problem
stringlengths 10
2.37k
| original_solution
stringclasses 890
values | answer
stringlengths 0
253
| source
stringclasses 1
value | index
int64 6
40.3k
| domain
stringclasses 1
value |
|---|---|---|---|---|---|
Consider the sequence
$$
a_{n}=\cos (\underbrace{100 \ldots 0^{\circ}}_{n-1})
$$
For example, $a_{1}=\cos 1^{\circ}, a_{6}=\cos 100000^{\circ}$.
How many of the numbers $a_{1}, a_{2}, \ldots, a_{100}$ are positive?
|
99
|
deepscale
| 10,322
| ||
What is the result of $120 \div (6 \div 2 \times 3)$?
|
\frac{120}{9}
|
deepscale
| 12,172
| ||
The sum of three numbers \(x, y,\) and \(z\) is 120. If we decrease \(x\) by 10, we get the value \(M\). If we increase \(y\) by 10, we also get the value \(M\). If we multiply \(z\) by 10, we also get the value \(M\). What is the value of \(M\)?
|
\frac{400}{7}
|
deepscale
| 18,217
| ||
How many different rectangles with sides parallel to the grid can be formed by connecting four of the dots in a $5\times 5$ square array of dots?
|
100
|
deepscale
| 32,019
| ||
Any six points are taken inside or on a rectangle with dimensions $1 \times 2$. Let $b$ be the smallest possible value such that it is always possible to select one pair of points from these six such that the distance between them is equal to or less than $b$. Determine the value of $b$.
|
\frac{\sqrt{5}}{2}
|
deepscale
| 10,548
| ||
$-14-(-2)^{3}\times \dfrac{1}{4}-16\times \left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{8}\right)$.
|
-22
|
deepscale
| 29,399
| ||
There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game.
In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps:
(a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$.
(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group.
Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning.
[i]Czech Republic[/i]
|
To solve this problem, we need to find the smallest integer \( n \) such that Alice can always prevent Bob from winning regardless of how the game progresses. The setup is as follows:
1. Alice and Bob are playing a game with 60 boxes, \( B_1, B_2, \ldots, B_{60} \), and an unlimited supply of pebbles.
2. In the first round, Alice places \( n \) pebbles among the 60 boxes.
3. In each round, Bob chooses an integer \( k \) (where \( 1 \leq k \leq 59 \)) and splits the boxes into two groups: \( B_1, \ldots, B_k \) and \( B_{k+1}, \ldots, B_{60} \).
4. Alice then chooses one of the two groups and adds one pebble to each box in that group while removing one pebble from each box in the other group.
5. Bob wins if, at any point during the game, any box contains no pebbles.
**Objective:** Find the minimum \( n \) such that Alice can always make sure every box contains at least one pebble throughout the game.
### Analysis
- Each round lets Alice adjust the distribution of pebbles to ensure no box ever falls to zero pebbles.
- Since Bob can split the boxes in various ways, Alice must be able to counter any strategy Bob uses to reduce any box's pebbles to zero.
### Key Insights
- Consider the worst-case scenario in which all of Bob's splits aim to minimize the number of pebbles in the more populated group.
- To ensure success, Alice needs enough initial pebbles in each box such that the difference in pebble distribution between any two boxes can always be adjusted to maintain a non-zero amount of pebbles.
### Solution Strategy
To prevent any box from ever reaching zero pebbles, it is required that Alice starts with a sufficient amount of pebbles such that no matter how Bob splits the boxes, the difference in pebble count between the fullest and emptiest box can be maintained above zero. An analysis of this logistic scenario yields the formula:
\[
n = 16 \times 60 = 960
\]
This formula comes from the requirement that the potential difference, at any point, after any number of rounds, of pebbles between the fullest and emptiest box can always be moderated by Alice's actions, ensuring all boxes never reach zero pebbles. Calculations show that this constraint is sustainable starting with 960 pebbles.
### Conclusion
Thus, the smallest number of pebbles \( n \) that allows Alice to always keep at least one pebble in every box and prevent Bob from winning is:
\[
\boxed{960}
\]
|
960
|
deepscale
| 6,288
| |
Sarah is trying to fence a rectangular area containing at least 100 sq. ft while using the least amount of material to build the fence. The length of the rectangular area should be 15 ft longer than the width. What should the width, in ft, be?
|
5
|
deepscale
| 34,307
| ||
Let $\mathbb{N}$ be the set of positive integers, and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function satisfying $f(1)=1$ and for $n \in \mathbb{N}, f(2 n)=2 f(n)$ and $f(2 n+1)=2 f(n)-1$. Determine the sum of all positive integer solutions to $f(x)=19$ that do not exceed 2019.
|
For $n=2^{a_{0}}+2^{a_{1}}+\cdots+2^{a_{k}}$ where $a_{0}>a_{1}>\cdots>a_{k}$, we can show that $f(n)=2^{a_{0}}-2^{a_{1}}-\cdots-2^{a_{k}}=2^{a_{0}+1}-n$ by induction: the base case $f(1)=1$ clearly holds; for the inductive step, when $n$ is even we note that $f(n)=2 f\left(\frac{n}{2}\right)=2\left(2^{a_{0}}-\frac{n}{2}\right)=2^{a_{0}+1}-n$ as desired, and when $n$ is odd we also have $f(n)=2 f\left(\frac{n-1}{2}\right)-1=2\left(2^{a_{0}}-\frac{n-1}{2}\right)-1=2^{a_{0}+1}-n$, again as desired. Since $19=f(n) \leq 2^{a_{0}} \leq n$, we have $a_{0} \geq 5$ and $n=2^{a_{0}+1}-19 \leq 2019$ gives $a_{0} \leq 9$. So the answer is $\sum_{a=5}^{9}\left(2^{a+1}-19\right)=\left(2^{11}-2^{6}\right)-19 \cdot 5=1889$.
|
1889
|
deepscale
| 4,183
| |
Vasya replaced the same digits in two numbers with the same letters, and different digits with different letters. It turned out that the number ZARAZA is divisible by 4, and ALMAZ is divisible by 28. Find the last two digits of the sum ZARAZA + ALMAZ.
|
32
|
deepscale
| 13,087
| ||
Let $ABC$ be a triangle in which (${BL}$is the angle bisector of ${\angle{ABC}}$ $\left( L\in AC \right)$, ${AH}$ is an altitude of$\vartriangle ABC$ $\left( H\in BC \right)$ and ${M}$is the midpoint of the side ${AB}$. It is known that the midpoints of the segments ${BL}$ and ${MH}$ coincides. Determine the internal angles of triangle $\vartriangle ABC$.
|
Given a triangle \(\triangle ABC\) with the following properties:
- \( BL \) is the angle bisector of \(\angle ABC\), with \( L \) on \( AC \).
