text
stringlengths
49
983k
#include <bits/stdc++.h> using namespace std; char s[1010000]; int main() { int i, j, k, m, n; scanf("%s", s); n = strlen(s); if (n % 2 == 1) { n = (n + 1) / 2; for (i = 1; i <= n; i++) putchar('4'); for (i = 1; i <= n; i++) putchar('7'); puts(""); } else { char u = '7'; int flag = 0; for (i = 0; i < n; i++) { if (i + i == n) u = '4'; if (s[i] > u) { flag = -1; break; } else if (s[i] < u) { flag = 1; break; } } if (flag == -1) { n = (n + 2) / 2; for (i = 1; i <= n; i++) putchar('4'); for (i = 1; i <= n; i++) putchar('7'); puts(""); } else { int pos = -1; int c4 = 0, c7 = 0; int f = 0; for (i = 0; i < n; i++) { if (f || s[i] <= '4') { if (s[i] < '4') f = 1; s[i] = '4'; pos = i; c4++; } else if (s[i] <= '7') { if (s[i] < '7') f = 1; s[i] = '7'; c7++; } else { s[i] = '4'; s[pos] = '7'; pos = i; c7++; f = 1; } } if (c7 > c4) { int cnt = 0; for (i = n - 1; i >= 0; i--) { if (s[i] == '7') cnt++; if (cnt >= (c7 - c4) / 2 + 1) break; } for (; i >= 0; i--) if (s[i] == '4') { c7++; c4--; s[i] = '7'; break; } for (i = i + 1; i < n; i++) if (s[i] == '7') { s[i] = '4'; c7--; c4++; } } if (c7 < c4) { for (i = n - 1; i >= 0; i--) { if (c4 > c7 && s[i] == '4') { s[i] = '7'; c4--; c7++; } } } puts(s); } } scanf("%*d"); }
#include <bits/stdc++.h> using namespace std; int n, hn; string s, r, c; int c1[100005], c2[100005]; string times(string s, int t) { c = ""; for (int i = 0; i < t; ++i) c += s; return c; } inline void work(int w) { cout << r.substr(0, w + 1) + times("4", hn - c1[w]) + times("7", hn - c2[w]) + '\n'; } signed main() { cin >> s, r = ""; n = s.size(), hn = (n + 1) >> 1; if (n & 1) { for (int i = 1, I((n + 1) >> 1); i <= I; ++i) r = '4' + r + '7'; return cout << r + '\n', 0; } for (int i = 1; i <= hn; ++i) r = '7' + r + '4'; if (r < s) { r = ""; for (int i = 0; i <= hn; ++i) r = '4' + r + '7'; return cout << r + '\n', 0; } r = ""; for (int i = 0, l(0), ll(0), t; i < n; ++i) { c1[i] = i ? c1[i - 1] : 0, c2[i] = i ? c2[i - 1] : 0; if (s[i] <= '4') { if (c1[i] < hn) r += '4', ++c1[i], l = i; else r += '7', ++c2[i], ll = l; } else if (s[i] <= '7' && c2[i] < hn) r += '7', ++c2[i], ll = l; else return t = c2[i] < hn ? l : ll, r[t] = '7', --c1[t], ++c2[t], work(t), 0; if (s[i] < r[i]) return work(i), 0; } cout << r; return 0; }
#include <bits/stdc++.h> using namespace std; string n; string mini = "7777777777777777"; void bt(string s) { if (s.size() == n.size() + 4) return; bt(s + '4'); bt(s + '7'); long long f = 0, sev = 0; for (int i = 0; i < s.size(); i++) { if (s[i] == '4') f++; else sev++; } if (f != sev) return; if (s.size() < n.size()) return; if (s.size() == n.size() && n > s) return; if (s.size() > mini.size()) return; if (s.size() == mini.size() && s > mini) return; if (f == sev && s.size() <= mini.size()) mini = min(mini, s); if (s.size() < mini.size()) mini = s; } int main() { cin >> n; if (n <= "47" && n.size() <= 2) { cout << "47"; return 0; } string s = ""; bt(s); cout << mini; return 0; }
#include <bits/stdc++.h> char str[1000000], s1[1000000]; int n; int main() { int i, j, c, flag = 0; scanf("%s", str); n = strlen(str); if (n % 2 == 1) flag = 1; for (i = j = c = 0; i < n && i + abs(j) <= n && !flag && !c; i++) { if (str[i] < '4') c = 1, s1[i] = '4', j++; else if (str[i] == '4') s1[i] = '4', j++; else if (str[i] < '7') s1[i] = '7', j--, c = 1; else if (str[i] == '7') s1[i] = '7', j--; else break; } if (!flag && !c && i < n && i + abs(j) <= n) { for (--i; i >= 0; i--) if (s1[i] == '4') break; if (i < 0) flag = 1; else { s1[i++] = '7'; for (c = j = 0; c < i; c++) if (s1[c] == '4') j++; else j--; if (i + abs(j) > n) flag = 1; else c = 1; } } if (i + abs(j) > n) { for (; i > 0 && (s1[i - 1] == '7' || i + abs(j - 2) > n); i--) if (s1[i - 1] == '7') j++; else j--; if (i <= 0) flag = 1; else j--, s1[i - 1] = '7', j--, c = 1; } if (c && i + abs(j) <= n) { if (j < 0) { for (; j < 0; i++, j++) s1[i] = '4'; for (j = 0; j < (n - i) / 2; j++) s1[i + j] = '4'; for (j = 0; j < (n - i) / 2; j++) s1[i + j + (n - i) / 2] = '7'; } else { for (c = 0; c < (n - i - j) / 2; c++) s1[i + c] = '4'; for (i += c; i < n; i++) s1[i] = '7'; } } else if (i < n || i + abs(j) > n) flag = 1; if (flag) { for (i = 0; i < n / 2 + 1; i++) putchar('4'); for (i = 0; i < n / 2 + 1; i++) putchar('7'); puts(""); } else puts(s1); return 0; }
#include <bits/stdc++.h> using namespace std; int main() { string s; cin >> s; int len = s.length(); if (len % 2) { for (int i = 0; i <= len / 2; ++i) cout << 4; for (int i = 0; i <= len / 2; ++i) cout << 7; return 0; } string res = "9999999999"; string t; for (int i = 0; i < len / 2; ++i) t += '4'; for (int i = 0; i < len / 2; ++i) t += '7'; do { if (t >= s) res = min(t, res); } while (next_permutation(t.begin(), t.end())); if (res != "9999999999") { cout << res; return 0; } len++; for (int i = 0; i <= len / 2; ++i) cout << 4; for (int i = 0; i <= len / 2; ++i) cout << 7; return 0; }
#include <bits/stdc++.h> using namespace std; int n, x, y, d, O4[100005], O7[100005], S4[100005], S7[100005]; char s[100005]; int tooLarge() { for (int i = 0; i < n / 2; i++) { if (s[i] > '7') return -1; if (s[i] < '7') return i; } for (int i = n / 2; i < n; i++) { if (s[i] > '4') return -1; if (s[i] < '4') return i; } return n; } int main() { scanf("%s", s); n = strlen(s); if (n % 2 == 0) { d = tooLarge(); if (d < 0) n++; } if (n & 1) { n++; for (int i = 0; i * 2 < n; i++) printf("4"); for (int i = 0; i * 2 < n; i++) printf("7"); printf("\n"); return 0; } S7[0] = (s[0] == '7'); for (int i = 1; i < n; i++) S7[i] = S7[i - 1] + (s[i] == '7'); S4[0] = (s[0] == '4'); for (int i = 1; i < n; i++) S4[i] = S4[i - 1] + (s[i] == '4'); for (int i = n - 1; i >= 0; i--) { if (s[i] > '7') O7[i] = 0; else if (s[i] < '7') O7[i] = 1; else O7[i] = O7[i + 1]; } for (int i = n - 1; i >= 0; i--) { if (s[i] > '4') O4[i] = 0; else if (s[i] < '4') O4[i] = 1; else O4[i] = O4[i + 1]; } x = y = n / 2; int ok = 0; for (int i = 0; i < n; i++) { if (ok) { if (y) printf("4"), y--; else printf("7"), x--; } else if (!x) printf("4"), y--; else if (!y) printf("7"), x--; else { if (s[i] == '7') printf("7"), x--; else if (s[i] < '4') printf("4"), y--, ok = 1; else if (s[i] == '4') { int c = 7; if (S7[i + x] - S7[i] == x) { if (S4[n - 1] - S4[i + x] == y - 1) c = 4; else if (O4[i + x + 1]) c = 4; } else if (O7[i + 1]) c = 4; if (c == 7) printf("7"), x--, ok = 1; else printf("4"), y--; } else printf("7"), x--, ok = 1; } } printf("\n"); return 0; }
#include <bits/stdc++.h> using namespace std; char s[1000010]; string ans = ""; bool cal(int &a, int &b) { int x = -1; int y = -1; for (int j = ans.size() - 1; j >= 0; j--) { if (ans[j] == '7') { x = j; break; } } if (x == -1) { return false; } for (int j = x - 1; j >= 0; j--) { if (ans[j] == '4') { y = j; break; } } if (y == -1) { return false; } while (ans.size() - 1 != y) { if (ans[ans.size() - 1] == '4') { a++; } else if (ans[ans.size() - 1] == '7') { b++; } ans.pop_back(); } a++; ans.pop_back(); b--; ans += '7'; while (a > 0) { a--; ans += '4'; } while (b > 0) { b--; ans += '7'; } return true; } int main() { scanf("%s", s); int n = strlen(s); if (n % 2 == 1) { n++; for (int i = 0; i < n / 2; i++) { printf("4"); } for (int i = 0; i < n / 2; i++) { printf("7"); } puts(""); } else { int a = n / 2; int b = n / 2; bool ok = true; for (int i = 0; i < n && ok && (a + b) != 0; i++) { if (s[i] < '4') { while (a > 0) { a--; ans += '4'; } while (b > 0) { b--; ans += '7'; } break; } else if (s[i] == '4') { if (a != 0) { a--; ans += '4'; continue; } while (b > 0) { b--; ans += '7'; } break; } else if (s[i] < '7') { if (b == 0) { if (!cal(a, b)) { ok = false; } continue; } b--; ans += '7'; while (a > 0) { a--; ans += '4'; } while (b > 0) { b--; ans += '7'; } break; } else if (s[i] == '7') { if (b == 0) { if (!cal(a, b)) { ok = false; } continue; } b--; ans += '7'; } else { if (b == 0) { if (!cal(a, b)) { ok = false; } continue; } while (ans.size() > 0 && ans[ans.size() - 1] != '4') { b++; ans.pop_back(); } if (ans.size() == 0) { ok = false; continue; } a++; ans.pop_back(); b--; ans += '7'; while (a > 0) { a--; ans += '4'; } while (b > 0) { b--; ans += '7'; } } } if (ok) { printf("%s\n", ans.c_str()); } else { n += 2; for (int i = 0; i < n / 2; i++) { printf("4"); } for (int i = 0; i < n / 2; i++) { printf("7"); } puts(""); } } return 0; }
#include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 10; char aa[maxn], bb[maxn]; int a[maxn], b[maxn]; int main() { scanf("%s", aa); int len = strlen(aa); if (len % 2) { len++; for (int i = 1; i <= len / 2; i++) { printf("4"); } for (int i = 1; i <= len / 2; i++) { printf("7"); } return 0; } else { for (int i = 0; i < len / 2; i++) { bb[i] = '7'; } for (int i = len / 2; i < len; i++) { bb[i] = '4'; } int r = strcmp(aa, bb); if (r == 1) { len += 2; for (int i = 1; i <= len / 2; i++) { printf("4"); } for (int i = 1; i <= len / 2; i++) { printf("7"); } return 0; } else { int k = -1; int l = len / 2, r = len / 2; for (int i = 0; i < len; i++) { if (aa[i] == '4' && l > 0) { bb[i] = '4'; l--; } else if (aa[i] < '4' && l > 0) { bb[i] = '4'; l--; for (int j = 0; j <= i; j++) { printf("%c", bb[j]); } while (l > 0) { printf("4"); l--; } while (r > 0) { printf("7"); r--; } return 0; } else if (aa[i] == '7' && r > 0) { bb[i] = '7'; r--; } else if (aa[i] < '7' && r > 0) { bb[i] = '7'; r--; for (int j = 0; j <= i; j++) { printf("%c", bb[j]); } while (l > 0) { l--; printf("4"); } while (r > 0) { r--; printf("7"); } return 0; } else { for (int i = 0; i < len; i++) { if (b[i] > 0) { if (bb[i] == '4') { k = i; } } } bb[k] = '7'; int c = a[k] + 1; int d = b[k] - 1; for (int j = 0; j <= k; j++) { printf("%c", bb[j]); } while (c > 0) { c--; printf("4"); } while (d > 0) { d--; printf("7"); } return 0; } a[i] = l; b[i] = r; } for (int i = 0; i < len; i++) { printf("%c", bb[i]); } } } return 0; }
#include <bits/stdc++.h> using namespace std; int main() { string a; getline(cin, a); vector<int> b(a.size()); for (int i = 0; i < a.size(); ++i) b[i] = a[i] - '0'; bool big = false, back; int pos = 0, c4 = b.size() / 2; int c7 = c4; if (b.size() % 2 == 1) goto out; while (true) { back = false; if (pos == b.size()) break; if (big == true) { if (c4 > 0) b[pos] = 4, c4--; else b[pos] = 7, c7--; } else { if (b[pos] <= 4 && c4 > 0) { if (b[pos] < 4) big = true; b[pos] = 4; c4--; } else { if (b[pos] > 7 || c7 == 0) back = true; else { if (b[pos] < 7) big = true; b[pos] = 7, c7--; } } } if (back) { big = false; while (!big) { pos--; if (pos < 0) goto out; if (b[pos] == 4) c4++; if (b[pos] == 7) c7++; if (b[pos] < 4 && c4 > 0) { b[pos] = 4; c4--; big = true; } else if (b[pos] < 7 && c7 > 0) { b[pos] = 7; c7--; big = true; } } } pos++; } for (int i = 0; i < b.size(); ++i) cout << b[i]; return 0; out: for (int i = 0; i < b.size() / 2 + 1; ++i) cout << 4; for (int i = 0; i < b.size() / 2 + 1; ++i) cout << 7; }
#include <bits/stdc++.h> int tc(char a) { return a - int('0'); } using namespace std; int main() { string st; cin >> st; int n = st.size(); if (n & 1) { for (int i = 0; i < n / 2 + 1; i++) cout << '4'; for (int i = 0; i < n / 2 + 1; i++) cout << '7'; cout << endl; return 0; } bool convertir = 0; int cf = n / 2, cs = n / 2, uf = -1; string ans; for (int c = 0; c < n; c++) { int i = tc(st[c]); if (i < 4) { break; } if (i == 4) { if (cf == 0) { break; } if (cs > 0) uf = c; ans.push_back('4'); cf--; } else { if (i < 7) { if (cs == 0) { convertir = 1; break; } ans.push_back('7'); cs--; break; } if ((i == 7 && cs == 0) || i > 7) { convertir = 1; break; } ans.push_back('7'); cs--; } } if (convertir) { string ans1; if (uf != -1) { cf = cs = n / 2; for (int i = 0; i < uf; i++) { ans1.push_back(ans[i]); if (ans[i] == '4') { cf--; } else { cs--; } } ans1.push_back('7'); cs--; while (cf > 0) { ans1.push_back('4'); cf--; } while (cs > 0) { ans1.push_back('7'); cs--; } cout << ans1 << endl; return 0; } for (int i = 0; i < n / 2 + 1; i++) cout << '4'; for (int i = 0; i < n / 2 + 1; i++) cout << '7'; cout << endl; return 0; } while (cf > 0) { ans.push_back('4'); cf--; } while (cs > 0) { ans.push_back('7'); cs--; } cout << ans << endl; return 0; }
#include <bits/stdc++.h> char a[100004]; char b[100004]; int make(char b[], int len) { int i, j, k; while (1) { k = 0; for (i = 0; i < len; i++) if (b[i] == '7') k++; if (k == len / 2) return 0; else if (k < len / 2) { for (i = len - 1; i >= 0; i--) { if (b[i] == '4') k++; b[i] = '7'; if (k == len / 2) return 0; } } else { for (i = len - 1; i >= 0; i--) if (b[i] == '7') break; for (; i >= 0; i--) { if (b[i] == '4') break; else b[i] = '4'; } if (i < 0) return 1; b[i] = '7'; } } } int main() { int i, j, k, l; int len; scanf("%s", a); len = strlen(a); j = 0; if ((len % 2) == 1) { for (i = 0; i <= len / 2; i++) printf("4"); for (i = 0; i <= len / 2; i++) printf("7"); printf("\n"); } else { j = 0; l = 0; for (i = 0; i < len; i++) { if (a[i] < '4') { for (; i < len; i++) b[i] = '4'; } else if (a[i] == '4') { b[i] = '4'; } else if (a[i] < '7') { b[i] = '7'; for (i = i + 1; i < len; i++) b[i] = '4'; } else if (a[i] == '7') { b[i] = '7'; } else { for (k = i - 1; k >= 0; k--) if (b[k] == '4') break; if (k < 0) { l = 1; break; } else { b[k] = '7'; for (k = k + 1; k < len; k++) { b[k] = '4'; } i = len; } } } l = make(b, len); if (l == 1) { for (i = 0; i < len / 2 + 1; i++) printf("4"); for (i = 0; i < len / 2 + 1; i++) printf("7"); } else { b[len] = 0; printf("%s", b); } printf("\n"); } return 0; }
#include <bits/stdc++.h> using namespace std; const double pi = 4.0 * atan(1.0); int64_t num; queue<int64_t> qu; bool ifgood(int64_t x) { int64_t a, b; a = 0; b = 0; while (x) { if (x % 10 == 4) ++a; else if (x % 10 == 7) ++b; else return false; x /= 10; } if (a == b) return true; return false; } void bfs() { while (!qu.empty()) qu.pop(); int64_t a, b, k; a = 0; qu.push(a); while (!qu.empty()) { b = qu.front(); if (b > num && ifgood(b)) return; qu.pop(); k = b; b = b * 10 + 4; qu.push(b); k = k * 10 + 7; qu.push(k); } return; } int main() { cin >> num; if (ifgood(num)) cout << num << endl; else { bfs(); cout << qu.front() << endl; } return 0; }
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; const double pi = 3.141592653589793238462643383279; void solve() { long long num; cin >> num; long long dig = log10(num) + 1, i = 0; string ans = ""; while (i < dig / 2) ans += "47", i++; if (dig & 1) ans += "47"; sort((ans).begin(), (ans).end()); do { long long val = stoll(ans); if (val >= num) { cout << val; return; } } while (next_permutation(ans.begin(), ans.end())); ans += "47"; sort((ans).begin(), (ans).end()); do { long long val = stoll(ans); if (val >= num) { cout << val; return; } } while (next_permutation(ans.begin(), ans.end())); } signed main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); long long testCases = 1; while (testCases--) { solve(); cout << "\n"; } }
#include <bits/stdc++.h> using namespace std; int main() { string a; getline(cin, a); deque<int> b(a.size()); for (int i = 0; i < a.size(); ++i) b[i] = a[i] - '0'; bool big = false, back = false; int pos = 0, c4 = b.size() / 2; int c7 = c4; if (b.size() % 2 == 1) goto out; while (true) { back = false; if (pos == b.size()) break; if (big == true) { if (c4 > 0) b[pos] = 4, c4--; else b[pos] = 7, c7--; } else { if (b[pos] <= 4 && c4 > 0) { if (b[pos] < 4) big = true; b[pos] = 4; c4--; } else { if (b[pos] > 7 || c7 == 0) back = true; else { if (b[pos] < 7) big = true; b[pos] = 7, c7--; } } } if (back) { big = false; while (!big) { pos--; if (pos < 0) goto out; if (b[pos] == 4) c4++; if (b[pos] == 7) c7++; if (b[pos] < 4 && c4 > 0) { b[pos] = 4; c4--; big = true; } else if (b[pos] < 7 && c7 > 0) { b[pos] = 7; c7--; big = true; } } } pos++; } for (int i = 0; i < b.size(); ++i) cout << b[i]; return 0; out: for (int i = 0; i < b.size() / 2 + 1; ++i) cout << 4; for (int i = 0; i < b.size() / 2 + 1; ++i) cout << 7; return 0; }
#include <bits/stdc++.h> using namespace std; vector<long long> all; void backtrack(long long cur, int cnt4, int cnt7) { if (cur > 1e10) return; if (cnt4 == cnt7) all.push_back(cur); long long nxt = cur * 10 + 4; backtrack(nxt, cnt4 + 1, cnt7); nxt = cur * 10 + 7; backtrack(nxt, cnt4, cnt7 + 1); } int main() { int n; cin >> n; backtrack(0, 0, 0); sort(all.begin(), all.end()); cout << *lower_bound(all.begin(), all.end(), n) << "\n"; return 0; }
#include <bits/stdc++.h> using namespace std; const int MX = 32000000; const long long INF = 1E18 + 7; vector<int> pr; map<long long, vector<long long>> fct, dst; int t; long long n, k; bool chk[MX]; struct SNode { long long u, val; }; inline bool operator<(const SNode &a, const SNode &b) { return a.val < b.val; } priority_queue<SNode, vector<SNode>, less<SNode>> pq; void init() { for (int i = 2; i < MX; i++) if (!chk[i]) { pr.push_back(i); for (int j = i; j < MX / i; j++) chk[i * j] = true; } } void factorize(long long k) { if (fct.find(k) != fct.end()) return; vector<long long> &fact = fct[k]; long long t = k; for (int &v : pr) { if (1LL * v * v > t) break; if (t % v == 0) { fact.push_back(v); while (t % v == 0) t /= v; } } if (t > 1) fact.push_back(t); } void Dijkstra(long long k) { if (dst.find(k) != dst.end()) return; vector<long long> &dist = dst[k], &fact = fct[k]; long long pr = fact.front(); dist = vector<long long>(pr, INF); for (pq.push((SNode){0, dist[0] = 0}); !pq.empty();) { SNode u = pq.top(); pq.pop(); for (long long &v : fact) if (dist[(u.u + v) % pr] > u.val + v) pq.push((SNode){(u.u + v) % pr, dist[(u.u + v) % pr] = u.val + v}); while (!pq.empty() && dist[pq.top().u] < pq.top().val) pq.pop(); } } void Euclid(long long a, long long b, long long *x, long long *y) { if (a == 0) { *x = 0; *y = n; return; } long long x1, y1; Euclid(b % a, a, &x1, &y1); *x = y1 - b / a * x1; *y = x1; if (b != 0) { *y -= ((*x % b + b) % b - *x) / b * a; *x = (*x % b + b) % b; } } void find_ans() { factorize(k); if (fct[k].size() == 0) printf("NO\n"); else if (fct[k].size() == 1) printf("%s\n", (n % k == 0 ? "YES" : "NO")); else if (fct[k].size() == 2) { long long a = fct[k][0], b = fct[k][1], x, y; Euclid(a, b, &x, &y); printf("%s\n", (y >= 0 ? "YES" : "NO")); } else { Dijkstra(k); printf("%s\n", (n >= dst[k][n % dst[k].size()] ? "YES" : "NO")); } } int main() { init(); scanf("%d", &t); while (t--) { scanf("%lld%lld", &n, &k); find_ans(); } }
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10, M = 55, S = 31624000; long long T, n, k; namespace gp { bool isprime[S]; long long t = 0, prime[20 * N]; void getprime() { memset(isprime, 0, sizeof(isprime)); for (int i = 2; i < S; i++) { if (!isprime[i]) prime[++t] = i; for (int j = 1; j <= t && prime[j] * i < S; j++) isprime[prime[j] * i] = 1; } } } // namespace gp namespace gtp { map<int, int> has_worked; long long gs[M], fj[M][M], cnt = 0; long long mx, dis[N], vis[N], Q[N * 100]; vector<int> ans[M]; vector<pair<int, int> > e[N]; void build(long long z) { mx = fj[z][1]; for (int i = 0; i < mx; i++) { e[i].clear(); for (int j = 1; j <= gs[z]; j++) e[i].push_back(make_pair((i + fj[z][j]) % mx, fj[z][j])); } memset(dis, 127, sizeof(dis)); dis[0] = Q[1] = 0; int L = 0, R = 1; while (L < R) { int u = Q[++L]; vis[u] = 0; for (int i = 0; i < e[u].size(); i++) { long long v = e[u][i].first, c = e[u][i].second; if (dis[u] + c < dis[v]) { dis[v] = dis[u] + c; if (!vis[v]) vis[v] = 1, Q[++R] = v; } } } for (int i = 0; i < mx; i++) ans[z].push_back(dis[i]); } int go_to_prime(long long x) { cnt++; gs[cnt] = 0; for (int i = 1; gp::prime[i] * gp::prime[i] <= x && i <= gp::t; i++) if (x % gp::prime[i] == 0) { fj[cnt][++gs[cnt]] = gp::prime[i]; while (x % gp::prime[i] == 0) x /= gp::prime[i]; } if (x != 1) fj[cnt][++gs[cnt]] = x; if (gs[cnt] >= 3) build(cnt); return cnt; } } // namespace gtp void getans(int n, int z) { if (n < gtp::fj[z][1]) printf("NO\n"); else if (gtp::ans[z][n % gtp::fj[z][1]] <= n) printf("YES\n"); else printf("NO\n"); } long long fpow(long long a, long long b, long long p) { long long ans = 1; for (; b; b >>= 1, (a *= a) %= p) if (b & 1) (ans *= a) %= p; return ans; } int main() { gp::getprime(); for (scanf("%lld", &T); T; T--) { scanf("%lld%lld", &n, &k); int &z = gtp::has_worked[k]; if (!z) z = gtp::go_to_prime(k); if (k == 1) { printf("NO\n"); continue; } if (gtp::gs[z] == 1) { printf((n % k) ? "NO\n" : "YES\n"); } else if (gtp::gs[z] == 2) { long long fja = gtp::fj[z][1], fjb = gtp::fj[z][2]; long long tmp = fpow(fjb, fja - 2, fja) * (n % fja) % fja; printf((tmp * fjb <= n) ? "YES\n" : "NO\n"); } else getans(n, z); } }
#include <bits/stdc++.h> using namespace std; inline long long Qmul(const long long &x, const long long &y, const long long &X) { long long k = (long long)((1.0L * x * y) / (1.0L * X)), t = x * y - k * X; t -= X; while (t < 0) t += X; return t; } class MillerRabin { private: const int P[12] = {2, 3, 5, 7, 11, 13, 17, 19, 61, 2333, 4567, 24251}; inline long long Qpow(long long x, long long y, long long X) { long long t = 1; while (y) y & 1 && (t = Qmul(t, x, X)), x = Qmul(x, x, X), y >>= 1; return t; } inline bool Check(const long long &x, const int &p) { if (!(x % p) || Qpow(p % x, x - 1, x) ^ 1) return false; long long k = x - 1, t; while (!(k & 1)) { if ((t = Qpow(p % x, k >>= 1, x)) ^ 1 && t ^ (x - 1)) return false; if (!(t ^ (x - 1))) return true; } return true; } public: bool IsPrime(const long long &x) { if (x < 2) return false; for (int i = 0; i ^ 12; ++i) { if (!(x ^ P[i])) return true; if (!Check(x, P[i])) return false; } return true; } }; class PollardRho { private: long long ans; MillerRabin MR; inline long long gcd(const long long &x, const long long &y) { return y ? gcd(y, x % y) : x; } inline long long Work(const long long &x, const int &y) { int t = 0, k = 1; long long v0 = (1LL * rand() * rand() * rand() * rand() % (x - 1) + 1), v = v0, d, s = 1; while (1) { if (v = (Qmul(v, v, x) + y) % x, s = Qmul(s, ((v - v0) < 0 ? -(v - v0) : (v - v0)), x), !(v ^ v0) || !s) return x; if (++t == k) { if ((d = gcd(s, x)) ^ 1) return d; v0 = v, k <<= 1; } } } inline void Resolve(long long x, int t) { if (!(x ^ 1) || x <= ans) return; if (MR.IsPrime(x)) return (void)(ans < (x) && (ans = (x))); long long y = x; while ((y = Work(x, t--)) == x) ; while (!(x % y)) x /= y; Resolve(x, t), Resolve(y, t); } public: inline PollardRho() { srand(20050521); } inline long long GetMax(const long long &x) { return ans = 0, Resolve(x, 302627441), ans; } } P; int T, p, ans[10010]; long long pr[60], dis[100010], head[100010], o; struct edge { int to, link; long long w; } e[6000010]; struct node { int id; long long w; bool operator<(const node &b) const { return w > b.w; } }; priority_queue<node> Q; struct ask { long long n, k, id; bool operator<(const ask &b) const { return k < b.k; } } q[10010]; void add_edge(int u, int v, long long w) { e[++o].to = v, e[o].link = head[u], head[u] = o, e[o].w = w; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, a; long long t = exgcd(b, a % b, y, x); return y -= a / b * x, t; } int main() { scanf("%d", &T); for (int i = 1; i <= T; i++) scanf("%lld%lld", &q[i].n, &q[i].k), q[i].id = i; sort(q + 1, q + T + 1); for (int l = 1, r = 0; l <= T; l = r + 1) { while (r < T && q[r + 1].k == q[l].k) r++; long long k = q[l].k; if (k == 1) continue; p = 0; while (k > 1) { pr[++p] = P.GetMax(k); while (k % pr[p] == 0) k /= pr[p]; } if (p == 1) { for (int i = l; i <= r; i++) ans[q[i].id] = (q[i].n % pr[1] == 0); continue; } if (p == 2) { long long x, y; exgcd(pr[1], pr[2], x, y); x = (x % pr[2] + pr[2]) % pr[2]; for (int i = l; i <= r; i++) { long long b = q[i].n - Qmul(x, q[i].n, pr[2]) * pr[1]; ans[q[i].id] = (b >= 0); } continue; } int L = pr[p]; o = 0; for (int i = 1; i < L; i++) dis[i] = LLONG_MAX; for (int i = 0; i < L; i++) { head[i] = 0; for (int j = 1; j < p; j++) add_edge(i, (i + pr[j]) % L, pr[j]); } Q.push((node){0, dis[0] = 0}); while (Q.size()) { int u = Q.top().id; Q.pop(); for (int i = head[u]; i; i = e[i].link) if (e[i].w + dis[u] < dis[e[i].to]) { dis[e[i].to] = dis[u] + e[i].w; Q.push((node){e[i].to, dis[e[i].to]}); } } for (int i = l; i <= r; i++) ans[q[i].id] = (q[i].n >= dis[q[i].n % L]); } for (int i = 1; i <= T; i++) puts(ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; template <typename T> void chkmax(T &x, T y) { x = x > y ? x : y; } template <typename T> void chkmin(T &x, T y) { x = x > y ? y : x; } const long long INF = (1ull << 62); template <typename T> void read(T &x) { x = 0; bool f = 1; char ch; do { ch = getchar(); if (ch == '-') f = 0; } while (ch > '9' || ch < '0'); do { x = x * 10 + ch - '0'; ch = getchar(); } while (ch >= '0' && ch <= '9'); x = f ? x : -x; } template <typename T> void write(T x) { if (x < 0) x = ~x + 1, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } const int N = 1e4 + 5; const int P = 4e6 + 5; const int M = 31622776 + 5; int T; long long mx; bool ans[N]; vector<int> frac; int cnt, prime[P]; bool vis[M]; inline void init(int NN) { for (int i = 2; i <= NN; i++) { if (!vis[i]) { prime[++cnt] = i; } for (int j = 1; j <= cnt && i * prime[j] <= NN; j++) { vis[i * prime[j]] = true; if (i % prime[j] == 0) break; } } } inline void calc(long long x) { frac.clear(); for (int i = 1; 1ll * prime[i] * prime[i] <= x && i <= cnt; i++) { if (x % prime[i] == 0) { frac.push_back(prime[i]); while (x % prime[i] == 0) x /= prime[i]; } } if (x != 1) frac.push_back(x); } struct QUERY { long long n, k, id; } q[N]; inline bool cmp1(QUERY a, QUERY b) { return a.k < b.k; } inline bool cmp2(QUERY a, QUERY b) { return a.id < b.id; } inline long long exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long ret = exgcd(b, a % b, x, y); long long t = x; x = y; y = t - (a / b) * y; return ret; } inline void work(long long a, long long b, long long c, int id) { long long x, y, g; g = exgcd(a, b, x, y); if (c % g) { ans[id] = 0; return; } long long mod = b / g; x = (x % mod + mod) % mod; x = (c / g) % mod * x % mod; y = (c - x * a) / mod; ans[id] = y >= 0; } struct Node { long long u, d; Node(long long U = 0, long long D = 0) { u = U; d = D; } bool operator<(const Node &rhs) const { return d > rhs.d; } }; long long dis[P]; inline void dijkstra() { for (int i = 0; i < frac[0]; i++) dis[i] = INF; priority_queue<Node> q; q.push(Node(0, 0)); dis[0] = 0; while (!q.empty()) { Node t = q.top(); q.pop(); long long u = t.u, d = t.d; if (d != dis[u]) continue; for (int i = 1, sz = frac.size(); i < sz; i++) { long long v = (frac[i] + u) % frac[0], w = frac[i]; if (dis[u] != INF && dis[v] > dis[u] + w) { dis[v] = dis[u] + w; q.push(Node(v, dis[v])); } } } } int main() { read(T); for (int i = 1; i <= T; i++) { read(q[i].n); read(q[i].k); q[i].id = i; mx = max(mx, q[i].k); } init(sqrt(mx)); sort(q + 1, q + T + 1, cmp1); for (int i = 1; i <= T; i++) { int type = 0; if (q[i].k != q[i - 1].k) { frac.clear(); calc(q[i].k); if (frac.size() > 2) dijkstra(); } if (frac.size() == 0) { ans[q[i].id] = 0; continue; } else if (frac.size() == 1) ans[q[i].id] = (q[i].n % q[i].k == 0); else if (frac.size() == 2) work(frac[0], frac[1], q[i].n, q[i].id); else ans[q[i].id] = dis[q[i].n % frac[0]] <= q[i].n; ; } sort(q + 1, q + T + 1, cmp2); for (int i = 1; i <= T; i++) printf(ans[i] ? "YES\n" : "NO\n"); return 0; }
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; const int MAXT = (int)1e4 + 3; const int MAXN = (int)31700000; const int MAXP = (int)1e5 + 3; const int infint = (int)2e9; const long long inf = (long long)2e18; int T; long long n[MAXT], k[MAXT], dist[MAXP]; bool prime[MAXN], ans[MAXT]; vector<int> all_primes; void preprocess() { for (long long i = 2; i < MAXN; i++) if (prime[i] == 0) { all_primes.push_back(i); for (long long j = 1LL * i * i; j < MAXN; j += i) prime[j] = 1; } } vector<int> decp; void decompose(long long x) { decp.clear(); for (auto u : all_primes) if (u * u > x) break; else if (x % u == 0) { decp.push_back(u); while (x % u == 0) x /= u; } if (x > 1) decp.push_back(x); } void dijkstra(int mod) { set<pair<long long, int>> q; vector<long long> dis(mod, inf); q.insert({dis[0] = 0, 0}); while (!q.empty()) { auto u = *q.begin(); q.erase(q.begin()); for (long long v : decp) if (u.first + v < dis[(u.second + v) % mod]) q.erase({dis[(u.second + v) % mod], (u.second + v) % mod}), q.insert({dis[(u.second + v) % mod] = u.first + v, (u.second + v) % mod}); } for (int i = 0; i < mod; i++) dist[i] = dis[i]; } long long pwr(long long a, long long b, long long MOD) { return (b ? ((b & 1 ? a : 1) * (pwr((a * a) % MOD, b >> 1, MOD)) % MOD) % MOD : 1); } bool mika(long long x, long long a, long long b) { return (x / a) >= (pwr(a, b - 2, b) * (x % b)) % b; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); preprocess(); cin >> T; set<long long> diffk; for (int i = 0; i < T; i++) { cin >> n[i] >> k[i]; diffk.insert(k[i]); } for (auto u : diffk) { decompose(u); if (decp.size() == 0) continue; if (decp.size() == 1) { for (int i = 0; i < T; i++) if (k[i] == u) ans[i] = (n[i] % k[i] == 0); continue; } if (decp.size() == 2) { for (int i = 0; i < T; i++) if (k[i] == u) ans[i] = mika(n[i], decp[0], decp[1]); continue; } dijkstra(decp[0]); for (int i = 0; i < T; i++) if (k[i] == u) ans[i] = (n[i] >= dist[n[i] % decp[0]]); } for (int i = 0; i < T; i++) cout << ((ans[i] == 1) ? "YES" : "NO") << "\n"; }
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 7, M = 31700000; struct query { long long n, k; int id; } q[N]; int t, cnt, qs, qe, l, ans[N], vis[M], pri[M], que[N * 20]; long long p[N], f[N]; bool cmp(query a, query b) { return a.k < b.k; } long long qpow(long long a, long long b, long long mod) { long long ret = 1; while (b) { if (b & 1) ret = ret * a % mod; a = a * a % mod, b >>= 1; } return ret; } int main() { scanf("%d", &t); for (int i = 1; i <= t; i++) scanf("%lld%lld", &q[i].n, &q[i].k), q[i].id = i; sort(q + 1, q + t + 1, cmp); for (int i = 2; i < M; i++) { if (!vis[i]) pri[++cnt] = i; for (int j = 1; j <= cnt && i * pri[j] < M; j++) { vis[i * pri[j]] = 1; if (i % pri[j] == 0) break; } } for (int i = 1; i < M; i++) vis[i] = 0; for (int i = 1; i <= t; i++) { long long n = q[i].n, k = q[i].k; if (k != q[i - 1].k) { l = 0; for (int j = 1; k > 1; j++) { if (1ll * pri[j] * pri[j] > k) { p[++l] = k; break; } if (k % pri[j] == 0) { p[++l] = pri[j]; while (k % pri[j] == 0) k /= pri[j]; } } } k = q[i].k; if (!l) ans[q[i].id] = 0; else if (l == 1) ans[q[i].id] = n % k == 0; else if (l == 2) ans[q[i].id] = n % p[1] * qpow(p[2], p[1] - 2, p[1]) % p[1] * p[2] <= n; else { if (k != q[i - 1].k) { f[0] = 0; for (int j = 1; j <= p[1]; j++) f[j] = 1e18; qs = 0, qe = 1, vis[que[0] = 0] = 1; while (qs != qe) { int u = que[qs++]; for (int j = 2; j <= l; j++) { long long dis = f[u] + p[j]; int v = (u + p[j]) % p[1]; if (dis < f[v]) { f[v] = dis; if (!vis[v]) vis[que[qe++] = v] = 1; } } vis[u] = 0; } } ans[q[i].id] = f[q[i].n % p[1]] <= q[i].n; } } for (int i = 1; i <= t; i++) if (ans[i]) puts("YES"); else puts("NO"); }
