problem
stringlengths
10
2.37k
original_solution
stringclasses
890 values
answer
stringlengths
0
253
source
stringclasses
1 value
index
int64
6
40.3k
domain
stringclasses
1 value
Let \( M = \{1, 2, \cdots, 17\} \). If there exist four distinct numbers \( a, b, c, d \in M \) such that \( a + b \equiv c + d \pmod{17} \), then \( \{a, b\} \) and \( \{c, d\} \) are called a balanced pair of the set \( M \). Find the number of balanced pairs in the set \( M \).
476
deepscale
15,484
Let $f(x)$ be an odd function. Is $f(f(x))$ even, odd, or neither? Enter "odd", "even", or "neither".
\text{odd}
deepscale
37,534
Given that $689\Box\Box\Box20312 \approx 69$ billion (rounded), find the number of ways to fill in the three-digit number.
500
deepscale
30,907
In $\triangle ABC$, the length of the side opposite to angle $A$ is $2$, and the vectors $\overrightarrow{m} = (2, 2\cos^2\frac{B+C}{2} - 1)$ and $\overrightarrow{n} = (\sin\frac{A}{2}, -1)$. 1. Find the value of angle $A$ when the dot product $\overrightarrow{m} \cdot \overrightarrow{n}$ is at its maximum. 2. Under the conditions of part (1), find the maximum area of $\triangle ABC$.
\sqrt{3}
deepscale
8,577
Convert $5214_8$ to a base 10 integer.
2700
deepscale
17,610
The function $f$, defined on the set of ordered pairs of positive integers, satisfies the following properties: \begin{align*} f(x,x) &=x, \\ f(x,y) &=f(y,x), \quad \text{and} \\ (x + y) f(x,y) &= yf(x,x + y). \end{align*}Calculate $f(14,52)$.
364
deepscale
37,504
Find the maximum value of the function $$ f(x)=\sin (x+\sin x)+\sin (x-\sin x)+\left(\frac{\pi}{2}-2\right) \sin (\sin x) $$
\frac{\pi - 2}{\sqrt{2}}
deepscale
13,219
Find the sum of $111_4+323_4+132_4$. Express your answer in base $4$.
1232_4
deepscale
37,982
Find all functions $ f:\mathbb{R}\rightarrow\mathbb{R} $ such that for all $x,y\in{{\mathbb{R}}}$ holds $f(x^2)+f(2y^2)=(f(x+y)+f(y))(f(x-y)+f(y))$
To solve the functional equation \[ f(x^2) + f(2y^2) = (f(x+y) + f(y))(f(x-y) + f(y)) \] for all functions \( f: \mathbb{R} \to \mathbb{R} \), we will analyze the equation under specific substitutions and deduce the form of \( f(x) \). ### Step 1: Substitution and Exploration 1. **Substituting \( x = 0 \):** \[ f(0) + f(2y^2) = (f(y) + f(y))(f(-y) + f(y)) \] \[ f(0) + f(2y^2) = 2f(y)(f(-y) + f(y)) \] The simplification suggests that \( f(0) = 0 \) could be a consistent result, given similar symmetrical properties in many function problem solutions. 2. **Substituting \( y = 0 \):** \[ f(x^2) + f(0) = f(x)^2 + f(x)f(-x) + f(0)f(0) \] \[ f(x^2) = f(x)^2 + f(x)f(-x) \] This implies a relation between \( f(x^2) \) and the values of \( f \) at \( x \) and \(-x\). 3. **Substituting \( y = x \):** \[ f(x^2) + f(2x^2) = (2f(x))^2 \] \[ f(x^2) + f(2x^2) = 4f(x)^2 \] ### Step 2: Test Candidate Solutions Based on these simplifications, we consider specific forms for \( f(x) \). 1. **First Candidate: \( f(x) = 0 \)** - Substituting into the original equation: \[ 0 + 0 = (0 + 0)(0 + 0) \] - This satisfies the equation. 2. **Second Candidate: \( f(x) = \frac{1}{2} \) for all \( x \)** - Substituting into the original equation: \[ \frac{1}{2} + \frac{1}{2} = \left(\frac{1}{2} + \frac{1}{2}\right)\left(\frac{1}{2} + \frac{1}{2}\right) \] \[ 1 = 1 \] - This also satisfies the equation. 3. **Third Candidate: \( f(x) = x^2 \)** - Substituting into the original equation: \[ (x^2 + 2y^2) = ((x+y)^2 + y^2)((x-y)^2 + y^2) \] \[ x^2 + 2y^2 = (x^2 + 2xy + y^2 + y^2)(x^2 - 2xy + y^2 + y^2) \] \[ x^2 + 2y^2 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2) \] - This adjustment confirms that the function \( f(x) = x^2 \) is a solution. ### Conclusion These calculations and substitutions confirm the reference answer: \[ \boxed{f(x) = \frac{1}{2}, \, f(x) = 0, \, f(x) = x^2} \] These results indicate that the possible functions conform to the pattern described, adhering to the requirements of the problem.
$f(x) = \frac{1}{2},f(x) = 0,f(x) = x^2$
deepscale
6,312
In $\triangle ABC$, if $\frac {\tan A}{\tan B}+ \frac {\tan A}{\tan C}=3$, then the maximum value of $\sin A$ is ______.
\frac { \sqrt {21}}{5}
deepscale
31,143
Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$, such that $$f(xy+f(x^2))=xf(x+y)$$ for all reals $x, y$.
To find the functions \( f : \mathbb{R} \rightarrow \mathbb{R} \) that satisfy the functional equation: \[ f(xy + f(x^2)) = x f(x + y), \] for all real numbers \( x \) and \( y \), we will proceed with the following steps: ### Step 1: Explore Simple Solutions First, test simple function solutions like \( f(x) = 0 \) and \( f(x) = x \) to see if they satisfy the equation: #### Case 1: \( f(x) = 0 \) Substituting \( f(x) = 0 \) into the functional equation, we have: \[ f(xy + f(x^2)) = f(xy + 0) = 0 \quad \text{and} \quad x f(x+y) = x \cdot 0 = 0. \] Both sides are equal, so \( f(x) = 0 \) is indeed a solution. #### Case 2: \( f(x) = x \) Substituting \( f(x) = x \) yields: \[ f(xy + f(x^2)) = f(xy + x^2) = xy + x^2, \] and \[ x f(x+y) = x(x + y) = x^2 + xy. \] Both expressions are equal, validating \( f(x) = x \) as a solution. ### Step 2: Verify Existence and Uniqueness To investigate if these are the only solutions, we need to explore whether any other forms of \( f(x) \) could satisfy the equation. Let's proceed with specific substitutions and analyze further: #### Step 2.1: Substituting \( y = 0 \) Setting \( y = 0 \) in the original equation, we get: \[ f(f(x^2)) = x f(x). \] This implies that \( f \) is injective if any other solution exists. #### Step 2.2: Substituting \( x = 0 \) Setting \( x = 0 \), the equation simplifies to: \[ f(f(0)) = 0. \] Thus, \( f(0) = 0 \) given the injectivity condition. #### Step 2.3: Further Substitution For \( x = 1 \), consider \( y = -1 \). We have: \[ f(-1 + f(1)) = f(0) = 0, \] leaving \( f(-1 + f(1)) = 0 \). From this and the fact \( f(f(0)) = 0 \rightarrow f(0) = 0 \), one might conjecture that \( f(x) = x \) everywhere, or \( f(x) = 0 \), should hold true universally as a form of consistency (injectivity and zero map combination). ### Conclusion After the verification process and checking specific cases, we can conclude that the functions satisfying the given functional equation are indeed: \[ f(x) = 0 \quad \text{and} \quad f(x) = x. \] Thus, the functions \( f \) that satisfy the equation are: \[ \boxed{f(x) = 0 \text{ and } f(x) = x}. \]
f(x) = 0 \text{ and } f(x) = x
deepscale
6,127
The minimum value of the function \( y = \sin^4{x} + \cos^4{x} + \sec^4{x} + \csc^4{x} \).
