text
stringlengths
49
983k
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; pair<int, int> arr[n]; for (int i = 0; i < n; i++) cin >> arr[i].first >> arr[i].second; if (n <= 2) cout << n << endl; else { int cnt = 2; int prev = arr[0].first; for (int i = 1; i < n - 1; i++) { if (arr[i].first - arr[i].second > prev) { cnt++; prev = arr[i].first; } else if (arr[i].first + arr[i].second < arr[i + 1].first) { cnt++; prev = arr[i].first + arr[i].second; } else prev = arr[i].first; } cout << cnt << endl; } }
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a, b; vector<pair<int, int>> tree; tree.assign(n, make_pair(0, 0)); for (int i = 0; i < n; i++) cin >> tree[i].first >> tree[i].second; int ans[n], left[n], right[n], stay[n]; ans[0] = 1; left[0] = 1; right[0] = 1; stay[0] = 1; for (int i = 1; i < n; i++) { stay[i] = max(stay[i - 1], left[i - 1]); if (tree[i].first > tree[i - 1].first + tree[i - 1].second) stay[i] = max(stay[i], right[i - 1]); if (i < n - 1 && tree[i + 1].first > tree[i].first + tree[i].second) { right[i] = max(left[i - 1], stay[i - 1]); right[i] = max(right[i], right[i - 1]); right[i] += 1; } else if (i == n - 1) { right[i] = max(left[i - 1], stay[i - 1]); right[i] = max(right[i], right[i - 1]); right[i] += 1; } else { right[i] = -1000000; } int temp1 = -1000000; if (tree[i].first - tree[i].second > tree[i - 1].first) { temp1 = max(left[i - 1], stay[i - 1]); } if (tree[i].first - tree[i].second > tree[i - 1].first + tree[i - 1].second) { temp1 = max(temp1, right[i - 1]); } if (temp1 == -1000000) left[i] = temp1; else left[i] = temp1 + 1; ans[i] = max(left[i], right[i]); ans[i] = max(ans[i], stay[i]); } cout << ans[n - 1] << endl; return 0; }
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); int a = 0; cin >> a; vector<pair<int, int>> x; int b, c; for (int i = 0; i < a; i++) { cin >> b >> c; x.push_back(make_pair(b, c)); } if (a < 3) cout << a; else { int count = 2; int occ = x[0].first; for (int i = 1; i < a - 1; i++) { if ((x[i].first - x[i].second > occ)) { count++; occ = x[i].first; } else if (x[i].first + x[i].second < x[i + 1].first) { occ = x[i].first + x[i].second; count++; } else { occ = x[i].first; } } cout << count; } return 0; }
#include <bits/stdc++.h> #pragma GCC optimize("O2") using namespace std; int main() { int n, co = 1; std::vector<pair<long long, long long>> v; cin >> n; for (int i = 0; i < n; i++) { long long a, b; cin >> a >> b; v.push_back(make_pair(a, b)); } for (int i = 1; i < n; i++) { if (v[i].first - v[i].second > v[i - 1].first) { co++; } else if (v[i].first + v[i].second < v[i + 1].first) { v[i].first = v[i].first + v[i].second; co++; } else if (i == n - 1) { co++; } } cout << co; return 0; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; int dirX[] = {0, -1, 0, 1, -1, 1, -1, 1}; int dirY[] = {-1, 0, 1, 0, 1, -1, -1, 1}; const long long MOD = 998244353; const long long N = 1e5 + 7; const long long inf = 1e18 + 5; long long t, n, m, a, b, k, c = 0, d; long long x11, x22, y11, y22; long long dp[N][3]; int main() { ios::sync_with_stdio(0); cin.tie(0); ios_base::sync_with_stdio(0); cin >> n; vector<pair<long long, long long> > v(n); for (int i = 0; i < n; i++) cin >> v[i].first >> v[i].second; dp[0][0] = 0; dp[0][1] = 1; dp[0][2] = (v[0].first + v[0].second < v[1].first) ? 1 : 0; for (int i = 1; i < n; i++) { dp[i][0] = max({dp[i - 1][0], dp[i - 1][1], dp[i - 1][2]}); dp[i][1] = dp[i][0]; dp[i][2] = dp[i][0]; if (v[i].first - v[i].second > v[i - 1].first) { dp[i][1] = 1 + max({dp[i - 1][1], dp[i - 1][0]}); } if (v[i].first - v[i].second > v[i - 1].first + v[i - 1].second) { dp[i][1] = max({dp[i - 1][2] + 1, dp[i - 1][1], dp[i - 1][0]}); } if (i == n - 1 || (i < n - 1 && v[i + 1].first > v[i].second + v[i].first)) { dp[i][2]++; } } cout << max({dp[n - 1][0], dp[n - 1][1], dp[n - 1][2]}); }
#include <bits/stdc++.h> using namespace std; int knock(vector<long long int> &positions, vector<long long int> &heights, int n) { vector<vector<int>> dp(3, vector<int>(n, 0)); dp[0][0] = 1; dp[1][0] = 0; dp[2][0] = positions[0] + heights[0] < positions[1] ? 1 : 0; for (int i = 1; i < n; i++) { if (positions[i] - heights[i] > positions[i - 1]) { dp[0][i] = max(dp[0][i - 1], dp[1][i - 1]) + 1; } if (positions[i] - heights[i] > positions[i - 1] + heights[i - 1]) { dp[0][i] = max(dp[0][i], dp[2][i - 1] + 1); } dp[1][i] = max(dp[0][i - 1], max(dp[1][i - 1], dp[2][i - 1])); if (i == n - 1 || (positions[i] + heights[i] < positions[i + 1])) { dp[2][i] = max(dp[0][i - 1], max(dp[1][i - 1], dp[2][i - 1])) + 1; } } return max(dp[0][n - 1], max(dp[1][n - 1], dp[2][n - 1])); } int main() { int n; cin >> n; vector<long long int> positions, heights; for (int i = 0; i < n; i++) { long long int x, h; cin >> x >> h; positions.push_back(x); heights.push_back(h); } cout << knock(positions, heights, n); return 0; }
#include <bits/stdc++.h> using namespace std; int n, dp[100004][3], height[100003], pos[100004]; int morningWood(int index, int dir) { if (index >= n) return 0; int &d = dp[index][dir]; if (d != -1) return d; int currOccupy = (dir <= 1) ? pos[index] : pos[index] + height[index]; d = morningWood(index + 1, 0); if (currOccupy < pos[index + 1] - height[index + 1]) d = max(d, 1 + morningWood(index + 1, 1)); if (index + 2 < n && pos[index + 1] + height[index + 1] < pos[index + 2]) d = max(d, 1 + morningWood(index + 1, 2)); if (index + 2 >= n) d = max(d, 1 + morningWood(index + 1, 2)); return d; } int main() { cin >> n; for (int i = (int)0; i < int(n); i++) cin >> pos[i] >> height[i]; memset(dp, -1, sizeof(dp)); ; cout << max(morningWood(0, 0), max(morningWood(0, 1), morningWood(0, 2))) << endl; return 0; }
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int n; cin >> n; vector<pair<long long int, long long int>> v; for (long long int i = 0; i < n; i++) { long long int x, y; cin >> x >> y; v.push_back({x, y}); } long long int s = v[0].first - v[0].second, e = v[0].first; long long int t = 2; if (n == 1) t = 1; else { for (long long int i = 1; i < n - 1; i++) { if (v[i].first - v[i].second > e) { t++; e = v[i].first; } else if (v[i].first + v[i].second < v[i + 1].first) { t++; e = v[i].first + v[i].second; } else e = v[i].first; } } cout << t << endl; }
#include <bits/stdc++.h> using namespace std; int main() { int n, x[100000][2]; cin >> n; if (n == 1) { cout << 1; return 0; } for (int i = 0; i < n; i++) { cin >> x[i][0] >> x[i][1]; } int count = 0; for (int i = 1; i < n - 1; i++) { if (x[i][0] - x[i][1] > x[i - 1][0]) { count++; } else if (x[i][1] + x[i][0] < x[i + 1][0]) { count++; x[i][0] = x[i][1] + x[i][0]; } } cout << count + 2; return 0; }
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<pair<long long, long long> > A(n); for (long long i = 0; i < n; i++) { cin >> A[i].first >> A[i].second; } long long sol = 1; vector<long long> dp(n); for (long long i = 0; i < n - 1; i++) { if (i == 0) { dp[i] = A[i].first; sol++; } else { if (dp[i - 1] < (A[i].first - A[i].second)) { dp[i] = A[i].first; sol++; } else if ((A[i].first + A[i].second) < A[i + 1].first) { dp[i] = A[i].first + A[i].second; sol++; } else { dp[i] = A[i].first; } } } cout << sol; return 0; }
#include <bits/stdc++.h> using namespace std; pair<int, int> x[100005]; int main() { int n, ans; cin >> n; for (int i = 0; i < n; ++i) { cin >> x[i].first >> x[i].second; } sort(x, x + n); if (n == 1) ans = 1; else if (n >= 2) ans = 2; for (int i = 1; i < n - 1; ++i) { if (x[i].second < x[i].first - x[i - 1].first) { ans++; } else if (x[i].second < x[i + 1].first - x[i].first) { ans++; x[i].first += x[i].second; } } cout << ans << '\n'; return 0; }
#include <bits/stdc++.h> using namespace std; long long dp[100001][3], a[100001], h[100001]; int main() { int n, i; cin >> n; for (i = 0; i < n; i++) cin >> a[i] >> h[i]; if (n == 1) { cout << 1 << endl; return 0; } dp[0][2] = 0; dp[0][0] = 1; if (a[1] - h[0] > a[0]) dp[0][1] = 1; for (i = 1; i < n; i++) { dp[i][2] = max(dp[i - 1][0], max(dp[i - 1][1], dp[i - 1][2])); if (a[i - 1] + h[i] < a[i]) { dp[i][0] = max(dp[i - 1][0], dp[i - 1][2]) + 1; if (a[i - 1] + h[i - 1] + h[i] < a[i]) dp[i][0] = max(dp[i][0], dp[i - 1][1] + 1); } if (i == n - 1 || a[i] + h[i] < a[i + 1]) dp[i][1] = max(dp[i - 1][0], max(dp[i - 1][1], dp[i - 1][2])) + 1; } cout << dp[n - 1][1] << endl; }
#include <bits/stdc++.h> using namespace std; int kq, n, x[100010], h[100010]; int main() { cin >> n; for (int i = 1; i <= n; i++) cin >> x[i] >> h[i]; if (n == 1) { cout << 1; return 0; } if (n == 2) { cout << 2; return 0; } kq = 2; for (int i = 2; i < n; i++) { if (x[i - 1] + h[i] < x[i]) kq++; else if (x[i] + h[i] < x[i + 1]) { kq++; x[i] += h[i]; } } cout << kq; return 0; }
#include <bits/stdc++.h> int x[100000], h[100000]; int main() { int N, i, result; scanf("%d\n", &N); for (i = 0; i < N; i++) scanf("%d %d\n", x + i, h + i); result = 0; for (i = 0; i < N; i++) { if (i == 0 || x[i] - h[i] > x[i - 1]) result++; else if (i + 1 == N || x[i] + h[i] < x[i + 1]) { x[i] += h[i]; result++; } } printf("%d\n", result); return 0; }
#include <bits/stdc++.h> using namespace std; int dp[110000][3]; long long dist[110000], ht[110000]; int main() { int n; cin >> n; dp[0][0] = dp[0][1] = dp[0][2] = 0; dist[0] = -1e10; ht[0] = 0; dist[n + 1] = 1e10; ht[n + 1] = 0; for (int i = 1; i <= n; i++) cin >> dist[i] >> ht[i]; for (int i = 1; i <= n; i++) { int mx = max(dp[i - 1][0], dp[i - 1][1]); mx = max(mx, dp[i - 1][2]); if (dist[i] + ht[i] < dist[i + 1]) dp[i][2] = mx + 1; else if (dist[i] + ht[i] >= dist[i + 1]) dp[i][2] = 0; dp[i][1] = mx; if (dist[i] - ht[i] > dist[i - 1]) dp[i][0] = max(dp[i - 1][1], dp[i - 1][0]) + 1; if (dist[i] - ht[i] > dist[i - 1] + ht[i - 1]) dp[i][0] = max(dp[i][0], dp[i - 1][2] + 1); } int ans = max(dp[n][0], dp[n][1]); cout << max(ans, dp[n][2]); return 0; }
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int main() { int n; cin >> n; int x[n], h[n]; for (int i = 0; i < n; ++i) cin >> x[i] >> h[i]; vector<vector<int>> dp(3, vector<int>(n, 0)); dp[0][0] = 1, dp[1][0] = 0, dp[2][0] = 0; if ((n > 1 && x[0] + h[0] < x[1] || n == 1)) dp[2][0] = 1; for (int i = 1; i < n; ++i) { if (x[i] - h[i] > x[i - 1]) { if (x[i - 1] + h[i - 1] < x[i] - h[i]) dp[0][i] = 1 + max({dp[0][i - 1], dp[1][i - 1], dp[2][i - 1]}); else dp[0][i] = 1 + max(dp[0][i - 1], dp[1][i - 1]); } dp[1][i] = max({dp[0][i - 1], dp[1][i - 1], dp[2][i - 1]}); if (i == n - 1 || x[i] + h[i] < x[i + 1]) dp[2][i] = 1 + max({dp[0][i - 1], dp[1][i - 1], dp[2][i - 1]}); } cout << max({dp[0][n - 1], dp[1][n - 1], dp[2][n - 1]}); return 0; }
#include <bits/stdc++.h> using namespace std; int a[100000]; int b[100000]; int main() { int n; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i] >> b[i]; } if (n <= 2) { cout << n << endl; return 0; } int cnt = 2; for (int i = 1; i < n - 1; i++) { if (a[i - 1] < a[i] - b[i]) { cnt++; } else if (a[i + 1] > a[i] + b[i]) { cnt++; a[i] = a[i] + b[i]; } } cout << cnt << endl; return 0; }
#include <bits/stdc++.h> using namespace std; template <class T> inline void sarray(T *st, T *nd) { while (st < nd) cin >> *st++; } template <class T> inline void parray(T *st, T *nd) { while (st < nd) cout << *st++ << endl; } long long int tmp, ans; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; int n; cin >> n; vector<pair<int, int>> v; int a, b; for (int i = 0; i < n; i++) { cin >> a >> b; v.emplace_back(make_pair(a, b)); } if (n == 1) cout << 1 << endl; else if (n == 2) cout << 2 << endl; else { ans = 2; for (int i = 1; i < n - 1; i++) { if (v[i].first - v[i - 1].first > v[i].second) ans++; else if (v[i + 1].first - v[i].first > v[i].second) { ans++; v[i].first += v[i].second; } } cout << ans << endl; } return 0; }
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int pos[n], ht[n]; long long int dp[n][3]; for (int i = 0; i < n; i++) { cin >> pos[i] >> ht[i]; } dp[0][0] = 1; dp[0][1] = 1; dp[0][2] = 0; for (int i = 1; i < n; i++) { dp[i][0] = 0; dp[i][1] = 0; dp[i][2] = 0; if (pos[i - 1] < pos[i] - ht[i]) dp[i][0] = max(dp[i][0], max(1 + dp[i - 1][0], 1 + dp[i - 1][2])); if (pos[i - 1] + ht[i - 1] < pos[i] - ht[i]) dp[i][0] = max(dp[i][0], 1 + dp[i - 1][1]); if (pos[i - 1] < pos[i]) dp[i][1] = max(dp[i][1], max(1 + dp[i - 1][0], 1 + dp[i - 1][2])); if (pos[i - 1] + ht[i - 1] < pos[i]) dp[i][1] = max(dp[i][1], 1 + dp[i - 1][1]); if (pos[i - 1] < pos[i]) dp[i][2] = max(dp[i][2], max(dp[i - 1][0], dp[i - 1][2])); if (pos[i - 1] + ht[i - 1] < pos[i]) dp[i][2] = max(dp[i][2], dp[i - 1][1]); } cout << max(dp[n - 1][0], max(dp[n - 1][1], dp[n - 1][2])); }
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j, c = 2; cin >> n; int64_t X1, X2, x[n + 5], h[n + 5], S; for (i = 0; i < n; i++) { cin >> x[i] >> h[i]; } X1 = x[0], X2 = x[n - 1]; if (n < 2) cout << n << endl, exit(0); for (i = 1; i < n - 1; i++) { if (x[i] - h[i] > X1) c++; else if (x[i + 1] - x[i] > h[i]) x[i] += h[i], c++; X1 = x[i]; } cout << c << endl; }
#include <bits/stdc++.h> using namespace std; int main() { long n, x, h; cin >> n; vector<pair<long, long>> arr; for (int i = 0; i < n; i++) { cin >> x >> h; arr.push_back({x, h}); } long ans = 0, maxd = -3e9; for (int i = 0; i < n; i++) { long x = arr[i].first; long h = arr[i].second; if (x - h > maxd) { maxd = x; ans++; continue; } if (i == n - 1) { ans++; continue; } if (x + h < arr[i + 1].first) { ans++; maxd = x + h; continue; } maxd = x; } cout << ans << "\n"; return 0; }
#include <bits/stdc++.h> using namespace std; long long int dp[100100][2], x[100100], h[100100], n; long long int solve(long long int i, long long int st) { if (i == n - 1) return 1; if (dp[i][st] != -1) return dp[i][st]; long long int temp = LLONG_MIN; if (st == 0) { if (i == 0) { temp = max(temp, 1 + solve(i + 1, 0)); } else { if (h[i] < x[i] - x[i - 1]) { temp = max(temp, 1 + solve(i + 1, 0)); } else { temp = max(temp, solve(i + 1, 0)); } } if (h[i] < x[i + 1] - x[i]) temp = max(temp, 1 + solve(i + 1, 1)); else temp = max(temp, solve(i + 1, 0)); } else { if (h[i] < x[i] - x[i - 1] - h[i - 1]) temp = max(temp, 1 + solve(i + 1, 0)); else temp = max(temp, solve(i + 1, 0)); if (h[i] < x[i + 1] - x[i]) temp = max(temp, 1 + solve(i + 1, 1)); else temp = max(temp, solve(i + 1, 0)); } return dp[i][st] = temp; } int main() { ios::sync_with_stdio(0); cin.tie(0); long long int i; memset(dp, -1, sizeof dp); cin >> n; for (i = 0; i < n; i++) { cin >> x[i] >> h[i]; } cout << solve(0, 0) << "\n"; return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 100010; long long x[N]; long long h[N]; int main() { int n; while (cin >> n) { for (int i = 0; i < n; i++) { cin >> x[i] >> h[i]; } int ret = 0; int last = (long long)INT_MIN; for (int i = 0; i < n; i++) { if (x[i] - last > h[i]) { ret++; last = x[i]; } else { if (i + 1 < n) { if (x[i] + h[i] < x[i + 1]) { ret++; last = x[i] + h[i]; } else last = x[i]; } else ret++; } } cout << ret << endl; } return 0; }
#include <bits/stdc++.h> using namespace std; long long vis[100001] = {0}; long long col[100000] = {0}; vector<vector<long long> > v(50); int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n, i, j; cin >> n; vector<pair<int, int> > v; for (i = 0; i < n; i++) { int x, y; cin >> x >> y; v.push_back(make_pair(x, y)); } if (n == 1) { cout << "1"; return 0; } if (n == 2) { cout << "2"; return 0; } int c1 = 2; long long max = v[0].first; for (i = 1; i < n - 1; i++) { if (v[i].first - max > v[i].second) { c1++; max = v[i].first; } else if (v[i + 1].first - v[i].first > v[i].second) { c1++; max = v[i].second + v[i].first; } else max = v[i].first; } cout << c1; }
#include <bits/stdc++.h> using namespace std; int n, x[100001], h[100001]; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d%d", &x[i], &h[i]); int cnt = 0; for (int i = 2; i <= n - 1; i++) if (x[i] - x[i - 1] > h[i]) cnt++; else if (x[i + 1] - x[i] > h[i]) { cnt++; x[i] += h[i]; } if (n == 1) cnt = 1; else cnt += 2; printf("%d\n", cnt); return 0; }
#include <bits/stdc++.h> using namespace std; int mini(int a, int b) { return a < b ? a : b; } unsigned long long lmini(unsigned long long a, unsigned long long b) { return a < b ? a : b; } int maxi(int a, int b) { return a > b ? a : b; } unsigned long long lmaxi(unsigned long long a, unsigned long long b) { return a > b ? a : b; } int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } unsigned long long lgcd(unsigned long long a, unsigned long long b) { if (b == 0) return a; return lgcd(b, a % b); } int lcm(int a, int b) { return a * (b / gcd(a, b)); } unsigned long long llcm(unsigned long long a, unsigned long long b) { return (b * (a / lgcd(a, b))); } int dp[100001], x[100005], h[100005], n; int cal(int i, int l, int r) { if (i >= n) return 0; if (dp[i] != -1) return dp[i]; int a1 = 0, a2 = 0, a3 = 0, a4; if (x[i] - h[i] > l) a1 = 1 + cal(i + 1, x[i], x[i + 2]); if (x[i] + h[i] < r) a2 = 1 + cal(i + 1, x[i] + h[i], x[i + 2]); a3 = cal(i + 1, x[i], x[i + 2]); a4 = maxi(maxi(a1, a2), a3); dp[i] = a4; return a4; } int main() { cin >> n; int i, ans; for (i = 0; i < n; i++) dp[i] = -1; for (i = 0; i < n; i++) cin >> x[i] >> h[i]; x[n + 1] = x[n] = 1e18; ans = cal(0, -1e18, x[1]); cout << ans << endl; return 0; }
#include <bits/stdc++.h> using namespace std; const long double PI = acos(-1.0); const double EPS = 1E-6; const int INF = 2 * (1e+9) + 1; const int MAXN = 3 * 100000001; const int MOD = (1e+9) + 7; int n; pair<int, int> x[100100]; int main() { ios_base::sync_with_stdio(0); cin >> n; for (int i = 0; i < (n); ++i) { cin >> x[i].first >> x[i].second; } sort(x, x + n); int cnt = 1, r = 0; for (int i = (1); i <= (n - 1); ++i) { if (r && x[i - 1].first + x[i - 1].second >= x[i].first) { r = 0; } else if (r) cnt++; if (!r && x[i].first - x[i - 1].first > x[i].second) { cnt++; } else { if (x[i].first - x[i - 1].first > x[i].second + x[i - 1].second) { cnt++, r = 0; } else { r = 1; } } } if (r) cnt++; cout << cnt; return 0; }
#include <bits/stdc++.h> using namespace std; vector<long long> v; pair<long long, long long> p; map<long long, long long> mp; set<long long> st; deque<long long> dq; priority_queue<long long> pq; long long mn = INT_MAX, mx = INT_MIN; long long n, m, tc, i, j, tmp, q, sum, cn, ans, res, pos, flag, l, x, k, dif; string s, str; long long pre = 1e15; long long now = -1e17; long long a[2000007], b[2000007]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; if (n >= 2) ans = 2; else ans = 1; for (i = 0; i < n; i++) cin >> a[i] >> b[i]; for (i = 1; i < n - 1; i++) { if (a[i] - b[i] > a[i - 1]) ans++; else if (a[i] + b[i] < a[i + 1]) { a[i] += b[i]; ans++; } } cout << ans; return 0; }
#include <bits/stdc++.h> using std::sort; using std::swap; using std::unique; namespace fastIO { static char buf[(1 << 19)], *p1 = buf + (1 << 19), *pend = buf + (1 << 19); inline char nc() { if (p1 == pend) { p1 = buf; pend = buf + fread(buf, 1, (1 << 19), stdin); } return *p1++; } inline long long read() { long long x = 0, f = 1; register char s = nc(); for (; !isdigit(s); s = nc()) if (s == '-') f = -1; for (; isdigit(s); s = nc()) x = (x << 1) + (x << 3) + s - '0'; return x * f; } } // namespace fastIO using namespace fastIO; inline long long mabs(long long x) { return x > 0 ? x : -x; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } struct IT { long long p; long long k; IT(long long p = 0, long long k = 0) : p(p), k(k) {} }; struct rec { IT p[1001]; long long num; void init(long long x) { for (long long i = 2; i * i <= x; ++i) { if (x % i == 0) { long long c = 0; while (x % i == 0) x /= i, c++; p[num++] = IT(i, c); } } if (x > 1) p[num++] = IT(x, 1); } IT query(long long x) { for (long long i = 0; i < num; ++i) if (p[i].p == x) return p[i]; return IT(x, 0); } } A[200], B[200]; long long n; IT A1[3507], B1[3507], A2[3507], B2[3507]; long long pri[3507], num; long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void inter(long long A, long long B, long long C, long long a, long long b, long long c, long long &x1, long long &x2) { while (a) { long long t = A / a; A -= t * a, B -= t * b, C -= t * c; swap(A, a); swap(B, b); swap(C, c); } if (c % b) puts("-1"), exit(0); x2 = -c / b; if ((C + B * x2) % A) puts("-1"), exit(0); x1 = (-C - B * x2) / A; } inline void UN(rec &a1, rec &b1, rec &a2, rec &b2) { num = 0; for (long long i = 0; i < a1.num; ++i) pri[num++] = a1.p[i].p; for (long long i = 0; i < a2.num; ++i) pri[num++] = a2.p[i].p; for (long long i = 0; i < b1.num; ++i) pri[num++] = b1.p[i].p; for (long long i = 0; i < b2.num; ++i) pri[num++] = b2.p[i].p; sort(pri, pri + num); num = unique(pri, pri + num) - pri; for (long long i = 0; i < num; ++i) A1[i] = a1.query(pri[i]); for (long long i = 0; i < num; ++i) A2[i] = a2.query(pri[i]); for (long long i = 0; i < num; ++i) B1[i] = b1.query(pri[i]); for (long long i = 0; i < num; ++i) B2[i] = b2.query(pri[i]); long long A = 0, B = 0, C = 0; long long flg1 = 0; long long x1, x2; for (long long i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a == 0 && b == 0) { if (c) puts("-1"), exit(0); continue; } long long g = gcd(a, gcd(-b, mabs(c))); a /= g, b /= g, c /= g; if (!b) { if (c % a) puts("-1"), exit(0); if (-c / a < 0) puts("-1"), exit(0); } if (!A && !B) { A = a, B = b, C = c; continue; } if (!B) { if (b) { inter(A, B, C, a, b, c, x1, x2); flg1 = 1; break; } if (C / A != c / a) puts("-1"), exit(0); continue; } if (A * b == a * B) { if (c * A == C * a) continue; puts("-1"), exit(0); } inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (flg1) { for (long long i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a * x1 + b * x2 + c) puts("-1"), exit(0); } for (long long i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = 0; } for (long long i = 0; i < num; ++i) { a1.p[i] = A1[i], b1.p[i] = B1[i]; } a1.num = b1.num = num; return; } long long g = exgcd(A, B, x1, x2); if (C % g) puts("-1"), exit(0); x1 *= -C / g, x2 *= -C / g; long long tx = mabs(-B / g), ty = mabs(A / g); if (C > 0 || !ty) { x1 = (x1 % tx + tx) % tx; if (B) x2 = -(A * x1 + C) / B; else x2 = 0; } else { x2 = (x2 % ty + ty) % ty; if (A) x1 = (-B * x2 - C) / A; else x1 = 0; } for (long long i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = tx * B1[i].k; } for (long long i = 0; i < num; ++i) { a1.p[i] = A1[i], b1.p[i] = B1[i]; } a1.num = b1.num = num; } const long long P = 1e9 + 7; inline long long ksm(long long x, long long y) { long long ans = 1; while (y) { if (y & 1) ans = ans * x % P; x = x * x % P; y >>= 1; } return ans; } signed main() { n = read(); for (long long i = 1, a, b; i <= n; ++i) { a = read(); b = read(); A[i].init(a); B[i].init(b); } for (long long i = 2; i <= n; ++i) { UN(A[1], B[1], A[i], B[i]); } long long ans = 1; for (long long i = 0; i < A[1].num; ++i) { ans = ans * 1ll * ksm(A[1].p[i].p, A[1].p[i].k) % P; } printf("%lld\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; inline int read(int f = 1, int x = 0, char ch = ' ') { while (!isdigit(ch = getchar())) if (ch == '-') f = -1; while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return f * x; } const int N = 1e2 + 5, M = 3e3 + 5, P = 1e9 + 7; int n, m, a[N], b[N], p[M]; long long ca[M], cb[M], ans; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long exgcd(long long a, long long b, long long &x, long long &y, long long d = 0) { return b ? (d = exgcd(b, a % b, y, x), y -= a / b * x, d) : (x = 1, y = 0, a); } long long qpow(long long a, long long b) { long long c = 1; for (; b; b >>= 1, a = a * a % P) if (b & 1) c = c * a % P; return c; } int lg(int a, int b) { int c = 0; for (; b % a == 0; ++c, b /= a) ; return c; } void work(int n) { for (int i = 2; i * i <= n; ++i) if (n % i == 0) for (p[++m] = i; n % i == 0; n /= i) ; if (n != 1) p[++m] = n; } long long solve(long long A, long long B, long long C) { if (!A) return 0; if (!B) return C / A; long long x, y, d; exgcd(A, -B, x, y); x *= C, y *= -C, x %= -B, x += -B, x %= -B, y = (C - A * x) / B; if (y < 0) d = (-y + A - 1) / A, x += -B * d, y += A * d; return x; } void work(int a, int b) { bool fl1 = false, fl2 = false; long long x, y, A, B, C; for (int i = 1; i <= m; ++i) { long long _A = cb[i], _B = -lg(p[i], b), _C = lg(p[i], a) - ca[i], d = gcd(_A, -_B); if (!_A && !_B) (_C) ? (puts("-1"), exit(0)) : void(); else { (_C % d) ? (puts("-1"), exit(0)) : void(), _A /= d, _B /= d, _C /= d; if (fl2) (_A * x + _B * y != _C) ? (puts("-1"), exit(0)) : void(); else if (!fl1) fl1 = true, A = _A, B = _B, C = _C; else if (_A == A && _B == B) (_C != C) ? (puts("-1"), exit(0)) : void(); else { long long a = _A * B - _B * A, b = _C * B - _B * C; (b % a) ? (puts("-1"), exit(0)) : void(), x = b / a; a = _B * A - B * _A, b = _C * A - C * _A; (b % a) ? (puts("-1"), exit(0)) : void(), y = b / a; fl2 = true, (x < 0 || y < 0) ? (puts("-1"), exit(0)) : void(); } } } if (fl2) for (int i = 1; i <= m; ++i) ca[i] += x * cb[i], cb[i] = 0; else { long long x = solve(A, B, C); for (int i = 1; i <= m; ++i) ca[i] += x * cb[i], cb[i] *= -B; } } int main() { n = read(), ans = 1; for (int i = 1; i <= n; ++i) a[i] = read(), b[i] = read(), work(a[i]), work(b[i]); sort(p + 1, p + 1 + m), m = unique(p + 1, p + 1 + m) - p - 1; for (int i = 1; i <= m; ++i) ca[i] = lg(p[i], a[1]), cb[i] = lg(p[i], b[1]); for (int i = 2; i <= n; ++i) work(a[i], b[i]); for (int i = 1; i <= m; ++i) ans = ans * qpow(p[i], ca[i]) % P; printf("%lld\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar(); } return x * f; } const int N = 105, mod = 1e9 + 7; int n; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } inline long long ksm(long long a, long long b) { long long res = 1; while (b) { if (b & 1) res = res * a % mod; a = a * a % mod; b >>= 1; } return res; } struct node { vector<pair<long long, long long> > p; node() { p.clear(); } inline void in() { int x = read(); for (int i = 2; i * i <= x; i++) if (x % i == 0) { int k = 0; while (x % i == 0) k++, x /= i; p.push_back(make_pair(i, k)); } if (x > 1) p.push_back(make_pair(x, 1)); } inline void out() { long long ans = 1; for (auto o : p) ans = ans * ksm(o.first, o.second) % mod; printf("%lld\n", ans); } inline friend node operator*(const node &x, const node &y) { node z; int i = 0, j = 0; while (i < x.p.size() && j < y.p.size()) { if (x.p[i].first == y.p[j].first) z.p.push_back(make_pair(x.p[i].first, x.p[i].second + y.p[j].second)), i++, j++; else if (x.p[i].first < y.p[j].first) z.p.push_back(x.p[i]), i++; else z.p.push_back(y.p[j]), j++; } while (i < x.p.size()) z.p.push_back(x.p[i]), i++; while (j < y.p.size()) z.p.push_back(y.p[j]), j++; return z; } inline friend bool operator%(const node &x, const node &y) { for (int i = 0, j = 0; j < y.p.size(); i++, j++) { while (i < x.p.size() && x.p[i].first != y.p[j].first) i++; if (i == x.p.size() || x.p[i].second < y.p[j].second) return 1; } return 0; } inline friend node operator/(const node &x, const node &y) { node z; for (int i = 0, j = 0; i < x.p.size(); i++) { if (j < y.p.size() && x.p[i].first == y.p[j].first) { z.p.push_back(make_pair(x.p[i].first, x.p[i].second - y.p[j].second)); j++; if (!z.p.back().second) z.p.pop_back(); } else z.p.push_back(x.p[i]); } return z; } inline friend node operator&(const node &x, const node &y) { node z; for (int i = 0, j = 0; i < x.p.size(); i++) { if (j < y.p.size() && x.p[i].first == y.p[j].first) z.p.push_back(make_pair(x.p[i].first, x.p[i].second - y.p[j].second)), j++; else z.p.push_back(x.p[i]); } return z; } inline friend bool operator|(const node &x, const node &y) { if (!x.p.size()) return 0; long long k = 0; for (int i = 0, j = 0; i <= x.p.size(); i++, j++) { while (j < y.p.size() && !y.p[j].second) j++; if (i == x.p.size()) return j != y.p.size(); if (j == y.p.size()) return 1; if (x.p[i].first != y.p[j].first || x.p[i].second % y.p[j].second) return 1; if (!i) k = x.p[i].second / y.p[j].second; else if ((x.p[i].second / y.p[j].second) != k) return 1; } return 0; } inline friend node operator^(node x, long long y) { for (auto &o : x.p) o.second = o.second * y; return x; } inline friend node operator+(const node &x, const node &y) { node z; for (int i = 0; i < x.p.size(); i++) z.p.push_back(make_pair( x.p[i].first, x.p[i].second * y.p[i].second / gcd(x.p[i].second, y.p[i].second))); return z; } } a[N], b[N], c[N], A, B; inline bool check(node x) { for (int i = 1; i <= n; i++) if ((x % a[i]) || ((x / a[i]) | b[i])) return 0; return 1; } struct pro { long long k, b, p; inline pro(long long k = 0, long long b = 0, long long p = 0) : k(k), b(b), p(p) {} inline friend bool operator==(const pro &a, const pro &b) { return a.k == b.k && a.b == b.b && a.p == b.p; } }; inline long long slove(pro x, pro y) { long long a = x.b * y.p - x.p * y.b, b = x.k * y.p - x.p * y.k; if (!b || (a % b)) puts("-1"), exit(0); return a / b; } long long exgcd(long long a, long long b, long long &x, long long &y, long long d = 0) { return b ? (d = exgcd(b, a % b, y, x), y -= a / b * x, d) : (x = 1, y = 0, a); } inline bool merge(int o) { vector<pro> v; for (int i = 0; i < A.p.size(); i++) { long long k1 = B.p[i].second, b1 = A.p[i].second, k2 = b[o].p[i].second, b2 = a[o].p[i].second; if (!k1 && !k2) { if (b1 != b2) puts("-1"), exit(0); continue; } if (!k1) { if (b1 < b2 || (b1 - b2) % k2) puts("-1"), exit(0); A = a[o] * (b[o] ^ ((b1 - b2) / k2)); return 0; } if (!k2) { if (b2 < b1 || (b2 - b1) % k1) puts("-1"), exit(0); A = A * (B ^ ((b2 - b1) / k1)); return 0; } long long d = gcd(k1, k2), g = b2 - b1; if (g % d) puts("-1"), exit(0); g /= d; k1 /= d; k2 /= d; if (v.size()) { if (v[0] == pro(k1, g, k2)) continue; A = A * (B ^ slove(v[0], pro(k1, g, k2))); return 0; } v.push_back(pro(k1, g, k2)); } if (v.size()) { long long k = v[0].k, b = v[0].b, p = v[0].p, x, y; b = (b % p + p) % p; exgcd(k, p, x, y); x = (x * b % p + p) % p; A = A * (B ^ x); B = B + ::b[o]; } return 1; } int main() { n = read(); for (int i = 1; i <= n; i++) a[i].in(), b[i].in(), c[i] = a[i] * b[i]; for (int i = 1; i <= n; i++) if (check(a[i])) return a[i].out(), 0; for (int i = 1; i <= n; i++) { if (c[i].p.size() != c[1].p.size()) puts("-1"), exit(0); for (int j = 0; j < c[1].p.size(); j++) if (c[i].p[j].first != c[1].p[j].first) puts("-1"), exit(0); a[i] = c[i] & b[i]; b[i] = c[i] & a[i]; } A = a[1]; B = b[1]; for (int i = 2; i <= n; i++) if (!merge(i)) { if (check(A)) return A.out(), 0; puts("-1"), exit(0); } A.out(); return 0; }
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; set<pair<int, int> > s; vector<long long> p[110], k[110], b[110], ansa, ansp; int pr[1000010], prn, n, A, B, nw[110], P, x, ans, a[110], bb[110]; long long nwk[110], nwb[110], ansk[110], ansb[110], phi, qaq; bool bo[5000010]; long long gcd(long long a, long long b) { return (!b) ? a : gcd(b, a % b); } long long mul(long long a, long long b, long long mod) { long long t = 0; a %= mod; for (; b; b >>= 1, a = (a + a >= mod ? a + a - mod : a + a)) if (b & 1) t = (t + a >= mod ? t + a - mod : t + a); return t; } long long quickmi(long long a, long long b, long long mod) { long long t = (mod == 1 ? 0 : 1); a %= mod; for (; b; b >>= 1, a = mul(a, a, mod)) if (b & 1) t = mul(t, a, mod); return t; } long long getphi(long long x) { long long ans = x; for (int i = 1; 1ll * pr[i] * pr[i] <= x; i++) if (x % pr[i] == 0) { ans = ans / pr[i] * (pr[i] - 1); while (x % pr[i] == 0) x /= pr[i]; } if (x > 1) ans = ans / x * (x - 1); return ans; } void work(int I, long long ansb) { ansa.clear(), ansp.clear(); long long AA = a[I], BB = bb[I]; if (BB == 1) ansb = 0; for (int i = 0, sz = p[I].size(); i < sz; i++) if (ansb * k[I][i] + b[I][i] > 0) ansp.push_back(p[I][i]), ansa.push_back(ansb * k[I][i] + b[I][i]); for (int i = 1; i <= n; i++) if (i != I) { if (p[i].size() == ansp.size()) { long long nw = -1; for (int j = 0, sz = p[i].size(); j < sz; j++) { if (p[i][j] != ansp[j]) { if (b[i][j] != 0 || nw > 0) puts("-1"), exit(0); nw = 0; } else if (k[i][j] == 0) { if (b[i][j] != ansa[j]) puts("-1"), exit(0); } else { if (nw == -1) { if (ansa[j] < b[i][j] || (ansa[j] - b[i][j]) % k[i][j] != 0) puts("-1"), exit(0); nw = (ansa[j] - b[i][j]) / k[i][j]; } else if (nw * k[i][j] + b[i][j] != ansa[j]) puts("-1"), exit(0); } } } else { long long ans = AA; for (int j = 1; j <= ansb; j++) { ans *= BB; if (ans > a[i]) puts("-1"), exit(0); } if (ans != a[i]) puts("-1"), exit(0); } } printf("%d\n", AA % mod * quickmi(BB, ansb, mod) % mod), exit(0); } void work(int i, int j, int po) { if (!k[j][po]) swap(i, j); if (b[j][po] > b[i][po]) puts("-1"), exit(0); if ((b[i][po] - b[j][po]) % k[j][po] != 0) puts("-1"), exit(0); work(j, (b[i][po] - b[j][po]) / k[j][po]); } void work(int i, int j, int p1, int p2) { int b1 = b[i][p1], b2 = b[j][p1], b3 = b[i][p2], b4 = b[j][p2]; int k1 = k[i][p1], k2 = k[j][p1], k3 = k[i][p2], k4 = k[j][p2]; int kk = k2 * k3 - k4 * k1, bb = b1 * k3 - b3 * k1 - b2 * k3 + b4 * k1; if (bb == 0) work(j, 0); if ((bb > 0) != (kk > 0)) puts("-1"), exit(0); if (bb < 0) bb = -bb, kk = -kk; if (bb % kk != 0) puts("-1"), exit(0); work(j, bb / kk); } int main() { for (int i = 2; i <= 5000000; i++) if (!bo[i]) { pr[++prn] = i; for (int j = i; j <= 5000000; j += i) bo[j] = 1; } qaq = 32 * 27 * 25; for (int i = 4; pr[i] <= 30; i++) qaq *= pr[i]; phi = getphi(qaq); scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d%d", &A, &B), a[i] = A, bb[i] = B; if (n == 1) return printf("%d\n", A), 0; for (int j = 1; pr[j] <= 40000; j++) if (A % pr[j] == 0 || B % pr[j] == 0) { int nw = p[i].size(); p[i].push_back(pr[j]), k[i].push_back(0), b[i].push_back(0); while (A % pr[j] == 0) b[i][nw]++, A /= pr[j]; while (B % pr[j] == 0) k[i][nw]++, B /= pr[j]; } if (A != 1) { if (A == B) p[i].push_back(A), k[i].push_back(1), b[i].push_back(1), B = 1; else p[i].push_back(A), k[i].push_back(0), b[i].push_back(1); } if (B != 1) p[i].push_back(B), k[i].push_back(1), b[i].push_back(0); } for (int i = 2; i <= n; i++) { for (int j = 0, sz = min(p[1].size(), p[i].size()); j < sz; j++) if (p[1][j] != p[i][j]) { if (p[1][j] < p[i][j]) work(1, 0); else work(i, 0); } if (p[1].size() < p[i].size()) work(i, 0); if (p[i].size() < p[1].size()) work(1, 0); long long laA = 0, laB = 0; int la = -1; for (int j = 0, sz = p[1].size(); j < sz; j++) if (k[1][j] || k[i][j]) { if (k[1][j] * laB != k[i][j] * laA) work(1, i, la, j); laA = k[1][j], laB = k[i][j], la = j; } else if (!k[1][j] && !k[i][j]) { if (b[1][j] != b[i][j]) return puts("-1"), 0; } else work(1, i, j); for (int j = 0, sz = p[1].size(); j < sz; j++) if (k[1][j] || k[i][j]) for (int l = j + 1; l < sz; l++) if (k[1][l] || k[i][l]) if (1ll * b[1][j] * k[1][l] - 1ll * k[1][j] * b[1][l] != 1ll * b[i][j] * k[i][l] - 1ll * k[i][j] * b[i][l]) return puts("-1"), 0; } s.clear(); for (int i = 1; i <= n; i++) if (!p[i].empty()) nw[i] = 0, s.insert(make_pair(p[i][0], i)); while (!s.empty()) { P = (*s.begin()).first; for (int i = 1; i <= n; i++) nwk[i] = nwb[i] = 0; while (!s.empty() && (*s.begin()).first == P) { x = (*s.begin()).second; nwk[x] = k[x][nw[x]], nwb[x] = b[x][nw[x]]; nw[x]++, s.erase(s.begin()); if (nw[x] < p[x].size()) s.insert(make_pair(p[x][nw[x]], x)); } long long K, B; for (int i = 2; i <= n; i++) { K = nwk[1], B = nwb[1]; if (nwk[i] == 0 && nwb[i] < B) return puts("-1"), 0; if (K == 0 && nwb[i] > B) return puts("-1"), 0; long long g = gcd(K, nwk[i]); if (g && B % g != nwb[i] % g) return puts("-1"), 0; if (K == 0 || nwk[i] == 0) B = (K == 0 ? B : nwb[i]), K = 0; else { if (B < nwb[i]) B += ((nwb[i] - B) / K + ((nwb[i] - B) % K != 0)) * K; B += mul(nwk[i] - (B - nwb[i]) / g % nwk[i], quickmi(K / g, phi - 1, nwk[i] / g), nwk[i] / g) * K; K = K / g * nwk[i]; } if (nwk[1] != 0) { long long pb = (B - nwb[1]) / nwk[1], pk = K / nwk[1]; for (int j = 0, sz = p[1].size(); j < sz; j++) b[1][j] += k[1][j] * pb, k[1][j] *= pk; nwk[1] = k[1][nw[1] - 1], nwb[1] = b[1][nw[1] - 1]; } if (nwk[i] != 0) { long long pb = (B - nwb[i]) / nwk[i], pk = K / nwk[i]; for (int j = 0, sz = p[i].size(); j < sz; j++) b[i][j] += k[i][j] * pb, k[i][j] *= pk; } } } ans = 1; for (int i = 0, sz = p[1].size(); i < sz; i++) ans = 1ll * ans * quickmi(p[1][i], b[1][i], mod) % mod; printf("%d\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long exgcd(long long a, long long b, long long& x, long long& y) { if (b == 0) { x = 1; y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void gg() { printf("-1\n"); exit(0); } int p[6010], N; long long A[6010], B[6010]; struct Eq { long long a, b, c; } e[6010]; long long chu(long long a, long long b) { return (a + b - 1) / b; } long long mmul(long long a, long long b, long long M) { a = (a % M + M) % M; b = (b % M + M) % M; long long ans = 0, t = a; while (b) { if (b & 1) ans = (ans + t) % M; t = (t + t) % M; b >>= 1; } return ans; } bool merge(int a, int b) { int cnt = 0; for (int i = 1; i <= N; i++) { int cnt1 = 0, cnt2 = 0; int t = a; while (t % p[i] == 0) t /= p[i], cnt1++; t = b; while (t % p[i] == 0) t /= p[i], cnt2++; if (!B[i] && !cnt2) { if (cnt1 != A[i]) gg(); continue; } cnt++; e[cnt].a = B[i]; e[cnt].b = -cnt2; e[cnt].c = cnt1 - A[i]; } if (!cnt) return false; bool flag = false; for (int i = 1; i <= cnt && !flag; i++) { for (int j = i + 1; j <= cnt && !flag; j++) if (e[i].a * e[j].b != e[j].a * e[i].b) { swap(e[i], e[1]); swap(e[j], e[2]); flag = true; } else if (e[i].a * e[j].c != e[j].a * e[i].c || e[i].b * e[j].c != e[j].b * e[i].c) gg(); } if (flag) { if (!e[1].a) swap(e[1], e[2]); long long g = gcd(e[1].a, e[2].a); long long m1 = e[2].a / g; long long m2 = e[1].a / g; long long dc = e[1].c * m1 - e[2].c * m2; long long db = e[1].b * m1 - e[2].b * m2; if (dc % db != 0) gg(); long long y = dc / db; dc = e[1].c - e[1].b * y; if (dc % e[1].a != 0) gg(); long long x = dc / e[1].a; for (int i = 1; i <= cnt; i++) if (x * e[i].a + y * e[i].b != e[i].c) gg(); if (x < 0 || y < 0) gg(); for (int i = 1; i <= N; i++) A[i] += B[i] * x; return true; } else { long long a = e[1].a, b = -e[1].b, c = e[1].c; if (a == 0) { if (c % b != 0) gg(); if (c / b < 0) gg(); for (int i = 1; i <= N; i++) { int cnt1 = 0, cnt2 = 0; int t = a; while (t % p[i] == 0) t /= p[i], cnt1++; t = b; while (t % p[i] == 0) t /= p[i], cnt2++; A[i] = cnt1 + cnt2 * (c / b); } return true; } if (b == 0) { if (c % a != 0) gg(); if (c / a < 0) gg(); for (int i = 1; i <= N; i++) A[i] += c / a * B[i]; return true; } long long x, y; long long g = exgcd(a, b, x, y); if (c % g != 0) gg(); x = mmul(x, c / g, b / g); y = -(c - x * a) / b; long long d = chu(max(0ll, -y), a / g); x += d * (b / g); for (int i = 1; i <= N; i++) { A[i] += B[i] * x; B[i] *= b / g; } return false; } } const int Mod = 1000000007; int fpow(int a, long long b) { int ans = 1, t = a; while (b) { if (b & 1) ans = (long long)ans * t % Mod; t = (long long)t * t % Mod; b >>= 1; } return ans; } void work(int x) { for (int i = 2; i * i <= x; i++) if (x % i == 0) { p[++N] = i; while (x % i == 0) x /= i; } if (x > 1) p[++N] = x; return; } int a[110], b[110]; int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d %d", &a[i], &b[i]); work(a[i]); work(b[i]); } sort(p + 1, p + N + 1); N = unique(p + 1, p + N + 1) - p - 1; for (int i = 1; i <= N; i++) { int t = a[1]; while (t % p[i] == 0) A[i]++, t /= p[i]; t = b[1]; while (t % p[i] == 0) B[i]++, t /= p[i]; } int now = 2; while (now <= n && !merge(a[now], b[now])) now++; while (now <= n) { for (int i = 1; i <= N; i++) { int cnt1 = 0, cnt2 = 0; int t = a[now]; while (t % p[i] == 0) t /= p[i], cnt1++; t = b[now]; while (t % p[i] == 0) t /= p[i], cnt2++; if (!cnt2) { if (cnt1 != A[i]) gg(); } else if (A[i] < cnt1 || A[i] % cnt2 != cnt1 % cnt2) gg(); } now++; } int ans = 1; for (int i = 1; i <= N; i++) ans = (long long)ans * fpow(p[i], A[i]) % Mod; printf("%d\n", ans); return 0; }