- \( AH \) is the altitude from \( A \) to \( BC \), with \( H \) on \( BC \).
- \( M \) is the midpoint of \( AB \).
Furthermore, we are informed that the midpoints of segments \( BL \) and \( MH \) coincide. We are tasked with determining the internal angles of triangle \(\triangle ABC\).
First, let's analyze the geometry of the problem:
1. Since \( M \) is the midpoint of \( AB \) and let's denote the midpoint of \( MH \) as \( P \). It's given that \( P \) is also the midpoint of \( BL \), hence \( P \) is the midpoint of both segments.
2. Let's assume that \( P \) is the midpoint of \( BL \) and \( MH \):
\[
P = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right),
\]
where \( x_1, y_1 \) and \( x_2, y_2 \) are the coordinates of points expressing segments \( BL \) and \( MH \).
3. Since \( AH \) is the altitude, \(\angle AHB = 90^\circ\).
4. Given \( BL \) as an angle bisector, we can apply the Angle Bisector Theorem if needed for further computations.
Since the midpoint \( P \) coincides for both \( BL \) and \( MH \), the relationship indicates that the geometry exhibits symmetry properties typical of an equilateral triangle (all angles equal, all sides equal).
Construct the solution:
- Assume an equilateral triangle configuration for \( \triangle ABC \). Thus, all angles are \( 60^\circ \).
- Also, consider that \( AH \) being an altitude in such a triangle divides \( \triangle ABC \) into two \( 30^\circ - 60^\circ - 90^\circ \) triangles.
- Given this configuration, the intersection of properties (midpoints, angle bisector, and altitude) results from the symmetrical properties of an equilateral triangle.
Therefore, the internal angles of \(\triangle ABC\) are each:
\[
\boxed{60^\circ}
\]
|
60^\circ
|
deepscale
| 6,091
| |
Given the product \( S = \left(1+2^{-\frac{1}{32}}\right)\left(1+2^{-\frac{1}{16}}\right)\left(1+2^{-\frac{1}{8}}\right)\left(1+2^{-\frac{1}{4}}\right)\left(1+2^{-\frac{1}{2}}\right) \), calculate the value of \( S \).
|
\frac{1}{2}\left(1 - 2^{-\frac{1}{32}}\right)^{-1}
|
deepscale
| 25,751
| ||
Given the ellipse $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 (a > b > 0)$ with left and right foci $F\_1$, $F\_2$, $b = 4$, and an eccentricity of $\frac{3}{5}$. A line passing through $F\_1$ intersects the ellipse at points $A$ and $B$. Find the perimeter of $\triangle ABF\_2$.
|
20
|
deepscale
| 19,660
| ||
In the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, find the slope of the line containing a chord that has the point $M(-2,1)$ as its midpoint.
|
\frac{9}{8}
|
deepscale
| 21,799
| ||
Evaluate \[\frac 3{\log_5{3000^5}} + \frac 4{\log_7{3000^5}},\] giving your answer as a fraction in lowest terms.
|
\frac{1}{5}
|
deepscale
| 30,118
| ||
In the diagram, \( S \) lies on \( R T \), \( \angle Q T S = 40^{\circ} \), \( Q S = Q T \), and \( \triangle P R S \) is equilateral. Find the value of \( x \).
|
80
|
deepscale
| 29,720
| ||
Given a cube with a side length of \(4\), if a solid cube of side length \(1\) is removed from each corner, calculate the total number of edges of the resulting structure.
|
36
|
deepscale
| 17,860
| ||
Given that $\sin A+\sin B=1$ and $\cos A+\cos B=3 / 2$, what is the value of $\cos (A-B)$?
|
Squaring both equations and add them together, one obtains $1+9 / 4=2+2(\cos (A) \cos (B)+\sin (A) \sin (B))=2+2 \cos (A-B)$. Thus $\cos A-B=5 / 8$.
|
5/8
|
deepscale
| 4,196
| |
On the game show $\text{\emph{Wheel of Fraction}}$, you see the following spinner. Given that each region is the same area, what is the probability that you will earn exactly $\$1700$ in your first three spins? Express your answer as a common fraction. [asy]
import olympiad; import geometry; import graph; size(150); defaultpen(linewidth(0.8));
draw(unitcircle);
string[] labels = {"Bankrupt","$\$1000$","$\$300$","$\$5000$","$\$400$"};
for(int i = 0; i < 5; ++i){
draw(origin--dir(72*i));
label(labels[i],0.6*dir(36 + 72*i));
}
[/asy]
|
\frac{6}{125}
|
deepscale
| 35,252
| ||
Every day, 12 tons of potatoes are delivered to the city using one type of transport from three collective farms. The price per ton is 4 rubles from the first farm, 3 rubles from the second farm, and 1 ruble from the third farm. To ensure timely delivery, the loading process for the required 12 tons should take no more than 40 minutes. It is known that the level of mechanization in the first farm allows loading 1 ton in 1 minute, in the second farm - 4 minutes, and in the third farm - 3 minutes. The production capacities of these farms are such that the first farm can supply no more than 10 tons per day, the second no more than 8 tons, and the third no more than 6 tons. How should the order for the supply of 12 tons be distributed among the farms so that the total cost of the potatoes delivered to the city is minimized?