\frac{17}{2}
deepscale
15,216
Two ferries cross a river with constant speeds, turning at the shores without losing time. They start simultaneously from opposite shores and meet for the first time 700 feet from one shore. They continue to the shores, return, and meet for the second time 400 feet from the opposite shore. Determine the width of the river.
1400
deepscale
20,246
An integer, whose decimal representation reads the same left to right and right to left, is called symmetrical. For example, the number 513151315 is symmetrical, while 513152315 is not. How many nine-digit symmetrical numbers exist such that adding the number 11000 to them leaves them symmetrical?
8100
deepscale
27,014
What is the largest value of $x$ such that the expression \[\dfrac{x+1}{8x^2-65x+8}\] is not defined?
8
deepscale
33,896
Let $f$ be a quadratic function which satisfies the following condition. Find the value of $\frac{f(8)-f(2)}{f(2)-f(1)}$ . For two distinct real numbers $a,b$ , if $f(a)=f(b)$ , then $f(a^2-6b-1)=f(b^2+8)$ .
13
deepscale
31,903
Given a regular tetrahedron $P-ABC$, where points $P$, $A$, $B$, and $C$ are all on the surface of a sphere with radius $\sqrt{3}$. If $PA$, $PB$, and $PC$ are mutually perpendicular, calculate the distance from the center of the sphere to the plane $ABC$.
\dfrac{\sqrt{3}}{3}
deepscale
29,042
Let $a$, $b$, $c$, $d$, and $e$ be distinct integers such that $(6-a)(6-b)(6-c)(6-d)(6-e)=45$ What is $a+b+c+d+e$?
1. **Identify the factors of 45**: We start by noting that the equation $(6-a)(6-b)(6-c)(6-d)(6-e)=45$ implies that the expressions $(6-a), (6-b), (6-c), (6-d), (6-e)$ are integers whose product is 45. We need to find distinct integers $a, b, c, d, e$ such that this condition is satisfied. 2. **Factorize 45**: The integer 45 can be factorized into $45 = 1 \times 3 \times 3 \times 5$. However, we need five distinct factors. We can include negative factors to achieve this, considering $45 = (-3) \times (-1) \times 1 \times 3 \times 5$. 3. **Check the range of factors**: Since $(6-a), (6-b), (6-c), (6-d), (6-e)$ must be distinct integers and their product is 45, we consider the possible values they can take. The absolute value of the product of any four factors must be at least $|(-3)(-1)(1)(3)| = 9$. This implies that no factor can have an absolute value greater than 5, as including a larger factor would make the product exceed 45 in absolute value. 4. **Assign values to $a, b, c, d, e$**: Given the factors $-3, -1, 1, 3, 5$, we can set up equations for each variable: - $6-a = -3 \Rightarrow a = 6 - (-3) = 9$ - $6-b = -1 \Rightarrow b = 6 - (-1) = 7$ - $6-c = 1 \Rightarrow c = 6 - 1 = 5$ - $6-d = 3 \Rightarrow d = 6 - 3 = 3$ - $6-e = 5 \Rightarrow e = 6 - 5 = 1$ 5. **Calculate the sum of $a, b, c, d, e$**: Adding these values gives: \[ a + b + c + d + e = 9 + 7 + 5 + 3 + 1 = 25 \] 6. **Conclusion**: The sum of $a, b, c, d, e$ is $\boxed{25}$, which corresponds to choice $\mathrm{(C)}\ 25$.
25
deepscale
638
At the beginning of the school year, Lisa's goal was to earn an $A$ on at least $80\%$ of her $50$ quizzes for the year. She earned an $A$ on $22$ of the first $30$ quizzes. If she is to achieve her goal, on at most how many of the remaining quizzes can she earn a grade lower than an $A$?
1. **Determine the total number of quizzes Lisa needs to score an A on to meet her goal**: Lisa's goal is to earn an A on at least 80% of her 50 quizzes. Therefore, the total number of quizzes she needs to score an A on is: \[ 0.80 \times 50 = 40 \] quizzes. 2. **Calculate the number of quizzes she has already scored an A on**: Lisa has already earned an A on 22 of the first 30 quizzes. 3. **Determine the number of additional A's Lisa needs**: To meet her goal, Lisa needs: \[ 40 - 22 = 18 \] more A's. 4. **Calculate the number of quizzes remaining**: There are a total of 50 quizzes, and she has completed 30, so the number of quizzes remaining is: \[ 50 - 30 = 20 \] 5. **Determine the maximum number of quizzes she can score below an A on**: Since she needs 18 more A's out of the remaining 20 quizzes, the maximum number of quizzes she can afford to score below an A on is: \[ 20 - 18 = 2 \] Thus, Lisa can afford to score below an A on at most 2 of the remaining quizzes to still meet her goal. \[ \boxed{\textbf{(B)}\ 2} \]
2
deepscale
2,847
The value of $x$ is one-half the value of $y$, and the value of $y$ is one-fifth the value of $z$. If $z$ is 60, what is the value of $x$?
6
deepscale
38,555
Given that the sequence $\{a_n\}$ is a geometric sequence, and $a_4 = e$, if $a_2$ and $a_7$ are the two real roots of the equation $$ex^2 + kx + 1 = 0, (k > 2\sqrt{e})$$ (where $e$ is the base of the natural logarithm), 1. Find the general formula for $\{a_n\}$. 2. Let $b_n = \ln a_n$, and $S_n$ be the sum of the first $n$ terms of the sequence $\{b_n\}$. When $S_n = n$, find the value of $n$. 3. For the sequence $\{b_n\}$ in (2), let $c_n = b_nb_{n+1}b_{n+2}$, and $T_n$ be the sum of the first $n$ terms of the sequence $\{c_n\}$. Find the maximum value of $T_n$ and the corresponding value of $n$.
n = 4
deepscale
26,260
Given any point $P$ on the line $l: x-y+4=0$, two tangent lines $AB$ are drawn to the circle $O: x^{2}+y^{2}=4$ with tangent points $A$ and $B$. The line $AB$ passes through a fixed point ______; let the midpoint of segment $AB$ be $Q$. The minimum distance from point $Q$ to the line $l$ is ______.
\sqrt{2}
deepscale
30,473
Distinct planes $p_1, p_2, \dots, p_k$ intersect the interior of a cube $Q$. Let $S$ be the union of the faces of $Q$ and let $P = \bigcup_{j=1}^{k} p_j$. The intersection of $P$ and $S$ consists of the union of all segments joining the midpoints of every pair of edges belonging to the same face of $Q$. What is the difference between the maximum and minimum possible values of $k$?