#include <bits/stdc++.h> inline int read() { char c; int x; for (c = getchar(); !isdigit(c); c = getchar()) ; for (x = 0; isdigit(c); c = getchar()) { x = x * 10 + c - '0'; } return x; } const int mod = 1e9 + 7; inline int power(int x, long long y) { int res = 1; for (; y; y >>= 1, x = 1ll * x * x % mod) { if (y & 1) { res = 1ll * res * x % mod; } } return res; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= (a / b) * x; return g; } __int128 get(__int128 x, long long d) { return x >= 0 ? x / d : -((-1 - x) / d + 1); } const int N = 1e2 + 5, M = 2e3 + 5; int n, m, _a[N], _b[N], pri[M], a[N][M], b[N][M]; long long ai[M], bi[M], aj[M], bj[M], gcd[M]; long long kx[M], ky[M], dx[M], dy[M], ans[M], sol[N]; void depose(int x) { for (int d = 2; d * d <= x; d++) { if (x % d == 0) { pri[m++] = d; while (x % d == 0) { x /= d; } } } if (x > 1) { pri[m++] = x; } } void degrade(int x, int a[]) { for (int i = 0; i < m; i++) { while (x % pri[i] == 0) { x /= pri[i]; a[i]++; } } } void print() { for (int i = 0; i < n; i++) { sol[i] = -1; for (int d = 0; d < m; d++) { long long tmp = ans[d] - a[i][d]; if (tmp == 0 && b[i][d] == 0) { continue; } if (tmp < 0 || b[i][d] == 0 || tmp % b[i][d] != 0) { printf("-1\n"); exit(0); } if (sol[i] == -1) { sol[i] = tmp / b[i][d]; } else { if (sol[i] != tmp / b[i][d]) { printf("-1\n"); exit(0); } } } } long long res = 1; for (int i = 0; i < m; i++) { res = 1ll * res * power(pri[i], ans[i]) % mod; } printf("%lld\n", res); exit(0); } int main() { n = read(); for (int i = 0; i < n; i++) { _a[i] = read(); _b[i] = read(); depose(_a[i]); depose(_b[i]); } std::sort(pri, pri + m); m = std::unique(pri, pri + m) - pri; for (int i = 0; i < n; i++) { degrade(_a[i], a[i]); degrade(_b[i], b[i]); } for (int i = 0; i < n; i++) { for (int d = 0; d < m; d++) { ai[d] = a[i][d]; bi[d] = b[i][d]; } if (i > 0) { for (int d = 0; d < m; d++) { if (bi[d] == 0 && bj[d] == 0) { if (ai[d] != aj[d]) { printf("-1\n"); exit(0); } gcd[d] = 1; kx[d] = 0; dx[d] = 0; ky[d] = 0; dy[d] = 0; continue; } long long x, y, g = gcd[d] = exgcd(bi[d], bj[d], x, y); if ((aj[d] - ai[d]) % g != 0) { printf("-1\n"); exit(0); } kx[d] = 0; dx[d] = bj[d] / g; ky[d] = 0; dy[d] = bi[d] / g; __int128 _x = (__int128)x * (aj[d] - ai[d]) / g; __int128 _y = (__int128)y * (ai[d] - aj[d]) / g; if (dx[d] != 0) { kx[d] = std::max((__int128)kx[d], _x - dx[d] * get(_x, dx[d])); ky[d] = std::max((__int128)ky[d], _y - dy[d] * get(_x, dx[d])); } if (dy[d] != 0) { kx[d] = std::max((__int128)kx[d], _x - dx[d] * get(_y, dy[d])); ky[d] = std::max((__int128)ky[d], _y - dy[d] * get(_y, dy[d])); } } long long x = 0, y = 0, p, q; for (int d = 0; d < m; d++) { if (dx[d] == 0 && dy[d] == 0) { continue; } if (x == 0 && y == 0) { p = kx[d]; q = ky[d]; x = dx[d]; y = dy[d]; continue; } if (x != dx[d] || y != dy[d]) { long long k = ((ky[d] - q) * dx[d] - (kx[d] - p) * dy[d]) / (y * dx[d] - x * dy[d]); k = p + x * k; for (int d = 0; d < m; d++) { ans[d] = ai[d] + bi[d] * k; } print(); } } } long long max = *std::max_element(kx, kx + m); for (int d = 0; d < m; d++) { if (i == 0) { aj[d] = ai[d]; bj[d] = bi[d]; continue; } aj[d] = ai[d] + bi[d] * max; bj[d] = bi[d] / gcd[d] * bj[d]; } } for (int i = 0; i < m; i++) { ans[i] = aj[i]; } print(); return 0; }
#include <bits/stdc++.h> const int Mod = 1000000007; inline int qPow(int b, long long e) { int a = 1; for (; e; e >>= 1, b = (long long)b * b % Mod) if (e & 1) a = (long long)a * b % Mod; return a; } int Gcd(long long a, long long b) { return b ? Gcd(b, a % b) : a; } int exGcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, a; long long d = exGcd(b, a % b, y, x); return y -= a / b * x, d; } const int MN = 105, MS = 905; int N, A[MN], B[MN]; int pr[MS], pc; long long a[MS], b[MS], c[MS], d[MS]; inline void X(int x) { for (int i = 2; i * i <= x; ++i) { if (x % i) continue; pr[++pc] = i; while (x % i == 0) x /= i; } if (x > 1) pr[++pc] = x; } inline void Z(int x, long long *C) { for (int i = 1; i <= pc; ++i) { int p = pr[i]; C[i] = 0; while (x % p == 0) x /= p, ++C[i]; } } inline int Merge() { long long Sb = 0, Sd = 0; for (int i = 1; i <= pc; ++i) Sb += b[i], Sd += d[i]; if (!Sb && !Sd) { for (int i = 1; i <= pc; ++i) if (a[i] != c[i]) return 0; return 1; } if (!Sb || !Sd) { if (!Sd) std::swap(a, c), std::swap(b, d), std::swap(Sb, Sd); long long k = 0; for (int i = 1; i <= pc; ++i) if (d[i]) { k = (a[i] >= c[i] && (a[i] - c[i]) % d[i] == 0) ? (a[i] - c[i]) / d[i] : -1; break; } else if (a[i] != c[i]) return 0; if (k == -1) return 0; for (int i = 1; i <= pc; ++i) if (c[i] + k * d[i] != a[i]) return 0; return 1; } int ok = 0; for (int i = 1; i <= pc; ++i) if (b[i] * Sd != d[i] * Sb) { ok = i; break; } if (ok) { int p1 = ok, p2 = 0; for (int i = 1; i <= pc; ++i) if (b[i] * d[p1] != d[i] * b[p1]) { p2 = i; break; } long long ka = d[p2] * (c[p1] - a[p1]) - d[p1] * (c[p2] - a[p2]); long long kc = b[p2] * (c[p1] - a[p1]) - b[p1] * (c[p2] - a[p2]); long long denom = d[p2] * b[p1] - d[p1] * b[p2]; if (denom < 0) ka = -ka, kc = -kc, denom = -denom; if (ka < 0 || kc < 0 || ka % denom != 0 || kc % denom != 0) return 0; ka /= denom, kc /= denom; for (int i = 1; i <= pc; ++i) { if (a[i] + ka * b[i] != c[i] + kc * d[i]) return 0; a[i] = a[i] + ka * b[i], b[i] = 0; } return 1; } long long kb = 0, kd = 0; for (int i = 1; i <= pc; ++i) if (b[i]) { long long g = Gcd(b[i], d[i]); kb = b[i] / g, kd = d[i] / g; break; } long long k = 0; for (int i = 1; i <= pc; ++i) if (b[i]) { if ((a[i] - c[i]) % (b[i] / kb)) return 0; k = (a[i] - c[i]) / (b[i] / kb); break; } for (int i = 1; i <= pc; ++i) if (c[i] + k * (b[i] / kb) != a[i]) return 0; if (k < 0) std::swap(a, c), std::swap(b, d), std::swap(kb, kd), k = -k; long long x, y; exGcd(kb, kd, x, y); x = ((long long)x * -k % kd + kd) % kd; for (int i = 1; i <= pc; ++i) a[i] += x * b[i], b[i] *= kd; return 1; } int main() { scanf("%d", &N); for (int i = 1; i <= N; ++i) { scanf("%d%d", &A[i], &B[i]); X(A[i]), X(B[i]); } std::sort(pr + 1, pr + pc + 1); pc = std::unique(pr + 1, pr + pc + 1) - pr - 1; for (int i = 1; i <= N; ++i) if (i == 1) Z(A[i], a), Z(B[i], b); else if (Z(A[i], c), Z(B[i], d), !Merge()) return puts("-1"), 0; int Ans = 1; for (int i = 1; i <= pc; ++i) Ans = (long long)Ans * qPow(pr[i], a[i]) % Mod; printf("%d\n", Ans); return 0; }
#include <bits/stdc++.h> using namespace std; const int __SIZE = 1 << 18; char ibuf[__SIZE], *iS, *iT; template <typename T> inline void read(T &x) { char ch, t = 0; x = 0; while (!isdigit(ch = (iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, __SIZE, stdin), (iS == iT ? EOF : *iS++)) : *iS++))) t |= ch == '-'; while (isdigit(ch)) x = x * 10 + (ch ^ 48), ch = (iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, __SIZE, stdin), (iS == iT ? EOF : *iS++)) : *iS++); x = t ? -x : x; } inline int read_int() { int x; return read(x), x; } inline long long read_ll() { long long x; return read(x), x; } template <typename T> inline void chkmin(T &a, T b) { a = a < b ? a : b; } template <typename T> inline void chkmax(T &a, T b) { a = a > b ? a : b; } const int mod = 1e9 + 7; inline int fsp(int x, long long k) { int s = 1; while (k) { if (k & 1) s = 1LL * s * x % mod; x = 1LL * x * x % mod, k >>= 1; } return s; } int tot; int pri[31700]; int chk[31700]; inline void Sieve(int n = 31650) { for (int i = 2; i <= n; i++) { if (!chk[i]) pri[++tot] = i; for (int j = 1; j <= tot; j++) { if (i * pri[j] > n) break; chk[i * pri[j]] = 1; if (i % pri[j] == 0) break; } } } struct Num { int sz; long long p[510], k[510], b[510]; inline int val() { int res = 1; for (int i = 1; i <= sz; i++) res = 1LL * res * fsp(p[i], b[i]) % mod; return res; } inline void Ins(int pr, int &x, int &y) { p[++sz] = pr, k[sz] = b[sz] = 0; while (x % pr == 0) ++b[sz], x /= pr; while (y % pr == 0) ++k[sz], y /= pr; } inline void init(int x, int y) { sz = 0; for (int i = 1; i <= tot; i++) { int pr = pri[i]; if (pr > x && pr > y) break; if (x % pr && y % pr) continue; Ins(pr, x, y); } if (x < y) { if (x > 1) Ins(x, x, y); if (y > 1) Ins(y, x, y); } else { if (y > 1) Ins(y, x, y); if (x > 1) Ins(x, x, y); } p[sz + 1] = 1919810; } } res, now, ans; struct Seq { int a, b; } s[110]; int ct; long long vA[20]; long long vB[20]; long long vC[20]; inline long long sgn(long long x) { return x < 0 ? -1ll : min(x, 1ll); } inline long long gcd(long long a, long long b) { return !b ? a : gcd(b, a % b); } inline long long lcm(long long a, long long b) { return !a && !b ? 0ll : a / gcd(a, b) * b; } inline void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, void(); exgcd(b, a % b, y, x), y -= a / b * x; } inline void Solve(long long A, long long B, long long C, long long a, long long b, long long c, long long &x, long long &y) { long long d = gcd(a, A), P = a / d, p = A / d; long long ta = a, tb = b, tc = c; B *= P, C *= P; b *= p, c *= p; B -= b, C -= c; if (sgn(C) * sgn(B) > 0 || !B || abs(C) % abs(B)) puts("-1"), exit(0); y = -C / B, tc += tb * y; if (!ta || tc % ta) puts("-1"), exit(0); x = tc / ta; } inline void Merge(int x, int y) { now.init(x, y), ct = 0; int found_res = 0, val_res = 0; int found_now = 0, val_now = 0; for (int i = 1, j = 1;;) { if (i > res.sz && j > now.sz) break; else if (res.p[i] != now.p[j]) { if (res.p[i] < now.p[j]) { if (res.b[i] > 0) puts("-1"), exit(0); else { if (found_res) { if (val_res) puts("-1"), exit(0); } else found_res = 1, val_res = 0; } ++i; } else { if (now.b[j] > 0) puts("-1"), exit(0); else { if (found_now) { if (val_now) puts("-1"), exit(0); } else found_now = 1, val_now = 0; } ++j; } } else { if (!res.k[i] && !now.k[j]) { if (res.b[i] != now.b[j]) puts("-1"), exit(0); } else if (!res.k[i]) { if (res.b[i] < now.b[j] || (res.b[i] - now.b[j]) % now.k[j]) puts("-1"), exit(0); else { if (found_now) { if (val_now != (res.b[i] - now.b[j]) / now.k[j]) puts("-1"), exit(0); } else found_now = 1, val_now = (res.b[i] - now.b[j]) / now.k[j]; } } else if (!now.k[j]) { if (res.b[i] > now.b[j] || (now.b[j] - res.b[i]) % res.k[i]) puts("-1"), exit(0); else { if (found_res) { if (val_res != (now.b[j] - res.b[i]) / res.k[i]) puts("-1"), exit(0); } else found_res = 1, val_res = (now.b[j] - res.b[i]) / res.k[i]; } } else { ++ct; vA[ct] = res.k[i]; vB[ct] = now.k[j]; vC[ct] = now.b[j] - res.b[i]; } ++i, ++j; } } if (found_res || found_now) { if (found_res) for (int i = 1; i <= res.sz; i++) res.b[i] += val_res * res.k[i], res.k[i] = 0; if (found_now) for (int i = 1; i <= now.sz; i++) now.b[i] += val_now * now.k[i], now.k[i] = 0; int flag = 1; if (!found_res || !found_now) { flag = 0; for (int i = 1, j = 1;;) { if (i > res.sz && j > now.sz) break; if (res.p[i] != now.p[j]) { if (res.p[i] < now.p[j] && res.b[i] != 0) puts("-1"), exit(0); if (res.p[i] > now.p[j] && now.b[j] != 0) puts("-1"), exit(0); if (res.p[i] < now.p[j]) ++i; else ++j; } else { if (!res.k[i] && !now.k[j]) { if (res.b[i] != now.b[j]) puts("-1"), exit(0); } else if (!res.k[i]) { if (res.b[i] < now.b[j] || (res.b[i] - now.b[j]) % now.k[j]) puts("-1"), exit(0); else { if (found_now) { if (val_now != (res.b[i] - now.b[j]) / now.k[j]) puts("-1"), exit(0); } else found_now = 1, val_now = (res.b[i] - now.b[j]) / now.k[j]; } flag = 1; break; } else if (!now.k[j]) { if (res.b[i] > now.b[j] || (now.b[j] - res.b[i]) % res.k[i]) puts("-1"), exit(0); else { if (found_res) { if (val_res != (now.b[j] - res.b[i]) / res.k[i]) puts("-1"), exit(0); } else found_res = 1, val_res = (now.b[j] - res.b[i]) / res.k[i]; } flag = 1; break; } ++i, ++j; } } if (found_res) for (int i = 1; i <= res.sz; i++) res.b[i] += val_res * res.k[i], res.k[i] = 0; if (found_now) for (int i = 1; i <= now.sz; i++) now.b[i] += val_now * now.k[i], now.k[i] = 0; } if (flag) { for (int i = 1, j = 1;;) { if (i > res.sz && j > now.sz) break; if (res.p[i] != now.p[j]) { if (res.p[i] < now.p[j] && res.b[i] != 0) puts("-1"), exit(0); if (res.p[i] > now.p[j] && now.b[j] != 0) puts("-1"), exit(0); if (res.p[i] < now.p[j]) ++i; else ++j; } else { if (!res.k[i] && !now.k[j]) { if (res.b[i] != now.b[j]) puts("-1"), exit(0); } ++i, ++j; } } } } else if (ct) { for (int i = 1; i <= ct; i++) { long long d = gcd(vA[i], vB[i]); if (vC[i] % d) puts("-1"), exit(0); else vA[i] /= d, vB[i] /= d, vC[i] /= d; } int flag = 1; for (int i = 2; i <= ct; i++) if (vA[i] == vA[i - 1] && vB[i] == vB[i - 1] && vC[i] == vC[i - 1]) flag++; if (flag == ct) { long long x, y; exgcd(vA[1], vB[1], x, y); y = -y, x *= vC[1], y *= vC[1]; if (x > 0) { long long t = x / vB[1]; x -= vB[1] * t; y -= vA[1] * t; } if (y > 0) { long long t = y / vA[1]; x -= vB[1] * t; y -= vA[1] * t; } if (x < 0) { long long t = -x / vB[1] + (x % vB[1] < 0); x += vB[1] * t; y += vA[1] * t; } if (y < 0) { long long t = -y / vA[1] + (y % vA[1] < 0); x += vB[1] * t; y += vA[1] * t; } if (x < 0) puts("-1"), exit(0); ans.sz = 0; for (int i = 1, j = 1; i <= res.sz && j <= now.p[j];) { if (res.p[i] != now.p[j]) { if (res.p[i] < now.p[j]) ++i; else ++j; continue; } ++ans.sz; long long b = res.b[i], k = res.k[i]; ans.p[ans.sz] = res.p[i]; ans.b[ans.sz] = b + k * x; ans.k[ans.sz] = lcm(res.k[i], now.k[j]); ++i, ++j; } ans.p[ans.sz + 1] = 1919810, res = ans; return; } else { long long x, y; for (int i = 2; i <= ct; i++) { if (vA[i] == vA[1] && vB[i] == vB[1] && vC[i] == vC[1]) continue; Solve(vA[1], vB[1], vC[1], vA[i], vB[i], vC[i], x, y); break; } for (int i = 1; i <= ct; i++) if (vA[i] * x - vB[i] * y != vC[i]) puts("-1"), exit(0); for (int i = 1; i <= res.sz; i++) res.b[i] += x * res.k[i], res.k[i] = 0; for (int i = 1; i <= now.sz; i++) now.b[i] += y * now.k[i], now.k[i] = 0; } } ans.sz = 0; for (int i = 1, j = 1; i <= res.sz && j <= now.p[j];) { if (res.p[i] != now.p[j]) { if (res.p[i] < now.p[j]) { if (res.b[i]) puts("-1"), exit(0); ++i; } else { if (now.b[j]) puts("-1"), exit(0); ++j; } continue; } if (res.b[i] != now.b[j]) puts("-1"), exit(0); ++ans.sz; ans.p[ans.sz] = res.p[i]; ans.b[ans.sz] = res.b[i]; ans.k[ans.sz] = 0; ++i, ++j; } ans.p[ans.sz + 1] = 1919810, res = ans; } int main() { Sieve(); int n = read_int(); for (int i = 1; i <= n; i++) s[i].a = read_int(), s[i].b = read_int(); res.init(s[1].a, s[1].b); for (int i = 2; i <= n; i++) Merge(s[i].a, s[i].b), cerr << res.b[1] << endl; printf("%d\n", res.val()); return 0; }
#include <bits/stdc++.h> using namespace std; template <typename T> void read(T &t) { t = 0; char ch = getchar(); int f = 1; while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } do { (t *= 10) += ch - '0'; ch = getchar(); } while ('0' <= ch && ch <= '9'); t *= f; } const long long mod = (1e9) + 7; const long long M = 998244353; const double eps = 1e-6; int n, cnt[110]; long long a[110], b[110], w[110], B[110], tmp; void No() { printf("-1\n"); exit(0); } int lg(long long x) { return (int)ceil(log(1.0 * x) / log(2.0)); } long long ksm(long long x, long long y) { long long res = 1; while (y) { if (y & 1) res = res * x % mod; x = x * x % mod; y >>= 1; } return res; } long long gcd(long long x, long long y) { if (!x || !y) return x + y; return gcd(y, x % y); } void solve1(int x) { for (int i = 1; i <= n; i++) { if (b[i] == 1 && a[i] != a[x]) No(); if (b[i] > 1) { tmp = a[i]; while (1) { if (tmp > a[x] / b[i]) No(); tmp *= b[i]; if (tmp == a[x]) break; } } } printf("%lld\n", a[x]); exit(0); } void solve2(int x) { long long t1 = a[1] % M, t2, t3; int num = -1; for (int i = 0; i < 400; i++) { t2 = a[x] % M; for (int j = 0; j < 400; j++) { if (t1 == t2) { t3 = t1, num = i; break; } t2 = t2 * b[x] % M; } if (num != -1) break; t1 = t1 * b[1] % M; } if (num == -1) No(); bool flag; for (int i = 1; i <= n; i++) { t1 = a[i] % M; flag = 0; for (int j = 0; j <= 100000; j++) { if (t1 == t3) { flag = 1; break; } t1 = t1 * b[i] % M; } if (!flag) No(); } tmp = a[1]; while (num--) tmp = tmp * b[1] % mod; printf("%lld\n", tmp); exit(0); } int main() { srand(time(0)); read(n); for (int i = 1; i <= n; i++) read(a[i]), read(b[i]); for (int i = 1; i <= n; i++) if (b[i] == 1) solve1(i); for (int i = 1; i <= n; i++) { for (int j = 1; j <= lg(b[i]); j++) { tmp = (long long)floor(pow(b[i], 1.0 / j) + 0.5); if (fabs(pow(tmp, j) - b[i]) < eps) B[i] = j, w[i] = tmp; } } for (int i = 2; i <= n; i++) if (w[i] != w[1]) solve2(i); int mx = 0; for (int i = 1; i <= n; i++) { while (a[i] % w[i] == 0) a[i] /= w[i], cnt[i]++; mx = max(mx, cnt[i]); } for (int i = 2; i <= n; i++) if (a[i] != a[1]) No(); long long Lcm = B[1], z, ans = cnt[1]; bool flag = 1; for (int i = 2; i <= n; i++) { flag = 0; for (int j = 0; j < B[i]; j++) if ((ans + Lcm * j) % B[i] == cnt[i] % B[i]) { ans += Lcm * j; flag = 1; break; } if (!flag) No(); z = gcd(Lcm, B[i]); Lcm = Lcm / z * B[i]; } while (ans < mx) ans += Lcm; printf("%lld\n", a[1] * ksm(w[1], ans) % mod); return 0; }
#include <bits/stdc++.h> using namespace std; map<int, int> p; int n; struct line { long long x, y, z; } a[105]; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } vector<pair<int, int> > dv[105]; vector<pair<int, int> > getdiv(int x) { vector<pair<int, int> > c; c.clear(); for (int d = 2; d * d <= x; d++) { if (x % d == 0) { int cnt = 0; while (x % d == 0) cnt++, x /= d; c.push_back(make_pair(d, cnt)); } } if (x > 1) c.push_back(make_pair(x, 1)); return c; } void FAIL() { cout << -1 << endl; exit(0); } long long power(long long a, long long b, long long mo = 1e9 + 7) { long long ans = 1; while (b) { if (b & 1) ans = ans * a % mo; a = a * a % mo; b >>= 1; } return ans; } void SUC(vector<pair<int, int> > z) { long long ans = 1, mo = 1e9 + 7; for (auto i : z) ans = ans * power(i.first, i.second) % mo; cout << ans << endl; exit(0); } int check(vector<pair<int, int> > z, int i) { long long x = a[i].x, y = a[i].y; vector<pair<int, int> > x0 = getdiv(a[i].x), y0 = getdiv(a[i].y); for (auto i : z) { while (x % i.first == 0) x /= i.first; while (y % i.first == 0) y /= i.first; } if (x > 1) return 0; if (y > 1) { if (x0.size() == z.size()) { for (int i = 0; i < z.size(); i++) { if (x0[i] < z[i] || x0[i] > z[i]) return 0; } return 1; } return 0; } x = a[i].x, y = a[i].y; int las = -1; for (auto i : z) { int cntx = 0, cnty = 0; while (x % i.first == 0) x /= i.first, cntx++; while (y % i.first == 0) y /= i.first, cnty++; if (cnty == 0 && cntx != i.second || cntx > i.second) return 0; if (cnty == 0) continue; int k = (i.second - cntx) / cnty; if ((i.second - cntx) % cnty != 0) return 0; if (las != -1 && k != las) return 0; las = k; } return 1; } void merge(vector<pair<int, int> > &a, vector<pair<int, int> > b) { vector<pair<int, int> > c = a; for (auto i : b) c.push_back(i); sort(c.begin(), c.end()); a.clear(); if (c.size()) a.push_back(make_pair(c[0].first, 0)); for (int i = 1; i < c.size(); i++) if (c[i].first != c[i - 1].first) a.push_back(make_pair(c[i].first, 0)); } vector<pair<int, int> > check2(int i, int j) { vector<pair<int, int> > z0 = getdiv(a[i].x); merge(z0, getdiv(a[i].y)); merge(z0, getdiv(a[j].x)); merge(z0, getdiv(a[j].y)); vector<pair<int, int> > A = z0, B = z0, C = z0, D = z0; int a0 = a[i].x, b0 = a[i].y, c0 = a[j].x, d0 = a[j].y; for (int i = 0; i < z0.size(); i++) { while (a0 % z0[i].first == 0) A[i].second++, a0 /= z0[i].first; while (b0 % z0[i].first == 0) B[i].second++, b0 /= z0[i].first; while (c0 % z0[i].first == 0) C[i].second++, c0 /= z0[i].first; while (d0 % z0[i].first == 0) D[i].second++, d0 /= z0[i].first; } int k1 = -1, k2 = -1, suc = 0; for (k1 = 0; k1 <= 100; k1++) { for (k2 = 0; k2 <= 100; k2++) { if (A[0].second + k1 * B[0].second == C[0].second + k2 * D[0].second && A[1].second + k1 * B[1].second == C[1].second + k2 * D[1].second) { suc = 1; break; } } if (suc) break; } if (suc == 0) FAIL(); vector<pair<int, int> > z1; for (int i = 0; i < z0.size(); i++) { z0[i].second = A[i].second + B[i].second * k1; if (z0[i].second) z1.push_back(z0[i]); } return z1; } int main() { int tag1 = 0, tag2 = 0; cin >> n; for (int i = 1; i <= n; i++) { int x, y, k = 0, y0; scanf("%d%d", &x, &y); a[i] = (line){x, y, 0}; for (int d = 2; d * d <= y; d++) { int cnt = 0; while (y % d == 0) cnt++, y /= d; k = gcd(k, cnt); if (cnt) dv[i].push_back(make_pair(d, cnt)); } if (y > 1) k = 1, dv[i].push_back(make_pair(y, 1)); if (k) a[i].z = pow(a[i].y, 1.0 / k) + 0.5; if (a[i].y == 1) tag1 = a[i].x; if (a[i].z != a[1].z) tag2 = i; } if (n == 1) { printf("%d\n", a[1].x); return 0; } if (tag1) { int x0 = tag1; vector<pair<int, int> > z = getdiv(tag1); for (int i = 1; i <= n; i++) { if (!check(z, i)) FAIL(); } SUC(z); } if (tag2) { vector<pair<int, int> > z = check2(1, tag2); for (int i = 1; i <= n; i++) { if (!check(z, i)) FAIL(); } SUC(z); } int Z = a[1].z; for (int i = 1; i <= n; i++) { int x0 = a[i].x, y0 = a[i].y, z = a[i].z; a[i].x = a[i].y = 0; while (y0 % z == 0) y0 /= z, a[i].y++; while (x0 % z == 0) x0 /= z, a[i].x++; a[i].z = x0; if (a[i].z != a[1].z) FAIL(); } long long A = a[1].y, B = a[1].x; for (int i = 2; i <= n; i++) { int suc = 0; for (int j = 0; j < a[i].y; j++, B += A) { if (B % a[i].y == a[i].x % a[i].y) { suc = 1; break; } } if (!suc) FAIL(); else A = A * a[i].y / gcd(A, a[i].y); } for (int i = 1; i <= n; i++) while (B < a[i].x) B += A; cout << power(Z, B) * a[1].z % (1000000007) << endl; }
#include <bits/stdc++.h> using namespace std; const int NN = 100 + 117; const int MM = 3000 + 117; int read() { int fl = 1, x; char c; for (c = getchar(); (c < '0' || c > '9') && c != '-'; c = getchar()) ; if (c == '-') { fl = -1; c = getchar(); } for (x = 0; c >= '0' && c <= '9'; c = getchar()) x = (x << 3) + (x << 1) + c - '0'; return x * fl; } void open() { freopen("a.in", "r", stdin); } void close() { fclose(stdin); fclose(stdout); } const int mod = 1e9 + 7; long long ksm(long long a, long long b) { long long ret = 1; for (; b; b >>= 1, a = a * a % mod) if (b & 1) ret = ret * a % mod; return ret; } int m, n; struct eq { long long st, d; } a[NN][MM]; int d[MM] = {}; int dcnt = 0; long long in[NN][2] = {}; long long ans[MM] = {}; bool vis[MM] = {}; void dvd(int a) { int top = sqrt(a + 1); for (int i = 2; i <= top; ++i) { if (a % i == 0) { d[++dcnt] = i; while (a % i == 0) a /= i; } } if (a != 1) d[++dcnt] = a; } bool chk() { for (int i = 1; i <= n; ++i) { long long x = -1; for (int j = 1; j <= dcnt; ++j) { if (ans[j] < a[i][j].st) return false; if (a[i][j].d) { if ((ans[j] - a[i][j].st) % a[i][j].d) return false; long long now = (ans[j] - a[i][j].st) / a[i][j].d; if (x == -1) now = x; else if (now != x) return false; } else { if (ans[j] != a[i][j].st) return false; } } } return true; } void makeans(int id, long long x) { for (int i = 1; i <= dcnt; ++i) { ans[i] = a[id][i].st + a[id][i].d * x; } } void WA() { printf("-1\n"); exit(0); } void AC() { long long op = 1; for (int i = 1; i <= dcnt; ++i) { op = op * ksm(d[i], ans[i]) % mod; } printf("%lld\n", op); exit(0); } void judge() { if (chk()) AC(); else WA(); } long long x[2][3] = {}; int xiao() { long long mul1 = x[1][0]; long long mul2 = x[0][0]; x[0][0] *= mul1, x[0][1] *= mul1, x[0][2] *= mul1; x[1][0] *= mul2, x[1][1] *= mul2, x[1][2] *= mul2; x[1][0] -= x[0][0], x[1][1] -= x[0][1], x[1][2] -= x[0][2]; if (x[1][1] == 0) { if (x[1][2] == 0) return 1; else return -1; } if (x[1][2] % x[1][1]) return -1; x[1][2] /= x[1][1]; if (x[1][2] < 0) return -1; x[0][2] -= x[0][1] * x[1][2]; if (x[0][2] % x[0][0]) return -1; x[0][2] /= x[0][0]; if (x[0][2] < 0) return -1; return 0; } long long exgcd(long long a, long long &x, long long b, long long &y) { if (b == 0) { x = 1, y = 0; return a; } long long nx, ny; long long g = exgcd(b, nx, a % b, ny); x = ny; y = nx - a / b * ny; return g; } long long mul(long long a, long long b, long long mod) { long long ret = 0; if (b < 0) b = -b, a = -a; for (; b; b >>= 1, a = (a + a) % mod) { if (b & 1) ret = (ret + a) % mod; } return ret; } bool bind(eq &a, eq b) { long long x, y; long long g = exgcd(a.d, x, b.d, y); long long c = b.st - a.st; if (c % g) return false; c /= g; long long mod = a.d / g * b.d; long long tp = mul(a.d, x, mod); tp = mul(tp, c, mod); tp = (tp + a.st) % mod; long long rem = tp; a.st = rem; a.d = mod; return true; } int main() { n = read(); for (int i = 1; i <= n; ++i) { int a = read(); int b = read(); dvd(a); dvd(b); in[i][0] = a; in[i][1] = b; } sort(d + 1, d + 1 + dcnt); dcnt = unique(d + 1, d + 1 + dcnt) - d - 1; for (int i = 1; i <= n; ++i) { long long x = in[i][0], y = in[i][1]; for (int j = 1; j <= dcnt; ++j) { while (x % d[j] == 0) { a[i][j].st++; x /= d[j]; } while (y % d[j] == 0) { a[i][j].d++; y /= d[j]; } } } if (n == 1) { makeans(1, 0); judge(); } int rem = dcnt; for (int j = 1; j <= dcnt; ++j) { int k = -1; int pos = -1; for (int i = 1; i <= n; ++i) { if (a[i][j].d == 0) { if (k == -1) { k = a[i][j].st; } else { if (a[i][j].st != k) WA(); } } else pos = i; } if (k == -1) continue; if (pos == -1) { vis[j] = 1; --rem; continue; } if (k < a[pos][j].st) { WA(); } k -= a[pos][j].st; if (k % a[pos][j].d) WA(); k /= a[pos][j].d; makeans(pos, k); judge(); } if (rem == 0) { makeans(1, 0); judge(); } if (rem > 1) { int pos = 0; for (int j = 1; j <= dcnt; ++j) if (!vis[j]) { pos = j; break; } for (int j = pos + 1; j <= dcnt; ++j) { if (vis[j]) continue; for (int i = 2; i <= n; ++i) { x[0][0] = a[1][pos].d; x[0][1] = -a[i][pos].d; x[0][2] = a[i][pos].st - a[1][pos].st; x[1][0] = a[1][j].d; x[1][1] = -a[i][j].d; x[1][2] = a[i][j].st - a[1][j].st; int tp = xiao(); if (tp == 1) vis[j] = 1; if (tp == -1) WA(); if (tp == 0) { makeans(1, x[0][2]); judge(); } } } } int pos = 0; for (int j = 1; j <= dcnt; ++j) if (!vis[j]) { pos = j; break; } eq now; now.st = 0; now.d = 1; for (int i = 1; i <= n; ++i) { if (!bind(now, a[i][pos])) WA(); } for (int i = 1; i <= n; ++i) { while (now.st < a[i][pos].st) { now.st += now.d; } } long long x = (now.st - a[1][pos].st) / a[1][pos].d; makeans(1, x); judge(); close(); return 0; }
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long exgcd(long long a, long long b, long long& x, long long& y) { if (b == 0) { x = 1; y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void gg() { printf("-1\n"); exit(0); } int p[6010], N; long long A[6010], B[6010]; struct Eq { long long a, b, c; } e[6010]; long long chu(long long a, long long b) { return (a + b - 1) / b; } long long mmul(long long a, long long b, long long M) { a = (a % M + M) % M; b = (b % M + M) % M; long long ans = 0, t = a; while (b) { if (b & 1) ans = (ans + t) % M; t = (t + t) % M; b >>= 1; } return ans; } bool merge(int a, int b) { int cnt = 0; for (int i = 1; i <= N; i++) { int cnt1 = 0, cnt2 = 0; int t = a; while (t % p[i] == 0) t /= p[i], cnt1++; t = b; while (t % p[i] == 0) t /= p[i], cnt2++; if (!B[i] && !cnt2) { if (cnt1 != A[i]) gg(); continue; } cnt++; e[cnt].a = B[i]; e[cnt].b = -cnt2; e[cnt].c = cnt1 - A[i]; } if (!cnt) return false; bool flag = false; for (int i = 1; i <= cnt && !flag; i++) { for (int j = i + 1; j <= cnt && !flag; j++) if (e[i].a * e[j].b != e[j].a * e[i].b) { swap(e[i], e[1]); swap(e[j], e[2]); flag = true; } else if (e[i].a * e[j].c != e[j].a * e[i].c || e[i].b * e[j].c != e[j].b * e[i].c) gg(); } if (flag) { if (!e[1].a) swap(e[1], e[2]); long long g = gcd(e[1].a, e[2].a); long long m1 = e[2].a / g; long long m2 = e[1].a / g; long long dc = e[1].c * m1 - e[2].c * m2; long long db = e[1].b * m1 - e[2].b * m2; if (dc % db != 0) gg(); long long y = dc / db; dc = e[1].c - e[1].b * y; if (dc % e[1].a != 0) gg(); long long x = dc / e[1].a; for (int i = 1; i <= cnt; i++) if (x * e[i].a + y * e[i].b != e[i].c) gg(); if (x < 0 || y < 0) gg(); for (int i = 1; i <= N; i++) A[i] += B[i] * x; return true; } else { long long a = e[1].a, b = -e[1].b, c = e[1].c; if (a == 0) { if (c % b != 0) gg(); if (c / b < 0) gg(); for (int i = 1; i <= N; i++) { int cnt1 = 0, cnt2 = 0; int t = a; while (t % p[i] == 0) t /= p[i], cnt1++; t = b; while (t % p[i] == 0) t /= p[i], cnt2++; A[i] = cnt1 + cnt2 * (c / b); } return true; } if (b == 0) { if (c % a != 0) gg(); if (c / a < 0) gg(); for (int i = 1; i <= N; i++) A[i] += c / a * B[i]; return true; } long long x, y; long long g = exgcd(a, b, x, y); if (c % g != 0) gg(); x = mmul(x, c / g, b / g); y = -(c - x * a) / b; long long d = chu(max(0ll, -y), a / g); x += d * (b / g); for (int i = 1; i <= N; i++) { A[i] += B[i] * x; B[i] *= b / g; } return false; } } const int Mod = 1000000007; int fpow(int a, long long b) { int ans = 1, t = a; while (b) { if (b & 1) ans = (long long)ans * t % Mod; t = (long long)t * t % Mod; b >>= 1; } return ans; } void work(int x) { for (int i = 2; i * i <= x; i++) if (x % i == 0) { p[++N] = i; while (x % i == 0) x /= i; } if (x > 1) p[++N] = x; return; } int a[110], b[110]; int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d %d", &a[i], &b[i]); work(a[i]); work(b[i]); } sort(p + 1, p + N + 1); N = unique(p + 1, p + N + 1) - p - 1; for (int i = 1; i <= N; i++) { int t = a[1]; while (t % p[i] == 0) A[i]++, t /= p[i]; t = b[1]; while (t % p[i] == 0) B[i]++, t /= p[i]; } int now = 2; while (now <= n && !merge(a[now], b[now])) now++; while (now <= n) { for (int i = 1; i <= N; i++) { int cnt1 = 0, cnt2 = 0; int t = a[now]; while (t % p[i] == 0) t /= p[i], cnt1++; t = b[now]; while (t % p[i] == 0) t /= p[i], cnt2++; if (!cnt2) { if (cnt1 != A[i]) gg(); } else if (A[i] < cnt1 || A[i] % cnt2 != cnt1 % cnt2) gg(); } now++; } int ans = 1; for (int i = 1; i <= N; i++) ans = (long long)ans * fpow(p[i], A[i]) % Mod; printf("%d\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; inline long long kpow(long long a, long long b) { a %= mod, b %= (mod - 1); long long s = 1; for (; b; b >>= 1, a = a * a % mod) if (b & 1) s = s * a % mod; return s; } void no() { printf("-1"); exit(0); } long long n, a[110], b[110], mib = 0x3f3f3f3f; bool bj[100010]; long long su[100010], sunum; void init() { bj[1] = 1; for (long long i = 2; i <= 100000; ++i) { if (!bj[i]) su[++sunum] = i; for (long long j = 1; j <= sunum && su[j] * i <= 100000; ++j) { bj[su[j] * i] = 1; if (i % su[j] == 0) break; } } } map<long long, long long> mp; bool check(long long w) { for (long long s = w, i = 1; s <= 1000000000; s *= w, ++i) mp[s] = i; for (long long i = 1; i <= n; ++i) if (!mp[b[i]]) return 0; return 1; } map<long long, long long> da[110], db[110]; void divi(long long x, map<long long, long long> &mp) { for (long long i = 1; su[i] * su[i] <= x; ++i) if (x % su[i] == 0) { long long cnt = 0; while (x % su[i] == 0) ++cnt, x /= su[i]; mp[su[i]] = cnt; } if (x > 1) mp[x] = 1; } void work(long long w) { for (long long i = 1; i <= n; ++i) { long long c = a[i]; while (c < w) c *= b[i]; if (c != w) no(); } printf("%lld", w); exit(0); } void work1(long long A, long long B, long long N) { if (N < 0) no(); map<long long, long long> dw, dA, dB, dC; divi(A, dA), divi(B, dB); dw = dA; for (auto p : dB) dw[p.first] += N * p.second; for (long long i = 1; i <= n; ++i) { dC = da[i]; for (auto p : dw) dC[p.first]; for (auto p : dC) if (p.second != dw[p.first]) { if (!db[i][p.first]) no(); long long c = (dw[p.first] - p.second) / db[i][p.first]; if (c < 0) no(); for (auto q : db[i]) dC[q.first] += q.second * c; break; } for (auto p : dC) if (p.second != dw[p.first]) no(); } long long ans = 1; for (auto p : dw) ans = ans * kpow(p.first, p.second) % mod; printf("%lld", ans); exit(0); } long long gcd(long long a, long long b) { if (!a || !b) return a + b; return gcd(b, a % b); } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } if (!a) { x = 0, y = 1; return b; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void solve1(long long s) { long long sa = 0; long long k[110], t[110]; for (long long i = 1; i <= n; ++i) { long long x = a[i]; t[i] = 0; k[i] = mp[b[i]]; while (x % s == 0) x /= s, ++t[i]; if (sa && sa != x) no(); sa = x; } long long nk = 1, nt = 0, x, y; for (long long i = 1; i <= n; ++i) { long long g = exgcd(nk, -k[i], x, y); if (g < 0) g = -g, x = -x, y = -y; if ((t[i] - nt) % g) no(); x *= (t[i] - nt) / g, y *= (t[i] - nt) / g; if (x < 0) { long long c = (-x + k[i] / g - 1) / (k[i] / g); x += c * k[i] / g; y += c * nk / g; } if (y < 0) { long long c = (-y + nk / g - 1) / (nk / g); x += c * k[i] / g; y += c * nk / g; } long long c = min(x / (k[i] / g), y / (nk / g)); x -= c * k[i] / g, y -= c * nk / g; nt = x * nk + nt; nk = nk * k[i] / g; } work1(sa, s, nt); } void solve2() { long long p; for (long long i = 2; i <= n; ++i) if (!mp[b[i]]) { p = i; break; } for (auto q : db[1]) if (!db[p].count(q.first)) work1(a[1], b[1], (da[p][q.first] - da[1][q.first]) / q.second); for (auto q : db[p]) if (!db[1].count(q.first)) work1(a[p], b[p], (da[1][q.first] - da[p][q.first]) / q.second); long long a1 = db[1].begin()->second, b1 = -db[p].begin()->second, c1 = da[p][db[1].begin()->first] - da[1][db[1].begin()->first]; long long a2, b2, c2; for (auto q : db[1]) { a2 = q.second, b2 = -db[p][q.first], c2 = da[p][q.first] - da[1][q.first]; if (a1 * b2 != a2 * b1) work1(a[1], b[1], (c1 * b2 - c2 * b1) / (a1 * b2 - a2 * b1)); } } int main() { init(); scanf("%lld", &n); for (long long i = 1; i <= n; ++i) { scanf("%lld %lld", &a[i], &b[i]); divi(a[i], da[i]); divi(b[i], db[i]); mib = min(mib, b[i]); } if (mib == 1) { for (long long i = 1; i <= n; ++i) if (b[i] == 1) { work(a[i]); break; } return 0; } long long g = 0; for (auto p : db[1]) g = gcd(g, p.second); long long s = 1; for (auto p : db[1]) { long long cnt = p.second / g; while (cnt--) s *= p.first; } if (check(s)) solve1(s); else solve2(); return 0; }
#include <bits/stdc++.h> int N; std::map<int, std::pair<long long, long long> > A[100]; void read(std::map<int, std::pair<long long, long long> > &M) { int x, y; scanf("%d%d", &x, &y); for (int i = 2; i * i <= x; i++) if (x % i == 0) { int count = 0; do x /= i, count++; while (x % i == 0); M[i].first += count; } if (x > 1) M[x].first++; for (int i = 2; i * i <= y; i++) if (y % i == 0) { int count = 0; do y /= i, count++; while (y % i == 0); M[i].second += count; } if (y > 1) M[y].second++; } long long gcd(long long x, long long y) { if (x < 0) x = -x; if (y < 0) y = -y; long long r; while (y) { r = x % y; x = y; y = r; } return x; } long long MUL(long long a, long long b, long long c) { long long r = 0; for (; b; b >>= 1) { if (b & 1) r = r + a < c ? r + a : r + a - c; a = a + a < c ? a + a : a + a - c; } return r; } long long POWER(long long a, long long b, long long c) { long long r = 1; for (; b; b >>= 1) { if (b & 1) r = MUL(r, a, c); a = MUL(a, a, c); } return r; } long long phi(long long x) { long long r = x; for (long long i = 2; i * i <= x; i++) if (x % i == 0) { do x /= i; while (x % i == 0); r = r / i * (i - 1); } if (x > 1) r = r / x * (x - 1); return r; } long long first(long long a, long long b, long long c) { if (a == 0) return 0; if (b == 0) return c / a; long long ta = MUL(POWER(a, phi(-b) - 1, -b), (c % -b + -b) % -b, -b), tb = (c - ta * a) / b; if (tb < 0) { long long D = (-tb + a - 1) / a; ta += -b * D; tb += a * D; } return ta; } std::map<int, std::pair<long long, long long> > merge( std::map<int, std::pair<long long, long long> > a, std::map<int, std::pair<long long, long long> > b) { for (auto &i : a) b[i.first]; for (auto &i : b) a[i.first]; long long line = 0, line_a = 0, line_b = 0, line_c = 0; long long point = 0, point_x = 0, point_y = 0; for (auto &i : a) { std::pair<long long, long long> &pa = i.second, &pb = b[i.first]; long long A = pa.second, B = -pb.second, C = pb.first - pa.first, G = gcd(A, B); if (A == 0 && B == 0) { if (C) { puts("-1"); exit(0); } continue; } if (C % G) { puts("-1"); exit(0); } A /= G; B /= G; C /= G; if (A < 0 || A == 0 && B < 0) { A = -A; B = -B; C = -C; } if (point) { if (point_x * A + point_y * B != C) { puts("-1"); exit(0); } } else if (line) { if (line_a == A && line_b == B) { if (line_c != C) { puts("-1"); exit(0); } } else { long long X0 = A * line_b - line_a * B, X1 = C * line_b - line_c * B, Y0 = B * line_a - line_b * A, Y1 = C * line_a - line_c * A; if (X1 % X0 || Y1 % Y0) { puts("-1"); exit(0); } line = 0; point = 1; point_x = X1 / X0; point_y = Y1 / Y0; if (point_x < 0 || point_y < 0) { puts("-1"); exit(0); } } } else { line = 1; line_a = A; line_b = B; line_c = C; } } if (line) { std::map<int, std::pair<long long, long long> > ans; for (auto &i : a) ans.insert( {i.first, {i.second.first + i.second.second * first(line_a, line_b, line_c), i.second.second * -line_b}}); return ans; } else if (point) { std::map<int, std::pair<long long, long long> > ans; for (auto &i : a) ans.insert({i.first, {point_x * i.second.second + i.second.first, 0}}); return ans; } else return a; } int main() { scanf("%d", &N); for (int i = 0; i < N; i++) read(A[i]); while (N > 1) { A[N - 2] = merge(A[N - 2], A[N - 1]); N--; } long long O = 1; for (auto &i : A[0]) O = O * POWER(i.first, i.second.first, 1000000007) % 1000000007; printf("%lld\n", O); return 0; }