#include <bits/stdc++.h> using namespace std; int t, dis[100000]; vector<int> primes; map<long long, vector<pair<long long, int>>> mp; bool vis[100000], composite[32000000], res[10000]; vector<pair<int, int>> adj[100000]; void modifiedEuclid(long long f1, long long f2, long long &m1, long long &m2) { if (f1 == 0) { m1 = 0; m2 = 1; return; } modifiedEuclid(f2 % f1, f1, m2, m1); m1 -= m2 * (f2 / f1); } void calcPrimes() { for (int i = (2); i < (32000000); i++) if (!composite[i]) { for (int j = 2 * i; j < 32000000; j += i) composite[j] = 1; primes.push_back(i); } } vector<long long> factorize(long long k) { vector<long long> res; for (const int p : primes) if (k % p == 0) { res.push_back(p); while (k % p == 0) k /= p; } if (k > 1) res.push_back(k); return res; } void solve(const long long k, const vector<pair<long long, int>> &v) { vector<long long> factors = factorize(k); if (((int)(factors).size()) == 0) return; else if (((int)(factors).size()) == 1) for (const pair<long long, int> p : v) res[p.second] = p.first % factors[0] == 0; else if (((int)(factors).size()) == 2) { long long mult0, mult1; modifiedEuclid(factors[0], factors[1], mult0, mult1); mult1 = ((mult1 % factors[0]) + factors[0]) % factors[0]; for (const pair<long long, int> p : v) res[p.second] = (mult1 * (p.first % factors[0]) % factors[0]) * factors[1] <= p.first; } else { for (int i = 0; i < (factors[0]); i++) adj[i].clear(); for (int i = (1); i < (((int)(factors).size())); i++) for (int j = 0; j < (factors[0]); j++) adj[j].push_back(make_pair((j + factors[i]) % factors[0], factors[i])); memset(dis, 0, factors[0] * sizeof(int)), memset(vis, 0, factors[0] * sizeof(bool)); priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; pq.push(make_pair(0, 0)); while (!pq.empty()) { pair<int, int> p = pq.top(); pq.pop(); if (vis[p.second]) continue; vis[p.second] = 1; dis[p.second] = p.first; for (const pair<int, int> next : adj[p.second]) pq.push(make_pair(dis[p.second] + next.second, next.first)); } for (const pair<long long, int> p : v) res[p.second] = p.first >= dis[p.first % factors[0]]; } } int main() { ios::sync_with_stdio(0); cin.tie(0); calcPrimes(); cin >> t; for (int i = 0; i < (t); i++) { long long n, k; cin >> n >> k; if (!mp.count(k)) mp.insert(make_pair(k, vector<pair<long long, int>>())); mp[k].push_back(make_pair(n, i)); } for (auto p : mp) solve(p.first, p.second); for (int i = 0; i < (t); i++) if (res[i]) cout << "YES\n"; else cout << "NO\n"; }
#include <bits/stdc++.h> using namespace std; map<long long, int> m; map<long long, int>::iterator it; const int times = 7; int number = 0; int n, low, high, mid, prime[100000], cnt_p, mi[100000], list[2][111111], cnt_list[2], pos[110000]; long long a[110000], xx, yy, ds; bool is[110000]; int ex[111111]; long long gcd(long long a, long long b) { long long tmp; while (b) { tmp = a % b; a = b; b = tmp; } return a; } void ex_gcd(long long a, long long n) { if (n == 0) { xx = 1; yy = 0; ds = a; return; } ex_gcd(n, a % n); long long tmp; tmp = xx; xx = yy; yy = tmp - (a / n) * yy; } const int S = 20; long long mult_mod(long long a, long long b, long long c) { a %= c; b %= c; long long ret = 0; while (b) { if (b & 1) { ret += a; ret %= c; } a <<= 1; if (a >= c) a %= c; b >>= 1; } return ret; } long long mult(long long a, long long n, long long mod) { if (n == 0) return 0; long long ret = mult(a, n / 2, mod); ret = (ret + ret) % mod; if (n % 2) ret = (ret + a) % mod; return ret; } long long pow_mod(long long x, long long n, long long mod) { if (n == 1) return x % mod; x %= mod; long long tmp = x; long long ret = 1; while (n) { if (n & 1) ret = mult_mod(ret, tmp, mod); tmp = mult_mod(tmp, tmp, mod); n >>= 1; } return ret; } bool check(long long a, long long n, long long x, long long t) { long long ret = pow_mod(a, x, n); long long last = ret; for (int i = 1; i <= t; i++) { ret = mult_mod(ret, ret, n); if (ret == 1 && last != 1 && last != n - 1) return true; last = ret; } if (ret != 1) return true; return false; } bool Miller_Rabin(long long n) { if (n < 2) return false; if (n == 2) return true; if ((n & 1) == 0) return false; long long x = n - 1; long long t = 0; while ((x & 1) == 0) { x >>= 1; t++; } for (int i = 0; i < S; i++) { long long a = rand() % (n - 1) + 1; if (check(a, n, x, t)) return false; } return true; } long long factor[100]; int tol, cnt; long long Pollard_rho(long long x, long long c) { long long i = 1, k = 2; long long x0 = rand() % x; long long y = x0; while (1) { i++; x0 = (mult_mod(x0, x0, x) + c) % x; long long d = gcd(abs(y - x0), x); if (d != 1 && d != x) return d; if (y == x0) return x; if (i == k) { y = x0; k += k; } } } void findfac(long long n) { if (n == 1) return; if (Miller_Rabin(n)) { m[n]++; return; } long long p = n; while (p >= n) p = Pollard_rho(p, rand() % (n - 1) + 1); findfac(p); findfac(n / p); } struct query { long long n, k; int id; bool operator<(const query &temp) const { return k < temp.k; } }; query qy[11111]; long long k_list[11111], dist[32333333]; bool ans[11111]; int cnt_k; struct pp { long long vl; int id; bool operator<(const pp &temp) const { if (vl == temp.vl) return id < temp.id; return vl < temp.vl; } }; map<pp, int> hs; map<pp, int>::iterator ht; pp now, u; long long power(long long a, long long n, long long mod) { if (n == 0) return 1; long long ret = power(a, n / 2, mod); ret = ret * ret % mod; if (n % 2) ret = ret * a % mod; return ret; } int main() { int i, j, s, p, q, t; scanf("%d", &t); for (i = 0; i < t; i++) { scanf("%lld%lld", &qy[i].n, &qy[i].k); qy[i].id = i; } sort(qy, qy + t); for (i = 0; i < t;) { for (j = i; j < t; j++) { if (qy[i].k != qy[j].k) break; } m.clear(); findfac(qy[i].k); cnt = 0; for (it = m.begin(); it != m.end(); it++) factor[cnt++] = it->first; if (cnt == 2) { for (s = i; s < j; s++) { long long vl = qy[s].n % factor[0], x = factor[1] % factor[0]; vl = vl * power(x, factor[0] - 2, factor[0]) % factor[0]; if (factor[1] * vl <= qy[s].n) ans[qy[s].id] = 1; else ans[qy[s].id] = 0; } } else if (cnt > 2) { for (s = 0; s < factor[0]; s++) dist[s] = 1e18 + 9; dist[0] = 0; hs.clear(); now.id = 0; now.vl = 0; hs[now]; while (hs.size()) { ht = hs.begin(); u = ht->first; hs.erase(u); if (u.vl > dist[u.id]) continue; for (s = 1; s < cnt; s++) { int id = (u.id + factor[s]) % factor[0]; long long vl = dist[u.id] + factor[s]; if (dist[id] > vl) { dist[id] = vl; now.id = id; now.vl = vl; hs[now]; } } } for (s = i; s < j; s++) { if (dist[qy[s].n % factor[0]] <= qy[s].n) ans[qy[s].id] = 1; else ans[qy[s].id] = 0; } } else { for (s = i; s < j; s++) ans[qy[s].id] = qy[s].n % factor[0] == 0; } i = j; } for (i = 0; i < t; i++) { if (ans[i]) puts("YES"); else puts("NO"); } return 0; }
#include <bits/stdc++.h> using namespace std; long long int t; map<long long int, vector<pair<long long int, long long int>>> qur; bool p[32000000]; vector<long long int> primes; vector<pair<long long int, long long int>> adj[1000005]; long long int dist[1000005]; set<pair<long long int, long long int>> s; string ans[100005]; long long int powmod(long long int a, long long int b, long long int m) { long long int an = 1; while (b > 0) { if ((b & 1)) an = (an * a) % m; b >>= 1; a = (a * a) % m; } return an; } vector<long long int> get_prime_list(long long int x) { vector<long long int> an; for (auto j : primes) { if (j * j > x) break; if (x % j == 0) { while (x % j == 0) x /= j; an.push_back(j); } } if (x > 1) an.push_back(x); if (an.size() == 0) an.push_back(2e18); return an; } void dij() { dist[0] = 0; s.insert({0, 0}); while (s.size()) { long long int i = s.begin()->second; long long int d = s.begin()->first; s.erase(s.begin()); for (auto j : adj[i]) { if (dist[j.first] > dist[i] + j.second) { auto h = s.find({dist[j.first], j.first}); if (h != s.end()) s.erase(h); dist[j.first] = dist[i] + j.second; s.insert({dist[j.first], j.first}); } } } } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> t; memset(p, 1, sizeof p); for (int i = 2; i <= 1e4; i++) { if (p[i]) { for (int j = i * i; j <= 32000000; j += i) { p[j] = 0; } } } for (int i = 2; i <= 32000000; i++) if (p[i]) primes.push_back(i); for (int i = 1; i <= t; i++) { long long int x, y; cin >> x >> y; qur[y].push_back({x, i}); } for (auto j : qur) { long long int k = j.first; vector<long long int> pl = get_prime_list(k); if (pl.size() == 1) { for (auto pn : j.second) { ans[pn.second] = (pn.first % pl[0] == 0 ? "YES\n" : "NO\n"); } } else if (pl.size() == 2) { for (auto pn : j.second) { if (pn.first >= ((pl[0] - 1) * (pl[1] - 1))) ans[pn.second] = "YES\n"; else { long long int x = pl[0]; long long int y = pl[1]; long long int z = powmod(y % x, x - 2, x); z = (z * (pn.first % x)) % x; if (pn.first >= z * y) ans[pn.second] = "YES\n"; else ans[pn.second] = "NO\n"; } } } else { for (int i = 0; i < pl[0]; i++) { dist[i] = 1e18; adj[i].clear(); } for (auto h : pl) { for (int i = 0; i < pl[0]; i++) { adj[i].push_back({(i + h) % pl[0], h}); } } dij(); for (auto pn : j.second) ans[pn.second] = (pn.first >= (dist[pn.first % pl[0]]) ? "YES\n" : "NO\n"); } } for (int i = 1; i <= t; i++) cout << ans[i]; return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const int M = 4e7 + 5; long long n, k; map<long long, int> IM; int tot = 0; vector<long long> s[N]; int ID(long long x) { if (IM.count(x)) return IM[x]; IM[x] = ++tot; return -1; } int p[M], cnt; bool vis[M]; void init() { for (int i = (2); i < (M - 2); i++) { if (!vis[i]) p[cnt++] = i; for (int j = 0; j < cnt && (long long)p[j] * i < M; j++) { vis[p[j] * i] = true; if (i % p[j] == 0) break; } } } vector<pair<int, long long> > g[N]; long long d[60][N]; void dij(long long *d) { priority_queue<pair<int, long long>, vector<pair<int, long long> >, greater<pair<int, long long> > > q; d[0] = 0; q.push(pair<int, long long>(0, 0)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = true; for (auto it : g[u]) { if (d[u] + it.second < d[it.first]) { d[it.first] = d[u] + it.second; q.push(pair<int, long long>(d[it.first], it.first)); } } } } long long qpow(long long x, long long n, long long p) { long long res = 1; while (n > 0) { if (n & 1) res = res * x % p; x = x * x % p; n >>= 1; } return res; } int main() { init(); int t; scanf("%d", &t); while (t--) { scanf("%I64d%I64d", &n, &k); if (n == 1 || k == 1) { printf("NO\n"); continue; } int id = ID(k); if (id == -1) { id = tot; long long tmp = k; for (int i = 0; (long long)p[i] * p[i] <= tmp; i++) { if (tmp % p[i] == 0) { while (tmp % p[i] == 0) tmp /= p[i]; s[id].push_back(p[i]); } } if (tmp > 1) s[id].push_back(tmp); if ((int)s[id].size() >= 3) { int mn = s[id][0]; for (int i = (0); i < (mn); i++) g[i].clear(), vis[i] = false, d[id][i] = 2e18; for (int i = (0); i < (mn); i++) for (auto v : s[id]) g[i].push_back(pair<int, long long>((v + i) % mn, v)); dij(d[id]); } } if ((int)s[id].size() == 1) { if (n % s[id][0] == 0) printf("YES\n"); else printf("NO\n"); } else if ((int)s[id].size() == 2) { long long inv1 = qpow(s[id][0], s[id][1] - 2, s[id][1]); long long b = n % s[id][1] * inv1 % s[id][1]; if (b == 0 || n / b >= s[id][0]) { printf("YES\n"); } else printf("NO\n"); } else if ((int)s[id].size() >= 3) { int mn = s[id][0]; if (d[id][(n % mn)] <= n) printf("YES\n"); else printf("NO\n"); } } return 0; }
#include <bits/stdc++.h> using namespace std; int pr[6000005], cnt, target[5000005], pre[5000005], last[100005], tot; bool flag[31622780], ans[50005], visited[100005], flag2; long long dis[100005], w[5000005]; vector<long long> v; struct query { long long n, k; int id; } c[50005]; bool cmp(query x, query y) { return x.k < y.k; } void exgcd(long long a, long long b, __int128 &x, __int128 &y) { if (!b) { x = 1; y = 0; return; } exgcd(b, a % b, y, x); y -= (a / b) * x; } void res(long long x) { v.clear(); for (int i = 1; i <= cnt; i++) if (!(x % pr[i])) { v.push_back(pr[i]); while (!(x % pr[i])) x /= pr[i]; } if (x != 1) v.push_back(x); } void add(int x, int y, long long z) { target[++tot] = y; pre[tot] = last[x]; last[x] = tot; w[tot] = z; } priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > q; void build() { tot = 0; for (int i = 0; i < v[0]; i++) dis[i] = 1e18, visited[i] = 0, last[i] = 0; for (int i = 0; i < v[0]; i++) for (int j = 1; j < v.size(); j++) add(i, (i + v[j]) % v[0], v[j]); dis[0] = 0; q.push(make_pair(0, 0)); while (!q.empty()) { while ((!q.empty()) && visited[q.top().second]) q.pop(); if (q.empty()) break; int now = q.top().second; q.pop(); for (int i = last[now]; i; i = pre[i]) { int tar = target[i]; if (dis[tar] > dis[now] + w[i]) dis[tar] = dis[now] + w[i], q.push(make_pair(dis[tar], tar)); } } } int main() { for (int i = 2; i <= 31622776; i++) { if (!flag[i]) pr[++cnt] = i; for (int j = 1; j <= cnt && i * pr[j] <= 31622776; j++) { flag[i * pr[j]] = 1; if (!(i % pr[j])) break; } } int t; scanf("%d", &t); for (int i = 1; i <= t; i++) scanf("%lld%lld", &c[i].n, &c[i].k), c[i].id = i; sort(c + 1, c + t + 1, cmp); for (int i = 1; i <= t; i++) { if (c[i].k == 1) continue; if (c[i].k != c[i - 1].k) flag2 = 0, res(c[i].k); if (v.size() == 1) ans[c[i].id] = ((c[i].n % v[0]) == 0); else if (v[0] <= 100000) { if (!flag2) build(), flag2 = 1; if (dis[c[i].n % v[0]] <= c[i].n) ans[c[i].id] = 1; } else { __int128 x, y, t; exgcd(v[0], v[1], x, y); if (x < 0) t = x / v[1] + 1, x += t * v[1], y -= t * v[0]; x *= c[i].n, y *= c[i].n; t = x / v[1]; x -= v[1] * t, y += v[0] * t; if (y >= 0) ans[c[i].id] = 1; } } for (int i = 1; i <= t; i++) if (ans[i]) puts("YES"); else puts("NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const long long INFF = 0x3f3f3f3f3f3f3f3fll; const long long M = 1e9 + 7; const long long maxn = 3e6 + 7; const double pi = acos(-1.0); const double eps = 0.00000001; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } template <typename T> inline T abs(T a) { return a > 0 ? a : -a; } template <typename T> inline T powMM(T a, T b) { T ret = 1; for (; b; b >>= 1ll, a = (long long)a * a % M) if (b & 1) ret = (long long)ret * a % M; return ret; } template <typename T> inline T powMM(T a, T b, T M) { T ret = 1; for (; b; b >>= 1ll, a = (long long)a * a % M) if (b & 1) ret = (long long)ret * a % M; return ret; } const int maxsqrtk = 3.5e7 + 7; int p[maxsqrtk], cntp; void initfactor() { int i, j; for (i = 2; i < maxsqrtk; i++) { if (!p[i]) p[cntp++] = i; for (j = 0; j < cntp; j++) { if (i * p[j] >= maxsqrtk) break; p[i * p[j]] = 1; if (i % p[j] == 0) break; } }; } const int maxk = 57; vector<long long> minvalue[maxk], factor[maxk]; long long kth[maxk], cntk; priority_queue<pair<long long, long long>, vector<pair<long long, long long> >, less<pair<long long, long long> > > Q; int TaskA() { int i, id; long long n, k; scanf("%I64d%I64d", &n, &k); for (id = 0; id < cntk; id++) if (kth[id] == k) break; if (cntk == id) { ; kth[cntk++] = k; for (i = 0; i < cntp; i++) { if (p[i] > k / p[i]) break; if (k % p[i] == 0) factor[id].push_back(p[i]); while (k % p[i] == 0) k /= p[i]; } if (k != 1) factor[id].push_back(k); for (long long v : factor[id]) ; ; if (factor[id].size() > 2) { ; long long p = factor[id][0]; minvalue[id].resize(p, INFF); minvalue[id][0] = 0; Q.push(make_pair(0ll, 0ll)); while (Q.size()) { auto now = Q.top(); Q.pop(); long long pos = now.second; if (minvalue[id][pos] != now.first) continue; for (long long len : factor[id]) if (len != p) { long long nxtpos = (pos + len) % p, nxtlen = minvalue[id][pos] + len; if (minvalue[id][nxtpos] > nxtlen) { minvalue[id][nxtpos] = nxtlen; Q.push(make_pair(minvalue[id][nxtpos], nxtpos)); } } } } } if (factor[id].size() == 0) { return 0 * puts("NO"); } if (factor[id].size() == 1) { if (n % factor[id][0] == 0) return 0 * puts("YES"); else return 0 * puts("NO"); } if (factor[id].size() == 2) { long long inv, a, p1 = factor[id][0], p2 = factor[id][1]; inv = powMM(p1, p2 - 2, p2); a = n % p2 * inv % p2; if (a * p1 <= n) return 0 * puts("YES"); else return 0 * puts("NO"); } else { if (minvalue[id][n % factor[id][0]] <= n) return 0 * puts("YES"); else return 0 * puts("NO"); } } int main() { int startTime = clock(); initfactor(); ; int T = 1; scanf("%d", &T); startTime = clock(); while (T--) TaskA(); ; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; long long powmod(long long a, long long b) { long long res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } const int N = 1e5 + 5; const long long INF = (long long)2e18; template <class T> inline void read(T &x) { x = 0; int c = getchar(), f = 1; for (; !isdigit(c); c = getchar()) if (c == 45) f = -1; for (; isdigit(c); c = getchar()) (x *= 10) += f * (c - '0'); } vector<int> pl, spf; int _; map<long long, vector<pair<long long, int>>> mapchik; long long dis[N]; bool ans[N]; inline unsigned long long mul_mod(unsigned long long a, unsigned long long b, unsigned long long mod) { assert(0 <= a && a < mod); assert(0 <= b && b < mod); if (mod < int(1e9)) return a * b % mod; unsigned long long k = (unsigned long long)((long double)a * b / mod); unsigned long long res = a * b - k * mod; if ((unsigned long long)res < 0) res += mod; return res; } void exgcd(long long a, long long b, long long &g, long long &x, long long &y) { if (!b) g = a, x = 1, y = 0; else { exgcd(b, a % b, g, y, x); y -= x * (a / b); } } void fast_sieve(int n) { pl.clear(); spf.assign(n, 0); for (int i = 2; i < n; ++i) { if (!spf[i]) { pl.push_back(i); spf[i] = i; } for (int j = 0; j < ((int)(pl).size()) && i * pl[j] < n; ++j) { int p = pl[j]; spf[i * p] = p; if (i % p == 0) break; } } } vector<long long> factorize(long long n) { vector<long long> u; for (int i = 0, t = sqrt(n + 1); pl[i] <= t; ++i) if (n % pl[i] == 0) { u.push_back(pl[i]); while (n % pl[i] == 0) n /= pl[i]; t = sqrt(n + 1); } if (n > 1) u.push_back(n); return u; } void solve(long long k, vector<pair<long long, int>> queries) { vector<long long> p = factorize(k); int n = ((int)(p).size()); if (n == 0) return; if (n == 1) { for (auto &q : queries) ans[q.second] = q.first % p[0] == 0; return; } if (n == 2) { long long a = p[0], b = p[1], g, x, y; exgcd(a, b, g, x, y); for (auto &q : queries) ans[q.second] = (((y % a * (q.first % a) % a + a) % a) * b) <= q.first; return; } for (int i = 0; i < p[0]; ++i) dis[i] = INF; dis[0] = 0; set<pair<long long, int>> pq; for (int i = 0; i < p[0]; ++i) pq.insert(make_pair(dis[i], i)); while (!pq.empty()) { int u = (*pq.begin()).second; pq.erase(pq.begin()); for (int i = 1; i < n; ++i) { int v = (u + p[i]) % p[0]; long long w = dis[u] + p[i]; if (w >= dis[v]) continue; pq.erase(make_pair(dis[v], v)); dis[v] = w; pq.insert(make_pair(dis[v], v)); } } for (auto &q : queries) ans[q.second] = dis[q.first % p[0]] <= q.first; } int main() { fast_sieve((int)35e6 + 5); read(_); for (int i = 0; i < _; ++i) { long long n, k; read(n); read(k); mapchik[k].push_back(make_pair(n, i)); } for (auto &it : mapchik) solve(it.first, it.second); for (int i = 0; i < _; ++i) if (ans[i]) puts("YES"); else puts("NO"); }
#include <bits/stdc++.h> using namespace std; const long long T = 1e4, SQ = 32e6, inf = 1e18 + 10; bool notprime[SQ], ans[T]; vector<int> primes; map<long long, vector<pair<long long, int> > > mapk; long long euclid(long long x, long long y, long long &z1, long long &z2) { if (y == 0) { z1 = 1; z2 = 0; return x; } long long g = euclid(y, x % y, z2, z1); z2 -= z1 * (x / y); return g; } vector<long long> tajzieh(long long k) { vector<long long> tmp; for (int i = 0; i < primes.size(); i++) { if (k % primes[i] == 0) { tmp.push_back(primes[i]); while (k % primes[i] == 0) k /= primes[i]; } } if (k > 1) tmp.push_back(k); return tmp; } void answer(long long k, vector<pair<long long, int> > q) { vector<long long> kprimes = tajzieh(k); if (kprimes.size() == 0) return; else if (kprimes.size() == 1) { for (auto query : q) { if (query.first % kprimes[0] == 0) ans[query.second] = 1; } return; } else if (kprimes.size() == 2) { long long z1 = 0, z2 = 0; long long x = kprimes[0], y = kprimes[1]; euclid(x, y, z1, z2); z2 %= x; if (z2 < 0) z2 += x; for (auto query : q) { long long tmp = (z2 * (query.first % x) % x) * y; if (tmp <= query.first) ans[query.second] = 1; } return; } int m = kprimes[0]; long long dis[m]; for (int i = 0; i < m; i++) dis[i] = inf; dis[0] = 0; set<pair<long long, long long> > dij; dij.insert({0, 0}); while (!dij.empty()) { int x = dij.begin()->second; dij.erase(dij.begin()); for (int i = 1; i < kprimes.size(); i++) { long long y = (x + kprimes[i]) % m; if (dis[x] + kprimes[i] < dis[y]) { dij.erase({dis[y], y}); dis[y] = dis[x] + kprimes[i]; dij.insert({dis[y], y}); } } } for (auto query : q) { if (dis[query.first % m] <= query.first) ans[query.second] = 1; } } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); for (int i = 2; i < SQ; i++) { if (notprime[i] == 0) { primes.push_back(i); for (int j = i * 2; j < SQ; j += i) notprime[j] = 1; } } int t; cin >> t; for (int i = 0; i < t; i++) { long long n, k; cin >> n >> k; mapk[k].push_back({n, i}); } for (auto i : mapk) answer(i.first, i.second); for (int i = 0; i < t; i++) { if (ans[i] == 1) cout << "YES\n"; else cout << "NO\n"; } }
#include <bits/stdc++.h> using namespace std; const int T = 11000; long long N[T], M[T]; int id[T]; bool ans[T]; namespace Factor { const int MAXN = 2000005; const int CERTAINTY = 8; const int RUNS = 20; int maxn, prn; int p[MAXN], prm[MAXN]; vector<long long> d; long long fac[110]; long long q[110], e[110]; long long a[1000000]; int cnt; using PLI = pair<long long, int>; inline long long mul(long long a, long long b, long long p) { if (p <= INT_MAX) return a * b % p; if (p <= 1LL << 40) return (((a * (b >> 20) % p) << 20) + (a * (b & ((1 << 20) - 1)))) % p; return (a * b - (long long)((long double)a / p * b + 1e-8) * p + p) % p; } void prime_sieve() { prn = 0; for (int i = 1; i <= maxn; i++) p[i] = i; for (int i = 2; i <= maxn; i++) { if (p[i] == i) prm[prn++] = i; for (int j = 0, x; j < prn && (x = i * prm[j]) <= maxn && prm[j] <= p[i]; j++) p[x] = prm[j]; } } void init(int mxn) { maxn = mxn; prime_sieve(); } long long modExp(long long a, long long n, long long p) { long long ret = 1; for (a = (a % p + p) % p; n; n >>= 1, a = mul(a, a, p)) if (n & 1) ret = mul(ret, a, p); return ret; } bool witness(long long a, long long n) { long long u = n - 1, x, y; int t = __builtin_ctzll(u); u >>= t; for (x = modExp(a, u, n); t--; x = y) { y = mul(x, x, n); if (y == 1 && x != 1 && x != n - 1) return 1; } return x != 1; } bool miller(long long n) { if (n < 2) return 0; if (n == 2) return 1; if (n <= maxn) return p[n] == n; if (~n & 1) return 0; for (int j = 0; j < CERTAINTY; j++) if (witness(rand() % (n - 1) + 1, n)) return 0; return 1; } void extEuclid(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } extEuclid(b, a % b, y, x); y -= (a / b) * x; } long long gcd(long long a, long long b) { long long ret = 1; while (a) { if ((~a & 1) && (~b & 1)) a >>= 1, b >>= 1, ret <<= 1; else if (~a & 1) a >>= __builtin_ctzll(a); else if (~b & 1) b >>= __builtin_ctzll(b); else { if (a < b) a ^= b ^= a ^= b; a -= b; } } return ret * b; } long long rho(long long n) { if (n <= 100) { for (int m = 2; m * m <= n; m++) if (n % m == 0) return m; } while (1) { int runs = RUNS; long long x = rand() % n, y, T = 1, *ly = a, *lx = ly; long long c = rand() % 10 + 3; x = mul(x, x, n) + c; *(ly++) = x; lx++; y = mul(x, x, n) + c; *(ly++) = y; while (x != y) { long long t = x - y; if (t < 0) t += n; long long z = mul(T, t, n); if (!z) return gcd(T, n); runs--; if (!runs) { runs = RUNS; z = gcd(z, n); if (z != 1) return z; } T = z; y = *(ly++) = mul(y, y, n) + c; y = *(ly++) = mul(y, y, n) + c; x = *(lx++); } } } void factorize(long long n) { for (int i = 0; i < cnt; i++) if (n % fac[i] == 0) n /= fac[i], fac[cnt++] = fac[i]; if (n <= maxn) { for (; n > 1; n /= p[n]) fac[cnt++] = p[n]; return; } if (n == 1) return; if (miller(n)) fac[cnt++] = n; else { long long x = rho(n); factorize(x), factorize(n / x); } } void norm() { sort(fac, fac + cnt); int _cnt = cnt; cnt = 0; for (int i = 0; i < _cnt; i++) { if (i == 0 || fac[i] != fac[i - 1]) q[cnt] = fac[i], e[cnt++] = 1; else e[cnt - 1]++; } } void dfs(long long x, int ptr) { if (ptr == cnt) d.push_back(x); else { dfs(x, ptr + 1); for (int i = 0; i < e[ptr]; i++) dfs(x *= q[ptr], ptr + 1); } } vector<long long> divisor(long long n) { cnt = 0; factorize(n); norm(); d.clear(); dfs(1, 0); return d; } vector<pair<long long, int> > factor(long long n) { cnt = 0; factorize(n); norm(); vector<pair<long long, int> > ret; for (int i = 0; i < cnt; i++) ret.push_back(make_pair(q[i], e[i])); return ret; } bool is_primitive(long long g, long long p) { assert(miller(p)); vector<PLI> D = factor(p - 1); for (int i = 0; i < D.size(); i++) if (modExp(g, (p - 1) / D[i].first, p) == 1) return 0; return 1; } int get_primitive(long long p) { assert(miller(p)); vector<PLI> D = factor(p - 1); for (int g = 1;; g++) { int flg = 1; for (int i = 0; flg && i < D.size(); i++) flg &= (modExp(g, (p - 1) / D[i].first, p) != 1); if (flg) return g; } } }; // namespace Factor using Factor::factor; long long dis[1 << 17]; bool chk[1 << 17]; int main() { int ncase; ios::sync_with_stdio(0); cin.tie(0), cout.tie(0); cin >> ncase; for (int i = 0; i < ncase; i++) cin >> N[i] >> M[i], id[i] = i; sort(id, id + ncase, [](int i, int j) { return M[i] < M[j]; }); Factor::init(1000000); for (int i = 0, j; i < ncase; i = j) { long long K = M[id[i]]; auto v = factor(K); vector<long long> p; for (auto t : v) p.push_back(t.first); auto check = [&](long long n, long long x, long long y) { if (n < 0) return 0; if (n >= (x - 1) * (y - 1)) return 1; long long a, b; Factor::extEuclid(x, y, a, b); a = (a % y + y) % y, b = (b % x + x) % x; a = Factor::mul(a, n % y, y); if (a * x <= n) return 1; return 0; }; auto build = [](vector<long long> p) { const long long inf = 1LL << 60; for (int k = 0; k < p[0]; k++) dis[k] = inf, chk[k] = 0; priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > Q; dis[0] = 0; Q.emplace(0, 0); while (!Q.empty()) { auto cur = Q.top(); Q.pop(); int mod = cur.second; if (chk[mod]) continue; for (auto x : p) { int now = (mod + x) % p[0]; if (dis[now] > dis[mod] + x) { dis[now] = dis[mod] + x; Q.emplace(dis[now], now); } } } }; if (p.size() >= 3) build(p); for (j = i; j < ncase && M[id[i]] == M[id[j]]; j++) { int k = id[j]; if (p.empty()) continue; else if (p.size() == 1) ans[k] = (N[k] % p[0] == 0); else if (p.size() == 2) { if (check(N[k], p[0], p[1])) ans[k] = 1; } else { if (dis[N[k] % p[0]] <= N[k]) ans[k] = 1; } } } for (int i = 0; i < ncase; i++) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const long long INF = (long long)1e9 * (long long)1e9; const int T = 1e4 + 10, SQ = 32 * 1e6, N = 1e5 + 10; long long n[T], k[T], dp[N]; int ans[T], q; vector<int> cheat; bitset<SQ> not_prime; long long power(long long a, long long b, long long mod) { if (b == 0) return 1; long long res = power(a, b / 2, mod); res *= res, res %= mod; if (b & 1) res *= a, res %= mod; return res; } inline void calculate(vector<long long> &v) { long long sz = v.size(), p = v[0]; for (int i = 1; i < p; i++) dp[i] = INF; set<pair<long long, int> > st; st.insert({0, 0}); while (st.size()) { auto r = st.begin()->second; st.erase(st.begin()); for (int i = 1; i < sz; i++) { int rp = ((long long)r + v[i]) % p; if (dp[rp] > dp[r] + v[i]) { st.erase({dp[rp], rp}); dp[rp] = dp[r] + v[i]; st.insert({dp[rp], rp}); } } } return; } inline void solve(int p) { long long y = k[p]; vector<long long> primes; for (auto i : cheat) { if (y % i == 0) { primes.push_back(i); while (y % i == 0) y /= i; } } if (y > 1) primes.push_back(y); int sz = primes.size(); if (sz >= 3) { calculate(primes); long long p0 = primes[0]; for (int i = 0; i < q; i++) { if (k[i] == k[p]) { long long x = n[i]; if (dp[x % p0] <= x) ans[i] = 1; else ans[i] = 0; } } return; } if (sz == 2) { for (int i = 0; i < q; i++) { if (k[i] == k[p]) { long long x = n[i]; long long p0 = primes[0], q0 = primes[1]; long long inv = power(q0, p0 - 2, p0); inv *= (x % p0); inv %= p0; if (q0 * inv <= n[i]) ans[i] = 1; else ans[i] = 0; } } return; } if (sz == 1) { for (int i = 0; i < q; i++) { if (k[i] == k[p]) { long long x = n[i]; if (x % primes[0] == 0) ans[i] = 1; else ans[i] = 0; } } return; } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> q; for (int i = 0; i < q; i++) cin >> n[i] >> k[i]; memset(ans, -1, sizeof ans); not_prime[0] = 1; for (long long i = 2; i < SQ; i++) if (!not_prime[i]) { cheat.push_back(i); for (long long j = i * i; j < SQ; j += i) not_prime[j] = true; } for (int i = 0; i < q; i++) if (ans[i] == -1) solve(i); for (int i = 0; i < q; i++) if (ans[i]) cout << "YES\n"; else cout << "NO\n"; }