To solve this problem, we need to analyze the different types of planes that can intersect the cube $Q$ such that their intersection with the surface $S$ of the cube consists of segments joining the midpoints of edges on the same face of $Q$. We categorize these planes based on the types of segments they contain and calculate the maximum and minimum number of such planes. #### Step 1: Identify the types of segments - **Long traces**: These connect the midpoints of opposite edges on the same face. - **Short traces**: These connect the midpoints of adjacent edges on the same face. #### Step 2: Determine the planes containing these traces - **Case 1: Plane containing short traces forming an equilateral triangle** - Each vertex of the cube can be associated with three short traces forming an equilateral triangle. - Total number of such planes: $8$ (one for each vertex of the cube). - **Case 2: Plane containing long traces forming a rectangle** - Each pair of parallel faces of the cube can have four such rectangles, as each face has two pairs of opposite edges. - Total number of such planes: $12$ (three pairs of parallel faces, four rectangles per pair). - **Case 3: Plane containing short traces forming a regular hexagon** - Each face of the cube has four short traces, and each set of such traces can form a regular hexagon with traces from adjacent faces. - Total number of such planes: $4$ (one for each pair of opposite faces). - **Case 4: Plane containing only long traces forming a square** - There are three such squares, each parallel to a pair of opposite faces of the cube. - Total number of such planes: $3$. #### Step 3: Calculate the maximum number of planes - Summing up all the planes from the cases above, we get: \[ 8 + 12 + 4 + 3 = 27 \] So, the maximum value of $k$ is $27$. #### Step 4: Calculate the minimum number of planes - The most economical configuration uses all the planes from Case 3 and Case 4, as they cover all the traces without overlap. - Total number of such planes: $4$ (hexagons) + $3$ (squares) = $7$. So, the minimum value of $k$ is $7$. #### Step 5: Find the difference between the maximum and minimum values of $k$ - The difference is: \[ 27 - 7 = 20 \] Thus, the difference between the maximum and minimum possible values of $k$ is $\boxed{20}$.
20
deepscale
2,582
Given the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ($a > 0, b > 0$), let F be the right focus of the hyperbola. A perpendicular line from point F to the x-axis intersects the two asymptotes at points A and B, and intersects the hyperbola in the first quadrant at point P. Let O be the origin of the coordinate system. If $\vec{OP} = \lambda \vec{OA} + \mu \vec{OB}$ ($\lambda, \mu \in \mathbb{R}$), and $\lambda^2 + \mu^2 = \frac{5}{8}$, calculate the eccentricity of the hyperbola.
\frac{2\sqrt{3}}{3}
deepscale
7,835
a) Calculate the number of triangles whose three vertices are vertices of the cube. b) How many of these triangles are not contained in a face of the cube?
32
deepscale
9,760
Let $a$ and $b$ be real numbers. Find the maximum value of $a \cos \theta + b \sin \theta$ in terms of $a$ and $b.$
\sqrt{a^2 + b^2}
deepscale
37,464
A person bequeathed an amount of money, slightly less than 1500 dollars, to be distributed as follows. His five children and the notary received amounts such that the square root of the eldest son's share, half of the second son's share, the third son's share minus 2 dollars, the fourth son's share plus 2 dollars, the daughter's share doubled, and the square of the notary's fee were all equal. All heirs and the notary received whole dollar amounts, and all the money was used to pay the shares and the notary's fee. What was the total amount left as inheritance?
1464
deepscale
14,609
Given the quadratic equation \( ax^2 + bx + c \) and the table of values \( 6300, 6481, 6664, 6851, 7040, 7231, 7424, 7619, 7816 \) for a sequence of equally spaced increasing values of \( x \), determine the function value that does not belong to the table.
6851
deepscale
23,480
A function $f$ is defined by $f(z) = (4 + i) z^2 + \alpha z + \gamma$ for all complex numbers $z$, where $\alpha$ and $\gamma$ are complex numbers and $i^2 = - 1$. Suppose that $f(1)$ and $f(i)$ are both real. What is the smallest possible value of $| \alpha | + |\gamma |$?
\sqrt{2}
deepscale
36,621
Flights are arranged between 13 countries. For $ k\ge 2$ , the sequence $ A_{1} ,A_{2} ,\ldots A_{k}$ is said to a cycle if there exist a flight from $ A_{1}$ to $ A_{2}$ , from $ A_{2}$ to $ A_{3}$ , $ \ldots$ , from $ A_{k \minus{} 1}$ to $ A_{k}$ , and from $ A_{k}$ to $ A_{1}$ . What is the smallest possible number of flights such that how the flights are arranged, there exist a cycle?
79
deepscale
29,651
The matrix for projecting onto a certain line $\ell,$ which passes through the origin, is given by \[\renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{2}{15} & -\frac{1}{15} & -\frac{1}{3} \\ -\frac{1}{15} & \frac{1}{30} & \frac{1}{6} \\ -\frac{1}{3} & \frac{1}{6} & \frac{5}{6} \end{pmatrix} \renewcommand{\arraystretch}{1}.\]Find the direction vector of line $\ell.$ Enter your answer in the form $\begin{pmatrix} a \\ b \\ c \end{pmatrix},$ where $a,$ $b,$ and $c$ are integers, $a > 0,$ and $\gcd(|a|,|b|,|c|) = 1.$
\begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}
deepscale
40,063
If real numbers \( x \) and \( y \) satisfy \( x^{3} + y^{3} + 3xy = 1 \), then the minimum value of \( x^{2} + y^{2} \) is ____.
\frac{1}{2}
deepscale
16,711
In a certain class, with any distribution of 200 candies, there will be at least two students who receive the same number of candies (possibly none). What is the minimum number of students in such a class?
21
deepscale
13,871
What is the smallest positive odd integer having the same number of positive divisors as 360?
31185
deepscale
25,209
The difference between two numbers is 7.02. If the decimal point of the smaller number is moved one place to the right, it becomes the larger number. The larger number is \_\_\_\_\_\_, and the smaller number is \_\_\_\_\_\_.
0.78
deepscale
24,007
There are five unmarked envelopes on a table, each with a letter for a different person. If the mail is randomly distributed to these five people, with each person getting one letter, what is the probability that exactly four people get the right letter?
0
deepscale
34,911
Consider a $3 \times 3$ block of squares as the center area in an array of unit squares. The first ring around this center block contains unit squares that directly touch the block. If the pattern continues as before, how many unit squares are in the $10^{th}$ ring?
88
deepscale
20,992
Given $\left(x+y\right)^{2}=1$ and $\left(x-y\right)^{2}=49$, find the values of $x^{2}+y^{2}$ and $xy$.
-12
deepscale
29,446
Given the parametric equations of curve $C_1$ are $$\begin{cases} x=2\cos\theta \\ y=\sin\theta\end{cases}(\theta \text{ is the parameter}),$$ and the parametric equations of curve $C_2$ are $$\begin{cases} x=-3+t \\ y= \frac {3+3t}{4}\end{cases}(t \text{ is the parameter}).$$ (1) Convert the parametric equations of curves $C_1$ and $C_2$ into standard equations; (2) Find the maximum and minimum distances from a point on curve $C_1$ to curve $C_2$.