#include <bits/stdc++.h> using namespace std; long long al[100][40] = {}, be[100][40] = {}; map<int, long long> ex; map<int, long long> X; vector<long long> p; int primos[10000]; bool criba[40000]; unsigned long long m = 1000000007; long long sq(long long a) { return a * a; } long long potMod(long long a, unsigned long long b) { return b ? ((sq(potMod(a, b >> 1)) % m) * (b & 1 ? a : 1)) % m : 1; } long long pot(long long a, unsigned long long b) { return b ? sq(pot(a, b >> 1)) * (b & 1 ? a : 1) : 1; } int factorizar2(int N, int M) { int F = 0; for (int i = 0; primos[i] * primos[i] <= N || primos[i] * primos[i] <= M; i++) { if (N % primos[i] == 0 || M % primos[i] == 0) { ++F; p.push_back(primos[i]); } while (N % primos[i] == 0) { al[0][F - 1]++; N /= primos[i]; } while (M % primos[i] == 0) { be[0][F - 1]++; M /= primos[i]; } } if (N > 1 && M > 1) { if (N == M) { p.push_back(N); al[0][F] = be[0][F] = 1; F++; } else { p.push_back(N); p.push_back(M); al[0][F++] = 1; be[0][F++] = 1; } } else if (N > 1) { p.push_back(N); al[0][F++] = 1; } else if (M > 1) { p.push_back(M); be[0][F++] = 1; } return F; } map<int, long long> factorizar(int N) { map<int, long long> e; for (int i = 0; primos[i] * primos[i] <= N; i++) { if (!(N % primos[i])) while (!(N % primos[i])) { e[primos[i]]++; N /= primos[i]; } } if (N > 1) e[N]++; return e; } pair<long long, long long> egcd(long long a, long long b) { if (b == 0) return make_pair(1, 0); pair<long long, long long> RES = egcd(b, a % b); return make_pair(RES.second, RES.first - RES.second * (a / b)); } long long inv(long long n, long long m) { pair<long long, long long> EDGC = egcd(n, m); return ((EDGC.first % m) + m) % m; } long long tcr(int k, long long n[], long long a[]) { int i; long long temp, MOD, RES; MOD = 1; for (i = 0; i < k; i++) MOD *= n[i]; RES = 0; for (i = 0; i < k; i++) { temp = MOD / n[i]; temp *= inv(temp, n[i]); RES += (temp * a[i]) % MOD; } return RES % MOD; } int k; long long x, y, A, B, C; int intersectar(int j) { for (int i = 1; i < k; i++) { int D = be[j][0] * be[0][i] - be[0][0] * be[j][i]; if (D == 0) { if (be[0][0] * (al[j][i] - al[0][i]) != be[0][i] * (al[j][0] - al[0][0])) { return 0; } } else { int d1 = (al[j][i] - al[0][i]) * be[j][0] - (al[j][0] - al[0][0]) * be[j][i]; int d2 = (al[j][i] - al[j][i]) * be[j][0] - (al[j][0] - al[0][0]) * be[0][i]; if (d1 % D || d2 % D) return 0; else { x = d1 / D; y = d2 / D; if (x < 0 || y < 0) return 0; for (int h = 0; h < k; h++) al[0][h] += (be[0][h] * x); return 1; } } } int h = 0; for (; h < k - 1 && !(be[0][h] || be[j][h]); h++) ; A = be[0][h], B = be[j][h], C = al[j][h] - al[0][h]; pair<long long, long long> r = egcd(A, -B); x = r.first; y = r.second; int d = A * x - B * y; if (d < 0) { d = -d; x = -x; y = -y; } if (C < 0) { C = -C; x = -x; y = -y; } if (d == 0) { x = y = 0; return 1; } if (C % d) return 0; A /= d; B /= d; C /= d; while (x < 0 || y < 0) { x += B; y += A; } while (x - B > 0 && y - A > 0) { x -= B; y -= A; } x *= C; y *= C; return 2; } bool validar(int i) { int j = 0; for (; j < k - 1 && !be[i][j]; j++) ; if (be[i][j] && (al[0][j] < al[i][j] || (al[0][j] - al[i][j]) % be[i][j])) return false; if (!be[i][j]) y = 0; else y = (al[0][j] - al[i][j]) / be[i][j]; for (int h = 1; h < k; h++) if (al[0][h] != al[i][h] + be[i][h] * y) return false; return true; } int main() { int n, a0, b0, a, b, tipo; k = 0; primos[k++] = 2; memset(criba, true, sizeof(criba)); for (int i = 4; i < 40000; i += 2) criba[i] = false; for (int i = 3; i < 40000; i += 2) if (criba[i]) { primos[k++] = i; for (int j = i * i; j < 40000; j += i) criba[j] = false; } scanf("%d", &n); scanf("%d%d", &a0, &b0); k = factorizar2(a0, b0); for (int i = 1; i < n; i++) { scanf("%d%d", &a, &b); for (int j = 0; j < k; j++) { while (a % p[j] == 0) { al[i][j]++; a /= p[j]; } while (b % p[j] == 0) { be[i][j]++; b /= p[j]; } } if (a != 1) { printf("-1\n"); return 0; } if (b != 1) for (int j = 0; j < k; j++) be[i][j] = 0; } long long maxX = 0; for (int i = 1; i < n; i++) { tipo = intersectar(i); if (!tipo) { printf("-1\n"); return 0; } if (tipo == 1) { for (int j = 0; j < n; j++) if (!validar(j)) { printf("-1\n"); return 0; } long long res = (a0 * potMod(b0, x)) % m; ; printf("%d\n", (int)res); return 0; } map<int, long long> e = factorizar(B); map<int, long long>::iterator it; for (it = e.begin(); it != e.end(); it++) { int p = it->first; int z1 = ex[p], z = it->second; if (!z1) { ex[p] = z; X[p] = x % pot(p, z); } else { long long x1 = X[p]; if (z1 <= z) { long long po = pot(p, z1); if (x1 % po != x % po) { printf("-1\n"); return 0; } ex[p] = z; X[p] = x % pot(p, z); } else { long long po = pot(p, z); if (x1 % po != x % po) { printf("-1\n"); return 0; } } } } maxX = max(maxX, x); } long long mo[100]; long long resi[100]; int s = 0; map<int, long long>::iterator it; for (it = ex.begin(); it != ex.end(); it++) mo[s++] = pot(it->first, it->second); s = 0; for (it = X.begin(); it != X.end(); it++) resi[s++] = it->second; long long MOD = 1; for (int i = 0; i < s; i++) MOD *= mo[i]; long long EXP = tcr(s, mo, resi); while (EXP < maxX) EXP += MOD; long long res = (a0 * potMod(b0, EXP)) % m; printf("%d\n", (int)res); return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 514; long long gcd(long long a, long long b) { return !b ? a : gcd(b, a % b); } long long msk(long long a, long long b, long long k, int md) { a %= md; k %= md; while (b) { if (b & 1) k = k * a % md; a = a * a % md; b >>= 1; } return k; } pair<int, int> a[N]; map<int, int> mp; int n; long long t[N], s[N], r[N], p[N], P[20]{0, 998244353, 1000000007, 19260817, 998244853, 1919810, 114514, 191981011451}; bool chk(int x) { for (int i = (1); i <= (n); i++) { if (x % a[i].first) return 0; int y = x / a[i].first; while (y != 1) { if (y % a[i].second || a[i].second == 1) return 0; y /= a[i].second; } } return 1; } bool chk(int x, int i, int y) { int u = (i * log(a[x].second) + log(a[x].first) - log(a[y].first)) / log(a[y].second) + 0.5; for (int k = (max(0, u - 10)); k <= (min(1919, u + 10)); k++) { int ty = 1; for (int l = (1); l <= (7); l++) { int md = P[l]; if (msk(a[x].second, i, a[x].first, md) != msk(a[y].second, k, a[y].first, md)) { ty = 0; break; } } if (ty) return 1; } return 0; } void sol(int x, int y) { for (int i = (0); i <= (1919); i++) { if (chk(x, i, y)) { int ty = 1; for (int j = (1); j <= (n); j++) if (!chk(x, i, j)) { ty = 0; break; } if (ty) { printf("%lld", msk(a[x].second, i, a[x].first, 1e9 + 7)); exit(0); } } } { puts("-1"); exit(0); }; } void chai(int x) { mp.clear(); for (int i = 2; i <= sqrt(x); ++i) while (x % i == 0) x /= i, mp[i]++; if (x > 1) mp[x]++; } int main() { scanf("%d", &n); srand(time(0)); for (int i = (1); i <= (n); i++) scanf("%d%d", &a[i].first, &a[i].second); sort(a + 1, a + n + 1); if (chk(a[n].first)) { printf("%d", a[n].first); return 0; } for (int i = (1); i <= (n); i++) { chai(a[i].second); s[i] = 1; for (auto& j : mp) t[i] = gcd(t[i], j.second); for (auto& j : mp) { j.second /= t[i]; for (int k = (0); k <= (j.second - 1); k++) s[i] *= j.first; } if (s[i] != s[1]) sol(1, i); } long long md = 1, al = 0; for (int i = (1); i <= (n); i++) { r[i] = a[i].first; while (!(r[i] % s[i])) r[i] /= s[i], p[i]++; if (r[i] != r[1]) { puts("-1"); exit(0); }; long long x = gcd(t[i], md); if (al % x != p[i] % x) { puts("-1"); exit(0); }; while (al % t[i] != p[i] % t[i]) al += md; md = md / x * t[i]; al %= md; } for (int i = (1); i <= (n); i++) while (al < p[i]) al += md; printf("%lld\n", msk(s[1], al, r[1], 1e9 + 7)); return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 105, L = 1e3 + 5; const int mod = 1e9 + 7; int n, va[N], vb[N], cta[N][L], ctb[N][L]; namespace utils { template <class T> inline void apn(T &x, const T y) { x = x < y ? x : y; } template <class T> inline void apx(T &x, const T y) { x = x > y ? x : y; } inline int nxi() { int x = 0; char c; while (((c = getchar()) > '9' || c < '0') && c != '-') ; const bool f = c == '-' && (c = getchar()); while (x = x * 10 - 48 + c, (c = getchar()) >= '0' && c <= '9') ; return f ? -x : x; } } // namespace utils using namespace utils; namespace D { int cnt, v[L]; inline void add(const int x) { v[++cnt] = x; } inline void build() { sort(v + 1, v + cnt + 1); cnt = unique(v + 1, v + cnt + 1) - v - 1; } inline int ask(const int x) { return lower_bound(v + 1, v + cnt + 1, x) - v; } } // namespace D void getzyz(int x) { for (int i = 2; i <= 3.5e4; ++i) { if (x % i) continue; D::add(i); while (x % i == 0) x /= i; } if (x > 1) D::add(x); } int qcnt(int t, const int z) { int ans = 0; assert(t); for (; t % z == 0; t /= z, ++ans) ; return ans; } inline int fpow(int x, long long t) { int ans = 1; for (; t; x = (long long)x * x % mod, t >>= 1) { if (t & 1) ans = (long long)ans * x % mod; } return ans; } inline long long smul(long long x, long long y, const long long mod) { long long ans = 0; bool f = (y < 0) ^ (x < 0); if (y < 0) y = -y; for (; y; x = x * 4 % mod, y >>= 2) { ans = (ans + x * (y & 3)) % mod; } ans = f ? mod - ans : ans; return ans; } int qans(const int p, const long long tot) { static long long tgt[L]; int ans = va[p]; for (int i = 1; i <= D::cnt; ++i) { tgt[i] = qcnt(va[p], D::v[i]) + qcnt(vb[p], D::v[i]) * tot; while (ans % D::v[i] == 0) ans /= D::v[i]; } for (int i = 1; i <= n; ++i) { int cc = -1; for (int j = 1; j <= D::cnt; ++j) { int wa = qcnt(va[i], D::v[j]), wb = qcnt(vb[i], D::v[j]); if (!wb) { if (wa != tgt[j]) return -1; continue; } long long curt = tgt[j] - wa; if (curt < 0 || curt % wb) { return -1; } curt /= wb; if (cc == -1) cc = curt; else if (cc != curt) return -1; } } for (int i = 1; i <= D::cnt; ++i) { ans = (long long)ans * fpow(D::v[i], tgt[i]) % mod; } return ans; } bool san0() { for (int i = 1; i <= D::cnt; ++i) { for (int j = 1; j <= n; ++j) { if (vb[j] % D::v[i] == 0) continue; int tgt = qcnt(va[j], D::v[i]), p = 1; for (; p <= n && vb[p] % D::v[i]; ++p) ; if (p > n) { for (int k = 2; k <= n; ++k) { if (qcnt(va[k], D::v[i]) != qcnt(va[1], D::v[i])) return puts("-1"), 0; } for (int k = i + 1; k <= D::cnt; ++k) { D::v[k - 1] = D::v[k]; } --D::cnt, --i; break; } int tot = tgt - qcnt(va[p], D::v[i]); if (tot % qcnt(vb[p], D::v[i])) return puts("-1"), 0; tot /= qcnt(vb[p], D::v[i]); return printf("%d\n", qans(p, tot)), 0; } } return 1; } bool sanmulp() { using namespace D; for (int i = 2; i <= cnt; ++i) { for (int j = 2; j <= n; ++j) { if (ctb[1][i] * ctb[j][1] == ctb[1][1] * ctb[j][i]) { int tmp1 = cta[1][i] * ctb[1][1] - ctb[1][i] * cta[1][1]; int tmp2 = cta[j][i] * ctb[1][1] - ctb[1][i] * cta[j][1]; if (tmp1 != tmp2) return puts("-1"), 0; } else { int numj = cta[1][i] * ctb[1][1] - cta[1][1] * ctb[1][i]; numj -= cta[j][i] * ctb[1][1] - cta[j][1] * ctb[1][i]; int denomj = ctb[j][i] * ctb[1][1] - ctb[j][1] * ctb[1][i]; if (numj % denomj || numj / denomj < 0) return puts("-1"), 0; return printf("%d\n", qans(j, numj / denomj)), 0; } } } return 1; } long long exgcd(long long x, long long y, long long &a, long long &b) { if (!y) { a = 1, b = 0; return x; } long long res = exgcd(y, x % y, a, b), tmp = a - (x / y) * b; a = b, b = tmp; return res; } bool merge(long long &m1, long long &r1, long long m2, long long r2) { long long a, b, g = exgcd(m1, -m2, a, b); if ((r2 - r1) % g) return 0; m1 = m1 / g * m2; if (m1 < 0) m1 = -m1; a = smul(a, (r2 - r1) / g, m1), b = smul(b, (r2 - r1) / g, m1); r1 = ((smul(b, m2, m1) + r2) % m1 + m1) % m1; return 1; } int main() { n = nxi(); for (int i = 1; i <= n; ++i) { va[i] = nxi(), vb[i] = nxi(); getzyz(va[i]), getzyz(vb[i]); } D::build(); if (!san0()) return 0; if (!D::cnt) return printf("%d\n", qans(1, 0)), 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= D::cnt; ++j) { cta[i][j] = qcnt(va[i], D::v[j]); ctb[i][j] = qcnt(vb[i], D::v[j]); } } if (!sanmulp()) return 0; { long long st = 1, rs = 0; for (int i = 1; i <= n; ++i) { int si = ctb[i][1], ri = cta[i][1] % si; if (!merge(st, rs, si, ri)) return puts("-1"), 0; } for (int i = 1; i <= n; ++i) { while (rs < cta[i][1]) rs += st; } for (int i = 1; i <= n; ++i) { assert((rs - cta[i][1]) % ctb[i][1] == 0); } printf("%d\n", qans(1, (rs - cta[1][1]) / ctb[1][1])); } return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 514; long long gcd(long long a, long long b) { return !b ? a : gcd(b, a % b); } long long msk(long long a, long long b, long long k, int md) { a %= md; k %= md; while (b) { if (b & 1) k = k * a % md; a = a * a % md; b >>= 1; } return k; } pair<int, int> a[N]; map<int, int> mp; int n; long long t[N], s[N], r[N], p[N]; bool chk(int x) { for (int i = (1); i <= (n); i++) { if (x % a[i].first) return 0; int y = x / a[i].first; while (y != 1) { if (y % a[i].second || a[i].second == 1) return 0; y /= a[i].second; } } return 1; } bool chk(int x, int i, int y) { int u = (i * log(a[x].second) + log(a[x].first) - log(a[y].first)) / log(a[y].second) + 0.5; for (int k = (max(0, u - 10)); k <= (min(1919, u + 10)); k++) { int ty = 1; for (int l = (0); l <= (4); l++) { int md = rand() % 1919810 + 1e9; if (msk(a[x].second, i, a[x].first, md) != msk(a[y].second, k, a[y].first, md)) { ty = 0; break; } } if (ty) return 1; } return 0; } void sol(int x, int y) { for (int i = (0); i <= (1919); i++) { if (chk(x, i, y)) { int ty = 1; for (int j = (1); j <= (n); j++) if (!chk(x, i, j)) { ty = 0; break; } if (ty) { printf("%lld", msk(a[x].second, i, a[x].first, 1e9 + 7)); exit(0); } } } { puts("-1"); exit(0); }; } void chai(int x) { mp.clear(); for (int i = 2; i <= sqrt(x); ++i) while (x % i == 0) x /= i, mp[i]++; if (x > 1) mp[x]++; } int main() { scanf("%d", &n); srand(time(0)); for (int i = (1); i <= (n); i++) scanf("%d%d", &a[i].first, &a[i].second); sort(a + 1, a + n + 1); if (chk(a[n].first)) { printf("%d", a[n].first); return 0; } for (int i = (1); i <= (n); i++) { chai(a[i].second); s[i] = 1; for (auto& j : mp) t[i] = gcd(t[i], j.second); for (auto& j : mp) { j.second /= t[i]; for (int k = (0); k <= (j.second - 1); k++) s[i] *= j.first; } if (s[i] != s[1]) sol(1, i); } long long md = 1, al = 0; for (int i = (1); i <= (n); i++) { r[i] = a[i].first; while (!(r[i] % s[i])) r[i] /= s[i], p[i]++; if (r[i] != r[1]) { puts("-1"); exit(0); }; long long x = gcd(t[i], md); if (al % x != p[i] % x) { puts("-1"); exit(0); }; while (al % t[i] != p[i] % t[i]) al += md; md = md / x * t[i]; al %= md; } for (int i = (1); i <= (n); i++) while (al < p[i]) al += md; printf("%lld\n", msk(s[1], al, r[1], 1e9 + 7)); return 0; }
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, x, y), t = x; x = y, y = t - a / b * y; return g; } long long mypow(long long a, long long n) { long long ans = 1; a %= mod; for (long long i = n; i; i >>= 1, a = a * a % mod) if (i & 1) ans = ans * a % mod; return ans; } const int maxn = 110, maxp = 2010; int p[maxp], pn; int a[maxn][maxp], b[maxn][maxp], n; bool init() { static int u[maxn], v[maxn]; scanf("%d", &n), pn = 0; for (int i = 1, x, y; i <= n; ++i) { scanf("%d%d", u + i, v + i); for (x = u[i], y = 2; y <= x / y; ++y) if (x % y == 0) for (p[++pn] = y; x % y == 0; x /= y) ; if (x != 1) p[++pn] = x; for (x = v[i], y = 2; y <= x / y; ++y) if (x % y == 0) for (p[++pn] = y; x % y == 0; x /= y) ; if (x != 1) p[++pn] = x; } if (n == 1) { printf("%d\n", u[1]); return true; } sort(p + 1, p + pn + 1), pn = unique(p + 1, p + pn + 1) - p - 1; memset(a, 0, sizeof(a)), memset(b, 0, sizeof(b)); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= pn; ++j) while (u[i] % p[j] == 0) ++b[i][j], u[i] /= p[j]; for (int j = 1; j <= pn; ++j) while (v[i] % p[j] == 0) ++a[i][j], v[i] /= p[j]; } return false; } struct equation { long long A, B, C; equation() : A(0), B(0), C(0) {} equation(long long newA, long long newB, long long newC) : A(newA), B(newB), C(newC) {} }; bool empty(equation &t) { if (!t.A && !t.B) return t.C; long long g = gcd(abs(t.A), abs(t.B)); if (t.C % g) return true; t.A /= g, t.B /= g, t.C /= g; return false; } int merge(equation p, equation q, long long &x, long long &y) { long long D = p.A * q.B - p.B * q.A; x = p.C * q.B - q.C * p.B, y = p.A * q.C - p.C * q.A; if (D) { if (x % D || y % D) { x = -1, y = -1; return -1; } x /= D, y /= D; return +1; } if (x || y) { x = -1, y = -1; return -1; } return 0; } long long check(long long x) { if (x < 0) return -1; for (int i = 2; i <= n; ++i) { vector<long long> s; s.clear(); for (int u = 1; u <= pn; ++u) { long long z = a[1][u] * x + b[1][u] - b[i][u]; if (a[i][u]) { if (z % a[i][u]) return -1; s.push_back(z / a[i][u]); } else if (z) return -1; } sort(s.begin(), s.end()); s.erase(unique(s.begin(), s.end()), s.end()); if (s.size() > 1 || (s.size() == 1 && s.front() < 0)) return -1; } long long ans = 1; for (int i = 1; i <= pn; ++i) ans = ans * mypow(p[i], a[1][i] * x + b[1][i]) % mod; return ans; } void solve() { long long x = 0, y = 0; bool find = false; for (int i = 2; !find && i <= n; ++i) for (int u = 1; !find && u <= pn; ++u) { equation p(a[1][u], -a[i][u], b[i][u] - b[1][u]); if (empty(p)) { puts("-1"); return; } if (!p.B && p.A) { x = p.C / p.A, find = true; break; } for (int v = u + 1; v <= pn; ++v) { equation q(a[1][v], -a[i][v], b[i][v] - b[1][v]); int t = merge(p, q, x, y); if (t == +1) { find = true; break; } if (t == -1) { puts("-1"); return; } } } if (find) { printf("%I64d\n", check(x)); return; } static long long c[maxn], d[maxn]; int m = 0; long long minx = 0; for (int i = 2; i <= n; ++i) { for (int u = 1; u <= pn; ++u) if (a[1][u]) { long long A = a[1][u], B = a[i][u], C = b[i][u] - b[1][u]; long long g = exgcd(A, B, x, y); ++m; minx = max(minx, (long long)ceil(1.0 * C / A)); c[m] = (C / g) * x % B, d[m] = B / g; break; } } for (int i = 2; i <= m; ++i) { long long A = d[1], B = d[i], C = c[i] - c[1]; long long g = exgcd(A, B, x, y); if (C % g) { puts("-1"); return; } x = x * (C / g) % B; c[1] = c[1] + x * A, d[1] = A / g * B; c[1] %= d[1]; if (c[1] < 0) c[1] += d[1]; } c[1] += ceil(1.0 * (minx - c[1]) / d[1]); printf("%I64d\n", check(c[1])); } int main() { if (!init()) solve(); return 0; }
#include <bits/stdc++.h> using namespace std; const int MAXN = 105, MOD = 1000 * 1000 * 1000 + 7; int n; map<int, long long> a[MAXN], b[MAXN]; long long gcd(long long x, long long y) { return y ? gcd(y, x % y) : x; } pair<long long, long long> extGcd(long long x, long long y) { if (!y) return make_pair(1, 0); pair<long long, long long> p = extGcd(y, x % y); return make_pair(p.second, p.first - (x / y) * p.second); } int powMod(int x, long long p) { int y = 1; while (p) { if (p & 1ll) y = (long long)y * x % MOD; p >>= 1; x = (long long)x * x % MOD; } return y; } void fact(int x, map<int, long long> &mp) { for (int i = 2; i * i <= x; i++) if (!(x % i)) { int y = 0; while (!(x % i)) { x /= i; y++; } mp[i] = y; } if (x > 1) mp[x] = 1; } bool intersect(long long &a0, long long &b0, long long a1, long long b1) { long long c = a1 - a0, g = gcd(b0, b1); if (c % g) return false; pair<long long, long long> p = extGcd(b0, b1); p.first *= c / g; p.second *= -c / g; long long lcm = b0 / g * b1; if (p.first < 0) { long long k = (-p.first + (lcm / b0) - 1) / (lcm / b0); p.first += k * (lcm / b0); p.second += k * (lcm / b1); } long long k = p.first / (lcm / b0); p.first -= k * (lcm / b0); p.second -= k * (lcm / b1); if (p.second < 0) { k = (-p.second + (lcm / b1) - 1) / (lcm / b1); p.first += k * (lcm / b0); p.second += k * (lcm / b1); } a0 = a0 + b0 * p.first; b0 = lcm; return true; } map<int, long long> get(int id, long long k) { map<int, long long> mp; for (map<int, long long>::iterator it = a[id].begin(); it != a[id].end(); it++) if (it->second) mp[it->first] = it->second; if (k) for (map<int, long long>::iterator it = b[id].begin(); it != b[id].end(); it++) mp[it->first] += k * it->second; return mp; } bool check(const map<int, long long> &mp) { for (int i = 0; i < n; i++) { long long k; if (b[i].empty()) k = 0; else { int p = b[i].begin()->first; long long aa = a[i][p], bb = b[i].begin()->second; k = (mp.find(p) == mp.end() ? 0 : mp.find(p)->second) - aa; if (k < 0 || k % bb) return false; k /= bb; } map<int, long long> mp0 = get(i, k); if (mp != mp0) return false; } return true; } void getAns(int id, long long k) { map<int, long long> mp = get(id, k); if (!check(mp)) { cout << -1 << '\n'; return; } int ans = 1; for (map<int, long long>::iterator it = mp.begin(); it != mp.end(); it++) ans = (long long)ans * powMod(it->first, it->second) % MOD; cout << ans << '\n'; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n; for (int i = 0; i < n; i++) { int aa, bb; cin >> aa >> bb; fact(aa, a[i]); fact(bb, b[i]); for (map<int, long long>::iterator it = b[i].begin(); it != b[i].end(); it++) a[i][it->first]; } for (int i = 0; i < n; i++) if (b[i].empty()) { getAns(i, 0); return 0; } for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { long long aa = -1, bb = -1, cc = -1; for (map<int, long long>::iterator it = b[i].begin(); it != b[i].end(); it++) { int p = it->first; long long a0 = a[i][p], b0 = it->second, a1 = (a[j].find(p) == a[j].end() ? 0 : a[j][p]), b1 = (b[j].find(p) == b[j].end() ? 0 : b[j][p]); if (b1 == 0) { if (a1 < a0 || (a1 - a0) % b0) cout << -1 << '\n'; else getAns(i, (a1 - a0) / b0); return 0; } long long na = b0, nb = -b1, nc = a1 - a0, g = gcd(b0, b1); if (nc % g) { cout << -1 << '\n'; return 0; } na /= g; nb /= g; nc /= g; if (aa == -1) { aa = na; bb = nb; cc = nc; continue; } if (aa == na && bb == nb && cc == nc) continue; long long x = nb * cc - bb * nc, y = aa * nb - na * bb; if (!y || x % y || x / y < 0) { cout << -1 << '\n'; return 0; } getAns(i, x / y); return 0; } } int p = b[0].begin()->first; long long aa = a[0][p], bb = b[0].begin()->second; for (int i = 1; i < n; i++) if (!intersect(aa, bb, a[i][p], b[i][p])) { cout << -1 << '\n'; return 0; } getAns(0, (aa - a[0][p]) / b[0].begin()->second); return 0; }
#include <bits/stdc++.h> using namespace std; inline int rand_small() { return rand() % 32768; } inline long long rand_big() { return 32768 * rand_small() + rand_small(); } const int N = 105; const long long mod = 1000000007ll; const double eps = 1e-7; long long gcd(long long x, long long y) { if (x < y) swap(x, y); return y ? gcd(y, x % y) : x; } long long lcm(long long x, long long y) { return x / gcd(x, y) * y; } long long qpow(long long x, long long y) { long long res = 1ll; while (y) { if (y & 1) res = res * x % mod; x = x * x % mod, y >>= 1; } return res; } int n, pos = -1, t[N], r[N]; long long a[N], b[N], b_[N]; void solve1() { bool has_sol = true; for (int i = 0; i < n; i++) { if (!has_sol) break; if (b[i] == 1ll && a[i] != a[pos]) has_sol = false; if (b[i] > 1ll) { long long now = a[i]; has_sol = false; for (int j = 0; j <= (int)ceil(log(1.0 * a[pos]) / log(2.0)); j++, now *= b[i]) { if (now == a[pos]) has_sol = true; } } } if (has_sol) printf("%lld\n", a[pos] % mod); else printf("-1\n"); } void init2() { for (int i = 0; i < n; i++) { for (int j = 1; j <= (int)ceil(log(1.0 * b[i]) / log(2.0)); j++) { long long rt = (long long)floor(pow(b[i], 1.0 / j) + 0.5); if (fabs(pow(rt, j) - b[i]) < eps) t[i] = j, b_[i] = rt; } } } void solve2(int x) { long long m = rand_big() + 1ll, num1 = a[0] % m, num2 = a[x] % m, num = -1; int posi, posj, T = (int)ceil(log(1.0 * a[0]) + log(1.0 * a[x]) + log(1.0 * b[0]) * log(1.0 * b[x])) << 2; for (int i = 0; i < T; i++, num1 = num1 * b[0] % m) { num2 = a[x] % m; for (int j = 0; j < T; j++, num2 = num2 * b[x] % m) { if (num1 == num2) { posi = i, posj = j; num = num1; } } } bool has_sol = (num >= 0ll); for (int i = 0; i < n; i++) { long long tmp = a[i] % m; if (!has_sol) break; has_sol = false; for (int j = 0; j <= (int)ceil(T * log(1.0 * b[0]) / log(2.0)); j++, tmp = tmp * b[i] % m) { if (tmp == num) { has_sol = true; break; } } } if (has_sol) { num = a[0] % mod; for (int i = 0; i < posi; i++) num = num * b[0] % mod; printf("%lld\n", num); } else printf("-1\n"); } int main() { srand(clock()); scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%lld%lld", &a[i], &b[i]); if (b[i] == 1ll) pos = i; } if (~pos) solve1(); else { init2(); bool flag = false; for (int i = 1; i < n; i++) { if (b_[i] != b_[0]) { flag = true, solve2(i); break; } } if (!flag) { for (int i = 0; i < n; i++) { r[i] = 0; while (a[i] % b_[i] == 0ll) r[i]++, a[i] /= b_[i]; } bool has_sol = true; long long L = t[0], ans = r[0]; for (int i = 1; i < n; i++) { if (a[i] != a[0]) has_sol = false; } for (int i = 1; i < n; i++) { if (!has_sol) break; has_sol = false; for (int j = 0; j < t[i]; j++) { if ((ans + L * j) % t[i] == r[i] % t[i]) { has_sol = true, ans += L * j; break; } } L = lcm(L, t[i]); } if (!has_sol) printf("-1\n"); else { int mx = r[0]; for (int i = 1; i < n; i++) mx = max(mx, r[i]); while (ans < mx) ans += L; printf("%lld\n", a[0] * qpow(b_[0], ans) % mod); } } } return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 2111; const int mod = 1e9 + 7; int n; int pri[N], tot; long long a[N], b[N]; struct node { long long k, b; node(long long _k = 0, long long _b = 0) { k = _k; b = _b; } } f[N], g[N]; long long gcd(long long x, long long y) { return y == 0 ? x : gcd(y, x % y); } long long ksm(long long base, long long x) { long long ans = 1; while (x) { if (x & 1) ans = ans * base % mod; base = base * base % mod; x >>= 1; } return ans; } void get(int x) { for (int i = 2; i * i <= x; i++) { if (x % i == 0) { pri[++tot] = i; while (x % i == 0) x /= i; } } if (x > 1) pri[++tot] = x; } void get_g(int id) { for (int i = 1; i <= tot; i++) { g[i].b = g[i].k = 0; while (a[id] % pri[i] == 0) { g[i].b++; a[id] /= pri[i]; } while (b[id] % pri[i] == 0) { g[i].k++; b[id] /= pri[i]; } } } long long ex_gcd(long long A, long long B, long long &x, long long &y) { if (!B) { x = 1; y = 0; return A; } long long xx, yy; long long d = ex_gcd(B, A % B, xx, yy); x = yy; y = xx - A / B * yy; return d; } bool merge() { bool flag = 0; for (int t = 0; t < 3; t++) { for (int i = 1; i <= tot; i++) { long long fk = f[i].k, fb = f[i].b; long long gk = g[i].k, gb = g[i].b; bool fl = 0; if (!fk && !gk) { if (fb != gb) return 0; } else { if (!gk || !fk) { if (!fk) swap(fk, gk), swap(fb, gb), fl = 1; if (fb > gb || (gb - fb) % fk != 0) return 0; long long k = (gb - fb) / fk; if (fl) for (int j = 1; j <= tot; j++) g[j].b += g[j].k * k, g[j].k = 0; else for (int j = 1; j <= tot; j++) f[j].b += f[j].k * k, f[j].k = 0; flag = 1; } } } } if (flag) return 1; int fl = 0; long long A = 0, B = 0, C = 0; for (int i = 1; i <= tot; i++) { if (!f[i].k || !g[i].k) continue; if (!fl) A = f[i].k, B = -g[i].k, C = g[i].b - f[i].b, fl = 1; else if (fl == 1) { long long nA = f[i].k, nB = -g[i].k, nC = g[i].b - f[i].b; long long d = gcd(nA, A); A *= nA / d; B *= nA / d; C *= nA / d; nA *= A / d; nB *= A / d; nC *= A / d; if (B == nB) { if (C != nC) return 0; long long d = gcd(A, gcd(abs(B), abs(C))); A /= d; B /= d; C /= d; continue; } else { if ((C - nC) % (B - nB)) return 0; long long y = (C - nC) / (B - nB); if (y < 0) return 0; if ((C - B * y) % A) return 0; long long x = (C - B * y) / A; if (x < 0) return 0; for (int j = 1; j <= tot; j++) f[j].b += f[j].k * x, f[j].k = 0; for (int j = i + 1; j <= tot; j++) { nA = f[j].k, nB = -g[j].k, nC = g[j].b - f[j].b; if (nA * x + nB * y != nC) return 0; } return 1; } } } long long x = -1, y = -1; long long d = ex_gcd(A, -B, x, y); if (C % d) return 0; y *= -1; long long kx = (-B) / d; long long ky = A / d; x *= C / d, y *= C / d; long long tx = x < 0 ? -(-x + kx - 1) / kx : x / kx; long long ty = y < 0 ? -(-y + ky - 1) / ky : y / ky; x -= min(tx, ty) * kx; y -= min(tx, ty) * ky; for (int i = 1; i <= tot; i++) { f[i].b += f[i].k * x; f[i].k = f[i].k * kx; } return 1; } int main() { cin >> n; for (int i = 1; i <= n; i++) { scanf("%d%d", &a[i], &b[i]); get(a[i]); get(b[i]); } sort(pri + 1, pri + 1 + tot); tot = unique(pri + 1, pri + 1 + tot) - (pri + 1); for (int i = 1; i <= tot; i++) { while (a[1] % pri[i] == 0) { f[i].b++; a[1] /= pri[i]; } while (b[1] % pri[i] == 0) { f[i].k++; b[1] /= pri[i]; } } for (int i = 2; i <= n; i++) { get_g(i); if (!merge()) { puts("-1"); return 0; } } int ans = 1; for (int i = 1; i <= tot; i++) { ans = 1LL * ans * ksm(pri[i], f[i].b) % mod; } cout << ans << endl; return 0; }
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; const int maxp = 31623; bool isprimes[maxp + 1]; vector<int> primes; int n; vector<pair<int, long long> > fa[100], fb[100]; pair<int, int> x[100]; struct Point { long long x, y; Point(long long x = 0, long long y = 0) : x(x), y(y) {} }; long long powmod(long long a, long long k) { long long ret = 1; while (k) { if (k & 1) { ret = ret * a % mod; } a = a * a % mod; k >>= 1; } return ret; } long long exgcd(long long a, long long b, long long& x, long long& y) { if (!b) { x = 1; y = 0; return a; } long long d = exgcd(b, a % b, y, x); y -= x * (a / b); return d; } long long find(const vector<pair<int, long long> >& f, int p) { int pos = lower_bound(f.begin(), f.end(), make_pair(p, -1ll)) - f.begin(); if (pos != f.size() && f[pos].first == p) { return f[pos].second; } return 0; } vector<pair<int, long long> > factor(int x) { vector<pair<int, long long> > ret; for (int i = 0; i < primes.size() && x > 1; ++i) { long long cnt = 0; while (x % primes[i] == 0) { cnt++; x /= primes[i]; } if (cnt) { ret.push_back(make_pair(primes[i], cnt)); } } if (x > 1) { ret.push_back(make_pair(x, 1)); } return ret; } int main() { memset(isprimes, true, sizeof isprimes); for (int i = 2; i <= maxp; ++i) { if (isprimes[i]) { primes.push_back(i); for (int j = i * i; j <= maxp; j += i) { isprimes[j] = false; } } } scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%d %d", &x[i].first, &x[i].second); } sort(x, x + n); n = unique(x, x + n) - x; for (int i = 0; i < n; ++i) { fa[i] = factor(x[i].first); fb[i] = factor(x[i].second); } bool flag = true; int pos = n; for (int k = pos - 1; k >= 1 && flag; k = pos - 1) { pos = 0; for (int i = 0; i < k && flag; ++i) { vector<int> v; for (int j = 0; j < fa[i].size(); ++j) { if (fa[i][j].second) { v.push_back(fa[i][j].first); } } for (int j = 0; j < fa[i + 1].size(); ++j) { if (fa[i + 1][j].second) { v.push_back(fa[i + 1][j].first); } } for (int j = 0; j < fb[i].size(); ++j) { if (fb[i][j].second) { v.push_back(fb[i][j].first); } } for (int j = 0; j < fb[i + 1].size(); ++j) { if (fb[i + 1][j].second) { v.push_back(fb[i + 1][j].first); } } sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); Point p(-1, -1); Point s(-1, -1); Point must(-1, -1); for (int j = 0; j < v.size(); ++j) { long long a1 = find(fa[i], v[j]); long long a2 = find(fa[i + 1], v[j]); long long b1 = find(fb[i], v[j]); long long b2 = find(fb[i + 1], v[j]); long long x, y, dx, dy; long long d = exgcd(b1, -b2, x, y); if (b1 == 0 && b2 == 0) { if (a1 != a2) { flag = false; break; } continue; } else if (b1 == 0) { if (a1 >= a2 && (a1 - a2) % b2 == 0) { y = (a1 - a2) / b2; if (must.y != -1 && must.y != y) { flag = false; break; } must.y = y; } else { flag = false; break; } } else if (b2 == 0) { if (a2 >= a1 && (a2 - a1) % b1 == 0) { x = (a2 - a1) / b1; if (must.x != -1 && must.x != x) { flag = false; break; } must.x = x; } else { flag = false; break; } } else if ((a2 - a1) % d == 0) { x *= (a2 - a1) / d; y *= (a2 - a1) / d; dx = b2 / abs(d); dy = b1 / abs(d); if (x > 0) { if (dx != 0) { long long t = (x - 1) / dx + 1; x -= t * dx; y -= t * dy; } } if (y > 0) { if (dy != 0) { long long t = (y - 1) / dy + 1; x -= t * dx; y -= t * dy; } } if (x < 0) { if (dx == 0) { flag = false; break; } long long t = (-x - 1) / dx + 1; x += t * dx; y += t * dy; } if (y < 0) { if (dy == 0) { flag = false; break; } long long t = (-y - 1) / dy + 1; x += t * dx; y += t * dy; } if (p.x == -1 && p.y == -1) { p = Point(x, y); s = Point(dx, dy); } else { if (s.x == 0 && s.y == 0) { if (p.x < x || p.y < y || (p.x - x) * dy - dx * (p.y - y) != 0) { flag = false; break; } } else { if (s.x == dx && s.y == dy) { if ((p.x - x) * dy - dx * (p.y - y) != 0) { flag = false; break; } if (p.x < x) { p = Point(x, y); } } else { long long k1 = (x * dy - y * dx + dx * p.y - dy * p.x) / (s.x * dy - s.y * dx); long long nx = p.x + s.x * k1; long long ny = p.y + s.y * k1; if (nx < x || ny < y || (nx - x) * dy - dx * (ny - y) != 0) { flag = false; break; } p = Point(nx, ny); s = Point(0, 0); } } } } else { flag = false; break; } } if (flag) { if (p.x == -1 && p.y == -1) { if (must.x == -1 && must.y == -1) { continue; } else if (must.x == -1) { p.x = 0; s.x = 1; } else { p.x = must.x; s.x = 0; } } else { if (must.x != -1 && must.y != -1) { if (s.x == 0 && s.y == 0 && (p.x != must.x || p.y != must.y)) { flag = false; break; } if (must.x < p.x || must.y < p.y || (must.x - p.x) * s.y - s.x * (must.y - p.y) != 0) { flag = false; break; } p.x = must.x; s.x = 0; } else if (must.x != -1) { if (must.x < p.x || (s.x != 0 && (must.x - p.x) % s.x != 0) || (s.x == 0 && must.x != p.x)) { flag = false; break; } p.x = must.x; s.x = 0; } else if (must.y != -1) { if (must.y < p.y || (s.y != 0 && (must.y - p.y) % s.y != 0) || (s.y == 0 && must.y != p.y)) { flag = false; break; } if (s.y != 0) { long long t = (must.y - p.y) / s.y; p.x = p.x + t * s.x; s.x = 0; } } } vector<pair<int, long long> > nfa; vector<pair<int, long long> > nfb; for (int j = 0; j < v.size(); ++j) { long long a1 = find(fa[i], v[j]); long long b1 = find(fb[i], v[j]); if (b1 * p.x + a1) { nfa.push_back(make_pair(v[j], b1 * p.x + a1)); } if (b1 * s.x) { nfb.push_back(make_pair(v[j], b1 * s.x)); } } fa[pos] = nfa; fb[pos++] = nfb; } } } if (flag) { long long ans = 1; for (int i = 0; i < fa[0].size(); ++i) { ans = ans * powmod(fa[0][i].first, fa[0][i].second) % mod; } printf("%I64d\n", ans); } else { printf("-1\n"); } return 0; }
#include <bits/stdc++.h> const int Mod = 1000000007; inline int qPow(int b, long long e) { int a = 1; for (; e; e >>= 1, b = (long long)b * b % Mod) if (e & 1) a = (long long)a * b % Mod; return a; } int Gcd(long long a, long long b) { return b ? Gcd(b, a % b) : a; } int exGcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, a; long long d = exGcd(b, a % b, y, x); return y -= a / b * x, d; } const int MN = 105, MS = 905; int N, A[MN], B[MN]; int pr[MS], pc; long long a[MS], b[MS], c[MS], d[MS]; inline void X(int x) { for (int i = 2; i * i <= x; ++i) { if (x % i) continue; pr[++pc] = i; while (x % i == 0) x /= i; } if (x > 1) pr[++pc] = x; } inline void Z(int x, long long *C) { for (int i = 1; i <= pc; ++i) { int p = pr[i]; C[i] = 0; while (x % p == 0) x /= p, ++C[i]; } } inline int Merge() { long long Sb = 0, Sd = 0; for (int i = 1; i <= pc; ++i) Sb += b[i], Sd += d[i]; if (!Sb && !Sd) { for (int i = 1; i <= pc; ++i) if (a[i] != c[i]) return 0; return 1; } if (!Sb || !Sd) { if (!Sd) std::swap(a, c), std::swap(b, d), std::swap(Sb, Sd); long long k = 0; for (int i = 1; i <= pc; ++i) if (d[i]) { k = (a[i] >= c[i] && (a[i] - c[i]) % d[i] == 0) ? (a[i] - c[i]) / d[i] : -1; break; } else if (a[i] != c[i]) return 0; if (k == -1) return 0; for (int i = 1; i <= pc; ++i) if (c[i] + k * d[i] != a[i]) return 0; return 1; } int ok = 0; for (int i = 1; i <= pc; ++i) if (b[i] * Sd != d[i] * Sb) { ok = i; break; } if (ok) { int p1 = ok, p2 = 0; for (int i = 1; i <= pc; ++i) if (b[i] * d[p1] != d[i] * b[p1]) { p2 = i; break; } long long ka = d[p2] * (c[p1] - a[p1]) - d[p1] * (c[p2] - a[p2]); long long kc = b[p2] * (c[p1] - a[p1]) - b[p1] * (c[p2] - a[p2]); long long denom = d[p2] * b[p1] - d[p1] * b[p2]; if (denom < 0) ka = -ka, kc = -kc, denom = -denom; if (ka < 0 || kc < 0 || ka % denom != 0 || kc % denom != 0) return 0; ka /= denom, kc /= denom; for (int i = 1; i <= pc; ++i) { if (a[i] + ka * b[i] != c[i] + kc * d[i]) return 0; a[i] = a[i] + ka * b[i], b[i] = 0; } return 1; } long long kb = 0, kd = 0; for (int i = 1; i <= pc; ++i) if (b[i]) { long long g = Gcd(b[i], d[i]); kb = b[i] / g, kd = d[i] / g; break; } long long k = 0; for (int i = 1; i <= pc; ++i) if (b[i]) { if ((a[i] - c[i]) % (b[i] / kb)) return 0; k = (a[i] - c[i]) / (b[i] / kb); break; } for (int i = 1; i <= pc; ++i) if (c[i] + k * (b[i] / kb) != a[i]) return 0; if (k < 0) std::swap(a, c), std::swap(b, d), std::swap(kb, kd), k = -k; long long x, y; exGcd(kb, kd, x, y); x = ((long long)x * -k % kd + kd) % kd; for (int i = 1; i <= pc; ++i) a[i] += x * b[i], b[i] *= kd; return 1; } int main() { scanf("%d", &N); for (int i = 1; i <= N; ++i) { scanf("%d%d", &A[i], &B[i]); X(A[i]), X(B[i]); } std::sort(pr + 1, pr + pc + 1); pc = std::unique(pr + 1, pr + pc + 1) - pr - 1; for (int i = 1; i <= N; ++i) if (i == 1) Z(A[i], a), Z(B[i], b); else if (Z(A[i], c), Z(B[i], d), !Merge()) return puts("-1"), 0; int Ans = 1; for (int i = 1; i <= pc; ++i) Ans = (long long)Ans * qPow(pr[i], a[i]) % Mod; printf("%d\n", Ans); return 0; }
#include <bits/stdc++.h> using std::cerr; using std::endl; const int N = 1145141, P = 1e9 + 7; inline long long fpow(long long x, long long y) { long long ret = 1; for (; y; y >>= 1, x = x * x % P) if (y & 1) ret = ret * x % P; return ret; } int n, A[N], B[N]; int pr[N], tot; long long a[N], b[N], c[N], d[N]; inline void init(int x) { for (int i = 2; i * i <= x; ++i) { if (x % i) continue; pr[++tot] = i; while (!(x % i)) x /= i; } if (x > 1) pr[++tot] = x; } inline void work(int x, long long f[]) { for (int i = 1; i <= tot; ++i) { int p = pr[i]; f[i] = 0; while (!(x % p)) x /= p, ++f[i]; } } long long gcd(long long x, long long y) { return !y ? x : gcd(y, x % y); } inline long long lcm(long long x, long long y) { if (!x && !y) return 0; return x / gcd(x, y) * y; } long long exgcd(long long x, long long y, long long &a, long long &b) { if (!y) return a = 1, b = 0, x; int g = exgcd(y, x % y, b, a); return b -= x / y * a, g; } inline int merge(int kase) { long long sumb = 0, sumd = 0; for (int i = 1; i <= tot; ++i) sumb += b[i], sumd += d[i]; if (!sumb && !sumd) { for (int i = 1; i <= tot; ++i) if (a[i] != c[i]) return 0; return 1; } if (!sumb || !sumd) { if (!sumd) { std::swap(sumb, sumd); std::swap(a, c); std::swap(b, d); } long long y = 0; for (int i = 1; i <= tot; ++i) { if (!d[i]) { if (a[i] != c[i]) return 0; } else { if (a[i] < c[i] || (a[i] - c[i]) % d[i]) return 0; y = (a[i] - c[i]) / d[i]; break; } } for (int i = 1; i <= tot; ++i) if (a[i] != c[i] + y * d[i]) return 0; return 1; } int flag = 0; for (int i = 1; i <= tot; ++i) if (b[i] * sumd != d[i] * sumb) { flag = i; break; } if (flag) { int pi = flag, pj = 0; for (int i = 1; i <= tot; ++i) if (b[i] * d[pi] != d[i] * b[pi]) { pj = i; break; } long long t1 = d[pj] * (c[pi] - a[pi]) - d[pi] * (c[pj] - a[pj]), t2 = b[pj] * (c[pi] - a[pi]) - b[pi] * (c[pj] - a[pj]), t3 = b[pi] * d[pj] - b[pj] * d[pi]; if (t3 == 0 || t1 % t3 || t2 % t3) return 0; long long x = t1 / t3, y = t2 / t3; if (x < 0 || y < 0) return 0; for (int i = 1; i <= tot; ++i) { if (a[i] + x * b[i] != c[i] + y * d[i]) return 0; a[i] = a[i] + x * b[i], b[i] = 0; } return 1; } long long x, y, tb = 0, td = 0, t = 0, g = 0; for (int i = 1; i <= tot; ++i) if (b[i]) { g = gcd(b[i], d[i]); tb = b[i] / g, td = d[i] / g; if ((a[i] - c[i]) % g) return 0; t = (a[i] - c[i]) / g; break; } for (int i = 1; i <= tot; ++i) if (c[i] + t * g != a[i]) return 0; if (t < 0) { std::swap(a, c); std::swap(b, d); std::swap(tb, td); t = -t; } exgcd(tb, td, x, y); x = (x * -t % td + td) % td; for (int i = 1; i <= tot; ++i) { a[i] += x * b[i]; b[i] *= td; } return 1; } int main() { std::cin >> n; for (int i = 1; i <= n; ++i) { std::cin >> A[i] >> B[i]; init(A[i]), init(B[i]); } std::sort(pr + 1, pr + tot + 1); tot = std::unique(pr + 1, pr + tot + 1) - pr - 1; work(A[1], a), work(B[1], b); for (int i = 2; i <= n; ++i) { work(A[i], c), work(B[i], d); if (!merge(i)) return puts("-1"), 0; } long long ans = 1; for (int i = 1; i <= tot; ++i) ans = ans * fpow(pr[i], a[i]) % P; std::cout << ans << std::endl; return 0; }