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; const int M = 4e7; int pr[M / 10]; int prSz = 0; bool np[M]; long long mod; long long mul(long long a, long long b) { a %= mod; b %= mod; long long q = (long long)(1.0 * a * b / mod); long long r = a * b - q * mod; r %= mod; if (r < 0) r += mod; return r; } long long g(long long x) { long long ans = mul(x, x) + 1; if (ans >= mod) ans -= mod; return ans; } vector<long long> factorization(long long x) { vector<long long> res; for (int i = 0; i < prSz; i++) { if (x % pr[i]) continue; res.push_back(pr[i]); while (x % pr[i] == 0) x /= pr[i]; } if (x > 1) res.push_back(x); return res; } long long euclid(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = euclid(b, a % b, y, x); y -= x * (a / b); return d; } bool ans[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); for (int i = 2; i < M; ++i) if (!np[i]) { pr[prSz++] = i; for (long long j = 1ll * i * i; j < M; j += i) np[j] = 1; } map<long long, vector<pair<long long, int> > > mp; int itest; cin >> itest; for (int i = 0; i < itest; ++i) { long long n; cin >> n; long long k; cin >> k; mp[k].emplace_back(n, i); } for (auto it : mp) { vector<long long> vec = factorization(it.first); if (vec.size() == 0) continue; if (vec.size() == 1) { for (pair<long long, int> T : it.second) ans[T.second] = (T.first % vec[0] == 0); continue; } if (vec.size() == 2) { long long a, b; assert(euclid(vec[0], vec[1], a, b) == 1); b %= vec[0]; b += vec[0]; b %= vec[0]; for (pair<long long, int> T : it.second) ans[T.second] = (b * (T.first % vec[0]) % vec[0]) * vec[1] <= T.first; continue; } vector<long long> d(vec[0], 1e18); priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; pq.push(pair<long long, int>(0, 0)); d[0] = 0; while (pq.size()) { int u = pq.top().second; long long du = pq.top().first; pq.pop(); if (du != d[u]) continue; for (long long x : vec) { long long v = (x + u) % vec[0]; if (d[v] > du + x) { d[v] = du + x; pq.push(pair<long long, int>(d[v], v)); } } } for (pair<long long, int> T : it.second) ans[T.second] = (T.first >= d[T.first % vec[0]]); } for (int i = 0; i < itest; ++i) { if (ans[i]) cout << "YES\n"; else cout << "NO\n"; } }
#include <bits/stdc++.h> using namespace std; int pri[9] = {2, 3, 5, 7, 11, 13, 15, 17, 23}, cnt = 0; long long seed = 2001071221701002ll, ans[66]; inline long long rnd() { seed ^= (seed << 13ll); seed ^= (seed >> 17ll); seed ^= (seed << 5ll); return (seed < 0 ? -seed : seed); } inline void add(long long &a, long long b, long long p) { a = (a + b >= p ? a + b - p : a + b); } inline long long mul(long long a, long long b, long long p) { long long res = 0, tp = a; while (b) { if (b & 1ll) add(res, tp, p); add(tp, tp, p); b >>= 1ll; } return res; } inline long long qpow(long long a, long long b, long long mod) { a %= mod; long long res = 1, tp = a; while (b) { if (b & 1ll) res = mul(res, tp, mod); tp = mul(tp, tp, mod); b >>= 1ll; } return res; } inline long long gcd(long long a, long long b) { while (a % b) { long long t = a; a = b; b = t % b; } return b; } inline bool chk(long long n) { if (n <= 1) return false; long long now = n - 1; int cnt = 0, i, j; while (!(now & 1ll)) { now >>= 1ll; cnt++; } for (i = 0; i < 9; i++) { if (n == pri[i]) return true; if (n % pri[i] == 0) return false; long long m = qpow(pri[i], now, n), pre; for (j = 0; j < cnt; j++) { pre = m; m = mul(m, m, n); if (m == 1 && pre != 1 && pre != n - 1) return false; } if (m != 1) return false; } return true; } inline long long rho(long long n) { long long x = rnd() % (n - 1) + 1, y = x; long long c = rnd() % (n - 1) + 1, d; int i = 1, k = 2; while (1) { i++; x = mul(x, x, n) + c; if (x >= n) x -= n; if (x == y) return n; if (i > 4000000) return n; if (x > y) { d = gcd(x - y, n); } else { d = gcd(y - x, n); } if (d > 1 && d < n) return d; if (i == k) { y = x; k <<= 1; } } } void solve(long long n) { if (chk(n)) { ans[++cnt] = n; return; } long long p = rho(n); while (p == n) p = rho(n); solve(p); solve(n / p); } struct node { long long n, k; int id; } t[10005]; bool res[10005]; inline bool cmp(node a, node b) { return a.k < b.k; } long long dis[100005]; int o[66]; priority_queue<pair<long long, int> > q; inline void work() { int i, sz = ans[1]; for (i = 1; i <= cnt; i++) o[i] = ans[i] % sz; for (i = 0; i < sz; i++) dis[i] = (1ll << 60ll); dis[0] = 0; q.push(make_pair(0, 0)); while (!q.empty()) { int id = q.top().second; long long d = -q.top().first; q.pop(); if (dis[id] != d) continue; for (i = 2; i <= cnt; i++) { int np = (id + o[i] >= sz ? id + o[i] - sz : id + o[i]); if (dis[np] > dis[id] + ans[i]) { dis[np] = dis[id] + ans[i]; q.push(make_pair(-dis[np], np)); } } } } void exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return; } exgcd(b, a % b, y, x); y -= a / b * x; } int main() { srand(time(0)); int T, i; scanf("%d", &T); for (i = 1; i <= T; i++) { scanf("%lld%lld", &t[i].n, &t[i].k); t[i].id = i; } sort(t + 1, t + T + 1, cmp); for (i = 1; i <= T; i++) { if (t[i].k == 1) continue; if (t[i].k != t[i - 1].k) { cnt = 0; solve(t[i].k); sort(ans + 1, ans + cnt + 1); cnt = unique(ans + 1, ans + cnt + 1) - ans - 1; if (cnt >= 3) work(); } if (cnt == 1) { if (t[i].n % t[i].k == 0) res[t[i].id] = 1; continue; } if (cnt == 2) { long long x, y; exgcd(ans[1], ans[2], x, y); x = (x % ans[2] + ans[2]) % ans[2]; x = mul(x, t[i].n % ans[2], ans[2]); if (x * ans[1] <= t[i].n) res[t[i].id] = 1; continue; } int bel = t[i].n % ans[1]; if (t[i].n >= dis[bel]) res[t[i].id] = 1; } for (i = 1; i <= T; i++) puts(res[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const long long maxn = 100010, inf = 1e9; map<long long, long long> mp; struct poi { long long x; long long dis; }; priority_queue<poi> q; bool operator<(poi a, poi b) { return a.dis > b.dis; } struct edge { long long too; long long dis; long long pre; } e[maxn * 15]; struct que { long long pos; long long w; }; vector<que> v[maxn]; long long n, T, tot, K, tott, pcnt; long long last[maxn], ans[maxn], prime[10000000]; long long dist[maxn], pri[maxn], pos[maxn]; bool vis[32000000]; template <typename T> inline void read(T &k) { long long f = 1; k = 0; char c = getchar(); while (c < '0' || c > '9') c == '-' && (f = -1), c = getchar(); while (c <= '9' && c >= '0') k = k * 10 + c - '0', c = getchar(); k *= f; } inline long long power(long long a, long long b, long long mod) { long long ans = 1; for (; b; b >>= 1, a = 1ll * a * a % mod) if (b & 1) ans = 1ll * a * ans % mod; return ans; } inline void add(long long x, long long y, long long z) { e[++tot] = (edge){y, z, last[x]}; last[x] = tot; } inline void dij(long long s) { memset(dist, 0x3f, sizeof(dist)); dist[s] = 0; q.push((poi){s, dist[s]}); while (!q.empty()) { poi now = q.top(); q.pop(); if (now.dis != dist[now.x]) continue; for (long long i = last[now.x], too; i; i = e[i].pre) if (dist[too = e[i].too] > dist[now.x] + e[i].dis) { dist[too] = dist[now.x] + e[i].dis; q.push((poi){too, dist[too]}); } } } inline void getpri(long long n) { for (long long i = 2; i <= n; i++) { if (!vis[i]) prime[++pcnt] = i; for (long long j = 1; prime[j] * i <= n; j++) { vis[prime[j] * i] = 1; if (i % prime[j] == 0) break; } } } signed main() { read(T); getpri(sqrt(1e15)); for (long long i = 1; i <= T; i++) { read(n); read(K); if (!mp.count(K)) mp[K] = ++tott, pos[tott] = K; v[mp[K]].push_back((que){i, n}); } for (long long i = 1; i <= tott; i++) { long long x = pos[i]; long long cnt = 0; for (long long j = 1; 1ll * prime[j] * prime[j] <= x && j <= pcnt; j++) if (x % prime[j] == 0) { pri[++cnt] = prime[j]; while (x % prime[j] == 0) x /= prime[j]; } if (x != 1) pri[++cnt] = x; if (!cnt) for (long long j = 0; j < v[i].size(); j++) ans[v[i][j].pos] = 0; else if (cnt == 1) { for (long long j = 0; j < v[i].size(); j++) ans[v[i][j].pos] = (v[i][j].w % pri[1] == 0); } else if (cnt == 2) { long long inv = power(pri[1], pri[2] - 2, pri[2]); for (long long j = 0; j < v[i].size(); j++) ans[v[i][j].pos] = (1ll * pri[1] * (1ll * inv * (v[i][j].w % pri[2]) % pri[2]) <= v[i][j].w); } else { tot = 0; memset(last, 0, sizeof(last)); for (long long j = 0; j < pri[1]; j++) { for (long long k = 1; k <= cnt; k++) add(j, (j + pri[k]) % pri[1], pri[k]); } dij(0); for (long long j = 0; j < v[i].size(); j++) ans[v[i][j].pos] = (dist[v[i][j].w % pri[1]] <= v[i][j].w); } } for (long long i = 1; i <= T; i++) puts(ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; const int tmax = 1e4 + 42, MX = 32e6, K_MAX = 1e5 + 42; struct query { long long n, k; int id; }; bool cmp(query a, query b) { return a.k < b.k; } int t; query inp[tmax]; bitset<MX> is_prime; vector<int> primes; void prec() { int p = 2; while (p * p < MX) { for (int j = p * p; j < MX; j = j + p) is_prime[j] = 1; p++; while (is_prime[p]) p++; } for (int i = 2; i < MX; i++) if (is_prime[i] == 0) primes.push_back(i); } bool output[tmax]; vector<long long> current; long long dist[K_MAX]; priority_queue<pair<long long, int> > pq; long long my_pow(long long a, long long b, long long mod) { if (b == 0) return 1; long long mem = my_pow(a, b / 2, mod); if (b % 2) return mem * mem % mod * a % mod; return mem * mem % mod; } void solve(int l, int r) { current = {}; for (auto k : primes) { if (1LL * k * k > inp[l].k) break; if (inp[l].k % k == 0) { while (inp[l].k % k == 0) inp[l].k = inp[l].k / k; current.push_back(k); } } if (inp[l].k != 1) current.push_back(inp[l].k); if (current.size() == 0) return; if (current.size() == 1) { long long p = current[0]; for (int j = l; j <= r; j++) if (inp[j].n % p == 0) output[inp[j].id] = 1; return; } if (current.size() >= 3) { for (int j = 0; j < current[0]; j++) dist[j] = -1; pq.push({0, 0}); while (pq.size()) { pair<long long, int> now = pq.top(); pq.pop(); if (dist[now.second] != -1) continue; dist[now.second] = -now.first; for (int i = 1; i < current.size(); i++) pq.push({-(-now.first + current[i]), (-now.first + current[i]) % current[0]}); } for (int j = l; j <= r; j++) if (dist[inp[j].n % current[0]] <= inp[j].n) output[inp[j].id] = 1; } for (int j = l; j <= r; j++) if (inp[j].n % current[0] == 0 || inp[j].n % current[1] == 0) output[inp[j].id] = 1; else { long long b = my_pow(current[1] % current[0], current[0] - 2, current[0]); b = b * (inp[j].n % current[0]) % current[0]; if (b <= inp[j].n / current[1]) output[inp[j].id] = 1; } } int main() { prec(); scanf("%i", &t); for (int i = 1; i <= t; i++) { scanf("%lld%lld", &inp[i].n, &inp[i].k); inp[i].id = i; } sort(inp + 1, inp + t + 1, cmp); for (int i = 1; i <= t; i++) { int j = i; while (j <= t && inp[i].k == inp[j].k) j++; solve(i, j - 1); i = j - 1; } for (int i = 1; i <= t; i++) if (output[i]) printf("YES\n"); else printf("NO\n"); return 0; }
#include <bits/stdc++.h> const int N = 31623000; using namespace std; bool fl[N]; int pri[2000000], tot; void init() { for (int i = 2; i < N; i++) { if (!fl[i]) pri[++tot] = i; for (int j = 1; i * pri[j] < N; j++) { fl[i * pri[j]] = 1; if (i % pri[j] == 0) break; } } } long long mul(long long x, long long y, long long mo) { long long s = 0; x %= mo; y %= mo; for (; y; y /= 2, x = (x + x) % mo) if (y & 1) s = (s + x) % mo; return s; } long long power(long long x, long long y, long long mo) { long long s = 1; for (; y; y /= 2, x = mul(x, x, mo)) if (y & 1) s = mul(s, x, mo); return s; } struct que { long long n, x; int id; } q[10005]; bool cmp(que a, que b) { return a.x < b.x; } bool pd[100005]; bool ans[10005]; long long f[100005]; long long p[55]; void upd(long long x, int w) { for (int i = 0; i < w; i++) pd[i] = 0; for (int i = 0; i < w; i++) if (!pd[i]) { int k = i, j = (i + x) % w; for (; j != i;) { if (f[j] < f[k]) k = j; j = (j + x) % w; } j = k; for (;;) { pd[k] = 1; f[(k + x) % w] = min(f[(k + x) % w], f[k] + x); k = (k + x) % w; if (k == j) break; } } } void solve(int l, int r, long long k) { long long n, m = k; int cnt = 0; for (int i = 1; i <= tot; i++) { if (1ll * pri[i] * pri[i] > m) break; if (m % pri[i] == 0) { p[++cnt] = pri[i]; for (; m % pri[i] == 0; m /= pri[i]) ; } } if (m > 1) p[++cnt] = m; if (cnt == 0) { for (int i = l; i <= r; i++) ans[q[i].id] = (q[i].n == 0); } else if (cnt == 1) { for (int i = l; i <= r; i++) ans[q[i].id] = (q[i].n % k == 0); } else if (cnt == 2) { long long a = p[1], b = p[2], c, d; c = power(b, a - 2, a); for (int i = l; i <= r; i++) { long long n = q[i].n; d = mul(n, c, a); d = (d + a) % a; if (d <= n / b) ans[q[i].id] = 1; } } else { long long w = p[1]; for (int i = 1; i < p[1]; i++) f[i] = (1ll << 60); f[0] = 0; for (int i = 2; i <= cnt; i++) upd(p[i], w); for (int i = l; i <= r; i++) if (f[q[i].n % w] <= q[i].n) ans[q[i].id] = 1; } } int T; int main() { init(); scanf("%d", &T); for (int i = 1; i <= T; i++) { scanf("%lld%lld", &q[i].n, &q[i].x); q[i].id = i; } sort(q + 1, q + T + 1, cmp); for (int i = 1, j; i <= T; i = j + 1) { for (j = i; j != T && q[j + 1].x == q[i].x; j++) ; solve(i, j, q[i].x); } for (int i = 1; i <= T; i++) puts(ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; template <typename T> inline void read(T& x) { char c = getchar(); bool f = false; for (x = 0; !isdigit(c); c = getchar()) { if (c == '-') { f = true; } } for (; isdigit(c); c = getchar()) { x = x * 10 + c - '0'; } if (f) { x = -x; } } template <typename T, typename... U> inline void read(T& x, U&... y) { read(x), read(y...); } const int N = 1e5 + 10, INF = 0x7fffffff, MAX = 5e7, M = MAX + 10; int cnt, p, T, tot, gg; long long fc[55][20], V[20]; int dis[N], pri[M]; bool vis[N], sign[M], ANS[10010]; map<long long, int> used; struct Query { long long n, k; int id; } PB[10010]; bool cmp(Query A, Query B) { return A.k < B.k; } struct Data { int u, dis; Data() {} Data(int a, int b) : u(a), dis(b) {} bool operator<(const Data& rhs) const { return dis > rhs.dis; } }; void Prepare() { for (int i = 2; i <= MAX; ++i) { if (!sign[i]) pri[++gg] = i; for (int j = 1; i * pri[j] <= MAX; ++j) { sign[i * pri[j]] = true; if (i % pri[j] == 0) break; } } } void Solve(long long x) { tot = 0; if (x == 1) return; if (used[x]) { int t = used[x]; for (int i = 1; i <= fc[t][0]; ++i) V[++tot] = fc[t][i]; return; } used[x] = ++cnt; for (int i = 1; i <= gg && pri[i] <= x; ++i) if (x % pri[i] == 0) { fc[cnt][++fc[cnt][0]] = pri[i]; V[++tot] = pri[i]; while (x % pri[i] == 0) x /= pri[i]; } if (x != 1) fc[cnt][++fc[cnt][0]] = x, V[++tot] = x; } void Dijkstra() { priority_queue<Data> Q; for (int i = 0; i < V[1]; ++i) vis[i] = false, dis[i] = INF; dis[0] = 0; Q.push(Data(0, 0)); while (!Q.empty()) { Data A = Q.top(); Q.pop(); int u = A.u; if (vis[u]) continue; vis[u] = true; for (int i = 2; i <= tot; ++i) { int v = (u + V[i]) % V[1]; if (dis[v] > dis[u] + V[i]) { dis[v] = dis[u] + V[i]; Q.push(Data(v, dis[v])); } } } } long long Pow(long long a, long long k, long long P) { long long res = 1; for (long long i = k; i; i >>= 1) { if (i & 1) res = res * a % P; a = a * a % P; } return res; } int main() { Prepare(); read(T); for (int i = 1; i <= T; ++i) read(PB[i].n, PB[i].k), PB[i].id = i; sort(PB + 1, PB + T + 1, cmp); long long t; for (int c = 1; c <= T; ++c) { int Next = c; while (PB[Next + 1].k == PB[c].k) ++Next; Solve(PB[c].k); if (tot > 1) t = Pow(V[2], V[1] - 2, V[1]); if (tot > 2) Dijkstra(); for (int j = c; j <= Next; ++j) { if (tot == 0) { ANS[PB[j].id] = false; continue; } if (tot == 1) { ANS[PB[j].id] = PB[j].n % PB[j].k == 0; continue; } if (tot == 2) { long long x = PB[j].n % V[1] * t % V[1]; ANS[PB[j].id] = x * V[2] <= PB[j].n; } else ANS[PB[j].id] = dis[PB[j].n % V[1]] <= PB[j].n; } c = Next; } for (int i = 1; i <= T; ++i) puts(ANS[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const long long maxn = 4e6 + 5; long long pri[maxn], cnt; bool p[maxn * 9]; long long P; void init() { for (long long i = 2; i <= P; ++i) { if (!p[i]) pri[++cnt] = i; for (long long j = 1; j <= cnt && i * pri[j] <= P; ++j) { p[i * pri[j]] = 1; if (i % pri[j] == 0) break; } } } long long a[50], tot; long long dis[100005]; vector<pair<int, int>> e[100005]; priority_queue<pair<long long, long long>> Q; void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } exgcd(b, a % b, y, x); y -= a / b * x; } long long gcd(long long a, long long b) { if (!b) return a; return gcd(b, a % b); } map<long long, long long> mp; long long owo = 0; vector<pair<long long, long long>> q[100]; long long ans[10010]; int main() { ios::sync_with_stdio(0); cin.tie(0), cout.tie(0); long long T; cin >> T; P = sqrt(1e15 + 0.5); init(); for (long long _ = 1; _ <= T; ++_) { long long n, k; cin >> n >> k; if (!mp[k]) mp[k] = ++owo; q[mp[k]].emplace_back(n, _); } for (auto xs : mp) { long long k, u; tie(k, u) = xs; tot = 0; for (long long i = 1; i <= cnt && 1ll * pri[i] * pri[i] <= k; ++i) { if (k % pri[i] == 0) { a[++tot] = pri[i]; while (k % pri[i] == 0) k /= pri[i]; } } if (k != 1) a[++tot] = k; if (k == 1) { for (auto x : q[u]) { long long n, id; tie(n, id) = x; ans[id] = 0; } } else if (tot == 1) { for (auto x : q[u]) { long long n, id; tie(n, id) = x; if (n % a[1]) ans[id] = 0; else ans[id] = 1; } } else if (tot == 2) { long long x, y; exgcd(a[1], a[2], x, y); x = (x % a[2] + a[2]) % a[2]; for (auto xx : q[u]) { long long n, id; tie(n, id) = xx; long long tx = n % a[2] * x % a[2]; long long ty = (n - a[1] * tx) / a[2]; if (ty < 0) ans[id] = 0; else ans[id] = 1; } } else { memset(dis, 0x3f, sizeof dis); for (long long i = 0; i < a[1]; ++i) e[i].clear(); for (long long i = 2; i <= tot; ++i) for (long long j = 0; j < a[1]; ++j) e[j].emplace_back((j + a[i]) % a[1], a[i]); dis[0] = 0; Q.emplace(0, 0); while (!Q.empty()) { long long u; long long d; tie(d, u) = Q.top(); Q.pop(); d = -d; if (d != dis[u]) continue; for (auto x : e[u]) { long long v, w; tie(v, w) = x; if (dis[v] > dis[u] + w) { dis[v] = dis[u] + w; Q.emplace(-dis[v], v); } } } for (auto x : q[u]) { long long n, id; tie(n, id) = x; if (dis[n % a[1]] <= n) ans[id] = 1; else ans[id] = 0; } } } for (long long i = 1; i <= T; ++i) { cout << (ans[i] ? "YES" : "NO") << '\n'; } return 0; }
#include <bits/stdc++.h> using namespace std; int t, cnt, ans, pr[32000010], tot; bool p[32000010], an[100010]; long long f[100010], inf = 1e18 + 7, d[100]; struct qu { long long n, m; int id; bool operator<(qu const &a) const { return m < a.m; } } q[100010]; struct node { int s; long long v; node(int _s = 0, long long _v = 0) { s = _s, v = _v; } bool operator<(node const &a) const { return v > a.v; } }; priority_queue<node> qe; long long mul(long long a, long long b, long long c) { a %= c; b %= c; long long k = 0; while (b) { if (b & 1) k = (k + a) % c; a = 2 * a % c; b >>= 1; } return k; } long long pw(long long i, long long k, long long mm) { long long a = 1; while (k) { if (k & 1) a = mul(a, i, mm); i = mul(i, i, mm); k >>= 1; } return a; } void solve(long long mi) { int i, s, a, b, k; long long vv = mi; node j; for (i = 1, cnt = 0; i <= tot && pr[i] * pr[i] <= vv; i++) if (!(vv % pr[i])) { while (!(vv % pr[i])) vv /= pr[i]; d[++cnt] = pr[i]; } if (vv > 1) d[++cnt] = vv; if (cnt < 3) return; for (i = 0; i < d[1]; i++) f[i] = inf; f[0] = 0; qe.push(node(0, 0)); while (!qe.empty()) { j = qe.top(); qe.pop(); if (j.v > f[s = j.s]) continue; for (i = 2; i <= cnt; i++) { k = (s + d[i]) % d[1]; if (f[k] > f[s] + d[i]) qe.push(node(k, f[k] = f[s] + d[i])); } } } int main() { int i, s, a, b; long long x, y, c, j, k; for (i = 2; i < 32000010; i++) { if (!p[i]) pr[++tot] = i; for (s = 1; s <= tot && i * pr[s] < 32000010; s++) { p[i * pr[s]] = 1; if (!(i % pr[s])) break; } } scanf("%d", &t); for (i = 1; i <= t; i++) scanf("%I64d%I64d", &q[i].n, &q[i].m), q[i].id = i; sort(q + 1, q + 1 + t); for (i = 1; i <= t; i = s) { solve(q[i].m); s = i; while (s <= t && q[s].m == q[i].m) { if (!cnt) an[q[s].id] = 0; if (cnt == 1) an[q[s].id] = !(q[s].n % d[1]); if (cnt == 2) { k = mul(q[s].n, j = pw(d[2], d[1] - 2, d[1]), d[1]); k = ((k % d[1]) + d[1]) % d[1]; an[q[s].id] = (k <= (q[s].n / d[2])); } if (cnt >= 3) an[q[s].id] = (q[s].n >= f[q[s].n % d[1]]); s++; } } for (i = 1; i <= t; i++) { if (an[i]) printf("YES\n"); else printf("NO\n"); } return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 10003, M = 31622800, K = 1952000, L = 100003; template <typename T> inline void read(T &x) { int ch = getchar(); x = 0; bool f = false; for (; ch < '0' || ch > '9'; ch = getchar()) f |= ch == '-'; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; if (f) x = -x; } template <typename T> inline bool chmin(T &a, const T &b) { if (a > b) return a = b, 1; return 0; } int t, m, pri[K], cnt, tot, head[L], to[L << 2], nxt[L << 2]; bool ans[N]; struct Query { int id; long long n, k; inline bool operator<(const Query &o) const { return k < o.k || k == o.k && id < o.id; } } q[N]; bitset<M> notp; long long p[N], dis[L], w[L << 2], x, y, d; void init(int m) { notp[0] = notp[1] = 1; for (register int i = 2; i <= m; ++i) { if (!notp[i]) pri[tot++] = i; for (register int j = 0; j < tot && i * pri[j] <= m; ++j) { notp[i * pri[j]] = true; if (!(i % pri[j])) break; } } } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; d = a; return; } exgcd(b, a % b, y, x); y -= a / b * x; } void add(int a, int b, long long c) { to[++cnt] = b; nxt[cnt] = head[a]; head[a] = cnt; w[cnt] = c; } priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; int main() { read(t); init(M - 1); for (register int i = 1; i <= t; ++i) { read(q[i].n); read(q[i].k); q[i].id = i; } sort(q + 1, q + t + 1); for (register int i = 1; i <= t; ++i) { if (q[i].k == 1) continue; if (q[i].k != q[i - 1].k) { m = 0; long long tmp = q[i].k; for (register int j = 0; j < tot && (long long)pri[j] * pri[j] <= tmp; ++j) if (!(tmp % pri[j])) { p[m++] = pri[j]; tmp /= pri[j]; while (!(tmp % pri[j])) tmp /= pri[j]; } if (tmp > 1) p[m++] = tmp; if (m > 2) { memset(head, 0, sizeof head); cnt = 0; for (register int i = 1; i < m; ++i) for (register int j = 0; j < p[0]; ++j) add(j, (j + p[i]) % p[0], p[i]); memset(dis, 0x3f, sizeof dis); dis[0] = 0; pq.push(make_pair(0ll, 0)); while (!pq.empty()) { pair<long long, long long> tmp = pq.top(); pq.pop(); if (tmp.first != dis[tmp.second]) continue; int u = tmp.second; for (register int i = head[u]; i; i = nxt[i]) if (chmin(dis[to[i]], dis[u] + w[i])) pq.push(make_pair(dis[to[i]], to[i])); } } else if (m == 2) { exgcd(p[0], p[1], x, y); x = (x % p[1] + p[1]) % p[1]; } } if (m > 2) ans[q[i].id] = dis[q[i].n % p[0]] <= q[i].n; else if (m == 2) { if (q[i].n % d) continue; q[i].n /= d; long long tmp = (q[i].n % p[1] * x % p[1] + p[1]) % p[1]; ans[q[i].id] = tmp * p[0] <= q[i].n; } else ans[q[i].id] = !(q[i].n % p[0]); } for (register int i = 1; i <= t; ++i) puts(ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; map<long long, vector<pair<long long, int>>> mapchik; const long long INF = (long long)2e18; const int M = (int)35e6; const int PSZ = (int)3e6; bool p[M]; int pr[PSZ]; int prSz; const int N = (int)1e5 + 10; bool ANS[N]; long long dist[N]; long long euclid(long long x, long long y, long long &k, long long &l) { if (y == 0) { k = 1; l = 0; return x; } long long g = euclid(y, x % y, l, k); l -= k * (x / y); return g; } vector<long long> factorize(long long x) { vector<long long> res; for (int i = 0; i < prSz; i++) { if (x % pr[i]) continue; res.push_back(pr[i]); while (x % pr[i] == 0) x /= pr[i]; } if (x > 1) res.push_back(x); return res; } void solve(long long k, vector<pair<long long, int>> queries) { vector<long long> a = factorize(k); int n = (int)a.size(); if (n == 0) { return; } else if (n == 1) { for (pair<long long, int> q : queries) { ANS[q.second] = q.first % a[0] == 0; } return; } else if (n == 2) { long long r = 0, s = 0; if (euclid(a[0], a[1], r, s) != 1) throw; s %= a[0]; if (s < 0) s += a[0]; for (pair<long long, int> q : queries) { long long z = ((s * (q.first % a[0])) % a[0]) * a[1]; ANS[q.second] = z <= q.first; } return; } int m = a[0]; for (int i = 0; i < m; i++) dist[i] = INF; dist[0] = 0; set<pair<long long, int>> setik; for (int i = 0; i < m; i++) setik.insert(make_pair(dist[i], i)); while (!setik.empty()) { int v = setik.begin()->second; setik.erase(setik.begin()); for (int i = 1; i < n; i++) { int u = (v + a[i]) % m; long long w = dist[v] + a[i]; if (w >= dist[u]) continue; setik.erase(make_pair(dist[u], u)); dist[u] = w; setik.insert(make_pair(dist[u], u)); } } for (pair<long long, int> q : queries) { ANS[q.second] = dist[q.first % m] <= q.first; } } int main() { for (int i = 2; i < M; i++) p[i] = 1; for (int x = 2; x < M; x++) { if (!p[x]) continue; pr[prSz++] = x; for (int y = 2 * x; y < M; y += x) p[y] = 0; } int t; scanf("%d", &t); for (int i = 0; i < t; i++) { long long n, k; scanf("%lld%lld", &n, &k); mapchik[k].push_back(make_pair(n, i)); } for (auto it : mapchik) { solve(it.first, it.second); } for (int i = 0; i < t; i++) if (ANS[i]) printf("YES\n"); else printf("NO\n"); return 0; }
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector") #pragma GCC target("avx") #pragma GCC target("sse,sse2,sse3,sse4,popcnt,abm,mmx,avx,tune=native") using namespace std; template <typename T> int sgn(T val) { return (T(0) < val) - (val < T(0)); } long long read() { long long x = 0; bool q = 0; char c = getchar(); while (!isdigit(c)) q |= (c == '-'), c = getchar(); while (isdigit(c)) x = (x << 1) + (x << 3) + c - '0', c = getchar(); return q ? -x : x; } void print(long long x, char q = '\n') { if (x < 0) putchar('-'), x = -x; if (x == 0) putchar('0'); stack<char> s; s.push(q); while (x > 0) s.push(x % 10 + '0'), x /= 10; while (!s.empty()) putchar(s.top()), s.pop(); } string read_s() { string s; char c = getchar(); while (c == ' ' || c == '\t' || c == '\n') c = getchar(); while (c != ' ' && c != '\t' && c != '\n') s += c, c = getchar(); return s; } void print_s(string s, char q = '\n') { for (char c : s) putchar(c); putchar(q); } char read_c() { char c = getchar(); while (c == ' ' || c == '\t' || c == '\n') c = getchar(); return c; } long long mul(long long a, long long b, long long mod) { bool q = (a < 0) ^ (b < 0); a = abs(a) % mod, b = abs(b) % mod; long long ret = 0; while (b) { if (b & 1) { ret += a; if (ret >= mod) ret -= mod; } a += a; if (a >= mod) a -= mod; b >>= 1; } if (q) ret = (-ret) % mod; return ret; } long long ext_gcd(long long a, long long b, long long &x, long long &y) { long long xx = y = 0, yy = x = 1; while (b) { int q = a / b, t = b; b = a % b; a = t; t = xx; xx = x - q * xx; x = t; t = yy; yy = y - q * yy; y = t; } return a; } bool solve(long long a, long long b, long long c, long long &x, long long &y, long long &z) { z = ext_gcd(a, b, x, y); if (c % z != 0) return 0; long long dx = c / a; c -= dx * a; long long dy = c / b; c -= dy * b; x = dx + mul(x, c / z, b); y = dy + mul(y, c / z, a); z = abs(z); return 1; } const int MAX_N = 50000002; vector<long long> a[204]; map<long long, int> pt; map<long long, int> M; bool pr[MAX_N]; int main() { int id = 0, idx = 60; for (int i = 2; i * i < MAX_N; i++) { if (!pr[i]) { for (int j = i * i; j < MAX_N; j += i) { pr[j] = 1; } } } vector<long long> p; for (int i = 2; i < MAX_N; i++) if (!pr[i]) p.push_back(i); int t = read(); while (t--) { long long n = read(), k = read(); if (k == 1) { puts("NO"); continue; } int _; if (pt.count(k)) _ = pt[k]; else { _ = pt[k] = id; vector<long long> &z = a[id++]; long long x = k; for (long long u : p) if (x % u == 0) { while (x % u == 0) x /= u; z.push_back(u); } if (x > 1) z.push_back(x); } vector<long long> z = a[_]; if (z.size() == 1) puts(n % z.front() == 0 ? "YES" : "NO"); else if (z.size() == 2) { long long x, y, w; if (!solve(z[0], z[1], n, x, y, w)) puts("NO"); else { z[0] /= w; z[1] /= w; if (x < 0) { x = -x; long long t = x / z[1] + (x % z[1] != 0 ? 1 : 0); if (y - z[0] * t < 0) puts("NO"); else puts("YES"); } else if (y < 0) { y = -y; long long t = y / z[0] + (y % z[0] != 0 ? 1 : 0); if (x - z[1] * t < 0) puts("NO"); else puts("YES"); } else { puts("YES"); } } } else { if (n < z[0]) { puts("NO"); continue; } if (M.count(k)) _ = M[k]; else { _ = M[k] = idx; vector<long long> &D = a[idx++]; D.assign(z[0], (long long)2e18); D[0] = 0; map<long long, long long> q; q[0] = 0; while (q.size()) { long long x = (*q.begin()).first, d = (*q.begin()).second; q.erase(x); for (long long u : z) { long long xx = (x + u) % z[0], dd = d + u; if (dd > 2e18) continue; if (D[xx] > dd) D[xx] = q[xx] = dd; } } } vector<long long> &D = a[_]; if (D[n % z[0]] > n) puts("NO"); else puts("YES"); } } }
#include <bits/stdc++.h> using namespace std; const int MAXN = 100005; const int MAXM = 50000007; const long long INF = 0x3f3f3f3f3f3f3f3f; template <typename T> inline void read(T &AKNOI) { T x = 0, flag = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') flag = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } AKNOI = flag * x; } int Q, ans[MAXN]; struct Query { long long n, k; int id; bool operator<(const Query &rhs) const { return k < rhs.k; } } q[MAXN]; int pr[MAXM], pcnt, pfac[MAXN], tot; bool notp[MAXM]; void sieve(int m) { for (int i = 2; i <= m; ++i) { if (!notp[i]) { pr[++pcnt] = i; } for (int j = 1; j <= pcnt && i * pr[j] <= m; ++j) { notp[i * pr[j]] = 1; if (i % pr[j] == 0) break; } } } void extend_gcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return; } extend_gcd(b, a % b, y, x); y -= a / b * x; } long long dis[MAXN]; bool vis[MAXN]; priority_queue<pair<long long, int> > pq; void Dijkstra(int p) { for (int i = 0; i < p; ++i) { dis[i] = INF; vis[i] = 0; } dis[0] = 0; pq.push(make_pair(0, 0)); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = 2; i <= tot; ++i) { int v = (pfac[i] + u) % p; if (dis[v] > dis[u] + pfac[i]) { dis[v] = dis[u] + pfac[i]; pq.push(make_pair(-dis[v], v)); } } } } void init() { sieve(50000000); read(Q); for (int i = 1; i <= Q; ++i) { read(q[i].n); read(q[i].k); q[i].id = i; } sort(q + 1, q + Q + 1); } void solve() { for (int i = 1, j = 1; i <= Q; i = j + 1) { for (j = i; j + 1 <= Q && q[j + 1].k == q[i].k; ++j) ; long long tmp = q[i].k; tot = 0; for (int t = 1; t <= pcnt && 1LL * pr[t] * pr[t] <= tmp; ++t) { if (tmp % pr[t]) continue; pfac[++tot] = pr[t]; while (tmp % pr[t] == 0) { tmp /= pr[t]; } } if (tmp > 1) { pfac[++tot] = tmp; } if (tot == 1) { for (int t = i; t <= j; ++t) { ans[q[t].id] = (q[t].n % q[t].k == 0); } } else if (tot == 2) { long long x, y; extend_gcd(pfac[1], pfac[2], x, y); long long ia = (x + pfac[2]) % pfac[2]; for (int t = i; t <= j; ++t) { ans[q[t].id] = (pfac[1] * (q[t].n % pfac[2] * ia % pfac[2]) <= q[t].n); } } else if (tot >= 3) { Dijkstra(pfac[1]); for (int t = i; t <= j; ++t) { ans[q[t].id] = (dis[q[t].n % pfac[1]] <= q[t].n); } } } for (int i = 1; i <= Q; ++i) { puts(ans[i] ? "YES" : "NO"); } } int main() { init(); solve(); return 0; }