\frac {12-2 \sqrt {13}}{5}
deepscale
9,215
Let sets $X$ and $Y$ have $30$ and $25$ elements, respectively, and there are at least $10$ elements in both sets. Find the smallest possible number of elements in $X \cup Y$.
45
deepscale
31,604
A right circular cone and a sphere possess the same radius, $r$. If the volume of the cone is one-third of the volume of the sphere, determine the ratio of the height of the cone to the radius $r$.
\frac{4}{3}
deepscale
16,256
After a gymnastics meet, each gymnast shook hands once with every gymnast on every team (except herself). Afterwards, a coach came down and only shook hands with each gymnast from her own team. There were a total of 281 handshakes. What is the fewest number of handshakes the coach could have participated in?
5
deepscale
34,883
Find the volume of the solid generated by a rotation of the region enclosed by the curve $y=x^3-x$ and the line $y=x$ about the line $y=x$ as the axis of rotation.
\frac{64\pi}{105}
deepscale
27,373
What is the smallest positive integer with six positive odd integer divisors and twelve positive even integer divisors?
180
deepscale
38,135
Two boards, one four inches wide and the other six inches wide, are nailed together to form an X. The angle at which they cross is 60 degrees. If this structure is painted and the boards are separated what is the area of the unpainted region on the four-inch board? (The holes caused by the nails are negligible.) Express your answer in simplest radical form. [asy] draw(6dir(150)--15dir(-30),linewidth(1)); draw((6dir(150)+12/sqrt(3)*dir(30))--(15dir(-30)+12/sqrt(3)*dir(30)),linewidth(1)); draw(6dir(210)--(0,0),linewidth(1)); draw((9dir(210)+8/sqrt(3)*dir(-30))--8/sqrt(3)*dir(-30),linewidth(1)); draw(12/sqrt(3)*dir(30)--(12/sqrt(3)+6)*dir(30),linewidth(1)); draw(12/sqrt(3)*dir(30)+8/sqrt(3)*dir(-30)--(12/sqrt(3)+9)*dir(30)+8/sqrt(3)*dir(-30),linewidth(1)); draw(2dir(150)--2dir(150)+6dir(60),dashed); draw(2dir(210)--2dir(210)+4dir(-60),dashed); dot((2,0)); dot((4,-1)); dot((8,1)); dot((6,2)); label("$60^{\circ}$", (11,1), E); label(rotate(30)*"$4^{\prime\prime}$", .5*(2dir(210)+2dir(210)+4dir(-60))+(0,-.5),W); label(rotate(-30)*"$6^{\prime\prime}$", .5*(2dir(150)+2dir(150)+6dir(60))+(1,1),W); [/asy]
16\sqrt{3}
deepscale
35,819
Find the range of the function $f(x) = \arcsin x + \arccos x + \arctan x.$ All functions are in radians.
\left[ \frac{\pi}{4}, \frac{3 \pi}{4} \right]
deepscale
39,738
In the Cartesian coordinate system \( xOy \), find the area of the region defined by the inequalities \[ y^{100}+\frac{1}{y^{100}} \leq x^{100}+\frac{1}{x^{100}}, \quad x^{2}+y^{2} \leq 100. \]
50 \pi
deepscale
10,076
Given Professor Lee has ten different mathematics books on a shelf, consisting of three calculus books, four algebra books, and three statistics books, determine the number of ways to arrange the ten books on the shelf keeping all calculus books together and all statistics books together.
25920
deepscale
20,343
With the popularity of cars, the "driver's license" has become one of the essential documents for modern people. If someone signs up for a driver's license exam, they need to pass four subjects to successfully obtain the license, with subject two being the field test. In each registration, each student has 5 chances to take the subject two exam (if they pass any of the 5 exams, they can proceed to the next subject; if they fail all 5 times, they need to re-register). The first 2 attempts for the subject two exam are free, and if the first 2 attempts are unsuccessful, a re-examination fee of $200 is required for each subsequent attempt. Based on several years of data, a driving school has concluded that the probability of passing the subject two exam for male students is $\frac{3}{4}$ each time, and for female students is $\frac{2}{3}$ each time. Now, a married couple from this driving school has simultaneously signed up for the subject two exam. If each person's chances of passing the subject two exam are independent, their principle for taking the subject two exam is to pass the exam or exhaust all chances. $(Ⅰ)$ Find the probability that this couple will pass the subject two exam in this registration and neither of them will need to pay the re-examination fee. $(Ⅱ)$ Find the probability that this couple will pass the subject two exam in this registration and the total re-examination fees they incur will be $200.
\frac{1}{9}
deepscale
31,186
A 12-hour digital clock has a glitch such that whenever it is supposed to display a 5, it mistakenly displays a 7. For example, when it is 5:15 PM the clock incorrectly shows 7:77 PM. What fraction of the day will the clock show the correct time?
\frac{33}{40}
deepscale
21,092
Three positive integers differ from each other by at most 6. The product of these three integers is 2808. What is the smallest integer among them?
12
deepscale
7,985
Let vector $a = (\cos 25^\circ, \sin 25^\circ)$, $b = (\sin 20^\circ, \cos 20^\circ)$. If $t$ is a real number, and $u = a + tb$, then the minimum value of $|u|$ is \_\_\_\_\_\_\_\_.
\frac{\sqrt{2}}{2}
deepscale
26,438
There are \( R \) zeros at the end of \(\underbrace{99\ldots9}_{2009 \text{ of }} \times \underbrace{99\ldots9}_{2009 \text{ of } 9 \text{'s}} + 1 \underbrace{99\ldots9}_{2009 \text{ of } 9 \text{'s}}\). Find the value of \( R \).
4018
deepscale
15,031
In a right triangle, one leg is 24 inches, and the other leg is 10 inches more than twice the shorter leg. Calculate the area of the triangle and find the length of the hypotenuse.
\sqrt{3940}
deepscale
27,193
For a natural number $N$, if at least eight out of the nine natural numbers from $1$ to $9$ can divide $N$, then $N$ is called an "Eight Immortals Number." What is the smallest "Eight Immortals Number" greater than $2000$?
2016
deepscale
15,719
Let $a$ and $b$ be nonnegative real numbers such that \[\sin (ax + b) = \sin 29x\]for all integers $x.$ Find the smallest possible value of $a.$
10 \pi - 29
deepscale
39,682
Find the area of the triangle with vertices $(2, -3),$ $(1, 4),$ and $(-3, -2).$
17
deepscale
19,692
Let $Q$ be the product of the first $50$ positive even integers. Find the largest integer $j$ such that $Q$ is divisible by $2^j$.
97
deepscale
19,487
If $\frac{1}{x} + \frac{1}{y} = 3$ and $\frac{1}{x} - \frac{1}{y} = -7$ what is the value of $x + y$? Express your answer as a common fraction.
-\frac{3}{10}
deepscale
33,341
Natural numbers \( a, b, c \) are such that \( 1 \leqslant a < b < c \leqslant 3000 \). Find the largest possible value of the quantity $$ \gcd(a, b) + \gcd(b, c) + \gcd(c, a) $$
3000
deepscale
9,265
The volume of a sphere is increased to $72\pi$ cubic inches. What is the new surface area of the sphere? Express your answer in terms of $\pi$.
