE/Xf8AwHNdlRWXPT/k/Fmvs6n8/wCCON/4Tm9/6E/Xf/Ac1y/j3xJcavoEdvLoGp2Ci4V/NuoiqnCsMZ9ef0r1quZ8c6BeeI9EhsbIxrILlZGaRsAKFYE/qKcalO/w2+Z25deniqc5z0T10PEtN1zVNHfdp99PBzkqrfKfqp4P5V3Wh/FHV5ZFtrnShqEh6fZgVkP4AEH8MVsaR8KNMtdsmp3Ml4/eNP3afpyfzFdvY6bY6ZD5NjaQ28fpGgGfr6051IPpc9/MMywFW6VPnffb8dzmP+E5vf8AoUNd/wDAc/4Un/Cc3v8A0J+u/wDgOa7Kip56f8v4s+UlCbbalb5HG/8ACc3v/Qn67/4Dmj/hOb3/AKE/Xf8AwHNdlRRz0/5PxYvZ1P5/wR5Z418S3ereGpoW8N6vZ7JElE88BCIQ3Umt+Px5eSRJIvhLXGVlDBlgJBB7j2rd8VW32vwnq0OMk2shA9wpI/UUzwhc/avB+ky5yfsqIT7qNp/lWrnB0k+XZ92ZKE1Va5t12Rj/APCc3v8A0J+u/wDgOaP+E5vf+hP13/wHNdlRWXPT/k/Fmvs6n8/4I43/AITm9/6E/Xf/AAHNH/Cc3v8A0J+u/wDgOa7Kijnp/wAn4sPZ1P5/wRxU3jO5nheGXwZrjxyKVdWtiQwPBBrzK28Xa34a1Ke3sbi5jtY5CFs70btgzwpB5BHtivfrhJZLeRIJBFKykJIV3BT2OO9czpPw90HTJDcSwNf3ZO5prs78seSdvTr7Z966KNelBPmj8tznrUK05Lll89vyMLQ/ibf6kVV/DV3P6yWWXH5EcfnXf2dy13brK9rPbE/8s5goYfkTU4UKoVQABwAO1LXNUnCT92NjppwnFe9K4UUUVkahRRRQAUUUUAFFFFABRRQSACScAUAFFecXXxajiFxf23h3UbvQLeYwyapGRsyDgsq91z3yK9CtrmK8tYbq3cPDMiyRuOjKRkH8jQBLRRRQAUUUUAFFFFAHO+NtIfV/DNwsGRd2xFzbsvUOnPHuRkfjV7w7q6a7oFnqK4zNGN4H8Ljhh+YNalcV4Z/4kHi/VvDjfLbzn7dZDttbhlH0P/oJraPvU3Hqtf8AMwl7lRS6PT/I7Wio57iG2iMtxNHFGOryMFA/E05HWRFdGDIwBVgcgj1rE6LO1x1FFFAgooooAKKKKACiiigBk0azQyRN911Kn6EVyfw0kY+DIbd/v2s0sLex3E/+zV19cb4G/wBH1DxNp/aHU3kA9Ffp+i1tDWlJej/T9TGelWL9V+v6HZUUVDd3dvYWkt1dzxwW8S7pJZGCqo9STWJsTUVgaP428N+IL1rPS9Ytrm5UE+UpIYgdSAQM/hW/QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVjeLrh7TwZrtxEcSRafO6n0IjYitmqerWC6ro19pznCXVvJAx9Aylf60AeO6BrPinTfhhZ3lv4b0q58NW1sTPBcuTNOoOZHA+6FzuPIJxzXr+iXtpqOhWF5YII7Oe3R4UChQiFRhcDpgcY9q8lt9Y16w+H83gNvCuqy6z5Mlgk0cObZkYlfM8z02t9PcdvVPDWknQvDGmaUzh3tbZInYdCwHJH45oAyvEnxF8OeE9STT9WupYrh4hKFSFnG0kgcgeoNY//AAuzwR/0ELj/AMBX/wAK9BKqeoB/Ck2L/dH5UAZfh3xJpnirSzqOlSvLbCQx7nQodwxng/UVB4yGq/8ACI6jJoly9vqMURlhZFDEleSuCCOQCPxrcAA6ACuR8c3WtXEVt4e0G3uFudSJSbUBE3lWkP8AExfpuIyAM5/SgDD8KeLNZ8fanp0+nySWWkWECNqUvljNzclQTEuRwo6kjnn3Br0uvO/h1pF74R13XvDDW122kpIt3YXckZ2MGADLvxjcPl49mNeiUAZOoateQXRtbHRrq8lAB8wsscIz/tk/yBrjfGVnr8cFt4kuZLaCTT3xssQxkWN+GO9uCf8AgOOTXfahLew2u6wtY7mcsAEkl8tQPUnB6elYs+i61rFvJBq2qxQW0qlZLaxhHzA9i75P5AVrTlytM6Uk6enLHzerv6a/kvUamjeGre3i1O+mS6DqHS61KfzMgjII3HaPwFa+l6tYarE50+TzIoiF3CMqv/ASQAR9K43wFpWnKb+wv7KGXVdMnMRllG8mP+BlDZ2jGenbFeggADA4FFWPLJxZE68KsE7uT89LfLX80FFFFZGIUUUUAFFFFABRRRQBgt4gvpGK2nhzUpCDjdKY4VP/AH02f0rltLn12Lx/rcVtZWdtc3kEVw8VxOWVVUbcgqOTk+3WvR6429/0X4saZL0F5p8kP1Kkv/QVvSd+ZeX/AASqtaEeVqmt/P072/A1obTxJJPG9zqtjFGGBaO3tCdwzyNzNx9cVU8d+GbnxboMOlwXEcMZu4pLgSEgSRKSSvHfOPyrp65X4heKZPCXhWS+txEbuWVbe3804QO2fmb2ABP4Vi3cc6jnul8kkcv4xtNOT4heCdO0WCCHVLe682VbdAuy1GNwbHYgHGff1rsZfErw+P4PDLWg8uewN2lzv53BypTbj0Gc5rmfBB8I6E7zSeKdN1PxDqLAXN212jPK5PCIM8LnAA78ewFP4narN4a8YeHdatoWlne2vLWNVGcyFR5Yx/vsKRB2WieJm1zxFrVjb2g+w6ZItubvzM+bNjLqFx/D0JzXQ1g+DvD48M+F7TTmbfcgGS5kzkyTNy5z35OPoBW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUm4FiuRkckUtABRRRQAUUUUAFFFFABRRRQBxWuf8AFP8AjzTNaHy2moj7DdnsH/gY/kPwU12tY3irRhr3hu8sAP3rJvhPpIvK/rx+NM8Iaydc8M2l3IT9oUeVOD1Ei8HP16/jW8vepqXbT/Iwh7lRx76/5m5RRRWBuFFFV7i+tLNolubmKEynbH5jhdx9BnqaBpNuyLFFHWigQUUUUAFcb4w/0bxN4Tvum29a3J/66AD+hrsq474lAx+G7e9A5sr2GfP0JH9a2w/8RLvp95jiP4bfbX7tTsaqahpen6tAsGpWFrewq29Y7mFZFDYIzhgRnBPPvVoEEAg5B6UtYmxiw+D/AAzbzRzQ+HNIjljYOjpZRhlYHIIIXgiueTTNZ8UeOLa/1rSlsNK0SSRrJGmWRrqUnCynH3QFAIHr69u7ooAKKQsFGWIA9TS0AFFFFABRRRQAUUUUAFFFFABSE4UnBOOwpaKAOP13x2+jbgPD2qybf+WkkeyM/wDAuf5V53rPxS17UgY7Qpp8J/548uf+BH+gFe6Vh6z4Q0PXQTe2Efmn/ltH8j/mOv45rsoVqMH70P69Djr0a017s/69TjfCfib+x9DiT/hH9fvJ5/3090Lcv5zHuGzyMYArd/4T5/8AoVfEH/gJ/wDXrZ8OaG/h7T209bx7m1RiYPNX541PVSRwRnnoOtbFRUqU3Nvlv82XTp1FBLmt8kcd/wAJ8/8A0KviD/wE/wDr0f8ACfP/ANCr4g/8BP8A69djRUc9P+X8S+Sp/N+Bx3/CfP8A9Cr4g/8AAT/69H/CfP8A9Cr4g/8AAT/69djRRz0/5fxDkqfzfgcd/wAJ8/8A0KviD/wE/wDr0f8ACfP/ANCr4g/8BP8A69djRRz0/wCX8Q5Kn834HHf8J8//AEKviD/wE/8Ar0f8J8//AEKviD/wE/8Ar12NFHPT/l/EOSp/N+Bx3/CfP/0KviD/AMBP/r1zOkeKm0HxPqQGhastrqb+fDam3xIJAPnKr3B5PHoK9XrkvH9lM2jwaxZj/TNJmFynug++PpjBP0rWlOm3ycu/mZVYVEufm28vvI/+E+f/AKFXxB/4Cf8A16P+E+f/AKFXxB/4Cf8A166iwvYdS0+3vYDmKeNZF+hGas1m5007OH4mqjUaup/gcd/wnz/9Cr4g/wDAT/69cb8QvETa3Y2UZ0jUrHy5Wbddw7A3HQV7HXIePfDV/wCJrawt7ExL5crNI8rYCjH5mnGdO/w2+Z6GVSdLGQnUnor/AJM8i0rxRrWikCx1CZIx/wAsmO5P++TxXeaJ8VL25dbe70d7qU97LO4/8AOf51oaR8KNLtdsmp3Et7IOqL+7T9OT+Yrt7LTrLTYPJsrWG3j/ALsSBc/X1onOD6HtZjmGAq3UafM++3/BZy//AAnr/wDQreIP/AT/AOvR/wAJ8/8A0KviD/wE/wDr12NFTz0/5fxPlnCpfSX4HHf8J8//AEKviD/wE/8Ar1i+LPFbav4Xv7E+HNbgEiA+bNa4RNpDZJ7DivS6q6nbfbNJvLXGfOgePH1Uj+tVCpTUk+X8SJ0qkotc34HG6b4+kOl2n/FN65MfJQGSK23K5wOQc8irf/CfP/0KviD/AMBP/r1a+Hlz9p8C6YxPKK0Z/wCAuQP0xXT06jpxm48u3mKmqkoKXNuuxx3/AAnz/wDQq+IP/AT/AOvR/wAJ8/8A0KviD/wE/wDr12NFRz0/5fxL5Kn834HFT+NxcwSQTeEtfeKRSjo1nwwIwR1rzW28aa54c1Ga3s7i5NpHIQlrqC7ii9lIzlSPYive7hZXt5FgkWOYqQjsu4Kexx3+lctpXw60LT5Tc3Ub6jdsxd5bo7gWPJO3p+ea6KNejFPmj8tznrUK0pLll89jG0X4ozakwjk8O3srdC1kDL+mBj867+zujd26zG3ngz/BMu1h+GalRFjQIihVAwFUYAp1c1ScJP3I2+Z004Tivflf5BRRRWRqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNkjSaJ4pFDI6lWU9CD1FOooA4zwLI+mT6p4XnYl9OmL25bq0L8j+f8A49XZ1xXi3/iReJNI8TJ8sO77Hekf8826Mfocn8BXa9a2ra2n3/PqY0fdvT7fl0CiiisTYKKKKACiiigAooprOiFQzKCxwoJ6n0FAHH/Dr9xp2raeeDZ6nNEB6Dj+ua7KuK8Oyx6d4z8XW80ixxB4rrcxwAGUliT+Irr7S6hvrSK6t23wyqHRsY3Kehreuvfcu9vxRhQa5FHtf8GTUUUVgbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBynjXVtHi0yfSdYaa3jvIiIpzCzpuHIOVzyDg4rkPDPji81bVvDWj/MiwhluXz/riEYL+GMH3P0r0zV9Is9c02WwvohJDIPxU9mB7EV45p+hz+D/ibpdtdHfE04EMwGBIrZUH65OCK9DDezlTlF7q7/A8/E+0jUjJbOy/E9xooorzz0AooooAKKKKACs3X9Hi13RriwkO0uMxyDrG45Vh9DWlRTi3F3QpJSVmfNVyNXuNafTbyedrySVbWQO5JYg4UH1AOMV9IW1ulpaw20QxHEixqPQAYFefeJ9BC/E3w/qcafJdSgSED+OPkE/UY/75r0auzF1VUjC3Y4sJSdOU79woooriO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxNoKa5YRlAq3tpIJ7WQ9nBzgn0OMH8D2rboqoycXdEyipKzAdKKKKkoKKKKACiiigAooooAhntIbmS3klXLW8nmxn0baV/kxqaiincLBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=
|
<image>Find x.
|
1
|
Geometry
|
Geometry3K
|
test
|
57
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADtARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorB8W+LtO8GaSmo6klxJE8oiVIFVmLEE9CQMYB70N2Glc3qKpaRqcGs6RaanbK6wXUSyoJAAwBGcHBIz+NYXizx/pHg+6s7W+jup7m7z5cVqiswGcZO5hgEnA+hptWduolqrnVUUgOQDgjPY0tIAooooAKKKKACiiql5qdnYXFnBczeXLeS+TAu0ne+C2OBxwD1oAt0VW1DUbPSrKS9v7mO3toxl5JGwBVHRPFGi+IxL/AGVfpcND/rE2sjrnoSrAHHvigDXooooAKKKKACiiigAorP1zWLbw/ot3qt4HNvbJvcRgFj7DJAz+NcenxYs5I1kTwr4qZGG5WXTwQR6530XCx6BRWF4Y8XaT4ttJp9Mkk3QNsmhmTZJGfQj8+npW7Q1YAorIufFXh2yuZLa617S4J4zh4pbyNWU+hBORWlb3MF3bx3FtNHNBINySRMGVh6gjgigCWiorm4jtLWW4lOI4kLufQAZNcDb/ABd0+7gSe28M+KJoX5WSOwVlb6EPzQFj0OiuT0H4h6Nr2qjShDf6fqLKXS21C38p3A9OSP1rrKLAFFFFABRRRQAUUUUAFebeP4Br3jjwx4fIDxAT3ky+yrhSfxzXpNefaL/xNvjN4gvusemWUVkh7bm+Y/1FK13b1/L/ADsO9k3/AFr/AMAsfDbU4oPhXYXd3II4rOKVZXY8KEdh/IVw01pP4g8YeGr+/jYXWtX5vUjbrDZwjMae2clj7mpfDwm1u5u/AcautrBrFxPqDgED7Orgqmf9puPoK6qxVdT+Nl66AeRo2mJbqB0V3OeP+AkirTvJT76/hf8APT/hxNWUorpp+Nl+Gv3HodFFFSAUUUUAFFFFABXmOvaNf2fxE8KXt7rlzfrLeyrHBJGiJCNhPAUDPpk88V6dXF+Mv+Rv8F/9f8n/AKKNC+JPzD7L9H+RU8eala2/izwtbagx+xLJNdvGqlzI6KBGAoGWO5uB61f0XU9A17xc99FFfWeuQWnlPbXkLQO0JbO7aR8wz37VT8aiDTvGnhPXr0qlhbSzQTTPwsTSJhGY9hkYyabJd22u/FjSptJuI7mPTrGY3k0DB0G/ARCw4znJxTj0+f6/pYJf5fn/AJnfUUUUgCiiigAooooA86+Mt6kXg+3095ViGoXsULOxwFQHcSfYYFbn/Ce+DbGyAHiHTvLhQALHMGOAOgA5NYHi23h8QfFXwzolxDHPa2sE17cRSKGRgeFyDweV/Wuwh8JeG7eVZYPD2kxSLyrpZRqR9CBQvh9X/wAD9Bvf0X/B/wAjlPhtaTXmp+IfFb2721vrFwDaxuu0tEucOR75/nXodAGBgdKD04oe1l0F1bfU8i0TWtBtv7cvtT0C71HzNVuHmu003zo7dA20bmI6ALn5c4zzXqemy2U+m202nGI2TxhoTEAE2npgDpXJ2nj/AEWbw7qMuqG10u6tWliuNPeYGQEEgYGAW3dsDvVv4a2Nzp/w+0i3u1dJvLL7HGCoZiwB/Aimvh9LfkEt/mxnxO1L+y/h1rEoOGkh8hfq5C/yJrA8M/EzwLovhjTNNbWwHtrZI3AtJvvAfN/B65q18UP+JjeeF/D68/btTV5F9Y4+W/n+ld59jtcY+zQ4/wBwUo7N+f5f8ON7pf1r/wAMec6ZNH8QPiJY+I9OQjRtGieNLhxtaeVh0CnnaAe+K9Nrzf4Y20A8ReNLu0iWG1bUvIjjQYUbN2SB2zur0in9lW7fnqJ/E7+n3BRRRSAKKKKACiiigAqvb2FnaTTzW1pBDLcNvmeKMKZG9WIHJ9zViigCiLfStJlnuxDZWcly4M0wVYzK3P3m43Hr1qCC58P21zPcwTaZFcXBBmljaNWlI6biOTj3pde8P2HiOwFnqCOUVt6MjlSrYIyPzPWvPJ/h/eeH5mmttOtNesictDLmOZR7EHB/X6V00adKa96Vn/XU5q1WrB+7G6/rpY9K/tjTP+gjZ/8Af9f8aP7Y0z/oI2f/AH/X/GuF0dfAGqy/ZZNKjsb4Ha1td7kbPoCTg/z9q6X/AIQTwx/0B4Pzb/GidOnB2ldfJf5hCrUmrxs/m/8AI1f7Y0z/AKCNn/3/AF/xo/tjTP8AoI2f/f8AX/Gsr/hBPDH/AEB4Pzb/ABo/4QTwx/0B4Pzb/GptR7v7l/mXet2X3v8AyNX+2NM/6CNn/wB/1/xo/tjTP+gjZ/8Af9f8ayv+EE8Mf9AeD82/xo/4QTwx/wBAeD82/wAaLUe7+5f5het2X3v/ACNX+2NM/wCgjZ/9/wBf8agmvNCuZoJp7nTpZYGLQu7ozRkjBKk9Dj0qj/wgnhj/AKA8H5t/jR/wgnhj/oDwfm3+NFqPd/cv8wvW7L73/kaU2paPcRNFNe2MkbjDI8qEEe4JqGyuPD2mweRYTaZaw5z5cDRoufoKp/8ACCeGP+gPB+bf40f8IJ4Y/wCgPB+bf40Wo939y/zC9bsvvf8Akav9saZ/0EbP/v8Ar/jR/bGmf9BGz/7/AK/41lf8IJ4Y/wCgPB+bf40f8IJ4Y/6A8H5t/jRaj3f3L/ML1uy+9/5Gr/bGmf8AQRs/+/6/40f2xpn/AEEbP/v+v+NZX/CCeGP+gPB+bf41Vv8Awt4K0q3Nxf2Nnbxf3pHIz7Dnk/ShRot2Tf3L/MTlVSu0vvf+Rv8A9saZ/wBBGz/7/r/jR/bGmf8AQRs/+/6/415s7eHNRdovDfgyXUiDjz23RRfmT/PFKPh3q+ondLbaNpSZ+7DG0rfQ7iR+Rrf6tTXxy5fW35XuYfWaj+CPN6X/ADtb8TvJb7w5bXMmqvPpi3SxbHuQUMuwc7dw+Yj2rnrX4raDcagLd47qGJm2ieRRt+pwcgVi3nwjZNOmkh1Mz3ioTGggWNWPp1NcBaeHdXvdWOlxWEwu1YCRGQjy892PYe9dFDC4WcW+e9vlY5cTjMXTlFKFr/O59Df2xpf/AEErP/v+v+NH9saZ/wBBGz/7/r/jXnknwjljQG21iItgfLNaKRn65/pUDeE9U0nLXPhTSdWhHU2sro/5E/yBrnWHoP4Z3/D87HV9Yrr4qdvx/K53s/8AwjF1eJeXH9kTXUf3JpPKZ1+jHkVd/tjTP+gjZ/8Af9f8a4DTpfh/dz/Zb7Rxpd33hvVZP/Hs4/PFdSvgbws6hl0m3ZSMghmIP61nOlTp6Suvkv8AM1hVnU1jZ/N/5F2W48P3F5BeTTaZJdW+fJmdoy8eeu1jyM+1aFvd212GNtcRTBeCY3DY/KvPPGWheH9NtINO0zRoX1bUG8q3UFjsHdzz2/8Ar9jXZeGtBg8OaLDYQ4ZwN00gGPMc9T/QewFTOnTjTUk3r/VxwqzlUcGlp5/hsXbPTLDT2maysba2ad98phiVDI3q2Byfc1aoornOgKKKKACiiigAooooAKKKKACiiigDM1jw9pWvRbNRs45iBhZMYdfow5rmv7C8UeGvm0HUBqVkvP2K9PzAeit/+r6Gu4orWFaUVy7rs9jGdGEnzbPut/69Tk9N8e6dPcCy1WKXSL/oYbsYU/RumPriurVgyhlIIPII71T1LSNP1i38jULSK4j7b15X3B6g/SuUbwnrXh9vM8K6qTADk2F6d0Z9lPb9PrV8tKp8L5X57ff/AJ/eTzVafxLmXlv93+X3HcUVx1n49hguVsvEdjNpF2eA0g3RP7hv8j3rropop4llhkSSNhlXRgQfoRWc6U6fxI0p1YVPhY+iiiszQKKKKACkJCqSSABySe1JJIkUbSSMERAWZmOAAO5rgJbu++Id5JZ2Ly2fh2Fts1wOGuj/AHR7f5PpWtOk53b0S3ZlUqqFktW9kXdQ8Y3ep3z6V4StlvLheJbx/wDUQ/j3P+RmpNO8BWzTi+8Q3MmsX/XMxPlp7BehH149hXS6bplnpFjHZ2MCwwJ0Ve59Se596t1br8q5aWi79X/XZEKhzPmq6vt0Xy/VjY40ijWONFRFGAqjAH4U6iiuc6ArjdE/5Kd4n/65W/8A6LWuyrjdE/5Kd4n/AOuVv/6LWt6Pwz9P1Rz1vjp+v6M7KiiisDoKWpaRp+sQeTqFnFcJ23ryv0PUfhXF6ho+qeBraXUtC1HzNMi+eawvHyoH+wfX8j9eleg1weru3jTxQuhQMf7I09hJfyKeJHHSP/Pv6CurDSlezfurft/w5y4mMbXS956Lv/w3cq+BL618ReIr/W76eP8AtQ/Jb2pPMMOOq569eo9/71ejVzfiLwha6ysdzaN9h1O3A+z3UPykY6BsdR/L9DB4a8Tz3F2+h67GLbWoO3Rbhf7y/wCH/wBcB1kqq9pDp07f8AVFuj+7qdevf/g/0jq6KKK5DrCiiigAooooAKKKKACiiigAooooAKKKKACiiigCC8srXULdre8t4p4W6pIoYVyM3gi70mY3PhTVZbFs5NpMxeBz+OcfXn8K7WitIVZw0T07dDOpRhPVrXv1+84qHxxc6VMlp4r0uTT5GOFuohvgf8RnH05/CuutL22v7dbi0uI54W6PGwYfpUk0MVxC0M8aSxOMMjqCCPcGuRu/AcdtcNe+G7+bSLrrsQ7oXPup/wDrj2rS9Kp/df3r/NfiZ2rU/wC8vuf+T/A7GiuIXxdrOgOsPinSWEPT+0LMb4z7sO36fSp/EfjG1Xw4smh3Ud1eXri3tREfmDt3IPQjPfuRS+rVOZJdevQPrNPlbb26dfuKetXE/jPX28O2EpTS7Ug6jcJ/Ec8Rg/UfofTntbS0t7C0itbWJYoIl2oijgCs3wxoMXh3RIrJMNMfnnk7vIep/oPYVs0Vpp+5D4V+PmOjTa9+fxP8PIKKKKwNwrjPiHe3eh2WneIra5nSHTrpTdW6SlVnhc7WBXOGIyCM12dcdrXh278W67Jb6tb+VoNpGfJjLqftUzKRvIBOAgPAODnmk79Bq3UveFYtSukm1zVJpVlv8NDZeaTHbQ/wjHQuRyT747VQ0T/kp3if/rlb/wDota0PA9rqun+E7PT9Yh8u6tMwA71bzEU4RsgnquOvNZ+if8lO8T/9crf/ANFrXVTtadtrfqjlq35qd97/AKM7KiioL28g0+ymu7mQRwQoXdj2ArnSvojpbtqzC8Y6/LpNhHaWA8zVb5vJtYx1BPBb8M/nVvwxoMXh3RYrNSHmPzzy95JD1P8AT8KwvCNpPrmqz+LtRjKmbMdhC3/LKIcZ+p/xPeu2req/Zx9kvn69vkc9L95L2r+Xp3+f5BXP+K/DS69ZpLbv9n1O1O+1uF4KsOcE+h/TrXQUVjCbhLmjubTgpxcZbHO+EfETa5YyQ3kfkapZt5V1CeCCP4gPQ/zroq4bxdbyeHtZtvF1inyqRDqEaj/WRnADfUcD/vn0rtoZo7iCOeFw8Uih0YdCCMg1rWitKkNn+D6oyoylrTnuvxXR/wBdR9FFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACMqupVgGUjBBGQa8rh8MQeIfGmrXGkSDS4dOKxwy268GcdTjpjggge1ekavfDTNGvb48/Z4XkA9SBwPzrD+H2nmx8IWsknM94TcyMerFuh/wC+cV1UZypU5TT8v6/rqcteEatSNOS21/y/ryKA1/xN4aOzxBp39oWS/wDL/ZDkD1Zf/wBX410ukeIdK12HzNOvI5iBlo84dfqp5Fadczq/gbSNTm+1wK+n34OVubQ7GB9SBwf5+9TzUqnxLlfdbfd/l9xXJVp/C+Zdnv8Af/n9501FcN9t8X+F+L62XXdOUf8AHxbjbOo917/r9a39F8V6PrwC2d2onx81vL8si+vB6/hmpnQlFcy1Xdf1p8yoV4yfK9H2f9a/I2qKKKxNgrjdE/5Kd4n/AOuVv/6LWuyrjdE/5Kd4n/65W/8A6LWt6Pwz9P1Rz1vjp+v6M7KuE12RvGHiePw3bOf7MsyJdSkQ43HtHn/POf7tbHjHxA+iaWsVmPM1O8bybSIckseN2PbP5kVY8LaAnh7Rkti3mXUh8y5lJyXkPXn07VVP91H2r36f5/L8xVP3svZLbr/l8+vl6mzHGkUaRxqFRAFVQMAAdBTqKK5jpCiiigCC8tIb+yntLhd0MyGNx6gjFcr4AupoLW/8P3bE3GlTmNSf4oySVP8AP8MV2NcTfD+x/inp90vyxatbNBJ7unIP/oAroo+9GVP5r1X/AALnPW92UannZ+j/AODY7aiiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS+JM7xeCrmKPO+4kjiAHU5YHH6V09pbraWcFsgAWKNYwB6AYrkviMQdO0eM5w+qwgjsRhutdnW89KMV5v9DnhrWk/JL8wooorA6ArB1vwfo2uky3Ft5V11W5gOyQHsc9/wAc1vUVUJyg7xdmTOEZq0ldHD+V4x8L5MTrr+nJ0RztuFH17/r9BWto3jXR9Yl+zCZrS9HDWt0Njg+gzwfw5roqyNa8M6Rr8ZXULNHfGBMo2yL9GHP4dK29pCf8Ra91/lt+Rj7KpD+G7rs/89/zNeuI065hsviJ4subiQRwxW8Dux6ACNapapD4j8CadLe2OqrqGlxYXyL1Szx5IAwR15I7j6V5dc67qF9eXVxd3DyG7KfaVHyiULjAOOwwK7MLg3NScZXTVvxTOHF41U5RUotSTv8Ag0eu+FLabxHrM3i7UEZYzmLToX/5Zxjgt9Tz+Z9q7iq2nmFtNtWt4xFCYUMaD+FcDAqzXBVnzyvsuh6NGnyRtu+r7sKKKKyNQooooAK4z4if6PaaPqQODZ6lE7NnGFOc/wAhXZ1yHxNUN4Guyf4ZIyP++wP61vhv40V5/mYYr+DJ9lf7jr6KZES0KMTklQTT6wNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAON+JP7vQrC5P3LbUYZXz6DcP612Vc34+szfeCdSRfvRxiYcf3CGP6A1qaFejUdBsLzvNbo59jgZH55reWtGL7N/oc8dK8l3Sf5/wDANCiiisDoCiiigAooooAq6jp9vqunT2N2haCdNrgHB+o9x1rz22+D9rHqAkuNUkms1bPlCLazD0LZ/kPyrpfFfi7+wZbXTrCzbUNavSRbWaNjju7nso/z3NZL6V8S7iIXJ8SaTaz4z9jist0RPoXbLflW1LE1aSag7JmNXDUqrTqK7R3iKqIqIAqqMADoBS1x3gbxde69JqOla1aJa61pjhLhI/uOD0Zf8+h712NZM2CiiikAUUUUAFcd8TmP/CGyQr9+eeKNR6ndnH6V2NcX42P23W/DOkDky332hx/sx9f0J/Kt8N/Fi+2v3anPiv4Ml30+/Q7JFCIqjooxTqKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBk0KXEEkMgzHIpRh6gjBrkPh5O9vp99oNwf9I0u5ePB6lCSVP55/SuyrhtfP/CMeNbLxDytjfD7JensrfwsfyH/AHyfWuij78ZU++q9V/wLnPW9yUanbR+j/wCDY7mijrRXOdAUUUUAFFFFAHnPgvGrfErxhq1xhprSVLGAHkxxjOcemSufzr0avO9T8L+JNB8X3fiPwl9luY78D7bp9y2wMw/iVumfr6nrniSdfiH4lg+xzWtj4btZBtnlWf7RPt7hNvyjPrQvhSQ38TZB4KxqvxM8X67b82YaOzSQdHdAN2PptH516PWboGhWPhvRoNL0+MpBCOp5Zz3Zj3JrSp7JJdBbtvuFFFFIAooooAK4jTGOufE3Ub8fNbaVALWM9vMP3se4+cH8K3/FGtp4f0C5vjgygbIUP8Uh+6P6/QGq3gvRn0Xw3DHcA/bLgm4uS3Xe3Y/QYH4V0U/cpyn30X6/15nPU9+rGHbV/p/n8joaKKK5zoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKo6zpVvrek3GnXI/dzLjcByp7MPcHmr1FNNxd0JpSVmch4L1e4TzvDeqnbqWn/KpJ/10Q+6w9eMfhj3rr65jxb4cm1IQappb+TrNj80DjjzB3Q/X+p9aseF/E0PiC0ZXX7PqMHyXNs3DI3qAe1b1Yqa9rD5rs/8mc9KTg/ZT+T7r/Nf8E36KKK5zpCiiigAooooAKKKKACiiigApCQoJJAA5JNLXCa5q1z4r1KTw1oMmLdTjUL5fuovdFPcnn69Oma0pU3Ufl1fYzq1VTXm9l3G2xPjnxct5y2haS+If7txN/e9wOD+Xqa72qmmaba6Rp0NjZxiOCJcKO59SfUnrVunVqKbtHZbCo03BXlu9wooorI1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuW8SeE2v7pNX0ecWWtQ8rKPuyj+6/8Aj+ddTRVwqSg7xInTjNWkcnoXjNLm6Gla5B/ZusLwY5OElPqh9/TP0JrrKy9b8P6Z4gtfI1G2WTH3JBw6fQ9v5VzK2fi7wmMWLjXtMXpDK22dB6A9/wBfoK25adXWGj7Pb5P/AD+8xUqlLSfvLut/mv8AL7juqK5XT/iDod1J5F5JJpt0PvQ3ibMfj0/PFdNDPFcRiSGVJUPRkYMD+IrGdOcPiVjaFWE/hdySiiioLCiiqV/rGm6Um6/vre3HYSSAE/QdTTSbdkJtJXZdqG6ureytnuLqZIYUGWd2wBXIS+PW1KQ2/hfSrjU5ennOpjhX6k8/niiDwZfazcJe+Lb/AO1sp3JYwErCn+P+eTW6ocutV28uv3f5mHt+bSkr+fT7/wDIrXGsap44mew0ASWej52z6i6lWkHdUHX/ADzjv12jaLZaDp0djYxbI15LH7znuzHuauwwxW8KQwxpHEgwqIMAD2FPqalXmXLFWj/W5VOlyvnk7y/rYKKKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCnf6Tp+qR7L+yguVHTzUDEfQ9q5uX4b6KJDLp819pshOc2twR/PNdhRWkK1SGkWZTo056yVzjP+EQ1+AYtPGd8FHQTxCU/mWpT4b8XPw3jNgPVbJQf512VFX9Zn5fcv8AIj6tT8/vf+Zxh8DX11j+0fFmrTDusLeUD+GSKt2Pw+8N2L+YbD7TJ1L3TGTP1B4/SuoooeJqtWvb00/Iaw1JO/Lf11/MbHFHDGscSKiKMBVGAPwp1FFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=
|
<image>Tangent $\overline{M P}$ is drawn to $\odot O .$ Find $x$ if $M O=20$
|
12
|
Geometry
|
Geometry3K
|
test
|
58
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGjAcwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKo6zfjStFvL84/cQs4z0yBxXEfCvxjrfjGHULnUxbiGFgkflR7eTzzzQtW12B6K56LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFU7zVtO08H7Zf20GO0koU/kaaTeiE2krsuUVyN78SvDNnkLdyXLD+GCIn9TgfrWNN8YNNX/UaZdSem91X+Wa6I4OvLaLOaWNw8d5o9HorzH/haGq3P/Hl4ZlYdvmZ/5KKP+FgeLD93wrL/AN+Jav6jW6pfeiP7QodG38menUV5j/wsTxPHzL4WlCjr+6lH9KVfi40J23mgSxH2m/oVFH1Gv0V/mg/tDD9Xb5M9Norgbb4t6HKwWe2vIM99isB+Rz+lb9l418OX+PJ1a3UntKTGf/HsVlPDVofFFmsMVQn8Mkb9FMiljnQPFIkiHoyMCDT6wOgKKKKACiiigDg/i/qX9nfD68UNh7llhH4nmovg1pn2DwBbysuHunaU+47Vy/x6vmk/sfSIz80jmQgfkK9W8O2C6Z4c0+yUYEUCLj3xzRDaT7uwT3ivmadFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZ+ra3p2iWxn1C6SFewJyzfQdTXn154417xRctY+FrGSKPOGuGHzAepPRf51vSw06uq0Xd7HPWxVOlo9X2W56Hqes6do8Pm6heRQL2DNyfoOprhb/AOKZuLg23h/SpryU9HdTz9FXn9RS6Z8LhNN9r8RahLeTty0aMcH6seT+ld3p+lWGkwCGwtIrdPRFxn6nvW3+zUv77+5GP+1Vv7i+9/5HnP8AZvxD8S83d0NNtm/gDeXx9F5P4mr1l8JNOXD6hqF1cydTswin+Z/WvRKKl42pa0LRXkNYGle87yfmznbLwL4ascGPSoZGHebMn/oWa2obG0tv9RawxY/uRgfyqxRXPKpOfxNs6YUoQ+FJBgelFFFQaBTWRGGGUEehFOooAzrrQNHvVIudMtJc92hXP54rn734Y+GrvJjt5rVj3hlP8myK7GitYV6kPhk0Yzw9KfxRTPMZvhnqulyGfw9rskb/ANyQlCf+BL1/Ko/+En8deG+NX0v7bbr1lCdv95OB+Ir1KjrW/wBclLSrFS/P7zD6jGOtKTj+X3M4/RPiToWrbY55DY3B/gnPyk+zdPzxXXo6yIHRgykZBByDXN634F0LXNzy2oguD/y2g+Rs+/Y/iK4+Xwz4t8GsbjQ75r6zU5aDGTj3Q9fqOafsqFX+HLlfZ/5i9riKP8SPMu63+49VorhvD/xL07UXFrqif2feA7Tv/wBWT9e34/nXcKyuoZWDKRkEHINc1WjOk7TVjppVqdVXg7nz/wCN7u31f42Wdtc3EUVraPGjvK4VVxyck8V7SPFfhsDA1/SsD/p8j/xrj9W+Cvh/WdWudRutR1Xz7hy7hJI8An0ylUv+FBeGP+gjrH/f2L/43WUbqKTNpWcrnoEXibQJ5Vih1zTZJHOFRLuMkn0ABrVrznRvgv4d0TWLbUoLzUpZbd96JNJGVJ98ID+tejVWlhdQooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVBeXlvYWslzdTJFDGMs7HAFNJvRCbSV2TEhQSSABySa4LxJ8RoraY6boEf26+Y7Q6jcin2/vH9KxtT17WPH+oNpOhI8GmqcSzHjcPVj6e1dt4a8H6Z4agHkRiW6I+e4cZY/T0FdqpU6C5q2su3+ZwutUxD5aOkf5v8jlNH+Hl3q1x/aniu5llmc7vs4fn6Me30FeiWdla6fbLb2cEcEK9ERcCrFFc9avOq/eenbodFHD06K91a9+oUUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz/iDwZo/iJC1zAI7nHFxFw/4+v41wok8TfDe42uDqGjFuvOFH/sp/SvWqbJFHNG0cqK6MMMrDIIrppYmUVyT96PZ/octXCxm+eD5Zd1+vcydB8S6b4jtfNsZgXA+eFuHT6j+tbFeDf2ZqKeMdT/4R4GKaydnSOM4O30Hr9K9H8IeO7fXMWN+BbamvylG4EhHp6H2rbEYPkXPT1X4oxw2N53yVdH+DOyooorgPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKhu7qCytZbm5kEcMSlmY9hQlfRCbtqyPUdRtdKsZby8lEcMYySe/sPevLcap8TtZPL2uiW7fn/AIsf0pT/AGj8TdfYBng0S1b8/wDFj+lepWFhbaZZRWlpEsUMYwqiu/TCLvN/h/wTz9cZLtTX/k3/AACPStJstGsUs7GFYol9OrH1J7mrtFFcLbbuz0FFRVkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5h4Q/5Kdrf/AAL+dbfjHwLBrStqGnYt9TT5gy8CQj19/esXwh/yU/W/+Bfzr06u/EVZUqylF9F+R52FpQq0ZRmtLv8AM4DwX40knm/sPXcw6lEdivJx5mOx9/5139cf408Fx6/D9ts8Q6nEMo448zHY+/oaq+BPF8t+W0XVyU1O3+UF+DIB6+4qatONWPtaXzXb/gF0qs6M1Rq/J9/J+Z3VFFFcR3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAEgDJOAK8p8RapeeOvEC+H9IYiwibM0o6NjqT7DtW78RPEz6fZro9gS1/efKQvVVPH5mtTwV4ZTw5oqo4BvJvnnf39PwruopUKftpbvb/ADOCs3iKnsI/Cvi/yNbR9JtdE0yKxtE2xxjk92Pcn3q/RRXE25O7O6MVFWWwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5j4Q/5Kfrf/Av516dXmPhD/kp+t/8C/nXp1dmN/iL0X5HFgP4b9X+YVwHj3wpLMy6/pAMeoW/zuE4Lgdx7iu/orCjVlSnzROitRjWhySOZ8F+Ko/Eul5fCXsOFnT/ANmHsa6avKfEllP4G8Vw+INPQ/Ybh8TRjoCeo/HqK9OsL6DUrGG8tnDwyqGUitcTSirVKfwv8PIxwtWTvSqfFH8V3LFFFFcp1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU9U1GHSdMuL64OI4ULH3PYVcrzL4g6hPret2fhWwJJZw0xHr7/Qc1vh6Xtaii9uvoYYmt7Km5Lfp6jfAWmS+INbuvFOpKX/AHhEAbpn1H06V6fVPS9Oh0nTLext1AjhQKPf3q5RiKvtZ3W3T0FhqPsqai9+vqFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5j4Q/wCSn63/AMC/nXp1eY+EP+Sn63/wL+denV2Y3+IvRfkcWA/hv1f5hRRRXGdpS1XTLfWNMnsblQ0cq4+h7EV594C1CfQNfu/C2oMQN5MBb19vqK9Orzv4l6LKi2/iOxBW5tGHmFepXsfwrswslK9GW0vwZxYuLjavDeO/mup6JRWV4c1mPXtDtr9Orrhx6MOorVrllFxbi90dcZKUVJbMKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK2oXsWnafcXkxAjhQufwrzz4b2UmqatqPiW7BLyOUiJ9+p/kKu/FTUni0m20uA/vbyTBA6lR2/E11fh3S00bQbSyQfcjG4+rHkmu2P7rDt9Zfkjhl+9xSXSGvzZqUUUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUUtzBAQJp44yem9wM/nUY1CyJwLy3/7+r/jQBZopAQQCCCD3FLQB5j4Q/5Kfrf/AAL+denV5j4Q/wCSn63/AMC/nXp1dmN/iL0X5HFgP4b9X+YUUUVxnaFQXlrHe2c1rKAY5UKMD71PRTTs7oTV1ZnmHw9upNE8Raj4auiRhy0WfUf4ivT68w+Ils2jeItL8RW3yneEkI9R/wDWr0q3nS5top0OUkQMPoRXXi/f5ay+1v6o4sG3DmoP7L09HsS0UUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFR3Ewt7aWZvuxoXP4DNAPQ8xvf8Aipfi1Db/AHrew6/8B5P616lXmfwthN1faxqz/MZJNgY/XP8AWvTK7Ma7TVNfZSRxYFc0HVe8m2FFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQSACT0FAHgPxPR/FHxV0/QY5WVVVYiy87c8mts/ACwwca9d594lrm/DmraddfGm/1jU72C2t4pJCjzSBRkcADNezP478KIhY+IdOwBk4nUn8hSikoJ99Ryb52ux4xE2vfCXxxZ6e+ovdabcsvynIV1JxnaScEV9DowdFYdGGRXz1r2qD4nfFDTrfSEd7K2IHmlcZUHLMfQV9CIoRFQdFGBVK7gm/P7hSsp6HmfhD/kp+t/8AAv516dXmPhD/AJKfrf8AwL+denV143+IvRfkcWA/hv1f5hRRRXGdoUUUUAc1480v+1PCV5Gq5kiHmp9RVf4cap/aPhKBGbMlsTE30HSurljWWJ425V1Kn6GvM/hs50/xJrekt8oVyyr9Dj+VdlP38NKP8uv6HDV9zFQl/Mmv1R6dRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVPUtVsNHtftOo3cVrBkL5krYGfSgC5WB41vfsHhDUZQcMY9i/U8Vr2V9a6jaR3VnOk9vIMpIhyGHtXIfFSbyvCBQHmSdB+HNb4ePNWjF9zDEz5aMpLsyb4Z2X2TwdA5GGndpD7jPFdjWP4Uh+z+FdMixjbbr/Ktipry5qsn5jw8eSjGPkgooorI2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACszxHfLpvhzUbxjjyoHOffHFadef/GTUvsHw/uYw2HuXWIe471E/hZUPiR5t8MPh7pvjSz1DUdXNxhZtsflPtyTye1d+Pgb4RBBP24+3n/8A1q0PhFpv9nfD2xJXD3BaY/ieK7qtZJJ2REW3qYvh7wnonhe3aLSLFIN333yWdvqx5raooqb3GeY+EP8Akp+t/wDAv516dXmPhD/kp+t/8C/nXp1dmN/iL0X5HFgP4b9X+YUUUVxnaFFFFABXl7f8Sf4yg9EvR+BLD/61eoV5h48/0Tx7oN303Y5+jY/rXZgtZyh3TOLHaQjPs0en0UUVxnaFFQ3d3b2NrJdXUyQwRjc8jnAUe9QaZq+n6zbm4028iuoQdpeJsjPpQBdopskiQxtJI6oijLMxwAKytP8AFOhatd/ZdP1W1upwCSkT7jj8KANeiiigAooooAKKKKACiiigAooooAKKKKACvHPj3qBGnaVpaH5ppTIV9ccD9a9jrwX4gsfEHxm0vSlO5IGjQj8dxpW5pRj5lJ2Tl2R7H4WsBpfhfTbIDHlW6A/XFch8XZD/AGVp0A/5azn9AP8AGvRVUIgUdAMCvNfi8WFvpG0ZImYge+BXbg3zYmLODHaYWS9PzPQtPjEWm20Y6LEo/SrNeXReJviAsKKmgxlAoAPknkf99VEfGfj0HH/CPt/4BSf403gpt7r7wjjI2soy+5nq1FeU/wDCaePf+hfb/wAApP8AGj/hNPHv/Qvt/wCAUn+NL6jU7r7yvra/kl/4Cz1aivKk8Y+PncKPD5yfWzkA/Mmp/wDhJ/iF/wBACP8A78N/8VR9Sn3X3ieNit4y+5np1FeY/wDCT/EL/oAR/wDfhv8A4qj/AISf4hf9ACP/AL8N/wDFUfUp/wAy+8X16H8svuZ6dRXmP/CT/EL/AKAEf/fhv/iqP+En+IX/AEAI/wDvw3/xVH1Kf8y+8Pr0P5Zfcz06ivMf+En+IX/QAj/78N/8VR/wk/xC/wCgBH/34b/4qj6lP+ZfeH16H8svuZ6dRXmP/CT/ABC/6AEf/fhv/iqP+En+IX/QAj/78N/8VR9Sn/MvvD69D+WX3M9OorzH/hJ/iF/0AI/+/Df/ABVH/CT/ABC/6AEf/fhv/iqPqU/5l94fXofyy+5nprMEUsxAUDJJ6CuH1P4p6JY3TQQRT3e04Z4wAv4E9a5bxD4m8ayaLPFqOlra2sg2PKsRBGe2cmvOq7MLl0ZJuo7+jOHF5nKLUaSt6o+jPD3ivS/EsTNYysJU+/DIMMv+Irbr5s8PahqGm61bz6Wm+6ztSPGd+e2K9F/4Sf4hf9ACP/vw3/xVZYjL+SfuNW82bYbMueHvxd/JHp1FeY/8JP8AEL/oAR/9+G/+Ko/4Sf4hf9ACP/vw3/xVYfUp/wAy+86Pr0P5Zfcz06kKhuoB+teZf8JP8Qv+gBH/AN+G/wDiqP8AhJ/iF/0AI/8Avw3/AMVR9Sn/ADL7w+vQ/ll9zPTgABgDAoryibxv43t7uG1m0iBJ5/8AVRmFst9Pmqz/AMJP8Qv+gBH/AN+G/wDiqPqU+6+8bxsUk3GWvkz06ivMf+En+IX/AEAI/wDvw3/xVH/CT/EL/oAR/wDfhv8A4qj6lP8AmX3i+vQ/ll9zDwh/yU/W/wDgX869OrwfRtV8R2/iq+urHT1l1GTPnQlCQvrxmuq/4Sf4hf8AQAj/AO/Df/FV04rCynNNNbLqcuExcIQaae76Hp1FeY/8JP8AEL/oAR/9+G/+Ko/4Sf4hf9ACP/vw3/xVc31Kf8y+86vr0P5Zfcz06ivMf+En+IX/AEAI/wDvw3/xVH/CT/EL/oAR/wDfhv8A4qj6lP8AmX3h9eh/LL7menV5p8VU8u50W57rNj9QaZ/wk/xC/wCgBH/34b/4qua8W6r4l1FbEa7py2saS5jIjK7j+JNdGEwsoVVJtfec2MxcKlFxSf3eZ7fA/mW8T/3kB/SpKgsv+PC3/wCuS/yFT15j3PVWx578ZtS+weAJ4lbD3UixD3HerPwwtItD+G9lNcOsKOrXEjucAA+tcT8edRR7vRtLZ9qZMsnsM4rkfGfj251zT4NI0xZoNCtFSJ2UEeaQMZJ9PQVEXo7dWXJaq/Q6jxP4s1f4l61/wjPhZXXTQ2J7joHHcsey+3evUPBvgrTfBuli2tED3DgGe4YfM5/oPaovh9o+i6X4Ts30VAYriMSPMeXkbvk11VXbl0RF+bUKKKKQwooooAKKKKACiiigAooooAK4Xxx8Q28I6vp2nQ6et5NeY6y7NuWwOxruq8g+MPh3VpNU0vxJpdq919jwJI0UsRhsg4HOKV7NX2uNK6Z64jkwLI42kqCw9OK8G8CA+IvjVqWqN80cLSSA+nOB/WrmofGbVdU0qTTtN8NXMeoTJ5ZcMz7cjBwoXOa6f4R+C7vw1pVxf6pH5d/ekExnqi9gfeqive5uiE37nL1Z6TXm/wAXBiy0mXsk7ZP4CvSK4P4sQ7/C0UuP9XcL+oP+FdOCdq8Tkxyvh5nbWZDWVuR0Man9KmrN8PTfaPDunzZzugU/pWlXPNWk0dMHeKYUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1PToNW02exuRmKZdpx1HuK8a1P4Xa/a3TLZRR3kBPyusgUge4Yj9K9worpw+LqUL8uxy4nB0sRbn3R534H+Hsui3i6nqjoblR+6iQ5Ce5PrXolFFZ1q060uaZpQoQow5IbBRRRWRsFFFFAHFeJf+R+8NfVq7WuK8S/8j94a+rV2taT+GPod+L/AINH/C//AEphRRRWZwHmPhD/AJKfrf8AwL+denV5j4Q/5Kfrf/Av516dXZjf4i9F+RxYD+G/V/mFFFFcZ2hRRRQAV5t8WGDLo8Q+8ZycV6TXmPxHP2nxZoNoOfmDEf8AAhXXgf46fa/5HFmD/cNd7fmekWilbOBT1Eaj9KmoAwMDpTZH2RO4BYqpOAMk1yN9TtS6Hz34y09/HXxlOjxzeXHGBEzgZ2qoyxr1W9+Hukf8ILceHLK3WNGTKyEfMZB0Yn1zXFfDDRNUl+IOta5qenXdqDv8priFk3bm7ZHPFezUkv3aj3G377fY8Y+C/iCayur3wjqJKzQOzQhvUfeX+tez14r8SPDOq6P43sfFXh6xubh3cNMltEzkMO5CjoRXsOnXZvtOt7poZIWlQMY5UKsp7gg8iqvzRTe+zE1aVlsWaKKKQBRRRQAUUUUAFFFFABRRRQAUUUUANCKDkKPyp1FFABXLfEO1N14LvdoyYtsmPof/AK9dTVTVLYXulXdsRnzYmUD3xxWlKXJUjLszOtDnpyj3Rh/D+7F34LsCD/qlMR/A4rp686+E1yRp+oae5+aCfIHsf/r16LWmLjy1pLzMsHPnoRfkFFFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFQ3c62tnNcN92KNnP4DNTVy3xG1L+y/AeqzhsM0Xlr9W4qZu0WVFXkkef/AAfvtS1zxVrWo3V7cy26ZCI8pKgs3YdOle014R8I/GHhbwt4duE1XVFt7yebcyGGRiAOByqkV6F/wtvwN/0Hl/8AAab/AOIrR2VkuhCu22c58cNdu9O0vTbKxuZYJ55SxMTlSQPp716D4Xt5bXwvpsM8jyTCBS7uxJJIzyTXh/jLXLHx58TNFt9KuPtNmjIgcIygnOW4YA19CogjjVF4CgAVMfgu+r/IcviS7L8x1FFFABRRRQBxXiX/AJH7w19Wrta5nxN4WuNdvrK8tdTaxmtc7WWPccn8RVH/AIRLxL/0Odz/AN+P/sq2fLKK1PUkqFajTTqqLirNNS7t9EztKK4v/hEvEv8A0Odz/wB+P/sqP+ES8S/9Dnc/9+P/ALKp5I/zfmZfVaH/AD/j90v/AJExfCH/ACU/W/8AgX869OrynwHBNbfEHVYZ7g3EqKwaUjBc564r1aujG/xF6L8jxMEkoSS/mf5hRRRXGdgUUUUAFeX60f7T+L2n26crbBS34cmvUCcDJry/wWP7V+Ius6oeRHuCn6nH9K7MJ7qnPsvzOLGe86dPu/yPUKKKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDy3Qz/wjnxUvdPb5YL3Oz8fmX+tepV5p8TrZ7DUtK16EENE4RyPY5H9RXollcpe2UFzGwZJUDgj3FdmK9+EKvdWfqjhwnuTnR7O69GT0UUVxncFFFFABRRRQAUUUUAFFFFABRRRQAV5P8eNR8jwvZ2Cn5rmfJHsor1ivCfi1KdZ+JGi6KnzBNgZf95sn9Klrmaj3ZUXZOXZHV+GPhT4Vm8M6dLqOlCW7khV5XMrjJPPQGtVvhP4HRCzaKoAGT++k/8Aiq7KCIQQRxL91FCj8BWV4t1AaX4T1S8Jx5du2PqRgfzqqkrXaJgm7Jnhvwy021vfizcS2cAjs7MyNGoJIXBwOTX0XXivwC08tFq2quPmd1iBP5mvaqpq0VHyFe8mwoooqRhRRRQAUUUUAFFFFAHmPhD/AJKfrf8AwL+denV5j4Q/5Kfrf/Av516dXZjf4i9F+RxYD+G/V/mFFFFcZ2hRRRQBleJNRXSvDt7eE4KREL7k8CuX+FenNBoE9/KP3l3KTk+gqv8AFW/ZrOx0eFv3t1KGZR6DgfrXb6NYLpmjWlkowIYgpHv3/Wux/u8LbrJ/gjhX7zF36QX4v/gF6iiiuM7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAx/FGkLrnh67siMuybo/Zh0rmvhfq7XGkTaTOf39k+AD12//AFjxXe15Vq4bwT8RYtTVSNPvj8+Ogz978jzXbh/3tOVHruvU4cT+6qRr9Nn6M9VopqOskauhBVhkEdxTq4juCiiigAooooAKKKKACiiigAooooAKzpNA0eXU11KTS7N75SCLloFMg/4FjNaNFABUF5ZWuoWr215bxXED8NFKgZW+oNT0UAVNP0vT9JgMGnWVvaQk7ikEYRc+uBVuiigAooooAKKKKACiiigAooooA8x8If8AJT9b/wCBfzr06vMfCH/JT9b/AOBfzr06uzG/xF6L8jiwH8N+r/MKKKK4ztCkZgqlmOABkk0tcn8QNfGi+HpIo2/0q6zFGB1A7mrpU3UmoLqZ1aipwc5dDl9GU+L/AIlXGpON1nYn5M9OOB+vNeqVynw/0I6J4ajMq4ubn97J6jPQflXV1ti6ilU5Y7LRGGDpuNPmlvLVhRRRXMdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYHjHQF8Q+H5rYKPPQeZCfRh2/Gt+iqhNwkpR3RE4KcXGWzOF+GuvtfaW+k3bYu7I7QG6lP/rdK7qvLvGel3HhbxBD4p0tSImf/AEhB0yeufY/zr0TSNUt9Z0yC+tW3Ryrn6HuDXTioJ2rQ2l+DOXCVGr0J/FH8V0ZdooorkO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzHwh/yU/W/+Bfzr06vMfCH/JT9b/4F/OvTq7Mb/EXovyOLAfw36v8AMKKKK4ztGu6xozuwVVGST2FeVWat49+ID3TgtplgflB6HB4/M81q/ETxFL+78OaYS95dECTZ1UHt+NdN4T8PReG9EjtVAM7fPM/95q7qf7ik6j+KW3p3OCp/tFZU18MdX69EbgAAwOlFFFcJ3hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe+soNRsprS5QPDKpVga8u0e+ufh54lk0nUSzaXctmOXsvo3+Nes1i+J/Dlt4l0l7WYBZV+aGXujf4V04eso3hP4X/VzlxNGUrVKfxLbz8jYR1kRXRgysMgjoRTq8y8GeJrjQr9vDGvkxtG22CV+g9Bn09DXpvWor0XSlZ7dH3LoV41o8y36rsFFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeY+EP+Sn63/wL+denV5j4Q/5Kfrf/AAL+denV2Y3+IvRfkcWA/hv1f5hWD4s8TW/hnSmnchrlxthiz94+v0q9rWtWehadJe3sgVFHyr3c+grznw9pV3478QNr+rqRp8TYhiPRsdAPb1qcPRTTqVPhX4+RWJryTVKn8T/DzNLwB4duZrmXxNq4LXVwS0IfqAf4v8K9EpFUKoVQAAMADtS1lWqurPmZrQoxow5UFFFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc14v8IW3iayyMRX0Y/dTY/Q+1c14R8X3Ol3v/CO+JMxTRnZFNIfyBP8AI16VXO+KvCFj4ntf3g8q7Qfup1HI9j6iuujWi4+yq/D+Rx1qElL21H4uq7nRAgjIOQaK8r0bxRqngy/XRfEiO9oDiK467R6g9x+or0+3uIbuBJ7eVZYnGVdDkEVnWoSpPXVPZmtDERrLTRrddUS0UUVgbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmPhD/kp+t/8C/nXe61rdloOnveXsoVQPlXPzOfQCvKIPEUHhrxxrt5LG0jkssaD+Jvc+laekeGtV8b6gus+IneOyzmKDpuHoB2H869WvQTkqlR2jZfPToePh8Q4wdKkrybfotd2Radp2pfEfWf7T1PdDpELYjjHAYeg/qa9Vt7eG0t47e3jWOKMbVVRgAUW9vDaW6QW8axxRjaqKMACpa4a9d1XZaRWyPQw+HVJNt3k92FFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ2s6JYa9YtaX8IdD91ujKfUHtXm82neJPh1ctc6fI19pBOXQjIA9x2PuK9ZpGUMpVgCDwQa6KOIlTXK9Y9jmrYaNR8ydpLqjA8OeMdL8SQjyJRFdAfNbyHDD6eoroK4TxB8NbO+la90iU2F5ncAv3Cfw6fhWPa+MPEfhGdbPxLZyXFvnC3A649m6N+PNavDwq60H8nv/wTFYmdH3cQvmtvn2PU6KyNH8T6PrqA2N7G7kcxMdrj8DWvXJKMou0lY7YzjNXi7oKKKKkoKKKKACiiigAooooAKKKKACiiigAopskscMbSSuqIoyWY4A/GuL134l6TpoaHT/8AT7roBH9wH69/wrSnRnVdoK5lVrU6SvN2OzlljgiaWaRY41GWZjgAfWvPNf8AiHNdXR0rwvC1zcudvnhcgf7o/qaz4tA8V+OJVuNZuGsdPJysOMcey/1Nd9oXhnTPDtv5VjAA5+/K3Lt9TXVyUaGs3zS7dPmcvPXxGkFyx79X6djlvDXw6EVyNU8QSfa71jv8onKqfUnuf0r0AAAAAYA6AVHczpa2stxJ9yJC7fQDNee6H8Y9F13XrfSYLK7jknfYsj7dufzrmq1p1pe8zqpUIUYe6j0eiioLy7hsLOa7uHCQwoXdj2ArJu2pruT0V5rpPxo0bWdat9MtdOvTLPJ5aMduPr1r0qi2lw62CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqG5tbe8gaC5hjmiYYKOoINTUUJ22Bq+jOB1f4W6dcOZ9JnksJxyFBLJn+Y/OsldR8eeEj5d1bHU7Rej4MnH1HzD8a9UorrjjJ25ai5l5/5nHLBQvzUm4vy/wAjgtN+K2kXJEeoQT2UnQkjeo/Ln9K66y1zS9RUGz1C2mz0VZBu/LrUOpeG9H1cH7dp8ErH+PbhvzHNcne/CXSpCWsr26tWPQEh1H9f1p/7LPvH8V/mT/tdPtJfc/8AI9Bory//AIQjxjpP/IK8QeYg6I0jJn8ORS/afifZ/egS4Ue0R/wNH1WL+Con+A/rko/HTkvTU9PorzD/AITLx1a8XHhwSe6wOT/46aX/AIWF4pH3vC0v/fiWj6jV6W+9B9fpdbr5M9OorzH/AIT/AMXPxH4Wkz2zby0n/CQfEa8/1GjJDn/pkB/6GaPqVRbtL5oPr9N/Cm/kz0+mSSxwoXldUUdWY4FeZmw+JmpfJNeJaKe4dUx+KDNOj+Ft/euJNX1+WVu4QFj/AN9Mf6UfVqcfjqL5ah9aqy/h0n89Dq9T8c+HtLBEuoxyuP4IP3h/Tj9a5S4+J99qMhg8P6LLM/QPIC5/75Xp+dbum/DXw7YMHkt3u3He4bI/IYH6V1Vva29pEI7eCOJB0VFAAo58NT+GLk/PRC5MVU+KSivLV/eeZx+DvFXimQT+ItSa2gJyIQckfRR8orsdE8FaJoW17a1Ek4/5bTfM34en4V0NFRUxVSa5dl2WhpSwlKm+a133erCiiiuY6jlfiNqX9l+A9VnBwzReWv1bivn3RrA6Jf8AhPViCDdTlifbdgV6p8d9RMPhmy09D811Pkj2Fc58RtK/sfwZ4OkVcG22gn8A1KDtLm80ipK65fJs97ByAa8n+MXiGaVbTwlphLXl+480L1C54H416FNrNvp3hcatcuBDHbCVie/y9K8i8CQTa3qmt/EHVR8kKubYN0BA7fTgUSSu09lqxRb5brd7GV8ONBhT4sG3iAaLTYzub1cDGfzzX0RXjPwMtWup9c1uQfNNLsBPudxr2ard7JMnTmdgoooqRhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4X8VJDrXxO0PRUORGU3D3Zs/yFdP8bLIN4AjdR/x7Tpj2HSiL4faxN8V28UXstmbFXLRosjGQYGBxtx+tdX450CfxN4SvNLtWiWeUAxmUkKCD3IBqWv3aXW9/xLT/AHl+lrHkHiTxHceKNC8M+EdLcvLcxRm5K9uwB+nWu38dxW/g34RSaZa4UFFtwR1YnqarfDP4XXfhPU59S1iS2muduyAQMWCjueQOa1Pih4P1nxlYWVnpctrHHFIXl8+Rlz6Ywpqqmqsur1Jho15bDvg9pv8AZ/w+tHK4e5Zpj9CeK72qGiacNJ0Sy08Y/wBHhVDjpkDmr9VN3k7ERWmoUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z
|
<image>In H, the diameter is $18$, $LM = 12$, and $m \widehat {LM} = 84$. Find $HP$. Round to the nearest hundredth.
|
6.71
|
Geometry
|
Geometry3K
|
test
|
59
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACqAOIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuYsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACgkAEk4Arnte8XWejSrZwxve6nJxHaQctn/a9P5+1ZS+HNd8SnzfEl+1rak5XT7RsDHo7d/1/CuiGHfLz1Hyr8X6L+kc8q6vywXM/wAF6v8ApmnqXjnQtNl8kXRu7jOBDaL5jZ9MjjP41RHiXxPqHOmeF3ijP3Zb6XZ+JXg/lXQ6ZoemaNHs0+yhg4wWVcsfqx5NaFP2lGPwQv6/5K35sXs60vilb0/zd/yRx4g8f3DAvdaNarnkIjMR+YP86f8A2f44/wCg1pv/AID/AP1q62il9ZfSK+5DWHXWT+9nH7/H9ry0WjXgHVUZlJ+hOBTT401DTv8AkOeGr62QdZoCJkHuSOB+ZrsqKft4P44L5XX9fcHsZr4Zv52f9feZOk+JdH1sAWF9FJIf+WRO1/8Avk81rVgav4N0TWCZJbQQ3Gci4t/3bg+vHBP1BrHZ/FHhH5pC2uaSvVsYuIh7/wB7H4/hT9lTqfwnZ9n+j2/IXtalP+Irruv1W/5nb0VnaNrun69Z/adPuBIo+8h4ZD6MO1aNc8ouL5ZKzN4yUleLugoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/WvEN9qOpNoHhoq10OLq8P3LcfX+9/nr0f4q1q7lvIfDeiN/xMroZllHS3j7sT2OP85Ira0LQ7Tw/pqWdopPO6SRvvSN3JrqhGNKKqTV29l+r/Tuc05SqydODslu/0X69iv4f8L2Ph+FjEDNdyczXUnLyE9eewz2rboorCc5TlzSd2bQhGC5YqyCiiioLCiiigAooooAKwfEniaLQoY4YozdajcHbb2qclj6n0FR+JfFA0dorCxh+2avc8QWy9v8Aab0H+emSGeG/C506V9U1SQXes3HMkx5Eef4V9PT/AOtXTTpRhH2lXbou/wDwDmnUlKXs6e/V9v8Ag/0zAg8E63bRvrkGoLDr7uZXhQAQsD/yzIH8+n866Xw34mj1tJLa4ia11S34uLVxgg+o9R/L8s79cv4q8PT3Tx6zpDeVrNoMoV485R/A3r7flWntliHy1dH0fby9PyI9i6C5qW3Vd/P1/M6iisjw3r0PiHSlukXy5lOyeE9Y3HUVr1yThKEnGW6OqElOKlHZhRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFZuv6xDoOi3GoTc+WuET++54A/OtKuK1cf8JH48stI+9ZaYv2q5HZnP3VP5j8Ca3w9NTn72y1fp/wAHYxrzcY+7u9F/XluXvBuizWNlJqeoZfVNQPnTs3VAeQntj0/DsK6esjxN4gtvDGgXWqXGxvJTKRM+0yt2UHnqfY1dOoQxaV/aNwwhgWHzpCTkIuMmoq1HUk5yLp01TioRLVFcVD4+mH2O8vvD91Z6LfSLHb37zIx+b7peMcoDxzk9a7Woaa3KuFFcddeNrs3N+dJ8PXGpWGnyNHdXSXCR/MoywjU8vjv0rptM1G21fTLbULRy1vcRiSMkYOD6+9FtLjejsW6KKKQBXM+I/E0ljcR6TpMIu9ZuBhIx0iH95v54qLxF4mnjvRoWhR/adXlHJH3Lcf3mPr7f/WBveG/DNvoEDSM5uNQn5uLp+Wc9cDPQV1QpxpxVSr8l3835fmc0qkqknCn8328l5/kR+GvC8ejK95dyfatWuMtPctycnqq+g/n+ldDRRWFSpKpLmlubQhGEeWIUUUVBZw+txt4S8TxeILcEadesIdQQDhWPST/Pv6126sHUMpBUjII7iquqadDq2l3NhcDMc6FSfQ9j9QcGsDwHfzTaNLpl5/x+aXKbaQeoH3T9Oo/Cuqf72lz9Y6P06fdt9xzR/d1eXpLVevX79/vOqooorlOkKKKKACiiigAooooAKKKKACiqd9qtlpxVbmfEjglIkUvIwHUhFBY9ugqO01zTb2ZYIrnbcMu5YJkaKQj12OA36UAXpJFijaRzhUBYn0ArjPh3LFfw6tqzSI11eXZZ0BG6NB90Edupra8YXX2PwhqkwbafIKA+7fKP51y8PhW+0jStM1rw+Nuox2yfarbPy3IIBI+v+etd1CEXRkm7OTsvlr/kcdaUlWi0rqKu/np/mTfE7w7pFz4V1bWJrCF9QitwEuCDuXBGMfmas+OJGi+E1+ydTZIv4HaD+hqDXtYTxd8NtYXToJnvfJ2SWaqWlR8jjaOT0Nb+qaO2s+CZ9JJ8uS4svKBYfdbbxn6GuOcZQUoyWqOunOMnGaen/DHPfEJQnwiuNoxsgtyuO2HTFdxbMXtYWbqUUn8q851OXWvE/h+08KvoGoWlwWhS+upkCwIiEFij5+fO3gD1ruf7SePXo9JGn3RiNt532wJ+5BBxsLf3u+PSql182/yEtEl2Rg69d2/gvRJ4NK0K/uRdGWVmt0aWON26tISSwGTngHoa0fBNnb2HgvSba1uo7qJLcYniOVcnkke2SaxrfxBruiG807VND1bVLjz5DaXNrCrxSxk5QM2QEIHBz6d61/BGjXGgeErKwuwq3C75JEU5CF2LbR9M4qV8L+X6/kN7/f8A8OdDXI6/4ju7q+bQPDq+bqLcTXH8Fsvck+v8vrUWteILzWNQfw/4aJM4OLu+H3Lde4B/vf5HPTVs/CWm2Xh650hELpdRslxK/LykjBJP4/hXQoKhHnqK8ui/V/5dTnc3WlyQdl1f6L/P9SXw74btPD1oyQ5luZfmuLl+Xlb/AA9q2a8t8Ivf+L7CHRL/AB/ZmiP9nvWVwftsiNhF/wBwAAn1PHTNeogAAAAADoBWNWTlJyk7tm0IqC5Yq1haKKKzLCiiigArjWH9kfFFGHywavakEdjKnf8AID/vquyrj/HYNvJoOpqPmtdRRS2Oit1/A7QK6cLrNw/mTX+X42OfE6QU+zT/AM/wudhRRRXMdAUUUUAFFFFABRRRQAUyWVIYXlkO1EUsx9AOtPrK8SqZPDWoRAlfOgaHIOCN/wAuf1oAZ4etW+xnVLlCL/UAJpd3WNTykY9AoOMDjO49Sav3thaalb+ReW8c8eQwV1zgjoR6EdiORVgAAAAAAdAKWgDzr4gLf6P4Qubd5XvNNkdFWWRszQYYEBj/ABrxjd94cZzyR6BbbfssOwqybBtKnIIx2Ncx8SE3+CLxufkeNv8Ax8D+tWUY+HYUuky2iyAPIne0J6uv/TPnkfw9RxnHTK/sI+r/ACRzxt7eXovzZV8Q+G7pL0694efyNVQZki/guV7gj1/n+taXhvxLa+IbQsoMN5F8txavw8bDg8env/WtpWDKGUggjII71y/iTw1PPdJrehuLfWIOeOFnX+63+P5+ocJxqxVOpv0f6Py/ImUJU5OpT26r9V5/mdTRWF4b8TQ67FJDJGbXUbc7bi1f7yn1HqK3CQoJJAA5JPasJwlCXLJam8JxnHmjsLXE6rrd74mv30Pw5IyQqcXmor91B3VD3P8AketR32q3njK/fSNClaHS4ztvNQUfeHdE9f6/Tr1ulaVZ6Lp8dlZRCOJB+LHuSe5roUVh1zTV5dF283+i+8wcnX92D93q+/kv1f3EeiaJZaBpyWVjHtQcs7cs7erH1qp4ig1XUI4dM04NBBcki6vQ6gwx9woznc3QHGByfStyiuaUnKXNLVnRGKgrR0OR0jw3J4d8YytpdmseiXdkiyBGAEU0fCnGcnKnqB1HNddRRSbb3HYKKKKQwooooAK5H4lJu8FXLd0kjYH/AIEB/WuurkfiSW/4Q6aJRlpZo0A9Tuz/AErown8eHqjnxf8AAn6P8jrI23xqx6kA06mouxFX0GKdXOdAUUUUAFFFFABRRRQAVl+IR/xJJjn7rxt9cOpx+OMVpSSJFG0kjqiKMszHAA9zVBbjS/ENhPDbXtveW7ApIbeZXx7ZUnBoQGjRRURurcXS2pniFwyGRYi43lQcFsdcZI5oAzPFVob3wrqcCruY27Mo9SBkfqKTwpdi/wDCemTZD5t1Rj6lRtP6g1sMoZSrDIIwRXHeBGOnyat4ekPzWFyWiB7xPyP8f+BV0x96hJdmn9+j/Q55e7Xi+6a/VfqacH/FN3iWjE/2TcOFtmPS1kPSMn+4T930J29CoreBBJwRx1qnq9pNfaTdWsAtjJLGVAuYy8Zz2YAg/ka4rwG/iHRbvXbXxb8pBS6S8LZidQoRsN7BE68881glc32NrxP4c+1P/bOm3AsdWtlLLPkBXA7P7Y7/AJ8VzFrr2ofEKWLR1lTT7ZYt18Y3BebnBCD0/wAec99KSW8+IF48Fu8lr4chbEkoGGumHYe3+TzwNPXPBtvcWttNo23T9SsQPsssfAIH8LeoPr7nrk59KE40koVX73R/y+v+XQ82cZVW50l7vVfzen+fX8ToNP0+10uxis7OFYoIhhVH8z6n3q1XOeG/E51OWTTNSh+yaxb8SwHo/wDtL6j/ADzXR159WE4Tanud9KcZRThsFFFZt1rdpaa7YaPIHN1epI8e0DChACS3OR144NZmhpUVia14u0Tw9cx2+p3UkMsib1CW0smRnHVFIHSo9H8a6Br2ofYdOvXlufLMmx7aWP5QQCcuoHcU0m9gem5v0UUUgCiiigArjvHH+maj4c0oYLTX6zMP9lOv6Ma7GuMtj/bPxOuJx81vpFt5Snt5r9f0LD8K6cLpJz/lTf6L8Wc2J1iod2l+r/BHZ0UUVzHSFFFFABRRRQAUUUUAcV8SoZJtK0vejPpi6lC2oqoJHkAnO4D+HOM1SsINOb4n2k/hlLUWS6e6372QHlE5Hlglfl3frir3j64K3nhyxuJDHpd5fiO8O7aHG0lUY/3Seo74qpdWdroXxK8P2mgwQ2aXUM5vra2UJG0aqNrso4zu4B61cP8AP8hS2+S/M7ufzjbyfZygm2nyzICVDY4zjnGa870aLW4vjAw1y8triZtHZoxbRlI4180DABJPUE9a9FSWOQsI5FfadrbTnB9DXGt/yWiP/sBn/wBHUofF9/5Mb+F/L80drXF+Jc+H/FeneI14tZv9DvcDoD91j9P/AGUetdpVPVdNg1fS7iwuVzFMm0+x7Ee4OD+FaUKihO8tno/RmNaDnC0d1qvUmubu3s7R7q4mSOBF3NIx4Arhwl78QrrfIZLXw3DJ8qdHuyPX0H+evIy9H0++1nWl8N+IbzFvpKgpbDIN0AflYnuAMfgfqa9QjjSKNY40VEUYVVGAB6CuiaWFfuu8n16JeXn+XqYRbxK95Wj26t+fl+foNggitoI4II1jijUKiKMBQOwqSiiuHc7DA8SeGY9bWO6t5Ta6pb8290nBB9G9R/n61vDfieS7nfR9YQWuswcMh4Ew/vL/ADx+I9uorD8SeGoNftlZXNvfwHdb3ScMjf4V006sZR9nV26Pt/wPIwqU5Rl7Snv1Xf8A4PmbZG5SMkZGMivNT4dtdD+LGgSQXN7cSXNtc+ZJd3DTN8qjABbtya6Dw74muHvjoWvRi21eIfK2fluV/vL7+3/1wK2t/wDJVfC3/Xrd/wDoK1EqcqVRRl5/PRlxqRqU24/1qjsJ5o7aCSeVgkcal3Y9AAMk1znhBZNTim8S3aFZ9R/490brFbA/u19s/ePufaqvxNupIvBz2cL7JdRnislP++2D/wCOg11ltAlraxW8QCxxIEUDsAMCsls38v8AP9DV9F/Xl+pLRRRSAKKKKAM7XtWi0PRbnUJcHyk+RT/Ex4UfnWZ4I0qXTvD6zXWTe3zm5nZhzuboD+H6k1k3Dnxp4tS1jy2i6U++Zv4Z5uy+4H+PqK7quqp+6pKn1er/AEX6/cc1P97UdTotF+r/AE+8KKKK5TpCiiigAooooAKKKKAKuo6ZZavZPZ6haxXNs/3o5FyD7/X3qjovhXRPDzyvpenpBJKMPJuZ3I9NzEnHt0rYooTsBR07R7DSXu3sYPKa8na4nO9m3yHqeScfQcUp0ixOtDWPI/08QfZxLvb/AFed2MZx174zV2incAooopAc14r8PzaisGp6Y3laxZHdA443juh+v9T61Z8NeJINftWVkMF/B8tzbPwyN6/StyuY8ReGJrq8TWdFmFprEI4b+GYf3W/x/wAjqpzjUj7Oo7W2fbyfl+RzThKEvaU9e67+a8/zOnormdA8Xw6jOdN1KI6fq8fyvby8Bz6oT1+n8+tdNWNSnKnLlkjanUjUXNFhRRRWZZjeIvDdp4htFSVmhuoTut7mPh4m/wAPb+tZXh/xHcwXx0DxFti1KPiGY8Jcr2IPr/P6111ZOv8Ah+z8Q2Bt7kbZF+aGZfvRt6j/AArpp1YuPs6vw/l/XVHPUpNS9pT3/P8ArozWorjtD8QXum6gnh7xJhLvGLa7z8lyO3P97+f169jWVWlKm7P/AIc0p1I1Fdf8MFFFNd1jRndgqqMlmOABWZoOrj/EutXWoXv/AAjOgtuvZV/0m4U8W0ffn1/x9TUN/wCJL7xFdPpPhUZQfLcakR8kQ/2fU+/5eo6Dw/4esvD1j5Fsu6VuZp2Hzyt6n/CuuMFQ9+p8XRfq/wDI5ZTdf3afw9X+i/z/AFJtF0e10LS4bC0X5Ix8zHq7d2Pua0KKK5pScm5S3Z0RiopJbBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk654b03xBAEvYf3i/6udDtkjPsf6HiueD+LPCvyuh17TV6MvFxGvv8A3v1+ort6K3hXlFcklePZ/p2MJ0FJ80XZ91+vc57S/G2haoRGLwW1xnBguf3bA+nPBP0NdACGAIIIPQis7U/D+k6wpF/YQzMRjeVw4+jDkfnWD/wgENoS2j6zqWneiJLuQfhxn86rlw89m4+uq+9f5E3rx3Sl6afg/wDM7CiuQGieMrc/ufFMMyjtNaKM/wAz+tO/s/xx/wBBvTf/AAH/APrUvYR6VF+P+Q1Wl1g/w/zNrXNCsvEGnm0vEPB3RyLw0beoNc5pHiC78P3/APYXieYDgm01BzhJl9GJ6Ee/49iZv+Eb8VXPF54udV7i3tlQ/mMYp8Pw80kyrNqM97qco5zdTkj9Mfrmt4OlCDhUnzLyT0fk3YxmqspqdOPK/NrVedr/ACFvfH2niY2ujwT6tedktkO0fVsdPcZqqPDuu+JnEviW7+zWWcrp1q2M/wC+3f8AX8K66zsLTT4BDZ20VvGP4YkCj9KsVl7eNP8Agxt5vV/5L+tTX2Mp/wAV38lov83/AFoV7KxtdOtEtbOBIIE+6iDA/wD1+9WKKK5m23dnQkkrIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==
|
<image>Find x to the nearest tenth. Assume that segments that appear to be tangent are tangent.
|
21.6
|
Geometry
|
Geometry3K
|
test
|
60
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD7Ab8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK8c8X+NNafXU1LSbx4PD+m6hFZTlOlzITmTn+6AAv417GDkZFC1VwejsFFFFABRRWdquu6XokPmajexQAjIVjlm+ijk/gKcYuTskKUlFXbNGiuK/4Tm+1M48O+Hby9TtPNiKM/Qnr+Ypfs3xAv8AmS+0vTEPaGMyOPbkEfrW/wBXkvjaXq/03MPrEX8Cb9F+rsjtKK40eFPEsrA3HjS5xnJWK2C/ru/pQ3hLxApzB40vV45EkAfP/j3FL2VP+dfc/wDIftZ/8+396/zOyorjDpvjyyy1vrlhfj+5cweX/wCgj+tNbxZ4i0n/AJDnhiV4h1uNPfzF+u3nA+pFP6u38Ek/n/nYX1hL44tfL/K52tFYmjeLdE13C2V8hmP/ACxk+R/yPX8M1t1jKEoO0lZm0Zxmrxd0FFFFSUFFFNkkSKNpJHVI0BZmY4CgdSTQA6isP/hNPCv/AEMujf8AgfF/8VWraXtpqFuLiyuobmFukkMgdT+I4oAnooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbJIsUTyOcKilifQCk3bUDk9S+J3g/SNRn0++1gRXUDbJEFtK20+mVUj9auaH468M+I7j7PpWrwzz8kRMrRucdcK4BP4VznwmtUvtA1HXLiJHk1TUZrgF1B+XOAPzzVT4wada2OlaZrtlBHBqlrfxLDLEoVmBz8px16VSVmk+tvxB63t0v+B6hRSKSVBPXFLSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuJ+JfiibQPD/2PTlll1fUMw20cKl3UY+ZwBzwP1Irtq5XSvDV7/wmmoeJNZlt5ZSv2fT4oWZhBD3JyB8x749+aTV9GNO2p5b4l1uwHwt/4Ryw8N+IrX7OI3Fxd2IRNwYFmZgxxnn869s0G8Go+HtNvQcie2jk/NQaZ4i0xta8N6lpkbIsl1bPEhfO0MVIBOO2ar+ENKvND8J6dpd/JDJc2sXls0LEqQCcYJAPTHaqve9/L+vyJa2+f6G3UF3eW9hayXN3MkMEYyzucAVW1nWbLQdNkvr6TZGvAUfeduygdzXJWOiah4zu49W8Rq8GnKd9ppgOAR2Z/wDOfoODrTpJrnm7R/rRGVSq0+SCvL+tWPbxDrviyVoPDMP2PTwSr6ncLy3rsX/P4VpaR4D0jTpftV0r6lfE7mubs7yT6gHj88n3rpo4o4YliiRUjQbVVRgAegFOpyrtLlp+6vx+bJjQTfNU95/gvRf0xAAoAAAA4AFLRRWB0BRRRQAUUUUAYWt+D9F14Frq0VLjqLiH5JAfXI6/jmsAv4p8GfNIza7o69W/5eIV/qB+P4V3lFbQryS5Zars/wBOxhOhFvmjo+6/XuZ2ja5p+vWQutPuFlT+JejIfRh2rRrjtc8JT294db8LutnqS/NJAOIrkdwR0BP+cHmtPwz4mg8Q2rqyG31CA7bm1fho26flTnSXLz09V+K/ruEKr5uSpo/wfp/kb1cn8TNR/sz4d6xMDhpIfIX6uQv9TXWV518VEGqSeGvDZyV1HUlMqg4zEn3v/Qq52ub3e+h0xdnzdtfuL2h+BPClp4b09b/R9MknS2Tz5pYkJLbRuJJ981k/DXTreDxZ4pvNFQx+HnlSK22kmN5FHzlM9QDkZ9605PhD4DETE6N5YAJL/a5vl9+XxVf4STXL6Lqdv9okudKtb+SDTpZDktCPQ9x/9erveTfl+pFrRSPQqKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXxA1L+yfAWs3Qba/2Zo0P+0/yj9TXS1n61oeneItNfTtVtzcWjsGaPzGTJByOVINTJXViouzuZPgqK10bwPpFm88KGO1RpMuBhiNzfqTXNalcxfEPxrp2n6cwn0TRZvtV5dLzHJMPuRqe/v9TWtH8I/A0UiuuhKSDkbrmZh+RfBrrbGwtNMtEtLG2itrdOFjiQKo/AVo3eXMQlaPKWK4K6+Kul2dy8E2m6ijoSCGRR+PLV3tV7uwtL+Ix3lrDcIf4ZYww/WrpSpp/vI3+ZnVjUkv3crP0ucba/FHTbvcYdI1eUL18qBXx9cNVj/hYtn/ANALXv8AwEH/AMVUt18OdCllM9kLnTp+0lpMV/Q5A/DFQf2L400nH9na9BqMQ6RX8eGx/vDJJ/EV1Wwsvh/Ftf5nJ/tUfjd/RJ/5Ct8SLFFLNomuqo6k2igf+hU5PiRpDoGay1RCf4WteR+RNM/4THWtM41zwvdIg6z2REq/XHYfU1o6d478N6lgRanFE542XH7s5/Hg/gamVJJX9ndeTv8A5lRqtu3tNezVv8in/wALG0f/AJ9dT/8AAU/41HJ8TtAhIEsd/Hnpvt8Z/WuxR1kQOjBlPIKnINOrHno9Yv7/APgG7jW6SX3f8E43/haHhj/n5n/78NR/wtDwx/z8z/8Afhq7Kijnofyv7/8AgC5K/wDMv/AX/wDJHHr8TvC7HBu5l9zA39BT/wDhZfhX/oIP/wCA8n+FdUYYmOTGhJ7lRSeRD/zyT/vkUc1D+V/f/wAAOWv/ADL7n/8AJHLf8LL8K/8AQQf/AMB5P8KcvxJ8KMOdTK/W3k/otdObeEjBhjIP+yKj+wWf/PpB/wB+xRzUP5X96/yDlr/zL7n/APJHO/8ACx/Cf/QV/wDJeX/4mj/hY/hP/oK/+S8v/wATXRfYLP8A59IP+/Ypr6bYSDD2Vsw64aJT/Si9D+V/ev8AIOXEfzL7n/8AJGMvj3wuyhhrEOCM8qwP5Ypf+E78Mf8AQYg/Jv8ACtX+x9M/6B1n/wB+F/wo/sfTP+gdZ/8Afhf8KL0Oz+9f5FWrd19z/wAzLHjrwwzADWLfJ9cj+lPfxr4bRGY6zanAzgPk/lVyTw9okzbpdH092xjLWyE/yriNY0XTNf8AGEGgadptnb2tnifUJ4IFRj6RhgM9/wBfatKcKE31SW+xjVnXgujvotypp2t6V4m8QNrWv6hbwWtq5WxsJXHH+2w/zz7AZ7lfGHhxzxrVl+MoH86mHhjQAMf2Hpv/AICJ/hTP+ET8PE/8gSw/8B1/woqVKM3s0ltsFOnXgt0293qJ/wAJZ4e/6Ddh/wB/1/xo/wCEs8Pf9Buw/wC/6/40f8In4e/6Alh/34X/AApG8I+HWBB0Sx/CBRWf7jz/AANP9o8vxJF8UeH2GRrmm/jdIP60v/CT6B/0HNM/8C4/8ar/APCGeG/+gLZ/9+6P+EM8N/8AQFs/+/dH7jz/AAD/AGjy/Esf8JPoH/Qc0z/wLj/xqx/bGmf9BGz/AO/6/wCNZr+CPDMmM6NbDH90EfyNM/4QTwx/0B4Pzb/Gi1Du/wAP8xp1+qX4/wCRq/2xpn/QRs/+/wCv+NKuq6c7bU1C1Y+gmU/1rJ/4QTwx/wBAeD82/wAahf4deFJHLHSVBP8AdnkA/INRah3f3L/MG6/RL73/AJHQfb7P/n7g/wC/go+32f8Az9wf9/BXO/8ACuPCf/QK/wDJiX/4qj/hW/hP/oFf+TEv/wAVRah/M/uX+YubEfyr73/8idIt1buMpPE2PRwa5LxZormdPEOhSxxaxajcyqeLlB1Ujucfn09MSP8ADbwnGjO9iyqoyWNw4AH51xV54e0bXb46b4R0suEbE+pSzOYo/ZeeT/kDvXRh4U+bmjJ263Stbz1MMROpy8soq72s3e/l7p6d4c1+28R6PFf2/wApPyyx5yY3HUH/AD0NZfinwHY+K9Rs7651HU7SezRlhNlMse3PU5Kk5/Gudh0tvhrq9jcrcyTaTegW94zjASTkh/Yf0zXpgIIyORXPiKcYy5oaxex0YepOUeWppJbnBp8KdLYlb3XPEWoQH71vdagTG31CgH9a7WysrXTrOKzs4I4LeJdqRxjAUVPRWFzcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArN1Hw/pGrZN9p1tOx/jZBu/76HNaVFOMnF3TFKKkrNHGP8O7a0YyaHquoaVJnO2OUumfdTyfzpuzx9pP3ZNP1qEdmHlSkfoP512tFbfWZv47S9f8APcw+rQXwXj6f5bfgcYvxBSyYJruiajpjdDIY/Mj/AO+hjP4A1vab4l0XVgPsOpW8rHom/a//AHycH9K1GUMpVgCD1BFYOo+CfDuqZM+lwq5Od8I8ts+vy4z+NPmoy3TXpr+D/wAw5a8dmn66fiv8jforiv8AhCdT03J0HxPfW4HSG5xMg+meB+Rpf7U8caScXujWuqQjrJZSbWx/unkn6Cj2Kl8Ek/w/PT8Q9u4/HFr8fy1/A7SiuQtviNoxlEGox3mlz/3LuAj9Rn9cV0tlqdjqUe+yvILhfWKQNj8qznRqQ+JGkK1Ofwu5aooorM0CiiigDP13VY9E0S71GTBEEZZQT95uij8SQKx/Aekvp/h8XdyCb7UWN1OxHJLcgfkc/UmqXjrOp6loPh0creXPmzgd405I/LP5V2gAUAAAAcACuh+5RS6y1+S2/G5zr36zfSOnzer/AAsLRRRXOdAUUUUAFFcLdeKta8Q6zdaT4PgthFaP5d1qt3lokfuiKPvMPy/nWbrN/wCPfBNodYvtSsdd0yJwbmIWwgkRScZXbxxnvmi/Uduh6ZRUFndRX1lBdwHMU8ayIT3Vhkfzqehq2jJTuroKKKKBhWdrOuafoNkbrUJ1jT+FerOfRR3NZGv+MI7C5/svSYDqOsPwsEfKx+7nt9Pzx1qDRvB0j3w1jxJONQ1M8oh5ig9Ao9v88810RpKK56ui7dX/AF3OeVVyfJS1ffov+D5FBLLWvHjrNqXm6XoOd0dopxLcDsWPYf5A7121jYWum2iWtlAkECfdRBgf/r96sUVFSq56LRdi6dJQ956t9ShrelQ63o11p04G2ZCoP91uoP4HBrF8BapLfaAbK74vdNkNpMD1+XgH8uPqDXU1xMX/ABJfipJGBtt9att49PNTP9AT/wACq6Xv05Q+a+W/4fkRV9ypGp8n89vx/M7aiiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCG5tbe8iMV1BFPGeqSoGB/A1zd78O/D11J50FvJYzj7stpIUKn2HI/Suqoq4VZw+F2M50oT+JXOLPh7xbpXOleJBdxDpBqEeePTfyf5Uf8JV4k0vjWvC8skY6z6e/mD/vnnH4mu0orX29/jin+H5GfsOX4JNfj+dzmbD4geG747Dfi1lHDR3SmMg+hJ4/WujiljnjEkMiSIejIwIP4iql/o2maouL6wt7j0MkYJH0PUVzkvw606GQzaPfX+lS/9O85Kn6g8/rRahLZtfj/AJfkF68d0pfh/n+Yy3/0/wCLV3ITlNOsFjHszkN/JjXaV5RoMfiuy8Sa/LpzW2pywyJFctc/u2mIBxt5wDx3PpXRjx7Pp/y6/wCHtQsMdZo182L/AL64/TNbV6EpSShZ2S/LtuY0K8Yxbmmrt9NN++x2lFYum+LdA1baLTVLdnbpG7bH/wC+Wwa2utccoSi7SVjsjOM1eLuFc9461WTRfA+r38LFZo7ciNh/CzfKD+Zroao61pNvrujXel3YPkXURjYr1Ge49weazmm4tI0i0pJsxvAWmR6N4A0qGCPLtbLO4B5d3G48/U4rltc8e+L9E0/7Tq/ga3itXkWLLalG+5mPA2rkn8qsaSvxD8K2UOjR6NY63aW/7u3u1uxAwjH3Q6t6D0/XrUeteE/FXiTUtCvdYmt/Lt9QSSSxtG/dQxDJLMzcu5IA4HGTx3rRtSnfo2QvdjZ7npEAIgjBRUO0ZRei8dBUlFY+v+JdO8OWwkvJCZX/ANVbx8ySH2H9aIxc5WitRSkoRvJ6GpcXENrbvPcSpFDGNzu5wFHua4ifXdW8Y3D2XhvdaaYp2zam4ILeojH+T9O5b6Dq/jCeO+8TbrTTlO6HS42IJ9C56/1+ldvBBDawJBbxJFFGNqIgwFHoBW/uUfOX4L/N/gYe/W/ux/F/5L8fQzNA8N6d4dtTFZx5lf8A1s78ySH3P9K16KKwlJyfNJ3ZvGKiuWKsgoooqSgri/Hv+iXfh3VRw1tqKxsR/cf73/oNdpXH/E1N3gi5fODHLGwPodwH9a3w38aK76ffoc+K/gyfbX7tTsKKbGxeJGPVgDTqwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuP8aeJL+xubDw/oIRtb1MkRu4ytvGPvSEe3OPofpXYV5vZOJfj7qQueGi0pVtge6kqSR+Jb9aEryS/rRXHsm/63sWx8KNHu4hJrV/qmp3+dxupbtlKt6qoOFHoOateCNM8Q6DqGq6TqU095pETK2nXlxIGcqeqHnPHHUDocV19xcQ2tvJcXEixQxKXd3OAoHUk1leGPEMfifSf7TgtZoLZ5GWEzYBlUHG8D0NNPewntqY3hJini/wAXQErgXMUg9fmDf4Cuy61xemn7F8VtYgJwt7Zx3C/VcL/8Ua7StsR8afdL8kc+G+Brs3+bMTUvCOgaruN3pduXPWSNdjfmuDWN/wAIHc6ed2g+ItQsQOkMp82Me204/XNdpRSjXqRVk9Pv/MqWHpyd2te+z+9HFfbPHmk/8fGn2OsRD+K3fy3P1B4/IVJF8RtMilEGr2d/pUx7XMJ2n6Ec/pXY0yaGK4jMc0SSRnqrqCD+Bqva05fHD7tP81+BPsqkfgn9+v8Ak/xKthrGm6ou6xv7e49o5ASPqOoq7XH674O8IxWr315BHpyx8+dA/lbT2wBxn04rkdP03xRr8F3Do2q30eisMRS6jJhpfYEAkD6cVccPTmuaMrLzRnLEVKb5ZRu/J/o9jrtY8Yyy3zaP4ZgGoal0eQH91B7sehI/zzxVjQPB8Wn3R1TVZzqOsPy1xJyIz6IO31/LHSsLR7jXPBliLSbwms1uvL3GnPvZz/eK8kn64/Ktuy+Ifh67k8qa5ksZx1ju4yhH1PQfnVzhOMXGitO61b+7b0IhOEpKVZ69nol6X3fn9x1VFRW91b3cQltp4pozyHjcMD+IqWuFqx37hRRRQAUUUUAFch8TWC+BrwH+J4wP++wf6V19cZ8Q/wDSbbRtMA3G81GNWXGcqOv8xW+G/jRfn+Rhiv4Ml3Vvv0OwhBWGMEYIUA/lT6KKwNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5XxT4Gs/Et5a6jHeXOm6rajEN7athgPQjuOT+ZrqqKAucKvw8vNRCR+J/FWoaxbI242oRbeKTHTeFyW/Ou3hhit4I4II1jijUKiIMBQOgAp9FAHFeLT/ZXi/wAOa5jERkNlO3s/3c+wyx/Cu1rE8W6N/bvhm8sVGZim+L/fXkfn0/GmeDtaGu+GrW5Zs3CDybgHqJF4Ofrwfxron79KMu2n6r9Tnh7laUf5tf0f6G9RRSMwVSzEAAZJPauc6BawPEXiyy0ALBta61CT/U2cPzOxPTOOg/yM1kah4svdavH0nwjGs8o4m1Bh+5hHse5/yAa1fDvhKz0ItcyO15qcvM15NyzE9cZ6CuhUo01zVfu6/Pt+ZzOrKo+Wl9/T5d/yMmx8K6hr94mq+LZA+07oNNQ/uov971P+ST0rtlVUUKihVAwABgAUtFZ1Ksqm+3Y1p0o01pv36sKqXumWGpR7L2zguF9JYw2Pzq3RUJtO6LaTVmchcfDnR/NM2mzXulzk532k5H6HPH0xUX9meONJybPWLTVYh0jvI9jfmOv4mu0orb6zU2lr66/8Ex+rU1rHT00/4BxX/Cb6lp3GveGb62UdZrbEyD3JHA/M1r6d408O6ptFvqkCueiTHy2z9Gxn8K3qydR8MaJq2Te6ZbSORgyBNr/99DB/Wnz0ZfFG3p/k/wDMXJWj8Mr+q/Vf5GqCGAIIIPQilrin8AJp+ZdD13UNLxyE8zfFn3U4z+JNUrjXvFPh8Zu73Q9UgXubhYJT+ZA/LNNUFP8Ahyv66f8AA/ETryh/Ejb01/4P4HoVcTeMNY+KljbL80WkWzTSegd8AD8ip/Cq1j8WtFnXF7bXNpIBzgCRM+gI5/Sr3w/tZprG91+7XF1qs5lAP8MYJCj6dfwxVqjOhGUpq2ll8/8AgXM3Wp15RjTd9bv5f8Gx2NFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBSN/whfjgzN8uja03zHtDP6+wOf1/2a72s7XNGtte0ifT7ofJIPlYdUbsw9xW1Gai7S2ej/ryMa1NyV47rVf15j9W1ix0Sya71C4WKIdM9WPoB3NcesGtePmD3Pm6V4eJ4hHE1yPf0H6fXrXJWnh7VtR8W/wBmarrPkahZKPspuIvNWRB0KZ4PQH8+4Ndz/wAIXrE64vPGOpv6iAeUP0Jrr9nTofaXN3s/w0/E41UqYi94PlXS6/HW/wAjqNP02z0qzS0sbdIIE6Kg6+59T706a/s7f/XXcEf+/IB/OuV/4VvpsuftmpateZ6ia5yD+QqxD8OPC0JDf2aZCO8kzn9M4rmao3vKTfy/zZ1KVa1lBJev+SNCXxd4dhBLa1YnH9yZW/lms6f4keFoSQNSMhHaOFz+uMVpReEvD0GNmi2PH96BW/nWlDZWlvjybWGPH9yMD+VK9BdG/ml+jC1d9Uvk3+qOU/4WPp0uPsWl6veA9Ghtcj+dJ/wmWtTrmy8G6k/vcN5P8xzXZ0Ue0pLaH3t/8Afs6r3n9yX63ON/tfxzcZ8nw3Z23o1xdBh+SkGgRfEK4PzXGiWqnrtV2I/MH+ddlRR7dLaC/r1Yewb3m3/XkkcZ/wAI74xuB/pHjAR57Q2a8fypT4EuZyTd+K9alz1CTbB+XIrsqKPrNTpZeiX+Qvq1Prd+rb/U44fDPQHIa6a+u2H8U9wST+WKu2/gDwvbfc0iJj6yOz/zJrpK5/xV4lTQLJI4F8/Urk+Xa268lmPGSPQU41q9R8qk/vFKjQprncV9xyviLSdL1LxBaeF9H02zgbImv7iGFQ0UYwdu7GQTx+a+teixxxWlskcaiOGJAqqOiqB/hWF4R8OvodhJNeSedql43m3Ux5Jb+6D6DP55p/jfUv7I8E6xehtrpauEP+0w2r+pFTiqunLF3S/F9ysLS15mrOX4Lov66nHaJ4o+Iniiyk1PRrPw6untPIkJuRMHZVOAThsVuabL8SW1K3GpweGlsS489rfzjIE77ctjP1rmfB99460Lwlp1hZeBo57dItyTNqcSGTcd24qTkZz0ru/DWpeItRFwde0CPSdm3ygt2k5kznP3emOPzrO1nZdDa91fub9FFFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPfE+qeI9Q+INp4Z8O6wumBbFrq5lNsk38WAMMPp09a9Crx2xTxXrHxI8Uaz4Zk0pVgkWwLahvxhQMhdoPdcn60vtL5/197Q/st/1/VrnSf8I18RP+igQ/+CmH/Cu2sYriCwt4ru5+03KRqss+wL5jY5bA4GT2rmtDi8frqsR1648Ptp4B8xbNZfMJxxjcAOtdbVdBdTB8TeGYPENqjK5t9QgO62uk4aNuv5VneHvFkv23+wvESC01eMAK7cJcjsVPTJ/Xt6Dr6yte8O6f4isvs99Fll5jlTh4z6g/06VtCpFx5Km34r+uxhOnJS9pT369n/Xc1aK4JdT8Q+Cv3WrxSato68JexDMsQ/2x3/H8+1dbpWuabrduJtOvIpxjLKp+ZfqvUUp0ZRXMtV3Q6daMnyvR9n/WpoUUUVibBRRRQAUUUUAFFQXd7a2Fu1xeXEcEK9XkYKK4248Xan4imey8I2bMmdsmpXC7Y0/3Qep+v5d61p0ZT1W3foZVK0aej37dTZ8S+K7bQI1gjQ3WpzcQWkfLMT0Jx0H86peGfDN1Hfya/r8gn1iYYVRylsn91ff/AD6k2/DvhG00OR7yaV73VJuZbublie4X0H610VXKpGEeSn13ff8A4H5kRpynJTqdNl2/zf5BXAfF6O/uvB8VjYafe3puLuMTJaQtIwjXLE4A9QK7+iuY6U7Hn8fxIniiSNPAfiwKihQP7PPAH411HhzXZNfspLmTSNR0zZJsEV/D5btwDkD056/WtiiquK3YKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2QssTlF3MASFz1PpXIfDbQdQ0Lw3MNWg8nUby7lubhN6vgseOVJHQA9e9djRQtLg9rBRRRQAUUUUAHWuW1XwFpN/cG7tDLpl71E9m2zn3A4/LB966mirhUlB3i7ETpwqK0lc4nyvHmi4EUtlrluvaQeVKR+YH5k04ePLm0+XVvDGrWrDq0Ufmp/31xXaUVr7aMvjgvlp/wPwMvYyj8E389fz1/E49Pib4YJIkuZ4mHVXt2yD6cA0rfE3wsoyL2VvYQP8A1Fda0aOfmRW+ozSCKNTlY0BHcKKXNQ/lf3/8AOWv/Mvuf/yRx3/CxIbnA0zQdXvScbWWDCn8cn+VNN5481gbbawstGhb/lpPJ5kg+gGR+YrtqKftYR+GC+ev/A/APYzl8U38tP8Ag/icda/D+1luVvNfvrnWLocgTMRGv0X/AOvj2rroYYreFYYI0iiQYVEUAAewFPorOdWc/iZpClCn8KCiiiszQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z
|
<image>If $m \widehat{F E}=118, m \widehat{A B}=108$, $m \angle E G B=52,$ and $m \angle E F B=30$, find $m \widehat{C F}$
|
44
|
Geometry
|
Geometry3K
|
test
|
61
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADZAVsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD27yfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tHpRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAFPyfb9KPJ9v0q5tFG0UAU/J9v0o8n2/Srm0UbRQBT8n2/Sjyfb9KubRRtFAEmKMUtFACYoxS0UAJijFLRQBnahruj6TIkeparY2Ujjcq3NwkZYeoDEZqK08TeH7+4W3s9c0y4mb7scN3G7H6AHNcKdP07xX8ZNXGpW0F1Z6VYR24jnUMvmMd2cHvy1VPiX4Y8L22hQ2mjaZaQ69cXEaWKWahZC24ZOF/hAzyeBxQtk+/8AmO2rXb/K561ijFRWkckVnBHM++VI1V29WA5NTU3uSndCYoxS0UhiYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAFFFFABRRRQAUhIUEk4A5NLUVzCLm1lgLugkQoWQ/MuRjIz3pO9tBrzPJPBXgzQfHCaz4i1ywN213qU32dvOkTEYPHCsP19KPE3hbSvBOv+HZ/CKy2erXV8sJt0neQSwn7+4MScDj863LX4P6bYwCC08S+J7eFckRxXyooz7BMV0GgeBtG8P3bX0K3F3qDLtN5ezGaXHoCeB+AFUrJq3S34f5ibvfzv/XyOkopCyhgpYbiCQM8kD/8AWKWkAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwXj61uL3xH4YtrW8ktJpHuAk8fVDhD6j0qSPxRrHhiRbbxXamW2ztTU7VMqf98Dofy+hqfxV/yO/g//AK63H/oKV2EkaTRtHKiujDDKwyCPcV2SqKNOEZK6s/Xd9TijTcqlSUXZ3Xpst0RWd7a6hbJc2c8c8L9HjbIqeuLvPBM+m3T6h4TvTp9weXtXOYJfbHb/ADjFSab44SO7Gm+JLRtJv+gZ/wDUye6t0H8ves3R5lzUnfy6/d/kaqvyvlqq3n0+/wDzOwopAQygggg8gjvS1znQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG+Kv8Akd/B/wD11uP/AEFK7KuN8Vf8jv4P/wCutx/6CldhJIkMbSSOqIoyzMcAD3Nb1f4cPR/mzno/xKnqv/SUOqnqWl2Or2ptr+2jniPZx09weoP0p1jqVjqcJmsL22u4gcF7eVZFB9Mg02fVtNtbyOzuNQtYbmX/AFcMkyq7/RScmsU2ndbm7SaszkW0PxB4RJl8PTnUdNBy2nXDfOg/2G/z9DW1oPjHTNdc24L2l+uQ9pcDa4I649f5+wq9rmqNpGm/aI4PPmeWOGGIvsDO7BVy3OBk8nBrAk0q08Xtd2ut6dHZ6tYuoM9nNvwGXKsrlVJ+jDjH410KrGp/FWvdfr3/ADOf2Uqf8J6dn+nb8jsaK4T7d4m8G/LqMb63pK9LqIfv4l/2h3/H866vSNc07XbX7Rp10ky/xKOGX2I6is50ZRXMtV3X9aFwrRk+V6Ps/wCtfkaFFFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG+Kv+R38H/9dbj/ANBSq3j26tZdb8PaRqU0cWlTSS3V75rAI6RLkK3qpYjj2qz4q/5Hfwf/ANdbj/0FKp+MrS3b4ieDLy9VTaiSeLL42iUqCgOfcce4rep8NL0f5v8AUwo/FV9f/bUWfDkfhW98QXGueGNQtQq23kXVpaIEV+cq7LxyOgOKxPC2gaX4q8Bajq2p2kNxe6pJcStcyIGkTDMqbWPK7QBjFamqRI/xg0kWYUTHTZ/txQcmM4Cbv+BdKg8C3MGkfC66iupVRtNa6iuAxwUZXY4P4EfnXPL4G/L9Xf8AQ6V8VvNfkavguSPxR8NtLOqILkTQBJfM53FGxnPXOVBz610OmaRY6PA8NjCY1dt7szs7u2MZZmJZjgAcntWD8NbR7L4daLFIpVzB5hB/2iWH6GurrSek2Zw+FBXKav4HtLm6Oo6RO+lamORNBwrn/aXpz/8ArzXV0UQqSg7xYp041FaSOIt/F+o6DOln4usvKBO1NQt1LRSfUDp/ngV2VvcwXluk9tNHNC4yrxsGB+hFLcW8N1A8FxEksLjDI6hlYe4NcbceDr/Q53vfCN6bcsdz2E53QyfTPQ/5yK2/dVf7r/D/AIH5GP72l/eX4/8AB/P1O2ork9J8cW092NO1qB9J1IceXPwj9vlbpz/+rNdZWM6coO0kbQqRqK8WUtV1ay0XT3vb+byoUIHQksx4CqByST0ArN0XxdZa1qM2nC0v7G9ijEvkX1uYmeMnG9eTkZ/GsvxE6z/EbwrY3GPsyrcXKBujzKoC/iASa27S60nUfEV2beIS39gggluAvCBvm8sN68AkduKhd/X+vvLf9f16GxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV729ttNspry8mWG3hQvJI3RQKwdP8cWF9q1vp0lhqljJdAm1kvbUxJPgZO05645wQKPGOotDFp+kw2tpcXWqXAhiF4u6FNo3l2X+LGBgcc4rn4or+5+KGkWWo61DqMthaz3ckcFuIkhZsIvGWOcMepojq/67XB6L+vQ1PFX/ACO/g/8A663H/oKV02p6VYa1YvZalaRXVs/JjkXIz6j0PvXM+Kv+R38H/wDXW4/9BSuyret/Dp+n6swo/wASp6/+2oydE8NaP4dSRdKsUtzLjzH3M7vjplmJJ/Oq2oeCPDWq6n/aN7pEE10SCznIDkdNyg4b8Qa36Kw8zcQAKoVQAAMADtS0UUAFFFFABRRRQBn6tomna5am31G1SdP4SRhkPqD1Fcp/Z3ibwcd2lStrOkr1s5j++jH+ye/+eO9d3RWsK0orleq7MynRjJ8y0fdf1r8zkY7zwr8QrRbO8gSWaJtxtZ8xzRMOpUgg/iprotM0qx0axSy061jtrdMkRxjAyepPqfc1ma94Q0zXiJ3Vra+XlLu3O2RT7+v4/pWGNa8ReECI9egbVNMHA1C3X50H+2v+fqa09lCp/CevZ/p3/Mz9rOn/ABVp3X6rp+R3dFUtM1aw1i0W60+5jniPdTyp9COoPsau1ztNOzOhNNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbrWgaX4htFtdVs1uYkcOgLFSrDuGUgg/Q1BZ+FNC068truz02KCe2Ro4njJGAxyc8/MSe5ya2aKNgON8Vf8jv4P/663H/oKV2Vcb4q/wCR38H/APXW4/8AQUrsq3q/w6fo/wA2c9H+JU9f/bUFFFFYHQFFFFABRRRQAUUUUAFFFFABQQCCCMg9qKKAOQ1PwNGLo6l4dum0jUev7r/VSezL0/p7GorTxpc6XdJp/iyy+wzHhLyMEwS/j2/z0rtKgu7O2v7Z7a7gjnhf7ySKCDXQq3MuWqrr8fv/AMzndDlfNSdn+D+X+RJFLHPEssMiyRuMq6HII9jT64aXwrq/hqV7rwneFoPvPply25G/3Seh/L61paL42sdRufsF/FJpmpqcNbXPGT/st3/Q0pUbrmpu6/FeqHGvZ8tRWf4P0f8ATOnooorA3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAON8Vf8AI7+D/wDrrcf+gpXZVxfi6RIfGfhGSV1RFluCWY4A+VO9dR/a2m/9BC1/7/L/AI10Vf4dP0f5sxoQlKdSy6/+2ouUVT/tbTf+gha/9/l/xq5XOdDjKO6CiiigkKKKKACiiigAooooAKKKKACivOYtW8Wa7pWo+JNM1a1tLO2kmFrYNaiQTpGSCXcnIJwemMe9aWoeMLqfwvoNzpUUaajrrxRQCUblhLDLMRxkKAfrxR/wPx2B6P7/AMNztK5zxDD4X1e6i0fV7iy+3SD9zE0yrOM9Nvf8O9ZthqWuaH4vs9C1zUYtTt9Rhke1uhbrC6yJyyELwRg5B61Nf+GNSuL3UIYZLH7BqF1HcyzSBvPiKBBtUAYP3OCSNuehqoycWpJkyipJxkin5Xijwaf3JfXdHX+Bj/pEI9v7w/P6Cuk0PxNpfiGHfY3AMij54H+WRPqP6jiteub1zwXp2sTi9hL2GpKdyXdt8rZ9WA6/z9639pCp/E0fdfqv8jD2dSn/AA3ddn+j/wA/wOkorhU8R674WdYPFFqbqyzhNStVzj/fX/8AV+NdjYahZ6narc2NzHcQt0eNs/gfQ+1Z1KMoa7rutjSnWjPTZ9nuWaKKKyNQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4vxdGk3jPwjHKiujS3AKsMg/Knauo/snTf+gfa/9+V/wrmfFX/I7+D/APrrcf8AoKV2VdFX+HT9H+bMaE5RnUs+v/tqOZ8X6bYReENVeOytkdbZiGWJQQcfSumrD8Zf8ibq/wD17P8AyrcrF/CjvqScqEbvrL8ohRRRUnMFFFFABRRRQAUUUUAFFFB5GKAOU8aQ+I77SJY9AksGtZIXW5Dswmde4iYZUHGRyDzXMvdWV9N8NbjSo3j07zXSONz8yYjxg+4wa1rbwz4s0S2n0jQ9Q0ldJkeRopbmKQz24ckkAA7WwScZx+NXrnwSieFtK0vTbryLrSZEmtLmRdw8xc53AdQ2TkD1oWmvmv8Agjfb1KXiwFviT4IC9RJdE/TyxXdVyWleHtaufE0Wv+JLmxa4tYGgtbexVvLTd95yX5LEDHtXW0+iQm7sKKKKQDXRZEKOoZWGCrDIIrj7/wAEPZ3Taj4WvDpl31aDrBL7Fe36j2rsqK0p1ZU/hM6lKNRe8cbYeODa3Sad4otDpd6eFlP+ol9w3b8yPeuxVldQyMGUjIIOQRVa/wBOs9UtGtb62juIW6o4z+I9D7iuPbw9r3hRzN4ZujeWGctpt02ceuxv8/jWtqdXb3X+H/A+f3mV6lLf3l+P/B+X3HdUVzmheMtO1mU2cgey1JeHtLj5WB9B6/z9q6OsJwlB2krG0JxmrxdworB8XeJF8MaIbpIftN5K6w2lsDzNK3Qf1P0qLwN4mk8W+F4dVmgSCZpHjkiQkhSrY7+2Kla3t0Leh0dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXE6t4s1XUNfm8PeEbW3nu7YD7ZfXRPkW2f4cDlm9v8A6+MzWD8RfC9hPrT61p+sW1uPNns2tBCQg+9sZeTgep/PpSvpfoO2tup1XiPwuniGexnN/dWc1mXMclucNlsZ57fd/Wsz/hBbz/ob9e/8CT/jXSaLqkOt6JZapApWK6hWVVbquR0P0q9XQq9SC5E9jndClN87W5xU3w/nuYXhn8Va3LE4wyPOWVh6EHrT/wDhBbz/AKG/Xv8AwJP+NdlRR9Zq9/wQfVqW1vxZxv8Awgt5/wBDfr3/AIEn/Gj/AIQW8/6G/Xv/AAJP+NdlRR9Zq9/wQvqtLt+LON/4QW8/6G/Xv/Ak/wCNH/CC3n/Q369/4En/ABrsqKPrNXv+CD6rS7fizjf+EFvP+hv17/wJP+NH/CC3n/Q369/4En/Guyoo+s1e/wCCD6rS7fizjf8AhBbz/ob9e/8AAk/40f8ACC3n/Q369/4En/Guyoo+s1e/4IPqtLt+LON/4QW8/wChv17/AMCT/jR/wgt5/wBDfr3/AIEn/Gr3inVrrT7zQbW0uBC15fqkrFVP7lVZ36jjgDmtyzv7PUYjLY3cFzGCVLwSBwCO2QetCxNXv+CB4Wkun4s5X/hBbz/ob9e/8CT/AI0f8ILef9Dfr3/gSf8AGuyoo+s1e/4IPqtLt+LON/4QW8/6G/Xv/Ak/40f8ILef9Dfr3/gSf8a7Kij6zV7/AIIPqtLt+LON/wCEFvP+hv17/wACT/jR/wAILef9Dfr3/gSf8a7Kij6zV7/gg+q0u34s43/hBbz/AKG/Xv8AwJP+NH/CC3n/AEN+vf8AgSf8a7Kij6zV7/gg+q0u34s43/hBbz/ob9e/8CT/AI0f8ILef9Dfr3/gSf8AGuyoo+s1e/4IPqtLt+LOBuvhfDfSrLea9qdxIvCvM4cj6E11WjaZcaRamCfVJ72NR8rXAG5R/vDqPrWpXI+PptXn0yDRNFtrhrnVJPIkukjYpbRfxszDgHHA5qamIqzjyt3Lp4elCXNFWOZ0/wAS6F4j8e3OtalrWnW+n6TuttNhuLpEMkh+/NgkcdgasfB25hNp4isIJUlht9UkaJo2DKUboQRwQdtdJafDrwla2cNudBsJTGgTzJYFZnwOpPcmsHwbok3h/wCJfii2t9MlttJuI4ZLd1hKw5AGVVsYzljx7VnGydvJ/ozWWqv5r/L9T0aiiikAUUUUAFFFFABRRRQAUUUUAFFFFABVPVrz+ztGvr3Gfs9u8v8A3ypP9KuVHcQR3VtLbyrujlQo49QRg1Mk3FpDjZNXOI+EVoIvANvev81zqEstzPJ3di5HP4AV2GpanY6TaG51G5it7fcE3ynAJPQV53o2leOvAkT6Tpen2eu6QJWa2LXIgliUnOG3cEZ9M/0rWtvDGueIdZtdU8XyWqQWb+ZaaXaEtGr9nkY/eI9Bx+oOjak7rYmzS13O4XG0bRgduKWiipGFFFFABRRRQAUUUUAFFFFABRRRQBwviLTbXxF8SNG028US29jZTXkkLfdkLMqKGHcdeO9P0SwtrH4o6zHplvFb2Y0+D7RHCoVPOLMQcDjO0VZ1Twbe3fiibxDYa9LYXphS3j226yKsYyWVgxw2SQe2Md62dC0KLQ7aVRPLdXVxIZrm6mxvmc8ZOOAAMAAcACiOiXz/AB/4H5BLX8P6+81aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z
|
<image>If $c=5,$ find $a$
|
2.5
|
Geometry
|
Geometry3K
|
test
|
62
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEvANYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimRyxzJuidXXJGVORkcGn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch488QXGnWUOkaXl9Y1NvJgVTyingv7egP49q6XUtQttK064v7uTZBAhd2/oPc9BXGeB9PudZ1K58Z6qhE91lLGJv8AljD0yPr0/M/xVvSilepLZfiznrSbtSju/wAF/WwfCEY8En3upP5LXe1wfwi/5Egf9fUn9K7yjE/xpeoYX+DH0CiiisDoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorl/HHiR9A0hYbMF9Vvm8izjUZO48bse2R+JFVCDnJRRE5qEXKXQwtfkfxx4vj8NWzN/ZOnsJdRkU8O46R5/T65P8NehJGkMKxxoqIi7VVRgADoBWF4O8Np4Z0KO2Yh7uU+bdS9S8h68+g6D8+9bz8RsfY1pVmm1COy/q5nRg0nOe7/qxw3wj/wCRHX/r5k/pXd1wvwk/5EaP/r4k/pXdUYn+LL1DC/wY+gUUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFdXMNlaS3VzII4YULu7dFAGSa4LwjazeKvEU/jLUI2W3UmHTIX/hQZBf69fxLego8XXM3ivxFB4N0+Rlt0Im1OZP4VHIT69PxI9DXe2ttDZ2sVtbxrHDEgREXooAwBXR/Ch5y/L/g/kc38Wp/dj+L/AOB+ZLTJeIXP+yafUc/FvKf9g/yrnR0s4r4S/wDIixf9d5P513NcP8Jv+REg/wCu8n867itsR/Fl6mGF/gx9AooorE3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8AGPiRPDOhPcqA95KfKtYsZLyHpx6Dr+net6SRIYnlkdUjRSzMxwAB1Jrzzw/G/jjxdJ4muUb+yrBjFpsTDhmHWTH6/XH92tqUE7ylsv6sYVptWhDd/wBXN7wP4bfQNHaW8Jk1S9bz7yRjk7jztz7ZP4k109FFZzm5ycmaQgoRUY9AqK54tZv9xv5VLUN3xZT/APXNv5UluU9jjvhP/wAiHb/9dpf/AEKu3rifhR/yIVt/11l/9CNdtWuI/iy9THDfwY+gUUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFY3ijxBB4Z0GfUZsM6jbDGT/rJD0H9T7A04xcnZEykopyeyOa8cahc61qdt4L0qQia6w99Kv/ACxh64P16/kP4q7TTtPttK063sLSPZbwIERfb1Puetc14D8Pz6bYzatqmX1jU286dmHKKeQnt6kfh2rr62qyStTjsvxZjRi3erLd/gu3+YUUUVgdAVBe8WFx/wBcm/kanqvf8addf9cn/kaa3FLY5L4Vf8iDaf8AXWX/ANDNdrXF/Cv/AJEGz/66S/8AoZrtK1xH8WXqzHDfwY+iCiiisTcKKKKACiiigAooooAKKKKACiiigAorxf4w614wbQ7+z/sJbPQlnVXvxco7TKGG3Cg5UE47GvQ9c1tvDvw8uNXQK0ttYq0YboXKgLn8SKAOlorwmfwNf23w8TxwmvamfEggXUWkM/yFT8xXGM8KfXGRjpXsHhfVzr/hbS9VYKJLq2SSQL0D4+YD2zmgDWooooACQASTgDqTXnFiD8QPGp1Fxu0DR32Wyn7s83973HQ/Tb6mr/j3V7md7bwppDZ1HU+JWH/LGH+In6jP4A+1dToukW2haRbabaLiKFcZPVj3Y+5PNdEf3UObq9vTuc0v3tTk+yt/XsX6KKK5zpCiiigAqtqPGmXf/XF//QTVmqup8aTef9cH/wDQTTjuhS2Zy3ws/wCRAsf9+X/0Nq7OuN+Fv/JP7D/fl/8ARjV2Va4j+LL1Zlhv4MfRBRRRWJsFFFFABRRRQAUUUUAFFFFABRRRQB578bP+SY33/XaH/wBDFP8AiQjP8GL8ICT9lgPHoHjJ/Stb4h+Grzxb4OudIsJYI7iWSNladiEwrAnJAJ7ela13o0OpeGZdFvOYprX7PIU7ZXGR/MUAczqEqL8DZXJG0+HwAfrAAP51c+GKMnw10EMCD9mzz6FiRXFSeBfiHcaDF4Pm1XSxoCEIbtd3nNCGyFxjtgcfhnFes6fYwaZptrYWylbe2iWGME5IVQAP0FAFms7XdZtvD+jXGpXR/dwrkLnl27KPcmtGvOLj/i4PjYWw+fw/oz5lP8NxN6e47fQH+8K1pQUneWy3Ma1RxVo7vb+vI0fAOjXJFz4n1cZ1TVPnAI/1UX8Kj0yAPwA967ajpRU1JucuZlU6apx5UFFFFQaBRRRQAVU1XjSL3/rhJ/6Cat1T1fjRb7/r3k/9BNOO6Jl8LOb+F3/JPtO/3pf/AEY1dhXIfC//AJJ7pv1l/wDRr119aV/4svVmeH/gx9EFFFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVU1TUrbSNMuNQvH2QQIXY9z6Ae5PA+tNJt2Qm0ldnM+PdeuLO1g0PSstrGqHyogp5jQ8F/b0B+p7Vt+GtBt/Deh2+m2+DsG6STHMjnq3+ewFcz4F0251W+ufGWrJi6vfltIz0hh7Y+v8uf4q7ytqrUF7JdN/X/gHPRTm/ay67en/AAQooorA6QooooAKKKKACqWs8aHqH/XtJ/6Cau1R1rjQdR/69ZP/AEE1UfiRM/hZz/ww/wCSeaX/ANtf/Rr111cl8Mf+SeaV/wBtf/Rr1qaz4n0/QtS0mwvfO83VJvItyiZXfkD5jnj7wq6/8WXqzPD/AMGHovyNmisbV/E+naNq2l6Xcec95qchjgjiTceMZZvRRnr9fStmsjYKKKKACiiigAooooAKKKKACiiigAooooAK851t28d+MU8PQMTo2mMJdQkU8SSdkz+Y/wC+vQVueOfEcmh6UlrYAvq1+3kWka8sCeC34ZGPcirnhHw5H4Z0GKzBD3L/ALy5l/vyHrz6DoPpXRT/AHcfaPd7f5nNU/ez9ktlv/kbiIsaKiKFRQAqgYAHpTqKK5zpCiiigAooooAKKKKACqGuceH9S/69Zf8A0A1frP17/kXdT/69Jf8A0A1UPiRM/hZhfDL/AJJ5pX0l/wDRr1i/Fxfs8PhbVB1s9bgJPoDkn/0EVt/DMY+HulfSX/0a9c98Ybqz1XQYPDNpPFPrN5fRRw20bguh6lnHVRtPU+oq6/8AFl6szw/8GHovyJfB6f8ACW+PtY8YyfPZWZOm6XnoVX78g+pJwf8AaI7V6RWZ4e0S38OeH7HSLX/VWsQTdjG5urN9SST+NadZGwUUUUAFFFFABRRRQAUUUUAFFFFABUN5dwWFnNd3MgjghQu7nsBU1eeeKriXxf4mh8IWMjCzhIm1OZOwHITPr0/Ej0NaUoc8tduplWqckbrfp6jvB1pP4n1648Z6lGVjOYdNhb/lnGMgt9eo+pb2r0Go7e3itLaK3gjWOGJQiIvRVAwBUlFWfPK/ToFKn7ONuvX1CiiiszUKKKKACiiigAooooAKzvEHHhvVP+vSX/0A1o1m+Iv+RZ1X/rzm/wDQDVQ+JEz+FmN8Nf8Akn2lf7sn/oxq04PCuh2/iGbX4tOiGqzffuSSzdMcZOBwMcYrN+G//JP9J/3X/wDRjV1VXX/iy9WZ4f8AhR9F+QUUUVkbBRRRQAUUUUAFFFFABRRRQAUUUyaWOCF5pXVIo1LO7HAUDkk0AYHjPxIPDWhtNEN99OfJtIgMlpD3x3A6/kO9M8E+Gz4d0XNyfM1K7bzryUnJLnnGe+M/mSe9YHhuKTxr4rl8VXaMNNs2MOmROOpHWTH+ef8Adr0Suip+7j7Nb9f8vkc1L97P2r26f5/P8gooornOkKKKKACiiigAooooAKKKKACszxH/AMivq3/XlN/6Aa06y/Ev/Iq6x/15Tf8AoBqofEiKnwMyvhx/yT/Sf9x//RjV1Ncv8Ov+RA0n/rm3/obV1FXW/iS9WTQ/hR9F+QUUUVkahRRRQAUUUUAFFFFABRRRQAVwHja+uNf1e28F6XIVefEmoTL/AMsohzj8eD/3yO9dL4q8RQeGdBmv5MNL9yCM/wDLSQ9B9O59gazPAnh2fStOl1HUsvrGpN51y7dVzyE9uvPv9BXRSXIvav5ev/AOas3Ul7JfP0/4J0thY2+mWEFlaRiOCBAiKOwH9asUUVzt31Z0JJKyCiiigYUUUUAFFFFABRRRQAUUUUAFZXic48J6yf8Apxn/APRbVq1k+Kf+RR1r/rwn/wDRbVcPiRFT4H6Gd8O/+RB0n/rm3/obV09cz8Pf+RC0j/rkf/QjXTU638SXqyaH8KPogooorM1CiiigAooooAKKKKACkZgqlmIAAySe1LXDePNVubye28I6Q3+n6j/r3H/LGHuT9Rn8AfUVdODnKxnVqKnHmKOmKfH3jRtXlBOhaS5jtFPSaXu/8j/3z716PWRbQ6V4Q8ORxPPFa2FnHhpZWCj3JPqSfzNQaH418N+JLl7bSNWguZ0GTGMq2PUBgCR7iqqzUnZbLYmjTcI3lu9zeorF17xboHhkxDWdThtGlGURsszD12gE496bd+KbAeEL3xFps0d/bW9tJMpibIYqpO0+nTn0rI2NyivKLLxR4x03/hG9a1i+0280vXriKD7JbxbWt/NGUKt1bHfOfT3r1egAooooAKKKKACiiigAooooAKyPFX/Ioa3/ANeE/wD6LatesjxXx4P1v/rwn/8ARbVdP40RU+B+hR+H3/Ih6R/1xP8A6Ea6Wub8Af8AIiaR/wBcf/ZjXSU638SXqyaH8KPogooorM1CiiigAooooAKKKKAMzxBrdt4e0W41K6OViX5Uzy7Hoo+p/wAa57wDolzHFceJNXG7VtUPmHI/1UR+6o9O3HoAO1Zjf8XB8bbPv+HtGfn+7cTf1H9B/tV6PXRL91Dk6vf/ACOaH72fP0W3r1f6I8n+Ll1aXPiPwpoup3Ah0pppLu93HCskYBAP4bx+PHNP0g/D/wAV+NtL1Dw5qMdjqOnbiLa3tvIFyn0KjPG7pzgn0qL4l6fb3HxQ8Dvfxo9lNK0TK/KswZSAR7lhx3qT4k2tta+O/Ak9jFHFqL6gEJjXaWiDJkNjsMn8Ca5zpDwrp9l4q+KPjLUtWtorz+z5UsraO4QOkajcDgHgfc/8ePrR4Bs4NJ+IXjbwqkYbSzsnS3blFDr8ygehDgfRRVn4dAWnxD8f2UpCztfJcKp6lGLtn/x5fzFN8FsL/wCMnjfUISGhiWG2LA/xABSPzjNAG7pPwu8L6LrEWp2trO0kBLW8U07PHAT3VT3+ua7KiigAooooAKKKKACiiigAqpdapp9lKIru/tYJCNwSWZVJHrgn2q3XJz2Nnf8AxGlS8tYLhF0pCqzRhwD5rc800jehTjNvn2Svobf9v6N/0FrD/wACU/xrK8U61pUvhLWI4tTs3d7KZVVZ1JJKHgDNaf8Awjmhf9AXTv8AwFT/AArI8VaBo0HhLV5otIsI5Es5WV0tkBUhTgg44NXTtzomr9X9nK3Ns+xP4B/5ETSP+uH9TXR1zngLjwLo/wD1wH8zXR0Vf4kvVnNR/hx9EFFFFZmgUUUUAFFFFABXGePtcuYLe38P6Sd2r6ofLQKeY4zwzH07jP1PauzrzOTwp41g8XX2u2l1pMk0xKRvOWOyPPAA28cAD8/Wt8Oo815Pbuc+JcuXlinr27HceHdCtvDmiW+m23IjGXfHMjnqx+v8sCtSuD8r4mj/AJeNDP4N/hRs+Jo/5a6Gfwb/AApypOTu5L7xRrKKSUHb0Og8VeFNM8YaT/Z+pI4VWDxTRECSJh3U4NY3hz4a6doWtLrNzqOo6tqMaGOGa/m3+UuMfL+BI59eMVBj4mj+LQz/AN9UZ+Jo/h0M/wDfVL2H95feP6x/df3FrxP8OdP8R6sNXh1C/wBK1Ly/KkuLGXYZU9G9eOP55wK1fCfhLTfB2kmw04SNvcySzTEGSVj3JAH5Vgb/AImj/lloZ/Fv8aPN+Jo/5d9DP4t/jR7D+8vvD6x/df3HeUVwfn/E0f8ALpoZ/Fv/AIqj7V8TR/y46Gf+BN/8VR7D+8vvD6x/df3HeUVwf2z4mj/mG6Gf+BN/8XS/bviaP+YVoZ/4E3/xdHsH/MvvD6wv5X9x3dFcH9v+Jv8A0CND/wC+2/8AjlH9ofE3/oDaL/32f/jlHsH/ADL7w+sL+V/cd5RXB/2l8TP+gJox/wC2h/8AjlH9p/Ev/oA6Qf8Atr/9so9g/wCZfeH1hfyv7md5XNxf8lIuf+wVH/6Nasf+1PiV/wBC/pX/AH+/+2VnhviMmuyasugacZnt1tyvnrt2hi2f9ZnPNNUH/MvvRvRxcIqV4vVW2fkemVieMP8AkTNa/wCvKX/0E1zf9r/Ez/oW9M/7/j/45VTVLn4karpV1p8vhywWO5iaJmSdcgEYOMyU4UWpJuS+9HNOunFpRf3M6nwIMeBtH/69x/WuhrI8L6fPpXhfTbG6ULPDAqyKDkA+ma16xqO8213NqSahFPsgoooqDQKKKKACiiigAooooAKKKKACiiigAooooAKzdR1/S9IvbGzv7xLee+fy7ZHB/eNkDAOMZyw/OtKvNfjdDaHwKt5LcLBe2l1HJZt/Ez5wVH/Acn/gIoA7i41/SrXWrfRpr2NdRuVLxW4BLMozzwOBwevpWlXnHwp0z+0LGbxtqNwl5rGrlt0gHEEatt8tfT7vP0A7ZPo9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXD3Hgy/wBd8fjWvEEtpNpVipGm2MbM3zHq8gKgZ74Ge3PHPcUUAcX8PPCWpeDYNV064uLebTXuzNYCN2LopyCHBUAcBehPOa7SiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==
|
<image>Find x.