|
24.6667
|
deepscale
| 25,162
| ||
In the Cartesian coordinate plane \( xOy \), the coordinates of point \( F \) are \((1,0)\), and points \( A \) and \( B \) lie on the parabola \( y^2 = 4x \). It is given that \( \overrightarrow{OA} \cdot \overrightarrow{OB} = -4 \) and \( |\overrightarrow{FA}| - |\overrightarrow{FB}| = 4\sqrt{3} \). Find the value of \( \overrightarrow{FA} \cdot \overrightarrow{FB} \).
|
-11
|
deepscale
| 11,602
| ||
Given a convex quadrilateral \( ABCD \) with an interior point \( P \) such that \( P \) divides \( ABCD \) into four triangles \( ABP, BCP, CDP, \) and \( DAP \). Let \( G_1, G_2, G_3, \) and \( G_4 \) denote the centroids of these triangles, respectively. Determine the ratio of the area of quadrilateral \( G_1G_2G_3G_4 \) to the area of \( ABCD \).
|
\frac{1}{9}
|
deepscale
| 10,633
| ||
Let \( a \) and \( b \) be positive integers such that \( 79 \mid (a + 77b) \) and \( 77 \mid (a + 79b) \). Find the smallest possible value of \( a + b \).
|
193
|
deepscale
| 12,460
| ||
Find the number of ways in which the letters in "HMMTHMMT" can be rearranged so that each letter is adjacent to another copy of the same letter. For example, "MMMMTTHH" satisfies this property, but "HHTMMMTM" does not.
|
The final string must consist of "blocks" of at least two consecutive repeated letters. For example, MMMMTTHH has a block of 4 M's, a block of 2 T's, and a block of 2 H's. Both H's must be in a block, both T's must be in a block, and all M's are either in the same block or in two blocks of 2. Therefore all blocks have an even length, meaning that all we need to do is to count the number of rearrangements of the indivisible blocks "HH", "MM", "MM", and "TT". The number of these is $4!/ 2=12$
|
12
|
deepscale
| 5,102
| |
Given the function $f(x)= \sqrt {3}\sin x+\cos x$ $(x\in R)$
(1) Find the value of $f( \frac {5π}{6})$;
(2) Find the maximum and minimum values of $f(x)$ in the interval $\[- \frac {π}{2}, \frac {π}{2}\]$ and their respective $x$ values.
|
-\sqrt {3}
|
deepscale
| 29,481
| ||
A school selects 4 teachers from 8 to teach in 4 remote areas at the same time (one person per area), where teacher A and teacher B cannot go together, and teacher A and teacher C can only go together or not go at all. The total number of different dispatch plans is ___.
|
600
|
deepscale
| 27,502
| ||
Find the angle of inclination of the tangent line to the curve $y=\frac{1}{3}x^3-5$ at the point $(1,-\frac{3}{2})$.
|
\frac{\pi}{4}
|
deepscale
| 7,496
| ||
A circle has a radius of 15 units. Suppose a chord in this circle bisects a radius perpendicular to the chord and the distance from the center of the circle to the chord is 9 units. What is the area of the smaller segment cut off by the chord?
A) $100 \pi$
B) $117.29$
C) $120 \pi$
D) $180$
|
117.29
|
deepscale
| 9,186
| ||
Given that $\sin x + \cos x = \frac{1}{2}$, where $x \in [0, \pi]$, find the value of $\sin x - \cos x$.
|
\frac{\sqrt{7}}{2}
|
deepscale
| 22,270
| ||
A council consists of nine women and three men. During their meetings, they sit around a round table with the women in indistinguishable rocking chairs and the men on indistinguishable stools. How many distinct ways can the nine chairs and three stools be arranged around the round table for a meeting?
|
55
|
deepscale
| 31,306
| ||
John is tasked with creating a special mixture in his Science class, consisting of 0.05 liters of Compound X and 0.01 liters of Compound Y. He determined that each liter of this mixture has a specific ratio of Compound Y. Now, John needs to prepare 0.90 liters of this mixture. How much Compound Y will he require?
|
0.15
|
deepscale
| 21,363
| ||
Given that $\binom{17}{10}=19448$, $\binom{17}{11}=12376$ and $\binom{19}{12}=50388$, find $\binom{18}{12}$.
|
18564
|
deepscale
| 35,004
| ||
When Ringo places his marbles into bags with 6 marbles per bag, he has 4 marbles left over. When Paul does the same with his marbles, he has 3 marbles left over. Ringo and Paul pool their marbles and place them into as many bags as possible, with 6 marbles per bag. How many marbles will be leftover?
|
1. **Define Variables:**
Let $r$ be the number of marbles Ringo has and $p$ be the number of marbles Paul has.
2. **Set Up Congruences:**
From the problem, we know:
\[ r \equiv 4 \pmod{6} \]
\[ p \equiv 3 \pmod{6} \]
These congruences mean that when Ringo divides his marbles into groups of 6, he has 4 marbles left, and Paul has 3 marbles left when he does the same.
3. **Add the Congruences:**
Adding these two congruences gives:
\[ r + p \equiv 4 + 3 \pmod{6} \]
\[ r + p \equiv 7 \pmod{6} \]
4. **Simplify the Sum:**
Since $7$ is more than $6$, we reduce it modulo $6$:
\[ 7 \equiv 1 \pmod{6} \]
Therefore:
\[ r + p \equiv 1 \pmod{6} \]
5. **Interpret the Result:**
This result means that when Ringo and Paul pool their marbles and try to divide them into bags of 6, they will have 1 marble left over.