36\pi \cdot 2^{2/3}
deepscale
20,603
In rectangle \(ABCD\), \(AB = 2\) and \(AD = 1\). Let \(P\) be a moving point on side \(DC\) (including points \(D\) and \(C\)), and \(Q\) be a moving point on the extension of \(CB\) (including point \(B\)). The points \(P\) and \(Q\) satisfy \(|\overrightarrow{DP}| = |\overrightarrow{BQ}|\). What is the minimum value of the dot product \(\overrightarrow{PA} \cdot \overrightarrow{PQ}\)?
3/4
deepscale
16,046
If $x=3$, what is the value of $-(5x - 6x)$?
When $x=3$, we have $-(5x - 6x) = -(-x) = x = 3$. Alternatively, when $x=3$, we have $-(5x - 6x) = -(15 - 18) = -(-3) = 3$.
3
deepscale
5,294
Two equal parallel chords are drawn $8$ inches apart in a circle of radius $8$ inches. The area of that part of the circle that lies between the chords is:
1. **Identify the Geometry and Setup**: We are given a circle with radius $8$ inches and two equal parallel chords that are $8$ inches apart. Let's denote the center of the circle as $O$ and the chords as $BD$ and $CE$. Draw the diameter $A$ perpendicular to the chords $BD$ and $CE$. Let $F$ and $G$ be the points where the diameter intersects the chords $BD$ and $CE$ respectively. 2. **Calculate the Lengths of Segments**: Since the chords are $8$ inches apart and the diameter is perpendicular to them, the segments $AF$ and $AG$ each measure half the distance between the chords, i.e., $AF = AG = 4$ inches. 3. **Use the Pythagorean Theorem**: In right triangles $AFB$, $AFD$, $AEG$, and $AGC$, we have: \[ OF = OG = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3} \text{ inches} \] Therefore, $BF = DF = EG = GC = 4\sqrt{3}$ inches. 4. **Calculate the Area of Triangles**: The area of triangle $AFB$ (similarly for $AFD$, $AEG$, and $AGC$) is: \[ \text{Area} = \frac{1}{2} \times AF \times BF = \frac{1}{2} \times 4 \times 4\sqrt{3} = 8\sqrt{3} \text{ square inches} \] Thus, the total area of triangles $BAD$ and $CAE$ is $16\sqrt{3}$ square inches. 5. **Calculate the Area of Sectors**: The angle $\theta$ subtended by the chord at the center is $60^\circ$ (since $\triangle AFB$ is a 30-60-90 triangle). The area of sector $BAD$ (and similarly $CAE$) is: \[ \text{Area of sector} = \frac{60^\circ}{360^\circ} \times \pi \times 8^2 = \frac{1}{6} \times 64\pi = \frac{64\pi}{6} = \frac{32\pi}{3} \text{ square inches} \] Therefore, the total area of sectors $BAD$ and $CAE$ is $\frac{64\pi}{3}$ square inches. 6. **Calculate the Desired Area**: The area between the chords is the area of the sectors minus the area of the triangles: \[ \text{Area between chords} = \frac{64\pi}{3} - 16\sqrt{3} \text{ square inches} \] 7. **Final Calculation**: The total area of the circle is $64\pi$ square inches. Subtracting the area outside the chords gives: \[ \text{Area inside the chords} = 64\pi - \left(\frac{64\pi}{3} - 16\sqrt{3}\right) = \frac{128\pi}{3} - 64\pi + 16\sqrt{3} = \frac{64\pi}{3} + 16\sqrt{3} \] Simplifying further, we find: \[ \boxed{\textbf{(B)}\ 32\sqrt{3} + 21\frac{1}{3}\pi} \]
$32\sqrt{3}+21\frac{1}{3}\pi$
deepscale
1,848
Calculate the volume of the solid bounded by the surfaces \(x + z = 6\), \(y = \sqrt{x}\), \(y = 2\sqrt{x}\), and \(z = 0\) using a triple integral.
\frac{48}{5} \sqrt{6}
deepscale
10,965
A fair standard six-sided dice is tossed three times. Given that the sum of the first two tosses equal the third, what is the probability that at least one "2" is tossed?
1. **Identify possible outcomes for the third toss**: The third toss, denoted as $X_3$, must be at least 2 because the minimum sum of two dice ($X_1$ and $X_2$) is 2. Thus, $X_3$ can be 2, 3, 4, 5, or 6. 2. **List possible combinations for each value of $X_3$**: - If $X_3 = 2$, then $(X_1, X_2) = (1,1)$. - If $X_3 = 3$, then $(X_1, X_2)$ can be $(1,2)$ or $(2,1)$. - If $X_3 = 4$, then $(X_1, X_2)$ can be $(1,3)$, $(2,2)$, or $(3,1)$. - If $X_3 = 5$, then $(X_1, X_2)$ can be $(1,4)$, $(2,3)$, $(3,2)$, or $(4,1)$. - If $X_3 = 6$, then $(X_1, X_2)$ can be $(1,5)$, $(2,4)$, $(3,3)$, $(4,2)$, or $(5,1)$. 3. **Count the total number of valid outcomes**: - For $X_3 = 2$, there is 1 outcome. - For $X_3 = 3$, there are 2 outcomes. - For $X_3 = 4$, there are 3 outcomes. - For $X_3 = 5$, there are 4 outcomes. - For $X_3 = 6$, there are 5 outcomes. - Total valid outcomes = $1 + 2 + 3 + 4 + 5 = 15$. 4. **Count the outcomes where at least one "2" is tossed**: - For $X_3 = 2$, $(1,1)$ has no "2". - For $X_3 = 3$, $(1,2)$ and $(2,1)$ each have one "2". - For $X_3 = 4$, $(2,2)$ has two "2"s. - For $X_3 = 5$, $(2,3)$ and $(3,2)$ each have one "2". - For $X_3 = 6$, $(2,4)$ and $(4,2)$ each have one "2". - Total outcomes with at least one "2" = $2 (from\ X_3=3) + 1 (from\ X_3=4) + 2 (from\ X_3=5) + 2 (from\ X_3=6) = 7$. 5. **Calculate the probability**: - Probability = $\frac{\text{Number of favorable outcomes}}{\text{Total number of valid outcomes}} = \frac{7}{15}$. 6. **Conclusion**: The probability that at least one "2" is tossed given the conditions is $\boxed{\frac{7}{12}}$. This corrects the error in the initial solution provided, where the count of outcomes with a "2" was incorrectly calculated.
\frac{8}{15}
deepscale
803
Chess piece called *skew knight*, if placed on the black square, attacks all the gray squares. ![Image](https://i.ibb.co/HdTDNjN/Kyiv-MO-2021-Round-1-11-2.png) What is the largest number of such knights that can be placed on the $8\times 8$ chessboard without them attacking each other? *Proposed by Arsenii Nikolaiev*
32
deepscale
31,632
Given that \(\alpha, \beta \in \left(0, \frac{\pi}{2}\right)\) and \(\sin \beta = 2 \cos (\alpha + \beta) \cdot \sin \alpha \left(\alpha + \beta \neq \frac{\pi}{2}\right)\), find the maximum value of \(\tan \beta\).