|
5
|
Geometry
|
Geometry3K
|
test
|
63
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAF4AZ8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAByMiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiqOo6xpukx77+9htxjIDtyfoOprjNQ+LOmQyGLTrO4vX6Bj8in6dT+lbU8PVqfBG5hVxNKl8crHoNFeX/8JL4/1vjTdIFnGejtFjj6vwfwFA8F+NdT+bUfEJiVuqLK7Y/AYFbfVFH+JNL8TH645fw4N/gvxPS5riC3GZpo4x6uwH86pt4g0VPvavYL9blB/WuGh+EUBO671m4lJ6lIwv8AMmrq/CTQV+9c37fWRf8A4mj2eGW82/kHtcU9qaXqzpm8U6AnXWbH8J1P9afH4k0OX7msWB9vtCg/zrm1+FXhxev2pvrL/wDWpknwn8Pv92W9j/3ZR/UGjkwv8z+4OfF/yr7zso9RsZiBFe27k9Nsqn+tWa86l+EOmkHydTvUPbftb+QFVf8AhXHiLTv+QT4kZcdAWeL+RNHsaD+Gp96D2+Ij8VL7mj0+ivLyfiXovzEpqES9QNsmf5NUtv8AFWa0kEOuaJNbydzHlT/3y3+NDwVR6wal6MFjqa0qJx9Uel0Vz+k+NdA1khLa/RJT/wAspvkb9eD+FdBXLOEoO0lY6oVIzV4u4UUUVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZmteINN8P2vn6hcCPP3Ixy7/QV53ceIPE/jud7TQ7drLTs7XmJxkf7Tf0FdFLDTqLm2j3ZzVsVCk+XeXZbnZ67450TQQyS3InuR/ywg+Zgfc9BXHHXvGfjN9mj2x06xJ/12dvH+/1P/ARXRaB8NtH0kJNeL9vuxyXlHyA+y/45rslVUUKoAUdABWvtaFH+GuZ93/kY+yr1v4suVdlv82ed6d8KbdpPtGt6jNeSk5ZUJUE+5PJ/Su003QtL0iPZYWMEHqyr8x+p6mtGisKmIq1PiZ0UsNSpfBEKKKKxNwooooAKKKKACiiigAqG4tLa7jMdzBFMh6rIgYH86mooTtsJpPc4zV/hloOo7ntkewmPRoD8v/fJ4/LFc8dG8deEQW027/tGzT/ll97j/cPI/wCAmvVKK6oYyolyy95dnqcs8FSb5o+6+60OD0P4n6fduLXWIm0+6B2ksCUz/Nfx/Ou5imjniWWGRZI2GVZDkEexrH1zwno/iBD9ttV83GBNH8rj8e/41wdx4f8AE/gSZrzRLl77TwcvCRnA/wBpf6ir9nQrfw3yy7Pb7zP2leh/EXNHut/mj1eiuS8M+PtL8QBYJWFpfHgwyHhj/snv9OtdbXLUpzpy5ZqzOunVhVjzQd0FFFFQaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQTgZPSgArifFfxBttHdrDTFF5qRO3avKxn3x1PsKzPFPjW61K9/4R/wuGmuJDskuI/1CnsPVq2/CHga08OxLc3IW41JhlpSMhPZf8eprthRhSiqlb5L/AD8jhnXnWk6dDZby/wAvMwdC8B3us3n9s+LJXlkf5lti3Ptux0H+yP8A61ekW9vDawJDbxJFEgwqIuAB9KkorCtXnVfvbduhvRw8KK93fv1YUUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcf4n+H2na6HubUCzv8AqJEGFc/7Q/r1rntG8Y6p4Vvl0bxVFIYhxHc9SB65/iX9a9RrO1nQ7DXrFrW/gEiH7rdGQ+oPauunibx9nWV4/ivQ46uFal7Si7S/B+pct7iG7t0nt5UlicZV0OQRUteRq+sfDHVgj77vQ524Pp/g36H+XqOm6naavYx3llMssMgyCO3sfQ1Feg6dpRd4vZl0MQql4yVpLdf10LdFFFc50hRRRQAUUV5l8V/G99oYstG0KUrq104JKAFlXOAMHuT/ACpN2Glc9Noryn4O+LtY8QSataa1ePcT25Rk3gAqDkEcD1FerVTVibhRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmXjDxRd69qI8L+HSZGc7LiZDwfUA9lHc/5Nzx94puFnTw3opL39yQkrJ1QH+EehPf0Fbfg7wjb+GNP+bbJfyjM03/ALKPYfrXbSjGhBVp7vZfqzgqzliJujTdkvif6Im8K+E7LwxYhIgJLtwPOnI5Y+g9B7V0FFFck5ynJyk7s7KdONOKjFWSCiiipLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvfWNtqVnJaXcKywSDDKwryu5ttS+GWtrdWzPcaJcPhkPb2Pow7HvXrlVr+wttTsZbO7iEkEq7WU/5610UK/s/dlrF7o5sRh/a+9HSS2f9dBNN1G11WwivbOUSQyjII/kferVeSW8198M/EX2acvNol02Vb09/wDeHf1r1iGaO4gSaFw8bqGVgcgg0V6Ps2nF3i9mGHr+1TjJWkt0PooornOkqapqNvpGmXOoXThILeMu5+navGfhvp9x438dX/jLU0zBBIRAp6buwH+6P50/45+LseT4ZtZPSW7Kn/vlf6/lVnwr8VfBXhjw7aaVBFqJ8lPnYQL87nqfvetKD1cvuHJaKPfcofD8/wBjfGrW9MPypL5qqPXDZH6Zr3SvnC18UafqXxws9a03zVtbmZUIlUK2WXaeAT3r6Pql/Dj9wpP3394UUUUgCiiigAooooAKKKKACiiigAooooAKKKKACub8Z+KI/DGjmRSGvJsrbofXux9h/hXQTzxW1vJPM4SKNS7segA6mvK9Ghl+IHjeXV7pD/ZdkwEaN0OPur/7Mf8A69dWGpRk3Ofwx3/yOTFVZRSp0/ilt/mbXw98LS2qNr+qhn1G6yyeZyUU9z/tH+X4131HSisq1WVWblI2o0Y0YKEQooorI1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMvxBodt4h0iWxuABuGY3xyjdiK4bwNrlzoWqyeFNZJRkci3djxn+7n0PUV6YzBVLMQABkk9q8e+JOs6Pqd9bDS2abUrdsNPD93A5xnuQe4rvwadVOi1dP8H3PPxrVJqvF2kvxXY9irK8R65b+HNAu9VuSNkCEqv95uw/E1R8FeI18RaDHK5H2qH93Ov+0O/wCNXfEHhrSvFFmlpq8DzwI+8IsroM+p2kZrhq05Qbg9zupVIziprZnkXwo8OnxXrWpeLNdgS5SR2WJZlDKzHknB9Oleuf8ACLeH/wDoCad/4DJ/hVrSdIsdD02HTtOgEFrCMIgJOPxPJq7Q7bLZD13Z4J8YdMtPD3ijQNSsLSG2jGCRCgQFkfOePrXu1tKJrWKUHIdAwP1FZPiLwjoniuOCPWbM3CwEmPErJgnr90j0rWtreO0toreEFYolCKCScAdOTSjpGz7jlq7rsS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDd3UVlaTXU7bYoULufQAZNCV9EDdtWcD8TtYmdbTw3YEtc3jAyKp525wq/iefwrr/DuiQeH9Et7CEAlBmR/77nqa4PwLay+JvFl/wCKb1fkjcrAD0DEYAH+6uB+Neo124l+ziqC6av1/wCAcOFXtZSxD66L0/4IUUUVxHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDc3UFlbvcXMyQwoMs7nAFCV9gbtqyasTxB4q0vw5AWvZwZiMpAnLt+HYe5rj9Y+IV7q12dL8J2sk0rcG4K8/UA9B7mrPh/4bos41HxFMb68Y7jEWJQH3J+9/Ku2OGjTXNXdvLr/AMA4ZYqVV8mHV/Pov8zIafxT8RZSkIOn6Pnk8gMP5uf0ruPD3g3SfDsP7iES3DDDzyjLH/AewrfSNIkVI1CoowFUYAp1Z1cTKS5ILlj2X6mlLCxg+eb5pd3+nY8nmV/h94/SRONJ1A8jsoJ/9lP6V6uCGUEHIPIrl/H+hf234Zm8tc3Nt++i9TjqPxH8hUfw813+2fDUccrZubT9zJnqQOh/KtK376iqvVaP9GZUP3NZ0ej1X6o62iiiuI7wooooAKKKKACiiigAooooAKKKKACiiigAooooAK4T4p6ubPw9Hp0RPnX0m0gddi8n9do/Ou7ryy6H/CU/F5LdvmtdN6jt8nJ/8fOK68HFe055bR1OPGyfs+SO8nb7zu/CukDQ/DdlY4AkVN0vu55P6mtiiiuaUnKTk+p1QioRUVsgoooqSgooooAKKK8w8Y698QzJqFjo3h5EtBuRL0SKXKf3gC3Bx7Um7DSud3o3iPSfEK3DaVeC5Fu/lykIy7W9OQM/hWpXkHwBz/Ymr7vvfaVz/wB816/Vzjyu3kvyJTuU9U1Sy0XTpb/Ubhbe1iGXkYE47dByaNK1Wy1vTYtQ06cT2swJSQKVzg46EA9RXkPxX1K58TTX+kafIRp+iw/aL6QdGlPCp+Gf5123wn/5JppH+6//AKG1THVN/wBdf8hy0aR2lFFY2qeKtH0bVbTTb+68m5uwWiBU4IHUk9B070AbNFcJ/wALg8H/ANqfYvtsuN2z7R5R8rP16498Ve8RfEjw34ZmSC8u3mndQ/lWy7yFPQnnA/OjzC2tjraKxfDnirR/Fdk11pN0JVQ4kRhtdD7itqhqwBRRRQAUUUUAFFFFABRVDVdZ0/RLQ3OoXKQp2B+8x9AO9ec3nijxF42uXsPDtu9rZZ2vOTg4/wBpu30HNb0cPOprsu72OetiYUvd3l2W51Pibx9pnh8NBGwu77oIYzwp/wBo9vp1rlLbw94k8d3CXuuzvZ6fnKQgYJH+yvb6nmun8M/D7TdCK3Nzi8v+vmyD5VP+yP69a7CtnXp0dKKu+7/QwVCpX1ruy/lX6sztH0LTtCtBb6fbLEv8TdWY+pPetGiiuOUnJ3e53Rioq0VZBRRRSGHWvK9MA8JfFSaxHyWd/wDcHbnlfyOR+NeqV518VdPdLaw1u3GJrSUKzDsM5U/gQfzrrwbTm6b2krf5HFjotQVVbxd/l1PRaKo6PqCaro9pfR/dmiVvoccir1crTTszsi1JXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF5dJZWNxdyf6uGNpG+gGa88+FNq9y+ra3PzJPL5Yb3+838x+VdB8Rbs2ngm+2nDTbYh+LDP6A1J8P7MWXgrTl24aVDKx9dxJH6Yrsh7mFlL+Z2+7U4p+/i4x/lTf36HTUUUVxnaFFFFABRRRQAVBff8AHhc/9cm/kanqC+/48Ln/AK5N/I1M/hZUPiR5R8A/+QNrH/X0P5V3XjfxKvhfw3NdRjfeynybSIcl5W4HHt1rhfgH/wAgbWP+vofyroPiB4J1nxRqul3ulanFaNYglfMBOHJ+8K1ratLyX5IiHV+v5mXeeGm8N/BnWEuTv1G6hNxeSHktIxBIz7dK3vhP/wAk00j/AHX/APQ2rhPFnhfx9Z+FdRuNS8VpdWUcWZYQD84yOOlb3wX07WYPDsN7dakJdLmiItrXH+qIc5P41K1cvl+oPRL5/oeo1458UrKHUviZ4Ts7gEwzYV1z1XfyPxr2OvJfiF/yVvwb/vD/ANDNJfHH1KfwS9Do/iTpNgPhrqcS2kKpbxBoQqAbCGGMelQfCbR7K38CWV4IEe5u1LzSuMs3JAGfQAAYrU+JX/JOtb/64f8AswqL4Xf8k40b/rif/QjRH7Xy/UT2j8/0OR+HsEdl8W/F1pbII4ASRGvAHz+n4mvXa8m8D/8AJZ/F/wCP/oVes0L4I+gS+OXqFFFFABRRWF4h8W6V4bhJu5t05GUt4+Xb/Ae5qoQlN8sVdkznGEeaTsjcZlRSzsFUDJJOABXBeIfiTBbzHT9Ai+33rHaHUEoD7AfeP6Vh7vFPxGl4zp+j59wGH83P6V3nh7wjpXhuEC1h33BGHuJOXb/Aewrs9lSoa1dZdl+rOL2tXEaUvdj3f6I4/SfAOo67djVPFl1I7NyLYNzj0JHQewr0ezsrawtkt7SBIYUGFRBgCp6K561edX4tu3Q6KOHhR+Hfv1CiiisTcKKKKACiiigArI8U2A1LwxqNrjJaFmUe68j9RWvQQCCCMg1UZOMlJdCZxUouL6nC/Cu/Nx4Wa1Y/PazMmPY8/wBTXdV5f4CzpHjrW9GP3CWZf+At/g1eoV0Y2KVZtbPX7zmwMm6CT3Wn3BRRRXKdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5z8Xroro2n2Y6zXBfA77Rj/ANmrvNNtRZaXaWo6QwpH+QArzv4m/v8AxL4dtuuZOn+86j+lenDoK7K2mHpr1f4nFQ1xNWXay/AKKKK4ztCiiigAooooAKjnj863kizjehXPpkVJRSaurMadnc474f8AgdvBFleW7agLz7TKJNwh8vbxjHU5rsaKKptvcSVjK8S6MfEHhy+0kTiA3UezzSu7byDnGRnpUPhHQD4X8M2ejm5FybcMPNCbN2WJ6ZOOvrW3RSAK5HxF4JbXvF+i66L8QjTSCYTFu8znPXIx+RrrqKOqfYOjXcyfE2jHxD4bvtJE4gN1Hs80ru28g9MjPSm+FdDPhvw1ZaQbgXBtk2+aE27uc9MnH51sUUAcjoXgptG8a6x4hN+JRqPSDytvl85+9k5/IV11FFHRLsHVsKhu7y3sbZ7i6mSGFBlnc4ArlvE3xA0zQd1vAReX3QRRn5VP+0f6D9K5i08M+I/HFyl94huJLSxzlIAMHHsvb6nmuqnhXy89V8sfxfojjqYtKXs6S5pfgvVlnVviBqGtXZ0vwnaySO3BuSvOPUA8KPc/pV3w98NooZhqHiCX7desdxjYkoD75+8f0rsNJ0XT9DtBbafbJCncj7zH1J6mtCqniVFclFWXfqxQwjlLnrvmfbohERY0CIoVQMAAYApaKK4ztCiiszxBrtn4b0W41W+LeRCOQvVieABSbsrsaV9EadFeWHx/42jsBrsnhOAaHjzCBKfPEf8Ae6+ntXo2kapba1pNtqVm26C4QOhPXnsaqwi7RRRSAKKKKACiiigDzC6/4l3xqhccJdKM/in+Ir0+vMPHX+jfETw9crwWMan/AL+EfyNen12YrWFOXl+RxYTSdSP978wooorjO0KKKKACiiigAooooAKKKKACiiigAooooA8x8bfvvid4ch7DyW/8in/CvTq8x8bfJ8T/AA3J6mFf/Ip/xr06uzE/w6fp+pxYX+LV9f0CiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigArn/GXiI+GtAe7jUNcOwihB6BiDyfpit53WNGd2CooyWY4AFeSfEfxLp+vLb6XpYkupoZS5kjGVPHIHc/WunCUfa1UmtOpyY2v7Kk2nZ9DhrvXtVvrs3Nxf3Dyk5DbyMfT0rodK8R+KfEKweHrfUDmUkea7YcrjJBbrjrXG12XwwtUn8ZQyvKqGCN3VScFyRjA9eCa+grxhGk5WWm2h85h5VJ1VHmer11PR/DPgDTNB23Ew+2X3UzSDhT/ALI7fXrXXUUV8zUqTqS5pu7PqqdKFKPLBWRjeK9Zbw/4W1HVUUNJbxFkB6bjwP1Iryjwz8Pbrx7oi+Itd8QX/wBpuizQrGwwgBIGc/ToMV654j0mHXPDt/pk8gjjuIipc/wHqD+BFeN+GviRL4J0qXw/JYjWEsWYRXVlISmCScE7f1rNWu7m2tlY6H4Vazqtvr2s+EdVunuzp7EwyuckANgjJ7dKTxvqOqeKfHdt4I0q9ks7ZY/NvZozyRjOPpgjj1NS/CWwjvrzVvFc19bT3uoSHdDAxPkAnOGzzn/Cqfg1vtHx08USPyyI6j2AZR/SqteUVLe138ib2UnHvoZXiXwjqfwuit/EXh/Wbye3jlVbmGds7gfXGAQenSvQfE2mH4g/DlVsXVJLqOO4h3Hjd1wf1pfiqgf4baxkZwiEf99rT/hfIZPhzoxY5Ih2/kSKle9Fp9Gh3s015nJSeKfF8/h1vDQ8G3i6k8P2Vrk/6gDG0tnGOnvXoPhDQ28OeFbDSpHDyQR4dh0LHk49smtuiqvv5k22S6BRRRSGFFFFABRRRQB5l8Svk8T+HpfSRf0cV6YvKg+1eZ/FD5tb8Pov3/N/9mWvS0/1a/QV2V/4FP5/mcWH/j1fl+Q6iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigDzH4ifufG3hu4PCiROfpID/WvTq80+L0TJbaRepwYpXXPuQCP/AEE16PbyrPbRTJ92RAw+hFdlfWhTfqvxOLD6YirH0f4ElFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUVBeXtrp9s9zeTpDCnV3OBTSb0Qm0ldk9YHiLxfpXhuI/apfMuSMrbxnLH6+g+tchqvj3U9euzpfhO1kJPDXJXnHqOyj3P6VoeHfhvb2sov9dk+33rHcUY5RT75+8frXYsPGkuau7eXX/gHFLEzqvlw6v5vb/gmGI/FPxFlDOTp+j5yByAw9h1Y+/Su+8P+E9K8OQbbSANMRh55OXb8ew9hW2qqihVACjgAdqWs6uJlNckdI9kaUcLGD55Pml3f6djCu/Bvh6+uTcT6XAZSckqNu4++Otcx4y8EeUses+HYhbXlqATFCMbgO6gdx+teiUVNPE1ISTvcqrhaVSLVrX69TlvBfi+HxLY+XNtj1GEYmj6bv8AaHt/KuprzTxn4YutH1AeKPD+Y5I23zxIPzYD0PcV1vhXxPa+J9ME8WEuEwJ4c8of8DWlelFx9tS+F/gzPD1pKXsavxL8UYHxh1C40/4e3RtnZGnkSFmXqFOSf5YrW8BaVZad4I0qK2hjAktkkdsD52YZJNXPFvh6LxT4avNJkfYZlyj4+645BrzPR9V+I/g3Tl0NvDa6lHANlvOrZG3tyD0+uDXHF25k+tjtavZroP0KNdE+P2pafp4EdpcQl5Il+6CVDdPqT+dWPCMf2X46eJ4n4aSJnX3BZT/WtL4d+DtYtdav/FXiXauqXuQsIIPlqTk5xx2AwOwpfG/hnXLTxRa+MPC0ST30SeXc2zHHmr+meP5Cmvd5b9E194P3ua3l+BqfFmZYfhtqu443hEH13irPw0ga3+HeiowwTAH/AD5/rXA6tB46+Jctrpd/oo0fS45A9w7HlsfU5PfFex2VpFYWMFpAu2KFBGg9ABiiKsnfqJu7SXQnooooAKKKKACiiigAooooA8x8f/vvHvh23/2o2x/20/8ArV6dXmGt/wDEy+MWnWw5Fsq59sKX/ma9PrsxOlOnHy/M4sLrUqy87fcgooorjO0KKKKACiiigAooooAKKKKACiiigAooooA4z4oWZuvBksgGTbzJL+H3f/Zq1vBl6L/wfpcwOSIBG31X5T/Kr+s2I1LRb2yIyZ4XQfUjj9cVxXwkvjJot7p7n57afcAeysP8Qa7F7+Fa/lf5nFL3MWn/ADL8Ueh0UUVxnaFFFFABRRRQAUUUUAFFZus69p2g2puNQuVjH8KdWf6DvXnVzr/iXx5O9nokDWenZ2vMTjI/2m/oK6KWGnUXNtHuzmrYqFJ8u8uy3Om8TfELTdELW1pi9vugjQ/Kp9z/AEH6Vzdn4V8Q+NLpdQ8SXMltZ9Utxw2PQL/D9TzXVeGfAWmeHws7r9rvupnkH3T/ALI7fzrq61denRVqC17v9OxisPUrvmxD0/lW3z7lHStHsNFtFtrC2SGMdcDlj6k9zV4kAEk4A6miuA+L/iOTQPBUkVu5S5vm8hWB5C4yx/Lj8a4pzfxPVnfCCVorRHPeKPipqeoa0fD/AIItftNzkq10F3c99oPAA/vGqY8C/FS9X7RP4qMMp5EQvJBj2+UYH4V1Hwg8KQ6H4Th1GWMG/wBQUSu5HKofur+XP416JTceXTqHNfVbHgsPjvxt8PNWSx8WRtf2jglXZslh6q/f6GvbtL1O11jS7fULOTfb3CB0b2NcR8aNOhvPh9PcOo820lSSNu4ydpH61W+Bl1JceAnjdiVgu3jTPYYDfzJoi+ZNPdBJWs11PSyAwIIBB4INeWeJdCvPBWsjxHoQItC37+EdFz1BH90/oa9UpksUc8LxSorxuCrKwyCD2rahWdKXdPddzDEUFWj2a2fYztA1608Q6XHe2jdeHjJ5Ru4NaleS6nYX3w318appwaXSLhsSRZ4H+yf6GvTtL1S11jTor6zkDwyDI9Qe4PvVYiio2nDWL/qzIw9dzvTqaTW/+aLlFFFcx1BRRRQAUUUUAFFFFABRRRQAUUVS1e+Gm6PeXpOPJiZxn1xx+uKaTbshNpK7PPfC3/Ez+KusXv3khDqp/EAfoDXp9ed/CexI02+1SQHfczbQT3A/+uTXoldWNa9ryrokjkwCfseZ/abf3hRRRXIdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5bop/4Rj4sXunv8ttqGTH6fN8y/wBVr1KvN/ipYyW50zX7bia2lCMw7c7lP4EH867MG05Ok9pK3z6HFjU1BVVvF3+XU9Ioqppl9Hqel2t9EfknjVx7ZHSrdcjTTszsTTV0FFFFIYUUVz3iPxlpXhuMi4l826x8tvGcsfr6CqhCU3yxV2ROpGnHmm7I35JEijaSR1RFGWZjgAe5rz/X/iQvn/2d4bgN7eMdolCkqD/sjv8AXp9ayFtvFPxFlElwx0/R85VcEBh7Dqx9zxXf6B4W0vw5BssoB5pHzzPy7fj/AErs9nSofxPel26fM4/aVsRpS92Pd7v0Rx2jfDy81S6GqeK7l5pm+b7Pvz+DH+gr0a2toLOBILaJIokGFRBgAVLRXPWrzqv3tu3Q6KOHp0V7q179QooorE3CvEP2gnffoUfPl/vT+Py17fXnHxl8Lz6/4US6s4zJc6e5k2KMlkI+bH5A/hUy0s+xcN7HeaVGkWk2cceNiwoFx6YFW68r+HXxS0e60K10zWbxLO/tkEW6Y4SQDgHd0B9c11er/EXwro9o08usWs5AysVtIJWY+ny9PxrSe7ZnBOyRzPxy1iOy8GR6cGHnXswAX/ZXkn88Ve+DOmPp/wAPbd5FKtdSvPg+h4H6AV51Z6dqvxl8YvqN2klrosHyKR0Veyr6sTyT/wDWr6AtLWGytIbW3QJDCgRFHQADApRXLFt7v8hyd2kuhNRRRSAgvLO31CzltLqJZYZV2srdxXlQN/8ADHxFg759Dum/L/Bh+v8AL1yqWraVaa1p0tjeRh4pB+KnsR710UK/s7xlrF7o5sRQ9paUHaS2f6ehPaXcF/aRXVtIskMq7kdehFTV5NpWo33w5186TqZaTSZ2zHLjhf8AaH9R/k+rRSpNEksTq8bgMrKcgilXoeyd1rF7MeHr+1VmrSW6H0UUVgdAUUUUAFFFFABRRRQAVw3xT1MWfhcWat+8vJAuPVRyf1xXc15Zqh/4Sz4p29ivzWmn/f8AT5eT/wCPYFdWDinU53tHU48bNqlyR3lp953XhPTf7J8L2FoV2usQZx/tHk/qa2aAMDA6UVzzk5Scn1OqEVCKiugUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVn65pUWt6LdafLjEyEAn+FuoP4HFaFFOMnFpoUoqScXszzn4YarLCL3w3e5W4tHZo1bsM4Yfgefxr0avLvHFtN4Y8X2PimzQ+VIwWcDoWxgj/gS/qK9KsryC/sobu3cPDMgdGHoa68XFStWjtL8+px4OTinQlvH8uhPVe+v7TTbV7m9uEghXq7nH/6zXKeJfiJp+jFrWxAvr/7oRDlFPuR1PsK56x8I6/4xul1HxNcyQW3VLccNj0A6KP1pU8L7vPVfLH8X6IdTF+97OiuaX4L1ZLqfjvVvEd22l+E7WQA8NckfNj19FHv1rT8OfDe1spBfa1J9vvidxDcop/H7x9zXX6ZpNjo9ottYWyQxDso5PuT3NXaJ4qy5KK5V+LFDCc0ueu+Z/gvRCBQoAUAAdAKWiiuQ7QooooAKKKKACjrRRQBxOvfCnwpr1w1zLZNbXDnLSWzbNx9SOmfwrOsPgn4RspxLLHdXeDkLPL8v5LjNej0ULTYG77kFpZ21hapbWkEcEEYwscahQB9BU9FFABRRRQAUUUUAZXiHQLTxFpb2V0vPWOQDlG9RXA+GNevPB2sHw3rxIti37iY9Fz05/un9K9TrA8WeFrbxPphhfCXUYJgmxyp9D7GuqhWil7Kp8L/DzOTEUJN+1pfEvxXY3gQQCDkHvS15r4L8UXOlX58MeIMxzRHZBI5/JSfT0NelVnWoypS5X/w5rQrxrR5l812CiiisTYKKKKACiiigDJ8SazHoOg3N+5G9FxGD/E56D+v4Vyvwv0iSKwudbugTPfN8pPXaD1/E5/SszxpdSeKvGFl4as3JghfM7L0B/iP4Dj616da28VpaxW0KhY4lCKo7AV2z/c0FHrLV+nQ4Ifv8Q5/ZhovXqS0UUVxHeFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBQ1rSoNb0i40+5HyTLgHup7EfQ14zY/8ACSfbD4JjvRbKJnBDNtyOpwepBHIHfNe61wXxE8My3Uaa/pm5dQswGfZ1ZRzke4/lXdgqyi/Zy2e1+jPPx9ByXtI7re3VdUanhrwJpfh4LMV+1XveeQdD/sjt/OuprnPBviiLxNo6yMQt5DhbiMev94exro6567qe0aq7nVh1S9mnS2CiiisTYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Txr4Pi8SWXnQAR6jCMxSdN3+yf88VmeBfGEtxIdB1omPUYPkRpODJjsf8AaH6131cR468HHVkGq6YPL1SD5vk4MgH/ALMOxrso1Yzj7Grt0fb/AIBxV6Uqcvb0t+q7r/M7eiuN8DeMRrtubC/Pl6pAMMp48wDuB6+orsq56tKVKTjLc6aVWNWCnHYKKKKzNArnfGfiNPDmhSTqw+1S5SBf9r1/D/Cty7uobK0luriQRwxKWdj2FeWWEVz8RvF51C4Qro9m2FQ9DjkL9T1NdWGpKTc5/DHf/I5MVWcUqdP4pbf5m/8ADjw49hYPrF6Cb69+YFuqoefzPWu6pFAVQoGABgClrGtVdWbmzajSjSgoR6BRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdRg0UUAeU+IdNu/AfiVfEOkxltOmbE0Q6Lnqp9AeoPY16Po+r2muabFfWUm6JxyO6nuD71aurWG9tZLa4jWSGRSrow4IryiWO/+GPiLzohJPod02CPT2/3h29RXfG2Khyv41t5r/M86V8JPmXwPfyff0PXKKq6dqNpqtjHeWUyywSDIYfyPoatVwtNOzPQTTV0FFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB55448JTpcDxHoW6K+hO+VI+r4/iHv6jvW74N8WweJtPw+2O/iGJovX/AGh7V01eY+MPDV34f1IeJ/D4KbG3XEKjgepx/dPcV3UpxrxVKputn+jOCrCWHm61NaP4l+qPTqQkAEk4A6k1i+GPEtp4l0tbmEhJl4miJ5Rv8PeuP8Y+KbnWr8eGfDpMryHbPMh4PqAfT1NY08NOVRwelt/I2qYqnCmqi1vt5lXxRrNz411yLw5orE2ivmeYdGx1P0H6mvRtG0i20TS4bC0TbHGOT3Y9yfes/wAKeFrXwxpohjAe5kwZpscsfT6Vv1WIrRaVOn8K/HzJw1GSbq1fif4LsFFFFcp1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWv7C11OyktLyFZYJBhlb/AD1qzRTTad0JpNWZ5JcW2r/DLVjc2pe60SZvmU9vY+jeh716Xo+tWOu2CXdjMHQ/eX+JD6EdjVu5toby3kt7iJZYZBtZGGQRXmOr+EdW8IXzaz4Xlke3HMlt94gemP4h+oru5oYlWm7T79H6nA4zwjvBXh26r08j1OiuV8K+OdP8RxrC5W2vxw0Dn7x9VPf6da6quOpTlTlyzVmdlOrCpHmg7oKKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZKYxE5lKiPB3bumO+ap6vrNjodk11fzrFGOg/iY+gHc15pcaj4g+I921rp6NZaOrYdz0P1P8R9hXRRw8qnvPSK6nNXxMafupXk+hhXVubrxhdWfg2SfybgFH2EqgB+9z/dr1Pwn4QtPDFpxiW9kH72cjk+w9BVvw74asPDViLe0TMjcyTN95z7/4Vs1ricW6i5IfD+L9THC4NU37SfxfgvQjlnhgAMsqRg9N7AZqP7fZ/wDP3B/38FeKfGy5l1LxZoegwSMGIGdp6M7Y/kBV9fgJbFQT4guwcc/IK4VqrnoNJOx7DHNFMMxSI49VYGn188+LPhtqvgLTv7e0rXppFhcB8ZR1yeCCDzzXr3w91+fxL4LsdRuiDcMCkhH8TKcZ/HFUtU2ugnpbzOoooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxXib4d2OsSNe6e/2K/wA7tyfcc+47H3FYNh4y13wjdJp3ii1kmg6JcDlseoPRv516nVa+0+01K2a2vbeOeFuquua66eJ93kqrmj+K9GcdTCe97Si+WX4P1RFpes6drNuJtPu4517hTyv1HUVerzbVPhpPZXBvvDF/JbTLyImcj8m6/nmoLT4g61oEos/E+mSEg485BtJ/9lb8Kbwqqa0JX8upKxcqemIjbz3R6hRWHpHi7Q9aCi0voxKf+WUh2P8Akev4VuVyyhKDtJWOyE4zV4u6CiiipKCiiigAooooAKKKKACiiigAoqnf6rYaXF5l9eQwL1+dgCfoOpridW+KVor/AGbQ7SW+uWOFYqQufYdT+lbUqFSr8CMauIpUvjZ6BJJHDG0krqiKMlmOAPxrgtf+JUEExsNBhN9eMdocAlAfYdW/lWVH4X8W+MJFn169aztCciEdceyjgfU813Gg+E9J8OxYs7cGYj5ppOXb8e34VvyUKOs3zPstvvOb2levpBcse73+SON0zwJqviC8XU/Fd3Ic8i2Dc49DjhR7CvSLW0t7G2S3toUihQYVEGAKmorCtXnV327dDoo4eFH4d3u+oUUVDd3CWlnPcucJDG0jfQDNYN2VzoSvofO/iDxBp4+OT6lqUjCysZ9pKruPyLgYH1r0v/hdXg7/AJ+Lr/vx/wDXrhPhFodl4o8Q67qerWUF5ED8qzxh13MxJOD34/WvXj4F8JkY/wCEc0v/AMBU/wAKaTUEmEmnNtHlPjHx7L8Rkj8L+FrCeRZnDSyS4UkD2zwO+a9Y8G+Hh4X8LWWlbw7xLmRh0Lk5P6mvIfi14X07wdcaXrWgL9gneUgpEcDK4IIHavbNCvZNS0CwvZRiSe3SRh7kA0425XbvqKXxK/yNCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDcWtvdxNFcwxzRtwVdQQamooTtsDV9zh9X+F+jXxaSxaSwmPI8s5TP+6f6YrG/sDx/wCH/wDkHakL2FekZfPH+63A/OvUaK6o4yqlaXvLz1OOWCpN80fdfloeYJ8SNb0lhHr2guoHG9QUz+eQfwrWtPir4fnwJlurc99yAj8wf6V27xpIMOisPQjNZV34X0O9ybjSrV2P8XlgH86r2uHl8ULejF7HEw+Gpf1X+RBb+NfDl0uY9WgH+/lP5gVdj1/R5fuarZN7C4X/ABrn7j4ZeGZmLLayxE/3JWx+pqlJ8JdDb7lzex/7rr/UUcuFe0mvkHPjFvGL+Z2n9p2GM/brbHr5q/41G2taUn3tTsh9Z1/xrif+FRabn/kJ3236r/hUi/CPRR96+v2+rL/8TR7PDfzv7g9riv8An2vvOon8V6BbD95q9p/wGQN/LNZN18S/DNtnbdyTkf8APKI/1xVaD4V+HIj+8W5m/wB6Uj+WK1rXwN4btMbNJgbH/PUb/wCeaLYSPWT+5BfGS6RX3s5a4+Kz3LmLRtFnuH7F8n/x1f8AGoDc/EfXhiOJdPhbvgR4/Hlq9Lt7O2tUCW9vFEo6BFAFTUfWacf4dNfPUX1WrP8AiVH8tDziw+FazS/aNd1Oa7lJyyISAfqTyf0rtNL8PaToybbCxhhOMFwuWP1J5rTorKpiatT4nobUsLSpaxjr+IUUUVgdAUUUUAFcn8StS/sv4f6tMGw7xeSv1Y4/lmuspGRXXa6hh6EZpSV1YcXZ3Pmv4efEyy8EaPPZyaVLczTTGRpFlC8YAA6H0rrz8f4JFK2/hyd5D0H2gf0WvYfs0H/PCP8A74FKLeAdIYx/wEVTd9xKyPBk0bxZ8WfEFteazaNp+jwHhWUoNvcKDySfWvebeCO2t44IlCxxqFUDsBUgAAwBgUUbKyDd3YUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>Find the length of $\widehat {AB}$. Round to the nearest hundredth.
|
9.77
|
Geometry
|
Geometry3K
|
test
|
64
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEVAXcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqeq36aXo97qEmNlrA8zZ9FUn+lXK4L4x6qNM+G2oKH2y3jJbJz13HLD/vlWoA7DR9QXVtFsNRTG26t45gB23KD/AFq7XAfBrVRqfw2sYy26Wzd7Z+emDlf/AB1lrv6ACiuW8b+MY/CdhbrDbm81W+lEFjaA4MjnAyfYZH5ge4g0rWfEVn4lstG8RHTZnv7WS4jaxR18lkK7kbcTlcNw3HINAHYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY3hzX4vEFtfSxY/0S+ns2I6HY2AfxBBq5q+ox6Ro17qMpAS1geY5PXapOP0rx39n3WWn/t3TJpcyM6Xignlicq5/wDQPzoA9vooqhq+t6ZoNi17qt7DaW6/xyNjJ9AOpPsOaAL9FYFl400C98Nf8JCL9IdM3MvnXAMeSpIwAeSeOAOTSWvjbw/deGx4h/tBIdMLMomnBj3FSRwDyTxwBzQB0FFZfh/xDp3ifSl1PS5HktWdkVnQoSVODwa1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr56+OWr3Ot+JY9DsY5JodJtzPc+WpIVmAJLY6ALt5/2jX0LXIeNtNstP+H/iiS0to4nubWaWZ1HzSOQSSx6n+nQUAeT/AAO1e50PxO+i30ckNvq9uJrbzFIDuoJBXPUFd3I7gCvoeuO8DabZah8PPDDXdtHM9vbxSwsw+aNxyCp6j+vStvxDf6pYaaG0bTP7QvpZBFGjOEjjzn53Oc7R3xz/ADoA8fvPEen3/wAdbvU9TuFj03w9A6Rhudzr8mFHdjI5wBz8o9K9G8J6Xf3uq3Xi3W4Wt768jENpZuebS2ByFP8Atsfmb06cdK8y+CuiW+reLvEGq6tbxXF7YyqUZhkJK7OWYA9/l4J6V77QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeVfHHW5ofD1p4dsVeW91WUAxRAsxjQg4AHPLbfrg1474C1K98I+LrDWZ4Jo7AXJsrqUqdgzgOpPTK5DY9hX1b/AGbZf2mdSNtGb3yxEJyMsEBJ2g9hknp1rzf4Q2dtf+GPEdreW8VxbyazOrxSqGVhtTqDQB6l1rx/466ZpEHh7+1JYGl1a6mjtoHaVj5ajLHaucDIGDx3r1yCGO3t44Il2xxqEQZJwAMDk15P48jfxP8AF7wv4eRDJbWI+2XWBlRk7iG/CMD/AIHQBx/jjwTB4P8AhpYf2lez3uqySpDbxs5WK1By7hEBwTngseue1J408DW3hD4ZWU2p3dxeatM8cNvG7kR2gOZHCJn2IJPUnOBXYePYH8U/F3wx4eVDJa2S/a7rAyoBO4hvTIjA/wCBVlfHDUWfxf4Y002sl1FD/pLW8YJabc4G0e+EI/4FQB6l4H0f+wPBGkaaV2yRWytKPR2+Zv8Ax5jXQVheGrvxDfxTXmuWNtp8cu021mjF5Y15yZG6EnjgDjHrW7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc18Qv+SeeIP+vGX/0GulrjfirqUWmfDbWHkI3TxfZ41P8AEznH6DJ/CgC38Ov+SdaB/wBeSfyrp6474V38WofDXRniIzDCYHGejISvP5A/jXY0AeV6boPiLwH4v8Q3WkaGdX07WGEsPl3CRmGTLEK+48KN7cjPGK7bwjot1omh+VfzifUbmZ7q7kUnaZXOSFz2HAH0reooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNPgt/wAgLX/+w3P/AOgpXot3dQ2NnPd3DhIYI2lkY9lUZJ/IV5R8BdXivdI122+7cfbzdMv+zIoAx+KH9KAPXaasaK7OqKGfG5gOTjpmnUUANEaK7OqKGbG5gOTjpmmtbwPOk7QxtNGCEkKgsoPXB6ipKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8E/aC1/zL3TfD8T/LCpupwD/Ecqg+oG4/8CFe9O6xozuwVVGSScACvjTxfrreJfFup6sSSlxMTED2jHCD/vkCgD1T9nzX9s+p+HpX4cC7gBPcYVx+Ww/ga94r428F68fDXjDTNV3ERwzATY7xt8r/APjpNfZCsGUMpBBGQR3oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA83+Nuv8A9j+A5LKN8XGpSCAYPOwfM5/IBf8AgVeO/B/X/wCwviDZpI+23vwbST6tjZ/48FH4mr/xw1/+1vHP9nxvmDTIhCADx5jfM5/9BH/Aa81jkeGVJY2KujBlYdQR0NAH3LRWP4V1tPEfhbTdXTGbmBWcDoHHDj8GBFbFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFbULKLUtOubGcuIbiJopCjbW2sMHB7cGvJ/F3wg8J6P4Q1bUrSC6FxbWryxlrgkBgMjIr2Gua+IX/JPPEH/AF4y/wDoNAHBeD/hD4T1nwfpOpXkF0bm5tlkkK3BALEdhXrVjZx6fYW9lCXMVvEsSF23NtUYGT3OBWB8Ov8AknWgf9eSfyrp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8/vfg14R1C+uL25ivHnuJGlkY3J+ZmOSfzNcJ8Nvhn4c8T6Xq1xqUNw0ltqUttHsmK4RVUjPvya97rzT4Lf8gLX/wDsNz/+gpQB2nhvw3p/hXSf7M0wTC2EjSBZZC5BPXBPbv8Aia16KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKa7pGhd2VVHUscAUAOrmviF/yTzxB/14y/8AoNR+H/HFl4k8Uazo9jGrw6aE/wBLSUMspPUAY7HIzk5xUnxC/wCSeeIP+vGX/wBBoAb8Ov8AknWgf9eSfyrp65j4df8AJOtA/wCvJP5V09ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeafBb/kBa/wD9huf/ANBSvS680+C3/IC1/wD7Dc//AKClAHpdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVLUtX07RrcXGp31vZwk4DzyBAT6DNAF2iuOuPir4Its+Z4htzj/nmjyf+gqa5bV/j94etNy6ZYXl+46M2IUP4nLf+O0AetUVgeENS1rWNETUtasoLF7j54LWPcXSPsXJPU9cYGB79N+gAooooAKKKKACsvX/Dul+J9N/s/V7Y3FrvEmwSMnzDODlSD3NalFAHk3w20my0P4n+MtN0+Iw2kCQLGhYttBGepJJ5JrtPiF/yTzxB/wBeMv8A6DXL+Df+SyeOfpB/6DXUfEL/AJJ54g/68Zf/AEGgBvw6/wCSdaB/15J/Kud8SS+JPE3xBbwxpeqXGi6baWguLi7hjO6ViRhQ3H94dD2PXiui+HX/ACTrQP8AryT+VaOvJqF7pN3Z6FqUFlquFMcrqsnl/MCcqQeq5HTvQBx3gTWNbs/Get+DNZ1A6p9giWeC9dcOVbadrev3x+R5Ixj0evI/hwLvQviJruh+IUW4166iF1/aSyFhNGMfKAQMDn0H3cdhXrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5p8Fv+QFr/wD2G5//AEFK9LrzT4Lf8gLX/wDsNz/+gpQB6XRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU10SWNkkVXRhhlYZBHvTqKAOE8QfCLwjr29xYf2fcN/y1sj5fPun3f0z714p4t+EniDwo7XUUR1PTUO4z2wIdV/2l5K/UZHvX1NTGljWVYmkQSOCVQsMnHXAoA8p0j4b/AG7R7TUvDvjrxBaW1zEssYafeACOhClRkdD9Ku/8Ih8SrDjT/HsVyvpeWg5/EhzXosYtbMJbxiGAOzFI1wu4kktgdzkkmp6APM/N+MOncG38PaoB3UshP5lKP+E4+IFhxqXw8kmx1NndBv0AavTKKAPM/wDhccVnxrHhLxDYHuTbZA/7621btPjV4IueJNQntT6TWz/+yg16DVS70rTr/wD4/LC1uc/89oVf+YoAxbT4g+EL7Hk+I9OBPQSziM/k2K3LXULK+GbS8t7gesUqv/I1gXfw58G3ufO8Oaeuf+eMXlf+gYrEuvgn4KnO6GzurQ9jBdPx/wB9bqAO6h06xtrye8gsreK6uMedOkSq8uOm5gMnHvWH8Qv+SeeIP+vGX/0GuY/4VA1n/wAgfxn4hsfQG43D8l21jeLPCPjfSfCWqyP45bUNPS2czw3FsAzpjkAksc++RQB33w6/5J1oH/Xkn8q5nXNJ8UeGviHd+KvD2lJq9pqNukV3a+cI3RlAAIz7KOmep46GsbwjL8UbPwjpUmlQaHfacbdTBHKWWRUxwCcqM/ia2v8AhNPiJp//ACEfh99oHc2d2D+g30AWPB+g+Ib7xtfeMvEtnFp8slsLW0skkEhRMgksR9P1PA4r0SvM/wDhcBs/+Qx4N8Q2Pqfs+4fm22rNr8bPBNwcTXtzaH0ntX4/75DUAeh0VzFp8RfB17jyfEenjP8Az1lEX/oeK3LTVNPvxmzvra4/64zK/wDI0AW6KKKACiiigAooooAKKKKACiiigDlfiTq9zoXw/wBW1CynaG5jRFikXqpZ1XI/OsDTfBfjSWCzurj4h3gLqkkkH2JTjIBK53/hnFdF4/8AC9z4w8Ky6PbXcds0kqOzyKSMKc44/CvOfGXhS5+HGm2vivRde1Se8huEW7W6m3JcBuuRj14wc8H1GaAPba80+C3/ACAtf/7Dc/8A6ClejwSrPbxzLnbIoYZ9CM15x8Fv+QFr/wD2G5//AEFKAJT4j+J+f+RFssf9hGP/AOKrU+Hvi7UvF9jf3N/psNmttceRG0MvmLIR97B6EDjkcHNV/ijrd1ZaFbaHpjFdV1ycWUBBxtUkB2z9CB7bs9q6rQ9HtdA0Sz0qzULBaxCNeMbj3Y+5OSfc0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFLV4dQuNLnh0u7jtL1wBHcSR+YI+Rk7e5xnHvivnzw5pniW8+LepyaLfDUrvTnkhfUtQJKx5BQtgHn+IKo4/AV7/AK/qiaJ4e1DVJMYtbd5QD3IBIH4nA/GvOvgjYjTfA99r14xD387zPK3eOPIyf+BeYaAOW8PaPeX3x/aC91afVm0oGaW5lG35ggGAucKBI4GB6V7/AF89fC/xdp1jq3iDWLyO5u9a1W5xbWNrEXlcEs7Y7AZI6n+GvoKJmeFHdDGzKCUJBKn04oAfRRRQAUUUUAFeX+JL7xB4o+JLeD9H1iXR7OytBc3VxAMyOTjAB4P8SjGR3PPAr1CuZ8XeJ9G8F2D6reRRtezDy4Yo1Hm3DcYXPXA4ye35CgDmvBOq65pXj7VPBetam2qJDbC6tbuRcPt+XKn1+93J+77103xC/wCSeeIP+vGX/wBBrB+HvhvVzq1/4z8SDy9W1NAkdqBj7PDwQpHY/KvHUAc8k43viF/yTzxB/wBeMv8A6DQA34df8k60D/ryT+VdPXMfDr/knWgf9eSfyqv8QdfutM0mDStJOdb1eT7LZqDymfvSewUHr2JFAHT2l/Z36yNZ3cFysblHMMgcKw6g4PB9qS606xvhi7sre4HpNEr/AMxXmnwKtjZ+HdbtS+8w6rJHuxjdhEGf0r1SgDmrv4eeD77PneHNOBPUxQiM/wDjuKwrv4K+CLk5isLi1PrBcv8A+zE16FRQB5n/AMKdSz50fxf4hsD2Aucgf987aP8AhCPiDYc6d8Qnn9BeWob9SXr0yigDzPZ8YdO5Evh7VAOxDIT+iUf8Jh8SdP51DwDHcj1s7sc/gC5r0yigDzP/AIW7PZ/8hjwT4hsh3Kwbx+bBantvjb4LmbbPc3lm3cT2rcf987q9Fqvc2NperturWCdfSWMMP1oA560+JPgy9x5XiOwXP/PaTyv/AEPFblpq+mX+Pseo2lznp5M6v/I1k3fgDwjfZ87w5puT1MdusZ/NcVhXfwX8D3OSmmy2zHvDcyfyYkUAegUV5n/wpq2tOdI8VeILBu225BA/IL/Oj/hBfHthzpvxEnmx0W8tg/6sWz+VAG98SPDWoeKPCjWulT+VfwTLcwjftDlQRtJ7ZDH2ziuN1iy8d/EWKw0PVvD8ejadHOsl9cm4V/M29kUHOOTgc845rU+z/GDT+VvPD+qAdnUoT+QQfrR/wlnxMsOb/wACW90o72d2Bn8Msf0oA9LVQihVGFAwB6CvNfgt/wAgLX/+w3P/AOgpSf8AC2ryz51fwL4gs17skJcfmQoNcl8MPiT4b8O6fqtrq1zPbPc6lLcoTAzAIyqBnbnng0AdPcv/AG3+0La2zfNDomnGXYegdh1+v7xPyFepVylp8TPBd6QIvEVkuf8Ansxi/wDQwK3LTW9JvyBZ6pZXOenk3CPn8jQBfooooAKKKKACiiigAooooAKKKKACiiigAooooApavpFlrulzabqMJmtJtvmR7yu7DBgMgg9QKRNIsItGOkQ2qRWBhaHyYxtAQgggY+pq9RQBz/hjwVoPhCBk0iyWOR/9ZO53yP7Fj29hgV0FFFABRRRQAUUUUAFeS+JtG8Xn4qN4hsvDMOsWdrbpFYia7jjVGwCXALZyGLDke/YV61RQByHhzWfGt9qoh17wtBptlsY+el6kp3dhtDE81a+IX/JPPEH/AF4y/wDoNdLXNfEL/knniD/rxl/9BoAb8Ov+SdaB/wBeSfyrgptb1yx+Jura3feDdb1EW4NlprW9u3lxxAkM4OOS3XI7Eiu9+HX/ACTrQP8AryT+VdPQB498ENXnnl16xbS7uKOS8lujcsv7tG+QeUT/AH+c49BXsNcz4M8I/wDCIW2pQ/bvtf229e7z5Xl7NwA2/eOenXj6V01ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFHWtWtdB0a71W9Yrb2sZkfHU46Ae5OAPrXmEnxQ8XWel2/iW+8K28fhud1wyz5mCMcBuvft8ozx0zWz8bZ3h+Gd4inAmnhRvcbw381FYF14o8caJ4Ytdau/D+kv4ZWOIfYiS06Q8BGY5xn7vY49BQB6/bzx3VtFcQtuilQOjeqkZBrzH4PWltd+H9fS5t4pl/tuf5ZEDD7qetek6dd2+oaZaXtr/AMe1xCksXGPkYAjj6EV578Fv+QFr/wD2G5//AEFKALPiVfhZpl39k1y10SC6IBKJbDeM9N2wZH40xfhP8Pdbso7ywsh5Ey7kmtbtyrD2yxH6VyWiT+HNB8X+NI/HUEC3VxctLA95Bv8ANhJc/u+D2K9Pb046z4J2F7Y/D5ftkckaT3Uk1sknURELj8CQx/HPegCH/hTGn2nOk+JNf09u3l3IwPyAP60f8ID44sfm074jXchHRby33/qzN/KvTKKAPM/sfxgsPmXU9A1MDtJGUJ/JVH60f8JT8ULHm+8EWd0g6mzugM/huY/pXplFAHmf/C19StOdW8A69aqOrRxmQfmVUVHc/GLwVqtlcadqQ1KzjnjaOQT2xBAIx/CWwfevUKxfFSajJoU0ekafBe38nyRC4K+XET/G27qB6AHJx2zQB4R4Z+NGreHLtrDUpv7c0yNykdwcrNsB4YE8nI5w3PuK9q8P/EHwv4mCLp+qwi4bH+jTny5c+m09fwzXl2mfs+3k8hm1zXYkZjudLSMuTnr8zYx/3ya6q3+A/g+HHmNqU+P+elwB/wCgqKAPTqKzNE0Cy8P2n2axa68ocBZ7qSYL9A7EL+GK06ACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmviF/yTzxB/wBeMv8A6DXS1zXxC/5J54g/68Zf/QaAG/Dr/knWgf8AXkn8q6euY+HX/JOtA/68k/lXT0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHIfE/QbnxF4A1Gys4zJdKFmiQdWKMCQPcjOPfFefa58R9O8R/DiLw1plvdT+ILyKK0azELZRgV3HPQj5TjHPrjmvcKjW3hSZplhjWVuGcKAx+poAo+HtNbR/Del6Y5DPaWkULEdCyqASPxFcN8Fv+QFr/wD2G5//AEFK9LrzT4Lf8gLX/wDsNz/+gpQBj/DPQtJ8aWmvaz4ktItR1Oa/eGQXHzGFAqkBR/D1IBHpgdK1fgvPKNL13TknefTrHUnisnZt2E9AfTof+BGr2rfCbSr/AFe71Gw1XVdJe9JN3FZT7EmznORjvk+o9q6rw54c03wro0Wl6XEyW6EsS5yzserMe5NAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXNfEL/AJJ54g/68Zf/AEGulrmviF/yTzxB/wBeMv8A6DQA34df8k60D/ryT+VdPXMfDr/knWgf9eSfyrp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK80+C3/IC1//ALDc/wD6Clel15p8Fv8AkBa//wBhuf8A9BSgD0uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmviF/yTzxB/14y/+g10tc18Qv8AknniD/rxl/8AQaAG/Dr/AJJ1oH/Xkn8q6euY+HX/ACTrQP8AryT+VdPQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmnwW/5AWv8A/Ybn/wDQUr0uvNPgt/yAtf8A+w3P/wCgpQB6XRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXxC/5J54g/68Zf8A0GulrmviF/yTzxB/14y/+g0AN+HX/JOtA/68k/lXT1zHw6/5J1oH/Xkn8q6egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNPgt/yAtf/AOw3P/6Clel15p8Fv+QFr/8A2G5//QUoA9LooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5r4hf8AJPPEH/XjL/6DXS14F8VNZ17whrmp6ZFOZtD123Z1hmywiduH2HqDu+bHT5ulAHq3w6/5J1oH/Xkn8q6evn/4Wazrvi7XNK0mWcw6Hodusjww5USsvCbz1J3fNjp8vTvX0BQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmnwW/wCQFr//AGG5/wD0FKh+LOo654Sn07xVodyyoG+y3kD/ADRSDlkLL/30MjB5HNeUeEPE/iPULlfCmjT/AGJNX1Fp55of9aqsBuw3YBVJ4596APqiio4II7a3igiXbHEgRBnoAMCpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMvjnoqaj4DOoBMz6dMsit32MQjD9VP8AwGvTayfFGmf2z4V1XTQu5rm1kjQf7RU7f1xQBw3wK0VNP8CHUSmJtRnZy3fYhKKPzDH8a9PrH8KaZ/YvhLSdOK7Xt7WNHH+3tG79c1sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBieL9FTxD4R1TS3TcZ7dvLHpIOUP/AH0BXjH7Puipca1qmsypk2kSwxEjoz5LEe4C4/4FX0FXI/D/AMMf8Ixp+rQmPYLnVLiaPjny921P0XP40AddRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z
|
<image>In the figure, line $l$ is parallel to line $m$. Line $n$ intersects both $l$ and $m$. Which of the following lists includes all of the angles that are supplementary to $ ∠1 $?
|
angles 2,3, 6, and 7
|
Geometry
|
Geometry3K
|
test
|
65
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEMAhkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKxvEmlXWpacX026e01ODL20ynHPdW9VOOQeOh7VxOg/FmNJm0/xRbNZ3UTFHnjQldw4IZeoP0z+FbQoSnHmhrboYTxEac+Wel9n0PT6KqafqlhqsHn6feQXMfdonDY+vp+NW6yaa0ZsmmroKKKKQwooooAKKKKACiiigAooooAK4l/ip4ZbxLFoNnJc315JKIg1pFvjDf72RkDuRkVznxY17UbnX9F8EaZO1v/arL9rkjPzeWz7Quew4Yn1AHbOfSNN0HSdIggi0/Tra3WBdsZSIBgMY69cnue9AGjRXPeK9M1G5shf6HcPb6tagtFtPyzL3jYHgg9s9D6ZNct4d+LlhdYttfhNhcr8plRSYyfcdVP5j3raNCU480NTCWIjCfLPTs+h6VRVezv7PUbcT2V1Dcwno8Thh+YqxWLVtGbJpq6CiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYXibxZp3ha2ha78ya6uW8u1s4F3Szv0wo/Ec+/0rzzUPi54n0fWrWx1LwSYWvGC20Buv3kmSAACFIzkjtSaHIfF3x81S/l+e10KJoLcHkK4Oz+ZkP4Cq19IPE/7R1nbg77bR4gTjoCil8/99uB+FAHs8TO8KNKnlyFQWQNnae4z3rx/4xeGxDcQeILaPCy4hucD+L+Fj9Rx+A9a9jqhrWlQa3o13ptyP3dxGVzj7p7MPcHB/CtsPV9lUUjDE0fbU3Hr0PC/BOi2n9u28WsX+oaTPcRrLZPCfLEwbkYk7Z/+tnPFe/wxeTAkW932ADc7ZY+5Pc1h6n4Q07V/Ddvo91GCLaFY4JgPmjKqACPy5HevP9O+IGs+F7qTR9Zg+2Lav5ZYtiQAdPm/iGORnk561rXq+3d0dGV5TVqRkqVm106/5HsFFc9o3jbQtc2pb3ixTt/ywn+Rs+g7H8Ca6GuVprcurRqUpctSLT8wooopGYUUUUAFFFFABRRVbUL2PTtNur6b/VW0LzP9FBJ/lQB4PdPr3iT47andeHYLeSfTswJLdH91b7V8sufU7ixA557cVd0G48WaH8cLPQ9U8Q3GprOjNMDI3llTEzcIeFwRxj+ta3wNhSPw7rniO9mjWS8u2M0jsAFVBuJJ7cu35Uz4cWs3iv4ja747mRhZBmt7BmXG4cKCPoigH3Y+hoA9hrw34t+GxputR6xbRhba+z5m0cLKOv8A30OfqDXuVZPiTQbfxJoc+m3B2iTBR8ZKMOQf89ia6MNW9lUUunU5sVQ9tTcVv0PH/AGhWg102up6jqOl6nhXgiibyhMhGRh++fT/AOvj3VF2Iq5JwMZJyTXP+KPCdl4j00RMixXcAzazrw0bDoM+nt/WuD0j4nanpEh0/XbU3JgYxvIDtlUg4OezH8vrVV6nt3zL7jsy3Kas6cvZWbX3/wCR67RWHo3i7RNdCrZ3qCY/8sJfkf8AI9fwzW5XK1YdSlOlLlqKz8wooooMwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwnw14G8eW/i3xAtvdHR9PvbhxPekKzyJvJBiHUEhjzxjPXIqHwT8NPF9p4l1O4iu5tEsZGktzdSBXuZYt+fk9Cdo+fj2zXvlFAEFnbCysoLVZZZRDGsYkmcu74GMsx6k9zU9FFABXmPxW8O74otet0+ZMRXOB2/hb+n4ivTqhvLSG/s5rS4QPDMhR1PcEU4uzudeCxUsLXjVXz9D5hr0D4d6h4nvNTS1s7x20+LBn+0DeiL6DPIJ7AEViL4K1KXxdLoMSndG+WmI+UR9nP4Y49eK7FE1L4XXjMRJqHhq4cGRwo8y2c4GTjt09j7Hr0qPP7q3PpM8zWhRoKNlJy+aSfX/I9OoqvZXttqVnFeWc6TW8q7kkQ5BFWK5WraM+PTTV0FFFFAwooooAKy/EmjnxB4dvdJF01qLuPy2lVdxCkjcMZHUZH41qUUAeU6Z8BtAsrwyXWo393a5B+zFhGr47OV5P4Yr1C0tLewtIrW0gjgt4l2xxRqFVR6ACpqKACiiigAryP4q+Hfs17Hrlun7q4IjnwOjgcH8QP0969cqlq2mQaxpVzp9yP3c6FSf7p7Ee4OD+FVF2dzty/FvC11U6bP0PmgHByK9N+G1/4n1C82fbGk0qHiU3A3/RUPXP44H5Z5fSPBWo6n4lm0h1MQtXxczY4RfUepPauztLzUPhnfCx1IPd+Gp5D5F2q/NbsT0YD/ACeo7iujl57qO59Bn+aUKNJU7KTl13UU+vz6HplFRwTw3UEc8EqSwyKGR0OQwPcGpK5T5IKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaI0EjSBFDsAGbHJAzgZ/E/nVHXNS0zSdGubzWZY49PVQsxkQupDELggA5ySB0rQrxT4y+HNd/sK91e78TyXGmx3CtDpotgioGbAywPzYz1IoB67m/cWF/8P7htZ0FXvfDk+JLmyySYQf41z2x3/P1HfaRrFjrunR3+nziWB/zU9wR2Ip+mAHSLMEZBgT/0EVw+r+G9R8I6lJ4g8Jpugbm90sfdde5Qf0HTtxxXSpKtpLSXfv6/5nI4yoO8NY9u3p/keh0VkeHfEmn+J9NW8sJORxLE334m9CP6961655RcXZ7nTGSkuaOxR1nV7PQdHutUv5PLtbZN7kDJ9AB7k4A9zXnsPxkVPs15qXhbVLDRblwsWoyDKHPQkYHHfgnvjNdp4u8NReLvDk+jT3MltHMyMZIwCflYNjB+lcN8Wb+1j8K2vgfT4zdatfGGKC3jGWREYEMfTO3H59hSKPVFZXUMrBlIyCDkEUtVNLtXsdIsrOR97wQJEzf3iqgE/pVugAooooAKKKKACiiigBqxoju6oqs5yxAwWOMc+vArl9c8a+DILibRNY1ay3v+7mgfLAezEAhT9SMV1Lbih2kBscE+teSr4Z8L+BvA2oWviu40q61W6SaZpZADNMTnbs3fN1xyOhyaL2B67l3GofDacXVmZNS8JXDBiqtua13dwe49+h74PJ9F0/ULTVbGK9sZ0nt5RlHXv/gfauQ+FNjdwfDHTbXVIWBdZMRTLz5bOxAIPYg9PQ1n6hpGpfD6+l1jw/G9zosh3XmnZJ8v1dPb+XfI6dN1X0ekvz/4JyWlh9VrD8v+AekUVnaJrlh4g02O/wBOmEkTcEHhkburDsa0a52mnZnVGSkrrYK46P4hWVx8SP8AhD7a2MrpGxluhINqOFLFNuOcDHOeuR2q7448Snwx4dkuLdPN1G4YW1jABkyTNwvHfHX8Md6820Hw2PC/xj8N2Uj+beSaTJPeTE5Ms7GUsc9/T6AUhnttFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUVzcJa2s1xKcRxIzsfYDJoA5LxJ44ex1pPDegWP8AafiGVN/kltsUC4zukbtxg478dMjOV8N/F/inX9Z1nTvEWnxxfYnKiaGIqiyBsNHnJB9Rjt61h/A+OXV77xL4rvBuuby58oP/AHf43A9uU/IV7GAB0GKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACisnV/E2jaDganqEVuxGQhyzH8ACa4/UfjHodsrLY2t3eSD7pIEaH8Tz+lawoVJ/DExniKVP4pHo1FeBXXxH1jxBqUNtd6kNH013Ala1Vtyp35GWJxxxxXpVv8SPBdrbRW8OqFYolCIPs0xwAMD+GtamEqQS0u/Iyp42lUb1svM7OiuQ/wCFn+D/APoLH/wGl/8AiaP+Fn+D/wDoLH/wGl/+JrL2FX+V/ca/WKP8y+9HX0VyH/Cz/B//AEFj/wCA0v8A8TR/ws/wf/0Fj/4DS/8AxNHsKv8AK/uD6xR/mX3o6+vPfjZ/yTG+/wCu0P8A6GK0/wDhZ/g//oLH/wABpf8A4msbxR4q8BeLdCl0i/1u4jt5WVmaCCQOCpyMExkdvSj2FX+V/cH1ij/MvvR32mf8gmz/AOuCf+girVcZB8SvBtvbxQpq7FY0CDNtLnAGP7lSf8LP8H/9BY/+A0v/AMTR7Cr/ACv7g+sUf5l96KniLwjeWOpHxJ4TYQakvNxaj/V3Q78ep9O/Xg8nZ8K+LbPxPaNsU299Dxc2knDxnofqM9/zqj/ws/wf/wBBY/8AgNL/APE1x3irXfCd9drrmg679h12DlZFtpQs/wDst8nXtn8Dx06I06lRclSLv0dn+Pkc0qlOk+enJW6q6+9ef5neePPEj+E/Bt/q0Kq1xGqpCrdN7EKCfpnP4VwfgO/8F6Gja3q/ieyvfEd8u+5uZZMmPI5RfTHQ/TsOK1bD4leFte0NYPFEMCSgjzLea1M8TkdGUbW/I8j360n9tfCT/oH6N/4J/wD7XWDw9VO3KzojiaMlfmX3npFvcQ3dtFc28iyQyoJI3U5DKRkEexFSVxsPxJ8FW8EcEGpLFDGoRI0tJVVVAwAAE4AHan/8LP8AB/8A0Fj/AOA0v/xNL2FX+V/cP6xR/mX3o6+iuQ/4Wf4P/wCgsf8AwGl/+Jo/4Wf4P/6Cx/8AAaX/AOJo9hV/lf3B9Yo/zL70dfRXIf8ACz/B/wD0Fj/4DS//ABNH/Cz/AAf/ANBY/wDgNL/8TR7Cr/K/uD6xR/mX3o6+iuQ/4Wf4P/6Cx/8AAaX/AOJo/wCFn+D/APoLH/wGl/8AiaPYVf5X9wfWKP8AMvvR1N3cC0sp7koziGNpCq9WwM4FcVFY+Fviv4Xt9avtPwGSSNHeTbJb4Yg8qcdt3PrVz/hZ/g//AKCx/wDAaX/4mvN7jSvhw1xciw8X61p1hdMWnsbUSrE2ewBTp9c0ewq/yv7g+sUf5l96O0+C2oXt/wCAFF5O8/2e6kghkc5JjAUjk+hJA9hXodcDo3jfwD4f0i30vTdQ8m1gXai/Z5ieuSSdvJJJNX/+Fn+D/wDoLH/wGl/+Jo9hV/lf3B9Yo/zL70ZuteGNQ8NalJ4i8Ip15vNNH3Jl7lR6+w/D0PT+GvFGn+KNOF1ZPtkXAmgY/PE3ofb0Pesr/hZ/g/8A6Cx/8Bpf/ia4nxHr/hmPU/8AhIvC2tC11deZYfs8ojuh3B+XGT+R9jzXQqU6q5Zxd+js/wAf8zllVp0XzU5Jrqrr71/kdj408C3firVtL1G01+XS5tPD+Vsg8z5mx8wywwcCvPJ/DGu2vxn0XT7jxbdXN41iZlvWgAZYwZMx43dDg85/i6V3elfFjw5dafHLqFw1ldYxJCYncA+oKg8frUj+PvAMmox6i91btfRp5aXLWMhkVeflDbMgcnj3NYPD1U7cr+46ViaLV+ZfedxRXIf8LP8AB/8A0Fj/AOA0v/xNH/Cz/B//AEFj/wCA0v8A8TS9hV/lf3D+sUf5l96OvorkP+Fn+D/+gsf/AAGl/wDiaP8AhZ/g/wD6Cx/8Bpf/AImj2FX+V/cH1ij/ADL70dfRXIf8LP8AB/8A0Fj/AOA0v/xNH/Cz/B//AEFj/wCA0v8A8TR7Cr/K/uD6xR/mX3o6+qd/qtjpaxNf3Udusr7EaQ4BbGcZ6Dp3rnP+Fn+D/wDoLH/wGl/+Jrj/AIh+L9C8RaTa22lXvnyxz+Yy+U6YXaRn5gO5FHsKi3i7eh14FUcTiI0ede92aPXY5Y5o1kidXRhkMpyD+NOr5q03WtT0eTfp97NbnOSEb5T9R0P413Gk/Fu+h2x6rZx3K95YTsf6kdD+lJ030PaxHD+Ip60mpL7n/XzPWLm5is7WW5ncJDEhd2IztUDJNR2Wo2WpQ+dZXUNxH/eicNj646VxGsfETw3qPhm/gS7ljuLi2kjSKSB87ipABIBUc+9eQ211cWcwmtZ5YJV6PG5Uj8RQqba1IwWTSxEJqbcZRezR9PUV4lpPxR1yw2peeVfxD/noNr4/3h/UGu2sPin4euYd1209lIByrxFwfoVB/UCk6cjnxOT4uhduN13Wv/BO3qtqFoNQ026smYqtxC8RYdgwIz+tcz/ws/wf/wBBY/8AgNL/APE1x3jXxtpsz2+q+F9fli1GMiOWFYpFWZOxIZdpIPr2PsK1p4apKVmmvkzwqmKpwjdNP5oo+EfA3xN8KfatO03UNLtbKaTe00h80A4xuVduc4A4PoK9K8N+FZNFuJL/AFDWb7VtUmTy5J7h8Iq5ztSMcKMgVwWi/GeaNRHreniUD/ltanDfip4P5iuy074m+FtQKr9va2kbolxEy/qMr+tE8LWhvEKeMoz2lb1OvopsciTRrJG6ujDKspyCKdXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZIo5ozHKiuh6qwyD+Fc7qXgLwxqisJtIt4nP8duPKIPr8uAfxrpKKqM5R+F2IlTjP4lc8luvhRe6PqUOpeH7uK78lw4tbxQCw7rnoc9OQK9It9K06a3jkk0i1hd1BaNoUJQ45Bxxx7VpUVpUrzqJcz2M6eGp02+VblL+xtL/wCgbZ/9+F/wo/sbS/8AoG2f/fhf8Ku0VnzS7mvJHsUv7G0v/oG2f/fhf8KP7G0v/oG2f/fhf8Ku0Uc0u4ckexS/sbS/+gbZ/wDfhf8ACj+xtL/6Btn/AN+F/wAKu0Uc0u4ckexS/sbS/wDoG2f/AH4X/Cj+xtL/AOgbZ/8Afhf8Ku0Uc0u4ckexROj6UBk6dZgf9cF/wrz64+J/w8t75rcWfmwo/ltdxWCtCp+vU/gDXoerWkl/o19ZxPskuLeSJX/ullIB/Wvny18X6VpPwq1DwPd2x/trzJIMKVaJnaTIcyBsfL0/4CKOaXcOSPY9c8ReCdJ8T6ZBeaV5FreBRLa3UCgK4IyN2Oqn17foaPhfWLKa9Ph/xHpFlZ65FwCYECXI7MvGM+w4Pb0HTeDtMm0fwbpGn3EivNBaorsrblzjkA9wOgNM8UeFLHxRYiKfMN1Fzb3SD54m/qPb+R5raFa65JvTv2OepQtL2lNa9uj/AOD5mj/Y2l/9A2z/AO/C/wCFH9jaX/0DbP8A78L/AIVx/h/xXf6Rqa+G/F2I7vpa3xP7u5Xtk+vv36HB697UVIzg7NmlOVOorpf8AxdXtdP0zSbm9i0GK9eFNy29vbK0knsox1rg5fHccELyy/C7WY40Us7tp4AUDkknbwK9Wrzv4iXs+s6vpHgSxlZH1NvOv3Q4KWqnJGe27B/LHeo5pdzTkj2N3wrcaP4q8OWusw6JBbR3G7bHLAm4AMVzwO+M1tf2Npf/AEDbP/vwv+FT2trBY2kNpbRLFBCgjjjUcKoGABU1HNLuHJHsUv7G0v8A6Btn/wB+F/wo/sbS/wDoG2f/AH4X/CrtFHNLuHJHsUv7G0v/AKBtn/34X/Cj+xtL/wCgbZ/9+F/wq7RRzS7hyR7FL+xtL/6Btn/34X/Cj+xtL/6Btn/34X/CrtFHNLuHJHsZd5ZaHYWc13d2dhDbwoXkkeFQFUdSeK4ew+JXw+1DVIbFbMQiZ/LiuZrFVic5wMHqOfUD3p/xwu3t/h8LdX2LeXsUDtnovzP/AOyCsTUfF3gXXdN03w7qmj6vaaGrotjeyQ+VESoKghs5xg9cd+cUc0u4ckex1/ivwBa6oEv9GSGx1aD5o2VAI5cfwuMY/HHsciovCms6Vq8z6Tquj2djrtvxLbvAoEmP4k4/HH48jmu5AwAK5vxZ4PtvEkKTxSG01W35tryPhlI5AOOSM/iO3fO8KvMuSo/R9v8AgHPUo8svaU1r1Xf/AIJsf2Npf/QNs/8Avwv+FH9jaX/0DbP/AL8L/hXLeGfGFyNQ/wCEd8Txi11mPiOQ8JdDsVPTJ/X68V21ZzU4OzZpTdOorxRzviSTRfDXh681i40m2litUDFEhQFskAAZHqa4608bxXZgMfwx1fyZtpWUaeCu0/xZ29Mc1rfGM3D/AA2vre2glmkuJYY9saFjgOG6D/drG/4WD4m8LHTn8TeFY9P0KdkgjminDvAMcbwD1wM4wOh7jFRzS7mnJHsek/2Npf8A0DbP/vwv+FH9jaX/ANA2z/78L/hV0HIyOlFHNLuHJHsUv7G0v/oG2f8A34X/AArgvipp9pb6JYm1s4Yna62/uogpPynjgV6VTWRGZWZVJU5UkdPpQptM6cHVjhq8a3Lex4JpPgDxDq21lszbQn/lpcnYPy+8fyru9J+E2mW219Tupbx+8afu0/xP5ivQqKbqNno4jPMXW0i+VeX+ZzGu6Bo9h4S1X7LplpEUs5SrLCu4EIec9c14zpPhfWtaINjp8rxn/lqw2p/30eK+jHRXQo6hlYYIIyCKUDAwOlCm0icFm1TCQkoq8pO93/X6nluk/CL7smr6h9YrYf8Asx/wrttP8H+H9MjCQaXbsf78qeYx/Fs/pW5RSc2zmxOY4nE6VJadtkUv7G0v/oG2f/fhf8K43xr4TvvEElvpmkWVlZWY/eXF2yqpY9kAUZOOp7Hjniu/oqoVZQlzI82pRhUjys4DRfhJoGnqHvzLqM3fzDsQfRQf5k12Njo2maYMWGn2tt7xRKpP1IHNXqKJ1qk/iYU6FOn8MbBRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBg+Nnuo/A2uPZFhcLYylCv3h8pzj3xnFefaGvhf8A4UDK0i2RQWUvnlgu/wC0fNjPffuxj8McV68QCCCMg9Qa4iX4Q+CJtRN62jAEtuMSTOsZP+6DgD2HHtQBN8KPtP8AwrHQ/tZYyeU+3d12eY2z8Nu3HtiuypkUUcEKRRRrHEihURBgKBwAB2FPoAytf8Paf4k01rLUItynlJF4eNvVT2Ncdpev6l4J1CLQfFMhl09ztstU7Y7K/wDnI9xyPRqp6ppVlrOny2N/As1vIOVPY+oPY+9bU6iS5J6x/L0MKlJt88HaX5+TLasGUMpBUjIIPBFeX+BH/t34q+M9dkO4WjLp9v6BQSDj/v2D/wACNTW19qfw1vUsdTaW98NSttt7vGXts/wt7e34juK7zSrPSbeBrjSbWzhiuj5rPaxqolJ/iJUcn3pVKThqtU9mVSqqej0a3RfooorI1CiiigAooooAKKKKAPM/jrZyXXw8WVELLa3sU0mOy4ZP5uKh+LeqaNefCpVtZYJvtjwf2ekZBJIYH5QPRdw9s4r026toL21ltbmJJYJkKSRuMhlIwQa5HSvhX4P0bVU1K00r/SI23xebK8ixn1AJxn0znFAHT6RDNb6NYw3BJmjt40kJ/vBQD+tXKKKAMPxP4WsPFOn/AGe7UpMnMFwg+eJvUeo9R/XBrnND8UX/AIf1JPDni5sSHi01En5J17Bj6+5/H1Pf1m67oNh4i0x7HUId8bcqw4aNuzKexranUVuSeq/L0OepSd/aU9Jfn6mN8QvE9/4Q8MjV7CzjutlwiTrIDhIzkFuCO+0fjXEfFTxZovijwnZaLoV7DqN/qN1F5UMB3Mg9WH8JzgYPPPtWxZ6pe+CrlfD/AIqxeaHPmO1v3TcoX+5ID2x2PT3HTsNK8K+G9LuBfaVo+nwTONyzwwqDgj+E9gR6VNSm4eaezLpVVUXZrdGrbRGC1ihLbjGgXPrgYqWiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhu7S3vrWW1uoUmglXa8bjIYV51JFqfwxvDNbrNf+FpXzJFnL2hJ6j2/Q9Dg8n0umyRpLG0ciK6MCrKwyCD1BFa06vJo9U+hjVpc+qdmtmV9P1G01WxivbGdJ7eUZR1/zwfarVeb6ho+pfD++l1nw9G9zosh3XmnZJ8sd3T2/l3yOnb6Jrlh4h02O/wBOmEkTcMDwyN3Vh2NOpSsuaOsf63FSq3fJPSX9ao0aKKKxNwooooAKKKKACiiigAooooAKKKKAKuo6bZ6tYS2V9As1vKMMjfzHofevPobjU/hleLbXjS33heV8RT4y9oT2Pt7dD1GDkH0uori3hu7eS3uIklhkUq6OMhgexFa06vL7stUzGrS5nzRdpLr/AJ+QW11Be20dzbSpLBKu5JEOQwqWvNJ7TU/hnePeaest94YlfdPbZy9qT3X29+/Q9jXoGmanZ6xYRX1hOs1vIMqy/wAiOx9qKlLlXNHVMKVXmfLJWkun+XkW6KKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArz/W/DGoeG9Sk8ReEU5PN5poHyTL3Kj19h+HofQKK0p1HB6GdWkqi136PsYvhnxRp/ijTvtNk+2RMCaBz88Teh9vQ9/zrariPEvhC6i1H/hI/C7i21dMmWEcR3Q7gjpk/r7HmtPwp4vtfEsDxMhtdTg4ubOThkI4JGeoz+XernTTXPT2/L+u5nTqyT9nU3/P+ux0lFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAjKroUdQysMEEZBFedanoWpeBtQl1zwxGZ9Mc7r3TMnAHdk/zx7jgejUVpTqOD7p7oyq0lUXZrZmZoOv6f4j0xL7T5d6Hh0PDRt/dYdjWnXA694Vv9E1J/EnhEBLjrd6eB8lwvfA9fb8uevQ+F/FVh4psDNbExXEfE9s5+eJv6j0P8jxVTpq3PDb8vUinVfN7OppL8/T/I3aKKKxOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAZNNFbwvNPIkUUalnd2AVQOpJPQVyWhfEvw/wCJPEbaLpJu7mVVZzOsOItq9TknOM4GcdSK5H4m3txr3j/w74IimdbK4ZJ76OM48xdxOD9FRj+IPYV6paaZYWGPsdlbW+FCfuolT5R24HSgC1RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZXPxB8T6xqmpReDPDsGoWGmyGKa5nl2+a46hBkZ/Xt6imWsNv8AEfRYfFeg7tK8RWrmOTn/AJaKBlHOOeCMHHQ4I7DE+G/i7SPAunaz4f8AEty1jf2t9JKQ8bHzQQoyMDk/L+IIIrR+CV215P4tm8p4Ul1HzViYYKFixwR2I4H4VcJyg7xIqU41I8sjrfCnjIavM+k6tD9h123+WW3fgSY/iT+ePxGRXW1zXizwfa+JYUnjc2mqW/NteR8MpHIBx1GfxHb3zvDPi+5XUP8AhHfE8YtdYj4jlPCXQ7EHpk/r9eK1lCM1z0/mv8vIxjUlTfJV+T7+vn+Z21cV46+I+leEtMu1hvLWfWYwFist247jg/OAcqMHPOK7WvOvi1oGjnwJrmq/2VZf2jsjP2vyF83O9F+9jPTj6VznSdbZ65H/AMIfba9qDJDGbFLucqDhQUDNgdfpXnLfFHxbHpaeJ5fCkK+GGkADib9+ELbQ3X1/2ce/Oa0fFkrxfs9hkJBOl2i8eh8sH9Ca0r+CP/hRUkW0bF8Pgge4gBH6igDtLK8g1Cwt721fzLe4iWWJ8Y3KwyD+RqeuS+GLtJ8NdBZySRbbefQMQP0FdbQAUUUUAFISACScAdSaWkIBBBGQeoNAHnms/FTTo/FGg6LoNzZ6i19dpFdSIS6xIzAfKwOC3J9eldtqus6ZodqLrVL63s4CdoeZwoY4JwM9TgHgV5h470HSNG8beAm0vS7OyMuqASG2gWPdho8ZwOepr1HUtJ03WIFg1Owtr2JG3qlxEsihsYyAR1wTQByvgPx2fGupa+sUUQsLGZEtZFVg0iNu+Zsn/ZyOB1pfE/g+4e+HiHw1ILTWouWUcJcjuGHTJ9+D39Rh/Cu2gs/GHj62toY4YItQRI441Cqqgy4AA6CvUauFSUHdGdSnGorSOZ8J+MbfxHHJazxGz1e34uLOTggjglc9R+o79iemrlPFng1dakTU9Nm+w65b8w3Kcb8fwv6jtn+Y4qLwp4ybUbl9E1uH7DrsHDxNws2P4k/nj05GR00lTU1z0/mu3/AMoVJQl7Or8n3/AOCdhXnfjv4q6d4bt1t9IurK/wBVNwIng3F1iAJDbtpGCMYxnOa9EryH406Bo9j4Whv7TSrKC8l1KPzLiKBVkfcHJywGTk8msDpPQfGHii28H+G7nWLmMy+XhY4lODI5OAM9vXPoDXDN8R/F2hfYNQ8V+Gbe00W8kVBNBLmSHcMgsMntzjA6HvxXfeJPDOm+K9NTT9USR4ElWYCN9p3AED+Zrzz4l6l/wmup2vgHQlFzc/aFmv7heUtlXqCfUZ5/AdTgAHrdFNRQiKi9FGBTqACiiigAooooAKKKKACiiigAooooAK8vu9d1b4geLNS8NaDqD6XpOmjbe6hAMyyvnGxD/CMhuR12nntXoOuXx0vQNS1AdbW1lnH/AAFS39K8b+FXiPRfCHw71LWdUvIxc3F6+I92ZZSqLtUDqeSeegzzQBU+F2hMnxi1cSXst+ujpLEtzLncz7vL7k9i/ftXv1eG/BTV9K02x1PUNT1GFNQ1XUEgjhzulkI5yFGTgtIecY45r3KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimyMUjZlRnIGQq4yfbnigB1FcHr/jHxTp24Wvg64KjpK0nnDHusecfnXl2veP8AxPqzPBc3b2kfRoLdTEPof4j9Ca66WDnU1urf12OKrjqdPSzv6W/M+gV1Wwk1E6dHdxPeBS7Qo25lA7sB06jrVyvEfh5qup6NpM82meFJtSaeTEl0lxjp0TG04xnP4/Suy/4TXxV/0Id3/wCBP/2FKphZRlaP5r/MdLFxlG8vyf8Akd5RXB/8Jr4q/wChDu//AAJ/+wo/4TXxV/0Id3/4E/8A2FR9XqeX3r/M0+tU/P7n/kd5RXB/8Jr4q/6EO7/8Cf8A7Cj/AITXxV/0Id3/AOBP/wBhR9XqeX3r/MPrVPz+5/5HeUVwf/Ca+Kv+hDu//An/AOwo/wCE18Vf9CHd/wDgT/8AYUfV6nl96/zD61T8/uf+Rz03xF0az1vV7Xx1o1pFqWnykWLLZGRp4+dpVmzgngg5A5rc+Eel31v4fv8AWNTgaC71m+kvCjDBCHpkH33H6EUSeLPEczo8vw9ndk5VmnBK/T5OKl/4TXxV/wBCHd/+BP8A9hR9XqeX3r/MPrVPz+5/5HeVieJvC2n+KdP+z3alJk5guEHzxN6j1HqO/wCRrnv+E18Vf9CHd/8AgT/9hR/wmvir/oQ7v/wJ/wDsKcaNWLvG1/Vf5kyr0Zrlldr0f+RHofii/wDD2pJ4c8XNiQ8Wmok/JOvYMfX3P4+pufFr/kl+uf8AXOP/ANGJWLrmsa34i017DUPh7dSRNyrC5w0bdmU7ODWPpfjTxP4J06Oz1vRLie2J220lxIYyg/ul8EH2zjH06bTw7qLmjZS7XX4GMMSqT5ZNuPez09TrrrRpdf8AgtDpkC7p5tHh8pem51jVlH4kCuDu/iTZXXwtj8LQ290fEclqumNZ+SwIYAISTjuAeOuTiu2Txx4okjV08C3LIwBVlusgj1HyUz/hLPEfn+f/AMK9n87GPM88bsfXZWH1ep5fev8AM6PrVPz+5/5HUeE9JfQvCWlaXLjzba2RJcHI34y2PbOa2a4P/hNfFX/Qh3f/AIE//YUf8Jr4q/6EO7/8Cf8A7Cj6vU8vvX+YfWqfn9z/AMjvKK4P/hNfFX/Qh3f/AIE//YUf8Jr4q/6EO7/8Cf8A7Cj6vU8vvX+YfWqfn9z/AMjvKK4P/hNfFX/Qh3f/AIE//YUf8Jr4q/6EO7/8Cf8A7Cj6vU8vvX+YfWqfn9z/AMjO+Jv/ACOnw+/7Cn/s0Vem1wf/AAmvir/oQ7v/AMCf/sKP+E18Vf8AQh3f/gT/APYUfV6nl96/zD61T8/uf+RnfDP/AJHn4hf9hJf/AEKWvTa4P/hNfFX/AEId3/4E/wD2FH/Ca+Kv+hDu/wDwJ/8AsKPq9Ty+9f5h9ap+f3P/ACO8rnfFXhGz8TWyMWNtqEHNtdx8PGRyAfUZ/wDrVi/8Jr4q/wChDu//AAJ/+wo/4TXxV/0Id3/4E/8A2FVGjVg+aNr+q/zJnXozjyyvb0f+Q/w54vu7XUh4b8VqLfVFwIbg8R3Q7EHpk/r04PFZfxz/AORGtP8AsJQ/+gvVfxJf614n042l98P7vcvMUy3PzxN6g7PzHeqdh8QPEvhWzt9O1/RJZ5W4gmnl8pmX0LEEMRxz+dazwzqe9BJPtdfgYwxSpvlm210dn+J1Hxb8R3fhrwJPcWEhiurmVbaOVeqbgSSPfap57ZrkfB/j74ceDdIFnZXF0874a5untW3zv6k+nXA7fXJPVf8ACa+KiMjwHdf+BP8A9hS/8Jr4q/6EO7/8Cf8A7CsPq9Ty+9f5nR9ap+f3P/I7mGZLiCOaM5SRQ6nGMgjIp9cH/wAJr4q/6EO7/wDAn/7Cj/hNfFX/AEId3/4E/wD2FH1ep5fev8w+tU/P7n/kd5RXB/8ACa+Kv+hDu/8AwJ/+wo/4TXxV/wBCHd/+BP8A9hR9XqeX3r/MPrVPz+5/5HeVxy/EjRotXu9Ov1mtHt53h8wrvRtrEZ45HT0/Gqn/AAmvir/oQ7v/AMCf/sK8l1mea61y/uLi3NvNLcSPJCxyY2LElSe+DxR7Fr4vzR7mSYehj5zhO+i81+aPo6zv7PUYRNZXUNxH/eicMP0qxXzDa3lzYzCa0uJYJR0eJyp/MV3Xh74ieJzKLf7GdXx/CsZ8zH1UfqQah030O3FcP1KacqUk156f8D8jvfEHjax8NavBZX0ExSWISCWPB28kYI/CtTS/EOka0oOn38MzddgbDj6qef0rxjx5quoatq1vNqOkSaZIsAVY5H3Fl3E7ug9cfhXLKzIwZWKsDkEHBFV7LTU3w+SUcThYVE2pP5r+vRn1HRXg2i+PvEmnOkMdy16hOBDcKZCfYH73613ieNvFDRqy+Brt8jk+cU/QpUqlJuyPHzDLauBjz1GmvL/Lf7rnX61bW17oWoWt4zLaz20kczKMkIVIJHXnBNcF4U+FnhGz0e6exuhqU91C8IvyyuYgylTsA4U8+5/lV/8A4TXxV/0Id3/4E/8A2FeQajf32j+JruawiuNGm8zcbaObJizztyAMjnoR04rppYOU7puz+TPArY6NOzSuvRr8z23wd8OdB8Fx77OEz3zDD3k4BkPsvZR7D8Sa66vFtA+JfjG52xLpI1YDgtHAwc/Ur8o/KvUND1bVNSTdqGgz6bkZBedHB/Ihh+VY1cNOl8VvvNqOKhV+G/3GzRRRWB0hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZureH9J12Ly9TsIbgYwGZcMv0Ycj8DWlRTTad0KUVJWaOY8N+DYvCt/cPpt7MbC4GXtZhu2uOjK30yMEc8c8V09FFOc5Td5bkwhGC5Y7BRRRUlhRRRQAUUUUAFFFFAGbrGv6T4ft1n1bUbezjbOwyuAXx1CjqT9K574e+NpfG0GrXRhjitra8MNttBDNHjKlsk/Nj0rpdS0XS9ZSNNU020vVjJKC5hWQKT1xkcV578G4o4F8VwwoscUesSKiKMBQOAAPSgDQ8Q+OtZ/4SuTwx4S0iHUdRt4hNdSXEm2OIHGB1GTyO/f64m8K+Io/H+navouv6THb31hL5F7bbty5JOGU9uVPQnGAQea4Tw7f+KZfiB43h8MWdlJdvfsJrq+J2RRo7qigDnJ5/75ru/AHiu61rUNX0nWtMtrDXrBwLkW4wsynOGHU/qeoI6002ndCaTVmZ0U+p/DK8W3u2lv8AwtK+Ip8Ze0J7H2/Q9Rg5B9GtbqC9tY7m2lSaCVdySIchhRcW8N3byW9xEksMilXRxkMD2Irzm4s9T+Gl497pyy33hiV909rnL2pP8S+3v+B7GujSv5S/P/gnLrh/OH5f8D8j0uub8V+NtF8J2Nw97fwLerCZIbQtmSQ87flHOCRjPStnTNUs9Y0+K+sJ1mt5BlWXt7Edj7VheNtA0e/8Pavf3mlWVxeRafN5c8sCs6YRiMMRkYPNc7TTszqTTV0T+B9eufE/g3T9Zu4oop7lXLpECFGHZeMknoK4zSviB458Q28t7ong+0urFZniSVr1U3bT6MQfStf4YtMnwe017dC8y285jUdS3mPgfnXF+HdN+J/hfwKs1mmnWttYrJK1hPHummG4sxPHX0AI4H5oZ7Ho0+oXWkW02q2a2d865mt0kDhDnoGHB4xV6sPwf4jj8V+FbHWUj8o3CnfHnOx1JVh9Mg49q3KACiiigAooooAxPEPi7Q/C1u0mq6hDDJ5ZkSAsDJIP9lep549Ko/D3xPdeL/CMGr3kMMM0kkiFIQdoCtgdSTV/xBoGj6tazXGo6VZXc0UDBJJ4FdlGCeCRxzXJ/BR1T4YWruwVVmmJYnAA3GgDY+IvjaPwP4c+2Ikct9M4jtYZM4Y9WJxzgD9SB3q1ZwW3jnwNp8usWsbfbrWOdlTI8t2XOUJyRjP/AOuvNddVvGWi+KvGlwpOn21rJZaMjDgqDiSb6scge2R2FemeAv8Akn3h7/sHw/8AoApptO6E0pKzOYsdV1L4d3sWk6673WgyNttNQwSYfRH9vb8sjgejRSxzRJLE6vG4DK6nIYHoQaiv7C11Oyls72BJ7eUbXRxwf8D7152ral8MLvY5mv8AwrK/DdZLQk/y/Q+x69FlW20l+f8AwTlvLD6PWH5f8A9MrgfH3xP0zwppk8dhd2d3rSyCNbTdvCHPzb9p4wM8ZBziu3s7y21Cziu7SZJreVdySIcgivM/jNoGjweBdQ1OHSrKO/aeItdJAokJLjOWxnmuZq251p31R2+teJYNA8IS6/eoWSKBZDGn8TNgBR9SQK4RviV4s0e2s9a8R+F4LfQLplAkt5t0sQYZUsM+nbA/A16AdJsNb8M29hqVslzayQxF4nzg4AI6e4FeVfFPW9Qumi8Oajo8+k+GxeIkmrbWlV0XpgAAD6ZJ4oA9rVldAykFWGQR3FeP3nw61vWvEup3JWK1tZbuV0klbJZS5wQo5/PFeuW3lC1i8ghodg8sqcgrjjH4VLVRk1sdmDx1XCOTpWuzhtJ+FuiWO171pb+Uf3zsT/vkf1Jrs7WztrGEQ2lvFBEOiRIFH5CpqKTbe5nXxdfEO9WTf9djzjx/4U1fxH4itGsIFMKWwV5pHCqp3N+J/AGk0n4SWcW2TVr17hu8UA2L+Z5P6V6RRT53ax1LNsTCjGjTfKl23+//ACM/TND0vR49mn2MNvxgsq/Mfqx5P4mtCiipPPnOU3zSd2RziVreRYHVJipCMy7grY4JHf6VyGlfDPQrK4a7v1k1S9di7y3XKlick7On55rs6KuNSUU1F2uYzpQm05K9hscaQxrHGioijCqowAPYU6iioNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzL4Qf6zxd/2Gpa9NooA8dtNas/hn8SvEw15ZoNP1p1u7a7WMupILEr8oJ6uR+A7HNaXw3E3iDxp4m8ai3kgsL4pb2ZkXaZVQAFsf8AX8SR2r0yaCG4TZNEki5ztdQRn8akAAAAGAOgoAKRlV1KsoZWGCCMgilooA851TQtS8D6hLrnhiMzaa53XumZ4A7sn+ePccDbvNf0/xJ8PNYvtPl3obCcOh4aNvLb5WHY11dcDr/hW/0XUn8SeEQEuet1YAfJcL3wPX2/Lnr0qSrLlnpLv/AJ/5nK4SoPmhrHqu3p/kM+G/2z/hS1j/AGcVF99luPs5YAgSb5Nuc++K5u3+MNsngi6stbW4/wCEpVJbdrX7MV3yHIU8DAHIyODweDXpHhfxVYeKbAzWxMVzHxPbOfnib+o9D/I8Vsm3gM4nMMZmAwJNo3AfWsJRcXaW50QnGceaL0OU+GGh3Ph/4f6bZXsbR3RDTSRsMFC7FgD7gEZ966+iipKCiiigAooooAr6h/yDbr/ri/8AI15z8I7GLU/g+NPnLrDdG5hcocMFYlTg+vNenUUAeMeL/hPo+geCNTvLPVdab7LAXSGS6UxnnoVCjiu1+FukQ6T8P9MMM1xL9siS7fzn3bGZFyq8cLxwPrXZUUAFMmhiuYHhnjSSKRSro4yGB6gin0UAea3Wnal8N72TUtHSS88OytuurInLW/8AtL7e/wCB9ah+Kur2WufCC6vtPnWaCSWHkdVO8ZBHYj0r08gMCCAQeCDXnmreHdR8HajJr/hRDJaOd17pY+6w7lB/hyO2RxXSmq2ktJd+/r/mcji6GsVePbt6eXkXfGsmuwfDVbnw7LLHfwRQyYhXc7IANwAwexz+FcZ4y+JWi+NPBDaFo0N1dazqRiRbMQNmJgyscnGD909Ca9U8PeI9P8Taat7YS5HSSJvvxt6MP85rSS3hjleVIY1kf7zqoBb6mueUXF2Z1RkpK8dirotk+m6Dp1hIwZ7a1jhZgc5KqAf5VeoopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOL8UeD7iS+HiHw3ILTW4uWUcJcjurdsn34Pf1F3wn4xt/ESSWtxEbPV7fi4tJOCCOpXPJH6jv2J6euF8faTpD7NVGrW+ka3bjdBcGQKZMfwsOpHbIB/EcV0wkqiVOfyf8AXQ5akHSbqQ+a7/8AB/M7IXtudQNh5q/ahEJvL77CSM/mKsV89Q/EG+k8aafr12FBhiW2nWPo8eTuIH45x6ivoKKWOeFJYnDxuoZWU5BB5BFKvh5UbX6jw2JjXvboPooornOkKKKKACiiigAooooAKKKKACiiigDg/EPhK903Um8SeEiIb8c3FmP9Xcjvx6+3fqMHrueFvFll4os2aIGC9h4uLST78bdD9Rnv/Kugrzrx7YaZYXQ1+w1i20rXoBuxvANwPRlHJPvjnofUdMH7a0Jb9H/n5fkclSPsL1IbdV+q8/zO9jvbeW9ns0lBuIFVpE7qGzt/PBqxXgWiePpx8Q11u9CxQ3ipBdIpO1V2qu4Z9CN35ivfetTXoOi0n1Kw2IVdNro/+GCiiisDpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKytY8NaNryY1LT4Z2xgSEbXH0Yc/rWrRTjJxd0xSipK0lc8l1z4MoUebQ79gw5Fvdcg+wcdPxH41o/DvW9Q0yf8A4RLxBDLb3UQJs2l/jUdUB6HHUEdsjsK9Jqte6faajGiXcCS+WweMkfMjDoynqD7iul4mU4clTVficqwkYT56Wj7dGWaKKK5TrCiiigAooooAKKKKACiiigAooooAKxdZ8JaFr4J1DToZJT/y2UbJP++hyfxraopxk4u8XYmUYyVpK54/r3wakjR5tCvjKRyLa5wGP0ccfmB9a6L4d+Irt428Na5HLBqtmv7sTDDSxD+ZHr3GDzzXfVWutPtLySGWeBHlgbfFJ0ZD7HqPf1710SxMqkOSpr59TmjhY0589LTuuhZooormOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>In the figure, $m∠3 = 43$. Find the measure of $\angle 11$.
|
43
|
Geometry
|
Geometry3K
|
test
|
66
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGBAkgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorF8U+JrHwjoj6rqCTvArqmyBQXJY8YBIH61wv/C/PCv8A0D9Z/wC/MX/xygD1SivN9P8Ajf4QvrhYpTfWW44D3MI2j6lGbAr0aORJY1kjdXjcBlZTkMD0INADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5jx74tTwb4Xm1ILHJdMRFbRP0eQ+uOcAAk/T3oA6eivMvhl8RtW8YavqGn6va2dvLbwiVFgjdG+9hs7mPqvpXptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHj3x/v2XRtH0tCS1xctMUXqdi7R+r/wCcV6No3hrTtN0OwsXsLV3t7eOJmMSksQoBOcc815D8UF1DxF8XNK0XSTGLy2gTyjJyok+aQk8HjaF7HpW9/ZXxp/6GDTf+/cX/AMaoGWfjNoehQ+BJ742VrBfxyxrbSRxhGYlgCuR1G3cce1dH8LTcH4aaJ9qz5nktjP8Ac3ts/wDHdteNeJrTxDp/iXTpviW15f6U0hAa1mUR++ABge4wpI6Gvo60+z/YoPsgQW3lr5QQYXZjjHtjFAE1FFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvEb9/wDhaHxehsE/eaDomTIRyshBG7/vpgF/3VzXbfFTxb/wivhGUW8mzUL7MFtjqvHzP+AP5kV5j8N/iN4W8E+H3triz1OXULiQyXEsUUZU44VQS4JAHPTqTQM3tKxon7SF/bjCR38TBccA7o1k/wDQkNe0V846l430vXvi/wCH9e0yK6hhV4YJhcqqnO8gkbWPG1h+VfR1AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwzwheW2q/HfXtXubiNIbbzlikkcKCQViXGf9kGvZW1rSlUs2p2YUDJJnXA/WvO5PgN4YlkaSTUdZZ3JZiZouSf+2dIvwE8KhgTfawwB6GaPB/8h0DMD4veKrDxUum+F/D8i6ldG7ErPb/Mu7ayqqsODncSccDA5r2PRLBtL0DTtPd97WtrFAW9Sqhc/pWV4a8B+HfCjmXS7ALckYNxKxeTHoCen4YrpKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISFBJIAHJJ7UtMlijnieKVFkjdSro4yGB4II7igDw2xYfFP4wtdsN+h6QMoDyrqrfL/323zf7oxXt32G0/wCfWD/v2Kh07R9M0hZF03TrOyWQguLaBYw2OmdoGau0AeL/AB6sY7Wy0LUraNIpIZ5E3IoGSQrDP02H869hsrpb2wt7tPuTxLIv0YA/1pmoaZp+rQLBqNjbXkKtvEdxEsihsEZwwIzgnn3qeGGK3gjggjSKGNQiRooVVUDAAA6ACgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFMkmihx5sqJnpuYDNU5Nc0iEEy6pYxgHBLXCDH60AcxF8VvCv9tXmk3l49jc2tw9uxuUwjMrFSQwyAOO+K7C2u7e9t1ntLiKeFvuyROGU/Qjivj/AMXyxz+NdelikWSN9RuGR0OQwMjEEHuKpabq2o6Pcefpt9cWkv8AegkKE/XHWgdj7Tor5w0P45+JNO2x6nDb6nEOpYeVJj/eUY/NTXoenfHPwpdw7rxbyxlA5R4t4z7Fc5/ECgVj0yivNpPjj4PQAq1/Jnstv0/Miqkvx88LpuEdhqzkdD5UYB/8fz+lAHqlFeQSftA6MG/d6LfsMdWdF/qarf8AC/xKD9m8Kzykdf8AS+n5IaAPaKK8YPxo8QznFr4IuCWGUG+R/wCSDNA+KHxBn2m28CTbTxk2k7DP14oA9norxf8A4Tb4t3AIj8IwRYOc/Y5B/wChPS/2z8abk/u9Gt4t44+SJdvH+0/H40Aez0V4vt+OMwB3QW+OMf6Kc/zpf+Ef+M1xkSa9BEOufNRc/wDfKUAez0V4x/wgfxXuDmbxlFGGGGCXkwI/AIB+RpP+FV+PZ1H2nx1OWB4H2qd8fmRQB7RSEhQSSABySa8Z/wCFI6zPuFz42uCp5P7l3yffMgoX9n+B2VrnxLcSt/ERbAE/m5oA9dk1Owhx5t9bJnpulUZ/Wqcvijw9CGMuu6ZGFOG33cYx9ea84j/Z/wBEAPmaxqDHttVF/oauR/AXwohy15q0nHRpowP0QUAdhJ478JRNhvEmlE4z8t0jfyNU5Pid4LiALeILU5/uhm/kKxovgh4NjC7ob2XHXfcHn64Aq3H8HfAyAhtHeT3a7m4/JhQA+X4v+Bo93/E73kdltZjn6HZiqknxr8Fo2Fu7qQY6rbN/XFakXwu8FRHK6BbnjHzO7fzarcXw/wDCEIXb4c004ORvgDfz60AcnJ8ePCaAFbbVZPZYE/q4qrL8f/D43eTpOpv/AHd4jXP5McV6FH4S8Nw58rw9pKZ67bKMZ/SuM+Ld7pvhrwRNDaWVpDd35+yxGOFVKoR85GB/d4/4EKBnQeBvHdn45tLue1tJ7Y2rqjrKQQcgkYI+hrq6434X+Hf+Ec8C2UMibbq6H2qf13OBgH6KFH1BrsqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJpY7eGSaVwkcal3Y9AAMk0AcZ4y+J+jeC9QisLqC5ubqSPzCkAX5FJwMkkdcGuQk/aD08AeVoF0x77p1X+hqp8NrY+OPiRrPjC9i320DFbdZBkBmG1B6Hag/Mg17bHDFDnyo0TPXaoGaBnjZ+O17MStr4NncnlT9pY8fQR/1oHxe8XXBU2vga4ZW4HySvk+2FFez1yOu/EbRdD1V9M8m/wBQvYwGmisIPNMIPduQB/OgRwv/AAsX4nzA+T4HKEdfMsbj+rClPir4w3JxH4at4twyP9H24/76f+dep6B4h0zxNpaajpVwJoCSrZGGRh1VgehrUoA8Y+2/G64wyafBEOn/AC7j9GbNH2H43XAKvqMEQHP/AC7jP4qtez0UAeMf8In8YLk/vPE9vFvHP+kFdvH+yn8qT/hXPxOmAM3jgoR2jvp8Y/BRXtFFAHjH/CoPFs+Rc+OZyp5+/K+T+LCj/hRF5Od134xnk3DDj7MTn2yZP6V7PRQB43H+z5pwX95r10zZ6rAq/wBTVyP4A+HAT5mp6qw7bXjX/wBkNesUUAfGPiDT4tJ8Sapp0DO0NpeSwRtIQWKo5UE4AGcD0pulaJqmt3P2fS7C4u5e4hjLbfcnoB7mvpGL4QeG316+1jUlm1Ce7upLjypG2xJuYtjC8nGe5wfSu4s7K00+2W2sraG2gX7scKBFH4DigdzwPw/8BtWu9suu3sVhGeTDD+9k+hP3R+Zr03S/hL4N0uJV/soXcg6y3bmQt9Rwv5Cu2ooEYEfgbwnFnb4b0k5/vWaN/MVci8OaHCcxaLp0ZxjK2qDj8q06KAK8VhZwBRFaQR7TkbIwMGrFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeHeJD/wALB+Nlloi/vNN0k4nH8J2ndJn6ttT8K9Z8Va5H4b8L6hq8mCbeElFPRnPCD8WIFeffA3QpItGvvEd2C1zqUpVHbqUUnJ/F8/8AfIoA9ZooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK86+M/iL+xfBD2UT7bnU2+zrjqI+rn8sL/wACr0WvDtW/4uF8crfTgDJpmjnEo6qfLOXz9Xwn0FAHovw38Of8Ix4IsbORNt1Mv2i4453vzg+4GF/CusorhPipq+v+HvDtvrGh3fkrb3Ci6jMSOHjbgZ3Akc4HGPvUAd3Xk+i+ItO+HfiDxJZeJxNayX2oSXtve+SzrcRt0XKg8jnjsWNanizx3cy2ej6b4SdJNa1pUlhOA/kREZLsDkeo5HZvSu5srSaPTbeC/uPttxGo8yd41Xe/dtoAA9sCgDifhpBNcX3iTxAtpLZ6dqt2slnBIu0lVBBkx23E5/CvQaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimTSx28Mk0rhI41Lux6AAZJoA8d+NWpT6tqmieDNPO6e5lWWQD1Y7UB9vvE/ga9Z0nTbfRtItNNtVxBaxLEnuAMZPueteO/DOGTxn8S9Y8ZXSN5FuxFsG7Mw2qP8AgMY59yDXt1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBheMdfTwx4T1DVSQJIYiIQe8h4QfmR+Ga4f4G6A1p4cuteuQTc6nKdrN18tSRn8W3fkKzPjJfT694i0PwVYNmSWVZZscgMx2pn6Dcx9iK9f06wg0vTbWwtV2wW0SxRj/AGVGBQBZrlPiPqem6b4E1P8AtMb47iFoIogfmkkYHaB9Dzntiurrzs+GtZ8UfEVdW8Q2f2bRdK/5B1q0iP5z5/1jBScdAcHHRR60Ac18CbO0SbWmvI5Brlq6wMs33ooum0A8j5lIP0Wvaa86HhjWdI+Mh17TLPzNH1GDZfMsqL5bY67ScnlVbIH8Rr0WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK86+M/iP+xfBD2UT4udTb7OuDyI+rn8sL/wACr0WvDtW/4uF8crfTgDJpmjnEo6qfLOXz9Xwn0FAHovw38Of8Iz4IsbSRNl1Kv2i4BHO9+cH6DC/hXWUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXNxFZ2s1zO4jhhRpJHPRVAyT+VS15p8bPER0jwaNNhfFzqb+VgdfKHL/AJ/Kv/AjQBzvwqtpfFvj7WvGt4jbY3ZLcN/CzDAA/wB2PA/4EK9trmPh/wCHf+EX8F6fp7ptuSnnXHGD5jckH6cL/wABrp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMPxjr6eGfCeo6sSBJDERCD/FIeEH5kfhmuG+BugNaeHLrXrkE3OpynazdfLUkZ/Ft35Csz4yX0+veItD8FWDZkllWWbHIDMdqZ+g3MfYivX9OsINL021sLVdsFtEsUY/2VGBQBZooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8On/wCLh/HVYR+80vRTz3UiM8+x3SHHuBXqHjjxCvhfwfqGphgJ1j2W4PeVuF+uCc/QGuQ+CHh86d4Um1idT9p1OTcC3XylyB+Z3H34oA9QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK5uIrO1muZ3EcMKNJI56KoGSfyqWvNPjZ4iOkeDRpsL4udTfysDr5Q5f8/lX/gRoA534VW0vi3x9rXjW8RtsbsluG/hZhgAf7seB/wIV7bXMfD/AMO/8Iv4L0/T3TbclPOuOMHzG5IP04X/AIDXT0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl3DYWNxeXLhILeNpZGPZVGSfyFAHjnxdvJvE3jDQ/BNi/JkWSfHO1m4BI/2U3N9Gr2OztIbCxt7O2QJBbxrFGo7KowB+Qrxz4RWc3ibxhrnja+TkyNHBnnazckA/7KbV+jV7VQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4dOf+Fh/HVIR+80vRT83dSIzz7HdIQPcCvUPHHiFfC/g/UNTDATrHstwe8rcL9cE5+gNch8EPD507wpNrE6n7Tqcm4FuvlLkD8zuPvxQB6hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5f8b/ELab4Ui0e3Y/adTk2EL18pcFvzO0e+TXqFeHQf8XD+OrTH95peinjupEZ49jukOfcCgD0/wN4eHhfwfp+mFQJ1j33B9ZW5b64Jx9AK6KiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiioLy7hsLG4vLlwkFvG0sjHsqjJP5CgDxz4u3c/iXxhofgmxfkyLJORztZuAT/upub6NXsdnaQ2Fjb2dsgSC3jWKNR2VRgD8hXjfwis5vE3jDW/G18nJkaODPO1m6gf7qbV+jV7XQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcz8QPEQ8L+C9Q1BX23BTybfnnzG4BH05b/gNc18E/Dv9k+DTqUyYudTfzckc+UuQn5/M3/AhXO/FW5l8W+PtE8FWbnajh7gqfuswySR/sxgt/wACNe0W1vFZ2sNtAgjhhRY40HRVAwB+VAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeX/G/wAQtpvhSLR7dj9p1OTYQvXylwW/M7R75NeoV4dB/wAXD+OrS48zS9FPHOVIjPHsd0hz7gUAen+BvDw8L+D9P0wqBOse+4PrK3LfXBOPoBXRUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVtRv4NL026v7ptsFtE0sh/2VGTVmvKvjjr72fhy10G2LG51OUblXr5akcfixUe+DQBmfBuxn17xFrnjW/XMksrRQ55AZjufH0G1R7E17RWF4O0BPDHhPT9KAHmQxAzEd5G5c/mTj2xW7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzPxA8RDwv4L1DUFfbcFPJt+efMbgEfTlv+A1zXwT8O/2T4NOpTJi51N/NyRz5S5Cfn8zf8CFc78VbmXxb4+0TwVZudqOHuCp+6zDJJH+zGC3/AAI17RbW8Vnaw20CCOGFFjjQdFUDAH5UAS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeHaV/wAXC+OU+ok+ZpejHMR6giM4TH1fL/QV6L8SPEf/AAjHgi+vI323Uy/Z7fnne/GR7gZb8Kxvgx4d/sXwQl7Km251NvtDZ6iPog/LLf8AAqAPRaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrajfwaXpt1f3TbYLaJpZD/ALKjJqzXlXxx197Pw5a6DbFjc6nKNyr18tSOPxYqPfBoAzPg3Yz694i1zxrfrmSWVooc8gMx3Pj6Dao9ia9orC8HaAnhjwnp+lADzIYgZiO8jcufzJx7YrdoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKp6tqUGj6Rd6ldNiC1iaV/cAZwPc9KAPHfiZNJ4z+JejeDbWQ+RAwNyV7Mw3Mf+Axjj3JFe1wxR28McMSBI41CIo6AAYArx34K6bPq2qa34z1Abp7mVooyfVjucj2+6B+Ir2WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArw7Sv+LhfHKfUSfM0vRjmI9QRGcJj6vl/oK9F+JHiP/hGfBF/eRvtupl+z2+OvmPkZH0GW/Csb4MeHf7F8EJeyptudTb7Q2RyI+iD8st/wKgD0WiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryb45a7JFo1j4ctCWudSlDOi9SikYH4vj/AL5Nes14d4c/4uD8bLzW2PmabpJzAex2krHj6tuf8KAPWfCuhR+GvC+n6THjNvEBIw/ic8sfxYmtiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqeq6lBo+kXepXJxBawtK/uAM4HuelAHjvxMmk8Z/EvRvBtrIfIgYG5K9mYbmP/AAGMce5Ir2uGKO3hjhiQJHGoRFHQADAFeO/BXTZ9W1TW/GeoDdPcytFGT6sdzke33QPxFey0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG/FDxF/wjfgW9mjfbdXQ+yweu5wckfRdx+oFUfg94d/sLwNBcSpi61E/aX9QhHyD/AL55/wCBGuP+IUjeOPitpPhGBi1pZkfaSvYkB5Dn2QAD3JFe3IixxrGihUUAKoGAAO1ADqKKKACiiigAorkdd+I2i6Hqr6Z5N/qF7GA00VhB5phB7tyAP51taB4h0zxNpaajpVwJoCSrZGGRh1VgehoA1KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8m+OWuyRaNY+HLQlrnUpQzovUopGB+L4/75Nes14d4c/4uD8bLzW2PmabpJzAex2krHj6tuf8ACgD1nwroUfhrwvp+kR4Jt4gJGH8Uh5c/ixNbFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVDW9Vg0PRL3VLk/urWFpSM43YHAHuTgfjV+vIvjjrMr2WmeFrIF7rUZlkeNepUHCL+L/wDoNAEXwR0qe+n1jxhfjdc3szRRuR1yd0hHsTtH/ATXqWu6xbeH9DvNWuyfItYy7AdWPZR7k4H41H4b0WLw74csNJhxttoQjMP4m6s34sSfxrifjldG3+HnlBsfaLyKIj1wGf8A9koAzLW/+Kuv6QfElhc6dZ2jqZbfTTEGaWPtyVJyR0+YZ9q7fwH4rHjHwrBqjRLFOGaKeNfuh19PYgg/jXLSfFK20i2WHTfDmq6hpFiggfUYIiIfkAX5TjBHHUkV13h3WdCvvC76toMUMVlh5GjjiEe11HIZR0bgfhj2oA4XT/G3xF8Q3GoyaBo2jT2NrdyWyvNuVjtPGcyDJwRnHrXZeErvxncy3Q8V6dp1pGqr5BtGJLHndn529vSvMPh141vdE8Hm30vwtqWszG4knu5YVKxoT2yFbLbQDjHevU/BvjbTfGlhLNZrJBcW7bbi2l+/GT0PuDg8+xoGcZoviLTvh34g8SWXicTWsl9qEl7b3vks63EbdFyoPI547FjWv8NIJri+8SeIFtJbPTtVu1ks4JF2kqoIMmO24nP4V37xpIAHRWAOQGGeadQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA434oeIv+Eb8C3s0b7bq6H2WD13ODkj6LuP1Aqj8HvDv9heBoLiVMXWon7S/qEI+Qf988/wDAjXH/ABCkbxx8VtJ8IwMWtLMj7SV7EgPIc+yAAe5Ir25EWONY0UKigBVAwAB2oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAEgAknAFeHeD1/wCE++Mmo+JJBv0/TTm3z04+WL+TP9a7r4r+Iv8AhHvAl2Yn23V7/osOOo3A7j+C7ufXFM+Evhz/AIR/wLatKm26v/8ASpcjkBh8g/BccepNAHdV5h8d4Gl8AQOvSG/jdvpsdf5sK9PrI8T6Bb+J/Dt5o9yxRLhMLIBkowOVb8CBQBPo1rbW/h+wtYI1+zJbRoq44K7RXl3wnltdOTxvDdNGmi2t2f8AWcoF/eBs+21Vqe1g+LOkaUvh+1s9NuIYk8mHUzKNyIOAcFgSQMY+U++a6rwn4CtfD/gu40K5k+0SXyv9tmXjeXXacZ5wBwPz70Ab2gPo0ujwy6AloumuWMX2SMJGTuIbAAA6g15t4aUWv7Qnia3swBbPaeZKq9NxETE/Xcx/M0zSdH+JfgW2l0bRbPTtX00SMbaWWQI0QJzyCy9zkjnnODXS/D3wZfeH5NR1jXbhLjW9TfdMyHKxrnO0e+Tz24AHTkA7miiigAooooAKKKKACiiigAooooAKzLvxHo1hqsemXmpW1teyRiVIppAhZSSBgng8qeOvFadfOnx8/wCR6sf+wZH/AOjZaAPosEEAg5Bor490Txn4i8OlRperXMMY/wCWJbfH/wB8NkfpXpWh/H66j2x67pMcy95rNtjf98NkE/iKB2PeKK5DRvif4Q1qMGLWIbaTHMV4fJYe2W4P4E1qyeL/AAzCcSeItJQ4zhr2MHH/AH1QI2qK5mT4h+D4gC3iLTzn+7KG/lVSX4q+CId27X4Tt67IpG/LCnNAHY0Vwcnxk8DoQF1aST3W1l/qoqnJ8cfByLlWv5Dnotv/AIkUAekUV5ZL8e/CybhHY6tIR0PlRgH/AMfz+lVJP2gNGBHl6NfsO+5kX+poA9eorxf/AIX+soP2bwtPKw6j7VjA/BDS/wDC6dfuD/ongi4O4fIN8j9vZBmgLHs9FeMf8LR+IM4DW3gScr0JNpOwz+AFH/Cb/Fq4ysfhCCPHOTaSA/8Ajz4oA9norxga38aLk/u9Ft4tw4GyNcf99Px+NJj44zAHMEGO3+iHP86APaKK8YOg/Ga5LCTXbeIHnPmIv5bU4oHgX4sXBDTeMYoweCFvJQR+ATFAHs9UNb1WDQ9EvdUuT+6tYWlIzjdgcAe5OB+NeTf8Ks8fTj/SfHU5x90fap3/AJkUj/BDWLwMl940mkjflw0LybjnPIMlAE/wR0qe+n1jxhfjdc3szRRuR1yd0hHsTtH/AAE17FWdoOi2vh3Q7TSbIHyLaPYC3Vj1LH3JJP41o0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHh/jYt49+MGm+GIiWsNOP+kY6dmlP5BU+te3qoVQqgBQMADtXjV38Dr641u8v4vFTQ/apXdmFud+GOSCQ4zzTf8AhQAlA+0+Kp5SOn+idPzc0DPYJb+zgDGW7gj2nB3yAYNVJfEehwnEutadGcZw10g4/OvM4/2ftGDfvNav2GOioi/0NW4vgH4XXaZL/VnI6/vYwD/45/WgR2snjjwnEAW8S6Sc/wB28jb+RqpL8SvBkIYt4hszt67CW/LAOawI/gd4PQEMt/Jnu1x0/ICrkfwb8Do2W0qSQY6NdS/0YUAWJPi34GiOG11ScZ+W2mb+SVSk+NXgpACt7cyey2z/ANQK0IvhT4IiChdAiO05G+aRvzy3NXI/h34Pizt8O6ec/wB6IN/OgDmJfjr4Rj3bYtTlx02QLz9MsKqSfH7w4CPL0zVWHfcka/8As5rvovB3hiEgx+HdJUgYyLKPP54q3HoekQgCLS7GMA5AW3QY/SgDyqT9oPTgv7vQbpmz0adV/oaZ/wAL3u5zttPB08m4ZQ/aic++BH/WvZI4Yoc+VEiZ67VAzT6APGP+FweLZ8G28Dzlen3JXyfwUUn/AAsb4nTAiHwOUI7yWM+Mfiwr2iigDxj/AISz4wXJ/d+GLeLeOP8ARyu3j/af+dJ9v+N1wA0enQRAHB4txn/vpq9oooA8YNl8brjcr6hbwr1/5dx+GVXNA8K/GG5OZPEtvFuGD/pG3H/fKfyr2eigDxf/AIV18T5gPO8cFCOnl31x/RRXmvxE8Par4b8Qw2msas+qXMlsswnd2YhS7jbliT1Un8a+sq8x8f8AwvvPHHjC2vxfw2ljFZpC7FS8hYO7HC8DGGHOfwoGfN1b2g+DPEPiZh/ZWlzzRE4M5GyIf8DOB+HWvojw/wDCXwnoOyQ2X2+5Xnzrw7+fZfuj8s+9dwqqihVAVQMAAYAFAXPEdC+AAKiTxBq7Akcw2IHH/A2H/sv410MXwJ8JRhd02pyYPO+defrhBXp1FAjz2P4K+Ckzus7mTP8AeuX4/LFXI/hH4GiII0JSQMfNczH9C+K7aigDlI/hp4MiAC+HrQ4OfmDN/M1cj8DeE4s7fDeknP8AetEb+YrfooAy4vDWgwFTFommxlRgbLVBgflVuPT7KEARWdugByAsSj+lWaKACiiigAooooAKKKKACiiigAooooAr3t9a6bZy3l7cR29tEu55JGwFFeX3/wAc9PN29voWh3uq7f48+WG9wNrHH1ArG8e3l78QPiRa+CrGZo9PtHzcsvTcBl2P+6PlHuT616/omg6Z4d05LHS7SO3hUDO0fM59WPVj7mgDz/RvjfpF3frZa1p1zo8rHbvkbein/aOAR+X5V6irK6hlYMrDIIOQRXG/ErwfB4q8LXXl2iyapbxmS0dQN5Yc7M9wRkY9SKd8MItZtfBNtZa7bTW91aO0KLL1MYwVP0AOP+A0AdjRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5X8b/EV/o+j6VZ6Ze3NpdXVwz77aRkcqi4xlecEuPyqivwy8fFAT8Qb0MRyPtU/B/wC+qq+Os+Ifjn4e0YDdHaeU0ij6mVv/AB0CvbKBnhM/iHx98L9Tth4iuTq+kTPt8wv5mfUByAwbHODwcfjXuFndwX9lBeW0gkgnjWWNx0ZWGQfyNcR8ZYIpfhjqLyAbopIXjz/e8xV/kzVb+FM0k/wx0R5fvCORB9FkdR+gFAjsqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxD4HBdU8U+J9bk5mbb8x6/vXdj/6AK9vrwX4eX0PgH4l614d1VxbQ3T+XFI5wpKsTGSfRlY8+pFe8llVSxYBQMkk8AUAxaK8N+JHiiXxv4g0/wf4XmM+Jt008T/Iz4x1HVVG4k/4V7NpWnx6TpFnp0TFktoViDN1bAxk+560AXKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKp6tczWej3tzbxSTTxQO8ccaFmdgpIAA6kntQB4/4Cz4h+N/iLWzzFa+asbfiI0/8cVq9sr5w8Dah4y8DpffZ/BOp3cl4yF5JbSYEBc4HC/7RrrX8efE3VUNvpvgqSzmbjzZ4HG3PcF9q/nmgY74566sljYeFrM+be3c6yyRJyQo4QfVmPH+7XpXhfR/7A8L6bpWQWtrdUcjoXxlj+ZNcR4G+Gd1p2sv4m8U3Yvtbc70XduWJjxuJ7tjgY4HbPGPTaBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcr4w+H+ieNI1a/jeK7jXbHdQkB1Hoc8Eex/DFcOPgVKVFvJ4vvGsRwLcQEDHp9/H6V7FRQBzXhLwLofg23ZdNgLXEgxJdTENI49M9h7DFdLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==
|
<image>If AB || DC, find x.
|
115
|
Geometry
|
Geometry3K
|
test
|
67
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADqAY4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikZlRSzsFUDJJOABQAtFRW9xDdwLPbypLE33XQ5Vvoe9S0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYeueL9D8PKRqF9GswHEEfzyH/gI6fjgVUYuTtFXJlKMVeTsblVb/AFKx0q2Nxf3cNtEP4pXC59h6n2rif+Eg8YeKPl0DShpVk3S9vx85Hqq//WI96tWHw2sPtIvdfvLjWr3u1yx8sfRc9PYnHtWvsox/iP5LV/5GPtpT/hx+b0X+ZDN8QrnVpmtfCOjT6lIDg3MqmOFT+OP1K1ydrp/iDxv4wk07V9U+0WFkwa8FsSsKn/nmuMZbtn2PJxz23jLW30eyttA0GJF1W/8A3VtFEAohToXwOnfH4ntWz4X8O2/hnQ4bCHDSffmlxzJIep/oPYCtlUjThzRjZvbv6mDpyq1OWUrpb9F6GtFFHBCkUSKkaKFVVGAoHAAp9FFcR3hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVVv9SsdKtjcX93DbQj+KVwufYep9q42b4hXOrTNa+EdGn1KQHBuZVMcKn8cfqVrSFKc9UtDOdaENG9fxO7ZlRSzMFUDJJOABXIar8R9Gsp/senCXV78nCwWS7wT7t0/LNUF8D6z4gYTeLtckljzn7BZnZEPYnv+Wfeuv0rQ9L0ODydNsYbZe5Rfmb6seT+NXalDd8z8tvvM+arPZcq89/uOP+weOfFPN9dx+H7Bv+WNv807D3bt+Y+lbmh+BdB0FhLBaCe6Bybm5PmPn1GeAfoBXSV5tr/xB1201jXY9H0izuNP0BI2vnuZikj7hu+QD0APXPT8KUq0mrLReRUaEU+Z6vuz0ms7XNZtdA0e41K8bEUS5Cjq7dlHuTU+nX8WpaVaahECsVzAk6huCFZQwz+Brgkz8RfFvmHLeG9Jk+Ufw3U3r7j+n+9SpQUneWy3HVqOKtHd7f15Gh4H0a6ubifxZrS51LUBmGM/8sIewHpkY/D6mu3ooqak3OV2VTpqEeVBRRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjMqKWZgqgZJJwAKAForj9V+I+jWU/2PThLq98ThYLJd4J/3un5ZrP+w+OfFPN9dx+H9Pb/AJY2/wA07D3Pb8x9K2VCVrz0Xn/luYOvG9oe8/L/AD2Ok1zxfofh5SNQvo1mA4gj+eQ/8BHT8cCub/4SDxh4o+XQNKGlWTdL2/Hzkeqr/wDWI963ND8C6DoLCWC08+6zk3NyfMfPqM8A/QCukp89OHwq78/8hclWfxuy7L/P/I4mw+G1gbkXuv3lxrV73a4Y+WPouensTj2qx4+TWbXwVLaeFLV1vJXSFBaqFMKE/My46cDGR0zXXVT1HVbDSY4ZNQu4bZJpRDGZWxuc5wo9+DWc6kp/EzSFKEPhR5B4p8Nt8MotG1zRNZ1KW+kvY7a5iuJt63QYEnK4/wBn9fUZrofH8GqeIvGmg+FIbi8tNJuI3uL2e2yu4DOFLdP4eh7sDg4FYPxD8O6h4V1KLxz/AGrLq8NrfeZ/Z9+C6QK7cCPnjBwBxxwe1ei+KPGem+FdATU7rdI84AtbZP8AWTORkKB+PJ7fkDBocNplhJ4A+LOk6Bp2oXk+katbSM9tcyeZ5TqGO5fT7o/M12OufDnwz4i1Y6nqFi7XLhRKY5mQTBegcA84wPfgVjeCPC+rXeuy+NvFfy6tOmy0sx0tIj2x2OCeO2TnknHU+K/EcHhjRJL2QB52+S3h7ySHoPp3PtVRi5PlRMpKKcnsc94z1Ke5ntfBWg7UurpAs7IMLbQY56dMj9PqK63RtItdC0m306zTbDCuAT1Y92PuTzWD4H8OT6VaTapqhMmtaifNuXbqgPIQemO/5dhXW1pVkkvZx2X4v+tjKlFt+0lu/wAF/W4UUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWHrni/Q/DykahfRrMBxBH88h/wCAjp+OBVRi5O0VcmUoxV5OxuVVv9SsdKtjcX93DbQj+KVwoPsPU+1cT/wkPjDxR8ugaUNKsm6Xt+PmI9VX/wCsw96tWHw2sDci91+8uNave7XDHyx7Bc9PYnHtWvsox/iP5LVmPtpT/hx+b0X+ZDN8QrjVZmtfCOjT6lIDg3MqmOFT+OP1K0xfA+s+IGE3i7XJJY85+wWZ2RD2J7/ln3ru4YIbaFYYIkiiQYVEUKoHsBUlHtlH+GrefX+vQPYOX8R38tl/XqZ+laHpehweTptjDbL3KL8zfVjyfxNaFFFYttu7N0klZBRRRSGFcz478KHxj4abT47n7NdRSrcW0xzhJFzjOO2CR7Zz2rpqKAPKr3wj4+8Xx2uleKr/AEmHSIZVe4NkG8252+uRgZ/DHXBxWj428HeJtX8YaPrehT6SkemQkRRX5cgSEnLBVUjptwc9R7V6JRQBwumr8RbO/iudf1Hw5/ZMWXujAJA4QA8glQKq6BBL458TnxPexsNJsmMemQOPvsDzIR9f1wP4af4qu5/FviCPwfpkjLbRkSapcJ/Co/gz6/1x6Gu6s7SCws4bS1jWOCFAiIvQAV0fwoX+0/wX/B/I5v407fZX4v8A4H5k9FFFc50hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFVb/UrLS7Y3F/dw20I/ilcKD7D1PtXGzfEK41WZrXwjo0+pyA4NzKpjhU+5OP1K1pClOeqWhnOrCGjev4ndsyopZmCqBkknAArkNV+I+jWU/2PThLq98ThYLJd4J/3un5ZqgvgfWfEDCbxdrkkkec/YLM7Ih7E9/yz711+laHpehweTptjDbLjBKL8zfVjyfxNXalDd8z8tvvM+arPZcq89/uOP8AsPjnxVzfXcfh/T2/5Y2/zTsPc9vzH0rc0PwJoOgsJYLTz7rOTc3J8x8+ozwD9AK6SilKtJqy0XkVGhFPmer7sKKKKxNgooooAKKKKACiiigAooooAK5jxr4lbQNMSGyXzdWvW8mzhAySx43Y9sj8cVu6lqFtpOnT395II7eBC7t/Qe56CuL8G6fc+INXl8Z6vGVeUFNOgb/ljF/e+p5/MnuK2pRXxy2X4vsYVpu6pw3f4Lubvg7w0vhrR/Kkbzb+4Pm3cxOS7ntnuB/ie9dDRRWcpOTcmawgoRUY7IKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopGZUUszBVAySTgAUALRXH6r8R9Gsp/seniXVr4nCwWS7wT/AL3T8s1n/YfHPirm+uo/D+nt/wAsbf5p2Hue35j6VsqErXnovP8AyMHXje0Pefl/nsdJrni/Q/DykahfRrMBxAnzyH/gI6fjgVzf/CQ+MPFHy6BpQ0uybpe34+Yj1Vf/AKzD3rc0PwJoOgsJobT7RdZybm5PmPn1GeAfoBXSU+enD4Vd+f8AkLkqz+J2XZf5/wCRxNh8NrE3IvdfvLjWr3u1wxEY9guensTj2rsoYIbaFYYIkiiQYVI1CqB7AViS+N/DMOu/2LJrNquo7xH5JY8Mf4c9M+2c1v1nOpKfxM0hShD4UFFFFQaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFcb451+6t1t/D2jHdrOpfIm0/wCpjPVz6d+e2Ce1XCDnLlRFSahHmZl6m7/EHxYNHgY/2Bpbh7yRTxPKOiA+nUfmfSvRERI41jjUKigBVUYAA7Csvw3oFt4a0SDTrbnYN0kmOZHPVj/npitaqqzT92Oy/q5FGDjeUvie/wDl8gooorI2CiiigAoriPiD4r1TRZtI0bQIYX1jV5jHC8wykSjGWI/4EPyPWsnT/Efi7w1400vQfFs9jf22rBhb3VsmwpIv8JGBkZIHTuDnqKAPTaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorD1zxdofh5T/aF9GsoHECfPIf+Ajp9TgVUYuTtFXJlKMVeTsblVb/UrLS7Y3F/dQ20I/ilcKD7D1PtXE/8JD4w8UfL4f0kaXZN0vr/AO8R6qv/ANZh71asPhtYm5F74gvLjWr3+9cMRGPYLnp7E49q19lGP8R/Jasx9tKf8OPzei/zIZ/iFcarM1r4R0afU5AcG5lUxwqfcnH6laYvgfWfEDCbxdrkkkWc/YLI7Ih7E9/yz713cEENtCsMESRRIMKkahVA9gKko9so/wANW8+v9egewcv4jv5bL+vU888XX8Pw+0nT7DwrpVquqapcra2wZe5x8zHq3JUcnv7VRj8ReNfCHifRbHxXc6fqNhq832dZraPY0MhIAHQZGSO3TPTFeganpmlXcltf6nBA7aexnhmm4EJGCWz26D8q81+0z/FPx5p1xYRMnhnQLjzvtTqR9qmBBAX24H4ZJ6gVi227s3SSVkauteIfFWt+OL3wz4UmsrJNNhSS7vLlN+WcAhVGD2Pp2NX/AAF4q1XVr7WNB1+KBdW0iRUkmg+5MrZwwHbp+o4FbfiKPV7XTZ7nwxY6fJq8jKGNyu0Oo9SCCSO2TXDfCaZl1/xNb61FNF4qkmWW+V9uwpzt2Y7Dd+q0hlS9+GviKWfUNHh/so6Rfap/aB1Bw32qIFgSo9xjAP15GePYKKKACiiigAooooAKKKKACiiigAooooAKKKRmVFLMQFAySTwBQBm+INctfDuiz6ldn5IxhEB5kc9FH1/+vXGeHWs9Ahm8XeML+3tNS1TLRid9pji6hFHUnGOBzjA9aS0VviJ4t+3yAnw7pUm23Uji5l/vEdx/THqa7nUtF0vWUjTVNOtL1YySguYVkCk9cZHFdE/3UeTq9/8AL/M5ofvZ8/Rbf5/5HN/D7xrJ42t9WuzDHHb2960NsVBDNHgFS2T97B7V2VeY/B2KOBPFcMKLHFHrMqoijAUDgADsK9OrnOkKKKKACo57iG1gee4mjhhQZeSRgqqPUk9Kz9Q1Z4bkafYQC61Fl3eWW2pEp6PI3O0cHA5JwcDgkR2+go86XerTHUbxDuQuuIoT/wBM4+Qv+8ct70AOvrbQ5jbeIL5LY/YozLDeSHiJCMlgfQivPNKluviZ8QbLxDFA8HhvQ2cWkki4a6lPUgemQp/4CO5OJvi+up3t1oWnRaRquo6P5rT6hFp8LuZApG1CVHH8X8+1aeh+OpmubDSYPAXiHT7VnSBXeyKRQKTjJ44UUAegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVS1eTUIdJuZNKhjnvlTMMchwrN6HkfzFNK7sJuyuXGZUUszBVAySTgAVyGrfEbRrKf7Hp4l1a+JwsFku8E/wC90/LNcJqeifEXXboPrGnzXNqDn7LHdxRRn8A3/wBf3roNJbxbocHk6b4CsLZcYJS6Tc31Ytk/ia7Fh4RV3JN+qRxPE1JOyi0vRtlv7D458Vc3t1H4e09v+WNv807D3Pb8x9K29D8CaDoLCaG0+0XWcm5uT5j59RngH6AVk/298Qf+hQtv/AxP/iqP7e+IP/QoW3/gYn/xVKSqNWTSXk1/mOLpp8zTb7tP/I7uiuE/t74g/wDQoW3/AIGJ/wDFUf298Qf+hQtv/AxP/iqy9hLuvvRt9Yj2f3P/ACO7orhP7e+IP/QoW3/gYn/xVH9vfEH/AKFC2/8AAxP/AIqj2Eu6+9B9Yj2f3P8AyM/4xjVbrTdJ02x07U72xuLrfqC6fCzuYkx8vAOM5JGe6+1P0Xxy9nHZ6VZfDzxHZWissSf6EypGCcZJx75J+tXf7e+IP/QoW3/gYn/xVH9vfEH/AKFC2/8AAxP/AIqj2Eu6+9B9Yj2f3P8AyMe61fXPAnj3Wrq80rVtW0PVPLkgktFMv2dlHK7ScLyx7jOBVvwHY6pqvjbXfGeo6ZNpkV7Elta29wu2Qou3LMOo+4v5+g5u/wBvfEH/AKFC2/8AAxP/AIqj+3viD/0KFt/4GJ/8VR7CXdfeg+sR7P7n/kd3RXCf298Qf+hQtv8AwMT/AOKo/t74g/8AQoW3/gYn/wAVR7CXdfeg+sR7P7n/AJHd0Vwn9vfEH/oULb/wMT/4qj+3viD/ANChbf8AgYn/AMVR7CXdfeg+sR7P7n/kd3RXCf298Qf+hQtv/AxP/iqP7e+IP/QoW3/gYn/xVHsJd196D6xHs/uf+R3dFcJ/b3xB/wChQtv/AAMT/wCKo/t74g/9Chbf+Bif/FUewl3X3oPrEez+5/5Hd0Vwn9vfEH/oULb/AMDE/wDiqP7e+IP/AEKFt/4GJ/8AFUewl3X3oPrEez+5/wCR3dFcJ/b3xB/6FC2/8DE/+Ko/t74g/wDQoW3/AIGJ/wDFUewl3X3oPrEez+5/5Hd1wfjXU7rWNSh8GaNJi5uRuvph0gh7g+5H6ED+Ks3WvHfjHQ7ZHvvDdpbGZvLhJuBIWfHGFVsn/PrVPw1a+OdAa8uf+EXju729k8ya5mukDt7Y3cDOT+PtW1Og4e+2vLVf1oYVa6n+7in56Pb/AIJ6dpWmWujaZb6fZx7IIF2qO59Sfcnk1crhP7e+IP8A0KFt/wCBif8AxVH9vfEH/oULb/wMT/4qsXRk3dtfejZV4JWSf3P/ACKHwi+/4u/7Dc1elVwn9vfEH/oULb/wMT/4qj+3viD/ANChbf8AgYn/AMVR7CXdfeh/WI9n9z/yO7rM1fUZbQQ2lkiy6jdErAjfdUD70j/7K5GfUkDqRXEar448YaJFBLqXhqyto55fJR5LxApfazYzu44U0zTdU8etcz6q3hOCSa7Vdpe6RTFEBlUALZHUsc85J9AAvYS7r70Ht49n9zPQNL0yLS7Yxq7SzSN5k88n35nPVm/QAdAAAOAKu15VqHxK8TabqKadceHrX7a/3YIrjzXz2BCE4PtWyviD4gMoYeELfBGebtB/7NVPDTSu7feiVioNtJPTyZ3lFcJ/b3xB/wChQtv/AAMT/wCKo/t74g/9Chbf+Bif/FUvYS7r70V9Yj2f3P8AyO7orhP7e+IP/QoW3/gYn/xVH9vfEH/oULb/AMDE/wDiqPYS7r70H1iPZ/c/8ju6K4T+3viD/wBChbf+Bif/ABVH9vfEH/oULb/wMT/4qj2Eu6+9B9Yj2f3P/I7uiuE/t74g/wDQoW3/AIGJ/wDFUf298Qf+hQtv/AxP/iqPYS7r70H1iPZ/c/8AI7uiuE/t74g/9Chbf+Bif/FUf298Qf8AoULb/wADE/8AiqPYS7r70H1iPZ/c/wDI7uiuJt9c8ePcxJP4Tt44WcB3F2h2rnk43eldtWc4OG7X33NIVFPZP5qwUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFc3MNnay3NxIscMSl3duigck1LXnniW5m8Z+JF8J6fIy6fbMJNUnT2PEYPrn9f901pThzvXbqZ1anJHTd7B4atpvGfiRvFuoRsun2zGPS4H9jzIR65/X/AHRXodRW1tDZ2sVtbxrHDEoREXooHAFS0VJ87026BSp8kdd3uFFFFZmgUUVyviPxxZaLONPs4n1HV3O2Ozt+SD/tEdPp1/nVQhKbtFETnGCvJmd8UvDi+JdG0+3ub+Kw0+3uxcXdzI2CqBGGFHdiWwP8g4uky32qWC6H4DszpWiRErLqkykPIe5XuWPr16fdrWsvBmpeIbuPVPGlz5pU7odMhbEUX+9jqf8AJJ6V3kUUcESRQxpHGg2qiDAUegAra8KW2r/Bf5mNqlXf3Y/i/wDL8zC8N+D9L8NRlrdDNeP/AK27m+aRyevPYew/HNcLp9n4y8ezatqyeJLvQreC6eCxtI4sAhejPyCQcj17+wr1quQ8bab4m17TYk8J69b2K7ZFnBAPnZxtAcAlSMNyPWsZScneTN4wjBWirIb8MfE974s8HR32ohDeRTPbyugwJCuPmx7gjpxnNdjXn/wevrWfwV9ggsPsU+nXD21zFu3bpByXz75/DGOmK9AqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqeq6pa6NpdxqF5JsggXcx7n0A9yeBTSbdkJtJXZg+N/Esui2EVlpy+brF+3k2ka8kE8F/wzx7/Q1c8I+GovDOipbbhJdynzLqbqZJD159B0H/ANesHwVpd1q+ozeMtZjxc3Q22MJ6QQ9iPcj9Mn+Ku8rao1BezXz9f+AYUk5y9rL5en/BCiiisDoCquoajZ6VZvd39zHb26dXc4H0HqfYVzviHx1aaVdf2ZpsLaprDnatrByEP+2R0+nX6daztP8ABN9rd4mreM7kXUw5i0+M/uYfY46/5yTW0aVlzVHZfizCVa75aau/wXr/AJFeTXPEPjqRrfw6j6Zo+dsmpTDDyDvsH+H5jpXUeHPCWleGYCtnEXuHH725l+aSQ+57D2FbccaRRrHGioijCqowAPQCnUTq3XLFWX9bjhRs+aTu/wCtgooorE2A8jBryHQ7Xx38PYbzQtM8Nxa1p7TvJY3Qulj2Buzg/r05zyeK9eooA4/4c+F73wzoE/8AasiPqd/dPeXWw5VWbHyg98Y/MmuwoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzi7Y/ETxb9hjJPh3SpN07A8XM390HuP6Z9RWl451y6L2/hjRTnVtR+VmB/1EXdie3GfwBPpWrp1vpfgzw1BbRMWjjOweWN0lxMeCAB1YkHjtj0FdEf3Uefq9v8/8jmn+9nydFv8A5f5m6zRW8JZmSOKNckkgKoH8hWMNYvNU/wCQJaK8B/5frolYj7oo+aT6/Kp7MaSLSrjVpFutdVSgIaHTlO6KP0Mn/PR//HR2BI3HN1/x3b2F3/ZWjW7arrDfKIIeVjP+2R6en54rKEJTdom06kYK8mWdTtoLGxe98SeILnyF6rDIbWPPoojO8/Qs1cR/ZU/jyQxaRpg0/RM4e/vcyzTD/Y3k/ofx7V0WmeBrnU71NX8Y3Qv7scx2an9xD7Y7/wAvXPWu6VVRAiKFVRgADAArW8KXw6v8P+CY2nV+L3Y9ur9exy+k/Dzw1o9msFvp6mTHzXBYiRz7suMfQYFXx4bjg5sNT1Szb2ummX/vmbeB+AFbVFYNtu7OhJJWRimTxBp/MkVtqsI6mD9xMB/usSjH/gSfSren6zZak7xQyMlzGMyW0yGOVB6lDzj36HsTV+qt5BYkx3l4kANqS6TSgDyuMEhj04pDLVFVbLUrHUkZ7G9trpVOGaCVXA+uDRe6nYaaqtfX1taqxwpnlVAfpk0AWqKhNwjWjXMBE6bC6+WQd/HY15B4e+IniG7v9AvrrVNLurbWb02zaVAgE1oNxAbPXjAJz2I9eAD2WiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyfEmv23hrRJ9Ruedo2xx55kc9FH+ema1HdIo2kkYKigszMcAAdzXnemI/wAQPFh1mdT/AGBpjlLKNhxPIOrkenQ/kPWtaUE7ylsv6sY1puNox+J7f5/Iv+ENIn0uwvvFOtq8ur3iNPIoXLRxgZCKPXAHH0HauT8Gp4k0Ka48ReMJbKwsJZZZoorsM9wjSHcwjUEBSfcE4HQDNdjrvjyOC9OkeH7Y6tq7ceXFzHEfVm9vT8yKg0nwJLeXq6v4uuv7Sv8Aqlv/AMsIfYDof5fXrWko8z56ui7dTOMuVezo6vv0+fmUjfeJPiASmmiTRdAbhrpx++uF/wBkdh9OPc9K6/QPDOl+GrTyNOtwhI/eTNzJIf8AaP8ATpWsAFAAAAHAApaznVbXLHRdv8zSFFRfNJ3ff/LsFFFFZGwUUUUAFee/EXQNS8U674b0kQTvoRneXUWjbAwMbQx6/wB4fjXoVc3408X23g/SFuHhe5vLh/Js7SP700h6D6dMn+pFAHBapoem+Cfix4SHhuI2n9oeZDd20cjFWjGAGIJPqT9UzWhZeBf+Eo8f+I9U8XadLNaRusGmpK5CGMZBYBT7D/vonrWj4J8G6gmrS+LvFcgn8QXK4jiH3LNCPur74OPbnrkkx+MvFeq32snwZ4QXdq7oDeXh4SyjPfP97BH0yMZJ4AKPwnH9neIPGOgWkryaVp96v2UM24Rli4ZQf+Aj8veu7tfC2gWWrPqtro9nDfuSTOkIDZPU+xPc96reDvCNj4N0NNPtCZJGPmXFww+aaQ9WPoPQdvzNdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMlV3idY32OVIV8Z2nscd6APNPiV4qga4TwzFeC3jkw2oXA5KR9dgA6sR2+g6E03TrXW/FmnwafpcUmgeFolCK5/19wv/ANfuenJ5atHw38MbWxvJNT16ZdU1B5Gcbh+7Bz94g/eY9eeBn2zXf9BgV2TrQpxUKetuvmcMKNSpJzq6X6eXa5laF4d0zw5ZC2022WMH78h5eQ+rHv8AyrVoorkcnJ3Z2xioqy2CiiikMKKKKACiiigArivGvgW88VatpWo2evNpc2m7zERbeb8zY+YZYY6D1rtaKAOE03wd4vtNTtbi7+IFxd28UqvLbnT1USqDkrnecZ6ZqhJ8M9dh8Ravq+k+NpdPbU5zLJGlgHwMnauS/OASOgr0qigDmvC+ga9o09w+seKZdaSRQI0e1EXlkHk8Mc5rpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=
|
<image>Find the measure of $\angle 2$.