#include <bits/stdc++.h> using namespace std; long long f[100100]; int pr[31600000], t, p[100100], l, que[100100 * 20], head, tail; bool bz[31600000], ans[100100], vis[100100]; struct qry { long long n, k, w; } q[100100]; bool cmp(qry a, qry b) { return a.k < b.k; } long long qpow(long long a, long long i, long long mo) { long long r = 1; for (; i; i >>= 1, a = a * a % mo) if (i & 1) r = r * a % mo; return r; } int main() { scanf("%d", &t); for (int i = 1; i <= t; i++) scanf("%I64d %I64d", &q[i].n, &q[i].k), q[i].w = i; sort(q + 1, q + t + 1, cmp); for (int i = 2; i < 31600000; i++) { if (!bz[i]) pr[++pr[0]] = i; for (int j = 1; j <= pr[0] && i * pr[j] < 31600000; j++) { bz[i * pr[j]] = 1; if (i % pr[j] == 0) break; } } for (int i = 1; i <= t; i++) { long long n = q[i].n, k = q[i].k; if (k != q[i - 1].k) { l = 0; for (int j = 1; k > 1; j++) { if ((long long)pr[j] * pr[j] > k) { p[++l] = k; break; } if (k % (long long)pr[j] == 0) { p[++l] = pr[j]; while (k % (long long)pr[j] == 0) k /= (long long)pr[j]; } } } k = q[i].k; if (l == 0) ans[q[i].w] = 0; else if (l == 1) ans[q[i].w] = n % k == 0; else if (l == 2) { long long b = n % (long long)p[1] * qpow(p[2], p[1] - 2, p[1]) % (long long)p[1]; ans[q[i].w] = b * (long long)p[2] <= n; } else { if (k != q[i - 1].k) { for (int j = 1; j <= p[1]; j++) f[j] = 1e18; f[0] = 0; for (head = 0, vis[que[tail = 1] = 0] = 1; head ^ tail;) { int x, j; for (x = que[++head], j = 2; j <= l; j++) { long long F = f[x] + p[j]; int v = (x + p[j]) % p[1]; if (F < f[v]) { f[v] = F; if (!vis[v]) vis[que[++tail] = v] = 1; } } vis[x] = 0; } } ans[q[i].w] = f[q[i].n % p[1]] <= q[i].n; } } for (int i = 1; i <= t; i++) if (ans[i]) printf("YES\n"); else printf("NO\n"); return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 100005; const long long inf = (long long)2e18; int ed, T, ans[10005], fir[N]; long long que[66], dis[N]; struct Edge { int v, nxt; long long w; } e[N * 66]; struct Info { long long n, k; int id; bool operator<(const Info& x) const { return k < x.k; } } qry[10005]; void adde(int x, int y, long long z) { e[++ed].v = y; e[ed].w = z; e[ed].nxt = fir[x]; fir[x] = ed; } namespace Prim { const int maxn = 31700000; int np, p[maxn / 10]; bool vis[maxn]; void init() { int i, j; for (i = 2; i < maxn; ++i) { if (!vis[i]) p[++np] = i; for (j = 1; j <= np && i * p[j] < maxn; ++j) { vis[i * p[j]] = 1; if (i % p[j] == 0) break; } } } int cut(long long n, long long* q) { int i, t = 0; for (i = 1; i <= np && p[i] <= n; ++i) if (n % p[i] == 0) { for (; n % p[i] == 0; n /= p[i]) ; q[++t] = p[i]; } if (n != 1) q[++t] = n; return t; } } // namespace Prim long long exgcd(long long a, long long b, long long& x, long long& y) { if (!b) return x = 1, y = 0, a; long long d = exgcd(b, a % b, y, x); return y -= a / b * x, d; } int solve2(long long a, long long b, long long n) { assert(a > 1 && b > 1); long long x, y; long long d = exgcd(a, b, x, y); if (n % d) return 0; a /= d; b /= d; n /= d; x = (x % b * (n % b) % b + b) % b; y = (n - a * x) / b; return y >= 0; } struct P { long long d; int x; P() {} P(long long _d, int _x) { d = _d, x = _x; } bool operator<(const P& t) const { return d > t.d; } }; priority_queue<P> Q; void dijkstra(int n) { int i; for (; Q.size(); Q.pop()) ; for (i = 1; i < n; ++i) dis[i] = inf; Q.push(P(0, 0)); for (; Q.size();) { P t = Q.top(); Q.pop(); if (dis[t.x] < t.d) continue; for (i = fir[t.x]; i; i = e[i].nxt) if (dis[e[i].v] > dis[t.x] + e[i].w) { Q.push(P(dis[e[i].v] = dis[t.x] + e[i].w, e[i].v)); } } } int main() { int i, j; Prim::init(); scanf("%d", &T); for (i = 1; i <= T; ++i) scanf("%I64d%I64d", &qry[i].n, &qry[i].k), qry[i].id = i; sort(qry + 1, qry + 1 + T); int l, r; for (l = 1; l <= T; l = r) { for (r = l; r <= T && qry[r].k == qry[l].k; ++r) ; int cnt = Prim::cut(qry[l].k, que); if (cnt == 1) for (i = l; i < r; ++i) ans[qry[i].id] = qry[i].n % que[1] == 0; if (cnt == 2) for (i = l; i < r; ++i) ans[qry[i].id] = solve2(que[1], que[2], qry[i].n); if (cnt >= 3) { assert(que[1] < 100000); for (ed = i = 0; i < que[1]; ++i) fir[i] = 0; for (i = 0; i < que[1]; ++i) { for (j = 2; j <= cnt; ++j) { adde(i, (i + que[j]) % que[1], que[j]); } } dijkstra(que[1]); for (i = l; i < r; ++i) ans[qry[i].id] = dis[qry[i].n % que[1]] <= qry[i].n; } } for (i = 1; i <= T; ++i) printf("%s\n", ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx") using std::abs; using std::cerr; using std::cin; using std::cout; using std::map; using std::max; using std::min; using std::pair; using std::set; using std::string; using std::swap; using std::vector; using ll = long long; using uint = unsigned int; using pii = pair<int, int>; using pll = pair<ll, ll>; using ull = unsigned long long; using ld = long double; template <typename T> void _dbg(const char *_s, T _h) { cerr << _s << " = " << _h << "\n"; } template <typename T, typename... Ts> void _dbg(const char *_s, T _h, Ts... _t) { int _b = 0; while (((_b += *_s == '(') -= *_s == ')') != 0 || *_s != ',') cerr << *_s++; cerr << " = " << _h << ","; _dbg(_s + 1, _t...); } struct init { init() { cin.tie(0); std::iostream::sync_with_stdio(0); cout << std::fixed << std::setprecision(10); cerr << std::fixed << std::setprecision(5); } ~init() {} } init; const int MAXN = 35e6; const ll INF = 2e18; int lp[MAXN]; int pr[2146775]; int cpr = 0; void calc_primes(int n) { for (int i = 2; i <= n; ++i) { if (!lp[i]) { lp[i] = i; pr[cpr++] = i; } for (int j = 0; j < cpr && pr[j] <= lp[i] && i * pr[j] <= n; ++j) lp[i * pr[j]] = pr[j]; } } vector<ll> fct(ll k) { ll x = k; vector<ll> res; for (int j = 0; j < cpr && pr[j] * 1LL * pr[j] <= k; ++j) { if (x % pr[j] == 0) { res.emplace_back(pr[j]); while (x % pr[j] == 0) x /= pr[j]; } } if (x ^ 1LL) res.emplace_back(x); return res; } ll mulmod(ll a, ll b, ll m) { int sign = 1; if (a < 0) { a = -a; sign = -sign; } if (b < 0) { b = -b; sign = -sign; } a %= m; b %= m; ull q = (ld)a * (ld)b / (ld)m; ull r = a * b - q * m; return (sign * (ll)(((r + 5 * m) % m + m) % m)) % m; } template <typename T> T extgcd(T a, T b, T &x, T &y) { if (a == 0) { x = 0; y = 1; return b; } T p = b / a; T g = extgcd(b - p * a, a, y, x); x -= p * y; return g; } template <typename T> bool diophant(T a, T b, T c, T &x, T &y, T &g) { if (a == 0 && b == 0) { if (c == 0) { x = y = g = 0; return true; } return false; } if (a == 0) { if (c % b == 0) { x = 0; y = c / b; g = abs(b); return true; } return false; } if (b == 0) { if (c % a == 0) { x = c / a; y = 0; g = abs(a); return true; } return false; } g = extgcd(a, b, x, y); if (c % g != 0) { return false; } T dx = c / a; c -= dx * a; T dy = c / b; c -= dy * b; x = dx + mulmod(x, c / g, b); y = dy + mulmod(y, c / g, a); g = abs(g); return true; } int32_t main() { calc_primes(MAXN - 1); ; int t; cin >> t; map<ll, vector<ll>> dv, dts; while (t--) { ll n, k; cin >> n >> k; if (dv.find(k) == dv.end()) dv[k] = fct(k); vector<ll> ps = dv[k]; for (int i : ps) ; if (ps.empty()) cout << "NO\n"; else if (ps.size() == 1) { if (n % k == 0) cout << "YES\n"; else cout << "NO\n"; } else if (ps.size() == 2) { ll x, y, g; if (!diophant(ps[0], ps[1], n, x, y, g)) cout << "NO\n"; else { ; if (x < 0) { int bg = ps[1] / g; int need = (-x + bg - 1) / bg; x += bg * need; y -= ps[0] / g * need; } if (y < 0) { int ag = ps[0] / g; int need = (-y + ag - 1) / ag; y += ag / need; x -= ps[1] / g * need; } if (x >= 0 && y >= 0) cout << "YES\n"; else cout << "NO\n"; } } else { ; if (dts.find(k) == dts.end()) { vector<ll> d(ps[0], INF); d[0] = 0; set<pll> s; s.insert({0, 0}); while (!s.empty()) { pll v = *s.begin(); s.erase(s.begin()); for (int i = 1; i < ps.size(); ++i) { ll to = (v.second + ps[i]) % ps[0]; ll len = ps[i]; if (d[to] > v.first + len) { s.erase({d[to], to}); s.insert({d[to] = v.first + len, to}); } } } dts[k] = d; } if (n >= dts[k][n % ps[0]]) cout << "YES\n"; else cout << "NO\n"; } } return 0; }
#include <bits/stdc++.h> using namespace std; inline void read(int &x) { int v = 0, f = 1; char c = getchar(); while (!isdigit(c) && c != '-') c = getchar(); if (c == '-') f = -1; else v = (c & 15); while (isdigit(c = getchar())) v = (v << 1) + (v << 3) + (c & 15); x = v * f; } inline void read(long long &x) { long long v = 0ll, f = 1ll; char c = getchar(); while (!isdigit(c) && c != '-') c = getchar(); if (c == '-') f = -1; else v = (c & 15); while (isdigit(c = getchar())) v = (v << 1) + (v << 3) + (c & 15); x = v * f; } inline void readc(char &x) { char c; while (((c = getchar()) == ' ') || c == '\n') ; x = c; } inline void writes(string s) { puts(s.c_str()); } inline void writeln() { writes(""); } inline void writei(int x) { if (x < 0) { putchar('-'); x = abs(x); } if (!x) putchar('0'); char a[25]; int top = 0; while (x) { a[++top] = (x % 10) + '0'; x /= 10; } while (top) { putchar(a[top]); top--; } } inline void writell(long long x) { if (x < 0) { putchar('-'); x = abs(x); } if (!x) putchar('0'); char a[25]; int top = 0; while (x) { a[++top] = (x % 10) + '0'; x /= 10; } while (top) { putchar(a[top]); top--; } } long long n, m, i, j, t, pc, f[100005], ans[100005]; int p[31600005]; bitset<31600005> np; map<long long, vector<pair<long long, long long> > > mp; vector<long long> d; long long exgcd(long long x, long long y, long long &a, long long &b) { if (!y) { a = 1; b = 0; return x; } long long g = exgcd(y, x % y, b, a); b -= x / y * a; return g; } long long mul(long long x, long long y, long long mod) { long long z = 0; while (y) { if (y & 1) (z += x) %= mod; (x += x) %= mod; y /= 2; } return z; } void gd(long long x) { d.clear(); long long i; for (i = 1; i <= pc; i++) { if (x % p[i] == 0) { d.push_back(p[i]); while (x % p[i] == 0) x /= p[i]; } } if (x > 1) d.push_back(x); } void solve(long long x, vector<pair<long long, long long> > qrys) { if (x == 1) return; int i; gd(x); if (d.size() == 1) { for (__typeof((qrys).begin()) it = (qrys).begin(); it != (qrys).end(); it++) { if (it->first % x == 0) ans[it->second] = 1; } return; } if (d.size() == 2) { for (__typeof((qrys).begin()) it = (qrys).begin(); it != (qrys).end(); it++) { long long x, y; long long g = exgcd(d[0], d[1], x, y); long long mod = d[1] / g; if (it->first % g != 0) continue; x %= mod; x += mod; x %= mod; x = mul(x, it->first / g, mod); if (x * d[0] <= it->first) ans[it->second] = 1; } return; } memset((f), (0x16), (sizeof((f)))); f[0] = 0; priority_queue<pair<long long, long long> > pq; pq.push(make_pair(0, 0)); while (!pq.empty()) { long long x = pq.top().second, y = -pq.top().first; pq.pop(); if (f[x] != y) continue; for (i = 1; i < d.size(); i++) { long long y = (x + d[i]) % d[0], z = f[x] + (x + d[i]) / d[0]; if (f[y] > z) { f[y] = z; pq.push(make_pair(-z, y)); } } } for (__typeof((qrys).begin()) it = (qrys).begin(); it != (qrys).end(); it++) { if (f[it->first % d[0]] <= it->first / d[0]) ans[it->second] = 1; } } int main() { for ((i) = (2); (i) <= (31600000); (i)++) { if (!np[i]) { p[++pc] = i; } for (j = 1; j <= pc; j++) { if (i * p[j] > 31600000) break; np[i * p[j]] = 1; if (i % p[j] == 0) break; } } read(t); for (((i)) = (1); ((i)) <= ((t)); ((i))++) { long long x, y; read(x); read(y); mp[y].push_back(make_pair(x, i)); } for (__typeof((mp).begin()) it = (mp).begin(); it != (mp).end(); it++) { solve(it->first, it->second); } for (((i)) = (1); ((i)) <= ((t)); ((i))++) { if (ans[i]) puts("YES"); else puts("NO"); } return 0; }
#include <bits/stdc++.h> template <typename T> inline void read(T &x) { x = 0; char c = getchar(); while (!isdigit(c)) c = getchar(); while (isdigit(c)) x = x * 10 + (c ^ 48), c = getchar(); } using namespace std; int t; int pri[4001000], pcnt; bool depri[35001000]; inline void init() { depri[1] = true; const int up = 3.5e7; for (int i = 2; i <= up; ++i) { if (!depri[i]) pri[++pcnt] = i; for (int j = 1; j <= pcnt && i * pri[j] <= up; ++j) { depri[i * pri[j]] = true; if (i % pri[j] == 0) break; } } } struct TC { int id; long long n, k; inline bool operator<(const TC &a) const { return k < a.k; } } tc[10100]; bool ans[10100]; long long p[100]; int ptot; inline void Div(long long x) { ptot = 0; for (int i = 1; 1ll * pri[i] * pri[i] <= x; ++i) { if (x % pri[i] == 0) { p[++ptot] = pri[i]; while (x % pri[i] == 0) x /= pri[i]; } } if (x != 1) p[++ptot] = x; } struct node { int cur; long long val; inline bool operator<(const node &a) const { return val > a.val; } }; priority_queue<node> q; long long dis[100100]; bool vis[100100]; inline void Update(long long k) { Div(k); if (ptot <= 2) return; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[0] = 0; q.push((node){0, 0}); while (!q.empty()) { int cur = (q.top()).cur; q.pop(); if (vis[cur]) continue; vis[cur] = true; for (int i = 2; i <= ptot; ++i) { int to = (cur + p[i]) % p[1]; long long val = (cur + p[i]) / p[1]; if (dis[to] <= dis[cur] + val) continue; dis[to] = dis[cur] + val; q.push((node){to, dis[to]}); } } } inline long long quickmul(long long x, long long k, long long P) { x = (x % P + P) % P; k = (k % P + P) % P; long long res = 0; while (k) { if (k & 1) res = (res + x) % P; x = (x + x) % P; k >>= 1; } return res; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return a; } long long g = exgcd(b, a % b, x, y); long long tmp = x; x = y; y = tmp - a / b * y; return g; } inline bool get_ans(long long n) { if (!ptot) return false; if (ptot == 1) return n % p[1] == 0; if (ptot == 2) { long long x = 0, y = 1; exgcd(p[1], p[2], x, y); x = quickmul(x, n, p[2]); if (1.0 * x * p[1] > 2e18) return false; return n >= x * p[1]; } if (1.0 * dis[n % p[1]] * p[1] > 2e18) return false; return dis[n % p[1]] * p[1] + n % p[1] <= n; } signed main() { init(); read(t); for (int i = 1; i <= t; ++i) { read(tc[i].n), read(tc[i].k); tc[i].id = i; } sort(tc + 1, tc + 1 + t); for (int i = 1; i <= t; ++i) { if (tc[i].k != tc[i - 1].k) Update(tc[i].k); ans[tc[i].id] = get_ans(tc[i].n); } for (int i = 1; i <= t; ++i) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; long long mulmod(long long a, long long b, long long c) { long long sign = 1; if (a < 0) { a = -a; sign = -sign; } if (b < 0) { b = -b; sign = -sign; } a %= c; b %= c; long long res = 0; while (b > 0) { if (b & 1) { res = (res + a) % c; } a = (a + a) % c; b >>= 1; } if (sign == -1) { res = (-res) % c; } return res; } template <typename T> T extgcd(T a, T b, T &x, T &y) { if (a == 0) { x = 0; y = 1; return b; } T p = b / a; T g = extgcd(b - p * a, a, y, x); x -= p * y; return g; } template <typename T> bool diophantine(T a, T b, T c, T &x, T &y, T &g) { if (a == 0 && b == 0) { if (c == 0) { x = y = g = 0; return true; } return false; } if (a == 0) { if (c % b == 0) { x = 0; y = c / b; g = abs(b); return true; } return false; } if (b == 0) { if (c % a == 0) { x = c / a; y = 0; g = abs(a); return true; } return false; } g = extgcd(a, b, x, y); if (c % g != 0) { return false; } T dx = c / a; c -= dx * a; T dy = c / b; c -= dy * b; x = dx + mulmod(x, c / g, b); y = dy + mulmod(y, c / g, a); g = abs(g); return true; } int main() { ios::sync_with_stdio(false); cin.tie(0); const int MAX = (int)(sqrt(1e15) + 1e3); vector<bool> is_prime(MAX, true); for (int i = 2; i * i < MAX; i++) { if (is_prime[i]) { for (int j = i * i; j < MAX; j += i) { is_prime[j] = false; } } } vector<int> primes; for (int i = 2; i < MAX; i++) { if (is_prime[i]) { primes.push_back(i); } } int sz = (int)primes.size(); int tt; cin >> tt; vector<long long> ns(tt), ks(tt); map<long long, vector<int>> mapik; vector<int> res(tt, 0); for (int i = 0; i < tt; i++) { cin >> ns[i] >> ks[i]; mapik[ks[i]].push_back(i); } for (auto &p : mapik) { long long k = p.first; vector<long long> d; { long long tmp = k; for (int it = 0; it < sz && (long long)primes[it] * primes[it] <= tmp; it++) { if (tmp % primes[it] == 0) { d.push_back(primes[it]); while (tmp % primes[it] == 0) { tmp /= primes[it]; } } } if (tmp > 1) { d.push_back(tmp); } } if (d.size() == 0) { continue; } if (d.size() == 1) { for (int i : p.second) { res[i] = (ns[i] % d[0] == 0); } continue; } if (d.size() == 2) { for (int i : p.second) { long long x, y, g; if (diophantine(d[0], d[1], ns[i], x, y, g)) { if (x >= 0 && y < 0) { long long can_subtr = x / d[1]; long long need_add = ((-y) + d[0] - 1) / d[0]; if (can_subtr >= need_add) { y = 0; } } if (x < 0 && y >= 0) { long long can_subtr = y / d[0]; long long need_add = ((-x) + d[1] - 1) / d[1]; if (can_subtr >= need_add) { x = 0; } } res[i] = (x >= 0 && y >= 0); } } continue; } const long long inf = (long long)2e18; vector<long long> dist(d[0], inf); priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> s; dist[0] = 0; s.emplace(dist[0], 0); while (!s.empty()) { long long expected = s.top().first; int i = s.top().second; s.pop(); if (dist[i] != expected) { continue; } for (int it = 1; it < (int)d.size(); it++) { int to = (int)((i + d[it]) % d[0]); if (dist[i] + d[it] < dist[to]) { dist[to] = dist[i] + d[it]; s.emplace(dist[to], to); } } } for (int i : p.second) { res[i] = (ns[i] >= dist[ns[i] % d[0]]); } } for (int i = 0; i < tt; i++) { cout << (res[i] ? "YES" : "NO") << '\n'; } return 0; }
#include <bits/stdc++.h> using namespace std; int get() { char ch; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-') ; if (ch == '-') { int s = 0; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return -s; } int s = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return s; } const int L = 32e6; const int C = 1e4 + 5; const int N = 1e5 + 5; const long long INF = 1e12; int P[3000005], u; bool bz[L + 5]; void prepare() { for (int i = 2; i <= L; i++) { if (!bz[i]) P[++u] = i; for (int j = 1; j <= u; j++) { if (1ll * i * P[j] > L) break; bz[i * P[j]] = 1; if (i % P[j] == 0) break; } } } bool ans[C]; struct query { long long n, k; int id; } qry[C]; bool cmp(query a, query b) { return a.k < b.k; } long long pri[C]; int m; long long dis[N]; long long gcd(long long x, long long y) { return y == 0 ? x : gcd(y, x % y); } struct status { int x; long long dis; status(const int x_ = 0, const long long dis_ = 0) { x = x_; dis = dis_; } friend bool operator<(status a, status b) { return a.dis != b.dis ? a.dis < b.dis : a.x < b.x; } }; set<status> s; long long quickmi(long long x, long long tim, long long mo) { long long ret = 1; for (; tim; tim /= 2, x = x * x % mo) if (tim & 1) ret = ret * x % mo; return ret; } void solve(int L, int R) { long long k = qry[L].k; if (k == 1) return; m = 0; int lim = sqrt(k); for (int i = 1; i <= u; i++) { if (1ll * P[i] * P[i] > k) break; if (k % P[i] == 0) { pri[++m] = P[i]; while (k % P[i] == 0) k /= P[i]; } } if (k > 1) pri[++m] = k; if (m == 1) { for (int i = L; i <= R; i++) ans[qry[i].id] = (qry[i].n % pri[1] == 0); return; } if (m == 2) { for (int i = L; i <= R; i++) { long long tmp = qry[i].n % pri[1] * quickmi(pri[2] % pri[1], pri[1] - 2, pri[1]) % pri[1]; ans[qry[i].id] = (qry[i].n >= tmp * pri[2]); } return; } int mo = pri[1]; for (int i = 0; i <= mo - 1; i++) dis[i] = -1; dis[0] = 0; s.clear(); s.insert(status(0, 0)); while (s.begin() != s.end()) { int x = (*s.begin()).x; s.erase(s.begin()); for (int i = 1; i <= m; i++) { int y = (x + pri[i]) % mo; if (dis[y] == -1 || dis[y] > dis[x] + pri[i]) { if (dis[y] != -1) s.erase(status(y, dis[y])); dis[y] = dis[x] + pri[i]; s.insert(status(y, dis[y])); } } } for (int i = L; i <= R; i++) { if (dis[qry[i].n % mo] == -1) ans[qry[i].id] = 0; else ans[qry[i].id] = (qry[i].n >= dis[qry[i].n % mo]); } } int main() { prepare(); int T = get(); for (int i = 1; i <= T; i++) { qry[i].id = i; scanf("%I64d%I64d", &qry[i].n, &qry[i].k); } sort(qry + 1, qry + 1 + T, cmp); int lst = 0; for (int i = 1; i <= T; i++) { if (i == T || qry[i].k != qry[i + 1].k) { solve(lst + 1, i); lst = i; } } for (int i = 1; i <= T; i++) if (ans[i]) printf("YES\n"); else printf("NO\n"); return 0; }
#include <bits/stdc++.h> using namespace std; const int MAXK = 60; const int MAXT = 1E4 + 10; const int LIM = 1E5 + 10; namespace Pollard_Rho { const int pr[] = {2, 3, 5, 7, 11, 23, 43, 79}; const int M = (1 << 8) - 1; mt19937 RandEngine(chrono::steady_clock::now().time_since_epoch().count()); long long RandInt(long long L, long long R) { return uniform_int_distribution<long long>(L, R)(RandEngine); } vector<long long> Res; long long Mx = 0; long long gcd(long long a, long long b) { if (!a || !b) return a | b; int shift = __builtin_ctzll(a | b); b >>= __builtin_ctzll(b); while (a) { a >>= __builtin_ctzll(a); if (a < b) swap(a, b); a -= b; } return b << shift; } unsigned long long Mul(unsigned long long a, unsigned long long b, unsigned long long P) { unsigned long long c = (long long)a * b - (long long)((unsigned long long)((long double)a * b / P)) * P; return (c + P) % P; } long long ksm(long long a, long long b, long long P) { long long ret = 1; for (; b; b >>= 1, a = Mul(a, a, P)) if (b & 1) ret = Mul(ret, a, P); return ret; } bool Miller_Rabin(long long n) { if (n == 2 || n == 3 || n == 5 || n == 7 || n == 11 || n == 23 || n == 43 || n == 79) return true; if (~n & 1) return false; for (int p : pr) { long long t = n - 1, c = 0; while (~t & 1) t >>= 1, ++c; long long pw = ksm(p, t, n); if (pw == 1) continue; bool f = (pw == n - 1); while (c) { pw = Mul(pw, pw, n); f |= (pw == n - 1); --c; if (pw == 1 && !f) return false; } if (pw != 1 || !f) return false; } return true; } long long Pollard_Rho(long long n) { int c = RandInt(1, n - 1); long long t = 1, x = 0, y = 0, q = 1; auto F = [=](long long x) { return (Mul(x, x, n) + c) % n; }; for (int i = 2;; i <<= 1, y = x, q = 1) { for (int j = 1; j <= i; j++) { x = F(x); q = Mul(q, abs(x - y), n); if (!(j & M)) { if ((t = gcd(q, n)) > 1) break; } } if (t > 1 || ((t = gcd(q, n)) > 1)) break; } if (t == n) { t = 1; while (t == 1) x = F(x), t = gcd(abs(x - y), n); } return t; } void Factorize(long long n) { if (Miller_Rabin(n)) return Res.push_back(n), void(); long long d = n; while (d == n) d = Pollard_Rho(n); Factorize(n / d); Factorize(d); } vector<long long> solve(long long n) { Res.clear(); Factorize(n); return Res; } } // namespace Pollard_Rho long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, void(); exgcd(b, a % b, y, x); y -= (a / b) * x; } int Ans[MAXT], tot; long long dis[LIM]; priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; vector<long long> pr; map<long long, int> M; vector<pair<long long, int> > Q[MAXK]; void Dijkstra() { memset(dis, 0x3f, sizeof dis); dis[0] = 0; pq.emplace(0, 0); while (!pq.empty()) { auto x = pq.top(); pq.pop(); if (x.first != dis[x.second]) continue; for (long long p : pr) { long long v = (p + x.second) % pr[0]; if (dis[v] <= x.first + p) continue; dis[v] = x.first + p; pq.emplace(dis[v], v); } } } int main() { int T, tst = 0; scanf("%d", &T); for (long long n, k; T; T--) { scanf("%lld%lld", &n, &k); if (!M.count(k)) M[k] = ++tot; int id = M[k]; Q[id].emplace_back(n, ++tst); } for (auto pK : M) { int idx = pK.second; long long K = pK.first; if (K == 1) continue; pr = Pollard_Rho::solve(K); if (pr.size() == 1) { for (auto q : Q[idx]) Ans[q.second] = q.first % K == 0; } else if (pr.size() == 2) { for (auto q : Q[idx]) { long long x, y; exgcd(pr[0], pr[1], x, y); x = (x % pr[1] + pr[1]) % pr[1]; long long fx = Pollard_Rho::Mul(x, q.first, pr[1]), fy; fy = (q.first - fx * pr[0]) / pr[1]; assert(fx * pr[0] + fy * pr[1] == q.first); Ans[q.second] = fx >= 0 && fy >= 0; } } else { sort(pr.begin(), pr.end()); Dijkstra(); for (auto q : Q[idx]) Ans[q.second] = dis[q.first % pr[0]] <= q.first; } } for (int i = 1; i <= tst; i++) puts(Ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; const long long MAXN = 1e18; const long long MAXK = 1e15; const long long INF = 4e18; const int MAXV = 3.2e7 + 5; const int MAXP = 2e6 + 10; const int MAXF = 1e5 + 10; const int MAXQ = 50; const int MAXLOG = 64; long long n, k, tot, q; int f[MAXV], prime[MAXP], cnt[MAXQ + 1]; long long p[MAXQ + 1][MAXLOG], dist[MAXQ + 1][MAXF]; long long mem[MAXQ]; bool visited[MAXP]; template <typename T> inline void read(T &x) { long long f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } inline long long exp_mod(long long a, long long n, long long p) { long long res = 1, b = a; while (n > 0) { if (n & 1) res = res * b % p; b = b * b % p; n >>= 1; } return res; } int main() { int T; read(T); for (int i = 2; i < MAXV; i++) { if (!f[i]) prime[++tot] = f[i] = i; for (int j = 1; j <= tot; j++) { int tmp = i * prime[j]; if (tmp >= MAXV) break; f[tmp] = prime[j]; } } while (T--) { read(n); read(k); if (k == 1) { printf("NO\n"); continue; } int pos = 0; for (int i = 1; i <= q; i++) if (mem[i] == k) pos = i; if (!pos) { pos = ++q; mem[pos] = k; cnt[pos] = 0; for (int i = 1; 1ll * prime[i] * prime[i] <= k; i++) { if (k % prime[i] == 0) { p[pos][++cnt[pos]] = prime[i]; while (k % prime[i] == 0) k /= prime[i]; } } if (k != 1) p[pos][++cnt[pos]] = k; if (cnt[pos] >= 3) { for (int i = 0; i < p[pos][1]; i++) { dist[pos][i] = INF; visited[i] = false; } dist[pos][0] = 0; static priority_queue<pair<long long, int> > q; q.push(make_pair(0, 0)); while (!q.empty()) { int u = q.top().second; q.pop(); if (visited[u]) continue; visited[u] = true; for (int i = 2; i <= cnt[pos]; i++) { int to = (u + p[pos][i]) % p[pos][1]; int w = p[pos][i]; if (dist[pos][u] + w < dist[pos][to]) { dist[pos][to] = dist[pos][u] + w; q.push(make_pair(-dist[pos][to], to)); } } } } } if (cnt[pos] == 1) { if (n % p[pos][1] == 0) { printf("YES\n"); continue; } else { printf("NO\n"); continue; } } if (cnt[pos] == 2) { long long b = n % p[pos][1] * exp_mod(p[pos][2], p[pos][1] - 2, p[pos][1]) % p[pos][1]; if (b * p[pos][2] <= n) printf("YES\n"); else printf("NO\n"); continue; } int val = n % p[pos][1]; if (n >= dist[pos][val]) printf("YES\n"); else printf("NO\n"); } return 0; }
#include <bits/stdc++.h> using namespace std; template <class S, class T> ostream& operator<<(ostream& o, const pair<S, T>& p) { return o << "(" << p.first << "," << p.second << ")"; } template <class T> ostream& operator<<(ostream& o, const vector<T>& vc) { o << "sz = " << vc.size() << endl << "["; for (const T& v : vc) o << v << ","; o << "]"; return o; } using ll = long long; const ll ccc = 32000000; bool prime[ccc + 1]; vector<ll> pr; void makeprime() { ll i, j; for (i = 2; i <= ccc; i++) prime[i] = true; for (i = 2; i * i <= ccc; i++) if (prime[i]) for (j = 2; j * i <= ccc; j++) prime[j * i] = false; for (i = 2; i <= ccc; i++) if (prime[i]) pr.push_back(i); } ll extgcd(ll a, ll b, ll& x, ll& y) { ll u[] = {a, 1, 0}, v[] = {b, 0, 1}; while (*v) { ll t = *u / *v; for (int i = 0; i < (int)(3); i++) swap(u[i] -= t * v[i], v[i]); } if (u[0] < 0) for (int i = 0; i < (int)(3); i++) u[i] = -u[i]; x = u[1], y = u[2]; return u[0]; } ll inv(ll a, ll mod) { ll x, y; extgcd(a, mod, x, y); if (x < 0) x += mod; return x; } const ll inf = 2e18; vector<ll> dp; bool solve(ll n, const vector<ll>& vs) { int K = vs.size(); if (K == 0) return 0; if (K == 1) return n % vs[0] == 0; if (K == 2) { ll a = vs[1], b = vs[0]; ll x = n % b * inv(a, b) % b; ll y = (n - a * x) / b; return a * x <= n; } return n >= dp[n % vs[0]]; } void precalc(vector<ll> vs) { ll a = vs[0]; dp = vector<ll>(a, inf); dp[0] = 0; using P = pair<ll, int>; priority_queue<P, vector<P>, greater<P>> que; que.push(P(0, 0)); while (!que.empty()) { P p = que.top(); que.pop(); int v = p.second; ll c = p.first; if (dp[v] != c) continue; for (ll x : vs) { int u = (v + x) % a; if (dp[u] > dp[v] + x) { dp[u] = dp[v] + x; que.push(P(dp[u], u)); } } } } int main() { makeprime(); int T; cin >> T; map<ll, vector<pair<ll, int>>> k2nt; for (int t = 0; t < (int)(T); t++) { ll n, k; cin >> n >> k; k2nt[k].push_back(make_pair(n, t)); } vector<bool> ans(T); for (auto it : k2nt) { ll k = it.first; auto vnt = it.second; vector<ll> ps; ll ok = k; for (ll p : pr) if (k % p == 0) { ps.push_back(p); while (k % p == 0) k /= p; } if (k > 1) ps.push_back(k); k = ok; int A = ps.size(); if (A >= 3) { precalc(ps); } for (auto p : vnt) { ll n = p.first; int t = p.second; ans[t] = solve(n, ps); } } for (int t = 0; t < (int)(T); t++) { if (ans[t]) puts("YES"); else puts("NO"); } }
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; long long powmod(long long a, long long b) { long long res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } const int N = 1e5 + 5; const long long INF = (long long)2e18; template <class T> inline void read(T &x) { x = 0; int c = getchar(), f = 1; for (; !isdigit(c); c = getchar()) if (c == 45) f = -1; for (; isdigit(c); c = getchar()) (x *= 10) += f * (c - '0'); } vector<int> pl, spf; int _; map<long long, vector<pair<long long, int>>> mapchik; long long dis[N]; bool ans[N]; void exgcd(long long a, long long b, long long &g, long long &x, long long &y) { if (!b) g = a, x = 1, y = 0; else { exgcd(b, a % b, g, y, x); y -= x * (a / b); } } void fast_sieve(int n) { pl.clear(); spf.assign(n, 0); for (int i = 2; i < n; ++i) { if (!spf[i]) { pl.push_back(i); spf[i] = i; } for (int j = 0; j < ((int)(pl).size()) && i * pl[j] < n; ++j) { int p = pl[j]; spf[i * p] = p; if (i % p == 0) break; } } } vector<long long> factorize(long long n) { vector<long long> u; for (int i = 0, t = sqrt(n + 1); pl[i] <= t; ++i) if (n % pl[i] == 0) { u.push_back(pl[i]); while (n % pl[i] == 0) n /= pl[i]; t = sqrt(n + 1); } if (n > 1) u.push_back(n); return u; } void solve(long long k, vector<pair<long long, int>> queries) { vector<long long> p = factorize(k); int n = ((int)(p).size()); if (n == 0) return; if (n == 1) { for (auto &q : queries) ans[q.second] = q.first % p[0] == 0; return; } if (n == 2) { long long a = p[1], b = p[0], g, x, y; exgcd(a, b, g, x, y); for (auto &q : queries) ans[q.second] = (((x % b * (q.first % b) % b + b) % b) * a) <= q.first; return; } for (int i = 0; i < p[0]; ++i) dis[i] = INF; dis[0] = 0; set<pair<long long, int>> pq; for (int i = 0; i < p[0]; ++i) pq.insert(make_pair(dis[i], i)); while (!pq.empty()) { int u = (*pq.begin()).second; pq.erase(pq.begin()); for (int i = 1; i < n; ++i) { int v = (u + p[i]) % p[0]; long long w = dis[u] + p[i]; if (w >= dis[v]) continue; pq.erase(make_pair(dis[v], v)); dis[v] = w; pq.insert(make_pair(dis[v], v)); } } for (auto &q : queries) ans[q.second] = dis[q.first % p[0]] <= q.first; } int main() { fast_sieve((int)35e6 + 5); read(_); for (int i = 0; i < _; ++i) { long long n, k; read(n); read(k); mapchik[k].push_back(make_pair(n, i)); } for (auto &it : mapchik) solve(it.first, it.second); for (int i = 0; i < _; ++i) if (ans[i]) puts("YES"); else puts("NO"); }