\frac{\sqrt{3}}{3}
deepscale
15,566
In $\triangle ABC$, if $bc=3$, $a=2$, then the minimum value of the area of the circumcircle of $\triangle ABC$ is $\_\_\_\_\_\_$.
\frac{9\pi}{8}
deepscale
32,519
Given the arithmetic sequence $\{a_n\}$, it is given that $a_2+a_8-a_{12}=0$ and $a_{14}-a_4=2$. Let $s_n=a_1+a_2+\ldots+a_n$, then determine the value of $s_{15}$.
30
deepscale
32,596
Simplify $15\cdot\frac{16}{9}\cdot\frac{-45}{32}$.
-\frac{25}{6}
deepscale
27,238
In the xy-plane, consider a right triangle $ABC$ with the right angle at $C$. The hypotenuse $AB$ is of length $50$. The medians through vertices $A$ and $B$ are described by the lines $y = x + 5$ and $y = 2x + 2$, respectively. Determine the area of triangle $ABC$.
500
deepscale
28,173
What is the sum of all two-digit positive integers whose squares end with the digits 01?
199
deepscale
37,735
There are $4$ male athletes and $3$ female athletes.<br/>$(1)$ Now $7$ athletes are lined up. If all female athletes are together, how many ways are there to arrange them?<br/>$(2)$ Now the male athletes are sent to two different venues for training, with at least one athlete in each venue. Each athlete goes to one venue. How many different ways are there to allocate them?
14
deepscale
23,056
Circle $o$ contains the circles $m$ , $p$ and $r$ , such that they are tangent to $o$ internally and any two of them are tangent between themselves. The radii of the circles $m$ and $p$ are equal to $x$ . The circle $r$ has radius $1$ and passes through the center of the circle $o$ . Find the value of $x$ .
8/9
deepscale
27,081
Let $A B C$ be a triangle with $A B=5, B C=4$, and $C A=3$. Initially, there is an ant at each vertex. The ants start walking at a rate of 1 unit per second, in the direction $A \rightarrow B \rightarrow C \rightarrow A$ (so the ant starting at $A$ moves along ray $\overrightarrow{A B}$, etc.). For a positive real number $t$ less than 3, let $A(t)$ be the area of the triangle whose vertices are the positions of the ants after $t$ seconds have elapsed. For what positive real number $t$ less than 3 is $A(t)$ minimized?
We instead maximize the area of the remaining triangles. This area (using $\frac{1}{2} x y \sin \theta$ ) is $\frac{1}{2}(t)(5-t) \frac{3}{5}+\frac{1}{2}(t)(3-t) \frac{4}{5}+\frac{1}{2}(t)(4-t) 1=\frac{1}{10}\left(-12 t^{2}+47 t\right)$, which has a maximum at $t=\frac{47}{24} \in(0,3)$.
\frac{47}{24}
deepscale
5,832
Gage skated 1 hr 15 min each day for 5 days and 1 hr 30 min each day for 3 days. How many minutes would he have to skate the ninth day in order to average 85 minutes of skating each day for the entire time?
120
deepscale
38,621
At Megapolis Hospital one year, multiple-birth statistics were as follows: Sets of twins, triplets, and quadruplets accounted for $1000$ of the babies born. There were four times as many sets of triplets as sets of quadruplets, and there was three times as many sets of twins as sets of triplets. How many of these $1000$ babies were in sets of quadruplets?
1. **Define Variables:** Let $a$ be the number of sets of twins, $b$ be the number of sets of triplets, and $c$ be the number of sets of quadruplets. 2. **Set Up Equations:** From the problem, we have the following relationships: - There are four times as many sets of triplets as sets of quadruplets: $b = 4c$. - There are three times as many sets of twins as sets of triplets: $a = 3b$. - The total number of babies from these sets is 1000: $2a + 3b + 4c = 1000$. 3. **Substitute $b$ and $a$ in terms of $c$:** Substitute $b = 4c$ into $a = 3b$: \[ a = 3(4c) = 12c. \] 4. **Substitute $a$ and $b$ into the total babies equation:** Substitute $a = 12c$ and $b = 4c$ into $2a + 3b + 4c = 1000$: \[ 2(12c) + 3(4c) + 4c = 1000. \] Simplify the equation: \[ 24c + 12c + 4c = 1000, \] \[ 40c = 1000. \] 5. **Solve for $c$:** \[ c = \frac{1000}{40} = 25. \] 6. **Calculate the number of babies in sets of quadruplets:** Since each set of quadruplets contains 4 babies, the total number of babies in sets of quadruplets is: \[ 4c = 4 \times 25 = 100. \] 7. **Conclusion:** The number of babies that were in sets of quadruplets is $\boxed{\textbf{(D)}\ 100}$.
100
deepscale
339
Compute $55^2 - 45^2$ in your head.
1000
deepscale
33,234
The degree measure of angle $A$ is
#### Detailed Steps for Solution 1: 1. **Identify the first angle**: Given that one angle in the diagram is $110^\circ$, the adjacent angle on a straight line must be $180^\circ - 110^\circ = 70^\circ$ due to the linear pair property (sum of angles on a straight line is $180^\circ$). 2. **Analyze the small lower-left triangle**: This triangle has one angle of $40^\circ$ (given), and another angle we just found to be $70^\circ$. The sum of angles in a triangle is $180^\circ$. Therefore, the third angle in this triangle is: \[ 180^\circ - 70^\circ - 40^\circ = 70^\circ. \] 3. **Use vertical angles**: The angle opposite to this $70^\circ$ angle (across the intersection) is also $70^\circ$ because vertical angles are congruent. 4. **Examine the smallest triangle containing $A$**: This triangle has one angle of $70^\circ$ (from step 3) and another angle formed by line segment $AB$ which is $180^\circ - 100^\circ = 80^\circ$ (since $AB$ and the $100^\circ$ angle are on a straight line). 5. **Calculate angle $A$**: The sum of angles in this triangle must also be $180^\circ$. Therefore, angle $A$ is: \[ 180^\circ - 70^\circ - 80^\circ = 30^\circ. \] Thus, the degree measure of angle $A$ is $\boxed{30^\circ, \textbf{B}}$. #### Detailed Steps for Solution 2: 1. **Calculate the third angle in the large triangle**: The large triangle has angles of $100^\circ$ and $40^\circ$. The third angle is: \[ 180^\circ - 100^\circ - 40^\circ = 40^\circ. \] 2. **Identify the triangle containing $A$**: This triangle includes the $40^\circ$ angle (from step 1) and a $110^\circ$ angle (given). 3. **Calculate angle $A$**: The sum of angles in this triangle must be $180^\circ$. Therefore, angle $A$ is: \[ 180^\circ - 110^\circ - 40^\circ = 30^\circ. \] Thus, the degree measure of angle $A$ is $\boxed{30^\circ, \textbf{B}}$.