|
33
|
Geometry
|
Geometry3K
|
test
|
68
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAF4AVoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRSMyqMsQBkDn1PApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTcu4LkbiMgZ5xQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV8SdeOh6dpTq2GbUInYeqIdx/XbXaAhgCDkHkEV4Z8YNZW+8Sw6dGcpYR4b/ffBP6Bf1r1HwJrK654PsLnOZY08iYejpx+owfxrsq0XGhCf9a7HFRrqWInD+tNzo6KKK4ztCiiigAooooAKKKKACiiigAooooAKKKKACiiigAriZtf2/F630rf+7OntGVz/AMtCfM/9BUfnXaO6xozuwVVGST0Ar5vufFTP8Qm8SICVW7Eir3MY+UD/AL5GK7MJR9pzen4nHjK/suX1/A+kqKZDNHcQRzRMHjkUOjDoQRkGn1xnYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJWdInaNPMcKSqA43H0yafRQB4d4p8CyaXZ22q6teefqOo6miTLFwiB9xYAnknIHPH0r0Dwf4Su/CGo3ttFci50m5AkjLcPE44wR0OQeo/u9BVX4p/wDIH0b/ALC0P/oL13ddtWvOVJX63OGlh4RrSa6WCiiiuI7gooooAKKKKACiiigAooooAKKKKACiiigAooooAxvFNlqGpeH7jT9NZEnugIWldsCND94+p4yOPWvKX+HFjH42h8OG8nIfTjObjAz5m4jIX046Z/Gvb64Sf/ktdr/2CT/6E1deGqzipKL6NnHiqMJOMpK+qRv+EtO1DR9Ai0zUXSV7VjHFMh4kj6qcdsA4x7VuUUVzSk5NtnVGKjFRXQKKKKkoKKKKACiiigAooooAKKKKACiiigAqK5g+028kPmSRFhgPG21lPqDUtFAHmd9471zwZqw0/wAR2a31q3MN7APLaRfXH3SR3HH8q6LTviP4V1HaF1RLdz/BcqY8fifl/WtPxL4etfE2izafcqAWGYpMZMb9mH9fUZr55tvC+qS67daULJ5rqzBea3RtrOqkZ2n3BBHr716NGnRrxbejR5tarXw80l7yex9MW9zb3cQltp4poz0eNww/MVLXF+AL3wtLaNBototjeqMXFvL/AK8Edck8sM/l6Cu0rhqQ5JOJ3Up88VL8goooqDQKKKKAOE+Kf/IH0b/sLQ/+gvXd1wnxT/5A+jf9haH/ANBeu7ref8KHzMKf8WfyCiiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuEn/wCS12v/AGCT/wChNXd1wk//ACWu1/7BJ/8AQmreh9r0ZhX+z6o7uiiisDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs3+xLQeJF1xV23X2ZrZ8Dh1LKQT7jaR+PtWlRTTa2E4p7nL+JfBNlrsq31vI+n6tHzFeQcNkdN2Ov8AOsnT/GeoaBex6R40gEDt8sOpRj9zN9fQ+/5gV31VdQ06z1Wyks7+3juLd/vI4z+I9D7itY1dOWorr8V6GMqOvPTdn+D9f8ywjpLGskbK6MMqynII9QadXnL6V4g8ASNcaIZNV0LO6SwkOZYR3KH0+n4jvXXeH/E2l+JrP7Rp04Zl/wBZC/EkZ9GH9elE6VlzR1X9bjhWu+WSs/627mxRRRWJscJ8U/8AkD6N/wBhaH/0F67uuE+Kf/IH0b/sLQ/+gvXd1vP+FD5mFP8Aiz+QUUUVgbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwk//Ja7X/sEn/0Jq7uuEn/5LXa/9gk/+hNW9D7XozCv9n1R3dFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx/iDwNHeXn9r6HcHS9ZT5hNFwkp9HA9fX8wa7CirhOUHeJE6cZq0jiNG8cy298ujeLLYabqQ4SY8Qz+4PQfy+nSu3rP1nQ9O1+xaz1K2WaI8qTwyH1U9Qa4jPiH4dHnzdZ8Nr36z2q/1A/L/drXlhV+DR9v8v8AIx5p0vj1j36r1/zLnxT/AOQPo3/YWh/9Beu7rx74g+PNE1iy0y306SWdobuO7kYR7QqgMNvOPm5+nvXpnh/xFp3iXThe6dKWQHa6OMMjehFVVpTjSi2u5NKrCVaSi+xq0UUVynWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXCT/wDJa7X/ALBJ/wDQmru64Sf/AJLXa/8AYJP/AKE1b0PtejMK/wBn1R3dFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBGRg0UUAfL3ibR7vRPEF5aXcRQiVmRsYDoTww9q7r4Paha6dqF/aXtyLea8WI28UgKiXG7kE8Z5GPWur+KiqdI0bIB/4msI5Hba9dH4g8L6X4lshb38ALKP3UycSR/7p/p0r1KmKU6KjNb/oeTTwjhWcoPb9TZorzmPV9f8AAMi2+uiTVNDztj1CMZkhHYOP8fwJ6V3thqFnqlnHeWNxHcW8gyrocj6ex9q4KlJw13Xc9GnVU9Nn2LNFFFZGoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwk/wDyWu1/7BJ/9Cau7rhJ/wDktdr/ANgk/wDoTVvQ+16Mwr/Z9Ud3RRRWBuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwnxT/5A+jf9haH/ANBeu7rhPin/AMgfRv8AsLQ/+gvXd1vP+FD5mFP+LP5DZI0ljaORFdGGGVhkEehFcHf+DdR8PXkmreDJhEWO6fTJDmKX/d9D7fkR0rvqKiFSUNi6lKM99+5zHhrxtY6/I1lPG9hq0fEtlPw2R1256/z9q6eue8S+DtN8Sxq8wa3vo+YbyHiRCOn1Ht+WK5618Uaz4PuY9O8XxmezY7YNWhUkH0Dj1/X69a09nGprT37f5d/zM/aSp6Vdu/8An2/I9CoqK3uIbu3S4t5UlhkG5JEYFWHqCKlrnOgKKKKACiiigAooooAKKKKACiiigArhJ/8Aktdr/wBgk/8AoTV3dcJP/wAlrtf+wSf/AEJq3ofa9GYV/s+qO7ooorA3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4T4p/8gfRv+wtD/6C9d3XCfFP/kD6N/2Fof8A0F67ut5/wofMwp/xZ/IKK5mX4ieEIZXik8Q2KujFWUydCOorUfxDpEehjW31CBdMIDC6LfJgttHP1OKwNzSqG6tbe9tpLa6hSaCQYeORchh7isG3+IHhK7uora31+ykmmcRxosnLMTgAfjVHxH4q1mLxND4b8NabbXeom1+2TyXcpSKKPdtA45JJ/mPwA3M648Na34LuHv8Awm7XenMd02kysT9TGfX9f97pXSeG/F2meJoSLZzFdx/660l4kjPfjuPcfpTPBviaTxNpVxJdWf2O/srl7O8t924JKmM4Pccj/wCv1qDxJ4Is9bmGoWkradq8fMd5BwSf9oDr9ev8q6PaRqaVN+/+ZzezlS1pbdv8u35HU0VwWneNL7Q71NI8ZwC2mPEOooP3M3uT2Pv+YFd4jrIiujBlYZDA5BFZzpyhua06sZ7C0UUVmaBRRRQAUUUUAFFFFABXCT/8lrtf+wSf/Qmru64Sf/ktdr/2CT/6E1b0PtejMK/2fVHd0UUVgbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcJ8U/8AkD6N/wBhaH/0F67eeZbe3lmf7saFz9AM1xHxT/5A+jf9haH/ANBeuw1W4trTR725vEL2sNvJJMijJZApLADvxmt5/wAKHzMKf8WfyPBfAvijwBpvhqCPxFpkF3qE00klxcSacswiyx2gsRnoAcDPWu0+LNxpkfwrtotPa3i0y8uYI4mt1AjEZJfKhe3y54res38MX/wtup9MtIrfQprSdzGUCgAbtxI55yP0Fcb4R1DQrX4UeF4PFdmbq3ub547QSR71R/McKTk8DlvwrA3Nfw74m+GOqa5b2On6PY2t8WBtZJtNSLew5Uo2OvpnBz710nibwTHr2qW+r2eq3uk6rDEYBdWrD54yc7WB6jOSPr9K5f41xxDS/D0kAUamuqxralR8+MHIHfGQn44r1KgDF8L+GbTwrpJsbWWadpJWnnuJ23STSt952PrwPyraoooAqajpllq9k9nf20dxbv1Rx+o9D7iuEfTfEHw+dptIMmr6Bnc9k5zLAO5U+n0/Ed69GorWFVx0eq7GVSkpu60fcyNA8S6X4lsvtOnXAfH+sibh4z6MP69K1647X/AqXN7/AGxoFydK1lefMj4jlPo49/X8wai0Xx08V8NG8VWw0zVBwsjcQz+6t0Gfy9+1U6Skuanr5dV/mQqri+Wrp59H/kdtRRRWB0BRRRQAUUUUAFcJP/yWu1/7BJ/9Cau7rhJ/+S12v/YJP/oTVvQ+16Mwr/Z9Ud3RRRWBuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwnxT/wCQPo3/AGFof/QXruZI0ljaORQyMCrKRkEHqK4b4p/8gfRv+wtD/wCgvXd1vP8AhQ+ZhT/iz+R5rJ8FtGLSwQ6xrVvpUr+Y+nRXP7kn6EdPrk+9dVrHgvRNb8MR+Hri18uwhCiBYTtaEqMAqeecE9c5yc10FFYG5wei/CzTNM1m11W+1TVNXubP/j1F/PvSH0IGOo7c49q7yiigAooooAKKKKACs3WtC07xBYm01K2WaPqp6Mh9VPY1pUU02ndCaUlZnnAk8Q/Ds4m83WfDa9HHM1svv6gfl/u13Gkazp+u2K3mnXKTwt1x1U+hHUH61fIBBBGQa4bV/A89jfNrPhC4Gn3/AFktv+WE49COg/l9Otb80KvxaPv0fr/mc/LOl8Gse3Ven+R3NFcj4d8cwajd/wBk6xbnS9aQ7Wt5eFkPqhPXPp+Wa66spwlB2kbQqRmrxYUUUVBYVwk//Ja7X/sEn/0Jq7uuEn/5LXa/9gk/+hNW9D7XozCv9n1R3dFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHCfFP/AJA+jf8AYWh/9Beu7rhPin/yB9G/7C0P/oL13dbz/hQ+ZhT/AIs/kFFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFAGL4i8LaX4mtPJv4f3ij91OnEkZ9j/Q8Vyketa/4DlW18QCTU9Fzti1KNcvEOwcf4/gT0r0WmyRRzRNFKivG42sjDIYehFbQq2XLJXX9bGM6N3zRdn/AFuQWN/aanZx3dlcRz28gyrocg//AF/arNcBfeD9T8N3kmq+DJtgY7p9LlOYpf8Adz0P+QR0rZ8NeNbDxAzWkiPY6rHxLZT8OCOu3PUfr7USpac0HdfivUUK2vJUVn+D9Dpq4Sf/AJLXa/8AYJP/AKE1d3XCT/8AJa7X/sEn/wBCanQ+16MK/wBn1R3dFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHCfFP/kD6N/2Fof/AEF67uuE+Kf/ACB9G/7C0P8A6C9d3W8/4UPmYU/4s/kFFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzviXwbpviRVlk3W2oR8w3kPEiEdM+o/yCK6Kq15qNlpyK97eW9srHCtPKqAn0GTVRnKDvFkzhGa5ZK6OHtPFWr+ErqPTfGERltWO2DVoVJVvZx6/r7HrTvPhuvjJZT28qSwyaRuR0YFWG5uQRXcXNta6jZvBcRRXFtKvzK4DKwrx680u58F/ElB4atXvAtmZ/skjZPlliGVT17ZHU/Xv2UXCpzWVpWfp/wDirKdLlu7xuvX/gntFFYPhvxbpnieAm0kMdzH/rrWXiSM9+O49xW9XHKLi7SWp2xlGavF3QUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcJ8U/+QPo3/YWh/8AQXru64T4p4/sbSWJwq6pExPsFeu7rabXs4r1M405qcptaO1vluFFFFYmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5H4yhsbL4iXGo+K9DvNV0eWxSKxaGEypC4PzKQDwxPQ+/4iDVfG+seBvG3iHTLxrrUhexJPosL5bEjtgIP9nJYf8AHc16H4N0zV9M8PxLr2ozXupzHzZ2dsrGT/AuOMD+efagDN+F1lqFh4Ht4b+GaAGWR7aCcnzIoS2UVs98fzqtP/wAlrtf+wSf/AEJq7uuFuMf8LptW3D/kFlce+5j/ACrai0ua/ZmdSnOduVXs7/JGh4k8EWmszjUbGZtN1iP5o7uDjcf9sDr9ev16Vm6Z41vdGvU0fxnALS4PEV+g/czj1J6A/p6gV3lU9T0ux1iyez1C2S4gfqrjofUHqD7inGqmuWpqvxREqLT56bs/wfr/AJltWV1DKwZWGQQcgilrzhrDxD8PWMumGXWPD4OXtHOZbcdyp7j6fiB1rstB8R6Z4kshdabcCQD78bcPGfRh2/lUzpOK5o6rv/mOFZSfLJWfb/LuatFFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJZUhieWRgqIpZmPYDqaA3PJPi1q3n6paaVG3y26ebIB/fboPwA/wDHq9D8I6t/bXhexvGbdLs8uX13rwfzxn8a8E1rUn1fWrzUHzmeUuAey9h+AwK9A+EerbZ73SJG4cC4iHuOG/Tb+RreUfcPrMwy/ky2KS1hr9+/9eR6tRRRWB8mFFFFABRRRQAUUUUAFFFFABRRRQAVU1TU7TRtLudRvpRFa26GSRz2A/mewHrVuigD5714eINRtYfitOHiW2vYjZWJ/gtAxAY/7zEfmT0xXvtjeQ6hYW97bNvguIlljb1VhkH8jU9FAB0rwe48VE/EY66rEwpc7RjvCPk/Vc/nXq3jjVv7H8JXsyttmlXyIv8Aebjj6DJ/Cvn2tqUdGz6jIMIpwqVJrR+7/n+h9RqwZQykFSMgjvS1y/w/1b+1vCNqWbM1t/o8n/Aen/jpFdRWTVnY+cr0nRqypy3TsFcbr3gVZr06z4duf7L1hedycRzezj39cc9wa7KiqhUlB3ic86cZq0jitE8dML4aN4otv7L1UcKzcRT+6t0Gfrj37V2tZmt6BpviGxNpqVssqfwt0ZD6qexrixceIfh2Ql15us+HF4Ey8zWy+/qB+XuOla8sKvwaPt/l/kY886Xx6rv/AJ/5no9FcvqvjWwt/CTa/p0sd5AkkasqnnBdQwI6hsE9fauhs7yDULKG8tZBJBMgdHHcGsnCUVdo2jUjJ2T8yeiiioLCiiigAooooAKKKKACiiigAooooAKKKKACqOs6e2raRdWC3DW/2hNhkVckA9ePcZH41eooKjJwkpLdHini3wDB4asrKeO/knNzeJbENGF2hgxz19q7DQ/hrFoWs22owatMzwtnaYgAwIwR19DR8U/+QPo3/YWh/wDQXru66Jt+zi+9zp/tjG1JTpzndWXRdfkFFFFc5yBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBznizwoPFUVtDJfSW0UDM21EDbieMnntz+debyeAYE8dReHft8hjez+0+d5YyDkjGM+1e11wk/wDyWu1/7BJ/9Cat6LvddkzoWaYvDwjTpTsr9l1+Rq+E/CC+FDdCK/kuI7jaSjxhdpGeRz7101FFYt31ZFatOtN1Kju2FFFFIyCormVYLaSVo5JVVSSkabmb2A71LRQB84+M7iAarP8A2fo19o1vPxLDNlFlIOQdmML9ASPpXSfCvxrHpsv9halNttpmzbSMeI3PVT6A/wA/rXs8kUc0ZjlRXQ9VYZB/CuV1v4b+G9aUt9jFlP2ltMJ+a/dP5Zr0frdOdP2dRfPc836nVp1Pa05XfbY62isXw7YarpNp/Z+oXaX0MQxBdYKyFf7rj1HYgnPf32q4JKzsnc9CLbV2rBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHCfFP/kD6N/2Fof8A0F67uuE+Kf8AyB9G/wCwtD/6C9d3W8/4UPmYU/4s/kFFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcJP8A8lrtf+wSf/Qmru64Sf8A5LXa/wDYJP8A6E1b0PtejMK/2fVHd0UUVgbhRRRQAVj3Xizw7Y3ps7rXdNguQdpikukVlPoQTx+NU/H+szeH/Aer6lbMUnig2xOOqs5CBvwLA/hXK+Evhb4bufA1mdV09bq/v7dZ57p2JkDON3yt2xn8cc5oA9NVldQysGVhkEHIIpa8o+G3iI+H/CPiOz1meSWLw1dyQ7+reWMgKP8AgStj6gdBWlY/FKZtQ0qPVvDF7pllqzqlndvKrhy2Nu4ADbnI/OgDvvttp9t+xfaoftezzPI8weZt6btvXHvU9ebggftCOScAaDyf+2grovDPjKDxXqOopp1nKdOs5PKF+zDZO46hB1I75+nrQB01FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHCfFP/kD6N/2Fof/AEF67uuE+Kf/ACB9G/7C0P8A6C9d3W8/4UPmYU/4s/kFFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcJP/AMlrtf8AsEn/ANCau7rhJ/8Aktdr/wBgk/8AoTVvQ+16Mwr/AGfVHd0UUVgbhRRRQBxfxat3uvhfrccalmWOOTA9FkRj+gNbfhG4S78G6JPGQVexhP8A44M1p3VrBfWc1pcxrLBPG0ckbdGUjBB/A15nH8NPFOl20uk6H42ktNEkZtsD2waSJWPIVs57noVoAxfDes6dpGlfEXxFqFmt7p0ursqQMoZZzvOFwcj+NSar+LJfFF5/wh99rS2FjYy6rb/ZdMtUJaIcYLse4HGBxzXoEnw20r/hXUnhC3keKGQBjc4yxlBDbyO/IHHpxWFdfC3XtWs7Mat4xeW601kOnvHZqEi292XPzscLyTxjvmgDm/iNZa9qXxTvLHw/gXM+hbZTnB8oMSwB9WwF/wCBduo9E+F2padqXw+0w6dAlutunkTQr/BKv3s/Und/wKrNv4Rkj8dJ4om1HzZRpwsnh8jbuOQS+7dxn0x+NM8PeDP+Eb8T6zqVnqH/ABL9TYStYeTgRS9Swfd05bjaOo9KAOrooooAKKKKACiiigAooooAKKKKACiiigAoopkvmeU/lbfM2nZu6Z7Z9qAOH+Kf/IH0b/sLQ/8AoL13deN+LfHFjr+k6fazRPZajZ6pG1zbychQocMQ3cA/Q13nhzxjF4p1a7i023b+zrRAGuZBgyOTwFXsMAnnnpwK66lGapRutrnHSrU5VZWe9jqKKKK5DsCiiigAooooAKKKKACiiigAooooAKKKKACiiigArhJ/+S12v/YJP/oTV0viTVp9D0WXU4bYXK25DTRZwTHnDEH1Gc/QGvNpPHWhyfES38QCaQWa6WY2UxneJNzfJj15HfHvXVh6cmpNLo0cmJqwi4xb6pnr9FY3hjWpvEGjrqclr9mhmdvs8ZOWMY4Bb3JB/DHWtmueUXF2Z0xkpJSQUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeB/FjRBpniw3ka4h1BPN47OOG/of+BV6j8OdEGieDbRWXE90PtMv1YDA/BcfrWX8VNDbWNP0jywTIL9IMjssnBP5ha71EWONY0ACqAAB2ArtrV3LDwj/Whw0aCjiJy/rUdRRRXEdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARzwR3VvLbzIHilQo6nupGCK+Zrjw3cReMm8Oqcy/avIVj6E8N+RBr6drz6fQN3xqg1DZmP7CbknHG8Dyv6qa7cHW9nzen4nDjaHteX1/BndWdpDYWUFnbrthgjWNB6ADAqeiiuJu53JW0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorOu9f0bT7g297q1hbTAAmOa5RGAPTgnNOs9c0jUZGjsdUsrqRF3ssFwjkL6kA9ORQBblhjnVVlQMFZXAPYg5B/MVJUFpe2t/brcWdzDcwMSBJDIHU468jip6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorKfxP4fjlaJ9d0xZFYqyNdxggjqCM9a0Yp4Z4FnilSSFhuEiMCpHrmgCSozDGZxOUHmhSgbvgkEj9BTLS9tb+3W4s7mG5gYkCSGQOpx15HFT0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5HLoOl+Ifj3rFrq1lHdwJpKSKkmcBgYxnj2J/Ou7sPB/h7w99putJ0qC0neBo2ePOSp5xyfUD8q871PwrpXi7466tYavFJJBHpccyhJCh3AxjqPZjXdaD4C0Hwel9Po8Esb3EJSQySl8gZI60Acd4A8RxeE/gZHrU9u9xHbzODGhAJ3Tbep/3q1pvizFZm0vdQ8PajaaBduEh1OTGGJBIPlgbtpAJB6kdq4eH/AJNduP8AruP/AEpWup+LSL/wqXT12jaJbUAf8BoA0o/ii0erabFqPhrULDTdTlEVpfTsPnLfdJTqoOR36V6HXm/xgA/s/wAM8dNdt/5NXpFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjPw78IeH/EcvimfV9Lhu5Y9YmjV3yCFznAwfU1Z8DW8egfETxh4Z0yV20aG3WeONnLiKQquVBP+8w/4CM8isnwR4NfxNdeJpx4h1jTUj1eaNobG48tH5zkjuecV6Z4d8FaR4N0u9i01ZnluAWnuLh98khAOMnAHc9B3oA4r4f8AiKHwn8DI9angeeO3mfMaEAndNt6n/ert/EvjG38NeHbTWJrSSaO5lijEaMAVLgkHn0xXk8H/ACa7c/8AXcf+lS11PxVIHwy0QE9bu0A/74NAHS+KPH1v4Y16x0h9Nu7y4vYmeEWwDMzAkBce579qyI/it5d7NpN/4Z1K210Ffs+nIRI04OeQw4AAGSTwOeuKb4gAPx28I5GcWVyR/wB8SUlyqn9oazOBkaET+PmOKANrwn45/wCEi1fUNGvtIuNJ1axVXktpXD5Q4wQwA9R27jGa6+vN9LH/ABkDrnvo8f8A6FHXpFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn+ufDzVb/wAZXPiTSPFUmkzzwLbsqWYkO0Y4yXHUqD0rT8PeGPEWl3k8mr+MJtYt5YGiWB7NYgjEjD5DHOACMe9dbRQBwCfDPZ8LpPBf9r53vv8Atn2bp+9En3N3tj71avi3wb/wlPhODQ/t/wBl8p4m87yd+dgx93cOv1rqqKAOb8YeFP8AhLLfTIvtv2X7Dfx3mfK379gI29RjOevP0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa8IeEv8AhFBqw+2/av7Qvnu/9Vs8vd/D1Ofrx9K6KVPMiePONykZ9M0+igDhrL4bwW/wzm8GXGotMkm4/alh2EMX3qdu49CB359qxbz4V65rem2dprfjF51sXT7KiWShFC8ZYBgWYjAyTxz1zXqdFAHN6h4U+3eO9I8Tfbdn9nwSQ/Z/Kz5m8MM7s8Y3eh6USeFPM+IUPiv7bjy7D7H9l8rr8xbdvz79MfjXSUUAc3a+FPs3xAvvFP23d9qs1tfs3lY24Knduzz93pjvXSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z
|
<image>The diagram shows the layout of Elm, Plum, and Oak streets. Find the value of $x.$
|
125
|
Geometry
|
Geometry3K
|
test
|
69
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHMAQ4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivLPhp4n1HX9Z8WatqOpv8A2PbTEWySsBHEm5mznthQv51QuPF3iP4j+KBpfgu4k07RbR/9J1PZy/uM/ovU9TgdAD2KioLO3NpZw27TyztGgUyzHLufUn1NT0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVi+L9T/sbwdrGoBtrwWkhQ/wC3tIX9SK2q8z+OmpGy+HptVPzX11HDjvtGXP6oPzoA8Q09fE198P7+2062kXQrSY3N9KnHmudoAJ/iCgA7R05J7V9I/DiXSJ/Aely6Lbpb2zR/PGvJWUcPuPUnIPJ6jFX/AA9oVvpvg2w0WW3Ty0s1hnj28OSuHz9STn615j8PZ5fAXxH1TwNeu32K7cz2Dt0Jxkf99KMH/aTFAHtNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFR3FxFaW0txO4SGJC7ueiqBkmgNiSiuI+H3iu+8VTa1NclBbxTr9mQKAUQ7uCe/AH45rt6upTdOXLLczpVI1IqcdgoooqDQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhPiJez376f4S098XeqSAzEf8s4Qckn8ifoprt7i4itbaW4ncJDEhd3PRVAyTXCeAreXXNW1LxleIQbtzBZI38EKnH9APqG9a3orlvUfT8+n+Zz13zWpLr+XX/Ij+GlpFYav4rs4ARDb3oiQE5wqlwP5V6HXB+Af+Rl8Z/wDYSP8A6E9d5RiXeo/l+QYRWpJLz/NhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVHcTxWttLcTuEhiQu7noqgZJoA4j4iX0982n+EtPfF3qkg80j/AJZwg8k+3B/BTXZ2FlBpun29lbJtggjEaD2Ax+dcR4Cgl13V9S8ZXiEG6cwWSN/BEpxn9APqG9a7+t63upU1039f60Oah77dV9dvT/g7nB+Af+Rl8Z/9hI/+hPXeVwfgH/kZfGf/AGEj/wChPXeUYj+I/l+SHhf4S+f5sKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuE+Il9Pemw8J6e+LvVJB5pH8EIPJPtwfwU12888Vrby3E7hIokLu56KoGSa4TwHBLrusal4yvEINy5gslb+CJTgn9APqG9a3orlvUfT8+n+Zz4huVqS6/l1/yO2sLGDTdPt7G2TbBBGI0HsB/OrNFFYN31ZukkrI4PwD/yMvjP/sJH/wBCeu8rg/AP/Iy+M/8AsJH/ANCeu8rfEfxH8vyRhhf4S+f5sKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKjnnitreW4mcJFEhd3PRVAyTQBxHxEvp737B4T09sXmqyDzSP4IQeSfbg/gprstPsYNM0+3sbZdsEEYjQewH864nwHBLr2s6l4yvEI+0uYLFG/giU4J/QD6hvWu/ret7qVNdN/X+tDmoe+3VfXb0/4O4UUUVgdJwfgH/kZfGf/AGEj/wChPXeVwfgH/kZfGf8A2Ej/AOhPXeVviP4j+X5I58L/AAl8/wA2FFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcL8RL6e8Fh4U09sXmqyASEfwQg8k+3B/BWrtp54ra3knmcJFEpd2PRVAyTXCeBIJde1rUvGV2hH2hjb2Kt/BEvBP6AfUN61vRXLeo+n59DnrtytSXX8uv+R22n2MGmadb2Nsu2CCMRoPYDv71ZoorFu7uzdJJWQUUUUhnB+Af+Rl8Z/9hI/+hPXeVwfgH/kZfGf/AGEj/wChPXeVviP4j+X5I58L/CXz/NhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRzzR21vJPM4SKNS7seiqBkmgDifiJfz3a2HhTT2xearIBIR/BCDyT7cH8Faux0+xg0zTrextl2wQRiNB7Ad/euJ8CQya/rep+MrtCBcMbexVv4Il4J/QD6hvWu/ret7qVNdN/X/gbHNQ99uq+u3p/wdwooorA6QooooA4PwD/AMjL4z/7CR/9Ceu8rg/AP/Iy+M/+wkf/AEJ67yt8R/Efy/JHPhf4S+f5sKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhfiJfz3a2PhTT2xearIBIR/BCDyT7cfkrV2080dtBJPM4SKNS7seigDJNcH4Fhk1/W9S8ZXaECdjb2Kt/BEvBP6AfXd61vRXLeo+n59DnrtytSXX8uv+R2+nWEGl6db2Nsu2C3jEaD2A7+9WaKKxbu7s3SSVkFFFFIYUUUUAcH4B/wCRl8Z/9hI/+hPXeVwfgH/kZfGf/YSP/oT13lb4j+I/l+SOfC/wl8/zYUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXIeO/GknhSLT7WwsDf6vqUphtLfdgEjGST6ZZfTr1GKydG8d+ILbxXZ+HvGGiQWE9+pNpPbSbkYj+E8nnt16445zQB6LRXCeKfG2rWviaLwz4V0qHUtW8nz7gzPtjgTtnkc8g9e465qz4G8bT+JJtR0vVrAafremvtuLdW3KQejKfr7nsc80AdlRRTJpo7eCSeZwkUal3Y9FAGSaAOI+It/PdJY+FdPb/TdWkCyEfwQg8k+3H5K1djp1hBpenW9jbLtht4xGg9h3PvXEeBYZPEGual4yu0IWdjb2Kt/BEvBP6AfXd616BW9b3Uqa6b+v/AOah77dV9dvT/g7hRRRWB0hRRRQAUUUUAcH4B/5GXxn/wBhI/8AoT13lcH4B/5GXxn/ANhI/wDoT13lb4j+I/l+SOfC/wAJfP8ANhRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY2qeG9L1LWtO1u8D/AGnTNzQN5mFXPUkd+leePfH4j/FTSp9JQvonhx2eS+/hllODtX1GVX8Mn0y/40eIRaNo2gTXs1np1+7PqEsK5fyVIG0fXJ/Idsir3hX4j+AbUaf4d0IzQrJIsMMf2dhudjgFj3JPUmgBvg0mf4yeOJ5OXRYI1J7LjGP/AB0Uml/u/wBonWgnSXSFZ/cgxAH9KqX2rW/w9+Leq6nq6Sw6PrdtG0dykbOqyoACpwM9mP4ipvh7LJ4p+IfiHxrFBJFpssS2Vo0gwZANu4gf8AB/4FjsaAPU64b4i389zHY+FdPb/TdWkCuR/BCDyT7cfkrV2000dvBJPM4SKNS7seigDJNcF4Ghk8Qa7qXjK7QhZmNvYK38ES8E/pj67vWt6K5b1H0/Poc9duVqS+1+XX/I7bTrCDS9Nt7C2XbDbxiNB7DuffvVqiisW7u7N0klZBRRRSGFFFFABRRRQBwfgH/kZfGf/YSP/oT13lcH4B/5GXxn/wBhI/8AoT13lb4j+I/l+SOfC/wl8/zYUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAyWGKeMxzRpIh6q6gg/gacqqihUUKoGAAMAUtMmmjt4JJpnCRRqXdj0UAZJoA4n4i389zFY+FtPb/TdWkCuR/BCD8xPscfkGrr9NsINK022sLZdsNvGI0HsO59z1rifA0MniHXtS8ZXSELMxt7BW/giXgn+n13etegVvW91Kmum/r/AMA5qHvt1X129P8Ag7hRRRWB0hRRRQAUUUUAFFFFAHB+Af8AkZfGf/YSP/oT13lcH4B/5GXxn/2Ej/6E9d5W+I/iP5fkjnwv8JfP82FFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcN8RdQnuIrLwtp7f6bq0gVyP4IQfmJ9j/INXbTSx28Mk0rhI41Lux6KAMk1wXgeKTxDr+peMbpCElY21grfwxLwT/T67q3oq16j6fn0Oeu3K1Jfa/Lr/kdtpunwaVpttYWy7YbeMRqPp3PuetWqKKxbu7s3SSVkFFFFIYUUUUAFFFFABRRRQBwfgH/AJGXxn/2Ej/6E9d5XB+Af+Rl8Z/9hI/+hPW/4w8TQeEfDN3rE8Zl8oBY4gcb3Jwoz2Gep9M1viP4j+X5I58L/CXz/Nnl3ji08ReHrm3tLDxzq99rOozYtdOiUL8pPJJ3fKo6Z9vQHHrPhqw1DTPDljaarfNe38cf7+4Y53MSSeT1AzgewrxnwP468K2WoXPiPxHqM114kvmIJW2dltk6CNOPTH8vUn3usDoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKZLLHBC80rhI41LOx6ADkmgDifiLqE9xDZeF9Pb/AE7VpAjY/ghB+Yn2P8g1dfpunwaVpltYWy7YbeMRr747n3PWuJ8DxSeIvEGpeMbpCEkY21grfwxLwT/T67q9Aret7qVNdN/X/gHPQ99uq+u3p/wdwooorA6AooooAKKKKACiiigAooooA4PwD/yMvjP/ALCR/wDQnrvK4PwD/wAjL4z/AOwkf/QnrvK3xH8R/L8kc+F/hL5/mwooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuH+IuoTzwWXhfT2/07VpAjY/giB+Yn2P8g1drLLHBC80rhI41LMx6ADkmuC8ERSeIvEGpeMbpCI5GNtYKw+7GOCf6fXdW9FJXqPp+fQ567crUlvL8up22mafBpOmW1hbLtht4xGvvjufc9atUUVi3d3ZukkrIKKKKQwooooAKKKKACiiigAooooA4PwD/wAjL4z/AOwkf/QnrvK4PwD/AMjL4z/7CR/9Ceu8rfEfxH8vyRz4X+Evn+bCiiisDoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopksscELyyuEjRSzMTwAOSaAOK+IuozzW9n4Y09v9O1aQI2P4IgfmJ9j/INXW6Zp0Gk6ZbafbLtht4wi++O59z1rivBET+I/EOpeMbpCI3Y21grD7sY4J/p9S1egVvW91Kmum/r/wAA5qHvt1X129P+DuFFFFYHSFFFFABRRRQAUUUUAFFFFABRRRQBwfgH/kZfGf8A2Ej/AOhPXeVwfgH/AJGXxn/2Ej/6E9d5W+I/iP5fkjnwv8JfP82FFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXD/EXUZ5raz8Mae3+navII2x/BED8xPsf5Bq7WWVIYnllcJGilmYnAAHJNcF4JifxH4i1LxjcofLdjbaerD7sY4J/p9S1b0Uleo+n59DnrtytTW8vy6na6Zp0Gk6XbafbLiG3jCL747n3PWrdFFYttu7N0klZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQBwfgH/kZfGf/YSP/oT13lcH4B/5GXxn/wBhI/8AoT13lb4j+I/l+SOfC/wl8/zYUUUVgdAUUUUAFFFFABRRRQAUUUUAFYfi7xPbeEPDs+sXUTzJGyIIkIDOWYDAz+J/CtyvJfjlM95a+HfDsJ/eajfg4HXjCD9ZP0oA7XwR4xtfG+iSana20lusc7QNHIwJyFU549mFWvFniey8IeH5tXvgzohCJEhAaRyeFGfxP0Brgvgug0+98YaIowtjqWFX0GXX/wBp1zPxM1Y+L/E+oWkTk6L4atpJZ2H3ZLj7oX/vvan0DkUAep+BfHEHjrT7q8trCe1jt5RF+9YHccZOMemR+ddXXn/wX03+zvhrZSEYe8kkuWH1baP/AB1VrvZZY4IXllcJGilmZjgADkk0AcV8RdRnltrPwzp7f6dq8gjOP4Is/MT7H+Qaut0vToNI0u20+2XENvGEX3x3PuTz+Ned+C9VsfEHjfUdevblI7hx5GnQS/KfK6ZXPBJx27lq9Prore4lT7b+v/AMKUJNurJWvt6f8HcKKKK5zcKKKKACiiigAooooAKKKKACiiigAooooA4PwD/yMvjP/sJH/wBCeu8rg/AP/Iy+M/8AsJH/ANCeu8rfEfxH8vyRz4X+Evn+bCiiisDoCiiigAooooAKKKKACiiigArx7xAf7d/aH0LT+sWlwCVx6OA0gP6x17DXNWHgjTdP8aX3ipJ7uXULyMxusrqY0Hy/dAUEcIByTxmgDyHUvFJ8A+P/AB6Isi6vI1a1GP8Alq+1g34CRm/DFM8S6M/gv4L2thMD/a2u3cct2D97ABcKf90hPxJr1PVPhjoOseMo/E949292jxuYN6+SxQALkbcnoO/ar3ifwRpni2/0q71Ge7X+zZDJFFE6hHJKk7wVJI+UDgjvQBq6Fpw0jw/p2mgD/RbaOE47lVAJ/SuW+I2pTyWtn4Z05v8AT9XkEZx/BFn5ifQH+Qau2llSGJ5ZXCRopZmY4AA5JNcB4JjfxL4l1LxjcofKLG109WH3Yx1P9PqWreikr1H0/Poc9dt2preX5dTqk8L6R/YVto81nHNa28YRN6/MD3YEcgk8kj1rP/szXtB50m7/ALTsx/y5Xr4kUeiS/wBG4rqKhu7qGytJrq4cJDChd29ABk1lzNvU76NacEqa1j2eq/4HyszN0fxFa6vPLaeVPa38K7prW4jKsg9c9CPcVsVzvhK1mktrjW7xCt5qjiYqescQ4jT8F5/GuipPcMTGEKrjDZfn1+V9gooopGAUUUUAFFFFABRRRQAUUUUAFFFFAHB+Af8AkZfGf/YSP/oT13lcH4B/5GXxn/2Ej/6E9d5W+I/iP5fkjnwv8JfP82FFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUU2SRIYnlkYJGilmYnAAHU0AcV8RdRnktLTw1p7f6fq8giOP4Is/MT7Hp9N1U2+Huo6ARdeENZltpQB5lrcndFMQOvTgn3B69RTvBUb+JfEupeMblT5JY2unqw+7GOrf57lq9BrqlUdG1OPz9f+AccKarN1JddvT/gnBWXxEk0+6XT/ABdpkulXR4E6qWhk9wRnH4bh7itDW7qHxJfafodlPHPaTYu7ySJwymFTwuR/ebj8K6W9sbTUbVra9toriBuscqhh+tcPP8PbvRLuTUPBupvYzN9+0nO+KQDtk5P5569RUr2U/wC6/wAP+AdNGrVw0ue3Nbbun387fLU78AAAAYA6AUtcHZ/EOTTrlbDxdpkulXJ4E6qWgk9wRnH4ZHuK7e2uYLy3Se2mjmhcZWSNgysPYis50pQ3QqdWFT4X/mS0UUVmaDJpUt4JJpW2xxqXY4zgAZNZdt4o0S80KXW4NSgfTIg2+4yQq465zzn2rX6184+H9Lg1vx/qHge21VP+EYW/kvjDGSPP2Y/dqe46D0wpI7UAfQmnajaatp8N/YzCa1mXdHIAQGHTPPNWqZFFHBCkMSLHFGoVEUYCgcAAdhT6ACiiigAooooAKKKKAOD8A/8AIy+M/wDsJH/0J67yuD8A/wDIy+M/+wkf/QnrvK3xH8R/L8kc+F/hL5/mwooorA6AooooAKKKKACiiigAoopksiwxPK5wiKWY+woArNq+mqxVtQtAwOCDMvH61ajljmjWSJ1dGGQynIP4189eCLH4aXmgQ3Hiya1Or3k8shElzKmxdxADbWCr0J5x1r3rSNNsNI0m2sdMjEdlEmIVVy4Cnngkknr60AXa4j4i6lPJa2nhnTjnUNWcRkDqkX8RPoD0+gb0rtJpY4IZJpXCRxqWdj0UAZJrgvA8UniLX9S8Y3SEJKxtrBW/hiXgn+n13VvRSV6j6fn0Oeu3K1Jby/LqdppWmwaPpVtp9sMQ28YRff1J9ycn8auUUVi227s3SSVkFFFFIZBeWVrqFs1teW8VxA33o5VDA/nXEXPgG90W4e98HarJYuTuaynYvC/tznH45+orvqK0hVlDbYyqUYVNWte/U4Wz8fz6dMtn4u0qbS5idoulUtBIfYjOPwJ/CuztLy1v7dbizuYriFukkThlP4inXFtBdwPBcwxzQuMNHIoZWHuDXEXnw8k0+6a/8I6nLpV0eTAzFoJPYg5x+OR7Cr/dT/uv8P8ANEfvaf8AeX4/5P8AA3PGdhr2q+HptP8AD9za2tzcHy5Lid2Uxxn723ap+Y9O3U965O6+F8mmXfhW88LyWsNxozFbh7hmU3KE5bJVTycv+Dewq9b+Pr7RJ0svGWlSWTk7VvYFLwv78Z/TP0FdtZX1pqNqtzZXEVxA3R4mDD9KidKUN9i6daFTRPXt1LFFFFZmoUUUUAFFFFABRRRQBwfgH/kZfGf/AGEj/wChPXeVwfgH/kZfGf8A2Ej/AOhPXeVviP4j+X5I58L/AAl8/wA2FFFFYHQFFFFABRRRQAUUUUAFVNUa1TSb176Ty7RYHM78/Km07jxz0zVuorq2hvLSa1uEDwzI0ciHoykYI/I0AefweC/A03w5uzpdlaz2MttLKl86bpcgH5t5G4YI/SrXwdubi6+GOlm4YsYzJGjHuiuwH5dPwrDHwn1620+bQbHxrPB4dmZibZrYNIFJyV3ZHB74wDk8c16Npem2HhnQILC2/dWVlDgM56AclifXqTQBy/xF1CeeCy8L6e3+natIEbH8EQPzE+x/kGrr9M0+DStMtrC2XbDbxiNffHc+561xPgeKTxF4g1LxjdIQkjG2sFYfdjHBP9Prur0Ct63upU1039f+Ac9D326r67en/B3CiiisDoCiiigAooooAKKKKAIri2gu4HguYY5oXGGjkUMrD3Brib34ePp901/4R1KXSbo8mAsWgk9iDnH45HsK7uitIVZQ2ZnUpQqfEv8AM4C38e3+iTpZ+MtKksmJ2rewKXhf34z+mfoK7eyvrTUbVbmyuYriBujxMGH6U+4t4LuB4LmGOaFxho5FDKw9wa4m9+HjWF02oeEtSl0m6PJhLFoZPYg5x+OR7Vp+6qf3X+H/AADL97T/ALy/H/Jnd0VwFv491DQ50s/GWlSWbE7VvrdS8L/ln9Mn2FdvZX9pqVqtzZXMVxA3R4mDD/8AXWc6Uoavbv0NKdaFTRPXt1LFFFRzTw26B5pUjUnGXYAZ/GszVK+iJKKq/wBp2H/P9bf9/V/xo/tOw/5/rb/v6v8AjRYv2c+xxvgH/kZfGf8A2Ej/AOhPXeVwPw+dZPEfjF0YMrajkEHII3PXfVvif4j+X5I5ML/CXz/NhRRRWB0BRRRQAUUUUAFFFFABRRRQAVw/xF1CeaCy8Mae3+natIEbH8EQPzE+x/kGrtZZY4IXmlcJGilmYngAck1wXgiKTxF4h1LxjdIRG7G2sFYfdjHBP9PqWreikr1H0/Poc9duVqS3l+XU7XTNPg0nTLawtl2w28YjX3x3PuetW6KKxbbd2bpJKyCiiikMKKKKACiiigAooooAKKKKACiiigCO4t4buB4LiGOaFxho5FDKw9wa4i9+HbWN02oeEtSl0m7PJhLFoZPYjnA/Me1d3RWkKsofCzOpShU+Jf5nAQePdQ0KdLPxlpUloSdq31upeF/yz+mT7Cr/AInuNP1yx0FoJYLyzm1aFW2sGVgVfIP+FdZPbw3UDwXEMc0LjDRyKGVh7g15j4r8DW+j3mm33hud7C6nv440iLboQ5DFWwc4wR7jnpWqdOb/AJX+H/ALwrr0aycffX3Pb7n+B3H/AAiPh3/oC2X/AH5FH/CI+Hf+gLZf9+RXNQePNR0KdLPxlpUloSdq31upeF/qBn9Mn2FdtY6hZ6narc2NzFcQN0eJgw+n19qznTnDV7d+hdPH1Kmim79ru5w3w4hitvEPjGCFFjijv9qIowFAaQACvQq4D4f/API0eNP+wif/AEOSu/qsT/Efy/JHNh3end+f5sKKKKwNwooooAKKKKACiiigAoorh08dXM/xXfwfBZRPbQw+ZPc7zuU+WG4HTqyj8aALvxCt9avvC72OiWxnluXEc21wpWPknGSOpAH0JrE0zU/Gmk6Zbafa+C41ht4wi/6WuTjueep616NRW0a1ocjin95hOhzT51Jp/L/I4P8A4STx5/0Jsf8A4Fr/AI0f8JJ48/6E2P8A8C1/xrvKKftY/wAi/H/MXsZfzv8AD/I4P/hJPHn/AEJsf/gWv+NH/CSePP8AoTY//Atf8a7yij2sf5F+P+Yexl/O/wAP8jg/+Ek8ef8AQmx/+Ba/40f8JJ48/wChNj/8C1/xrvKKPax/kX4/5h7GX87/AA/yOD/4STx5/wBCbH/4Fr/jR/wknjz/AKE2P/wLX/Gu8oo9rH+Rfj/mHsZfzv8AD/I4P/hJPHn/AEJsf/gWv+NH/CSePP8AoTY//Atf8a7yij2sf5F+P+Yexl/O/wAP8jg/+Ek8ef8AQmx/+Ba/40f8JJ48/wChNj/8C1/xrvKKPax/kX4/5h7GX87/AA/yOD/4STx5/wBCbH/4Fr/jR/wknjz/AKE2P/wLX/Gu8oo9rH+Rfj/mHsZfzv8AD/I4P/hJPHn/AEJsf/gWv+NH/CSePP8AoTY//Atf8a7yij2sf5F+P+Yexl/O/wAP8jg/+Ek8ef8AQmx/+Ba/41n6rf8AjnVDYl/CSR/ZLtLoYuVO4qDx1969Moo9tH+Rfj/mVCnUg+aNR3+X+R5/Prnja6geC48EW8sTjDJJcoysPcE1yLeH/GFnqX2/QfD9xo8pPzpBeI0bfVWP6Hj2r26irhieT4Yr8f8AMynhOf4pP8P8jhPhzpGuWE+uXmuWgt576dZfvKdzfMWOATgZYV3dFcNbeO7m8+K1x4Qt7KJrW2i8yW53ncDsB6dPvMBWFSbqS5mb06apxUUdzRRRUGgUUUUAFFFFABRRXN+P9XvNB8C6tqenvsu4IgY32htpLAZwcg4znmgDpK8a+Ev/ABPPiH4x8SdUaUwxE/3XckD8BGtbtn46S3+Dy61qWsQXGqPZyYIZFZpjkKu1ccgkDgds0z4G6Q2nfD5bqRNr39w84yOdgwg/9BJ/GgD0uiiigAooooAKKKKACiiigAooooAZMJDBIImCyFTsJHQ44rznwz8Qbl/hNd+J9ZdJLu1aVCAoQO4OEXA9SyivSa+e/C2nT674mn8DvE39mabrlzqF6T910QqkafiwOR6HPagD2bwZNrNz4TsLrX5FfUbhPOcLGECBuVXA7gYz75reoooAKKKKACiiigAooooAKKKKAAnAya8Z+DY/trxj4u8TsDieby4j/su5cj8AqV6P431P+x/A+tXwba0do4Q+jsNq/qRXA/BvV/Dug+Ao0vdd0u2urq4knkimvI0deQgBBORwgP40Aeu0VmWHiPQ9VuDb6drOnXk4Ut5dvdJI2B1OFJOORWnQAUUUUAFFFFABUVzbQXlrLbXMKTQSqUkjdcqynqCPSpaKAPP0+C3glL03P9nTMu7cIWuH2D2xnOPxrvYYYraCOCCNIoY1CIiDCqoGAAOwp9FABRRRQAUUUUAFFFFABRRRQAUUUUAYvijWr3QdIF3YaNc6vOZRGLa3zuAIPzHAPAx6d6x/h34au9G0281LV0Vdb1e4a6vAuP3eSSqcemT+JNdlRQAUUUUAFFFFABRRRQAUUUUAFFFFAFDWdF0/xDpUumapAZ7OYqZI/MZN2CCOVIPUDvXKf8Kc8Bf9AH/ycn/+LruqKAOb8P8AgLwz4WvpL3RtMFrcSRmJn8+R8qSCRhmI6gflXSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=
|
<image>Find $y$.
|
5 \sqrt { 5 }
|
Geometry
|
Geometry3K
|
test
|
70
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEZAR0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZLIsMLyucIilmPoBT65j4ial/ZXgDWbkNtY25iQj+8/yD/0Kpk7RbRUVdpDfAviW88SeFf7b1NLa3R5ZPL8sFVESnALFieeDk8CqVn4u1TxPrnk+F7a3OjW7lbnVLuNmSQjqsKhl3H36fpnzC4udbt/CHhpNX0+Wy8HJJHBcQq5SW4zyXfHIQnOB3/EGvfbGC1trGCGxjijtUQCJIgAoXtjHatGrO/bT/hyL6euv/DFiiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcJ8T7G+1jTtI0e0tLieK71KIXLRRlljiBySxAwBnHX0rrr/WNN0tN1/fW9uOwkkAJ+g6mucl+JOhGQxWKXuoS/3bW3J/nitIUak7OMb2M51qcNJSSZteI9Ct/EPhy80icARzxFFOPuMPut+BANc78L7nWF8MnSdbsbu3utNcwJJNEyrNGPulWIw2MY47AetRah8Q9Rs7YXP/CKXsUDMEEl2/k8npwVPvVv+3vGjt8nhCNR/tXqf4itFhqiu3bXzX+Zl9apvRX08n/kdlRXGDxJ4vjAMvg0t67Lxf8AA0f8J7NbHGo+GNYth3ZYd6j8eM0vq1TpZ+jT/Uf1mn1uvVNfodnRXM2Hj/wzqBCrqccL/wB24Bjx+J4/WukjkjmQPE6uh6MpyDWc6c4aSVjWFSE1eDuOoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiqep6rZaPZPeX86wwr3PUn0A7n2rjt/iDx0f3Rk0bQW/j6T3A9vQH8v96tadJyXM9F3/rcyqVVF8qV32/rY19Z8b6Zplz9itlk1HUCcC2tBuIPoSOn6n2rOFj4z8RfNfXsehWbf8sLb5piPdu34H8K6PRfD2l+H7bydOtVjz96Q8u/1br/StSr9rCH8NfN/5bL8SPZTnrUfyX+e7/D0OX0/4f8Ah6ybzZbQ305+9LeN5hb6jp+ldJDBDbxiOCJIkHRUUKPyFSUVlOpOfxO5rCnCGkVY5L4lx7/At839xom/8fUf1rqLWXz7SGXOd6K2fqM1j+M4vO8Gasvpbs35c/0qx4ZmNx4V0mVjlmtItx9TtGa0etBeTf4pf5GS0rvzS/Bv/M1aKKKwOgoX+iaXqikX2n20/u8YJH49RXNS/D6Kycz+HNUvNKm67FcyRt9VJyfxJrtKK1hWqQ0T0/D7jKdGnPWS179fvOH/AOEk8R+Gzt8SaYLuzHW/sRnA9WXt9eK6nStZ07W7b7Rp13HOnfaeV9iOo/Gr/WuS1bwPby3X9paFOdJ1NeRJCMRv3wy+/wD+sGr5qVT4lyvutvu/y+4z5atP4XzLs9/v/wA/vOtorjtJ8YT21+mj+KLcWN+eIpx/qZ/cHoD/AJ4PFdjWdSnKm7SNadSNRXiFFFFZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWT4g8Q2XhzT/tN0SzsdsMKfflb0A/rU+sava6Hpc1/ePtijHQdWPZR7muZ8NaNd6xqI8U6/H/pDj/QrVhxbp1B+v/6+vTanTVueey/HyMalR35Ibv8ABd/8huk+Gr3Xr9dc8VDc45tdOP8Aq4B2LDuf8n0HbgADA4FFFTUqOo9fu7FU6Uaa0+/uFFFFZmgUUUUAUdagFzoWoW56S20ifmpFZPgCf7R4G0t/7sbJ/wB8uV/pXRsodGU9CMGuP+GZI8ILAxBa3uJYjg985/rW8daEvJr9TCWlePo/zR2NFFFYG4UUUUAFFFFAFDV9GsddsHs7+ESRN0PRkPqp7GuRstT1DwRfx6VrkrXGjSHbaagQSYvRH/z+nTvarahYW2qWE1leRCWCVdrKf6eh962p1bLknrH+tUY1KTb54aSX9WfkWAQygggg8gjvS1wmi3l14O1mPw5qszS6dOf+Jddv2/6Zsf8APbseO7qatPkfdPZlUqnOtrNbrsFFFFZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRXCfF27eLwLJZQn9/qNxFaRgdyzZI/IGk/IaXc7ugkAEk4A71XsLRLDTrazjGEgiWJR7KAP6VzPjrU7hbW20LTz/wATDVX8lSD9yP8Aib+n0z6VrCnzz5UZTqckOd/15Gfap/wnfihr2UFtB0uTZAn8NxL3Y+oHH4Y9TXfVS0nTLfRtKt9PtVxFCm0HHLHuT7k5NXadaopO0dlt/XmTRpuCvLd7/wBeQUUUVkbBRRRQAUUUUAFcZ8Pz5b+IrXP+q1abv9B/7LXZ1xvhYmHxv4stieDLDKB/vKSf5it6WtOa9Pz/AOCc9XSpB+bX4P8AyOyooorA6AooooAKKKKACiiigDL8QaHbeIdHmsLkY3DMcmOY3HRhWR4M1u5uYrjRNWONW00+XJk/61P4XHr2/Q966uuK8a2k2lXln4tsEJms2CXaL/y1hJwc/TP657V0UXzr2T67ev8AwTmrLkftl039P+Bv952tFRW1zFeWsVzA4eGVA6MO4IyKlrnasdO4UUUUAFFFFABRRRQAUUUUAFFFFAGSPEVi3ik+HVEpvltvtTEL8ipnHJz1zXI+Nf8AibfEXwfog+ZIpnv5l9Ag+Un8QRWp4j8Dy6rr0evaRrdxo+qrD5DTRxCVXTOcFSR/P09Kt+HfB0OiX9xql3f3OqavcKEkvLnGQg/hRRwo9qI7pvp/S/QHs0uv9P8AU6WuG8LbPEXi3VvEjEPDA32Oy5zhR1YfXP8A48a2/GeqHR/CeoXSEiUx+XGR1DN8oP4Zz+Fc/p/w3todKs5ra+vNO1QQqZZreU4L4ycg9s+mK66KjGnKUna+i/X9DkrOUqsYxV7av8l+p31FcT53jnQT++gttetV/iiPlzY+nT8gat2HxB0S5l+z3rTaZdD70V6mzH49PzxWbw87Xj7y8v6uaLEQvaXuvz0/Hb8Tq6KbHLHNGskTq6MMhlOQfxp1YG4UUUUAFFFFABXG6eRb/FjV4v8An5sY5uvddq12VcbdZg+Ldi+eLjTGj69wzH+greh9peT/AMzCv9l+a/y/U7KikZlRSzEKoGSScACsT/hNPCv/AEMujf8AgfF/8VWBublFVrLULLUoPPsLy3uoenmQSq6/mDVmgAooooAKKKKACo7i3iu7aW3nQPFKhR1PQgjBFSUUbAcZ4CnlsTqXhm5ctLpkx8onq0Tcqf8APqK7OuJ14f2N8QdE1ZflhvgbG4PbJ+5+pH/fNdtXRiNWqi+1r8+pz4fROm/su3y6fgFFFFc50BRRRQAUUUUAFFFFABRRRQAUUUUAcX44/wBO1fw3o3JW4vfOkH+xGOc/gT+VdpXGXR+1fFuxjOCtnpzSj2ZiVP6EV2db1tIQj5X+9nPR1nOXnb7l/wAOFVL/AEuw1SHyr+zhuE7CRAcfQ9vwq3RWKbTujdpNWZxcnw/FhI03hvV7zSpDz5W8yRE+4P8AXNN/tvxfoXGraMmp24PNzp5+bHqU7/kBXbUVv9Yb/iLm9d/v3MPq8Y/w3y+m33bHO6V440DVmEcd6Le46GC5HlsD6c8E/QmuiBBGRyKy9V8OaRrSkahYQzNjAkxhx9GHNc6fBeq6Od/hrxBPAg6Wl3+8i+gPYfhn3o5aM/hfL67fev8AIOatD4lzemj+5/5nbUVxP/CXa7op2+IvD8hiHW7sPnTHqR2/E/hW9pPinRNbwLHUIXkP/LJjtf8A75PNTKhOKva67rVFQr05PlvZ9nozYrjPEh8j4heE5843meP/AMdA/wDZq7OuN8dMYL/wzdA48vVI1P0br+gp4b+Jbun+TJxP8O/Zp/c0X/H2pf2T4D1m7DbXFsyIf9pvlH6msjwp8PvDkfhLShf6FYTXbWyPNJLArMWIyckj3qr8XC19pOj6AjENqupRQtt67Ack/gcVMvwps1AU+KPFLIONh1EbSPThOlYR2b/rT/hzpfRf1r/wxleEtNs7D4x65F4fjWHSobJUuo4j+7E5IIA7cc/TmvU6y9A8O6X4Z077DpVqIIS25jkszt6sTyTWpT6JdhdWwooopAFFFFABRRRQByfxGtXm8ITXEX+us5Y7iMjqpDYJ/AEmuksbpb3T7a7TG2eJZBj0YA/1qtr9t9t8O6lbd5baRR7HacfrWd4EuPtXgjSpPSLy/wDvliv9K3etBeT/ADX/AADnWld+a/J/8E6KiiisDoCiiigAooooAKKKKACiiigAooooA46xUv8AFjU5Cf8AV6ciAexZT/SuxrjrNjH8WtSjOMS6ajg+mGUY/U12Nb194+i/IwoWtL1f5hRRRWBuFFFFABRRRQAVxWs+GNI1/wAVLaG0jiEFsZrmaABHZ3OIxkf7rnn2rtGYKpZiAAMkntWH4XU3Fpc6s4O/UpjOue0Q+WMf98gH/gRrSnOUPei7GsacJU5Smk1sr93/AMC/zMT/AIR3xXoXOh64L6BelrqAycegb/8AZFcF4s8carq00VlPaw2jWNwHZEO8+cmRnPTHJ45+pr3WvD/iFoMMHiu7ewYsXgN7coRxHlsHn3JB/GvRwNSNSp+8Sv3seJmFKdOl+6bt1VzrPDE1p49u9O1nUnkj1PRXcJDEwEcm8D5ypBPbseor0SvPNE+GukvoFpO1zcrfSKJhdwSbCu4AgAcjA/PrV37D420Ef6HfQa3ar/yyuhslx7Nnk+5P4VzVadKU2qUreT0/H/Ox1UqlaMF7WN9N1r+H+VztqK463+IdlDMttrtjd6RcntPGWQ/RgOnvjFdVaXtrfwCazuYriI9HicMP0rnnSnD4kdEKsJ/CyeiiiszQKKKKACiiigBky74ZExncpGD9K5P4ZNu8DWgx92SQf+Pk/wBa6ud/Lt5HzjahOfTiuU+GSbfA1mefmeQ/+Pkf0reP8CXqv1OeX8ePo/zidfRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAcZff6J8WNMlJwt5YPCP8AeUlv8K7OuL8eH7BeeH9b6LZ3oSVvSN/vZ/Bf1rtK3q6whLyt9z/4Y56Ok5x87/ev87hRRRWB0BRRRQAUUUUAV7+0W/0+4s2kkjWeNoy8ZwygjHHvWPFF4g0eFIoltdUtYlCon+omAA/FG/8AHa6CimnY2hWcFytJrs/6v9zMSLxTp3mCG+MumzngR3qeXk/7Lfdb8Ca4uxhbWfD3jDxJKDm9jlS3zxiKNTj+QH/Aa6f4gX5s/Ck8Mah7i8ZbaFe5ZuuPwz+laFpo8eneEl0lAMR2piYjuxU7j+JJP411U5KnT5urf4LV/oceI5K1TlgrWTvrfV6L8LjfCMvneD9IbOcWka/kMf0rarlfhzMZvAunbjlk8xD+Dtj9MV1VY11y1ZLzY6D5qUX5IiubW3vIGhuYI5om6pIoYH8DXK3fw80zzzdaRcXWkXXUPayHb+K+nsCK6+ilCrOHwsc6UJ/ErnE+d450E/voLbXrVf4oj5c2Pp0/IGrdh8QdEuZfs9602mXQ+9Fepsx+PT88V1dVL/S7DVIfKv7OG4TsJEBx9D2/CtPa05fHH5rT8NvyM/ZVIfBL5PX8d/zLMcsc0ayROrowyGU5B/GnVxcnw/FhI03hvV7zSpDz5W8yRE+4P9c03+2/F+hcatoyanbg83Onn5sepTv+QFHsYy/hyv5PR/5fiHtpR/iRt5rVf5/gdtRXO6V440DVmEcd6Le46GC5HlsD6c8E/QmuiBBGRyKxnCUHaSsawqRmrxdzM8RXP2Pw1qdwPvR2shX67Tj9apeB7YWngrSYwMZgEn/fZLf+zVR+JFwyeFGs4j+/vp47eMDuS2f6Y/GuotbdLSzhto+EhjWNfoBgVq9KC83+X/DmS1rvyX5v/gE1FV7O/s9RjeSyu4LlEcxs0EgcKw6qSDwR6VYrA6AooooAKKKKACiiigAooooAKKKKAMXxZpZ1nwvqFkq7pGiLRj/bX5l/UYpvhDVRrPhawuy2ZPLEcv8Avrwfzxn8a3K4fQD/AMI5441LQn+W11D/AE2z9N38Sj8j+C10Q9+lKHVa/wCf9eRzz9yrGfR6f5fqvmdxRRRXOdAUUUUAFFFFABRRUVzcRWlrLczMFiiQu7HsAMk0bhscdqP/ABPviXY2Iw1to8RuZR1HmtjaD7j5T+ddtXHfD23knsL7XrlSLjVblpeR0jBIUfz/AAxXY1viHaSgvs6f5/ic+H1i6j+1r8un4HG/DUiPw7dWgz/ot9LDg+2D/WuyrjfAwMOp+KLU/wAGpu4Hs2cfoK7KjE/xW+/6jw38JLtp9wUUUVgbhRRRQAUUUUAZeq+HNI1pSNQsIZmxgSYw4+jDmudPgvVdHO/w14gngQdLS7/eRfQHsPwz7121QXt3DYWU93cNthhQu59gK2hWqR91O67br7jGpRpy95qz77P7zzyCbWfEHjzTtN1q2t4m0gNdS/Z2yjkgbD14Odv613WvagNK8P6jqDdLa2kl/EKSK57wDaTTWl74hvF23WrTGUD+7GMhR/P8MVW+Ll48HgKe0hP7+/nitYx6lmyR+QNPGO8vZx6afN7/AIsWDjaPPLrrr26fgT/CnTzYfDvTN/8ArLkNcufUuxIP5Yrs6radZpp+mWtlGMJbwpEv0UAf0qzWU2nJ2NY3tqFFFFSUFFFFABRRRQAUUUUAFFFFABXLeOdIuL3TItS0/I1LTX+0QEdWA+8v4gZx3xjvXU0VdObhJSRFSCqRcWZug6zBr2jW+o2+AJV+dM/cbuv4GtKuBlz4D8UNcAFfD2qP+8x0tpvX2B/l9BXeghlBBBB5BHerrU1F80fhe3+XyIo1HJcsviW/+fzFooorE2CiiigArkfiFeSrocOlWpP2rVJ1tkA9CRuP06D8a66uJj/4n3xQkf71rokG0ennP3/LI+q1vh1afO9o6/5fiYYh3hyLeWn+f4XOusbOLT9Pt7OAYigjWNfoBirFFFYt3d2bJJKyOM8O/ufiJ4rg/v8A2eTH/Ac/+zV2dcbbkwfFy7TPy3Glq5HqQ4A/QGuyrbEayT7pflYww+kWuzf53CiiisDoCiiigAooooAK4fxdcPr+tWfhGzf5ZCJ9QdT9yIEED6nj/wAd9a3vE/iCHw7pLXLDzLhzst4R1kc9B9PWqng7QJtJspbzUG8zVr9vNuXPVc9EHsP5/hXRSXs4+1fy9e/y/M5qr9pL2S+fp2+f5HRQwx28EcEKBIo1CIo6AAYArA8W+DrLxjbWsF9d3tutrL50bWkio27GAclT09q6Kiud67nStNjgf+FV23/Q2+LP/BiP/iK7axtFsbC3tEkllWGNYxJM252wMZY9ye5qxRRcAooooAKKKKACiiigAooooAKKKKACiiigCrqWnWurafNY3kYkgmXawP6EehHUVx2h6nceEdSTw1rcpa0bjTr1uFZf7jHtjge30xXd1n6zo1lr2myWN9HvjbkMPvI3ZgexralUSXJP4X+HmjGrTbfPD4l+Pk/60NCiuCstb1DwZdx6T4jZ59OY7LTUwMgDsr/5z9RyO7jkSWNZI3V0YZVlOQR6g0qlJw809mOnVU/Jrddh1FFFZGpV1O+j0zS7q+l+5BE0h98Dp+Nc98PrGS38N/b7nm61KVruU/7x4/Tn8ar/ABAlkvYtM8OwMRLqdyokx1ESkFj/ACP4GuwiiSCFIY1CxooVQOwHArofuUUusn+C/wCD+Rzr36zfSK/F/wDA/MfRRRXOdBxupYt/itosuT/pNlLD2x8u5q7KuN8Vgw+NPCV1njz5Yj/wIKB/WuyretrGD8v1ZhR0lNef6IKKKKwNwooooAKo6vq1nomnS319KI4kH4sewA7k1X1/xHp/h2z8+9ky7cRQpy8h9AP61zul6BqHiTUY9c8TpsjQ7rTTc5WMerjuf8n0renSVueekfz9DCpVd+SGsvy9f61F8O6Vea/qy+Kdcj2cf8S+zJyIU/vH3P8A9f0x29FFRUqOo79OnkXSpqmrdevmFFFFZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF3Z29/ayW13Ck0EgwyOMg1xTaNrvgyRptAZ9S0kks+nytl4/8Armf8/Q9a7yitadVw03XYyqUlPXZrqYWg+LtK8QDy7eYxXa/ftZhtkUjrx3/Ct2sLXPCOka8fNuYPLuhyt1AdkikdDnv+Oaw3s/G/h6NlsrqHW7UAhVn+WZPTnPOPcnPpV+zp1Pgdn2f+f+djP2lSn8auu6/y/wArj9H/AOJ78RdU1U/NbaYgsrc9t/8AGR/48PxFdtXmng7xNpfhnSk0vWY7ywvmkaSZ7iBgJGJ65GT0wMn0rvrLWNM1Fc2WoW1x7RyhiPwqsVTkpbaLRE4WpBw3956tev8AlsXaKKK5TrOM+IP7oeH7rp5WrQ/1P/stdnXH/E1WHg2SZDh4J4pFPod2P611olTyRKzBUI3ZY4AFbz1owfqvy/zOeGlaa8k/z/yH0Vhah4y8PaaG+0arblh1SJvMb8lzWMfGer6x8vhvw9cSo3S7vP3cf1Az8w/HPtSjh6kle1l3eiKliKcXa932Wr/A7OWWOCJpZZFjjUZZ3OAB7muPvvG0uoXLad4UtDqF1nD3LDEEXuT3/wA9elMXwVf61Ik/ivVpLsA5FlbHy4V/kT9eD7111lY2unWq21nbxwQr0SNcCq/dU/7z/D/gkfvan91fj/kvxOd0Lwctnef2trNydS1huTM/3IvZB2+v5AV1VFFZTqSm7yNqdONNWiFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHDeKviXaeFfFunaHPZeal0qNLcedt8gMxUHbtOemeoruGYKpYngDJNeRyaCnjrxJ4+ZsMI447C1c/wyIN3/AKGo/OtSw8XvcfBe81KZit/ZWslpMG6iZRsGfc5U/jSv+7v13+T2/rzKteaXTb5/1f7jpfC2uw+N/D738+mRx2zTyRRxyMJRIqnG45UYzzxz0pt58PvDF6dzaYkTesDNH+gOP0p/gHTf7J8CaNaFdrC2V3H+03zH9TXR1tzzpytBtGDhCqrzSZxv/CvIIT/oWv63ajsqXPA+nApy+DdWjG1PGOq7c8bzuP5k12FFV9Zq9X+CJWGpLZfizibn4f3GoRNFqHijVriJ8boy+EIHP3eR1FSR/DPRDt+2T6he7eguLg4H0wBXM+DfG2vaz8R7m1vLsPotw1ytlEIkH+rYYO4DcePU969C8Sa5D4c0C61OZS5iXEcY6ySHhVHuSQKPrVblTT37f8APqlFyacbvz1/MSw8LaFphU2mlW0brwHKbmH/Ajk1r1578K9a8R67b6xP4gvRObe6+zRosSKEZRlgCoGeoHOelehVlNybvJ3NYxjFWirBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXM6WtrNcSHCRIXY+wGalopPbQEcF8I4HPg6TU5QRNql5Ndvn3bA/wDQa4Px3p15pXi+58O2qf8AEt8UXVvOMcBHD4fH1OCfqK95oqtOZPt+X9JBrZruNRFjjVFGFUAAegp1FFIArL8SaiNI8M6nqBPNvbSSD6hTj9cVqVynxG0vVdb8G3Ol6RAZri6kjRh5iptTcCxyxHYdPepkrqy6lRaTuzg9A006IvwzujkNM1wshPUmZdwro9cvk1rxNd3D/No/haJriQ/wy3e0kD32Dn6mrPj7w9q914f0VPDdukt9pd3FLCrOqgKqkfxED04qPV/Ceo2PwqudA0eI3ep3Kjz3MiqZXdgZXJYgev6Vc3e9u7t89vu1Jjur9Vr+N/v/ACLXwpsntPh9YSy5868Z7qQnqS7Eg/liu1qppdkmm6TZ2KDC28CRD/gIA/pVunO3M7bExvbUKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z
|
<image>In $\odot P, m \angle M P L=65$ and $\overline{N P} \perp \overline{P L}$.
Find $m \widehat{N M}$
|
25
|
Geometry
|
Geometry3K
|
test
|
71
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFBAkQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivMPFXjjVdN8ZvBpSme2soR9ph2llbuxJHTAIGexrsvDfi3TPE1vutJNlwozJbufnX/ABHuK6J4apCCqNaM56eKpTqOmnqv60N2iiiuc6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrajfRabptzfTH93BG0je+BnFWa4H4qao0Oi22kwZM9/KAVHUqpHH4sVrWhT9pUUO5lXq+ypufYrfC2xkuhqfiG7G6e8lKKxHUZ3OR7EkD/gNWPEvw8Etz/a3huX7DqKNv8ALVtqMfVT/Cf0PtXXaDpaaNoVnp6AfuYgGI7t1Y/iSa0a2nipKs5wen6GEMJB0VTmtf1PPfDvxCdLv+yPFERsr5Ds85l2qx/2h2Pv0PtXoIIZQQQQeQR3rhviKdEubRLGa3N1rUg22kUH+tUnufRfY9f1HPWWo+Jvh0YYdUgN3pDgY2tuEZPZW7H2PB7etW6MK65qeku3f0LlGvhIRnXV4PaXX5rt5nrdFZ+j63p+u2Qu9PuFlj6MOjIfRh2NaFcUouLszojJSV1sFFFFIYUUUUAFFFUNX1rT9CtEutSuBBC8qxK2xmy7cAYUE0AX6KKx9d8VaH4ajV9Y1KG13jKoxLOw9QoyT+VAGxRWNoXivQvEqM2j6nDdFBlkXKuo9SrAEflWzRYAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArahexadp1zezHEcEbSN9AM1g+FvG+m+JoxEpFvfAZa3duvup/iH61kfFXVGg0O30qHJnv5QCo6lFIOPxYr+tQ33wvgfR7NtOm+y6vbxLulBIWVwOSccg57iu2nRpeyTquzk9PkcNStW9s40ldRWq9ex6JRXmuiePL7Rr0aN4vgeGVcKt0V6j1bHBH+0P/r16PFLHPEksMiyRuNyuhyGHqDWFWhOk/e279GdFGvCqrx36rqh9FFFYmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUcc8MzOsUsbshwwVgSp9/SgCSiiigAoorzz4l/EeXwY1lZ6dFbz6hcNvdZwWWOPpkgEHJPTnsaOqXcaR6HRSKdyKT3GaWgS1CvItQbUvFHxKuJ9Jjt5jpIAiW4JEZKN3x/tEkfSvSPEmrDRPDt7qGQHijPlg93PC/qRXM/CzSWs/Dkmoyg+dfyFsnrsXIH67j+Irsw/7ulOr8l89/wADlqy5q9Ona6XvP5bfeyyde8aR5V/CMbsP4kvU2mmvH471geW72GiQN1aM+bMB+ZH8q7SiubnXRI9j67GOsKUU/Rv8G2vwMHQPCen6CzToZLq/k/1l5cHdI349h/k5ranghuoHguIklikG10cZDD0IqSipcm3dnLVqzrScqjuzzPWPBGpeHb1tZ8ITSDHMlpnJx6DP3h7Hn0zW34V+IFlrrLZXqiy1MfKYm4Vz/sk9/wDZPP1rsa5TxV4E0/xGrXEeLXUR92dBw/s47/Xr/KuuNeFVctf7+vz7nnSoTovmobdY9Pl2/I6uivL9M8Yax4QvU0jxZDJJB0iu1+Y49c/xj9R79K9KtLu3vrZLm1mSaFxlXQ5BrGtQlS1eqez6G1HEQq7aNbrqiaiiisTcr30tzDp9xLZ24ublI2aKEuE8xgOFyeBk8Zrwj4h3/je/udHk8Q6PFpemLexiKOK4SXdJ6sVYk8A44Ar3+vMvjT/yB9B/7C0X/oLUR+JPzX5hL4WvJ/kem15X4X0BPEPxH8Uazr+nmYW0wt7JLqIlAgLDcoYYPCjn3NeqVS1bVrLQ9Mn1HUbhYLaFdzu38h6k9hRdJ3HuuVHl/jTTbLwr8SPCOp6NbRWkt7cm3uI4FCLIpKjJUcdHP6V67XlPhu21H4h+MLfxhqNu1rothkaZbv8AekP98/z+oAHTNerU1pFJ+Ym05aBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorL8R6quieHr3UCRuijOwHu54UfmRTjFyaiuopSUU5PZHBp/xVfxdL/fs9KHHcZQ/wDxZz9BXqFcH8LNKa18Py6lMCZ7+QtubqUXIH5ncfxFd5XTi5L2nJHaOn+Zy4OL9n7SW8tf8vwMzW9A07xBZG11CASL/A44dD6qe1edNF4j+GlwXhJ1HQmbJU9Ez6/3D79DXrFU9Uv7HTdOmudRkjjtVU79/Ib2x3J9O9TRryguRq8X0/yNKmF9tJOGk+jW/p5lTQPEum+JLTz7GYF1A8yFuHj+o/r0rXrxu18MaxqLXHifw5bnSl8zdZ227DSJjkjPAz6Hg59MZ6nwz8Q4r2f+zNdjFhqSHZlxtRz6HP3T7Hj+VaVcMmnOi7rquqCU54er7DEq0l1Wz+ffuju6KKK4zcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB8aaxe+H/COoarp8cMlzbIHVZlLIRuAOQCD0J71b0TVf7S8M2GrXGyPz7RLiTbwq5UE4z261V8aW32zwRrcAGS1lLge4UkV53LrM8vwd8OaJp7f8THWkWxiA6qgOHb6ADH40tbNLfS3zuPTS/n+FjtvAviTUfFdlfapcQQQ6cblo7DYrB3jU43MSSDn2A6Gurqlo+l2+i6PaaZajENtEsa++B1+p60urwXl1o95Bp9wLe8khZYJj0jcjg/gaqVlsJa7lyvJ/hL/AMjd46/6/wD/ANnlp/8Awh/xS/6He3/74P8A8RXE+B9C8ZX+ueJItG8QxWVzBc7byVhkTvufkfKe4b060R3fp+qB/D80fRdFef8Ahvw349sNet7nWvFMN9p6bvNt1UgtlSB/COhwfwr0CiwFTVNSttH0u51G8fZb28ZkdvYf1rwzxrp1zL4B/wCEn1RNupaxqUUuw9YYAr+XGPw5P1rqPir4nsLPX9G0TVvOGknF7eCJdxmCkhI8ZHG4ZP4Vy/xL+JegeK/DUGn6Yt2Jo7pJT5sQUbQGHqfUUovVS81+ev8AXl5lrR28n+Wn9f5Hvkf+rT6CnVj+GPEVj4o0SPU9PEot2YoPNXa2V4PGTWwSAMngU2tTOOx5t8T7uXUL3SfDVocy3MokcDtk7Vz7feP4V6FZWkVhYwWkAxFBGsaD2AxXm/hLPij4i6nr7/NbWmUgJ6c/KuP+Agn6mvT668T7kY0eyu/VnJhfflOt3dl6IKKKK4zsCiiigAooooAp6npVlrNk9pf26TQt2bqD6g9QfcV5rdaJ4g+Hl1JqGiSte6STulgYZIH+0B/6EPx4r1ait6OIlT93eL3Rz1sPGp720ls1uc/4Z8X6b4nt82z+VdKMyW0h+Zfceo9/5V0FcF4m+HcdzP8A2p4ek+w6ijb9iHajn2x90/p/OoPD/wAQZba6/sfxXEbS8T5ftDLtVv8Ae9PqOPpWssPGouehr5dV/mZxxEqb5K+nZ9H/AJM9ErzL40/8gfQf+wtF/wCgtXpisHUMpBUjIIPBFZuteHtL8RQ28Oq2v2hLeYTxDzGTa46H5SM9e9ca3T81+Z2PZryZp15Ddz6f44+IuoW+valBBoWhyCOKzknWMXE3OWbJ5AII/L1NevVxt38KvBd9eT3dzo3mTzyNJI/2qYbmJyTgPjrQt7j6WN6HXtC/dwQatp3ZEjS4T6AAA1qVxlt8KPBVndw3UGi7JoXEkbfapjhgcg4L4612dMQUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8y+LGpNJ/Z+hQFi8refKqAk46KMDr/EfwFem9K8v8Kf8VR8SdS15vmtrPKwHtzlU/wDHQx+prrwiUZOq9or8ehyYt8yjS/mf4bs6HR/G/hSKxgsYdQFuII1jCTxshAAxycYz+NX5vHHhmCMu+s2xA7IS5/IAmta602wvgRd2VtcA9RLEr5/MVBDoGjW0nmQaRYRP/eS2RT+YFYNweruewngf5ZLyuvzt+hzj+PW1AmLw3o15qUp6Ssnlwj6sf64p1p4QvdWvI9R8W3SXciHMVjEMQR/Ufxf5612KqFUKoAA6AUtLnt8KsN4xU1bDx5fO95ff0+SQgAUAAAAcACue8TeDdM8Twkzp5N4owlzGPmHsf7w9vyxXRUUoTlCXNF2Z504RqR5Zq6PKrPXtf+H90mna9E95pZO2G4U7iB/sk/8AoJ/DivStN1Oy1eyS7sLhJ4H6Mvb2I6g+xqS8srbULWS1vIEmgkGGRxkGvNNS8Ja14NvH1bwrNJNa9ZbVvmIHoR/GP1H6113p4jf3Z/g/8mclquG296H4r/NHqVFct4W8c6d4kUQNi11AD5rdz973U9/p1rqa5alOVOXLNWZ106kakeaDugoooqCwooooAKKQkKCScAckmvOLj4rvdXtxF4a8L6jrkFs+yW5hyqZH93Ctn9M0X6DsekUVzfhDxrp3jC1na1jmt7q2bZcWs4w8R/w4P5V0lNqwgooopAFFFFABRRRQBDeQi4sp4T0kjZD+IxXjnwX0m71Bk1a/XNtpMb2VgD03MxaRvr8wGf8ACuy8Za54jN3J4d0DQbqWW6gAGqHKwwbiQ2TjGQOevfpXSeHtEt/DugWek2o/d28YUtjl26sx9ycmiOl5f11/r5hLZR/r+v8AI06KKKACvNvhno2paX4m8YT31jPbxXV7vgeRCBIu+Q5Hr1H516TRQtHcHqrBRRRQAV558ZNNvtU8H20Gn2VxdzC+jcx28TSMFCtk4APHNeh0UdUxp2GoMRqD6Cuc8eax/Y3hG8lRts048iLnBy3Uj6LuP4V0teYeOWbxH440nw1ExMUZDz4PTPJ/EIOP96unCwU6q5tlq/kcmKm6dFqO70XqzpPh3pH9k+EbYuuJrv8A0h/+Bfd/8dA/WurpFVUQKoAVRgAdhS1jUm6k3N9TelTVOCgugUUUVBYUUUUAFFFFABRRRQAVjeIPDGm+JLTyb6H94o/dzpw8f0Pp7HitmiqjKUHzRdmTKEZrlkro8nS68R/DW5WG6VtQ0Jmwrjov0P8ACfY8Ht616Po2u6fr9kLrT5xInRlPDIfRh2q9NDFcQvDNGskbjDI4yCPQivN9Z8C6hoV8dZ8ITSRuvL2mc8dwufvD/ZP4V181PEfH7su/R+vY4+Sphvg96HbqvTv6HpdFcX4V+INprTiw1FBZamDtKPwrkemeh/2T+tdpXNUpTpy5Zqx1UqsKseaDugooorM0CiiigAooooAKKKKACiiigAooooAKKKZJLHDGZJXVEXqzHAH40APorzuDx4dW+LNtoWlX0c2lx2shuPLCsskoBPDYzxx0OOtdprurwaBoV5qtyCYrWIyFR1b0A+pwKTdo8zBK8uU0KK8o066+KfifTo9dsb7StOtpgZLexeIEyJ2yxUkZ+o/Cuo+H/jCfxVpt1HqFsttqunzGC7iXpu9R6dCPwqrBc6+iiikBzfjrV/7G8JXkqttmmXyIuedzccfQZP4VX+HWkHSfCNuzrtmuybh/ofu/+Ogfma53x07eI/Guk+GYWzHGwe4APTPJ/EIM/wDAq9NRFjRUQBVUYAHYV2VP3eHjDrLV+nQ46f7zESn0jovXr/kLRRRXGdgUUUUAFFFFABRRRQBxnir4f2mtOb/T2FlqancJE4VyPXHQ/wC0P1rH0bx1qOg3w0bxfBIjLwl2Rnj1bH3h/tD8a9LrO1nQ9P16yNrqFusifwt0ZD6qexrqp4hOPs6yuvxXoclTDNS9pRdpfg/X/MvQzRXEKTQyLJE4yrocgj2NPryeS18R/DW4ae0ZtR0NmyyN0T6/3T7jg9/Su/8AD3ifTfEtp51jN+8UfvIH4eP6j09xxU1cO4Lng7x7/wCfYqjiVN8k1yy7f5dzZooornOkz9dtrq80DUbWyYLdTW0kcRJwAxUgc9uayfAHh2bwv4NstLuUjW6Qu0xjOQWLE5z34x+VdNXAeNvGt3DfL4X8Kx/a/ENwMMy4K2q/3mPTOPXp1PYEvbbqPffoZfhzDfHvxM1p/wAewtFE+3p5mI/1zu/Wuo8VeNP+EV1nRrS40/zbPUpvJa787b5LZA5Xac9c9R0NP8D+DYPCGlyI0xudRum828um5Mj/AI84GT+ZNZfxg0+2vfh5eSzSpFJaOk8DscfODjA9yCRQ3yqK7Aveb8/8jW8W+ME8NNYWttZNqOqX8ojtrNJNhYd2JwcAfT+tdJGXMSGRVWQgblVtwB7gHAz+VeZ/C2ym8QbvG+szpc6hMv2a2VelvGnynjsxOT+PvXp1Nq2j3JTuFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHcTx2ttLcSttjiQu59ABk15x8N4JNY13WPE9yDulkMcWe2Tk/kNo/OtX4oav8A2d4Va1RsTXz+UMHnYOWP8h/wKtzwlpH9ieGLGyZcSiPfL/vtyfyzj8K7I/u8O5dZafJbnHP95iVHpFX+b2NqiiiuM7AooooAKKKKACiiigAooooAKKKKACiiigDlvFXgbTfEqNNgW1+B8twg+97MO4/WuX03xZrXgy8TSfFMMk1r0iul+YgeoP8AEP1H6V6jVTUtMstXsntL+3SeB+qt29weoPuK6qeI932dVXj+K9Dlq4a8vaUnyy/B+pJZ3ttqFql1ZzpNBIMq6HINT15VeaBr/gC7fUdAle80wnM1uw3ED/aA6/7w5Hfiuz8MeMtM8TwgQP5N4oy9tIfmHuP7w9/zxSq4e0eem7x/L1Cliby9nUXLL8/Q6KiiiuY6gooooAKKKKACiiigAooooAKo6xo9hr+lTaZqcHn2c23zI97LuwwYcqQeoHer1FAHj2m+HdK8M/HexsdHtfs1s2mtIU8xn+Y7gTliT2FeleJ/D8Pijw9c6PcTyQxXG3c8eNwwwbv9K4m8/wCThtP/AOwSf/Z69Kmmjt4JJpnWOKNSzuxwFA5JND1gr+f5sFpN28vyRTto7Xw/oMMUs6x2ljbqhlkIUBUXGT2HArz34SI9/qnirxGiMtnqN8fs+RjcAzHP/jw/Wqs39pfF7U/Kiaax8G20nzSY2vfMD29v5fXgep2Nja6ZYw2VlAkFtCoSONBgKKabu5Pdg9FyIsVHPPHbW8s8rBY4kLux7ADJNSVxfxP1f+zvCj2yNia+cRDHXZ1Y/lx/wKro03UmoLqZ1qipU3N9DH+HEMmteINY8T3C8ySGKLPOCeSPwXaPxr0ysTwjpH9ieF7GzZcShN8v++3J/LOPwrbrTE1FUqtrbZeiM8LTdOklLfd+rCiiiuc6AooooAKKKKACiiigAooooARlDqVYAqRggjgivPPEPw9lt7n+1/CkrWd5Gd32dG2q3+6e30PB9q9EorWlWnSd4mVajCqrS/4KOC8NfERLi4Gl+IY/sOoodm912o598/dP6fyrvetYHiXwhpnie3xcp5V0oxHcxj5l9j6j2P6VxFrrXiD4eXcdhrUb3ukMdsU6nJUf7JP/AKCfwrodKnX1paS7f5f5HMqtTD6VtY/zf5/5nouv6gdJ8PajqK/etraSUfVVJFeLfD74i+E/C+ju+oJey61dyNLeXIhDFyWOBuLZxj9Sa9u0zVbHWbJbuwuEmhbuvUH0I6g+xq5XHZxbudykpRVjjfDPxO8P+K9UbT9OF2syxNKTNEFUKMZ5yfWsCIn4oeMTIRu8KaNLhQfu3lwO/uo/l9a9RopaXuHSx5X8OXPhnxx4i8Gy5WHzDeWQPTYcZA/Ar/3ya9Uooo6JB1bCiiigAooooAKKKKACiiigAooooAKKKKACiiqWr6jHpOkXeoS/dt4mfHqQOB+JwKaTbshNpK7PPNU/4qr4s2tgPms9MG6Qdsr8zfmxVT9K9QryDwV4XuNd0271uPVp7PUnuCY5IWH1O8dcEk8Z7V2Oi+Jr631NNB8SwpBqLD9xcx/6q5Hsex/zx0rsxa95Qj9lW/zYYDCSq0HiIu8ndtdUunqrdtjrqKKK4hhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwvif4eRXs/9p6FILDUlO/CHajt68fdPuOP513VFaUqs6UuaDM6tGFWPLNHnOgfEC4sbv+x/FsLWt0nyi5ZcA/73b/gQ4P616IjrIiujBkYZDKcgisvX/Dem+I7MwX8OWA/dzLw8Z9j/AE6V5quqax8NNXGmzXCahprDzFj3fMqE4yB1Q+3Q11ezp4jWnpLt0fp/kcylVoaT96PfqvX/ADPYKKzNE1/TvENkLrT5w4/jjPDxn0Ydv5Vp1xSi4u0lqdkZKSvF3QUUUUhhRRRQAUUUUAFFFFAHC3Ph7VJPjLZ6+trnTI9OMDT+YvD/ADcbc7u47VqfECw1TVPBGpWGjwGa9uEWNUDqmVLDdyxA+7nvXTUUmrrl/ruNO0uY8n0i9+KOi6PaabbeC9O8m1iWJSbuPJwOp/e9T1rsPCeo+L76W6HifQ7bTY0VfIMMyvvPOc4dsY4rqKKq93dk20sgry/WP+Kq+K1ppw+a00wbpPQkYZvzO1fwr0TVtQj0nSbu/l5S3iaTHqQOB+J4riPhXp8j2moa9c8z30xUMe4Byx/Fif8AvmuvD+5CdX5L1f8AwDkxP7ypCj31fov+Ceh0UUVxnYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3Vpb31s9tdQpNDIMMjjINTUUJ21QNXPL9T8Hax4RvX1fwnNJJB1ltD8zY9Mfxj9R79a6Twp470/xGq28mLXUR96Bzw/uh7/Tr/OusrjvFfgCy14teWTCz1MHcJVGFc/7QHf3HP1rtVaFZctff+b/AD7nE6E6L5qG38v+XY7GivMtH8b6n4bvF0bxfDINvEd3jJx6nH3h7jn1zXpMFxDdQJPbypLDINyOjZDD2NYVqE6T126PozejXhVWm63XVElFFFYmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV578VNQkNhY6HbfNPfTAlR3AOAPxYj8q9CryJdX07VPivNqOo3kUNlYZWEyNgMU4GP+BFmrswULzc7fCr/5HHjZ2pqne3M7fLr+B0Vx4El0e1gv/DVzJb6pbxKJELkx3WAAQwPGT+X061ZP2X4ieEC4T7PfwsQM8Nbzr79cHj8D6itX/hM/Df8A0GrP/v5XK6b4h0bTPH+pyxalbf2bfwLMzh/lWYHGPqRk/jU8tWV207+h7WHx0HSs5pSppOLutlpy+att6W6nT+Ddbk1vQVe6G2+tnNvdKeode/4jB+ua6CvOtE8Q6Np3jXX3/tO2WwvPKmjfzPlL4+b8ck11H/CZ+G/+g1Z/9/KidGd9Iv7jnxtTDqs3TkrOz3Wl1e3y2N2isL/hM/Df/Qas/wDv5R/wmfhv/oNWf/fyo9jU/lf3HL7an/MvvN2isL/hM/Df/Qas/wDv5R/wmfhv/oNWf/fyj2NT+V/cHtqf8y+83aKwv+Ez8N/9Bqz/AO/lH/CZ+G/+g1Z/9/KPY1P5X9we2p/zL7zdorC/4TPw3/0GrP8A7+Uf8Jn4b/6DVn/38o9jU/lf3B7an/MvvN2isL/hM/Df/Qas/wDv5R/wmfhv/oNWf/fyj2NT+V/cHtqf8y+83aKwv+Ez8N/9Bqz/AO/lH/CZ+G/+g1Z/9/KPY1P5X9we2p/zL7zdorC/4TPw3/0GrP8A7+Uf8Jn4b/6DVn/38o9jU/lf3B7an/MvvN2isL/hM/Df/Qas/wDv5R/wmfhv/oNWf/fyj2NT+V/cHtqf8y+83GZUUsxAUDJJ7CvM7G/iXRfEPjW+iSZ7tmgtI5FyPLB2quD2Jxn/AHa3vEHjHQ5PDuox2mrWz3L2zpGqvyWKkDH51yV1qmkyeGvCWkpf23lxXEMt6u8YQDlt34sfxrWnRmlrFnq5fVwyg+ea95pPVfCvef32SM+58O6j4Ym0WbSr2X+3LyNne1jT0G4j0xjjB64P0rtvC3xCtdWlGn6qgsdTU7Sr/Kkjegz0Psf1rPsvEOjTfEXUdVutStlt4bVLe0dnGGzyxH0OR+NO8Ux+CfE0ZlbWLO3vgMLcIwyfZh/EP1rqbdW0a0X621X+aPIxsKVGoqmFkrtXlG65bvWy7WVl6nolFePeHviDdeHrw6Xq1wmo2KEKlzC+8oPUH+Iex5H6V6zY39pqdol1ZTxzwP8AddDkfT6+1clfDTov3tu5NDE06693dbosUUUVznQFFFFABRRRQAUUUUAFFFFAHnvxV1GQabZaJbAtPfSglB1KgjA/FiPyrtNG02PSNGtNPj5WCIIT6nufxOTXnunD/hK/i1cXp+ez0sYQ9srwv/jxZh9K9QrsxH7unCl836v/AIBx4b95UnW+S9F/wQooorjOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigChq+i2Gu2TWmoW6yxnlT0ZD6qexrzeew8RfDa4a50921DRCcvG38P+8B90/7Q49fSvV6QgMpBAIPBB710UcRKmuV6xfQ562HjUfMnaS6r+tTF8O+KtM8TW3mWUuJlH7yB+HT8O49xW3Xn3iL4eMt1/a/hiU2V8h3+SrbVY/7J/hPt0PtTvDfxED3P9k+JI/sOoIdhlYbUY/7Q/hP6H2q54eM1z0NV1XVf5mcMRKEuSvo+j6P/ACZ39FAIIyORRXIdgUUUUAFFFFABRRRQAUUUUAFFFFABXKS/DjwxNM8r2D73Ys2J3HJ56Zrq6KuFScPgdiJ0oVPjSfqcl/wrTwr/ANA9/wDwIk/xo/4Vp4V/6B7/APgRJ/jXW0Vp9Zrfzv72Z/VaH8i+5HJf8K08K/8AQPf/AMCJP8aP+FaeFf8AoHv/AOBEn+NdbRR9Zrfzv72H1Wh/IvuRyX/CtPCv/QPf/wACJP8AGj/hWnhX/oHv/wCBEn+NdbRR9Zrfzv72H1Wh/IvuRyX/AArTwr/0D3/8CJP8aP8AhWnhX/oHv/4ESf411tFH1mt/O/vYfVaH8i+5HJf8K08K/wDQPf8A8CJP8aP+FaeFf+ge/wD4ESf411tc74q8baL4OjgbVpZVacMYkijLF9uM+w6jqaTxVZfbf3sFhKD+wvuRU/4Vp4V/6B7/APgRJ/jR/wAK08K/9A9//AiT/GuL+GfiVvFvxM8Rav5ZijktUWKNjyqKwAz79/xruviJqU2k+ANYu7eZ4Z1h2xyRuVZWZgoII5B5oeKrqKk5P7wjhKEpcqgvuRD/AMK08K/9A9//AAIk/wAaP+FaeFf+ge//AIESf41y2mfDnxDe6VZ3c3xC1+KWeFJHjE0hCkqCRnf716D4c0i40PRorG61S51OVGYm5uSS7ZOcEknp061TxFZXTm/vYlhqDV1BfcjH/wCFaeFf+ge//gRJ/jR/wrTwr/0D3/8AAiT/ABrraKX1mt/O/vY/qtD+Rfcjkv8AhWnhX/oHv/4ESf40f8K08K/9A9//AAIk/wAa62ij6zW/nf3sPqtD+Rfcjkv+FaeFf+ge/wD4ESf40f8ACtPCv/QPf/wIk/xrraKPrNb+d/ew+q0P5F9yOS/4Vp4V/wCge/8A4ESf40f8K08K/wDQPf8A8CJP8a62ij6zW/nf3sPqtD+Rfcjkv+FaeFf+ge//AIESf40f8K08K/8AQPf/AMCJP8a62ij6zW/nf3sPqtD+Rfcjkv8AhWnhX/oHv/4ESf41p6N4V0rQJXk02OaHeMMvnuyt9QTjPvW1RUyr1ZK0pNr1HHD0ou8YpP0CiiisjYKKKKACiiigAooooAKxvFerDRPDN9fBgJFj2xf77cL+pz+FbNeafEq4k1bWdH8MWzfNNIJJcdsnap/Abj+Vb4amqlVJ7bv0Rz4qo6dJtb7L1ZqfC/SPsHhj7bIuJ75/MJPXYOF/qfxrt6itreK0tYbaFQsUSBEUdgBgVLUVqjqVHN9S6NNUqagugUUUVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4k8J6Z4mt9t3HsuFGI7hBh1/xHsa3aKqE5QfNF2ZM4RnHlkro8ottV8Q/Di4Sy1WNr7RidsUqc7R/sk9D/ALJ/A969J0rV7HWrJbvT7hZoj1x1U+hHY1ZubaC8tnt7mFJoZBh0cZBH0rzXVfBereFr1tY8JTSGMcyWhO449MH749uvpXXzU8R8Xuz79H/kcfLVw3w+9Dt1Xp3R6fRXI+FfHtj4h22lwBZ6kODC54c99pP8uv1rrq5alOVOXLNWZ106sKkeaDugoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzLwt/yXDxh/wBe8X8krT+LkF7d+A5rSxs7i7lmuIlMUEZdiobcegOBx1rM8Lf8lw8Yf9e8X8krq/F/i+18HWVpd3dtNNFcXAg3RkDYSCcnPbg0L4IfL8wvacv66HJXqfFa2sv7Ut59ISKKPcNKRNxCAfd3FclsejAV13grxVD4w8NQapHH5MhJjmiznY46j6dCPrW5NcQw2klxI6rCiF2cngKBnNebfBCJv+EX1K6CFILnUZHhH+zhR/8AW/CmtW18/wAQton/AFsenUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEZgqlmICgZJPavH9FtdW8W+LNV8RaVdx20tvJ/o7zR7lYEFQvt8o54713HxC1f+yfCN1sbE11/o8fPPzfe/wDHc1zHhjUNQ8DaPAuqaQx0y5InN5bnc0ZYD/WL2wMf/XNd1BOFGU1vLRfqZ0qdTEYyEKaT5Pes7avZKz3fWx0WmeMZoNQTSfE1oNOv3OIpQcwz+6t2+n9eK66sq9sdK8VaMI5RHdWcy7o5EPT0KnsawPDeo3miawfCusSGQhd2n3Tf8to/7p9x/T6Z5WlJXW56tSlTrxlOkuWUd4/m1106rpv6dpRRRWZ5wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHI+KvAVj4gLXdsRZ6kORMgwHP+0B/Pr9a5/SfGmq+F75dH8XQSGMcR3f3jj1J/iX36jvmvTq4XxUn/CUeJrLwvGP3EA+1X0oAJVegUHsTn9R6V2Ua/MvZ1VeP4r0M4YCVWbnQfK0m32su/wCXfU7W2uYLy3juLaVJYZBuR0OQRUteN3J1T4ca+9tpd2b6zaP7RJasCSqZwSwHCn/aH4ivR/DfizTfE1tvtJNlwo/eW7n50/xHuKirhnBc8HePf/Mzp1nzezqx5Zb2fVd13Ru0UUVzHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzGleEP7M8cax4k+3eZ/aMaJ9n8rHl7Qozu3c/d9BWpr+g2HiXR5tL1KIvby4+6cMpHRgexFadFFtEgWjueXn4RXssI0+fxtq8ujAAfYj12/3d27GPbbivRNK0qz0TS7fTrCEQ2sC7UQfzJ7k9c1cop3AKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQ3d1FZWU91M22KGNpHPoAMmhK+gN21PNvF5Pif4h6X4eQlre2w8+OnPzNn/gIA+pr0x4o5IjE6K0ZG0oRkEemK82+GcRv9S1fxJeMoluJTHHubpk7mxnt90D6V6R58P/AD1T/voV2Yv3XGkvsr8epx4P3lKs95P8FscNEjeBPFENujN/wj+qSbEUkn7NOew9j/npzreOtKe/0Bry1LLqGnH7TbuoywK8kD6gdPUCl8c20Go+DtQTzFMkUfnxlSMhk54/AEfjWlouopqXh+xuZ3TfPbo0ilu5XkfnmsLvSfU+hliHanjF8Sdn522b9VdP0JdE1NNY0Sz1BBgTxByPRu4/A5FX64z4dyrbaLfae7gLZX8sMZY9VyDn8ya6/wA+H/nqn/fQqZxtJpHFjKcaVecI7J6enT8CSio/Ph/56p/30KPPh/56p/30KixzklFR+fD/AM9U/wC+hR58P/PVP++hRYCSio/Ph/56p/30KPPh/wCeqf8AfQosBJRUfnw/89U/76FHnw/89U/76FFgJKKj8+H/AJ6p/wB9Cjz4f+eqf99CiwElFR+fD/z1T/voUefD/wA9U/76FFgJKKj8+H/nqn/fQo8+H/nqn/fQosBJRUfnw/8APVP++hR58P8Az1T/AL6FFgJKKj8+H/nqn/fQo8+H/nqn/fQosBJRUfnw/wDPVP8AvoUefD/z1T/voUWAkoqPz4f+eqf99Cjz4f8Anqn/AH0KLAOkdYo2kc4VQWJ9AK4zwFibTdT8S3RxJqNw8pY/wxISAPw5/StrxVdrH4T1ZopV3/ZZAu1uclSOPzrAuJo9P+DwVXAZtNRdoOTmQAEY/wCBVrGL5bd2elhYXw7it5yjH5b/AJ2+4d4MKS2Wq+LtQ+Vr13cF/wDlnAmcD9D+QrlrLwdqOt2D+KNJkXT72Wd5bW2QeWBHnAwex6+x/Gui8Rv/AGX8Jo7SCQeabaCE7epzt3ce/P512dhHbWOn21pHJGEgiWMAMOgGK1jWlTvOHX8kTmUKNelKcl8UrR7xUUrW7br7jivDvxDZbr+yPE8Rsr5Dt8512qx/2h/CffofavQAQwBBBB5BFYPiLw5o3iW28u82LMo/dzowDp/iPY1wltquvfDm7Szvz/aOiscRuhztH+yf4T/snj09a09lCvrS0l2/y/yPB9rUw+lXWPft6/5nrVFUNI1qw12yF3p9wssfRgOGQ+jDsav1xOLi7M7YyUldbBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1fTY9Y0m50+V2SOdNhZeoq7RTTad0JpNWZ5z/wAKf0z/AKCd5/3yv+FH/Cn9M/6Cd5/3yv8AhXo1FdP13EfzHL9Qw38iPOf+FP6Z/wBBO8/75X/Cj/hT+mf9BO8/75X/AAr0aij67iP5g+oYb+RHnP8Awp/TP+gnef8AfK/4Uf8ACn9M/wCgnef98r/hXo1FH13EfzB9Qw38iPOf+FP6Z/0E7z/vlf8ACj/hT+mf9BO8/wC+V/wr0aij67iP5g+oYb+RHnP/AAp/TP8AoJ3n/fK/4Uf8Kf0z/oJ3n/fK/wCFejUUfXcR/MH1DDfyI85/4U/pn/QTvP8Avlf8KP8AhT+mf9BO8/75X/CvRqKPruI/mD6hhv5Eec/8Kf0z/oJ3n/fK/wCFH/Cn9M/6Cd5/3yv+FejUUfXcR/MH1DDfyI85/wCFP6Z/0E7z/vlf8KP+FP6Z/wBBO8/75X/Co9W8U+KPEPjC98N+D2tLRNPUfa7+4XftY9lGCPboeh6U3S/FPirw34usPD3jF7S7h1HK2t/brsy/owwB1wOg6jrRHG4h297cHgMMr+4tCb/hT+mf9BO8/wC+V/wo/wCFP6Z/0E7z/vlf8K1vHni278PQ2FhpFulzrWpy+Taxv91emWPsMj/IrldS1v4i+BUi1fX7mw1fSWkVblLeMI0AJ7EKv4E5oWOxD+0H1DD/AMhqf8Kf0z/oJ3n/AHyv+FH/AAp/TP8AoJ3n/fK/4V6Da3MV7aQ3UDh4ZkWRGHdSMg1LTeNxC+0JYHDPXkR5z/wp/TP+gnef98r/AIUf8Kf0z/oJ3n/fK/4V6NRS+u4j+Yf1DDfyI85/4U/pn/QTvP8Avlf8KP8AhT+mf9BO8/75X/CvRqKPruI/mD6hhv5Eec/8Kf0z/oJ3n/fK/wCFH/Cn9M/6Cd5/3yv+FejUUfXcR/MH1DDfyI85/wCFP6Z/0E7z/vlf8KP+FP6Z/wBBO8/75X/CvRqKPruI/mD6hhv5Eec/8Kf0z/oJ3n/fK/4Uf8Kf0z/oJ3n/AHyv+FejUUfXcR/MH1DDfyI85/4U/pn/AEE7z/vlf8KP+FP6Z/0E7z/vlf8ACvRqKPruI/mD6hhv5Eec/wDCn9M/6Cd5/wB8r/hR/wAKf0z/AKCd5/3yv+FejUUfXcR/MH1DDfyI4fSfhvFod6t3p+t30Mo4OFUhh6EY5FduM4GTk9zS0VjUqzqO83c3p0oUlaCsgooorM0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnvDvhK18OanrN/BcSzSapP58gkA+Q5Y4GO3zGuK8dTR+Ifih4U0SwcS3Gnzm6uinPlLlWwT2OF/UetbfjbxffQX8fhfwvD9p8QXS5Z/4bRD/Gx6Z9Pz9AdHwT4ItPCFlI7SG71S5O67vX5aRjyQM84z+fU0R3Uui/QctLrq/wBTmtaf7R8f/D8D5KW+nvIo7BiJOf0FdP8AEaJJfh3rquMgWjMPqOR+ormdXi8n9oDQZ34WfTnRSe5AkyP1rpfiPMkHw611nIANqyDJ7twP1NTP+F9/5scb+1+78kL8OJmn+HWhOxJItVXn2JH9K6iuY+HUBt/h5oSMCCbVW5/2uf6109a1PjZnD4UFFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAePW1j8RNC8YeIdV0/wva3g1G4OyWe6jBEak7QP3gIGMdfQVu2eu/FCS+t0u/CGnxWzSKJZFu0JRM8kDzOcCvRKKFpZdgerb7nI+OfCt5rqWGo6PcR22taZKZbWST7rA/eRvY4H+TXKajo3xE8dRw6R4gtNP0jSllVrmSCQO84Bz8oDN+Rx/SvWaKFoO5FbW8VpaxW0CBIokCIo7KBgCpaKKHqJK2gUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=
|
<image>Each pair of polygons is similar. Find y
|
5
|
Geometry
|
Geometry3K
|
test
|
72
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFzAnADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorL13xDpnhuw+2apdLBFnC55LH0A71y2n/ABh8IajerardTwMx2h54tqk/XJoWrsg8zvaKRWV0DKwZSMgjoRVK41nTrXUoNOnu40vLgZihP3m+lAF6iiigAooooAKKKKACiiobu7t7G1kubqVIoI13O7nAAoAmorz5vjP4OW7+z/abkjOPNEPyfnnP6V3Njf2up2cd5ZTpPbyDKOhyDR0uHkWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbhbSxuLljhYo2c/gM0m7K40r6HlVl4y1zVfjHLoltd40uCRg8YUchRzz9a9crwv4K27al4t1vWpOcZCsfVmz/KvdKpK0Yp72E3eTsFFFFIAooooAKKKKACiiigAooooAKKKKAPMvG+myeIfiR4d0u5t5JNMjVppPlJQt6E9K0PiV4a0ibwJfyCygiktYt8LogUqRXeNtHzNgYHU9q8f8b+JrrxvqJ8HeGFM0bMBeXQ+6ADyM+lS03HkW/wDX5FJ+9zPY6/4W309/8PtNkuGLOqmPcepAPFctqGoWjfG57u+uEhtNKs8s7nAUkV6R4f0aHw9oNppkBylvGFLep7mvI/C3hq38a/ETxBq2oqZbCC4KCIn5ZGHQH1ArRu9S68/8v1IirU9fI9J0T4geGvEF+bLT9RR7j+FGUru+metdNXjPxN8PaZ4c1Lw9quj2sdncm8WMiEbQw47V7JGS0asepAJpKzVxvR2HVn67qY0XQ73UjH5n2aIybM4zirNxe2toFNzcwwhunmyBc/nXMeN9W02XwTq8ceoWju1swCrMpJ/DNRN2i2ioq8kmXfBXiU+LfDUOqtbiBnZlKA5AIroa80+D+p2Ft8P7aOe+topBK+VklVT19Ca9Bg1KwuZPLt722lf+7HKrH8ga0krPQzi9NS1XG/E7SdS1zwkdP0yB5ZJbiPeqEA7AeetdlRUlHNp4R0SDwv8A2a+m24hW3w2UGc45OfWuN+B80o0zWLPczWtvdlYcngDnpUvxAtfiJcT3i6PJEdHZP9XEQJSMc84/rWh8JNR0a48NPZaZbPbXFs+LqKU5Yv6k04u7k/63CSskj0GiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn3xa8V33hfw/bPpk/lXc820NgHgDJrqfCst7ceFtOn1GUyXcsIeRiMZJ5/lXkvxhmbV/HehaHGc7dpYe7N/gDWl48+I72Zi8LeFW82+wIWmjP3O21felF+75t6fIcl7yXZam18RPiVH4cX+y9Ixc6zL8oVRuEWfX1PtWp4CtvFJsBfeJ79nlmXMdsFA2D1OO9Yfw7+Gn9lONd1/8A0nV5vnAc7hFn+Zr06qS5d9xN322CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQTgZPSiqupeYNLu/KBMnkvtx64OKTdlcaV3YZa6xpt9cPb2t9bzTJ95I5ASv1FYHxL1L+y/AOqTBsO8flL9W4rzD4KX1jZeINZ/tG5igu5AAvnMFzyc8mtH41+KLO/sbPQNNuUuZ5JQ8ghbcB6DI70pq8Ul1HHST8jb+Bum/ZfBcl2y4a6nLZ9hxXp9YXg3STofhHTbBhh44RvH+0eTW7Wk/iM47BRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAed/Eq/1K9u9M8KaRP5FxqTEzSDqsQ6103hTwlpvhLS1tLGMGQ8yzMPmkb1JrG8XfDW08XavFqM2qXtpLFH5aiDA4+prC/4UjZ/9DNrP/fYojohuzZ6Rq1yLPSLy5JwIoXbP0Fee/BK6gufDF8yupuGu3eUZ556V01h4LhsPB1x4cGo3csU4YG4kIMg3fpXKTfBe3gaFtH1u8scRiOYp/wAtPfjvQtG/MW6XqM8TyJ4w+J+j6LaMJbbTD9ounXkK3pXq1c74T8G6b4Rs3isw8k8pzNcSnLyH3NdFT2Vg3dzk/GPgHTvGcls97cXMLQAhfJbGQfUVwXiX4N6Lo/hu/wBQhv755LeEuquwwSPWvaaw/GNrPfeD9VtraMyTSW7BEHUms5aRdio6yVzx74f/AAr0nxT4Uh1S6vbuKV3ZSsTADiu/8OfCbR/Desw6nb3l5LLFnasj/L+OKn+FGm3mleA7W2vrd4JvMdtjjBAJrt61lpLQzWq1CuO+IfiPUPDGm2N7ZsixNdJHcM6hsIa7GszxBoNj4l0ebTNQQtBLg8HBUjoRUMteZdjuoJbNbpZUMDJv354xjrmvJ/hQq3PjXxVf23Nm0u1GHQndmpV+DNwim1XxVfjTyf8AUj09PSvQvDfhrTvC2lJp+nRlYwcszcs59SapWT5hPblNeiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVdSulstMurpjgRRM+foKTdlcaV3Y+avF0mp+JPiveJo6ySXKy+TEU/hAGM57d60/F/wvufCPhe01qC5kmvopN10ynhc9CPoa3/AIHWpvtX1zXJVyzttUn1Y7jXsl/Y2+p2E1ldRiSCZSjqe4os4wSW4+ZObvscv8NfFC+KPCNvM7g3duBDOO+R0P4iuxrwHw5PL8NPirPpFyxXTb1tqk9NpPyn8Ole/DkZFW3zJSXUi3K+XsFFFFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4HxF8I/DniDUHviJrO4kOXaBsBj64p/hz4TeHPD18l6qS3dyhyj3DZCn1x0zXd1keKNRfSvDV9eRvtkjj+Q+9VTi3JRiTUmlFyl0Neivnv8A4TvxL/0FZ/zq/YeIPG+qIWsbq5nA67CCR+Fei8sqRV3JHmRzanJ2UWe60V4t9q+I3pf/AKUfaviN6X/6VH1B/wA8fvL/ALRX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNFeLfaviN6X/6UfaviN6X/wClH1B/zx+8P7RX/PuX3HtNVdR0+DVdOnsboMYJ0KOFbacH3ryD7V8RvS//AEqjf+JPGmmYF7eXEBPQMwz+VCy5y0U0weZxjq4SXyPXvDfhbSvCli9npMLxwu+9t7liT9TWzXz1/wAJ34l/6Cs/51638Pr3UNR8NLeajcPNLJI20t/dFRiMFOjDnk0XhsfTrz5Ipk/iTwPoXiq4t59Ut3eWDhHjkKEflW/BCtvbxwIWKxqFBY5OB6mpKK4ttDv3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhfirefZ/CqwA4aeYD8Bya7qvJvi9dmS906xU52qXI9ycV14GHNXiceYT5MPL7jU8HeEdN1bwLAmoW4Z5mZ1kHDKCeMGuc1bwVr3hK6OoaPPLNChzvi++o9x3r1fQLQWOgWFsBjy4VH6VokZGDV/XakKknum9mZ/UKc6UU9JJLVHmvhr4owzlbXXE8mXp56j5T9R2r0aGeK5hWWCRZI2GQynINcn4l+Hul66HngUWl4efMQcMfcV58svin4eXm1gzWhPQ/NE4/pWjo0cRrRdpdn+hmq9fC6V1zR7r9T3GiuU8N+PdK19ViZxa3Z6xSHgn2NdXXBUpzpvlmrM9CnVhUjzQd0FFFFQaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVi634r0jQYyby6Xze0SfMx/CqjCU3aKuyZzjBc0nZG1WRrPibSdBiLX10iv2iXlz+FeZ6r8Rtb12c2eh2zwK3A8sbpD+PaptG+GGo6lKLvXblog3JQHc5+p7V3Rwcaa5sRK3l1PPljpVHy4aN/PoM1f4l6tq8xs9CtnhVuAyjdI3+FGkfDTVtXmF5rty8KtyVJ3SH/CvTNI8O6XocIjsbRIz3cjLH6mtSiWNUFy4eNvPqEcDKo+bES5n26HjHxF0fTPD9rp2n6fbhGfdI7nlmxxyfxr07wnZ/YfCunQYwRCGP48/1rzH4gSHU/iBb2SchPLjx7k817JFGsMKRL91FCj6Cqxcn9Xpxk9XqTg4R+sVJRVktB9FFFeaeoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXi3itjrHxRitV5CSxxY+nJr2hmCKWY4AGTXi/g9TrHxNlu2GQjyS5+nAr0MB7vPU7I83MPe9nS7s9oVQqhR0AwKWiivPPSCori2gu4GhuIkliYYKuMg1LRQnYGr7nmHiT4WqWa70GTy3HzfZ2PH/AT2rJ0bx5rXhm5Gn63BLNChxiQYdR7HuK9lrL1rw9puvWxhvrdXP8Ljhl+hrvp4zmXJXXMvxPOqYFxl7TDvlf4Mdo+v6drtsJrC4WTj5k6Mv1FaVeMax4G1zwrcnUNFnlmhQ5DR8Oo9x3rb8NfFKOQraa6nlSfd89Rx/wIdqKmDvHnoPmX4hTx3LL2eIXK/wZ6ZRUcFxDdQrNBKkkbDIZDkGpK4Nj0b3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorndd8a6NoKss1wJZx0hiOT+PpVwhKbtFXZE6kaa5puyOirB1zxho+goRc3KvMOkMfzN/9avNdQ8ceI/FNwbPSIJIYm42wjLEe7dq0tD+FU07i5125IJ5MMZyT9WrtWDhSXNiJW8lucDxtSq+XDRv5vYz9T8f6/wCI5zZ6LbvAjcARDLke57Vc0T4W3d5ILrXblk3cmJTlz9TXpmmaNp+jwCGxtY4VHdRyfqavUpY3lXLQjyr8RwwHO+fES5n+BnaVoWm6LAIrC1jiHdgPmP1NaNFFcMpOTu2ehGKirRVkFBOBk0VT1W5FnpN3cMcCOJm/ShK7sDdlc8h0Yf238WnnPzBbhpPwTj+le1V5B8JbY3GuX9+4yUjxn/aY16/XdmL/AHqguiSPPyxfunN/abYUUUVwHohRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBmeIbsWPh3ULknGyBv1GP61518ILQvdajfMM4Cxg+/U103xOvPsvg+WMH5p5Fjx6jvUPwrs/s/hMzkYM8zN+A4FehT9zByfd2PNqe/jYR/lVzuKKKK889IKKKKACiiigArkvEvgDS9eDTRqLW8PSSMcMfcV1tFXTqTpy5oOzM6lKFWPLNXR4d/wAVT8PLz+JrQn3aJx/SvRPDXj/S9eCwyMLW8P8AyzkPDH2NdTPbw3ULQzxLJGwwVYZBrzfxL8LkkLXehP5Ug58hjx/wE9q7/bUcTpWXLLuv1PPdCvhdaL5o9n+h6ZRXjGj+Odc8K3I0/WoJZoUONsnDqPY969T0XxDpuvW4msbhXOPmjPDL9RXNXwtSjq9V3OrD4ynW0Wj7M1KKKK5jqCiiigAooooAKKKKACimu6xrudgo9ScVH9qt/wDn4i/77FAE1FMSaKQ4SRGP+ywNPoAKKKKACiiigAooooAKKKKACigkAZJwBXK694/0bRA0Yl+1XI/5ZQnOD7mrp051HaCuZ1KsKa5puyOq6VzOveO9F0IMjzi4uB0ihOT+J7V5zd+J/FXjOc2unRSRwMcbIOBj/aat7QfhTGpW41u4Mr9TDGePxPeu5YSnR1xEvkjgeMq1nbDR+b2MO+8YeJ/F05tNLgkihbjZAOcf7TVsaF8KSzLca7clmPJhjP8ANq9IsdOs9NgEFnbxwxjsi4q1UzxzS5aK5V+JUMAm+eu+Z/gU9P0qx0qAQ2NtHCg/ujk1coorhbbd2egkkrIKKKKQwooooAK5X4iXn2PwZe4ODLiIfia6qvNvi9ebNMsbMHmSQuR7Af4104SHPXivM5cbPkw8n5Fj4S2fk+Hrm6I5nmx/3yP/AK9eg1z3gez+xeD9PjIwzR72+pNdDU4qfPWlLzKwkOShGPkFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlvxgvPk06yB6lpSP0rufCln9g8LadbkYKwqT9TzXmPj+Q6p8QreyX5lQxxY+p5r2SKMRQpGOiKFH4V6GJ9zDU4d9TzcL7+Kqz7aD6KKK889IKKKKACiiigAooooAKKKKAMzWNA07XbYw39usn91+jL9DXlms+A9a8M3J1DRJ5ZoUOQYzh1HuO9ezUV00MVUo6LVdjlxGEp1tXo+6PMfDfxRUstpr0fluPl89R/6EK9Jt7mC7gWa3lSWJhkMhyDXM+JPAWl6+rSqgtrvtLGOCfcd685aPxT8PLzcpZrQnqPmicf0rp9jRxOtJ8su3+Ry+2r4XSsuaPdfqe40VyHhr4g6XroWGdhaXh42OflY+xrr+tcNSlOnLlmrHoUqsKseaDugooorM0CiiigDyb46a09noNnpsMjJLcy7ztODgVj6X8F7y/wBKtbuXxDcRPNErlOTtyM461m/Fu9i1H4mafYSyqkFuI1dmPC5OTmvYYfGPheGCOJdbswqKFH7zsBSglyuXdlTbul2R5dqfwe13SLKW+0vxHNJNApcISyk454Oa6j4Q+M77xLp11Y6o5kvLIj96erL0596u+K/ih4c0zRrlbW/jvLuSMrHFDzyRjk1i/BHw7eWGnX2s3sbRNfMPLVhglc5z+dVBtt9iZWsu56xRRRSAKKKKACikd1jUs7BVHJJOAK43X/iRpGkborZvtlyONsZ+UH3NaU6U6jtBXM6taFJXm7HZMwVSzEADqTXI6/8AETRtG3RRSfbLkfwRHgH3Nefzar4u8dTmG2SRLYn7sfyxge5711WgfCqztds+ry/aZevlLwg+vrXb9Wo0da8teyOB4utX0w8dO7OWuNe8WeN5zb2UciW5P3IcqoHu1dJoPwpt4Ss+szmeTr5KHC/ie9eiW1pb2cKw20KRRrwFQYFTVFTHSty0lyr8S6eAjfnrPmfnsV7OxtbCBYbSCOGMcBUXFWKKK4m29Wd6SSsgooopDCiiigAooooAKKKKACvG/ifOb7xhZ2K8+Wirj3Y17JXio/4nnxd/vRrc9P8AZWu/L1acpvomedmTvTjTX2mj2SzgFtZQQDpFGqfkMVNRRXA3fU9BKysFFFFAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqp/amn+d5P26283ONnnLuz9M1xXxb1290nw3Ba6e7R3F/MIBIvVR3/nWOfgtpH9gGb7Xef2r5PmfaPNP38Z6Ur6N9EO2y7nrFFedfB/X73V/DlzaX8pmmsJzCJGOSy9s16LVNWJTCioxcQGXyhNGZP7u4Z/KpKQwooqnq1yLPSLy4Jx5cLNn3xxTSu7Cbsrs8h0X/id/Fh5/vKs7yfgvFe1V5D8JrY3GuX9+45SPAPux5r16u7MX+9UF0SR5+WL905v7TbCiiiuA9EKKKKACiiigAooooAKKKKACiiigAqOaCK5iaKaNZI2GCrDINSUUBuea+JfhdFMWu9DfyZevkMflP0PasHSPGuu+EroafrEEksCHGyX7yj2PevaKztX0LTtctjBf2yyDs2PmX6Gu+njLx5K65l+J59XA2l7TDvll+BHoniPTNftxLY3Cs2PmjPDL9RWrXjet+ANY8OXB1DQ55ZokO4bDiRP8a0/DfxRIZbPX4yjj5fPUY/76FFTBqS56D5l+IqeOcZezxC5X36M9RoJwMnpUNrdW97As9tMksTDIZDkVT8QXq6d4f1C8Y4EUDtn3xXny91O56MfeaseA2GkW/xB+L+oxXm9rPzHZijYOF4HNej/APCj/CH9y7/7/msD4D6f5q6trMq/PJJsVvrya9oquVRil5Bzc0mz5v8AiN4Htvh/fabqWkyu8UknCTfNtYc/iK+gdEuje6HY3JUKZYEcqowASK8l+P8AIfs2jR/w+YxJ/CvVfDbRv4a00xMGT7MmCpyPuilB3g/UJ/EvQ1KKZLNHBG0k0ixovJZjgCuG1/4oaZp2+HTl+2TjjcOEB+vetaVGpVdoK5lVr06SvN2O6kkSJC8jqiDksxwBXE6/8TNJ0vdDZf6bcDj5ThAfc1w//FX+PZ/+Wi2pP+5Eo/rXZ6B8L9M07bNqLfbJxztPCA/TvXZ9XoUNa0rvsjh+s18RpQjZd2ca934v8eT7IhItqT0X5I1Hue9ddoHws0+y2zapJ9rmHOwcIP8AGu+ihigjEcMaxovRVGAKfWdTHTa5aa5V5GlLAQT56r5peZHBbw2sSxQRJHGvAVBgVJRRXFud9rBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF5MLeynmJwI42bP0FeRfC+E3/AIvvL9h9xGfJ9WP/ANevQvHN59i8HahIDhmj8tT7niuY+ENns0u+vCOZJAin2A5r0KHuYWpPvoebiPfxdOHa7PSaKKK889IKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5beGfb50Mcm05G9QcH8a8y8efE650K4vdItdFuN4XYLx8+UMjr07V1fijxpa+F7/TbW5tpZTfyeWjoQApzjn866C4tbe8t2iuIUljdcFXUEEGpauhp2epxPwn0iy03wn51rfRXst3IZZpI+gb0/CmfEKbxNe3lhofh9ZoEuPmubtBwi5xjNYHwgDWfiXxPp0LH7FDNlB2ByR/KrF5rfinxx4lv9M8M36abp1g3lyXOMs7e1W7Sa+/5CScb+RleLvhpb+GvC9xrVvrt+L+2Afe8pw7Z6V6d4NvbrUPB+l3d6S1xLbqzk9z61498Q/B99o2iWz6l4kvNRu7q4WJInOE9zivcdHtRZaNZWyjAihRcfhQvhfqEt0Xa5X4iXn2PwZeYODNiIfif/AK1dVXmvxevNmm2NmDzJIXYewHFdGEhz14rzOXGz5MPJ+Ra+Etn5Ph24uiOZ5jg+w4r0Cue8EWf2Lwfp8ZGGaPew9zzXQ1OKnz1pPzKwkOShGPkFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXLeJPAmleIFaTYLa77TRjGfqO9dTRV06kqb5oOzIqUoVI8s1dHh0lt4o+Ht55kbM1oT95fmjce47V3vh74gaT4hjFrehLe5YYMcvKP8AQmuxmhjuImimjWSNhgqwyDXnXiX4XQXJe60RxBN18lj8p+h7V3qvRxGlZWl3X6nnOhXwzvQd49n+h6HBbwW8e23hjiQ84jUKD+VS14rpXjLX/B90LDV4JJYFONkv3gP9k966DVvi1aJbhdKtXlmYfelGAp+nes5YCspWjqn1NYZjRcW5OzXTqegXyWHk+ZfpbmNOd06ggfnXDa38TtL0yM2ujwLcOvAIG2Nfp61ycWl+LvHU4luXkS2J+9J8qAew713egfDbSNI2y3K/bLkc7pB8oPsKv2OHofxXzPsjP2+IxGlGPKu7OES18X+PJ98hkW1J6t8kaj2Heu30D4ZaVpe2a9/024HPzDCA+wrtkRY0CooVR0AGAKdWdXGzkuWHuryNaWApxfPP3pd2NjjSJAkaKiDoqjAFOooriO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDz74t3nk+Hra1B5nmGR7AZrY+Hln9j8GWeRgy5lP4n/AOtXE/Fm5Nzr1hYKfuR5I92PFep6VbCz0m0twMeXCqke+Oa9Cr7mEhHu7nm0ffxlSXZJFLxR4itvC+gXGq3Q3LEPlQdXY9BXnFp4j+KetWX9r6dp9lFYv80cLqN7L7Z5rsfiH4TuvGGhw6fa3McBWYSMZASCB2rpLC3XTdJtrZioW3hVCeg4GCa85dWz030SOV+H/jlvFkN1a31sLXVLNts8Q6HtkV0+o6zp2lW8s97eQQrGpZg7gH8q8q+HTC/+LHibULTmz5XcOhOR/hXWeIvhhoHiHULjUr5rszSDJCzELwPShtuKfdAklJrsyv8ADXxnfeMJtakuWQ29vOFtgqbSEOevrXf15B8DYEtm8RwR52RXQRc+g3CvX6p2srdkT1fqFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcj8QfBx8YaKkUEohvrZ/Nt5D0B9DXHpL8WxZ/2X9ktMhfL+1kjOOmc169RSsO5yHgDwZ/wiOkSpcTCe/un8y4lHc+gribPw/488F6/qf9g2dve2V7KZA0jdM+vpXstFN73EtrHi3iXwL431k2Gs3VzBd6lDMH+yKdsUSjBGPXnrXsNj9o+wwfawouNg8wJ0Dd8VYoo2VgeruFeN/E6Y3/AIxtLBTnYiJgerGvZK8VX/iefFzP3o1uT/3ytd+Xq05T7JnnZk704019po9ktIRb2cEIGBHGq4+gqaiiuBu56CVlYKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVWvtRs9NgM95cRwxju7YrzrXvivGha30S3Mr9BNIOPwFb0cPUrP3EYVsTSor32ejXd9a2EBmu544Yx1Z2xXn2vfFa3gLQaND58nTznGF/Ad65y08MeKvGdwLrUZZIoGOd8+QMey16DoPw/0bRAshi+1XI/5aSjOD7Cur2WHw/8AEfNLstjj9ricR/CXLHu9zzq38PeKfHF2t3fFki7SzDaAP9kVNrfw11TRVW802T7YseGIVfmU/TvXtIAAAAAA7Clpf2jUUvdSS7D/ALLpOL5m3LueV+GvieYCljrsWzb8omRcY/3hXptpeW99brPazJLEwyGQ5Fc/4j8DaV4hRpGjFvd44mjGM/Ud682msfFHw+vPNhdntc/eX5o2HuO1V7KhidaT5ZduhKq18LpVXNHut/me4UVxfhr4i6brQSC7ItLs8bWPysfY12gIIBByD3rhqUp0nyzVj0KVaFWPNB3CiiiszQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimTSCKCSQ9EUt+QoA8Y1f8A4nfxZWD7yLcJH+C817VXjHw+jOqfEC4vm+ZU8yXP1PFez16GYe7KNPsjzcu96M6n8zY13WNGd2CqoySTwBXkPiXxLqvxA1Z/DHhMslipxd3w4XHcA+n863PjNrE2l+CTFDI0bXcoiLKedvU/pWD4U+JngLwxoNvYW32tHVAZmFty745JOea85Wbd+h6bukrdT0Lwh4TsvCGipY2vzyN800x6yN61uzf6mT/dP8q5Tw38SfD3ivUzp+mSXLT7C+JIdowPeurm/wBTJ/un+VOd2rsUbJ2PJ/gr/wAffij/AK/f6tXrdeSfBX/j78Uf9fv9Wr1um9l6L8hfal6hRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF7OLWxuJycCONn/IZryP4XwG98XXl+wz5aM2T6sa9B8c3n2LwfqEgOGdNi/UmuZ+ENns0q+uyOZJQgPsB/jXoUPcwtSffQ83Ee/i6cO12ekUUUV556QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVR1PWdP0eAzX11HCo7MeT9BXm+ufFWadzbaFbEE8CZxlj9Frejhqtb4Voc9fFUqPxvXt1PStQ1Wx0qAzX1zHCg/vHk/QV5zrvxWLMbfQ7csx4E0g/ktZOn+CPEfimcXmrzyQxNzumOWI9l7V6LoXgnRtBVWhtxLOOs0oyfw9K6uTDYf43zS7dDk9pisT8C5I93ueb2PhDxP4unF3qk0kULHO+c849lr0TQfAmjaEFdYBcXA6yyjJ/Adq6eisa2MqVFyrRdkb0cDSpPmer7sAMDAooorkOwKKKKACmSxRzRtHKiujDBVhkGn0UAec+JfhfbXZe60Zhbz9fJP3Cfb0rmtM8XeIfBt0LDVYZJbdTjy5eoH+y1e11Q1TRrDWbU299bpKh6EjkfQ13U8ZpyVlzR/E8+rgbS9pQfLL8CroXifS/EMAeynHmY+aJuGX8K2a8e134danoc51DQZpJY0O4KpxIn+NXPDnxQlgdbLxBE2VO3zwuCP8AeFOeDU1z4d3XbqKnjXCXs8SuV9+jPVaKr2d7bahbrcWk6TRMMhkOasVwtNaM9BNNXQUUUUhhRRRQAUUUUAFFFFABRRRQAUUVzXirxtpnhNYUullnuZv9Vbwrudvei4WudLWL4svPsHhXUZwcMISF+p4rD0H4lWOr6smmXmn3el3cozCl0uBJ9DTPirefZ/CggBwbiZV/Lmt8PDnqxXdmGJnyUZS7Ix/g/Z4i1G9I6lYwf1r1GuO+GVn9l8HQuR807tJn26D+VdjV42fPXkzPAw5MPFf1qRT2tvdKFuIIplByBIgYD86r/wBjaX/0DbP/AL8L/hV2iuU6ytBp9lbSeZb2dvE+Mbo4lU/oKs0UUARQ2tvbFjBBFEXOW2IFyffFS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB578W7zyvD9tag8zTZI/3R/8AXrZ+Hln9j8GWQIwZQZT+Jrifixcm51+xsEOSkfT3Y8V6ppdsLTSrS3UYEcSrj8K9Ct7mEhHu7nm0ffxlSXZJFuiiivPPSCiiigAooooAKKKKACiiigAorL1fxDpehwmS+u0jPZAcsfoK821n4n6hqMptNCtmiDcByNzn6DtXRRwtWt8K07nNXxdKjpJ69up6Zquu6bosBlv7qOIdlJ+Y/QV5vrfxTu7yQ2uhWzJu4ErDc5+gqrpXw61vXZxea3cvAjcned0h/DtXpGieE9I0GMCztV83vK/LH8a6bYbD7+/L8Dl5sVidvcj+J5ppngHX/Ec4vNZuJII25JlOXP0HavR9D8HaPoKA21srzd5pPmY/4Vv0VhWxlWrpey7I6KGCpUtUrvuwooorlOsKKKKACiiigAooooAKKKKACiiigArmvEfgnSvEKM8kYguscTRjB/H1rpaKuFSVN80XZkVKcKkeWaujw+403xR8P7wz2zu9rn76fNGw9x2ruvDXxH07WNlve4s7s8fMfkY+xrtJI0ljaORFdGGCrDINefeJfhhaX2+60dhbXHXyj9xj7eld6r0cRpXVn3X6nnPD1sM+ag7x7P8AQ9CBDAEEEHoRS14npvirxF4KuxY6nDJLbqceXL6f7LV6loPirS/EMIaznAlx80L8MPwrnr4SdL3t490dOHxlOt7u0uzNqiiiuU6wooooA4rxdYeOLrUo38N39tb2gjwyy9S1czc2HxUs7aW5n1ywjiiUs7HGABXrdea/EPUJ9c1zTvBVg5DXTCS8Zf4Yh2/GlZ7Ldjv1fQt/DTW9c1Hw3e6p4gnEkQkJgk27cooOT9K5q01bxx8RL+7udB1FNK0mGQxxyY5bHf3rufGEcWifDfUobRRHHBZlIwOwxis/4QQpD8OrEqMGRnc/XNVo5PyFqorzMLw34r8SeHvGcfhbxZMtyLkf6PdAdT25qXxhO3hn4k2XiW+spbrTGtjBujTd5TeuKpfGDFv4p8LXacSLPtyPTcK9deOOaPbIiupHKsMikm2lLqm/6/EHZNro0eR67r1n8QfEehWnh6GaVrW5E812YyojUds1P8XrsyXmnWKnOFLke54FepQWltagi3t4oQevloFz+VeOeLmOsfE+K0U5CSRw4+nJrvy5L2t+12efmcn7Hl7tI9X8P2gsfD1hbAY2QLke5Gf61pUiqFUKBgAYFLXDJ8zbO6MeWKS6BRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimTSCGCSVvuopY/gKAPGNW/4nfxaWH7yrcKn4Lz/AEr2rpXjHw9jOp+Pri9f5ggeTPuTxXs9ehmHuyjT7I83LfejOp/M2FFFFeeekFFFFABRRRQAUVia34r0jQYyby6XzO0ScsfwrzfVfiNrWuzGz0S2eBG4GwbpD/hXTRwlWrqlZd2clfGUqOjd32R6ZrPibSdCiLXt0iv2jU5Y/hXm2r/EvVdXlNpods8KtwGA3SH/AAp+jfDDUdSlF3rty0Qbkpnc5+p7V6TpHh3S9DhCWNokZ7uRlj+NdH+zYf8Avy/A5/8AasT/AHI/ieZ6R8NdW1iYXmuXLwq3JVjukP8AhXpOjeGNJ0KILZWqK/eRhlj+Na9Fc9bF1aujenY6aGDpUdYq77vcKKKK5jqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKWp6RY6xam3vrdJkPqOR9DXluvfDjUdGmN/oE0kiIdwRTiRPp616bruu2Ph3S5dQ1CXy4U9OSx7AD1rkLD4s6dcX0EN9pd/p0Fw22G4uE+Rien0row+KqUnaL07HNiMJTrK8lr36mT4d+J89rILLxBEx2nb54XDL/ALwr0+yv7XUbZbiznSaJujIc1h+IfBmk+I4i8kYiuCPlnjGD+PrXml1pHifwBeG5tJHe1z99OUYf7Q7V1ezoYn+H7su3Q5Pa4jC6VPej36nt9FcN4Z+JOn6vst7/ABaXZ4yT8jH2Pau4VgyhlIIPQiuGrSnSfLNWO+lWhVjzQdxk8yW9vJM5wkalifYCvK/hYr6/4n1/xXcfMZJfJgJ7L7fhXZ+P7me18D6q9sjvM0JRFRSTk8dBWV8I9NfTfAFossTRyyu0jK64PJ7is47t9l+ZrL4Uu7/I0/iJE03gDWVUZP2djWf8JSD8OdNx23fzrrtQs49Q064s5fuTRsh/EV454d8VXnwyFx4d1vSruW2jlZ7e4hXIKmiLs2n1G1dK3QufGP8Ae+I/C0C8uZ84/wCBCvX1GFA9q8Y0z7f8SviNZ629hNa6PpozH5wwWPX9TXtFCVo692Ju8vkIzBEZj0Aya8X8IqdY+J8t23KpLJLn6dK9X8QXYsfD9/ck48uFj+lec/CC0L3eo3zDO1RGD7k5r0ML7lCpP5Hm4v38RSp/M9Yooorzz0gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxfFt59h8K6jPnBEJUfjx/WtquF+Kt59n8KrADhp5gPwHJrbDw56sY+ZhiZ8lGUvIyfg/Z4h1G9I6ssQP616hXHfDOz+y+DoHIw07tIfcZ4rsa0xk+evJmeBhyYeK/rUKKKK5TrCiud13xro2gqyzXAlnHSGI5P4+lec6h448R+KZzZ6RBJDE3G2EZYj3btXVRwdSqr7Luzjr42lSfLu+yPStc8YaPoKEXNyrzdoY/mY/wCFeb6n4/1/xHObPRbd4I24AiGXP1PatDQ/hVNO4udduSCeTEhyx+rV6Rpmjafo8AhsbWOFR1Kjk/U1vzYbD/CueX4GHLisT8T5I/ieZ6J8Lby8kF1rtyybuTGp3Ofqa9J0rQtN0WERWFrHF6tjLH6mtGiuatiqtb4np2OqhhKVH4Vr36hRRRXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXNeO/EsnhTwtPqUMQln3LHEp6bmOBXS1l694fsPEdilnqKO0KyLKAjbfmByKTGjzNNK+KU2mDWh4giWQp5wstvGMZx6V2Hw78YSeL9CeW6jEd9bP5U6r0z60/xH478O+G7eezuL5PtkUe1bZeXJxwKxPg/oV7pui32oXsRhfUZ/OSM9Qvb+dUndu2wnolfcq+JfFHiHXvGL+FfCk6WzW67rm7IztNZp8Q+Mfh94hsrfxNerqemXjhPPA5U1Y+Ev+k+LfFl4/MpuSmfbcf8ACr3xyiVvBUUxHzxXKFT6ZpfAot+V/mVbmk4l74qWVze6Bp9/awNdQ2V0lxLEgzvT6d653xh410nxp4fi0LQ7We51C4kQKnkkeRg9Se2K9O8Oym48M6bI/Ja2TOe/yirkNjZ28hkhtYInPVkjCk/iKbVm4va5KldKS3sN02CS10y1t5W3SRQqjH1IABqw6JKhSRQysMFWGQadRQ3d3ElZWPPvE3wxs9Q33OkkWtx1Mf8AAx/pXJ6f4m8R+B7sWWpQySWwOPLl54/2Wr22qepaVZavatb31uk0Z/vDkfQ9q7aWNfLyVlzR/E4KuBXN7Si+WX4GfoHizSvEUINpOFmx80LnDD/GtyvItf8Ahtf6TMb/AECaSRUO4Rg4kX6HvUnh74nXNlILHxBE7BTt84Lh1/3h3qp4OM1z4d3XbqTDGypy5MSrPv0Z6zTJIYphiWNHHoyg1DY6haanbLcWc6TRN0ZTmrNcDTTsz0U01dDURI1Coqqo6BRgU6iikM474m3n2XwdMgOGndUHuM81X+Fdn9n8KtORhp5ifwHArH+MF5+606yB6lpSP0/rXceE7P7D4V06DGCIQx/Hn+tehL3MGl/MzzYe/jpP+VGzRRRXnnpBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5N8X7sve6dYqc7UMhHuTivWa8V8Wv/AGv8T47YHKpLHFj0xya78uX77mfRNnn5nL9zyrq0j1nQLQWOgWFsBjy4VH6Vo5wMmuT1zx7ougoYVl+03CjAihOcfU15/d+J/FXjO4Nrp0UkUDHGyDIGPdqmnhKtVuctF3ZVTG0qKUI6vsj0bXvHWjaEGR5xcXA6RRHJ/E9q87vvGHifxdcG00uGSGFuNkA5x7tW5oPwpjUrca3cGR+phjPH4mvRLHTrPTYBBZ28cMY7IMVp7TDYf4FzS7vYx9nisT/EfJHstzzfQvhSWZbjXLksx5MMZzn6tXo2n6VY6VAIbG2jhQf3RyfqauUVy1sTUrP32dlDC0qK9xf5hRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVTv9UsdMERvrqOASvsj3nG5vQVcrhvipo97qnhZJ9Ohaa8sp0uERepAPNJuw0rmhr/w98OeI5Zbm8sV+1yDH2hGIYehrkvhJqV9Bqmt+Gru4e4jsJP3LuckDOMUyH41QLpojl0O/wD7TCbTEE4L/wCFaPwq8PajaLqWv6tCYbvU5N4iPVVznmqirN9rCk7xV9zM+D67PEHitG4YXZOP+BGr/wAcWA8DIndrlABWVqMl78NfH99rAsJrrRtTGXMIyY2rP1zV7z4sa5pumaZp1zBplvKJZ5plwKT99RXp+BXwyk/U9c8MxmLwxpiN1FtH/IVq0yGJYII4UGFjUKPoBin05O7bIirJIKKKKQwooooAK57xD4N0rxFGTPEIrjHyzxjDfj610NFVCcoPmi7MidONSPLNXR4heaJ4m8BXhurKV3tc/wCsj5Uj/aFdp4Z+Jdhquy21HFpdHjcT8jH69q7l0WRCjqGUjBBGQa4LxN8MrLUt9zpZFpcnkp/Ax/pXoLEUsQuWurPuv1POeGrYZ82Hd12f6HfKyuoZSCp5BB60teI2HiLxJ4FvBZ6hFJJbA/6uXkEf7LV6h4f8X6V4hhBtpwk4HzQyHDD/ABrCvhJ0lzLWPdHRQxtOq+V6S7M82+IEh1P4gW9knITy48e5PNeyRRiGFIl+6ihR9BXjGjj+2/i08x+ZVuGk/BeP6V7VWuO92NOn2RjgPelUq93+QUUUV556QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzfi3xtpfg2G3k1LzT57EII1yeKTdhpXOjJCqSeg5r5y1hdQutevLxba5DPMzBgjZ617x4c8Q2XijR49TsN/kOxUBxg5Fau1fQflXZhcT9XbfLe5xYvC/WUlzWsfMsVpeRyiRrGaTBzteJiD9a6yz8b+JrCAQ2mmwwxjoqWhFeheLPiBofg+4ht9RLtNKu4JEuSB71peGPElj4s0r+0bCORYN5QeYuCSK6Z5jGqvep3t5nLDLJUvhqNX8jzP/AIWL4w/59V/8BTR/wsXxh/z6r/4CmvZtq/3R+VG1f7o/Ks/rdH/n0jT6lX/5/P8Ar5njP/CxfGH/AD6r/wCApo/4WL4w/wCfVf8AwFNezbV/uj8qNq/3R+VH1uj/AM+kH1Kv/wA/n/XzPGf+Fi+MP+fVf/AU0f8ACxfGH/Pqv/gKa9m2r/dH5UbV/uj8qPrdH/n0g+pV/wDn8/6+Z4z/AMLF8Yf8+q/+Apo/4WL4w/59V/8AAU17NtX+6Pyo2r/dH5UfW6P/AD6QfUq//P5/18zxn/hYvjD/AJ9V/wDAU0f8LF8Yf8+q/wDgKa9m2r/dH5UbV/uj8qPrdH/n0g+pV/8An8/6+Z4z/wALF8Yf8+q/+Apo/wCFi+MP+fVf/AU17NtX+6Pyo2r/AHR+VH1uj/z6QfUq/wDz+f8AXzPGf+Fi+MP+fVf/AAFNH/CxfGH/AD6r/wCApr2bav8AdH5UbV/uj8qPrdH/AJ9IPqVf/n8/6+Z4z/wsXxh/z6r/AOApo/4WL4w/59V/8BTXs21f7o/Kjav90flR9bo/8+kH1Kv/AM/n/XzPGf8AhYvjD/n1X/wFNH/CxfGH/Pqv/gKa9m2r/dH5UbV/uj8qPrdH/n0g+pV/+fz/AK+Z4z/wsXxh/wA+q/8AgKaP+Fi+MP8An1X/AMBTXs21f7o/Kjav90flR9bo/wDPpB9Sr/8AP5/18zxn/hYvjD/n1X/wFNH/AAsXxh/z6r/4CmvZtq/3R+VG1f7o/Kj63R/59IPqVf8A5/P+vmeM/wDCxfGH/Pqv/gKaP+Fi+MP+fVf/AAFNezbV/uj8qNq/3R+VH1uj/wA+kH1Kv/z+f9fM8Z/4WL4w/wCfVf8AwFNH/CxfGH/Pqv8A4CmvZtq/3R+VG1f7o/Kj63R/59IPqVf/AJ/P+vmeM/8ACxfGH/Pqv/gKaP8AhYvjD/n1X/wFNezbV/uj8qNq/wB0flR9bo/8+kH1Kv8A8/n/AF8zxP8A4TrxP5nmf2bB5n977Fz+dTf8LF8Yf8+q/wDgKa9m2r/dH5UbV/uj8qPrdH/n0g+pV/8An8/6+Z4u/wAQvFsilXso2U9Q1oSKbF4/8VwrtisIo19EtCK9q2r/AHR+VG1f7o/Kj63R/wCfSD6lX/5/P+vmeM/8LF8Yf8+q/wDgKaP+Fi+MP+fVf/AU17NtX+6Pyo2r/dH5UfW6P/PpB9Sr/wDP5/18zxn/AIWL4w/59V/8BTR/wsXxh/z6r/4CmvZtq/3R+VG1f7o/Kj63R/59IPqVf/n8/wCvmeM/8LF8Yf8APqv/AICmj/hYvjD/AJ9V/wDAU17NtX+6Pyo2r/dH5UfW6P8Az6QfUq//AD+f9fM8Z/4WL4w/59V/8BTR/wALF8Yf8+q/+Apr2bav90flRtX+6Pyo+t0f+fSD6lX/AOfz/r5njP8AwsXxh/z6r/4Cmj/hYvjD/n1X/wABTXs21f7o/Kjav90flR9bo/8APpB9Sr/8/n/XzPDtQ8ZeI9VtWt73TYZoz2a0PH0rlkttQhmEsNtcxuDkFEYEV9NbV/uj8qztc1ez8P6PcaneA+RAu5toyT9K0hmUaatGCS9TOeVyqO8qjb9P+Cea/CnTZ/7bvL25hkQpFgF1IySeeteuVk+HNetPEmjx6nZJIkEpIXzFwTitauLE1nWqc7VjuwtBUKfIncKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8K+LjDXPH+m6KCSsVuzMB67S39K91rwjRk/wCEn+OWqXB+aK3SRVP0G0f1qJK7S9X+BUXZNs6b4FXPmeD7m2J5guWGPrzXpN/ewadYT3ly4SGFC7k+gryP4ISmDUfEWnHjy5t+PxIqz8YNfnupLLwfphLXV66mYL2XPA/rWk23a27sTFJN32Vzy/xHcXHiZdW8V3uRC8wt7VT/AE+g/nXv/wANdN/svwDpcJXDPH5jfVua8o+IelRaVF4W8HWvJGHlx/E7EAk175ZW4tbGC3UYEUaoB9BRGyi7d7fd/wAEUruSv6k9FFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVDW9Wt9D0e51G6YLFAhb6nsKv15r4jkbxt43t/DUDE6Zp7Ce/YdGbslJ3eiGrLVmX8K/F+t+JfFmrrqV1K0Cx74rdgAI8njH4Vu/FLxJq2hW2lQaLMsV3eXHl5Zc8Vg/DtFi+LHiqNFCoowAOwzR8WNUt7Lxp4ZNyHeGBjMyIMlueABT0ah52DVSn5f5FkaZ8WyP+QpYfpXoHhuLV4dEhTXJY5dQGfMePofSvPpPjFd2MyS6l4Wvbawc8THqB616ZpmpWusadBf2Uokt5l3Iwp9CXuW6KKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMfjhqJtvBsVkh+e8uFTHqBzXp1eLfFWT+2PiJ4c0FTkB1Zh7k/4Cpau1Huyou15dkemeDdOGleD9Ks8YKW6k/U8/wBa3aaiCONUUYVQABTquTu2yIqysFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBT1W7FhpF5dscCGFnz9BXkPwKtTdXuuaxIMmRwgJ9ySf516V420/UdV8I39hpaK13cJsUM4UYzzzWX8MfCt54T8LfY9QRFu5JWeQIwYe3I9qI7t+QS+FLzPOvDOrW/hL4m+K2umCQokj4PfByB+tafwr0q48S+JdQ8a6mpYtIVtg3Y+o+g4qp44+FfiLXfG91qGnpCLK5ZdzmYKQO/FevaNpEWg6Db6bZoNsEW1R03Njr+JohpFN7pWHPWTS6u547Of+El/aCRPvw2TY9sIP8AGvda8t+HngXWtF8X6pretRRK04byikoc8nJ6e2K9SoWkIoUtZthRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGF4x1uTw/4WvdRhiMssaYRR6ngGvKfBPxF0Tw1pLrdWeoTajcyGW6mER+Zj2+gr3GSNJUKSIrqeoYZFQf2fZf8+dv/AN+l/wAKS0bY3ZpI8F8EeNbG1+JWr3z29wY9TcJEoTlST/F6V7Xe6LoN/rVveXttbS6jAP3LO3zL9BmvOvAenFPir4oeWz2w5/dlosL17cU74jafqmh+NNN8Y6fayXcEICXEackAf/WpppRh/VgablP+rnoviexg1DwzqNtcIrRtA5wR0IGQa4f4HXEsvguaF2JSG5ZUz6Vk+IPiz/bujS6VoWkXzX92vlfPHwmetdz8O/DUnhbwhbWU4H2l8yzezHtRFW5n6ClskdXRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXgtu7eIv2hPNU7o7OXIPoEH+Ne7zb/Ik8sZk2naPfHFeAWvw6+JGma5darpv2e3uJ3Yl1uEzgnOOaS+NNj+y0j6CorxP+xfjP/wBBNP8AwIj/AMK6vwHpvj211SeXxXfCW18vEaCRWy2faqSuJ6HoNFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCARgjIoooAhjtLaJy8dvEjH+JUANTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==
|
<image>Use parallelogram $JKLM$ to find $m \angle KJL$.