#include <bits/stdc++.h> using namespace std; template <class T> inline void rd(T &x) { x = 0; char c = getchar(); int f = 1; while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) x = x * 10 - '0' + c, c = getchar(); x *= f; } inline long long Abs(long long x) { return x > 0 ? x : -x; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } struct item { int p; long long k; item(int p = 0, long long k = 0) : p(p), k(k) {} }; struct Num { item p[810]; int num; void init(int x) { for (int i = 2; i * (long long)i <= x; ++i) if (x % i == 0) { int c = 0; while (x % i == 0) x /= i, c++; p[num++] = item(i, c); } if (x > 1) p[num++] = item(x, 1); } item query(int x) { for (int i = 0; i < num; ++i) if (p[i].p == x) return p[i]; return item(x, 0); } } A[110], B[110]; int n; void FAIL() { puts("-1"); exit(0); } item A1[3210], B1[3210], A2[3210], B2[3210]; int pri[3210], num; long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void Inter(long long A, long long B, long long C, long long a, long long b, long long c, long long &x1, long long &x2) { while (a) { long long t = A / a; A -= t * a, B -= t * b, C -= t * c; swap(A, a), swap(B, b), swap(C, c); } if (!b) { printf("FUCK"); exit(0); } if (c % b) FAIL(); x2 = -c / b; if (!A) { printf("FUCK 2 "); exit(0); } if ((C + B * x2) % A) FAIL(); x1 = (-C - B * x2) / A; } void UN(Num &a1, Num &b1, Num &a2, Num &b2) { num = 0; for (int i = 0; i < a1.num; ++i) pri[num++] = a1.p[i].p; for (int i = 0; i < a2.num; ++i) pri[num++] = a2.p[i].p; for (int i = 0; i < b1.num; ++i) pri[num++] = b1.p[i].p; for (int i = 0; i < b2.num; ++i) pri[num++] = b2.p[i].p; sort(pri, pri + num); num = unique(pri, pri + num) - pri; for (int i = 0; i < num; ++i) A1[i] = a1.query(pri[i]); for (int i = 0; i < num; ++i) A2[i] = a2.query(pri[i]); for (int i = 0; i < num; ++i) B1[i] = b1.query(pri[i]); for (int i = 0; i < num; ++i) B2[i] = b2.query(pri[i]); long long A = 0, B = 0, C = 0; int flg1 = 0; long long x1, x2; for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a == 0 && b == 0) { if (c) FAIL(); continue; } long long g = gcd(a, gcd(-b, Abs(c))); a /= g, b /= g, c /= g; if (!b) { if (c % a) FAIL(); if (-c / a < 0) FAIL(); } if (!a) { if (c % b) FAIL(); if (-c / b < 0) FAIL(); } if (!A && !B) { A = a, B = b, C = c; continue; } if (!B) { if (b) { Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (C / A != c / a) FAIL(); continue; } if (A * b == a * B) { if (c * A == C * a) continue; FAIL(); } Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (flg1) { for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a * x1 + b * x2 + c) FAIL(); } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = 0; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; return; } if (!A && !B) return; long long g = exgcd(A, B, x1, x2); if (C % g) FAIL(); x1 *= -C / g, x2 *= -C / g; long long tx = Abs(-B / g), ty = Abs(A / g); if (C > 0 || !ty) { x1 = (x1 % tx + tx) % tx; if (B) x2 = -(A * x1 + C) / B; else x2 = 0; } else { x2 = (x2 % ty + ty) % ty; if (A) x1 = (-B * x2 - C) / A; else x1 = 0; } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = tx * B1[i].k; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; } const int mod = 1e9 + 7; int Pow(int x, long long y) { int res = 1; for (y %= (mod - 1); y; x = x * (long long)x % mod, y >>= 1) if (y & 1) res = res * (long long)x % mod; return res; } int main() { rd(n); for (int i = 1, a, b; i <= n; ++i) rd(a), rd(b), A[i].init(a), B[i].init(b); for (int i = 2; i <= n; ++i) UN(A[1], B[1], A[i], B[i]); long long ans = 1; for (int i = 0; i < A[1].num; ++i) ans = ans * (long long)Pow(A[1].p[i].p, A[1].p[i].k) % mod; printf("%lld", ans); return 0; }
#include <bits/stdc++.h> using namespace std; namespace zyt { template <typename T> inline bool read(T &x) { char c; bool f = false; x = 0; do c = getchar(); while (c != EOF && c != '-' && !isdigit(c)); if (c == EOF) return false; if (c == '-') f = true, c = getchar(); do x = x * 10 + c - '0', c = getchar(); while (isdigit(c)); if (f) x = -x; return true; } template <typename T> inline void write(T x) { static char buf[20]; char *pos = buf; if (x < 0) putchar('-'), x = -x; do *pos++ = x % 10 + '0'; while (x /= 10); while (pos > buf) putchar(*--pos); } const int N = 1e2 + 10, M = 2000, P = 1e9 + 7; int a[N], b[N], n, pcnt, prime[M]; int power(int a, long long b) { int ans = 1; while (b) { if (b & 1) ans = (long long)ans * a % P; a = (long long)a * a % P; b >>= 1; } return ans; } struct prgrs { long long a[M], b[M]; prgrs() { memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); } } arr[N]; void get(int n) { for (int i = 0; i < pcnt; i++) while (n % prime[i] == 0) n /= prime[i]; for (int i = 2; i * i <= n; i++) if (n % i == 0) { prime[pcnt++] = i; while (n % i == 0) n /= i; } if (n > 1) prime[pcnt++] = n; } void get(int n, long long *const a) { for (int i = 0; i < pcnt; i++) { a[i] = 0; while (n % prime[i] == 0) ++a[i], n /= prime[i]; } } long long exgcd(const long long a, const long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long xx, yy, tmp = exgcd(b, a % b, xx, yy); x = yy; y = xx - a / b * yy; return tmp; } long long gcd(const long long a, const long long b) { return b ? gcd(b, a % b) : a; } void FAIL() { puts("-1"); exit(0); } prgrs merge(const prgrs &A, const prgrs &B) { prgrs ans; int cnt = 0; long long a, b, c, x, y; for (int i = 0; i < pcnt; i++) { if (A.b[i] || B.b[i]) { if (cnt == 0) a = A.b[i], b = -B.b[i], c = B.a[i] - A.a[i], ++cnt; else if (cnt == 1) { long long aa = A.b[i], bb = -B.b[i], cc = B.a[i] - A.a[i], g = gcd(a, aa); if (g < 0) g = -g; if (!a) swap(a, aa), swap(b, bb), swap(c, cc); if (a * bb == b * aa) { if (a * cc != c * aa) FAIL(); } else { if (aa) { int t1 = a / g, t2 = aa / g; a *= t2, b *= t2, c *= t2; aa *= t1, bb *= t1, cc *= t1; bb -= b, cc -= c; } if (cc % bb) FAIL(); y = cc / bb; if ((c - b * y) % a) FAIL(); x = (c - b * y) / a; if (x < 0 || y < 0) FAIL(); ++cnt; } } else if (A.b[i] * x + A.a[i] != B.b[i] * y + B.a[i]) FAIL(); } else if (A.a[i] != B.a[i]) FAIL(); } if (cnt == 0) ans = A; else if (cnt == 1) { long long g = gcd(a, b); if (c % g) FAIL(); a /= g, b /= g, c /= g; exgcd(a, b, x, y); x *= c, y *= c; if (g < 0) a = -a, b = -b, c = -c, g = -g; if (a && b) { if (x < 0 || y < 0) { long long t = LLONG_MIN; if (x < 0) t = max(t, (-x - b - 1) / -b); if (y < 0) t = max(t, (-y + a - 1) / a); x -= t * b, y += t * a; } long long t = min(x / -b, y / a); x += t * b, y -= t * a; } if (x < 0 || y < 0) FAIL(); if (a * x + b * y != c) fprintf(stderr, "gg"); for (int i = 0; i < pcnt; i++) ans.a[i] = A.a[i] + A.b[i] * x, ans.b[i] = (A.b[i] || B.b[i] ? a * B.b[i] : 0); } else for (int i = 0; i < pcnt; i++) ans.a[i] = A.a[i] + A.b[i] * x, ans.b[i] = 0; return ans; } int work() { read(n); for (int i = 1; i <= n; i++) { read(a[i]), read(b[i]); get(a[i]), get(b[i]); } sort(prime, prime + pcnt); for (int i = 1; i <= n; i++) get(a[i], arr[i].a), get(b[i], arr[i].b); for (int i = 2; i <= n; i++) arr[1] = merge(arr[1], arr[i]); int ans = 1; for (int i = 0; i < pcnt; i++) ans = (long long)ans * power(prime[i], arr[1].a[i]) % P; write(ans); return 0; } } // namespace zyt int main() { return zyt::work(); }
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } const int MAXN = 100; const int MAXVAL = 1000000000; const int MAXSQRTVAL = 31622; const int MOD = 1000000007; void print(const vector<pair<int, int> > &a) { printf("("); if (((int)(a).size()) == 0) printf("1"); for (int i = (0); i < (((int)(a).size())); ++i) { if (i != 0) printf("*"); printf("%d", a[i].first); if (a[i].second != 1) printf("^%d", a[i].second); } printf(")"); } int n; int aa[MAXN], bb[MAXN]; vector<pair<int, int> > a[MAXN], b[MAXN]; bool isp[MAXSQRTVAL + 1]; int p[MAXSQRTVAL + 1], np; long long modpow(long long a, long long n) { if (n == 0) return 1; if (n % 2 == 1) return a * modpow(a, n - 1) % MOD; return modpow(a * a % MOD, n / 2); } vector<pair<int, int> > getpp(int x) { vector<pair<int, int> > ret; for (int i = 0; p[i] * p[i] <= x; ++i) if (x % p[i] == 0) { ret.push_back(make_pair(p[i], 1)); x /= p[i]; while (x % p[i] == 0) ++ret[((int)(ret).size()) - 1].second, x /= p[i]; } if (x != 1) ret.push_back(make_pair(x, 1)); return ret; } long long egcd(long long a, long long b, long long &n, long long &m) { if (b == 0) { n = 1, m = 0; return a; } long long g = egcd(b, a % b, m, n); m = -m - n * (a / b); n = -n; return g; } const int ARG = 0; const int RES = 1; bool _insersect(pair<long long, long long> &a, pair<long long, long long> &b, int mode) { if (a.second == 0 && b.second == 0) { bool ret = a.first == b.first; if (mode == ARG) a = b = make_pair(-1, -1); return ret; } if (a.second == 0) { bool ret = a.first >= b.first && (a.first - b.first) % b.second == 0; if (mode == ARG) a = make_pair(0, 1), b = make_pair((a.first - b.first) / b.second, 0LL); return ret; } if (b.second == 0) { bool ret = b.first >= a.first && (b.first - a.first) % a.second == 0; if (mode == ARG) a = make_pair((b.first - a.first) / a.second, 0LL), b = make_pair(0, 1); else a = b; return ret; } long long n, m; long long g = egcd(a.second, b.second, n, m); if ((b.first - a.first) % g != 0) return false; long long times = (b.first - a.first) / g; n *= times, m *= times; long long aa = a.second / g, bb = b.second / g; if (n < 0) { long long x = (-n + bb - 1) / bb; n += bb * x; m += aa * x; } if (m < 0) { long long x = (-m + aa - 1) / aa; n += bb * x; m += aa * x; } if (n >= bb && m >= aa) { long long x = min(n / bb, m / aa); n -= bb * x; m -= aa * x; } if (mode == ARG) a = make_pair(n, bb), b = make_pair(m, aa); else a.first += a.second * n, a.second *= bb; return true; } bool intersect(pair<long long, long long> &a, pair<long long, long long> &b, int mode) { bool ret = _insersect(a, b, mode); return ret; } bool _combine(pair<long long, long long> &n, pair<long long, long long> &m, const pair<long long, long long> &a, const pair<long long, long long> &b) { if (a.first == -1 && a.second == -1 && b.first == -1 && b.second == -1) return true; ; if (n.first == -1 && n.second == -1 && m.first == -1 && m.second == -1) { n = a, m = b; return true; } if (b.second * n.second == a.second * m.second) { if (n.first * b.second - m.first * a.second != a.first * b.second - b.first * a.second) return false; if (n.first * m.second - m.first * n.second != a.first * m.second - b.first * n.second) return false; if (n.second == 0) { if (a.second == 0) { if (n.first != a.first) return false; if (m.second == 0) { if (b.second == 0) { if (m.first != b.first) return false; n = n, m = m; } else { if (m.first - b.first < 0 || (m.first - b.first) % b.second != 0) return false; n = n, m = m; } } else { if (b.second == 0) { if (b.first - m.first < 0 || (b.first - m.first) % m.second != 0) return false; m.first = b.first; m.second = 0; } else { long long x = b.first - m.first; long long p, q, g; g = egcd(m.second, b.second, p, q); if (x % g != 0) return false; long long bb = b.second / g, mm = m.second / g, xx = x / g; p *= xx, q *= xx; if (p < 0) { long long x = (-p + bb - 1) / bb; p += x * bb, q += x * mm; } if (q < 0) { long long x = (-q + mm - 1) / mm; p += x * bb, q += x * mm; } if (p >= bb && q >= mm) { long long x = min(p / bb, q / mm); p -= x * bb, q -= x * mm; } m.first += p * m.second; m.second *= bb; } } } else { assert(m.second == 0); if (n.first - a.first < 0 || (n.first - a.first) % a.second != 0) return false; if (b.second == 0 && b.first != m.first) return false; if (b.second != 0 && (m.first - b.first < 0 || (m.first - b.first) % b.second != 0)) return false; n = n, m = m; } } else { if (a.second == 0) { assert(b.second == 0); if (a.first - n.first < 0 || (a.first - n.first) % n.second != 0) return false; if (m.second == 0 && m.first != b.first) return false; if (m.second != 0 && (b.first - m.first < 0 || (b.first - m.first) % m.second != 0)) return false; n.first = a.first; n.second = 0; m.first = b.first; m.second = 0; } else { long long x = a.first - n.first; long long p, q, g; g = egcd(n.second, a.second, p, q); if (x % g != 0) return false; long long aa = a.second / g, nn = n.second / g, xx = x / g; p *= xx, q *= xx; if (p < 0) { long long x = (-p + aa - 1) / aa; p += x * aa, q += x * nn; } if (q < 0) { long long x = (-q + nn - 1) / nn; p += x * aa, q += x * nn; } if (p >= aa && q >= nn) { long long x = min(p / aa, q / nn); p -= x * aa, q -= x * nn; } n.first += p * n.second; n.second *= aa; m.first += p * m.second; m.second *= aa; } } } else { long long num1 = (m.first - b.first) * a.second + (a.first - n.first) * b.second; long long num2 = (m.first - b.first) * n.second + (a.first - n.first) * m.second; long long den = b.second * n.second - a.second * m.second; if (num1 % den != 0 || num2 % den != 0) return false; long long p = num1 / den, q = num2 / den; if (p < 0 || q < 0) return false; n.first += p * n.second; n.second = 0; m.first += p * m.second; m.second = 0; } return true; } bool combine(pair<long long, long long> &n, pair<long long, long long> &m, const pair<long long, long long> &a, const pair<long long, long long> &b) { bool ret = _combine(n, m, a, b); return ret; } bool calc(const vector<pair<int, int> > &a0, const vector<pair<int, int> > &b0, const vector<pair<int, int> > &a1, const vector<pair<int, int> > &b1, pair<long long, long long> &res) { int i0 = 0, j0 = 0, i1 = 0, j1 = 0; pair<long long, long long> n = make_pair(-1, -1), m = make_pair(-1, -1); while (true) { int cur = INT_MAX; if (i0 < ((int)(a0).size()) && a0[i0].first < cur) cur = a0[i0].first; if (j0 < ((int)(b0).size()) && b0[j0].first < cur) cur = b0[j0].first; if (i1 < ((int)(a1).size()) && a1[i1].first < cur) cur = a1[i1].first; if (j1 < ((int)(b1).size()) && b1[j1].first < cur) cur = b1[j1].first; if (cur == INT_MAX) break; pair<long long, long long> a, b; if (i0 < ((int)(a0).size()) && a0[i0].first == cur) a.first = a0[i0++].second; if (j0 < ((int)(b0).size()) && b0[j0].first == cur) a.second = b0[j0++].second; if (i1 < ((int)(a1).size()) && a1[i1].first == cur) b.first = a1[i1++].second; if (j1 < ((int)(b1).size()) && b1[j1].first == cur) b.second = b1[j1++].second; if (!intersect(a, b, ARG)) return false; if (!combine(n, m, a, b)) return false; } res = n; return true; } void run() { for (int i = (0); i <= (MAXSQRTVAL); ++i) isp[i] = true; isp[0] = isp[1] = false; for (int i = 2; i * i <= MAXSQRTVAL; ++i) if (isp[i]) for (int j = i * i; j <= MAXSQRTVAL; j += i) isp[j] = false; np = 0; for (int i = (0); i <= (MAXSQRTVAL); ++i) if (isp[i]) p[np++] = i; scanf("%d", &n); for (int i = (0); i < (n); ++i) scanf("%d%d", &aa[i], &bb[i]); for (int i = (0); i < (n); ++i) a[i] = getpp(aa[i]); for (int i = (0); i < (n); ++i) b[i] = getpp(bb[i]); pair<long long, long long> res = make_pair(0, 1); for (int i = (1); i < (n); ++i) { pair<long long, long long> cur; if (!calc(a[0], b[0], a[i], b[i], cur)) { printf("-1\n"); return; } if (!intersect(res, cur, RES)) { printf("-1\n"); return; } } int ret = (long long)aa[0] * modpow(bb[0], res.first) % MOD; printf("%d\n", ret); } int main() { run(); return 0; }
#include <bits/stdc++.h> using namespace std; const long long int modulo = 1000000007; int esprimo[100000]; vector<int> primo; vector<pair<int, int> > factorizacion(int x) { vector<pair<int, int> > f; for (int i = 0; i < int(primo.size()) and primo[i] <= x; i++) { int p = primo[i]; int e = 0; while (x % p == 0) { x /= p; e++; } if (e) f.push_back(pair<int, int>(p, e)); } if (x > 1) f.push_back(pair<int, int>(x, 1)); return f; } int exponente(int p, vector<pair<int, int> > &f) { for (int i = 0; i < int(f.size()); i++) if (f[i].first == p) return f[i].second; return 0; } long long int eleva(long long int b, long long int e) { if (e == 0) return 1; if (e % 2 == 0) return eleva(b * b % modulo, e / 2); return b * eleva(b * b % modulo, e / 2) % modulo; } long long int mcd(long long int a, long long int b) { if (a < b) swap(a, b); if (b == 0) return a; return mcd(a % b, b); } long long int mcm(long long int a, long long int b) { return a / mcd(a, b) * b; } long long int absolut(long long int x) { if (x < 0) return -x; return x; } void chino(long long int a, long long int b, long long int &fa, long long int &fb, long long int c) { if (absolut(a) < absolut(b)) { chino(b, a, fb, fa, c); return; } if (b == 0) { if (c % a != 0) { cout << -1 << endl; exit(0); } fa = c / a; fb = 0; return; } chino(a % b, b, fa, fb, c); fb -= fa * (a / b); } void chino(long long int ini1, long long int salto1, long long int ini2, long long int salto2, long long int &con1, long long int &fac1, long long int &con2, long long int &fac2) { chino(salto1, -salto2, con1, con2, ini2 - ini1); fac1 = mcm(salto1, salto2) / salto1; fac2 = mcm(salto1, salto2) / salto2; long long int desp1 = 0; if (con1 < 0) { desp1 += -con1 / fac1; con1 %= fac1; if (con1 < 0) { con1 += fac1; desp1++; } } desp1 -= con1 / fac1; con1 %= fac1; con2 += desp1 * fac2; long long int desp2 = 0; if (con2 < 0) { desp2 += -con2 / fac2; con2 %= fac2; if (con2 < 0) { con2 += fac2; desp2++; } } con1 += desp2 * fac1; } void chino(long long int &ini, long long int &salto, long long int ininew, long long int saltonew) { long long int con, fac, connew, facnew; chino(ini, salto, ininew, saltonew, con, fac, connew, facnew); ini = ini + con * salto; salto = fac * salto; } void comprueba(vector<pair<int, int> > &fa1, vector<pair<int, int> > &fb1, vector<pair<int, int> > &fa2, vector<pair<int, int> > &fb2, int p, long long int &fac1, long long int fac2) { if (not(exponente(p, fb1) == 0 or fac1 != -1)) { fac1 = (exponente(p, fa2) + fac2 * exponente(p, fb2) - exponente(p, fa1)) / exponente(p, fb1); if (fac1 < 0) { cout << -1 << endl; exit(0); } } if (exponente(p, fa1) + fac1 * exponente(p, fb1) != exponente(p, fa2) + fac2 * exponente(p, fb2)) { cout << -1 << endl; exit(0); } } void comprueba(vector<pair<int, int> > &fa1, vector<pair<int, int> > &fb1, vector<pair<int, int> > &fa2, vector<pair<int, int> > &fb2, vector<pair<int, int> > &f, long long int &fac1, long long int fac2) { for (int i = 0; i < int(f.size()); i++) comprueba(fa1, fb1, fa2, fb2, f[i].first, fac1, fac2); } void comprueba(vector<pair<int, int> > &fa1, vector<pair<int, int> > &fb1, vector<pair<int, int> > &fa2, vector<pair<int, int> > &fb2, long long int fac2) { long long int fac1 = -1; comprueba(fa1, fb1, fa2, fb2, fa1, fac1, fac2); comprueba(fa1, fb1, fa2, fb2, fb1, fac1, fac2); comprueba(fa1, fb1, fa2, fb2, fa2, fac1, fac2); comprueba(fa1, fb1, fa2, fb2, fb2, fac1, fac2); } void escribe(long long int a, vector<pair<int, int> > &fb, long long int fac) { long long int sol = a; for (int i = 0; i < int(fb.size()); i++) { long long int p = fb[i].first; long long int e = fb[i].second; e = fac * e; sol = sol * eleva(p, e) % modulo; } cout << sol << endl; exit(0); } void arregla(vector<pair<int, int> > &fa, vector<pair<int, int> > &fb) { int ib = 0; vector<pair<int, int> > nextfa; for (int ia = 0; ia < int(fa.size()); ia++, ib++) { for (; fb[ib].first != fa[ia].first; ib++) nextfa.push_back(pair<int, int>(fb[ib].first, 0)); nextfa.push_back(fa[ia]); } for (; ib < int(fb.size()); ib++) nextfa.push_back(pair<int, int>(fb[ib].first, 0)); fa = nextfa; } int n; long long int a[100], b[100]; vector<pair<int, int> > fa[100], fb[100]; void intenta(int ind, long long int fac) { for (int i = 0; i < n; i++) if (i != ind) comprueba(fa[i], fb[i], fa[ind], fb[ind], fac); escribe(a[ind], fb[ind], fac); } void elimina(set<int> &s, vector<pair<int, int> > &f) { vector<pair<int, int> > nextf; for (int i = 0; i < int(f.size()); i++) if (s.count(f[i].first) == 0) nextf.push_back(f[i]); f = nextf; } int main() { for (int i = 2; i < 100000; i++) esprimo[i] = 1; for (int i = 2; i < 100000; i++) { if (esprimo[i]) { primo.push_back(i); for (int j = i + i; j < 100000; j += i) esprimo[j] = 0; } } cin >> n; for (int i = 0; i < n; i++) { cin >> a[i] >> b[i]; fa[i] = factorizacion(a[i]); fb[i] = factorizacion(b[i]); } for (int i = 1; i < n; i++) { for (int j = 0; j < int(fb[0].size()); j++) { int p = fb[0][j].first; int e = fb[0][j].second; if (exponente(p, fb[i]) == 0) { long long int x = exponente(p, fa[i]) - exponente(p, fa[0]); if (x < 0 or x % e != 0) { cout << -1 << endl; exit(0); } intenta(0, x / e); } } for (int j = 0; j < int(fb[i].size()); j++) { int p = fb[i][j].first; int e = fb[i][j].second; if (exponente(p, fb[0]) == 0) { long long int x = exponente(p, fa[0]) - exponente(p, fa[i]); if (x < 0 or x % e != 0) { cout << -1 << endl; exit(0); } intenta(i, x / e); } } } set<int> s; for (int i = 0; i < n; i++) for (int j = 0; j < int(fa[i].size()); j++) if (exponente(fa[i][j].first, fb[i]) == 0) s.insert(fa[i][j].first); for (set<int>::iterator it = s.begin(); it != s.end(); it++) { int p = *it; int e = exponente(p, fa[0]); for (int i = 1; i < n; i++) { if (exponente(p, fa[i]) != e) { cout << -1 << endl; exit(0); } } } for (int i = 0; i < n; i++) elimina(s, fa[i]); for (int i = 0; i < n; i++) arregla(fa[i], fb[i]); if (int(fb[0].size()) == 0) { intenta(0, 0); } long long int con = 0, salto = 1; for (int i = 1; i < n; i++) { long long int l1, ll1, l2, ll2; chino(fa[0][0].second, fb[0][0].second, fa[i][0].second, fb[i][0].second, l1, ll1, l2, ll2); for (int j = 0; j < int(fb[0].size()); j++) { long long int t1, tt1, t2, tt2; chino(fa[0][j].second, fb[0][j].second, fa[i][j].second, fb[i][j].second, t1, tt1, t2, tt2); if (ll1 == tt1 and ll2 == tt2) { if ((t1 - l1) % ll1 != 0 or (t2 - l2) % ll2 != 0 or (t1 - l1) / ll1 != (t2 - l2) / ll2) { cout << -1 << endl; exit(0); } long long int nextl1 = max(l1, t1); chino(con, salto, nextl1, ll1); } else { long long int x = t1 * tt2 - t2 * tt1; long long int y = l1 * tt2 - l2 * tt1; long long int z = ll1 * tt2 - ll2 * tt1; long long int xy = x - y; if (xy % z != 0) { cout << -1 << endl; exit(0); } intenta(0, l1 + xy / z * ll1); } } } intenta(0, con); }
#include <bits/stdc++.h> using namespace std; const int N = 2111; const int mod = 1e9 + 7; int n; int pri[N], tot; long long a[N], b[N]; struct node { long long k, b; node(long long _k = 0, long long _b = 0) { k = _k; b = _b; } } f[N], g[N]; long long gcd(long long x, long long y) { return y == 0 ? x : gcd(y, x % y); } long long ksm(long long base, long long x) { long long ans = 1; while (x) { if (x & 1) ans = ans * base % mod; base = base * base % mod; x >>= 1; } return ans; } void get(int x) { for (int i = 2; i * i <= x; i++) { if (x % i == 0) { pri[++tot] = i; while (x % i == 0) x /= i; } } if (x > 1) pri[++tot] = x; } void get_g(int id) { for (int i = 1; i <= tot; i++) { g[i].b = g[i].k = 0; while (a[id] % pri[i] == 0) { g[i].b++; a[id] /= pri[i]; } while (b[id] % pri[i] == 0) { g[i].k++; b[id] /= pri[i]; } } } long long ex_gcd(long long A, long long B, long long &x, long long &y) { if (!B) { x = 1; y = 0; return A; } long long xx, yy; long long d = ex_gcd(B, A % B, xx, yy); x = yy; y = xx - A / B * yy; return d; } bool merge() { bool flag = 0; for (int t = 0; t < 3; t++) { for (int i = 1; i <= tot; i++) { long long fk = f[i].k, fb = f[i].b; long long gk = g[i].k, gb = g[i].b; bool fl = 0; if (!fk && !gk) { if (fb != gb) return 0; } else { if (!gk || !fk) { if (!fk) swap(fk, gk), swap(fb, gb), fl = 1; if (fb > gb || (gb - fb) % fk != 0) return 0; long long k = (gb - fb) / fk; if (fl) for (int j = 1; j <= tot; j++) g[j].b += g[j].k * k, g[j].k = 0; else for (int j = 1; j <= tot; j++) f[j].b += f[j].k * k, f[j].k = 0; flag = 1; } } } } if (flag) return 1; int fl = 0; long long A = 0, B = 0, C = 0; for (int i = 1; i <= tot; i++) { if (!f[i].k || !g[i].k) continue; if (!fl) A = f[i].k, B = -g[i].k, C = g[i].b - f[i].b, fl = 1; else if (fl == 1) { long long nA = f[i].k, nB = -g[i].k, nC = g[i].b - f[i].b; long long d = gcd(nA, A); A *= nA / d; B *= nA / d; C *= nA / d; nA *= A / d; nB *= A / d; nC *= A / d; if (B == nB) { if (C != nC) return 0; long long d = gcd(A, gcd(abs(B), abs(C))); A /= d; B /= d; C /= d; continue; } else { if ((C - nC) % (B - nB)) return 0; long long y = (C - nC) / (B - nB); if (y < 0) return 0; if ((C - B * y) % A) return 0; long long x = (C - B * y) / A; if (x < 0) return 0; for (int j = 1; j <= tot; j++) f[j].b += f[j].k * x, f[j].k = 0; for (int j = i + 1; j <= tot; j++) { nA = f[j].k, nB = -g[j].k, nC = g[j].b - f[j].b; if (nA * x + nB * y != nC) return 0; } return 1; } } } long long x = -1, y = -1; long long d = ex_gcd(A, -B, x, y); if (C % d) return 0; y *= -1; long long kx = (-B) / d; long long ky = A / d; x *= C / d, y *= C / d; long long tx = x < 0 ? -(-x + kx - 1) / kx : x / kx; long long ty = y < 0 ? -(-y + ky - 1) / ky : y / ky; x -= min(tx, ty) * kx; y -= min(tx, ty) * ky; for (int i = 1; i <= tot; i++) { f[i].b += f[i].k * x; f[i].k = f[i].k * kx; } return 1; } int main() { cin >> n; for (int i = 1; i <= n; i++) { scanf("%d%d", &a[i], &b[i]); get(a[i]); get(b[i]); } sort(pri + 1, pri + 1 + tot); tot = unique(pri + 1, pri + 1 + tot) - (pri + 1); for (int i = 1; i <= tot; i++) { while (a[1] % pri[i] == 0) { f[i].b++; a[1] /= pri[i]; } while (b[1] % pri[i] == 0) { f[i].k++; b[1] /= pri[i]; } } for (int i = 2; i <= n; i++) { get_g(i); if (!merge()) { puts("-1"); return 0; } } int ans = 1; for (int i = 1; i <= tot; i++) { ans = 1LL * ans * ksm(pri[i], f[i].b) % mod; } cout << ans << endl; return 0; }
#include <bits/stdc++.h> using namespace std; const int MX = 105; const long long MOD = 1000000007; template <typename T> void read(T &x) { x = 0; char c = getchar(); bool f = 0; while (!isdigit(c) && c != '-') c = getchar(); if (c == '-') f = 1, c = getchar(); while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); if (f) x = -x; } long long qpow(long long x, long long t) { long long ans = 1; while (t) { if (t & 1) ans = ans * x % MOD; x = x * x % MOD; t >>= 1; } return ans; } struct PRI { long long base, step; PRI(const long long &a = 0, const long long &b = 0) : base(a), step(b) {} PRI f(PRI x) const { return PRI(base + step * x.base, step * x.step); } }; vector<pair<int, int> > GetDiv(int x) { vector<pair<int, int> > ret; for (int i = 2; i * i <= x; i++) if (x % i == 0) { int c = 0; while (x % i == 0) c++, x /= i; ret.push_back(make_pair(i, c)); } if (x != 1) ret.push_back(make_pair(x, 1)); return ret; } void Exgcd(long long x, long long y, long long &a, long long &b) { if (!y) a = 1, b = 0; else Exgcd(y, x % y, b, a), b -= (x / y) * a; } vector<int> prm; int ax[MX], bx[MX]; vector<PRI> px[MX]; vector<PRI> GetPri(int a, int b) { vector<PRI> ret; vector<pair<int, int> > da = GetDiv(a), db = GetDiv(b); for (int i = 0; i < prm.size(); i++) { ret.push_back(PRI(0, 0)); auto it = lower_bound(da.begin(), da.end(), make_pair(prm[i], 0)); if (it != da.end() && it->first == prm[i]) ret.back().base = it->second; it = lower_bound(db.begin(), db.end(), make_pair(prm[i], 0)); if (it != db.end() && it->first == prm[i]) ret.back().step = it->second; } return ret; } void Fuck() { puts("-1"); exit(0); } long long Gcd(long long x, long long y) { if (y == 0) return x; else return Gcd(y, x % y); } pair<PRI, PRI> MinSolve(PRI e1, PRI e2) { if (!e1.step && !e2.step && e1.base != e2.base) Fuck(); else if (!e1.step && !e2.step && e1.base == e2.base) return make_pair(PRI(0, 1), PRI(0, 1)); else if (!e1.step) { long long delt = (e1.base - e2.base) / e2.step; if (e2.base + delt * e2.step != e1.base) Fuck(); else return make_pair(PRI(0, 1), PRI(delt, 0)); } else if (!e2.step) { long long delt = (e2.base - e1.base) / e1.step; if (e1.base + delt * e1.step != e2.base) Fuck(); else if (delt < 0) Fuck(); else return make_pair(PRI(delt, 0), PRI(0, 1)); } long long g = Gcd(e1.step, e2.step); long long k1, k2; Exgcd(e1.step, e2.step, k1, k2); if ((e2.base - e1.base) % g) Fuck(); long long delt1 = abs(e2.step / g), delt2 = abs(e1.step / g); k1 *= (e2.base - e1.base) / g, k2 *= -(e2.base - e1.base) / g; long long mov = max((k1 < 0) ? ((-k1 - 1) / delt1 + 1) : -(k1 / delt1), (k2 < 0) ? ((-k2 - 1) / delt2 + 1) : -(k2 / delt2)); k1 += delt1 * mov, k2 += delt2 * mov; return make_pair(PRI(k1, delt1), PRI(k2, delt2)); } PRI CombineEquation(PRI e1, PRI e2) { PRI sol = MinSolve(e1, e2).first; return e1.f(sol); } long long SolveProgression(PRI e1, PRI e2) { if (e1.step == e2.step) { if (e1.base == e2.base) return -1; else Fuck(); } else { long long r = e2.base - e1.base, l = e1.step - e2.step; if (r % l) Fuck(); else if (r / l < 0) Fuck(); else return r / l; } } int main() { int n; read(n); for (int i = 1; i <= n; i++) read(ax[i]), read(bx[i]); for (int i = 1; i <= n; i++) { auto da = GetDiv(ax[i]), db = GetDiv(bx[i]); for (auto j : da) prm.push_back(j.first); for (auto j : db) prm.push_back(j.first); } sort(prm.begin(), prm.end()); prm.erase(unique(prm.begin(), prm.end()), prm.end()); for (auto i : prm) px[0].push_back(PRI(0, 1)); for (int i = 1; i <= n; i++) px[i] = GetPri(ax[i], bx[i]); for (int i = 2; i <= n; i++) { PRI now1(0, 1); for (int j = 0; j < prm.size(); j++) { auto tmp = MinSolve(px[i][j], px[i - 1][j]); now1 = CombineEquation(now1, tmp.first); } vector<PRI> pro; for (int j = 0; j < prm.size(); j++) { if (!px[i - 1][j].step) continue; PRI tmp((now1.base * px[i][j].step + px[i][j].base - px[i - 1][j].base) / px[i - 1][j].step, now1.step * px[i][j].step / px[i - 1][j].step); pro.push_back(tmp); } long long lst = -1; for (int j = 0; j < pro.size(); j++) for (int k = j + 1; k < pro.size(); k++) { long long tmp = SolveProgression(pro[j], pro[k]); if (tmp != -1) { if (lst != -1) { if (lst != tmp) Fuck(); } else lst = tmp; } } if (lst == -1) for (auto &it : px[i]) it = it.f(now1); else for (auto &it : px[i]) it.base += it.step * (now1.step * lst + now1.base), it.step = 0; } long long ans = 1; for (int i = 0; i < prm.size(); i++) ans = ans * qpow(prm[i], px[n][i].base) % MOD; printf("%lld\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; inline int ksm(int x, long long y) { int res = 1; while (y > 0) { if (y & 1) res = 1ll * res * x % MOD; x = 1ll * x * x % MOD; y >>= 1; } return res; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1, y = 0; return a; } long long gcd1 = exgcd(b, a % b, x, y); long long t = x; x = y, y = t - a / b * y; return gcd1; } long long gcd(long long x, long long y) { return y == 0 ? x : gcd(y, x % y); } int n, a[105], b[105], pri[2005], m; struct node { long long a[2005], b[2005]; bool merge(node x) { long long sum1 = 0, sum2 = 0; for (int i = 1; i <= m; i++) sum1 += b[i], sum2 += x.b[i]; if (sum1 == 0 && sum2 == 0) { for (int i = 1; i <= m; i++) if (a[i] != x.a[i]) return 0; return 1; } if (sum1 == 0 || sum2 == 0) { if (sum2 == 0) { swap(a, x.a); swap(b, x.b); swap(sum1, sum2); } long long res = 0; for (int i = 1; i <= m; i++) if (x.b[i] != 0) { res = ((a[i] >= x.a[i]) && ((a[i] - x.a[i]) % x.b[i] == 0)) ? (a[i] - x.a[i]) / x.b[i] : -1; break; } else if (a[i] != x.a[i]) return 0; if (res == -1) return 0; for (int i = 1; i <= m; i++) if ((x.a[i] + res * x.b[i]) != a[i]) return 0; return 1; } long long sta = -1; for (int i = 1; i <= m; i++) if (b[i] * sum2 != x.b[i] * sum1) { sta = i; break; } if (sta == -1) { long long b1 = 0, b2 = 0, gcd1; for (int i = 1; i <= m; i++) if (b[i] != 0) { gcd1 = gcd(b[i], x.b[i]); b1 = b[i] / gcd1; b2 = x.b[i] / gcd1; break; } long long res = 0; for (int i = 1; i <= m; i++) if (b[i] != 0) { if ((a[i] - x.a[i]) % gcd1) return 0; res = (a[i] - x.a[i]) / gcd1; break; } for (int i = 1; i <= m; i++) if ((x.a[i] + res * gcd1) != a[i]) return 0; if (res < 0) { swap(a, x.a); swap(b, x.b); swap(b1, b2); res = -res; } long long xx, yy; exgcd(b1, b2, xx, yy); res = -res; xx = (xx * res % b2 + b2) % b2; for (int i = 1; i <= m; i++) a[i] += xx * b[i], b[i] *= b2; } else { long long p1 = sta, p2 = 0; for (int i = 1; i <= m; i++) if (b[p1] * x.b[i] != x.b[p1] * b[i]) { p2 = i; break; } long long xx = x.b[p2] * (x.a[p1] - a[p1]) - x.b[p1] * (x.a[p2] - a[p2]); long long yy = b[p2] * (x.a[p1] - a[p1]) - b[p1] * (x.a[p2] - a[p2]); long long fenm = x.b[p2] * b[p1] - b[p2] * x.b[p1]; if (fenm < 0) xx = -xx, yy = -yy, fenm = -fenm; if (xx < 0 || yy < 0 || xx % fenm != 0 || yy % fenm != 0) return 0; xx /= fenm, yy /= fenm; for (int i = 1; i <= m; i++) { if ((a[i] + xx * b[i]) != (x.a[i] + yy * x.b[i])) return 0; a[i] += xx * b[i]; b[i] = 0; } } return 1; } } s[105]; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d%d", &a[i], &b[i]); int a1 = a[i], b1 = b[i]; for (int j = 2; j * j <= a[i]; j++) if (a1 % j == 0) { pri[++m] = j; while (a1 % j == 0) a1 /= j; } if (a1 != 1) pri[++m] = a1; for (int j = 2; j * j <= b[i]; j++) if (b1 % j == 0) { pri[++m] = j; while (b1 % j == 0) b1 /= j; } if (b1 != 1) pri[++m] = b1; } sort(pri + 1, pri + m + 1); m = unique(pri + 1, pri + m + 1) - pri - 1; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) while (a[i] % pri[j] == 0) a[i] /= pri[j], s[i].a[j]++; for (int j = 1; j <= m; j++) while (b[i] % pri[j] == 0) b[i] /= pri[j], s[i].b[j]++; } for (int i = 2; i <= n; i++) if (!s[i].merge(s[i - 1])) return printf("-1"), 0; int ans = 1; for (int i = 1; i <= m; i++) ans = 1ll * ans * ksm(pri[i], s[n].a[i]) % MOD; printf("%d", ans); return 0; }
#include <bits/stdc++.h> using namespace std; template <class T> inline void rd(T &x) { x = 0; char c = getchar(); int f = 1; while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) x = x * 10 - '0' + c, c = getchar(); x *= f; } inline long long Abs(long long x) { return x > 0 ? x : -x; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } struct item { int p; long long k; item(int p = 0, long long k = 0) : p(p), k(k) {} }; struct Num { item p[810]; int num; void init(int x) { for (int i = 2; i * (long long)i <= x; ++i) if (x % i == 0) { int c = 0; while (x % i == 0) x /= i, c++; p[num++] = item(i, c); } if (x > 1) p[num++] = item(x, 1); } item query(int x) { for (int i = 0; i < num; ++i) if (p[i].p == x) return p[i]; return item(x, 0); } } A[110], B[110]; int n; void FAIL() { puts("-1"); exit(0); } item A1[3210], B1[3210], A2[3210], B2[3210]; int pri[3210], num; long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void Inter(long long A, long long B, long long C, long long a, long long b, long long c, long long &x1, long long &x2) { while (a) { long long t = A / a; A -= t * a, B -= t * b, C -= t * c; swap(A, a), swap(B, b), swap(C, c); } if (c % b) FAIL(); x2 = -c / b; if ((C + B * x2) % A) FAIL(); x1 = (-C - B * x2) / A; } void UN(Num &a1, Num &b1, Num &a2, Num &b2) { num = 0; for (int i = 0; i < a1.num; ++i) pri[num++] = a1.p[i].p; for (int i = 0; i < a2.num; ++i) pri[num++] = a2.p[i].p; for (int i = 0; i < b1.num; ++i) pri[num++] = b1.p[i].p; for (int i = 0; i < b2.num; ++i) pri[num++] = b2.p[i].p; sort(pri, pri + num); num = unique(pri, pri + num) - pri; for (int i = 0; i < num; ++i) A1[i] = a1.query(pri[i]); for (int i = 0; i < num; ++i) A2[i] = a2.query(pri[i]); for (int i = 0; i < num; ++i) B1[i] = b1.query(pri[i]); for (int i = 0; i < num; ++i) B2[i] = b2.query(pri[i]); long long A = 0, B = 0, C = 0; int flg1 = 0; long long x1, x2; for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a == 0 && b == 0) { if (c) FAIL(); continue; } long long g = gcd(a, gcd(-b, Abs(c))); a /= g, b /= g, c /= g; if (!b) { if (c % a) FAIL(); if (-c / a < 0) FAIL(); } if (!A && !B) { A = a, B = b, C = c; continue; } if (!B) { if (b) { Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (C / A != c / a) FAIL(); continue; } if (A * b == a * B) { if (c * A == C * a) continue; FAIL(); } Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (flg1) { for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a * x1 + b * x2 + c) FAIL(); } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = 0; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; return; } long long g = exgcd(A, B, x1, x2); if (C % g) FAIL(); x1 *= -C / g, x2 *= -C / g; long long tx = Abs(-B / g), ty = Abs(A / g); if (C > 0 || !ty) { x1 = (x1 % tx + tx) % tx; if (B) x2 = -(A * x1 + C) / B; else x2 = 0; } else { x2 = (x2 % ty + ty) % ty; if (A) x1 = (-B * x2 - C) / A; else x1 = 0; } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = tx * B1[i].k; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; } const int mod = 1e9 + 7; int Pow(int x, long long y) { int res = 1; for (y %= (mod - 1); y; x = x * (long long)x % mod, y >>= 1) if (y & 1) res = res * (long long)x % mod; return res; } int main() { rd(n); for (int i = 1, a, b; i <= n; ++i) rd(a), rd(b), A[i].init(a), B[i].init(b); for (int i = 2; i <= n; ++i) UN(A[1], B[1], A[i], B[i]); long long ans = 1; for (int i = 0; i < A[1].num; ++i) ans = ans * (long long)Pow(A[1].p[i].p, A[1].p[i].k) % mod; printf("%lld", ans); return 0; }