#include <bits/stdc++.h> const int N = 32000010; const int M = 10010; int min[N]; int prime[2000010], pcnt; bool ans[M]; bool dp[N]; void init() { for (int i = 2; i < N; ++i) { if (!min[i]) { min[i] = i; prime[pcnt++] = i; } for (int j = 0; j < pcnt && i * prime[j] < N; ++j) { min[i * prime[j]] = prime[j]; if (i % prime[j] == 0) { break; } } } } long long ex_euc(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long ret = ex_euc(b, a % b, x, y), tmp = y; y = x - a / b * y; x = tmp; return ret; } long long inv(long long a, long long moder) { long long b = moder, s = 1, t = 0; while (b) { long long tmp = a, q = a / b; a = b, b = tmp % a; tmp = s; s = t; t = tmp - s * q; } return s < 0 ? s + moder : s; } long long divide(long long a, long long b) { return a / b - ((a ^ b) < 0 && a % b); } bool check(long long u, long long v, long long x, long long y, long long n) { return divide(-n * x + v - 1, v) <= divide(n * y, u); } int main() { init(); int test; scanf("%d", &test); std::map<long long, std::vector<std::pair<long long, int>>> map; for (int i = 0; i < test; ++i) { long long n, k; scanf("%lld%lld", &n, &k); map[k].push_back({n, i}); } for (auto &u : map) { long long k = u.first; std::vector<long long> prime; long long x = k; for (int i = 0; i < pcnt; ++i) { if (x % ::prime[i] == 0) { prime.push_back(::prime[i]); while (x % ::prime[i] == 0) { x /= ::prime[i]; } } } if (x > 1) { prime.push_back(x); } if (prime.size() >= 4) { int sz = prime[0] * prime[1]; memset(dp, 0, sizeof(bool) * sz); dp[0] = true; for (auto v : prime) { for (int i = 0; i + v < sz; ++i) { if (dp[i]) dp[i + v] = true; } } for (auto v : u.second) { ans[v.second] = v.first >= sz ? true : dp[v.first]; } continue; } if (prime.empty()) { for (auto v : u.second) { ans[v.second] = false; } continue; } if (prime.size() == 1) { for (auto v : u.second) { ans[v.second] = !(v.first % prime[0]); } continue; } if (prime.size() == 2) { for (auto v : u.second) { long long n = v.first; if (n >= prime[0] * prime[1]) { ans[v.second] = true; continue; } long long t = (n % prime[0]) * inv(prime[1], prime[0]) % prime[0]; ans[v.second] = n - t * prime[1] >= 0; } continue; } long long uu = prime[0], vv = prime[1]; long long y; ex_euc(uu, vv, x, y); for (auto v : u.second) { long long n = v.first; if (n >= uu * vv) { ans[v.second] = true; continue; } ans[v.second] = false; for (int i = 0; i * prime[2] <= n; ++i) { if (check(uu, vv, x, y, n - i * prime[2])) { ans[v.second] = true; break; } } } } for (int i = 0; i < test; ++i) { puts(ans[i] ? "YES" : "NO"); } return 0; }
#include <bits/stdc++.h> using namespace std; const long long INF = (long long)2e18; const int MAXN = (int)1e4 + 5; const int P = (int)3e7 + (int)3e6; const int M = (int)1e5; pair<pair<long long, long long>, int> req[MAXN]; vector<int> primes; bool isP[P + 5]; bool ans[MAXN]; long long dp[M + 5]; int q; void pre() { for (int i = 2; i <= P; ++i) { if (!isP[i]) { primes.push_back(i); if (i * 1ll * i <= P) { for (int j = i * i; j <= P; j += i) { isP[j] = 1; } } } } } long long binPow(long long a, long long b, long long m) { long long ret = 1; while (b > 0) { if (b & 1) { ret = (ret * a) % m; } a = (a * a) % m; b >>= 1; } return ret; } vector<long long> getPrimes(long long x) { vector<long long> ret; for (int p : primes) { if (x % p == 0) { ret.push_back(p); while (x % p == 0) { x /= p; } } } if (x > 1) { ret.push_back(x); } return ret; } void calcDp(vector<long long> V) { for (long long i = 0; i < V[0]; ++i) { dp[i] = INF; } dp[0] = 0; set<pair<long long, int>> S; S.insert(make_pair(0, 0)); while (!S.empty()) { int v = S.begin()->second; S.erase(S.begin()); for (long long cur : V) { long long to = (v + cur) % V[0]; if (dp[v] + cur < dp[to]) { S.erase(make_pair(dp[to], to)); dp[to] = dp[v] + cur; S.insert(make_pair(dp[to], to)); } } } } void solve() { scanf("%d", &q); for (int i = 1; i <= q; ++i) { scanf("%lld %lld", &req[i].first.second, &req[i].first.first); req[i].second = i; } sort(req + 1, req + q + 1); vector<long long> V; long long cur = 0; for (int i = 1; i <= q; ++i) { long long n = req[i].first.second; long long k = req[i].first.first; int id = req[i].second; if (cur != k) { cur = k; V = getPrimes(cur); if (V.size() > 2) { calcDp(V); } } if (cur == 1) { ans[id] = 0; continue; } if (V.size() == 1) { ans[id] = (n % k == 0); } else if (V.size() == 2) { long long p = V[0], q = V[1]; long long x = ((n % q) * binPow(p, q - 2, q)) % q; if (n - x * p >= 0) { ans[id] = 1; } } else { if (dp[n % V[0]] <= n) { ans[id] = 1; } } } for (int i = 1; i <= q; ++i) { printf(ans[i] ? "YES\n" : "NO\n"); } } int main() { int tt = 1; pre(); while (tt--) { solve(); } return 0; }
#include <bits/stdc++.h> using namespace std; const int MAX_P = 40000010, N = 10010, MAX_N = 100010; const long long inf = 1e17; int p[MAX_P], t, ans[N]; map<long long, vector<pair<long long, int> > > M; inline void Pre(const int &n) { for (int i = 2; i <= n; i++) { if (!p[i]) p[++*p] = i; for (int j = 1; j <= *p && 1LL * i * p[j] <= n; j++) if (p[p[j] * i] = 1, i % p[j] == 0) break; } } int m, res; long long fac[N]; void exgcd(long long x, long long y, long long &a, long long &b) { if (!y) { a = 1; b = 0; return; } exgcd(y, x % y, b, a); b -= (x / y) * a; } long long dis[MAX_N]; priority_queue<pair<long long, int> > Q; long long a, b; inline void solve(long long k) { m = 0; for (int i = 1; i <= *p && 1LL * p[i] * p[i] <= k; i++) if (k % p[i] == 0) { fac[++m] = p[i]; while (k % p[i] == 0) k /= p[i]; } if (k ^ 1) fac[++m] = k; if (m <= 1) return; if (m == 2) { exgcd(fac[1], fac[2], a, b); return; } for (int i = 0; i < fac[1]; i++) dis[i] = inf; dis[0] = 0; Q.push(pair<long long, int>(0, 0)); while (!Q.empty()) { int x = Q.top().second; long long d = -Q.top().first; Q.pop(); if (d != dis[x]) continue; for (int i = 1; i <= m; i++) if (dis[(x + fac[i]) % fac[1]] > dis[x] + fac[i]) { dis[(x + fac[i]) % fac[1]] = dis[x] + fac[i]; Q.push(pair<long long, int>(-dis[(x + fac[i]) % fac[1]], (x + fac[i]) % fac[1])); } } } int main() { scanf("%d", &t); Pre(MAX_P - 10); for (int i = 1; i <= t; i++) { long long n, k; scanf("%lld%lld", &n, &k); M[k].push_back(pair<long long, int>(n, i)); } for (auto Z : M) { vector<pair<long long, int> > &cur = Z.second; long long k = Z.first; solve(k); for (auto x : cur) { if (!m) ans[x.second] = 0; else if (m == 1) ans[x.second] = !(x.first % fac[1]); else if (m == 2) { long long c = (x.first % fac[2] * (a % fac[2]) % fac[2] + fac[2]) % fac[2]; ans[x.second] = c <= x.first / fac[1]; } else ans[x.second] = x.first >= dis[x.first % fac[1]]; } } for (int i = 1; i <= t; i++) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const int maxn = 100010, maxm = 35000000; int T, tot, p[maxm]; long long n, k, dist[maxn]; bool ans[maxn]; map<long long, vector<pair<long long, int> > > mp; void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } exgcd(b, a % b, y, x), y -= a / b * x; } void solve(long long k, vector<pair<long long, int> > Q) { vector<long long> a; for (long long i = 1; i <= tot; i++) { if (k % p[i] == 0) { a.push_back(p[i]); while (k % p[i] == 0) k /= p[i]; } } if (k > 1) a.push_back(k); int n = a.size(); if (n == 0) return; if (n == 1) { for (auto q : Q) ans[q.second] = q.first % a[0] == 0; return; } if (n == 2) { long long x, y; exgcd(a[0], a[1], x, y); for (auto q : Q) ans[q.second] = (y % a[0] + a[0]) % a[0] * (q.first % a[0]) % a[0] * a[1] <= q.first; return; } int m = a[0]; for (int i = 0; i < m; i++) dist[i] = 2e18; dist[0] = 0; set<pair<long long, int> > S; for (int i = 0; i < m; i++) S.insert(pair<long long, int>(dist[i], i)); while (!S.empty()) { int v = S.begin()->second; S.erase(S.begin()); for (int i = 1; i < n; i++) { int u = (v + a[i]) % m; long long w = dist[v] + a[i]; if (dist[u] > w) S.erase(pair<long long, int>(dist[u], u)), S.insert(pair<long long, int>(dist[u] = w, u)); } } for (auto q : Q) ans[q.second] = dist[q.first % m] <= q.first; } int main() { fill(p, p + maxm, 1); for (int i = 2; i < maxm; i++) { if (p[i]) p[++tot] = i; for (int j = 1; j <= tot && i * p[j] < maxm; j++) { p[i * p[j]] = 0; if (i % p[j] == 0) break; } } scanf("%d", &T); for (int i = 0; i < T; i++) scanf("%lld %lld", &n, &k), mp[k].push_back(pair<long long, int>(n, i)); for (auto it : mp) solve(it.first, it.second); for (int i = 0; i < T; i++) printf("%s\n", ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; using ll = long long; using ii = pair<long long, long long>; const long long MAX = 10004, M2 = 1e5 + 10, K = 4e7 + 5; const long long inf = 0x3f3f3f3f; void minn(long long &a, long long b) { if (b < a) a = b; } void maxx(long long &a, long long b) { if (b > a) a = b; } bool ans[MAX], vs[MAX]; bitset<K> hav; bool mark[K]; int32_t lp[K + 1]; long long getlt(long long A, long long n, long long mod) { long long res = 1; for (long long i = log2(n); i >= 0; i--) if (n & (1 << i)) { res = res * res % mod * A % mod; } else res = res * res % mod; return res; } long long a[M2]; long long N[MAX], M[MAX]; long long D[M2]; int32_t main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long T; cin >> T; vector<long long> pr; for (long long i = 2; i <= K; ++i) { if (lp[i] == 0) { lp[i] = i; pr.push_back(i); } for (long long j = 0; j < (long long)pr.size() && pr[j] <= lp[i] && i * pr[j] <= K; ++j) lp[i * pr[j]] = pr[j]; } for (long long i = 1; i <= T; i++) { cin >> N[i] >> M[i]; } for (long long c = 1; c <= T; c++) if (vs[c]) { if (ans[c]) cout << "YES\n"; else cout << "NO\n"; } else { if (M[c] == 1) { cout << "NO\n"; continue; } long long m = M[c]; long long cn = 0; for (long long i : pr) if (m % i == 0) { while (m % i == 0) m /= i; a[++cn] = i; } if (m != 1) { a[++cn] = m; } a[cn + 1] = 1e18; m = M[c]; if (cn == 1) { for (long long z = c, n; z <= T; z++) if (M[z] == m) { vs[z] = 1; if (N[z] % a[1] == 0) ans[z] = 1; } } else { long long F = a[1] * a[2]; long long u = 2; while (a[u + 1] <= F) u++; if (u == 2 && a[1] != 2) { for (long long z = c, u; z <= T; z++) if (M[z] == m) { vs[z] = 1; u = N[z] % a[1] * getlt(a[2] % a[1], a[1] - 2, a[1]) % a[1]; if (N[z] >= u * a[2]) ans[z] = 1; } } else { memset(D, 0x3f, sizeof D); priority_queue<ii, vector<ii>, greater<ii> > Q; Q.push(ii(0, 0)); D[0] = 0; while (!Q.empty()) { ii p = Q.top(); Q.pop(); if (p.first != D[p.second]) continue; for (long long i = 2; i <= u; i++) if (D[(p.second + a[i]) % a[1]] > p.first + a[i]) { D[(p.second + a[i]) % a[1]] = p.first + a[i]; Q.push(ii(p.first + a[i], (p.second + a[i]) % a[1])); } } for (long long z = c, n; z <= T; z++) if (M[z] == m) { vs[z] = 1; n = N[z]; if (n >= D[n % a[1]]) ans[z] = 1; } } } if (ans[c]) cout << "YES\n"; else cout << "NO\n"; } }
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const long long INFF = 0x3f3f3f3f3f3f3f3fll; const long long M = 1e9 + 7; const long long maxn = 3e6 + 7; const double pi = acos(-1.0); const double eps = 0.00000001; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } template <typename T> inline T abs(T a) { return a > 0 ? a : -a; } template <typename T> inline T powMM(T a, T b) { T ret = 1; for (; b; b >>= 1ll, a = (long long)a * a % M) if (b & 1) ret = (long long)ret * a % M; return ret; } template <typename T> inline T powMM(T a, T b, T M) { T ret = 1; for (; b; b >>= 1ll, a = (long long)a * a % M) if (b & 1) ret = (long long)ret * a % M; return ret; } const int maxsqrtk = 3.5e7 + 7; int p[maxsqrtk], cntp; void initfactor() { int i, j; for (i = 2; i < maxsqrtk; i++) { if (!p[i]) p[cntp++] = i; for (j = 0; j < cntp; j++) { if (i * p[j] >= maxsqrtk) break; p[i * p[j]] = 1; if (i % p[j] == 0) break; } } fprintf(stderr, "cnt_prime=%d\n", cntp); } const int maxk = 57; vector<long long> minvalue[maxk], factor[maxk]; long long kth[maxk], cntk; priority_queue<pair<long long, long long>, vector<pair<long long, long long> >, less<pair<long long, long long> > > Q; int TaskA() { int i, id; long long n, k; scanf("%I64d%I64d", &n, &k); for (id = 0; id < cntk; id++) if (kth[id] == k) break; if (cntk == id) { fprintf(stderr, "%s\n", "initialize"); kth[cntk++] = k; for (i = 0; i < cntp; i++) { if (p[i] > k / p[i]) break; if (k % p[i] == 0) factor[id].push_back(p[i]); while (k % p[i] == 0) k /= p[i]; } if (k != 1) factor[id].push_back(k); if (factor[id].size() > 2) { long long p = factor[id][0]; minvalue[id].resize(p, INFF); minvalue[id][0] = 0; Q.push(make_pair(0ll, 0ll)); while (Q.size()) { auto now = Q.top(); Q.pop(); long long pos = now.second; if (minvalue[id][pos] != now.first) continue; for (long long len : factor[id]) if (len != p) { long long nxtpos = (pos + len) % p, nxtlen = minvalue[id][pos] + len; if (minvalue[id][nxtpos] > nxtlen) { minvalue[id][nxtpos] = nxtlen; Q.push(make_pair(minvalue[id][nxtpos], nxtpos)); } } } } } if (factor[id].size() == 0) { return 0 * puts("NO"); } if (factor[id].size() == 1) { if (n % factor[id][0] == 0) return 0 * puts("YES"); else return 0 * puts("NO"); } if (factor[id].size() == 2) { long long inv, a, p1 = factor[id][0], p2 = factor[id][1]; inv = powMM(p1, p2 - 2, p2); a = n % p2 * inv % p2; if (a * p1 <= n) return 0 * puts("YES"); else return 0 * puts("NO"); } else { if (minvalue[id][n % factor[id][0]] <= n) return 0 * puts("YES"); else return 0 * puts("NO"); } } int main() { int startTime = clock(); initfactor(); fprintf(stderr, "/--- initializeTime: %d milliseconds ---/\n", clock() - startTime); int T = 1; scanf("%d", &T); startTime = clock(); while (T--) TaskA(); fprintf(stderr, "/--- computeTime: %d milliseconds ---/\n", clock() - startTime); }
#include <bits/stdc++.h> using namespace std; const int N = 10003, M = 31622800, K = 1952000, L = 100003; template <typename T> inline void read(T &x) { int ch = getchar(); x = 0; bool f = false; for (; ch < '0' || ch > '9'; ch = getchar()) f |= ch == '-'; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; if (f) x = -x; } template <typename T> inline bool chmin(T &a, const T &b) { if (a > b) return a = b, 1; return 0; } int t, m, pri[K], cnt, tot, head[L], to[L << 2], nxt[L << 2]; bool ans[N]; struct Query { int id; long long n, k; inline bool operator<(const Query &o) const { return k < o.k || k == o.k && id < o.id; } } q[N]; bitset<M> notp; long long p[N], dis[L], w[L << 2], x, y, d; void init(int m) { notp[0] = notp[1] = 1; for (register int i = 2; i <= m; ++i) { if (!notp[i]) pri[tot++] = i; for (register int j = 0; j < tot && i * pri[j] <= m; ++j) { notp[i * pri[j]] = true; if (!(i % pri[j])) break; } } } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; d = a; return; } exgcd(b, a % b, y, x); y -= a / b * x; } void add(int a, int b, long long c) { to[++cnt] = b; nxt[cnt] = head[a]; head[a] = cnt; w[cnt] = c; } priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; int main() { read(t); init(M - 1); for (register int i = 1; i <= t; ++i) { read(q[i].n); read(q[i].k); q[i].id = i; } sort(q + 1, q + t + 1); for (register int i = 1; i <= t; ++i) { if (q[i].k == 1) continue; if (q[i].k != q[i - 1].k) { m = 0; long long tmp = q[i].k; for (register int j = 0; j < tot && (long long)pri[j] * pri[j] <= tmp; ++j) if (!(tmp % pri[j])) { p[m++] = pri[j]; tmp /= pri[j]; while (!(tmp % pri[j])) tmp /= pri[j]; } if (tmp > 1) p[m++] = tmp; if (m > 2) { memset(head, 0, sizeof head); cnt = 0; for (register int i = 1; i < m; ++i) for (register int j = 0; j < p[0]; ++j) add(j, (j + p[i]) % p[0], p[i]); memset(dis, 0x3f, sizeof dis); dis[0] = 0; pq.push(make_pair(0ll, 0)); while (!pq.empty()) { pair<long long, long long> tmp = pq.top(); pq.pop(); if (tmp.first != dis[tmp.second]) continue; int u = tmp.second; for (register int i = head[u]; i; i = nxt[i]) if (chmin(dis[to[i]], dis[u] + w[i])) pq.push(make_pair(dis[to[i]], to[i])); } } else if (m == 2) { exgcd(p[0], p[1], x, y); x = (x % p[1] + p[1]) % p[1]; } } if (m > 2) ans[q[i].id] = dis[q[i].n % p[0]] <= q[i].n; else if (m == 2) { if (q[i].n % d) continue; q[i].n /= d; long long tmp = (q[i].n % p[1] * x % p[1] + p[1]) % p[1]; ans[q[i].id] = tmp * p[0] <= q[i].n; } else ans[q[i].id] = !(q[i].n % p[0]); } for (register int i = 1; i <= t; ++i) puts(ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; const int MAXQ = 55; const int MAXLOG = 64; const int MAXN = 100005; const int MAXP = 2e6 + 5; const int MAXV = 3.2e7 + 5; const long long INF = 4e18; template <typename T> void chkmax(T &x, T y) { x = max(x, y); } template <typename T> void chkmin(T &x, T y) { x = min(x, y); } template <typename T> void read(T &x) { x = 0; int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; x *= f; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } int q; long long memk[MAXQ]; int tot, prime[MAXP], f[MAXV]; int cnt[MAXQ]; long long p[MAXQ][MAXLOG]; long long dist[MAXQ][MAXN]; struct info { long long dist; int home; }; bool operator<(info a, info b) { return a.dist > b.dist; } void exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return; } long long q = a / b, r = a % b; exgcd(b, r, y, x); y -= q * x; } int main() { for (int i = 2; i < MAXV; i++) { if (f[i] == 0) prime[++tot] = f[i] = i; for (int j = 1; j <= tot && prime[j] <= f[i]; j++) { int tmp = prime[j] * i; if (tmp >= MAXV) break; f[tmp] = prime[j]; } } int T; read(T); while (T--) { long long n, k; read(n), read(k); int pos = 0; for (int i = 1; i <= q; i++) if (memk[i] == k) pos = i; if (pos == 0) { pos = ++q; memk[q] = k; long long tmp = k; for (int i = 1; 1ll * prime[i] * prime[i] <= tmp; i++) if (tmp % prime[i] == 0) { p[pos][++cnt[pos]] = prime[i]; while (tmp % prime[i] == 0) tmp /= prime[i]; } if (tmp != 1) p[pos][++cnt[pos]] = tmp; if (cnt[pos] >= 3) { for (int i = 0; i < p[pos][1]; i++) dist[pos][i] = INF; static priority_queue<info> Heap; dist[pos][0] = 0; Heap.push((info){0, 0}); static bool vis[MAXN]; memset(vis, false, sizeof(vis)); while (!Heap.empty()) { while (!Heap.empty() && vis[Heap.top().home]) Heap.pop(); if (Heap.empty()) break; info tmp = Heap.top(); Heap.pop(); for (int i = 2; i <= cnt[pos]; i++) { int dest = (tmp.home + p[pos][i]) % p[pos][1]; if (dist[pos][dest] > tmp.dist + p[pos][i]) { dist[pos][dest] = tmp.dist + p[pos][i]; Heap.push((info){dist[pos][dest], dest}); } } } } } bool flg = false; for (int i = 1; i <= cnt[pos]; i++) if (n % p[pos][i] == 0) { printf("YES\n"); flg = true; break; } if (flg) continue; if (cnt[pos] <= 1) { printf("NO\n"); continue; } if (cnt[pos] == 2) { long long x = 0, y = 0; exgcd(p[pos][1], p[pos][2], x, y); y = (y % p[pos][1] + p[pos][1]) % p[pos][1]; long long tmp = y * (n % p[pos][1]) % p[pos][1] * p[pos][2]; if (tmp <= n) printf("YES\n"); else printf("NO\n"); continue; } int tmp = n % p[pos][1]; if (dist[pos][tmp] <= n) printf("YES\n"); else printf("NO\n"); } return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5, B = 32e6; const long long inf = 1e17; int p[N * 50], nump; bool np[B + 5]; long long n, k, pr[105], cnt, d[N]; bool vis[N], ans[N]; struct data { long long n, k; int id; } Q[N]; priority_queue<pair<long long, int> > q; bool cmp(data a, data b) { return a.k < b.k; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long res = exgcd(b, a % b, y, x); y -= a / b * x; return res; } void solve() { long long x = k; cnt = 0; for (int i = 1; 1ll * p[i] * p[i] <= x; ++i) if (x % p[i] == 0) { pr[++cnt] = p[i]; while (x % p[i] == 0) x /= p[i]; } if (x > 1) pr[++cnt] = x; if (cnt < 3) return; for (int i = (0); i <= (pr[1]); ++i) d[i] = inf, vis[i] = 0; d[0] = 0, q.push(make_pair(0, 0)); while (!q.empty()) { int x = q.top().second; q.pop(); if (vis[x]) continue; vis[x] = 1; for (int i = (2); i <= (cnt); ++i) { int v = (x + pr[i]) % pr[1]; if (d[v] > d[x] + pr[i]) { d[v] = d[x] + pr[i], q.push(make_pair(-d[v], v)); } } } } int main() { int T; scanf("%d", &T); np[1] = 1; for (int i = (2); i <= (B); ++i) { if (!np[i]) p[++nump] = i; for (int j = (1); j <= (nump); ++j) { if (1ll * i * p[j] > B) break; np[i * p[j]] = 1; if (i % p[j] == 0) break; } } for (int i = (1); i <= (T); ++i) scanf("%I64d%I64d", &Q[i].n, &Q[i].k), Q[i].id = i; sort(Q + 1, Q + T + 1, cmp); for (int i = (1); i <= (T); ++i) { n = Q[i].n, k = Q[i].k; if (i == 1 || k != Q[i - 1].k) solve(); if (!cnt) ans[Q[i].id] = 0; else if (cnt == 1) ans[Q[i].id] = !(n % pr[1]); else if (cnt == 2) { long long a = pr[1], b = pr[2], x, y; exgcd(a, b, x, y); y = (y % a + a) % a, ans[Q[i].id] = (y * (n % a) % a * b <= n); } else ans[Q[i].id] = (d[n % pr[1]] <= n); } for (int i = (1); i <= (T); ++i) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 4e7 + 10; bool isprime[N]; vector<int> prime; const int M = 1e5 + 10; int dis[55][M]; vector<int> factor[55]; bool vis[M]; vector<pair<int, long long> > edge[M]; map<long long, int> ma; void init(int n) { memset(isprime, true, sizeof(isprime)); isprime[1] = false; for (int i = (2); i < (n + 1); i++) { if (isprime[i]) prime.push_back(i); for (int j = 0; j < (int)prime.size() && i * prime[j] <= n; j++) { isprime[i * prime[j]] = false; if (i % prime[j] == 0) break; } } } int cnt = 0; void dij(int *dis) { priority_queue<pair<int, long long>, vector<pair<int, long long> >, greater<pair<int, long long> > > q; memset(vis, false, sizeof(false)); for (int i = (0); i < (M); i++) dis[i] = 1e9; dis[0] = 0; q.push(make_pair(0, 0)); while (!q.empty()) { int x = q.top().second; q.pop(); if (vis[x]) continue; for (auto i : edge[x]) { if (dis[i.first] > dis[x] + i.second) { dis[i.first] = dis[x] + i.second; q.push(make_pair(dis[i.first], i.first)); } } } } int solve(long long x) { if (ma.find(x) != ma.end()) { return ma[x]; } cnt++; ma[x] = cnt; for (auto i : prime) { if ((long long)i * i > x) break; if (x % i == 0) { while (x % i == 0) { x /= i; } factor[cnt].push_back(i); } } if (x != 1) factor[cnt].push_back(x); if ((int)factor[cnt].size() >= 3) { int p = factor[cnt][0]; for (int i = (0); i < (p + 1); i++) edge[i].clear(); for (int i = (0); i < (p); i++) { for (auto j : factor[cnt]) { edge[i].push_back(make_pair((i + j) % p, j)); } } dij(dis[cnt]); } return cnt; } long long qpow(long long a, long long b, long long mod) { long long res = 1; while (b) { if (b & 1) { res = res * a % mod; } b >>= 1; a = a * a % mod; } return res; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); init(4e7); int T; cin >> T; while (T--) { long long n, k; cin >> n >> k; int id = solve(k); if ((int)factor[id].size() == 0) { cout << "NO" << "\n"; continue; } if ((int)factor[id].size() == 1) { if (n % k == 0) { cout << "YES" << "\n"; } else { cout << "NO" << "\n"; } continue; } else if ((int)factor[id].size() == 2) { int tmp = n % factor[id][1] * qpow(factor[id][0], factor[id][1] - 2, factor[id][1]) % factor[id][1]; if ((__int128)factor[id][0] * tmp <= n) { cout << "YES" << "\n"; } else { cout << "NO" << "\n"; } continue; } else { int p = factor[id][0]; if (dis[id][n % p] <= n) cout << "YES" << "\n"; else cout << "NO" << "\n"; } } return 0; }
#include <bits/stdc++.h> using namespace std; const long long N = 3.5e7 + 9, M = 1e5 + 9, kkk = 53; const long long INF = 0x3f3f3f3f; long long n, K, T, cnt, num[kkk]; long long prime[3000009], tot, p[kkk][109]; long long dis[kkk][M], been[kkk]; bool isprime[N], vis[M]; priority_queue<pair<long long, long long> > Q; inline void sieve() { for (long long i = 2; i < N; i++) { if (!isprime[i]) prime[++tot] = i; for (long long j = 1; j <= tot; j++) { long long k = prime[j]; if (i * k >= N) break; if (i * k < N) isprime[i * k] = true; if (i % k == 0) break; } } } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } exgcd(b, a % b, x, y); long long z = x; x = y, y = z - (a / b) * y; } signed main() { sieve(); scanf("%lld", &T); memset(dis, INF, sizeof dis); while (T--) { scanf("%lld%lld", &n, &K); if (K == 1) { puts("NO"); continue; } long long pos = 0; for (long long i = 1; i <= cnt; i++) if (been[i] == K) pos = i; if (!pos) { been[pos = ++cnt] = K; for (long long i = 1; prime[i] * prime[i] <= K; i++) if (K % prime[i] == 0) { ++num[pos]; p[pos][num[pos]] = prime[i]; while (K % prime[i] == 0) K /= prime[i]; } if (K != 1) ++num[pos], p[pos][num[pos]] = K; if (num[pos] <= 2) goto lab; dis[pos][0] = 0; Q.push(make_pair(0, 0)); memset(vis, 0, sizeof vis); while (!Q.empty()) { long long u = Q.top().second; Q.pop(); if (vis[u]) continue; vis[u] = true; for (long long i = 2; i <= num[pos]; i++) { long long v = (p[pos][i] + u) % p[pos][1]; if (dis[pos][v] > dis[pos][u] + p[pos][i]) { dis[pos][v] = dis[pos][u] + p[pos][i]; Q.push(make_pair(-dis[pos][v], v)); } } } } lab:; for (long long i = 1; i <= num[pos]; i++) if (n % p[pos][i] == 0) { puts("YES"); goto nxt; } if (num[pos] == 1) { puts("NO"); goto nxt; } if (num[pos] == 2) { long long x, y; exgcd(p[pos][1], p[pos][2], x, y); if (y < 0) y += p[pos][1]; y = y * (n % p[pos][1]) % p[pos][1] * p[pos][2]; puts(y <= n ? "YES" : "NO"); goto nxt; } puts(dis[pos][n % p[pos][1]] <= n ? "YES" : "NO"); nxt:; } return 0; }
#include <bits/stdc++.h> using namespace std; const int maxn = 100010; int T, tot, p[3000010]; long long n, k, dist[maxn]; bool ok[35000000], ans[maxn]; map<long long, vector<pair<long long, int> > > mp; void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } exgcd(b, a % b, y, x), y -= a / b * x; } void solve(long long k, vector<pair<long long, int> > Q) { vector<long long> a; for (long long i = 1; i <= tot; i++) { if (k % p[i] == 0) { a.push_back(p[i]); while (k % p[i] == 0) k /= p[i]; } } if (k > 1) a.push_back(k); int n = a.size(); if (n == 0) return; if (n == 1) { for (auto q : Q) ans[q.second] = q.first % a[0] == 0; return; } if (n == 2) { long long x, y; exgcd(a[0], a[1], x, y), y = (y % a[0] + a[0]) % a[0]; for (auto q : Q) ans[q.second] = y * (q.first % a[0]) % a[0] * a[1] <= q.first; return; } int m = a[0]; for (int i = 0; i < m; i++) dist[i] = 2e18; dist[0] = 0; set<pair<int, long long> > S; for (int i = 0; i < m; i++) S.insert(make_pair(dist[i], i)); while (!S.empty()) { int v = S.begin()->second; S.erase(S.begin()); for (int i = 1; i < n; i++) { int u = (v + a[i]) % m; long long w = dist[v] + a[i]; if (dist[u] <= w) continue; S.erase(make_pair(dist[u], u)), S.insert(make_pair(dist[u] = w, u)); } } for (auto q : Q) ans[q.second] = dist[q.first % m] <= q.first; } int main() { for (int i = 2; i < 35000000; i++) { if (ok[i]) continue; p[++tot] = i; for (int j = i + i; j < 35000000; j += i) ok[j] = 1; } scanf("%d", &T); for (int i = 0; i < T; i++) { scanf("%lld %lld", &n, &k), mp[k].push_back(make_pair(n, i)); } for (auto it : mp) solve(it.first, it.second); for (int i = 0; i < T; i++) printf("%s\n", ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const int MAXK = 60; const int MAXT = 1E4 + 10; const int LIM = 1E5 + 10; namespace Pollard_Rho { const int pr[] = {2, 3, 5, 7, 11, 23, 43, 79}; const int M = (1 << 8) - 1; mt19937 RandEngine(chrono::steady_clock::now().time_since_epoch().count()); long long RandInt(long long L, long long R) { return uniform_int_distribution<long long>(L, R)(RandEngine); } vector<long long> Res; long long Mx = 0; long long gcd(long long a, long long b) { if (!a || !b) return a | b; int shift = __builtin_ctzll(a | b); b >>= __builtin_ctzll(b); while (a) { a >>= __builtin_ctzll(a); if (a < b) swap(a, b); a -= b; } return b << shift; } unsigned long long Mul(unsigned long long a, unsigned long long b, unsigned long long P) { unsigned long long c = (long long)a * b - (long long)((unsigned long long)((long double)a * b / P)) * P; return (c + P) % P; } long long ksm(long long a, long long b, long long P) { long long ret = 1; for (; b; b >>= 1, a = Mul(a, a, P)) if (b & 1) ret = Mul(ret, a, P); return ret; } bool Miller_Rabin(long long n) { if (n == 2 || n == 3 || n == 5 || n == 7 || n == 11 || n == 23 || n == 43 || n == 79) return true; if (~n & 1) return false; for (int p : pr) { long long t = n - 1, c = 0; while (~t & 1) t >>= 1, ++c; long long pw = ksm(p, t, n); if (pw == 1) continue; bool f = (pw == n - 1); while (c) { pw = Mul(pw, pw, n); f |= (pw == n - 1); --c; if (pw == 1 && !f) return false; } if (pw != 1 || !f) return false; } return true; } long long Pollard_Rho(long long n) { int c = RandInt(1, n - 1); long long t = 1, x = 0, y = 0, q = 1; auto F = [=](long long x) { return (Mul(x, x, n) + c) % n; }; for (int i = 2;; i <<= 1, y = x, q = 1) { for (int j = 1; j <= i; j++) { x = F(x); q = Mul(q, abs(x - y), n); if (!(j & M)) { if ((t = gcd(q, n)) > 1) break; } } if (t > 1 || ((t = gcd(q, n)) > 1)) break; } if (t == n) { t = 1; while (t == 1) x = F(x), t = gcd(abs(x - y), n); } return t; } void Factorize(long long n) { if (Miller_Rabin(n)) return Res.push_back(n), void(); long long d = n; while (d == n) d = Pollard_Rho(n); Factorize(n / d); Factorize(d); } vector<long long> solve(long long n) { Res.clear(); Factorize(n); return Res; } } // namespace Pollard_Rho long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, void(); exgcd(b, a % b, y, x); y -= (a / b) * x; } int Ans[MAXT], tot; long long dis[LIM]; priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; vector<long long> pr; map<long long, int> M; vector<pair<long long, int> > Q[MAXK]; void Dijkstra() { memset(dis, 0x3f, sizeof dis); dis[0] = 0; pq.emplace(0, 0); while (!pq.empty()) { auto x = pq.top(); pq.pop(); if (x.first != dis[x.second]) continue; for (long long p : pr) { long long v = (p + x.second) % pr[0]; if (dis[v] <= x.first + p) continue; dis[v] = x.first + p; pq.emplace(dis[v], v); } } } int main() { int T, tst = 0; scanf("%d", &T); for (long long n, k; T; T--) { scanf("%lld%lld", &n, &k); if (!M.count(k)) M[k] = ++tot; int id = M[k]; Q[id].emplace_back(n, ++tst); } for (auto pK : M) { int idx = pK.second; long long K = pK.first; if (K == 1) continue; pr = Pollard_Rho::solve(K); if (pr.size() == 1) { for (auto q : Q[idx]) Ans[q.second] = q.first % K == 0; } else if (pr.size() == 2) { for (auto q : Q[idx]) { long long x, y; exgcd(pr[0], pr[1], x, y); x = (x % pr[1] + pr[1]) % pr[1]; long long fx = Pollard_Rho::Mul(x, q.first, pr[1]), fy; fy = (q.first - fx * pr[0]) / pr[1]; Ans[q.second] = fx >= 0 && fy >= 0; } } else { sort(pr.begin(), pr.end()); Dijkstra(); for (auto q : Q[idx]) Ans[q.second] = dis[q.first % pr[0]] <= q.first; } } for (int i = 1; i <= tst; i++) puts(Ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; const int T_MAX = 10005; const int SIEVE_MAX = 32000000; const int SMALL_MAX = 100005; const long long LL_INF = 2e18; struct video { long long n, k; int index; bool operator<(const video &other) const { return make_pair(k, n) < make_pair(other.k, other.n); } }; int T; video videos[T_MAX]; vector<bool> is_prime(SIEVE_MAX, true); vector<int> primes; vector<bool> answers(T_MAX, false); long long smallest_sum[SMALL_MAX]; void sieve() { is_prime[0] = is_prime[1] = false; for (int i = 2; i * i < SIEVE_MAX; i++) { if (is_prime[i]) { for (int j = i * i; j < SIEVE_MAX; j += i) { is_prime[j] = false; } } } for (int i = 2; i < SIEVE_MAX; i++) { if (is_prime[i]) primes.push_back(i); } } int mod_pow(long long a, int p, int mod) { long long result = 1; while (p > 0) { if (p & 1) result = result * a % mod; a = a * a % mod; p >>= 1; } return result; } int mod_inv(int a, int mod) { return mod_pow(a, mod - 2, mod); } priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; void check_and_add(int value, long long sum) { if (sum < smallest_sum[value]) { smallest_sum[value] = sum; pq.push(make_pair(sum, value)); } } void dijkstra(vector<long long> k_primes) { int small_prime = (int)k_primes[0]; assert(small_prime < SMALL_MAX); for (int i = 0; i < small_prime; i++) { smallest_sum[i] = LL_INF; } assert(pq.empty()); check_and_add(0, 0); while (!pq.empty()) { pair<long long, int> top = pq.top(); pq.pop(); int value = top.second; long long sum = top.first; for (long long p : k_primes) { int next_value = (value + p) % small_prime; long long next_sum = sum + p; check_and_add(next_value, next_sum); } } smallest_sum[0] = small_prime; } void solve(int start, int end) { long long k = videos[start].k; vector<long long> k_primes; for (int p : primes) { if (p > k) break; if (k % p == 0) { k_primes.push_back(p); do { k /= p; } while (k % p == 0); } } if (k > 1) { k_primes.push_back(k); } sort(k_primes.begin(), k_primes.end()); for (int i = start; i < end; i++) { long long n = videos[i].n; bool answer; if (k_primes.empty()) { answer = false; } else if (k_primes.size() == 1) { answer = n % k_primes[0] == 0; } else if (k_primes.size() == 2) { long long a = k_primes[0], b = k_primes[1]; long long goal = n % a; long long smallest = (goal * mod_inv(b, a) % a) * b; answer = n >= smallest; } else { int small_prime = (int)k_primes[0]; if (i == start) { dijkstra(k_primes); } answer = n >= smallest_sum[n % small_prime]; } answers[videos[i].index] = answer; } } int main() { ios::sync_with_stdio(false); cin.tie(NULL); sieve(); cin >> T; for (int i = 0; i < T; i++) { cin >> videos[i].n >> videos[i].k; videos[i].index = i; } sort(videos, videos + T); for (int i = 0, j = 0; i < T; i = j) { while (j < T && videos[j].k == videos[i].k) j++; solve(i, j); } for (int i = 0; i < T; i++) { cout << (answers[i] ? "YES" : "NO") << '\n'; } return 0; }