|
30
|
Geometry
|
Geometry3K
|
test
|
73
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADwAdEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAa7rGpZ2CqOpJwBXM+H/G9l4j8T6zo9jGHi00J/paShllLdQBjsQRnJzitTX/D2l+J9N/s/V7Y3FrvEmwSMnzDocqQe9ed/DfSbLQ/id4y03TofJtIFgWOPcW2gjPUkk8k0Aeo3l3BYWU95dSrFbwRtJI7dFUDJNc54E8axeOdKur+Cye1jguTAFeQMWAUHd0GPvdOayfGcr+K/Ell4HtXYW2FvNYkQ/dhBysefVjj8MHpmqXwXjSHSfEUUaKkaa1MqqowAAq4AoA7bxP4gtvC3h281m7R5IbZQdifeYlgoA/Eisa08eomk6Zea3pF1pcmp3i2ttASJC24DaxPGAc/pWD8b9Oup/BFxfR6lNDbW+wSWaqNk5aRACx9utcp4z8M6vZWnhFrjxXfXf2nULeOISRgfZ2PR155IoA95oqlpFlcadpVvaXV9LfTxqQ9zKAGk5JyQPyq7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhYL1IH1oAWim70/vr+dG9P76/nQA6im70/vr+dG9P76/nQA6ivNfG3jTVvDnimOGykiktjbI7QyJlSdzZORgjoO9T6V8WdNuNqanaS2j95I/3if4j8jV8jtc9L+ysU6Ua0I8yavpv9x6HRVDT9a0zVY/Msb6CcYyQjjI+o6j8au70/vr+dRY8+UZQfLJWY6isnxJeyWXhrUbq2mCTxQM8bDBwQOOteb6V8Wr+DamqWcV0veSI+W/1x0P6VSg2ro7MNl1fE03UpK9unU9eormdK8feHdW2qt6LaU/8ALO5Hln8/u/rXRrLGyhlkUg8gg9aTTW5zVaNSi+WpFp+Y+im70/vr+dG9P76/nSMh1eaeDv8AksXjr6W//oNek70/vr+dVobHTra8nvILW1iurjHnTJGqvLjpuYcnHvQBwU3wz1pNf1bVdM8a3Vg2pTmaREtA2Bk7VyX5Cg4FZHwS02/hm167k1aSW2S+mt3tTGAHlGw+dnPXHGPfrXru9P76/nVaysdO05ZVsbW1tVlcySCCNUDuerHHU+9AHG/Gb/klmq/70H/o1Kx/iZNHa6R4HuZ3EcEWqWzySNwFULkk/gDXpl7aWOpWr2t9b291bvjdDOiujYORkHg8gGo7zT9M1G0FpfWdpdWykEQzxK6Ajp8pGOKAJrO8ttQtI7uzuI7i3lGUliYMrD2I61PVe1gtLG2jtrSKC3t4xhIoVCKo9ABwKm3p/fX86AHUU3en99fzo3p/fX86AHUU3en99fzo8xM43rn60AOopu9P76/nRvT++v50AOopu9P76/nRvT++v50AOopu9P76/nRvT++v50AOopu9D/EPzp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/AMV7Zr7SdMsY44zLcXgjjdxyrEYGD26816BXFeP/APj58N/9hSP+Yq6cnGaaOjC0YVqqp1FdO/5M830Dw3o+p2TrcwTR31u5iuIzIQVYe3+e9a3/AAguif8APOb/AL+mtnx3pj+Htdi8U2aH7JORDqEajpngP/nuB61ajkSWNZI2DI4DKw6EHvXputKSU4vRnz3sYxbhJao5z/hBdE/55zf9/TR/wguif885v+/prpaKn2s+4/ZQ7HmfiHS7bSNRW2tAwjMYf5myckn/AAqnZ6be37YtbeST/aA4H49K9Ln0ixurwXVxbrLKFCjfyAB7dO9XFVUUKoCqOgAwBWTTbuz66hxHHC4SFCjC7irXe33Lf8Di7LwRI4DX9wEHeOLk/meP51of8INovdJif+umK6WiqjJx+Fng4/H18e067vbZW2OQ1LwfpNlptxcwpKJIoyy5kJGRXGqrOwVFLMegAyTXrlzbx3VtJBKCY5F2sAccVFZ6dZ2C7bW3jj9SByfqetKblN6s9PJ84pZbh5wULybv2W39dDg7Hwpqd5hnjFvGe8vB/LrW9F4F03YPtMksz9yCFH+P611FFEfdd0c+PzvFY2Lpzsovol/TOa/4QXRP+ec3/f00f8ILon/POb/v6a6WitPaz7nieyh2Oa/4QXRP+ec3/f00f8ILon/POb/v6a6Wij2s+4eyh2Oa/wCEF0T/AJ5zf9/TR/wguif885v+/prpaKPaz7h7KHY5r/hBdE/55zf9/TR/wguif885v+/prpaKPaz7h7KHY5r/AIQXRP8AnnN/39NH/CC6J/zzm/7+mulpCQoJJAA5JNHtZ9w9lDsc3/wguif885v+/ppsvgrQIImll8yONRlmabAH41Zn8SfaLv7BodrJqd8f4Yh8i+5b0/T3rZ034c3epypeeLb0zYO5bC3bbGv1I6/h+Zpyqygrzlb8xRpRm7Qjf8jgE0Gy1q6Nn4Z0y5vZAcPcPIVhj+p4/p7Zq3onw4fVb/XdLlvBHf6d5YjZeYmZgSQeM44Az+hr3SzsrXT7ZLazt44IEGFjjUKB+Ari/CP/ACUPxl/10h/k1QsZOUZculv80avBQjKPNrd/ozze08P6ba6idI1+zmstRX7pMp8uUdip/wA/0rc/4QXRP+ec3/f016lr/h3TfElgbTUYA4HKSLw8Z9VPb+VeaXkWr+B51t9W33ukM22G/QZKegcf59s9KqGIdXZ2fb/L/IiphlS3V13/AM/8yD/hBdE/55zf9/TR/wAILon/ADzm/wC/proYZ4rmFJoZFkjcZVlOQRUlHtancXsqfY5r/hBdE/55zf8Af00f8ILon/POb/v6a6Wij2s+4eyh2OUu/A1gts76e00V2g3ROZOjDkV6R4I8S/8ACSaErz/LqFsfJu4zwQ4/ix7/AM8jtWFWDLdyeEfE8PiCEMbG4Ihv419D0fHr/Ue9TNOtHle/T/IunJUZcy26/wCZ7BRTIpY54UmidXjkUMjKchgeQRT6809UKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvcz2kJiF1LBGXcLF5rAbm7Bc9/pViuK8f/8AHz4b/wCwpH/MU0rs6MLS9tVUG7Xv+R1t9ZW+pWM9ldRiSCdCjqe4NeTaSlx4f1i58L37FmhJktJT/wAtYjyP8/Udq9hrjfiF4cl1bS49S08Eappx82EqOXXqye/qPy710Yeok+SWz/M83FUnJc8d1+Rn0VR0fU4tX0yK7iwCww6/3WHUVeroaadmciaaugooopDCiiigAooooAKKKKACiiigAooooAKKKKACisvVPEFhpPyTSGS4PCwRDc5Pbjt+NFj4Z8TeKsSag7aJpjf8sl5nkHv6fjj6Gq5bLmk7IlNt8sVdkOoeJbW0nFnapJfX7Hatvbjcc+hI6fzq7YeBdb8RFZ/Et0bKzPIsLY/MR/tN0H6/hXb6D4X0jw3B5em2ixsRh5m+aR/q39OlbFYTxNtKa+fX/gHTDCX1qv5dP+CUdK0bTtEtBa6baR28Q6hByx9SepPuavUUVyNtu7OxJJWQVwnhH/kofjL/AK6Q/wAmru64Twj/AMlD8Zf9dIf5NW1L4J+n6oxq/HD1/Rnd1HPbw3Vu8FxEksMg2ujrkMPQipKKwNzy7WvB2o+FZpNR8NK91pxO6fTmJLJ7p3P8/r2NK1iz1i2821f5h9+NuGQ+4r1GuJ8U+Ak1C5bV9DlFhq68krxHP7MPU+v51208Qp+7U37/AOZwVcM4e9T27f5f5FOisTTtddrxtL1e3NjqkfDRPwH91P8An2zW3WsotbmCknsFRXVtFeWsttOu6KRSrD2qWikMZ8OtZlsbmfwlqMmZbbMllI3/AC0i64/Dr+Y7V6LXkPiKxuCkGq6cSmo2DebEw6sByV9/p9R3r0nw3rtv4j0K31K3wPMGJEzzG4+8v+e2KxxML/vF139f+CdOFqf8u3029P8AgGrRRRXKdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/4m0G41ubSXgliQWd4lw+/PzKOwwOtdBWF4i1+TQ5dLRIFl+23a25LNjaD3pq99DowvtPar2Xxa/kbtFFFI5zybX9P/AOEN8XfaYxt0bVn5x92Gb+gPX6E/3a1667xDolv4i0S5025GFlX5Hxyjjow+hrzXw9eXK/aNG1EbdR09vLcH+NR0Yev1+h716FOftIX6rf8AzPMq0/ZTstnt/kblFFFAgooooAKKKKACiiigAooooAKKr3l9a6fAZrudIox3Y9foO9ZNpPr/AIrcx+H7M29nnDahdDC/8BHf9fwqlFtXeiJctbLVmhqWr2OkxeZeTqmR8qDlm+gqpY2Hifxdg2cR0fS2/wCXmYfvXH+yP/1fWus0D4d6VpEwvL0tqeok5Nxc8gH/AGV6D6nJrr6xniIx0hq+7/yN4YWUtajsuy/z/wAjnPDvgjRvDmJbeEz3h+9dz/NIT3x/d/D9a6OiiuSU5Td5O52whGCtFWQUUUVJQUUUUAFcJ4R/5KH4y/66Q/yau7rhPCP/ACUPxl/10h/k1b0vgn6fqjCr8cPX9Gd3RRRWBuFFFFAGJ4k8K6b4os/JvY9syf6m4Th4z7H09q85nm1XwfdpYeIQZrNztt9RQEq3s3of1+vWvYagvbK21G0ktLyBJ7eQYeNxkGuilXcPdlqv62Oath1P3o6P+tzgkdJY1kjZXRhlWU5BFOrK1bwxqngqR7zSBJf6JktLak5kgHcr6j/J9as6bqdpqtqLi0lDr3HdT6Edq67Jrmi7o4rtPlkrMuVj6JqH/CGeL9jnbo2rNhv7sM3Y+w/of9mtiqWrabFq2my2c3AcfK391uxojbWMtmDumpR3R6fRXF/DzxFLqWmyaRqLY1TTf3cm48yJ0Vvf0P4HvXaVwVIOEnFnp06iqRUkFFFFQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4//AOPnw3/2FI/5iu1qtdWFpfNCbq3jmMLiSMuudjDoR7007O50YWsqNVTfS/5Fmiiikc4V558RtFltZYPFmnR5uLQbbtB/y0h9T9P5c9q9DpskaSxvHIodHBVlYZBB6g1pSqOnLmRnVpqpBxZ5zaXUV7aRXMDbopVDKamrBWzfwf4pl0KUn+zrsmawdu2eqZ9e35etb1d0klqtmebFvZ7oKKKKkoKKKKACikZlRSzEKoGSScAVgy+Invbs2Hh+zk1O87mMfu09y3p+nvVKLexLklubc08VtE0s8iRxryWc4ArEj1jUtfuGtPDFg1yQcPdyjbFH+J/z7GtzS/hvNfype+LL03cg5WyhYrEn1I6/hj6mvQLa1t7K3S3tYI4YUGFjjUKo+gFZzrQh8Or/AA/4JrDD1J6y0X4/8A4nRfhraxzrf+IbltWvuu1/9SnsF7/jx7V3SIsaKiKFVRgKBgAUtFclSpKo7yZ206UKatFBRRRWZoFFFFABRRRQAUVnalrul6O0a6hexW7SAlA56461R/4Tbw1/0GLb8z/hTszaOHrTXNGDa9Gb9cJ4R/5KH4y/66Q/yatz/hNvDX/QYtvzP+Fc/wCCZ4rrx34tuIHDxStbujjoylWINbU01Cfp+qObE0alOdNzi1r1Xkzv6KKKwLCiiigAooooAK4HxL4Bc3T6z4YdbTUOslv0in9sdAT+X06131FaU6kqbvEzqUo1FaR5LpWvJezvY3kLWepxHEltKMHPtnr/AJ+tbFdB4o8Had4ngDS5t76MfubuIYdD2z6j2/LFcB9v1Lw3fLpfiZAu7iC/X/Vyj3PY/wCT612wlGqrx37f5HnzhKk/e27/AOYawbjQ9VtfE+nqTLbHbdRj/lrEeuf8+h7V6xp9/b6pp8F9aSB4J0Do3sf61wjKk0RVgrxuuCOoINU/A+pN4b8QS+GLpz9iuiZdPdj91u6fj/Mf7VKrD2kL9V+X/ALoVPZzs9n+f/BPUKKKK4D0QooooAKKKKACiiigAooooAKKKKACiiigAooooAKK811HxH4s8S+L9T0PwhLZWVvpIVbq8uk375D/AAgYOOhHTsTnpWr4A8Walrb6ro+vQRRa1pMojnMXCSqc7WH5H8we+AAdrRXF/EzxdP4T8LSXGny241KSRI4llIJUMeW29+h9s1myeM7/AMOzeGdL1DVdM1a51C5eO8u4yqLEuQQQFOBw2MnrigD0auL8fMVufDmCRnU484PuK7KORJo1kjdXRhlWU5BHqDXN+LtHvdVn0VrOIOLW+SaXLAbUB5PPWqjudeBlGNeLk7LX8mdNRRRUnIFFFFAHOeNfDQ8S6C8MWFvoD5trJnBVx2z6Hp+R7VxXh/VTqmn5mUpdwN5VxGRgq49vf/GvWK8v8b6a3hrxDH4mtUP2G7YRX6KPut2fHv8AzH+1XZh58y9m/l/kcOKp8r9qvn/mXqKRHWRFdGDKwyCOhFZWqeIrHS2ELM010xwtvCNzk9vpWqi27I53JJXZrViX3iW3huRZWEUmo37HCwW43c+5FWbHwn4k8U4k1aVtH01v+XaP/XSD39Px/Ku/0Pw3pPh228nTLRIsjDyHl3+rHk/yqZ1KdPfV/wBdTSFKpU20X9dDh9P8A6vr7LceKLs29tnK6fat/wChN/8Ar+or0HTdKsNHtFtdOtYraEfwoOvuT1J9zVyiuSpWnU0e3Y7KVCFPbfuFFVdS1G30nT5r67ZlghALlRkgZA6fjUGma9pWsJu0+/gnOM7VbDD6qeR+VZ26nSqU3DnSdu/Q0aKKKRAUUVjT+K9FtNXk0u6vkt7qPbkS/KpyARhjx39aaVy4U51G1BXt2Nmimo6SoHjZXRhkMpyDTqRAUUUUAc1qKK/j7SA6hh9juOCM90rofs8P/PGP/vkVgX3/ACP+kf8AXncfzSujqn0Oqu3y0/8AD+rI/s8P/PGP/vkVw/hAAfELxiAMASQYA+jV3lcJ4R/5KH4y/wCukP8AJq1pfBP0/VHnVm3OHr+jO7ooorA3CiiigAooooAKKKKACqep6XZaxYyWWoW6T279VYdD6g9j7irlFNNp3Qmk1Znkep6Jq3gRzLB5upeH85PeW2Hv7e/T6d49Tgg8S6Mlzp04M8TebbyqcFXHOPb/APUa9fIDAggEHgg96878QeArjT7qTWPCZWKU/NNp5/1cv+76H2/LHfupYhSa5tH3/wAzz62GcU+TVdu3odF4L8Sr4m0FJ5MLewHyrqPGCrjvj0PX8x2ro68K0jxTHofipdWWOS3jnbyNUs3BDRnP3wO+D/UfxV7nG6SxrJGwZGAZWU5BB6EVliaPs5XWzN8LW9pCz3Q6iiiuY6gooooAKKKKACiiigAooooAKKKKACiiigDx211lvhp4/wDE39s2F7Jp2sXAurW6t4t4LEsdv/j+PbHoc0vw41C51X4ueKr+4s5bM3FtHIIJRh1Q7Nm4diVwce9bWreL/EnhPxnfpqelahqegTorWL2FsrmNsDKsRjvnqc9MVN8NtJ1Vr/XvFWtWjWd1rM6mK2kGHiiXO0H0OCBz/dz3oAyvjlo+nzeGIdVktUa+S4it1myciMliV/M1m+OPA3hrTfFvgy0s9Jhht729eO4RWbEijZgHn3P511Xxg0691PwSlvYWdxdzfbYm8uCIyNgZycAZxVb4nW+oR6z4S1iy0q91GLTr15J4rOIySAHbjgf7p9qAPQLKzt9PsoLO0iEVvAgjjjXoqgYAqhrWvQ6JJYJNDJIby4W3TZj5Se5z2q7p92b/AE62uzbz2xniWQwzrtkjyM7WHYjuK5Px/wD8fPhv/sKR/wAxTirs6cHSjVrKEttfyZ2tFFFI5gooooAKrajp9vqunXFjdpvgnQo6+x7j371Zopp2d0JpNWZ866nd634dmk8O3c7WyW+dkij55EPKgN2B9e3Q9MV1XhW+fRrVLrSvAV5dSSDP25rgSM/rhgmAPpXUfEnwwdY0ldTtIlfULAFwpXPmx9WQjv6gfUd64nREv7O1j1fwlfGFZOZbCZt0RYdV57/r7ivVVSNalfr13tf5HjunKhWt06bXt8zs/wDhOPEf/Qh6h/3+/wDsKP8AhOPEf/Qh6h/3+/8AsKk0L4kWN5OthrUJ0nUem2Y/u3P+y3b8fzNduCCMg5BrinaDtKn+L/zO6nzVFeNT8F/kcJ/wnHiP/oQ9Q/7/AH/2FH/CceI/+hD1D/v9/wDYV3dFR7Sn/Ivvf+Zp7Kp/O/uX+R5d4m8Wa3f+HL21uvCF7ZQyIA9xJJlU5ByRtFeWo7RuHRirA5BBwRX0T4usbnU/C1/Z2kfmXEqBUTIGTuHc8VwOkfCOeTbJq98sS94bcbm/FjwPyNUqkLaKx9XkeLo4TCy9vPW/z2XRHOaT8QvEWl7U+2fa4h/yzuRv/wDHvvfrXeW/j3X57dJE8FXsoI++jsA3uMp/Wuk0jwloeibWs7CPzR/y2k+d/wAz0/DFbdZucb3scGZYzDYhNUKfK+/X7lp95wn/AAnHiP8A6EPUP+/3/wBhXmfi+/utT8S3N3eafJp87qga3lbLLhQBzgdetfQ9eYeKPAer+IvGV1dw+VBZsIwJpW64QA4Uc/nirVSHSNvvFkFSOHxMp1qmnK97d0edabrmqaO+7T76e35yVRvlP1XofxFd7oXxL1+5zC+i/wBqSKOtsrK31OAw/QVv6R8LtEsNr3rSX8o/v/In/fI/qTXZ21rb2cKw2sEcMS9EjQKB+AqZTi+h6GY5ngq11GnzPvt/wfyOKPjjxED/AMiJqB/7bH/4ik/4TjxH/wBCHqH/AH+/+wru6KftKf8AIvvf+Z8q6dRu/P8Agv8AI8zn8R+IptetNU/4QnUQbeGSLy/M+9uxznb2xWj/AMJx4j/6EPUP+/3/ANhXd0Ue1h/Ivvf+Y5RrSSTqPTyX+Rwn/CceI/8AoQ9Q/wC/3/2Fcv4f8TaxaeLfEV3B4Xu7me5eMzWySYa3wDgE7ec59B0r2OuE8I/8lD8Zf9dIf5NWtOpDkn7nTu+68znqU588Pfe/Zdn5B/wnHiP/AKEPUP8Av9/9hR/wnHiP/oQ9Q/7/AH/2Fd3RWXtKf8i+9/5m3sqn87+5f5HCf8Jx4j/6EPUP+/3/ANhR/wAJx4j/AOhD1D/v9/8AYV3dFHtKf8i+9/5h7Kp/O/uX+Rwn/CceI/8AoQ9Q/wC/3/2FH/CceI/+hD1D/v8Af/YV3dFHtKf8i+9/5h7Kp/O/uX+Rwn/CceI/+hD1D/v9/wDYUf8ACceI/wDoQ9Q/7/f/AGFd3RR7Sn/Ivvf+Yeyqfzv7l/kcJ/wnHiP/AKEPUP8Av9/9hR/wnHiP/oQ9Q/7/AH/2Fd3RR7Sn/Ivvf+Yeyqfzv7l/kcJ/wnHiP/oQ9Q/7/f8A2FH/AAnHiP8A6EPUP+/3/wBhXd1geJ/F2m+F7UNcsZbqQfubWPl5D/Qe/wDOqjKMnaNPX1f+ZMoyguaVSy9F/keY+ObmbWrNr6/8G3emXEeB9uMwAx6MCo3e3Of5Vv8Awn8VPdWv/CP3pPmwIXtZGP3488rz6dvb6VmSWmp+Kr1NR8SNthU5t9OQ4SMf7Xqf1/lS6/ZTwLbaxpYEd/pxDxhR95B1XHpjt9R3rtajKn7J/wDDHnxlKNT2y/4f7j2Ciszw/rdt4h0S21K2OFlX5kzyjDqp+hrTry2nF2Z7EZKSugooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqhqWjWWrPatdozG1mE0WGIww6HjrV+uS8bX11Z3GgC2uZYRNqMccgjYjepPIPqKa3OjCwnOqowdnrr8jraKKKRzhRRRQAUUUUAFeSazp/8Awhni8lBt0bVmymPuwzdx7D+h/wBmvW6yfEug2/iTQrjTbjA3jMb4/wBW4+63+e2a2oVOSWuz3MMRS9pHTdbHEX+m2epweTeQLKvbPVfoeorOspvEnhAj+ypzqemL1srg/Og/2D/h+RpfDt9cPHPpeoApqNg3lSqerAcBvf6/j3rbrtd4+69Ueetfejozd8OeONH8RkQxSG2vhw1pcfK4PfH978OfYV0teU6roFhqwDTRlJ1+7PH8rqe3Pf8AGix8U+JPCmI9TRtZ0tf+W6f6+Me/r+P5iueeGUtaf3M6YYpx0qL5r9T1aisrQ/EeleIrXz9Nu0lwPnj6On+8vUfyrVrklFxdmdsZKSumFFFFIYUUUUAFFFFABRRRQAUUUUAFcJ4R/wCSh+Mv+ukP8mru64Twj/yUPxl/10h/k1b0vgn6fqjCr8cPX9Gd3RRRWBuFFFFABRRRQAUUUUAFFQ3V1b2VrJc3UyQwRjc8jtgKPrXmOseLdT8YSyWGgGSy0gHbNfMCHlHcL6D9fXHStaVGVR6bdzGrWjTWu/Y2vE/j77PdNo/h2Nb7VDw8g5jg9ST0JHp0Hf0rntL0L7PdPqOoztfapKcvPJztPovp/npVvS9JtNItRBaR7R/E55Zz6k1ertSjBcsP+HOCTlUfNP7uiCiiikMyPD2of8Ib4u+ySHbo2rP8pP3YZv6A9PoR6V6zXl2saXFq+mS2kmAWGUb+6w6Gug+H3iOXV9KfTtQJGq6cfKmDHl16K/v6H3571GIhzR9ot1v/AJmuFqcsvZvbp/kdjRRRXEd4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcl42sbu9uNANtbyzCHUY5JDGpOxQeSfQV1tUNS1my0l7Rbt2U3UwhiwpOWPT6U1udGFnOFVSgrvXT5F+iiikc4UUUUAFFFFABRRRQB5Z8Sov7G8SaZrtsgDzI0UwHAcLjg/UH/AMdHpVixv7fUbZZ7Z9yHqO6n0I9a0vitZ/aPCaXAHNtcKxPscr/MivH9O1K50u5E1s+D/Ep6MPQiuunNuKue1Syanj8EqlL3aiuvJ+vn5nq9FZmj63bavBmM7JlHzxE8j6eorTrU+VrUalCbp1FZoxL7w3DJdC+02aTTtQU5Wa3O3J9wP8/WtLTfiDqOiyJaeLLQtFnauo2y5U/7yj+mPpVmmyRpLG0ciK6MMFWGQRVNqStNX/MxjeDvB2/I7yxv7TU7RLqyuY7iB+jxtkf/AK/arFePf2HeaPdtfeGb57Gc8vATmKT2I/z+FdJovxJhM62HiW2Ol3vQSn/Uye4Pb9R71zTwz3p6r8Trp4pPSpo/wO9opqOsiK6MGRhkMpyCKdXKdYUUUUAFFFFABRRRQAVwnhH/AJKH4y/66Q/yau7rhPCP/JQ/GX/XSH+TVvS+Cfp+qMKvxw9f0Z3dFFFYG4UUUUAFFFFABWP4i8Tab4YsftN/Nhm/1UKcvIfQD+vSsXxV48h0mc6XpMQv9ZbgRLykXu5/p+eK5Ow0SaS+Ora3cG+1N+dzcrF7KPb/APVXVSw91zVNF+LOStibPlp6v8EMuRq3jS6W71zda6ap3QachIz6F/f/ADxW5FFHDEsUSKkajCqowAKfRXS5XVlojkS1u9WFFFFSUFFFFABXPavcS+HNbtPEVkB5mfJnTOBKuOh/AH8h6V0NY/imDz/D9xgcx4cfgef0zQ9mduW+z+t01UV03b79P1PRNA8Raf4jsBc2UnzDiSJvvxn0I/rWtXzRpeq3ujXyXlhO0Uydx0YehHcV7d4S8bWXiaERNtt9QUfPATw3uvqPbqP1rjnC2qPoszyeeGvUp6w/Fev+Z1NFFFZniBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFeP8A/j58N/8AYUj/AJiu1rJ1rQYNbksHmmkjNncLcJsx8xHY57U4uzOnB1Y0qynLbX8ma1FFFI5gooooAKKKKACiiigDG8W2f2/wnqlvjJNuzKPUr8w/UCvCNI8ParrruunWbzBB8z9FHtk8Z9q+j2VXUqwBUjBB7io7e2gtLdILaFIYUGFSNQAPwFXGfKj1sDms8HRlTgrtvTyPFfB2n2Mlv9t/eG9icpIj8eUfTH09a62s/wAZ6cfC3iVPENshGnX7CO+RRwknZ/x6/XPrV9WDKGUgqRkEd67nZpSjsz5vE4mviKrliJXkvy8vIWiiikYhUF5ZW1/AYLqBJYz2YdPp6VPRQnYTVzBtIdf8JuZPD90bmyzltPuTkf8AAT2/T8a7Tw74/wBK12UWk+7T9SBw1rc8En0U9/pwfasms/VNEsNXi23cILgfLIvDr9DTnGFT41r3/rccJzpfA9O39bHqVFeTWOt+JvCOEctrekr/AAsf38Q9j3/X8K77w/4s0fxLDv0+6BlAy9vJ8sifUf1GRXJUoSgr7rudlLEQnps+xt0UUVgdAUUUUAFcJ4R/5KH4y/66Q/yau7rhPCP/ACUPxl/10h/k1b0vgn6fqjCr8cPX9Gd3RRRWBuFFFZuua9p3h3T2vNRuBFGOFUctIfRR3NNJydkJyUVdl+WWOCF5ZpFjjQFmdzgKB3JrzTW/G1/4jnk0zwsWhtFO2fUmBH4J/j1+nWs6+u9X8dzCS/32GiA7orNTh5vQuf8APt61sW9vDaQJBbxrHEgwqqMAV3U6MaestX+CPPqV5VNIaL8X/kU9I0W00eApApaVuZJn5Zz7n+laNFFW227szSSVkFFFFIYUUUUAFFFFABUN3CLmzngPSSNk/MYqaigcZOMlJbo8mtNPu76Ux20DyMvXA6fU16R8MvDWj31omsySyTXsEpUwt8ggcHjIHJOMH09uKuwwRQJshjWNc5woxzWNFet4M8WR6suRpd+RFeqOiN2f+v8A3160vZ80WlufQY/iWvXlywXLDr3+89fopFZXQOjBlYZBByCKWuA4gooooAKKKKACiiigAooooAKKKKACiiigArl/GWtX2jvo/wBifH2i9WKVQgYup6gZ6V1FcX4+VmufDmATjU4ycD3FVHc68BGMsRFSV1r+TNH/AISe9/6FfV/++Y//AIqj/hJ73/oV9X/75j/+Kro6KV12J9tS/wCfa+9/5mHpfiP+0dWfTZdMvLK4WDz8XAUZXdt4wT3/AJVuVzn/ADUk/wDYI/8Aa1dHQxYiMU04q10mFFFFI5wooooAKKKKAKmqabbaxplxp92m+CdCjDuPQj3B5H0rynRGudJv7rw1qLZubM/uXPSWLsR+GP8AIr2GuH+Ivh+a7sode01f+Jlpvz8DmSL+JffHJ/Md66cPUs+SWz/M5MVTuvaR3X5FWiqmmahDqmnw3kJ+WQcjup7g1broas7M5U7q6CiiikMKKKKACsbUvDlpfTC7gZ7K+U7kubc7WB9Tjr/P3rZopqTi7olxUtGUdP8AHOteHGW38S2xvbIHC6hbj5lH+2O/6fjXoematYazZrdaddx3EJ/iQ9D6EdQfY1xLKGUqwBBGCD3rBl8PSWV4dQ8P3j6bejqEP7t/Yr6fmPaonSp1PJ/gaQrVKej1X4nsNFeeaT8SXtJ0sfFdmbGc8LdxgmGT3Pp+v4V38E8NzAk0EqSxOMq6MGVh6giuSpSnTfvI7qdaFRe6ySuE8I/8lD8Zf9dIf5NXd1wnhH/kofjL/rpD/Jqul8E/T9URV+OHr+jO7opGZUUsxCqBkknAArznX/Hd1qtzJpHhPDEfLPqJHyR/7nqff8vWop0pVHZFVasaavI3PFXji08PsLK1j+3avJxHax87c9C5HQe3X+dcXb6Rd6lqH9r+I5/td8eY4f8AlnAPQDp/nueas6RoVtpKtIC093JzLcycu5PX6VqV3RUaatD7zgnKVV3nt2CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABVe+s4dQspbSdcxyrtPt7/AFFWKKE7CauP+HOuTIs/hfUnzeWA/cOf+WsPbH04/Aj0Nd/XkHiC2ubaW217Tflv9Pbfx/GndT68Z/AmvTtD1i21/RrbUrU/u5lyVzyjd1PuDxWOJh/y8XX8zpwtTT2ct1+Ro0UUVynYFFFFABRRRQAUUUUAFFFFABRRRQAVWutQtLEwi6uI4TM4jjDnG9j0A96s1zni3w7deIIbH7HdpazWk4nV3XdyBxx9aa31NaEYTqKNR2Xc6OiuRs9G8ZRXsElz4mhmt1kVpYxbKC6g8jOOMiug1e3v7nTJYtMu1tLtiNkzIGC8jPB9siixU6MYyUVNO/VXsvXQyv8AmpJ/7BH/ALWro64L/hFPGH9o/wBof8JNB9q8nyPM+zL9zO7GMY6102gWWs2cMy6zqaX8jMDGyxBNo7jgCm0u50YqnT5VKNROySsr/qjXormtZ0vxRdai0ul69FZ2pUBYWgVyDjk5Iqh/Yfjn/oa4P/ARP/iaLeZnDDQlFN1Yr/wL/I7Siq97HcS2E8drMIblo2WOUrkI2ODjvzXJ/wBh+Of+hrg/8BE/+JpJXIo0Y1E25qPrf9EztKKwdB0/xBZ3EzazrEd9GygIqwhNpz14Ao17T/EN5cxNo+sx2MSph0aEPubPXkGi2oexj7Tk51bvrb8r/gb1FcX/AGH45/6GuD/wET/4mustI7iLT4IrmYS3KxKskoXAd8ctjtk80NWFWoxppNTUvS/6pHlep2H/AAhfi8wqNujaqxeH+7DL3X2H9CPQ1tUupeCfEmvWv2PV/EUM9tncALVQVYA4IIA7n16Zqsvw58QooUeLmwBgZtc/+zV3RqwlFc0rP5nmYnCSoVOWm1OL106eWtixXMah4rfTdZntJbZZIUK4ZThhlQfx6+1dD/wrvxF/0Nx/8BR/8VXnPibTrjSvEN1ZXd39rni27p9m3dlQRx9CB+FDlH7Mr/eetw/gYYrESp4iHu8r69brsztrLxJpd7gLcCJz/BL8p/Pp+tawIIyDkGvJLWzur6cQWlvLPKeiRIWP5Cu80L4feKSgaS9GmxHnYzl2/wC+Rx+ZqedLc78x4fw1Bc1Ory+Uv+Br+DN+s/W7+TTNLkuolVnQrw3Q5IFWj8PPEWePFxH/AG6//ZVjeKfB2s6R4fuL288RG8gQoGh+z7d2WAHOe2c1TlTtpL8/8j57A0JTxdOE4Xi5JPba/qQWXjWymwt3E9u394fMv+P6Vv217bXib7aeOUf7LZx9fSvJK6DRPCXiDVnSWxs5Yk6i4kPlqPcE9fwzU81tz67HcN4NRc4T9n66r8dfxO9uLaC7gaG4iSWNuquMisWDTtY8MzNc+Gb0iInc9hcHdG/0z0/Q+9a8Xw88R+QofxSI37hYTIPzJBNO/wCFd+Iv+huP/gKP/iq0jVhbWS9Hc+JxGGlTqNQ963VafnZmroHxG07UphY6pG2lakODFOcIx/2WP8jj2zWVourWOi+NPGt7qFwkECSQ/M3UnDcAdz7Cqt78KtW1FAt54lSYDpusxkfQ7uKqD4MXnmh28QRsVxgtbFunTgtSUcMr2la/r3IbxTteF7enb1F1LVtW8duUHm6d4fzwgOJbke/t7dPrWnZ2dvYWyW9rEsUS9FX+Z9TQPh34iAwPFxx/16D/AOKpf+Fd+Iv+huP/AICj/wCKqnOlblUkl8/8ifZ1m+aUW38v8yaiof8AhXfiL/obj/4Cj/4qj/hXfiL/AKG4/wDgKP8A4qp5qf8AOvx/yHyVf5H+H+ZNRUP/AArvxF/0Nx/8BR/8VR/wrvxF/wBDcf8AwFH/AMVRzU/51+P+QclX+R/h/mTUVD/wrvxF/wBDcf8AwFH/AMVR/wAK78Rf9Dcf/AUf/FUc1P8AnX4/5ByVf5H+H+ZNRUP/AArvxF/0Nx/8BR/8VR/wrvxF/wBDcf8AwFH/AMVRzU/51+P+QclX+R/h/mTUVD/wrvxF/wBDcf8AwFH/AMVR/wAK78Rf9Dcf/AUf/FUc1P8AnX4/5ByVf5H+H+ZNRUP/AArvxF/0Nx/8BR/8VR/wrvxF/wBDcf8AwFH/AMVRzU/51+P+QclX+R/h/mTUVD/wrvxF/wBDcf8AwFH/AMVR/wAK78Rf9Dcf/AUf/FUc1P8AnX4/5ByVf5H+H+ZNRUP/AArvxF/0Nx/8BR/8VR/wrvxF/wBDcf8AwFH/AMVRzU/51+P+QclX+R/h/mTVleGNQ/4Q/wAWHTZW26Rqr7oSekM3THsDwP8Avn0NX/8AhXfiL/obj/4Cj/4qq158LNY1CERXfigSoG3ANa9D6/eqlKlZxlLR+v8AkHJWTUox1Xp/meo0VT0q3u7TS7e3vbkXVxEgR5wu3fjoSMnnHX3q5XnPRnpp3QUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXK3vgDSNT8QXOr6gZp2mKnyd21BhQvbk9PWuqopptbGtGvUotunKzemhWstPs9OgENlaw28Y/hiQKD+XWrNFFIzcnJ3YVma/osXiDR5dNmleKORlLMgGeGB4z9K06KBwnKElOLs0c/pHgvQdF2tbWKSTD/ltP8759RngfgBXQUUU229yqlWpVlzVG2/MKKKKRmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z
|
<image>Find the area of the figure. Round to the nearest tenth if necessary.
|
63
|
Geometry
|
Geometry3K
|
test
|
74
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEmAWYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Dxz40l8LnTbHT7D7fq2py+VawF9q8EAlj9WHp9eKzvDnjnW38Yjwt4q0iCx1CaAz20ltJvSRRnjqeytzn+E8VmfFsrBq3he9053l8RW90TZWSR7/ALQuV3BsEbRwOfc/UZ+gX99qvxltrrxfZtpGqQ2Jj02zUbkkBDbjvyQTgv0/pyAeuXt0ljY3F3ICUgiaVgOpCjJ/lXnmj/EPW5PBOoeMdW0m0j0tFDWcNvKfNceZsbcTx1x2Heun8c6Lb634SvYbmW4jWCN7hTBIUJZUbAPqOeRXiy+DdP8A+FEf8JF9qv8A7X5ZbyvtB8n/AF+z7n0/WgD6E0+7F/ptreKhQXEKShSc43AHH61YrmPAOhW2heFLNbaa5l+1RR3DmeUvhmRchfQcdK6egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqlquq2WiabLqGoTeTaxFQ77S2CzBRwAT1IFXa474qf8k61L/rpb/8Ao+OgDsaKKKAPK/iDM/hr4keG/GF1bzS6TBC9rcPGu7yS24Bj/wB9/jtIqm2tWvxE+K/h640BZZtO0ZHlubwxMi5YcLyAeoA59T6V6+QGUggEHqD3psUUcKBIo0jQdFRcCgCh4h/5FrVf+vOb/wBANeVQRSTfswFIkZ2+zs2FGTgXJJP5AmvZ6KAOY8A+INO8QeErKTTpmlFrFHbTZQrtkWNcjkc9RyOK6eiigClqmq2WjWYu7+byoTIkQbaW+ZmCqMAE8kirtcd8Tf8AkUk/7CFp/wCjkrsaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK474qf8AJOtS/wCulv8A+j467GuO+Kn/ACTrUv8Arpb/APo+OgC74lu/GFvGx8O6Xpd1gcG5umDH/gO1R/4/Xz9458Q/EdneDxIb6xt2O3yok8uFvbcvD/iTX1LTJoYriF4Zo0kicYZHUEMPQg0AcZb33xAFtEE0TQymwbSb6TJGP9ypft/xD/6Aehf+B0n/AMRXYABQAAABwAKWgDjvt/xD/wCgHoX/AIHSf/EUfb/iH/0A9C/8DpP/AIiuxooA8g+Jl/41HgO/bUdO0y0tleEtNa3jtIhEq42gqO+O9c34F8Q/Fm4SMWVpLqVl2fU0wmPUSEqzfma9/mghuI/LniSVMhtrqGGQcg4PoRmpKAPO/GkutS+CIzrVnZW832+04tbhpAf3ydcoMfma9Erjvib/AMikn/YQtP8A0cldjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDd3KWdpLcSfdjUsff2rAi8Q6nNEskekZRhkHzcZH5U/xNMbiS10qM8ztvkx2Qf5P5VaVQihVGABgD0rzsRXn7Rxg7JfmddKnHkvJXuVf7d1b/AKA4/wC/wo/t3Vv+gOP+/wAKt0Vj7ar/ADv8P8i+SH8v5lT+3dW/6A4/7/Cj+3dW/wCgOP8Av8Kt0Ue2q/zv8P8AIOSH8v5lT+3dW/6A4/7/AAo/t3Vv+gOP+/wq3RR7ar/O/wAP8g5Ify/mVP7d1b/oDj/v8KP7d1b/AKA4/wC/wq3RR7ar/O/w/wAg5Ify/mVP7d1b/oDj/v8ACj+3dW/6A4/7/CrdFHtqv87/AA/yDkh/L+ZU/t3Vv+gOP+/wo/t3Vv8AoDj/AL/CrdFHtqv87/D/ACDkh/L+ZU/t3Vv+gOP+/wAKP7d1b/oDj/v8Kt0Ue2q/zv8AD/IOSH8v5lT+3dW/6A4/7/Cs+88Rtd3I0a90WCeSVBL9mmYOGUHIOCMcFc/hW3XJXX/JUrL/ALBx/wDQnq6c6sr3m9F5f5G1ChTqOV1sm/uOi/t3Vv8AoDj/AL/Cj+3dW/6A4/7/AAq3RUe2q/zv8P8AIx5Ify/mVP7d1b/oDj/v8KP7d1b/AKA4/wC/wq3RR7ar/O/w/wAg5Ify/mVP7d1b/oDj/v8ACj+3dW/6A4/7/CrdFHtqv87/AA/yDkh/L+ZU/t3Vv+gOP+/wo/t3Vv8AoDj/AL/CrdHSj21X+d/h/kHJD+X8zNbVpdRvLfTb/RYHErq+yZg4GDndjHUYyPpXU1zfh6P7bqF3qjD5c+TDn0HU/wAvzNdJXbhHOVPmm7329DnrqKlaKCiiiuoxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoJABJOAO9FY/iW8a20poo/9dcnykA689f0/nUVJqnByfQqEXKSijL09zqGp3mpt91m8uHP90f5H61q1BZ2y2lnFAv8C4J9T3NT14yvu92dztfQKKKKYgooooAKKKKACiiigAooooAKKKKACiiigAqg+j2smuR6u3mfaY4fJX5vl25J6evJq/XNXF/dJ8Q7WwWdhavYmRouxbLc/oK0ppu9n0NqMZycuV20f3HS0UUVmYhRRRQAUUUUAFZ2tXDQ2BjjyZZz5aAdea0azrSP+0vE248wWK59i5/z/wCO0crk1BbsaaXvPob2nWa2GnwWq4+RcEjue5/OrVFFe1GKikkcDbbuwooopiCiiigAooooAKKKKACiiigAooooAKKKKACiiigArlrmT+0vEzd4LFdo9C56/wCfat7U71dP06e5OMovyg926D9aw9Gtmt9PVpMmWY+Y5PXJrz8bO7VNerOrDxsnP5GhRRRXIahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy1zbzn4lWdwIZDALAqZAp2g7n4z0zXU1UbU7NNUTTWmxePH5qx7TyvIznGOx71pTk1ey6G1GcouXKr3TX/BLdFFFZmIUUUUAFFFFAEF7cizs5Zz/AvA9T2/Wp/DdkbTSUeT/XXB81yevPT9Kyr9P7R1W00wcpnzZv8AdHb/AD6iusAwMDpXTg4c03N9NP8AMzrytFR7hRRRXpHIFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZJFijeRzhEBZj6AUAc74gk+3anaaWpyinzpvp2H8/zFXaytI3Xc11qcow1w5CZ7KOn+fatWvFlP2knPv+XQ9Dl5Uo9gooopCCiiigAooooAKKKKACiiigAooooAKKKKACiiigArkrr/AJKlZf8AYOP/AKE9dbWVLoiyeJoda88horfyPK28HknOfxrWlJRvfszow9SMHLm6po1aKKKyOcKKKKACkZlRGdjhVGSfQUtZmtSubeOzh/1104jUe3f/AD70pOyuNK7sWfDMLTtdarIPmuH2x57IP8/pXQ1Da26WlpFbx/cjUKPepq9ehT9nTUTiqT55NhRRRWpAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYXii5ZbKOxhP767cIPZe/9K3a5VZP7T8RXF11htR5MX17n+f5iuTGVOWnyrd6f5m+HjeV30L8EK28EcKfdRQoqSiivPOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArAn1e6j8cW2kqU+yyWhmYbfm3ZYdfwFb9cldf8lSsv+wcf/QnrWkk737M6cNFScrr7LOtooorI5gooooAKz9Kj/tHxDPeHmG0Hlx+7Hqf5/pUmp3f2LT5ZgfnxtT6npWjoVj/Z+kwxMMSMN8n+8f8AIH4VrQhz1V2Wv+RNSXLBvvoaVFFFescQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGfrd9/Z2kzTA4kI2R/7x6f4/hWZpdp9j0+KIj5yNz/AFP+cUzV5P7Q1+3shzDajzZfduw/l+Zq/Xk4ifPVfZaf5nbTjywXnqFFFFZFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQG4tReLA0sIuiu5Yyw3lfUDrjrU9cldf8lSsv+wcf/QnrSnDmv5I2o0/aOWuyb+462iiiszEKKKZNKsELyucKiljQBnSR/2n4htrPrDb/vpfr2H8vzrq6wfC9swtJb+Yfvbty30UdP6/pW9XoYOHLT5nu9f8jnxEry5V0CisXxN4gfw5pyXSaRqOpu8nliGwh8xgcE5b0XjGfcVxnwp8Sav4k1fxVPqv2iIpcxiOzmZv9GB3/IAenQZ4HIrrMD02iuD1Hwb4sudRu7q3+IN1aW0kryRwCxVhEpJIXO/kAcZ9qo/C+bX9QvtXvb3Xp9W0aN/s1lPLEI/PZT87qBn5ewOefbFAHpVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXNwlrbS3Ehwkalj+FS1z3ieZphbaXEfnuXy+OyD/AD+lZV6ns6bkXThzySKuixu8Mt9N/rrpy5+natSmoixoqKMKoAA9BTq8iKsrHa3dhRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAViTaLNJ4xt9ZEsYhjtTAU53E5Y59Mc1t1jS63JH4ug0UQqY5bYzmTPIOWGMfhWlPm15extR57y5Ozv6dTZooorMxCsrWC9y9tpsR+e5cbsdlHU/59K1ao6BH9u1W71NuY0/cw/1P+fU01D2klDv+XUfNypy7HRRRpDEkUYwiKFUegFPoor2tjzwrzT4a/8AI8fEH/sJL/OSvS64fwR4f1TR/FXjG9v7byrfUb5ZbV/MVvMTL84BJH3h1xQA34r61cad4TXTbA/8TDWZ1sIADyA/DH8uP+BCuq0PSLfQdDstKtR+5tYljU4+9jqx9ycn8a5LxP4e1bWfid4WvVtN2jaarzSzmRMLIckDaTuPKpyB3rvaACiiigAooooAKKKKACiiigAooooAKKKKACuTsn/tLWLvUjzGD5MP0Hf/AD6mtbxHemz0mQR/66c+UgHXJ6/pmq1jbCzsooB1VeT6nvXnYyfNNQXTX/I66EbRcu5YooorlNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArkrr/AJKlZf8AYOP/AKE9dbUDWVs16t40EZuVTYspX5gvpn05NaU58t/NG1GqqblfqmvvJ6KKKzMTP1m6Ntp7hM+bL+7QDrk1t6XZDT9NgthjKL8x9WPJ/WsKCP8AtPxMi9YLFd7ehc9P8+xrqa68FC7dR+i/UyxErJQ+YUUUV6ByhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVW1C7WwsJrpuka5A9T2H50pNRV2NJt2RgXsn9peJhGOYLFefQuf8/pWjWdotu0Vj5svM1wxlcnrz0/z71o14vM5NzfU72kvdXQKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJXRP/C0rIZ4/s4/+hPXW1z0+lXb+O7bVFQfZI7MxM+4Z3ZY4x17itqTSvfszpw0lFyu/ss6Gobu4W0tJZ26Iucep7CpqytSU3+oWmlqeHbzJcdlH+T+lYO+y3OdWvqafhqza30sTy/665bzXJ9+n+P41s0gAVQAMAcAClr2acFTgoLocM5OUnJhRRRVkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzfiOQ3l7aaUh+Vj5s2P7o6D+f6V0bsqIzsQFUZJPYVymlFr27u9UkBzM+2PPZB/kflXFjZ2ioLr+R0YeOrl2NUAAYHAooorhNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopskiRRtJIyoiAszMcAAdSazv+Ej0T/oL2P/gQv+NUot7IuMJS+FXNOsyTWoo/EcOimJzLLB54kyNoGSMfpR/wkeif9Bex/wDAhf8AGueF7a33xNs5bS5iuIxYFS0ThgDluMj6itKdJu/MujOijh2+Zzi9E2dmxCqWJwAMk1V8NRG6nu9VkH+tby4s9lH+R+VV9bmdbRbaLma5YRKPr1/w/GujsrVLKyhtk+7GoXPr6mnhYc9W/SP5nDVlywt3J6KKK9Q4wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMTxPdNFpy2kR/fXbeWo9u/wDh+NJbQLbW0cKfdRQPrVFpP7T8SzT9YLMeUnoW7n+f6Vp149WftKjl02R3RjywUQoooqBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFDW/+QBqP/XrL/wCgmqui6ZYPoOnM1lbMxtYySYlJJ2j2q1rf/IA1H/r1l/8AQTRof/Iv6b/16xf+gCtU2qenc6VJqho+v6En9lad/wA+Fr/35X/CoU0PTotUTUYrZY7lI/LBj+UY57DjPPWtGuP1nVLmy8cRRrPKLcaeX8oMdhcswBI6elKLk09dkwoqpUbSl0Z0GnR/2j4kluDzDZLsX0Ln/J/IV09Zfh+xNjpESuP3sn7yTPXJ/wDrYrUruwtPkpq+71PMrS5p6bIKKKK6TIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmuCyMqttJBAb096dVDW7iW00DUbmB9k0VrLIjYzhgpIP50AZSeEhECI9TukBOSF4yad/wi8n/QXvP++v/r1b8KXlxqPhDRb26kMlxcWMMsrkAbmZAScDjqa165fqdD+X8zb6xU7nO/8ACLyf9Be8/wC+v/r0f8IvJ/0F7z/vr/69dFRT+p0P5fxYfWKnc53/AIReT/oL3n/fX/16P+EXk/6C95/31/8AXroqKPqdD+X8WH1ip3Od/wCEXk/6C95/31/9ej/hF5P+gvef99f/AF66Kij6nQ/l/Fh9Yqdznf8AhF5P+gvef99f/Xo/4ReT/oL3n/fX/wBeuioo+p0P5fxYfWKnc53/AIReT/oL3n/fX/16P+EXk/6C95/31/8AXrk77xH4w8T+M9V0TwlcWVhaaRtS4urmPeXkP8IGD3BHTsTnkCtDwb46urmx8QQeKFht77w+5F5LApKPHhjvAGT/AAnp7cc4o+p0P5fxYfWKnc3P+EXk/wCgvef99f8A16P+EXk/6C95/wB9f/XrjtL+KS+J/ijpukaJM50cwy+cZIgpmcIzAjI3ADA9M816nR9Tofy/iw+sVO5zv/CLyf8AQXvP++v/AK9H/CLyf9Be8/76/wDr1y3ifxbq0/xBsvDeh61p+n24tftNzdSqsmTuIKc8A8D35ra8P+N01jxjr2jSPZpBYNEtrIkvzT7wSe+DjHaj6nQ/l/Fh9Yqdy/8A8IvJ/wBBe8/76/8Ar0f8IvJ/0F7z/vr/AOvXRUUfU6H8v4sPrFTuc7/wi8n/AEF7z/vr/wCvR/wi8n/QXvP++v8A69dFRR9Tofy/iw+sVO5zv/CLyf8AQXvP++v/AK9H/CLyf9Be8/76/wDr10VFH1Oh/L+LD6xU7nNyeFGkjeNtVumVgQQxyCD6jPIoj8JtFEka6rdKqgKFXgAD0GeBXSUUfU6Pb8WP6xVta5zv/CLyf9Be8/76/wDr01fCEJuo557yacoRw4zkA5xn0rpK5n4gapeaN4MvL7T5zBcxywKsgUHAaZFPBBHIJH40LB0V9n8xfWKnc6aiiiukxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzPEn/Ir6v8A9eU3/oBrTrM8Sf8AIr6v/wBeU3/oBoA5zRdU1PTfh14efTdBn1VxpluSsc8cQH7tf7xz+Qryzxj8WvHcErWjaW3h9WyBuhJkI9ncYP1AFe1+CP8AkQvDv/YNt/8A0WtbF1aW19btb3dvFcQPw0cqB1P1B4oA848H+K/FLeEdLYeFL7VN0AP21r+IGYnqcMc+3PpW5/wlPir/AKEC9/8ABhb/APxVdTY2NrptlFZ2cCQW0Q2xxoMBR6CrFAHHf8JT4q/6EC9/8GFv/wDFUf8ACU+Kv+hAvf8AwYW//wAVXY0UAcd/wlPir/oQL3/wYW//AMVR/wAJT4q/6EC9/wDBhb//ABVdjRQBx3/CU+Kv+hAvf/Bhb/8AxVddEzPEjOhRioJQnO0+lPooA5HxDq/hz4eWV7q7W0cd5fybvJi/1l3Lzj+Zye2foKzvhn4e1Szj1bxDrsYi1PXJhO9vjHkoMlVI7H5jx2AGec1yFxe6hb/FLV9c1jwdr+rLbSeRpZhs3aKJVJBcZGDnAII9SfSvSfC/iu58Rz3Ec/hzV9JEKhg9/AYxJk9Fz1IoA5jWlC/H/wAM4AH/ABLZun0lr0yvPtY06+l+N/h7UI7K4eyi0+VJLhYmMaMRJgFsYB5HHvXoNAHjd54O8PzfHOPT5NMia0m0truSLLYaYyNl+vWpPA/hTQo/ip4qRNOiC6XLbtZDJ/ckqSSOfUd66KbTr0/HS21EWdwbEaKYjc+UfLD+Yx27sYz7VnaO+o6D8XvEXn6Fqc1pq8luIbyC3LQoAvJdugHP6UAemyMyROyIXYKSEBxuPpXIf8JT4q/6EC9/8GFv/wDFV2NFAHHf8JT4q/6EC9/8GFv/APFUf8JT4q/6EC9/8GFv/wDFV2NFAHHf8JT4q/6EC9/8GFv/APFUf8JT4q/6EC9/8GFv/wDFV2NFAHHf8JT4q/6EC9/8GFv/APFVznjzxb4ri8F6jJ/wi99pBURkXy38RMX7xecKc89OPWvVKrX+n2mq2Ullf28dxbSY3xSDKtggjI78gUAeC+Dfiz47u5FthozeIEXhmjhKSD6uo2j6kV3vjjUtR1H4Z376jok+lyebanZJPHID/pEfdT/MCvQbe2gtIEgtoY4YUGFjjUKqj2A6VyfxT/5J5f8A/Xa1/wDSiOgDsaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKp6taPf6PfWcbKr3FvJEpboCykDP51cooAzfDunS6R4a0vTJ3R5bS0igdkztLKgUkZ7cVpUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVg+MtDuPEfhe50u1kijmlkhYNKSFASVHPQHspreooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==
|
<image>Find the perimeter of the parallelogram. Round to the nearest tenth if necessary.
|
76
|
Geometry
|
Geometry3K
|
test
|
75
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACxAT8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuM1CiiigAoqK4uYLSBp7maOGJeWkkYKo+pNUrPxFomoz+RY6xp91N/zzguUdvyBzTA0qKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUU9xBax+ZcTRwpnG6Rgoz9TQBLRSKyuoZSCpGQQeCKilureCSOOaeKN5DhFdwCx9getMCaiiikAUUUUAFFFFABVHWdWtdC0e61S9Yrb20Zd8Dk+gHuTgD61ery348Xstv4HtreMkJc3qLJjoVCs2PzAP4VUVd2BmLoHhnUvizcv4j8UXVxDo/mMLKxhbAKgkZB7AdCcZJB6YFaPi/4N6NHoM134at7m31O2XzIkSZn80jt8xJB9MY5r0LR7H7D4OsrLTWjRo7FUgY/d3bOGP48mvKPFz/ABK8HaIdTv8AxjayIZFiSOKJdzsfTMYHQE/hVptvRk2PTvA1xrNz4PsH1+GWLU1VkmEq4ZsMQGI9SMGuirD8HS39x4O0m41Sdp72e2WaWRlAJLfMOAAOAQPwrcrN7lIKKKKQBRRRQAUUUUAFFFFABXknj74vW1hnS/Ddy51OO68qeVoPkjCkhl+ccnPHAx15r1uvNPjeqjwVakKAf7Si5x/svVwtfUTO28Qx65LpTL4ens4b/euHuwSm3v0BOa868Sar8TPC+knUL7VfDzqXWKOGGKRpJXY4CqCoyep/CvWq83if/hMfi/Lu+bTPDEeFXqGun7/hg/Qp70RBnd6Qb5tGsm1MIL8wIbgJ90SYG4D8c1NLfWkEjRzXUEbqnmFXkAIX+9g9vep68o8SaLZa/wDHXT7LUIzLa/2QJHh3ELJtdyA2Oozg49hSSuM9Lj1fTJrFr2LUbR7RfvTrOpjH1bOKks76z1G3FxY3cF1CTgSQSB1z9RxXkNh4N0aX4zaroptsaPFZpeiwVyIWlwiglc843sfx9OK1/ANjBovxP8ZaTYL5ViggkSEH5VJXPH/fRpuKFc9PoooqBhRRRQAUUUUAFFFFABXkXxznku4PD3h+A5lvrzdgeowi/rIfyr12vD/HGnS+NfjXZ6FDdyWgs7Ubp4xlomCmTcORz8yDrVw3uJ7HtlvBHa20VvENscSBEHoAMCvIvFX/ABPvj54e0wcxafGszjsGG6X9QEFW/wDhTuo/9D3q/wCTf/F1h/B/Smb4i+Irx7uW+WwVrVLmYks5L4VuSf4Yz36Gmkld3BnuVFFFZjCiiigAooooAK5nx74TXxl4Wm0wSCK4VxNbyN91ZACBn2IJH45rpqKadgPHNH1z4oeG7CHR7jwouoi3URQzh/4RwMspweMeh9az/FXgb4heM4LbUNX+ziYTrHHptvIoW3iIO6QktgnIXoWJz7Yr2XV9ROladJeC3edY+XVDggetc6njwSoHj0a9dT0ZRkH9KbqJMzlKMdGzrYYUt4I4Yl2xxqEUegAwKfXI/wDCcN/0A7//AL5/+tR/wnDf9AS//wC+f/rVnzoPaw7nXUVyP/CcH/oCX/8A3z/9aj/hOD/0BL//AL5/+tRzxD2sO511Fcj/AMJwf+gJf/8AfP8A9aj/AITg/wDQEv8A/vn/AOtRzxD2sO511Fcj/wAJwf8AoCX/AP3z/wDWpf8AhOD/ANAS/wD++f8A61HPEPaw7nW0VyX/AAnB/wCgJf8A/fP/ANaj/hOP+oJf/wDfNHPEPaw7nW1598YdOvtU8H20Gn2dxdzC/icxwRNIwUK2TgDpyOa1P+E4/wCoJf8A/fNH/Ccf9QW//wC+aaqJO4e1h3Oqlk8qF5NrPsUttUZJx2A9a8/+EGl39l4d1C81aznttQv7+SaRbiNkcjAxkHnruP41rf8ACcf9QW//AO+aP+E5/wCoLf8A/fNHtFawe1h3OtrgrnT71vjjZ6gLO4NkujmM3IiPlh97/LuxjPI4rQ/4Tn/qC3//AHzR/wAJz/1Bb/8A75oU0g9rDuZ2nafep8b9X1B7O4Wyk0pI0uDEwjZt0fyhsYJ4PHtR4c0+9g+LXi69ms7iO0nitxDO8RCSEIudrEYOPatH/hOR/wBAW/8A++aP+E5H/QFv/wDvmn7RB7WHc62iuS/4Tkf9AW//AO+aP+E5H/QFv/8Avmp54h7WHc62iuS/4Tkf9Aa//wC+aP8AhOR/0Br/AP75o54h7WHc62iuS/4Tkf8AQGv/APvmj/hOV/6A1/8A980c8Q9rDudbRXJf8Jyv/QGv/wDvmj/hOV/6A1//AN80c8Q9rDudbXm3g7wrrVt8TPEniTV7PyIrktHaMZUcuhcYOFJxhUXrjrW5/wAJyv8A0Br/AP75o/4Tlf8AoDX/AP3xTVRIPaw7nTXjzx2Nw9rH5lwsbGJMgbmxwMnjk1wnwj8J6l4W0G+/tm38i/urrey+Yr/IFGOVJHUtXX6FrUeu2L3UULxIshjw5GTgA54+tadUpaaFpp6oKKKKQwooooAKKKKACiiigBHRZEZHUMrDBB6EV579mbw/rkmmOT9lnJktWP8A6D/n+teh1jeJdG/tnSykfF1CfMgboQw7fj/hUzjdGdWHMtNzHoqlpd99utAzjbMh2SqRghhV2sTjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo7iTyraWT+4hb8hUlUNak8rR7lvVNv5nH9aAN/wRB5PhW2J6yM7n/voj+QFdDWfoUH2fQbCLGCsCZ+pGT+taFbrY7oK0UgoooplBRRRQAUUUUAFFFFABRRRQBw3iSzOi6ymrQr/AKJdHZcqP4W/vfj/AI+tTgggEHIPQiuqvrKHULKa0uF3RSrtPt7/AFFcHpxmsbqfR7s/vrY/I399OxH+f5VlONnc5KsOV3XU06KKKgyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyfEOXsI4F+9NMqCtas66T7Rr+i2/UG48wj2XB/wAaAtfQ9BRQiKijAUYFLRRXQegFFFFABRRRQAUUUUAFFFFABRRRQAVy/jDSpJrePVrNf9Ls+Tj+OPuPw5P511FBGRg0NXVhSipKzOItLqO8tY54z8rjOPQ9xU1Z93af8I7r7W4GLC9O+E9kbuv+fatCudqxwtNOzCiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdOTz/HVqOot7dnP1OR/UVapnhVPO8VarcdookiH44/+Jpx3LgryR2lFFFbnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZmv6QmtaVJatgSD5on/uuOn+H41yOlXj3EDQ3AK3Vu3lyqeuR3r0GuL8WWLabqEeu2ykxtiO7Udx2b+n5VE49TCtC/vIfRTUdZEV0IZWGQR3FOrI5gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKk8Cpvj1S7/AOet0VH0Az/7NUE0nlQSSf3FLfkK0fA0PleFoHPWV3c/99Y/pVQ3NaK986OiiitjrCiiigAooooAKKKKACiiigAooooAKKKKACori3iuraS3mQPFIpVlPcGpaKAPO7SOXSNSm0W5YnZ89u5/jQ/5/nWnWh4t0d9QsFu7UYvbQ+ZGR1Yd1/z/AFrF0+9S/s0nTgnhh6HuKwkrM4pw5XYtUUUUiAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCjrEnlaRdN6oV/Pj+tdb4fg+z+HtPjxgiBCfqRk/wA64rxESdMES/ellVB/P+leixxiKJI1+6ihR9BV0zegtWx1FFFanSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXA6vaf8ACO6/56jbp18efSOT+g/z2rvqoalDpt9GNP1BoW80grE8m1mI6Ec5/KlKN0RUhzKxzH2q3/57xf8AfYo+1W//AD3i/wC+xWv/AMIV4e/58P8AyNJ/8VVeLwx4TmnMEUUEky5zGt0xYY68bqz9mzD2Eyh9qt/+e8X/AH2KPtVv/wA94v8AvsVr/wDCFeHv+fD/AMjSf/FUf8IV4e/58P8AyNJ/8VR7Nh7CZkfarf8A57xf99ij7Vb/APPeL/vsVr/8IV4e/wCfD/yNJ/8AFUf8IV4e/wCfD/yNJ/8AFUezYewmZH2q3/57xf8AfYo+1W//AD3i/wC+xWv/AMIV4e/58P8AyNJ/8VR/whXh7/nw/wDI0n/xVHs2HsJmR9qt/wDnvF/32KPtVv8A894v++xWv/whXh7/AJ8P/I0n/wAVR/whXh7/AJ8P/I0n/wAVR7Nh7CZkfarf/nvF/wB9ij7Vb/8APeL/AL7Fa/8AwhXh7/nw/wDI0n/xVH/CFeHv+fD/AMjSf/FUezYewmZH2q3/AOe8X/fYo+1W/wDz3i/77Fa//CFeHv8Anw/8jSf/ABVH/CFeHv8Anw/8jSf/ABVHs2HsJmR9qt/+e8X/AH2KPtVv/wA94v8AvsVr/wDCFeHv+fD/AMjSf/FUf8IV4e/58P8AyNJ/8VR7Nh7CZkfarf8A57xf99ij7Vb/APPeL/vsVr/8IV4e/wCfD/yNJ/8AFUf8IV4e/wCfD/yNJ/8AFUezYewmZH2q3/57xf8AfYo+1W//AD3i/wC+xWv/AMIV4e/58P8AyNJ/8VR/whXh7/nw/wDI0n/xVHs2HsJnM3TR3mtaPbI6uGuQ7BTngEf/AF69FrEt/DWhaVOt9FbLA8OWEjzNheMZOTjvWxDNFcRLLDIkkbdHRgQfxFXCNjalBwTuPoooqjQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvHLyRNa/aJjMrr9l0W03uzHCqFQtknth5B+Vex182eHPC+p/EnxZr2oQ3rWelT3L/aZlOS6ltyxgd+inngYB54FaQ6sTO313xrrPjnU5PDXgQMtuPlu9VOVVV/2T2Hv1Pb1PZ+C/AeleC7HZar599IMT3kg+d/Yf3V9vzzXnvwd1Sbw74j1bwPqYCTLM0kJxjc6jDAeoKgMPYH1r2uiWmiBdwooorMYUUUUAFebfE/WPFtvpGq2ml6Gn9l/Zj52pG5XIQr8+EyCD1Gea9Jrm/iD/wAk+1//AK8pP5VUdwY34fu3/Cu9Dc5ZvsSH3PFef2ngTUde8Paj4l8U6jqtlreZZoUEuxbZVGV+X047EcfnXe+AZY4Phtok0rhI0sVZmY4AAGSTWX4u8MH4i6RFd6N4mmhtGhZUjhYtb3BDH7wBGeQRnmqTsxdC/wDDLWb7XvAOnX2ouZLk742lI5kCuVBPvgfmK1fEfifTPCtpb3WqyPHDPOturquQGIJyfQYB5rB+FGtNrXgW332sVs9nI1oyQrtQlcHIHbIYZ981m/GWNJtG0CKRQyPrUCsp6EFXyKVvesHQ0bf4s+FprtoZ5bqyTy2linu7cxxzKBnKHqfbgZ6DmrGh/EnQ9d1tNIijvrW6lQvALu38sTADOV59ATzjpWH8UbaCfxH4FjliR0OqqhVhkFS0eR9DgVJ43VR8U/AbgAOZLhSe5AC8fqfzp2TDU9IooorMYUUUUAFFFZ1vr2lXesXGkW99FJqFsu6aBT8yDjk/99D86YHIfGbUv7P+HF3GDh7yWO3U/juP6Ia3/Amm/wBk+BNFsyMMtqjuPRn+dv1Y1wHxnY6trvhXw1GxzdXO+QegZlRT+r16+qhVCqAABgAdqp6RQuotFFFQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM7X1vH8PakmnRGW9e2kWBAwXLlSF5JAHOK5j4U+GL3wr4O+yalAIL2a4eaWPerbeijlSR0UHr3ruKKd9LAeUfEjwPrl34r0zxR4UthLqERXz18xE5TGxvmIByPlI9AK9StZJZrSGWeAwTPGrPCWDGNiOVyODg8ZFS0U27qwWCiiipAKKKKACsjxRpc+t+FtT0u2eNJ7q3eJGkJCgkd8AnH4Vr0UwMTw3oj6X4OsNFvjHK8NqIJvLJKtxg4JAOK4TT/AAn8RPC9lNoWgalpMulM7m3nudwlgDHPQDGckn+LmvVqKakwsc/4L8Lx+EPDMGlJN58gZpJpcY3u3U49Og/Cqfjzwxe+KLLSobKW3ja01GK7kM7MAUUMCBgHnkf411lFK7vcLHJ+L/C974g1nw1eWktukel363MwlZgWUFThcA5PB64o8R+GL3WPGXhnWLeW3W30t5WnWRmDtuC42gAg9O5FdZRTuwsFFFFSAUUUUAFeNX2leMvBvxG1bXtG0VdXtNTz0PK5IbBAOQQRj0I/T2WiqTsDR5d4W8K+Itb8bjxl4vhitZYI9lnZIQdgwQCeTgDJPXOTnjFeo0UUN3BIKKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=
|
<image>Trapezoid $GHJK$ has an area of 75 square meters. Find the height.
|
5
|
Geometry
|
Geometry3K
|
test
|
76
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACVAQsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3jFGKKKxKDFGKKKADFGKKKADFGKKKADFGKKKADFGKKKADFGKKKADFGKKKADFGKKKACiiiiwBRRRRYAxRikZlQAswGTgZPelosAYoxRRQAYoxRRQAYoxRRQAYoxRRQAYoxRRQAUUuKMUAJRS4pKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVm6xr2m6Da+fqFysYP3UHLv7Ad6cYuTtFXZMpKKvJ2RpVzGteNLWxuf7P02F9T1NjtFvByFP8AtEdP85xWLeTeK/F1lNJZwtpWm7CY0Zts9z6DP8IP+c10fhPTtGs9Ghm0i3CJKvzu/MhI6hz6g5GOgNdPs4Ulepq+y/V/ojL97Vjz01aO1/8AJfq/xObvfCPiLXLKTUdV1MpqUYElnaW5xHC45HPr2z29TXT+FdeHiDRY7hxsuoz5VzGRgq468e/WtuuF1cf8If4tj1yMEaXqTCG9VRwknZ/5n/vr1qlN4iLpvfp/l/XX1MnBYdqa26/5/L8vQ7qikBDAEEEHkEd6WuM7AooooAKKKKACiiigAooooAWiiikMKSlpKBBRRRTAKKKKACiiigAooooAKKKKACiiigApksscETSzSLHGgyzucAD1JrB13xhYaPKLOJXvtSc4S0t/mbP+1jp/P2rJi8Nav4mlW68U3BitQd0em274Uf75HU/5yOlbwoac9R2X4v0X9I5519eSmrv8F6v+mPuvF17rNxJYeE7X7Q6nbJfyjEMf0z1/zwauaP4LtrS6/tHVZm1PVDyZ5+VQ/wCyvbHr+WK6K1tLeytkt7WFIYUGFRFwBU1OVey5aSsvxfq/0CNC75qru/wXov1CufY/2Drwb7unak+G9IrjsfYP0/3gPWugqtf2MOpWM1ncAmKVdpwcEehHoQeawi7bndRqKLtL4Xo/68tyDUtZtNL2JIXluZP9VbQjdLJ9F9Pc8D1rLudFvvEcEia1L9mtHHyWVuwJB7NI/cjg4HAI71qabo1ppYdoVaS4k/1txK2+ST6sf5dK0KpS5XeO45zpxi4QV77t/oun5+hyPgvUZ4PtHhrUm/07TvljY/8ALWH+Ej6DH4EV11ch400+4tntvE2mrm907mRR/wAtYf4gfpk/gTXS6bqEGq6dBfWzboZkDL7eoPuDxWtdKSVWPXfyf/B3OCg3FulLpt5r/gbP/glqiiiuc6AooooAKKKKACiiigBc0ZpKKQBmiiimAUUUUALijFFFIDF8ReJ9J8M2Mk+oX0EMgjZ4oXcb5SOyr1POOlJ4d1p9T8IWOs3wiiaa2E8uwEKvGTjJJx+NTeIbK1udEvnntoZXS2k2s8YYr8p6Z6VyFtI0XwG3pncNGbGP9w0X92T6q36jSvKK7/8AAJT4v8TPpS+JIdJsn0JiGW33ubtoi2BIMfL052+neu8RxJGrr91gCPpXmlveeLNH8CWPiCC7sPsNrZRSHS2tzkwhRz5u7O7bz0x9a9GsbuO/sLe8i/1c8Syr9GGR/OrkrXS6EJ3s+5PRSMyopZiFUDJJOAK5C/8AGcl7dtpvha1/tG7HD3H/ACwi9ye/8vr0qqdKVR+7/wAAmpVjTXvf8E6PU9WsdGtDc39ykMQ6bjyx9AOpP0rkzqHiHxkdulo+kaO3W8k/1sq/7A7fh+farumeC1N4NT8QXJ1TUeoD/wCqi9lX/I9q6wDAwOla81Ol8HvPv0+S6/P7jLlqVfj91duvzfT5feY+h+GdM8PxEWcO6Zv9ZcSfNI/1P9BWxRRWE5ym+aTuzeMIwXLFWQUUUVJQUUUUAFFFFAAVDKVYAgjBB71w+jE+EfFkmhSsRpmosZrBieEfun9Py9a7msPxXoX9vaK8MZ2XkJ822kzgrIOnPv0//VW1CaTcJ/C/6T+RhXg2lOPxL+mvn+ZuYpKwvCWvHXdGV5hsvrdvJuoyMFXHfHv1/MdqvawmrPZbdGms4rosPnu42dAvfhSOelZzhKnJxlujWEozipR2Zahure4aVYJ4pWhfy5AjhijYztOOhwRwfWobzVNP05o1vb61tmlOIxPMqFz6DJ5rjfhal3HaeIY7+4FxdrrEyzSgYDsAuSB2FR+G9N07xTrPinUNWs4L1lv2sIhOgcRxRqBhc9Mkk8Urflf8v8yu/rb8/wDI9ABDAEEEHkEUtcZ8M53bw1cWLyNIunX89nGznJ2K3yj8AcfhXZ0NCQUUUUhhRRRQAUUUUAFFFFAC0UZozSAqapDJc6RewRLukkgdEXOMkqQKxNB0GUfDy00HU4vKkNj9mnQMG2kqQeQSD1rps1VvtQtNMtWur24jghXq7nH4D1PtTUW7xXX/AIP+YOVrS7f1+hwL6V4wuPCy+D5dOtVg8oWr6sLoFTCOMiPG7ftGMdPeul1LxFpPhSyt7Dc01xHGscNpD80jADA47dO/61kvrmu+LHMHh6FrHTicNqU6/M3rsX/P4VtaD4T03QczRq1xevzJdz/NIxPXHp/nOa6nTjT1rb9lv8+35nL7SVTSktO72+Xf8jEXRde8XMJvEEradp2crp8DYZx/tn/P0FdhYadZ6XarbWVvHBCvRUGPxPqferNFZVK0pq2y7LY1p0Ywd933e4UUUVkahRRRQAUUYpcUgEopcUlMAooooAWikpc0gOG11W8JeKYfEMKn+zr4iHUFUZCt/C+P89+7V26srqGUhlYZBHQiq+oWMGp6fPZXSb4ZkKMP6j3HWuY8GX89lNc+FtRbN1Yf6hz/AMtYf4SPpx+BHoa6n+9pc32o7+a/4G33HMv3VTl+zLb16/fv63Ivh5/rfFP/AGHbj+S03wKI9Ov/ABbZzOEkj1WS4YMcYjdVZW+nX8q6rTtIsdKN0bKDyjdztcTfOzbpG6nknHToOKo6x4Q0DX7lLnU9NinmQbRJuZSV9CVI3D2ORXPf8kvy/wAjqbvf1v8An/mYnwwTd4evr1QfKvtTubiI+qF8A/pXbVHb28Npbx29vEkUMahUjQYVQOgAqSh+RKCiiikMKKKKACiiigAooooAKOlZGueJdM8Pw7r2bMrD93BH80jn2H9TxXO/YfEXjIh9Rd9H0dulrGf30o/2j2/H8u9bQoOS55O0e/8Al3MJ1knyxV5dv8+xd1Txon2s6boFsdU1E8fu/wDVRe7N/n6iorHwZNf3S6j4puv7QuhylsOIIvYDv/nr1ro9L0iw0W0Ftp9skMffaOWPqT1Jq9VuuoLloq3n1/4HyJVFzfNWd/Lp/wAH5iKqogRFCqowABgAUtFFcx0hRRRQAUUUUAFFFFAC0UUUhhSUtJQIKKKKYBRRRQAVyXjTTLhUt/EOmj/iYaad5A/5axfxKfwz+Ga62ggEEEZB7VdKo6clJGdWmqkXFlLSdTt9Y0u3v7VsxTLkDup7g+4PFXa4bTT/AMId4ufSXO3SdUYyWhPSOXun8h/3z713NXWpqErx2eqJo1HONpbrRhRRRWJsFFFFABRRRQAUUVzGs+NLWyuv7O02F9T1RuBBByFP+03b+nfFXTpyqO0URUqRpq8mdFc3UFlbvcXMyQwoMs7tgCuOm8T6r4kme08K2xS3B2yancLhF/3Aep/zgdadbeEr7W50vvFt155U7o7CE4hj+vqf85NdjFDFbxLFDGkcaDCogwAPYVt+6pbe9L8F/n+XqY/vKu/ux/F/5fn6GBofg6x0iY3s7vfam/L3c/LZ/wBkHp/P3ro8UUVhOpKo+aTubwpxguWKsGKSlpKgoKKKKYBRRRQAUUUUAFFFFAC5ozSUUgFzSUUUAFFFFMAooooAgivrSe6mtYrqCS4gx50KSAvHnkbh1Gfeuf8AEdwNRsrSSzmuLvTUuit8NLlJl2hWGAYzu4fbkLz+tcj44uRZfEOxi06/NpPqlutjqEqIT5KM/wC7bPQOfmAzXpmm6da6Tp0FhZRCK3gQIiD0/wAaLe7zA9HY5RfD1xrvgyazuftMUqzvJp7XbEzRqD8m8nJzjI55wRnmtTwhrr63pBW6GzULRjBdRnqHHGfx/nn0roa4fxFG/hbxJB4nt1P2K4xBqKL2B6Pj/PT3rppP2sfZPfp69vn+ZzVV7KXtlt19O/y/I7eikR0ljWSNgyMAysDwQe9LXMdIUUUUAFZus69pug2vn6hcLGD91By7/Qd60q5u88CaDqF09zeW888zn5ne5kJ/n09q0pKnzfvL28jKr7Tl/d2v5mN9o17xn0l/sXRX77h58y/0B/zmun0bR9I0C18jT44o8/fkLAu/1Pesn/hW/hf/AJ8H/wC/7/40f8K38L/8+D/9/wB/8a6qlSjJcsZNR7Jfn72pzU6daL5pRTl3bf4e7odR58X/AD1T/voUefF/z1T/AL6Fcv8A8K38L/8APg//AH/f/Gj/AIVv4X/58H/7/v8A41jy4f8Amf3L/M25sR/Kvvf/AMidT58X/PVP++hR58X/AD1T/voVy/8Awrfwv/z4P/3/AH/xo/4Vv4X/AOfB/wDv+/8AjS5cP/M/uX+Yc+I/lX3v/wCROo8+L/nqn/fQpPPi/wCeqf8AfQrmP+Fb+F/+fB/+/wC/+NJ/wrfwv/z4P/3/AH/xo5cP/M/uX+Yc2I/lX3v/AOROo8+L/nqn/fQo8+L/AJ6p/wB9CuX/AOFb+F/+fB/+/wC/+NH/AArfwv8A8+D/APf9/wDGny4f+Z/cv8w5sR/Kvvf/AMidR58X/PVP++hR58X/AD1T/voVy/8Awrfwv/z4P/3/AH/xo/4Vv4X/AOfB/wDv+/8AjRy4f+Z/cv8AMObEfyr73/8AInUefF/z1T/voUefF/z1T/voVy//AArfwv8A8+D/APf9/wDGj/hW/hf/AJ8H/wC/7/40cuH/AJn9y/zDmxH8q+9//InUefF/z1T/AL6FHnxf89U/76Fcv/wrfwv/AM+D/wDf9/8AGj/hW/hf/nwf/v8Av/jRy4f+Z/cv8w5sR/Kvvf8A8idR58X/AD1T/voUefF/z1T/AL6Fcv8A8K38L/8APg//AH/f/Gj/AIVv4X/58H/7/v8A40cuH/mf3L/MObEfyr73/wDInUefF/z1T/voUefF/wA9U/76Fcv/AMK38L/8+D/9/wB/8aP+Fb+F/wDnwf8A7/v/AI0cuH/mf3L/ADDmxH8q+9//ACJ1Hnxf89U/76FHnxf89U/76Fcv/wAK38L/APPg/wD3/f8Axo/4Vv4X/wCfB/8Av+/+NHLh/wCZ/cv8w5sR/Kvvf/yJ1Hnxf89U/wC+hSNNGVIWaMNjgk5AP51zH/Ct/C//AD4P/wB/3/xo/wCFb+F/+fB/+/7/AONHLh/5n9y/zDmxH8q+9/8AyJWn8D2t14a1HT7nVRJqV/MLiXUdgDeYrAoQu7gKAABnpXXQSKlvGktzHJIqgM4wNxxycZ4rmv8AhW/hf/nwf/v+/wDjS/8ACt/C/wDz4P8A9/3/AMaOWhtzP7l/mHNX/lX/AIE//kTqPPi/56p/30KgvYrPULKa0uWjeGZCjruHQ1z3/Ct/C/8Az4P/AN/3/wAaP+Fb+F/+fB/+/wC/+NCjQTupP7l/8kDlXas4r73/APIlfwZfTafd3XhW/lDzWfzWsmf9bCen5f8A1u1dnXOWPgXw/pt9DeWlrJFPE25HE7nB/OujpYicJz5odd+mo8PCcIcs+m3XT7kFFFFYG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=
|
<image>Find x
|
58
|
Geometry
|
Geometry3K
|
test
|
77
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADOAVIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiqupX0Wl6Xd6hPnyrWF5nx/dVST/KgC1RXkcfx3tZYfPj8Mao8P/PRcFfzxXUeDvifoHjO5Nlama1vwpYW1yoBcDrtIJBx6dfagDtKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhPjBqf9mfDXUgGxJdFLZPfcw3D/vkNXd14/8AG+R9TvPC/hmFvnvrzcwHbkIp/wDH2/KgDuPhzpn9kfDzQ7UjDG2WZh6NJ85/9Crz34qWkGh/EjwhrenRrFe3Nztn8sAGTa6DJx1JDspPcYr2Ge4s9LsvMuJobW1hUDfI4RVA9zXi8V03xS+MdneWKu2haEVcTEEByrbgef7zAcf3VzQB7jRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4w+GGjeNdWh1HUrzUYpYYRCi20iKoAJOeUJzlvX0rtaKAPL4fgN4TjlV5brVrgA/cluEwf++UB/WvQdH0XTfD+npY6VZxWlsnOxB1PqSeSfc81fpGVXRkdQysMEEZBFAC0V5LrOp+J/AXiSO1s5Te6Rdt/okN024LnrGHPKkZ45xgiuo0r4j6TdXH2LVY5tHvxw0N4Nq59m4/XFdEsNNLmjqjmjioOTjLRrv/AJnZUUiuroHRgysMgg5BFLXOdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGR4m8P23iXQ59OuMKWG6KTGTG46N/nsTXK+GZLXxPYz+GvFVlFNq2mfu380fM6dA6t19Mkdcg969Brh/HWjXVtNb+LNGXGpafzMgH+vh7g+uBn8M+grooyv+7bt2fZ/8E5a8LP2iV+67r/gFdvBGt+HXM3hHWnWLOTp96d0Z+h7fkD71Ja/EVtPuFsvFmlT6TcHgTBS8L+4Iz+m7611mh6za6/o9vqVm2YplyVPVG7qfcGrV1aW19btb3cEU8LfejlQMp/A0Ord2qq/4MFRsuajKy7br+vQSzvbXULZbizuIriFukkThgfxFT1wl58OFs7lr7wrqdxo90eTGGLwv7EHt9cj2qFfGev8AhphF4t0Zntwcf2hYjch92HQfp9KXsVL+G7+WzH7dw/iq3nuv+Aeg0VnaRr2la7B52mX0VwoGWVThl+qnkfiK0axaadmdCkpK6CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo6jBoooA83Gfh14wx93w3q8nH922m/oP6f7tekVna7otr4g0e4027X93KvDAco3Zh7g1zHgTWrqGW48Kay2NT07iJyf9fD2I9cDH4Ee9dEv3sOfqt/8/8AM5YfuZ8n2Xt5Pt/kdxSMoZSrAFSMEHvS0VznUcfq/wAOdHvp/tmnNLpF+DlZ7M7Rn3Ucflis3+1PG3hPjVLJde09f+Xm1GJlHuMc/l/wKvQqK2VeVrT1Xn/mYPDxvzQ91+X+Wxz+g+NdC8RBUsrxVuD1tpvkkB+h6/hmugrnde8EaF4h3SXVmI7k8i5g+STPqT0P4g1z/wDZ/jjwnzYXSeINOX/lhccTKPY9/wAz9KfJTn8Ds+z/AMyfaVIfGrruv8j0KiuQ0f4i6LqM/wBkvTJpV+Dta3vBswfQMePzwfauuBBAIIIPQis5wlB2krG0KkKivF3FoooqCwpksscETyzSJHGgLM7nAUepJ6U+obu1hvrOe0uEDwTxtHIh/iVhgj8jQA0X1m1l9tF3AbXGfPEg2Y6Z3dKlhmiuIUmgkSWJxlXRgysPUEda+efCWnal4jvpfhzJeodC0q9mnupYpPmniVwFQY7Fsn/gWeoGfoW3ghtbeK3t41ihiUJGiDAVQMAAelAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxvjvQLm5jg8QaPldZ0z502jmWMclD69+O+SO9dlRV05uEuZEVKaqR5WZPhrX7bxLocGo22BvG2WPOTG46qf89CK1q841BW+Hvi8apCpHh/VX2XSKOIJf7wHp1P03DsK9GVldA6MGVhkEHIIqqsFF80dnt/kRRqOScZfEt/8AP5i0UUVkbBRRRQBmax4e0nXofK1OxiuMDCuRh1+jDkVyJ8H+I/DJMnhTWWmthz/Z18dy/RT0H/jv1r0GitYVpRVt12exjOhCbvs+63OFsviPDbXK2PifTrjRrvpvdS0T+4I7fmPeu1trm3vIFntp45oXGVkjYMp+hFMvbC01K2a2vbaK4hbqkqBh+tcXc/DuXTJ2vPCOrT6XOTk27sXhf2IOf13VX7qf91/h/mR++p/3l9z/AMn+B3lcv46/4SSbQvsHhi133d43lSXRlVBaxn7z8kEn0wCRyeuM46eOdY8PusHi/RZIUztF/aDfE31Hb88+1dlpes6brVv5+m3sNzH32Nyv1HUfjUTpTgrvbv0NIVoTdk9e3U82tPh1feDfGfhrUPDdsbmzSA2mqsZFQsCeZSGIz97OBn7gFer0UVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVj+JvElj4X0O61O9ljHkxlo4S4VpWxwg9yeOlbFec/E7wR4evtB1vxFcWJfVIrNmSfznGCq/L8oO39KAOz8O6uNf8AD1hqwhMAu4Vl8otu257ZwM1w1v8AFyW+819N8Ga9fW8crRefbQ70JB9QDW74Hna2+FWkzopZotODhQMkkKTivNvBmveNfC3gGOe08IpNpdqZZbmaeXZLJ8xLMq9QAMDOD0J+gB69GkPi7wqF1LTri0jvYjvtrhdskRzxkdiMAj8K5zwRqd1o+oz+DNYfNzajdZTHpND2A+g/TI/hrqfDuu2vibw/Z6xZbhBcpuCt1UgkFT7ggj8Kx/HPhubV7CLUdNJj1nTz5ts69WxyU/Ht7/U1vSkmvZy2f4M560WmqkN1+K7f5HWUVheEvEkPifQ47xQEuF/d3EPeOQdfwPUVu1lKLi3Fm0JKcVKOzCiiipKCiiigAooooAa6JKjJIqujDDKwyCPeuO1T4b6XPcfbdGmm0a/HKy2hIXPuuf5EV2dFXCpKHwsidKFRWkrnnv8AbvjLwp8uu6cusWC/8vtkP3ij1Zf8QPqa6bQvF+ieIlH9n3yNNjJgk+SQf8BPX6jIrcrmdd8B6DrzmaS2+zXmci5tTsfPqex/EZrTnpz+JWfdf5GPJVp/A7rs/wDP/M6aivPfJ8deEv8AUyJ4j05f4H+W4UfXqf8Ax76Vr6L8QtD1eX7NLK2n3wO1ra8Gw59Aeh+nX2pSoSteOq8io4iN+WXuvz/qx1dFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXNfEP/knfiD/AK8ZP5V0tRXFtBd28lvcwxzQSKVeKVQysD1BB4IoA5LwdPc2vwj024s4RNdRaXvhiPR3CkqvHqcCsG2+LGial8Obq/1K7tINUMEsclgrHeX5ChVPJBGOegzz0r0u2toLO2jtrWGOCCNdqRRIFVR6ADgCsibwb4ZuNROoTaDp0l2x3NI1upLH1PHJ9+tAGJ8I9OuNM+Gulx3KMkkoebY3UKzkr+Ywfxrt6KKAPOtfhk8C+Kl8TWaMdJvmEepQoPuMTxIB9efrkfxV6FDNHcQRzQuskUih0dTkMDyCKivrK31Gxms7qMSQTIUdD3BrhvCF7ceF9dl8GapIWj5l0y4b/loh52/Xr+II9K6H+9hf7S/Ff8A5V+5nb7Mvwf8AwfzPQaKKK5zqCis+91vTdO1Kw067ulju79mW2iKkmQqAT0GBjI64qbUNRstJsZL3ULqK2toxl5ZW2gUAWqKwNE8b+GvEd01tpOrwXNwoJ8oZViB1IDAE/hUur+LvD+gXa2uq6tbWk7oJFjlbBKkkA/mD+VAG1RWRpPinQ9dW4bS9Tt7sWyhpjE2dgOcZ/I/lXBD4m+If7LHipvD9sPCZm2b/ADv9JEe/Z5mOn3u3645oA9UopFYMoZTkEZBFLQAVka14Y0fxDFs1KxjlbGFlA2yL9GHP4dK16KcZOLumKUVJWkrnnv8Awi/irwt8/hnVvt1mvTT785wPRW4H5bat6f8AEizW5Fj4hsrjRb7pidSY29w2OB9Rj3rt6qahpljqtsba/tIbmE/wyqDj3HofcVt7WM/4iv5rRnP7GUP4Tt5PVf5osQzRXEKzQSpLE4yrowZWHsRT64Gb4f3ujTNdeD9ZmsGJybSdi8Lfnn9QT7iki8f3+iTLa+MNGmsiTtF5brvhb+f6En2FHsebWm7/AJ/d/kP2/LpVVvPp9/8Amd/RVTTtUsNWthcafdw3MR/ijbOPY+h9jVusWmnZm6aaugooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5nxr4ZPiLSVa1bytUs286zmBwQw5257ZwPxAPaumoqoTcJKSJnBTi4y2ZzngzxMPEmjbp18vUbY+TeQkYKuO+OwOP5jtW9dRyy2k0cE3kzOjLHLtDbGI4bB64POK4LxXaT+EvEMfjHTY2a2kIi1O3T+JTxv8Ar0/HHqa7y0u4L+zhu7aRZIJkDo69CDWlWC0nHZ/h5GVGb1pz3X4rueK3mgaxovxi8JTaz4hk1me5aTa7QCIRhVPAUEjnPbFdx8Q/CmoeLbnw9axKj6XBeibUI2k27kGBwO/Bf86yvG3/ACV7wJ9Z/wCQrpfHXi7/AIRHRY5oLY3eo3cot7K2H/LSQ9M45wPbrwO+axNziPH2naVpXj7wOmh2lta6mb5d8drGIyYdyj5gvbG4fTdVHxNrvhyw+M2qT+JbRb6C306K3htjbCfLna+Qp4GATyfWux8D+BbjTL6XxL4kuPt3iS7GXc8rbKf4E7ZxxkcY4HGc6OjX/hq98da5FZWQj162VEvJ3jAaRcADBzyOF9O1AC+CNS8I6xYT3fha1s7dSQlzHDbLC4POA4AGepweR196xP8AhUViJRaDW9U/4R/zvPOj+Z+6zndtz1257dffPNUfCCRRfHLxilgAtl9njMoj+753yE/jkyfjmvU6ADpRRRQAUUUUAFFFFABTJYYriJopo0kjcYZHUEEe4NPooA4nUfhtY/aTfaBdz6LfdQ1ux8s+xXPA+hx7VT/4SbxZ4V+XxJpX9o2S9b+wHIHqy8D8wv416FRW6rtq01dfj95zvDpO9N8r/D7jH0TxRo3iGPdpt9HK+MtEflkX6qefx6VsVyut/D7QtYk+0pC1heg7lubQ7Gz6kdD9evvWPv8AHXhL/WKniTTl/iXK3Cj9Sf8Ax78KPZwn8D+T/wA9he1qQ/iLTuv8t/zPQqK5jQvH2g644gS4NpeZ2m2uhsfPoOx+gOfaunrKUJQdpKxtCcZq8XcKKKKksKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI7i3iu7aW3njWSGVSjowyGUjBBrz/w3cS+CvE7+FL6Rm027Yy6ZO/Yk8xk+v8AX/er0SsHxb4Zh8UaObUv5N1G3mW0/eNx/Q9//rVtSmleEtn/AFcwrQbtOHxL8fIXVPCljq/iPSdcuJbhbrS9/kpGyhG3DncCCT+BFVPGHgXTvGhsGv7y/tmsWZ4Ws5FQ7m28klTyNoxjFZY0P4iqoA8WWeAMc2iH/wBkpf7E+Iv/AENln/4CJ/8AEU/Yr+dfj/kL28v5H+H+ZFa/CXT7W7huF8SeJnaJ1cK98pVsHOCNnSrfiX4a6dr+tf21b6jqGk6myCOS4sZdhkUDHPvgAcEdKh/sT4i/9DZZ/wDgIn/xFH9ifEX/AKGyz/8AARP/AIij2K/nX4/5B7eX8j/D/M2vCXg3S/BtlNBp3nSSXD+ZPcXD7pJW7ZIA6ZPbufWuhrhP7E+Iv/Q2Wf8A4CJ/8RR/YnxF/wChss//AAET/wCIo9iv51+P+Qe3l/I/w/zO7orhP7E+Iv8A0Nln/wCAif8AxFH9ifEX/obLP/wET/4ij2K/nX4/5B7eX8j/AA/zO7orhP7E+Iv/AENln/4CJ/8AEUf2J8Rf+hss/wDwET/4ij2K/nX4/wCQe3l/I/w/zO7orhP7E+Iv/Q2Wf/gIn/xFH9ifEX/obLP/AMBE/wDiKPYr+dfj/kHt5fyP8P8AM7uiuE/sT4i/9DZZ/wDgIn/xFH9ifEX/AKGyz/8AARP/AIij2K/nX4/5B7eX8j/D/M7uiuE/sT4i/wDQ2Wf/AICJ/wDEUf2J8Rf+hss//ARP/iKPYr+dfj/kHt5fyP8AD/M7uiuE/sT4i/8AQ2Wf/gIn/wARR/YnxF/6Gyz/APARP/iKPYr+dfj/AJB7eX8j/D/M6DXPCWieIkP9oWKPLjAnT5ZB/wACHX6HIrmP+Ef8YeFPm0DUxq1gvSxvj86j0Vv8CPoan/sT4i/9DZZ/+Aif/EUf2J8Rf+hss/8AwET/AOIrWN4q3Omuzv8A5GM7SfNyST7q3+ZPpnxI02W5+w61bz6Lfjgx3QIT8GxwPcgCuyjkSWNZI3V0YZVlOQR7GvONT8GeNNZtvs+o+INNuY+wkskJX6HZkH6U7wj4C8Q+GdWgk/tyNtPDEzWyFsPwcYBGM5xzwaU6dFxvGST7av8AQdOrWUuWUW130X6no9FFFch2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/ibxPpnhLR5NT1SUpEp2oijLyN2VR3NbFeJ+Lkbxv8AHDTvDFyc6ZpiiWWPs/yCRs/X5F/OgC/B8Q/iHr0H9oeH/BUX9nHlHuXJZx6jLJn8Aa3vAvxKHifUrjRNV02TS9bt1LNA+cOB1xkAgjPQ9ucmuj17xXoHhJLVNXvo7JZgwhXy2bIXGcBQcYyK4y0v/h/4m+Jena3p2uTvrioYo4IYmVJsK+S26PrtJ7jgCgD0+iiigAooooAKKKKACiiigAoormfF8PjG4hhi8KXGl2+5WE8t5u3qeNpTAI9c5HpQBv2t7a3yO9pcw3Co5jdopA4Vh1U46EelR3uqafpuz7dfW1rv4Xz5lTd9MnmvO/gTvHga8EjbpP7Tl3MTnJ2Jk1leEvDml/ETxB4o1rxJC16Yr1rO2haRlEMa5xgAjsR+OT1NAHsSOkiK8bKyMMqynII9RTq8x+Ek0un33ijwqbh5rXR73balzkhGZxj/AMdz9Sa9OoAKKKKACiiigAooooAKKKKAOd8ceJv+ER8J3esLEk0sRRY4nOA7MwGPyJP4Vwdt8SPiDeWsN1b+AzJBMgkjdS+GUjII9iKi/aD1PydA0nSw2Dc3LTNjrtRcfzf9Ks2fx08HWVlBaQ2eriKCNY0HkR9FGB/H7UAdd4K17xJrgvT4g8P/ANkCLZ5OScy53buvpgfnXWVm6Brdt4j0O11e0jmjt7lSyLMoV8AkcgEjt61pUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXiOtXsfgj4//ANsamDFpup24Xz8ZC/IqE/gyDPoDmvbqzNd8O6T4lsPsWr2Ud1BncobIKn1UjkH6UAZOval4GuLFdQ1ubQ7yCJSY5JxFOcdwg5JzxwOteW/DF7LxL8YdT1vT9OhsdPtbdjbQQxLGq5xGuQvAJG4n3Nd3Z/BfwTaXYnOnzT7TkRzTsyD8OM/Q5rqtK8NaPol/fXunWS29xfFTcMrMQ23OMAnCgZPAAFAGtRRRQAUUUUAFFFFABRRRQAUUUUAeZfA3/kS7/wD7Ck3/AKClQf8ACIa1ZeKdYvfAninTYYrubdf2koEpglyc8ANg53cHHp2rrvA3hH/hC9Fn077d9s826e48zyvLxuCjGNx/u9feuf1P4c6xD4k1HWPCviZtI/tM5vIWgEgLc5ZSehySfUEnB7UAZPwe057LxT41DXT3nl3McL3L9ZpAZN7fnz+NeuVz3g3wjaeDdDGnW0rzyO5luLiQYaWQ9T7DgYFdDQAUUUUAFFFFABRRRQAUUUUAeOeI/wDioP2htC07rDpcKyyD0YBpc/8AosV7FtX0H5Vj23hXRbPxJc+IYLLbqtymyW4MrtuXjjaTtH3R0HatmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=
|
<image>Find x. Round to the nearest tenth.