Thus, the number of marbles left over when Ringo and Paul pool their marbles and place them into bags of 6 is $\boxed{\textbf{(A)}\ 1}$.
|
1
|
deepscale
| 291
| |
Suppose that $a_1, a_2, a_3, \ldots$ is an infinite geometric sequence such that for all $i \ge 1$ , $a_i$ is a positive integer. Suppose furthermore that $a_{20} + a_{21} = 20^{21}$ . If the minimum possible value of $a_1$ can be expressed as $2^a 5^b$ for positive integers $a$ and $b$ , find $a + b$ .
*Proposed by Andrew Wu*
|
24
|
deepscale
| 22,331
| ||
Find the value of $x$ that satisfies $\frac{\sqrt{3x+5}}{\sqrt{6x+5}}=\frac{\sqrt{5}}{3}$. Express your answer as a common fraction.
|
\frac{20}{3}
|
deepscale
| 33,023
| ||
Simplify $\frac{8xy^2}{6x^2y}$ with $x=2$ and $y=3.$
|
2
|
deepscale
| 38,828
| ||
A chord PQ of the left branch of the hyperbola $x^2 - y^2 = 4$ passes through its left focus $F_1$, and the length of $|PQ|$ is 7. If $F_2$ is the right focus of the hyperbola, then the perimeter of $\triangle PF_2Q$ is.
|
22
|
deepscale
| 18,888
| ||
Find the integer $n,$ $0 \le n \le 180,$ such that $\cos n^\circ = \cos 259^\circ.$
|
101
|
deepscale
| 39,913
| ||
Vehicle A and Vehicle B start from points A and B, respectively, at the same time and travel towards each other. They meet after 3 hours, at which point Vehicle A turns back towards point A, and Vehicle B continues forward. After Vehicle A reaches point A, it turns around and heads towards point B. Half an hour later, it meets Vehicle B again. How many hours does it take for Vehicle B to travel from A to B?
|
7.2
|
deepscale
| 13,100
| ||
Given that a point on the terminal side of angle \(\alpha\) has coordinates \((\sin \frac{2\pi }{3},\cos \frac{2\pi }{3})\), find the smallest positive angle for \(\alpha\).
|
\frac{11\pi }{6}
|
deepscale
| 9,144
| ||
A five-character license plate is composed of English letters and digits. The first four positions must contain exactly two English letters (letters $I$ and $O$ cannot be used). The last position must be a digit. Xiao Li likes the number 18, so he hopes that his license plate contains adjacent digits 1 and 8, with 1 preceding 8. How many different choices does Xiao Li have for his license plate? (There are 26 English letters in total.)
|
23040
|
deepscale
| 13,881
| ||
Given a prime $p$ and an integer $a$, we say that $a$ is a $\textit{primitive root} \pmod p$ if the set $\{a,a^2,a^3,\ldots,a^{p-1}\}$ contains exactly one element congruent to each of $1,2,3,\ldots,p-1\pmod p$.
For example, $2$ is a primitive root $\pmod 5$ because $\{2,2^2,2^3,2^4\}\equiv \{2,4,3,1\}\pmod 5$, and this list contains every residue from $1$ to $4$ exactly once.
However, $4$ is not a primitive root $\pmod 5$ because $\{4,4^2,4^3,4^4\}\equiv\{4,1,4,1\}\pmod 5$, and this list does not contain every residue from $1$ to $4$ exactly once.
What is the sum of all integers in the set $\{1,2,3,4,5,6\}$ that are primitive roots $\pmod 7$?
|
8
|
deepscale
| 38,251
| ||
Lucas wants to buy a book that costs $28.50. He has two $10 bills, five $1 bills, and six quarters in his wallet. What is the minimum number of nickels that must be in his wallet so he can afford the book?
|
40
|
deepscale
| 9,379
| ||
Given the function $f(x)=\tan(\omega x + \phi)$ $(\omega \neq 0, \left|\phi\right| < \frac{\pi}{2})$, points $\left(\frac{2\pi}{3}, 0\right)$ and $\left(\frac{7\pi}{6}, 0\right)$ are two adjacent centers of symmetry for $f(x)$, and the function is monotonically decreasing in the interval $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$, find the value of $\phi$.
|
-\frac{\pi}{6}
|
deepscale
| 30,743
| ||
The radius of a sphere is \( r = 10 \text{ cm} \). Determine the volume of the spherical segment whose surface area is in the ratio 10:7 compared to the area of its base.
|
288 \pi
|
deepscale
| 11,627
| ||
Given an ellipse $C$: $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ with eccentricity $\frac{2\sqrt{2}}{3}$, the line $y=\frac{1}{2}$ intersects $C$ at points $A$ and $B$, where $|AB|=3\sqrt{3}$.
$(1)$ Find the equation of $C$;
$(2)$ Let the left and right foci of $C$ be $F_{1}$ and $F_{2}$ respectively. The line passing through $F_{1}$ with a slope of $1$ intersects $C$ at points $G$ and $H$. Find the perimeter of $\triangle F_{2}GH$.
|
12
|
deepscale
| 17,877
| ||
Find the arithmetic mean of the reciprocals of the first three prime numbers.
|
\frac{31}{90}
|
deepscale
| 37,696
| ||
A rectangular prism has edges $a=b=8$ units and $c=27$ units. Divide the prism into four parts from which a cube can be assembled.
|
12
|
deepscale
| 21,724
| ||
Given \( a_{n} = \mathrm{C}_{200}^{n} \cdot (\sqrt[3]{6})^{200-n} \cdot \left( \frac{1}{\sqrt{2}} \right)^{n} \) for \( n = 1, 2, \ldots, 95 \), find the number of integer terms in the sequence \(\{a_{n}\}\).
|
15
|
deepscale
| 25,288
| ||
In $\triangle ABC$, if $AB=2$, $AC=\sqrt{2}BC$, find the maximum value of $S_{\triangle ABC}$.
|
2\sqrt{2}
|
deepscale
| 24,453
| ||
Find all prime numbers $ p,q,r$, such that $ \frac{p}{q}\minus{}\frac{4}{r\plus{}1}\equal{}1$
|
We are tasked with finding all prime numbers \( p, q, r \) that satisfy the equation:
\[
\frac{p}{q} - \frac{4}{r+1} = 1.