#include <bits/stdc++.h> using namespace std; void GG() { puts("-1"); exit(0); } long long gcd(long long x, long long y) { return y ? gcd(y, x % y) : x; } void exgcd(long long x, long long y, long long &a, long long &b) { if (!y) { a = 1; b = 0; return; } exgcd(y, x % y, b, a); b -= (x / y) * a; } long long getinv(long long x, long long y) { long long a, b; exgcd(x, y, a, b); return (a % y + y) % y; } long long mul(long long x, long long y, long long mod) { long long s = 0; for (; y; y /= 2, x = (x + x) % mod) if (y & 1) s = (s + x) % mod; return s; } pair<long long, long long> operator/(pair<long long, long long> a, pair<long long, long long> b) { assert(a.first % b.first == 0); assert(a.second >= b.second); a.second -= b.second; assert(a.second % b.first == 0); return pair<long long, long long>(a.first / b.first, a.second / b.first); } pair<long long, long long> operator*(pair<long long, long long> a, pair<long long, long long> b) { return pair<long long, long long>(a.first * b.first, a.first * b.second + a.second); } void equation(pair<long long, long long> x, pair<long long, long long> y, pair<long long, long long> &v1, pair<long long, long long> &v2) { bool fl = (x < y); if (fl) swap(x, y); if (x == y) { if (!x.first) v1 = v2 = pair<long long, long long>(-1, 0); else v1 = v2 = pair<long long, long long>(1, 0); } else if (!x.first) GG(); else if (!y.first) { if (x.second > y.second || (y.second - x.second) % x.first) GG(); v1 = pair<long long, long long>(0, (y.second - x.second) / x.first); v2 = pair<long long, long long>(1, 0); } else if (x.first == y.first) { if ((x.second - y.second) % x.first) GG(); v1 = pair<long long, long long>(1, 0); v2 = pair<long long, long long>(1, (x.second - y.second) / x.first); } else { long long G = gcd(x.first, y.first); if (x.second % G != y.second % G) GG(); long long rem = x.second % G; pair<long long, long long> X = x, Y = y; x.first /= G; y.first /= G; x.second /= G; y.second /= G; long long mod = x.first * y.first; long long val = (mul(x.second % x.first, mul(y.first, getinv(y.first, x.first), mod), mod) + mul(y.second % y.first, mul(x.first, getinv(x.first, y.first), mod), mod)) % mod; if (val < x.second) val += ((x.second - val - 1) / mod + 1) * mod; if (val < y.second) val += ((y.second - val - 1) / mod + 1) * mod; pair<long long, long long> res(mod * G, val * G + rem); v1 = res / X; v2 = res / Y; } if (fl) swap(v1, v2); } void equationeq(pair<long long, long long> x, pair<long long, long long> y, pair<long long, long long> &v1, pair<long long, long long> &v2) { if (x == y) v1 = v2 = pair<long long, long long>(1, 0); else { if (x.first == y.first) GG(); long long T = (x.second - y.second) / (y.first - x.first); if (x.first * T + x.second != y.first * T + y.second || T < 0) GG(); v1 = v2 = pair<long long, long long>(0, T); } } void merge(pair<long long, long long> &v1, pair<long long, long long> &v2, pair<long long, long long> l1, pair<long long, long long> l2) { if (v1.first == -1) { v1 = l1; v2 = l2; return; } if (l1.first == -1) return; pair<long long, long long> i1, i2; equation(v1, l1, i1, i2); if (i1.first != -1) v1 = v1 * i1, l1 = l1 * i2, v2 = v2 * i1, l2 = l2 * i2; equationeq(v2, l2, i1, i2); v1 = v1 * i1; l1 = l1 * i2; v2 = v2 * i1; l2 = l2 * i2; } map<int, pair<long long, long long> > tmp, ans; void input(map<int, pair<long long, long long> > &mp) { int x; mp.clear(); scanf("%d", &x); for (int i = 2; i * i <= x; i++) if (x % i == 0) { int cnt = 0; for (; x % i == 0; x /= i, ++cnt) ; mp[i].second = cnt; } if (x != 1) mp[x].second++; scanf("%d", &x); for (int i = 2; i * i <= x; i++) if (x % i == 0) { int cnt = 0; for (; x % i == 0; x /= i, ++cnt) ; mp[i].first = cnt; } if (x != 1) mp[x].first++; } map<int, pair<long long, long long> > merge( map<int, pair<long long, long long> > x, map<int, pair<long long, long long> > y) { for (auto i : y) x[i.first].first += 0; pair<long long, long long> lim1(-1, 0), lim2(-1, 0); for (auto i : x) { pair<long long, long long> v1 = i.second, v2 = y[i.first], l1, l2; equation(v1, v2, l1, l2); merge(lim1, lim2, l1, l2); } if (lim1 != pair<long long, long long>(-1, 0)) { for (auto &i : x) i.second = i.second * lim1; } return x; } const int mo = 1000000007; int power(int x, long long y) { int s = 1; for (; y; y /= 2, x = 1ll * x * x % mo) if (y & 1) s = 1ll * s * x % mo; return s; } int main() { int n; scanf("%d", &n); for (int i = (int)(1); i <= (int)(n); i++) { input(tmp); if (i != 1) ans = merge(ans, tmp); else ans = tmp; } int res = 1; for (auto i : ans) res = 1ll * res * power(i.first, i.second.second) % mo; printf("%d\n", res); }
#include <bits/stdc++.h> using namespace std; const long long mdl = 1000000007LL; void ext(long long a) { cout << a << endl; exit(0); } void fil() { ext(-1); } long long ab(long long a) { return a < 0 ? -a : a; } long long gcd(long long a, long long b) { if (b == 0) return ab(a); return gcd(b, a % b); } void adr(long long& rs1, long long& rp1, long long s2, long long p2) { long long s1 = rs1; long long p1 = rp1; long long g = gcd(p1, p2); if ((s2 - s1) % g) fil(); long long np = p1 / g * p2; swap(p1, p2); swap(s1, s2); if (s2 < s1) { s2 += p2 * ((s1 - s2 + p2 - 1) / p2); } long long gm = (s1 - s2) % p1; if (gm < 0) gm += p1; long long k; for (k = 0; k < p1; k++) { if (p2 % p1 * k % p1 == gm) { break; } } assert(k < p1); rs1 = s2 + k * p2; rp1 = np; } long long pw(long long a, long long b) { long long r = 1; for (long long i = 62; i >= 0; i--) { r = r * r % mdl; if (b & (1LL << i)) r = r * a % mdl; } return r; } void fl(long long a, map<long long, long long>& tp) { for (long long i = 2; i * i <= a; i++) { if (a % i == 0) { long long cc = 0; while (a % i == 0) { a /= i; cc++; } tp[i] = cc; } } if (a != 1) tp[a] = 1; } long long n; vector<long long> a, b; vector<map<long long, long long> > apw, bpw; void rcb(long long id, map<long long, long long> npw) { long long crc = bpw[id].begin()->first; long long crp = bpw[id].begin()->second; assert(crp); long long st = apw[id][crc]; long long gl = npw[crc]; if (gl < st) fil(); if ((gl - st) % crp) fil(); long long cf = (gl - st) / crp; for (auto i = (bpw[id]).begin(); i != (bpw[id]).end(); ++i) apw[id][i->first]; for (auto i = (npw).begin(); i != (npw).end(); ++i) apw[id][i->first]; for (auto i = (apw[id]).begin(); i != (apw[id]).end(); ++i) if (i->second + cf * bpw[id][i->first] != npw[i->first]) fil(); } void mksol(long long id, long long cb) { map<long long, long long> npw; for (auto i = (apw[id]).begin(); i != (apw[id]).end(); ++i) npw[i->first] += i->second; if (cb != 0) { for (auto i = (bpw[id]).begin(); i != (bpw[id]).end(); ++i) npw[i->first] += cb * i->second; } for (long long j = 0; j < (n); ++j) { rcb(j, npw); } long long r = 1; for (auto i = (npw).begin(); i != (npw).end(); ++i) { r *= pw(i->first, i->second); r %= mdl; } ext(r); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; a.resize(n); b.resize(n); for (long long i = 0; i < (n); ++i) cin >> a[i] >> b[i]; if (n == 1) ext(a[0]); for (long long i = 0; i < (n); ++i) { if (b[i] == 1) { for (long long j = 0; j < (n); ++j) { long long cc = a[i]; if (cc % a[j]) fil(); cc /= a[j]; if (b[j] == 1 && cc != 1) fil(); while (cc != 1) { if (cc % b[j]) fil(); cc /= b[j]; } } ext(a[i]); } } apw.resize(n); bpw.resize(n); for (long long i = 0; i < (n); ++i) { fl(a[i], apw[i]); fl(b[i], bpw[i]); } for (long long i = 0; i < (n); ++i) { for (long long j = 0; j < (n); ++j) { if (j == i) continue; long long fs = -1, sc, ca; for (auto it = (bpw[i]).begin(); it != (bpw[i]).end(); ++it) { if (!bpw[j].count(it->first)) { long long iapw = 0; if (apw[i].count(it->first)) iapw = apw[i][it->first]; long long japw = 0; if (apw[j].count(it->first)) japw = apw[j][it->first]; long long ibpw = it->second; if (japw < iapw) fil(); if ((japw - iapw) % ibpw) fil(); mksol(i, (japw - iapw) / ibpw); } long long cfs = it->second; long long csc = bpw[j][it->first]; long long cca = 0; if (apw[i].count(it->first)) cca = apw[i][it->first]; if (apw[j].count(it->first)) cca -= apw[j][it->first]; long long g = gcd(cfs, csc); g = gcd(g, cca); cfs /= g; csc /= g; cca /= g; cca = -cca; if (fs == -1) { fs = cfs; sc = csc; ca = cca; } else { if (fs != cfs || sc != csc || ca != cca) { long long upr = cca * fs - ca * cfs; long long lwr = sc * cfs - csc * fs; long long x2 = 0; if (upr != 0) { if (lwr == 0) fil(); if (upr % lwr) fil(); x2 = upr / lwr; } upr = ca + sc * x2; lwr = fs; long long x1 = 0; if (upr != 0) { if (lwr == 0) fil(); if (upr % lwr) fil(); x1 = upr / lwr; } mksol(i, x1); } } } } } long long fpw = bpw[0].begin()->first; long long fsol = apw[0][fpw]; long long per = bpw[0][fpw]; for (long long i = 1; i < n; i++) { adr(fsol, per, apw[i][fpw], bpw[i][fpw]); } mksol(0, (fsol - apw[0][fpw]) / bpw[0][fpw]); return 0; }
#include <bits/stdc++.h> int MOD = int(1e9) + 7, INF = MOD; inline int add(int a, int b) { return (a + b >= MOD) ? (a + b - MOD) : (a + b); } inline void inc(int &a, int b) { a = add(a, b); } inline int sub(int a, int b) { return (a - b < 0) ? (a - b + MOD) : (a - b); } inline void dec(int &a, int b) { a = sub(a, b); } inline int mul(int a, int b) { return (a * 1ll * b) % MOD; } using namespace std; const int mod = 1000000007; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, x, y), t = x; x = y, y = t - a / b * y; return g; } long long mypow(long long a, long long n) { long long ans = 1; a %= mod; for (long long i = n; i; i >>= 1, a = a * a % mod) if (i & 1) ans = ans * a % mod; return ans; } const int maxn = 110, maxp = 2010; int p[maxp], pn; int a[maxn][maxp], b[maxn][maxp], n; bool init() { static int u[maxn], v[maxn]; scanf("%d", &n), pn = 0; for (int i = 1, x, y; i <= n; ++i) { scanf("%d%d", u + i, v + i); for (x = u[i], y = 2; y <= x / y; ++y) if (x % y == 0) for (p[++pn] = y; x % y == 0; x /= y) ; if (x != 1) p[++pn] = x; for (x = v[i], y = 2; y <= x / y; ++y) if (x % y == 0) for (p[++pn] = y; x % y == 0; x /= y) ; if (x != 1) p[++pn] = x; } if (n == 1) { printf("%d\n", u[1]); return true; } sort(p + 1, p + pn + 1), pn = unique(p + 1, p + pn + 1) - p - 1; memset(a, 0, sizeof(a)), memset(b, 0, sizeof(b)); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= pn; ++j) while (u[i] % p[j] == 0) ++b[i][j], u[i] /= p[j]; for (int j = 1; j <= pn; ++j) while (v[i] % p[j] == 0) ++a[i][j], v[i] /= p[j]; } return false; } struct equation { long long A, B, C; equation() : A(0), B(0), C(0) {} equation(long long newA, long long newB, long long newC) : A(newA), B(newB), C(newC) {} }; bool empty(equation &t) { if (!t.A && !t.B) return t.C; long long g = gcd(abs(t.A), abs(t.B)); if (t.C % g) return true; t.A /= g, t.B /= g, t.C /= g; return false; } int merge(equation p, equation q, long long &x, long long &y) { long long D = p.A * q.B - p.B * q.A; x = p.C * q.B - q.C * p.B, y = p.A * q.C - p.C * q.A; if (D) { if (x % D || y % D) { x = -1, y = -1; return -1; } x /= D, y /= D; return +1; } if (x || y) { x = -1, y = -1; return -1; } return 0; } long long check(long long x) { if (x < 0) return -1; for (int i = 2; i <= n; ++i) { vector<long long> s; s.clear(); for (int u = 1; u <= pn; ++u) { long long z = a[1][u] * x + b[1][u] - b[i][u]; if (a[i][u]) { if (z % a[i][u]) return -1; s.push_back(z / a[i][u]); } else if (z) return -1; } sort(s.begin(), s.end()); s.erase(unique(s.begin(), s.end()), s.end()); if (s.size() > 1 || (s.size() == 1 && s.front() < 0)) return -1; } long long ans = 1; for (int i = 1; i <= pn; ++i) ans = ans * mypow(p[i], a[1][i] * x + b[1][i]) % mod; return ans; } void solve() { long long x = 0, y = 0; bool find = false; for (int i = 2; !find && i <= n; ++i) for (int u = 1; !find && u <= pn; ++u) { equation p(a[1][u], -a[i][u], b[i][u] - b[1][u]); if (empty(p)) { puts("-1"); return; } if (!p.B && p.A) { x = p.C / p.A, find = true; break; } for (int v = u + 1; v <= pn; ++v) { equation q(a[1][v], -a[i][v], b[i][v] - b[1][v]); int t = merge(p, q, x, y); if (t == +1) { find = true; break; } if (t == -1) { puts("-1"); return; } } } if (find) { printf("%I64d\n", check(x)); return; } static long long c[maxn], d[maxn]; int m = 0; long long minx = 0; for (int i = 2; i <= n; ++i) { for (int u = 1; u <= pn; ++u) if (a[1][u]) { long long A = a[1][u], B = a[i][u], C = b[i][u] - b[1][u]; long long g = exgcd(A, B, x, y); ++m; minx = max(minx, (long long)ceil(1.0 * C / A)); c[m] = (C / g) * x % B, d[m] = B / g; break; } } for (int i = 2; i <= m; ++i) { long long A = d[1], B = d[i], C = c[i] - c[1]; long long g = exgcd(A, B, x, y); if (C % g) { puts("-1"); return; } x = x * (C / g) % B; c[1] = c[1] + x * A, d[1] = A / g * B; c[1] %= d[1]; if (c[1] < 0) c[1] += d[1]; } c[1] += ceil(1.0 * (minx - c[1]) / d[1]); printf("%I64d\n", check(c[1])); } int main() { if (!init()) solve(); return 0; }
#include <bits/stdc++.h> using namespace std; const long long N = 2007; const long long mod = 1e9 + 7; const long long INF = 1e18; long long Pow(long long x, long long y) { long long ans = 1, now = x; while (y) { if (y & 1) ans = ans * now % mod; now = now * now % mod; y >>= 1; } return ans; } long long gcd(long long x, long long y) { return y ? gcd(y, x % y) : x; } map<long long, long long> mp; void fw(long long x) { for (long long i = 2; i <= sqrt(x); i++) { if (x % i == 0) { while (x % i == 0) x /= i; mp[i] = 1; } } if (x > 1) mp[x] = 1; } long long a[N], b[N], t1[N], t2[N], vm[N], s1[N], s2[N], as[N], mt[N], dm[N], dc[N], yc[N]; long long e[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}, qm[10], qc[10]; long long n, cnt = 0; void ft(long long *gg, long long x) { long long nw = x; for (long long i = 1; i <= cnt; i++) { gg[i] = 0; while (nw % vm[i] == 0) { nw /= vm[i]; gg[i]++; } } } bool check(long long *gg) { for (long long i = 1; i <= n; i++) { long long v = 0; ft(t1, a[i]); ft(t2, b[i]); for (long long j = 1; j <= cnt; j++) { if (gg[j] - t1[j]) { if (!t2[j]) return 0; if ((gg[j] - t1[j]) % t2[j] != 0) return 0; v = (gg[j] - t1[j]) / t2[j]; break; } } for (long long j = 1; j <= cnt; j++) if (gg[j] != t1[j] + t2[j] * v) return 0; } return 1; } long long calc(long long *gg) { long long ans = 1; for (long long i = 1; i <= cnt; i++) ans = ans * Pow(vm[i], gg[i]) % mod; return ans; } int main() { scanf("%lld", &n); for (long long i = 1; i <= n; i++) { scanf("%lld%lld", &a[i], &b[i]); fw(a[i]); fw(b[i]); } if (n == 1) { printf("%lld\n", a[1]); return 0; } for (map<long long, long long>::iterator s = mp.begin(); s != mp.end(); s++) { vm[++cnt] = s->first; mp[s->first] = cnt; } for (long long i = 1; i <= n; i++) { if (b[i] == 1) { ft(as, a[i]); if (check(as)) printf("%lld\n", a[i]); else puts("-1"); return 0; } } for (long long i = 1; i <= n - 1; i++) { ft(t1, b[i]); ft(t2, b[i + 1]); bool fl = 0; long long ux, uy, d; for (long long j = 1; j <= cnt; j++) if (t1[j]) ux = t1[j], uy = t2[j], d = j; for (long long j = 1; j <= cnt; j++) { if (t1[j] * uy != t2[j] * ux) { ft(s1, a[i]); ft(s2, a[i + 1]); long long bb = (s2[d] * t1[j] - s2[j] * t1[d] + t1[d] * s1[j] - t1[j] * s1[d]); long long cc = t1[d] * t2[j] - t1[j] * t2[d]; if (!cc) { puts("-1"); return 0; } if (cc < 0) bb = -bb, cc = -cc; if (bb % cc != 0) { puts("-1"); return 0; } long long y = bb / cc; if (y < 0) { puts("-1"); return 0; } int ub = s2[d] - s1[d] + t2[d] * y; if (ub % t1[d] != 0) { puts("-1"); return 0; } if (ub < 0) { puts("-1"); return 0; } for (long long k = 1; k <= cnt; k++) as[k] = s2[k] + t2[k] * y; if (check(as)) printf("%lld\n", calc(as)); else puts("-1"); return 0; } } } long long mi = INF, hd; for (long long i = 1; i <= n; i++) mi = min(mi, a[i]); ft(t1, b[1]); for (long long i = 1; i <= cnt; i++) mt[i] = t1[i]; for (long long i = 1; i <= cnt; i++) if (mt[i]) { hd = i; break; } dm[1] = t1[hd]; for (long long i = 2; i <= n; i++) { ft(t1, b[i]); dm[i] = t1[hd]; for (long long j = 1; j <= cnt; j++) mt[j] = gcd(mt[j], t1[j]); } ft(t1, mi); for (long long i = 1; i <= n; i++) { ft(t2, a[i]); dc[i] = t2[hd]; long long ls = -1; for (long long j = 1; j <= cnt; j++) { if (!mt[j]) continue; if ((t2[j] - t1[j]) % mt[j] != 0) { puts("-1"); return 0; } if (ls < 0) ls = (t2[j] - t1[j]) / mt[j]; else if (t2[j] != t1[j] + mt[j] * ls) { puts("-1"); return 0; } } } for (long long i = 0; i <= 10 - 1; i++) qm[i] = 1, qc[i] = 0; for (long long i = 1; i <= n; i++) { yc[i] = dc[i]; dc[i] %= dm[i]; for (long long j = 0; j <= 10 - 1; j++) { long long gg = 1, nw = dm[i]; while (nw % e[j] == 0) gg *= e[j], nw /= e[j]; long long ng = dc[i] % gg; if (gg >= qm[j]) { if (ng % qm[j] != qc[j]) { puts("-1"); return 0; } qm[j] = gg; qc[j] = ng; } else { if (qc[j] % gg != ng) { puts("-1"); return 0; } } } } long long S = 0, mm = 1; for (long long i = 0; i <= 10 - 1; i++) { if (qm[i] == 1) continue; long long sc = 1; for (long long j = 0; j <= 10 - 1; j++) if (i != j) sc *= qm[j]; long long mc = sc % qm[i], iv; for (long long j = 0; j <= qm[i] - 1; j++) if (j * mc % qm[i] == 1) { iv = j; break; } iv = iv * qc[i] % qm[i]; S += sc * iv; mm *= qm[i]; } S %= mm; for (long long i = 1; i <= n; i++) while (S < yc[i]) S += mm; ft(t1, a[1]); ft(t2, b[1]); for (long long i = 1; i <= cnt; i++) as[i] = t2[i] * ((S - dc[1]) / dm[1]) + t1[i]; printf("%lld\n", calc(as)); return 0; }
#include <bits/stdc++.h> using namespace std; const int Mod = 1000000007; int n; map<int, int> mp; int cnt = 0; int A[105], B[105]; int Ans = 1; inline int Fast_Pow(int a, long long b) { b %= (Mod - 1); int res = 1; while (b) { if (b & 1) res = 1ll * res * a % Mod; a = 1ll * a * a % Mod; b >>= 1; } return res; } int num[105]; struct Data { int p; int a[105], b[105]; bool vis; int Judge() { bool flag = false; int at; for (int i = 1; i <= n; ++i) if (!b[i]) { flag = true; at = i; break; } if (!flag) return -1; for (int i = 1; i <= n; ++i) if (at != i) { if (b[i]) { if (a[i] > a[at]) { num[i] = 0; return i; } else if ((a[at] - a[i]) % b[i] != 0) { num[i] = 0; return i; } else { num[i] = (a[at] - a[i]) / b[i]; return i; } } else if (a[i] != a[at]) { num[i] = 0; return i; } } vis = true; return -1; } } data[2005], seq[2005]; int len; void calc(int x) { for (int i = 1; i <= cnt; ++i) seq[i].a[x] = seq[i].a[x] + num[x] * seq[i].b[x]; for (int i = 1; i <= n; ++i) if (i != x) { int z = -1; for (int j = 1; j <= cnt; ++j) if (seq[j].b[i] == 0) { if (seq[j].a[i] != seq[j].a[x]) { puts("-1"); exit(0); } } else { if (seq[j].a[i] > seq[j].a[x]) { puts("-1"); exit(0); } if ((seq[j].a[x] - seq[j].a[i]) % seq[j].b[i] != 0) { puts("-1"); exit(0); } int t = (seq[j].a[x] - seq[j].a[i]) / seq[j].b[i]; if (z != -1 && z != t) { puts("-1"); exit(0); } z = t; } } Ans = 1ll * A[x] * Fast_Pow(B[x], num[x]) % Mod; printf("%d\n", Ans); exit(0); } int P() { for (int i = 2; i <= n; ++i) for (int j = 2; j <= cnt; ++j) { if (seq[j].b[i] * seq[1].b[i - 1] != seq[1].b[i] * seq[j].b[i - 1]) { for (int Y = 0; Y <= 1000; ++Y) { int t1 = seq[1].a[i] - seq[1].a[i - 1] + Y * seq[1].b[i], t2 = seq[j].a[i] - seq[j].a[i - 1] + Y * seq[j].b[i]; if (t1 % seq[1].b[i - 1] != 0 || t2 % seq[j].b[i - 1] != 0 || t1 < 0 || t2 < 0) continue; t1 /= seq[1].b[i - 1]; t2 /= seq[j].b[i - 1]; if (t1 != t2) continue; num[i - 1] = t1; return i - 1; } puts("-1"); exit(0); } else if ((seq[1].a[i] - seq[1].a[i - 1]) * seq[j].b[i - 1] != (seq[j].a[i] - seq[j].a[i - 1]) * seq[1].b[i - 1]) { puts("-1"); exit(0); } } return -1; } long long gcd(long long x, long long y) { if (!y) return x; return gcd(y, x % y); } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return; } exgcd(b, a % b, y, x); y -= (a / b) * x; } long long inv(long long a, long long b) { long long x, y; exgcd(a, b, x, y); return (x % b + b) % b; } void solve() { long long s = seq[1].a[1] % seq[1].b[1], w = seq[1].b[1]; for (int i = 2; i <= n; ++i) { long long u = seq[1].a[i] % seq[1].b[i], v = seq[1].b[i]; long long d = gcd(w, v); if ((u - s) % d != 0) { puts("-1"); exit(0); } long long ww = w / d, vv = v / d, cc = (u - s) / d; long long z = inv(ww, vv); long long x = (z * cc % vv + vv) % vv; s = w * x + s; w = ww * vv * d; } for (int i = 1; i <= n; ++i) while (s < seq[1].a[i]) s += w; Ans = 1ll * A[1] * Fast_Pow(B[1], (s - seq[1].a[1]) / seq[1].b[1]) % Mod; printf("%d\n", Ans); } void getphi(int x, int id, int ty) { int tmp = x; for (int i = 2; i * i <= x; ++i) if (x % i == 0) { int ad = 0; while (tmp % i == 0) { ad++; tmp /= i; } if (!mp[i]) { mp[i] = ++cnt; data[cnt].p = i; } if (ty == 1) data[mp[i]].a[id] = ad; else data[mp[i]].b[id] = ad; } if (tmp > 1) { if (!mp[tmp]) { mp[tmp] = ++cnt; data[cnt].p = tmp; } if (ty == 1) data[mp[tmp]].a[id] = 1; else data[mp[tmp]].b[id] = 1; } } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d%d", &A[i], &B[i]); getphi(A[i], i, 1); getphi(B[i], i, 2); } int t = -1; for (int i = 1; i <= cnt; ++i) { int z = data[i].Judge(); if (!data[i].vis) { len++; for (int j = 1; j <= n; ++j) { seq[len].a[j] = data[i].a[j]; seq[len].b[j] = data[i].b[j]; } } if (z != -1) t = z; } cnt = len; if (t != -1) { calc(t); return 0; } int p = P(); if (p != -1) { calc(p); return 0; } if (cnt == 0) { printf("%d\n", A[1]); return 0; } solve(); return 0; }
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { return a * b / gcd(a, b); } const int mod = 1e9 + 7; int add(int x, int y) { return x + y < mod ? x + y : x + y - mod; } void ade(int& x, int y) { x += y; if (x >= mod) x -= mod; } int qpow(int x, long long k) { int r = 1; while (k) { if (k & 1) r = 1ll * r * x % mod; k >>= 1; x = 1ll * x * x % mod; } return r; } int n; int pri[100100], m; int a_[110], b_[110]; void pia(int x) { for (int i = 2; i * i <= x; ++i) if (x % i == 0) { while (x % i == 0) x /= i; pri[++m] = i; } if (x != 1) pri[++m] = x; } int c[110][2020], d[110][2020]; void build(int id, int a, int b) { int p; for (int i = 1; i <= m; ++i) { p = pri[i]; while (a % p == 0) a /= p, c[id][i]++; while (b % p == 0) b /= p, d[id][i]++; } } bool ign[2020]; long long pro = 1; long long ans[2020]; void CheckAns() { for (int j = 1; j <= m; ++j) for (int i = 1; i <= n; ++i) { if (ign[j]) continue; if (!d[i][j]) { if (ans[j] - c[i][j]) puts("-1"), exit(0); } else if (ans[j] < c[i][j] || (ans[j] - c[i][j]) % d[i][j]) puts("-1"), exit(0); } int out = pro; for (int i = 1; i <= m; ++i) if (!ign[i]) out = 1ll * out * qpow(pri[i], ans[i]) % mod; printf("%d\n", out); } void Equa(int a1, int b1, int c1, int a2, int b2, int c2) { int lc = lcm(a1, a2), p1 = lc / a1, p2 = lc / a2; a1 = a2 = lc; b1 *= p1, c1 *= p1; b2 *= p2, c2 *= p2; int b, nc; int x, y; b = b2 - b1, nc = c2 - c1; if (nc % b) puts("-1"), exit(0); y = nc / b; c1 -= b1 * y; if (c1 % a1) puts("-1"), exit(0); x = c1 / a1; if (x < 0 || y < 0) puts("-1"), exit(0); for (int i = 1; i <= m; ++i) ans[i] = c[1][i] + x * d[1][i]; CheckAns(); } void exgcd(long long a, long long b, long long& x, long long& y) { if (!b) { x = 1, y = 0; return; } exgcd(b, a % b, y, x); y -= (a / b) * x; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d%d", &a_[i], &b_[i]); pia(a_[i]); pia(b_[i]); } sort(pri + 1, pri + m + 1); m = unique(pri + 1, pri + m + 1) - pri - 1; for (int i = 1; i <= n; ++i) build(i, a_[i], b_[i]); for (int j = 1; j <= m; ++j) { int fl1 = 0, fl2 = 0; for (int u = 1; u <= n; ++u) if (!d[u][j]) fl1 = u; else fl2 = u; if (!fl1) continue; if (!fl2) { for (int i = 1; i <= n; ++i) if (c[i][j] != c[1][j]) puts("-1"), exit(0); (pro *= qpow(pri[j], c[1][j])) %= mod; ign[j] = 1; } else { int k = c[fl1][j] - c[fl2][j]; if (k % d[fl2][j] || k < 0) puts("-1"), exit(0); k /= d[fl2][j]; for (int i = 1; i <= m; ++i) ans[i] = k * d[fl2][i] + c[fl2][i]; CheckAns(); return 0; } } int pos = 1; while (ign[pos]) pos++; if (pos > m) { printf("%lld\n", pro); return 0; } swap(pri[1], pri[pos]); swap(ign[1], ign[pos]); for (int i = 1; i <= n; ++i) swap(c[i][1], c[i][pos]), swap(d[i][1], d[i][pos]); for (int j = 2; j <= m; ++j) { for (int i = 2; i <= n; ++i) { if (d[1][1] * d[i][j] != d[1][j] * d[i][1]) { Equa(d[1][1], -d[i][1], c[i][1] - c[1][1], d[1][j], -d[i][j], c[i][j] - c[1][j]); return 0; } else if ((c[i][j] - c[1][j]) * d[1][1] != (c[i][1] - c[1][1]) * d[1][j]) puts("-1"), exit(0); } } long long A = c[1][1], M = d[1][1]; long long a, g, x, y, t; for (int i = 2; i <= n; ++i) { a = c[i][1] - A; g = gcd(M, d[i][1]); if (a % g) puts("-1"), exit(0); t = d[i][1] / g; exgcd(M, d[i][1], x, y); x = (x % t + t) % t; x *= a / g; x = (x % t + t) % t; A += x * M; M = lcm(M, d[i][1]); A = (A % M + M) % M; } for (int i = 1; i <= n; ++i) while (A < c[i][1]) A += M; long long k; if (!d[1][1]) k = 0; else k = (A - c[1][1]) / d[1][1]; for (int i = 1; i <= m; ++i) ans[i] = c[1][i] + k * d[1][i]; CheckAns(); return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 210; const int mod = 1e9 + 7; inline int Pow(int x, int y) { int res = 1; for (; y; y >>= 1, x = (long long)x * x % mod) if (y & 1) res = (long long)res * x % mod; return res; } inline void FUCK() { puts("-1"), exit(0); } map<long long, pair<long long, long long> > wkr[N]; inline void test(int a, int b) { long long cur = -1; for (auto t : wkr[b]) if (!wkr[a].count(t.first)) FUCK(); for (auto t : wkr[a]) if (wkr[b].count(t.first)) { auto A = t.second, B = wkr[b][t.first]; if (A.second != B.second) { if (!B.first) FUCK(); if (A.second < B.second || (A.second - B.second) % B.first) FUCK(); } long long hh = B.first ? (A.second - B.second) / B.first : -1; if (cur == -1) cur = hh; if (cur != hh) FUCK(); } else FUCK(); } int n, tot; long long A, B, C; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long G[2][2]; inline long long Det() { return G[0][0] * G[1][1] - G[0][1] * G[1][0]; } inline bool push(long long tA, long long tB, long long tC) { long long g = gcd(tA, tB); assert(g); if (tC % g) FUCK(); tA /= g, tB /= g, tC /= g; if (!A) return A = tA, B = tB, C = tC, false; if (A == tA && B == tB) { if (C != tC) FUCK(); return false; } G[0][0] = A, G[0][1] = B, G[1][0] = tA, G[1][1] = tB; long long base = Det(); assert(base); G[0][0] = C, G[0][1] = B, G[1][0] = tC, G[1][1] = tB; long long t1 = Det(); if (t1 % base) FUCK(); G[0][0] = A, G[0][1] = C, G[1][0] = tA, G[1][1] = tC; long long t2 = Det(); if (t2 % base) FUCK(); long long x = t1 / base, y = t2 / base; if (x < 0 || y < 0) FUCK(); A = x, B = y; return true; } long long x, y; long long exgcd(long long a, long long b) { if (!b) return x = 1, y = 0, a; long long d = exgcd(b, a % b), t = x; x = y, y = t - a / b * y; return d; } inline void merge(int a, int b) { A = B = C = 0, tot++; bool flag = false; for (auto t : wkr[a]) if (wkr[b].count(t.first)) { auto A = t.second, B = wkr[b][t.first]; if (push(A.first, -B.first, B.second - A.second)) { flag = true; break; } } else FUCK(); for (auto t : wkr[b]) if (!wkr[a].count(t.first)) FUCK(); if (flag) { int ans = 1; for (auto t : wkr[a]) { long long tmp = t.second.first * A + t.second.second; wkr[tot][t.first] = pair<long long, long long>(0, tmp); ans = (long long)ans * Pow(t.first, tmp % (mod - 1)) % mod; } for (int i = 1; i <= n; i++) test(tot, i); printf("%d\n", ans), exit(0); } if (!A) FUCK(); if (B < 0) A = -A, B = -B, C = -C; long long g = exgcd(A, B); x *= C / g, x = (x % B + B) % B; for (auto t : wkr[a]) wkr[tot][t.first] = pair<long long, long long>( B * t.second.first, t.second.second + t.second.first * x); } int fuck[N], zjk[N]; inline void test(int x) { for (int i = 1; i <= n; i++) { if (x % fuck[i]) return; int tmp = x / fuck[i]; while (tmp > 1) { if (tmp % zjk[i]) return; tmp /= zjk[i]; } if (tmp == 0) return; } printf("%d\n", x), exit(0); } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { int a, b; scanf("%d%d", &a, &b), fuck[i] = a, zjk[i] = b; for (int j = 2; (j * j <= a) || (j * j <= b); j++) if (a % j == 0 || b % j == 0) { int ct = 0, ct1 = 0; while (a % j == 0) ct++, a /= j; while (b % j == 0) ct1++, b /= j; wkr[i][j] = pair<long long, long long>(ct1, ct); } if (a != 1 || b != 1) { if (a == b) wkr[i][a] = pair<long long, long long>(1, 1); else { if (a != 1) wkr[i][a] = pair<long long, long long>(0, 1); if (b != 1) wkr[i][b] = pair<long long, long long>(1, 0); } } } test(1); for (int i = 1; i <= n; i++) test(fuck[i]); tot = n, merge(1, 2); for (int i = 3; i <= n; i++) merge(tot, i); for (int i = 1; i <= n; i++) test(tot, i); int ans = 1; for (auto t : wkr[tot]) ans = (long long)ans * Pow(t.first, t.second.second % (mod - 1)) % mod; printf("%d\n", ans); }
#include <bits/stdc++.h> using namespace std; template <class T> inline void rd(T &x) { x = 0; char c = getchar(); int f = 1; while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) x = x * 10 - '0' + c, c = getchar(); x *= f; } inline long long Abs(long long x) { return x > 0 ? x : -x; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } struct item { int p; long long k; item(int p = 0, long long k = 0) : p(p), k(k) {} }; struct Num { item p[810]; int num; void init(int x) { for (int i = 2; i * (long long)i <= x; ++i) if (x % i == 0) { int c = 0; while (x % i == 0) x /= i, c++; p[num++] = item(i, c); } if (x > 1) p[num++] = item(x, 1); } item query(int x) { for (int i = 0; i < num; ++i) if (p[i].p == x) return p[i]; return item(x, 0); } } A[110], B[110]; int n; void FAIL() { puts("-1"); exit(0); } item A1[3210], B1[3210], A2[3210], B2[3210]; int pri[3210], num; long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void Inter(long long A, long long B, long long C, long long a, long long b, long long c, long long &x1, long long &x2) { while (a) { long long t = A / a; A -= t * a, B -= t * b, C -= t * c; swap(A, a), swap(B, b), swap(C, c); } if (c % b) FAIL(); x2 = -c / b; if ((C + B * x2) % A) FAIL(); x1 = (-C - B * x2) / A; } void UN(Num &a1, Num &b1, Num &a2, Num &b2) { num = 0; for (int i = 0; i < a1.num; ++i) pri[num++] = a1.p[i].p; for (int i = 0; i < a2.num; ++i) pri[num++] = a2.p[i].p; for (int i = 0; i < b1.num; ++i) pri[num++] = b1.p[i].p; for (int i = 0; i < b2.num; ++i) pri[num++] = b2.p[i].p; sort(pri, pri + num); num = unique(pri, pri + num) - pri; for (int i = 0; i < num; ++i) A1[i] = a1.query(pri[i]); for (int i = 0; i < num; ++i) A2[i] = a2.query(pri[i]); for (int i = 0; i < num; ++i) B1[i] = b1.query(pri[i]); for (int i = 0; i < num; ++i) B2[i] = b2.query(pri[i]); long long A = 0, B = 0, C = 0; int flg1 = 0; long long x1, x2; for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a == 0 && b == 0) { if (c) FAIL(); continue; } long long g = gcd(a, gcd(-b, Abs(c))); a /= g, b /= g, c /= g; if (!b) { if (c % a) FAIL(); if (-c / a < 0) FAIL(); } if (!a) { if (c % b) FAIL(); if (-c / b < 0) FAIL(); } if (!A && !B) { A = a, B = b, C = c; continue; } if (!B) { if (b) { Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (a && C / A != c / a) FAIL(); continue; } if (A * b == a * B) { if (c * A == C * a) continue; FAIL(); } Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (flg1) { for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a * x1 + b * x2 + c) FAIL(); } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = 0; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; return; } long long g = exgcd(A, B, x1, x2); if (C % g) FAIL(); x1 *= -C / g, x2 *= -C / g; long long tx = Abs(-B / g), ty = Abs(A / g); if (C > 0 || !ty) { x1 = (x1 % tx + tx) % tx; if (B) x2 = -(A * x1 + C) / B; else x2 = 0; } else { x2 = (x2 % ty + ty) % ty; if (A) x1 = (-B * x2 - C) / A; else x1 = 0; } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = tx * B1[i].k; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; } const int mod = 1e9 + 7; int Pow(int x, long long y) { int res = 1; for (y %= (mod - 1); y; x = x * (long long)x % mod, y >>= 1) if (y & 1) res = res * (long long)x % mod; return res; } int main() { rd(n); for (int i = 1, a, b; i <= n; ++i) rd(a), rd(b), A[i].init(a), B[i].init(b); for (int i = 2; i <= n; ++i) UN(A[1], B[1], A[i], B[i]); long long ans = 1; for (int i = 0; i < A[1].num; ++i) ans = ans * (long long)Pow(A[1].p[i].p, A[1].p[i].k) % mod; printf("%lld", ans); return 0; }
#include <bits/stdc++.h> using namespace std; long long qpow(long long v, long long st, long long mod) { long long res = 1; while (st) { if (st & 1) { res = res * v; if (res >= mod) { res %= mod; } } v = v * v; if (v >= mod) { v %= mod; } st = st / 2; } return res; } const int mod = 1000000007; int n; long long a[128], b[128]; long long l[128][128], t[128][128]; set<int> primes; void push_primes(long long x) { for (long long i = 2; i * i <= x; ++i) { if (x % i == 0) { primes.insert(i); while (x % i == 0) { x /= i; } } } if (x > 1) { primes.insert(x); } } inline int maxpow(long long n, long long d) { int res = 0; while (n % d == 0) { n /= d; ++res; } return res; } bool trySol(int i, long long k) { long long sol[128]; memset(sol, -1, sizeof(sol)); for (set<int>::iterator it = primes.begin(); it != primes.end(); ++it) { long long p = *it; long long at, bt; at = maxpow(a[i], p); bt = maxpow(b[i], p); long long tar = at + k * bt; for (int j = 0; j < n; ++j) { long long ap = maxpow(a[j], p); long long bp = maxpow(b[j], p); if (ap > tar) { printf("-1\n"); return 0; } if (bp == 0) { if (ap != tar) { printf("-1\n"); return 0; } } else { if (ap > tar || (tar - ap) % bp != 0) { printf("-1\n"); return 0; } if (sol[j] == -1) { sol[j] = (tar - ap) / bp; } if (sol[j] != (tar - ap) / bp) { printf("-1\n"); return 0; } } } } printf("%lld\n", (a[i] * qpow(b[i], k, mod)) % mod); return 0; } long long gcdex(long long a, long long b, long long &x, long long &y) { if (a == 0) { x = 0; y = 1; return b; } long long x1, y1; long long d = gcdex(b % a, a, x1, y1); x = y1 - (b / a) * x1; y = x1; return d; } bool getInv(long long a, long long m, long long *res) { long long x, y; long long g = gcdex(a, m, x, y); if (g != 1) { return 0; } else { x = (x % m + m) % m; *res = x; return 1; } } long long r[128][128]; long long x[128]; bool CRT(int cnt, long long as[], long long bs[], long long *minval, long long *period) { map<long long, long long> mp; for (int i = 0; i < cnt; ++i) { long long v = bs[i]; for (long long j = 2; j * j <= v; ++j) { if (v % j == 0) { long long d = 1; while (v % j == 0) { d = d * j; v = v / j; } vector<map<long long, long long>::iterator> torm; bool strong = false; for (map<long long, long long>::iterator it = mp.begin(); it != mp.end(); ++it) { if (it->first % d == 0) { strong = true; if (as[i] % d != it->second % d) { printf("-1\n"); return 0; } } else if (d % it->first == 0) { torm.push_back(it); if (as[i] % it->first != it->second % it->first) { printf("-1\n"); return 0; } } } for (int j = 0; j < (int)torm.size(); ++j) { mp.erase(torm[j]); } if (!strong) { mp[d] = as[i] % d; } } } if (v != 1) { long long d = v; bool strong = false; vector<map<long long, long long>::iterator> torm; for (map<long long, long long>::iterator it = mp.begin(); it != mp.end(); ++it) { if (it->first % d == 0) { strong = true; if (as[i] % d != it->second % d) { printf("-1\n"); return 0; } } else if (d % it->first == 0) { torm.push_back(it); if (as[i] % it->first != it->second % it->first) { printf("-1\n"); return 0; } } } for (int j = 0; j < (int)torm.size(); ++j) { mp.erase(torm[j]); } if (!strong) { mp[d] = as[i] % d; } } } for (map<long long, long long>::iterator it = mp.begin(); it != mp.end(); ++it) { } int i, j; i = j = 0; long long mx = 0; for (map<long long, long long>::iterator it = mp.begin(); it != mp.end(); ++it, ++i) { if (it->first > mx) { mx = it->first; } j = 0; for (map<long long, long long>::iterator jt = mp.begin(); jt != mp.end(); ++jt, ++j) { if (i != j) { int res = getInv(it->first, jt->first, &r[i][j]); if (!res) { printf("-1\n"); return 0; } } } } if (mx > 32) { printf("WTF MAX %lld\n", mx); } i = 0; for (map<long long, long long>::iterator it = mp.begin(); it != mp.end(); ++it, ++i) { x[i] = it->second; j = 0; for (map<long long, long long>::iterator jt = mp.begin(); jt != mp.end() && j < i; ++jt, ++j) { long long ss = x[i] - x[j]; x[i] = r[j][i] * ss; x[i] = x[i] % it->first; if (x[i] < 0) x[i] += it->first; } } long long a; long long pref = 1; a = x[0]; i = 0; for (map<long long, long long>::iterator it = mp.begin(); it != mp.end() && i + 1 < (int)mp.size(); ++it, ++i) { pref = pref * it->first; a = a + pref * x[i + 1]; } long long lcm = 1; for (map<long long, long long>::iterator it = mp.begin(); it != mp.end(); ++it) { lcm *= it->first; } for (int i = 0; i < cnt; ++i) { while (a < as[i]) { a += lcm; } } *minval = a; *period = lcm; return 1; } bool solve_prime(int p, int id) { long long apow[128], bpow[128]; int unmove = -1; int move = -1; int samea = -1; for (int i = 0; i < n; ++i) { apow[i] = maxpow(a[i], p); bpow[i] = maxpow(b[i], p); if (bpow[i] > 0) { move = i; } if (bpow[i] == 0) { unmove = i; } if (samea == -1) { samea = apow[i]; } if (apow[i] != samea) { samea = -2; } } if (unmove != -1) { if (move == -1 && samea == -2) { printf("-1\n"); return 0; } for (int i = 0; i < n; ++i) { if (bpow[i] == 0 && apow[i] != apow[unmove]) { printf("-1\n"); return 0; } if (bpow[i] != 0) { long long k = apow[unmove] - apow[i]; if (k < 0 || k % bpow[i] != 0) { printf("-1\n"); return 0; } k = k / bpow[i]; return trySol(i, k); } } for (int i = 0; i < n; ++i) { l[id][i] = 0; t[id][i] = 1; } return 1; } long long minval, period; int ret = CRT(n, apow, bpow, &minval, &period); for (int i = 0; i < n; ++i) { if ((minval - apow[i]) % bpow[i] != 0 || minval < apow[i]) { if (ret) { printf("ERROR DOING CRT %lld %lld %lld\n", minval, apow[i], bpow[i]); } } l[id][i] = (minval - apow[i]) / bpow[i]; if (period % bpow[i] != 0) { if (ret) { printf("ERROR2 DOING CRT %lld %lld %lld\n", period, apow[i], bpow[i]); } } t[id][i] = period / bpow[i]; } return ret; } int main() { scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%lld %lld", &a[i], &b[i]); push_primes(a[i]); push_primes(b[i]); } int realp = 0; int la = 0; for (set<int>::iterator it = primes.begin(); it != primes.end(); ++it) { if (!solve_prime(*it, la)) { return 0; } bool fake = true; for (int j = 0; j < n; ++j) { if (l[la][j] != 0 || t[la][j] != 0) { fake = false; } } if (!fake) { ++realp; } ++la; } if ((int)primes.size() == 1) { printf("%lld\n", (a[0] * qpow(b[0], l[0][0], mod)) % mod); return 0; } int numvars = n * realp; if (numvars == 0) { printf("%lld\n", a[0]); return 0; } for (int p = 0; p < la; ++p) { for (int q = p + 1; q < la; ++q) { for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { long long mb = t[q][i] * t[p][j] - t[q][j] * t[p][i]; long long eq = (l[p][i] - l[q][i]) * t[p][j] - (l[p][j] - l[q][j]) * t[p][i]; if (mb == 0) { if (eq != 0) { printf("-1\n"); return 0; } } else { if (eq % mb != 0) { printf("-1\n"); return 0; } long long b = eq / mb; trySol(i, l[q][i] + t[q][i] * b); return 0; } } } } } for (int i = 0; i < n; ++i) { bool good = false; for (int p = 0; p < la; ++p) { if (l[p][i] != 0 || t[p][i] != 0) { good = true; } } if (good) { long long minval, period; long long ap[32], bp[32]; int fi = 0; for (int p = 0; p < la; ++p) { ap[p] = l[p][i]; bp[p] = t[p][i]; } int ret = CRT(la, ap, bp, &minval, &period); trySol(i, minval); return 0; } } return 0; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; inline long long kpow(long long a, long long b) { a %= mod, b %= (mod - 1); long long s = 1; for (; b; b >>= 1, a = a * a % mod) if (b & 1) s = s * a % mod; return s; } void no() { printf("-1"); exit(0); } long long n, a[110], b[110], mib = 0x3f3f3f3f; bool bj[100010]; long long su[100010], sunum; void init() { bj[1] = 1; for (long long i = 2; i <= 100000; ++i) { if (!bj[i]) su[++sunum] = i; for (long long j = 1; j <= sunum && su[j] * i <= 100000; ++j) { bj[su[j] * i] = 1; if (i % su[j] == 0) break; } } } map<long long, long long> mp; bool check(long long w) { for (long long s = w, i = 1; s <= 1000000000; s *= w, ++i) mp[s] = i; for (long long i = 1; i <= n; ++i) if (!mp[b[i]]) return 0; return 1; } map<long long, long long> da[110], db[110]; void divi(long long x, map<long long, long long> &mp) { for (long long i = 1; su[i] * su[i] <= x; ++i) if (x % su[i] == 0) { long long cnt = 0; while (x % su[i] == 0) ++cnt, x /= su[i]; mp[su[i]] = cnt; } if (x > 1) mp[x] = 1; } void work(long long w) { for (long long i = 1; i <= n; ++i) { long long c = a[i]; while (c < w) c *= b[i]; if (c != w) no(); } printf("%lld", w); exit(0); } void work1(long long A, long long B, long long N) { if (N < 0) no(); map<long long, long long> dw, dA, dB, dC; divi(A, dA), divi(B, dB); dw = dA; for (auto p : dB) dw[p.first] += N * p.second; for (long long i = 1; i <= n; ++i) { dC = da[i]; for (auto p : dw) dC[p.first]; for (auto p : dC) if (p.second != dw[p.first]) { if (!db[i][p.first]) no(); long long c = (dw[p.first] - p.second) / db[i][p.first]; if (c < 0) no(); for (auto q : db[i]) dC[q.first] += q.second * c; break; } for (auto p : dC) if (p.second != dw[p.first]) no(); } long long ans = 1; for (auto p : dw) ans = ans * kpow(p.first, p.second) % mod; printf("%lld", ans); exit(0); } long long gcd(long long a, long long b) { if (!a || !b) return a + b; return gcd(b, a % b); } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } if (!a) { x = 0, y = 1; return b; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void solve1(long long s) { long long sa = 0; long long k[110], t[110]; for (long long i = 1; i <= n; ++i) { long long x = a[i]; t[i] = 0; k[i] = mp[b[i]]; while (x % s == 0) x /= s, ++t[i]; if (sa && sa != x) no(); sa = x; } long long nk = 1, nt = 0, x, y, mx = 0; for (long long i = 1; i <= n; ++i) { long long g = exgcd(nk, k[i], x, y); y = -y; if ((t[i] - nt) % g) { no(); } long long w = (t[i] - nt) / g; if (w < 0) x = -x, y = -y, w = -w; x = x % (k[i] / g) * (w % (k[i] / g)) % (k[i] / g); if (x < 0) x += k[i] / g; nt = x * nk + nt; while (nt < t[i]) nt += nk; nk = nk * k[i] / g; mx = max(mx, nt); } work1(sa, s, nt); } void solve2() { long long p; for (long long i = 2; i <= n; ++i) if (!mp[b[i]]) { p = i; break; } for (auto q : db[1]) if (!db[p].count(q.first)) work1(a[1], b[1], (da[p][q.first] - da[1][q.first]) / q.second); for (auto q : db[p]) if (!db[1].count(q.first)) work1(a[p], b[p], (da[1][q.first] - da[p][q.first]) / q.second); long long a1 = db[1].begin()->second, b1 = -db[p].begin()->second, c1 = da[p][db[1].begin()->first] - da[1][db[1].begin()->first]; long long a2, b2, c2; for (auto q : db[1]) { a2 = q.second, b2 = -db[p][q.first], c2 = da[p][q.first] - da[1][q.first]; if (a1 * b2 != a2 * b1) work1(a[1], b[1], (c1 * b2 - c2 * b1) / (a1 * b2 - a2 * b1)); } } int main() { init(); scanf("%lld", &n); for (long long i = 1; i <= n; ++i) { scanf("%lld %lld", &a[i], &b[i]); divi(a[i], da[i]); divi(b[i], db[i]); mib = min(mib, b[i]); } if (mib == 1) { for (long long i = 1; i <= n; ++i) if (b[i] == 1) { work(a[i]); break; } return 0; } long long g = 0; for (auto p : db[1]) g = gcd(g, p.second); long long s = 1; for (auto p : db[1]) { long long cnt = p.second / g; while (cnt--) s *= p.first; } if (check(s)) solve1(s); else solve2(); return 0; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const int MM = 31625; struct simpen { long long a, b, c; void print() { printf("%I64d %I64d %I64d\n", a, b, c); } }; long long n, a[MM], b[MM], pr[MM], cpp = 0, cpr = 0, aa[MM], bb[MM], valen[MM], momod[MM]; bool prpr[MM]; simpen p[MM]; long long dio(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = dio(b, a % b, y, x); y = y - x * (a / b); return d; } void start() { for (int i = 2; i * i <= 1000000000; i++) { bool test = 1; for (int j = 2; j * j <= i; j++) { if (i % j == 0) { test = 0; break; } } if (test) pr[cpr++] = i; } } long long get(long long x, const int &y) { long long ret = 0; while (!