|
30.2
|
Geometry
|
Geometry3K
|
test
|
78
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD1AU8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKZNNHbwvNNIscUalndjgKB1JNAD84orxfxp4pv/ABPazNpzyW2h28gCycq1y+ev+6Oo/wAenW+EfF1wLtfD3iFwuoKMW9yfu3S9uf738/r16JYaSjfr1Rkquik17rbSfdq1/wA1bud3RRRXOahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMmmjt4XmmkWOKNSzuxwFA6kmgAmmjt4XmmkWOKNSzuxwFA6kmvK9Y1i48d3Zt7cyQeHIX+ZuVa8YH9F/z16GsaxceO7s29uZIPDkL/M3KteMD+i/569NKKKOCJIokVI0GFVRgAV3UqXstX8X5f8ABPOrVva+7H4fz/4H5mN4jtD/AMI61vaQEhSgWONc4APYCr2q6Vb6vaeTNlXU7o5V+9G3qKk1C/h020a5nDGNSAdoyeatVabTujWpKUsNCDj7qcrPvfluvlZfeT+EfF1wLtfD3iFwuoKMW9yfu3S9uf738/r17uvL9V0q31e08mbKup3Ryr96NvUVq+EfF1wLtfD3iFwuoKMW1yfu3S9uf738/r1xrUVJc8PmhUK7i+Sfyf6M7uiiiuQ7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopk00VvC800ixxRqWd2OAoHUk0AE00VvC800ixxRqWd2OAoHUk15XrGsXHju8NvbmSDw5C/wAzcq14wP6L/nr0NY1i48d3ht7cyQeHIX+ZuVa8YH9F/wA9emlFFHBEkUSKkaDCqowAK7qVL2Wr+L8v+CedWre192Pw/n/wPzCKKOCJIokVI0GFVRgAU+iiqMzD8W/8i/L/AL6fzrcqC7gt7i3Md0qNESMh+lT0HVOspYeFK2zk/v5f8gqjqulW+r2nkzZV1O6OVfvRt6ir1FNNp3RytJqzJ/CPi64F2vh7xC4XUFGLa5P3bpe3P97+f1693Xl+q6Vb6vaeTNlWU7o5V+9G3qK1fCPi64W7Xw94hcLqCjFtcn7t0vbn+9/P69cq1FSXPD5o6KFdxfJP5P8ARnd0UUVxnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJporeF5ppFjijUs7scBQOpJoAJporeF5ppFjijUs7scBQOpJryvWNYuPHd2be3MkHhyF/mblWvGB/Rf8APXoaxrFx47vDb25kg8OQvy3KteMD+i/569NKKKOCJIokVI0GFVRgAV3UqXstX8X5f8E86tW9r7sfh/P/AIH5hFFHBEkUSKkaDCqowAKfRRVGYUUUUDMPxb/yL8v++n863Kpatpw1Swa1MpjDEHcFz0Oau0HVUqxeFp009U5N/NRt+TCiiig5QqjqulW+r2nkzZVlO6OVfvRt6ir1FNNp3Qmk1Zk/hHxdcLdr4e8QuF1BRi2uT926Xtz/AHv5/Xr3deX6rpVvq9p5M2VZTujlX70beorV8I+LrhbtfD3iFwuoKMW1yfu3S9uf738/r1xrUVJc8PmjooV3F8k/k/0Z3dFFFch2hRRRQAUUUUAFFFFABRRVa+vrbTbOS7u5BHDGMknv7D1NGwBfX1tptnJd3cgjhjGST39h6mue0HxrBq1+9pcw/ZXdv9GLH749D6N/n64U89z4lvFvb1THZRnNtanv/tN6n/P1xdIsYr5tajkGCL+Qo46qc9RXM6zd3HZDhHnpzqJ/Db53dj2GiuS8OeI5ROukauwF2OIJz0nH/wAV/P69etreMlJXRMZJq6CkJABJIAHUmlrhfipq13YeGI7K0huyNRmFtPNaxGR4YTy5AHcjgfU1QzA0PxpqniD4vxRxTSx+H5baYWkeflnCEqZcd8sGx7AV6hqF/baXp89/eSeVbW6GSV9pbao6nABNeL2XijSB8VvDn9n6ZqVvZ2+nfYI4ZLUq4yxAOM/d55b617Xd2sV9ZT2k67oZ42ikX1Vhgj8jQBUl17TINA/t2S7VdM8lZ/tGDjYQCDjGe44xms/V/HHh3QrGyvNQ1ERRXyB7YCJ2eRSAc7QNwGCOory9Zbi9+H+l+ApHJvDrjaVcY4PkxP5jN9AuyustoI5vjzMsiLtsdCUWykcJmQAlfwYj8aAJvAviVvEXjPxc0GoteaXEbRrPDZRAyNuwO3I5HqK7+vOPAVtBa/Er4gxWyqsfn2rYXoGZZGb9Sa9HoAKKKKACiimTTRW8LzTSLHFGpZ3Y4CgdSTQATTRW8LzTSLHFGpZ3Y4CgdSTXlesaxceO7w29uZIPDkL8tyrXjA/ov+evQ1jWLjx3eG3tzJB4chfk8q14wP6L/nr00ooo4IkiiRUjQYVVGABXdSpey1fxfl/wTzq1b2vux+H8/wDgfmEUUcESRRIqRoMKqjAAp9FFUZhRRRQMKKKKAMrxFeT2OjyT20myUMoDYB6n3rVrJ8R2k97o8kFvGZJCykKCB0PvWtQddTk+q07W5ryv3taNr/jb5hRRRQcgUUUUAFUdV0q31e08mbKsp3Ryr96NvUVeopptO6E0mrMn8I+LrhbtfD3iFwuoKMW10fu3S9uf738/r17uvL9V0q31e08mbKsp3Ryr96NvUVq+EfF1wt2vh7xC4XUFGLa6P3bpe3P97+f1641qKkueHzR0UK7i+Sfyf6M7uiiiuQ7QooooAKKKrX19babZyXd3II4Yxkk9/Yepo2AL6+ttNs5Lu7kEcMYySe/sPU1wM89z4lvFvb1THZRnNtanv/tN6n/P1J57nxLeLe3qmOyjOba1Pf8A2m9T/n63q4qtXm0WxzznzegVR07TV0+S8dZC/wBpnaYgjG3Par1Y+h3lxdz6os8hcQ3bxxjA+VR0FZxT5XY2pRqOlNxeitfz10L97ZRX0HlyZBHKOOqn1FavhzxHKJ10jV2AuxxBOek4/wDiv5/XrTqrf2kF5bMs52BfmEmcFCO+aITcHdHOm07o9D6Vn6fqf9pzSPbQ5sFGEuS3EzZ52Duo/vd+2RzXFaFrs+vzRaPrMxSzx+7kwV/tAdgT2X2/j+nDeiKqooVQAoGAAOAK74yUldHSmmjn7nwv9o8eWXif7Zt+y2bWv2bys7sknduzx16YrcurqCytJru5kWKCBGkkkboqgZJP0AqWmvGksbRyIrowKsrDIIPUEVQzy7wvZad4g+L+seJtLlNxpttAqJKufLa5dFVynr8i4PuR7V0fiXwdfaj4is/EOhawNK1SCE20jtAJUliJztKk9jk/l6V1kFvBawiG3hjhiXokahQPwFSUAch4M8ES+FNT1m/uNYk1KfVWikleSERkOu7ceCRglzgYGAAOa6+iigAoopGYKpYnAAyaAGzTRW8LzTSLHFGpZ3Y4CgdSTXlesaxceO7w29uZIPDkL8nlWvGB/Rf89ejdX1ubx7fSWts7Q+HraTEmDh7pxzz3C+39empFFHBEkUSKkaDCqowAK7qdL2Wr+L8v+CedWre192Pw/n/wPzCKKOCJIokVI0GFVRgAU+iiqMwooooGFFFFABRRRQBS1XUV0uwa6aMyBSBtBx1OKmvb2206zlu7uVYoIl3O7dAKyvFv/Ivy/wC+n86qfEG0F54MvUNxHBs2ybpGwpww4+p7e+KluyZ2Sow+r059XKSfy5bfmybSvGui6xfrZW8sqTyLuiE0RQSD/ZJ610NeZx6zH4n8U+GUa0k037IGlBuV2eacLhY/UcV6DqYujpd0LGTy7vymMLbQcPjjg8daUZXRzTjZot0Vxc/iq6Pw2g1eBwdRmRIUO0czbtp46dicU6/vdbvPENn4dsdRW1lishcXl2IVcscgYCnjk8/j7U+dB7NnR2er2t9qd/p8O/z7EoJty4HzgkYPfpV+uG8EC9XxV4pXUJEkule3V5EXaHwrgNjtkYP413NEXdXFNWdgqjqulW+r2nkzZVlO6OVfvRt6ir1FWm07ohpNWZP4R8XXC3a+HvELhdQUYtro/dul7c/3v5/Xr3deX6rpVvq9p5M2VZTujlX70beorV8GeLbmW/PhvWzu1KJcw3C8i4QDOT6Nj8/r1xrUlJc8Pmv1OihXaahP5P8AQ7uiiq99e2+nWUt3dSBIYxlj/T61yHaJf39tptnJd3cgjhjGST39h6muBnnufEt4t7eqY7KM5trU9/8Aab1P+fqT3Fx4lvFvrxSlihzbWx7/AO03qf8AP1vVxVavNotjnnPm9AooorAgKyNEsri0n1Np49gmu3kj5B3Keh4rXrEk8SQQadq17PH5cenO6H5s7yvTHpk4H41pHms0jppOp7KaitHa/wB+n4mxLLHBE8srqkaAszMcAAdyazFik1lhLco0eng5jgcYab0Zx2X0X8T6DE8JahfeJrSK41i0uIhBhkR4tscrdd/P3sdhjAxnk4x2NS1yuxg9Cte2MV9B5cmQRyjjqp9RWr4c8RyiddI1dgLocQTnpOP/AIr+f1606rXtlFfQeXJkEco46qfUU4TcHdCTcXdHoVFcl4b8Rym5XRtWYfbAP3M3aZff34/H69etrvhJSV0dMZJq6CiiiqGFFFFABRRRQB594r8J3NjeSeIfDsWZj815Yr92cd2Uf3v5/XINLTNTttWs1ubZsg8Mp+8h9CK9Orz7xZ4TubK8k8ReHYsznm8sl+7cDuyj+9/P69eylVUlyT36P/M4a9BxfPDbqv1QlFU9M1O21azW5tmyDwyn7yH0Iq5WrTTszBNNXQUUUUhhRRRQAUUUUAQXcttBbl7tkWIEZL9PauY+I1rPc+GUkhhaZLa6jnmiUZLRjIP8wfwrS8W/8i/L/vp/OtypaurHU6ahQhWvu5L7uX/M861fW7DxfrXh620VpJ5oLtbmaQRsvkxjGc5H+cD1r0WmpGiZ2Iq5OTgYyaZdLO1pMts6pcFGEbuMhWxwSO4zQlbVnPKSdkjzq1spT43Tw4Yz9jtL59VB7bSoKAfR2IrT1O+t/DnxFGo6ixisb2w8lZ9pIWRWBwcewH51taFod1ZX13qeqXaXWo3QVC0abUjReiqPrya23RJBh1VhnOGGalR0LlNXOI8EX6an4q8U3kasIpXtzHuUqSu1wpwfUYP413NFFXFWVjOTu7hRRWTqepzrdRaVpUP2nVbjiOMdIx/eb0Aqkm2Q3YNT1SdbqLStKh+06rccRxjpGP7zegrtPCfhKDw3bPLLJ9p1O45ubpurH+6vov8AP+S+E/CcHhu1eSR/tOp3HzXN03Vj/dHoo/X+XR1z1qya5IbfmddChb357/l/wQpk0MdxC8MyLJG42srDIIp9Fcx1nnmpabN4VuN6b5dHkbg9Wtyex9v89etlHV0DowZWGQR0NdvNDHcQvDMivG4KsrDIIrz/AFPTJvCtzvTfLo8rcHqbcnsfb/PXrx1aXLrHYwnC2qLVFIjq6B0YMrDII6EUtc5mFc/4eRJLjWQ6KwGoOQGGeQeK6CoLe4tp2mFu6MY3KSbR0YdQferi7RaOmlUcaU4pXvbXtqT0UUVBzBVO+vvs2yGGMzXcp2xQryWP+FF9ffZtkMMZmu5jtihXksf8K6Tw34b/ALM3X18wm1KUfO/URj+6v+NaU6bmyoxcmJ4c8N/2Zm+vmE2pSj5n6iMf3V/xroqKK7oxUVZHQkkrIKKKKoYUUUUAFFFFABRRRQB594s8J3NleSeIvDsWZzzeWS/duB3ZR/e/n9etLTNTttWs1ubZsg8Mp+8h9CK9Orz7xZ4TubK8k8ReHYsznm8sl+7cDuyj+9/P69eylVUlyT36M4a9BxfPDbqv1QlFU9M1O21azW5tmyDwyn7yH0Iq5WrTTszBNNXQUUUUhhRRRQBV1Cwh1K0a2nLhGIJ2HB4q1WN4omlg0OSSGR43Dr8yMQevqK2aDpnCaw8Jt+63Ky7Nct/vuvuCiiig5gooooAKKKydT1OdbqLStKh+06rccRxjpGP7zegppNsluwanqc63UWlaVD9p1W44jjHSMf3m9AK7Xwn4Tg8N2rySP9p1O4+a5um6sf7o9FH6/wAjwn4Tg8N2rySP9p1O4+a5um6sf7o9F/n/AC6OuetWTXJDb8zroULe/Pf8v+CFFFFcx1hRRRQAUyaGOeF4ZkV43G1lYZBFPooA881PTJvCtxvTfLo8rcHqbcnsfb/PXrZR1dA6MGVhkEdCK7eaGOeF4ZkV43BVlYZBFef6npk3hW43pvl0eVuD1NuT2Pt/nr146tLl96OxhOFtUWqwPDf/AB86z/1/yfzreR1dA6MGVhkEdCKrWenw2L3Lw7s3Eplfcc/MfSsoySi13NaVWMaNSD3la3yZaqnfX32bZDDGZruY7YoV5LH/AAovr77NshhjM13MdsUK8lj/AIV0nhvw3/Zm6+vmE2pTD536iMf3V/xp06bmzCMXJh4b8N/2Zuvr5hNqUw+d+ojH91f8a6Giiu6MVFWR0JJKyCiiiqGFFFFABRRRQAUUUUAFFFFABRRRQB594s8J3NleSeIvDsWZzzeWS/duB3ZR/e/n9etLTNTttWs1ubZsg8Mp+8h9CK9Orz/xZ4TubK8k8ReHYsznm8sl+7cDuyj+9/P69eylVUlyT36P/M4a9BxfPDbqv1Q2iqemanbatZrc2zZB4ZT95D6EVcrVpp2ZgmmroKKKKQzN12wm1LS3toCgdmUjecDg1pVna3qEmmaY91Eiuysow3Tk4rRoOmftPq8L/DeVvX3b/oFFFFBzBRRWTqepzrdRaVpUP2nVbjiOMdIx/eb0FNJtkt2DU9TnW6i0rSoftOq3HEcY6Rj+83oK7Xwn4Tg8N2rySP8AadTuPmubpurH+6PRf5/yPCfhODw3avJI/wBp1O4+a5um6sfQei/z/l0dc9asmuSG35nXQoW9+e/5f8EKKKK5jrCiiigAooooAKKKKACmTRRzwvDMivG4KsrDIIp9FAHnmp6ZN4VuN6b5dHlbg9Tbk9j7f569cDStVkE2pRxl7q4lvXS2iDFsjtj0FevyxRzwvFKivG4KsrDIIrF0TwnpuhXU9zbIWlkY7Wfkxr/dH+PWsHR3S2Y4tRhOFvit8rMj8N+G/wCzN17esJtSmHzv1EY/ur/jXQ0UVrGKirIlJJWQUUUVQwooooAKKKKACiiigAooooAKKKKACiiigAooooA8/wDFnhO5sryTxF4dizOebyyX7twO7KP738/r1o6Zqdtq1mtzbNkHhlP3kPoRXp1ef+LPCdzZXkniLw7Hm4PN5ZL924HdlH97+f169lKqpLknv0Zw16Di+eG3VfqhtFU9M1O21azW5tmyDwyn7yH0Iq5WrTTszBNNXRi+KkeTQZVRWZt68KMnrW1Ve9vYNPtjcXDERggEgZ61YpHVOpJ4eEHHROVn3vy3XysvvCiisnU9TnF1FpWlQ/adVuOEjHSMf3m9BTSbZyN2DU9TnW6i0rSoftOq3HCRjpGP7zegrtfCfhODw3avJI/2nU7j5rm6bqx9B6KP1/keE/CcHhu1eSR/tOp3HzXN03Vj6D0X+f8ALo6561ZNckNvzOuhQt789/y/4IUUUVzHWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/izwnc2V5J4i8Ox5uDzeWS/duB3ZR/e/n9etHTNTttWs1ubZsg8Mp+8h9CK9Orz/AMWeE7myvJPEXh2PNwebyyX7twO7KP738/r17KVVSXJPfozhr0HF88Nuq/VGD4t/5F+X/fT+dblZltcaf4j0sNjzIWI3xscFGHY470zU9TnF1FpWlRfadVuOEjHSMf3m9BWqg72HUxEJYaFNbpyf38trfcGp6nOLqLStKh+06rccJGOkY/vN6Cu18J+E4PDdq8kj/adTuPmubpurH0Hov8/5HhPwnB4atXeR/tOpXHzXN03Vj6D0X+f8ujrnrVk1yQ2/MqhQt789/wAv+CFFFFcx1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHm/jj4fT30smo+HtsdzOwF1bZCpLz98dgR1Prz369L4T8JweGrV3kf7TqVx81zdN1Y+g9F/n/Lo6K1dabhyMzVJJ39Wl0Te7XrZBRRRWRoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVxI+KOhN4gXR44rt5GuRbCZVXyyxbbnO7OM98V21XOnKFuZWuRCpCd+V3sFFFFQWFFFQ3d3b2FrJc3c8cEEYy8kjBQPxo3BuxNRWRpfijQ9ZuGg07U7eeYAny1bDEeoB6/hS6p4o0TRZ1g1HUoLeZhkRs2Wx6kDpV8kr8ttSPaQtzXVjWoqG0u7e+tY7m0njngkGUkjbII+tTVGxadwooqhqutadoduk+pXaW0TtsVnB5OM44+lNJt2Qm0ldl+ivOPGq68brUtSbV7jTNGtbMPZtbzBfPmwCFYA55JI59BXWeEL291Hwlpt5qOftUsO5yRjdycNj3GD+NaSpcsFO5lCtzTcLG3RRRWRsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcj8RfEv/AAjvhiXyX23t3mGDB5XI+ZvwH6kV13SvCNeN/wDEvx1Na6U0Zt7VGWFpGIQIp5YkA/eY8cenpXThaanO8tlqzlxdVwhyx+J6IxdQ0KXw1pnhzVpQwuLxnuCv91VKFB+Rz+PtX0gCGUMDkEZBr5/8ceH/ABVpmn2lx4g1KO8gEhihCSs2wkZ6FRjhf0r2/wAPXP2zw3pdznJltInP1KjNb4x80Iyvfc58CuWpOFrbEt9rOmaWyLf6jaWrOMqJ5lQsPbJqp/wlvhz/AKD2mf8AgWn+NY/jJFa7tifBv9unYf3uVHl8/d6E+9cz5af9EoP/AH2v/wATWNOjGUU3+a/zN6leUZNL8n/kelWGr6bqm/8As/ULW78vG/yJlfbnpnB46Gsnxn4XfxbpEWnrfmzVJhKzCLfuwCMY3D1z+FVfBiqpvMeEv7B+5zkHzuvoAeP61F8RfEOq+GtGtr3TFjIafy5TIm4AEEj6cipjCSrKNPf5FSnF0XKotOu//AZ57pf9k6l8TdEHhaFre3t1Tzmb5PM253nBOeV496pXGp6b/wAJz4kuNa02fU8yTRxpH/yzAbbuJ7YUAA1qarf6VrnxF8NS+GkjD74mnMMRTBD5ORgZwoOfal03UbLwz498XLqz+T56TiLcpO/c+5Rx6givRv1s72267nmWW11bm36bHffDp9HfwsDohuRbec2+O5YM8b4GRxxjofxqDXPFmo6P4/0nR2itjpt8FHmFTvDElcA5x129u9Zvwat5YvCt3M6kJNdkpnuAqgkfjx+FJ8W7dobHSNajUmSxuxkjrg4P80H51x8kXiXB63udvPJYWM1paxPZ+O7+fV/FG+C2bTdGikKFVId3UkKCc4wdrdq8/wDFXiDxF4h8J2V7qkFqLCa6YwSQghgygggjJ46/lXReFbCWT4VeJtRZS09+Jn4/iVR/jvrktR1qxn+GWjaRHLm9t7uR5I8H5VyxB/HcP1rrpU4qfurZpfh/mclapOVP3pbpv8f8jtPE73194us4r/QtWv8AQ7CFGjitLZnSaUqDknoQM469sdzXpelXhv8ATILo2c9n5i/6idNjpg4wR26VPa/8ekP/AFzX+VS15tSpzRUbbHqU6ThJyve4UUUVibBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACOiyIyOoZWGCpGQRVSx0jTNMZ2sNOtLRnADmCBYy2PXA5q5RTu7WFZXuVr3T7LUoVhvrO3uolbcEniVwD0zgjryalgghtoEgt4kihQbUjjUKqj0AHSpKKLu1gsr3CiiikMKjuLeG7geC4hjmhcYeORQysPcGpKKAM7T9A0jSZGk0/TbW2kYYLxRAMR6Z64pdQ0HSNVlWXUNNtbmRRhXliDMB6ZPb2rQoqueV731J5I2tbQjggitoEhgiSKJBtRI1Cqo9AB0rlPiHpWt65osemaRb28sU7f6Q0rbSgUqVKnPqDng119FOE3CSkugqkFODg9mZfh3R10Lw5ZaXlXMEW1yOjMeWP0JJpi+FfDyK6jQ9O2u25gbZCCfXke5/Oteilzyu3fcPZxslbYQAKAAAAOABS0UVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z
|
<image>For the pair of similar figures, find the area of the green figure.
|
9
|
Geometry
|
Geometry3K
|
test
|
79
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD7APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD33bRtp1FADdtG2nUUAN20badRQA3bRtp1FADdtG2nUUAN20badRQA3bRtp1FADdtG2nUUAN20bazPEiam/h2//sa4NvqKxFrdwit8w5AwwI5xjp3rO8B+Iz4m8G2WpXDj7SFMdycAYkXhiR0Gev40LW/kD6HSbaNtcRpGvat4u8VyT6Tcm28MWDGNpRGrG+l7hSwOEHqMfrx3NHS4dbDdtG2nUUAN20badRQA3bRtp1FADdtG2nUUAN20badRQA3bRtp1FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeLtoupjx/rvgrS7pbbSNSZdQunT78UbffRfQsSB9K9orjPDGhalb+OfFGu6lbeSt28cVoS6sWiQYzwTjOBwcGhfFr2f9feNv3dP6/pXOq07T7XStPgsLKFYbaBAkaL0AFWaKKG7iSsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVNU1K20fS7nUbyTZb28ZkdvYdh79qxPBXjO38aafc3UFnNaG3m8l4piC2cA54+v6Vja8x8Z+NIPDMRLaVphW61Rh0kfrHD/U/wD1qreBiLH4l+N9LHyq00V0i/7wJP8A6EKI6/NafK3/AAQlov66/wBL7z0iiimySJFG0kjqiKMszHAA9zQA6mu6RoXkZVRRksxwBXHXnjebULl7DwpYNqVwvD3LfLBH+PGf09s0yPwReau4n8VavNenORaQHy4U9uOv14NdHsOVXqO35/d/nY5/b8ztSV/Pp9/+Vy9qHxB8P2UvkRXL3tx2itEMhJ+vT9apjxP4p1H/AJBfhSSKM/dkvpQn4leD+tdPp+kadpMXl2FlBbr38tACfqep/GrtHtKUfhjf1f8AlYPZ1ZfFK3ov87/ocWYfH8/Mt/otkD0CIzHP4g/zp39g+NHb5/F8aj/Zsk/wFaGvWlrqmv6Np93Cs8OJ7ho3AKnaoUZH1kz+FTnwlo4A8mGe2wMD7NdSxAfgrAU/btdEvkv1On6lRUIupOV3r17tfzLt2MK507xtp1nNdHxTbypBG0jK9ogyACTziq2kax48vdJt9SitdKvIJlLLGSUkIBx6hR0q54t0ptM8J6jPDq+qbFgZDFLP5iuG+XBLAt37EVv+F4DbeFNJiIwwtIyR6EqCf51o6q9lzOKeva35WOWdCMaqjTm7Wvu+/ncwf+E5v9PH/E88MahaKOssGJkHuTwB+Zrb0rxXoetbVsdRheQ9ImOx/wDvk4J/CtmsLVvB2g60GN1p8Syt/wAtohsf65HX8c1lzUZbxt6a/g/8x8taO0r+un4r/I3aK4j+yfFfhn59Jvv7YsV/5dLw4lUf7L9/0+lamheM9O1qY2jiSx1FeHtLkbXz7Z6/z9qmVB25oO68v1Q411flmuV+f6M6OiiisTcKKKKACiiigAooooAKKKKACiiigAooooAK5/xl4kXwx4emvFXzbuQiG0hHJllbhQB+v4V0FFJq+g07HmulfB7QZ9NhuPEME15q8wMt3N9odcyMcngEDjOKztD0PT/Bfxri0zTI2hs77SyVRnLfMGJPJ/3K9brH8R+IrXw5p32iYGWaQ7IIE+9K/oP8a0gnKaUV8vkROSjBub+ZJrviDT/Dtgbu/l2joka8vIfRR/kV5lqOs6jr2obvEmmazb6OuGSztbY4fuC7HGf84xXYaB4Zury+XxB4lPnai3MFsfuWq9QAP738vrzXY10xqU6Dsld9/wDL/M5J06ldXb5V27+v+X3nE6f4+8HWFutpA72MUfHlm2YYPvgHmtmDxn4buANmtWYz/wA9JNn/AKFitmSCKYYliRx/tKDWbP4Y0G5YtNo1izHq3kKCfxArNyoyd2n96f6GqjXirJp/Jr9WXINSsLoA297bTA9DHKrZ/I1arlrj4d+FrgknTBG3rHK6/pnFVv8AhW+mQ4+xalq1kB0WC5wP1FLlovaTXy/4I+aut4p/P/gGuds3jheTm204nHb95IP/AI3W3XEL4G1e0uHuLDxdfJK6hGa4jEpIHQZJ6DJ/M1J/Znj62z5OvaddgdBcQbP/AEFabpQfwzX4/wCRpUxMpWXI9Fbp/n3H/E6Yx+Cp4lBLTzRxgAck7g3/ALLXWW8QgtooR0jQL+QxXlni+fxc66XZaraadIsl9GYPszkGSQZAU7jwDu9K6QeK/Elv/wAfng26wBy1vOJD+QH9a2lQl7KMYtPVvdeX+RyRrx9tJtNaJbPzf6nZ0Vxo+IltEcXuh61a+rPa8D9c/pU0PxK8LTEA6g0ZPHzwP/MCsHhq38r/ADN/rVH+ZfkdZWNr3hjTPEMIF3DtnX/V3EfyyIfY/wBDSQ+LvDtxjZrVjz0DzBT+uK1Iby1uP9Rcwy5/uOG/lUJVKbvqmW3TqK2jRxMGt6v4NuY7HxGWvNLY7YNTQElfQSDr/X69u5hmjuIUmhkWSNwGV1OQwPcGm3NtBeW0lvcxJLDINro4yCK4Nkvfh1d74zLd+GZpPmTq9mSeo9V/z15O1o19tJfg/wDJ/mY3lQ31j+K/zX5HoNFRwTxXVvHPBIskUihkdDkMD3FFxMlvbyzyHCRoXY+gAzXK9NzqWuxymofFHwbpeoT2N5rIjubdzHKgtpW2sOoyEIP4Vd0Lx34Z8SXRttJ1aKe4wSImRo2IHXAcAn8K4b4Y694bt/D95e6tq2lw32oX01zJHcToHUE4AIJyOmfxq5JFp/i74n6NqHh6OJ7TSVdr3UIVwjsR8sYYfeI5+gNNLVJ/1oD6tHp9FFFIAooooAKKKKACiiigAooooAp6rqdto+mz394+yGFcn1J7Ae5PFcr4X0q61rUf+Er1tP30n/HjbnpBH2OPU/8A1+/EFyP+E38YGyOW0PSGzN/dnm/u+4HI/A+orvQABgcCul/uYcq+J7+S7fPqc0f30+Z/CtvN9/l0CiiiuY6QooooAKKKKACiiigDjfE5Nx478J2vZZJpiPooI/kaj+IHxDXwMbBBphv5bredom8vYq4yfutnr+lPuP8ASvi5ZpgEWmmtIPYsxU/oRXJ+MrY+IvHHiGIDfHpPh+RQOuJXBYfjg/pW1d2jBdlf82Y4dXlN+f8Akj1uCZbi3imX7siBx9CM1wmt+PLKLx7Z+FYdEi1GSd0jmneQBYmPJGNp3ELgnkVbtvE66V8K9N1hl824ayhjgiHWWYqFVR9W/rXJ+G9Be2+KGm2dywmu9PsJL++m/v3Uxw35AgD2FRa1S3Rf8P8A18jRa07vf+v6+89Hm8JeHrjPmaLY5PUrCFP6YrMn+G3haYkjT2iJ/wCeczj9CcV1lFVGvVjtJ/eRKhSlvFfccafh3axHNlrmtWvoqXXA/TP61HceDNfa3eCLxdcSwOuxoru3EoYe5J5/Ku2oq/rNXq7+qTIeFpdFb0bX5HnGhNqHw/1K30fVp1n0m8bFvcrkLDJ/dOegP/1/Wt34k6l/Zfw91mcEhngMK49XIT+tbOuaPba9pE+n3Q+SQfK2OUbsw9xXJaLb2vijSLnwl4pgNxc6bIokQyunmoPuPlSCe36HvRW/fwdTr1/zCj/s81T+z0/y/wAix4c8I+FLXwxpsV7pOizXKWyedLNbxMzNtBYkkZPOaw/DFrp5+Lt/L4WSOLRoLIR3v2biB5yeAAOMgY6ehrcT4ReBUcMNCGQc83UxH5F66zT9NsdJs0tNPtIbW3TpHEgUfp3rG/vc3qbpWjylqiiipGFFFFABRRRQAUUUUAFc/wCMtbfRPD8skGTeXBFvbKOpdu/4DJroK4i4H/CQfE6GAjdZ6JD5rehmbGP0wf8AgJrahFOV5bLUxryajyx3ei/ryWpv+F9DTw/oFvYjBlA3zOP4pD94/wBPoBWxRRWcpOUnJ7s0jFRiorZBRRRUlBRRRQAUUUUAFFFFAHG6QftPxQ8QT9ra2hgU+xAY/qDWV4AhGszeMtYcZGoX0lsh9Y0XaP8A0KtXwV/pGveKr3H37/yQfUR5A/nXZVtiV7/L/dS/BGGGfuX82/xZ458L4bvxLHpQvYmXTvDatHGrdJboscN/wBCPxNdF4Axqfi/xlrvVXvVs4z/sxDB/pXoNFZX1v/WptbS39W7BRRRSGFFFFABXE+NIn0TVLDxZar/x7sIL1R/HCxxz9Dx+I9K7aq2oWMOpadcWU4zFPG0be2R1rWjPkmm9uvoZVoc8Glv09SaKVJ4UliYPG6hlYdCDyDT65L4fXsr6HLpV0f8AS9Lma1cH+6D8p+nUfhXW1NWHJNx7DpT9pBS7hRRRUGgUUUUAFFFFABRRRQA2WRYYnlc4RFLMfQCuP+HMTT6Tfa1KP3up3ck30UEgD8DurU8aXf2Lwbqs27aTAYwfd/l/9mqz4ZtPsHhjTLYjDJbJuH+0Rk/qTW692g33dvu/pHO/erpdlf79P8zVooorA6AooooAKKKKACiiigAoJABJOAO9FU9XuBaaLfXJOBFbyPn6KTTSu7Cbsrs5n4ajzfDt1e4Oby+lm598D+ldlXM/D63+zeBtMU9WRpD/AMCdiP0Irpq1xLvWlbuY4ZWoxv2QUUUVibhRRRQAUUUUAFFFFAHFwD+yfirPGMLDq9mJAPWRP/rAn8a7SuM8bf6HrnhfVBkGK++zt/uyYz+gNdnXRW1jCfdflp+Vjno6SnDs/wA9fzuFFFFc50BRRRQAUUUUAFFFFAHH/E0sfBksKDLTTxRgep3Z/pXXIgjjVF6KABXJfEb/AJF22/6/of5muvref8GK83+hhFfvpPyX6hRRRWBuFFFFABRRRQBy3j/XdY8NeG21fSLe2uPs8im4jnRm/dngldrDBBx68VoHxRpcfhVPEc1wsentAJ9564I+7juc8Y9at6y9gmi3h1R40sPJYTmQ/LsIwc14h8NbOPX9bj0LVbmd9J0vde6bZTxbBcKzfK7Z6gA5A/2j2zRHVuP9ef8AwBuySkes+ENV1zXLKXU9Us4LK0nbdZW4RvOEfZpCWxk+gAqr8QPEFhpnh67sJZx9su4GSKJRkkHjJ9B16113QYFeIfFDS7238VTX8qO1pcqnlSdVGFAK+xyCfxrswVKFSslJ2scOPqzpUHKKvf8AA9N8E6jY33hawis7hZWtoI4plHBRwozkH3zg966KvKfg9ZXAl1K+IxbFViHP3nzn9B/OvVqjF01TrSinc0wdR1KEZNWCiiiuY6QooooAKKKKACiiigDjfib8nhIXK43291FKmfUEj+tdiCGAIOQeRXJfEwgeBb3J6vFj/vsVoeKNUOjeCNS1BH2SQ2bGNgcYcrhf1Irao7YeL83+hhTV8RJeUfzZvUV5f4e8Banqfh3T7+98beKYrm5t0ldI79tqlhnAzz3qfQdR1zwx8QY/Cer6nLqtle25msrmcfvVK5yrHv8AdPX2rK1pcr3Nr6cyPSaKKKQwooooAKKKKAOP+JsZfwRcyDrFLG4Pp8wH9a62GQTQRyr0dQw/EVk+LLM33hPVLdV3M1u7KPUqNw/UU3wheC/8IaVPu3H7OqMf9pflP6g1u9aC8m/xS/yOdaV35pfg3/mbdFFFYHQFFFFABQTgZoooA88uLHUviB4iMeo2l1Y+F9PkBWC4jaJ7+QdCVOD5Y/X+UfxC0i/0/WtC8WaFYTXN1YSCC4t7WIs0kB7bR6cj/gXtXo9FC0tboG97jY3EsSSAMoZQ2GBBGfUHoaUqGGGAIPY0tFAHB6xbT+C9cPiDT4y2k3TAajbIPuE9JFH+f147e2uYby1iubeRZIZVDI6ngg06aGO4heGZFeN1KsjDIIPUGuE0+WTwFrq6TcuzaDfOTaTMci3c/wADH0//AF+tdP8AGj/eX4r/ADX5HL/Alf7L/B/5P8zvqKKK5jqCivKPizqevHV9M0rw7e3FvcxW019OIJWQsiDgHHX7rcHqa9B8M61F4h8NWGrR4xcQhmA/hbow/Ag0LVX/AK/rRg9HY1qK4b4c397rL+ItVubqea3m1KSK1SSQsiRpwNgJwM57eldzR0QdWgoorkNc8WzvfHRPDcIvNUPEknWO3HcsemR6f/qq6dOVR2iRUqRpq8ir8TL22fR7fR/PT7Xd3MYEQOWC5+8fQZxUHxelaXwvZ6PEcS6rfw2wA9N2f6Csq68MJYeLPDltcXD3mqXdybq7uWPUR4YKB2HB/L8tzx14Y8Ra5rOh3+iTaan9mO82y+Z8NIcYOFU5xj1Fb4hRjGnGLut/x/4Bhh5SlOpKSs9vw/4J20MSQQRwoMJGoVR6ADFeeRAeIfja1zDhrXQbLyXcdPOfPy/kT+VWf7N+Jl+jW97rWhWELjDTWMMjygd8bwAD710vhvw3YeF9KFjYh2yxkmmlOZJnPVmPc1zLfmZ09OVGxRRRSGFFFFABRRRQAhAYEEZB4IrjPh+xsRq/h+Q/Np123lg/8835X+RP412lcRrR/wCEe+IGnaxjbaakv2O5bsH42E/kPwU10UfejKn31Xqv+Bc563uyjU7aP0f/AAbHb0UUVznQFFFFABRRRQAUUUUAFFFFABVDWdItdc0uawvE3RSDgjqp7MPcVfoppuLuhNKSszjPCmr3enX7eFdcfN7AM2k56XEXbHuB/L1Brs6wPFfhtdfsUaB/I1K2PmWtwOCrDnGfQ4/rTPCfiQ65ZyW94nkatZny7qA8HI43D2P6H8M71Eqkfax+a/X0Zz026cvZS+T/AE9V+K+Zz+iAax8YvEd8w3RadaRWKZ6Zb5m/UEVj6NqR8Ct4y8OynbFZxSajpwJ6xsPuj6NgfnXY+C/Dd5oA1ibUZYJbvUb+S6JhYkBT90ZIHI5rF+Jfw9vPGMllc6XcwW11ErQztM7KJITzj5Qc4Pb3rma0S7q336/mdaa5m/P8tPxRrfDPTjpnw80eJgQ8sPnvnrlyW/kRXVTTR28LzTSLHGg3M7HAA9Sazr3UdO8MaLG93MsNvBGI0Xu2BgBR3NcrDYar49lW61dZLDQQ26GyBw9wOzOew/yPWulU+ducnaP9aI5pVeW0Ery7fqx1zrGqeNLqTT/D7PaaSp23GpEEF/VY/wDP5d+p0PQdP8PWC2lhCEXq7nlpD6se9Xra2gs7aO3tokihjG1EQYAFVNc1SPRdEu9RlxiCMsAf4m6KPxJApSqOdqdNWXbv6hGmoXqVHd9+3oc1pZ/tf4napfdYdMt1tEP+2Tk/l8wrta5jwFpcmneGYprnJu75jdTk9SW6Z/DH45rp6MQ058q2Wn3Bh0+Tme71+8KKKKwNwooooAKKKKACiiigArH8UaIniHw/dWDY8xl3Qsf4ZB0P9PoTWxRVRk4yUluiZRU4uL2ZzvgzXH1rQ1FyCt/aMbe6Q9Q68Z/H+ea6KuF8QxyeEvEkfie1QnT7kiHUol7Z4WQD1/r/AL1dvDNHcQpNC6vFIoZGU5BB6Gta0VpOOz/Duv66GVCb1py3X49n/XUfRRRWBuFFFFABRRRQAUUUUAFFFFABXHeLdEu7e8j8UaGuNStR+/iXpcxdwR3IH4/iBXY0VpTqOnK6M6lNVI8r/wCGM7Q9atdf0mHULRvkcfMhPKN3U+4rP8SeLbTQQltGjXepzcQWcXLMT0Jx0H8+1cDr2s/8I14l1GTwrchopo/9NRYy8VvJnG4EcZ5+gJxz0HceEvDNhptuNUFx/aN/dr5j3zncWB/u56D9T39B0zoQp/vJbPZdfn/WpzQrzqP2cd1u+ny/rTqYJ8NazJND4m10Jf3kLiQ6aBlI4u4XsXHBxyCR3PNd/aXUF9aRXVtIskEqhkdehBqaubmI8LaibgfLo15L+9Ha1mY4DeyMevoTnua551JVXr8j0sPQg4ezive/GXk/Pt93Y6SuG8RN/wAJP4ssvDUR3WdoRdagR0OPuofz6e/tW74p8Qx+HtHa4A8y6lPl20IGTI56ceg6/wD66g8HaBJoulvNeHfqd63nXch67jzt/DJ/EmtKX7uLqvfZevf5fmcNX95JUltu/Tt8/wAjowAAABgDtRRRXMdIUUUUAFFFFABRRRQAUUUUAFFFFAEVzbQ3ltLbXEayQyqUdG6EGuG0q7n8D6wND1KRm0a5fNhdN0iJ/gY9v8nvx31UdW0mz1vTpLG+iEkL/mp7EHsRW1Koo3jL4X/V0Y1ablaUfiX9WZeorgtP1i+8FXcWj+IHM2mOdtnqODhR2R/Tj8vp07xHWRFdGDKwyGByCKmpScH3T2Y6dVT8mt12FooorM1CiiigAooooAKKKz9Z1uw0Gwa71CcRxjhV6s59FHc04xcnZbilJRV3sXJ54rWB555UiijG53c4Cj1JrhbjVdV8c3D2WhM9loyttuNQYENL6qg/z746FYNM1XxzOt5ravZaIpDQWCnDzejOf8+2Op7m3t4bW3SC3iSKGMbURBgKPYV0e7Q85fgv83+Bze9X8o/i/wDJfiZ2m+HNL0rSW0y2tU+zyKVlDjJlyMEse9ctpk8vgXXhol47Nol45axuHP8AqWPVGPp/+vucd9WdrejWmv6VNp92uUkHysOqN2Ye4qadXVqpqnv/AJl1KOidPRrb/L0H6pq1rpNuJblmLOdsUUa7pJW7Kq9z/k1hXij7Kdb8VOkNrAfMhsAdyoe2/wD56P7dB29a5/RNXtfC9/fweKHdtUtIgILmQl/Nh6BY89Ce/r36VfsNLv8Axrfxaxrkb2+lQvvstPP8fo7+v+e3XT2HI7zfu9+/oarGxjBRw699736d/T13fSyJPDun3XiTWF8VavGY4lGNOtG6Rr/fPuf/AK/pXcUAADA4FFYVKjm77LoTSpqmrbvq+4UUUVmaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe9sbbUbSS1vIUmgkGGRxkGuKNjrvgaQyaaJdV0LOWtScy249VPcf5x3rvaK1p1XBWeqfQyqUlPVaNdTJ0PxJpfiK383T7lWYDLwtxIn1H9ela1c3rPgrTdVuPttu0mn6iOVurU7Wz6sB1/n71mf2l4w8OfLqNiut2S/8vNp8soHqV7/AJfjV+yhP+G/k/8APZke1nDSovmv8t1+J29Fc1pnjzw9qbeWL4Ws44MN2PKYH0yeM/Q10aOsiB0YMp5BU5BrKdOcHaSsawqQmrxdx1FFcbrHiu6vr5tE8KxrdX3Sa6PMVuPUnoT/AJ5PFOnTlUdkKpUjTV3/AMOaPiPxZbaGUtIY2vNUm4hs4uWJPQt6Cs/RvCdzd3ya34okW61DrFbjmK3HYAdz/nnrWj4c8J2ug77mR2u9Tm5nvJeWYnqB6CugrSVSMFy0vm/8uyM405VHzVfkv8+7Ciq93f2lhEZLy6ht0H8UsgUfrXL3fxD04ym20a2utXu+yW0Z2g+7EdPcA1nClOfwo0nVhD4mdhXLa342tbK4/s7SoW1TVWO1YIOVQ+rMOn+c4rPOj+K/E+f7ZvV0jT3HNnZnMjD0Zu35n6V02jaBpmgW3kadapED95+rv9WPJrTlp0/ifM+y2+b/AMvvMuapU0guVd3v8l/n9xgaT4QubzUV1rxTKl3fj/VWy/6mAdgB3P6fXrWx4j8RxeG7OG4k07Ur7zH2COwg8114zkjIwP8AGtqkd1jRndgqqMkk4AFZVKkqjuzanTjTVl/w5wEnxYs4o2kk8K+KkRQSzNp4AA9Sd9dD4S8W2XjLS5NR0+2u4YElMX+koqliACSNrHjmuTvbq7+J+oSaXpsklv4Ut5Nt5erw16w/5Zxn+76n/J9DsbG10yxhsrKBILaFQkcaDAUVK2uy3vZFiiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGdqWg6Vq4/0/T7e4OMBnQbh9G6iuef4cadCxfStR1PTGPOLe4O39ef1p3jTxJf2NzYeH9BCNrepkiN3GVt4x96Qj25x9D9KpD4UaPdxCTWr/AFTU7/O43Ut2ylW9VUHCj0HNaQr1Ir3Xp/XQynQpTfvLX+uo+98H+KJ7SW1TxhLJBIMFZIMMR6bgc/41BpvhfxhoVitppOoaPHHnLBoSCx9SdpJP1q94I0zxDoOoarpOpTT3mkRMradeXEgZyp6oec8cdQOhxXZ1r9ana2jXojP6rDmvrf1Zxp0vx5Kqh/EOnwnqxitgx+nK/wCFJ/wiGvXXGoeMb5k7raxiH9Qf6V2dFT9Ymtkl8l/kV9Xg92383/mcna/Dnw/BKJrmKe/m7yXcxbP1AwD+IrprWztrKEQ2lvFBEOiRIFH5CpqKidWc/idy4UoQ+FWCiiiszQOleP694003xrrcugjXLbS/Dtu3+mXEkwjkvDn/AFaZ/h9T3/n6+QCCCMg9QaxP+EM8LH/mWtG/8AYv/iaXUd9CnpnivwXZW1tpuna1pccSARwwxTr+AAzya6isaLwh4ZgmSaHw7pMcqMGR0sowVI6EELwa2ap6k7BRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5vZOJfj7qQueGi0pVtge6kqSR+Jb9a9EuLiG1t5Li4kWKGJS7u5wFA6kmuZ8U+BrPxLeWuox3lzpuq2oxDe2rYYD0I7jk/maz1+Hl5qISPxP4q1DWLZG3G1CLbxSY6bwuS350K/Kl2/zG7Xv/AFtY6Hwx4hj8T6T/AGnBazQWzyMsJmwDKoON4Hoa2aZDDFbwRwQRrHFGoVEQYCgdABT6bt0EvMKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==
|
<image>In $\odot X, A B=30, C D=30,$ and $m \widehat{C Z}=40$
Find $m\widehat{C D}$
|
80
|
Geometry
|
Geometry3K
|
test
|
80
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEZAksDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8GvZvE/jb4sa3pOjeJL3Tra03YEVxIsaCPahwqkclsn869zurhLSznuZOI4Y2kb6AZNfPvwn8YaBoWpa5qniDURbXV6y7B5Mj5yWZz8qnuVoA6j/AIVh48/6KHff+BE//wAVXTeCfB3iLw/qs93rXim71aJ4THHDJNIyqxIO7DEjOBj8TTv+Fv8AgT/oO/8AkpP/APEV1ek6tZa5pcGpadMZrScExyFGTcASDwwB6g9qALtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEhieSRgqIpZmPYDqa+e/Cln4y+Il1q9/ZeLdR0+3iuMqjXUu35yx2qFbAwMce4r2H4han/AGR4A1q7D7X+zNEh9Gf5B+rV5n8KPG/hLwr4Qa11PVBBezXLzSJ9nlfAwFHKqR0XPXvQBo/8Kw8ef9FDvv8AwIn/APiq9B8H6JqWgaELPVdWm1S7MrO1xLIznBxgAsScDH86yY/i34HmlSKPWyzuwVQLSfknp/BXa0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByHxQ1JdM+HGsyFiGmh+zqB3MhCn9Cfyrlvhh4B0G+8B2N9q2kW1zdXLPJvlXJC7iFH5DP41a+Ntvq2oeGrHTtK068vDLdeZL9mgaTaqqcA7QcZLD8qwNH8eeN9G0ay0yD4e37RWkCQqxtp8sFGMn5ep60Aei/8K48Hf9C7Y/8AfFdBZWNtptlFZ2cKw20S7Y406KPQV5P/AMLP8ef9E8vv/Aef/wCJr1y3aV7aJp1CylAXUdA2OR+dAElFeY/Ebxbrmg+Ibe10298iF7VZGXykbLF3GcsCegFcgPiN4tJAGq5J6AW0X/xNd9LLqtSCmmrP+ux51XM6NKbg07r0/wAz32ivFl8RfEplDLFqRBGQRpi8/wDkOl/4SH4l/wDPDU//AAWL/wDG6f8AZ0/5o/f/AMAX9pw/kl93/BPaKK8X/wCEh+Jf/PDU/wDwWL/8bo/4SH4l/wDPDU//AAWL/wDG6P7On/PH7/8AgB/acP5Jfd/wT2iivF/+Eh+Jf/PDU/8AwWL/APG6P+Eh+Jf/ADw1P/wWL/8AG6P7On/PH7/+AH9pw/kl93/BPaKK8X/4SH4l/wDPDU//AAWL/wDG6P8AhIfiX/zw1P8A8Fi//G6P7On/ADx+/wD4Af2nD+SX3f8ABPaKK8X/AOEh+Jf/ADw1P/wWL/8AG6P+Eh+Jf/PDU/8AwWL/APG6P7On/PH7/wDgB/acP5Jfd/wT2iivF/8AhIfiX/zw1P8A8Fi//G6P+Eh+Jf8Azw1P/wAFi/8Axuj+zp/zx+//AIAf2nD+SX3f8E9oorxf/hIfiX/zw1P/AMFi/wDxuj/hIfiX/wA8NT/8Fi//ABuj+zp/zx+//gB/acP5Jfd/wT2iivF/+Eh+Jf8Azw1P/wAFi/8Axuj/AISH4l/88NT/APBYv/xuj+zp/wA8fv8A+AH9pw/kl93/AAT2iivF/wDhIfiX/wA8NT/8Fi//ABuj/hIfiX/zw1P/AMFi/wDxuj+zp/zx+/8A4Af2nD+SX3f8E9oorxf/AISH4l/88NT/APBYv/xuj/hIfiX/AM8NT/8ABYv/AMbo/s6f88fv/wCAH9pw/kl93/BPaKK8X/4SH4l/88NT/wDBYv8A8bo/4SH4l/8APDU//BYv/wAbo/s6f88fv/4Af2nD+SX3f8E9oorxf/hIfiX/AM8NT/8ABYv/AMbo/wCEh+Jf/PDU/wDwWL/8bo/s6f8APH7/APgB/acP5Jfd/wAE9oorxf8A4SH4l/8APDU//BYv/wAbo/4SH4l/88NT/wDBYv8A8bo/s6f88fv/AOAH9pw/kl93/BPaKK8X/wCEh+Jf/PDU/wDwWL/8bo/4SH4l/wDPDU//AAWL/wDG6P7On/PH7/8AgB/acP5Jfd/wT2iivF/+Eh+Jf/PDU/8AwWL/APG6P+Eh+Jf/ADw1P/wWL/8AG6P7On/PH7/+AH9pw/kl93/BPaKK8X/4SH4l/wDPDU//AAWL/wDG6P8AhIfiX/zw1P8A8Fi//G6P7On/ADx+/wD4Af2nD+SX3f8ABPaKK8X/AOEh+Jf/ADw1P/wWL/8AG6P+Eh+Jf/PDU/8AwWL/APG6P7On/PH7/wDgB/acP5Jfd/wT2iivF/8AhIfiX/zw1P8A8Fi//G6P+Eh+Jf8Azw1P/wAFi/8Axuj+zp/zx+//AIAf2nD+SX3f8E9oorxf/hIfiX/zw1P/AMFi/wDxuj/hIfiX/wA8NT/8Fi//ABuj+zp/zx+//gB/acP5Jfd/wT2iivF/+Eh+Jf8Azw1P/wAFi/8Axumv4k+JMaM7x6iqKMlm01QAP+/dH9nT/mj9/wDwA/tOn/JL7v8AgntVFeBf8LH8Wf8AQV/8l4v/AImu++GfiTVvEH9qf2pd/aPI8ry/3aJt3b8/dAz0FTWy+rSg5yasv67FUMypVqipxTu/T/MyPj1qX2bwhZ2Ckbru6BP+6gJP6la39E+GfheHQtPjvdDtJrtbaMTSOnLPtG4n8c1y/wAStG1XxL8SPDdjDpt5JptuUM1yIGMS7pMvlsY4VRXr9cJ6BzUPw98IwTRzRaBZLJGwZWCdCDkGuloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPF/i7/wAjZa/9eKf+hyV6Fr3gTQ9e3SSW/wBmuTz59vhST/tDofx59689+Lv/ACNlr/14p/6HJXtFelXqSp0aLg7Oz/Q8rD04VK9aM1dXX6nkx0Pxr4HYvpFwdQ08HJiVSwx7xnkf8BP41u6H8UdLvmEGqxtp1wOCzZaMn69V/H867ysLXPB+i+IFJvLQLOf+XiH5JB+Pf8c1l9Yp1f48de63Nvq1Sj/Alp2eq+XVG1FLHPEssMiSRuMq6MCCPYin15RN4Q8WeD5nufDl891a9WhH3j9Yzw31HP0rT0b4p2zyi01+0ewuVO1pFUlM+6n5l/WlLCNrmovmX4/cVHGJPlrLlfnt956JRUNreW19brcWk8c8LfdeNgwP4ipq42raM7U76oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqve39pp1u1xe3MVvCOryuFH05700m3ZCbSV2WKjuLiG0gee4mjhiQZZ5GCqPqTXnmr/FON5vsfh2xkvbhjtWSRDtJ/wBlB8x/HFUYPBPifxXMt14m1F7eHO5YMgsPoo+Vf5+orrjhHFc1Z8q/H7jjljFJ8tBcz/D7zV1v4p6faubbRoG1C5J2q+CI8+3dvwx9ayE8N+MfGsiza5dtYWJ5EJGOPaMfzbmu90Twpo3h9QbCzUTYwZ5PmkP4np9BgVtU/rNOlpQjr3e//AF9WqVdcRLTstF/mzndB8E6J4f2SW9sJrlf+Xif5nz7dl/CuO+DX/Mb/wC2H/tSvU68s+DX/Mb/AO2H/tSqpzlOhVcnd+7+ZFSnGniKMYKy978j1OiiiuA9EKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxf4u/wDI2Wv/AF4p/wChyV7RXi/xd/5Gy1/68U/9Dkr2ivQxX8Cl6P8AQ87Cf7xW9V+oUUUV556IVlaz4b0nX4tuoWaSPjCyj5XX6MOfw6Vq0VUZOLvF2ZMoxkrSV0eV3fgDX/Ddyb3wrqUkijkwswVz7EH5X/HH0qzpXxQltJ/sPibT5LadThpUQjHuyHkfUZ+lel1Q1TRdN1q38nUbOK4QdCw+ZfoRyPwrrWKjU0rxv5rRnG8JKnrh5W8nqv8AgEmn6nY6rbC4sLqK4i/vRtnHsfQ+xq3XmGo/DXUdJuDfeFdTlSQc+S77G+gYcH6HH1NJYfEjVNGuRY+K9NlVxx50abW+pXow9xih4RTV6Euby6gsY4Plrx5fPdfeeoUVn6Vrmma3B5unXkU4xkqp+Zfqp5H41oVxyi4uzR2xkpK6d0FFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVmax4h0rQYfM1G8jiJGVjzl2+ijk/XpTjFydoq7JlJRV5OyNOqWpavp+j25n1C8it4+29uW+g6k/SvOrz4h61r9y9j4V0yQE/8tmUM4Hrj7q/jmpdN+GN1qFwL7xRqUs8zcmJHLH6Fz/IfnXYsKqavXlby6nG8XKpph483nsv+CGo/E671G5+w+F9NkmmbgSyJuP1CD+Z/EVHZfDvWdeuFvvFWpyg/88VYO4Hpn7q/QZr0TTdJ0/R7YW+n2kVvF3CDlvcnqT7mrtDxShpQjbz3YLCOpriJc3lsv+CZmj+H9K0GEx6bZxw5GGfq7fVjya06KK45ScneTuzsjFRVoqyCiiikUFeWfBr/AJjf/bD/ANqV6nXlnwa/5jf/AGw/9qV2UP8Adqv/AG7+Zw1/96o/9vfkep0UUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4v8AF3/kbLX/AK8U/wDQ5K9orxf4u/8AI2Wv/Xin/ocle0V6GK/gUvR/oedhP94req/UKKKK889EKKKKACiiigAqrf6dZapbNbX1tFcQn+GRc49x6H3FWqKabTuhNJqzPNtW+FzW85vfDWoSWk68rE7kY/3XHI/HP1qpbePPEXhi4Sy8U6a8qdBMAFcj1BHyv+nua9UqK5tbe8t2guYY5oXGGSRQyn8DXXHFuS5ay5l+P3nHLBqL5qD5X+H3GbovibSNfiDafeI8mMmFvlkX6qefxHFa9ee618LLSWT7VoV09hcqdyxsxKZ9j95f1+lZUXivxd4NkS38Q2TXlpnCzMckj2kHB9cNz9Kf1aFXWhK/k9H/AMEX1qdLTERt5rVf8A9XorA0LxloviABbS6CTn/l3m+R/wAB3/DNb9ck4Sg7SVmdkJxmuaLugoooqSgooooAK8i+Pd+w0LSdJiOZLu6MmwdWCDAH5uPyr12vB/ifrFk3xe0aPUJNlhpaRyzYGSTkyEY9wEH40Aeurcad4N8I232+4S2s7C2jiLsf7qgADuScfjXkoi1r416+ZHMun+FrOTC8cuf5FyO/RQe/fn9R8UN8SPHmk2+uPPYeH5Z9tvEvAxkgEnoSWG0t/DzjpX0bZWNrptlDZ2UCQW0KhI40GAoFAEelaVZaLpsOn6fbpBbQrtRFH6n1J7mrlFFABRRRQAUUVzmveN9E8Pl47i5866X/AJd4PmYH0PZfxNXCEpvlirsidSNNc03ZHR1i654s0bw+v+nXiibGRBH80h/AdPqcCuBfxH4x8ayGLRLRrCxJwZlOPzkI/RRmtjQ/hZp1qwuNYma/uSdxTJWPPv3b8fyrq+rU6WteWvZbnJ9ZqVdMPHTu9F/mzJn8a+J/FkzWvhnT3t4c4afgsPqx+Vf5+hq/pHwsiaY3niK9kvbhzuaNHOCf9pz8x/SvQ4IIbWFYbeKOKJBhUjUKoHsBUlKWLcVy0Vyr8fvHHBqT5q75n+H3FezsbXT7Zbezt4oIV6JGoUVYoorkbbd2diSSsgooopDCiiigAooooAK8s+DX/Mb/AO2H/tSvU68s+DX/ADG/+2H/ALUrsof7tV/7d/M4a/8AvVH/ALe/I9TooorjO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxf4u/8AI2Wv/Xin/ocle0V4v8Xf+Rstf+vFP/Q5K9or0MV/Apej/Q87Cf7xW9V+oUUUV556IUUUUAFFFFABRRRQAUUUUAFNkijmjaOVFeNhhlYZBHuKdRQBwmu/C7SdQLT6a5064znCDdGT/u9vw/KsEav428DNs1OA6jpynAkZi4A9n6r/AMCH4V6zSMoZSrAEEYIPeuuGLlblqLmXn/mcc8HC/PSfK/L9UcxoPj7Q9e2xLP8AZbo/8sLjCkn/AGT0P8/auorjde+G2iaxvlt0NhdHnfAPkJ906fliuX/4rjwIf+glpafWRFX/ANCT+X1qvYUav8GVn2f6Mn29aj/Gjdd1+qPWqK47QfiTomsbIrh/sF03GyY/IT7P0/PFdiCCAQcg1zVKU6btNWOqnVhVXNB3CvnzR/Dlt8Sfi14gur6SQWFrOWZV6yhW2IuewIX9K98vWuEsLlrVPMuViYxJkDc+Dgc8dcda8++EHhDVfC2l6o+tW32e9u7hflMiyFkVeCSpI6s3vWZoRfFvwZDf+C47rTLZIp9HBeJIV2/uf4lAHpgN+B9a6D4ceKR4s8H2t3I4a9g/cXQzzvUfe/4EMH8T6V1jKroyOoZWGCpGQRXlXg3wf4h8FfEPUUtLIy+Gb0kCUTp+7H3kO0sGypJXp3zQB6tRSMyopZmCqoySTgAVxWu/E3RdK3RWR/tG4HGIWxGPq/f8M1pTpTqu0Fczq1qdJXm7HbVyevfEPQ9E3xJN9tul48q3OQD7t0H6n2rkfsvjfx3zcv8A2bpjn7pBjUj/AHfvP+PFdZoPw60PRdsskX265H/LS4AKg/7K9B+OT710+xo0f4srvsv1Zye3r1v4MbLu/wBEcob3xv47JW0jOm6Y/wDFkorD/e+834cV0Wg/DHRtLKTX2dQuRz+9GIwfZO/45rt+lFTPFza5aa5V5f5lwwcE+eo+aXn+iGoiRoqIqqijAVRgAU6iiuQ7AooooAKKKKACiiigAooooAKKKKACvLPg1/zG/wDth/7Ur1OvLPg1/wAxv/th/wC1K7KH+7Vf+3fzOGv/AL1R/wC3vyPU6KKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8X+Lv/ACNlr/14p/6HJXtFeL/F3/kbLX/rxT/0OSvaK9DFfwKXo/0POwn+8VvVfqFFFFeeeiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHL694B0PXd0jW/wBluT/y2twFJP8AtDof5+9ccdI8beBjv0yc6jpynJjVS4A906r/AMBP416zRXVTxc4rll7y7M5KuDpzfPH3Zd0cLoXxQ0nUSINSQ6dcdMud0ZP+92/H867iORJo1kidXRhlWU5BHsa5vxR4Z8NajayXWrLDaMOt2rCNs+56N9DmvJLbWL7w9rL23hjVbi8t2bCL5J2yH02HOT78Gt44aniE5UrxfZ7feYTxVTDNRrWku63+7/I99mnitoXmnlSKJBlnkYKqj3J6VwuufFLTbNjb6TE2oXB4DDKxg/zb8PzrzxtTn8Sa2IvFOsXFpCpOQYiVQ+mwfd+uPrXsHhrw34e0u1juNIiinLDi7LCRm/4F0H0GKJ4enhknVvJ+W33hDE1cU2qNoru9X9xxC+H/ABl43ZZdZujYWBORCw28e0Y/mxzXaaD4G0PQNskNt590vP2i4wzA+w6L+Az710lFc9TF1JrlWi7I6KWEpwfO/el3eoUUUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlnwa/wCY3/2w/wDalep15Z8Gv+Y3/wBsP/aldlD/AHar/wBu/mcNf/eqP/b35HqdFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeL/ABd/5Gy1/wCvFP8A0OSvaK8X+Lv/ACNlr/14p/6HJXtFehiv4FL0f6HnYT/eK3qv1CiiivPPRCiiigAooooAKKKKACiiigAooooAKKKKACis3V9e0vQofN1G8jhyMqhOXb6KOTXAXvxG1fXLo2HhTTJCx48503OPfH3VHuc/hW9LDVKuqWnd7HPWxVOlpJ69luei6jqthpNubjULuK3j7GRsZ9gOpPsK8/1P4nz3tx9h8MadJcTtwJZEJJ91QfzP5U3Tvhnfanci/wDFOpyyyt1hR9zfQueg9gPoa9A0zR9O0a38jTrSK3j77By31J5P41t/s9H++/w/4Jj/ALTW/uR+9/8AAPOrT4e674huFvfFWpyr6QqwdwPQfwp+ANd/o/h3SdBi2adZxxEjDSfedvqx5/DpWpRWVXE1Kis3ZdlsbUcLSpPmSu+71Zka14Y0jX4yuoWaPJjAmUbZF+jDn8DxXBXPgTxF4YuGvPC+ovNGOTCSFc+xB+V/0+leqUUUsVUpqyd12ewquFp1XzNWfdaM820n4otBMLLxLYSWk6nDSohGP95DyPwz9K7+w1Gz1S2FxY3MVxCf4o2zj2PofaodV0PTNbg8rUbOKcAYVmGGX6MOR+Fef3/w31XRrk33hXU5Q458l32N9N3RvocVrbD1tvcf4f8AAMr4mhv76/H/AIJ6hRXmGn/EvUNKufsPirTJY5F486NNrfUqeD9R+Rr0DS9a03WoPO068iuEHUKfmX6g8j8axq4apS1ktO/Q2o4mlV0i9e3Uv0UUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5Z8Gv8AmN/9sP8A2pXqdeWfBr/mN/8AbD/2pXZQ/wB2q/8Abv5nDX/3qj/29+R6nRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHi/wAXf+Rstf8ArxT/ANDkr2ivF/i7/wAjZa/9eKf+hyV7RXoYr+BS9H+h52E/3it6r9Qooorzz0QooooAKKKKACiiigAooooAKK5/XfGmieH9yXV0JLgf8u8PzP8Aj2H4kVxEnijxh4zcw6DZtY2ZO0zKcH8ZD0+i81008LUmuZ6Luzlq4unTfKtZdlqzv9b8U6P4fQm/vEWXtCnzSH/gI6fU4FcFceOfEvimd7TwvpzwxZwZyAXA92Pyp+p9DWnonwrsbd/tOt3DX9wTuKAlY8+56t+n0rvbe2gtIFgtoY4YlGFSNQqj8BWnPh6PwLnfd7fcZ8mJrfG+Rdlv9555pPwtEs5vfEl/JeTv8zRI5wT/ALTnk/hj6139jp9nptstvZW0VvCvRI1AH/1zVmisKuIqVfjZvRw9Oj8C/wAwooorE3CiiigAooooAKKKKAKmoaZY6rbG3v7WK4i/uyLnHuD2P0rz/VfhfLaXBvvDGoSW068rC7kY9lcc/gfzr0uitqWIqUvhenboYVsNTrfGte/U8stfiBr/AIbuVsfFWmSOo4EyqFcj1B+6/wCGPrXfaN4k0nX4g+n3kcjYy0RO2Rfqp5/HpV+7s7a+t2t7uCOeFvvJIoYH8DXA6z8LLdpvtfh+7ewuVO5Y2Ylc+zfeX9a35sPW+Jcj8tvu6GHLiaHwvnXnv9/U9EoryiLxh4r8HzJa+I7Brq2zhZifmP0kHDeuDz7iu60PxfoviBQLO7Czn/l3m+SQfh3/AAzWdXC1Ka5t13WqNaWLp1Hy7S7PRm7RRRXMdIUUUUAFFFFABRRRQAUUUUAFeWfBr/mN/wDbD/2pXqdeWfBr/mN/9sP/AGpXZQ/3ar/27+Zw1/8AeqP/AG9+R6nRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHi/xd/5Gy1/68U/9Dkr2ivF/i7/yNlr/ANeKf+hyV7RXoYr+BS9H+h52E/3it6r9Qooorzz0QooooAKKKRmCqWYgADJJ7UALRXGa98S9E0jdFat/aFyONsJ+QfV+n5ZrmDF448eAiQ/2bpj/AMJBjVl+n3n49ePpXXDCTa5p+6vP/I5KmMgnyU1zS7L9Wdhr3xA0PQ98Xn/a7pePJtznB926D+ftXIHU/G/jolNPhOm6a/8AGCUUj3fG5v8AgPHtXU6D8OND0bbLNH9vuR/y0uFG0H2ToPxyfeuwAAAAGAKr21Gj/Cjd93+iI9jXrfxZcq7L9WcNoPwv0jTNk2oE6hcjnDjEQP8Au9/xJ+ldvHGkUaxxoqIowqqMAD2FOormq1p1XebudNKjTpK0FYKKKKzNQooooAKKKKACiiigAooooAKKKKACiiigAooooAZLFHPE0U0aSRuMMjqCCPcGuG1z4W6XfMZ9KkbTrgHIVctGT9Oq/h+Vd5RWtKtUpO8HYyq0KdVWmrnkw13xp4HYR6vbnULAHAlZiwx7SDkf8CH4V2eg+O9D17bHFcfZ7k/8sLjCsT7Hofw59q6VlV1KsAVIwQRwRXGa98NNF1bfLaKdPuTzuhHyE+6dPyxXR7WhW/iLlfdfqjm9lXo/wpcy7P8AR/5naUV5KZ/HHgTPmg6lpiD7xzIqr9fvJ+PH1rq9B+I2ia1simk+w3TceXOflJ9n6H8cH2qKmEnFc0PeXdF08ZTlLkn7suzOvooBBAIOQaK5TrCiiigAooooAK8s+DX/ADG/+2H/ALUr1OvLPg1/zG/+2H/tSuyh/u1X/t38zhr/AO9Uf+3vyPU6KKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8X+Lv8AyNlr/wBeKf8AocldT/wqHQP+fzU/+/sf/wARXLfF3/kbLX/rxT/0OSvaK9LETlGhS5X0f6HNleMr4bEV/YycbtX/ABOA/wCFQ6B/z+an/wB/Y/8A4iqWsfC3RNP0S/vYrrUGkt7aSVA8iEEqpIz8nTivTKx/FUscXhPV/MkRA1nKil2AyxQgDnuTXJGtUckrnv0s3xntI81V2ujmPhD/AMindf8AX8//AKLjrvJZY4ImlmkSONBlndgAB7k14j4V8bS+HNAl0yxsTdX89y0iE5KrlVGMDlj8p4GPrW1D4Q8WeMJlufEd89pa9RCeoHtGOF+p5+tdM8K+ZzqvlX4/ceZm+YU6uNqfVvf13W337G3rnxR0uxYwaXG2o3J4DL8sYP16t+H51hDRPGvjhlk1a4On6exyImUqMe0Y5P8AwI/jXeaF4P0Xw8qtZ2gacDm4l+aQ/j2/DFbtR9Yp0tKEde73PO+rVK2teWnZaL59WczoPgPQ9B2yR2/2m5HPn3ADEH/ZHQfhz7101FFcs6kqjvN3Z106cKa5YKyCiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5XXvh9oeubpBB9juT/y2twFyfdeh/n711VFXTqTpu8HYipThUXLNXR5MdO8b+BTusZTqWmrz5aqXUD3T7y/8B4966DQfifo+p7YdQB065PH7w5jY+zdvxx9TXc1z2u+CtE8QbnubURXB5+0QYRyffsfxBrq+sUqv8aOvdfqjj+r1aOtCWnZ/o9zfR0kRXRlZGGQynIIp1eTv4Z8YeC3abQbtr6yzkwquT+MZ/mvP0rX0T4p2FzJ9m1q3bT7gHaXALR59x1X9frSlg5Nc1J8y8t/uKjjYp8tZcr89vvPQaKjt7iG7gSe3mjmicZV42DKfoRUlcex27hXlnwa/wCY3/2w/wDalep15Z8Gv+Y3/wBsP/aldlD/AHar/wBu/mcNf/eqP/b35HqdFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVG61nS7G8hs7zUrO3up8eVDNOqPJk4G1ScnJ44q9QAUVWvtQstMtjc395b2kAIBluJVjXJ6DJOKktrmC8t47i1mjngkG5JYnDKw9QRwRQB458Xf+Rstf+vFP/Q5K9ev9TsdKtzcX91FbxD+KRsZ9h6n2FeXfFLR9T1DxNbS2Wm3lzGLNVLwwM4B3ucZA68j865K80rxXqN39pv8AS9XupM8ma3lPHp04HsK9pUIV6NNOVrI8N4ieHr1Wo3u0d9qvxQkup/sXhnT5LqdjhZZEJz/uoOT9Tj6VkXvgzxHqmmX2teJdRZWt7eSZLctubKqTjA+VBx2/Km6Vrni3RLfydO8GRW6HqV0+fc31JbJ/GrF/4r8dahp9zZS+GWWO4iaJylhOCAwIOOevNCpyp6UUl5tpsulVpVJxlim5K+yTS/4JsfCO3t28PXd35EQuPtbR+YFG7bsQ4z1xkmvQ68U8Oan4z8MafJZWXhyeSN5TKTNYzE5IA7EcfKK2P+E38ff9Cv8A+SE//wAVXNWwlSc3K6+89PF5jhHXk8PFqHRctvwPU6K8s/4Tfx9/0K//AJIT/wDxVH/Cb+Pv+hX/APJCf/4qsvqNTuvvOf8AtCl2f3HqdFeWf8Jv4+/6Ff8A8kJ//iqP+E38ff8AQr/+SE//AMVR9Rqd194f2hS7P7j1OivLP+E38ff9Cv8A+SE//wAVR/wm/j7/AKFf/wAkJ/8A4qj6jU7r7w/tCl2f3HqdFeWf8Jv4+/6Ff/yQn/8AiqP+E38ff9Cv/wCSE/8A8VR9Rqd194f2hS7P7j1OivLP+E38ff8AQr/+SE//AMVR/wAJv4+/6Ff/AMkJ/wD4qj6jU7r7w/tCl2f3HqdFeWf8Jv4+/wChX/8AJCf/AOKo/wCE38ff9Cv/AOSE/wD8VR9Rqd194f2hS7P7j1OivLP+E38ff9Cv/wCSE/8A8VR/wm/j7/oV/wDyQn/+Ko+o1O6+8P7Qpdn9x6nRXln/AAm/j7/oV/8AyQn/APiqP+E38ff9Cv8A+SE//wAVR9Rqd194f2hS7P7j1OivLP8AhN/H3/Qr/wDkhP8A/FUf8Jv4+/6Ff/yQn/8AiqPqNTuvvD+0KXZ/cep0V5Z/wm/j7/oV/wDyQn/+Ko/4Tfx9/wBCv/5IT/8AxVH1Gp3X3h/aFLs/uPU6K8s/4Tfx9/0K/wD5IT//ABVH/Cb+Pv8AoV//ACQn/wDiqPqNTuvvD+0KXZ/cep0V5Z/wm/j7/oV//JCf/wCKo/4Tfx9/0K//AJIT/wDxVH1Gp3X3h/aFLs/uPU6K8s/4Tfx9/wBCv/5IT/8AxVH/AAm/j7/oV/8AyQn/APiqPqNTuvvD+0KXZ/cep0V5Z/wm/j7/AKFf/wAkJ/8A4qj/AITfx9/0K/8A5IT/APxVH1Gp3X3h/aFLs/uPU6K8s/4Tfx9/0K//AJIT/wDxVH/Cb+Pv+hX/APJCf/4qj6jU7r7w/tCl2f3HqdFeWf8ACb+Pv+hX/wDJCf8A+Ko/4Tfx9/0K/wD5IT//ABVH1Gp3X3h/aFLs/uPU6xtb8K6P4gQ/b7NDKRgTp8sg/wCBd/ociuF/4Tfx9/0K/wD5IT//ABVH/Cb+Pv8AoV//ACQn/wDiqqODrQd4ySfqTLG0Jq0otr0G3HgfxL4Vne88Mai88PUwEgOR7qflb9D6CrukfFJYp/sXiSxksrhDteVEOAf9pD8w/DP0qp/wm/j7/oV//JCf/wCKrM1fWPFWuw+XqPguObAwrnT5w6/Rg2RXYqcqmldJ+aaT/wCCcbqxp64dteTTa/4B67Y39pqVstzZXMVxC3R42yPp7H2rzX4Nf8xv/th/7UrjNP03xbpV19p0/TdXtpPWO2kwfYjHI9jXe/CfTNQ03+1/t1jc2vmeTs8+Jk3Y35xkc9R+dZ1MPGhQqJSve35l08TLEYim3Fq1/TY9JoornNY8e+FtBmaHUdatopk+9EmZHX6qgJFeSeydHRXP6L448M+IZRDpesW88x6RHMbn6KwBP5V0FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhIUEkgAckntQB4nf/APFRftH2sP34dMVeT22IX/8AQ2r22vmXwt4m1q38b634k0bw9c6y9y8ikxwyMIld9w+6Dg4XHPbNd1/ws/x5/wBE8vv/AAHn/wDiaBh8fb9houj6TGSXublpSi9SEXA/V/09q9T0awXStEsNPQALa28cIx/sqB/SvAbjWNV8e/Ffw7aaxpL6bLbSJutWVlbapMpJDAEZUflX0XQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPJ/in4y1IanbeDPDbP/AGleYE8kZwyBuiA9iRyT2H1rT8NfBzw3pFkn9p2y6pfMP3ssxOwHuFXOMe5ya5L4UxjxJ8T/ABD4kn/eGEsYjjIUyMQuD7IpAr2DXde0/wAN6VJqWqTGK1RlUsFLHJOBwOaAPMPiL8KdKtdDudd8OwtY3lkvntFE52Oq8kj+6QBkY9Pxrsvhn4jm8T+B7O8unL3cRa3nc9WZe59yCpPuazX+MngaSNo5L+V0YEMrWjkEHsRiul8KapomsaObzw/Ekdi0rD5IPJDMMZOMD2GfagDcooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwfGupHSfBOs3q43x2jhM/3mG1f1IrerlPiJ4d1LxV4Sl0jTJraKWaVC7XDMq7FO7+FSc5C9qAOb+BWm/ZPA0t6w+a9unYH/ZUBR+oavT6xvCWiN4c8KabpDmNpLaELIY87S55YjIHGSe1atwJjbSi3KibYfLL/AHd2OM+2aAPF/AmfEHxx8RaySDFa+aqH15Ea/wDjqmvbK8/+F/gO+8FW+pvqc9tPd3kiHfA7MNqg9SyjnLH9K9AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPD/giy6N4s8S6BcHZc5UKrdT5TOp/9DBr2e+06x1S3+z6hZW93BuDeXcRLIuR0OCCM15545+GNzqutr4l8NXwsNZQhmBJVZGHAYEdGxwex796oRT/GnabVrPTeBj7W7Rc++A3/ALLQBF8X4vC3hzwsbOz0TSYdUviFiMVpGrxoDlnyBkdMfj7Gu1+Gum/2V8O9FgKbXeATt65kJfn/AL6Fefat8GNd1mxF5fa3Dd6/POrTzTuwjjiCnKoApyckdgOOMV7RBCltbxQRDEcSBFHoAMCgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==
|
<image>Quadrilateral EFGH is a rectangle. If FK = 32 feet, find EG.
|
64
|
Geometry
|
Geometry3K
|
test
|
81
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAICAvADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACigkAZJwBXAS+OL/AF3xZDo/hKCK5traUHUL+UExBe6qR1Pv6+3NAHf0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVTUdUsdItPtWo3cVrBuC+ZK2Bk9BVuvHvj9qJTRtK0xT8087SsB6KMD/0I0m7bDirnff8ACfeEv+hh0/8A7/Cp7Xxn4ZvJRFb69pzyHgL9oUE/TJ5riNL+CXhiTSrR7xLs3LQqZdsxA3Y54+tV9d+Bug/2VcS6VcXcF3GhePfIGRiBnB4z+tOXu3v0FH3rWPWwcjI6UV5H8DPEN7qGm6hpF5K0q2JQws5yVVsjbn0GP1r1ym1YSYUUUUhhTZJI4YnlldUjQFmZjgKB1JNR3d3b2FpLd3cyQ28Slnkc4CivLJbvUfizqRs7WSXT/CcLZkk+7LfYPYf3c/5z0AJtR1nVPiXqMuieHJJLTw/E2y91MDBm9Uj/AM/X0PoOhaDp/hzSotO02BYYIx+LHuWPcmp9N02z0jT4bGwt0gtoV2oiDgf/AF6t0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV89/FvVbWb4padBeORZ2KxCbaM8Ft7cfQivoSvn/wAL2Fr41+NGsXN9bx3VlEZX2SruVgCEXI+n8qSu5q3TX7h7Qd/T7zux8avBqqALi74/6dz/AI1ieJPjTp95p0uneGrS8ur+5UxRs0eAuRjIAJJPtXe/8IB4R/6FzTf/AAHX/CvIPjH4W0vwtc6TqehwCxkldgywkgBlwQwHY89qJW2ezHHyO9+Efgy68L6FPdainl398wd4z1jUdAffkn8a9Fqjos8l1odhcTHMstujufcqCavVc/isZx2uFU9V1Wy0TTptQ1G4SC2iGWdj+g9T7VX8QeIdN8M6VJqOpziKFOFUfekbsqjua4HS9B1T4i6lFr3imJrbRom3WOlE/eHZ5PX+vsODJRHb2eqfFe/S91JJrDwnC+63tM7XuyP4m9v8j1rr/FPhyS68MiHQ2+w39gvmWDQfLtZR9z6EcY6dK6VESNFRFCoowFAwAKdQB494R+NttMy2HimL7Jcqdhuo1Ownp8y9VP04+let2t3b31slzazxzwOMpJGwZWHsRXzX8Y/DH9h+M2urePFtqQMyADo+fnH58/8AAq6r4G6YYr7UJLjU7mG7tzsbSyzIAP77Kevp7flQM9wooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFLWLiW10W+ngjeWaOB2jSNSzMwU4AA5JzXl/wAEPD1/psesahqVjc2s88ixotxE0bEDJJwR0yf0r12ihaNsHqrBXj3x00rVNVTRV0/Tru8WMyl/s8LSbSduM7QcV7DRSavYadjP0Ng2g2BEckf+joNkiFGXgcEHkGqPirxZpvhLSzd3zlpH+WC3T78zegH9areMfGll4TtEUobrU7j5bWyj5eRjwCQOgz/9asXwr4LvbnVB4p8XuLnWH5gtzzHaL2AHTP8AL9aqTu7kxVlYreH/AAnqXinVo/FHjNfmX5rHSz9y3XsWHdvb8/b0oAAYHSiikMKKKKAKN9o+n6nc2dxe2sc8tm5kgLjOxiMZrk/G3g66urqLxL4bcW3iCzGRjhblB/A3qccfp6Y7qigDmfBnjG18W6azhDb6hbny7u0fhon78eldNXn3jPwnfW2pL4u8Kjy9YgGbi3A+W7j7gjucfn9QK6Lwl4ssfF2kLeWv7uZDsuLdj88L9wfb0NAG/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc54z8TL4Y0X7QgVruVtkCN0J7k+wH8xXRMyopZiAoGST0AryeBW+Ifj9pnBbSLDopHDAHgf8CPP0rpw1KMpOc/hjq/8AI5cXVlCKhD4paL/P5HSeFYfDviPVJPFcFuDq7IscyyNuMJAx8oPTI7j/ABrta8p8Q6He+BdYXxBoIP2FmxNAOiA9j/snt6V6FoGvWfiHTEvbN+Dw8Z+9G3cGnXoxS9pT1i/w8mLD15N+yq6TX4+aNSiiiuU6wooooAKKKKACvOPFvhrUNA1hvGXhSP8A0peb+xX7t0ncgf3v/wBfXr6PRQBjeGfEun+KtGi1HT5Mq3EkZ+9E/dWHrWzXmXiXQr/wVrUni/wxEXtn51TTl+7Ivd1HYjr7dema7vQddsPEekQ6lp0wkglHTuh7qw7EUAaVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXt5Dp9lNeXD7IYULufYU0m3ZCbSV2cX8S/EL2OmJo9mSb2++UheoTOP1PH51ueDvDyeHPD8NqQPtD/vJ2Hdz2/Dp+FcX4Ms5vFviy68UX6fuIXxAh6buwH+6P1Nep12YhqlBUF6v1/wCAcOGTrTeIltsvTv8AMZLFHPC8UqK8bgqysMgg9q8o1TTr/wCHGvDVtLDS6RO2JIieF/2T/Q/5PrVQ3VrBe2sltcxLLDIu10YcEVjQruk7PWL3RviMOqqTTtJbMr6Rq1prenRX1lIHicdO6nuD6Gr1eRzRah8MfEHnw77jQ7psFfT29mHb1/l6np9/banYxXlpKssEq5Vh/nrVV6ChacNYvZ/oTh67qXhNWkt1+q8izRRRXMdQUUUUAFFFFAAQCCCMg15brelXvw31qTxLoELTaHcNnUtPT/ln/wBNEHb+n06epU10WRGR1DIwwVIyCKAKmk6tZa3pkGo6fOs1tMu5WH8j6EelXa8pv7O8+FetPq2mxyT+FbuTN5aLybVj/Gvt/wDq9K9OsL+11OxhvbKZJreZQ6SKcgigCxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeafEXVZ9U1K08J6ad0szqZ8evYH2A+Y/hXceINZh0DRLjUJsHy1win+Nz0FcX8NtGmuZbnxRqOXubpmEJbrgn5m/E8fQe9dmGSpp15dNvX/AIBw4qTqSWHj138l/wAE7jRdKg0TSLfT7cfJCuCf7x7k/U1foorkk3J3Z2xiopJbBRRRSGVdR0+11WxlsryISQSjDKf5j3ry63n1D4ZeIPs1wXuNEumyrenuPRh3HevW6oaxpFprmmy2N7HviccHup7Ee9dNCuoXhPWL3/zOXEUHUtODtJbP9H5Fq2uYby2jubeRZIZFDI6nIIqWvJtI1O/+HWunR9VLSaTM2YpQOF/2h/Uf5Pq0UqTRJLE6vG4DKynIIPepr0HSd1rF7MrD11VVmrSW6H0UUVgdAUUUUAFFFFAEc8EVzBJBPGskUilXRhkMD1BFeWOt38JdaMiCW48H3snzLyzWLnv/ALv+evX1eoLyzt9Qs5bS7hSa3mUo8bjIYGgB1tcw3ltHc28qywyqHR0OQwPQipa8ptZ7z4T60thePJceEryT/R5zybNz/Cfb/wDX616pHIk0SSxOrxuAyspyCD3FADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5rxx4jHh3w/JJG2LufMcA7g92/AfrirpwdSSjHdkVKkacHOWyOP8UXEvjbxrb+HrNz9itGJndemR94/h90e/wBa9QtreK0toreBAkUShEUdAB0rj/hx4cOkaKb+5U/bb3Dtu6qnYf1P19q7WujFTV1Sh8Mfz6s5sJTlZ1Z/FL8F0QUUUVyHYFFFFABRRRQBleINAs/EWlvZXa+8cgHMbeorz/w5rt74J1g+HdeJ+xlv3E56JnoQf7p/SvVaw/FHhm08TaY1vMAk6ZMMwHKN/h6iuqhWil7Kp8L/AA80cmIoSb9rS0kvx8mbasGUMpBBGQR3pa8x8I+Jrvw7qR8MeIiUCHbbzOeB6DP909j2/l6dWdajKlKz26PuaUK8a0brR9V2CiiisTcKKKKACiiigCpqem2esadPYX8CzW0y7XRh1/8Ar+9ebaTqN78Mdaj0DWpnm8O3L40++f8A5YE/8s3PYf8A6+nT1Ss/WtFsfEGlT6bqMIlt5Rgjup7EHsRQBfVgyhlIIIyCO9LXl/h7Wb7wFrUfhTxJMZNNlONM1F+mO0bHt/T6Yr1DrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACMyopZiAoGST0AryeAN8QviA0zAtpGn9AejAHgf8CPP0Fb/AMSvELWGmJpFmSb2++UheoTOP1PH51teDvDyeHPD8NsQPtMn7ydh3c9vw6V20v3FJ1ftS0X6s4Kv+0VlSXwx1f6I6AAAADoKKKK4jvCiiigAooooAKKKKACiiigDm/GHhK38T6fj5Y72IZhm/wDZT7VzvgrxbcWl5/wjXiDdFdxHy4ZJP4vRSf5HvXo1cl428HReI7T7RbYj1KEZjk6bx/dP9D2rro1Yyj7Grt0fY4q9GUZe2o/F1Xdf5nW0VwPgbxjLdSHQtaJi1KA7EaTgyY7H/aH6131Y1aUqUuWR0Ua0a0OaIUUUVkahRRRQAUUUUAZPiPw7p/ifR5dN1GLdG/KuPvRt2ZT2Iri/CviLUPC2sp4O8VS7m6abqDfdnTspP97t+npn0qsPxV4WsPFujvYXq7WHzQzL96J+zCgDcorzzwd4pv8ATNV/4Q/xW23Uohi0u2+7dp25/vfz+teh0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQXt5Dp9lNd3D7IYULufYVPXmnxF1afVNRtPCmmndLM6mfHr2B9gPmP4VtQpe1mo9OvoYYit7Gm5denqV/BtnN4t8W3Xii/Q+RC+IEPTd2A/3R+pr1OqGi6TBomkW+n24+SFcE/wB49yfqav08RV9pO62Wi9BYWj7KnZ7vV+oUUUVgdAUUyWaKCMyTSJGg6s7AAfia5698eeGrElX1OORh/DCC+fxHH61cKc5/CrkTqQh8bSOkorzy7+LmlRtts7C6uD/tkJn+dVT8T9WuP+PPw1K2en33/koroWBrvXlt9xzPH4daKV/S56bRXmP/AAnPjRuV8Lnb2zbS5/nR/wAJ14zHXwu34W0v+NP6jV8vvQvr9Lz+5np1FeZD4o6nbf8AH94blX15ZP5qat2nxc0iVsXVldQe64cD+VJ4GuteW41j8O9Oa3rc9CornrLxx4bv8CLVIUY/wy5T+fFb8ciSxiSN1dD0ZTkGueVOcPiVjphUhPWLucX458Gf2zGNU0391qsHzAqceaB0Gf7w7Gl8D+M/7ajOmal+61WAbSGGPNA749fUV2tcD458HS3Eg17RAYtSgO91j4MmO4/2v511UakasfY1fk+3/AOStSlSn7ekvVd/+Cd9RXJ+CvGMXiOz+z3GI9ShGJY+m8f3h/X0rrK5alOVOTjLc6qVWNWKnB6MKKKKg0CiiigAooooA5zxj4Qs/FuleRKTDeQnfa3Sfehfsc+nqKxfBXi+8a+fwr4nAg121GEc8LdIOjKe5x/nrjva5bxr4Nh8VWKSQyfZdWtTvs7tOGRhzgkdqAOporifBHjKbU5ZdB16P7L4hsvlljbgTAfxr/8AW+tdtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGZ4g1mHQNFuNQmwfLXCKf43PQVxfw20aa6lufFGo5e5umYQlvQn5m/E8fQe9UfFFxL418a2/h6zc/YrViZ3XpkfeP4dB7/WvULa3itLWK3gQJFEoRFHQAdK7ZfuKPL9qW/p/wAE4If7RX5/sw283/wCWisPxD4r0vw3BuvJt0xGUgj5dv8AAe5rhH1Lxf49cx2ER07S24L5Khh7t1b8OKzpYac1zPSPdmtXFQpvkWsuyOy1vx1oWh7kluhPcD/ljB8xz7noK5JvGHi/xO5Tw/phtbc/8tiM/wDjzcfkM10GhfDfRtKCy3Sfb7ocl5h8oPsvT8812CIsahUUKo6ADFae0oUvgjzPu9vuM/ZYir/Elyrst/vPMovhtrOrSCbxBrjue6Ixc/meB+VdFY/Dfw1ZKN1m1w4/inctn8On6V1tFZzxlaWl7Ly0NIYKhHXlu/PUp2mk6dYDFpY28A/6Zxhf5VbCqOigfhS0Vztt6s6VFLRIKKKKQxCqnqoP4VSu9G0y/XF3YW0w/wCmkYNXqKak1qhOKejRyF98NPDd4CUtpLZz/FDIRj8DkfpXPSfDvX9FkM3h7XHx18t2KE+3GQfyFeoUV0wxlaOl7rz1OWeCoS1UbPy0PLo/HHifw3KIfEmlNLFnHnKoU/8AfQ+U12Wi+M9D13alrdqk7f8ALGb5X/DsfwrclijnjaOWNXRhgqwyDXF658M9I1ENNp+dPueoMf3Cf93t+GKvnw9X41yvutvuI9niaPwS5l2e/wB5n+NfCdxZXn/CTeH90V1EfMmjjHX1YD+Y710fhDxZb+J9O3fLHexDE0Pp7j2NcZHrvizwPIINZtzf6cDgS5zgez9vo1UNQFuLkeLPB820xnfd2eMNH6kr3U9/846XRdSChN37S/RnIq6p1HOCt/NH9UezUVh+F/E1p4m0xbmAhJlwJoSeUb/D0NbleXOEoScZLVHrwnGcVKLumFcf4y+IVh4Ku7SC+s7mUXKlleLGBg4Oc12FeP8Ax+sfM0HS74DmG4aMn/eGf/Zazk7WZpFX0PXYpFmhSVPuuoYfQ0skiRRtJIwVEBZmPQAd6xfBt7/aHg3R7rOS9pHk++0Zrk/jJ4p/sPwodOt3xeajmMY6iP8AiP49PxNVU91tImn7yVzW8KfEWw8X6xdWOnWN0EtwWe4fATrgd+9dlXD/AAs8K/8ACM+EIfOTbe3mJ58jkZ6L+A/XNdxVSVtBJ31OP8b+DP8AhIYotR02X7Hr1l89rcrxnH8Dex/T86PBHjP/AISGKXTdSi+x69ZfJdWzcZx/GvqD+n5V2FcT438GzapLFr2gyfZfENl80Ui8CYD+Bv8A6/0qRnbUVy3grxlD4psXjmj+y6tanZeWj8MjDjIB7V1NABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXn2r/EiWx+Itt4UtdOScyPGrzGQgruGTxjsKFq0u4dG+x6DRRWH4v8RL4V8MXertEJjDtCxlsbiSBjP40m7asaV9EblFc34G8TT+LvDaatPZra+ZIyoivuyAcZz9c10lU1bclO4VzXjjxEPDvh+SSNgLufMcA7g92/AfriukZgilmICgZJPQCvJBIvjvx1JdzsF0TTBuJc4XaDxn/ePP0FdOFpKUuefwx1f+XzOXF1XCKhD4paL/AD+R03w58O/2Poh1C6XF5ejzGLdVTqB/U/X2qj4j+IE8t6dH8LxG6u2O0zqNwB/2R3+p4rN1fxDqvjjUW0Pw6rR6evEs/TcvqT2X0HU/y7fwx4TsPDFpsgXzLlx+9uGHzN9PQe1dFTlhJ1a+snsu3r/kc1PmnFUcPpFby7+n+Zznh34cgXH9p+JJTe3rnf5TNuUH/aP8R/SvQURY0CooVQMAAYApaK4qtadV3kzuo0IUVaCCiiisjYKKKKACiiigAooooAKKKKACiiigAooooAZLFHPE0cqK6MMMrDIIrzrxB8OZbe4Op+GJjb3C5Jt92Af909voeK9IorajXnSd4sxrYeFZWmv8z51stY1Dw3r5u4ojbXKNtntyNqt6gjsP8ivdfD+vWfiLTEvbRuvEkZPMbdwaz/Ffgyw8TW5ZgIb1R+7nUc/RvUV5NZXWs/D3xGVmjI7SR5+SZPUH+R7V6UlTxsLx0mjyoOpgJ2nrB9ex79XCfF+x+2/Di/IGWt2SYfg2D+hNdZo+r2muabFfWUm+JxyO6nuD71B4osv7R8KaraYyZbWQAe+04/WvFqxcU090e5SkpNNbM5b4PX63Hw2s97AfZmkjYk9AGJ/kRXCaejfE/wCL8l64L6RppBUHoVU/KP8AgRyfzrnNA8YnQvhfrGkwyYvbq78uMA8qjKNx/TH417N8LfCv/CMeEIRMmL27/fzk9QT0X8B/WtXrPn7fm0TtDl7/AJHbgAAAdBRRRUDCiiigCnDpVhb6lPqMNpEl5cKFlmVQGcDpk1crkfiD40XwZoiTxQie+uX8u3iboT3Jx2HH51xk198XrPTTrcrae9uqea9kI13qvU5wuen+1mlcdj2GiuX8JeLf+Ew8JHU7SIR3iq0bwk5CygdPp0/OuSN78YMnGn6Zjtyv+NN6OwlqrnqtFeLar4v+J2iT2UN9a6cJbyURQxIAzOfYA9PevZ0JKKW+9jn60dLgOorN8QNqS6BfHRxnUREfs4+X7/b73H51X8Jtrb+GrRvES7dVIbzxhRzuOPu8dMdKANqiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvBfAw/wCEk+OOqasfmit2mkU/jsX9D+lezeJNRGk+GdTvycGC2d1Pvg4/XFeXfALTiNP1fVXHzTTLCpP+yMn/ANC/SiHxt9l+YS+C3d/key15J8fNS8jw1p+nK3zXNwZCPZB/iwr1uvBfis51/wCKmjaEhysflRsPQu2T/wCO4qWuZqPdlRdk5dkes+BtN/snwRpFmVwy2ys4/wBphuP6k10NNRAkaoBgKABUV7eQ6fZTXdw+yGFC7n2FaP3padTNe7HU4v4meIjp2krpVq3+l3ow2Oqx9D+fT864PSre+1uGLwzoo2W27zL257O3qT/dHQDvjP0zL261Dxj4qeSFGe4uX2xoDwi9h9AK9w8MeHLbw1pKWkIDSt800uOXb/D0r2JuODoqO8nr8+/y6HiQUsbXctoLT5dvn1JtA0Gy8O6alnZpgDl5D9529TWpRRXjyk5Pmlue3GKilGK0CiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxfEvhqy8S6cba5XbKvMUwHzIf8PatqiqhOUJKUXqTOEZxcZK6Z4Vpuoat8OfEj210ha3YjzYwflkXsy+//AOqvarG+tdX0+O6tZFlt5lyCP5H3rI8X+FoPE+lGI7Uu4gWgl9D6H2NeV+F/Et94K1qWxvkf7KX2zwnqh/vL/nkV6U4RxtPnj8a3Xc8qE5YGpyS+B7PsTaF8FNRtfGMV/qU1k+mRTmURxuxdsHKggqB6Z5r3AAAYHSobW6gvbWO5tpFkhkXcjqeCKmrzNUuXseve75u4UUUUgCiiigDi/GngeXxXrOiXq3qQxadL5jxtHu8z5lOOvHSul1q9ttM0O9u7p1SCKFixbp06fj0qa/v7XS7Ga9vZlht4V3O7HgCvHpW1j4x6x5cXm2PhO2k5Y8NOR/M/oPrUtXXIik7PnZq/Am2mj8MahdOpWK4vCYs9wAAT+f8AKvUppo7eCSeZwkUal3Y9AAMk1X03TbXSNOgsLKFYreBQiIOwrh/jFrkmmeDvsFuxFzqUggUDrt/i/oPxqqj7en6EwXcq+B1k8ZeLL/xneKfssLG10yNuiqOrfX/E16bWP4W0ePQfDGn6bGAPJhUMR3bqT+ea2KbSXuroJO/vPqYnjG+udM8H6re2khjuIbdnjcDOD+NZfgjWL/VfhvbapezmW8eGVmkIAyQWxwOOwq34/wD+RB1v/r1asX4b/wDJIbP/AK95v/QmqH8Mvl+pot4+r/Q5Pwbqvjvx5pVxBFrS2MEMxEl95QMjHAwigYwB6+9aPhfWPEvh74k/8IjrmqNqkFxEZIZ3HzDjIPPPYjGTVn4F/wDIn3v/AF/P/wCgrUGrf8nD6P8A9eZ/9AetHpJLv/lchaxfl/mer0UUVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxfxXWd/htqwgBJ2oWx/d3rmsv4JXFnJ8P4oIJFNxFNJ56A8gluMj6Yr0SeCK6t5LeeNZIpFKOjDIYHgg15FqXwWu7LUXvvCeuy6eWOREzMNvsHU5x9RSjo35jeqXketXl5b6fZy3d3MkMESlndzgACvC/AEcnjX4vX/iVo2+yWzNIpI6Ejag+uOfwrQf4S+MtbdIvEPixpbVTkr5jyn8A2BXqXhjwxp3hPSE07TYyEB3O7ctI3qTVR0fMxS1XKjZryv4reJP9XoNs/pJckH/AL5X+v5V6D4g1mHQNFuNQmwfLXCKf43PQV5H4H0eXxX4rl1LUAZYYX86Yt0dyeF/r+Fd+BpqN689o/mebj6spWw9PeX5Ha/Dfwr/AGNpn9o3ceL26UEAjmNOw+p6n8K7qjoMCiuOrVlVm5y6nbRpRowUI9AooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzv4neFPt9n/bVnH/AKTbridVH309fqP5fSvRKRlDKVYAgjBB71rRrSozU4mNejGtTcJHh/gXxnL4duFtbxmfTJmwe/lN6j29RXt0Usc8SSxOrxuAyspyCD3rxbXtBtNB8XvY3aldJ1HmNx/yyJPBH+6f0Na3hzXb3wRrB8P64xNixzBP2UHoQf7p/SvSxdCNf95S3av6/wDBXU8vB150H7Krsnb0f+T6Hq1FIrK6hlIKkZBHelryD2gooooA8e+OWrJC2h6XcPILGWUzXSx/eZAQMD8N1WbH41eCtNsobO0sNThgiUKiJboAAP8AgderNGj/AH0VvqM03yIf+eUf/fIpLRWG9Wc94Q8caV41iuZNMjukW2YK/wBoRVznpjBPpXAfECT+1/jD4Y0c8xQFJGX33Fj+iivYlRE+4irn0GKCiFtxRd3rjmn9pPsLo13HDgYoorC8SeK9P8LfYn1JZlhupvK85UykXHVj2H/1/SgCDx//AMiDrf8A16tWL8N/+SQ2f/XvN/6E1d2jRzxK6FXjcZBHIIpwVVXaAAPQCk1dNd/+D/mNO1vL/gHmHwL/AOROvf8Ar+f/ANBWoNW/5OH0f/rzP/oD16sqKgwqhR7DFJsUtu2jd645qm7tPt/lYS0TXf8Azucj438eJ4MudMhbTmu/tzlARNs2YIHoc9a69TuUN6jNIyI+Nyq2OmRmnUlsDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5rxx4iHh3w/JJG2LufMcA7g92/AfrirpwdSSjHdkVKkacHOWyPOfiZ4jOr60ul2rFra0badv8cnf8un516b4P0FfD3h23tSB57jzJ29XPX8un4V5J8PtFbWfFsTzKWitT58pPdgflH58/ga95r0MfJUoxw8NlueZl8XVnLEz3eiCiiivMPWCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOX8eeHxr3huUIubq2BmhI6nA5X8R+uK5zQbe28feCBY3rAahYny0m/iXj5T7gjg/SvS68r0/8A4o/4py2X3LHUfuDt83K/k2V/Gu/DTlKm4J6x1X6nnYqEY1Yza92Xuv8AQl8JeJbvw3qZ8MeIcoqnbbzMeF9Bn+6ex7fy9P61zni/wnbeJ9O28R3sQzDN6H0Psa5vwV4subG8/wCEZ8QborqI7IZJO/opP8j3pVIRxEXVpr3luv1Q6U5Yaao1H7r2f6M9HooorhPQCiiigAooooAKp6rpdnrWmz6ffwLNbTLtdG/mPQ+9XKKAPLNF1O9+G+tx+G9dmabQrhsadfv/AMs/+mbnt/T6dPUwQQCDkHvWbr2hWHiPSJtN1GISQyDg90PZgexFcJ4Y12/8G61H4P8AE0peBuNM1BvuyL2Rj69v09KAPTaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEZgilmICgZJPYV4nrupN4q17UNUJP9l6XEfLz0Y5wg/4E3P0Fdn8SvELafpaaRaEm9vvlIXqE6fqePzrl/FOljwv4C03SR/x93s/nXBHViB0+gyB+FepgqfJaT3lovTqzycfU57wW0dX69EdJ8KNM+zeHZr91w95KSD/sLwP13V31UNFsV0zRLKyUYEMKofc45P51frhxFT2lWU+56GHp+ypRh2QUUUVibBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnPxXsXWy0/WIOJbWbYWHUA8g/gR+tejVj+K9PXU/C2o2pGSYS6/7y/MP1Fb4ap7OrGRz4qn7SjKJc0m+TU9ItL2P7s8Sv9Miuf8a+DovEln59viPUoRmKTpv/ANk/09Kp/Cu/a68KG2c5a1maMfQ/MP5n8q7inPmw9Z8vRihy4mgufZo4DwP4xlnlOg63mLUoTsRpODJjsf8Aa/nXf1xXjjwZ/bUQ1LTv3WqQDIKnHmgds+voaTwN4z/thDpepnytUg+UhhjzQO/19RWtWnGrH21L5rt/wDKjVlSn7Cq/R9/+CdtRRRXEdwUUUUAFFFFABWL4o8MWHivRpNPvk6/NFKv3on7MK2qKAPOvB/ia/wBH1b/hDvFT4voxiyvG+7dJ25/vf569fRa53xh4Rs/Fuk/ZpiYbqI77a5X70T9iPb1FYfgrxdefbn8K+JwIdctRiOQ/dukHRlPc4/z1oA76iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKgvbuGwspru4cJDChd29hU9ea/EbVp9T1C08Kaad00zqZ8fop9h94/hW1Cl7Waj06+hhiK3sabl16epW8HWk3i7xddeJ79D9ngfECHpu7Af7o/U1J41/4mvxJ0PSxykWxmH1Ys3/jqiu/0TSYNE0e30+3HyRLgn+83cn6muAj/ANM+OEjdVt04/CID+Zrtp1eerKa2jF2OGpRdOjCEt5SV/wAz0/pRRRXmHqhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUc1xDbJvnmjiX1dgo/WiGeG4TfDKkif3kYEfpTs9xXV7ElFFeU/GTxRrnhmTSH0m+e2SfzBIFUHcRtx1HvU31S7lJXPVqKhtJTPZQSk5Lxq2fqK8b+LXxF1XRtfh0nQrwwNBHuuWVQcs3Qc+gx+dEnZ2FH3ldHtVFYXgzUZtX8HaTf3MnmTzWyNI/wDebHJ/OuO+LvjTUPD0Onabos5i1G6feSoBIToBg+pP6U5e67BH3lc9OorO0GG9g0Kyj1K4M96IlM0hA5Y8npWjTas7CTurhRRRSGFFFFABSMAylSMgjBFLRQB5h8NCdO8S67o7HlGyAf8AZYg/zFen15hpf+ifGnUI+nnI36hWr0+uzG61FLukziwGlNw7Nr8QrgvHHg6S6kGu6LmLUoPndY+DJjuP9r+dd7RWFKrKlLmidFajGtDlkcl4J8Yx+IrT7NckR6lCMSIeN4/vD+orra858a+Eri0ux4l0DMV3EfMmjj/i9WA/mO9dF4P8W2/ifT8nbHfRDE0P/sw9q2rUoyj7alt1XY56FaUZexrfF0fdf5nSUUUVyHaFFFFABRRRQAVy3jXwbD4psUkgk+y6tanfZ3a8MjDnBPpXU0UAcT4H8ZTaq82ha5H9l8QWXyzRtwJgP41rtq47xx4MbXki1TSpfsmv2Xz21wvG7H8Dexp/gjxmviS3lsr+L7Jrdn8l3atwcjjcvsf0oA66iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq8F/Z3NxNbwXcEs0BxLHHIGaM/7QHI/GgCxRRTXdY0Z3YKijLMxwAPU0AOoqvZ39nqMJmsbuC6iB2l4JA659Mg1YoAKKrXeo2NgYheXlvbGVtsYmlVN59Bk8mrNABRRRQAUUUUAFFFFAGZ4g1mHQdFuNQmwfLXCL/fc9BXF/DbRprue58Uajl7i5ZhCW9Cfmb8eg+lUfFNzL418a23h2zc/Y7ViZ3XpkfeP4dB716hbW0VnaxW0CBIolCIo6ACu2X7ijy/alv6f8E4I/7RX5vsw283/wAAlrzHwv8AvPi/rjNyVSbH/faCvTq8x8Jf8lb1/wD3Zv8A0YtLDfBU9CsX/Epev6Hp1FFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFZ2vatHoeiXWoyDcIUyq/3mPAH5kVo1znjvT5tS8HX0NupaVQJAo77SCR+Wa0pKMqkVLa5nWlKNOTjvZnhera1f61evdXtw8jseBnhR6AdhT9G17UNCvkurKdlIPzIT8rj0IrMoAJOAMk19XyR5eW2h8d7SfNz31PprSNSi1fSbXUIhhJ4w+PQ9x+Bryr9oCHdoujzY+5O6/mB/hXovg7T5dL8JafazgrKse5lPVSxJx+Ga4n48Q7/AATay/8APO9X9VavkK6UZNR2T/U+0w7k4py3t+h2tpq0GneBrfVblsQw2KzN7/IDj8a8Dg0u417wd4t8Y3y7pZpFWIn/AK6KWx+g/A10njjxBLL8OPCvhyyJa61K3hLqvUqAAo/Fv5V3OseHItF+DV7o8QB8ixJYj+Jx8zH880Vd5z7aL9f8iqe0I9yx8KLgS/DTSmJ4RHUk9sMRXnmhqfiF8abnVHG/TtNbcmemF4Qfifmo0LxR/YXwDmKPi5knktIeeQWOSfwBNdr8HfDn9ieDI7uZMXWoHz3J6hf4R+XP41b/AIjl2/NkLSHL3/JHodFFFQUFFFFABRRRQAUUUUAeY3v7n432rL/y0Qbv+/RH9K9OrzHUOfjdYj0Qf+ijXp1dmL2p/wCFHFg96n+J/oFFFFcZ2hXmPi7wzd+HtSHifw8Cmw7p4VHA9Tj+6e4r06kZQylWAIIwQe9bUK0qUrrbqu5hXoRrRs9+j7GJ4X8TWnibTBcQkJOmBNCTyh/w963K8r8SaDe+CtYHiLQQfsZb9/AOi56gj+6f0rv/AA/r9n4i0xLy0bnpJGTzG3oa0r0Ype1p/C/w8jPD15N+yq6SX4+aNWiiiuU6wooooAKKKKACuG8b+D7m8uIvEfh5xb+ILMZUjgXCj+BvX/IruaKAOZ8GeMLbxZprMUNvqNufLu7R+Gjf6eldNXn3jPwpfWupL4u8LDy9XgGbi3UfLdx9wR3P8/riuj8J+K7Hxbo63tqdkq/LPbt96J+4P+NAG9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcJ4v+IV54dv5tPsfDV/fzKgKzIjGLJGewOcVyXwQvLrUNe8U3d6CLqZ43lDDBDFnyMdq9nwD2FeRfCP/AJHTxr/19D/0OSiHxfJ/oE/g+aPXq84+KmuXLWSeF9JOb+/jaScj/llAoJYn64x+dd3qup22jaVc6jeOEgt4y7n6dvqeleeeFtNub/RNf8ZaqmL7VbaXyEb/AJY24U7QPrx+lRLVPy/pf12Ljo15h8CePAk//X7J/wCgrXp9eY/Ar/kRZ/8Ar9k/9BWvTq2nv8l+RlHb7/zOQ8b6HoOsz6Q2tao1i1vcb7YCRV818rx8wOeg6etdHf6pYaTbrPqF5DbRMwRXlcKCfT9K8z+NH/H74T/6/wD+qVL8dv8AkSLPH/P8n/oDVne0b+f+Rpa8reX+Z2up+NvDWjXQtr/WLaGY4+TJYj64Bx+NbFpd299ax3NpPHPBIMpJG2VYfWuN0/4ceG/+EaEN3p0N1dTwbpruZd0rORktuPI5rE+BU0jeFdQtnctHBessYJ6AqDj86pLVrsRfRSXU9TooopDCua8b+Ih4d8PySxsBdz5jgHcHu34D9cV0jMFUsxAUDJJ7V5PEG+IXxAMrAtpGn9AejAHj/vo8/QV04WmpSc5/DHV/5HJi6soxUIfFLRf5/I6P4b+HTpOjHULpT9tvsO27qqdh/X8a7akAAAAGAKWsqtR1ZucuptRpRpQUI9ArzHSf9E+NOox9POR/1CtXp1eYawf7M+M+n3LcLdKg+uVMf8xXRhNeePeLOfG6ezl2kj0+iiiuM7QooooAKKKKACiiigAooooAKKKKACiiigDidc+GWj6tdPdQvJZzOcuIsFWPrg9Pwp+g/DbR9FukupGkvJ0OUMuNqn1AH9a7Oiuj61W5eTm0Ob6nQ5+flVwrzz41Q+b8Obhsf6ueNv1x/WvQ6oa1otj4g0uXTdShM1rLjegYrnByORz2rlkro64uzPCPhNp03irxhBqd4ubXR7aOOMHpuAwo/ma908RQfafDWqQYz5lpKv5oah8PeF9I8K2clpo9r5EMj72BdnJOMdSSe1a0iLLG0bjKsCpHqDVVPejZEw0ldnyd4VtLrxRqek+Fxn7Kt088mPQ43H8lx+NfWEMSQQpDGoVEUKoHYCud0DwF4c8MX8l9pVgYbiRCjO0rvwTnjcTiulqm9LCtrcKKKKkYUUUUAFFFFABRRRQB5gn+mfG92HIt0/lGF/ma9PrzDwaft/xP12+X5o08xQfq4x+imvT67MZpKMe0UcWB1jKXeTCiiiuM7QooooAZLEk0TxSorxuCrKwyCPSvKdX0y/8Ah3rg1jSQ0mlTNiWLPC/7J/of8n1morm2hvLaS3uI1khkUq6MMgit6Fd0nZ6xe6OfEUFVV07SWzKuj6xaa5psd9ZSbo3HI7qe4PvV+vJLm31D4Za/9qtg8+iXLYZfT2Pow7HvXqOnaja6rYxXlnKJIZBlSP5H3qq9BQtOGsXt/kTh67neE1aS3X6otUUUVzHUFFFFABRRRQAV5v4s8O3/AIb1hvGXhaPMo51CxX7twndgP73/AOv6+kUdaAMjw34jsPFGjxalp8m5H4dD96Nu6sOxrXrzDxFo194D1uTxZ4chMmnSnOp6enQju6jt/T6Zrv8ARdZsdf0qDUdPmEtvKMgjqD3B9CKANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryH4R/wDI6eNf+vof+hyV69XBeBPBup+GvEXiK/vntmh1GYSQiJySBuc/NkDH3hQviv5P9Al8FvNC/FPQdd8RaHaWWiokii4ElxG77Q6gcA+ozXNXs3xXi0e4ilstMS0W3ZXCbeE2nOPwr2GqupW73elXltGQJJoHjXd0yVIGamStF2KT1Vzx74GyeIfszIkcH9g+bIXfjf5uF/TpXtdcZ8M/CuoeEPDMunak8DTNctKDAxZcEAdwPSuzrST2M4nk/wAaP+P3wn/1/wD9Uqb47f8AIk2X/X8n/oDVs/EPwhqXiq40OTT3t1Fjc+bL5zlcrlemAcng1J8TPCeoeL/Dlvp+mvbrNHcrKxncqMBWHYHnmo+z8/8AI0T96/l/mdXa/wDILh/64j+VeZfAn/kAax/1/n/0EV6jDE0dlHCcbljCnHTOK434Z+ENR8IaXf22pPbs9xdGZPIcsNuAOcgc8VX25Py/UzXwJf1sdxRXGaFofimz8d6pqOo6p5+izh/s1t9odvLywI+UjA4z0rrLy7hsLKa7uHCQwoXdvYUkr28ym0r36HGfErxC2n6Umk2hJvb75SF6hOh/Pp+dbPg3w8vhzw/DbsB9pk/eTt6se34dK43wdaTeL/F114nv0P2eB8QIem7sB/uj9TXqdduIfsoKgvV+v/AODDL203iJbbL07/MKKKK4jvCvMvitG1peaJq0Y+aGQgn6EMv9a9NrlviHpn9p+DrvauZLfE6f8B6/+Ok104SahWi3tt95y42DnQklvv8AdqdNDKs0EcqHKuoYH1Bp9ct8PdT/ALT8HWZZsyW4MD/8B6fpiuprGpBwm4vobUpqpBTXUKKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqupXYsdLu7sn/UwvJ+QJq1XGfE3VPsHhKSBWxJduIh67ep/kB+Na0Ye0qRj3Mq9T2dOU+yMz4SWhGm6jqDD5p5wmT3CjP82NejVgeC9M/snwnYW7LiRo/Mf/AHm5P88Vv1eKnz1pSRGEp+zoRi+wUUUVznQFFFFABRRRQBWv7C21Oxls7uISQSjDKf8APWvLYpdQ+GPiDyZd9xol02QfT39mH6163VHVtJtNa06WxvYw8Tj8VPYj3rpoV+S8J6xe6/U5cRh3UtODtJbP9PQsWl3BfWsdzbSrJDIu5HU8EVNXkul6hf8Aw4106VqZaXSJ2zHKBwv+0P6ivV4Zo7iFJonV43AZWU5BBqa9D2TutYvZlYeuqqaatJbofRRRWB0BRRRQAUUUUAIyh1KsAVIwQe9eWapYXnww1uTXNIiebw3dPm+sk5+zk/xqPT/9Xpj1SmTQx3ELwzIskbqVZGGQwPUGgCDTtRtNW0+G+sZlmtplDI6ngirVeUSx3fwn1s3EKyT+Eb2T95GMsbJz3Ht/nr19StbqC9tYrm2lWWGVQyOhyGB70AS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmvxG1afUtQtPCmmndNM6mfH/jqn2H3j+Fdvr+sw6DotxqE2D5a/Iv99j0H51xfw20aa7nuvFOo5e4uWYQlvQn5m/oPpXZhoqCdeXTb1/4Bw4uTqSWHj138l/wTt9E0mDQ9Ht9Ptx8kS4Lf3m7k/U1oUUVySk5O7O2MVFKK2QUUUUhhTJoknhkhkG5JFKsPUEYNPooA8v+Hkz6F4p1Xw3cnBLF4s9yvp9Vwfwr1CvMfiLay6J4h0zxRaLyrhJcdyOmfquR+Fej2V3Df2UN3AwaKZA6n2Irsxa51Gsvtb+qOHBvkcqD+y9PRk9FFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlni9z4m+Iem6FF88NqQZvT+8/6AD616Nq2oxaRpNzfzEbIIy2D3PYficCuD+F+nS3UuoeI7vLTXMhRGPcZyx/Pj8K7cL+7jKs+mi9WcOL/eTjQXXV+iPSFAVQB0AxS0UVxHcFFFFABRRRQAUUUUAFFFFAGXr2hWfiHTJLK7Tg8o46o3YivPfD2t33gbWT4f1wk2LN+5mPRc9CP9k9/SvVqxfE3hq08S6Y1tOAsq8wzAco3+HtXVQrJL2dTWL/AA80cmIoSbVWlpJfj5M2VZXUMpDKRkEdCKWvL/CfiS78M6mfDPiElEU7YJmPC+gz/dPY9v5eoA5GRWdei6UrPbo+5pQrxrRutGt12CiiisTcKKKKACiiigCC8tLe/tJbS6iWWCVSjo4yGBrzC1nu/hRra2N28k/hO9k/0ec8mzc/wn2//X616tVTU9Ms9Y06ewv4Vmtpl2ujf560AWY5EmiWWJ1eNwGVlOQR6inV5Zo+pXvw01uPw9rczzaBctjT75/+WR/55ue3+e3T1IEMAQQQeQRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc3438RDw74fkljYC7nzHAO4PdvwH9KunB1JKMd2RUqRpwc5bI47xVcy+NPGlt4ds3P2O1Ymd16ZH3j+HQe9eoWttFZ2sVtAgSKJQiKOwFcd8N/Dp0rRjqF0p+232HO7qqdh+PU/Wu2roxU1dUobR/PqzmwlOVnWn8UvwXRBRRRXIdgUUUUAFFFFAGdrukQ65o1zp82MSr8rf3W7H864j4a6vNaT3fhfUMrPbOxhDemfmX8+fxNekV5t8QtHudM1K38WaWNssLKJwB6cBj7EcH8K7MNJTi6Euu3r/AME4cVF05LER6b+n/APSaKzPD+t2/iDR4L+3PDjDpnlGHUGtOuSUXFuL3OyMlJKUdmFFFFIoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisXxT4gh8N6JLePgyn5YUP8Tnp+A61UIuclGO7JnNQi5S2RxnxC1GfW9bsvCmntlmcNOR2J6Z9gMmvQtL06DStMt7G3XEUKBR7+9cP8ONBnYzeJdSy13eZMW7qFJyW/H+Veh11YqSilRjtHfzfU5MJFybrz3lt5LoFFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAc74u8KW3ifTihxHeRjMM2Oh9D7GuZ8F+K7nT70+GfEGY7iI7IZZD19FJ/ka9IrlPGng+LxJZ+dBiPUYRmKTpu/2T/niuuhVi4+xq/D0fY469GUZe2o/F1XdHV0V5/4H8YSyzHQNczFqMJ2I8nBkx2Pv/OvQKxrUpUpcsjejWjWhzRCiiisjUKKKKACiiigDO13Q7HxFpM2m6hCJIJR+KnswPYiuC8Na5f+Cdaj8I+JZS9q5xpmoN0deyMfX/PpXp1Y3ibw1YeKtGk06/Tg8xyD70TdmBoA2aK8dT4i6j8P7S70DxNBJd39qg+w3C/duE6KWPt6133gTxP/AMJb4UtdTcItwcpOq9FcHB/x/GgDpKKKKACiuY8WeNrHwsILfynvdTuWCwWUJ+d8nqfQV0kLmWFJGjaNmUEo3VfY0APooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGYKpZiAoGST2ryeMN8QviAZCC2kaf0B6MAeP++jz9BXQfErxC2n6Umk2hJvb75cL1CdD+fT862PBnh5fDnh+K3YD7TJ+8nb1Y9vw6V20v3FJ1ftS0X6s4K3+0VlRXwx1f6I6AAAAAYApaKK4jvCiiigAooooAKKKKACo54Irq3kgmQPFIpV1PQg9akooDc8ktJp/hr4uktbje+jXhyr9cDsfqOh//AFV6xFKk0SSxOHjcBlZTkEHvWb4h0G18RaVJZXQwTzHIByjdiK4Lwn4hufCeqP4Z19ikKtiCZui56c/3T+ld8l9ahzx+Nb+fmefB/VJ8kvge3k+x6lRSAggEHIPelrgPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimu6xozuwVFGSxOABQAy5uYbO2kubiRY4Y1LO7dAK8piW5+JXi4TOjJotkcAHuPT6nv6CpPEWtXfjzWk0DRCwsEbM03ZsfxH2HYd69H0XR7XQtLisbRNscY5Pdj3J9670vqsOZ/G/wX+Z5zf1ufKvgW/m/wDIvIixRrGihUUYAHQCnUUVwHohRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxfjjwYNbi/tHTx5WqQDKlTjzAO319DTPA3jM6sh0rVP3WqQfL83Hmgf+zeort64Pxz4NkvHGuaMDFqUHzssfBkx3H+0P1rso1I1I+xq/J9v+AcNalKlP29L5rv/AME7yiuR8E+Mo/ENr9lusR6nCMSIeN4H8Q/qK66uapTlTk4y3OqlVjVipwegUUUVBoFFFFABSEZBAOPelooA+fviF8K/E0moXOswXb6yJCWYEYlQegHQge35VF8E/Eb6N4kuPD96WijvfuK4xsmXtg9Mj+Qr6Grk/FPgDSvErJdhfseqREPDewjDqw5GfUUDOsrjPGXjj+xpo9G0aH7f4gueIrdORFn+J/T6Vl67421RWh8MaHFHd+JXXZPLHzFb9i5P647fWtzwb4JtvDEMlzPIbzV7n5rm8k5ZieoHoKBFbwb4H/seeTWtam+36/c/NLcPyI8/wp6Cu0oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8u4bCzmu7hwkMKF3b0AqevNfiNq0+pX9p4U007pp3Uz4/8dU+38R/CtqFL2s1Hp19DDEVlRpuXXp6lbwfaTeL/F914mv0P2eB8QIem7+ED/dH6mvU6z9E0mDQ9Ht9Ptx8sS4Lf3m7k/U1oU8TV9pPTZaL0FhaLpQtLd6v1CiiisDoCiiigAooooAKKKKACiiigArA8VeFbPxPp5ilAjuUBMM4HKn0PqPat+iqhOUJKUXqROEakXGSumeXeGfFd54Wvz4d8S7kjQ7YbhuQo7c919D2/l6ejpIiujBkYZDKcgisjxD4a0/xJZGC8jxIo/dzL95D7f4V59Z6prfw4vxYaoj3ekO37uRew9VPY/7JrtcIYn3oaT6rv6HDGc8I+WprDo+3qetUVR0rV7HWrNbqwuEmjPXHVT6EdqvVwtOLsz0IyUldbBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZus67p+g2hub+4WNf4UHLOfQCnGLk7LcUpKKvJ2Rfmmit4XmmkWONBlnY4AFeW6/4jv/G+pDQfDwcWef30/QMPU+i+3eoZrrXPiXf+RbK9losbfMx6H6/3j7dBXpGh6BYeH7BbWxiCj+Nz95z6k13KMMLrLWfbt6+Z57lPF+7DSHfq/TyIfDfhuz8NaatrbLukPMspHzO3rWzRRXFKTm3KT1O+EIwioxVkgoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOvG3hK4t7seJNA3RXkJ3zRx/xf7QHr6jvXQeDvFtv4nsPmxHfRDE0X/sw9q6WvMvF/hi70DUR4n8PZQo2+eFBwPU49D3Fd1Oca8VSqbrZ/ozgqwlh5utTXuvdfqj02isLwt4ntfE2mieIhLhMCaEnlD/hW7XHOEoScZLVHbCcZxUou6YUUUVJQUUUjMqKWYhVAySTgAUALXnPiTxhqGu6q/hbwaQ910u9QHMdsvfB/vf5HqK2s+JNT8danL4c8JSGKwQ7L/VR0A7qh7/57de38N+GdO8LaUlhp0W1RzJI3LyN3Zj3NAFbwl4P0/wAJaeYbYGW6l+a4upOXlb1J9PauhoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzdf1mHQdFuNQmwfLX5F/vseg/OuJ+G2jzXlxdeKdRy9xcswhLehPzN/QfSqXiq5l8aeNLbw5ZOfsdq2Z3XpkfeP4dB716ha20VnaxW0CBIokCIo7AV2y/cUeX7Ut/T/AIJwR/2ivzfZht5v/gEtFFFcR3hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5ZW2oWz213Ck0LjDI4yKnopptO6E0mrM8v1TwRq3hq8Oq+FLiQqOWticnHp/tD2NaWhfEy0uZBZ63C1hdg7SxB2E+/da76sTXfCekeIYyLy2AlxhZk4cfj3/GuxYiFRctdX81v/AME4nhp0nzYd28nt/wAA2IpY5o1kidXjYZVlOQR9afXlj+FfF3hN2l0G/N3ag58knnHup4P4Vd034pLDL9l8QadLaTrwWRTj8VPIpPCNrmpPmX4/cOONjF8tZcr/AA+89GorL03xHo+rAfYtQglY9E3Yb8jzWpXJKLi7SVjrjKMleLuFFFFIoKKKKACiiigAoorI1LxPoukg/bNRgRh/Arbm/Ic1UYyk7RVyZTjFXk7GvUc88NtC008qRRKMs7tgD8a871D4ovdTG18PaZLdTHgO6k/+Oj/GqsXg/wAU+KpVn8R6g1vb5yIFOSPoo4FdSwjir1nyr8fuOR41SfLRXM/w+80Nb+JkQmNj4etmvrpjtEm0lc+w6mquj+AtQ1u8GreLLh3djkW27n6HHQewrtdE8M6V4fh2WNqqvj5pW5dvqa16HiY01y0Fbz6/8AUcLKo+bEO/l0/4JFb20FpAkFvEkUSDCogwAKloorjbudyVtEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMAylWAIPBBpaKAPK/EugXvgzVx4j0AEWpb9/AOi56gj+6f0rvvD3iCz8R6Yl5atg9JIyeUb0NakkaTRNHIgdHGGVhkEV5TrGl3/AMPNcGs6QGk0uVsSw54XP8J/oa74tYqPJL41s+/kzz5xeElzx+B7rt5o9YorP0bWbTXdNjvrOTdG45HdD3B96sX1/a6ZZS3l7OkFvEu55HOABXDKLi7M74yUldbEk88VtA888ixxRqWd3OAoHcmvL73U9U+KGoSaXojyWXhmJtt1fYw1zjqqe3+T6UwnVPixfcedYeEYX/3ZL0j+n+etenWFha6XZRWdlAkNvEu1EQYAFIZBo2i2GgaZFp+nW6w28YwAOpPqT3NaFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxvir4m+HvCkjW1xM1zejrb2+CV/3j0H86r/FPxk/hLw1i0fbqF4THAf7g/ib8Mj8TXP8Awy+GtrHp8XiDX4Rd6hdDzY0mG4RqeQSD1Y9fakryv2Q3ZJX6lM/H6INv/wCEauPIz9/7R/8AY13PhH4iaH4xzFZytDeKMtbTcNj1HqK6ZrO1eIxtbxFCMFSgxivBPij4ej8C+KNM8RaCv2VJpC3lpwqyLgnA9CD0+tO6TSYWbWm59BVzfjfxEPDvh+SWNgLubMcA757t+A/pW1pt4uo6XaXqDC3EKSj6MAf61PJDFLjzI1fHTcM4rSDUJpyV7GVRSnBqDs2eIeDPGGneGIrmSeymuLy4b5pQwGF9Pzya6r/hcGn/APQMuP8Av4P8K9B+x23/AD7xf98Cj7Hbf8+8X/fArrqYmhUk5Shr6nFSwuIpRUIVFZeR59/wuDT/APoGXH/fwf4Uf8Lg0/8A6Blx/wB/B/hXoP2O2/594v8AvgUfY7b/AJ94v++BUe1w3/Pv8TT2OK/5+L7jz7/hcGn/APQMuP8Av4P8KP8AhcGn/wDQMuP+/g/wr0H7Hbf8+8X/AHwKPsdt/wA+8X/fAo9rhv8An3+IexxX/Pxfceff8Lg0/wD6Blx/38H+FH/C4NP/AOgZcf8Afwf4V6D9jtv+feL/AL4FH2O2/wCfeL/vgUe1w3/Pv8Q9jiv+fi+48+/4XBp//QMuP+/g/wAKP+Fwaf8A9Ay4/wC/g/wr0H7Hbf8APvF/3wKPsdt/z7xf98Cj2uG/59/iHscV/wA/F9x59/wuDT/+gZcf9/B/hR/wuDT/APoGXH/fwf4V6D9jtv8An3i/74FH2O2/594v++BR7XDf8+/xD2OK/wCfi+48+/4XBp//AEDLj/v4P8KP+Fwaf/0DLj/v4P8ACvQfsdt/z7xf98Cj7Hbf8+8X/fAo9rhv+ff4h7HFf8/F9x59/wALg0//AKBlx/38H+FH/C4NP/6Blx/38H+Feg/Y7b/n3i/74FH2O2/594v++BR7XDf8+/xD2OK/5+L7jz7/AIXBp/8A0DLj/v4P8KP+Fwaf/wBAy4/7+D/CvQfsdt/z7xf98Cj7Hbf8+8X/AHwKPa4b/n3+IexxX/Pxfceff8Lg0/8A6Blx/wB/B/hR/wALg0//AKBlx/38H+Feg/Y7b/n3i/74FH2O2/594v8AvgUe1w3/AD7/ABD2OK/5+L7jz7/hcGn/APQMuP8Av4P8Kpah8SPD2qx7L7QGnHbeVJH0OK9O+x23/PvF/wB8Cj7Hbf8APvF/3wKarYdO6g/vE6GJkrOov/AUeAaldeGZyZNOtL+yk7ASh1/Xn9ajtPF2u6cQtrq1yUHRXOR+RyK+g/sdt/z7xf8AfAo+x23/AD7xf98Cuj+0YWs4X9Xf9Dl/sypfmjO3orfqeN2nxY12BQJ4rW492Qqf0IrVg+MTj/X6Qrf9c5cfzBr0/wCx23/PvF/3wKPsdt/z7xf98CsZYnDS3pfibxwuKjtV/A84/wCFxW//AEBpf+/4/wDiaD8YrbHGjS/9/wAf/E16P9jtf+feL/vgUfYrX/n2i/74FT7bDf8APv8AFl+xxX/P3/yVHl83xilP+p0hF/35Sf5AVk3nxW1+4yLdLa2HYom4/wDj2a9m+x23/PvF/wB8Cj7Hbf8APvF/3wKuOJw0dqX4kSwuKlvW/A+ervxVrWp5S91W58s9VU4H5DAqzpt54VtiHvrG/vZO++YKv5AV759jtv8An3i/74FH2O2/594v++BWrzGFrKFvR2/QwWWVL8znd+av+bPM7D4l6BpkXlWOgtAnpGVGf0q3/wALg0//AKBlx/38H+Feg/Y7b/n3i/74FH2O2/594v8AvgVzuth27um/vOpUMSlZVF/4Ceff8Lg0/wD6Blx/38H+FH/C4NP/AOgZcf8Afwf4V6D9jtv+feL/AL4FH2O2/wCfeL/vgUva4b/n3+I/Y4r/AJ+L7jz7/hcGn/8AQMuP+/g/wo/4XBp//QMuP+/g/wAK9B+x23/PvF/3wKPsdt/z7xf98Cj2uG/59/iHscV/z8X3Hn3/AAuDT/8AoGXH/fwf4Uf8Lg0//oGXH/fwf4V6D9jtv+feL/vgUfY7b/n3i/74FHtcN/z7/EPY4r/n4vuPPv8AhcGn/wDQMuP+/g/wo/4XBp//AEDLj/v4P8K9B+x23/PvF/3wKPsdt/z7xf8AfAo9rhv+ff4h7HFf8/F9x59/wuDT/wDoGXH/AH8H+FH/AAuDT/8AoGXH/fwf4V6D9jtv+feL/vgUfY7b/n3i/wC+BR7XDf8APv8AEPY4r/n4vuPPv+Fwaf8A9Ay4/wC/g/wo/wCFwaf/ANAy4/7+D/CvQfsdt/z7xf8AfAo+x23/AD7xf98Cj2uG/wCff4h7HFf8/F9x59/wuDT/APoGXH/fwf4Uf8Lg0/8A6Blx/wB/B/hXoP2O2/594v8AvgUfY7b/AJ94v++BR7XDf8+/xD2OK/5+L7jz7/hcGn/9Ay4/7+D/AAo/4XBp/wD0DLj/AL+D/CvQfsdt/wA+8X/fAo+x23/PvF/3wKPa4b/n3+IexxX/AD8X3Hn3/C4NP/6Blx/38H+FH/C4NP8A+gZcf9/B/hXoP2O2/wCfeL/vgUfY7b/n3i/74FHtcN/z7/EPY4r/AJ+L7jz7/hcGn/8AQMuP+/g/wo/4XBp//QMuP+/g/wAK9B+x23/PvF/3wKPsdt/z7xf98Cj2uG/59/iHscV/z8X3Hn3/AAuDT/8AoGXH/fwf4Uf8Lg0//oGXH/fwf4V6D9jtv+feL/vgUfY7b/n3i/74FHtcN/z7/EPY4r/n4vuPPv8AhcGn/wDQMuP+/g/wo/4XBp//AEDLj/v4P8K9B+x23/PvF/3wKPsdt/z7xf8AfAo9rhv+ff4h7HFf8/F9x59/wuDT/wDoGXH/AH8H+FH/AAuDT/8AoGXH/fwf4V6D9jtv+feL/vgUfY7b/n3i/wC+BR7XDf8APv8AEPY4r/n4vuPPv+Fwaf8A9Ay4/wC/g/wqK5+K+k3dtJb3GkTSRSKVZGcEEflXo32O2/594v8AvgUfY7b/AJ94v++BQquGX/Lt/eJ0cU9HUX/gJ4PoXiseG9fkuNOWX+zZW+e3kbJ2/wCI9a9J1bw5afEGfS9QfVJJNEjXe1inCyPnjcf0Irr/ALHbf8+8X/fAqVI0iXbGiqvooxSxOIhWs1Gz9SsJhqlC6crr02GwQRWsCQQRrHFGoVEUYAA7CuQ8X/EzQ/CEv2WcvdX2M/Z4cZX/AHj2rsJXKQu6jJVSQPWvn74U2dj4l8e6rfa2EuLxMyxRzc5YscnB644/OuNXcrHboo8zN5fj9EGDS+GrhYSeH+0f/Y16B4S8daL4xgZtOlZZ4xmS3lGHX39x71vS2FpPC0MtrC8TDBRkBBFeOR+BtY8NfF2C/wBC06UaM8g3srKFVGHzDGc4B/lVL4rMT2uj2uiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4L8U8618XNF0aQ5gXyYyv+++W/TFe8IoRFRRhVGABXg/xYV9B+KWi6+6E258qQnHeNvmH5Y/OvdLW6gvbSK6t5FkglQOjqcgg96Ifw/mwn8fyRNXjP7QN1GNM0a0yPMaZ5MewAH9a9A0rx94d1i61G3t75UawyZTL8gKjqwz1APFePzyyfFj4sReQjHSLMgFiOBEpySfdj/P2pW5mo/P5FJ8qbfQ9x8MwPa+FdJt3GHis4kYe4QCtWkUBVCgYAGBS1UndtkJWVgooopDCiiigAooooAKKKKAK19f2mmWj3V9cxW8CfekkbAFYNl8RPCWoXa2ttrls0zHAVtyAn6sAK4T4jo/iX4n+H/Ck0jrYFRLKinG7O4n9Fx+Na/jr4c+Go/BV/cWOmQWlzZwGWKaFdrErzgnvketK9o8z2/yKt73Kt/8AM9LorjPhXq1xrHw+0+e6cvNHuhLt1YKSB+mK6mLUrGe7ktIb22kuY874UlUuuOuVByKqSs7EJ3Vy1RVa71Cy08Ib28t7YOcKZpVTcfbJ5qyCCMg5BpDMuHxHpM+vzaHFeK2pQpvkg2tlV45zjHcd+9alchZJ4UHxIvmtt/8Awknkfv8A5nxswvb7v92tTUfFui6TrMOk314sN3LGZVVgcbQCSSeg+6aOiDqzborgl+MPg9tQFp9smALbROYT5f59cfhXdo6yRq6MGRhlWByCKOlw62HUUUUAFFFFABRRRQAVxfj/AFzxPo8dkvhrS/tskhYzEx7goGMd/rXaUUmhpnhOo/En4kaTaNd6hocNvbqQDJJCQMnp3p1h8RviVqlml3Y6FFPbvnbIkBwcHHrWt8fNS8nw/pumq3zXE5kYeyjH82r0Hwbpv9keDtJscYaO2TcP9ojJ/UmnHVN9mEtGl3M7wFqvibV9Pup/EtitnKsoWKMJtJXHJ6+/6V11FFNu5KCiiikMKKKKACiiigAooooAKKKwPFmla1q+nxQ6JrB0yZXy8oTduXHTqKTGiprXje20fxfpPh37MZ57/q4kx5Q5xkY5zg+ldLczC2tZpypYRIXIHU4Ga+fh4a1Hw18YtAj1PVDqVzcuJmmYEH+IYOSfSvobrTSvC/XUT0nb0PLT8bdOBI/sHVOP9imt8cdLTb5mi6kgYgAsoAzXqHkw/wDPJP8AvkV5nbBPiD8QZJAinQNCfCAD5Z5/X3A/w9aFukD2bPT1bcgYdxms/XtWGhaDe6o0JmFrEZDGG27sds9q0elZniLVBovh6/1IwicW0Rk8snAbHalJ2THFXaIfCuvr4o8OWmsLbm3W4DHyi+7bgkdcD0rZrnvDHiIa54Ng1xbRbcPG7+SrZA2k8Z/CuN0z4sal4hsmj0Pw3JdamrkNH5n7uNOxZjjk88e1U/iaEtkz1OivPfCXxEvtU8Sy+HPEGkjTdUVS6BWyrY5x37c5zXoVLzDyCiiigAooooAKKKKACiiigAooooAKKKKACiiigArxvxh8I9QTWZNd8I3XkXDMZDb79hDdyjf0NbPxa8Y654Qj0yXSXjSOcusjPGG5GMdenU13mi6jFq+i2d/DKsiTxK+5fUjmklf3l0G3bR9TxSw+K3i7wlcpY+LNLknjHG+RNkmPZhw1eyeHfEmm+KNKTUNMm3xHhlPDI3oR603xNpuman4fvYtWiia1ETMzOB8mB1B7EV5N8AfOF5rioWNoPLxnpuy39KqL5m0xSVkmj3GiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBgeL/AAlYeMdFbT70FWB3QzL96NvUf4V5VbeD/if4OLW2g6gl1ZgkoocED/gD8D8K90opJW2HfSzPmbXPhx45uYr/AF/ULWHzcb5o4Sodx3IVRj3Nep/BuXQpfCAGk2zQ3SMFvd/LNJjrnuPQdq9GIyMGq9nYWmnxGKztooI2YuVjUKCSck8VSdk0J62ZYooopAFFFFABRRRQAUUUUAFFFFAETW0DTrO0KGZRgOVGR+NeYfE3xg16G8F+H0N5qd4fKnMfIiXuM+vr6CtP4keK9RsJrHw1oIzrGqcLJn/VJ0z9evPbBrS8D+ArLwhZmRj9p1SYZuLpxkk+g9BSS5t9vzHfl23NLwb4fHhfwrY6TuDPCmZGHQuTlv1Nea+MiPA3xc0zxKMpYagNlyQOAfut/wCytXs9eG/EnULzx9qF3pGhxLLY6JG9xcz4yGcD7qn8/rzRKT5lLr+nUIxXK4/1fobHh2zuPiV4vbxTqUbLoli5TTrd+khB+8R9efr9K9arivhVrEOr+ALDy1RJLVfs0qKMYZe/4jB/Gu1q5Ll91bf1qSnzas8m0b/k4jWv+vL+kdUvHmmW+sfG3w7Y3a74JLdd6dmALnB9jirujf8AJxGtf9eX9I6PE/8AyX3w1/17f0kqYf8ALv8AruVL/l5/XY1/izpNgPhrfMlpChtvLaEqgGz5wOPwJroPAcjy+A9Dd2LMbOPJP+6KzPiz/wAkz1f6R/8Aoxa0fh//AMiBoX/XnH/KiG0vVfkKX2fn+h0lFFFABRRRQAUUUUAFFFFAHg3xMY+Ifi9o2iL8yRGKNx/vNub/AMdxXvCqFQKOgGK8G8Ff8VL8c9T1U/NFbNLIp9vuL+hr3qiP8Neev3hL435aBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHkXjb/kuHhT/AK5L/wChPXrteReNv+S4eFP+uS/+hPXrtEf4a9WEvj+SOQ+JfiI+G/BV5PE225nH2eHHXc3U/gM1N8PNBHh7wXYWzLi4kTzpyepduTn6dPwrh/irKdX8e+FvDgOYzKssq+uWx/JT+dewKoVQo6AYoj8Ll3dvuCW6XbX7xa5v4gf8iBrf/Xq1dJXN/ED/AJEDW/8Ar1aoqfAy6fxoxfhx/wAkhs/+veb/ANCasr4FRIvhK/kCgO16wZu5wq4rV+HH/JIbP/r3m/8AQmrN+Bf/ACJ15/1/P/6Ctav+JP0/Uz+xH1/Qr6qAP2iNIIHWzOf++Hr1ivJ9W/5OI0f/AK8z/wCgPXoWs+J9G8PSW0eq3y2z3LFYQyMd549AfUVEfhXz/Nly3fy/JGtRQCCAR0NFMkKKKKACiiigAooooAKKKKACiiigAooooAxPFXhex8W6JJpt8CATujkX70bdiK8kt/A3xK8GyPD4d1Fbi0LZVVcY+pRuAa92opJWd0O+lmeGz+Efih4vAtdd1FLWzJ+dS4AI/wB1OD+Nep+EfCdj4P0VNPsssSd0srfekb1Nb9FVeyshPXcKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5z4v8AhvqfiLxZHr1h4hOmzRRCOPZESyYzkhgw65NUf+Fb+Nv+ij33/fL/APxdeqUUkraDbucfa+GPENv4MudHfxM9xqE7N/p80bMyIewBbOffPervg/whZ+EtAXTYiJpHy1xMVwZWPUn29q6Oin38xHFeCPAk3gzUdUeLUlnsLx98dv5RUxHJxznng46dq7WiigOtzkLLwVJafEi+8Vm+VkuYPKFt5eCvCjO7P+z6d6NV8FSaj8QtL8UC+WNLKLyzbmLJf73O7PH3vTtXX0ULS3kD1v5mH4v0BvFHhe80dLgW7XAUCUpuC4YHpkelJp/h97HwVH4f+0hnSzNt54THO3G7Gf61u0UraNdx31T7HK+A/CM/g7RprCfUPtzSTmUSbCuAQBjkn0rqqKKpu5KVgooopDCiiigApkqebC8YYruUruXqM9xT6KGr6Acj4N+Hum+C7m8uLK5ubiW6ADtOVOACTxgD1rrqKKLgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYt/4U0jUtfs9burdnv7MbYZBIwCjk9AcHqa2qKKOlg8zCuvCGi3niWDxDPbO2pQACOTzWwMAj7ucdzW7RRR5B5hVXUtPttW064sLxC9vOhSRQxGQfcVaooauC0M7S9DsNH0VNIsojHZIrIqFyxwc55PPc1F4f8N6X4XsXs9JgaGB5DIytIz/ADH3J9q1qKOtw8jHm8L6TP4lg8QyW7HUoE8tJfMbAXBH3c47mo9f8I6N4nltJdVtmme0YtCVlZNpOPQ89BW5RQAgAAAHQUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z
|
<image>Find $x$.