\]
First, we rearrange the equation to find a common denominator:
\[
\frac{p}{q} - \frac{4}{r+1} = 1 \implies \frac{p(r+1) - 4q}{q(r+1)} = 1.
\]
This simplifies to:
\[
p(r+1) - 4q = q(r+1).
\]
Rearranging gives:
\[
p(r+1) - q(r+1) = 4q \implies (p-q)(r+1) = 4q.
\]
Since \( p, q, \) and \( r \) are prime numbers, consider the divisors of \( 4q \). Given the factors are affected by the nature of primes, let's analyze some simpler cases where \( q \) and \( r+1 \) are constrained to familiar factors of small primes:
1. **Case \( q = 2 \):**
\[
(p-2)(r+1) = 8.
\]
- \( r+1 = 2 \): Then \( r = 1 \), not prime.
- \( r+1 = 4 \): Then \( r = 3 \), and hence \( (p-2) = 2 \) implies \( p = 4 \), not prime.
- \( r+1 = 8 \): Then \( r = 7 \), and hence \( (p-2) = 1 \) implies \( p = 3 \).
If \( (p, q, r) = (3, 2, 7) \), this is verified:
\[
\frac{3}{2} - \frac{4}{8} = \frac{3}{2} - \frac{1}{2} = 1.
\]
2. **Case \( q = 3 \):**
\[
(p-3)(r+1) = 12.
\]
- \( r+1 = 3 \): Then \( r = 2 \), and hence \( (p-3) = 4 \) implies \( p = 7 \).
- \( r+1 = 4 \): Then \( r = 3 \), and hence \( (p-3) = 3 \) implies \( p = 6 \), not prime.
- \( r+1 = 6 \): Then \( r = 5 \), and hence \( (p-3) = 2 \) implies \( p = 5 \).
So we get two solutions \( (p, q, r) = (7, 3, 2) \) and \( (5, 3, 5) \).
Verifications:
\[
\frac{7}{3} - \frac{4}{3} = \frac{7}{3} - \frac{4}{3} = 1.
\]
\[
\frac{5}{3} - \frac{4}{6} = \frac{5}{3} - \frac{2}{3} = 1.
\]
Thus, all possible valid solutions for primes \( (p, q, r) \) are:
\[
\boxed{(7, 3, 2), (5, 3, 5), (3, 2, 7)}.
\]
|
(7, 3, 2), (5, 3, 5), (3, 2, 7)
|
deepscale
| 6,249
| |
Solve
\[\arcsin (\sin x) = \frac{x}{2}.\]Enter all the solutions, separated by commas.
|
-\frac{2 \pi}{3}, 0, \frac{2 \pi}{3}
|
deepscale
| 39,707
| ||
Mr. J left his entire estate to his wife, his daughter, his son, and the cook. His daughter and son got half the estate, sharing in the ratio of $4$ to $3$. His wife got twice as much as the son. If the cook received a bequest of $\textdollar{500}$, then the entire estate was:
|
Let's denote the total estate by $E$. According to the problem, the daughter and son together received half of the estate, and they share this half in the ratio of $4:3$. Let's denote the shares of the daughter and son as $4x$ and $3x$ respectively. Therefore, we have:
\[ 4x + 3x = \frac{1}{2}E \]
\[ 7x = \frac{1}{2}E \]
\[ E = 14x \]
The wife received twice as much as the son. Therefore, the wife's share is:
\[ 2 \times 3x = 6x \]
The cook received $\textdollar{500}$. We can set this amount as a reference to find the value of $x$. Since the cook's share is the smallest and not part of the ratio involving the family members, we can assume it corresponds to the smallest unit in our ratio calculation. Let's denote the cook's share as $y$. Then:
\[ y = \textdollar{500} \]
The total estate is the sum of all individual shares:
\[ E = 6x + 4x + 3x + y \]
\[ E = 13x + \textdollar{500} \]
From the earlier equation $E = 14x$, we can equate and solve for $x$:
\[ 14x = 13x + \textdollar{500} \]
\[ x = \textdollar{500} \]
Substituting $x = \textdollar{500}$ back into the equation for the total estate:
\[ E = 14x = 14 \times \textdollar{500} = \textdollar{7000} \]
Thus, the entire estate was $\boxed{\textbf{(D)}\ \textdollar{7000}}$.
|
7000
|
deepscale
| 2,402
| |
Three Triangles: Within triangle \(ABC\), a random point \(M\) is chosen. What is the probability that the area of one of the triangles \(ABM, BCM,\) and \(CAM\) will be greater than the sum of the areas of the other two?
|
0.75
|
deepscale
| 9,069
| ||
In July 1861, $366$ inches of rain fell in Cherrapunji, India. What was the average rainfall in inches per hour during that month?
|
1. **Identify the total rainfall and the time period**: The problem states that 366 inches of rain fell in one month (July).
2. **Convert the time period from months to hours**:
- July has 31 days.
- Each day has 24 hours.
- Therefore, July has \(31 \times 24\) hours.
3. **Calculate the average rainfall per hour**:
- We need to find the average rainfall per hour, which is the total rainfall divided by the total number of hours.
- The calculation is \(\frac{366 \text{ inches}}{31 \times 24 \text{ hours}}\).
4. **Simplify the expression**:
- The expression simplifies to \(\frac{366}{744}\) inches per hour, where 744 is the product of 31 and 24.
5. **Match the expression with the given options**:
- The correct expression, \(\frac{366}{31 \times 24}\), matches option (A).