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chkmin(T& x, T y) { return x > y ? x = y, true : false; } template <class T> inline bool chkmax(T& x, T y) { return x < y ? x = y, true : false; } const long long MAXN = 1e18; const long long MAXK = 1e15; const long long INF = 4e18; const int MAXV = 3.2e7 + 5; const int MAXP = 2e6 + 10; const int MAXF = 1e5 + 10; const int MAXQ = 50; const int MAXLOG = 64; long long n, k, tot, q; int f[MAXV], prime[MAXP], cnt[MAXQ + 1]; long long p[MAXQ + 1][MAXLOG], dist[MAXQ + 1][MAXF]; long long mem[MAXQ]; bool vis[MAXP]; template <typename T> inline void read(T& x) { long long f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } inline long long ppow(long long a, long long b, long long MO) { long long ret = 1; for (; b; b >>= 1) { if (b & 1) ret = ret * a % MO; a = a * a % MO; } return ret; } int main() { int T; read(T); for (int i = (2); i <= (MAXV - 1); ++i) { if (!f[i]) prime[++tot] = f[i] = i; for (int j = (1); j <= (tot); ++j) { int tmp = i * prime[j]; if (tmp >= MAXV) break; f[tmp] = prime[j]; if (f[i] == prime[j]) break; } } while (T--) { read(n); read(k); if (k == 1) { printf("NO\n"); continue; } int pos = 0; for (int i = (1); i <= (q); ++i) if (mem[i] == k) pos = i; if (!pos) { pos = ++q; mem[pos] = k; cnt[pos] = 0; for (int i = 1; 1ll * prime[i] * prime[i] <= k; i++) { if (k % prime[i] == 0) { p[pos][++cnt[pos]] = prime[i]; while (k % prime[i] == 0) k /= prime[i]; } } if (k != 1) p[pos][++cnt[pos]] = k; if (cnt[pos] >= 3) { for (int i = 0; i < p[pos][1]; i++) { dist[pos][i] = INF; vis[i] = false; } dist[pos][0] = 0; static priority_queue<pair<long long, int> > q; q.push(make_pair(0, 0)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = true; for (int i = (2); i <= (cnt[pos]); ++i) { int to = (u + p[pos][i]) % p[pos][1]; int w = p[pos][i]; if (dist[pos][u] + w < dist[pos][to]) { dist[pos][to] = dist[pos][u] + w; q.push(make_pair(-dist[pos][to], to)); } } } } } if (cnt[pos] == 1) { if (n % p[pos][1] == 0) { puts("YES"); continue; } else { puts("NO"); continue; } } if (cnt[pos] == 2) { long long b = n % p[pos][1] * ppow(p[pos][2], p[pos][1] - 2, p[pos][1]) % p[pos][1]; if (b * p[pos][2] <= n) puts("YES"); else puts("NO"); continue; } int val = n % p[pos][1]; if (n >= dist[pos][val]) puts("YES"); else puts("NO"); } return 0; }
#include <bits/stdc++.h> using namespace std; template <typename TP> inline void read(TP &ret) { TP x = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { ch = getchar(); } while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); } ret = (TP)x * f; } int t; struct node { long long n, k; int id; bool operator<(const node &other) const { return k < other.k; } } a[10010]; long long bas[5] = {2, 3, 7, 61, 24251}; long long gcd(long long x, long long y) { if (!y) { return x; } return gcd(y, x % y); } long long add(long long a, long long b, long long mod) { return (a + b > mod) ? a + b - mod : a + b; } long long ksc(long long a, long long b, long long mod) { long long sum = 0; while (b) { if (b & 1) { sum = add(sum, a, mod); b--; } a = add(a, a, mod); b >>= 1; } return sum % mod; } long long ksm(long long a, long long b, long long mod) { long long product = 1; while (b) { if (b & 1) { product = ksc(product, a, mod); b--; } a = ksc(a, a, mod); b >>= 1; } return product % mod; } bool Miller_Rabin(long long x, long long b) { if (ksm(b, x - 1, x) != 1) return 0; long long k = x - 1; while (!(k & 1)) { k >>= 1; long long d = ksm(b, k, x); if (d != 1 && d != x - 1) return 0; if (d == x - 1) return 1; } return 1; } bool Miller_Rabin(long long x) { if (x < 2 || x == 46856248255981) return 0; for (int i = 0; i < 5; i++) { if (x == bas[i]) return 1; } for (int i = 0; i < 5; i++) { if (!Miller_Rabin(x, bas[i])) return 0; } return 1; } long long Mandelbrot(long long x, long long c, long long p) { return (ksc(x, x, p) + c) % p; } long long Pollard_Rho(long long x) { long long s, t, c = 1ll * rand() % (x - 1) + 1; s = t = 0; long long val = 1; int goal = 1; for (;; goal <<= 1, s = t, val = 1) { for (int i = 1; i <= goal; i++) { t = Mandelbrot(t, c, x); val = ksc(val, abs(t - s), x); if (!(i % 127)) { long long g = gcd(val, x); if (g > 1) return g; } } long long g = gcd(val, x); if (g > 1) return g; } } vector<long long> fac; long long min_factor; void divide(long long x) { if (x < 2) { return; } if (Miller_Rabin(x)) { min_factor = min(min_factor, x); fac.push_back(x); return; } long long p = x; while (p >= x) p = Pollard_Rho(x); while (!(x % p)) { x /= p; } divide(x); divide(p); } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return a; } long long d = exgcd(b, a % b, x, y); long long res = x; x = y; y = res - a / b * y; return d; } long long dis[200020]; bool vis[200020]; queue<int> q; void spfa(long long mod) { for (int i = 0; i < mod; i++) { dis[i] = 1000000000000000000ll; vis[i] = 0; } dis[0] = 0; q.push(0); vis[0] = 1; while (!q.empty()) { int u = q.front(); q.pop(); vis[u] = 0; for (int i = 1; i < fac.size(); i++) { int v = (u + fac[i]) % mod; if (dis[v] > dis[u] + fac[i]) { dis[v] = dis[u] + fac[i]; if (!vis[v]) { q.push(v); vis[v] = 1; } } } } } bool ans[10010]; int main() { srand(time(NULL)); read(t); for (int i = 1; i <= t; i++) { read(a[i].n), read(a[i].k); a[i].id = i; } sort(a + 1, a + t + 1); for (int i = 1; i <= t; i++) { int now = i; while (now < t && a[now + 1].k == a[i].k) now++; if (a[i].k == 1) { i = now; continue; } fac.clear(); min_factor = 1000000000000000000ll; divide(a[i].k); sort(fac.begin(), fac.end()); if (fac.size() == 1) { for (int j = i; j <= now; j++) { if (!(a[j].n % fac[0])) ans[a[j].id] = 1; } i = now; continue; } if (fac.size() == 2) { long long x, y; long long g = exgcd(fac[0], fac[1], x, y); long long b = fac[1] / g; x = add(x, b, b); for (int j = i; j <= now; j++) { if (!(a[j].n % g)) { long long dx = x, dy = y; dx = ksc(dx, a[j].n / g, b); dy = (a[j].n - fac[0] * dx) / fac[1]; if (dy >= 0) ans[a[j].id] = 1; } } i = now; continue; } spfa(min_factor); for (int j = i; j <= now; j++) { if (dis[a[j].n % min_factor] <= a[j].n) ans[a[j].id] = 1; } i = now; } for (int i = 1; i <= t; i++) { printf("%s\n", ans[i] ? "YES" : "NO"); } }
#include <bits/stdc++.h> using namespace std; const long long inf = 2000000000000000000; const int maxn = 10000 + 10; struct dong { long long n, k; int id; friend bool operator<(dong a, dong b) { return a.k < b.k; } } ask[maxn]; long long f[100000 + 10], p[50]; int pri[5000000 + 10]; bool bz[32000000 + 10], pd[100000 + 10], ans[maxn]; int i, j, k, l, r, t, n, m, tot, top, ca; void prepare() { for (i = 2; i <= 32000000; i++) { if (!bz[i]) pri[++top] = i; for (j = 1; j <= top; j++) { if ((long long)i * pri[j] > 32000000) break; bz[i * pri[j]] = 1; if (i % pri[j] == 0) break; } } } long long qsc(long long x, long long y, long long mo) { if (!y) return 0; long long t = qsc(x, y / 2, mo); t = (t + t) % mo; if (y % 2) t = (t + x) % mo; return t; } long long qsm(long long x, long long y, long long mo) { if (!y) return 1; long long t = qsm(x, y / 2, mo); t = qsc(t, t, mo); if (y % 2) t = qsc(t, x, mo); return t; } void update(long long x, int w) { int i, j, k; for (i = 0; i <= w - 1; i++) pd[i] = 0; for (i = 0; i <= w - 1; i++) if (!pd[i]) { k = i; j = (i + x) % w; while (j != i) { if (f[j] < f[k]) k = j; j = (j + x) % w; } j = k; do { pd[k] = 1; f[(k + x) % w] = min(f[(k + x) % w], f[k] + x); k = (k + x) % w; } while (k != j); } } void work(int l, int r, long long k) { long long n, m = k; tot = 0; for (i = 1; i <= top; i++) { if ((long long)pri[i] * pri[i] > m) break; if (m % pri[i] == 0) { p[++tot] = pri[i]; while (m % pri[i] == 0) m /= pri[i]; } } if (m > 1) p[++tot] = m; if (tot == 0) { for (i = l; i <= r; i++) { n = ask[i].n; if (n == 0) ans[ask[i].id] = 1; } } else if (tot == 1) { for (i = l; i <= r; i++) { n = ask[i].n; if (n % k == 0) ans[ask[i].id] = 1; } } else if (tot == 2) { long long a = p[1], b = p[2], c, d; c = qsm(b, a - 2, a); for (i = l; i <= r; i++) { n = ask[i].n; d = qsc(n, c, a); (d += a) %= a; if (d <= n / b) ans[ask[i].id] = 1; } } else { long long w = p[1]; for (i = 1; i <= w - 1; i++) f[i] = inf; f[0] = 0; for (i = 2; i <= tot; i++) update(p[i], w); for (i = l; i <= r; i++) { n = ask[i].n; if (f[n % w] <= n) ans[ask[i].id] = 1; } } } int main() { prepare(); scanf("%d", &ca); for (i = 1; i <= ca; i++) { scanf("%I64d%I64d", &ask[i].n, &ask[i].k); ask[i].id = i; } sort(ask + 1, ask + ca + 1); l = 1; r = 0; while (l <= ca) { r = l; while (r < ca && ask[r + 1].k == ask[r].k) r++; work(l, r, ask[l].k); l = r + 1; } for (i = 1; i <= ca; i++) if (ans[i]) printf("YES\n"); else printf("NO\n"); }
#include <bits/stdc++.h> using namespace std; bool np[33000000], inq[100010], b; long long n, k, dis[55][100010], p[55][33000000 / 15 / 6]; int prime[33000000 / 15], num, cnt[55], now, total; queue<int> q; map<long long, int> mp; inline int getint() { char c = getchar(); int x; bool p; x = p = 0; while ((c < '0' || c > '9') && c != '-') c = getchar(); if (c == '-') p = 1, c = getchar(); while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); if (p) x = -x; return x; } inline long long getll() { char c = getchar(); long long x; bool p; x = p = 0; while ((c < '0' || c > '9') && c != '-') c = getchar(); if (c == '-') p = 1, c = getchar(); while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); if (p) x = -x; return x; } void prepare() { total = num = 0; memset(np, 0, sizeof(np)); for (int i = 2; i < 33000000; ++i) { if (!np[i]) prime[++num] = i; for (int j = 1; j <= num; ++j) { int tmp = i * prime[j]; if (tmp >= 33000000) break; np[tmp] = 1; if (!(i % prime[j])) break; } } } void init() { n = getll(), k = getll(); b = 0; if (mp.count(k)) now = mp[k], b = 1; else now = ++total, mp[k] = now; if (b) return; long long tmp = k; cnt[now] = 0; for (int i = 1; 1ll * prime[i] * prime[i] <= k; ++i) if (!(tmp % prime[i])) { p[now][++cnt[now]] = prime[i]; while (!(tmp % prime[i])) tmp /= prime[i]; } if (tmp > 1) p[now][++cnt[now]] = tmp; } inline void spfa() { memset(dis[now], 127, sizeof(dis[now])); memset(inq, 0, sizeof(inq)); dis[now][0] = 0; inq[0] = 1; q.push(0); while (!q.empty()) { int u = q.front(); q.pop(); for (int i = 2; i <= cnt[now]; ++i) { int v = (u + p[now][i]) % p[now][1]; if (dis[now][v] > dis[now][u] + p[now][i]) { dis[now][v] = dis[now][u] + p[now][i]; if (!inq[v]) inq[v] = 1, q.push(v); } } inq[u] = 0; } } inline void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } exgcd(b, a % b, x, y); long long tmp = x; x = y, y = tmp - a / b * y; } void solve() { if (!cnt[now]) { printf("NO\n"); return; } if (cnt[now] == 1) { if (!(n % p[now][1])) { printf("YES\n"); return; } printf("NO\n"); return; } if (cnt[now] == 2) { long long x, y; exgcd(p[now][1], p[now][2], x, y); y = (y % p[now][1] + p[now][1]) % p[now][1]; long long tmp = y * (n % p[now][1]) % p[now][1] * p[now][2]; if (tmp <= n) printf("YES\n"); else printf("NO\n"); return; } if (!b) spfa(); if (dis[now][n % p[now][1]] <= n) printf("YES\n"); else printf("NO\n"); } int main() { prepare(); int t = getint(); while (t--) { init(); solve(); } return 0; }
#include <bits/stdc++.h> using namespace std; template <typename T> void read(T &x) { x = 0; bool f = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = 1; for (; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48); if (f) x = -x; } template <typename F> inline void write(F x, char ed = '\n') { static short st[30]; short tp = 0; if (x < 0) putchar('-'), x = -x; do st[++tp] = x % 10, x /= 10; while (x); while (tp) putchar('0' | st[tp--]); putchar(ed); } template <typename T> inline void Mx(T &x, T y) { x < y && (x = y); } template <typename T> inline void Mn(T &x, T y) { x > y && (x = y); } const int Maxn = 32000000; const int Pim = 30000000; const int N = 200050; int e[Maxn + 55], prime[Pim], tot; struct node { long long n, k; int num; bool operator<(const node &i) const { return k < i.k; } } qy[N]; void prework(void) { for (int i = 2; i <= Maxn; i++) { if (!e[i]) prime[++tot] = e[i] = i; for (int j = 1; j <= tot; j++) { int t = prime[j] * i; if (t > Maxn) break; e[t] = prime[j]; if (e[i] == prime[j]) break; } } } long long st[N], dis[N], tp; int vis[N]; priority_queue<pair<long long, int> > q; void work(long long k) { tp = 0; for (int i = 1, t; (long long)prime[i] * prime[i] <= k; i++) { if (k % (t = prime[i])) continue; st[++tp] = t; while (k % t == 0) k /= t; } if (k != 1) st[++tp] = k; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); if (tp == 2) swap(st[1], st[2]); if (tp >= 3) { dis[0] = 0, q.push(make_pair(0, 0)); while (q.size()) { int x = q.top().second; q.pop(); if (vis[x]) continue; vis[x] = 1; for (int i = 2; i <= tp; i++) { int y = (x + st[i]) % st[1]; long long t = (x + st[i]) / st[1]; if (dis[y] > dis[x] + t) dis[y] = dis[x] + t, q.push(make_pair(-dis[y], y)); } } } } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, void(); exgcd(b, a % b, x, y); long long t = x; x = y, y = t - a / b * y; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } bool solve(long long n) { if (!tp) return 0; if (tp == 1) return n % st[1] == 0; if (tp == 2) { long long t1 = st[1], t2 = st[2], x, y; exgcd(t1, t2, x, y); x = (x % t2 + t2) % t2; long long tt = n % t2; x = x * tt % t2; return n >= x * t1; } return n >= dis[n % st[1]] * st[1] + (n % st[1]); } int ans[N], T; int main() { read(T), prework(); for (int i = 1; i <= T; i++) read(qy[i].n), read(qy[i].k), qy[i].num = i; sort(qy + 1, qy + T + 1); for (int l = 1, r; l <= T; l = r + 1) { work(qy[l].k), r = l; while (qy[r + 1].k == qy[l].k) r++; for (int i = l; i <= r; i++) ans[qy[i].num] = solve(qy[i].n); } for (int i = 1; i <= T; i++) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const long long inf = 1e18; const int maxt = 10010; const int maxn = 100010; int T; long long q_n[maxt], q_k[maxt]; int p_list[10000010], isnp[40000010], tot; vector<long long> vec; map<long long, int> k_id; long long mul(long long a, long long b, long long mod) { long long ret = 0; for (int i = 0; i < 63; i++) { if ((a >> i) & 1) ret = (ret + b) % mod; b = b * 2 % mod; } return ret; } long long gcd(long long a, long long b) { if (!b) return a; return gcd(b, a % b); } long long qpow(long long x, long long y, long long mod) { long long ret = 1; while (y) { if (y & 1) ret = 1LL * ret * x % mod; x = 1LL * x * x % mod; y >>= 1; } return ret; } void _find(long long n, vector<long long> &vec) { for (int i = 1; i <= tot; i++) { while (n % p_list[i] == 0) { vec.push_back(p_list[i]); n /= p_list[i]; } } if (n > 1) vec.push_back(n); } struct ShortestPath { long long k, minp; int ps; stack<long long> st; vector<long long> prm; long long dis[maxn]; void init() { minp = 2e18; if (k > 1) _find(k, prm); for (int i = 0; i < prm.size(); i++) minp = min(minp, prm[i]); ps = int(prm.size()); sort(prm.begin(), prm.end()); prm.erase(unique(prm.begin(), prm.end()), prm.end()); if (ps >= 3) { for (int i = 0; i < minp; i++) { dis[i] = 2e18; } dis[0] = 0; priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; pq.push(pair<long long, int>(dis[0], 0)); while (!pq.empty()) { int u = pq.top().second; pq.pop(); for (int i = 0; i < prm.size(); i++) { long long p = prm[i]; int v = (u + p) % minp; if (dis[u] + p < dis[v]) { dis[v] = dis[u] + p; pq.push(pair<long long, int>(dis[v], v)); } } } } } int query(long long n) { if (ps == 0) { return 0; } else if (ps == 1) { return (n % prm[0] == 0); } else if (ps == 2) { long long p1 = prm[0], p2 = prm[1]; if (p1 == p2) return (n % p1 == 0); if (p1 == minp) swap(p1, p2); long long r = n % p1; long long t = qpow(p2, p1 - 2, p1); long long k = mul(r, t, p1); return k * p2 <= n; } else { return (dis[n % minp] <= n); } } } shortestPath[55]; int main() { for (int i = 2; i <= 40000000; i++) { if (!isnp[i]) { p_list[++tot] = i; } for (int j = 1; j <= tot && p_list[j] * i <= 40000000; j++) { isnp[p_list[j] * i] = 1; if (i % p_list[j] == 0) break; } } cin >> T; for (int i = 1; i <= T; i++) { cin >> q_n[i] >> q_k[i]; vec.push_back(q_k[i]); } sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end()); for (int i = 0; i < vec.size(); i++) { k_id[vec[i]] = i; shortestPath[i].k = vec[i]; shortestPath[i].init(); } for (int i = 1; i <= T; i++) { int id = k_id[q_k[i]]; if (shortestPath[id].query(q_n[i])) cout << "YES" << endl; else cout << "NO" << endl; } return 0; }
#include <bits/stdc++.h> using namespace std; const int maxn = 100010, maxm = 33333333, m = 32000000, mod = 998244353; inline long long read() { char ch = getchar(); long long x = 0, f = 0; while (ch < '0' || ch > '9') f |= ch == '-', ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return f ? -x : x; } struct ques { long long n, k; int id; bool operator<(const ques &q) const { return k < q.k; } } q[maxn]; long long tmp[22], f[maxn]; int T, pr[maxm / 10], pl, tl; bool vis[maxm], ans[maxn]; priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; void init() { for (int i = (2); i <= (m); i++) { if (!vis[i]) pr[++pl] = i; for (int j = (1); j <= (pl); j++) { int k = i * pr[j]; if (k > m) break; vis[k] = true; } } } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, a; long long d = exgcd(b, a % b, y, x); y -= a / b * x; return d; } int main() { init(); T = read(); for (int i = (1); i <= (T); i++) { long long n = read(), k = read(); q[i] = (ques){n, k, i}; } sort(q + 1, q + T + 1); for (int i = (1); i <= (T); i++) { long long k = q[i].k, ttt = k; tl = 0; for (int j = (1); j <= (pl); j++) if (ttt % pr[j] == 0) { tmp[++tl] = pr[j]; while (ttt % pr[j] == 0) ttt /= pr[j]; } if (ttt > 1) tmp[++tl] = ttt; if (tl >= 3) { assert(tmp[1] <= 1e5); for (int i = (0); i <= (tmp[1] - 1); i++) f[i] = 2e18; f[0] = 0; while (!pq.empty()) pq.pop(); pq.push(make_pair(f[0], 0)); while (!pq.empty()) { int u = pq.top().second; long long d = pq.top().first; pq.pop(); if (f[u] != d) continue; for (int i = (2); i <= (tl); i++) { int v = (u + tmp[i]) % tmp[1]; if (d + tmp[i] < f[v]) pq.push(make_pair(f[v] = d + tmp[i], v)); } } } for (int j = (i); j <= (T); j++) { if (q[j].k != k) { i = j - 1; break; } long long n = q[j].n; if (!tl) ans[q[j].id] = false; else if (tl == 1) ans[q[j].id] = n % tmp[1] == 0; else if (tl == 2) { long long a = tmp[1], b = tmp[2], x, y; exgcd(a, b, x, y); y = (y + a) % a; y = n % a * y % a; ans[q[j].id] = b * y <= n; } else ans[q[j].id] = f[n % tmp[1]] <= n; if (j == T) i = T; } } for (int i = (1); i <= (T); i++) puts(ans[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using std::map; using std::priority_queue; const int KV2 = 56, S = 32000000; map<long long, int> mi; int mar; long long pr[2333333], pi; bool vis[S + 1]; void sieve() { for (long long i = 2; i <= S; i++) { if (!vis[i]) pr[++pi] = i; for (int j = 1; j <= pi && pr[j] * i <= S; j++) { vis[pr[j] * i] = 1; if (i % pr[j] == 0) break; } } } struct sumireko { int to, ne; long long w; } e[4000069]; int he[100069], ecnt; void addline(int f, long long lt, long long w) { int t = lt; e[++ecnt].to = t; e[ecnt].ne = he[f]; e[ecnt].w = w; he[f] = ecnt; } struct shion { int x; long long d; shion() {} shion(int x, long long d) : x(x), d(d) {} bool operator<(const shion &b) const { return d > b.d; } } g; long long dis[KV2][100069]; priority_queue<shion> q; bool vv[100069]; void dijkstra(int ki) { memset(dis[ki], 0x7f, sizeof(dis[ki])); dis[ki][0] = 0; q.push(shion(0, 0)); while (!q.empty()) { g = q.top(), q.pop(); int px = g.x; long long pd = g.d; if (vv[px]) continue; vv[px] = 1; for (int i = he[px], t = e[i].to; i; i = e[i].ne, t = e[i].to) { if (pd + e[i].w < dis[ki][t]) { dis[ki][t] = pd + e[i].w; q.push(shion(t, dis[ki][t])); } } } } long long pl[KV2][68], pc[KV2]; void div(long long k, int ki) { int ti = 0; for (int i = 1; i <= pi && pr[i] * pr[i] <= k; i++) { if (k % pr[i] == 0) pl[ki][++ti] = pr[i]; while (k % pr[i] == 0) k /= pr[i]; } if (k != 1ll) pl[ki][++ti] = k; if (ti >= 3) { long long p1 = pl[ki][1]; memset(he, 0, sizeof(he)), ecnt = 0; memset(vv, 0, sizeof(vv)); for (int x = 0; x < p1; x++) for (int j = 1; j <= ti; j++) addline(x, (pl[ki][j] + x) % p1, pl[ki][j]); dijkstra(ki); } pc[ki] = ti; } long long fpow(long long a, long long p, long long mo) { a %= mo; long long ret = 1; while (p) { if (p & 1ll) ret = ret * a % mo; a = a * a % mo; p >>= 1; } return ret; } long long n, k; int T; int main() { sieve(); scanf("%d", &T); while (T--) { scanf("%I64d%I64d", &n, &k); if (k == 1) { puts("NO"); continue; } if (mi.find(k) == mi.end()) { mi[k] = ++mar; div(k, mar); } int ki = mi[k]; switch (pc[ki]) { case 1: { puts(n % pl[ki][1] ? "NO" : "YES"); break; } case 2: { long long p1 = pl[ki][1], p2 = pl[ki][2]; puts(fpow(p2, p1 - 2, p1) * (n % p1) % p1 * p2 <= n ? "YES" : "NO"); break; } default: { n < pl[ki][1] ? (puts("NO")) : (dis[ki][n % pl[ki][1]] <= n ? puts("YES") : puts("NO")); break; } } } return 0; }
#include <bits/stdc++.h> using namespace std; vector<int> primes; vector<int> smallestPrimeFactor; void linearSieve(int n) { if (n < 1) n = 1; if ((int)smallestPrimeFactor.size() >= n + 1) return; int primePiBound = n < 20 ? n - 1 : (int)(n / (log(n * 1.) - 2) + 2); primes.assign(primePiBound + 1, numeric_limits<int>::max()); int P = 0; smallestPrimeFactor.assign(n + 1, 0); smallestPrimeFactor[1] = 1; int n2 = n / 2, n3 = n / 3, n5 = n / 5; if (n >= 2) primes[P++] = 2; if (n >= 3) primes[P++] = 3; for (int q = 2; q <= n; q += 2) smallestPrimeFactor[q] = 2; for (int q = 3; q <= n; q += 6) smallestPrimeFactor[q] = 3; for (int q = 5; q <= n5; q += 2) { if (smallestPrimeFactor[q] == 0) primes[P++] = smallestPrimeFactor[q] = q; int bound = smallestPrimeFactor[q]; for (int i = 2;; ++i) { int p = primes[i]; if (p > bound) break; int pq = p * q; if (pq > n) break; smallestPrimeFactor[pq] = p; } } for (int q = (n5 + 1) | 1; q <= n; q += 2) { if (smallestPrimeFactor[q] == 0) primes[P++] = smallestPrimeFactor[q] = q; } primes.resize(P); } template <typename T, typename U> static void amax(T &x, U y) { if (x < y) x = y; } void primeFactors(long long x, vector<pair<long long, int>> &out_v) { out_v.clear(); int sqrtx = (int)sqrt((double)x); while ((long long)sqrtx * sqrtx < x) ++sqrtx; for (vector<int>::const_iterator p = primes.begin(); p != primes.end(); ++p) { if (*p > sqrtx) break; if (x % *p == 0) { int t = 1; x /= *p; while (x % *p == 0) { t++; x /= *p; } out_v.push_back(make_pair(*p, t)); } } if (x != 1) out_v.push_back(make_pair(x, 1)); } template <typename T, typename U> inline auto floordiv(T x, U y) -> decltype(x / y) { auto q = x / y, r = x % y; return q - ((r != 0) & ((r < 0) ^ (y < 0))); } long long linearFloorDivMin(long long xL, long long xU, long long m, long long a, long long b, long long c, long long d, long long e) { assert(m != 0); if (xL > xU) return numeric_limits<long long>::max(); if (m < 0) { m = -m, a = -a, b = -b; } if (xL != 0) { b += a * xL, e += d * xL, xU -= xL, xL = 0; } if (a < 0 || a >= m) { auto q = floordiv(a, m); a -= m * q, d += c * q; } if (b < 0 || b >= m) { auto q = floordiv(b, m); b -= m * q, e += c * q; } if (a == 0) { return min(0LL, d * xU) + e; } auto u = floordiv(a * xU + b, m); auto fb = d >= 0 ? -b + a - 1 : m - b - 1; if (d >= 0) { auto p = linearFloorDivMin(1, u, a, m, fb, d, c, e); auto q = e; return min(p, q); } else { auto p = linearFloorDivMin(0, u - 1, a, m, fb, d, c, e); auto q = c * u + d * xU + e; return min(p, q); } } template <typename T, typename U> static void amin(T &x, U y) { if (y < x) x = y; } int main() { int T; scanf("%d", &T); long long maxK = 0; map<long long, vector<pair<long long, int>>> cases; for (int ii = 0; ii < T; ++ii) { long long n; long long k; scanf("%lld%lld", &n, &k); cases[k].emplace_back(n, ii); amax(maxK, k); } linearSieve((int)sqrt((double)maxK) + 2); vector<int> ans(T, -1); for (const auto &kc : cases) { auto K = kc.first; vector<pair<long long, int>> fs; primeFactors(K, fs); if (fs.empty()) { for (auto t : kc.second) ans[t.second] = 0; } else if (fs.size() == 1) { auto p = fs[0].first; for (auto t : kc.second) ans[t.second] = t.first % p == 0 ? 1 : 0; } else if (fs.size() == 2) { int p = (int)fs[0].first; auto q = fs[1].first; for (auto t : kc.second) { auto n = t.first; auto minMod = linearFloorDivMin(0, n / q, p, -q, n, -p, -q, n); ans[t.second] = minMod == 0 ? 1 : 0; } } else { const long long INFL = 0x3f3f3f3f3f3f3f3fLL; int p = (int)fs[0].first; for (auto f : fs) assert(p <= f.first); vector<long long> minN(p, INFL); priority_queue<pair<long long, int>> pq; vector<bool> vis(p); int qt = 0; minN[0] = 0; pq.push(make_pair(-0LL, 0)); while (!pq.empty()) { int i = pq.top().second; pq.pop(); if (vis[i]) continue; vis[i] = true; auto x = minN[i]; for (auto f : fs) if (f.first != p) { auto y = x + f.first; int j = y % p; if (y < minN[j]) { minN[j] = y; pq.push(make_pair(-y, j)); } } } for (auto t : kc.second) ans[t.second] = minN[t.first % p] <= t.first ? 