|
7
|
Geometry
|
Geometry3K
|
test
|
82
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAG9AYsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpd6jbWU1tDNJ++uZPLhiHLOe+B6Ack9hTSb2E2lqy3RRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWXr2n6jqVgbbTtW/s1mzvmWHzHx6A7ht+vX6U4pN2bsKTaV0rmT4s8eaV4WieJ5Bcahj5LWM8g9ix/hH6+1cz8NVv/EmtX/izVpDI6/6PbD+FM8ttHYAYH4nvXl2raRJBNfXNrcPqFhBcCF77ZtV5CCfU56HnPp6ivf/AAJp39l+CdKgIw7QiZ+Ocv8ANz9M4/CvRrU4UKPu6tnl0as8RX9/RR1t/W50VFFFeaeqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFY+oeIbXSdYtbLUP3EV4pEFwx+QuOqN6HkEHvz6c7FNxaSb6kqSbaXQKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFABXC+ONau7y7h8I6I2dRvh/pEg6QQnqT6ZH6fUVc8WePbDw9HJbQFbrUcYESn5Yz6uf6dfp1pvgHQTZ6c+t3rGbVNU/fSyv1CHlVHp2J/LsK2pNQ9+Xy9S8Tg6/sFNq0ZO3nby/zL48G6Yvg5vDaqRasmGkA+YvnO8++Rn9OldAqqiKigBVGAB2FLRWcpyluzKMIx2QUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBznjjQB4j8K3Voq5uIx51v/vr2/EZH415f4O+KV1osUen6ukl3ZL8qSg5liHpz94e3Uevavc68AufAN7qPjLxBp1iFQWYaeMHowYhkTPYkH9K9DCOEoSp1dtzzcbGpCcalLd6HuOlaxp+t2a3em3cdxCepQ8qfQjqD7Gr1ee/DWz8PTWZu7Gxez1e3/c3kRnkyG6cqWxg4PUcEH0r0KuStBQm4r8TtoTc4KUrfIKKKKyNQooooAKKKKACiiigCG7u7ewtXubuZIYYxlnc4ArybxX8TZ73fZ6GXt7fo1yeJH/3f7o/X6V6L4l8NWfifTxbXTSRuhLRSIfuN646H/PSvAdT086dqV3aLMlwtrL5TzRAlM+mfXg/ka1pxT1Pocko4OpL967z6J7fLv8A1p1DS7J9V1i1sgSXuJlQn6nk/wBa+lo41ijWNFCogCqB2Arxb4V6b9r8UtdsuUs4S4P+03yj9C35V7XSqPWwcRV+avGkvsr8X/wLBRRRWZ88FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUMdrBFdTXKRKs0wUSOOrBc4z9MmpqKLhY8/wDGGlXfh7V18Z6HHueMbdRtl4E0fdvr6/QHsc9npOqWmtaZBqFlJvgmXcPUHuD6EHirjKGUqwBUjBB6GvGdYudQ+HXi2aLSX22E+J0t35jKngjHbBBAI5wBWzl7SKT3X5G+Ay94irKNOVm1e3n1PZ6K5Xw1480rxEFhLfZL4/8ALCRvvH/ZPf6dfauqrJprcmtQqUJ8lRWYUUUUjIKKyJ/FOhW2tpos2qW6ak5ULbFvnJYZA/GtegAqOeeK2geeeVIokGWd2wFHuazfEOv23hzS2vrqOWRc7VWNSct2BPQfU14h4k8X6n4mn/0mTyrVTmO2jPyr7n1Puf0q4wcj1MvyqrjHzbR7/wCR13i34nNOsljoJZIyCr3ZGGP+4O316+mOtdZ4O8O2lt4Jt7S6tY5PtiedcK653FuRn6DA/CvFNF086rrdlYDP7+ZUOOy55P5Zr6VVVRQqgBQMADsKqfuqyO7OKVLB06dCirPdvrptr95ieHfC1j4ZN4LEuUuZA+HOSgA4XPccn863KKKybueDVqzqyc5u7YUUUUGYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn3xY0n7TodvqSLl7STa5/wBhuP5gfnXoNU9W0+PVdJu7CTG2eJkyexI4P4HBpxdnc6sFiPq+IhV7P8Ov4HzOCQQQcEV6R4F8ba5LfQ6VNby6nEeA2f3kS+pY8ED3/OuW0Twdq+u3lxb28IjFuzJLLLkIrD+HPc59K9J+GV1Ypp1xpJs1s9YtHK3kZ+9JzgNnuO3oPxFdEleLa1sfTZ3mOEhFUJpSm9vL5/p1O8rG8VeIrXwr4cvNXusFYU/dx5wZHPCqPqfyGT2rZrwD4kazqXjbxmmjaJps2q6dosga4hhztmkzhskdAOVH/AsVzHx5zF1YanpGo+FvG+rys13q2om8dWGNqK8ZX8wWOPTFfU1fNfxN1nxVruhWf9s+E20m1tJvkmAbGSMbeenT9K+hdDvf7S8P6bfE5NzaxTZ/3lB/rQBault2tZRdCM2+w+YJQNu3HOc8Yrwl/DM/iObVNU8N2DLpUMu2BGY7pcD5igP549wOTXdeL9QufE2tx+DNHlKqcPqVwvSOP+79emfcgetdvp2n22ladBYWcYjt4ECIo/mfc9Sa6LKnC73f4L/gmmCzGvQr81F+6t+zfb5Hkfwr0ppvFE91LGy/YoiMMMFXb5QD+G6vZqijtoIp5Z44USWbHmOqgF8dM+tS1jKV3c6swxjxlb2traJW/rzCiiipOEKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGpGkYIRFUEliFGMknJP51xPjbQbu3uovFmgrjVLIZmjUcXEQ6gjuQPxI9wK7iirp1HCV0Z1aaqRszmP7YuvFngia68MTW8V/PGY0Nw5At5DgNkqCcgEkcc8djVf4deCh4J8Om1meObULhzLdzRkkM3YAkA4A9e5J71i6rBL8PPEv9uWUbNoF+4W+gQcQOTw4HYc/zHcV6LBPFdW8dxBIskMih0dTkMDyCKurBL3o7P+rEUajleM/iW/8Amc58QfDNx4u8G3mkWjwx3UjRvE8xIQFXBOSAT0yOlYk2pX3gL4f6TokjRXWvtGLS2SAllJzgMMgEgAr268V22q6pa6NpdxqF7JsggXcx7n0A9yeBXGeC9Lutd1WTxprUeJpxtsIG6QxdiPqOn1J706UVb2k9l+L7CrTbapw3f4Lv/kbfgzwwvhrSSJ283Uro+beTk5LOe2e4GT9Tk966SoBe2rXrWS3MJu1TzGgEg3hem4r1x71PWU5ucnJm0IKEVGOyCiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIby0gv7Oa0uollgmUo6N0INef+H7ufwL4iHhbU5WfS7pi+mXT/AMJJ+4T9T+fs3Ho1edfEaddeurLwhp8Ec+ozSLM8jdLVB/ET2JH6duRXRh/ebpvZ/h5nLifdSqL4lt5+RFOzfEjxX9ljJPhrSpMysDxdS+gPcf0yf4hXca2mrro0qeHxZLqA2iEXYbygMjOdvPTOPfFcn8ONRSxgn8J3tulpqmnsxKjpOpOd49TyPwwfp31GIupci2W3+fzHhUnHne73/wAvkeN+AIdcg+NOvp4iuYLjUv7OBkeDPlgFoioXIHAGO1eyV5lov/JwniP/ALBcX/tGvTa5zpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiobu7gsbOa7upVighQu7t0AFCVwbtqzH8W+JYfC+ivdsBJcyHy7aHvJIen4Dqf8A64qh4H8NTaRaTanqhMutagfMuZG6oDyEH9cd+OwrH8M2k/jTxG3i3UomXT7diml2z+x/1hHrn9f90V6LXRU/dx9mt+v+Ry017WXtXt0/z/yOP8b+GrjUEg1vRiYtb0/54WXrKo6ofXvj6kd60/CniW38UaMl5GBHcIdlxAesb9x9D1H+Oa3a878T2Fz4O1//AIS7SIi9nKQuqWqdGBP3wPX39fYmiD9rH2b36f5f5BUTpS9rHZ7/AOf+ZvWXhH7H8QtS8V/bt/221W3+zeVjZjZzu3c/c6YHWumqtYX9tqdhBe2colt5kDo47j/H2qzWDVtGdKaaugooopDCiiigAooooAKKKKACiiigAooooAKKKKACiisvXvEGn+HNNe+1CbYg4RBy8jf3VHc04xcnZClJRV3samQMc9aK4jwLqGoeKbi78R348qDJt7G3B+WNerN7knAz7HtxXb1VSHJLle5FKp7SPMtgoooqDQKKKKACiiigAooooAKKKKACuWt/Fsdn4nm8PayVguCwazuDwlwjfdHs3UehI49K6mvOPjBoa3nh6LV0XE1i4VyO8bED9Gx+ZrahGM58kuphiJThDnh0/I9Horwzwp8Vr/SVjtNYV76zXCiQH97GPr/F+PPvXsej63puvWYutNu454v4tp+ZD6MOoP1p1sNUpP3lp3FQxVOsvdevY0KKKKwOgKKKKACiiigAooooAKKKKACvONeuJvHniceGbGRl0iycPqU6H77A8Rg/Xj65P8Na3jnxHc2MUGh6ODJrWo/JEFPMSHgufTvg+xPatfwt4ctvC+iRWEGHk+/PLjmRz1P07D2FdEP3UfaPd7f5/wCRy1P30/ZLZb/5f5mtb28VrbR28EaxwxKERFGAoHAAqSiiuc6gpksUc8TxSorxupVkYZDA8EEU+igDzWylk+G/ib+zbl2PhvUXLW0rHItpD/CT6f0wexr0qs7XNFtPEGkT6depmKUcMOqN2Ye4rlPBetXem6hJ4P11/wDTrUf6HMelxF2x6kD9AR1Brpl+9jzr4lv5+f8AmcsP3M+R/C9vLy/yO8ooormOoKKKKACiiigAooooAKKKKACiiigAooooA5rxXrusaXb+XouiXF/csP8AWhcxx/UA5Y+3618+avqep6xqTzancSz3W7YQ38PP3QBwB7Cvc/HWv3UZg8NaKS2sal8uVP8AqYz1YntxnnsAT6VRuPhnZwf8I2LJFZrG5DXkhGDMv3ix/FQAPRvavSwtSFGKclqzysXSnWm1B3SOy0HTE0bQbHTkUKLeFUbHdsfMfxOT+NaNFFec227s9SMVFJIKKKKQwooooAKKKKACiiigAooooAKoa1py6vod9p7Y/wBIgaME9iRwfwODV+imm07oTSaszwvSfBF/a+ELfxPbQiTUYJ2mNpKm5ZIRwQVPfhj7g8c4r1vwxq2na5okN/psccUbjDxIADG46qcen8sHvWwAFAAAAHQCvONTt5vh74o/tmyjZtA1Fwt7Ag4gc9GA7e34jjIrrlV+sXUt+n+X+RyU6DoSioK6dk/Xv/mekUVBZ3trqNql1ZzpPA4yrocg/wCfSp64ztaadmFFFFAgooooAKKKKACsrxFr1r4b0WfUrs/KgwiZwZHPRR/npk1pySJFE8kjqkaAszMcAAdSa8406N/iL4q/ta4Rv+Ee0x9tpEwwLiQdWI9Oh/Ieta0oKXvS2W/+RhWqONow+J7f5/I0/A2g3Zln8Ua2N2ragNyqw/1ER6KB2yMfQYHrXbUUVNSbnLmZdKmqceVBRRRUGgUUUUAFcv408LHxBYR3Fk/kavZHzbSdTg7hztJ9Dj8D+NdRRVQm4S5kROEZxcZbHNeDPFI8SaYy3KeRqlofKvICMFWHGcehwfociulrgfGWkXei6mnjPQ0zcQDF/bjpPF3J9wBz9Ae3PX6Nq9prulQajZPuhmXOD1U91PuDWtWCt7SGz/B9jKjN39nPdfiu/wDmX6KKKwOgKKKKACiiigAooooAKKKKACsXxL4lsvDWmvcXDq05B8mAH5pG/oPU9v0rmvFfxLtdM32ej7Lq7HDTdY4z/wCzH9P5V5ha/bPE/iW2ju55J57qZUd2OSATz9ABnitIw6s9zBZLOrH2uI92G/m/8j1rwHoM8aTeJdWbzdW1P95uP/LKI8qo9MjH0AA7V2lIiqiKigBVGAB2FLSnNzd2eEoQjdQVkFFFFQMKKKKACiiigAooooAKKKKACiiigAooooAKr39lBqVhPZXKB4ZkKOPY/wBasUUDTs7o+d7XVNX8Ha3cw2tw0ckMpjljPKSYOOR3+vWvVfDPxF0zXNlvdlbK+PG12+Rz/st/Q/rXFfFXSfsfiOO/RcR3seSf9teD+m2uDAJIAGSe1b8qkrn3EsHh8zw8a0laTW67/rqfUlFcZ8PrHxFaaXnWLhvs7KPIt5RmRB6k9h/sn9K7MkAZJwBWLVmfGYiiqNV01JSt1QUV5QnxI8Xa6L7UvC3hm3utEs5GTzp5cSTbRklRkducYP58V3fhHxNbeLvDdtrFtG0QlyrxMcmNwcEZ7/X0IpGJuUUVzHjbxO3h/TUhs183Vr1vKtIVGTuPG7HtkfUke9VCDnJRRE5qEXKWxi+L9QufE+tx+DNHlKqcPqVwvSOP+59emfcgetdvp2n22ladBY2cYjt4ECIo/mfc9SaxfBnhhfDWkETN5upXJ828nJyWc9s9wMn6nJ710laVZrSENl+L7mVGDu6k/if4LsFFFFYnQFFFFABRRRQAUUUUABAIIIyD2rzWdX+Gvib7VEGPhnU5MSoBkWsp7gen9OOwr0qqupada6tp09hexCS3mXa6n+Y9COoNa0qnK7PZ7mNam5q8dJLYsI6SxrJGwZGAZWU5BB7inV574U1G68Ka4fB2syl4mO7TLpukiHon19B65HpXoVKpT5Hbp0HSqKpG+z6oKKKKzNQooooAKKKKACuT8d6RrmraT5ekXexQD5tsPlMw/wB7+nQ11lcL4x+IdppEU1jpki3GokFS68pCfUnuw9Pz9KqKd9DswEK8q8XQjzNfd8zxiWKSCZ4ZkaORGKsjDBUjqCK7j4U6b9q8TSXrLlLOEkH/AG2+Ufpuro9M+G2n3/hG3N20iapcD7S91klgz84IPUYxn3yc81t+BPDE/hnTbqK7MbXE05JZDkFAML/U/jWs5qzSPocXnEKuDnDae1vzafVWOrooorA+SCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5X4gaDLrvhspaxGS7gkWSJR1bsR+Rz+Fcc/w51PQ9Fi1myuPN1qzkFx9nVQyFR1Udyf59B2Net0VpCo4NHU8bW+qvCxlaL7b/wDDGP4Z8Q2vibRYdQtvlJ+WWLOTG46qf6eoxWrLGs0LxPna6lTj0Ned65bTeAfEn/CS6fGzaNeuE1G3Qf6tieHA+p/Mkfxcd8L+2fTf7QikElsYvOV05DLjOR+FVVglaUdn/VjzqNRu8J/Ev6ucRrGpaH8JvBy6dpyvJcSlxZWhbfJLIx6nvtBI/l1q78LfDd34X8DWtlfrsu5Xa4ljznyy3RfrgDPvmvK/B3jnwsNbuvFPi65uLjXZZSLdPILx2sfYJ2z1+n1JJ9u8M+KNL8W6Y+o6TJI9ukphJkQodwAJ4PswrE3Luq6pa6LpdxqF7JsggXcx7n0A9yeBXGeC9Lutc1WTxprUeJpxtsID0hi7EfUdPqT3qpOzfEjxX9mjJPhrSpMysDxdS+gPcf0yf4hXpKqqKFUBVAwABgAV0y/dQ5ftPfyXY5Y/vp832Vt5vv8ALoLRRRXMdQUUUUAFFFFABRRRQAUUUUAFFFFAGB4u8MQ+J9HNuWEV5CfMtZxwY3+voe/59hVDwR4nm1aCbStWXydcsPkuI24MgHG8fpnH16EV11cT438P3fnw+KNCG3WLEZZFH/HxGOqkdzjP1HHpW9OSmvZy+Xk/8mc1WLhL2sPmu6/zR21FZHhvxBaeJtFh1G1ON3yyxk5Mbjqp/wA8jFa9Yyi4uzN4yUkpLYKKxvFerT6F4V1LU7WAz3EEJaKMKTlzwOB1GSCa8s1CDxx4e8GQ+OJvF1xPchYrifTpov3O2QgbMZxkbhnAHfHQUij2yquo6lZ6TZvd31wkEC9WY9T6Adz7Ck0q9/tPSLK/2bPtMEc2w/w7lBx+tUfEXhnT/EtkIL1SHTJimQ/NGT/Me1NW6mtFU3USqtqPWx5f4r+JF5q++z0vfaWJ4L5xJKPc/wAI9h+fauV0HTjq2vWNhgkTTKrY7LnLH8s1De2Jt7i6Fu5urSCYw/ao0PlsfY9K7T4T6b9p8Q3F+y5S0hwp9HfgfoGroa5EfbxqYbD4CVXCtcttGur2/M9kACgAAADgAUtFFcx8GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZPiTxHp/hXQ59V1KQrDFwqr96Rj0VR3J/xPavM7XXfin43X7foMNnoWlv/qGuVDNIvrllYn6hQKAPXbq2gvbWW2uY1lglUo6N0YHqK890G5m8B+JP+EZ1GRm0i8Yvpty5+4SeUJ+p/Mg/xcYui+O/F/hzxrZ+GvHEUEy3zKkF3EqryxwpBUAFc8HgEdfr6R4n8O2vifRZdPuflY/NDLjJjcdCP6+1bUppXjLZ/wBXMK1Nu04fEvx8jZrhfHGtXd5dw+ENDbOo3o/0mQdIIT1z6ZH6fUVlWfxCuNA0O90vW4mbX9PIgiQgn7Tn7rZ/Ik9xg9TXReB/DU2kWk2p6oTLrWoHzLmRuSgPIQf1x347CtFT9jec/l5+foZOr7e0Idd/Ly9Tc0LRbTw/o8Gm2a4iiHLHq7d2PuTWjRRXM227s64xUVZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeb63bTeAPEh8R6fEzaLeuE1G2QcRsTw4H1P5kjuMeh21zDeWsVzbyLLDKodHU8MD0NFzbQ3lrLbXMaywyqUdGHDA9RXnmiXM3gDxIPDeoSs2jXrl9OuXP8Aq2J5Qn6n8yD3OOn+NH+8vxX+aOX+BP8Auv8AB/5M9FlljhjMksixoOrMcAfjXknxZ0bxTPb3WqHUIb3wvbvFO+lA+WzIAu7LqMsM5bk8duld/wCNfDzeKfB+o6NHIsctxGPLdugdWDLn2yoB9q87um+JWseFB4Ql8LwWzvEttNqT3SlDGMAnaCeSBzjPU8CuY6j1LQNQttW8Padf2cXlW1xbpJHH/cBA+X8On4VzHjnW7ue4g8J6I2dUvxiZwf8AURHqSe2Rn8PqKu31/Z/DzwLaQlvOe1gS2t0PBmkC4/oSaj8DeG7jToJ9Z1cmTW9RPmTsw5jU8hB6dsj6DtXRSSgvay+Xm/8AgHNWk5y9lH5+S/zZsaR4b07SPD8ejRwJLbBcSCRQfNY9Wb3P6celGg+HLDw5HdR2CuqXEvmEMc7eAAoPoOevrWvRWLk2231OuE5QpulF2i+nTQKKKKkkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8Y8fofF/xh8P+E5ObG2Xz50J4fILsP8AvhAB9TXsscaRRrHGioiAKqqMAAdABXh/jm7m8D/Gyw8V3UEsum3MQVmT/c8tgPccNjvXcX/xf8F2enNdx6sLp9uUghjbe59MEDH44oA6bU/Dmkaxe2d5qFhFcXNm2+3kfOYzkHIx7gVeu7uCws5ru6lWKCFC7u3QAV5j8N7HXfEPiO+8ca559vBcArYWTOdqoeN2PQKMA45yT6Vd164l8eeJx4ZsZGXSLFw+pTofvsDxGD9ePrk/w1pSp8712W5lWqckdNW9jCn0zXfGs9z41slEDWjqdMt2QFpUjYnn3z9cnI6Yr0nwr4ktvFGix3sICTL8k8OeY3HUfTuPate3t4rW3jt4I1jhiUIiKMBQOABXn3iOzuPBPiH/AISzS4mfTrhgmp2qe5/1gH1/X/eNb86r+5a1tv8AL+upzKDw/wC8ve/xf5/10PRaKgs7y31Czhu7WVZYJkDo69CDU9cjVjuTvqgooooAKKKKACiiigAooooAKKKKACiiigAooooAKyPEnh+08TaLNp90MbvmikAyY3HRh/nkZrXopxk4u6JlFSTi9jifBHiG78+bwvrp26xYDCux/wCPiMdGB7nGPqOfWuyuLiK0tpbieRY4YlLu7HAUDkk1yvjfwxNqsEOraS3k63YfPbyLwZAOSh/XGfcdCa5WXXr74lvY6BbQy2duqiXV3xjaVONg+pGRnuR/dNdXs41f3i0XXy/4focntZUV7OWr6ef/AA3U0tAt5vHXic+J76Nl0myYx6bA4++wPMhH15+uB/DWx8SvE9x4S8F3GpWRQXhkjig8xdy7i3OR/uhq6i0tILG0htLaNYoIUCIi9ABXj3x9u5rmLw/oNsjzTXNw0ohQZZmGEQAepLsBWFWpzvTZbHRRp8kddW9yxZXvxkv9Ot76BNIMVxEsyBgobawBGR2ODV/wH4+8Q3/jC88KeKrCCDUIIjIHhGOmDgjJBBDAgj+tVZPiR4ztLHZB8Nb6JYk2oS0jhQBxwEBx+NVPg2bbxFr+t+K7+987X5D5clv5e0QRnoVz1GFCj0Ax3rM1PZaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK19p9lqlo1rf2kF1bt96KeMOp/A1i2XgHwnp119ptfD9gk2chjEG2n2znH4V0dZXiLXrTw3os+pXZ+VBhI84Mjnoo/wA9MmnGLk7IUpKKu9jD8c+I7mxig0PRwZNa1E7Igp5iQ8Fz6d8HtgntWv4W8OW3hjRIrCDDyffnlxzI56n6dh7CsPwNoN0ZJ/FGtjdq2ofMqsP9REeigdsjH0GB6121bVZKK9lH5+b/AOAc9GLnL2svl5L/ADYVHPBFc28kE8ayRSKUdGGQwPBBqSisDpPN9Jnl+Hvib+wr2Rm0HUHLWM7niFz1Qnt1/ke5r0isrxFoFp4k0abTrsYD8xyAZMbjow/zyMiud8Ea/dx3E3hXXTt1axGI3Y/8fEQ6EHuQMfUc9jXRP97HnW63/wA/8zlh+5n7N/C9v8v8jt6KKK5zqCiiigAooooAKKKKACiiigAooooAKKKKACiiqGtava6DpNxqN4+2GFc4HVj2Ue5PFNJt2Qm1FXZheOPE0ujWUWn6YDLrOoHyrWNeSueC/wCHbPf2Brk5vDWo/DqKy8Q6fLJeGNNurxZyJATksPYZxn2B9a3PBGj3WpX03jHW0/028H+iRHpBD2x6ZH6c/wARrunRJY2jkVXRgVZWGQQeoNdTqKj+7Wvfz8vkcapOv+8lp/L5efz/ACK+m6ja6tp0F/ZSiS3mXcjD+R9COhFeJeMNf0uP4/6fNrF0INP0iJAz7GfD7GkXhQTnc6/lXWwM/wANfE32WVmPhnU5MxOxyLWX0J9P6c9jXZ3XhXw5f3L3V3oOlXM8py80tnG7P7kkZNY1afK7rZ7G9Go5q0tJLc5W/wDjT4JtLR5bfUZLyUD5YYbeQFj6ZZQB+dZnwe0HUUn1vxXqlqbSXWJi8MBG0hCzMTjsCSMewz3Fd7beFfDtlMs1roGlwSqch4rONWB+oFa9ZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkkSGJ5JHVI0BZmY4AA6kmvONOjf4ieKv7WuEb/hHtMfbaRMMC4kHViPTofyHrVjxfqFz4n1uPwZo8pVTh9TuF6Rx/3Pr0z7kD1rt9O0+20rToLGzjEdvAgRFH8z7nqTXSv3ML/af4L/AIJyv9/Pl+yt/N/8AtUUUVzHUFFFFABXJeN/DE2rW8Oq6U3la3p5328i8FwOSh/pn6dCa62irhNwlzIipTVSLjIwPCPiaHxRo63IURXcR8u6g6GN/p6Ht+XY1v1554psLnwjrw8YaREXtnO3VLVejqT98D19/Xnua7rT7+21TT4L6zlEtvOgdGHcf49sVdWC+OGz/DyM6NR605/EvxXcs0UUVibhRRRQAUUUUAFFFFABRRRQAUUUUABIAJJwB1JrzXn4keLO58NaTJ/wG6l/qP6f71XvG+r3Wp30Pg3RH/028H+mSjpBD3z6ZH6cfxCut0bSLXQtJt9Os02wwrjJ6se7H3J5rpj+6hzfae3ku/8Akcsv30+T7K3832/zL4AAAAwBRRRXMdRQ1nSLTXdJn069TdDMuMjqp7MPcGuQ8G6vd6Lqb+DNcfNzAM2Fwek8XYD3AHH0I7c99XNeM/C48R6Yj2z+TqlofNs5wcFWHOM+hwPocGt6U1b2c9n+D7nPWg7+0huvxXb/ACOlorl/Bfik+IdPkgvE8nV7JvKu4GGDuHG4D0OPwP4V1FZTg4S5Wa05xnFSjsFFFFSWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBQ1rV7fQtIn1K6z5EO3dt68sB/WsXxn4q/sLSYksMT6nfkR2UafNkn+P3AyPqSK5/4y6j9n8N2lgrYa6uNxHqqDJ/UrXA+DvEl1B4it7iTSptavo4FtrNBLt8lQMcDae3fjGT6130MLzU1Veu+nc87EYtxqOktNtex7H4M8ML4a0grM3m6jcnzbycnJZz2z3AyfqcnvXSVXsZbmazikvLZbadhl4Vl8zZ7bsDNWK45ycpNy3O6nGMYJR2CiiioLCiiigAooooAbJGk0TxSorxupVlYZDA9QRXm9jJJ8OPE/wDZtw7Hw3qTlraVjkW0h/hJ9P6YPY16VWbr2iWniHR59NvVzHIPlYdUbsw9x/8AWrWlUUfdls9/8zGtTcrSh8S2/wAjSorhPBOt3djey+ENdbGoWg/0WU9LiIdMHuQP09wa7upqU3CVmVSqKpHmQUUUVBoFFFFABRRRQAUUUUAFYHi/xNF4Y0VrnaJLuU+Xaw9TJIenHoOp/LuK2bu7gsLOa7upVighQu7t0AFcD4YtJ/GfiJvF2pxMtjATHpdu/YA/fI9c/r/uitqUE7znsvx8jCtUatCHxP8ADzNjwP4Zl0ayl1DUmMus6gfNupG5K55Cfh3x39gK6yiis5zc5OTNKcFTioxCiiipLCiiigDg/Gmi3em6hH4x0JP9OtR/pkA6XEXfPqQP0APUCur0PWrTxBpEGo2T5ilHKnqjd1PuK0a81vYpPhv4m/tG3Rj4a1FwtzEoyLaQ/wAQHp/TI7CumP72PI/iW3n5f5HLP9zPnXwvfy8/8z0qimRSxzRJLE6vG6hlZTkMD0INPrmOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimyKXjZAzIWBG5eo9xQB49r2l3/xH8ezwWjGPStOP2drkjKgg/Nj1YnP4AV6X4f8MaV4ZtPI062CsR+8mbmST6n+nT2q/p+n2ul2UdnZQrDBGMKq/wAye5PcnrVmuirXckoR0ijmo4dQbnLWT/rQKKKK5zpCiiigAooooAKKKKACiiigDlfG3hd9csor3T28nWbE+baSqcEkc7Cfft6H2Jqx4O8UJ4m0kvIvk6hbnyruAjBRx3x1wcH9R2roq8+8X6ZdeG9ZXxnosZbb8upWy9JY+7fX1+gPrXRTaqR9m9+n+XzOWqnSl7WO3X/P5fkeg0VU0vU7XWNNg1CykElvMu5T3HqD6EHg1brBpp2Z0ppq6CiiikMKKKKACiiuP8c+JLjToINF0gGTW9RPlwqp5jU8Fz6d8H6ntVwg5y5URUqKnFyZka/PL478TjwxYyMukWTCTUp0P32B4jB+vH1yf4a9Dt7eK1t47eCNY4YlCIijAUDgAVkeFfDdv4X0OKxhIeU/PPLjmRz1P07D2FbdXVmnaEdl/VzOjTavOfxP8PIKKKKxNwooooAKKKKACq1/YW2p2E9leRCW3mUo6HuP8ferNFNOzuhNJqzPO/DF/c+Dtf8A+EQ1eUvZyktpd0/RgT9wn19vXjoRXolYXizwzb+KNGe0kIjuEO+3nHWN+x+h7/8A6qzPBHiW41BJ9E1kGLXNP+SZW6yqOA49e2fqD3reaVWPtFv1/wAzmpt0peyls9v8v8jsKKKK5zqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGVXRkdQysMEEZBFLRQB5rEz/DXxR5Dlv8AhGdUkyjHkWsvp9P6f7pr0oEEAg5B6EVQ1nSLTXdJn069TdDMuMjqp7MPcHmuQ8Gavd6NqcngzXHzc24zYznpPF2A+g6fQjtXTL99Hm+0t/Nd/wDM5Y/uJ8j+F7eT7f5HfVXv7620zT7i+u5RFbW8bSSOeygZNWK818dahb+IvFVj4Ja8igsU23mryPIEzGCCkWSerHBPtg+tcx1DPhd441fxjrfiE6h+7tITE9pbmMKYkcuRk4y3AXk/hXpteV/Dy4sx8UPG8cE0GySSEQKjDDABvu46gD0r1NmVEZ3YKqjJJOABQBm6/rlp4d0afUrxvkjHyoDzIx6KPc//AF65rwNod3NPP4s1tc6pfjMSEf6iI9AB2yMfhj1NZ1qrfEfxZ9ulUnw3pUm2BGHFzL6kdx/TA7mvSa6Jfuo8nV7/AOX+Zyw/fT538K28/P8AyCiiiuc6gooooAKKKKACiiigAooooAK4vxv4cup3g8R6HlNa0/5gFH+vQdVI7nGfqCR6Y7SsPxJpGqapZ40nWZtOuFBxtAKP/vcZH1B/A1rRlyzTvYyrw5oNWucnqnxPtR4e0i/tGCTXF2i3MPVo0QgyD8cgA+jV6OCCAQcg9CK+YPEWhazomoyLrFu6yysW87qsp7kN0P8AP1r3zwFq6614N0+ffulijEE3qHTjn6jB/GurFYeEKalDY48HiZzqShU3OkooorgPRCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmfGnhf8A4SLTUltH8nVbNvNs5wcEMOdufQ4H0ODXTUVUJuElJEThGcXGWxzPgvxR/wAJHpjx3SeTqto3lXkBGCGHG7HocH6HIpmsfDnwnr+qS6lqmkLcXk23fIZ5FzgBRwrAdAKyvGek3ei6onjPQ0zcQDF/bjpPF3J+g6/QHtXYaPq1prmlQajZPuhmXIz1U91PuDxWtWCt7SGz/B9jKjN3dOe6/Fd/8zzPwD4FtNJ+JXiK7Oi3Ftb2UiDS5pBIEAZXV9hJw/BxznGa2/Gmp3Wu6rF4L0aQrLON2oTr0hi7g/XjP1A71ueM/E6+GtI3Qr5uo3J8qzgAyXc98dwMj9B3qLwT4Ybw/pjz3rebq163nXczHJ3Hnbn2yfqSfanTSpx9rL5evf5Cqt1Jexj8/Tt8zc0vTLXRtMt9Pso9kEC7VHc+pPuTyauUUVg227s6EklZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQBV1HTbPVrGWyvrdJ7eQYZGH6j0PuK4vwz4dvPA/iOa0jd7jQ9Q/1ch6wSjoH+oyM9zt6V31FaRqyjFx6MynSjKSn1QUUUVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIQGBBAIPBBrzScv8ADLxK06q7eGNSf5kUZ+zS+w9P5j/dFemV5rrLyfETxQdBtJXTQtObdezxn/WydlU/mPzPOBXTh92pfD1/rv2OXFbJx+K+n9du5Y8JWFz4p12Txlq0RWIZj0y3bpGg/j+vX8cn0r0KvP8Awhqd14c1hvBmtSbig3adct0lj7L9euPoR2FegVOIvz+XT0Hhbcnn19QooorA6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorJ8SeILXw1ok2o3RztG2KPODI56KP89AacYuTsiZSUU5PYwfHXiC6gEHhzRSX1nUvkXaf9TGerk9u/PbBPat3w14ftfDOiQ6dbYYqN0smMGRz1Y/56AVheBfD91EZ/EmtAtrGpfOQw/1MZ6KB24xx2AA7GqV58aPB1jfXFpLcXRkgkaJyluSMqcHB7jitqslFezj0382YUYuT9rPd7eS/wCCb3jHwuniXSQsT+TqNsfNtJwcFHHbPocD9D2qHwT4ofXbGW0v18nWLE+VdwsMEkcbwPfv6H8KoaT8XPBusXiWkWpmCaQ7UFzE0YY/7x4H4mmeNdFu9PvovGGhL/p9oP8ASoR0uIh1yO5A/T3Ap02px9lL5f15hVi6cvax+a7r/NHd0VnaFrVp4g0iDUrJsxSjlT1Ru6n3FaNYNNOzOiMlJXWwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANlkSGJ5ZXVI0UszMcBQOpJrznS45PiF4rOtXKN/YGmuUsomGBPIOrkenQ/kPWpvF9/c+KNcj8GaRIVTh9TuF6Rxj+D69PxIHrXc6fYW2l6fBY2cQjt4ECIo9P8e+a6F+6hf7T/Bf8E5X+/nb7Mfxf/AI9Y1BdK0S/wBRfG21t5Jjn/ZUn+leW/A3QbWfwle6pf2sNxNd3jbWmjDfKoHPP+0WrovjHqf9m/DTUVDYkumS2T/gTAt/46rVq/DnTP7J+Hmh2pGGNsszD0Mnzn/0Kuc6jkfjL4Q0T/hBrrWILC2tb2zeNllhjCFwzqhVsdfvZ56Y+tdj8Pry41D4f6Hc3bF5ntVDMxyWxwCT6kAGuE+MOtNrc2n+BNFYT6jeXCtcKjZCKM4VvTn5j6Bc969T0fTYtG0Wy0yD/VWkCQqfXaAM/j1oA4K8jf4b+J/7QgRv+Ea1JwtxEoyLaQ/xAen9MjsK9IjkSaJJY3V43AZWU5BB6EGoNR0+21XT57G8iEtvOpV1Pp/j3zXC+FdQufCeunwdrEpeBzu0u6bo6n+A+/t65HcV0v8AfRv9pfiv+Acq/cT5fsv8H/kz0OiiiuY6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArajeJp2m3V7J9y3heVvooJ/pXEXfxDB8EWF7Zqsus6gPIht0GSJvuscegPQd8irnxT1Maf4HuYg2JLt1gX1xnLfopH414z4Rh12TXYX8PweZeR5w7Rqyxg8EksML9a9DDYeM6bqS6M83F4qUKvs49V+Z7t4M8MDw1pBE7ebqV0fNvJyclnPbPcDJ+pye9dJWbolvqtvYKNYvYrq7PLGKIIi+w9frx9K0q4qknKTbdzupRUYJJWOP8AiF4Gk8eaZaWA1X7BHBMZm/0fzd52kD+JcYyfzrmB8JvE3lCBviXq5gA2+WEkAx6f66vV6Kg0OP8ABvw40Xwa73Nv5t3qMoIkvLggvz1Cj+EH8/UmuwoooAKwPF3hiHxPo5t9wivIT5lrOODG/wBfQ9/z7Ct+mSs6xO0SB5ACVUtgE+me1VCTjJSjuTOMZxcZbHK+CPE82r202l6qvla3p58u5jbguBxvH9cd/YitvRdbtddt7ie0OUguZLdjnOSp6j2Iwfxrxvxx4kv4PE8N8mjXGiatCpRpjMGEyYx2XB9Mgn9BjU+C2qbbzUtKduJEW4jHuDtb+a/lXdVwv7t1Vp5fmefRxb9oqL13V/y+Z7FRRRXnnpBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmXibRL3x/4yWyjZodG0v93NcY+9KcFlT1PQe2D7A9/pWkWGiWCWenWyQQr2UcsfUnufc1bjijhTZGiouScKMck5J/On1rOs5RUFsjGnRUJOb1bCiiisjYKKKKACiiigAooooAo6ro+n63Ztaalax3EJ7OOVPqD1B9xXkuq+Er74eeIbbxDpXm3WlwyZlHV40PDK3qCCcN+fv7RSMqupVgGUjBBGQRW9GvKnpun0Oeth41ddmtmMt54rq2iuIHDxSoHRx0ZSMg1JVeysoNPtUtbVPLgTOxAeFBOcD254HbpVisXa+hur21CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>In the figure, $m \angle 1=4 p+15$, $m \angle 3=3 p-10$ and $m \angle 4=6 r+5 $. Find the value of $p$.
|
25
|
Geometry
|
Geometry3K
|
test
|
83
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADKAScDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa7pFG0jsFRQWZicAAd6dXG/ErVZbPw2NNtMtfarILSJFPJB+9+hC/wDAqunBzkorqRUmoQcn0Mex+KzHzLrUdEuo9KeZkgvoUJXGcAMDxnHXB/Cu40nX9K12HzdMvobgAZKqcMv1U8j8RS6LpEGj6DaaUiq0cEQRuOHP8Rx7kk/jXP6t8NtDv5vtViJNKvlOUnsm2AH129PywfetpOjJtJW/Ewiq8Em2pfgdjRXmQ1jxp4W1b+y5lj8RxJD5/wC6UrOseduTx1z2+Y+9dHovxC0DWHEDXBsbvOGt7weWwPoD0P0zn2qJUJJXjqvI19sk1Ga5W++n3dzqqKOtFYmoUUUUAFFFFABRXM+NfGMfguxtL64sZLi0muBBLJG4Hk5GQxGORwf8mm3PjWAeNLTwxp1o9/cyR+dcyxuAlrHwQWPOSQenuvrQB1FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFed2rr4p+LM85YNZaDH5ca5+9MSQTj2O7n/YWut8Ua0vh/w3e6kSN8UeIge7nhR+ZH4VzHhTwJYnwrZzX8cqapPm5a6ikKSoX5A3D0GODnnNdFP3IOb66L9TJqFStGnN2W76+n4/kd9SO6xozuwVVGST0ArmfI8UaN/wAe88Wt2o/5ZzkRTgezj5W/Gs7WfEy6zZLoFtb3lnql/IIHhuISrRxn7756EbQeh71jynowwcpyXI049Wui7tbq3oafhFGvhf8AiCVSH1KbMIPVYE+VB7Z5P41e1rwxo3iCPbqVhFM+MCUDbIv0Yc/h0rTt7eO1toreFQsUSBEUdgBgCpKFJp3Whz4mUa022tOi8un4Hn3/AAh/iXw2d/hbXGntl5Fhf/MuPQHoPw2/Wpbb4jnT51tPFWkXOkzngTBS8Le4I5/Ld9a7yorm1t7yBoLqCOeFuGjkQMp+oNa+2Uv4iv57M4/YOH8KVvLdEdjqFnqdsLixuobmE/xxOGH6d6s1w998NbOO4N74ev7nRbz/AKYOTGfYrnOPxx7VW/4SHxj4Y+XX9JXVbJet7YfeA9WXH9FHvR7KMv4b+T0f+Qe2lD+LG3mtV/meg0Vg6H4y0LxCFWxv088/8sJfkk/I9fwzW9WUoyi7SVjaM4zV4u5wHxd1CyTwdJoskLXWoaq6wWVtH99pNwIb6A4/MDvWZ8DILEeFLudUf+1vtTRX7ynL5X7o9QAD+e6uxHg7T28ZHxRcTXVzfLF5UEczqYrdf9hQoIPXqT940uieD9P8P67q2q2M10H1R/MngZlMQfJOVAXIOSe561JR0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVFc3EVnazXM7hIYUMjseygZJoDY4Pxf/xUnjTRvCyfNbQn7bfAdNo6Kfw4/wCBivQa4P4c28uoNqniu7QifVJyIgf4YlOAB+PH/ARXeVvX0aprp+fU58P7ydR/a/LoFNKKzKxUFl+6SOR9KdRWB0BRRRQAUUUUAFFFFAHOa54G0DXy0lzZLFcnn7Rb/u5M+pI4J+oNYP8AZHjfwvzpOox65Yr/AMu15xKB6Bif6/hXoNFbRrSSs9V5mEsPBvmWj7o4rTviVpklyLLWre40W+HWO6U7PwbHT3IArsoZoriFZYZElicZV0YMCPYiq2o6Vp+r25g1CzhuYuwkQHHuD2PuK42b4eXWkytc+EdauNOcnJtpmMkLH8c/qGp2pT291/ev8yb1ob+8vuf+R31Fefr441zw8wi8W6FIsQOPt1kN8Z9yM8fmD7V1ukeIdJ12HzNMv4bjjJRTh1+qnkflUzozirvbv0NIV4Tdk9ez3NOiiisjUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivOdY8eeIbvxZe+H/B2iW9/Lp6g3dxcybUVj/CORz268kHjAzQB6NRXJeBfGb+K4L+3vbA2Gq6bN5N3bbtwU84IP/AW/KutoAK4f4lX0zaXZ+H7I/wCmavOsIHogI3H6ZIH0zXcV59oP/FT/ABJ1LXG+ay0pfsdoexfncw/8e/76Fb0FZub6a/5HPiG3FU1vLT5dfwO406xh0zTbaxtxiG3jWNfoBjP1qzRRWLd3dm6SSsgooopDCiiigAooooAKKKKACiiigAooooARlDKVYAgjBB71yWr/AA50LUZvtVokmmXoOVnsm2YPrt6flg+9ddRVwqSg7xdiJ04TVpK559v8e+FfvpF4jsF7r8twB/Mn/vqtXRviJoOqyfZ5Z20+8B2tb3g8sg+men659q6ysrWfDWj6/Ht1KwinbGBJjDr9GHNae0hP4181/lsY+yqQ/hy+T/z3/M1QQRkHINFefHwZ4i8OEyeFNcd7cc/YL/5k+gPQfkPrUtv8RZNNnW08WaPc6VMTgTopeFvcEf03Uewctabv+f3D+sKOlRcv5fed5RVWw1Ky1S2FxYXcNzEf44nDAex9D7VarFprRm6aaugooopDCiiigAooooAKKKKACiiigArlLiDw58PYtb8RzyPB9vlE1xufcZJPmIVB6nceP6CurrwLWPFfh7UfinqUvjG4nfTtHlMFhYrEXjZ1JDswHXlc4PXIHQYoA7P4U6fqFxPr3i3ULY2v9uzrLbwE8rENxBP13ceuM9DXpVcx4V8eaD4wmuINHmld7dAzh4imATgYz9K6egDnvG2uf8I/4UvLxG23DL5UHr5jcAj6cn8KXwTof/CP+FLOzdds7L5s/r5jckH6cD8K57Xf+Kn+JOm6IPmstKX7ZdDsX42qf/Hf++jXoNbz9ymo9Xq/0OeHv1ZT6LRfqFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHcW8F3A0FzDHNE4w0cihlP1BqSigNziL/wCGtgLk3ugXlzot72a3clD9Vz09gce1Vf7e8aeGPl1zSl1eyXreWP3wPUrj+g+teg0Vuq7ek1def+ZzvDxTvTfK/Lb7tjn9D8a6D4h2rZXyLOf+Xeb5JM+mD1/DNdBXPa54I0DxBue7sVS4P/LxB8kmfUkdfxBrn/7F8a+F/m0bU01mxX/l1veJAPQMT/UfSjkpz+B2fZ/5i9pVh8auu6/yPQaK4TSPino93MbTVY5NLu1O1ll+aPP+8On4gD3ruUdZEV0YMjDKspyCPUVnOnOm7SVjWnVhUV4O46iiioNAooooAKKKKACiiigAqrqN/Dpem3N9cHENvG0jfQDOPrVquD+I1xLqLaX4UtHIn1OcGYj+GJTkk/jz/wABNaUoc80jKtPkg5Lf9SX4a2EzaVd6/ej/AEzV52nJPZATtH0ySfoRXb1FbW8Vpaw20CBIYUEaKOygYAqWlUnzzch0oezgohRRRUGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFISFBJIAHJJoAWiuY1b4geGtHJSXUUnmH/LK1/eNn0yOAfqRWP/wlXi7XuNA8Nm0gbpdaidvHqF4/TdW0aE2rtWXnoYSxFNOyd35anfkgDJOBXNav4+8N6NuWfUo5ph/yytv3jZ9OOB+JFYo8AarrJD+KfEt1dKeTa2n7uL+WD/3yDXS6R4S0HQ9psNMgjkHSVhvf/vpsmny0o7u/p/m/8hc1afwq3r/kv8zmv+Eu8V67x4e8NNbwN0u9RO0Y9QvH6FqP+EC1nWvm8UeJbmdD1tbP93H/ACwf++fxrv6KPb8vwJL8/vD6upfxG3+C+5GHpHg/QND2tY6ZAsq9JXG9/wDvpskfhW5RRWUpOTvJ3NoxjFWirBRRRUlBRRRQAUUUUAFFFFABXn3g/wD4qTxnrPil/mtoT9isSem0dWH4YP8AwM1r/ELWW0fwncCAn7XeEWsAXqWbqR9Bn8cVp+F9FXw/4bstNAG+KPMpHdzyx/Mn8K3j7lJy6vT/ADOeXv1lHpHX59DXooorA6AooooAKKKKACiiigAooooAKKKKACiikZlRSzMFUDJJOAKAForldW+InhrSWMZvhdz9BFaDzCT6ZHy/rWV/wknjTX+NE8PLp1u3S51FsHHqF4/k1bKhNq70XnoYSxFNOyd35anfMwVSzEAAZJPauY1b4h+GtIJR9QW5mHHlWg80k+mR8oP1NZK/Dy+1dhJ4p8R3l93NvAfLiB+nT8gK6fSfC+iaGB/Z2mwQuP8Alpt3P/30cn9afLSju7+n+f8AwBc1aey5fXV/cv8AM5f/AISfxjr3GheHRYwN0utROOPULx+m6lHw+1LWCH8U+JLu8B5Ntbfu4gf5H/vkV31FHt2vgSX5/eH1dS/iNy/L7kY+k+FdC0MA6fpkEUg/5aldz/8AfRya2KKKxlJyd27m0YxirRVgooopFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ+uarFomh3mpTY228RcA/xN0UficD8aaTbshNqKuzjrn/AIqn4qQWw+aw0GPzX9DOcYH4HH/fBr0GuO+G2lS2Xhs6jd5N9qkhu5mPUhvu/pz/AMCNdjWtdrm5VstP8/xMcOny873lr/l+AUUUVibhRRRQAUUUUAFFFNkkSKNpJHVEUZLMcAD60AOorktU+JHhvTH8pLw31xnAis18wk/X7v61m/29451/jSNCi0q3bpcag3zfULj/ANlNbKhNq70XnoYSxFNOy1flqd67rGhd2CqoyWY4AFctqvxG8NaWxjF79snzgRWa+YSfTP3f1rMT4cz6o4m8UeIL3UmznyI28uIH6f4Ba6rSvDmjaIoGm6db27AY3quXP1Y8n86dqUd3f00/r7hc1aeyUfXV/d/wTlP+Eh8b6/xo2gR6Zbt0udQb5vqF/wDrNSr8OrrVWEvijxDeagc5+zwny4gfp/gBXfUUe3a+BJfn94fV1L+I3L8vuMrSfDWi6Go/s7TbeBhx5gXL/wDfRyf1rVoorFycnds3jFRVoqwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcB49dtc1zRfCMDHbcyi5uyp+7Euf8GP1ArvXdYo2kdgqKCzMTwAO9cF4BRtc1vWfF06nF1Kbe0DD7sS4/wAFH1Brej7t6nb8+hz4j3rUu/5Lf/I71EWONURQqKAFUDgCnUUVgdAUUUyWaKCJpZpEjjUZZ3YAD6k0APorkNT+JXhywk8m3uJNRuScLFZJvyf97ofwJrP/ALY8e+IONM0eDRbZuk98d0g/4CR/7KfrWyoTtd6Lz0MHiad7R1flqd5JLHDG0krqiKMszHAA9zXKap8SfDenP5MV09/cZwIrNfMyf977v5GqEfw1/tCRZ/E2uX2qyA58reY4h7Af4YrrNL0HSdFTbp2n29txgsifMfq3U/iadqMd3zfghXrz2Sj66s5H+2/Hev8AGlaLDo9u3S4v2y/1Ckf+ymnR/Dd9SkWbxPr17qbg58lW8uIH0x/hiu9oo9u18CS/ruH1eL/iNy9dvuM3S/D2kaIgXTdOt7c4xvVPnP1Y8n8TWlRRWLbbuzeMVFWSMDxvqcuj+CNZv7eQxzw2r+U46q5GFI+hIritG8I+NtV0Ow1GT4iXkD3VvHOYvsSts3KG253jOM+ldr410CfxR4Rv9GtrhLeW5CASOCQAHVj09QMfjXmPivwHc+BPCw8T6T4i1RtWsDEZ2lmzHKCwUgLjgZI4JIxkUhntighQCckDk+tLVPSb7+09Gsb/AG7PtVvHNt9Nyg4/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBx3xJ1WWz8NjTrTLX2qyC0hUdSG+9+nH/Aq6LRNLi0TRLPTYcbLeIISP4j3P4nJ/GvLtb8WWb/FMTTW9zeQ6UjQ2sFuu4vP3OPYk88/dFdD/aXxA8Qf8eOm22hWzdJbs7pfyI/mv412yoyVOMdlu7nBCvF1ZS1b2Vv67ndzTxW0TSzypFGvLO7BQPqTXJ6l8S/D1lL5FrNLqVyThYrNN+T/AL3Q/hmqcPwzhvJVuPEmsX2rzDnY0hSMewGSfyIrrdN0XTNHi8vTrC3thjBMaAE/U9T+NY2ox3bl+CN7157JR/F/5HH/ANq+P/EHGnaVb6JbN0mvDuk/75I/mv40+L4aJfSrP4l1q+1aUHPllykY9gMk/kRXeUUe3kvgVvT/AD3D6tF61G5ev+Wxn6ZoelaNHs06wt7YYwTGgDH6t1P41oUUVi227s3SUVZBRRRSGFFFFABRRRQBzPj7w7deKPB95ptjP5N4dskLFioLKc4JHqMj8a4HVLf4ieNNDt/Ct94fi0yDdGt9qD3CsHVCDlVB9QDxnn0FeyUUAQ2lrFY2UFpACIoI1iQE9FUYH6CpqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCnY6Vp+mKwsrOCDecu0aAFj6k9T+NXKKKbberEkkrIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=
|
<image>Find x.
|
\sqrt { 21 }
|
Geometry
|
Geometry3K
|
test
|
84
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHGAdUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCQoJJAA5JNAC0VDFd28zbYriKRuuEcE1NQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeafGPxW2j+H10azc/b9S+TC9Vj6H8+n516Ld3UNjaTXVw4jhhQu7HsAMmvDvBttN8SPidd+Jr1CdPsXBhRumR9xfw6n3pW5ny9OvoO/Kub7vUyPh5ZXfhL4tWmmXzYlmg2OPTcgfH5jFfR1eF/En/iT/GPQNUHyrJ5JY/Rtp/SvcwcgH1qk+aCfqiWrSt6C0UUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFUtX1S20XSLrUrttsFvGXb39APcnik3ZXY0rux5f8a/FEkdpb+FtOLPd3pDTLHy23Pyr9Sf5e9c94V1rx74R0RNMsPBRaMMXaSS3k3Ox7nBFT/DHTrnxr48v/ABhqa7ooJCYgenmHoB7Kv9K93ppOK13YNpuy2R8w/ETW/FOtNYXuvaAdM+zkrFIInUMTzj5ifSvo/RL1dR0OyvEORNCr/mK4f43WX2n4ftMBk29wkn4HK/1FXvhDf/bvhzp+TloS8R/Bjj9MU4WcZLsxT3izuaKKKQBRRRQAUUUUAFFFFABRRRQAUVX+32v2/wCw/aI/tWzzPKz8231x6VYoG4tboKKKKBBRRRQAUUUUAFFFFABRRRQAUUVFczpa2s1xIcJEhdj7AZpN2VwSvoY11418M2V1JbXOuWUU8TFXRpQCpHUGiDxt4XuZBHF4g04segNwoz+ZrxD4eeELH4g69rl9rAmaFX3Dy32kuxJ6/Su7vvgT4Znt2WzuL62mx8r+YHGfcEc/mKeqSbHpdpHqKOsiB0YMrDIIOQRS14N4E1nV/Anj5vB2rztLZyv5ceSSFYjKsuegPp717zT0smtmLVOzCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAIwRke9LRQAgUKMAAfSloooAQgEYIBHvQAFGAAB7UtV57+ztpNk93BE+M7ZJAp/U00m9hNpbliiqX9saZ/0EbT/v+v8AjR/bGmf9BG0/7/r/AI0+SXYXPHuXaKpf2xpn/QRtP+/6/wCNH9saZ/0EbT/v+v8AjRyS7Bzx7l2iqX9saZ/0EbT/AL/r/jR/bGmf9BG0/wC/6/40ckuwc8e5doql/bGmf9BG0/7/AK/40f2xpn/QRtP+/wCv+NHJLsHPHuXaKpf2xpn/AEEbT/v+v+NH9saZ/wBBG0/7/r/jRyS7Bzx7nMD/AJK83/YN/wDZhXaVwX9oWX/C1vP+2W/k/wBnbfM81dudw4zmuw/tjTP+gjaf9/1/xrSpGWmnQ78fOP7rX7CLtFUv7Y0z/oI2n/f9f8aP7Y0z/oI2n/f9f8az5Jdjg549y7RVL+2NM/6CNp/3/X/Gj+2NM/6CNp/3/X/Gjkl2Dnj3LtFUv7Y0z/oI2n/f9f8AGj+2NM/6CNp/3/X/ABo5Jdg549y7RVL+2NM/6CNp/wB/1/xo/tjTP+gjaf8Af9f8aOSXYOePcu0VS/tjTP8AoI2n/f8AX/GrEFzBdJvt5o5UzjdGwYZ/Ck4tboaknsyWuU+JOpf2V8P9WnDYd4vJX6sdv8ia6uvJPj3qXkeHNP05W+a5uC5Hso/xas57W7mkPiuXvgbpv2TwQ94y4a8uGfPsPlH8jXptYXgvTf7J8G6TZYw0dsm4f7RGT+prXurqCytZbq5lWKCJS7uxwFArWo7N+RlDVep4T8TyP+FyaL5H+uBt92PXf/hive1+6M+lfP8A4VWX4g/GOfXdjfYbSTzQSOAF4jH17/hX0DUxVqav5v7ypazfyQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4L4yN1rni7WJ7aNpYrPh9v8Krhc/nzXuV/dLY6fc3b/dhiaQ/gM1578KbLz7bVtTnUObmXy/mGcgcn8936V34OfsYzrdrL7zzsdD20oUL73f3IzfDHgXw74l0lLuHUL9JR8s0W9Mo3/fPT0ra/wCFRaN/z/6h/wB9J/8AE1katZ3Xw58TpqtgjPpF022SIdB6r9e4P/169QsL+31OxhvLSQSQSruVhWmIr1o2nCT5Xt/kZ4bD0J3p1ILmW/8AmcN/wqLRv+f/AFD/AL6T/wCJo/4VFo3/AD/6h/30n/xNehUVzfXcR/MdX1HD/wAiPPf+FRaN/wA/+of99J/8TR/wqLRv+f8A1D/vpP8A4mvQqKPruI/mD6jh/wCRHnv/AAqLRv8An/1D/vpP/iaP+FRaN/z/AOof99J/8TXoVFH13EfzB9Rw/wDIjz3/AIVFo3/P/qH/AH0n/wATR/wqLRv+f/UP++k/+Jr0Kij67iP5g+o4f+RHjx+H+nDxyND+13f2c2nn79y785Ax0xj8K3/+FRaN/wA/+of99J/8TV5v+Sur/wBg0/8AoQrtKqWLrRtaR6GYYOhL2V47Qj+p57/wqLRv+f8A1D/vpP8A4mj/AIVFo3/P/qH/AH0n/wATXoVFT9dxH8x5/wBRw/8AIjz3/hUWjf8AP/qH/fSf/E0f8Ki0b/n/ANQ/76T/AOJr0Kij67iP5g+o4f8AkR57/wAKi0b/AJ/9Q/76T/4mj/hUWjf8/wDqH/fSf/E16FRR9dxH8wfUcP8AyI89/wCFRaN/z/6h/wB9J/8AE1FdfCzw/ZW0lxc6rexQxjLO7oAB/wB812eu+INP8PWJub6ULn7kY5Zz6AV5xHBr3xMvhNOWstEjb5QOh+n95vfoP0rpo1cRNc852iuv+Ry16WGg+SELyfT/ADOWTQI9c1w2PhlLqaBeGnuSMD/aOAMD9a7r4R3DJbapp0h+eGYPg+4wf/Qa7vSNGsdDsVtLCBY416nux9Se5rz7wv8A8Sr4raxYn5UnDso/EMP0Jq54n6xTnBbJXXfQzhhfq1WnN7t2fbVHqFeE/GS01vVPGNkLLRb+8tbOFTmK2d0ZidxGQPoK92oryLap9j2k9GjxZPid4/RFRfAs4AGB/oc9Vbuw+JPxKKW2o2y6NpWRvVlMYPuVJLMfrxXudFPTqLbYwfCfhPT/AAhoyafYKSfvSzN96RvU1vUUU277iSsFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJ/Ee/wDsPgy6AOHuGWFfxOT+gNWPAVh/Z/g3T0Iw8iec3/Ajn+RFct8UpWvtS0XRIj800m5gP9ohR/WvSYIlgt44UGFRQoHoBXZU9zDRj/M2/wBDhp+/ipy/lSX6kGpadbatp81ldxh4ZVww9Pce4rzLQ9Quvh74lfRNTctpdw2YpT0XPRh7diK9YrC8V+GrfxNpDWz4W4TLQS/3W/wPepw9ZRvTqfC/w8y8TRlK1Sn8S/HyNxWDKGUggjIIpa858BeJbi0un8L61mO6gJSBnPUD+H/D2r0asq1F0p8rNaFaNaHMv+GYUUUVkbBRRRQAUUUUAYbaAx8Yrrv2gbRa+R5OznrnOc/0rcooptt7mlSrKpbmeysvQKKKKRmFFFISFUsxAAGST2oAWuT8W+ObLw4ht4dtzqLD5YQeE92/w61i+JfHs91d/wBi+F0a4u3OxrhBnHrt/wDiun86veEvAEOlONS1Zhd6mx3Zb5ljPtnqfeu2FCNKPtK/yXV/5I4Z4idWXs8P830X+bMjQvBmo+JL4a34qkcq3zR2zcEjtkfwj2r0yKGOCJIoUWONBhVUYAFPorCtXlVeu3RdEb0MPCitN3u+rCvL/Ef/ABKvi5pV70W5CAn1zmP/AAr1CvNfizC0H9kanGPnhlKk/kw/ka2wOtXl7poxx6tR5/5Wn+J6VRUVrMtxawzIcq6BgfqKlrjeh2p3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqK4nS2tZbiQ4SJC7fQDJo3Bux5mv/E9+MzH70NgDx6bRj/0I16jXmfwrge7vNZ1mUZeWXYG9+Wb+Yr0yuzG6VFBfZSRxYDWm6j+02wooorjO04jx/wCEm1W3XVtOBTU7Ubhs4Mijn8x2q34G8Wr4i07yLghdRtxiVem8f3h/X3rrK8w8aaFdeG9XTxVog2APm5jUcAnqcf3T3967aMlWh7Ge/R/ocFeLoT9vDb7S/U9PorK8Pa7a+ItJivrY4zxImeUbuDWrXJKLi3F7nbGSlFSjswoorK13xBp/h6yNxey4J4jiXl5D6AUkm3ZGtOnOpJQgrtmrRXncXizxBYajb6prdl9m0S8PlrGB80Hozd+f89K9CR1kRXRgysMgg8EVUoOO5vicJUw9uazT6p3XmvVDqKKKg5QoorF8ReJ9P8NWfnXcm6Vh+7gU/M5/oPeqhCU3yxV2TOcYR5pOyNG+v7XTLOS7vJ0hgQZZmP8AnJrzDUNd1r4g3zaZokb22lqcSzNxuHqx/wDZRTbPStc+I18t/qrvaaQpzHGvG4f7I/8AZjXp+naZZ6TZJaWMCwwoOFXv7n1NdvuYX+9P8F/wTg/eYv8Auw/F/wCSMzw14U0/wzabLZN9ww/ezsPmb/Ae1b1FFcU5ynLmk7s74QjCPLFWQUUUVJQVx/xNs/tXgud8ZNvIkv67f/Zq7Cs3xDafbvDuo22Ml7d8D3AyP1ArWhPkqxl5mOIhz0pR7plLwTefbfB2mS5yVhEZPuvy/wBK364L4T3fm+GZ7Zj81vcMAPYgH+ZNd7VYmHJWkvMnCz56EZeQUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzPj+/wD7P8GXzA4eZRCvvuPP6Zrpq82+LFy866To8JzJPLvK+/3V/ma6MJDnrRX9aHNjJ8lCTX9X0N74dWH2HwZZkjDz5mb33Hj9MV1dQWVslnYwW0YwkUaoo9gMVPWdWfPNy7s1ow9nTjDsgooorM0CmSxRzwvDKivG6lWVhkEHtT6KAPJLiK6+GfioXEIeTRLxsFeuB6f7w7eor1W1uob21iubeRZIZVDIy9CDVbWNItdc0uawu03RyDg91PYj3FeSQX3iDwpeyeEzeR20c8oEV1IDiNT/ABKe2f0PpXoW+tQv9tb+a7+pxUY/V6ypt2pye72i/wDI9D8Q+L49NnGmaZCb/V5OEgTkJ7se30/lUGheEZBejWfEEwvdVblQeY4fZRWn4d8MWPh63PkAy3UnM1zJy8h+vYe1bdcbmoq0D3amJhSi6WG2e8ur/wAl5feVtQsLfU7Cayuow8Eq7WU/561x/hu/uPDWr/8ACLarIWiPOn3LdHX+4ff/APV6V3NYvifw9D4i0swMfLuYzvt5h1jft+FEJL4ZbEYWvBJ0K3wS/B9Gv17o2qK5Xwp4le7t59O1crBqlgMThzgMo/j+nr/9eud8QeOL3W706H4UjeR3+V7lRg477fQe9XTw05y5V069Dhxz+pScKm/S3Xtb1Nnxb49t9EJsNPAu9Tb5Qi8rGffHU+1ZHh3wJdapef234qdpp3O5bZz+W7/4mtrwl4DtdAAvLwi61JuTI3IQ+i/412FbSrwpLkofN9X6djhhQnWl7TEfKPRevdjVVY0CqoVVGAAMACuDm+Mfg6Cd4XvLjejFTiAnkV2uozi10y7uCcCKF3/IE15Z8J9L0QeDX1DWIbAvdXcjJJdBOQDjALfSuFXbfkehokjrtB+JXhvxJqqabptxM9y6lgGiKjA68111Z1jpOjwOt1YWNkjY+WWCNRx7EVo1TEFFFFIAoIBBBGQaKKAPMPhuTp3irXtJY/dbIH+6xB/mK9Pry9f+JT8amH3Y7xTz67lz/MV6hXZjdZqf8yTOLA6QlD+VtBRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5dff8AE9+MlvB96KxAz7bRu/8AQjXp8kixRtI5wqAsT6AV5n8M421LxDreuSDl32qfdiWP8hXZhfdhUqdlb7zixfvzp0u7v9x6dRRRXGdoUUUUAFFFFABXN+M/CsXibSiihVvYQWgkPr/dPsa6SirpzlTkpR3RFSnGpFwlszz/AOH/AIqlmLeHtXJTULbKxmTq4H8J9x/KvQK4D4geFZZ9viDSQU1C2w8gTq4H8Q9x+ora8GeKovE2lBnIS+hAWeP3/vD2NdNeEakfb09uq7P/ACOTD1JU5ewqb9H3X+aOlqlqmq2WjWL3l9OsUS+vVj6AdzWX4n8X6f4YtszN5t2wzHbqeT7n0FcTpnh3WfHt8ureIJHg08HMUA+XcPRR2Hv1P61NLD3j7So7R/P0LrYm0vZ0leX5epn3MV/8SvEZnsLQWdnGPLe4I6r/ALR/iPtXp/h/w3p/huyEFlF85/1krcu59z/StGzsrbT7WO1tIUhhjGFRBgCp6K2Jc1yQ0iun+ZdKg0/aVXzS7vp5LsgooorlOgztfs7jUfD2oWVoUFxcW7xRlyQoLDHJGa810D4J2v8AZKJ4lvZ7i6XKolvMRHEuc/LkDPrXoXivVbvQ/C9/qdlAk9xbR+YsbgkEZGc456Zqr4G8T/8ACW+F7fU38lbhsrNHFnCMD05JNJLVjbdkebeH4rv4b/FKHw2t7LcaRqKbo1kPQkHB+uQR717ZXjWvzx+Ivjxo1vYusq6fGDM6HIBG5jz+IFey007wTfn93QUlabS8gooooAKKKKAPMPiKP7O8Y6Bqo4G5VY/7r5P6NXpyncoPqM1wPxatPO8N29yBloLgD6Bgf8BXXaDd/b9AsLrOTLAjH64rsre9h6cu10cVH3cTUj3szRooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDN1zTLjVbAW9rqM9hKHDiaHrxng+3Nc39i8eaX/x76jY6pGvRbhNjH8v8a7airjNpWOqji5U48nKmvNJ/jv8Aieb6/wCMdctNCvLbVPD0tq80RiFxHJujBYY98d+9Q/DjxFoOlaALS6v0gu5JWkdZAQPQfNjHQCrPxavG/s3T9Mj5e4m37R3wMD9W/Susg8N6W2kWtndWNvOsMKxgyRgngY611ycY4dXVuZ9PIxjXwVfEvnpOLit4y7+Tv+ZpW15a3ib7W5hnT+9E4YfpU9chc/DfQ5H8yz+02EvZreYjH4HNdHpVi+nabDaSXU100YwZpmyzc9zXJJR+yzWtDDqPNSm35NWf5tFyiiioOYKKKKACiio554raB555FjiQZZ3OABQGxJXiHii8tvDPjOS78NXqrIynzkQZRGPUehHfHY1va34v1PxXfNonhaNxC3Etz0JHc5/hX9T+ldH4d8AaZo9jIl1Gt5dToVmlccYPUL6D9a9KilhVzVd39n/M8uu3i3y0dl9r/I57wN4Tt9ZVfEer3Q1CeRiVjJ3BWH97PU+3SvTgAAABgDtXksL3Xwz8VGGUvJol42QeuB6/7w7+or1iGaO4hSaF1eN1DKynIIPessbzOSne8Xt/kbYHlUHC1pLf/MfRRRXEdwUUUUAMliSeJ4pUDxupVlYZBB6ivMr34K6ebyWbSNZv9NjmOXhjbK/Qd8fXNeoUUrdR3OU8HeANI8GJK1n5s91NxJczEFiPQY6Curooqm7isFFFFIAooooA57xxZ/bfBupRgZZY/MHttIP8gao/DS8+1eC7ZSctAzxn88j9CK6m7txdWU9u33ZY2Q/iMV538Jbgxxatpz8NDMHwffj/ANlrsh72FkuzT/Q4qnu4uD7pr7tT0qiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJCgknAHJNAHmGv/8AE8+LmnWI+aOzClvTgbz+uBXqFeX/AA+B1fxpretsMqCVTP8AtNn9Aor1CuzGe640/wCVI4sD70ZVf5m/u2CiiiuM7QooooAKKK5jxX41sfDMJjyJ79h8kCnp7t6Crp05VJcsVdkVKkaceabsjW1nXLDQbFru/mCIPuqOWc+gHevNS2vfEy+wu6y0SNvwP/xTfoKsaN4S1TxdfLrXiiSRYDzFbfdLD0x/Cv6mvTre3htIEgt4liiQYVEGABXZzQw2kdZ9+i9Di5amL1n7sO3V+vkUtE0Kw0CxW1sIQi/xOeWc+pNaVFFcMpOTu9zujFRXLFWRl+INDtfEOky2N0Pvco+OUbsRXB+DNcuvDOsP4V1s7VD4t5GPAJ6DPoe1eoVynjjwkniPTfNtwF1G3GYW6bh/dP8AT3rqw9WNnSqfC/wfc5cTSldVqXxL8V2Ororh/AHi19UgbSNSJTU7Ubfn4Mijj8x3ruKwq0pUpuEjejVjVgpxCiiiszUKKKKACiiigAooooAKKKKACvL/AAz/AMSr4savYn5UnDso/EMP0Jr1CvL/ABJ/xKvi3pN70W5CAn65j/wrswnvc8O6f4HFjfd5KnaS/E9QooorjO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArG8WX/APZvhXUrnOGEJVT7t8o/U1s15/8AFm+MPh+1skPz3M+cDuFH+JFb4aHPVjHzMMVU9nRlLyLHwssPsvhP7Sw+e6maTPsPlH8v1ruKz9CsRpmg2NmBgwwqp9zjn9a0KmvP2lWUu7Hh6fs6UYdkFFFFZGwUE4GT0qC7vLewtZLm6mSGGMZZ3OAK8w1XxJrHjq+bSPDsbw2OcSznjcPVj2Ht1Nb0aEquuyW7OeviI0tN29l1NTxR4/cXP9j+G1N1fOdhmQbgp9F9T79BU3hTwAtnMNV11vtepOd4VzuWM+p9T71teF/B+n+Gbb90vnXbD95cMOT7D0FdFWtSvGEfZ0NF1fV/8Ayp4eU5e1r6voui/wCCFFFFcZ2hRRRQAUUUUAedePvDM9tcr4o0XMd3bkPOqDqB/F/j7V0/hPxNB4m0hbhMJcphZ4s/db1+hrdIDAggEHgg15RrunXXw/8AEia5paFtMnbEsQ6Lnqp/mDXdTaxEPZS+JbP9P8jz6qeGqe2j8L+Jfr/mesUVU0zUrbV9OhvrSQPDKuQfT2PvVuuJpp2Z3ppq6CiiikMKKKKACiiigAoorM1zUL3TbATWGnPfzM4TylfbgEHnPpx+tNK7sXCDnJRju/l+Zp15r8WYWhXSNTjHzQylSfyI/ka1ftfj+/4isNO05T3lfew/LI/SsDxl4d8RN4bnvtW1wXSwFX+zxwhVznGcj6+ldeFXJWi21/w5eLy+DoyVWtGPpeW2vRP8z0uK9t/sMNy8yJG6BgzsAOR71l3njPw7Y587VrYkdo28z/0HNcl4Q8FaLrXh6z1G8NzcySKQyvMQoIOMDGOOK7K08KaDY4MGlWqsP4jGGb8zzWM4QhJxd9DemsDyqXNKV+yS/Nv8i5pWqWus6fHfWTl4JCQrEY6HB4/CrlRQyQNmOB4zs4KoR8v4DpUtZPc5J25nyqyCiiikSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeX+Lv+J18T9I0ofMlvsZ1/8fP6AV6hXl/gz/id/EfWdXPzRw7gh9MnC/8AjqmuzCe7z1Oy/F6HFjfe5KX8z/BanqAGBiiiiuM7QrJ1/wAR6f4csjcXsuGP+riX7zn2H9axvFvju08PqbS2AutSbhYl5CH/AGv8KwdA8E3+v3o1vxW7uz/Mls3cdtw7D/ZrrpYdKPtKztH8X6HHVxLcvZUVeX4L1KMFnrvxKvhc3jNZaKjfIo6H/d9T7/8A6q9O0rSLLRbFLSxgWKJfTqx9Se5q3HGkMaxxoqIowqqMACnVFbEOp7qVorZF0MMqfvN3k92FFFFc50hRRRQAUUUUAFFFFABVe/sbfUrGazuoxJDKu1lNWKKabTuhNJqzPJdLu7r4ceKH0u+Zn0i6bMch6D0b+hFesI6yIrowZWGQQeCKx/E/h228S6Q9nMAso+aGXHKN/h61x/gXxFc6Vfv4V1smOaJttu7n/wAdz6en/wCqu2oliYe0j8S38/P/ADOCm3hanspfA9vLy/yPSqKKK4T0AooooAKKKKACorq5is7WW5nbbFEpd2wTgDr0qWkZVdSrAMrDBB6EUDVr67HGv8SNMlJTTrHUb9+3kwHH+P6VQ1fWPE+u6Rd2sPhcwW8sRDPcSjIHqBwc16AkccYARFUDoAMU4gEYPINaqpGLukdrxGGStCin/ibf5WR5B4Dg8R6po8tpp2sx2NrbylWXygz5POR7c+tdV/wr97vnVvEGp3nqvmbV/LmsX4cE6d4s17SGP3WJA/3WIP8AMV6fXRi5OFV8vXX7zmwWa13RXIowtp7sUtvx/EydD8N6b4eSVdPidDLjeWkZi2OnU1rUUVxttu7JqVJ1JOc3dvqwooopEBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGZ4hvv7N8O6heZwY4GKn/aIwP1IrlPhPY+T4cnvWHzXU5IPqq8fzzUnxVv/ALL4VS1U4a6mCkeqryf1xWzpDWnhfwZZfbpVgjhgUyFv7xGSAO5zmu1Jxw1lvJ/l/wAE4ZNSxd3tFfn/AMA6BmVFLMwVQMkk4AFeceI/HlzqF5/YnhVGnuHO1rhB09dv/wAVWde6xrfxFvm07SEe10lWxJK3GR6sf/ZRXfeHPC2n+GrPyrWPdMw/eTsPmc/0HtTVOGHXNV1l27ev+RLqVMS+WlpHq+/p/mYvhLwDBozDUNSIutTb5tzcrGfbPU+9drRRXLVqzqy5ps7KVGFKPLBBRRRWZoFFFFABRRRQAUUUUAFFFFABRRRQAVxnj3wl/blmL+xXbqdsMoV4MijnH19K7OitKVWVKanEzq0o1YOEtmcd4D8WjXrE2d423UrYYkB4Lgcbv8a7GvM/HHh+50XUk8V6ICkkbbrhFHH+9j0Peu08NeIbbxJpEd5AQH+7LHnlG7it8RSi17an8L/BnPhqslJ0KvxL8V3NiiiiuQ7AooooAKKKKACiiigDy/8A5BPxqP8ADHeL19dyZ/8AQhXqFeYfEYf2f4v0DVhwAyqx/wB18n9Gr05TuUN6jNdmK96FOfdW+44sJ7s6kOzv94tFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUyWRIYnlkO1EUsx9AOtAD6K4I/GPwWCQdQlyP8Apg3+FKnxi8FMwB1ORc9zA+P5UAd5RWdo+vaVr9sbjSr6G6iHBMZ5X6g8j8a0aAPIvinqcZ8TadauPMhtUEkiA9STkj8gPzqTT9E1v4hXqajrDvbaUh/dRLxuHoo/9mNbXi/4dPruoS6pZXxS7fGY5R8pwMDBHI6e9ZUHi/xR4SZbbxBppuLVflWZRjj2YcH8ea9mnNSoxjQtzJfPzseJUg415SxF+Rvpt5XPStP0+00uzS0soEhhQYCqKtVgaJ4y0TXgq2t2qTn/AJYzfK/4ev4Vv15NSM4ytNansU5QlG8Hp5BRRRUFhRRRQAUUUUAFFFFABRRRQAUyaaK3jMk0qRRjqzsFA/E0+s7XNDsfEWlyabqKM9tIQWVXKng5HI5oYI8+8e/Esafqmk6Z4e1KGS4luVF08YWRQhIG3JyMnJ6V6ipygJ7ivAviJ4J0Twlqvht9It5ImuLvEheVnzhkx1Pua98UZiA/2aF8F/N/oD+L5f5nlOo+N/FfibxTeaJ4JjtoobI7ZrycAgnOO4IAznHBNJp/jfxZ4Y8U2ei+NY7aWG9IWG7gAABJwOgAIz7A103gHwPL4NGpGa8S6kvJhJuWPbgenU+tch8Y5k1DxH4Y0e1Ie++0byq8lQxXGfyJ/CiOjit77jlrzeR7A6JLGyOodHGGUjIINeT6hbXXw28ULqFmrSaPdth4x2H936jqP/116wgKxqD1AAqrqumW2sabNY3ab4pVwfUHsR7iujD1vZyalrF7o5cRQ9rFOOklsySyvbfUbKK7tZBJDKoZWHcVYryjw9qV14C8RvoGrOTp0zZhmPRc9GHse/oa9WBBAIOQehpYij7KWmqezHh6/tY66SW6FooorA6AooooAKKKKAOB+LVp53hq3uQMtBcAfQMDn+QrrdAu/t/h+wus5MsCMfriqHjez+2+DdSiAyVi8we20g/yBrP+Gd39q8F2yE5aB3jP55H6EV2P3sKn2f5nEvdxjX8y/I7CiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5r4gal/ZXgPWLndhvs5jX6t8v8AWulryv476l9m8H2tirYa6uQSPVVGT+pFRP4bFw+IxvhF4E0XWvCkuo6xp0d1JLcMImfPCjA/nmu7m+FfgyeModEiXI6ozKR+INebeFvHHi3w74bs9Ms/BV1NDEvyy/Z5fnyc54HvUmufF3xrb2Lg+G20zcMfaJreT5fpu4zWk2r6ERTKngK2bw18a7vRLGZ3s90sTAnOVAyM+4IxX0FXk/wc8Oaf5E/iZtSXUNSuSVkIB/ck8kHPOT616xTaaSi90K6cm1sFMlijnjaOVFdGGCrDINPoqRnEa38MtH1EtNYFtPuOoMXKZ/3e34YrBE/jnwUcSp/aenp35fA+v3l/lXqtBGRg11wxc7ctT3l5/wCZxzwUG+am+V+X+Rx2h/EnRNW2xXDmxuDxtmPyk+zf44rsEdZEDowZSMgg5BrnNc8DaHrm55bYQXB/5bQfK2ffsfxrj28NeMPCDmXRL03toDkw98e6Hj8uar2VCr/Dlyvs/wDMn2uIo/xI8y7rf7j1SivPdI+KVq8v2XXLSSwuAcMwUlc+4PI/Wu7tL21v4BPaXEc8R6NGwIrnq0KlL40dFLEU6q9xk9FFFZGwUUUUAFFFFABRRRQB5H8av+Qj4T/6/D/6EletJ/q1+gryX41f8hHwn/1+H/0JK9Z3BIN56KuT+VKLtC/m/wBBy+Jen6s4zx74+i8LxJp9hH9r1y5+WC3QbtuejMP5DvWd4B8A3Nhev4l8SSm6124y2GORCD/X+XSvOvCfj3QNK8Vaxr3iC3u7nUJ5j5DRRq4jT2ywwe30Fd6vx38KMwUW2q5Jx/qE/wDi6ce/V/1YJduiPT6KbG4ljWRc4YAjNOoEc/4u8MQeJtJaA4W6jy0Evo3ofY1zfgHxPPHM3hnWcx3tuSkJfqwH8P1Hb2r0SuF8f+E31CJda0wFNStcMdnBkUf1FdlCpGcfY1Nns+zOLEU5Ql7elut13X+Z3VFct4I8WJ4k0zZMQuoQALMnTd/tD611Nc1SnKnJxlujqp1I1IKcdmFFFFQWFFFFAEN3At1Zz27fdljZD9CMV538JpzGmrac/DRTB8H34/8AZa9Kry/w1/xKvizq9kflS4Dso/EMP0Jrsw/vUakPJP7jixPu1qU/Nr7z1CiiiuM7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8K+Mcjaz4/wBB0GM5ACBgOxkfH8gK91rwbxZ4V8d3PxKufEOlaOziKUfZpGkiIIUYBwW/Hml9uNx/Zdj3aGNYYI4lGFRQoH0qtqy2baTd/wBoLGbTym83zOm3HNeQ/wBofGz/AKB8f/fNv/jUFz4T+KXjLFtr1/HZ2RPzpuUAj/dj4b8TRJOSsEbRGfAQzf2troi3fYtqfTdk4/SvdKwPCPhKw8HaKun2QLEndLM33pG9TW/VyeyJW7fcKKKKkYUUUUAFFFFAGXq/h3Stci2X9nHKcYD4wy/QjmuFu/h1q2izm88L6pIpHPku20n2z0P0Ir06it6WJqU9E9Oz2OerhaVV3a17rRnmVn8R9U0edbPxRpciMOPORdpPvjofwru9J8QaXrcW/T7yOU4yUzhh9QeatXlhaahA0F5bxzxHqsigiuE1b4XW/m/atBvJLG4ByqFiVz7HqP1ra+Hq7+4/vRjbE0dnzr7n/wAE9DorytPFPi/wi4i16xa9tBx5/fH++P6812OieN9D10KkN0IZz/yxn+Vs+3Y/hWdTC1ILmWq7rU0pYynN8r0fZ6HR0UUVzHUFFFcqNZvb/wAfHTbKULYWUObv5QdznoM9v/rGqjFs2o0JVea32Vd/1+B1DIj43KGx0yM06qV/qtlpjW63k4iNxIIogQTuY9uKu1NjNxkkpNaMj8iH/nlH/wB8ijyIf+eUf/fIqSigkKKKKACiiigDy7xhol14V1pPFOiLtiL/AOkRL0BPXI/un9DXfaDrdr4g0qK+tW+Vhh07o3cGr88EVzBJBMivFIpVlYZBBryhhdfDPxVuXfJol43PfA/+KH6iu+P+0w5H8a2812PPmvqtTnXwS38n3PW6Kit7iK7to7iCRZIpFDIyngg1LXA1Y9BO4UUUUAFeYeJv+JV8WtJvhwtwEBP1yn+Fen15r8WoWhj0nUox88MpXP5EfyNdeCf73l7po4serUef+Vp/ielUVDaTLcWcMyHKyIGB+oqauRqx2p31CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGuiSIUdQynggjINcdrfw10XVC0tqpsLg87ofuk+69PyxXZ0VpTqzpu8HYzq0adVWmrnlWzxz4KPyH+09PXty+B9PvL+HFdBonxM0bUysV5usLjoRLyhP+92/Gu1rn9b8F6JrwZrm0Ec5/wCW0Pyv/wDX/Gun29Kr/GjZ91/kcv1etS/gyuuz/wAy9q+sW+l6Fc6p5iPHHGWQqchz2Gfc4rH8B6XJZ6Gb66yb3UHNxKx689B+X86821nwzqmmay2g6ZdzajGEFy9uOAADxuGcE/410S/FKa2064tNQ0yS11FIyse0YXdjAyp5H603hnyP2Tuv09D2IVXCjTw0lapWd7eV7RV/N3fpY2Iv+Kn+Isk33rDRV2J6NMep/Dn8hXc1y3gC1tbbwvCYbiKeeY+dcMjBjvbsfp0/Cuprlq/Fy9isbVhOooU3eMVZfLd/N3YUUUVmcYUUUUAFFFFABWdrejWuvaVLYXa5Rx8rd0bsRWjRTjJxd1uKUVJOL2PLPCes3XhDXX8Ma02Ldn/0eU9AT0x/sn9DXqdcx418KR+JdLPlgLfwAtA/r/sn2NZPgDxXJdq2haqSmo22VUvwXA7H3FdtWKrw9tDdbr9ThoyeHn7Cez+F/od7RRRXCd4VyHxLs/tXgu4fGTA6Sj88f+zV19Z2v2n27w9qFtjJkt3AHvjj9cVrQnyVIy7Myrw56Uo90Z/ge8+2+DdMkzkrEIyfdfl/pXQ1wPwmuvN8N3Fqx+a3uCAPYgH+ea76qxMOStJeZGEnz0Iy8gooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqG7uorGzmup22xQoXY+wGamrF8U6Nca9orafb3ItxJIvmkrncgPI/z6U4pN6mtGMJVIxm7K+r8jG8BWst2t94ju1/0jUpSUz/DGDwB/npiqWv2cHi3x1baO0Ya0sIzLduvBJPRcj8P1rrry4tvDvh+SbaFt7OH5V+gwB+JwKxPAOnSw6RLql2Cb3U5DcSE9dp+6P6/jWym7uovkel7bmdTGNf3Y+V1b8I/jYwL74bX+lzm88ManJE45EUjkH6Bh/I0y1+IWtaDOtp4o0uT085F2k+/91vwxXp9Q3VnbXsDQ3UEc0TcFJFBBrVYvnVq0eb8/vPm3g+R81CXL5br7jP0fxLpOuxhrC8jkfHMZO1x+BrWrz/WPhdZTSG50a5ksLgHIXJKZ9u4rLXxB4z8HMI9YtDf2S8edndx/vj/2YU/q1OprRl8noxfWqlLSvHTutV/wD1SiuY0Tx7oethUW5FtcH/llP8pz7Hoa6frXLOnOm7TVjrp1IVFzQd0FFFFQWFFFFABXn3j/AMLzF18R6ODHfW2HlCdWA/iHuP5V6DQRkYPStaNWVKfMjGvRjWhySOd8H+KIfE2kiQ4S8iws8fofUexroq8p8S6VdeBvEMfiLSEP2GVsTwjoueqn2Pb0NekaRqtrrWmQ31o+6KQZx3U9wfetcRSirVKfwv8ADyMsNWk26VT4l+K7l6gjIwelFFcp1nmHw5P9m+Lte0k9mJA/3WI/qK9Pry8/8Sn41f3Y7xevruTP/oQr1CuzG6zU+6TOLA6QlD+VtBRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkjSaNo5EV0YYKsMgilVVRQqgBQMADtS0UBfoFFFFABSMqupVlBB6gilooA5DW/hzomrlpYYjZXJ58yDgE+69K5n7F448FHNpL/aenr/Bgvgf7vUfhXqtFdUMXOK5Ze8uzOSpg6cnzQ9190cNovxP0m/YQaij6fcZwd/KZ+vb8a7aGaK4iWWCVJI2GVdGBB/EVja14Q0XXlJu7RRMek0fyuPxHX8a4mbwV4m8Lytc+G9SeeHOTAxwT9Qflb9Kvkw9X4Hyvs9vvI9piaPxrmXdb/cepUV5xpvxPa2nFn4j06W0nHBkRSPxKnn8q7vT9VsNVgE1jdRTp6o3I+o6isKuHqUviWn4G9LE0qvwPXt1LlFFFYm5BeWkF/aS2tzGJIZVKup7ivK7Oe6+GvilrO5LyaNdtlX9B6/Ud69brJ8RaBbeItJksrgAMeY5Mco3Y104esoXhP4Xv/mcuJoOaU4aSW3+RpxSpNEksbB0cBlYHIINPrzHwTr9zoGqv4V1slCrbbeRjwD2GfQ9q9OqK9F0pW6dH3ReHrqtDmWj6rszzH4jj+z/FugasOAGCsf8AdcE/o1emqdyhvUZrgvizaed4ZguQMtBcD8AwOf1ArrPD939v8P6fdZyZYEY/XHNbVvew9OXa6MaPu4mpHvZmlRRRXGdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBR1LRtO1eAw39pFOvbcvI+h6iuD1D4Z3FjObzw1qUtvKORE7kfgGH9a9KoreliKlLSL07dDCrhqVXWS179Ty638d+IfDky2vibTHkTOBOowT+I+Vq7jRvFWj68g+xXiGQ9YX+Vx+B6/hWpcW0F3C0NxCksbDBV1BBrh9Z+F+m3Tm40qZ7C46gLymfp1H4Vtz4er8S5X5bfcYcmJo/A+ddnv8Aed7RXlQ1bxt4MOzUbc6jYr/y0yXwP97qPxrqtD+IWh6ztjaf7JcH/lnOcDPs3T+VRUwlSK5o+8u6Lp4ynJ8svdfZjPHXhIeINP8AtNqAupW4zGw4Lj+7/hUHgHxadYtTpmoErqdsNrBuDIo4z9R3rtAQQCCCD0Irzjx54buLC8TxTooMdxC26dUHX/ax/OroTVWPsKnyfZ9vmRXhKjP6xT+a7rv6o6nxtZ/bfB2pxYyVi8wf8BIb+QNZ3wzvPtXgy3QnLQO8Z/PI/Qir+ga7a+L/AA67LhZXjMU8X9wkYP4Vy3wmnaJdX05+GimD4+uQf/QaahJYecJbxaf6EucXiadSO0k1+p6VRRRXCegFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhAYYIBB7GuV1z4faHrO6QQfZLg8+bB8uT7joa6uirhUnTd4OxnUpQqK01c8qOkeNfBhLabcHUbFefLxu4/3TyPwrX0j4naZek2usW7WMx+V9w3Ifr3Fd9WNrPhXR9dQi9s0aTGBKo2uPxFdX1inU/jR17rRnL9WqUv4EtOz1R51qET+BvEEWu6M63Gi3bYdY23KM9VyPzFS+C7+3HxL1D7M4a2vkeSPHuQwH4AmjV/hrq+nwTDRL5rm1kHz20hwSP5H9K5Tw2t3oPjbTReQSwSCcIVkXHDfL+XNejFU6tKXLK7tbz8rnlydSjWjzRsr38vOzPoSiiivBPogooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXen2d+qrdW0cu1gy71BKkdCKs0U02tUJpNWYDgYooqOe4htYWmuJUiiQZZ5GCqB7k0hklFchc/FHwXazGKTXYSwODsjdh+YGK3NI8Q6Rr8Rl0rUILpR1EbfMPqDyKA2NOiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBk00dvBJNKwSONS7segAGSa8Bu7zWvjF4vk0+zne10K1bJI6BfUjux7V6t8StSOlfD/AFeZT80kPkr/AMD+U/oTWR8G9Gj0zwHb3O0Ca9YzO3cjov6CiKTbb6fmNtpK3Uks/g34NtrUQy2Elw+MNLJM24/kQB+FedeNvCU/wv1ey8Q+HbmZLRpNpjZs7D12k91Iz1r6Dqlqek6frNr9l1KzhuoNwby5VDDI780O97oFa1mM0PVI9a0Oy1KLhLmJZAPTI6VoVXsrG106zjtLOBILeMYSOMYVR7CrFN2voSr21CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDgfjJDJN8ObwoCfLkjdsemcf1rT+GtzFdfD3RniIIS3EZx2K8H9RW7rOmRazot7ps3CXMLRk4ztyOD+B5rwrStQ8Y/CS7nsJ9Le/wBKZyylQSh91YfdJ9DRF2un1G1dJrofQdeb+KfiZc6V40tfDekWUF5PIUSRnJ+RmPTj0HJrmLz4w+I9ciNn4e8NTRXMg2+Yd0pX3HAA/Gt34bfDe60e9fxD4hbzdWmyUQnd5WepJ7tQlrd7CbsrdT1Fc7Ru645xS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIyqwwwBHoRS0UANWONDlUVfoMU6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=
|
<image>Find $BC$.
|
13
|
Geometry
|
Geometry3K
|
test
|
85
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACjARoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqOeeK2t5J53EcUSl3duiqBkk0Acp448R32liw0rRdraxqEoWIEBtiA8sQePbntk9qqab8QDZXa6V4utDpeoDgTYzBL6EHnH6jryOlV/BEEviTxDf+M7xCI3Jt9PRv4IxwSP5cdy9dvqWl2OsWjWuoWsVzA38Mi5wfUHqD7jmuqXs4fu5K/d9bnJH2lS9SLt2XS3/AASzHJHNGskTq8bDKspyCPUGnV5rqHhzV/AkE+qeGtV3adEDJNp962Ux/sn1/I+5rY0H4i6bqUy2WqRPpOpcZguvlVs9NrHHX0OPbNQ6La5oO6/H7jVVrfxFy/k/RnZUUUVgbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFed/FDWm8i18N2rssl6RJdOiljFADySBzjgn6KfWu8vr2DTrCe9uX2QQIZHb0AFcX8P7KfU7q/8AGGopi51Filsh/wCWcIOBj64A/wCA571vRSjeo+n5/wBamFV80lS77+nX79jqtAbTP7FtYtImjlsoYxHGUbPQd/f1zzWlXP33hS3kumv9Knk0vUDyZbcfJJ/vp0aqNx4qvtBtpY9e05zOqnybm1UtDcN/CPVCTxg+9ZNXdz0o4WNSyw7v5df8n8vuRLq3/FQeJbfRF+aystt1fejN/wAs4z/6ER6CtXW/DuleIbbyNTtEmAHyv0dP91hyKh8M6VLpml77s7tQu3Nxdv6yN2+gHH4VtUczi/dexninCVqS1jHT17v5/lY87/sjxb4K+bRZ21vSF/5cpz+9jX0U/wCH/fNb/h7xzo/iF/s6SNaX4OHtLn5XB7gf3vw59hXS1geIfBujeJV3XlvsuQPkuoflkX057/Q5rb2kKn8Ra91+qPP9lOn/AAnp2f6Pob9Fed+f4x8EcXCt4h0Zf+Wi5+0RL79Sf1+orqtA8V6P4lh36ddK0gGXgf5ZE+q/1GRUToyiuZarui4V4yfK9H2f9am1RRRWRsVtQso9R065sZiwjuImiYqcEBhjIPrzXg3h258Ta7bf8KzSWWE2V7KNR1APyturfdB65Lbv/HR0zXrXjrWdX0nQvL0HTbq91W7byYDDCXWEnrI5xhQM8Z7+wNcDpHg7VPh7498P3drFe6jb6jbtb6rPFG0gWVmyXYgfKuShyeyt70Aev2NnBp1jBZ2ylYIEEaAkk4AxyT1PvU9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBTvdW03TWRb/ULS1L/cE8ypu+mTzVpHSWNZI2V0YZVlOQR6g15VoXw+TxL4k8Sax400yaZ5btorJJpGULCM4K7SO2APp71P8ABqV4bfxHpEU7z6dp2pPFZyM2fkyeAfTgH/gXvQB6ReX9np8aSXt3BbI7hFaaQIGY9ACTyeDxVivnv4oardeJ9Tj1C2f/AIkWl6lHp8JHSedgWkceoGwD8eOpr6EoAKKKo6zqtvomkXWpXRxFboWIzyx7KPcnA/Gmk27ITaSuzjfHE8viHXNP8GWTkLKwuNQdf4IhyAf5/Xb613lvBFa20VvAgjhiQIiDoqgYArjfh3pdwbS68SakM6jq7+bz/BF/CB6A9fpt9K7atqzStTWy/PqYUE5Xqy3f5dApCAwwQCPelorA6AooooAKKKKACuV1/wAA6VrU3223L6dqanct3a/K271YDr9eD711VFVCcoO8WROnGatJXPO18ReJ/BrCLxNZnUtNBwNStRllH+2P8cfU12mka3puu2gudNu47iPvtPzKfRh1B+tXyAylWAIIwQe9cXq/w8tXuzqXh66fRtSHIaDiN/Yr2/Dj2Nbc1Op8Xuv8Pu/yMeWrS+H3l2e/3/5na0V5/B431bw5Oll4z05o0J2pqVsu6J/qB/Tn/ZruLK+tNRtUurK4iuIH+7JGwYGs50pQ1e3foaU60Z6Lft1LFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeZ+LfEmr+Jtbn8FeEDsmUbdT1I/dtlPVQf73b17DuRa1jRLnwJ8LbnTPCVncXN6wCb4ULSs74Dy4HOcdPTj0qjb/AAt8QafqOo3el+O5rL7fcNcSqmng5YknkmTnrXXeFdC1rRFuhrHiWXWjKVMRkthF5WM56Mc5yPyoA8R8V6vNbeAdE0BPCOsaZBZXsUgnu4iomcK+R0+8xYn86+g9IvpdT0m2vZrKeykmTc1tOMPH7EetY3jjwj/wmek2lj9u+x/Z7xLrf5XmbtoYbcbhj73X2rpqACvPPFLN4u8ZWXhSFibG0IutRZT1x0T9f/Hvaut8S65D4d0C61KXBMS4jQ/xueFH5/pmsf4faHNpuivqN/ltT1R/tNwzdQDyq/rn6k10Uvci6nyXr/wDmrfvJKkvV+n/AATrVVUQIihVUYAAwAKWiiuc6QooooAKKKKACiiigAooooAKKKKAI57eG6geC4iSWFxho5FDKw9CDXD3vgC40u6fUfB2ovp1weXtXYtBJ7YOcfjn2xXeUVpCpKGxnUpQqfF/wThdP+ITWV2um+LbB9JveizYJgk9wecfmR7iu3iljniWWKRZI3GVdDkEeoNQahptlqto1rf2sVxA3VJFz+I9D7iuHl8Ha54Wla68HagXt87n0y7bcjf7pP8A9Y+9aWp1Nvdf4f8AAMr1aW/vL8f+CehUVx2i/EKwu7r+ztZgk0fU14aG54Vj/ssf649s12PWsp05QdpI2hUjUV4sKKKKgsKKKKACiiigAooooAKKKKACiiigAooooAKKKwPGPiFfDXhy4vVwblv3VsnXdIenHtyfwqoxcpKK6kzkoRcnsjmtU/4rX4gw6Qvz6Tox867/ALsk3ZT/AC/77r0Sua8DeHm8P+HY0uMm/uj5907cku3Yn2HH1ye9dLWlaSb5Y7L+rmVCLSc5bvX/ACXyCiiisTcKKKKACiiigAooooAKKKKACiiigAoryiK28W+PPEWuyQ+IrzQdO066a1tYoIiPNK5+duQSDwe/X2rT8B+Nb678E6ze66yzXOhyTRzTRjHnLGu7PpnqPyoA9ErH8R+J9M8K6ct5qcrqsjiOKONC8krnoqqOprymKDx7q3g6fx3H4pnt59r3cOmRp+5EKk8Yzg8AkZBz35NdLeRan4+8LeFvFmifZY9UspPtK29wT5Ujfddc9uV4P6jrQBr2Wo+FviXZ3NtJaSGe1O2WC6iMVxAT0PqM+x7c1m/2L4r8FfPoVydZ0lethcH96g9EP+H/AHyau+ENA14eJtU8T+I0tLa8vIUt47S1YsqIvdj3PA/zxXb1rCrKK5d12ZjOjGb5tn3RzHh7x1pGvyfZd7WWoA7Ws7n5X3eg9f5+wrp6wfEPg/RvEseb6223AGEuYvlkX8e/0ORXM7/GPgj/AFgbxDoy/wAQyLiJf1J/Xp2q+SFT4HZ9n+jI9pUp/wARXXdfqv8AI9EorE8P+LdH8Sw7tPugZgMvbyfLIn1Hf6jIrbrGUXF2kjeMozV4u6CiiipKCiiigAooooAKKKKACiiigArztP8AitviMZPv6PoJwv8Adlnz+uCP/HR61ueO/ED6F4fZbTJ1G9b7PaIv3tzcFh9B+uKueEfD6eGvDltYDBmx5lw4/ikPX8uAPYCuiH7uDn1ei/VnNU/eVFT6LV/ov1Nyiiiuc6QooooAKKKKACiiigAooooAKKKKACiiigDl/F1l4i1rTEj8J67b2EysyzOyhtwx93dglSPUc15r4fuI4vg74y0I2X2bU9L81L4hy/nOcgvn1+Qj0+X3rX06y8a/D3U9Xs9I8PR63pN9dtdWzrcrG0TN2bPPQKDwBx15ra8GeCb+DQfELeIzGmo+Inke6jhIIiVgw2g9Mje3QkdKALHh4qPgnbE42jRWz/37Oab8GwR8K9Hz3M+P+/z1yC2fxH07wjL4Gg0GGeMq9tHqouFCeQxOeD0OCR647Zr1Twxocfhvwzp+jxv5gtYghfGNzdWOPckmgDWooooAKKKKAOW8QeA9J1yb7ZEH0/Ugdy3lr8rbvUgdfr196xBr/inwYRH4jtDqulrwNRtR86D/AGx/jj6mvRKQgEEEZB6g1tGs7cs1df1szCVBX5oPlf8AW6M/R9d0zXrX7Tpt3HcJ/EFOGT2ZTyPxrRri9Y+HlnNdf2loNxJo2pjkSW/EbexUdM+34g1Sh8aax4amSz8ZacyxE7U1K1XdG/8AvAf0wf8AZp+yU9aTv5df+CT7aUNKqt59P+Aeg0VWsdQtNTtEurG5iuIH6PG2R9Pr7VZrFq2jOhNNXQUUUUhhRRRQAUUVyfxE1DULHwnMmm2081xdN5G6FCxjUg5PHsMfU1UIc8lFdSKk1CLk+hj6J/xWnj2411/n0rSSbey/uvJ3f+v4r6V6JXmHh7xa+g6Fa6ZZ+ENbkEKfM/2cje55Zuh6nNaf/Cf6y33PA2sn/eRl/wDZK6qtGcpaLRaLVHJRrU4RvJ6vV6M7yiuD/wCE48St9zwHf/8AApyv/slH/CW+MpP9X4IkX/fuh/gKy+rz8vvX+Zt9Zp9L/c/8jvKK4P8A4SHx/J/q/B8C/wC/dr/8UKP7X+JDdPDWmp/vXCn+UlHsJd196D6xH+V/czvKK4P7f8TH6aRoifV2P/s9G74myfwaHF/31/iaPYf3l94fWP7r+47yiuD+yfE2T/mI6HH/AMBb/wCINH9lfEpvveIdKT/dhz/OOj2K/mX9fIPbv+R/18zvKK4P+wviG/3/ABbaL/u2if8AxAo/4RbxtJ/rPGu3/ctR/wDWo9lH+dfj/kHtpdIP8P8AM7yiuD/4QrxS/wB/x5dj/dtsf+z0f8IFrrf6zx3qp/3Qy/8As9Hs6f8AOvuf+Qe1qf8APt/ev8zvKK4P/hXd+/8ArfGmuP8A9tm/+Ko/4Vkj/wCt8Ta4/wD28f8A1jR7On/P+DD2lX+T8Ud5RXB/8Kp0pv8AWaxrb/W5X/4ij/hUnh0/fn1KT/enH/xNHJS/m/D/AIIe0rfyfj/wDuWljT78ir9TioW1GxT795br9ZVH9a49fhL4WXrDdN9Zz/Spl+FnhJeunyN9biT+ho5aP8z+7/ghzV/5V9//AADpG1zSE+/qliv1uEH9ahbxPoCfe1zTF+t3GP61jr8MvCC9NHB+txKf/ZqmX4d+E06aLD+Luf5mi1Du/uX+YXxHZfe/8i4/jDw2nXXtO/C5U/yNQt468Lp11y0/B8/yoXwL4WTpodp+K5/nUy+D/DSdNB078bdT/MUfuPP8A/2jy/Ept8RPCaddah/BHP8AIVC3xM8IL11gH6W8p/8AZa2F8MeH0+7oemD6Wkf+FTLoWkJ9zSrFfpboP6UXodn96/yC2I7r7n/mc43xT8JL01CRvpbyf1FVbn4p+EJ4XhmM88TjDI1tlWHoQa7NdOsU+5ZW6/SJR/SpkhjT7kaL9FAo5qK+y/v/AOAHJXe8l93/AATwq+1vQtPu21HwZdapp90eWtvJ3QSexBPH6j0xXoHgfx3ceJZmsb7TJYLuOPeZo1PlMPfPKn8+hruKKupXhONnHXvfX8jOlhp05XUtO1tPzCiiiuU7AooooAKKKKACiiigAooooAKKKKACiiigAooooAKxvD/ifT/En28WPnA2Ny1tMJU2kOvXHPStmvCJNan8N3fxD0yyBOp6hqkUNlGv3i9xvOR9Bzn1xQB694d8T6d4oiu5tM854LW4a3MrphXYdSp7jkc+9bNY3hTw/D4X8MWGjw4P2eMCRx/G55ZvxJNbNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFcXMFpbvPczRwwoMtJIwVV+pPAryjwzo9l4p+MmueLbfEum2LJDBIOUluBGqFlPQgAE591NeoarpdlrWmzadqMAntJwBJGWK7gCD1BB6gUaXpNhomnxWGm2sdtaxfcjjHA9T7n3NAFyiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=
|
<image>Find x.
|
24 \sqrt { 3 }
|
Geometry
|
Geometry3K
|
test
|
86
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD2AYkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKZNEs8EkL52yKVODg4IxXmWu/DP4d+HdHuNU1Gzmjt4Vyf8ASny57KozyT0FAHqFFeRfCjwGlvfv4uuLQ2STg/2dZlyxiiYY3MTySR0+pPcY9doAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorzFU/4RH42cfJYeJYD9BcJz/n3koA9Oory7xA0nxH8aL4Ztmb/hH9JkEuqTIcCWUZxED+Y/76PYV6dFFHDEkUSKkaKFVFGAoHAAFAD6KKKACiiigAooooAKKKKAILy8ttPspry7mWG3hQvJI54VR1NeY6VZXPxS8Qx6/qkTxeGLGQjT7N+PtLj/AJaMPT/9XrnqfHvg248baVBp0ertp8CSeZKBB5nm+gPzLwOvft6Vj2/gTxhaW0Vvb/EOSKGJQkcaaVGFVRwABvoA9E6UVkeHNL1PStPeDVtbk1e4aQuJ3gWLauAAoUE+hOfetegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNvjZHGng61v0d47+0vontJEOGDnPA/AZ+qivSa5rxb4T/wCErk0hZL3yLewvFu5IvK3+dt6LncNvG4ZwetAE3g3wzb+FPDlvp8QzOR5lzKesspHzEn9B7AVv0UUAFFFFABRRRQAUUUUAFFFFABRRRQAVy3jLxl/wiRsQNP8AtZut/wDy22bdu3/ZOc7v0rqa4Dx9/wAjZ4M/6/j/AOhxV0YWEZ1Upq61/JnNi5yhRbg7PT80U7P4q3uoSNHZeFbi5dRkrDOXIH0EdXP+E+1//oRdT/OT/wCNVra14C0nVJvtdtv02/B3Lc2vy8+pA4P1GD71mDVfFnhMY1i1/tjTl/5e7YfvUH+0O/4/99V1L6vNfu4K/Ztr7tbM5H9Zpv8Aezdu6Sa+el0M/wCE+1//AKEXU/zk/wDjVH/Cfa//ANCLqf5yf/Gq6nRfEmk+IId+n3aSMBloj8rr9VPP49K1qwlUpxdpUrP1Z0Rp1ZrmjVuvRf5HAf8ACfa//wBCLqf5yf8Axqj/AIT7X/8AoRdT/OT/AONV39FT7aj/AM+197/zH7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arv6KPbUf+fa+9/5h7Gt/wA/X9y/yOA/4T7X/wDoRdT/ADk/+NUf8J9r/wD0Iup/nJ/8arviQoJJAA5JNclq3xA0+1uPsOlRSatqB4WK2GVB92H9M/hWlNwqO0aV/m/8yKinTV51rfJf5GcfH+vgZPgXUsfWT/41WYfjEyswPh4gr94G76dufkrUHhrxJ4pIk8S6gbKyPI0+0OMj/aPI/PP4VJ4x0PTdD+HOpw6daRwKfK3MBlm/ep1Y8mt4rC8yg43bdtG7L53OeTxfI5qbSSb1Su/lY7DTL3+0tJs77y/L+0wJNsznbuUHGe/WrVZXhj/kU9G/68YP/QBWrXmzSUmkenTbcE2FFFFSWFFFFABRRRQAUUUUAFFFFABRRRQAVwHj7/kbPBn/AF/H/wBDirv64Dx9/wAjZ4M/6/j/AOhxV04P+MvR/kzlxv8ABfqvzR39FFFcx1HMa34F0nV5ftUStYX4O5bm1+U59SOh/Q+9Y/8Aafi3wj8uq239taav/L1B/rUHqw/x/wC+q7+iuiOIlblmuZef6M5pYaN+aD5X5fqtmZGieJ9I8QRbtPu1aTGWhf5ZF+q/1HFa9c1rXgfSNYk+0pG1jfA5W6tTsbPqQOD/AD96xzqPi7wkMajbjXNNX/l5g4mQerDv+v8AvU/ZQqfwnr2f6PZ/gL21Sn/FWndfqt1+J3tFY2h+KtH8Qxg2F2plxloJPlkX8O/1GRWzWEoSg7SVmdEJxmuaLugoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikd1jRndgqqMlicACuR1Px/ZR3JsNFt5NYvzwEtxlF9y3+GR7itKdKdR2ijOpVhTV5s65mCKWYgKBkkngCuQ1T4g2ENz9h0aCXV788CO25QfVu/4Z+oqn/wiviDxORL4o1I29qTkafZnA+jHp/6F9RXW6XounaLbeRp1pHbp3Kj5m+pPJ/GteWjT+J8z7Lb7/wDL7zHmrVfhXKu73+7p8/uOTHhnxD4nIk8TagbSzPI06zOPwZuf6/hXWaXounaLbeRp1pHbp3Kj5m+pPJ/Gr9FRUrzmuXZdlsaU6EIPm3fd7hXK/Ef/AJEHU/8Atl/6NSuqrlfiP/yIOp/9sv8A0alGG/jQ9V+YsV/An6P8jV8Mf8ino3/XjB/6AK1ayvDH/Ip6N/14wf8AoArVqKnxv1LpfBH0QUUUVBoFFFFABRRRQAUUUUAFFFFABRRRQAVwHj7/AJGzwZ/1/H/0OKu/rgPH3/I2eDP+v4/+hxV04P8AjL0f5M5cb/BfqvzR39FFFcx1BRRRQAUUUUAc1rngbR9akNwI2s74HctzbfK2fUjofr196yPtni/wlxexf29pi/8ALeIYnQepHU/r9RXeUVvHESS5Z+8vP9H0OeWGi3zQ91+X6rZmNofirR/EEYNjdqZcZaCT5ZF/Dv8AUZFbNc5rvgjR9ccztEbW9zkXNv8AK+fU9j/P3rD+1eMPCHF3H/b2mL/y1jyJkHv3P45+oqvZU6n8N69n+j2/In21Sn/FV13X6rdfid/RWJofi3R/EKgWV0BPj5reX5ZB+Hf8M1t1hKEoO0lZnRCcZrmi7oKKKKkoKKKKACiiigAooooAKKKKACimySJFG0kjqiKMszHAA9zXHaj8QbY3JsPD9pLq98eB5IPlr7lu4+nHvWlOlOo/dRnUrQpq82dk7rGjO7BVUZLE4AFcfqfxAtFuDY6FbS6vfHgLACY19y3f8OPcVVTwlrfiN1n8V6kUgzkadZnag/3j3/X611+naVYaRbC30+1it4h1CDk+5PUn3Na8tKn8XvPy2+/r8jHmrVfhXKvPf7unz+445PCeveJXWfxVqRit85Gn2hwo/wB49P5n3Fdhpmkafo1sLfT7SO3j77By3uT1P41doqKlec1Z6LstjSnQhTfMtX3e4UUUVibBRRRQAVyvxH/5EHU/+2X/AKNSuqrlfiP/AMiDqf8A2y/9GpW2G/jQ9V+Zhiv4E/R/kavhj/kU9G/68YP/AEAVq1leGP8AkU9G/wCvGD/0AVq1FT436l0vgj6IKKKKg0CiiigAooooAKKKKACiiigAooooAK4Dx9/yNngz/r+P/ocVd/XAePv+Rs8Gf9fx/wDQ4q6cH/GXo/yZy43+C/Vfmjv6KKK5jqCiiigAooooAKKKKACiiigDntc8GaPrrGaWE295nK3Vudjg+p7H8awzP4x8JD98g1/TF/5aLkTovv1J/wDHvqK72it4V5JcstV2f6djnnh4t80Pdfdfr0ZhaF4v0bxCAtpchLjvbzfLIPw7/hmt2ue13wXo2vEzTQGC76i5t/lfPqex/GsTd4w8JffH/CQaYvccXCD9Sf1/Cq9nTqfw3Z9n+j/4Yn2tSn/FV13X6rf7rneUVg6H4w0bXwEtboR3PQ203ySA+mO/4ZrerCcJQdpKzN4TjNc0XdBRRRUlhRTJZY4YmllkWONRlmc4AHua4+/8fxzXDWPhuxl1e8HVowREnuW7j8h71pTpTqfCjKpWhT+JnYSyxwxNLLIscajLM5wAPc1yGoeP7d7k2Hh2zl1i+/6ZDESe5buP096qxeDNX8QSrc+LdTZo87lsLU7Y1+p/w5967LT9MstKthbWFrFbxD+GNcZ9ye59zWtqNPf3n+H/AATK9art7q/H7tkccvg/WPETrP4s1RvKzuXT7Q7Y1+p7/qfeuv07SrDSLYW+n2sVvEOoQcn3J6k+5q5RWdStOas9u3Q0p0IU3db93uFFFFZGwUUUUAFFFFABRRRQAVyvxH/5EHU/+2X/AKNSuqrlfiP/AMiDqf8A2y/9GpW2G/jQ9V+Zhiv4E/R/kavhj/kU9G/68YP/AEAVq1leGP8AkU9G/wCvGD/0AVq1FT436l0vgj6IKKKKg0CiiigAooooAKKKKACiiigAooooAK4Dx9/yNngz/r+P/ocVd/XAePv+Rs8Gf9fx/wDQ4q6cH/GXo/yZy43+C/Vfmjv6KKK5jqCiiigAooooAKKKKACiiigAooooAKKKKAMDXfBujeIMyXNv5V12uYPlcH3Pf8awAPGXhE4H/FQaYv1E6D9Sf/Hvwrup7iG1haa4lSKJBlnkYKoHuTXHXnj4Xdw1j4XsJdVu+hk2lYU9yTjP6D3rroSqyXLbmj57L59DirwowfNfll5bv5dTT0jxvoWrxMVvFtZkBMkN0RGy469eD+BrMvviAtzctYeGLCXVrzoXAIiT3J7j8h71RHw6udeuX1HxPqGbqRcCOzRVCemWI5x9PxNJb2HijwLEY7CCHWNJBLGNI9ky/lyT/wB9fQVsqeHv7ju+zen39fwMXVxNlzqy7pa/drb8S1D4M1TXpFufFuqPMgO5bC2O2NfqR1/Dn3rsbHT7PTLZbaxtoreFeiRrgfU+p96x9C8aaNrxEMM5gu+htrj5Xz6Dsfwroa5a86t+Wenlsjrw8KNuenrfruwooorA6AooooAKKKKACiiigAooooAKKKKACuV+I/8AyIOp/wDbL/0aldVXK/Ef/kQdT/7Zf+jUrbDfxoeq/MwxX8Cfo/yNXwx/yKejf9eMH/oArVrK8Mf8ino3/XjB/wCgCtWoqfG/Uul8EfRBRRRUGgUUUUAFFFFABRRRQAUUUUAFFFFABXAePv8AkbPBn/X8f/Q4q7+uA8ff8jZ4M/6/j/6HFXTg/wCMvR/kzlxv8F+q/NHf0UUVzHUFFFFABRRRQAUUUUAFFFFABRUVxcwWkDz3M0cMKDLPIwVR9Sa4y78fS6hctY+FNOk1K4HBnZSsKe5zj9cD61rTozqfCtPwMqlaFP4nr26/cdpPcQ2sLTXEqRRIMs8jBVA9ya4688ePfXDWPhXTpdUuRwZiCsKe5Jxn9B71Hb+B73V5ku/FuqSXrA7ls4W2Qp+WM/hj6muytLO2sLZbe0t44IV6JGoUD8q0/c0/7z/D/N/gZfvqv91fj/kvxOLg8D3+tTLd+LtTe6IOVsoG2xJ7cf0x9TXZ2VjaadbLb2VvFBCvRI1AH/66sUVnUrTqaN6duhpToQp6pa9+v3hRXnms+LPFdx49u/Dfhe10iT7HapPM98JOGOOMqw7MvGPXmmN4y8WeHNV06HxfpemCxv7gW6XenyNiJz03BiSf04B9KyNjqdd8IaN4gBa8tQtx2uIflkH49/xzWB5HjDwlzbv/AG/pi/8ALN+J0HseSf1+grvKK3hXklyy1XZ/1oc88PCT5o6S7r9e/wAzndE8a6NrbiCOc215nBtrgbHB9B2P4c10VYmu+EtH8QoTe2oE+OLiL5ZB+Pf8c1zgtPGPhI/6JJ/b2mL/AMsZOJkHt3P4Z+gqvZ06n8N2fZ/o/wDMn2lWl/EV13X6r/I76iuc0PxtpGtv9nErWt6Dta1uRsfPoOx/n7V0dYzhKDtJWN4VI1FzQd0FFFFQWFFFFABRRRQAUUUUAFcr8R/+RB1P/tl/6NSuqrlfiP8A8iDqf/bL/wBGpW2G/jQ9V+Zhiv4E/R/kavhj/kU9G/68YP8A0AVq1leGP+RT0b/rxg/9AFatRU+N+pdL4I+iCiiioNAooooAKKKKACiiigAooooAKKKKACuA8ff8jZ4M/wCv4/8AocVd/XAePv8AkbPBn/X8f/Q4q6cH/GXo/wAmcuN/gv1X5o7+iiiuY6gooooAKKKKACiobq7t7K3a4up44IU+88jBQPxNcdceObnVZ3s/CemyX8gOGupQUhT88Z/HH41rTozqfCtO/QyqVoU9JPXt1+47G6u7eyt2uLqeOCFPvPIwUD8TXHXPjybU52s/Cmmy6jODg3EilIU9znGfxx+NNtfAdxqlwt74s1KTUJhyttGxWFPbjH6Y/GuztbS3srdbe1gjghT7qRqFA/AVp+5p/wB5/h/m/wADL9/V/ur8f8l+Jx1v4GudWnW88WalJfyA5W1iYpCn5Yz+GPxrsLSztrC2W3tLeOCFeiRqFA/Kp6KzqVp1NJPTt0NadCFPWK179fvCiiisjUKKKpavczWei31zbQyTTxW8jxRRqWZ2CkgADkknFAHjnhbxZNZ+MvFutReHda1aO8vPJimsbYyKixk8E+pBQ4+lbt++ufEfWdGtW8PX2kaLYXa3lxLqCeW8rL0VV69yM+/bHO/8KtFuND8A2UN5BJBdzPJPNHKpVlLMQMg852ha7SgAooooAKKKKAMbXPCukeIU/wBOtVM2MLPH8si/j3+hyK5o2XjDwn81hP8A27pi/wDLCbiZB7Hqfwz/ALtd9RW0K8orleq7P+tDCph4SfMtJd1/WvzOa0Pxzo+tSC3MjWd8Dta2uflbPoD0P06+1dLWNrfhbR/ECf6fZq0uMCZPlkH4jr9DkVzn9n+LfCfOm3H9uaav/LtOcTIPRT3/AF/3avkpVPgdn2f6P/Mj2lWl/EV13X6r/I7yiuZ0Xx1o+ryi2kkaxvgdrW10NjbvQHofp19q6asZ05QdpKxvTqQqK8HcKKKKgsKKKKACuV+I/wDyIOp/9sv/AEaldVXK/Ef/AJEHU/8Atl/6NStsN/Gh6r8zDFfwJ+j/ACNXwx/yKejf9eMH/oArVrK8Mf8AIp6N/wBeMH/oArVqKnxv1LpfBH0QUUUVBoFFFFABRRRQAUUUUAFFFFABRRRQAVwHj7/kbPBn/X8f/Q4q7+vO/iRB9q8Q+ErfzZYvNumTzIm2umXiGVPYjsa6sH/GXo/yZy4y3sde6/NHolFcr/whH/U0eJf/AAYf/Y1S1jwpJp+iX97F4m8RtJb20kqB7/IJVSRnjpxWKjFu1z2IYahOSiqur8mdvRWLpWpwWvhDS77UrxYw1nC0k078sxQE5J6k/mawJvHF7rUz2nhLS5LtgdrXk42RJ7//AK8fQ1UKE53tsuvQ87EVIUJuEnr26v5HZXd5bWFs1xd3EcEK9XkYKB+dcZceOrzV53s/CWmSXrg4a7mUrEnvzj9cfQ1LaeA3vrlb7xTqEmqXI5EIJWFPYAYz+g9q7C3toLSBYLaGOGJBhUjUKo+gFX+5p/3n+H+b/Aw/fVf7q/H/ACX4nG2ngObUJ1vfFepS6lODkW6sVhQ+wGP0x+Ndlb20FpAkFtDHDCgwqRqFUfQCpaKyqVp1Pif+RrTowp/Cte/X7wooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAyNb8MaR4gi26haK0mMLMnyyL9G/oeK5gaV4u8JnOlXI1rTV/5dbg4lQein/D/AL5rvqK2hXlFcr1XZmFTDwm+ZaS7r+tfmczovjnSdWm+yTF9PvwdrWt0Nhz6Ang/Tg+1dNWTrXhvSfEEOzULRJGAwso+V1+jDn8OlcudI8W+Ezv0e8/tjTl/5c7k/vFHop/w/wC+TV8lKp8D5X2e33/5ke0q0vjXMu63+a/y+476iuW0Xx7pOqTfZLnfpt+Dta2uvl59ATwfocH2rqaxnTlTdpKxvTqwqK8HcK5X4j/8iDqf/bL/ANGpXVVyvxH/AORB1P8A7Zf+jUq8N/Gh6r8zPFfwJ+j/ACNXwx/yKejf9eMH/oArVrK8Mf8AIp6N/wBeMH/oArVqKnxv1LpfBH0QUUUVBoFFFFABRRRQAUUUUAFFFFABRRRQAVwHj7/kbPBn/X8f/Q4q7+uH+IGi63qd7ol3olqJprGR5SS6KFbKFfvEZ5U/lXThGlWV3bf8mcuNTdF2V9vzR2F7fWmnWzXF7cRQQr1eRgB/+uuC13xrPrelaja+H9LlubMW8gub2YFI1Tad2PU4z7+xrnH8L+OLrUhfanpCanIOiXdyhQfRVkHHt09q3rmT4hXGkz6YPDemQ200LQFYXRdqsCDt/e4HX0rpjh6dOz5lJ+qt/wAEwhiqk6i5oyjG/RO//A/Em8NeA7fUdN07UtcvJtQ3W0bQWzMRHEhUFVx3wMeg+tegQW8NrCsNvEkUSDCpGoVQPYCvPbC6+I+n6fbWUXh/T2jt4liQvIpJCgAZ/e9eKn/tb4l/9C9pn/fxf/jtRVp1Kj96cbeqNfbUYTk6cJavdp3fqzv6K4D+1viX/wBC9pn/AH8X/wCO0f2t8S/+he0z/v4v/wAdrH6q/wCaP3of1tfyS/8AAWd/RXAf2t8S/wDoXtM/7+L/APHaP7W+Jf8A0L2mf9/F/wDjtH1V/wA0fvQfW1/JL/wFnf0VwH9rfEv/AKF7TP8Av4v/AMdo/tb4l/8AQvaZ/wB/F/8AjtH1V/zR+9B9bX8kv/AWd/RXAf2t8S/+he0z/v4v/wAdo/tb4l/9C9pn/fxf/jtH1V/zR+9B9bX8kv8AwFnf0VwH9rfEv/oXtM/7+L/8do/tb4l/9C9pn/fxf/jtH1V/zR+9B9bX8kv/AAFnf0VwH9rfEv8A6F7TP+/i/wDx2j+1viX/ANC9pn/fxf8A47R9Vf8ANH70H1tfyS/8BZ39FcB/a3xL/wChe0z/AL+L/wDHaP7W+Jf/AEL2mf8Afxf/AI7R9Vf80fvQfW1/JL/wFnf0VwH9rfEv/oXtM/7+L/8AHaP7W+Jf/QvaZ/38X/47R9Vf80fvQfW1/JL/AMBZ39FcB/a3xL/6F7TP+/i//HaP7W+Jf/QvaZ/38X/47R9Vf80fvQfW1/JL/wABZ39FcB/a3xL/AOhe0z/v4v8A8do/tb4l/wDQvaZ/38X/AOO0fVX/ADR+9B9bX8kv/AWd/RXAf2t8S/8AoXtM/wC/i/8Ax2j+1viX/wBC9pn/AH8X/wCO0fVX/NH70H1tfyS/8BZ39FcB/a3xL/6F7TP+/i//AB2j+1viX/0L2mf9/F/+O0fVX/NH70H1tfyS/wDAWd/RXAf2t8S/+he0z/v4v/x2j+1viX/0L2mf9/F/+O0fVX/NH70H1tfyS/8AAWdVrPhzSdei2ajZxysBhZRw6/Rhz+HSuY/sXxT4U+bRLz+1tOX/AJcro/vFHorf4Y+hpn9rfEv/AKF7TP8Av4v/AMdo/tb4l/8AQvaZ/wB/F/8AjtbQhUiuVyi12bRjUnTm+ZQkn3Sd/wDg/M1dI8faVqM/2O8EmmX4OGt7sbefQN/jg+1HxH/5EHU/+2X/AKNSuX1mz8b6/D5eo+E9JlIGFkDgOv0YS5/pWQvhn4gjRptIa1d7GUKDE9zEwXDBhtJbI5HatYYekpxmpJWa0un9zMZ4ms4SpuDd09bNfej1Twx/yKejf9eMH/oArVrP0K2ms/D2m2twmyaG1ijkXIOGCAEZHHUVoV51R3mz1KatBJ9goooqCwooooAKKKKACiiigAooooAxPEviiy8LQWU19DcyJd3S2qGBVO12BIzkjjg+tWdf1yz8N6Hdatfl/s9uoLBACzEkAAAkckkDrXG/GZdvg6zuc7fs2pwTbs/d+8M/rSeNlPirxpovg+Mk2sWdR1HHTYvCKfqe3uKAOy8Pa7a+JdCtdYsllW3uQSiygBhhipzgkdQe9VvDvimx8TnUDp8Vx5Nlcm2aaRQElYddhBJI6dQOorzbw74jfw78ATMpIvFkms7ZQPm815Gxj1I3Fvwr0XwT4fXwx4Q0/S8DzUj3zkd5G5b9Tj6AUAdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYFn4u0+88W33hryrmDULSMSnzlUJKhxyhBOeo6gfoa368w+Kgbw5qmh+OLQKZ7KYW1xGWCmaJs/L/AOhD23Z7UAddr/jHT/D+p6dpksN1d6hqDbYba0VWfH95tzABff2Poa6GvPvh3oN1dyzeNtcKyatqqhoFHK20B+6q/UY/D3Jr0GgAooooAKKKKACiiigAooooA4L4yw+b8MdRfj91JC/P/XRV4/Om/DK3m1KPVfGF7GVudauC0St1S3T5UX+f5Cu5u7O11C1e1vbaG5t5Mb4pkDo2DkZB4PIFOgghtbeO3t4o4YY1CJHGoVVUdAAOAKAPCPBdlLrvjSPQHR/7P0HU7q/nUj5WfeFjX8CCcf71e91VtdM0+xnuJ7Sxtrea5bfPJDEqNK2ScsQMsck8n1NWqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjnnitoJJ55FjijUu7scBQOSTXlmn2B+LGvXGs6lHIPDFoHt9PgbI89yCrSn6dvcAdjXqN1a297bSW13BFcQSDDxSoHVh6EHg0ttbW9nbR21rBFBBGNqRRIFVR6ADgUAeffCnULizg1LwdqL5vdEnZIyf44ScqR7Z/Rlr0aqq6ZYJqL6iljbLfSLse5ESiVl44LYyRwOM9hVqgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
|
<image>If $ZP = 4x - 9$ and $PY = 2x + 5$, find $ZX$.