Thus, the average rainfall in inches per hour during that month is \(\boxed{\text{A}}\).
|
\frac{366}{31 \times 24}
|
deepscale
| 2,612
| |
If $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 4,$ then find
\[\begin{vmatrix} a & 7a + 3b \\ c & 7c +3d \end{vmatrix}.\]
|
12
|
deepscale
| 40,100
| ||
A new model car travels 4.4 kilometers more per liter of gasoline than an old model car. Additionally, the fuel consumption per 100 km for the new model is 2 liters less than that of the old model. How many liters of gasoline does the new model car consume per 100 km? Round the answer to the nearest hundredth if necessary.
|
5.82
|
deepscale
| 11,505
| ||
If the roots of the quadratic equation $\frac32x^2+11x+c=0$ are $x=\frac{-11\pm\sqrt{7}}{3}$, then what is the value of $c$?
|
19
|
deepscale
| 34,696
| ||
Positive integers $a$, $b$, $c$, and $d$ satisfy $a > b > c > d$, $a + b + c + d = 2020$, and $a^2 - b^2 + c^2 - d^2 = 2024$. Find the number of possible values of $a$.
|
503
|
deepscale
| 30,333
| ||
A \(4 \times 4\) Sudoku grid is filled with digits so that each column, each row, and each of the four \(2 \times 2\) sub-grids that compose the grid contains all of the digits from 1 to 4.
Find the total number of possible \(4 \times 4\) Sudoku grids.
|
288
|
deepscale
| 11,791
| ||
In a certain sequence, the first term is \(a_1 = 1010\) and the second term is \(a_2 = 1011\). The values of the remaining terms are chosen so that \(a_n + a_{n+1} + a_{n+2} = 2n\) for all \(n \geq 1\). Determine \(a_{1000}\).
|
1676
|
deepscale
| 16,371
| ||
Board with dimesions $2018 \times 2018$ is divided in unit cells $1 \times 1$ . In some cells of board are placed black chips and in some white chips (in every cell maximum is one chip). Firstly we remove all black chips from columns which contain white chips, and then we remove all white chips from rows which contain black chips. If $W$ is number of remaining white chips, and $B$ number of remaining black chips on board and $A=min\{W,B\}$ , determine maximum of $A$
|
1018081
|
deepscale
| 26,048
| ||
Two \(10 \times 24\) rectangles are inscribed in a circle as shown. Find the shaded area.
|
169\pi - 380
|
deepscale
| 29,014
| ||
In the triangular prism $P-ABC$, the three edges $PA$, $PB$, and $PC$ are mutually perpendicular, with $PA=1$, $PB=2$, and $PC=2$. If $Q$ is any point on the circumsphere of the triangular prism $P-ABC$, what is the maximum distance from $Q$ to the plane $ABC$?
|
\frac{3}{2} + \frac{\sqrt{6}}{6}
|
deepscale
| 10,659
| ||
A solid right prism $PQRSTU$ has a height of 20, as shown. Its bases are equilateral triangles with side length 10. Points $V$, $W$, and $X$ are the midpoints of edges $PR$, $RQ$, and $QT$, respectively. Determine the perimeter of triangle $VWX$.
|
5 + 10\sqrt{5}
|
deepscale
| 31,248
| ||
Given that odd prime numbers \( x, y, z \) satisfy
\[ x \mid (y^5 + 1), \quad y \mid (z^5 + 1), \quad z \mid (x^5 + 1). \]
Find the minimum value of the product \( xyz \).
|
2013
|
deepscale
| 14,452
| ||
The Badgers play the Cougars in a series of seven basketball games. Each team has an equal chance of winning each game. What is the probability that the Badgers will win at least four games? Express your answer as a common fraction.
|
\frac{1}{2}
|
deepscale
| 35,466
| ||
The numbers \(a, b, c, d\) belong to the interval \([-4.5, 4.5]\). Find the maximum value of the expression \(a + 2b + c + 2d - ab - bc - cd - da\).
|
90
|
deepscale
| 16,820
| ||
A standard deck of cards has 52 cards divided into 4 suits, each of which has 13 cards. Two of the suits ($\heartsuit$ and $\diamondsuit$, called 'hearts' and 'diamonds') are red, the other two ($\spadesuit$ and $\clubsuit$, called 'spades' and 'clubs') are black. The cards in the deck are placed in random order (usually by a process called 'shuffling'). In how many ways can we pick two different cards? (Order matters, thus ace of spades followed by jack of diamonds is different than jack of diamonds followed by ace of spades.)
|
2652
|
deepscale
| 38,910
| ||
In 2019, a team, including professor Andrew Sutherland of MIT, found three cubes of integers which sum to 42: $42=\left(-8053873881207597 \_\right)^{3}+(80435758145817515)^{3}+(12602123297335631)^{3}$. One of the digits, labeled by an underscore, is missing. What is that digit?
|
Let the missing digit be $x$. Then, taking the equation modulo 10, we see that $2 \equiv-x^{3}+5^{3}+1^{3}$. This simplifies to $x^{3} \equiv 4(\bmod 10)$, which gives a unique solution of $x=4$.
|
4
|
deepscale
| 4,427
| |
Given the line $l: \sqrt{3}x-y-4=0$, calculate the slope angle of line $l$.
|
\frac{\pi}{3}
|
deepscale
| 13,182
| ||
Any type of nature use affects at least one of the natural resources, including lithogenic base, soil, water, air, plant world, and animal world. Types that affect the same set of resources belong to the same type. Research has shown that types of nature use developed in the last 700 years can be divided into 23 types. How many types remain unused?
|
40
|
deepscale
| 20,840
| ||
The value $b^n$ has both $b$ and $n$ as positive integers less than or equal to 15. What is the greatest number of positive factors $b^n$ can have?
|
496
|
deepscale
| 38,049
| ||
Calculate the value of
\[\left(\left(\left((3+2)^{-1}+1\right)^{-1}+2\right)^{-1}+1\right)^{-1}+1.\]
A) $\frac{40}{23}$
B) $\frac{17}{23}$
C) $\frac{23}{17}$
D) $\frac{23}{40}$
|
\frac{40}{23}
|
deepscale
| 10,035
| ||
Class 2-5 planted 142 trees. Class 2-3 planted 18 fewer trees than Class 2-5. How many trees did Class 2-3 plant? How many trees did the two classes plant in total?
|
266
|
deepscale
| 8,157
| ||
Sandhya must save 35 files onto disks, each with 1.44 MB space. 5 of the files take up 0.6 MB, 18 of the files take up 0.5 MB, and the rest take up 0.3 MB. Files cannot be split across disks. Calculate the smallest number of disks needed to store all 35 files.
|
12
|
deepscale
| 9,968
| ||
A square is divided into three congruent rectangles. The middle rectangle is removed and replaced on the side of the original square to form an octagon as shown.
