text
stringlengths
0
1.25M
meta
stringlengths
47
1.89k
import argparse import numpy as np import os import pprint import yaml # HACK: Get logger to print to stdout import sys sys.ps1 = '>>> ' # Make it "interactive" import tensorflow as tf from multiprocessing import Queue from lib.config import cfg_from_file, cfg_from_list, cfg from lib.data_process import make_data_processes, kill_processes from lib.solver import Solver from lib.solver_encoder import TextEncoderSolver, TextEncoderCosDistSolver, LBASolver from lib.solver_gan import End2EndGANDebugSolver from lib.solver_classifier import ClassifierSolver from lib.cwgan import CWGAN from lib.lba import LBA from lib.classifier import Classifier import lib.utils as utils import models del sys.ps1 # HACK: Get logger to print to stdout def parse_args(): """Parse the arguments. """ parser = argparse.ArgumentParser( description='Main text2voxel train/test file.') parser.add_argument('--cfg', dest='cfg_files', action='append', help='optional config file', default=None, type=str) parser.add_argument('--dont_save_voxels', dest='dont_save_voxels', action='store_true') parser.add_argument('--lba_only', dest='lba_only', action='store_true') parser.add_argument('--metric_learning_only', dest='metric_learning_only', action='store_true') parser.add_argument('--non_inverted_loss', dest='non_inverted_loss', action='store_true') parser.add_argument('--synth_embedding', dest='synth_embedding', action='store_true') parser.add_argument('--all_tuples', dest='all_tuples', action='store_true') parser.add_argument('--reed_classifier', dest='reed_classifier', action='store_true') parser.add_argument('--val_split', dest='split', help='data split for validation/testing (train, val, test)', default=None, type=str) parser.add_argument('--queue_capacity', dest='queue_capacity', help='size of queue', default=None, type=int) parser.add_argument('--n_minibatch_test', dest='n_minibatch_test', help='number of minibatches to use for test phase', default=None, type=int) parser.add_argument('--dataset', dest='dataset', help='dataset', default=None, type=str) parser.add_argument('--improved_wgan', dest='improved_wgan', action='store_true') parser.add_argument('--debug', dest='is_debug', action='store_true') parser.add_argument('--rand', dest='randomize', help='randomize (do not use a fixed seed)', action='store_true') parser.add_argument('--tiny_dataset', dest='tiny_dataset', help='use a tiny dataset (~5 examples)', action='store_true') parser.add_argument('--model', dest='model', help='name of the network model', default=None, type=str) parser.add_argument('--text_encoder', dest='text_encoder', help='train/test on text encoder', action='store_true') parser.add_argument('--classifier', dest='classifier', help='train/test on classifier', action='store_true') parser.add_argument('--end2end', dest='end2end', help='train/test using end2end model such as End2EndLBACWGAN', action='store_true') parser.add_argument('--shapenet_ct_classifier', dest='shapenet_ct_classifier', help='chair/table classifier (sets up for classification)', action='store_true') parser.add_argument('--noise_size', dest='noise_size', help='dimension of the noise', default=None, type=int) parser.add_argument('--noise_dist', dest='noise_dist', help='noise distribution (uniform, gaussian)', default=None, type=str) parser.add_argument('--validation', dest='validation', help='run validation while training', action='store_true') parser.add_argument('--test', dest='test', help='test mode', action='store_true') parser.add_argument('--test_npy', dest='test_npy', help='test mode using npy files', action='store_true') parser.add_argument('--save_outputs', dest='save_outputs', help='save the outputs to a file', action='store_true') parser.add_argument('--summary_freq', dest='summary_freq', help='summary frequency', default=None, type=int) parser.add_argument('--optimizer', dest='optimizer', help='name of the optimizer', default=None, type=str) parser.add_argument('--critic_optimizer', dest='critic_optimizer', help='name of the critic optimizer', default=None, type=str) parser.add_argument('--batch_size', dest='batch_size', help='batch size', default=None, type=int) parser.add_argument('--lba_mode', dest='lba_mode', help='LBA mode type (TST, STS, MM)', default=None, type=str) parser.add_argument('--lba_test_mode', dest='lba_test_mode', help='LBA test mode (shape, text) - what to input during forward pass', default=None, type=str) parser.add_argument('--visit_weight', dest='visit_weight', help='visit weight for lba models', default=None, type=float) parser.add_argument('--lba_unnormalize', dest='lba_unnormalize', action='store_true') parser.add_argument('--num_critic_steps', dest='num_critic_steps', help='number of critic steps per train step', default=None, type=int) parser.add_argument('--intense_training_freq', dest='intense_training_freq', help='frequency of intense critic training', default=None, type=int) parser.add_argument('--uniform_max', dest='uniform_max', help='absolute max for uniform distribution', default=None, type=float) parser.add_argument('--match_loss_coeff', dest='match_loss_coeff', help='coefficient for real match loss', default=None, type=float) parser.add_argument('--fake_match_loss_coeff', dest='fake_match_loss_coeff', help='coefficient for fake match loss', default=None, type=float) parser.add_argument('--fake_mismatch_loss_coeff', dest='fake_mismatch_loss_coeff', help='coefficient for fake mismatch loss', default=None, type=float) parser.add_argument('--gp_weight', dest='gp_weight', help='coefficient for gradient penalty', default=None, type=float) parser.add_argument('--text2text_weight', dest='text2text_weight', help='coefficient for text2text loss', default=None, type=float) parser.add_argument('--shape2shape_weight', dest='shape2shape_weight', help='coefficient for shape2shape loss', default=None, type=float) parser.add_argument('--learning_rate', dest='learning_rate', help='learning rate', default=None, type=float) parser.add_argument('--critic_lr_multiplier', dest='critic_lr_multiplier', help='critic learning rate multiplier', default=None, type=float) parser.add_argument('--decay_steps', dest='decay_steps', help='decay steps', default=None, type=int) parser.add_argument('--num_epochs', dest='num_epochs', help='number of epochs', default=None, type=int) parser.add_argument('--augment_max', dest='augment_max', help='maximum augmentation perturbation out of 255', default=None, type=int) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--ckpt_path', dest='ckpt_path', help='Initialize network from checkpoint', default=None) parser.add_argument('--lba_ckpt_path', dest='lba_ckpt_path', help='Initialize LBA component of end2endlbawgan network from checkpoint', default=None) parser.add_argument('--val_ckpt_path', dest='val_ckpt_path', help='Initialize validation network from checkpoint', default=None) parser.add_argument('--log_path', dest='log_path', help='set log path', default=None) args = parser.parse_args() return args def modify_args(args): """Modify the default config based on the command line arguments. """ # modify default config if requested if args.cfg_files is not None: for cfg_file in args.cfg_files: cfg_from_file(cfg_file) randomize = args.randomize if args.test: # Always randomize in test phase randomize = True if not randomize: np.random.seed(cfg.CONST.RNG_SEED) # NOTE: Unfortunately order matters here if args.lba_only is True: cfg_from_list(['LBA.COSINE_DIST', False]) if args.metric_learning_only is True: cfg_from_list(['LBA.NO_LBA', True]) if args.non_inverted_loss is True: cfg_from_list(['LBA.INVERTED_LOSS', False]) if args.dataset is not None: cfg_from_list(['CONST.DATASET', args.dataset]) if args.lba_mode is not None: cfg_from_list(['LBA.MODEL_TYPE', args.lba_mode]) if args.lba_test_mode is not None: cfg_from_list(['LBA.TEST_MODE', args.lba_test_mode]) # cfg_from_list(['LBA.N_CAPTIONS_PER_MODEL', 1]) # NOTE: Important! if args.shapenet_ct_classifier is True: cfg_from_list(['CONST.SHAPENET_CT_CLASSIFIER', args.shapenet_ct_classifier]) if args.visit_weight is not None: cfg_from_list(['LBA.VISIT_WEIGHT', args.visit_weight]) if args.lba_unnormalize is True: cfg_from_list(['LBA.NORMALIZE', False]) if args.improved_wgan is True: cfg_from_list(['CONST.IMPROVED_WGAN', args.improved_wgan]) if args.synth_embedding is True: cfg_from_list(['CONST.SYNTH_EMBEDDING', args.synth_embedding]) if args.all_tuples is True: cfg_from_list(['CONST.TEST_ALL_TUPLES', args.all_tuples]) if args.reed_classifier is True: cfg_from_list(['CONST.REED_CLASSIFIER', args.reed_classifier]) if args.noise_dist is not None: cfg_from_list(['GAN.NOISE_DIST', args.noise_dist]) if args.uniform_max is not None: cfg_from_list(['GAN.NOISE_UNIF_ABS_MAX', args.uniform_max]) if args.num_critic_steps is not None: cfg_from_list(['WGAN.NUM_CRITIC_STEPS', args.num_critic_steps]) if args.intense_training_freq is not None: cfg_from_list(['WGAN.INTENSE_TRAINING_FREQ', args.intense_training_freq]) if args.match_loss_coeff is not None: cfg_from_list(['WGAN.MATCH_LOSS_COEFF', args.match_loss_coeff]) if args.fake_match_loss_coeff is not None: cfg_from_list(['WGAN.FAKE_MATCH_LOSS_COEFF', args.fake_match_loss_coeff]) if args.fake_mismatch_loss_coeff is not None: cfg_from_list(['WGAN.FAKE_MISMATCH_LOSS_COEFF', args.fake_mismatch_loss_coeff]) if args.gp_weight is not None: cfg_from_list(['WGAN.GP_COEFF', args.gp_weight]) if args.text2text_weight is not None: cfg_from_list(['WGAN.TEXT2TEXT_WEIGHT', args.text2text_weight]) if args.shape2shape_weight is not None: cfg_from_list(['WGAN.SHAPE2SHAPE_WEIGHT', args.shape2shape_weight]) if args.learning_rate is not None: cfg_from_list(['TRAIN.LEARNING_RATE', args.learning_rate]) if args.critic_lr_multiplier is not None: cfg_from_list(['GAN.D_LEARNING_RATE_MULTIPLIER', args.critic_lr_multiplier]) if args.decay_steps is not None: cfg_from_list(['TRAIN.DECAY_STEPS', args.decay_steps]) if args.queue_capacity is not None: cfg_from_list(['CONST.QUEUE_CAPACITY', args.queue_capacity]) if args.n_minibatch_test is not None: cfg_from_list(['CONST.N_MINIBATCH_TEST', args.n_minibatch_test]) if args.noise_size is not None: cfg_from_list(['GAN.NOISE_SIZE', args.noise_size]) if args.batch_size is not None: cfg_from_list(['CONST.BATCH_SIZE', args.batch_size]) if args.summary_freq is not None: cfg_from_list(['TRAIN.SUMMARY_FREQ', args.summary_freq]) if args.num_epochs is not None: cfg_from_list(['TRAIN.NUM_EPOCHS', args.num_epochs]) if args.model is not None: cfg_from_list(['NETWORK', args.model]) if args.optimizer is not None: cfg_from_list(['TRAIN.OPTIMIZER', args.optimizer]) if args.critic_optimizer is not None: cfg_from_list(['GAN.D_OPTIMIZER', args.critic_optimizer]) if args.ckpt_path is not None: cfg_from_list(['DIR.CKPT_PATH', args.ckpt_path]) if args.lba_ckpt_path is not None: cfg_from_list(['END2END.LBA_CKPT_PATH', args.lba_ckpt_path]) if args.val_ckpt_path is not None: cfg_from_list(['DIR.VAL_CKPT_PATH', args.val_ckpt_path]) if args.log_path is not None: cfg_from_list(['DIR.LOG_PATH', args.log_path]) if args.augment_max is not None: cfg_from_list(['TRAIN.AUGMENT_MAX', args.augment_max]) if args.test: cfg_from_list(['TRAIN.AUGMENT_MAX', 0]) cfg_from_list(['CONST.BATCH_SIZE', 1]) cfg_from_list(['LBA.N_CAPTIONS_PER_MODEL', 1]) # NOTE: Important! cfg_from_list(['LBA.N_PRIMITIVE_SHAPES_PER_CATEGORY', 1]) # NOTE: Important! if args.test_npy: cfg_from_list(['CONST.BATCH_SIZE', 1]) # To overwrite default variables, put the set_cfgs after all argument initializations if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) def get_inputs_dict(args): """Gets the input dict for the current model and dataset. """ if cfg.CONST.DATASET == 'shapenet': if (args.text_encoder is True) or (args.end2end is True) or (args.classifier is True): inputs_dict = utils.open_pickle(cfg.DIR.TRAIN_DATA_PATH) val_inputs_dict = utils.open_pickle(cfg.DIR.VAL_DATA_PATH) test_inputs_dict = utils.open_pickle(cfg.DIR.TEST_DATA_PATH) else: # Learned embeddings inputs_dict = utils.open_pickle(cfg.DIR.SHAPENET_METRIC_EMBEDDINGS_TRAIN) val_inputs_dict = utils.open_pickle(cfg.DIR.SHAPENET_METRIC_EMBEDDINGS_VAL) test_inputs_dict = utils.open_pickle(cfg.DIR.SHAPENET_METRIC_EMBEDDINGS_TEST) elif cfg.CONST.DATASET == 'primitives': if ((cfg.CONST.SYNTH_EMBEDDING is True) or (args.text_encoder is True) or (args.classifier is True)): if args.classifier and not cfg.CONST.REED_CLASSIFIER: # Train on all splits for classifier tf.logging.info('Using all (train/val/test) splits for training') inputs_dict = utils.open_pickle(cfg.DIR.PRIMITIVES_ALL_SPLITS_DATA_PATH) else: tf.logging.info('Using train split only for training') inputs_dict = utils.open_pickle(cfg.DIR.PRIMITIVES_TRAIN_DATA_PATH) val_inputs_dict = utils.open_pickle(cfg.DIR.PRIMITIVES_VAL_DATA_PATH) test_inputs_dict = utils.open_pickle(cfg.DIR.PRIMITIVES_TEST_DATA_PATH) else: # Learned embeddings inputs_dict = utils.open_pickle(cfg.DIR.PRIMITIVES_METRIC_EMBEDDINGS_TRAIN) val_inputs_dict = utils.open_pickle(cfg.DIR.PRIMITIVES_METRIC_EMBEDDINGS_VAL) test_inputs_dict = utils.open_pickle(cfg.DIR.PRIMITIVES_METRIC_EMBEDDINGS_TEST) else: raise ValueError('Please use a valid dataset (shapenet, primitives).') if args.tiny_dataset is True: if ((cfg.CONST.DATASET == 'primitives' and cfg.CONST.SYNTH_EMBEDDING is True) or (args.text_encoder is True)): raise NotImplementedError('Tiny dataset not supported for synthetic embeddings.') ds = 5 # New dataset size if cfg.CONST.BATCH_SIZE > ds: raise ValueError('Please use a smaller batch size than {}.'.format(ds)) inputs_dict = utils.change_dataset_size(inputs_dict, new_dataset_size=ds) val_inputs_dict = utils.change_dataset_size(val_inputs_dict, new_dataset_size=ds) test_inputs_dict = utils.change_dataset_size(test_inputs_dict, new_dataset_size=ds) # Select the validation/test split if args.split == 'train': split_str = 'train' val_inputs_dict = inputs_dict elif (args.split == 'val') or (args.split is None): split_str = 'val' val_inputs_dict = val_inputs_dict elif args.split == 'test': split_str = 'test' val_inputs_dict = test_inputs_dict else: raise ValueError('Please select a valid split (train, val, test).') print('Validation/testing on {} split.'.format(split_str)) if (cfg.CONST.DATASET == 'shapenet') and (cfg.CONST.SHAPENET_CT_CLASSIFIER is True): category_model_list, class_labels = Classifier.set_up_classification(inputs_dict) val_category_model_list, val_class_labels = Classifier.set_up_classification(val_inputs_dict) assert class_labels == val_class_labels # Update inputs dicts inputs_dict['category_model_list'] = category_model_list inputs_dict['class_labels'] = class_labels val_inputs_dict['category_model_list'] = val_category_model_list val_inputs_dict['class_labels'] = val_class_labels return inputs_dict, val_inputs_dict def get_solver(g, net, args, is_training): if isinstance(net, LBA): solver = LBASolver(net, g, is_training) elif args.text_encoder: solver = TextEncoderSolver(net, g, is_training) elif isinstance(net, Classifier): solver = ClassifierSolver(net, g, is_training) elif isinstance(net, CWGAN): solver = End2EndGANDebugSolver(net, g, is_training) else: raise ValueError('Invalid network.') return solver def main(): """Main text2voxel function. """ args = parse_args() print('Called with args:') print(args) if args.save_outputs is True and args.test is False: raise ValueError('Can only save outputs when testing, not training.') if args.validation: assert not args.test if args.test: assert args.ckpt_path is not None modify_args(args) print('----------------- CONFIG -------------------') pprint.pprint(cfg) # Save yaml os.makedirs(cfg.DIR.LOG_PATH, exist_ok=True) with open(os.path.join(cfg.DIR.LOG_PATH, 'run_cfg.yaml'), 'w') as out_yaml: yaml.dump(cfg, out_yaml, default_flow_style=False) # set up logger tf.logging.set_verbosity(tf.logging.INFO) try: with tf.Graph().as_default() as g: # create graph # Load data inputs_dict, val_inputs_dict = get_inputs_dict(args) # Build network is_training = not args.test print('------------ BUILDING NETWORK -------------') network_class = models.load_model(cfg.NETWORK) net = network_class(inputs_dict, is_training) # Prefetching data processes # # Create worker and data queue for data processing. For training data, use # multiple processes to speed up the loading. For validation data, use 1 # since the queue will be popped every TRAIN.NUM_VALIDATION_ITERATIONS. # set up data queue and start enqueue np.random.seed(123) data_process_class = models.get_data_process_pairs(cfg.NETWORK, is_training) val_data_process_class = models.get_data_process_pairs(cfg.NETWORK, is_training=False) if is_training: global train_queue, train_processes train_queue = Queue(cfg.CONST.QUEUE_CAPACITY) train_processes = make_data_processes(data_process_class, train_queue, inputs_dict, cfg.CONST.NUM_WORKERS, repeat=True) if args.validation: global val_queue, val_processes val_queue = Queue(cfg.CONST.QUEUE_CAPACITY) val_processes = make_data_processes(val_data_process_class, val_queue, val_inputs_dict, 1, repeat=True) else: global test_queue, test_processes test_inputs_dict = val_inputs_dict test_queue = Queue(cfg.CONST.QUEUE_CAPACITY) test_processes = make_data_processes(val_data_process_class, test_queue, test_inputs_dict, 1, repeat=False) # Create solver solver = get_solver(g, net, args, is_training) # Run solver if is_training: if args.validation: if cfg.DIR.VAL_CKPT_PATH is not None: assert train_processes[0].iters_per_epoch != 0 assert val_processes[0].iters_per_epoch != 0 solver.train(train_processes[0].iters_per_epoch, train_queue, val_processes[0].iters_per_epoch, val_queue=val_queue, val_inputs_dict=val_inputs_dict) else: if isinstance(net, LBA): assert cfg.LBA.TEST_MODE is not None assert cfg.LBA.TEST_MODE == 'shape' assert train_processes[0].iters_per_epoch != 0 assert val_processes[0].iters_per_epoch != 0 solver.train(train_processes[0].iters_per_epoch, train_queue, val_processes[0].iters_per_epoch, val_queue=val_queue, val_inputs_dict=val_inputs_dict) else: assert train_processes[0].iters_per_epoch != 0 assert val_processes[0].iters_per_epoch != 0 solver.train(train_processes[0].iters_per_epoch, train_queue, val_processes[0].iters_per_epoch, val_queue=val_queue) else: solver.train(train_processes[0].iters_per_epoch, train_queue) else: solver.test(test_processes[0], test_queue, num_minibatches=cfg.CONST.N_MINIBATCH_TEST, save_outputs=args.save_outputs) finally: # Clean up the processes and queues if is_training: kill_processes(train_queue, train_processes) if args.validation: kill_processes(val_queue, val_processes) else: kill_processes(test_queue, test_processes) if __name__ == '__main__': main()
{"hexsha": "9f64bdb6b6aa9101f9b48d231f028e2692647260", "size": 25278, "ext": "py", "lang": "Python", "max_stars_repo_path": "main.py", "max_stars_repo_name": "kendemu/text2shape", "max_stars_repo_head_hexsha": "2f62ebc15587f171758c71e3daf0235d7380df41", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 72, "max_stars_repo_stars_event_min_datetime": "2018-03-27T13:45:09.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-16T03:04:02.000Z", "max_issues_repo_path": "main.py", "max_issues_repo_name": "kendemu/text2shape", "max_issues_repo_head_hexsha": "2f62ebc15587f171758c71e3daf0235d7380df41", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 9, "max_issues_repo_issues_event_min_datetime": "2018-05-30T04:05:50.000Z", "max_issues_repo_issues_event_max_datetime": "2020-12-02T01:19:01.000Z", "max_forks_repo_path": "main.py", "max_forks_repo_name": "kendemu/text2shape", "max_forks_repo_head_hexsha": "2f62ebc15587f171758c71e3daf0235d7380df41", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 23, "max_forks_repo_forks_event_min_datetime": "2018-03-26T21:35:09.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-24T17:39:58.000Z", "avg_line_length": 46.7245841035, "max_line_length": 103, "alphanum_fraction": 0.5882190047, "include": true, "reason": "import numpy", "num_tokens": 5067}
[STATEMENT] lemma infnorm_Max: fixes x :: "'a::euclidean_space" shows "infnorm x = Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. infnorm x = (MAX i\<in>Basis. \<bar>x \<bullet> i\<bar>) [PROOF STEP] by (simp add: infnorm_def infnorm_set_image cSup_eq_Max)
{"llama_tokens": 135, "file": null, "length": 1}
#!/usr/bin/python # -*- coding:utf-8 -*- import cv2 import numpy as np import matplotlib.pyplot as plt #Numpy:(a+b)%255 #OpenCV:Math.min(a+b,255) def add(img1,img2): result = cv2.add(img1, img2) cv2.imshow("add", result) cv2.waitKey(0) #融合 def addWeighted(img1, alpha, img2, beta, gamma): result = cv2.addWeighted(img1,alpha,img2,beta,gamma) cv2.imshow("addWeighted", result) cv2.waitKey(0) #减法 def subtract(img1, img2): result = cv2.subtract(img1, img2) cv2.imshow("subtract", result) cv2.waitKey(0) if __name__ == '__main__': img1 = cv2.imread("images/Forest_500X280.jpg") print(img1.shape) img2 = cv2.imread("images/Forest1_500X280.jpg") print(img2.shape) #add(img1, img2) #addWeighted(img1, 0.2, img2, 0.8, 0) addWeighted(img1, 0.3, img2, 1.0, 0) #subtract(img1,img2)
{"hexsha": "0d73c3a1ca7ad101ce9cad09ad7b5dcfaa103700", "size": 850, "ext": "py", "lang": "Python", "max_stars_repo_path": "AddSubtract.py", "max_stars_repo_name": "neohope/NeoDemosImageProcess", "max_stars_repo_head_hexsha": "ff08fb110464fef3433d74500792894408e26051", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "AddSubtract.py", "max_issues_repo_name": "neohope/NeoDemosImageProcess", "max_issues_repo_head_hexsha": "ff08fb110464fef3433d74500792894408e26051", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "AddSubtract.py", "max_forks_repo_name": "neohope/NeoDemosImageProcess", "max_forks_repo_head_hexsha": "ff08fb110464fef3433d74500792894408e26051", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 21.25, "max_line_length": 57, "alphanum_fraction": 0.6529411765, "include": true, "reason": "import numpy", "num_tokens": 302}
# nodenet/tester/fctest.py # Description: # "fctest.py" provide fullyconnected neuralnet testing. # Copyright 2018 NOOXY. All Rights Reserved. import numpy as np import nodenet.neuralnets as nn import nodenet.layers as layers import nodenet.functions as f import nodenet.trainingsessions as sessions import nodenet.interface.graph as graph import nodenet.utilities as util import nodenet.interface.console as console import nodenet.io as nnio import nodenet.variables as var console.logo() # Graphing test 1 fig = graph.Figure((2, 1)) datasets = util.get_sin_1x1_datasets(2000, noise=0.1) datasets = util.cut_dataset_by_ratio_ramdom([datasets[0], datasets[1]]) console.log('tester', 'graphing test 1...', msg_color='Green') fig.plot_2D(datasets[0].flatten(), datasets[1].flatten(), 0, 'graph of sin(x) and training result') console.log('tester', 'graphing 1 passed.', msg_color='Red') # NeuralNet test console.log('tester', 'fullyconnectednet test...', msg_color='Green') neuralnet = nn.SimpleContainer() layers = [ layers.Nodes1D(1, f.linear), layers.FullyConnected1D(1, 16), layers.Nodes1D(16, f.tanh), layers.FullyConnected1D(16, 16), layers.Nodes1D(16, f.tanh), layers.FullyConnected1D(16, 1), layers.Nodes1D(1, f.linear), ] neuralnet.setup(layers, name='tester neuralnet') console.log('tester', str(neuralnet)) console.log('tester', 'fullyconnectednet passed.', msg_color='Red') # Training test console.log('tester', 'fullyconnectednet training test...', msg_color='Green') batch_training = sessions.MiniBatchSession() forward_config = var.forward_training_config backward_config = var.backward_training_config # forward_config = var.forward_dropout_training_config # backward_config = var.backward_dropout_training_config batch_training.setup(neuralnet, datasets, target_loss=0.00001, mini_batch_size=500, max_epoch=10000, forward_config=forward_config, backward_config=backward_config, verbose_interval=1000) loss = batch_training.startTraining() fig.plot_traing_loss(loss, 1) console.log('tester', 'fullyconnectednet training test passed.', msg_color='Red') # Graphing test 2 console.log('tester', 'graphing test 2...', msg_color='Green') inputx = np.linspace(-10, 10, 100) outputy = [] for x in inputx: outputy.append(neuralnet.forward(np.array([x]))[0]) fig.plot_2D(inputx, outputy, 0, 'training') console.log('tester', 'graphing test 2 passed.', msg_color='Red') # IO test console.log('tester', 'io test...', msg_color='Green') nnio.save_neuralnet(neuralnet, 'tester') newneuralnet = nnio.load_neuralnet('tester') console.log('tester', str(neuralnet)) console.log('tester', 'io test passed.', msg_color='Red') console.log('tester', 'test passed. Press any key to escape.') input()
{"hexsha": "5a641caaa0acbb2c9c52cd189a77b400c3d26ca9", "size": 2732, "ext": "py", "lang": "Python", "max_stars_repo_path": "nodenet/python/examples/sin.py", "max_stars_repo_name": "NOOXY-research/NodeNet", "max_stars_repo_head_hexsha": "8bf7e0c2fd0e4fae4a51b2900014004728f3c935", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2018-01-31T05:52:23.000Z", "max_stars_repo_stars_event_max_datetime": "2020-08-07T19:14:18.000Z", "max_issues_repo_path": "nodenet/python/nodenet/tester/fctest.py", "max_issues_repo_name": "NOOXY-research/NodeNet", "max_issues_repo_head_hexsha": "8bf7e0c2fd0e4fae4a51b2900014004728f3c935", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2017-11-22T09:39:50.000Z", "max_issues_repo_issues_event_max_datetime": "2017-11-22T09:39:50.000Z", "max_forks_repo_path": "nodenet/python/nodenet/tester/fctest.py", "max_forks_repo_name": "magneticchen/NodeNet", "max_forks_repo_head_hexsha": "8bf7e0c2fd0e4fae4a51b2900014004728f3c935", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 37.4246575342, "max_line_length": 187, "alphanum_fraction": 0.7598828697, "include": true, "reason": "import numpy", "num_tokens": 727}
\documentclass{mcmthesis} \mcmsetup{CTeX = false, tcn = 0000000, problem = A, sheet = true, titleinsheet = true, keywordsinsheet = true, titlepage = false, abstract = false} \usepackage{newtxtext}%\usepackage{palatino} \usepackage{lipsum} \usepackage{diagbox} \usepackage{setspace} \usepackage[nottoc]{tocbibind} \newcommand{\tabincell}[2]{\begin{tabular}{@{}#1@{}}#2\end{tabular}} \newtheorem{definition}{Definition}[section] \usepackage{titlesec} \setcounter{secnumdepth}{4} \titleformat{\paragraph} {\normalfont\normalsize\bfseries}{\theparagraph}{1em}{} \titlespacing*{\paragraph}{0pt}{3.25ex plus 1ex minus .2ex}{1.5ex plus .2ex} \title{Title} \begin{document} \begin{abstract} \lipsum[1] \begin{keywords} no; keyword; \end{keywords} \end{abstract} \maketitle \tableofcontents \newpage \section{Introduction} \subsection{Background} \lipsum[2] \begin{figure}[htbp] \minipage{0.5\textwidth} \includegraphics[width=\linewidth]{/img/Fungus_in_a_Wood.jpg} \caption{Fungus in a wood}\label{fig:fungus1} \endminipage\hfill \minipage{0.45\textwidth} \includegraphics[width=\linewidth]{/img/960px-Armillaria_gallica_57632.jpg} \caption{Armillaria Gallic}\label{fig:fungus2} \endminipage\hfill \end{figure} \lipsum[3] \subsection{Problem Restatement} \lipsum[4] \subsection{Our Approach} \lipsum[5] \section{Assumptions} \lipsum[6] \section{Notations} \lipsum[7] \section{The Data} \lipsum[8] \section{model 1} \lipsum[9] \subsection{Inspiration} \lipsum[1] \subsubsection{section 1} \paragraph{P 2} \paragraph{P 1} \lipsum[2] \subsection{Model} \lipsum[3] \section{model 2} \lipsum[1] \subsection{Inspiration} \lipsum[2] \subsection{Model} \lipsum[4] \section{Conclusions} \subsection{Summary of Results} \subsubsection{Result of Problem 1} \lipsum[2] \subsubsection{Result of Problem 2} \lipsum[2] \subsubsection{Result of Problem 3} \lipsum[2] \subsubsection{Result of Problem 4} \lipsum[2] \subsubsection{Result of Problem 5} \lipsum[2] \subsection{Possible Improvements} \lipsum[1] \bibliographystyle{unsrt} \bibliography{references} \newpage \section*{\centerline{Letter title}} \lipsum[1] \newpage \begin{appendices} \section{Tools and Software} \hspace{1.25em} Paper written and generated via \LaTeX, free distribution. Dataset filtered by Python. Graph generated and calculation using MATLAB R2019b for academic use on Mac. Calculation of linear regression using EViews 8 \section{The Codes} Here are simulation programmes we used in our model as follow. %\subsection{Code 1} %\lstinputlisting[language=Matlab]{./code/modelling8.m} % % %\subsection{Code 2} %\lstinputlisting[language=Python]{./code/DataProcess.py} \end{appendices} \end{document}
{"hexsha": "0f76102888f0c79fc01851de3daa4223ef130b03", "size": 2710, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "mcm-thesis.tex", "max_stars_repo_name": "lethal233/mcm-report", "max_stars_repo_head_hexsha": "3890a9834674aed243612453e59f7e9ddec18cf2", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "mcm-thesis.tex", "max_issues_repo_name": "lethal233/mcm-report", "max_issues_repo_head_hexsha": "3890a9834674aed243612453e59f7e9ddec18cf2", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "mcm-thesis.tex", "max_forks_repo_name": "lethal233/mcm-report", "max_forks_repo_head_hexsha": "3890a9834674aed243612453e59f7e9ddec18cf2", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 19.7810218978, "max_line_length": 103, "alphanum_fraction": 0.7546125461, "num_tokens": 887}
from winning.std_calibration import centered_std_density from winning.lattice_calibration import dividend_implied_ability import numpy as np import matplotlib.pyplot as plt from winning.lattice_plot import densitiesPlot from winning.lattice import skew_normal_density # Illustrates the basic calibration # Exactly the same but now we plot the densities if __name__ =='__main__': # Choose the length of the lattice, which is 2*L+1 L = 600 # Choose the unit of discretization unit = 0.01 # The unit is used to create an approximation of a density, here N(0,1) for simplicity density = centered_std_density(L=L, unit=unit) # Step 2. We set winning probabilities, most commonly represented in racing as inverse probabilities ('dividends') dividends = [2,6,np.nan, 3] # Step 3. The algorithm implies relative ability (i.e. how much to translate the performance distributions) # Missing values will be assigned odds of 1999:1 ... or you can leave them out. abilities = dividend_implied_ability(dividends=dividends,density=density, nan_value=2000, unit=unit) densities = [skew_normal_density(L=L, unit=unit, loc=a, a=0, scale=1.0) for a in abilities] legend = [ str(d) for d in dividends ] densitiesPlot(densities=densities, unit=unit, legend=legend) plt.show()
{"hexsha": "c8b6fc2ae7a3e900c76f4dc1cc466c67d1977d3d", "size": 1325, "ext": "py", "lang": "Python", "max_stars_repo_path": "examples_basic/calibrate_horse_race_with_std_normal_and_plot.py", "max_stars_repo_name": "microprediction/winning", "max_stars_repo_head_hexsha": "f03b74fc87cfe4b317a3b0ac3e165bc5e49a39fc", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 22, "max_stars_repo_stars_event_min_datetime": "2021-03-05T21:52:44.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T20:40:52.000Z", "max_issues_repo_path": "examples_basic/calibrate_horse_race_with_std_normal_and_plot.py", "max_issues_repo_name": "terragord7/winning", "max_issues_repo_head_hexsha": "669e2bac5a6c1cc5cadc99f9d2ae485d954b75d0", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2021-10-20T21:15:19.000Z", "max_issues_repo_issues_event_max_datetime": "2021-10-20T21:15:19.000Z", "max_forks_repo_path": "examples_basic/calibrate_horse_race_with_std_normal_and_plot.py", "max_forks_repo_name": "terragord7/winning", "max_forks_repo_head_hexsha": "669e2bac5a6c1cc5cadc99f9d2ae485d954b75d0", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2020-12-09T03:16:05.000Z", "max_forks_repo_forks_event_max_datetime": "2021-06-24T20:26:23.000Z", "avg_line_length": 38.9705882353, "max_line_length": 118, "alphanum_fraction": 0.7494339623, "include": true, "reason": "import numpy", "num_tokens": 332}
import gym import time import random import numpy as np from collections import deque import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' os.system('export CUDA_VISIBLE_DEVICES=""') import tensorflow as tf import keras.backend.tensorflow_backend as KTF def get_session(gpu_fraction=0.7): '''Assume that you have 6GB of GPU memory and want to allocate ~2GB''' num_threads = os.environ.get('OMP_NUM_THREADS') gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction) if num_threads: return tf.Session(config=tf.ConfigProto( gpu_options=gpu_options, intra_op_parallelism_threads=num_threads)) else: print( "ok" ) return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) def run_on_cpu(): config = tf.ConfigProto( device_count = {'GPU': 0} ) return tf.Session(config=config) KTF.set_session(get_session()) #KTF.set_session( run_on_cpu() ) env = gym.make( 'BreakoutDeterministic-v4') # Preprocess observation # Crop image - do not keep score # Grayscale image - reduce the rgb space to grayscale, save space import cv2 import matplotlib.pyplot as plt #get_ipython().magic('matplotlib inline') def to_grayscale( observation ): r, g, b = observation[:,:,0], observation[:,:,1], observation[:,:,2] ret = 0.299 * r + 0.587 * g + 0.114 * b return ( np.array( ret, dtype=np.uint8 ) ) def preprocess_observation( observation ): res = cv2.resize( observation, (84,110) ) crop = res[18:110-8:,:,:] grayscale = to_grayscale( crop )#cv2.cvtColor( crop, cv2.COLOR_BGR2GRAY ) return ( grayscale ) """ def preprocess_observation( observation ): res = cv2.resize( observation, (84,110) )#resize to 110x84 crop = res[18:110-8,:,:]#crop image grayscale = to_grayscale( crop ) thresh, bn = cv2.threshold( grayscale, 80, 255, cv2.THRESH_BINARY ) #grayscale=cv2.cvtColor( crop, cv2.COLOR_BGR2GRAY )#apply grayscale #grayscale = grayscale.astype( float ) / 255.0#normalize image return ( np.array( bn / np.max(bn), dtype=np.uint8 ) ) """ from keras.models import Sequential from keras.layers import Dense, Flatten, Activation, Lambda from keras.layers.convolutional import Conv2D from keras.optimizers import RMSprop, Adam from keras import initializers # Build model model = Sequential() init_distr = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None) #32 filters of kernel(3,3), stride=4, input shape must be in format row, col, channels #init='uniform', model.add( Lambda(lambda x: x / 255.0, dtype='float32', input_shape=(84,84,4)) ) model.add( Conv2D(32, (8,8), strides=(4,4), padding='same' ) )#deep mind #model.add( Conv2D(16, (8,8), strides=(2,2), kernel_initializer=initializers.random_normal(stddev=0.01), padding='same', input_shape=(84,84,4) ) ) model.add( Activation( 'relu' ) ) model.add(Conv2D(64, (4,4), strides=(2,2), padding='same' ) )#deep min #model.add(Conv2D(32, (4,4), strides=(2,2), kernel_initializer=initializers.random_normal(stddev=0.01), padding='same' ) ) model.add( Activation( 'relu' ) ) model.add(Conv2D(64, (3,3), strides=(1,1), kernel_initializer=initializers.random_normal(stddev=0.01), padding='same' ) ) model.add( Activation( 'relu' ) ) model.add(Flatten()) model.add(Dense(512, kernel_initializer=init_distr, activation='relu')) model.add(Dense(256, kernel_initializer=init_distr, activation='relu')) model.add(Dense(128, kernel_initializer=init_distr, activation='relu')) model.add( Dense( env.action_space.n, kernel_initializer=init_distr, activation='linear' ) ) #model.compile(RMSprop(), 'MSE') #model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) learning_rate = 0.001#025 model.compile(loss='mse', optimizer=Adam(lr=learning_rate), metrics=['accuracy'] ) model.summary() init_state = preprocess_observation( env.reset() ) recent_frames = deque(maxlen=4) for i in range( 4 ): recent_frames.append( init_state ) import time gamma = 0.99 alpha = 1#0.999999#00025 max_reward = 0.0 epoch = 0 start_episode = 1 epsilon = 1 epsilon_min = 0.1 exploration_steps = 500000#1000000 epsilon_discount = ( epsilon - epsilon_min ) / exploration_steps MAX_SIZE = 40000#capacity of deque MIN_MIN_SIZE = 20000#min size for replay D = deque( maxlen=MAX_SIZE )#[] frames = 0 def load_deque(): global D pkl_file = open( 'mydeque.pkl', 'rb') D = pickle.load( pkl_file ) pkl_file.close() def save_deque(): output = open( 'mydeque.pkl', 'wb' ) pickle.dump( D, output ) output.close() def load_dqn_model(): global model from keras.models import model_from_json # load json and create model json_file = open('model_background.json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) # load weights into new model model.load_weights("model_background.h5") print("Loaded model from disk") #model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) model.compile(loss='mse', optimizer=Adam(lr=learning_rate), metrics=['accuracy'] ) import pandas as pd import pickle episodes = [] rewards = [] epsilons = [] total_frames = [] def save_train(): global episodes, rewards, epsilons, total_frames #save [episodes, rewards, epsilons ] to csv file d = {'episode': episodes, 'reward': rewards, 'epsilon': epsilons, 'total_frames': total_frames} df = pd.DataFrame(data=d, index=None) if not os.path.isfile('filename.csv'): df.to_csv('filename.csv',header ='column_names', index=None) else: # else it exists so append without writing the header df.to_csv('filename.csv',mode = 'a',header=False, index=None) episodes = [] rewards = [] epsilons = [] total_frames = [] #save model to disk # serialize model to JSON model_json = model.to_json() with open("model_background.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("model_background.h5") print("Saved model to disk") #save deque to disk #save_deque() def load_train(): global start_episode, epsilon, frames #get last episode and epsilon if not os.path.isfile('filename.csv'): start_episode, epsilon = 1, 1 else: # else it exists so append without writing the header df = pd.read_csv( 'filename.csv') if len(df) == 0: start_episode, epsilon, frames = 1, 1, 0 else: epsilon = list( df['epsilon'].tail(1) )[0] start_episode = list( df['episode'].tail(1) )[0] + 1 frames = list( df['total_frames'].tail(1) )[0] if os.path.isfile('model_background.json'): load_dqn_model() #if os.path.isfile('mydeque.pkl'): #load_deque() load_train() #print( start_episode, epsilon ) #print( type( start_episode ) ) #print( type( epsilon ) ) #print( model.summary() ) #print( D ) total_observe = 12000#total_episodes MIN_SIZE = 32 observe_frame = 0 def must_observe(): return ( observe_frame < MIN_MIN_SIZE ) def replay( ): if len( D ) < MIN_MIN_SIZE: return #print( "sample" ) samples = random.sample( D, MIN_SIZE ) all_x = [] all_y = [] for sample in samples: observation, reward, done, new_observation, action = sample y = model.predict( observation.reshape( ( 1, 84, 84, 4) ) ) Q_next = model.predict( new_observation.reshape( ( 1, 84, 84, 4) ) ) reward = np.clip( reward, -1, 1 ) if done: y[0,action] = reward else: y[0,action] = reward + gamma * ( np.max( Q_next[0] ) ) #print( y ) neural_network_observation = observation.reshape( ( 1, 84, 84, 4) ) all_x.append( neural_network_observation ) all_y.append( y ) #model.fit( neural_network_observation, y, epochs=1, verbose=0 ) #model.train_on_batch( neural_network_observation, y ) all_x = np.array( all_x ).reshape( (MIN_SIZE,84,84,4) ) all_y = np.array( all_y ).reshape( (MIN_SIZE,4) ) #model.train_on_batch( all_x, all_y ) model.fit(all_x, all_y, epochs=1, batch_size=MIN_SIZE, verbose=0) del all_x, all_y start = time.time() episode = start_episode while episode <= total_observe:#3600*5): observation = env.reset() observation = preprocess_observation( observation ) recent_frames = deque(maxlen=4) for i in range( 4 ): recent_frames.append( observation ) total_reward = 0 #print( episode ) cur_lives = 5 step = 0 action = 0 steps = 0 while True: #env.render() stack_observation = np.stack(recent_frames,axis=0) if must_observe(): observe_frame += 1 if must_observe() == False: steps += 1 #if step % 4 == 0: if random.uniform(0,1) < epsilon: action = env.action_space.sample() else: Q = model.predict( stack_observation.reshape( ( 1, 84, 84, 4) ) )[0] action = np.argmax( Q ) #step = 0 new_observation, reward, done, info = env.step( action ) new_observation = preprocess_observation( new_observation )#apply preprocess #plt.imshow( new_observation ) #plt.show(block=False) #plt.pause(0.5)#.sleep(3) #plt.close() next_recent_frames = recent_frames.copy() next_recent_frames.append( new_observation ) next_new_observation = np.stack(next_recent_frames,axis=0) memory_reward = reward if info['ale.lives'] < cur_lives: cur_lives = info['ale.lives'] memory_reward = -1 D.append( ( stack_observation, memory_reward, done, next_new_observation, action ) ) total_reward += reward replay() if done: #print( str(episode) + "Game over!", end= ' ' ), #replay()]]] if must_observe() == False: episodes.append( episode ) rewards.append( total_reward ) epsilons.append( epsilon ) D.append( ( stack_observation, -1, done, next_new_observation, action ) ) break observation = new_observation recent_frames.append( observation ) if must_observe() == False: epsilon = max( epsilon_min, epsilon - epsilon_discount ) if must_observe() == False: frames += steps total_frames.append( frames ) print( "Episode " + str(episode) + " | total reward := " + str(total_reward) + " | steps := " + str(steps) + " total frames := " + str(frames) ) else: print( "Observe total frames := " + str(observe_frame) ) if episode % 10 == 0 and episode > 1: if must_observe() == False: save_train() if must_observe() == False: episode += 1 end = time.time() print("total time is " + str( end - start ) )
{"hexsha": "a7580661d0b1d4174129cc07cf31d3f4c5db1744", "size": 10967, "ext": "py", "lang": "Python", "max_stars_repo_path": "dqn.py", "max_stars_repo_name": "sotirisnik/dqn", "max_stars_repo_head_hexsha": "cdf0569ad0cdd554180d709785bdad93af60d671", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "dqn.py", "max_issues_repo_name": "sotirisnik/dqn", "max_issues_repo_head_hexsha": "cdf0569ad0cdd554180d709785bdad93af60d671", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "dqn.py", "max_forks_repo_name": "sotirisnik/dqn", "max_forks_repo_head_hexsha": "cdf0569ad0cdd554180d709785bdad93af60d671", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.6944444444, "max_line_length": 152, "alphanum_fraction": 0.6475791009, "include": true, "reason": "import numpy", "num_tokens": 2922}
function tSeries = rmBlurGrayTSeries(view,tSeries,iterlambda) % rmBlurGrayTSeries - smooth raw time series across cortical surface % % tSeries = rmBlurGrayTSeries(view,tSeries,iterlambda); % % result^{i+1}[x] = c2[x] s^i[x] data missing % = c1[x] (input[x] + lambda s^i[x]) otherwise % % c_1[x] = 1/(1 + numNeighbors) % c_2[x] = 1/numNeighbors % s[x] = sumNeighbors % 2007/02 SOD: adapted from regularizeGray. if ~exist('view','var') || isempty(view), error('Need view struct.'); else if ~strcmpi(view.viewType,'gray'), error('Need gray viewType.'); end; end; if ~exist('tSeries','var') || isempty(tSeries), error('Need tSeries'); end; % these defaults approximate a FWHM of 5mm at 1mm3 resolution if ~exist('iterlambda','var') || isempty(iterlambda), iter = 5; lambda = 1; else iter = iterlambda(1); lambda = iterlambda(2); end; % sanity check if iter==0 || lambda==0, return; end; % works only on double format (for now): tSeries = double(tSeries); warning('off','MATLAB:divideByZero'); % Get numNeighbors and compute c1 and c2 edges = double(view.edges); numNeighbors = double(view.nodes(4,:)); edgeOffsets = double(view.nodes(5,:)); % Initialize iterations fprintf(1,'[%s]:Smoothing data:',mfilename);drawnow;tic; for ii = 1:iter, % Get indices for missing data, we assume that data is missing for % entire time for a particular location. nanSummary = sum(tSeries,1); NaNs = isnan(nanSummary); notNaNs = ~isnan(nanSummary); withData = double(notNaNs); % compute weights denom = sumOfNeighbors(withData,edges,edgeOffsets,numNeighbors)'; % compute data that can be estimated (more than one valid data point % in the neighborhood) estdata = denom>0.5; % now restrict NaNs and notNaNs to estdata NaNs = NaNs(:) & estdata(:); notNaNs = notNaNs(:) & estdata(:); % new data newt = NaN(1,size(tSeries,2)); for n=1:size(tSeries,1) % input fill nans with zeros tmp = tSeries(n,:); tmp(NaNs) = 0; % Compute sumNeighbors sumNeighbors = sumOfNeighbors(tmp,edges,edgeOffsets,numNeighbors)'; % Compute new values newt(NaNs) = sumNeighbors(NaNs) ./ denom(NaNs); newt(notNaNs) = (tmp(notNaNs) + lambda.*sumNeighbors(notNaNs))./... (denom(notNaNs)+1); % store tSeries(n,:)=newt; end; fprintf(1,'.');drawnow; end; fprintf(1,'Done[%.1fmin].\n',toc./60);drawnow; return;
{"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Analysis/retinotopyModel/rmBlurGrayTSeries.m"}
import json import sys from collections import defaultdict from math import sqrt import numpy as np import theano.tensor as T import utils from rbm import CFRBM from experiments import read_experiment from utils import revert_expected_value, expand, iteration_str from dataset import load_dataset def run(name, dataset, config, all_users, all_movies, tests, initial_v, sep): config_name = config['name'] number_hidden = config['number_hidden'] epochs = config['epochs'] ks = config['ks'] momentums = config['momentums'] l_w = config['l_w'] l_v = config['l_v'] l_h = config['l_h'] decay = config['decay'] config_result = config.copy() config_result['results'] = [] vis = T.matrix() vmasks = T.matrix() rbm = CFRBM(len(all_users) * 5, number_hidden) profiles = defaultdict(list) with open(dataset, 'rt') as data: for i, line in enumerate(data): uid, mid, rat, timstamp = line.strip().split(sep) profiles[mid].append((uid, float(rat))) print("Users and ratings loaded") for j in range(epochs): def get_index(col): if j/(epochs/len(col)) < len(col): return j/(epochs/len(col)) else: return -1 index = get_index(ks) mindex = get_index(momentums) icurrent_l_w = get_index(l_w) icurrent_l_v = get_index(l_v) icurrent_l_h = get_index(l_h) k = ks[index] momentum = momentums[mindex] current_l_w = l_w[icurrent_l_w] current_l_v = l_v[icurrent_l_v] current_l_h = l_h[icurrent_l_h] train = rbm.cdk_fun(vis, vmasks, k=k, w_lr=current_l_w, v_lr=current_l_v, h_lr=current_l_h, decay=decay, momentum=momentum) predict = rbm.predict(vis) batch_size = 10 for batch_i, batch in enumerate(utils.chunker(profiles.keys(), batch_size)): size = min(len(batch), batch_size) # create needed binary vectors bin_profiles = {} masks = {} for movieid in batch: movie_profile = [0.] * len(all_users) mask = [0] * (len(all_users) * 5) for user_id, rat in profiles[movieid]: movie_profile[all_users.index(user_id)] = rat for _i in range(5): mask[5 * all_users.index(user_id) + _i] = 1 example = expand(np.array([movie_profile])).astype('float32') bin_profiles[movieid] = example masks[movieid] = mask movies_batch = [bin_profiles[id] for id in batch] masks_batch = [masks[id] for id in batch] train_batch = np.array(movies_batch).reshape(size, len(all_users) * 5) train_masks = np.array(masks_batch).reshape(size, len(all_users) * 5) train_masks = train_masks.astype('float32') train(train_batch, train_masks) sys.stdout.write('.') sys.stdout.flush() batch_size = 10 ratings = [] predictions = [] for batch in utils.chunker(tests.keys(), batch_size): size = min(len(batch), batch_size) # create needed binary vectors bin_profiles = {} masks = {} for movieid in batch: movie_profile = [0.] * len(all_users) mask = [0] * (len(all_users) * 5) for userid, rat in profiles[movieid]: movie_profile[all_users.index(userid)] = rat for _i in range(5): mask[5 * all_users.index(userid) + _i] = 1 example = expand(np.array([movie_profile])).astype('float32') bin_profiles[movieid] = example masks[movieid] = mask positions = {movie_id: pos for pos, movie_id in enumerate(batch)} movies_batch = [bin_profiles[el] for el in batch] test_batch = np.array(movies_batch).reshape(size, len(all_users) * 5) movie_predictions = revert_expected_value(predict(test_batch)) for movie_id in batch: test_users = tests[movie_id] try: for user, rating in test_users: current_movie = movie_predictions[positions[movie_id]] predicted = current_movie[all_users.index(user)] rating = float(rating) ratings.append(rating) predictions.append(predicted) except Exception: pass vabs = np.vectorize(abs) distances = np.array(ratings) - np.array(predictions) mae = vabs(distances).mean() rmse = sqrt((distances ** 2).mean()) iteration_result = { 'iteration': j, 'k': k, 'momentum': momentum, 'mae': mae, 'rmse': rmse, 'lrate': current_l_w } config_result['results'].append(iteration_result) print(iteration_str.format(j, k, current_l_w, momentum, mae, rmse)) with open('{}_{}.json'.format(config_name, name), 'wt') as res_output: res_output.write(json.dumps(config_result, indent=4)) if __name__ == "__main__": experiment = read_experiment(sys.argv[1]) name = experiment['name'] train_path = experiment['train_path'] test_path = experiment['test_path'] sep = experiment['sep'] all_users, all_movies, tests = load_dataset(train_path, test_path, sep, user_based=False) for config in experiment['configs']: run(name, train_path, config, all_users, all_movies, tests, None, sep)
{"hexsha": "6431d14268fe263f504a2de4c7cc234067fe1a1b", "size": 6219, "ext": "py", "lang": "Python", "max_stars_repo_path": "cfrbm/item_based.py", "max_stars_repo_name": "kisai19980124/CFRBM", "max_stars_repo_head_hexsha": "a4c2ad0b40c4e958802d2c177e2b83f306e2d9fc", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 42, "max_stars_repo_stars_event_min_datetime": "2016-07-02T23:09:01.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-01T05:21:15.000Z", "max_issues_repo_path": "cfrbm/item_based.py", "max_issues_repo_name": "kisai19980124/CFRBM", "max_issues_repo_head_hexsha": "a4c2ad0b40c4e958802d2c177e2b83f306e2d9fc", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 5, "max_issues_repo_issues_event_min_datetime": "2016-07-15T07:37:33.000Z", "max_issues_repo_issues_event_max_datetime": "2019-07-03T15:18:17.000Z", "max_forks_repo_path": "cfrbm/item_based.py", "max_forks_repo_name": "kisai19980124/CFRBM", "max_forks_repo_head_hexsha": "a4c2ad0b40c4e958802d2c177e2b83f306e2d9fc", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 28, "max_forks_repo_forks_event_min_datetime": "2016-11-25T03:41:48.000Z", "max_forks_repo_forks_event_max_datetime": "2020-07-08T22:59:14.000Z", "avg_line_length": 33.7989130435, "max_line_length": 78, "alphanum_fraction": 0.5298279466, "include": true, "reason": "import numpy,import theano", "num_tokens": 1328}
import numpy as np import matplotlib import matplotlib.pyplot as plt import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib as mpl import matplotlib.ticker as mtick #from brokenaxes import brokenaxes from matplotlib import gridspec from matplotlib.pyplot import MultipleLocator fig = plt.figure(figsize=(18, 6)) gs = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) # 建立子图 ax1 = fig.add_subplot(gs[0]) # 2*1 # 第一个图为 plt.rcParams.update({'font.size': 30}) x = np.arange(8) bar_width = 0.23 tick_label = ["Cyc","Epi","Gen","Soy","Vid","IR","FP","WC"] df1 = pd.read_csv('MasterSP.csv') df2 = pd.read_csv('WorkerSP.csv') y_2 = list(df1['schedule_overhead']) y_3 = list(df2['schedule_overhead']) for index in range(len(y_2)): y_2[index] = np.log10(y_2[index])+3 for index in range(len(y_3)): y_3[index] = np.log10(y_3[index])+3 #ax1.bar(x-1.5*bar_width, y_1, bar_width, color="#76180E", align="center", label="HyperFlow-serverless solo-run",edgecolor='black',linewidth=2) ax1.bar(x-0.5*bar_width, y_2, bar_width, color="#74a9cf", align="center", label="MasterSP (HyperFlow-serverless)",edgecolor='black',linewidth=2) ax1.bar(x+0.5*bar_width, y_3, bar_width, color="#9bbb59", align="center", label="WorkerSP (FaaSFlow)",edgecolor='black',linewidth=2) #ax1.bar(x+1.5*bar_width, y_4, bar_width, color="#FFFED5", align="center", label="FaaSFlow-FaaStore co-run",edgecolor='black',linewidth=2) #F7903D#59A95A#4D85BD ax1.set_ylim(0,4.4) ax1.tick_params(labelsize=32) ax1.set_xticklabels(tick_label, fontsize=32) ax1.set_ylabel('The scheduling overhead\n in the e2e latency(s) ', fontsize=32) plt.yticks([0, 1, 2,3,4], ["0.001","0.01" , "0.1", "1","10"],fontsize=32) plt.xticks(x, tick_label,rotation=0) ax1.axhline(y=1, color='tab:grey', linestyle='--') ax1.axhline(y=2, color='tab:grey', linestyle='--') ax1.axhline(y=3, color='tab:grey', linestyle='--') ax1.axhline(y=4, color='tab:grey', linestyle='--') ax1.legend(ncol=1,loc='upper right',fontsize=26) # 设置子图之间的间距,默认值为1.08 plt.tight_layout(pad=0) fig.savefig("schedule_overhead.pdf", bbox_inches='tight') plt.show()
{"hexsha": "29fd2e154791227491147152455c892caac9bc73", "size": 2159, "ext": "py", "lang": "Python", "max_stars_repo_path": "test/asplos/schedule_overhead/expected_results/draw.py", "max_stars_repo_name": "lzjzx1122/FaaSFlow", "max_stars_repo_head_hexsha": "c4a32a04797770c21fe6a0dcacd85ac27a3d29ec", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 24, "max_stars_repo_stars_event_min_datetime": "2021-12-02T01:00:54.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-27T00:50:28.000Z", "max_issues_repo_path": "test/asplos/schedule_overhead/expected_results/draw.py", "max_issues_repo_name": "lzjzx1122/FaaSFlow", "max_issues_repo_head_hexsha": "c4a32a04797770c21fe6a0dcacd85ac27a3d29ec", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "test/asplos/schedule_overhead/expected_results/draw.py", "max_forks_repo_name": "lzjzx1122/FaaSFlow", "max_forks_repo_head_hexsha": "c4a32a04797770c21fe6a0dcacd85ac27a3d29ec", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2021-12-02T01:00:47.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-04T07:33:09.000Z", "avg_line_length": 37.224137931, "max_line_length": 144, "alphanum_fraction": 0.7216303844, "include": true, "reason": "import numpy", "num_tokens": 738}
import sys import time import numpy as np import matplotlib.pyplot as plt from multiprocessing import Pool # if len(sys.argv) < 3: # print('ERROR Args number. Needed: \n[1]In Path(with file.npy) -- prepros file \n[2]Out Path(with .json)') # sys.exit() # # # in_path = str(sys.argv[1]) # out_path = str(sys.argv[2]) in_path = '/Users/Juan/django_projects/adaptive-boxes/data_binary/squares.binary' out_path = '' data_matrix = np.loadtxt(in_path, delimiter=",") data_matrix[:,0] = 1 # Plot fig = plt.figure(figsize=(6, 3.2)) ax = fig.add_subplot(111) plt.imshow(data_matrix) ax.set_aspect('equal') # Flatten Matrix data_matrix_f = data_matrix.flatten() # Kernel Data dim3_block_x = data_matrix.shape[1] dim3_block_y = data_matrix.shape[0] block_dim_y = dim3_block_y block_dim_x = dim3_block_x # KERNEL # Kernel non-editable - they go in for-loop block_idx_x = 0 block_idx_y = 0 thread_idx_x = 0 thread_idx_y = 0 # Kernel editable # Params distances = np.zeros(shape=[data_matrix_f.shape[0]]) # Could be stored in Cache- Shared Memory idx_i = 7 # y rand point idx_j = 13 # x rand point plt.scatter(idx_j, idx_i, c='r') m = data_matrix.shape[0] n = data_matrix.shape[1] # br ---- for i in range(idx_i, m): temp_value = data_matrix_f[i * n + idx_j] if temp_value == 0: i = i - 1 break else: plt.scatter(idx_j, i, c='g', marker='x') d0 = i for j in range(idx_j + 1, n): for i in range(idx_i, d0 + 1): # print(str(j) + ' ' + str(i)) temp_value = data_matrix_f[i * n + j] if temp_value == 0: i = i - 1 break else: plt.scatter(j, i, c='b', marker='x') if i < d0: j = j - 1 break # bl ---- for i in range(idx_i, m): temp_value = data_matrix_f[i * n + idx_j] if temp_value == 0: i = i - 1 break else: plt.scatter(idx_j, i, c='g', marker='x') d0 = i for j in range(idx_j - 1, -1, -1): for i in range(idx_i, d0 + 1): # print(str(j) + ' ' + str(i)) temp_value = data_matrix_f[i * n + j] if temp_value == 0: i = i - 1 break else: plt.scatter(j, i, c='b', marker='x') if i < d0: j = j + 1 break # tl ---- for i in range(idx_i, -1, -1): temp_value = data_matrix_f[i * n + idx_j] if temp_value == 0: i = i + 1 break else: plt.scatter(idx_j, i, c='g', marker='x') d0 = i for j in range(idx_j - 1, -1, -1): for i in range(idx_i, d0 - 1, -1): # print(str(j) + ' ' + str(i)) temp_value = data_matrix_f[i * n + j] if temp_value == 0: i = i + 1 break else: plt.scatter(j, i, c='b', marker='x') if i > d0: j = j + 1 break # tr ---- for i in range(idx_i, -1, -1): temp_value = data_matrix_f[i * n + idx_j] if temp_value == 0: i = i + 1 break else: plt.scatter(idx_j, i, c='g', marker='x') d0 = i for j in range(idx_j + 1, n): for i in range(idx_i, d0 -1, - 1): # print(str(j) + ' ' + str(i)) temp_value = data_matrix_f[i * n + j] if temp_value == 0: i = i + 1 break else: plt.scatter(j, i, c='b', marker='x') if i > d0: j = j - 1 break # plt.scatter(j, idx_i_arg, c='g', marker='x') # plt.scatter(j, idx_i_arg + first_step_i - 1, c='g', marker='x') # Run Kernel for thread_idx_y in range(block_dim_y): for thread_idx_x in range(block_dim_x): # print('running threadId.x: ' + str(thread_idx_x) + ' threadId.y: ' + str(thread_idx_y)) i = thread_idx_y j = thread_idx_x g_i = block_dim_y * block_idx_y + i g_j = block_dim_x * block_idx_x + j m = block_dim_y n = block_dim_x plt.scatter(j, i, c='b', marker='x') val_in_b = data_matrix_f[n * i + j] val_in_a = data_matrix_f[n * i + idx_j] distance_j = (j - idx_j) * val_in_b * val_in_a distance_i = (i - idx_i) * val_in_b * val_in_a print('i: ' + str(i) + ' j: ' + str(j) + ' distance ' + str(distance_j)) # if distance_j > 0: distances[i * n + j] = distance_j # distances[i * n + j] = distance_j # if j == idx_j: # distances[i * n + j] = distance_j + distance_i print(distances.reshape([m, n])) distances_matrix = distances.reshape([m, n]) # Break # Get min distance in left - Atomic can be used(In this case: min() function) distances_matrix = distances.reshape([m, n]) idx_d = 1 distances_matrix[idx_d, :].max() distances_matrix[idx_d, :].min() for thread_idx_y in range(block_dim_y): for thread_idx_x in range(block_dim_x): # print('running threadId.x: ' + str(thread_idx_x) + ' threadId.y: ' + str(thread_idx_y)) i = thread_idx_y j = thread_idx_x g_i = block_dim_y * block_idx_y + i g_j = block_dim_x * block_idx_x + j m = block_dim_y n = block_dim_x if (j == 0): distances[i * n + 0: i * n + m] def get_right_bottom_rectangle(idx_i_arg, idx_j_arg): step_j = 0 first_step_i = 0 while True: i = idx_i_arg j = idx_j_arg + step_j if j == n: break temp_val = data_matrix[i, j] if temp_val == 0: break step_i = 0 while True: i = idx_i_arg + step_i if i == m: break # print(i) temp_val = data_matrix[i, j] # print(temp_val) # plt.scatter(j, i, c='g', marker='x') if temp_val == 0: break step_i += 1 if step_j == 0: first_step_i = step_i else: if step_i < first_step_i: break plt.scatter(j, idx_i_arg, c='g', marker='x') plt.scatter(j, idx_i_arg + first_step_i - 1, c='g', marker='x') x1_val = idx_j_arg y1_val = idx_i_arg x2_val = idx_j_arg + step_j - 1 y2_val = idx_i_arg + first_step_i - 1 return x1_val, x2_val, y1_val, y2_val def get_left_bottom_rectangle(idx_i_arg, idx_j_arg): step_j = 0 first_step_i = 0 while True: i = idx_i_arg j = idx_j_arg - step_j if j == -1: break temp_val = data_matrix[i, j] if temp_val == 0: break step_i = 0 while True: i = idx_i_arg + step_i if i == m: break # print(i) temp_val = data_matrix[i, j] # print(temp_val) # plt.scatter(j, i, c='g', marker='x') if temp_val == 0: break step_i += 1 if step_j == 0: first_step_i = step_i else: if step_i < first_step_i: break plt.scatter(j, idx_i_arg, c='g', marker='x') plt.scatter(j, idx_i_arg + first_step_i - 1, c='b', marker='x') step_j += 1 x1_val = idx_j_arg y1_val = idx_i_arg x2_val = idx_j_arg - step_j + 1 y2_val = idx_i_arg + first_step_i - 1 return x1_val, x2_val, y1_val, y2_val def get_left_top_rectangle(idx_i_arg, idx_j_arg): step_j = 0 first_step_i = 0 while True: i = idx_i_arg j = idx_j_arg - step_j if j == -1: break temp_val = data_matrix[i, j] if temp_val == 0: break step_i = 0 while True: i = idx_i_arg - step_i if i == -1: break # print(i) temp_val = data_matrix[i, j] # print(temp_val) # plt.scatter(j, i, c='g', marker='x') if temp_val == 0: break step_i += 1 if step_j == 0: first_step_i = step_i else: if step_i < first_step_i: break plt.scatter(j, idx_i_arg, c='g', marker='x') plt.scatter(j, idx_i_arg - first_step_i + 1, c='b', marker='x') step_j += 1 x1_val = idx_j_arg y1_val = idx_i_arg x2_val = idx_j_arg - step_j + 1 y2_val = idx_i_arg - first_step_i + 1 return x1_val, x2_val, y1_val, y2_val def get_right_top_rectangle(idx_i_arg, idx_j_arg): step_j = 0 first_step_i = 0 while True: i = idx_i_arg j = idx_j_arg + step_j if j == n: break temp_val = data_matrix[i, j] if temp_val == 0: break step_i = 0 while True: i = idx_i_arg - step_i if i == -1: break # print(i) temp_val = data_matrix[i, j] # print(temp_val) # plt.scatter(j, i, c='g', marker='x') if temp_val == 0: break step_i += 1 if step_j == 0: first_step_i = step_i else: if step_i < first_step_i: break plt.scatter(j, idx_i_arg, c='g', marker='x') plt.scatter(j, idx_i_arg - first_step_i + 1, c='g', marker='x') step_j += 1 x1_val = idx_j_arg y1_val = idx_i_arg x2_val = idx_j_arg + step_j - 1 y2_val = idx_i_arg - first_step_i + 1 return x1_val, x2_val, y1_val, y2_val # Plot fig = plt.figure(figsize=(6, 3.2)) ax = fig.add_subplot(111) plt.imshow(data_matrix) ax.set_aspect('equal') m = data_matrix.shape[0] # for i n = data_matrix.shape[1] # for j for i_n in range(m): for j_n in range(n): if data_matrix[i_n, j_n] == 1: plt.scatter(j_n, i_n, c='w', marker='.') idx_i = 10 # y rand point idx_j = 1 # x rand point plt.scatter(idx_j, idx_i, c='r') coords = np.zeros(shape=[4, 4]) # 4 threads: [right-bottom right_top , left-bt, left-tp], 4 coords: [x1 x2 y1 y2] x1, x2, y1, y2 = get_right_bottom_rectangle(idx_i, idx_j) coords[0, :] = np.array([x1, x2, y1, y2]) p1 = np.array([x1, y1]) p2 = np.array([x1, y2]) p3 = np.array([x2, y1]) p4 = np.array([x2, y2]) ps = np.array([p1, p2, p4, p3, p1]) plt.plot(ps[:, 0], ps[:, 1], c='w') x1, x2, y1, y2 = get_right_top_rectangle(idx_i, idx_j) coords[1, :] = np.array([x1, x2, y1, y2]) p1 = np.array([x1, y1]) p2 = np.array([x1, y2]) p3 = np.array([x2, y1]) p4 = np.array([x2, y2]) ps = np.array([p1, p2, p4, p3, p1]) plt.plot(ps[:, 0], ps[:, 1], c='w') x1, x2, y1, y2 = get_left_bottom_rectangle(idx_i, idx_j) coords[2, :] = np.array([x1, x2, y1, y2]) p1 = np.array([x1, y1]) p2 = np.array([x1, y2]) p3 = np.array([x2, y1]) p4 = np.array([x2, y2]) ps = np.array([p1, p2, p4, p3, p1]) plt.plot(ps[:, 0], ps[:, 1], c='w') x1, x2, y1, y2 = get_left_top_rectangle(idx_i, idx_j) coords[3, :] = np.array([x1, x2, y1, y2]) p1 = np.array([x1, y1]) p2 = np.array([x1, y2]) p3 = np.array([x2, y1]) p4 = np.array([x2, y2]) ps = np.array([p1, p2, p4, p3, p1]) plt.plot(ps[:, 0], ps[:, 1], c='w') # coords[] pr = coords[[0, 1], 1].min() pl = coords[[2, 3], 1].max() pb = coords[[0, 2], 3].min() pt = coords[[1, 3], 3].max() # final x1x2 and y1y2 x1 = pl x2 = pr y1 = pt y2 = pb plt.scatter(x1, y1, c='r') plt.scatter(x2, y2, c='b') p1 = np.array([x1, y1]) p2 = np.array([x1, y2]) p3 = np.array([x2, y1]) p4 = np.array([x2, y2]) ps = np.array([p1, p2, p4, p3, p1]) plt.plot(ps[:, 0], ps[:, 1], c='r') data_matrix[y1:y2 + 1, x1:x2 + 1] = 0
{"hexsha": "76d80fc79c7f4ce8abf29e93de4040e283128d07", "size": 11466, "ext": "py", "lang": "Python", "max_stars_repo_path": "proto/adabox_for_cuda_proto_improved.py", "max_stars_repo_name": "jnfran92/adaptive-boxes", "max_stars_repo_head_hexsha": "bcf03a91d48877b3a24125b74a233bda5bd8e044", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 7, "max_stars_repo_stars_event_min_datetime": "2020-06-05T23:18:14.000Z", "max_stars_repo_stars_event_max_datetime": "2021-12-27T01:27:06.000Z", "max_issues_repo_path": "proto/adabox_for_cuda_proto_improved.py", "max_issues_repo_name": "jnfran92/adaptive-boxes", "max_issues_repo_head_hexsha": "bcf03a91d48877b3a24125b74a233bda5bd8e044", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2019-09-15T15:43:29.000Z", "max_issues_repo_issues_event_max_datetime": "2020-11-19T16:27:22.000Z", "max_forks_repo_path": "proto/adabox_for_cuda_proto_improved.py", "max_forks_repo_name": "jnfran92/adaptive-boxes", "max_forks_repo_head_hexsha": "bcf03a91d48877b3a24125b74a233bda5bd8e044", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-09-24T08:01:39.000Z", "max_forks_repo_forks_event_max_datetime": "2020-09-24T08:01:39.000Z", "avg_line_length": 22.0924855491, "max_line_length": 114, "alphanum_fraction": 0.5281702425, "include": true, "reason": "import numpy", "num_tokens": 3769}
import pickle import os import numpy as np import argparse from matplotlib import pyplot as plt import matplotlib import glob import pandas as pd from PIL import Image from tqdm import tqdm parser = argparse.ArgumentParser(description='read two annotations files') parser.add_argument('--aff_wild2_pkl', type=str, default = '/media/Samsung/Aff-wild2-Challenge/annotations/annotations.pkl') parser.add_argument('--VA_pkl', type=str, default = '/media/Samsung/AFEW_VA/annotations.pkl') parser.add_argument('--save_path', type=str, default='/media/Samsung/Aff-wild2-Challenge/exps/create_new_training_set_VA/create_annotation_file/mixed_VA_annotations.pkl') args = parser.parse_args() VA_list = ['valence', 'arousal'] def read_aff_wild2(): total_data = pickle.load(open(args.aff_wild2_pkl, 'rb')) # training set train_data = total_data['VA_Set']['Training_Set'] paths = [] labels = [] for video in train_data.keys(): data = train_data[video] labels.append(np.stack([data['valence'], data['arousal']], axis=1)) paths.append(data['path'].values) paths = np.concatenate(paths, axis=0) labels = np.concatenate(labels, axis=0) train_data = {'label': labels, 'path': paths} # validation set val_data = total_data['VA_Set']['Validation_Set'] paths = [] labels = [] for video in val_data.keys(): data = val_data[video] labels.append(np.stack([data['valence'], data['arousal']], axis=1)) paths.append(data['path'].values) paths = np.concatenate(paths, axis=0) labels = np.concatenate(labels, axis=0) val_data = {'label':labels, 'path':paths} return train_data, val_data def merge_two_datasets(): data_aff_wild2, data_aff_wild2_val = read_aff_wild2() # downsample x 5 the training set in aff_wild training set aff_wild_train_labels = data_aff_wild2['label'] aff_wild_train_paths = data_aff_wild2['path'] length = len(aff_wild_train_labels) index = [True if i%5 ==0 else False for i in range(length)] aff_wild_train_labels = aff_wild_train_labels[index] aff_wild_train_paths = aff_wild_train_paths[index] data_aff_wild2 = {'label':aff_wild_train_labels, 'path':aff_wild_train_paths} # downsample x 5 the training set in aff_wild data_VA = pickle.load(open(args.VA_pkl, 'rb')) data_VA = {**data_VA['Training_Set'], **data_VA['Validation_Set']} labels =[] paths = [] for video in data_VA.keys(): data = data_VA[video] labels.append(np.stack([data['valence'], data['arousal']], axis=1)) paths.append(data['path']) paths = np.concatenate(paths, axis=0) labels = np.concatenate(labels, axis=0) data_VA = {'label':labels, 'path':paths} data_merged = {'label': np.concatenate((data_aff_wild2['label'], data_VA['label']), axis=0), 'path': list(data_aff_wild2['path']) + list(data_VA['path'])} print("Aff-wild2 :{}".format(len(data_aff_wild2['label']))) print("AFEW_VA:{}".format(len(data_VA['label']))) return {'Training_Set': data_merged, 'Validation_Set': data_aff_wild2_val} def plot_distribution(data): all_samples = data['label'] plt.hist2d(all_samples[:, 0] , all_samples[:, 1] , bins=(20, 20), cmap=plt.cm.jet) plt.xlabel("Valence") plt.ylabel('Arousal') plt.colorbar() plt.show() if __name__== '__main__': data_file = merge_two_datasets() pickle.dump(data_file, open(args.save_path, 'wb')) plot_distribution(data_file['Training_Set'])
{"hexsha": "b26bfa86f8a98198fce77e102a94db1429b47cd6", "size": 3305, "ext": "py", "lang": "Python", "max_stars_repo_path": "create_annotation_file/AFEW-VA/create_annotation_files_Mixed_VA.py", "max_stars_repo_name": "wtomin/Multitask-Emotion-Recognition-with-Incomplete-Labels", "max_stars_repo_head_hexsha": "e6df7ffc9b0318fdce405e40993c79785b47c785", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 74, "max_stars_repo_stars_event_min_datetime": "2020-03-08T15:29:00.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-05T14:57:33.000Z", "max_issues_repo_path": "create_annotation_file/AFEW-VA/create_annotation_files_Mixed_VA.py", "max_issues_repo_name": "HKUST-NISL/Multitask-Emotion-Recognition-with-Incomplete-Labels", "max_issues_repo_head_hexsha": "ac5152b7a4b9c6c54d13c06c9302270350e8ce3f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 19, "max_issues_repo_issues_event_min_datetime": "2020-03-06T08:56:51.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-27T05:07:35.000Z", "max_forks_repo_path": "create_annotation_file/AFEW-VA/create_annotation_files_Mixed_VA.py", "max_forks_repo_name": "wtomin/Multitask-Emotion-Recognition-with-Incomplete-Labels", "max_forks_repo_head_hexsha": "e6df7ffc9b0318fdce405e40993c79785b47c785", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 23, "max_forks_repo_forks_event_min_datetime": "2020-03-20T08:19:55.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-16T17:40:09.000Z", "avg_line_length": 41.3125, "max_line_length": 170, "alphanum_fraction": 0.732526475, "include": true, "reason": "import numpy", "num_tokens": 906}
%% DEMO 18: Arbitrary axis of rotation % % % % Some modenr CT geometires are starting to be a bit more complex, one of % the common things being arbitrary axis of rotation i.e. the detector and the % source can move not in a circular path, but in a "spherical" path. % % In TIGRE this has been implemented by defining the rotation with 3 % angles, specifically the ZYZ configuration of Euler angles. % % This demo shows how to use it. % %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- % This file is part of the TIGRE Toolbox % % Copyright (c) 2015, University of Bath and % CERN-European Organization for Nuclear Research % All rights reserved. % % License: Open Source under BSD. % See the full license at % https://github.com/CERN/TIGRE/blob/master/LICENSE % % Contact: tigre.toolbox@gmail.com % Codes: https://github.com/CERN/TIGRE/ % Coded by: Ander Biguri %-------------------------------------------------------------------------- %% Initialize clear; close all; %% Define Geometry % % VARIABLE DESCRIPTION UNITS %------------------------------------------------------------------------------------- geo.DSD = 1536; % Distance Source Detector (mm) geo.DSO = 1000; % Distance Source Origin (mm) % Detector parameters geo.nDetector=[512; 512]; % number of pixels (px) geo.dDetector=[0.8; 0.8]; % size of each pixel (mm) geo.sDetector=geo.nDetector.*geo.dDetector; % total size of the detector (mm) % Image parameters geo.nVoxel=[128;128;128]; % number of voxels (vx) % a bit smaller than usual because the demo includes a very big detector % angle for showcase geo.sVoxel=[256;256;256]/1.5; % total size of the image (mm) geo.dVoxel=geo.sVoxel./geo.nVoxel; % size of each voxel (mm) % Offsets geo.offOrigin =[0;0;0]; % Offset of image from origin (mm) geo.offDetector=[0; 0]; % Offset of Detector (mm) % Auxiliary geo.accuracy=0.5; % Accuracy of FWD proj (vx/sample) geo.mode='cone'; %% Define angles numProjs = 100; anglesY=linspace(0,2*pi,numProjs); anglesZ2=anglesY; anglesZ1=pi*sin(linspace(0,2*pi,numProjs)); angles=[anglesZ1;anglesY;anglesZ2]; %% Get Image head=headPhantom(geo.nVoxel); %% Project projections=Ax(head,geo,angles); plotProj(projections,(1:100)*pi/180); % angle information not right in the title %% Reconstruct: % Note, FDK will not work. imgSIRT = SIRT(projections,geo, angles,50); imgCGLS = CGLS(projections,geo, angles,10); plotImg([head imgCGLS imgSIRT] ,'dim',3)
{"author": "CERN", "repo": "TIGRE", "sha": "8df632662228d1b1c52afd95c90d0f7a9f8dc4b3", "save_path": "github-repos/MATLAB/CERN-TIGRE", "path": "github-repos/MATLAB/CERN-TIGRE/TIGRE-8df632662228d1b1c52afd95c90d0f7a9f8dc4b3/MATLAB/Demos/d18_ArbitraryAxisOfRotation.m"}
import numpy as np import matplotlib.pyplot as plt from matplotlib import animation import matplotlib.patches as patches #my imports import cv2 from LucasKanade import LucasKanade # write your script here, we recommend the above libraries for making your animation frames = np.load('../data/carseq.npy') H, W, T = frames.shape rect0 = np.array([59, 116, 145, 151]).astype('float').T rect = rect0.copy() rect_lk = rect0.copy() p0 = np.zeros(2).astype('float') carseqrects = np.zeros((T, 4)) carseqrects[0, :] = rect fig=plt.figure(figsize=(5, 1)) columns = 5 rows = 1 index = 1 for i in range(1, T): p_lk = LucasKanade(frames[:, :, i-1], frames[:, :, i], rect_lk) rect_lk += np.array([p_lk[1], p_lk[0], p_lk[1], p_lk[0]]).T rect_prev = rect.copy() p = LucasKanade(frames[:, :, i-1], frames[:, :, i], rect) rect += np.array([p[1], p[0], p[1], p[0]]).T p0 = np.array([rect[1]-rect0[1], rect[0]-rect0[0]]).T p_star = LucasKanade(frames[:, :, 0], frames[:, :, i], rect0, p0) p_star[1] = p_star[1] - (rect_prev[0] - rect0[0]) p_star[0] = p_star[0] - (rect_prev[1] - rect0[1]) if np.linalg.norm(p_star-p)<= 2.5: p = p_star rect = rect_prev + np.array([p[1], p[0], p[1], p[0]]).T carseqrects[i, :] = rect frame = frames[:, :, i].copy() cv2.rectangle(frame, (int(rect[0]),int(rect[1])), (int(rect[2]),int(rect[3])),(255), 1) if i in [2, 100, 200, 300, 400]: #cv2.imwrite('frame_'+str(i) + '.jpg', frame.astype('uint8')) rect_patch = patches.Rectangle((rect[0],rect[1]), rect[2]-rect[0], rect[3]-rect[1], linewidth=1,edgecolor='y',facecolor='none') rect_lk_patch = patches.Rectangle((rect_lk[0],rect_lk[1]), rect_lk[2]-rect_lk[0], rect_lk[3]-rect_lk[1], linewidth=1,edgecolor='g',facecolor='none') ax = fig.add_subplot(rows, columns, index) ax.add_patch(rect_patch) ax.add_patch(rect_lk_patch) ax.imshow(frames[:, :, i], cmap='gray') ax.get_yaxis().set_visible(False) ax.get_xaxis().set_visible(False) index+=1 cv2.imshow('input', frame) print('frame: ', i) if cv2.waitKey(10) == ord('q'): break np.save('carseqrects-wcrt.npy', carseqrects) cv2.destroyAllWindows() plt.show()
{"hexsha": "c27102790b6d3f9e0bf89706e3e4141f4aace0ab", "size": 2221, "ext": "py", "lang": "Python", "max_stars_repo_path": "LK-Tracking/code/testCarSequenceWithTemplateCorrection.py", "max_stars_repo_name": "danenigma/Traditional-Computer-Vision", "max_stars_repo_head_hexsha": "04e66c8d6bdb3e5eb5d1ab05674e4a5ea3b9f823", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "LK-Tracking/code/testCarSequenceWithTemplateCorrection.py", "max_issues_repo_name": "danenigma/Traditional-Computer-Vision", "max_issues_repo_head_hexsha": "04e66c8d6bdb3e5eb5d1ab05674e4a5ea3b9f823", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "LK-Tracking/code/testCarSequenceWithTemplateCorrection.py", "max_forks_repo_name": "danenigma/Traditional-Computer-Vision", "max_forks_repo_head_hexsha": "04e66c8d6bdb3e5eb5d1ab05674e4a5ea3b9f823", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.6777777778, "max_line_length": 88, "alphanum_fraction": 0.621341738, "include": true, "reason": "import numpy", "num_tokens": 775}
export TemperatureSensor, getTemperatureSensors, getTemperatureSensor, numChannels, getTemperatures, getTemperature abstract type TemperatureSensor <: Device end include("DummyTemperatureSensor.jl") include("ArduinoTemperatureSensor.jl") #include("FOTemp.jl") Base.close(t::TemperatureSensor) = nothing @mustimplement numChannels(sensor::TemperatureSensor) @mustimplement getTemperatures(sensor::TemperatureSensor) @mustimplement getTemperature(sensor::TemperatureSensor, channel::Int) getTemperatureSensors(scanner::MPIScanner) = getDevices(scanner, TemperatureSensor) getTemperatureSensor(scanner::MPIScanner) = getDevice(scanner, TemperatureSensor)
{"hexsha": "6b8981017ec49c19852ace4d510b80e5137f0f84", "size": 658, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/Devices/TemperatureSensor/TemperatureSensor.jl", "max_stars_repo_name": "Fypsilonn/MPIMeasurements.jl", "max_stars_repo_head_hexsha": "fbd615499f0baf9cf7816ab6a14e914dd72aadcf", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-04-06T11:29:08.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-10T23:37:13.000Z", "max_issues_repo_path": "src/Devices/TemperatureSensor/TemperatureSensor.jl", "max_issues_repo_name": "Fypsilonn/MPIMeasurements.jl", "max_issues_repo_head_hexsha": "fbd615499f0baf9cf7816ab6a14e914dd72aadcf", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 12, "max_issues_repo_issues_event_min_datetime": "2021-03-25T19:43:42.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-11T10:19:04.000Z", "max_forks_repo_path": "src/Devices/TemperatureSensor/TemperatureSensor.jl", "max_forks_repo_name": "Fypsilonn/MPIMeasurements.jl", "max_forks_repo_head_hexsha": "fbd615499f0baf9cf7816ab6a14e914dd72aadcf", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2021-03-25T13:36:59.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-03T09:45:47.000Z", "avg_line_length": 36.5555555556, "max_line_length": 115, "alphanum_fraction": 0.8434650456, "num_tokens": 139}
# Import the used packages. import numpy as np import numpy.random as rd # Define the static methods used in the Game class. def move_column(column, max=3, length=4): """ Moves the elements of the column from left to right as in 2048. Modifies the given array. Parameters ---------- column : numpy array A numpy array of length 4 (not necessarily). max : int, optional The first position to check, between 0 and 3 included (default is 3). For example, 3 to check every value, 2 to ommit the last one in the vector, ... length : int, optional The length of the column (default is 4). Returns ------- boolean A boolean indicating if changes occurred. """ modif = False i = max - 1 while 0 <= i < max: if column[i] != 0: j = i while i < length - 1 and column[i + 1] == 0: i += 1 if j != i: column[i] = column[j] column[j] = 0 modif = True i -= 1 return modif def combine_column(column, length=4, move=True): """ Combines the number in the column as in the 2048 rules. Modifies the given array. Parameters ---------- column : numpy array The numpy array of length 4 (not necessarily) to combine. Must be processed by `move_column()`. length : int, optional The length of the column (default is 4). move: bool, optional Weither to apply `move_column()` at the start (default is True). Returns ------- boolean A boolean indicating if changes occurred. """ modif = False if move: modif = move_column(column=column, max=length - 1, length=length) for i in range(length - 1, 0, -1): if column[i] != 0 and column[i] == column[i - 1]: column[i] *= 2 column[i - 1] = 0 modif = True move_column(column=column, max=i, length=length) return modif
{"hexsha": "eacad0804c0b466d0e3bdd351dab1030a8cc0e0d", "size": 2043, "ext": "py", "lang": "Python", "max_stars_repo_path": "2048/utils.py", "max_stars_repo_name": "gwatkinson/2048", "max_stars_repo_head_hexsha": "f18ca3a01754cb31e20067842c48fec51c79c4c8", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "2048/utils.py", "max_issues_repo_name": "gwatkinson/2048", "max_issues_repo_head_hexsha": "f18ca3a01754cb31e20067842c48fec51c79c4c8", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "2048/utils.py", "max_forks_repo_name": "gwatkinson/2048", "max_forks_repo_head_hexsha": "f18ca3a01754cb31e20067842c48fec51c79c4c8", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 25.5375, "max_line_length": 77, "alphanum_fraction": 0.5594713656, "include": true, "reason": "import numpy", "num_tokens": 520}
C C $Id$ C LOGICAL FUNCTION CSSWPTST (N1,N2,N3,N4,X,Y,Z) INTEGER N1, N2, N3, N4 DOUBLE PRECISION X(*), Y(*), Z(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 03/29/91 C C This function decides whether or not to replace a C diagonal arc in a quadrilateral with the other diagonal. C The decision will be to swap (CSSWPTST = TRUE) if and only C if N4 lies above the plane (in the half-space not contain- C ing the origin) defined by (N1,N2,N3), or equivalently, if C the projection of N4 onto this plane is interior to the C circumcircle of (N1,N2,N3). The decision will be for no C swap if the quadrilateral is not strictly convex. C C C On input: C C N1,N2,N3,N4 = Indexes of the four nodes defining the C quadrilateral with N1 adjacent to N2, C and (N1,N2,N3) in counterclockwise C order. The arc connecting N1 to N2 C should be replaced by an arc connec- C ting N3 to N4 if CSSWPTST = TRUE. Refer C to Subroutine CSSWAP. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes. (X(I),Y(I),Z(I)) C define node I for I = N1, N2, N3, and N4. C C Input parameters are not altered by this routine. C C On output: C C CSSWPTST = TRUE if and only if the arc connecting N1 C and N2 should be swapped for an arc con- C necting N3 and N4. C C Modules required by CSSWPTST: None C C*********************************************************** C DOUBLE PRECISION DX1, DX2, DX3, DY1, DY2, DY3, DZ1, . DZ2, DZ3, X4, Y4, Z4 C C Local parameters: C C DX1,DY1,DZ1 = Coordinates of N4->N1 C DX2,DY2,DZ2 = Coordinates of N4->N2 C DX3,DY3,DZ3 = Coordinates of N4->N3 C X4,Y4,Z4 = Coordinates of N4 C X4 = X(N4) Y4 = Y(N4) Z4 = Z(N4) DX1 = X(N1) - X4 DX2 = X(N2) - X4 DX3 = X(N3) - X4 DY1 = Y(N1) - Y4 DY2 = Y(N2) - Y4 DY3 = Y(N3) - Y4 DZ1 = Z(N1) - Z4 DZ2 = Z(N2) - Z4 DZ3 = Z(N3) - Z4 C C N4 lies above the plane of (N1,N2,N3) iff N3 lies above C the plane of (N2,N1,N4) iff Det(N3-N4,N2-N4,N1-N4) = C (N3-N4,N2-N4 X N1-N4) > 0. C CSSWPTST = DX3*(DY2*DZ1 - DY1*DZ2) . -DY3*(DX2*DZ1 - DX1*DZ2) . +DZ3*(DX2*DY1 - DX1*DY2) .GT. 0.D0 RETURN END
{"hexsha": "861a72ef5aaaf429b36619ffd2d316ef32bd202f", "size": 2797, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "contrib/cssgrid/Src/csswptst.f", "max_stars_repo_name": "xylar/cdat", "max_stars_repo_head_hexsha": "8a5080cb18febfde365efc96147e25f51494a2bf", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 62, "max_stars_repo_stars_event_min_datetime": "2018-03-30T15:46:56.000Z", "max_stars_repo_stars_event_max_datetime": "2021-12-08T23:30:24.000Z", "max_issues_repo_path": "contrib/cssgrid/Src/csswptst.f", "max_issues_repo_name": "xylar/cdat", "max_issues_repo_head_hexsha": "8a5080cb18febfde365efc96147e25f51494a2bf", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 114, "max_issues_repo_issues_event_min_datetime": "2018-03-21T01:12:43.000Z", "max_issues_repo_issues_event_max_datetime": "2021-07-05T12:29:54.000Z", "max_forks_repo_path": "contrib/cssgrid/Src/csswptst.f", "max_forks_repo_name": "CDAT/uvcdat", "max_forks_repo_head_hexsha": "5133560c0c049b5c93ee321ba0af494253b44f91", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 14, "max_forks_repo_forks_event_min_datetime": "2018-06-06T02:42:47.000Z", "max_forks_repo_forks_event_max_datetime": "2021-11-26T03:27:00.000Z", "avg_line_length": 32.9058823529, "max_line_length": 62, "alphanum_fraction": 0.5109045406, "num_tokens": 900}