|
38
|
Geometry
|
Geometry3K
|
test
|
87
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACXATkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3iiiisSwooooAKKKKACiiigAoopHdY0Z3YKqjJJOABQAtFZ2k67pmuQmXTrtJgv3lHDL9QeRWjTlFxdpKzJjJSV4u6CiiikUFFFFABRRRQAUUUUAFFJS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXG+Mb641K7t/Cmmvi4vPmupBz5UPfP1/lx3rodd1iDQdHuNQuORGvypnl2PRR+NYngbTHFlLrt66y6jqZ8yR1OdidkHp9PoO1dNBKEXWl029f+Buc1a837KPXfyX/AAf8xt74A0/y4ZdHll0y+gQKk8JPzY/vjvnufzzVSLxbqvh2dLPxZZnyz8qajbrlH92A/pz7V3NYXiWU3MEejQIj3N/lfmUMIox9+Qg+g6e5FOFdz92quZfivma08JzTtSfK/wAPmvL7zWtLy2v7Zbi0njnhf7rxtkGp64ufwRPpUn2zwrfvY3AA328rFoZseueh/P2xU2n+Nlhul07xHaNpV8eA7/6mT3Vu38vek6Ckuak7rt1+7/IyVflfLVVvPo/n+jOuopFZXUMpBUjIIPBpa5jpCiiigAooooAKKDRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVyvjPWLi3gg0bTOdU1I+XHj/lmn8Tn0//AFntV0qbqSUUZ1KipxcmZ4/4rXxfn72iaQ/4Tz/1A/l/vVv3GgtbXD3miTLZXLndJEVzBOf9pR0P+0MH61b0PSLfQtIg0+3Hyxr8zd3bux+prQrSrVu7Q+FaL+vMeFc6Kcr6y37enov+CYUfia3t1ePWIzp11GhcpIcpIAMkxv0bgdOvtT9CtJpHm1i9jKXl6BiM9YYR9xPrzk+59q1Lm0t7yMR3MEcyBgwWRQwBHQ896mrJyVtDrlWhyNU42b3/AMl/wb7bhVXUNNs9VtWtr62jnhb+Fx09wex9xVqikm07o5mk1ZnEN4f17wsxm8OXRvbEHLaddHJA77G/z+NauieMdO1eb7JLvsdRXh7S4+Vs+gz1/n7V0VZGt+GtL8QRBb63BkX7kyfLIn0P9DxXR7aFTSste63+ff8AM5vYyp60np2e3y7fl5GvRXDb/E/hA/vN+uaSv8Q/4+Ih/Ufn+FdJoviLS9fg8zT7lXYDLxNw6fUf16VFShKK5lrHuv17Fwrxk+V6S7P9O/yNWiiisTcKQkAEkgAdTQQCpB6GvKrCeeHwFL4YtnK3s+rT6VGe6IXLO34Rkn8qEr6L+ugeb/rr+h6qrBlDKwKnoR3pags7WGxsoLS3QJDBGsaKOygYFT0PfQS21CiiigYUUUUAFFFFABRRRQAUUUUAJS0UUAFFFFABSUtFABRRRQAUUVFcsUtZmXqEYj8qTdlcEruxxcnijxHqMV9qWgafp8ulWUkiYuZHE11s+8Y9vCjIIGc5x2rrtMvl1TS7W/SN41uIlkEcgwy5GcH3FeY+CV8WSfDuzvtKv7G1igSVo7Wa2MhuSGYks+4bcnIGB+Neh+GdbTxF4bsdWRPL+0xBmTOdrdCPzBq3G112/r8fwFe7v6l3UL630ywnvbp9kMKF2P8AQe/auX8HWM+oXVx4q1FcXN7xbRnnyoe2Pr/9fvVfWHPi/wAUpoMLH+zNPYS37qeHftH/AJ9/Su4VVRQqqFVRgAdAK6JfuafL9qW/ku3z3OZfvanN9mO3m/8AgbetxaKKK5TqCiiigAooooAKKKKACub1rwZYapP9ttXfTtSU5W6tvlJP+0B1/Q+9dJRVwqSpu8XYidONRWkrnEJ4k1rwyyweJ7Xz7TOF1K1XI/4GOx/L6Guusb+01K2W5sriOeFujo2R/wDWqd0WRGR1DKwwVYZBFcje+Cms7l9Q8MXjabdnkw9YJPYr2/l7VtelV391/h/wP60MbVaW3vL8f+D8/vOwrz/wxown+IfiLWBL5lnBcGO2X+ETMiecR7jaF/OrH/CURyxy6H4xsX0+SdDGZVYiGUHgkODlfz/EV1ek6fYaZpkFppkSR2aLmMI24EHnOe+eue9ZzpTpO8u2nY0hVjUVov17ou0UUVkahRRRQAUUUUAFFHeigAooooAKKKKACiiigAooooAKKKKACiiigApCAykEZBGDS0UAee2em+LPDmk3PhzTNLtru0ZpRZ37XYQQo5JxIhGSVyfu5z7Veu5R4F8EWGj2LGfUCgtrUAcvIfvNj2Jz+IFdjNNHbwSTTOEjjUs7HoAOpri/DUMnibX5vFN2hFtHmHTomHRR1f69f19BXTQS1qT2X4vov8znryd1CG7v8u7/AK6m74X0FfD+jJbM3mXMh825lJyXkPXn0HStqiisJzc5OUt2bQgoRUY7IKKKKkoKKKKACiiigAooooAKKKKACiiigCvfWFpqVq1te28c8LdUdcj/AOsa5B/DWteGXM/he68+0zltNumyv/AG7H8vqa7eitadaUFZars9jGpRjPV6PutzmtF8Z2Gpz/YrtH07UgcNa3Pykn/ZJxn9D7V0tZeteHdM1+38rULZXYDCSrw6fRv6dK5vy/E/hD/VFtc0lf4D/wAfEQ9v7wA+v4Vp7OnV/huz7P8AR/5mftKlL+Irruv1X+X3HcUlZOieJdL8QQ7rG4BkUfPC/wAsifUf1HFa9YShKD5ZKzOiMozXNF3QUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABSZpaPwoAKKKKACiisjxJrkXh/Rpb1wGl+5DH/z0c9B/X6CqhFzkox3ZMpKEXKWyMHxXcza/q8HhOwkKq+JdQlQ/6uMYO36nj8x6muwtraGztYra3jEcMShEQdABWB4P0OXS9Oe7viX1S+bzrp26gnkL+GfzzXSVtXklanDZfi+r/wAvIxoRbvUnu/wXRf5+YUUUVznQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQ3V1b2NrLdXUyQwRKWeSRsKo9SaAJqKxNG8XaD4guHt9M1KOeZBuMZVkYr6gMASPccVJrfinRfDpjGq38du0gJRNrOxA6naoJx79KLAVNc8HabrEv2uPfZaivKXdsdr59Tjr/AD96yRr+veFmEXiK1N7YA4XUbZeQP9tf/wBX41taxqrXXhOXUNEuPORwpWe2HmER7gHZRzlgu4gY6iqPhq4huNUu4NO1C51LSPIUtLcSNKFmLEFVduTx1HbjpnFdEK7tyVFdL716Pp+RzzoL46bs/wA/Vdfz8zotP1Ky1W1W5sbmOeE/xIeh9COx9jVquR1DwSsN22o+HLttKvupVP8AUyezL2/l7VHaeM59NuVsPFVkbCc8JdIMwS++e3+c4pugpq9F38uv/B+QlXcHasrefT/gfM7KimRyxzRLJE6yRsMqynII9QafXMdAUUUUDCiiigAooooAKKKKACjNFFABRRRQAhOASTgCuH08Hxn4sbVHBOj6W+y0B6TS93/Dg/8AfPvVvxnqNxO1v4a0xv8AT9Q4kYf8sof4mP15/DPtXRaXptvpGmQWFqu2KFdo9Se5PuTzXVH9zT5/tS28l1fz2+85ZfvanL9mO/m+i+W7+Rco70UVynUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWL4m0D/AISTTYrFrnyYluYppQY94lVG3bCMjrgc/pW1WJ4n11/Dumw3/wBmE1uLiOO4YsR5MbHBk4B6cUdUBz+qXNnrXj/w4ujTQ3M2nPM15LbsHWCMpt2MRwCW4x14NS+GSt78Q/F13KN0lu0FrGSPuIEyQPYk5rO1aTQ5vF3hyXwxLYtqct3uuWsCpL220lzJs6jpjPermm3ll4c8feJY9TuobNNQ8m7t5J5AiyKEKuATxkEdPeqW2vn+a/S/4il5eX3a/rb8CTwBtttR8VabENtvbaqzRJ2QOoJA9s129cV8PP8ASz4g1pFIt9R1J3t2I+/GoChh7HBrtaT2V+y/JB1fq/zCoLuztr+2e3u4I5oW6pIuQanopJtaoGr6M4mXwtqvh2Rrnwrdloc5fTbltyN/uk9D9fzq/pHjWyvbn7BqMT6ZqQ4Nvc8Bj/sseD/nrXT1navoWm67beTqFskoH3X6Mn0PUV0+2jU0rK/mt/8Ag/n5nP7GVPWi7eT2/wCB+XkaNFcN9k8TeEMmyd9b0lf+WEh/fxj/AGT3/X6Cug0PxRpfiBCLSbbcL9+2lG2RPXjv9RUzoNLmi7x7r9exUK6b5ZK0uz/TubNFFFYG4UUUUAFFFFABRRRQAVS1fVLfRdKuNQuT+7hXOB1Y9lHuTxV2kZVcYZQR6EU42T12JldrTc8t8K+K9Dtrm91nWb0/2reOQVELMIox0UED2H5Cuo/4WR4X/wCf9/8Avw/+FdP5EX/PJP8AvkUeRF/zyT/vkV1VK1GpLmcX96/yOWnRrU48qkvuf/yRzH/CyPC//P8Av/34f/Ck/wCFkeF/+f8Af/vw/wDhXUeRF/zyT/vkUeRF/wA8k/75FRzYf+V/ev8AI05cR/Mvuf8A8kcx/wALI8L/APP+/wD34f8Awo/4WR4X/wCf9/8Avw/+FdP5EX/PJP8AvkUeRF/zyT/vkUc2H/lf3r/5EOXEfzL7n/8AJHMf8LI8L/8AP+//AH4f/Cj/AIWR4X/5/wB/+/D/AOFdP5EX/PJP++RR5MX/ADyT/vkUc2H/AJX96/yDlxH8y+5//JHL/wDCyPC//P8Av/34f/Cj/hZHhf8A5/3/AO/D/wCFdR5EX/PJP++RR5EX/PJP++RRzYf+V/ev8g5cR/Mvuf8A8kcx/wALI8L/APP+/wD34f8Awo/4WR4X/wCf9/8Avw/+FdR5MX/PJP8AvkUeTF/zyT/vkUc2H/lf3r/IOXEfzL7n/wDJHLf8LI8L/wDP+/8A34f/AApf+FkeF/8An/f/AL8P/hXT+RF/zyT/AL5FHkRf88k/75FHNh/5X96/yDlxH8y+5/8AyRzH/CyPC/8Az/v/AN+H/wAKP+FkeF/+f9/+/D/4V0UcllNLLFE9u8kJAkRSpKE9MjtSWsthfQ+daSW1xFkrviKuuQcEZHcGjmw/8r+9f/Ihy4j+Zfc//kjnf+FkeF/+f9/+/D/4Uv8Awsjwv/z/AL/9+H/wrp/Ii/55J/3yKPIi/wCeSf8AfIo5sP8Ayv71/kHLiP5l9z/+SOY/4WR4X/5/3/78P/hTX+IvhWRGR71mVhgq1u5BH5V1PkRf88k/75FHkxf88k/75FHNh/5X96/yDlxH8y+5/wDyRxll4y8C6aXNgILTecv5FiU3H3wvNOvfG3gnUo1jv2iukU7lWezZwD6gFa7HyYv+eSf98ijyYv8Ankn/AHyKOeh/K/vX+QuXEfzL7n/8kcsnxF8KRoqJesqKMBVt3AA/Knf8LI8L/wDP+/8A34f/AArp/Ji/55J/3yKPIi/55J/3yKObD/yv71/kPlxH8y/8Bf8A8kcv/wALI8L/APP+/wD34f8Awo/4WR4X/wCf9/8Avw/+FdR5EX/PJP8AvkUeRF/zyT/vkUc2H/lf3r/IOXEfzL7n/wDJHMf8LI8L/wDP+/8A34f/AApP+FkeF/8An/f/AL8P/hXUeRF/zyT/AL5FHkxf88k/75FHNh/5X96/yDlxH8y+5/8AyRy//CyPC/8Az/v/AN+H/wAKwNc1nwLrbi4N7Na3y8pd28Dq4PbPHP8AP3Fej+RF/wA8k/75FHkRf88k/wC+RVwrUoPmimn6r/5EidGtNcsnFr/C/wD5I8u0n4lPpl19j1G4GqWY4S8ijKSAf7SsBn/PJr0jTNWsdYtRc2Fyk8R6lTyvsR1B+tWfIi/55J/3yKcsaJ91FX6DFTXq0qmsI2fr+liqFKrT0nO69P1ux1FFFcx0hRRRQAUUUmKAFooooAKKO1FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFI24qQpAbHBIyAaAPKfGUxsfiPBZ6bqC2ja7AlpqDhSTD83yMD2dl3KPzr06wsbbTLCCxs4lit4ECRovYCuXl8Aw3Xh++sru/eXUb24F1NqIj2sJFIKlVycBQMAZ6V10KukKLI4eQKAzgY3Hucdqe0bf1/S1E9ZX/r+noPooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS0lAC0UUUAFFFFAgooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUCCiiigYGiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkoooA/9k=
|
<image>Find y
|
6 \sqrt { 3 }
|
Geometry
|
Geometry3K
|
test
|
88
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAF8AOcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxNY8YeHtAu1tNV1a2tLhkEgjkbkqSQD+YP5VUg+Ing65lEcfiPTgx6b5gg/NsCvN4tLsvHHx91lNQt1udP0632GN87SyhUxx/tMx/Cun8W/DjwNaeFdSupNLt7Iw27uk8bspRgPlxzg84GD1oA9GVg6hlIKkZBB4Ipa83+B015N8OY/tbOyJdSJbljn92McD23bq9IoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuR8e+LbvwxZ6dDpdpHearqN0ttbW8hwGz1J5HQlR1HWgDrqK86/t/4o/9CZp3/gen/wAVR/b/AMUf+hM07/wPT/4qgD0WiuL0LV/H11rEEOs+GLGzsGz5s8d4rsnBxgAnPOB+NdpQAUUUUAFFFFABTJpUghkmkYLHGpZmPYAZNPrI1+3n1rwrqVppNxbme6t5IIpWf5ASCpJKg9Oe3UUAeG/D7wTdePP7Z8RNrd7pjTXrjNscGQn52ycjpuFQ/E74fXXhPSbPVJNeutWtzcrC0F4W4JDMDnd0+Ug9DzXs3w88LTeD/B9tpN08Ml0HeSZ4SSjMzHGCQD93aOnaqXxQ8H6j428NW2m6bPawyx3azsblmVSoR1xlVJzlh2oA6fQ4rWHQrBLK2S2tvIQxwoMBAQDj9av1V02Ga30u0guBGJo4USQRklQwUA4JAJGfYVaoAKKKKACiiigAooooAKKKKACiiigAoori/if4pfwx4VItpRFfX8gtbeVjhYi33nJ7bRk/XFAHF65441PUvi1ollpl1PDocV/9jZonIS6lUqZQcfeA3KP1717RXz9quq+EtK1P4e2mkatbz2mlXLvdzrngsYyXbjuQxrpvivomu3OkP4p0/Xp5LexkiubazhTYkcYAzJkH52zhsnoM0Aet15pb/wDFVfG2ef79j4atvKTupuJOv4gbh9UFdFYeNbO7+HQ8WHaI0tGmljB6SKMMn/fQwPqKzfhLpM1l4MXUrzJv9Yme/ncjk7z8v6YP/AjQBhxW3i3x54i12SHxFeaDp2nXTWtrFBER5pXPztyCQeD36+1b3wu8S6l4h0G8i1d0lvtOu2tHnQYEoUDDemevT2rR8XWXiLWtMSPwnrtvYTKzLM7KG3DH3d2CVI9RzXO/Bm5hi0LU9Dey+y6lpl4yXx37/OkORvz6/IR/wEetAHpVFFFABRRXM+IPHejaA5t2la7vydq2lsN759D2H48+xqoQlN2irkTnGCvJ2Omrlde8faRos32SJn1DUSdq2loN7bvQkcD6cn2rG/s/xl4z51KY6BpLf8u0JzPIvox6j8cf7tdToPhTR/DcOzTrNUkIw07/ADSN9W/oMCtuSnT+N3fZf5/5GPPUqfArLu/0X+Zw+tWfjHxBoWoajq9yuj6fDbSTJYQcvJtUkBz6HHc/gK6z4eJs8BaQP+mRP5sxqz40fZ4K1k/9Okg/MYpvghNngjRh/wBOqH8xmqnPmo7W1/QiFNQr73duvqb9FFFcp2BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVS/0rTtVjSPUbC1vEQ7lW4hWQKfUBgcVbooA808XfD6G88U+FLjR/D2niwtrl21ERxRRqUJTG5eN44bjB/WvRpLWCa0e0khRrd4zE0WPlKEYxj0xxUtFAHzQ2m6xpmu3nwrjLmx1DU4pklzyIPvE+/wAoUn0MZr6Uhhjt4I4IUCRRqERR0UAYAqrJo+nS6xFq8lnE2oQxmKO4K/OqHOQD+J/M+tXaAPJNOsvGvw91PV7PSPD0et6TfXbXVs63KxtEzdmzz0Cg8Acdea6T4ceGNU0O21XU9c8tdW1i6NzPFEQViHJC5HGcs3QkdK7esHxB4x0Xw2hF9dBrjHy20XzSN+Hb6nFVGMpO0VcmU4wV5OyN6ud8QeNtF8OZiubjzrs8LawfPIT2yO341z3meNPGn+qU+HdJb+Nsm4kX26Ef+O/U10Xh/wAFaL4cxJa2/m3Z+9dT/PIT3we34Yrb2cIfG7vsv1Zh7SpU/hqy7v8ARHO+T408aczMfDukt/yzXJuJF9+hH/jv0NdL4f8AB+i+G0BsbUG4xhrmX5pG/Ht9BgVvUVEq0muVaLsi4UIxfNLV93/WgUUUVkbHN+P32eBNXP8A0xx+bAVc8KLs8H6Kv/TjD/6AKzPiU+z4faqf9mMfnIora0BPL8OaWn920iH/AI4K3f8AAXr+iOdf7w/RfmzRooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKyNc8TaR4dg8zUrxImIykQ+aR/oo5/HpTjFydkKUlFXk7I16xde8WaN4bi3ajdqspGVgT5pG+i/wBTgVy39seL/GXy6LanRNKb/l9uR+9dfVR/h/31W1oPgLR9El+1yK9/qJO5ru6O9t3qAeB9evvW3s4w/iPXsjn9rOp/CWnd/oupifbvGXjPjT4T4f0lv+XiUZnkX1UdR+GP941v+H/Aui+H3FxHCbq+J3Nd3J3vn1HYfhz7mulopSrNrljovIqNCKfNLV+f6dgooorE3CiiigAooooA434pvt+H98P7zxD/AMiKf6V1Gmp5el2if3YUH/jorj/i2+3wNIv964jH6k/0ruI08uJE/uqBW8v4MfV/oc8da8vRfqOooorA6AooooAKKKKACiiigAooooA8cHjTxv49129tvBH2Sw0yyfYby5UNvPOCcq3XGQAvHc0weN/HHgXxDYWXjdbW8069fYt5AoG3kAkFQOmQSCuT2rPTS/Gfwi1W+m0fTxq/h64k8woiklR2yB8ykDjOCp/l2GgeLvCHxUjSxvtPT7bb/vRZ3gDYPQlD/F+h9qAPRqKKz9X1zTNBtftOp3kdvGfu7j8zeyqOT+FNJt2Qm0ldmhWZrPiHSvD9t5+p3kcAI+VCcu/0UcmuOPinxN4uYxeFdONjYk4OpXgxn/dHI/Ld+FaOkfDjS7WZrzWJJNZ1B/vzXZ3L+CnP659sVv7KMP4j+S3/AOAYe2lPSkvm9v8AgmefEPirxidnhyy/svTW/wCYhdj52Hqg/wAM/UVraH8PtJ0qf7bemTVNSY7murv5vm9Qpzj6nJ96n8KyPp8t54cuGJksG3WzN1kt2+6ffH3T+FdNSlWa92Gi/rqa1MGqdT33zPo+lujS6BRRRWBYUUUUAFFFFABRRRQAUUUUAcH8Wvm8K2kf/PTUIl/8db/Cu8rg/il8+naJD/f1WL+TD+td5W8/4UPn+hz0/wCNP5fqFFFFYHQFFFFABRRRQAUUUUAFcX8Ul10eCJ5/D09zFeW8qyt9mYh2jGQwGOT1B/Cu0ooA828KfF3wxe+HbT+1dVFpqEUKpcJcK2WcDBYEDByefXmuU0Gay8X/AB4j1vw3atHplnEWurlI9glYo67iD3YsB6kAn1r1G98A+E9Qujc3Xh+weZjlmEQXcfU4xn8a2dP02x0m1W106zgtIF5EcEYRc+uB3oAtVyHxG8OnX/DEjwRhr2yzPBxktj7y++R27kCuvoqoTcJKS6EzgpxcXszD8I67F4i8NWl/GFV9vlzIvAR14Ix2HcexFbleb6Z/xRPxIn0pvk0nWv3tt2VJf7o/HIx7pXZ6t4i03R2WO4mL3L/6u2hXfK59lH9eK0rQSleOz1QsMp1fcSvJaf8AB/UzvFUT6fLZ+I7dSZLBttwq9ZLdvvD8PvD8a6OKVJokliYPG6hlYdCDyDXMSQeIfEsTx3GNF02QFWjXD3MinqCeiZH1NdBp1hDpenwWNvv8mBAib2LHH1rN7HfXUVSjCTTku2unm9t+19y1RRRUnGFFFFABRRRQAUUUUAFFFFAHB/Eb577wrD/f1WP+YH9a7yuD8e/N4o8GR+uo7vyZK7yt6n8OHz/M56X8Wfy/IKKKKwOgKKKKACiiigAooooAKKKKACiiigAooooA5fx54bbxF4eYW+Vv7Q+fasv3twHKg+/8wPSq/wAOjpd54bh1C0tkW9bMd5IxLSGUfeyx554OPeuwrzyL/ijPiS0P3NJ1/wCZP7sc4PT8Sf8Ax4eldEHz03DqtV+qMZ1J0pcyfuy0f6P+u56HRRRXObBRRRQAUUUUAFFFFABRRRQAUUUUAcH40/eePPBcfpcSt/6B/hXeVwfiX958UvCcX91Zn/8AHT/hXeVvV+CC8v1Zz0fjm/P9EFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc7428P/APCReGp7aIYu4v31sw4IkXoM+/I/GuioqoScJKS6EzgpxcXsznvBXiD/AISPw1BdSHF3F+5uV6ESL1OPfg/jXQ154/8AxRnxJEn3NJ1/hv7sdwD/AFJ/8ePpXodaVopS5o7PUyoTbjyy3Wj/AM/mFFFFYm4UUUUAFFFFABRRRQAUUUUAcHrPz/GTw6v9yzlb81kFd5XB33z/ABr0wf8APPS2P6yD+td5W9baHp+rOehvP1/RBRRRWB0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBgeMvD6+JPDVzZKB9pUebbt/dkXp+fI/GofA3iBvEPhuKWckX1ufIulbgh17ke4wfrn0rpa87vP+KM+JEd6Pk0nXf3c392Ofs34k5/4E3pXRT9+Dp9d1+qOar+7mqnR6P9GeiUUUVznSFFFFABRRRQAUUUUAFFFFAHBj978bD/0y0r/2b/69d5XB2Hz/ABr1Q/8APPS1H5mM13lb1/s+iOfD/a9WFFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJ4t0BPEnhy608gCYjfAx/hkH3T/Q+xNbdFVGTi1JdCZRUouL2Zy/gPX31zw6i3RI1Czb7PdK33ty8An6j9c11Feeap/wAUZ8RINWX5NK1r9xdf3Um7Mf5/9916HWlaKvzR2ZlQk7OEt46f5MKKKKxNwooooAKKKKACiiigDg9G+f4x+I2/uWkK/msZrvK4Pwz+8+KHi2X+6sKf+Oj/AArvK3r/ABJeS/I58N8Lfm/zCiiisDoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAx/FGhReI/D11psmA7ruic/wSDlT+fX2JrM+H+uy6v4f+zXmV1HT2+zXKN97K8An6gfmDXV155rv/FG+P7TX1+TTNVxbXvoknZz+Wfwb1rope/F0+u6/rzOar+7mqvTZ+nf5HodFFFc50hRRRQAUUUUAFFFFAHB+C/3njrxpJ6XES/+h/4V3lcH4B+bxN4zk9dRK/kz13lb4j+J8l+SOfC/w/m/zYUUUVgdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVyPxL8RTeG/BV1cWbst/cMtrabfveY/ce4AYj3FAHXUV5rbfD/wAY/ZYvO+I2opLsG9RbhtrY5GS/PPepf+EA8W/9FJ1H/wABB/8AF0Aei1leI9Eh8Q6Bd6ZLgean7tz/AAOOVP5/pmuTg8B+K4riOR/iLqMiKwZk+yr8wB6feNeg04ycXdClFSTi9mch8PNbm1HQm0++yupaW/2a4VuuBwpP4Aj6qa6+vPPEgPhDxzZeJoxt0/UMWuoAdFbs/wCgP/AT616GCCAQcg961rJXU47P+mYUJOzpy3j+XRhRRRWJ0BRRRQAUUUUAcH8OPnvPFM39/VZP5k/1rvK4P4W/PpetTf39Vl/9BU/1rvK3xP8AFZz4X+EgooorA6AooooAKKKKACiiigAqtqE1zbadczWdr9ruo42aK33hPNYDhdx4GTxmrNFAHi1hqnifUPjnoX/CRaaumEWsxt7VJlkGzZJ8xKk5JI9ug4rpPihqF9cXfh/wnp129o+tXJW4niJDpCuNwH1yfrtx0Jqvrn/JwXhj/sGy/wApaPGilfjD4FkbhG89Qe2cf/XFAGU+kSfC/wAf+HY9M1G8n0jWpDaXFvdS78SZUBuABnLA9OzdjXqesa1pugae99qt5Fa2y8F5D1PoB1J9hzXAfFT5/E/gKJfvtrCED2Dx5P611PizwRpHi22l+3W4a7Fs8NvOzMfJJ5DBc4znHOM9qAOgtrmG8tYbq2kWWCZBJHIp4ZSMgj8K851//iqfjFouij5rPQ4jqF0O3mnGwH6fIfoxqn8IPEjWmg6p4d1p/JutAZy+89IQTu+u0g/gVrR+EtvLf2er+LrtCLnXLxpEB/hhQkKPz3D6AUAM8SeG9W8Z/EFtO1GTULTwxaWgdTbvsW4mJGQT36/+O+5qv8P3u9C+IXiHwcl/cXulWUKT25uG3NCWCkrn/gZ4/wBntzXZay1r4jt9R8O2OuyWOpRqjSvaSYmgGVYHggjI4+hrgvh9bXPg34j6t4Su5I737VAL5NQKETSc9HOTnq3fqPegD1yiiigDN1/R4Nf0O70yfAWdMK2PuN1VvwODWB8O9Ynu9Hl0i/yupaS/2aZSeSo4U/oR+Ge9djXnvitW8J+MrDxXCCLK6ItNRCjsej/kB/3yPWt6XvxdP5r1/wCCc1b3JKr8n6f8A9CopFZXUMpBUjIIPBFLWB0hRRRQAUUUyV/Lhd/7qk0AcN8Jfm8KXUn/AD0v5W/Rf8K7yuG+EqbfAsR/vXEh/XH9K7mt8T/Fl6nPhf4MfQKKKKwOgKKKKACiiigAooooAKKKKAOP1HwpfXnxR0fxPHLbiysrR4JI2ZvMLMHwQMYx847jvTvHvhK68TWlhdaVdpaaxplwLizlkzszxlW68HA7Hp7111FAHm2k+EfFWs+MrLxD4zuLALpqH7HaWRbaHP8AEc/n16gdAK9JoooA8N+LXhLVofFlvqvh9Jh/bcf2C7ESkgscD5sdAy4/75Jr2XSNNh0bR7PTLcfubWFYV46hRjP1PWrtFAHnfiHwj4ls/GsvizwhdWX2i6gWG8tL3dsk2gAEEeyr3GMdeSKs+D/CGtWviW/8U+KLy2n1a6iEEcVqD5UEfBwM9+B+vJzXd0UAFFFFABVDWtJg1zRrrTbkfu7iMrnH3T1DD3Bwfwq/RTTad0JpNWZxfw61aeXTbjQdRONR0h/IcE/ejHCkeo4x9APWu0rz3xjG/hfxXp/jC3U/Z5CLXUVUdUPRvyH5qvrXoCOksayRsGRgGVgcgg962rJNqotn+fUww7aTpy3j+XQdRRRWB0BVXU38vSrx/wC7A5/8dNWqzvED+X4b1R/7tnKf/HDVR1kiZu0Wc98LU2/D+wP955T/AORGH9K7KuU+GqbPh9pQ/wBmQ/nIxrq6uv8AxZerM8P/AAY+iCiiisjYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKWraZBrOk3WnXIzDcRlD7ehHuDg/hXK/DrU51tLvw3qJxqGkP5XP8cX8JHsOn02+tdvXn/jaKTw34i07xjaoTGrC21BVH3ozwD/AE+oWt6Pvp03129f+Cc1f3Gqq6b+n/APQKKZFLHPCk0Th45FDIynhgeQRT6wOkKx/Fj7PB2tH/pxmH5oRWxXP+OH2eCNZP8A07MPz4q6es16mdV2py9GR+AE2eBNIH/TDP5kmukrD8GJs8FaMP8ApzjP5qD/AFrcp1XecvVhRVqcV5IKKKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKq6lp8Gq6Zc2F0u6G4jMbD69x7jrVqimnZ3Qmk1ZnDfDvUJ7aO98K6i3+naS5VCf44SflI9hkfgVrua4Dx3BLoGs6d4ys0J+zsIL5F/jibgH9cfUr6V3dvPFdW0VxA4eGVA6OOjKRkGtqy5rVF1/PqYUG43pPp+XT/IkrmPiG+zwDqx/6ZKPzdRXT1yPxObb8PdU9T5Q/8ipU0f4sfVF19KUvR/kbPhhdnhPRl9LGAf8AjgrVqjoieXoOnJ/dtYh/46KvVE/iZcNIoKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvf2UGpWFxZXKb4J4zG49iP51xnw9vZ9Plv/COoPm60xyYGP/LSEnII+mQfowHau7rgfH1rNo+oad4xsUJlsXEV2i/8tIWOOfzI/Eelb0XzJ03129f60OeuuVqqum/p/wADc76uK+Kz7fAV2P70sQ/8fB/pXX2t1De2kN1buHhmQSIw7qRkGuK+LhP/AAhQQdXuo1/mf6UYdfvorzDEv9xJ+R2lknl2Fun92JR+lT0gAAAHQUtYM3SsgooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDeWkN9ZzWlwgeGZDG6nuCMGpqKFoDV9Dgvh/dzaTe6j4Ov3JmsHMlqzf8ALSFjnj8wf+Be1L8V/m8O6dH/AM9NTiX/AMdej4g2c+m3Gn+L9PTNzprhbhR/y0hJwQfpkj/gRPaoPiBeQappfhia2ffBdalDIh9QQf8AGu6HvVY1V139f61PPm+WlOk+m3o9v8j0OiiiuE9AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIrm3iu7WW2nQPDKhR0PRlIwRXh7i70rxJo/hC73PHZazHLbSn+KJ2GP8fqSO1e61yXivwv/AGprmg6zAmZ7G7j83H8UW8HP/ATz9Ca6cNVUG1LZ/mcmKpOaUo7r8jraKKK5jrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorA1Pxv4Z0a/ksdR1m1trqMAvE7HK5GRn8CKAN+iuU/4WZ4L/6GKy/76P8AhW9pWr6frliL3TLuO6tixUSRnIyOooAu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcvr3g3wldvea1q2jW08wjMs0z5yQi/X0FdRXGfFbU/7K+G2sSBsPPELZffzCFP/jpb8qAPO/gz4J0XxBoeparrGlwXKvd+VAr5wgVcnHPT5gPwr2vS9KsNE0+Ow021jtrWMkrFGOAScn9TXNfCzTP7K+G2jRFcPNEbhvfzCWH6ED8K7GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4b4oeENW8a6HZ6ZplxaQKlyJpjcOy5AUgAbVOfvH07V3NFAEVrbR2dpDawjEUMaxoPQAYH8qloooAKKKKACiiigAooooAKKKKAP//Z
|
<image>Find the measure of $∠T$ to the nearest tenth.
|
21.8
|
Geometry
|
Geometry3K
|
test
|
89
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAClANwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuYsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuf1zxhp+iyi0USXmoNwlpbjc5Pvjp/P2rKWw8XeI/n1C9XRbNulvbczEe7dvz/AArojh5OPNN8q8/0W7MJV4p8sFzPy/V7I6e/1nTNLGb6/t7c9lkkAJ+g6msCX4jeH1cpbyXN24/ht4GJP0zirGn+A/D1gd7WQu5T96S6PmFj6kHj9K6GKCKBNkMSRr/dRQB+lO+Hj0cvw/zFavLsvx/yOUHj5G5j8O66y+v2X/69J/wsKzjP+laPrNuB1aS24H15rsKKPaUf5PxD2db+f8Dm7Px74avTtXU0ib0nUx/qRj9a6CGeK4jEkEqSxnoyMGB/EVWvdH03UVxe2FtP7yRgkfj1rnZ/AFpbym40K/u9KuOv7qQtGT7qev50Ww89m4+uq/C35CvXjulL00/O/wCZ19FcV/wkHiDw0QviKxF5Zjj7fZjp7uv/AOr8a6rTtTstWtFurC4SeFv4lPQ+hHUH2NRUoTgubdd1sXTrRm+XZ9nuW6KKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAQkKCSQAOST2ribzXtR8U3kml+GH8q1Q7bnUyOF9k9T7/ljrVXxBrieJNb/4Ru01GGzsUP8Apty0qqZMdY0z19/8Bz2WlwadY2MVnpxhWCMYVY2Bz7+5PrXYoKhFTmryey6Lzf6L7zkc3Xk4xdord9X5L9X9xV0Hwxp3h+I/Zoy9w/8ArbmX5pHPfnsPYVs0UVyznKb5pO7OmEIwXLFWQUUUVJQUUUUAFFFFACEBgQQCDwQe9cfqfhGaxu21bwtKLK86yW3/ACxnHpjoP89OtdjRWtKrKm7x/wCAzOpSjUVpf8FGB4c8Tw64slvNE1pqUHE9rJwV9x6it+ua8TeGW1F49U0yT7LrNtzFKvAkA/hb1/z2qx4Y8RLr1k6yp5GoWx8u6tzwUb1A9Dg1pUpxlH2tPbqu3/AM6dSUZezqb9H3/wCCbtFFFcx0BRXH+OdRuPD8uk+IFuJ1sbW48q+hRjtaKQY3FR1KnGPrV3w4NS1KeXXtReeCO4XbaWBchYouoZ16GRuvPQcetNK6uD0OjooopAFFFFABRRRQAUUUUAFcx4y1i5tLWDStM51TUW8qHB+4v8T+2PX8e1dMSFUsxAAGSTXF+E4zr2v6j4pnBMZY21iG/hjXqw+v9Wrpw8Ur1JbR/F9F/XY568m7U47y/BdX/XVl+x8BaBbadBbT6fDcSIo3zODudu5/+tUUnw38Lv8AdsHj/wB2d/6k11dFL61Xvfnf3j+q0bWcF9xyH/Cu9Pjx9k1PVrXHQRXOB/KkHgzUoQfsni3VUPbzW8wD8CRXYUU/rdbq7+tmL6rS6K3pdHH/ANgeMIf9T4tWTGf9bZrz/OgweP4Sdl3o1wvberqfyAFdhXC/EjxLqekaBqEGm6XqBcw86hGQsUIPBIYHduH0/Gj61J7xT+S/Sw1ho7KTXzf63LX9o+O4B+80TTrrn/lhPs4x/tNQPE/iWIgXHg6cjuYrlWP5Af1rYvtQksPBs+ohyZYLAzBjydwTOeevNYWh6V4uu9P06/u/GMwMscc0tv8A2dBjkAlc4z7Zp+1g21KC09f8yVSlZNTevp/l5kv/AAnjxf8AH14Z1uL1xb5/nilHxI0JCBcre2rH+Ga3IP6Zrr6QgMMEAj0NL2lB7w+5/wDAY/Z1ltP71/k0c3D4/wDDE5wuqKp9JInX9SMVej8VeH5Pu61YD/enVf5mrk2mafcAiextpQc5Dwq2c9eoqjJ4S8PS/e0ayH+7CF/lRfDvpJfc/wBEFsQuqfya/VmjHf2c3+qu4JP92QGuT8V2cuialF4t02MlosJfRL/y1iPGfqOOfoe1XJvh54XmYt/Zuwn+5M4/TOKrP8NdD8to4Jr+3VvvCK44PY9Qa1oyoQldSduqa3X3mVWNecbcq8nfr9x1dpdQ31pDdW7h4ZUDow7g1NXluieHryHxDqGgjxBqVm1qBLbCOQ7JIieu3pnkfiTXRf8ACN+Kof8AUeMHb0Etop/Uk1NTDU4ysqi+ae3yTHTxFSUbuD+TX6tEWraNceObm8tr+K4tdFtg0cMbq0bXM2MeYQedi5+X1PPTFa/gye/m8K2SapbzQXsCmCYSoVLFDt3DPUEAHPvWcbLx5AB5eq6VdAd5oihP/fIpPtfj6DO/TtIuQAcCKRlJ/M4qVQ0spx+//Oxo6+usX93+VzsKK4//AISLxZD/AK7weX/653i/0Bps3ju4so2kv/DGrQRqMs4j3KB/vcCl9Uqvaz9Gn+ovrVNau69U1+h2VFYfh3xRbeJY5JLSzvI4k4MkyKFJ9AQxzW5WM4ShLlkrM2hOM480XdBRRRUFhRRRQBznjrUX07wldmLJmuALeMDqS/Bx74zWpomnLpGiWdguP3MQViO7dz+JzXO+LsXvibwxphyUa5a5cf8AXMAj+tdjXTU92hCPe7/Rfkznh71aUu1l+r/NBRRRXMdAUUUUAFct8SP+Sd63/wBe/wDUV1NZfiTRv+Eg8O3uk+f9n+1R7PN2b9vPXGRn86T2HF2aZV1O3sbzwQ9rqV6tlZz2ixS3DOqBAwA6twOuOa5DxZ4dsPCGgReItEkuY9StJYczm5dzcqWClXySCCD+Hau7vtFtdT8PyaNegyW8kAhcjgnA6j0PGa55PA15cyWcOs+I7nUtNs5FkhtGgSPcV+75jry+Pw960TXPfzIStBJ9jslO5ASMZGcUtFFQMKKKKBhRRRQBxvi4f2V4j0LX0+VRN9kuCO6PnGfp81dlXOePLMXngzUVx80aCVT6bSCf0zWto92b/RLG7PWa3SQ/UqCa6anvUYS7XX6r82c8PdrSj3s/0f5Iu0UVg+IvFNroSLCqNdajNxBaRcsx7Z9BWMISqS5Yq7NZzjCPNJ6Ghq2sWOiWLXd/MI416DqzH0A7muRisNU8dSpdassljoatuhswcPP6M57D/I9auaT4WutQv01vxQ4nvBzDaDmK3HpjoT/nnrXYV0c8aGlPWXft6f5/cYckq+s9I9u/r/l9/Yit7eG0t0t7eJIoYxtVEGABUtFFcrd9WdOwUUUUhhRRRQByF9+9+KumRkDEGnvKCfViy119che/uvirpjkjE2nvEAfVSzV19dOI2h/h/VnPQ3n6/ogooormOgKKKKACiiigAooooAKKKKACiiigAooooAz9diWfw/qUTfde1lU/ipqh4JYv4M0snr5OPyJFX9dmWDw/qUr/AHUtZCf++TXnvh251vxFoFnoumK9jYQJsur49W5JKp+f/wCrv20aTqUHrZJrX5M46tRQrLS7aenzR0mteKria+Oi+G4hd6keJJusduPUnoSP85PFQN4dfwz4b1fVYXa+182skn2pxubftJwoPQfz/Suk0XQ7DQLFbSwhCL1Zzyzn1Y96q+MNVuND8I6nqVooa4ggLR5GQD0yR7Zz+FY1ayUHTpaLv1f9djalSbmp1dX26L+u551PpdnpXhPw74l0medteup7bfP9pdmumcjejAnBHXjHGK9grynW9AsfCvhGDxZpTv8A21F5UpuGkLLcGRlDjYflAbP8IFeqRsXjRmG0kAkelRPr6v8AQ0XR+Q6iiisygooooAKKKKAOO8Wf6H4p8MakeEW4a3c/74AH9a7Gua8eae1/4TuWiB8+1IuYiOoK9SPwzWvo2opq2jWl+nSeIOR6HuPwORXTU96jCXa6/Vfmznp+7WnHvZ/o/wAkXqKKK5joCiiigAooooAKKKKAMPxN4mtvDdtbPIqSz3NzHbxQ+ZtLbmAJ6HoMmrPiDXLbw7o8uo3SyOiEKscQy8jscKoHqSa4z4ieHdIt47PWIrCFNRk1S233AB3NlwD/ACrt9W0az1qGCK9RmSCdLhArEfOpyP8A9VNWtfz/AMgej+X+Zh2fi+9TV7PT9d0CbSjfEraSm4SZHYDO1tv3Wx25+tdXXB6vOvi7xppenacDJa6LdC6vrpfuLIAQsQPduefSu8pvZMXWwVR1bWLHRLFru/mEca9B1Zj6AdzWf4i8U2uhIsKo11qM3EFpFyzHtn0FZuk+FrrUL9Nb8UOJ7wcw2g5itx6Y6E/5561tTopR9pV0j+L9P8zCdVuXJT1f4L1/yOY8Uz6xr3h651i+36fpUZX7LZ/xzksAGb25z+HHqfSNEsxp+hWFpjBigRG47hRn9a5vxgf7U17QfD6c+ZP9qnA7Rpnr9fm/KuzrbE1L0YRtZau3lsv1MsPTtVnK93or+e7/ADQVFc20N5bS21xGssMqFJEYZDKRgg1LRXCdpyVp8PNItZ7ctd6ncWlq4e3sbi6L28TDoQp5OO2Sa62iim22IKKKKQwooooAKKKKAEZVdSrAFSMEHuK4vwfI2ia1qXhWckLE5uLIk/eibqPw4/Hd6V2tct4y0i4mht9a00f8TLTW8xAP+WifxL78f1HeunDyTvSltL8H0/y+Zz14tWqR3j+XX/P5HU0VnaHrFtrukw39sflkHzJnlG7qfpWjWEouLcZbo2jJSSktmFFFFSUFFFFABRRRQByfxBs7m90Wxjtbaad11K2dliQsQofJJA7D1qTx/d6la+GWTS4b2Se4mSF2soWkljjJ+dlA77QQD6kV1FMmmjt4XmmkWONBlnY4AHuaa7ef+X+QXs7/ANdTjfD/AIh07ToLTSNO8L+IrWDcI1aTTHVQSeWdj+ZJqfWvFVxNfHRfDcQu9SPEk3WO3HqT0JH+cniqdxq2p+NLiSw0JntNJU7Z9RIwZPVUH+ffHfqdF0Ow0CxW0sIQi9Wc8s59WPeutxhR96ory7f5/wCX3nJzyraU3aPf/L/P7jP8O+FLfRXe8uJWvNVm5mu5OTn0X0H+fat+SRIo2kkYKigszHoAO9OrjPF19Nq19D4T0x/39xhryRf+WMPfPuf8B3rOKniKnvP1fZGknGhT91ei7sTwer61rOp+KJlISdvs9mGHSJep/Egfjmu0qCys4dPsYLO2TbDCgRB7Cp6ivUVSba26enQqjTcIWe/X1CiiisjUKKKKACiiigAooooAKKKKACiiigDhdTtrnwXrD63p0TS6Pctm+tUH+qP99R/n9RjsrK9ttRs4ru0lWWCUZV171Oyq6FHUMrDBBGQRXEXWjan4QvJNR8Oo1zpsh3XGmEn5f9qP/D+fbrTjiElJ2mtn38n5+ZytOg7xV4vp29PLyO4orJ0PxHpviC282ym/eKP3kL8PH9R/XpWtXNOEoPlkrM6IyjNc0XdBRRRUlBRRWD4i8U2uhIsKo11qM3EFpFyzHtn0FXCEqkuWKuyJzjCPNJ6Ghq2sWOiWLXd/MI416DqzH0A7muRisNU8dSpdassljoatuhswcPP6M57D/I9auaT4WutQv01vxQ4nvBzDaDmK3HpjoT/nnrXYV0c8aGlPWXft6f5/cYckq+s9I9u/r/l9/Yit7eG0t0t7eJIoYxtVEGABUtHSuR1bxg8t2dJ8Nw/b9RPDSLzFB7s3Q4/L+VY06U6stP69TapUhTWv9ehc8T+JhpCR2Vii3OsXJC29uOSM/wATeg/n+dP8LeHTolpJNdSefqd0fMupyc5b0B9BTfDnhZNHeW+vJjeatcczXL84/wBlfQf59BXQ1pUqRjH2VPbq+/8AwDKnCUpe0qb9F2/4IUUUVzHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHN614NsdUuPt1rI+nakOVurfgk/7QGM/wA/es4az4o8PfJrOm/2naLwLuxHz49WX/8AUPeu1orojiHblmuZef6Pc55UFfmg+V+X6owNO8a+H9TwItRjik6GO4/dsD6c8H8K3kdZFDIwZT0IOQaztQ8PaPqpJvdOt5nPVymG/wC+hzWC/wAONGXJs7jULHPUW9wcH65Bp2w8tm4/j/l+QXrx3Sf4f5/mO1rxVcTXx0Xw3ELvUjxJN1jtx6k9CR/nJ4q74d8KW+iu95cStearNzNdycnPovoP8+1ZFp8OE08Otj4g1W1RjkrDLsz9cYzVg+A2l4ufEuuSr6faf8c10SdBR5Kc7Lro7v8A4Hkc8VWcuepC76aqy/rudPd6hZWEZe8u4LdB3lkC/wA65u6+IGmecbbSYLnVbrsltGdv4sR09wDUtr8PfDlvJ5j2b3Mmc7riVmz9R0P5V0VtaW1lEIrW3igjH8MSBR+Qrnvh495fgv1f5HRavLtH8X+n6nHnR/EvifnWroaXp7f8udocuw9Gb/P0rqNL0ew0W0Ftp9skMfU46sfUnqTV6ioqV5TXLsuy2/r1KhRjB8277vf+vQKKKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==
|
<image>Find x to the nearest tenth. Assume that segments that appear to be tangent are tangent.
|
7.2
|
Geometry
|
Geometry3K
|
test
|
90
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHBAesDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuJ+J/i3/hFvC0nkSbb67zFAAeR6t+FeVfD7U9e0v4jadZ6xfXbi6iz5U0zMMMMjgnrRH3nYJaK59F0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXE/FbWJNG8B3ksEzRTylYkdGwwJPY15r4c+H/AIx8RaFbarH4qnt0uF3KjzSE4/A0lrfyG1a3mfQFFeDaj4W+Jng63bUrPX5b+CH5nRJ3fAHco/BFehfDfx4vjTSX+0IsWo22BMi9GHZhVLXYT03O3ooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNd1jRndgqqMknoBTq81+MXi3+wvDn9mWsmL2/BT5eqx9z+PSpk7IcVdnIRmT4pfFjecto+mnj0KqePzNS/E5Bo3xU0DUoxsRvLHHbDbf5VjeAviBF4J0d7VfDN1c3Er75ZxJt3egxsNZ/xF8d/wDCYNp840aewe1Y/PI+7d3x90VXwuNujD4ua/VH04rB0Vh0IyKWs3w/di+8PafdA5ElujZ/CtKnJWdiYu6uFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4z8eb5pItH0eM/PNIZCPXsK9U8P2K6b4e0+zUYEUCLj3xXjPi4nxH8c9P04fNFbMikemPmNe8AYGBRD4L92E/jt2Q10WRGRgCrDBB7ivBvhePsPxd1eyhOISJRgdODkV7ZrWpw6Po13qFw4SOCIuSfXHFeNfBKxm1LxLq/iGVTsOVUnuzHJ/SiHx/Jjl8HzR7pRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiurmKztZbmdwkUSF3Y9gK8G8NQzfEz4pz6zdKTp1k25VPTA+4v9a95ubW3vbZ7e6gjngkGHjkUMrD3B61X07R9N0iN49N0+1s0c5ZbeJYwT6nAojpLmB/DYt7EAxtX8q88+NFiLn4fzSqo3QTI+QO3Q16LUF3Z21/bPbXlvFcQOMNFKgZW+oNTJXVhxdnc5L4U33274eaYxOTEpiP4Gu0qrYabY6VbfZ9Ps4LSDOfLgjCLn1wKoa34q0jQIib26XzR0hjIZz+H+Na2lUl7q1Zm5RpxvJ2Rs0hIUEkgAdSa8tm+JGu6zM0Hh3R2xnHmMhkYe57D8c0q+CvF3iEh9e1kwxNyYgxbH/ARhRXT9TcdaslH8X9xyfXVPSjFy/Bfezur3xVoOn5+06raqR1VX3kfguTXPXnxW8P25IgW6uT6pHtH6kH9KWy+FXh+3wbg3N23fzJNo/wDHcV0Nl4X0PT8fZtKtUYfxGMFvzPNH+yx7y/Af+2T7R/FnFN8XBKdtnoU0p95v6BTTf+FgeK5+bXwu5X3glb9RivTFijQYVFUDsBTqPb0FtT/Fh9XxD+Kr9yR5j/wm3jnr/wAIuMf9esv+NH/Ce+MIfmn8LPt74t5R+vNenUUfWaX/AD7X4h9Vq/8AP1/geZD4szQHF74fljPc+aR+hWr9p8WtDmIW4t7u3PrtDD9Dn9K7wopGCoP1FZ954f0e/BF1ptrKfVohn86Pa4Z707ejD2WKjtUT9V/kVLLxl4dv8eRq1uCe0reWf/HsVtxyJKgeN1dD0ZTkGuOvfhf4busmKGe1Y94ZT/Js1hSfDvX9FczeHtcbHXy3YoT+WQfxAo9lh5/BO3qv1Qva4mHxwT9H+jPUKbI4jjZ2OFUEn6V5mvi3xp4fA/tzRTcwL96VFwcf7y5X8xXRaX8QPDusxiGS4FvJINrQ3IwD7Z6frUVMJVirrVd1qaU8ZSk+Vuz7PQ8U8OeMNK0z4n6l4g1gzNGXkEflJuOSceo7CvSpfjp4SRCUj1GRuyiFRn82rrh4L8JyDePDmkMG53CzjOf0qSPwb4YicPH4d0pGHQraRg/yrmWiUex1tpty7njera54m+L95HpukafJZ6Mr5kkcnafdm6H6CvZvC/hy08LaFBpdoMrGMu5HLt3JrWiijhjEcUaoijAVRgCn01ZKyE9XdhRRRSAKCcDJ6UVS1hLiTRb1LRS1w0LrGAcZYjik3ZXGld2OD1f4vW1tq82m6Hol7rc0JIkNvkKCOuMKxP5VqeEPiVp3iq9k06S0n07U4xk21x1Prg4H5ECqnwl8NXnh7w5ONTszb6hPOzSbyCSO3IzXOfEJF0b4reG9XVRCkrBJJF6sc45A57+lUlaSi+onqm10PY6KqahfGwsJLsWs9yEG4xwBd+PX5iB+tZ3h3xbpHifTpL3Tp22QnEySrsaI+jdvyJpAblFc74b8Zad4quLyPTYbsx2r7GnkQCNj/skE5roqACiivPp/GWp2nxbi8O3PlJps8OYvkyzNjg5H9aFq7B0bPQaKKKACq9/eRafYXF5MwEcMZdiTjoKsV5P4v+HXinWYr6WXxdLLafNIll5ZC4HIX72PzqZNpFRSbO18FeLF8Y6GdTSzNqolaMIZN+cd84FdHXmXwOlT/hCprbd+9hunEi4+7mvS3dY42d2CqoJJPYVcrJkRuzmvHHjW08E6Qt7PD9omkfZFbh9hf15wcD8K1fD+rDXdAstUEPkfaYw/l7t232zgZ/KvFfFtvc+OrHXvE21m0/Th5FimcA4PzPXqXw3uIrj4f6O0TbgsO08EYIJzSjqm35Dlo1bzOqooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqOaeK2heaaRY40GWdzgAUASVi674q0nw9ETe3I83GVhT5nb8O341x+ufEC71O7Ok+FIHmmb5TcBf/QR2HuayNW8BNpnha91fVrp7jUiA2A2VUk9z3Nd9LCRTXtna+y6/8A8+tjJNP2Cvbd9P+CW5PEHizxxK0GiQNYWGcNNnHHu/9BWzo/wt021YT6rPJqE/Ugkqmfp1P4mtb4ff8iXYf7p/nXT0q2JlCTp0vdS7b/eFDCxqRVWr7zffb7iG2tLezhWG2gjhiXgJGoUD8qmoorhbvueglbRBRRRQAUUUUAFFFFABRRRQAUUUUABAIwRkVzGt+AdC1rc7W32a4P8Ay2t/lOfcdDXT0VcKk6bvB2IqU4VFaaueUyaF4v8ABLefpF02oWC8tDgnA90/qK6Lw98SNL1Yrb33+gXnQrIfkJ9m7fjXaV5H8SdMt5/F2lwRokLXSYd0UZJ3YyfWu6lOGKfJVWvdfqefWhPCR56T07P9D1sEEAggg9CKWvJodQ8SfDq4W3v0a+0gnCuDkAex/hPseK9G0XX9O1+0FxYThx/Eh4ZD6EVzVsPKmuZax7o6qOKjUfK9JdmadFFFc50hRRTJZFhheVvuopY/QUbAYnizxZp3hHSXvb6TLniGFT80jeg/xrz3wn4f1rxx4li8XeJ4zDawnNlaEYz6HHp/Oszw1c6N4v8AF9/4h8V6vZJHazGOys7m4RFAB4O1jyK9ZXxb4Z4RPEOkegAvY/8A4qiOlpPf8v8AghLrFbGyQGBBGQeCK+cNRt9Q0v4g6t4S0S9iit9WmVXYN9wE5I9j1r2jxz4nXw94akntnVr65HlWaLyXc9MV5N4m8B3XhnwjYeJmd5NajuRcXkhOT8xzj8KStzXe2z+ZWtrLfp8j2zw7oNn4a0W30yyQCOJfmbu7dyau397BpthPe3LFYYELuQMnAqr4f1aPXNAstSiIKzxBj7Hv+taDosiFHUMrDBBGQRVTvd9yI2sjzY/HPwiDjbqJ/wC2C/8AxVee6z8QNFvvinpviOFbr7DbKocNGA/HoM/1r3Y+FfD5OToenE/9eyf4V5P4h0jTYvjho1lHp9qlq6LuhWJQjdeoxikvjiU/hZ0n/C9PCP8Ac1H/AL8L/wDFV3Gga9Y+JNIi1PT2c28uQN67SCPUVH/wivh7/oB6d/4Cp/hWlb28FpAsNvCkUS8KkahQPoBT0ES1Xvv+Qfc/9cm/kasVXvv+Qfc/9cm/kamWzHHc8x+Bv/II1n/r9P8AWtL4r+JBpumW2ixXC202pvsedjgRxfxHNZvwN/5BGs/9fp/rXfa14V0TxE8T6tp8V00QIQvn5Qacle3y/IIuzfzOB1vxJ4OsvhneaFpWsWkjLaGONEJy7fl1NaPwd1fT7jwZaabFdxvewBmkhB+ZQT1NQ+NPh94V07wbqt5aaNbxXEMBZHXOVPr1qT4OaLp1t4PtdUhtUS9nVllmHVgD0pxd3J+hMlZRSPR6KKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKy9e16y8Paa95ePgDhIx9529BTjFydluTKSinKT0JdW1iy0Sxe8vphHGvQd2PoB3NeZtJrnxM1DZHus9Eibk9j/8U36CnaTo2pfEPVTq+ss8WmIcRRA43D0Ht6mvU7W1gsrZLe2iWKGMYVFGABXc3DC6LWf4L/gnAlPF6vSn+L/4BQ0Pw9p3h+0EFhAFJ+/IeWc+pNZvxC/5Eq//AN0fzrp65j4hf8iVf/7o/nXPRk5V4uTu7o6a8YxoSjFWVmHw+/5Eqw/3T/OunrmPh9/yJVh/un+ddPSxH8WXqx4b+DD0QUUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmPj/wD5Hrw/+H/oVenV5j4//wCR68P/AIf+hV2YH+L8n+RxY/8Ag/NfmelT28N1A8M8SSxOMMjjIIrzTXvBd94bvP7b8KvIoT5pLYHJA749R7V6fRWNGvKk9Nuq6M2r4eFZa79H1RynhLxvZ+I4hBLi31FB88JP3vdf8K6uuC8Y+BBeO2r6J/o+pRneVTgSEdx6NU/grxqNYX+zNT/c6pF8pDceZj+vtW1WjGcfa0duq7f8AxpV5wn7Kvv0ff8A4J21MmiSeF4ZBlHUqwzjINPorjO04Zvg/wCBmYsdGbJOT/pc3/xdC/B/wOjq66OwZTkf6VN/8VXReKbtrLwzfzxsVkERVCDggngY/Or2nxvDptrFIzM6RKrFjkkgDOaAM668J6Ne6pZalcWryXNiALctM+1Mf7OcfpWpdWltfWz213BFPBIMPHKoZWHuD1qaigCvZWFpptsttY2sNtAv3YoUCKPwFWKKKACuJ1TwNPqHxH07xOt5GkNsgDQlTuJHTBrtqKOqYdGgooooAKRlDqVYAqRgg9xS0UAU7DStO0pHTTrG2tFkbc6wRBAx9TgcmrlFFAEVzbQXltJb3UMc0Eg2vHIoZWHoQetMs7G0061W2sraG2gT7sUKBFH0AqxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMmmjt4XmlcJGilmY9ABQBU1fVrXRNNlvrtwscY4Hdj2A96800bSr74h6y2sauWTTImxFD0Df7I9vU02V7z4l+J/Kj3xaLaNyfUf4n9K9VtLSCxtIra2jEcMahVUDoK72/qsLL43+C/zPOS+tzu/wCGvxf+Q+GGO3hSGFFSNBhVUYAFPoorgPRCuY+IX/IlX/8Auj+ddPXMfEL/AJEq/wD90fzrbD/xY+qMMT/Bn6MPh9/yJVh/un+ddPXMfD7/AJEqw/3T/OunoxH8WXqww38GHogooorE3CiiigAooooAKKKKACiiigAooooAKKKKACvMfH//ACPXh/8AD/0KvTq8x8f/API9eH/w/wDQq7MD/F+T/I4sf/B+a/M9OooorjO0K4Xxt4KOon+2NI/c6nD85CceZj+td1RWlKrKlLmiZVqMaseWRx3gbxf/AG9amyvTs1O3GHU8FwO/19a7GvNvHHhq502+XxRoYKTxNunRB1/2sfzrrfCviODxLpCXUeFmX5Zo8/db/Ct69KLj7ans912Zhh6soy9hV+JbPuiv4rP2uXStIXlru6V39o0+Zj/KukrmdKP9seKr3VettZr9jtz/AHmzl2H48V01ch2BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFebfEHXJ9RvYfCulEvPMwE5X/0H+prsfFGuR+H9BuL1iPMA2xL6uelcr8NdBfyZfEN+C93dkmMt1Cnv+NdmGiqcXXl029f+AcOKk6klh4dd/Jf8E6zw5oUHh7R4bGEAsozI/d27mtaiiuWUnJuT3Z2RioRUY7IKKKKkoK5j4hf8iVf/wC6P5109cx8Qv8AkSr/AP3R/OtsP/Fj6owxP8Gfow+H3/IlWH+6f5109cx8Pv8AkSrD/dP866ejEfxZerDDfwYeiCiiisTcKKKKACiiigAooooAKKKKACiiigAooooAK8x8f/8AI9eH/wAP/Qq9OrzHx/8A8j14f/D/ANCrswP8X5P8jix/8H5r8z06iiiuM7QooooARlV0ZGAKsMEHuK8X8RC9+HniZm02QJa6mCqA8hM9Tj/Z6ivWdY1i10WyNxckkk7Yol5eVz0VR3Nc3J4Qk1/Try71xV/tK7TESjkWqjlVX39T3rehV5G4v4XoznxFHnSlH4lqjo9CtLWx0S0gs3EkIjBEn98nkt+JrRrzr4bazNBJc+Gr8lbi1Y+UG9O4/rXotTXpOlNxKw9ZVqamv6YUUUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWT4l1ZdE8P3d8xwyIRH7selVGLlJRXUmclCLk9kcB4jlk8aeOoNDgJ+w2bfvSOnH3j/SvUYIY7eCOGJQsaKFUDsBXCfC7SWh0y41i4H7+9ckE9do/wATXf104uSUlSjtH8+pyYOLcXWlvLX5dAooorkO0KKKKACuY+IX/IlX/wDuj+ddPXMfEL/kSr//AHR/OtsP/Fj6owxP8Gfow+H3/IlWH+6f5109cx8Pv+RKsP8AdP8AOunoxH8WXqww38GHogooorE3CiiigAooooAKKKKACiiigAooooAKKKKACvMfH/8AyPXh/wDD/wBCr06vMfH/APyPXh/8P/Qq7MD/ABfk/wAjix/8H5r8z06ms6qyqzAFuACetcv418XT+F9P32ej3uo3Tj5RFCzRp7swH6V5L4J8Y69rfj6SW+uLX+0ZIzHbJesyRxZ6hUA5PtkVxnafQlc/feKYRcNYaPEdT1EHBjhP7uI+sj9F+nX2qI+GLzUedd1q5u0PW2tv9HhPsQvzMPqxrds7G0062W3s7eKCFRgJGoUD8qAMnS9AlS9/tXWJ1vNTIwhAxHbr/djB6e56mt6iigDzL4g6dNomtWfimwBUq4WcD17E/XpXoWl6hFqumW99AcxzIGHt7VHremR6xo11YyDIljIHse1cR8L9SkhW98P3RxNauWQH0zgiu1/vsPfrD8jgX7nE2+zP8/8Agno1FFFcR3hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmfxLuZNS1fSvD0DH964eQD3OB+Qya9M6V5b4c/4qP4n3+qN80NpkRn07L/WuzBrllKq/sr8ehxY180Y0l9p/h1PS7K0jsbGC1hULHEgRQPap6KK5G7u7OxKysgooopDCiiigArmPiF/yJV//ALo/nXT1zHxC/wCRKv8A/dH862w/8WPqjDE/wZ+jD4ff8iVYf7p/nXT1zHw+/wCRKsP90/zrd1HUbXSdPnvr2URW8KlnY+lLEO1WXqx4ZXow9EWqK8Mn8ceNviDqktn4QiaysIzgz/dOPVn7fQVJP4H+KmnRG8t/FEl1Ko3GEXkhLewDDB/Gsul2b26I9vorzD4bfEi712+l0HxBGItVhztfbt8zHUEdjXp9Nom4UUUUhhRRRQAUUUUAFFFQXlwtpYz3DHAijZz+AzSbsrglfQnor550PX/iX4wub19E1QmGGQ5DlFABPAGRW3/ZPxn/AOgnH/39T/4mmM9rrzHx/wD8j14f/D/0KrfgXT/H9vq8sniq/EtoI8Iispy34Cqnj/8A5Hrw/wDh/wChV2YJfvfk/wAjhx/8L5r8z07GetVbjTbG7ZWuLOCUqcqXjBwfbNWqK4ztCiiigAooooAK8s8TofDPxHsNXiysN2QJcdCehr1OuK+J+mG98Lm5QfvLRxICOw6GurBySqqL2en3nJjYN0nJbx1XyO0BDKGByCMg0tYXg/U/7W8LWNyTlwmx/wDeHFbtc84uEnF9DphNTipLqFFFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm6/diw8P39yTjZA2D7kYH865L4UWfl+H7i9YfPczk59hxVz4nXv2XwfLGD808ix49uprW8G2X2Dwlp0JGGMQZvqea7F7uFf95/kcT9/Fr+6vzN2iiiuM7QooooAKKKKACuY+IX/IlX/wDuj+ddPXMfEL/kSr//AHR/OtsP/Fj6owxP8Gfow+H3/IlWH+6f51598b9ZuLm603wxaMczsHkA7knCg/zr0H4ff8iVYf7p/nXlnifF1+0DYxTfcWSIDPsuaVdc2IcX3ZWGdsOpdkev+E/D1t4Z8O2unW6BSiAyNjlnPUmtuiis27u5olZWPPdQ+Gsk/wARIfFVnqSWwV1d4PJJLEDB5z3+lehVjad4r0LVtRk0+w1GK4uos740ByuOvOMVs0lokug3q7vcKKKKACiiigAooooAK5P4k6l/ZfgHVJg2HePy1+rcV1leS/HnUTD4csdPU/Ncz7iPZRUT1Vu5cPiuL8E20/TPB8s1xe2sU1zOWKySqpwOBwTXpf8Abelf9BOy/wDAhf8AGvI9I+BenXmkWlzcatfRzSxK7ogXAJGeOKu/8KC0j/oNah+Sf4VrLczjax61DNFcRiSGVJIz0ZGBB/EV5p4//wCR68P/AIf+hV3ug6PBoGiWul27M8VumwM/Vvc1wXj/AP5Hrw/+H/oVdWCt7bTs/wAjix/8HXuvzPTqKKK4zuCiiigAooooAKqanbLe6XdWzDIkiZcfhVuimnZ3QmrqzPOfhPclbHUdOc/NBNkD9D+tejV5f4W/4lHxR1XT+iThivv3r1CurGr97zLqkzjwD/c8r+y2gooorkO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzj4tuWsdLtVPMsx/kK9AskEVhboBjbGo/SvOPiUTN4n0C17F1P5vivTVAVQo6AYrsraUKa9fzOKhriKr9F+AtFFFcZ2hRRRQAUUUUAFcx8Qv+RKv/APdH866euY+IX/IlX/8Auj+dbYf+LH1Rhif4M/Rh8Pv+RKsP90/zrzf4xaPe6R4m0/xfZRlkQqJSB91lPGfYivSPh9/yJVh/un+ddFc20F5bvb3MKTQyDa6OuQR7ilib+2k1umysK17GKfVI5Tw/8S/DOt6dFO+q21pPtHmQ3MgjKnv14P4Vznjz4taXZabLp+gXK3uozgxh4eUjzxnPc/Srt/8ABPwje3DSxxXVruOSkEvy/kQcVreHvhl4X8OTrcWth51yv3Zrht7D6Z4H4CsmlLc2T5djD+EPgufQNLl1XUkK6hfc7W6onXn3PWvTKKKbdyUrBRRUVxcQ2lvJcXEixxRjczscACklcbdiWivPLv4uaVDdGO3srieIHBk3Bc/QV1mgeJNO8R2hnsJSSvDxuMMv1Fbzw1WnHmlGyMKeKo1JcsJXZr0UUVgbhXgPxi1GC6+Iel2NxMI7a1VDKx5CgnJ/Svfq5PWPhr4V17U5dR1LTnmupcbn+0SLn8A2KX2k+w09Gu5DF8TfBMMKRrr0G1FCj93J2/4DUg+KHgtmCjXoSScAeXJ/8TVL/hTngb/oDv8A+Bcv/wAVTo/hB4IhlSRNIYMjBhm6lPI/4FVddRdNDt45FliSRDlHAZT6g15n4/8A+R68P/h/6FXpqKqIqKMKowB7V5l4/wD+R68P/h/6FXXgv4vyf5HFj/4PzX5np1FFFcZ2hRRRQAUUUUAFFFFAHmGo/wCh/GazboJlUfmDXp9eYeOP9F+IehXI6tj9GxXp9dmK1hTl5fkcWE0nVj5/mFFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeUfFCaaDxZo0sEfmSpGGRME7iHOBxVn/hOPG3/Qr/APktL/jR8Rf3fjHw/MfuhlGf+B16cDkZr0p1Ywo0+aKej/M8uFKc69Tlm46r8jzH/hOPG3/Qr/8AktL/AI0f8Jx42/6Ff/yWl/xr06isfrNL/n2vxN/qtX/n6/wPMf8AhOPG3/Qr/wDktL/jR/wnHjb/AKFf/wAlpf8AGvTqKPrNL/n2vxD6rV/5+v8AA8x/4Tjxt/0K/wD5LS/40f8ACceNv+hX/wDJaX/GvTqKPrNL/n2vxD6rV/5+v8DzH/hOPG3/AEK//ktL/jWV4j8V+KdR0O4tdQ0H7NbOBvl8iRdvPqTivY65j4hf8iVf/wC6P51pRxFN1IpU0tfMyr4eoqUm6jej7HBeHfFninTtEt7XT9B+02yDCS+RI278QcVqf8Jz42/6Fj/yVl/xrqfh9/yJVh/un+ddPRWxFNVJJ009QoYao6UWqjWi7Hl//Cc+Nv8AoWP/ACVl/wAahuPiL4tswhufD8UIdgqmSCVcn0GT1r1auL+Iv/HnpP8A1/x/zFTCvSlK3s1+J24TL6letGm6rV/Qxf8AhOPG3/Qsf+S0v+NH/CceNv8AoV//ACWl/wAa9OHSip+s0v8An2vxOf6rV/5+v8DzH/hOPG3/AEK//ktL/jWD4s8U+JtS0j7LqekmxtmcEuInXcR2yTXtlZuu6Lba/pMthc5CPyrDqrDoauliqUZpumkZ1cHWlBpVGz5qrd8J6vqmj6x52k2xuZ2QqYdhYMPoOa2rv4WeIIbox24gnizxIJNvHuDXe+CPAy+Gd93dSLNfSDblPuoPQV6mIxlBUnqpX6Hk4bA13VWjjbqYn/CceNv+hX/8lpf8aP8AhOPG3/Qr/wDktL/jXp1FeR9Zpf8APtfie19Vq/8AP1/geY/8Jx42/wChX/8AJaX/ABqG5+IXi6zgM1z4ejhiHBeSCQAfjmvVK5P4j/8AInXH/XRP51UK9KUkvZr8TfC4CpWrRpuq9Wl0OaXx341dQy+GQVIyCLaXkfnS/wDCc+Nv+hY/8lZf8a9I0/8A5Btr/wBcU/kKsVLxFL/n2vxMpYSqm17V/geX/wDCc+Nv+hY/8lZf8a5bxDr2u6jr+nXd/pX2a6hx5MXlOu/nPQnJ59K95rzHx/8A8j14f/D/ANCrpwleEqllBLRnHjKFSNK7qN6rt3D/AITjxt/0K/8A5LS/40f8Jx42/wChX/8AJaX/ABr06iub6zS/59r8Tq+q1f8An6/wPMf+E48bf9Cv/wCS0v8AjR/wnHjb/oV//JaX/GvTqKPrNL/n2vxD6rV/5+v8DzH/AITjxt/0K/8A5LS/40f8Jx42/wChX/8AJaX/ABr06ij6zS/59r8Q+q1f+fr/AAPMf+E48bf9Cv8A+S0v+NH/AAnHjb/oV/8AyWl/xr06ij6zS/59r8Q+q1f+fr/A8O1nWdY1jxRo8mr6b9ikjcLGvlsm4bhz8xr3GvMPH/77x1oES8sMcf8AAq9PqsXJSp02lbR/mRgouNSom76rX5BRRRXCegFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5r8WF8r+x7sfwTEE/TBr0W2bfaQv/eRT+lcT8VrQz+FknUZMMwJ+hrpvDV2L7w3p9wD9+Bc/lXZU1w0H2bRxUvdxVRd0matFFFcZ2hRRRQAUUUUAFcx8Qv+RKv/APdH866euY+IX/IlX/8Auj+dbYf+LH1Rhif4M/Rh8Pv+RKsP90/zrp65j4ff8iVYf7p/nXT0Yj+LL1Y8N/Bj6IK4v4i/8eek/wDX/H/MV2lcX8Rf+PPSf+v+P+YqaXxo9XLP97h/XQ7QdKKB0orM4AooooAKKKKACiiigArk/iP/AMidcf8AXRP511lcn8R/+ROuP+uifzq6Xxo7Mu/3un/iX5nSaf8A8g21/wCuKfyFWKr6f/yDbX/rin8hVipe5yz+JhXmPj//AJHrw/8Ah/6FXp1eY+P/APkevD/4f+hV14H+L8n+RwY/+D81+Z6dRRRXGdoUUUUAFFFFABRRRQB5hrv+l/GHTYeqxBCfyJr0+vMNKP8AanxhvLheY7ZWGfoMCvT67MXpyR7RRxYLX2ku8mFFFFcZ2hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYvi2y+3+FdRgxkmEsPqOf6Vh/C29+0+EhCTlreVkP0PIrtJI1lieNxlXBUj2NeZeAJG0Xxhq+gynAZi6D3B/wxXZS9/Dzh2s/wDM4a3uYmE+91+qPT6KKK4zuCiiigAooooAK5j4hf8AIlX/APuj+ddPXMfEL/kSr/8A3R/OtsP/ABY+qMMT/Bn6M5fwlpPim48N2sun6/HbWzA7IjAGK/jW3/YXjb/oaYf/AAFWrvw+/wCRKsP90/zrp6uvUaqy0W76HdhMfUjh4RUY6JfZj29Di/7C8bf9DTD/AOAq1VuvB/iXU5bX+0vEEVxDBMsoTyAvIOe1d9RWXtZLa33HTHMq0XeKin/hj/kFFFFZnnhRRRQAUUUUAFFFFABWN4p0WTxBoUunxTLC7sCHYZAxWzRTTad0aUqkqU1UhutTiI/D/jSKJI08UQhUAUD7MOgp/wDYXjb/AKGmH/wFWu0oq/avsvuR1/2jV/lj/wCAx/yOL/sLxt/0NMP/AICrXHeIbPV7Pxnoi6vqK30jMCjLGE2jd04r2WvMfH//ACPXh/8AD/0KuvBzbq28n+R5uaYydXD8rUVqtopde6R6dRRRXAWFFFFABRRRQAVFczC3tZpj0jQt+QqWuX+IGqf2Z4RuirYkmHlJ681dKDnNRXUzqzVODm+hznwshNzd6xqrcmWXaCfc5r0uuV+HmmHTfCNtuGJJ8yt+PSuqrbFzU60mv6sY4KDhQinvv94UUUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5d41U6B4+0vXE+WKUhZD244P6c16jXMePNF/trwvcKi5ngHmx/h1H5V04SooVVzbPR/M5cZTc6T5d1qvkdKjrJGrqcqwBB9qdXI/DrWv7W8MxxSNm4tD5T564HQ/lXXVlVpunNwfQ2pVFUgprqFFFFZmgUUUUAFcx8Qv8AkSr/AP3R/OunrmPiF/yJV/8A7o/nW2H/AIsfVGGJ/gz9GHw+/wCRKsP90/zrp65j4ff8iVYf7p/nVvxfrZ8O+Fb/AFNQDJDGfLB/vHgUsS7VZvzY8Kr0oLyRfvNY0vT5BHe6lZ2zt0WadUJ/AmrUU0c8SywyJJGwyrIwIP0Irx7wZ8NNO8U6ENf8TSXN5e3+ZAfOZdgPTpR4NN14H+Jlx4Ra5km025XzLcSHO04yKzS15XubN6XWx7JRRRSAKKKKACiiigAooooAKKKKACiiigArzHx//wAj14f/AA/9Cr06vMfH/wDyPXh/8P8A0KuzA/xfk/yOLH/wfmvzPTqKKK4ztCiiigAooooAK8w+Ikzax4m0nw/Cd3zhpAPU/wD1q9JurmOztJbmUgRxIXY+wrzbwBbSa94o1HxLcjKhisWfU/4CuzCLk5qz+yvxZw4x8/LQX2n+C3PS4IVt4I4UGFjUKPoBUlFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEAggjIPUUtFAHlNm7eBviLLbSZXTtQPynsMnj8jxXqwORkdK5L4g+Hv7b0BpYV/0u1zJGR1I7il8AeIf7c0FIpnzeWv7uUHqR2Ndtb99SVZbrR/ozgofuaroPZ6r9UdZRRRXEd4UUUUAFcx8Qv+RKv/APdH866euY+IX/IlX/8Auj+dbYf+LH1Rhif4M/Rh8Pv+RKsP90/zqv8AE/TptT+H+pQ26lpEUSBR1IB5qx8Pv+RKsP8AdP8AOt++u7axspbm8kWO2jXMjv0A96nFK9SfqysI7UoeiOH+F/ijS7vwPY273tvFcWieVLHJIFIx357VxV3rlrrfx90qaxkEtvGwhEq/dchTnB7iuu/4Vl4G8TuNXsA/kzMSTaylUc9+O34YrnRpljB8b9J0zSbdIrbTIMlU7cc5PrzUXvNN7/8AANVaMXbb/gnZfFXRJNY8FXL25YXNp+/jKnBIHUflXGf8LGutT8CaVo2kEy6/fL9mfb1jA4LH04r0fxv4ms/DHhye5uQJJJVMUMHeRiMY+leRfCeL+xPiDPZavYrBe3UHmQbhymecD6ipirtx6Dk7JS6o9g8HeGIvCugxWQcy3DfPPKxyXc9fwroKKKpu7uSlYKKKKQwooooAKKKKACiiigArzHx//wAj14f/AA/9Cr06vMfH/wDyPXh/8P8A0KuzA/xfk/yOLH/wfmvzPTqKKK4ztCiiigAooqC9u4bCymu7hwsUSlmJ9qaV3ZCbSV2cP8TdbaGwi0S0y11ekBgvULnp+NdN4W0ZdC8PWtlgeYF3SH1Y9a4bwbaS+K/Ft34lvVJghfECnpnt+Qr1KuzEtU4Kgumr9f8AgHFhU6s5Yh9dF6f8EKKKK4juCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA615Rr1pP4C8Wxa3YoTp102JYx0Geo/qK9XqjrGlW+taXPYXK5SRcA91PYiujD1vZy974XozmxNH2sPd0ktUT2V5Df2cV3buHilUMrD0qevK/CusXXg3W38NaySts7/ALiU9Bnofoa9UBBGQcg0q9F0pW3T2Y8PXVaF3o1uuzCiiisDoCuY+IX/ACJV/wD7o/nXT1zHxC/5Eq//AN0fzrbD/wAWPqjDE/wZ+jD4ff8AIlWH+6f51u6lYQ6pptxY3AzFPGY2+hrC+H3/ACJVh/un+ddPSxKvVkn3Y8K7UYPyR45YeF/iT4OSXTPD9zZXWms5aJpcZjz7EcfrXU+AvAtz4enu9X1m6W71m9OZZF5CD0BruqKzTNnqefzeCtV17x6ms+IJbZtMs/8AjztInLc9i2QB70njbwPqWr+JtI17Q5baK6s2Al85yu5Qe2AfcV6DRSWlrdAet/Mam7Yu8ANjnHTNOoooAKKKKACiiigAooooAKKKKACvMfH/APyPXh/8P/Qq9OrzHx//AMj14f8Aw/8AQq7MD/F+T/I4sf8AwfmvzPTqKKK4ztCiiigArzDxvq1x4j1yHwrpTFl3j7Q69M/4Cug8c+LV0Cx+y2p36jcDbGo5KA9/8Ki8AeFn0eyfUL9c6jdfM27qinnH1rtoRVGHt579PXv8jgxEnWn9Xht9p+Xb5nS6LpNvomlQWFsuEjXk/wB49yav0UVxyk5O7O6MVFWWwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc34x8Kw+JtMKgBLyIZhk9/Q+xrn/A3i2SKX/hHdcJivYTsieTjdj+E+9eiVyPjTwZF4gg+12mIdTiGUccb8dj/jXXRqxlH2NXbo+z/yOKvRnGftqW/Vd1/mddRXn3g3xrIZv7C18mG/iOxJJON/sff+deg1jWoypS5ZHRRrRrR5ohXMfEL/AJEq/wD90fzrp65j4hf8iVf/AO6P508P/Fj6onE/wZ+jD4ff8iVYf7p/nXT1zHw+/wCRKsP90/zrp6MR/Fl6sMN/Bh6IKKKKxNwooooAKKKKACiiigAooooAKKKKACiiigArzHx//wAj14f/AA/9Cr06vMfH/wDyPXh/8P8A0KuzA/xfk/yOLH/wfmvzPTqKKK4ztCsLxR4ntPDWmtPMwa4cEQw55Y/4UeJ/FFl4ZsDLOwe4YfuoQeWP+FcX4a8NXvizU/8AhIvEW4wk5hgbgMO3HZa6qFBW9rV0ivx9Djr15c3sqWsn+HmybwV4cudY1FvFGugvJI26CNx+uPT0r0ukVVRQqgBQMADtS1nWrOrLmfy8jahQjRhyrfq+7CiiisTYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOV8W+CrTxJF58eINQQfJMB972aua0Dxlf8Ahy+Gh+KUdQvyx3Lc4HbJ7j3r0+snXvDun+IrM299Fkj7ki8Mh9jXXSxC5fZ1dY/ivQ462GfN7Wi7S/B+ppxSxzxLLE6vGwyrKcgiub+IX/IlX/8Auj+dcYY/Evw4uC0ZN/oxbkc4A/8AZT+la/iLxVpfiPwFfPaTBZto3wOcOvPp3+taQwzhUjOLvG61/wAzKeKjOlOE1yys9H+nc3Ph9/yJVh/un+ddPXMfD7/kSrD/AHT/ADrp65sR/Fl6s6sN/Bh6IKKKKxNwooooAKKKKACiiigAooooAKKKKACiiigArzHx/wD8j14f/D/0KvTq8t+I00dv400OaVgsaLuZj2AauzA/xfk/yOLMNKPzX5nqVch4u8dWugKbSz23OpNwsa8hD7+/tXPar411bxNeNpXhW3kVDw9zjBx65/hH61u+FfAFpojre3zfbNRPO9uVQ+3v7040IUVzV9+3+fYmWInXfJh9usuny7mR4b8E3erXo1zxQzSyudyW7/pu9B7V6SqqihVACgYAHalorCtWlVd5fd2OmhQhRjaPzfVhRRRWJsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANeNJUZJFDIwwVIyDXn3iP4XWd6XuNHkFpOeTEf9W3+Feh0VrSrzpO8HYxrUKdZWmrnk2jeKtV8DiPSNe01/sqHCSoOQPY9GFeiaT4j0nXIw1hexyNjmMnDj8DzV67srW/gaC7gjmibqsigiuG1b4W2UshuNGupLCcHIXJKZ/mK6XOhXd5+7Lv0OZQxFBWh70ez0f3noFFeWLqvjzwr+7vbQ6lar/y0wX4+o5/OtbTfiro9yRHfwT2UnQkjeo/Ec/pUSwdS14e8vIuOOpN8s/dfnod7RWfZ65pWoAG01G2lJ6Ksgz+XWtCuVxcXZo64yUldMKKKKQwooooAKKKKACioLi9tbNd1zcwwr6yOF/nXNan8RvDum5Vbo3Ug/hgXP6nitIUpz+FXM6lanTV5ySOsqC6vLaxgM13PHDEOrSMAK82k8f8AiTXGMXh/RWRTwJWUvj8ThRTrX4d6vrU4u/E2qyMTz5SNuI9s9B+Aro+qKGtaSXluzl+uOelCLl57Iu618TrdZPsegW7310x2q+07c+w6ms2z8C634ovF1HxRdvGp+7CuN2PT0UV3uj+GtJ0JNthZxxtjBkIy5+pPNa1P6zGmrUFbze//AAAWFnVd8RK/ktv+CUdK0ew0W0W2sLdIYx1x1Y+pPer1FFcbbk7s7YxUVZbBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ2vX/9l6Df327aYIGcH3xx+taNcD8YdS/s/wCH12gbD3LrCPoTk/yqZu0dCoK8keceHdY+KXiy2mu9J1LdBHJsJcovPXjiteS1+NFsplW6WXbztVoyT+BFdP8ACN9O0rwDaCa9tY5p2aVlaZQeTxkZrr9Q8V6Dpdq9xdavZoijOBMrMfoAcmrmlF2Ji2zg/hx8StS1zWZdA8QQJHfxglZFXYSR1DDpn6V6pXhHw8gm8UfFbUPE8EDx6ejuwcjAJPAH1r3ej7Kb3F9ppbB161lal4a0bVwftunwyMf49uG/Mc1q0U4ylF3i7ClGMlaSuef3nwm0mQlrO8urZuwyGUfnz+tZ/wDwgvi7Sv8AkE+IN6DorOyfpyK9QorpWNrJWbv66nK8BQbvFWfk7HmGfifZ9PLuFH/XM/zwaP8AhKvH9pxNoKSn/riT/wCgmvT6Kf1qL+KnH7hfU5L4akvvueY/8Jz40HXwwM+1vL/jSf8ACZ+OZflj8NqpPfyH/qa9Poo+s0/+fa/EPqtX/n6/wPMPt/xNvP8AV2aW6nvtjH8yTQfDvxB1P5bzWFt4z1Cykfoor0+ij6418MIr5B9ST+Kcn8zza3+E0cjb9T1i4nY8nyxt/U5ro9M8A+HdLIZLBZpB/HOd5/XgV01FZzxdaejkaQwdCGqj+o1I0jUKiKqjoAMU6iiuc6QrwbxV428W3nxGuNC8OX7IokEUcQC4LAcnJFe53U62tpNcMcLEjOfwGa+e/hXs1X4nXurXMiKsfmShnYDljgdaUVedhvSDZufYPjP/AM/g/wC/kf8AhWt4asPimPEFm2t3o/s4PmYB0OR6cCvUPt9n/wA/cH/fwVLFNFMCYpUkA6lWBqk7O4nqrD6KKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXi3x5vWmfRtHjPzSuZCB7naK9pr588eapZ3fxotFvrhYrKyeNXdskLjk9PelZOUU+5Sdot+R1Fr8CNCe0heXVNUWRkBYK6YBxzj5apa18BrGPTppdL1a8NxGhZUudrK2O3AGK7ofE7wWBj+3rf8A74f/AOJrnfFXxl8PWmmTw6PO1/eSIUQohVFJ4ySQP0ok9NBR6XIvgt4mm1DTrrQ7qKJJrAja0aBcrnHOO+R1r1WvKPgt4XvdMsrzW9RiaKW/I8tGGDtznJHuTXq9XLz3Ij1tsFFFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcr8R9S/svwHqk4bDtF5a/VuK8g8CfCVPFPh1NWn1Oe1MjsqpGoOQO9df8edSMPhyx05D81zPuI9lru/BOmjSvBmlWmMFYFLfU80oL4pfIcnblXzPPP+FCWn/QfvP++BXeeCvB0HgzS5bKG6kuTLJvaSQYP0rpqKq4nqFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjdS+FnhHVtRnv73TpJLmdi8j/aZBk/QNXZUUWC5wX/Cm/A//QKk/wDAqX/4qtXSvh14U0aZZrPRoBKpyryZkI+hbNdRRQAAADAGBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYGv8AgzQ/E9zb3GrWrzyW/wDq8TOoHOegIBrdjRYo1jQYVQFA9AKdRR5AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z
|
<image>$\overline{AB} \cong \overline{DF}$. Find $x$.
|
2
|
Geometry
|
Geometry3K
|
test
|
91
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAF+Ae8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKo6xq9noWmyahfu0dtFje4UnGTjtUOg+ItM8S2JvNKuRPCrlCcYII7Yo3A1KKbJIkUbSSMFRAWZicAAd657RfHWgeIdRew0u7a4nQFm2xnAA75o62DzOjooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKup6fBqumXNhcqGhuIzG49iK8O+GF9P4N+IeoeFb9tsdw5RM9N6/dI+o/pXvdeE/HK1g03X9K1uyuFi1Jh8yqfm+U/K/9PwpJ8sk++g7c0Wvmavxb8Zzzzp4O0MtJeXLBbgx9eeif412fw98FQeDdBSEhXvpgHuZfVvQewri/gz4WiuYJPF1/MLq+uHZYyTkx8/MT/tH+VexVSXKrdXuS3zPTZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByHiCTxXo++70uSO/tRyYJIxvQexHUfrXMW3xfnjbbe6Su4HBEblSPzzXq1cf4r8A2GvxvcW6rbX+Mh1GA59GH9a7qFWg/drR+ZwYijXXv0JfJ/oZI+L+m4/wCQdcf99ilX4uae7hE025ZicABgST+VeT6jp11pV7JaXkTRTRnBB/mPat/wtft4bkj1a50Q3dvJ9ycg/Jg4OD0B+tejPA4dR5oq/bXc8uGYYlz5ZSt302PctMvJr+xS4mtHtS/IjkOWA9/Srlc1o3jrQtZCrHdiCY/8s5/lP59K6QEEAggg9CK8SpCUJWkrHv0qkZxvGVxaKKKzNAooooAyfEfiCz8M6JcaneuBHGPlXPLt2UV4x4U8LXnxR1jUPEmvl1s2DR269BuxgY9l/nWv4v8ADvizx/4zt7S50+ex8PwPhZHZeR3bAPU9q9c03TrbSdOgsbOJY7eBAiKPQUoq65n8ht291fM8V+EOrT+HPFmpeENQYpukYxBu0i9QPqOfwr3SvHPiV4K1t/GVh4l8M2Tz3GVaURkDDqeCckdRx+Fet2M01xYQTXEDQTPGGeJuqHHIOKpO8U3vsJq0nbZliiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzvivwlZ+J7Iq4Ed2g/dTAcj2PqKz/h/p9zY6HdaRqUAD21wy7WGVZSAcj1HJrsqMDOa2VeXs/ZPb8jB4eHtfarf8zj9Z+HGh6oWkhiNnOed8PAz9Olc2dF8beEiW027N/aLz5fXj/dP9K9UorSGLqRXLL3l2ZnPBUpPmj7r7rQ880z4pW/mi21uylspxwWCnH4g8iu4sNUsdUhEtldRToefkbJH1HUVBqeg6XrEZS+s4pf9or8w+hriL/4YzWcxuvDupy20gORG7H9CP61dsNV29x/eiL4qlv76+5npNFeWp4v8WeGHEWvac11AP8AlsBzj/eHH511mjePdC1naiXQt5j/AMs5/l/XpWdTCVILmSuu61NKeMpTfK3Z9nodNRSAhgCpBB6EUtcx1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkjSVCkiK6nqGGRXm3xF8N6Bp+iyajFbC3vGcJH5RwGY8nI+gNel15Z4ykbxR490/wAPREmC3IM2PU8t+gA+tdmC5va3Tslq/RHFj+X2Vmrt6L1ZQ0ew8caPpNtqOnSNPbSoJPs5bcQD/sn2re0z4pQrKLbXLGWzmHBZVOPxB5FehRxrFGsaABVAAA7CqGp6FpmsRGO+s4ph/eK8j8aqWKp1X+9h81oyY4SrSS9jP5PVf8Al0/VrDVYhLY3cU6kZ+RuR9R1q5Xm2ofDCS1lN14e1KW2lHIjdjj8CP61nR+N/E3hi+On63ard7F3Eg/Nt9cj+tL6rGprRlfyejKWJqQ/jQa81qv8AgHrVFcvo3j7QtY2oLn7NMf8AlnP8v5HpXTqysoZSCDyCD1rlnTnTdpqx1U6sKivB3FoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqCa9tLeaOGa6hjlk+4jyAM30B61PQAUUUUAVNTv4tL0y5vpj8kEZc++Og/E8VwHwwsJb261HxHdDdLcSFEY/XLH88D8Kk+LOsmDTLfSYm/eXLeZIB/dHQfif5V0Pg2+0YaBZ2OnXsUjRRgMucMW7nB9812pOnhm+svyRyKnOviOZK8ae/q/+AdLRRRXEdY2SRYo2kdgqKCzE9gK4nwXB/bWoat4juowy3cphgDjOI14/wDrfhV7x/qMlroAsbY/6XqMgtogOvPX/D8a3NH06PSdHtbCIfLDGFz6nufzrVe7C/c9CH7nBuXWo7fJav73ZfJmBrPw70LVt0iQG0nPPmQcc+46VzLeHvGnhRjJpF6b21Xnyic8f7pr1OitYYupFcstV2ep4lTB0pPmj7r7rQ86034oxxyi216wls5hwXVTj8jzXcafq+n6rEJLG7inU8/K3I/DrTdS0TTdXiMd9ZxTA92XkfjXD6h8Lzbym58P6jLayjkRuxx+dX/s1X+4/vRH+1Uv76+5no9FeWJ4o8YeFmEetWBvLZf+WoGTj/eH9a6rRviBoWr7U+0fZpz/AMs5+OfY9KznhKkVzLVd1qaU8ZSm+V6Ps9DqaKRWV1DKwZTyCDkGlrmOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKiubiK0tpbidwkUSl3Y9AByTUteefEC+n1zVLLwTprkS3hEt9Iv/LKAdvx/wpO+y3GrbvY8zvtWvvEPxR0HW7hWSzubxVskP/PJXxn8Tmvo+vGfHllBpvxD8DWVsgSCAoiKOwD17NVK3Ird2KV+fXsgoJAGScAUVzPjzWf7G8K3MiNiaceTH9W6n8s1VODnJRXUipNU4Ob6HIaIv/CYfEy71OQb7Ky/1YIyDjhf6mux1XwPo2puZlhNpc9RNbnYc/1qp8ONG/srwtFLIuJ7s+c+euD90fl/OuvroxVX97aD0jovkRltSth4e0jJqUtX8zh/snjLw7za3Ees2i/8s5eJAPr3q5YeP9NmmFtqUU2mXXTZcLgE+xrrKp3+lWGqQmK9tIp1P99c1hzxfxI9b61Rq/7xDXvHR/ds/wADkYHTxP8AEYzowksNIiwjA5VpW7/z/IV3VZeiaBp/h+CWHT4iiSyeYwJzzWpSnJN6bIyxlaFSaVP4YpJfr97uwoooqDkCiiigBrosilXUMp6gjIrltZ+HuhavucQfZZz/AMtIOOfcdK6uirhVnTd4OxnUpQqK01c8sbw14y8KsZNGvjeWw58onPH+6au6d8URDKLbX9PltJhwXVTj8jXo1UdR0bTtWiMd9aRTA92XkfjXV9ZhU0rRv5rRnL9VnT1oTt5PVBp2s6dq0QksbyKYHsrcj8OtXq851H4XLDKbnQdQltJRyEZjj8+tUl8S+MvCrCPWbE3tsvHmgZ4/3h/Wj6tCp/BlfyejD61OnpXhbzWqPU6K5TRviFoWr7Uaf7LOf+Wc3HPseldSjrIgdGDKehByDXLOnOm7TVjqp1YVFeDuOoooqDQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8VttN+Iuj+J9X1Wz0q3uJr2U/vpmBIQHgD0Fe1UUutx30sfOHi6+8aTeM9Al1awt4tSRx9jjTo53cZ/GvftCl1KbRLWTV4kiv2TMyJ0De1cj4y8Iaprnjjw7q1mITa2DqZt74bh88DvxXf1Ufgt5sUvi+SCvLfGDt4o8f6f4fiJa3tjmbHTPVv0AH1r0fVL+PS9Lub6U/JBGXPuew/E1wPwwsJLufUfEd0N0txIURj9csfzwPwrrwv7uMqz6aL1Zw4v95KNBddX6I9HRFjjVFACqMAD0p1FeMeHtb1T/AIXpqGlz3872e+YJCz5UdxgVxrWVju2jc9noqC8u4rGynu52CwwoZHY9gBk1856F461zVPiZYzy39wtldXuFg3fJtJIAxRHWSiD0i5H0nRR0Ga8V0zXNV8Z/GOaKzv549HsmJZI2wrKnA/M0LWSiD0i2e1UUUUAFFFFABRRVe5vrOzx9qu4IM9PNkC5/OgCxRUcM8NzGJIJY5UPRkYMPzFPZgqlmIAHJJ7UALSMqupV1DKeoIyKrQ6np9xL5UN9bSSf3ElUn8galuriOztJrmY7YoUMjn0AGTQ3bULX0Ob1n4f6FrG5/s/2ac/8ALSHjn3HQ1yr+F/GHhZzLol+bu3HPlE8/98nrSWniP4g+J7eTWdBt7G30wM3kQzjLzAH17V2PgrxQPFehfbHh8i6ikMNxD/ccda6qeKqxXK9V2ZyVcHSk+ZaPutDm9P8AigbeUW3iDTpbWUcF0U4/I13Gm63purxCSxvIpgeytyPw607UNI0/VYjHfWkUyn+8vP51w+pfC6OOU3OhX8tpKOQjMSPz61f+zVf7j+9Ef7VS/vr7mei0V5YviHxp4UYJq1kb61XjzQM8f7w/rXTaN8RNC1bajzG0nP8ABNwM+xqJ4SpFc0dV3WpdPGUpPll7r7PQ62imo6SIHjZWU9GU5Bp1cp1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIAJJwB3oA87+KepyG0s9CtiTPeSBmUdSM4Ufif5V2ehaZHo2iWlhH0hjAJ9W7n86880EHxd8TLvVmG60sf9Vnpxwv9TXqlduJ/dwjR7av1Zw4X95UnX76L0QV4Yg+yftJkdPMYn84s17nXh/iIfZf2iNNl6CTyzn6xla4o/wASP3Hc/gkdF8avED2HhuHRbVibvUnClV67AefzOB+dcD4j0EeEda8Cw4AkRY2lI7v5uW/nW5poPxC+NM183z6ZpJ+T0O04X82yfwq18d08mfw5ejjy5XGfoVNENOWXd/h0HLW8ey/E7r4ieIR4c8EXt2r7Z5U8mH13Nxn8Bk1z3wU8OnTPCr6rOmLnUX35PXyx938+T+Ncz8SbuXxh430TwnaMTGm1psdiwBJ/Ba9ts7WKys4bWFQsUKBFUdgBiiOicu+nyQpdI/MmooooAKKKKAK2o3i6fpl1esMrbwvKR67QT/SvFfBPhBPiSt94i8S3VzMsk7JDCkhUDH9O34V7dc28V3bS206B4ZUKOp6FSMEVRsNN0rwxpTxWkUVnZR5kbnCr6mkrJtvsPWySPJ7G2n+G3xUsNHtLuaXSNTUYikbO0nIH4gj8jWx8VL6/1DXND8JWVxJbx6g+64kQ4O3OMfoTWTZzt8Rvi7b6pZRt/ZGkAATEcORkj8yfyFeyvbwvKsrwxtIv3XKgkfQ01rGLl3/DoDdpO3b8TyHxT8J9K0Lwzc6ro11eQahZR+d5hmJ346/Sux8EalJ4x+HMEl+SZLiF7eZh/F1UmuD8dfEy6v7e78PJpc2nRTyG3kvboHaFzyRx3xXpvgnS7LRvCGn2dhcLcwLHuEy9HJ5J/M0L3ou+zFLRrucNpg8feDLBvD9lokWpW8bMLW7D4CqTkbh7ZrrvAPhm48M6E8d9Isl9dTNcXBXoHbsK6uincGFFFFIBGVXUqwDA9QRmuY1nwDoWsbna2FvOf+WkPynPuOhrqKKuFSdN3g7EVKUKitNXPLH8KeLvC7mXQ9Qa6gHPlE8/98ng1bsPifJazC18Q6bLbSjgyIp/kf6V6RVO/wBJsNUhMV7aRTqf765P511fWo1NK0b+a0ZyfVJ09aE7eT1RHpmu6ZrEYexvIps/whvmH4VoV53qfwthWQ3Oh30tnMOQhJI/PrVBdd8a+E2CapaG/tV48zG7j/eH9aPq0Kn8GXyejD61Up6V4W81qj1OiuR0b4jaFqu2OSU2c5/gm4GfrXWRyJKgeN1dD0ZTkGuapSnTdpqx1U6sKivB3HUUUVmaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVW+1Ky02Ey3t1FAg5y7YqloviK019p2sFke3hO3zmGFZvQetUoScea2hDqRUuW+pr0UUVJYVzHj3Wf7G8K3LI2J7geTH9T1P5Zrp68s8XO3in4g2GgRHdb2xzNjp6t+gA+tdOEpqdS8tlq/kcuMqOFJqO70XzOl+HOjf2T4WhkkXE92fOfPXB+6PyxXXU1EWNFRRhVGABTqyq1HUm5vqbUqapwUF0Cvn341zy6X8QLC/gO2X7GCrehywzX0FWRq3hbQ9enjn1XTLe7ljXajSrkgdcVk1do2Ttc5b4QeHDong2O6nTF3qB8+QnqFP3R+XP41jfHuDd4V0+4x/q7vH5qf8K9XjjSKNY41CoowqjoBVPVdG07XLQWup2cV1AGDiOUZGR3/WnP3tvL8CYe7ueR/BbSptV1XU/Ft+N0jsYYSfXqxH6Cvaqqabpdjo9klnp1rHbWyElY4xgDPJq3Tb6ISQUUUUhhRRRQAjMFUsxAAGST2rx3Ur7VfixrkukaVI9r4btJNtxcDgzEdv8A61eqa3b3N3oV/b2ePtMtu6RbjgbipA5ryTw74Y+KfhfTTYaWdJSAuZDvZWJJ98Ul8Wo+mh6xoehaf4d0uLT9OgWKGMdurH1J7msq88aWtn44tPC8ltL59zH5izbht6E4x+Fc5pyfFkalbfb5NJNn5q+fsC7tmeccdcVb+IXgi/166sdb0O4WDWLD7hY4DjOcZ/P86beqbElo0jqPE2m2epeHdQgvIY3jNu5ywHykKSDXE/A6eeTwTNFIxaOG7dIs9lwD/Mmsy8i+KviKxbSLm3tLKGUbJrgEAle9ei+E/Ddv4U8O22lQNv8ALGXkP8bHkmnFWu+4S1SRt0UUUgCiiigAooooAKKKKACkZQylWAIPUGlooA5nWfAehazud7UQTH/lpD8p/Ed65OTwh4s8MOZtB1FrmAc+STz+R4NepUV008XUguVu67PU5amDpTfMlZ91oebWHxOms5ha+ItMlt5BwZEUj9D/AErt9M17S9YjD2N5FLn+EHDD8Knv9LsdThMV7axTof765rh9T+Ftt5huNEvZbKYchSSV/PrWl8NV39x/ejO2Kpbe+vuZ6HRXlY1rxv4SITUrU6haLx5mN3H1HNdJo3xH0PVNsc0hs5zxsm6Z+tRPCVIrmj7y7ouGNpyfLL3X2eh2FFMjljmQPE6uh6MpyDT65TrCmvIkYy7qo9WOKdXJ/EjRJNc8FXsVuzrcwL58RQkEleo49s0pOyuOKu7HVqyuoZSCD0IOaWvLfgj4hfUvDU+l3MjPcWMnG45JRuR+uRXZ+MPE9t4T8O3GpTkGQDbDHnl3PQU5+6KPvaG4Zog+wyoH/u7hmn14x8KPD+o65qc/jHWppmEjsbeNmOGJ6tj07CvZ6bVlruK93oFFFFIYUUUUAFFFFABRRRQAUUUUAFZ+p61Y6RHvvJSgIyAEJz+VaFNdFkXa6hh6EZpxtfUUr293c4G++LOkQZW0tri4I7kbBXLap8VtYvEMdnFFaKf4l+Zv16V6lfeFtD1HP2nTbdif4gmD+lctqnwo0m5Qtp80trJ2BO5a9KhVwafvRfz1/r7jysRSxzXuyVvLT+vvPIbu/utQn828uZJXJ5Z2Jr1LRPiF4a0PSLfT7eG52xLgnZ95u5P41xuseAde0VjJ9m+0QryJIfm/MV6X4O/sbxBoaSyabbLdw/u7hDGAQw74967MZOjKkpbx8mceCp141XG/LLzRW/4WxoX/ADyuf++KP+FsaF/zyuv++K6r/hH9H/6Btt/37FH/AAj+kf8AQNtv+/YrzOfC/wAr+89X2eL/AJ19xyUnxZ0URsY4Lkvg7QV4JrjvB3ivTtH1XUNV1RZpbu5PylFzgE5P5nH5V64/hzR5I2RtOt8MCDhBXnHg2ytdL8Z6j4e1K2il3EmBpFB5HPH1U5/CumjKg6c1GL89ehyV4YhVabnJb6adTe/4WxoX/PG6/wC+aP8AhbGhf88bn/vmus/sDSP+gbbf9+xR/YGkf9A22/79iubnwv8AI/vOv2eL/nX3HJ/8LZ0P/njc/wDfNH/C2dD/AOeNz/3zXWf2BpH/AEDrb/v2KP7A0j/oHW3/AH7FHPhf5H94ezxf86+45P8A4Wzof/PG5/75o/4Wzof/ADwuf++a6z+wNI/6B1t/37FH9g6T/wBA62/79ijnwv8AI/vD2eL/AJ19xyX/AAtnQ/8Anhc/980f8LZ0P/nhc/8AfNdb/YOk/wDQOtv+/Yo/sHSf+gdbf9+xRz4X+R/eHs8X/OvuOS/4Wzon/PC5/wC+aP8AhbOif88Ln/vmut/sHSf+gdbf9+xS/wBg6T/0Drb/AL9ijnwv8j+8PZ4v+dfccj/wtnRP+eFz/wB80f8AC2dE/wCeFz/3yK67+wtJ/wCgdbf9+xR/YWk/9A62/wC/Yo58L/I/vD2eL/nX3HI/8LZ0T/n3uf8AvkUf8La0T/n3uf8AvkV139haT/0Drb/v2KP7C0r/AKB1t/37FHtML/I/vD2eL/nX3HI/8La0T/n3ufyFJ/wtrRP+fe5/IV1/9haV/wBA62/79ij+wtK/6B1t/wB+xR7TC/yP7w9ni/519xyH/C2tE/597n8hR/wtrRf+fe5/IV1/9h6V/wBA+2/79ij+w9K/6B9t/wB+xR7TC/yP7w9ni/519xyH/C2tF/59rn8hR/wtrRf+fa5/IV2H9h6V/wBA+2/79ij+w9K/6B9t/wB+xR7TC/yP7w9ni/519xx//C2tF/59rn8hR/wtrRf+fa5/IV2H9iaX/wBA+2/79ij+xNL/AOgfbf8AfsUe0wv8j+8PZ4v+dfccd/wtrRf+fa5/IUf8La0X/n2ufyFdj/Yml/8AQPtv+/Yo/sTS/wDoH23/AH7FHtML/I/vD2eL/nX3HHf8La0b/n2ufyFH/C29G/59rn8hXY/2Lpf/AED7b/v2KP7F0v8A6B9t/wB+xR7TC/yP7w9ni/519xx3/C29G/59bn8hR/wtvRv+fW5/IV2P9i6X/wBA+2/79il/sXS/+gfbf9+xR7TC/wAj+8PZ4v8AnX3HG/8AC29G/wCfW5/IUf8AC29G/wCfW5/IV2X9i6Z/0D7b/v2KP7G0z/nwtv8Av2KPaYX+R/eHs8X/ADr7jjf+Ft6N/wA+tz+QpP8Ahbejf8+tz+ldn/Y2mf8APhbf9+xR/Y2mf8+Ft/37FHtML/I/vD2eL/nX3HGH4taMwIazuCD1BArm9Z8Q+CtZ3NJpVxDMf+WsOFP/ANeu/wBWv/CmioTeLZK4/wCWaxhmP4CuKuvFx1aY23hvw3E5PAleEN+nQfjXVQjF+9Tg153sceIlNLlqTT8uW7ORtvEN3odzu0XUrjyc8JKOMe46V2+i/FrcUh1azOTx5sH/AMTUNl8NNV1eYXOuXaQA8+XEo3Y9PQV3Oj+DND0UK1vZo8o/5ay/M361eJr4Vq0ld+X+ZGFw+LTvF8sfP/I17K8h1C0juYC3luMjcpU/kanIDAgjIPBFKBgYFFeM7Htq9tTwHT2Hw6+NM1tK3ladekgE8KEblT+B4pb+W6+L3xDWzgZ10KwPzMOhXPJ+rfyq/wDtAQWoGjzgf6YxdOO6DH9TXoPw78MW/hjwnaxRp/pM6CW4cjksR0/DpRDVJv7OhU3Z6faOntLSCxtIrW2jWOGJQiKo4AFTUUUbiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqCKztoJ3nigjSVwAzKuC31qeindisgooopDCvMviTaS6VrOmeJrVcNG4SXHcjkZ+oyPwr02snxLpK634evLEgF3QmP2ccj9a3w1X2dVN7dfQ58VSdWk4rfdeqL1jdxX9jBdwtujmQOp9iKsVwPws1ZrjR59JnJ8+yfAB67D/gc131TXpeyqOHYrD1VVpqfcKKKKyNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisXV/FejaKp+2Xse8f8s0O5j+AqowlN2irkznGCvJ2RtVFcXMFrEZbiZIkHVnbArza5+ImsazKbbw3pUhzwJXXcf8BSW/w/13XZRceJNVcA8+Ujbj/gK6lhOTWtJR/FnG8Zz6UIuXnsvvNjWPidpFixhsVe+n6ARjC5+vesLz/HXi/iJP7Nsm7/AHOP5mu30fwfomiKDa2SGQf8tJBuY/nW7T9vSp/wo3fd/wCQfV61X+NOy7L/ADOD0n4XabbOJ9Umkv5+pDHC5/rXa2tla2MIitYI4UHGEXFT0Vz1K9Sr8budFKhTpL3FYKKKKyNgooooA8G+JzHxB8WtH0RfmSLykYf7x3N+le7ogjjVB0UACojZWhuPtBtYTP8A89DGN359anoWkeUHrK4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHld6P8AhD/inFcj5LLUfveg3Hn8m5+leqA5Ga4r4m6N/aXhk3ca5nsm8wEddp4b+h/CtXwXrP8Abnhi0uWbMyL5cv8AvLx+vX8a7a/7yjGr1Wj/AEOGh+6rzpdHqv1OgoooriO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKw9X8XaLoqn7VeoZB/yzjO5j+ArjLj4g63rkpt/DelPg8ea67j/AICuinhatRXSsu70RzVcXSpuzd32WrPSbm7t7OIy3M0cUY6s7YFcZq/xP0mzYw6dG9/P0GwYXP171lW3w81nWpRc+JNVc55MSNuP+Ars9I8JaLoij7JZJ5g/5aONzH8TWvLh6XxPmflt95lz4mr8K5F56v7jhs+OvF/Qf2bZP/wDj+Zra0j4X6VaMJtSkkv5+p3nC5+neu6oqZYyduWHuryKhgqd+ap7z8/8iG2tLeziEVtBHEg6Ki4qaiiuRu+rOtJLRBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiis/W9XttB0a61O7YLDboWPuewHuTSbsrsaV3YztV8a6Lo/iCz0O6nf7ddlRGiJuAycDJ7V0NfNslrqD+P/AAxrmqMwutXuluPLP/LNN+FH5V9JVSXu3e+on8VlsMmhS4gkhlUNHIpVge4PBrzHwJM/h3xlqXhu4YhJGLQ57kdPzX+Veo15n8SrOXS9W0zxNarh4nCSY7kcjP1GRXXhHzc1F/aX49DixicOWsvsv8HuemUVXsbyLULCC7hbdHMgdT7EVYrkas7M7E01dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUdKwdY8Y6JoqkXN4jSj/llF8zfpVQhKbtFXInOMFeTsjeqC6vLayiMt1PHCg/idsV5tP4+1/X5Tb+HNKdVPHmsu4/4Cn2vw51XWJRc+JNVkYnkxI24/n0rq+qKGtaXL5bs5PrjnpQi5eeyNHVvihplq5h0yGS/n6DaMLn+tY/l+OvF/32/s2ybt9zj+Zru9J8K6NoqgWdlGHH/LRxuY/ia2af1ilT/hR17vUPq9Wr/Gnp2Wn4nD6R8MNIsmE1+730/U+YcLn6d67O3tYLSIRW8KRIOiouBUtFc9StUqO83c6aVCnSVoKwUUUVkahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5r4idvHHjm38MwEnStMYXGosOjv/Cn+fevSq8nb4SavFqN7dWPima1+1TNK4RSMknPNL7SH0ZB8SEWP4n+C0QAKroAB2HmV6/Xzh4u8I6tpfjPQNPutfmuri7cCK4bOYfmxx/OvftC0+40vRLWyurtruaFNrzt1c+tVH4PmxS+L5I0ayvEmkrrfh+8sCAXkQmP2ccj9a1aKcZOMlJdCZRUouL2ZwHws1Zp9In0mckT2TnaD12H/AAOa7+vKNVlHgn4mDUSGWwvlLSbR2P3vyYZroG8W61rbGPw7o7iM8farobVHuBXXiqXNP2kdpa/5k5Xh6taEqf8AI7Nt2XkdpLLHDGZJZFRB1ZjgCuX1Dx9pdvKbawSXUrroI7dcjPuaqReB7vU5BN4k1aa7PX7PEdkY9q6nT9I0/SohHY2kUCj+6vP51zWhHfU9TlwlH4m6j8tF9+7+5GP4U8Sz6619b3tr9kvLWTa0OeQpHB/nXS1w+tf8U/4+0/V1+W11Ffstx6B/4T/L9a7iiolo1syMbTgnGrTVoyV7dns194UUUVmcQUUUEgDJ4FABRXP6x400PRQRcXiySj/llF8zVx83jrxH4hkMHh3S3jjPHnMMnH16Cuinhas1e1l3ehzVMXSpvlvd9lqz0i7vrWwhMt3cRwoOcu2K4rVvijp1u5g0q3kvp+gIGFz/ADNULT4b6jqsoufEmqySMeTEjZ/Xp+VdrpPhjR9FQCyso1Yf8tGGWP4mteXD0t3zPy0RlzYqr8K5F56s4L7L468X8zyf2bZN2+5x9Opre0f4ZaPYES3pe+n6kyH5c/Su2oqJ4yo1yw91eRUMFTT5p+8/Migt4bWIRwRJEg6Ki4FS0UVy7nZawUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHLeIfBFv4g8SaTrUt5LDJprBkjVQQ+Gzya6miihaKwPV3CiiigDi/ibo39p+GGuo1zNZN5gx12nhh/I/hWl4I1ddZ8K2k2R5sa+VKB/eXj9ev41vzRJPDJDKoaORSrA9weDXmHgaV/DfjTUvDlwxEcrFoc9yOQfxX+VdtP97h3DrHVenU4an7rExn0lo/XoepUUUVxHcYPjHSP7Z8M3Vug/foPNhI6h15GP1H40/wnq/9teG7S7Y/vduyUejrwa2iQASSAB615jZ+I9P8FeJNas5JPMsZmFxAIfm2seq/59K3pwlUi4xV2darU/qk4VJJcr5lf7mvyfyPT6rXmoWenwmW8uYoUHOXbFeby+NvE3iOQweHtMaGI8ecwyQPXPQVNZ/DS+1KYXPiTVJJnJyYkbP6/wCFa/VVDWtK3luzxvrcqmlCN/PZFzVfilYxOYNItpL6foDghc/zNZQsPHPi45u5v7Os2/h+7x9Bya7/AErw3pOioFsbKNGH8ZGWP41q0/rFOn/Bj83qw+rVav8AGnp2WiOL0f4aaLpxEt2Gvp+pMv3c/Suwhgit4xHDEkaDoqDAqSiuapWnUd5u5006NOkrQVgooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkKCWIAHUmgBa8z+JlnLpmqaZ4ltBh4nCSEdyOVz9RkV0+s+OtC0bcsl0Jph/yyh+Y/8A1q4jVfEOv+OrZ9O0zR9lm5GXcZPByDnoK78HSqRmqjVo9b6aHnY2tSlB007y6W11PSV17TV0mDUZruKKCWMSAu2OCK5DVfinZxuYNHtJL2Y8BiCF/Lqaz9I+FM0qxtrd+xRBxBE2cD0yen4V3uleG9J0VAtjZRow/wCWhGWP40msLSfWX4IqLxVVa2h+LPPhpvjnxeQ15OdPs252n5OPoOTXRaN8NNF01llug17OOcy/dz9K7Sis54uo1yx91eRpDB04vml7z7vUZFDFBGI4Y1jQdFUYAp9FFcp1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ2ta1ZaDp73l7IFRfur3c+gFOMXJ2W4pSUVd7GgSAQCRk9B60tebeDPEN34o8X3moXLeXa20BWKLPypuI5Pvwa6LWfHuhaNuR7kXEw/wCWcPzHPue1bzwtSM/ZpXZzwxdOUPaN2XmdPVS/1Sx0yEy3t1FAg/vtivOH8W+LfE7mHQtOa1gPHnEc/meBVmw+GM15MLrxDqctxIeTGjH+Z/pWn1WNPWtK3ktWZfW5VNKEL+b0RNqfxSt/MNvollLezHgMQQv5dazhovjbxawfUro6faNz5f3ePoOa9D0zQdL0eMJY2cUWP4guWP41o0/rNOn/AAY/N6sPqtSp/Hn8lojj9G+HGh6XtkmjN5OOd83TP0rrY4o4UCRIqIOiqMAU+iuapVnUd5u51U6NOkrQVgooorM0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisPXTr86G20ZIYdwwbmVvu/RaqEeZ2vYmcuVXtcb4j8XaZ4bgJuZQ9wR8kCHLH/CvDvEXiO98Sag1zdPhBxHED8qCu+X4T3V5O0+p6zvlc5ZkUsT+daKfCTRlQB7q5ZvXIFeth6mEw+t7vvY8bE0sZidLWj2ueU6O++7FpLqLWNtOwEsgzjjpnH1r2bQfh/wCHrCKO4VBfORkSyHKn3A6VR/4VLon/AD8XP/fQro/D/huPw7E0NveXEsB6RynIU+3pU4vGQqR/dSa8u5eCwU6Uv3sU/PsbKRpEgSNFRR0VRgCnUUV5J7AUUUUAFFFFABRRSMCyMoOCRjPpQBmP4k0SN2R9VtFZTggyjg0n/CT6F/0FrP8A7+ivPpfgRok0zyvqV4WdixOB1NZOv/CHwp4b0ibUtQ1a7SGMcDAy57Ae9K9ldjtd2R6wviTRHcIuq2hZjgASjk1qV8z/AAx8Cy+JfEKaoUeLSbOYSBn6yEHIUf1r6YHAxVNWSJvrYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqOeeK1t5J55FjijUs7scAAd6AIdR1G10nT5r69mWK3hUs7sa8Hd9W+M3jDYnmW+g2jfgq/1Y/pT/EOtap8WvFSaDopePR4Hy8nYgdXb+gr2nw54esfDGjQ6bYRhY0HzN3du5PvRFfafyG3b3V8y1pemWmjabDYWMKxW8K7VUf561cooobuJKwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeK/G7XNYM8GgWEM/2R4hLO0SE7zk4UkduK9qopNXGnY+cPCHj698HaSLKy8Is8jHdLO28NIffj9K6L/hd2u/9Ck35v8A/E17bRVN3ErI5jwN4lvvFWhtqF9p32FvNKJHk5IGOeR65rp6KKGJBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=
|
<image>Find $m \angle WYZ$.
|
23
|
Geometry
|
Geometry3K
|
test
|
92
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADSAQgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKinuIbWIyzypGg6sxxSbSV2CVyWiuZufFbTS+RpNo9zJ/fZTj8uv54qMaTr+p831/8AZ4z/AMs0P9Bx+tczxSbtTTl6bfebqg1rN2OhuNQs7Xie6hjPozgH8qz5PFOkRnAuS5/2Ub/CoLfwfpsXMxlnbvubA/T/ABrQi0PS4fu2MB/3l3fzoviZdEvvYWoruzPbxjpY6Cdvog/xpy+L9KPUzL9UrVXT7Jfu2luPpGP8KRtNsG+9ZWx+sS/4UcuJ/mX3BzUez+8qQ+JNJm4F4qn0dSv8xWjDcQ3C7oZo5F9UYH+VUJfDukzZ3WUY/wBwlf5VmzeDrcNvs7ua3cdM/Nj+Ro5sTHeKfo7fmFqL2bR0tFcoV8TaTyGW+hHb7x/+K/nV2w8VWV0wiuAbWboRJ93P1/xxTjioX5Z+6/MToSteOq8jeopAQQCCCD0Ipa6TEKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5bU9ZudSuzpmj5JPEk4PAHfB7D3/ACrKrWjSV3v0XcunTc3oXNW8RxWUn2W0T7Rdk4CryFPvjqfaqVt4dvNTlF1rVw57iFT0Hp6D6CtXR9CttKj3ACS4I+aUj9B6CtWsFQlVfNX+7p8+5q6ihpT+8htrS3s4hFbQpEnoo6/X1qaiiutJJWRg23qwooopiCiiigAooooAKoaho1jqan7RCN/aReGH4/41foqZQjNWkrocZOLujkGt9X8MkyW7m7sByyH+EfTt9RxXQaXq9rqsO6BsOB88bfeX/wCt71frm9V8POk32/SGMNyvzGNeA309Pp0Ncrpzoa09Y9v8v8jfmjV0no+/+Z0lFYuh66upA286+VeJwyHjdjqR/hW1XTTqRqR5o7GM4ODswoooqyQoqkmsaZJemyTUbRrsHBgE6lwf93Oau0AFFV2vrNL5LFruBbt13rAZAJGX1C9SODz7UXd9aafD517dQW0Wcb5pAi5+poAsUVVk1K0j0yXUhOklpFE0pkiYMCqgkkEdeled2/xF8RJbafr2o6Daw+Gr+dYkeOctPErnCuw6EH0FAHp1FFFABRRRQAUUUUAFFFYviPV/7NsxFCf9Km4THVR3b/D/AOtUVKkacXOWyKhBzkooy/EutySO+m2JJ2gmd09uq/4/lUfhLVbOBTZSosUrtkS/3/Y+nt/nMmk6YtpakyrmaUfPnsPSs/S9Khvpb7TJTsnjO+GTvxwc+oPFeLGrVlXVTq+n6HoOFNU3Dod9RXLaXrVxptyNM1jKsOI5ieCO2T3Hv+ddTXsUq0aqut+q7HBUpuDswooorUgKKKKACiiigAooooAKKKKACiiigDn9f0R52Go2GUvYvmO3+PH9f51a0LWU1a1+bC3MfEif1HtWtXK65Zy6RfprViMDd+/QdDnv9D/OuOrF0Ze1ht1X6nRB+0Xs5b9P8jqqwfGv9qf8Ibqq6LHJJqLwlIVi+9liASPcAk/hWvZ3cV9aR3MJyjjI9vai8vLfT7Ke8u5Vit4I2kkkboqgZJrrTTV0YNWdmeMeIPhvofh/4R/2nJbPba9bW8U73RlYOJyVyvXHUkD8D15r03SNdEHw+sNd1iXZjTo7m5dupPlgk49Se3vXC21nqPxe1WHUdQjks/BtrLutrVuHvWHG5vbr9OQOcmr3xTOpSPomk2uhX+oaL5vn30VjCW3qmNkRwMBSev0HpTEct4Uk1S9+NWma1qwKS6tYS3kUB/5Ywnesa/8AfKg/j61vz6XaePfjBqtnrKG50vQ7aNIbYsVUyOASxwfr+QrBl8W3l18ZtF1BvCurW0iWH2YWckREhUs/7wDH3RuP/fJrq/B6m3+MfjiGTh3W3lUeq7c5/wDHhQBT8E2Mfh34k+JvBcJZtHltheQwOSQgbaGXnn+PHuFFatp8KLO2ubWKTXNUuNGs5hPb6XLIDEjg5GT3UHt/iap6V+//AGhtcdOVg0hI3I7MTEQPyr02gAooooAKKKKACiiigBskixRtI7BUQFmJ7AVxNmX1rWZtSmB8qM4jU9vQfh1+prY8XXpt9LW2QnzLltvH90df6D8aj0+1FnYxQ45Ay31715WNqc9RU1stX6nbh48sOfqyzWNcP/Z3iezvOkcvyOf0P6EH8K2ayvEFv52mlwPmiIb8Oh/z7VySbXvLdam0bN2fU6LVNKt9VtvKmGGH3JB1U/57VgWOpXXh+6Gnaplrc/6qbrgf4fyroNIu/t2k21wTlmQBv94cH9RUl/YW+o2zQXCblPQ91PqK9WdPntVpO0vz9TjjPlvTnt+RYVldQysGUjIIOQRS1yFvdXnha7FrebptPc/u5APu/T+o/KusiljniWWJw8bDKsDwa0o1lU0ejW6IqU3DXdPqPooorczCiiigAooooAKKKKACiiigApksSTwvFIoZHBVge4NPooauBymhyPo2tz6PMxMUh3QsfXt+Y/UVpeLNCfxN4XvtGS8NobpQnniPftAYE/LkZyBjr3qp4ttWWCDUoeJbZxlh6Z4/I/zrds7lbyyhuU+7IgbHp7VyYf8AdylRfTVej/yN6vvJVO+/qeeWnw78X2FnBZ2vxGuIreCNY4o101cKoGAPv+ld9pVrc2WlW1teXrXtzFGFkuWTYZW/vYycVcorrMDmrrwl9p+Idj4r+3bfstmbX7L5Wd2S53b88ff6Y7VneJ/At5qXiCLxF4f1ptH1dYfIlk8oSJMnYMD3/PoPSu2ooA5PwT4JHhRb66ur99S1bUJPMurx12lvRQMnA5P+QK6yiigAooooAKKKKACiijpQBxupv/aPi9Iusdso6e3P8yB+Fa9YWhE3N5fXrDmR/wCZJP8ASt2vAUudufdnptcqUewU2WNZYnjb7rqVP0NOopklLwfOyJd6fIfnhfcB+h/UfrXUVxkb/wBneLoZekdyNjfU8fzANdnXo4Gd6XK+mhzYmNp83churWG8t2guIw8bdQa5X/TPCV3/ABT6ZI34r/gf0P8ALsKZNDHPE0UqB42GGUjg1rWo8/vRdpLZkU6nLo9UxlrdQ3luk8EgeNhwRU1chPbXnhW6N1abptPc/PGT936/0P5101jf2+o2yz277lPUd1PoaKNfmfJNWkv6ugqU+Vc0dUWaKKK6DIKKKKACiiigAooooAKKKKAILy2W8s5rdukiFfp71h+D7hmsJ7OTh7eTp6A//XBro65bT/8AQvG17b9FnUsB7nDf41y1vdqwn8vvN6fvQlH5nU0UUV1GAUUUUAFFFFABRRRQAUUUUAFVtScx6XduOqwuR/3yas1R1kkaLe4/54P/ACqKjtBvyKh8SOa8OJt01m/vSE/oBWxWX4f/AOQTH/vN/OtSvBp/Cj0Z/EwoooqyTH8RQlrJLhOHhcHI7A//AF8V1dhdC9sILkf8tEDH2PcfnWPcwi4tpYT0dSKj8HXJewms3+/bydPQH/64Nb4OfLW5e6/IivHmp37HSUUUV6xwiMquhR1DKwwQRkEVyd9pt14fujqOl5a2P+thPOB/h/Kuto61jWoqouzWz7GlOo4PyObm8eeG7O2jl1DVbazd/wDljK/zj8Bzj36Vs6dqlhq9mt3pt5Bd27HAkhcMM+nHevjHWLy51DWby7uxtnlmZnXGNpz90DsB0x7V6J8B9Svbfxy9hCzG0urZzOnYFeVb654/4FWsFJRXNuRK19Nj6VoooqhBRRRQAUUUUAFFFFABXL6l+48b6fIP40AP47hXUVy+u8eKdIP+0v8A6FXLi/gT7Nfmb4f4mvJnUUUUV1GAUUUUAFFFFABRRRQAUUUUAFVNVG7SL0esD/8AoJq3TZEWSNo2GVYEH6GpkrxaHF2dzkPDrbtLA/uuR/X+ta1YXhtiiXVu3DI+SP0P8q3a8Cn8KPTn8TCiiirICsmwf+zvF5Q8R3a/qef5j9a1qxfECNGlvex8PDIOf1H6j9aTlyNTXQpLmvHudrRUVvOtzbRTp92RAw/EVLXvJ3V0eY1YKKKKAPGviB8LNK1bxRBPYTyWV3fvunVUDoWJA3AcYJ5J5/rXbeBvh3pPgaGY2jyXN5ONstzKACV/uqB0Hf3/AAGJl/0/x2x6pax/yH+LV1NYUJym5N7Xsvka1YqKilvYKKKK6DIKKKKACiiigAooooAK5fV/3njHTIx/Cqt+pP8ASuorlo/9L8eyMOVt4/8A2XH82rlxWqjHu0b0NG32TOpooorqMAooooAKKKKACiiigAooooAKKKKAOLdP7P8AGFxGchLjLAnvnn+eRWzVHxhbMgtdSiHzwttY+3Ufrn86tQTLcQJMn3XUEV4VSHs6so/P7z0YvmgpElFFFIAqvfW/2qxmh7spx9e361YopNXVgTsR+Ebvz9H8lj88DlfwPI/r+Vb9chor/wBn+Kbi1PEdyCV+vUf1FdfXqYKfNRSe60OXERtUb76hSMwRCzHAAyTS1m6/cfZtDu3zglNg/wCBcf1ronLki5PoZRjzSSMnwipuJtQ1BxzLJgfzP8xXUVkeGbf7PoNvkYaTMh/E8fpitessLHloxv6/fqXXleowoooroMgooooAKKKKACiiigBsjrFG0jnCqCxPoBXM+Eka4mv9ScczSYH8z/MVc8V3v2XR2iU/vLg+WPp3/wAPxq7o1l/Z+k29uRhwu5/948muSXv4hLpFX+bN17tJvv8AoX6KKK6zAKKKKACiiigAooooAKKKKACiiigCvfWiX1lNbSfdkXGfQ9j+BrkdDne3lm0y4+WWJjtB/Uf1rtq5bxTp0kUiavajEkePNx6dj/Q+1cGOpNpVY7r8jqw09eR9fzL1FV7K7S9tUmTvww9D6VYrz076o3asFFFFMDE1zda3VnqEY+aJwD79x/Wu0jdZY1kQ5VgGB9Qa5rVLf7Tps0YGW27l+o5q74Wu/tWhxKTl4SYz+HT9CK6cFPlqOHfUzxEbwUuxtVzPjKVmtbSzT780uceuOP5kV01ctf8A+neNrSDqluoY+xHzf/E11Yt3p8q+00jHD/HzdtTG+Jup6hpui6P4f0W4Nte6tdx2STKcNGnAJBHTqvPoTVG2+HV/4a8SaTf+FdXuZokm2atFeXW4SJxk4A+9jdwe+KqfGO0lvvEnge1iuJLY3F7JB50Zwyb2iXIPrgnFUfFvhSw+GmoeH9f8NPc27vfpaXMJmZxOjAk5z/un25HTFdaVtDA9prjNQ+J/h7T7+908rfXF/aS+W9tbWxeRjjJKj0HcnHWuzrzT4exRn4j/ABAmKKZBdxIGxyAd5I/QfkKANF/i34XNhDc2j3l9JKrMbW1ty80QU4Jdf4R9Tz2rcsPGGj6l4Tl8S2szvp8MTyyHZ86bASwK+oxXI/Ce2hi1Xxs8cSq39tSx5A/hDNgfQZNYfg1VT4LeNkUAKs1+FA6AeSKAOrb4weFQIZA181rJtD3a2rGGFmAIV27HnoM4p918WvC9pfLA0l29qZfJOoR25a2D+m/v9QDXPT28Kfs1BFjUKdPSQgD+LeGz9c80eM7aGL9nS0VI1VUsrJ1AHRi0eT9Tk/maAPWwQQCDkHoaKq6ZzpNmT/zwT/0EVleJdVa2gFjbZa7uPlAXqqnj8z0FZ1aipwcpFwg5y5UUVP8AwkHioMPms7Lv2JB/qf0FdbWbomlrpWnLCcGVvmlYd29PoK0qzw9Nxi5T+J6v+vIqtNN2jsgoooroMgooooAKKKKACiiigAooooAKKKKACkZVdCjqGVhggjIIpaKAOIu7aTw1qm9AzWE5477fb6j9RW1HIksayRsGRhkEd617u1hvbZ7edA0bjBH9RXGSR3fhm68uQNNYyH5WH+eD7d68bEUHRfNH4X+H/AO+lU9qrP4vzN6io4J4rmISwuHQ9CKkrEoKzPDb/YddvNPPCSDcg+nI/Q/pWnWJqjGw1ix1Fegba+PT/wDUTTU+ScZ9mO3NFx7nbVy3hz/Tde1PUOq52KfYn/BRW9qVyLXSrm4B+7GSp98cfrWZ4Qt/J0QSEczSM34Dj+lenU96vCPa7/RHJD3aUn30KfjzwlJ4s0aGO0uhaanZTrc2U56LIvr7f1APtXOQ+EfGPibXdLuvGd1pi2GlyieO2sQ2Z5BjDNnoOP5jAzXptFdZgFcl4W8L3uh+KPFOp3Mtu8GrXEcsCxsxZQu7O7IAB+YdCa62igDkvBXhe98OXfiKW8lt3XUtSku4fJZiVRiSA2QMH6Z+tZmg+BtT0v4f+I9AnntGutTkunhdHYookQKu4lQRyOcA/jXoFFAHEzeD9Qk+Eg8Jia1+3izWDzCzeVuBBznbnHHpR4i8H6hq/wAKovC1vNarfJbW0JkkZhHmMpu5Ck4+U44rtqztW1m20mDdKd0rD5IgeW/wHvUznGEeaTshxi5OyIbu/j0HRoFmKvMkSxogP3mAA/KqXh/S5pZ21jUMtcS8xq38IPf8untUOl6Vc6teDVdWHy9YoSOMduPT+f8APqq5acZVpKpNWS2X6v8AQ3k1TjyR36v9AooorsOcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo54IrmFoZ41kjcYKsOtSUUmk9GGxxl7ot9okzXWms01t1aM8kD3Hce9WLDWLa+AXPly/3GPX6HvXV1i6p4astRJkUfZ5zzvQcE+4715tbAtPmo/d/kdkMQnpU+8Ss/Wrf7RpcoAyyfOPw/+tmqkkGuaL99PtdsP4ly2B/MfjxUkHiCynXbNuiJ4IYZH5iuGbt7s1Z+Z0RX2o6jb/U/P8F2ybsyO4hYf7vP9F/Our0+3+yadbwYwY41B+uOf1rz2wgM+s29ir74Bcbhg5BHGT+S16XXoYCTqN1H0SX3HNiUoJRXmwooor0TkCiiqdzqthZ58+7iQj+Hdk/kOaUpKKvJ2Gk3oi5SMyopZmCqBkknAFc3ceLo3fydOtZbmU9CRgfkOT+lQjR9Y1pg+q3Jgg6iFOv5dPzya5nilJ2pLmf4febKg1rN2J9R8TgyfZNJjNzcNwHAyo+nr/KnaX4cYT/btVfz7pju2k5Cn39T+la1hpdppsey2iCk/ec8s31NXKI0JSlz1nd9uiB1VFctPTz6hRRRXUYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVSu9I0++JNxaxsx6sBtY/iOau0VMoxkrSVxqTWqObm8GWRO6C4nibtkhgP5H9ai/wCEd1iDi21lyPRiwH5ZNdTRXO8HR3St6No1+sVOrucsNM8UJ01OI/8AAif5rR/ZPiZ/v6rGo9nP/wATXU0UfVIfzP72P28uy+45b/hFr64/4/NYlcd15b+Zq3beEdMgwZFknP8AttgfkMVvUU44Sinflv66ideo9LkUFrBapst4Y4l9EUCpaKK6EklZGLd9wooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==
|
<image>Find the area of the shaded region.