30
deepscale
2,040
The least positive integer with exactly $2021$ distinct positive divisors can be written in the form $m \cdot 6^k$, where $m$ and $k$ are integers and $6$ is not a divisor of $m$. What is $m+k?$
To find the least positive integer with exactly $2021$ distinct positive divisors, we start by understanding the divisor function. If a number $n$ has a prime factorization of the form $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, then the number of divisors of $n$ is given by $(a_1+1)(a_2+1)\cdots(a_k+1)$. Given that the number of divisors is $2021$, we need to factorize $2021$: \[ 2021 = 43 \times 47. \] We aim to express $2021$ as a product of integers each increased by one from the exponents in the prime factorization of our number. The simplest way to do this is to have two factors, since $2021$ is a product of two primes. Thus, we consider: \[ (a+1)(b+1) = 43 \times 47. \] This implies $a+1 = 43$ and $b+1 = 47$, or vice versa. Therefore, $a = 42$ and $b = 46$. We are given that the number can be written as $m \cdot 6^k$, where $m$ and $k$ are integers and $6$ is not a divisor of $m$. The prime factorization of $6^k$ is $2^k \cdot 3^k$. We need to match this with part of our desired factorization $p_1^{42} \cdot p_2^{46}$. To minimize $m$, we should maximize $k$ such that $2^k$ and $3^k$ are as large as possible but do not exceed the respective powers in $p_1^{42} \cdot p_2^{46}$. The optimal choice is $k = 42$, since both $2^{42}$ and $3^{42}$ can be factors of our number without exceeding the required powers and without $6$ being a factor of $m$. Thus, the remaining part of the number, $m$, must account for the rest of the factorization: \[ m = 2^{46-42} \cdot 3^{0} = 2^4 = 16. \] Finally, we find $m + k = 16 + 42 = \boxed{58}$. This matches choice $\textbf{(B)}$.
58
deepscale
2,741
Let $m \ge 3$ be an integer and let $S = \{3,4,5,\ldots,m\}$. Find the smallest value of $m$ such that for every partition of $S$ into two subsets, at least one of the subsets contains integers $a$, $b$, and $c$ (not necessarily distinct) such that $ab = c$. Note: a partition of $S$ is a pair of sets $A$, $B$ such that $A \cap B = \emptyset$, $A \cup B = S$.
We claim that $243$ is the minimal value of $m$. Let the two partitioned sets be $A$ and $B$; we will try to partition $3, 9, 27, 81,$ and $243$ such that the $ab=c$ condition is not satisfied. Without loss of generality, we place $3$ in $A$. Then $9$ must be placed in $B$, so $81$ must be placed in $A$, and $27$ must be placed in $B$. Then $243$ cannot be placed in any set, so we know $m$ is less than or equal to $243$. For $m \le 242$, we can partition $S$ into $S \cap \{3, 4, 5, 6, 7, 8, 81, 82, 83, 84 ... 242\}$ and $S \cap \{9, 10, 11 ... 80\}$, and in neither set are there values where $ab=c$ (since $8 < (3\text{ to }8)^2 < 81$ and $(9\text{ to }80)^2 > 80$). Thus $m = \boxed{243}$. ~Shreyas S
243
deepscale
6,982
Find the sum of all real solutions to the equation $(x+1)(2x+1)(3x+1)(4x+1)=17x^{4}$.
First, note that $(x+1)(2x+1)(3x+1)(4x+1)=((x+1)(4x+1))((2x+1)(3x+$ $1))=\left(4x^{2}+5x+1\right)\left(6x^{2}+5x+1\right)=\left(5x^{2}+5x+1-x^{2}\right)\left(5x^{2}+5x+1+x^{2}\right)=\left(5x^{2}+5x+1\right)^{2}-x^{4}$. Therefore, the equation is equivalent to $\left(5x^{2}+5x+1\right)^{2}=17x^{4}$, or $5x^{2}+5x+1= \pm \sqrt{17}x^{2}$. If $5x^{2}+5x+1=\sqrt{17}x^{2}$, then $(5-\sqrt{17})x^{2}+5x+1=0$. The discriminant of this is $25-4(5-\sqrt{17})=$ $5+4\sqrt{17}$, so in this case, there are two real roots and they sum to $-\frac{5}{5-\sqrt{17}}=-\frac{25+5\sqrt{17}}{8}$. If $5x^{2}+5x+1=-\sqrt{17}x^{2}$, then $(5+\sqrt{17})x^{2}+5x+1=0$. The discriminant of this is $25-4(5+\sqrt{17})=$ $5-4\sqrt{17}$. This is less than zero, so there are no real solutions in this case. Therefore, the sum of all real solutions to the equation is $-\frac{25+5\sqrt{17}}{8}$
-\frac{25+5\sqrt{17}}{8}
deepscale
4,931
Denote by $P(n)$ the greatest prime divisor of $n$. Find all integers $n\geq 2$ for which \[P(n)+\lfloor\sqrt{n}\rfloor=P(n+1)+\lfloor\sqrt{n+1}\rfloor\]
We seek all integers \( n \geq 2 \) such that the greatest prime divisor of \( n \), denoted \( P(n) \), together with the integer part of the square root of \( n \), satisfies the equation: \[ P(n) + \lfloor \sqrt{n} \rfloor = P(n+1) + \lfloor \sqrt{n+1} \rfloor. \] **Step 1: Understand the structure of the equation** - The greatest prime divisor of \( n \), \( P(n) \), is the largest prime number that divides \( n \). - The floor function \( \lfloor \sqrt{n} \rfloor \) is the greatest integer less than or equal to \( \sqrt{n} \). **Step 2: Simplification of the equation** Rearranging the given equation, we have: \[ P(n) - P(n+1) = \lfloor \sqrt{n+1} \rfloor - \lfloor \sqrt{n} \rfloor. \] This indicates that the difference between the greatest prime divisors and the floor differences of the square roots should be equal. **Step 3: Analyze small values of \( n \)** We test small values starting from \( n = 2 \). - For \( n = 2 \): - \( P(2) = 2 \), \( \lfloor \sqrt{2} \rfloor = 1 \). - \( P(3) = 3 \), \( \lfloor \sqrt{3} \rfloor = 1 \). - Equation: \( 2 + 1 = 3 + 1 \) is false. - For \( n = 3 \): - \( P(3) = 3 \), \( \lfloor \sqrt{3} \rfloor = 1 \). - \( P(4) = 2 \), \( \lfloor \sqrt{4} \rfloor = 2 \). - Equation: \( 3 + 1 = 2 + 2 \) is true. **Step 4: Consider changes across intervals of \(\lfloor \sqrt{n} \rfloor\)** The value of \(\lfloor \sqrt{n} \rfloor\) stays constant within specific intervals and increases by 1 at perfect squares, which can potentially change the equation's balance if \( P(n) \neq P(n+1) \). **Step 5: Find possible other solutions** For \( n > 3 \), we continue testing as follows: - For \( n = 4 \): - \( P(4) = 2 \), \( \lfloor \sqrt{4} \rfloor = 2 \). - \( P(5) = 5 \), \( \lfloor \sqrt{5} \rfloor = 2 \). - Equation: \( 2 + 2 = 5 + 2 \) is false. - For larger \( n \), the greatest prime divisor will most likely differ much more than the change in \(\lfloor \sqrt{n} \rfloor\), as seen above beyond \( n = 3 \). Thus, the only integer \( n \) for which the given condition holds is: \[ \boxed{3} \]
3
deepscale
6,098
In the diagram below, $AB = 30$ and $\angle ADB = 90^\circ$. If $\sin A = \frac{3}{5}$ and $\sin C = \frac{1}{4}$, what is the length of $DC$?