from jax import grad, jit, vmap, value_and_grad import jax.numpy as jnp import jax.scipy as jsp import numpy as np import jax from jax import random from functools import partial from jax.example_libraries import optimizers from scipy.optimize import nnls jax.config.update("jax_platform_name", "cpu") class UBVI: def __init__( self, target_log_pdf, component_dist, n_samples=100, n_logfg_samples=100, **kwargs ): self.target_log_pdf = target_log_pdf self.n_samples = n_samples self.n_logfg_samples = n_logfg_samples self.Z = jnp.empty((0, 0)) self._logfg = jnp.empty(0) self._logfgsum = -jnp.inf def _compute_weights(self): Znew = jnp.exp( self.component_dist.log_sqrt_pair_integral(self.params[-1, :], self.params) ) Zold = self.Z self.Z = jnp.zeros((self.params.shape[0], self.params.shape[0])) self.Z[:-1, :-1] = Zold self.Z[-1, :] = Znew self.Z[:, -1] = Znew logfg_old = self._logfg self._logfg = jnp.zeros(self.params.shape[0]) self._logfg[:-1] = logfg_old self._logfg[-1] = self._logfg_est(self.params[-1, :]) if self.params.shape[0] == 1: w = jnp.array([1.0]) else: print(self.Z) Linv = jnp.invert(jnp.linalg.cholesky(self.Z)) d = jnp.exp(self._logfg - self._logfg.max()) b = nnls(np.array(Linv), -np.einsum("ij,j->i", Linc, d))[0] lbd = np.einsum("ij,j->i", Linv, b + d) w = np.max( np.zeros(1), np.einsum("ij,j->i", Linv.T, lbd / np.sqrt(((lbd**2).sum()))), ) self._logfgsum = np.logsumexp( np.concatenate( (-np.array(np.inf)[None], self._logfg[w > 0] + torch.log(w[w > 0])), 0, ), 0, ) return w def _hellsq_estimate(self): samples = self._sample_g(self.n_samples) lf = 0.5 * self.target_log_pdf(samples) lg = self._logg(samples) ln = torch.log(torch.tensor(self.n_samples, dtype=torch.float32)) return 1.0 - torch.exp( torch.logsumexp(lf - lg - ln, 0) - 0.5 * torch.logsumexp(2 * lf - 2 * lg - ln, 0) ) if __name__ == "__main__": from distributions import Gaussian cauchy = lambda x: -jnp.log(1 + (x**2).sum(axis=-1)) test = UBVI( cauchy, Gaussian(1), num_opt_steps=1000, n_samples=100, n_init=100, init_inflation=100, n_logfg_samples=100, )
{"hexsha": "bbf8774d3f3cbfc71dc527cfae4b28e83ffc3f71", "size": 2662, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/ubvi.py", "max_stars_repo_name": "geometrikz/gvi", "max_stars_repo_head_hexsha": "0dee690a5b60f60ae64a3a80bc1482c955115360", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/ubvi.py", "max_issues_repo_name": "geometrikz/gvi", "max_issues_repo_head_hexsha": "0dee690a5b60f60ae64a3a80bc1482c955115360", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/ubvi.py", "max_forks_repo_name": "geometrikz/gvi", "max_forks_repo_head_hexsha": "0dee690a5b60f60ae64a3a80bc1482c955115360", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.4432989691, "max_line_length": 87, "alphanum_fraction": 0.5450788881, "include": true, "reason": "import numpy,from scipy,import jax,from jax", "num_tokens": 763}
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Sep 26 16:02:16 2019 @author: justin """ import tensorflow as tf import numpy as np import tensorflow.contrib.slim as slim import sys sys.path.append('../') import layers def lrelu(x): return tf.maximum(x*0.2,x) def relu(x): return tf.nn.relu(x) def upsample_to(x1, x2, output_channels, in_channels, scope,reuse=False): with tf.variable_scope(scope,reuse=reuse): pool_size = 2 deconv_filter = tf.get_variable(shape= [pool_size, pool_size, output_channels, in_channels],initializer=tf.truncated_normal_initializer(stddev=0.001),name='dcf') deconv = tf.nn.conv2d_transpose(x1, deconv_filter, tf.shape(x2) , strides=[1, pool_size, pool_size, 1] ) return deconv def upsample_and_concat_c(x1, x2, output_channels, in_channels, scope,reuse=False): with tf.variable_scope(scope,reuse=reuse): pool_size = 2 deconv_filter = tf.get_variable(shape= [pool_size, pool_size, output_channels, in_channels],initializer=tf.truncated_normal_initializer(stddev=0.001),name='dcf') deconv = tf.nn.conv2d_transpose(x1, deconv_filter, tf.shape(x2) , strides=[1, pool_size, pool_size, 1] ) deconv_output = tf.concat([deconv, x2],3) # deconv_output.set_shape([None, None, None, output_channels*2]) return deconv_output def est_structure(x,size,sigma): ## x is a single channel tensor def _tf_fspecial_gauss(size, sigma): x_data, y_data = np.mgrid[-size//2 - 1:size//2 + 1, -size//2 - 1:size//2 + 1] x_data = np.expand_dims(x_data, axis=-1) x_data = np.expand_dims(x_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) x = tf.constant(x_data, dtype=tf.float32) y = tf.constant(y_data, dtype=tf.float32) g = tf.exp(-((x**2.0 + y**2.0)/(2.0*sigma**2.0))) return g / tf.reduce_sum(g) window = _tf_fspecial_gauss(size, sigma) final = tf.nn.conv2d(x, window, strides=[1,1,1,1], padding='SAME') return final def pad(x,p=1): p = int(p) return tf.pad(x,[[0,0],[p,p],[p,p],[0,0]],'REFLECT') def pad_4(x,p=1): p=int(p) return tf.pad(x,[[0,0],[p,p],[p,p],[0,0],[0,0]],'REFLECT') def Conv_block(input,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,chan=32,act=lrelu,name=None,reuse=False): with tf.variable_scope(name,reuse=reuse): current = input for i in range(num_conv): current=slim.conv2d(pad(current,rate[i]*(fil_s-1)/2),chan,[fil_s,fil_s], rate=rate[i], activation_fn=act,padding='VALID',scope='g_conv%d'%(i),reuse=reuse) out = slim.conv2d(pad(current,rate[i]*(fil_s-1)/2),num_out,[fil_s,fil_s], rate=rate[i], activation_fn=act,padding='VALID',scope='g_conv_out',reuse=reuse) return out def Conv_block1(input,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,chan=32,act=lrelu,name=None,reuse=False): with tf.variable_scope(name,reuse=reuse): current = input for i in range(num_conv-1): current=slim.conv2d(pad(current,rate[i]*(fil_s-1)/2),chan,[fil_s,fil_s], rate=rate[i], activation_fn=act,padding='VALID',scope='g_conv%d'%(i),reuse=reuse) out = slim.conv2d(pad(current,(fil_s-1)/2),num_out,[fil_s,fil_s], activation_fn=act,padding='VALID',scope='g_conv_out',reuse=reuse) return out def Conv_block_residual(input,num_block=1,rate=[1]*10,fil_s=3,chan=32,act=lrelu,name=None,reuse=False): with tf.variable_scope(name,reuse=reuse): current = slim.conv2d(pad(input,(fil_s-1)/2),chan,[fil_s,fil_s], activation_fn=act,padding='VALID',scope='g_conv',reuse=reuse) for i in range(num_block): add = current current=slim.conv2d(pad(current,rate[i]*(fil_s-1)/2),chan,[fil_s,fil_s], rate=rate[i], activation_fn=act,padding='VALID',scope='g_conv01%d'%(i),reuse=reuse) current=slim.conv2d(pad(current,rate[i]*(fil_s-1)/2),chan,[fil_s,fil_s], rate=rate[i], activation_fn=None,padding='VALID',scope='g_conv02%d'%(i),reuse=reuse) current = act(add + current) out = current return out def U_net22(input,num_down=4,num_block=1,num_conv=1,num_out=3,multis=False,rate=[1]*10,fil_s=3,w_init=None,b_init=None,is_residual=False,start_chan=32,act=lrelu,is_global=False,name=None,reuse=False): ## parameters conv_ = [] chan_ = [] if w_init is None: w_init = tf.contrib.slim.xavier_initializer() if b_init is None: b_init = tf.constant_initializer(value=0.0) for i in range(num_down+1): chan_.append(start_chan*(2**(i))) with tf.variable_scope(name,reuse=reuse): current = input with tf.variable_scope('contracting_ops',reuse=reuse): for i in range(num_down): current = slim.conv2d(pad(current,(fil_s-1)/2),chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,scope='g_conv%d'%(i),padding='VALID',reuse=reuse) for ii in range(num_block): adding = current for j in range(num_conv): current=slim.conv2d(pad(current,rate[i]*(fil_s-1)/2),chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=rate[i], activation_fn=act,padding='VALID',scope='g_conv%d_block%d_%d'%(i,ii,j),reuse=reuse) current=slim.conv2d(pad(current,(fil_s-1)/2),chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=None,padding='VALID',scope='g_conv%d_block%d'%(i,ii),reuse=reuse) if is_residual is True: current = act(current + adding) else: current = act(current) #pool=slim.conv2d(current,chan_[i],[fil_s,fil_s], stride=2, # weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,padding='SAME',scope='pool%d'%(i),reuse=reuse) pool=slim.max_pool2d(current, [2, 2], padding='SAME',scope='pool%d'%(i)) conv_.append(current) current = pool current=slim.conv2d(pad(current,(fil_s-1)/2),chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,padding='VALID',scope='g_conv%d'%(num_down),reuse=reuse) contract_temp = current ## with tf.variable_scope('local_ops',reuse=reuse): current = contract_temp for ii in range(num_block): adding = current for j in range(num_conv): current = slim.conv2d(pad(current,rate[num_down]*(fil_s-1)/2),chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, rate=rate[num_down],activation_fn=act,padding='VALID',scope='g_conv_block%d_%d'%(ii,j),reuse=reuse) current = slim.conv2d(pad(current,(fil_s-1)/2),chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,activation_fn=None,padding='VALID',scope='g_conv_block%d'%(ii),reuse=reuse) if is_residual is True: current = act(current + adding) else: current = act(current) restore_temp = current if is_global is True: with tf.variable_scope('global_ops',reuse=reuse): current = contract_temp ''' for i in range(3): current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s],activation_fn=act,scope='global%d'%(i),reuse=reuse) current = slim.max_pool2d(current, [2, 2], padding='SAME',scope='global_pool%d'%(i)) ''' global_feature = tf.reduce_mean(current,[1,2],keepdims=False) current = slim.fully_connected(global_feature,chan_[num_down]*2,activation_fn=lrelu,scope='fully_enhan00',reuse=reuse) current = slim.fully_connected(current,chan_[num_down]*2,activation_fn=None,scope='fully_enhan01',reuse=reuse) global_feature = tf.reshape(current,[-1,1,1,chan_[num_down]*2]) restore_temp = act(restore_temp*global_feature[:,:,:,0:chan_[num_down]] + global_feature[:,:,:,chan_[num_down]:]) multis_list = [] with tf.variable_scope('expanding_ops',reuse=reuse): current = restore_temp for i in range(num_down): index_current = num_down-1-i current = upsample_and_concat_c( current, conv_[index_current], chan_[index_current], chan_[index_current+1], scope='uac%d'%(i),reuse=reuse ) current = slim.conv2d(pad(current,(fil_s-1)/2),chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='VALID',activation_fn=act,scope='g_dconv%d'%(i),reuse=reuse) for ii in range(num_block): adding = current for j in range(num_conv): current=slim.conv2d(pad(current,rate[index_current]*(fil_s-1)/2), chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=rate[index_current], padding='VALID',activation_fn=act,scope='g_dconv_block%d%d_%d'%(i,ii,j),reuse=reuse) current=slim.conv2d(pad(current,(fil_s-1)/2), chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='VALID',activation_fn=None,scope='g_dconv_block%d%d'%(i,ii),reuse=reuse) if i == num_down-1 and ii == num_block-1: if is_residual is True: current = current + adding else: current = current else: if is_residual is True: current = act(current + adding) else: current = act(current) ''' if multis is True: multis_list.append(slim.conv2d(current, num_out,[1,1], weights_initializer=w_init,biases_initializer=b_init, activation_fn=tf.nn.tanh,scope='final',reuse=reuse)) ''' final = slim.conv2d(current, num_out,[1,1], weights_initializer=w_init,biases_initializer=b_init, activation_fn=None,scope='final',reuse=reuse) return final def U_net222(input,num_down=4,num_block=1,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=None,b_init=None,is_residual=False,start_chan=32,act=lrelu,is_global=False,name=None,reuse=False): ## parameters conv_ = [] chan_ = [] if w_init is None: w_init = tf.contrib.slim.xavier_initializer() if b_init is None: b_init = tf.constant_initializer(value=0.0) for i in range(num_down+1): chan_.append(start_chan*(2**(i))) with tf.variable_scope(name,reuse=reuse): current = input with tf.variable_scope('contracting_ops',reuse=reuse): for i in range(num_down): current = slim.conv2d(current,chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,scope='g_conv%d'%(i),padding='SAME',reuse=reuse) for ii in range(num_block): adding = current for j in range(num_conv): current=slim.conv2d(current,chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=rate[i], activation_fn=act,padding='SAME',scope='g_conv%d_block%d_%d'%(i,ii,j),reuse=reuse) current=slim.conv2d(current,chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=None,padding='SAME',scope='g_conv%d_block%d'%(i,ii),reuse=reuse) if is_residual is True: current = act(current + adding) else: current = act(current) pool=slim.conv2d(current,chan_[i],[fil_s,fil_s], stride=2, weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,padding='SAME',scope='pool%d'%(i),reuse=reuse) #pool=slim.max_pool2d(current, [2, 2], padding='SAME',scope='pool%d'%(i)) conv_.append(current) current = pool current=slim.conv2d(pad(current,(fil_s-1)/2),chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,padding='VALID',scope='g_conv%d'%(num_down),reuse=reuse) contract_temp = current ## with tf.variable_scope('local_ops',reuse=reuse): current = contract_temp for ii in range(num_block): adding = current for j in range(num_conv): current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, rate=rate[num_down],activation_fn=act,padding='SAME',scope='g_conv_block%d_%d'%(ii,j),reuse=reuse) current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,activation_fn=None,padding='SAME',scope='g_conv_block%d'%(ii),reuse=reuse) if is_residual is True: current = act(current + adding) else: current = act(current) restore_temp = current if is_global is True: with tf.variable_scope('global_ops',reuse=reuse): current = contract_temp ''' for i in range(3): current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s],activation_fn=act,scope='global%d'%(i),reuse=reuse) current = slim.max_pool2d(current, [2, 2], padding='SAME',scope='global_pool%d'%(i)) ''' global_feature = tf.reduce_mean(current,[1,2],keepdims=False) current = slim.fully_connected(global_feature,chan_[num_down]*2,activation_fn=lrelu,scope='fully_enhan00',reuse=reuse) current = slim.fully_connected(current,chan_[num_down]*2,activation_fn=None,scope='fully_enhan01',reuse=reuse) global_feature = tf.reshape(current,[-1,1,1,chan_[num_down]*2]) restore_temp = act(restore_temp*global_feature[:,:,:,0:chan_[num_down]] + global_feature[:,:,:,chan_[num_down]:]) multis_list = [] with tf.variable_scope('expanding_ops',reuse=reuse): current = restore_temp for i in range(num_down): index_current = num_down-1-i current = upsample_and_concat_c( current, conv_[index_current], chan_[index_current], chan_[index_current+1], scope='uac%d'%(i),reuse=reuse ) current = slim.conv2d(current,chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=act,scope='g_dconv%d'%(i),reuse=reuse) for ii in range(num_block): adding = current for j in range(num_conv): current=slim.conv2d(current, chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=rate[index_current], padding='SAME',activation_fn=act,scope='g_dconv_block%d%d_%d'%(i,ii,j),reuse=reuse) current=slim.conv2d(current, chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=None,scope='g_dconv_block%d%d'%(i,ii),reuse=reuse) if is_residual is True: current = act(current + adding) else: current = act(current) if i is not (num_down-1): multis_list.append(slim.conv2d(current, num_out,[1,1], weights_initializer=w_init,biases_initializer=b_init, activation_fn=tf.nn.tanh,scope='super%d'%(i),reuse=reuse)) final = slim.conv2d(current, num_out,[1,1], weights_initializer=w_init,biases_initializer=b_init, activation_fn=tf.nn.tanh,scope='final',reuse=reuse) return final,multis_list def BilateralNet(input,spatial_bin=128,intensity_bin=8,is_glob_pool=True,net_input_size=512,coef=12,last_chan=96,reuse=False): ## Preprocessing act = lrelu with tf.variable_scope('Enhancement',reuse=reuse): shape = tf.shape(input) if is_glob_pool==True: H,W = tf.cast(tf.round(shape[1]/6),tf.int32),tf.cast(tf.round(shape[2]/6),tf.int32) else: H,W = 512,512 start = tf.image.resize_images(input,[H,W]) with tf.variable_scope('splat',reuse=reuse): n_ds_layers = int(np.log2(net_input_size/spatial_bin)) current = start for i in range(n_ds_layers): chan = 32*(2**(i)) current = slim.conv2d(current,chan,[3,3], stride=1, activation_fn=act,scope='conv_%d'%(i),reuse=reuse) current = slim.conv2d(current,chan,[3,3], stride=2, activation_fn=act,scope='conv%d'%(i),reuse=reuse) splat_out = current with tf.variable_scope('global',reuse=reuse): current = splat_out for i in range(2): current = slim.conv2d(current,64,[3,3], stride=2, activation_fn=act,scope='conv%d'%(i),reuse=reuse) _, lh, lw, lc = current.get_shape().as_list() if is_glob_pool == False: current = tf.reshape(current, [-1, lh*lw*lc]) # flattening else: current = tf.reduce_mean(current,[1,2],keepdims=False) current = slim.fully_connected(current,256,normalizer_fn=None,activation_fn=act,scope='fully_rest00',reuse=reuse) current = slim.fully_connected(current,128,normalizer_fn=None,activation_fn=act,scope='fully_rest01',reuse=reuse) current = slim.fully_connected(current,last_chan,normalizer_fn=None,activation_fn=act,scope='fully_rest02',reuse=reuse) current = tf.reshape(current,[-1,1,1,last_chan]) global_out = current with tf.variable_scope('local',reuse=reuse): for i in range(2): current = slim.conv2d(current,last_chan,[3,3], stride=1, activation_fn=act,scope='conv%d'%(i),reuse=reuse) local_out = current with tf.variable_scope('fusion',reuse=reuse): grid_chan_size = intensity_bin*coef current = act(local_out + global_out) A = slim.conv2d(current,grid_chan_size,[3,3], stride=1, activation_fn=None,scope='conv',reuse=reuse) with tf.variable_scope('guide_curve'): npts = 15 nchans = 3 idtity = np.identity(nchans, dtype=np.float32) + np.random.randn(1).astype(np.float32)*1e-4 ccm = tf.get_variable('ccm', dtype=tf.float32, initializer=idtity) # initializer could be np array ccm_bias = tf.get_variable('ccm_bias', shape=[nchans,], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) guidemap = tf.matmul(tf.reshape(input, [-1, nchans]), ccm) #input_tensor shap should be (1,hei,wid,nchans),or will be faulty guidemap = tf.nn.bias_add(guidemap, ccm_bias, name='ccm_bias_add') #bias: A 1-D Tensor with size matching the last dimension of value. guidemap = tf.reshape(guidemap, tf.shape(input)) shifts_ = np.linspace(0, 1, npts, endpoint=False, dtype=np.float32) shifts_ = shifts_[np.newaxis, np.newaxis, np.newaxis, np.newaxis,:] shifts_ = np.tile(shifts_, (1, 1, 1, nchans, 1)) guidemap = tf.expand_dims(input, 4) # 5 shifts = tf.get_variable('shifts', dtype=tf.float32, initializer=shifts_) slopes_ = np.zeros([1, 1, 1, nchans, npts], dtype=np.float32) slopes_[:, :, :, :, 0] = 1.0 slopes = tf.get_variable('slopes', dtype=tf.float32, initializer=slopes_) guidemap = tf.reduce_sum(slopes*tf.nn.relu(guidemap-shifts), reduction_indices=[4]) guidemap = slim.conv2d(inputs=guidemap,num_outputs=1, kernel_size=1, weights_initializer=tf.constant_initializer(1.0/nchans), biases_initializer=tf.constant_initializer(0),activation_fn=None, reuse=reuse,scope='channel_mixing') guidemap = tf.clip_by_value(guidemap, 0, 1) with tf.variable_scope('guided_upsample'): out = [] input_aug = tf.concat([input,tf.ones_like(input[:,:,:,0:1],dtype=tf.float32)],3) shape = tf.shape(A) A = tf.reshape(A,[shape[0],shape[1],shape[2],intensity_bin,coef]) Au = layers.guided_upsampling(A,guidemap) for i in range(3): out.append(tf.reduce_sum(input_aug*Au[:,:,:,i*4:(i+1)*4],3,keepdims=True)) final = tf.concat(out,3) return final def df_kpn(input_rgbs,noise,filt_s=5,reuse=False): def get_pixel_value(img,x,y,z): # img B,H,W,F,3 shape = tf.shape(x) # x,y,z: B,H,W,Sam batch_size = shape[0] hei,wid,sam = shape[1],shape[2],shape[3] # B,H,W,Sam batch_idx = tf.range(0,batch_size) batch_idx = tf.reshape(batch_idx,[batch_size,1,1,1]) b = tf.tile(batch_idx,[1,hei,wid,sam]) indices = tf.stack([b,y,x,z],4) return tf.gather_nd(img,indices) input_rgbs = tf.transpose(input_rgbs,[0,1,2,4,3]) # B H W F C input_lums = tf.reduce_mean(input_rgbs,4,keepdims=False) # B H W F 1 shape = tf.shape(input_lums) num_samples = 3*filt_s*filt_s ## Offset net with tf.variable_scope('Offset_N'): offsets = U_net22(input_lums,num_down=3,num_block=1,num_conv=1,num_out=3*num_samples,rate=[1]*10,fil_s=filt_s,is_residual=False, start_chan=32,act=relu,is_global=False,name='Offset_N',reuse=reuse) offsets_shape = tf.shape(offsets) offsets_r = tf.reshape(offsets,[offsets_shape[0],offsets_shape[1],offsets_shape[2],3,num_samples]) # B,H,W,F,Sam with tf.variable_scope('Sampler'): ## Sampler offsets_x = offsets_r[:,:,:,0,:] offsets_y = offsets_r[:,:,:,1,:] offsets_z = offsets_r[:,:,:,2,:] x = tf.linspace(-1.0,1.0,shape[2]) y = tf.linspace(-1.0,1.0,shape[1]) x,y = tf.meshgrid(x,y) x,y = tf.reshape(x,[-1,shape[1],shape[2],1]),tf.reshape(y,[-1,shape[1],shape[2],1]) x,y = tf.tile(x,[1,1,1,num_samples]),tf.tile(y,[1,1,1,num_samples]) x_t,y_t = x+offsets_x,y+offsets_y z_t = offsets_z max_x,max_y,max_z = shape[2]-1,shape[1]-1,shape[3]-1 # int zero = tf.zeros([],tf.int32) # int x_t_sc = (x_t+1.0)*0.5*tf.cast(max_x,tf.float32) #float y_t_sc = (y_t+1.0)*0.5*tf.cast(max_y,tf.float32) z_t_sc = (z_t+1.0)*0.5*tf.cast(max_z,tf.float32) x0 = tf.cast(tf.floor(x_t_sc),tf.int32) # int x1 = x0 + 1 y0 = tf.cast(tf.floor(y_t_sc),tf.int32) y1 = y0 + 1 z0 = tf.cast(tf.floor(z_t_sc),tf.int32) z1 = z0 + 1 x0,x1 = tf.clip_by_value(x0,zero,max_x),tf.clip_by_value(x1,zero,max_x) #int y0,y1 = tf.clip_by_value(y0,zero,max_y),tf.clip_by_value(y1,zero,max_y) z0,z1 = tf.clip_by_value(z0,zero,max_z),tf.clip_by_value(z1,zero,max_z) I000 = get_pixel_value(input_rgbs,x0,y0,z0) # float I001 = get_pixel_value(input_rgbs,x0,y0,z1) I010 = get_pixel_value(input_rgbs,x0,y1,z0) I011 = get_pixel_value(input_rgbs,x0,y1,z1) I100 = get_pixel_value(input_rgbs,x1,y0,z0) I101 = get_pixel_value(input_rgbs,x1,y0,z1) I110 = get_pixel_value(input_rgbs,x1,y1,z0) I111 = get_pixel_value(input_rgbs,x1,y1,z1) w000 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w001 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w010 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w011 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w100 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w101 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w110 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w111 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w000,w001,w010,w011 = tf.expand_dims(w000,4),tf.expand_dims(w001,4),tf.expand_dims(w010,4),tf.expand_dims(w011,4) w100,w101,w110,w111 = tf.expand_dims(w100,4),tf.expand_dims(w101,4),tf.expand_dims(w110,4),tf.expand_dims(w111,4) align_out = tf.add_n([w000*I000,w001*I001,w010*I010,w011*I011,w100*I100,w101*I101,w110*I110,w111*I111]) ## kpn with tf.variable_scope('KPN'): shape_input_rgbs = tf.shape(input_rgbs) input_rgbs_m = tf.reshape(input_rgbs,[shape_input_rgbs[0],shape_input_rgbs[1],shape_input_rgbs[2], shape_input_rgbs[3]*shape_input_rgbs[4]]) shape_align_out = tf.shape(align_out) align_out_m = tf.reshape(align_out,[shape_align_out[0],shape_align_out[1],shape_align_out[2], shape_align_out[3]*shape_align_out[4]]) input_kpn = tf.concat([input_rgbs_m,noise,offsets,align_out_m],3) kernels = Conv_block(input_kpn,num_conv=3,num_out=num_samples,rate=[1]*10,fil_s=5,chan=64,act=relu,name='KPN',reuse=reuse) #kernels = U_net22(input_kpn,num_down=3,num_block=1,num_conv=1,num_out=filt_s*filt_s*3,rate=[1]*10,fil_s=filt_s, # is_residual=False,start_chan=32,act=lrelu,is_global=False,name='KPN',reuse=reuse) kernels = tf.expand_dims(kernels,4) rgb_filter = kernels*align_out axu_out = [] for i in range(3): axu_out.append(3.0*tf.reduce_sum(rgb_filter[:,:,:,i*9:i*9+9,:],3,keepdims=False)) rgb_out = tf.reduce_sum(rgb_filter,3,keepdims=False) return rgb_out,axu_out def df_kpn_enhan(input_rgbs,noise,filt_s=5,reuse=False): def get_pixel_value(img,x,y,z): # img B,H,W,F,3 shape = tf.shape(x) # x,y,z: B,H,W,Sam batch_size = shape[0] hei,wid,sam = shape[1],shape[2],shape[3] # B,H,W,Sam batch_idx = tf.range(0,batch_size) batch_idx = tf.reshape(batch_idx,[batch_size,1,1,1]) b = tf.tile(batch_idx,[1,hei,wid,sam]) indices = tf.stack([b,y,x,z],4) return tf.gather_nd(img,indices) # B,H,W,Sam,C input_rgbs = tf.transpose(input_rgbs,[0,1,2,4,3]) # B H W F C input_lums = tf.reduce_mean(input_rgbs,4,keepdims=False) # B H W F 1 shape = tf.shape(input_lums) num_samples = 3*filt_s*filt_s ## Offset net with tf.variable_scope('Offset_N'): w_init = tf.constant_initializer(0.0) b_init = tf.constant_initializer(0.0) offsets = U_net22(input_lums,num_down=3,num_block=1,num_conv=1,w_init=w_init,b_init=b_init,num_out=3*num_samples,rate=[1]*10,fil_s=filt_s,is_residual=False, start_chan=32,act=lrelu,is_global=False,name='Offset_N',reuse=reuse) offsets_shape = tf.shape(offsets) offsets_r = tf.reshape(offsets,[offsets_shape[0],offsets_shape[1],offsets_shape[2],3,num_samples]) # B,H,W,F,Sam with tf.variable_scope('Sampler'): ## Sampler offsets_x = offsets_r[:,:,:,0,:] offsets_y = offsets_r[:,:,:,1,:] offsets_z = offsets_r[:,:,:,2,:] x = tf.linspace(-1.0,1.0,shape[2]) y = tf.linspace(-1.0,1.0,shape[1]) x,y = tf.meshgrid(x,y) x,y = tf.reshape(x,[-1,shape[1],shape[2],1]),tf.reshape(y,[-1,shape[1],shape[2],1]) x,y = tf.tile(x,[1,1,1,num_samples]),tf.tile(y,[1,1,1,num_samples]) x_t,y_t = x+offsets_x,y+offsets_y z_t = offsets_z max_x,max_y,max_z = shape[2]-1,shape[1]-1,shape[3]-1 # int zero = tf.zeros([],tf.int32) # int x_t_sc = (x_t+1.0)*0.5*tf.cast(max_x,tf.float32) #float y_t_sc = (y_t+1.0)*0.5*tf.cast(max_y,tf.float32) z_t_sc = (z_t+1.0)*0.5*tf.cast(max_z,tf.float32) x0 = tf.cast(tf.floor(x_t_sc),tf.int32) # int x1 = x0 + 1 y0 = tf.cast(tf.floor(y_t_sc),tf.int32) y1 = y0 + 1 z0 = tf.cast(tf.floor(z_t_sc),tf.int32) z1 = z0 + 1 x0,x1 = tf.clip_by_value(x0,zero,max_x),tf.clip_by_value(x1,zero,max_x) #int y0,y1 = tf.clip_by_value(y0,zero,max_y),tf.clip_by_value(y1,zero,max_y) z0,z1 = tf.clip_by_value(z0,zero,max_z),tf.clip_by_value(z1,zero,max_z) I000 = get_pixel_value(input_rgbs,x0,y0,z0) # float I001 = get_pixel_value(input_rgbs,x0,y0,z1) I010 = get_pixel_value(input_rgbs,x0,y1,z0) I011 = get_pixel_value(input_rgbs,x0,y1,z1) I100 = get_pixel_value(input_rgbs,x1,y0,z0) I101 = get_pixel_value(input_rgbs,x1,y0,z1) I110 = get_pixel_value(input_rgbs,x1,y1,z0) I111 = get_pixel_value(input_rgbs,x1,y1,z1) w000 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w001 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w010 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w011 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w100 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w101 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w110 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w111 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w000,w001,w010,w011 = tf.expand_dims(w000,4),tf.expand_dims(w001,4),tf.expand_dims(w010,4),tf.expand_dims(w011,4) w100,w101,w110,w111 = tf.expand_dims(w100,4),tf.expand_dims(w101,4),tf.expand_dims(w110,4),tf.expand_dims(w111,4) align_out = tf.add_n([w000*I000,w001*I001,w010*I010,w011*I011,w100*I100,w101*I101,w110*I110,w111*I111]) ## kpn with tf.variable_scope('KPN'): shape_input_rgbs = tf.shape(input_rgbs) input_rgbs_m = tf.reshape(input_rgbs,[shape_input_rgbs[0],shape_input_rgbs[1],shape_input_rgbs[2], shape_input_rgbs[3]*shape_input_rgbs[4]]) shape_align_out = tf.shape(align_out) align_out_m = tf.reshape(align_out,[shape_align_out[0],shape_align_out[1],shape_align_out[2], shape_align_out[3]*shape_align_out[4]]) input_kpn = tf.concat([input_rgbs_m,noise,offsets,align_out_m],3) #kernels = Conv_block(input_kpn,num_conv=3,num_out=num_samples,rate=[1]*10,fil_s=5,chan=64,act=relu,name='KPN',reuse=reuse) kernels = U_net22(input_kpn,num_down=3,num_block=1,num_conv=1,num_out=filt_s*filt_s*3,rate=[1]*10,fil_s=filt_s, is_residual=False,start_chan=32,act=lrelu,is_global=True,name='KPN',reuse=reuse) kernels = tf.expand_dims(kernels,4) rgb_filter = kernels*align_out axu_out = [] for i in range(3): axu_out.append(3.0*tf.reduce_sum(rgb_filter[:,:,:,i*9:i*9+9,:],3,keepdims=False)) rgb_out = tf.reduce_sum(rgb_filter,3,keepdims=False) return rgb_out,axu_out def df_kpn_enhan_1(input_rgbs,noise,num_fr=5,filt_s=3,reuse=False): ## different anealing loss def get_pixel_value(img,x,y): # img B,H,W,3 shape = tf.shape(x) # x,y: B,H,W,1 batch_size = shape[0] hei,wid = shape[1],shape[2] # B,H,W,1 batch_idx = tf.range(0,batch_size) batch_idx = tf.reshape(batch_idx,[batch_size,1,1,1]) b = tf.tile(batch_idx,[1,hei,wid,1]) indices = tf.concat([b,y,x],3) return tf.gather_nd(img,indices) # B,H,W,C input_rgbs = tf.transpose(input_rgbs,[0,1,2,4,3]) # B H W F C input_lums = tf.reduce_mean(input_rgbs,4,keepdims=False) # B H W F 1 shape = tf.shape(input_lums) B,H,W,F = shape[0],shape[1],shape[2],shape[3] num_samples = filt_s*filt_s ## Offset net with tf.variable_scope('Offset_N'): w_init = tf.constant_initializer(0.0) b_init = tf.constant_initializer(0.0) offsets = U_net22(input_lums,num_down=3,num_block=1,num_conv=1,w_init=w_init,b_init=b_init,num_out=2*num_fr, rate=[1]*10,fil_s=filt_s,is_residual=False,start_chan=32,act=lrelu,is_global=False,name='Offset_N',reuse=reuse) offsets_shape = tf.shape(offsets) offsets_r = tf.reshape(offsets,[offsets_shape[0],offsets_shape[1],offsets_shape[2],2,num_fr]) # B,H,W,2,F with tf.variable_scope('Sampler'): ## generate initail grid with initial filter kernel locations x = tf.linspace(0.0,1.0,W) y = tf.linspace(0.0,1.0,H) x,y = tf.meshgrid(x,y) x,y = tf.reshape(x,[-1,H,W,1]),tf.reshape(y,[-1,H,W,1]) x,y = tf.tile(x,[1,1,1,num_fr]),tf.tile(y,[1,1,1,num_fr]) # B,H,W,F ## adding offsets for each frame aligned_list = [] for i in range(num_fr): offsets_x_current = offsets_r[:,:,:,0,i:i+1] # B,H,W,1 offsets_y_current = offsets_r[:,:,:,1,i:i+1] # B,H,W,1 x_current,y_current = x[:,:,:,i:i+1],y[:,:,:,i:i+1] x_new, y_new = x_current + offsets_x_current, y_current + offsets_y_current x_new = tf.clip_by_value(x_new,0.0,1.0) y_new = tf.clip_by_value(y_new,0.0,1.0) x_t_sc = x_new*(tf.cast(W,tf.float32)-1.0) y_t_sc = y_new*(tf.cast(H,tf.float32)-1.0) x0 = tf.cast(tf.floor(x_t_sc),tf.int32) # # B,H,W,1 x1 = tf.clip_by_value(x0 + 1,0,W-1) y0 = tf.cast(tf.floor(y_t_sc),tf.int32) y1 = tf.clip_by_value(y0 + 1,0,H-1) I00 = get_pixel_value(input_rgbs[:,:,:,i,:],x0,y0) # float I01 = get_pixel_value(input_rgbs[:,:,:,i,:],x0,y1) I10 = get_pixel_value(input_rgbs[:,:,:,i,:],x1,y0) I11 = get_pixel_value(input_rgbs[:,:,:,i,:],x1,y1) # I=B,H,W,C w00 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0) w01 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0) w10 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0) w11 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0) align_out = tf.add_n([w00*I00,w01*I01,w10*I10,w11*I11]) aligned_list.append(align_out) aligned_imgs = tf.stack(align_out,3) # B,H,W,F,3 ## kpn with tf.variable_scope('KPN'): shape_input_rgbs = tf.shape(input_rgbs) input_rgbs_m = tf.reshape(input_rgbs,[shape_input_rgbs[0],shape_input_rgbs[1],shape_input_rgbs[2], shape_input_rgbs[3]*shape_input_rgbs[4]]) shape_align_out = tf.shape(aligned_imgs) align_out_m = tf.reshape(aligned_imgs,[shape_align_out[0],shape_align_out[1],shape_align_out[2], shape_align_out[3]*shape_align_out[4]]) input_kpn = tf.concat([input_rgbs_m,noise,offsets,align_out_m],3) #kernels = Conv_block(input_kpn,num_conv=3,num_out=num_samples,rate=[1]*10,fil_s=5,chan=64,act=relu,name='KPN',reuse=reuse) kernels = U_net22(input_kpn,num_down=3,num_block=1,num_conv=1,num_out=filt_s*filt_s*3,rate=[1]*10,fil_s=filt_s, is_residual=False,start_chan=32,act=lrelu,is_global=True,name='KPN',reuse=reuse) kernels = tf.expand_dims(kernels,4) rgb_filter = kernels*align_out axu_out = [] for i in range(3): axu_out.append(3.0*tf.reduce_sum(rgb_filter[:,:,:,i*9:i*9+9,:],3,keepdims=False)) rgb_out = tf.reduce_sum(rgb_filter,3,keepdims=False) return rgb_out,axu_out def EDVR(input_rgbs,fra_s=5,num_fea=32,reuse = False): def dcn(fea,offset,group=8,fil_s=3,name=None,reuse=False): def grid_fil(x,y): case = [[-1.0,-1.0],[-1.0,0.0],[-1.0,1.0],[0.0,-1.0],[0.0,0.0],[0.0,1.0],[1.0,-1.0],[1.0,0.0],[1.0,1.0]] offset_x,offset_y = [],[] shape = tf.shape(x) for i in case: case_x,case_y = 2.0*i[0]/tf.cast(shape[2],tf.float32),2.0*i[1]/tf.cast(shape[1],tf.float32) offset_x.append(tf.reshape(case_x,[1,1,1,1])) offset_y.append(tf.reshape(case_y,[1,1,1,1])) offset_x_,offset_y_ = tf.concat(offset_x,3),tf.concat(offset_y,3) x_new,y_new = x+offset_x_,y+offset_y_ return x_new,y_new def get_pixel_value(img,x,y): # img B,H,W,8 shape = tf.shape(x) # x,y,z: B,H,W,9 batch_size = shape[0] hei,wid,sam = shape[1],shape[2],shape[3] # B,H,W,Sam batch_idx = tf.range(0,batch_size) batch_idx = tf.reshape(batch_idx,[batch_size,1,1,1]) b = tf.tile(batch_idx,[1,hei,wid,sam]) indices = tf.stack([b,y,x],4) return tf.gather_nd(img,indices) with tf.variable_scope(name,reuse=reuse): offset = Conv_block1(offset,num_conv=1,num_out=group*2*fil_s*fil_s,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='ali',reuse=reuse) offset_x,offset_y = offset[:,:,:,0:group*fil_s*fil_s],offset[:,:,:,group*fil_s*fil_s:group*fil_s*fil_s*2] #mask = tf.sigmoid(mask) shape = tf.shape(offset_x) collect = [] for i in range(group): num_c = int(num_fea/group) #mask_current = tf.expand_dims(mask[:,:,:,i*fil_s*fil_s:(i+1)*fil_s*fil_s],4) fea_current = fea[:,:,:,i*num_c:(i+1)*num_c] x = tf.linspace(-1.0,1.0,shape[2]) y = tf.linspace(-1.0,1.0,shape[1]) x,y = tf.meshgrid(x,y) x,y = tf.reshape(x,[-1,shape[1],shape[2],1]),tf.reshape(y,[-1,shape[1],shape[2],1]) x,y = tf.tile(x,[1,1,1,fil_s*fil_s]),tf.tile(y,[1,1,1,fil_s*fil_s]) x,y = grid_fil(x,y) x_t,y_t = x+offset_x[:,:,:,i*fil_s*fil_s:(i+1)*fil_s*fil_s],y+offset_y[:,:,:,i*fil_s*fil_s:(i+1)*fil_s*fil_s] max_x,max_y = shape[2]-1,shape[1]-1 # int zero = tf.zeros([],tf.int32) # int x_t_sc = (x_t+1.0)*0.5*tf.cast(max_x,tf.float32) #float y_t_sc = (y_t+1.0)*0.5*tf.cast(max_y,tf.float32) x0 = tf.cast(tf.floor(x_t_sc),tf.int32) # int x1 = x0 + 1 y0 = tf.cast(tf.floor(y_t_sc),tf.int32) y1 = y0 + 1 x0,x1 = tf.clip_by_value(x0,zero,max_x+1),tf.clip_by_value(x1,zero,max_x+1) #int y0,y1 = tf.clip_by_value(y0,zero,max_y+1),tf.clip_by_value(y1,zero,max_y+1) padd = [[0,0],[0,1],[0,1],[0,0]] I00 = get_pixel_value(tf.pad(fea_current,padd,'SYMMETRIC'),x0,y0) # float I01 = get_pixel_value(tf.pad(fea_current,padd,'SYMMETRIC'),x0,y1) I10 = get_pixel_value(tf.pad(fea_current,padd,'SYMMETRIC'),x1,y0) I11 = get_pixel_value(tf.pad(fea_current,padd,'SYMMETRIC'),x1,y1) w00 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0) w01 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0) w10 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0) w11 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0) w00,w01,w10,w11 = tf.expand_dims(w00,4),tf.expand_dims(w01,4),tf.expand_dims(w10,4),tf.expand_dims(w11,4) align_out = tf.add_n([w00*I00,w01*I01,w10*I10,w11*I11]) align_out = align_out#*mask_current align_out = tf.reshape(align_out,[shape[0],shape[1],shape[2],-1]) # B,H,W,8*9 collect.append(align_out) collect_ = tf.concat(collect,3) out = Conv_block1(collect_,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=1,chan=num_fea,act=lrelu,name='out',reuse=reuse) return out def PCD_align(nalign,ref,name,reuse=False): # nalign is B,H,W,C with tf.variable_scope(name,reuse=reuse): group = 4 L3_offset = tf.concat([nalign[2],ref[2]],3) L3_offset = Conv_block1(L3_offset,num_conv=2,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea3',reuse=reuse) L3_fea = dcn(nalign[2],L3_offset,group=group,fil_s=3,name='dcn3',reuse=reuse) L2_offset = tf.concat([nalign[1],ref[1]],3) L2_offset = Conv_block1(L2_offset,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea2',reuse=reuse)*2.0 L2_offset = upsample_and_concat_c(L3_offset,L2_offset,num_fea, num_fea, 'ou_and_c3',reuse=reuse) L2_offset = Conv_block1(L2_offset,num_conv=2,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea21',reuse=reuse) L2_fea = dcn(nalign[1],L2_offset,group=group,fil_s=3,name='dcn2',reuse=reuse) L2_fea = upsample_and_concat_c(L3_fea,L2_fea,num_fea, num_fea, 'fu_and_c3',reuse=reuse) L2_fea = Conv_block1(L2_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea22',reuse=reuse) L1_offset = tf.concat([nalign[0],ref[0]],3) L1_offset = Conv_block1(L1_offset,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea1',reuse=reuse)*2.0 L1_offset = upsample_and_concat_c(L2_offset,L1_offset,num_fea, num_fea, 'ou_and_c2',reuse=reuse) L1_offset = Conv_block1(L1_offset,num_conv=2,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea11',reuse=reuse) L1_fea = dcn(nalign[0],L1_offset,group=group,fil_s=3,name='dcn1',reuse=reuse) L1_fea = upsample_and_concat_c(L2_fea,L1_fea,num_fea, num_fea, 'fu_and_c2',reuse=reuse) L1_fea = Conv_block1(L1_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea12',reuse=reuse) offset = tf.concat([L1_fea,ref[0]],3) offset = Conv_block1(offset,num_conv=2,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea0',reuse=reuse) L1_fea = dcn(L1_fea,offset,group=group,fil_s=3,name='dcn0',reuse=reuse) return L1_fea # B H W 64 input_rgbs = tf.transpose(input_rgbs,[0,4,1,2,3]) # B F H W C in_shape = tf.shape(input_rgbs) # B F H W C B, F, H, W, C = in_shape[0],in_shape[1],in_shape[2],in_shape[3],in_shape[4] center = int((fra_s+1)/2-1) with tf.variable_scope('Fea_extr'): current = input_rgbs # B F,H W C current = tf.reshape(input_rgbs,[-1, H, W, C]) current = Conv_block1(current,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='pre_fea0',reuse=reuse) current = Conv_block_residual(current,num_block=2,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu, name='pre_fea1',reuse=reuse) Fea_extr = current with tf.variable_scope('Align'): current = Fea_extr L1_fea = Conv_block1(current,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea00',reuse=reuse) L1_fea = Conv_block1(L1_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea01',reuse=reuse) L2_fea = Conv_block1(L1_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea10',reuse=reuse) L2_fea = Conv_block1(L2_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea11',reuse=reuse) L2_fea=slim.conv2d(L2_fea,num_fea,[3,3], stride=2, activation_fn=lrelu,padding='SAME',scope='fea13',reuse=reuse) #L2_fea=slim.max_pool2d(L2_fea, [3, 3], padding='SAME',scope='fea13') L3_fea = Conv_block1(L2_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea20',reuse=reuse) L3_fea = Conv_block1(L3_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fea21',reuse=reuse) L3_fea = slim.conv2d(L3_fea,num_fea,[3,3], stride=2, activation_fn=lrelu,padding='SAME',scope='fea22',reuse=reuse) #L3_fea=slim.max_pool2d(L3_fea, [3, 3], padding='SAME',scope='fea22') L1_fea = tf.reshape(L1_fea,[B,F, H, W, -1]) L2_fea = tf.reshape(L2_fea,[B,F, H//2, W//2, -1]) L3_fea = tf.reshape(L3_fea,[B,F, H//4, W//4, -1]) L1_center,L2_center,L3_center = L1_fea[:,center:center+1,:,:,:],L2_fea[:,center:center+1,:,:,:],L3_fea[:,center:center+1,:,:,:] ## center:B,H,W,64 L1_center,L2_center,L3_center = tf.tile(L1_center,[1,F,1,1,1]),tf.tile(L2_center,[1,F,1,1,1]),tf.tile(L3_center,[1,F,1,1,1]) L1_center = tf.reshape(L1_center,[B*F,H,W,-1]) L2_center = tf.reshape(L2_center,[B*F,H//2,W//2,-1]) L3_center = tf.reshape(L3_center,[B*F,H//4,W//4,-1]) L1_fea = tf.reshape(L1_fea,[B*F,H,W,-1]) L2_fea = tf.reshape(L2_fea,[B*F,H//2,W//2,-1]) L3_fea = tf.reshape(L3_fea,[B*F,H//4,W//4,-1]) nalign,refs = [L1_fea,L2_fea,L3_fea],[L1_center,L2_center,L3_center] PCD_out_ = PCD_align(nalign,refs,'pcd',reuse=reuse) #print(PCD_out_.shape) #PCD_out_ = Conv_block1(PCD_out_,num_conv=1,num_out=3,rate=[1]*10,fil_s=1,chan=32,act=relu,name='fuse',reuse=reuse) PCD_out_ = tf.reshape(PCD_out_,[B,F,H,W,num_fea]) #PCD_out_ = tf.transpose(PCD_out_,[0,2,3,4,1]) with tf.variable_scope('TSA'): aligned_fea = PCD_out_ emb_ref = Conv_block1(aligned_fea[:,center,:,:,:],num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=64,act=lrelu,name='emb_ref',reuse=reuse) emb_in = tf.reshape(aligned_fea,[-1,H, W,num_fea]) emb = Conv_block1(emb_in,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='emb',reuse=reuse) emb = tf.reshape(emb,[B,F,H,W,num_fea]) col_l = [] for i in range(fra_s): emb_cur = emb[:,i,:,:,:] color_temp = tf.reduce_sum(emb_cur*emb_ref,3,keepdims=False) # B,H,W col_l.append(color_temp) col_prob = tf.sigmoid(tf.stack(col_l,1)) # B,N,H,W col_prob = tf.tile(tf.expand_dims(col_prob,4),[1,1,1,1,num_fea]) aligned_fea = aligned_fea*col_prob # B,N,H,W,64 aligned_fea = tf.reshape(tf.transpose(aligned_fea,[0,2,3,1,4]),[B,H,W,-1]) tfuse_fea = Conv_block1(aligned_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='fuse',reuse=reuse) # B,H,W,64 # Spatial attention att = Conv_block1(aligned_fea,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa0',reuse=reuse) add0 = att att_max = slim.max_pool2d(att, [3, 3], padding='SAME',scope='spa0max') att_aver = slim.avg_pool2d(att, [3, 3], padding='SAME',scope='spa0aver') con = tf.concat([att_max,att_aver],3) att = Conv_block1(con,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa0a',reuse=reuse) # B,H,W,64 add1 = att att = Conv_block1(att,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa1',reuse=reuse) # B,H,W,64 att_max = slim.max_pool2d(att, [3, 3], padding='SAME',scope='spa1max') att_aver = slim.avg_pool2d(att, [3, 3], padding='SAME',scope='spa1aver') con = tf.concat([att_max,att_aver],3) att = Conv_block1(con,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa1a',reuse=reuse) # B,H,W,64 att = Conv_block1(att,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa1af',reuse=reuse) # B,H,W,64 att = upsample_to(att,add1,num_fea,num_fea,scope='uac0',reuse=reuse) att = Conv_block1(att,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa2af',reuse=reuse) # B,H,W,64 att = att + add1 att = Conv_block1(att,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa3af',reuse=reuse) # B,H,W,64 att = upsample_to(att,add0,num_fea,num_fea,scope='uac1',reuse=reuse) att_add = Conv_block1(att,num_conv=1,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa4af',reuse=reuse) # B,H,W,64 att_mul = Conv_block1(att_add,num_conv=2,num_out=num_fea,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='spa5af',reuse=reuse) # B,H,W,64 att_mul = tf.sigmoid(att_mul) fea = tfuse_fea*att_mul*2.0+att_add fea = Conv_block_residual(fea,num_block=4,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='out_residual',reuse=reuse) out = Conv_block1(fea,num_conv=2,num_out=3,rate=[1]*10,fil_s=3,chan=num_fea,act=lrelu,name='out_conv',reuse=reuse) # B,H,W,64 return out def pack_fea(x,num_fr=5): #B,F,H,W,C shape = tf.shape(x) B,F,H,W,C = shape[0],shape[1],shape[2],shape[3],shape[4] center = int((num_fr+1)/2) ref = x[:,center-1:center,:,:,:] #B,1,H,W,C inds = np.concatenate([np.arange(0,center-1),np.arange(center,num_fr)],0) lis = [x[:,i:i+1,:,:,:] for i in inds] others = tf.concat(lis,1) #B,F-1,H,W,C ref_tile = tf.tile(ref,[1,num_fr-1,1,1,1]) #B,F-1,H,W,C ref_tile_r = tf.reshape(ref_tile,[B*(F-1),H,W,C]) #B*(F-1),H,W,C others_r = tf.reshape(others,[B*(F-1),H,W,C]) #B*(F-1),H,W,C in_feas =tf.concat([others_r,ref_tile_r],3) return in_feas,ref,others #B*(F-1),H,W,C*2, #B,1,H,W,C #B,F-1,H,W,C def get_pixel_value(img,x,y): # img B,H,W,C shape = tf.shape(x) # x,y,z: B,H,W batch_size = shape[0] hei,wid = shape[1],shape[2] # B,H,W batch_idx = tf.range(0,batch_size) batch_idx = tf.reshape(batch_idx,[batch_size,1,1]) b = tf.tile(batch_idx,[1,hei,wid]) indices = tf.stack([b,y,x],3) return tf.gather_nd(img,indices) # B,H,W,C def get_pixel_value_3D(img,x,y,z): # img B,H,W,F,C shape = tf.shape(x) # x,y,z: B,H,W batch_size = shape[0] hei,wid = shape[1],shape[2] # B,H,W batch_idx = tf.range(0,batch_size) batch_idx = tf.reshape(batch_idx,[batch_size,1,1]) b = tf.tile(batch_idx,[1,hei,wid]) indices = tf.stack([b,y,x,z],3) return tf.gather_nd(img,indices) # B,H,W,C def U_Net_align_spy(img,num_fr=5,num_down=4,reuse = False): # img:B,H,W,C,F noise:B,H,W,1 def image_warp(images, flow, name='image_warp'): with tf.name_scope(name): shape = tf.shape(images) batch_size = shape[0] height = shape[1] width = shape[2] channels = shape[3] #images = tf.reshape(images,[-1,height,width,channels]) #flow = tf.reshape(flow,[-1,height,width,2]) x = tf.linspace(0.0,1.0,width) y = tf.linspace(0.0,1.0,height) grid_x, grid_y = tf.meshgrid(x, y) grid_x, grid_y = tf.cast(grid_x,flow.dtype),tf.cast(grid_y,flow.dtype) grid_x, grid_y = tf.expand_dims(tf.expand_dims(grid_x,0),3),tf.expand_dims(tf.expand_dims(grid_y,0),3) grid_y = (grid_y + flow[:,:,:,0:1])*tf.cast(height-1,flow.dtype) grid_x = (grid_x + flow[:,:,:,1:2])*tf.cast(width-1,flow.dtype) grid = tf.concat([grid_y, grid_x], 3) # B,H,W,2 coords = tf.reshape(grid,[batch_size, height * width, 2]) # B,H*W,2 coords = tf.stack([tf.minimum(tf.maximum(0.0, coords[:, :, 0]), tf.cast(height, flow.dtype) - 1.0), tf.minimum(tf.maximum(0.0, coords[:, :, 1]), tf.cast(width, flow.dtype) - 1.0)], axis=2) floors = tf.cast(tf.floor(coords), tf.int32) ceils = floors + 1 ## the ceils and floors are not clipped alphas = tf.cast(coords - tf.cast(floors, flow.dtype), images.dtype) alphas = tf.reshape(tf.minimum(tf.maximum(0.0, alphas), 1.0), shape=[batch_size, height, width, 1, 2]) images_flattened = tf.reshape(images, [-1, channels]) batch_offsets = tf.expand_dims(tf.range(batch_size) * height * width, axis=1) def gather(y_coords, x_coords): linear_coordinates = batch_offsets + y_coords * width + x_coords gathered_values = tf.gather(images_flattened, linear_coordinates) return tf.reshape(gathered_values, shape) top_left = gather(floors[:, :, 0], floors[:, :, 1]) # B,H,W,C top_right = gather(floors[:, :, 0], ceils[:, :, 1]) bottom_left = gather(ceils[:, :, 0], floors[:, :, 1]) bottom_right = gather(ceils[:, :, 0], ceils[:, :, 1]) interp_top = alphas[:, :, :, :, 1] * (top_right - top_left) + top_left interp_bottom = alphas[:, :, :, :, 1] * (bottom_right - bottom_left) + bottom_left interpolated = alphas[:, :, :, :, 0] * (interp_bottom - interp_top) + interp_top return interpolated def pack_fea(x,num_fr=5): #B,F,H,W,C shape = tf.shape(x) B,F,H,W,C = shape[0],shape[1],shape[2],shape[3],shape[4] center = int((num_fr+1)/2) ref = x[:,center-1:center,:,:,:] #B,1,H,W,C inds = np.concatenate([np.arange(0,center-1),np.arange(center,num_fr)],0) lis = [x[:,i:i+1,:,:,:] for i in inds] others = tf.concat(lis,1) #B,F-1,H,W,C ref_tile = tf.tile(ref,[1,num_fr-1,1,1,1]) #B,F-1,H,W,C ref_tile_r = tf.reshape(ref_tile,[B*(F-1),H,W,C]) #B*(F-1),H,W,C others_r = tf.reshape(others,[B*(F-1),H,W,C]) #B*(F-1),H,W,C in_feas =tf.concat([others_r,ref_tile_r],3) return in_feas,ref,others #B*(F-1),H,W,C*2, #B,1,H,W,C #B,F-1,H,W,C def U_net2222(inputlist,num_down=4,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=None,b_init=None,start_chan=32,act=lrelu,name=None,reuse=False): ## parameters conv_ = [] chan_ = [] if w_init is None: w_init = tf.contrib.slim.xavier_initializer() if b_init is None: b_init = tf.constant_initializer(value=0.0) for i in range(num_down+1): chan_.append(start_chan*(2**(i))) ## multis_list = [] with tf.variable_scope('local_ops',reuse=reuse): current = inputlist[num_down] for j in range(num_conv): current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, rate=1,activation_fn=act,padding='SAME',scope='g_conv_block_%d'%(j),reuse=reuse) fine_flow = slim.conv2d(current,2,[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,activation_fn=tf.nn.tanh,padding='SAME',scope='g_conv_block',reuse=reuse) current_imgs = inputlist[num_down] other_img,ref_img = current_imgs[:,:,:,0:3],current_imgs[:,:,:,3:] multis_list.append(image_warp(other_img,fine_flow,'fine_wapring%d'%(num_down))) restore_temp = fine_flow with tf.variable_scope('expanding_ops',reuse=reuse): init_flow = restore_temp for i in range(num_down): index_current = num_down-1-i current_imgs = inputlist[index_current] other_img,ref_img = current_imgs[:,:,:,0:3],current_imgs[:,:,:,3:] up_flow = slim.conv2d_transpose(init_flow,2,3,(2,2),padding='SAME',scope='up%d'%(i),reuse=reuse) other_img_warped = image_warp(other_img,up_flow,'init_wapring%d'%(i)) fea = tf.concat([other_img_warped,ref_img,up_flow],3) #current = upsample_and_concat_c( current, conv_[index_current], chan_[index_current], chan_[index_current+1], scope='uac%d'%(i),reuse=reuse ) current = slim.conv2d(fea,chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=act,scope='g_dconv%d'%(i),reuse=reuse) for j in range(num_conv): current=slim.conv2d(current, chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=1, padding='SAME',activation_fn=act,scope='g_dconv_block%d_%d'%(i,j),reuse=reuse) fine_flow = up_flow + slim.conv2d(current,2,[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=tf.nn.tanh,scope='g_dconv_block%d'%(i),reuse=reuse) multis_list.append(image_warp(other_img,fine_flow,'fine_wapring%d'%(i))) init_flow = fine_flow return multis_list img = tf.transpose(img,[0,4,1,2,3]) shape = tf.shape(img) B,F,H,W,C = shape[0],shape[1],shape[2],shape[3],shape[4] with tf.variable_scope('Stage1',reuse=reuse): current = img in_imgs_dn,ref_img_dn,other_imgs_dn = pack_fea(current,num_fr=num_fr) #B*(F-1),H,W,C*2, #B,1,H,W,C #B,F-1,H,W,C in_imgs_dn = tf.clip_by_value(in_imgs_dn,0.0,1.0) w_init = tf.constant_initializer(0.0) b_init = tf.constant_initializer(0.0) rate = [1,2,2,4,4,8] inlist = [] for i in range(num_down+1): size = [tf.cast(H/(2**i),tf.int32),tf.cast(W/(2**i),tf.int32)] inlist.append(tf.image.resize_bilinear(in_imgs_dn,size)) warped_imgs_list = U_net2222(inlist,num_down=num_down,num_conv=6,num_out=2,rate=rate,fil_s=5,w_init=None,b_init=None, start_chan=32,act=lrelu,name='Alignment',reuse=reuse) # B*(F-1),H,W,2 for i in range(len(warped_imgs_list)): current = warped_imgs_list[i] shape = tf.shape(current) H_c,W_c,C_c = shape[1],shape[2],shape[3] warped_imgs_list[i] = tf.transpose(tf.reshape(current,[B,F-1,H_c,W_c,C_c]),[0,2,3,4,1]) warped_imgs_list.reverse() return warped_imgs_list def LiangNN(img,noise,num_fr=5,reuse = False): # img:B,H,W,C,F noise:B,H,W,1 img = tf.transpose(img,[0,4,1,2,3]) center = int((num_fr+1)/2-1) shape = tf.shape(img) B,F,H,W,C = shape[0],shape[1],shape[2],shape[3],shape[4] ## Single frame denoising with tf.variable_scope('Stage0',reuse=reuse): current = tf.reshape(img,[B*F,H,W,C]) noise_exp = tf.tile(noise,[B*F,1,1,1]) current = tf.concat([current,noise_exp],3) single_dn_out = U_net22(current,num_down=3,num_block=1,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=None,b_init=None,is_residual=False, start_chan=32,act=lrelu,is_global=False,name='SingleDN',reuse=reuse) single_dn_out = tf.reshape(single_dn_out,[B,F,H,W,C]) # B,F,H,W,C ref_img_dn = single_dn_out[:,center:center+1,:,:,:] single_dn_out_final = tf.transpose(single_dn_out,[0,2,3,4,1]) ### Alignment current = (tf.clip_by_value(single_dn_out_final,0.0,1.0)+1e-4)**(1.0/2.2) warped_imgs_list = U_Net_align_spy(current,num_fr=num_fr,num_down=4,reuse=reuse) warped_img = warped_imgs_list[0] warped_img_out = (tf.clip_by_value(warped_img,0.0,1.0)+1e-4)**2.2 warped_img = tf.transpose(warped_img_out,[0,4,1,2,3]) ### Fusion with tf.variable_scope('Stage2',reuse=reuse): chan = 32 bs = 15 #current0 = tf.concat([align_out[:,0:center,:,:,:],ref_img,align_out[:,center:,:,:,:]],1) # B,F,H,W,C current = tf.concat([warped_img[:,0:center,:,:,:],ref_img_dn,warped_img[:,center:,:,:,:]],1) # B,F,H,W,C #current = tf.concat([current0,current1],4) # B,F,H,W,C*2 #current = tf.concat([current,tf.tile(ref_img_dn,[1,F,1,1,1])],4) # B,F,H,W,C*3 current = tf.reshape(current,[B*F,H,W,C]) # B*F,H,W,C*2 #current = tf.concat([current,noise_exp],3) # B*F,H,W,C*3+1 feas = Conv_block_residual(current,num_block=4,rate=[1]*10,fil_s=3,chan=chan,act=lrelu,name='out_residual',reuse=reuse) feas = tf.reshape(feas,[B,F,H,W,chan]) ref_fea = feas[:,center,:,:,:] # B,H,W,chan other_feas = tf.concat([feas[:,:center,:,:,:],feas[:,center+1:,:,:,:]],1) # B,F-1,H,W,chan alphas = tf.Variable(np.ones(shape=[1,1,1,chan],dtype=np.float32),dtype=tf.float32) out_list1 = [] for i in range(num_fr-1): other_fea_cur = other_feas[:,i,:,:,:] ref_fea_p = pad(ref_fea,p=(bs-1)/2) other_fea_cur_p = pad(other_fea_cur,p=(bs-1)/2) residual = tf.abs(ref_fea_p-other_fea_cur_p) weight = slim.separable_conv2d(residual,num_outputs=None,kernel_size=bs,padding='VALID', weights_initializer=tf.constant_initializer(value=1.0/(bs*bs)), biases_initializer=None,scope='we%d'%(i),reuse=reuse) weight = tf.exp(-alphas*weight) out_list1.append(weight*other_fea_cur+(1.0-weight)*ref_fea) out = tf.reduce_mean(tf.stack(out_list1,1),1) out_final = Conv_block1(out,num_conv=4,num_out=3,rate=[1]*10,fil_s=1,chan=3,act=lrelu,name='out_conv',reuse=reuse) # B,H,W,3 return single_dn_out_final,warped_img_out,out_final def U_Net_align(img,num_fr=5,reuse = False): # img:B,H,W,C,F noise:B,H,W,1 def U_net2222(input,num_down=4,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=None,b_init=None,start_chan=32,act=lrelu,name=None,reuse=False): ## parameters conv_ = [] chan_ = [] if w_init is None: w_init = tf.contrib.slim.xavier_initializer() if b_init is None: b_init = tf.constant_initializer(value=0.0) for i in range(num_down+1): chan_.append(start_chan*(2**(i))) with tf.variable_scope(name,reuse=reuse): current = input with tf.variable_scope('contracting_ops',reuse=reuse): for i in range(num_down): current = slim.conv2d(current,chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,scope='g_conv%d'%(i),padding='SAME',reuse=reuse) for j in range(num_conv): current=slim.conv2d(current,chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=rate[i], activation_fn=act,padding='SAME',scope='g_conv%d_block_%d'%(i,j),reuse=reuse) current=slim.conv2d(current,chan_[i],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,padding='SAME',scope='g_conv%d_block'%(i),reuse=reuse) pool=slim.conv2d(current,chan_[i],[fil_s,fil_s], stride=2, weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,padding='SAME',scope='pool%d'%(i),reuse=reuse) #pool=slim.max_pool2d(current, [2, 2], padding='SAME',scope='pool%d'%(i)) conv_.append(current) current = pool current=slim.conv2d(pad(current,(fil_s-1)/2),chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, activation_fn=act,padding='VALID',scope='g_conv%d'%(num_down),reuse=reuse) contract_temp = current ## with tf.variable_scope('local_ops',reuse=reuse): current = contract_temp for j in range(num_conv): current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, rate=rate[num_down],activation_fn=act,padding='SAME',scope='g_conv_block_%d'%(j),reuse=reuse) current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,activation_fn=act,padding='SAME',scope='g_conv_block',reuse=reuse) restore_temp = current multis_list = [] with tf.variable_scope('expanding_ops',reuse=reuse): current = restore_temp for i in range(num_down): index_current = num_down-1-i current = upsample_and_concat_c( current, conv_[index_current], chan_[index_current], chan_[index_current+1], scope='uac%d'%(i),reuse=reuse ) current = slim.conv2d(current,chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=act,scope='g_dconv%d'%(i),reuse=reuse) for j in range(num_conv): current=slim.conv2d(current, chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=rate[index_current], padding='SAME',activation_fn=act,scope='g_dconv_block%d_%d'%(i,j),reuse=reuse) current=slim.conv2d(current, chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=tf.nn.tanh,scope='g_dconv_block%d'%(i),reuse=reuse) if i is not (num_down-1): multis_list.append(slim.conv2d(current, num_out,[1,1], weights_initializer=w_init,biases_initializer=b_init, activation_fn=tf.nn.tanh,scope='super%d'%(i),reuse=reuse)) final = slim.conv2d(current, num_out,[1,1], weights_initializer=w_init,biases_initializer=b_init, activation_fn=tf.nn.tanh,scope='final',reuse=reuse) return final,multis_list def image_warp(images, flow, name='image_warp'): with tf.name_scope(name): shape = tf.shape(images) batch_size = shape[1] height = shape[2] width = shape[3] frame_s = shape[1] channels = shape[4] images = tf.reshape(images,[-1,height,width,channels]) flow = tf.reshape(flow,[-1,height,width,2]) x = tf.linspace(0.0,1.0,width) y = tf.linspace(0.0,1.0,height) grid_x, grid_y = tf.meshgrid(x, y) grid_x, grid_y = tf.cast(grid_x,flow.dtype),tf.cast(grid_y,flow.dtype) grid_x, grid_y = tf.expand_dims(tf.expand_dims(grid_x,0),3),tf.expand_dims(tf.expand_dims(grid_y,0),3) grid_y = (grid_y + flow[:,:,:,0:1])*tf.cast(height-1,flow.dtype) grid_x = (grid_x + flow[:,:,:,1:2])*tf.cast(width-1,flow.dtype) grid = tf.concat([grid_y, grid_x], 3) # B,H,W,2 coords = tf.reshape(grid,[batch_size, height * width, 2]) # B,H*W,2 coords = tf.stack([tf.minimum(tf.maximum(0.0, coords[:, :, 0]), tf.cast(height, flow.dtype) - 1.0), tf.minimum(tf.maximum(0.0, coords[:, :, 1]), tf.cast(width, flow.dtype) - 1.0)], axis=2) floors = tf.cast(tf.floor(coords), tf.int32) ceils = floors + 1 ## the ceils and floors are not clipped alphas = tf.cast(coords - tf.cast(floors, flow.dtype), images.dtype) alphas = tf.reshape(tf.minimum(tf.maximum(0.0, alphas), 1.0), shape=[batch_size, height, width, 1, 2]) images_flattened = tf.reshape(images, [-1, channels]) batch_offsets = tf.expand_dims(tf.range(batch_size) * height * width, axis=1) def gather(y_coords, x_coords): linear_coordinates = batch_offsets + y_coords * width + x_coords gathered_values = tf.gather(images_flattened, linear_coordinates) return tf.reshape(gathered_values, shape) top_left = gather(floors[:, :, 0], floors[:, :, 1]) # B,H,W,C top_right = gather(floors[:, :, 0], ceils[:, :, 1]) bottom_left = gather(ceils[:, :, 0], floors[:, :, 1]) bottom_right = gather(ceils[:, :, 0], ceils[:, :, 1]) interp_top = alphas[:, :, :, :, 1] * (top_right - top_left) + top_left interp_bottom = alphas[:, :, :, :, 1] * (bottom_right - bottom_left) + bottom_left interpolated = alphas[:, :, :, :, 0] * (interp_bottom - interp_top) + interp_top interpolated = tf.reshape(interpolated, [1,frame_s,height,width,channels]) # this should be right interpolated = tf.transpose(interpolated,[0,2,3,4,1]) # B,H,W,C,F-1 return interpolated img = tf.transpose(img,[0,4,1,2,3]) shape = tf.shape(img) B,F,H,W,C = shape[0],shape[1],shape[2],shape[3],shape[4] with tf.variable_scope('Stage1',reuse=reuse): current = img in_imgs_dn,ref_img_dn,other_imgs_dn = pack_fea(current,num_fr=num_fr) #B*(F-1),H,W,C*2, #B,1,H,W,C #B,F-1,H,W,C in_imgs_dn = tf.clip_by_value(in_imgs_dn,0.0,1.0) w_init = tf.constant_initializer(0.0) b_init = tf.constant_initializer(0.0) rate = [1,2,2,4,4,8] offsets, offsets_list = U_net2222(in_imgs_dn,num_down=4,num_conv=1,num_out=2,rate=rate,fil_s=3,w_init=None,b_init=None, start_chan=32,act=lrelu,name='Alignment',reuse=reuse) # B*(F-1),H,W,2 offsets = tf.reshape(offsets,[B,F-1,H,W,2]) other_imgs_dn_suplist = [] for i in range(len(offsets_list)): current = offsets_list[i] # B*(F-1),?,?,2 current_shape = tf.shape(current) H_,W_ = current_shape[1],current_shape[2] current_other_imgs_dn = tf.image.resize_bilinear(tf.reshape(other_imgs_dn,[B*(F-1),H,W,C]),[H_,W_]) current_other_imgs_dn = tf.reshape(current_other_imgs_dn,[B,F-1,H_,W_,C]) other_imgs_dn_suplist.append(current_other_imgs_dn) offsets_list[i] = tf.reshape(current,[B,F-1,H_,W_,2]) warped_img = image_warp(other_imgs_dn,offsets) warped_imglist = [image_warp(other_imgs_dn_suplist[i],offsets_list[i]) for i in range(len(offsets_list))] return warped_img,warped_imglist def cost_volume(c1, warp, search_range, name,reuse): with tf.variable_scope(name,reuse=reuse): padded_lvl = tf.pad(warp, [[0, 0], [search_range, search_range], [search_range, search_range], [0, 0]]) _, h, w, _ = tf.unstack(tf.shape(c1)) max_offset = search_range * 2 + 1 cost_vol = [] for y in range(0, max_offset): for x in range(0, max_offset): slice = tf.slice(padded_lvl, [0, y, x, 0], [-1, h, w, -1]) cost = tf.reduce_mean(c1 * slice, axis=3, keepdims=True) cost_vol.append(cost) cost_vol = tf.concat(cost_vol, axis=3) cost_vol = lrelu(cost_vol) return cost_vol def image_warp_3D_bil(images, flow, num_fr=5,name='image_warp'): ## Flow: B,H,W,3*(F-1) images: B,H,W,C*(F-1) with tf.name_scope(name): shape = tf.shape(images) batch_size = shape[0] height = shape[1] width = shape[2] images = tf.transpose(tf.reshape(images,[batch_size,height,width,3,num_fr-1]),[0,1,2,4,3]) # B,H,W,F-1,C flow = tf.reshape(flow,[batch_size,height,width,3,num_fr-1]) # B,H,W,3,F-1 offset_x = flow[:,:,:,0,:] # B,H,W,F-1 offset_y = flow[:,:,:,1,:] offset_z = flow[:,:,:,2,:] x = tf.linspace(-1.0,1.0,width) y = tf.linspace(-1.0,1.0,height) x,y = tf.meshgrid(x,y) x,y = tf.reshape(x,[1,height,width,1]),tf.reshape(y,[1,height,width,1]) x_t, y_t = x + offset_x, y + offset_y # B,H,W,F-1 z_t = offset_z # float max_x,max_y,max_z = width,height,num_fr-1 # int zero = tf.zeros([],tf.int32) # int x_t_sc = 0.5*(x_t+1.0)*tf.cast(width-1,tf.float32) #float y_t_sc = 0.5*(y_t+1.0)*tf.cast(height-1,tf.float32) z_t_sc = 0.5*(z_t+1.0)*tf.cast(num_fr-2,tf.float32) #float x0 = tf.cast(tf.floor(x_t_sc),tf.int32) # int x1 = x0 + 1 y0 = tf.cast(tf.floor(y_t_sc),tf.int32) y1 = y0 + 1 z0 = tf.cast(tf.floor(z_t_sc),tf.int32) z1 = z0 + 1 x0,x1 = tf.clip_by_value(x0,zero,max_x),tf.clip_by_value(x1,zero,max_x) #int y0,y1 = tf.clip_by_value(y0,zero,max_y),tf.clip_by_value(y1,zero,max_y) z0,z1 = tf.clip_by_value(z0,zero,max_z),tf.clip_by_value(z1,zero,max_z) def get_pixel_value_3D(img,x,y,z): # img B,H,W,F-1,C shape = tf.shape(x) # x,y,z: B,H,W,F-1 batch = shape[0] hei,wid,fr = shape[1],shape[2],shape[3] batch_idx = tf.range(0,batch) batch_idx = tf.reshape(batch_idx,[batch,1,1,1]) b = tf.tile(batch_idx,[1,hei,wid,fr]) # b: B,H,W,F-1 indices = tf.stack([b,y,x,z],4) return tf.gather_nd(img,indices) # B,H,W,F-1,C paddings = tf.constant([[0,0],[0,1],[0,1],[0,1],[0,0]]) I000 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x0,y0,z0) # float I001 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x0,y0,z1) I010 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x0,y1,z0) I011 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x0,y1,z1) # B,H,W,C I100 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x1,y0,z0) # B,H,W,C I101 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x1,y0,z1) # B,H,W,C I110 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x1,y1,z0) # B,H,W,C I111 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x1,y1,z1) # B,H,W,C x0,y0,z0 = tf.cast(x0,tf.float32),tf.cast(y0,tf.float32),tf.cast(z0,tf.float32) x1,y1,z1 = tf.cast(x1,tf.float32),tf.cast(y1,tf.float32),tf.cast(z1,tf.float32) w000 = tf.maximum(1.0-tf.abs(x0-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y0-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z0-z_t_sc),0.0) w001 = tf.maximum(1.0-tf.abs(x0-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y0-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z1-z_t_sc),0.0) w010 = tf.maximum(1.0-tf.abs(x0-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y1-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z0-z_t_sc),0.0) w011 = tf.maximum(1.0-tf.abs(x0-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y1-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z1-z_t_sc),0.0) w100 = tf.maximum(1.0-tf.abs(x1-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y0-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z0-z_t_sc),0.0) w101 = tf.maximum(1.0-tf.abs(x1-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y0-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z1-z_t_sc),0.0) w110 = tf.maximum(1.0-tf.abs(x1-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y1-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z0-z_t_sc),0.0) w111 = tf.maximum(1.0-tf.abs(x1-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y1-y_t_sc),0.0)* \ tf.maximum(1.0-tf.abs(z1-z_t_sc),0.0) w000,w001,w010,w011 = tf.expand_dims(w000,4),tf.expand_dims(w001,4),tf.expand_dims(w010,4),tf.expand_dims(w011,4) w100,w101,w110,w111 = tf.expand_dims(w100,4),tf.expand_dims(w101,4),tf.expand_dims(w110,4),tf.expand_dims(w111,4) aligned_img = tf.add_n([w000*I000,w001*I001,w010*I010,w011*I011,w100*I100,w101*I101,w110*I110,w111*I111]) #B,H,W,F-1,C aligned_img = tf.transpose(aligned_img,[0,1,2,4,3]) #B,H,W,C,F-1 aligned_img = tf.reshape(aligned_img,[batch_size,height,width,3*(num_fr-1)]) return aligned_img #B,H,W,C*(F-1) def U_Net_align_spy_3D(img,num_fr=5,num_down=4,reuse = False): # img:B,H,W,C,F noise:B,H,W,1 def pack_fea(x,num_fr=5): #B,F,H,W,C shape = tf.shape(x) B,H,W,C,F = shape[0],shape[1],shape[2],shape[3],shape[4] center = int((num_fr+1)/2) ref_img = x[:,:,:,:,center-1] #B,H,W,C inds = np.concatenate([np.arange(0,center-1),np.arange(center,num_fr)],0) others_list = [x[:,:,:,:,i] for i in inds] other_imgs = tf.stack(others_list,4) ## B,H,W,C,F-1 other_imgs = tf.reshape(other_imgs,[B,H,W,C*(F-1)]) ## B,H,W,(C*F-1) in_imgs = tf.concat([x[:,:,:,:,i] for i in range(num_fr)],3) return in_imgs,ref_img,other_imgs # in_imgs: B,H,W,C*F ref_img: B,H,W,C other_imgs: B,H,W,(C*F-1) def image_warp_3D(images, flow, name='image_warp'): ## Flow: B,H,W,3*(F-1) images: B,H,W,C*(F-1) with tf.name_scope(name): shape = tf.shape(images) batch_size = shape[0] height = shape[1] width = shape[2] images = tf.transpose(tf.reshape(images,[batch_size,height,width,3,num_fr-1]),[0,1,2,4,3]) # B,H,W,F-1,C flow = tf.reshape(flow,[batch_size,height,width,3,num_fr-1]) # B,H,W,3,F-1 offset_x = flow[:,:,:,0,:] # B,H,W,F-1 offset_y = flow[:,:,:,1,:] offset_z = flow[:,:,:,2,:] x = tf.linspace(-1.0,1.0,width) y = tf.linspace(-1.0,1.0,height) x,y = tf.meshgrid(x,y) x,y = tf.reshape(x,[1,height,width,1]),tf.reshape(y,[1,height,width,1]) x_t, y_t = x + offset_x, y + offset_y # B,H,W,F-1 z_t = offset_z # float max_x,max_y,max_z = width,height,num_fr-2 # int zero = tf.zeros([],tf.int32) # int x_t_sc = 0.5*(x_t+1.0)*tf.cast(width-1,tf.float32) #float y_t_sc = 0.5*(y_t+1.0)*tf.cast(height-1,tf.float32) z_t_sc = 0.5*(z_t+1.0)*tf.cast(num_fr-2,tf.float32) #float x0 = tf.cast(tf.floor(x_t_sc),tf.int32) # int x1 = x0 + 1 y0 = tf.cast(tf.floor(y_t_sc),tf.int32) y1 = y0 + 1 z0 = tf.cast(tf.round(z_t_sc),tf.int32) x0,x1 = tf.clip_by_value(x0,zero,max_x),tf.clip_by_value(x1,zero,max_x) #int y0,y1 = tf.clip_by_value(y0,zero,max_y),tf.clip_by_value(y1,zero,max_y) z0 = tf.clip_by_value(z0,zero,max_z) def get_pixel_value_3D(img,x,y,z): # img B,H,W,F-1,C shape = tf.shape(x) # x,y,z: B,H,W,F-1 batch = shape[0] hei,wid,fr = shape[1],shape[2],shape[3] batch_idx = tf.range(0,batch) batch_idx = tf.reshape(batch_idx,[batch,1,1,1]) b = tf.tile(batch_idx,[1,hei,wid,fr]) # b: B,H,W,F-1 indices = tf.stack([b,y,x,z],4) return tf.gather_nd(img,indices) # B,H,W,F-1,C paddings = tf.constant([[0,0],[0,1],[0,1],[0,0],[0,0]]) I00 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x0,y0,z0) # float I01 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x0,y1,z0) I10 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x1,y0,z0) I11 = get_pixel_value_3D(tf.pad(images,paddings,"SYMMETRIC"),x1,y1,z0) # B,H,W,C x0,y0,z0 = tf.cast(x0,tf.float32),tf.cast(y0,tf.float32),tf.cast(z0,tf.float32) x1,y1 = tf.cast(x1,tf.float32),tf.cast(y1,tf.float32) w00 = tf.maximum(1.0-tf.abs(x0-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y0-y_t_sc),0.0) w01 = tf.maximum(1.0-tf.abs(x0-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y1-y_t_sc),0.0) w10 = tf.maximum(1.0-tf.abs(x1-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y0-y_t_sc),0.0) w11 = tf.maximum(1.0-tf.abs(x1-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(y1-y_t_sc),0.0) w00,w01,w10,w11 = tf.expand_dims(w00,4),tf.expand_dims(w01,4),tf.expand_dims(w10,4),tf.expand_dims(w11,4) aligned_img = tf.add_n([w00*I00,w01*I01,w10*I10,w11*I11]) #B,H,W,F-1,C aligned_img = tf.transpose(aligned_img,[0,1,2,4,3]) #B,H,W,C,F-1 aligned_img = tf.reshape(aligned_img,[batch_size,height,width,3*(num_fr-1)]) return aligned_img #B,H,W,C*(F-1) def U_net2222(inputlist,other_list,ref_img_list,num_down=4,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=None,b_init=None,start_chan=32,act=lrelu,name=None,reuse=False): ## parameters # inputlist: B,H,W,C*F other_list: B,H,W,C*(F-1) ref_img_list: B,H,W,C chan_ = [] if w_init is None: w_init = tf.contrib.slim.xavier_initializer() if b_init is None: b_init = tf.constant_initializer(value=0.0) for i in range(num_down+1): chan_.append(start_chan*(2**(i))) ## warping_func = image_warp_3D multis_list = [] temporal_list = [] with tf.variable_scope('local_ops',reuse=reuse): current = inputlist[num_down] for j in range(num_conv): current = slim.conv2d(current,chan_[num_down],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, rate=1,activation_fn=act,padding='SAME',scope='g_conv_block_%d'%(j),reuse=reuse) fine_flow = slim.conv2d(current,3*(num_fr-1),[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,activation_fn=tf.nn.tanh,padding='SAME',scope='g_conv_block',reuse=reuse) # B,H,W,F-1 temporal_list.append(tf.reshape(fine_flow,[fine_flow.shape[0],fine_flow.shape[1],fine_flow.shape[2],3,num_fr-1])) other_imgs = other_list[num_down] ''' shape_cur = tf.shape(fine_flow) B_c,H_c,W_c = shape_cur[0],shape_cur[1],shape_cur[2] fine_flow0 = tf.zeros_like(fine_flow[:,:,:,0:num_fr-1],dtype=tf.float32) fine_flow1 = tf.zeros_like(fine_flow[:,:,:,0:num_fr-1],dtype=tf.float32) fine_flow2 = tf.ones_like(fine_flow[:,:,:,0:num_fr-1],dtype=tf.float32)*tf.reshape(tf.constant([-1.0,-0.8,0.8,1.0]),[1,1,1,4]) fine_flow = tf.stack([fine_flow0,fine_flow1,fine_flow2],3) fine_flow = tf.reshape(fine_flow,[B_c,H_c,W_c,-1]) ''' multis_list.append(warping_func(other_imgs,fine_flow,name='fine_wapring%d'%(num_down))) restore_temp = fine_flow with tf.variable_scope('expanding_ops',reuse=reuse): init_flow = restore_temp for i in range(num_down): index_current = num_down-1-i other_imgs,ref_img = other_list[index_current],ref_img_list[index_current] up_flow = slim.conv2d_transpose(init_flow,3*(num_fr-1),3,(2,2),padding='SAME',scope='up%d'%(i),reuse=reuse) other_img_warped = image_warp_3D_bil(other_imgs,up_flow,name='init_wapring%d'%(i)) fea = tf.concat([other_img_warped,ref_img,up_flow],3) #current = upsample_and_concat_c( current, conv_[index_current], chan_[index_current], chan_[index_current+1], scope='uac%d'%(i),reuse=reuse ) current = slim.conv2d(fea,chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=act,scope='g_dconv%d'%(i),reuse=reuse) for j in range(num_conv): current=slim.conv2d(current, chan_[index_current],[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init,rate=1, padding='SAME',activation_fn=act,scope='g_dconv_block%d_%d'%(i,j),reuse=reuse) fine_flow = up_flow + slim.conv2d(current,3*(num_fr-1),[fil_s,fil_s], weights_initializer=w_init,biases_initializer=b_init, padding='SAME',activation_fn=tf.nn.tanh,scope='g_dconv_block%d'%(i),reuse=reuse) temporal_list.append(tf.reshape(fine_flow,[fine_flow.shape[0],fine_flow.shape[1],fine_flow.shape[2],3,num_fr-1])) multis_list.append(warping_func(other_imgs,fine_flow,name='fine_wapring%d'%(i))) init_flow = fine_flow return multis_list,temporal_list shape = tf.shape(img) B,H,W,C,F = shape[0],shape[1],shape[2],shape[3],shape[4] with tf.variable_scope('Stage1',reuse=reuse): current = img in_imgs,ref_img,other_imgs = pack_fea(current,num_fr=num_fr) #B*(F-1),H,W,C*2, #B,1,H,W,C #B,F-1,H,W,C in_imgs = tf.clip_by_value(in_imgs,0.0,1.0) inlist = [] ref_img_list = [] other_list = [] for i in range(num_down+1): size = [tf.cast(H/(2**i),tf.int32),tf.cast(W/(2**i),tf.int32)] inlist.append(tf.image.resize_bilinear(in_imgs,size)) other_list.append(tf.image.resize_bilinear(other_imgs,size)) ref_img_list.append(tf.image.resize_bilinear(ref_img,size)) warped_imgs_list,temporal_list = U_net2222(inlist,other_list,ref_img_list,num_down=num_down,num_conv=6,num_out=2,fil_s=5,w_init=None,b_init=None, start_chan=32,act=lrelu,name='Alignment',reuse=reuse) # B*(F-1),H,W,2 for i in range(len(warped_imgs_list)): current = warped_imgs_list[i] shape = tf.shape(current) H_c,W_c,C_c = shape[1],shape[2],shape[3] warped_imgs_list[i] = tf.reshape(current,[B,H_c,W_c,3,F-1]) warped_imgs_list.reverse() temporal_list.reverse() return warped_imgs_list,temporal_list ''' img = tf.zeros(shape=[1,512,512,3,7]) out = EDVR(img,fra_s=7,num_fea=32,reuse = False) ''' ''' img = tf.zeros(shape=[1,512,512,3,7]) noise = tf.zeros(shape=[1,512,512,1]) out = LiangNN(img,noise,num_fr=7,reuse = False) img = tf.ones(shape=[1,512,512,3*7]) w_init = tf.constant_initializer(0.0) b_init = tf.constant_initializer(0.0) offsets = U_net22(img,num_down=4,num_block=1,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=w_init,b_init=b_init,is_residual=False, start_chan=32,act=lrelu,is_global=True,name='Alignment',reuse=False) # B,H,W,3 out = tf.reduce_mean(offsets) sess = tf.Session() sess.run(tf.global_variables_initializer()) out_ = sess.run(out) print(out_) ''' def STTN(img,noise,num_fr=5,reuse = False): # img:B,H,W,C,F noise:B,H,W,1 shape = tf.shape(img) B,H,W,C,F = shape[0],shape[1],shape[2],shape[3],shape[4] img_in = tf.reshape(img,[B,H,W,C*F]) #B,H,W,C*F ### Alignment with tf.variable_scope('STTN',reuse=reuse): current = img_in current = (tf.clip_by_value(current,0.0,1.0)+1e-4)**(1.0/2.2) w_init = None#tf.constant_initializer(0.0) b_init = None#tf.constant_initializer(0.0) offsets = U_net22(current,num_down=4,num_block=1,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=w_init,b_init=b_init,is_residual=False, start_chan=32,act=lrelu,is_global=True,name='Alignment',reuse=reuse) # B,H,W,3 img_to_align = tf.transpose(img,[0,1,2,4,3]) # img:B,H,W,F,C offset_x = offsets[:,:,:,0] # B,H,W offset_y = offsets[:,:,:,1] offset_z = offsets[:,:,:,2] x = tf.linspace(-1.0,1.0,W) y = tf.linspace(-1.0,1.0,H) x,y = tf.meshgrid(x,y) x,y = tf.reshape(x,[-1,H,W]),tf.reshape(y,[-1,H,W]) x_t, y_t = x + offset_x, y + offset_y z_t = offset_z max_x,max_y,max_z = W-1,H-1,F-1 # int zero = tf.zeros([],tf.int32) # int x_t_sc = 0.5*(x_t+1.0)*tf.cast(max_x,tf.float32) #float y_t_sc = 0.5*(y_t+1.0)*tf.cast(max_y,tf.float32) z_t_sc = 0.5*(z_t+1.0)*tf.cast(max_z,tf.float32) #float x0 = tf.cast(tf.floor(x_t_sc),tf.int32) # int x1 = x0 + 1 y0 = tf.cast(tf.floor(y_t_sc),tf.int32) y1 = y0 + 1 z0 = tf.cast(tf.floor(z_t_sc),tf.int32) z1 = z0 + 1 x0,x1 = tf.clip_by_value(x0,zero,max_x),tf.clip_by_value(x1,zero,max_x) #int y0,y1 = tf.clip_by_value(y0,zero,max_y),tf.clip_by_value(y1,zero,max_y) z0,z1 = tf.clip_by_value(z0,zero,max_z),tf.clip_by_value(z1,zero,max_z) I000 = get_pixel_value_3D(img_to_align,x0,y0,z0) # float I001 = get_pixel_value_3D(img_to_align,x0,y0,z1) I010 = get_pixel_value_3D(img_to_align,x0,y1,z0) I011 = get_pixel_value_3D(img_to_align,x0,y1,z1) # B,H,W,C I100 = get_pixel_value_3D(img_to_align,x1,y0,z0) # B,H,W,C I101 = get_pixel_value_3D(img_to_align,x1,y0,z1) # B,H,W,C I110 = get_pixel_value_3D(img_to_align,x1,y1,z0) # B,H,W,C I111 = get_pixel_value_3D(img_to_align,x1,y1,z1) # B,H,W,C w000 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w001 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w010 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w011 = tf.maximum(1.0-tf.abs(tf.cast(x0,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w100 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w101 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y0,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w110 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z0,tf.float32)-z_t_sc),0.0) w111 = tf.maximum(1.0-tf.abs(tf.cast(x1,tf.float32)-x_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(y1,tf.float32)-y_t_sc),0.0)*tf.maximum(1.0-tf.abs(tf.cast(z1,tf.float32)-z_t_sc),0.0) w000,w001,w010,w011 = tf.expand_dims(w000,3),tf.expand_dims(w001,3),tf.expand_dims(w010,3),tf.expand_dims(w011,3) w100,w101,w110,w111 = tf.expand_dims(w100,3),tf.expand_dims(w101,3),tf.expand_dims(w110,3),tf.expand_dims(w111,3) aligned_img = tf.add_n([w000*I000,w001*I001,w010*I010,w011*I011,w100*I100,w101*I101,w110*I110,w111*I111]) ### Fusion with tf.variable_scope('ImageProcessing',reuse=reuse): current = tf.concat([aligned_img,noise],3) out_final = U_net22(current,num_down=4,num_block=1,num_conv=1,num_out=3,rate=[1]*10,fil_s=3,w_init=None,b_init=None,is_residual=False, start_chan=32,act=lrelu,is_global=True,name='IP',reuse=reuse) # B,H,W,3 return aligned_img,out_final
{"hexsha": "ecab11b5f4f476c09d4cc8ef54eedfc5508136e8", "size": 96336, "ext": "py", "lang": "Python", "max_stars_repo_path": "codes/models/archs/sent/sent/my_model_pool1.py", "max_stars_repo_name": "GuoShi28/TwoStageAlignment_for_BurstRestoration", "max_stars_repo_head_hexsha": "7abfdbfd6248fbbb1aeae359cf658c5a445c9f40", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 20, "max_stars_repo_stars_event_min_datetime": "2022-03-14T05:40:31.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T08:17:20.000Z", "max_issues_repo_path": "codes/models/archs/sent/sent/my_model_pool1.py", "max_issues_repo_name": "GuoShi28/2StageAlign", "max_issues_repo_head_hexsha": "7abfdbfd6248fbbb1aeae359cf658c5a445c9f40", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "codes/models/archs/sent/sent/my_model_pool1.py", "max_forks_repo_name": "GuoShi28/2StageAlign", "max_forks_repo_head_hexsha": "7abfdbfd6248fbbb1aeae359cf658c5a445c9f40", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 57.3087447948, "max_line_length": 207, "alphanum_fraction": 0.5921773792, "include": true, "reason": "import numpy", "num_tokens": 29145}
import numpy as np import torch import argparse import os import gym gym.logger.set_level(40) import time import json import dmc2gym import utils from logger import Logger from video import VideoRecorder from dynode import DyNODESacAgent def parse_args(): parser = argparse.ArgumentParser() # environment parser.add_argument('--domain_name', default='cartpole') parser.add_argument('--task_name', default='swingup') # replay buffer parser.add_argument('--replay_buffer_capacity', default=100000, type=int) # train parser.add_argument('--agent', default='DyNODE-SAC', type=str) parser.add_argument('--init_steps', default=1000, type=int) parser.add_argument('--num_train_steps', default=100001, type=int) parser.add_argument('--batch_size', default=128, type=int) parser.add_argument('--hidden_dim', default=256, type=int) # eval parser.add_argument('--eval_freq', default=5000, type=int) parser.add_argument('--num_eval_episodes', default=10, type=int) # critic parser.add_argument('--critic_lr', default=1e-3, type=float) parser.add_argument('--critic_beta', default=0.9, type=float) parser.add_argument('--critic_tau', default=0.01, type=float) parser.add_argument('--critic_target_update_freq', default=1, type=int) # actor parser.add_argument('--actor_lr', default=1e-3, type=float) parser.add_argument('--actor_beta', default=0.9, type=float) parser.add_argument('--actor_log_std_min', default=-10, type=float) parser.add_argument('--actor_log_std_max', default=2, type=float) # model parser.add_argument('--model_lr', default=1e-3, type=float) parser.add_argument('--kind', default='D', type=str, help= "options D or P") # Deterministic or Probalilistic parser.add_argument('--model_num_updates', default=1, type=int) parser.add_argument('--model_warm_up', default=1000, type=int) parser.add_argument('--k_step', default=10, type=int) # sac parser.add_argument('--discount', default=0.99, type=float) parser.add_argument('--init_temperature', default=0.1, type=float) parser.add_argument('--alpha_lr', default=1e-4, type=float) parser.add_argument('--alpha_beta', default=0.5, type=float) # misc parser.add_argument('--seed', default=-1, type=int) parser.add_argument('--work_dir', default='./logdir', type=str) parser.add_argument('--save_tb', default=False, action='store_true') parser.add_argument('--save_video', default=True, action='store_true') parser.add_argument('--save_model', default=False, action='store_true') parser.add_argument('--log_interval', default=100, type=int) args = parser.parse_args() return args def evaluate(env, agent, video, num_episodes, L, step, args): all_ep_rewards = [] def run_eval_loop(sample_stochastically=True): start_time = time.time() prefix = 'stochastic_' if sample_stochastically else '' for i in range(num_episodes): obs = env.reset() video.init(enabled=(i == 0)) done = False episode_reward = 0 while not done: with utils.eval_mode(agent): if sample_stochastically: action = agent.sample_action(obs) else: action = agent.select_action(obs) obs, reward, done, _ = env.step(action) video.record(env) episode_reward += reward video.save('%d.mp4' % step) L.log('eval/' + prefix + 'episode_reward', episode_reward, step) all_ep_rewards.append(episode_reward) L.log('eval/' + prefix + 'eval_time', time.time()-start_time , step) mean_ep_reward = np.mean(all_ep_rewards) best_ep_reward = np.max(all_ep_rewards) L.log('eval/' + prefix + 'mean_episode_reward', mean_ep_reward, step) L.log('eval/' + prefix + 'best_episode_reward', best_ep_reward, step) run_eval_loop(sample_stochastically=False) L.dump(step) def main(): args = parse_args() if args.seed == -1: args.__dict__["seed"] = np.random.randint(1,1000000) utils.set_seed_everywhere(args.seed) env = dmc2gym.make(domain_name=args.domain_name, task_name=args.task_name, seed=args.seed) env.seed(args.seed) method = args.agent + " (H="+ str(args.k_step) +")" model_kind = "dynode_model" if args.agent == "DyNODE-SAC" else "nn_model" # make directory env_name = args.domain_name + '-' + args.task_name args.work_dir = args.work_dir + '/' + env_name + '/' + method + '/' + str(args.seed) utils.make_dir(args.work_dir) video_dir = utils.make_dir(os.path.join(args.work_dir, 'video')) model_dir = utils.make_dir(os.path.join(args.work_dir, 'model')) video = VideoRecorder(video_dir if args.save_video else None) with open(os.path.join(args.work_dir, 'args.json'), 'w+') as f: json.dump(vars(args), f, sort_keys=True, indent=4) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') action_shape = env.action_space.shape obs_shape = env.observation_space.shape replay_buffer = utils.ReplayBuffer(obs_shape=obs_shape, action_shape=action_shape, capacity=args.replay_buffer_capacity, batch_size=args.batch_size, device=device) agent = DyNODESacAgent(obs_shape=obs_shape, action_shape=action_shape, device=device, model_kind = model_kind, kind=args.kind, step_MVE = args.k_step, hidden_dim=args.hidden_dim, discount=args.discount, init_temperature=args.init_temperature, alpha_lr=args.alpha_lr, alpha_beta=args.alpha_beta, actor_lr=args.actor_lr, actor_beta=args.actor_beta, actor_log_std_min=args.actor_log_std_min, actor_log_std_max=args.actor_log_std_max, critic_lr=args.critic_lr, critic_beta=args.critic_beta, critic_tau=args.critic_tau, critic_target_update_freq=args.critic_target_update_freq, model_lr=args.model_lr, log_interval=args.log_interval) L = Logger(args.work_dir, use_tb=args.save_tb) episode, episode_reward, done = 0, 0, True start_time = time.time() for step in range(args.num_train_steps): # evaluate agent periodically if step % args.eval_freq == 0: L.log('eval/episode', episode, step) evaluate(env, agent, video, args.num_eval_episodes, L, step, args) if args.save_model: agent.save_model(model_dir, step) if done: if step > 0: if step % args.log_interval == 0: L.log('train/duration', time.time() - start_time, step) L.dump(step) start_time = time.time() if step % args.log_interval == 0: L.log('train/episode_reward', episode_reward, step) obs = env.reset() done = False episode_reward = 0 episode_step = 0 episode += 1 if step % args.log_interval == 0: L.log('train/episode', episode, step) # sample action for data collection if step < args.init_steps: action = env.action_space.sample() else: with utils.eval_mode(agent): action = agent.sample_action(obs) if step >= args.model_warm_up: for _ in range(args.model_num_updates): agent.update_model(replay_buffer, L, step) # run training update if step >= args.init_steps: for _ in range(2): agent.update(replay_buffer, L, step) next_obs, reward, done, _ = env.step(action) # allow infinit bootstrap done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done) episode_reward += reward replay_buffer.add(obs, action, reward, next_obs, done_bool, done) obs = next_obs episode_step += 1 if __name__ == '__main__': torch.multiprocessing.set_start_method('spawn') main()