1 : 0; } } for (int x : ans) puts(x != 0 ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; const long long MAXN = 1e18; const long long MAXK = 1e15; const long long INF = 4e18; const int MAXV = 3.2e7 + 5; const int MAXP = 2e6 + 10; const int MAXF = 1e5 + 10; const int MAXQ = 50; const int MAXLOG = 64; long long n, k, tot, q; int f[MAXV], prime[MAXP], cnt[MAXQ + 1]; long long p[MAXQ + 1][MAXLOG], dist[MAXQ + 1][MAXF]; long long mem[MAXQ]; bool visited[MAXP]; template <typename T> inline void read(T &x) { long long f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } inline long long exp_mod(long long a, long long n, long long p) { long long res = 1, b = a; while (n > 0) { if (n & 1) res = res * b % p; b = b * b % p; n >>= 1; } return res; } int main() { int T; read(T); for (int i = 2; i < MAXV; i++) { if (!f[i]) prime[++tot] = f[i] = i; for (int j = 1; j <= tot; j++) { int tmp = i * prime[j]; if (tmp >= MAXV) break; f[tmp] = prime[j]; if (f[i] == prime[j]) break; } } while (T--) { read(n); read(k); if (k == 1) { printf("NO\n"); continue; } int pos = 0; for (int i = 1; i <= q; i++) if (mem[i] == k) pos = i; if (!pos) { pos = ++q; mem[pos] = k; cnt[pos] = 0; for (int i = 1; 1ll * prime[i] * prime[i] <= k; i++) { if (k % prime[i] == 0) { p[pos][++cnt[pos]] = prime[i]; while (k % prime[i] == 0) k /= prime[i]; } } if (k != 1) p[pos][++cnt[pos]] = k; if (cnt[pos] >= 3) { for (int i = 0; i < p[pos][1]; i++) { dist[pos][i] = INF; visited[i] = false; } dist[pos][0] = 0; static priority_queue<pair<long long, int> > q; q.push(make_pair(0, 0)); while (!q.empty()) { int u = q.top().second; q.pop(); if (visited[u]) continue; visited[u] = true; for (int i = 2; i <= cnt[pos]; i++) { int to = (u + p[pos][i]) % p[pos][1]; int w = p[pos][i]; if (dist[pos][u] + w < dist[pos][to]) { dist[pos][to] = dist[pos][u] + w; q.push(make_pair(-dist[pos][to], to)); } } } } } if (cnt[pos] == 1) { if (n % p[pos][1] == 0) { printf("YES\n"); continue; } else { printf("NO\n"); continue; } } if (cnt[pos] == 2) { long long b = n % p[pos][1] * exp_mod(p[pos][2], p[pos][1] - 2, p[pos][1]) % p[pos][1]; if (b * p[pos][2] <= n) printf("YES\n"); else printf("NO\n"); continue; } int val = n % p[pos][1]; if (n >= dist[pos][val]) printf("YES\n"); else printf("NO\n"); } return 0; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; long long powmod(long long a, long long b) { long long res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } namespace Factor { const int N = 1010000; long long C, fac[10010], n, mut, a[1001000]; int T, cnt, i, l, prime[N], p[N], psize, _cnt; long long _e[100], _pr[100]; vector<long long> d; inline long long mul(long long a, long long b, long long p) { if (p <= 1000000000) return a * b % p; else if (p <= 1000000000000ll) return (((a * (b >> 20) % p) << 20) + (a * (b & ((1 << 20) - 1)))) % p; else { long long d = (long long)floor(a * (long double)b / p + 0.5); long long ret = (a * b - d * p) % p; if (ret < 0) ret += p; return ret; } } void prime_table() { int i, j, tot, t1; for (i = 1; i <= psize; i++) p[i] = i; for (i = 2, tot = 0; i <= psize; i++) { if (p[i] == i) prime[++tot] = i; for (j = 1; j <= tot && (t1 = prime[j] * i) <= psize; j++) { p[t1] = prime[j]; if (i % prime[j] == 0) break; } } } void init(int ps) { psize = ps; prime_table(); } long long powl(long long a, long long n, long long p) { long long ans = 1; for (; n; n >>= 1) { if (n & 1) ans = mul(ans, a, p); a = mul(a, a, p); } return ans; } bool witness(long long a, long long n) { int t = 0; long long u = n - 1; for (; ~u & 1; u >>= 1) t++; long long x = powl(a, u, n), _x = 0; for (; t; t--) { _x = mul(x, x, n); if (_x == 1 && x != 1 && x != n - 1) return 1; x = _x; } return _x != 1; } bool miller(long long n) { if (n < 2) return 0; if (n <= psize) return p[n] == n; if (~n & 1) return 0; for (int j = 0; j <= 7; j++) if (witness(rand() % (n - 1) + 1, n)) return 0; return 1; } long long gcd(long long a, long long b) { long long ret = 1; while (a != 0) { if ((~a & 1) && (~b & 1)) ret <<= 1, a >>= 1, b >>= 1; else if (~a & 1) a >>= 1; else if (~b & 1) b >>= 1; else { if (a < b) swap(a, b); a -= b; } } return ret * b; } long long rho(long long n) { for (;;) { long long X = rand() % n, Y, Z, T = 1, *lY = a, *lX = lY; int tmp = 20; C = rand() % 10 + 3; X = mul(X, X, n) + C; *(lY++) = X; lX++; Y = mul(X, X, n) + C; *(lY++) = Y; for (; X != Y;) { long long t = X - Y + n; Z = mul(T, t, n); if (Z == 0) return gcd(T, n); tmp--; if (tmp == 0) { tmp = 20; Z = gcd(Z, n); if (Z != 1 && Z != n) return Z; } T = Z; Y = *(lY++) = mul(Y, Y, n) + C; Y = *(lY++) = mul(Y, Y, n) + C; X = *(lX++); } } } void _factor(long long n) { for (int i = 0; i < cnt; i++) { if (n % fac[i] == 0) n /= fac[i], fac[cnt++] = fac[i]; } if (n <= psize) { for (; n != 1; n /= p[n]) fac[cnt++] = p[n]; return; } if (miller(n)) fac[cnt++] = n; else { long long x = rho(n); _factor(x); _factor(n / x); } } void dfs(long long x, int dep) { if (dep == _cnt) d.push_back(x); else { dfs(x, dep + 1); for (int i = 1; i <= _e[dep]; i++) dfs(x *= _pr[dep], dep + 1); } } void norm() { sort(fac, fac + cnt); _cnt = 0; for (int i = 0; i < cnt; i++) if (i == 0 || fac[i] != fac[i - 1]) _pr[_cnt] = fac[i], _e[_cnt++] = 1; else _e[_cnt - 1]++; } vector<long long> getd() { d.clear(); dfs(1, 0); return d; } vector<long long> factor(long long n) { cnt = 0; _factor(n); norm(); return getd(); } vector<pair<long long, long long>> factorG(long long n) { cnt = 0; _factor(n); norm(); vector<pair<long long, long long>> d; for (int i = 0; i < _cnt; i++) d.push_back(make_pair(_pr[i], _e[i])); return d; } bool is_primitive(long long a, long long p) { assert(miller(p)); vector<pair<long long, long long>> D = factorG(p - 1); for (int i = 0; i < ((int)(D).size()); i++) if (powl(a, (p - 1) / D[i].first, p) == 1) return 0; return 1; } } // namespace Factor int T, ret[101000]; long long n, k; map<long long, vector<pair<long long, int>>> q; long long dis[101000]; long long mul(long long x, long long y, long long m) { x %= m; y %= m; assert(x >= 0 && y >= 0); long long d = ((long double)x * y / m); d = x * y - d * m; if (d >= m) d -= m; if (d < 0) d += m; return d; } long long Inv(long long q, long long m) { if (q == 0) return 0; assert(q >= 0); long long a1 = m, b1 = 0, a2 = q, b2 = 1, a3, b3, t; while (a2 != 1) { t = a1 / a2, a3 = a1 - t * a2, b3 = b1 - mul(t, b2, m), a1 = a2, a2 = a3, b1 = b2, b2 = b3; if (b2 < 0) b2 += m; } return b2; } int main() { Factor::init(1000000); scanf("%d", &T); for (int i = 0; i < T; i++) { scanf("%lld%lld", &n, &k); q[k].push_back(make_pair(n, i)); } for (auto p : q) { k = p.first; auto que = p.second; auto d = Factor::factorG(k); sort((d).begin(), (d).end()); if (((int)(d).size()) == 0) continue; if (((int)(d).size()) == 1) { for (auto z : que) { if (z.first % k == 0) ret[z.second] = 1; } continue; } if (((int)(d).size()) == 2) { long long p1 = d[0].first, p2 = d[1].first; long long w = Inv(p1, p2); for (auto z : que) { long long w2 = mul(w, z.first, p2); if (z.first / p1 >= w2) ret[z.second] = 1; } continue; } long long base = d[0].first; for (int i = 0; i < base; i++) dis[i] = 1ll << 60; dis[0] = 0; for (int i = 1; i < ((int)(d).size()); i++) { long long p = d[i].first % base; int pre = 0; for (int j = 0; j < 2 * base + 10; j++) { int cur = pre + p; if (cur >= base) cur -= base; if (dis[cur] > dis[pre] + d[i].first) dis[cur] = dis[pre] + d[i].first; pre = cur; } } for (auto z : que) { n = z.first; if (dis[n % base] <= n) ret[z.second] = 1; } } for (int i = 0; i < T; i++) puts(ret[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; const int MXP = 4e7; bitset<MXP> prime; vector<long long> primes; void sieve() { for (int p = 2; p < MXP; p++) { if (prime[p]) continue; primes.push_back(p); for (int q = p; q < MXP; q += p) prime.set(q); } } map<long long, vector<pair<long long, int>>> qry; bool ans[10005]; vector<pair<long long, long long>> adj[100005]; long long dis[100005]; long long euclid(long long a, long long b, long long &x, long long &y) { if (b) { long long d = euclid(b, a % b, y, x); return y -= a / b * x, d; } return x = 1, y = 0, a; } void solve(long long k, vector<pair<long long, int>> &qs) { if (k == 1) { for (auto q : qs) ans[q.second] = false; return; } vector<long long> pf; for (auto p : primes) { if (p * p > k) break; if (k % p) continue; pf.push_back(p); while (k % p == 0) k /= p; } if (k > 1) pf.push_back(k); sort(pf.begin(), pf.end()); if (pf.size() == 1) { for (auto q : qs) ans[q.second] = (q.first % pf[0] == 0); return; } if (pf.size() == 2) { long long x, y; long long p = pf[0], q = pf[1]; euclid(q, p, x, y); x = (x % p + p) % p; for (auto qry : qs) { long long n = qry.first; long long d = n % p; long long fi = ((n % p) * x) % p; ans[qry.second] = (q * fi <= n); } return; } for (int i = 0; i < pf[0]; i++) { adj[i].clear(); for (int j = 1; j < pf.size(); j++) { long long p = pf[j]; adj[i].push_back({(i + p) % pf[0], p}); } } fill(dis, dis + pf[0], LLONG_MAX); priority_queue<pair<long long, long long>, vector<pair<long long, long long>>, greater<pair<long long, long long>>> q; dis[0] = 0; q.push({0, 0}); while (!q.empty()) { long long d = q.top().first, u = q.top().second; q.pop(); if (d > dis[u]) continue; for (auto e : adj[u]) { long long v = e.first, w = e.second; if (dis[v] > dis[u] + w) { dis[v] = dis[u] + w; q.push({dis[v], v}); } } } for (auto q : qs) ans[q.second] = (dis[q.first % pf[0]] <= q.first); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); sieve(); int t; cin >> t; for (int i = 0; i < t; i++) { long long n, k; cin >> n >> k; qry[k].push_back({n, i}); } for (auto p : qry) solve(p.first, p.second); for (int i = 0; i < t; i++) cout << (ans[i] ? "YES\n" : "NO\n"); }
#include <bits/stdc++.h> using namespace std; inline long long gcd(long long x, long long y) { return (x % y == 0) ? y : gcd(y, x % y); } long long mul(long long x, long long y, long long MOD) { long long ans = 0; while (y) { if (y & 1) ans = (ans + x) % MOD; x = (x + x) % MOD; y >>= 1; } return ans; } long long pow_mod(long long x, long long k, long long MOD) { long long ans = 1; while (k) { if (k & 1) ans = mul(ans, x, MOD); x = mul(x, x, MOD); k >>= 1; } return ans; } long long fact[15]; int cnt; namespace Math { const int prime[15] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}; bool is_prime(long long c, long long n) { long long d = n - 1; while (!(d & 1)) d >>= 1; long long t = pow_mod(c, d, n); while (d != n - 1 && t != 1 && t != n - 1) { t = mul(t, t, n); d <<= 1; } return (t == n - 1) || (d & 1); } bool miller_rabin(long long n) { for (int i = 0; i < 15; i++) { if (n == prime[i]) return 1; if (n % prime[i] == 0) return 0; } for (int i = 0; i < 10; i++) { long long c = rand() % (n - 2) + 2; if (!is_prime(c, n)) return 0; } return 1; } void pollard_rho(long long n) { if (miller_rabin(n)) { fact[++cnt] = n; return; } for (;;) { long long a, b, c; a = b = rand() % n; c = rand() % n; b = (mul(b, b, n) + c) % n; while (a != b) { long long t = gcd(abs(a - b), n); if (t != 1 && t != n) { pollard_rho(t); pollard_rho(n / t); return; } a = (mul(a, a, n) + c) % n; b = (mul(b, b, n) + c) % n; b = (mul(b, b, n) + c) % n; } } } } // namespace Math namespace Solve1 { bool solve(long long n) { long long a = fact[1], b = fact[2]; long long nev = mul(pow_mod(b % a, a - 2, a), n % a, a); return (b * nev <= n); } } // namespace Solve1 namespace Solve2 { priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > q; long long dis[100005]; void dijkstra() { memset(dis, 0x3f, sizeof(dis)); while (!q.empty()) q.pop(); int p = fact[1]; dis[0] = 0; q.push(pair<long long, int>(0, 0)); while (!q.empty()) { pair<long long, int> t = q.top(); q.pop(); if (dis[t.second] < t.first) continue; int a = t.second; long long b = t.first; for (int i = 2; i <= cnt; i++) if (b + fact[i] < dis[(a + fact[i]) % p]) { int u = (a + fact[i]) % p; dis[u] = b + fact[i]; q.push(pair<long long, int>(dis[u], u)); } } } bool solve(long long n) { return dis[n % fact[1]] <= n; } } // namespace Solve2 bool ans[10005]; map<long long, int> mp; vector<pair<long long, int> > vt[55]; long long num[10005]; int main() { int cases; scanf("%d", &cases); int tot = 0; for (int i = 1; i <= cases; i++) { long long n = 0, k = 0; scanf("%lld%lld", &n, &k); if (k == 1) continue; if (!mp.count(k)) { mp[k] = ++tot; num[tot] = k; } vt[mp[k]].push_back(pair<long long, int>(n, i)); } for (int i = 1; i <= tot; i++) { cnt = 0; Math::pollard_rho(num[i]); sort(fact + 1, fact + cnt + 1); cnt = unique(fact + 1, fact + cnt + 1) - fact - 1; if (cnt == 1) { long long a = fact[1]; for (int j = 0; j < vt[i].size(); j++) ans[vt[i][j].second] = (vt[i][j].first % a == 0); } else if (cnt == 2) { for (int j = 0; j < vt[i].size(); j++) ans[vt[i][j].second] = Solve1::solve(vt[i][j].first); } else { Solve2::dijkstra(); for (int j = 0; j < vt[i].size(); j++) ans[vt[i][j].second] = Solve2::solve(vt[i][j].first); } } for (int i = 1; i <= cases; i++) puts((ans[i]) ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> const int MX = 33333333; using namespace std; int n, cnt, p[2100000], pc, v[51]; bitset<MX> Prime; map<long long, int> Map; vector<long long> d[51]; int R[51][101000]; long long Pow(long long a, long long b, long long Mod) { long long r = 1; while (b) { if (b & 1) r = r * a % Mod; a = a * a % Mod; b >>= 1; } return r; } bool OK(long long a, long long b, long long n) { long long inv = Pow(b, a - 2, a); long long t = (n % a) * inv % a; if (n >= b * t) return true; return false; } priority_queue<pair<int, int> > PQ; void Dijk(int *a, vector<long long> &D) { int Mod = D[0]; int i; for (i = 0; i < Mod; i++) a[i] = 1e9; a[0] = 0; PQ.push({0, 0}); while (!PQ.empty()) { auto tp = PQ.top(); PQ.pop(); if (a[tp.second] != -tp.first) continue; int x = tp.second; for (auto &t : D) { int aa = (x + t) % Mod; long long dd = (x + t) / Mod; if (a[aa] > a[x] + dd) { a[aa] = a[x] + dd; PQ.push({-a[aa], aa}); } } } } bool Pos(long long n, vector<long long> &D, int num) { if (D.empty()) return false; if (D.size() == 1) { if (n % D[0] == 0) return true; return false; } if (OK(D[0], D[1], n)) return true; if (D.size() == 2) return false; if (!v[num]) { v[num] = 1; Dijk(R[num], D); } if (R[num][n % D[0]] <= n / D[0]) return true; return false; } int main() { long long m, n; int i, j; for (i = 2; i < MX; i++) { if (Prime[i] == 1) continue; p[pc++] = i; for (j = i + i; j < MX; j += i) Prime[j] = 1; } int TC; scanf("%d", &TC); while (TC--) { scanf("%lld%lld", &m, &n); if (!Map.count(n)) { Map[n] = ++cnt; long long t = n; for (i = 0; (long long)p[i] * p[i] <= t; i++) { if (t % p[i] == 0) { while (t % p[i] == 0) t /= p[i]; d[cnt].push_back(p[i]); } } if (t != 1) d[cnt].push_back(t); } if (Pos(m, d[Map[n]], Map[n])) puts("YES"); else puts("NO"); } return 0; }
#include <bits/stdc++.h> #pragma GCC optimize("O2,Ofast,inline,unroll-all-loops,-ffast-math") #pragma GCC target("popcnt") using namespace std; struct que { int id; long long n, k; bool operator<(const que &rhs) const { return k < rhs.k; } } qs[10010]; struct cmp { bool operator()(const pair<int, long long> &A, const pair<int, long long> &B) { return A.second == B.second ? A.first > B.first : A.second > B.second; } }; int q; long long dis[100010]; bool np[34000010], ans[10010]; vector<int> pr, divs; vector<pair<int, long long> > nxt[100010]; priority_queue<pair<int, long long>, vector<pair<int, long long> >, cmp> Q; template <class T> void read(T &x) { char ch = x = 0; bool fl = false; while (!isdigit(ch)) fl |= ch == '-', ch = getchar(); while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); x = fl ? -x : x; } void exgcd(long long a, long long b, long long &x, long long &y) { if (a == 1 && !b) return x = 1, y = 0, void(); exgcd(b, a % b, y, x), y -= a / b * x; } bool check(long long n, long long a, long long b) { if (a < b) swap(a, b); long long x, y; exgcd(a, b, x, y); x = (x % b + b) * (n % b) % b; y = (n - a * x) / b; return y >= 0; } void solve(long long k) { divs.clear(); for (int i = 0; 1LL * pr[i] * pr[i] <= k; i++) { if (k % pr[i]) continue; divs.push_back(pr[i]); while (k % pr[i] == 0) { k /= pr[i]; } } if (k > 1) divs.push_back(k); if (divs.size() <= 2) return; for (int i = 0; i < divs[0]; i++) { nxt[i].clear(); } for (int i = 1; i < divs.size(); i++) { int tmp = divs[i]; for (int j = 0; j < divs[0]; j++) { nxt[j].push_back({(j + tmp) % divs[0], tmp}); } } memset(dis, 0x3f, sizeof(dis)); Q.push({0, dis[0] = 0}); while (!Q.empty()) { pair<int, long long> x = Q.top(); Q.pop(); if (dis[x.first] != x.second) continue; for (auto &v : nxt[x.first]) { if (dis[v.first] <= dis[x.first] + v.second) continue; Q.push({v.first, dis[v.first] = dis[x.first] + v.second}); } } } void sieve() { for (int i = 2; i < 34000010; i++) { if (!np[i]) pr.push_back(i); for (int j = 0; j < pr.size(); j++) { if (1LL * i * pr[j] >= 34000010) break; np[i * pr[j]] = true; if (i % pr[j] == 0) break; } } } int main() { read(q), sieve(); for (int i = 1; i <= q; i++) { read(qs[i].n), read(qs[i].k), qs[i].id = i; } sort(qs + 1, qs + q + 1); for (int i = 1; i <= q; i++) { if (qs[i].k != qs[i - 1].k) solve(qs[i].k); if (divs.empty()) ans[qs[i].id] = false; if (divs.size() == 1) ans[qs[i].id] = qs[i].n % qs[i].k == 0; if (divs.size() == 2) ans[qs[i].id] = check(qs[i].n, divs[0], divs[1]); if (divs.size() > 2) ans[qs[i].id] = dis[qs[i].n % divs[0]] <= qs[i].n; } for (int i = 1; i <= q; i++) { puts(ans[i] ? "YES" : "NO"); } return 0; }
#include <bits/stdc++.h> const int N = 2000005, M = 55, S = 31624000; int t; long long n, k; int pri[N], cnt; bool vis[S + 10]; void euler(void) { vis[1] = 1; for (int i = 2; i < S; ++i) { if (!vis[i]) pri[++cnt] = i; for (int j = 1; j <= cnt && i * pri[j] < S; ++j) { vis[i * pri[j]] = 1; if (!i % pri[j]) break; } } return; } std::map<long long, int> mp; int tt, siz[M]; long long son[M][20], dis[M][100005]; std::priority_queue<std::pair<long long, int>, std::vector<std::pair<long long, int> >, std::greater<std::pair<long long, int> > > que; void build(int k) { int mx = son[k][1]; memset(dis[k], 0x3f, sizeof(dis[k])); dis[k][0] = 0; que.push(std::make_pair(0ll, 0)); while (!que.empty()) { std::pair<long long, int> tmp = que.top(); que.pop(); int x = tmp.second; long long d = tmp.first; if (d != dis[k][x]) continue; for (int i = 2; i <= siz[k]; ++i) { int y = (x + son[k][i]) % mx; long long w = son[k][i]; if (d + w < dis[k][y]) { dis[k][y] = d + w; que.push(std::make_pair(dis[k][y], y)); } } } return; } void dec(long long k) { mp[k] = ++tt; for (int i = 1; 1ll * pri[i] * pri[i] <= k; ++i) if (k % pri[i] == 0) { son[tt][++siz[tt]] = pri[i]; while (k % pri[i] == 0) k /= pri[i]; } if (k != 1) son[tt][++siz[tt]] = k; std::sort(son[tt] + 1, son[tt] + 1 + siz[tt]); if (siz[tt] > 2) build(tt); return; } long long qpow(long long x, long long y, long long m) { long long res = 1; while (y) { if (y & 1) res = res * x % m; y >>= 1, x = x * x % m; } return res % m; } int main(void) { euler(); scanf("%d", &t); while (t--) { scanf("%lld%lld", &n, &k); if (!mp.count(k)) dec(k); int tk = mp[k]; if (siz[tk] == 0) printf("NO\n"); else if (siz[tk] == 1) printf("%s\n", n % son[tk][1] ? "NO" : "YES"); else if (siz[tk] == 2) { long long a = son[tk][1], b = son[tk][2]; long long my = qpow(b, a - 2, a) * (n % a) % a; printf("%s\n", my * b <= n ? "YES" : "NO"); } else printf("%s\n", dis[tk][n % son[tk][1]] <= n && n >= son[tk][1] ? "YES" : "NO"); } return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5, M = 3e5 + 5; int T, p[2000000], cnt, m, edgenum, Head[N], Next[M], vet[M]; bool isnp[32000001], vis[N], ans[N]; long long n, k, K[55], d[20], val[M], dis[N], X, Y; vector<pair<long long, int> > vec[55]; priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > que; inline void add(int u, int v, long long w) { Next[++edgenum] = Head[u]; Head[u] = edgenum; vet[edgenum] = v; val[edgenum] = w; } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } exgcd(b, a % b, y, x), y -= a / b * x; } int main() { for (int i = 2; i <= 32000000; i++) { if (!isnp[i]) p[++cnt] = i; for (int j = 1; j <= cnt && i * p[j] <= 32000000; j++) { isnp[i * p[j]] = 1; if (!(i % p[j])) break; } } cin >> T; for (int i = 1; i <= T; i++) { scanf("%lld%lld", &n, &k); int id; for (id = 1; id <= m; id++) if (K[id] == k) break; if (id > m) K[++m] = k; vec[id].push_back(pair<long long, int>(n, i)); } for (int i = 1; i <= m; i++) { long long _ = K[i]; int dcnt = 0; for (int j = 1; 1ll * p[j] * p[j] <= K[i]; j++) if (!(_ % p[j])) { d[++dcnt] = p[j]; while (!(_ % p[j])) _ /= p[j]; } if (_ > 1) d[++dcnt] = _; if (!dcnt) continue; else if (dcnt == 1) for (auto q : vec[i]) ans[q.second] = !(q.first % d[1]); else if (dcnt == 2) { exgcd(d[1], d[2], X, Y); for (auto q : vec[i]) ans[q.second] = ((__int128)X * q.first % d[2] + d[2]) % d[2] * d[1] + ((__int128)Y * q.first % d[1] + d[1]) % d[1] * d[2] <= q.first; } else { edgenum = 0; for (int i = 0; i < d[1]; i++) Head[i] = vis[i] = 0, dis[i] = (long long)1e18 + 1; for (int i = 2; i <= dcnt; i++) for (int j = 0; j < d[1]; j++) add(j, (j + d[i]) % d[1], d[i]); dis[0] = 0, que.push(pair<long long, int>(0, 0)); while (!que.empty()) { int u = que.top().second; que.pop(); if (vis[u]) continue; vis[u] = 1; for (int e = Head[u]; e; e = Next[e]) { int v = vet[e]; long long w = val[e]; if (dis[v] > dis[u] + w) dis[v] = dis[u] + w, que.push(pair<long long, int>(dis[v], v)); } } for (auto q : vec[i]) ans[q.second] = q.first >= dis[q.first % d[1]]; } } for (int i = 1; i <= T; i++) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; template <typename T> void maxtt(T &t1, T t2) { t1 = max(t1, t2); } template <typename T> void mintt(T &t1, T t2) { t1 = min(t1, t2); } bool debug = 0; int n, m, k; int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0}; string direc = "RDLU"; long long ln, lk, lm; void etp(bool f = 0) { puts(f ? "Yes" : "No"); exit(0); } void addmod(int &x, int y, int mod = 1000000007) { assert(y >= 0); x += y; if (x >= mod) x -= mod; assert(x >= 0 && x < mod); } void et() { puts("-1"); exit(0); } long long fastPow(long long x, long long y, int mod = 1000000007) { long long ans = 1; while (y > 0) { if (y & 1) ans = (x * ans) % mod; x = x * x % mod; y >>= 1; } return ans; } long long gcd1(long long x, long long y) { return y ? gcd1(y, x % y) : x; } const int N = 32000000; bitset<N + 5> bs; vector<int> ps; vector<long long> pks; bool Ans[100005]; long long extend_gcd(long long a, long long b, long long &x, long long &y, long long d) { if (b == 0) { x = d / a; y = 0; return a; } else { long long r = extend_gcd(b, a % b, y, x, d); y -= x * (a / b); return r; } } void init() { ps.push_back(2); for (int i = 3; i <= N; i += 2) if (!bs[i]) { ps.push_back(i); for (int j = i + i; j <= N; j += i) { bs[j] = 1; } } } long long p1, p2, G, pg1, pg2; long long dis[100005]; bool used[100005]; void dij() { for (int(i) = 0; (i) < (int)(p1); (i)++) { dis[i] = (1LL << 60); used[i] = 0; } dis[0] = 0; priority_queue<pair<long long, int>, std::vector<pair<long long, int>>, std::greater<pair<long long, int>>> q; q.push({0, 0}); while (!q.empty()) { int x = q.top().second; q.pop(); if (used[x]) continue; used[x] = 1; for (auto p : pks) { long long d = p; int y = (x + p) % p1; if (dis[x] + d < dis[y]) { dis[y] = dis[x] + d; q.push({dis[y], y}); } } } } void reinitK(long long k) { pks.clear(); long long tk = k; for (int P : ps) { if ((long long)P * P > tk) break; if (tk % P == 0) { pks.push_back(P); while (tk % P == 0) tk /= P; } } if (tk != 1) pks.push_back(tk); if (pks.size() == 2) { p1 = pks[0]; p2 = pks[1]; G = gcd1(p1, p2); pg1 = p1 / G; pg2 = p2 / G; } else if (pks.size() > 2) { p1 = pks[0]; dij(); } } long long qn[100005], qk[100005]; void fmain(int ID) { init(); scanf("%d", &n); long long pk = -1; vector<pair<long long, int>> vp; for (int(i) = 1; (i) <= (int)(n); (i)++) { scanf("%lld%lld", qn + i, qk + i); vp.push_back({qk[i], i}); } sort(vp.begin(), vp.end()); for (int(i) = 0; (i) < (int)(n); (i)++) { int id = vp[i].second; if (qk[id] != pk) { reinitK(qk[id]); pk = qk[id]; } if (qk[id] == 1) Ans[id] = 0; else if (pks.size() == 1) Ans[id] = qn[id] % pks[0] == 0; else if (pks.size() == 2) { if (qn[id] % G != 0) { Ans[id] = 0; continue; } long long x, y; extend_gcd(p1, p2, x, y, G); x %= pg2; if (x < 0) x += pg2; Ans[id] = ((qn[id] % p2) * x % p2) * p1 <= qn[id]; } else { Ans[id] = dis[qn[id] % p1] <= qn[id]; } } for (int(i) = 1; (i) <= (int)(n); (i)++) puts(Ans[i] ? "YES" : "NO"); } int main() { int t = 1; for (int(i) = 1; (i) <= (int)(t); (i)++) { fmain(i); } return 0; }
#include <bits/stdc++.h> using namespace std; inline void read(int &x) { x = 0; char c = getchar(); int f = 1; while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); } x *= f; } inline unsigned int R() { static unsigned int seed = 416; return seed ^= seed >> 5, seed ^= seed << 17, seed ^= seed >> 13; } const int N = 102000; const long long inf = 3e18; int prime[4000000], len; long long dis[N]; map<long long, int> Map; int num; long long rec[75][N]; bool isprime(int x) { for (int i = 2; i * i <= x; i++) if (x % i == 0) return 0; return 1; } void getp(int n) { static int small[10000]; static bool vis[10000]; int sz = 0, S = sqrt(n) + 0.5; for (register int i = (2); i <= (S); i++) if (isprime(i)) small[++sz] = i, prime[++len] = i; for (int l = S + 1; l <= n; l += S) { memset(vis, 0, sizeof(vis)); int r = min(n, l + S - 1); for (register int i = (1); i <= (sz); i++) for (register int j = r / small[i] * small[i]; j >= l; j -= small[i]) vis[j - l] = 1; for (register int i = (0); i <= (S - 1); i++) if (!vis[i]) prime[++len] = l + i; } } inline vector<long long> getfac(long long n) { static map<long long, vector<long long> > Map; long long rec = n; if (Map.count(n)) return Map[n]; vector<long long> res; for (register int i = 1; i <= len && 1LL * prime[i] * prime[i] <= n; i++) if (n % prime[i] == 0) { res.push_back(prime[i]); while (n % prime[i] == 0) n /= prime[i]; } if (n > 1) res.push_back(n); return Map[rec] = res; } long long gcd(long long a, long long b) { return !b ? a : gcd(b, a % b); } inline void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return; } exgcd(b, a % b, y, x); y -= a / b * x; } inline long long mul(long long a, long long b, long long mo) { long long res = 0; while (b) { if (b & 1) res = (res + a) % mo; a = (a + a) % mo; b >>= 1; } return res; } inline bool ckeq(long long c, long long a, long long b) { long long g = gcd(a, b); if (c % g) return 0; a /= g; b /= g; c /= g; long long x, y; exgcd(a, b, x, y); x = mul(x, c, b); x = (x + b) % b; return c - a * x >= 0; } int main() { getp(35000000); int T; read(T); while (T--) { long long nn, k; scanf("%lld%lld", &nn, &k); vector<long long> s = getfac(k); if (k == 1) puts("NO"); else if (((int)s.size()) == 1) printf("%s\n", nn % s[0] == 0 ? "YES" : "NO"); else if (((int)s.size()) == 2) printf("%s\n", ckeq(nn, s[0], s[1]) ? "YES" : "NO"); else { if (!Map.count(k)) { priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > heap; int n = s[0]; for (register int i = (0); i <= (n - 1); i++) dis[i] = inf; dis[0] = 0; heap.push(pair<long long, int>(dis[0], 0)); while (!heap.empty()) { int u = heap.top().second; if (heap.top().first != dis[u]) { heap.pop(); continue; } heap.pop(); for (register int i = (1); i <= (((int)s.size()) - 1); i++) { int v = (u + s[i]) % n; long long d = dis[u] + s[i]; if (d < dis[v]) { dis[v] = d; heap.push(pair<long long, int>(d, v)); } } } Map[k] = ++num; for (register int i = (0); i <= (s[0] - 1); i++) rec[num][i] = dis[i]; } assert(num <= 50); printf("%s\n", rec[Map[k]][nn % s[0]] <= nn ? "YES" : "NO"); } } return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10, M = 3.3e7; int prm[M], tot; void init(int n) { for (int i = 2; i <= n; i++) { if (!prm[i]) prm[++tot] = i; for (int j = 1; j <= tot && i * prm[j] <= n; ++j) { prm[i * prm[j]] = true; if (i % prm[j] == 0) break; } } } struct Query { long long n, k; int id; bool operator<(const Query& A) const { return k < A.k; } } Q[N]; bool ans[N]; int m; long long fac[N]; void exgcd(long long a, long long b, long long& x, long long& y) { if (!b) assert(a == 1), x = 1, y = 0; else { exgcd(b, a % b, y, x); y -= a / b * x; } } void work(long long a, long long b, int l, int r) { long long x, y; exgcd(a, b, x, y); y = (y % a + a) % a; for (int i = l; i <= r; i++) { long long val = (y * (Q[i].n % a)) % a * b; ans[Q[i].id] = val <= Q[i].n; } } bool vis[N]; long long dis[N]; struct Node { int o; long long d; bool operator<(const Node& B) const { return d > B.d; } }; void Dijkstra() { int n = fac[1]; for (int i = 0; i <= n; i++) dis[i] = 1ll << 60, vis[i] = 0; dis[0] = 0; priority_queue<Node> q; q.push((Node){0, 0}); while (!q.empty()) { int o = q.top().o; q.pop(); if (vis[o]) continue; vis[o] = true; for (int i = 2; i <= m; i++) { long long d = dis[o] + (o + fac[i]) / n; int u = (o + fac[i]) % n; if (dis[u] > d) dis[u] = d, q.push((Node){u, d}); } } } int main() { init(M - 5); int q; scanf("%d", &q); for (int i = 1; i <= q; i++) scanf("%I64d%I64d", &Q[i].n, &Q[i].k), Q[i].id = i; sort(Q + 1, Q + q + 1); for (int i = 1; i <= q; i++) { long long x = Q[i].k; int r = i; while (r < q && Q[r + 1].k == x) ++r; m = 0; for (int j = 1; j <= tot; j++) if (x % prm[j] == 0) { fac[++m] = prm[j]; while (x % prm[j] == 0) x /= prm[j]; } if (x > 1) fac[++m] = x; if (m == 0) for (int j = i; j <= r; j++) ans[Q[j].id] = false; else if (m == 1) for (int j = i; j <= r; j++) ans[Q[j].id] = Q[j].n % fac[1] == 0; else if (m == 2) work(fac[1], fac[2], i, r); else { Dijkstra(); for (int j = i; j <= r; j++) ans[Q[j].id] = dis[Q[j].n % fac[1]] <= Q[j].n / fac[1]; } i = r; } for (int i = 1; i <= q; i++) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; const long long MXP = 31622800, INF = 1ll << 62; long long t, n, k, dist[100 * 1000 + 10]; vector<long long> p, pk; bool b[MXP], ans[10 * 1000 + 10]; vector<pair<long long, long long>> sv; void primes() { for (long long i = 2; i < MXP; i++) if (!b[i]) { p.push_back(i); for (long long j = i * i; j < MXP; j += i) b[j] = true; } } long long Pow(long long a, long long b, long long MOD) { return (b ? ((b & 1 ? a : 1) * (Pow((a * a) % MOD, b >> 1, MOD)) % MOD) % MOD : 1); } void dijkstra() { set<pair<long long, int>> q; fill(dist, dist + pk[0], INF); q.insert({dist[0] = 0, 0}); while (!q.empty()) { auto u = *q.begin(); q.erase(q.begin()); for (long long v : pk) if (u.first + v < dist[(u.second + v) % pk[0]]) q.erase({dist[(u.second + v) % pk[0]], (u.second + v) % pk[0]}), q.insert({dist[(u.second + v) % pk[0]] = u.first + v, (u.second + v) % pk[0]}); } } void solve() { long long _k = k, pksz; pk.clear(); for (int i = 0; p[i] * p[i] <= _k; i++) if (!(_k % p[i])) { pk.push_back(p[i]); while (!(_k % p[i])) _k /= p[i]; } if (_k > 1) pk.push_back(_k); pksz = pk.size(); if (!pksz) return; if (pksz == 1) { for (int i = 0; i < t; i++) if (sv[i].second == k) ans[i] = !(sv[i].first % k); return; } if (pksz == 2) { long long inv = Pow(pk[1], pk[0] - 2, pk[0]); for (int i = 0; i < t; i++) if (sv[i].second == k) ans[i] = ((sv[i].first / pk[1]) >= (inv * (sv[i].first % pk[0])) % pk[0]); return; } dijkstra(); for (int i = 0; i < t; i++) if (sv[i].second == k) ans[i] = (sv[i].first >= dist[sv[i].first % pk[0]]); } int main() { ios::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL); set<long long> st; primes(); cin >> t; for (int i = 0; i < t; i++) cin >> n >> k, sv.push_back({n, k}), st.insert(k); for (long long x : st) k = x, solve(); for (int i = 0; i < t; i++) cout << (ans[i] ? "YES\n" : "NO\n"); return 0; }