What is the ratio of the length of the perimeter of the square to the length of the perimeter of the octagon?
A $3: 5$
B $2: 3$
C $5: 8$
D $1: 2$
E $1: 1$
|
3:5
|
deepscale
| 26,813
| ||
A frustum of a right circular cone is formed by cutting a smaller cone from a larger cone. Suppose the frustum has a lower base radius of 8 inches, an upper base radius of 2 inches, and a height of 5 inches. Calculate the total surface area of the frustum.
|
10\pi \sqrt{61} + 68\pi
|
deepscale
| 10,961
| ||
In the parallelepiped $ABCD-A_{1}B_{1}C_{1}D_{1}$, three edges with vertex $A$ as an endpoint are all of length $2$, and their angles with each other are all $60^{\circ}$. Determine the cosine value of the angle between the line $BD_{1}$ and the line $AC$.
|
\frac{\sqrt{6}}{6}
|
deepscale
| 26,597
| ||
What is the largest $2$-digit prime factor of the integer $n = {300\choose 150}$?
|
97
|
deepscale
| 12,348
| ||
Two cubical dice each have removable numbers $1$ through $6$. The twelve numbers on the two dice are removed, put into a bag, then drawn one at a time and randomly reattached to the faces of the cubes, one number to each face. The dice are then rolled and the numbers on the two top faces are added. What is the probability that the sum is $7$?
|
To solve this problem, we need to consider the probability of rolling a sum of 7 with two dice, where the numbers on the dice have been randomly reassigned.
#### Step 1: Understand the possible sums
The possible combinations of two numbers summing to 7 are:
- $(1,6)$
- $(2,5)$
- $(3,4)$
- $(4,3)$
- $(5,2)$
- $(6,1)$
Each of these pairs can occur in two ways (one number on each die), so there are a total of $6 \times 2 = 12$ favorable outcomes.
#### Step 2: Calculate the total number of outcomes
Each die has 6 faces, and any face can show any of the numbers from 1 to 6. Since the numbers are randomly reassigned, each die is independent of the other. Therefore, the total number of outcomes when rolling two dice is $6 \times 6 = 36$.
#### Step 3: Calculate the probability of each case
- **Case A (Two Same Numbers on One Die):** This case occurs when both dice show the same number. However, for the sum to be 7, this is impossible because 7 is an odd number and cannot be obtained by doubling a single integer from 1 to 6.
- **Case B (No Two Same Numbers on One Die):** This is the typical scenario where each die shows a different number. We have already identified 12 favorable outcomes for this case.
#### Step 4: Calculate the probability for Case B
The probability of obtaining a sum of 7 in Case B is the number of favorable outcomes divided by the total number of outcomes:
$$
P(\text{Sum of 7 in Case B}) = \frac{12}{36} = \frac{1}{3}
$$
#### Step 5: Consider the effect of random reassignment
Since the numbers are randomly reassigned to the dice, each pair (like 1 and 6, or 2 and 5) is equally likely to appear on any two given faces of the two dice. The reassignment does not change the basic probability of rolling a sum of 7 compared to standard dice, as each number 1 through 6 still appears exactly once on each die.
#### Step 6: Conclusion
The probability that the sum is 7 remains $\frac{1}{3}$, which is not listed in the given options. However, the closest answer and the correct interpretation based on the typical behavior of dice (and assuming no error in the problem statement or options) would be:
$$
\boxed{\mathrm{D}} \quad \text{(as the closest choice)}
$$
This solution assumes that the reassignment of numbers does not fundamentally alter the distribution of sums compared to standard dice, which is a key insight into the problem.
|
\frac{1}{6}
|
deepscale
| 1,241
| |
Let $\{b_k\}$ be a sequence of integers such that $b_1=2$ and $b_{m+n}=b_m+b_n+mn^2,$ for all positive integers $m$ and $n.$ Find $b_{12}$.
|
98
|
deepscale
| 12,578
| ||
In the diagram, two circles touch at \( P \). Also, \( QP \) and \( SU \) are perpendicular diameters of the larger circle that intersect at \( O \). Point \( V \) is on \( QP \) and \( VP \) is a diameter of the smaller circle. The smaller circle intersects \( SU \) at \( T \), as shown. If \( QV = 9 \) and \( ST = 5 \), what is the sum of the lengths of the diameters of the two circles?
|
91
|
deepscale
| 29,807
| ||
For positive integers $m, n$, let \operatorname{gcd}(m, n) denote the largest positive integer that is a factor of both $m$ and $n$. Compute $$\sum_{n=1}^{91} \operatorname{gcd}(n, 91)$$
|
Since $91=7 \times 13$, we see that the possible values of \operatorname{gcd}(n, 91) are 1, 7, 13, 91. For $1 \leq n \leq 91$, there is only one value of $n$ such that \operatorname{gcd}(n, 91)=91. Then, we see that there are 12 values of $n$ for which \operatorname{gcd}(n, 91)=7 (namely, multiples of 7 other than 91 ), 6 values of $n$ for which \operatorname{gcd}(n, 91)=13 (the multiples of 13 other than 91 ), and $91-1-6-12=72$ values of $n$ for which \operatorname{gcd}(n, 91)=1. Hence, our answer is $1 \times 91+12 \times 7+6 \times 13+72 \times 1=325$.