{"hexsha": "11a8107c53e888b45055402d5342d2b52f4df2b1", "size": 8217, "ext": "py", "lang": "Python", "max_stars_repo_path": "train_dynode.py", "max_stars_repo_name": "vmartinezalvarez/DyNODE", "max_stars_repo_head_hexsha": "518d63972afea8ab31a9a8250be34b440c44f409", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 11, "max_stars_repo_stars_event_min_datetime": "2020-09-12T15:53:01.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-23T11:54:55.000Z", "max_issues_repo_path": "train_dynode.py", "max_issues_repo_name": "vmartinezalvarez/DyNODE", "max_issues_repo_head_hexsha": "518d63972afea8ab31a9a8250be34b440c44f409", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2021-06-23T14:57:45.000Z", "max_issues_repo_issues_event_max_datetime": "2021-06-23T14:57:45.000Z", "max_forks_repo_path": "train_dynode.py", "max_forks_repo_name": "vmartinezalvarez/DyNODE", "max_forks_repo_head_hexsha": "518d63972afea8ab31a9a8250be34b440c44f409", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-06-14T09:16:40.000Z", "max_forks_repo_forks_event_max_datetime": "2021-06-14T09:16:40.000Z", "avg_line_length": 40.2794117647, "max_line_length": 114, "alphanum_fraction": 0.6411098941, "include": true, "reason": "import numpy", "num_tokens": 1905}
// // Copyright Markus Rickert 2008 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // #include <algorithm> #include <boost/numeric/ublas/io.hpp> #include <boost/numeric/ublas/matrix.hpp> #include <boost/numeric/ublas/matrix_proxy.hpp> #include <boost/numeric/ublas/vector.hpp> #include <boost/numeric/bindings/blas/blas.hpp> #include <boost/numeric/bindings/traits/ublas_matrix.hpp> #include <boost/numeric/bindings/traits/ublas_vector.hpp> #include <boost/numeric/bindings/traits/ublas_vector2.hpp> int main(int argc, char** argv) { // a * b' = C ; a' * b = d { boost::numeric::ublas::vector<double> a(3); for (std::size_t i = 0; i < a.size(); ++i) a(i) = i; std::cout << "a=" << a << std::endl; boost::numeric::ublas::vector<double> b(3); for (std::size_t i = 0; i < b.size(); ++i) b(i) = i; std::cout << "b=" << b << std::endl; boost::numeric::ublas::matrix<double, boost::numeric::ublas::column_major> c(3, 3); boost::numeric::bindings::blas::gemm( boost::numeric::bindings::traits::NO_TRANSPOSE, boost::numeric::bindings::traits::TRANSPOSE, 1.0, a, b, 0.0, c ); std::cout << "C=" << c << std::endl; boost::numeric::ublas::vector<double> d(1); boost::numeric::bindings::blas::gemm( boost::numeric::bindings::traits::TRANSPOSE, boost::numeric::bindings::traits::NO_TRANSPOSE, 1.0, a, b, 0.0, d ); std::cout << "d=" << d << std::endl; } std::cout << std::endl; // a * b' = C ; a' * b = d { boost::numeric::ublas::bounded_vector<double, 3> a; for (std::size_t i = 0; i < a.size(); ++i) a(i) = i; std::cout << "a=" << a << std::endl; boost::numeric::ublas::bounded_vector<double, 3> b; for (std::size_t i = 0; i < b.size(); ++i) b(i) = i; std::cout << "b=" << b << std::endl; boost::numeric::ublas::bounded_matrix<double, 3, 3, boost::numeric::ublas::column_major> c; boost::numeric::bindings::blas::gemm( boost::numeric::bindings::traits::NO_TRANSPOSE, boost::numeric::bindings::traits::TRANSPOSE, 1.0, a, b, 0.0, c ); std::cout << "C=" << c << std::endl; boost::numeric::ublas::bounded_vector<double, 1> d; boost::numeric::bindings::blas::gemm( boost::numeric::bindings::traits::TRANSPOSE, boost::numeric::bindings::traits::NO_TRANSPOSE, 1.0, a, b, 0.0, d ); std::cout << "d=" << d << std::endl; } std::cout << std::endl; // A * B = C { boost::numeric::ublas::bounded_matrix<double, 4, 3, boost::numeric::ublas::column_major> a; for (std::size_t i = 0; i < a.size1(); ++i) for (std::size_t j = 0; j < a.size2(); ++j) a(i, j) = i * a.size2() + j; std::cout << "A=" << a << std::endl; boost::numeric::ublas::bounded_matrix<double, 3, 4, boost::numeric::ublas::column_major> b; for (std::size_t i = 0; i < b.size1(); ++i) for (std::size_t j = 0; j < b.size2(); ++j) b(i, j) = i * b.size2() + j; std::cout << "B=" << b << std::endl; boost::numeric::ublas::bounded_matrix<double, 4, 4, boost::numeric::ublas::column_major> c; boost::numeric::bindings::blas::gemm(a, b, c); std::cout << "C=" << c << std::endl; } std::cout << std::endl; // A[0:3;0:2] * B[0:2;0:3] = C { boost::numeric::ublas::bounded_matrix<double, 4, 3, boost::numeric::ublas::column_major> a; for (std::size_t i = 0; i < a.size1(); ++i) for (std::size_t j = 0; j < a.size2(); ++j) a(i, j) = i * a.size2() + j; std::cout << "A=" << a << std::endl; boost::numeric::ublas::matrix_range< boost::numeric::ublas::bounded_matrix<double, 4, 3, boost::numeric::ublas::column_major> > a2 = boost::numeric::ublas::subrange(a, 0, 3, 0, 2); std::cout << "A2=" << a2 << std::endl; boost::numeric::ublas::bounded_matrix<double, 3, 4, boost::numeric::ublas::column_major> b; for (std::size_t i = 0; i < b.size1(); ++i) for (std::size_t j = 0; j < b.size2(); ++j) b(i, j) = i * b.size2() + j; std::cout << "B=" << b << std::endl; boost::numeric::ublas::matrix_range< boost::numeric::ublas::bounded_matrix<double, 3, 4, boost::numeric::ublas::column_major> > b2 = boost::numeric::ublas::subrange(b, 0, 2, 0, 3); std::cout << "B2=" << b2 << std::endl; boost::numeric::ublas::bounded_matrix<double, 4, 4, boost::numeric::ublas::column_major> c; std::fill(c.data().begin(), c.data().end(), 0.0); boost::numeric::ublas::matrix_range< boost::numeric::ublas::bounded_matrix<double, 4, 4, boost::numeric::ublas::column_major> > c2 = boost::numeric::ublas::subrange(c, 0, 3, 0, 3); boost::numeric::bindings::blas::gemm(a2, b2, c2); std::cout << "C2=" << c2 << std::endl; std::cout << "C=" << c << std::endl; } std::cout << std::endl; // a + b = b ; b - a = b { boost::numeric::ublas::bounded_vector<double, 3> a; for (std::size_t i = 0; i < a.size(); ++i) a(i) = i; std::cout << "a=" << a << std::endl; boost::numeric::ublas::bounded_vector<double, 3> b; for (std::size_t i = 0; i < b.size(); ++i) b(i) = i; std::cout << "b=" << b << std::endl; boost::numeric::bindings::blas::axpy(1.0, a, b); std::cout << "b=" << b << std::endl; boost::numeric::bindings::blas::axpy(-1.0, a, b); std::cout << "b=" << b << std::endl; } std::cout << std::endl; // b + c = c ; c - b = c { boost::numeric::ublas::matrix<double, boost::numeric::ublas::column_major> a(5, 5); for (std::size_t i = 0; i < a.size1(); ++i) for (std::size_t j = 0; j < a.size2(); ++j) a(i, j) = i * a.size2() + j; std::cout << "A=" << a << std::endl; boost::numeric::ublas::matrix_vector_range< boost::numeric::ublas::matrix<double, boost::numeric::ublas::column_major> > b(a, boost::numeric::ublas::range(1, 4), boost::numeric::ublas::range(0, 3)); std::cout << "b=" << b << std::endl; boost::numeric::ublas::matrix_vector_slice< boost::numeric::ublas::matrix<double, boost::numeric::ublas::column_major> > c(a, boost::numeric::ublas::slice(0, 1, 3), boost::numeric::ublas::slice(3, 0, 3)); std::cout << "c=" << c << std::endl; boost::numeric::bindings::blas::axpy(1.0, b, c); std::cout << "c=" << c << std::endl; boost::numeric::bindings::blas::axpy(-1.0, b, c); std::cout << "c=" << c << std::endl; } std::cout << std::endl; // b + c = c ; c - b = c { boost::numeric::ublas::bounded_matrix<double, 5, 5, boost::numeric::ublas::column_major> a; for (std::size_t i = 0; i < a.size1(); ++i) for (std::size_t j = 0; j < a.size2(); ++j) a(i, j) = i * a.size2() + j; std::cout << "A=" << a << std::endl; boost::numeric::ublas::matrix_vector_range< boost::numeric::ublas::bounded_matrix<double, 5, 5, boost::numeric::ublas::column_major> > b(a, boost::numeric::ublas::range(1, 4), boost::numeric::ublas::range(0, 3)); std::cout << "b=" << b << std::endl; boost::numeric::ublas::matrix_vector_slice< boost::numeric::ublas::bounded_matrix<double, 5, 5, boost::numeric::ublas::column_major> > c(a, boost::numeric::ublas::slice(0, 1, 3), boost::numeric::ublas::slice(3, 0, 3)); std::cout << "c=" << c << std::endl; boost::numeric::bindings::blas::axpy(1.0, b, c); std::cout << "c=" << c << std::endl; boost::numeric::bindings::blas::axpy(-1.0, b, c); std::cout << "c=" << c << std::endl; } return 0; }
{"hexsha": "eb356f7c2557ff40b06cc9bfe16532a14a8571fd", "size": 7270, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "PROX/3RDPARTY/BOOST_BINDINGS/boost_bindings/libs/numeric/bindings/blas/test/ublas_slice.cpp", "max_stars_repo_name": "diku-dk/PROX", "max_stars_repo_head_hexsha": "c6be72cc253ff75589a1cac28e4e91e788376900", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2019-01-14T19:18:21.000Z", "max_stars_repo_stars_event_max_datetime": "2019-01-14T19:18:21.000Z", "max_issues_repo_path": "PROX/3RDPARTY/BOOST_BINDINGS/boost_bindings/libs/numeric/bindings/blas/test/ublas_slice.cpp", "max_issues_repo_name": "diku-dk/PROX", "max_issues_repo_head_hexsha": "c6be72cc253ff75589a1cac28e4e91e788376900", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "PROX/3RDPARTY/BOOST_BINDINGS/boost_bindings/libs/numeric/bindings/blas/test/ublas_slice.cpp", "max_forks_repo_name": "diku-dk/PROX", "max_forks_repo_head_hexsha": "c6be72cc253ff75589a1cac28e4e91e788376900", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1.0, "max_forks_repo_forks_event_min_datetime": "2020-11-23T09:56:06.000Z", "max_forks_repo_forks_event_max_datetime": "2020-11-23T09:56:06.000Z", "avg_line_length": 36.7171717172, "max_line_length": 118, "alphanum_fraction": 0.5880330124, "num_tokens": 2692}
import matplotlib.pyplot as plt from envs.gridworld import AGENT_SIZES, RGB_COLORS import numpy as np import os from envs.key_door import * from envs.gridworld import * from utils.gen_utils import * from model import get_discrete_representation from torchvision.utils import save_image def visualize_representations(env, model): # 1. visualize clustering if number of agents is 1 or 2 # 2. visualize factorization with histogram # 3. visualize hamming distance graphs figs = None if env.name == 'gridworld': if env.n_agents == 1: figs = visualize_clusters_online_single(env, model) elif env.n_agents == 2: figs = visualize_clusters_online_double(env, model) if env.name == 'key-wall' or env.name == 'key-corridor': figs = visualize_single_agent_and_key(env, model) return figs def visualize_clusters_online_single(env, model): assert env.n_agents == 1 num_factors = model.num_onehots rows = np.arange(0, env.grid_n, env.grid_n//16) cols = np.arange(0, env.grid_n, env.grid_n//16) cluster_map = [] for c in cols: batch_pos = np.transpose(np.stack((np.repeat(c, len(rows)), rows)), (1,0)) im_torch = np_to_var(position_to_image(batch_pos, env.n_agents, env.grid_n)).permute(0,3,1,2) zs = model.encode(im_torch, vis=True).cpu().numpy() z_labels = np.sum(np.array([zs[:, i] * model.z_dim ** (num_factors - i - 1) for i in range(num_factors)]), axis=0, dtype=int) cluster_map.append(z_labels) cluster_map = np.array(cluster_map) print("cluster map") print(cluster_map) fig = plt.figure() plt.imshow(cluster_map, cmap = 'gist_rainbow') return fig def visualize_clusters_online_double_fix_one_agent(model, n_agents, grid_n, fixed_agent=0): fig = plt.figure() rows = np.arange(0, grid_n, grid_n // 16) cols = np.arange(0, grid_n, grid_n // 16) fixed_poses = np.arange(0, grid_n, grid_n // 4) n_subplots = 4 plot_idx = 1 num_factors = model.num_onehots onehots_0 = [] onehots_1 = [] for idx, fixed_row in enumerate(fixed_poses): for fixed_col in fixed_poses: fixed_pos = np.tile(np.array((fixed_row, fixed_col)), (len(cols), 1)) cluster_map = [] oh0_map = [] oh1_map = [] for c in cols: batch_pos = np.transpose(np.stack((np.repeat(c, len(rows)), rows)), (1, 0)) batch_pos = np.hstack((batch_pos, fixed_pos)) if fixed_agent == 0 else np.hstack((fixed_pos, batch_pos)) im_torch = np_to_var(position_to_image(batch_pos, n_agents, grid_n)).permute(0, 3, 1, 2) zs = model.encode(im_torch, vis=True).cpu().numpy() oh0_map.append(zs[:,0]) oh1_map.append(zs[:,1]) z_labels = np.sum( np.array([zs[:, i] * model.z_dim ** (num_factors - i - 1) for i in range(num_factors)]), axis=0, dtype=int) cluster_map.append(z_labels) cluster_map = np.array(cluster_map) ax = fig.add_subplot(n_subplots, n_subplots, plot_idx) ax.tick_params(axis='both', which='both', bottom=False, top=False, left=False, labelbottom=False, labelleft=False) print("cluster map %d fixing agent %d" % (idx, fixed_agent)) print(cluster_map) plt.imshow(cluster_map, cmap='gist_rainbow') onehots_0.append(np.array(oh0_map)) onehots_1.append(np.array(oh1_map)) plot_idx += 1 onehot_0_fig = plot_one_onehot_2agents(onehots_0, n_subplots**2) onehot_1_fig = plot_one_onehot_2agents(onehots_1, n_subplots**2) return fig, onehot_0_fig, onehot_1_fig def visualize_clusters_online_double(env, model): plot_0, onehot_0_fig_0, onehot_1_fig_0 = visualize_clusters_online_double_fix_one_agent(model, env.n_agents, env.grid_n, fixed_agent=0) plot_1, onehot_0_fig_1, onehot_1_fig_1 = visualize_clusters_online_double_fix_one_agent(model, env.n_agents, env.grid_n, fixed_agent=1) return plot_0, onehot_0_fig_0, onehot_1_fig_0, plot_1, onehot_0_fig_1, onehot_1_fig_1 def position_to_image(positions, n_agents, grid_n): ''' Converts batch of agent xy positions to batch of rgb images :param positions: batch of agent positions :param n_agents: # agents :param grid_n: grid size :return: [sample_size, grid_n, grid_n, n_agents] images ''' if grid_n not in [16,64]: raise NotImplementedError("Grid size not supported: %d" % grid_n) n_samples = positions.shape[0] ims = np.zeros((n_samples, grid_n, grid_n, 3)) for i in range(n_agents): agent_dim = AGENT_SIZES[i] x_cur, y_cur = positions[:, 2*i], positions[:, 2*i+1] if grid_n in [16, 64]: for x in range(agent_dim[0]): for y in range(agent_dim[1]): ims[np.arange(n_samples), (x_cur+x) % grid_n, (y_cur+y) % grid_n] += np.tile(np.array(list(RGB_COLORS.values())[i]), (n_samples,1)) return ims def visualize_attn_map(amaps): # amap: B X 1 X W X H fig = plt.figure() n_subplots = len(amaps) # should be 16 assert n_subplots == 16, "number of attention map samples should be 16" for i in range(len(amaps)): activations = amaps[i][0].cpu().detach().numpy() ax = fig.add_subplot(4, 4, i+1) ax.tick_params(axis='both', which='both', bottom=False, top=False, left=False, labelbottom=False, labelleft=False) plt.imshow(activations, cmap='Greys') return fig def plot_one_onehot_2agents(onehot_labels, n): fig = plt.figure() plot_idx = 1 n_subplots = 4 for labels in onehot_labels: grid = labels.reshape(n,n) ax = fig.add_subplot(n_subplots, n_subplots, plot_idx) ax.tick_params(axis='both', which='both', bottom=False, top=False, left=False, labelbottom=False, labelleft=False) plt.imshow(grid, cmap='gist_rainbow') plot_idx+=1 return fig def sample_trajectory(env, len_traj=400, choose_agent_i=0): ''' Samples 1 trajectory length len_traj, moving agent choose_agent_i, fixing all other agents :param n_agents: total # agents :param n: grid width :param n_samples: number of trajectories to samples :param choose_agent_i: agent to move :return: np array of positions along trajectory [len_traj, 2*n_agents] ''' actions = np.eye(env.n_agents*2) actions = np.concatenate((actions, -1 * actions)) actions = np.concatenate((actions[choose_agent_i*2: choose_agent_i*2+2], actions[env.n_agents*2+choose_agent_i*2: env.n_agents*2+choose_agent_i*2+2])) os = [] for i in range(len_traj): action = actions[np.random.randint(len(actions))] env.step(action) os.append(env.get_obs()) os = np.array(os).astype('int') return os def get_factorization_hist(env, model, len_traj=600, n_traj=10): if env.name == 'gridworld': return test_factorization_fix_agents(env, model, len_traj, n_traj) elif env.name == 'key-wall' or env.name == 'key-corridor': return test_factorization_single_agent_key(env, model) def test_factorization_fix_agents(env, model, len_traj=600, n_traj=10): ''' Samples random trajectories moving one agent at a time, returns two lists of histograms of hamming distances and onehot changes by moving each agent. Histogram lists should be written to tensorboard :param model: CPC model :param n_agents: # agents :param grid_n: grid width :param len_traj: length of trajectories to sample :param n_traj: number of trajectories to sample :return: tuple of two lists of histogram figs (plt.fig), each length n_agents 1. list of histograms of hamming distances 2. list of histograms of onehot changes, moving one agent at a time ''' hamming_hist_lst = [] onehot_hist_lst = [] for i in range(env.n_agents): dist_onehots = [] for n in range(n_traj): dist_onehots = [] x = sample_trajectory(env, len_traj=len_traj, choose_agent_i=i) # y = position_to_image(x, env.n_agents, env.grid_n) zs = get_discrete_representation(model, x) dist_hamming = np.sum(zs[1:] - zs[:-1] != 0, axis=1) prev_z = zs[0] for zlabel in zs[1:]: for k in range(model.num_onehots): if zlabel[k] != prev_z[k]: dist_onehots.append(k) prev_z = zlabel hammings_hist = plt.figure() plt.hist(dist_hamming) plt.ylabel("hamming distance distribution moving only agent %d" % i) hamming_hist_lst.append(hammings_hist) onehots_hist = plt.figure() print("dist_onehots", dist_onehots) plt.hist(dist_onehots, bins=np.arange(model.num_onehots + 1)) plt.ylabel("onehot changes only moving agent %d" % i) onehot_hist_lst.append(onehots_hist) return hamming_hist_lst, onehot_hist_lst def save_plots(savepath, losses, est_lbs): plt.plot(losses) plt.ylabel('C_loss') loss_path = os.path.join(savepath, "loss.png") plt.savefig(loss_path) plt.plot(est_lbs) plt.ylabel('estimated lowerbound') lb_path = os.path.join(savepath, "est_lowerbounds.png") plt.savefig(lb_path) plt.close('all') def visualize_node(node, all_labels, dataset, grid_n, savepath): # visualize some samples idx = np.where(all_labels == node)[0] anchors = dataset[0][::8] node_samples = anchors[idx][:64] np.random.shuffle(node_samples) node_samples = np.concatenate((node_samples, np.zeros((len(node_samples), grid_n, grid_n, 1))), axis=3) samples_tensor = np_to_var(node_samples).permute(0,3,1,2) save_image(samples_tensor, os.path.join(savepath, "node_%d_samples.png" % node), padding=16) def get_2agents_density(node, labels, dataset): idx = np.where(labels == node)[0] anchors = dataset[0][::8][idx] sum_positions = anchors.sum(axis=0) agent_0_pos, agent_1_pos = sum_positions[:,:, 0], sum_positions[:,:,1] return agent_0_pos/agent_0_pos.max(), agent_1_pos/agent_1_pos.max() def visualize_density_failed_2agents(cur_pos, cur_node, node_to_go, labels, dataset, savepath, epoch): # visualize where execute_plan fails agent_0_dist, agent_1_dist = get_2agents_density(cur_node, labels, dataset) agent_0_dist_next, agent_1_dist_next = get_2agents_density(node_to_go, labels, dataset) agent_0_cur_pos = np.zeros(agent_0_dist.shape) agent_0_cur_pos[cur_pos[0], cur_pos[1]] = 1 agent_1_cur_pos = np.zeros(agent_1_dist.shape) agent_1_cur_pos[cur_pos[2], cur_pos[3]] = 1 fig = plt.figure() ax = fig.add_subplot(1, 2, 1) im0 = np.stack([agent_0_dist, agent_0_dist_next, agent_0_cur_pos], axis=2) plt.imshow(im0) ax = fig.add_subplot(1, 2, 2) im1 = np.stack([agent_1_dist, agent_1_dist_next, agent_1_cur_pos], axis=2) plt.imshow(im1) fname = "epoch_%d_failed_to_leave_node_%d" % (epoch, cur_node) plt.savefig(os.path.join(savepath, fname)) def test_factorization_single_agent_key(env, model, n_traj=10, len_traj=200): ''' move agent with and with key, count onehot changes for 1. Any agent movement with or without key, not changing key state within trajectory 2. Fixing agent position, placing/taking away key ''' onehot_hist_lst = [] # 1. -------------- test factorization of agent dist_onehots_a = [] for traj in range(n_traj): env.reset() traj_with_key = env.sample_random_trajectory(len_traj, interact_with_key=False) zs = get_discrete_representation(model, traj_with_key) prev_z = zs[0] for zlabel in zs[1:]: for k in range(model.num_onehots): if zlabel[k] != prev_z[k]: dist_onehots_a.append(k) prev_z = zlabel env.remove_all_keys() traj_no_key = env.sample_random_trajectory(len_traj, interact_with_key=False) zs = get_discrete_representation(model, traj_no_key) prev_z = zs[0] for zlabel in zs[1:]: for k in range(model.num_onehots): if zlabel[k] != prev_z[k]: dist_onehots_a.append(k) prev_z = zlabel onehots_hist = plt.figure() print("dist_onehots for moving agent", dist_onehots_a) plt.hist(dist_onehots_a, bins=np.arange(model.num_onehots + 1)) plt.ylabel("onehot changes only moving agent") onehot_hist_lst.append(onehots_hist) # 2. ----------------- test factorization of key(s) for key_idx in range(env.n_keys): dist_onehots_k = [] for i in range(len_traj): env.reset() z_key = get_discrete_representation(model, env.get_obs(), single=True) env.remove_key(key_idx, 0) z_no_key = get_discrete_representation(model, env.get_obs(), single=True) for k in range(model.num_onehots): if z_no_key[k] != z_key[k]: dist_onehots_k.append(k) onehots_hist = plt.figure() print("dist_onehots for changing key %d" % key_idx, dist_onehots_k) plt.hist(dist_onehots_k, bins=np.arange(model.num_onehots + 1)) plt.ylabel("onehot changes only placing/removing key %d (fixing agent)" % key_idx) onehot_hist_lst.append(onehots_hist) return onehot_hist_lst def visualize_single_agent_and_key(env, model): # try to place agent at each position, with and without key on the grid assert isinstance(env, KeyWall) or isinstance(env, KeyCorridor) map_key = np.full((GRID_N, GRID_N), -1) map_no_key = np.full((GRID_N, GRID_N), -1) env.reset() for x in range(GRID_N): for y in range(GRID_N): pos = (x,y) obs = env.get_obs() if env.try_place_agent(pos): if model.encoder_form == 'cswm-key-gt': z = model.encode((np_to_var(obs).unsqueeze(0).permute(0, 3, 1, 2), 1), vis=True) else: z = model.encode(np_to_var(obs).unsqueeze(0).permute(0, 3, 1, 2), vis=True) z_label = tensor_to_label(z[0], model.num_onehots, model.z_dim) map_key[pos] = z_label env.remove_all_keys() for x in range(GRID_N): for y in range(GRID_N): for y in range(GRID_N): pos = (x, y) obs = env.get_obs() if env.try_place_agent(pos): if model.encoder_form == 'cswm-key-gt': z = model.encode((np_to_var(obs).unsqueeze(0).permute(0, 3, 1, 2), 0), vis=True) else: z = model.encode(np_to_var(obs).unsqueeze(0).permute(0, 3, 1, 2), vis=True) z_label = tensor_to_label(z[0], model.num_onehots, model.z_dim) map_no_key[pos] = z_label print("map with key") print(map_key) print() print("map no key") print(map_no_key) fig0 = plt.figure() plt.imshow(map_key, cmap='gist_rainbow') fig1 = plt.figure() plt.imshow(map_no_key, cmap='gist_rainbow') return fig0, fig1
{"hexsha": "031c37728561edd64ab058826f4e911a5ad0d343", "size": 15449, "ext": "py", "lang": "Python", "max_stars_repo_path": "utils/visualize.py", "max_stars_repo_name": "thanard/dorp", "max_stars_repo_head_hexsha": "3e635699018365696fb7d623cf1c519121fafa69", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "utils/visualize.py", "max_issues_repo_name": "thanard/dorp", "max_issues_repo_head_hexsha": "3e635699018365696fb7d623cf1c519121fafa69", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "utils/visualize.py", "max_forks_repo_name": "thanard/dorp", "max_forks_repo_head_hexsha": "3e635699018365696fb7d623cf1c519121fafa69", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 41.5295698925, "max_line_length": 139, "alphanum_fraction": 0.6369344294, "include": true, "reason": "import numpy", "num_tokens": 4041}
import numpy as np import sklearn as sk def get_class_weights(total_counts, class_positive_counts, multiply, use_class_balancing, class_mode="multiclass"): """ Calculate class_weight used in training Arguments: total_counts - int class_positive_counts - dict of int, ex: {"Effusion": 300, "Infiltration": 500 ...} multiply - int, positve weighting multiply use_class_balancing - boolean Returns: class_weight - dict of dict, ex: {"Effusion": { 0: 0.01, 1: 0.99 }, ... } """ def get_single_class_weight(pos_counts): denominator = (total_counts - pos_counts) * multiply + pos_counts # print(f"Total counts = {total_counts}, Positive counts = {pos_counts}") return { 0: pos_counts / denominator, 1: (denominator - pos_counts) / denominator, } def balancing(class_weights, label_counts, multiply=10): """ Normalize the class_weights so that each class has the same impact to backprop ex: label_counts: [1, 2, 3] -> factor: [1, 1/2, 1/3] * len(label_counts) / (1+1/2+1/3) """ balanced = {} # compute factor reciprocal = np.reciprocal(label_counts.astype(float)) factor = reciprocal * len(label_counts) * multiply / np.sum(reciprocal) # multiply by factor i = 0 for c, w in class_weights.items(): balanced[c] = { 0: w[0] * factor[i], 1: w[1] * factor[i], } i += 1 return balanced if class_mode == "multiclass": class_id = range(len(class_names)) class_weights = sk.utils.class_weight.compute_class_weight('balanced') return dict(zip(class_id, class_weights)) elif class_mode == "multibinary": class_names = list(class_positive_counts.keys()) label_counts = np.array(list(class_positive_counts.values())) class_weights = {} for i, class_name in enumerate(class_names): class_weights[class_name] = get_single_class_weight(label_counts[i]) if use_class_balancing: class_weights = balancing(class_weights, label_counts) return class_weights
{"hexsha": "2e1e245304028ea4d62d85349991c46e41673412", "size": 2214, "ext": "py", "lang": "Python", "max_stars_repo_path": "app/weights.py", "max_stars_repo_name": "taoyilee/Keras_MedicalImgAI", "max_stars_repo_head_hexsha": "02ecf1f52ee91e3050b2d30f602a3161ff0726cf", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 26, "max_stars_repo_stars_event_min_datetime": "2018-03-14T13:58:22.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-11T14:32:48.000Z", "max_issues_repo_path": "app/weights.py", "max_issues_repo_name": "taoyilee/Keras_MedicalImgAI", "max_issues_repo_head_hexsha": "02ecf1f52ee91e3050b2d30f602a3161ff0726cf", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2018-11-09T21:54:03.000Z", "max_issues_repo_issues_event_max_datetime": "2020-05-08T09:07:06.000Z", "max_forks_repo_path": "app/weights.py", "max_forks_repo_name": "taoyilee/Keras_MedicalImgAI", "max_forks_repo_head_hexsha": "02ecf1f52ee91e3050b2d30f602a3161ff0726cf", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 9, "max_forks_repo_forks_event_min_datetime": "2018-03-14T13:58:25.000Z", "max_forks_repo_forks_event_max_datetime": "2020-06-02T03:21:48.000Z", "avg_line_length": 35.7096774194, "max_line_length": 115, "alphanum_fraction": 0.6233062331, "include": true, "reason": "import numpy", "num_tokens": 521}
import numpy as np import pylab as plt from transitionControl import transitionControl alpha=0.1 epsilon=0.1 # exploration policy num_iters=1e2 gamma=0.95 allstates=np.zeros([6,9]) # Change the size of the maze. num_step_taken=np.zeros(int(num_iters)) # action 0 is right,left is 1, up is 2,down is 3. qvalues=np.zeros([54,4]) for hi in range (int(num_iters)): num_tries=0 curstate=[2,0] csi=np.ravel_multi_index(curstate,allstates.shape) # initialize the current state to start state [3,1] qvisit=np.zeros([54,4]) while (1): #until terminal state num_tries=num_tries+1 #print(curstate) np.ravel_multi_index(curstate,allstates.shape) #convert to index # convert state to index if(np.random.rand(1)>epsilon): # greedy action action=np.argmax(qvalues[csi,:]) qvisit[csi,action]=1 else: temp=np.random.permutation(4) # exploring action action=temp[0] qvisit[csi,action]=1 nextstate,signal,reward= transitionControl(curstate,action) nsi=np.ravel_multi_index(nextstate,allstates.shape) if signal==1 : # we have now reached a terminal state qvalues[csi,action]=qvalues[csi,action]+ alpha*(reward- qvalues[csi,action]) qvisit[csi,action]=1 break q_next=np.argmax(qvalues[nsi,:]) qvalues[csi,action]=qvalues[csi,action]+ alpha*(reward +qvalues[nsi,q_next]- qvalues[csi,action]) curstate=nextstate csi=nsi print('Henry has completed the task in',int(num_tries)) num_step_taken[hi]=num_tries #now we shall plot everthing plt.plot(range(int(num_iters)),num_step_taken,'k') plt.xlabel('Number of iterations') plt.ylabel('Number of moves taken to solve') plt.title('Agent on Maze Task') plt.show() # Simulate the maze
{"hexsha": "70c3d290910b91a67217196603bff1b079605ca2", "size": 1932, "ext": "py", "lang": "Python", "max_stars_repo_path": "maze.py", "max_stars_repo_name": "sritee/Q-Learning", "max_stars_repo_head_hexsha": "fec4da0fe36af83fd01b4e49945e2aefc639b4a8", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "maze.py", "max_issues_repo_name": "sritee/Q-Learning", "max_issues_repo_head_hexsha": "fec4da0fe36af83fd01b4e49945e2aefc639b4a8", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "maze.py", "max_forks_repo_name": "sritee/Q-Learning", "max_forks_repo_head_hexsha": "fec4da0fe36af83fd01b4e49945e2aefc639b4a8", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2022-01-18T12:52:22.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-18T12:52:22.000Z", "avg_line_length": 31.6721311475, "max_line_length": 139, "alphanum_fraction": 0.6428571429, "include": true, "reason": "import numpy", "num_tokens": 507}
# Copyright 2022 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Core Sparse MoE utils using pjit. Many thanks to Parker Schuh and Sudip Roy, for helping with the einsum implementation, and to Jonathan Heek for helping writing the lift transform. The following abbreviations are sometimes used to name the size of different axes in the arrays. G = num_groups. It must be a multiple of num_experts. S = group_size. E = num_experts. C = capacity. K = num_selected_experts. It must be <= num_experts. """ import abc import math from typing import Any, Callable, Dict, Mapping, Optional, Tuple import flax.core.lift import flax.linen.partitioning import flax.linen.transforms import flax.struct import jax from jax.experimental import pjit import jax.numpy as jnp import vmoe.partitioning Array = jnp.ndarray PartitionSpec = pjit.PartitionSpec with_sharding_constraint = vmoe.partitioning.with_sharding_constraint _add_axis_to_metadata = flax.linen.partitioning._add_axis_to_metadata # pylint: disable=protected-access class BaseDispatcher(abc.ABC): """Base class for different dispatcher implementations. Dispatchers are in charge of preparing the data to be dispatched to the different experts, and then combining the outputs of each expert for each item. There are different ways of doing so with different memory / flops / runtime implications when running on actual hardware. In all cases, when dispatching data, they take an array of shape (G, S, ...). The groups (G) are dispatched independently of each other. The items in each group (S) will take place in the buffer (of capacity C) of items to be processed by each expert (E). The output is an array of shape (E, G * C, ...) with the elements to be processed by each expert. When combining data, they take an array of shape (E, G * C, ...) and output an array of shape (G, S, ...). Notice that the trailing dimensions (...) at combine might not be the same as the ones at dispatch (e.g. if the expert changes the shape of the data). """ @abc.abstractmethod def dispatch(self, data: Array) -> Array: """Dispatches data to experts. Args: data: (G, S, ...) array with the data to dispatch to the experts. Returns: (E, G * C, ...) array with the data to be processed by each expert. """ @abc.abstractmethod def combine(self, data: Array) -> Array: """Combines outputs from multiple experts. Args: data: (E, G * C, ...) array with the output data from each expert. Returns: (G, S, ...) array with the combined outputs from each expert. """ @flax.struct.dataclass class EinsumDispatcher(BaseDispatcher): """Dispatcher using Einsum. Attributes: combine_weights: (G, S, E, C) array with the combine weights for each item (G, S) for each expert (E) and buffer position (C). dispatch_weights: Optional. (G, S, E, C) array with the dispatch weights of each item (G, S) for each expert (E) and buffer position (C). partition_spec: Optional. PartitionSpec used to constrain the sharding of the data arrays. By default (None), no sharding constraint is specified. einsum_precision: Optional. Precision used in all the einsums (e.g. combining the outputs of different experts). """ combine_weights: Array dispatch_weights: Optional[Array] = None partition_spec: Optional[PartitionSpec] = flax.struct.field( pytree_node=False, default=None) einsum_precision: jax.lax.Precision = flax.struct.field( pytree_node=False, default=jax.lax.Precision.DEFAULT) def dispatch(self, data: Array) -> Array: dispatch_weights = ( self.combine_weights > 0 if self.dispatch_weights is None else self.dispatch_weights) data = jnp.einsum("GSEC,GS...->GEC...", dispatch_weights, data, precision=self.einsum_precision) return _dispatch(data, self.partition_spec) def combine(self, data: Array) -> Array: """Combines data from experts according to combine_weights.""" num_groups, _, _, _ = self.combine_weights.shape data = _receive(data, num_groups, self.partition_spec) return jnp.einsum("GSEC,GEC...->GS...", self.combine_weights, data, precision=self.einsum_precision) @flax.struct.dataclass class ExpertIndicesDispatcher(BaseDispatcher): """Dispatcher using scatter/gather with (expert, buffer) indices. Attributes: indices: (G, S, K, 2) integer array with the (expert, buffer) indices of each item (G, S) and their K-selected experts. The tuple (expert, buffer) for each item is represented in the last dimension (of size 2). combine_weights: (G, S, K) array with the combine weights of each item (G, S) and their K-selected experts. num_experts: Number of experts. capacity: Capacity of each expert's buffer per group. partition_spec: Optional. PartitionSpec used to constrain the sharding of the data arrays. By default (None), no sharding constraint is specified. einsum_precision: Optional. Precision used in all the einsums (e.g. combining the outputs of different experts). """ indices: Array # (G, S, K, 2). combine_weights: Array # (G, S, K). num_experts: int = flax.struct.field(pytree_node=False) capacity: int = flax.struct.field(pytree_node=False) partition_spec: Optional[PartitionSpec] = flax.struct.field( pytree_node=False, default=None) einsum_precision: jax.lax.Precision = flax.struct.field( pytree_node=False, default=jax.lax.Precision.DEFAULT) def dispatch(self, data: Array) -> Array: num_groups, _, num_selected_experts, _ = self.indices.shape _, _, *item_shape = data.shape data = jnp.repeat(data, num_selected_experts, axis=1) indices = self.indices.reshape(num_groups, -1, 2) shape = (self.num_experts, self.capacity, *item_shape) data = jax.vmap(lambda x, i: _scatter_nd(i, x, shape))(data, indices) return _dispatch(data, self.partition_spec) def combine(self, data: Array) -> Array: num_groups, _, _ = self.combine_weights.shape data = _receive(data, num_groups, self.partition_spec) data = jax.vmap(lambda x, i: x[i[:, :, 0], i[:, :, 1]])(data, self.indices) # Mask invalid gathered data. mask = jnp.logical_and(self.indices[..., 0] < self.num_experts, self.indices[..., 1] < self.capacity) data = data * mask.reshape(mask.shape + (1,) * (data.ndim - 3)) # Weighted sum of the outputs of the K-selected experts for each item. return jnp.einsum("GSK...,GSK->GS...", data, self.combine_weights, precision=jax.lax.Precision.HIGHEST) @flax.struct.dataclass class Bfloat16Dispatcher(BaseDispatcher): """Dispatcher wrapper converting data to bfloat16 to save bandwidth.""" dispatcher: BaseDispatcher def dispatch(self, data: Array) -> Array: dtype = data.dtype data = _cast_to_bfloat16(data) data = self.dispatcher.dispatch(data) return data.astype(dtype) def combine(self, data: Array) -> Array: dtype = data.dtype data = _cast_to_bfloat16(data) data = self.dispatcher.combine(data) return data.astype(dtype) def get_top_experts_per_item_dispatcher(gates: Array, name: str, num_selected_experts: int, batch_priority: bool, capacity: Optional[int] = None, capacity_factor: Optional[float] = None, **dispatcher_kwargs) -> BaseDispatcher: """Returns a dispatcher implementing Top-Experts-Per-Item routing. For each item, the `num_selected_experts` experts with the largest gating score are selected in a greedy fashion. However, because each expert has a fixed `capacity`, if more items than `capacity` select a given expert some of the assignments will be ignored. All top-1 choices have priority over top-2 choices and so on. In addition, the choices that are ignored also depend on `batch_priority`. If it is False, the "Vanilla" algorithm is used, meaning that items in earlier positions of the array have priority. If it is True, the "Batch Priority Routing" algorithm (see https://arxiv.org/abs/2106.05974) is used, which gives more priority to the items whose largest score is greater. Args: gates: (S, E) array with the gating values for each (item, expert). These values will also be used as combine_weights for the selected pairs. name: String with the type of dispatcher to use (supported values are "einsum" and "indices"). num_selected_experts: Maximum number of experts to select per each item (K). batch_priority: Whether to use batch priority routing or not. capacity: If given, maximum number of items processed by each expert. Either this or `capacity_factor` must be given. capacity_factor: If given, sets the `capacity` to this factor of S * K / E. Either this or `capacity` must be given. **dispatcher_kwargs: Additional arguments for the dispatcher object. Returns: A dispatcher. """ if (capacity is None) == (capacity_factor is None): raise ValueError( "You must specify either 'capacity' or 'capacity_factor', and not both." f" Current values are capacity = {capacity!r}, " f"capacity_factor = {capacity_factor!r}") if not capacity: group_size, num_experts = gates.shape capacity = _compute_capacity( # Target number of tokens to split among the `num_experts` experts. num_tokens=group_size * num_selected_experts, num_experts=num_experts, capacity_factor=capacity_factor) fn_map = { "einsum": _get_top_experts_per_item_einsum_dispatcher, "indices": _get_top_experts_per_item_expert_indices_dispatcher, } if name not in fn_map: raise ValueError(f"Unknown dispatcher type: {name!r}") return fn_map[name](gates, num_selected_experts, capacity, batch_priority, **dispatcher_kwargs) def sparse_moe_spmd(target: flax.linen.transforms.Target, variable_axes: Mapping[flax.core.lift.CollectionFilter, flax.core.lift.InOutAxis], split_rngs: Mapping[flax.core.lift.PRNGSequenceFilter, bool], has_aux: bool = False, methods=None): """Lift transformation that wraps a target with a Sparse MoE using SPMD. SPMD stands for "Single Program, Multiple Data", meaning that all experts actually implement the same function (program), but use different data (inputs and parameters). Thus, a single target to "expertify" is given. When an instance of a Linen module wrapped with this transformation is called, it expects one additional argument at the beginning, a "dispatcher" (see `BaseDispatcher`). This "dispatcher" is used to prepare the arguments to be processed by each "expert". The "target" is wrapped with vmap and applied to different sets of parameters and inputs. Finally, the "dispatcher" combines the outputs of all experts applied to each given item. If the target has any auxiliary outputs (e.g. metrics) that should not be combined, these can be returned by using "has_aux = True". Args: target: A target to wrap with a Sparse MoE (e.g. a flax.linen.Module) with methods passed via the `methods` argument. variable_axes: Mapping indicating the axis along each variable collection is "expertified". Typically, this is something like {"params": 0}. split_rngs: Mapping indicating whether to split each of the PRNGKeys passed to the experts. has_aux: If the target returns any auxiliary output that should not be combined, set this to True. methods: Methods from the target to wrap with a Sparse MoE. By default, the "__call__" method will be wrapped. Returns: A transformed target. """ def wrapper(expert_fn: Callable[..., Any]): def transformed(scopes, dispatcher, *inputs): # Prepare inputs to be processed by each expert. inputs = jax.tree_map(dispatcher.dispatch, inputs) # Wrap the target with vmap, to pass different parameters and inputs to # each expert. outputs = flax.core.lift.vmap( expert_fn, in_axes=0, out_axes=0, variable_axes=variable_axes, split_rngs=split_rngs)(scopes, *inputs) # Combine outputs. if has_aux: outputs, aux = outputs outputs = jax.tree_map(dispatcher.combine, outputs) return (outputs, aux) if has_aux else outputs return transformed return flax.linen.transforms.lift_transform(wrapper, target, methods=methods) def sparse_moe_spmd_with_axes( target: flax.linen.transforms.Target, variable_axes: Mapping[flax.core.lift.CollectionFilter, flax.core.lift.InOutAxis], split_rngs: Mapping[flax.core.lift.PRNGSequenceFilter, bool], partitioning_axis_names: Mapping[str, str], has_aux: bool = False, methods=None): """Lift transformation similar to sparse_moe_spmd with partitioned named axes.""" variable_axes = dict(variable_axes) for name in partitioning_axis_names: variable_axes[f"{name}_axes"] = None lifted = sparse_moe_spmd(target, variable_axes, split_rngs, has_aux, methods) for collection_name, axis in variable_axes.items(): if collection_name in partitioning_axis_names: lifted = _add_axis_to_metadata( lifted, axis_pos=axis, axis_name=partitioning_axis_names[collection_name], axis_col=f"{collection_name}_axes") return lifted def _cast_to_bfloat16(x: Array) -> Array: return x.astype(jnp.bfloat16) if jnp.issubdtype(x.dtype, jnp.floating) else x def _compute_capacity(num_tokens, num_experts, capacity_factor): capacity = int(math.ceil(num_tokens * capacity_factor / num_experts)) if capacity < 1: raise ValueError(f"The values num_tokens = f{num_tokens}, num_experts = " f"{num_experts} and capacity_factor = {capacity_factor} " f"lead to capacity = {capacity}, but it must be greater " "than or equal to 1.") # Make capacity multiple of 4 to try to avoid padding. capacity += (-capacity) % 4 return capacity def _convert_partition_spec(spec): if spec is not None and not isinstance(spec, PartitionSpec): spec = (spec,) if isinstance(spec, str) else tuple(spec) spec = PartitionSpec(*spec) return spec def _dispatch(data: Array, partition_spec: Optional[PartitionSpec]) -> Array: """Dispatches data to experts using all_to_all.""" partition_spec = _convert_partition_spec(partition_spec) num_groups, num_experts, capacity, *item_shape = data.shape data = with_sharding_constraint(data, partition_spec) data = data.reshape(num_experts, -1, num_experts, capacity, *item_shape) data = jnp.swapaxes(data, 0, 2) data = data.reshape(-1, *item_shape) data = with_sharding_constraint(data, partition_spec) return data.reshape(num_experts, num_groups * capacity, *item_shape) def _receive(data: Array, num_groups: int, partition_spec: Optional[PartitionSpec]) -> Array: """Receives data from experts using all_to_all.""" partition_spec = _convert_partition_spec(partition_spec) num_experts, num_groups_time_capacity, *item_shape = data.shape capacity = num_groups_time_capacity // num_groups data = data.reshape(num_experts * num_groups, capacity, *item_shape) data = with_sharding_constraint(data, partition_spec) data = data.reshape(num_experts, -1, num_experts, capacity, *item_shape) data = jnp.swapaxes(data, 0, 2) data = data.reshape(num_groups, num_experts, capacity, *item_shape) data = with_sharding_constraint(data, partition_spec) return data def _scatter_nd(indices, updates, shape): """Jax implementation of tf.scatter_nd. Notes: - The updates are cumulative, ie. if multiple indices point to the same position, the output value at this position is accumulated. - We rely on the fact that out-of-range indices will be quietly ignored and don't raise any error. This breaks what JAX index ops specify (https://jax.readthedocs.io/en/latest/jax.ops.html), but makes the code easier. Args: indices: An int matrix of (i, j, ...) indices with shape [B, ndim]. updates: An array of data points with shape [B, ...]. shape: An int vector with the dimensions of the output array of size [ndim]. Returns: An array of shape `shape` with updated values at given indices. """ # See: https://www.tensorflow.org/api_docs/python/tf/scatter_nd. zeros = jnp.zeros(shape, updates.dtype) key = tuple(jnp.moveaxis(indices, -1, 0)) return zeros.at[key].add(updates) def _get_top_experts_per_item_common( gates: Array, num_selected_experts: int, batch_priority: bool) -> Tuple[Array, Array, Array]: """Returns common arrays used by Top-Experts-Per-Item routing. Args: gates: (S, E) array with the gating values for each (item, expert). These values will also be used as combine_weights for the selected pairs. num_selected_experts: Maximum number of experts to select per item. batch_priority: Whether to use batch priority routing or not. Returns: - `combine_weights`, with shape (S, K) with the weights used to combine the outputs of the K-selected experts for each item. - `expert_index`, with shape (S, K) containing the expert_index for each of the K-selected experts for each item. - `buffer_index`, with shape (S, K, E) containing the buffer index for each item and selected expert. """ group_size, num_experts = gates.shape combine_weights, expert_index = jax.lax.top_k(gates, num_selected_experts) if batch_priority: # Sort items according to their maximum routing weight. The permutation will # be reversed later, so no need to permute combine_weights here. perm = jnp.argsort(-combine_weights[:, 0]) expert_index = expert_index[perm] # (K * S,). Make K the leading axis to ensure that top-1 choices have priority # over top-2 choices and so on. Flatten array for cumsum. expert_index = jnp.swapaxes(expert_index, 0, 1).ravel() # (K * S, E). Convert expert indices to a one-hot array. expert_one_hot = jax.nn.one_hot(expert_index, num_experts, dtype=jnp.int32) # (K * S, E) -> (K, S, E) -> (S, K, E). Use cumsum to compute the buffer idx # within each experts' buffer. buffer_index = jnp.cumsum(expert_one_hot, axis=0) * expert_one_hot - 1 buffer_index = buffer_index.reshape(-1, group_size, num_experts) buffer_index = jnp.swapaxes(buffer_index, 0, 1) # (K, S) -> (S, K). Revert expert_index to the original shape. expert_index = jnp.swapaxes(expert_index.reshape(-1, group_size), 0, 1) if batch_priority: # Permute the items to their original order. inv_perm = jnp.argsort(perm) expert_index = expert_index[inv_perm] buffer_index = buffer_index[inv_perm] return combine_weights, expert_index, buffer_index def _get_top_experts_per_item_einsum_dispatcher( gates: Array, num_selected_experts: int, capacity: int, batch_priority: bool, **dispatcher_kwargs) -> EinsumDispatcher: """Returns an EinsumDispatcher performing Top-Experts-Per-Item routing. Args: gates: (S, E) array with the gating values for each (item, expert). These values will also be used as combine_weights for the selected pairs. num_selected_experts: Maximum number of experts to select per each item. capacity: Maximum number of items processed by each expert. batch_priority: Whether to use batch priority routing or not. **dispatcher_kwargs: Additional arguments for the EinsumDispatcher. Returns: An EinsumDispatcher object. """ _, _, buffer_idx = _get_top_experts_per_item_common( gates, num_selected_experts, batch_priority) # (S, K, E) -> (S, E). Select the only buffer index for each (item, expert). buffer_idx = jnp.max(buffer_idx, axis=1) # (S, E, C). Convert the buffer indices to a one-hot matrix. We rely on the # fact that indices < 0 or >= capacity will be ignored by the dispatcher. dispatch_weights = jax.nn.one_hot(buffer_idx, capacity, dtype=jnp.bool_) einsum_precision = dispatcher_kwargs.get("einsum_precision", jax.lax.Precision.DEFAULT) combine_weights = jnp.einsum( "SE,SEC->SEC", gates, dispatch_weights, precision=einsum_precision) return EinsumDispatcher( combine_weights=combine_weights, dispatch_weights=dispatch_weights, **dispatcher_kwargs) def _get_top_experts_per_item_expert_indices_dispatcher( gates: Array, num_selected_experts: int, capacity: int, batch_priority: bool, **dispatcher_kwargs) -> ExpertIndicesDispatcher: """Returns an ExpertIndicesDispatcher performing Top-Experts-Per-Item routing. Args: gates: (S, E) array with the gating values for each (item, expert). These values will also be used as combine_weights for the selected pairs. num_selected_experts: Maximum number of experts to select per each item. capacity: Maximum number of items processed by each expert. batch_priority: Whether to use batch priority routing or not. **dispatcher_kwargs: Additional arguments for the ExpertIndicesDispatcher. Returns: An ExpertIndicesDispatcher object. """ _, num_experts = gates.shape combine_weights, expert_idx, buffer_idx = _get_top_experts_per_item_common( gates, num_selected_experts, batch_priority) # (S, K, E) -> (S, K). Select the only buffer index for each (item, k_choice). buffer_idx = jnp.max(buffer_idx, axis=2) return ExpertIndicesDispatcher( indices=jnp.stack([expert_idx, buffer_idx], axis=-1), combine_weights=combine_weights, num_experts=num_experts, capacity=capacity, **dispatcher_kwargs)
{"hexsha": "c79826f114a08b0ca8367fcf6be3c80311733d9d", "size": 22555, "ext": "py", "lang": "Python", "max_stars_repo_path": "vmoe/moe.py", "max_stars_repo_name": "google-research/vmoe", "max_stars_repo_head_hexsha": "38a1e4f75c3eb268b974f8860497ec9f17b46504", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 205, "max_stars_repo_stars_event_min_datetime": "2021-11-10T12:04:30.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T08:26:18.000Z", "max_issues_repo_path": "vmoe/moe.py", "max_issues_repo_name": "google-research/vmoe", "max_issues_repo_head_hexsha": "38a1e4f75c3eb268b974f8860497ec9f17b46504", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2022-01-18T08:13:17.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-25T05:46:11.000Z", "max_forks_repo_path": "vmoe/moe.py", "max_forks_repo_name": "google-research/vmoe", "max_forks_repo_head_hexsha": "38a1e4f75c3eb268b974f8860497ec9f17b46504", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 27, "max_forks_repo_forks_event_min_datetime": "2022-01-14T05:38:47.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-17T05:20:55.000Z", "avg_line_length": 43.0438931298, "max_line_length": 105, "alphanum_fraction": 0.7089337176, "include": true, "reason": "import jax,from jax", "num_tokens": 5410}
"""Collection of functions to run simulation studies and plot results""" from time import time import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D # noqa:F401 import src.functions_to_approximate as functions import src.interpolate as interpolators from src.auxiliary import get_grid from src.auxiliary import get_interpolation_points from src.auxiliary import rmse as root_mean_squared_error def execute_study(study_params, interpolation_params): """Run the simulation study with parameters *study_params*. ... Parameters ---------- study_params: dict ... interpolation_params: dict ... Returns ------- results: dict ... """ # load parameters interpolation_method = study_params["controls"]["interpolation method"] func_name = study_params["controls"]["function to approximate"] func_name_short = func_name[: func_name.find("_")] interpolator_name = study_params[interpolation_method]["interpolator"] grid_density = study_params["controls"]["grid density"] grid_method = study_params["controls"]["grid method"] iterations = study_params["controls"]["iterations"] n_interpolation_points = study_params["controls"][ "number of points for accuracy check" ] accuracy_check_seed = study_params["controls"]["seed for accuracy check"] # set grid parameters grid_params = {} grid_params["orders"] = study_params["grid"]["orders"][grid_density] grid_params["lower bounds"] = study_params["grid"]["lower bounds"][func_name_short] grid_params["upper bounds"] = study_params["grid"]["upper bounds"][func_name_short] # set functionals for function to approximate and interpolator func = getattr(functions, func_name) interpolator = getattr(interpolators, interpolator_name) # initiate dict to store results results = {"rmse": {}, "runtime": {}, "gridpoints": {}} for dims in study_params["controls"]["dims"]: # generate grid grid, index = get_grid(grid_params, dims) # get interpolation points interpolation_points = get_interpolation_points( n_interpolation_points, grid, accuracy_check_seed, ) # get results on interpolation points results_calc = func(interpolation_points) # initiate objects to store results rmse_tmp = [] runtime_tmp = [] n_gridpoints_effective_tmp = [] # iterate over settings for iteration in range(iterations): # print(f"dimension: {dims}; iteration: {iteration + 1}") # adjust interpolation parameters interpolation_params[interpolation_method]["grid method"] = grid_method interpolation_params[interpolation_method][ "evaluate off-grid" ] = study_params["controls"]["evaluate off-grid"] if interpolation_method == "linear": interpolation_params["linear"]["sparse grid level"] = study_params[ "linear" ]["sparse grid levels"][iteration] interpolation_params["linear"]["interpolation points"] = study_params[ "linear" ]["interpolation points"][iteration] elif interpolation_method == "spline": interpolation_params["spline"]["interpolation points"] = study_params[ "spline" ]["interpolation points"][iteration] elif interpolation_method == "smolyak": interpolation_params["smolyak"]["sparse grid level"] = study_params[ "smolyak" ]["sparse grid levels"][iteration] elif interpolation_method == "sparse": interpolation_params["sparse"]["sparse grid level"] = study_params[ "sparse" ]["sparse grid levels"][iteration] # interpolate and capture computation time start = time() results_interp, n_gridpoints_effective = interpolator( interpolation_points, grid, func, interpolation_params ) stop = time() # assess interpolation accuracy rmse_iter = root_mean_squared_error(results_interp, results_calc) # store results rmse_tmp.append(rmse_iter) runtime_tmp.append(stop - start) n_gridpoints_effective_tmp.append(n_gridpoints_effective) results["rmse"][dims] = np.array(object=rmse_tmp) results["runtime"][dims] = np.array(object=runtime_tmp) results["gridpoints"][dims] = np.array(object=n_gridpoints_effective_tmp) return results def plot_results(results, study_params): """Plot results for a single simulation study. ... Parameters ---------- results: dict ... study_params: dict ... Returns ------- None """ plot_legend = [] plot_x = [] plot_y = [] for dim in study_params["controls"]["dims"]: plot_legend.append("# vars: " + str(dim)) plot_x.append(results["gridpoints"][dim]) plot_y.append(results["rmse"][dim]) for idx in range(len(study_params["controls"]["dims"])): plt.plot(plot_x[idx], plot_y[idx]) plt.xscale("log") plt.yscale("log") plt.xlabel("number of interpolation points (log axis)") plt.ylabel("root mean squared error (log axis)") plt.legend(plot_legend) plt.title( "Interpolation accuracy (" + study_params["controls"]["grid density"] + " grid)" ) plt.show() return def compare_fit_2d_iter(study_params, interpolation_params, iteration): """Plot fit for 2D function with givel level of accuracy. ... Parameters ---------- study_params: dict ... iteration: int ... Returns ------- None """ # set interpolation parameters dims = 2 interpolation_method = study_params["controls"]["interpolation method"] func_name = study_params["controls"]["function to approximate"] func_name_short = func_name[: func_name.find("_")] interpolator_name = study_params[interpolation_method]["interpolator"] grid_density = study_params["controls"]["grid density"] grid_method = study_params["controls"]["grid method"] n_interpolation_points = study_params["controls"][ "number of points for accuracy check" ] accuracy_check_seed = study_params["controls"]["seed for accuracy check"] # set grid parameters grid_params = {} grid_params["orders"] = study_params["grid"]["orders"][grid_density] grid_params["lower bounds"] = study_params["grid"]["lower bounds"][func_name_short] grid_params["upper bounds"] = study_params["grid"]["upper bounds"][func_name_short] # set functionals for function to approximate and interpolator func = getattr(functions, func_name) interpolator = getattr(interpolators, interpolator_name) # generate grid / state space grid, index = get_grid(grid_params, dims) # generate grid for plotting n_plot_x = n_plot_y = 100 n_plot = n_plot_x * n_plot_y x = np.linspace( grid_params["lower bounds"][0], grid_params["upper bounds"][0], n_plot_x ) y = np.linspace( grid_params["lower bounds"][1], grid_params["upper bounds"][1], n_plot_y ) X, Y = np.meshgrid(x, y) plot_grid = np.asarray([X.reshape(n_plot), Y.reshape(n_plot)]).T func_on_plot_grid_actual = func(plot_grid) func_on_plot_grid_actual = np.asarray(func_on_plot_grid_actual).reshape( (n_plot_x, n_plot_y) ) # adjust interpolation parameters interpolation_params[interpolation_method]["grid method"] = grid_method interpolation_params[interpolation_method]["evaluate off-grid"] = study_params[ "controls" ]["evaluate off-grid"] if interpolation_method == "linear": interpolation_params["linear"]["sparse grid level"] = study_params["linear"][ "sparse grid levels" ][iteration] interpolation_params["linear"]["interpolation points"] = study_params["linear"][ "interpolation points" ][iteration] elif interpolation_method == "spline": interpolation_params["spline"]["interpolation points"] = study_params["spline"][ "interpolation points" ][iteration] elif interpolation_method == "smolyak": interpolation_params["smolyak"]["sparse grid level"] = study_params["smolyak"][ "sparse grid levels" ][iteration] elif interpolation_method == "sparse": interpolation_params["sparse"]["sparse grid level"] = study_params["sparse"][ "sparse grid levels" ][iteration] # interpolate and capture computation time start = time() func_on_plot_grid_interpolated, n_gridpoints_effective = interpolator( plot_grid, grid, func, interpolation_params ) stop = time() runtime = stop - start func_on_plot_grid_interpolated = np.asarray(func_on_plot_grid_interpolated).reshape( (n_plot_x, n_plot_y) ) # calculate approximation error interpolation_points = get_interpolation_points( n_interpolation_points, grid, accuracy_check_seed, ) results_interp, n_gridpoints_effective = interpolator( interpolation_points, grid, func, interpolation_params ) results_calc = func(interpolation_points) rmse = root_mean_squared_error(results_interp, results_calc) # plot results print(f"grid method: {grid_method}") print(f"total number of interpolation points: {n_gridpoints_effective}") print(f"runtime for interpolation: {runtime}") print(f"root mean squared error: {rmse}") fig = plt.figure(figsize=(16, 6)) ax = fig.add_subplot( 131, projection="3d", title=f"{func_name_short} function, dim=2 (calculated)" ) ax.plot_surface( X, Y, func_on_plot_grid_actual, rstride=1, cstride=1, cmap=plt.cm.magma ) ax = fig.add_subplot( 132, projection="3d", title=f"{func_name_short} function, dim=2 (interpolated)" ) ax.plot_surface( X, Y, func_on_plot_grid_interpolated, rstride=1, cstride=1, cmap=plt.cm.magma ) ax = fig.add_subplot( 133, projection="3d", title=f"{func_name_short} function, dim=2 (error)" ) ax.plot_surface( X, Y, func_on_plot_grid_actual - func_on_plot_grid_interpolated, rstride=1, cstride=1, cmap=plt.cm.magma, ) # ax.set_zlim(0.0, ax.get_zlim()[1] * 2) plt.show() print("-------------------------------------------------------------------") return def compare_results(results_1, results_2, study_params_1, study_params_2): """Plot results for a two simulation studies for comparison. ... Parameters ---------- results_1: dict ... study_params_1: dict ... results_2: dict ... study_params_2: dict ... Returns ------- None """ plot_legend = [] plot_colors = ["b", "g", "r", "c", "m", "y", "k", "b"] dims = list( set(study_params_1["controls"]["dims"]).intersection( study_params_2["controls"]["dims"] ) ) # pdb.set_trace() for dim in dims: plt.plot( results_1["gridpoints"][dim], results_1["rmse"][dim], str(plot_colors[dim] + "-"), results_2["gridpoints"][dim], results_2["rmse"][dim], str(plot_colors[dim] + ":"), ) plot_legend.append(str(dim) + " vars (setting 1)") plot_legend.append(str(dim) + " vars (setting 2)") plt.xscale("log") plt.yscale("log") plt.xlabel("number of interpolation points (log axis)") plt.ylabel("root mean squared error (log axis)") plt.legend(plot_legend) plt.title("Interpolation accuracy") plt.show() return
{"hexsha": "5e856f79b586da59d5844fcc34cd03bdcb493f95", "size": 12021, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/execute.py", "max_stars_repo_name": "simonjheiler/function_approximation", "max_stars_repo_head_hexsha": "1b52177ba5d80a02227f3f8f45b5dc2b73bd16bb", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/execute.py", "max_issues_repo_name": "simonjheiler/function_approximation", "max_issues_repo_head_hexsha": "1b52177ba5d80a02227f3f8f45b5dc2b73bd16bb", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/execute.py", "max_forks_repo_name": "simonjheiler/function_approximation", "max_forks_repo_head_hexsha": "1b52177ba5d80a02227f3f8f45b5dc2b73bd16bb", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.8442622951, "max_line_length": 88, "alphanum_fraction": 0.6332251893, "include": true, "reason": "import numpy", "num_tokens": 2654}
import numpy as np import numpy.random as npr import flymc as ff from util import nd, nd_bounds import unittest from model_setup import * npr.seed(1) class DerivativesTest(object): PLACES = 4 NUM_TRIALS = 10 N = 30 D = 4 K = 3 def test_prior(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(model._logPrior, th) AD = model._D_logPrior(th) self.check_ordered(LB, AD, UB) def test_likelihood(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(lambda th: np.sum(model._logL(th, z.bright)), th) AD = np.sum(model._D_logL(th, z.bright), axis=0) self.check_ordered(LB, AD, UB) def test_bound(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(lambda th: np.sum(model._logB(th, z.bright)), th) AD = np.sum(model._D_logB(th, z.bright), axis=0) self.check_ordered(LB, AD, UB) def test_LB_gap(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(lambda th: np.sum(model._LBgap(th, z.bright)), th) AD = np.sum(model._D_LBgap(th, z.bright), axis=0) self.check_ordered(LB, AD, UB) def test_bound_product(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(lambda th: model._logBProduct(th), th) AD = model._D_logBProduct(th) self.check_ordered(LB, AD, UB) def test_marg_likelihood(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(lambda th: model.log_p_marg(th), th) AD = model.D_log_p_marg(th) self.check_ordered(LB, AD, UB) def test_pseudo_likelihood(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(lambda th: np.sum(model.log_pseudo_lik(th, z.bright)), th) AD = np.sum(model._D_log_pseudo_lik(th, z.bright), axis=0) self.check_ordered(LB, AD, UB) def test_joint_posterior(self): for model, th, z in self.random_setup(): LB, UB = nd_bounds(lambda th: model.log_p_joint(th, z), th) AD = model.D_log_p_joint(th, z) self.check_ordered(LB, AD, UB) def check_ordered(self, A, B, C): # Check that A < B < C for a, b, c in zip(A.ravel(), B.ravel(), C.ravel()): self.assertLess(a, b) self.assertLess(b, c) def check_close(self, A, B): rel_error = np.abs(A-B)/np.abs(A) self.assertEqual(A.shape, B.shape) self.assertAlmostEqual(np.max(rel_error), 0, places=self.PLACES) class LogisticModelTest(LogisticModelSetup, DerivativesTest, unittest.TestCase): pass class MulticlassLogisticModelTest(MulticlassLogisticModelSetup, DerivativesTest, unittest.TestCase): pass class RobustRegressionModelTest(RobustRegressionModelSetup, DerivativesTest, unittest.TestCase): pass
{"hexsha": "59afd08ae180ce3a54a001db2aed133447c83a7b", "size": 3000, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_model_derivatives.py", "max_stars_repo_name": "HIPS/firefly-monte-carlo", "max_stars_repo_head_hexsha": "e72f95a73e9da59850307fb7a29d386a93236d56", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 30, "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:56:46.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-05T14:33:24.000Z", "max_issues_repo_path": "tests/test_model_derivatives.py", "max_issues_repo_name": "HIPS/firefly-monte-carlo", "max_issues_repo_head_hexsha": "e72f95a73e9da59850307fb7a29d386a93236d56", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2016-04-27T17:55:35.000Z", "max_issues_repo_issues_event_max_datetime": "2016-04-28T10:45:55.000Z", "max_forks_repo_path": "tests/test_model_derivatives.py", "max_forks_repo_name": "HIPS/firefly-monte-carlo", "max_forks_repo_head_hexsha": "e72f95a73e9da59850307fb7a29d386a93236d56", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 20, "max_forks_repo_forks_event_min_datetime": "2015-10-19T18:27:01.000Z", "max_forks_repo_forks_event_max_datetime": "2020-03-24T02:22:43.000Z", "avg_line_length": 35.7142857143, "max_line_length": 100, "alphanum_fraction": 0.6096666667, "include": true, "reason": "import numpy", "num_tokens": 796}
!AceGenModule rmodel !nstatv: 58 !ElasticType: NeoHookean !IsoHardType: TwoIsoHard !KinHardType: BC_D07mod !DistHardType: rmodel ! !Material parameters (16): !G (Shear modulus) !K (Bulk modulus) !Y0 (Initial yield limit) !k1 (Isotropic hardening constant 1) !Rinf1 (Isotropic saturation 1) !k2 (Isotropic hardening constant 2) !Rinf2 (Isotropic saturation 2) !delta (amount of AF vs BC) !Hkin1 !Binf1 !Hkin2 !Binf2 !cL (Evolution parameter for CL) !bL (Amount of latent hardening) !Hr (hardening modulus for r) !rinf (saturation value of r) module acegen_mod implicit none contains subroutine model_size(nparam,nstatv,nvar) implicit none integer nparam, nstatv, nvar nparam = 16 nstatv = 58 nvar = 16 end subroutine model_size !************************************************************** !* AceGen 6.702 Windows (4 May 16) * !* Co. J. Korelc 2013 16 Nov 19 17:49:23 * !************************************************************** ! User : Full professional version ! Notebook : MainFile ! Evaluation time : 53 s Mode : Optimal ! Number of formulae : 715 Method: Automatic ! Subroutine : elastic size: 15988 ! Total size of Mathematica code : 15988 subexpressions ! Total size of Fortran code : 36673 bytes !******************* S U B R O U T I N E ********************** SUBROUTINE elastic(mpar,statev,Fnew,sigma,ddsdde,yielding,xguess) USE SMSUtility IMPLICIT NONE INTEGER i01,i02 DOUBLE PRECISION v(1008),mpar(16),statev(58),Fnew(9),sigma(6),ddsdde(6,6),yielding,xguess(16) v(991)=statev(38)*statev(39)+statev(42)*statev(43)+statev(45)*statev(46) v(990)=statev(37)*statev(39)+statev(41)*statev(43)+statev(44)*statev(46) v(989)=statev(37)*statev(38)+statev(41)*statev(42)+statev(44)*statev(45) v(986)=statev(47)**2 v(985)=statev(48)**2 v(983)=statev(49)**2 v(982)=mpar(14)**2 v(984)=2d0*v(982) v(954)=(2d0/3d0)+mpar(14)*statev(29) v(953)=(-1d0/3d0)+mpar(14)*statev(35) v(952)=(-1d0/3d0)+mpar(14)*statev(36) v(951)=(-1d0/3d0)+mpar(14)*statev(40) v(950)=(2d0/3d0)+mpar(14)*statev(30) v(949)=(2d0/3d0)+mpar(14)*statev(31) v(948)=2d0*mpar(14) v(947)=0.5d0+mpar(14)*statev(32) v(946)=0.5d0+mpar(14)*statev(33) v(945)=0.5d0+mpar(14)*statev(34) v(944)=statev(54)*statev(55) v(943)=-(statev(54)*statev(58)) v(942)=-(statev(55)*statev(56)) v(941)=statev(56)*statev(58) v(940)=1d0+statev(52) v(939)=statev(57)*statev(58) v(938)=-(statev(53)*statev(57)) v(937)=statev(53)*statev(54) v(936)=1d0+statev(51) v(935)=statev(56)*statev(57) v(934)=statev(53)*statev(55) v(933)=1d0+statev(50) v(932)=statev(7)*statev(9) v(931)=-(statev(6)*statev(7)) v(930)=statev(5)*statev(6) v(929)=-(statev(5)*statev(9)) v(928)=1d0+statev(3) v(927)=statev(4)*statev(5) v(926)=-(statev(4)*statev(8)) v(925)=statev(8)*statev(9) v(924)=1d0+statev(2) v(923)=statev(4)*statev(6) v(922)=statev(7)*statev(8) v(921)=1d0+statev(1) v(920)=statev(24)*statev(25) v(919)=-(statev(25)*statev(26)) v(918)=statev(26)*statev(28) v(917)=-(statev(24)*statev(28)) v(916)=1d0+statev(22) v(915)=statev(27)*statev(28) v(914)=-(statev(23)*statev(27)) v(913)=statev(23)*statev(24) v(912)=1d0+statev(21) v(911)=statev(23)*statev(25) v(910)=statev(26)*statev(27) v(909)=1d0+statev(20) v(908)=statev(15)*statev(16) v(907)=-(statev(16)*statev(17)) v(906)=statev(17)*statev(19) v(905)=-(statev(15)*statev(19)) v(904)=1d0+statev(13) v(903)=statev(18)*statev(19) v(902)=-(statev(14)*statev(18)) v(901)=statev(14)*statev(15) v(900)=1d0+statev(12) v(899)=statev(14)*statev(16) v(898)=statev(17)*statev(18) v(897)=1d0+statev(11) v(896)=statev(46)**2 v(895)=statev(45)**2 v(894)=statev(44)**2 v(893)=statev(43)**2 v(892)=statev(42)**2 v(891)=statev(41)**2 v(890)=statev(39)**2 v(889)=statev(38)**2 v(888)=statev(37)**2 v(887)=1d0/(Fnew(6)*(Fnew(4)*Fnew(5)-Fnew(2)*Fnew(7))+Fnew(3)*(Fnew(1)*Fnew(2)-Fnew(4)*Fnew(8))+(-(Fnew(1)*Fnew(5))& &+Fnew(7)*Fnew(8))*Fnew(9)) v(996)=2d0*v(887) v(199)=-(statev(15)*v(897))+v(898) v(190)=-(statev(19)*v(897))+v(899) v(198)=-(statev(17)*v(900))+v(901) v(197)=v(897)*v(900)+v(902) v(191)=-(statev(16)*v(900))+v(903) v(195)=v(900)*v(904)+v(905) v(194)=-(statev(14)*v(904))+v(906) v(193)=v(897)*v(904)+v(907) v(192)=-(statev(18)*v(904))+v(908) v(222)=-(statev(24)*v(909))+v(910) v(213)=-(statev(28)*v(909))+v(911) v(221)=-(statev(26)*v(912))+v(913) v(220)=v(909)*v(912)+v(914) v(214)=-(statev(25)*v(912))+v(915) v(218)=v(912)*v(916)+v(917) v(217)=-(statev(23)*v(916))+v(918) v(216)=v(909)*v(916)+v(919) v(215)=-(statev(27)*v(916))+v(920) v(104)=-(statev(5)*v(921))+v(922) v(100)=-(statev(9)*v(921))+v(923) v(108)=-(statev(6)*v(924))+v(925) v(106)=v(921)*v(924)+v(926) v(105)=-(statev(7)*v(924))+v(927) v(110)=v(924)*v(928)+v(929) v(109)=-(statev(8)*v(928))+v(930) v(102)=v(921)*v(928)+v(931) v(101)=-(statev(4)*v(928))+v(932) v(260)=-(statev(58)*v(933))+v(934) v(255)=-(statev(54)*v(933))+v(935) v(257)=-(statev(56)*v(936))+v(937) v(254)=v(933)*v(936)+v(938) v(253)=-(statev(55)*v(936))+v(939) v(262)=-(statev(53)*v(940))+v(941) v(261)=v(933)*v(940)+v(942) v(258)=v(936)*v(940)+v(943) v(256)=-(statev(57)*v(940))+v(944) v(289)=v(945)*v(948) v(287)=v(946)*v(948) v(284)=v(947)*v(948) v(292)=(v(951)*v(951)) v(291)=(v(952)*v(952)) v(278)=(v(953)*v(953)) v(96)=1d0/(statev(9)*v(104)+statev(6)*v(105)+v(106)*v(928)) v(332)=v(104)*v(96) v(331)=v(105)*v(96) v(330)=v(106)*v(96) v(329)=v(101)*v(96) v(328)=v(100)*v(96) v(327)=v(102)*v(96) v(326)=v(108)*v(96) v(325)=v(109)*v(96) v(324)=v(110)*v(96) v(97)=(Fnew(7)*v(108)+Fnew(4)*v(109)+Fnew(1)*v(110))*v(96) v(992)=(v(97)*v(97)) v(955)=2d0*v(97) v(339)=v(326)*v(955) v(348)=-v(339)/3d0 v(336)=v(325)*v(955) v(345)=-v(336)/3d0 v(333)=v(324)*v(955) v(342)=-v(333)/3d0 v(98)=(Fnew(5)*v(100)+Fnew(8)*v(101)+Fnew(2)*v(102))*v(96) v(956)=2d0*v(98) v(358)=v(329)*v(956) v(367)=-v(358)/3d0 v(355)=v(328)*v(956) v(364)=-v(355)/3d0 v(352)=v(327)*v(956) v(361)=-v(352)/3d0 v(99)=(Fnew(9)*v(104)+Fnew(6)*v(105)+Fnew(3)*v(106))*v(96) v(957)=2d0*v(99) v(377)=v(332)*v(957) v(386)=-v(377)/3d0 v(374)=v(331)*v(957) v(383)=-v(374)/3d0 v(371)=v(330)*v(957) v(380)=-v(371)/3d0 v(103)=(Fnew(7)*v(100)+Fnew(1)*v(101)+Fnew(4)*v(102))*v(96) v(993)=(v(103)*v(103)) v(958)=2d0*v(103) v(393)=v(103)*v(326)+v(328)*v(97) v(390)=v(103)*v(325)+v(327)*v(97) v(387)=v(103)*v(324)+v(329)*v(97) v(357)=v(328)*v(958) v(366)=-v(357)/3d0 v(354)=v(327)*v(958) v(363)=-v(354)/3d0 v(351)=v(329)*v(958) v(360)=-v(351)/3d0 v(107)=(Fnew(2)*v(104)+Fnew(8)*v(105)+Fnew(5)*v(106))*v(96) v(959)=2d0*v(107) v(421)=v(107)*v(329)+v(331)*v(98) v(418)=v(107)*v(328)+v(330)*v(98) v(415)=v(107)*v(327)+v(332)*v(98) v(376)=v(331)*v(959) v(385)=-v(376)/3d0 v(373)=v(330)*v(959) v(382)=-v(373)/3d0 v(370)=v(332)*v(959) v(379)=-v(370)/3d0 v(111)=(Fnew(3)*v(108)+Fnew(9)*v(109)+Fnew(6)*v(110))*v(96) v(960)=2d0*v(111) v(449)=v(111)*v(332)+v(325)*v(99) v(446)=v(111)*v(331)+v(324)*v(99) v(443)=v(111)*v(330)+v(326)*v(99) v(341)=v(325)*v(960) v(350)=-v(341)/3d0 v(338)=v(324)*v(960) v(347)=-v(338)/3d0 v(335)=v(326)*v(960) v(344)=-v(335)/3d0 v(112)=(Fnew(4)*v(104)+Fnew(1)*v(105)+Fnew(7)*v(106))*v(96) v(995)=v(112)*v(958) v(994)=(v(112)*v(112)) v(961)=2d0*v(112) v(447)=v(112)*v(326)+v(330)*v(97) v(444)=v(112)*v(325)+v(332)*v(97) v(441)=v(112)*v(324)+v(331)*v(97) v(420)=v(112)*v(328)+v(103)*v(330) v(417)=v(112)*v(327)+v(103)*v(332) v(414)=v(112)*v(329)+v(103)*v(331) v(375)=v(330)*v(961) v(384)=-v(375)/3d0 v(372)=v(332)*v(961) v(381)=-v(372)/3d0 v(369)=v(331)*v(961) v(378)=-v(369)/3d0 v(113)=(Fnew(5)*v(108)+Fnew(2)*v(109)+Fnew(8)*v(110))*v(96) v(962)=2d0*v(113) v(448)=v(107)*v(324)+v(113)*v(331) v(445)=v(107)*v(326)+v(113)*v(330) v(442)=v(107)*v(325)+v(113)*v(332) v(394)=v(113)*v(329)+v(324)*v(98) v(391)=v(113)*v(328)+v(326)*v(98) v(388)=v(113)*v(327)+v(325)*v(98) v(340)=v(324)*v(962) v(349)=-v(340)/3d0 v(337)=v(326)*v(962) v(346)=-v(337)/3d0 v(334)=v(325)*v(962) v(343)=-v(334)/3d0 v(114)=(Fnew(3)*v(100)+Fnew(6)*v(101)+Fnew(9)*v(102))*v(96) v(963)=2d0*v(114) v(422)=v(114)*v(332)+v(327)*v(99) v(419)=v(114)*v(331)+v(329)*v(99) v(416)=v(114)*v(330)+v(328)*v(99) v(395)=v(114)*v(325)+v(111)*v(327) v(392)=v(114)*v(324)+v(111)*v(329) v(389)=v(114)*v(326)+v(111)*v(328) v(359)=v(327)*v(963) v(368)=-v(359)/3d0 v(356)=v(329)*v(963) v(365)=-v(356)/3d0 v(353)=v(328)*v(963) v(362)=-v(353)/3d0 v(115)=(v(111)*v(111))+(v(113)*v(113))+v(992) v(135)=-v(115)/3d0 v(116)=(v(114)*v(114))+(v(98)*v(98))+v(993) v(136)=-v(116)/3d0 v(117)=(v(107)*v(107))+v(994)+(v(99)*v(99)) v(538)=(2d0/3d0)*v(117)+v(135)+v(136) v(128)=-v(117)/3d0 v(548)=(2d0/3d0)*v(116)+v(128)+v(135) v(528)=(2d0/3d0)*v(115)+v(128)+v(136) v(118)=v(111)*v(114)+v(103)*v(97)+v(113)*v(98) v(964)=2d0*v(118) v(404)=v(395)*v(964) v(413)=v(116)*v(341)+v(115)*v(359)-v(404) v(403)=v(394)*v(964) v(412)=v(116)*v(340)+v(115)*v(358)-v(403) v(402)=v(393)*v(964) v(411)=v(116)*v(339)+v(115)*v(357)-v(402) v(401)=v(392)*v(964) v(410)=v(116)*v(338)+v(115)*v(356)-v(401) v(400)=v(391)*v(964) v(409)=v(116)*v(337)+v(115)*v(355)-v(400) v(399)=v(390)*v(964) v(408)=v(116)*v(336)+v(115)*v(354)-v(399) v(398)=v(389)*v(964) v(407)=v(116)*v(335)+v(115)*v(353)-v(398) v(397)=v(388)*v(964) v(406)=v(116)*v(334)+v(115)*v(352)-v(397) v(396)=v(387)*v(964) v(405)=v(116)*v(333)+v(115)*v(351)-v(396) v(134)=(v(118)*v(118)) v(150)=v(115)*v(116)-v(134) v(119)=v(103)*v(112)+v(107)*v(98)+v(114)*v(99) v(965)=2d0*v(119) v(498)=v(119)*v(964) v(431)=v(422)*v(965) v(440)=v(117)*v(359)+v(116)*v(377)-v(431) v(430)=v(421)*v(965) v(439)=v(117)*v(358)+v(116)*v(376)-v(430) v(429)=v(420)*v(965) v(438)=v(117)*v(357)+v(116)*v(375)-v(429) v(428)=v(419)*v(965) v(437)=v(117)*v(356)+v(116)*v(374)-v(428) v(427)=v(418)*v(965) v(436)=v(117)*v(355)+v(116)*v(373)-v(427) v(426)=v(417)*v(965) v(435)=v(117)*v(354)+v(116)*v(372)-v(426) v(425)=v(416)*v(965) v(434)=v(117)*v(353)+v(116)*v(371)-v(425) v(424)=v(415)*v(965) v(433)=v(117)*v(352)+v(116)*v(370)-v(424) v(423)=v(414)*v(965) v(432)=v(117)*v(351)+v(116)*v(369)-v(423) v(122)=(v(119)*v(119)) v(139)=v(116)*v(117)-v(122) v(120)=v(107)*v(113)+v(112)*v(97)+v(111)*v(99) v(966)=2d0*v(120) v(497)=v(120)*v(964) v(495)=v(120)*v(965) v(485)=v(449)*v(966) v(494)=v(117)*v(341)+v(115)*v(377)-v(485) v(484)=v(448)*v(966) v(493)=v(117)*v(340)+v(115)*v(376)-v(484) v(483)=v(447)*v(966) v(492)=v(117)*v(339)+v(115)*v(375)-v(483) v(482)=v(446)*v(966) v(491)=v(117)*v(338)+v(115)*v(374)-v(482) v(481)=v(445)*v(966) v(490)=v(117)*v(337)+v(115)*v(373)-v(481) v(480)=v(444)*v(966) v(489)=v(117)*v(336)+v(115)*v(372)-v(480) v(479)=v(443)*v(966) v(488)=v(117)*v(335)+v(115)*v(371)-v(479) v(478)=v(442)*v(966) v(487)=v(117)*v(334)+v(115)*v(370)-v(478) v(477)=v(441)*v(966) v(486)=v(117)*v(333)+v(115)*v(369)-v(477) v(476)=-(v(118)*v(377))-v(117)*v(395)+v(120)*v(422)+v(119)*v(449) v(475)=-(v(118)*v(376))-v(117)*v(394)+v(120)*v(421)+v(119)*v(448) v(474)=-(v(118)*v(375))-v(117)*v(393)+v(120)*v(420)+v(119)*v(447) v(473)=-(v(118)*v(374))-v(117)*v(392)+v(120)*v(419)+v(119)*v(446) v(472)=-(v(118)*v(373))-v(117)*v(391)+v(120)*v(418)+v(119)*v(445) v(471)=-(v(118)*v(372))-v(117)*v(390)+v(120)*v(417)+v(119)*v(444) v(470)=-(v(118)*v(371))-v(117)*v(389)+v(120)*v(416)+v(119)*v(443) v(469)=-(v(118)*v(370))-v(117)*v(388)+v(120)*v(415)+v(119)*v(442) v(468)=-(v(118)*v(369))-v(117)*v(387)+v(120)*v(414)+v(119)*v(441) v(467)=-(v(119)*v(341))+v(120)*v(395)-v(115)*v(422)+v(118)*v(449) v(466)=-(v(119)*v(340))+v(120)*v(394)-v(115)*v(421)+v(118)*v(448) v(465)=-(v(119)*v(339))+v(120)*v(393)-v(115)*v(420)+v(118)*v(447) v(464)=-(v(119)*v(338))+v(120)*v(392)-v(115)*v(419)+v(118)*v(446) v(463)=-(v(119)*v(337))+v(120)*v(391)-v(115)*v(418)+v(118)*v(445) v(462)=-(v(119)*v(336))+v(120)*v(390)-v(115)*v(417)+v(118)*v(444) v(461)=-(v(119)*v(335))+v(120)*v(389)-v(115)*v(416)+v(118)*v(443) v(460)=-(v(119)*v(334))+v(120)*v(388)-v(115)*v(415)+v(118)*v(442) v(459)=-(v(119)*v(333))+v(120)*v(387)-v(115)*v(414)+v(118)*v(441) v(458)=-(v(120)*v(359))+v(119)*v(395)+v(118)*v(422)-v(116)*v(449) v(457)=-(v(120)*v(358))+v(119)*v(394)+v(118)*v(421)-v(116)*v(448) v(456)=-(v(120)*v(357))+v(119)*v(393)+v(118)*v(420)-v(116)*v(447) v(455)=-(v(120)*v(356))+v(119)*v(392)+v(118)*v(419)-v(116)*v(446) v(454)=-(v(120)*v(355))+v(119)*v(391)+v(118)*v(418)-v(116)*v(445) v(453)=-(v(120)*v(354))+v(119)*v(390)+v(118)*v(417)-v(116)*v(444) v(452)=-(v(120)*v(353))+v(119)*v(389)+v(118)*v(416)-v(116)*v(443) v(451)=-(v(120)*v(352))+v(119)*v(388)+v(118)*v(415)-v(116)*v(442) v(450)=-(v(120)*v(351))+v(119)*v(387)+v(118)*v(414)-v(116)*v(441) v(151)=v(118)*v(119)-v(116)*v(120) v(146)=-(v(115)*v(119))+v(118)*v(120) v(141)=-(v(117)*v(118))+v(119)*v(120) v(126)=(v(120)*v(120)) v(506)=-(v(122)*v(341))-v(126)*v(359)+v(150)*v(377)+v(117)*v(413)-v(115)*v(431)-v(116)*v(485)+v(395)*v(495)+v(422)*v& &(497)+v(449)*v(498) v(505)=-(v(122)*v(340))-v(126)*v(358)+v(150)*v(376)+v(117)*v(412)-v(115)*v(430)-v(116)*v(484)+v(394)*v(495)+v(421)*v& &(497)+v(448)*v(498) v(504)=-(v(122)*v(339))-v(126)*v(357)+v(150)*v(375)+v(117)*v(411)-v(115)*v(429)-v(116)*v(483)+v(393)*v(495)+v(420)*v& &(497)+v(447)*v(498) v(503)=-(v(122)*v(338))-v(126)*v(356)+v(150)*v(374)+v(117)*v(410)-v(115)*v(428)-v(116)*v(482)+v(392)*v(495)+v(419)*v& &(497)+v(446)*v(498) v(502)=-(v(122)*v(337))-v(126)*v(355)+v(150)*v(373)+v(117)*v(409)-v(115)*v(427)-v(116)*v(481)+v(391)*v(495)+v(418)*v& &(497)+v(445)*v(498) v(501)=-(v(122)*v(336))-v(126)*v(354)+v(150)*v(372)+v(117)*v(408)-v(115)*v(426)-v(116)*v(480)+v(390)*v(495)+v(417)*v& &(497)+v(444)*v(498) v(500)=-(v(122)*v(335))-v(126)*v(353)+v(150)*v(371)+v(117)*v(407)-v(115)*v(425)-v(116)*v(479)+v(389)*v(495)+v(416)*v& &(497)+v(443)*v(498) v(499)=-(v(122)*v(334))-v(126)*v(352)+v(150)*v(370)+v(117)*v(406)-v(115)*v(424)-v(116)*v(478)+v(388)*v(495)+v(415)*v& &(497)+v(442)*v(498) v(496)=-(v(122)*v(333))-v(126)*v(351)+v(150)*v(369)+v(117)*v(405)-v(115)*v(423)-v(116)*v(477)+v(387)*v(495)+v(414)*v& &(497)+v(441)*v(498) v(145)=v(115)*v(117)-v(126) v(123)=-(v(115)*v(122))-v(116)*v(126)+v(117)*v(150)+v(118)*v(495) v(975)=v(141)/v(123) v(569)=1d0/v(123)**0.23333333333333334d1 v(967)=(-4d0/3d0)*v(569) v(577)=v(506)*v(967) v(576)=v(505)*v(967) v(575)=v(504)*v(967) v(574)=v(503)*v(967) v(573)=v(502)*v(967) v(572)=v(501)*v(967) v(571)=v(500)*v(967) v(570)=v(499)*v(967) v(568)=v(496)*v(967) v(559)=1d0/v(123)**2 v(567)=-(v(506)*v(559)) v(566)=-(v(505)*v(559)) v(565)=-(v(504)*v(559)) v(564)=-(v(503)*v(559)) v(563)=-(v(502)*v(559)) v(562)=-(v(501)*v(559)) v(561)=-(v(500)*v(559)) v(560)=-(v(499)*v(559)) v(558)=-(v(496)*v(559)) v(518)=1d0/v(123)**0.13333333333333333d1 v(971)=mpar(1)*v(518) v(968)=-v(518)/3d0 v(527)=v(506)*v(968) v(526)=v(505)*v(968) v(525)=v(504)*v(968) v(524)=v(503)*v(968) v(523)=v(502)*v(968) v(522)=v(501)*v(968) v(521)=v(500)*v(968) v(520)=v(499)*v(968) v(519)=v(496)*v(968) v(507)=sqrt(v(123)) v(969)=mpar(2)*(1d0-1d0/(2d0*v(507))) v(517)=v(506)*v(969) v(516)=v(505)*v(969) v(515)=v(504)*v(969) v(514)=v(503)*v(969) v(513)=v(502)*v(969) v(512)=v(501)*v(969) v(511)=v(500)*v(969) v(510)=v(499)*v(969) v(508)=v(496)*v(969) v(130)=mpar(2)*(v(123)-v(507)) v(129)=1d0/v(123)**0.3333333333333333d0 