(x % pr[y])) x /= pr[y], ++ret; return ret; } long long cc(long long a, long long b) { if (b < 0) a *= -1, b *= -1; if (a < 0) return a / b; return (a + b - 1) / b; } long long floor(long long a, long long b) { return -cc(-a, -b); } long long asdf(long long b, long long e, long long m) { long long t = 0; for (; e; e >>= 1, (b <<= 1) %= m) if (e & 1) (t += b) %= m; return t; } long long power(long long a, long long n, long long mod) { return (n == 0 ? 1 : (power(a * a % mod, n / 2, mod)) * (n % 2 == 1 ? a : 1) % mod); } int main() { scanf("%I64d", &n); for (int i = 0; i < n; i++) scanf("%I64d %I64d", &b[i], &a[i]); start(); for (int i = 0; i < cpr; i++) aa[i] = get(a[n - 1], i), bb[i] = get(b[n - 1], i); long long res = -1; for (int i = 0; i < n - 1; i++) { bool test = 0; simpen cewe; for (int j = 0; j < cpr; j++) { long long a0 = aa[j], b0 = bb[j]; long long a1 = get(a[i], j), b1 = get(b[i], j); if (a0 || a1 || b0 != b1) { if (b0 != b1 && !a0 && !a1) { printf("-1\n"); return 0; } if (a1 || a0) { if (!test) { cewe.a = a0; cewe.b = -a1; cewe.c = b0 - b1; } else { long long aaa = a0, bbb = -a1, ccc = b0 - b1; long long gay = -(cewe.a * bbb - cewe.b * aaa); long long x = cewe.c * bbb - cewe.b * ccc; long long y = cewe.a * ccc - cewe.c * aaa; if (!gay) { if (x || y) { printf("-1\n"); return 0; } } else { if (x % gay || y % gay) { printf("-1\n"); return 0; } else { if (x / gay < 0 || y / gay < 0) { printf("-1\n"); return 0; } if (res != -1 && x / gay != res) { printf("-1\n"); return 0; } res = x / gay; } } } test = true; } } } if (test) { p[cpp] = cewe; cpp++; } } for (int i = 0; i < cpp; i++) { if (!p[i].b) { if (p[i].c % p[i].a) { printf("-1\n"); return 0; } if (p[i].c * p[i].a > 0) { printf("-1\n"); return 0; } if (res != -1 && (-p[i].c) / p[i].a != res) { printf("-1\n"); return 0; } res = (-p[i].c) / p[i].a; } } if (res != -1) { for (int i = 0; i < cpp; i++) { p[i].c += p[i].a * res; if (p[i].b) { if (p[i].c % p[i].b) { printf("-1\n"); return 0; } if (p[i].c * p[i].b > 0) { printf("-1\n"); return 0; } } else if (p[i].c) { printf("-1\n"); return 0; } } } else { long long m = 0, mmin = 0, mmax = 9223372036854775807; for (int i = 0; i < cpp; i++) { if (!p[i].a) { if (!p[i].c % p[i].b) { printf("-1\n"); return 0; } if (!p[i].c * p[i].b > 0) { printf("-1\n"); return 0; } } else { long long x, y; long long d = dio(p[i].a, p[i].b, x, y); if (p[i].c % d) { printf("-1\n"); return 0; } x *= (-p[i].c) / d; momod[m] = abs(p[i].b / d); valen[m] = x % momod[m]; m++; if (p[i].b < 0) mmin = max(mmin, cc(-p[i].c, p[i].a)); else mmax = min(mmax, floor(-p[i].c, p[i].a)); } } if (mmin > mmax) { printf("-1\n"); return 0; } long long A = 0, B = 1; for (int i = 0; i < m; i++) { long long x, y; long long d = dio(B, momod[i], x, y); long long ans = A % d; if ((valen[i] - ans) % d) { printf("-1\n"); return 0; } B /= d; momod[i] /= d; (A -= ans) /= d; (valen[i] -= ans) /= d; long long bbb = B * momod[i]; A = (A + B) % B; valen[i] = (valen[i] + momod[i]) % momod[i]; A = (asdf(asdf(x, B, bbb), valen[i], bbb) + asdf(asdf(y, momod[i], bbb), A, bbb)) % bbb; B = bbb * d; A = (A * d + ans) % B; } (A += B) %= B; res = cc(mmin - A, B) * B + A; if (res > mmax) { printf("-1\n"); return 0; } } printf("%I64d\n", power(a[n - 1], res, mod) * b[n - 1] % mod); return 0; }
#include <bits/stdc++.h> using namespace std; const int maxn = 105; const int maxm = 50005; const int mod = 1e9 + 7; int n, cnt; long long anst, ansd; int a[maxn], b[maxn], cur_a[maxn][maxm], cur_b[maxn][maxm], pri[maxm]; bool no[maxm]; vector<int> all; long long gcd(long long a, long long b) { return !b ? a : gcd(b, a % b); } void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) x = 1, y = 0; else exgcd(b, a % b, y, x), y -= (a / b) * x; } void upd(long long &b, long long &a, long long d, long long c) { if (!c) { if (a && d >= b && (d - b) % a == 0) b = d, a = 0; else if (!a && d == b) b = d, a = 0; else { puts("-1"); exit(0); } return; } long long g = gcd(a, c); if ((d - b) % g) { puts("-1"); exit(0); } long long tmp_x, tmp_y; exgcd(a, c, tmp_x, tmp_y); tmp_x *= (d - b) / g; tmp_y *= (b - d) / g; if (tmp_x < 0 || tmp_y < 0) { long long cnt = max((-tmp_x + (c / g) - 1) / (c / g), (-tmp_y + (a / g) - 1) / (a / g)); tmp_x += cnt * (c / g); tmp_y += cnt * (a / g); } long long cnt = min(tmp_x / (c / g), tmp_y / (a / g)); tmp_x -= cnt * (c / g); tmp_y -= cnt * (a / g); a = (a * c) / g; b = tmp_y * c + d; } int power(int x, int pow) { int res = 1; for (; pow; pow >>= 1) { if (pow & 1) res = 1LL * res * x % mod; x = 1LL * x * x % mod; } return res; } void check(int i, long long t, long long d) { int pos = -1; for (int k = 0; k < (int(all.size())); k++) { if (!cur_b[1][k] && cur_a[i][k] + t * cur_b[i][k] != cur_a[1][k]) { puts("-1"); exit(0); } else if (cur_b[1][k]) { if (cur_a[i][k] + t * cur_b[i][k] < cur_a[1][k] || ((cur_a[i][k] + t * cur_b[i][k] - cur_a[1][k]) % cur_b[1][k])) { puts("-1"); exit(0); } long long cur = (cur_a[i][k] + t * cur_b[i][k] - cur_a[1][k]) / cur_b[1][k]; if (pos >= 0 && cur != pos) { puts("-1"); exit(0); } pos = cur; } } upd(anst, ansd, pos, d); } int main() { anst = 0; ansd = 1; no[1] = true; for (int i = 2; i <= 50000; i++) { if (!no[i]) pri[++cnt] = i; for (int j = 1; j <= (cnt); j++) { if (i * pri[j] > 50000) break; no[i * pri[j]] = true; if (i % pri[j] == 0) break; } } scanf("%d", &n); for (int i = 1; i <= (n); i++) { scanf("%d%d", &a[i], &b[i]); int tmp_a = a[i], tmp_b = b[i]; for (int j = 1; j <= (cnt); j++) { if (pri[j] * pri[j] > tmp_a) break; if (tmp_a % pri[j] == 0) all.push_back(pri[j]); while (tmp_a % pri[j] == 0) tmp_a /= pri[j]; } if (tmp_a > 1) all.push_back(tmp_a); for (int j = 1; j <= (cnt); j++) { if (pri[j] * pri[j] > tmp_b) break; if (tmp_b % pri[j] == 0) all.push_back(pri[j]); while (tmp_b % pri[j] == 0) tmp_b /= pri[j]; } if (tmp_b > 1) all.push_back(tmp_b); } sort(all.begin(), all.end()); all.resize(unique(all.begin(), all.end()) - all.begin()); for (int i = 1; i <= (n); i++) { for (int j = 0; j < (int(all.size())); j++) { int p = all[j]; int tmp_a = a[i], tmp_b = b[i]; while (tmp_a % p == 0) cur_a[i][j]++, tmp_a /= p; while (tmp_b % p == 0) cur_b[i][j]++, tmp_b /= p; } } for (int i = 2; i <= n; i++) { int j = 0; while (j < int(all.size()) && !cur_b[i][j]) j++; if (j == int(all.size()) || !cur_b[1][j]) check(i, 0, 0); else { int k = 0; while (k < int(all.size()) && cur_b[1][k] * cur_b[i][j] == cur_b[i][k] * cur_b[1][j]) k++; if (k == int(all.size())) { long long g = gcd(cur_b[1][j], cur_b[i][j]); if ((cur_a[1][j] - cur_a[i][j]) % g) { puts("-1"); return 0; } long long tmp_x, tmp_y; exgcd(cur_b[1][j], cur_b[i][j], tmp_x, tmp_y); tmp_x *= (cur_a[i][j] - cur_a[1][j]) / g; tmp_y *= (cur_a[1][j] - cur_a[i][j]) / g; if (tmp_x < 0 || tmp_y < 0) { long long cnt = max((-tmp_x + (cur_b[i][j] / g) - 1) / (cur_b[i][j] / g), (-tmp_y + (cur_b[1][j] / g) - 1) / (cur_b[1][j] / g)); tmp_x += cnt * (cur_b[i][j] / g); tmp_y += cnt * (cur_b[1][j] / g); } long long cnt = min(tmp_x / (cur_b[i][j] / g), tmp_y / (cur_b[1][j] / g)); tmp_x -= cnt * (cur_b[i][j] / g); tmp_y -= cnt * (cur_b[1][j] / g); check(i, tmp_y, cur_b[i][j] / g); } else { long long tmp_x1 = 1LL * cur_a[i][j] * cur_b[i][k] - 1LL * cur_a[1][j] * cur_b[i][k]; long long tmp_x2 = 1LL * cur_a[i][k] * cur_b[i][j] - 1LL * cur_a[1][k] * cur_b[i][j]; if ((tmp_x1 - tmp_x2) % (1LL * cur_b[1][j] * cur_b[i][k] - 1LL * cur_b[1][k] * cur_b[i][j])) { puts("-1"); return 0; } long long tmp_x = (tmp_x1 - tmp_x2) / (1LL * cur_b[1][j] * cur_b[i][k] - 1LL * cur_b[1][k] * cur_b[i][j]); long long tmp_y = tmp_x * cur_b[1][j] + cur_a[1][j] - cur_a[i][j]; if (tmp_y % cur_b[i][j]) { puts("-1"); return 0; } tmp_y /= cur_b[i][j]; if (tmp_x < 0 || tmp_y < 0) { puts("-1"); return 0; } check(i, tmp_y, 0); } } } printf("%d\n", 1LL * a[1] * power(b[1], int(anst % (mod - 1))) % mod); return 0; }
#include <bits/stdc++.h> using namespace std; template <typename T, typename S> inline bool upmin(T &a, const S &b) { return a > b ? a = b, 1 : 0; } template <typename T, typename S> inline bool upmax(T &a, const S &b) { return a < b ? a = b, 1 : 0; } template <typename N, typename PN> inline N flo(N a, PN b) { return a >= 0 ? a / b : -((-a - 1) / b) - 1; } template <typename N, typename PN> inline N cei(N a, PN b) { return a > 0 ? (a - 1) / b + 1 : -(-a / b); } template <typename N> N gcd(N a, N b) { return b ? gcd(b, a % b) : a; } inline void gn(long long &x) { int sg = 1; char c; while (((c = getchar()) < '0' || c > '9') && c != '-') ; c == '-' ? (sg = -1, x = 0) : (x = c - '0'); while ((c = getchar()) >= '0' && c <= '9') x = x * 10 + c - '0'; x *= sg; } inline void gn(int &x) { long long t; gn(t); x = t; } inline void gn(unsigned long long &x) { long long t; gn(t); x = t; } inline void gn(double &x) { double t; scanf("%lf", &t); x = t; } inline void gn(long double &x) { double t; scanf("%lf", &t); x = t; } inline long long sqr(long long a) { return a * a; } inline double sqrf(double a) { return a * a; } const int inf = 0x3f3f3f3f; const double eps = 1e-6; int mo = 1000000007; int qp(int a, long long b) { int n = 1; do { if (b & 1) n = 1ll * n * a % mo; a = 1ll * a * a % mo; } while (b >>= 1); return n; } struct fen { pair<int, int> p[66]; int tot; void zuo(int a) { tot = 0; for (int i = 2; i * i <= a; i++) if (a % i == 0) { p[++tot] = make_pair(i, 0); while (a % i == 0) { p[tot].second++; a /= i; } } if (a > 1) { p[++tot] = make_pair(a, 1); } } void add(int x) { for (int i = (1), _ed = (tot + 1); i < _ed; i++) if (p[i].first == x) return; p[++tot] = make_pair(x, 0); sort(p + 1, p + 1 + tot); } }; bool pok(const fen &a, const fen &b) { if (a.tot != b.tot) return 0; for (int i = (1), _ed = (a.tot + 1); i < _ed; i++) if (a.p[i].first != b.p[i].first) return 0; return 1; } struct node { int a, b; bool in(int x) { if (b == 1) { return a == x; } long long u = a; while (u <= x) { if (u == x) return 1; u *= b; } return 0; } fen pa, push_back; void chuli() { for (int i = (1), _ed = (push_back.tot + 1); i < _ed; i++) pa.add(push_back.p[i].first); for (int i = (1), _ed = (pa.tot + 1); i < _ed; i++) push_back.add(pa.p[i].first); } } p[111]; int n; int k; struct ne { long long a[33], d[33]; } a[111]; ne jiao(ne u, ne v, int &ver) { ver = 1; long long a = 0, b = 0, c = 0; int bo = 0; for (int i = (1), _ed = (k + 1); i < _ed; i++) { long long C = v.a[i] - u.a[i]; long long A = u.d[i], B = -v.d[i]; if (A == 0 && B == 0) { if (C != 0) { ver = 0; return u; } else { continue; } } long long D = gcd(A, B); if (C % D != 0) { ver = 0; return u; } A /= D, B /= D, C /= D; if (A < 0) { A *= -1, B *= -1, C *= -1; } if (A == 0 && B > 0) { B *= -1, C *= -1; } if (!bo) { a = A, b = B; c = C; bo = 1; } else { if (a == A && b == B) { if (c != C) { ver = 0; return u; } else { continue; } } else { long long det = a * B - b * A; long long dx = c * B - b * C, dy = a * C - c * A; if (dx % det != 0 || dy % det != 0) { ver = 0; return u; } long long x = dx / det, y = dy / det; for (int j = (1), _ed = (k + 1); j < _ed; j++) { if (u.a[j] + x * u.d[j] != v.a[j] + y * v.d[j]) { ver = 0; return u; } } ne ans; for (int j = (1), _ed = (k + 1); j < _ed; j++) ans.a[j] = u.a[j] + x * u.d[j], ans.d[j] = 0; return ans; } } } if (bo == 0) return u; if (a == 0) { long long y = c / b; if (y < 0) { ver = 0; return u; } ne ans; for (int j = (1), _ed = (k + 1); j < _ed; j++) ans.a[j] = v.a[j] + y * v.d[j], ans.d[j] = 0; return ans; } if (b == 0) { long long x = c / a; if (x < 0) { ver = 0; return u; } ne ans; for (int j = (1), _ed = (k + 1); j < _ed; j++) ans.a[j] = u.a[j] + x * u.d[j], ans.d[j] = 0; return ans; } long long x, y; for (x = 0;; x++) { if ((c - a * x) % b == 0) { y = (c - a * x) / b; break; } } if (y < 0) { long long ned = cei(-y, a); y += ned * a; x -= ned * b; } ne ans; for (int j = (1), _ed = (k + 1); j < _ed; j++) ans.a[j] = u.a[j] + x * u.d[j], ans.d[j] = -b * u.d[j]; return ans; } int main() { gn(n); for (int i = (1), _ed = (n + 1); i < _ed; i++) gn(p[i].a), gn(p[i].b); for (int i = (1), _ed = (n + 1); i < _ed; i++) if (p[i].b == 1) { int bo = 1; for (int j = (1), _ed = (n + 1); j < _ed; j++) bo &= p[j].in(p[i].a); if (bo) printf("%d\n", p[i].a); else printf("-1\n"); return 0; } for (int i = (1), _ed = (n + 1); i < _ed; i++) { int bo = 1; for (int j = (1), _ed = (n + 1); j < _ed; j++) bo &= p[j].in(p[i].a); if (bo) { printf("%d\n", p[i].a); return 0; } } for (int i = (1), _ed = (n + 1); i < _ed; i++) { p[i].pa.zuo(p[i].a); p[i].push_back.zuo(p[i].b); p[i].chuli(); } int bo = 1; for (int i = (1), _ed = (n + 1); i < _ed; i++) { if (!pok(p[i].pa, p[1].pa)) bo = 0; } if (!bo) { printf("-1\n"); return 0; } ::k = p[1].pa.tot; for (int i = (1), _ed = (n + 1); i < _ed; i++) { for (int j = (1), _ed = (k + 1); j < _ed; j++) { a[i].a[j] = p[i].pa.p[j].second; a[i].d[j] = p[i].push_back.p[j].second; } } ne cur = a[1]; for (int i = (2), _ed = (n + 1); i < _ed; i++) { int ver; ne ne = jiao(cur, a[i], ver); if (ver == 0) { printf("-1\n"); return 0; } cur = ne; } int ans = 1; for (int i = (1), _ed = (k + 1); i < _ed; i++) ans = 1ll * ans * qp(p[1].pa.p[i].first, cur.a[i]) % mo; printf("%d\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int n; set<int> all; struct d { map<int, int> v; int &operator[](int x) { return v[x]; } void init(int x) { for (int i = 2; i * i <= x; i++) if (x % i == 0) { int cnt = 0; while (x % i == 0) cnt++, x /= i; v[i] = cnt; all.insert(i); } if (x > 1) { v[x] = 1; all.insert(x); } } bool operator!=(d b) { for (set<int>::iterator it = all.begin(); it != all.end(); it++) if (v[*it] != b[*it]) return 1; return 0; } }; long long gcd(long long a, long long b) { return (b ? gcd(b, a % b) : a); } int trs(d &a) { int g = 0; for (map<int, int>::iterator it = a.v.begin(); it != a.v.end(); it++) g = gcd(g, it->second); if (g) for (map<int, int>::iterator it = a.v.begin(); it != a.v.end(); it++) it->second /= g; return g; } d a[105], b[105]; inline int power(int x, long long y) { int z = 1; while (y) { if (y & 1) z = 1ll * z * x % mod; x = 1ll * x * x % mod; y >>= 1; } return z; } namespace unsame { void chk(d a0, d a1, d b0, d b1) { int aa, bb, cc; bool ok = 0; int x, y; for (set<int>::iterator it = all.begin(); it != all.end(); it++) { int ta = b0[*it]; int tb = -b1[*it]; int tc = a0[*it] - a1[*it]; if (ta || tb || tc) { if (!ta || !tb) { if (!ta && !tb) { puts("-1"); return; } if (!ta) { x = -tc / tb; if (x < 0 || tc % tb) { puts("-1"); return; } swap(a0, b0); } else { x = -tc / ta; if (x < 0 || tc % ta) { puts("-1"); return; } } break; } int g = gcd(gcd(ta, tb), tc); ta /= g; tb /= g; tc /= g; if (ok && (ta != aa || tb != bb || tc != cc)) { int t = ta * bb - tb * aa; if (!t) { puts("-1"); return; } int w = aa * tc - ta * cc; y = w / t; if (y < 0 || y * t != w) { puts("-1"); return; } w = tb * cc - bb * tc; x = w / t; if (x < 0 || x * t != w) { puts("-1"); return; } break; } else { aa = ta; bb = tb; cc = tc; ok = 1; } } } d r; for (set<int>::iterator it = all.begin(); it != all.end(); it++) r[*it] = a0[*it] + x * b0[*it]; for (int i = 1; i <= n; i++) { int p = -1; for (set<int>::iterator it = all.begin(); it != all.end(); it++) { if (b[i][*it]) { int t = (r[*it] - a[i][*it]) / b[i][*it]; if (t * b[i][*it] + a[i][*it] != r[*it]) { puts("-1"); return; } if (p == -1) p = t; if (t != p) { puts("-1"); return; } } else { if (r[*it] != a[i][*it]) { puts("-1"); return; } } } } int res = 1; for (set<int>::iterator it = all.begin(); it != all.end(); it++) { res = 1ll * res * power(*it, r[*it]) % mod; } printf("%d\n", res); } } // namespace unsame namespace same { int k[105], c[105]; int T(d &a, d &b) { int mn = 1e9; for (set<int>::iterator it = all.begin(); it != all.end(); it++) if (b[*it]) { mn = min(mn, a[*it] / b[*it]); } for (set<int>::iterator it = all.begin(); it != all.end(); it++) if (b[*it]) { a[*it] -= mn * b[*it]; } return mn; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) return x = 1, y = 0, a; else { long long d = exgcd(b, a % b, y, x); y -= a / b * x; return d; } } inline long long mul(long long x, long long y, long long mod) { long long z = 0; while (y) { if (y & 1) z = (z + x) % mod; x = (x + x) % mod; y >>= 1; } return z; } void work() { for (int i = 1; i <= n; i++) c[i] = T(a[i], b[i]); for (int i = 2; i <= n; i++) if (a[i] != a[1]) { puts("-1"); exit(0); } long long tk = k[1], tc = c[1]; if (tk) { for (int i = 2; i <= n; i++) { long long C = k[i], D = c[i], v = ((tc - c[i]) % tk + tk) % tk, x, y, dd, aa = tk, t2; dd = exgcd(tk, C, x, y); if (v % dd) { puts("-1"); return; } v /= dd; aa /= dd; t2 = (mul(y, v, aa) + aa) % aa; if (C * t2 + D < tc) t2 += (tc - D - C * t2 + C * aa - 1) / (C * aa) * aa; tc = t2 * C + D; tk = tk / dd * C; } } int res = 1; for (map<int, int>::iterator it = a[1].v.begin(); it != a[1].v.end(); it++) if (it->second) { res = 1ll * res * power(it->first, it->second) % mod; } for (map<int, int>::iterator it = b[1].v.begin(); it != b[1].v.end(); it++) if (it->second) { res = 1ll * res * power(it->first, it->second * tc) % mod; } printf("%d\n", res); } } // namespace same int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { int x, y; scanf("%d%d", &x, &y); a[i].init(x); b[i].init(y); } for (int i = 1; i <= n; i++) same::k[i] = trs(b[i]); for (int i = 2; i <= n; i++) { if (b[1] != b[i]) { for (int i = 1; i <= n; i++) for (map<int, int>::iterator it = b[i].v.begin(); it != b[i].v.end(); it++) it->second *= same::k[i]; unsame::chk(a[1], a[i], b[1], b[i]); return 0; } } same::work(); return 0; }
#include <bits/stdc++.h> using namespace std; const long long Mod = 1e9 + 7; long long add(long long a, const long long b) { a += b; if (a >= Mod) a -= Mod; return a; } long long mul(const long long a, const long long b) { return (long long)a * b % Mod; } long long power(long long x, long long cs) { long long ras = 1; while (cs) { if (cs & 1ll) ras = mul(ras, x); x = mul(x, x); cs >>= 1; } return ras; } const long long N = 110, M = 3050; long long n, m = 0; long long A[N], B[N], pl[M]; void insert(long long n) { long long i; for (i = 2; i * i <= n; i++) { if (n % i != 0) continue; pl[++m] = i; while (n % i == 0) n /= i; } if (n > 1) pl[++m] = n; } struct Comb { long long a[M], b[M]; Comb() { memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); } } h[N]; Comb build(long long A, long long B) { long long i; Comb f; for (i = 1; i <= m; i++) { while (A % pl[i] == 0) f.a[i]++, A /= pl[i]; while (B % pl[i] == 0) f.b[i]++, B /= pl[i]; } return f; } long long bx, by; long long exgcd(long long a, long long b) { if (b == 0) { bx = 1; by = 0; return a; } long long nx, ny, tmp; tmp = exgcd(b, a % b); nx = by; ny = bx - (a / b) * by; bx = nx; by = ny; return tmp; } long long smul(long long a, long long b, long long Mod) { return ((a * b - ((long long)((long double)a * b / Mod) * Mod)) % Mod + Mod) % Mod; } Comb merge(Comb h1, Comb h2) { long long i, j, k, cs, x, y, d, der, pd1, pd2, w, now, pd; static long long a[M][4]; Comb f; memset(a, 0, sizeof(a)); pd1 = pd2 = 0; for (i = 1; i <= m; i++) { a[i][1] = h1.b[i]; a[i][2] = -h2.b[i]; a[i][3] = h2.a[i] - h1.a[i]; if (a[i][1]) pd1 = 1; if (a[i][2]) pd2 = 1; } if (pd1 == 0 && pd2 == 0) { for (i = 1; i <= m; i++) { if (a[i][3]) { puts("-1"); exit(0); } } for (i = 1; i <= m; i++) f.a[i] = h1.a[i], f.b[i] = 0; return f; } if (pd1 == 0 || pd2 == 0) { pd = 0; for (i = 1; i <= m; i++) { if (a[i][1] + a[i][2]) { if (a[i][3] % (a[i][1] + a[i][2]) != 0) { puts("-1"); exit(0); } now = a[i][3] / (a[i][1] + a[i][2]); if (pd == 0) w = now, pd = 1; else if (now != w) { puts("-1"); exit(0); } } } for (i = 1; i <= m; i++) f.a[i] = (pd2 ? h1.a[i] : h2.a[i]), f.b[i] = 0; return f; } for (i = 1; i <= 2; i++) { for (j = i + 1; j <= m; j++) { if (a[j][i]) { for (k = i; k <= 3; k++) swap(a[i][k], a[j][k]); } } if (a[i][i] == 0) continue; for (j = i + 1; j <= m; j++) { if (i == j) continue; while (a[i][i] && a[j][i]) { cs = a[j][i] / a[i][i]; for (k = i; k <= 3; k++) a[j][k] -= cs * a[i][k]; for (k = i; k <= 3; k++) swap(a[i][k], a[j][k]); } if (a[i][i] == 0) for (k = i; k <= 3; k++) swap(a[i][k], a[j][k]); } } for (i = 1; i <= m; i++) { if (a[i][1] == 0 && a[i][2] == 0 && a[i][3] > 0) { puts("-1"); exit(0); } } if (a[2][2] == 0) { d = exgcd(a[1][1], a[1][2]); if (a[1][3] % d != 0) { puts("-1"); exit(0); } der = abs(a[1][2] / d); bx = smul(bx % der, (a[1][3] / d) % der, der); der = abs(a[1][1] / d); by = smul(by % der, (a[1][3] / d) % der, der); bx = max(bx, (a[1][3] - a[1][2] * by) / a[1][1]); for (i = 1; i <= m; i++) f.a[i] = h1.a[i] + bx * h1.b[i], f.b[i] = abs(a[1][1] / d * a[1][2]); return f; } else { if (a[1][3] % a[1][1] != 0 || a[2][3] % a[2][2] != 0) { puts("-1"); exit(0); } else { y = a[2][3] / a[2][2]; x = (a[1][3] - y * a[1][2]) / a[1][1]; if (x < 0 || y < 0) { puts("-1"); exit(0); } for (i = 1; i <= m; i++) f.a[i] = h1.a[i] + x * h1.b[i], f.b[i] = 0; return f; } } } long long qry(Comb a) { long long ans = 1, i; for (i = 1; i <= m; i++) { ans = mul(ans, power(pl[i], a.a[i])); } return ans; } int main() { ios::sync_with_stdio(false); long long i, j; cin >> n; for (i = 1; i <= n; i++) { cin >> A[i] >> B[i]; insert(A[i]); insert(B[i]); } sort(pl + 1, pl + m + 1); m = unique(pl + 1, pl + m + 1) - pl - 1; for (i = 1; i <= n; i++) h[i] = build(A[i], B[i]); for (i = n - 1; i >= 1; i--) { h[i] = merge(h[i], h[i + 1]); for (j = 1; j <= m; j++) { if (h[i].a[j] < 0) { puts("-1"); exit(0); } } } cout << qry(h[1]); return 0; }
#include <bits/stdc++.h> using namespace std; int n; int a[110], b[110], c[110], d[110]; vector<int> stdprimes; vector<int> sepra(int x) { vector<int> res = vector<int>(); for (int i = 2; i * i <= x; i++) { if (x % i == 0) { res.push_back(i); while (x % i == 0) x /= i; } } if (x != 1) res.push_back(x); return res; } struct record { vector<int> stdpows; vector<int> extrapr; vector<int> extrapo; record() { stdpows.clear(); extrapr.clear(); extrapo.clear(); } record(int x) { for (int i = 0; i < stdprimes.size(); i++) { stdpows.push_back(0); while (x % stdprimes[i] == 0) { x /= stdprimes[i]; stdpows.back()++; } } for (int i = 2; i * i <= x; i++) { if (x % i == 0) { extrapr.push_back(i); extrapo.push_back(0); while (x % i == 0) { x /= i; extrapo.back()++; } } } if (x != 1) { extrapr.push_back(x); extrapo.push_back(1); } } }; inline long long quickpow(long long base, long long ind) { long long ans = 1; while (ind > 0) { if (ind & 1) ans = ans * base % 1000000007; ind >>= 1; base = base * base % 1000000007; } return ans; } inline void mul(long long &a, long long b) { a = a * b % 1000000007; } inline long long extgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = extgcd(b, a % b, y, x); y = y - a / b * x; return g; } void combine(long long &a1, long long &m1, int a2, int m2) { long long c = a2 - a1; long long a = m1, b = m2; long long x, y, g; g = extgcd(a, b, x, y); if (c % g != 0) { cout << -1; exit(0); } long long b1 = b / g; long long x1 = ((x + b1) * c / g); x1 = (x1 % b1 + b1) % b1; long long y1 = ((c - a * x1) / b); a1 = a1 + m1 * x1; m1 = m1 * m2 / g; } void trysingle(int id, int pos) { stdprimes.clear(); record fst(a[id]); stdprimes = fst.extrapr; record ratio(b[id]); for (int i = 0; i < ratio.extrapr.size(); i++) stdprimes.push_back(ratio.extrapr[i]); fst = record(a[id]); ratio = record(b[id]); vector<int> cnt; for (int i = 0; i < fst.stdpows.size(); i++) { cnt.push_back(fst.stdpows[i]); cnt.back() += ratio.stdpows[i] * pos; } for (int i = 0; i < n; i++) { record curfst(a[i]); record currat(b[i]); if (!curfst.extrapr.empty()) { cout << -1; exit(0); } int curneed = -1; for (int j = 0; j < stdprimes.size(); j++) { if (curfst.stdpows[j] > cnt[j]) { cout << -1; exit(0); } int need = cnt[j] - curfst.stdpows[j]; if (!currat.stdpows[j]) { if (need) { cout << -1; exit(0); } continue; } else if (need % currat.stdpows[j] != 0) { cout << -1; exit(0); } need /= currat.stdpows[j]; if (curneed == -1) curneed = need; else if (curneed != need) { cout << -1; exit(0); } } if (curneed > 0 && !currat.extrapr.empty()) { cout << -1; exit(0); } } long long ans = a[id]; mul(ans, quickpow(b[id], pos)); cout << ans; exit(0); } int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i] >> b[i]; for (int i = 0; i < n; i++) if (b[i] == 1) trysingle(i, 0); if (n == 1) { cout << a[0]; return 0; } stdprimes = sepra(b[0]); record fst(a[0]); record ratio(b[0]); c[0] = fst.stdpows[0]; d[0] = ratio.stdpows[0]; for (int i = 1; i < n; i++) { record curfst(a[i]); record currat(b[i]); if (!currat.extrapr.empty()) { int needPow = 0, p = currat.extrapr[0], pw = currat.extrapo[0]; for (int j = 0; j < fst.extrapr.size(); j++) { if (fst.extrapr[j] == p) { needPow += fst.extrapo[j]; break; } } for (int j = 0; j < curfst.extrapr.size(); j++) { if (curfst.extrapr[j] == p) { needPow -= curfst.extrapo[j]; break; } } if (needPow < 0 || needPow % pw != 0) { cout << -1; return 0; } trysingle(i, needPow / pw); } c[i] = curfst.stdpows[0]; d[i] = currat.stdpows[0]; int fstpos = 0, errpos = -1; while (fstpos < stdprimes.size() && currat.stdpows[fstpos] == 0) fstpos++; int pow0 = ratio.stdpows[fstpos]; int powi = currat.stdpows[fstpos]; for (int j = 0; j < stdprimes.size(); j++) { if (ratio.stdpows[j] * powi != currat.stdpows[j] * pow0) { errpos = j; break; } } if (~errpos) { int s1 = fst.stdpows[fstpos], s2 = fst.stdpows[errpos]; int t1 = curfst.stdpows[fstpos], t2 = curfst.stdpows[errpos]; int u1 = ratio.stdpows[fstpos], u2 = ratio.stdpows[errpos]; int v1 = currat.stdpows[fstpos], v2 = currat.stdpows[errpos]; int mulx = u1 * v2 - u2 * v1; int eqa = t1 * v2 - t2 * v1 - s1 * v2 + s2 * v1; if (mulx == 0 || (abs(eqa) % abs(mulx) != 0) || eqa / mulx < 0) { cout << -1; return 0; } trysingle(0, eqa / mulx); } if (fst.extrapr.size() != curfst.extrapr.size()) { cout << -1; return 0; } for (int j = 0; j < fst.extrapr.size(); j++) if (fst.extrapr[j] != curfst.extrapr[j] || fst.extrapo[j] != curfst.extrapo[j]) { cout << -1; return 0; } int dif = curfst.stdpows[0] - fst.stdpows[0]; for (int j = 1; j < stdprimes.size(); j++) { int curdif = curfst.stdpows[j] - fst.stdpows[j]; if (dif * ratio.stdpows[j] != curdif * ratio.stdpows[0]) { cout << -1; return 0; } } } long long ansC = c[0], ansD = d[0]; for (int i = 1; i < n; i++) { combine(ansC, ansD, c[i], d[i]); } for (int i = 0; i < n; i++) { if (ansC < c[i]) { (ansC += ((c[i] - ansC + ansD - 1) / ansD) * ansD); } } long long ans = a[0]; ansC /= ratio.stdpows[0]; mul(ans, quickpow(b[0], ansC)); cout << ans; return 0; }
#include <bits/stdc++.h> using namespace std; void GG() { cout << -1 << endl, exit(0); } const int N = 110, P = 1000000007; long long mul(long long x, long long y) { return 1ll * x * y % P; } void upd(long long &x, long long y) { x = mul(x, y); } long long Pow(long long x, long long y) { long long ret = 1; while (y) { if (y & 1) upd(ret, x); upd(x, x), y >>= 1; } return ret; } long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } struct Num { vector<pair<int, long long>> p; inline void read() { int x; cin >> x; for (int i = 2; i * i <= x; i++) if (!(x % i)) { p.push_back(make_pair(i, 0ll)); while (!(x % i)) ++p.back().second, x /= i; } if (x != 1) p.push_back(make_pair(x, 1ll)); } inline void out() { long long ans = 1; for (auto o : p) if (o.second < 0) GG(); for (auto o : p) upd(ans, Pow(o.first, o.second)); cout << ans << endl; } inline friend bool operator==(Num x, Num y) { if (x.p.size() != y.p.size()) return false; for (int i = 0; i < x.p.size(); i++) if (x.p[i].first != y.p[i].first || x.p[i].second != y.p[i].second) return false; return true; } inline friend Num operator*(Num x, Num y) { Num z; int i = 0, j = 0; while (i < x.p.size() && j < y.p.size()) if (x.p[i].first == y.p[j].first) z.p.push_back(make_pair(x.p[i].first, x.p[i].second + y.p[j].second)), ++i, ++j; else if (x.p[i].first < y.p[j].first) z.p.push_back(x.p[i++]); else z.p.push_back(y.p[j++]); while (i < x.p.size()) z.p.push_back(x.p[i++]); while (j < y.p.size()) z.p.push_back(y.p[j++]); return z; } inline friend bool operator%(Num x, Num y) { for (int i = 0, j = 0; j < y.p.size(); i++, j++) { while (i < x.p.size() && x.p[i].first != y.p[j].first) ++i; if (i == x.p.size() || x.p[i].second < y.p[j].second) return 1; } return 0; } inline friend Num operator/(Num x, Num y) { Num z; for (int i = 0, j = 0; i < x.p.size(); i++) if (j < y.p.size() && x.p[i].first == y.p[j].first) { z.p.push_back(make_pair(x.p[i].first, x.p[i].second - y.p[j++].second)); if (!z.p.back().second) z.p.pop_back(); } else z.p.push_back(x.p[i]); return z; } inline friend Num operator&(Num x, Num y) { Num z; for (int i = 0, j = 0; i < x.p.size(); i++) if (j < y.p.size() && x.p[i].first == y.p[j].first) z.p.push_back(make_pair(x.p[i].first, x.p[i].second - y.p[j++].second)); else z.p.push_back(x.p[i]); return z; } inline friend bool operator|(Num x, Num y) { if (!x.p.size()) return 0; long long k; for (int i = 0, j = 0; i <= x.p.size(); i++, j++) { while (j < y.p.size() && !y.p[j].second) ++j; if (i == x.p.size()) { if (j == y.p.size()) return 0; return 1; } if (j == y.p.size()) return 1; if (x.p[i].first != y.p[j].first || x.p[i].second % y.p[j].second) return 1; if (!i) k = x.p[i].second / y.p[j].second; else if ((x.p[i].second / y.p[j].second) != k) return 1; } return 0; } inline friend Num operator^(Num x, long long y) { for (auto &o : x.p) o.second *= y; return x; } inline friend Num operator+(Num x, Num y) { Num z; for (int i = 0; i < x.p.size(); i++) z.p.push_back(make_pair( x.p[i].first, x.p[i].second * y.p[i].second / gcd(x.p[i].second, y.p[i].second))); return z; } } a[N], b[N], c[N], A, B; int n; bool check(Num x) { for (int i = 1; i <= n; i++) if ((x % a[i]) || ((x / a[i]) | b[i])) return false; return true; } struct Pro { long long k, b, p; inline Pro(long long k = 0, long long b = 0, long long p = 0) : k(k), b(b), p(p) {} bool operator==(const Pro t) const { return k == t.k && b == t.b && p == t.p; } }; void exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) return x = 1, y = 0, void(); exgcd(b, a % b, y, x); return y -= a / b * x, void(); } long long solve(Pro x, Pro y) { long long a = x.b * y.p - y.b * x.p, b = x.k * y.p - y.k * x.p; if (!b || a % b) GG(); return a / b; } bool merge(int o) { vector<Pro> pro; for (int i = 0; i < A.p.size(); i++) { long long k1 = B.p[i].second, b1 = A.p[i].second; long long k2 = b[o].p[i].second, b2 = a[o].p[i].second; if (!k1 && !k2) { if (b1 ^ b2) GG(); continue; } if (!k1) { if (b1 < b2 || (b1 - b2) % k2) GG(); return A = a[o] * (b[o] ^ ((b1 - b2) / k2)), 0; } if (!k2) { if (b2 < b1 || (b2 - b1) % k1) GG(); return A = A * (B ^ ((b2 - b1) / k1)), 0; } long long d = gcd(k1, k2), g = b2 - b1; if (g % d) GG(); g /= d, k1 /= d, k2 /= d; if (pro.size()) { if (pro[0] == Pro(k1, g, k2)) continue; return A = A * (B ^ solve(pro[0], Pro(k1, g, k2))), 0; } pro.push_back(Pro(k1, g, k2)); } if (pro.size()) { long long k1 = pro[0].k, p1 = pro[0].p, b1 = pro[0].b, x, y; exgcd(k1, p1, x, y); b1 = (b1 % p1 + p1) % p1; x = (x % p1 * b1 % p1 + p1) % p1; A = A * (B ^ x), B = B + b[o]; } return 1; } int main() { ios::sync_with_stdio(false); cin >> n; for (int i = 1; i <= n; i++) a[i].read(), b[i].read(), c[i] = a[i] * b[i]; int flag = 1; for (int i = 2; i <= n; i++) if (!(a[i] == a[1])) { flag = false; break; } if (flag == 1) return a[1].out(), 0; for (int i = 1; i <= n; i++) if (check(a[i])) return a[i].out(), 0; for (int i = 1; i <= n; i++) { if (c[i].p.size() != c[1].p.size()) GG(); for (int j = 0; j < c[1].p.size(); j++) if (c[i].p[j].first ^ c[1].p[j].first) GG(); a[i] = c[i] & b[i], b[i] = c[i] & a[i]; } A = a[1], B = b[1]; for (int i = 2; i <= n; i++) { if (!merge(i)) { if (check(A)) return A.out(), 0; GG(); } } return A.out(), 0; return 0; }