|
325
|
deepscale
| 4,519
| |
Joe has written 5 questions of different difficulties for a test with problems numbered 1 though 5. He wants to make sure that problem $i$ is harder than problem $j$ whenever $i-j \geq 3$. In how many ways can he order the problems for his test?
|
We will write $p_{i}>p_{j}$ for integers $i, j$ when the $i$ th problem is harder than the $j$ th problem. For the problem conditions to be true, we must have $p_{4}>p_{1}, p_{5}>p_{2}$, and $p_{5}>p_{1}$. Then, out of $5!=120$ total orderings, we see that in half of them satisfy $p_{4}>p_{1}$ and half satisfy $p_{5}>p_{2}$, and that these two events occur independently. Hence, there are $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)(120)=30$ orderings which satisfy the first two conditions. Then, we see that there are $\frac{4!}{2!2!}=6$ orderings of $p_{1}, p_{2}, p_{4}, p_{5}$ which work; of these, only $p_{4}>p_{1}>p_{5}>p_{2}$ violates the condition $p_{5}>p_{1}$. Consequently, we have $\frac{5}{6}(30)=25$ good problem orderings.
|
25
|
deepscale
| 4,511
| |
A positive integer $n$ not exceeding $120$ is chosen such that if $n\le 60$, then the probability of choosing $n$ is $p$, and if $n > 60$, then the probability of choosing $n$ is $2p$. The probability that a perfect square is chosen is?
A) $\frac{1}{180}$
B) $\frac{7}{180}$
C) $\frac{13}{180}$
D) $\frac{1}{120}$
E) $\frac{1}{60}$
|
\frac{13}{180}
|
deepscale
| 7,664
| ||
If \( p \) is the smallest positive prime number such that for some integer \( n \), \( p \) divides \( n^{2} + 5n + 23 \), then \( p = \)
|
17
|
deepscale
| 11,409
| ||
On November 15, a dodgeball tournament took place. In each game, two teams competed. A win was awarded 15 points, a tie 11 points, and a loss 0 points. Each team played against every other team once. At the end of the tournament, the total number of points accumulated was 1151. How many teams participated?
|
12
|
deepscale
| 9,449
| ||
During a journey, the distance read on the odometer was 450 miles. On the return trip, using snow tires for the same distance, the reading was 440 miles. If the original wheel radius was 15 inches, find the increase in the wheel radius, correct to the nearest hundredth of an inch.
|
0.34
|
deepscale
| 18,652
| ||
Given an equilateral triangle $DEF$ with $DE = DF = EF = 8$ units and a circle with radius $4$ units tangent to line $DE$ at $E$ and line $DF$ at $F$, calculate the area of the circle passing through vertices $D$, $E$, and $F$.
|
\frac{64\pi}{3}
|
deepscale
| 8,647
| ||
Let set $\mathcal{A}$ be a 70-element subset of $\{1,2,3,\ldots,120\}$, and let $S$ be the sum of the elements of $\mathcal{A}$. Find the number of possible values of $S$.
|
3501
|
deepscale
| 20,453
| ||
$(100^2-99^2) + (98^2-97^2) + \ldots + (2^2-1^2) = \ $
|
5050
|
deepscale
| 20,622
| ||
Sherlock Holmes and Dr. Watson recover a suitcase with a three-digit combination lock from a mathematician turned criminal. Embedded in the suitcase above the lock is the cryptic message "AT SEA BASE. SEAS EBB SEA: BASS. "
Dr. Watson comments, "This probably isn't about ocean fish. Perhaps it is an encrypted message. The colon suggests the addition problem $SEAS + EBB + SEA = BASS$, where each letter represents a distinct digit, and the word 'BASE' implies that the problem is in a different base."
Holmes calmly turns the combination lock and opens the suitcase. While Dr. Watson gapes in surprise, Holmes replies, "You were indeed right, and the answer was just the value of the word $SEA$, interpreted as decimal digits." What was the lock combination?
|
871
|
deepscale
| 38,309
| ||
How many positive integers have cube roots that are less than 20?
|
7999
|
deepscale
| 22,915
| ||
An urn initially contains two red balls and one blue ball. A box of extra red and blue balls lies nearby. George performs the following operation five times: he draws a ball from the urn at random and then takes a ball of the same color from the box and adds those two matching balls to the urn. After the five iterations, the urn contains eight balls. What is the probability that the urn contains three red balls and five blue balls?
A) $\frac{1}{10}$
B) $\frac{1}{21}$
C) $\frac{4}{21}$
D) $\frac{1}{5}$
E) $\frac{1}{6}$
|
\frac{4}{21}
|
deepscale
| 20,899
| ||
Define the sequence \( b_1, b_2, b_3, \ldots \) by \( b_n = \sum\limits_{k=1}^n \cos{k} \), where \( k \) represents radian measure. Find the index of the 50th term for which \( b_n < 0 \).
|
314
|
deepscale
| 27,681
| ||
Convert $6532_8$ to base 5.
|
102313_5
|
deepscale
| 12,636
| ||
In a small reserve, a biologist counted a total of 300 heads comprising of two-legged birds, four-legged mammals, and six-legged insects. The total number of legs counted was 980. Calculate the number of two-legged birds.
|
110
|
deepscale
| 21,490
| ||
Calculate the area of the crescent moon enclosed by the portion of the circle of radius 4 centered at (0,0) that lies in the first quadrant, the portion of the circle with radius 2 centered at (0,1) that lies in the first quadrant, and the line segment from (0,0) to (4,0).
|
2\pi
|
deepscale
| 29,564
| ||
Given that in △ABC, the sides opposite to the internal angles A, B, and C are a, b, and c respectively, and $b^{2}=c^{2}+a^{2}- \sqrt {2}ac$.
(I) Find the value of angle B;
(II) If $a= \sqrt {2}$ and $cosA= \frac {4}{5}$, find the area of △ABC.
|
\frac {7}{6}
|
deepscale
| 23,169
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.