v(970)=mpar(1)*v(129) v(557)=v(517)+mpar(1)*(v(129)*(v(350)+(2d0/3d0)*v(359)+v(386))+v(527)*v(548)) v(556)=v(516)+mpar(1)*(v(129)*(v(349)+(2d0/3d0)*v(358)+v(385))+v(526)*v(548)) v(555)=v(515)+mpar(1)*(v(129)*(v(348)+(2d0/3d0)*v(357)+v(384))+v(525)*v(548)) v(554)=v(514)+mpar(1)*(v(129)*(v(347)+(2d0/3d0)*v(356)+v(383))+v(524)*v(548)) v(553)=v(513)+mpar(1)*(v(129)*(v(346)+(2d0/3d0)*v(355)+v(382))+v(523)*v(548)) v(552)=v(512)+mpar(1)*(v(129)*(v(345)+(2d0/3d0)*v(354)+v(381))+v(522)*v(548)) v(551)=v(511)+mpar(1)*(v(129)*(v(344)+(2d0/3d0)*v(353)+v(380))+v(521)*v(548)) v(550)=v(510)+mpar(1)*(v(129)*(v(343)+(2d0/3d0)*v(352)+v(379))+v(520)*v(548)) v(549)=v(508)+mpar(1)*(v(129)*(v(342)+(2d0/3d0)*v(351)+v(378))+v(519)*v(548)) v(547)=v(517)+mpar(1)*(v(129)*(v(350)+v(368)+(2d0/3d0)*v(377))+v(527)*v(538)) v(546)=v(516)+mpar(1)*(v(129)*(v(349)+v(367)+(2d0/3d0)*v(376))+v(526)*v(538)) v(545)=v(515)+mpar(1)*(v(129)*(v(348)+v(366)+(2d0/3d0)*v(375))+v(525)*v(538)) v(544)=v(514)+mpar(1)*(v(129)*(v(347)+v(365)+(2d0/3d0)*v(374))+v(524)*v(538)) v(543)=v(513)+mpar(1)*(v(129)*(v(346)+v(364)+(2d0/3d0)*v(373))+v(523)*v(538)) v(542)=v(512)+mpar(1)*(v(129)*(v(345)+v(363)+(2d0/3d0)*v(372))+v(522)*v(538)) v(541)=v(511)+mpar(1)*(v(129)*(v(344)+v(362)+(2d0/3d0)*v(371))+v(521)*v(538)) v(540)=v(510)+mpar(1)*(v(129)*(v(343)+v(361)+(2d0/3d0)*v(370))+v(520)*v(538)) v(539)=v(508)+mpar(1)*(v(129)*(v(342)+v(360)+(2d0/3d0)*v(369))+v(519)*v(538)) v(537)=v(517)+mpar(1)*(v(129)*((2d0/3d0)*v(341)+v(368)+v(386))+v(527)*v(528)) v(536)=v(516)+mpar(1)*(v(129)*((2d0/3d0)*v(340)+v(367)+v(385))+v(526)*v(528)) v(535)=v(515)+mpar(1)*(v(129)*((2d0/3d0)*v(339)+v(366)+v(384))+v(525)*v(528)) v(534)=v(514)+mpar(1)*(v(129)*((2d0/3d0)*v(338)+v(365)+v(383))+v(524)*v(528)) v(533)=v(513)+mpar(1)*(v(129)*((2d0/3d0)*v(337)+v(364)+v(382))+v(523)*v(528)) v(532)=v(512)+mpar(1)*(v(129)*((2d0/3d0)*v(336)+v(363)+v(381))+v(522)*v(528)) v(531)=v(511)+mpar(1)*(v(129)*((2d0/3d0)*v(335)+v(362)+v(380))+v(521)*v(528)) v(530)=v(510)+mpar(1)*(v(129)*((2d0/3d0)*v(334)+v(361)+v(379))+v(520)*v(528)) v(529)=v(508)+mpar(1)*(v(129)*((2d0/3d0)*v(333)+v(360)+v(378))+v(519)*v(528)) v(152)=v(130)+v(528)*v(970) v(977)=v(139)*v(152) v(974)=v(151)*v(152) v(147)=v(130)+v(538)*v(970) v(973)=v(147)*v(150) v(972)=v(146)*v(147) v(142)=v(130)+v(548)*v(970) v(976)=v(142)*v(145) v(613)=mpar(1)*(v(395)*v(518)+v(118)*v(577)) v(612)=mpar(1)*(v(394)*v(518)+v(118)*v(576)) v(611)=mpar(1)*(v(393)*v(518)+v(118)*v(575)) v(610)=mpar(1)*(v(392)*v(518)+v(118)*v(574)) v(609)=mpar(1)*(v(391)*v(518)+v(118)*v(573)) v(608)=mpar(1)*(v(390)*v(518)+v(118)*v(572)) v(607)=mpar(1)*(v(389)*v(518)+v(118)*v(571)) v(606)=mpar(1)*(v(388)*v(518)+v(118)*v(570)) v(605)=mpar(1)*(v(387)*v(518)+v(118)*v(568)) v(604)=mpar(1)*(v(458)*v(518)+v(151)*v(577)) v(603)=mpar(1)*(v(457)*v(518)+v(151)*v(576)) v(602)=mpar(1)*(v(456)*v(518)+v(151)*v(575)) v(601)=mpar(1)*(v(455)*v(518)+v(151)*v(574)) v(600)=mpar(1)*(v(454)*v(518)+v(151)*v(573)) v(599)=mpar(1)*(v(453)*v(518)+v(151)*v(572)) v(598)=mpar(1)*(v(452)*v(518)+v(151)*v(571)) v(597)=mpar(1)*(v(451)*v(518)+v(151)*v(570)) v(596)=mpar(1)*(v(450)*v(518)+v(151)*v(568)) v(595)=mpar(1)*(v(422)*v(518)+v(119)*v(577)) v(594)=mpar(1)*(v(421)*v(518)+v(119)*v(576)) v(593)=mpar(1)*(v(420)*v(518)+v(119)*v(575)) v(592)=mpar(1)*(v(419)*v(518)+v(119)*v(574)) v(591)=mpar(1)*(v(418)*v(518)+v(119)*v(573)) v(590)=mpar(1)*(v(417)*v(518)+v(119)*v(572)) v(589)=mpar(1)*(v(416)*v(518)+v(119)*v(571)) v(588)=mpar(1)*(v(415)*v(518)+v(119)*v(570)) v(587)=mpar(1)*(v(414)*v(518)+v(119)*v(568)) v(586)=mpar(1)*(v(449)*v(518)+v(120)*v(577)) v(585)=mpar(1)*(v(448)*v(518)+v(120)*v(576)) v(584)=mpar(1)*(v(447)*v(518)+v(120)*v(575)) v(583)=mpar(1)*(v(446)*v(518)+v(120)*v(574)) v(582)=mpar(1)*(v(445)*v(518)+v(120)*v(573)) v(581)=mpar(1)*(v(444)*v(518)+v(120)*v(572)) v(580)=mpar(1)*(v(443)*v(518)+v(120)*v(571)) v(579)=mpar(1)*(v(442)*v(518)+v(120)*v(570)) v(578)=mpar(1)*(v(441)*v(518)+v(120)*v(568)) v(149)=v(120)*v(971) v(144)=v(119)*v(971) v(685)=v(149)*v(476)+v(144)*v(494)+(v(147)*v(467)+v(146)*v(547))/v(123)+v(141)*v(586)+v(145)*v(595)+v(567)*v(972) v(684)=v(149)*v(475)+v(144)*v(493)+(v(147)*v(466)+v(146)*v(546))/v(123)+v(141)*v(585)+v(145)*v(594)+v(566)*v(972) v(683)=v(149)*v(474)+v(144)*v(492)+(v(147)*v(465)+v(146)*v(545))/v(123)+v(141)*v(584)+v(145)*v(593)+v(565)*v(972) v(682)=v(149)*v(473)+v(144)*v(491)+(v(147)*v(464)+v(146)*v(544))/v(123)+v(141)*v(583)+v(145)*v(592)+v(564)*v(972) v(681)=v(149)*v(472)+v(144)*v(490)+(v(147)*v(463)+v(146)*v(543))/v(123)+v(141)*v(582)+v(145)*v(591)+v(563)*v(972) v(680)=v(149)*v(471)+v(144)*v(489)+(v(147)*v(462)+v(146)*v(542))/v(123)+v(141)*v(581)+v(145)*v(590)+v(562)*v(972) v(679)=v(149)*v(470)+v(144)*v(488)+(v(147)*v(461)+v(146)*v(541))/v(123)+v(141)*v(580)+v(145)*v(589)+v(561)*v(972) v(678)=v(149)*v(469)+v(144)*v(487)+(v(147)*v(460)+v(146)*v(540))/v(123)+v(141)*v(579)+v(145)*v(588)+v(560)*v(972) v(677)=v(149)*v(468)+v(144)*v(486)+(v(147)*v(459)+v(146)*v(539))/v(123)+v(141)*v(578)+v(145)*v(587)+v(558)*v(972) v(622)=v(144)*v(467)+v(146)*v(595) v(621)=v(144)*v(466)+v(146)*v(594) v(620)=v(144)*v(465)+v(146)*v(593) v(619)=v(144)*v(464)+v(146)*v(592) v(618)=v(144)*v(463)+v(146)*v(591) v(617)=v(144)*v(462)+v(146)*v(590) v(616)=v(144)*v(461)+v(146)*v(589) v(615)=v(144)*v(460)+v(146)*v(588) v(614)=v(144)*v(459)+v(146)*v(587) v(140)=v(151)*v(971) v(631)=v(140)*v(449)+v(120)*v(604) v(667)=(v(147)*v(413)+v(150)*v(547))/v(123)+v(622)+v(631)+v(567)*v(973) v(630)=v(140)*v(448)+v(120)*v(603) v(666)=(v(147)*v(412)+v(150)*v(546))/v(123)+v(621)+v(630)+v(566)*v(973) v(629)=v(140)*v(447)+v(120)*v(602) v(665)=(v(147)*v(411)+v(150)*v(545))/v(123)+v(620)+v(629)+v(565)*v(973) v(628)=v(140)*v(446)+v(120)*v(601) v(664)=(v(147)*v(410)+v(150)*v(544))/v(123)+v(619)+v(628)+v(564)*v(973) v(627)=v(140)*v(445)+v(120)*v(600) v(663)=(v(147)*v(409)+v(150)*v(543))/v(123)+v(618)+v(627)+v(563)*v(973) v(626)=v(140)*v(444)+v(120)*v(599) v(662)=(v(147)*v(408)+v(150)*v(542))/v(123)+v(617)+v(626)+v(562)*v(973) v(625)=v(140)*v(443)+v(120)*v(598) v(661)=(v(147)*v(407)+v(150)*v(541))/v(123)+v(616)+v(625)+v(561)*v(973) v(624)=v(140)*v(442)+v(120)*v(597) v(660)=(v(147)*v(406)+v(150)*v(540))/v(123)+v(615)+v(624)+v(560)*v(973) v(623)=v(140)*v(441)+v(120)*v(596) v(659)=(v(147)*v(405)+v(150)*v(539))/v(123)+v(614)+v(623)+v(558)*v(973) v(138)=v(118)*v(971) v(724)=v(149)*v(413)+v(138)*v(467)+(v(152)*v(458)+v(151)*v(537))/v(123)+v(150)*v(586)+v(146)*v(613)+v(567)*v(974) v(723)=v(149)*v(412)+v(138)*v(466)+(v(152)*v(457)+v(151)*v(536))/v(123)+v(150)*v(585)+v(146)*v(612)+v(566)*v(974) v(722)=v(149)*v(411)+v(138)*v(465)+(v(152)*v(456)+v(151)*v(535))/v(123)+v(150)*v(584)+v(146)*v(611)+v(565)*v(974) v(721)=v(149)*v(410)+v(138)*v(464)+(v(152)*v(455)+v(151)*v(534))/v(123)+v(150)*v(583)+v(146)*v(610)+v(564)*v(974) v(720)=v(149)*v(409)+v(138)*v(463)+(v(152)*v(454)+v(151)*v(533))/v(123)+v(150)*v(582)+v(146)*v(609)+v(563)*v(974) v(719)=v(149)*v(408)+v(138)*v(462)+(v(152)*v(453)+v(151)*v(532))/v(123)+v(150)*v(581)+v(146)*v(608)+v(562)*v(974) v(718)=v(149)*v(407)+v(138)*v(461)+(v(152)*v(452)+v(151)*v(531))/v(123)+v(150)*v(580)+v(146)*v(607)+v(561)*v(974) v(717)=v(149)*v(406)+v(138)*v(460)+(v(152)*v(451)+v(151)*v(530))/v(123)+v(150)*v(579)+v(146)*v(606)+v(560)*v(974) v(716)=v(149)*v(405)+v(138)*v(459)+(v(152)*v(450)+v(151)*v(529))/v(123)+v(150)*v(578)+v(146)*v(605)+v(558)*v(974) v(676)=v(140)*v(422)+v(138)*v(440)+v(142)*(v(476)/v(123)+v(141)*v(567))+v(119)*v(604)+v(139)*v(613)+v(557)*v(975) v(675)=v(140)*v(421)+v(138)*v(439)+v(142)*(v(475)/v(123)+v(141)*v(566))+v(119)*v(603)+v(139)*v(612)+v(556)*v(975) v(674)=v(140)*v(420)+v(138)*v(438)+v(142)*(v(474)/v(123)+v(141)*v(565))+v(119)*v(602)+v(139)*v(611)+v(555)*v(975) v(673)=v(140)*v(419)+v(138)*v(437)+v(142)*(v(473)/v(123)+v(141)*v(564))+v(119)*v(601)+v(139)*v(610)+v(554)*v(975) v(672)=v(140)*v(418)+v(138)*v(436)+v(142)*(v(472)/v(123)+v(141)*v(563))+v(119)*v(600)+v(139)*v(609)+v(553)*v(975) v(671)=v(140)*v(417)+v(138)*v(435)+v(142)*(v(471)/v(123)+v(141)*v(562))+v(119)*v(599)+v(139)*v(608)+v(552)*v(975) v(670)=v(140)*v(416)+v(138)*v(434)+v(142)*(v(470)/v(123)+v(141)*v(561))+v(119)*v(598)+v(139)*v(607)+v(551)*v(975) v(669)=v(140)*v(415)+v(138)*v(433)+v(142)*(v(469)/v(123)+v(141)*v(560))+v(119)*v(597)+v(139)*v(606)+v(550)*v(975) v(668)=v(140)*v(414)+v(138)*v(432)+v(142)*(v(468)/v(123)+v(141)*v(558))+v(119)*v(596)+v(139)*v(605)+v(549)*v(975) v(640)=v(138)*v(476)+v(141)*v(613) v(658)=(v(142)*v(494)+v(145)*v(557))/v(123)+v(622)+v(640)+v(567)*v(976) v(649)=(v(152)*v(440)+v(139)*v(537))/v(123)+v(631)+v(640)+v(567)*v(977) v(639)=v(138)*v(475)+v(141)*v(612) v(657)=(v(142)*v(493)+v(145)*v(556))/v(123)+v(621)+v(639)+v(566)*v(976) v(648)=(v(152)*v(439)+v(139)*v(536))/v(123)+v(630)+v(639)+v(566)*v(977) v(638)=v(138)*v(474)+v(141)*v(611) v(656)=(v(142)*v(492)+v(145)*v(555))/v(123)+v(620)+v(638)+v(565)*v(976) v(647)=(v(152)*v(438)+v(139)*v(535))/v(123)+v(629)+v(638)+v(565)*v(977) v(637)=v(138)*v(473)+v(141)*v(610) v(655)=(v(142)*v(491)+v(145)*v(554))/v(123)+v(619)+v(637)+v(564)*v(976) v(646)=(v(152)*v(437)+v(139)*v(534))/v(123)+v(628)+v(637)+v(564)*v(977) v(636)=v(138)*v(472)+v(141)*v(609) v(654)=(v(142)*v(490)+v(145)*v(553))/v(123)+v(618)+v(636)+v(563)*v(976) v(645)=(v(152)*v(436)+v(139)*v(533))/v(123)+v(627)+v(636)+v(563)*v(977) v(635)=v(138)*v(471)+v(141)*v(608) v(653)=(v(142)*v(489)+v(145)*v(552))/v(123)+v(617)+v(635)+v(562)*v(976) v(644)=(v(152)*v(435)+v(139)*v(532))/v(123)+v(626)+v(635)+v(562)*v(977) v(634)=v(138)*v(470)+v(141)*v(607) v(652)=(v(142)*v(488)+v(145)*v(551))/v(123)+v(616)+v(634)+v(561)*v(976) v(643)=(v(152)*v(434)+v(139)*v(531))/v(123)+v(625)+v(634)+v(561)*v(977) v(633)=v(138)*v(469)+v(141)*v(606) v(651)=(v(142)*v(487)+v(145)*v(550))/v(123)+v(615)+v(633)+v(560)*v(976) v(642)=(v(152)*v(433)+v(139)*v(530))/v(123)+v(624)+v(633)+v(560)*v(977) v(632)=v(138)*v(468)+v(141)*v(605) v(650)=(v(142)*v(486)+v(145)*v(549))/v(123)+v(614)+v(632)+v(558)*v(976) v(641)=(v(152)*v(432)+v(139)*v(529))/v(123)+v(623)+v(632)+v(558)*v(977) v(133)=v(144)*v(146) v(132)=v(120)*v(140) v(125)=v(138)*v(141) v(124)=v(125)+v(132)+v(977)/v(123) v(131)=v(125)+v(133)+v(976)/v(123) v(137)=v(132)+v(133)+v(973)/v(123) v(143)=v(138)*v(139)+v(119)*v(140)+v(142)*v(975) v(148)=v(144)*v(145)+v(141)*v(149)+v(972)/v(123) v(705)=v(143)*v(325)+v(131)*v(327)+v(148)*v(332) v(708)=v(113)*v(669)+v(107)*v(678)+v(705)+v(651)*v(98) v(701)=v(143)*v(324)+v(131)*v(329)+v(148)*v(331) v(714)=v(113)*v(675)+v(107)*v(684)+v(701)+v(657)*v(98) v(697)=v(143)*v(326)+v(131)*v(328)+v(148)*v(330) v(711)=v(113)*v(672)+v(107)*v(681)+v(697)+v(654)*v(98) v(692)=v(103)*v(656)+v(112)*v(683)+v(697)+v(674)*v(97) v(689)=v(103)*v(653)+v(112)*v(680)+v(705)+v(671)*v(97) v(686)=v(103)*v(650)+v(112)*v(677)+v(701)+v(668)*v(97) v(168)=v(103)*v(131)+v(112)*v(148)+v(143)*v(97) v(164)=v(114)*v(131)+v(111)*v(143)+v(148)*v(99) v(160)=v(113)*v(143)+v(107)*v(148)+v(131)*v(98) v(153)=v(138)*v(146)+v(149)*v(150)+v(974)/v(123) v(765)=v(124)*v(325)+v(143)*v(327)+v(153)*v(332) v(777)=v(113)*v(642)+v(107)*v(717)+v(765)+v(669)*v(98) v(761)=v(124)*v(324)+v(143)*v(329)+v(153)*v(331) v(783)=v(113)*v(648)+v(107)*v(723)+v(761)+v(675)*v(98) v(757)=v(124)*v(326)+v(143)*v(328)+v(153)*v(330) v(780)=v(113)*v(645)+v(107)*v(720)+v(757)+v(672)*v(98) v(753)=v(153)*v(325)+v(148)*v(327)+v(137)*v(332) v(768)=v(107)*v(660)+v(113)*v(717)+v(753)+v(678)*v(98) v(749)=v(153)*v(324)+v(148)*v(329)+v(137)*v(331) v(774)=v(107)*v(666)+v(113)*v(723)+v(749)+v(684)*v(98) v(745)=v(153)*v(326)+v(148)*v(328)+v(137)*v(330) v(771)=v(107)*v(663)+v(113)*v(720)+v(745)+v(681)*v(98) v(740)=v(112)*v(665)+v(103)*v(683)+v(745)+v(722)*v(97) v(737)=v(112)*v(662)+v(103)*v(680)+v(753)+v(719)*v(97) v(734)=v(112)*v(659)+v(103)*v(677)+v(749)+v(716)*v(97) v(731)=v(103)*v(674)+v(112)*v(722)+v(757)+v(647)*v(97) v(728)=v(103)*v(671)+v(112)*v(719)+v(765)+v(644)*v(97) v(725)=v(103)*v(668)+v(112)*v(716)+v(761)+v(641)*v(97) v(170)=v(103)*v(143)+v(112)*v(153)+v(124)*v(97) v(169)=v(112)*v(137)+v(103)*v(148)+v(153)*v(97) v(166)=v(114)*v(148)+v(111)*v(153)+v(137)*v(99) v(165)=v(111)*v(124)+v(114)*v(143)+v(153)*v(99) v(162)=v(107)*v(137)+v(113)*v(153)+v(148)*v(98) v(161)=v(113)*v(124)+v(107)*v(153)+v(143)*v(98) v(833)=v(161)*v(324)+v(160)*v(329)+v(162)*v(331) v(828)=v(161)*v(326)+v(160)*v(328)+v(162)*v(330) v(806)=v(161)*v(325)+v(160)*v(327)+v(162)*v(332) v(163)=v(103)*v(160)+v(112)*v(162)+v(161)*v(97) v(997)=v(163)*v(887) v(167)=v(113)*v(165)+v(107)*v(166)+v(164)*v(98) v(999)=v(167)*v(887) v(171)=v(114)*v(168)+v(111)*v(170)+v(169)*v(99) v(998)=v(171)*v(887) v(179)=1d0/(statev(16)*v(198)+statev(19)*v(199)+v(197)*v(904))**2 v(186)=-(v(179)*((v(197)*v(197))+(v(198)*v(198))+(v(199)*v(199)))) v(184)=1d0/v(179)**0.3333333333333333d0 v(980)=-(mpar(9)*v(184)) v(981)=v(179)*v(980) v(183)=v(179)*((v(191)*v(191))+(v(192)*v(192))+(v(195)*v(195))) v(188)=-v(183)/3d0 v(182)=-(v(179)*((v(190)*v(190))+(v(193)*v(193))+(v(194)*v(194)))) v(187)=v(182)/3d0 v(181)=v(186)/3d0 v(202)=1d0/(statev(25)*v(221)+statev(28)*v(222)+v(220)*v(916))**2 v(209)=-(v(202)*((v(220)*v(220))+(v(221)*v(221))+(v(222)*v(222)))) v(207)=1d0/v(202)**0.3333333333333333d0 v(978)=mpar(11)*v(207) v(979)=v(202)*v(978) v(206)=v(202)*((v(214)*v(214))+(v(215)*v(215))+(v(218)*v(218))) v(211)=-v(206)/3d0 v(205)=-(v(202)*((v(213)*v(213))+(v(216)*v(216))+(v(217)*v(217)))) v(210)=v(205)/3d0 v(204)=v(209)/3d0 v(203)=(v(204)+(2d0/3d0)*v(206)+v(210))*v(978) v(208)=(v(204)+(-2d0/3d0)*v(205)+v(211))*v(978) v(219)=(v(213)*v(214)+v(215)*v(216)+v(217)*v(218))*v(979) v(223)=(v(213)*v(220)+v(217)*v(221)+v(216)*v(222))*v(979) v(224)=(v(214)*v(220)+v(218)*v(221)+v(215)*v(222))*v(979) v(225)=v(152)-v(203)+(v(181)+(2d0/3d0)*v(183)+v(187))*v(980) v(234)=-v(225)/3d0 v(226)=v(142)-v(208)+(v(181)+(-2d0/3d0)*v(182)+v(188))*v(980) v(235)=-v(226)/3d0 v(227)=v(147)+((2d0/3d0)*v(209)-v(210)-v(211))*v(978)+((-2d0/3d0)*v(186)+v(187)+v(188))*v(980) v(232)=-v(227)/3d0 v(228)=v(118)*v(131)+v(115)*v(143)+v(120)*v(148)-v(219)+(v(190)*v(191)+v(192)*v(193)+v(194)*v(195))*v(981) v(1000)=2d0*v(228) v(229)=v(119)*v(137)+v(116)*v(148)+v(118)*v(153)-v(223)+(v(190)*v(197)+v(194)*v(198)+v(193)*v(199))*v(981) v(1001)=2d0*v(229) v(230)=v(120)*v(124)+v(119)*v(143)+v(117)*v(153)-v(224)+(v(191)*v(197)+v(195)*v(198)+v(192)*v(199))*v(981) v(1002)=2d0*v(230) v(231)=(2d0/3d0)*v(225)+v(232)+v(235) v(233)=(2d0/3d0)*v(226)+v(232)+v(234) v(236)=(2d0/3d0)*v(227)+v(234)+v(235) v(238)=1d0/sqrt(0.1d-19+2d0*v(228)**2+2d0*v(229)**2+2d0*v(230)**2+v(231)**2+v(233)**2+v(236)**2) v(319)=v(983)*v(984) v(318)=v(984)*v(985) v(313)=statev(48)*v(984) v(310)=v(984)*v(986) v(304)=statev(49)*v(984) v(296)=statev(46)*v(984) v(295)=statev(47)*v(984) v(286)=statev(41)*v(984) v(283)=statev(43)*v(984) v(282)=statev(42)*v(984) v(271)=statev(39)*v(984) v(270)=statev(38)*v(984) v(269)=statev(37)*v(984) v(245)=1d0/(statev(58)*v(255)+statev(55)*v(257)+v(254)*v(940))**2 v(880)=v(245)*(v(254)*v(260)+v(255)*v(261)+v(257)*v(262)) v(878)=v(245)*(v(253)*v(260)+v(256)*v(261)+v(258)*v(262)) v(252)=-(v(245)*((v(254)*v(254))+(v(255)*v(255))+(v(257)*v(257)))) v(250)=-(v(245)*((v(260)*v(260))+(v(261)*v(261))+(v(262)*v(262)))) v(246)=v(252)/3d0 v(247)=v(250)/3d0 v(248)=v(245)*((v(253)*v(253))+(v(256)*v(256))+(v(258)*v(258))) v(249)=1d0/v(245)**0.3333333333333333d0 v(987)=mpar(15)*v(249) v(875)=(v(246)+v(247)+(2d0/3d0)*v(248))*v(987) v(251)=-v(248)/3d0 v(877)=(v(247)+v(251)+(-2d0/3d0)*v(252))*v(987) v(876)=(v(246)+(-2d0/3d0)*v(250)+v(251))*v(987) v(259)=(-2d0)*v(987) v(267)=1d0+v(238)*(-(v(231)*v(875))-v(233)*v(876)-v(236)*v(877)+v(259)*(v(230)*v(245)*(v(253)*v(254)+v(255)*v(256)+v& &(257)*v(258))+v(228)*v(878)+v(229)*v(880))) v(1003)=3d0*v(267) v(988)=0.15d1*v(267) v(268)=(statev(41)*v(269)+statev(42)*v(270)+statev(43)*v(271)+v(951)*v(952)+v(953)*(v(950)+v(954)))*v(988) v(273)=(statev(44)*v(269)+statev(45)*v(270)+statev(46)*v(271)+v(951)*v(953)+v(952)*(v(949)+v(954)))*v(988) v(274)=(statev(47)*v(270)+statev(48)*v(271)+statev(37)*v(284)+mpar(14)*(statev(44)*v(952)+statev(41)*v(953)+statev(37& &)*v(954)))*v(988) v(275)=(statev(47)*v(269)+statev(49)*v(271)+statev(38)*v(287)+mpar(14)*(statev(45)*v(952)+statev(42)*v(953)+statev(38& &)*v(954)))*v(988) v(276)=(statev(48)*v(269)+statev(49)*v(270)+statev(39)*v(289)+mpar(14)*(statev(46)*v(952)+statev(43)*v(953)+statev(39& &)*v(954)))*v(988) v(281)=(statev(45)*v(282)+statev(46)*v(283)+statev(44)*v(286)+(v(949)+v(950))*v(951)+v(952)*v(953))*v(988) v(285)=(statev(47)*v(282)+statev(48)*v(283)+statev(41)*v(284)+mpar(14)*(statev(41)*v(950)+statev(44)*v(951)+statev(37& &)*v(953)))*v(988) v(288)=(statev(49)*v(283)+statev(47)*v(286)+statev(42)*v(287)+mpar(14)*(statev(42)*v(950)+statev(45)*v(951)+statev(38& &)*v(953)))*v(988) v(290)=(statev(49)*v(282)+statev(48)*v(286)+statev(43)*v(289)+mpar(14)*(statev(43)*v(950)+statev(46)*v(951)+statev(39& &)*v(953)))*v(988) v(294)=(statev(44)*v(284)+statev(45)*v(295)+statev(48)*v(296)+mpar(14)*(statev(44)*v(949)+statev(41)*v(951)+statev(37& &)*v(952)))*v(988) v(297)=(statev(45)*v(287)+statev(44)*v(295)+statev(49)*v(296)+mpar(14)*(statev(45)*v(949)+statev(42)*v(951)+statev(38& &)*v(952)))*v(988) v(298)=(statev(46)*v(289)+statev(45)*v(304)+statev(44)*v(313)+mpar(14)*(statev(46)*v(949)+statev(43)*v(951)+statev(39& &)*v(952)))*v(988) v(305)=v(988)*(statev(47)*(v(284)+v(287))+statev(48)*v(304)+v(982)*v(989)) v(306)=v(988)*(statev(48)*(v(284)+v(289))+statev(49)*v(295)+v(982)*v(990)) v(314)=v(988)*(statev(49)*(v(287)+v(289))+statev(47)*v(313)+v(982)*v(991)) v(791)=(v(103)*v(669)+v(112)*v(717))*v(955)+v(642)*v(992)+v(651)*v(993)+v(660)*v(994)+v(678)*v(995) v(797)=(v(103)*v(670)+v(112)*v(718))*v(955)+v(643)*v(992)+v(652)*v(993)+v(661)*v(994)+v(679)*v(995) v(810)=(v(103)*v(672)+v(112)*v(720))*v(955)+v(645)*v(992)+v(654)*v(993)+v(663)*v(994)+v(681)*v(995) v(817)=(v(103)*v(673)+v(112)*v(721))*v(955)+v(646)*v(992)+v(655)*v(993)+v(664)*v(994)+v(682)*v(995) v(873)=(Fnew(8)*(v(833)+v(103)*(v(113)*v(668)+v(107)*v(677)+v(650)*v(98))+v(97)*(v(113)*v(641)+v(107)*v(716)+v(668)*v& &(98))+v(112)*(v(107)*v(659)+v(113)*v(716)+v(677)*v(98)))+Fnew(2)*(v(806)+v(103)*(v(113)*v(671)+v(107)*v(680)+v(653)*v& &(98))+v(97)*(v(113)*v(644)+v(107)*v(719)+v(671)*v(98))+v(112)*(v(107)*v(662)+v(113)*v(719)+v(680)*v(98)))+Fnew(5)*(v& &(828)+v(103)*(v(113)*v(674)+v(107)*v(683)+v(656)*v(98))+v(97)*(v(113)*v(647)+v(107)*v(722)+v(674)*v(98))+v(112)*(v(107& &)*v(665)+v(113)*v(722)+v(683)*v(98))))*v(996) v(872)=(Fnew(6)*(v(114)*v(686)+v(111)*v(725)+v(734)*v(99))+Fnew(9)*(v(114)*v(689)+v(111)*v(728)+v(737)*v(99))+Fnew(3)*& &(v(114)*v(692)+v(111)*v(731)+v(740)*v(99)))*v(996) v(832)=(v(103)*v(675)+v(112)*v(723))*v(955)+v(648)*v(992)+v(657)*v(993)+v(666)*v(994)+v(684)*v(995) v(868)=(Fnew(4)*(v(103)*v(708)+v(112)*v(768)+v(777)*v(97))+Fnew(7)*(v(103)*v(711)+v(112)*v(771)+v(780)*v(97))+Fnew(1)*& &(v(103)*v(714)+v(112)*v(774)+v(783)*v(97)))*v(996) v(840)=(v(103)*v(676)+v(112)*v(724))*v(955)+v(649)*v(992)+v(658)*v(993)+v(667)*v(994)+v(685)*v(995) v(851)=(Fnew(4)*v(791)+Fnew(7)*v(810)+Fnew(1)*v(832))*v(996) v(852)=-v(851)/4d0 v(853)=(Fnew(7)*v(797)+Fnew(1)*v(817)+Fnew(4)*v(840))*v(996) v(854)=-v(853)/4d0 v(855)=(Fnew(9)*v(791)+Fnew(3)*v(810)+Fnew(6)*v(832))*v(996) v(860)=-v(855)/4d0 sigma(1)=v(887)*(v(103)*v(168)+v(112)*v(169)+v(170)*v(97)) sigma(2)=v(887)*(v(113)*v(161)+v(107)*v(162)+v(160)*v(98)) sigma(3)=v(887)*(v(114)*v(164)+v(111)*v(165)+v(166)*v(99)) sigma(4)=v(997) sigma(5)=v(998) sigma(6)=v(999) ddsdde(1,1)=v(887)*(Fnew(1)*(v(170)*v(324)+v(168)*v(329)+v(169)*v(331)+v(103)*v(686)+v(112)*v(734)+v(725)*v(97))+Fnew(4& &)*(v(170)*v(325)+v(168)*v(327)+v(169)*v(332)+v(103)*v(689)+v(112)*v(737)+v(728)*v(97))+Fnew(7)*(v(170)*v(326)+v(168)*v& &(328)+v(169)*v(330)+v(103)*v(692)+v(112)*v(740)+v(731)*v(97))) ddsdde(1,2)=(Fnew(2)*v(791)+Fnew(5)*v(810)+Fnew(8)*v(832))*v(887) ddsdde(1,3)=(Fnew(3)*v(797)+Fnew(6)*v(817)+Fnew(9)*v(840))*v(887) ddsdde(1,4)=v(852) ddsdde(1,5)=v(854) ddsdde(1,6)=v(855)/2d0 ddsdde(2,2)=v(887)*(Fnew(2)*(v(107)*v(768)+v(113)*v(777)+v(806)+v(708)*v(98))+Fnew(5)*(v(107)*v(771)+v(113)*v(780)+v& &(828)+v(711)*v(98))+Fnew(8)*(v(107)*v(774)+v(113)*v(783)+v(833)+v(714)*v(98))) ddsdde(2,3)=v(887)*(Fnew(3)*(v(98)*(v(113)*v(670)+v(107)*v(679)+v(652)*v(98))+v(113)*(v(113)*v(643)+v(107)*v(718)+v(670& &)*v(98))+v(107)*(v(107)*v(661)+v(113)*v(718)+v(679)*v(98)))+Fnew(6)*(v(98)*(v(113)*v(673)+v(107)*v(682)+v(655)*v(98))+v& &(113)*(v(113)*v(646)+v(107)*v(721)+v(673)*v(98))+v(107)*(v(107)*v(664)+v(113)*v(721)+v(682)*v(98)))+Fnew(9)*(v(98)*(v& &(113)*v(676)+v(107)*v(685)+v(658)*v(98))+v(113)*(v(113)*v(649)+v(107)*v(724)+v(676)*v(98))+v(107)*(v(107)*v(667)+v(113& &)*v(724)+v(685)*v(98)))) ddsdde(2,4)=v(852) ddsdde(2,5)=v(853)/2d0 ddsdde(2,6)=v(860) ddsdde(3,3)=v(887)*(Fnew(3)*(v(165)*v(326)+v(164)*v(328)+v(166)*v(330)+v(99)*(v(114)*v(679)+v(111)*v(718)+v(745)+v(661& &)*v(99))+v(114)*(v(114)*v(652)+v(111)*v(670)+v(697)+v(679)*v(99))+v(111)*(v(111)*v(643)+v(114)*v(670)+v(757)+v(718)*v& &(99)))+Fnew(6)*(v(165)*v(324)+v(164)*v(329)+v(166)*v(331)+v(99)*(v(114)*v(682)+v(111)*v(721)+v(749)+v(664)*v(99))+v(114& &)*(v(114)*v(655)+v(111)*v(673)+v(701)+v(682)*v(99))+v(111)*(v(111)*v(646)+v(114)*v(673)+v(761)+v(721)*v(99)))+Fnew(9)*& &(v(165)*v(325)+v(164)*v(327)+v(166)*v(332)+v(99)*(v(114)*v(685)+v(111)*v(724)+v(753)+v(667)*v(99))+v(114)*(v(114)*v(658& &)+v(111)*v(676)+v(705)+v(685)*v(99))+v(111)*(v(111)*v(649)+v(114)*v(676)+v(765)+v(724)*v(99)))) ddsdde(3,4)=v(851)/2d0 ddsdde(3,5)=v(854) ddsdde(3,6)=v(860) ddsdde(4,4)=(v(868)+v(873))/4d0 ddsdde(4,5)=v(999)/2d0 ddsdde(4,6)=v(998)/2d0 ddsdde(5,5)=(v(868)+v(872))/4d0 ddsdde(5,6)=v(997)/2d0 ddsdde(6,6)=(v(872)+v(873))/4d0 DO i01=2,6 DO i02=1,i01-1 ddsdde(i01,i02)=ddsdde(i02,i01) ENDDO ENDDO yielding=-mpar(3)-mpar(5)*(1d0-dexp(-(mpar(4)*statev(10))))-mpar(7)*(1d0-dexp(-(mpar(6)*statev(10))))+sqrt(v(1000)*(v& &(225)*v(274)+v(226)*v(285)+v(227)*v(294)+v(1001)*v(305)+v(1002)*v(306)+v(1003)*v(228)*(v(310)+v(318)+2d0*v(947)**2+(v& &(888)+v(891)+v(894))*v(982)))+v(1001)*(v(225)*v(275)+v(226)*v(288)+v(227)*v(297)+v(1000)*v(305)+v(1002)*v(314)+v(1003& &)*v(229)*(v(310)+v(319)+2d0*v(946)**2+(v(889)+v(892)+v(895))*v(982)))+v(1002)*(v(225)*v(276)+v(226)*v(290)+v(227)*v(298& &)+v(1000)*v(306)+v(1001)*v(314)+v(1003)*v(230)*(v(318)+v(319)+2d0*v(945)**2+(v(890)+v(893)+v(896))*v(982)))+v(225)*(v& &(226)*v(268)+v(227)*v(273)+v(1000)*v(274)+v(1001)*v(275)+v(1002)*v(276)+v(225)*(v(278)+v(291)+v(954)**2+2d0*(v(888)+v& &(889)+v(890))*v(982))*v(988))+v(226)*(v(225)*v(268)+v(227)*v(281)+v(1000)*v(285)+v(1001)*v(288)+v(1002)*v(290)+v(226)*& &(v(278)+v(292)+v(950)**2+2d0*(v(891)+v(892)+v(893))*v(982))*v(988))+v(227)*(v(225)*v(273)+v(226)*v(281)+v(1000)*v(294)& &+v(1001)*v(297)+v(1002)*v(298)+v(227)*(v(291)+v(292)+v(949)**2+2d0*(v(894)+v(895)+v(896))*v(982))*v(988))) xguess(1)=0d0 xguess(2)=v(231) xguess(3)=v(233) xguess(4)=v(228) xguess(5)=v(230) xguess(6)=v(229) xguess(7)=v(203) xguess(8)=v(208) xguess(9)=v(219) xguess(10)=v(224) xguess(11)=v(223) xguess(12)=v(875) xguess(13)=v(876) xguess(14)=v(877) xguess(15)=v(878)*v(987) xguess(16)=v(880)*v(987) END SUBROUTINE !************************************************************** !* AceGen 6.702 Windows (4 May 16) * !* Co. J. Korelc 2013 4 Dec 19 21:34:42 * !************************************************************** ! User : Full professional version ! Notebook : MainFile ! Evaluation time : 82 s Mode : Optimal ! Number of formulae : 688 Method: Automatic ! Subroutine : residual size: 12652 ! Total size of Mathematica code : 12652 subexpressions ! Total size of Fortran code : 30351 bytes !******************* S U B R O U T I N E ********************** SUBROUTINE residual(x,mpar,statev,Fnew,R) USE SMSUtility IMPLICIT NONE DOUBLE PRECISION v(852),x(16),mpar(16),statev(58),Fnew(9),R(16) v(830)=1d0/mpar(16) v(829)=v(830)*x(12) v(789)=1d0/mpar(12) v(788)=1d0/mpar(10) v(756)=4d0*x(5) v(755)=4d0*x(6) v(754)=4d0*x(4) v(753)=2d0*x(3) v(749)=2d0*x(2) v(748)=2d0*x(5) v(747)=2d0*x(6) v(746)=2d0*x(4) v(743)=x(5)**2 v(742)=x(6)**2 v(741)=8d0*x(6) v(740)=x(4)**2 v(737)=mpar(14)**2 v(738)=2d0*v(737) v(732)=2d0*mpar(14) v(727)=-x(12)-x(13) v(726)=-x(7)-x(8) v(725)=2d0*v(742) v(724)=2d0*v(743) v(723)=2d0*v(740) v(722)=x(3)**2 v(721)=x(2)**2 v(720)=-x(2)-x(3) v(764)=2d0*v(720) v(745)=(v(720)*v(720)) v(744)=4d0*v(720) v(719)=dabs(x(1)) v(718)=1d0+statev(52) v(717)=1d0+statev(51) v(716)=1d0+statev(50) v(715)=1d0+statev(3) v(714)=1d0+statev(2) v(713)=1d0+statev(1) v(712)=1d0+statev(22) v(711)=1d0+statev(21) v(710)=1d0+statev(20) v(709)=1d0+statev(13) v(708)=1d0+statev(12) v(707)=1d0+statev(11) v(706)=1d0-mpar(8) v(216)=v(721)+v(722)+v(723)+v(724)+v(725)+v(745) v(225)=1d0/sqrt(v(216)) v(118)=1d0/sqrt(0.1d-19+v(216)) v(116)=statev(10)+v(719) v(117)=v(118)*x(2) v(728)=(-4d0)*v(117) v(217)=-(v(117)*x(12)) v(119)=v(118)*x(3) v(729)=(-4d0)*v(119) v(218)=-(v(119)*x(13)) v(137)=(-1d0/3d0)-v(117)*v(119) v(127)=(2d0/3d0)-(v(119)*v(119)) v(120)=v(118)*v(720) v(730)=(-4d0)*v(120) v(219)=-(v(120)*v(727)) v(144)=(-1d0/3d0)-v(119)*v(120) v(139)=(-1d0/3d0)-v(117)*v(120) v(129)=(2d0/3d0)-(v(120)*v(120)) v(121)=v(118)*x(4) v(731)=(-8d0)*v(121) v(220)=(-2d0)*v(121)*x(14) v(131)=0.5d0-(v(121)*v(121)) v(122)=v(118)*x(6) v(221)=(-2d0)*v(122)*x(16) v(133)=0.5d0-(v(122)*v(122)) v(123)=v(118)*x(5) v(222)=(-2d0)*v(123)*x(15) v(226)=-v(217)-v(218)-v(219)-v(220)-v(221)-v(222) v(157)=1d0+v(217)+v(218)+v(219)+v(220)+v(221)+v(222) v(739)=0.15d1*v(157) v(135)=0.5d0-(v(123)*v(123)) v(124)=(2d0/3d0)-(v(117)*v(117)) v(126)=((((2d0/3d0)+statev(29))*v(124)+((2d0/3d0)+statev(30))*v(127)+((2d0/3d0)+statev(31))*v(129)+4d0*(0.5d0+statev(32& &))*v(131)+4d0*(0.5d0+statev(33))*v(133)+4d0*(0.5d0+statev(34))*v(135)+2d0*((-1d0/3d0)+statev(35))*v(137)+2d0*((-1d0/3d0& &)+statev(36))*v(139)+2d0*((-1d0/3d0)+statev(40))*v(144)+v(121)*(statev(37)*v(728)+statev(41)*v(729)+statev(44)*v(730))& &+v(122)*(statev(38)*v(728)+statev(42)*v(729)+statev(45)*v(730)+statev(47)*v(731))+v(123)*((-8d0)*statev(49)*v(122)& &+statev(39)*v(728)+statev(43)*v(729)+statev(46)*v(730)+statev(48)*v(731)))*((-1d0)+dexp((-7d0)*mpar(13)*v(719))))/7d0 v(736)=-(v(121)*v(126)) v(735)=-(v(120)*v(126)) v(734)=-(v(119)*v(126)) v(733)=-(v(117)*v(126)) v(158)=(2d0/3d0)+mpar(14)*(statev(29)+v(124)*v(126)) v(170)=(2d0/3d0)+mpar(14)*(statev(30)+v(126)*v(127)) v(173)=(2d0/3d0)+mpar(14)*(statev(31)+v(126)*v(129)) v(192)=0.5d0+mpar(14)*(statev(32)+v(126)*v(131)) v(175)=v(192)*v(732) v(200)=0.5d0+mpar(14)*(statev(33)+v(126)*v(133)) v(179)=v(200)*v(732) v(208)=0.5d0+mpar(14)*(statev(34)+v(126)*v(135)) v(182)=v(208)*v(732) v(159)=(-1d0/3d0)+mpar(14)*(statev(35)+v(126)*v(137)) v(171)=(v(159)*v(159)) v(160)=(-1d0/3d0)+mpar(14)*(statev(36)+v(126)*v(139)) v(184)=(v(160)*v(160)) v(141)=statev(37)+v(121)*v(733) v(193)=(v(141)*v(141)) v(142)=statev(38)+v(122)*v(733) v(201)=(v(142)*v(142)) v(143)=statev(39)+v(123)*v(733) v(209)=(v(143)*v(143)) v(162)=(-1d0/3d0)+mpar(14)*(statev(40)+v(126)*v(144)) v(185)=(v(162)*v(162)) v(146)=statev(41)+v(121)*v(734) v(194)=(v(146)*v(146)) v(147)=statev(42)+v(122)*v(734) v(202)=(v(147)*v(147)) v(148)=statev(43)+v(123)*v(734) v(210)=(v(148)*v(148)) v(149)=statev(44)+v(121)*v(735) v(195)=(v(149)*v(149)) v(150)=statev(45)+v(122)*v(735) v(203)=(v(150)*v(150)) v(151)=statev(46)+v(123)*v(735) v(211)=(v(151)*v(151)) v(152)=statev(47)+v(122)*v(736) v(153)=statev(48)+v(123)*v(736) v(154)=statev(49)-v(122)*v(123)*v(126) v(213)=(v(154)*v(154))*v(738) v(212)=(v(153)*v(153))*v(738) v(206)=v(153)*v(738) v(204)=(v(152)*v(152))*v(738) v(197)=v(154)*v(738) v(189)=v(151)*v(738) v(188)=v(152)*v(738) v(180)=v(146)*v(738) v(177)=v(148)*v(738) v(176)=v(147)*v(738) v(165)=v(143)*v(738) v(164)=v(142)*v(738) v(163)=v(141)*v(738) v(156)=((v(158)*v(158))+v(171)+v(184)+2d0*(v(193)+v(201)+v(209))*v(737))*v(739) v(161)=(v(160)*v(162)+v(146)*v(163)+v(147)*v(164)+v(148)*v(165)+v(159)*(v(158)+v(170)))*v(739) v(750)=v(161)*x(3) v(166)=(v(159)*v(162)+v(149)*v(163)+v(150)*v(164)+v(151)*v(165)+v(160)*(v(158)+v(173)))*v(739) v(751)=v(166)*v(720) v(167)=(mpar(14)*(v(141)*v(158)+v(146)*v(159)+v(149)*v(160))+v(152)*v(164)+v(153)*v(165)+v(141)*v(175))*v(739) v(168)=(mpar(14)*(v(142)*v(158)+v(147)*v(159)+v(150)*v(160))+v(152)*v(163)+v(154)*v(165)+v(142)*v(179))*v(739) v(169)=(mpar(14)*(v(143)*v(158)+v(148)*v(159)+v(151)*v(160))+v(153)*v(163)+v(154)*v(164)+v(143)*v(182))*v(739) v(172)=((v(170)*v(170))+v(171)+v(185)+2d0*(v(194)+v(202)+v(210))*v(737))*v(739) v(174)=(v(159)*v(160)+v(162)*(v(170)+v(173))+v(150)*v(176)+v(151)*v(177)+v(149)*v(180))*v(739) v(758)=v(174)*v(720) v(178)=(mpar(14)*(v(141)*v(159)+v(149)*v(162)+v(146)*v(170))+v(146)*v(175)+v(152)*v(176)+v(153)*v(177))*v(739) v(181)=(mpar(14)*(v(142)*v(159)+v(150)*v(162)+v(147)*v(170))+v(154)*v(177)+v(147)*v(179)+v(152)*v(180))*v(739) v(183)=(mpar(14)*(v(143)*v(159)+v(151)*v(162)+v(148)*v(170))+v(154)*v(176)+v(153)*v(180)+v(148)*v(182))*v(739) v(186)=((v(173)*v(173))+v(184)+v(185)+2d0*(v(195)+v(203)+v(211))*v(737))*v(739) v(187)=(mpar(14)*(v(141)*v(160)+v(146)*v(162)+v(149)*v(173))+v(149)*v(175)+v(150)*v(188)+v(153)*v(189))*v(739) v(759)=v(187)*x(4) v(190)=(mpar(14)*(v(142)*v(160)+v(147)*v(162)+v(150)*v(173))+v(150)*v(179)+v(149)*v(188)+v(154)*v(189))*v(739) v(760)=v(190)*x(6) v(191)=(mpar(14)*(v(143)*v(160)+v(148)*v(162)+v(151)*v(173))+v(151)*v(182)+v(150)*v(197)+v(149)*v(206))*v(739) v(761)=v(191)*x(5) v(196)=(2d0*(v(192)*v(192))+v(204)+v(212)+(v(193)+v(194)+v(195))*v(737))*v(739) v(762)=4d0*v(196) v(198)=(v(152)*(v(175)+v(179))+v(153)*v(197)+(v(141)*v(142)+v(146)*v(147)+v(149)*v(150))*v(737))*v(739) v(765)=v(198)*x(4) v(199)=(v(153)*(v(175)+v(182))+v(154)*v(188)+(v(141)*v(143)+v(146)*v(148)+v(149)*v(151))*v(737))*v(739) v(763)=v(199)*x(5) v(205)=(2d0*(v(200)*v(200))+v(204)+v(213)+(v(201)+v(202)+v(203))*v(737))*v(739) v(766)=4d0*v(205) v(207)=(v(154)*(v(179)+v(182))+v(152)*v(206)+(v(142)*v(143)+v(147)*v(148)+v(150)*v(151))*v(737))*v(739) v(767)=v(207)*x(5) v(214)=(2d0*(v(208)*v(208))+v(212)+v(213)+(v(209)+v(210)+v(211))*v(737))*v(739) v(768)=4d0*v(214) v(215)=v(156)*v(721)+v(172)*v(722)+v(186)*v(745)+v(749)*(v(167)*v(746)+v(168)*v(747)+v(169)*v(748)+v(750)+v(751))+v(753& &)*(v(178)*v(746)+v(181)*v(747)+v(183)*v(748)+v(758))+v(744)*v(759)+v(744)*v(760)+v(744)*v(761)+v(740)*v(762)+v(741)*v& &(765)+v(742)*v(766)+v(741)*v(767)+v(743)*v(768)+8d0*v(763)*x(4) v(757)=-(v(215)*v(225)) v(224)=1d0/sqrt(v(215)) v(752)=v(224)/2d0 v(223)=v(752)*(v(156)*v(749)+2d0*v(750)+2d0*v(751)+v(167)*v(754)+v(168)*v(755)+v(169)*v(756)+v(757)*(-(v(117)*v(226))+x& &(12))) v(771)=v(223)*v(719) v(369)=(v(223)*v(223)) v(227)=v(752)*(v(161)*v(749)+v(172)*v(753)+v(178)*v(754)+v(181)*v(755)+v(183)*v(756)+2d0*v(758)+v(757)*(-(v(119)*v(226)& &)+x(13))) v(774)=v(227)*v(719) v(370)=(v(227)*v(227)) v(228)=v(752)*(v(166)*v(749)+v(174)*v(753)+(-(v(120)*v(226))+v(727))*v(757)+4d0*v(759)+4d0*v(760)+4d0*v(761)+v(186)*v& &(764)) v(777)=v(228)*v(719) v(371)=(v(228)*v(228)) v(229)=v(752)*(v(167)*v(749)+v(178)*v(753)+v(198)*v(755)+4d0*v(763)+v(187)*v(764)+v(757)*(-(v(121)*v(226))+x(14))+v(762& &)*x(4)) v(785)=2d0*v(229) v(770)=v(229)*v(719) v(372)=(v(229)*v(229)) v(230)=v(752)*(v(168)*v(749)+v(181)*v(753)+v(190)*v(764)+4d0*v(765)+4d0*v(767)+v(757)*(-(v(122)*v(226))+x(16))+v(766)*x& &(6)) v(786)=2d0*v(230) v(773)=v(230)*v(719) v(373)=(v(230)*v(230)) v(231)=v(752)*(v(169)*v(749)+v(183)*v(753)+v(199)*v(754)+v(207)*v(755)+v(191)*v(764)+v(757)*(-(v(123)*v(226))+x(15))+v& &(768)*x(5)) v(787)=2d0*v(231) v(769)=v(231)*v(719) v(374)=(v(231)*v(231)) v(232)=(v(719)*v(719)) v(268)=v(232)*v(374) v(267)=v(232)*v(373) v(255)=((v(227)+v(228))*v(230)+v(229)*v(231))*v(232) v(271)=v(255)*v(773) v(250)=v(232)*v(372) v(236)=((v(223)+v(227))*v(229)+v(230)*v(231))*v(232) v(252)=v(236)*v(770) v(235)=(v(229)*v(230)+(v(223)+v(228))*v(231))*v(232) v(270)=v(235)*v(769) v(233)=v(250)+v(268)+v(232)*v(369) v(239)=(v(231)*v(233)+v(228)*v(235)+v(230)*v(236))*v(719) v(274)=v(239)*v(769) v(238)=(v(229)*v(233)+v(230)*v(235)+v(227)*v(236))*v(719) v(254)=v(238)*v(770) v(234)=v(252)+v(270)+v(233)*v(771) v(242)=(v(229)*v(234)+v(227)*v(238)+v(230)*v(239))*v(719) v(258)=v(242)*v(770) v(241)=(v(231)*v(234)+v(230)*v(238)+v(228)*v(239))*v(719) v(276)=v(241)*v(769) v(237)=v(254)+v(274)+v(234)*v(771) v(245)=(v(231)*v(237)+v(228)*v(241)+v(230)*v(242))*v(719) v(280)=v(245)*v(769) v(244)=(v(229)*v(237)+v(230)*v(241)+v(227)*v(242))*v(719) v(260)=v(244)*v(770) v(240)=v(258)+v(276)+v(237)*v(771) v(243)=v(260)+v(280)+v(240)*v(771) v(772)=5040d0+v(243) v(246)=(v(231)*v(240)+v(230)*v(244)+v(228)*v(245))*v(719) v(282)=v(246)*v(769) v(247)=(v(229)*v(240)+v(227)*v(244)+v(230)*v(245))*v(719) v(285)=(7d0*(360d0*v(235)+120d0*v(239)+30d0*v(241)+6d0*v(245)+v(246))+v(719)*(v(228)*v(246)+v(230)*v(247)+v(231)*v(772)& &))/5040d0 v(265)=v(247)*v(770) v(775)=5040d0+v(265) v(287)=(2520d0*v(233)+840d0*v(234)+210d0*v(237)+42d0*v(240)+7d0*v(243)+v(282)+v(771)*v(772)+v(775))/5040d0 v(249)=(7d0*(360d0*v(236)+120d0*v(238)+30d0*v(242)+6d0*v(244)+v(247))+v(719)*(v(230)*v(246)+v(227)*v(247)+v(229)*v(772)& &))/5040d0 v(248)=statev(8)*v(249)+statev(6)*v(285)+v(287)*v(713) v(251)=v(250)+v(267)+v(232)*v(370) v(257)=(v(231)*v(236)+v(230)*v(251)+v(228)*v(255))*v(719) v(273)=v(257)*v(773) v(253)=v(252)+v(271)+v(251)*v(774) v(261)=(v(231)*v(238)+v(230)*v(253)+v(228)*v(257))*v(719) v(277)=v(261)*v(773) v(256)=v(254)+v(273)+v(253)*v(774) v(263)=(v(231)*v(242)+v(230)*v(256)+v(228)*v(261))*v(719) v(279)=v(263)*v(773) v(259)=v(258)+v(277)+v(256)*v(774) v(262)=v(260)+v(279)+v(259)*v(774) v(776)=5040d0+v(262) v(264)=(v(231)*v(244)+v(230)*v(259)+v(228)*v(263))*v(719) v(284)=(7d0*(360d0*v(255)+120d0*v(257)+30d0*v(261)+6d0*v(263)+v(264))+v(719)*(v(231)*v(247)+v(228)*v(264)+v(230)*v(776)& &))/5040d0 v(283)=v(264)*v(773) v(289)=(2520d0*v(251)+840d0*v(253)+210d0*v(256)+42d0*v(259)+7d0*v(262)+v(283)+v(775)+v(774)*v(776))/5040d0 v(266)=statev(4)*v(249)+statev(9)*v(284)+v(289)*v(714) v(269)=v(267)+v(268)+v(232)*v(371) v(272)=v(270)+v(271)+v(269)*v(777) v(275)=v(273)+v(274)+v(272)*v(777) v(278)=v(276)+v(277)+v(275)*v(777) v(281)=v(279)+v(280)+v(278)*v(777) v(291)=(5040d0+2520d0*v(269)+840d0*v(272)+210d0*v(275)+42d0*v(278)+7d0*v(281)+v(282)+v(283)+(5040d0+v(281))*v(777))& &/5040d0 v(286)=statev(5)*v(284)+statev(7)*v(285)+v(291)*v(715) v(288)=statev(9)*v(285)+statev(4)*v(287)+v(249)*v(714) v(290)=statev(7)*v(249)+statev(5)*v(289)+v(284)*v(715) v(292)=statev(8)*v(284)+statev(6)*v(291)+v(285)*v(713) v(293)=statev(5)*v(249)+statev(7)*v(287)+v(285)*v(715) v(304)=v(288)*v(290)-v(266)*v(293) v(300)=v(248)*v(286)-v(292)*v(293) v(294)=statev(6)*v(284)+statev(8)*v(289)+v(249)*v(713) v(308)=v(290)*v(292)-v(286)*v(294) v(306)=-(v(248)*v(290))+v(293)*v(294) v(305)=v(248)*v(266)-v(288)*v(294) v(295)=statev(4)*v(285)+statev(9)*v(291)+v(284)*v(714) v(310)=-(v(266)*v(292))+v(294)*v(295) v(309)=v(266)*v(286)-v(290)*v(295) v(302)=-(v(286)*v(288))+v(293)*v(295) v(301)=v(288)*v(292)-v(248)*v(295) v(296)=1d0/(v(292)*v(304)+v(286)*v(305)+v(295)*v(306)) v(297)=v(296)*(Fnew(4)*v(308)+Fnew(1)*v(309)+Fnew(7)*v(310)) v(298)=v(296)*(Fnew(2)*v(300)+Fnew(5)*v(301)+Fnew(8)*v(302)) v(299)=v(296)*(Fnew(6)*v(304)+Fnew(3)*v(305)+Fnew(9)*v(306)) v(303)=v(296)*(Fnew(4)*v(300)+Fnew(7)*v(301)+Fnew(1)*v(302)) v(307)=v(296)*(Fnew(8)*v(304)+Fnew(5)*v(305)+Fnew(2)*v(306)) v(311)=v(296)*(Fnew(9)*v(308)+Fnew(6)*v(309)+Fnew(3)*v(310)) v(312)=v(296)*(Fnew(1)*v(304)+Fnew(7)*v(305)+Fnew(4)*v(306)) v(313)=v(296)*(Fnew(2)*v(308)+Fnew(8)*v(309)+Fnew(5)*v(310)) v(314)=v(296)*(Fnew(9)*v(300)+Fnew(3)*v(301)+Fnew(6)*v(302)) v(315)=(v(297)*v(297))+(v(311)*v(311))+(v(313)*v(313)) v(335)=-v(315)/3d0 v(316)=(v(298)*v(298))+(v(303)*v(303))+(v(314)*v(314)) v(336)=-v(316)/3d0 v(317)=(v(299)*v(299))+(v(307)*v(307))+(v(312)*v(312)) v(328)=-v(317)/3d0 v(318)=v(297)*v(303)+v(298)*v(313)+v(311)*v(314) v(334)=(v(318)*v(318)) v(350)=v(315)*v(316)-v(334) v(319)=v(298)*v(307)+v(303)*v(312)+v(299)*v(314) v(322)=(v(319)*v(319)) v(339)=v(316)*v(317)-v(322) v(320)=v(299)*v(311)+v(297)*v(312)+v(307)*v(313) v(778)=v(319)*v(320) v(351)=v(318)*v(319)-v(316)*v(320) v(346)=-(v(315)*v(319))+v(318)*v(320) v(341)=-(v(317)*v(318))+v(778) v(326)=(v(320)*v(320)) v(345)=v(315)*v(317)-v(326) v(323)=-(v(315)*v(322))-v(316)*v(326)+v(317)*v(350)+2d0*v(318)*v(778) v(330)=mpar(2)*(v(323)-sqrt(v(323))) v(329)=1d0/v(323)**0.3333333333333333d0 v(779)=mpar(1)*v(329) v(352)=v(330)+((2d0/3d0)*v(315)+v(328)+v(336))*v(779) v(783)=v(352)/v(323) v(666)=-v(352)/3d0 v(360)=v(352)-x(2)-x(7) v(364)=-v(360)/3d0 v(347)=v(330)+((2d0/3d0)*v(317)+v(335)+v(336))*v(779) v(782)=v(347)/v(323) v(663)=-v(347)/3d0 v(363)=-v(347)+v(720)+v(726) v(359)=v(363)/3d0 v(342)=v(330)+((2d0/3d0)*v(316)+v(328)+v(335))*v(779) v(781)=v(342)/v(323) v(665)=-v(342)/3d0 v(358)=-v(342)+x(3)+x(8) v(362)=v(358)/3d0 v(321)=1d0/v(323)**0.13333333333333333d1 v(780)=mpar(1)*v(321) v(349)=v(320)*v(780) v(344)=v(319)*v(780) v(340)=v(351)*v(780) v(338)=v(318)*v(780) v(333)=v(344)*v(346) v(332)=v(320)*v(340) v(325)=v(338)*v(341) v(343)=v(338)*v(339)+v(319)*v(340)+v(341)*v(781) v(348)=v(344)*v(345)+v(341)*v(349)+v(346)*v(782) v(353)=v(338)*v(346)+v(349)*v(350)+v(351)*v(783) v(354)=v(315)*v(343)+v(320)*v(348)+v(318)*(v(325)+v(333)+v(345)*v(781)) v(355)=v(316)*v(348)+v(318)*v(353)+v(319)*(v(332)+v(333)+v(350)*v(782)) v(356)=v(319)*v(343)+v(317)*v(353)+v(320)*(v(325)+v(332)+v(339)*v(783)) v(357)=v(359)+(2d0/3d0)*v(360)+v(362) v(361)=(-2d0/3d0)*v(358)+v(359)+v(364) v(365)=v(362)+(-2d0/3d0)*v(363)+v(364) v(366)=v(354)-x(4)-x(9) v(367)=v(355)-x(11)-x(6) v(368)=v(356)-x(10)-x(5) v(375)=sqrt(v(369)+v(370)+v(371)+2d0*v(372)+2d0*v(373)+2d0*v(374)) v(784)=v(706)/v(375) v(387)=v(784)*(v(228)*v(726)+v(787)*x(10)+v(786)*x(11)+v(223)*x(7)+v(227)*x(8)+v(785)*x(9)) v(378)=v(784)*(v(223)*v(357)+v(227)*v(361)+v(228)*v(365)+v(366)*v(785)+v(367)*v(786)+v(368)*v(787)) v(377)=0.15d1*mpar(8)*v(375) v(376)=-v(223)+(v(357)*v(377)+v(223)*v(378))*v(788) v(792)=v(376)*v(719) v(379)=-v(227)+(v(361)*v(377)+v(227)*v(378))*v(788) v(795)=v(379)*v(719) v(380)=-v(228)+(v(365)*v(377)+v(228)*v(378))*v(788) v(798)=v(380)*v(719) v(381)=-v(229)+(v(366)*v(377)+v(229)*v(378))*v(788) v(791)=v(381)*v(719) v(410)=v(232)*(v(381)*v(381)) v(382)=-v(230)+(v(367)*v(377)+v(230)*v(378))*v(788) v(794)=v(382)*v(719) v(427)=v(232)*(v(382)*v(382)) v(383)=-v(231)+(v(368)*v(377)+v(231)*v(378))*v(788) v(790)=v(383)*v(719) v(428)=v(232)*(v(383)*v(383)) v(415)=v(232)*((v(379)+v(380))*v(382)+v(381)*v(383)) v(431)=v(415)*v(794) v(396)=v(232)*((v(376)+v(379))*v(381)+v(382)*v(383)) v(412)=v(396)*v(791) v(395)=v(232)*(v(381)*v(382)+(v(376)+v(380))*v(383)) v(430)=v(395)*v(790) v(386)=-v(223)+v(789)*(v(223)*v(387)+v(377)*x(7)) v(806)=v(386)*v(719) v(388)=-v(227)+v(789)*(v(227)*v(387)+v(377)*x(8)) v(809)=v(388)*v(719) v(389)=-v(228)+(v(228)*v(387)+v(377)*v(726))*v(789) v(812)=v(389)*v(719) v(390)=-v(229)+v(789)*(v(229)*v(387)+v(377)*x(9)) v(805)=v(390)*v(719) v(473)=v(232)*(v(390)*v(390)) v(391)=-v(230)+v(789)*(v(230)*v(387)+v(377)*x(11)) v(808)=v(391)*v(719) v(490)=v(232)*(v(391)*v(391)) v(392)=-v(231)+v(789)*(v(231)*v(387)+v(377)*x(10)) v(804)=v(392)*v(719) v(491)=v(232)*(v(392)*v(392)) v(478)=v(232)*((v(388)+v(389))*v(391)+v(390)*v(392)) v(494)=v(478)*v(808) v(459)=v(232)*((v(386)+v(388))*v(390)+v(391)*v(392)) v(475)=v(459)*v(805) v(458)=v(232)*(v(390)*v(391)+(v(386)+v(389))*v(392)) v(493)=v(458)*v(804) v(393)=v(232)*(v(376)*v(376))+v(410)+v(428) v(399)=(v(383)*v(393)+v(380)*v(395)+v(382)*v(396))*v(719) v(434)=v(399)*v(790) v(398)=(v(381)*v(393)+v(382)*v(395)+v(379)*v(396))*v(719) v(414)=v(398)*v(791) v(394)=v(412)+v(430)+v(393)*v(792) v(402)=(v(381)*v(394)+v(379)*v(398)+v(382)*v(399))*v(719) v(418)=v(402)*v(791) v(401)=(v(383)*v(394)+v(382)*v(398)+v(380)*v(399))*v(719) v(436)=v(401)*v(790) v(397)=v(414)+v(434)+v(394)*v(792) v(405)=(v(383)*v(397)+v(380)*v(401)+v(382)*v(402))*v(719) v(440)=v(405)*v(790) v(404)=(v(381)*v(397)+v(382)*v(401)+v(379)*v(402))*v(719) v(420)=v(404)*v(791) v(400)=v(418)+v(436)+v(397)*v(792) v(403)=v(420)+v(440)+v(400)*v(792) v(793)=5040d0+v(403) v(406)=(v(383)*v(400)+v(382)*v(404)+v(380)*v(405))*v(719) v(442)=v(406)*v(790) v(407)=(v(381)*v(400)+v(379)*v(404)+v(382)*v(405))*v(719) v(445)=(7d0*(360d0*v(395)+120d0*v(399)+30d0*v(401)+6d0*v(405)+v(406))+v(719)*(v(380)*v(406)+v(382)*v(407)+v(383)*v(793)& &))/5040d0 v(425)=v(407)*v(791) v(796)=5040d0+v(425) v(447)=(2520d0*v(393)+840d0*v(394)+210d0*v(397)+42d0*v(400)+7d0*v(403)+v(442)+v(792)*v(793)+v(796))/5040d0 v(409)=(7d0*(360d0*v(396)+120d0*v(398)+30d0*v(402)+6d0*v(404)+v(407))+v(719)*(v(382)*v(406)+v(379)*v(407)+v(381)*v(793)& &))/5040d0 v(408)=statev(18)*v(409)+statev(16)*v(445)+v(447)*v(707) v(411)=v(232)*(v(379)*v(379))+v(410)+v(427) v(417)=(v(383)*v(396)+v(382)*v(411)+v(380)*v(415))*v(719) v(433)=v(417)*v(794) v(413)=v(412)+v(431)+v(411)*v(795) v(421)=(v(383)*v(398)+v(382)*v(413)+v(380)*v(417))*v(719) v(437)=v(421)*v(794) v(416)=v(414)+v(433)+v(413)*v(795) v(423)=(v(383)*v(402)+v(382)*v(416)+v(380)*v(421))*v(719) v(439)=v(423)*v(794) v(419)=v(418)+v(437)+v(416)*v(795) v(422)=v(420)+v(439)+v(419)*v(795) v(797)=5040d0+v(422) v(424)=(v(383)*v(404)+v(382)*v(419)+v(380)*v(423))*v(719) v(444)=(7d0*(360d0*v(415)+120d0*v(417)+30d0*v(421)+6d0*v(423)+v(424))+v(719)*(v(383)*v(407)+v(380)*v(424)+v(382)*v(797)& &))/5040d0 v(443)=v(424)*v(794) v(449)=(2520d0*v(411)+840d0*v(413)+210d0*v(416)+42d0*v(419)+7d0*v(422)+v(443)+v(796)+v(795)*v(797))/5040d0 v(426)=statev(14)*v(409)+statev(19)*v(444)+v(449)*v(708) v(429)=v(232)*(v(380)*v(380))+v(427)+v(428) v(432)=v(430)+v(431)+v(429)*v(798) v(435)=v(433)+v(434)+v(432)*v(798) v(438)=v(436)+v(437)+v(435)*v(798) v(441)=v(439)+v(440)+v(438)*v(798) v(451)=(5040d0+2520d0*v(429)+840d0*v(432)+210d0*v(435)+42d0*v(438)+7d0*v(441)+v(442)+v(443)+(5040d0+v(441))*v(798))& &/5040d0 v(446)=statev(15)*v(444)+statev(17)*v(445)+v(451)*v(709) v(813)=(-2d0)*v(446) v(448)=statev(19)*v(445)+statev(14)*v(447)+v(409)*v(708) v(820)=v(426)*v(448) v(818)=v(408)*v(448) v(450)=statev(17)*v(409)+statev(15)*v(449)+v(444)*v(709) v(817)=v(448)*v(450) v(799)=v(446)*v(450) v(542)=v(408)*v(799) v(536)=v(448)*v(799) v(452)=statev(18)*v(444)+statev(16)*v(451)+v(445)*v(707) v(825)=v(408)*v(452) v(453)=statev(15)*v(409)+statev(17)*v(447)+v(445)*v(709) v(814)=-(v(450)*v(453)) v(566)=-(v(426)*v(453))+v(817) v(557)=v(408)*v(446)-v(452)*v(453) v(454)=statev(16)*v(444)+statev(18)*v(449)+v(409)*v(707) v(819)=v(408)*v(454) v(801)=v(448)*v(454) v(800)=v(453)*v(454) v(565)=v(408)*v(426)-v(801) v(564)=-(v(408)*v(450))+v(800) v(826)=(v(564)*v(564))+(v(565)*v(565))+(v(566)*v(566)) v(558)=v(450)*v(452)-v(446)*v(454) v(541)=v(452)*v(800) v(539)=v(452)*v(801) v(455)=statev(14)*v(445)+statev(19)*v(451)+v(444)*v(708) v(824)=v(448)*v(455) v(803)=v(453)*v(455) v(802)=v(408)*v(455) v(562)=-(v(426)*v(452))+v(454)*v(455) v(561)=v(448)*v(452)-v(802) v(560)=-(v(446)*v(448))+v(803) v(559)=v(426)*v(446)-v(450)*v(455) v(538)=v(426)*v(802) v(535)=v(426)*v(803) v(530)=(-2d0)*v(452)*v(455) v(456)=v(232)*(v(386)*v(386))+v(473)+v(491) v(462)=(v(392)*v(456)+v(389)*v(458)+v(391)*v(459))*v(719) v(497)=v(462)*v(804) v(461)=(v(390)*v(456)+v(391)*v(458)+v(388)*v(459))*v(719) v(477)=v(461)*v(805) v(457)=v(475)+v(493)+v(456)*v(806) v(465)=(v(390)*v(457)+v(388)*v(461)+v(391)*v(462))*v(719) v(481)=v(465)*v(805) v(464)=(v(392)*v(457)+v(391)*v(461)+v(389)*v(462))*v(719) v(499)=v(464)*v(804) v(460)=v(477)+v(497)+v(457)*v(806) v(468)=(v(392)*v(460)+v(389)*v(464)+v(391)*v(465))*v(719) v(503)=v(468)*v(804) v(467)=(v(390)*v(460)+v(391)*v(464)+v(388)*v(465))*v(719) v(483)=v(467)*v(805) v(463)=v(481)+v(499)+v(460)*v(806) v(466)=v(483)+v(503)+v(463)*v(806) v(807)=5040d0+v(466) v(469)=(v(392)*v(463)+v(391)*v(467)+v(389)*v(468))*v(719) v(505)=v(469)*v(804) v(470)=(v(390)*v(463)+v(388)*v(467)+v(391)*v(468))*v(719) v(508)=(7d0*(360d0*v(458)+120d0*v(462)+30d0*v(464)+6d0*v(468)+v(469))+v(719)*(v(389)*v(469)+v(391)*v(470)+v(392)*v(807)& &))/5040d0 v(488)=v(470)*v(805) v(810)=5040d0+v(488) v(510)=(2520d0*v(456)+840d0*v(457)+210d0*v(460)+42d0*v(463)+7d0*v(466)+v(505)+v(806)*v(807)+v(810))/5040d0 v(472)=(7d0*(360d0*v(459)+120d0*v(461)+30d0*v(465)+6d0*v(467)+v(470))+v(719)*(v(391)*v(469)+v(388)*v(470)+v(390)*v(807)& &))/5040d0 v(471)=statev(27)*v(472)+statev(25)*v(508)+v(510)*v(710) v(474)=v(232)*(v(388)*v(388))+v(473)+v(490) v(480)=(v(392)*v(459)+v(391)*v(474)+v(389)*v(478))*v(719) v(496)=v(480)*v(808) v(476)=v(475)+v(494)+v(474)*v(809) v(484)=(v(392)*v(461)+v(391)*v(476)+v(389)*v(480))*v(719) v(500)=v(484)*v(808) v(479)=v(477)+v(496)+v(476)*v(809) v(486)=(v(392)*v(465)+v(391)*v(479)+v(389)*v(484))*v(719) v(502)=v(486)*v(808) v(482)=v(481)+v(500)+v(479)*v(809) v(485)=v(483)+v(502)+v(482)*v(809) v(811)=5040d0+v(485) v(487)=(v(392)*v(467)+v(391)*v(482)+v(389)*v(486))*v(719) v(507)=(7d0*(360d0*v(478)+120d0*v(480)+30d0*v(484)+6d0*v(486)+v(487))+v(719)*(v(392)*v(470)+v(389)*v(487)+v(391)*v(811)& &))/5040d0 v(506)=v(487)*v(808) v(512)=(2520d0*v(474)+840d0*v(476)+210d0*v(479)+42d0*v(482)+7d0*v(485)+v(506)+v(810)+v(809)*v(811))/5040d0 v(489)=statev(23)*v(472)+statev(28)*v(507)+v(512)*v(711) v(492)=v(232)*(v(389)*v(389))+v(490)+v(491) v(495)=v(493)+v(494)+v(492)*v(812) v(498)=v(496)+v(497)+v(495)*v(812) v(501)=v(499)+v(500)+v(498)*v(812) v(504)=v(502)+v(503)+v(501)*v(812) v(514)=(5040d0+2520d0*v(492)+840d0*v(495)+210d0*v(498)+42d0*v(501)+7d0*v(504)+v(505)+v(506)+(5040d0+v(504))*v(812))& &/5040d0 v(509)=statev(24)*v(507)+statev(26)*v(508)+v(514)*v(712) v(511)=statev(28)*v(508)+statev(23)*v(510)+v(472)*v(711) v(513)=statev(26)*v(472)+statev(24)*v(512)+v(507)*v(712) v(515)=statev(27)*v(507)+statev(25)*v(514)+v(508)*v(710) v(516)=statev(24)*v(472)+statev(26)*v(510)+v(508)*v(712) v(589)=v(511)*v(513)-v(489)*v(516) v(580)=v(471)*v(509)-v(515)*v(516) v(517)=statev(25)*v(507)+statev(27)*v(512)+v(472)*v(710) v(588)=v(471)*v(489)-v(511)*v(517) v(587)=-(v(471)*v(513))+v(516)*v(517) v(581)=v(513)*v(515)-v(509)*v(517) v(518)=statev(23)*v(508)+statev(28)*v(514)+v(507)*v(711) v(585)=-(v(489)*v(515))+v(517)*v(518) v(584)=v(511)*v(515)-v(471)*v(518) v(583)=-(v(509)*v(511))+v(516)*v(518) v(582)=v(489)*v(509)-v(513)*v(518) v(519)=v(455)*v(564)+v(446)*v(565)+v(452)*v(566) v(520)=(v(408)*v(408)) v(521)=(v(446)*v(446)) v(522)=(v(448)*v(448)) v(823)=v(520)+v(522) v(523)=(v(452)*v(452)) v(815)=v(521)+v(523) v(524)=v(453)*v(813) v(525)=(v(453)*v(453)) v(822)=v(520)+v(525) v(821)=v(522)+v(525) v(526)=(v(455)*v(455)) v(816)=v(521)+v(526) v(527)=v(530)*v(818)+v(523)*v(821)+v(526)*v(822)+v(521)*v(823)+v(524)*(v(824)+v(825)) v(528)=(v(426)*v(426)) v(529)=(v(450)*v(450)) v(531)=v(450)*v(813) v(532)=(v(454)*v(454)) v(533)=(v(523)+v(526))*v(529)+v(426)*v(454)*v(530)+(v(452)*v(454)+v(426)*v(455))*v(531)+v(528)*v(815)+v(532)*v(816) v(534)=v(446)*v(535)+v(455)*v(536)+v(452)*v(538)+v(455)*v(539)+v(446)*v(541)+v(452)*v(542)+v(523)*v(814)+v(526)*v(814)& &-v(816)*v(819)-v(815)*v(820) v(537)=v(453)*v(817) v(540)=v(454)*v(818) v(543)=v(453)*v(819) v(544)=v(452)*(v(408)*(-v(814)+v(820))-v(454)*v(821))+v(455)*(v(537)+v(540)-v(426)*v(822))+v(446)*(v(543)+v(453)*v(820)& &-v(450)*v(823)) v(545)=-(v(446)*v(453)*(v(528)+v(532)))+v(450)*v(535)+v(426)*v(536)+v(454)*v(538)+v(426)*v(539)+v(450)*v(541)+v(454)*v& &(542)-v(529)*v(824)-v(532)*v(824)+(-v(528)-v(529))*v(825) v(548)=1d0/((v(545)*(v(534)*v(544)-v(527)*v(545))-v(544)*(v(533)*v(544)-v(534)*v(545))+(v(527)*v(533)-(v(534)*v(534))& &)*v(826))/v(519)**6)**0.3333333333333333d0 v(840)=-(mpar(9)*v(548)) v(546)=1d0/v(519)**2 v(842)=-(mpar(9)*v(546)*v(548)) v(841)=v(546)*v(840) v(553)=-(v(546)*v(826)) v(551)=v(533)*v(546) v(555)=-v(551)/3d0 v(550)=-(v(527)*v(546)) v(554)=v(550)/3d0 v(549)=v(553)/3d0 v(569)=1d0/(v(518)*v(587)+v(509)*v(588)+v(515)*v(589))**2 v(576)=-(v(569)*((v(587)*v(587))+(v(588)*v(588))+(v(589)*v(589)))) v(574)=1d0/v(569)**0.3333333333333333d0 v(827)=mpar(11)*v(574) v(828)=v(569)*v(827) v(573)=v(569)*((v(581)*v(581))+(v(582)*v(582))+(v(585)*v(585))) v(578)=-v(573)/3d0 v(572)=-(v(569)*((v(580)*v(580))+(v(583)*v(583))+(v(584)*v(584)))) v(577)=v(572)/3d0 v(571)=v(576)/3d0 v(570)=(v(571)+(2d0/3d0)*v(573)+v(577))*v(827) v(575)=(v(571)+(-2d0/3d0)*v(572)+v(578))*v(827) v(586)=(v(580)*v(581)+v(582)*v(583)+v(584)*v(585))*v(828) v(590)=(v(580)*v(587)+v(584)*v(588)+v(583)*v(589))*v(828) v(591)=(v(581)*v(587)+v(585)*v(588)+v(582)*v(589))*v(828) v(592)=-v(117)+v(829) v(833)=v(592)*v(719) v(593)=-v(119)+v(830)*x(13) v(836)=v(593)*v(719) v(594)=-v(120)+v(727)*v(830) v(839)=v(594)*v(719) v(595)=-v(121)+v(830)*x(14) v(832)=v(595)*v(719) v(615)=v(232)*(v(595)*v(595)) v(596)=-v(122)+v(830)*x(16) v(835)=v(596)*v(719) v(632)=v(232)*(v(596)*v(596)) v(597)=-v(123)+v(830)*x(15) v(831)=v(597)*v(719) v(633)=v(232)*(v(597)*v(597)) v(620)=v(232)*(-(v(592)*v(596))+v(595)*v(597)) v(636)=v(620)*v(835) v(601)=v(232)*(-(v(594)*v(595))+v(596)*v(597)) v(617)=v(601)*v(832) v(600)=v(232)*(v(595)*v(596)-v(593)*v(597)) v(635)=v(600)*v(831) v(598)=v(232)*(v(592)*v(592))+v(615)+v(633) v(604)=(v(597)*v(598)+v(594)*v(600)+v(596)*v(601))*v(719) v(639)=v(604)*v(831) v(603)=(v(595)*v(598)+v(596)*v(600)+v(593)*v(601))*v(719) v(619)=v(603)*v(832) v(599)=v(617)+v(635)+v(598)*v(833) v(607)=(v(595)*v(599)+v(593)*v(603)+v(596)*v(604))*v(719) v(623)=v(607)*v(832) v(606)=(v(597)*v(599)+v(596)*v(603)+v(594)*v(604))*v(719) v(641)=v(606)*v(831) v(602)=v(619)+v(639)+v(599)*v(833) v(610)=(v(597)*v(602)+v(594)*v(606)+v(596)*v(607))*v(719) v(645)=v(610)*v(831) v(609)=(v(595)*v(602)+v(596)*v(606)+v(593)*v(607))*v(719) v(625)=v(609)*v(832) v(605)=v(623)+v(641)+v(602)*v(833) v(608)=v(625)+v(645)+v(605)*v(833) v(834)=5040d0+v(608) v(611)=(v(597)*v(605)+v(596)*v(609)+v(594)*v(610))*v(719) v(647)=v(611)*v(831) v(612)=(v(595)*v(605)+v(593)*v(609)+v(596)*v(610))*v(719) v(650)=(7d0*(360d0*v(600)+120d0*v(604)+30d0*v(606)+6d0*v(610)+v(611))+v(719)*(v(594)*v(611)+v(596)*v(612)+v(597)*v(834)& &))/5040d0 v(630)=v(612)*v(832) v(837)=5040d0+v(630) v(652)=(2520d0*v(598)+840d0*v(599)+210d0*v(602)+42d0*v(605)+7d0*v(608)+v(647)+v(833)*v(834)+v(837))/5040d0 v(614)=(7d0*(360d0*v(601)+120d0*v(603)+30d0*v(607)+6d0*v(609)+v(612))+v(719)*(v(596)*v(611)+v(593)*v(612)+v(595)*v(834)& &))/5040d0 v(613)=statev(57)*v(614)+statev(55)*v(650)+v(652)*v(716) v(616)=v(232)*(v(593)*v(593))+v(615)+v(632) v(622)=(v(597)*v(601)+v(596)*v(616)+v(594)*v(620))*v(719) v(638)=v(622)*v(835) v(618)=v(617)+v(636)+v(616)*v(836) v(626)=(v(597)*v(603)+v(596)*v(618)+v(594)*v(622))*v(719) v(642)=v(626)*v(835) v(621)=v(619)+v(638)+v(618)*v(836) v(628)=(v(597)*v(607)+v(596)*v(621)+v(594)*v(626))*v(719) v(644)=v(628)*v(835) v(624)=v(623)+v(642)+v(621)*v(836) v(627)=v(625)+v(644)+v(624)*v(836) v(838)=5040d0+v(627) v(629)=(v(597)*v(609)+v(596)*v(624)+v(594)*v(628))*v(719) v(649)=(7d0*(360d0*v(620)+120d0*v(622)+30d0*v(626)+6d0*v(628)+v(629))+v(719)*(v(597)*v(612)+v(594)*v(629)+v(596)*v(838)& &))/5040d0 v(648)=v(629)*v(835) v(654)=(2520d0*v(616)+840d0*v(618)+210d0*v(621)+42d0*v(624)+7d0*v(627)+v(648)+v(837)+v(836)*v(838))/5040d0 v(631)=statev(53)*v(614)+statev(58)*v(649)+v(654)*v(717) v(634)=v(232)*(v(594)*v(594))+v(632)+v(633) v(637)=v(635)+v(636)+v(634)*v(839) v(640)=v(638)+v(639)+v(637)*v(839) v(643)=v(641)+v(642)+v(640)*v(839) v(646)=v(644)+v(645)+v(643)*v(839) v(656)=(5040d0+2520d0*v(634)+840d0*v(637)+210d0*v(640)+42d0*v(643)+7d0*v(646)+v(647)+v(648)+(5040d0+v(646))*v(839))& &/5040d0 v(651)=statev(54)*v(649)+statev(56)*v(650)+v(656)*v(718) v(653)=statev(58)*v(650)+statev(53)*v(652)+v(614)*v(717) v(655)=statev(56)*v(614)+statev(54)*v(654)+v(649)*v(718) v(657)=statev(57)*v(649)+statev(55)*v(656)+v(650)*v(716) v(658)=statev(54)*v(614)+statev(56)*v(652)+v(650)*v(718) v(701)=v(653)*v(655)-v(631)*v(658) v(693)=v(613)*v(651)-v(657)*v(658) v(659)=statev(55)*v(649)+statev(57)*v(654)+v(614)*v(716) v(702)=v(613)*v(631)-v(653)*v(659) v(700)=-(v(613)*v(655))+v(658)*v(659) v(694)=v(655)*v(657)-v(651)*v(659) v(660)=statev(53)*v(650)+statev(58)*v(656)+v(649)*v(717) v(698)=-(v(631)*v(657))+v(659)*v(660) v(697)=v(653)*v(657)-v(613)*v(660) v(696)=-(v(651)*v(653))+v(658)*v(660) v(695)=v(631)*v(651)-v(655)*v(660) v(662)=(2d0/3d0)*v(352)-v(570)+v(663)+v(665)+(v(549)+(2d0/3d0)*v(551)+v(554))*v(840) v(664)=(2d0/3d0)*v(342)-v(575)+v(663)+v(666)+(v(549)+(-2d0/3d0)*v(550)+v(555))*v(840) v(667)=(2d0/3d0)*v(347)+v(665)+v(666)+((2d0/3d0)*v(576)-v(577)-v(578))*v(827)+((-2d0/3d0)*v(553)+v(554)+v(555))*v(840) v(668)=v(354)-v(586)+v(534)*v(841) v(843)=2d0*v(668) v(669)=v(355)-v(590)+(v(557)*v(564)+v(561)*v(565)+v(560)*v(566))*v(842) v(844)=2d0*v(669) v(670)=v(356)-mpar(9)*v(546)*v(548)*(v(558)*v(564)+v(562)*v(565)+v(559)*v(566))-v(591) v(845)=2d0*v(670) v(683)=1d0/(v(660)*v(700)+v(657)*v(701)+v(651)*v(702))**2 v(690)=-(v(683)*((v(694)*v(694))+(v(695)*v(695))+(v(698)*v(698)))) v(689)=-(v(683)*((v(693)*v(693))+(v(696)*v(696))+(v(697)*v(697)))) v(687)=1d0/v(683)**0.3333333333333333d0 v(846)=-(mpar(15)*v(687)) v(847)=v(683)*v(846) v(688)=-(v(683)*((v(700)*v(700))+(v(701)*v(701))+(v(702)*v(702))))/3d0 R(1)=-mpar(3)-mpar(5)*(1d0-dexp(-(mpar(4)*v(116))))-mpar(7)*(1d0-dexp(-(mpar(6)*v(116))))+sqrt(v(662)*(v(156)*v(662)+v& &(161)*v(664)+v(166)*v(667)+v(167)*v(843)+v(168)*v(844)+v(169)*v(845))+v(664)*(v(161)*v(662)+v(172)*v(664)+v(174)*v(667)& &+v(178)*v(843)+v(181)*v(844)+v(183)*v(845))+v(667)*(v(166)*v(662)+v(174)*v(664)+v(186)*v(667)+v(187)*v(843)+v(190)*v& &(844)+v(191)*v(845))+v(843)*(v(167)*v(662)+v(178)*v(664)+v(187)*v(667)+v(196)*v(843)+v(198)*v(844)+v(199)*v(845))+v(844& &)*(v(168)*v(662)+v(181)*v(664)+v(190)*v(667)+v(198)*v(843)+v(205)*v(844)+v(207)*v(845))+v(845)*(v(169)*v(662)+v(183)*v& &(664)+v(191)*v(667)+v(199)*v(843)+v(207)*v(844)+v(214)*v(845))) R(2)=-v(662)+x(2) R(3)=-v(664)+x(3) R(4)=-v(668)+x(4) R(5)=-v(670)+x(5) R(6)=-v(669)+x(6) R(7)=-v(570)+x(7) R(8)=-v(575)+x(8) R(9)=-v(586)+x(9) R(10)=-v(591)+x(10) R(11)=-v(590)+x(11) R(12)=(v(688)+v(689)/3d0+(-2d0/3d0)*v(690))*v(846)+x(12) R(13)=(v(688)+(-2d0/3d0)*v(689)+v(690)/3d0)*v(846)+x(13) R(14)=(v(693)*v(694)+v(695)*v(696)+v(697)*v(698))*v(847)+x(14) R(15)=(v(694)*v(700)+v(695)*v(701)+v(698)*v(702))*v(847)+x(15) R(16)=(v(693)*v(700)+v(696)*v(701)+v(697)*v(702))*v(847)+x(16) END SUBROUTINE !************************************************************** !* AceGen 6.702 Windows (4 May 16) * !* Co. J. Korelc 2013 16 Nov 19 16:43:05 * !************************************************************** ! User : Full professional version ! Notebook : MainFile ! Evaluation time : 1521 s Mode : Optimal ! Number of formulae : 7595 Method: Automatic ! Subroutine : jacobian size: 212632 ! Total size of Mathematica code : 212632 subexpressions ! Total size of Fortran code : 514647 bytes !******************* S U B R O U T I N E ********************** SUBROUTINE jacobian(x,mpar,statev,Fnew,dRdX) USE SMSUtility IMPLICIT NONE DOUBLE PRECISION v(8244),x(16),mpar(16),statev(58),Fnew(9),dRdX(16,16) v(7996)=1d0/mpar(10) v(7994)=1d0/mpar(12) v(7993)=2d0*x(10) v(7992)=2d0*x(11) v(7991)=2d0*x(9) v(7790)=0.15d1*mpar(8) v(7702)=8d0*x(5)*x(6) v(7692)=8d0*x(4) v(7704)=v(7692)*x(6) v(7703)=v(7692)*x(5) v(7689)=2d0*x(5) v(7688)=2d0*x(4) v(7686)=x(5)**2 v(7696)=4d0*v(7686) v(7684)=x(6)**2 v(7694)=4d0*v(7684) v(7682)=x(4)**2 v(7691)=4d0*v(7682) v(7665)=2d0*x(6) v(7646)=mpar(14)**2 v(7655)=4d0*v(7646) v(7654)=2d0*v(7646) v(7585)=2d0*mpar(14) v(7555)=(-8d0)*statev(48) v(7549)=(-8d0)*statev(47) v(7535)=2d0*x(15) v(7534)=2d0*x(16) v(7533)=2d0*x(14) v(7532)=-x(12)-x(13) v(7531)=-x(7)-x(8) v(7530)=2d0*v(7684) v(7529)=2d0*v(7686) v(7528)=2d0*v(7682) v(7527)=x(3)**2 v(7526)=x(2)**2 v(7525)=2d0*x(2) v(7524)=2d0*x(3) v(7523)=-x(2)-x(3) v(7687)=(v(7523)*v(7523)) v(7522)=dabs(x(1)) v(8118)=2d0*v(7522) v(7521)=4d0*x(6) v(7716)=v(7521)*x(3) v(7698)=v(7521)*v(7523) v(7520)=4d0*x(5) v(7712)=v(7520)*x(3) v(7697)=v(7520)*v(7523) v(7519)=4d0*x(4) v(7717)=v(7519)*x(3) v(7699)=v(7519)*v(7523) v(7518)=dsign(1.d0,x(1)) v(7517)=1d0+statev(52) v(7516)=1d0+statev(51) v(7515)=1d0+statev(50) v(7514)=1d0+statev(3) v(7513)=1d0+statev(2) v(7512)=1d0+statev(1) v(7511)=1d0+statev(22) v(7510)=1d0+statev(21) v(7509)=1d0+statev(20) v(7508)=1d0+statev(13) v(7507)=1d0+statev(12) v(7506)=1d0+statev(11) v(7505)=(-1d0/3d0)+statev(40) v(7561)=2d0*v(7505) v(7504)=(-1d0/3d0)+statev(36) v(7560)=2d0*v(7504) v(7503)=(-1d0/3d0)+statev(35) v(7559)=2d0*v(7503) v(7502)=0.5d0+statev(34) v(7558)=4d0*v(7502) v(7501)=0.5d0+statev(33) v(7557)=4d0*v(7501) v(7500)=0.5d0+statev(32) v(7556)=4d0*v(7500) v(7499)=(2d0/3d0)+statev(31) v(7498)=(2d0/3d0)+statev(30) v(7497)=(2d0/3d0)+statev(29) v(7496)=1d0/mpar(16) v(7495)=1d0-mpar(8) v(6592)=v(7496)*v(7522) v(8164)=5040d0*v(6592) v(1738)=v(7518)*v(8118) v(821)=dexp((-7d0)*mpar(13)*v(7522)) v(824)=(-1d0)+v(821) v(7551)=v(824)/7d0 v(680)=(-2d0)*v(7523) v(7715)=-(v(680)*x(3)) v(681)=v(680)+v(7524) v(679)=v(680)+v(7525) v(216)=v(7526)+v(7527)+v(7528)+v(7529)+v(7530)+v(7687) v(693)=0.1d-19+v(216) v(692)=1d0/sqrt(v(693)) v(695)=-v(692)/(2d0*v(693)) v(699)=v(695)*v(7521) v(768)=v(699)*x(4) v(6768)=-(v(7522)*v(768)) v(891)=v(7549)*v(768) v(737)=v(699)*v(7523) v(714)=v(699)*x(3) v(704)=v(699)*x(2) v(698)=v(695)*v(7520) v(782)=v(698)*x(6) v(6771)=-(v(7522)*v(782)) v(8169)=720d0*v(6771) v(767)=v(698)*x(4) v(7562)=2d0*v(767) v(6604)=-(v(7522)*v(767)) v(880)=v(7555)*v(767) v(736)=v(698)*v(7523) v(713)=v(698)*x(3) v(703)=v(698)*x(2) v(697)=v(695)*v(7519) v(735)=v(697)*v(7523) v(712)=v(697)*x(3) v(702)=v(697)*x(2) v(696)=v(681)*v(695) v(796)=v(696)*x(5) v(781)=v(696)*x(6) v(765)=v(696)*x(4) v(701)=v(696)*x(2) v(694)=v(679)*v(695) v(795)=v(694)*x(5) v(780)=v(694)*x(6) v(764)=v(694)*x(4) v(710)=v(694)*x(3) v(685)=1d0/sqrt(v(216)) v(687)=-v(685)/(2d0*v(216)) v(691)=v(687)*v(7521) v(690)=v(687)*v(7520) v(689)=v(687)*v(7519) v(688)=v(681)*v(687) v(686)=v(679)*v(687) v(797)=v(692)+v(698)*x(5) v(783)=v(692)+v(699)*x(6) v(766)=v(692)+v(697)*x(4) v(734)=-v(692)+v(696)*v(7523) v(733)=-v(692)+v(694)*v(7523) v(711)=v(692)+v(696)*x(3) v(700)=v(692)+v(694)*x(2) v(808)=v(737)*v(7532)+v(7533)*v(768)+v(7535)*v(782)+v(7534)*v(783)+v(704)*x(12)+v(714)*x(13) v(807)=v(736)*v(7532)+v(7533)*v(767)+v(7534)*v(782)+v(7535)*v(797)+v(703)*x(12)+v(713)*x(13) v(806)=v(735)*v(7532)+v(7533)*v(766)+v(7535)*v(767)+v(7534)*v(768)+v(702)*x(12)+v(712)*x(13) v(805)=v(734)*v(7532)+v(7533)*v(765)+v(7534)*v(781)+v(7535)*v(796)+v(701)*x(12)+v(711)*x(13) v(804)=v(733)*v(7532)+v(7533)*v(764)+v(7534)*v(780)+v(7535)*v(795)+v(700)*x(12)+v(710)*x(13) v(116)=statev(10)+v(7522) v(117)=v(692)*x(2) v(7537)=(-2d0)*v(117) v(7536)=(-4d0)*v(117) v(893)=statev(38)*v(7536) v(881)=statev(39)*v(7536) v(869)=statev(37)*v(7536) v(820)=v(704)*v(7537) v(819)=v(703)*v(7537) v(818)=v(702)*v(7537) v(817)=v(701)*v(7537) v(816)=v(700)*v(7537) v(217)=-(v(117)*x(12)) v(119)=v(692)*x(3) v(7539)=(-2d0)*v(119) v(7538)=(-4d0)*v(119) v(894)=statev(42)*v(7538) v(882)=statev(43)*v(7538) v(870)=statev(41)*v(7538) v(732)=v(714)*v(7539) v(731)=v(713)*v(7539) v(730)=v(712)*v(7539) v(729)=v(711)*v(7539) v(728)=v(710)*v(7539) v(727)=v(704)*v(7539) v(725)=v(703)*v(7539) v(723)=v(702)*v(7539) v(721)=-(v(119)*v(701))-v(117)*v(711) v(720)=-(v(119)*v(700))-v(117)*v(710) v(218)=-(v(119)*x(13)) v(137)=(-1d0/3d0)-v(117)*v(119) v(127)=(2d0/3d0)-(v(119)*v(119)) v(120)=v(692)*v(7523) v(7541)=(-2d0)*v(120) v(7540)=(-4d0)*v(120) v(861)=statev(46)*v(7540) v(7572)=v(861)+v(882) v(859)=statev(45)*v(7540) v(7573)=v(859)+v(894) v(856)=statev(44)*v(7540) v(7570)=v(856)+v(870) v(810)=v(119)-v(120) v(809)=v(117)-v(120) v(763)=v(737)*v(7541) v(762)=v(736)*v(7541) v(761)=v(735)*v(7541) v(760)=v(734)*v(7541) v(759)=v(733)*v(7541) v(758)=v(704)*v(7541) v(756)=v(703)*v(7541) v(754)=v(702)*v(7541) v(752)=-(v(120)*v(701))-v(117)*v(734) v(751)=-(v(120)*v(700))-v(117)*v(733) v(750)=v(714)*v(7541) v(748)=v(713)*v(7541) v(746)=v(712)*v(7541) v(744)=-(v(120)*v(711))-v(119)*v(734) v(743)=-(v(120)*v(710))-v(119)*v(733) v(219)=-(v(120)*v(7532)) v(144)=(-1d0/3d0)-v(119)*v(120) v(139)=(-1d0/3d0)-v(117)*v(120) v(129)=(2d0/3d0)-(v(120)*v(120)) v(121)=v(692)*x(4) v(7543)=(-2d0)*v(121) v(7542)=(-4d0)*v(121) v(836)=statev(44)*v(7542) v(7554)=2d0*v(836) v(828)=statev(41)*v(7542) v(7553)=2d0*v(828) v(825)=statev(37)*v(7542) v(7552)=2d0*v(825) v(779)=v(7543)*v(768) v(778)=v(7543)*v(767) v(777)=v(7543)*v(766) v(776)=v(7543)*v(765) v(775)=v(7543)*v(764) v(220)=v(7543)*x(14) v(131)=0.5d0-(v(121)*v(121)) v(122)=v(692)*x(6) v(7546)=(-2d0)*v(122) v(7545)=(-4d0)*v(122) v(7544)=(-8d0)*v(122) v(883)=statev(49)*v(7544) v(842)=statev(47)*v(7544) v(837)=statev(45)*v(7545) v(7567)=2d0*v(837) v(830)=statev(42)*v(7545) v(7565)=2d0*v(830) v(826)=statev(38)*v(7545) v(7563)=2d0*v(826) v(794)=v(7546)*v(783) v(793)=v(7546)*v(782) v(792)=v(7546)*v(768) v(791)=v(7546)*v(781) v(790)=v(7546)*v(780) v(221)=v(7546)*x(16) v(133)=0.5d0-(v(122)*v(122)) v(123)=v(692)*x(5) v(7550)=(-2d0)*v(123) v(7548)=(-4d0)*v(123) v(7547)=(-8d0)*v(123) v(847)=statev(49)*v(7547) v(7577)=2d0*v(847) v(844)=statev(48)*v(7547) v(7580)=v(842)+v(844) v(7571)=2d0*v(844) v(7576)=v(7571)+2d0*v(842) v(838)=statev(46)*v(7548) v(7575)=v(836)+v(837)+v(838) v(7568)=2d0*v(838) v(832)=statev(43)*v(7548) v(7579)=v(828)+v(830)+v(832) v(7566)=2d0*v(832) v(7574)=v(7565)+v(7566) v(827)=statev(39)*v(7548) v(7578)=v(825)+v(826)+v(827) v(7564)=2d0*v(827) v(7569)=v(7563)+v(7564) v(815)=v(7550)*v(782) v(895)=v(7551)*(v(732)*v(7498)+v(727)*v(7559)+v(750)*v(7561)+v(7560)*v(758)+v(7499)*v(763)+v(7571)*v(768)+v(7556)*v(779& &)+v(7557)*v(794)+v(7558)*v(815)+v(7497)*v(820)+v(704)*(v(7552)+v(7564)+v(826))+v(714)*(v(7553)+v(7566)+v(830))+v(737)*& &(v(7554)+v(7568)+v(837))+v(782)*v(883)+v(122)*v(891)+v(783)*(v(121)*v(7549)+v(7573)+v(847)+v(893))) v(7624)=v(117)*v(895) v(7613)=v(119)*v(895) v(7600)=v(120)*v(895) v(7591)=v(121)*v(895) v(814)=v(7550)*v(797) v(884)=v(7551)*(v(731)*v(7498)+v(725)*v(7559)+v(756)*v(7560)+v(748)*v(7561)+v(7499)*v(762)+v(7556)*v(778)+v(7557)*v(793& &)+v(7558)*v(814)+v(7497)*v(819)+v(703)*(v(7552)+v(7563)+v(827))+v(713)*(v(7553)+v(7565)+v(832))+v(736)*(v(7554)+v(7567)& &+v(838))+v(7562)*v(842)+v(782)*v(847)+v(123)*v(880)+v(797)*(v(121)*v(7555)+v(7572)+v(881)+v(883))) v(7625)=v(117)*v(884) v(7614)=v(119)*v(884) v(7601)=v(120)*v(884) v(7593)=v(121)*v(884) v(813)=-(v(123)*v(7562)) v(872)=v(7551)*(v(730)*v(7498)+v(723)*v(7559)+v(754)*v(7560)+v(746)*v(7561)+v(7499)*v(761)+v(7556)*v(777)+v(7557)*v(792& &)+v(7558)*v(813)+v(7497)*v(818)+v(702)*(v(7569)+v(825))+v(712)*(v(7574)+v(828))+v(735)*(v(7567)+v(7568)+v(836))+v(766)*& &(v(7570)+v(7580)+v(869))+v(7562)*v(883)+v(121)*(v(880)+v(891))) v(7632)=v(117)*v(872) v(7621)=v(119)*v(872) v(7610)=v(120)*v(872) v(7606)=-(v(122)*v(872)) v(812)=v(7550)*v(796) v(862)=v(7551)*(v(729)*v(7498)+v(721)*v(7559)+v(752)*v(7560)+v(744)*v(7561)+v(701)*(v(7552)+v(7569))+v(734)*v(7575)+v& &(711)*v(7579)+v(7499)*v(760)+(v(7570)+v(7576))*v(765)+v(7556)*v(776)+(v(7573)+v(7577))*v(781)+v(7557)*v(791)+v(7572)*v& &(796)+v(7558)*v(812)+v(7497)*v(817)) v(811)=v(7550)*v(795) v(852)=v(7551)*(v(728)*v(7498)+v(720)*v(7559)+v(751)*v(7560)+v(743)*v(7561)+v(710)*(v(7553)+v(7574))+v(733)*v(7575)+v& &(700)*v(7578)+v(7499)*v(759)+v(7556)*v(775)+v(7557)*v(790)+v(7558)*v(811)+v(7497)*v(816)+v(764)*(v(7576)+v(856)+v(869))& &+v(795)*(v(861)+v(881))+v(780)*(v(7577)+v(859)+v(893))) v(222)=v(7550)*x(15) v(226)=-v(217)-v(218)-v(219)-v(220)-v(221)-v(222) v(1715)=-(v(226)*v(782)) v(1711)=-(v(226)*v(767)) v(1702)=-(v(123)*v(226))+x(15) v(7736)=-(v(1702)*v(685)) v(1679)=-(v(226)*v(768)) v(1670)=-(v(122)*v(226))+x(16) v(7741)=-(v(1670)*v(685)) v(1642)=-(v(121)*v(226))+x(14) v(7746)=-(v(1642)*v(685)) v(1616)=-(v(120)*v(226))+v(7532) v(7751)=-(v(1616)*v(685)) v(1589)=-(v(119)*v(226))+x(13) v(7754)=-(v(1589)*v(685)) v(1563)=-(v(117)*v(226))+x(12) v(7766)=-(v(1563)*v(685)) v(157)=1d0+v(217)+v(218)+v(219)+v(220)+v(221)+v(222) v(7648)=0.15d1*v(157) v(135)=0.5d0-(v(123)*v(123)) v(124)=(2d0/3d0)-(v(117)*v(117)) v(822)=v(124)*v(7497)+v(127)*v(7498)+v(129)*v(7499)+v(131)*v(7556)+v(133)*v(7557)+v(135)*v(7558)+v(137)*v(7559)+v(139& &)*v(7560)+v(144)*v(7561)+v(120)*v(7575)+v(117)*v(7578)+v(119)*v(7579)+v(121)*v(7580)+v(122)*v(847) v(823)=-(mpar(13)*v(7518)*v(821)*v(822)) v(7584)=mpar(14)*v(823) v(7583)=-(v(121)*v(823)) v(7582)=-(v(122)*v(823)) v(7581)=-(v(123)*v(823)) v(1180)=v(122)*v(7581) v(1172)=v(121)*v(7581) v(1163)=v(121)*v(7582) v(1151)=v(120)*v(7581) v(1138)=v(120)*v(7582) v(1124)=v(120)*v(7583) v(1111)=v(119)*v(7581) v(1097)=v(119)*v(7582) v(1082)=v(119)*v(7583) v(1065)=v(144)*v(7584) v(1051)=v(117)*v(7581) v(1037)=v(117)*v(7582) v(1022)=v(117)*v(7583) v(1005)=v(139)*v(7584) v(987)=v(137)*v(7584) v(969)=v(135)*v(7584) v(980)=v(7585)*v(969) v(951)=v(133)*v(7584) v(962)=v(7585)*v(951) v(933)=v(131)*v(7584) v(944)=v(7585)*v(933) v(921)=v(129)*v(7584) v(909)=v(127)*v(7584) v(897)=v(124)*v(7584) v(126)=v(7551)*v(822) v(7645)=-(v(121)*v(126)) v(7629)=v(126)*v(704) v(7628)=v(126)*v(700)+v(117)*v(852) v(7623)=v(126)*v(703) v(7622)=-(v(117)*v(126)) v(7618)=v(126)*v(714) v(7616)=v(126)*v(711)+v(119)*v(862) v(7612)=v(126)*v(713) v(7611)=-(v(119)*v(126)) v(7609)=v(126)*v(766) v(7605)=v(126)*v(737) v(7604)=v(126)*v(733)+v(120)*v(852) v(7603)=v(126)*v(734)+v(120)*v(862) v(7599)=v(126)*v(736) v(7598)=-(v(120)*v(126)) v(7595)=v(7609)+v(121)*v(872) v(7594)=v(126)*v(768) v(7590)=-(v(126)*v(783)) v(7589)=v(126)*v(767) v(7588)=-(v(126)*v(797)) v(7587)=(-2d0)*v(126) v(7627)=v(701)*v(7587)-v(117)*v(862) v(7617)=v(710)*v(7587)-v(119)*v(852) v(7597)=v(7587)*v(764)-v(121)*v(852) v(7596)=v(7587)*v(765)-v(121)*v(862) v(7586)=v(126)*v(782) v(1187)=v(123)*v(7590)-v(122)*(v(7586)+v(123)*v(895)) v(1186)=v(122)*v(7588)-v(123)*(v(7586)+v(122)*v(884)) v(1184)=v(123)*(v(7587)*v(781)-v(122)*v(862)) v(1182)=v(123)*(v(7587)*v(780)-v(122)*v(852)) v(1178)=v(121)*v(7588)-v(123)*(v(7589)+v(7593)) v(1177)=-(v(121)*v(7589))-v(123)*v(7595) v(1176)=v(123)*v(7596) v(1174)=v(123)*v(7597) v(1171)=v(121)*v(7590)-v(122)*(v(7591)+v(7594)) v(1169)=-(v(122)*v(7589)) v(7592)=2d0*v(1169) v(1185)=v(7592)+v(123)*v(7606) v(1179)=-(v(123)*v(7591))+v(7592) v(1170)=v(7592)-v(122)*v(7593) v(1168)=-(v(121)*v(7594))-v(122)*v(7595) v(1167)=v(122)*v(7596) v(1165)=v(122)*v(7597) v(1155)=v(120)*v(7588)-v(123)*(v(7599)+v(7601)) v(1153)=-(v(123)*v(7603))+v(7598)*v(796) v(1152)=-(v(123)*v(7604))+v(7598)*v(795) v(1144)=v(120)*v(7590)-v(122)*(v(7600)+v(7605)) v(1142)=-(v(122)*v(7599)) v(7602)=2d0*v(1142) v(1156)=-(v(123)*v(7600))+v(7602) v(1143)=-(v(122)*v(7601))+v(7602) v(1140)=-(v(122)*v(7603))+v(7598)*v(781) v(1139)=-(v(122)*v(7604))+v(7598)*v(780) v(1130)=-(v(121)*v(7605)) v(7607)=2d0*v(1130) v(1141)=v(120)*v(7606)+v(7607) v(1131)=-(v(120)*v(7591))+v(7607) v(1128)=-(v(121)*v(7599)) v(7608)=2d0*v(1128) v(1154)=v(7608)-v(123)*v(7610) v(1129)=-(v(120)*v(7593))+v(7608) v(1127)=-(v(120)*v(7609))-v(121)*(v(126)*v(735)+v(7610)) v(1126)=-(v(121)*v(7603))+v(7598)*v(765) v(1125)=-(v(121)*v(7604))+v(7598)*v(764) v(1116)=v(119)*v(7588)-v(123)*(v(7612)+v(7614)) v(1114)=-(v(123)*v(7616))+v(7611)*v(796) v(1113)=v(123)*v(7617) v(1104)=-(v(122)*(v(7613)+v(7618)))+v(7611)*v(783) v(1102)=-(v(122)*v(7612)) v(7615)=2d0*v(1102) v(1117)=-(v(123)*v(7613))+v(7615) v(1103)=-(v(122)*v(7614))+v(7615) v(1100)=-(v(122)*v(7616))+v(7611)*v(781) v(1099)=v(122)*v(7617) v(1089)=-(v(121)*v(7618)) v(7619)=2d0*v(1089) v(1101)=v(119)*v(7606)+v(7619) v(1090)=-(v(119)*v(7591))+v(7619) v(1087)=-(v(121)*v(7612)) v(7620)=2d0*v(1087) v(1115)=v(7620)-v(123)*v(7621) v(1088)=-(v(119)*v(7593))+v(7620) v(1086)=-(v(119)*v(7609))-v(121)*(v(126)*v(712)+v(7621)) v(1085)=-(v(121)*v(7616))+v(7611)*v(765) v(1084)=v(121)*v(7617) v(1075)=mpar(14)*(v(126)*v(750)+v(144)*v(895)) v(1073)=mpar(14)*(v(126)*v(748)+v(144)*v(884)) v(1071)=mpar(14)*(v(126)*v(746)+v(144)*v(872)) v(1069)=mpar(14)*(v(126)*v(744)+v(144)*v(862)) v(1067)=mpar(14)*(v(126)*v(743)+v(144)*v(852)) v(1056)=v(117)*v(7588)-v(123)*(v(7623)+v(7625)) v(1054)=v(123)*v(7627) v(1052)=-(v(123)*v(7628))+v(7622)*v(795) v(1044)=-(v(122)*(v(7624)+v(7629)))+v(7622)*v(783) v(1042)=-(v(122)*v(7623)) v(7626)=2d0*v(1042) v(1057)=-(v(123)*v(7624))+v(7626) v(1043)=-(v(122)*v(7625))+v(7626) v(1040)=v(122)*v(7627) v(1038)=-(v(122)*v(7628))+v(7622)*v(780) v(1029)=-(v(121)*v(7629)) v(7630)=2d0*v(1029) v(1041)=v(117)*v(7606)+v(7630) v(1030)=-(v(117)*v(7591))+v(7630) v(1027)=-(v(121)*v(7623)) v(7631)=2d0*v(1027) v(1055)=v(7631)-v(123)*v(7632) v(1028)=-(v(117)*v(7593))+v(7631) v(1026)=-(v(117)*v(7609))-v(121)*(v(126)*v(702)+v(7632)) v(1025)=v(121)*v(7627) v(1023)=-(v(121)*v(7628))+v(7622)*v(764) v(1015)=mpar(14)*(v(126)*v(758)+v(139)*v(895)) v(1013)=mpar(14)*(v(126)*v(756)+v(139)*v(884)) v(1011)=mpar(14)*(v(126)*v(754)+v(139)*v(872)) v(1009)=mpar(14)*(v(126)*v(752)+v(139)*v(862)) v(1007)=mpar(14)*(v(126)*v(751)+v(139)*v(852)) v(997)=mpar(14)*(v(126)*v(727)+v(137)*v(895)) v(995)=mpar(14)*(v(126)*v(725)+v(137)*v(884)) v(993)=mpar(14)*(v(126)*v(723)+v(137)*v(872)) v(991)=mpar(14)*(v(126)*v(721)+v(137)*v(862)) v(989)=mpar(14)*(v(126)*v(720)+v(137)*v(852)) v(979)=mpar(14)*(v(126)*v(815)+v(135)*v(895)) v(985)=v(7585)*v(979) v(977)=mpar(14)*(v(126)*v(814)+v(135)*v(884)) v(984)=v(7585)*v(977) v(975)=mpar(14)*(v(126)*v(813)+v(135)*v(872)) v(983)=v(7585)*v(975) v(973)=mpar(14)*(v(126)*v(812)+v(135)*v(862)) v(982)=v(7585)*v(973) v(971)=mpar(14)*(v(126)*v(811)+v(135)*v(852)) v(981)=v(7585)*v(971) v(961)=mpar(14)*(v(126)*v(794)+v(133)*v(895)) v(967)=v(7585)*v(961) v(959)=mpar(14)*(v(126)*v(793)+v(133)*v(884)) v(966)=v(7585)*v(959) v(957)=mpar(14)*(v(126)*v(792)+v(133)*v(872)) v(965)=v(7585)*v(957) v(955)=mpar(14)*(v(126)*v(791)+v(133)*v(862)) v(964)=v(7585)*v(955) v(953)=mpar(14)*(v(126)*v(790)+v(133)*v(852)) v(963)=v(7585)*v(953) v(943)=mpar(14)*(v(126)*v(779)+v(131)*v(895)) v(949)=v(7585)*v(943) v(941)=mpar(14)*(v(126)*v(778)+v(131)*v(884)) v(948)=v(7585)*v(941) v(939)=mpar(14)*(v(126)*v(777)+v(131)*v(872)) v(947)=v(7585)*v(939) v(937)=mpar(14)*(v(126)*v(776)+v(131)*v(862)) v(946)=v(7585)*v(937) v(935)=mpar(14)*(v(126)*v(775)+v(131)*v(852)) v(945)=v(7585)*v(935) v(931)=mpar(14)*(v(126)*v(763)+v(129)*v(895)) v(929)=mpar(14)*(v(126)*v(762)+v(129)*v(884)) v(927)=mpar(14)*(v(126)*v(761)+v(129)*v(872)) v(925)=mpar(14)*(v(126)*v(760)+v(129)*v(862)) v(923)=mpar(14)*(v(126)*v(759)+v(129)*v(852)) v(919)=mpar(14)*(v(126)*v(732)+v(127)*v(895)) v(917)=mpar(14)*(v(126)*v(731)+v(127)*v(884)) v(915)=mpar(14)*(v(126)*v(730)+v(127)*v(872)) v(913)=mpar(14)*(v(126)*v(729)+v(127)*v(862)) v(911)=mpar(14)*(v(126)*v(728)+v(127)*v(852)) v(907)=mpar(14)*(v(126)*v(820)+v(124)*v(895)) v(905)=mpar(14)*(v(126)*v(819)+v(124)*v(884)) v(903)=mpar(14)*(v(126)*v(818)+v(124)*v(872)) v(901)=mpar(14)*(v(126)*v(817)+v(124)*v(862)) v(899)=mpar(14)*(v(126)*v(816)+v(124)*v(852)) v(158)=(2d0/3d0)+mpar(14)*(statev(29)+v(124)*v(126)) v(7653)=2d0*v(158) v(170)=(2d0/3d0)+mpar(14)*(statev(30)+v(126)*v(127)) v(7705)=v(158)+v(170) v(7651)=2d0*v(170) v(173)=(2d0/3d0)+mpar(14)*(statev(31)+v(126)*v(129)) v(7681)=v(158)+v(173) v(7676)=v(170)+v(173) v(7649)=2d0*v(173) v(192)=0.5d0+mpar(14)*(statev(32)+v(126)*v(131)) v(7663)=4d0*v(192) v(175)=v(192)*v(7585) v(200)=0.5d0+mpar(14)*(statev(33)+v(126)*v(133)) v(7661)=4d0*v(200) v(179)=v(200)*v(7585) v(7666)=v(175)+v(179) v(208)=0.5d0+mpar(14)*(statev(34)+v(126)*v(135)) v(7657)=4d0*v(208) v(182)=v(208)*v(7585) v(7669)=v(175)+v(182) v(7659)=v(179)+v(182) v(159)=(-1d0/3d0)+mpar(14)*(statev(35)+v(126)*v(137)) v(7633)=2d0*v(159) v(1003)=v(7633)*v(997) v(1002)=v(7633)*v(995) v(1001)=v(7633)*v(993) v(1000)=v(7633)*v(991) v(999)=v(7633)*v(989) v(998)=v(7633)*v(987) v(171)=(v(159)*v(159)) v(160)=(-1d0/3d0)+mpar(14)*(statev(36)+v(126)*v(139)) v(7634)=2d0*v(160) v(1021)=v(1015)*v(7634) v(1020)=v(1013)*v(7634) v(1019)=v(1011)*v(7634) v(1018)=v(1009)*v(7634) v(1017)=v(1007)*v(7634) v(1016)=v(1005)*v(7634) v(184)=(v(160)*v(160)) v(141)=statev(37)+v(121)*v(7622) v(7635)=2d0*v(141) v(1036)=v(1030)*v(7635) v(1035)=v(1028)*v(7635) v(1034)=v(1026)*v(7635) v(1033)=v(1025)*v(7635) v(1032)=v(1023)*v(7635) v(1031)=v(1022)*v(7635) v(193)=(v(141)*v(141)) v(142)=statev(38)+v(122)*v(7622) v(7636)=2d0*v(142) v(1050)=v(1044)*v(7636) v(1049)=v(1043)*v(7636) v(1048)=v(1041)*v(7636) v(1047)=v(1040)*v(7636) v(1046)=v(1038)*v(7636) v(1045)=v(1037)*v(7636) v(201)=(v(142)*v(142)) v(143)=statev(39)+v(123)*v(7622) v(7637)=2d0*v(143) v(1063)=v(1057)*v(7637) v(1062)=v(1056)*v(7637) v(1061)=v(1055)*v(7637) v(1060)=v(1054)*v(7637) v(1059)=v(1052)*v(7637) v(1058)=v(1051)*v(7637) v(209)=(v(143)*v(143)) v(162)=(-1d0/3d0)+mpar(14)*(statev(40)+v(126)*v(144)) v(7638)=2d0*v(162) v(1081)=v(1075)*v(7638) v(1080)=v(1073)*v(7638) v(1079)=v(1071)*v(7638) v(1078)=v(1069)*v(7638) v(1077)=v(1067)*v(7638) v(1076)=v(1065)*v(7638) v(185)=(v(162)*v(162)) v(146)=statev(41)+v(121)*v(7611) v(7639)=2d0*v(146) v(1096)=v(1090)*v(7639) v(1095)=v(1088)*v(7639) v(1094)=v(1086)*v(7639) v(1093)=v(1085)*v(7639) v(1092)=v(1084)*v(7639) v(1091)=v(1082)*v(7639) v(194)=(v(146)*v(146)) v(147)=statev(42)+v(122)*v(7611) v(7640)=2d0*v(147) v(1110)=v(1104)*v(7640) v(1109)=v(1103)*v(7640) v(1108)=v(1101)*v(7640) v(1107)=v(1100)*v(7640) v(1106)=v(1099)*v(7640) v(1105)=v(1097)*v(7640) v(202)=(v(147)*v(147)) v(148)=statev(43)+v(123)*v(7611) v(7641)=2d0*v(148) v(1123)=v(1117)*v(7641) v(1122)=v(1116)*v(7641) v(1121)=v(1115)*v(7641) v(1120)=v(1114)*v(7641) v(1119)=v(1113)*v(7641) v(1118)=v(1111)*v(7641) v(210)=(v(148)*v(148)) v(149)=statev(44)+v(121)*v(7598) v(7642)=2d0*v(149) v(1137)=v(1131)*v(7642) v(1136)=v(1129)*v(7642) v(1135)=v(1127)*v(7642) v(1134)=v(1126)*v(7642) v(1133)=v(1125)*v(7642) v(1132)=v(1124)*v(7642) v(195)=(v(149)*v(149)) v(150)=statev(45)+v(122)*v(7598) v(7643)=2d0*v(150) v(1150)=v(1144)*v(7643) v(1149)=v(1143)*v(7643) v(1148)=v(1141)*v(7643) v(1147)=v(1140)*v(7643) v(1146)=v(1139)*v(7643) v(1145)=v(1138)*v(7643) v(203)=(v(150)*v(150)) v(151)=statev(46)+v(123)*v(7598) v(7644)=2d0*v(151) v(1162)=v(1156)*v(7644) v(1161)=v(1155)*v(7644) v(1160)=v(1154)*v(7644) v(1159)=v(1153)*v(7644) v(1158)=v(1152)*v(7644) v(1157)=v(1151)*v(7644) v(211)=(v(151)*v(151)) v(152)=statev(47)+v(122)*v(7645) v(153)=statev(48)+v(123)*v(7645) v(154)=statev(49)-v(122)*v(123)*v(126) v(1402)=(v(173)*v(173))+v(184)+v(185)+2d0*(v(195)+v(203)+v(211))*v(7646) v(7647)=0.15d1*v(1402) v(1412)=v(7546)*v(7647) v(1411)=v(7550)*v(7647) v(1410)=v(7543)*v(7647) v(1409)=-(v(7647)*v(810)) v(1408)=-(v(7647)*v(809)) v(1407)=-(v(7647)*v(808))+v(7648)*(v(1021)+v(1081)+2d0*(v(1137)+v(1150)+v(1162))*v(7646)+v(7649)*v(931)) v(1406)=-(v(7647)*v(807))+v(7648)*(v(1020)+v(1080)+2d0*(v(1136)+v(1149)+v(1161))*v(7646)+v(7649)*v(929)) v(1405)=-(v(7647)*v(806))+v(7648)*(v(1019)+v(1079)+2d0*(v(1135)+v(1148)+v(1160))*v(7646)+v(7649)*v(927)) v(1404)=-(v(7647)*v(805))+v(7648)*(v(1018)+v(1078)+2d0*(v(1134)+v(1147)+v(1159))*v(7646)+v(7649)*v(925)) v(1403)=-(v(7647)*v(804))+v(7648)*(v(1017)+v(1077)+2d0*(v(1133)+v(1146)+v(1158))*v(7646)+v(7649)*v(923)) v(1401)=v(7648)*(v(1016)+v(1076)+2d0*(v(1132)+v(1145)+v(1157))*v(7646)+v(7649)*v(921)) v(1342)=(v(170)*v(170))+v(171)+v(185)+2d0*(v(194)+v(202)+v(210))*v(7646) v(7650)=0.15d1*v(1342) v(1352)=v(7546)*v(7650) v(1351)=v(7550)*v(7650) v(1350)=v(7543)*v(7650) v(1349)=-(v(7650)*v(810)) v(1348)=-(v(7650)*v(809)) v(1347)=-(v(7650)*v(808))+v(7648)*(v(1003)+v(1081)+2d0*(v(1096)+v(1110)+v(1123))*v(7646)+v(7651)*v(919)) v(1346)=-(v(7650)*v(807))+v(7648)*(v(1002)+v(1080)+2d0*(v(1095)+v(1109)+v(1122))*v(7646)+v(7651)*v(917)) v(1345)=-(v(7650)*v(806))+v(7648)*(v(1001)+v(1079)+2d0*(v(1094)+v(1108)+v(1121))*v(7646)+v(7651)*v(915)) v(1344)=-(v(7650)*v(805))+v(7648)*(v(1000)+v(1078)+2d0*(v(1093)+v(1107)+v(1120))*v(7646)+v(7651)*v(913)) v(1343)=-(v(7650)*v(804))+v(7648)*(v(1077)+2d0*(v(1092)+v(1106)+v(1119))*v(7646)+v(7651)*v(911)+v(999)) v(1341)=v(7648)*(v(1076)+2d0*(v(1091)+v(1105)+v(1118))*v(7646)+v(7651)*v(909)+v(998)) v(1270)=(v(158)*v(158))+v(171)+v(184)+2d0*(v(193)+v(201)+v(209))*v(7646) v(7652)=0.15d1*v(1270) v(1280)=v(7546)*v(7652) v(1279)=v(7550)*v(7652) v(1278)=v(7543)*v(7652) v(1277)=-(v(7652)*v(810)) v(1276)=-(v(7652)*v(809)) v(1275)=-(v(7652)*v(808))+v(7648)*(v(1003)+v(1021)+2d0*(v(1036)+v(1050)+v(1063))*v(7646)+v(7653)*v(907)) v(1274)=-(v(7652)*v(807))+v(7648)*(v(1002)+v(1020)+2d0*(v(1035)+v(1049)+v(1062))*v(7646)+v(7653)*v(905)) v(1273)=-(v(7652)*v(806))+v(7648)*(v(1001)+v(1019)+2d0*(v(1034)+v(1048)+v(1061))*v(7646)+v(7653)*v(903)) v(1272)=-(v(7652)*v(805))+v(7648)*(v(1000)+v(1018)+2d0*(v(1033)+v(1047)+v(1060))*v(7646)+v(7653)*v(901)) v(1271)=-(v(7652)*v(804))+v(7648)*(v(1017)+2d0*(v(1032)+v(1046)+v(1059))*v(7646)+v(7653)*v(899)+v(999)) v(1269)=v(7648)*(v(1016)+2d0*(v(1031)+v(1045)+v(1058))*v(7646)+v(7653)*v(897)+v(998)) v(1268)=v(1030)*v(7654) v(1267)=v(1028)*v(7654) v(1266)=v(1026)*v(7654) v(1265)=v(1025)*v(7654) v(1264)=v(1023)*v(7654) v(1263)=v(1022)*v(7654) v(1262)=v(1044)*v(7654) v(1261)=v(1043)*v(7654) v(1260)=v(1041)*v(7654) v(1259)=v(1040)*v(7654) v(1258)=v(1038)*v(7654) v(1257)=v(1037)*v(7654) v(1256)=v(1057)*v(7654) v(1255)=v(1056)*v(7654) v(1254)=v(1055)*v(7654) v(1253)=v(1054)*v(7654) v(1252)=v(1052)*v(7654) v(1251)=v(1051)*v(7654) v(1250)=v(1104)*v(7654) v(1249)=v(1103)*v(7654) v(1248)=v(1101)*v(7654) v(1247)=v(1100)*v(7654) v(1246)=v(1099)*v(7654) v(1245)=v(1097)*v(7654) v(1244)=v(1117)*v(7654) v(1243)=v(1116)*v(7654) v(1242)=v(1115)*v(7654) v(1241)=v(1114)*v(7654) v(1240)=v(1113)*v(7654) v(1239)=v(1111)*v(7654) v(1238)=v(1090)*v(7654) v(1237)=v(1088)*v(7654) v(1236)=v(1086)*v(7654) v(1235)=v(1085)*v(7654) v(1234)=v(1084)*v(7654) v(1233)=v(1082)*v(7654) v(1232)=v(1171)*v(7654) v(1231)=v(1170)*v(7654) v(1230)=v(1168)*v(7654) v(1229)=v(1167)*v(7654) v(1228)=v(1165)*v(7654) v(1227)=v(1163)*v(7654) v(1226)=v(1156)*v(7654) v(1225)=v(1155)*v(7654) v(1224)=v(1154)*v(7654) v(1223)=v(1153)*v(7654) v(1222)=v(1152)*v(7654) v(1221)=v(1151)*v(7654) v(1220)=v(1187)*v(7654) v(1219)=v(1186)*v(7654) v(1218)=v(1185)*v(7654) v(1217)=v(1184)*v(7654) v(1216)=v(1182)*v(7654) v(1215)=v(1180)*v(7654) v(1209)=v(152)*v(7655) v(1214)=v(1171)*v(1209) v(1213)=v(1170)*v(1209) v(1212)=v(1168)*v(1209) v(1211)=v(1167)*v(1209) v(1210)=v(1165)*v(1209) v(1208)=v(1163)*v(1209) v(1207)=v(1179)*v(7654) v(1206)=v(1178)*v(7654) v(1205)=v(1177)*v(7654) v(1204)=v(1176)*v(7654) v(1203)=v(1174)*v(7654) v(1202)=v(1172)*v(7654) v(1196)=v(153)*v(7655) v(1201)=v(1179)*v(1196) v(1200)=v(1178)*v(1196) v(1199)=v(1177)*v(1196) v(1198)=v(1176)*v(1196) v(1197)=v(1174)*v(1196) v(1195)=v(1172)*v(1196) v(1449)=v(7648)*(v(1195)+v(1208)+(v(1031)+v(1091)+v(1132))*v(7646)+v(7663)*v(933)) v(1189)=v(154)*v(7655) v(1194)=v(1187)*v(1189) v(1193)=v(1186)*v(1189) v(1192)=v(1185)*v(1189) v(1191)=v(1184)*v(1189) v(1190)=v(1182)*v(1189) v(1188)=v(1180)*v(1189) v(1509)=v(7648)*(v(1188)+v(1195)+(v(1058)+v(1118)+v(1157))*v(7646)+v(7657)*v(969)) v(1485)=v(7648)*(v(1188)+v(1208)+(v(1045)+v(1105)+v(1145))*v(7646)+v(7661)*v(951)) v(213)=(v(154)*v(154))*v(7654) v(212)=(v(153)*v(153))*v(7654) v(1510)=2d0*(v(208)*v(208))+v(212)+v(213)+(v(209)+v(210)+v(211))*v(7646) v(7656)=0.15d1*v(1510) v(1520)=v(7546)*v(7656) v(1519)=v(7550)*v(7656) v(1518)=v(7543)*v(7656) v(1517)=-(v(7656)*v(810)) v(1516)=-(v(7656)*v(809)) v(1515)=-(v(7656)*v(808))+v(7648)*(v(1194)+v(1201)+(v(1063)+v(1123)+v(1162))*v(7646)+v(7657)*v(979)) v(1514)=-(v(7656)*v(807))+v(7648)*(v(1193)+v(1200)+(v(1062)+v(1122)+v(1161))*v(7646)+v(7657)*v(977)) v(1513)=-(v(7656)*v(806))+v(7648)*(v(1192)+v(1199)+(v(1061)+v(1121)+v(1160))*v(7646)+v(7657)*v(975)) v(1512)=-(v(7656)*v(805))+v(7648)*(v(1191)+v(1198)+(v(1060)+v(1120)+v(1159))*v(7646)+v(7657)*v(973)) v(1511)=-(v(7656)*v(804))+v(7648)*(v(1190)+v(1197)+(v(1059)+v(1119)+v(1158))*v(7646)+v(7657)*v(971)) v(206)=v(153)*v(7654) v(1498)=v(152)*v(206)+(v(142)*v(143)+v(147)*v(148)+v(150)*v(151))*v(7646)+v(154)*v(7659) v(7658)=0.15d1*v(1498) v(1508)=v(7546)*v(7658) v(1723)=v(1508)*v(7520) v(1507)=v(7550)*v(7658) v(1548)=v(1507)*v(7665) v(7695)=v(1548)*v(7689) v(7685)=v(1548)*v(7665) v(1506)=v(7543)*v(7658) v(1505)=-(v(7658)*v(810)) v(1504)=-(v(7658)*v(809)) v(1503)=-(v(7658)*v(808))+v(7648)*(v(1207)*v(152)+v(1171)*v(206)+(v(1057)*v(142)+v(1044)*v(143)+v(1117)*v(147)+v(1104& &)*v(148)+v(1156)*v(150)+v(1144)*v(151))*v(7646)+v(1187)*v(7659)+v(154)*(v(967)+v(985))) v(1502)=-(v(7658)*v(807))+v(7648)*(v(1206)*v(152)+v(1170)*v(206)+(v(1056)*v(142)+v(1043)*v(143)+v(1116)*v(147)+v(1103& &)*v(148)+v(1155)*v(150)+v(1143)*v(151))*v(7646)+v(1186)*v(7659)+v(154)*(v(966)+v(984))) v(1501)=-(v(7658)*v(806))+v(7648)*(v(1205)*v(152)+v(1168)*v(206)+(v(1055)*v(142)+v(1041)*v(143)+v(1115)*v(147)+v(1101& &)*v(148)+v(1154)*v(150)+v(1141)*v(151))*v(7646)+v(1185)*v(7659)+v(154)*(v(965)+v(983))) v(1500)=-(v(7658)*v(805))+v(7648)*(v(1204)*v(152)+v(1167)*v(206)+(v(1054)*v(142)+v(1040)*v(143)+v(1114)*v(147)+v(1100& &)*v(148)+v(1153)*v(150)+v(1140)*v(151))*v(7646)+v(1184)*v(7659)+v(154)*(v(964)+v(982))) v(1499)=-(v(7658)*v(804))+v(7648)*(v(1203)*v(152)+v(1165)*v(206)+(v(1052)*v(142)+v(1038)*v(143)+v(1113)*v(147)+v(1099& &)*v(148)+v(1152)*v(150)+v(1139)*v(151))*v(7646)+v(1182)*v(7659)+v(154)*(v(963)+v(981))) v(1497)=v(7648)*(v(1202)*v(152)+v(1163)*v(206)+(v(1051)*v(142)+v(1037)*v(143)+v(1111)*v(147)+v(1097)*v(148)+v(1151)*v& &(150)+v(1138)*v(151))*v(7646)+v(1180)*v(7659)+v(154)*(v(962)+v(980))) v(204)=(v(152)*v(152))*v(7654) v(1486)=2d0*(v(200)*v(200))+v(204)+v(213)+(v(201)+v(202)+v(203))*v(7646) v(7660)=0.15d1*v(1486) v(1496)=v(7546)*v(7660) v(1495)=v(7550)*v(7660) v(1494)=v(7543)*v(7660) v(1493)=-(v(7660)*v(810)) v(1492)=-(v(7660)*v(809)) v(1491)=-(v(7660)*v(808))+v(7648)*(v(1194)+v(1214)+(v(1050)+v(1110)+v(1150))*v(7646)+v(7661)*v(961)) v(1490)=-(v(7660)*v(807))+v(7648)*(v(1193)+v(1213)+(v(1049)+v(1109)+v(1149))*v(7646)+v(7661)*v(959)) v(1489)=-(v(7660)*v(806))+v(7648)*(v(1192)+v(1212)+(v(1048)+v(1108)+v(1148))*v(7646)+v(7661)*v(957)) v(1488)=-(v(7660)*v(805))+v(7648)*(v(1191)+v(1211)+(v(1047)+v(1107)+v(1147))*v(7646)+v(7661)*v(955)) v(1487)=-(v(7660)*v(804))+v(7648)*(v(1190)+v(1210)+(v(1046)+v(1106)+v(1146))*v(7646)+v(7661)*v(953)) v(1450)=2d0*(v(192)*v(192))+v(204)+v(212)+(v(193)+v(194)+v(195))*v(7646) v(7662)=0.15d1*v(1450) v(1460)=v(7546)*v(7662) v(1459)=v(7550)*v(7662) v(1458)=v(7543)*v(7662) v(1457)=-(v(7662)*v(810)) v(1456)=-(v(7662)*v(809)) v(1455)=-(v(7662)*v(808))+v(7648)*(v(1201)+v(1214)+(v(1036)+v(1096)+v(1137))*v(7646)+v(7663)*v(943)) v(1454)=-(v(7662)*v(807))+v(7648)*(v(1200)+v(1213)+(v(1035)+v(1095)+v(1136))*v(7646)+v(7663)*v(941)) v(1453)=-(v(7662)*v(806))+v(7648)*(v(1199)+v(1212)+(v(1034)+v(1094)+v(1135))*v(7646)+v(7663)*v(939)) v(1452)=-(v(7662)*v(805))+v(7648)*(v(1198)+v(1211)+(v(1033)+v(1093)+v(1134))*v(7646)+v(7663)*v(937)) v(1451)=-(v(7662)*v(804))+v(7648)*(v(1197)+v(1210)+(v(1032)+v(1092)+v(1133))*v(7646)+v(7663)*v(935)) v(197)=v(154)*v(7654) v(1462)=v(153)*v(197)+(v(141)*v(142)+v(146)*v(147)+v(149)*v(150))*v(7646)+v(152)*v(7666) v(7664)=0.15d1*v(1462) v(1472)=v(7546)*v(7664) v(1471)=v(7550)*v(7664) v(1470)=v(7543)*v(7664) v(1689)=v(1470)*v(7521) v(1547)=v(1470)*v(7665) v(7700)=v(1547)*v(7688) v(7683)=v(1547)*v(7665) v(1469)=-(v(7664)*v(810)) v(1468)=-(v(7664)*v(809)) v(1467)=-(v(7664)*v(808))+v(7648)*(v(1220)*v(153)+v(1179)*v(197)+(v(1044)*v(141)+v(1030)*v(142)+v(1104)*v(146)+v(1090& &)*v(147)+v(1144)*v(149)+v(1131)*v(150))*v(7646)+v(1171)*v(7666)+v(152)*(v(949)+v(967))) v(1466)=-(v(7664)*v(807))+v(7648)*(v(1219)*v(153)+v(1178)*v(197)+(v(1043)*v(141)+v(1028)*v(142)+v(1103)*v(146)+v(1088& &)*v(147)+v(1143)*v(149)+v(1129)*v(150))*v(7646)+v(1170)*v(7666)+v(152)*(v(948)+v(966))) v(1465)=-(v(7664)*v(806))+v(7648)*(v(1218)*v(153)+v(1177)*v(197)+(v(1041)*v(141)+v(1026)*v(142)+v(1101)*v(146)+v(1086& &)*v(147)+v(1141)*v(149)+v(1127)*v(150))*v(7646)+v(1168)*v(7666)+v(152)*(v(947)+v(965))) v(1464)=-(v(7664)*v(805))+v(7648)*(v(1217)*v(153)+v(1176)*v(197)+(v(1040)*v(141)+v(1025)*v(142)+v(1100)*v(146)+v(1085& &)*v(147)+v(1140)*v(149)+v(1126)*v(150))*v(7646)+v(1167)*v(7666)+v(152)*(v(946)+v(964))) v(1463)=-(v(7664)*v(804))+v(7648)*(v(1216)*v(153)+v(1174)*v(197)+(v(1038)*v(141)+v(1023)*v(142)+v(1099)*v(146)+v(1084& &)*v(147)+v(1139)*v(149)+v(1125)*v(150))*v(7646)+v(1165)*v(7666)+v(152)*(v(945)+v(963))) v(1461)=v(7648)*(v(1215)*v(153)+v(1172)*v(197)+(v(1037)*v(141)+v(1022)*v(142)+v(1097)*v(146)+v(1082)*v(147)+v(1138)*v& &(149)+v(1124)*v(150))*v(7646)+v(1163)*v(7666)+v(152)*(v(944)+v(962))) v(1438)=mpar(14)*(v(143)*v(160)+v(148)*v(162)+v(151)*v(173))+v(151)*v(182)+v(150)*v(197)+v(149)*v(206) v(7667)=0.15d1*v(1438) v(1448)=v(7546)*v(7667) v(1447)=v(7550)*v(7667) v(1446)=v(7543)*v(7667) v(1445)=-(v(7667)*v(810)) v(1444)=-(v(7667)*v(809)) v(1443)=-(v(7667)*v(808))+v(7648)*(v(1207)*v(149)+v(1220)*v(150)+v(1156)*v(182)+v(1144)*v(197)+v(1131)*v(206)+mpar(14)*& &(v(1015)*v(143)+v(1075)*v(148)+v(1057)*v(160)+v(1117)*v(162)+v(1156)*v(173)+v(151)*v(931))+v(151)*v(985)) v(1442)=-(v(7667)*v(807))+v(7648)*(v(1206)*v(149)+v(1219)*v(150)+v(1155)*v(182)+v(1143)*v(197)+v(1129)*v(206)+mpar(14)*& &(v(1013)*v(143)+v(1073)*v(148)+v(1056)*v(160)+v(1116)*v(162)+v(1155)*v(173)+v(151)*v(929))+v(151)*v(984)) v(7740)=v(1442)*v(7523) v(1441)=-(v(7667)*v(806))+v(7648)*(v(1205)*v(149)+v(1218)*v(150)+v(1154)*v(182)+v(1141)*v(197)+v(1127)*v(206)+mpar(14)*& &(v(1011)*v(143)+v(1071)*v(148)+v(1055)*v(160)+v(1115)*v(162)+v(1154)*v(173)+v(151)*v(927))+v(151)*v(983)) v(1440)=-(v(7667)*v(805))+v(7648)*(v(1204)*v(149)+v(1217)*v(150)+v(1153)*v(182)+v(1140)*v(197)+v(1126)*v(206)+mpar(14)*& &(v(1009)*v(143)+v(1069)*v(148)+v(1054)*v(160)+v(1114)*v(162)+v(1153)*v(173)+v(151)*v(925))+v(151)*v(982)) v(1439)=-(v(7667)*v(804))+v(7648)*(v(1203)*v(149)+v(1216)*v(150)+v(1152)*v(182)+v(1139)*v(197)+v(1125)*v(206)+mpar(14)*& &(v(1007)*v(143)+v(1067)*v(148)+v(1052)*v(160)+v(1113)*v(162)+v(1152)*v(173)+v(151)*v(923))+v(151)*v(981)) v(1437)=