18\sqrt{15}
deepscale
32,532
Given vectors $\overrightarrow{m}=(1,\sqrt{3})$, $\overrightarrow{n}=(\sin x,\cos x)$, let function $f(x)=\overrightarrow{m}\cdot \overrightarrow{n}$ (I) Find the smallest positive period and maximum value of function $f(x)$; (II) In acute triangle $\Delta ABC$, let the sides opposite angles $A$, $B$, $C$ be $a$, $b$, $c$ respectively. If $c=\sqrt{6}$, $\cos B=\frac{1}{3}$, and $f(C)=\sqrt{3}$, find $b$.
\frac{8}{3}
deepscale
20,593
Given the sets $A={1,4,x}$ and $B={1,2x,x^{2}}$, if $A \cap B={4,1}$, find the value of $x$.
-2
deepscale
32,317
$A$ and $B$ are $46$ kilometers apart. Person A rides a bicycle from point $A$ to point $B$ at a speed of $15$ kilometers per hour. One hour later, person B rides a motorcycle along the same route from point $A$ to point $B$ at a speed of $40$ kilometers per hour. $(1)$ After how many hours can person B catch up to person A? $(2)$ If person B immediately returns to point $A after reaching point $B, how many kilometers away from point $B will they meet person A on the return journey?
10
deepscale
30,080
Compute the number of ordered pairs of integers $(x,y)$ with $1\le x<y\le 150$ such that $i^x+i^y$ is a real number.
3515
deepscale
12,552
Given $f(x) = -4x^2 + 4ax - 4a - a^2$ has a maximum value of $-5$ in the interval $[0, 1]$, find the value of $a$.
-5
deepscale
25,722
Given an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$, let $P$ be a point on the ellipse such that the projection of $P$ onto the $x$-axis is the left focus $F_1$. Let $A$ be the intersection point of the ellipse with the positive semi-major axis, and let $B$ be the intersection point of the ellipse with the positive semi-minor axis, such that $AB$ is parallel to $OP$ (where $O$ is the origin). Find the eccentricity of the ellipse.
\frac{\sqrt{2}}{2}
deepscale
8,404
If each of the four numbers $3, 4, 6,$ and $7$ replaces a $\square$, what is the largest possible sum of the fractions shown?
$\frac{23}{6}$
deepscale
16,546
How many more digits does the base-3 representation of $987_{10}$ have than the base-8 representation of $987_{10}$?
3
deepscale
37,910
A particular coin has a $\frac{1}{3}$ chance of landing on heads (H), $\frac{1}{3}$ chance of landing on tails (T), and $\frac{1}{3}$ chance of landing vertically in the middle (M). When continuously flipping this coin, what is the probability of observing the continuous sequence HMMT before HMT?
For a string of coin flips $S$, let $P_{S}$ denote the probability of flipping $H M M T$ before $H M T$ if $S$ is the starting sequence of flips. We know that the desired probability, $p$, is $\frac{1}{3} P_{H}+\frac{1}{3} P_{M}+\frac{1}{3} P_{T}$. Now, using conditional probability, we find that $$\begin{aligned} P_{H} & =\frac{1}{3} P_{H H}+\frac{1}{3} P_{H M}+\frac{1}{3} P_{H T} \\ & =\frac{1}{3} P_{H}+\frac{1}{3} P_{H M}+\frac{1}{3} P_{T} \end{aligned}$$ We similarly find that $$\begin{aligned} & P_{M}=P_{T}=\frac{1}{3} P_{H}+\frac{1}{3} P_{M}+\frac{1}{3} P_{T} \\ & P_{H M}=\frac{1}{3} P_{H M M}+\frac{1}{3} P_{H} \\ & P_{H M M}=\frac{1}{3}+\frac{1}{3} P_{M}+\frac{1}{3} P_{H} \end{aligned}$$ Solving gives $P_{H}=P_{M}=P_{T}=\frac{1}{4}$. Thus, $p=\frac{1}{4}$.
\frac{1}{4}
deepscale
4,319
Find the least common multiple of 36 and 132.
396
deepscale
38,996
Let $c$ be a complex number. Suppose there exist distinct complex numbers $r$, $s$, and $t$ such that for every complex number $z$, we have \[ (z - r)(z - s)(z - t) = (z - cr)(z - cs)(z - ct). \]Compute the number of distinct possible values of $c$.
4
deepscale
36,930
Given the line y=b intersects with the function f(x)=2x+3 and the function g(x)=ax+ln x (where a is a real constant in the interval [0, 3/2]), find the minimum value of |AB|.
2 - \frac{\ln 2}{2}
deepscale
19,115
Let $x,$ $y,$ $z$ be positive real number such that $xyz = \frac{2}{3}.$ Compute the minimum value of \[x^2 + 6xy + 18y^2 + 12yz + 4z^2.\]
18
deepscale
37,399
Suppose that $\frac{2}{3}$ of $10$ bananas are worth as much as $8$ oranges. How many oranges are worth as much as $\frac{1}{2}$ of $5$ bananas?
1. **Establish the given relationship**: We are given that $\frac{2}{3}$ of $10$ bananas are worth as much as $8$ oranges. This can be written as: \[ \frac{2}{3} \times 10 \text{ bananas} = 8 \text{ oranges} \] Simplifying the left side, we get: \[ \frac{2}{3} \times 10 = \frac{20}{3} \text{ bananas} \] Therefore, the equation becomes: \[ \frac{20}{3} \text{ bananas} = 8 \text{ oranges} \] 2. **Find the value of one banana in terms of oranges**: From the equation above, we can find the value of one banana in terms of oranges: \[ 1 \text{ banana} = \frac{8 \text{ oranges}}{\frac{20}{3} \text{ bananas}} = \frac{8 \times 3}{20} \text{ oranges} = \frac{24}{20} \text{ oranges} = \frac{6}{5} \text{ oranges} \] 3. **Calculate the value of $\frac{1}{2}$ of $5$ bananas in terms of oranges**: We need to find how many oranges are equivalent to $\frac{1}{2}$ of $5$ bananas: \[ \frac{1}{2} \times 5 \text{ bananas} = \frac{5}{2} \text{ bananas} \] Using the conversion factor from step 2: \[ \frac{5}{2} \text{ bananas} \times \frac{6}{5} \text{ oranges per banana} = \frac{5}{2} \times \frac{6}{5} \text{ oranges} = 3 \text{ oranges} \] 4. **Conclusion**: Therefore, $\frac{1}{2}$ of $5$ bananas are worth as much as $3$ oranges. \[ \boxed{\mathrm{(C)}\ 3} \]
3
deepscale
2,870
If $\angle A=20^\circ$ and $\angle AFG=\angle AGF,$ then how many degrees is $\angle B+\angle D?$ [asy] /* AMC8 2000 #24 Problem */ pair A=(0,80), B=(46,108), C=(100,80), D=(54,18), E=(19,0); draw(A--C--E--B--D--cycle); label("$A$", A, W); label("$B$ ", B, N); label("$C$", shift(7,0)*C); label("$D$", D, SE); label("$E$", E, SW); label("$F$", (23,43)); label("$G$", (35, 86)); [/asy]
80^\circ
deepscale
38,759