#include <bits/stdc++.h> const int Maxn = 100; const int Mod = 1000000007; const int Maxm = 6000; int quick_power(int a, long long b) { int ans = 1; while (b) { if (b & 1) { ans = 1ll * ans * a % Mod; } b >>= 1; a = 1ll * a * a % Mod; } return ans; } long long gcd(long long a, long long b) { if (b == 0) { return a; } return gcd(b, a % b); } long long exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1, y = 0; return a; } long long d = exgcd(b, a % b, y, x); y -= a / b * x; return d; } int n; int a[Maxn + 5], b[Maxn + 5]; struct Node { long long k, b; Node(long long _k = 0, long long _b = 0) { k = _k; b = _b; } }; int p[Maxm + 5]; int len; Node f[Maxm + 5], g[Maxm + 5]; void get_p(int x) { for (int i = 2; i * i <= x; i++) { if (x % i == 0) { p[++len] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { p[++len] = x; } } struct Function { long long a, b, c; Function(long long _a = 0, long long _b = 0, long long _c = 0) { a = _a; b = _b; c = _c; } }; bool vis; int solve(int b, int k) { for (int i = 1; i <= len; i++) { g[i] = Node(0, 0); } for (int i = 1; i <= len; i++) { while (k % p[i] == 0) { k /= p[i]; g[i].k++; } while (b % p[i] == 0) { b /= p[i]; g[i].b++; } } if (!vis) { for (int i = 1; i <= len; i++) { f[i] = g[i]; } vis = 1; return 1; } for (int t = 0; t < 3; t++) { for (int i = 1; i <= n; i++) { long long f_b = f[i].b, f_k = f[i].k, g_b = g[i].b, g_k = g[i].k; if (f_k == 0 && g_k == 0) { if (f_b != g_b) { return 0; } } else if (f_k == 0 || g_k == 0) { bool flag = 0; if (f_k == 0) { std::swap(f_k, g_k); std::swap(f_b, g_b); flag = 1; } if (g_b < f_b || (g_b - f_b) % f_k) { return 0; } long long k = (g_b - f_b) / f_k; if (flag) { for (int j = 1; j <= len; j++) { g[j].b += g[j].k * k; g[j].k = 0; } } else { for (int j = 1; j <= len; j++) { f[j].b += f[j].k * k; f[j].k = 0; } } } } } Function F; int flag = 0; long long x = -1, y = -1; for (int i = 1; i <= len; i++) { long long f_b = f[i].b, f_k = f[i].k, g_b = g[i].b, g_k = g[i].k; if (f_k && g_k) { if (!flag) { F = Function(f_k, -g_k, g_b - f_b); flag = 1; } else if (flag == 1) { long long a = f_k, b = -g_k, c = g_b - f_b; long long d = gcd(F.a, a); long long m_1 = a / d, m_2 = F.a / d; F.a *= m_1, F.b *= m_1, F.c *= m_1; a *= m_2, b *= m_2, c *= m_2; if (F.a == a && F.b == b) { if (F.c != c) { return 0; } else { long long d = gcd(gcd(F.a, std::abs(F.b)), std::abs(F.c)); F.a /= d, F.b /= d, F.c /= d; continue; } } else { c -= F.c, b -= F.b; if (c < 0) { c = -c; b = -b; } if (b < 0 || c % b) { return 0; } y = c / b, x = (F.c - F.b * y) / F.a; if (x < 0 || (F.c - F.b * y) % F.a) { return 0; } flag = 2; } } else if (flag == 2) { long long a = f_k, b = -g_k, c = g_b - f_b; if (a * x + b * y != c) { return 0; } } } } if (flag == 2) { for (int i = 1; i <= n; i++) { f[i].b += f[i].k * x; f[i].k = 0; } } if (flag == 1) { long long x, y; long long d = exgcd(F.a, -F.b, x, y); y = -y; if (F.c % d) { return 0; } long long k_x = -F.b / d, k_y = F.a / d; x *= F.c / d, y *= F.c / d; long long t_x = 0, t_y = 0; if (x < 0) { t_x = -((-x + k_x - 1) / k_x); } else { t_x = x / k_x; } if (y < 0) { t_y = -((-y + k_y - 1) / k_y); } else { t_y = y / k_y; } x -= k_x * std::min(t_x, t_y); y -= k_y * std::min(t_x, t_y); for (int i = 1; i <= n; i++) { f[i].b += f[i].k * x; f[i].k *= k_x; } } return 1; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d%d", &a[i], &b[i]); get_p(a[i]); get_p(b[i]); } std::sort(p + 1, p + 1 + len); len = std::unique(p + 1, p + 1 + len) - p - 1; for (int i = 1; i <= n; i++) { if (!solve(a[i], b[i])) { puts("-1"); return 0; } } int ans = 1; for (int i = 1; i <= len; i++) { ans = 1ll * ans * quick_power(p[i], f[i].b) % Mod; } printf("%d\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; template <typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; } template <typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; } const int oo = 0x3f3f3f3f; const int Mod = 1e9 + 7; template <typename T> T &Read(T &first) { static char c; while (!isdigit(c = getchar())) ; first = c - '0'; while (isdigit(c = getchar())) (first *= 10) += c - '0'; return first; } inline long long mul(long long b, long long e, const long long &m) { long long t = 0; for (; e; e >>= 1, (b <<= 1) %= m) if (e & 1) (t += b) %= m; return t; } const int max0 = 3500, max1 = 1000000000; const int maxn = 100; int pr[max0 + 5]; int pn = 0; inline void prepare() { for (int i = 2; i * i <= max1; ++i) { bool flag = 1; for (int j = 2; j * j <= i; ++j) if (!(i % j)) { flag = 0; break; } if (flag) pr[pn++] = i; } } int A[maxn + 5], B[maxn + 5]; int aa[max0 + 5], bb[max0 + 5]; template <typename T> T ex_gcd(T a, T b, T &first, T &second) { if (!b) { first = 1, second = 0; return a; } T d = ex_gcd(b, a % b, second, first); second -= a / b * first; return d; } struct data { int a, b, c; data() {} data(const int &_a, const int &_b, const int &_c) : a(_a), b(_b), c(_c) {} }; data a[maxn + 5]; int an = 0; inline int get(int first, const int &second) { int ret = 0; while (!(first % pr[second])) first /= pr[second], ++ret; return ret; } template <typename T> inline T ceil(T a, T b) { if (b < 0) a = -a, b = -b; if (a < 0) return a / b; return (a + b - 1) / b; } template <typename T> inline T floor(T a, T b) { return -ceil(-a, -b); } int main() { prepare(); int n; scanf("%d", &n); for (int i = (0), _end_ = (n); i < _end_; ++i) scanf("%d%d", B + i, A + i); for (int i = (0), _end_ = (pn); i < _end_; ++i) aa[i] = get(A[n - 1], i), bb[i] = get(B[n - 1], i); long long ans = -1; for (int i = (0), _end_ = (n - 1); i < _end_; ++i) { bool flag = 0; data pre; for (int j = (0), _end_ = (pn); j < _end_; ++j) { int a0 = aa[j], b0 = bb[j]; int a1 = get(A[i], j), b1 = get(B[i], j); if (a0 || a1 || b0 != b1) { if (b0 != b1 && !a0 && !a1) printf("-1\n"), exit(0); if (a0 || a1) { if (!flag) pre = data(a0, -a1, b0 - b1); else { int newa = a0, newb = -a1, newc = b0 - b1; int D = -(pre.a * newb - pre.b * newa); int X = pre.c * newb - pre.b * newc; int Y = pre.a * newc - pre.c * newa; if (!D) { if (X || Y) printf("-1\n"), exit(0); } else { if (X % D || Y % D) printf("-1\n"), exit(0); else { if (X / D < 0 || Y / D < 0) printf("-1\n"), exit(0); if (ans != -1 && X / D != ans) printf("-1\n"), exit(0); ans = X / D; } } } flag = 1; } } } if (flag) a[an++] = pre; } for (int i = (0), _end_ = (an); i < _end_; ++i) if (!a[i].b) { if (a[i].c % a[i].a) printf("-1\n"), exit(0); if (a[i].c * a[i].a > 0) printf("-1\n"), exit(0); if (ans != -1 && (-a[i].c) / a[i].a != ans) printf("-1\n"), exit(0); ans = (-a[i].c) / a[i].a; } if (ans != -1) { for (int i = (0), _end_ = (an); i < _end_; ++i) { a[i].c += a[i].a * ans; if (a[i].b) { if (a[i].c % a[i].b) printf("-1\n"), exit(0); if (a[i].c * a[i].b > 0) printf("-1\n"), exit(0); } else if (a[i].c) printf("-1\n"), exit(0); } } else { static int val[maxn + 5]; static int Mod[maxn + 5]; int m = 0; long long Min = 0, Max = LLONG_MAX; for (int i = (0), _end_ = (an); i < _end_; ++i) if (!a[i].a) { if (a[i].c % a[i].b) printf("-1\n"), exit(0); if (a[i].c * a[i].b > 0) printf("-1\n"), exit(0); } else { static int first, second; int d = ex_gcd(a[i].a, a[i].b, first, second); if (a[i].c % d) printf("-1\n"), exit(0); first *= (-a[i].c) / d; Mod[m] = abs(a[i].b / d); val[m] = first % Mod[m]; ++m; if (a[i].b < 0) Min = max(Min, (long long)ceil(-a[i].c, a[i].a)); else Max = min(Max, (long long)floor(-a[i].c, a[i].a)); } if (Min > Max) printf("-1\n"), exit(0); long long a = 0, b = 1; for (int i = (0), _end_ = (m); i < _end_; ++i) { static long long first, second; long long d = ex_gcd(b, (long long)Mod[i], first, second); long long res = a % d; if ((val[i] - res) % d) printf("-1\n"), exit(0); b /= d, Mod[i] /= d; (a -= res) /= d; (val[i] -= res) /= d; long long newb = b * Mod[i]; (a += b) %= b; (val[i] += Mod[i]) %= Mod[i]; a = (mul(mul(first, b, newb), val[i], newb) + mul(mul(second, Mod[i], newb), a, newb)) % newb; b = newb * d; ((a *= d) += res) %= b; } (a += b) %= b; ans = ceil(Min - a, b) * b + a; if (ans > Max) printf("-1\n"), exit(0); } long long t = 1; long long b = A[n - 1]; assert(ans >= 0); for (; ans; ans >>= 1, (b *= b) %= Mod) if (ans & 1) (t *= b) %= Mod; (t *= B[n - 1]) %= Mod; printf("%I64d\n", t); return 0; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; long long mul(long long a, long long b, long long mod) { long long res = 0; for (; b; b >>= 1, a = (a + a) % mod) if (b & 1) res = (res + a) % mod; return res; } long long pow(long long b, long long e, long long mod) { long long res = 1; for (; e; e >>= 1, b = mul(b, b, mod)) if (e & 1) res = mul(res, b, mod); return res; } long long gcd(long long a, long long b) { if (a < 0) a = -a; if (b < 0) b = -b; for (; b;) { long long res = a % b; a = b; b = res; } return a; } long long phi(long long x) { long long ans = x; for (long long i = 2; i * i <= x; i++) { if (x % i == 0) { for (; x % i == 0; x /= i) ; ans -= ans / i; } } if (x != 1) ans -= ans / x; return ans; } void reject() { printf("-1\n"); exit(0); } void read(map<int, pair<long long, long long> > &mp) { int x, y; scanf("%d %d", &x, &y); for (int i = 2; i * i <= x; i++) { if (x % i == 0) { int cnt = 0; for (; x % i == 0; x /= i, cnt++) ; mp[i].first += cnt; } } if (x > 1) mp[x].first++; for (int i = 2; i * i <= y; i++) { if (y % i == 0) { int cnt = 0; for (; y % i == 0; y /= i, cnt++) ; mp[i].second += cnt; } } if (y > 1) mp[y].second++; return; } long long solve(long long a, long long b, long long c) { if (a == 0) return 0; if (b == 0) return c / a; long long ta = mul(pow(a, phi(-b) - 1, -b), (c % (-b) + (-b)) % (-b), -b); long long tb = (c - ta * a) / b; if (tb < 0) { long long d = (-tb + a - 1) / a; ta += -b * d; tb += a * d; } return ta; } map<int, pair<long long, long long> > merge( map<int, pair<long long, long long> > a, map<int, pair<long long, long long> > b) { long long la = 0, lb = 0, lc = 0, px = 0, py = 0, l = 0, p = 0; for (auto it = b.begin(); it != b.end(); it++) a[it->first]; for (auto it = a.begin(); it != a.end(); it++) { pair<long long, long long> &pa = it->second; pair<long long, long long> &pb = b[it->first]; long long A = pa.second, B = -pb.second, C = pb.first - pa.first, GCD = gcd(A, B); if (A == 0 && B == 0) { if (C) reject(); continue; } if (C % GCD) reject(); A /= GCD; B /= GCD; C /= GCD; if (A < 0 || (A == 0 && B < 0)) { A = -A; B = -B; C = -C; } if (p) { if (px * A + py * B != C) reject(); } else if (l) { if (la == A && lb == B) { if (lc != C) reject(); } else { long long x0 = A * lb - B * la, x1 = C * lb - B * lc; long long y0 = B * la - A * lb, y1 = C * la - A * lc; if (x1 % x0 || y1 % y0) reject(); l = 0; p = 1; px = x1 / x0; py = y1 / y0; if (px < 0 || py < 0) reject(); } } else { l = 1; la = A; lb = B; lc = C; } } if (l) { map<int, pair<long long, long long> > ans; for (auto it = a.begin(); it != a.end(); it++) { ans[it->first] = { it->second.first + it->second.second * solve(la, lb, lc), it->second.second * (-lb)}; } return ans; } else if (p) { map<int, pair<long long, long long> > ans; for (auto it = a.begin(); it != a.end(); it++) { ans[it->first] = {px * it->second.second + it->second.first, 0}; } return ans; } return a; } map<int, pair<long long, long long> > a[105]; int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) { read(a[i]); if (i != 1) a[i] = merge(a[i], a[i - 1]); } long long ans = 1; for (auto it = a[n].begin(); it != a[n].end(); it++) ans = ans * 1ll * pow(it->first, it->second.first, mod) % mod; printf("%lld\n", ans); return 0; }
#include <bits/stdc++.h> using namespace std; template <typename T> void read(T &t) { t = 0; char ch = getchar(); int f = 1; while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } do { (t *= 10) += ch - '0'; ch = getchar(); } while ('0' <= ch && ch <= '9'); t *= f; } const long long mod = (1e9) + 7; const long long M = 998244353; const double eps = 1e-6; int n, cnt[110]; long long a[110], b[110], w[110], B[110], tmp; void No() { printf("-1\n"); exit(0); } int lg(long long x) { return (int)ceil(log(1.0 * x) / log(2.0)); } long long ksm(long long x, long long y) { long long res = 1; while (y) { if (y & 1) res = res * x % mod; x = x * x % mod; y >>= 1; } return res; } long long gcd(long long x, long long y) { if (!x || !y) return x + y; return gcd(y, x % y); } void solve1(int x) { for (int i = 1; i <= n; i++) { if (b[i] == 1 && a[i] != a[x]) No(); if (b[i] > 1) { tmp = a[i]; while (1) { if (tmp > a[x] / b[i]) No(); tmp *= b[i]; if (tmp == a[x]) break; } } } printf("%lld\n", a[x]); exit(0); } void solve2(int x) { long long t1 = a[1] % M, t2, t3; int num = -1; for (int i = 0; i < 400; i++) { t2 = a[x] % M; for (int j = 0; j < 400; j++) { if (t1 == t2) { t3 = t1, num = i; break; } t2 = t2 * b[x] % M; } if (num != -1) break; t1 = t1 * b[1] % M; } if (num == -1) No(); bool flag; for (int i = 1; i <= n; i++) { t1 = a[i] % M; flag = 0; for (int j = 0; j <= 100000; j++) { if (t1 == t3) { flag = 1; break; } t1 = t1 * b[i] % M; } if (!flag) No(); } tmp = a[1]; while (num--) tmp = tmp * b[1] % mod; printf("%lld\n", tmp); exit(0); } int main() { srand(time(0)); read(n); for (int i = 1; i <= n; i++) read(a[i]), read(b[i]); for (int i = 1; i <= n; i++) if (b[i] == 1) solve1(i); for (int i = 1; i <= n; i++) { for (int j = 1; j <= lg(b[i]); j++) { tmp = (long long)floor(pow(b[i], 1.0 / j) + 0.5); if (fabs(pow(tmp, j) - b[i]) < eps) B[i] = j, w[i] = tmp; } } for (int i = 2; i <= n; i++) if (w[i] != w[1]) solve2(i); int mx = 0; for (int i = 1; i <= n; i++) { while (a[i] % w[i] == 0) a[i] /= w[i], cnt[i]++; mx = max(mx, cnt[i]); } for (int i = 2; i <= n; i++) if (a[i] != a[1]) No(); long long Lcm = B[1], z, ans = cnt[1]; bool flag = 1; for (int i = 2; i <= n; i++) { flag = 0; for (int j = 0; j < B[i]; j++) if ((ans + Lcm * j) % B[i] == cnt[i] % B[i]) { ans += Lcm * j; flag = 1; break; } if (!flag) No(); z = gcd(Lcm, B[i]); Lcm = Lcm / z * B[i]; } while (ans < mx) ans += Lcm; printf("%lld\n", a[1] * ksm(w[1], ans) % mod); return 0; }
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int n, cnt; int pm[10003], f[10003], g[10003]; long long a[10003], b[10003], c[10003], d[10003]; void ex_gcd(long long, long long, long long &, long long &); int quick_pow(int, int); bool merge(); void fac(int, long long *); void prime(int); long long gcd(long long, long long); int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d%d", f + i, g + i); prime(f[i]); prime(g[i]); } sort(pm + 1, pm + 1 + cnt); cnt = unique(pm + 1, pm + 1 + cnt) - pm - 1; fac(f[1], a); fac(g[1], b); for (int i = 2; i <= n; ++i) { fac(f[i], c); fac(g[i], d); if (!merge()) return puts("-1"), 0; } int ans = 1; for (int i = 1; i <= cnt; ++i) ans = 1ll * ans * quick_pow(pm[i], a[i] % (mod - 1)) % mod; cout << ans << endl; return 0; } void prime(int x) { for (int i = 2; i * i <= x; ++i) if (x % i == 0) { pm[++cnt] = i; while (x % i == 0) x /= i; } if (x > 1) pm[++cnt] = x; return; } void fac(int x, long long *p) { for (int i = 1; i <= cnt; ++i) { p[i] = 0; while (x % pm[i] == 0) ++p[i], x /= pm[i]; } return; } int quick_pow(int x, int y) { int sum = 1; for (; y; y >>= 1, x = 1ll * x * x % mod) if (y & 1) sum = 1ll * sum * x % mod; return sum; } void ex_gcd(long long x, long long y, long long &a, long long &b) { if (!y) return a = 1, b = 0, void(); ex_gcd(y, x % y, a, b); a -= x / y * b; swap(a, b); return; } long long gcd(long long x, long long y) { return !y ? x : gcd(y, x % y); } bool merge() { long long cb = 0, cd = 0; for (int i = 1; i <= cnt; ++i) cb += b[i], cd += d[i]; if (!cb && !cd) { for (int i = 1; i <= cnt; ++i) if (a[i] != c[i]) return false; return true; } if (!cb || !cd) { if (!cb) swap(a, c), swap(b, d), swap(cb, cd); long long k = 0; for (int i = 1; i <= cnt; ++i) if (b[i]) { if (c[i] < a[i] || (c[i] - a[i]) % b[i]) return false; k = (c[i] - a[i]) / b[i]; break; } else if (a[i] != c[i]) return false; for (int i = 1; i <= cnt; ++i) { if (a[i] + k * b[i] != c[i]) return false; a[i] += k * b[i]; b[i] = 0; } return true; } int p1 = 0, p2 = 0; for (int i = 1; i <= cnt; ++i) if (b[i] * cd != d[i] * cb) { p1 = i; break; } if (p1) { for (int i = 1; i <= cnt; ++i) if (b[i] * d[p1] != d[i] * b[p1]) { p2 = i; break; } long long x1 = c[p1] * d[p2] - c[p2] * d[p1] - a[p1] * d[p2] + a[p2] * d[p1]; long long x2 = a[p1] * b[p2] - a[p2] * b[p1] - c[p1] * b[p2] + c[p2] * b[p1]; long long y1 = b[p1] * d[p2] - b[p2] * d[p1]; long long y2 = d[p1] * b[p2] - d[p2] * b[p1]; if (x1 * y1 < 0 || x2 * y2 < 0 || abs(x1) % abs(y1) || abs(x2) % abs(y2)) return false; x1 /= y1; x2 /= y2; for (int i = 1; i <= cnt; ++i) { if (a[i] + b[i] * x1 != c[i] + d[i] * x2) return false; a[i] += b[i] * x1; b[i] = 0; } return true; } long long kb, kd, k; for (int i = 1; i <= cnt; ++i) if (b[i]) { long long g = gcd(b[i], d[i]); kb = b[i] / g; kd = d[i] / g; break; } for (int i = 1; i <= cnt; ++i) if (b[i]) { if ((a[i] - c[i]) % (b[i] / kb) == 0) { k = (a[i] - c[i]) / (b[i] / kb); break; } else return false; } for (int i = 1; i <= cnt; ++i) if (c[i] + (b[i] / kb) * k != a[i]) return false; if (k < 0) swap(a, c), swap(b, d), swap(kb, kd), k = -k; long long x, y; ex_gcd(kb, kd, x, y); x = (-k * x % kd + kd) % kd; for (int i = 1; i <= cnt; ++i) a[i] += b[i] * x, b[i] *= kd; return true; }
#include <bits/stdc++.h> using namespace std; const int N = 514; long long gcd(long long a, long long b) { return !b ? a : gcd(b, a % b); } long long msk(long long a, long long b, long long k, int md) { a %= md; k %= md; while (b) { if (b & 1) k = k * a % md; a = a * a % md; b >>= 1; } return k; } pair<int, int> a[N]; map<int, int> mp; int n; long long t[N], s[N], r[N], p[N], P[20]{0, 998244353, 1000000007, 19260817, 998244853, 1919810, 114514, 191981011451, 1145141919, 1919810, 5141919}; bool chk(int x) { for (int i = (1); i <= (n); i++) { if (x % a[i].first) return 0; int y = x / a[i].first; while (y != 1) { if (y % a[i].second || a[i].second == 1) return 0; y /= a[i].second; } } return 1; } bool chk(int x, int i, int y) { int u = (i * log(a[x].second) + log(1. * a[x].first / a[y].first)) / log(a[y].second); for (int k = (max(0, u - 10)); k <= (min(1919, u + 10)); k++) { int ty = 1; for (int l = (1); l <= (10); l++) { int md = P[l]; if (msk(a[x].second, i, a[x].first, md) != msk(a[y].second, k, a[y].first, md)) { ty = 0; break; } } if (ty) return 1; } return 0; } void sol(int x, int y) { for (int i = (0); i <= (1919); i++) { if (chk(x, i, y)) { int ty = 1; for (int j = (1); j <= (n); j++) if (!chk(x, i, j)) { ty = 0; break; } if (ty) { printf("%lld", msk(a[x].second, i, a[x].first, 1e9 + 7)); exit(0); } } } { puts("-1"); exit(0); }; } void chai(int x) { mp.clear(); for (int i = 2; i <= sqrt(x); ++i) while (x % i == 0) x /= i, mp[i]++; if (x > 1) mp[x]++; } int main() { scanf("%d", &n); srand(time(0)); for (int i = (1); i <= (n); i++) scanf("%d%d", &a[i].first, &a[i].second); sort(a + 1, a + n + 1); if (chk(a[n].first)) { printf("%d", a[n].first); return 0; } for (int i = (1); i <= (n); i++) { chai(a[i].second); s[i] = 1; for (auto& j : mp) t[i] = gcd(t[i], j.second); for (auto& j : mp) { j.second /= t[i]; for (int k = (0); k <= (j.second - 1); k++) s[i] *= j.first; } if (s[i] != s[1]) sol(1, i); } long long md = 1, al = 0; for (int i = (1); i <= (n); i++) { r[i] = a[i].first; while (!(r[i] % s[i])) r[i] /= s[i], p[i]++; if (r[i] != r[1]) { puts("-1"); exit(0); }; long long x = gcd(t[i], md); if (al % x != p[i] % x) { puts("-1"); exit(0); }; while (al % t[i] != p[i] % t[i]) al += md; md = md / x * t[i]; al %= md; } for (int i = (1); i <= (n); i++) while (al < p[i]) al += md; printf("%lld\n", msk(s[1], al, r[1], 1e9 + 7)); return 0; }
#include <bits/stdc++.h> using namespace std; inline long long read() { long long x = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar(); } return x * f; } const long long N = 5100, mod = 1e9 + 7; long long n, cnt; long long a[N], b[N], p[N << 1]; void getp(long long x) { long long t = x; for (long long i = 2; i * i <= x; i++) { if (t % i == 0) { p[++cnt] = i; while (t % i == 0) t /= i; } } if (t > 1) p[++cnt] = t; } long long gcd(long long x, long long y) { return y == 0 ? x : gcd(y, x % y); } long long ksm(long long x, long long y) { long long res = 1; for (; y; y >>= 1, x = x * x % mod) if (y & 1) res = res * x % mod; return res; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return a; } long long d = exgcd(b, a % b, y, x); y -= a / b * x; return d; } struct node { long long k, b; node() {} node(long long k, long long b) : k(k), b(b) {} } f[N << 1], g[N << 1]; struct Func { long long a, b, c; Func() {} Func(long long a, long long b, long long c) : a(a), b(b), c(c){}; }; long long vis = 0; long long solve(long long b, long long k) { for (long long i = 1; i <= cnt; i++) g[i] = node{0, 0}; for (long long i = 1; i <= cnt; i++) { while (k % p[i] == 0) k /= p[i], ++g[i].k; while (b % p[i] == 0) b /= p[i], ++g[i].b; } if (!vis) { for (long long i = 1; i <= cnt; i++) f[i] = g[i]; return vis = 1; } for (long long t = 1; t <= 3; t++) { for (long long i = 1; i <= cnt; i++) { long long fb = f[i].b, fk = f[i].k; long long gb = g[i].b, gk = g[i].k; if (!fk && !gk) { if (fb != gb) return 0; } else if (!fk || !gk) { long long tag = 0; if (!fk) swap(fk, gk), swap(fb, gb), tag = 1; if (gb < fb || (gb - fb) % fk) return 0; long long k = (gb - fb) / fk; if (tag) for (long long j = 1; j <= cnt; j++) g[j].b += g[j].k * k, g[j].k = 0; else for (long long j = 1; j <= cnt; j++) f[j].b += f[j].k * k, f[j].k = 0; } } } Func F; long long flag = 0; long long X = -1, Y = -1; for (long long i = 1; i <= cnt; i++) { long long fb = f[i].b, fk = f[i].k; long long gb = g[i].b, gk = g[i].k; if (fk && gk) { if (!flag) F = Func(fk, -gk, gb - fb), flag = 1; else if (flag == 1) { long long A = fk, B = -gk, C = gb - fb; long long d = gcd(F.a, A); long long m1 = A / d, m2 = F.a / d; F.a *= m1, F.b *= m1, F.c *= m1; A *= m2, B *= m2, C *= m2; if (F.a == A && F.b == B) { if (F.c != C) return 0; else { long long d = gcd(gcd(F.a, abs(F.b)), abs(F.c)); F.a /= d, F.b /= d, F.c /= d; continue; } } else { C -= F.c, B -= F.b; if (C < 0) C *= -1, B *= -1; if (B < 0 || C % B) return 0; Y = C / B; X = (F.c - F.b * Y) / F.a; if (X < 0 || (F.c - F.b * Y) % F.a) return 0; flag = 2; } } else if (flag == 2) { long long A = fk, B = -gk, C = gb - fb; if (A * X + B * Y != C) return 0; } } } if (flag == 2) { for (long long i = 1; i <= N; i++) f[i].b += f[i].k * X, f[i].k = 0; } if (flag == 1) { long long x, y; long long d = exgcd(F.a, -F.b, x, y); y = -y; if (F.c % d) return 0; long long kx = -F.b / d, ky = F.a / d; x *= F.c / d; y *= F.c / d; long long tx = 0, ty = 0; if (x < 0) tx = -((-x + kx - 1) / kx); else tx = x / kx; if (y < 0) ty = -((-y + ky - 1) / ky); else ty = y / ky; x -= kx * min(tx, ty); y -= ky * min(tx, ty); for (long long i = 1; i <= N; i++) f[i].b += f[i].k * x, f[i].k *= kx; } return 1; } signed main() { n = read(); for (long long i = 1; i <= n; i++) { getp(a[i] = read()); getp(b[i] = read()); } sort(p + 1, p + 1 + cnt); cnt = unique(p + 1, p + 1 + cnt) - p - 1; for (long long i = 1; i <= n; i++) if (!solve(a[i], b[i])) { puts("-1"); return 0; } long long res = 1; for (long long i = 1; i <= cnt; i++) res = 1ll * res * ksm(p[i], f[i].b) % mod; cout << res << "\n"; return 0; }
#include <bits/stdc++.h> using namespace std; vector<int> prime; int a[101], b[101]; struct line { long long a, b, c; }; vector<line> mat; int power(int a, long long n) { int ans = 1; while (n) { if (n & 1) ans = 1ll * ans * a % 1000000007; a = 1ll * a * a % 1000000007; n >>= 1; } return ans; } long long gcd(long long x, long long y) { if (x < 0) x = -x; if (y < 0) y = -y; return y ? gcd(y, x % y) : x; } void exgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1, y = 0; return; } exgcd(b, a % b, y, x); y -= x * (a / b); } int main() { int n; cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i] >> b[i]; int x = a[i], y = b[i]; for (int j = 2; j * j <= 1000000000; j++) if (x % j == 0 || y % j == 0) { prime.push_back(j); while (x % j == 0) x /= j; while (y % j == 0) y /= j; } if (x > 1) prime.push_back(x); if (y > 1) prime.push_back(y); } sort(prime.begin(), prime.end()); int l = unique(prime.begin(), prime.end()) - prime.begin(); vector<long long> a0, b0; for (int i = 0; i < l; i++) { int va = 0, vb = 0; while (a[1] % prime[i] == 0) a[1] /= prime[i], ++va; while (b[1] % prime[i] == 0) b[1] /= prime[i], ++vb; a0.push_back(va), b0.push_back(vb); } for (int i = 2; i <= n; i++) { mat.clear(); for (int j = 0; j < l; j++) { int va = 0, vb = 0; while (a[i] % prime[j] == 0) a[i] /= prime[j], ++va; while (b[i] % prime[j] == 0) b[i] /= prime[j], ++vb; line ins; ins.a = b0[j], ins.b = -vb, ins.c = va - a0[j]; mat.push_back(ins); } int rnk = 0; line base[2]; for (int j = 0; j < l; j++) { if (!rnk && (mat[j].a || mat[j].b)) rnk = 1, base[0] = mat[j]; if (rnk == 1 && base[0].a * mat[j].b != base[0].b * mat[j].a) rnk = 2, base[1] = mat[j]; } if (rnk == 0) { for (int j = 0; j < l; j++) if (mat[j].c != 0) { puts("-1"); return 0; } } if (rnk == 1) { long long x, y, tmp = gcd(base[0].a, base[0].b); if (base[0].c % tmp != 0) { puts("-1"); return 0; } if (base[0].c == 0) x = y = 0; else { base[0].a /= tmp, base[0].b /= tmp, base[0].c /= tmp; if (base[0].b == 0) x = base[0].c, y = 0; else { exgcd(base[0].a, -base[0].b, x, y); long long ch = llabs(base[0].b); x *= base[0].c; x = (x % ch + ch) % ch; y = (base[0].c - base[0].a * x) / base[0].b; if (y < 0) { if (base[0].a == 0) { puts("-1"); return 0; } ch = llabs(base[0].a); y = (y % ch + ch) % ch; x = (base[0].c - base[0].b * y) / base[0].a; assert(x * base[0].a + base[0].b * y == base[0].c); } } } for (int j = 0; j < l; j++) { long long ta = b0[j], tb = -mat[j].b; if (x * mat[j].a + y * mat[j].b != mat[j].c) { puts("-1"); return 0; } a0[j] += x * b0[j], b0[j] = llabs(!ta || !tb ? 0 : (ta / gcd(ta, tb)) * tb); } } if (rnk == 2) { if (!base[0].b) swap(base[0], base[1]); long long t1 = base[0].c * base[1].b - base[1].c * base[0].b, t2 = base[0].a * base[1].b - base[1].a * base[0].b; if (t1 % t2 != 0) { puts("-1"); return 0; } long long x0 = t1 / t2; if (x0 < 0) { puts("-1"); return 0; } t1 = base[0].c - x0 * base[0].a, t2 = base[0].b; if (t1 % t2 != 0) { puts("-1"); return 0; } long long y0 = t1 / t2; if (y0 < 0) { puts("-1"); return 0; } for (int j = 0; j < l; j++) { if (x0 * mat[j].a + y0 * mat[j].b != mat[j].c) { puts("-1"); return 0; } a0[j] += x0 * b0[j], b0[j] = 1; } } } int ans = 1; for (int i = 0; i < l; i++) ans = 1ll * ans * power(prime[i], a0[i]) % 1000000007; cout << ans << endl; }
#include <bits/stdc++.h> static const long long int mod = 1000000007LL; using vpair = std::vector<std::pair<int, int> >; long long int gcd(long long int a, long long int b) { while (b != 0) { long long int c = a % b; a = b, b = c; } return a; } vpair factor(int v) { vpair res; for (int i = 2; i * i <= v; ++i) { if (v % i == 0) { int cnt = 0; while (v % i == 0) { ++cnt; v /= i; } res.emplace_back(i, cnt); } } if (v > 1) res.emplace_back(v, 1); return res; } std::pair<int, int> simplify(int v) { vpair k = factor(v); int g = 0; for (int i = 0; i < k.size(); ++i) { g = gcd(g, k[i].second); } int a = 1; for (int i = 0; i < k.size(); ++i) { for (int j = 0; j < k[i].second / g; ++j) a *= k[i].first; } return std::make_pair(a, g); } long long int exgcd(long long int a, long long int b, long long int &c, long long int &d) { if (b == 0) { c = 1, d = 0; return a; } long long int v = exgcd(b, a % b, d, c); d -= c * (a / b); return v; } long long int mul2(long long int a, long long int b, long long int m) { long long int val = 0; for (int i = 63; i >= 0; --i) { val += val; if (((a >> i) & 1) == 1) val += b; while (val >= m) val -= m; } return val; } long long int mul3(long long int a, long long int b, long long int c, long long int m) { long long int sign = 1; if (a < 0) sign = -sign, a = -a; if (b < 0) sign = -sign, b = -b; if (c < 0) sign = -sign, c = -c; return sign * mul2(mul2(a, b, m), c, m); } std::pair<long long int, long long int> crt( std::pair<long long int, long long int> a, std::pair<long long int, long long int> b) { long long int p, q; long long int v = exgcd(a.first, b.first, p, q); if (a.second % v != b.second % v) { return std::make_pair(0, 0); } else { long long int rem = a.second % v; long long int k = a.first / v * b.first / v; long long int s = mul3(a.second / v, b.first / v, q, k) + mul3(b.second / v, a.first / v, p, k); s %= k; if (s < 0) s += k; return std::make_pair(k * v, s * v + rem); } } long long int qpow(long long int a, long long int b, long long int m) { long long int val = 1; for (int i = 60; i >= 0; --i) { val = val * val % m; if ((b & (1LL << i)) != 0) { val = val * a % m; } } return val; } typedef int ppair[2][2]; using map = std::map<int, ppair>; void copy(ppair &a, ppair &b) { memmove(&a, &b, sizeof(ppair)); } int n; struct item { int A, B; int a, b; int oa, ob; } v[103]; int main() { scanf("%d", &n); long long int oneans = -1; for (int i = 0; i < n; ++i) { int a, b; scanf("%d%d", &a, &b); v[i].oa = a; v[i].ob = b; std::pair<int, int> p = simplify(b); v[i].B = p.first; v[i].b = p.second; if (b != 1) { while (a % p.first == 0) { ++v[i].a; a /= p.first; } v[i].A = a; } else { oneans = a; } } if (oneans != -1) { for (int i = 0; i < n; ++i) { long long int temp = oneans; while (temp % v[i].ob == 0) { if (temp == v[i].oa) break; temp /= v[i].ob; } if (temp != v[i].oa) { printf("-1\n"); return 0; } } printf("%I64d\n", oneans); return 0; } int j = 1; while (j < n && v[j].B == v[0].B) ++j; if (j == n) { std::pair<long long int, long long int> cur(1, 0); long long int min = 0; for (int i = 0; i < n; ++i) { if (v[i].A != v[0].A) { printf("-1\n"); return 0; } cur = crt(cur, std::make_pair(v[i].b, v[i].a % v[i].b)); if (cur.first == 0) { printf("-1\n"); return 0; } if (v[i].b > min) min = v[i].a; } cur.second += (min - cur.second + cur.first - 1) / cur.first * cur.first; assert(cur.second >= min); assert(cur.second - cur.first < min); printf("%I64d\n", v[0].A * qpow(v[0].B, cur.second, mod) % mod); } else { map m; std::vector<std::pair<int, int> > f1 = factor(v[0].A); for (int i = 0; i < f1.size(); ++i) m[f1[i].first][0][0] = f1[i].second; std::vector<std::pair<int, int> > f2 = factor(v[0].B); for (int i = 0; i < f2.size(); ++i) m[f2[i].first][0][1] = f2[i].second; std::vector<std::pair<int, int> > f3 = factor(v[j].A); for (int i = 0; i < f3.size(); ++i) m[f3[i].first][1][0] = f3[i].second; std::vector<std::pair<int, int> > f4 = factor(v[j].B); for (int i = 0; i < f4.size(); ++i) m[f4[i].first][1][1] = f4[i].second; ppair a, b; int state = 0; for (map::iterator it = m.begin(); it != m.end(); ++it) { if (state == 0) { if (it->second[0][1] != 0 || it->second[1][1] != 0) { copy(a, it->second); state = 1; } } else { if ((long long int)a[0][1] * it->second[1][1] != (long long int)a[1][1] * it->second[0][1]) { copy(b, it->second); state = 2; break; } } } assert(state == 2); long long int xa = ((long long int)a[1][0] - a[0][0]) * b[1][1] - ((long long int)b[1][0] - b[0][0]) * a[1][1], xb = (long long int)a[0][1] * b[1][1] - (long long int)a[1][1] * b[0][1]; long long int ya = ((long long int)a[0][0] - a[1][0]) * b[0][1] - ((long long int)b[0][0] - b[1][0]) * a[0][1], yb = -xb; if (xa % xb != 0 || ya % yb != 0) { printf("-1\n"); return 0; } long long int x = xa / xb, y = ya / yb; std::map<int, int> res; for (map::iterator it = m.begin(); it != m.end(); ++it) { long long int v1 = it->second[0][0] + it->second[0][1] * x; long long int v2 = it->second[1][0] + it->second[1][1] * y; if (v1 != v2) { printf("-1\n"); return 0; } res[it->first] = v1; } for (int i = 0; i < n; ++i) { vpair v1 = factor(v[i].A), v2 = factor(v[i].B); std::map<int, std::pair<int, int> > temp; for (int k = 0; k < v1.size(); ++k) { temp[v1[k].first].first = v1[k].second; } for (int k = 0; k < v2.size(); ++k) { temp[v2[k].first].second = v2[k].second; } for (std::map<int, int>::iterator it = res.begin(); it != res.end(); ++it) { std::pair<int, int> p = temp[it->first]; if (p.second == 0) { if (it->second == p.first) continue; printf("-1\n"); return 0; } if ((it->second - p.first) % p.second != 0) { printf("-1\n"); return 0; } int k = (it->second - p.first) / p.second; if (k < v[i].a || (k - v[i].a) % v[i].b != 0) { printf("-1\n"); return 0; } } } long long int ans = (long long int)v[0].A * qpow(v[0].B, x, mod) % mod; long long int ans2 = (long long int)v[j].A * qpow(v[j].B, y, mod) % mod; assert(ans == ans2); printf("%I64d\n", ans); } }
#include <bits/stdc++.h> using namespace std; int n; int read(); int fsp(long long bs, int p) { int rt = 1; while (p) { if (p & 1) rt = bs * rt % 1000000007; bs = bs * bs % 1000000007, p >>= 1; } return rt; } int p[10004], cnt; int a[202], b[202]; struct Q { long long x[1003], y[1003]; } q[202]; void solve1(int x) { for (int t = 2; t * t <= x; ++t) { if (x % t) continue; for (p[++cnt] = t; x % t == 0;) x /= t; } if (x > 1) p[++cnt] = x; } void solve2(int x, long long* q) { for (int t = 2; t * t <= x; ++t) { if (x % t) continue; int tp = lower_bound(p + 1, p + 1 + cnt, t) - p; while (x % t == 0) x /= t, ++q[tp]; } if (x > 1) ++q[lower_bound(p + 1, p + 1 + cnt, x) - p]; } void fail() { puts("-1"), exit(0); } void prt() { int res = 1; for (int j = 1; j <= cnt; ++j) res = 1ll * res * fsp(p[j], q[1].x[j] % (1000000007 - 1)) % 1000000007; printf("%d\n", res), exit(0); } void check(long long k, int st) { for (int j = 1; j <= cnt; ++j) q[1].x[j] += q[1].y[j] * k; for (int i = st; i <= n; ++i) { long long tk = -1, ttk; for (int j = 1; j <= cnt; ++j) { long long A1 = q[1].x[j], A2 = q[i].x[j]; long long B2 = q[i].y[j]; if (B2 == 0 && A1 != A2) fail(); if (B2) { if (A2 > A1 || (A1 - A2) % B2) fail(); ttk = (A1 - A2) / B2; if (tk == -1) tk = ttk; if (tk != ttk) fail(); } } } prt(); } long long gcd(long long a, long long b) { while (b ^= a ^= b ^= a %= b) void(); return a; } struct T { long long a, b, c; bool operator==(T x) { return a == x.a && b == x.b && c == x.c; } } t; long long solve3(T s, T t) { long long K = s.a * t.b - t.a * s.b, B = s.c * t.b - t.c * s.b; if (!B) return 0; if (!K || B % K || ((K > 0) ^ (B > 0))) fail(); return B / K; } long long exgcd(long long a, long long b, long long& x, long long& y) { if (b == 0) return x = 1, y = 0, a; long long d = exgcd(b, a % b, y, x); return y -= a / b * x, d; } void solve4(long long B1, long long B2, long long A, long long& x, long long& y) { long long tx, ty, d = exgcd(B1, B2, tx, ty), t1 = B2 / d, t2 = B1 / d; if (A % d) fail(); tx *= A / d, ty *= -A / d; x = (tx < 0 ? -tx + t1 - 1 : -tx) / t1; y = (ty < 0 ? -ty + t2 - 1 : -ty) / t2; x = tx + max(x, y) * t1, y = t1; } void work() { for (int i = 2; i <= n; ++i) { int tc = 0; for (int j = 1; j <= cnt; ++j) { long long A1 = q[1].x[j], A2 = q[i].x[j]; long long B1 = q[1].y[j], B2 = q[i].y[j]; if (B1 == 0 && B2 == 0) { if (A1 != A2) fail(); } else if (B1 == 0) { if (A1 < A2 || (A1 - A2) % B2) fail(); check((A1 - A2) / B2, i); } else if (B2 == 0) { if (A2 < A1 || (A2 - A1) % B1) fail(); check((A2 - A1) / B1, i); } } long long tK = -1, ttK; for (int j = 1; j <= cnt; ++j) { long long A1 = q[1].x[j], A2 = q[i].x[j]; long long B1 = q[1].y[j], B2 = q[i].y[j]; if (B1 == 0) continue; long long d = gcd(B1, B2), C = A2 - A1; if (C % d) fail(); B1 /= d, B2 /= d, C /= d; if (tc) { if (t == (T){B1, B2, C}) continue; ttK = solve3(t, (T){B1, B2, C}); if (tK == -1) tK = ttK; if (tK != ttK) fail(); } else { t = (T){B1, B2, C}, tc = 1; } } if (tK != -1) check(tK, i); long long N, M; solve4(t.a, t.b, t.c, N, M); for (int j = 1; j <= cnt; ++j) { if (q[1].y[j] == 0) continue; q[1].x[j] += N * q[1].y[j], q[1].y[j] *= M; } } } int main() { n = read(); for (int i = 1; i <= n; ++i) solve1(a[i] = read()), solve1(b[i] = read()); sort(p + 1, p + 1 + cnt), cnt = unique(p + 1, p + 1 + cnt) - p - 1; for (int i = 1; i <= n; ++i) solve2(a[i], q[i].x), solve2(b[i], q[i].y); work(), prt(); return 0; } int read() { int x = 0, f = 1; char c = getchar(); while (c < '0' || c > '9') f = (c == '-') ? -1 : f, c = getchar(); while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; }
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; int n; vector<pair<int, long long> > fa[100], fb[100]; long long powmod(long long a, long long k) { long long ret = 1; while (k) { if (k & 1) { ret = ret * a % mod; } a = a * a % mod; k >>= 1; } return ret; } long long exgcd(long long a, long long b, long long& x, long long& y) { if (!b) { x = 1; y = 0; return a; } long long d = exgcd(b, a % b, y, x); y -= x * (a / b); return d; } long long find(const vector<pair<int, long long> >& f, int p) { int pos = lower_bound(f.begin(), f.end(), make_pair(p, -1ll)) - f.begin(); if (pos != f.size() && f[pos].first == p) { return f[pos].second; } return 0; } vector<pair<int, long long> > factor(int x) { vector<pair<int, long long> > ret; for (int i = 2; i * i <= x; ++i) { long long cnt = 0; while (x % i == 0) { cnt++; x /= i; } if (cnt) { ret.push_back(make_pair(i, cnt)); } } if (x > 1) { ret.push_back(make_pair(x, 1)); } return ret; } void addfirst(vector<int>& s, const vector<pair<int, long long> >& t) { for (int i = 0; i < t.size(); ++i) { s.push_back(t[i].first); } } bool solve() { while (n > 1) { int cnt = 0; for (int i = 0; i < n - 1; ++i) { vector<int> v; addfirst(v, fa[i]); addfirst(v, fb[i]); addfirst(v, fa[i + 1]); addfirst(v, fb[i + 1]); sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); long long px = -1, py, sx, sy; for (int j = 0; j < v.size(); ++j) { long long a1 = find(fa[i], v[j]), a2 = find(fa[i + 1], v[j]); long long b1 = find(fb[i], v[j]), b2 = find(fb[i + 1], v[j]); long long x, y, dx, dy; long long d = exgcd(b1, -b2, x, y); if (b1 == 0 && b2 == 0) { if (a1 != a2) { return false; } continue; } else if (b1 == 0 && a1 >= a2 && (a1 - a2) % b2 == 0) { x = 0; y = (a1 - a2) / b2; dx = 1; dy = 0; } else if (b2 == 0 && a2 >= a1 && (a2 - a1) % b1 == 0) { x = (a2 - a1) / b1; y = 0; dx = 0; dy = 1; } else if (d == 0 || (a2 - a1) % d != 0) { return false; } else { x *= (a2 - a1) / d; y *= (a2 - a1) / d; dx = b2 / abs(d); dy = b1 / abs(d); if (x > 0 && dx > 0) { long long t = (x - 1) / dx + 1; x -= t * dx; y -= t * dy; } if (y > 0 && dy > 0) { long long t = (y - 1) / dy + 1; x -= t * dx; y -= t * dy; } if (x < 0) { if (dx == 0) { return false; } long long t = (-x - 1) / dx + 1; x += t * dx; y += t * dy; } if (y < 0) { if (dy == 0) { return false; } long long t = (-y - 1) / dy + 1; x += t * dx; y += t * dy; } } if (px == -1) { px = x; py = y; sx = dx; sy = dy; } else { if (sx != 0 || sy != 0) { if (sx != dx || sy != dy) { long long k1 = ((x - px) * dy - (y - py) * dx) / (sx * dy - sy * dx); long long nx = px + sx * k1, ny = py + sy * k1; if (nx < x || ny < y || (nx - x) * dy - dx * (ny - y) != 0) { return false; } px = nx; py = ny; sx = sy = 0; } else if ((px - x) * dy - dx * (py - y) != 0) { return false; } } else if (px < x || py < y || (px - x) * dy - dx * (py - y) != 0) { return false; } } } if (px != -1) { vector<pair<int, long long> > nfa, nfb; for (int j = 0; j < v.size(); ++j) { long long a1 = find(fa[i], v[j]), b1 = find(fb[i], v[j]); if (b1 * px + a1) { nfa.push_back(make_pair(v[j], b1 * px + a1)); } if (b1 * sx) { nfb.push_back(make_pair(v[j], b1 * sx)); } } fa[cnt] = nfa; fb[cnt++] = nfb; } } n = cnt; } return true; } int main() { scanf("%d", &n); for (int i = 0; i < n; ++i) { int a, b; scanf("%d %d", &a, &b); fa[i] = factor(a); fb[i] = factor(b); } if (solve()) { long long ans = 1; for (int i = 0; i < fa[0].size(); ++i) { ans = ans * powmod(fa[0][i].first, fa[0][i].second) % mod; } printf("%I64d\n", ans); } else { printf("-1\n"); } return 0; }
#include <bits/stdc++.h> using namespace std; const int N = 514; long long gcd(long long a, long long b) { return !b ? a : gcd(b, a % b); } long long msk(long long a, long long b, long long k, int md) { a %= md; k %= md; while (b) { if (b & 1) k = k * a % md; a = a * a % md; b >>= 1; } return k; } pair<int, int> a[N]; map<int, int> mp; int n; long long t[N], s[N], r[N], p[N]; bool chk(int x) { for (int i = (1); i <= (n); i++) { if (x % a[i].first) return 0; int y = x / a[i].first; while (y != 1) { if (y % a[i].second || a[i].second == 1) return 0; y /= a[i].second; } } return 1; } bool chk(int x, int i, int y) { int u = (i * log(a[x].second) + log(a[x].first) - log(a[y].first)) / log(a[y].second) + 0.5; for (int k = (max(0, u - 10)); k <= (min(1919, u + 10)); k++) { int ty = 1; for (int l = (0); l <= (49); l++) { int md = rand() % 1919810 + 1e9; if (msk(a[x].second, i, a[x].first, md) != msk(a[y].second, k, a[y].first, md)) { ty = 0; break; } } if (ty) return 1; } return 0; } void sol(int x, int y) { for (int i = (0); i <= (1919); i++) { if (chk(x, i, y)) { int ty = 1; for (int j = (1); j <= (n); j++) if (!chk(x, i, j)) { ty = 0; break; } if (ty) { printf("%lld", msk(a[x].second, i, a[x].first, 1e9 + 7)); exit(0); } } } { puts("-1"); exit(0); }; } void chai(int x) { mp.clear(); for (int i = 2; i <= sqrt(x); ++i) while (x % i == 0) x /= i, mp[i]++; if (x > 1) mp[x]++; } int main() { scanf("%d", &n); srand(time(0)); for (int i = (1); i <= (n); i++) scanf("%d%d", &a[i].first, &a[i].second); sort(a + 1, a + n + 1); if (chk(a[n].first)) { printf("%d", a[n].first); return 0; } for (int i = (1); i <= (n); i++) { chai(a[i].second); s[i] = 1; for (auto& j : mp) t[i] = gcd(t[i], j.second); for (auto& j : mp) { j.second /= t[i]; for (int k = (0); k <= (j.second - 1); k++) s[i] *= j.first; } if (s[i] != s[1]) sol(1, i); } long long md = 1, al = 0; for (int i = (1); i <= (n); i++) { r[i] = a[i].first; while (!(r[i] % s[i])) r[i] /= s[i], p[i]++; if (r[i] != r[1]) { puts("-1"); exit(0); }; long long x = gcd(t[i], md); if (al % x != p[i] % x) { puts("-1"); exit(0); }; while (al % t[i] != p[i] % t[i]) al += md; md = md / x * t[i]; al %= md; } for (int i = (1); i <= (n); i++) while (al < p[i]) al += md; printf("%lld\n", msk(s[1], al, r[1], 1e9 + 7)); return 0; }