v(7648)*(v(1202)*v(149)+v(1215)*v(150)+v(1151)*v(182)+v(1138)*v(197)+v(1124)*v(206)+mpar(14)*(v(1005)*v(143)+v& &(1065)*v(148)+v(1051)*v(160)+v(1111)*v(162)+v(1151)*v(173)+v(151)*v(921))+v(151)*v(980)) v(189)=v(7644)*v(7646) v(188)=v(152)*v(7654) v(1474)=v(154)*v(188)+(v(141)*v(143)+v(146)*v(148)+v(149)*v(151))*v(7646)+v(153)*v(7669) v(7668)=0.15d1*v(1474) v(1484)=v(7546)*v(7668) v(1483)=v(7550)*v(7668) v(1482)=v(7543)*v(7668) v(1722)=v(1482)*v(7520) v(1545)=v(1482)*v(7689) v(7701)=v(1545)*v(7688) v(7693)=v(1545)*v(7689) v(1481)=-(v(7668)*v(810)) v(1480)=-(v(7668)*v(809)) v(1479)=-(v(7668)*v(808))+v(7648)*(v(1232)*v(154)+v(1187)*v(188)+(v(1057)*v(141)+v(1030)*v(143)+v(1117)*v(146)+v(1090& &)*v(148)+v(1156)*v(149)+v(1131)*v(151))*v(7646)+v(1179)*v(7669)+v(153)*(v(949)+v(985))) v(1478)=-(v(7668)*v(807))+v(7648)*(v(1231)*v(154)+v(1186)*v(188)+(v(1056)*v(141)+v(1028)*v(143)+v(1116)*v(146)+v(1088& &)*v(148)+v(1155)*v(149)+v(1129)*v(151))*v(7646)+v(1178)*v(7669)+v(153)*(v(948)+v(984))) v(1477)=-(v(7668)*v(806))+v(7648)*(v(1230)*v(154)+v(1185)*v(188)+(v(1055)*v(141)+v(1026)*v(143)+v(1115)*v(146)+v(1086& &)*v(148)+v(1154)*v(149)+v(1127)*v(151))*v(7646)+v(1177)*v(7669)+v(153)*(v(947)+v(983))) v(1476)=-(v(7668)*v(805))+v(7648)*(v(1229)*v(154)+v(1184)*v(188)+(v(1054)*v(141)+v(1025)*v(143)+v(1114)*v(146)+v(1085& &)*v(148)+v(1153)*v(149)+v(1126)*v(151))*v(7646)+v(1176)*v(7669)+v(153)*(v(946)+v(982))) v(1475)=-(v(7668)*v(804))+v(7648)*(v(1228)*v(154)+v(1182)*v(188)+(v(1052)*v(141)+v(1023)*v(143)+v(1113)*v(146)+v(1084& &)*v(148)+v(1152)*v(149)+v(1125)*v(151))*v(7646)+v(1174)*v(7669)+v(153)*(v(945)+v(981))) v(1473)=v(7648)*(v(1227)*v(154)+v(1180)*v(188)+(v(1051)*v(141)+v(1022)*v(143)+v(1111)*v(146)+v(1082)*v(148)+v(1151)*v& &(149)+v(1124)*v(151))*v(7646)+v(1172)*v(7669)+v(153)*(v(944)+v(980))) v(1426)=mpar(14)*(v(142)*v(160)+v(147)*v(162)+v(150)*v(173))+v(150)*v(179)+v(149)*v(188)+v(154)*v(189) v(7670)=0.15d1*v(1426) v(1436)=v(7546)*v(7670) v(1435)=v(7550)*v(7670) v(1434)=v(7543)*v(7670) v(1433)=-(v(7670)*v(810)) v(1432)=-(v(7670)*v(809)) v(1431)=-(v(7670)*v(808))+v(7648)*(v(1232)*v(149)+v(1226)*v(154)+v(1144)*v(179)+v(1131)*v(188)+v(1187)*v(189)+mpar(14)*& &(v(1015)*v(142)+v(1075)*v(147)+v(1044)*v(160)+v(1104)*v(162)+v(1144)*v(173)+v(150)*v(931))+v(150)*v(967)) v(7744)=v(1431)*v(7523) v(1430)=-(v(7670)*v(807))+v(7648)*(v(1231)*v(149)+v(1225)*v(154)+v(1143)*v(179)+v(1129)*v(188)+v(1186)*v(189)+mpar(14)*& &(v(1013)*v(142)+v(1073)*v(147)+v(1043)*v(160)+v(1103)*v(162)+v(1143)*v(173)+v(150)*v(929))+v(150)*v(966)) v(1429)=-(v(7670)*v(806))+v(7648)*(v(1230)*v(149)+v(1224)*v(154)+v(1141)*v(179)+v(1127)*v(188)+v(1185)*v(189)+mpar(14)*& &(v(1011)*v(142)+v(1071)*v(147)+v(1041)*v(160)+v(1101)*v(162)+v(1141)*v(173)+v(150)*v(927))+v(150)*v(965)) v(1428)=-(v(7670)*v(805))+v(7648)*(v(1229)*v(149)+v(1223)*v(154)+v(1140)*v(179)+v(1126)*v(188)+v(1184)*v(189)+mpar(14)*& &(v(1009)*v(142)+v(1069)*v(147)+v(1040)*v(160)+v(1100)*v(162)+v(1140)*v(173)+v(150)*v(925))+v(150)*v(964)) v(1427)=-(v(7670)*v(804))+v(7648)*(v(1228)*v(149)+v(1222)*v(154)+v(1139)*v(179)+v(1125)*v(188)+v(1182)*v(189)+mpar(14)*& &(v(1007)*v(142)+v(1067)*v(147)+v(1038)*v(160)+v(1099)*v(162)+v(1139)*v(173)+v(150)*v(923))+v(150)*v(963)) v(1425)=v(7648)*(v(1227)*v(149)+v(1221)*v(154)+v(1138)*v(179)+v(1124)*v(188)+v(1180)*v(189)+mpar(14)*(v(1005)*v(142)+v& &(1065)*v(147)+v(1037)*v(160)+v(1097)*v(162)+v(1138)*v(173)+v(150)*v(921))+v(150)*v(962)) v(1414)=mpar(14)*(v(141)*v(160)+v(146)*v(162)+v(149)*v(173))+v(149)*v(175)+v(150)*v(188)+v(153)*v(189) v(7671)=0.15d1*v(1414) v(1424)=v(7546)*v(7671) v(1423)=v(7550)*v(7671) v(1422)=v(7543)*v(7671) v(1421)=-(v(7671)*v(810)) v(1420)=-(v(7671)*v(809)) v(1419)=-(v(7671)*v(808))+v(7648)*(v(1232)*v(150)+v(1226)*v(153)+v(1131)*v(175)+v(1144)*v(188)+v(1179)*v(189)+mpar(14)*& &(v(1015)*v(141)+v(1075)*v(146)+v(1030)*v(160)+v(1090)*v(162)+v(1131)*v(173)+v(149)*v(931))+v(149)*v(949)) v(1418)=-(v(7671)*v(807))+v(7648)*(v(1231)*v(150)+v(1225)*v(153)+v(1129)*v(175)+v(1143)*v(188)+v(1178)*v(189)+mpar(14)*& &(v(1013)*v(141)+v(1073)*v(146)+v(1028)*v(160)+v(1088)*v(162)+v(1129)*v(173)+v(149)*v(929))+v(149)*v(948)) v(1417)=-(v(7671)*v(806))+v(7648)*(v(1230)*v(150)+v(1224)*v(153)+v(1127)*v(175)+v(1141)*v(188)+v(1177)*v(189)+mpar(14)*& &(v(1011)*v(141)+v(1071)*v(146)+v(1026)*v(160)+v(1086)*v(162)+v(1127)*v(173)+v(149)*v(927))+v(149)*v(947)) v(7750)=v(1417)*v(7523) v(1416)=-(v(7671)*v(805))+v(7648)*(v(1229)*v(150)+v(1223)*v(153)+v(1126)*v(175)+v(1140)*v(188)+v(1176)*v(189)+mpar(14)*& &(v(1009)*v(141)+v(1069)*v(146)+v(1025)*v(160)+v(1085)*v(162)+v(1126)*v(173)+v(149)*v(925))+v(149)*v(946)) v(1415)=-(v(7671)*v(804))+v(7648)*(v(1228)*v(150)+v(1222)*v(153)+v(1125)*v(175)+v(1139)*v(188)+v(1174)*v(189)+mpar(14)*& &(v(1007)*v(141)+v(1067)*v(146)+v(1023)*v(160)+v(1084)*v(162)+v(1125)*v(173)+v(149)*v(923))+v(149)*v(945)) v(1413)=v(7648)*(v(1227)*v(150)+v(1221)*v(153)+v(1124)*v(175)+v(1138)*v(188)+v(1172)*v(189)+mpar(14)*(v(1005)*v(141)+v& &(1065)*v(146)+v(1022)*v(160)+v(1082)*v(162)+v(1124)*v(173)+v(149)*v(921))+v(149)*v(944)) v(180)=v(7639)*v(7646) v(177)=v(7641)*v(7646) v(1378)=mpar(14)*(v(142)*v(159)+v(150)*v(162)+v(147)*v(170))+v(154)*v(177)+v(147)*v(179)+v(152)*v(180) v(7672)=0.15d1*v(1378) v(1388)=v(7546)*v(7672) v(1387)=v(7550)*v(7672) v(1386)=v(7543)*v(7672) v(1385)=-(v(7672)*v(810)) v(1384)=-(v(7672)*v(809)) v(1383)=-(v(7672)*v(808))+v(7648)*(v(1238)*v(152)+v(1244)*v(154)+v(1187)*v(177)+v(1104)*v(179)+v(1171)*v(180)+v(147)*v& &(967)+mpar(14)*(v(1075)*v(150)+v(1044)*v(159)+v(1144)*v(162)+v(1104)*v(170)+v(147)*v(919)+v(142)*v(997))) v(7743)=v(1383)*x(3) v(1382)=-(v(7672)*v(807))+v(7648)*(v(1237)*v(152)+v(1243)*v(154)+v(1186)*v(177)+v(1103)*v(179)+v(1170)*v(180)+v(147)*v& &(966)+mpar(14)*(v(1073)*v(150)+v(1043)*v(159)+v(1143)*v(162)+v(1103)*v(170)+v(147)*v(917)+v(142)*v(995))) v(1381)=-(v(7672)*v(806))+v(7648)*(v(1236)*v(152)+v(1242)*v(154)+v(1185)*v(177)+v(1101)*v(179)+v(1168)*v(180)+v(147)*v& &(965)+mpar(14)*(v(1071)*v(150)+v(1041)*v(159)+v(1141)*v(162)+v(1101)*v(170)+v(147)*v(915)+v(142)*v(993))) v(1380)=-(v(7672)*v(805))+v(7648)*(v(1235)*v(152)+v(1241)*v(154)+v(1184)*v(177)+v(1100)*v(179)+v(1167)*v(180)+v(147)*v& &(964)+mpar(14)*(v(1069)*v(150)+v(1040)*v(159)+v(1140)*v(162)+v(1100)*v(170)+v(147)*v(913)+v(142)*v(991))) v(1379)=-(v(7672)*v(804))+v(7648)*(v(1234)*v(152)+v(1240)*v(154)+v(1182)*v(177)+v(1099)*v(179)+v(1165)*v(180)+v(147)*v& &(963)+mpar(14)*(v(1067)*v(150)+v(1038)*v(159)+v(1139)*v(162)+v(1099)*v(170)+v(147)*v(911)+v(142)*v(989))) v(1377)=v(7648)*(v(1233)*v(152)+v(1239)*v(154)+v(1180)*v(177)+v(1097)*v(179)+v(1163)*v(180)+v(147)*v(962)+mpar(14)*(v& &(1065)*v(150)+v(1037)*v(159)+v(1138)*v(162)+v(1097)*v(170)+v(147)*v(909)+v(142)*v(987))) v(176)=v(7640)*v(7646) v(1390)=mpar(14)*(v(143)*v(159)+v(151)*v(162)+v(148)*v(170))+v(154)*v(176)+v(153)*v(180)+v(148)*v(182) v(7673)=0.15d1*v(1390) v(1400)=v(7546)*v(7673) v(1399)=v(7550)*v(7673) v(1398)=v(7543)*v(7673) v(1397)=-(v(7673)*v(810)) v(1396)=-(v(7673)*v(809)) v(1395)=-(v(7673)*v(808))+v(7648)*(v(1238)*v(153)+v(1250)*v(154)+v(1187)*v(176)+v(1179)*v(180)+v(1117)*v(182)+v(148)*v& &(985)+mpar(14)*(v(1075)*v(151)+v(1057)*v(159)+v(1156)*v(162)+v(1117)*v(170)+v(148)*v(919)+v(143)*v(997))) v(1394)=-(v(7673)*v(807))+v(7648)*(v(1237)*v(153)+v(1249)*v(154)+v(1186)*v(176)+v(1178)*v(180)+v(1116)*v(182)+v(148)*v& &(984)+mpar(14)*(v(1073)*v(151)+v(1056)*v(159)+v(1155)*v(162)+v(1116)*v(170)+v(148)*v(917)+v(143)*v(995))) v(7738)=v(1394)*x(3) v(1393)=-(v(7673)*v(806))+v(7648)*(v(1236)*v(153)+v(1248)*v(154)+v(1185)*v(176)+v(1177)*v(180)+v(1115)*v(182)+v(148)*v& &(983)+mpar(14)*(v(1071)*v(151)+v(1055)*v(159)+v(1154)*v(162)+v(1115)*v(170)+v(148)*v(915)+v(143)*v(993))) v(1392)=-(v(7673)*v(805))+v(7648)*(v(1235)*v(153)+v(1247)*v(154)+v(1184)*v(176)+v(1176)*v(180)+v(1114)*v(182)+v(148)*v& &(982)+mpar(14)*(v(1069)*v(151)+v(1054)*v(159)+v(1153)*v(162)+v(1114)*v(170)+v(148)*v(913)+v(143)*v(991))) v(1391)=-(v(7673)*v(804))+v(7648)*(v(1234)*v(153)+v(1246)*v(154)+v(1182)*v(176)+v(1174)*v(180)+v(1113)*v(182)+v(148)*v& &(981)+mpar(14)*(v(1067)*v(151)+v(1052)*v(159)+v(1152)*v(162)+v(1113)*v(170)+v(148)*v(911)+v(143)*v(989))) v(1389)=v(7648)*(v(1233)*v(153)+v(1245)*v(154)+v(1180)*v(176)+v(1172)*v(180)+v(1111)*v(182)+v(148)*v(980)+mpar(14)*(v& &(1065)*v(151)+v(1051)*v(159)+v(1151)*v(162)+v(1111)*v(170)+v(148)*v(909)+v(143)*v(987))) v(1366)=mpar(14)*(v(141)*v(159)+v(149)*v(162)+v(146)*v(170))+v(146)*v(175)+v(152)*v(176)+v(153)*v(177) v(7674)=0.15d1*v(1366) v(1376)=v(7546)*v(7674) v(1375)=v(7550)*v(7674) v(1374)=v(7543)*v(7674) v(1373)=-(v(7674)*v(810)) v(1372)=-(v(7674)*v(809)) v(1371)=-(v(7674)*v(808))+v(7648)*(v(1250)*v(152)+v(1244)*v(153)+v(1090)*v(175)+v(1171)*v(176)+v(1179)*v(177)+v(146)*v& &(949)+mpar(14)*(v(1075)*v(149)+v(1030)*v(159)+v(1131)*v(162)+v(1090)*v(170)+v(146)*v(919)+v(141)*v(997))) v(1370)=-(v(7674)*v(807))+v(7648)*(v(1249)*v(152)+v(1243)*v(153)+v(1088)*v(175)+v(1170)*v(176)+v(1178)*v(177)+v(146)*v& &(948)+mpar(14)*(v(1073)*v(149)+v(1028)*v(159)+v(1129)*v(162)+v(1088)*v(170)+v(146)*v(917)+v(141)*v(995))) v(1369)=-(v(7674)*v(806))+v(7648)*(v(1248)*v(152)+v(1242)*v(153)+v(1086)*v(175)+v(1168)*v(176)+v(1177)*v(177)+v(146)*v& &(947)+mpar(14)*(v(1071)*v(149)+v(1026)*v(159)+v(1127)*v(162)+v(1086)*v(170)+v(146)*v(915)+v(141)*v(993))) v(7749)=v(1369)*x(3) v(1368)=-(v(7674)*v(805))+v(7648)*(v(1247)*v(152)+v(1241)*v(153)+v(1085)*v(175)+v(1167)*v(176)+v(1176)*v(177)+v(146)*v& &(946)+mpar(14)*(v(1069)*v(149)+v(1025)*v(159)+v(1126)*v(162)+v(1085)*v(170)+v(146)*v(913)+v(141)*v(991))) v(1367)=-(v(7674)*v(804))+v(7648)*(v(1246)*v(152)+v(1240)*v(153)+v(1084)*v(175)+v(1165)*v(176)+v(1174)*v(177)+v(146)*v& &(945)+mpar(14)*(v(1067)*v(149)+v(1023)*v(159)+v(1125)*v(162)+v(1084)*v(170)+v(146)*v(911)+v(141)*v(989))) v(1365)=v(7648)*(v(1245)*v(152)+v(1239)*v(153)+v(1082)*v(175)+v(1163)*v(176)+v(1172)*v(177)+v(146)*v(944)+mpar(14)*(v& &(1065)*v(149)+v(1022)*v(159)+v(1124)*v(162)+v(1082)*v(170)+v(146)*v(909)+v(141)*v(987))) v(1354)=v(159)*v(160)+v(150)*v(176)+v(151)*v(177)+v(149)*v(180)+v(162)*v(7676) v(7675)=0.15d1*v(1354) v(1364)=v(7546)*v(7675) v(7753)=v(1364)*v(7523) v(1363)=v(7550)*v(7675) v(7755)=v(1363)*v(7523) v(1362)=v(7543)*v(7675) v(7756)=v(1362)*v(7523) v(1361)=-(v(7675)*v(810)) v(7757)=v(1361)*v(7523) v(1360)=-(v(7675)*v(809)) v(7758)=v(1360)*v(7523) v(1359)=-(v(7675)*v(808))+v(7648)*(v(1238)*v(149)+v(1250)*v(150)+v(1244)*v(151)+v(1015)*v(159)+v(1144)*v(176)+v(1156)*v& &(177)+v(1131)*v(180)+v(1075)*v(7676)+v(162)*(v(919)+v(931))+v(160)*v(997)) v(1358)=-(v(7675)*v(807))+v(7648)*(v(1237)*v(149)+v(1249)*v(150)+v(1243)*v(151)+v(1013)*v(159)+v(1143)*v(176)+v(1155)*v& &(177)+v(1129)*v(180)+v(1073)*v(7676)+v(162)*(v(917)+v(929))+v(160)*v(995)) v(1357)=-(v(7675)*v(806))+v(7648)*(v(1236)*v(149)+v(1248)*v(150)+v(1242)*v(151)+v(1011)*v(159)+v(1141)*v(176)+v(1154)*v& &(177)+v(1127)*v(180)+v(1071)*v(7676)+v(162)*(v(915)+v(927))+v(160)*v(993)) v(1356)=-(v(7675)*v(805))+v(7648)*(v(1235)*v(149)+v(1247)*v(150)+v(1241)*v(151)+v(1009)*v(159)+v(1140)*v(176)+v(1153)*v& &(177)+v(1126)*v(180)+v(1069)*v(7676)+v(162)*(v(913)+v(925))+v(160)*v(991)) v(7760)=-(v(1356)*v(680))+v(1368)*v(7519)+v(1392)*v(7520)+v(1380)*v(7521) v(1355)=-(v(7675)*v(804))+v(7648)*(v(1234)*v(149)+v(1246)*v(150)+v(1240)*v(151)+v(1007)*v(159)+v(1139)*v(176)+v(1152)*v& &(177)+v(1125)*v(180)+v(1067)*v(7676)+v(162)*(v(911)+v(923))+v(160)*v(989)) v(7761)=-(v(1355)*v(680))+v(1367)*v(7519)+v(1391)*v(7520)+v(1379)*v(7521) v(1353)=v(7648)*(v(1233)*v(149)+v(1245)*v(150)+v(1239)*v(151)+v(1005)*v(159)+v(1138)*v(176)+v(1151)*v(177)+v(1124)*v& &(180)+v(1065)*v(7676)+v(162)*(v(909)+v(921))+v(160)*v(987)) v(7762)=v(1353)*v(7523) v(165)=v(7637)*v(7646) v(164)=v(7636)*v(7646) v(1306)=mpar(14)*(v(141)*v(158)+v(146)*v(159)+v(149)*v(160))+v(152)*v(164)+v(153)*v(165)+v(141)*v(175) v(7677)=0.15d1*v(1306) v(1316)=v(7546)*v(7677) v(1315)=v(7550)*v(7677) v(1314)=v(7543)*v(7677) v(1313)=-(v(7677)*v(810)) v(1312)=-(v(7677)*v(809)) v(1311)=-(v(7677)*v(808))+v(7648)*(v(1262)*v(152)+v(1256)*v(153)+v(1171)*v(164)+v(1179)*v(165)+v(1030)*v(175)+v(141)*v& &(949)+mpar(14)*(v(1015)*v(149)+v(1030)*v(158)+v(1090)*v(159)+v(1131)*v(160)+v(141)*v(907)+v(146)*v(997))) v(1310)=-(v(7677)*v(807))+v(7648)*(v(1261)*v(152)+v(1255)*v(153)+v(1170)*v(164)+v(1178)*v(165)+v(1028)*v(175)+v(141)*v& &(948)+mpar(14)*(v(1013)*v(149)+v(1028)*v(158)+v(1088)*v(159)+v(1129)*v(160)+v(141)*v(905)+v(146)*v(995))) v(1309)=-(v(7677)*v(806))+v(7648)*(v(1260)*v(152)+v(1254)*v(153)+v(1168)*v(164)+v(1177)*v(165)+v(1026)*v(175)+v(141)*v& &(947)+mpar(14)*(v(1011)*v(149)+v(1026)*v(158)+v(1086)*v(159)+v(1127)*v(160)+v(141)*v(903)+v(146)*v(993))) v(7748)=v(1309)*x(2) v(1308)=-(v(7677)*v(805))+v(7648)*(v(1259)*v(152)+v(1253)*v(153)+v(1167)*v(164)+v(1176)*v(165)+v(1025)*v(175)+v(141)*v& &(946)+mpar(14)*(v(1009)*v(149)+v(1025)*v(158)+v(1085)*v(159)+v(1126)*v(160)+v(141)*v(901)+v(146)*v(991))) v(1307)=-(v(7677)*v(804))+v(7648)*(v(1258)*v(152)+v(1252)*v(153)+v(1165)*v(164)+v(1174)*v(165)+v(1023)*v(175)+v(141)*v& &(945)+mpar(14)*(v(1007)*v(149)+v(1023)*v(158)+v(1084)*v(159)+v(1125)*v(160)+v(141)*v(899)+v(146)*v(989))) v(1305)=v(7648)*(v(1257)*v(152)+v(1251)*v(153)+v(1163)*v(164)+v(1172)*v(165)+v(1022)*v(175)+v(141)*v(944)+mpar(14)*(v& &(1005)*v(149)+v(1022)*v(158)+v(1082)*v(159)+v(1124)*v(160)+v(141)*v(897)+v(146)*v(987))) v(163)=v(7635)*v(7646) v(1330)=mpar(14)*(v(143)*v(158)+v(148)*v(159)+v(151)*v(160))+v(153)*v(163)+v(154)*v(164)+v(143)*v(182) v(7678)=0.15d1*v(1330) v(1340)=v(7546)*v(7678) v(1339)=v(7550)*v(7678) v(1338)=v(7543)*v(7678) v(1337)=-(v(7678)*v(810)) v(1336)=-(v(7678)*v(809)) v(1335)=-(v(7678)*v(808))+v(7648)*(v(1268)*v(153)+v(1262)*v(154)+v(1179)*v(163)+v(1187)*v(164)+v(1057)*v(182)+v(143)*v& &(985)+mpar(14)*(v(1015)*v(151)+v(1057)*v(158)+v(1117)*v(159)+v(1156)*v(160)+v(143)*v(907)+v(148)*v(997))) v(1334)=-(v(7678)*v(807))+v(7648)*(v(1267)*v(153)+v(1261)*v(154)+v(1178)*v(163)+v(1186)*v(164)+v(1056)*v(182)+v(143)*v& &(984)+mpar(14)*(v(1013)*v(151)+v(1056)*v(158)+v(1116)*v(159)+v(1155)*v(160)+v(143)*v(905)+v(148)*v(995))) v(7737)=v(1334)*x(2) v(1333)=-(v(7678)*v(806))+v(7648)*(v(1266)*v(153)+v(1260)*v(154)+v(1177)*v(163)+v(1185)*v(164)+v(1055)*v(182)+v(143)*v& &(983)+mpar(14)*(v(1011)*v(151)+v(1055)*v(158)+v(1115)*v(159)+v(1154)*v(160)+v(143)*v(903)+v(148)*v(993))) v(1332)=-(v(7678)*v(805))+v(7648)*(v(1265)*v(153)+v(1259)*v(154)+v(1176)*v(163)+v(1184)*v(164)+v(1054)*v(182)+v(143)*v& &(982)+mpar(14)*(v(1009)*v(151)+v(1054)*v(158)+v(1114)*v(159)+v(1153)*v(160)+v(143)*v(901)+v(148)*v(991))) v(1331)=-(v(7678)*v(804))+v(7648)*(v(1264)*v(153)+v(1258)*v(154)+v(1174)*v(163)+v(1182)*v(164)+v(1052)*v(182)+v(143)*v& &(981)+mpar(14)*(v(1007)*v(151)+v(1052)*v(158)+v(1113)*v(159)+v(1152)*v(160)+v(143)*v(899)+v(148)*v(989))) v(1329)=v(7648)*(v(1263)*v(153)+v(1257)*v(154)+v(1172)*v(163)+v(1180)*v(164)+v(1051)*v(182)+v(143)*v(980)+mpar(14)*(v& &(1005)*v(151)+v(1051)*v(158)+v(1111)*v(159)+v(1151)*v(160)+v(143)*v(897)+v(148)*v(987))) v(1318)=mpar(14)*(v(142)*v(158)+v(147)*v(159)+v(150)*v(160))+v(152)*v(163)+v(154)*v(165)+v(142)*v(179) v(7679)=0.15d1*v(1318) v(1328)=v(7546)*v(7679) v(1327)=v(7550)*v(7679) v(1326)=v(7543)*v(7679) v(1325)=-(v(7679)*v(810)) v(1324)=-(v(7679)*v(809)) v(1323)=-(v(7679)*v(808))+v(7648)*(v(1268)*v(152)+v(1256)*v(154)+v(1171)*v(163)+v(1187)*v(165)+v(1044)*v(179)+v(142)*v& &(967)+mpar(14)*(v(1015)*v(150)+v(1044)*v(158)+v(1104)*v(159)+v(1144)*v(160)+v(142)*v(907)+v(147)*v(997))) v(7742)=v(1323)*x(2) v(1322)=-(v(7679)*v(807))+v(7648)*(v(1267)*v(152)+v(1255)*v(154)+v(1170)*v(163)+v(1186)*v(165)+v(1043)*v(179)+v(142)*v& &(966)+mpar(14)*(v(1013)*v(150)+v(1043)*v(158)+v(1103)*v(159)+v(1143)*v(160)+v(142)*v(905)+v(147)*v(995))) v(1321)=-(v(7679)*v(806))+v(7648)*(v(1266)*v(152)+v(1254)*v(154)+v(1168)*v(163)+v(1185)*v(165)+v(1041)*v(179)+v(142)*v& &(965)+mpar(14)*(v(1011)*v(150)+v(1041)*v(158)+v(1101)*v(159)+v(1141)*v(160)+v(142)*v(903)+v(147)*v(993))) v(1320)=-(v(7679)*v(805))+v(7648)*(v(1265)*v(152)+v(1253)*v(154)+v(1167)*v(163)+v(1184)*v(165)+v(1040)*v(179)+v(142)*v& &(964)+mpar(14)*(v(1009)*v(150)+v(1040)*v(158)+v(1100)*v(159)+v(1140)*v(160)+v(142)*v(901)+v(147)*v(991))) v(1319)=-(v(7679)*v(804))+v(7648)*(v(1264)*v(152)+v(1252)*v(154)+v(1165)*v(163)+v(1182)*v(165)+v(1038)*v(179)+v(142)*v& &(963)+mpar(14)*(v(1007)*v(150)+v(1038)*v(158)+v(1099)*v(159)+v(1139)*v(160)+v(142)*v(899)+v(147)*v(989))) v(1317)=v(7648)*(v(1263)*v(152)+v(1251)*v(154)+v(1163)*v(163)+v(1180)*v(165)+v(1037)*v(179)+v(142)*v(962)+mpar(14)*(v& &(1005)*v(150)+v(1037)*v(158)+v(1097)*v(159)+v(1138)*v(160)+v(142)*v(897)+v(147)*v(987))) v(1294)=v(159)*v(162)+v(149)*v(163)+v(150)*v(164)+v(151)*v(165)+v(160)*v(7681) v(7680)=0.15d1*v(1294) v(1304)=v(7546)*v(7680) v(7764)=v(1304)*v(7523) v(1303)=v(7550)*v(7680) v(7767)=v(1303)*v(7523) v(1302)=v(7543)*v(7680) v(7769)=v(1302)*v(7523) v(1301)=-(v(7680)*v(810)) v(7771)=v(1301)*v(7523) v(1300)=-(v(7680)*v(809)) v(7773)=v(1300)*v(7523) v(1299)=-(v(7680)*v(808))+v(7648)*(v(1268)*v(149)+v(1262)*v(150)+v(1256)*v(151)+v(1075)*v(159)+v(1131)*v(163)+v(1144)*v& &(164)+v(1156)*v(165)+v(1015)*v(7681)+v(160)*(v(907)+v(931))+v(162)*v(997)) v(1298)=-(v(7680)*v(807))+v(7648)*(v(1267)*v(149)+v(1261)*v(150)+v(1255)*v(151)+v(1073)*v(159)+v(1129)*v(163)+v(1143)*v& &(164)+v(1155)*v(165)+v(1013)*v(7681)+v(160)*(v(905)+v(929))+v(162)*v(995)) v(1297)=-(v(7680)*v(806))+v(7648)*(v(1266)*v(149)+v(1260)*v(150)+v(1254)*v(151)+v(1071)*v(159)+v(1127)*v(163)+v(1141)*v& &(164)+v(1154)*v(165)+v(1011)*v(7681)+v(160)*(v(903)+v(927))+v(162)*v(993)) v(1296)=-(v(7680)*v(805))+v(7648)*(v(1265)*v(149)+v(1259)*v(150)+v(1253)*v(151)+v(1069)*v(159)+v(1126)*v(163)+v(1140)*v& &(164)+v(1153)*v(165)+v(1009)*v(7681)+v(160)*(v(901)+v(925))+v(162)*v(991)) v(1295)=-(v(7680)*v(804))+v(7648)*(v(1264)*v(149)+v(1258)*v(150)+v(1252)*v(151)+v(1067)*v(159)+v(1125)*v(163)+v(1139)*v& &(164)+v(1152)*v(165)+v(1007)*v(7681)+v(160)*(v(899)+v(923))+v(162)*v(989)) v(1293)=v(7648)*(v(1263)*v(149)+v(1257)*v(150)+v(1251)*v(151)+v(1065)*v(159)+v(1124)*v(163)+v(1138)*v(164)+v(1151)*v& &(165)+v(1005)*v(7681)+v(160)*(v(897)+v(921))+v(162)*v(987)) v(7781)=v(1293)*v(7523) v(1282)=v(160)*v(162)+v(146)*v(163)+v(147)*v(164)+v(148)*v(165)+v(159)*v(7705) v(7690)=0.15d1*v(1282) v(1292)=v(7546)*v(7690) v(7763)=v(1292)*x(3) v(1549)=v(1280)*v(7526)+v(1352)*v(7527)+2d0*v(7683)+2d0*v(7685)+v(1412)*v(7687)+v(1460)*v(7691)+v(1496)*v(7694)+v(1520& &)*v(7696)+v(1448)*v(7697)+v(1436)*v(7698)+v(1424)*v(7699)+v(1484)*v(7703)+v(7524)*(v(1388)*v(7665)+v(1376)*v(7688)+v& &(1400)*v(7689)+v(7753))+v(7525)*(v(1328)*v(7665)+v(1316)*v(7688)+v(1340)*v(7689)+v(7763)+v(7764)) v(1291)=v(7550)*v(7690) v(7765)=v(1291)*x(3) v(1546)=v(1279)*v(7526)+v(1351)*v(7527)+v(1411)*v(7687)+v(1459)*v(7691)+2d0*v(7693)+v(1495)*v(7694)+2d0*v(7695)+v(1519& &)*v(7696)+v(1447)*v(7697)+v(1435)*v(7698)+v(1423)*v(7699)+v(1471)*v(7704)+v(7524)*(v(1387)*v(7665)+v(1375)*v(7688)+v& &(1399)*v(7689)+v(7755))+v(7525)*(v(1327)*v(7665)+v(1315)*v(7688)+v(1339)*v(7689)+v(7765)+v(7767)) v(1290)=v(7543)*v(7690) v(7768)=v(1290)*x(3) v(1544)=v(1278)*v(7526)+v(1350)*v(7527)+v(1410)*v(7687)+v(1458)*v(7691)+v(1494)*v(7694)+v(1518)*v(7696)+v(1446)*v(7697)& &+v(1434)*v(7698)+v(1422)*v(7699)+2d0*v(7700)+2d0*v(7701)+v(1506)*v(7702)+v(7524)*(v(1386)*v(7665)+v(1374)*v(7688)+v& &(1398)*v(7689)+v(7756))+v(7525)*(v(1326)*v(7665)+v(1314)*v(7688)+v(1338)*v(7689)+v(7768)+v(7769)) v(1289)=-(v(7690)*v(810)) v(7770)=v(1289)*x(3) v(1543)=v(1277)*v(7526)+v(1349)*v(7527)+v(1409)*v(7687)+v(1457)*v(7691)+v(1493)*v(7694)+v(1517)*v(7696)+v(1445)*v(7697)& &+v(1433)*v(7698)+v(1421)*v(7699)+v(1505)*v(7702)+v(1481)*v(7703)+v(1469)*v(7704)+v(7524)*(v(1385)*v(7665)+v(1373)*v& &(7688)+v(1397)*v(7689)+v(7757))+v(7525)*(v(1325)*v(7665)+v(1313)*v(7688)+v(1337)*v(7689)+v(7770)+v(7771)) v(1288)=-(v(7690)*v(809)) v(7772)=v(1288)*x(3) v(1542)=v(1276)*v(7526)+v(1348)*v(7527)+v(1408)*v(7687)+v(1456)*v(7691)+v(1492)*v(7694)+v(1516)*v(7696)+v(1444)*v(7697)& &+v(1432)*v(7698)+v(1420)*v(7699)+v(1504)*v(7702)+v(1480)*v(7703)+v(1468)*v(7704)+v(7524)*(v(1384)*v(7665)+v(1372)*v& &(7688)+v(1396)*v(7689)+v(7758))+v(7525)*(v(1324)*v(7665)+v(1312)*v(7688)+v(1336)*v(7689)+v(7772)+v(7773)) v(1287)=-(v(7690)*v(808))+v(7648)*(v(1268)*v(146)+v(1262)*v(147)+v(1256)*v(148)+v(1075)*v(160)+v(1015)*v(162)+v(1090)*v& &(163)+v(1104)*v(164)+v(1117)*v(165)+v(159)*(v(907)+v(919))+v(7705)*v(997)) v(7774)=-(v(1299)*v(680))+v(1311)*v(7519)+v(1335)*v(7520)+v(1287)*v(7524) v(1286)=-(v(7690)*v(807))+v(7648)*(v(1267)*v(146)+v(1261)*v(147)+v(1255)*v(148)+v(1073)*v(160)+v(1013)*v(162)+v(1088)*v& &(163)+v(1103)*v(164)+v(1116)*v(165)+v(159)*(v(905)+v(917))+v(7705)*v(995)) v(7775)=-(v(1298)*v(680))+v(1310)*v(7519)+v(1322)*v(7521)+v(1286)*v(7524) v(1285)=-(v(7690)*v(806))+v(7648)*(v(1266)*v(146)+v(1260)*v(147)+v(1254)*v(148)+v(1071)*v(160)+v(1011)*v(162)+v(1086)*v& &(163)+v(1101)*v(164)+v(1115)*v(165)+v(159)*(v(903)+v(915))+v(7705)*v(993)) v(7777)=-(v(1297)*v(680))+v(1333)*v(7520)+v(1321)*v(7521)+v(1285)*v(7524) v(1284)=-(v(7690)*v(805))+v(7648)*(v(1265)*v(146)+v(1259)*v(147)+v(1253)*v(148)+v(1069)*v(160)+v(1009)*v(162)+v(1085)*v& &(163)+v(1100)*v(164)+v(1114)*v(165)+v(159)*(v(901)+v(913))+v(7705)*v(991)) v(7778)=-(v(1296)*v(680))+v(1308)*v(7519)+v(1332)*v(7520)+v(1320)*v(7521)+v(1284)*v(7524) v(1283)=-(v(7690)*v(804))+v(7648)*(v(1264)*v(146)+v(1258)*v(147)+v(1252)*v(148)+v(1067)*v(160)+v(1007)*v(162)+v(1084)*v& &(163)+v(1099)*v(164)+v(1113)*v(165)+v(159)*(v(899)+v(911))+v(7705)*v(989)) v(7779)=-(v(1295)*v(680))+v(1307)*v(7519)+v(1331)*v(7520)+v(1319)*v(7521)+v(1283)*v(7524) v(1281)=v(7648)*(v(1263)*v(146)+v(1257)*v(147)+v(1251)*v(148)+v(1065)*v(160)+v(1005)*v(162)+v(1082)*v(163)+v(1097)*v& &(164)+v(1111)*v(165)+v(159)*(v(897)+v(909))+v(7705)*v(987)) v(7780)=v(1281)*x(3) v(1521)=v(1269)*v(7526)+v(1341)*v(7527)+v(1401)*v(7687)+v(1449)*v(7691)+v(1485)*v(7694)+v(1509)*v(7696)+v(1437)*v(7697)& &+v(1425)*v(7698)+v(1413)*v(7699)+v(1497)*v(7702)+v(1473)*v(7703)+v(1461)*v(7704)+v(7524)*(v(1377)*v(7665)+v(1365)*v& &(7688)+v(1389)*v(7689)+v(7762))+v(7525)*(v(1317)*v(7665)+v(1305)*v(7688)+v(1329)*v(7689)+v(7780)+v(7781)) v(156)=v(157)*v(7652) v(7733)=v(156)*x(2) v(161)=v(157)*v(7690) v(7734)=v(161)*x(3) v(7730)=v(161)*x(2) v(1592)=2d0*v(161) v(166)=v(157)*v(7680) v(7735)=v(166)*v(7523) v(1567)=(-2d0)*v(166) v(1523)=v(166)*x(2) v(167)=v(157)*v(7677) v(7729)=v(167)*x(2) v(1645)=2d0*v(167) v(168)=v(157)*v(7679) v(7727)=v(168)*x(2) v(1673)=2d0*v(168) v(169)=v(157)*v(7678) v(7724)=v(169)*x(2) v(1705)=2d0*v(169) v(7709)=v(7735)+v(1645)*x(4)+v(1705)*x(5)+v(1673)*x(6) v(1522)=v(7709)+v(7733)+v(7734) v(172)=v(157)*v(7650) v(7731)=v(172)*x(3) v(174)=v(157)*v(7675) v(7732)=v(174)*v(7523) v(1594)=(-2d0)*v(174) v(1524)=v(174)*x(3) v(178)=v(157)*v(7674) v(1648)=2d0*v(178) v(181)=v(157)*v(7672) v(1676)=2d0*v(181) v(183)=v(157)*v(7673) v(1708)=2d0*v(183) v(7707)=v(7732)+v(1648)*x(4)+v(1708)*x(5)+v(1676)*x(6) v(1531)=v(7707)+v(7730)+v(7731) v(186)=v(157)*v(7647) v(1620)=(-2d0)*v(186) v(1525)=v(186)*v(7523) v(187)=v(157)*v(7671) v(1646)=2d0*v(187) v(1526)=v(1646)*x(4) v(190)=v(157)*v(7670) v(1674)=2d0*v(190) v(1527)=v(1674)*x(6) v(191)=v(157)*v(7667) v(1706)=2d0*v(191) v(1528)=v(1706)*x(5) v(7706)=-v(1525)-v(1526)-v(1527)-v(1528) v(1530)=-v(1523)-v(1524)+v(7706) v(7708)=v(1530)+v(7706) v(1532)=v(1531)+v(1272)*v(7526)+v(1344)*v(7527)+v(1404)*v(7687)+v(1452)*v(7691)+v(1488)*v(7694)+v(1512)*v(7696)+v(1440& &)*v(7697)+v(1428)*v(7698)+v(1416)*v(7699)+v(1500)*v(7702)+v(1476)*v(7703)+v(1464)*v(7704)+v(7707)+v(7708)+(v(161)-v(166& &)+v(7778))*x(2)+(v(172)-v(174)+v(7760))*x(3) v(1529)=v(1522)+v(1271)*v(7526)+v(1343)*v(7527)+v(1403)*v(7687)+v(1451)*v(7691)+v(1487)*v(7694)+v(1511)*v(7696)+v(1439& &)*v(7697)+v(1427)*v(7698)+v(1415)*v(7699)+v(1499)*v(7702)+v(1475)*v(7703)+v(1463)*v(7704)+v(7708)+v(7709)+(v(156)-v(166& &)+v(7779))*x(2)+(v(161)-v(174)+v(7761))*x(3) v(196)=v(157)*v(7662) v(198)=v(157)*v(7664) v(1678)=4d0*v(198) v(1539)=2d0*v(198) v(7713)=v(1539)*x(4) v(7711)=v(1539)*x(6) v(199)=v(157)*v(7668) v(1710)=4d0*v(199) v(1536)=2d0*v(199) v(7718)=v(1536)*x(4) v(7710)=v(1536)*x(5) v(7728)=v(1646)*v(7523)+2d0*v(7710)+2d0*v(7711)+v(1648)*x(3) v(1533)=v(187)*v(7523)+v(196)*v(7688)+v(7710)+v(7711)+v(7729)+v(178)*x(3) v(7720)=2d0*v(1533) v(1534)=v(1273)*v(7526)+v(1345)*v(7527)+v(1405)*v(7687)+v(1453)*v(7691)+v(1489)*v(7694)+v(1513)*v(7696)+v(1441)*v(7697)& &+v(1429)*v(7698)+v(1501)*v(7702)+v(1393)*v(7712)+v(1357)*v(7715)+v(1381)*v(7716)+v(7720)+v(7728)+v(7519)*(v(196)+v(1465& &)*v(7665)+v(1477)*v(7689)+v(7748)+v(7749)+v(7750))+(v(1645)+v(7777))*x(2) v(205)=v(157)*v(7660) v(207)=v(157)*v(7658) v(1714)=4d0*v(207) v(1540)=2d0*v(207) v(7719)=v(1540)*x(6) v(7723)=v(1706)*v(7523)+2d0*v(7718)+2d0*v(7719)+v(1708)*x(3) v(7714)=v(1540)*x(5) v(7726)=v(1674)*v(7523)+2d0*v(7713)+2d0*v(7714)+v(1676)*x(3) v(1538)=v(190)*v(7523)+v(205)*v(7665)+v(7713)+v(7714)+v(7727)+v(181)*x(3) v(7722)=2d0*v(1538) v(1541)=v(1275)*v(7526)+v(1347)*v(7527)+v(1407)*v(7687)+v(1455)*v(7691)+v(1491)*v(7694)+v(1515)*v(7696)+v(1443)*v(7697)& &+v(1419)*v(7699)+v(1479)*v(7703)+v(1395)*v(7712)+v(1359)*v(7715)+v(1371)*v(7717)+v(7722)+v(7726)+v(7521)*(v(205)+v(1467& &)*v(7688)+v(1503)*v(7689)+v(7742)+v(7743)+v(7744))+(v(1673)+v(7774))*x(2) v(214)=v(157)*v(7656) v(1535)=v(191)*v(7523)+v(214)*v(7689)+v(7718)+v(7719)+v(7724)+v(183)*x(3) v(7721)=2d0*v(1535) v(1537)=v(1274)*v(7526)+v(1346)*v(7527)+v(1406)*v(7687)+v(1454)*v(7691)+v(1490)*v(7694)+v(1514)*v(7696)+v(1430)*v(7698)& &+v(1418)*v(7699)+v(1466)*v(7704)+v(1358)*v(7715)+v(1382)*v(7716)+v(1370)*v(7717)+v(7721)+v(7723)+v(7520)*(v(214)+v(1502& &)*v(7665)+v(1478)*v(7688)+v(7737)+v(7738)+v(7740))+(v(1705)+v(7775))*x(2) v(215)=-(v(1530)*v(7523))+v(1522)*x(2)+v(1531)*x(3)+v(7720)*x(4)+v(7721)*x(5)+v(7722)*x(6) v(7776)=-(v(1563)*v(215)) v(7759)=-(v(1589)*v(215)) v(7752)=-(v(1616)*v(215)) v(7747)=-(v(1642)*v(215)) v(7745)=-(v(1670)*v(215)) v(7739)=-(v(1702)*v(215)) v(7725)=v(215)*v(685) v(1718)=v(123)*v(7725) v(1703)=v(214)*v(7520)+v(7723)+2d0*v(7724)-v(1702)*v(7725) v(1684)=v(122)*v(7725) v(1725)=-(v(1684)*v(7550)) v(1671)=v(205)*v(7521)-v(1670)*v(7725)+v(7726)+2d0*v(7727) v(1654)=v(121)*v(7725) v(1720)=-(v(1654)*v(7550)) v(1686)=-(v(1654)*v(7546)) v(1643)=v(196)*v(7519)-v(1642)*v(7725)+v(7728)+2d0*v(7729) v(1628)=-(v(120)*v(7725)) v(1617)=2d0*v(1523)+2d0*v(1524)+2d0*v(1525)+v(187)*v(7519)+v(191)*v(7520)+v(190)*v(7521)-v(1616)*v(7725) v(1601)=v(119)*v(7725) v(1590)=v(178)*v(7519)+v(183)*v(7520)+v(181)*v(7521)-v(1589)*v(7725)+2d0*v(7730)+2d0*v(7731)+2d0*v(7732) v(1574)=v(117)*v(7725) v(1564)=v(167)*v(7519)+v(169)*v(7520)+v(168)*v(7521)-v(1563)*v(7725)+2d0*v(7733)+2d0*v(7734)+2d0*v(7735) v(1550)=1d0/sqrt(v(215)) v(7782)=v(1550)/2d0 v(1552)=-(v(7782)/v(215)) v(1562)=v(1549)*v(1552) v(1561)=v(1546)*v(1552) v(1560)=v(1544)*v(1552) v(1559)=v(1543)*v(1552) v(1558)=v(1542)*v(1552) v(1557)=v(1541)*v(1552) v(1556)=v(1537)*v(1552) v(1555)=v(1534)*v(1552) v(1554)=v(1532)*v(1552) v(1553)=v(1529)*v(1552) v(1551)=v(1521)*v(1552) v(1726)=(v(1562)*v(1703)+v(1550)*(v(1725)-v(1448)*v(680)+v(1484)*v(7519)+v(1520)*v(7520)+v(1508)*v(7521)+v(1400)*v(7524& &)+v(1340)*v(7525)+v(1549)*v(7736)))/2d0 v(1724)=(v(1561)*v(1703)+v(1550)*(v(1722)+v(1723)-v(1447)*v(680)+v(1519)*v(7520)+v(1399)*v(7524)+v(1339)*v(7525)+((-1d0& &)-v(123)*v(7550))*v(7725)+v(1546)*v(7736)))/2d0 v(1721)=(v(1560)*v(1703)+v(1550)*(v(1720)-v(1446)*v(680)+v(1482)*v(7519)+v(1518)*v(7520)+v(1506)*v(7521)+v(1398)*v(7524& &)+v(1338)*v(7525)+v(1544)*v(7736)))/2d0 v(1719)=(v(1559)*v(1703)+v(1550)*(-(v(1445)*v(680))+v(1481)*v(7519)+v(1517)*v(7520)+v(1505)*v(7521)+v(1397)*v(7524)+v& &(1337)*v(7525)+v(1543)*v(7736)+v(1718)*v(810)))/2d0 v(1717)=(v(1558)*v(1703)+v(1550)*(-(v(1444)*v(680))+v(1480)*v(7519)+v(1516)*v(7520)+v(1504)*v(7521)+v(1396)*v(7524)+v& &(1336)*v(7525)+v(1542)*v(7736)+v(1718)*v(809)))/2d0 v(1716)=(v(1557)*v(1703)+v(1550)*(v(1714)-v(1443)*v(680)+v(1479)*v(7519)+v(1515)*v(7520)+v(1503)*v(7521)+v(1395)*v(7524& &)+v(1335)*v(7525)+v(1541)*v(7736)+v(691)*v(7739)+v(7725)*(-v(1715)+v(123)*v(808))))/2d0 v(1713)=(v(1556)*v(1703)+v(1550)*(4d0*v(214)+v(1478)*v(7519)+v(1514)*v(7520)+v(1502)*v(7521)+v(1537)*v(7736)+2d0*v(7737& &)+2d0*v(7738)+v(690)*v(7739)+2d0*v(7740)+v(7725)*(v(226)*v(797)+v(123)*v(807))))/2d0 v(1712)=(v(1555)*v(1703)+v(1550)*(v(1710)-v(1441)*v(680)+v(1477)*v(7519)+v(1513)*v(7520)+v(1501)*v(7521)+v(1393)*v(7524& &)+v(1333)*v(7525)+v(1534)*v(7736)+v(689)*v(7739)+v(7725)*(-v(1711)+v(123)*v(806))))/2d0 v(1709)=(v(1554)*v(1703)+v(1550)*(-v(1706)+v(1708)-v(1440)*v(680)+v(1476)*v(7519)+v(1512)*v(7520)+v(1500)*v(7521)+v& &(1392)*v(7524)+v(1332)*v(7525)+v(1532)*v(7736)+v(688)*v(7739)+v(7725)*(v(226)*v(796)+v(123)*v(805))))/2d0 v(1707)=(v(1553)*v(1703)+v(1550)*(v(1705)-v(1706)-v(1439)*v(680)+v(1475)*v(7519)+v(1511)*v(7520)+v(1499)*v(7521)+v(1391& &)*v(7524)+v(1331)*v(7525)+v(1529)*v(7736)+v(686)*v(7739)+v(7725)*(v(226)*v(795)+v(123)*v(804))))/2d0 v(1704)=(v(1551)*v(1703)+v(1550)*(-(v(1437)*v(680))+v(1473)*v(7519)+v(1509)*v(7520)+v(1497)*v(7521)+v(1389)*v(7524)+v& &(1329)*v(7525)+v(1521)*v(7736)))/2d0 v(1690)=(v(1562)*v(1671)+v(1550)*(v(1689)+v(1723)-v(1436)*v(680)+v(1496)*v(7521)+v(1388)*v(7524)+v(1328)*v(7525)+((-1d0& &)-v(122)*v(7546))*v(7725)+v(1549)*v(7741)))/2d0 v(1688)=(v(1561)*v(1671)+v(1550)*(v(1725)-v(1435)*v(680)+v(1471)*v(7519)+v(1507)*v(7520)+v(1495)*v(7521)+v(1387)*v(7524& &)+v(1327)*v(7525)+v(1546)*v(7741)))/2d0 v(1687)=(v(1560)*v(1671)+v(1550)*(v(1686)-v(1434)*v(680)+v(1470)*v(7519)+v(1506)*v(7520)+v(1494)*v(7521)+v(1386)*v(7524& &)+v(1326)*v(7525)+v(1544)*v(7741)))/2d0 v(1685)=(v(1559)*v(1671)+v(1550)*(-(v(1433)*v(680))+v(1469)*v(7519)+v(1505)*v(7520)+v(1493)*v(7521)+v(1385)*v(7524)+v& &(1325)*v(7525)+v(1543)*v(7741)+v(1684)*v(810)))/2d0 v(1683)=(v(1558)*v(1671)+v(1550)*(-(v(1432)*v(680))+v(1468)*v(7519)+v(1504)*v(7520)+v(1492)*v(7521)+v(1384)*v(7524)+v& &(1324)*v(7525)+v(1542)*v(7741)+v(1684)*v(809)))/2d0 v(1682)=(v(1557)*v(1671)+v(1550)*(4d0*v(205)+v(1467)*v(7519)+v(1503)*v(7520)+v(1491)*v(7521)+v(1541)*v(7741)+2d0*v(7742& &)+2d0*v(7743)+2d0*v(7744)+v(691)*v(7745)+v(7725)*(v(226)*v(783)+v(122)*v(808))))/2d0 v(1681)=(v(1556)*v(1671)+v(1550)*(v(1714)-v(1430)*v(680)+v(1466)*v(7519)+v(1502)*v(7520)+v(1490)*v(7521)+v(1382)*v(7524& &)+v(1322)*v(7525)+v(1537)*v(7741)+v(690)*v(7745)+v(7725)*(-v(1715)+v(122)*v(807))))/2d0 v(1680)=(v(1555)*v(1671)+v(1550)*(v(1678)-v(1429)*v(680)+v(1465)*v(7519)+v(1501)*v(7520)+v(1489)*v(7521)+v(1381)*v(7524& &)+v(1321)*v(7525)+v(1534)*v(7741)+v(689)*v(7745)+v(7725)*(-v(1679)+v(122)*v(806))))/2d0 v(1677)=(v(1554)*v(1671)+v(1550)*(-v(1674)+v(1676)-v(1428)*v(680)+v(1464)*v(7519)+v(1500)*v(7520)+v(1488)*v(7521)+v& &(1380)*v(7524)+v(1320)*v(7525)+v(1532)*v(7741)+v(688)*v(7745)+v(7725)*(v(226)*v(781)+v(122)*v(805))))/2d0 v(1675)=(v(1553)*v(1671)+v(1550)*(v(1673)-v(1674)-v(1427)*v(680)+v(1463)*v(7519)+v(1499)*v(7520)+v(1487)*v(7521)+v(1379& &)*v(7524)+v(1319)*v(7525)+v(1529)*v(7741)+v(686)*v(7745)+v(7725)*(v(226)*v(780)+v(122)*v(804))))/2d0 v(1672)=(v(1551)*v(1671)+v(1550)*(-(v(1425)*v(680))+v(1461)*v(7519)+v(1497)*v(7520)+v(1485)*v(7521)+v(1377)*v(7524)+v& &(1317)*v(7525)+v(1521)*v(7741)))/2d0 v(1658)=(v(1562)*v(1643)+v(1550)*(v(1686)-v(1424)*v(680)+v(1460)*v(7519)+v(1484)*v(7520)+v(1472)*v(7521)+v(1376)*v(7524& &)+v(1316)*v(7525)+v(1549)*v(7746)))/2d0 v(1657)=(v(1561)*v(1643)+v(1550)*(v(1720)-v(1423)*v(680)+v(1459)*v(7519)+v(1483)*v(7520)+v(1471)*v(7521)+v(1375)*v(7524& &)+v(1315)*v(7525)+v(1546)*v(7746)))/2d0 v(1656)=(v(1560)*v(1643)+v(1550)*(v(1689)+v(1722)-v(1422)*v(680)+v(1458)*v(7519)+v(1374)*v(7524)+v(1314)*v(7525)+((-1d0& &)-v(121)*v(7543))*v(7725)+v(1544)*v(7746)))/2d0 v(1655)=(v(1559)*v(1643)+v(1550)*(-(v(1421)*v(680))+v(1457)*v(7519)+v(1481)*v(7520)+v(1469)*v(7521)+v(1373)*v(7524)+v& &(1313)*v(7525)+v(1543)*v(7746)+v(1654)*v(810)))/2d0 v(1653)=(v(1558)*v(1643)+v(1550)*(-(v(1420)*v(680))+v(1456)*v(7519)+v(1480)*v(7520)+v(1468)*v(7521)+v(1372)*v(7524)+v& &(1312)*v(7525)+v(1542)*v(7746)+v(1654)*v(809)))/2d0 v(1652)=(v(1557)*v(1643)+v(1550)*(v(1678)-v(1419)*v(680)+v(1455)*v(7519)+v(1479)*v(7520)+v(1467)*v(7521)+v(1371)*v(7524& &)+v(1311)*v(7525)+v(1541)*v(7746)+v(691)*v(7747)+v(7725)*(-v(1679)+v(121)*v(808))))/2d0 v(1651)=(v(1556)*v(1643)+v(1550)*(v(1710)-v(1418)*v(680)+v(1454)*v(7519)+v(1478)*v(7520)+v(1466)*v(7521)+v(1370)*v(7524& &)+v(1310)*v(7525)+v(1537)*v(7746)+v(690)*v(7747)+v(7725)*(-v(1711)+v(121)*v(807))))/2d0 v(1650)=(v(1555)*v(1643)+v(1550)*(4d0*v(196)+v(1453)*v(7519)+v(1477)*v(7520)+v(1465)*v(7521)+v(1534)*v(7746)+v(689)*v& &(7747)+2d0*v(7748)+2d0*v(7749)+2d0*v(7750)+v(7725)*(v(226)*v(766)+v(121)*v(806))))/2d0 v(1649)=(v(1554)*v(1643)+v(1550)*(-v(1646)+v(1648)-v(1416)*v(680)+v(1452)*v(7519)+v(1476)*v(7520)+v(1464)*v(7521)+v& &(1368)*v(7524)+v(1308)*v(7525)+v(1532)*v(7746)+v(688)*v(7747)+v(7725)*(v(226)*v(765)+v(121)*v(805))))/2d0 v(1647)=(v(1553)*v(1643)+v(1550)*(v(1645)-v(1646)-v(1415)*v(680)+v(1451)*v(7519)+v(1475)*v(7520)+v(1463)*v(7521)+v(1367& &)*v(7524)+v(1307)*v(7525)+v(1529)*v(7746)+v(686)*v(7747)+v(7725)*(v(226)*v(764)+v(121)*v(804))))/2d0 v(1644)=(v(1551)*v(1643)+v(1550)*(-(v(1413)*v(680))+v(1449)*v(7519)+v(1473)*v(7520)+v(1461)*v(7521)+v(1365)*v(7524)+v& &(1305)*v(7525)+v(1521)*v(7746)))/2d0 v(1630)=(v(1562)*v(1617)+v(1550)*(-(v(1412)*v(680))+v(1424)*v(7519)+v(1448)*v(7520)+v(1436)*v(7521)+v(1364)*v(7524)+v& &(1304)*v(7525)+v(1628)*v(7546)+v(1549)*v(7751)))/2d0 v(1629)=(v(1561)*v(1617)+v(1550)*(-(v(1411)*v(680))+v(1423)*v(7519)+v(1447)*v(7520)+v(1435)*v(7521)+v(1363)*v(7524)+v& &(1303)*v(7525)+v(1628)*v(7550)+v(1546)*v(7751)))/2d0 v(1627)=(v(1560)*v(1617)+v(1550)*(-(v(1410)*v(680))+v(1422)*v(7519)+v(1446)*v(7520)+v(1434)*v(7521)+v(1362)*v(7524)+v& &(1302)*v(7525)+v(1628)*v(7543)+v(1544)*v(7751)))/2d0 v(1626)=(v(1559)*v(1617)+v(1550)*(-(v(1409)*v(680))+v(1421)*v(7519)+v(1445)*v(7520)+v(1433)*v(7521)+v(1361)*v(7524)+v& &(1301)*v(7525)+v(1543)*v(7751)+v(7725)*(1d0+v(120)*v(810))))/2d0 v(1625)=(v(1558)*v(1617)+v(1550)*(-(v(1408)*v(680))+v(1420)*v(7519)+v(1444)*v(7520)+v(1432)*v(7521)+v(1360)*v(7524)+v& &(1300)*v(7525)+v(1542)*v(7751)+v(7725)*(1d0+v(120)*v(809))))/2d0 v(1624)=(v(1557)*v(1617)+v(1550)*(4d0*v(190)-v(1407)*v(680)+v(1419)*v(7519)+v(1443)*v(7520)+v(1431)*v(7521)+v(1359)*v& &(7524)+v(1299)*v(7525)+v(1541)*v(7751)+v(691)*v(7752)+v(7725)*(v(226)*v(737)+v(120)*v(808))))/2d0 v(1623)=(v(1556)*v(1617)+v(1550)*(4d0*v(191)-v(1406)*v(680)+v(1418)*v(7519)+v(1442)*v(7520)+v(1430)*v(7521)+v(1358)*v& &(7524)+v(1298)*v(7525)+v(1537)*v(7751)+v(690)*v(7752)+v(7725)*(v(226)*v(736)+v(120)*v(807))))/2d0 v(1622)=(v(1555)*v(1617)+v(1550)*(4d0*v(187)-v(1405)*v(680)+v(1417)*v(7519)+v(1441)*v(7520)+v(1429)*v(7521)+v(1357)*v& &(7524)+v(1297)*v(7525)+v(1534)*v(7751)+v(689)*v(7752)+v(7725)*(v(226)*v(735)+v(120)*v(806))))/2d0 v(1621)=(v(1554)*v(1617)+v(1550)*(-v(1594)+v(1620)-v(1404)*v(680)+v(1416)*v(7519)+v(1440)*v(7520)+v(1428)*v(7521)+v& &(1356)*v(7524)+v(1296)*v(7525)+v(1532)*v(7751)+v(688)*v(7752)+v(7725)*(v(226)*v(734)+v(120)*v(805))))/2d0 v(1619)=(v(1553)*v(1617)+v(1550)*(-v(1567)+v(1620)-v(1403)*v(680)+v(1415)*v(7519)+v(1439)*v(7520)+v(1427)*v(7521)+v& &(1355)*v(7524)+v(1295)*v(7525)+v(1529)*v(7751)+v(686)*v(7752)+v(7725)*(v(226)*v(733)+v(120)*v(804))))/2d0 v(1618)=(v(1551)*v(1617)+v(1550)*(-(v(1401)*v(680))+v(1413)*v(7519)+v(1437)*v(7520)+v(1425)*v(7521)+v(1353)*v(7524)+v& &(1293)*v(7525)+v(1521)*v(7751)))/2d0 v(7830)=v(1618)*v(7522) v(1604)=(v(1562)*v(1590)+v(1550)*(v(1376)*v(7519)+v(1400)*v(7520)+v(1388)*v(7521)+v(1352)*v(7524)+v(1292)*v(7525)-v& &(1601)*v(7546)+2d0*v(7753)+v(1549)*v(7754)))/2d0 v(1603)=(v(1561)*v(1590)+v(1550)*(v(1375)*v(7519)+v(1399)*v(7520)+v(1387)*v(7521)+v(1351)*v(7524)+v(1291)*v(7525)-v& &(1601)*v(7550)+v(1546)*v(7754)+2d0*v(7755)))/2d0 v(1602)=(v(1560)*v(1590)+v(1550)*(v(1374)*v(7519)+v(1398)*v(7520)+v(1386)*v(7521)+v(1350)*v(7524)+v(1290)*v(7525)-v& &(1601)*v(7543)+v(1544)*v(7754)+2d0*v(7756)))/2d0 v(1600)=(v(1559)*v(1590)+v(1550)*(v(1373)*v(7519)+v(1397)*v(7520)+v(1385)*v(7521)+v(1349)*v(7524)+v(1289)*v(7525)+v& &(1543)*v(7754)+2d0*v(7757)+v(7725)*((-1d0)+v(119)*v(810))))/2d0 v(1599)=(v(1558)*v(1590)+v(1550)*(v(1372)*v(7519)+v(1396)*v(7520)+v(1384)*v(7521)+v(1348)*v(7524)+v(1288)*v(7525)+v& &(1542)*v(7754)+2d0*v(7758)+v(1601)*v(809)))/2d0 v(1598)=(v(1557)*v(1590)+v(1550)*(4d0*v(181)-v(1359)*v(680)+v(1371)*v(7519)+v(1395)*v(7520)+v(1383)*v(7521)+v(1347)*v& &(7524)+v(1287)*v(7525)+v(1541)*v(7754)+v(691)*v(7759)+v(7725)*(v(226)*v(714)+v(119)*v(808))))/2d0 v(1597)=(v(1556)*v(1590)+v(1550)*(4d0*v(183)-v(1358)*v(680)+v(1370)*v(7519)+v(1394)*v(7520)+v(1382)*v(7521)+v(1346)*v& &(7524)+v(1286)*v(7525)+v(1537)*v(7754)+v(690)*v(7759)+v(7725)*(v(226)*v(713)+v(119)*v(807))))/2d0 v(1596)=(v(1555)*v(1590)+v(1550)*(4d0*v(178)-v(1357)*v(680)+v(1369)*v(7519)+v(1393)*v(7520)+v(1381)*v(7521)+v(1345)*v& &(7524)+v(1285)*v(7525)+v(1534)*v(7754)+v(689)*v(7759)+v(7725)*(v(226)*v(712)+v(119)*v(806))))/2d0 v(1595)=(v(1554)*v(1590)+v(1550)*(v(1594)+2d0*v(172)+v(1344)*v(7524)+v(1284)*v(7525)+v(1532)*v(7754)+v(688)*v(7759)+v& &(7760)+v(7725)*(v(226)*v(711)+v(119)*v(805))))/2d0 v(1593)=(v(1553)*v(1590)+v(1550)*(v(1592)+v(1594)+v(1343)*v(7524)+v(1283)*v(7525)+v(1529)*v(7754)+v(686)*v(7759)+v(7761& &)+v(7725)*(v(226)*v(710)+v(119)*v(804))))/2d0 v(1591)=(v(1551)*v(1590)+v(1550)*(v(1365)*v(7519)+v(1389)*v(7520)+v(1377)*v(7521)+v(1341)*v(7524)+v(1281)*v(7525)+v& &(1521)*v(7754)+2d0*v(7762)))/2d0 v(7824)=v(1591)*v(7522) v(1577)=(v(1562)*v(1564)+v(1550)*(v(1316)*v(7519)+v(1340)*v(7520)+v(1328)*v(7521)+v(1280)*v(7525)-v(1574)*v(7546)+2d0*v& &(7763)+2d0*v(7764)+v(1549)*v(7766)))/2d0 v(1576)=(v(1561)*v(1564)+v(1550)*(v(1315)*v(7519)+v(1339)*v(7520)+v(1327)*v(7521)+v(1279)*v(7525)-v(1574)*v(7550)+2d0*v& &(7765)+v(1546)*v(7766)+2d0*v(7767)))/2d0 v(1575)=(v(1560)*v(1564)+v(1550)*(v(1314)*v(7519)+v(1338)*v(7520)+v(1326)*v(7521)+v(1278)*v(7525)-v(1574)*v(7543)+v& &(1544)*v(7766)+2d0*v(7768)+2d0*v(7769)))/2d0 v(1573)=(v(1559)*v(1564)+v(1550)*(v(1313)*v(7519)+v(1337)*v(7520)+v(1325)*v(7521)+v(1277)*v(7525)+v(1543)*v(7766)+2d0*v& &(7770)+2d0*v(7771)+v(1574)*v(810)))/2d0 v(1572)=(v(1558)*v(1564)+v(1550)*(v(1312)*v(7519)+v(1336)*v(7520)+v(1324)*v(7521)+v(1276)*v(7525)+v(1542)*v(7766)+2d0*v& &(7772)+2d0*v(7773)+v(7725)*((-1d0)+v(117)*v(809))))/2d0 v(1571)=(v(1557)*v(1564)+v(1550)*(4d0*v(168)+v(1323)*v(7521)+v(1275)*v(7525)+v(1541)*v(7766)+v(7774)+v(691)*v(7776)+v& &(7725)*(v(226)*v(704)+v(117)*v(808))))/2d0 v(1570)=(v(1556)*v(1564)+v(1550)*(4d0*v(169)+v(1334)*v(7520)+v(1274)*v(7525)+v(1537)*v(7766)+v(7775)+v(690)*v(7776)+v& &(7725)*(v(226)*v(703)+v(117)*v(807))))/2d0 v(1569)=(v(1555)*v(1564)+v(1550)*(4d0*v(167)+v(1309)*v(7519)+v(1273)*v(7525)+v(1534)*v(7766)+v(689)*v(7776)+v(7777)+v& &(7725)*(v(226)*v(702)+v(117)*v(806))))/2d0 v(1568)=(v(1554)*v(1564)+v(1550)*(v(1567)+v(1592)+v(1272)*v(7525)+v(1532)*v(7766)+v(688)*v(7776)+v(7778)+v(7725)*(v(226& &)*v(701)+v(117)*v(805))))/2d0 v(1566)=(v(1553)*v(1564)+v(1550)*(2d0*v(156)+v(1567)+v(1271)*v(7525)+v(1529)*v(7766)+v(686)*v(7776)+v(7779)+v(7725)*(v& &(226)*v(700)+v(117)*v(804))))/2d0 v(1565)=(v(1551)*v(1564)+v(1550)*(v(1305)*v(7519)+v(1329)*v(7520)+v(1317)*v(7521)+v(1269)*v(7525)+v(1521)*v(7766)+2d0*v& &(7780)+2d0*v(7781)))/2d0 v(7813)=v(1565)*v(7522) v(223)=v(1564)*v(7782) v(7805)=v(223)*v(7518)+v(7813) v(7804)=v(223)*v(7522) v(7783)=2d0*v(223) v(1588)=v(1577)*v(7783) v(1587)=v(1576)*v(7783) v(1586)=v(1575)*v(7783) v(1585)=v(1573)*v(7783) v(1584)=v(1572)*v(7783) v(1583)=v(1571)*v(7783) v(1582)=v(1570)*v(7783) v(1581)=v(1569)*v(7783) v(1580)=v(1568)*v(7783) v(1579)=v(1566)*v(7783) v(1578)=v(1565)*v(7783) v(369)=(v(223)*v(223)) v(227)=v(1590)*v(7782) v(7819)=v(227)*v(7518)+v(7824) v(7818)=v(227)*v(7522) v(7792)=v(223)+v(227) v(7784)=2d0*v(227) v(1615)=v(1604)*v(7784) v(1614)=v(1603)*v(7784) v(1613)=v(1602)*v(7784) v(1612)=v(1600)*v(7784) v(1611)=v(1599)*v(7784) v(1610)=v(1598)*v(7784) v(1609)=v(1597)*v(7784) v(1608)=v(1596)*v(7784) v(1607)=v(1595)*v(7784) v(1606)=v(1593)*v(7784) v(1605)=v(1591)*v(7784) v(370)=(v(227)*v(227)) v(228)=v(1617)*v(7782) v(7828)=v(228)*v(7518)+v(7830) v(7827)=v(228)*v(7522) v(7793)=v(227)+v(228) v(7791)=v(223)+v(228) v(7785)=2d0*v(228) v(1641)=v(1630)*v(7785) v(1640)=v(1629)*v(7785) v(1639)=v(1627)*v(7785) v(1638)=v(1626)*v(7785) v(1637)=v(1625)*v(7785) v(1636)=v(1624)*v(7785) v(1635)=v(1623)*v(7785) v(1634)=v(1622)*v(7785) v(1633)=v(1621)*v(7785) v(1632)=v(1619)*v(7785) v(1631)=v(1618)*v(7785) v(371)=(v(228)*v(228)) v(229)=v(1643)*v(7782) v(7803)=v(229)*v(7518)+v(1644)*v(7522) v(7797)=v(229)*v(7522) v(7786)=2d0*v(229) v(1669)=v(1658)*v(7786) v(1668)=v(1657)*v(7786) v(1667)=v(1656)*v(7786) v(1666)=v(1655)*v(7786) v(1665)=v(1653)*v(7786) v(1664)=v(1652)*v(7786) v(1663)=v(1651)*v(7786) v(1662)=v(1650)*v(7786) v(1661)=v(1649)*v(7786) v(1660)=v(1647)*v(7786) v(1659)=v(1644)*v(7786) v(372)=(v(229)*v(229)) v(230)=v(1671)*v(7782) v(7817)=v(230)*v(7518)+v(1672)*v(7522) v(7795)=v(230)*v(7522) v(7787)=2d0*v(230) v(1701)=v(1690)*v(7787) v(1700)=v(1688)*v(7787) v(1699)=v(1687)*v(7787) v(1698)=v(1685)*v(7787) v(1697)=v(1683)*v(7787) v(1696)=v(1682)*v(7787) v(1695)=v(1681)*v(7787) v(1694)=v(1680)*v(7787) v(1693)=v(1677)*v(7787) v(1692)=v(1675)*v(7787) v(1691)=v(1672)*v(7787) v(373)=(v(230)*v(230)) v(231)=v(1703)*v(7782) v(7801)=v(231)*v(7518)+v(1704)*v(7522) v(7799)=v(231)*v(7522) v(7798)=v(229)*v(230)+v(231)*v(7791) v(7796)=v(230)*v(231)+v(229)*v(7792) v(7794)=v(229)*v(231)+v(230)*v(7793) v(7788)=2d0*v(231) v(3217)=v(228)*v(7531)+v(7788)*x(10)+v(7787)*x(11)+v(223)*x(7)+v(227)*x(8)+v(7786)*x(9) v(1737)=v(1726)*v(7788) v(1736)=v(1724)*v(7788) v(1735)=v(1721)*v(7788) v(1734)=v(1719)*v(7788) v(1733)=v(1717)*v(7788) v(1732)=v(1716)*v(7788) v(1731)=v(1713)*v(7788) v(1730)=v(1712)*v(7788) v(1729)=v(1709)*v(7788) v(1728)=v(1707)*v(7788) v(1727)=v(1704)*v(7788) v(374)=(v(231)*v(231)) v(7987)=sqrt(v(369)+v(370)+v(371)+2d0*v(372)+2d0*v(373)+2d0*v(374)) v(3193)=1d0/v(7987) v(7789)=v(3193)/2d0 v(3204)=(v(1588)+v(1615)+v(1641)+2d0*v(1669)+2d0*v(1701)+2d0*v(1737))*v(7789) v(3257)=v(3204)*v(7790) v(3203)=(v(1587)+v(1614)+v(1640)+2d0*v(1668)+2d0*v(1700)+2d0*v(1736))*v(7789) v(3256)=v(3203)*v(7790) v(3202)=(v(1586)+v(1613)+v(1639)+2d0*v(1667)+2d0*v(1699)+2d0*v(1735))*v(7789) v(3255)=v(3202)*v(7790) v(3201)=(v(1585)+v(1612)+v(1638)+2d0*v(1666)+2d0*v(1698)+2d0*v(1734))*v(7789) v(3254)=v(3201)*v(7790) v(3200)=(v(1584)+v(1611)+v(1637)+2d0*v(1665)+2d0*v(1697)+2d0*v(1733))*v(7789) v(3253)=v(3200)*v(7790) v(3199)=(v(1583)+v(1610)+v(1636)+2d0*v(1664)+2d0*v(1696)+2d0*v(1732))*v(7789) v(3252)=v(3199)*v(7790) v(3198)=(v(1582)+v(1609)+v(1635)+2d0*v(1663)+2d0*v(1695)+2d0*v(1731))*v(7789) v(3251)=v(3198)*v(7790) v(3197)=(v(1581)+v(1608)+v(1634)+2d0*v(1662)+2d0*v(1694)+2d0*v(1730))*v(7789) v(3250)=v(3197)*v(7790) v(3196)=(v(1580)+v(1607)+v(1633)+2d0*v(1661)+2d0*v(1693)+2d0*v(1729))*v(7789) v(3249)=v(3196)*v(7790) v(3195)=(v(1579)+v(1606)+v(1632)+2d0*v(1660)+2d0*v(1692)+2d0*v(1728))*v(7789) v(3248)=v(3195)*v(7790) v(3194)=(v(1578)+v(1605)+v(1631)+2d0*v(1659)+2d0*v(1691)+2d0*v(1727))*v(7789) v(3247)=v(3194)*v(7790) v(232)=(v(7522)*v(7522)) v(8122)=-(v(232)*v(767)) v(8007)=2d0*v(232) v(1826)=v(232)*(v(1690)*v(229)+v(1658)*v(230)+(v(1577)+v(1630))*v(231)+v(1726)*v(7791)) v(1825)=v(232)*(v(1688)*v(229)+v(1657)*v(230)+(v(1576)+v(1629))*v(231)+v(1724)*v(7791)) v(1824)=v(232)*(v(1687)*v(229)+v(1656)*v(230)+(v(1575)+v(1627))*v(231)+v(1721)*v(7791)) v(1823)=v(232)*(v(1685)*v(229)+v(1655)*v(230)+(v(1573)+v(1626))*v(231)+v(1719)*v(7791)) v(1822)=v(232)*(v(1683)*v(229)+v(1653)*v(230)+(v(1572)+v(1625))*v(231)+v(1717)*v(7791)) v(1821)=v(232)*(v(1682)*v(229)+v(1652)*v(230)+(v(1571)+v(1624))*v(231)+v(1716)*v(7791)) v(1820)=v(232)*(v(1681)*v(229)+v(1651)*v(230)+(v(1570)+v(1623))*v(231)+v(1713)*v(7791)) v(1819)=v(232)*(v(1680)*v(229)+v(1650)*v(230)+(v(1569)+v(1622))*v(231)+v(1712)*v(7791)) v(1818)=v(232)*(v(1677)*v(229)+v(1649)*v(230)+(v(1568)+v(1621))*v(231)+v(1709)*v(7791)) v(1817)=v(232)*(v(1675)*v(229)+v(1647)*v(230)+(v(1566)+v(1619))*v(231)+v(1707)*v(7791)) v(1816)=v(232)*(v(1672)*v(229)+v(1644)*v(230)+(v(1565)+v(1618))*v(231)+v(1704)*v(7791))+v(1738)*v(7798) v(1804)=v(232)*((v(1577)+v(1604))*v(229)+v(1726)*v(230)+v(1690)*v(231)+v(1658)*v(7792)) v(1803)=v(232)*((v(1576)+v(1603))*v(229)+v(1724)*v(230)+v(1688)*v(231)+v(1657)*v(7792)) v(1802)=v(232)*((v(1575)+v(1602))*v(229)+v(1721)*v(230)+v(1687)*v(231)+v(1656)*v(7792)) v(1801)=v(232)*((v(1573)+v(1600))*v(229)+v(1719)*v(230)+v(1685)*v(231)+v(1655)*v(7792)) v(1800)=v(232)*((v(1572)+v(1599))*v(229)+v(1717)*v(230)+v(1683)*v(231)+v(1653)*v(7792)) v(1799)=v(232)*((v(1571)+v(1598))*v(229)+v(1716)*v(230)+v(1682)*v(231)+v(1652)*v(7792)) v(1798)=v(232)*((v(1570)+v(1597))*v(229)+v(1713)*v(230)+v(1681)*v(231)+v(1651)*v(7792)) v(1797)=v(232)*((v(1569)+v(1596))*v(229)+v(1712)*v(230)+v(1680)*v(231)+v(1650)*v(7792)) v(1796)=v(232)*((v(1568)+v(1595))*v(229)+v(1709)*v(230)+v(1677)*v(231)+v(1649)*v(7792)) v(1795)=v(232)*((v(1566)+v(1593))*v(229)+v(1707)*v(230)+v(1675)*v(231)+v(1647)*v(7792)) v(1794)=v(232)*((v(1565)+v(1591))*v(229)+v(1704)*v(230)+v(1672)*v(231)+v(1644)*v(7792))+v(1738)*v(7796) v(1793)=v(1669)*v(232) v(1792)=v(1668)*v(232) v(1791)=v(1667)*v(232) v(1790)=v(1666)*v(232) v(1789)=v(1665)*v(232) v(1788)=v(1664)*v(232) v(1787)=v(1663)*v(232) v(1786)=v(1662)*v(232) v(1785)=v(1661)*v(232) v(1784)=v(1660)*v(232) v(1783)=v(1659)*v(232)+v(1738)*v(372) v(1771)=v(232)*(v(1726)*v(229)+(v(1604)+v(1630))*v(230)+v(1658)*v(231)+v(1690)*v(7793)) v(1770)=v(232)*(v(1724)*v(229)+(v(1603)+v(1629))*v(230)+v(1657)*v(231)+v(1688)*v(7793)) v(1769)=v(232)*(v(1721)*v(229)+(v(1602)+v(1627))*v(230)+v(1656)*v(231)+v(1687)*v(7793)) v(1768)=v(232)*(v(1719)*v(229)+(v(1600)+v(1626))*v(230)+v(1655)*v(231)+v(1685)*v(7793)) v(1767)=v(232)*(v(1717)*v(229)+(v(1599)+v(1625))*v(230)+v(1653)*v(231)+v(1683)*v(7793)) v(1766)=v(232)*(v(1716)*v(229)+(v(1598)+v(1624))*v(230)+v(1652)*v(231)+v(1682)*v(7793)) v(1765)=v(232)*(v(1713)*v(229)+(v(1597)+v(1623))*v(230)+v(1651)*v(231)+v(1681)*v(7793)) v(1764)=v(232)*(v(1712)*v(229)+(v(1596)+v(1622))*v(230)+v(1650)*v(231)+v(1680)*v(7793)) v(1763)=v(232)*(v(1709)*v(229)+(v(1595)+v(1621))*v(230)+v(1649)*v(231)+v(1677)*v(7793)) v(1762)=v(232)*(v(1707)*v(229)+(v(1593)+v(1619))*v(230)+v(1647)*v(231)+v(1675)*v(7793)) v(1761)=v(232)*(v(1704)*v(229)+(v(1591)+v(1618))*v(230)+v(1644)*v(231)+v(1672)*v(7793))+v(1738)*v(7794) v(1760)=v(1701)*v(232) v(2123)=v(1760)+v(1793)+v(1615)*v(232) v(1759)=v(1700)*v(232) v(2122)=v(1759)+v(1792)+v(1614)*v(232) v(1758)=v(1699)*v(232) v(2121)=v(1758)+v(1791)+v(1613)*v(232) v(1757)=v(1698)*v(232) v(2120)=v(1757)+v(1790)+v(1612)*v(232) v(1756)=v(1697)*v(232) v(2119)=v(1756)+v(1789)+v(1611)*v(232) v(1755)=v(1696)*v(232) v(2118)=v(1755)+v(1788)+v(1610)*v(232) v(1754)=v(1695)*v(232) v(2117)=v(1754)+v(1787)+v(1609)*v(232) v(1753)=v(1694)*v(232) v(2116)=v(1753)+v(1786)+v(1608)*v(232) v(1752)=v(1693)*v(232) v(2115)=v(1752)+v(1785)+v(1607)*v(232) v(1751)=v(1692)*v(232) v(2114)=v(1751)+v(1784)+v(1606)*v(232) v(1750)=v(1691)*v(232)+v(1738)*v(373) v(2113)=v(1750)+v(1783)+v(1605)*v(232)+v(1738)*v(370) v(1749)=v(1737)*v(232) v(2299)=v(1749)+v(1760)+v(1641)*v(232) v(1848)=v(1749)+v(1793)+v(1588)*v(232) v(1748)=v(1736)*v(232) v(2298)=v(1748)+v(1759)+v(1640)*v(232) v(1847)=v(1748)+v(1792)+v(1587)*v(232) v(1747)=v(1735)*v(232) v(2297)=v(1747)+v(1758)+v(1639)*v(232) v(1846)=v(1747)+v(1791)+v(1586)*v(232) v(1746)=v(1734)*v(232) v(2296)=v(1746)+v(1757)+v(1638)*v(232) v(1845)=v(1746)+v(1790)+v(1585)*v(232) v(1745)=v(1733)*v(232) v(2295)=v(1745)+v(1756)+v(1637)*v(232) v(1844)=v(1745)+v(1789)+v(1584)*v(232) v(1744)=v(1732)*v(232) v(2294)=v(1744)+v(1755)+v(1636)*v(232) v(1843)=v(1744)+v(1788)+v(1583)*v(232) v(1743)=v(1731)*v(232) v(2293)=v(1743)+v(1754)+v(1635)*v(232) v(1842)=v(1743)+v(1787)+v(1582)*v(232) v(1742)=v(1730)*v(232) v(2292)=v(1742)+v(1753)+v(1634)*v(232) v(1841)=v(1742)+v(1786)+v(1581)*v(232) v(1741)=v(1729)*v(232) v(2291)=v(1741)+v(1752)+v(1633)*v(232) v(1840)=v(1741)+v(1785)+v(1580)*v(232) v(1740)=v(1728)*v(232) v(2290)=v(1740)+v(1751)+v(1632)*v(232) v(1839)=v(1740)+v(1784)+v(1579)*v(232) v(1739)=v(1727)*v(232)+v(1738)*v(374) v(2289)=v(1739)+v(1750)+v(1631)*v(232)+v(1738)*v(371) v(1838)=v(1739)+v(1783)+v(1578)*v(232)+v(1738)*v(369) v(268)=v(232)*v(374) v(267)=v(232)*v(373) v(255)=v(232)*v(7794) v(1782)=(v(1771)*v(230)+v(1690)*v(255))*v(7522) v(1781)=(v(1770)*v(230)+v(1688)*v(255))*v(7522) v(1780)=(v(1769)*v(230)+v(1687)*v(255))*v(7522) v(1779)=(v(1768)*v(230)+v(1685)*v(255))*v(7522) v(1778)=(v(1767)*v(230)+v(1683)*v(255))*v(7522) v(1777)=(v(1766)*v(230)+v(1682)*v(255))*v(7522) v(1776)=(v(1765)*v(230)+v(1681)*v(255))*v(7522) v(1775)=(v(1764)*v(230)+v(1680)*v(255))*v(7522) v(1774)=(v(1763)*v(230)+v(1677)*v(255))*v(7522) v(1773)=(v(1762)*v(230)+v(1675)*v(255))*v(7522) v(1772)=v(1761)*v(7795)+v(255)*v(7817) v(271)=v(255)*v(7795) v(250)=v(232)*v(372) v(236)=v(232)*v(7796) v(1815)=(v(1804)*v(229)+v(1658)*v(236))*v(7522) v(1814)=(v(1803)*v(229)+v(1657)*v(236))*v(7522) v(1813)=(v(1802)*v(229)+v(1656)*v(236))*v(7522) v(1812)=(v(1801)*v(229)+v(1655)*v(236))*v(7522) v(1811)=(v(1800)*v(229)+v(1653)*v(236))*v(7522) v(1810)=(v(1799)*v(229)+v(1652)*v(236))*v(7522) v(1809)=(v(1798)*v(229)+v(1651)*v(236))*v(7522) v(1808)=(v(1797)*v(229)+v(1650)*v(236))*v(7522) v(1807)=(v(1796)*v(229)+v(1649)*v(236))*v(7522) v(1806)=(v(1795)*v(229)+v(1647)*v(236))*v(7522) v(1805)=v(1794)*v(7797)+v(236)*v(7803) v(252)=v(236)*v(7797) v(235)=v(232)*v(7798) v(1837)=(v(1826)*v(231)+v(1726)*v(235))*v(7522) v(1836)=(v(1825)*v(231)+v(1724)*v(235))*v(7522) v(1835)=(v(1824)*v(231)+v(1721)*v(235))*v(7522) v(1834)=(v(1823)*v(231)+v(1719)*v(235))*v(7522) v(1833)=(v(1822)*v(231)+v(1717)*v(235))*v(7522) v(1832)=(v(1821)*v(231)+v(1716)*v(235))*v(7522) v(1831)=(v(1820)*v(231)+v(1713)*v(235))*v(7522) v(1830)=(v(1819)*v(231)+v(1712)*v(235))*v(7522) v(1829)=(v(1818)*v(231)+v(1709)*v(235))*v(7522) v(1828)=(v(1817)*v(231)+v(1707)*v(235))*v(7522) v(1827)=v(1816)*v(7799)+v(235)*v(7801) v(270)=v(235)*v(7799) v(233)=v(250)+v(268)+v(232)*v(369) v(7802)=v(229)*v(233)+v(230)*v(235)+v(227)*v(236) v(7800)=v(231)*v(233)+v(228)*v(235)+v(230)*v(236) v(1903)=v(1815)+v(1837)+(v(1848)*v(223)+v(1577)*v(233))*v(7522) v(1902)=v(1814)+v(1836)+(v(1847)*v(223)+v(1576)*v(233))*v(7522) v(1901)=v(1813)+v(1835)+(v(1846)*v(223)+v(1575)*v(233))*v(7522) v(1900)=v(1812)+v(1834)+(v(1845)*v(223)+v(1573)*v(233))*v(7522) v(1899)=v(1811)+v(1833)+(v(1844)*v(223)+v(1572)*v(233))*v(7522) v(1898)=v(1810)+v(1832)+(v(1843)*v(223)+v(1571)*v(233))*v(7522) v(1897)=v(1809)+v(1831)+(v(1842)*v(223)+v(1570)*v(233))*v(7522) v(1896)=v(1808)+v(1830)+(v(1841)*v(223)+v(1569)*v(233))*v(7522) v(1895)=v(1807)+v(1829)+(v(1840)*v(223)+v(1568)*v(233))*v(7522) v(1894)=v(1806)+v(1828)+(v(1839)*v(223)+v(1566)*v(233))*v(7522) v(1893)=v(1805)+v(1827)+v(1838)*v(7804)+v(233)*v(7805) v(1881)=(v(1804)*v(227)+v(1848)*v(229)+v(1826)*v(230)+v(1658)*v(233)+v(1690)*v(235)+v(1604)*v(236))*v(7522) v(1880)=(v(1803)*v(227)+v(1847)*v(229)+v(1825)*v(230)+v(1657)*v(233)+v(1688)*v(235)+v(1603)*v(236))*v(7522) v(1879)=(v(1802)*v(227)+v(1846)*v(229)+v(1824)*v(230)+v(1656)*v(233)+v(1687)*v(235)+v(1602)*v(236))*v(7522) v(1878)=(v(1801)*v(227)+v(1845)*v(229)+v(1823)*v(230)+v(1655)*v(233)+v(1685)*v(235)+v(1600)*v(236))*v(7522) v(1877)=(v(1800)*v(227)+v(1844)*v(229)+v(1822)*v(230)+v(1653)*v(233)+v(1683)*v(235)+v(1599)*v(236))*v(7522) v(1876)=(v(1799)*v(227)+v(1843)*v(229)+v(1821)*v(230)+v(1652)*v(233)+v(1682)*v(235)+v(1598)*v(236))*v(7522) v(1875)=(v(1798)*v(227)+v(1842)*v(229)+v(1820)*v(230)+v(1651)*v(233)+v(1681)*v(235)+v(1597)*v(236))*v(7522) v(1874)=(v(1797)*v(227)+v(1841)*v(229)+v(1819)*v(230)+v(1650)*v(233)+v(1680)*v(235)+v(1596)*v(236))*v(7522) v(1873)=(v(1796)*v(227)+v(1840)*v(229)+v(1818)*v(230)+v(1649)*v(233)+v(1677)*v(235)+v(1595)*v(236))*v(7522) v(1872)=(v(1795)*v(227)+v(1839)*v(229)+v(1817)*v(230)+v(1647)*v(233)+v(1675)*v(235)+v(1593)*v(236))*v(7522) v(1871)=(v(1794)*v(227)+v(1838)*v(229)+v(1816)*v(230)+v(1644)*v(233)+v(1672)*v(235)+v(1591)*v(236))*v(7522)+v(7518)*v& &(7802) v(1859)=(v(1826)*v(228)+v(1804)*v(230)+v(1848)*v(231)+v(1726)*v(233)+v(1630)*v(235)+v(1690)*v(236))*v(7522) v(1858)=(v(1825)*v(228)+v(1803)*v(230)+v(1847)*v(231)+v(1724)*v(233)+v(1629)*v(235)+v(1688)*v(236))*v(7522) v(1857)=(v(1824)*v(228)+v(1802)*v(230)+v(1846)*v(231)+v(1721)*v(233)+v(1627)*v(235)+v(1687)*v(236))*v(7522) v(1856)=(v(1823)*v(228)+v(1801)*v(230)+v(1845)*v(231)+v(1719)*v(233)+v(1626)*v(235)+v(1685)*v(236))*v(7522) v(1855)=(v(1822)*v(228)+v(1800)*v(230)+v(1844)*v(231)+v(1717)*v(233)+v(1625)*v(235)+v(1683)*v(236))*v(7522) v(1854)=(v(1821)*v(228)+v(1799)*v(230)+v(1843)*v(231)+v(1716)*v(233)+v(1624)*v(235)+v(1682)*v(236))*v(7522) v(1853)=(v(1820)*v(228)+v(1798)*v(230)+v(1842)*v(231)+v(1713)*v(233)+v(1623)*v(235)+v(1681)*v(236))*v(7522) v(1852)=(v(1819)*v(228)+v(1797)*v(230)+v(1841)*v(231)+v(1712)*v(233)+v(1622)*v(235)+v(1680)*v(236))*v(7522) v(1851)=(v(1818)*v(228)+v(1796)*v(230)+v(1840)*v(231)+v(1709)*v(233)+v(1621)*v(235)+v(1677)*v(236))*v(7522) v(1850)=(v(1817)*v(228)+v(1795)*v(230)+v(1839)*v(231)+v(1707)*v(233)+v(1619)*v(235)+v(1675)*v(236))*v(7522) v(1849)=(v(1816)*v(228)+v(1794)*v(230)+v(1838)*v(231)+v(1704)*v(233)+v(1618)*v(235)+v(1672)*v(236))*v(7522)+v(7518)*v& &(7800) v(239)=v(7522)*v(7800) v(1870)=(v(1859)*v(231)+v(1726)*v(239))*v(7522) v(1869)=(v(1858)*v(231)+v(1724)*v(239))*v(7522) v(1868)=(v(1857)*v(231)+v(1721)*v(239))*v(7522) v(1867)=(v(1856)*v(231)+v(1719)*v(239))*v(7522) v(1866)=(v(1855)*v(231)+v(1717)*v(239))*v(7522) v(1865)=(v(1854)*v(231)+v(1716)*v(239))*v(7522) v(1864)=(v(1853)*v(231)+v(1713)*v(239))*v(7522) v(1863)=(v(1852)*v(231)+v(1712)*v(239))*v(7522) v(1862)=(v(1851)*v(231)+v(1709)*v(239))*v(7522) v(1861)=(v(1850)*v(231)+v(1707)*v(239))*v(7522) v(1860)=v(1849)*v(7799)+v(239)*v(7801) v(274)=v(239)*v(7799) v(238)=v(7522)*v(7802) v(1892)=(v(1881)*v(229)+v(1658)*v(238))*v(7522) v(1891)=(v(1880)*v(229)+v(1657)*v(238))*v(7522) v(1890)=(v(1879)*v(229)+v(1656)*v(238))*v(7522) v(1889)=(v(1878)*v(229)+v(1655)*v(238))*v(7522) v(1888)=(v(1877)*v(229)+v(1653)*v(238))*v(7522) v(1887)=(v(1876)*v(229)+v(1652)*v(238))*v(7522) v(1886)=(v(1875)*v(229)+v(1651)*v(238))*v(7522) v(1885)=(v(1874)*v(229)+v(1650)*v(238))*v(7522) v(1884)=(v(1873)*v(229)+v(1649)*v(238))*v(7522) v(1883)=(v(1872)*v(229)+v(1647)*v(238))*v(7522) v(1882)=v(1871)*v(7797)+v(238)*v(7803) v(254)=v(238)*v(7797) v(234)=v(252)+v(270)+v(233)*v(7804) v(7807)=v(231)*v(234)+v(230)*v(238)+v(228)*v(239) v(7806)=v(229)*v(234)+v(227)*v(238)+v(230)*v(239) v(1958)=v(1870)+v(1892)+(v(1903)*v(223)+v(1577)*v(234))*v(7522) v(1957)=v(1869)+v(1891)+(v(1902)*v(223)+v(1576)*v(234))*v(7522) v(1956)=v(1868)+v(1890)+(v(1901)*v(223)+v(1575)*v(234))*v(7522) v(1955)=v(1867)+v(1889)+(v(1900)*v(223)+v(1573)*v(234))*v(7522) v(1954)=v(1866)+v(1888)+(v(1899)*v(223)+v(1572)*v(234))*v(7522) v(1953)=v(1865)+v(1887)+(v(1898)*v(223)+v(1571)*v(234))*v(7522) v(1952)=v(1864)+v(1886)+(v(1897)*v(223)+v(1570)*v(234))*v(7522) v(1951)=v(1863)+v(1885)+(v(1896)*v(223)+v(1569)*v(234))*v(7522) v(1950)=v(1862)+v(1884)+(v(1895)*v(223)+v(1568)*v(234))*v(7522) v(1949)=v(1861)+v(1883)+(v(1894)*v(223)+v(1566)*v(234))*v(7522) v(1948)=v(1860)+v(1882)+v(1893)*v(7804)+v(234)*v(7805) v(1936)=(v(1859)*v(228)+v(1881)*v(230)+v(1903)*v(231)+v(1726)*v(234)+v(1690)*v(238)+v(1630)*v(239))*v(7522) v(1935)=(v(1858)*v(228)+v(1880)*v(230)+v(1902)*v(231)+v(1724)*v(234)+v(1688)*v(238)+v(1629)*v(239))*v(7522) v(1934)=(v(1857)*v(228)+v(1879)*v(230)+v(1901)*v(231)+v(1721)*v(234)+v(1687)*v(238)+v(1627)*v(239))*v(7522) v(1933)=(v(1856)*v(228)+v(1878)*v(230)+v(1900)*v(231)+v(1719)*v(234)+v(1685)*v(238)+v(1626)*v(239))*v(7522) v(1932)=(v(1855)*v(228)+v(1877)*v(230)+v(1899)*v(231)+v(1717)*v(234)+v(1683)*v(238)+v(1625)*v(239))*v(7522) v(1931)=(v(1854)*v(228)+v(1876)*v(230)+v(1898)*v(231)+v(1716)*v(234)+v(1682)*v(238)+v(1624)*v(239))*v(7522) v(1930)=(v(1853)*v(228)+v(1875)*v(230)+v(1897)*v(231)+v(1713)*v(234)+v(1681)*v(238)+v(1623)*v(239))*v(7522) v(1929)=(v(1852)*v(228)+v(1874)*v(230)+v(1896)*v(231)+v(1712)*v(234)+v(1680)*v(238)+v(1622)*v(239))*v(7522) v(1928)=(v(1851)*v(228)+v(1873)*v(230)+v(1895)*v(231)+v(1709)*v(234)+v(1677)*v(238)+v(1621)*v(239))*v(7522) v(1927)=(v(1850)*v(228)+v(1872)*v(230)+v(1894)*v(231)+v(1707)*v(234)+v(1675)*v(238)+v(1619)*v(239))*v(7522) v(1926)=(v(1849)*v(228)+v(1871)*v(230)+v(1893)*v(231)+v(1704)*v(234)+v(1672)*v(238)+v(1618)*v(239))*v(7522)+v(7518)*v& &(7807) v(1914)=(v(1881)*v(227)+v(1903)*v(229)+v(1859)*v(230)+v(1658)*v(234)+v(1604)*v(238)+v(1690)*v(239))*v(7522) v(1913)=(v(1880)*v(227)+v(1902)*v(229)+v(1858)*v(230)+v(1657)*v(234)+v(1603)*v(238)+v(1688)*v(239))*v(7522) v(1912)=(v(1879)*v(227)+v(1901)*v(229)+v(1857)*v(230)+v(1656)*v(234)+v(1602)*v(238)+v(1687)*v(239))*v(7522) v(1911)=(v(1878)*v(227)+v(1900)*v(229)+v(1856)*v(230)+v(1655)*v(234)+v(1600)*v(238)+v(1685)*v(239))*v(7522) v(1910)=(v(1877)*v(227)+v(1899)*v(229)+v(1855)*v(230)+v(1653)*v(234)+v(1599)*v(238)+v(1683)*v(239))*v(7522) v(1909)=(v(1876)*v(227)+v(1898)*v(229)+v(1854)*v(230)+v(1652)*v(234)+v(1598)*v(238)+v(1682)*v(239))*v(7522) v(1908)=(v(1875)*v(227)+v(1897)*v(229)+v(1853)*v(230)+v(1651)*v(234)+v(1597)*v(238)+v(1681)*v(239))*v(7522) v(1907)=(v(1874)*v(227)+v(1896)*v(229)+v(1852)*v(230)+v(1650)*v(234)+v(1596)*v(238)+v(1680)*v(239))*v(7522) v(1906)=(v(1873)*v(227)+v(1895)*v(229)+v(1851)*v(230)+v(1649)*v(234)+v(1595)*v(238)+v(1677)*v(239))*v(7522) v(1905)=(v(1872)*v(227)+v(1894)*v(229)+v(1850)*v(230)+v(1647)*v(234)+v(1593)*v(238)+v(1675)*v(239))*v(7522) v(1904)=(v(1871)*v(227)+v(1893)*v(229)+v(1849)*v(230)+v(1644)*v(234)+v(1591)*v(238)+v(1672)*v(239))*v(7522)+v(7518)*v& &(7806) v(242)=v(7522)*v(7806) v(1925)=(v(1914)*v(229)+v(1658)*v(242))*v(7522) v(1924)=(v(1913)*v(229)+v(1657)*v(242))*v(7522) v(1923)=(v(1912)*v(229)+v(1656)*v(242))*v(7522) v(1922)=(v(1911)*v(229)+v(1655)*v(242))*v(7522) v(1921)=(v(1910)*v(229)+v(1653)*v(242))*v(7522) v(1920)=(v(1909)*v(229)+v(1652)*v(242))*v(7522) v(1919)=(v(1908)*v(229)+v(1651)*v(242))*v(7522) v(1918)=(v(1907)*v(229)+v(1650)*v(242))*v(7522) v(1917)=(v(1906)*v(229)+v(1649)*v(242))*v(7522) v(1916)=(v(1905)*v(229)+v(1647)*v(242))*v(7522) v(1915)=v(1904)*v(7797)+v(242)*v(7803) v(258)=v(242)*v(7797) v(241)=v(7522)*v(7807) v(1947)=(v(1936)*v(231)+v(1726)*v(241))*v(7522) v(1946)=(v(1935)*v(231)+v(1724)*v(241))*v(7522) v(1945)=(v(1934)*v(231)+v(1721)*v(241))*v(7522) v(1944)=(v(1933)*v(231)+v(1719)*v(241))*v(7522) v(1943)=(v(1932)*v(231)+v(1717)*v(241))*v(7522) v(1942)=(v(1931)*v(231)+v(1716)*v(241))*v(7522) v(1941)=(v(1930)*v(231)+v(1713)*v(241))*v(7522) v(1940)=(v(1929)*v(231)+v(1712)*v(241))*v(7522) v(1939)=(v(1928)*v(231)+v(1709)*v(241))*v(7522) v(1938)=(v(1927)*v(231)+v(1707)*v(241))*v(7522) v(1937)=v(1926)*v(7799)+v(241)*v(7801) v(276)=v(241)*v(7799) v(237)=v(254)+v(274)+v(234)*v(7804) v(7809)=v(229)*v(237)+v(230)*v(241)+v(227)*v(242) v(7808)=v(231)*v(237)+v(228)*v(241)+v(230)*v(242) v(2013)=v(1925)+v(1947)+(v(1958)*v(223)+v(1577)*v(237))*v(7522) v(2012)=v(1924)+v(1946)+(v(1957)*v(223)+v(1576)*v(237))*v(7522) v(2011)=v(1923)+v(1945)+(v(1956)*v(223)+v(1575)*v(237))*v(7522) v(2010)=v(1922)+v(1944)+(v(1955)*v(223)+v(1573)*v(237))*v(7522) v(2009)=v(1921)+v(1943)+(v(1954)*v(223)+v(1572)*v(237))*v(7522) v(2008)=v(1920)+v(1942)+(v(1953)*v(223)+v(1571)*v(237))*v(7522) v(2007)=v(1919)+v(1941)+(v(1952)*v(223)+v(1570)*v(237))*v(7522) v(2006)=v(1918)+v(1940)+(v(1951)*v(223)+v(1569)*v(237))*v(7522) v(2005)=v(1917)+v(1939)+(v(1950)*v(223)+v(1568)*v(237))*v(7522) v(2004)=v(1916)+v(1938)+(v(1949)*v(223)+v(1566)*v(237))*v(7522) v(2003)=v(1915)+v(1937)+v(1948)*v(7804)+v(237)*v(7805) v(1991)=(v(1914)*v(227)+v(1958)*v(229)+v(1936)*v(230)+v(1658)*v(237)+v(1690)*v(241)+v(1604)*v(242))*v(7522) v(1990)=(v(1913)*v(227)+v(1957)*v(229)+v(1935)*v(230)+v(1657)*v(237)+v(1688)*v(241)+v(1603)*v(242))*v(7522) v(1989)=(v(1912)*v(227)+v(1956)*v(229)+v(1934)*v(230)+v(1656)*v(237)+v(1687)*v(241)+v(1602)*v(242))*v(7522) v(1988)=(v(1911)*v(227)+v(1955)*v(229)+v(1933)*v(230)+v(1655)*v(237)+v(1685)*v(241)+v(1600)*v(242))*v(7522) v(1987)=(v(1910)*v(227)+v(1954)*v(229)+v(1932)*v(230)+v(1653)*v(237)+v(1683)*v(241)+v(1599)*v(242))*v(7522) v(1986)=(v(1909)*v(227)+v(1953)*v(229)+v(1931)*v(230)+v(1652)*v(237)+v(1682)*v(241)+v(1598)*v(242))*v(7522) v(1985)=(v(1908)*v(227)+v(1952)*v(229)+v(1930)*v(230)+v(1651)*v(237)+v(1681)*v(241)+v(1597)*v(242))*v(7522) v(1984)=(v(1907)*v(227)+v(1951)*v(229)+v(1929)*v(230)+v(1650)*v(237)+v(1680)*v(241)+v(1596)*v(242))*v(7522) v(1983)=(v(1906)*v(227)+v(1950)*v(229)+v(1928)*v(230)+v(1649)*v(237)+v(1677)*v(241)+v(1595)*v(242))*v(7522) v(1982)=(v(1905)*v(227)+v(1949)*v(229)+v(1927)*v(230)+v(1647)*v(237)+v(1675)*v(241)+v(1593)*v(242))*v(7522) v(1981)=(v(1904)*v(227)+v(1948)*v(229)+v(1926)*v(230)+v(1644)*v(237)+v(1672)*v(241)+v(1591)*v(242))*v(7522)+v(7518)*v& &(7809) v(1969)=(v(1936)*v(228)+v(1914)*v(230)+v(1958)*v(231)+v(1726)*v(237)+v(1630)*v(241)+v(1690)*v(242))*v(7522) v(1968)=(v(1935)*v(228)+v(1913)*v(230)+v(1957)*v(231)+v(1724)*v(237)+v(1629)*v(241)+v(1688)*v(242))*v(7522) v(1967)=(v(1934)*v(228)+v(1912)*v(230)+v(1956)*v(231)+v(1721)*v(237)+v(1627)*v(241)+v(1687)*v(242))*v(7522) v(1966)=(v(1933)*v(228)+v(1911)*v(230)+v(1955)*v(231)+v(1719)*v(237)+v(1626)*v(241)+v(1685)*v(242))*v(7522) v(1965)=(v(1932)*v(228)+v(1910)*v(230)+v(1954)*v(231)+v(1717)*v(237)+v(1625)*v(241)+v(1683)*v(242))*v(7522) v(1964)=(v(1931)*v(228)+v(1909)*v(230)+v(1953)*v(231)+v(1716)*v(237)+v(1624)*v(241)+v(1682)*v(242))*v(7522) v(1963)=(v(1930)*v(228)+v(1908)*v(230)+v(1952)*v(231)+v(1713)*v(237)+v(1623)*v(241)+v(1681)*v(242))*v(7522) v(1962)=(v(1929)*v(228)+v(1907)*v(230)+v(1951)*v(231)+v(1712)*v(237)+v(1622)*v(241)+v(1680)*v(242))*v(7522) v(1961)=(v(1928)*v(228)+v(1906)*v(230)+v(1950)*v(231)+v(1709)*v(237)+v(1621)*v(241)+v(1677)*v(242))*v(7522) v(1960)=(v(1927)*v(228)+v(1905)*v(230)+v(1949)*v(231)+v(1707)*v(237)+v(1619)*v(241)+v(1675)*v(242))*v(7522) v(1959)=(v(1926)*v(228)+v(1904)*v(230)+v(1948)*v(231)+v(1704)*v(237)+v(1618)*v(241)+v(1672)*v(242))*v(7522)+v(7518)*v& &(7808) v(245)=v(7522)*v(7808) v(1980)=(v(1969)*v(231)+v(1726)*v(245))*v(7522) v(1979)=(v(1968)*v(231)+v(1724)*v(245))*v(7522) v(1978)=(v(1967)*v(231)+v(1721)*v(245))*v(7522) v(1977)=(v(1966)*v(231)+v(1719)*v(245))*v(7522) v(1976)=(v(1965)*v(231)+v(1717)*v(245))*v(7522) v(1975)=(v(1964)*v(231)+v(1716)*v(245))*v(7522) v(1974)=(v(1963)*v(231)+v(1713)*v(245))*v(7522) v(1973)=(v(1962)*v(231)+v(1712)*v(245))*v(7522) v(1972)=(v(1961)*v(231)+v(1709)*v(245))*v(7522) v(1971)=(v(1960)*v(231)+v(1707)*v(245))*v(7522) v(1970)=v(1959)*v(7799)+v(245)*v(7801) v(280)=v(245)*v(7799) v(244)=v(7522)*v(7809) v(2002)=(v(1991)*v(229)+v(1658)*v(244))*v(7522) v(2001)=(v(1990)*v(229)+v(1657)*v(244))*v(7522) v(2000)=(v(1989)*v(229)+v(1656)*v(244))*v(7522) v(1999)=(v(1988)*v(229)+v(1655)*v(244))*v(7522) v(1998)=(v(1987)*v(229)+v(1653)*v(244))*v(7522) v(1997)=(v(1986)*v(229)+v(1652)*v(244))*v(7522) v(1996)=(v(1985)*v(229)+v(1651)*v(244))*v(7522) v(1995)=(v(1984)*v(229)+v(1650)*v(244))*v(7522) v(1994)=(v(1983)*v(229)+v(1649)*v(244))*v(7522) v(1993)=(v(1982)*v(229)+v(1647)*v(244))*v(7522) v(1992)=v(1981)*v(7797)+v(244)*v(7803) v(260)=v(244)*v(7797) v(240)=v(258)+v(276)+v(237)*v(7804) v(7811)=v(229)*v(240)+v(227)*v(244)+v(230)*v(245) v(7810)=v(231)*v(240)+v(230)*v(244)+v(228)*v(245) v(2057)=(v(1991)*v(227)+v(2013)*v(229)+v(1969)*v(230)+v(1658)*v(240)+v(1604)*v(244)+v(1690)*v(245))*v(7522) v(2056)=(v(1990)*v(227)+v(2012)*v(229)+v(1968)*v(230)+v(1657)*v(240)+v(1603)*v(244)+v(1688)*v(245))*v(7522) v(2055)=(v(1989)*v(227)+v(2011)*v(229)+v(1967)*v(230)+v(1656)*v(240)+v(1602)*v(244)+v(1687)*v(245))*v(7522) v(2054)=(v(1988)*v(227)+v(2010)*v(229)+v(1966)*v(230)+v(1655)*v(240)+v(1600)*v(244)+v(1685)*v(245))*v(7522) v(2053)=(v(1987)*v(227)+v(2009)*v(229)+v(1965)*v(230)+v(1653)*v(240)+v(1599)*v(244)+v(1683)*v(245))*v(7522) v(2052)=(v(1986)*v(227)+v(2008)*v(229)+v(1964)*v(230)+v(1652)*v(240)+v(1598)*v(244)+v(1682)*v(245))*v(7522) v(2051)=(v(1985)*v(227)+v(2007)*v(229)+v(1963)*v(230)+v(1651)*v(240)+v(1597)*v(244)+v(1681)*v(245))*v(7522) v(2050)=(v(1984)*v(227)+v(2006)*v(229)+v(1962)*v(230)+v(1650)*v(240)+v(1596)*v(244)+v(1680)*v(245))*v(7522) v(2049)=(v(1983)*v(227)+v(2005)*v(229)+v(1961)*v(230)+v(1649)*v(240)+v(1595)*v(244)+v(1677)*v(245))*v(7522) v(2048)=(v(1982)*v(227)+v(2004)*v(229)+v(1960)*v(230)+v(1647)*v(240)+v(1593)*v(244)+v(1675)*v(245))*v(7522) v(2047)=(v(1981)*v(227)+v(2003)*v(229)+v(1959)*v(230)+v(1644)*v(240)+v(1591)*v(244)+v(1672)*v(245))*v(7522)+v(7518)*v& &(7811) v(2035)=(v(1969)*v(228)+v(1991)*v(230)+v(2013)*v(231)+v(1726)*v(240)+v(1690)*v(244)+v(1630)*v(245))*v(7522) v(2034)=(v(1968)*v(228)+v(1990)*v(230)+v(2012)*v(231)+v(1724)*v(240)+v(1688)*v(244)+v(1629)*v(245))*v(7522) v(2033)=(v(1967)*v(228)+v(1989)*v(230)+v(2011)*v(231)+v(1721)*v(240)+v(1687)*v(244)+v(1627)*v(245))*v(7522) v(2032)=(v(1966)*v(228)+v(1988)*v(230)+v(2010)*v(231)+v(1719)*v(240)+v(1685)*v(244)+v(1626)*v(245))*v(7522) v(2031)=(v(1965)*v(228)+v(1987)*v(230)+v(2009)*v(231)+v(1717)*v(240)+v(1683)*v(244)+v(1625)*v(245))*v(7522) v(2030)=(v(1964)*v(228)+v(1986)*v(230)+v(2008)*v(231)+v(1716)*v(240)+v(1682)*v(244)+v(1624)*v(245))*v(7522) v(2029)=(v(1963)*v(228)+v(1985)*v(230)+v(2007)*v(231)+v(1713)*v(240)+v(1681)*v(244)+v(1623)*v(245))*v(7522) v(2028)=(v(1962)*v(228)+v(1984)*v(230)+v(2006)*v(231)+v(1712)*v(240)+v(1680)*v(244)+v(1622)*v(245))*v(7522) v(2027)=(v(1961)*v(228)+v(1983)*v(230)+v(2005)*v(231)+v(1709)*v(240)+v(1677)*v(244)+v(1621)*v(245))*v(7522) v(2026)=(v(1960)*v(228)+v(1982)*v(230)+v(2004)*v(231)+v(1707)*v(240)+v(1675)*v(244)+v(1619)*v(245))*v(7522) v(2025)=(v(1959)*v(228)+v(1981)*v(230)+v(2003)*v(231)+v(1704)*v(240)+v(1672)*v(244)+v(1618)*v(245))*v(7522)+v(7518)*v& &(7810) v(2024)=v(1980)+v(2002)+(v(2013)*v(223)+v(1577)*v(240))*v(7522) v(2023)=v(1979)+v(2001)+(v(2012)*v(223)+v(1576)*v(240))*v(7522) v(2022)=v(1978)+v(2000)+(v(2011)*v(223)+v(1575)*v(240))*v(7522) v(2021)=v(1977)+v(1999)+(v(2010)*v(223)+v(1573)*v(240))*v(7522) v(2020)=v(1976)+v(1998)+(v(2009)*v(223)+v(1572)*v(240))*v(7522) v(2019)=v(1975)+v(1997)+(v(2008)*v(223)+v(1571)*v(240))*v(7522) v(2018)=v(1974)+v(1996)+(v(2007)*v(223)+v(1570)*v(240))*v(7522) v(2017)=v(1973)+v(1995)+(v(2006)*v(223)+v(1569)*v(240))*v(7522) v(2016)=v(1972)+v(1994)+(v(2005)*v(223)+v(1568)*v(240))*v(7522) v(2015)=v(1971)+v(1993)+(v(2004)*v(223)+v(1566)*v(240))*v(7522) v(2014)=v(1970)+v(1992)+v(2003)*v(7804)+v(240)*v(7805) v(243)=v(260)+v(280)+v(240)*v(7804) v(7812)=5040d0+v(243) v(246)=v(7522)*v(7810) v(2046)=(v(2035)*v(231)+v(1726)*v(246))*v(7522) v(2045)=(v(2034)*v(231)+v(1724)*v(246))*v(7522) v(2044)=(v(2033)*v(231)+v(1721)*v(246))*v(7522) v(2043)=(v(2032)*v(231)+v(1719)*v(246))*v(7522) v(2042)=(v(2031)*v(231)+v(1717)*v(246))*v(7522) v(2041)=(v(2030)*v(231)+v(1716)*v(246))*v(7522) v(2040)=(v(2029)*v(231)+v(1713)*v(246))*v(7522) v(2039)=(v(2028)*v(231)+v(1712)*v(246))*v(7522) v(2038)=(v(2027)*v(231)+v(1709)*v(246))*v(7522) v(2037)=(v(2026)*v(231)+v(1707)*v(246))*v(7522) v(2036)=v(2025)*v(7799)+v(246)*v(7801) v(282)=v(246)*v(7799) v(247)=v(7522)*v(7811) v(7815)=v(230)*v(246)+v(227)*v(247) v(7814)=v(228)*v(246)+v(230)*v(247) v(2101)=(7d0*(360d0*v(1804)+120d0*v(1881)+30d0*v(1914)+6d0*v(1991)+v(2057))+v(7522)*(v(2057)*v(227)+v(2024)*v(229)+v& &(2035)*v(230)+v(1690)*v(246)+v(1604)*v(247)+v(1658)*v(7812)))/5040d0 v(2100)=(7d0*(360d0*v(1803)+120d0*v(1880)+30d0*v(1913)+6d0*v(1990)+v(2056))+v(7522)*(v(2056)*v(227)+v(2023)*v(229)+v& &(2034)*v(230)+v(1688)*v(246)+v(1603)*v(247)+v(1657)*v(7812)))/5040d0 v(2099)=(7d0*(360d0*v(1802)+120d0*v(1879)+30d0*v(1912)+6d0*v(1989)+v(2055))+v(7522)*(v(2055)*v(227)+v(2022)*v(229)+v& &(2033)*v(230)+v(1687)*v(246)+v(1602)*v(247)+v(1656)*v(7812)))/5040d0 v(2098)=(7d0*(360d0*v(1801)+120d0*v(1878)+30d0*v(1911)+6d0*v(1988)+v(2054))+v(7522)*(v(2054)*v(227)+v(2021)*v(229)+v& &(2032)*v(230)+v(1685)*v(246)+v(1600)*v(247)+v(1655)*v(7812)))/5040d0 v(2097)=(7d0*(360d0*v(1800)+120d0*v(1877)+30d0*v(1910)+6d0*v(1987)+v(2053))+v(7522)*(v(2053)*v(227)+v(2020)*v(229)+v& &(2031)*v(230)+v(1683)*v(246)+v(1599)*v(247)+v(1653)*v(7812)))/5040d0 v(2096)=(7d0*(360d0*v(1799)+120d0*v(1876)+30d0*v(1909)+6d0*v(1986)+v(2052))+v(7522)*(v(2052)*v(227)+v(2019)*v(229)+v& &(2030)*v(230)+v(1682)*v(246)+v(1598)*v(247)+v(1652)*v(7812)))/5040d0 v(2095)=(7d0*(360d0*v(1798)+120d0*v(1875)+30d0*v(1908)+6d0*v(1985)+v(2051))+v(7522)*(v(2051)*v(227)+v(2018)*v(229)+v& &(2029)*v(230)+v(1681)*v(246)+v(1597)*v(247)+v(1651)*v(7812)))/5040d0 v(2094)=(7d0*(360d0*v(1797)+120d0*v(1874)+30d0*v(1907)+6d0*v(1984)+v(2050))+v(7522)*(v(2050)*v(227)+v(2017)*v(229)+v& &(2028)*v(230)+v(1680)*v(246)+v(1596)*v(247)+v(1650)*v(7812)))/5040d0 v(2093)=(7d0*(360d0*v(1796)+120d0*v(1873)+30d0*v(1906)+6d0*v(1983)+v(2049))+v(7522)*(v(2049)*v(227)+v(2016)*v(229)+v& &(2027)*v(230)+v(1677)*v(246)+v(1595)*v(247)+v(1649)*v(7812)))/5040d0 v(2092)=(7d0*(360d0*v(1795)+120d0*v(1872)+30d0*v(1905)+6d0*v(1982)+v(2048))+v(7522)*(v(2048)*v(227)+v(2015)*v(229)+v& &(2026)*v(230)+v(1675)*v(246)+v(1593)*v(247)+v(1647)*v(7812)))/5040d0 v(2091)=v(1794)/2d0+v(1871)/6d0+v(1904)/24d0+v(1981)/120d0+v(2047)/720d0+v(7803)+((v(2047)*v(227)+v(2014)*v(229)+v(2025& &)*v(230)+v(1644)*v(243)+v(1672)*v(246)+v(1591)*v(247))*v(7522)+v(7518)*(v(229)*v(243)+v(7815)))/5040d0 v(2079)=(v(2057)*v(229)+v(1658)*v(247))*v(7522) v(2090)=(2520d0*v(1848)+840d0*v(1903)+210d0*v(1958)+42d0*v(2013)+7d0*v(2024)+v(2046)+v(2079)+v(7522)*(v(2024)*v(223)+v& &(1577)*v(7812)))/5040d0 v(2078)=(v(2056)*v(229)+v(1657)*v(247))*v(7522) v(2089)=(2520d0*v(1847)+840d0*v(1902)+210d0*v(1957)+42d0*v(2012)+7d0*v(2023)+v(2045)+v(2078)+v(7522)*(v(2023)*v(223)+v& &(1576)*v(7812)))/5040d0 v(2077)=(v(2055)*v(229)+v(1656)*v(247))*v(7522) v(2088)=(2520d0*v(1846)+840d0*v(1901)+210d0*v(1956)+42d0*v(2011)+7d0*v(2022)+v(2044)+v(2077)+v(7522)*(v(2022)*v(223)+v& &(1575)*v(7812)))/5040d0 v(2076)=(v(2054)*v(229)+v(1655)*v(247))*v(7522) v(2087)=(2520d0*v(1845)+840d0*v(1900)+210d0*v(1955)+42d0*v(2010)+7d0*v(2021)+v(2043)+v(2076)+v(7522)*(v(2021)*v(223)+v& &(1573)*v(7812)))/5040d0 v(2075)=(v(2053)*v(229)+v(1653)*v(247))*v(7522) v(2086)=(2520d0*v(1844)+840d0*v(1899)+210d0*v(1954)+42d0*v(2009)+7d0*v(2020)+v(2042)+v(2075)+v(7522)*(v(2020)*v(223)+v& &(1572)*v(7812)))/5040d0 v(2074)=(v(2052)*v(229)+v(1652)*v(247))*v(7522) v(2085)=(2520d0*v(1843)+840d0*v(1898)+210d0*v(1953)+42d0*v(2008)+7d0*v(2019)+v(2041)+v(2074)+v(7522)*(v(2019)*v(223)+v& &(1571)*v(7812)))/5040d0 v(2073)=(v(2051)*v(229)+v(1651)*v(247))*v(7522) v(2084)=(2520d0*v(1842)+840d0*v(1897)+210d0*v(1952)+42d0*v(2007)+7d0*v(2018)+v(2040)+v(2073)+v(7522)*(v(2018)*v(223)+v& &(1570)*v(7812)))/5040d0 v(2072)=(v(2050)*v(229)+v(1650)*v(247))*v(7522) v(2083)=(2520d0*v(1841)+840d0*v(1896)+210d0*v(1951)+42d0*v(2006)+7d0*v(2017)+v(2039)+v(2072)+v(7522)*(v(2017)*v(223)+v& &(1569)*v(7812)))/5040d0 v(2071)=(v(2049)*v(229)+v(1649)*v(247))*v(7522) v(2082)=(2520d0*v(1840)+840d0*v(1895)+210d0*v(1950)+42d0*v(2005)+7d0*v(2016)+v(2038)+v(2071)+v(7522)*(v(2016)*v(223)+v& &(1568)*v(7812)))/5040d0 v(2070)=(v(2048)*v(229)+v(1647)*v(247))*v(7522) v(2081)=(2520d0*v(1839)+840d0*v(1894)+210d0*v(1949)+42d0*v(2004)+7d0*v(2015)+v(2037)+v(2070)+v(7522)*(v(2015)*v(223)+v& &(1566)*v(7812)))/5040d0 v(2069)=v(2047)*v(7797)+v(247)*v(7803) v(2080)=(2520d0*v(1838)+840d0*v(1893)+210d0*v(1948)+42d0*v(2003)+7d0*v(2014)+v(2036)+v(2069)+v(223)*(v(2014)*v(7522)+v& &(7518)*v(7812))+v(7812)*v(7813))/5040d0 v(2068)=(7d0*(360d0*v(1826)+120d0*v(1859)+30d0*v(1936)+6d0*v(1969)+v(2035))+(5040d0*v(1726)+v(2035)*v(228)+v(2057)*v& &(230)+v(2024)*v(231)+v(1726)*v(243)+v(1630)*v(246)+v(1690)*v(247))*v(7522))/5040d0 v(2409)=statev(7)*v(2090)+statev(5)*v(2101)+v(2068)*v(7514) v(2376)=statev(9)*v(2068)+statev(4)*v(2090)+v(2101)*v(7513) v(2112)=statev(6)*v(2068)+statev(8)*v(2101)+v(2090)*v(7512) v(2067)=(7d0*(360d0*v(1825)+120d0*v(1858)+30d0*v(1935)+6d0*v(1968)+v(2034))+(5040d0*v(1724)+v(2034)*v(228)+v(2056)*v& &(230)+v(2023)*v(231)+v(1724)*v(243)+v(1629)*v(246)+v(1688)*v(247))*v(7522))/5040d0 v(2408)=statev(7)*v(2089)+statev(5)*v(2100)+v(2067)*v(7514) v(2375)=statev(9)*v(2067)+statev(4)*v(2089)+v(2100)*v(7513) v(2111)=statev(6)*v(2067)+statev(8)*v(2100)+v(2089)*v(7512) v(2066)=(7d0*(360d0*v(1824)+120d0*v(1857)+30d0*v(1934)+6d0*v(1967)+v(2033))+(5040d0*v(1721)+v(2033)*v(228)+v(2055)*v& &(230)+v(2022)*v(231)+v(1721)*v(243)+v(1627)*v(246)+v(1687)*v(247))*v(7522))/5040d0 v(2407)=statev(7)*v(2088)+statev(5)*v(2099)+v(2066)*v(7514) v(2374)=statev(9)*v(2066)+statev(4)*v(2088)+v(2099)*v(7513) v(2110)=statev(6)*v(2066)+statev(8)*v(2099)+v(2088)*v(7512) v(2065)=(7d0*(360d0*v(1823)+120d0*v(1856)+30d0*v(1933)+6d0*v(1966)+v(2032))+(5040d0*v(1719)+v(2032)*v(228)+v(2054)*v& &(230)+v(2021)*v(231)+v(1719)*v(243)+v(1626)*v(246)+v(1685)*v(247))*v(7522))/5040d0 v(2406)=statev(7)*v(2087)+statev(5)*v(2098)+v(2065)*v(7514) v(2373)=statev(9)*v(2065)+statev(4)*v(2087)+v(2098)*v(7513) v(2109)=statev(6)*v(2065)+statev(8)*v(2098)+v(2087)*v(7512) v(2064)=(7d0*(360d0*v(1822)+120d0*v(1855)+30d0*v(1932)+6d0*v(1965)+v(2031))+(5040d0*v(1717)+v(2031)*v(228)+v(2053)*v& &(230)+v(2020)*v(231)+v(1717)*v(243)+v(1625)*v(246)+v(1683)*v(247))*v(7522))/5040d0 v(2405)=statev(7)*v(2086)+statev(5)*v(2097)+v(2064)*v(7514) v(2372)=statev(9)*v(2064)+statev(4)*v(2086)+v(2097)*v(7513) v(2108)=statev(6)*v(2064)+statev(8)*v(2097)+v(2086)*v(7512) v(2063)=(7d0*(360d0*v(1821)+120d0*v(1854)+30d0*v(1931)+6d0*v(1964)+v(2030))+(5040d0*v(1716)+v(2030)*v(228)+v(2052)*v& &(230)+v(2019)*v(231)+v(1716)*v(243)+v(1624)*v(246)+v(1682)*v(247))*v(7522))/5040d0 v(2404)=statev(7)*v(2085)+statev(5)*v(2096)+v(2063)*v(7514) v(2371)=statev(9)*v(2063)+statev(4)*v(2085)+v(2096)*v(7513) v(2107)=statev(6)*v(2063)+statev(8)*v(2096)+v(2085)*v(7512) v(2062)=(7d0*(360d0*v(1820)+120d0*v(1853)+30d0*v(1930)+6d0*v(1963)+v(2029))+(5040d0*v(1713)+v(2029)*v(228)+v(2051)*v& &(230)+v(2018)*v(231)+v(1713)*v(243)+v(1623)*v(246)+v(1681)*v(247))*v(7522))/5040d0 v(2403)=statev(7)*v(2084)+statev(5)*v(2095)+v(2062)*v(7514) v(2370)=statev(9)*v(2062)+statev(4)*v(2084)+v(2095)*v(7513) v(2106)=statev(6)*v(2062)+statev(8)*v(2095)+v(2084)*v(7512) v(2061)=(7d0*(360d0*v(1819)+120d0*v(1852)+30d0*v(1929)+6d0*v(1962)+v(2028))+(5040d0*v(1712)+v(2028)*v(228)+v(2050)*v& &(230)+v(2017)*v(231)+v(1712)*v(243)+v(1622)*v(246)+v(1680)*v(247))*v(7522))/5040d0 v(2402)=statev(7)*v(2083)+statev(5)*v(2094)+v(2061)*v(7514) v(2369)=statev(9)*v(2061)+statev(4)*v(2083)+v(2094)*v(7513) v(2105)=statev(6)*v(2061)+statev(8)*v(2094)+v(2083)*v(7512) v(2060)=(7d0*(360d0*v(1818)+120d0*v(1851)+30d0*v(1928)+6d0*v(1961)+v(2027))+(5040d0*v(1709)+v(2027)*v(228)+v(2049)*v& &(230)+v(2016)*v(231)+v(1709)*v(243)+v(1621)*v(246)+v(1677)*v(247))*v(7522))/5040d0 v(2401)=statev(7)*v(2082)+statev(5)*v(2093)+v(2060)*v(7514) v(2368)=statev(9)*v(2060)+statev(4)*v(2082)+v(2093)*v(7513) v(2104)=statev(6)*v(2060)+statev(8)*v(2093)+v(2082)*v(7512) v(2059)=(7d0*(360d0*v(1817)+120d0*v(1850)+30d0*v(1927)+6d0*v(1960)+v(2026))+(5040d0*v(1707)+v(2026)*v(228)+v(2048)*v& &(230)+v(2015)*v(231)+v(1707)*v(243)+v(1619)*v(246)+v(1675)*v(247))*v(7522))/5040d0 v(2400)=statev(7)*v(2081)+statev(5)*v(2092)+v(2059)*v(7514) v(2367)=statev(9)*v(2059)+statev(4)*v(2081)+v(2092)*v(7513) v(2103)=statev(6)*v(2059)+statev(8)*v(2092)+v(2081)*v(7512) v(2058)=v(1816)/2d0+v(1849)/6d0+v(1926)/24d0+v(1959)/120d0+v(2025)/720d0+v(7801)+((v(2025)*v(228)+v(2047)*v(230)+v(2014& &)*v(231)+v(1704)*v(243)+v(1618)*v(246)+v(1672)*v(247))*v(7522)+v(7518)*(v(231)*v(243)+v(7814)))/5040d0 v(2399)=statev(7)*v(2080)+statev(5)*v(2091)+v(2058)*v(7514) v(2366)=statev(9)*v(2058)+statev(4)*v(2080)+v(2091)*v(7513) v(2102)=statev(6)*v(2058)+statev(8)*v(2091)+v(2080)*v(7512) v(285)=(7d0*(360d0*v(235)+120d0*v(239)+30d0*v(241)+6d0*v(245)+v(246))+v(7522)*(v(231)*v(7812)+v(7814)))/5040d0 v(265)=v(247)*v(7797) v(7826)=5040d0+v(265) v(287)=(2520d0*v(233)+840d0*v(234)+210d0*v(237)+42d0*v(240)+7d0*v(243)+v(282)+v(7804)*v(7812)+v(7826))/5040d0 v(249)=(7d0*(360d0*v(236)+120d0*v(238)+30d0*v(242)+6d0*v(244)+v(247))+v(7522)*(v(229)*v(7812)+v(7815)))/5040d0 v(248)=statev(8)*v(249)+statev(6)*v(285)+v(287)*v(7512) v(251)=v(250)+v(267)+v(232)*v(370) v(7816)=v(231)*v(236)+v(230)*v(251)+v(228)*v(255) v(2156)=v(1782)+v(1815)+(v(2123)*v(227)+v(1604)*v(251))*v(7522) v(2155)=v(1781)+v(1814)+(v(2122)*v(227)+v(1603)*v(251))*v(7522) v(2154)=v(1780)+v(1813)+(v(2121)*v(227)+v(1602)*v(251))*v(7522) v(2153)=v(1779)+v(1812)+(v(2120)*v(227)+v(1600)*v(251))*v(7522) v(2152)=v(1778)+v(1811)+(v(2119)*v(227)+v(1599)*v(251))*v(7522) v(2151)=v(1777)+v(1810)+(v(2118)*v(227)+v(1598)*v(251))*v(7522) v(2150)=v(1776)+v(1809)+(v(2117)*v(227)+v(1597)*v(251))*v(7522) v(2149)=v(1775)+v(1808)+(v(2116)*v(227)+v(1596)*v(251))*v(7522) v(2148)=v(1774)+v(1807)+(v(2115)*v(227)+v(1595)*v(251))*v(7522) v(2147)=v(1773)+v(1806)+(v(2114)*v(227)+v(1593)*v(251))*v(7522) v(2146)=v(1772)+v(1805)+v(2113)*v(7818)+v(251)*v(7819) v(2134)=(v(1771)*v(228)+v(2123)*v(230)+v(1804)*v(231)+v(1726)*v(236)+v(1690)*v(251)+v(1630)*v(255))*v(7522) v(2133)=(v(1770)*v(228)+v(2122)*v(230)+v(1803)*v(231)+v(1724)*v(236)+v(1688)*v(251)+v(1629)*v(255))*v(7522) v(2132)=(v(1769)*v(228)+v(2121)*v(230)+v(1802)*v(231)+v(1721)*v(236)+v(1687)*v(251)+v(1627)*v(255))*v(7522) v(2131)=(v(1768)*v(228)+v(2120)*v(230)+v(1801)*v(231)+v(1719)*v(236)+v(1685)*v(251)+v(1626)*v(255))*v(7522) v(2130)=(v(1767)*v(228)+v(2119)*v(230)+v(1800)*v(231)+v(1717)*v(236)+v(1683)*v(251)+v(1625)*v(255))*v(7522) v(2129)=(v(1766)*v(228)+v(2118)*v(230)+v(1799)*v(231)+v(1716)*v(236)+v(1682)*v(251)+v(1624)*v(255))*v(7522) v(2128)=(v(1765)*v(228)+v(2117)*v(230)+v(1798)*v(231)+v(1713)*v(236)+v(1681)*v(251)+v(1623)*v(255))*v(7522) v(2127)=(v(1764)*v(228)+v(2116)*v(230)+v(1797)*v(231)+v(1712)*v(236)+v(1680)*v(251)+v(1622)*v(255))*v(7522) v(2126)=(v(1763)*v(228)+v(2115)*v(230)+v(1796)*v(231)+v(1709)*v(236)+v(1677)*v(251)+v(1621)*v(255))*v(7522) v(2125)=(v(1762)*v(228)+v(2114)*v(230)+v(1795)*v(231)+v(1707)*v(236)+v(1675)*v(251)+v(1619)*v(255))*v(7522) v(2124)=(v(1761)*v(228)+v(2113)*v(230)+v(1794)*v(231)+v(1704)*v(236)+v(1672)*v(251)+v(1618)*v(255))*v(7522)+v(7518)*v& &(7816) v(257)=v(7522)*v(7816) v(2145)=(v(2134)*v(230)+v(1690)*v(257))*v(7522) v(2144)=(v(2133)*v(230)+v(1688)*v(257))*v(7522) v(2143)=(v(2132)*v(230)+v(1687)*v(257))*v(7522) v(2142)=(v(2131)*v(230)+v(1685)*v(257))*v(7522) v(2141)=(v(2130)*v(230)+v(1683)*v(257))*v(7522) v(2140)=(v(2129)*v(230)+v(1682)*v(257))*v(7522) v(2139)=(v(2128)*v(230)+v(1681)*v(257))*v(7522) v(2138)=(v(2127)*v(230)+v(1680)*v(257))*v(7522) v(2137)=(v(2126)*v(230)+v(1677)*v(257))*v(7522) v(2136)=(v(2125)*v(230)+v(1675)*v(257))*v(7522) v(2135)=v(2124)*v(7795)+v(257)*v(7817) v(273)=v(257)*v(7795) v(253)=v(252)+v(271)+v(251)*v(7818) v(7820)=v(231)*v(238)+v(230)*v(253)+v(228)*v(257) v(2189)=v(1892)+v(2145)+(v(2156)*v(227)+v(1604)*v(253))*v(7522) v(2188)=v(1891)+v(2144)+(v(2155)*v(227)+v(1603)*v(253))*v(7522) v(2187)=v(1890)+v(2143)+(v(2154)*v(227)+v(1602)*v(253))*v(7522) v(2186)=v(1889)+v(2142)+(v(2153)*v(227)+v(1600)*v(253))*v(7522) v(2185)=v(1888)+v(2141)+(v(2152)*v(227)+v(1599)*v(253))*v(7522) v(2184)=v(1887)+v(2140)+(v(2151)*v(227)+v(1598)*v(253))*v(7522) v(2183)=v(1886)+v(2139)+(v(2150)*v(227)+v(1597)*v(253))*v(7522) v(2182)=v(1885)+v(2138)+(v(2149)*v(227)+v(1596)*v(253))*v(7522) v(2181)=v(1884)+v(2137)+(v(2148)*v(227)+v(1595)*v(253))*v(7522) v(2180)=v(1883)+v(2136)+(v(2147)*v(227)+v(1593)*v(253))*v(7522) v(2179)=v(1882)+v(2135)+v(2146)*v(7818)+v(253)*v(7819) v(2167)=(v(2134)*v(228)+v(2156)*v(230)+v(1881)*v(231)+v(1726)*v(238)+v(1690)*v(253)+v(1630)*v(257))*v(7522) v(2166)=(v(2133)*v(228)+v(2155)*v(230)+v(1880)*v(231)+v(1724)*v(238)+v(1688)*v(253)+v(1629)*v(257))*v(7522) v(2165)=(v(2132)*v(228)+v(2154)*v(230)+v(1879)*v(231)+v(1721)*v(238)+v(1687)*v(253)+v(1627)*v(257))*v(7522) v(2164)=(v(2131)*v(228)+v(2153)*v(230)+v(1878)*v(231)+v(1719)*v(238)+v(1685)*v(253)+v(1626)*v(257))*v(7522) v(2163)=(v(2130)*v(228)+v(2152)*v(230)+v(1877)*v(231)+v(1717)*v(238)+v(1683)*v(253)+v(1625)*v(257))*v(7522) v(2162)=(v(2129)*v(228)+v(2151)*v(230)+v(1876)*v(231)+v(1716)*v(238)+v(1682)*v(253)+v(1624)*v(257))*v(7522) v(2161)=(v(2128)*v(228)+v(2150)*v(230)+v(1875)*v(231)+v(1713)*v(238)+v(1681)*v(253)+v(1623)*v(257))*v(7522) v(2160)=(v(2127)*v(228)+v(2149)*v(230)+v(1874)*v(231)+v(1712)*v(238)+v(1680)*v(253)+v(1622)*v(257))*v(7522) v(2159)=(v(2126)*v(228)+v(2148)*v(230)+v(1873)*v(231)+v(1709)*v(238)+v(1677)*v(253)+v(1621)*v(257))*v(7522) v(2158)=(v(2125)*v(228)+v(2147)*v(230)+v(1872)*v(231)+v(1707)*v(238)+v(1675)*v(253)+v(1619)*v(257))*v(7522) v(2157)=(v(2124)*v(228)+v(2146)*v(230)+v(1871)*v(231)+v(1704)*v(238)+v(1672)*v(253)+v(1618)*v(257))*v(7522)+v(7518)*v& &(7820) v(261)=v(7522)*v(7820) v(2178)=(v(2167)*v(230)+v(1690)*v(261))*v(7522) v(2177)=(v(2166)*v(230)+v(1688)*v(261))*v(7522) v(2176)=(v(2165)*v(230)+v(1687)*v(261))*v(7522) v(2175)=(v(2164)*v(230)+v(1685)*v(261))*v(7522) v(2174)=(v(2163)*v(230)+v(1683)*v(261))*v(7522) v(2173)=(v(2162)*v(230)+v(1682)*v(261))*v(7522) v(2172)=(v(2161)*v(230)+v(1681)*v(261))*v(7522) v(2171)=(v(2160)*v(230)+v(1680)*v(261))*v(7522) v(2170)=(v(2159)*v(230)+v(1677)*v(261))*v(7522) v(2169)=(v(2158)*v(230)+v(1675)*v(261))*v(7522) v(2168)=v(2157)*v(7795)+v(261)*v(7817) v(277)=v(261)*v(7795) v(256)=v(254)+v(273)+v(253)*v(7818) v(7821)=v(231)*v(242)+v(230)*v(256)+v(228)*v(261) v(2222)=v(1925)+v(2178)+(v(2189)*v(227)+v(1604)*v(256))*v(7522) v(2221)=v(1924)+v(2177)+(v(2188)*v(227)+v(1603)*v(256))*v(7522) v(2220)=v(1923)+v(2176)+(v(2187)*v(227)+v(1602)*v(256))*v(7522) v(2219)=v(1922)+v(2175)+(v(2186)*v(227)+v(1600)*v(256))*v(7522) v(2218)=v(1921)+v(2174)+(v(2185)*v(227)+v(1599)*v(256))*v(7522) v(2217)=v(1920)+v(2173)+(v(2184)*v(227)+v(1598)*v(256))*v(7522) v(2216)=v(1919)+v(2172)+(v(2183)*v(227)+v(1597)*v(256))*v(7522) v(2215)=v(1918)+v(2171)+(v(2182)*v(227)+v(1596)*v(256))*v(7522) v(2214)=v(1917)+v(2170)+(v(2181)*v(227)+v(1595)*v(256))*v(7522) v(2213)=v(1916)+v(2169)+(v(2180)*v(227)+v(1593)*v(256))*v(7522) v(2212)=v(1915)+v(2168)+v(2179)*v(7818)+v(256)*v(7819) v(2200)=(v(2167)*v(228)+v(2189)*v(230)+v(1914)*v(231)+v(1726)*v(242)+v(1690)*v(256)+v(1630)*v(261))*v(7522) v(2199)=(v(2166)*v(228)+v(2188)*v(230)+v(1913)*v(231)+v(1724)*v(242)+v(1688)*v(256)+v(1629)*v(261))*v(7522) v(2198)=(v(2165)*v(228)+v(2187)*v(230)+v(1912)*v(231)+v(1721)*v(242)+v(1687)*v(256)+v(1627)*v(261))*v(7522) v(2197)=(v(2164)*v(228)+v(2186)*v(230)+v(1911)*v(231)+v(1719)*v(242)+v(1685)*v(256)+v(1626)*v(261))*v(7522) v(2196)=(v(2163)*v(228)+v(2185)*v(230)+v(1910)*v(231)+v(1717)*v(242)+v(1683)*v(256)+v(1625)*v(261))*v(7522) v(2195)=(v(2162)*v(228)+v(2184)*v(230)+v(1909)*v(231)+v(1716)*v(242)+v(1682)*v(256)+v(1624)*v(261))*v(7522) v(2194)=(v(2161)*v(228)+v(2183)*v(230)+v(1908)*v(231)+v(1713)*v(242)+v(1681)*v(256)+v(1623)*v(261))*v(7522) v(2193)=(v(2160)*v(228)+v(2182)*v(230)+v(1907)*v(231)+v(1712)*v(242)+v(1680)*v(256)+v(1622)*v(261))*v(7522) v(2192)=(v(2159)*v(228)+v(2181)*v(230)+v(1906)*v(231)+v(1709)*v(242)+v(1677)*v(256)+v(1621)*v(261))*v(7522) v(2191)=(v(2158)*v(228)+v(2180)*v(230)+v(1905)*v(231)+v(1707)*v(242)+v(1675)*v(256)+v(1619)*v(261))*v(7522) v(2190)=(v(2157)*v(228)+v(2179)*v(230)+v(1904)*v(231)+v(1704)*v(242)+v(1672)*v(256)+v(1618)*v(261))*v(7522)+v(7518)*v& &(7821) v(263)=v(7522)*v(7821) v(2211)=(v(2200)*v(230)+v(1690)*v(263))*v(7522) v(2210)=(v(2199)*v(230)+v(1688)*v(263))*v(7522) v(2209)=(v(2198)*v(230)+v(1687)*v(263))*v(7522) v(2208)=(v(2197)*v(230)+v(1685)*v(263))*v(7522) v(2207)=(v(2196)*v(230)+v(1683)*v(263))*v(7522) v(2206)=(v(2195)*v(230)+v(1682)*v(263))*v(7522) v(2205)=(v(2194)*v(230)+v(1681)*v(263))*v(7522) v(2204)=(v(2193)*v(230)+v(1680)*v(263))*v(7522) v(2203)=(v(2192)*v(230)+v(1677)*v(263))*v(7522) v(2202)=(v(2191)*v(230)+v(1675)*v(263))*v(7522) v(2201)=v(2190)*v(7795)+v(263)*v(7817) v(279)=v(263)*v(7795) v(259)=v(258)+v(277)+v(256)*v(7818) v(7822)=v(231)*v(244)+v(230)*v(259)+v(228)*v(263) v(2244)=(v(2200)*v(228)+v(2222)*v(230)+v(1991)*v(231)+v(1726)*v(244)+v(1690)*v(259)+v(1630)*v(263))*v(7522) v(2243)=(v(2199)*v(228)+v(2221)*v(230)+v(1990)*v(231)+v(1724)*v(244)+v(1688)*v(259)+v(1629)*v(263))*v(7522) v(2242)=(v(2198)*v(228)+v(2220)*v(230)+v(1989)*v(231)+v(1721)*v(244)+v(1687)*v(259)+v(1627)*v(263))*v(7522) v(2241)=(v(2197)*v(228)+v(2219)*v(230)+v(1988)*v(231)+v(1719)*v(244)+v(1685)*v(259)+v(1626)*v(263))*v(7522) v(2240)=(v(2196)*v(228)+v(2218)*v(230)+v(1987)*v(231)+v(1717)*v(244)+v(1683)*v(259)+v(1625)*v(263))*v(7522) v(2239)=(v(2195)*v(228)+v(2217)*v(230)+v(1986)*v(231)+v(1716)*v(244)+v(1682)*v(259)+v(1624)*v(263))*v(7522) v(2238)=(v(2194)*v(228)+v(2216)*v(230)+v(1985)*v(231)+v(1713)*v(244)+v(1681)*v(259)+v(1623)*v(263))*v(7522) v(2237)=(v(2193)*v(228)+v(2215)*v(230)+v(1984)*v(231)+v(1712)*v(244)+v(1680)*v(259)+v(1622)*v(263))*v(7522) v(2236)=(v(2192)*v(228)+v(2214)*v(230)+v(1983)*v(231)+v(1709)*v(244)+v(1677)*v(259)+v(1621)*v(263))*v(7522) v(2235)=(v(2191)*v(228)+v(2213)*v(230)+v(1982)*v(231)+v(1707)*v(244)+v(1675)*v(259)+v(1619)*v(263))*v(7522) v(2234)=(v(2190)*v(228)+v(2212)*v(230)+v(1981)*v(231)+v(1704)*v(244)+v(1672)*v(259)+v(1618)*v(263))*v(7522)+v(7518)*v& &(7822) v(2233)=v(2002)+v(2211)+(v(2222)*v(227)+v(1604)*v(259))*v(7522) v(2232)=v(2001)+v(2210)+(v(2221)*v(227)+v(1603)*v(259))*v(7522) v(2231)=v(2000)+v(2209)+(v(2220)*v(227)+v(1602)*v(259))*v(7522) v(2230)=v(1999)+v(2208)+(v(2219)*v(227)+v(1600)*v(259))*v(7522) v(2229)=v(1998)+v(2207)+(v(2218)*v(227)+v(1599)*v(259))*v(7522) v(2228)=v(1997)+v(2206)+(v(2217)*v(227)+v(1598)*v(259))*v(7522) v(2227)=v(1996)+v(2205)+(v(2216)*v(227)+v(1597)*v(259))*v(7522) v(2226)=v(1995)+v(2204)+(v(2215)*v(227)+v(1596)*v(259))*v(7522) v(2225)=v(1994)+v(2203)+(v(2214)*v(227)+v(1595)*v(259))*v(7522) v(2224)=v(1993)+v(2202)+(v(2213)*v(227)+v(1593)*v(259))*v(7522) v(2223)=v(1992)+v(2201)+v(2212)*v(7818)+v(259)*v(7819) v(262)=v(260)+v(279)+v(259)*v(7818) v(7823)=5040d0+v(262) v(264)=v(7522)*v(7822) v(7825)=v(231)*v(247)+v(228)*v(264) v(2266)=(v(2244)*v(230)+v(1690)*v(264))*v(7522) v(2277)=(v(2079)+2520d0*v(2123)+840d0*v(2156)+210d0*v(2189)+42d0*v(2222)+7d0*v(2233)+v(2266)+v(7522)*(v(2233)*v(227)+v& &(1604)*v(7823)))/5040d0 