#include <bits/stdc++.h> using namespace std; pair<pair<long long int, long long int>, int> queries[10000]; bitset<32000000> bs; vector<int> primes; long long int dist[100000]; priority_queue<pair<long long int, int> > H; int ans[10000]; int main() { int i; int t; long long int n, k; scanf("%d", &t); for (i = 0; i < t; i++) scanf("%I64d %I64d", &n, &k), queries[i] = make_pair(make_pair(k, n), i); sort(queries, queries + t); int j; bs.set(); bs[0] = bs[1] = 0; for (i = 2; i < 32000000; i++) { if (bs[i]) { if (i < 6000) { for (j = i * i; j < 32000000; j += i) bs[j] = 0; } primes.push_back(i); } } vector<long long int> f; for (i = 0; i < t; i++) { k = queries[i].first.first, n = queries[i].first.second; if ((i == 0) || (k != queries[i - 1].first.first)) { int e = sqrt(k) + 1e-6; f.clear(); for (j = 0; primes[j] <= e; j++) { if ((k % primes[j]) == 0) { f.push_back(primes[j]); while ((k % primes[j]) == 0) k /= primes[j]; } } if (k > 1) f.push_back(k); if (f.size() > 2) { fill(dist, dist + f[0], -1); dist[0] = 0; H.push(make_pair(0, 0)); while (!H.empty()) { int u = H.top().second; int d = -H.top().first; H.pop(); if (d > dist[u]) continue; for (j = 1; j < f.size(); j++) { int v = (u + f[j]) % f[0]; if ((dist[v] == -1) || (dist[u] + f[j] < dist[v])) { dist[v] = dist[u] + f[j]; H.push(make_pair(-dist[v], v)); } } } } } if (f.size() == 0) ans[queries[i].second] = 0; else if (f.size() == 1) ans[queries[i].second] = ((n % f[0]) == 0); else if (f.size() == 2) { int e = f[1] - 2; long long int b = f[0], r = n % f[1]; while (e > 0) { if (e & 1) r *= b, r %= f[1]; e >>= 1; b *= b, b %= f[1]; } ans[queries[i].second] = (n >= r * f[0]); } else ans[queries[i].second] = (dist[n % f[0]] != -1) && (dist[n % f[0]] <= n); } for (i = 0; i < t; i++) printf(ans[i] ? "YES\n" : "NO\n"); return 0; }
#include <bits/stdc++.h> using namespace std; template <class T> inline void in(T &x) { x = 0; char c = getchar(); bool f = 0; while (!isdigit(c)) f |= (c == '-'), c = getchar(); while (isdigit(c)) x = x * 10 + (c ^ '0'), c = getchar(); f ? x = -x : 0; } template <class T> inline void out(T x, const char c = '\n') { static short st[30]; short m = 0; if (x < 0) putchar('-'), x = -x; do st[++m] = x % 10, x /= 10; while (x); while (m) putchar(st[m--] | '0'); putchar(c); } template <class T> inline void err(const T &x, const char c = '\n') { cerr << x << c; } template <class T, class... Args> inline void in(T &x, Args &...args) { in(x); in(args...); } template <class T, class... Args> inline void out(const T &x, const Args &...args) { out(x, ' '); out(args...); } template <class T, class... Args> inline void err(const T &x, const Args &...args) { err(x, ' '); err(args...); } template <class T> inline void prt(T a[], int n) { for (register int i = 0; i < n; ++i) out(a[i], i == n - 1 ? '\n' : ' '); } template <class T> inline void clr(T a[], int n) { memset(a, 0, sizeof(T) * n); } template <class T> inline void clr(T *a, T *b) { memset(a, 0, sizeof(T) * (b - a)); } template <class T> inline bool ckmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; } template <class T> inline bool ckmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; } namespace i207M { bitset<31622777> notp; int pri[2000000], cntp; void sieve(int n) { notp[1] = 1; for (register int i = 2; i <= n; ++i) { if (!notp[i]) pri[++cntp] = i; for (register int j = 1, t; j <= cntp && (t = pri[j] * i) <= n; ++j) { notp[t] = 1; if (i % pri[j] == 0) break; } } } bool ans[10005]; vector<long long> d; void divi(long long x) { d.clear(); for (register int i = 1; i <= cntp && (long long)pri[i] * pri[i] <= x; ++i) if (x % pri[i] == 0) { d.push_back(pri[i]); while (x % pri[i] == 0) x /= pri[i]; } if (x > 1) d.push_back(x); } inline long long qmul(const long long &a, const long long &b, const long long &md) { long long c = a * b - (long long)((long double)a * b / md + 0.5) * md; return c < 0 ? c + md : c; } inline long long qpow(long long a, long long b, const long long &md) { long long r = 1; for (; b; b >>= 1, a = qmul(a, a, md)) if (b & 1) r = qmul(r, a, md); return r; } void solve(long long K, const vector<pair<long long, int> > &Q) { if (K == 1) return; divi(K); if (((int)d.size()) == 1) { long long t = d[0]; for (const auto &it : Q) ans[it.second] = (it.first % t == 0); return; } if (((int)d.size()) == 2) { long long a = d[0], b = d[1]; for (const auto &it : Q) { long long n = it.first; if (n % a == 0 || n % b == 0) { ans[it.second] = 1; continue; } long long y = qmul(n % a, qpow(b, a - 2, a), a); ans[it.second] = (b * y <= n && (n - b * y) % a == 0); } return; } static long long dis[100005]; static bool ins[100005]; static queue<int> q; memset(dis, 0x3f, sizeof(dis)); q.push(0), dis[0] = 0; while (!q.empty()) { int x = q.front(); q.pop(); ins[x] = 0; for (register int i = 1; i < ((int)d.size()); ++i) { int v = (x + d[i]) % d[0]; if (ckmin(dis[v], dis[x] + d[i]) && !ins[v]) q.push(v), ins[v] = 1; } } for (const auto &it : Q) ans[it.second] = (dis[it.first % d[0]] <= it.first); } map<long long, vector<pair<long long, int> > > rem; signed main() { int T; long long a, b; in(T); sieve(31622776); for (register int i = 1; i <= T; ++i) { in(a, b); rem[b].push_back(make_pair(a, i)); } for (const auto &it : rem) solve(it.first, it.second); for (register int i = 1; i <= T; ++i) puts(ans[i] ? "YES" : "NO"); return 0; } } // namespace i207M signed main() { i207M::main(); return 0; }
#include <bits/stdc++.h> using namespace std; template <typename Tp> inline void read(Tp &x) { static char c; static bool neg; x = 0, c = getchar(), neg = false; for (; !isdigit(c); c = getchar()) { if (c == '-') { neg = true; } } for (; isdigit(c); c = getchar()) { x = x * 10 + c - '0'; } if (neg) { x = -x; } } namespace Math { const int N = 31622800; const int MX = 1952000; bool notPrime[N]; int prime[MX], primeCnt = 0; inline void sieve() { notPrime[1] = true; for (int i = 2; i < N; ++i) { if (!notPrime[i]) { prime[++primeCnt] = i; } for (int j = 1, p; j <= primeCnt; ++j) { p = prime[j]; if (i * p >= N) { break; } notPrime[i * p] = true; if (i % p == 0) { break; } } } } long long fac[20], facTop = 0; inline void factor(long long x) { facTop = 0; for (int i = 1, p; i <= primeCnt; ++i) { p = prime[i]; if ((long long)p * p > x) { break; } if (x % p == 0) { do { x /= p; } while (x % p == 0); fac[++facTop] = p; } } if (x != 1) { fac[++facTop] = x; } } } // namespace Math namespace G { const int N = 1e5 + 5; long long dis[N]; inline void dijkstra() { memset(dis, 0x3f, sizeof(dis)); priority_queue<pair<long long, int>> q; dis[0] = 0LL; q.emplace((pair<long long, int>){0LL, 0}); while (!q.empty()) { auto p = q.top(); q.pop(); long long w = p.first; int u = p.second; if (w == dis[u]) { for (int i = 2, v; i <= Math::facTop; ++i) { v = (u + Math::fac[i]) % Math::fac[1]; if (dis[v] > w + Math::fac[i]) { dis[v] = w + Math::fac[i]; q.emplace((pair<long long, int>){dis[v], v}); } } } } } } // namespace G inline int inv(long long x, int MOD) { int base = x % MOD, exp = MOD - 2, res = 1; while (exp != 0) { if (exp & 1) { res = (long long)res * base % MOD; } base = (long long)base * base % MOD; exp >>= 1; } return res; } const int N = 1e4 + 5; int T; struct Query { long long n, k; int id; inline const bool operator<(const Query &rhs) const { return k < rhs.k; } }; Query query[N]; bool ans[N]; int main() { Math::sieve(); read(T); long long n, k; for (int cas = 1; cas <= T; ++cas) { read(n), read(k); query[cas] = (Query){n, k, cas}; } sort(query + 1, query + T + 1); for (int i = 1, fac; i <= T; ++i) { n = query[i].n, k = query[i].k; if (k == 1) { ans[query[i].id] = false; } else { if (k != query[i - 1].k) { Math::factor(k); fac = Math::facTop; if (fac > 2) { G::dijkstra(); } } if (fac == 1) { ans[query[i].id] = (bool)(n % Math::fac[1] == 0); } else if (fac == 2) { long long a = Math::fac[1], b = Math::fac[2]; int y = n % a * inv(b, a) % a; ans[query[i].id] = (bool)(b * y <= n); } else { ans[query[i].id] = (bool)(G::dis[n % Math::fac[1]] <= n); } } } for (int i = 1; i <= T; ++i) { puts(ans[i] ? "YES" : "NO"); } }
#include <bits/stdc++.h> using namespace std; namespace SHENZHEBEI { static const int GYN = 2333333; char SZB[GYN], *SS = SZB, *TT = SZB; inline char gc() { if (SS == TT) { TT = (SS = SZB) + fread(SZB, 1, GYN, stdin); if (SS == TT) return '\n'; } return *SS++; } inline long long read() { long long x = 0, g = 1; char ch = gc(); for (; !isdigit(ch); ch = gc()) if (ch == '-') g = -1; for (; isdigit(ch); ch = gc()) x = x * 10 - 48 + ch; return x * g; } inline void write(long long x) { if (x < 0) putchar('-'), x = -x; if (x >= 10) write(x / 10); putchar(x % 10 + '0'); } inline char readchar() { char ch = gc(); for (; isspace(ch); ch = gc()) ; return ch; } inline long long readstr(char *s) { char ch = gc(); int cur = 0; for (; isspace(ch); ch = gc()) ; for (; !isspace(ch); ch = gc()) s[cur++] = ch; s[cur] = '\0'; return cur; } void Print(long long *a, int s, int t) { for (int i = (long long)(s); i <= (long long)(t); ++i) printf("%lld ", a[i]); } void Print(int *a, int s, int t) { for (int i = (long long)(s); i <= (long long)(t); ++i) printf("%d ", a[i]); } void Print(char *a, int s, int t) { for (int i = (long long)(s); i <= (long long)(t); ++i) putchar(a[i]); } void writeln(long long x) { write(x); puts(""); } void Min(long long &x, long long y) { x = x < y ? x : y; } void Max(long long &x, long long y) { x = x > y ? x : y; } } // namespace SHENZHEBEI using namespace SHENZHEBEI; const long long N = 500010; struct dt { long long x, y, id; } a[N]; bool mark[40000010]; long long TTT, q[1000], pri[8000010]; long long dis[200000], vis[200010], answ[200010]; priority_queue<pair<long long, long long>, vector<pair<long long, long long> >, greater<pair<long long, long long> > > Q; bool cmp(dt a, dt b) { return a.y < b.y; } void Init() { TTT = 40000000; for (int i = (long long)(2); i <= (long long)(TTT); ++i) if (!mark[i]) { pri[++pri[0]] = i; for (long long j = 2 * i; j <= TTT; j += i) mark[j] = 1; } } void FenJie(long long x) { q[0] = 0; for (long long i = 1; pri[i] * pri[i] <= x; ++i) if (!(x % pri[i])) { q[++q[0]] = pri[i]; for (; !(x % pri[i]); x /= pri[i]) ; } if (x > 1) q[++q[0]] = x; } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return; } exgcd(b, a % b, y, x); y -= a / b * x; } long long mul(long long a, long long b, long long mod) { long long ans = 0; for (; b; b >>= 1, a = (a + a) % mod) if (b & 1) ans = (ans + a) % mod; return ans; } int main() { long long T = read(); Init(); for (int i = (long long)(1); i <= (long long)(T); ++i) { long long x = read(), y = read(); a[i] = (dt){x, y, i}; } sort(a + 1, a + T + 1, cmp); for (long long i = 1, j; i <= T; i = j + 1) { j = i; for (; a[j + 1].y == a[i].y;) ++j; FenJie(a[j].y); if (a[j].y == 1) q[q[0] = 1] = 1e18 + 10000; if (q[0] == 1) { for (int k = (long long)(i); k <= (long long)(j); ++k) { answ[a[k].id] = a[k].x % q[1] ? 0 : 1; } } else if (q[0] == 2) { long long A = q[1], B = q[2], X, Y, XX, YY; exgcd(A, B, X, Y); X = (X % B + B) % B; exgcd(B, A, XX, YY); XX = (XX % A + A) % A; for (int k = (long long)(i); k <= (long long)(j); ++k) { long long n = a[k].x, x = n % A, y = n % B, ans = mul(x * XX, B, (A * B)) + mul(y * X, A, (A * B)); answ[a[k].id] = n < ans ? 0 : 1; } } else { memset(vis, 0, sizeof vis); memset(dis, 60, sizeof dis); dis[0] = 0; Q.push(make_pair(0, 0)); for (; !Q.empty();) { long long x = Q.top().second; Q.pop(); if (vis[x]) continue; vis[x] = 1; for (int j = (long long)(2); j <= (long long)(q[0]); ++j) { long long dist = dis[x] + q[j], to = dist % q[1]; if (dis[to] > dist) { dis[to] = dist; Q.push(make_pair(dis[to], to)); } } } dis[0] = q[1]; for (int k = (long long)(i); k <= (long long)(j); ++k) answ[a[k].id] = dis[a[k].x % q[1]] <= a[k].x ? 1 : 0; } } for (int i = (long long)(1); i <= (long long)(T); ++i) puts(answ[i] ? "YES" : "NO"); }
#include <bits/stdc++.h> using namespace std; inline long long read() { long long x = 0, f = 1, c = getchar(); while (c < 48) c == '-' && (f = -1), c = getchar(); while (c > 47) x = x * 10 + c - '0', c = getchar(); return x * f; } const int MAXN = 100005; const int LIM = 31622779; struct qs { long long n, k, id; } qr[MAXN]; std::vector<long long> fac; int ans[MAXN], vis[LIM], pri[MAXN * 40]; long long dis[MAXN]; int m, cnt; bool operator<(qs a, qs b) { return a.k < b.k; } inline void sieve(int n) { for (int i = 2; i <= n; ++i) { if (!vis[i]) pri[++cnt] = i; for (int j = 1; j <= cnt; ++j) { if (i * pri[j] > n) break; vis[i * pri[j]] = 1; if (i % pri[j] == 0) break; } } } inline void spfa(int mod) { memset(dis, 0x3f, sizeof dis); queue<int> q; dis[0] = 0; q.push(0); while (!q.empty()) { int x = q.front(); q.pop(); vis[x] = 0; for (int i = 1; i < fac.size(); ++i) { int y = (x + fac[i]) % mod; if (dis[y] > dis[x] + fac[i]) { dis[y] = dis[x] + fac[i]; if (!vis[y]) vis[y] = 1, q.push(y); } } } } inline void dcmp(long long k) { long long tmp = k; fac.clear(); for (int i = 1; 1ll * pri[i] * pri[i] <= tmp && i <= cnt; ++i) { if (tmp % pri[i] == 0) { fac.push_back(pri[i]); while (tmp % pri[i] == 0) tmp /= pri[i]; } } if (tmp != 1) fac.push_back(tmp); } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, a; long long res = exgcd(b, a % b, y, x); return y -= (a / b) * x, res; } int main(int argc, char const *argv[]) { m = read(); long long mx = 0; for (int i = 1; i <= m; ++i) qr[i].n = read(), mx = max(mx, qr[i].k = read()), qr[i].id = i; mx = sqrt(mx); sieve(mx); memset(vis, 0, mx + 1); sort(qr + 1, qr + m + 1); for (int i = 1, tp = 0; i <= m; ++i) { if (qr[i].k != qr[i - 1].k) { dcmp(qr[i].k); tp = 0; if (qr[i].k == 1) tp = 0; else if (fac.size() == 1) tp = 1; else if (fac.size() == 2) tp = 2; else tp = 3, spfa(fac[0]); } if (tp == 0) ans[qr[i].id] = 0; else if (tp == 1) { if (qr[i].n % fac[0] == 0) ans[qr[i].id] = 1; } else if (tp == 2) { long long x, y, g = exgcd(fac[0], fac[1], x, y), md = fac[1] / g; if ((x = (x % md + md) % md, 1) && (qr[i].n % g == 0)) { x = (qr[i].n / g) % md * x % md; y = (qr[i].n - x * fac[0]) / fac[1]; if (y >= 0) ans[qr[i].id] = 1; } } else if (dis[qr[i].n % fac[0]] <= qr[i].n) ans[qr[i].id] = 1; } for (int i = 1; i <= m; ++i) puts(ans[i] ? "YES" : "NO"); return 0; }
#include <bits/stdc++.h> using namespace std; struct Query { long long n, k; int pos; } Q[10005]; int M; bool V[32000005]; int Prime[32000005]; vector<long long> Div; int Heap[100005], NHeap, Pos[100005]; bool Res[10005]; bool Use[100005]; long long D[100005]; void Sieve() { for (int i = 2; 1LL * i * i <= 1000000000000000; i++) { if (V[i] == 0) { Prime[++Prime[0]] = i; for (int j = i + i; 1LL * j * j <= 1000000000000000; j += i) V[j] = 1; } } } void precalcDiv(long long x) { int i = 1; long long init = x; Div.clear(); while (i <= Prime[0] && 1LL * Prime[i] * Prime[i] <= init && Prime[i] <= x) { if (x % Prime[i] == 0) Div.push_back(Prime[i]); while (x % Prime[i] == 0) x /= Prime[i]; ++i; } if (x > 1) Div.push_back(x); } void Swap(int x, int y) { swap(Heap[x], Heap[y]); swap(Pos[Heap[x]], Pos[Heap[y]]); } void Percolate(int node) { int f = node / 2; if (node == 1) return; if (D[Heap[f]] > D[Heap[node]]) { Swap(node, f); Percolate(f); } } void Sift(int node) { int son = node * 2; if (son > NHeap) return; if (son + 1 <= NHeap && D[Heap[son]] > D[Heap[son + 1]]) son++; if (D[Heap[node]] > D[Heap[son]]) { Swap(node, son); Sift(son); } } void Insert(int node) { Heap[++NHeap] = node; Pos[node] = NHeap; Percolate(NHeap); } void Erase(int node) { int pos = Pos[node]; Swap(NHeap, pos); --NHeap; Percolate(pos); Sift(pos); } void Dijkstra() { for (int i = 0; i < Div[0]; i++) D[i] = 1000000000000000005, Use[i] = 0, Pos[i] = 0; NHeap = 0; D[0] = 0; for (int i = 0; i < Div[0]; i++) Insert(i); for (int i = 0; i < Div[0]; i++) { int node = Heap[1]; Erase(node); Use[node] = 1; for (int j = 1; j < Div.size(); j++) { long long cost = Div[j]; int neighb = (node + Div[j]) % Div[0]; if (cost > 1000000000000000000) continue; if (Use[neighb] == 1) continue; if (D[neighb] > D[node] + cost) { Erase(neighb); D[neighb] = D[node] + cost; Insert(neighb); } } } } inline bool cmp(Query a, Query b) { return a.k < b.k; } void Read() { cin >> M; for (int i = 1; i <= M; i++) { cin >> Q[i].n >> Q[i].k; Q[i].pos = i; } sort(Q + 1, Q + M + 1, cmp); } long long power(long long n, int p, long long mod) { long long sol = 1; while (p) { if (p % 2 == 1) sol = (sol * n) % mod; p /= 2; n = (n * n) % mod; } return sol; } void Solve() { for (int i = 1; i <= M; i++) { if (Q[i].k != Q[i - 1].k) { precalcDiv(Q[i].k); if (Div.size() >= 3) Dijkstra(); } if (Div.size() == 0) Res[Q[i].pos] = 0; if (Div.size() == 1) { if (Q[i].n % Div[0] == 0) Res[Q[i].pos] = 1; else Res[Q[i].pos] = 0; } if (Div.size() == 2) { long long inv = power(Div[0], Div[1] - 2, Div[1]); long long mod = Q[i].n % Div[1]; inv = (inv * mod) % Div[1]; if (inv == 0) { Res[Q[i].pos] = 1; continue; } if (Div[0] > Q[i].n / inv) { Res[Q[i].pos] = 0; } else Res[Q[i].pos] = 1; } if (Div.size() >= 3) { long long mod = Q[i].n % Div[0]; if (D[mod] <= Q[i].n) Res[Q[i].pos] = 1; else Res[Q[i].pos] = 0; } } for (int i = 1; i <= M; i++) { if (Res[i] == 0) printf("NO\n"); else printf("YES\n"); } } int main() { Sieve(); Read(); Solve(); return 0; }
#include <bits/stdc++.h> using namespace std; const int T_MAX = 10005; const int SIEVE_MAX = 32000000; const int SMALL_MAX = 100005; const long long LL_INF = 2e18; struct video { long long n, k; int index; bool operator<(const video &other) const { return make_pair(k, n) < make_pair(other.k, other.n); } }; int T; video videos[T_MAX]; vector<bool> is_prime(SIEVE_MAX, true); vector<int> primes; vector<bool> answers(T_MAX, false); long long smallest_sum[SMALL_MAX]; void sieve() { is_prime[0] = is_prime[1] = false; for (int i = 2; i * i < SIEVE_MAX; i++) { if (is_prime[i]) { for (int j = i * i; j < SIEVE_MAX; j += i) { is_prime[j] = false; } } } for (int i = 2; i < SIEVE_MAX; i++) { if (is_prime[i]) primes.push_back(i); } } int mod_pow(long long a, int p, int mod) { long long result = 1; while (p > 0) { if (p & 1) result = result * a % mod; a = a * a % mod; p >>= 1; } return result; } int mod_inv(int a, int mod) { return mod_pow(a, mod - 2, mod); } priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > pq; void check_and_add(int value, long long sum) { if (sum < smallest_sum[value]) { smallest_sum[value] = sum; pq.push(make_pair(sum, value)); } } void dijkstra(vector<long long> k_primes) { int small_prime = (int)k_primes[0]; assert(small_prime < SMALL_MAX); for (int i = 0; i < small_prime; i++) { smallest_sum[i] = LL_INF; } assert(pq.empty()); check_and_add(0, 0); while (!pq.empty()) { pair<long long, int> top = pq.top(); pq.pop(); int value = top.second; long long sum = top.first; if (sum > smallest_sum[value]) continue; for (long long p : k_primes) { int next_value = (value + p) % small_prime; long long next_sum = sum + p; check_and_add(next_value, next_sum); } } smallest_sum[0] = small_prime; } void solve(int start, int end) { long long k = videos[start].k; vector<long long> k_primes; for (int p : primes) { if (p > k) break; if (k % p == 0) { k_primes.push_back(p); do { k /= p; } while (k % p == 0); } } if (k > 1) { k_primes.push_back(k); } sort(k_primes.begin(), k_primes.end()); for (int i = start; i < end; i++) { long long n = videos[i].n; bool answer; if (k_primes.empty()) { answer = false; } else if (k_primes.size() == 1) { answer = n % k_primes[0] == 0; } else if (k_primes.size() == 2) { long long a = k_primes[0], b = k_primes[1]; long long goal = n % a; long long smallest = (goal * mod_inv(b, a) % a) * b; answer = n >= smallest; } else { int small_prime = (int)k_primes[0]; if (i == start) { dijkstra(k_primes); } answer = n >= smallest_sum[n % small_prime]; } answers[videos[i].index] = answer; } } int main() { ios::sync_with_stdio(false); cin.tie(NULL); sieve(); cin >> T; for (int i = 0; i < T; i++) { cin >> videos[i].n >> videos[i].k; videos[i].index = i; } sort(videos, videos + T); for (int i = 0, j = 0; i < T; i = j) { while (j < T && videos[j].k == videos[i].k) j++; solve(i, j); } for (int i = 0; i < T; i++) { cout << (answers[i] ? "YES" : "NO") << '\n'; } return 0; }
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4") using namespace std; const long long maxn = 1e5 + 123, inf = 1e9, N = 3e7 + 5e6, INF = 1e18, mod = 1e9 + 7; vector<pair<long long, long long> > v, g[maxn]; vector<long long> prime; bool used[N + 13]; long long t, dis[maxn], n[maxn], k[maxn]; map<pair<long long, long long>, bool> ans; long long binpow(long long x, long long n, long long mod) { long long res = 1; while (n) { if (n & 1) res = (res * x) % mod; x = (x * x) % mod; n >>= 1; } return res; } int main() { for (int i = 2; i <= N; i++) { if (!used[i]) { prime.push_back(i); ; for (long long j = 1ll * i * i; j < N; j += i) used[j] = 1; } } scanf("%lld", &t); for (int i = 0; i < t; i++) { scanf("%lld%lld", &n[i], &k[i]); v.push_back(make_pair(k[i], n[i])); } sort(v.begin(), v.end()); for (int i = 0; i < t;) { long long k = v[i].first, x = v[i].first; vector<long long> vn, p; while (i <= t && k == v[i].first) vn.push_back(v[i++].second); for (int i = 0; i < prime.size(); i++) { if (x % prime[i] == 0) { p.push_back(prime[i]); while (x % prime[i] == 0) x /= prime[i]; } } if (x > 1) p.push_back(x); if (p.size() == 1) { for (int i = 0; i < vn.size(); i++) ans[make_pair(vn[i], k)] = (vn[i] % p[0] == 0); } if (p.size() == 2) { long long x = p[0], y = p[1]; for (int i = 0; i < vn.size(); i++) { long long n = vn[i], a, b; b = n % x * binpow(y, x - 2, x) % x; ans[make_pair(n, k)] = (n >= b * y); } } if (p.size() >= 3) { for (int i = 0; i < p[0]; i++) { g[i].clear(); for (int j = 0; j < p.size(); j++) g[i].push_back(make_pair((i + p[j]) % p[0], p[j])); dis[i] = INF; } set<pair<long long, long long> > st; dis[0] = 0; st.insert(make_pair(0, 0)); while (!st.empty()) { long long v = (*st.begin()).second; st.erase(st.begin()); for (int i = 0; i < g[v].size(); i++) { long long to = g[v][i].first, w = g[v][i].second; if (dis[to] > dis[v] + w) { st.erase(make_pair(dis[to], to)); dis[to] = dis[v] + w; st.insert(make_pair(dis[to], to)); } } } for (int i = 0; i < vn.size(); i++) ans[make_pair(vn[i], k)] = (vn[i] >= dis[vn[i] % p[0]]); } } for (int i = 0; i < t; i++) if (ans[make_pair(n[i], k[i])]) puts("YES"); else puts("NO"); }
#include <bits/stdc++.h> using namespace std; int t; map<int, int> has; long long fj[55][50], gs[55], bh; long long n, k; const long long S = 31624000; const long long mf = 1e5 + 10; bool is[S]; long long p[2000000]; void init() { for (int i = 2; i < S; i++) { if (!is[i]) p[++p[0]] = i; for (int j = 1; j <= p[0] && p[j] * i < S; j++) { is[i * p[j]] = 1; if (i % p[j] == 0) break; } } } long long mx, dis[mf]; vector<pair<int, int> > e[mf]; vector<int> ans[51]; long long Q[mf * 100], vis[mf]; void build(long long z) { mx = fj[z][1]; for (int i = 0; i < mx; i++) { e[i].clear(); for (int j = 1; j <= gs[z]; j++) e[i].push_back(make_pair((i + fj[z][j]) % mx, fj[z][j])); } memset(dis, 127, sizeof dis); dis[0] = 0; int L = 0, R = 1; Q[R] = 0; while (L < R) { int x = Q[++L]; vis[x] = 0; for (int i = 0; i < e[x].size(); i++) { long long y = e[x][i].first, c = e[x][i].second; if (dis[x] + c < dis[y]) { dis[y] = dis[x] + c; if (!vis[y]) { vis[y] = 1; Q[++R] = y; } } } } for (int i = 0; i < mx; i++) ans[z].push_back(dis[i]); } int fen(long long x) { bh++; for (int i = 1; p[i] * p[i] <= x; i++) { if (x % p[i] == 0) { fj[bh][++gs[bh]] = p[i]; while (x % p[i] == 0) x /= p[i]; } } if (x != 1) fj[bh][++gs[bh]] = x; if (gs[bh] >= 3) build(bh); return bh; } void getans(int n, int z) { if (n < fj[z][1]) printf("NO\n"); else if (ans[z][n % fj[z][1]] <= n) printf("YES\n"); else printf("NO\n"); } long long ksm(long long x, long long y, long long mo) { long long ret = 1; for (; y; y >>= 1) { if (y & 1) ret = ret * x % mo; x = x * x % mo; } return ret; } int main() { init(); for (cin >> t; t; t--) { scanf("%I64d %I64d", &n, &k); int &z = has[k]; if (!z) z = fen(k); if (k == 1) { printf("NO\n"); continue; } if (gs[z] == 1) { printf(n % fj[z][1] ? "NO\n" : "YES\n"); } else if (gs[z] == 2) { long long a = fj[z][1], b = fj[z][2]; long long my = ksm(b, a - 2, a) * (n % a) % a; if (my * b <= n) printf("YES\n"); else printf("NO\n"); } else getans(n, z); } }
#include <bits/stdc++.h> using namespace std; const int N = 1e4 + 5; long long nn[N], kk[N]; map<long long, vector<int> > M; vector<long long> pr; bool res[N]; long long egcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long x1, y1; long long g = egcd(b, a % b, x1, y1); x = y1; y = x1 - (a / b) * y1; return g; } long long mulmod(long long a, long long b, long long c) { long long sign = 1; if (a < 0) { a = -a; sign = -sign; } if (b < 0) { b = -b; sign = -sign; } a %= c; b %= c; long long res = 0; while (b > 0) { if (b & 1) { res = (res + a) % c; } a = (a + a) % c; b >>= 1; } if (sign == -1) { res = (-res) % c; } return res; } bool calc(long long a, long long b, long long c) { long long x, y; long long g = egcd(a, b, x, y); long long dx = c / a; c -= dx * a; long long dy = c / b; c -= dy * b; x = dx + mulmod(x, c / g, b); y = dy + mulmod(y, c / g, a); if (x < 0) { long long need = (-x + b - 1) / b; long long can = y / a; if (need > can) return 0; } if (y < 0) { long long need = (-y + a - 1) / a; long long can = x / b; if (need > can) return 0; } return 1; } int main() { const int K = sqrt(1e15) + 5; vector<bool> h(K, 0); for (int i = 2; i < K; i++) { if (!h[i]) { pr.push_back(i); for (int j = i + i; j < K; j += i) h[j] = i; } } int t; scanf("%d", &t); for (int i = 1; i <= t; i++) { scanf("%lld %lld", nn + i, kk + i); if (kk[i] == 1) continue; M[kk[i]].push_back(i); } for (auto it : M) { long long k = it.first; long long tmp = k; vector<long long> dv; for (auto x : pr) { if (x * x > k) break; if (k % x == 0) { dv.push_back(x); while (k % x == 0) k /= x; } } if (k > 1) dv.push_back(k); k = tmp; if (dv.size() == 1) { for (auto i : it.second) { res[i] = nn[i] % dv[0] == 0; } } else if (dv.size() == 2) { for (auto i : it.second) { res[i] = calc(dv[0], dv[1], nn[i]); } } else { vector<long long> d(dv[0], 2e18); d[0] = 0; priority_queue<pair<long long, int> > q; q.push({0, 0}); while (!q.empty()) { long long c = -q.top().first; int x = q.top().second; q.pop(); if (c > d[x]) continue; for (auto i : dv) { int y = (x + i) % dv[0]; long long nc = c + i; if (nc < d[y]) { d[y] = nc; q.push({-nc, y}); } } } for (auto i : it.second) { res[i] = d[nn[i] % dv[0]] <= nn[i]; } } } for (int i = 1; i <= t; i++) { puts(res[i] ? "YES" : "NO"); } return 0; }
#include <bits/stdc++.h> using namespace std; const long long INF = 4e18; const int BASE = 131; const double eps = 1e-4; const int mod = 998244353; const int inf = 1061109567; const double pi = acos(-1); const int inv2 = (mod + 1) >> 1; namespace Math { inline long long popcount(long long x) { x = (x & 0x55555555) + ((x >> 1) & 0x55555555); x = (x & 0x33333333) + ((x >> 2) & 0x33333333); x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F); x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF); x = (x & 0x0000FFFF) + ((x >> 16) & 0x0000FFFF); return x; } inline long long F(long long x, long long p) { return x >= p ? x - p : x; } inline long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } inline long long ksm(long long x, long long t, long long p) { long long res = 1; while (t) { if (t & 1) res = 1LL * res * x % p; x = 1LL * x * x % p; t >>= 1; } return res; } } // namespace Math template <typename tp> inline void read(tp &dig) { char ch = getchar(); long long flag = 0; dig = 0; while (!isdigit(ch)) { if (ch == '-') flag = 1; ch = getchar(); } while (isdigit(ch)) dig = dig * 10 + ch - '0', ch = getchar(); if (flag) dig = -dig; } template <typename tp, typename... Args> inline void read(tp &dig, Args &...args) { read(dig); read(args...); } struct node { long long n, k, id; inline bool operator<(const node &b) const { return k < b.k; } } a[100010]; long long T, p[31], f[100010], vis[100010], ans[100010]; queue<int> que; inline long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } inline long long mul(long long a, long long b, long long MOD) { return (a * b - (long long)((long double)a / MOD * b + 1e-6) * MOD + MOD) % MOD; } inline long long ksm(long long x, long long t, long long MOD) { long long res = 1; while (t) { if (t & 1) res = mul(res, x, MOD); x = mul(x, x, MOD); t >>= 1; } return res; } inline bool test(long long x, long long a, long long d) { while (!(d & 1)) d >>= 1; long long t = ksm(a, d, x); while ((d ^ (x - 1)) && t != x - 1 && t != 1) t = mul(t, t, x), d <<= 1; return t == x - 1 || (d & 1) == 1; } inline bool isprime(long long x) { if (x == 2 || x == 3 || x == 5 || x == 7 || x == 13) return true; if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0 || x % 13 == 0) return false; int a[] = {2, 3, 5, 7, 13}; for (int i = 0; i <= 4; ++i) if (!test(x, a[i], x - 1)) return false; return true; } inline long long pollard_rho(long long n, long long c) { long long x = rand() % n + 1; if (x == 1) x += 3; while (x < n / x) x = x * x; x = (x % n + n) % n; long long y = x, i = 1, k = 2; while (true) { ++i; x = (mul(x, x, n) + c) % n; long long d = gcd(abs(y - x), n); if (1 < d && d < n) return d; if (y == x) return n; if (i == k) y = x, k <<= 1; } } inline long long find(long long x, long long c) { if (x == 1) return 0; if (isprime(x)) { p[++p[0]] = x; return 1; } long long p = x; while (p >= x) p = pollard_rho(p, c--); if (find(p, c)) return 1; if (find(x / p, c)) return 1; } int main() { read(T); srand(T); for (int i = 1; i <= T; ++i) read(a[i].n, a[i].k), a[i].id = i; sort(a + 1, a + T + 1); for (int i = 1; i <= T; ++i) { if (a[i].k ^ a[i - 1].k) { long long K = a[i].k; p[0] = 0; while (K ^ 1) { find(K, rand() % 51937 + 1); while (K % p[p[0]] == 0) K /= p[p[0]]; } } if (!p[0]) { ans[a[i].id] = 0; continue; } if (p[0] == 1) { ans[a[i].id] = (a[i].n % a[i].k == 0); continue; } if (p[0] == 2) { long long b = a[i].n % p[1] * ksm(p[2], p[1] - 2, p[1]) % p[1]; ans[a[i].id] = (b * p[2] <= a[i].n); continue; } else { if (a[i].k ^ a[i - 1].k) { sort(p + 1, p + p[0] + 1); for (int j = 1; j <= p[1]; ++j) f[j] = 1e18; que.push(0); vis[0] = 1; while (!que.empty()) { int now = que.front(); que.pop(); for (int j = 2; j <= p[0]; ++j) { int v = (now + p[j]) % p[1]; if (f[now] + p[j] < f[v]) { f[v] = f[now] + p[j]; if (!vis[v]) que.push(v), vis[v] = 1; } } vis[now] = 0; } } ans[a[i].id] = (f[a[i].n % p[1]] <= a[i].n); } } for (int i = 1; i <= T; ++i) if (ans[i]) printf("YES\n"); else printf("NO\n"); return 0; }