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int n, top; long long maxn, a[110], b[110], sa[110][410], sb[110][410], q[410]; inline int mo(int x) { if (x >= MOD) return x - MOD; return x; } inline long long gcd(long long x, long long y) { if (x < 0) return gcd(-x, y); if (y < 0) return gcd(x, -y); if (!y) return x; return gcd(y, x % y); } inline void exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1; y = 0; return; } exgcd(b, a % b, y, x); y -= a / b * x; } inline int power(int x, long long y) { int ans = 1, t = x; while (y) { if (y % 2) ans = 1ll * ans * t % MOD; t = 1ll * t * t % MOD; y /= 2; } return ans; } long long solve(long long a, long long b, long long c) { if (!a) return 0; if (!b) return c / a; if (a < 0) a = -a; if (b < 0) b = -b; long long x, y; exgcd(a, b, x, y); x = x * c; x = (x % b + b) % b; y = (c - a * x) / (-b); long long t = (y >= 0 ? 0 : (-y + a - 1) / a); x += t * b; return x; } inline int read() { int ans = 0; char ch = getchar(); while (ch < '0' || ch > '9') ch = getchar(); while (ch >= '0' && ch <= '9') ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); return ans; } void gofail() { printf("-1\n"); exit(0); } int main() { n = read(); for (int i = 1; i <= n; i++) a[i] = read(), b[i] = read(), maxn = max(maxn, a[i]), maxn = max(maxn, b[i]); maxn = sqrt(maxn); for (int i = 2; i <= maxn; i++) if (a[1] % i == 0 || b[1] % i == 0) { q[++top] = i; while (a[1] % i == 0) sa[1][top]++, a[1] /= i; while (b[1] % i == 0) sb[1][top]++, b[1] /= i; } if (a[1] != 1) { q[++top] = a[1]; sa[1][top] = 1; if (b[1] == a[1]) sb[1][top] = 1, b[1] = 1; a[1] = 1; } if (b[1] != 1) { q[++top] = b[1]; sb[1][top] = 1; } for (int j = 2; j <= n; j++) { for (int i = 1; i <= top; i++) { while (a[j] % q[i] == 0) a[j] /= q[i], sa[j][i]++; while (b[j] % q[i] == 0) b[j] /= q[i], sb[j][i]++; } if (a[j] != 1) { q[++top] = a[j], sa[j][top] = 1; if (b[j] == a[j]) sb[j][top] = 1, b[j] = 1; a[j] = 1; } if (b[j] != 1) q[++top] = b[j], sb[j][top] = 1; } if (!top) { printf("1\n"); return 0; } for (int i = 2; i <= n; i++) { long long l = 0, la = 0, lb = 0, lc = 0; long long p = 0, px = 0, py = 0; for (int j = 1; j <= top; j++) { long long A = sb[1][j], B = -sb[i][j], C = sa[i][j] - sa[1][j], G = gcd(A, B); if (A == 0 && B == 0) { if (C) gofail(); continue; } if (C % G) gofail(); A /= G; B /= G; C /= G; if (A < 0 || (A == 0 && B < 0)) A = -A, B = -B, C = -C; if (p) { if (px * A + py * B != C) gofail(); } else if (l) { if (la == A && lb == B) { if (lc != C) gofail(); } else { long long X0 = A * lb - B * la, X1 = C * lb - B * lc; long long Y0 = B * la - A * lb, Y1 = C * la - A * lc; if (X1 % X0 || Y1 % Y0) gofail(); l = 0; p = 1; px = X1 / X0; py = Y1 / Y0; if (px < 0 || py < 0) gofail(); } } else l = 1, la = A, lb = B, lc = C; } if (l) { for (int j = 1; j <= top; j++) sa[1][j] = sa[1][j] + sb[1][j] * solve(la, lb, lc), sb[1][j] *= (-lb); } else if (p) { for (int j = 1; j <= top; j++) sa[1][j] += sb[1][j] * px, sb[1][j] = 0; } } int ans = 1; for (int i = 1; i <= top; i++) ans = 1ll * ans * power(q[i], sa[1][i]) % MOD; printf("%d\n", ans); }
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int n; set<int> all; struct d { map<int, int> v; int& operator[](int x) { return v[x]; } void init(int x) { for (int i = 2; i * i <= x; i++) if (x % i == 0) { int cnt = 0; while (x % i == 0) cnt++, x /= i; v[i] = cnt; all.insert(i); } if (x > 1) { v[x] = 1; all.insert(x); } } bool operator!=(d b) { for (set<int>::iterator it = all.begin(); it != all.end(); it++) if (v[*it] != b[*it]) return 1; return 0; } }; long long gcd(long long a, long long b) { return (b ? gcd(b, a % b) : a); } int trs(d& a) { int g = 0; for (map<int, int>::iterator it = a.v.begin(); it != a.v.end(); it++) g = gcd(g, it->second); if (g) for (map<int, int>::iterator it = a.v.begin(); it != a.v.end(); it++) it->second /= g; return g; } d a[105], b[105]; inline int power(int x, long long y) { int z = 1; while (y) { if (y & 1) z = 1ll * z * x % mod; x = 1ll * x * x % mod; y >>= 1; } return z; } namespace unsame { void chk(d a0, d a1, d b0, d b1) { int aa, bb, cc; bool ok = 0; int x, y; for (set<int>::iterator it = all.begin(); it != all.end(); it++) { int ta = b0[*it]; int tb = -b1[*it]; int tc = a0[*it] - a1[*it]; if (ta || tb || tc) { if (!ta || !tb) { if (!ta && !tb) { puts("-1"); return; } if (!ta) { x = -tc / tb; if (x < 0 || tc % tb) { puts("-1"); return; } swap(a0, b0); } else { x = -tc / ta; if (x < 0 || tc % ta) { puts("-1"); return; } } break; } int g = gcd(gcd(ta, tb), tc); ta /= g; tb /= g; tc /= g; if (ok && (ta != aa || tb != bb || tc != cc)) { int t = ta * bb - tb * aa; if (!t) { puts("-1"); return; } int w = aa * tc - ta * cc; y = w / t; if (y < 0 || y * t != w) { puts("-1"); return; } w = tb * cc - bb * tc; x = w / t; if (x < 0 || x * t != w) { puts("-1"); return; } break; } else { aa = ta; bb = tb; cc = tc; ok = 1; } } } d r; for (set<int>::iterator it = all.begin(); it != all.end(); it++) r[*it] = a0[*it] + x * b0[*it]; for (int i = 1; i <= n; i++) { int p = -1; for (set<int>::iterator it = all.begin(); it != all.end(); it++) { if (b[i][*it]) { int t = (r[*it] - a[i][*it]) / b[i][*it]; if (t * b[i][*it] + a[i][*it] != r[*it]) { puts("-1"); return; } if (p == -1) p = t; if (t != p) { puts("-1"); return; } } else { if (r[*it] != a[i][*it]) { puts("-1"); return; } } } } int res = 1; for (set<int>::iterator it = all.begin(); it != all.end(); it++) { res = 1ll * res * power(*it, r[*it]) % mod; } printf("%d\n", res); } } // namespace unsame namespace same { int k[105], c[105]; int T(d& a, d& b) { int mn = 1e9; for (set<int>::iterator it = all.begin(); it != all.end(); it++) if (b[*it]) { mn = min(mn, a[*it] / b[*it]); } for (set<int>::iterator it = all.begin(); it != all.end(); it++) if (b[*it]) { a[*it] -= mn * b[*it]; } return mn; } void exgcd(long long a, long long b, long long& x, long long& y, long long& c) { if (!b) { y = 0; x = 1; c = a; return; } exgcd(b, a % b, y, x, c); y -= a / b * x; } void work() { for (int i = 1; i <= n; i++) c[i] = T(a[i], b[i]); for (int i = 2; i <= n; i++) if (a[i] != a[1]) { puts("-1"); exit(0); } long long tk = k[1], tc = c[1]; for (int i = 2; i <= n; i++) { long long g, x, y; exgcd(tk, -k[i], x, y, g); if ((c[i] - tc) % g) { puts("-1"); return; } x *= (c[i] - tc) / g; y *= (c[i] - tc) / g; g = abs(g); k[i] /= g; tk /= g; long long t = max((-x + k[i] - 1) / k[i], (-y + tk - 1) / tk); x += t * k[i], y += t * tk; t = min(x / k[i], y / tk); x -= t * k[i], y -= t * tk; tc = tk * g * x + tc; tk = tk * k[i] * g; } int res = 1; for (map<int, int>::iterator it = a[1].v.begin(); it != a[1].v.end(); it++) if (it->second) { res = 1ll * res * power(it->first, it->second) % mod; } for (map<int, int>::iterator it = b[1].v.begin(); it != b[1].v.end(); it++) if (it->second) { res = 1ll * res * power(it->first, it->second * tc) % mod; } printf("%d\n", res); } } // namespace same int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { int x, y; scanf("%d%d", &x, &y); a[i].init(x); b[i].init(y); } for (int i = 1; i <= n; i++) same::k[i] = trs(b[i]); for (int i = 2; i <= n; i++) { if (b[1] != b[i]) { for (int i = 1; i <= n; i++) for (map<int, int>::iterator it = b[i].v.begin(); it != b[i].v.end(); it++) it->second *= same::k[i]; unsame::chk(a[1], a[i], b[1], b[i]); return 0; } } same::work(); return 0; }
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const int MM = 31625; struct simpen { long long a, b, c; void print() { printf("%I64d %I64d %I64d\n", a, b, c); } }; long long n, a[MM], b[MM], pr[MM], cpp = 0, cpr = 0, aa[MM], bb[MM], valen[MM], momod[MM]; bool prpr[MM]; simpen p[MM]; long long dio(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = dio(b, a % b, y, x); y = y - x * (a / b); return d; } void start() { for (int i = 2; i * i <= 1000000000; i++) { bool test = 1; for (int j = 2; j * j <= i; j++) { if (i % j == 0) { test = 0; break; } } if (test) pr[cpr++] = i; } } long long get(long long x, const int &y) { long long ret = 0; while (!(x % pr[y])) x /= pr[y], ++ret; return ret; } long long cc(long long a, long long b) { if (b < 0) a *= -1, b *= -1; if (a < 0) return a / b; return (a + b - 1) / b; } long long floor(long long a, long long b) { return -cc(-a, -b); } long long asdf(long long b, long long e, long long m) { long long t = 0; for (; e; e >>= 1, (b <<= 1) %= m) if (e & 1) (t += b) %= m; return t; } long long power(long long a, long long n, long long mod) { return (n == 0 ? 1 : (power(a * a % mod, n / 2, mod)) * (n % 2 == 1 ? a : 1) % mod); } int main() { scanf("%I64d", &n); for (int i = 0; i < n; i++) scanf("%I64d %I64d", &b[i], &a[i]); start(); for (int i = 0; i < cpr; i++) aa[i] = get(a[n - 1], i), bb[i] = get(b[n - 1], i); long long res = -1; for (int i = 0; i < n - 1; i++) { bool test = 0; simpen cewe; for (int j = 0; j < cpr; j++) { long long a0 = aa[j], b0 = bb[j]; long long a1 = get(a[i], j), b1 = get(b[i], j); if (a0 || a1 || b0 != b1) { if (b0 != b1 && !a0 && !a1) { printf("-1\n"); return 0; } if (a1 || a0) { if (!test) { cewe.a = a0; cewe.b = -a1; cewe.c = b0 - b1; } else { long long aaa = a0, bbb = -a1, ccc = b0 - b1; long long gay = -(cewe.a * bbb - cewe.b * aaa); long long x = cewe.c * bbb - cewe.b * ccc; long long y = cewe.a * ccc - cewe.c * aaa; if (!gay) { if (x || y) { printf("-1\n"); return 0; } } else { if (x % gay || y % gay) { printf("-1\n"); return 0; } else { if (x / gay < 0 || y / gay < 0) { printf("-1\n"); return 0; } if (res != -1 && x / gay != res) { printf("-1\n"); return 0; } res = x / gay; } } } test = true; } } } if (test) { p[cpp] = cewe; cpp++; } } for (int i = 0; i < cpp; i++) { if (!p[i].b) { if (p[i].c % p[i].a) { printf("-1\n"); return 0; } if (p[i].c * p[i].a > 0) { printf("-1\n"); return 0; } if (res != -1 && (-p[i].c) / p[i].a != res) { printf("-1\n"); return 0; } res = (-p[i].c) / p[i].a; } } if (res != -1) { for (int i = 0; i < cpp; i++) { p[i].c += p[i].a * res; if (p[i].b) { if (p[i].c % p[i].b) { printf("-1\n"); return 0; } if (p[i].c * p[i].b > 0) { printf("-1\n"); return 0; } } else if (p[i].c) { printf("-1\n"); return 0; } } } else { long long m = 0, mmin = 0, mmax = 9223372036854775807; for (int i = 0; i < cpp; i++) { if (!p[i].a) { if (!p[i].c % p[i].b) { printf("-1\n"); return 0; } if (!p[i].c * p[i].b > 0) { printf("-1\n"); return 0; } } else { long long x, y; long long d = dio(p[i].a, p[i].b, x, y); if (p[i].c % d) { printf("-1\n"); return 0; } x *= (-p[i].c) / d; momod[m] = abs(p[i].b / d); valen[m] = x % momod[m]; m++; if (p[i].b < 0) mmin = max(mmin, cc(-p[i].c, p[i].a)); else mmax = min(mmax, floor(-p[i].c, p[i].a)); } } if (mmin > mmax) { printf("-1\n"); return 0; } long long A = 0, B = 1; for (int i = 0; i < m; i++) { long long x, y; long long d = dio(B, momod[i], x, y); long long ans = A % d; if ((valen[i] - ans) % d) { printf("-1\n"); return 0; } B /= d; momod[i] /= d; (A -= ans) /= d; (valen[i] -= ans) /= d; long long bbb = B * momod[i]; A = (A + B) % B; valen[i] = (valen[i] + momod[i]) % momod[i]; A = (asdf(asdf(x, B, bbb), valen[i], bbb) + asdf(asdf(y, momod[i], bbb), A, bbb)) % bbb; B = bbb * d; A = (A * d + ans) % B; } (A += B) %= B; res = cc(mmin - A, B) * B + A; if (res > mmax) { printf("-1\n"); return 0; } } printf("%I64d\n", power(a[n - 1], res, mod) * b[n - 1] % mod); return 0; }
#include <bits/stdc++.h> using namespace std; map<int, int> tp; int n, a, b, s1[5002], ct, mx; long long s[5002][2], t[5002][2], q[3][3]; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, x, y); long long t = x; x = y; y = t - a / b * y; return g; } int pw(int a, int p) { int as = 1; while (p) { if (p & 1) as = 1ll * as * a % 1000000007; a = 1ll * a * a % 1000000007; p >>= 1; } return as; } bool pw2(int a, int p) { int as = 1, vl = pw(a, p); while (p) { if (p & 1) as = 1ll * as * a; a = 1ll * a * a; p >>= 1; } return as != vl; } void merge() { int c1 = 0; for (int i = 1; i <= ct; i++) { if (s[i][1] == 0 && t[i][1] == 0) { if (s[i][0] != t[i][0]) { printf("-1\n"); exit(0); }; continue; } q[++c1][0] = s[i][1], q[c1][1] = -t[i][1], q[c1][2] = -t[i][0] + s[i][0]; long long g = gcd(q[c1][0], q[c1][1]); if (q[c1][2] % g) { printf("-1\n"); exit(0); }; q[c1][0] /= g; q[c1][1] /= g; q[c1][2] /= g; if (q[c1][0] < 0) q[c1][0] *= -1, q[c1][1] *= -1, q[c1][2] *= -1; if (c1 == 2) { if (q[1][1] == 0 && q[2][1] == 0) { if ((q[1][2] % q[1][0]) || (q[2][2] % q[2][0]) || (q[1][2] / q[1][0] != q[2][2] / q[2][0])) { printf("-1\n"); exit(0); }; long long asx = q[1][2] / q[1][0]; q[1][0] = 1; q[1][1] = 0; q[1][2] = asx; c1--; continue; } if (q[1][0] == 0 && q[2][0] == 0) { if ((q[1][2] % q[1][1]) || (q[2][2] % q[2][1]) || (q[1][2] / q[1][1] != q[2][2] / q[2][1])) { printf("-1\n"); exit(0); }; long long asx = q[1][2] / q[1][1]; q[1][0] = 0; q[1][1] = 1; q[1][2] = asx; c1--; continue; } if (q[1][0] == q[2][0] && q[1][1] == q[2][1]) { if (q[1][2] != q[2][2]) { printf("-1\n"); exit(0); }; c1--; continue; } long long g = gcd(q[1][1], q[2][1]), s1 = q[1][1] / g, s2 = q[2][1] / g; long long asx, asy; if (q[1][1] == 0) { if (q[1][2] % q[1][0]) { printf("-1\n"); exit(0); }; asx = -q[1][2] / q[1][0]; if ((-q[2][2] - asx * q[2][0]) % q[2][1]) { printf("-1\n"); exit(0); }; asy = (-q[2][2] - asx * q[2][0]) / q[2][1]; } else if (q[2][1] == 0) { if (q[2][2] % q[2][0]) { printf("-1\n"); exit(0); }; asx = -q[2][2] / q[2][0]; if ((-q[1][2] - asx * q[1][0]) % q[1][1]) { printf("-1\n"); exit(0); }; asy = (-q[1][2] - asx * q[1][0]) / q[1][1]; } else { q[1][0] *= s2; q[1][1] *= s2; q[1][2] *= s2; q[2][0] *= s1; q[2][1] *= s1; q[2][2] *= s1; if (q[1][0] == q[2][0]) { if ((q[2][2] - q[1][2]) % (q[1][1] - q[2][1])) { printf("-1\n"); exit(0); }; asy = (q[2][2] - q[1][2]) / (q[1][1] - q[2][1]); if (q[1][0]) { if ((q[1][2] - asy * q[1][1]) % q[1][0]) { printf("-1\n"); exit(0); }; asy = (q[1][2] - asy * q[1][1]) / q[1][0]; } } if ((q[2][2] - q[1][2]) % (q[1][0] - q[2][0])) { printf("-1\n"); exit(0); }; asx = (q[2][2] - q[1][2]) / (q[1][0] - q[2][0]); if (q[1][1]) { if ((-q[1][2] - asx * q[1][0]) % q[1][1]) { printf("-1\n"); exit(0); }; asy = (-q[1][2] - asx * q[1][0]) / q[1][1]; } else if (q[2][1]) { if ((-q[2][2] - asx * q[2][0]) % q[2][1]) { printf("-1\n"); exit(0); }; asy = (-q[2][2] - asx * q[2][0]) / q[2][1]; } } if (asx < 0 || asy < 0) { printf("-1\n"); exit(0); }; for (int j = 1; j <= ct; j++) { long long s1 = s[j][1] * asx + s[j][0], s2 = t[j][1] * asy + t[j][0]; if (s1 != s2) { printf("-1\n"); exit(0); }; s[j][0] = s1; s[j][1] = 0; } return; } } if (!c1) return; long long x, y, s1; long long g = exgcd(q[1][0], q[1][1], x, y); long long f1 = q[1][0], f2 = q[1][1]; int fg1 = f1 > 0 ? 1 : -1, fg2 = f2 > 0 ? 1 : -1; x *= -q[1][2] * g; y *= -q[1][2] * g; if (x < 0) s1 = -x / (f2 * fg2), x += f2 * fg2 * s1, y -= f1 * fg2 * s1; while (x < 0) x += f2 * fg2, y -= f1 * fg2; if (y < 0) s1 = -y / (f1 * fg1), y += f1 * fg1 * s1, x -= f2 * fg1 * s1; while (y < 0) y += f1 * fg1, x -= f2 * fg1; s1 = min(fg2 * f2 == 0 ? 0 : x / (fg2 * f2), fg1 * f1 == 0 ? 0 : y / (fg1 * f1)); x -= fg2 * f2 * s1, y -= fg1 * f1 * s1; while (x >= fg2 * f2 && y >= fg1 * f1) x -= fg2 * f2, y -= fg1 * f1; if (x < 0) { printf("-1\n"); exit(0); }; for (int i = 1; i <= ct; i++) if (s[i][1] || t[i][1]) { if (s[i][1]) s[i][0] += s[i][1] * x, s[i][1] *= f2; else s[i][0] = t[i][0] + t[i][1] * y; s[i][1] = t[i][1] * f1; } } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { for (int j = 1; j <= ct; j++) t[j][0] = t[j][1] = 0; scanf("%d%d", &a, &b); mx = max(mx, a); for (int j = 2; j <= 4e4; j++) if (a % j == 0 || b % j == 0) { if (!tp[j]) tp[j] = ++ct, s1[ct] = j; int s11 = 0, s21 = 0; while (a % j == 0) a /= j, s11++; while (b % j == 0) b /= j, s21++; t[tp[j]][0] = s11, t[tp[j]][1] = s21; } if (a > 1 && b > 1 && a == b) { if (!tp[a]) tp[a] = ++ct, s1[ct] = a; t[tp[a]][0] = 1, t[tp[a]][1] = 1; } else if (a > 1) { if (!tp[a]) tp[a] = ++ct, s1[ct] = a; t[tp[a]][0] = 1, t[tp[a]][1] = 0; } else if (b > 1) { if (!tp[b]) tp[b] = ++ct, s1[ct] = b; t[tp[b]][0] = 0, t[tp[b]][1] = 1; } if (i == 1) swap(s, t); else merge(); } int as = 1, fg = 0; for (int i = 1; i <= ct; i++) fg |= (1ll * as * pw(s1[i], s[i][0] % (1000000007 - 1)) % 1000000007 != 1ll * as * pw(s1[i], s[i][0] % (1000000007 - 1))) | (s[i][0] >= 1000000007) | pw2(s1[i], s[i][0] % (1000000007 - 1)), as = 1ll * as * pw(s1[i], s[i][0] % (1000000007 - 1)) % 1000000007; while (as < mx && !fg) { for (int i = 1; i <= ct; i++) fg |= (1ll * as * pw(s1[i], s[i][1] % (1000000007 - 1)) % 1000000007 != 1ll * as * pw(s1[i], s[i][1] % (1000000007 - 1))), as = 1ll * as * pw(s1[i], s[i][1] % (1000000007 - 1)) % 1000000007; } printf("%d\n", as); }
#include <bits/stdc++.h> using namespace std; const int N = 1e2 + 7, M = 1e3 + 7, p = 1e9 + 7; bool tag, res; int n, a[N], b[N], p1[N]; map<int, int> q; long long x, y; struct node { long long g[M]; } f1[N], f2[N], ans1, ans2; inline long long pows(long long a, long long b) { long long ans = 1; while (b > 0) { if (b & 1) ans = (ans * a) % p; a = (a * a) % p, b = b >> 1; } return ans; } inline int read() { int num = 0; char g = getchar(); while (g < 48 || 57 < g) g = getchar(); while (47 < g && g < 58) num = (num << 1) + (num << 3) + g - 48, g = getchar(); return num; } inline void spilt(int u) { for (int i = 2; i <= sqrt(u); i++) { if (u % i == 0) { if (!q[i]) q[i] = 1, p1[++p1[0]] = i; while (u % i == 0) u /= i; } } if (u > 1) { if (!q[u]) q[u] = 1, p1[++p1[0]] = u; } } inline node getans(int u) { node w = f1[0]; for (int i = 1; i <= p1[0]; i++) while (u % p1[i] == 0) w.g[i]++, u /= p1[i]; return w; } inline long long gcd(long long a, long long b) { if (!b) return a; return gcd(b, a % b); } inline void exgcd(long long a, long long b, long long c) { if (b == 0) { x = c / a, y = 0; return; } exgcd(b, a % b, c); long long f1 = -y, f2 = -x - (a / b) * y; x = f1, y = f2; } inline void merge(node a, node b) { long long f1 = -1, f2 = -1; res = 0; long long wn = -1; for (int i = 1; i <= p1[0]; i++) { if (!ans2.g[i] && !b.g[i]) { if (ans1.g[i] != a.g[i]) { tag = 1; return; } continue; } if (!ans2.g[i]) { if (ans1.g[i] - a.g[i] < 0) { tag = 1; return; } f2 = (ans1.g[i] - a.g[i]) / b.g[i]; } if (!b.g[i]) { if (a.g[i] - ans1.g[i] < 0) { tag = 1; return; } f1 = (a.g[i] - ans1.g[i]) / ans2.g[i]; } } if (f1 != -1 || f2 != -1) { for (int i = 1; i <= p1[0]; i++) { if (ans2.g[i] && f2 != -1) { long long w = a.g[i] + f2 * b.g[i]; f1 = (w - ans1.g[i]) / ans2.g[i]; } if (b.g[i] && f1 != -1) { long long w = ans1.g[i] + f1 * ans2.g[i]; f2 = (w - a.g[i]) / b.g[i]; } } for (int i = 1; i <= p1[0]; i++) if (ans1.g[i] + ans2.g[i] * f1 != a.g[i] + b.g[i] * f2) { tag = 1; return; } for (int i = 1; i <= p1[0]; i++) ans1.g[i] = ans1.g[i] + f1 * ans2.g[i], ans2.g[i] = 0; return; } long long k1 = -1, b1 = -1, k2 = -1, b2 = -1; bool flg = 0; for (int i = 1; i <= p1[0]; i++) { if (!ans2.g[i] && !b.g[i]) continue; long long fa, fb, fc, fd; if (k1 == -1 && b1 == -1 && k2 == -1 && b2 == -1) fa = ans2.g[i], fb = b.g[i], fc = a.g[i] - ans1.g[i], fd = gcd(fa, fb); else fa = k1 * ans2.g[i], fb = k2 * b.g[i], fc = (b2 * b.g[i] + a.g[i]) - (b1 * ans2.g[i] + ans1.g[i]), fd = gcd(fa, fb); if (fc % fd) { tag = 1; return; } fa /= fd, fb /= fd, fc /= fd; exgcd(fa, fb, fc); if (x < 0 || y < 0) { long long z = max(-x / fb, -y / fa); x += fb * z, y += fa * z; } if (x >= fb && y >= fa) { long long z = min((x - fb) / fb, (y - fa) / fa); x -= fb * z, y -= fa * z; } while (x < 0 || y < 0) x += fb, y += fa; while (x >= fb && y >= fa) x -= fb, y -= fa; if (k1 == -1 && b1 == -1 && k2 == -1 && b2 == -1) { b1 = x, k1 = fb, b2 = y, k2 = fa; continue; } if (x != y || fa != fb) { if (x == y) { flg = 1, wn = b1 + k1 * x; break; } if (fa == fb) { tag = 1; return; } if ((x - y) % (fa - fb) != 0) { tag = 1; return; } wn = (x - y) / (fa - fb); if (wn < 0) { tag = 1; return; } wn = wn * fb + x, wn = wn * k1 + b1; break; } b1 = b1 + k1 * x, k1 = k1 * fa; b2 = b2 + k2 * x, k2 = k2 * fa; } if (wn >= 0) { for (int i = 1; i <= p1[0]; i++) { ans1.g[i] = ans1.g[i] + ans2.g[i] * wn, ans2.g[i] = 0; } return; } for (int i = 1; i <= p1[0]; i++) { ans1.g[i] = ans1.g[i] + ans2.g[i] * b1; ans2.g[i] = ans2.g[i] * k1; } } int main() { n = read(), tag = 0; for (int i = 1; i <= n; i++) a[i] = read(), b[i] = read(), spilt(a[i]), spilt(b[i]); for (int i = 1; i <= n; i++) f1[i] = getans(a[i]), f2[i] = getans(b[i]); ans1 = f1[1], ans2 = f2[1]; for (int i = 2; i <= n; i++) { merge(f1[i], f2[i]); if (tag) { puts("-1"); return 0; } merge(f1[i], f2[i]); } int opt = 1; for (int i = 1; i <= p1[0]; i++) opt = opt * pows(p1[i], ans1.g[i] % (p - 1)) % p; cout << opt << endl; return 0; }
#include <bits/stdc++.h> using namespace std; const int Max_N(105); int N, _A[Max_N], _B[Max_N]; map<int, long long int> A[Max_N], B[Max_N]; long long int limit; long long int gcd(long long int a, long long int b) { return b == 0LL ? a : gcd(b, a % b); } inline long long int lcm(long long int a, long long int b) { return a / gcd(a, b) * b; } void GG() { printf("-1"); exit(0); } void calc(int n, map<int, long long int> &S) { for (int p = 2, e; p * p <= n; ++p) if (n % p == 0) { e = 0; while (n % p == 0) n /= p, ++e; S[p] = e; } if (n > 1) S[n] = 1; } set<int> S; void merge(int a, int b) { S.clear(); for (map<int, long long int>::iterator it = A[a].begin(); it != A[a].end(); ++it) S.insert(it->first); for (map<int, long long int>::iterator it = B[a].begin(); it != B[a].end(); ++it) S.insert(it->first); for (map<int, long long int>::iterator it = A[b].begin(); it != A[b].end(); ++it) S.insert(it->first); for (map<int, long long int>::iterator it = B[b].begin(); it != B[b].end(); ++it) S.insert(it->first); } namespace PrintAns { const int MOD(1000000000 + 7); constexpr int Mult(int a, int b) { return a * 1LL * b % MOD; } int power(int a, long long int n) { int Ret(1); while (n) { if (n & 1LL) Ret = Mult(Ret, a); a = Mult(a, a), n >>= 1LL; } return Ret; } void printAns(long long int x) { printf("%d", Mult(_A[1], power(_B[1], x))); } } // namespace PrintAns void print(long long int x1) { if (x1 < 0LL) GG(); for (int i = 2; i <= N; ++i) { merge(1, i); set<long long int> qwq; for (set<int>::iterator it = S.begin(); it != S.end(); ++it) { int p = *it; long long int xi = B[1][p] * x1 + A[1][p] - A[i][p]; if (B[i][p] == 0LL) if (xi == 0LL) continue; else GG(); if (xi < 0LL) GG(); if (xi % B[i][p]) GG(); qwq.insert(xi / B[i][p]); } if (qwq.size() > 1) GG(); } PrintAns::printAns(x1), exit(0); } constexpr long long int Abs(long long int x) { return x >= 0LL ? x : -x; } pair<long long int, long long int> get(pair<long long int, long long int> a) { if (a.second < 0LL) a.second = -a.second, a.first = -a.first; if (a.first == 0LL) a.second = 1LL; else { long long int d = gcd(Abs(a.first), Abs(a.second)); a.first /= d, a.second /= d; } return a; } inline pair<long long int, long long int> operator-( const pair<long long int, long long int> &a, const pair<long long int, long long int> &b) { long long int l = lcm(a.second, b.second); return get(make_pair(a.first * (l / a.second) - b.first * (l / b.second), l)); } inline pair<long long int, long long int> operator/( const pair<long long int, long long int> &a, const pair<long long int, long long int> &b) { return get(make_pair(a.first * b.second, a.second * b.first)); } void exgcd(long long int a, long long int b, long long int &x, long long int &y) { if (b == 0LL) x = 1LL, y = 0LL; else exgcd(b, a % b, y, x), y -= x * (a / b); } inline long long int inverse(long long int a, long long int MOD) { long long int invx, invy; exgcd(a, MOD, invx, invy); return (invx % MOD + MOD) % MOD; } inline long long int Add(long long int a, long long int b, long long int MOD) { return a + b >= MOD ? a + b - MOD : a + b; } inline long long int Mult(long long int a, long long int b, long long int MOD) { return a * b % MOD; } long long int A1, MOD1; inline void merge(long long int A2, long long int MOD2) { long long int d = gcd(MOD1, MOD2), sub = (((A2 - A1) % MOD2 + MOD2) % MOD2); if (sub % d) GG(); long long int k1, k2; exgcd(MOD1, MOD2, k1, k2), k1 *= sub / d; A1 = k1 * MOD1 + A1, MOD1 = lcm(MOD1, MOD2), A1 = (A1 % MOD1 + MOD1) % MOD1; } inline void insert(long long int k, long long int A2, long long int MOD2) { k = (k % MOD2 + MOD2) % MOD2; A2 = (A2 % MOD2 + MOD2) % MOD2; if (k == 0LL) if (A2 == 0LL) return; else GG(); long long int d = gcd(k, MOD2); if (A2 % d) GG(); k /= d, A2 /= d, MOD2 /= d; A2 = Mult(A2, inverse(k, MOD2), MOD2); merge(A2, MOD2); } int main() { scanf("%d", &N); for (int i = 1; i <= N; ++i) scanf("%d%d", _A + i, _B + i), calc(_A[i], A[i]), calc(_B[i], B[i]); A1 = 0LL, MOD1 = 1LL; for (int i = 2; i <= N; ++i) { merge(1, i); map<pair<long long int, long long int>, pair<long long int, long long int> > rec; for (set<int>::iterator it = S.begin(); it != S.end(); ++it) { int p = *it; if (B[i][p] == 0LL) if (B[1][p] == 0LL) { if (A[1][p] != A[i][p]) GG(); } else print((A[i][p] - A[1][p]) / B[1][p]); else { rec[get(make_pair(B[1][p], B[i][p]))] = get(make_pair(A[1][p] - A[i][p], B[i][p])); if (A[i][p] - A[1][p] > 0LL) { if (B[1][p] == 0LL) GG(); limit = max(limit, (A[i][p] - A[1][p]) / B[1][p]); while (B[1][p] * limit < A[i][p] - A[1][p]) ++limit; } insert(B[1][p], A[i][p] - A[1][p], B[i][p]); } } if (rec.size() >= 2) { pair<long long int, long long int> k1 = rec.begin()->first, b1 = rec.begin()->second; pair<long long int, long long int> k2 = rec.rbegin()->first, b2 = rec.rbegin()->second; pair<long long int, long long int> x = (b2 - b1) / (k1 - k2); if (x.second != 1LL) GG(); print(x.first); } } long long int k = (limit - A1) / MOD1; k = max(k, 0LL); while (k * MOD1 + A1 < limit) ++k; print(k * MOD1 + A1); return 0; }
#include <bits/stdc++.h> using namespace std; inline void O() { puts("-1"); exit(0); } long long exgcd(long long a, long long b, long long& x, long long& y) { if (!b) return x = 1, y = 0, a; else { long long d = exgcd(b, a % b, y, x); y -= a / b * x; return d; } } struct seq { long long a, b; seq(long long _a = 1, long long _b = 0) : a(_a), b(_b) {} inline seq operator&(const seq& rhs) { if (!a && !rhs.a) { if (b != rhs.b) O(); return seq(1, 0); } if (!a) { if (b < rhs.b || (b - rhs.b) % rhs.a) O(); return seq(0, (b - rhs.b) / rhs.a); } if (!rhs.a) { if (rhs.b < b || (rhs.b - b) % a) O(); return seq(1, 0); } long long c = rhs.a, d = rhs.b, v = ((b - d) % a + a) % a, x, y, dd, aa = a, t2; dd = exgcd(a, c, x, y); if (v % dd) O(); c /= dd; v /= dd; aa /= dd; t2 = (y * v % aa + aa) % aa; if (c * t2 + d - b < 0) t2 += (b - d - c * t2 + c * aa - 1) / (c * aa) * aa; return seq(aa, t2); } inline seq operator&&(const seq& rhs) { long long c = rhs.a, d = rhs.b; if (a != c) { if ((d - b) % (a - c)) O(); return seq(0, (d - b) / (a - c) * a + b); } else { if (!a) { if (b != d) O(); return rhs; } if ((b - d) % a) O(); return seq(a, max(b, d)); } } inline void operator*=(const seq& rhs) { b += rhs.b * a; a *= rhs.a; } }; const int M = 35e3, mo = 1e9 + 7; inline int poww(int x, long long y) { int ans = 1; for (; y; y >>= 1, x = 1ll * x * x % mo) if (y & 1) ans = 1ll * ans * x % mo; return ans; } bool b[M]; int pr[M / 5], pcnt; int n, i, j, ass = 1; unordered_map<int, seq> ans; inline unordered_map<int, seq> geth() { int a, b; scanf("%d%d", &b, &a); unordered_map<int, seq> ret; for (j = 1; j <= pcnt; ++j) if (a % pr[j] == 0 || b % pr[j] == 0) { int ca = 0, cb = 0; for (; a % pr[j] == 0; a /= pr[j], ++ca) ; for (; b % pr[j] == 0; b /= pr[j], ++cb) ; ret[pr[j]] = seq(ca, cb); } if (a > 1 && b > 1) { if (a == b) ret[a] = seq(1, 1); else ret[a] = seq(1, 0), ret[b] = seq(0, 1); } if (a > 1 && b == 1) ret[a] = seq(1, 0); if (a == 1 && b > 1) ret[b] = seq(0, 1); return ret; } long long calc(seq a, seq b, seq c, seq d) { long long A = (b.a * a.b - a.a * b.b) - (b.a * c.b - a.a * d.b), B = (b.a * c.a - a.a * d.a), x2; if (A && !B) O(); if (B && A % B) O(); if (!A && !B) return -1; if (A / B < 0) O(); return A / B; } inline void work(seq a, seq b, seq c, seq d, seq& e, seq& f) { long long x1 = calc(c, d, a, b), x2 = calc(a, b, c, d); if (x1 == -1) return; e = seq(0, c.a * x2 + c.b); f = seq(0, d.a * x2 + d.b); } inline void jiao(unordered_map<int, seq>& a, unordered_map<int, seq> b) { seq aa, bb, na, nb; bool fl = 0; for (auto u : b) { if (!a.count(u.first)) a[u.first] = seq(0, 0); na = a[u.first]; nb = u.second; long long x1, x2; if (!fl) fl = 1, aa = nb & na, bb = na & nb; else work(aa, bb, nb & na, na & nb, aa, bb); } for (auto& u : a) u.second *= aa; } int main() { for (i = 2; i < M; ++i) if (!b[i]) for (pr[++pcnt] = j = i; j += i, j < M; b[j] = 1) ; scanf("%d", &n); ans = geth(); for (i = 2; i <= n; ++i) jiao(ans, geth()); for (auto u : ans) ass = 1ll * ass * poww(u.first, u.second.b) % mo; printf("%d\n", ass); return 0; }
#include <bits/stdc++.h> int read() { int r = 0, t = 1, c = getchar(); while (c < '0' || c > '9') { t = c == '-' ? -1 : 1; c = getchar(); } while (c >= '0' && c <= '9') { r = (r << 3) + (r << 1) + (c ^ 48); c = getchar(); } return r * t; } const long long mod = 1000000007, inf = 1ll << 60, N = 110; long long power(long long a, long long b, long long p) { long long r = 1; for (; b; b >>= 1, a = a * a % p) if (b & 1) r = r * a % p; return r; } long long calc(long long a, int b) { long long s = (long long)(pow(a, 1. / b) + 0.5); return power(s, b, inf) == a ? s : 0; } long long n, a[N], b[N], c[N], d[N]; long long v[N]; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long split(long long a, long long p) { for (int i = (1), end_i = (p); i <= end_i; i++) { long long g; if (v[i] != 1 && (g = gcd(a, v[i])) != 1) { v[i] /= g; a /= g; } if (a == 1) return 1; } return 0; } long long checkv(long long p) { for (int i = (1), end_i = (p); i <= end_i; i++) if (v[i] != 1) return 0; return 1; } long long check(long long a, long long b, long long p, long long A, long long B) { p++; v[1] = a; for (int i = (2), end_i = (p); i <= end_i; i++) v[i] = b; if (!split(A, p)) return 0; if (!checkv(p) && B == 1) return 0; while (!checkv(p)) if (!split(B, p)) return 0; return 1; } long long check(long long A, long long B, long long p) { for (int i = (1), end_i = (n); i <= end_i; i++) if (!check(A, B, p, a[i], b[i])) return 0; return 1; } int main() { n = read(); for (int i = (1), end_i = (n); i <= end_i; i++) { a[i] = read(); b[i] = read(); } int flag = 0; for (int i = (1), end_i = (n); i <= end_i; i++) if (b[i] == 1) flag = 1; if (flag) { for (int i = (1), end_i = (n); i <= end_i; i++) if (b[i] == 1) { if (check(a[i], b[i], 0)) printf("%I64d\n", a[i]); else printf("-1\n"); return 0; } } for (int i = (1), end_i = (n); i <= end_i; i++) { for (int j = (29), end_j = (0); j >= end_j; j--) if (calc(b[i], j)) { d[i] = j; b[i] = calc(b[i], j); break; } while (a[i] % b[i] == 0) { a[i] /= b[i]; c[i]++; } } for (int i = (2), end_i = (n); i <= end_i; i++) if (b[i] != b[1]) { for (int j = (1), end_j = (n); j <= end_j; j++) { a[j] = a[j] * power(b[j], c[j], inf); b[j] = power(b[j], d[j], inf); } for (int j = (0), end_j = (100); j <= end_j; j++) if (check(a[1], b[1], j, a[i], b[i])) { if (check(a[1], b[1], j)) printf("%I64d\n", power(b[1], j, mod) * a[1] % mod); else printf("-1\n"); return 0; } printf("-1\n"); return 0; } for (int i = (2), end_i = (n); i <= end_i; i++) if (a[i] != a[1]) { printf("-1\n"); return 0; } long long ans = c[1], Ans = d[1]; for (int i = (2), end_i = (n); i <= end_i; i++) { int flag = 0; for (int j = (0), end_j = (1000); j <= end_j; j++) if (ans + Ans * j >= c[i] && (ans + Ans * j - c[i]) % d[i] == 0) { ans += Ans * j; flag = 1; break; } if (!flag) { printf("-1\n"); return 0; } Ans = Ans * d[i] / gcd(Ans, d[i]); } printf("%I64d\n", a[1] * power(b[1], ans, mod) % mod); return 0; }
#include <bits/stdc++.h> using namespace std; template <class T> inline void rd(T &x) { x = 0; char c = getchar(); int f = 1; while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) x = x * 10 - '0' + c, c = getchar(); x *= f; } inline long long Abs(long long x) { return x > 0 ? x : -x; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } struct item { int p; long long k; item(int p = 0, long long k = 0) : p(p), k(k) {} }; struct Num { item p[810]; int num; void init(int x) { for (int i = 2; i * (long long)i <= x; ++i) if (x % i == 0) { int c = 0; while (x % i == 0) x /= i, c++; p[num++] = item(i, c); } if (x > 1) p[num++] = item(x, 1); } item query(int x) { for (int i = 0; i < num; ++i) if (p[i].p == x) return p[i]; return item(x, 0); } } A[110], B[110]; int n; void FAIL() { puts("-1"); exit(0); } item A1[3210], B1[3210], A2[3210], B2[3210]; int pri[3210], num; long long exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return a; } long long g = exgcd(b, a % b, y, x); y -= a / b * x; return g; } void Inter(long long A, long long B, long long C, long long a, long long b, long long c, long long &x1, long long &x2) { while (a) { long long t = A / a; A -= t * a, B -= t * b, C -= t * c; swap(A, a), swap(B, b), swap(C, c); } if (c % b) FAIL(); x2 = -c / b; if ((C + B * x2) % A) FAIL(); x1 = (-C - B * x2) / A; } void UN(Num &a1, Num &b1, Num &a2, Num &b2) { num = 0; for (int i = 0; i < a1.num; ++i) pri[num++] = a1.p[i].p; for (int i = 0; i < a2.num; ++i) pri[num++] = a2.p[i].p; for (int i = 0; i < b1.num; ++i) pri[num++] = b1.p[i].p; for (int i = 0; i < b2.num; ++i) pri[num++] = b2.p[i].p; sort(pri, pri + num); num = unique(pri, pri + num) - pri; for (int i = 0; i < num; ++i) A1[i] = a1.query(pri[i]); for (int i = 0; i < num; ++i) A2[i] = a2.query(pri[i]); for (int i = 0; i < num; ++i) B1[i] = b1.query(pri[i]); for (int i = 0; i < num; ++i) B2[i] = b2.query(pri[i]); long long A = 0, B = 0, C = 0; int flg1 = 0; long long x1, x2; for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a == 0 && b == 0) { if (c) FAIL(); continue; } long long g = gcd(a, gcd(-b, Abs(c))); a /= g, b /= g, c /= g; if (!b) { if (c % a) FAIL(); if (-c / a < 0) FAIL(); } if (!A && !B) { A = a, B = b, C = c; continue; } if (!B) { if (b) { Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (C / A != c / a) FAIL(); continue; } if (A * b == a * B) { if (c * A == C * a) continue; FAIL(); } Inter(A, B, C, a, b, c, x1, x2), flg1 = 1; break; } if (flg1) { for (int i = 0; i < num; ++i) { long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k; if (a * x1 + b * x2 + c) FAIL(); } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = 0; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; return; } long long g = exgcd(A, B, x1, x2); if (C % g) FAIL(); x1 *= -C / g, x2 *= -C / g; long long tx = Abs(-B / g), ty = Abs(A / g); if (C > 0 || !ty) { x1 = (x1 % tx + tx) % tx; if (B) x2 = -(A * x1 + C) / B; else x2 = 0; } else { x2 = (x2 % ty + ty) % ty; if (A) x1 = (-B * x2 - C) / A; else x1 = 0; } for (int i = 0; i < num; ++i) { A1[i].k = A1[i].k + B1[i].k * x1; B1[i].k = tx * B1[i].k; } for (int i = 0; i < num; ++i) a1.p[i] = A1[i], b1.p[i] = B1[i]; a1.num = b1.num = num; } const int mod = 1e9 + 7; int Pow(int x, long long y) { int res = 1; for (y %= (mod - 1); y; x = x * (long long)x % mod, y >>= 1) if (y & 1) res = res * (long long)x % mod; return res; } int main() { rd(n); for (int i = 1, a, b; i <= n; ++i) rd(a), rd(b), A[i].init(a), B[i].init(b); for (int i = 2; i <= n; ++i) UN(A[1], B[1], A[i], B[i]); long long ans = 1; for (int i = 0; i < A[1].num; ++i) ans = ans * (long long)Pow(A[1].p[i].p, A[1].p[i].k) % mod; printf("%lld", ans); return 0; }
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long Pow(long long a, long long k) { long long ret = 1; while (k) { if (k & 1) ret = ret * a % 1000000007; a = a * a % 1000000007; k >>= 1; } return ret; } void Exgcd(long long a, long long b, long long &x, long long &y) { if (!b) { x = 1, y = 0; return; } Exgcd(b, a % b, y, x); y -= (a / b) * x; } long long Inv(long long x, long long m) { long long t1, t2; Exgcd(x, m, t1, t2); return (t1 % m + m) % m; } map<int, int> S; int P[2005], cnt; bool vis[2005]; int a[105][2005], b[105][2005]; bool Checkans(int n, int x, long long d) { int ans = 1; for (int i = 1; i <= cnt; i++) { long long v = a[x][i] + b[x][i] * d; for (int j = 1; j <= n; j++) if (b[j][i]) { if (v < a[j][i] || (v - a[j][i]) % b[j][i] != 0) return 0; } else if (a[j][i] != v) return 0; ans = ans * Pow(P[i], v) % 1000000007; } printf("%d\n", ans); return 1; } int Check(int n) { for (int i = 1; i <= cnt; i++) { int id = 0; for (int j = 1; j <= n; j++) if (!b[j][i]) id = j; if (!id) continue; vis[i] = 1; for (int j = 1; j <= n; j++) if (b[j][i]) { int v = a[id][i] - a[j][i]; if (v % b[j][i] != 0) return 0; v /= b[j][i]; if (v < 0) return 0; if (Checkans(n, j, v)) return 2; return 0; } else if (a[j][i] != a[id][i]) return 0; } int id = 1; while (id <= cnt && vis[id]) id++; if (id > cnt) if (Checkans(n, 1, 0)) return 2; for (int i = id + 1; i <= cnt; i++) if (!vis[i]) { for (int j = 2; j <= n; j++) { int u = a[j][id] - a[1][id], v = a[j][i] - a[1][i]; if (b[1][id] * b[j][i] != b[1][i] * b[j][id]) { int t1 = b[1][id] * b[j][i] - b[1][i] * b[j][id]; int t2 = u * b[j][i] - v * b[j][id]; if (t2 % t1) return 0; t2 /= t1; if (t2 < 0) return 0; if (Checkans(n, 1, t2)) return 2; } else if (b[1][id] * v != b[1][i] * u) return 0; } } return 1; } bool Solve(int n) { int id = 1; while (id <= cnt && vis[id]) id++; long long s = a[1][id] % b[1][id], w = b[1][id]; for (int i = 2; i <= n; i++) { long long u = a[i][id] % b[i][id], v = b[i][id]; long long d = gcd(w, v); if ((u - s) % d) return 0; long long p = w / d, q = v / d, r = (u - s) / d; long long x = (Inv(p, q) * r % q + q) % q; s = w * x + s; w = lcm(w, v); } for (int i = 1; i <= n; i++) while (s < a[i][id]) s += w; return Checkans(n, 1, (s - a[1][id]) / b[1][id]); } void Getfact(int x, int *A) { int t = x; for (int i = 2; i * i <= t; i++) if (x % i == 0) { if (!S.count(i)) { S[i] = ++cnt; P[cnt] = i; } int u = S[i]; while (x % i == 0) { A[u]++; x /= i; } } if (x > 1) { if (!S.count(x)) { S[x] = ++cnt; P[cnt] = x; } int u = S[x]; A[u] = 1; } } int n; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { int x, y; scanf("%d%d", &x, &y); Getfact(x, a[i]); Getfact(y, b[i]); } int x = Check(n); if (!x) { puts("-1"); return 0; } if (x == 2) return 0; if (!Solve(n)) { puts("-1"); return 0; } }