|
22.1
|
Geometry
|
Geometry3K
|
test
|
93
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAELATMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorO1bXdM0O387UbuOBT91Scs30UcmnGLk7JClJRV29DRpHdY0LuwVQMkk4AriV8TeI/EXHhzSRbWjdL6/4BHqq9/1p6eAW1BhL4j1m81N+vlBvLiH4D+mK39go/xJW8t3/XzMPbuX8ON/PZf16I0tQ8deG9OJWXVIpHBxtgzIc/8AAcgVnDx9Ld5/srw1q12P4XaPy0P/AALmuh0/w/o+lAfYdNtoWH8axjd/30ea0qXNRjtFv1f+X+YclaW8kvRfq/8AI40a741uCPJ8KQwqe894px+GQf0o+1fEJySun6JGM8K7uSPxDV2VFHtl0gvx/wAx+wl1m/w/RHG/bviBEG36RpE/GR5UpX8Pmaj/AISbxXbH/S/B0jL3NvdK5/IA5rsqKPbRe8F+P+Yexktpv8P8jjV+JGmwsE1TT9T01s4/0i3OP05/St/TvEWj6tgWOpW8zH+APhv++Tz+laTosilXUMp6gjINc/qPgbw5qYJl0yGNyc74B5Zz6/Lwfxp3oS3TX4/5fmK1eOzT/D/P8joaK4j/AIRrxNofzaBrzXUK8/ZNR+YH2DdvwxU1r47FpcJZ+JdOm0m4bgSMN0Ln2Yf/AFx70nQb1pvm/P7gWIS0qLl/L7/8zsaKZDNFcQrNBIksTjKujAgj2Ip9YHQBOBmvPo/i5plwZDaeHvEl5EkjR+dbWSujEHBwQ9dV4q1L+yPCmq6gDhoLWRl/3tpx+uKyvhnpv9mfDzR4SMPJD57Z65clv5EULW/l+v8Aww3ol5j/AA98QNF8R6g2nRC7stRVdxtL6HypCPYZIP511Nea/ESFV8eeB7i2ULfNfFCy/eMQK7gfbBP5mvSqa1jcT0dgooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFYnivxBH4Z8Pz37L5k/EdtCOssrcKo/H9M1hfDfxJrGuwavba95P8AaOn3fkusS7QBj/ENQtb+QPRJncUUUUAFMlljhiaWV1SNBlmY4AHqTVXVtWstEsJL2/mEUKfmx9AO5rjYdO1Xx7Kt3q4ksNBDboLFTh5x2Zz6f5HqdqdLmXNJ2j/WxjUq8r5Yq8u3+fZFi58Wal4guZLDwjbh0U7ZdSmGI4/90Hqf84xzV7R/A1jY3Av9Slk1TUzy1xcncAf9lTwPxz+FdHa2lvY2yW1rCkMMYwqIMAVNTlXsuWmrL8X6smNC75qju/wXov13DpRRRWB0BRRRQAUUUUAFFFY/ibVpNI0dntkEl9O629pEf45W4X8B1PsDQwRjQeNJLz4lN4atoY2sorZ2lnKncZVIyqnOMDIzx1rsa85sNJj0T4kaBYIxdk0icyynrJIZAXc+5JJr0aj7K+f5sOr/AK6IKhurS3vrdre6gjnhb7ySKGB/A1NTXdI0LyMqooyWY4Apq99AfmcTceENS0CV73wjemIE7n064bdFJ9M9D/nIrS0HxlbapcnTr6F9O1ZDhrWfjcf9g9/89etQah4/06Of7JpEM2sXp6R2i5QfVvT3Gaybrwpr/jC5hu9fkttNiiyYobZA0q+mX/8Ar/gK7uVzj/tGnn1+7r/WpwcyhL/Z9fLp9/T+tBfjLfLb+BxZGURG/u4rcsxwAudxJ9vlrYj8d+DdO0+ONfEOneVBGFCxzBjgDHAHJ/CsQ3Q025g0Tx3ZWmo2m7/Q9SuYFkQn0bcDg479fXPWuttvCvhu2kWe10HSopByskVnGp/AgVyTpSp6PZ6pnXCrGptut12OU8PQXXjHxmPGF3ay22l2cRg0qKZdryZ+9MR2BHT8PSvQ6KKz6WRp1uwooooAKKKKACiiigAooooAKKKKACiiigAoorn/ABkNcl8PTWvh+38y+uiIfNMioIEb7z8kZwPTJpPyGjzzUPHnhrUfiV52s6msOl6JlbSPyZJBPcHhpPlUjC4wM/UVb+HWuafqXxO8WtplyJ7O9SO5ifYyZxgNwwB6t6V6DoPhvT9A0O00y3gjZIIwpdkGXbux9ycmudfw7qNt8XrbXLSyX+y5NONvcSq6LtfJI+XOT0XoKqNk0vX/AD/NCeqb9DuaoazrFnoWmS397JtijHAHVz2UDuTVq5uIbS2luLiRY4YlLu7HgAdTXmNhrmleLfFzXmtX0NvZWZH2GynO0OT/ABsTwe3GfT052oUXO8nstznr1lTtFP3nsbOj6JeeKNQTxD4ji2wrzY6e33Y17Mw7k/57Cu6pEdZEDowZSMgg5BpaipUc3rolsuxpSpqC7t7vuFV/t1p9v+w/aoPthj837P5g8zZnG7b1xnvVivMfirqI0PUtD1awuFh1aJpIz+7LgW7jazuB2VipGe5rPqjVK56PBeWtzLNFBcwyyQNsmSNwxjbrhgOh+tT1l+H9GtdD0iK0tWMmcySTty0ztyzse5JrUpvQlO4UUUUhhRRRQAVma34e0nxHbR22r2SXUMb70VyRhsYzwR2NadYms+LdF0HK3t4vnjpBF88h/AdPxxVRg5u0VcmU4wV5Oxyi/DTSrLx/pt7Y6JFHpcFuzu4lPy3AYFDgtnt9K7u/1Ox0q3M9/dRW8frI2M/T1/CuTGreLvEnGlaeuj2Tf8vV4MyEeqp2/I/WrWn/AA/02O4+2avLNq96fvSXbZX8F9PY5rb2UYK1SXyWr/yMfbSm704/N6L/ADf9alZ/G19rLND4V0ea752m8uB5cK+/OCfpwfahPBF9rDrP4q1ia85yLO3Plwr7e/14PvXaIiRoEjVVRRgKowBTqPb8v8JW/P7/APKwew5v4rv5bL7v87lSw0yx0q3EFhaxW8X92NcZ+vr+NW6KKwbbd2bpJKyKuo6baatYyWV7Cs0EgwVbt7j0PvXFafqF54D1CPR9YlabRJm22V83/LH/AGH9B/np07+qmp6ba6vp81jexCSCUYYenoR6EVrSqqK5J6xf9XXmY1aTk+eGkl/Vn5FsEEZHIoriPDeoXXh7V/8AhFNYlLrjdp103SVP7h9x/wDW9K7epqU3B26dC6VRVFfr18gooorM0CiiigAooooAKKKKACiiigAooooAKKKKACiisTxXrg8P6BPeKN1w2IrdO7SN04745P4VUIuclFbsmclCLlLZGB4gll8W+JE8MWjsNPtSJdSlXv6Rg/55/wB2umu/DmjX1rHbXOmW0kUahIwYwCigYABHIqn4P0E6FoirP81/cnz7pzyS57Z9un5nvXQVtVqWajTei/pv+uhjSp3TnUWsvwXRf11OLfwC2nuZfDmtXumN18kt5kR/4Cf65pP7Y8Z6Jxqejw6rbr1nsGw+PUr3/ACu1oo+sSf8RKXrv9+4fV4x/htx9Nvu2OY07x/4fv38qS6NlcDhorxfLIP1PH60xfB9vfx63caherfT6vGYBOseFhgx8qIMngHnOeTW5qOjaZqybb+xt7jjAMiAsPoeo/CuZfwALFzL4d1i90t+vlb/ADIj9VP9SaTjQn1cfXVfhr+A1KvDdKXpo/uen4nS6Jp82laHZafcXf2uW2iWIz7Nm/AwDjJxxjvV+uJ/tXxponGo6TBq9uvWaxbbJj3XHJ+gq9p/xA0C9cxT3LWFwOGivF8sqfr0/WiVCo/eWvpqKOIpr3Xp66HUUVUutV0+ytPtdzewRW56SNIMH6ev4Vysnjm51aRrfwrpM1+3T7VMpjhT88Z+nBqYUZz1S079C51oQ0b17dfuO0ZlRSzMFUDJJOAK5XUvH+l29x9j0xJdWvjwIbNdw/FumPpmqi+C9S1txN4q1mS4Tr9itT5cQ9ie/wCWfeuq07SbDSLfyNPtIrePuEXBP1PU/jV2pQ3fM/LRfeRetPZcq89X9239bHKf2d4x8RnOo3qaJZN/y72h3TEe7dvz/CtrRvCGi6Fh7WzVrjqbib55CfXJ6fhit2iplXm1yrRdl/WvzKjQhF8z1fd/1p8gooorE2CiiigAooooAKKKKAMPxX4eTxDpDQq3l3kJ8y1mBwUcdOewP/1+1ReENffXNLZLtfK1KzbybuI8EMOM/jj8810NcN4kQ+FvE9r4ngBFncEW2oIo4wfuv9eP0HrXTS/eR9k9+nr2+f5nNV/dy9qtuvp3+X5Hc0UisrqGUgqRkEdxS1zHSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcPOP8AhJviOlvndp+hqJHHZp26flj/AMdPrXW6pfx6XpV1fS/ct4mkI9cDgfjXP/D6wktvDS3txzdajI13K3ruPH6c/jXRS9yEqnyXz/4H5nPV9+cafzfy2/H8jq6KKK5zoCiikJCqSSABySe1AC0Vy2p+PdJs5/slj5mqXx4WCzXfz7sOPyzVD7H4y8Sc3lymhWLf8sbc7pyPdu35j6VusPK15+6vP/LcweIje0Pefl/nsb+s+KdG0FT9vvUWXtCnzSH/AICOn41ymoSa144j8q08P29nZHgXmpRgyY9UXHB/Me9dLo3g3RNEYSwWvnXOcm5uDvkJ9cngH6YrL+JGu6loui2MWjXAt9Sv76K1hkMavt3dThgR2x+NUqlOk17NXfd/5f5kulUqr947Lsv8/wDJGOfhDbLZoI9Wm+1qd254laIn/c/+ua0o73xn4diWK60m11WzjGA9j+7cAf7GOT7BfxqL/hGviJ/0UCH/AMFMP+FdD4b03X9PiuBr2vLqzuw8orapCIxzn7vXP9KbxU56VLSXn/wBLCU4a0rxfl/wSlYfELQLuTyLmaTT7kcNFeIYyv1PT8zXTxSxzxrJDIkkbchkYEH8RVe/0qw1SLy76zguF/6aIDj6HtXLy/D6C0kafw/ql7pMpOdsbl4yfdSefxNTajPZuP4r/P8AMq9aG6Uvwf8Al+KOzorift/jfQ+LzT7bWrdf+Wtq2yXHqVxyfYCrdj8Q9CuZfIu5JtOuehivIymPx6D8cUnh52vHVeWv/BGsRC9pe6/PT/gHV0UyGaK4iWWCVJY26OjBgfxFPrA3CiiorhzHayyDqqE/kKTdlcaV3Y5G98dXSvfT6X4eudS0zT3aO6vEnRMFfv8AloeX29+ntmuq0++g1PTra+tX329xGssbYxlSMivLfBOq+JY/h3bXWlaNYXVjEsrzi5nZZrk72L7AFI9R8x5x0r0nw/qVnrHh+x1CwjEVrcRB0jAA2eowOODkVVrXXb+v+GE3r95pUUUUgCqeq6bBq+lXOn3AzFOhQn0PYj3Bwfwq5RTTad0JpNWZyfgHUZpdIm0m8P8ApulSm2kBPJUfdP04I/Cusrib0f2D8TLO7X5bbWYjBL6eauNp+p+Ufia7atsQlzKa2lr/AJ/iY4dvlcHvHT/L8AooorA3CiiigAooooAKKKKACiio554bW3knuJUihjUs8jsFVQO5J6UASUVw03xW0EMxsrPV9SgRir3FlZM8S46ncccfTNdH4e8S6V4o0/7bpN0J4g21wQVZG9GB5FAGJ8RZZJtHstIhOJNTvI4OOy5yT+e2uuhiSCCOGNdscahVHoAMCuO1Yf2h8UdEteSljayXTfVsqP1C1vaz4m0jQUzqF7HG+MiIfM5+ijn8eldM4twhCKu9/v8A+AjmhKKnOpJ2W33f8Fs1qr3l9aadbm4vbmK3hHV5XCj9a5D/AISDxP4iO3QNKFhaN0vb8YJHqq//AKxU9n4AtHuBea9eXGsXfXM7ERr9F9PY8e1L2MYfxJW8lq/8kP20p/wo383ov83/AFqRzeO5dSma28L6VNqUoODcODHCh9yev04pi+D9X11hL4p1l3iJz9hszsiHsT3/AC/Guov3Ok6HdS2Fnve3gd4baGP7zAEhQo9TxgV55qMOv+HfCNv4un13VJNUHky3VjOw8gh2AaMRY+UjdjPXihV1F2pK22u71/roH1dz/iO/lsv69T0TTNG03RoPJ06zit07lB8zfUnk/jV6kVtyBsYyM4NLWEm27s3iklaOwV5b8QRqur/ETw3pOiNa/bLOOS//ANL3eUDnCltoJ/hOPrXqVeX6haeMtP8AibqXiDT/AAuupW72yWtsz30UWEGCTgnPXPYVP2l/X9aldH/X9aGl5HxX/wCfrwn+U/8A8TXb2QulsLcXzRNdiNfOaIEIXxztzzjPSuIHiX4iZ/5ECEf9xaH/ABrvELFFLgBscgdjVdBdR1FFFIAqrfaZY6nF5V9aQXCekqBsfT0q1RTTad0JpNWZxs3w9tbaVp9B1K90iY84ikLRn6qTk/nTPtnjjQ/+Pqytdbt1/wCWlufLlx7jHP4A12tFbfWJPSa5vX/Pcw+rxXwPl9P8tvwOTsviHoc8v2e9M+mXI6xXkZTB+vQfjiumjlgvbffDLHNE4wHjYMCPqKZe6dZalD5N7aQ3Ef8AdlQNj865ef4eWcErXGhaheaROef3MhZCfdScn6ZoaoT7x/Ff5/mF68O0vwf+X5GLpNzrPhLw7P4WHh3Ury5iMqWNzBGrQSozEqXfI2Y3cg+ldh4Q0RvDnhPTdJkZWlt4gJCvQuTlse2SaxftPjnQ/wDX2trrlsv8cJ8uXHuOn5A1Ys/iJosswt9QFzpdz3jvIiuPx7D64puhUs3H3vTy8tw+sU7+97vrpv57HW0VFb3MF3Cs1tPHNE3IeNgwP4ipa59jo3CiiigDkviNavJ4X+3QD/SNPnjuYz6YOD+hz+FdNZXSX1hb3cZzHPGsi/QjNR6rZjUNIvLNhkTwvH+YIrC+Hl4bzwRp5Y5aINCf+AsQP0xW/wAVD0f5/wDDHP8ADX9V+X/DnUUUUVgdAUUUUAFFFFABRRRQAV5z4s3eLPiBp3g5nYaZbw/b9QRTjzcHCIfbOPz9q9GryzVtQj8FfGCTWtWEiaTqtmsC3W0ssUi44OOn3f1+tC+JX/rTT8R/Zdv61/yPT4IIbWBILeJIooxtREUBVHoAKxtJ8KWGi+INV1ezeVZNSKmaDjyww7qAM5OSTz3rK1T4l+H7a22aVdpq+oyjbb2dlmRpG7A4+6PXNavhK01m10JG1+7NxqUzGWUcbYc9I1x2A/rTW9xdLHJXem6jr3xK1dLDUm09La3ihlmjXLlGAbC9MHPfPaup0fwVoujOJ0tzc3ecm5uT5jk+vPA/Cs7wv83jrxc5OSJLcD6bW/wrsq6q9WatTTsrL8kceHpQleo1d3f5sKKKK5DsIrm5gsrWW5uZUigiUvJI5wqgdSTXBePLPUGsf+EiTVI7/RLTy7ttJeILHKq4O4SKcn+8AcjpxXd3lpBf2U9ncpvgnjaORfVSMEVxw8A38tkmkXvim7udBj2qLL7OiuyL0RpRyV4A6A+9HUeh2dtOtzawzoCFlQOAeuCM1LSKqooVQAqjAA7ClpvfQlXtqFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABVe8sLPUYTDe2sNxGf4ZUDD9asUU02tUJpNWZx1x8O7CKZrjRL280i4PObeQlCfdSeR7ZAqLzvHWh/62C0122H8UZ8qbHv2/IGu2orb6xN6T971/wA9zD6tBaw930/y2/A5G0+ImkPMLfUorrSrg/wXkRUfn6fXFdRbXdveQia1ninibo8bhgfxFJd2VrfwmG8toriI/wAEqBh+tctc/DvTVmNzo93d6Rcn+K2lO0/VSentkU/3Mu8fxX+f5h+/h2l+D/y/I7CuN+Hv7mDXLLnFvqkyqPQcDH6Go9/jrQ/vJaa7bL3X91Nj+X86j+Ht39r1PxLK1u9rI92sj28n3oy27OfxBrRUnGlN3TWm3r95m6qlVho09d/T7je8U+KrHwjpsV7fQ3MyyzLBHFbIGdnOcAAkenrXNyfFqwgjMtx4Z8UQQry8smngKg9Sd/Ssv4o65p9l4x8JW2pz+VY287Xs7bS2NvCcAE9QRV7U/jH4TOnzJp9215dyKUihMLRqzHgbmcBQPUk1xJ6XX9f0zutqkzt9F1qw8QaVDqWmzia1mB2tgggjggg9CDV+uY+H/h1/DHg2z0+aRJJzmWVozldzHOAe4HAzXT1Ukk7IhO6CiiikMKKKKACo57eG6haG4hjmib7ySKGU/UGpKKAKVjpGmaWCNP060tAeot4Fjz+QFXaKKAON8LHb468XqcgmS3IHttb/ABrsq43SP9G+KWvwH/l5tYZ1HsoVT+prsq3xHxp+S/JHPhvga85fmwooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuN8HKh8TeLZVILG9VSQfTdx+ZNdlXG/D7M0evXnOJ9VmIPqODn9a3p/wpv0/MwqfxYL1/L/gnOJr+kRfGvWLzVdStbSOwsUtIfPlC7mbDNjPpkj8a0PG/jHw3qvhm70jT7i31jUb6Mw21rajzW3ngNxwMdc+1ddceFPDl5cSXFzoGlTzyHc8ktnGzMfUkjJNWbDRNK0osdO0yysy3X7PbrHn/vkCue14qLOi9pcyKvhTTJ9F8J6Xpty++e3tkSQ5z82OQPYdPwrYooqm7u5KVlYKKKKQwooooAKKKKACiiigDjNTP2D4p6PcnhL60ktifdct/VRXZ1xvxFRrbTdP1qMEvpl5HKcd1JwR+J212EciyxpIhyjgMp9Qa3q604S+X3f8BnPS0qTj8/v/AOCmOooorA6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKupXa2Gl3d45wsELyE/QE1gfDq0a08E2O/782+Y++5jj9MUz4i3jweFJLSH/j4v5UtowO5Y5P6Aj8a6PT7RNP021s4/uW8SxL9FAH9K3+Gh6v8v+HOf4q/ovz/AOGLNFFFYHQFFFFABRRRQAUUUUAFFFFABRRRQBS1jT01bRrywfgXETID6Ejg/gcGsTwBqT33haG3nyLqwY2kynqCvT9Mfka6iuHBPhn4kkEFbDXU69lnX/H+b10UvfhKn818t/w/I56vuVI1Omz+e34/mdxRRRXOdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVtRv4NM064vrhtsMCF2/Dt9aaTbshNpK7OS1MnXfiVp2nr81tpMZu5vTzDjaPqPlP5121ch4Aspjplzrd4v+matKZ29k52j6ck/QiuvrbENKSgvs6f5/iYYdNxc39rX/L8AooorA6AooooAKKKKACiiigAooooAKKKKACsHxfoba7oMsMJ23kJE1s44KyL059+R+Nb1FVCbhJSXQmcFOLi9mYfhLXh4g0GK5f5buP91cxkYKyDrx2z1/GtyuD1lX8GeKV1+FSdJ1BhHfxqP9W/aT/Pv6iu6jkSWNZI2Do4DKynIIPQitK0Empx2f8AVvkZUZtpwl8S/q/zHUUUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXDeLJW8SeILPwnbMfJBFxqLqfuoOQv1PH5rXQeJtfh8O6PJduN87fJbw95JD0H09ap+DNBm0nT5bzUCX1W/bzrp26qT0T8M/mT7V00v3cfav5evf5fmc1b95L2S+fp2+f5XOjjjSKNY41CogCqo6ADoKdRRXMdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXtnBqFlNaXUYkgmUo6nuDXF6DfT+ENXXwzq0jNZSknTbt+hGf8AVsfX/PQiu7rL1/QbPxFpcljeJweUkA+aNuzCtqVRK8J/C/w8zGrTbtOHxL8fI1KK4rQfEF3o+oL4c8SuFuBxaXpPyXC9ACf73/6uvXtampTdN2f/AA5VOoqiuv8AhgooorM0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvfX1tptlLeXcqxQRLud27Ut5eW9haSXV3MsUEa7ndjgAVw1vBd/EK/S9vEkt/DkD5gtzw10w/ib2//UO5ralS5velpFf1ZeZjVqcvux1k/wCrvyJdAs7nxbrY8UapE0dlDldMtX7D/noR6/19gK7ukVVRFRFCqowABgAUtTVqc77JbIdKn7Nd2933CiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDN1zQrHxBpzWd/FuQ8o44ZG9VPauVtNb1PwZcR6b4jL3OmsdttqaqTt9Fk/zn69u8qK5toLy3kt7mJJYZBtdHGQRW1OrZck1eP9bGNSld88HaX9bjoZoriFJoZFkicZV0OQR7Gn1w0nh3WvCkz3Xheb7TYk7pNLnbp6lG/z+Nauh+NdL1mT7LIWsdQB2vaXQ2Pu9Bnr/P2pyou3NTd1+Xqv6Qo11flqKz/B+j/pnSUUUVgbhRRRQAUUUUAFFFFABRRRQAUUUyWWOCJpZpFjjQZZ3OAB7mgB9ZeueINO8PWRub+cID9yMcvIfQD/ACK5+88bT6lctp/hOzOoXA4e6YYgi989/wDOM1Z0TwYlteDVtbuTqernB82T7kXsi+3r+QFdCoqHvVdPLr/wDmdZz92jr59P+D8vvM610fU/Gd5FqXiBGtdKjIe203PL+jSf5/Lv3UcaRRrHGioigKqqMAAdhTqKzqVXPTZLZGtOkoa7t7sKKKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyNc8MaT4hi26haq0gGFmT5ZF+h/oeK16KqMpRd4uzJlGMlyyV0cONJ8X+G/+QTfJrFivS2vDiVR6Bu/5/hU9v8Q7CKZbbW7K80i5PGJ4yUJ9mA5HvjFdjUVxbQXcLQ3MEc0TdUkQMp/A1t7aM/4kb+a0f+X4GPsZQ/hyt5PVf5/iRWWp2OpR+ZZXkFwnrFIGx+VWq5W9+Hfhy7k82K1ezm7SWkhQj6DkD8qrf8Idrll/yDPF98ijol0gm/Unj8qXJSl8Mreq/wArhz1o/FC/o/8AOx2dFcb9j+INvxHqekXaj+KaIox/BVxR5vxEQkfZ9Bk98yf4ij2HaS+8Pb94P7jsqK4zd8RJM/LoUWf+uhx/Og6R46uh+/8AEVlaDnItrbf+rAGj2C6zX9eiD27e0H/Xqzs6x9S8VaHpAb7Zqdujr1jVt7/98jJrEPgB73/kMeI9VvgfvRiTy0P/AAHmtbTfBvh7SirW2lwGRTkSSjzGB9QWzj8KOWjHeTfov1f+Qc1aW0UvV/ov8zGPjPVdZPl+GtBnmQ9Lu8/dxD3Hr+efali8E3uryrceKtWkvcHIs4D5cK/ljP6Gu16UU/b8v8NW/P7/APKwew5v4j5vy+7/ADuQWllbWFstvaQRwQr0SNQoFT0UVzt31Z0JW0QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==
|
<image>Find x
|
2
|
Geometry
|
Geometry3K
|
test
|
94
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEIAUIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuD+KF/fJZaLpOm3txaXep6jHB5tvIUdU/iII57imN8Nr9FLW/jzxQsw5Qy3hdQfde49qFtcZ39FcP8OvEWqammraPrjrLqej3HkSTqMeapztbjvwf0ruKbEFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzvWf+Jt8atBsusel2Ut44/wBpvlH/ALLXoM00dvDJNK4SONSzsxwAByTXnN54W8cW/jvVfEOi3OhBbxEhRbxpSyRqBxhVwMkZ6mrU3hTxf4liW08Va5ZQ6cTma10mNlM4/us7cgewFJX5Ul/Wo3bmbZH8LIXvBr/iZ0KprF+zwZGMxKSFP6n8q9DqG0tYLG0htbWJYoIUCRxqMBVHAAqaqdtkLXd9QooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXnnxAnv9Q8U+GfDWn6ne6f9sklluJbOYxuI1X1H49aOqSDuz0OiuB/4Vpc/wDQ9+LP/Bga6nw/or6FpptH1O/1Fi5fz76YySc44z6cUAatFFNkkSKNpJHVEUZZmOAB6k0AOqOeeG2haaeVIol5Z3YKB+Jrj7vxrc6ndPp/hOxN/Mpw92/EEfvnv/nGaIPAb6jMt34o1OfU5hyIFYpCh9gMfpiuj2CjrVdvLr93+Zz+3ctKSv59Pv8A8ia8+IujRzm206O61S5/552cRYfn3H0zUA1fxzqXNnoNpp8Z6NeTbj+QwR+VdbZ2Fnp0AhsrWG3iH8MSBR+lWKPaU4/BD79f8kHsqkvjn92n+b/I4z+xPG91zceJ7a2z/BbWoYD8SAaxk0/xE3jNtCn8V3pX7H9pE0cYTPzYxtz9a9MrjXJT4vx5H+s0nj/v4f8ACtaVaUubRbPov8jKtRjHld3uur/zEHhbxVEo8rxrKxH/AD0s1P8ANjSG1+INlzFqGlaioH/LaMxsfwUAfrXaUVj9Yk90n8l+hr9Witm183+rOKPjLWtM/wCQ54Wu44x1ms2Eqj6gdPzra0jxdoetlUstQjMp/wCWMnyP+R6/hmtusPWPCGh64GN5YxiZv+W0Q2P+Y6/jmnzUZfFG3p/k/wDMOStH4ZX9f81/kblFcKdP8WeFPn025OuacvW1uD++Uf7Ld/8APFbugeLNM8QZihdoLxP9ZaTDbIuOvHcfT9KmdFpc0XdeX69ioV03yyVn5/o+pu1Dd3CWlnPcyHCQxtIxPYAZqauR+J2o/wBmfDvV5FOHli+zrj1chf5E1zyvbQ6Iq8kmcv4Xj+IfivQINaTxjHYx3LOY4DpsL7VDEDnHtWn4d1vxRp3j9vCniG9ttTWS0N1DdxQiJgM4wyjA7H9Oar6HpfxN0nQLKws38KrBBAqRiTz9+MfxYGM+tHw8lml8X+IE1+Jm8UQhFnnDhovJPKrGABtHQ46mtNOay21IveN2el0UUVIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryXUtO1TxV8YNROk60dKfR7KOH7QLcTcvkkAEgD7x59q9arzCz8LfEHR9e1vUNLuvDpXU7kzMblpmYKCdo4UdAaX2tR/ZZpL4O8bBgW+I0xXPIGlRjP/AI9XeAYUAnOB1ribOH4nfbYPtt14Y+y+YvneSs2/ZnnbkYzjpmuo1nWLTQtMlv719sSDgDq7dlHuatJyskRJqOrDWNZsdC0972/mEcS8AdS57ADua4+HTdX8eSLdawZLDQshobFDh5h2Zz/n29aoeGni8XeK5r3xCzLe22Gs9NkUqiIRkNg/ePT+fTGPTq6Zf7N7q+Lv29P8/uOWH+0rmfw9u/r/AJfeV7KxtdOtUtbOCOCBB8qIMCrFFFcrberOtK2iCiiikMK428DJ8W9Pcj5ZNMZAc9wzE/0rsq47VWMfxS0D5ciW1mQHPTAZv8/Wt8PvJeT/ACMMRtF+a/M7GiiisDcKKKKACue8Q+ELDXsXALWmopzFeQfK6ntnHUfr6V0NFVCcoPmi7MmcIzXLJXRxWl+KL7R9RTRPFarHK3FvqA4jnHuegP8Ak47w/FDSNb1vStMttG037eI71Li4j89IwyqDhSWI6k+/SovEVy3jfU/+Eb0oRNaW7B72+ZQwjIP3U9/p79s1No+q3vhTVIvDuuy+bay8WF+3AYdkb36D2+mK6qlHnSktJb2/X/gHLSrcjcXrHa/6f8EYniD4iyny18D2luTwJJdUjZV9yF5P4VqeEPC9zosuoapq1zHda1qbh7mSIYRAB8qJnnArqaK4zsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAZLKkMTyyuEjRSzMxwAB1Jrg9Lgk8d6//bd4p/sSycpYwMOJXHVyP8+nY1Z8ZXU+salaeEbCRle6/e3ki/8ALOEdvx/w9a7CztILCzhtLZAkMKBEUdgK6V+5hzfal+C/4JzP99U5fsx/F/8AA/P0MTxN4Wi11EuYJDa6rbjNvdIcEH0OOo/lmq3hvxRNdXTaJrcX2XWoV5U8LOP7y/zx+Xt1VYXiXwxa+IrVdzNb30PNvdR8NG34dR7VMKkZL2dTbo+3/A8ip05RftKe/Vd/+D5m7RXIeHPE12l8PD/iNBBqyD93Ln5LpexB9f5+x4rr6zqU5U3Zl06kakboKKKKg0CuN17KfErws5HBS4X/AMcP+NdlXG+JSU8feEnxkFrhf/HR/jW+H+N+j/JnPifgXrH/ANKR2VFFFYHQFFFFABXEeIdavdd1N/C/h6QByv8Ap16OVgToVH+1/wDq9SJvEmv3l7qP/CNeHiG1CRf9JuAfltk78/3ufw+tbnh/QLPw7piWdquW6yykfNK3cn/DtXTBKkueW/Rfq/0OabdZ8kXp1f6L9exLoui2eg6ZHY2UYWNBlm7u3dj703XtDtPEGlS2F2vytyjjrG3ZhWlRWHPLm576m3JHl5LaHIeD9Zu0nn8Nay3/ABMrEYjkJ/18XZh6np/nNdfXI+ONJnaCDxBpoxqemHzFIHMkf8Sn14yfz9a6DRtVg1rSLbUbc/u503Y7qe4PuDkVtWSklVj138n/AMEyotxbpS6bea/4GxeooornOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKhu7qKys5rqdtsUKNI59ABk1NXHfES4lk0m00a3YrPqtykAI7LkEn6Z259jWlKHPNRM6s/ZwchvgGzluo73xNer/peqSEpn+CIHCgfl+QFdnUNrbRWVnDawLtihRY0HoAMCpqKs+ebkFKn7OCj/V+oUUUVmaGP4h8OWXiOx8i5BSZPmgnTh4m9R/hWJoPiK903UU8O+JfkvOlteZ+S5Xtz/e/n9evZ1l69oFj4i05rO+jyOqSD70beoNb06ityVNvy9P8AIwqU3fnp/F+fr/malFcPo2u3/hzUIvD3iV9yt8tnqJPyyjsrHsf/AK2fU9xUVKbpvXbo+5dOqqiut+q7BXG+LQyeMPCM2MqLiVDz3YLj+Rrsq47xoxi1zwpLjK/2iE/FsAVeG/ifJ/kyMT/D17r80djRRRWBuFcl4o8R3a3aeH9AUTaxcD5nz8tsn95vQ/59AZfFHiWaxli0fR4hc6zdDEaDkQj++3pVrwv4Zh8PWbM7/aNRuPnurluWduuAT2rohFU4+0n8l+r8vzOecpVH7OD9X28l5/kSeGvDlr4c07yYj5tzJ81xcN96V+5+noK2qKKxlJzblLc2hBQiox2CiiipKAgEEEZB7Vw3hjPhzxhqXhpsi0uB9ssc9AD95R/n+E+tdzXFfECNrAaV4jhX95p1yvmY7xNwR+eB+Jrow/vN039r8+hz4j3Uqi+z+XX/AD+R2tFNR1kjV0OVYAgjuKdXOdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxd0DqXxYsoTzFpli02MfxscfyK/lXaVxnhhTceO/Fd4R92SGBT9FIP8A6CK3oaKcuy/PT9Tnr6uEe7/K7/Q7OiiisDoCiiigAooooAoavo9lrmnvZX8Ikiboe6H1B7GuT03Vr7wdfQ6Jr8hl0+Q7bLUT0A7I/p/T6dO7qpqWm2mr2MllfQLNBIMFW7e4PY+9bU6qS5J6x/LzRjUpNvnhpL8/J/1oWgQwBBBB5BFcd48yl14ZlxkLq0Ofz/8ArVSsr6+8A3kWmatI1xoUr7bS9PJg9Ef2/wAjjgW/H8ita+H7iMq8f9qwMGU5BGCRg/hW1Kk4VY21T2ZhVqqdGV9GrXXzO0rm/FXic6MsNjYQ/a9Yu/lt7decf7Te388egJEvifxLHoFtHHDEbnUrk7LW2Xku3qfas/Q9Gj8OWd34j8QXCyam8bS3Vw5yIUHO1fw9PoOKyhGMI+1qbdF3/wCAbVJSnL2VPfq+3/B/4cueFfDA0SJ7y9k+06vdfNc3DHJyf4VPp/P8q6OvOtPPirx9H/aS6nL4f0KQn7LFboDcTp2dmP3c9sf/AF6ztfg8TfDeCHW7XxDe6zpMcireWuoHzHCscblfr1PtjjqKznOU5Xnu/wCvkawpxhHlh0PVqKjt50ubaK4iOY5UDqfUEZFSVDVik76hRRRQAVmeI7D+0/Dmo2eAWlgYLn+8Blf1ArTopxk4tNdBSipJp9TnvA19/aHgzTJSSWSLyWz1yhK/yAroa4z4cnydN1Ww422mpSxqPReP65rs61xCSqyS7mWHk3Si32CiiisTYKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPO/izm/sND8PqTnVNTijcA8+WOW/mKm/4Uz4I/6Bk3/gVJ/wDFVl+LtLXxf8V9M0Rru7tYdPsHunmtJNkiMzYGDg46LWsnwttUkVz4q8VNtIO1tRGD7H5KIrTXq3/l+g5PX0X/AAf1Ol8O+GNK8K2D2WkW5hgeQysC5cliAOpOegFYXgZkXUPFLkgZ1aXk8dzXaAYGK8x0XwjpGveIfEp1OJ3mh1FyuyUr8rEkdK6qPK4T5n2/M5K/MqkHFa6+XT5npLXMCDLTxgepcVG2o2KLue9t1HqZVH9a5v8A4Vp4Vz/yD3/8CJP8akHw58JggjSRx63Ep/8AZqjlofzP7l/mVzV/5V97/wDkTafXNJiQvJqlkijqzXCAD9agbxR4fUZOuab+F0h/rVMeBfDAOf7Hg/Nv8am/4Qzw2D/yBbP/AL90Wod3+A37fol+I5vF3h1Vydbsce06mo28a+GkUsdZtcD0bJ/Spv8AhE/DwP8AyBLD/wAB1/wqQeGdBUgjRNNBHIItI/8ACj9x5/gL/aPL8TPfx94XjQs2rxED+6jsfyAqBviR4TAyNUJ9hby//E1vDSNMByNOtM/9cF/wqX7DaA5FrB/37FF6HZ/ev8htV+kl9z/zORvviB4Nv7KW1urg3EEgw0bW7nP5ivKNT1qYH+ztPvrh9JtrjzrRZQAynsfXjJr3TxBrOn+HNON3cxKzsdsMKKN0j9gP8a4T/hW9/wCJBJrGp3osb67kMjQCHcEU9AeRzj/6/Nd+Eq0aa5pJqPm76+St+J52NpV6nuwacvJW083f8Cb4YSJreoalq2otJc6rDsVZpTkKjAj5R2Pyn/OaufGW4eLwMsAcpFdXsMMzDsmST/6CKgtrO9+GU/m5N9oVyyi4kWPEkDYxu47f569ev1jS9L8aeGZbKWUTWV2gKSxNyCDkMD6giuPG+9P2kdY6W+XTyO3A+5D2c9JK9/n18/U1baGK3tYYYVCxRoFQDoFAwK4T4t3fneGoPDtt+81HWLiOGGIdcBgzMfYYHPvTLHQPiNo9vHp1n4h0i6soxsjnvIH85FHQYHB/E1seHfBQ0zU31vV9Rl1fW3XZ9qlUKsS/3Y0HCj/PGTXM0m7vY64txWm50llbCysLe1U5WGJYwfXAA/pU9FFDd3diSsrIKKKKQwooooA47wWvla54riByv9ol/wAWyTXY1xvgYmXU/FFwSTv1R0Bx2UnH6EV2Vb4n+I/l+SMMN/DVvP8ANhRRRWBuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHO6Z4W+weMdY8RS3nnyagkcaReVt8lVGMZyc5wD0FdFRRR0sHW4VxeiH7F8TPEVoePtUMVynuAAD+rGu0rivEB/sr4h6BqnSK7RrGU+5+7+rfpXRQ15od0/w1/Q58Rpyz7Nfjp+p2tFFFc50BRRRQAUUUUAFZuu65ZeHtMkvr18IvCIPvSN2Ue9S6tq1nomnS319L5cMY/Fj2AHcmuT0PSrvxRqieJNdjZIEOdPsW6IvZ2Hc/8A6+mK2pU01zz+Ffj5Ixq1GnyQ+J/h5v8ArUo6Qtxc+JrbXPFdtLCbkY01X/1NuSThW/uuRgjPX64Fej1Dd2lvfWktrdRLLBKu10YZBFYMF/J4amWx1e4Lae3Frfyn7v8A0zlPY+jd+/PUqTdV3/A66GHg6dqfx9f73n6+X3djeu3t47OZ7sxi2VCZTJjbtxznPavN7KbUfCTS6xp9lM3he4m3G2kP7yJP+eqj+EHsD2xnHWuqjjk8UzLcXCNHoqMGhgYYN0R0dx/c9F79T2FdGVVlKsoKkYII4Iop1PZ6NXT3X9dScRh4KPL/AMvO/by8/P8Az2r2GoWuqWUd5ZTpNBIMq6n9PY+1Wa4G/wBMvvA97NrGhoZtIlbdeaeP+Wfq6en9Pp07HS9Vs9ZsI72xmEsL9x1U+hHY0VKSS54axf8AVmc1Kq5PkmrSX9XRdooorE2CiiigApsjrHGzscKoJP0FOrnvHGo/2Z4O1KYEh3i8lMHnL/Lx9ASfwq4Rc5KK6kVJqEXJ9DO+GiM/hma+cYe9vJZz+YX/ANlNdlWV4a086V4a06yYAPFAu8D+8Rlv1JrVqq8lKpKS7k0IOFKMXvYKKKKyNQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACua8eaXJqfhW4MAP2m0IuoSOoZOTj3xmuloIBBBGQe1XTm4SUl0IqQU4OL6mboGqprehWeoIR++jBYDsw4YfgQa0q4Xwyx8M+Lb/AMMSnFpck3WnknjB+8g/L/x0+td1VVoKE9NnqvQihNzh7260fqFFFFZGwVV1HUbXSrCW9vZligiGWY/yHqfan3d3b2FpLdXUqxQRLud2PAFcPZ2tz4/1NdSv1eLw/bvm1tWGDcMP429v/wBXrW1Kmpe9LSK/qy8zGrUcfdjrJ/1d+Q7SrC68banHr2rxvFpUL5sLFv4/SRx3/r9Ove0gAVQAAAOAB2pamrUc32S2Q6VPkXdvd9wqOeCG5haGeJJYmGGR1BB/A1JRWZsm07oAMDA6UUUUCDrXC6tot94Vv5de8OJvtnO6904D5WHdk9D/AC+nFd1RWlOo4Pye67mdSmprs1s+xnaLrdjr+npe2EodDwyn7yN/dYdjWjXE634fvdF1GXxF4ZGJm5u7ED5LhepIH97/ACOc56HQPENj4isBc2bkMvEsLcPE3oR/WrqU1bnh8P5epFOq78lTSX5+n+XQ1aKKKwNwriPFJ/tzxfovh5Pmihf7bdgdAq/dB+vI/wCBCuwvbyDT7Ge8uXCQwoXdj6CuT8B2k139u8T3qYudUkzGD/BCOFH6D8AK6KPuJ1X00Xq/8tznr++1SXXV+i/z2OzooornOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOZ8aaFPqunRXmnkpqmnv59sy9SR1X8cfmBV7wzr8PiLRor2PCyj5J4u8cg6j/AA9q2K4PXLS48H623iTTIjJp9wQNStk7c/6wf56/Xjpp2qx9k9+n+X+Xmc1T91P2q26/5/5+Xod5Uc88VrbyTzyLHFGpZ3c4CgdzUNrqVne6cmoQXEb2jpvEucADvn0x39K4maS4+ImpPbQO8Phq1kHmyDIa7cc4Ht/+vrjEU6Tk3zaJb/13LqVeVLl1b2/rsJGtx8RNS85zJD4ZtZPkQgqbtx3P+z/nrnHfxxpFGscaKiKAqqowAB2FNggitbeOCCNY4o1CoiDAUDsKkpVanPotEtl/XUdKnyat3b3f9dAooorI1CiiigAooooAKKKKACuO8QeG7y1v28Q+G28rUVGZ7f8Agul7gj+9/P6812NFXTqOm7oipTVRWZi+HPEtn4js2eHMV1F8txbPw8Ten0962q5LxJ4XnkvRr2gSfZtZiHIHCXK/3WHr7/n2Iy7j4gy3umx2GnWUyeI52MBtmQ/uW7tz27j9elb+w9p71Lbr5f8AA8zD27p+7W36efp5+RN4lnk8WeIYfC1mx+xwMJtSlXoADwmfX+v0NdxFEkMSRRIEjRQqqBwAOAKx/C/h2Lw5pQg3+bdSnzLmc8mRz159B2/+vW3WdaadoQ2X4+ZdGElec/if4dkFFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNdFkRkdQyMMMpGQR6VmeJNetvDegXWqXPKwr8iDrI54VR7k4rhvh3q/iM+MNY0jxJeNNcfZoruOI/dh3clR9N4H4ULV2B6K5B4p8NXvh+CRbKe6PhmeZZLy2hOXhGecZ/h/wGa9E0KfTLjRrZtHMf2EIBGI/4fYjsfXPNaBAZSCAQeCD3ritQ8K6hol8+reEpFjZjun05z+6l/3fQ/5BHSuv2qrxUJuzXXo/Xz8zk9k6EnOCun06r08vL7jtqK5nQvGun6tMbK5VtP1NDte0uPlO7/ZJ6/z9q6auedOUHaSsdEKkZq8XcKKKKgsKKKKACiiigAooooAKKhuru3srd7i6njhhQZZ5GCgfia4u48T6r4omex8JwtHbg7ZdUmUhVH+wD3/X2HWtadKU9Vt36GVSrGGj37dTS8S+LBpkq6XpUP23Wp+I4E5Ef+0/p64/kOaf4W8Lf2P5uoahL9r1m6+a4uG525/hX0H88emBVnw54WsfDsLGLdPeS8z3UvLyE8n6DPb881L4q1c6B4W1LVFAL20DOgPdui/qRVVKsYQcae3V9/8AgE06UpzU6m/RdF/wfP7jM1zx3ZaXqn9kWNnd6vq2MtaWSbvLHq7Hhayh8SbnTbyCLxR4YvdFguJPLjujKs0QJ6biANv61f8AhroiaX4QtbyXMmoakou7ud/vuz/MMn2B/nXQa1omn+IdLk03U4PPtZCCybivIORyCCORWLTi7M3TTNAEEZByDRTIolhhSJAQiKFUE54FPpAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorO16LVJ9Du4dFkgj1CRCkUk7FVQnjdwCcgdOOtJ7DWrPMPE3iyDU/iBbxvpeq6louiSFiun23nCW7H97kDC5/Om6T4kj1P44Wl6mnalp6XuntbbL+DymZly2QMnI4Fek+FvD8Hhjw9a6XCd7RjdNL3lkPLMfqf0xWV4m8L3+reLvDWtWMtui6ZK5nWVmDMjY4XAOTjPXFUtJJf1qt/66Cbum/601OuooopAZGueGdJ8Qw7NQtVdwMLMvyuv0P9DxXPf2f4w8NH/iXXSa3YL0t7k7ZlHs3f8/wruKK2hWlFcr1XZ/1p8jGdCMnzLR91/WvzOPtfiLpfnC21a3utJuu6XUZ2/gQOnuQK6az1Kx1CPfZXkFwvrFIG/lUl1Z217CYbu3injPVJUDD8jXNXnw68N3UnmR2j2svZ7aUpj6DkD8qq9CXeP4/5E2rx7S/D/P8AQ6uiuM/4QW9t8/YfFmsQjBAEsnmAfhwKP+EY8WI2U8aSEY/is1/xNL2VN7TX3P8AyD2tRb0396/zR2dBIAyeBXGDwl4jkAE/jS7K9xFbhD+e6j/hXFncH/iZaxq1+O6TXHyn9M/rR7Okt5/cn+tg9pVe0Pva/S5s6l4t0HSQfteqW6uP+WaNvf8A75XJrCPjLV9aPl+GdCmkQ8C8vP3cY9wO/wCf4Vt6d4P8P6WVa10q3DryHkHmMD9WyRW50p89GPwxv6/5L/MOStP4pWXl/m/8jirbwNPqVyl74q1KTUZlO5bZDsgQ/TjP6e+a7GCCG1gSCCJIokGFRFCqo9ABUlFZ1Ks5/E/8jSnShT+Ff5hWF4y0STxF4Q1PSoSBNPDiPJwN4IZc/iBW7RWTV1Y1Ts7nl/hz4l2Oi6NZ6N4kstQ0/VLSIQGM2rMJdowCm0c5ArSsjrXjXxHZ6nNbXmk+H7BjJDDNmOa8k7F1B4Qeh6/jx31FVe75nuTaystgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=
|
<image>In $\odot O, \overline{E C}$ and $\overline{A B}$ are diameters, and $\angle B O D \cong \angle D O E \cong \angle E O F \cong \angle F O A$
Find $m\widehat{A D}$
|
135
|
Geometry
|
Geometry3K
|
test
|
95
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEFAY0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK888Sap4l1L4hw+GvD2srpiRWBuriU2yTclsAYYfTv3r0OvO/A/8AxNPiB4y1v7yLcJYxH2jGG/kKEry+/wDy/Nj2i36f191yDVbf4keGtNn1ZfElnrMdspkltJbBItyDk4Kc5x712/hzW4fEfh6y1e3UolzGH2E52noR+BBFVPG+pRaT4J1i7mIAFq6KD3ZhtUfmRVf4d6XLo/gDR7OdSsog8x1PVS5LY/8AHqa1T+X6ifT5/odPRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTM6wSNGm+QKSq5xk44HNeS+EU+IPhTSprNfBMd1JPcPcSzNqcKFmb2yfSvXaq6jdyWNjJdR2z3PlDc0cZG8r32g9T7cURTvp1BtJanF/8I54h8Xaja3Pi0Wtnpdq4lj0q2kMnmuOhlfoQPQV33SsXRvFmia8ALG+Qyn/ljJ8j/kev4ZraqpRlD3ZKxMZRmuaLuFFFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5T4t8K6bo/iBNVuLeRtHvH2zmElWtZD/GuO2ecHPf2rdj0zxZoUSS6Lqkes2JAZbe8Pz7Tz8r5549wPauyvbODULKa0uoxJBMpR1PcGuN8M3lx4a1lvCepyF4Tl9NuX/jT+4fcf4j0rvjXnUp23cej6r/NHBKhCnUvspdVpZ/5Pz6lqz+IFgLgWet2txo95/duFOw/RsdPcgCurhniuYllglSWNhlXRgwP0IqO8sbTUbcwXttFcRHqkqBh+tcnN4CNhK9z4Z1W50qZuTFu3wsfcH+ufpWFqM/7r+9f5/mb3rQ/vL7n/k/wO0oriP8AhKPEOgEJ4j0UzW463un/ADL9Svb9PpXR6R4j0jXE3affRTNjJjzhx9VPNROhOK5t13WqKhXhJ8uz7PRmpRRRWRsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYfirw7H4i0kwq3lXkR8y2nHBjcdOfQ/56VuUVUJuElKO6JnBTi4y2ZznhDxDJrNlJa36eTq1k3lXUR4OR/EPY/57V0dcZ4u0q50+9j8V6PHm9tRi6hHSeHvn3A/T6Cum0nVbXWtLg1C0fdDMuRnqp7g+4PFa1YJr2kNn+D7f5GVKbT9nPdfiu/8AmXa5zV/A+h6vIZzbG1u85Fxany3B9eOCfqK6Ois4TlB3i7Gk6cZq0lc4j7J408OY+y3MWvWS/wDLKf5JwPZs8/iT9Kuad4/0m4uPsmopNpN6ODDeLtGfZumPriurqnqGlWGqweTf2kNwnYSLkj6HqPwrX2sJ/wASPzWn/AMvZTh/Dl8nr/wfzLSOsiB0YMrDIZTkEU6uJfwPe6QzTeFtZnsuc/ZLg+ZC3tz0+uCaB4y1XRGEXijRZYYxx9ttP3kR9yO3559qPYc38N38tn93+Vw9vy/xVbz3X3/52O2oqhpet6ZrMPm6dew3C4yQrfMv1U8j8av1g4uLszdSUldBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB1rgJAfAHiTzVyPD2pyfOO1tMe/sD/AC+ld/VTU9OttX06ewvIw8Ey7WHcehHuDyK1pVFF2ls9zKrTc1eO62/rsy0CGUEEEHkEd6WuK8J6jc6PqMnhLWJN00I3WM56Txdh9R/QjtXa0qtN05WHSqKpG/8ASCiiiszQKQgMpBAIPBB70tFAHL6n4C0a+m+02ySadeZyJ7NvLIP0HH8jVDd428OAblh8QWa91/dzgf1/8eNdvRW6xErWl7y8/wDPcweHje8fdfl/lsczpfjzRNRl+zTSvYXgODb3i+WwPpk8f1rpgQQCDkHvWdqmhaXrUXl6jZQz8YDMMMv0Ycj865k+ENZ0L5/DGtOsQOfsV788Z9ge35fjT5aU/hfK/Pb7/wDgC5q0PiXMvLf7v+D8jt6K4qPx1c6VIsHijR7jT26faYh5kLfiOn0Ga6uw1Ox1SDz7G7huI/70bA4+vpUTozhq1p36feXCtCbsnr26/cWqKKKyNQooooAKKK8kj8M6X4/+JviebV4XntNOENrCFkZMNg7uQexB/Ojd2Dpc9borgf8AhTPgj/oGTf8AgVJ/8VXc2ttFZWkNrAmyGFFjjX0UDAFAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94t8OnXdPSS1bytTtG820mHBDDnGfQ4H6U7wp4h/t7TT56eTqNs3lXcJGCrjvj0P8AiO1b9cR4qsLnQdUTxbpMZYxjbqFuvSWP+99R/gexroptVI+ylv0/y+f5nNVXs5e1jt1/z+X5Hb0VW0+/ttU0+C9tJBJBMoZG/ofcdKs1g007M6E01dBRRRSGFFFFABRRRQA2SNJY2jkRXRhgqwyD+Fcpf/D7S5Zzd6VJPpF52ls2Kr+K+nsMV1tFXCpOHwuxE6UKnxK5xH27xn4cGL6zj1yzX/ltbfLMB7rjn8B+Na2keNtD1lxDFdeRdZwbe5HluD6c8E/QmuhrJ1jwzo+uoRqFjFI+MCUDa4/4EOa19pTn8cbea/y2/Iy9nUh8Errs/wDPf77mtRXEf8I14l8Pjd4e1n7VbjpZah8w+gb+nFSwePks5ktfEmmXOkzngSMu+Jvow/8Ar/Wj6u3rTfN+f3B9YUdKi5fy+/8AzOvmlWCCSZzhI1LMfQAZrxzwJ4GTxTok/iG51vW7CXUbuaby7G6ESEbiMkbTk5zzXqN+kPiTw5eW2n6hEFu4HhW5ixIE3DGcAjJ56ZFcZp3w88WaRp8NhYfECSC1hXbHGulRkKOvd657Wbv/AF3/AEOi94qxtaL4At9E1WHUF8QeILxos4hvL3zIzkEcqFGetddXL+HvD/iPTNRafV/F0mrW5jKrbmySEBsj5sgnPfj3rqKbEFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSModSrAFSMEEcEUtFAHAWzHwD4k+xyMf8AhH9SkzAx6W0p/hJ9D/LHoa7+qGs6Rba5pU+n3a5jlXAYdUPZh7iud8Iavc211N4X1h/+JhZj9xIelxF2I9SB/ng10z/fQ518S38/P/M5ofuZ8n2Xt5eX+X3HY0UUVzHSFFFFABRRRQAUUUUAFFFFABUdxbwXULQ3EMc0TDDJIoZT9Qakoo2A4+7+H9pHcNeaDe3Oj3Z/54MTG31U9vbOPaoP7b8W+HRt1nS11S0Xrd2P3wPVk/8ArAe9dvRW6xDelRc3rv8Afuc7w8VrTfL6bfdsYmjeLdE13C2V8hmP/LGT5H/I9fwzW3XlXjPwjY6TrC64bR5NJnbF3HCSrW7E/wCsTHv2PGeO4xs2+neKNItY7nQNXj1rT3UPHBeH5yp/uvn+oHtWs8PTaUqct+/5X/zMoYiqm41I6rt+dv8AK53lFcfafECyS4W01yzudHuzxi4UmNvo3p7kY966yCeG5hWaCVJYm5V0YMD+IrnnSnD4kdMKsKnwskooorM0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4X4ktYWtlaaibwWusWsge0ZeXcZ5XH9368fnXdVwvjL4eR+IZn1CyuWivyOVlYtG+Og/2fw49q1oSUZpt2OnCUcLWqqGLdof193qcz4d+IGo6n45s2v5FjtZwbcQIcIpbofc7gOT617BXzNf6bqOgaiIbyCS2uY2DKSOuOhU9CPcV9E6HqS6xodlqCY/fxBmA7N/EPwORWuJhFWlHY9ziDB0qSp1qCXI1bTbuvv/AENCiiiuU+aCiiigAooooAKKKKACiiigAooooAjngiuYJIJ41kikUq6MMhgeoNcJp00ngLXF0e7kZtCvXJs52/5YOeqMfT/9frXf15n8UvEU0FsNGGmkxy4Y3UyZXI5/d+/qf05row7u/ZvVP+rmlDAVMbWjCjpLu+3W/kdne6hod9qiaBdm3ubmRC/kOocAAd/Q459axZ/AIsZmuvDWqXOlTHkxBt8LfVT/AFz9K8Z0fU5NK1y01IMxaGYSN3LDPzDn1GR+NfS8ciyxrIhDIwDKR3Bq58+HsovR/d9x6GdZLDCSh1ut9ndb27dDiv8AhJ/Efh/C+ItGNxbjre6f8w+pXt+ldFpHiXR9dTOn30Ur4yYydrj6qea1a53V/BOh6u5me1+zXXUXFsfLcH144J+oqOelP4lZ+X+X/BPD5KsPhfMvPf7/APNfM6KiuI+xeNPDgzZ3cWu2a/8ALG4+SYD2bPP4k/Srdh8QNKmn+yamk2kXg+9FeLtH4N0x7nFJ4eVrw95eX+W41iIp2n7r8/8APY6yimo6SIHjZWRhkMpyDSSypDE8srhI0UszMcAAdTWD03Nxkt1bwSRxzTxRvIcIruAWPsD1qavBPF0l1rdqnxCkMiWltqUMWmxHj/R1Y5kI9WbH5V7yjB0V1OQwyKEtL/10f6g9HYdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFLVNIsNZs2tdQtkniPZuqn1B6g/SuO0d38Ca8uhXUjvpF8xayuHx+7fujH3/wPc476svxBodt4h0ebT7kYDDKOBzG46MP89K1pTSfLPZ/1cqpWr+xdKEtN7dL/AKepqUVyfg/XLmVp9A1g7dWsPlJP/LaPs49eMfoa6ypqQcJcrMqdRVI8yCiiioLCiiigAooooAKKKKACiiigAqve2NrqNq9re28c8D/eSRcj/wDXViigak4u63PI/E/wrmt991oLGaLqbVz86/7p7/Q8/Wur+HWtC/8AD0enXGUvtPHkyRONrBRwpwfQYB9xXY1yHizQ7qO6i8SaIManaDMsS9LmPupHc4/zkCumM/a+5N+jO/F5tWr4X2VZczi00+vn66fM6+isrRvENhrWiJqkMqxw4/eiRgPKYdQx7Vg3vj1Li5aw8NWMur3g4LoMQp7lvT8h71nGhUlJxS238jypV6cYqTe+3n6HYSyxwRNLLIscajLO5wAPc1wmu+KdN11m0rSNGGv3A43FP3UfvuP8xge9TReDNS12VbnxbqbTqDlbC2YpEv1Pf8Ofc12FlYWmm2y29lbRW8K9EjUAf/rrRezpO9+Z/cv83+Bk/a1Va3Kvvf8Akvx9DjfBvgnUdCl+1XeqSRBm3fYbZiYh7EtnP4c+5qr8SL7UdYeHwVoGxtQvozLdM7ELFAOzEcjcePp9a9ErF0nwzZaRq2p6qktxcXuouGlluGBKqOiLgDCj0rKrUlWnzTNqNONGHLA8y8Y6Z4+bwBd2F/ZeG4tKtYVYrZmUSIkZBG3ccdq9P8J3v9o+EdHvCcmWziZvrtGf1q9qdhDqul3en3BYQ3UTQuUOCAwwce/NV9A0W38O6Ha6TayzSwWylUaYguRknkgAd/SoT3v1t+pbW3z/AENKiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5XxhoNzdCDW9I+TWLD5oyB/rk7ofXvj6kd61fDuvW/iLR4r6D5WPyyxZ5jcdVP+elatcHrMEvgvxD/wkNlGTpN4wTUYEH3GJ4kA+p/n68dMP3sfZvdbf5f5HNU/dS9otnv/AJ/5+Xod5RTIZo7iCOaF1eKRQyMp4IPQ0+uY6QooooAKKKKACiiigAooooAKKZLLHBE0ssixxqMs7nAA9zXH3vj1Li5aw8NWMur3g4LoMQp7lvT8h71pTpTqfCjOpVhT+JnYSyxwRNLLIscajLO5wAPc1x9749S4uWsPDVjLq94OC6DEKe5b0/Ie9RReDNS12VbnxbqbTqDlbC2YpEv1Pf8ADn3NdhZWFpptstvZW0VvCvRI1AH/AOutLUqe/vP8P83+BlerU291fj/kvx9DzdfB1haTPqHjPWrKzW8lMhs0nEELP9SRk89vzrr9M17wfaxx2OmaxoqKThIYLuLJP0B5Ncr4ptrXxH8XNC0a8ijns7Gzlu54pACrbvlAIPuFpPH3hnwTp3hC+YaTp8F48ZS0FvGFleY8IFC8nnHHpUVcRUqK83p2/A1pYenTdoLXv+J6ZRWL4Qs7yw8H6TaagWN3Faosu45IOOh+nT8K2qzkrNotO6uFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVzbQ3ltLbXEayQyqUdG6EGpaKE7BucJoFzN4R17/hGNQkZrG4Yvplw/uf8AVk+v9fqK7usfxLoEPiLSHtJG8uZTvgmHWNx0P+NZ/g/xBPqMM2l6oPL1mwOy4U/8tB2ceue/59xXTU/ex9ot1v8A5/5+ZzU37KXsns9v8v8ALy9DqKKKK5jpCiiigAopksscETSyyLHGoyzucAD3Ncfe+PUuLlrDw1Yy6veDgugxCnuW9PyHvWlOlOp8KM6lWFP4mdhLLHBE0ssixxqMs7nAA9zXH3vj1Li5aw8NWMur3g4LoMQp7lvT8h71FF4M1LXZVufFuptOoOVsLZikS/U9/wAOfc12FlYWmm2y29lbRW8K9EjUAf8A660tSp7+8/w/zf4GV6tTb3V+P+S/H0OPi8Galrsq3Pi3U2nUHK2FsxSJfqe/4c+5rsLKwtNNtlt7K2it4V6JGoA//XViioqVpz0e3boaU6MIarfv1CiiisjU8l03wzpHj34g+K7/AFm0N3a2c0dpbjzXQBlGG+6RnkfrVfx74J8OeDdDj1fw7FLp2tR3Ea2ZiuJHaRywBXaxOeM9K6EfCTTY7i5mt/EXiS2a4laaUQXqoGZjknAStXRvh5ouk38WoSSX2p30X+quNRuDM0f+6OAPriiOiXS1ht6t7nTWhmazgNwAJzGpkA6bsc/rU1FFN6slKysFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyHjDRrqOeHxLo4xqViMyRgf6+Lup9SBn/OK6+irp1HTlzIipTVSPKzO0PWbXXtJg1C1b5JB8yk8o3dT7itGuBvkbwH4kOpwK39g6i4W6jUcW8h6OB2H/1x6VbvfHqXFy1h4asZdXvBwXQYhT3Len5D3raWHcnen8L/AA9fQwjiFFWqaSX4+nqdhLLHBE0ssixxqMs7nAA9zXH3vj1Li5aw8NWMur3g4LoMQp7lvT8h71FF4M1LXZVufFuptOoOVsLZikS/U9/w59zXYWVhaabbLb2VtFbwr0SNQB/+ulalT395/h/m/wAB3q1NvdX4/wCS/H0OPi8Galrsq3Pi3U2nUHK2FsxSJfqe/wCHPua7CysLTTbZbeytoreFeiRqAP8A9dWKKipWnPR7duhpTowhqt+/UKKKKyNQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJCgknAHJNAFe/trS8sJ7e+RHtZFIkVzgY+vb61Q0i+8OR/8S7R73TMx9be2mQsD7gHOa4nTbNvilqd3qWqSS/8IzazmGysUcqtyynmR8dR6D/6+dTxF8LvD+oaNLHpOm22n6lGu61uYMxlJB93JHUZ+tPmajrt2DlXN5ndUVQ0SLUINDsodVljlv44VWeSMkq7gYJBIHX6VfoasxLYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArP11Z38P6ktqM3BtZRGP8Aa2nH61oUUpK6aHF2aZwnwfubWb4b6fFbupkgMiTIDyr7yefwINanifxb/Y17YaTp0CX2s3soWO13Y2J/FI5HRQP88VRv/hdoF3qcuoWk2o6VcTNumOnXJiEh75GD+mK2NA8IaL4aaWTT7Y/aZv8AW3MzmSWT6sefwHFW3zO7JtZWRuDOBnr3xS0UVIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=
|
<image>Find $x$ if $AE=3, AB=2$, $BC=6,$ and $ED=2x-3$
|
6
|
Geometry
|
Geometry3K
|
test
|
96
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEJAOMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3eiiiuYsKKKKACiiigAooooAKKKoXeuaTYTLDeapZW0rHASa4RGJ+hNAF+impIkqK8bq6MMhlOQRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDiPGmsajc6xp/hHRJzb3t+pluLpetvAOpHucED/69W7P4a+E7W08l9IhunbmSe5zJI5PUlj0P0xWHbTJbfHq+W9ZUa40xFsyxxuGVJA98hvyrvdT1Oz0fTpr+/nSC2hXc7sf0HqfantFPv/mDu5W/rY5rwd4UvfCep6tbRXCtoMzrJZQGRmeE/wAQ5HA/E9K7CsTwprF7r+iJqd5YiyWdy0ERYljF/CzehPXFbdOV72YlbdBRRRUjCiiigAooooAKKKKACiiigAooooAKKK5PUfiX4Q0nUZ7C91cRXMDbJEFvK20+mQpFHkB1lFc/onjjw14iuPs+l6tDPPziJlaNzj0DAE/hXQU2mtxBRRRSGFFFFABRRRQAUUUUAFFFFAGF4k8IaN4qjiGp27GWE5inicpJH9GH8jWXY/DTQraeKa9l1DVnhO6L+0rkyqh/3eF/MV2NcHc2+o69471S1tdZvbCKyhiA8ljtLMM8rnHc/lW1Gnz31slqZVqnJbS7eh3gGBgdKK4/+wfGFuR5HixJQO01ovP8zR/xcC2/6At2B/vqT/Kr+rxfwzT+9fmiPbtbwa+5/k2dhRXHnXvGFuT5/hSOYDvBdrz+HJoPji5gOLzwtrMWOpSHePz4FH1Wo9rP0a/zD61TW916p/5HYVQ1vUf7I0W71AIJDBGXCE43H0zWAvxI0BWC3P2y1fGds9uQR+Way/GXi7RdU8HXsGnagks0mwBArK2N654IHYURwtVSXNF29DqwM6OIxNOlzJ3aVr+Z0Hh7xrpPiICOGXyLvvbynDf8BPRvw/Kuir5gVirBlJDA5BHUV3Phz4l6jpm231MNfWo4Dk/vUH1/i/Hn3retgWtaf3H1GP4blG88K7rs9/kz2ais3R9e03Xbbz9PuVlA+8nR0+q9RWlXA007M+XnCVOTjNWaCiiikSFFFFADZJFiieRzhUBYn0Arz/4U2qXuhajrdxEryapqE04LqD8ucAfnmt/x9qX9leBNYug21/szRof9p/lH6mm+DIrXR/BOkWjzwoY7VWky4GGI3N+pNVHaT9F+v6IH0X9af8Ocv8XNOtbLStN1yzhSDVLa+iWKWNQrNnPynHXpXpiklQT1xXnGpXMXxB8Z6dp+nt5+i6NN9qvLleY5Jh9yNT39/qa9Io2gl53/ACE/i+QUUUVIwooooAKKKKACiiigAooooAK4/wAF4udY8Tahj/W35hB9kzj9DXWyyCGF5W+6ilj9BXKfDeM/8Ikty/37q4lmY+p3bf8A2WumnpRm+9l+v6HPU1rQXq/0/U66iiiuY6AooooAa6JIu11Vh6EZrz74p21na+HoHhtLdJ5blVMixKG27WJGevUCvQ6xPEfhm18TRW0N5NMkMLl9sWAWOMdSD71tRnyTTex15fVp0cVCrU2TufPVa2meGNa1fabLTp5EPSRl2p/30cCvb9N8I6DpJVrXTYfMXkSSDe4P1bOPwrbrsnj/AORfefSYjihbUIfN/wCS/wAzyvRfhhq9tMt1LrC2Ey/dNsC7D6nK/wBa6U6N4ztyTbeJbecAcJcWwA/EgE119FczxVRu7s/VI+Zx+Lq49p1nttbT8v1OPEnj+3I3QaLdL32s6k/nj+VA8R+K4MfavCDOO5hu1P6DNdhRR9Yi/igvxX5M872EltN/g/zRx58ePBn7Z4a1qHHUi33D8zinp8SPDZYrNcTwMOokt2yPyBrraZJFHKMSRo49GXNHtKD3g/k/80w5Ky2mvmv8mjltS1jwX4p0xrDUdQtprSQqzRvM0OSORk5U1n2Pw1+HlywlstNtrnbzlL2SQfiN5FV/EcdjrmqHQNC0uxe76XV95C4t17jIH3v89enYaDoNl4e01bOzT3kkP3pG9T/nirq0qdOClFtN9P1JpVas5uLs0uvn2LllYWmm2iWtjbRW1un3Y4kCqPwFWKKK4zpCiiigYUUUUAFFFFABRRRQAUUUUAZHim4Nr4V1SYHBFs4B9CRgfqab4St/svhLSoiNp+zI5GOhYbj/ADrM+I8zJ4OnhT79xLHEozjJ3A4/8drqIIhBbxQr92NAo/AYrpemHXm3+CX+ZzrWu/JL8W/8iSiiiuY6AooooAKKKKACiiigAooooAKKKKACuN13XbzVdRbw74db/Sel3eD7tuvcA/3v89ejvEGuXWo6h/wjfh9/9Mf/AI+rofdtk78/3v8APXpu6FoVn4f05bS0XnrJK33pG9TXXCMaMVOau3sv1f6LqcspOq3CD0W7/Rfq+nqGhaFZ+H9OW0tF56ySt96RvU1p0UVzSk5tyk7tnRGKiuWOwUUUVJQUUUUAFFFFABRRRQAUUVwnjXVtdPinQvDvh/UlsJ71ZZZ5jAku1FHHDA+hoWrsHmd3RXmusWPxD0HSLrVR4wtb1bSMzPbyafHGHVRkjIGen0rtfDOrSa74Z07VJYhFJdQLIyDoCeuPanbS4jE8b/6TqPhrTx1m1FZSP9lOv6NXYVx+qYu/idokHUWlrLcMP97Kj9QK7CuitpTpx8r/AHtmFHWc5edvuSCiikZgqlmOABkmuY6BaKhtbu3vrdLi1njmhf7rxsCDU1A2mnZhRRRQIKKKKACiiigArkPEHiC7vdQPh3w6Q183Fxcj7tsvfn+9/L69DxB4gu73UD4d8OkNfNxcXI+7bL35/vfy+vTZ8P8Ah+08PaeLa2BaRvmmmb70rep/wrrhCNGKqVFdvZfq/wBF19DmlJ1W4QenV/ov1fT1Dw/4ftPD2ni2tgWkb5ppm+9K3qf8K1qKK5pzlOTlJ3bN4xUUoxWgUUUVJQUUUUAFFFFABRRRQAUUUUAFeT3g8Q6v8XtUuvDh03zdKtI7VjqG/YN/zHGwZznNesV5RokXjvw9quuXUXg9Lw6leNP5r6jChC5O1cZPQGnH4vl/X4XB/CQ+NZfG9ronm+Jv7Ml0HzEF9HpDukrIWAxmQdM46da9U09bddOtRZoEthEvlIBgKmBgY+lcLeaR4s8cJDZa/ZWui6OJFkuIIpxNNPtOQu4fKF/WvQURY0VEAVVAAA7Cqfw2E9zh4NSsYvijqk17eQW4gtEt4/OkCBidrHGa7SK8tp/9TcQyZ/uOD/KuH8OaNpviDU/EV/qFnFchtQaGMuM7VX09OCK1Zvh14YmJI08xk/3JnH6ZxXZXVHmUZNppJbJ9PVHFQdblcopNNt7tdfRnU1Q1u4+yaDqFx/zytpH/ACUmuePw8sogPserava4GAsdzwP0/rWT4m8P6lo/hq+uT4ov57ZY9rwXA379xCgbs8cn0rKNKk2rT/B/8E7cK6s68IShu0tH3fyPN9H1/UtBuPO0+6eLJy0Z5R/qvT+teq+HPiXpuqbLfUgLG6PG5j+6c+x/h/H868Yor06uHhV33P0vHZVh8YrzVpd1v/wT6fBDAEEEHkEUteG+EfEviPTpBBp9vPqNsDzbbGcL9CPu/wAq9C/4TxoAPtnhvWoTjnbb7gPxOK8yeEqKVo6nweaYF5dL95JNPbv92/6HYUVySfEjw5u2TT3EDDqstu2R+WavweNfDdwAU1e3Gf8AnoSn/oQFRLDVo7wf3HlLE0Xopr7zerkPEHiC7vdQPh3w6Q183Fxcj7tsvfn+9/L69Ga34mfU549D8MzpPeXAzJdxNuS3Tucjv/L61uaBoFp4e08W1sC0jfNNM33pW9T/AIVpGCornqLXov1f+XUiU3WfJTenV/ov8+nqHh/w/aeHtPFtbAtI3zTTN96VvU/4VrV5Roelaj451XxBqT+J9csLSLUHt7aKzu2RNq45x09OnvW9H8ObiOVHPjbxS4VgSrX5wfY1hJub5pvV6nQoqC5YrRHc0UUVmUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzyiCCSVvuopY/gM1JWP4ruDbeE9VlBIP2Z1BHYkYH86uEeaSj3JnLli5djK+G8ZHg+K4bl7maWVjjqd23P8A47XW1j+FLc23hPSoiCD9mRiD2JGT/OtirxMuatJ+bM8PHlpRXkgrm/HVhe6p4WnsrCBpp5ZEAQEDgMDnJIA6V0lFZwlyyUl0OuhVdGrGrHeLv9x5JpvwlvpSG1K+ht1/uQgu35nAH612OmfDvw7pu1mtDdyD+O5bd/47wv6V1VFazxNWe7O7EZxja+kp2XZaDIoYoIxHDGkaDoqKAB+Ap9FFYHmN31Y1445RiRFcejDNcF4paw1C/wD7A0XSbG41SQfvrgwKRbL3JOOv+etaXiLxFdTX3/CP+H8SanIP3038Nsvck+v8vrWr4d8O2vh6x8mHMk8h3T3D/elb1Pt7V2U/3CVSW/Rfq/L8/Q5Kn79unHbq/wBF5/l6ieG/Ddn4a04W1sN0rYM0xHzSN/Qegqzrt+NK0DUL9ulvbyS/iFJrQrn/ABto2oeIPCV7pWmywRXFyFXfOxVQu4FuQCegx0rkqylUblJ3bOqlGMLRSskcD4H8G+KT4Rsrmx8ZPpsN2puPs62CSbSx67iwJyMGu58PaD4g0y+ebVvFcmrQmMqsBs0hCtkfNkE57jHvWDZad8T7Cxt7OC48KiGCNYkBE/CqMD+H2rpPDkfitGuD4lm0l1wvkDTw/vnduA9sY96uTu21sJXtqb9FFFZlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJfEiQjwfLbry9zNFEoz1O7dj/x2utrj/G3+k6p4a08HmXUBKR/spjP6NXThP40X21+7U58V/Bku+n36HWQRCCCOJfuooUfgMVJRRXMbhRRRQMKKKKACuS8ReIrqa+/4R/w/iTU5B++m/htl7kn1/l9aXxJ4iuGvV8PaD+91afiSQfdtk7sx9cfl+QOp4d8O2vh6x8mHMk8h3T3D/elb1Pt7V1QhGlFVKiu3sv1fl+focs5urJ04PRbv9F5/l6h4d8O2vh6x8mHMk8h3T3D/elb1Pt7VsUUVzznKcnKTu2dEIRhFRitAoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuP1L/S/iho8HOLS0kuD/wLK/0FdhXH6Xi7+J2tz9RaWsVup/3sMf1Brpw+nPLsn+On6nPiNeWPdr8Nf0OwooormOgKKKKACuT8SeJLkXq6BoCibV5h87/w2y92Y+v+fQE8SeJLkXq6BoCibV5h87/w2y92Y+v+fQHS8N+G7bw9ZMiMZruY7ri5f70jf4e39a64QjSiqlRXb2X6vy/P0OWc5VZOnTdkt3+i8/y9Q8N+G7bw9ZMiMZruY7ri5f70jf4e39a2qKK55zlOTlJ3bN4QjCKjFWSCiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuP8Ef6TqPiXUD1m1Fogf8AZTp+jV1k8ogt5Zm+7GhY/gM1y/w4iZfB0Ez/AH7iWSVjjqdxGf8Ax2umnpQm+9l+b/Q56mtaC9X+S/U6yiiiuY6Ark/EniS5F6ugaAom1eYfO/8ADbL3Zj6/59AXeJfEc8VyuhaIvnaxcDGR923U/wATe/f9fQHQ8N+G7bw9ZMiMZruY7ri5f70jf4e39a6oQjSiqlRXfRfq/L8zlnOVSXs6bsur/Ref5B4b8N23h6yZEYzXcx3XFy/3pG/w9v61tUUVhOcpycpO7ZvCEYRUYqyQUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3iy4+y+EtVl3bT9mdAfdhtH86d4Wtza+FdLhIwRbISPQkZP6msj4kSH/AIRJrZPv3VxFCo9Tu3f+y11cUYhhSJfuooUfQV0y0w682/wS/wAznWtd+SX4t/5D65bxJ4knguk0TREFxrE4xxysC/3m/wA/0yeJPEk8F0miaIguNYnGOOVgX+83+f6Zu+G/DcGgWrkubi/nO65uX5Z2/wAKcIRpRVSovRd/N+X5inOVSXs6fzfbyXn+QeG/DcGgWrkubi/nO65uX5Z2/wAK3KKKwnOU5OUnqbQhGEeWOwUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHH+NMXOseGdPz/AK2/ExHsmM/oan8SeJJ4LpNE0RBcaxOMccrAv95v8/0zg+NbzUP+E70mDSoTNexWzmIdlZ9y7j9AM11fhvw3BoFq5Lm4v5zuubl+Wdv8K9GShTpU5T100Xnd7+W3qefFzqVZxhprq/Ky289/QPDfhuDQLVyXNxfzndc3L8s7f4VuUUVwznKcnKT1O2EIwjyx2CiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKoa3q9roOjXWp3jbYbdCx9WPYD3JwPxoBK7sTR2FtHqE18sY+0yqEaQ9do6Aeg71Zrx7wxLrVj8TtNudauZvM12ylnNuzHZCckqgHsqr+dew1ck9L/1bQlWu0v66hRRRUFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlXjLVNT8Q+LINM0jRZNY07RpllvYUnWJZJuSqlj1C9xz3r0+7jnls5o7aYQTshWOVk3hGxwduRnHpmsrwr4bh8L6KtjHM1xMztLcXLLhppGOSxGT/PtTjo79ge1u55pr2s65N468I6pq/hqTR44bv7OHa6WYSeZgY4AxgZr2auc8Y+FP+EssLOBb37HJa3SXKS+V5nKg8YyPX17V0Y6U7rlt6/1+Ynvfy/zCiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==
|
<image>Find $A E$ if $A B=12, A C=16,$ and $E D=5$
|
15
|
Geometry
|
Geometry3K
|
test
|
97
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFuAfYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorh/i7qJ074bantbElzst199zDd/46GoA7iiuI+Emnf2d8NtLBGHuA9w3vuY4/wDHdtdvQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeQ/Hy/ZdC0jSYyTJdXRk2jqQi4x+bj8qAPXqKxFuNO8GeEbX+0LhLe0sLaOEu3faoGB3JOPxryMRa18bPEBkYy6f4Ws5MLxyx/kXI/BQe/cA93oqnpWlWWiabDp+nW6QWsK7URf5n1J7mrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVj+KtdXw14Yv8AWGjEv2WPcIy2AzEgAZ7ckUAbFeNfH6+L2Oh6PFlpJ53m2D1UBV/PefyNeieCfENx4q8LW2s3Fotqbhn2Rq+75VYrnOB3Bry/xjjxH8fdF0r78Vl5IdRyDtzM2fwwPwoA9m0uyXTdIsrBMbbaBIRjphVA/pVuiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8G+KGsWTfF7R49QkK2GlpFJOAMknJkIx7jYK95r560fw5b/Er4ta/c30kg0+2nLMq9ZVVtiLnsCF/SgEZ2peKG+I/jzSbfXJJ7DQJZ9tvEvTBJUEnoSWG0t/Dz6V9HWNja6bZQ2dlAkFtCoSONBgKBXnPxd8GQX/guO70y2SKbRwXjjiXaPJ/jUAemA34H1roPhv4qHizwda3Ur7r2D9xdDPJdR97/AIEMH6k+lAzrqKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVheM9BbxP4Q1LR43CS3EY8tmPG9WDLn2yordooA8O8P8AiT4geDdFj8PN4Kubw225YZ0idlAJJ5KAqwyeuRxW58NfBWtQ+Ir7xf4oTy9Rut3lQkjcu4/Mxx044A9M16rRQAUVWfULKJykl3bo68FWkAI/Wk/tPT/+f62/7/L/AI0+V9ieaPctUVV/tPT/APn+tv8Av8v+NH9p6f8A8/1t/wB/l/xp8suwc0e5aoqr/aen/wDP9bf9/l/xo/tPT/8An+tv+/y/40csuwc0e5aoqr/aen/8/wBbf9/l/wAaP7T0/wD5/rb/AL/L/jRyy7BzR7lqiqv9p6f/AM/1t/3+X/Gj+09P/wCf62/7/L/jRyy7BzR7lqiqv9p6f/z/AFt/3+X/ABo/tPT/APn+tv8Av8v+NHLLsHNHuWqKq/2np/8Az/W3/f5f8aP7T0//AJ/rb/v8v+NHLLsHNHuWqKq/2np//P8AW3/f5f8AGj+09P8A+f62/wC/y/40csuwc0e5aoqr/aen/wDP9bf9/l/xo/tPT/8An+tv+/y/40csuwc0e5aoqr/aen/8/wBbf9/l/wAaP7T0/wD5/rb/AL/L/jRyy7BzR7lqiqv9p6f/AM/1t/3+X/Gj+09P/wCf62/7/L/jRyy7BzR7lqiqv9p6f/z/AFt/3+X/ABo/tPT/APn+tv8Av8v+NHLLsHNHuWqKq/2np/8Az/W3/f5f8aP7T0//AJ/rb/v8v+NHLLsHNHuWqKq/2np//P8AW3/f5f8AGj+09P8A+f62/wC/y/40csuwc0e46+a4TT7l7SPzLlYmMSZA3Pg7Rzx1x1rz/wCD/hDVfC2mapJrVt9nvLudflMiyEoq8ElSR1ZvfivR1ZXUMrBlIyCDkEUtSUI6LIjI6hlYYKkZBHpXlHgzwf4h8E/ETUEtLIy+GbwkeaJ0+QfeQ7S24lSSp47k16xRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeO+O9Ft2+I9oLl2itdS8vfImAVP3D1+gP41vf8Kg0j/oIX3/jn+FHxbsDJotlqMeQ9rPtJHZWHX81H512+j366po1lfL/AMt4VkI9CRyPwOa9KeIqxoQlCVuj+X/APKhhqMsRUjON+q+e/wCJxH/CoNI/6CF9/wCOf4Uf8Kg0j/oIX3/jn+FeiVR1HWtK0jy/7T1OzsvNz5f2mdY9+MZxuIzjI/MVz/XcR/MdX1DDfyHE/wDCoNI/6CF9/wCOf4Uf8Kg0j/oIX3/jn+FdR/wmnhX/AKGXRv8AwPi/+KrRsdV07VLZ7nT7+1u4EYq0tvMsiqQASCQSM4IP40fXcR/MH1DDfyHDf8Kg0j/oIX3/AI5/hR/wqDSP+ghff+Of4V1H/CaeFf8AoZdG/wDA+L/4qr9nrGm6lay3On39rewxZDvbTLKAQM4ypPOO1H13EfzB9Qw38hxH/CoNI/6CF9/45/hR/wAKg0j/AKCF9/45/hWZoGn+JPiBpLeJn8V32li4kk+xWdk2IolVio3jPz8g9fr3wOr+HniC+8QeHJW1PY1/Y3UllcSRjCyMmPmH1BH456UfXcR/MH1DDfyGP/wqDSP+ghff+Of4Uf8ACoNI/wCghff+Of4V6JRR9dxH8wfUMN/Ied/8Kg0j/oIX3/jn+FH/AAqDSP8AoIX3/jn+FeiUUfXcR/MH1DDfyHnf/CoNI/6CF9/45/hR/wAKg0j/AKCF9/45/hXolFH13EfzB9Qw38h53/wqDSP+ghff+Of4Uf8ACoNI/wCghff+Of4V6JRR9dxH8wfUMN/Ied/8Kg0j/oIX3/jn+FH/AAqDSP8AoIX3/jn+FeiUUfXcR/MH1DDfyHnf/CoNI/6CF9/45/hR/wAKg0j/AKCF9/45/hXolFH13EfzB9Qw38h53/wqDSP+ghff+Of4Uf8ACoNI/wCghff+Of4V6JRR9dxH8wfUMN/Ied/8Kg0j/oIX3/jn+FH/AAqDSP8AoIX3/jn+FeiUUfXcR/MH1DDfyHnf/CoNI/6CF9/45/hWb4g+F1jpmgXt9aXl1JNbxmQLJt2kDls4HpmvVqjnhS5t5YJRmORCjD1BGDVRx1dSTciZ5fh3FpR1Oa+Hmo/2h4LssnL24Nu3ttPH/jpWuprzL4VzPY6hrWgzH95BJvA91Oxv/Za9NqMXDkrSS23+8vBT56EW99vu0CiiiuY6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxvFmn/ANqeFNStNu5mgLIP9pfmX9QKwPhXqH2vwl9mZstaTNGB/sn5h+pI/Cu4ry7wJ/xI/H+t6E3yxvuaIeu1sr/46xP4V2Uffw84drP9GcNb3MTTn3uv1R6jWPrvhXRPE32f+2dPS7+z7vK3Mw27sZ6Eddo/KtiiuM7jy7xn4S8DeFvD8l4nhyCa9lYQWduJJCZZm4UY3c+p+la+ieHl8B/C6/hZv9JW1mu7pgePNMfIGOwCgDHpnvWXG/8AwmXxmkDHfpnhmP5Vz8puW7/UHP4x12vizS7rW/CmpaXZPElxdQGJGlJCjPXJAJ6Z7UAef/Dr4ceGdS8B6ZfarpMdxeXCvI8jO4yC7behH8OK9F0Pw7pPhu2kttIsktYZH8x1VmOWxjPJPYV55a/BWGfRLdNW1y/fVYYgkUkEv7mDA4CKRnA/DPXir/wl8QalfWuraBrE5nvtFuPJ81jlmXLLgk8nBQ8+hFAEz/DvV9OnuYfDPiy40jS7qQu9n9nWXyievlsTlfwxj1NdZ4b8PWXhfRIdLsd5jjyzSSHLSOeSx9zWtRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5dcf8SD40RSfdg1ED8d42/8Aoa5r1GvNfizavDHpOswcSW8xjLe/3l/Iqfzr0Oyuo76xt7uL/VzxrIv0YZH867MR79OnU8rfccOF9yrUped/vJ6KKK4zuCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry7xd/wASH4oaPrH3YrnaJG+nyN/46RXqNcD8WdO+0+GYb1R81pOMn0VuD+u2uvBSSrKL2en3nHjot0XJbxs/uO+qrqV6mm6VeX8mNltA8zZ9FUk/yqt4d1H+1fDun3xOXlgUuf8AaAw36g1bv7G21PT7ixvI/MtriMxypuK7lIwRkEEfhXLKLi2n0OqMlKKkup518ELVz4TvtWnJa51G+eR3I+8Bgf8AoRf866zxzqGq6T4O1DUNFCte2yrIFZN4Khhu49lyfwrS0bRdP8P6XFpul24t7SIsUjDM2Mkk8sSTyT1NX+tIo4vw78R9Bv8Awjbapf6xZQ3KQKbuNpArrIB82E68nOMde1c98G7eW+uvE3iiSJo4tVvWaAMMZAZ2bHry4H1U11Fz8MPBd1efa5dAt/NzuIRnRSf9xSF/SuotraCzto7a1hjhgjXakcahVUegAoAlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5zx3p39peDdRiAy8cfnp9U+Y/oCPxqp8NdR+3+C7ZCcvau0Dfgcj9CK6yRFljaN1DIwKsD3BrzL4ZSNpfiDXPD8rHMblkz32MVJ/EFfyrsp+/hpx7NP9GcNX3MVCf8AMmv1R6fRRRXGdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZviHT/7V8O6hY7dzTQMEH+1jK/qBWlRTjJxaa6EyipRcX1OB+E2oG48NT2TH5rSc4Horcj9d1d9Xl3hP/iQ/FLV9IPyx3O8xr/5EX/x0tXqNdWNilVcltLX7zlwMm6Ki943X3BRRRXIdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXl2q/wDEg+Mlld/dh1AKG9MsPLP/AI8Aa9Rrzn4t2Tf2dp2qxZEltOULDqAwyD+BX9a68E17Xke0k0cWPT9lzreLTPRqKq6ZepqWl2l8n3biFZAPTIzirVcrTTszsTTV0FFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeXePf+JH480TXhxG5USH12NhvzVsfhXqNcR8U9O+2eETcquXtJlkyOu0/Kf5g/hW74S1D+1PCmm3Zbc7QhHPqy/Kf1Brsq+/h4T7XX6o4aPuYmpDvZ/ozaooorjO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArC8Z6d/anhDUrcDLiEyp67k+YD8cY/Gt2kIDAggEHgg1UJOElJdCJwU4uL6nG/C/Uftvg6OAnL2krRHPp94f+hY/Cuzry/4dE6N4w1zQHJCglo899jYH5qwP4V6hXRjIqNZtbPX7znwM3KhFPdafcFFFFcp1hRRRQAUUUUAFFFFABRRRQAUUUUAFMlRpInRZGjZlIDpjKn1GQRke4Ip9FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBS1exGp6Ne2Jx+/heMZ7Ejg/nXEfCS+Z9HvtNkJElrPuCnqAw6fmp/OvRK8u0P/iQfGDULA8Q3wcoO2WAkH5ciuyh79GpT+f3bnDiPcr06ny+/Y9RooorjO4KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8u8Rf8SD4t6ZqX3YbwIHPbn9235Daa9Rrzz4t2Bl0Kz1BM77WfaSOyuOv5qv512ui341TRLK+H/LeFXPsSOR+ea7K/v0adT5fdscOH9yvUp99fv3L1FFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5f8SlbSPFGh6/GD8rBXx/sMG/UMR+FeoVx/wATNP8At3gyeRVy9q6zj6Dg/oxP4V1YOajWV9np95yY2DlQlbda/cderK6K6kFWGQR3FLXP+B9Q/tLwdpsxbLpF5L+uUO3n8AD+NdBWE4OEnF9DopzU4KS6hRRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY/ivTv7V8LalZgZZ4CyD1ZfmX9QK574Vaj9r8Jm1Y/PaTMmP9lvmH6k/lXc15d4F/4kXxA1vQj8scm4xD/dOV/8dY12Uffw84drP/M4a3uYmnPvdfqj1GiiiuM7gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr39ol/p1zZyfcniaJvowx/WrFFNOzuhNJqzPNvhLdvFBqujzcSW8wk2n3+VvyKj869Jry60/4p/4zzw/dg1EEj/gY3f8AoakV6jXVjVepzr7STOPANqk6b3i2gooorkO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry7xdjQfifo+sD5YrjaJG+nyN/wCOkV6jXA/FnTvtPhmG9UfNaTjJ9Fbg/rtrrwUkqyi9np95x46LdFyW8bP7jvqKzPDuo/2t4d0++Jy00Clz/tAYb9Qa065ZRcW0+h1RkpRUl1CiiikUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmXxThew1LRNegX95DJsLe6neo/9Cr0qGZLiCOaM5jkUOp9QRkVzPxE0/8AtDwXe7Vy9vi4X22nn/x0tTvh7qH9o+C7AlsvApt29tpwP/Hdtdk/fw0Zfytr9Thp+5ipR/mSf3aHT0UUVxncFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVmeItO/tbw7qFiBlpoGCD/aAyv6gVp0U4ycWpLoTKKlFxfU4H4Taj9p8MzWTH5rSc4Horcj9d1d9Xl3hHGg/E/WNHPyxXG4xr9PnX/wAdJr1GurGxSrOS2ev3nLgZN0VF7x0+4KKKK5DsCiiuA1Sc+KfidZ6Cpzp2hoL68HaSc/6pT9M7vz9qAO/orm/GPjTTvBljDNeJLPcXDFLe2hGXlb+gGRz7jrXLxfFuSyvLdPEvhXUdEtbhtsd1KSy/jlVx74yRQB6ZRSKwZQykFSMgjoaWgAooooAKKKKACiiigAoormL7xlDZ+P8AS/CiW4lmvYnlkmEuPJCqzAFcc52HuPWgDp6Kx/FGhReJPDl5pch2tKmYpO8cg5Rge2CB+tZ/w/8AEMviPwnBPd8ahbM1reL3EqcEn6jB/GgDqKK838VQyeKfiTZ+E728nttITTzeyRQvsN0+4rtJ9AOcex/CLSrD/hB/ibp2gaTd3Emk6paySPZSyFxbMgJDqT0Bxj/IwAem0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARXECXVrLbyjMcqFGHqCMGvOPhVO9lea1oUx/eQS7wPcHY/8lr0yvLpv+JB8aI3Hyw6io/HeMf8Aoa12Yb36dSn5X+44cV7lSnV7O33nqNFFFcZ3BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHl3jr/iRfEDRNdHyxybRKf8AdOG/8dYV6jXm3xgvNMTQIY5buP7fDMJI7dDulZSCDhRzjoc9OKv+HNe8U+IfD1jPp2mWdnEYVU3WoTF2dl+ViIo/cHqwrrrNToQl1V1/kcdFOGIqR6OzX6ndUVzQ8NapdD/iZ+KtRk/2LJEtU/QF/wDx6tnTdMg0q1+z273DqWLlri4eZyT1O5yT+HSuQ7C5XmXwgc6k/inXm+Z77VGXcf7qjcB9AJK9Nry34Fr9m8L6tYP/AK631SQOP+AIP5qaANfXPCeo6t8VdB1xkifSLCA7wz/MJf3hBC/Ux/lUfxnNuPhnfibb5hlhEGeu/wAxc499u79a7HV9XstC0q41LUZhDawLudjyfYAdyTwBXlmmaXqvxY12DXtbha18L2r7rKybrcYPU+oPc/gO5oA9A8LPeQ/D7SHaLzrxNNiIiZtpdhGMKTg4J4BODVTwT46tvF+g3epS2w09rSVknieXd5YAB3E4HGM9uxrrAAAABgDtXzpqtizfFbVvCGlaoltputXUf2sofu4BdkHbOSwx7gHuKAPYfB3jCXxj9uuoNLa20uGUx291JNlrgg8kJt4H4nrj1x1VVdN0610nTbfT7KIRW1ugSNB2A/r71DrmsW3h/RbrVbxZWt7ZN7iJdzEZxwOPWgDQoryv/hfnhX/oH6z/AN+Yv/jlH/C/PCv/AED9Z/78xf8AxygD1SivN9K+NnhnV9WtNOhs9VjlupVhRpIU2hmOBna5PX2r0igDG8TaTqOtaT9k0zWZdIn8wMbmKPeduCCuMjrnrntXkGkeF7jwp8edDtbvVpdUnubeW5e5lQqxJjmXByzE/c65717xXleu/wDJxvhj/sGP/wCg3FAHqleY+CJf7O+LPjXRR8scrJeqnoTgsR9fMH6V6dXlvhtftH7QHiu6Q/JHZRxH67YR/wCyGgDsfE/g7TfFK28ly9xa3lsSbe8tJPLljz1APp/niofDXgbTvDd5NqAuLzUNTnXZJe30vmS7fQHsP8K6eigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK81+LNrJAuk6zBxJbzGMt6H7y/qp/OvSq5zx3p39peDNRiUZeOPz1+qHcf0BH410YSfJWi3/VzmxlP2lCSX9W1Nyzuo76xt7uL/AFc8ayL9CMj+dT1yPw11H7f4LtkJy9q7QN+ByP0Irrqzqw9nUcOxrRqe0pxn3QUU13WNGd2CooJZmOAB6mub8E+L4/Gml3l/FafZ44Lx7ZP3m/zAqqQ/QYzu6frWZodNRWbr2u2HhvRp9U1KUx20I5wMsxPAVR3JNeff8LjuYIor+/8ABuqWujSkbL4kkEHocFQOe3zc9qAPU6KqW+p2l3pKanbzLLZyQ+cki9CmM5rzxPjn4dlQPHpGvOp7rbRkf+jKAPTqo3et6VYXKW15qdlbTv8AcimuFRm+gJyazPC/i618XaZc3mnWd5B5LmPZeRhCzbQeMMeOa4HwD4e8M+JPCl7qniOOG71eaab+0ZbqTDwEMQByfkAXBzx19qAPX+tFcH8I7mefwZJG80k9pb3s0FjLIcl7dSNp/PcPwxXeUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcrd6jqPiO+n03Qbj7JZW7mK81MKC28dY4QeCw7seF7ZPTQ8XX9xp3ha/ntG23TKsMDf3ZJGEan8CwNXtK0y20bSrXTrRdsFvGI1z1OOpPqSckn1NAGS3g/S7fQNQsLK2Amu4WWS4kYvLK5HDO55Jzg9cVz/wkvzLoV5p7532s+4A9lYdPzVvzr0KvLvDuNB+Lep6aflivA5jHbJ/eL+Q3Cuyh79GpT+f3bnDiPcr06nfT79j1GiiiuM7grzrw3D/wjPxW1/SH+W21lF1G044LAnzFHvkk49FFei1i674ci1u50y8FxJa3unXHnQTxgE4IwyHP8LDg0AeYfFrXNPXx9oOma0Zn0W2j+13MMQyZGJYKCMjP3QOvRjW3H8cfB0Uaxxw6gkaAKqrbKAoHQAbq9OooA8/8VfEWG18IWV1oiSS6nrKhNOgZRvyxxvK89O3qSPeuK8XeAZPCXgHTNbt2365p92t3eXOclmcjPPUhWCY/E9zXutFAFHRtUh1vRbLU7f8A1V1CsoGemRyPwPH4VdIDAggEHgg96WigCD7Daf8APrB/37FH2G0/59YP+/YqeigCFLW3jcPHbxIw6FUAIqaiigAryvXf+TjfDH/YMf8A9BuK9UooAZNLHBDJNK4SONSzsegAGSa8/wDhXaSXcOteK7hCsmuXrSxKw5WFSQv8z+AFdf4i0b/hINDudKN3Lax3ICSyRAFimfmUZ6ZHH0Jq9a2sNlaQ2ttGscEKCONF6KoGAKAJqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApsiLLG0bqGRgVYHuDTqKAPMPhlI2l+Idc0CQ8xsWXP+w20n8QV/KvT68u1f8A4kHxisbwfLDfhQ3p8w8s/qAa9RrsxnvSjU/mSZxYH3YSpfytr5bo4Lxj4B1nxXezmPxhc2OnSqFNikBZOAAckOMgkZwRWR8A/wDkRb7/ALCcn/oqKvVK8r+Af/Ii33/YTk/9FRVxnaJ8YGF9q3g7QXbNvf6iPOTPUBkQZH/bRq9D13T4NQ8OahYTRqYJbZ4yuOANpxj6f0rzn4oxsPiJ8P5f4Wv1UfUSxf416hfkLp10SQAInJJ7cGgDyb4e6u6fArWJGck2CXcae3ybwPzervgPxp4U8LeB9F0vUNYghu2iMroFZypdi/zFQQvDDrVL4Q6JDrnwo1XTLuSWO3vb6RWaEgOF2RjjII7eldxp/wAOvCun6GNKGkW1xEV2vLcRq0sh9S+Ac/TGO2KBnR2l3bX9pFdWk8c9vKu6OWNgysPUEVzWr/DXwlrmqHUb7SUa5c7pGSR0Eh9WCkAn36muS+Dksmn6n4q8MmV5LbTb0iDcc4+Z0b89in869YoEQ2lpb2NpFa2kKQ28ShI44xhVA7AVNRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBieL7GfUfCeoQWq7rlYxNAv96SNg6j8WUVoaXqMGr6VaajatmC5iWVPUAjOD7jpVuuQgf/hDtea1l+XQdTmL28ufltLhjlo29Ec8qezEjuKAOvry/wCIoOjeMND19AQoIWTHfY2T+asR+FegadrNnqlzqFvbSbpLC4+zzD0baG/LnH1BrnPihp323wdJOBl7SVZRj0+6f/Qs/hXVg5KNZJ7PT7zkx0HKhJrda/cdkCGAIIIPIIpawvBmo/2p4Q024Jy4hET+u5PlJ/HGfxrdrnnFwk4vodEJqcVJdQoooqSwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA85+Ldix0vT9Ui4ktpyhI6gMMg/gVH513el3y6lpNpfJjbcQrJx2yM4rO8Y6d/anhHUrYDL+SZEH+0vzD9Rj8axvhdqP23wekDHL2krRe+D8w/8AQsfhXY/fwqf8r/BnDH3MW1/MvxX/AADta8r+Af8AyIt9/wBhOT/0VFXqlFcZ3HC/FDw9f6xolnqGkR+bqek3K3cMQGTIB1UDueAcd8Y6muZ1j4vJrOhXGkaRomqf29dRGAwNF/qWYYJyOTjPHA98V7BRQB5vD4F1Kz+DZ8O2sxj1fy/P3Rybf3u/eU3fT5c9O9Y2jfF2PQ/DttpGsaLqo1y0hECwmP8A1xUbQSScgnHPB/GvYaKAPPPhP4d1HTNN1PWdYiMOo6zcee8TAhkXLEZB6ElmOPTH4eh0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXN+NNL1vWNCmsdHk0398hSWK+hZw49iDgH6qe3SukooA8F+HkPiPwJ49Nn4htLmK11b9y1wx3xtLnKNvGQSSSOufn5r3DU7JdS0q7sXwFuIWjye2RjNWSAwwQCPelpptO6E0mrM85+El639najpUuRJbThwp6gMMEfgV/WvRq8u0r/iQfGO9tPuw6gGK+mWHmD9QRXqNdWNS9rzraSTOPAN+y5HvFtBRRRXIdoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUVzdW9lbSXN1PFBBGMvLK4VVHqSeBVXTtc0nV2kXTdUsr1owC4trhJCuemdpOKAL9FFU9Q1bTdJjSTUtQtLKNztVrmZYwx9AWIzQBcIBBBGQeoNeM+HvENt4B8Sa3YXsVw9sZdqCFQSNpO08kcFT/ACr1yw1Kw1W3Nxp17bXkIYoZLeVZFDemVJGeR+dNm0nTbmZpp9PtJZW+88kKsT9SRXTQrRgpRmrpnLiKEqjjODs4nGf8Ld0D/nz1P/v1H/8AF0f8Ld0D/nz1P/v1H/8AF11/9haR/wBAqx/8B0/wo/sLSP8AoFWP/gOn+FX7TC/yP7yPZ4v+dfcch/wt3QP+fPU/+/Uf/wAXR/wt3QP+fPU/+/Uf/wAXXX/2FpH/AECrH/wHT/Cj+wtI/wCgVY/+A6f4Ue0wv8j+8PZ4v+dfcch/wt3QP+fPU/8Av1H/APF0f8Ld0D/nz1P/AL9R/wDxddf/AGFpH/QKsf8AwHT/AAo/sLSP+gVY/wDgOn+FHtML/I/vD2eL/nX3HIf8Ld0D/nz1P/v1H/8AF0f8Ld0D/nz1P/v1H/8AF11/9haR/wBAqx/8B0/wo/sLSP8AoFWP/gOn+FHtML/I/vD2eL/nX3HIf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XXX/wBhaR/0CrH/AMB0/wAKP7C0j/oFWP8A4Dp/hR7TC/yP7w9ni/519xyH/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABddf/YWkf8AQKsf/AdP8KP7C0j/AKBVj/4Dp/hR7TC/yP7w9ni/519xyH/C3dA/589T/wC/Uf8A8XR/wt3QP+fPU/8Av1H/APF11/8AYWkf9Aqx/wDAdP8ACj+wtI/6BVj/AOA6f4Ue0wv8j+8PZ4v+dfcch/wt3QP+fPU/+/Uf/wAXR/wt3QP+fPU/+/Uf/wAXXX/2FpH/AECrH/wHT/Cj+wtI/wCgVY/+A6f4Ue0wv8j+8PZ4v+dfcch/wt3QP+fPU/8Av1H/APF0f8Ld0D/nz1P/AL9R/wDxddf/AGFpH/QKsf8AwHT/AAo/sLSP+gVY/wDgOn+FHtML/I/vD2eL/nX3HIf8Ld0D/nz1P/v1H/8AF0f8Ld0D/nz1P/v1H/8AF11/9haR/wBAqx/8B0/wo/sLSP8AoFWP/gOn+FHtML/I/vD2eL/nX3HIf8Ld0D/nz1P/AL9R/wDxdH/C3dA/589T/wC/Uf8A8XXX/wBhaR/0CrH/AMB0/wAKP7C0j/oFWP8A4Dp/hR7TC/yP7w9ni/519xyH/C3dA/589T/79R//ABdH/C3dA/589T/79R//ABddf/YWkf8AQKsf/AdP8KP7C0j/AKBVj/4Dp/hR7TC/yP7w9ni/519xyH/C3dA/589T/wC/Uf8A8XR/wt3QP+fPU/8Av1H/APF11/8AYWkf9Aqx/wDAdP8ACj+wtI/6BVj/AOA6f4Ue0wv8j+8PZ4v+dfcePeKPGGnar4m0rWtNhuo5bQr5gmVV3BW3DGGPqw/Kvb43WWNZEYMjAMpHcGqP9haR/wBAqx/8B0/wq+iLGioihUUYVQMAD0qcRWhUjGMFaxWGoVKcpSm78wtFUbzWtK0+6itb3U7K2uJseVFNOqO+TgYBOTzxxV6uU6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOfjbqX2H4dy24bDXtxHBgHnAO8/wDoH61x3wYgk0Tx7qmjzN876fHKf975Gx/5EP5Vo/Ghm1bxN4V8Nx8mebc6j/bdUU+3Rqnbbpf7SUYACJf2YXjgcQ4Hf/pkBQM9fr5v+Jmsv4x1/VZ4ZSdH0GLykI6SSs4XI+rZ+qx16z8U/Fh8L+EZRbSbdRvswWwX7wz95x9AfzIryrxdoT+FPht4f8O7Mapqt19rulH3iwXAQ/Teo+oNAI9W+EumjTfhvpYIw9wGuH99zEj/AMd2121VdNsk03S7SxjxstoUhXA4wqgD+VWqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUEgAknAHegDw7WceJP2jLG1GXh04x5PYeWplP8A48cfWvca8P8AhCP7e+I/iXxG2WX59hPbzZCR+SoRXuFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeKyH/AISH9pGNcbodMj/9Ajz/AOhvVr4gldO+M/g7Uidol2QMx4GPMIPP0krc8E+AtV0LxtrfiLV7izmkv9/lC3dmKh5N5zuUY6AcZo+KXgDUvG40ptMntIZbMy7zcOy5DbcY2qem39aBnN6WP+Fm/FybU5P3mh6HhYB/DIwPy/XLAt9ABTfFx/4SH4+6FpI+aKwEbSL7jMxz9Rtr0XwJ4UTwd4Wt9MJje5JMtzInR5D1xkDgAAD2FYHh7wFqtj8T9V8V6ncWckNwJRbRwuxddxAXdlQOEGOCeaAPRKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVg+NdS/sjwTrN8Dh47Rwh9HYbV/Uit6uU+Inh3U/FXhKXSNLmtopJpUMjXDsqlFO7Hyqeche1AHMfAfTha+Crm9I+e8u2IP+yoCj9d1epV4ppvw7+KGkWEVjp/ijTre1izsiSaQBckk/8svUk/jVr/hDfi5/0OFl/wB/3/8AjVAz2GiqumQXFrpVnb3c5nuY4USaYnPmOAAzficmrVAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=
|
<image>Find $x$ in the given parallelogram
|
38
|
Geometry
|
Geometry3K
|
test
|
98
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC2AUsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiuV1rxrD4c1xbLVbWRLWZA8F1F8w9CGXrwfTPUcVcKcqjtFXZFSpGmuabsjqqKq2Gp2WqW4uLC6iuIj/FG2cex9KtVLTTsyk01dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcv480Z9V8Pme3QG9sWFzBxnOOWHvkdvUCuooq6c3CSkuhFSCqRcX1OAsPDGma9pdrr2gXEujXsqZJtT8gYcMpT0yO2KnHiDxN4bO3xBpv2+zXrf2I5A9WX/9Q+tJoJPhnxtfeH3G2xv83dj6Bv4lH5H/AL5HrXc11VanLK0lzReqvvb1OWjT5o3i+WS0dtr+m2u5maR4h0rXYt+nXkcxAy0ecOv1U8itOua1jwNo+qzfao43sb4HctzaHY2fU44P8/esz7T4x8MD/SYV1+wX/lpENs6j3HOf1+orL2UJ/wAN69n/AJ7fka+1nD+ItO6/y3/M7iisHRPGGja6RHbXPl3PQ2042SA+mO/4ZrerGcJQdpKzNoTjNXi7oKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlfHmlzXWjx6nZDGoaW4uYWHUgfeH0wM474rb0XVIda0e11GD7k6BsZ+6ehH4HIq+QCCCMg9q4bw0x8N+LtQ8MyZFpcZu7DPQA/eUfl/wCOn1roj+8pOPWOvy6/5/ec8v3dVS6S0fr0/wAvuO5ooornOgxda8J6Nr4LXtovn44uIvlkH4jr+Oawf7P8X+GOdOul1ywX/l3uTtmUf7Ld/wDPFdxRW0K8orleq7P+tPkYzoRk+ZaPuv61+Zy+leO9Jv5vst55mmXwwGt7wbDn0BPB/Q+1dR1rP1XQ9M1uDydRs4p1HRmGGX6MORXL/wDCMeIPDh3+GtU+0Wo/5cL45H0Vu36fU1XLSn8L5X57ff8A5/eTzVafxLmXdb/d/l9x3FFcfZePraO4Fl4gs5tHvOg84ExN7h/T9Pc11sUsc8SyxSLJGwyrocgj2NZzpTp/EjSnVhU+Fj6KKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArkvHmnzNpsGtWI/0/SpPPQj+JP4x9Mc/gfWutpGVXUqwBUjBB7irpzcJKSIqQVSDiyppeow6tpdtf25/dTxhwPT1H1ByPwq5XD+E3bw/wCJNR8KzZEBJurAk9Yz1X8P6NXcE4GTVVoKErLbdehNGbnC732fqYviHxRp/hlLI33mM15cLbwxxAFizd+SOB3NT65r1j4fs0uLwyMZZBFDDCheSZz0VVHU15p4s/4nqReJHGbddVtrTTsj/lmJfnkH++w/JR610+vv53xW8J27jKRwXUwHbdtAB/nWS1S9f0uavRv0/W35m3oPimx1+a4toobu0vbbBmtL2HypUB6HHIIPqCa53Vtb1CDxBdxrqs8F5FcxR2WlLApS7iITcxJUseWbLBgF28+818RB8Z9KKDDXGkzJIR/EFcEZruKF0l/W/wDwAfVf1sVr2wtNStmt722iuIW6pIoIrk5fBN5pErXPhXVZbIk7jaTnfC3tznH6/hXa0VpCtOGienboZTownq1r36/ecVD44utJlW28V6VLYvnAu4QXgf8ALOPpz+FdbZ31pqNutxZXMVxCejxOGH6VLLDHPE0U0aSRsMMjqCCPcGuSvfANvFcNe+Hr2bR7w9ojmJvqv+R7VpelU391/ev81+JFq1Pb3l9z/wAn+B2FFcOPFGv+HSI/E2lGa2Bx/aFiNy49WXt+n0rqNK1vTdbg87TryKdcZKqfmX6r1H41E6M4K+67rYuFaE3y7Ps9zQooorI1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4/wAe2U0VpaeIbFf9N0qTzeP4oj98H2/pmtuUp4l8Lv8AY7p7dL+2ISdBlo9w649RWnJGksbRyKGRwVZT0IPUVxXg2V9D1vUvCdwTshY3FizfxRMckfgT+e70rot7Wi4veP5P/L9Tnv7KspLaX5rb71+SOY8ZeGdc0jw5plu/iuS4tI762hhg/s+GMRncArAgZOPQ9e9dJ4kt7jRda8NeIbx5byHT0lt7+4jh+YB0A80ovbcOcDjNd1RXPd/jf8LHRZfgcDo93H4r+Iw17T1kfSbHTzbx3LRsizSu2Tt3AEgAda76iijpb+u4dbhRRRQAUUUUABAIIIyD2rl9U8B6VfXBvLIy6Zf5yLizbZz7r0/LBPrXUUVcKkoO8XYidOM1aSucP/aXi/wzxqdmut2C/wDLzajEyj3Xv+X41vaL4r0bXgFsrxDNjmCT5ZB6/Kev4ZFbVYGteDtG1xvNntvJuhytzbnZID65HX8c1rz05/GrPuv8v8rGXJVp/A7rs/8AP/O5v0Vw/keMvDH+okXX9PX/AJZyfLcKvse/6/QVqaP440fVpfszytZXoOGtrsbGB9Bng/z9qUqErc0dV5f1dDjXjfll7r8/0ezOkooorA3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuN8d2s1mtj4mskzdaZIDIB/HCeGB/P8AImuypk0MdxBJBMgeKRSjqehBGCK0pT5JqRnVhzwcSOzu4b+ygu7dt0MyCRD6gjNT1xXgm4k0nUNR8J3TEtZuZbRm/jhY5/TI/M+ldrRVp8k2lt09Ao1PaQT69fXqFFFFZmgUUUUAFFFFABRRRQAUUUUAFZeseHNJ16LZqNlHKQPlk+66/RhzWpRTjJxd4uzJlFSVpK6OH/sHxP4a+bQdS/tGzX/lxvj8wHorf/qH1q3p3j6wkuBZaxBNpF90Md0MIT7N0x7nFdbVTUNLsdVtjb39rFcRHtIucfQ9QfpW/toz/ir5rR/5Mx9jKH8J/J6r/Nf1oWUdZEDowZWGQynIIp1cQ/g3VNCczeFNWeFM5NjdnfEfYHt/P3qS38dtYTraeKNMm0uY8CcAvC59iM/1+tHsObWm+b8/u/yuCr8ulVcv5ff/AJ2OzoqG2ure9gWe1njmhb7rxsGB/EVNXO1Y6E7hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcX45t5dMuNP8VWaEzWDhLhV/jgY4IP0z/49ntXX21zFeWsVzA4eGVA6MO4IyKLm2ivLWW2nQPDKhR1PcEYNch4FupdPnv/AAreOTPpzlrdm6vCTkH8Mj/voDtXR/Epecfy/wCA/wAzm/h1fKX5/wDBX5HaUUUVznSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXFtBdwNBcwxzRMMMkihlP4GpaKNg3OMufAf2KZ7vwxqM2lXJ5MQJeFz7qc/1HtUa+L9X0FxD4q0llizgX9mN8R9yO38/au3pGVXUqwDKRggjINdCr82lRc35/f/AJ3Od4dR1pPl/L7v8rFTTtWsNXtxPp93FcR+qNyPqOo/GrlcnqXgHTp7g3ukyy6RfjpLaHap+q9MfTFU/wC2/FXhkbdc08apZL/y+WQ+cD/aXj+g9zR7GM/4T+T0f+TD20ofxY/Nar/Nf1qdxRWTo3iXSNej3afeRyMB80R+V1+qnn8ela1Yyi4u0lZm0ZRkrxd0FFFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxXjWKTRtR07xXaoSbVxDdqv8cLHv8AQn9R6V2tQXtpDf2U9pcLuhmQo49iK0pT5Jpvbr6GdWHPBpb9PUkhmjuII5onDxyKHRh0IIyDT643wHey26Xvhq9Ym70uQqhPV4SflP6/kRXZUVYezm4hSqe0gpBRRRWZoFFcDZQaoPEULNHrA1L7dIbmWR3+xm1y20KCfL+7swANwPXvXfUdLg97BRRRQAUUUUAFFFFABRRRQAUUUUAFFFZfiHXbXw5o0upXaySIhVVjiGXkdjhVUepJoA1KK5Ky8Y3qaxZ6dr3h+bSWvyVtJTcJMjsBnYxX7rY7c/WptW8awaXrcmkRaNrGo3McKzSfYYEkCKxIGcuD2PagCTWfBOjaxL9o8lrS9Bytzany3B9Tjg/jzWVv8ZeGPvqviDT1/iX5bhR/X9SfatiTU9Q1nwnf3Gnaff6ffmORIIryNY5N+OCBkj6EnrVHwpFNHqdybaLWItN8hAy6o8jMZ8nJXzCWxjrj5ScYreNeS92Wq8/60MJUI/FHR+X9WZe0Xxno2tsIYrg2930NtcDZID6eh/CugrH1rwto+voft9mjSYwJk+WQf8CH8jxXP/2V4t8MnOk3w1mwX/l1vDiVR6K3f8/wp8lOfwOz7P8Az/zFz1afxq67r/L/ACudxRXK6X490u8uPsWoLLpV+DhoLsbRn2bp+eK6kEMoIIIPII71lOnKDtJWNYVIVFeLuLRRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxHjFG0HW9O8WQKdkbC2vlUfeibofwP67a7WORJY1kjYMjgMrDoQehqDUbCDU9OuLG4XdDOhRvx7/WuY8BahMtndeH74/wCm6TJ5PP8AHF/CR7dvpj1rof7ylfrH8v8AgM51+7q26S/P/gr8mbfiRdTbw5fnRrgwaisReBwit8w5xhgRzjHTvXOeGPE2peM7ixurFntNMtogb12iGbicjmJdw4VTySO+AK1PFtxqksNvo2jxTrc6gxjkvVjOy1i/jct0DY4Uev0rL8DaTceF9X1vw8tvc/2WkiXNjO6sUKuAHTd0yCOnXmueO7/r+v8AgHRLZf1/X/BO4ooooAKKKKACiiigAooooAKKKKACiiigArP1bRrPW4beK9RmSC4S4QKxX50OVz6/StCuV+IN5qdr4XZNKgvpJ7iZIXaxhaSWOMn52UAddoIB9SKTdhpXMvV518X+NtK07TQZLXRLv7XfXan5FkAIWIHu3PPpStY+LovGniC+0mx05I7hYEiuL+RtrqiHKqqc9SeTjtwam8PeItN023s9H07wr4jtLfcI1aXS3VQSeWdj+ZJqSfXde0DXtSTUNL1LVdNmZX0+TT7dJDGMcxuBgjnuc/Wntp/XQW5qeE/ETeItOuGuLb7LfWdw9rdwBtwSRfQ9wRg1v1yfgTSL/T7LUr/U4Bb3mq3sl41vuyYlOAqkjvgc/WuspsPQKKKKQFHVNG07WrfyNRs4rhOxYfMv0PUfhXLN4U1zw+TJ4X1YvAOfsF6dyfRT2/T6129FawrTgrLbs9jKdGE3d791ucdaePobe5Wy8R2E+kXZ6NIN0T+4Yf8A6veuthniuIVlglSWNhlXRgQR7EUy7s7a/t2t7u3inhbqkihgfzrkZvA0+lzNdeFdUl0+QncbWQl4HPuD0+vNX+5qf3X96/zX4kfvqe/vL7n/AJP8DtaK4lPGt9osiweK9JktQTtF7bDfC3v6j9T7V1tjqNnqduLixuYriI/xRsCPx9KidGcNWtO/QuFaE3ZPXt1+4s0UUVkahRRRQAUUUUAFFFFABRRRQAUUUUAFcf4h0zVLHxLaeIdCs/tczRmC7t94TzFx8pyf88Cuwoq6dRwd0Z1KamrbHHf8JF4v/wChN/8AJ5KP+Ei8X/8AQm/+TyV2NFae2h/Ivx/zM/Yz/wCfj/8AJf8AI47/AISLxf8A9Cb/AOTyUf8ACReL/wDoTf8AyeSuxoo9tD+Rfj/mHsZ/8/H/AOS/5HHf8JF4v/6E3/yeSj/hIvF//Qm/+TyV2NFHtofyL8f8w9jP/n4//Jf8jjv+Ei8X/wDQm/8Ak8lH/CReL/8AoTf/ACeSuxoo9tD+Rfj/AJh7Gf8Az8f/AJL/AJHHf8JF4v8A+hN/8nko/wCEi8X/APQm/wDk8ldjRR7aH8i/H/MPYz/5+P8A8l/yOO/4SLxf/wBCb/5PJR/wkXi//oTf/J5K7Gij20P5F+P+Yexn/wA/H/5L/kcd/wAJF4v/AOhN/wDJ5KP+Ei8X/wDQm/8Ak8ldjRR7aH8i/H/MPYz/AOfj/wDJf8jjv+Ei8X/9Cb/5PJR/wkXi/wD6E3/yeSuxoo9tD+Rfj/mHsZ/8/H/5L/kcd/wkXi//AKE3/wAnko/4SLxf/wBCb/5PJXY0Ue2h/Ivx/wAw9jP/AJ+P/wAl/wAjjv8AhIvF/wD0Jv8A5PJR/wAJF4v/AOhN/wDJ5K7Gij20P5F+P+Yexn/z8f8A5L/kcd/wkXi//oTf/J5KP+Ei8X/9Cb/5PJXY0Ue2h/Ivx/zD2M/+fj/8l/yOO/4SLxf/ANCb/wCTyUf8JF4v/wChN/8AJ5K7Gij20P5F+P8AmHsZ/wDPx/8Akv8Akcd/wkXi/wD6E3/yeSj/AISLxf8A9Cb/AOTyV2NFHtofyL8f8w9jP/n4/wDyX/I4yTXvFksbRyeC1dGGGVr1CCPcYrk7vQ/EQu/tuieGJ9Hu88tbXyFGHoU6fh09q9forSGK5Phgvx/zInhPafFN/h/kc34Ru/E1xBPH4jso4Hj2+VKpXMmc5yFJHGB6da6SiiuecuaTla3odFOHJFRvf1CiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z
|
<image>Find x
|
115
|
Geometry
|
Geometry3K
|
test
|
99
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAR4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiuB8ffE/TPCmmTx2F3Z3etLII1tN28Ic/Nv2njAzxkHOKAO+orNutUNp4am1Z0UmKza5Zeg4TdivP9K8b/ABE1rTINR0/wVZy2lwu6OQ36LuGcdGYHtQB6lRUVq80lpC9zEIp2jUyRg5CtjkZ74NS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeWfGbQNHg8C6hqcOlWUd+08Ra6SBRISXGctjPNep1578bP+SY33/XaH/0MUAbPiSC8uvhle22nwPPdT6b5UcadW3IFOPwJrz6O5+JXgjwbY6pMmlnS7GGJJdN2nzUjGFyzY+93OCcZ6dQPRNem1i2+Hks+gDOqRWkbwjYHJxtLAKep27sD1rzjX/inYeJPh5/YlpHc3HiTUIktZLRbcgrIcBz0xg4OAOeRwKAPYdJ1KHWNHstSt8iG7gSZAeoDAHB9+a818dWlzq/xb8NaRHqN3Z291ZyiZreQqxUBywHoSBjPvXf+FtLk0XwppWmS4822tY45MdNwUbv1zXG+IP8AkvPhL/ryuP8A0CSgDmz4TNh8UP8AhDbDV9RttBvrIXtxbpOSzbSw2hjyMkZOOoJFbHgex/4Rj4s694Zsbic6SLFLqOCWQvsfKDjP+836Zzirl1/ycNZf9gM/+hvSaV/ycHrn/YHT/wBCioA5bwP4OTxpoGtXWrapqDiC/nitIluGCQuAp8zHc8jr6e9ReHPDT+NPhlda9rurahc3ltBKlj+/IWARKdpIH3iT1J5Ix9a6z4Nf8ijrf/YXuP8A0BKpfDL/AJIbe/8AXO7/AJGgDrPhjqN1qvw40a7vZnmuGiZGkc5ZtrsoJPc4Uc11tcR8If8Aklmif7sv/o567egAooooAKKKKACiiigAooooAKKKKACiiigAqC9vIdPs5bu4YrDENzEDOB9KnrF8Xf8AIqaj/wBcv6ilJ2TYm7K5T/4T3w//AM/Mn/flv8KP+E98P/8APzJ/35b/AArg7PTLmCzhu7QRzh0DPBKoP5GtGyvdOun8mS2jguBwYpEA59uK4vrEzD2sjq/+E98P/wDPzJ/35b/Cj/hPfD//AD8yf9+W/wAKxvsdt/z7w/8AfAo+x23/AD7w/wDfAp/WJh7SRs/8J74f/wCfmT/vy3+FH/Ce+H/+fmT/AL8t/hWN9jtv+feH/vgUfY7b/n3h/wC+BR9YmHtJGz/wnvh//n5k/wC/Lf4Uf8J74f8A+fmT/vy3+FY32O2/594f++BR9jtv+feH/vgUfWJh7SRs/wDCe+H/APn5k/78t/hR/wAJ74f/AOfmT/vy3+FY32O2/wCfeH/vgUfY7b/n3h/74FH1iYe0kbP/AAnvh/8A5+ZP+/Lf4Uf8J74f/wCfmT/vy3+FY32O2/594f8AvgUfY7b/AJ94f++BR9YmHtJGz/wnvh//AJ+ZP+/Lf4VGvjXwykzTLJtlbhnFuQx+pxWV9jtv+feH/vgUfY7b/n3h/wC+BR9YmHtJGz/wnvh//n5k/wC/Lf4Uf8J74f8A+fmT/vy3+FY32O2/594f++BR9jtv+feH/vgUfWJh7SRs/wDCe+H/APn5k/78t/hR/wAJ74f/AOfmT/vy3+FY32O2/wCfeH/vgUfY7b/n3h/74FH1iYe0kbP/AAnvh/8A5+ZP+/Lf4Uf8J74f/wCfmT/vy3+FY32O2/594f8AvgUfY7b/AJ94f++BR9YmHtJGz/wnvh//AJ+ZP+/Lf4Uf8J74f/5+ZP8Avy3+FY32O2/594f++BR9jtv+feH/AL4FH1iYe0kbP/Ce+H/+fmT/AL8t/hR/wnvh/wD5+ZP+/Lf4VjfY7b/n3h/74FH2O2/594f++BR9YmHtJGz/AMJ74f8A+fmT/vy3+FH/AAnvh/8A5+ZP+/Lf4VjfY7b/AJ94f++BR9jtv+feH/vgUfWJh7SRs/8ACe+H/wDn5k/78t/hR/wnvh//AJ+ZP+/Lf4VjfY7b/n3h/wC+BR9jtv8An3h/74FH1iYe0kbB8f6AD/r5j/2yNJ/wsDQP+e03/fo1yWm28Da1rCtDGVWSPaCowPkHStb7Hbf8+8P/AHwKcq84uxtW5qUuXfRP70n+pr/8LA0D/ntN/wB+jXSwzJcQRzRnMcih1OMZBGRXmGv28EejyskMasCvKqAeor0XR/8AkCWH/XtH/wCgitaNVzbuTCbluXaKKK3NArF8Xf8AIqaj/wBcv6itqsXxd/yKmo/9cv6ipn8LFLZnJ6R/yCLX/rmKde6dbX6YnjBYdHHDD8abpH/IItf+uYq7XmHKYf8AxM9I9b20H/faj/P+RWlZajbX6boJASOqHhh+FWqzr3RoLp/OiJt7gciWPjn3oA0aKxF1G90xhHqcXmRdBcRj+Y/z+Na8FxFcxCSGRXQ91NAElFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAyNM/5Dmtf9dIv/QBWvWNJpN+mo3V1Z6kkK3BUsjQB8YGOuad9h1v/AKDMX/gIP8a1koyd+bt37eh6FaFKrJTVRLSO/N0il/KP8Rf8gWb6r/6EK9A0f/kCWH/XtH/6CK8t1e11SLTZHudSjmiBGUFuFJ59c16npHGi2A/6d4//AEEVrh1ZvW5zqChKykpel/1SLlFFFdRYVi+Lv+RU1H/rl/UVtVi+Lv8AkVNR/wCuX9RUz+Filszk9I/5BFr/ANcxV2qWkf8AIItf+uYq7XmHKFFFFMBGUMpVgCDwQe9ZE+imGU3GmTG3l7p/A34VsUUgMiDWjFKLfU4TbS9n/gb8a1lYMoZSCDyCO9Mnt4bmIxzRq6HswrIOnXumMX02XzIept5D/I/5/GgDborOstZt7p/JkBguBwYpODn2rRpgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGX4i/5As31X/wBCFeg6T/yBrH/r3j/9BFefeIv+QLN9V/8AQhXoOk/8gax/694//QRXTht2aUt2XKKKK6zcKxfF3/Iqaj/1y/qK2qxfF3/Iqaj/ANcv6ipn8LFLZnJ6R/yCLX/rmKu1S0j/AJBFr/1zFXa8w5QooopgFFFFABRRRQBUvdOtr9MTxgsOjjhh+NZ3/Ez0j1vbQf8Afaj/AD/kVuUUgsVbLUba/TdBICR1Q8MPwq1Wbe6NBdP50RNvcDkSx8c+9Vl1G90xhHqcXmRdBcRj+Y/z+NAG3RUcFxFcxCSGRXQ91NSUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAy/EX/IFm+q/+hCvQdJ/5A1j/ANe8f/oIrz7xF/yBZvqv/oQr0HSf+QNY/wDXvH/6CK6cNuzSluy5RRRXWbhWL4u/5FTUf+uX9RW1WL4u/wCRU1H/AK5f1FTP4WKWzOT0j/kEWv8A1zFXapaR/wAgi1/65irteYcoUUUUwCiiigAooooAKKKKACkZQylWAIPBB70tFAGPPorQym40yY28vdP4G/Clg1oxSi31OE20vZ/4G/Gteo57eG5iMc0auh7MKQWHghlDKQQeQR3paxDp17pjF9Nl8yHqbeQ/yP8An8atWWs290/kyAwXA4MUnBz7UBc0aKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGX4i/5As31X/wBCFeg6T/yBrH/r3j/9BFefeIv+QLN9V/8AQhXoOk/8gax/694//QRXTht2aUt2XKKKK6zcKxfF3/Iqaj/1y/qK2qxfF3/Iqaj/ANcv6ipn8LFLZnJ6R/yCLX/rmKu1S0j/AJBFr/1zFXa8w5QooopgFFFFABRRRQAUUUUAFFFFABRRRQAVUvdOtr9MTx5YdHHDD8at0UAYedT0jrm9tB/32o/z/kVpWWo21+m6CQEjqh4YfhVqs290aC6fzoibe4HIlj459xSA0qKxF1G90xhHqcXmRdBcRjP5j/P41rwTxXMQkhkV0PdTQBJRRRTAKKKKACiiigAooooAKKKKAMvxF/yBZvqv/oQr0HSf+QNY/wDXvH/6CK8+8Rf8gWb6r/6EK9B0n/kDWP8A17x/+giunDbs0pbsuUUUV1m4Vi+Lv+RU1H/rl/UVtVi+Lv8AkVNR/wCuX9RUz+Filszk9I/5BFr/ANcxV2qWkf8AIItf+uYq7XmHKFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooARlDKVYAg8EHvWRPorQym40yY28vdP4G/CtiikBkQa0YpRb6nCbabs/8AA341rAhlDKQQeQRTJ7eG5iMc0auh7EVkHTr3TCX02XzYept5D/I/5/GgDborOstZt7p/JkBguBwYpODn2rRoAKKKKYBRRRQAUUUUAZfiL/kCzfVf/QhXoOk/8gax/wCveP8A9BFefeIv+QLN9V/9CFeg6T/yBrH/AK94/wD0EV04bdmlLdlyiiius3CsXxd/yKmo/wDXL+orarF8Xf8AIqaj/wBcv6ipn8LFLZnJ6R/yCLX/AK5irtUtI/5BFr/1zFXa8w5QooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXJ6v42FlrEulaZpF3qt3AoacQdI89s4PPNNRb2Glc6yisbw94lsvEWnPdwb4WhYpPDMMNEw6g+3vXOS/E2JTLdQ6Hfz6TFJ5bX6j5euMgYxj8R26U1CTdrD5Wdje6dbX6Ynjyw6OOGH41nZ1PSOub20H/faj/P+RVTxfLeal4HuJ9CkklaZEdTAfneMkFtvvj+tYvgOJk16+bTbfUoND+zqAl9kEz55259s5/8A1U1D3bi5dLnb2Wo21+m6CQEjqh4YfhVqs290aC6fzoibe4HIkj4596rLqV7prCPU4vMi6C4jGR+IrMRt0VHBPFcxCSGRXQ91NSUwCiiigDL8Rf8AIFm+q/8AoQr0HSf+QNY/9e8f/oIrz7xF/wAgWb6r/wChCvQdJ/5A1j/17x/+giunDbs0pbsuUUUV1m4Vi+Lv+RU1H/rl/UVtVi+Lv+RU1H/rl/UVM/hYpbM8/wBP8P6bc6fBNLC5kdcsRM45+gNWv+EY0n/nhJ/3/k/+Kq1pH/IItf8ArmKu1wKpPuxRxuJSsqkvvZz0en22m+JrJLVXRZIZCwMjNnGMdSa6Gsi7/wCRp07/AK4S/wBK16dRt2b7fqzTGTlNU5Td24/+3SCiiisziCiiigAooooAKKKKACiiigAooooAKKKKACuX1F9M8ELfa0LW9uJNRnXzhCA53YYg84wvX8xXUVxml+NEi1/WtL1+6trN7ac/ZjJ+7Dxc45JwTjB/Gqimykc5oc/meCfGGupNF5uoNK5gjbJhBDYB9/nP5Cul0ezhPwnjtyg8t9NdiMd2Ukn8zmue0SzXXpfHM2mKTY3imO3IGFkkwxyPxOf+BVNYeMdKtvhebeW6RL+K0e1+zE/vN+Co+X06HNbSTe3dFs6L4bytL4B0wsclRIv4CRgP0rqq57wNYS6Z4L0y1nQpKIy7K3UbmLYP/fVdDWM/iZnLdhSMoZSrAEHgg96WipEY8+itDKbjTJjby90/gb8KWDWjFKLfUojbTdn/AIG/Gteop7eG5iMc0auh7EUgsSAhlDKQQeQRS1iHT73TCX02XzYept5D/I/5/GrVlrNvdP5MgMFwODFJwc+3rQFxniL/AJAs31X/ANCFeg6T/wAgax/694//AEEV594i/wCQLN9V/wDQhXoOk/8AIGsf+veP/wBBFdWG3ZpS3ZcooorrNwrH8VRSTeGL+OJGd2j4VRknkdq2KKTV1YTV1Y8os7+/tbOKA6NeMY1252MM/pU/9r33/QEvP++G/wDia9Qorn+rLuZ+y8zyKW5v5dXtr3+x7wLDG6FfLbJ3Y9varv8Aa17/ANAS9/74P+FeoUU3h79S5qU0k3srfr+p5f8A2te/9AS9/wC+D/hR/a17/wBAS9/74P8AhXqFFT9WXcz9l5nl/wDa17/0BL3/AL4P+FH9rXv/AEBL3/vg/wCFeoUUfVl3D2XmeX/2te/9AS9/74P+FH9rXv8A0BL3/vg/4V6hRR9WXcPZeZ5f/a17/wBAS9/74P8AhR/a17/0BL3/AL4P+FeoVkeJvElh4U0ObVtSMn2eNlXbGAXYscAKCRk9/oDR9WXcPZeZw39rXv8A0BL3/vg/4Uf2te/9AS9/74P+FejvfQR6Y2oOStusJnYkchQN38q4L/hd/gs/8vF5/wCArUfVl3D2XmVf7Wvf+gJe/wDfB/wo/ta9/wCgJe/98H/CvS7W5jvLSG6hz5U0ayJkYOCMjj8alo+rLuHsvM8v/ta9/wCgJe/98H/Cj+1r3/oCXv8A3wf8K9Qoo+rLuHsvM8v/ALWvf+gJe/8AfB/wrP1CC21Z1e/8JyXLqMK8lvlgPTO3OPavYKKaw9tmP2XmeVW17LZ2629r4euYIU+7HHCVUfQBaoy2VjNffbpfB5e5zuMjW2ST6n5eT717HRR9X8w9l5nl/wDa17/0BL3/AL4P+FH9rXv/AEBL3/vg/wCFeoUUvqy7i9l5nl/9rXv/AEBL3/vg/wCFH9rXv/QEvf8Avg/4V6hRR9WXcPZeZ5f/AGte/wDQEvf++D/hR/a17/0BL3/vg/4V6hRR9WXcPZeZ5f8A2te/9AS9/wC+D/hVW9le/TE+g3u4dHCEMPxxXrVFH1Zdw9l5nisg1qSzks2srySFsbS8Lblwc9cV6/pasmkWSOpVlgQEEYIO0VborWnS5OpcIcoUUUVqWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeK/GTwTbw6Df8AiR9W1W4nE6lLaecNBHvYAhVxkDnjmvaq89+Nn/JMb7/rtD/6GKANXxVdfY/hVqc2cH+ymQH3aPaP1NcJ4V+JkXhnwjotveeGdWi0iOFIm1Mx/uy5+8QMcjJOOcnHTtXoet6zF4f+H76pNY/bore2iL2+R84O0HqD0znp2rnfHPiLR7/4M3N6kkCw31pGtvCrg4clSEAHdT19NpoA9DgniubeOeFxJFKodHXoykZBH4V5/wCMvE3iWy8e6L4e0A2mdQt3Y/aEyqsN3zkjnCgZx3xXS+B7ee18CaFBcgiZLGEMrdV+Ucfh0rlfEH/JefCX/Xjcf+gSUAZo8Q/ECx8Xv4Mku9OvL65hW4g1J4diwx87iUA+boQB6461seDPEHiNPHGr+EvEd1BfS2tut1DdxRCPcp28EDj+MfketQ3X/Jw1l/2Az/6G9JpX/Jweuf8AYHT/ANCioAydA1/4ieL9L1O607UNPs47C6ljV2twzzsoBEeOigDHPX5vam6f4p8f+LfB8/iLTbrT9LgsoWzH5PmNdvGuXI3AhAegHrnnvWt8Gv8AkUdb/wCwvcf+gJVL4Zf8kNvf+ud3/I0Ad14J16XxP4N03WJ40jmuIz5ip93crFSR7Ermt+uI+EP/ACSzRP8Adl/9HPXb0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ2t6Hp3iLS5NN1W2+0WkhVmj3smSDkcqQevvWjRQBC1pbyWRs5IUe2MflNE43KUxjBB6jFcda/CLwVZ6kL6PSNzqwdI5JnaNSOfuk4P0ORXb0UAFZtxoGmXWvWmuTW27UbNGjgm8xhsVgQRtBwep6itKigDNbQNMfxEmvtbZ1NIPs6z+Y3EeScbc7epPOM0RaBpkHiGfXo7Xbqc8Igkn8xjuQYwNudo+6OQM8VpUUAZmjeH9L8P2k9rpdr9ngnmaeRfMZtzsACcsSR0HHSmaZ4Z0jRtDfRbC08nT3DhofMdsh/vfMSTzn1rWooAo6RpFjoOlQaZpkHkWcAIjj3s23JLHliSeSe9XqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=
|
<image>Find the area of the figure. Round to the nearest tenth if necessary.
|
129.9
|
Geometry
|
Geometry3K
|
test
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.