v(2265)=(v(2243)*v(230)+v(1688)*v(264))*v(7522) v(2276)=(v(2078)+2520d0*v(2122)+840d0*v(2155)+210d0*v(2188)+42d0*v(2221)+7d0*v(2232)+v(2265)+v(7522)*(v(2232)*v(227)+v& &(1603)*v(7823)))/5040d0 v(2264)=(v(2242)*v(230)+v(1687)*v(264))*v(7522) v(2275)=(v(2077)+2520d0*v(2121)+840d0*v(2154)+210d0*v(2187)+42d0*v(2220)+7d0*v(2231)+v(2264)+v(7522)*(v(2231)*v(227)+v& &(1602)*v(7823)))/5040d0 v(2263)=(v(2241)*v(230)+v(1685)*v(264))*v(7522) v(2274)=(v(2076)+2520d0*v(2120)+840d0*v(2153)+210d0*v(2186)+42d0*v(2219)+7d0*v(2230)+v(2263)+v(7522)*(v(2230)*v(227)+v& &(1600)*v(7823)))/5040d0 v(2262)=(v(2240)*v(230)+v(1683)*v(264))*v(7522) v(2273)=(v(2075)+2520d0*v(2119)+840d0*v(2152)+210d0*v(2185)+42d0*v(2218)+7d0*v(2229)+v(2262)+v(7522)*(v(2229)*v(227)+v& &(1599)*v(7823)))/5040d0 v(2261)=(v(2239)*v(230)+v(1682)*v(264))*v(7522) v(2272)=(v(2074)+2520d0*v(2118)+840d0*v(2151)+210d0*v(2184)+42d0*v(2217)+7d0*v(2228)+v(2261)+v(7522)*(v(2228)*v(227)+v& &(1598)*v(7823)))/5040d0 v(2260)=(v(2238)*v(230)+v(1681)*v(264))*v(7522) v(2271)=(v(2073)+2520d0*v(2117)+840d0*v(2150)+210d0*v(2183)+42d0*v(2216)+7d0*v(2227)+v(2260)+v(7522)*(v(2227)*v(227)+v& &(1597)*v(7823)))/5040d0 v(2259)=(v(2237)*v(230)+v(1680)*v(264))*v(7522) v(2270)=(v(2072)+2520d0*v(2116)+840d0*v(2149)+210d0*v(2182)+42d0*v(2215)+7d0*v(2226)+v(2259)+v(7522)*(v(2226)*v(227)+v& &(1596)*v(7823)))/5040d0 v(2258)=(v(2236)*v(230)+v(1677)*v(264))*v(7522) v(2269)=(v(2071)+2520d0*v(2115)+840d0*v(2148)+210d0*v(2181)+42d0*v(2214)+7d0*v(2225)+v(2258)+v(7522)*(v(2225)*v(227)+v& &(1595)*v(7823)))/5040d0 v(2257)=(v(2235)*v(230)+v(1675)*v(264))*v(7522) v(2268)=(v(2070)+2520d0*v(2114)+840d0*v(2147)+210d0*v(2180)+42d0*v(2213)+7d0*v(2224)+v(2257)+v(7522)*(v(2224)*v(227)+v& &(1593)*v(7823)))/5040d0 v(2256)=v(2234)*v(7795)+v(264)*v(7817) v(2267)=(v(2069)+2520d0*v(2113)+840d0*v(2146)+210d0*v(2179)+42d0*v(2212)+7d0*v(2223)+v(2256)+v(227)*(v(2223)*v(7522)+v& &(7518)*v(7823))+v(7823)*v(7824))/5040d0 v(2255)=(7d0*(360d0*v(1771)+120d0*v(2134)+30d0*v(2167)+6d0*v(2200)+v(2244))+v(7522)*(v(2244)*v(228)+v(2233)*v(230)+v& &(2057)*v(231)+v(1726)*v(247)+v(1630)*v(264)+v(1690)*v(7823)))/5040d0 v(2442)=statev(6)*v(2255)+statev(8)*v(2277)+v(2101)*v(7512) v(2387)=statev(7)*v(2101)+statev(5)*v(2277)+v(2255)*v(7514) v(2288)=statev(4)*v(2101)+statev(9)*v(2255)+v(2277)*v(7513) v(2254)=(7d0*(360d0*v(1770)+120d0*v(2133)+30d0*v(2166)+6d0*v(2199)+v(2243))+v(7522)*(v(2243)*v(228)+v(2232)*v(230)+v& &(2056)*v(231)+v(1724)*v(247)+v(1629)*v(264)+v(1688)*v(7823)))/5040d0 v(2441)=statev(6)*v(2254)+statev(8)*v(2276)+v(2100)*v(7512) v(2386)=statev(7)*v(2100)+statev(5)*v(2276)+v(2254)*v(7514) v(2287)=statev(4)*v(2100)+statev(9)*v(2254)+v(2276)*v(7513) v(2253)=(7d0*(360d0*v(1769)+120d0*v(2132)+30d0*v(2165)+6d0*v(2198)+v(2242))+v(7522)*(v(2242)*v(228)+v(2231)*v(230)+v& &(2055)*v(231)+v(1721)*v(247)+v(1627)*v(264)+v(1687)*v(7823)))/5040d0 v(2440)=statev(6)*v(2253)+statev(8)*v(2275)+v(2099)*v(7512) v(2385)=statev(7)*v(2099)+statev(5)*v(2275)+v(2253)*v(7514) v(2286)=statev(4)*v(2099)+statev(9)*v(2253)+v(2275)*v(7513) v(2252)=(7d0*(360d0*v(1768)+120d0*v(2131)+30d0*v(2164)+6d0*v(2197)+v(2241))+v(7522)*(v(2241)*v(228)+v(2230)*v(230)+v& &(2054)*v(231)+v(1719)*v(247)+v(1626)*v(264)+v(1685)*v(7823)))/5040d0 v(2439)=statev(6)*v(2252)+statev(8)*v(2274)+v(2098)*v(7512) v(2384)=statev(7)*v(2098)+statev(5)*v(2274)+v(2252)*v(7514) v(2285)=statev(4)*v(2098)+statev(9)*v(2252)+v(2274)*v(7513) v(2251)=(7d0*(360d0*v(1767)+120d0*v(2130)+30d0*v(2163)+6d0*v(2196)+v(2240))+v(7522)*(v(2240)*v(228)+v(2229)*v(230)+v& &(2053)*v(231)+v(1717)*v(247)+v(1625)*v(264)+v(1683)*v(7823)))/5040d0 v(2438)=statev(6)*v(2251)+statev(8)*v(2273)+v(2097)*v(7512) v(2383)=statev(7)*v(2097)+statev(5)*v(2273)+v(2251)*v(7514) v(2284)=statev(4)*v(2097)+statev(9)*v(2251)+v(2273)*v(7513) v(2250)=(7d0*(360d0*v(1766)+120d0*v(2129)+30d0*v(2162)+6d0*v(2195)+v(2239))+v(7522)*(v(2239)*v(228)+v(2228)*v(230)+v& &(2052)*v(231)+v(1716)*v(247)+v(1624)*v(264)+v(1682)*v(7823)))/5040d0 v(2437)=statev(6)*v(2250)+statev(8)*v(2272)+v(2096)*v(7512) v(2382)=statev(7)*v(2096)+statev(5)*v(2272)+v(2250)*v(7514) v(2283)=statev(4)*v(2096)+statev(9)*v(2250)+v(2272)*v(7513) v(2249)=(7d0*(360d0*v(1765)+120d0*v(2128)+30d0*v(2161)+6d0*v(2194)+v(2238))+v(7522)*(v(2238)*v(228)+v(2227)*v(230)+v& &(2051)*v(231)+v(1713)*v(247)+v(1623)*v(264)+v(1681)*v(7823)))/5040d0 v(2436)=statev(6)*v(2249)+statev(8)*v(2271)+v(2095)*v(7512) v(2381)=statev(7)*v(2095)+statev(5)*v(2271)+v(2249)*v(7514) v(2282)=statev(4)*v(2095)+statev(9)*v(2249)+v(2271)*v(7513) v(2248)=(7d0*(360d0*v(1764)+120d0*v(2127)+30d0*v(2160)+6d0*v(2193)+v(2237))+v(7522)*(v(2237)*v(228)+v(2226)*v(230)+v& &(2050)*v(231)+v(1712)*v(247)+v(1622)*v(264)+v(1680)*v(7823)))/5040d0 v(2435)=statev(6)*v(2248)+statev(8)*v(2270)+v(2094)*v(7512) v(2380)=statev(7)*v(2094)+statev(5)*v(2270)+v(2248)*v(7514) v(2281)=statev(4)*v(2094)+statev(9)*v(2248)+v(2270)*v(7513) v(2247)=(7d0*(360d0*v(1763)+120d0*v(2126)+30d0*v(2159)+6d0*v(2192)+v(2236))+v(7522)*(v(2236)*v(228)+v(2225)*v(230)+v& &(2049)*v(231)+v(1709)*v(247)+v(1621)*v(264)+v(1677)*v(7823)))/5040d0 v(2434)=statev(6)*v(2247)+statev(8)*v(2269)+v(2093)*v(7512) v(2379)=statev(7)*v(2093)+statev(5)*v(2269)+v(2247)*v(7514) v(2280)=statev(4)*v(2093)+statev(9)*v(2247)+v(2269)*v(7513) v(2246)=(7d0*(360d0*v(1762)+120d0*v(2125)+30d0*v(2158)+6d0*v(2191)+v(2235))+v(7522)*(v(2235)*v(228)+v(2224)*v(230)+v& &(2048)*v(231)+v(1707)*v(247)+v(1619)*v(264)+v(1675)*v(7823)))/5040d0 v(2433)=statev(6)*v(2246)+statev(8)*v(2268)+v(2092)*v(7512) v(2378)=statev(7)*v(2092)+statev(5)*v(2268)+v(2246)*v(7514) v(2279)=statev(4)*v(2092)+statev(9)*v(2246)+v(2268)*v(7513) v(2245)=v(1761)/2d0+v(2124)/6d0+v(2157)/24d0+v(2190)/120d0+v(2234)/720d0+v(7817)+((v(2234)*v(228)+v(2223)*v(230)+v(2047& &)*v(231)+v(1704)*v(247)+v(1672)*v(262)+v(1618)*v(264))*v(7522)+v(7518)*(v(230)*v(262)+v(7825)))/5040d0 v(2432)=statev(6)*v(2245)+statev(8)*v(2267)+v(2091)*v(7512) v(2377)=statev(7)*v(2091)+statev(5)*v(2267)+v(2245)*v(7514) v(2278)=statev(4)*v(2091)+statev(9)*v(2245)+v(2267)*v(7513) v(284)=(7d0*(360d0*v(255)+120d0*v(257)+30d0*v(261)+6d0*v(263)+v(264))+v(7522)*(v(230)*v(7823)+v(7825)))/5040d0 v(283)=v(264)*v(7795) v(289)=(2520d0*v(251)+840d0*v(253)+210d0*v(256)+42d0*v(259)+7d0*v(262)+v(283)+v(7818)*v(7823)+v(7826))/5040d0 v(266)=statev(4)*v(249)+statev(9)*v(284)+v(289)*v(7513) v(269)=v(267)+v(268)+v(232)*v(371) v(2310)=v(1782)+v(1837)+(v(228)*v(2299)+v(1630)*v(269))*v(7522) v(2309)=v(1781)+v(1836)+(v(228)*v(2298)+v(1629)*v(269))*v(7522) v(2308)=v(1780)+v(1835)+(v(228)*v(2297)+v(1627)*v(269))*v(7522) v(2307)=v(1779)+v(1834)+(v(228)*v(2296)+v(1626)*v(269))*v(7522) v(2306)=v(1778)+v(1833)+(v(228)*v(2295)+v(1625)*v(269))*v(7522) v(2305)=v(1777)+v(1832)+(v(228)*v(2294)+v(1624)*v(269))*v(7522) v(2304)=v(1776)+v(1831)+(v(228)*v(2293)+v(1623)*v(269))*v(7522) v(2303)=v(1775)+v(1830)+(v(228)*v(2292)+v(1622)*v(269))*v(7522) v(2302)=v(1774)+v(1829)+(v(228)*v(2291)+v(1621)*v(269))*v(7522) v(2301)=v(1773)+v(1828)+(v(228)*v(2290)+v(1619)*v(269))*v(7522) v(2300)=v(1772)+v(1827)+v(2289)*v(7827)+v(269)*v(7828) v(272)=v(270)+v(271)+v(269)*v(7827) v(2321)=v(1870)+v(2145)+(v(228)*v(2310)+v(1630)*v(272))*v(7522) v(2320)=v(1869)+v(2144)+(v(228)*v(2309)+v(1629)*v(272))*v(7522) v(2319)=v(1868)+v(2143)+(v(228)*v(2308)+v(1627)*v(272))*v(7522) v(2318)=v(1867)+v(2142)+(v(228)*v(2307)+v(1626)*v(272))*v(7522) v(2317)=v(1866)+v(2141)+(v(228)*v(2306)+v(1625)*v(272))*v(7522) v(2316)=v(1865)+v(2140)+(v(228)*v(2305)+v(1624)*v(272))*v(7522) v(2315)=v(1864)+v(2139)+(v(228)*v(2304)+v(1623)*v(272))*v(7522) v(2314)=v(1863)+v(2138)+(v(228)*v(2303)+v(1622)*v(272))*v(7522) v(2313)=v(1862)+v(2137)+(v(228)*v(2302)+v(1621)*v(272))*v(7522) v(2312)=v(1861)+v(2136)+(v(228)*v(2301)+v(1619)*v(272))*v(7522) v(2311)=v(1860)+v(2135)+v(2300)*v(7827)+v(272)*v(7828) v(275)=v(273)+v(274)+v(272)*v(7827) v(2332)=v(1947)+v(2178)+(v(228)*v(2321)+v(1630)*v(275))*v(7522) v(2331)=v(1946)+v(2177)+(v(228)*v(2320)+v(1629)*v(275))*v(7522) v(2330)=v(1945)+v(2176)+(v(228)*v(2319)+v(1627)*v(275))*v(7522) v(2329)=v(1944)+v(2175)+(v(228)*v(2318)+v(1626)*v(275))*v(7522) v(2328)=v(1943)+v(2174)+(v(228)*v(2317)+v(1625)*v(275))*v(7522) v(2327)=v(1942)+v(2173)+(v(228)*v(2316)+v(1624)*v(275))*v(7522) v(2326)=v(1941)+v(2172)+(v(228)*v(2315)+v(1623)*v(275))*v(7522) v(2325)=v(1940)+v(2171)+(v(228)*v(2314)+v(1622)*v(275))*v(7522) v(2324)=v(1939)+v(2170)+(v(228)*v(2313)+v(1621)*v(275))*v(7522) v(2323)=v(1938)+v(2169)+(v(228)*v(2312)+v(1619)*v(275))*v(7522) v(2322)=v(1937)+v(2168)+v(2311)*v(7827)+v(275)*v(7828) v(278)=v(276)+v(277)+v(275)*v(7827) v(2343)=v(1980)+v(2211)+(v(228)*v(2332)+v(1630)*v(278))*v(7522) v(2342)=v(1979)+v(2210)+(v(228)*v(2331)+v(1629)*v(278))*v(7522) v(2341)=v(1978)+v(2209)+(v(228)*v(2330)+v(1627)*v(278))*v(7522) v(2340)=v(1977)+v(2208)+(v(228)*v(2329)+v(1626)*v(278))*v(7522) v(2339)=v(1976)+v(2207)+(v(228)*v(2328)+v(1625)*v(278))*v(7522) v(2338)=v(1975)+v(2206)+(v(228)*v(2327)+v(1624)*v(278))*v(7522) v(2337)=v(1974)+v(2205)+(v(228)*v(2326)+v(1623)*v(278))*v(7522) v(2336)=v(1973)+v(2204)+(v(228)*v(2325)+v(1622)*v(278))*v(7522) v(2335)=v(1972)+v(2203)+(v(228)*v(2324)+v(1621)*v(278))*v(7522) v(2334)=v(1971)+v(2202)+(v(228)*v(2323)+v(1619)*v(278))*v(7522) v(2333)=v(1970)+v(2201)+v(2322)*v(7827)+v(278)*v(7828) v(281)=v(279)+v(280)+v(278)*v(7827) v(7829)=5040d0+v(281) v(2354)=(v(2046)+v(2266)+2520d0*v(2299)+840d0*v(2310)+210d0*v(2321)+42d0*v(2332)+7d0*v(2343)+v(7522)*(v(228)*v(2343)+v& &(1630)*v(7829)))/5040d0 v(2486)=statev(4)*v(2068)+statev(9)*v(2354)+v(2255)*v(7513) v(2398)=statev(8)*v(2255)+statev(6)*v(2354)+v(2068)*v(7512) v(2365)=statev(7)*v(2068)+statev(5)*v(2255)+v(2354)*v(7514) v(2353)=(v(2045)+v(2265)+2520d0*v(2298)+840d0*v(2309)+210d0*v(2320)+42d0*v(2331)+7d0*v(2342)+v(7522)*(v(228)*v(2342)+v& &(1629)*v(7829)))/5040d0 v(2485)=statev(4)*v(2067)+statev(9)*v(2353)+v(2254)*v(7513) v(2397)=statev(8)*v(2254)+statev(6)*v(2353)+v(2067)*v(7512) v(2364)=statev(7)*v(2067)+statev(5)*v(2254)+v(2353)*v(7514) v(2352)=(v(2044)+v(2264)+2520d0*v(2297)+840d0*v(2308)+210d0*v(2319)+42d0*v(2330)+7d0*v(2341)+v(7522)*(v(228)*v(2341)+v& &(1627)*v(7829)))/5040d0 v(2484)=statev(4)*v(2066)+statev(9)*v(2352)+v(2253)*v(7513) v(2396)=statev(8)*v(2253)+statev(6)*v(2352)+v(2066)*v(7512) v(2363)=statev(7)*v(2066)+statev(5)*v(2253)+v(2352)*v(7514) v(2351)=(v(2043)+v(2263)+2520d0*v(2296)+840d0*v(2307)+210d0*v(2318)+42d0*v(2329)+7d0*v(2340)+v(7522)*(v(228)*v(2340)+v& &(1626)*v(7829)))/5040d0 v(2483)=statev(4)*v(2065)+statev(9)*v(2351)+v(2252)*v(7513) v(2395)=statev(8)*v(2252)+statev(6)*v(2351)+v(2065)*v(7512) v(2362)=statev(7)*v(2065)+statev(5)*v(2252)+v(2351)*v(7514) v(2350)=(v(2042)+v(2262)+2520d0*v(2295)+840d0*v(2306)+210d0*v(2317)+42d0*v(2328)+7d0*v(2339)+v(7522)*(v(228)*v(2339)+v& &(1625)*v(7829)))/5040d0 v(2482)=statev(4)*v(2064)+statev(9)*v(2350)+v(2251)*v(7513) v(2394)=statev(8)*v(2251)+statev(6)*v(2350)+v(2064)*v(7512) v(2361)=statev(7)*v(2064)+statev(5)*v(2251)+v(2350)*v(7514) v(2349)=(v(2041)+v(2261)+2520d0*v(2294)+840d0*v(2305)+210d0*v(2316)+42d0*v(2327)+7d0*v(2338)+v(7522)*(v(228)*v(2338)+v& &(1624)*v(7829)))/5040d0 v(2481)=statev(4)*v(2063)+statev(9)*v(2349)+v(2250)*v(7513) v(2393)=statev(8)*v(2250)+statev(6)*v(2349)+v(2063)*v(7512) v(2360)=statev(7)*v(2063)+statev(5)*v(2250)+v(2349)*v(7514) v(2348)=(v(2040)+v(2260)+2520d0*v(2293)+840d0*v(2304)+210d0*v(2315)+42d0*v(2326)+7d0*v(2337)+v(7522)*(v(228)*v(2337)+v& &(1623)*v(7829)))/5040d0 v(2480)=statev(4)*v(2062)+statev(9)*v(2348)+v(2249)*v(7513) v(2392)=statev(8)*v(2249)+statev(6)*v(2348)+v(2062)*v(7512) v(2359)=statev(7)*v(2062)+statev(5)*v(2249)+v(2348)*v(7514) v(2347)=(v(2039)+v(2259)+2520d0*v(2292)+840d0*v(2303)+210d0*v(2314)+42d0*v(2325)+7d0*v(2336)+v(7522)*(v(228)*v(2336)+v& &(1622)*v(7829)))/5040d0 v(2479)=statev(4)*v(2061)+statev(9)*v(2347)+v(2248)*v(7513) v(2391)=statev(8)*v(2248)+statev(6)*v(2347)+v(2061)*v(7512) v(2358)=statev(7)*v(2061)+statev(5)*v(2248)+v(2347)*v(7514) v(2346)=(v(2038)+v(2258)+2520d0*v(2291)+840d0*v(2302)+210d0*v(2313)+42d0*v(2324)+7d0*v(2335)+v(7522)*(v(228)*v(2335)+v& &(1621)*v(7829)))/5040d0 v(2478)=statev(4)*v(2060)+statev(9)*v(2346)+v(2247)*v(7513) v(2390)=statev(8)*v(2247)+statev(6)*v(2346)+v(2060)*v(7512) v(2357)=statev(7)*v(2060)+statev(5)*v(2247)+v(2346)*v(7514) v(2345)=(v(2037)+v(2257)+2520d0*v(2290)+840d0*v(2301)+210d0*v(2312)+42d0*v(2323)+7d0*v(2334)+v(7522)*(v(228)*v(2334)+v& &(1619)*v(7829)))/5040d0 v(2477)=statev(4)*v(2059)+statev(9)*v(2345)+v(2246)*v(7513) v(2389)=statev(8)*v(2246)+statev(6)*v(2345)+v(2059)*v(7512) v(2356)=statev(7)*v(2059)+statev(5)*v(2246)+v(2345)*v(7514) v(2344)=(v(2036)+v(2256)+2520d0*v(2289)+840d0*v(2300)+210d0*v(2311)+42d0*v(2322)+7d0*v(2333)+v(228)*(v(2333)*v(7522)+v& &(7518)*v(7829))+v(7829)*v(7830))/5040d0 v(2476)=statev(4)*v(2058)+statev(9)*v(2344)+v(2245)*v(7513) v(2388)=statev(8)*v(2245)+statev(6)*v(2344)+v(2058)*v(7512) v(2355)=statev(7)*v(2058)+statev(5)*v(2245)+v(2344)*v(7514) v(291)=(5040d0+2520d0*v(269)+840d0*v(272)+210d0*v(275)+42d0*v(278)+7d0*v(281)+v(282)+v(283)+v(7827)*v(7829))/5040d0 v(286)=statev(5)*v(284)+statev(7)*v(285)+v(291)*v(7514) v(288)=statev(9)*v(285)+statev(4)*v(287)+v(249)*v(7513) v(290)=statev(7)*v(249)+statev(5)*v(289)+v(284)*v(7514) v(292)=statev(8)*v(284)+statev(6)*v(291)+v(285)*v(7512) v(293)=statev(5)*v(249)+statev(7)*v(287)+v(285)*v(7514) v(2431)=v(2365)*v(248)+v(2112)*v(286)-v(2409)*v(292)-v(2398)*v(293) v(2430)=v(2364)*v(248)+v(2111)*v(286)-v(2408)*v(292)-v(2397)*v(293) v(2429)=v(2363)*v(248)+v(2110)*v(286)-v(2407)*v(292)-v(2396)*v(293) v(2428)=v(2362)*v(248)+v(2109)*v(286)-v(2406)*v(292)-v(2395)*v(293) v(2427)=v(2361)*v(248)+v(2108)*v(286)-v(2405)*v(292)-v(2394)*v(293) v(2426)=v(2360)*v(248)+v(2107)*v(286)-v(2404)*v(292)-v(2393)*v(293) v(2425)=v(2359)*v(248)+v(2106)*v(286)-v(2403)*v(292)-v(2392)*v(293) v(2424)=v(2358)*v(248)+v(2105)*v(286)-v(2402)*v(292)-v(2391)*v(293) v(2423)=v(2357)*v(248)+v(2104)*v(286)-v(2401)*v(292)-v(2390)*v(293) v(2422)=v(2356)*v(248)+v(2103)*v(286)-v(2400)*v(292)-v(2389)*v(293) v(2421)=v(2355)*v(248)+v(2102)*v(286)-v(2399)*v(292)-v(2388)*v(293) v(2420)=-(v(2409)*v(266))+v(2387)*v(288)+v(2376)*v(290)-v(2288)*v(293) v(2419)=-(v(2408)*v(266))+v(2386)*v(288)+v(2375)*v(290)-v(2287)*v(293) v(2418)=-(v(2407)*v(266))+v(2385)*v(288)+v(2374)*v(290)-v(2286)*v(293) v(2417)=-(v(2406)*v(266))+v(2384)*v(288)+v(2373)*v(290)-v(2285)*v(293) v(2416)=-(v(2405)*v(266))+v(2383)*v(288)+v(2372)*v(290)-v(2284)*v(293) v(2415)=-(v(2404)*v(266))+v(2382)*v(288)+v(2371)*v(290)-v(2283)*v(293) v(2414)=-(v(2403)*v(266))+v(2381)*v(288)+v(2370)*v(290)-v(2282)*v(293) v(2413)=-(v(2402)*v(266))+v(2380)*v(288)+v(2369)*v(290)-v(2281)*v(293) v(2412)=-(v(2401)*v(266))+v(2379)*v(288)+v(2368)*v(290)-v(2280)*v(293) v(2411)=-(v(2400)*v(266))+v(2378)*v(288)+v(2367)*v(290)-v(2279)*v(293) v(2410)=-(v(2399)*v(266))+v(2377)*v(288)+v(2366)*v(290)-v(2278)*v(293) v(304)=v(288)*v(290)-v(266)*v(293) v(300)=v(248)*v(286)-v(292)*v(293) v(294)=statev(6)*v(284)+statev(8)*v(289)+v(249)*v(7512) v(2475)=v(2288)*v(248)+v(2112)*v(266)-v(2442)*v(288)-v(2376)*v(294) v(2474)=v(2287)*v(248)+v(2111)*v(266)-v(2441)*v(288)-v(2375)*v(294) v(2473)=v(2286)*v(248)+v(2110)*v(266)-v(2440)*v(288)-v(2374)*v(294) v(2472)=v(2285)*v(248)+v(2109)*v(266)-v(2439)*v(288)-v(2373)*v(294) v(2471)=v(2284)*v(248)+v(2108)*v(266)-v(2438)*v(288)-v(2372)*v(294) v(2470)=v(2283)*v(248)+v(2107)*v(266)-v(2437)*v(288)-v(2371)*v(294) v(2469)=v(2282)*v(248)+v(2106)*v(266)-v(2436)*v(288)-v(2370)*v(294) v(2468)=v(2281)*v(248)+v(2105)*v(266)-v(2435)*v(288)-v(2369)*v(294) v(2467)=v(2280)*v(248)+v(2104)*v(266)-v(2434)*v(288)-v(2368)*v(294) v(2466)=v(2279)*v(248)+v(2103)*v(266)-v(2433)*v(288)-v(2367)*v(294) v(2465)=v(2278)*v(248)+v(2102)*v(266)-v(2432)*v(288)-v(2366)*v(294) v(2464)=-(v(2387)*v(248))-v(2112)*v(290)+v(2442)*v(293)+v(2409)*v(294) v(2463)=-(v(2386)*v(248))-v(2111)*v(290)+v(2441)*v(293)+v(2408)*v(294) v(2462)=-(v(2385)*v(248))-v(2110)*v(290)+v(2440)*v(293)+v(2407)*v(294) v(2461)=-(v(2384)*v(248))-v(2109)*v(290)+v(2439)*v(293)+v(2406)*v(294) v(2460)=-(v(2383)*v(248))-v(2108)*v(290)+v(2438)*v(293)+v(2405)*v(294) v(2459)=-(v(2382)*v(248))-v(2107)*v(290)+v(2437)*v(293)+v(2404)*v(294) v(2458)=-(v(2381)*v(248))-v(2106)*v(290)+v(2436)*v(293)+v(2403)*v(294) v(2457)=-(v(2380)*v(248))-v(2105)*v(290)+v(2435)*v(293)+v(2402)*v(294) v(2456)=-(v(2379)*v(248))-v(2104)*v(290)+v(2434)*v(293)+v(2401)*v(294) v(2455)=-(v(2378)*v(248))-v(2103)*v(290)+v(2433)*v(293)+v(2400)*v(294) v(2454)=-(v(2377)*v(248))-v(2102)*v(290)+v(2432)*v(293)+v(2399)*v(294) v(2453)=-(v(2442)*v(286))+v(2398)*v(290)+v(2387)*v(292)-v(2365)*v(294) v(2452)=-(v(2441)*v(286))+v(2397)*v(290)+v(2386)*v(292)-v(2364)*v(294) v(2451)=-(v(2440)*v(286))+v(2396)*v(290)+v(2385)*v(292)-v(2363)*v(294) v(2450)=-(v(2439)*v(286))+v(2395)*v(290)+v(2384)*v(292)-v(2362)*v(294) v(2449)=-(v(2438)*v(286))+v(2394)*v(290)+v(2383)*v(292)-v(2361)*v(294) v(2448)=-(v(2437)*v(286))+v(2393)*v(290)+v(2382)*v(292)-v(2360)*v(294) v(2447)=-(v(2436)*v(286))+v(2392)*v(290)+v(2381)*v(292)-v(2359)*v(294) v(2446)=-(v(2435)*v(286))+v(2391)*v(290)+v(2380)*v(292)-v(2358)*v(294) v(2445)=-(v(2434)*v(286))+v(2390)*v(290)+v(2379)*v(292)-v(2357)*v(294) v(2444)=-(v(2433)*v(286))+v(2389)*v(290)+v(2378)*v(292)-v(2356)*v(294) v(2443)=-(v(2432)*v(286))+v(2388)*v(290)+v(2377)*v(292)-v(2355)*v(294) v(308)=v(290)*v(292)-v(286)*v(294) v(306)=-(v(248)*v(290))+v(293)*v(294) v(305)=v(248)*v(266)-v(288)*v(294) v(295)=statev(4)*v(285)+statev(9)*v(291)+v(284)*v(7513) v(2531)=v(292)*v(304)+v(286)*v(305)+v(295)*v(306) v(2533)=1d0/v(2531)**2 v(2543)=-(v(2533)*(v(2475)*v(286)+v(2420)*v(292)+v(2464)*v(295)+v(2398)*v(304)+v(2365)*v(305)+v(2486)*v(306))) v(7831)=v(2531)*v(2543) v(7908)=v(2431)+v(300)*v(7831) v(7877)=v(2464)+v(306)*v(7831) v(7876)=v(2475)+v(305)*v(7831) v(7875)=v(2420)+v(304)*v(7831) v(7842)=v(2453)+v(308)*v(7831) v(2542)=-(v(2533)*(v(2474)*v(286)+v(2419)*v(292)+v(2463)*v(295)+v(2397)*v(304)+v(2364)*v(305)+v(2485)*v(306))) v(7832)=v(2531)*v(2542) v(7911)=v(2430)+v(300)*v(7832) v(7880)=v(2463)+v(306)*v(7832) v(7879)=v(2474)+v(305)*v(7832) v(7878)=v(2419)+v(304)*v(7832) v(7845)=v(2452)+v(308)*v(7832) v(2541)=-(v(2533)*(v(2473)*v(286)+v(2418)*v(292)+v(2462)*v(295)+v(2396)*v(304)+v(2363)*v(305)+v(2484)*v(306))) v(7833)=v(2531)*v(2541) v(7914)=v(2429)+v(300)*v(7833) v(7883)=v(2462)+v(306)*v(7833) v(7882)=v(2473)+v(305)*v(7833) v(7881)=v(2418)+v(304)*v(7833) v(7848)=v(2451)+v(308)*v(7833) v(2540)=-(v(2533)*(v(2472)*v(286)+v(2417)*v(292)+v(2461)*v(295)+v(2395)*v(304)+v(2362)*v(305)+v(2483)*v(306))) v(7834)=v(2531)*v(2540) v(7917)=v(2428)+v(300)*v(7834) v(7886)=v(2461)+v(306)*v(7834) v(7885)=v(2472)+v(305)*v(7834) v(7884)=v(2417)+v(304)*v(7834) v(7851)=v(2450)+v(308)*v(7834) v(2539)=-(v(2533)*(v(2471)*v(286)+v(2416)*v(292)+v(2460)*v(295)+v(2394)*v(304)+v(2361)*v(305)+v(2482)*v(306))) v(7835)=v(2531)*v(2539) v(7920)=v(2427)+v(300)*v(7835) v(7889)=v(2460)+v(306)*v(7835) v(7888)=v(2471)+v(305)*v(7835) v(7887)=v(2416)+v(304)*v(7835) v(7854)=v(2449)+v(308)*v(7835) v(2538)=-(v(2533)*(v(2470)*v(286)+v(2415)*v(292)+v(2459)*v(295)+v(2393)*v(304)+v(2360)*v(305)+v(2481)*v(306))) v(7836)=v(2531)*v(2538) v(7923)=v(2426)+v(300)*v(7836) v(7892)=v(2459)+v(306)*v(7836) v(7891)=v(2470)+v(305)*v(7836) v(7890)=v(2415)+v(304)*v(7836) v(7857)=v(2448)+v(308)*v(7836) v(2537)=-(v(2533)*(v(2469)*v(286)+v(2414)*v(292)+v(2458)*v(295)+v(2392)*v(304)+v(2359)*v(305)+v(2480)*v(306))) v(7837)=v(2531)*v(2537) v(7926)=v(2425)+v(300)*v(7837) v(7895)=v(2458)+v(306)*v(7837) v(7894)=v(2469)+v(305)*v(7837) v(7893)=v(2414)+v(304)*v(7837) v(7860)=v(2447)+v(308)*v(7837) v(2536)=-(v(2533)*(v(2468)*v(286)+v(2413)*v(292)+v(2457)*v(295)+v(2391)*v(304)+v(2358)*v(305)+v(2479)*v(306))) v(7838)=v(2531)*v(2536) v(7929)=v(2424)+v(300)*v(7838) v(7898)=v(2457)+v(306)*v(7838) v(7897)=v(2468)+v(305)*v(7838) v(7896)=v(2413)+v(304)*v(7838) v(7863)=v(2446)+v(308)*v(7838) v(2535)=-(v(2533)*(v(2467)*v(286)+v(2412)*v(292)+v(2456)*v(295)+v(2390)*v(304)+v(2357)*v(305)+v(2478)*v(306))) v(7839)=v(2531)*v(2535) v(7932)=v(2423)+v(300)*v(7839) v(7901)=v(2456)+v(306)*v(7839) v(7900)=v(2467)+v(305)*v(7839) v(7899)=v(2412)+v(304)*v(7839) v(7866)=v(2445)+v(308)*v(7839) v(2534)=-(v(2533)*(v(2466)*v(286)+v(2411)*v(292)+v(2455)*v(295)+v(2389)*v(304)+v(2356)*v(305)+v(2477)*v(306))) v(7840)=v(2531)*v(2534) v(7935)=v(2422)+v(300)*v(7840) v(7904)=v(2455)+v(306)*v(7840) v(7903)=v(2466)+v(305)*v(7840) v(7902)=v(2411)+v(304)*v(7840) v(7869)=v(2444)+v(308)*v(7840) v(2532)=-(v(2533)*(v(2465)*v(286)+v(2410)*v(292)+v(2454)*v(295)+v(2388)*v(304)+v(2355)*v(305)+v(2476)*v(306))) v(7841)=v(2531)*v(2532) v(7938)=v(2421)+v(300)*v(7841) v(7907)=v(2454)+v(306)*v(7841) v(7906)=v(2465)+v(305)*v(7841) v(7905)=v(2410)+v(304)*v(7841) v(7872)=v(2443)+v(308)*v(7841) v(2530)=-(v(248)*v(2486))+v(2398)*v(288)+v(2376)*v(292)-v(2112)*v(295) v(2529)=-(v(248)*v(2485))+v(2397)*v(288)+v(2375)*v(292)-v(2111)*v(295) v(2528)=-(v(248)*v(2484))+v(2396)*v(288)+v(2374)*v(292)-v(2110)*v(295) v(2527)=-(v(248)*v(2483))+v(2395)*v(288)+v(2373)*v(292)-v(2109)*v(295) v(2526)=-(v(248)*v(2482))+v(2394)*v(288)+v(2372)*v(292)-v(2108)*v(295) v(2525)=-(v(248)*v(2481))+v(2393)*v(288)+v(2371)*v(292)-v(2107)*v(295) v(2524)=-(v(248)*v(2480))+v(2392)*v(288)+v(2370)*v(292)-v(2106)*v(295) v(2523)=-(v(2479)*v(248))+v(2391)*v(288)+v(2369)*v(292)-v(2105)*v(295) v(2522)=-(v(2478)*v(248))+v(2390)*v(288)+v(2368)*v(292)-v(2104)*v(295) v(2521)=-(v(2477)*v(248))+v(2389)*v(288)+v(2367)*v(292)-v(2103)*v(295) v(2520)=-(v(2476)*v(248))+v(2388)*v(288)+v(2366)*v(292)-v(2102)*v(295) v(2519)=-(v(2376)*v(286))-v(2365)*v(288)+v(2486)*v(293)+v(2409)*v(295) v(2518)=-(v(2375)*v(286))-v(2364)*v(288)+v(2485)*v(293)+v(2408)*v(295) v(2517)=-(v(2374)*v(286))-v(2363)*v(288)+v(2484)*v(293)+v(2407)*v(295) v(2516)=-(v(2373)*v(286))-v(2362)*v(288)+v(2483)*v(293)+v(2406)*v(295) v(2515)=-(v(2372)*v(286))-v(2361)*v(288)+v(2482)*v(293)+v(2405)*v(295) v(2514)=-(v(2371)*v(286))-v(2360)*v(288)+v(2481)*v(293)+v(2404)*v(295) v(2513)=-(v(2370)*v(286))-v(2359)*v(288)+v(2480)*v(293)+v(2403)*v(295) v(2512)=-(v(2369)*v(286))-v(2358)*v(288)+v(2479)*v(293)+v(2402)*v(295) v(2511)=-(v(2368)*v(286))-v(2357)*v(288)+v(2478)*v(293)+v(2401)*v(295) v(2510)=-(v(2367)*v(286))-v(2356)*v(288)+v(2477)*v(293)+v(2400)*v(295) v(2509)=-(v(2366)*v(286))-v(2355)*v(288)+v(2476)*v(293)+v(2399)*v(295) v(2508)=v(2365)*v(266)+v(2288)*v(286)-v(2486)*v(290)-v(2387)*v(295) v(2507)=v(2364)*v(266)+v(2287)*v(286)-v(2485)*v(290)-v(2386)*v(295) v(2506)=v(2363)*v(266)+v(2286)*v(286)-v(2484)*v(290)-v(2385)*v(295) v(2505)=v(2362)*v(266)+v(2285)*v(286)-v(2483)*v(290)-v(2384)*v(295) v(2504)=v(2361)*v(266)+v(2284)*v(286)-v(2482)*v(290)-v(2383)*v(295) v(2503)=v(2360)*v(266)+v(2283)*v(286)-v(2481)*v(290)-v(2382)*v(295) v(2502)=v(2359)*v(266)+v(2282)*v(286)-v(2480)*v(290)-v(2381)*v(295) v(2501)=v(2358)*v(266)+v(2281)*v(286)-v(2479)*v(290)-v(2380)*v(295) v(2500)=v(2357)*v(266)+v(2280)*v(286)-v(2478)*v(290)-v(2379)*v(295) v(2499)=v(2356)*v(266)+v(2279)*v(286)-v(2477)*v(290)-v(2378)*v(295) v(2498)=v(2355)*v(266)+v(2278)*v(286)-v(2476)*v(290)-v(2377)*v(295) v(2497)=-(v(2398)*v(266))-v(2288)*v(292)+v(2486)*v(294)+v(2442)*v(295) v(2496)=-(v(2397)*v(266))-v(2287)*v(292)+v(2485)*v(294)+v(2441)*v(295) v(2495)=-(v(2396)*v(266))-v(2286)*v(292)+v(2484)*v(294)+v(2440)*v(295) v(2494)=-(v(2395)*v(266))-v(2285)*v(292)+v(2483)*v(294)+v(2439)*v(295) v(2493)=-(v(2394)*v(266))-v(2284)*v(292)+v(2482)*v(294)+v(2438)*v(295) v(2492)=-(v(2393)*v(266))-v(2283)*v(292)+v(2481)*v(294)+v(2437)*v(295) v(2491)=-(v(2392)*v(266))-v(2282)*v(292)+v(2480)*v(294)+v(2436)*v(295) v(2490)=-(v(2391)*v(266))-v(2281)*v(292)+v(2479)*v(294)+v(2435)*v(295) v(2489)=-(v(2390)*v(266))-v(2280)*v(292)+v(2478)*v(294)+v(2434)*v(295) v(2488)=-(v(2389)*v(266))-v(2279)*v(292)+v(2477)*v(294)+v(2433)*v(295) v(2487)=-(v(2388)*v(266))-v(2278)*v(292)+v(2476)*v(294)+v(2432)*v(295) v(310)=-(v(266)*v(292))+v(294)*v(295) v(7874)=v(2487)+v(310)*v(7841) v(7871)=v(2488)+v(310)*v(7840) v(7868)=v(2489)+v(310)*v(7839) v(7865)=v(2490)+v(310)*v(7838) v(7862)=v(2491)+v(310)*v(7837) v(7859)=v(2492)+v(310)*v(7836) v(7856)=v(2493)+v(310)*v(7835) v(7853)=v(2494)+v(310)*v(7834) v(7850)=v(2495)+v(310)*v(7833) v(7847)=v(2496)+v(310)*v(7832) v(7844)=v(2497)+v(310)*v(7831) v(309)=v(266)*v(286)-v(290)*v(295) v(7873)=v(2498)+v(309)*v(7841) v(7870)=v(2499)+v(309)*v(7840) v(7867)=v(2500)+v(309)*v(7839) v(7864)=v(2501)+v(309)*v(7838) v(7861)=v(2502)+v(309)*v(7837) v(7858)=v(2503)+v(309)*v(7836) v(7855)=v(2504)+v(309)*v(7835) v(7852)=v(2505)+v(309)*v(7834) v(7849)=v(2506)+v(309)*v(7833) v(7846)=v(2507)+v(309)*v(7832) v(7843)=v(2508)+v(309)*v(7831) v(302)=-(v(286)*v(288))+v(293)*v(295) v(7940)=v(2509)+v(302)*v(7841) v(7937)=v(2510)+v(302)*v(7840) v(7934)=v(2511)+v(302)*v(7839) v(7931)=v(2512)+v(302)*v(7838) v(7928)=v(2513)+v(302)*v(7837) v(7925)=v(2514)+v(302)*v(7836) v(7922)=v(2515)+v(302)*v(7835) v(7919)=v(2516)+v(302)*v(7834) v(7916)=v(2517)+v(302)*v(7833) v(7913)=v(2518)+v(302)*v(7832) v(7910)=v(2519)+v(302)*v(7831) v(301)=v(288)*v(292)-v(248)*v(295) v(7939)=v(2520)+v(301)*v(7841) v(7936)=v(2521)+v(301)*v(7840) v(7933)=v(2522)+v(301)*v(7839) v(7930)=v(2523)+v(301)*v(7838) v(7927)=v(2524)+v(301)*v(7837) v(7924)=v(2525)+v(301)*v(7836) v(7921)=v(2526)+v(301)*v(7835) v(7918)=v(2527)+v(301)*v(7834) v(7915)=v(2528)+v(301)*v(7833) v(7912)=v(2529)+v(301)*v(7832) v(7909)=v(2530)+v(301)*v(7831) v(2642)=(Fnew(9)*v(7908)+Fnew(3)*v(7909)+Fnew(6)*v(7910))/v(2531) v(2641)=(Fnew(9)*v(7911)+Fnew(3)*v(7912)+Fnew(6)*v(7913))/v(2531) v(2640)=(Fnew(9)*v(7914)+Fnew(3)*v(7915)+Fnew(6)*v(7916))/v(2531) v(2639)=(Fnew(9)*v(7917)+Fnew(3)*v(7918)+Fnew(6)*v(7919))/v(2531) v(2638)=(Fnew(9)*v(7920)+Fnew(3)*v(7921)+Fnew(6)*v(7922))/v(2531) v(2637)=(Fnew(9)*v(7923)+Fnew(3)*v(7924)+Fnew(6)*v(7925))/v(2531) v(2636)=(Fnew(9)*v(7926)+Fnew(3)*v(7927)+Fnew(6)*v(7928))/v(2531) v(2635)=(Fnew(9)*v(7929)+Fnew(3)*v(7930)+Fnew(6)*v(7931))/v(2531) v(2634)=(Fnew(9)*v(7932)+Fnew(3)*v(7933)+Fnew(6)*v(7934))/v(2531) v(2633)=(Fnew(9)*v(7935)+Fnew(3)*v(7936)+Fnew(6)*v(7937))/v(2531) v(2632)=(Fnew(9)*v(7938)+Fnew(3)*v(7939)+Fnew(6)*v(7940))/v(2531) v(2631)=(Fnew(2)*v(7842)+Fnew(8)*v(7843)+Fnew(5)*v(7844))/v(2531) v(2630)=(Fnew(2)*v(7845)+Fnew(8)*v(7846)+Fnew(5)*v(7847))/v(2531) v(2629)=(Fnew(2)*v(7848)+Fnew(8)*v(7849)+Fnew(5)*v(7850))/v(2531) v(2628)=(Fnew(2)*v(7851)+Fnew(8)*v(7852)+Fnew(5)*v(7853))/v(2531) v(2627)=(Fnew(2)*v(7854)+Fnew(8)*v(7855)+Fnew(5)*v(7856))/v(2531) v(2626)=(Fnew(2)*v(7857)+Fnew(8)*v(7858)+Fnew(5)*v(7859))/v(2531) v(2625)=(Fnew(2)*v(7860)+Fnew(8)*v(7861)+Fnew(5)*v(7862))/v(2531) v(2624)=(Fnew(2)*v(7863)+Fnew(8)*v(7864)+Fnew(5)*v(7865))/v(2531) v(2623)=(Fnew(2)*v(7866)+Fnew(8)*v(7867)+Fnew(5)*v(7868))/v(2531) v(2622)=(Fnew(2)*v(7869)+Fnew(8)*v(7870)+Fnew(5)*v(7871))/v(2531) v(2621)=(Fnew(2)*v(7872)+Fnew(8)*v(7873)+Fnew(5)*v(7874))/v(2531) v(2620)=(Fnew(1)*v(7875)+Fnew(7)*v(7876)+Fnew(4)*v(7877))/v(2531) v(2619)=(Fnew(1)*v(7878)+Fnew(7)*v(7879)+Fnew(4)*v(7880))/v(2531) v(2618)=(Fnew(1)*v(7881)+Fnew(7)*v(7882)+Fnew(4)*v(7883))/v(2531) v(2617)=(Fnew(1)*v(7884)+Fnew(7)*v(7885)+Fnew(4)*v(7886))/v(2531) v(2616)=(Fnew(1)*v(7887)+Fnew(7)*v(7888)+Fnew(4)*v(7889))/v(2531) v(2615)=(Fnew(1)*v(7890)+Fnew(7)*v(7891)+Fnew(4)*v(7892))/v(2531) v(2614)=(Fnew(1)*v(7893)+Fnew(7)*v(7894)+Fnew(4)*v(7895))/v(2531) v(2613)=(Fnew(1)*v(7896)+Fnew(7)*v(7897)+Fnew(4)*v(7898))/v(2531) v(2612)=(Fnew(1)*v(7899)+Fnew(7)*v(7900)+Fnew(4)*v(7901))/v(2531) v(2611)=(Fnew(1)*v(7902)+Fnew(7)*v(7903)+Fnew(4)*v(7904))/v(2531) v(2610)=(Fnew(1)*v(7905)+Fnew(7)*v(7906)+Fnew(4)*v(7907))/v(2531) v(2609)=(Fnew(9)*v(7842)+Fnew(6)*v(7843)+Fnew(3)*v(7844))/v(2531) v(2608)=(Fnew(9)*v(7845)+Fnew(6)*v(7846)+Fnew(3)*v(7847))/v(2531) v(2607)=(Fnew(9)*v(7848)+Fnew(6)*v(7849)+Fnew(3)*v(7850))/v(2531) v(2606)=(Fnew(9)*v(7851)+Fnew(6)*v(7852)+Fnew(3)*v(7853))/v(2531) v(2605)=(Fnew(9)*v(7854)+Fnew(6)*v(7855)+Fnew(3)*v(7856))/v(2531) v(2604)=(Fnew(9)*v(7857)+Fnew(6)*v(7858)+Fnew(3)*v(7859))/v(2531) v(2603)=(Fnew(9)*v(7860)+Fnew(6)*v(7861)+Fnew(3)*v(7862))/v(2531) v(2602)=(Fnew(9)*v(7863)+Fnew(6)*v(7864)+Fnew(3)*v(7865))/v(2531) v(2601)=(Fnew(9)*v(7866)+Fnew(6)*v(7867)+Fnew(3)*v(7868))/v(2531) v(2600)=(Fnew(9)*v(7869)+Fnew(6)*v(7870)+Fnew(3)*v(7871))/v(2531) v(2599)=(Fnew(9)*v(7872)+Fnew(6)*v(7873)+Fnew(3)*v(7874))/v(2531) v(2598)=(Fnew(8)*v(7875)+Fnew(5)*v(7876)+Fnew(2)*v(7877))/v(2531) v(2597)=(Fnew(8)*v(7878)+Fnew(5)*v(7879)+Fnew(2)*v(7880))/v(2531) v(2596)=(Fnew(8)*v(7881)+Fnew(5)*v(7882)+Fnew(2)*v(7883))/v(2531) v(2595)=(Fnew(8)*v(7884)+Fnew(5)*v(7885)+Fnew(2)*v(7886))/v(2531) v(2594)=(Fnew(8)*v(7887)+Fnew(5)*v(7888)+Fnew(2)*v(7889))/v(2531) v(2593)=(Fnew(8)*v(7890)+Fnew(5)*v(7891)+Fnew(2)*v(7892))/v(2531) v(2592)=(Fnew(8)*v(7893)+Fnew(5)*v(7894)+Fnew(2)*v(7895))/v(2531) v(2591)=(Fnew(8)*v(7896)+Fnew(5)*v(7897)+Fnew(2)*v(7898))/v(2531) v(2590)=(Fnew(8)*v(7899)+Fnew(5)*v(7900)+Fnew(2)*v(7901))/v(2531) v(2589)=(Fnew(8)*v(7902)+Fnew(5)*v(7903)+Fnew(2)*v(7904))/v(2531) v(2588)=(Fnew(8)*v(7905)+Fnew(5)*v(7906)+Fnew(2)*v(7907))/v(2531) v(2587)=(Fnew(4)*v(7908)+Fnew(7)*v(7909)+Fnew(1)*v(7910))/v(2531) v(2586)=(Fnew(4)*v(7911)+Fnew(7)*v(7912)+Fnew(1)*v(7913))/v(2531) v(2585)=(Fnew(4)*v(7914)+Fnew(7)*v(7915)+Fnew(1)*v(7916))/v(2531) v(2584)=(Fnew(4)*v(7917)+Fnew(7)*v(7918)+Fnew(1)*v(7919))/v(2531) v(2583)=(Fnew(4)*v(7920)+Fnew(7)*v(7921)+Fnew(1)*v(7922))/v(2531) v(2582)=(Fnew(4)*v(7923)+Fnew(7)*v(7924)+Fnew(1)*v(7925))/v(2531) v(2581)=(Fnew(4)*v(7926)+Fnew(7)*v(7927)+Fnew(1)*v(7928))/v(2531) v(2580)=(Fnew(4)*v(7929)+Fnew(7)*v(7930)+Fnew(1)*v(7931))/v(2531) v(2579)=(Fnew(4)*v(7932)+Fnew(7)*v(7933)+Fnew(1)*v(7934))/v(2531) v(2578)=(Fnew(4)*v(7935)+Fnew(7)*v(7936)+Fnew(1)*v(7937))/v(2531) v(2577)=(Fnew(4)*v(7938)+Fnew(7)*v(7939)+Fnew(1)*v(7940))/v(2531) v(2576)=(Fnew(6)*v(7875)+Fnew(3)*v(7876)+Fnew(9)*v(7877))/v(2531) v(2575)=(Fnew(6)*v(7878)+Fnew(3)*v(7879)+Fnew(9)*v(7880))/v(2531) v(2574)=(Fnew(6)*v(7881)+Fnew(3)*v(7882)+Fnew(9)*v(7883))/v(2531) v(2573)=(Fnew(6)*v(7884)+Fnew(3)*v(7885)+Fnew(9)*v(7886))/v(2531) v(2572)=(Fnew(6)*v(7887)+Fnew(3)*v(7888)+Fnew(9)*v(7889))/v(2531) v(2571)=(Fnew(6)*v(7890)+Fnew(3)*v(7891)+Fnew(9)*v(7892))/v(2531) v(2570)=(Fnew(6)*v(7893)+Fnew(3)*v(7894)+Fnew(9)*v(7895))/v(2531) v(2569)=(Fnew(6)*v(7896)+Fnew(3)*v(7897)+Fnew(9)*v(7898))/v(2531) v(2568)=(Fnew(6)*v(7899)+Fnew(3)*v(7900)+Fnew(9)*v(7901))/v(2531) v(2567)=(Fnew(6)*v(7902)+Fnew(3)*v(7903)+Fnew(9)*v(7904))/v(2531) v(2566)=(Fnew(6)*v(7905)+Fnew(3)*v(7906)+Fnew(9)*v(7907))/v(2531) v(2565)=(Fnew(2)*v(7908)+Fnew(5)*v(7909)+Fnew(8)*v(7910))/v(2531) v(2564)=(Fnew(2)*v(7911)+Fnew(5)*v(7912)+Fnew(8)*v(7913))/v(2531) v(2563)=(Fnew(2)*v(7914)+Fnew(5)*v(7915)+Fnew(8)*v(7916))/v(2531) v(2562)=(Fnew(2)*v(7917)+Fnew(5)*v(7918)+Fnew(8)*v(7919))/v(2531) v(2561)=(Fnew(2)*v(7920)+Fnew(5)*v(7921)+Fnew(8)*v(7922))/v(2531) v(2560)=(Fnew(2)*v(7923)+Fnew(5)*v(7924)+Fnew(8)*v(7925))/v(2531) v(2559)=(Fnew(2)*v(7926)+Fnew(5)*v(7927)+Fnew(8)*v(7928))/v(2531) v(2558)=(Fnew(2)*v(7929)+Fnew(5)*v(7930)+Fnew(8)*v(7931))/v(2531) v(2557)=(Fnew(2)*v(7932)+Fnew(5)*v(7933)+Fnew(8)*v(7934))/v(2531) v(2556)=(Fnew(2)*v(7935)+Fnew(5)*v(7936)+Fnew(8)*v(7937))/v(2531) v(2555)=(Fnew(2)*v(7938)+Fnew(5)*v(7939)+Fnew(8)*v(7940))/v(2531) v(2554)=(Fnew(4)*v(7842)+Fnew(1)*v(7843)+Fnew(7)*v(7844))/v(2531) v(2553)=(Fnew(4)*v(7845)+Fnew(1)*v(7846)+Fnew(7)*v(7847))/v(2531) v(2552)=(Fnew(4)*v(7848)+Fnew(1)*v(7849)+Fnew(7)*v(7850))/v(2531) v(2551)=(Fnew(4)*v(7851)+Fnew(1)*v(7852)+Fnew(7)*v(7853))/v(2531) v(2550)=(Fnew(4)*v(7854)+Fnew(1)*v(7855)+Fnew(7)*v(7856))/v(2531) v(2549)=(Fnew(4)*v(7857)+Fnew(1)*v(7858)+Fnew(7)*v(7859))/v(2531) v(2548)=(Fnew(4)*v(7860)+Fnew(1)*v(7861)+Fnew(7)*v(7862))/v(2531) v(2547)=(Fnew(4)*v(7863)+Fnew(1)*v(7864)+Fnew(7)*v(7865))/v(2531) v(2546)=(Fnew(4)*v(7866)+Fnew(1)*v(7867)+Fnew(7)*v(7868))/v(2531) v(2545)=(Fnew(4)*v(7869)+Fnew(1)*v(7870)+Fnew(7)*v(7871))/v(2531) v(2544)=(Fnew(4)*v(7872)+Fnew(1)*v(7873)+Fnew(7)*v(7874))/v(2531) v(297)=(Fnew(4)*v(308)+Fnew(1)*v(309)+Fnew(7)*v(310))/v(2531) v(298)=(Fnew(2)*v(300)+Fnew(5)*v(301)+Fnew(8)*v(302))/v(2531) v(299)=(Fnew(6)*v(304)+Fnew(3)*v(305)+Fnew(9)*v(306))/v(2531) v(303)=(Fnew(4)*v(300)+Fnew(7)*v(301)+Fnew(1)*v(302))/v(2531) v(307)=(Fnew(8)*v(304)+Fnew(5)*v(305)+Fnew(2)*v(306))/v(2531) v(311)=(Fnew(9)*v(308)+Fnew(6)*v(309)+Fnew(3)*v(310))/v(2531) v(312)=(Fnew(1)*v(304)+Fnew(7)*v(305)+Fnew(4)*v(306))/v(2531) v(2697)=2d0*(v(2576)*v(299)+v(2598)*v(307)+v(2620)*v(312)) v(2708)=-v(2697)/3d0 v(2696)=2d0*(v(2575)*v(299)+v(2597)*v(307)+v(2619)*v(312)) v(2707)=-v(2696)/3d0 v(2695)=2d0*(v(2574)*v(299)+v(2596)*v(307)+v(2618)*v(312)) v(2706)=-v(2695)/3d0 v(2694)=2d0*(v(2573)*v(299)+v(2595)*v(307)+v(2617)*v(312)) v(2705)=-v(2694)/3d0 v(2693)=2d0*(v(2572)*v(299)+v(2594)*v(307)+v(2616)*v(312)) v(2704)=-v(2693)/3d0 v(2692)=2d0*(v(2571)*v(299)+v(2593)*v(307)+v(2615)*v(312)) v(2703)=-v(2692)/3d0 v(2691)=2d0*(v(2570)*v(299)+v(2592)*v(307)+v(2614)*v(312)) v(2702)=-v(2691)/3d0 v(2690)=2d0*(v(2569)*v(299)+v(2591)*v(307)+v(2613)*v(312)) v(2701)=-v(2690)/3d0 v(2689)=2d0*(v(2568)*v(299)+v(2590)*v(307)+v(2612)*v(312)) v(2700)=-v(2689)/3d0 v(2688)=2d0*(v(2567)*v(299)+v(2589)*v(307)+v(2611)*v(312)) v(2699)=-v(2688)/3d0 v(2687)=2d0*(v(2566)*v(299)+v(2588)*v(307)+v(2610)*v(312)) v(2698)=-v(2687)/3d0 v(313)=(Fnew(2)*v(308)+Fnew(8)*v(309)+Fnew(5)*v(310))/v(2531) v(2785)=v(2620)*v(297)+v(2609)*v(299)+v(2631)*v(307)+v(2576)*v(311)+v(2554)*v(312)+v(2598)*v(313) v(2784)=v(2619)*v(297)+v(2608)*v(299)+v(2630)*v(307)+v(2575)*v(311)+v(2553)*v(312)+v(2597)*v(313) v(2783)=v(2618)*v(297)+v(2607)*v(299)+v(2629)*v(307)+v(2574)*v(311)+v(2552)*v(312)+v(2596)*v(313) v(2782)=v(2617)*v(297)+v(2606)*v(299)+v(2628)*v(307)+v(2573)*v(311)+v(2551)*v(312)+v(2595)*v(313) v(2781)=v(2616)*v(297)+v(2605)*v(299)+v(2627)*v(307)+v(2572)*v(311)+v(2550)*v(312)+v(2594)*v(313) v(2780)=v(2615)*v(297)+v(2604)*v(299)+v(2626)*v(307)+v(2571)*v(311)+v(2549)*v(312)+v(2593)*v(313) v(2779)=v(2614)*v(297)+v(2603)*v(299)+v(2625)*v(307)+v(2570)*v(311)+v(2548)*v(312)+v(2592)*v(313) v(2778)=v(2613)*v(297)+v(2602)*v(299)+v(2624)*v(307)+v(2569)*v(311)+v(2547)*v(312)+v(2591)*v(313) v(2777)=v(2612)*v(297)+v(2601)*v(299)+v(2623)*v(307)+v(2568)*v(311)+v(2546)*v(312)+v(2590)*v(313) v(2776)=v(2611)*v(297)+v(2600)*v(299)+v(2622)*v(307)+v(2567)*v(311)+v(2545)*v(312)+v(2589)*v(313) v(2775)=v(2610)*v(297)+v(2599)*v(299)+v(2621)*v(307)+v(2566)*v(311)+v(2544)*v(312)+v(2588)*v(313) v(2653)=2d0*(v(2554)*v(297)+v(2609)*v(311)+v(2631)*v(313)) v(2664)=-v(2653)/3d0 v(2652)=2d0*(v(2553)*v(297)+v(2608)*v(311)+v(2630)*v(313)) v(2663)=-v(2652)/3d0 v(2651)=2d0*(v(2552)*v(297)+v(2607)*v(311)+v(2629)*v(313)) v(2662)=-v(2651)/3d0 v(2650)=2d0*(v(2551)*v(297)+v(2606)*v(311)+v(2628)*v(313)) v(2661)=-v(2650)/3d0 v(2649)=2d0*(v(2550)*v(297)+v(2605)*v(311)+v(2627)*v(313)) v(2660)=-v(2649)/3d0 v(2648)=2d0*(v(2549)*v(297)+v(2604)*v(311)+v(2626)*v(313)) v(2659)=-v(2648)/3d0 v(2647)=2d0*(v(2548)*v(297)+v(2603)*v(311)+v(2625)*v(313)) v(2658)=-v(2647)/3d0 v(2646)=2d0*(v(2547)*v(297)+v(2602)*v(311)+v(2624)*v(313)) v(2657)=-v(2646)/3d0 v(2645)=2d0*(v(2546)*v(297)+v(2601)*v(311)+v(2623)*v(313)) v(2656)=-v(2645)/3d0 v(2644)=2d0*(v(2545)*v(297)+v(2600)*v(311)+v(2622)*v(313)) v(2655)=-v(2644)/3d0 v(2643)=2d0*(v(2544)*v(297)+v(2599)*v(311)+v(2621)*v(313)) v(2654)=-v(2643)/3d0 v(314)=(Fnew(9)*v(300)+Fnew(3)*v(301)+Fnew(6)*v(302))/v(2531) v(2752)=v(2598)*v(298)+v(2642)*v(299)+v(2620)*v(303)+v(2565)*v(307)+v(2587)*v(312)+v(2576)*v(314) v(2751)=v(2597)*v(298)+v(2641)*v(299)+v(2619)*v(303)+v(2564)*v(307)+v(2586)*v(312)+v(2575)*v(314) v(2750)=v(2596)*v(298)+v(2640)*v(299)+v(2618)*v(303)+v(2563)*v(307)+v(2585)*v(312)+v(2574)*v(314) v(2749)=v(2595)*v(298)+v(2639)*v(299)+v(2617)*v(303)+v(2562)*v(307)+v(2584)*v(312)+v(2573)*v(314) v(2748)=v(2594)*v(298)+v(2638)*v(299)+v(2616)*v(303)+v(2561)*v(307)+v(2583)*v(312)+v(2572)*v(314) v(2747)=v(2593)*v(298)+v(2637)*v(299)+v(2615)*v(303)+v(2560)*v(307)+v(2582)*v(312)+v(2571)*v(314) v(2746)=v(2592)*v(298)+v(2636)*v(299)+v(2614)*v(303)+v(2559)*v(307)+v(2581)*v(312)+v(2570)*v(314) v(2745)=v(2591)*v(298)+v(2635)*v(299)+v(2613)*v(303)+v(2558)*v(307)+v(2580)*v(312)+v(2569)*v(314) v(2744)=v(2590)*v(298)+v(2634)*v(299)+v(2612)*v(303)+v(2557)*v(307)+v(2579)*v(312)+v(2568)*v(314) v(2743)=v(2589)*v(298)+v(2633)*v(299)+v(2611)*v(303)+v(2556)*v(307)+v(2578)*v(312)+v(2567)*v(314) v(2742)=v(2588)*v(298)+v(2632)*v(299)+v(2610)*v(303)+v(2555)*v(307)+v(2577)*v(312)+v(2566)*v(314) v(2719)=v(2587)*v(297)+v(2631)*v(298)+v(2554)*v(303)+v(2642)*v(311)+v(2565)*v(313)+v(2609)*v(314) v(2718)=v(2586)*v(297)+v(2630)*v(298)+v(2553)*v(303)+v(2641)*v(311)+v(2564)*v(313)+v(2608)*v(314) v(2717)=v(2585)*v(297)+v(2629)*v(298)+v(2552)*v(303)+v(2640)*v(311)+v(2563)*v(313)+v(2607)*v(314) v(2716)=v(2584)*v(297)+v(2628)*v(298)+v(2551)*v(303)+v(2639)*v(311)+v(2562)*v(313)+v(2606)*v(314) v(2715)=v(2583)*v(297)+v(2627)*v(298)+v(2550)*v(303)+v(2638)*v(311)+v(2561)*v(313)+v(2605)*v(314) v(2714)=v(2582)*v(297)+v(2626)*v(298)+v(2549)*v(303)+v(2637)*v(311)+v(2560)*v(313)+v(2604)*v(314) v(2713)=v(2581)*v(297)+v(2625)*v(298)+v(2548)*v(303)+v(2636)*v(311)+v(2559)*v(313)+v(2603)*v(314) v(2712)=v(2580)*v(297)+v(2624)*v(298)+v(2547)*v(303)+v(2635)*v(311)+v(2558)*v(313)+v(2602)*v(314) v(2711)=v(2579)*v(297)+v(2623)*v(298)+v(2546)*v(303)+v(2634)*v(311)+v(2557)*v(313)+v(2601)*v(314) v(2710)=v(2578)*v(297)+v(2622)*v(298)+v(2545)*v(303)+v(2633)*v(311)+v(2556)*v(313)+v(2600)*v(314) v(2709)=v(2577)*v(297)+v(2621)*v(298)+v(2544)*v(303)+v(2632)*v(311)+v(2555)*v(313)+v(2599)*v(314) v(2675)=2d0*(v(2565)*v(298)+v(2587)*v(303)+v(2642)*v(314)) v(2686)=-v(2675)/3d0 v(2674)=2d0*(v(2564)*v(298)+v(2586)*v(303)+v(2641)*v(314)) v(2685)=-v(2674)/3d0 v(2673)=2d0*(v(2563)*v(298)+v(2585)*v(303)+v(2640)*v(314)) v(2684)=-v(2673)/3d0 v(2672)=2d0*(v(2562)*v(298)+v(2584)*v(303)+v(2639)*v(314)) v(2683)=-v(2672)/3d0 v(2671)=2d0*(v(2561)*v(298)+v(2583)*v(303)+v(2638)*v(314)) v(2682)=-v(2671)/3d0 v(2670)=2d0*(v(2560)*v(298)+v(2582)*v(303)+v(2637)*v(314)) v(2681)=-v(2670)/3d0 v(2669)=2d0*(v(2559)*v(298)+v(2581)*v(303)+v(2636)*v(314)) v(2680)=-v(2669)/3d0 v(2668)=2d0*(v(2558)*v(298)+v(2580)*v(303)+v(2635)*v(314)) v(2679)=-v(2668)/3d0 v(2667)=2d0*(v(2557)*v(298)+v(2579)*v(303)+v(2634)*v(314)) v(2678)=-v(2667)/3d0 v(2666)=2d0*(v(2556)*v(298)+v(2578)*v(303)+v(2633)*v(314)) v(2677)=-v(2666)/3d0 v(2665)=2d0*(v(2555)*v(298)+v(2577)*v(303)+v(2632)*v(314)) v(2676)=-v(2665)/3d0 v(315)=(v(297)*v(297))+(v(311)*v(311))+(v(313)*v(313)) v(335)=-v(315)/3d0 v(316)=(v(298)*v(298))+(v(303)*v(303))+(v(314)*v(314)) v(336)=-v(316)/3d0 v(317)=(v(299)*v(299))+(v(307)*v(307))+(v(312)*v(312)) v(2905)=(2d0/3d0)*v(317)+v(335)+v(336) v(328)=-v(317)/3d0 v(2932)=(2d0/3d0)*v(316)+v(328)+v(335) v(2880)=(2d0/3d0)*v(315)+v(328)+v(336) v(318)=v(297)*v(303)+v(298)*v(313)+v(311)*v(314) v(7941)=2d0*v(318) v(2730)=v(2719)*v(7941) v(2741)=-v(2730)+v(2675)*v(315)+v(2653)*v(316) v(2729)=v(2718)*v(7941) v(2740)=-v(2729)+v(2674)*v(315)+v(2652)*v(316) v(2728)=v(2717)*v(7941) v(2739)=-v(2728)+v(2673)*v(315)+v(2651)*v(316) v(2727)=v(2716)*v(7941) v(2738)=-v(2727)+v(2672)*v(315)+v(2650)*v(316) v(2726)=v(2715)*v(7941) v(2737)=-v(2726)+v(2671)*v(315)+v(2649)*v(316) v(2725)=v(2714)*v(7941) v(2736)=-v(2725)+v(2670)*v(315)+v(2648)*v(316) v(2724)=v(2713)*v(7941) v(2735)=-v(2724)+v(2669)*v(315)+v(2647)*v(316) v(2723)=v(2712)*v(7941) v(2734)=-v(2723)+v(2668)*v(315)+v(2646)*v(316) v(2722)=v(2711)*v(7941) v(2733)=-v(2722)+v(2667)*v(315)+v(2645)*v(316) v(2721)=v(2710)*v(7941) v(2732)=-v(2721)+v(2666)*v(315)+v(2644)*v(316) v(2720)=v(2709)*v(7941) v(2731)=-v(2720)+v(2665)*v(315)+v(2643)*v(316) v(334)=(v(318)*v(318)) v(350)=v(315)*v(316)-v(334) v(319)=v(298)*v(307)+v(303)*v(312)+v(299)*v(314) v(7942)=2d0*v(319) v(2844)=v(319)*v(7941) v(2763)=v(2752)*v(7942) v(2774)=-v(2763)+v(2697)*v(316)+v(2675)*v(317) v(2762)=v(2751)*v(7942) v(2773)=-v(2762)+v(2696)*v(316)+v(2674)*v(317) v(2761)=v(2750)*v(7942) v(2772)=-v(2761)+v(2695)*v(316)+v(2673)*v(317) v(2760)=v(2749)*v(7942) v(2771)=-v(2760)+v(2694)*v(316)+v(2672)*v(317) v(2759)=v(2748)*v(7942) v(2770)=-v(2759)+v(2693)*v(316)+v(2671)*v(317) v(2758)=v(2747)*v(7942) v(2769)=-v(2758)+v(2692)*v(316)+v(2670)*v(317) v(2757)=v(2746)*v(7942) v(2768)=-v(2757)+v(2691)*v(316)+v(2669)*v(317) v(2756)=v(2745)*v(7942) v(2767)=-v(2756)+v(2690)*v(316)+v(2668)*v(317) v(2755)=v(2744)*v(7942) v(2766)=-v(2755)+v(2689)*v(316)+v(2667)*v(317) v(2754)=v(2743)*v(7942) v(2765)=-v(2754)+v(2688)*v(316)+v(2666)*v(317) v(2753)=v(2742)*v(7942) v(2764)=-v(2753)+v(2687)*v(316)+v(2665)*v(317) v(322)=(v(319)*v(319)) v(339)=v(316)*v(317)-v(322) v(320)=v(299)*v(311)+v(297)*v(312)+v(307)*v(313) v(7943)=2d0*v(320) v(2843)=v(320)*v(7941) v(2841)=v(320)*v(7942) v(2829)=v(2785)*v(7943) v(2840)=-v(2829)+v(2697)*v(315)+v(2653)*v(317) v(2828)=v(2784)*v(7943) v(2839)=-v(2828)+v(2696)*v(315)+v(2652)*v(317) v(2827)=v(2783)*v(7943) v(2838)=-v(2827)+v(2695)*v(315)+v(2651)*v(317) v(2826)=v(2782)*v(7943) v(2837)=-v(2826)+v(2694)*v(315)+v(2650)*v(317) v(2825)=v(2781)*v(7943) v(2836)=-v(2825)+v(2693)*v(315)+v(2649)*v(317) v(2824)=v(2780)*v(7943) v(2835)=-v(2824)+v(2692)*v(315)+v(2648)*v(317) v(2823)=v(2779)*v(7943) v(2834)=-v(2823)+v(2691)*v(315)+v(2647)*v(317) v(2822)=v(2778)*v(7943) v(2833)=-v(2822)+v(2690)*v(315)+v(2646)*v(317) v(2821)=v(2777)*v(7943) v(2832)=-v(2821)+v(2689)*v(315)+v(2645)*v(317) v(2820)=v(2776)*v(7943) v(2831)=-v(2820)+v(2688)*v(315)+v(2644)*v(317) v(2819)=v(2775)*v(7943) v(2830)=-v(2819)+v(2687)*v(315)+v(2643)*v(317) v(2818)=-(v(2719)*v(317))-v(2697)*v(318)+v(2785)*v(319)+v(2752)*v(320) v(2817)=-(v(2718)*v(317))-v(2696)*v(318)+v(2784)*v(319)+v(2751)*v(320) v(2816)=-(v(2717)*v(317))-v(2695)*v(318)+v(2783)*v(319)+v(2750)*v(320) v(2815)=-(v(2716)*v(317))-v(2694)*v(318)+v(2782)*v(319)+v(2749)*v(320) v(2814)=-(v(2715)*v(317))-v(2693)*v(318)+v(2781)*v(319)+v(2748)*v(320) v(2813)=-(v(2714)*v(317))-v(2692)*v(318)+v(2780)*v(319)+v(2747)*v(320) v(2812)=-(v(2713)*v(317))-v(2691)*v(318)+v(2779)*v(319)+v(2746)*v(320) v(2811)=-(v(2712)*v(317))-v(2690)*v(318)+v(2778)*v(319)+v(2745)*v(320) v(2810)=-(v(2711)*v(317))-v(2689)*v(318)+v(2777)*v(319)+v(2744)*v(320) v(2809)=-(v(2710)*v(317))-v(2688)*v(318)+v(2776)*v(319)+v(2743)*v(320) v(2808)=-(v(2709)*v(317))-v(2687)*v(318)+v(2775)*v(319)+v(2742)*v(320) v(2807)=-(v(2752)*v(315))+v(2785)*v(318)-v(2653)*v(319)+v(2719)*v(320) v(2806)=-(v(2751)*v(315))+v(2784)*v(318)-v(2652)*v(319)+v(2718)*v(320) v(2805)=-(v(2750)*v(315))+v(2783)*v(318)-v(2651)*v(319)+v(2717)*v(320) v(2804)=-(v(2749)*v(315))+v(2782)*v(318)-v(2650)*v(319)+v(2716)*v(320) v(2803)=-(v(2748)*v(315))+v(2781)*v(318)-v(2649)*v(319)+v(2715)*v(320) v(2802)=-(v(2747)*v(315))+v(2780)*v(318)-v(2648)*v(319)+v(2714)*v(320) v(2801)=-(v(2746)*v(315))+v(2779)*v(318)-v(2647)*v(319)+v(2713)*v(320) v(2800)=-(v(2745)*v(315))+v(2778)*v(318)-v(2646)*v(319)+v(2712)*v(320) v(2799)=-(v(2744)*v(315))+v(2777)*v(318)-v(2645)*v(319)+v(2711)*v(320) v(2798)=-(v(2743)*v(315))+v(2776)*v(318)-v(2644)*v(319)+v(2710)*v(320) v(2797)=-(v(2742)*v(315))+v(2775)*v(318)-v(2643)*v(319)+v(2709)*v(320) v(2796)=-(v(2785)*v(316))+v(2752)*v(318)+v(2719)*v(319)-v(2675)*v(320) v(2795)=-(v(2784)*v(316))+v(2751)*v(318)+v(2718)*v(319)-v(2674)*v(320) v(2794)=-(v(2783)*v(316))+v(2750)*v(318)+v(2717)*v(319)-v(2673)*v(320) v(2793)=-(v(2782)*v(316))+v(2749)*v(318)+v(2716)*v(319)-v(2672)*v(320) v(2792)=-(v(2781)*v(316))+v(2748)*v(318)+v(2715)*v(319)-v(2671)*v(320) v(2791)=-(v(2780)*v(316))+v(2747)*v(318)+v(2714)*v(319)-v(2670)*v(320) v(2790)=-(v(2779)*v(316))+v(2746)*v(318)+v(2713)*v(319)-v(2669)*v(320) v(2789)=-(v(2778)*v(316))+v(2745)*v(318)+v(2712)*v(319)-v(2668)*v(320) v(2788)=-(v(2777)*v(316))+v(2744)*v(318)+v(2711)*v(319)-v(2667)*v(320) v(2787)=-(v(2776)*v(316))+v(2743)*v(318)+v(2710)*v(319)-v(2666)*v(320) v(2786)=-(v(2775)*v(316))+v(2742)*v(318)+v(2709)*v(319)-v(2665)*v(320) v(351)=v(318)*v(319)-v(316)*v(320) v(346)=-(v(315)*v(319))+v(318)*v(320) v(341)=-(v(317)*v(318))+v(319)*v(320) v(326)=(v(320)*v(320)) v(2854)=v(2719)*v(2841)+v(2752)*v(2843)+v(2785)*v(2844)-v(2763)*v(315)-v(2829)*v(316)+v(2741)*v(317)-v(2653)*v(322)-v& &(2675)*v(326)+v(2697)*v(350) v(2853)=v(2718)*v(2841)+v(2751)*v(2843)+v(2784)*v(2844)-v(2762)*v(315)-v(2828)*v(316)+v(2740)*v(317)-v(2652)*v(322)-v& &(2674)*v(326)+v(2696)*v(350) v(2852)=v(2717)*v(2841)+v(2750)*v(2843)+v(2783)*v(2844)-v(2761)*v(315)-v(2827)*v(316)+v(2739)*v(317)-v(2651)*v(322)-v& &(2673)*v(326)+v(2695)*v(350) v(2851)=v(2716)*v(2841)+v(2749)*v(2843)+v(2782)*v(2844)-v(2760)*v(315)-v(2826)*v(316)+v(2738)*v(317)-v(2650)*v(322)-v& &(2672)*v(326)+v(2694)*v(350) v(2850)=v(2715)*v(2841)+v(2748)*v(2843)+v(2781)*v(2844)-v(2759)*v(315)-v(2825)*v(316)+v(2737)*v(317)-v(2649)*v(322)-v& &(2671)*v(326)+v(2693)*v(350) v(2849)=v(2714)*v(2841)+v(2747)*v(2843)+v(2780)*v(2844)-v(2758)*v(315)-v(2824)*v(316)+v(2736)*v(317)-v(2648)*v(322)-v& &(2670)*v(326)+v(2692)*v(350) v(2848)=v(2713)*v(2841)+v(2746)*v(2843)+v(2779)*v(2844)-v(2757)*v(315)-v(2823)*v(316)+v(2735)*v(317)-v(2647)*v(322)-v& &(2669)*v(326)+v(2691)*v(350) v(2847)=v(2712)*v(2841)+v(2745)*v(2843)+v(2778)*v(2844)-v(2756)*v(315)-v(2822)*v(316)+v(2734)*v(317)-v(2646)*v(322)-v& &(2668)*v(326)+v(2690)*v(350) v(2846)=v(2711)*v(2841)+v(2744)*v(2843)+v(2777)*v(2844)-v(2755)*v(315)-v(2821)*v(316)+v(2733)*v(317)-v(2645)*v(322)-v& &(2667)*v(326)+v(2689)*v(350) v(2845)=v(2710)*v(2841)+v(2743)*v(2843)+v(2776)*v(2844)-v(2754)*v(315)-v(2820)*v(316)+v(2732)*v(317)-v(2644)*v(322)-v& &(2666)*v(326)+v(2688)*v(350) v(2842)=v(2709)*v(2841)+v(2742)*v(2843)+v(2775)*v(2844)-v(2753)*v(315)-v(2819)*v(316)+v(2731)*v(317)-v(2643)*v(322)-v& &(2665)*v(326)+v(2687)*v(350) v(345)=v(315)*v(317)-v(326) v(323)=v(2841)*v(318)-v(315)*v(322)-v(316)*v(326)+v(317)*v(350) v(7980)=v(341)/v(323) v(2970)=1d0/v(323)**0.23333333333333334d1 v(7944)=(-4d0/3d0)*v(2970) v(2980)=v(2854)*v(7944) v(2979)=v(2853)*v(7944) v(2978)=v(2852)*v(7944) v(2977)=v(2851)*v(7944) v(2976)=v(2850)*v(7944) v(2975)=v(2849)*v(7944) v(2974)=v(2848)*v(7944) v(2973)=v(2847)*v(7944) v(2972)=v(2846)*v(7944) v(2971)=v(2845)*v(7944) v(2969)=v(2842)*v(7944) v(2958)=1d0/v(323)**2 v(2968)=-(v(2854)*v(2958)) v(2967)=-(v(2853)*v(2958)) v(2966)=-(v(2852)*v(2958)) v(2965)=-(v(2851)*v(2958)) v(2964)=-(v(2850)*v(2958)) v(2963)=-(v(2849)*v(2958)) v(2962)=-(v(2848)*v(2958)) v(2961)=-(v(2847)*v(2958)) v(2960)=-(v(2846)*v(2958)) v(2959)=-(v(2845)*v(2958)) v(2957)=-(v(2842)*v(2958)) v(2868)=1d0/v(323)**0.13333333333333333d1 v(7977)=mpar(1)*v(2868) v(7945)=-v(2868)/3d0 v(2879)=v(2854)*v(7945) v(2878)=v(2853)*v(7945) v(2877)=v(2852)*v(7945) v(2876)=v(2851)*v(7945) v(2875)=v(2850)*v(7945) v(2874)=v(2849)*v(7945) v(2873)=v(2848)*v(7945) v(2872)=v(2847)*v(7945) v(2871)=v(2846)*v(7945) v(2870)=v(2845)*v(7945) v(2869)=v(2842)*v(7945) v(2855)=sqrt(v(323)) v(7946)=mpar(2)*(1d0-1d0/(2d0*v(2855))) v(2867)=v(2854)*v(7946) v(2866)=v(2853)*v(7946) v(2865)=v(2852)*v(7946) v(2864)=v(2851)*v(7946) v(2863)=v(2850)*v(7946) v(2862)=v(2849)*v(7946) v(2861)=v(2848)*v(7946) v(2860)=v(2847)*v(7946) v(2859)=v(2846)*v(7946) v(2858)=v(2845)*v(7946) v(2856)=v(2842)*v(7946) v(330)=mpar(2)*(-v(2855)+v(323)) v(329)=1d0/v(323)**0.3333333333333333d0 v(7976)=mpar(1)*v(329) v(7975)=mpar(1)*(v(2869)*v(2932)+(v(2654)+(2d0/3d0)*v(2665)+v(2698))*v(329)) v(7974)=mpar(1)*(v(2869)*v(2905)+(v(2654)+v(2676)+(2d0/3d0)*v(2687))*v(329)) v(7973)=mpar(1)*(v(2869)*v(2880)+((2d0/3d0)*v(2643)+v(2676)+v(2698))*v(329)) v(7972)=mpar(1)*(v(2870)*v(2932)+(v(2655)+(2d0/3d0)*v(2666)+v(2699))*v(329)) v(7971)=mpar(1)*(v(2871)*v(2880)+((2d0/3d0)*v(2645)+v(2678)+v(2700))*v(329)) v(7970)=mpar(1)*(v(2872)*v(2932)+(v(2657)+(2d0/3d0)*v(2668)+v(2701))*v(329)) v(7969)=mpar(1)*(v(2872)*v(2905)+(v(2657)+v(2679)+(2d0/3d0)*v(2690))*v(329)) v(7968)=mpar(1)*(v(2872)*v(2880)+((2d0/3d0)*v(2646)+v(2679)+v(2701))*v(329)) v(7967)=mpar(1)*(v(2873)*v(2932)+(v(2658)+(2d0/3d0)*v(2669)+v(2702))*v(329)) v(7966)=mpar(1)*(v(2873)*v(2905)+(v(2658)+v(2680)+(2d0/3d0)*v(2691))*v(329)) v(7965)=mpar(1)*(v(2873)*v(2880)+((2d0/3d0)*v(2647)+v(2680)+v(2702))*v(329)) v(7964)=mpar(1)*(v(2874)*v(2932)+(v(2659)+(2d0/3d0)*v(2670)+v(2703))*v(329)) v(7963)=mpar(1)*(v(2874)*v(2905)+(v(2659)+v(2681)+(2d0/3d0)*v(2692))*v(329)) v(7962)=mpar(1)*(v(2874)*v(2880)+((2d0/3d0)*v(2648)+v(2681)+v(2703))*v(329)) v(7961)=mpar(1)*(v(2875)*v(2932)+(v(2660)+(2d0/3d0)*v(2671)+v(2704))*v(329)) v(7960)=mpar(1)*(v(2875)*v(2905)+(v(2660)+v(2682)+(2d0/3d0)*v(2693))*v(329)) v(7959)=mpar(1)*(v(2875)*v(2880)+((2d0/3d0)*v(2649)+v(2682)+v(2704))*v(329)) v(7958)=mpar(1)*(v(2876)*v(2932)+(v(2661)+(2d0/3d0)*v(2672)+v(2705))*v(329)) v(7957)=mpar(1)*(v(2876)*v(2905)+(v(2661)+v(2683)+(2d0/3d0)*v(2694))*v(329)) v(7956)=mpar(1)*(v(2876)*v(2880)+((2d0/3d0)*v(2650)+v(2683)+v(2705))*v(329)) v(7955)=mpar(1)*(v(2877)*v(2932)+(v(2662)+(2d0/3d0)*v(2673)+v(2706))*v(329)) v(7954)=mpar(1)*(v(2877)*v(2905)+(v(2662)+v(2684)+(2d0/3d0)*v(2695))*v(329)) v(7953)=mpar(1)*(v(2877)*v(2880)+((2d0/3d0)*v(2651)+v(2684)+v(2706))*v(329)) v(7952)=mpar(1)*(v(2878)*v(2932)+(v(2663)+(2d0/3d0)*v(2674)+v(2707))*v(329)) v(7951)=mpar(1)*(v(2878)*v(2905)+(v(2663)+v(2685)+(2d0/3d0)*v(2696))*v(329)) v(7950)=mpar(1)*(v(2878)*v(2880)+((2d0/3d0)*v(2652)+v(2685)+v(2707))*v(329)) v(7949)=mpar(1)*(v(2879)*v(2932)+(v(2664)+(2d0/3d0)*v(2675)+v(2708))*v(329)) v(7948)=mpar(1)*(v(2879)*v(2905)+(v(2664)+v(2686)+(2d0/3d0)*v(2697))*v(329)) v(7947)=mpar(1)*(v(2879)*v(2880)+((2d0/3d0)*v(2653)+v(2686)+v(2708))*v(329)) v(2943)=v(2867)+v(7949) v(2942)=v(2866)+v(7952) v(2941)=v(2865)+v(7955) v(2940)=v(2864)+v(7958) v(2939)=v(2863)+v(7961) v(2938)=v(2862)+v(7964) v(2937)=v(2861)+v(7967) v(2936)=v(2860)+v(7970) v(2935)=v(2859)+mpar(1)*(v(2871)*v(2932)+(v(2656)+(2d0/3d0)*v(2667)+v(2700))*v(329)) v(2955)=1d0-v(2935) v(2956)=v(2955)/3d0 v(2946)=-v(2935)/3d0 v(2934)=v(2858)+v(7972) v(7108)=(2d0/3d0)*v(2934) v(2945)=-v(2934)/3d0 v(2933)=v(2856)+v(7975) v(2916)=v(2867)+v(7948) v(2915)=v(2866)+v(7951) v(2914)=v(2865)+v(7954) v(2913)=v(2864)+v(7957) v(2912)=v(2863)+v(7960) v(2911)=v(2862)+v(7963) v(2910)=v(2861)+v(7966) v(2909)=v(2860)+v(7969) v(2908)=v(2859)+mpar(1)*(v(2871)*v(2905)+(v(2656)+v(2678)+(2d0/3d0)*v(2689))*v(329)) v(2929)=(-1d0)-v(2908) v(2931)=v(2929)/3d0 v(2919)=-v(2908)/3d0 v(2907)=v(2858)+mpar(1)*(v(2870)*v(2905)+(v(2655)+v(2677)+(2d0/3d0)*v(2688))*v(329)) v(2928)=(-1d0)-v(2907) v(2930)=v(2928)/3d0 v(2918)=-v(2907)/3d0 v(2906)=v(2856)+v(7974) v(2891)=v(2867)+v(7947) v(2890)=v(2866)+v(7950) v(2889)=v(2865)+v(7953) v(2888)=v(2864)+v(7956) v(2887)=v(2863)+v(7959) v(2886)=v(2862)+v(7962) v(2885)=v(2861)+v(7965) v(2884)=v(2860)+v(7968) v(2883)=v(2859)+v(7971) v(7076)=(2d0/3d0)*v(2883) v(2894)=-v(2883)/3d0 v(3181)=v(2894)+(-2d0/3d0)*v(2929)+v(2956) v(3170)=v(2894)+v(2931)+(-2d0/3d0)*v(2955) v(2882)=v(2858)+mpar(1)*(v(2870)*v(2880)+((2d0/3d0)*v(2644)+v(2677)+v(2699))*v(329)) v(2903)=(-1d0)+v(2882) v(3158)=(2d0/3d0)*v(2903)+v(2930)+v(2945) v(2904)=-v(2903)/3d0 v(3180)=v(2904)+(-2d0/3d0)*v(2928)+v(2945) v(2893)=-v(2882)/3d0 v(2881)=v(2856)+v(7973) v(352)=v(330)+v(2880)*v(7976) v(7985)=v(339)*v(352) v(7984)=v(352)/v(323) v(7979)=v(351)*v(352) v(639)=-v(352)/3d0 v(360)=v(352)-x(2)-x(7) v(364)=-v(360)/3d0 v(347)=v(330)+v(2905)*v(7976) v(7986)=v(347)*v(350) v(7982)=v(347)/v(323) v(7978)=v(346)*v(347) v(636)=-v(347)/3d0 v(363)=-v(347)+v(7523)+v(7531) v(359)=v(363)/3d0 v(342)=v(330)+v(2932)*v(7976) v(7983)=v(342)*v(345) v(7981)=v(342)/v(323) v(638)=-v(342)/3d0 v(358)=-v(342)+x(3)+x(8) v(362)=v(358)/3d0 v(3024)=mpar(1)*(v(2719)*v(2868)+v(2980)*v(318)) v(3023)=mpar(1)*(v(2718)*v(2868)+v(2979)*v(318)) v(3022)=mpar(1)*(v(2717)*v(2868)+v(2978)*v(318)) v(3021)=mpar(1)*(v(2716)*v(2868)+v(2977)*v(318)) v(3020)=mpar(1)*(v(2715)*v(2868)+v(2976)*v(318)) v(3019)=mpar(1)*(v(2714)*v(2868)+v(2975)*v(318)) v(3018)=mpar(1)*(v(2713)*v(2868)+v(2974)*v(318)) v(3017)=mpar(1)*(v(2712)*v(2868)+v(2973)*v(318)) v(3016)=mpar(1)*(v(2711)*v(2868)+v(2972)*v(318)) v(3015)=mpar(1)*(v(2710)*v(2868)+v(2971)*v(318)) v(3014)=mpar(1)*(v(2709)*v(2868)+v(2969)*v(318)) v(3013)=mpar(1)*(v(2796)*v(2868)+v(2980)*v(351)) v(3012)=mpar(1)*(v(2795)*v(2868)+v(2979)*v(351)) v(3011)=mpar(1)*(v(2794)*v(2868)+v(2978)*v(351)) v(3010)=mpar(1)*(v(2793)*v(2868)+v(2977)*v(351)) v(3009)=mpar(1)*(v(2792)*v(2868)+v(2976)*v(351)) v(3008)=mpar(1)*(v(2791)*v(2868)+v(2975)*v(351)) v(3007)=mpar(1)*(v(2790)*v(2868)+v(2974)*v(351)) v(3006)=mpar(1)*(v(2789)*v(2868)+v(2973)*v(351)) v(3005)=mpar(1)*(v(2788)*v(2868)+v(2972)*v(351)) v(3004)=mpar(1)*(v(2787)*v(2868)+v(2971)*v(351)) v(3003)=mpar(1)*(v(2786)*v(2868)+v(2969)*v(351)) v(3002)=mpar(1)*(v(2752)*v(2868)+v(2980)*v(319)) v(3001)=mpar(1)*(v(2751)*v(2868)+v(2979)*v(319)) v(3000)=mpar(1)*(v(2750)*v(2868)+v(2978)*v(319)) v(2999)=mpar(1)*(v(2749)*v(2868)+v(2977)*v(319)) v(2998)=mpar(1)*(v(2748)*v(2868)+v(2976)*v(319)) v(2997)=mpar(1)*(v(2747)*v(2868)+v(2975)*v(319)) v(2996)=mpar(1)*(v(2746)*v(2868)+v(2974)*v(319)) v(2995)=mpar(1)*(v(2745)*v(2868)+v(2973)*v(319)) v(2994)=mpar(1)*(v(2744)*v(2868)+v(2972)*v(319)) v(2993)=mpar(1)*(v(2743)*v(2868)+v(2971)*v(319)) v(2992)=mpar(1)*(v(2742)*v(2868)+v(2969)*v(319)) v(2991)=mpar(1)*(v(2785)*v(2868)+v(2980)*v(320)) v(2990)=mpar(1)*(v(2784)*v(2868)+v(2979)*v(320)) v(2989)=mpar(1)*(v(2783)*v(2868)+v(2978)*v(320)) v(2988)=mpar(1)*(v(2782)*v(2868)+v(2977)*v(320)) v(2987)=mpar(1)*(v(2781)*v(2868)+v(2976)*v(320)) v(2986)=mpar(1)*(v(2780)*v(2868)+v(2975)*v(320)) v(2985)=mpar(1)*(v(2779)*v(2868)+v(2974)*v(320)) v(2984)=mpar(1)*(v(2778)*v(2868)+v(2973)*v(320)) v(2983)=mpar(1)*(v(2777)*v(2868)+v(2972)*v(320)) v(2982)=mpar(1)*(v(2776)*v(2868)+v(2971)*v(320)) v(2981)=mpar(1)*(v(2775)*v(2868)+v(2969)*v(320)) v(349)=v(320)*v(7977) v(344)=v(319)*v(7977) v(3079)=v(2991)*v(341)+v(2840)*v(344)+v(3002)*v(345)+(v(2916)*v(346)+v(2807)*v(347))/v(323)+v(2818)*v(349)+v(2968)*v& &(7978) v(3078)=v(2990)*v(341)+v(2839)*v(344)+v(3001)*v(345)+(v(2915)*v(346)+v(2806)*v(347))/v(323)+v(2817)*v(349)+v(2967)*v& &(7978) v(3077)=v(2989)*v(341)+v(2838)*v(344)+v(3000)*v(345)+(v(2914)*v(346)+v(2805)*v(347))/v(323)+v(2816)*v(349)+v(2966)*v& &(7978) v(3076)=v(2988)*v(341)+v(2837)*v(344)+v(2999)*v(345)+(v(2913)*v(346)+v(2804)*v(347))/v(323)+v(2815)*v(349)+v(2965)*v& &(7978) v(3075)=v(2987)*v(341)+v(2836)*v(344)+v(2998)*v(345)+(v(2912)*v(346)+v(2803)*v(347))/v(323)+v(2814)*v(349)+v(2964)*v& &(7978) v(3074)=v(2986)*v(341)+v(2835)*v(344)+v(2997)*v(345)+(v(2911)*v(346)+v(2802)*v(347))/v(323)+v(2813)*v(349)+v(2963)*v& &(7978) v(3073)=v(2985)*v(341)+v(2834)*v(344)+v(2996)*v(345)+(v(2910)*v(346)+v(2801)*v(347))/v(323)+v(2812)*v(349)+v(2962)*v& &(7978) v(3072)=v(2984)*v(341)+v(2833)*v(344)+v(2995)*v(345)+(v(2909)*v(346)+v(2800)*v(347))/v(323)+v(2811)*v(349)+v(2961)*v& &(7978) v(3071)=v(2983)*v(341)+v(2832)*v(344)+v(2994)*v(345)+(v(2908)*v(346)+v(2799)*v(347))/v(323)+v(2810)*v(349)+v(2960)*v& &(7978) v(3070)=v(2982)*v(341)+v(2831)*v(344)+v(2993)*v(345)+(v(2907)*v(346)+v(2798)*v(347))/v(323)+v(2809)*v(349)+v(2959)*v& &(7978) v(3069)=v(2981)*v(341)+v(2830)*v(344)+v(2992)*v(345)+(v(2906)*v(346)+v(2797)*v(347))/v(323)+v(2808)*v(349)+v(2957)*v& &(7978) v(3035)=v(2807)*v(344)+v(3002)*v(346) v(3034)=v(2806)*v(344)+v(3001)*v(346) v(3033)=v(2805)*v(344)+v(3000)*v(346) v(3032)=v(2804)*v(344)+v(2999)*v(346) v(3031)=v(2803)*v(344)+v(2998)*v(346) v(3030)=v(2802)*v(344)+v(2997)*v(346) v(3029)=v(2801)*v(344)+v(2996)*v(346) v(3028)=v(2800)*v(344)+v(2995)*v(346) v(3027)=v(2799)*v(344)+v(2994)*v(346) v(3026)=v(2798)*v(344)+v(2993)*v(346) v(3025)=v(2797)*v(344)+v(2992)*v(346) v(340)=v(351)*v(7977) v(3046)=v(3013)*v(320)+v(2785)*v(340) v(3045)=v(3012)*v(320)+v(2784)*v(340) v(3044)=v(3011)*v(320)+v(2783)*v(340) v(3043)=v(3010)*v(320)+v(2782)*v(340) v(3042)=v(3009)*v(320)+v(2781)*v(340) v(3041)=v(3008)*v(320)+v(2780)*v(340) v(3040)=v(3007)*v(320)+v(2779)*v(340) v(3039)=v(3006)*v(320)+v(2778)*v(340) v(3038)=v(3005)*v(320)+v(2777)*v(340) v(3037)=v(3004)*v(320)+v(2776)*v(340) v(3036)=v(3003)*v(320)+v(2775)*v(340) v(338)=v(318)*v(7977) v(3090)=v(2807)*v(338)+v(3024)*v(346)+v(2741)*v(349)+v(2991)*v(350)+(v(2891)*v(351)+v(2796)*v(352))/v(323)+v(2968)*v& &(7979) v(3089)=v(2806)*v(338)+v(3023)*v(346)+v(2740)*v(349)+v(2990)*v(350)+(v(2890)*v(351)+v(2795)*v(352))/v(323)+v(2967)*v& &(7979) v(3088)=v(2805)*v(338)+v(3022)*v(346)+v(2739)*v(349)+v(2989)*v(350)+(v(2889)*v(351)+v(2794)*v(352))/v(323)+v(2966)*v& &(7979) v(3087)=v(2804)*v(338)+v(3021)*v(346)+v(2738)*v(349)+v(2988)*v(350)+(v(2888)*v(351)+v(2793)*v(352))/v(323)+v(2965)*v& &(7979) v(3086)=v(2803)*v(338)+v(3020)*v(346)+v(2737)*v(349)+v(2987)*v(350)+(v(2887)*v(351)+v(2792)*v(352))/v(323)+v(2964)*v& &(7979) v(3085)=v(2802)*v(338)+v(3019)*v(346)+v(2736)*v(349)+v(2986)*v(350)+(v(2886)*v(351)+v(2791)*v(352))/v(323)+v(2963)*v& &(7979) v(3084)=v(2801)*v(338)+v(3018)*v(346)+v(2735)*v(349)+v(2985)*v(350)+(v(2885)*v(351)+v(2790)*v(352))/v(323)+v(2962)*v& &(7979) v(3083)=v(2800)*v(338)+v(3017)*v(346)+v(2734)*v(349)+v(2984)*v(350)+(v(2884)*v(351)+v(2789)*v(352))/v(323)+v(2961)*v& &(7979) v(3082)=v(2799)*v(338)+v(3016)*v(346)+v(2733)*v(349)+v(2983)*v(350)+(v(2883)*v(351)+v(2788)*v(352))/v(323)+v(2960)*v& &(7979) v(3081)=v(2798)*v(338)+v(3015)*v(346)+v(2732)*v(349)+v(2982)*v(350)+(v(2882)*v(351)+v(2787)*v(352))/v(323)+v(2959)*v& &(7979) v(3080)=v(2797)*v(338)+v(3014)*v(346)+v(2731)*v(349)+v(2981)*v(350)+(v(2881)*v(351)+v(2786)*v(352))/v(323)+v(2957)*v& &(7979) v(3068)=v(3013)*v(319)+v(2774)*v(338)+v(3024)*v(339)+v(2752)*v(340)+(v(2818)/v(323)+v(2968)*v(341))*v(342)+v(2943)*v& &(7980) v(3067)=v(3012)*v(319)+v(2773)*v(338)+v(3023)*v(339)+v(2751)*v(340)+(v(2817)/v(323)+v(2967)*v(341))*v(342)+v(2942)*v& &(7980) v(3066)=v(3011)*v(319)+v(2772)*v(338)+v(3022)*v(339)+v(2750)*v(340)+(v(2816)/v(323)+v(2966)*v(341))*v(342)+v(2941)*v& &(7980) v(3065)=v(3010)*v(319)+v(2771)*v(338)+v(3021)*v(339)+v(2749)*v(340)+(v(2815)/v(323)+v(2965)*v(341))*v(342)+v(2940)*v& &(7980) v(3064)=v(3009)*v(319)+v(2770)*v(338)+v(3020)*v(339)+v(2748)*v(340)+(v(2814)/v(323)+v(2964)*v(341))*v(342)+v(2939)*v& &(7980) v(3063)=v(3008)*v(319)+v(2769)*v(338)+v(3019)*v(339)+v(2747)*v(340)+(v(2813)/v(323)+v(2963)*v(341))*v(342)+v(2938)*v& &(7980) v(3062)=v(3007)*v(319)+v(2768)*v(338)+v(3018)*v(339)+v(2746)*v(340)+(v(2812)/v(323)+v(2962)*v(341))*v(342)+v(2937)*v& &(7980) v(3061)=v(3006)*v(319)+v(2767)*v(338)+v(3017)*v(339)+v(2745)*v(340)+(v(2811)/v(323)+v(2961)*v(341))*v(342)+v(2936)*v& &(7980) v(3060)=v(3005)*v(319)+v(2766)*v(338)+v(3016)*v(339)+v(2744)*v(340)+(v(2810)/v(323)+v(2960)*v(341))*v(342)+v(2935)*v& &(7980) v(3059)=v(3004)*v(319)+v(2765)*v(338)+v(3015)*v(339)+v(2743)*v(340)+(v(2809)/v(323)+v(2959)*v(341))*v(342)+v(2934)*v& &(7980) v(3058)=v(3003)*v(319)+v(2764)*v(338)+v(3014)*v(339)+v(2742)*v(340)+(v(2808)/v(323)+v(2957)*v(341))*v(342)+v(2933)*v& &(7980) v(3057)=v(2818)*v(338)+v(3024)*v(341) v(3056)=v(2817)*v(338)+v(3023)*v(341) v(3055)=v(2816)*v(338)+v(3022)*v(341) v(3054)=v(2815)*v(338)+v(3021)*v(341) v(3053)=v(2814)*v(338)+v(3020)*v(341) v(3052)=v(2813)*v(338)+v(3019)*v(341) v(3051)=v(2812)*v(338)+v(3018)*v(341) v(3050)=v(2811)*v(338)+v(3017)*v(341) v(3049)=v(2810)*v(338)+v(3016)*v(341) v(3048)=v(2809)*v(338)+v(3015)*v(341) v(3047)=v(2808)*v(338)+v(3014)*v(341) v(333)=v(344)*v(346) v(332)=v(320)*v(340) v(325)=v(338)*v(341) v(324)=v(325)+v(332)+v(339)*v(7984) v(331)=v(325)+v(333)+v(345)*v(7981) v(337)=v(332)+v(333)+v(350)*v(7982) v(343)=v(338)*v(339)+v(319)*v(340)+v(341)*v(7981) v(348)=v(344)*v(345)+v(341)*v(349)+v(346)*v(7982) v(3112)=v(3068)*v(315)+v(3079)*v(320)+v(2719)*v(331)+v(2653)*v(343)+v(2785)*v(348)+v(318)*(v(3035)+v(3057)+(v(2840)*v& &(342)+v(2943)*v(345))/v(323)+v(2968)*v(7983)) v(3110)=v(3067)*v(315)+v(3078)*v(320)+v(2718)*v(331)+v(2652)*v(343)+v(2784)*v(348)+v(318)*(v(3034)+v(3056)+(v(2839)*v& &(342)+v(2942)*v(345))/v(323)+v(2967)*v(7983)) v(3108)=v(3066)*v(315)+v(3077)*v(320)+v(2717)*v(331)+v(2651)*v(343)+v(2783)*v(348)+v(318)*(v(3033)+v(3055)+(v(2838)*v& &(342)+v(2941)*v(345))/v(323)+v(2966)*v(7983)) v(3106)=v(3065)*v(315)+v(3076)*v(320)+v(2716)*v(331)+v(2650)*v(343)+v(2782)*v(348)+v(318)*(v(3032)+v(3054)+(v(2837)*v& &(342)+v(2940)*v(345))/v(323)+v(2965)*v(7983)) v(3104)=v(3064)*v(315)+v(3075)*v(320)+v(2715)*v(331)+v(2649)*v(343)+v(2781)*v(348)+v(318)*(v(3031)+v(3053)+(v(2836)*v& &(342)+v(2939)*v(345))/v(323)+v(2964)*v(7983)) v(3102)=v(3063)*v(315)+v(3074)*v(320)+v(2714)*v(331)+v(2648)*v(343)+v(2780)*v(348)+v(318)*(v(3030)+v(3052)+(v(2835)*v& &(342)+v(2938)*v(345))/v(323)+v(2963)*v(7983)) v(3100)=v(3062)*v(315)+v(3073)*v(320)+v(2713)*v(331)+v(2647)*v(343)+v(2779)*v(348)+v(318)*(v(3029)+v(3051)+(v(2834)*v& &(342)+v(2937)*v(345))/v(323)+v(2962)*v(7983)) v(3098)=v(3061)*v(315)+v(3072)*v(320)+v(2712)*v(331)+v(2646)*v(343)+v(2778)*v(348)+v(318)*(v(3028)+v(3050)+(v(2833)*v& &(342)+v(2936)*v(345))/v(323)+v(2961)*v(7983)) v(3190)=(-1d0)+v(3098) v(3096)=v(3060)*v(315)+v(3071)*v(320)+v(2711)*v(331)+v(2645)*v(343)+v(2777)*v(348)+v(318)*(v(3027)+v(3049)+(v(2832)*v& &(342)+v(2935)*v(345))/v(323)+v(2960)*v(7983)) v(3094)=v(3059)*v(315)+v(3070)*v(320)+v(2710)*v(331)+v(2644)*v(343)+v(2776)*v(348)+v(318)*(v(3026)+v(3048)+(v(2831)*v& &(342)+v(2934)*v(345))/v(323)+v(2959)*v(7983)) v(3092)=v(3058)*v(315)+v(3069)*v(320)+v(2709)*v(331)+v(2643)*v(343)+v(2775)*v(348)+v(318)*(v(3025)+v(3047)+(v(2830)*v& &(342)+v(2933)*v(345))/v(323)+v(2957)*v(7983)) v(353)=v(338)*v(346)+v(349)*v(350)+v(351)*v(7984) v(3156)=v(3090)*v(317)+v(3068)*v(319)+v(2785)*v(324)+v(2752)*v(343)+v(2697)*v(353)+v(320)*(v(3046)+v(3057)+(v(2891)*v& &(339)+v(2774)*v(352))/v(323)+v(2968)*v(7985)) v(3154)=v(3089)*v(317)+v(3067)*v(319)+v(2784)*v(324)+v(2751)*v(343)+v(2696)*v(353)+v(320)*(v(3045)+v(3056)+(v(2890)*v& &(339)+v(2773)*v(352))/v(323)+v(2967)*v(7985)) v(3152)=v(3088)*v(317)+v(3066)*v(319)+v(2783)*v(324)+v(2750)*v(343)+v(2695)*v(353)+v(320)*(v(3044)+v(3055)+(v(2889)*v& &(339)+v(2772)*v(352))/v(323)+v(2966)*v(7985)) v(3150)=v(3087)*v(317)+v(3065)*v(319)+v(2782)*v(324)+v(2749)*v(343)+v(2694)*v(353)+v(320)*(v(3043)+v(3054)+(v(2888)*v& &(339)+v(2771)*v(352))/v(323)+v(2965)*v(7985)) v(3148)=v(3086)*v(317)+v(3064)*v(319)+v(2781)*v(324)+v(2748)*v(343)+v(2693)*v(353)+v(320)*(v(3042)+v(3053)+(v(2887)*v& &(339)+v(2770)*v(352))/v(323)+v(2964)*v(7985)) v(3146)=v(3085)*v(317)+v(3063)*v(319)+v(2780)*v(324)+v(2747)*v(343)+v(2692)*v(353)+v(320)*(v(3041)+v(3052)+(v(2886)*v& &(339)+v(2769)*v(352))/v(323)+v(2963)*v(7985)) v(3144)=v(3084)*v(317)+v(3062)*v(319)+v(2779)*v(324)+v(2746)*v(343)+v(2691)*v(353)+v(320)*(v(3040)+v(3051)+(v(2885)*v& &(339)+v(2768)*v(352))/v(323)+v(2962)*v(7985)) v(3192)=(-1d0)+v(3144) v(3142)=v(3083)*v(317)+v(3061)*v(319)+v(2778)*v(324)+v(2745)*v(343)+v(2690)*v(353)+v(320)*(v(3039)+v(3050)+(v(2884)*v& &(339)+v(2767)*v(352))/v(323)+v(2961)*v(7985)) v(3140)=v(3082)*v(317)+v(3060)*v(319)+v(2777)*v(324)+v(2744)*v(343)+v(2689)*v(353)+v(320)*(v(3038)+v(3049)+(v(2883)*v& &(339)+v(2766)*v(352))/v(323)+v(2960)*v(7985)) v(3138)=v(3081)*v(317)+v(3059)*v(319)+v(2776)*v(324)+v(2743)*v(343)+v(2688)*v(353)+v(320)*(v(3037)+v(3048)+(v(2882)*v& &(339)+v(2765)*v(352))/v(323)+v(2959)*v(7985)) v(3136)=v(3080)*v(317)+v(3058)*v(319)+v(2775)*v(324)+v(2742)*v(343)+v(2687)*v(353)+v(320)*(v(3036)+v(3047)+(v(2881)*v& &(339)+v(2764)*v(352))/v(323)+v(2957)*v(7985)) v(3134)=v(3079)*v(316)+v(3090)*v(318)+v(2752)*v(337)+v(2675)*v(348)+v(2719)*v(353)+v(319)*(v(3035)+v(3046)+(v(2741)*v& &(347)+v(2916)*v(350))/v(323)+v(2968)*v(7986)) v(3132)=v(3078)*v(316)+v(3089)*v(318)+v(2751)*v(337)+v(2674)*v(348)+v(2718)*v(353)+v(319)*(v(3034)+v(3045)+(v(2740)*v& &(347)+v(2915)*v(350))/v(323)+v(2967)*v(7986)) v(3130)=v(3077)*v(316)+v(3088)*v(318)+v(2750)*v(337)+v(2673)*v(348)+v(2717)*v(353)+v(319)*(v(3033)+v(3044)+(v(2739)*v& &(347)+v(2914)*v(350))/v(323)+v(2966)*v(7986)) v(3128)=v(3076)*v(316)+v(3087)*v(318)+v(2749)*v(337)+v(2672)*v(348)+v(2716)*v(353)+v(319)*(v(3032)+v(3043)+(v(2738)*v& &(347)+v(2913)*v(350))/v(323)+v(2965)*v(7986)) v(3126)=v(3075)*v(316)+v(3086)*v(318)+v(2748)*v(337)+v(2671)*v(348)+v(2715)*v(353)+v(319)*(v(3031)+v(3042)+(v(2737)*v& &(347)+v(2912)*v(350))/v(323)+v(2964)*v(7986)) v(3124)=v(3074)*v(316)+v(3085)*v(318)+v(2747)*v(337)+v(2670)*v(348)+v(2714)*v(353)+v(319)*(v(3030)+v(3041)+(v(2736)*v& &(347)+v(2911)*v(350))/v(323)+v(2963)*v(7986)) v(3191)=(-1d0)+v(3124) v(3122)=v(3073)*v(316)+v(3084)*v(318)+v(2746)*v(337)+v(2669)*v(348)+v(2713)*v(353)+v(319)*(v(3029)+v(3040)+(v(2735)*v& &(347)+v(2910)*v(350))/v(323)+v(2962)*v(7986)) v(3120)=v(3072)*v(316)+v(3083)*v(318)+v(2745)*v(337)+v(2668)*v(348)+v(2712)*v(353)+v(319)*(v(3028)+v(3039)+(v(2734)*v& &(347)+v(2909)*v(350))/v(323)+v(2961)*v(7986)) v(3118)=v(3071)*v(316)+v(3082)*v(318)+v(2744)*v(337)+v(2667)*v(348)+v(2711)*v(353)+v(319)*(v(3027)+v(3038)+(v(2733)*v& &(347)+v(2908)*v(350))/v(323)+v(2960)*v(7986)) v(3116)=v(3070)*v(316)+v(3081)*v(318)+v(2743)*v(337)+v(2666)*v(348)+v(2710)*v(353)+v(319)*(v(3026)+v(3037)+(v(2732)*v& &(347)+v(2907)*v(350))/v(323)+v(2959)*v(7986)) v(3114)=v(3069)*v(316)+v(3080)*v(318)+v(2742)*v(337)+v(2665)*v(348)+v(2709)*v(353)+v(319)*(v(3025)+v(3036)+(v(2731)*v& &(347)+v(2906)*v(350))/v(323)+v(2957)*v(7986)) v(354)=v(318)*v(331)+v(315)*v(343)+v(320)*v(348) v(355)=v(319)*v(337)+v(316)*v(348)+v(318)*v(353) v(356)=v(320)*v(324)+v(319)*v(343)+v(317)*v(353) v(357)=v(359)+(2d0/3d0)*v(360)+v(362) v(361)=(-2d0/3d0)*v(358)+v(359)+v(364) v(365)=v(362)+(-2d0/3d0)*v(363)+v(364) v(366)=v(354)-x(4)-x(9) v(7988)=2d0*v(366) v(367)=v(355)-x(11)-x(6) v(7989)=2d0*v(367) v(368)=v(356)-x(10)-x(5) v(7990)=2d0*v(368) v(3235)=v(223)*v(357)+v(227)*v(361)+v(228)*v(365)+v(366)*v(7786)+v(367)*v(7787)+v(368)*v(7788) v(3206)=1d0/v(7987)**2 v(3216)=-(v(3204)*v(3206)) v(3215)=-(v(3203)*v(3206)) v(3214)=-(v(3202)*v(3206)) v(3213)=-(v(3201)*v(3206)) v(3212)=-(v(3200)*v(3206)) v(3211)=-(v(3199)*v(3206)) v(3210)=-(v(3198)*v(3206)) v(3209)=-(v(3197)*v(3206)) v(3208)=-(v(3196)*v(3206)) v(3207)=-(v(3195)*v(3206)) v(3205)=-(v(3194)*v(3206)) v(3246)=v(7495)*(v(3216)*v(3235)+v(3193)*(v(1577)*v(357)+v(1604)*v(361)+v(1630)*v(365)+v(3112)*v(7786)+v(3134)*v(7787)& &+v(3156)*v(7788)+v(223)*v(7947)+v(228)*v(7948)+v(227)*v(7949)+v(1658)*v(7988)+v(1690)*v(7989)+v(1726)*v(7990))) v(3245)=v(7495)*(v(3215)*v(3235)+v(3193)*(v(1576)*v(357)+v(1603)*v(361)+v(1629)*v(365)+v(3110)*v(7786)+v(3132)*v(7787)& &+v(3154)*v(7788)+v(223)*v(7950)+v(228)*v(7951)+v(227)*v(7952)+v(1657)*v(7988)+v(1688)*v(7989)+v(1724)*v(7990))) v(3244)=v(7495)*(v(3214)*v(3235)+v(3193)*(v(1575)*v(357)+v(1602)*v(361)+v(1627)*v(365)+v(3108)*v(7786)+v(3130)*v(7787)& &+v(3152)*v(7788)+v(223)*v(7953)+v(228)*v(7954)+v(227)*v(7955)+v(1656)*v(7988)+v(1687)*v(7989)+v(1721)*v(7990))) v(3243)=v(7495)*(v(3213)*v(3235)+v(3193)*(v(1573)*v(357)+v(1600)*v(361)+v(1626)*v(365)+v(3106)*v(7786)+v(3128)*v(7787)& &+v(3150)*v(7788)+v(223)*v(7956)+v(228)*v(7957)+v(227)*v(7958)+v(1655)*v(7988)+v(1685)*v(7989)+v(1719)*v(7990))) v(3242)=v(7495)*(v(3212)*v(3235)+v(3193)*(v(1572)*v(357)+v(1599)*v(361)+v(1625)*v(365)+v(3104)*v(7786)+v(3126)*v(7787)& &+v(3148)*v(7788)+v(223)*v(7959)+v(228)*v(7960)+v(227)*v(7961)+v(1653)*v(7988)+v(1683)*v(7989)+v(1717)*v(7990))) v(3241)=v(7495)*(v(3211)*v(3235)+v(3193)*(v(1571)*v(357)+v(1598)*v(361)+v(1624)*v(365)+v(3102)*v(7786)+v(3191)*v(7787)& &+v(3146)*v(7788)+v(223)*v(7962)+v(228)*v(7963)+v(227)*v(7964)+v(1652)*v(7988)+v(1682)*v(7989)+v(1716)*v(7990))) v(3240)=v(7495)*(v(3210)*v(3235)+v(3193)*(v(1570)*v(357)+v(1597)*v(361)+v(1623)*v(365)+v(3100)*v(7786)+v(3122)*v(7787)& &+v(3192)*v(7788)+v(223)*v(7965)+v(228)*v(7966)+v(227)*v(7967)+v(1651)*v(7988)+v(1681)*v(7989)+v(1713)*v(7990))) v(3239)=v(7495)*(v(3209)*v(3235)+v(3193)*(v(1569)*v(357)+v(1596)*v(361)+v(1622)*v(365)+v(3190)*v(7786)+v(3120)*v(7787)& &+v(3142)*v(7788)+v(223)*v(7968)+v(228)*v(7969)+v(227)*v(7970)+v(1650)*v(7988)+v(1680)*v(7989)+v(1712)*v(7990))) v(3238)=v(7495)*(v(3208)*v(3235)+v(3193)*(v(227)*v(3170)+v(228)*v(3181)+v(1568)*v(357)+v(1595)*v(361)+v(1621)*v(365)+v& &(3096)*v(7786)+v(3118)*v(7787)+v(3140)*v(7788)+v(223)*v(7971)+v(1649)*v(7988)+v(1677)*v(7989)+v(1709)*v(7990))) v(3237)=v(7495)*(v(3207)*v(3235)+v(3193)*(v(223)*v(3158)+v(228)*v(3180)+v(1566)*v(357)+v(1593)*v(361)+v(1619)*v(365)+v& &(3094)*v(7786)+v(3116)*v(7787)+v(3138)*v(7788)+v(227)*v(7972)+v(1647)*v(7988)+v(1675)*v(7989)+v(1707)*v(7990))) v(3236)=v(7495)*(v(3205)*v(3235)+v(3193)*(v(1565)*v(357)+v(1591)*v(361)+v(1618)*v(365)+v(3092)*v(7786)+v(3114)*v(7787)& &+v(3136)*v(7788)+v(223)*v(7973)+v(228)*v(7974)+v(227)*v(7975)+v(1644)*v(7988)+v(1672)*v(7989)+v(1704)*v(7990))) v(3234)=v(7495)*(v(3216)*v(3217)+v(3193)*(v(1630)*v(7531)+v(1658)*v(7991)+v(1690)*v(7992)+v(1726)*v(7993)+v(1577)*x(7)& &+v(1604)*x(8))) v(3233)=v(7495)*(v(3215)*v(3217)+v(3193)*(v(1629)*v(7531)+v(1657)*v(7991)+v(1688)*v(7992)+v(1724)*v(7993)+v(1576)*x(7)& &+v(1603)*x(8))) v(3232)=v(7495)*(v(3214)*v(3217)+v(3193)*(v(1627)*v(7531)+v(1656)*v(7991)+v(1687)*v(7992)+v(1721)*v(7993)+v(1575)*x(7)& &+v(1602)*x(8))) v(3231)=v(7495)*(v(3213)*v(3217)+v(3193)*(v(1626)*v(7531)+v(1655)*v(7991)+v(1685)*v(7992)+v(1719)*v(7993)+v(1573)*x(7)& &+v(1600)*x(8))) v(3230)=v(7495)*(v(3212)*v(3217)+v(3193)*(v(1625)*v(7531)+v(1653)*v(7991)+v(1683)*v(7992)+v(1717)*v(7993)+v(1572)*x(7)& &+v(1599)*x(8))) v(3227)=2d0*v(3193)*v(7495) v(8004)=v(3227)/2d0 v(3229)=v(230)*v(3227) v(7997)=-(v(3229)*v(7996)) v(7995)=v(3229)*v(7994) v(3570)=v(229)*v(7995) v(8024)=v(232)*v(3570) v(5433)=v(3570)*v(7522) v(3553)=v(228)*v(7995) v(3535)=v(227)*v(7995) v(3518)=v(223)*v(7995) v(3316)=v(229)*v(7997) v(8012)=v(232)*v(3316) v(4391)=v(3316)*v(7522) v(3300)=v(228)*v(7997) v(3284)=v(227)*v(7997) v(3268)=v(223)*v(7997) v(3228)=v(231)*v(3227) v(7999)=-(v(3228)*v(7996)) v(7998)=v(3228)*v(7994) v(3602)=v(230)*v(7998) v(8020)=v(232)*v(3602) v(5436)=v(3602)*v(7522) v(8092)=720d0*v(5436) v(3569)=v(229)*v(7998) v(8021)=v(232)*v(3569) v(5197)=v(3569)*v(7522) v(3552)=v(228)*v(7998) v(3534)=v(227)*v(7998) v(3517)=v(223)*v(7998) v(3348)=v(230)*v(7999) v(8008)=v(232)*v(3348) v(4394)=v(3348)*v(7522) v(8058)=720d0*v(4394) v(3315)=v(229)*v(7999) v(4155)=v(3315)*v(7522) v(3299)=v(228)*v(7999) v(3283)=v(227)*v(7999) v(3267)=v(223)*v(7999) v(3226)=v(229)*v(3227) v(8001)=-(v(3226)*v(7996)) v(8000)=v(3226)*v(7994) v(3551)=v(228)*v(8000) v(3533)=v(227)*v(8000) v(3516)=v(223)*v(8000) v(3298)=v(228)*v(8001) v(3282)=v(227)*v(8001) v(3266)=v(223)*v(8001) v(3225)=(v(227)-v(228))*v(8004) v(8003)=-(v(3225)*v(7996)) v(8002)=v(3225)*v(7994) v(3635)=v(231)*v(8002) v(3601)=v(230)*v(8002) v(3566)=v(229)*v(8002) v(3515)=v(223)*v(8002) v(3380)=v(231)*v(8003) v(3347)=v(230)*v(8003) v(3313)=v(229)*v(8003) v(3265)=v(223)*v(8003) v(3224)=(v(223)-v(228))*v(8004) v(8006)=-(v(3224)*v(7996)) v(8005)=v(3224)*v(7994) v(3634)=v(231)*v(8005) v(3600)=v(230)*v(8005) v(3565)=v(229)*v(8005) v(3530)=v(227)*v(8005) v(3379)=v(231)*v(8006) v(3346)=v(230)*v(8006) v(3312)=v(229)*v(8006) v(3280)=v(227)*v(8006) v(3223)=v(7495)*(v(3211)*v(3217)+v(3193)*(v(1624)*v(7531)+v(1652)*v(7991)+v(1682)*v(7992)+v(1716)*v(7993)+v(1571)*x(7)& &+v(1598)*x(8))) v(3222)=v(7495)*(v(3210)*v(3217)+v(3193)*(v(1623)*v(7531)+v(1651)*v(7991)+v(1681)*v(7992)+v(1713)*v(7993)+v(1570)*x(7)& &+v(1597)*x(8))) v(3221)=v(7495)*(v(3209)*v(3217)+v(3193)*(v(1622)*v(7531)+v(1650)*v(7991)+v(1680)*v(7992)+v(1712)*v(7993)+v(1569)*x(7)& &+v(1596)*x(8))) v(3220)=v(7495)*(v(3208)*v(3217)+v(3193)*(v(1621)*v(7531)+v(1649)*v(7991)+v(1677)*v(7992)+v(1709)*v(7993)+v(1568)*x(7)& &+v(1595)*x(8))) v(3219)=v(7495)*(v(3207)*v(3217)+v(3193)*(v(1619)*v(7531)+v(1647)*v(7991)+v(1675)*v(7992)+v(1707)*v(7993)+v(1566)*x(7)& &+v(1593)*x(8))) v(3218)=v(7495)*(v(3205)*v(3217)+v(3193)*(v(1618)*v(7531)+v(1644)*v(7991)+v(1672)*v(7992)+v(1704)*v(7993)+v(1565)*x(7)& &+v(1591)*x(8))) v(387)=(v(3217)*v(3227))/2d0 v(3642)=-v(1726)+v(7994)*(v(231)*v(3234)+v(1726)*v(387)+v(3257)*x(10)) v(3641)=-v(1724)+v(7994)*(v(231)*v(3233)+v(1724)*v(387)+v(3256)*x(10)) v(3640)=-v(1721)+v(7994)*(v(231)*v(3232)+v(1721)*v(387)+v(3255)*x(10)) v(3639)=-v(1719)+v(7994)*(v(231)*v(3231)+v(1719)*v(387)+v(3254)*x(10)) v(3638)=-v(1717)+v(7994)*(v(231)*v(3230)+v(1717)*v(387)+v(3253)*x(10)) v(3633)=-v(1716)+v(7994)*(v(231)*v(3223)+v(1716)*v(387)+v(3252)*x(10)) v(3632)=-v(1713)+v(7994)*(v(231)*v(3222)+v(1713)*v(387)+v(3251)*x(10)) v(3631)=-v(1712)+v(7994)*(v(231)*v(3221)+v(1712)*v(387)+v(3250)*x(10)) v(3630)=-v(1709)+v(7994)*(v(231)*v(3220)+v(1709)*v(387)+v(3249)*x(10)) v(3629)=-v(1707)+v(7994)*(v(231)*v(3219)+v(1707)*v(387)+v(3248)*x(10)) v(3628)=-v(1704)+v(7994)*(v(231)*v(3218)+v(1704)*v(387)+v(3247)*x(10)) v(3609)=-v(1690)+v(7994)*(v(230)*v(3234)+v(1690)*v(387)+v(3257)*x(11)) v(3608)=-v(1688)+v(7994)*(v(230)*v(3233)+v(1688)*v(387)+v(3256)*x(11)) v(3607)=-v(1687)+v(7994)*(v(230)*v(3232)+v(1687)*v(387)+v(3255)*x(11)) v(3606)=-v(1685)+v(7994)*(v(230)*v(3231)+v(1685)*v(387)+v(3254)*x(11)) v(3605)=-v(1683)+v(7994)*(v(230)*v(3230)+v(1683)*v(387)+v(3253)*x(11)) v(3599)=-v(1682)+v(7994)*(v(230)*v(3223)+v(1682)*v(387)+v(3252)*x(11)) v(3598)=-v(1681)+v(7994)*(v(230)*v(3222)+v(1681)*v(387)+v(3251)*x(11)) v(3597)=-v(1680)+v(7994)*(v(230)*v(3221)+v(1680)*v(387)+v(3250)*x(11)) v(3596)=-v(1677)+v(7994)*(v(230)*v(3220)+v(1677)*v(387)+v(3249)*x(11)) v(3595)=-v(1675)+v(7994)*(v(230)*v(3219)+v(1675)*v(387)+v(3248)*x(11)) v(3594)=-v(1672)+v(7994)*(v(230)*v(3218)+v(1672)*v(387)+v(3247)*x(11)) v(3575)=-v(1658)+v(7994)*(v(229)*v(3234)+v(1658)*v(387)+v(3257)*x(9)) v(3574)=-v(1657)+v(7994)*(v(229)*v(3233)+v(1657)*v(387)+v(3256)*x(9)) v(3573)=-v(1656)+v(7994)*(v(229)*v(3232)+v(1656)*v(387)+v(3255)*x(9)) v(3572)=-v(1655)+v(7994)*(v(229)*v(3231)+v(1655)*v(387)+v(3254)*x(9)) v(3571)=-v(1653)+v(7994)*(v(229)*v(3230)+v(1653)*v(387)+v(3253)*x(9)) v(3564)=-v(1652)+v(7994)*(v(229)*v(3223)+v(1652)*v(387)+v(3252)*x(9)) v(3563)=-v(1651)+v(7994)*(v(229)*v(3222)+v(1651)*v(387)+v(3251)*x(9)) v(3562)=-v(1650)+v(7994)*(v(229)*v(3221)+v(1650)*v(387)+v(3250)*x(9)) v(3561)=-v(1649)+v(7994)*(v(229)*v(3220)+v(1649)*v(387)+v(3249)*x(9)) v(3560)=-v(1647)+v(7994)*(v(229)*v(3219)+v(1647)*v(387)+v(3248)*x(9)) v(3559)=-v(1644)+v(7994)*(v(229)*v(3218)+v(1644)*v(387)+v(3247)*x(9)) v(3558)=-v(1630)+(v(228)*v(3234)+v(1630)*v(387)+v(3257)*v(7531))*v(7994) v(3557)=-v(1629)+(v(228)*v(3233)+v(1629)*v(387)+v(3256)*v(7531))*v(7994) v(3556)=-v(1627)+(v(228)*v(3232)+v(1627)*v(387)+v(3255)*v(7531))*v(7994) v(3555)=-v(1626)+(v(228)*v(3231)+v(1626)*v(387)+v(3254)*v(7531))*v(7994) v(3554)=-v(1625)+(v(228)*v(3230)+v(1625)*v(387)+v(3253)*v(7531))*v(7994) v(3546)=-v(1624)+(v(228)*v(3223)+v(1624)*v(387)+v(3252)*v(7531))*v(7994) v(3545)=-v(1623)+(v(228)*v(3222)+v(1623)*v(387)+v(3251)*v(7531))*v(7994) v(3544)=-v(1622)+(v(228)*v(3221)+v(1622)*v(387)+v(3250)*v(7531))*v(7994) v(3543)=-v(1621)+(v(228)*v(3220)+v(1621)*v(387)+v(3249)*v(7531))*v(7994) v(3542)=-v(1619)+(v(228)*v(3219)+v(1619)*v(387)+v(3248)*v(7531))*v(7994) v(3541)=-v(1618)+(v(228)*v(3218)+v(1618)*v(387)+v(3247)*v(7531))*v(7994) v(8098)=v(3541)*v(7522) v(3540)=-v(1604)+v(7994)*(v(227)*v(3234)+v(1604)*v(387)+v(3257)*x(8)) v(3539)=-v(1603)+v(7994)*(v(227)*v(3233)+v(1603)*v(387)+v(3256)*x(8)) v(3538)=-v(1602)+v(7994)*(v(227)*v(3232)+v(1602)*v(387)+v(3255)*x(8)) v(3537)=-v(1600)+v(7994)*(v(227)*v(3231)+v(1600)*v(387)+v(3254)*x(8)) v(3536)=-v(1599)+v(7994)*(v(227)*v(3230)+v(1599)*v(387)+v(3253)*x(8)) v(3529)=-v(1598)+v(7994)*(v(227)*v(3223)+v(1598)*v(387)+v(3252)*x(8)) v(3528)=-v(1597)+v(7994)*(v(227)*v(3222)+v(1597)*v(387)+v(3251)*x(8)) v(3527)=-v(1596)+v(7994)*(v(227)*v(3221)+v(1596)*v(387)+v(3250)*x(8)) v(3526)=-v(1595)+v(7994)*(v(227)*v(3220)+v(1595)*v(387)+v(3249)*x(8)) v(3525)=-v(1593)+v(7994)*(v(227)*v(3219)+v(1593)*v(387)+v(3248)*x(8)) v(3524)=-v(1591)+v(7994)*(v(227)*v(3218)+v(1591)*v(387)+v(3247)*x(8)) v(8091)=v(3524)*v(7522) v(3523)=-v(1577)+v(7994)*(v(223)*v(3234)+v(1577)*v(387)+v(3257)*x(7)) v(3522)=-v(1576)+v(7994)*(v(223)*v(3233)+v(1576)*v(387)+v(3256)*x(7)) v(3521)=-v(1575)+v(7994)*(v(223)*v(3232)+v(1575)*v(387)+v(3255)*x(7)) v(3520)=-v(1573)+v(7994)*(v(223)*v(3231)+v(1573)*v(387)+v(3254)*x(7)) v(3519)=-v(1572)+v(7994)*(v(223)*v(3230)+v(1572)*v(387)+v(3253)*x(7)) v(3512)=-v(1571)+v(7994)*(v(223)*v(3223)+v(1571)*v(387)+v(3252)*x(7)) v(3511)=-v(1570)+v(7994)*(v(223)*v(3222)+v(1570)*v(387)+v(3251)*x(7)) v(3510)=-v(1569)+v(7994)*(v(223)*v(3221)+v(1569)*v(387)+v(3250)*x(7)) v(3509)=-v(1568)+v(7994)*(v(223)*v(3220)+v(1568)*v(387)+v(3249)*x(7)) v(3508)=-v(1566)+v(7994)*(v(223)*v(3219)+v(1566)*v(387)+v(3248)*x(7)) v(3507)=-v(1565)+v(7994)*(v(223)*v(3218)+v(1565)*v(387)+v(3247)*x(7)) v(8079)=v(3507)*v(7522) v(378)=(v(3227)*v(3235))/2d0 v(377)=v(7790)*v(7987) v(3636)=-(v(231)*v(3228))-v(377) v(3637)=-(v(3636)*v(7994)) v(3603)=-(v(230)*v(3229))-v(377) v(3604)=-(v(3603)*v(7994)) v(3567)=-(v(229)*v(3226))-v(377) v(3568)=-(v(3567)*v(7994)) v(3549)=-(v(228)*v(3225))+v(377) v(3550)=-(v(3549)*v(7994)) v(3547)=-(v(228)*v(3224))+v(377) v(3548)=-(v(3547)*v(7994)) v(3531)=-(v(227)*v(3225))-v(377) v(3532)=-(v(3531)*v(7994)) v(3513)=-(v(223)*v(3224))-v(377) v(3514)=-(v(3513)*v(7994)) v(3386)=-v(1726)+(v(231)*v(3246)+v(3257)*v(368)+v(3156)*v(377)+v(1726)*v(378))*v(7996) v(3385)=-v(1724)+(v(231)*v(3245)+v(3256)*v(368)+v(3154)*v(377)+v(1724)*v(378))*v(7996) v(3384)=-v(1721)+(v(231)*v(3244)+v(3255)*v(368)+v(3152)*v(377)+v(1721)*v(378))*v(7996) v(3383)=-v(1719)+(v(231)*v(3243)+v(3254)*v(368)+v(3150)*v(377)+v(1719)*v(378))*v(7996) v(3382)=-v(1717)+(v(231)*v(3242)+v(3253)*v(368)+v(3148)*v(377)+v(1717)*v(378))*v(7996) v(3381)=v(3636)*v(7996) v(3378)=-v(1716)+(v(231)*v(3241)+v(3252)*v(368)+v(3146)*v(377)+v(1716)*v(378))*v(7996) v(3377)=-v(1713)+(v(231)*v(3240)+v(3251)*v(368)+v(3192)*v(377)+v(1713)*v(378))*v(7996) v(3376)=-v(1712)+(v(231)*v(3239)+v(3250)*v(368)+v(3142)*v(377)+v(1712)*v(378))*v(7996) v(3375)=-v(1709)+(v(231)*v(3238)+v(3249)*v(368)+v(3140)*v(377)+v(1709)*v(378))*v(7996) v(3374)=-v(1707)+(v(231)*v(3237)+v(3248)*v(368)+v(3138)*v(377)+v(1707)*v(378))*v(7996) v(3373)=-v(1704)+(v(231)*v(3236)+v(3247)*v(368)+v(3136)*v(377)+v(1704)*v(378))*v(7996) v(3354)=-v(1690)+(v(230)*v(3246)+v(3257)*v(367)+v(3134)*v(377)+v(1690)*v(378))*v(7996) v(3353)=-v(1688)+(v(230)*v(3245)+v(3256)*v(367)+v(3132)*v(377)+v(1688)*v(378))*v(7996) v(3352)=-v(1687)+(v(230)*v(3244)+v(3255)*v(367)+v(3130)*v(377)+v(1687)*v(378))*v(7996) v(3351)=-v(1685)+(v(230)*v(3243)+v(3254)*v(367)+v(3128)*v(377)+v(1685)*v(378))*v(7996) v(3350)=-v(1683)+(v(230)*v(3242)+v(3253)*v(367)+v(3126)*v(377)+v(1683)*v(378))*v(7996) v(3349)=v(3603)*v(7996) v(3345)=-v(1682)+(v(230)*v(3241)+v(3252)*v(367)+v(3191)*v(377)+v(1682)*v(378))*v(7996) v(3344)=-v(1681)+(v(230)*v(3240)+v(3251)*v(367)+v(3122)*v(377)+v(1681)*v(378))*v(7996) v(3343)=-v(1680)+(v(230)*v(3239)+v(3250)*v(367)+v(3120)*v(377)+v(1680)*v(378))*v(7996) v(3342)=-v(1677)+(v(230)*v(3238)+v(3249)*v(367)+v(3118)*v(377)+v(1677)*v(378))*v(7996) v(3341)=-v(1675)+(v(230)*v(3237)+v(3248)*v(367)+v(3116)*v(377)+v(1675)*v(378))*v(7996) v(3340)=-v(1672)+(v(230)*v(3236)+v(3247)*v(367)+v(3114)*v(377)+v(1672)*v(378))*v(7996) v(3321)=-v(1658)+(v(229)*v(3246)+v(3257)*v(366)+v(3112)*v(377)+v(1658)*v(378))*v(7996) v(3320)=-v(1657)+(v(229)*v(3245)+v(3256)*v(366)+v(3110)*v(377)+v(1657)*v(378))*v(7996) v(3319)=-v(1656)+(v(229)*v(3244)+v(3255)*v(366)+v(3108)*v(377)+v(1656)*v(378))*v(7996) v(3318)=-v(1655)+(v(229)*v(3243)+v(3254)*v(366)+v(3106)*v(377)+v(1655)*v(378))*v(7996) v(3317)=-v(1653)+(v(229)*v(3242)+v(3253)*v(366)+v(3104)*v(377)+v(1653)*v(378))*v(7996) v(3314)=v(3567)*v(7996) v(3311)=-v(1652)+(v(229)*v(3241)+v(3252)*v(366)+v(3102)*v(377)+v(1652)*v(378))*v(7996) v(3310)=-v(1651)+(v(229)*v(3240)+v(3251)*v(366)+v(3100)*v(377)+v(1651)*v(378))*v(7996) v(3309)=-v(1650)+(v(229)*v(3239)+v(3250)*v(366)+v(3190)*v(377)+v(1650)*v(378))*v(7996) v(3308)=-v(1649)+(v(229)*v(3238)+v(3249)*v(366)+v(3096)*v(377)+v(1649)*v(378))*v(7996) v(3307)=-v(1647)+(v(229)*v(3237)+v(3248)*v(366)+v(3094)*v(377)+v(1647)*v(378))*v(7996) v(3306)=-v(1644)+(v(229)*v(3236)+v(3247)*v(366)+v(3092)*v(377)+v(1644)*v(378))*v(7996) v(3305)=-v(1630)+(v(228)*v(3246)+v(3257)*v(365)+v(1630)*v(378)+v(377)*v(7948))*v(7996) v(3304)=-v(1629)+(v(228)*v(3245)+v(3256)*v(365)+v(1629)*v(378)+v(377)*v(7951))*v(7996) v(3303)=-v(1627)+(v(228)*v(3244)+v(3255)*v(365)+v(1627)*v(378)+v(377)*v(7954))*v(7996) v(3302)=-v(1626)+(v(228)*v(3243)+v(3254)*v(365)+v(1626)*v(378)+v(377)*v(7957))*v(7996) v(3301)=-v(1625)+(v(228)*v(3242)+v(3253)*v(365)+v(1625)*v(378)+v(377)*v(7960))*v(7996) v(3297)=v(3549)*v(7996) v(3296)=v(3547)*v(7996) v(3295)=-v(1624)+(v(228)*v(3241)+v(3252)*v(365)+v(1624)*v(378)+v(377)*v(7963))*v(7996) v(3294)=-v(1623)+(v(228)*v(3240)+v(3251)*v(365)+v(1623)*v(378)+v(377)*v(7966))*v(7996) v(3293)=-v(1622)+(v(228)*v(3239)+v(3250)*v(365)+v(1622)*v(378)+v(377)*v(7969))*v(7996) v(3292)=-v(1621)+(v(228)*v(3238)+v(3249)*v(365)+v(3181)*v(377)+v(1621)*v(378))*v(7996) v(3291)=-v(1619)+(v(228)*v(3237)+v(3248)*v(365)+v(3180)*v(377)+v(1619)*v(378))*v(7996) v(3290)=-v(1618)+(v(228)*v(3236)+v(3247)*v(365)+v(1618)*v(378)+v(377)*v(7974))*v(7996) v(8064)=v(3290)*v(7522) v(3289)=-v(1604)+(v(227)*v(3246)+v(3257)*v(361)+v(1604)*v(378)+v(377)*v(7949))*v(7996) v(3288)=-v(1603)+(v(227)*v(3245)+v(3256)*v(361)+v(1603)*v(378)+v(377)*v(7952))*v(7996) v(3287)=-v(1602)+(v(227)*v(3244)+v(3255)*v(361)+v(1602)*v(378)+v(377)*v(7955))*v(7996) v(3286)=-v(1600)+(v(227)*v(3243)+v(3254)*v(361)+v(1600)*v(378)+v(377)*v(7958))*v(7996) v(3285)=-v(1599)+(v(227)*v(3242)+v(3253)*v(361)+v(1599)*v(378)+v(377)*v(7961))*v(7996) v(3281)=v(3531)*v(7996) v(3279)=-v(1598)+(v(227)*v(3241)+v(3252)*v(361)+v(1598)*v(378)+v(377)*v(7964))*v(7996) v(3278)=-v(1597)+(v(227)*v(3240)+v(3251)*v(361)+v(1597)*v(378)+v(377)*v(7967))*v(7996) v(3277)=-v(1596)+(v(227)*v(3239)+v(3250)*v(361)+v(1596)*v(378)+v(377)*v(7970))*v(7996) v(3276)=-v(1595)+(v(227)*v(3238)+v(3249)*v(361)+v(3170)*v(377)+v(1595)*v(378))*v(7996) v(3275)=-v(1593)+(v(227)*v(3237)+v(3248)*v(361)+v(1593)*v(378)+v(377)*v(7972))*v(7996) v(3274)=-v(1591)+(v(227)*v(3236)+v(3247)*v(361)+v(1591)*v(378)+v(377)*v(7975))*v(7996) v(8057)=v(3274)*v(7522) v(3273)=-v(1577)+(v(223)*v(3246)+v(3257)*v(357)+v(1577)*v(378)+v(377)*v(7947))*v(7996) v(3272)=-v(1576)+(v(223)*v(3245)+v(3256)*v(357)+v(1576)*v(378)+v(377)*v(7950))*v(7996) v(3271)=-v(1575)+(v(223)*v(3244)+v(3255)*v(357)+v(1575)*v(378)+v(377)*v(7953))*v(7996) v(3270)=-v(1573)+(v(223)*v(3243)+v(3254)*v(357)+v(1573)*v(378)+v(377)*v(7956))*v(7996) v(3269)=-v(1572)+(v(223)*v(3242)+v(3253)*v(357)+v(1572)*v(378)+v(377)*v(7959))*v(7996) v(3264)=v(3513)*v(7996) v(3263)=-v(1571)+(v(223)*v(3241)+v(3252)*v(357)+v(1571)*v(378)+v(377)*v(7962))*v(7996) v(3262)=-v(1570)+(v(223)*v(3240)+v(3251)*v(357)+v(1570)*v(378)+v(377)*v(7965))*v(7996) v(3261)=-v(1569)+(v(223)*v(3239)+v(3250)*v(357)+v(1569)*v(378)+v(377)*v(7968))*v(7996) v(3260)=-v(1568)+(v(223)*v(3238)+v(3249)*v(357)+v(1568)*v(378)+v(377)*v(7971))*v(7996) v(3259)=-v(1566)+(v(223)*v(3237)+v(3248)*v(357)+v(3158)*v(377)+v(1566)*v(378))*v(7996) v(3258)=-v(1565)+(v(223)*v(3236)+v(3247)*v(357)+v(1565)*v(378)+v(377)*v(7973))*v(7996) v(8045)=v(3258)*v(7522) v(376)=-v(223)+(v(357)*v(377)+v(223)*v(378))*v(7996) v(8037)=v(376)*v(7518)+v(8045) v(8036)=v(376)*v(7522) v(3765)=v(376)*v(8007) v(3763)=(v(376)*v(376)) v(3479)=(v(3315)*v(3765))/2d0 v(379)=-v(227)+(v(361)*v(377)+v(227)*v(378))*v(7996) v(8052)=v(379)*v(7518)+v(8057) v(8051)=v(379)*v(7522) v(8011)=v(376)+v(379) v(4183)=v(379)*v(8007) v(4181)=(v(379)*v(379)) v(3448)=v(379)*v(8012) v(380)=-v(228)+(v(365)*v(377)+v(228)*v(378))*v(7996) v(8062)=v(380)*v(7518)+v(8064) v(8061)=v(380)*v(7522) v(8013)=v(379)+v(380) v(8010)=v(376)+v(380) v(4453)=v(380)*v(8007) v(4451)=(v(380)*v(380)) v(3484)=v(380)*v(8008) v(381)=-v(229)+(v(366)*v(377)+v(229)*v(378))*v(7996) v(8035)=v(381)*v(7518)+v(3306)*v(7522) v(8017)=v(381)*v(7522) v(3482)=v(381)*v(8008) v(3324)=v(381)*v(8007) v(3339)=v(3321)*v(3324) v(3338)=v(3320)*v(3324) v(3337)=v(3319)*v(3324) v(3336)=v(3318)*v(3324) v(3335)=v(3317)*v(3324) v(3334)=v(3316)*v(3324) v(3333)=v(3315)*v(3324) v(3332)=v(3314)*v(3324) v(3331)=v(3313)*v(3324) v(3330)=v(3312)*v(3324) v(3329)=v(3311)*v(3324) v(3328)=v(3310)*v(3324) v(3327)=v(3309)*v(3324) v(3326)=v(3308)*v(3324) v(3325)=v(3307)*v(3324) v(3322)=(v(381)*v(381)) v(3323)=v(1738)*v(3322)+v(3306)*v(3324) v(410)=v(232)*v(3322) v(382)=-v(230)+(v(367)*v(377)+v(230)*v(378))*v(7996) v(8050)=v(382)*v(7518)+v(3340)*v(7522) v(8015)=v(382)*v(7522) v(8009)=v(232)*v(382) v(3481)=v(3315)*v(8009) v(3357)=2d0*v(8009) v(3372)=v(3354)*v(3357) v(4198)=v(3339)+v(3372)+v(3289)*v(4183) v(3371)=v(3353)*v(3357) v(4197)=v(3338)+v(3371)+v(3288)*v(4183) v(3370)=v(3352)*v(3357) v(4196)=v(3337)+v(3370)+v(3287)*v(4183) v(3369)=v(3351)*v(3357) v(4195)=v(3336)+v(3369)+v(3286)*v(4183) v(3368)=v(3350)*v(3357) v(4194)=v(3335)+v(3368)+v(3285)*v(4183) v(3367)=v(3349)*v(3357) v(4193)=v(3334)+v(3367)+v(3284)*v(4183) v(3366)=v(3348)*v(3357) v(4192)=v(3333)+v(3366)+v(3283)*v(4183) v(3365)=v(3316)*v(3357) v(4191)=v(3332)+v(3365)+v(3282)*v(4183) v(3364)=v(3347)*v(3357) v(4190)=v(3331)+v(3364)+v(3281)*v(4183) v(3363)=v(3346)*v(3357) v(4189)=v(3330)+v(3363)+v(3280)*v(4183) v(3362)=v(3345)*v(3357) v(4188)=v(3329)+v(3362)+v(3279)*v(4183) v(3361)=v(3344)*v(3357) v(4187)=v(3328)+v(3361)+v(3278)*v(4183) v(3360)=v(3343)*v(3357) v(4186)=v(3327)+v(3360)+v(3277)*v(4183) v(3359)=v(3342)*v(3357) v(4185)=v(3326)+v(3359)+v(3276)*v(4183) v(3358)=v(3341)*v(3357) v(4184)=v(3325)+v(3358)+v(3275)*v(4183) v(3355)=(v(382)*v(382)) v(3356)=v(1738)*v(3355)+v(3340)*v(3357) v(4182)=v(3323)+v(3356)+v(1738)*v(4181)+v(3274)*v(4183) v(427)=v(232)*v(3355) v(383)=-v(231)+(v(368)*v(377)+v(231)*v(378))*v(7996) v(8033)=v(383)*v(7518)+v(3373)*v(7522) v(8019)=v(383)*v(7522) v(8018)=v(381)*v(382)+v(383)*v(8010) v(8016)=v(382)*v(383)+v(381)*v(8011) v(8014)=v(381)*v(383)+v(382)*v(8013) v(3490)=v(232)*(v(3354)*v(381)+v(3321)*v(382)+(v(3273)+v(3305))*v(383)+v(3386)*v(8010)) v(3489)=v(232)*(v(3353)*v(381)+v(3320)*v(382)+(v(3272)+v(3304))*v(383)+v(3385)*v(8010)) v(3488)=v(232)*(v(3352)*v(381)+v(3319)*v(382)+(v(3271)+v(3303))*v(383)+v(3384)*v(8010)) v(3487)=v(232)*(v(3351)*v(381)+v(3318)*v(382)+(v(3270)+v(3302))*v(383)+v(3383)*v(8010)) v(3486)=v(232)*(v(3350)*v(381)+v(3317)*v(382)+(v(3269)+v(3301))*v(383)+v(3382)*v(8010)) v(3485)=v(3484)+v(232)*(v(3348)*v(376)+v(3349)*v(381)+v(3316)*v(382)+(v(3268)+v(3300))*v(383)) v(3483)=v(3481)+v(3482)+v(232)*((v(3267)+v(3299))*v(383)+v(3381)*v(8010)) v(3480)=v(3479)+v(232)*(v(3315)*v(380)+v(3316)*v(381)+v(3314)*v(382)+(v(3266)+v(3298))*v(383)) v(3478)=v(232)*(v(3347)*v(381)+v(3313)*v(382)+(v(3265)+v(3297))*v(383)+v(3380)*v(8010)) v(3477)=v(232)*(v(3346)*v(381)+v(3312)*v(382)+(v(3264)+v(3296))*v(383)+v(3379)*v(8010)) v(3476)=v(232)*(v(3345)*v(381)+v(3311)*v(382)+(v(3263)+v(3295))*v(383)+v(3378)*v(8010)) v(3475)=v(232)*(v(3344)*v(381)+v(3310)*v(382)+(v(3262)+v(3294))*v(383)+v(3377)*v(8010)) v(3474)=v(232)*(v(3343)*v(381)+v(3309)*v(382)+(v(3261)+v(3293))*v(383)+v(3376)*v(8010)) v(3473)=v(232)*(v(3342)*v(381)+v(3308)*v(382)+(v(3260)+v(3292))*v(383)+v(3375)*v(8010)) v(3472)=v(232)*(v(3341)*v(381)+v(3307)*v(382)+(v(3259)+v(3291))*v(383)+v(3374)*v(8010)) v(3471)=v(232)*(v(3340)*v(381)+v(3306)*v(382)+(v(3258)+v(3290))*v(383)+v(3373)*v(8010))+v(1738)*v(8018) v(3454)=v(232)*((v(3273)+v(3289))*v(381)+v(3386)*v(382)+v(3354)*v(383)+v(3321)*v(8011)) v(3453)=v(232)*((v(3272)+v(3288))*v(381)+v(3385)*v(382)+v(3353)*v(383)+v(3320)*v(8011)) v(3452)=v(232)*((v(3271)+v(3287))*v(381)+v(3384)*v(382)+v(3352)*v(383)+v(3319)*v(8011)) v(3451)=v(232)*((v(3270)+v(3286))*v(381)+v(3383)*v(382)+v(3351)*v(383)+v(3318)*v(8011)) v(3450)=v(232)*((v(3269)+v(3285))*v(381)+v(3382)*v(382)+v(3350)*v(383)+v(3317)*v(8011)) v(3449)=v(3448)+v(232)*(v(3316)*v(376)+(v(3268)+v(3284))*v(381)+v(3348)*v(382)+v(3349)*v(383)) v(3447)=v(3479)+v(232)*(v(3315)*v(379)+(v(3267)+v(3283))*v(381)+v(3381)*v(382)+v(3348)*v(383)) v(3445)=v(383)*v(8012) v(3446)=v(3445)+v(3481)+v(232)*((v(3266)+v(3282))*v(381)+v(3314)*v(8011)) v(3444)=v(232)*((v(3265)+v(3281))*v(381)+v(3380)*v(382)+v(3347)*v(383)+v(3313)*v(8011)) v(3443)=v(232)*((v(3264)+v(3280))*v(381)+v(3379)*v(382)+v(3346)*v(383)+v(3312)*v(8011)) v(3442)=v(232)*((v(3263)+v(3279))*v(381)+v(3378)*v(382)+v(3345)*v(383)+v(3311)*v(8011)) v(3441)=v(232)*((v(3262)+v(3278))*v(381)+v(3377)*v(382)+v(3344)*v(383)+v(3310)*v(8011)) v(3440)=v(232)*((v(3261)+v(3277))*v(381)+v(3376)*v(382)+v(3343)*v(383)+v(3309)*v(8011)) v(3439)=v(232)*((v(3260)+v(3276))*v(381)+v(3375)*v(382)+v(3342)*v(383)+v(3308)*v(8011)) v(3438)=v(232)*((v(3259)+v(3275))*v(381)+v(3374)*v(382)+v(3341)*v(383)+v(3307)*v(8011)) v(3437)=v(232)*((v(3258)+v(3274))*v(381)+v(3373)*v(382)+v(3340)*v(383)+v(3306)*v(8011))+v(1738)*v(8016) v(3420)=v(232)*(v(3386)*v(381)+(v(3289)+v(3305))*v(382)+v(3321)*v(383)+v(3354)*v(8013)) v(3419)=v(232)*(v(3385)*v(381)+(v(3288)+v(3304))*v(382)+v(3320)*v(383)+v(3353)*v(8013)) v(3418)=v(232)*(v(3384)*v(381)+(v(3287)+v(3303))*v(382)+v(3319)*v(383)+v(3352)*v(8013)) v(3417)=v(232)*(v(3383)*v(381)+(v(3286)+v(3302))*v(382)+v(3318)*v(383)+v(3351)*v(8013)) v(3416)=v(232)*(v(3382)*v(381)+(v(3285)+v(3301))*v(382)+v(3317)*v(383)+v(3350)*v(8013)) v(3415)=v(3445)+v(3482)+v(232)*((v(3284)+v(3300))*v(382)+v(3349)*v(8013)) v(3414)=v(3484)+v(232)*(v(3348)*v(379)+v(3381)*v(381)+(v(3283)+v(3299))*v(382)+v(3315)*v(383)) v(3413)=v(3448)+v(232)*(v(3316)*v(380)+v(3315)*v(381)+(v(3282)+v(3298))*v(382)+v(3314)*v(383)) v(3412)=v(232)*(v(3380)*v(381)+(v(3281)+v(3297))*v(382)+v(3313)*v(383)+v(3347)*v(8013)) v(3411)=v(232)*(v(3379)*v(381)+(v(3280)+v(3296))*v(382)+v(3312)*v(383)+v(3346)*v(8013)) v(3410)=v(232)*(v(3378)*v(381)+(v(3279)+v(3295))*v(382)+v(3311)*v(383)+v(3345)*v(8013)) v(3409)=v(232)*(v(3377)*v(381)+(v(3278)+v(3294))*v(382)+v(3310)*v(383)+v(3344)*v(8013)) v(3408)=v(232)*(v(3376)*v(381)+(v(3277)+v(3293))*v(382)+v(3309)*v(383)+v(3343)*v(8013)) v(3407)=v(232)*(v(3375)*v(381)+(v(3276)+v(3292))*v(382)+v(3308)*v(383)+v(3342)*v(8013)) v(3406)=v(232)*(v(3374)*v(381)+(v(3275)+v(3291))*v(382)+v(3307)*v(383)+v(3341)*v(8013)) v(3405)=v(232)*(v(3373)*v(381)+(v(3274)+v(3290))*v(382)+v(3306)*v(383)+v(3340)*v(8013))+v(1738)*v(8014) v(3389)=v(383)*v(8007) v(3404)=v(3386)*v(3389) v(4468)=v(3372)+v(3404)+v(3305)*v(4453) v(3780)=v(3339)+v(3404)+v(3273)*v(3765) v(3403)=v(3385)*v(3389) v(4467)=v(3371)+v(3403)+v(3304)*v(4453) v(3779)=v(3338)+v(3403)+v(3272)*v(3765) v(3402)=v(3384)*v(3389) v(4466)=v(3370)+v(3402)+v(3303)*v(4453) v(3778)=v(3337)+v(3402)+v(3271)*v(3765) v(3401)=v(3383)*v(3389) v(4465)=v(3369)+v(3401)+v(3302)*v(4453) v(3777)=v(3336)+v(3401)+v(3270)*v(3765) v(3400)=v(3382)*v(3389) v(4464)=v(3368)+v(3400)+v(3301)*v(4453) v(3776)=v(3335)+v(3400)+v(3269)*v(3765) v(3399)=v(3348)*v(3389) v(4463)=v(3367)+v(3399)+v(3300)*v(4453) v(3775)=v(3334)+v(3399)+v(3268)*v(3765) v(3398)=v(3381)*v(3389) v(4462)=v(3366)+v(3398)+v(3299)*v(4453) v(3774)=v(3333)+v(3398)+v(3267)*v(3765) v(3397)=v(3315)*v(3389) v(4461)=v(3365)+v(3397)+v(3298)*v(4453) v(3773)=v(3332)+v(3397)+v(3266)*v(3765) v(3396)=v(3380)*v(3389) v(4460)=v(3364)+v(3396)+v(3297)*v(4453) v(3772)=v(3331)+v(3396)+v(3265)*v(3765) v(3395)=v(3379)*v(3389) v(4459)=v(3363)+v(3395)+v(3296)*v(4453) v(3771)=v(3330)+v(3395)+v(3264)*v(3765) v(3394)=v(3378)*v(3389) v(4458)=v(3362)+v(3394)+v(3295)*v(4453) v(3770)=v(3329)+v(3394)+v(3263)*v(3765) v(3393)=v(3377)*v(3389) v(4457)=v(3361)+v(3393)+v(3294)*v(4453) v(3769)=v(3328)+v(3393)+v(3262)*v(3765) v(3392)=v(3376)*v(3389) v(4456)=v(3360)+v(3392)+v(3293)*v(4453) v(3768)=v(3327)+v(3392)+v(3261)*v(3765) v(3391)=v(3375)*v(3389) v(4455)=v(3359)+v(3391)+v(3292)*v(4453) v(3767)=v(3326)+v(3391)+v(3260)*v(3765) v(3390)=v(3374)*v(3389) v(4454)=v(3358)+v(3390)+v(3291)*v(4453) v(3766)=v(3325)+v(3390)+v(3259)*v(3765) v(3387)=(v(383)*v(383)) v(3388)=v(1738)*v(3387)+v(3373)*v(3389) v(4452)=v(3356)+v(3388)+v(1738)*v(4451)+v(3290)*v(4453) v(3764)=v(3323)+v(3388)+v(1738)*v(3763)+v(3258)*v(3765) v(428)=v(232)*v(3387) v(415)=v(232)*v(8014) v(3436)=(v(3420)*v(382)+v(3354)*v(415))*v(7522) v(3435)=(v(3419)*v(382)+v(3353)*v(415))*v(7522) v(3434)=(v(3418)*v(382)+v(3352)*v(415))*v(7522) v(3433)=(v(3417)*v(382)+v(3351)*v(415))*v(7522) v(3432)=(v(3416)*v(382)+v(3350)*v(415))*v(7522) v(3431)=(v(3415)*v(382)+v(3349)*v(415))*v(7522) v(3430)=(v(3414)*v(382)+v(3348)*v(415))*v(7522) v(3429)=(v(3413)*v(382)+v(3316)*v(415))*v(7522) v(3428)=(v(3412)*v(382)+v(3347)*v(415))*v(7522) v(3427)=(v(3411)*v(382)+v(3346)*v(415))*v(7522) v(3426)=(v(3410)*v(382)+v(3345)*v(415))*v(7522) v(3425)=(v(3409)*v(382)+v(3344)*v(415))*v(7522) v(3424)=(v(3408)*v(382)+v(3343)*v(415))*v(7522) v(3423)=(v(3407)*v(382)+v(3342)*v(415))*v(7522) v(3422)=(v(3406)*v(382)+v(3341)*v(415))*v(7522) v(3421)=v(3405)*v(8015)+v(415)*v(8050) v(431)=v(415)*v(8015) v(396)=v(232)*v(8016) v(4210)=v(396)*v(4394) v(4207)=v(396)*v(4155) v(3789)=v(396)*v(4391) v(3470)=(v(3454)*v(381)+v(3321)*v(396))*v(7522) v(3469)=(v(3453)*v(381)+v(3320)*v(396))*v(7522) v(3468)=(v(3452)*v(381)+v(3319)*v(396))*v(7522) v(3467)=(v(3451)*v(381)+v(3318)*v(396))*v(7522) v(3466)=(v(3450)*v(381)+v(3317)*v(396))*v(7522) v(3465)=v(3789)+v(3449)*v(8017) v(3464)=v(4207)+v(3447)*v(8017) v(3463)=(v(3446)*v(381)+v(3314)*v(396))*v(7522) v(3462)=(v(3444)*v(381)+v(3313)*v(396))*v(7522) v(3461)=(v(3443)*v(381)+v(3312)*v(396))*v(7522) v(3460)=(v(3442)*v(381)+v(3311)*v(396))*v(7522) v(3459)=(v(3441)*v(381)+v(3310)*v(396))*v(7522) v(3458)=(v(3440)*v(381)+v(3309)*v(396))*v(7522) v(3457)=(v(3439)*v(381)+v(3308)*v(396))*v(7522) v(3456)=(v(3438)*v(381)+v(3307)*v(396))*v(7522) v(3455)=v(3437)*v(8017)+v(396)*v(8035) v(412)=v(396)*v(8017) v(395)=v(232)*v(8018) v(3824)=v(395)*v(4394) v(3506)=(v(3490)*v(383)+v(3386)*v(395))*v(7522) v(3505)=(v(3489)*v(383)+v(3385)*v(395))*v(7522) v(3504)=(v(3488)*v(383)+v(3384)*v(395))*v(7522) v(3503)=(v(3487)*v(383)+v(3383)*v(395))*v(7522) v(3502)=(v(3486)*v(383)+v(3382)*v(395))*v(7522) v(3501)=v(3824)+v(3485)*v(8019) v(3500)=(v(3483)*v(383)+v(3381)*v(395))*v(7522) v(3499)=(v(3480)*v(383)+v(3315)*v(395))*v(7522) v(3498)=(v(3478)*v(383)+v(3380)*v(395))*v(7522) v(3497)=(v(3477)*v(383)+v(3379)*v(395))*v(7522) v(3496)=(v(3476)*v(383)+v(3378)*v(395))*v(7522) v(3495)=(v(3475)*v(383)+v(3377)*v(395))*v(7522) v(3494)=(v(3474)*v(383)+v(3376)*v(395))*v(7522) v(3493)=(v(3473)*v(383)+v(3375)*v(395))*v(7522) v(3492)=(v(3472)*v(383)+v(3374)*v(395))*v(7522) v(3491)=v(3471)*v(8019)+v(395)*v(8033) v(430)=v(395)*v(8019) v(386)=-v(223)+v(7994)*(v(223)*v(387)+v(377)*x(7)) v(8071)=v(386)*v(7518)+v(8079) v(8070)=v(386)*v(7522) v(4807)=v(386)*v(8007) v(4805)=(v(386)*v(386)) v(3735)=v(386)*v(8021) v(388)=-v(227)+v(7994)*(v(227)*v(387)+v(377)*x(8)) v(8086)=v(388)*v(7518)+v(8091) v(8085)=v(388)*v(7522) v(8023)=v(386)+v(388) v(5225)=v(388)*v(8007) v(5223)=(v(388)*v(388)) v(3704)=v(388)*v(8024) v(389)=-v(228)+(v(228)*v(387)+v(377)*v(7531))*v(7994) v(8096)=v(389)*v(7518)+v(8098) v(8095)=v(389)*v(7522) v(8025)=v(388)+v(389) v(8022)=v(386)+v(389) v(5495)=v(389)*v(8007) v(5493)=(v(389)*v(389)) v(3740)=v(389)*v(8020) v(390)=-v(229)+v(7994)*(v(229)*v(387)+v(377)*x(9)) v(8069)=v(390)*v(7518)+v(3559)*v(7522) v(8029)=v(390)*v(7522) v(3738)=v(390)*v(8020) v(3578)=v(390)*v(8007) v(3593)=v(3575)*v(3578) v(3592)=v(3574)*v(3578) v(3591)=v(3573)*v(3578) v(3590)=v(3572)*v(3578) v(3589)=v(3571)*v(3578) v(3588)=v(3570)*v(3578) v(3587)=v(3569)*v(3578) v(3586)=v(3568)*v(3578) v(3585)=v(3566)*v(3578) v(3584)=v(3565)*v(3578) v(3583)=v(3564)*v(3578) v(3582)=v(3563)*v(3578) v(3581)=v(3562)*v(3578) v(3580)=v(3561)*v(3578) v(3579)=v(3560)*v(3578) v(3576)=(v(390)*v(390)) v(3577)=v(1738)*v(3576)+v(3559)*v(3578) v(473)=v(232)*v(3576) v(391)=-v(230)+v(7994)*(v(230)*v(387)+v(377)*x(11)) v(8084)=v(391)*v(7518)+v(3594)*v(7522) v(8027)=v(391)*v(7522) v(3737)=v(391)*v(8021) v(3612)=v(391)*v(8007) v(3627)=v(3609)*v(3612) v(5240)=v(3593)+v(3627)+v(3540)*v(5225) v(3626)=v(3608)*v(3612) v(5239)=v(3592)+v(3626)+v(3539)*v(5225) v(3625)=v(3607)*v(3612) v(5238)=v(3591)+v(3625)+v(3538)*v(5225) v(3624)=v(3606)*v(3612) v(5237)=v(3590)+v(3624)+v(3537)*v(5225) v(3623)=v(3605)*v(3612) v(5236)=v(3589)+v(3623)+v(3536)*v(5225) v(3622)=v(3604)*v(3612) v(5235)=v(3588)+v(3622)+v(3535)*v(5225) v(3621)=v(3602)*v(3612) v(5234)=v(3587)+v(3621)+v(3534)*v(5225) v(3620)=v(3570)*v(3612) v(5233)=v(3586)+v(3620)+v(3533)*v(5225) v(3619)=v(3601)*v(3612) v(5232)=v(3585)+v(3619)+v(3532)*v(5225) v(3618)=v(3600)*v(3612) v(5231)=v(3584)+v(3618)+v(3530)*v(5225) v(3617)=v(3599)*v(3612) v(5230)=v(3583)+v(3617)+v(3529)*v(5225) v(3616)=v(3598)*v(3612) v(5229)=v(3582)+v(3616)+v(3528)*v(5225) v(3615)=v(3597)*v(3612) v(5228)=v(3581)+v(3615)+v(3527)*v(5225) v(3614)=v(3596)*v(3612) v(5227)=v(3580)+v(3614)+v(3526)*v(5225) v(3613)=v(3595)*v(3612) v(5226)=v(3579)+v(3613)+v(3525)*v(5225) v(3610)=(v(391)*v(391)) v(3611)=v(1738)*v(3610)+v(3594)*v(3612) v(5224)=v(3577)+v(3611)+v(1738)*v(5223)+v(3524)*v(5225) v(490)=v(232)*v(3610) v(392)=-v(231)+v(7994)*(v(231)*v(387)+v(377)*x(10)) v(8067)=v(392)*v(7518)+v(3628)*v(7522) v(8031)=v(392)*v(7522) v(8030)=v(390)*v(391)+v(392)*v(8022) v(8028)=v(391)*v(392)+v(390)*v(8023) v(8026)=v(390)*v(392)+v(391)*v(8025) v(3746)=v(232)*(v(3609)*v(390)+v(3575)*v(391)+(v(3523)+v(3558))*v(392)+v(3642)*v(8022)) v(3745)=v(232)*(v(3608)*v(390)+v(3574)*v(391)+(v(3522)+v(3557))*v(392)+v(3641)*v(8022)) v(3744)=v(232)*(v(3607)*v(390)+v(3573)*v(391)+(v(3521)+v(3556))*v(392)+v(3640)*v(8022)) v(3743)=v(232)*(v(3606)*v(390)+v(3572)*v(391)+(v(3520)+v(3555))*v(392)+v(3639)*v(8022)) v(3742)=v(232)*(v(3605)*v(390)+v(3571)*v(391)+(v(3519)+v(3554))*v(392)+v(3638)*v(8022)) v(3741)=v(3740)+v(232)*(v(3602)*v(386)+v(3604)*v(390)+v(3570)*v(391)+(v(3518)+v(3553))*v(392)) v(3739)=v(3737)+v(3738)+v(232)*((v(3517)+v(3552))*v(392)+v(3637)*v(8022)) v(3736)=v(3735)+v(232)*(v(3569)*v(389)+v(3570)*v(390)+v(3568)*v(391)+(v(3516)+v(3551))*v(392)) v(3734)=v(232)*(v(3601)*v(390)+v(3566)*v(391)+(v(3515)+v(3550))*v(392)+v(3635)*v(8022)) v(3733)=v(232)*(v(3600)*v(390)+v(3565)*v(391)+(v(3514)+v(3548))*v(392)+v(3634)*v(8022)) v(3732)=v(232)*(v(3599)*v(390)+v(3564)*v(391)+(v(3512)+v(3546))*v(392)+v(3633)*v(8022)) v(3731)=v(232)*(v(3598)*v(390)+v(3563)*v(391)+(v(3511)+v(3545))*v(392)+v(3632)*v(8022)) v(3730)=v(232)*(v(3597)*v(390)+v(3562)*v(391)+(v(3510)+v(3544))*v(392)+v(3631)*v(8022)) v(3729)=v(232)*(v(3596)*v(390)+v(3561)*v(391)+(v(3509)+v(3543))*v(392)+v(3630)*v(8022)) v(3728)=v(232)*(v(3595)*v(390)+v(3560)*v(391)+(v(3508)+v(3542))*v(392)+v(3629)*v(8022)) v(3727)=v(232)*(v(3594)*v(390)+v(3559)*v(391)+(v(3507)+v(3541))*v(392)+v(3628)*v(8022))+v(1738)*v(8030) v(3710)=v(232)*((v(3523)+v(3540))*v(390)+v(3642)*v(391)+v(3609)*v(392)+v(3575)*v(8023)) v(3709)=v(232)*((v(3522)+v(3539))*v(390)+v(3641)*v(391)+v(3608)*v(392)+v(3574)*v(8023)) v(3708)=v(232)*((v(3521)+v(3538))*v(390)+v(3640)*v(391)+v(3607)*v(392)+v(3573)*v(8023)) v(3707)=v(232)*((v(3520)+v(3537))*v(390)+v(3639)*v(391)+v(3606)*v(392)+v(3572)*v(8023)) v(3706)=v(232)*((v(3519)+v(3536))*v(390)+v(3638)*v(391)+v(3605)*v(392)+v(3571)*v(8023)) v(3705)=v(3704)+v(232)*(v(3570)*v(386)+(v(3518)+v(3535))*v(390)+v(3602)*v(391)+v(3604)*v(392)) v(3703)=v(3735)+v(232)*(v(3569)*v(388)+(v(3517)+v(3534))*v(390)+v(3637)*v(391)+v(3602)*v(392)) v(3701)=v(392)*v(8024) v(3702)=v(3701)+v(3737)+v(232)*((v(3516)+v(3533))*v(390)+v(3568)*v(8023)) v(3700)=v(232)*((v(3515)+v(3532))*v(390)+v(3635)*v(391)+v(3601)*v(392)+v(3566)*v(8023)) v(3699)=v(232)*((v(3514)+v(3530))*v(390)+v(3634)*v(391)+v(3600)*v(392)+v(3565)*v(8023)) v(3698)=v(232)*((v(3512)+v(3529))*v(390)+v(3633)*v(391)+v(3599)*v(392)+v(3564)*v(8023)) v(3697)=v(232)*((v(3511)+v(3528))*v(390)+v(3632)*v(391)+v(3598)*v(392)+v(3563)*v(8023)) v(3696)=v(232)*((v(3510)+v(3527))*v(390)+v(3631)*v(391)+v(3597)*v(392)+v(3562)*v(8023)) v(3695)=v(232)*((v(3509)+v(3526))*v(390)+v(3630)*v(391)+v(3596)*v(392)+v(3561)*v(8023)) v(3694)=v(232)*((v(3508)+v(3525))*v(390)+v(3629)*v(391)+v(3595)*v(392)+v(3560)*v(8023)) v(3693)=v(232)*((v(3507)+v(3524))*v(390)+v(3628)*v(391)+v(3594)*v(392)+v(3559)*v(8023))+v(1738)*v(8028) v(3676)=v(232)*(v(3642)*v(390)+(v(3540)+v(3558))*v(391)+v(3575)*v(392)+v(3609)*v(8025)) v(3675)=v(232)*(v(3641)*v(390)+(v(3539)+v(3557))*v(391)+v(3574)*v(392)+v(3608)*v(8025)) v(3674)=v(232)*(v(3640)*v(390)+(v(3538)+v(3556))*v(391)+v(3573)*v(392)+v(3607)*v(8025)) v(3673)=v(232)*(v(3639)*v(390)+(v(3537)+v(3555))*v(391)+v(3572)*v(392)+v(3606)*v(8025)) v(3672)=v(232)*(v(3638)*v(390)+(v(3536)+v(3554))*v(391)+v(3571)*v(392)+v(3605)*v(8025)) v(3671)=v(3701)+v(3738)+v(232)*((v(3535)+v(3553))*v(391)+v(3604)*v(8025)) v(3670)=v(3740)+v(232)*(v(3602)*v(388)+v(3637)*v(390)+(v(3534)+v(3552))*v(391)+v(3569)*v(392)) v(3669)=v(3704)+v(232)*(v(3570)*v(389)+v(3569)*v(390)+(v(3533)+v(3551))*v(391)+v(3568)*v(392)) v(3668)=v(232)*(v(3635)*v(390)+(v(3532)+v(3550))*v(391)+v(3566)*v(392)+v(3601)*v(8025)) v(3667)=v(232)*(v(3634)*v(390)+(v(3530)+v(3548))*v(391)+v(3565)*v(392)+v(3600)*v(8025)) v(3666)=v(232)*(v(3633)*v(390)+(v(3529)+v(3546))*v(391)+v(3564)*v(392)+v(3599)*v(8025)) v(3665)=v(232)*(v(3632)*v(390)+(v(3528)+v(3545))*v(391)+v(3563)*v(392)+v(3598)*v(8025)) v(3664)=v(232)*(v(3631)*v(390)+(v(3527)+v(3544))*v(391)+v(3562)*v(392)+v(3597)*v(8025)) v(3663)=v(232)*(v(3630)*v(390)+(v(3526)+v(3543))*v(391)+v(3561)*v(392)+v(3596)*v(8025)) v(3662)=v(232)*(v(3629)*v(390)+(v(3525)+v(3542))*v(391)+v(3560)*v(392)+v(3595)*v(8025)) v(3661)=v(232)*(v(3628)*v(390)+(v(3524)+v(3541))*v(391)+v(3559)*v(392)+v(3594)*v(8025))+v(1738)*v(8026) v(3645)=v(392)*v(8007) v(3660)=v(3642)*v(3645) v(5510)=v(3627)+v(3660)+v(3558)*v(5495) v(4822)=v(3593)+v(3660)+v(3523)*v(4807) v(3659)=v(3641)*v(3645) v(5509)=v(3626)+v(3659)+v(3557)*v(5495) v(4821)=v(3592)+v(3659)+v(3522)*v(4807) v(3658)=v(3640)*v(3645) v(5508)=v(3625)+v(3658)+v(3556)*v(5495) v(4820)=v(3591)+v(3658)+v(3521)*v(4807) v(3657)=v(3639)*v(3645) v(5507)=v(3624)+v(3657)+v(3555)*v(5495) v(4819)=v(3590)+v(3657)+v(3520)*v(4807) v(3656)=v(3638)*v(3645) v(5506)=v(3623)+v(3656)+v(3554)*v(5495) v(4818)=v(3589)+v(3656)+v(3519)*v(4807) v(3655)=v(3602)*v(3645) v(5505)=v(3622)+v(3655)+v(3553)*v(5495) v(4817)=v(3588)+v(3655)+v(3518)*v(4807) v(3654)=v(3637)*v(3645) v(5504)=v(3621)+v(3654)+v(3552)*v(5495) v(4816)=v(3587)+v(3654)+v(3517)*v(4807) v(3653)=v(3569)*v(3645) v(5503)=v(3620)+v(3653)+v(3551)*v(5495) v(4815)=v(3586)+v(3653)+v(3516)*v(4807) v(3652)=v(3635)*v(3645) v(5502)=v(3619)+v(3652)+v(3550)*v(5495) v(4814)=v(3585)+v(3652)+v(3515)*v(4807) v(3651)=v(3634)*v(3645) v(5501)=v(3618)+v(3651)+v(3548)*v(5495) v(4813)=v(3584)+v(3651)+v(3514)*v(4807) v(3650)=v(3633)*v(3645) v(5500)=v(3617)+v(3650)+v(3546)*v(5495) v(4812)=v(3583)+v(3650)+v(3512)*v(4807) v(3649)=v(3632)*v(3645) v(5499)=v(3616)+v(3649)+v(3545)*v(5495) v(4811)=v(3582)+v(3649)+v(3511)*v(4807) v(3648)=v(3631)*v(3645) v(5498)=v(3615)+v(3648)+v(3544)*v(5495) v(4810)=v(3581)+v(3648)+v(3510)*v(4807) v(3647)=v(3630)*v(3645) v(5497)=v(3614)+v(3647)+v(3543)*v(5495) v(4809)=v(3580)+v(3647)+v(3509)*v(4807) v(3646)=v(3629)*v(3645) v(5496)=v(3613)+v(3646)+v(3542)*v(5495) v(4808)=v(3579)+v(3646)+v(3508)*v(4807) v(3643)=(v(392)*v(392)) v(3644)=v(1738)*v(3643)+v(3628)*v(3645) v(5494)=v(3611)+v(3644)+v(1738)*v(5493)+v(3541)*v(5495) v(4806)=v(3577)+v(3644)+v(1738)*v(4805)+v(3507)*v(4807) v(491)=v(232)*v(3643) v(478)=v(232)*v(8026) v(3692)=(v(3676)*v(391)+v(3609)*v(478))*v(7522) v(3691)=(v(3675)*v(391)+v(3608)*v(478))*v(7522) v(3690)=(v(3674)*v(391)+v(3607)*v(478))*v(7522) v(3689)=(v(3673)*v(391)+v(3606)*v(478))*v(7522) v(3688)=(v(3672)*v(391)+v(3605)*v(478))*v(7522) v(3687)=(v(3671)*v(391)+v(3604)*v(478))*v(7522) v(3686)=(v(3670)*v(391)+v(3602)*v(478))*v(7522) v(3685)=(v(3669)*v(391)+v(3570)*v(478))*v(7522) v(3684)=(v(3668)*v(391)+v(3601)*v(478))*v(7522) v(3683)=(v(3667)*v(391)+v(3600)*v(478))*v(7522) v(3682)=(v(3666)*v(391)+v(3599)*v(478))*v(7522) v(3681)=(v(3665)*v(391)+v(3598)*v(478))*v(7522) v(3680)=(v(3664)*v(391)+v(3597)*v(478))*v(7522) v(3679)=(v(3663)*v(391)+v(3596)*v(478))*v(7522) v(3678)=(v(3662)*v(391)+v(3595)*v(478))*v(7522) v(3677)=v(3661)*v(8027)+v(478)*v(8084) v(494)=v(478)*v(8027) v(459)=v(232)*v(8028) v(5252)=v(459)*v(5436) v(5249)=v(459)*v(5197) v(4831)=v(459)*v(5433) v(3726)=(v(3710)*v(390)+v(3575)*v(459))*v(7522) v(3725)=(v(3709)*v(390)+v(3574)*v(459))*v(7522) v(3724)=(v(3708)*v(390)+v(3573)*v(459))*v(7522) v(3723)=(v(3707)*v(390)+v(3572)*v(459))*v(7522) v(3722)=(v(3706)*v(390)+v(3571)*v(459))*v(7522) v(3721)=v(4831)+v(3705)*v(8029) v(3720)=v(5249)+v(3703)*v(8029) v(3719)=(v(3702)*v(390)+v(3568)*v(459))*v(7522) v(3718)=(v(3700)*v(390)+v(3566)*v(459))*v(7522) v(3717)=(v(3699)*v(390)+v(3565)*v(459))*v(7522) v(3716)=(v(3698)*v(390)+v(3564)*v(459))*v(7522) v(3715)=(v(3697)*v(390)+v(3563)*v(459))*v(7522) v(3714)=(v(3696)*v(390)+v(3562)*v(459))*v(7522) v(3713)=(v(3695)*v(390)+v(3561)*v(459))*v(7522) v(3712)=(v(3694)*v(390)+v(3560)*v(459))*v(7522) v(3711)=v(3693)*v(8029)+v(459)*v(8069) v(475)=v(459)*v(8029) v(458)=v(232)*v(8030) v(4866)=v(458)*v(5436) v(3762)=(v(3746)*v(392)+v(3642)*v(458))*v(7522) v(3761)=(v(3745)*v(392)+v(3641)*v(458))*v(7522) v(3760)=(v(3744)*v(392)+v(3640)*v(458))*v(7522) v(3759)=(v(3743)*v(392)+v(3639)*v(458))*v(7522) v(3758)=(v(3742)*v(392)+v(3638)*v(458))*v(7522) v(3757)=v(4866)+v(3741)*v(8031) v(3756)=(v(3739)*v(392)+v(3637)*v(458))*v(7522) v(3755)=(v(3736)*v(392)+v(3569)*v(458))*v(7522) v(3754)=(v(3734)*v(392)+v(3635)*v(458))*v(7522) v(3753)=(v(3733)*v(392)+v(3634)*v(458))*v(7522) v(3752)=(v(3732)*v(392)+v(3633)*v(458))*v(7522) v(3751)=(v(3731)*v(392)+v(3632)*v(458))*v(7522) v(3750)=(v(3730)*v(392)+v(3631)*v(458))*v(7522) v(3749)=(v(3729)*v(392)+v(3630)*v(458))*v(7522) v(3748)=(v(3728)*v(392)+v(3629)*v(458))*v(7522) v(3747)=v(3727)*v(8031)+v(458)*v(8067) v(493)=v(458)*v(8031) v(393)=v(232)*v(3763)+v(410)+v(428) v(8034)=v(381)*v(393)+v(382)*v(395)+v(379)*v(396) v(8032)=v(383)*v(393)+v(380)*v(395)+v(382)*v(396) v(3863)=v(3470)+v(3506)+(v(376)*v(3780)+v(3273)*v(393))*v(7522) v(3862)=v(3469)+v(3505)+(v(376)*v(3779)+v(3272)*v(393))*v(7522) v(3861)=v(3468)+v(3504)+(v(376)*v(3778)+v(3271)*v(393))*v(7522) v(3860)=v(3467)+v(3503)+(v(376)*v(3777)+v(3270)*v(393))*v(7522) v(3859)=v(3466)+v(3502)+(v(376)*v(3776)+v(3269)*v(393))*v(7522) v(3858)=v(3465)+v(3501)+(v(376)*v(3775)+v(3268)*v(393))*v(7522) v(3857)=v(3464)+v(3500)+(v(376)*v(3774)+v(3267)*v(393))*v(7522) v(3856)=v(3463)+v(3499)+(v(376)*v(3773)+v(3266)*v(393))*v(7522) v(3855)=v(3462)+v(3498)+(v(376)*v(3772)+v(3265)*v(393))*v(7522) v(3854)=v(3461)+v(3497)+(v(376)*v(3771)+v(3264)*v(393))*v(7522) v(3853)=v(3460)+v(3496)+(v(376)*v(3770)+v(3263)*v(393))*v(7522) v(3852)=v(3459)+v(3495)+(v(376)*v(3769)+v(3262)*v(393))*v(7522) v(3851)=v(3458)+v(3494)+(v(376)*v(3768)+v(3261)*v(393))*v(7522) v(3850)=v(3457)+v(3493)+(v(376)*v(3767)+v(3260)*v(393))*v(7522) v(3849)=v(3456)+v(3492)+(v(376)*v(3766)+v(3259)*v(393))*v(7522) v(3848)=v(3455)+v(3491)+v(3764)*v(8036)+v(393)*v(8037) v(3831)=(v(3454)*v(379)+v(3780)*v(381)+v(3490)*v(382)+v(3321)*v(393)+v(3354)*v(395)+v(3289)*v(396))*v(7522) v(3830)=(v(3453)*v(379)+v(3779)*v(381)+v(3489)*v(382)+v(3320)*v(393)+v(3353)*v(395)+v(3288)*v(396))*v(7522) v(3829)=(v(3452)*v(379)+v(3778)*v(381)+v(3488)*v(382)+v(3319)*v(393)+v(3352)*v(395)+v(3287)*v(396))*v(7522) v(3828)=(v(3451)*v(379)+v(3777)*v(381)+v(3487)*v(382)+v(3318)*v(393)+v(3351)*v(395)+v(3286)*v(396))*v(7522) v(3827)=(v(3450)*v(379)+v(3776)*v(381)+v(3486)*v(382)+v(3317)*v(393)+v(3350)*v(395)+v(3285)*v(396))*v(7522) v(3826)=(v(3449)*v(379)+v(3775)*v(381)+v(3485)*v(382)+v(3316)*v(393)+v(3349)*v(395)+v(3284)*v(396))*v(7522) v(3823)=v(393)*v(4155) v(3825)=v(3823)+v(3824)+(v(3447)*v(379)+v(3774)*v(381)+v(3483)*v(382)+v(3283)*v(396))*v(7522) v(3822)=(v(3446)*v(379)+v(3773)*v(381)+v(3480)*v(382)+v(3314)*v(393)+v(3316)*v(395)+v(3282)*v(396))*v(7522) v(3821)=(v(3444)*v(379)+v(3772)*v(381)+v(3478)*v(382)+v(3313)*v(393)+v(3347)*v(395)+v(3281)*v(396))*v(7522) v(3820)=(v(3443)*v(379)+v(3771)*v(381)+v(3477)*v(382)+v(3312)*v(393)+v(3346)*v(395)+v(3280)*v(396))*v(7522) v(3819)=(v(3442)*v(379)+v(3770)*v(381)+v(3476)*v(382)+v(3311)*v(393)+v(3345)*v(395)+v(3279)*v(396))*v(7522) v(3818)=(v(3441)*v(379)+v(3769)*v(381)+v(3475)*v(382)+v(3310)*v(393)+v(3344)*v(395)+v(3278)*v(396))*v(7522) v(3817)=(v(3440)*v(379)+v(3768)*v(381)+v(3474)*v(382)+v(3309)*v(393)+v(3343)*v(395)+v(3277)*v(396))*v(7522) v(3816)=(v(3439)*v(379)+v(3767)*v(381)+v(3473)*v(382)+v(3308)*v(393)+v(3342)*v(395)+v(3276)*v(396))*v(7522) v(3815)=(v(3438)*v(379)+v(3766)*v(381)+v(3472)*v(382)+v(3307)*v(393)+v(3341)*v(395)+v(3275)*v(396))*v(7522) v(3814)=(v(3437)*v(379)+v(3764)*v(381)+v(3471)*v(382)+v(3306)*v(393)+v(3340)*v(395)+v(3274)*v(396))*v(7522)+v(7518)*v& &(8034) v(3797)=(v(3490)*v(380)+v(3454)*v(382)+v(3780)*v(383)+v(3386)*v(393)+v(3305)*v(395)+v(3354)*v(396))*v(7522) v(3796)=(v(3489)*v(380)+v(3453)*v(382)+v(3779)*v(383)+v(3385)*v(393)+v(3304)*v(395)+v(3353)*v(396))*v(7522) v(3795)=(v(3488)*v(380)+v(3452)*v(382)+v(3778)*v(383)+v(3384)*v(393)+v(3303)*v(395)+v(3352)*v(396))*v(7522) v(3794)=(v(3487)*v(380)+v(3451)*v(382)+v(3777)*v(383)+v(3383)*v(393)+v(3302)*v(395)+v(3351)*v(396))*v(7522) v(3793)=(v(3486)*v(380)+v(3450)*v(382)+v(3776)*v(383)+v(3382)*v(393)+v(3301)*v(395)+v(3350)*v(396))*v(7522) v(3792)=(v(3485)*v(380)+v(3449)*v(382)+v(3775)*v(383)+v(3348)*v(393)+v(3300)*v(395)+v(3349)*v(396))*v(7522) v(3791)=v(4210)+(v(3483)*v(380)+v(3447)*v(382)+v(3774)*v(383)+v(3381)*v(393)+v(3299)*v(395))*v(7522) v(3790)=v(3789)+v(3823)+(v(3480)*v(380)+v(3446)*v(382)+v(3773)*v(383)+v(3298)*v(395))*v(7522) v(3788)=(v(3478)*v(380)+v(3444)*v(382)+v(3772)*v(383)+v(3380)*v(393)+v(3297)*v(395)+v(3347)*v(396))*v(7522) v(3787)=(v(3477)*v(380)+v(3443)*v(382)+v(3771)*v(383)+v(3379)*v(393)+v(3296)*v(395)+v(3346)*v(396))*v(7522) v(3786)=(v(3476)*v(380)+v(3442)*v(382)+v(3770)*v(383)+v(3378)*v(393)+v(3295)*v(395)+v(3345)*v(396))*v(7522) v(3785)=(v(3475)*v(380)+v(3441)*v(382)+v(3769)*v(383)+v(3377)*v(393)+v(3294)*v(395)+v(3344)*v(396))*v(7522) v(3784)=(v(3474)*v(380)+v(3440)*v(382)+v(3768)*v(383)+v(3376)*v(393)+v(3293)*v(395)+v(3343)*v(396))*v(7522) v(3783)=(v(3473)*v(380)+v(3439)*v(382)+v(3767)*v(383)+v(3375)*v(393)+v(3292)*v(395)+v(3342)*v(396))*v(7522) v(3782)=(v(3472)*v(380)+v(3438)*v(382)+v(3766)*v(383)+v(3374)*v(393)+v(3291)*v(395)+v(3341)*v(396))*v(7522) v(3781)=(v(3471)*v(380)+v(3437)*v(382)+v(3764)*v(383)+v(3373)*v(393)+v(3290)*v(395)+v(3340)*v(396))*v(7522)+v(7518)*v& &(8032) v(399)=v(7522)*v(8032) v(3873)=v(399)*v(4394) v(3813)=(v(3797)*v(383)+v(3386)*v(399))*v(7522) v(3812)=(v(3796)*v(383)+v(3385)*v(399))*v(7522) v(3811)=(v(3795)*v(383)+v(3384)*v(399))*v(7522) v(3810)=(v(3794)*v(383)+v(3383)*v(399))*v(7522) v(3809)=(v(3793)*v(383)+v(3382)*v(399))*v(7522) v(3808)=v(3873)+v(3792)*v(8019) v(3807)=(v(3791)*v(383)+v(3381)*v(399))*v(7522) v(3806)=(v(3790)*v(383)+v(3315)*v(399))*v(7522) v(3805)=(v(3788)*v(383)+v(3380)*v(399))*v(7522) v(3804)=(v(3787)*v(383)+v(3379)*v(399))*v(7522) v(3803)=(v(3786)*v(383)+v(3378)*v(399))*v(7522) v(3802)=(v(3785)*v(383)+v(3377)*v(399))*v(7522) v(3801)=(v(3784)*v(383)+v(3376)*v(399))*v(7522) v(3800)=(v(3783)*v(383)+v(3375)*v(399))*v(7522) v(3799)=(v(3782)*v(383)+v(3374)*v(399))*v(7522) v(3798)=v(3781)*v(8019)+v(399)*v(8033) v(434)=v(399)*v(8019) v(398)=v(7522)*v(8034) v(4260)=v(398)*v(4394) v(4257)=v(398)*v(4155) v(3906)=v(398)*v(4391) v(3847)=(v(381)*v(3831)+v(3321)*v(398))*v(7522) v(3846)=(v(381)*v(3830)+v(3320)*v(398))*v(7522) v(3845)=(v(381)*v(3829)+v(3319)*v(398))*v(7522) v(3844)=(v(381)*v(3828)+v(3318)*v(398))*v(7522) v(3843)=(v(381)*v(3827)+v(3317)*v(398))*v(7522) v(3842)=v(3906)+v(3826)*v(8017) v(3841)=v(4257)+v(3825)*v(8017) v(3840)=(v(381)*v(3822)+v(3314)*v(398))*v(7522) v(3839)=(v(381)*v(3821)+v(3313)*v(398))*v(7522) v(3838)=(v(381)*v(3820)+v(3312)*v(398))*v(7522) v(3837)=(v(381)*v(3819)+v(3311)*v(398))*v(7522) v(3836)=(v(381)*v(3818)+v(3310)*v(398))*v(7522) v(3835)=(v(381)*v(3817)+v(3309)*v(398))*v(7522) v(3834)=(v(381)*v(3816)+v(3308)*v(398))*v(7522) v(3833)=(v(381)*v(3815)+v(3307)*v(398))*v(7522) v(3832)=v(3814)*v(8017)+v(398)*v(8035) v(414)=v(398)*v(8017) v(394)=v(412)+v(430)+v(393)*v(8036) v(8039)=v(383)*v(394)+v(382)*v(398)+v(380)*v(399) v(8038)=v(381)*v(394)+v(379)*v(398)+v(382)*v(399) v(3946)=v(3813)+v(3847)+(v(376)*v(3863)+v(3273)*v(394))*v(7522) v(3945)=v(3812)+v(3846)+(v(376)*v(3862)+v(3272)*v(394))*v(7522) v(3944)=v(3811)+v(3845)+(v(376)*v(3861)+v(3271)*v(394))*v(7522) v(3943)=v(3810)+v(3844)+(v(376)*v(3860)+v(3270)*v(394))*v(7522) v(3942)=v(3809)+v(3843)+(v(376)*v(3859)+v(3269)*v(394))*v(7522) v(3941)=v(3808)+v(3842)+(v(376)*v(3858)+v(3268)*v(394))*v(7522) v(3940)=v(3807)+v(3841)+(v(376)*v(3857)+v(3267)*v(394))*v(7522) v(3939)=v(3806)+v(3840)+(v(376)*v(3856)+v(3266)*v(394))*v(7522) v(3938)=v(3805)+v(3839)+(v(376)*v(3855)+v(3265)*v(394))*v(7522) v(3937)=v(3804)+v(3838)+(v(376)*v(3854)+v(3264)*v(394))*v(7522) v(3936)=v(3803)+v(3837)+(v(376)*v(3853)+v(3263)*v(394))*v(7522) v(3935)=v(3802)+v(3836)+(v(376)*v(3852)+v(3262)*v(394))*v(7522) v(3934)=v(3801)+v(3835)+(v(376)*v(3851)+v(3261)*v(394))*v(7522) v(3933)=v(3800)+v(3834)+(v(376)*v(3850)+v(3260)*v(394))*v(7522) v(3932)=v(3799)+v(3833)+(v(376)*v(3849)+v(3259)*v(394))*v(7522) v(3931)=v(3798)+v(3832)+v(3848)*v(8036)+v(394)*v(8037) v(3914)=(v(3797)*v(380)+v(382)*v(3831)+v(383)*v(3863)+v(3386)*v(394)+v(3354)*v(398)+v(3305)*v(399))*v(7522) v(3913)=(v(3796)*v(380)+v(382)*v(3830)+v(383)*v(3862)+v(3385)*v(394)+v(3353)*v(398)+v(3304)*v(399))*v(7522) v(3912)=(v(3795)*v(380)+v(382)*v(3829)+v(383)*v(3861)+v(3384)*v(394)+v(3352)*v(398)+v(3303)*v(399))*v(7522) v(3911)=(v(3794)*v(380)+v(382)*v(3828)+v(383)*v(3860)+v(3383)*v(394)+v(3351)*v(398)+v(3302)*v(399))*v(7522) v(3910)=(v(3793)*v(380)+v(382)*v(3827)+v(383)*v(3859)+v(3382)*v(394)+v(3350)*v(398)+v(3301)*v(399))*v(7522) v(3909)=(v(3792)*v(380)+v(382)*v(3826)+v(383)*v(3858)+v(3348)*v(394)+v(3349)*v(398)+v(3300)*v(399))*v(7522) v(3908)=v(4260)+(v(3791)*v(380)+v(382)*v(3825)+v(383)*v(3857)+v(3381)*v(394)+v(3299)*v(399))*v(7522) v(3905)=v(394)*v(4155) v(3907)=v(3905)+v(3906)+(v(3790)*v(380)+v(382)*v(3822)+v(383)*v(3856)+v(3298)*v(399))*v(7522) v(3904)=(v(3788)*v(380)+v(382)*v(3821)+v(383)*v(3855)+v(3380)*v(394)+v(3347)*v(398)+v(3297)*v(399))*v(7522) v(3903)=(v(3787)*v(380)+v(382)*v(3820)+v(383)*v(3854)+v(3379)*v(394)+v(3346)*v(398)+v(3296)*v(399))*v(7522) v(3902)=(v(3786)*v(380)+v(3819)*v(382)+v(383)*v(3853)+v(3378)*v(394)+v(3345)*v(398)+v(3295)*v(399))*v(7522) v(3901)=(v(3785)*v(380)+v(3818)*v(382)+v(383)*v(3852)+v(3377)*v(394)+v(3344)*v(398)+v(3294)*v(399))*v(7522) v(3900)=(v(3784)*v(380)+v(3817)*v(382)+v(383)*v(3851)+v(3376)*v(394)+v(3343)*v(398)+v(3293)*v(399))*v(7522) v(3899)=(v(3783)*v(380)+v(3816)*v(382)+v(383)*v(3850)+v(3375)*v(394)+v(3342)*v(398)+v(3292)*v(399))*v(7522) v(3898)=(v(3782)*v(380)+v(3815)*v(382)+v(383)*v(3849)+v(3374)*v(394)+v(3341)*v(398)+v(3291)*v(399))*v(7522) v(3897)=(v(3781)*v(380)+v(3814)*v(382)+v(383)*v(3848)+v(3373)*v(394)+v(3340)*v(398)+v(3290)*v(399))*v(7522)+v(7518)*v& &(8039) v(3880)=(v(3797)*v(382)+v(379)*v(3831)+v(381)*v(3863)+v(3321)*v(394)+v(3289)*v(398)+v(3354)*v(399))*v(7522) v(3879)=(v(3796)*v(382)+v(379)*v(3830)+v(381)*v(3862)+v(3320)*v(394)+v(3288)*v(398)+v(3353)*v(399))*v(7522) v(3878)=(v(3795)*v(382)+v(379)*v(3829)+v(381)*v(3861)+v(3319)*v(394)+v(3287)*v(398)+v(3352)*v(399))*v(7522) v(3877)=(v(3794)*v(382)+v(379)*v(3828)+v(381)*v(3860)+v(3318)*v(394)+v(3286)*v(398)+v(3351)*v(399))*v(7522) v(3876)=(v(3793)*v(382)+v(379)*v(3827)+v(381)*v(3859)+v(3317)*v(394)+v(3285)*v(398)+v(3350)*v(399))*v(7522) v(3875)=(v(3792)*v(382)+v(379)*v(3826)+v(381)*v(3858)+v(3316)*v(394)+v(3284)*v(398)+v(3349)*v(399))*v(7522) v(3874)=v(3873)+v(3905)+(v(3791)*v(382)+v(379)*v(3825)+v(381)*v(3857)+v(3283)*v(398))*v(7522) v(3872)=(v(3790)*v(382)+v(379)*v(3822)+v(381)*v(3856)+v(3314)*v(394)+v(3282)*v(398)+v(3316)*v(399))*v(7522) v(3871)=(v(3788)*v(382)+v(379)*v(3821)+v(381)*v(3855)+v(3313)*v(394)+v(3281)*v(398)+v(3347)*v(399))*v(7522) v(3870)=(v(3787)*v(382)+v(379)*v(3820)+v(381)*v(3854)+v(3312)*v(394)+v(3280)*v(398)+v(3346)*v(399))*v(7522) v(3869)=(v(379)*v(3819)+v(3786)*v(382)+v(381)*v(3853)+v(3311)*v(394)+v(3279)*v(398)+v(3345)*v(399))*v(7522) v(3868)=(v(379)*v(3818)+v(3785)*v(382)+v(381)*v(3852)+v(3310)*v(394)+v(3278)*v(398)+v(3344)*v(399))*v(7522) v(3867)=(v(379)*v(3817)+v(3784)*v(382)+v(381)*v(3851)+v(3309)*v(394)+v(3277)*v(398)+v(3343)*v(399))*v(7522) v(3866)=(v(379)*v(3816)+v(3783)*v(382)+v(381)*v(3850)+v(3308)*v(394)+v(3276)*v(398)+v(3342)*v(399))*v(7522) v(3865)=(v(379)*v(3815)+v(3782)*v(382)+v(381)*v(3849)+v(3307)*v(394)+v(3275)*v(398)+v(3341)*v(399))*v(7522) v(3864)=(v(379)*v(3814)+v(3781)*v(382)+v(381)*v(3848)+v(3306)*v(394)+v(3274)*v(398)+v(3340)*v(399))*v(7522)+v(7518)*v& &(8038) v(402)=v(7522)*v(8038) v(4310)=v(402)*v(4394) v(4307)=v(402)*v(4155) v(3955)=v(402)*v(4391) v(3896)=(v(381)*v(3880)+v(3321)*v(402))*v(7522) v(3895)=(v(381)*v(3879)+v(3320)*v(402))*v(7522) v(3894)=(v(381)*v(3878)+v(3319)*v(402))*v(7522) v(3893)=(v(381)*v(3877)+v(3318)*v(402))*v(7522) v(3892)=(v(381)*v(3876)+v(3317)*v(402))*v(7522) v(3891)=v(3955)+v(3875)*v(8017) v(3890)=v(4307)+v(3874)*v(8017) v(3889)=(v(381)*v(3872)+v(3314)*v(402))*v(7522) v(3888)=(v(381)*v(3871)+v(3313)*v(402))*v(7522) v(3887)=(v(381)*v(3870)+v(3312)*v(402))*v(7522) v(3886)=(v(381)*v(3869)+v(3311)*v(402))*v(7522) v(3885)=(v(381)*v(3868)+v(3310)*v(402))*v(7522) v(3884)=(v(381)*v(3867)+v(3309)*v(402))*v(7522) v(3883)=(v(381)*v(3866)+v(3308)*v(402))*v(7522) v(3882)=(v(381)*v(3865)+v(3307)*v(402))*v(7522) v(3881)=v(3864)*v(8017)+v(402)*v(8035) v(418)=v(402)*v(8017) v(401)=v(7522)*v(8039) v(3990)=v(401)*v(4394) v(3930)=(v(383)*v(3914)+v(3386)*v(401))*v(7522) v(3929)=(v(383)*v(3913)+v(3385)*v(401))*v(7522) v(3928)=(v(383)*v(3912)+v(3384)*v(401))*v(7522) v(3927)=(v(383)*v(3911)+v(3383)*v(401))*v(7522) v(3926)=(v(383)*v(3910)+v(3382)*v(401))*v(7522) v(3925)=v(3990)+v(3909)*v(8019) v(3924)=(v(383)*v(3908)+v(3381)*v(401))*v(7522) v(3923)=(v(383)*v(3907)+v(3315)*v(401))*v(7522) v(3922)=(v(383)*v(3904)+v(3380)*v(401))*v(7522) v(3921)=(v(383)*v(3903)+v(3379)*v(401))*v(7522) v(3920)=(v(383)*v(3902)+v(3378)*v(401))*v(7522) v(3919)=(v(383)*v(3901)+v(3377)*v(401))*v(7522) v(3918)=(v(383)*v(3900)+v(3376)*v(401))*v(7522) v(3917)=(v(383)*v(3899)+v(3375)*v(401))*v(7522) v(3916)=(v(383)*v(3898)+v(3374)*v(401))*v(7522) v(3915)=v(3897)*v(8019)+v(401)*v(8033) v(436)=v(401)*v(8019) v(397)=v(414)+v(434)+v(394)*v(8036) v(8041)=v(381)*v(397)+v(382)*v(401)+v(379)*v(402) v(8040)=v(383)*v(397)+v(380)*v(401)+v(382)*v(402) v(4029)=v(3896)+v(3930)+(v(376)*v(3946)+v(3273)*v(397))*v(7522) v(4028)=v(3895)+v(3929)+(v(376)*v(3945)+v(3272)*v(397))*v(7522) v(4027)=v(3894)+v(3928)+(v(376)*v(3944)+v(3271)*v(397))*v(7522) v(4026)=v(3893)+v(3927)+(v(376)*v(3943)+v(3270)*v(397))*v(7522) v(4025)=v(3892)+v(3926)+(v(376)*v(3942)+v(3269)*v(397))*v(7522) v(4024)=v(3891)+v(3925)+(v(376)*v(3941)+v(3268)*v(397))*v(7522) v(4023)=v(3890)+v(3924)+(v(376)*v(3940)+v(3267)*v(397))*v(7522) v(4022)=v(3889)+v(3923)+(v(376)*v(3939)+v(3266)*v(397))*v(7522) v(4021)=v(3888)+v(3922)+(v(376)*v(3938)+v(3265)*v(397))*v(7522) v(4020)=v(3887)+v(3921)+(v(376)*v(3937)+v(3264)*v(397))*v(7522) v(4019)=v(3886)+v(3920)+(v(376)*v(3936)+v(3263)*v(397))*v(7522) v(4018)=v(3885)+v(3919)+(v(376)*v(3935)+v(3262)*v(397))*v(7522) v(4017)=v(3884)+v(3918)+(v(376)*v(3934)+v(3261)*v(397))*v(7522) v(4016)=v(3883)+v(3917)+(v(376)*v(3933)+v(3260)*v(397))*v(7522) v(4015)=v(3882)+v(3916)+(v(376)*v(3932)+v(3259)*v(397))*v(7522) v(4014)=v(3881)+v(3915)+v(3931)*v(8036)+v(397)*v(8037) v(3997)=(v(379)*v(3880)+v(382)*v(3914)+v(381)*v(3946)+v(3321)*v(397)+v(3354)*v(401)+v(3289)*v(402))*v(7522) v(3996)=(v(379)*v(3879)+v(382)*v(3913)+v(381)*v(3945)+v(3320)*v(397)+v(3353)*v(401)+v(3288)*v(402))*v(7522) v(3995)=(v(379)*v(3878)+v(382)*v(3912)+v(381)*v(3944)+v(3319)*v(397)+v(3352)*v(401)+v(3287)*v(402))*v(7522) v(3994)=(v(379)*v(3877)+v(382)*v(3911)+v(381)*v(3943)+v(3318)*v(397)+v(3351)*v(401)+v(3286)*v(402))*v(7522) v(3993)=(v(379)*v(3876)+v(382)*v(3910)+v(381)*v(3942)+v(3317)*v(397)+v(3350)*v(401)+v(3285)*v(402))*v(7522) v(3992)=(v(379)*v(3875)+v(382)*v(3909)+v(381)*v(3941)+v(3316)*v(397)+v(3349)*v(401)+v(3284)*v(402))*v(7522) v(3989)=v(397)*v(4155) v(3991)=v(3989)+v(3990)+(v(379)*v(3874)+v(382)*v(3908)+v(381)*v(3940)+v(3283)*v(402))*v(7522) v(3988)=(v(379)*v(3872)+v(382)*v(3907)+v(381)*v(3939)+v(3314)*v(397)+v(3316)*v(401)+v(3282)*v(402))*v(7522) v(3987)=(v(379)*v(3871)+v(382)*v(3904)+v(381)*v(3938)+v(3313)*v(397)+v(3347)*v(401)+v(3281)*v(402))*v(7522) v(3986)=(v(379)*v(3870)+v(382)*v(3903)+v(381)*v(3937)+v(3312)*v(397)+v(3346)*v(401)+v(3280)*v(402))*v(7522) v(3985)=(v(379)*v(3869)+v(382)*v(3902)+v(381)*v(3936)+v(3311)*v(397)+v(3345)*v(401)+v(3279)*v(402))*v(7522) v(3984)=(v(379)*v(3868)+v(382)*v(3901)+v(381)*v(3935)+v(3310)*v(397)+v(3344)*v(401)+v(3278)*v(402))*v(7522) v(3983)=(v(379)*v(3867)+v(382)*v(3900)+v(381)*v(3934)+v(3309)*v(397)+v(3343)*v(401)+v(3277)*v(402))*v(7522) v(3982)=(v(379)*v(3866)+v(382)*v(3899)+v(381)*v(3933)+v(3308)*v(397)+v(3342)*v(401)+v(3276)*v(402))*v(7522) v(3981)=(v(379)*v(3865)+v(382)*v(3898)+v(381)*v(3932)+v(3307)*v(397)+v(3341)*v(401)+v(3275)*v(402))*v(7522) v(3980)=(v(379)*v(3864)+v(382)*v(3897)+v(381)*v(3931)+v(3306)*v(397)+v(3340)*v(401)+v(3274)*v(402))*v(7522)+v(7518)*v& &(8041) v(3963)=(v(382)*v(3880)+v(380)*v(3914)+v(383)*v(3946)+v(3386)*v(397)+v(3305)*v(401)+v(3354)*v(402))*v(7522) v(3962)=(v(382)*v(3879)+v(380)*v(3913)+v(383)*v(3945)+v(3385)*v(397)+v(3304)*v(401)+v(3353)*v(402))*v(7522) v(3961)=(v(382)*v(3878)+v(380)*v(3912)+v(383)*v(3944)+v(3384)*v(397)+v(3303)*v(401)+v(3352)*v(402))*v(7522) v(3960)=(v(382)*v(3877)+v(380)*v(3911)+v(383)*v(3943)+v(3383)*v(397)+v(3302)*v(401)+v(3351)*v(402))*v(7522) v(3959)=(v(382)*v(3876)+v(380)*v(3910)+v(383)*v(3942)+v(3382)*v(397)+v(3301)*v(401)+v(3350)*v(402))*v(7522) v(3958)=(v(382)*v(3875)+v(380)*v(3909)+v(383)*v(3941)+v(3348)*v(397)+v(3300)*v(401)+v(3349)*v(402))*v(7522) v(3957)=v(4310)+(v(382)*v(3874)+v(380)*v(3908)+v(383)*v(3940)+v(3381)*v(397)+v(3299)*v(401))*v(7522) v(3956)=v(3955)+v(3989)+(v(382)*v(3872)+v(380)*v(3907)+v(383)*v(3939)+v(3298)*v(401))*v(7522) v(3954)=(v(382)*v(3871)+v(380)*v(3904)+v(383)*v(3938)+v(3380)*v(397)+v(3297)*v(401)+v(3347)*v(402))*v(7522) v(3953)=(v(382)*v(3870)+v(380)*v(3903)+v(383)*v(3937)+v(3379)*v(397)+v(3296)*v(401)+v(3346)*v(402))*v(7522) v(3952)=(v(382)*v(3869)+v(380)*v(3902)+v(383)*v(3936)+v(3378)*v(397)+v(3295)*v(401)+v(3345)*v(402))*v(7522) v(3951)=(v(382)*v(3868)+v(380)*v(3901)+v(383)*v(3935)+v(3377)*v(397)+v(3294)*v(401)+v(3344)*v(402))*v(7522) v(3950)=(v(382)*v(3867)+v(380)*v(3900)+v(383)*v(3934)+v(3376)*v(397)+v(3293)*v(401)+v(3343)*v(402))*v(7522) v(3949)=(v(382)*v(3866)+v(380)*v(3899)+v(383)*v(3933)+v(3375)*v(397)+v(3292)*v(401)+v(3342)*v(402))*v(7522) v(3948)=(v(382)*v(3865)+v(380)*v(3898)+v(383)*v(3932)+v(3374)*v(397)+v(3291)*v(401)+v(3341)*v(402))*v(7522) v(3947)=(v(382)*v(3864)+v(380)*v(3897)+v(383)*v(3931)+v(3373)*v(397)+v(3290)*v(401)+v(3340)*v(402))*v(7522)+v(7518)*v& &(8040) v(405)=v(7522)*v(8040) v(4089)=v(405)*v(4394) v(3979)=(v(383)*v(3963)+v(3386)*v(405))*v(7522) v(3978)=(v(383)*v(3962)+v(3385)*v(405))*v(7522) v(3977)=(v(383)*v(3961)+v(3384)*v(405))*v(7522) v(3976)=(v(383)*v(3960)+v(3383)*v(405))*v(7522) v(3975)=(v(383)*v(3959)+v(3382)*v(405))*v(7522) v(3974)=v(4089)+v(3958)*v(8019) v(3973)=(v(383)*v(3957)+v(3381)*v(405))*v(7522) v(3972)=(v(383)*v(3956)+v(3315)*v(405))*v(7522) v(3971)=(v(383)*v(3954)+v(3380)*v(405))*v(7522) v(3970)=(v(383)*v(3953)+v(3379)*v(405))*v(7522) v(3969)=(v(383)*v(3952)+v(3378)*v(405))*v(7522) v(3968)=(v(383)*v(3951)+v(3377)*v(405))*v(7522) v(3967)=(v(383)*v(3950)+v(3376)*v(405))*v(7522) v(3966)=(v(383)*v(3949)+v(3375)*v(405))*v(7522) v(3965)=(v(383)*v(3948)+v(3374)*v(405))*v(7522) v(3964)=v(3947)*v(8019)+v(405)*v(8033) v(440)=v(405)*v(8019) v(404)=v(7522)*v(8041) v(4376)=v(404)*v(4394) v(4373)=v(404)*v(4155) v(4054)=v(404)*v(4391) v(4013)=(v(381)*v(3997)+v(3321)*v(404))*v(7522) v(4012)=(v(381)*v(3996)+v(3320)*v(404))*v(7522) v(4011)=(v(381)*v(3995)+v(3319)*v(404))*v(7522) v(4010)=(v(381)*v(3994)+v(3318)*v(404))*v(7522) v(4009)=(v(381)*v(3993)+v(3317)*v(404))*v(7522) v(4008)=v(4054)+v(3992)*v(8017) v(4007)=v(4373)+v(3991)*v(8017) v(4006)=(v(381)*v(3988)+v(3314)*v(404))*v(7522) v(4005)=(v(381)*v(3987)+v(3313)*v(404))*v(7522) v(4004)=(v(381)*v(3986)+v(3312)*v(404))*v(7522) v(4003)=(v(381)*v(3985)+v(3311)*v(404))*v(7522) v(4002)=(v(381)*v(3984)+v(3310)*v(404))*v(7522) v(4001)=(v(381)*v(3983)+v(3309)*v(404))*v(7522) v(4000)=(v(381)*v(3982)+v(3308)*v(404))*v(7522) v(3999)=(v(381)*v(3981)+v(3307)*v(404))*v(7522) v(3998)=v(3980)*v(8017)+v(404)*v(8035) v(420)=v(404)*v(8017) v(400)=v(418)+v(436)+v(397)*v(8036) v(8043)=v(381)*v(400)+v(379)*v(404)+v(382)*v(405) v(8042)=v(383)*v(400)+v(382)*v(404)+v(380)*v(405) v(4096)=(v(382)*v(3963)+v(379)*v(3997)+v(3321)*v(400)+v(381)*v(4029)+v(3289)*v(404)+v(3354)*v(405))*v(7522) v(4095)=(v(382)*v(3962)+v(379)*v(3996)+v(3320)*v(400)+v(381)*v(4028)+v(3288)*v(404)+v(3353)*v(405))*v(7522) v(4094)=(v(382)*v(3961)+v(379)*v(3995)+v(3319)*v(400)+v(381)*v(4027)+v(3287)*v(404)+v(3352)*v(405))*v(7522) v(4093)=(v(382)*v(3960)+v(379)*v(3994)+v(3318)*v(400)+v(381)*v(4026)+v(3286)*v(404)+v(3351)*v(405))*v(7522) v(4092)=(v(382)*v(3959)+v(379)*v(3993)+v(3317)*v(400)+v(381)*v(4025)+v(3285)*v(404)+v(3350)*v(405))*v(7522) v(4091)=(v(382)*v(3958)+v(379)*v(3992)+v(3316)*v(400)+v(381)*v(4024)+v(3284)*v(404)+v(3349)*v(405))*v(7522) v(4088)=v(400)*v(4155) v(4090)=v(4088)+v(4089)+(v(382)*v(3957)+v(379)*v(3991)+v(381)*v(4023)+v(3283)*v(404))*v(7522) v(4087)=(v(382)*v(3956)+v(379)*v(3988)+v(3314)*v(400)+v(381)*v(4022)+v(3282)*v(404)+v(3316)*v(405))*v(7522) v(4086)=(v(382)*v(3954)+v(379)*v(3987)+v(3313)*v(400)+v(381)*v(4021)+v(3281)*v(404)+v(3347)*v(405))*v(7522) v(4085)=(v(382)*v(3953)+v(379)*v(3986)+v(3312)*v(400)+v(381)*v(4020)+v(3280)*v(404)+v(3346)*v(405))*v(7522) v(4084)=(v(382)*v(3952)+v(379)*v(3985)+v(3311)*v(400)+v(381)*v(4019)+v(3279)*v(404)+v(3345)*v(405))*v(7522) v(4083)=(v(382)*v(3951)+v(379)*v(3984)+v(3310)*v(400)+v(381)*v(4018)+v(3278)*v(404)+v(3344)*v(405))*v(7522) v(4082)=(v(382)*v(3950)+v(379)*v(3983)+v(3309)*v(400)+v(381)*v(4017)+v(3277)*v(404)+v(3343)*v(405))*v(7522) v(4081)=(v(382)*v(3949)+v(379)*v(3982)+v(3308)*v(400)+v(381)*v(4016)+v(3276)*v(404)+v(3342)*v(405))*v(7522) v(4080)=(v(382)*v(3948)+v(379)*v(3981)+v(3307)*v(400)+v(381)*v(4015)+v(3275)*v(404)+v(3341)*v(405))*v(7522) v(4079)=(v(382)*v(3947)+v(379)*v(3980)+v(3306)*v(400)+v(381)*v(4014)+v(3274)*v(404)+v(3340)*v(405))*v(7522)+v(7518)*v& &(8043) v(4062)=(v(380)*v(3963)+v(382)*v(3997)+v(3386)*v(400)+v(383)*v(4029)+v(3354)*v(404)+v(3305)*v(405))*v(7522) v(4061)=(v(380)*v(3962)+v(382)*v(3996)+v(3385)*v(400)+v(383)*v(4028)+v(3353)*v(404)+v(3304)*v(405))*v(7522) v(4060)=(v(380)*v(3961)+v(382)*v(3995)+v(3384)*v(400)+v(383)*v(4027)+v(3352)*v(404)+v(3303)*v(405))*v(7522) v(4059)=(v(380)*v(3960)+v(382)*v(3994)+v(3383)*v(400)+v(383)*v(4026)+v(3351)*v(404)+v(3302)*v(405))*v(7522) v(4058)=(v(380)*v(3959)+v(382)*v(3993)+v(3382)*v(400)+v(383)*v(4025)+v(3350)*v(404)+v(3301)*v(405))*v(7522) v(4057)=(v(380)*v(3958)+v(382)*v(3992)+v(3348)*v(400)+v(383)*v(4024)+v(3349)*v(404)+v(3300)*v(405))*v(7522) v(4056)=v(4376)+(v(380)*v(3957)+v(382)*v(3991)+v(3381)*v(400)+v(383)*v(4023)+v(3299)*v(405))*v(7522) v(4055)=v(4054)+v(4088)+(v(380)*v(3956)+v(382)*v(3988)+v(383)*v(4022)+v(3298)*v(405))*v(7522) v(4053)=(v(380)*v(3954)+v(382)*v(3987)+v(3380)*v(400)+v(383)*v(4021)+v(3347)*v(404)+v(3297)*v(405))*v(7522) v(4052)=(v(380)*v(3953)+v(382)*v(3986)+v(3379)*v(400)+v(383)*v(4020)+v(3346)*v(404)+v(3296)*v(405))*v(7522) v(4051)=(v(380)*v(3952)+v(382)*v(3985)+v(3378)*v(400)+v(383)*v(4019)+v(3345)*v(404)+v(3295)*v(405))*v(7522) v(4050)=(v(380)*v(3951)+v(382)*v(3984)+v(3377)*v(400)+v(383)*v(4018)+v(3344)*v(404)+v(3294)*v(405))*v(7522) v(4049)=(v(380)*v(3950)+v(382)*v(3983)+v(3376)*v(400)+v(383)*v(4017)+v(3343)*v(404)+v(3293)*v(405))*v(7522) v(4048)=(v(380)*v(3949)+v(382)*v(3982)+v(3375)*v(400)+v(383)*v(4016)+v(3342)*v(404)+v(3292)*v(405))*v(7522) v(4047)=(v(380)*v(3948)+v(382)*v(3981)+v(3374)*v(400)+v(383)*v(4015)+v(3341)*v(404)+v(3291)*v(405))*v(7522) v(4046)=(v(380)*v(3947)+v(382)*v(3980)+v(3373)*v(400)+v(383)*v(4014)+v(3340)*v(404)+v(3290)*v(405))*v(7522)+v(7518)*v& &(8042) v(4045)=v(3979)+v(4013)+(v(3273)*v(400)+v(376)*v(4029))*v(7522) v(4044)=v(3978)+v(4012)+(v(3272)*v(400)+v(376)*v(4028))*v(7522) v(4043)=v(3977)+v(4011)+(v(3271)*v(400)+v(376)*v(4027))*v(7522) v(4042)=v(3976)+v(4010)+(v(3270)*v(400)+v(376)*v(4026))*v(7522) v(4041)=v(3975)+v(4009)+(v(3269)*v(400)+v(376)*v(4025))*v(7522) v(4040)=v(3974)+v(4008)+(v(3268)*v(400)+v(376)*v(4024))*v(7522) v(4039)=v(3973)+v(4007)+(v(3267)*v(400)+v(376)*v(4023))*v(7522) v(4038)=v(3972)+v(4006)+(v(3266)*v(400)+v(376)*v(4022))*v(7522) v(4037)=v(3971)+v(4005)+(v(3265)*v(400)+v(376)*v(4021))*v(7522) v(4036)=v(3970)+v(4004)+(v(3264)*v(400)+v(376)*v(4020))*v(7522) v(4035)=v(3969)+v(4003)+(v(3263)*v(400)+v(376)*v(4019))*v(7522) v(4034)=v(3968)+v(4002)+(v(3262)*v(400)+v(376)*v(4018))*v(7522) v(4033)=v(3967)+v(4001)+(v(3261)*v(400)+v(376)*v(4017))*v(7522) v(4032)=v(3966)+v(4000)+(v(3260)*v(400)+v(376)*v(4016))*v(7522) v(4031)=v(3965)+v(3999)+(v(3259)*v(400)+v(376)*v(4015))*v(7522) v(4030)=v(3964)+v(3998)+v(4014)*v(8036)+v(400)*v(8037) v(403)=v(420)+v(440)+v(400)*v(8036) v(8044)=5040d0+v(403) v(4156)=v(403)*v(4155) v(8046)=5040d0*v(4155)+v(4156) v(406)=v(7522)*v(8042) v(4157)=v(406)*v(4394) v(4078)=(v(3386)*v(406)+v(383)*v(4062))*v(7522) v(4077)=(v(3385)*v(406)+v(383)*v(4061))*v(7522) v(4076)=(v(3384)*v(406)+v(383)*v(4060))*v(7522) v(4075)=(v(383)*v(4059)+v(3383)*v(406))*v(7522) v(4074)=(v(383)*v(4058)+v(3382)*v(406))*v(7522) v(4073)=v(4157)+v(4057)*v(8019) v(4072)=(v(383)*v(4056)+v(3381)*v(406))*v(7522) v(4071)=(v(383)*v(4055)+v(3315)*v(406))*v(7522) v(4070)=(v(383)*v(4053)+v(3380)*v(406))*v(7522) v(4069)=(v(383)*v(4052)+v(3379)*v(406))*v(7522) v(4068)=(v(383)*v(4051)+v(3378)*v(406))*v(7522) v(4067)=(v(383)*v(4050)+v(3377)*v(406))*v(7522) v(4066)=(v(383)*v(4049)+v(3376)*v(406))*v(7522) v(4065)=(v(383)*v(4048)+v(3375)*v(406))*v(7522) v(4064)=(v(383)*v(4047)+v(3374)*v(406))*v(7522) v(4063)=v(4046)*v(8019)+v(406)*v(8033) v(442)=v(406)*v(8019) v(407)=v(7522)*v(8043) v(8048)=v(382)*v(406)+v(379)*v(407) v(8047)=v(380)*v(406)+v(382)*v(407) v(4396)=v(407)*v(4394) v(4392)=v(407)*v(4155) v(4164)=(7d0*(360d0*v(3454)+120d0*v(3831)+30d0*v(3880)+6d0*v(3997)+v(4096))+v(7522)*(v(381)*v(4045)+v(3354)*v(406)+v& &(382)*v(4062)+v(3289)*v(407)+v(379)*v(4096)+v(3321)*v(8044)))/5040d0 v(4163)=(7d0*(360d0*v(3453)+120d0*v(3830)+30d0*v(3879)+6d0*v(3996)+v(4095))+v(7522)*(v(381)*v(4044)+v(3353)*v(406)+v& &(382)*v(4061)+v(3288)*v(407)+v(379)*v(4095)+v(3320)*v(8044)))/5040d0 v(4162)=(7d0*(360d0*v(3452)+120d0*v(3829)+30d0*v(3878)+6d0*v(3995)+v(4094))+v(7522)*(v(381)*v(4043)+v(3352)*v(406)+v& &(382)*v(4060)+v(3287)*v(407)+v(379)*v(4094)+v(3319)*v(8044)))/5040d0 v(4161)=(7d0*(360d0*v(3451)+120d0*v(3828)+30d0*v(3877)+6d0*v(3994)+v(4093))+v(7522)*(v(381)*v(4042)+v(382)*v(4059)+v& &(3351)*v(406)+v(3286)*v(407)+v(379)*v(4093)+v(3318)*v(8044)))/5040d0 v(4160)=(7d0*(360d0*v(3450)+120d0*v(3827)+30d0*v(3876)+6d0*v(3993)+v(4092))+v(7522)*(v(381)*v(4041)+v(382)*v(4058)+v& &(3350)*v(406)+v(3285)*v(407)+v(379)*v(4092)+v(3317)*v(8044)))/5040d0 v(4159)=(7d0*(360d0*v(3449)+120d0*v(3826)+30d0*v(3875)+6d0*v(3992)+v(4091)+720d0*v(4391))+(v(3316)*v(403)+v(381)*v(4040& &)+v(382)*v(4057)+v(3349)*v(406)+v(3284)*v(407)+v(379)*v(4091))*v(7522))/5040d0 v(4158)=(2520d0*v(3447)+840d0*v(3825)+210d0*v(3874)+42d0*v(3991)+7d0*v(4090)+v(4157)+(v(381)*v(4039)+v(382)*v(4056)+v& &(3283)*v(407)+v(379)*v(4090))*v(7522)+v(8046))/5040d0 v(4154)=(7d0*(360d0*v(3446)+120d0*v(3822)+30d0*v(3872)+6d0*v(3988)+v(4087))+v(7522)*(v(381)*v(4038)+v(382)*v(4055)+v& &(3316)*v(406)+v(3282)*v(407)+v(379)*v(4087)+v(3314)*v(8044)))/5040d0 v(4153)=(7d0*(360d0*v(3444)+120d0*v(3821)+30d0*v(3871)+6d0*v(3987)+v(4086))+v(7522)*(v(381)*v(4037)+v(382)*v(4053)+v& &(3347)*v(406)+v(3281)*v(407)+v(379)*v(4086)+v(3313)*v(8044)))/5040d0 v(4152)=(7d0*(360d0*v(3443)+120d0*v(3820)+30d0*v(3870)+6d0*v(3986)+v(4085))+v(7522)*(v(381)*v(4036)+v(382)*v(4052)+v& &(3346)*v(406)+v(3280)*v(407)+v(379)*v(4085)+v(3312)*v(8044)))/5040d0 v(4151)=(7d0*(360d0*v(3442)+120d0*v(3819)+30d0*v(3869)+6d0*v(3985)+v(4084))+v(7522)*(v(381)*v(4035)+v(382)*v(4051)+v& &(3345)*v(406)+v(3279)*v(407)+v(379)*v(4084)+v(3311)*v(8044)))/5040d0 v(4150)=(7d0*(360d0*v(3441)+120d0*v(3818)+30d0*v(3868)+6d0*v(3984)+v(4083))+v(7522)*(v(381)*v(4034)+v(382)*v(4050)+v& &(3344)*v(406)+v(3278)*v(407)+v(379)*v(4083)+v(3310)*v(8044)))/5040d0 v(4149)=(7d0*(360d0*v(3440)+120d0*v(3817)+30d0*v(3867)+6d0*v(3983)+v(4082))+v(7522)*(v(381)*v(4033)+v(382)*v(4049)+v& &(3343)*v(406)+v(3277)*v(407)+v(379)*v(4082)+v(3309)*v(8044)))/5040d0 v(4148)=(7d0*(360d0*v(3439)+120d0*v(3816)+30d0*v(3866)+6d0*v(3982)+v(4081))+v(7522)*(v(381)*v(4032)+v(382)*v(4048)+v& &(3342)*v(406)+v(3276)*v(407)+v(379)*v(4081)+v(3308)*v(8044)))/5040d0 v(4147)=(7d0*(360d0*v(3438)+120d0*v(3815)+30d0*v(3865)+6d0*v(3981)+v(4080))+v(7522)*(v(381)*v(4031)+v(382)*v(4047)+v& &(3341)*v(406)+v(3275)*v(407)+v(379)*v(4080)+v(3307)*v(8044)))/5040d0 v(4146)=v(3437)/2d0+v(3814)/6d0+v(3864)/24d0+v(3980)/120d0+v(4079)/720d0+v(8035)+((v(3306)*v(403)+v(381)*v(4030)+v(382& &)*v(4046)+v(3340)*v(406)+v(3274)*v(407)+v(379)*v(4079))*v(7522)+v(7518)*(v(381)*v(403)+v(8048)))/5040d0 v(4129)=(v(3321)*v(407)+v(381)*v(4096))*v(7522) v(4145)=(2520d0*v(3780)+840d0*v(3863)+210d0*v(3946)+42d0*v(4029)+7d0*v(4045)+v(4078)+v(4129)+v(7522)*(v(376)*v(4045)+v& &(3273)*v(8044)))/5040d0 v(4128)=(v(3320)*v(407)+v(381)*v(4095))*v(7522) v(4144)=(2520d0*v(3779)+840d0*v(3862)+210d0*v(3945)+42d0*v(4028)+7d0*v(4044)+v(4077)+v(4128)+v(7522)*(v(376)*v(4044)+v& &(3272)*v(8044)))/5040d0 v(4127)=(v(3319)*v(407)+v(381)*v(4094))*v(7522) v(4143)=(2520d0*v(3778)+840d0*v(3861)+210d0*v(3944)+42d0*v(4027)+7d0*v(4043)+v(4076)+v(4127)+v(7522)*(v(376)*v(4043)+v& &(3271)*v(8044)))/5040d0 v(4126)=(v(3318)*v(407)+v(381)*v(4093))*v(7522) v(4142)=(2520d0*v(3777)+840d0*v(3860)+210d0*v(3943)+42d0*v(4026)+7d0*v(4042)+v(4075)+v(4126)+v(7522)*(v(376)*v(4042)+v& &(3270)*v(8044)))/5040d0 v(4125)=(v(3317)*v(407)+v(381)*v(4092))*v(7522) v(4141)=(2520d0*v(3776)+840d0*v(3859)+210d0*v(3942)+42d0*v(4025)+7d0*v(4041)+v(4074)+v(4125)+v(7522)*(v(376)*v(4041)+v& &(3269)*v(8044)))/5040d0 v(4123)=v(407)*v(4391) v(4124)=v(4123)+v(4091)*v(8017) v(4140)=(2520d0*v(3775)+840d0*v(3858)+210d0*v(3941)+42d0*v(4024)+7d0*v(4040)+v(4073)+v(4124)+v(7522)*(v(376)*v(4040)+v& &(3268)*v(8044)))/5040d0 v(4122)=v(4392)+v(4090)*v(8017) v(4139)=(2520d0*v(3774)+840d0*v(3857)+210d0*v(3940)+42d0*v(4023)+7d0*v(4039)+v(4072)+v(4122)+v(7522)*(v(376)*v(4039)+v& &(3267)*v(8044)))/5040d0 v(4121)=(v(3314)*v(407)+v(381)*v(4087))*v(7522) v(4138)=(2520d0*v(3773)+840d0*v(3856)+210d0*v(3939)+42d0*v(4022)+7d0*v(4038)+v(4071)+v(4121)+v(7522)*(v(376)*v(4038)+v& &(3266)*v(8044)))/5040d0 v(4120)=(v(3313)*v(407)+v(381)*v(4086))*v(7522) v(4137)=(2520d0*v(3772)+840d0*v(3855)+210d0*v(3938)+42d0*v(4021)+7d0*v(4037)+v(4070)+v(4120)+v(7522)*(v(376)*v(4037)+v& &(3265)*v(8044)))/5040d0 v(4119)=(v(3312)*v(407)+v(381)*v(4085))*v(7522) v(4136)=(2520d0*v(3771)+840d0*v(3854)+210d0*v(3937)+42d0*v(4020)+7d0*v(4036)+v(4069)+v(4119)+v(7522)*(v(376)*v(4036)+v& &(3264)*v(8044)))/5040d0 v(4118)=(v(3311)*v(407)+v(381)*v(4084))*v(7522) v(4135)=(2520d0*v(3770)+840d0*v(3853)+210d0*v(3936)+42d0*v(4019)+7d0*v(4035)+v(4068)+v(4118)+v(7522)*(v(376)*v(4035)+v& &(3263)*v(8044)))/5040d0 v(4117)=(v(3310)*v(407)+v(381)*v(4083))*v(7522) v(4134)=(2520d0*v(3769)+840d0*v(3852)+210d0*v(3935)+42d0*v(4018)+7d0*v(4034)+v(4067)+v(4117)+v(7522)*(v(376)*v(4034)+v& &(3262)*v(8044)))/5040d0 v(4116)=(v(3309)*v(407)+v(381)*v(4082))*v(7522) v(4133)=(2520d0*v(3768)+840d0*v(3851)+210d0*v(3934)+42d0*v(4017)+7d0*v(4033)+v(4066)+v(4116)+v(7522)*(v(376)*v(4033)+v& &(3261)*v(8044)))/5040d0 v(4115)=(v(3308)*v(407)+v(381)*v(4081))*v(7522) v(4132)=(2520d0*v(3767)+840d0*v(3850)+210d0*v(3933)+42d0*v(4016)+7d0*v(4032)+v(4065)+v(4115)+v(7522)*(v(376)*v(4032)+v& &(3260)*v(8044)))/5040d0 v(4114)=(v(3307)*v(407)+v(381)*v(4080))*v(7522) v(4131)=(2520d0*v(3766)+840d0*v(3849)+210d0*v(3932)+42d0*v(4015)+7d0*v(4031)+v(4064)+v(4114)+v(7522)*(v(376)*v(4031)+v& &(3259)*v(8044)))/5040d0 v(4113)=v(4079)*v(8017)+v(407)*v(8035) v(4130)=(2520d0*v(3764)+840d0*v(3848)+210d0*v(3931)+42d0*v(4014)+7d0*v(4030)+v(4063)+v(4113)+v(376)*(v(4030)*v(7522)+v& &(7518)*v(8044))+v(8044)*v(8045))/5040d0 v(4112)=(7d0*(360d0*v(3490)+120d0*v(3797)+30d0*v(3914)+6d0*v(3963)+v(4062))+(5040d0*v(3386)+v(3386)*v(403)+v(383)*v& &(4045)+v(3305)*v(406)+v(380)*v(4062)+v(3354)*v(407)+v(382)*v(4096))*v(7522))/5040d0 v(4628)=statev(17)*v(4145)+statev(15)*v(4164)+v(4112)*v(7508) v(4580)=statev(19)*v(4112)+statev(14)*v(4145)+v(4164)*v(7507) v(4180)=statev(16)*v(4112)+statev(18)*v(4164)+v(4145)*v(7506) v(4111)=(7d0*(360d0*v(3489)+120d0*v(3796)+30d0*v(3913)+6d0*v(3962)+v(4061))+(5040d0*v(3385)+v(3385)*v(403)+v(383)*v& &(4044)+v(3304)*v(406)+v(380)*v(4061)+v(3353)*v(407)+v(382)*v(4095))*v(7522))/5040d0 v(4627)=statev(17)*v(4144)+statev(15)*v(4163)+v(4111)*v(7508) v(4579)=statev(19)*v(4111)+statev(14)*v(4144)+v(4163)*v(7507) v(4179)=statev(16)*v(4111)+statev(18)*v(4163)+v(4144)*v(7506) v(4110)=(7d0*(360d0*v(3488)+120d0*v(3795)+30d0*v(3912)+6d0*v(3961)+v(4060))+(5040d0*v(3384)+v(3384)*v(403)+v(383)*v& &(4043)+v(3303)*v(406)+v(380)*v(4060)+v(3352)*v(407)+v(382)*v(4094))*v(7522))/5040d0 v(4626)=statev(17)*v(4143)+statev(15)*v(4162)+v(4110)*v(7508) v(4578)=statev(19)*v(4110)+statev(14)*v(4143)+v(4162)*v(7507) v(4178)=statev(16)*v(4110)+statev(18)*v(4162)+v(4143)*v(7506) v(4109)=(7d0*(360d0*v(3487)+120d0*v(3794)+30d0*v(3911)+6d0*v(3960)+v(4059))+(5040d0*v(3383)+v(3383)*v(403)+v(383)*v& &(4042)+v(380)*v(4059)+v(3302)*v(406)+v(3351)*v(407)+v(382)*v(4093))*v(7522))/5040d0 v(4625)=statev(17)*v(4142)+statev(15)*v(4161)+v(4109)*v(7508) v(4577)=statev(19)*v(4109)+statev(14)*v(4142)+v(4161)*v(7507) v(4177)=statev(16)*v(4109)+statev(18)*v(4161)+v(4142)*v(7506) v(4108)=(7d0*(360d0*v(3486)+120d0*v(3793)+30d0*v(3910)+6d0*v(3959)+v(4058))+(5040d0*v(3382)+v(3382)*v(403)+v(383)*v& &(4041)+v(380)*v(4058)+v(3301)*v(406)+v(3350)*v(407)+v(382)*v(4092))*v(7522))/5040d0 v(4624)=statev(17)*v(4141)+statev(15)*v(4160)+v(4108)*v(7508) v(4576)=statev(19)*v(4108)+statev(14)*v(4141)+v(4160)*v(7507) v(4176)=statev(16)*v(4108)+statev(18)*v(4160)+v(4141)*v(7506) v(4107)=((v(3348)*v(403)+v(383)*v(4040)+v(380)*v(4057)+v(3300)*v(406)+v(3349)*v(407)+v(382)*v(4091))*v(7522)+7d0*& &(360d0*v(3485)+120d0*v(3792)+30d0*v(3909)+6d0*v(3958)+v(4057)+v(8058)))/5040d0 v(4623)=statev(17)*v(4140)+statev(15)*v(4159)+v(4107)*v(7508) v(4575)=statev(19)*v(4107)+statev(14)*v(4140)+v(4159)*v(7507) v(4175)=statev(16)*v(4107)+statev(18)*v(4159)+v(4140)*v(7506) v(4106)=(2520d0*v(3483)+840d0*v(3791)+210d0*v(3908)+42d0*v(3957)+7d0*v(4056)+v(4396)+v(7522)*(v(383)*v(4039)+v(380)*v& &(4056)+v(3299)*v(406)+v(382)*v(4090)+v(3381)*v(8044)))/5040d0 v(4622)=statev(17)*v(4139)+statev(15)*v(4158)+v(4106)*v(7508) v(4574)=statev(19)*v(4106)+statev(14)*v(4139)+v(4158)*v(7507) v(4174)=statev(16)*v(4106)+statev(18)*v(4158)+v(4139)*v(7506) v(4105)=(2520d0*v(3480)+840d0*v(3790)+210d0*v(3907)+42d0*v(3956)+7d0*v(4055)+v(4123)+(v(383)*v(4038)+v(380)*v(4055)+v& &(3298)*v(406)+v(382)*v(4087))*v(7522)+v(8046))/5040d0 v(4621)=statev(17)*v(4138)+statev(15)*v(4154)+v(4105)*v(7508) v(4573)=statev(19)*v(4105)+statev(14)*v(4138)+v(4154)*v(7507) v(4173)=statev(16)*v(4105)+statev(18)*v(4154)+v(4138)*v(7506) v(4104)=(7d0*(360d0*v(3478)+120d0*v(3788)+30d0*v(3904)+6d0*v(3954)+v(4053))+(5040d0*v(3380)+v(3380)*v(403)+v(383)*v& &(4037)+v(380)*v(4053)+v(3297)*v(406)+v(3347)*v(407)+v(382)*v(4086))*v(7522))/5040d0 v(4620)=statev(17)*v(4137)+statev(15)*v(4153)+v(4104)*v(7508) v(4572)=statev(19)*v(4104)+statev(14)*v(4137)+v(4153)*v(7507) v(4172)=statev(16)*v(4104)+statev(18)*v(4153)+v(4137)*v(7506) v(4103)=(7d0*(360d0*v(3477)+120d0*v(3787)+30d0*v(3903)+6d0*v(3953)+v(4052))+(5040d0*v(3379)+v(3379)*v(403)+v(383)*v& &(4036)+v(380)*v(4052)+v(3296)*v(406)+v(3346)*v(407)+v(382)*v(4085))*v(7522))/5040d0 v(4619)=statev(17)*v(4136)+statev(15)*v(4152)+v(4103)*v(7508) v(4571)=statev(19)*v(4103)+statev(14)*v(4136)+v(4152)*v(7507) v(4171)=statev(16)*v(4103)+statev(18)*v(4152)+v(4136)*v(7506) v(4102)=(7d0*(360d0*v(3476)+120d0*v(3786)+30d0*v(3902)+6d0*v(3952)+v(4051))+(5040d0*v(3378)+v(3378)*v(403)+v(383)*v& &(4035)+v(380)*v(4051)+v(3295)*v(406)+v(3345)*v(407)+v(382)*v(4084))*v(7522))/5040d0 v(4618)=statev(17)*v(4135)+statev(15)*v(4151)+v(4102)*v(7508) v(4570)=statev(19)*v(4102)+statev(14)*v(4135)+v(4151)*v(7507) v(4170)=statev(16)*v(4102)+statev(18)*v(4151)+v(4135)*v(7506) v(4101)=(7d0*(360d0*v(3475)+120d0*v(3785)+30d0*v(3901)+6d0*v(3951)+v(4050))+(5040d0*v(3377)+v(3377)*v(403)+v(383)*v& &(4034)+v(380)*v(4050)+v(3294)*v(406)+v(3344)*v(407)+v(382)*v(4083))*v(7522))/5040d0 v(4617)=statev(17)*v(4134)+statev(15)*v(4150)+v(4101)*v(7508) v(4569)=statev(19)*v(4101)+statev(14)*v(4134)+v(4150)*v(7507) v(4169)=statev(16)*v(4101)+statev(18)*v(4150)+v(4134)*v(7506) v(4100)=(7d0*(360d0*v(3474)+120d0*v(3784)+30d0*v(3900)+6d0*v(3950)+v(4049))+(5040d0*v(3376)+v(3376)*v(403)+v(383)*v& &(4033)+v(380)*v(4049)+v(3293)*v(406)+v(3343)*v(407)+v(382)*v(4082))*v(7522))/5040d0 v(4616)=statev(17)*v(4133)+statev(15)*v(4149)+v(4100)*v(7508) v(4568)=statev(19)*v(4100)+statev(14)*v(4133)+v(4149)*v(7507) v(4168)=statev(16)*v(4100)+statev(18)*v(4149)+v(4133)*v(7506) v(4099)=(7d0*(360d0*v(3473)+120d0*v(3783)+30d0*v(3899)+6d0*v(3949)+v(4048))+(5040d0*v(3375)+v(3375)*v(403)+v(383)*v& &(4032)+v(380)*v(4048)+v(3292)*v(406)+v(3342)*v(407)+v(382)*v(4081))*v(7522))/5040d0 v(4615)=statev(17)*v(4132)+statev(15)*v(4148)+v(4099)*v(7508) v(4567)=statev(19)*v(4099)+statev(14)*v(4132)+v(4148)*v(7507) v(4167)=statev(16)*v(4099)+statev(18)*v(4148)+v(4132)*v(7506) v(4098)=(7d0*(360d0*v(3472)+120d0*v(3782)+30d0*v(3898)+6d0*v(3948)+v(4047))+(5040d0*v(3374)+v(3374)*v(403)+v(383)*v& &(4031)+v(380)*v(4047)+v(3291)*v(406)+v(3341)*v(407)+v(382)*v(4080))*v(7522))/5040d0 v(4614)=statev(17)*v(4131)+statev(15)*v(4147)+v(4098)*v(7508) v(4566)=statev(19)*v(4098)+statev(14)*v(4131)+v(4147)*v(7507) v(4166)=statev(16)*v(4098)+statev(18)*v(4147)+v(4131)*v(7506) v(4097)=v(3471)/2d0+v(3781)/6d0+v(3897)/24d0+v(3947)/120d0+v(4046)/720d0+v(8033)+((v(3373)*v(403)+v(383)*v(4030)+v(380& &)*v(4046)+v(3290)*v(406)+v(3340)*v(407)+v(382)*v(4079))*v(7522)+v(7518)*(v(383)*v(403)+v(8047)))/5040d0 v(4613)=statev(17)*v(4130)+statev(15)*v(4146)+v(4097)*v(7508) v(4565)=statev(19)*v(4097)+statev(14)*v(4130)+v(4146)*v(7507) v(4165)=statev(16)*v(4097)+statev(18)*v(4146)+v(4130)*v(7506) v(445)=(7d0*(360d0*v(395)+120d0*v(399)+30d0*v(401)+6d0*v(405)+v(406))+v(7522)*(v(383)*v(8044)+v(8047)))/5040d0 v(425)=v(407)*v(8017) v(8060)=5040d0+v(425) v(447)=(2520d0*v(393)+840d0*v(394)+210d0*v(397)+42d0*v(400)+7d0*v(403)+v(442)+v(8036)*v(8044)+v(8060))/5040d0 v(409)=(7d0*(360d0*v(396)+120d0*v(398)+30d0*v(402)+6d0*v(404)+v(407))+v(7522)*(v(381)*v(8044)+v(8048)))/5040d0 v(408)=statev(18)*v(409)+statev(16)*v(445)+v(447)*v(7506) v(411)=v(410)+v(232)*v(4181)+v(427) v(8049)=v(383)*v(396)+v(382)*v(411)+v(380)*v(415) v(4248)=v(3436)+v(3470)+(v(3289)*v(411)+v(379)*v(4198))*v(7522) v(4247)=v(3435)+v(3469)+(v(3288)*v(411)+v(379)*v(4197))*v(7522) v(4246)=v(3434)+v(3468)+(v(3287)*v(411)+v(379)*v(4196))*v(7522) v(4245)=v(3433)+v(3467)+(v(3286)*v(411)+v(379)*v(4195))*v(7522) v(4244)=v(3432)+v(3466)+(v(3285)*v(411)+v(379)*v(4194))*v(7522) v(4243)=v(3431)+v(3465)+(v(3284)*v(411)+v(379)*v(4193))*v(7522) v(4242)=v(3430)+v(3464)+(v(3283)*v(411)+v(379)*v(4192))*v(7522) v(4241)=v(3429)+v(3463)+(v(3282)*v(411)+v(379)*v(4191))*v(7522) v(4240)=v(3428)+v(3462)+(v(3281)*v(411)+v(379)*v(4190))*v(7522) v(4239)=v(3427)+v(3461)+(v(3280)*v(411)+v(379)*v(4189))*v(7522) v(4238)=v(3426)+v(3460)+(v(3279)*v(411)+v(379)*v(4188))*v(7522) v(4237)=v(3425)+v(3459)+(v(3278)*v(411)+v(379)*v(4187))*v(7522) v(4236)=v(3424)+v(3458)+(v(3277)*v(411)+v(379)*v(4186))*v(7522) v(4235)=v(3423)+v(3457)+(v(3276)*v(411)+v(379)*v(4185))*v(7522) v(4234)=v(3422)+v(3456)+(v(3275)*v(411)+v(379)*v(4184))*v(7522) v(4233)=v(3421)+v(3455)+v(4182)*v(8051)+v(411)*v(8052) v(4216)=(v(3420)*v(380)+v(3454)*v(383)+v(3386)*v(396)+v(3354)*v(411)+v(3305)*v(415)+v(382)*v(4198))*v(7522) v(4215)=(v(3419)*v(380)+v(3453)*v(383)+v(3385)*v(396)+v(3353)*v(411)+v(3304)*v(415)+v(382)*v(4197))*v(7522) v(4214)=(v(3418)*v(380)+v(3452)*v(383)+v(3384)*v(396)+v(3352)*v(411)+v(3303)*v(415)+v(382)*v(4196))*v(7522) v(4213)=(v(3417)*v(380)+v(3451)*v(383)+v(3383)*v(396)+v(3351)*v(411)+v(3302)*v(415)+v(382)*v(4195))*v(7522) v(4212)=(v(3416)*v(380)+v(3450)*v(383)+v(3382)*v(396)+v(3350)*v(411)+v(3301)*v(415)+v(382)*v(4194))*v(7522) v(4211)=v(4210)+(v(3415)*v(380)+v(3449)*v(383)+v(3349)*v(411)+v(3300)*v(415)+v(382)*v(4193))*v(7522) v(4209)=(v(3414)*v(380)+v(3447)*v(383)+v(3381)*v(396)+v(3348)*v(411)+v(3299)*v(415)+v(382)*v(4192))*v(7522) v(4208)=v(4207)+(v(3413)*v(380)+v(3446)*v(383)+v(3316)*v(411)+v(3298)*v(415)+v(382)*v(4191))*v(7522) v(4206)=(v(3412)*v(380)+v(3444)*v(383)+v(3380)*v(396)+v(3347)*v(411)+v(3297)*v(415)+v(382)*v(4190))*v(7522) v(4205)=(v(3411)*v(380)+v(3443)*v(383)+v(3379)*v(396)+v(3346)*v(411)+v(3296)*v(415)+v(382)*v(4189))*v(7522) v(4204)=(v(3410)*v(380)+v(3442)*v(383)+v(3378)*v(396)+v(3345)*v(411)+v(3295)*v(415)+v(382)*v(4188))*v(7522) v(4203)=(v(3409)*v(380)+v(3441)*v(383)+v(3377)*v(396)+v(3344)*v(411)+v(3294)*v(415)+v(382)*v(4187))*v(7522) v(4202)=(v(3408)*v(380)+v(3440)*v(383)+v(3376)*v(396)+v(3343)*v(411)+v(3293)*v(415)+v(382)*v(4186))*v(7522) v(4201)=(v(3407)*v(380)+v(3439)*v(383)+v(3375)*v(396)+v(3342)*v(411)+v(3292)*v(415)+v(382)*v(4185))*v(7522) v(4200)=(v(3406)*v(380)+v(3438)*v(383)+v(3374)*v(396)+v(3341)*v(411)+v(3291)*v(415)+v(382)*v(4184))*v(7522) v(4199)=(v(3405)*v(380)+v(3437)*v(383)+v(3373)*v(396)+v(3340)*v(411)+v(3290)*v(415)+v(382)*v(4182))*v(7522)+v(7518)*v& &(8049) v(417)=v(7522)*v(8049) v(4232)=(v(3354)*v(417)+v(382)*v(4216))*v(7522) v(4231)=(v(3353)*v(417)+v(382)*v(4215))*v(7522) v(4230)=(v(3352)*v(417)+v(382)*v(4214))*v(7522) v(4229)=(v(3351)*v(417)+v(382)*v(4213))*v(7522) v(4228)=(v(3350)*v(417)+v(382)*v(4212))*v(7522) v(4227)=(v(3349)*v(417)+v(382)*v(4211))*v(7522) v(4226)=(v(3348)*v(417)+v(382)*v(4209))*v(7522) v(4225)=(v(3316)*v(417)+v(382)*v(4208))*v(7522) v(4224)=(v(3347)*v(417)+v(382)*v(4206))*v(7522) v(4223)=(v(3346)*v(417)+v(382)*v(4205))*v(7522) v(4222)=(v(3345)*v(417)+v(382)*v(4204))*v(7522) v(4221)=(v(3344)*v(417)+v(382)*v(4203))*v(7522) v(4220)=(v(3343)*v(417)+v(382)*v(4202))*v(7522) v(4219)=(v(3342)*v(417)+v(382)*v(4201))*v(7522) v(4218)=(v(3341)*v(417)+v(382)*v(4200))*v(7522) v(4217)=v(4199)*v(8015)+v(417)*v(8050) v(433)=v(417)*v(8015) v(413)=v(412)+v(431)+v(411)*v(8051) v(8053)=v(383)*v(398)+v(382)*v(413)+v(380)*v(417) v(4298)=v(3847)+v(4232)+(v(3289)*v(413)+v(379)*v(4248))*v(7522) v(4297)=v(3846)+v(4231)+(v(3288)*v(413)+v(379)*v(4247))*v(7522) v(4296)=v(3845)+v(4230)+(v(3287)*v(413)+v(379)*v(4246))*v(7522) v(4295)=v(3844)+v(4229)+(v(3286)*v(413)+v(379)*v(4245))*v(7522) v(4294)=v(3843)+v(4228)+(v(3285)*v(413)+v(379)*v(4244))*v(7522) v(4293)=v(3842)+v(4227)+(v(3284)*v(413)+v(379)*v(4243))*v(7522) v(4292)=v(3841)+v(4226)+(v(3283)*v(413)+v(379)*v(4242))*v(7522) v(4291)=v(3840)+v(4225)+(v(3282)*v(413)+v(379)*v(4241))*v(7522) v(4290)=v(3839)+v(4224)+(v(3281)*v(413)+v(379)*v(4240))*v(7522) v(4289)=v(3838)+v(4223)+(v(3280)*v(413)+v(379)*v(4239))*v(7522) v(4288)=v(3837)+v(4222)+(v(3279)*v(413)+v(379)*v(4238))*v(7522) v(4287)=v(3836)+v(4221)+(v(3278)*v(413)+v(379)*v(4237))*v(7522) v(4286)=v(3835)+v(4220)+(v(3277)*v(413)+v(379)*v(4236))*v(7522) v(4285)=v(3834)+v(4219)+(v(3276)*v(413)+v(379)*v(4235))*v(7522) v(4284)=v(3833)+v(4218)+(v(3275)*v(413)+v(379)*v(4234))*v(7522) v(4283)=v(3832)+v(4217)+v(4233)*v(8051)+v(413)*v(8052) v(4266)=(v(383)*v(3831)+v(3386)*v(398)+v(3354)*v(413)+v(3305)*v(417)+v(380)*v(4216)+v(382)*v(4248))*v(7522) v(4265)=(v(383)*v(3830)+v(3385)*v(398)+v(3353)*v(413)+v(3304)*v(417)+v(380)*v(4215)+v(382)*v(4247))*v(7522) v(4264)=(v(3829)*v(383)+v(3384)*v(398)+v(3352)*v(413)+v(3303)*v(417)+v(380)*v(4214)+v(382)*v(4246))*v(7522) v(4263)=(v(3828)*v(383)+v(3383)*v(398)+v(3351)*v(413)+v(3302)*v(417)+v(380)*v(4213)+v(382)*v(4245))*v(7522) v(4262)=(v(3827)*v(383)+v(3382)*v(398)+v(3350)*v(413)+v(3301)*v(417)+v(380)*v(4212)+v(382)*v(4244))*v(7522) v(4261)=v(4260)+(v(3826)*v(383)+v(3349)*v(413)+v(3300)*v(417)+v(380)*v(4211)+v(382)*v(4243))*v(7522) v(4259)=(v(3825)*v(383)+v(3381)*v(398)+v(3348)*v(413)+v(3299)*v(417)+v(380)*v(4209)+v(382)*v(4242))*v(7522) v(4258)=v(4257)+(v(3822)*v(383)+v(3316)*v(413)+v(3298)*v(417)+v(380)*v(4208)+v(382)*v(4241))*v(7522) v(4256)=(v(3821)*v(383)+v(3380)*v(398)+v(3347)*v(413)+v(3297)*v(417)+v(380)*v(4206)+v(382)*v(4240))*v(7522) v(4255)=(v(3820)*v(383)+v(3379)*v(398)+v(3346)*v(413)+v(3296)*v(417)+v(380)*v(4205)+v(382)*v(4239))*v(7522) v(4254)=(v(3819)*v(383)+v(3378)*v(398)+v(3345)*v(413)+v(3295)*v(417)+v(380)*v(4204)+v(382)*v(4238))*v(7522) v(4253)=(v(3818)*v(383)+v(3377)*v(398)+v(3344)*v(413)+v(3294)*v(417)+v(380)*v(4203)+v(382)*v(4237))*v(7522) v(4252)=(v(3817)*v(383)+v(3376)*v(398)+v(3343)*v(413)+v(3293)*v(417)+v(380)*v(4202)+v(382)*v(4236))*v(7522) v(4251)=(v(3816)*v(383)+v(3375)*v(398)+v(3342)*v(413)+v(3292)*v(417)+v(380)*v(4201)+v(382)*v(4235))*v(7522) v(4250)=(v(3815)*v(383)+v(3374)*v(398)+v(3341)*v(413)+v(3291)*v(417)+v(380)*v(4200)+v(382)*v(4234))*v(7522) v(4249)=(v(3814)*v(383)+v(3373)*v(398)+v(3340)*v(413)+v(3290)*v(417)+v(380)*v(4199)+v(382)*v(4233))*v(7522)+v(7518)*v& &(8053) v(421)=v(7522)*v(8053) v(4282)=(v(3354)*v(421)+v(382)*v(4266))*v(7522) v(4281)=(v(3353)*v(421)+v(382)*v(4265))*v(7522) v(4280)=(v(3352)*v(421)+v(382)*v(4264))*v(7522) v(4279)=(v(3351)*v(421)+v(382)*v(4263))*v(7522) v(4278)=(v(3350)*v(421)+v(382)*v(4262))*v(7522) v(4277)=(v(3349)*v(421)+v(382)*v(4261))*v(7522) v(4276)=(v(3348)*v(421)+v(382)*v(4259))*v(7522) v(4275)=(v(3316)*v(421)+v(382)*v(4258))*v(7522) v(4274)=(v(3347)*v(421)+v(382)*v(4256))*v(7522) v(4273)=(v(3346)*v(421)+v(382)*v(4255))*v(7522) v(4272)=(v(3345)*v(421)+v(382)*v(4254))*v(7522) v(4271)=(v(3344)*v(421)+v(382)*v(4253))*v(7522) v(4270)=(v(3343)*v(421)+v(382)*v(4252))*v(7522) v(4269)=(v(3342)*v(421)+v(382)*v(4251))*v(7522) v(4268)=(v(3341)*v(421)+v(382)*v(4250))*v(7522) v(4267)=v(4249)*v(8015)+v(421)*v(8050) v(437)=v(421)*v(8015) v(416)=v(414)+v(433)+v(413)*v(8051) v(8054)=v(383)*v(402)+v(382)*v(416)+v(380)*v(421) v(4348)=v(3896)+v(4282)+(v(3289)*v(416)+v(379)*v(4298))*v(7522) v(4347)=v(3895)+v(4281)+(v(3288)*v(416)+v(379)*v(4297))*v(7522) v(4346)=v(3894)+v(4280)+(v(3287)*v(416)+v(379)*v(4296))*v(7522) v(4345)=v(3893)+v(4279)+(v(3286)*v(416)+v(379)*v(4295))*v(7522) v(4344)=v(3892)+v(4278)+(v(3285)*v(416)+v(379)*v(4294))*v(7522) v(4343)=v(3891)+v(4277)+(v(3284)*v(416)+v(379)*v(4293))*v(7522) v(4342)=v(3890)+v(4276)+(v(3283)*v(416)+v(379)*v(4292))*v(7522) v(4341)=v(3889)+v(4275)+(v(3282)*v(416)+v(379)*v(4291))*v(7522) v(4340)=v(3888)+v(4274)+(v(3281)*v(416)+v(379)*v(4290))*v(7522) v(4339)=v(3887)+v(4273)+(v(3280)*v(416)+v(379)*v(4289))*v(7522) v(4338)=v(3886)+v(4272)+(v(3279)*v(416)+v(379)*v(4288))*v(7522) v(4337)=v(3885)+v(4271)+(v(3278)*v(416)+v(379)*v(4287))*v(7522) v(4336)=v(3884)+v(4270)+(v(3277)*v(416)+v(379)*v(4286))*v(7522) v(4335)=v(3883)+v(4269)+(v(3276)*v(416)+v(379)*v(4285))*v(7522) v(4334)=v(3882)+v(4268)+(v(3275)*v(416)+v(379)*v(4284))*v(7522) v(4333)=v(3881)+v(4267)+v(4283)*v(8051)+v(416)*v(8052) v(4316)=(v(383)*v(3880)+v(3386)*v(402)+v(3354)*v(416)+v(3305)*v(421)+v(380)*v(4266)+v(382)*v(4298))*v(7522) v(4315)=(v(383)*v(3879)+v(3385)*v(402)+v(3353)*v(416)+v(3304)*v(421)+v(380)*v(4265)+v(382)*v(4297))*v(7522) v(4314)=(v(383)*v(3878)+v(3384)*v(402)+v(3352)*v(416)+v(3303)*v(421)+v(380)*v(4264)+v(382)*v(4296))*v(7522) v(4313)=(v(383)*v(3877)+v(3383)*v(402)+v(3351)*v(416)+v(3302)*v(421)+v(380)*v(4263)+v(382)*v(4295))*v(7522) v(4312)=(v(383)*v(3876)+v(3382)*v(402)+v(3350)*v(416)+v(3301)*v(421)+v(380)*v(4262)+v(382)*v(4294))*v(7522) v(4311)=v(4310)+(v(383)*v(3875)+v(3349)*v(416)+v(3300)*v(421)+v(380)*v(4261)+v(382)*v(4293))*v(7522) v(4309)=(v(383)*v(3874)+v(3381)*v(402)+v(3348)*v(416)+v(3299)*v(421)+v(380)*v(4259)+v(382)*v(4292))*v(7522) v(4308)=v(4307)+(v(383)*v(3872)+v(3316)*v(416)+v(3298)*v(421)+v(380)*v(4258)+v(382)*v(4291))*v(7522) v(4306)=(v(383)*v(3871)+v(3380)*v(402)+v(3347)*v(416)+v(3297)*v(421)+v(380)*v(4256)+v(382)*v(4290))*v(7522) v(4305)=(v(383)*v(3870)+v(3379)*v(402)+v(3346)*v(416)+v(3296)*v(421)+v(380)*v(4255)+v(382)*v(4289))*v(7522) v(4304)=(v(383)*v(3869)+v(3378)*v(402)+v(3345)*v(416)+v(3295)*v(421)+v(380)*v(4254)+v(382)*v(4288))*v(7522) v(4303)=(v(383)*v(3868)+v(3377)*v(402)+v(3344)*v(416)+v(3294)*v(421)+v(380)*v(4253)+v(382)*v(4287))*v(7522) v(4302)=(v(383)*v(3867)+v(3376)*v(402)+v(3343)*v(416)+v(3293)*v(421)+v(380)*v(4252)+v(382)*v(4286))*v(7522) v(4301)=(v(383)*v(3866)+v(3375)*v(402)+v(3342)*v(416)+v(3292)*v(421)+v(380)*v(4251)+v(382)*v(4285))*v(7522) v(4300)=(v(383)*v(3865)+v(3374)*v(402)+v(3341)*v(416)+v(3291)*v(421)+v(380)*v(4250)+v(382)*v(4284))*v(7522) v(4299)=(v(383)*v(3864)+v(3373)*v(402)+v(3340)*v(416)+v(3290)*v(421)+v(380)*v(4249)+v(382)*v(4283))*v(7522)+v(7518)*v& &(8054) v(423)=v(7522)*v(8054) v(4332)=(v(3354)*v(423)+v(382)*v(4316))*v(7522) v(4331)=(v(3353)*v(423)+v(382)*v(4315))*v(7522) v(4330)=(v(3352)*v(423)+v(382)*v(4314))*v(7522) v(4329)=(v(3351)*v(423)+v(382)*v(4313))*v(7522) v(4328)=(v(3350)*v(423)+v(382)*v(4312))*v(7522) v(4327)=(v(3349)*v(423)+v(382)*v(4311))*v(7522) v(4326)=(v(3348)*v(423)+v(382)*v(4309))*v(7522) v(4325)=(v(3316)*v(423)+v(382)*v(4308))*v(7522) v(4324)=(v(3347)*v(423)+v(382)*v(4306))*v(7522) v(4323)=(v(3346)*v(423)+v(382)*v(4305))*v(7522) v(4322)=(v(3345)*v(423)+v(382)*v(4304))*v(7522) v(4321)=(v(3344)*v(423)+v(382)*v(4303))*v(7522) v(4320)=(v(3343)*v(423)+v(382)*v(4302))*v(7522) v(4319)=(v(3342)*v(423)+v(382)*v(4301))*v(7522) v(4318)=(v(3341)*v(423)+v(382)*v(4300))*v(7522) v(4317)=v(4299)*v(8015)+v(423)*v(8050) v(439)=v(423)*v(8015) v(419)=v(418)+v(437)+v(416)*v(8051) v(8055)=v(383)*v(404)+v(382)*v(419)+v(380)*v(423) v(4382)=(v(383)*v(3997)+v(3386)*v(404)+v(3354)*v(419)+v(3305)*v(423)+v(380)*v(4316)+v(382)*v(4348))*v(7522) v(4381)=(v(383)*v(3996)+v(3385)*v(404)+v(3353)*v(419)+v(3304)*v(423)+v(380)*v(4315)+v(382)*v(4347))*v(7522) v(4380)=(v(383)*v(3995)+v(3384)*v(404)+v(3352)*v(419)+v(3303)*v(423)+v(380)*v(4314)+v(382)*v(4346))*v(7522) v(4379)=(v(383)*v(3994)+v(3383)*v(404)+v(3351)*v(419)+v(3302)*v(423)+v(380)*v(4313)+v(382)*v(4345))*v(7522) v(4378)=(v(383)*v(3993)+v(3382)*v(404)+v(3350)*v(419)+v(3301)*v(423)+v(380)*v(4312)+v(382)*v(4344))*v(7522) v(4377)=v(4376)+(v(383)*v(3992)+v(3349)*v(419)+v(3300)*v(423)+v(380)*v(4311)+v(382)*v(4343))*v(7522) v(4375)=(v(383)*v(3991)+v(3381)*v(404)+v(3348)*v(419)+v(3299)*v(423)+v(380)*v(4309)+v(382)*v(4342))*v(7522) v(4374)=v(4373)+(v(383)*v(3988)+v(3316)*v(419)+v(3298)*v(423)+v(380)*v(4308)+v(382)*v(4341))*v(7522) v(4372)=(v(383)*v(3987)+v(3380)*v(404)+v(3347)*v(419)+v(3297)*v(423)+v(380)*v(4306)+v(382)*v(4340))*v(7522) v(4371)=(v(383)*v(3986)+v(3379)*v(404)+v(3346)*v(419)+v(3296)*v(423)+v(380)*v(4305)+v(382)*v(4339))*v(7522) v(4370)=(v(383)*v(3985)+v(3378)*v(404)+v(3345)*v(419)+v(3295)*v(423)+v(380)*v(4304)+v(382)*v(4338))*v(7522) v(4369)=(v(383)*v(3984)+v(3377)*v(404)+v(3344)*v(419)+v(3294)*v(423)+v(380)*v(4303)+v(382)*v(4337))*v(7522) v(4368)=(v(383)*v(3983)+v(3376)*v(404)+v(3343)*v(419)+v(3293)*v(423)+v(380)*v(4302)+v(382)*v(4336))*v(7522) v(4367)=(v(383)*v(3982)+v(3375)*v(404)+v(3342)*v(419)+v(3292)*v(423)+v(380)*v(4301)+v(382)*v(4335))*v(7522) v(4366)=(v(383)*v(3981)+v(3374)*v(404)+v(3341)*v(419)+v(3291)*v(423)+v(380)*v(4300)+v(382)*v(4334))*v(7522) v(4365)=(v(383)*v(3980)+v(3373)*v(404)+v(3340)*v(419)+v(3290)*v(423)+v(380)*v(4299)+v(382)*v(4333))*v(7522)+v(7518)*v& &(8055) v(4364)=v(4013)+v(4332)+(v(3289)*v(419)+v(379)*v(4348))*v(7522) v(4363)=v(4012)+v(4331)+(v(3288)*v(419)+v(379)*v(4347))*v(7522) v(4362)=v(4011)+v(4330)+(v(3287)*v(419)+v(379)*v(4346))*v(7522) v(4361)=v(4010)+v(4329)+(v(3286)*v(419)+v(379)*v(4345))*v(7522) v(4360)=v(4009)+v(4328)+(v(3285)*v(419)+v(379)*v(4344))*v(7522) v(4359)=v(4008)+v(4327)+(v(3284)*v(419)+v(379)*v(4343))*v(7522) v(4358)=v(4007)+v(4326)+(v(3283)*v(419)+v(379)*v(4342))*v(7522) v(4357)=v(4006)+v(4325)+(v(3282)*v(419)+v(379)*v(4341))*v(7522) v(4356)=v(4005)+v(4324)+(v(3281)*v(419)+v(379)*v(4340))*v(7522) v(4355)=v(4004)+v(4323)+(v(3280)*v(419)+v(379)*v(4339))*v(7522) v(4354)=v(4003)+v(4322)+(v(3279)*v(419)+v(379)*v(4338))*v(7522) v(4353)=v(4002)+v(4321)+(v(3278)*v(419)+v(379)*v(4337))*v(7522) v(4352)=v(4001)+v(4320)+(v(3277)*v(419)+v(379)*v(4336))*v(7522) v(4351)=v(4000)+v(4319)+(v(3276)*v(419)+v(379)*v(4335))*v(7522) v(4350)=v(3999)+v(4318)+(v(3275)*v(419)+v(379)*v(4334))*v(7522) v(4349)=v(3998)+v(4317)+v(4333)*v(8051)+v(419)*v(8052) v(422)=v(420)+v(439)+v(419)*v(8051) v(8056)=5040d0+v(422) v(424)=v(7522)*v(8055) v(8059)=v(383)*v(407)+v(380)*v(424) v(4418)=(v(3354)*v(424)+v(382)*v(4382))*v(7522) v(4434)=(v(4129)+2520d0*v(4198)+840d0*v(4248)+210d0*v(4298)+42d0*v(4348)+7d0*v(4364)+v(4418)+v(7522)*(v(379)*v(4364)+v& &(3289)*v(8056)))/5040d0 v(4417)=(v(3353)*v(424)+v(382)*v(4381))*v(7522) v(4433)=(v(4128)+2520d0*v(4197)+840d0*v(4247)+210d0*v(4297)+42d0*v(4347)+7d0*v(4363)+v(4417)+v(7522)*(v(379)*v(4363)+v& &(3288)*v(8056)))/5040d0 v(4416)=(v(3352)*v(424)+v(382)*v(4380))*v(7522) v(4432)=(v(4127)+2520d0*v(4196)+840d0*v(4246)+210d0*v(4296)+42d0*v(4346)+7d0*v(4362)+v(4416)+v(7522)*(v(379)*v(4362)+v& &(3287)*v(8056)))/5040d0 v(4415)=(v(3351)*v(424)+v(382)*v(4379))*v(7522) v(4431)=(v(4126)+2520d0*v(4195)+840d0*v(4245)+210d0*v(4295)+42d0*v(4345)+7d0*v(4361)+v(4415)+v(7522)*(v(379)*v(4361)+v& &(3286)*v(8056)))/5040d0 v(4414)=(v(3350)*v(424)+v(382)*v(4378))*v(7522) v(4430)=(v(4125)+2520d0*v(4194)+840d0*v(4244)+210d0*v(4294)+42d0*v(4344)+7d0*v(4360)+v(4414)+v(7522)*(v(379)*v(4360)+v& &(3285)*v(8056)))/5040d0 v(4413)=(v(3349)*v(424)+v(382)*v(4377))*v(7522) v(4429)=(v(4124)+2520d0*v(4193)+840d0*v(4243)+210d0*v(4293)+42d0*v(4343)+7d0*v(4359)+v(4413)+v(7522)*(v(379)*v(4359)+v& &(3284)*v(8056)))/5040d0 v(4412)=(v(3348)*v(424)+v(382)*v(4375))*v(7522) v(4428)=(v(4122)+2520d0*v(4192)+840d0*v(4242)+210d0*v(4292)+42d0*v(4342)+7d0*v(4358)+v(4412)+v(7522)*(v(379)*v(4358)+v& &(3283)*v(8056)))/5040d0 v(4411)=(v(3316)*v(424)+v(382)*v(4374))*v(7522) v(4427)=(v(4121)+2520d0*v(4191)+840d0*v(4241)+210d0*v(4291)+42d0*v(4341)+7d0*v(4357)+v(4411)+v(7522)*(v(379)*v(4357)+v& &(3282)*v(8056)))/5040d0 v(4410)=(v(3347)*v(424)+v(382)*v(4372))*v(7522) v(4426)=(v(4120)+2520d0*v(4190)+840d0*v(4240)+210d0*v(4290)+42d0*v(4340)+7d0*v(4356)+v(4410)+v(7522)*(v(379)*v(4356)+v& &(3281)*v(8056)))/5040d0 v(4409)=(v(3346)*v(424)+v(382)*v(4371))*v(7522) v(4425)=(v(4119)+2520d0*v(4189)+840d0*v(4239)+210d0*v(4289)+42d0*v(4339)+7d0*v(4355)+v(4409)+v(7522)*(v(379)*v(4355)+v& &(3280)*v(8056)))/5040d0 v(4408)=(v(3345)*v(424)+v(382)*v(4370))*v(7522) v(4424)=(v(4118)+2520d0*v(4188)+840d0*v(4238)+210d0*v(4288)+42d0*v(4338)+7d0*v(4354)+v(4408)+v(7522)*(v(379)*v(4354)+v& &(3279)*v(8056)))/5040d0 v(4407)=(v(3344)*v(424)+v(382)*v(4369))*v(7522) v(4423)=(v(4117)+2520d0*v(4187)+840d0*v(4237)+210d0*v(4287)+42d0*v(4337)+7d0*v(4353)+v(4407)+v(7522)*(v(379)*v(4353)+v& &(3278)*v(8056)))/5040d0 v(4406)=(v(3343)*v(424)+v(382)*v(4368))*v(7522) v(4422)=(v(4116)+2520d0*v(4186)+840d0*v(4236)+210d0*v(4286)+42d0*v(4336)+7d0*v(4352)+v(4406)+v(7522)*(v(379)*v(4352)+v& &(3277)*v(8056)))/5040d0 v(4405)=(v(3342)*v(424)+v(382)*v(4367))*v(7522) v(4421)=(v(4115)+2520d0*v(4185)+840d0*v(4235)+210d0*v(4285)+42d0*v(4335)+7d0*v(4351)+v(4405)+v(7522)*(v(379)*v(4351)+v& &(3276)*v(8056)))/5040d0 v(4404)=(v(3341)*v(424)+v(382)*v(4366))*v(7522) v(4420)=(v(4114)+2520d0*v(4184)+840d0*v(4234)+210d0*v(4284)+42d0*v(4334)+7d0*v(4350)+v(4404)+v(7522)*(v(379)*v(4350)+v& &(3275)*v(8056)))/5040d0 v(4403)=v(4365)*v(8015)+v(424)*v(8050) v(4419)=(v(4113)+2520d0*v(4182)+840d0*v(4233)+210d0*v(4283)+42d0*v(4333)+7d0*v(4349)+v(4403)+v(379)*(v(4349)*v(7522)+v& &(7518)*v(8056))+v(8056)*v(8057))/5040d0 v(4402)=(7d0*(360d0*v(3420)+120d0*v(4216)+30d0*v(4266)+6d0*v(4316)+v(4382))+v(7522)*(v(3386)*v(407)+v(383)*v(4096)+v& &(3305)*v(424)+v(382)*v(4364)+v(380)*v(4382)+v(3354)*v(8056)))/5040d0 v(4676)=statev(16)*v(4402)+statev(18)*v(4434)+v(4164)*v(7506) v(4596)=statev(17)*v(4164)+statev(15)*v(4434)+v(4402)*v(7508) v(4450)=statev(14)*v(4164)+statev(19)*v(4402)+v(4434)*v(7507) v(4401)=(7d0*(360d0*v(3419)+120d0*v(4215)+30d0*v(4265)+6d0*v(4315)+v(4381))+v(7522)*(v(3385)*v(407)+v(383)*v(4095)+v& &(3304)*v(424)+v(382)*v(4363)+v(380)*v(4381)+v(3353)*v(8056)))/5040d0 v(4675)=statev(16)*v(4401)+statev(18)*v(4433)+v(4163)*v(7506) v(4595)=statev(17)*v(4163)+statev(15)*v(4433)+v(4401)*v(7508) v(4449)=statev(14)*v(4163)+statev(19)*v(4401)+v(4433)*v(7507) v(4400)=(7d0*(360d0*v(3418)+120d0*v(4214)+30d0*v(4264)+6d0*v(4314)+v(4380))+v(7522)*(v(3384)*v(407)+v(383)*v(4094)+v& &(3303)*v(424)+v(382)*v(4362)+v(380)*v(4380)+v(3352)*v(8056)))/5040d0 v(4674)=statev(16)*v(4400)+statev(18)*v(4432)+v(4162)*v(7506) v(4594)=statev(17)*v(4162)+statev(15)*v(4432)+v(4400)*v(7508) v(4448)=statev(14)*v(4162)+statev(19)*v(4400)+v(4432)*v(7507) v(4399)=(7d0*(360d0*v(3417)+120d0*v(4213)+30d0*v(4263)+6d0*v(4313)+v(4379))+v(7522)*(v(3383)*v(407)+v(383)*v(4093)+v& &(3302)*v(424)+v(382)*v(4361)+v(380)*v(4379)+v(3351)*v(8056)))/5040d0 v(4673)=statev(16)*v(4399)+statev(18)*v(4431)+v(4161)*v(7506) v(4593)=statev(17)*v(4161)+statev(15)*v(4431)+v(4399)*v(7508) v(4447)=statev(14)*v(4161)+statev(19)*v(4399)+v(4431)*v(7507) v(4398)=(7d0*(360d0*v(3416)+120d0*v(4212)+30d0*v(4262)+6d0*v(4312)+v(4378))+v(7522)*(v(3382)*v(407)+v(383)*v(4092)+v& &(3301)*v(424)+v(382)*v(4360)+v(380)*v(4378)+v(3350)*v(8056)))/5040d0 v(4672)=statev(16)*v(4398)+statev(18)*v(4430)+v(4160)*v(7506) v(4592)=statev(17)*v(4160)+statev(15)*v(4430)+v(4398)*v(7508) v(4446)=statev(14)*v(4160)+statev(19)*v(4398)+v(4430)*v(7507) v(4397)=(2520d0*v(3415)+840d0*v(4211)+210d0*v(4261)+42d0*v(4311)+7d0*v(4377)+v(4396)+v(7522)*(v(383)*v(4091)+v(3300)*v& &(424)+v(382)*v(4359)+v(380)*v(4377)+v(3349)*v(8056)))/5040d0 v(4671)=statev(16)*v(4397)+statev(18)*v(4429)+v(4159)*v(7506) v(4591)=statev(17)*v(4159)+statev(15)*v(4429)+v(4397)*v(7508) v(4445)=statev(14)*v(4159)+statev(19)*v(4397)+v(4429)*v(7507) v(4395)=((v(3381)*v(407)+v(383)*v(4090)+v(3348)*v(422)+v(3299)*v(424)+v(382)*v(4358)+v(380)*v(4375))*v(7522)+7d0*& &(360d0*v(3414)+120d0*v(4209)+30d0*v(4259)+6d0*v(4309)+v(4375)+v(8058)))/5040d0 v(4670)=statev(16)*v(4395)+statev(18)*v(4428)+v(4158)*v(7506) v(4590)=statev(17)*v(4158)+statev(15)*v(4428)+v(4395)*v(7508) v(4444)=statev(14)*v(4158)+statev(19)*v(4395)+v(4428)*v(7507) v(4393)=(2520d0*v(3413)+840d0*v(4208)+210d0*v(4258)+42d0*v(4308)+7d0*v(4374)+5040d0*v(4391)+v(4392)+(v(383)*v(4087)+v& &(3316)*v(422)+v(3298)*v(424)+v(382)*v(4357)+v(380)*v(4374))*v(7522))/5040d0 v(4669)=statev(16)*v(4393)+statev(18)*v(4427)+v(4154)*v(7506) v(4589)=statev(17)*v(4154)+statev(15)*v(4427)+v(4393)*v(7508) v(4443)=statev(14)*v(4154)+statev(19)*v(4393)+v(4427)*v(7507) v(4390)=(7d0*(360d0*v(3412)+120d0*v(4206)+30d0*v(4256)+6d0*v(4306)+v(4372))+v(7522)*(v(3380)*v(407)+v(383)*v(4086)+v& &(3297)*v(424)+v(382)*v(4356)+v(380)*v(4372)+v(3347)*v(8056)))/5040d0 v(4668)=statev(16)*v(4390)+statev(18)*v(4426)+v(4153)*v(7506) v(4588)=statev(17)*v(4153)+statev(15)*v(4426)+v(4390)*v(7508) v(4442)=statev(14)*v(4153)+statev(19)*v(4390)+v(4426)*v(7507) v(4389)=(7d0*(360d0*v(3411)+120d0*v(4205)+30d0*v(4255)+6d0*v(4305)+v(4371))+v(7522)*(v(3379)*v(407)+v(383)*v(4085)+v& &(3296)*v(424)+v(382)*v(4355)+v(380)*v(4371)+v(3346)*v(8056)))/5040d0 v(4667)=statev(16)*v(4389)+statev(18)*v(4425)+v(4152)*v(7506) v(4587)=statev(17)*v(4152)+statev(15)*v(4425)+v(4389)*v(7508) v(4441)=statev(14)*v(4152)+statev(19)*v(4389)+v(4425)*v(7507) v(4388)=(7d0*(360d0*v(3410)+120d0*v(4204)+30d0*v(4254)+6d0*v(4304)+v(4370))+v(7522)*(v(3378)*v(407)+v(383)*v(4084)+v& &(3295)*v(424)+v(382)*v(4354)+v(380)*v(4370)+v(3345)*v(8056)))/5040d0 v(4666)=statev(16)*v(4388)+statev(18)*v(4424)+v(4151)*v(7506) v(4586)=statev(17)*v(4151)+statev(15)*v(4424)+v(4388)*v(7508) v(4440)=statev(14)*v(4151)+statev(19)*v(4388)+v(4424)*v(7507) v(4387)=(7d0*(360d0*v(3409)+120d0*v(4203)+30d0*v(4253)+6d0*v(4303)+v(4369))+v(7522)*(v(3377)*v(407)+v(383)*v(4083)+v& &(3294)*v(424)+v(382)*v(4353)+v(380)*v(4369)+v(3344)*v(8056)))/5040d0 v(4665)=statev(16)*v(4387)+statev(18)*v(4423)+v(4150)*v(7506) v(4585)=statev(17)*v(4150)+statev(15)*v(4423)+v(4387)*v(7508) v(4439)=statev(14)*v(4150)+statev(19)*v(4387)+v(4423)*v(7507) v(4386)=(7d0*(360d0*v(3408)+120d0*v(4202)+30d0*v(4252)+6d0*v(4302)+v(4368))+v(7522)*(v(3376)*v(407)+v(383)*v(4082)+v& &(3293)*v(424)+v(382)*v(4352)+v(380)*v(4368)+v(3343)*v(8056)))/5040d0 v(4664)=statev(16)*v(4386)+statev(18)*v(4422)+v(4149)*v(7506) v(4584)=statev(17)*v(4149)+statev(15)*v(4422)+v(4386)*v(7508) v(4438)=statev(14)*v(4149)+statev(19)*v(4386)+v(4422)*v(7507) v(4385)=(7d0*(360d0*v(3407)+120d0*v(4201)+30d0*v(4251)+6d0*v(4301)+v(4367))+v(7522)*(v(3375)*v(407)+v(383)*v(4081)+v& &(3292)*v(424)+v(382)*v(4351)+v(380)*v(4367)+v(3342)*v(8056)))/5040d0 v(4663)=statev(16)*v(4385)+statev(18)*v(4421)+v(4148)*v(7506) v(4583)=statev(17)*v(4148)+statev(15)*v(4421)+v(4385)*v(7508) v(4437)=statev(14)*v(4148)+statev(19)*v(4385)+v(4421)*v(7507) v(4384)=(7d0*(360d0*v(3406)+120d0*v(4200)+30d0*v(4250)+6d0*v(4300)+v(4366))+v(7522)*(v(3374)*v(407)+v(383)*v(4080)+v& &(3291)*v(424)+v(382)*v(4350)+v(380)*v(4366)+v(3341)*v(8056)))/5040d0 v(4662)=statev(16)*v(4384)+statev(18)*v(4420)+v(4147)*v(7506) v(4582)=statev(17)*v(4147)+statev(15)*v(4420)+v(4384)*v(7508) v(4436)=statev(14)*v(4147)+statev(19)*v(4384)+v(4420)*v(7507) v(4383)=v(3405)/2d0+v(4199)/6d0+v(4249)/24d0+v(4299)/120d0+v(4365)/720d0+v(8050)+((v(3373)*v(407)+v(383)*v(4079)+v(3340& &)*v(422)+v(3290)*v(424)+v(382)*v(4349)+v(380)*v(4365))*v(7522)+v(7518)*(v(382)*v(422)+v(8059)))/5040d0 v(4661)=statev(16)*v(4383)+statev(18)*v(4419)+v(4146)*v(7506) v(4581)=statev(17)*v(4146)+statev(15)*v(4419)+v(4383)*v(7508) v(4435)=statev(14)*v(4146)+statev(19)*v(4383)+v(4419)*v(7507) v(444)=(7d0*(360d0*v(415)+120d0*v(417)+30d0*v(421)+6d0*v(423)+v(424))+v(7522)*(v(382)*v(8056)+v(8059)))/5040d0 v(443)=v(424)*v(8015) v(449)=(2520d0*v(411)+840d0*v(413)+210d0*v(416)+42d0*v(419)+7d0*v(422)+v(443)+v(8051)*v(8056)+v(8060))/5040d0 v(426)=statev(14)*v(409)+statev(19)*v(444)+v(449)*v(7507) v(429)=v(427)+v(428)+v(232)*v(4451) v(4484)=v(3436)+v(3506)+(v(3305)*v(429)+v(380)*v(4468))*v(7522) v(4483)=v(3435)+v(3505)+(v(3304)*v(429)+v(380)*v(4467))*v(7522) v(4482)=v(3434)+v(3504)+(v(3303)*v(429)+v(380)*v(4466))*v(7522) v(4481)=v(3433)+v(3503)+(v(3302)*v(429)+v(380)*v(4465))*v(7522) v(4480)=v(3432)+v(3502)+(v(3301)*v(429)+v(380)*v(4464))*v(7522) v(4479)=v(3431)+v(3501)+(v(3300)*v(429)+v(380)*v(4463))*v(7522) v(4478)=v(3430)+v(3500)+(v(3299)*v(429)+v(380)*v(4462))*v(7522) v(4477)=v(3429)+v(3499)+(v(3298)*v(429)+v(380)*v(4461))*v(7522) v(4476)=v(3428)+v(3498)+(v(3297)*v(429)+v(380)*v(4460))*v(7522) v(4475)=v(3427)+v(3497)+(v(3296)*v(429)+v(380)*v(4459))*v(7522) v(4474)=v(3426)+v(3496)+(v(3295)*v(429)+v(380)*v(4458))*v(7522) v(4473)=v(3425)+v(3495)+(v(3294)*v(429)+v(380)*v(4457))*v(7522) v(4472)=v(3424)+v(3494)+(v(3293)*v(429)+v(380)*v(4456))*v(7522) v(4471)=v(3423)+v(3493)+(v(3292)*v(429)+v(380)*v(4455))*v(7522) v(4470)=v(3422)+v(3492)+(v(3291)*v(429)+v(380)*v(4454))*v(7522) v(4469)=v(3421)+v(3491)+v(4452)*v(8061)+v(429)*v(8062) v(432)=v(430)+v(431)+v(429)*v(8061) v(4500)=v(3813)+v(4232)+(v(3305)*v(432)+v(380)*v(4484))*v(7522) v(4499)=v(3812)+v(4231)+(v(3304)*v(432)+v(380)*v(4483))*v(7522) v(4498)=v(3811)+v(4230)+(v(3303)*v(432)+v(380)*v(4482))*v(7522) v(4497)=v(3810)+v(4229)+(v(3302)*v(432)+v(380)*v(4481))*v(7522) v(4496)=v(3809)+v(4228)+(v(3301)*v(432)+v(380)*v(4480))*v(7522) v(4495)=v(3808)+v(4227)+(v(3300)*v(432)+v(380)*v(4479))*v(7522) v(4494)=v(3807)+v(4226)+(v(3299)*v(432)+v(380)*v(4478))*v(7522) v(4493)=v(3806)+v(4225)+(v(3298)*v(432)+v(380)*v(4477))*v(7522) v(4492)=v(3805)+v(4224)+(v(3297)*v(432)+v(380)*v(4476))*v(7522) v(4491)=v(3804)+v(4223)+(v(3296)*v(432)+v(380)*v(4475))*v(7522) v(4490)=v(3803)+v(4222)+(v(3295)*v(432)+v(380)*v(4474))*v(7522) v(4489)=v(3802)+v(4221)+(v(3294)*v(432)+v(380)*v(4473))*v(7522) v(4488)=v(3801)+v(4220)+(v(3293)*v(432)+v(380)*v(4472))*v(7522) v(4487)=v(3800)+v(4219)+(v(3292)*v(432)+v(380)*v(4471))*v(7522) v(4486)=v(3799)+v(4218)+(v(3291)*v(432)+v(380)*v(4470))*v(7522) v(4485)=v(3798)+v(4217)+v(4469)*v(8061)+v(432)*v(8062) v(435)=v(433)+v(434)+v(432)*v(8061) v(4516)=v(3930)+v(4282)+(v(3305)*v(435)+v(380)*v(4500))*v(7522) v(4515)=v(3929)+v(4281)+(v(3304)*v(435)+v(380)*v(4499))*v(7522) v(4514)=v(3928)+v(4280)+(v(3303)*v(435)+v(380)*v(4498))*v(7522) v(4513)=v(3927)+v(4279)+(v(3302)*v(435)+v(380)*v(4497))*v(7522) v(4512)=v(3926)+v(4278)+(v(3301)*v(435)+v(380)*v(4496))*v(7522) v(4511)=v(3925)+v(4277)+(v(3300)*v(435)+v(380)*v(4495))*v(7522) v(4510)=v(3924)+v(4276)+(v(3299)*v(435)+v(380)*v(4494))*v(7522) v(4509)=v(3923)+v(4275)+(v(3298)*v(435)+v(380)*v(4493))*v(7522) v(4508)=v(3922)+v(4274)+(v(3297)*v(435)+v(380)*v(4492))*v(7522) v(4507)=v(3921)+v(4273)+(v(3296)*v(435)+v(380)*v(4491))*v(7522) v(4506)=v(3920)+v(4272)+(v(3295)*v(435)+v(380)*v(4490))*v(7522) v(4505)=v(3919)+v(4271)+(v(3294)*v(435)+v(380)*v(4489))*v(7522) v(4504)=v(3918)+v(4270)+(v(3293)*v(435)+v(380)*v(4488))*v(7522) v(4503)=v(3917)+v(4269)+(v(3292)*v(435)+v(380)*v(4487))*v(7522) v(4502)=v(3916)+v(4268)+(v(3291)*v(435)+v(380)*v(4486))*v(7522) v(4501)=v(3915)+v(4267)+v(4485)*v(8061)+v(435)*v(8062) v(438)=v(436)+v(437)+v(435)*v(8061) v(4532)=v(3979)+v(4332)+(v(3305)*v(438)+v(380)*v(4516))*v(7522) v(4531)=v(3978)+v(4331)+(v(3304)*v(438)+v(380)*v(4515))*v(7522) v(4530)=v(3977)+v(4330)+(v(3303)*v(438)+v(380)*v(4514))*v(7522) v(4529)=v(3976)+v(4329)+(v(3302)*v(438)+v(380)*v(4513))*v(7522) v(4528)=v(3975)+v(4328)+(v(3301)*v(438)+v(380)*v(4512))*v(7522) v(4527)=v(3974)+v(4327)+(v(3300)*v(438)+v(380)*v(4511))*v(7522) v(4526)=v(3973)+v(4326)+(v(3299)*v(438)+v(380)*v(4510))*v(7522) v(4525)=v(3972)+v(4325)+(v(3298)*v(438)+v(380)*v(4509))*v(7522) v(4524)=v(3971)+v(4324)+(v(3297)*v(438)+v(380)*v(4508))*v(7522) v(4523)=v(3970)+v(4323)+(v(3296)*v(438)+v(380)*v(4507))*v(7522) v(4522)=v(3969)+v(4322)+(v(3295)*v(438)+v(380)*v(4506))*v(7522) v(4521)=v(3968)+v(4321)+(v(3294)*v(438)+v(380)*v(4505))*v(7522) v(4520)=v(3967)+v(4320)+(v(3293)*v(438)+v(380)*v(4504))*v(7522) v(4519)=v(3966)+v(4319)+(v(3292)*v(438)+v(380)*v(4503))*v(7522) v(4518)=v(3965)+v(4318)+(v(3291)*v(438)+v(380)*v(4502))*v(7522) v(4517)=v(3964)+v(4317)+v(4501)*v(8061)+v(438)*v(8062) v(441)=v(439)+v(440)+v(438)*v(8061) v(8063)=5040d0+v(441) v(4548)=(v(4078)+v(4418)+2520d0*v(4468)+840d0*v(4484)+210d0*v(4500)+42d0*v(4516)+7d0*v(4532)+v(7522)*(v(380)*v(4532)+v& &(3305)*v(8063)))/5040d0 v(4740)=statev(14)*v(4112)+statev(19)*v(4548)+v(4402)*v(7507) v(4612)=statev(18)*v(4402)+statev(16)*v(4548)+v(4112)*v(7506) v(4564)=statev(17)*v(4112)+statev(15)*v(4402)+v(4548)*v(7508) v(4547)=(v(4077)+v(4417)+2520d0*v(4467)+840d0*v(4483)+210d0*v(4499)+42d0*v(4515)+7d0*v(4531)+v(7522)*(v(380)*v(4531)+v& &(3304)*v(8063)))/5040d0 v(4739)=statev(14)*v(4111)+statev(19)*v(4547)+v(4401)*v(7507) v(4611)=statev(18)*v(4401)+statev(16)*v(4547)+v(4111)*v(7506) v(4563)=statev(17)*v(4111)+statev(15)*v(4401)+v(4547)*v(7508) v(4546)=(v(4076)+v(4416)+2520d0*v(4466)+840d0*v(4482)+210d0*v(4498)+42d0*v(4514)+7d0*v(4530)+v(7522)*(v(380)*v(4530)+v& &(3303)*v(8063)))/5040d0 v(4738)=statev(14)*v(4110)+statev(19)*v(4546)+v(4400)*v(7507) v(4610)=statev(18)*v(4400)+statev(16)*v(4546)+v(4110)*v(7506) v(4562)=statev(17)*v(4110)+statev(15)*v(4400)+v(4546)*v(7508) v(4545)=(v(4075)+v(4415)+2520d0*v(4465)+840d0*v(4481)+210d0*v(4497)+42d0*v(4513)+7d0*v(4529)+v(7522)*(v(380)*v(4529)+v& &(3302)*v(8063)))/5040d0 v(4737)=statev(14)*v(4109)+statev(19)*v(4545)+v(4399)*v(7507) v(4609)=statev(18)*v(4399)+statev(16)*v(4545)+v(4109)*v(7506) v(4561)=statev(17)*v(4109)+statev(15)*v(4399)+v(4545)*v(7508) v(4544)=(v(4074)+v(4414)+2520d0*v(4464)+840d0*v(4480)+210d0*v(4496)+42d0*v(4512)+7d0*v(4528)+v(7522)*(v(380)*v(4528)+v& &(3301)*v(8063)))/5040d0 v(4736)=statev(14)*v(4108)+statev(19)*v(4544)+v(4398)*v(7507) v(4608)=statev(18)*v(4398)+statev(16)*v(4544)+v(4108)*v(7506) v(4560)=statev(17)*v(4108)+statev(15)*v(4398)+v(4544)*v(7508) v(4543)=(v(4073)+v(4413)+2520d0*v(4463)+840d0*v(4479)+210d0*v(4495)+42d0*v(4511)+7d0*v(4527)+v(7522)*(v(380)*v(4527)+v& &(3300)*v(8063)))/5040d0 v(4735)=statev(14)*v(4107)+statev(19)*v(4543)+v(4397)*v(7507) v(4607)=statev(18)*v(4397)+statev(16)*v(4543)+v(4107)*v(7506) v(4559)=statev(17)*v(4107)+statev(15)*v(4397)+v(4543)*v(7508) v(4542)=(v(4072)+v(4412)+2520d0*v(4462)+840d0*v(4478)+210d0*v(4494)+42d0*v(4510)+7d0*v(4526)+v(7522)*(v(380)*v(4526)+v& &(3299)*v(8063)))/5040d0 v(4734)=statev(14)*v(4106)+statev(19)*v(4542)+v(4395)*v(7507) v(4606)=statev(18)*v(4395)+statev(16)*v(4542)+v(4106)*v(7506) v(4558)=statev(17)*v(4106)+statev(15)*v(4395)+v(4542)*v(7508) v(4541)=(v(4071)+v(4411)+2520d0*v(4461)+840d0*v(4477)+210d0*v(4493)+42d0*v(4509)+7d0*v(4525)+v(7522)*(v(380)*v(4525)+v& &(3298)*v(8063)))/5040d0 v(4733)=statev(14)*v(4105)+statev(19)*v(4541)+v(4393)*v(7507) v(4605)=statev(18)*v(4393)+statev(16)*v(4541)+v(4105)*v(7506) v(4557)=statev(17)*v(4105)+statev(15)*v(4393)+v(4541)*v(7508) v(4540)=(v(4070)+v(4410)+2520d0*v(4460)+840d0*v(4476)+210d0*v(4492)+42d0*v(4508)+7d0*v(4524)+v(7522)*(v(380)*v(4524)+v& &(3297)*v(8063)))/5040d0 v(4732)=statev(14)*v(4104)+statev(19)*v(4540)+v(4390)*v(7507) v(4604)=statev(18)*v(4390)+statev(16)*v(4540)+v(4104)*v(7506) v(4556)=statev(17)*v(4104)+statev(15)*v(4390)+v(4540)*v(7508) v(4539)=(v(4069)+v(4409)+2520d0*v(4459)+840d0*v(4475)+210d0*v(4491)+42d0*v(4507)+7d0*v(4523)+v(7522)*(v(380)*v(4523)+v& &(3296)*v(8063)))/5040d0 v(4731)=statev(14)*v(4103)+statev(19)*v(4539)+v(4389)*v(7507) v(4603)=statev(18)*v(4389)+statev(16)*v(4539)+v(4103)*v(7506) v(4555)=statev(17)*v(4103)+statev(15)*v(4389)+v(4539)*v(7508) v(4538)=(v(4068)+v(4408)+2520d0*v(4458)+840d0*v(4474)+210d0*v(4490)+42d0*v(4506)+7d0*v(4522)+v(7522)*(v(380)*v(4522)+v& &(3295)*v(8063)))/5040d0 v(4730)=statev(14)*v(4102)+statev(19)*v(4538)+v(4388)*v(7507) v(4602)=statev(18)*v(4388)+statev(16)*v(4538)+v(4102)*v(7506) v(4554)=statev(17)*v(4102)+statev(15)*v(4388)+v(4538)*v(7508) v(4537)=(v(4067)+v(4407)+2520d0*v(4457)+840d0*v(4473)+210d0*v(4489)+42d0*v(4505)+7d0*v(4521)+v(7522)*(v(380)*v(4521)+v& &(3294)*v(8063)))/5040d0 v(4729)=statev(14)*v(4101)+statev(19)*v(4537)+v(4387)*v(7507) v(4601)=statev(18)*v(4387)+statev(16)*v(4537)+v(4101)*v(7506) v(4553)=statev(17)*v(4101)+statev(15)*v(4387)+v(4537)*v(7508) v(4536)=(v(4066)+v(4406)+2520d0*v(4456)+840d0*v(4472)+210d0*v(4488)+42d0*v(4504)+7d0*v(4520)+v(7522)*(v(380)*v(4520)+v& &(3293)*v(8063)))/5040d0 v(4728)=statev(14)*v(4100)+statev(19)*v(4536)+v(4386)*v(7507) v(4600)=statev(18)*v(4386)+statev(16)*v(4536)+v(4100)*v(7506) v(4552)=statev(17)*v(4100)+statev(15)*v(4386)+v(4536)*v(7508) v(4535)=(v(4065)+v(4405)+2520d0*v(4455)+840d0*v(4471)+210d0*v(4487)+42d0*v(4503)+7d0*v(4519)+v(7522)*(v(380)*v(4519)+v& &(3292)*v(8063)))/5040d0 v(4727)=statev(14)*v(4099)+statev(19)*v(4535)+v(4385)*v(7507) v(4599)=statev(18)*v(4385)+statev(16)*v(4535)+v(4099)*v(7506) v(4551)=statev(17)*v(4099)+statev(15)*v(4385)+v(4535)*v(7508) v(4534)=(v(4064)+v(4404)+2520d0*v(4454)+840d0*v(4470)+210d0*v(4486)+42d0*v(4502)+7d0*v(4518)+v(7522)*(v(380)*v(4518)+v& &(3291)*v(8063)))/5040d0 v(4726)=statev(14)*v(4098)+statev(19)*v(4534)+v(4384)*v(7507) v(4598)=statev(18)*v(4384)+statev(16)*v(4534)+v(4098)*v(7506) v(4550)=statev(17)*v(4098)+statev(15)*v(4384)+v(4534)*v(7508) v(4533)=(v(4063)+v(4403)+2520d0*v(4452)+840d0*v(4469)+210d0*v(4485)+42d0*v(4501)+7d0*v(4517)+v(380)*(v(4517)*v(7522)+v& &(7518)*v(8063))+v(8063)*v(8064))/5040d0 v(4725)=statev(14)*v(4097)+statev(19)*v(4533)+v(4383)*v(7507) v(4597)=statev(18)*v(4383)+statev(16)*v(4533)+v(4097)*v(7506) v(4549)=statev(17)*v(4097)+statev(15)*v(4383)+v(4533)*v(7508) v(451)=(5040d0+2520d0*v(429)+840d0*v(432)+210d0*v(435)+42d0*v(438)+7d0*v(441)+v(442)+v(443)+v(8061)*v(8063))/5040d0 v(446)=statev(15)*v(444)+statev(17)*v(445)+v(451)*v(7508) v(448)=statev(19)*v(445)+statev(14)*v(447)+v(409)*v(7507) v(450)=statev(17)*v(409)+statev(15)*v(449)+v(444)*v(7508) v(452)=statev(18)*v(444)+statev(16)*v(451)+v(445)*v(7506) v(453)=statev(15)*v(409)+statev(17)*v(447)+v(445)*v(7508) v(4660)=v(4180)*v(446)+v(408)*v(4564)-v(453)*v(4612)-v(452)*v(4628) v(4659)=v(4179)*v(446)+v(408)*v(4563)-v(453)*v(4611)-v(452)*v(4627) v(4658)=v(4178)*v(446)+v(408)*v(4562)-v(453)*v(4610)-v(452)*v(4626) v(4657)=v(4177)*v(446)+v(408)*v(4561)-v(453)*v(4609)-v(452)*v(4625) v(4656)=v(4176)*v(446)+v(408)*v(4560)-v(453)*v(4608)-v(452)*v(4624) v(4655)=v(4175)*v(446)+v(408)*v(4559)-v(453)*v(4607)-v(452)*v(4623) v(4654)=v(4174)*v(446)+v(408)*v(4558)-v(453)*v(4606)-v(452)*v(4622) v(4653)=v(4173)*v(446)+v(408)*v(4557)-v(453)*v(4605)-v(452)*v(4621) v(4652)=v(4172)*v(446)+v(408)*v(4556)-v(453)*v(4604)-v(452)*v(4620) v(4651)=v(4171)*v(446)+v(408)*v(4555)-v(453)*v(4603)-v(452)*v(4619) v(4650)=v(4170)*v(446)+v(408)*v(4554)-v(453)*v(4602)-v(452)*v(4618) v(4649)=v(4169)*v(446)+v(408)*v(4553)-v(453)*v(4601)-v(452)*v(4617) v(4648)=v(4168)*v(446)+v(408)*v(4552)-v(453)*v(4600)-v(452)*v(4616) v(4647)=v(4167)*v(446)+v(408)*v(4551)-v(453)*v(4599)-v(452)*v(4615) v(4646)=v(4166)*v(446)+v(408)*v(4550)-v(453)*v(4598)-v(452)*v(4614) v(4645)=v(4165)*v(446)+v(408)*v(4549)-v(453)*v(4597)-v(452)*v(4613) v(4644)=-(v(4450)*v(453))+v(450)*v(4580)+v(448)*v(4596)-v(426)*v(4628) v(4643)=-(v(4449)*v(453))+v(450)*v(4579)+v(448)*v(4595)-v(426)*v(4627) v(4642)=-(v(4448)*v(453))+v(450)*v(4578)+v(448)*v(4594)-v(426)*v(4626) v(4641)=-(v(4447)*v(453))+v(450)*v(4577)+v(448)*v(4593)-v(426)*v(4625) v(4640)=-(v(4446)*v(453))+v(450)*v(4576)+v(448)*v(4592)-v(426)*v(4624) v(4639)=-(v(4445)*v(453))+v(450)*v(4575)+v(448)*v(4591)-v(426)*v(4623) v(4638)=-(v(4444)*v(453))+v(450)*v(4574)+v(448)*v(4590)-v(426)*v(4622) v(4637)=-(v(4443)*v(453))+v(450)*v(4573)+v(448)*v(4589)-v(426)*v(4621) v(4636)=-(v(4442)*v(453))+v(450)*v(4572)+v(448)*v(4588)-v(426)*v(4620) v(4635)=-(v(4441)*v(453))+v(450)*v(4571)+v(448)*v(4587)-v(426)*v(4619) v(4634)=-(v(4440)*v(453))+v(450)*v(4570)+v(448)*v(4586)-v(426)*v(4618) v(4633)=-(v(4439)*v(453))+v(450)*v(4569)+v(448)*v(4585)-v(426)*v(4617) v(4632)=-(v(4438)*v(453))+v(450)*v(4568)+v(448)*v(4584)-v(426)*v(4616) v(4631)=-(v(4437)*v(453))+v(450)*v(4567)+v(448)*v(4583)-v(426)*v(4615) v(4630)=-(v(4436)*v(453))+v(450)*v(4566)+v(448)*v(4582)-v(426)*v(4614) v(4629)=-(v(4435)*v(453))+v(450)*v(4565)+v(448)*v(4581)-v(426)*v(4613) v(539)=v(448)*v(450)-v(426)*v(453) v(5867)=(v(539)*v(539)) v(530)=v(408)*v(446)-v(452)*v(453) v(5942)=(v(530)*v(530)) v(454)=statev(16)*v(444)+statev(18)*v(449)+v(409)*v(7506) v(4724)=-(v(454)*v(4564))+v(452)*v(4596)+v(450)*v(4612)-v(446)*v(4676) v(4723)=-(v(454)*v(4563))+v(452)*v(4595)+v(450)*v(4611)-v(446)*v(4675) v(4722)=-(v(454)*v(4562))+v(452)*v(4594)+v(450)*v(4610)-v(446)*v(4674) v(4721)=-(v(454)*v(4561))+v(452)*v(4593)+v(450)*v(4609)-v(446)*v(4673) v(4720)=-(v(454)*v(4560))+v(452)*v(4592)+v(450)*v(4608)-v(446)*v(4672) v(4719)=-(v(454)*v(4559))+v(452)*v(4591)+v(450)*v(4607)-v(446)*v(4671) v(4718)=-(v(454)*v(4558))+v(452)*v(4590)+v(450)*v(4606)-v(446)*v(4670) v(4717)=-(v(454)*v(4557))+v(452)*v(4589)+v(450)*v(4605)-v(446)*v(4669) v(4716)=-(v(454)*v(4556))+v(452)*v(4588)+v(450)*v(4604)-v(446)*v(4668) v(4715)=-(v(454)*v(4555))+v(452)*v(4587)+v(450)*v(4603)-v(446)*v(4667) v(4714)=-(v(454)*v(4554))+v(452)*v(4586)+v(450)*v(4602)-v(446)*v(4666) v(4713)=-(v(454)*v(4553))+v(452)*v(4585)+v(450)*v(4601)-v(446)*v(4665) v(4712)=-(v(454)*v(4552))+v(452)*v(4584)+v(450)*v(4600)-v(446)*v(4664) v(4711)=-(v(454)*v(4551))+v(452)*v(4583)+v(450)*v(4599)-v(446)*v(4663) v(4710)=-(v(454)*v(4550))+v(452)*v(4582)+v(450)*v(4598)-v(446)*v(4662) v(4709)=-(v(454)*v(4549))+v(452)*v(4581)+v(450)*v(4597)-v(446)*v(4661) v(4708)=-(v(4180)*v(450))-v(408)*v(4596)+v(454)*v(4628)+v(453)*v(4676) v(4707)=-(v(4179)*v(450))-v(408)*v(4595)+v(454)*v(4627)+v(453)*v(4675) v(4706)=-(v(4178)*v(450))-v(408)*v(4594)+v(454)*v(4626)+v(453)*v(4674) v(4705)=-(v(4177)*v(450))-v(408)*v(4593)+v(454)*v(4625)+v(453)*v(4673) v(4704)=-(v(4176)*v(450))-v(408)*v(4592)+v(454)*v(4624)+v(453)*v(4672) v(4703)=-(v(4175)*v(450))-v(408)*v(4591)+v(454)*v(4623)+v(453)*v(4671) v(4702)=-(v(4174)*v(450))-v(408)*v(4590)+v(454)*v(4622)+v(453)*v(4670) v(4701)=-(v(4173)*v(450))-v(408)*v(4589)+v(454)*v(4621)+v(453)*v(4669) v(4700)=-(v(4172)*v(450))-v(408)*v(4588)+v(454)*v(4620)+v(453)*v(4668) v(4699)=-(v(4171)*v(450))-v(408)*v(4587)+v(454)*v(4619)+v(453)*v(4667) v(4698)=-(v(4170)*v(450))-v(408)*v(4586)+v(454)*v(4618)+v(453)*v(4666) v(4697)=-(v(4169)*v(450))-v(408)*v(4585)+v(454)*v(4617)+v(453)*v(4665) v(4696)=-(v(4168)*v(450))-v(408)*v(4584)+v(454)*v(4616)+v(453)*v(4664) v(4695)=-(v(4167)*v(450))-v(408)*v(4583)+v(454)*v(4615)+v(453)*v(4663) v(4694)=-(v(4166)*v(450))-v(408)*v(4582)+v(454)*v(4614)+v(453)*v(4662) v(4693)=-(v(4165)*v(450))-v(408)*v(4581)+v(454)*v(4613)+v(453)*v(4661) v(4692)=v(4180)*v(426)+v(408)*v(4450)-v(454)*v(4580)-v(448)*v(4676) v(4691)=v(4179)*v(426)+v(408)*v(4449)-v(454)*v(4579)-v(448)*v(4675) v(4690)=v(4178)*v(426)+v(408)*v(4448)-v(454)*v(4578)-v(448)*v(4674) v(4689)=v(4177)*v(426)+v(408)*v(4447)-v(454)*v(4577)-v(448)*v(4673) v(4688)=v(4176)*v(426)+v(408)*v(4446)-v(454)*v(4576)-v(448)*v(4672) v(4687)=v(4175)*v(426)+v(408)*v(4445)-v(454)*v(4575)-v(448)*v(4671) v(4686)=v(4174)*v(426)+v(408)*v(4444)-v(454)*v(4574)-v(448)*v(4670) v(4685)=v(4173)*v(426)+v(408)*v(4443)-v(454)*v(4573)-v(448)*v(4669) v(4684)=v(4172)*v(426)+v(408)*v(4442)-v(454)*v(4572)-v(448)*v(4668) v(4683)=v(4171)*v(426)+v(408)*v(4441)-v(454)*v(4571)-v(448)*v(4667) v(4682)=v(4170)*v(426)+v(408)*v(4440)-v(454)*v(4570)-v(448)*v(4666) v(4681)=v(4169)*v(426)+v(408)*v(4439)-v(454)*v(4569)-v(448)*v(4665) v(4680)=v(4168)*v(426)+v(408)*v(4438)-v(454)*v(4568)-v(448)*v(4664) v(4679)=v(4167)*v(426)+v(408)*v(4437)-v(454)*v(4567)-v(448)*v(4663) v(4678)=v(4166)*v(426)+v(408)*v(4436)-v(454)*v(4566)-v(448)*v(4662) v(4677)=v(4165)*v(426)+v(408)*v(4435)-v(454)*v(4565)-v(448)*v(4661) v(538)=v(408)*v(426)-v(448)*v(454) v(5866)=(v(538)*v(538)) v(537)=-(v(408)*v(450))+v(453)*v(454) v(5865)=(v(537)*v(537)) v(8104)=v(5865)+v(5866)+v(5867) v(531)=v(450)*v(452)-v(446)*v(454) v(5904)=(v(531)*v(531)) v(455)=statev(14)*v(445)+statev(19)*v(451)+v(444)*v(7507) v(5847)=v(455)*v(537)+v(446)*v(538)+v(452)*v(539) v(5849)=1d0/v(5847)**3 v(8065)=(-2d0)*v(5849) v(5864)=(v(452)*v(4644)+v(446)*v(4692)+v(455)*v(4708)+v(4740)*v(537)+v(4564)*v(538)+v(4612)*v(539))*v(8065) v(5863)=(v(452)*v(4643)+v(446)*v(4691)+v(455)*v(4707)+v(4739)*v(537)+v(4563)*v(538)+v(4611)*v(539))*v(8065) v(5862)=(v(452)*v(4642)+v(446)*v(4690)+v(455)*v(4706)+v(4738)*v(537)+v(4562)*v(538)+v(4610)*v(539))*v(8065) v(5861)=(v(452)*v(4641)+v(446)*v(4689)+v(455)*v(4705)+v(4737)*v(537)+v(4561)*v(538)+v(4609)*v(539))*v(8065) v(5860)=(v(452)*v(4640)+v(446)*v(4688)+v(455)*v(4704)+v(4736)*v(537)+v(4560)*v(538)+v(4608)*v(539))*v(8065) v(5859)=(v(452)*v(4639)+v(446)*v(4687)+v(455)*v(4703)+v(4735)*v(537)+v(4559)*v(538)+v(4607)*v(539))*v(8065) v(5858)=(v(452)*v(4638)+v(446)*v(4686)+v(455)*v(4702)+v(4734)*v(537)+v(4558)*v(538)+v(4606)*v(539))*v(8065) v(5857)=(v(452)*v(4637)+v(446)*v(4685)+v(455)*v(4701)+v(4733)*v(537)+v(4557)*v(538)+v(4605)*v(539))*v(8065) v(5856)=(v(452)*v(4636)+v(446)*v(4684)+v(455)*v(4700)+v(4732)*v(537)+v(4556)*v(538)+v(4604)*v(539))*v(8065) v(5855)=(v(452)*v(4635)+v(446)*v(4683)+v(455)*v(4699)+v(4731)*v(537)+v(4555)*v(538)+v(4603)*v(539))*v(8065) v(5854)=(v(452)*v(4634)+v(446)*v(4682)+v(455)*v(4698)+v(4730)*v(537)+v(4554)*v(538)+v(4602)*v(539))*v(8065) v(5853)=(v(452)*v(4633)+v(446)*v(4681)+v(455)*v(4697)+v(4729)*v(537)+v(4553)*v(538)+v(4601)*v(539))*v(8065) v(5852)=(v(452)*v(4632)+v(446)*v(4680)+v(455)*v(4696)+v(4728)*v(537)+v(4552)*v(538)+v(4600)*v(539))*v(8065) v(5851)=(v(452)*v(4631)+v(446)*v(4679)+v(455)*v(4695)+v(4727)*v(537)+v(4551)*v(538)+v(4599)*v(539))*v(8065) v(5850)=(v(452)*v(4630)+v(446)*v(4678)+v(455)*v(4694)+v(4726)*v(537)+v(4550)*v(538)+v(4598)*v(539))*v(8065) v(5848)=(v(452)*v(4629)+v(446)*v(4677)+v(455)*v(4693)+v(4725)*v(537)+v(4549)*v(538)+v(4597)*v(539))*v(8065) v(4804)=v(4450)*v(446)+v(426)*v(4564)-v(455)*v(4596)-v(450)*v(4740) v(4803)=v(4449)*v(446)+v(426)*v(4563)-v(455)*v(4595)-v(450)*v(4739) v(4802)=v(4448)*v(446)+v(426)*v(4562)-v(455)*v(4594)-v(450)*v(4738) v(4801)=v(4447)*v(446)+v(426)*v(4561)-v(455)*v(4593)-v(450)*v(4737) v(4800)=v(4446)*v(446)+v(426)*v(4560)-v(455)*v(4592)-v(450)*v(4736) v(4799)=v(4445)*v(446)+v(426)*v(4559)-v(455)*v(4591)-v(450)*v(4735) v(4798)=v(4444)*v(446)+v(426)*v(4558)-v(455)*v(4590)-v(450)*v(4734) v(4797)=v(4443)*v(446)+v(426)*v(4557)-v(455)*v(4589)-v(450)*v(4733) v(4796)=v(4442)*v(446)+v(426)*v(4556)-v(455)*v(4588)-v(450)*v(4732) v(4795)=v(4441)*v(446)+v(426)*v(4555)-v(455)*v(4587)-v(450)*v(4731) v(4794)=v(4440)*v(446)+v(426)*v(4554)-v(455)*v(4586)-v(450)*v(4730) v(4793)=v(4439)*v(446)+v(426)*v(4553)-v(455)*v(4585)-v(450)*v(4729) v(4792)=v(4438)*v(446)+v(426)*v(4552)-v(455)*v(4584)-v(450)*v(4728) v(4791)=v(4437)*v(446)+v(426)*v(4551)-v(455)*v(4583)-v(450)*v(4727) v(4790)=v(4436)*v(446)+v(426)*v(4550)-v(455)*v(4582)-v(450)*v(4726) v(4789)=v(4435)*v(446)+v(426)*v(4549)-v(455)*v(4581)-v(450)*v(4725) v(4788)=-(v(448)*v(4564))-v(446)*v(4580)+v(455)*v(4628)+v(453)*v(4740) v(4787)=-(v(448)*v(4563))-v(446)*v(4579)+v(455)*v(4627)+v(453)*v(4739) v(4786)=-(v(448)*v(4562))-v(446)*v(4578)+v(455)*v(4626)+v(453)*v(4738) v(4785)=-(v(448)*v(4561))-v(446)*v(4577)+v(455)*v(4625)+v(453)*v(4737) v(4784)=-(v(448)*v(4560))-v(446)*v(4576)+v(455)*v(4624)+v(453)*v(4736) v(4783)=-(v(448)*v(4559))-v(446)*v(4575)+v(455)*v(4623)+v(453)*v(4735) v(4782)=-(v(448)*v(4558))-v(446)*v(4574)+v(455)*v(4622)+v(453)*v(4734) v(4781)=-(v(448)*v(4557))-v(446)*v(4573)+v(455)*v(4621)+v(453)*v(4733) v(4780)=-(v(448)*v(4556))-v(446)*v(4572)+v(455)*v(4620)+v(453)*v(4732) v(4779)=-(v(448)*v(4555))-v(446)*v(4571)+v(455)*v(4619)+v(453)*v(4731) v(4778)=-(v(448)*v(4554))-v(446)*v(4570)+v(455)*v(4618)+v(453)*v(4730) v(4777)=-(v(448)*v(4553))-v(446)*v(4569)+v(455)*v(4617)+v(453)*v(4729) v(4776)=-(v(448)*v(4552))-v(446)*v(4568)+v(455)*v(4616)+v(453)*v(4728) v(4775)=-(v(448)*v(4551))-v(446)*v(4567)+v(455)*v(4615)+v(453)*v(4727) v(4774)=-(v(448)*v(4550))-v(446)*v(4566)+v(455)*v(4614)+v(453)*v(4726) v(4773)=-(v(448)*v(4549))-v(446)*v(4565)+v(455)*v(4613)+v(453)*v(4725) v(4772)=-(v(4180)*v(455))+v(452)*v(4580)+v(448)*v(4612)-v(408)*v(4740) v(4771)=-(v(4179)*v(455))+v(452)*v(4579)+v(448)*v(4611)-v(408)*v(4739) v(4770)=-(v(4178)*v(455))+v(452)*v(4578)+v(448)*v(4610)-v(408)*v(4738) v(4769)=-(v(4177)*v(455))+v(452)*v(4577)+v(448)*v(4609)-v(408)*v(4737) v(4768)=-(v(4176)*v(455))+v(452)*v(4576)+v(448)*v(4608)-v(408)*v(4736) v(4767)=-(v(4175)*v(455))+v(452)*v(4575)+v(448)*v(4607)-v(408)*v(4735) v(4766)=-(v(4174)*v(455))+v(452)*v(4574)+v(448)*v(4606)-v(408)*v(4734) v(4765)=-(v(4173)*v(455))+v(452)*v(4573)+v(448)*v(4605)-v(408)*v(4733) v(4764)=-(v(4172)*v(455))+v(452)*v(4572)+v(448)*v(4604)-v(408)*v(4732) v(4763)=-(v(4171)*v(455))+v(452)*v(4571)+v(448)*v(4603)-v(408)*v(4731) v(4762)=-(v(4170)*v(455))+v(452)*v(4570)+v(448)*v(4602)-v(408)*v(4730) v(4761)=-(v(4169)*v(455))+v(452)*v(4569)+v(448)*v(4601)-v(408)*v(4729) v(4760)=-(v(4168)*v(455))+v(452)*v(4568)+v(448)*v(4600)-v(408)*v(4728) v(4759)=-(v(4167)*v(455))+v(452)*v(4567)+v(448)*v(4599)-v(408)*v(4727) v(4758)=-(v(4166)*v(455))+v(452)*v(4566)+v(448)*v(4598)-v(408)*v(4726) v(4757)=-(v(4165)*v(455))+v(452)*v(4565)+v(448)*v(4597)-v(408)*v(4725) v(4756)=-(v(4450)*v(452))-v(426)*v(4612)+v(455)*v(4676)+v(454)*v(4740) v(4755)=-(v(4449)*v(452))-v(426)*v(4611)+v(455)*v(4675)+v(454)*v(4739) v(4754)=-(v(4448)*v(452))-v(426)*v(4610)+v(455)*v(4674)+v(454)*v(4738) v(4753)=-(v(4447)*v(452))-v(426)*v(4609)+v(455)*v(4673)+v(454)*v(4737) v(4752)=-(v(4446)*v(452))-v(426)*v(4608)+v(455)*v(4672)+v(454)*v(4736) v(4751)=-(v(4445)*v(452))-v(426)*v(4607)+v(455)*v(4671)+v(454)*v(4735) v(4750)=-(v(4444)*v(452))-v(426)*v(4606)+v(455)*v(4670)+v(454)*v(4734) v(4749)=-(v(4443)*v(452))-v(426)*v(4605)+v(455)*v(4669)+v(454)*v(4733) v(4748)=-(v(4442)*v(452))-v(426)*v(4604)+v(455)*v(4668)+v(454)*v(4732) v(4747)=-(v(4441)*v(452))-v(426)*v(4603)+v(455)*v(4667)+v(454)*v(4731) v(4746)=-(v(4440)*v(452))-v(426)*v(4602)+v(455)*v(4666)+v(454)*v(4730) v(4745)=-(v(4439)*v(452))-v(426)*v(4601)+v(455)*v(4665)+v(454)*v(4729) v(4744)=-(v(4438)*v(452))-v(426)*v(4600)+v(455)*v(4664)+v(454)*v(4728) v(4743)=-(v(4437)*v(452))-v(426)*v(4599)+v(455)*v(4663)+v(454)*v(4727) v(4742)=-(v(4436)*v(452))-v(426)*v(4598)+v(455)*v(4662)+v(454)*v(4726) v(4741)=-(v(4435)*v(452))-v(426)*v(4597)+v(455)*v(4661)+v(454)*v(4725) v(535)=-(v(426)*v(452))+v(454)*v(455) v(5906)=(v(535)*v(535)) v(534)=v(448)*v(452)-v(408)*v(455) v(5944)=(v(534)*v(534)) v(533)=-(v(446)*v(448))+v(453)*v(455) v(8113)=v(530)*v(537)+v(534)*v(538)+v(533)*v(539) v(5943)=(v(533)*v(533)) v(8101)=v(5942)+v(5943)+v(5944) v(532)=v(426)*v(446)-v(450)*v(455) v(8115)=v(530)*v(531)+v(532)*v(533)+v(534)*v(535) v(8111)=v(531)*v(537)+v(535)*v(538)+v(532)*v(539) v(5905)=(v(532)*v(532)) v(8102)=v(5904)+v(5905)+v(5906) v(456)=v(473)+v(232)*v(4805)+v(491) v(8068)=v(390)*v(456)+v(391)*v(458)+v(388)*v(459) v(8066)=v(392)*v(456)+v(389)*v(458)+v(391)*v(459) v(4905)=v(3726)+v(3762)+(v(3523)*v(456)+v(386)*v(4822))*v(7522) v(4904)=v(3725)+v(3761)+(v(3522)*v(456)+v(386)*v(4821))*v(7522) v(4903)=v(3724)+v(3760)+(v(3521)*v(456)+v(386)*v(4820))*v(7522) v(4902)=v(3723)+v(3759)+(v(3520)*v(456)+v(386)*v(4819))*v(7522) v(4901)=v(3722)+v(3758)+(v(3519)*v(456)+v(386)*v(4818))*v(7522) v(4900)=v(3721)+v(3757)+(v(3518)*v(456)+v(386)*v(4817))*v(7522) v(4899)=v(3720)+v(3756)+(v(3517)*v(456)+v(386)*v(4816))*v(7522) v(4898)=v(3719)+v(3755)+(v(3516)*v(456)+v(386)*v(4815))*v(7522) v(4897)=v(3718)+v(3754)+(v(3515)*v(456)+v(386)*v(4814))*v(7522) v(4896)=v(3717)+v(3753)+(v(3514)*v(456)+v(386)*v(4813))*v(7522) v(4895)=v(3716)+v(3752)+(v(3512)*v(456)+v(386)*v(4812))*v(7522) v(4894)=v(3715)+v(3751)+(v(3511)*v(456)+v(386)*v(4811))*v(7522) v(4893)=v(3714)+v(3750)+(v(3510)*v(456)+v(386)*v(4810))*v(7522) v(4892)=v(3713)+v(3749)+(v(3509)*v(456)+v(386)*v(4809))*v(7522) v(4891)=v(3712)+v(3748)+(v(3508)*v(456)+v(386)*v(4808))*v(7522) v(4890)=v(3711)+v(3747)+v(4806)*v(8070)+v(456)*v(8071) v(4873)=(v(3710)*v(388)+v(3746)*v(391)+v(3575)*v(456)+v(3609)*v(458)+v(3540)*v(459)+v(390)*v(4822))*v(7522) v(4872)=(v(3709)*v(388)+v(3745)*v(391)+v(3574)*v(456)+v(3608)*v(458)+v(3539)*v(459)+v(390)*v(4821))*v(7522) v(4871)=(v(3708)*v(388)+v(3744)*v(391)+v(3573)*v(456)+v(3607)*v(458)+v(3538)*v(459)+v(390)*v(4820))*v(7522) v(4870)=(v(3707)*v(388)+v(3743)*v(391)+v(3572)*v(456)+v(3606)*v(458)+v(3537)*v(459)+v(390)*v(4819))*v(7522) v(4869)=(v(3706)*v(388)+v(3742)*v(391)+v(3571)*v(456)+v(3605)*v(458)+v(3536)*v(459)+v(390)*v(4818))*v(7522) v(4868)=(v(3705)*v(388)+v(3741)*v(391)+v(3570)*v(456)+v(3604)*v(458)+v(3535)*v(459)+v(390)*v(4817))*v(7522) v(4865)=v(456)*v(5197) v(4867)=v(4865)+v(4866)+(v(3703)*v(388)+v(3739)*v(391)+v(3534)*v(459)+v(390)*v(4816))*v(7522) v(4864)=(v(3702)*v(388)+v(3736)*v(391)+v(3568)*v(456)+v(3570)*v(458)+v(3533)*v(459)+v(390)*v(4815))*v(7522) v(4863)=(v(3700)*v(388)+v(3734)*v(391)+v(3566)*v(456)+v(3601)*v(458)+v(3532)*v(459)+v(390)*v(4814))*v(7522) v(4862)=(v(3699)*v(388)+v(3733)*v(391)+v(3565)*v(456)+v(3600)*v(458)+v(3530)*v(459)+v(390)*v(4813))*v(7522) v(4861)=(v(3698)*v(388)+v(3732)*v(391)+v(3564)*v(456)+v(3599)*v(458)+v(3529)*v(459)+v(390)*v(4812))*v(7522) v(4860)=(v(3697)*v(388)+v(3731)*v(391)+v(3563)*v(456)+v(3598)*v(458)+v(3528)*v(459)+v(390)*v(4811))*v(7522) v(4859)=(v(3696)*v(388)+v(3730)*v(391)+v(3562)*v(456)+v(3597)*v(458)+v(3527)*v(459)+v(390)*v(4810))*v(7522) v(4858)=(v(3695)*v(388)+v(3729)*v(391)+v(3561)*v(456)+v(3596)*v(458)+v(3526)*v(459)+v(390)*v(4809))*v(7522) v(4857)=(v(3694)*v(388)+v(3728)*v(391)+v(3560)*v(456)+v(3595)*v(458)+v(3525)*v(459)+v(390)*v(4808))*v(7522) v(4856)=(v(3693)*v(388)+v(3727)*v(391)+v(3559)*v(456)+v(3594)*v(458)+v(3524)*v(459)+v(390)*v(4806))*v(7522)+v(7518)*v& &(8068) v(4839)=(v(3746)*v(389)+v(3710)*v(391)+v(3642)*v(456)+v(3558)*v(458)+v(3609)*v(459)+v(392)*v(4822))*v(7522) v(4838)=(v(3745)*v(389)+v(3709)*v(391)+v(3641)*v(456)+v(3557)*v(458)+v(3608)*v(459)+v(392)*v(4821))*v(7522) v(4837)=(v(3744)*v(389)+v(3708)*v(391)+v(3640)*v(456)+v(3556)*v(458)+v(3607)*v(459)+v(392)*v(4820))*v(7522) v(4836)=(v(3743)*v(389)+v(3707)*v(391)+v(3639)*v(456)+v(3555)*v(458)+v(3606)*v(459)+v(392)*v(4819))*v(7522) v(4835)=(v(3742)*v(389)+v(3706)*v(391)+v(3638)*v(456)+v(3554)*v(458)+v(3605)*v(459)+v(392)*v(4818))*v(7522) v(4834)=(v(3741)*v(389)+v(3705)*v(391)+v(3602)*v(456)+v(3553)*v(458)+v(3604)*v(459)+v(392)*v(4817))*v(7522) v(4833)=v(5252)+(v(3739)*v(389)+v(3703)*v(391)+v(3637)*v(456)+v(3552)*v(458)+v(392)*v(4816))*v(7522) v(4832)=v(4831)+v(4865)+(v(3736)*v(389)+v(3702)*v(391)+v(3551)*v(458)+v(392)*v(4815))*v(7522) v(4830)=(v(3734)*v(389)+v(3700)*v(391)+v(3635)*v(456)+v(3550)*v(458)+v(3601)*v(459)+v(392)*v(4814))*v(7522) v(4829)=(v(3733)*v(389)+v(3699)*v(391)+v(3634)*v(456)+v(3548)*v(458)+v(3600)*v(459)+v(392)*v(4813))*v(7522) v(4828)=(v(3732)*v(389)+v(3698)*v(391)+v(3633)*v(456)+v(3546)*v(458)+v(3599)*v(459)+v(392)*v(4812))*v(7522) v(4827)=(v(3731)*v(389)+v(3697)*v(391)+v(3632)*v(456)+v(3545)*v(458)+v(3598)*v(459)+v(392)*v(4811))*v(7522) v(4826)=(v(3730)*v(389)+v(3696)*v(391)+v(3631)*v(456)+v(3544)*v(458)+v(3597)*v(459)+v(392)*v(4810))*v(7522) v(4825)=(v(3729)*v(389)+v(3695)*v(391)+v(3630)*v(456)+v(3543)*v(458)+v(3596)*v(459)+v(392)*v(4809))*v(7522) v(4824)=(v(3728)*v(389)+v(3694)*v(391)+v(3629)*v(456)+v(3542)*v(458)+v(3595)*v(459)+v(392)*v(4808))*v(7522) v(4823)=(v(3727)*v(389)+v(3693)*v(391)+v(3628)*v(456)+v(3541)*v(458)+v(3594)*v(459)+v(392)*v(4806))*v(7522)+v(7518)*v& &(8066) v(462)=v(7522)*v(8066) v(4915)=v(462)*v(5436) v(4855)=(v(3642)*v(462)+v(392)*v(4839))*v(7522) v(4854)=(v(3641)*v(462)+v(392)*v(4838))*v(7522) v(4853)=(v(3640)*v(462)+v(392)*v(4837))*v(7522) v(4852)=(v(3639)*v(462)+v(392)*v(4836))*v(7522) v(4851)=(v(3638)*v(462)+v(392)*v(4835))*v(7522) v(4850)=v(4915)+v(4834)*v(8031) v(4849)=(v(3637)*v(462)+v(392)*v(4833))*v(7522) v(4848)=(v(3569)*v(462)+v(392)*v(4832))*v(7522) v(4847)=(v(3635)*v(462)+v(392)*v(4830))*v(7522) v(4846)=(v(3634)*v(462)+v(392)*v(4829))*v(7522) v(4845)=(v(3633)*v(462)+v(392)*v(4828))*v(7522) v(4844)=(v(3632)*v(462)+v(392)*v(4827))*v(7522) v(4843)=(v(3631)*v(462)+v(392)*v(4826))*v(7522) v(4842)=(v(3630)*v(462)+v(392)*v(4825))*v(7522) v(4841)=(v(3629)*v(462)+v(392)*v(4824))*v(7522) v(4840)=v(4823)*v(8031)+v(462)*v(8067) v(497)=v(462)*v(8031) v(461)=v(7522)*v(8068) v(5302)=v(461)*v(5436) v(5299)=v(461)*v(5197) v(4948)=v(461)*v(5433) v(4889)=(v(3575)*v(461)+v(390)*v(4873))*v(7522) v(4888)=(v(3574)*v(461)+v(390)*v(4872))*v(7522) v(4887)=(v(3573)*v(461)+v(390)*v(4871))*v(7522) v(4886)=(v(3572)*v(461)+v(390)*v(4870))*v(7522) v(4885)=(v(3571)*v(461)+v(390)*v(4869))*v(7522) v(4884)=v(4948)+v(4868)*v(8029) v(4883)=v(5299)+v(4867)*v(8029) v(4882)=(v(3568)*v(461)+v(390)*v(4864))*v(7522) v(4881)=(v(3566)*v(461)+v(390)*v(4863))*v(7522) v(4880)=(v(3565)*v(461)+v(390)*v(4862))*v(7522) v(4879)=(v(3564)*v(461)+v(390)*v(4861))*v(7522) v(4878)=(v(3563)*v(461)+v(390)*v(4860))*v(7522) v(4877)=(v(3562)*v(461)+v(390)*v(4859))*v(7522) v(4876)=(v(3561)*v(461)+v(390)*v(4858))*v(7522) v(4875)=(v(3560)*v(461)+v(390)*v(4857))*v(7522) v(4874)=v(4856)*v(8029)+v(461)*v(8069) v(477)=v(461)*v(8029) v(457)=v(475)+v(493)+v(456)*v(8070) v(8073)=v(392)*v(457)+v(391)*v(461)+v(389)*v(462) v(8072)=v(390)*v(457)+v(388)*v(461)+v(391)*v(462) v(4988)=v(4855)+v(4889)+(v(3523)*v(457)+v(386)*v(4905))*v(7522) v(4987)=v(4854)+v(4888)+(v(3522)*v(457)+v(386)*v(4904))*v(7522) v(4986)=v(4853)+v(4887)+(v(3521)*v(457)+v(386)*v(4903))*v(7522) v(4985)=v(4852)+v(4886)+(v(3520)*v(457)+v(386)*v(4902))*v(7522) v(4984)=v(4851)+v(4885)+(v(3519)*v(457)+v(386)*v(4901))*v(7522) v(4983)=v(4850)+v(4884)+(v(3518)*v(457)+v(386)*v(4900))*v(7522) v(4982)=v(4849)+v(4883)+(v(3517)*v(457)+v(386)*v(4899))*v(7522) v(4981)=v(4848)+v(4882)+(v(3516)*v(457)+v(386)*v(4898))*v(7522) v(4980)=v(4847)+v(4881)+(v(3515)*v(457)+v(386)*v(4897))*v(7522) v(4979)=v(4846)+v(4880)+(v(3514)*v(457)+v(386)*v(4896))*v(7522) v(4978)=v(4845)+v(4879)+(v(3512)*v(457)+v(386)*v(4895))*v(7522) v(4977)=v(4844)+v(4878)+(v(3511)*v(457)+v(386)*v(4894))*v(7522) v(4976)=v(4843)+v(4877)+(v(3510)*v(457)+v(386)*v(4893))*v(7522) v(4975)=v(4842)+v(4876)+(v(3509)*v(457)+v(386)*v(4892))*v(7522) v(4974)=v(4841)+v(4875)+(v(3508)*v(457)+v(386)*v(4891))*v(7522) v(4973)=v(4840)+v(4874)+v(4890)*v(8070)+v(457)*v(8071) v(4956)=(v(3642)*v(457)+v(3609)*v(461)+v(3558)*v(462)+v(389)*v(4839)+v(391)*v(4873)+v(392)*v(4905))*v(7522) v(4955)=(v(3641)*v(457)+v(3608)*v(461)+v(3557)*v(462)+v(389)*v(4838)+v(391)*v(4872)+v(392)*v(4904))*v(7522) v(4954)=(v(3640)*v(457)+v(3607)*v(461)+v(3556)*v(462)+v(389)*v(4837)+v(391)*v(4871)+v(392)*v(4903))*v(7522) v(4953)=(v(3639)*v(457)+v(3606)*v(461)+v(3555)*v(462)+v(389)*v(4836)+v(391)*v(4870)+v(392)*v(4902))*v(7522) v(4952)=(v(3638)*v(457)+v(3605)*v(461)+v(3554)*v(462)+v(389)*v(4835)+v(391)*v(4869)+v(392)*v(4901))*v(7522) v(4951)=(v(3602)*v(457)+v(3604)*v(461)+v(3553)*v(462)+v(389)*v(4834)+v(391)*v(4868)+v(392)*v(4900))*v(7522) v(4950)=v(5302)+(v(3637)*v(457)+v(3552)*v(462)+v(389)*v(4833)+v(391)*v(4867)+v(392)*v(4899))*v(7522) v(4947)=v(457)*v(5197) v(4949)=v(4947)+v(4948)+(v(3551)*v(462)+v(389)*v(4832)+v(391)*v(4864)+v(392)*v(4898))*v(7522) v(4946)=(v(3635)*v(457)+v(3601)*v(461)+v(3550)*v(462)+v(389)*v(4830)+v(391)*v(4863)+v(392)*v(4897))*v(7522) v(4945)=(v(3634)*v(457)+v(3600)*v(461)+v(3548)*v(462)+v(389)*v(4829)+v(391)*v(4862)+v(392)*v(4896))*v(7522) v(4944)=(v(3633)*v(457)+v(3599)*v(461)+v(3546)*v(462)+v(389)*v(4828)+v(391)*v(4861)+v(392)*v(4895))*v(7522) v(4943)=(v(3632)*v(457)+v(3598)*v(461)+v(3545)*v(462)+v(389)*v(4827)+v(391)*v(4860)+v(392)*v(4894))*v(7522) v(4942)=(v(3631)*v(457)+v(3597)*v(461)+v(3544)*v(462)+v(389)*v(4826)+v(391)*v(4859)+v(392)*v(4893))*v(7522) v(4941)=(v(3630)*v(457)+v(3596)*v(461)+v(3543)*v(462)+v(389)*v(4825)+v(391)*v(4858)+v(392)*v(4892))*v(7522) v(4940)=(v(3629)*v(457)+v(3595)*v(461)+v(3542)*v(462)+v(389)*v(4824)+v(391)*v(4857)+v(392)*v(4891))*v(7522) v(4939)=(v(3628)*v(457)+v(3594)*v(461)+v(3541)*v(462)+v(389)*v(4823)+v(391)*v(4856)+v(392)*v(4890))*v(7522)+v(7518)*v& &(8073) v(4922)=(v(3575)*v(457)+v(3540)*v(461)+v(3609)*v(462)+v(391)*v(4839)+v(388)*v(4873)+v(390)*v(4905))*v(7522) v(4921)=(v(3574)*v(457)+v(3539)*v(461)+v(3608)*v(462)+v(391)*v(4838)+v(388)*v(4872)+v(390)*v(4904))*v(7522) v(4920)=(v(3573)*v(457)+v(3538)*v(461)+v(3607)*v(462)+v(391)*v(4837)+v(388)*v(4871)+v(390)*v(4903))*v(7522) v(4919)=(v(3572)*v(457)+v(3537)*v(461)+v(3606)*v(462)+v(391)*v(4836)+v(388)*v(4870)+v(390)*v(4902))*v(7522) v(4918)=(v(3571)*v(457)+v(3536)*v(461)+v(3605)*v(462)+v(391)*v(4835)+v(388)*v(4869)+v(390)*v(4901))*v(7522) v(4917)=(v(3570)*v(457)+v(3535)*v(461)+v(3604)*v(462)+v(391)*v(4834)+v(388)*v(4868)+v(390)*v(4900))*v(7522) v(4916)=v(4915)+v(4947)+(v(3534)*v(461)+v(391)*v(4833)+v(388)*v(4867)+v(390)*v(4899))*v(7522) v(4914)=(v(3568)*v(457)+v(3533)*v(461)+v(3570)*v(462)+v(391)*v(4832)+v(388)*v(4864)+v(390)*v(4898))*v(7522) v(4913)=(v(3566)*v(457)+v(3532)*v(461)+v(3601)*v(462)+v(391)*v(4830)+v(388)*v(4863)+v(390)*v(4897))*v(7522) v(4912)=(v(3565)*v(457)+v(3530)*v(461)+v(3600)*v(462)+v(391)*v(4829)+v(388)*v(4862)+v(390)*v(4896))*v(7522) v(4911)=(v(3564)*v(457)+v(3529)*v(461)+v(3599)*v(462)+v(391)*v(4828)+v(388)*v(4861)+v(390)*v(4895))*v(7522) v(4910)=(v(3563)*v(457)+v(3528)*v(461)+v(3598)*v(462)+v(391)*v(4827)+v(388)*v(4860)+v(390)*v(4894))*v(7522) v(4909)=(v(3562)*v(457)+v(3527)*v(461)+v(3597)*v(462)+v(391)*v(4826)+v(388)*v(4859)+v(390)*v(4893))*v(7522) v(4908)=(v(3561)*v(457)+v(3526)*v(461)+v(3596)*v(462)+v(391)*v(4825)+v(388)*v(4858)+v(390)*v(4892))*v(7522) v(4907)=(v(3560)*v(457)+v(3525)*v(461)+v(3595)*v(462)+v(391)*v(4824)+v(388)*v(4857)+v(390)*v(4891))*v(7522) v(4906)=(v(3559)*v(457)+v(3524)*v(461)+v(3594)*v(462)+v(391)*v(4823)+v(388)*v(4856)+v(390)*v(4890))*v(7522)+v(7518)*v& &(8072) v(465)=v(7522)*v(8072) v(5352)=v(465)*v(5436) v(5349)=v(465)*v(5197) v(4997)=v(465)*v(5433) v(4938)=(v(3575)*v(465)+v(390)*v(4922))*v(7522) v(4937)=(v(3574)*v(465)+v(390)*v(4921))*v(7522) v(4936)=(v(3573)*v(465)+v(390)*v(4920))*v(7522) v(4935)=(v(3572)*v(465)+v(390)*v(4919))*v(7522) v(4934)=(v(3571)*v(465)+v(390)*v(4918))*v(7522) v(4933)=v(4997)+v(4917)*v(8029) v(4932)=v(5349)+v(4916)*v(8029) v(4931)=(v(3568)*v(465)+v(390)*v(4914))*v(7522) v(4930)=(v(3566)*v(465)+v(390)*v(4913))*v(7522) v(4929)=(v(3565)*v(465)+v(390)*v(4912))*v(7522) v(4928)=(v(3564)*v(465)+v(390)*v(4911))*v(7522) v(4927)=(v(3563)*v(465)+v(390)*v(4910))*v(7522) v(4926)=(v(3562)*v(465)+v(390)*v(4909))*v(7522) v(4925)=(v(3561)*v(465)+v(390)*v(4908))*v(7522) v(4924)=(v(3560)*v(465)+v(390)*v(4907))*v(7522) v(4923)=v(4906)*v(8029)+v(465)*v(8069) v(481)=v(465)*v(8029) v(464)=v(7522)*v(8073) v(5032)=v(464)*v(5436) v(4972)=(v(3642)*v(464)+v(392)*v(4956))*v(7522) v(4971)=(v(3641)*v(464)+v(392)*v(4955))*v(7522) v(4970)=(v(3640)*v(464)+v(392)*v(4954))*v(7522) v(4969)=(v(3639)*v(464)+v(392)*v(4953))*v(7522) v(4968)=(v(3638)*v(464)+v(392)*v(4952))*v(7522) v(4967)=v(5032)+v(4951)*v(8031) v(4966)=(v(3637)*v(464)+v(392)*v(4950))*v(7522) v(4965)=(v(3569)*v(464)+v(392)*v(4949))*v(7522) v(4964)=(v(3635)*v(464)+v(392)*v(4946))*v(7522) v(4963)=(v(3634)*v(464)+v(392)*v(4945))*v(7522) v(4962)=(v(3633)*v(464)+v(392)*v(4944))*v(7522) v(4961)=(v(3632)*v(464)+v(392)*v(4943))*v(7522) v(4960)=(v(3631)*v(464)+v(392)*v(4942))*v(7522) v(4959)=(v(3630)*v(464)+v(392)*v(4941))*v(7522) v(4958)=(v(3629)*v(464)+v(392)*v(4940))*v(7522) v(4957)=v(4939)*v(8031)+v(464)*v(8067) v(499)=v(464)*v(8031) v(460)=v(477)+v(497)+v(457)*v(8070) v(8075)=v(390)*v(460)+v(391)*v(464)+v(388)*v(465) v(8074)=v(392)*v(460)+v(389)*v(464)+v(391)*v(465) v(5071)=v(4938)+v(4972)+(v(3523)*v(460)+v(386)*v(4988))*v(7522) v(5070)=v(4937)+v(4971)+(v(3522)*v(460)+v(386)*v(4987))*v(7522) v(5069)=v(4936)+v(4970)+(v(3521)*v(460)+v(386)*v(4986))*v(7522) v(5068)=v(4935)+v(4969)+(v(3520)*v(460)+v(386)*v(4985))*v(7522) v(5067)=v(4934)+v(4968)+(v(3519)*v(460)+v(386)*v(4984))*v(7522) v(5066)=v(4933)+v(4967)+(v(3518)*v(460)+v(386)*v(4983))*v(7522) v(5065)=v(4932)+v(4966)+(v(3517)*v(460)+v(386)*v(4982))*v(7522) v(5064)=v(4931)+v(4965)+(v(3516)*v(460)+v(386)*v(4981))*v(7522) v(5063)=v(4930)+v(4964)+(v(3515)*v(460)+v(386)*v(4980))*v(7522) v(5062)=v(4929)+v(4963)+(v(3514)*v(460)+v(386)*v(4979))*v(7522) v(5061)=v(4928)+v(4962)+(v(3512)*v(460)+v(386)*v(4978))*v(7522) v(5060)=v(4927)+v(4961)+(v(3511)*v(460)+v(386)*v(4977))*v(7522) v(5059)=v(4926)+v(4960)+(v(3510)*v(460)+v(386)*v(4976))*v(7522) v(5058)=v(4925)+v(4959)+(v(3509)*v(460)+v(386)*v(4975))*v(7522) v(5057)=v(4924)+v(4958)+(v(3508)*v(460)+v(386)*v(4974))*v(7522) v(5056)=v(4923)+v(4957)+v(4973)*v(8070)+v(460)*v(8071) v(5039)=(v(3575)*v(460)+v(3609)*v(464)+v(3540)*v(465)+v(388)*v(4922)+v(391)*v(4956)+v(390)*v(4988))*v(7522) v(5038)=(v(3574)*v(460)+v(3608)*v(464)+v(3539)*v(465)+v(388)*v(4921)+v(391)*v(4955)+v(390)*v(4987))*v(7522) v(5037)=(v(3573)*v(460)+v(3607)*v(464)+v(3538)*v(465)+v(388)*v(4920)+v(391)*v(4954)+v(390)*v(4986))*v(7522) v(5036)=(v(3572)*v(460)+v(3606)*v(464)+v(3537)*v(465)+v(388)*v(4919)+v(391)*v(4953)+v(390)*v(4985))*v(7522) v(5035)=(v(3571)*v(460)+v(3605)*v(464)+v(3536)*v(465)+v(388)*v(4918)+v(391)*v(4952)+v(390)*v(4984))*v(7522) v(5034)=(v(3570)*v(460)+v(3604)*v(464)+v(3535)*v(465)+v(388)*v(4917)+v(391)*v(4951)+v(390)*v(4983))*v(7522) v(5031)=v(460)*v(5197) v(5033)=v(5031)+v(5032)+(v(3534)*v(465)+v(388)*v(4916)+v(391)*v(4950)+v(390)*v(4982))*v(7522) v(5030)=(v(3568)*v(460)+v(3570)*v(464)+v(3533)*v(465)+v(388)*v(4914)+v(391)*v(4949)+v(390)*v(4981))*v(7522) v(5029)=(v(3566)*v(460)+v(3601)*v(464)+v(3532)*v(465)+v(388)*v(4913)+v(391)*v(4946)+v(390)*v(4980))*v(7522) v(5028)=(v(3565)*v(460)+v(3600)*v(464)+v(3530)*v(465)+v(388)*v(4912)+v(391)*v(4945)+v(390)*v(4979))*v(7522) v(5027)=(v(3564)*v(460)+v(3599)*v(464)+v(3529)*v(465)+v(388)*v(4911)+v(391)*v(4944)+v(390)*v(4978))*v(7522) v(5026)=(v(3563)*v(460)+v(3598)*v(464)+v(3528)*v(465)+v(388)*v(4910)+v(391)*v(4943)+v(390)*v(4977))*v(7522) v(5025)=(v(3562)*v(460)+v(3597)*v(464)+v(3527)*v(465)+v(388)*v(4909)+v(391)*v(4942)+v(390)*v(4976))*v(7522) v(5024)=(v(3561)*v(460)+v(3596)*v(464)+v(3526)*v(465)+v(388)*v(4908)+v(391)*v(4941)+v(390)*v(4975))*v(7522) v(5023)=(v(3560)*v(460)+v(3595)*v(464)+v(3525)*v(465)+v(388)*v(4907)+v(391)*v(4940)+v(390)*v(4974))*v(7522) v(5022)=(v(3559)*v(460)+v(3594)*v(464)+v(3524)*v(465)+v(388)*v(4906)+v(391)*v(4939)+v(390)*v(4973))*v(7522)+v(7518)*v& &(8075) v(5005)=(v(3642)*v(460)+v(3558)*v(464)+v(3609)*v(465)+v(391)*v(4922)+v(389)*v(4956)+v(392)*v(4988))*v(7522) v(5004)=(v(3641)*v(460)+v(3557)*v(464)+v(3608)*v(465)+v(391)*v(4921)+v(389)*v(4955)+v(392)*v(4987))*v(7522) v(5003)=(v(3640)*v(460)+v(3556)*v(464)+v(3607)*v(465)+v(391)*v(4920)+v(389)*v(4954)+v(392)*v(4986))*v(7522) v(5002)=(v(3639)*v(460)+v(3555)*v(464)+v(3606)*v(465)+v(391)*v(4919)+v(389)*v(4953)+v(392)*v(4985))*v(7522) v(5001)=(v(3638)*v(460)+v(3554)*v(464)+v(3605)*v(465)+v(391)*v(4918)+v(389)*v(4952)+v(392)*v(4984))*v(7522) v(5000)=(v(3602)*v(460)+v(3553)*v(464)+v(3604)*v(465)+v(391)*v(4917)+v(389)*v(4951)+v(392)*v(4983))*v(7522) v(4999)=v(5352)+(v(3637)*v(460)+v(3552)*v(464)+v(391)*v(4916)+v(389)*v(4950)+v(392)*v(4982))*v(7522) v(4998)=v(4997)+v(5031)+(v(3551)*v(464)+v(391)*v(4914)+v(389)*v(4949)+v(392)*v(4981))*v(7522) v(4996)=(v(3635)*v(460)+v(3550)*v(464)+v(3601)*v(465)+v(391)*v(4913)+v(389)*v(4946)+v(392)*v(4980))*v(7522) v(4995)=(v(3634)*v(460)+v(3548)*v(464)+v(3600)*v(465)+v(391)*v(4912)+v(389)*v(4945)+v(392)*v(4979))*v(7522) v(4994)=(v(3633)*v(460)+v(3546)*v(464)+v(3599)*v(465)+v(391)*v(4911)+v(389)*v(4944)+v(392)*v(4978))*v(7522) v(4993)=(v(3632)*v(460)+v(3545)*v(464)+v(3598)*v(465)+v(391)*v(4910)+v(389)*v(4943)+v(392)*v(4977))*v(7522) v(4992)=(v(3631)*v(460)+v(3544)*v(464)+v(3597)*v(465)+v(391)*v(4909)+v(389)*v(4942)+v(392)*v(4976))*v(7522) v(4991)=(v(3630)*v(460)+v(3543)*v(464)+v(3596)*v(465)+v(391)*v(4908)+v(389)*v(4941)+v(392)*v(4975))*v(7522) v(4990)=(v(3629)*v(460)+v(3542)*v(464)+v(3595)*v(465)+v(391)*v(4907)+v(389)*v(4940)+v(392)*v(4974))*v(7522) v(4989)=(v(3628)*v(460)+v(3541)*v(464)+v(3594)*v(465)+v(391)*v(4906)+v(389)*v(4939)+v(392)*v(4973))*v(7522)+v(7518)*v& &(8074) v(468)=v(7522)*v(8074) v(5131)=v(468)*v(5436) v(5021)=(v(3642)*v(468)+v(392)*v(5005))*v(7522) v(5020)=(v(3641)*v(468)+v(392)*v(5004))*v(7522) v(5019)=(v(3640)*v(468)+v(392)*v(5003))*v(7522) v(5018)=(v(3639)*v(468)+v(392)*v(5002))*v(7522) v(5017)=(v(3638)*v(468)+v(392)*v(5001))*v(7522) v(5016)=v(5131)+v(5000)*v(8031) v(5015)=(v(3637)*v(468)+v(392)*v(4999))*v(7522) v(5014)=(v(3569)*v(468)+v(392)*v(4998))*v(7522) v(5013)=(v(3635)*v(468)+v(392)*v(4996))*v(7522) v(5012)=(v(3634)*v(468)+v(392)*v(4995))*v(7522) v(5011)=(v(3633)*v(468)+v(392)*v(4994))*v(7522) v(5010)=(v(3632)*v(468)+v(392)*v(4993))*v(7522) v(5009)=(v(3631)*v(468)+v(392)*v(4992))*v(7522) v(5008)=(v(3630)*v(468)+v(392)*v(4991))*v(7522) v(5007)=(v(3629)*v(468)+v(392)*v(4990))*v(7522) v(5006)=v(4989)*v(8031)+v(468)*v(8067) v(503)=v(468)*v(8031) v(467)=v(7522)*v(8075) v(5418)=v(467)*v(5436) v(5415)=v(467)*v(5197) v(5096)=v(467)*v(5433) v(5055)=(v(3575)*v(467)+v(390)*v(5039))*v(7522) v(5054)=(v(3574)*v(467)+v(390)*v(5038))*v(7522) v(5053)=(v(3573)*v(467)+v(390)*v(5037))*v(7522) v(5052)=(v(3572)*v(467)+v(390)*v(5036))*v(7522) v(5051)=(v(3571)*v(467)+v(390)*v(5035))*v(7522) v(5050)=v(5096)+v(5034)*v(8029) v(5049)=v(5415)+v(5033)*v(8029) v(5048)=(v(3568)*v(467)+v(390)*v(5030))*v(7522) v(5047)=(v(3566)*v(467)+v(390)*v(5029))*v(7522) v(5046)=(v(3565)*v(467)+v(390)*v(5028))*v(7522) v(5045)=(v(3564)*v(467)+v(390)*v(5027))*v(7522) v(5044)=(v(3563)*v(467)+v(390)*v(5026))*v(7522) v(5043)=(v(3562)*v(467)+v(390)*v(5025))*v(7522) v(5042)=(v(3561)*v(467)+v(390)*v(5024))*v(7522) v(5041)=(v(3560)*v(467)+v(390)*v(5023))*v(7522) v(5040)=v(5022)*v(8029)+v(467)*v(8069) v(483)=v(467)*v(8029) v(463)=v(481)+v(499)+v(460)*v(8070) v(8077)=v(390)*v(463)+v(388)*v(467)+v(391)*v(468) v(8076)=v(392)*v(463)+v(391)*v(467)+v(389)*v(468) v(5138)=(v(3575)*v(463)+v(3540)*v(467)+v(3609)*v(468)+v(391)*v(5005)+v(388)*v(5039)+v(390)*v(5071))*v(7522) v(5137)=(v(3574)*v(463)+v(3539)*v(467)+v(3608)*v(468)+v(391)*v(5004)+v(388)*v(5038)+v(390)*v(5070))*v(7522) v(5136)=(v(3573)*v(463)+v(3538)*v(467)+v(3607)*v(468)+v(391)*v(5003)+v(388)*v(5037)+v(390)*v(5069))*v(7522) v(5135)=(v(3572)*v(463)+v(3537)*v(467)+v(3606)*v(468)+v(391)*v(5002)+v(388)*v(5036)+v(390)*v(5068))*v(7522) v(5134)=(v(3571)*v(463)+v(3536)*v(467)+v(3605)*v(468)+v(391)*v(5001)+v(388)*v(5035)+v(390)*v(5067))*v(7522) v(5133)=(v(3570)*v(463)+v(3535)*v(467)+v(3604)*v(468)+v(391)*v(5000)+v(388)*v(5034)+v(390)*v(5066))*v(7522) v(5130)=v(463)*v(5197) v(5132)=v(5130)+v(5131)+(v(3534)*v(467)+v(391)*v(4999)+v(388)*v(5033)+v(390)*v(5065))*v(7522) v(5129)=(v(3568)*v(463)+v(3533)*v(467)+v(3570)*v(468)+v(391)*v(4998)+v(388)*v(5030)+v(390)*v(5064))*v(7522) v(5128)=(v(3566)*v(463)+v(3532)*v(467)+v(3601)*v(468)+v(391)*v(4996)+v(388)*v(5029)+v(390)*v(5063))*v(7522) v(5127)=(v(3565)*v(463)+v(3530)*v(467)+v(3600)*v(468)+v(391)*v(4995)+v(388)*v(5028)+v(390)*v(5062))*v(7522) v(5126)=(v(3564)*v(463)+v(3529)*v(467)+v(3599)*v(468)+v(391)*v(4994)+v(388)*v(5027)+v(390)*v(5061))*v(7522) v(5125)=(v(3563)*v(463)+v(3528)*v(467)+v(3598)*v(468)+v(391)*v(4993)+v(388)*v(5026)+v(390)*v(5060))*v(7522) v(5124)=(v(3562)*v(463)+v(3527)*v(467)+v(3597)*v(468)+v(391)*v(4992)+v(388)*v(5025)+v(390)*v(5059))*v(7522) v(5123)=(v(3561)*v(463)+v(3526)*v(467)+v(3596)*v(468)+v(391)*v(4991)+v(388)*v(5024)+v(390)*v(5058))*v(7522) v(5122)=(v(3560)*v(463)+v(3525)*v(467)+v(3595)*v(468)+v(391)*v(4990)+v(388)*v(5023)+v(390)*v(5057))*v(7522) v(5121)=(v(3559)*v(463)+v(3524)*v(467)+v(3594)*v(468)+v(391)*v(4989)+v(388)*v(5022)+v(390)*v(5056))*v(7522)+v(7518)*v& &(8077) v(5104)=(v(3642)*v(463)+v(3609)*v(467)+v(3558)*v(468)+v(389)*v(5005)+v(391)*v(5039)+v(392)*v(5071))*v(7522) v(5103)=(v(3641)*v(463)+v(3608)*v(467)+v(3557)*v(468)+v(389)*v(5004)+v(391)*v(5038)+v(392)*v(5070))*v(7522) v(5102)=(v(3640)*v(463)+v(3607)*v(467)+v(3556)*v(468)+v(389)*v(5003)+v(391)*v(5037)+v(392)*v(5069))*v(7522) v(5101)=(v(3639)*v(463)+v(3606)*v(467)+v(3555)*v(468)+v(389)*v(5002)+v(391)*v(5036)+v(392)*v(5068))*v(7522) v(5100)=(v(3638)*v(463)+v(3605)*v(467)+v(3554)*v(468)+v(389)*v(5001)+v(391)*v(5035)+v(392)*v(5067))*v(7522) v(5099)=(v(3602)*v(463)+v(3604)*v(467)+v(3553)*v(468)+v(389)*v(5000)+v(391)*v(5034)+v(392)*v(5066))*v(7522) v(5098)=v(5418)+(v(3637)*v(463)+v(3552)*v(468)+v(389)*v(4999)+v(391)*v(5033)+v(392)*v(5065))*v(7522) v(5097)=v(5096)+v(5130)+(v(3551)*v(468)+v(389)*v(4998)+v(391)*v(5030)+v(392)*v(5064))*v(7522) v(5095)=(v(3635)*v(463)+v(3601)*v(467)+v(3550)*v(468)+v(389)*v(4996)+v(391)*v(5029)+v(392)*v(5063))*v(7522) v(5094)=(v(3634)*v(463)+v(3600)*v(467)+v(3548)*v(468)+v(389)*v(4995)+v(391)*v(5028)+v(392)*v(5062))*v(7522) v(5093)=(v(3633)*v(463)+v(3599)*v(467)+v(3546)*v(468)+v(389)*v(4994)+v(391)*v(5027)+v(392)*v(5061))*v(7522) v(5092)=(v(3632)*v(463)+v(3598)*v(467)+v(3545)*v(468)+v(389)*v(4993)+v(391)*v(5026)+v(392)*v(5060))*v(7522) v(5091)=(v(3631)*v(463)+v(3597)*v(467)+v(3544)*v(468)+v(389)*v(4992)+v(391)*v(5025)+v(392)*v(5059))*v(7522) v(5090)=(v(3630)*v(463)+v(3596)*v(467)+v(3543)*v(468)+v(389)*v(4991)+v(391)*v(5024)+v(392)*v(5058))*v(7522) v(5089)=(v(3629)*v(463)+v(3595)*v(467)+v(3542)*v(468)+v(389)*v(4990)+v(391)*v(5023)+v(392)*v(5057))*v(7522) v(5088)=(v(3628)*v(463)+v(3594)*v(467)+v(3541)*v(468)+v(389)*v(4989)+v(391)*v(5022)+v(392)*v(5056))*v(7522)+v(7518)*v& &(8076) v(5087)=v(5021)+v(5055)+(v(3523)*v(463)+v(386)*v(5071))*v(7522) v(5086)=v(5020)+v(5054)+(v(3522)*v(463)+v(386)*v(5070))*v(7522) v(5085)=v(5019)+v(5053)+(v(3521)*v(463)+v(386)*v(5069))*v(7522) v(5084)=v(5018)+v(5052)+(v(3520)*v(463)+v(386)*v(5068))*v(7522) v(5083)=v(5017)+v(5051)+(v(3519)*v(463)+v(386)*v(5067))*v(7522) v(5082)=v(5016)+v(5050)+(v(3518)*v(463)+v(386)*v(5066))*v(7522) v(5081)=v(5015)+v(5049)+(v(3517)*v(463)+v(386)*v(5065))*v(7522) v(5080)=v(5014)+v(5048)+(v(3516)*v(463)+v(386)*v(5064))*v(7522) v(5079)=v(5013)+v(5047)+(v(3515)*v(463)+v(386)*v(5063))*v(7522) v(5078)=v(5012)+v(5046)+(v(3514)*v(463)+v(386)*v(5062))*v(7522) v(5077)=v(5011)+v(5045)+(v(3512)*v(463)+v(386)*v(5061))*v(7522) v(5076)=v(5010)+v(5044)+(v(3511)*v(463)+v(386)*v(5060))*v(7522) v(5075)=v(5009)+v(5043)+(v(3510)*v(463)+v(386)*v(5059))*v(7522) v(5074)=v(5008)+v(5042)+(v(3509)*v(463)+v(386)*v(5058))*v(7522) v(5073)=v(5007)+v(5041)+(v(3508)*v(463)+v(386)*v(5057))*v(7522) v(5072)=v(5006)+v(5040)+v(5056)*v(8070)+v(463)*v(8071) v(466)=v(483)+v(503)+v(463)*v(8070) v(8078)=5040d0+v(466) v(5198)=v(466)*v(5197) v(8080)=5040d0*v(5197)+v(5198) v(469)=v(7522)*v(8076) v(5199)=v(469)*v(5436) v(5120)=(v(3642)*v(469)+v(392)*v(5104))*v(7522) v(5119)=(v(3641)*v(469)+v(392)*v(5103))*v(7522) v(5118)=(v(3640)*v(469)+v(392)*v(5102))*v(7522) v(5117)=(v(3639)*v(469)+v(392)*v(5101))*v(7522) v(5116)=(v(3638)*v(469)+v(392)*v(5100))*v(7522) v(5115)=v(5199)+v(5099)*v(8031) v(5114)=(v(3637)*v(469)+v(392)*v(5098))*v(7522) v(5113)=(v(3569)*v(469)+v(392)*v(5097))*v(7522) v(5112)=(v(3635)*v(469)+v(392)*v(5095))*v(7522) v(5111)=(v(3634)*v(469)+v(392)*v(5094))*v(7522) v(5110)=(v(3633)*v(469)+v(392)*v(5093))*v(7522) v(5109)=(v(3632)*v(469)+v(392)*v(5092))*v(7522) v(5108)=(v(3631)*v(469)+v(392)*v(5091))*v(7522) v(5107)=(v(3630)*v(469)+v(392)*v(5090))*v(7522) v(5106)=(v(3629)*v(469)+v(392)*v(5089))*v(7522) v(5105)=v(5088)*v(8031)+v(469)*v(8067) v(505)=v(469)*v(8031) v(470)=v(7522)*v(8077) v(8082)=v(391)*v(469)+v(388)*v(470) v(8081)=v(389)*v(469)+v(391)*v(470) v(5438)=v(470)*v(5436) v(5434)=v(470)*v(5197) v(5206)=(7d0*(360d0*v(3710)+120d0*v(4873)+30d0*v(4922)+6d0*v(5039)+v(5138))+v(7522)*(v(3609)*v(469)+v(3540)*v(470)+v& &(390)*v(5087)+v(391)*v(5104)+v(388)*v(5138)+v(3575)*v(8078)))/5040d0 v(5205)=(7d0*(360d0*v(3709)+120d0*v(4872)+30d0*v(4921)+6d0*v(5038)+v(5137))+v(7522)*(v(3608)*v(469)+v(3539)*v(470)+v& &(390)*v(5086)+v(391)*v(5103)+v(388)*v(5137)+v(3574)*v(8078)))/5040d0 v(5204)=(7d0*(360d0*v(3708)+120d0*v(4871)+30d0*v(4920)+6d0*v(5037)+v(5136))+v(7522)*(v(3607)*v(469)+v(3538)*v(470)+v& &(390)*v(5085)+v(391)*v(5102)+v(388)*v(5136)+v(3573)*v(8078)))/5040d0 v(5203)=(7d0*(360d0*v(3707)+120d0*v(4870)+30d0*v(4919)+6d0*v(5036)+v(5135))+v(7522)*(v(3606)*v(469)+v(3537)*v(470)+v& &(390)*v(5084)+v(391)*v(5101)+v(388)*v(5135)+v(3572)*v(8078)))/5040d0 v(5202)=(7d0*(360d0*v(3706)+120d0*v(4869)+30d0*v(4918)+6d0*v(5035)+v(5134))+v(7522)*(v(3605)*v(469)+v(3536)*v(470)+v& &(390)*v(5083)+v(391)*v(5100)+v(388)*v(5134)+v(3571)*v(8078)))/5040d0 v(5201)=(7d0*(360d0*v(3705)+120d0*v(4868)+30d0*v(4917)+6d0*v(5034)+v(5133)+720d0*v(5433))+(v(3570)*v(466)+v(3604)*v(469& &)+v(3535)*v(470)+v(390)*v(5082)+v(391)*v(5099)+v(388)*v(5133))*v(7522))/5040d0 v(5200)=(2520d0*v(3703)+840d0*v(4867)+210d0*v(4916)+42d0*v(5033)+7d0*v(5132)+v(5199)+(v(3534)*v(470)+v(390)*v(5081)+v& &(391)*v(5098)+v(388)*v(5132))*v(7522)+v(8080))/5040d0 v(5196)=(7d0*(360d0*v(3702)+120d0*v(4864)+30d0*v(4914)+6d0*v(5030)+v(5129))+v(7522)*(v(3570)*v(469)+v(3533)*v(470)+v& &(390)*v(5080)+v(391)*v(5097)+v(388)*v(5129)+v(3568)*v(8078)))/5040d0 v(5195)=(7d0*(360d0*v(3700)+120d0*v(4863)+30d0*v(4913)+6d0*v(5029)+v(5128))+v(7522)*(v(3601)*v(469)+v(3532)*v(470)+v& &(390)*v(5079)+v(391)*v(5095)+v(388)*v(5128)+v(3566)*v(8078)))/5040d0 v(5194)=(7d0*(360d0*v(3699)+120d0*v(4862)+30d0*v(4912)+6d0*v(5028)+v(5127))+v(7522)*(v(3600)*v(469)+v(3530)*v(470)+v& &(390)*v(5078)+v(391)*v(5094)+v(388)*v(5127)+v(3565)*v(8078)))/5040d0 v(5193)=(7d0*(360d0*v(3698)+120d0*v(4861)+30d0*v(4911)+6d0*v(5027)+v(5126))+v(7522)*(v(3599)*v(469)+v(3529)*v(470)+v& &(390)*v(5077)+v(391)*v(5093)+v(388)*v(5126)+v(3564)*v(8078)))/5040d0 v(5192)=(7d0*(360d0*v(3697)+120d0*v(4860)+30d0*v(4910)+6d0*v(5026)+v(5125))+v(7522)*(v(3598)*v(469)+v(3528)*v(470)+v& &(390)*v(5076)+v(391)*v(5092)+v(388)*v(5125)+v(3563)*v(8078)))/5040d0 v(5191)=(7d0*(360d0*v(3696)+120d0*v(4859)+30d0*v(4909)+6d0*v(5025)+v(5124))+v(7522)*(v(3597)*v(469)+v(3527)*v(470)+v& &(390)*v(5075)+v(391)*v(5091)+v(388)*v(5124)+v(3562)*v(8078)))/5040d0 v(5190)=(7d0*(360d0*v(3695)+120d0*v(4858)+30d0*v(4908)+6d0*v(5024)+v(5123))+v(7522)*(v(3596)*v(469)+v(3526)*v(470)+v& &(390)*v(5074)+v(391)*v(5090)+v(388)*v(5123)+v(3561)*v(8078)))/5040d0 v(5189)=(7d0*(360d0*v(3694)+120d0*v(4857)+30d0*v(4907)+6d0*v(5023)+v(5122))+v(7522)*(v(3595)*v(469)+v(3525)*v(470)+v& &(390)*v(5073)+v(391)*v(5089)+v(388)*v(5122)+v(3560)*v(8078)))/5040d0 v(5188)=v(3693)/2d0+v(4856)/6d0+v(4906)/24d0+v(5022)/120d0+v(5121)/720d0+v(8069)+((v(3559)*v(466)+v(3594)*v(469)+v(3524& &)*v(470)+v(390)*v(5072)+v(391)*v(5088)+v(388)*v(5121))*v(7522)+v(7518)*(v(390)*v(466)+v(8082)))/5040d0 v(5171)=(v(3575)*v(470)+v(390)*v(5138))*v(7522) v(5187)=(2520d0*v(4822)+840d0*v(4905)+210d0*v(4988)+42d0*v(5071)+7d0*v(5087)+v(5120)+v(5171)+v(7522)*(v(386)*v(5087)+v& &(3523)*v(8078)))/5040d0 v(5170)=(v(3574)*v(470)+v(390)*v(5137))*v(7522) v(5186)=(2520d0*v(4821)+840d0*v(4904)+210d0*v(4987)+42d0*v(5070)+7d0*v(5086)+v(5119)+v(5170)+v(7522)*(v(386)*v(5086)+v& &(3522)*v(8078)))/5040d0 v(5169)=(v(3573)*v(470)+v(390)*v(5136))*v(7522) v(5185)=(2520d0*v(4820)+840d0*v(4903)+210d0*v(4986)+42d0*v(5069)+7d0*v(5085)+v(5118)+v(5169)+v(7522)*(v(386)*v(5085)+v& &(3521)*v(8078)))/5040d0 v(5168)=(v(3572)*v(470)+v(390)*v(5135))*v(7522) v(5184)=(2520d0*v(4819)+840d0*v(4902)+210d0*v(4985)+42d0*v(5068)+7d0*v(5084)+v(5117)+v(5168)+v(7522)*(v(386)*v(5084)+v& &(3520)*v(8078)))/5040d0 v(5167)=(v(3571)*v(470)+v(390)*v(5134))*v(7522) v(5183)=(2520d0*v(4818)+840d0*v(4901)+210d0*v(4984)+42d0*v(5067)+7d0*v(5083)+v(5116)+v(5167)+v(7522)*(v(386)*v(5083)+v& &(3519)*v(8078)))/5040d0 v(5165)=v(470)*v(5433) v(5166)=v(5165)+v(5133)*v(8029) v(5182)=(2520d0*v(4817)+840d0*v(4900)+210d0*v(4983)+42d0*v(5066)+7d0*v(5082)+v(5115)+v(5166)+v(7522)*(v(386)*v(5082)+v& &(3518)*v(8078)))/5040d0 v(5164)=v(5434)+v(5132)*v(8029) v(5181)=(2520d0*v(4816)+840d0*v(4899)+210d0*v(4982)+42d0*v(5065)+7d0*v(5081)+v(5114)+v(5164)+v(7522)*(v(386)*v(5081)+v& &(3517)*v(8078)))/5040d0 v(5163)=(v(3568)*v(470)+v(390)*v(5129))*v(7522) v(5180)=(2520d0*v(4815)+840d0*v(4898)+210d0*v(4981)+42d0*v(5064)+7d0*v(5080)+v(5113)+v(5163)+v(7522)*(v(386)*v(5080)+v& &(3516)*v(8078)))/5040d0 v(5162)=(v(3566)*v(470)+v(390)*v(5128))*v(7522) v(5179)=(2520d0*v(4814)+840d0*v(4897)+210d0*v(4980)+42d0*v(5063)+7d0*v(5079)+v(5112)+v(5162)+v(7522)*(v(386)*v(5079)+v& &(3515)*v(8078)))/5040d0 v(5161)=(v(3565)*v(470)+v(390)*v(5127))*v(7522) v(5178)=(2520d0*v(4813)+840d0*v(4896)+210d0*v(4979)+42d0*v(5062)+7d0*v(5078)+v(5111)+v(5161)+v(7522)*(v(386)*v(5078)+v& &(3514)*v(8078)))/5040d0 v(5160)=(v(3564)*v(470)+v(390)*v(5126))*v(7522) v(5177)=(2520d0*v(4812)+840d0*v(4895)+210d0*v(4978)+42d0*v(5061)+7d0*v(5077)+v(5110)+v(5160)+v(7522)*(v(386)*v(5077)+v& &(3512)*v(8078)))/5040d0 v(5159)=(v(3563)*v(470)+v(390)*v(5125))*v(7522) v(5176)=(2520d0*v(4811)+840d0*v(4894)+210d0*v(4977)+42d0*v(5060)+7d0*v(5076)+v(5109)+v(5159)+v(7522)*(v(386)*v(5076)+v& &(3511)*v(8078)))/5040d0 v(5158)=(v(3562)*v(470)+v(390)*v(5124))*v(7522) v(5175)=(2520d0*v(4810)+840d0*v(4893)+210d0*v(4976)+42d0*v(5059)+7d0*v(5075)+v(5108)+v(5158)+v(7522)*(v(386)*v(5075)+v& &(3510)*v(8078)))/5040d0 v(5157)=(v(3561)*v(470)+v(390)*v(5123))*v(7522) v(5174)=(2520d0*v(4809)+840d0*v(4892)+210d0*v(4975)+42d0*v(5058)+7d0*v(5074)+v(5107)+v(5157)+v(7522)*(v(386)*v(5074)+v& &(3509)*v(8078)))/5040d0 v(5156)=(v(3560)*v(470)+v(390)*v(5122))*v(7522) v(5173)=(2520d0*v(4808)+840d0*v(4891)+210d0*v(4974)+42d0*v(5057)+7d0*v(5073)+v(5106)+v(5156)+v(7522)*(v(386)*v(5073)+v& &(3508)*v(8078)))/5040d0 v(5155)=v(5121)*v(8029)+v(470)*v(8069) v(5172)=(2520d0*v(4806)+840d0*v(4890)+210d0*v(4973)+42d0*v(5056)+7d0*v(5072)+v(5105)+v(5155)+v(386)*(v(5072)*v(7522)+v& &(7518)*v(8078))+v(8078)*v(8079))/5040d0 v(5154)=(7d0*(360d0*v(3746)+120d0*v(4839)+30d0*v(4956)+6d0*v(5005)+v(5104))+(5040d0*v(3642)+v(3642)*v(466)+v(3558)*v& &(469)+v(3609)*v(470)+v(392)*v(5087)+v(389)*v(5104)+v(391)*v(5138))*v(7522))/5040d0 v(5670)=statev(26)*v(5187)+statev(24)*v(5206)+v(5154)*v(7511) v(5622)=statev(28)*v(5154)+statev(23)*v(5187)+v(5206)*v(7510) v(5222)=statev(25)*v(5154)+statev(27)*v(5206)+v(5187)*v(7509) v(5153)=(7d0*(360d0*v(3745)+120d0*v(4838)+30d0*v(4955)+6d0*v(5004)+v(5103))+(5040d0*v(3641)+v(3641)*v(466)+v(3557)*v& &(469)+v(3608)*v(470)+v(392)*v(5086)+v(389)*v(5103)+v(391)*v(5137))*v(7522))/5040d0 v(5669)=statev(26)*v(5186)+statev(24)*v(5205)+v(5153)*v(7511) v(5621)=statev(28)*v(5153)+statev(23)*v(5186)+v(5205)*v(7510) v(5221)=statev(25)*v(5153)+statev(27)*v(5205)+v(5186)*v(7509) v(5152)=(7d0*(360d0*v(3744)+120d0*v(4837)+30d0*v(4954)+6d0*v(5003)+v(5102))+(5040d0*v(3640)+v(3640)*v(466)+v(3556)*v& &(469)+v(3607)*v(470)+v(392)*v(5085)+v(389)*v(5102)+v(391)*v(5136))*v(7522))/5040d0 v(5668)=statev(26)*v(5185)+statev(24)*v(5204)+v(5152)*v(7511) v(5620)=statev(28)*v(5152)+statev(23)*v(5185)+v(5204)*v(7510) v(5220)=statev(25)*v(5152)+statev(27)*v(5204)+v(5185)*v(7509) v(5151)=(7d0*(360d0*v(3743)+120d0*v(4836)+30d0*v(4953)+6d0*v(5002)+v(5101))+(5040d0*v(3639)+v(3639)*v(466)+v(3555)*v& &(469)+v(3606)*v(470)+v(392)*v(5084)+v(389)*v(5101)+v(391)*v(5135))*v(7522))/5040d0 v(5667)=statev(26)*v(5184)+statev(24)*v(5203)+v(5151)*v(7511) v(5619)=statev(28)*v(5151)+statev(23)*v(5184)+v(5203)*v(7510) v(5219)=statev(25)*v(5151)+statev(27)*v(5203)+v(5184)*v(7509) v(5150)=(7d0*(360d0*v(3742)+120d0*v(4835)+30d0*v(4952)+6d0*v(5001)+v(5100))+(5040d0*v(3638)+v(3638)*v(466)+v(3554)*v& &(469)+v(3605)*v(470)+v(392)*v(5083)+v(389)*v(5100)+v(391)*v(5134))*v(7522))/5040d0 v(5666)=statev(26)*v(5183)+statev(24)*v(5202)+v(5150)*v(7511) v(5618)=statev(28)*v(5150)+statev(23)*v(5183)+v(5202)*v(7510) v(5218)=statev(25)*v(5150)+statev(27)*v(5202)+v(5183)*v(7509) v(5149)=((v(3602)*v(466)+v(3553)*v(469)+v(3604)*v(470)+v(392)*v(5082)+v(389)*v(5099)+v(391)*v(5133))*v(7522)+7d0*& &(360d0*v(3741)+120d0*v(4834)+30d0*v(4951)+6d0*v(5000)+v(5099)+v(8092)))/5040d0 v(5665)=statev(26)*v(5182)+statev(24)*v(5201)+v(5149)*v(7511) v(5617)=statev(28)*v(5149)+statev(23)*v(5182)+v(5201)*v(7510) v(5217)=statev(25)*v(5149)+statev(27)*v(5201)+v(5182)*v(7509) v(5148)=(2520d0*v(3739)+840d0*v(4833)+210d0*v(4950)+42d0*v(4999)+7d0*v(5098)+v(5438)+v(7522)*(v(3552)*v(469)+v(392)*v& &(5081)+v(389)*v(5098)+v(391)*v(5132)+v(3637)*v(8078)))/5040d0 v(5664)=statev(26)*v(5181)+statev(24)*v(5200)+v(5148)*v(7511) v(5616)=statev(28)*v(5148)+statev(23)*v(5181)+v(5200)*v(7510) v(5216)=statev(25)*v(5148)+statev(27)*v(5200)+v(5181)*v(7509) v(5147)=(2520d0*v(3736)+840d0*v(4832)+210d0*v(4949)+42d0*v(4998)+7d0*v(5097)+v(5165)+(v(3551)*v(469)+v(392)*v(5080)+v& &(389)*v(5097)+v(391)*v(5129))*v(7522)+v(8080))/5040d0 v(5663)=statev(26)*v(5180)+statev(24)*v(5196)+v(5147)*v(7511) v(5615)=statev(28)*v(5147)+statev(23)*v(5180)+v(5196)*v(7510) v(5215)=statev(25)*v(5147)+statev(27)*v(5196)+v(5180)*v(7509) v(5146)=(7d0*(360d0*v(3734)+120d0*v(4830)+30d0*v(4946)+6d0*v(4996)+v(5095))+(5040d0*v(3635)+v(3635)*v(466)+v(3550)*v& &(469)+v(3601)*v(470)+v(392)*v(5079)+v(389)*v(5095)+v(391)*v(5128))*v(7522))/5040d0 v(5662)=statev(26)*v(5179)+statev(24)*v(5195)+v(5146)*v(7511) v(5614)=statev(28)*v(5146)+statev(23)*v(5179)+v(5195)*v(7510) v(5214)=statev(25)*v(5146)+statev(27)*v(5195)+v(5179)*v(7509) v(5145)=(7d0*(360d0*v(3733)+120d0*v(4829)+30d0*v(4945)+6d0*v(4995)+v(5094))+(5040d0*v(3634)+v(3634)*v(466)+v(3548)*v& &(469)+v(3600)*v(470)+v(392)*v(5078)+v(389)*v(5094)+v(391)*v(5127))*v(7522))/5040d0 v(5661)=statev(26)*v(5178)+statev(24)*v(5194)+v(5145)*v(7511) v(5613)=statev(28)*v(5145)+statev(23)*v(5178)+v(5194)*v(7510) v(5213)=statev(25)*v(5145)+statev(27)*v(5194)+v(5178)*v(7509) v(5144)=(7d0*(360d0*v(3732)+120d0*v(4828)+30d0*v(4944)+6d0*v(4994)+v(5093))+(5040d0*v(3633)+v(3633)*v(466)+v(3546)*v& &(469)+v(3599)*v(470)+v(392)*v(5077)+v(389)*v(5093)+v(391)*v(5126))*v(7522))/5040d0 v(5660)=statev(26)*v(5177)+statev(24)*v(5193)+v(5144)*v(7511) v(5612)=statev(28)*v(5144)+statev(23)*v(5177)+v(5193)*v(7510) v(5212)=statev(25)*v(5144)+statev(27)*v(5193)+v(5177)*v(7509) v(5143)=(7d0*(360d0*v(3731)+120d0*v(4827)+30d0*v(4943)+6d0*v(4993)+v(5092))+(5040d0*v(3632)+v(3632)*v(466)+v(3545)*v& &(469)+v(3598)*v(470)+v(392)*v(5076)+v(389)*v(5092)+v(391)*v(5125))*v(7522))/5040d0 v(5659)=statev(26)*v(5176)+statev(24)*v(5192)+v(5143)*v(7511) v(5611)=statev(28)*v(5143)+statev(23)*v(5176)+v(5192)*v(7510) v(5211)=statev(25)*v(5143)+statev(27)*v(5192)+v(5176)*v(7509) v(5142)=(7d0*(360d0*v(3730)+120d0*v(4826)+30d0*v(4942)+6d0*v(4992)+v(5091))+(5040d0*v(3631)+v(3631)*v(466)+v(3544)*v& &(469)+v(3597)*v(470)+v(392)*v(5075)+v(389)*v(5091)+v(391)*v(5124))*v(7522))/5040d0 v(5658)=statev(26)*v(5175)+statev(24)*v(5191)+v(5142)*v(7511) v(5610)=statev(28)*v(5142)+statev(23)*v(5175)+v(5191)*v(7510) v(5210)=statev(25)*v(5142)+statev(27)*v(5191)+v(5175)*v(7509) v(5141)=(7d0*(360d0*v(3729)+120d0*v(4825)+30d0*v(4941)+6d0*v(4991)+v(5090))+(5040d0*v(3630)+v(3630)*v(466)+v(3543)*v& &(469)+v(3596)*v(470)+v(392)*v(5074)+v(389)*v(5090)+v(391)*v(5123))*v(7522))/5040d0 v(5657)=statev(26)*v(5174)+statev(24)*v(5190)+v(5141)*v(7511) v(5609)=statev(28)*v(5141)+statev(23)*v(5174)+v(5190)*v(7510) v(5209)=statev(25)*v(5141)+statev(27)*v(5190)+v(5174)*v(7509) v(5140)=(7d0*(360d0*v(3728)+120d0*v(4824)+30d0*v(4940)+6d0*v(4990)+v(5089))+(5040d0*v(3629)+v(3629)*v(466)+v(3542)*v& &(469)+v(3595)*v(470)+v(392)*v(5073)+v(389)*v(5089)+v(391)*v(5122))*v(7522))/5040d0 v(5656)=statev(26)*v(5173)+statev(24)*v(5189)+v(5140)*v(7511) v(5608)=statev(28)*v(5140)+statev(23)*v(5173)+v(5189)*v(7510) v(5208)=statev(25)*v(5140)+statev(27)*v(5189)+v(5173)*v(7509) v(5139)=v(3727)/2d0+v(4823)/6d0+v(4939)/24d0+v(4989)/120d0+v(5088)/720d0+v(8067)+((v(3628)*v(466)+v(3541)*v(469)+v(3594& &)*v(470)+v(392)*v(5072)+v(389)*v(5088)+v(391)*v(5121))*v(7522)+v(7518)*(v(392)*v(466)+v(8081)))/5040d0 v(5655)=statev(26)*v(5172)+statev(24)*v(5188)+v(5139)*v(7511) v(5607)=statev(28)*v(5139)+statev(23)*v(5172)+v(5188)*v(7510) v(5207)=statev(25)*v(5139)+statev(27)*v(5188)+v(5172)*v(7509) v(508)=(7d0*(360d0*v(458)+120d0*v(462)+30d0*v(464)+6d0*v(468)+v(469))+v(7522)*(v(392)*v(8078)+v(8081)))/5040d0 v(488)=v(470)*v(8029) v(8094)=5040d0+v(488) v(510)=(2520d0*v(456)+840d0*v(457)+210d0*v(460)+42d0*v(463)+7d0*v(466)+v(505)+v(8070)*v(8078)+v(8094))/5040d0 v(472)=(7d0*(360d0*v(459)+120d0*v(461)+30d0*v(465)+6d0*v(467)+v(470))+v(7522)*(v(390)*v(8078)+v(8082)))/5040d0 v(471)=statev(27)*v(472)+statev(25)*v(508)+v(510)*v(7509) v(474)=v(473)+v(490)+v(232)*v(5223) v(8083)=v(392)*v(459)+v(391)*v(474)+v(389)*v(478) v(5290)=v(3692)+v(3726)+(v(3540)*v(474)+v(388)*v(5240))*v(7522) v(5289)=v(3691)+v(3725)+(v(3539)*v(474)+v(388)*v(5239))*v(7522) v(5288)=v(3690)+v(3724)+(v(3538)*v(474)+v(388)*v(5238))*v(7522) v(5287)=v(3689)+v(3723)+(v(3537)*v(474)+v(388)*v(5237))*v(7522) v(5286)=v(3688)+v(3722)+(v(3536)*v(474)+v(388)*v(5236))*v(7522) v(5285)=v(3687)+v(3721)+(v(3535)*v(474)+v(388)*v(5235))*v(7522) v(5284)=v(3686)+v(3720)+(v(3534)*v(474)+v(388)*v(5234))*v(7522) v(5283)=v(3685)+v(3719)+(v(3533)*v(474)+v(388)*v(5233))*v(7522) v(5282)=v(3684)+v(3718)+(v(3532)*v(474)+v(388)*v(5232))*v(7522) v(5281)=v(3683)+v(3717)+(v(3530)*v(474)+v(388)*v(5231))*v(7522) v(5280)=v(3682)+v(3716)+(v(3529)*v(474)+v(388)*v(5230))*v(7522) v(5279)=v(3681)+v(3715)+(v(3528)*v(474)+v(388)*v(5229))*v(7522) v(5278)=v(3680)+v(3714)+(v(3527)*v(474)+v(388)*v(5228))*v(7522) v(5277)=v(3679)+v(3713)+(v(3526)*v(474)+v(388)*v(5227))*v(7522) v(5276)=v(3678)+v(3712)+(v(3525)*v(474)+v(388)*v(5226))*v(7522) v(5275)=v(3677)+v(3711)+v(5224)*v(8085)+v(474)*v(8086) v(5258)=(v(3676)*v(389)+v(3710)*v(392)+v(3642)*v(459)+v(3609)*v(474)+v(3558)*v(478)+v(391)*v(5240))*v(7522) v(5257)=(v(3675)*v(389)+v(3709)*v(392)+v(3641)*v(459)+v(3608)*v(474)+v(3557)*v(478)+v(391)*v(5239))*v(7522) v(5256)=(v(3674)*v(389)+v(3708)*v(392)+v(3640)*v(459)+v(3607)*v(474)+v(3556)*v(478)+v(391)*v(5238))*v(7522) v(5255)=(v(3673)*v(389)+v(3707)*v(392)+v(3639)*v(459)+v(3606)*v(474)+v(3555)*v(478)+v(391)*v(5237))*v(7522) v(5254)=(v(3672)*v(389)+v(3706)*v(392)+v(3638)*v(459)+v(3605)*v(474)+v(3554)*v(478)+v(391)*v(5236))*v(7522) v(5253)=v(5252)+(v(3671)*v(389)+v(3705)*v(392)+v(3604)*v(474)+v(3553)*v(478)+v(391)*v(5235))*v(7522) v(5251)=(v(3670)*v(389)+v(3703)*v(392)+v(3637)*v(459)+v(3602)*v(474)+v(3552)*v(478)+v(391)*v(5234))*v(7522) v(5250)=v(5249)+(v(3669)*v(389)+v(3702)*v(392)+v(3570)*v(474)+v(3551)*v(478)+v(391)*v(5233))*v(7522) v(5248)=(v(3668)*v(389)+v(3700)*v(392)+v(3635)*v(459)+v(3601)*v(474)+v(3550)*v(478)+v(391)*v(5232))*v(7522) v(5247)=(v(3667)*v(389)+v(3699)*v(392)+v(3634)*v(459)+v(3600)*v(474)+v(3548)*v(478)+v(391)*v(5231))*v(7522) v(5246)=(v(3666)*v(389)+v(3698)*v(392)+v(3633)*v(459)+v(3599)*v(474)+v(3546)*v(478)+v(391)*v(5230))*v(7522) v(5245)=(v(3665)*v(389)+v(3697)*v(392)+v(3632)*v(459)+v(3598)*v(474)+v(3545)*v(478)+v(391)*v(5229))*v(7522) v(5244)=(v(3664)*v(389)+v(3696)*v(392)+v(3631)*v(459)+v(3597)*v(474)+v(3544)*v(478)+v(391)*v(5228))*v(7522) v(5243)=(v(3663)*v(389)+v(3695)*v(392)+v(3630)*v(459)+v(3596)*v(474)+v(3543)*v(478)+v(391)*v(5227))*v(7522) v(5242)=(v(3662)*v(389)+v(3694)*v(392)+v(3629)*v(459)+v(3595)*v(474)+v(3542)*v(478)+v(391)*v(5226))*v(7522) v(5241)=(v(3661)*v(389)+v(3693)*v(392)+v(3628)*v(459)+v(3594)*v(474)+v(3541)*v(478)+v(391)*v(5224))*v(7522)+v(7518)*v& &(8083) v(480)=v(7522)*v(8083) v(5274)=(v(3609)*v(480)+v(391)*v(5258))*v(7522) v(5273)=(v(3608)*v(480)+v(391)*v(5257))*v(7522) v(5272)=(v(3607)*v(480)+v(391)*v(5256))*v(7522) v(5271)=(v(3606)*v(480)+v(391)*v(5255))*v(7522) v(5270)=(v(3605)*v(480)+v(391)*v(5254))*v(7522) v(5269)=(v(3604)*v(480)+v(391)*v(5253))*v(7522) v(5268)=(v(3602)*v(480)+v(391)*v(5251))*v(7522) v(5267)=(v(3570)*v(480)+v(391)*v(5250))*v(7522) v(5266)=(v(3601)*v(480)+v(391)*v(5248))*v(7522) v(5265)=(v(3600)*v(480)+v(391)*v(5247))*v(7522) v(5264)=(v(3599)*v(480)+v(391)*v(5246))*v(7522) v(5263)=(v(3598)*v(480)+v(391)*v(5245))*v(7522) v(5262)=(v(3597)*v(480)+v(391)*v(5244))*v(7522) v(5261)=(v(3596)*v(480)+v(391)*v(5243))*v(7522) v(5260)=(v(3595)*v(480)+v(391)*v(5242))*v(7522) v(5259)=v(5241)*v(8027)+v(480)*v(8084) v(496)=v(480)*v(8027) v(476)=v(475)+v(494)+v(474)*v(8085) v(8087)=v(392)*v(461)+v(391)*v(476)+v(389)*v(480) v(5340)=v(4889)+v(5274)+(v(3540)*v(476)+v(388)*v(5290))*v(7522) v(5339)=v(4888)+v(5273)+(v(3539)*v(476)+v(388)*v(5289))*v(7522) v(5338)=v(4887)+v(5272)+(v(3538)*v(476)+v(388)*v(5288))*v(7522) v(5337)=v(4886)+v(5271)+(v(3537)*v(476)+v(388)*v(5287))*v(7522) v(5336)=v(4885)+v(5270)+(v(3536)*v(476)+v(388)*v(5286))*v(7522) v(5335)=v(4884)+v(5269)+(v(3535)*v(476)+v(388)*v(5285))*v(7522) v(5334)=v(4883)+v(5268)+(v(3534)*v(476)+v(388)*v(5284))*v(7522) v(5333)=v(4882)+v(5267)+(v(3533)*v(476)+v(388)*v(5283))*v(7522) v(5332)=v(4881)+v(5266)+(v(3532)*v(476)+v(388)*v(5282))*v(7522) v(5331)=v(4880)+v(5265)+(v(3530)*v(476)+v(388)*v(5281))*v(7522) v(5330)=v(4879)+v(5264)+(v(3529)*v(476)+v(388)*v(5280))*v(7522) v(5329)=v(4878)+v(5263)+(v(3528)*v(476)+v(388)*v(5279))*v(7522) v(5328)=v(4877)+v(5262)+(v(3527)*v(476)+v(388)*v(5278))*v(7522) v(5327)=v(4876)+v(5261)+(v(3526)*v(476)+v(388)*v(5277))*v(7522) v(5326)=v(4875)+v(5260)+(v(3525)*v(476)+v(388)*v(5276))*v(7522) v(5325)=v(4874)+v(5259)+v(5275)*v(8085)+v(476)*v(8086) v(5308)=(v(3642)*v(461)+v(3609)*v(476)+v(3558)*v(480)+v(392)*v(4873)+v(389)*v(5258)+v(391)*v(5290))*v(7522) v(5307)=(v(3641)*v(461)+v(3608)*v(476)+v(3557)*v(480)+v(392)*v(4872)+v(389)*v(5257)+v(391)*v(5289))*v(7522) v(5306)=(v(3640)*v(461)+v(3607)*v(476)+v(3556)*v(480)+v(392)*v(4871)+v(389)*v(5256)+v(391)*v(5288))*v(7522) v(5305)=(v(3639)*v(461)+v(3606)*v(476)+v(3555)*v(480)+v(392)*v(4870)+v(389)*v(5255)+v(391)*v(5287))*v(7522) v(5304)=(v(3638)*v(461)+v(3605)*v(476)+v(3554)*v(480)+v(392)*v(4869)+v(389)*v(5254)+v(391)*v(5286))*v(7522) v(5303)=v(5302)+(v(3604)*v(476)+v(3553)*v(480)+v(392)*v(4868)+v(389)*v(5253)+v(391)*v(5285))*v(7522) v(5301)=(v(3637)*v(461)+v(3602)*v(476)+v(3552)*v(480)+v(392)*v(4867)+v(389)*v(5251)+v(391)*v(5284))*v(7522) v(5300)=v(5299)+(v(3570)*v(476)+v(3551)*v(480)+v(392)*v(4864)+v(389)*v(5250)+v(391)*v(5283))*v(7522) v(5298)=(v(3635)*v(461)+v(3601)*v(476)+v(3550)*v(480)+v(392)*v(4863)+v(389)*v(5248)+v(391)*v(5282))*v(7522) v(5297)=(v(3634)*v(461)+v(3600)*v(476)+v(3548)*v(480)+v(392)*v(4862)+v(389)*v(5247)+v(391)*v(5281))*v(7522) v(5296)=(v(3633)*v(461)+v(3599)*v(476)+v(3546)*v(480)+v(392)*v(4861)+v(389)*v(5246)+v(391)*v(5280))*v(7522) v(5295)=(v(3632)*v(461)+v(3598)*v(476)+v(3545)*v(480)+v(392)*v(4860)+v(389)*v(5245)+v(391)*v(5279))*v(7522) v(5294)=(v(3631)*v(461)+v(3597)*v(476)+v(3544)*v(480)+v(392)*v(4859)+v(389)*v(5244)+v(391)*v(5278))*v(7522) v(5293)=(v(3630)*v(461)+v(3596)*v(476)+v(3543)*v(480)+v(392)*v(4858)+v(389)*v(5243)+v(391)*v(5277))*v(7522) v(5292)=(v(3629)*v(461)+v(3595)*v(476)+v(3542)*v(480)+v(392)*v(4857)+v(389)*v(5242)+v(391)*v(5276))*v(7522) v(5291)=(v(3628)*v(461)+v(3594)*v(476)+v(3541)*v(480)+v(392)*v(4856)+v(389)*v(5241)+v(391)*v(5275))*v(7522)+v(7518)*v& &(8087) v(484)=v(7522)*v(8087) v(5324)=(v(3609)*v(484)+v(391)*v(5308))*v(7522) v(5323)=(v(3608)*v(484)+v(391)*v(5307))*v(7522) v(5322)=(v(3607)*v(484)+v(391)*v(5306))*v(7522) v(5321)=(v(3606)*v(484)+v(391)*v(5305))*v(7522) v(5320)=(v(3605)*v(484)+v(391)*v(5304))*v(7522) v(5319)=(v(3604)*v(484)+v(391)*v(5303))*v(7522) v(5318)=(v(3602)*v(484)+v(391)*v(5301))*v(7522) v(5317)=(v(3570)*v(484)+v(391)*v(5300))*v(7522) v(5316)=(v(3601)*v(484)+v(391)*v(5298))*v(7522) v(5315)=(v(3600)*v(484)+v(391)*v(5297))*v(7522) v(5314)=(v(3599)*v(484)+v(391)*v(5296))*v(7522) v(5313)=(v(3598)*v(484)+v(391)*v(5295))*v(7522) v(5312)=(v(3597)*v(484)+v(391)*v(5294))*v(7522) v(5311)=(v(3596)*v(484)+v(391)*v(5293))*v(7522) v(5310)=(v(3595)*v(484)+v(391)*v(5292))*v(7522) v(5309)=v(5291)*v(8027)+v(484)*v(8084) v(500)=v(484)*v(8027) v(479)=v(477)+v(496)+v(476)*v(8085) v(8088)=v(392)*v(465)+v(391)*v(479)+v(389)*v(484) v(5390)=v(4938)+v(5324)+(v(3540)*v(479)+v(388)*v(5340))*v(7522) v(5389)=v(4937)+v(5323)+(v(3539)*v(479)+v(388)*v(5339))*v(7522) v(5388)=v(4936)+v(5322)+(v(3538)*v(479)+v(388)*v(5338))*v(7522) v(5387)=v(4935)+v(5321)+(v(3537)*v(479)+v(388)*v(5337))*v(7522) v(5386)=v(4934)+v(5320)+(v(3536)*v(479)+v(388)*v(5336))*v(7522) v(5385)=v(4933)+v(5319)+(v(3535)*v(479)+v(388)*v(5335))*v(7522) v(5384)=v(4932)+v(5318)+(v(3534)*v(479)+v(388)*v(5334))*v(7522) v(5383)=v(4931)+v(5317)+(v(3533)*v(479)+v(388)*v(5333))*v(7522) v(5382)=v(4930)+v(5316)+(v(3532)*v(479)+v(388)*v(5332))*v(7522) v(5381)=v(4929)+v(5315)+(v(3530)*v(479)+v(388)*v(5331))*v(7522) v(5380)=v(4928)+v(5314)+(v(3529)*v(479)+v(388)*v(5330))*v(7522) v(5379)=v(4927)+v(5313)+(v(3528)*v(479)+v(388)*v(5329))*v(7522) v(5378)=v(4926)+v(5312)+(v(3527)*v(479)+v(388)*v(5328))*v(7522) v(5377)=v(4925)+v(5311)+(v(3526)*v(479)+v(388)*v(5327))*v(7522) v(5376)=v(4924)+v(5310)+(v(3525)*v(479)+v(388)*v(5326))*v(7522) v(5375)=v(4923)+v(5309)+v(5325)*v(8085)+v(479)*v(8086) v(5358)=(v(3642)*v(465)+v(3609)*v(479)+v(3558)*v(484)+v(392)*v(4922)+v(389)*v(5308)+v(391)*v(5340))*v(7522) v(5357)=(v(3641)*v(465)+v(3608)*v(479)+v(3557)*v(484)+v(392)*v(4921)+v(389)*v(5307)+v(391)*v(5339))*v(7522) v(5356)=(v(3640)*v(465)+v(3607)*v(479)+v(3556)*v(484)+v(392)*v(4920)+v(389)*v(5306)+v(391)*v(5338))*v(7522) v(5355)=(v(3639)*v(465)+v(3606)*v(479)+v(3555)*v(484)+v(392)*v(4919)+v(389)*v(5305)+v(391)*v(5337))*v(7522) v(5354)=(v(3638)*v(465)+v(3605)*v(479)+v(3554)*v(484)+v(392)*v(4918)+v(389)*v(5304)+v(391)*v(5336))*v(7522) v(5353)=v(5352)+(v(3604)*v(479)+v(3553)*v(484)+v(392)*v(4917)+v(389)*v(5303)+v(391)*v(5335))*v(7522) v(5351)=(v(3637)*v(465)+v(3602)*v(479)+v(3552)*v(484)+v(392)*v(4916)+v(389)*v(5301)+v(391)*v(5334))*v(7522) v(5350)=v(5349)+(v(3570)*v(479)+v(3551)*v(484)+v(392)*v(4914)+v(389)*v(5300)+v(391)*v(5333))*v(7522) v(5348)=(v(3635)*v(465)+v(3601)*v(479)+v(3550)*v(484)+v(392)*v(4913)+v(389)*v(5298)+v(391)*v(5332))*v(7522) v(5347)=(v(3634)*v(465)+v(3600)*v(479)+v(3548)*v(484)+v(392)*v(4912)+v(389)*v(5297)+v(391)*v(5331))*v(7522) v(5346)=(v(3633)*v(465)+v(3599)*v(479)+v(3546)*v(484)+v(392)*v(4911)+v(389)*v(5296)+v(391)*v(5330))*v(7522) v(5345)=(v(3632)*v(465)+v(3598)*v(479)+v(3545)*v(484)+v(392)*v(4910)+v(389)*v(5295)+v(391)*v(5329))*v(7522) v(5344)=(v(3631)*v(465)+v(3597)*v(479)+v(3544)*v(484)+v(392)*v(4909)+v(389)*v(5294)+v(391)*v(5328))*v(7522) v(5343)=(v(3630)*v(465)+v(3596)*v(479)+v(3543)*v(484)+v(392)*v(4908)+v(389)*v(5293)+v(391)*v(5327))*v(7522) v(5342)=(v(3629)*v(465)+v(3595)*v(479)+v(3542)*v(484)+v(392)*v(4907)+v(389)*v(5292)+v(391)*v(5326))*v(7522) v(5341)=(v(3628)*v(465)+v(3594)*v(479)+v(3541)*v(484)+v(392)*v(4906)+v(389)*v(5291)+v(391)*v(5325))*v(7522)+v(7518)*v& &(8088) v(486)=v(7522)*v(8088) v(5374)=(v(3609)*v(486)+v(391)*v(5358))*v(7522) v(5373)=(v(3608)*v(486)+v(391)*v(5357))*v(7522) v(5372)=(v(3607)*v(486)+v(391)*v(5356))*v(7522) v(5371)=(v(3606)*v(486)+v(391)*v(5355))*v(7522) v(5370)=(v(3605)*v(486)+v(391)*v(5354))*v(7522) v(5369)=(v(3604)*v(486)+v(391)*v(5353))*v(7522) v(5368)=(v(3602)*v(486)+v(391)*v(5351))*v(7522) v(5367)=(v(3570)*v(486)+v(391)*v(5350))*v(7522) v(5366)=(v(3601)*v(486)+v(391)*v(5348))*v(7522) v(5365)=(v(3600)*v(486)+v(391)*v(5347))*v(7522) v(5364)=(v(3599)*v(486)+v(391)*v(5346))*v(7522) v(5363)=(v(3598)*v(486)+v(391)*v(5345))*v(7522) v(5362)=(v(3597)*v(486)+v(391)*v(5344))*v(7522) v(5361)=(v(3596)*v(486)+v(391)*v(5343))*v(7522) v(5360)=(v(3595)*v(486)+v(391)*v(5342))*v(7522) v(5359)=v(5341)*v(8027)+v(486)*v(8084) v(502)=v(486)*v(8027) v(482)=v(481)+v(500)+v(479)*v(8085) v(8089)=v(392)*v(467)+v(391)*v(482)+v(389)*v(486) v(5424)=(v(3642)*v(467)+v(3609)*v(482)+v(3558)*v(486)+v(392)*v(5039)+v(389)*v(5358)+v(391)*v(5390))*v(7522) v(5423)=(v(3641)*v(467)+v(3608)*v(482)+v(3557)*v(486)+v(392)*v(5038)+v(389)*v(5357)+v(391)*v(5389))*v(7522) v(5422)=(v(3640)*v(467)+v(3607)*v(482)+v(3556)*v(486)+v(392)*v(5037)+v(389)*v(5356)+v(391)*v(5388))*v(7522) v(5421)=(v(3639)*v(467)+v(3606)*v(482)+v(3555)*v(486)+v(392)*v(5036)+v(389)*v(5355)+v(391)*v(5387))*v(7522) v(5420)=(v(3638)*v(467)+v(3605)*v(482)+v(3554)*v(486)+v(392)*v(5035)+v(389)*v(5354)+v(391)*v(5386))*v(7522) v(5419)=v(5418)+(v(3604)*v(482)+v(3553)*v(486)+v(392)*v(5034)+v(389)*v(5353)+v(391)*v(5385))*v(7522) v(5417)=(v(3637)*v(467)+v(3602)*v(482)+v(3552)*v(486)+v(392)*v(5033)+v(389)*v(5351)+v(391)*v(5384))*v(7522) v(5416)=v(5415)+(v(3570)*v(482)+v(3551)*v(486)+v(392)*v(5030)+v(389)*v(5350)+v(391)*v(5383))*v(7522) v(5414)=(v(3635)*v(467)+v(3601)*v(482)+v(3550)*v(486)+v(392)*v(5029)+v(389)*v(5348)+v(391)*v(5382))*v(7522) v(5413)=(v(3634)*v(467)+v(3600)*v(482)+v(3548)*v(486)+v(392)*v(5028)+v(389)*v(5347)+v(391)*v(5381))*v(7522) v(5412)=(v(3633)*v(467)+v(3599)*v(482)+v(3546)*v(486)+v(392)*v(5027)+v(389)*v(5346)+v(391)*v(5380))*v(7522) v(5411)=(v(3632)*v(467)+v(3598)*v(482)+v(3545)*v(486)+v(392)*v(5026)+v(389)*v(5345)+v(391)*v(5379))*v(7522) v(5410)=(v(3631)*v(467)+v(3597)*v(482)+v(3544)*v(486)+v(392)*v(5025)+v(389)*v(5344)+v(391)*v(5378))*v(7522) v(5409)=(v(3630)*v(467)+v(3596)*v(482)+v(3543)*v(486)+v(392)*v(5024)+v(389)*v(5343)+v(391)*v(5377))*v(7522) v(5408)=(v(3629)*v(467)+v(3595)*v(482)+v(3542)*v(486)+v(392)*v(5023)+v(389)*v(5342)+v(391)*v(5376))*v(7522) v(5407)=(v(3628)*v(467)+v(3594)*v(482)+v(3541)*v(486)+v(392)*v(5022)+v(389)*v(5341)+v(391)*v(5375))*v(7522)+v(7518)*v& &(8089) v(5406)=v(5055)+v(5374)+(v(3540)*v(482)+v(388)*v(5390))*v(7522) v(5405)=v(5054)+v(5373)+(v(3539)*v(482)+v(388)*v(5389))*v(7522) v(5404)=v(5053)+v(5372)+(v(3538)*v(482)+v(388)*v(5388))*v(7522) v(5403)=v(5052)+v(5371)+(v(3537)*v(482)+v(388)*v(5387))*v(7522) v(5402)=v(5051)+v(5370)+(v(3536)*v(482)+v(388)*v(5386))*v(7522) v(5401)=v(5050)+v(5369)+(v(3535)*v(482)+v(388)*v(5385))*v(7522) v(5400)=v(5049)+v(5368)+(v(3534)*v(482)+v(388)*v(5384))*v(7522) v(5399)=v(5048)+v(5367)+(v(3533)*v(482)+v(388)*v(5383))*v(7522) v(5398)=v(5047)+v(5366)+(v(3532)*v(482)+v(388)*v(5382))*v(7522) v(5397)=v(5046)+v(5365)+(v(3530)*v(482)+v(388)*v(5381))*v(7522) v(5396)=v(5045)+v(5364)+(v(3529)*v(482)+v(388)*v(5380))*v(7522) v(5395)=v(5044)+v(5363)+(v(3528)*v(482)+v(388)*v(5379))*v(7522) v(5394)=v(5043)+v(5362)+(v(3527)*v(482)+v(388)*v(5378))*v(7522) v(5393)=v(5042)+v(5361)+(v(3526)*v(482)+v(388)*v(5377))*v(7522) v(5392)=v(5041)+v(5360)+(v(3525)*v(482)+v(388)*v(5376))*v(7522) v(5391)=v(5040)+v(5359)+v(5375)*v(8085)+v(482)*v(8086) v(485)=v(483)+v(502)+v(482)*v(8085) v(8090)=5040d0+v(485) v(487)=v(7522)*v(8089) v(8093)=v(392)*v(470)+v(389)*v(487) v(5460)=(v(3609)*v(487)+v(391)*v(5424))*v(7522) v(5476)=(v(5171)+2520d0*v(5240)+840d0*v(5290)+210d0*v(5340)+42d0*v(5390)+7d0*v(5406)+v(5460)+v(7522)*(v(388)*v(5406)+v& &(3540)*v(8090)))/5040d0 v(5459)=(v(3608)*v(487)+v(391)*v(5423))*v(7522) v(5475)=(v(5170)+2520d0*v(5239)+840d0*v(5289)+210d0*v(5339)+42d0*v(5389)+7d0*v(5405)+v(5459)+v(7522)*(v(388)*v(5405)+v& &(3539)*v(8090)))/5040d0 v(5458)=(v(3607)*v(487)+v(391)*v(5422))*v(7522) v(5474)=(v(5169)+2520d0*v(5238)+840d0*v(5288)+210d0*v(5338)+42d0*v(5388)+7d0*v(5404)+v(5458)+v(7522)*(v(388)*v(5404)+v& &(3538)*v(8090)))/5040d0 v(5457)=(v(3606)*v(487)+v(391)*v(5421))*v(7522) v(5473)=(v(5168)+2520d0*v(5237)+840d0*v(5287)+210d0*v(5337)+42d0*v(5387)+7d0*v(5403)+v(5457)+v(7522)*(v(388)*v(5403)+v& &(3537)*v(8090)))/5040d0 v(5456)=(v(3605)*v(487)+v(391)*v(5420))*v(7522) v(5472)=(v(5167)+2520d0*v(5236)+840d0*v(5286)+210d0*v(5336)+42d0*v(5386)+7d0*v(5402)+v(5456)+v(7522)*(v(388)*v(5402)+v& &(3536)*v(8090)))/5040d0 v(5455)=(v(3604)*v(487)+v(391)*v(5419))*v(7522) v(5471)=(v(5166)+2520d0*v(5235)+840d0*v(5285)+210d0*v(5335)+42d0*v(5385)+7d0*v(5401)+v(5455)+v(7522)*(v(388)*v(5401)+v& &(3535)*v(8090)))/5040d0 v(5454)=(v(3602)*v(487)+v(391)*v(5417))*v(7522) v(5470)=(v(5164)+2520d0*v(5234)+840d0*v(5284)+210d0*v(5334)+42d0*v(5384)+7d0*v(5400)+v(5454)+v(7522)*(v(388)*v(5400)+v& &(3534)*v(8090)))/5040d0 v(5453)=(v(3570)*v(487)+v(391)*v(5416))*v(7522) v(5469)=(v(5163)+2520d0*v(5233)+840d0*v(5283)+210d0*v(5333)+42d0*v(5383)+7d0*v(5399)+v(5453)+v(7522)*(v(388)*v(5399)+v& &(3533)*v(8090)))/5040d0 v(5452)=(v(3601)*v(487)+v(391)*v(5414))*v(7522) v(5468)=(v(5162)+2520d0*v(5232)+840d0*v(5282)+210d0*v(5332)+42d0*v(5382)+7d0*v(5398)+v(5452)+v(7522)*(v(388)*v(5398)+v& &(3532)*v(8090)))/5040d0 v(5451)=(v(3600)*v(487)+v(391)*v(5413))*v(7522) v(5467)=(v(5161)+2520d0*v(5231)+840d0*v(5281)+210d0*v(5331)+42d0*v(5381)+7d0*v(5397)+v(5451)+v(7522)*(v(388)*v(5397)+v& &(3530)*v(8090)))/5040d0 v(5450)=(v(3599)*v(487)+v(391)*v(5412))*v(7522) v(5466)=(v(5160)+2520d0*v(5230)+840d0*v(5280)+210d0*v(5330)+42d0*v(5380)+7d0*v(5396)+v(5450)+v(7522)*(v(388)*v(5396)+v& &(3529)*v(8090)))/5040d0 v(5449)=(v(3598)*v(487)+v(391)*v(5411))*v(7522) v(5465)=(v(5159)+2520d0*v(5229)+840d0*v(5279)+210d0*v(5329)+42d0*v(5379)+7d0*v(5395)+v(5449)+v(7522)*(v(388)*v(5395)+v& &(3528)*v(8090)))/5040d0 v(5448)=(v(3597)*v(487)+v(391)*v(5410))*v(7522) v(5464)=(v(5158)+2520d0*v(5228)+840d0*v(5278)+210d0*v(5328)+42d0*v(5378)+7d0*v(5394)+v(5448)+v(7522)*(v(388)*v(5394)+v& &(3527)*v(8090)))/5040d0 v(5447)=(v(3596)*v(487)+v(391)*v(5409))*v(7522) v(5463)=(v(5157)+2520d0*v(5227)+840d0*v(5277)+210d0*v(5327)+42d0*v(5377)+7d0*v(5393)+v(5447)+v(7522)*(v(388)*v(5393)+v& &(3526)*v(8090)))/5040d0 v(5446)=(v(3595)*v(487)+v(391)*v(5408))*v(7522) v(5462)=(v(5156)+2520d0*v(5226)+840d0*v(5276)+210d0*v(5326)+42d0*v(5376)+7d0*v(5392)+v(5446)+v(7522)*(v(388)*v(5392)+v& &(3525)*v(8090)))/5040d0 v(5445)=v(5407)*v(8027)+v(487)*v(8084) v(5461)=(v(5155)+2520d0*v(5224)+840d0*v(5275)+210d0*v(5325)+42d0*v(5375)+7d0*v(5391)+v(5445)+v(388)*(v(5391)*v(7522)+v& &(7518)*v(8090))+v(8090)*v(8091))/5040d0 v(5444)=(7d0*(360d0*v(3676)+120d0*v(5258)+30d0*v(5308)+6d0*v(5358)+v(5424))+v(7522)*(v(3642)*v(470)+v(3558)*v(487)+v& &(392)*v(5138)+v(391)*v(5406)+v(389)*v(5424)+v(3609)*v(8090)))/5040d0 v(5718)=statev(25)*v(5444)+statev(27)*v(5476)+v(5206)*v(7509) v(5638)=statev(26)*v(5206)+statev(24)*v(5476)+v(5444)*v(7511) v(5492)=statev(23)*v(5206)+statev(28)*v(5444)+v(5476)*v(7510) v(5443)=(7d0*(360d0*v(3675)+120d0*v(5257)+30d0*v(5307)+6d0*v(5357)+v(5423))+v(7522)*(v(3641)*v(470)+v(3557)*v(487)+v& &(392)*v(5137)+v(391)*v(5405)+v(389)*v(5423)+v(3608)*v(8090)))/5040d0 v(5717)=statev(25)*v(5443)+statev(27)*v(5475)+v(5205)*v(7509) v(5637)=statev(26)*v(5205)+statev(24)*v(5475)+v(5443)*v(7511) v(5491)=statev(23)*v(5205)+statev(28)*v(5443)+v(5475)*v(7510) v(5442)=(7d0*(360d0*v(3674)+120d0*v(5256)+30d0*v(5306)+6d0*v(5356)+v(5422))+v(7522)*(v(3640)*v(470)+v(3556)*v(487)+v& &(392)*v(5136)+v(391)*v(5404)+v(389)*v(5422)+v(3607)*v(8090)))/5040d0 v(5716)=statev(25)*v(5442)+statev(27)*v(5474)+v(5204)*v(7509) v(5636)=statev(26)*v(5204)+statev(24)*v(5474)+v(5442)*v(7511) v(5490)=statev(23)*v(5204)+statev(28)*v(5442)+v(5474)*v(7510) v(5441)=(7d0*(360d0*v(3673)+120d0*v(5255)+30d0*v(5305)+6d0*v(5355)+v(5421))+v(7522)*(v(3639)*v(470)+v(3555)*v(487)+v& &(392)*v(5135)+v(391)*v(5403)+v(389)*v(5421)+v(3606)*v(8090)))/5040d0 v(5715)=statev(25)*v(5441)+statev(27)*v(5473)+v(5203)*v(7509) v(5635)=statev(26)*v(5203)+statev(24)*v(5473)+v(5441)*v(7511) v(5489)=statev(23)*v(5203)+statev(28)*v(5441)+v(5473)*v(7510) v(5440)=(7d0*(360d0*v(3672)+120d0*v(5254)+30d0*v(5304)+6d0*v(5354)+v(5420))+v(7522)*(v(3638)*v(470)+v(3554)*v(487)+v& &(392)*v(5134)+v(391)*v(5402)+v(389)*v(5420)+v(3605)*v(8090)))/5040d0 v(5714)=statev(25)*v(5440)+statev(27)*v(5472)+v(5202)*v(7509) v(5634)=statev(26)*v(5202)+statev(24)*v(5472)+v(5440)*v(7511) v(5488)=statev(23)*v(5202)+statev(28)*v(5440)+v(5472)*v(7510) v(5439)=(2520d0*v(3671)+840d0*v(5253)+210d0*v(5303)+42d0*v(5353)+7d0*v(5419)+v(5438)+v(7522)*(v(3553)*v(487)+v(392)*v& &(5133)+v(391)*v(5401)+v(389)*v(5419)+v(3604)*v(8090)))/5040d0 v(5713)=statev(25)*v(5439)+statev(27)*v(5471)+v(5201)*v(7509) v(5633)=statev(26)*v(5201)+statev(24)*v(5471)+v(5439)*v(7511) v(5487)=statev(23)*v(5201)+statev(28)*v(5439)+v(5471)*v(7510) v(5437)=((v(3637)*v(470)+v(3602)*v(485)+v(3552)*v(487)+v(392)*v(5132)+v(391)*v(5400)+v(389)*v(5417))*v(7522)+7d0*& &(360d0*v(3670)+120d0*v(5251)+30d0*v(5301)+6d0*v(5351)+v(5417)+v(8092)))/5040d0 v(5712)=statev(25)*v(5437)+statev(27)*v(5470)+v(5200)*v(7509) v(5632)=statev(26)*v(5200)+statev(24)*v(5470)+v(5437)*v(7511) v(5486)=statev(23)*v(5200)+statev(28)*v(5437)+v(5470)*v(7510) v(5435)=(2520d0*v(3669)+840d0*v(5250)+210d0*v(5300)+42d0*v(5350)+7d0*v(5416)+5040d0*v(5433)+v(5434)+(v(3570)*v(485)+v& &(3551)*v(487)+v(392)*v(5129)+v(391)*v(5399)+v(389)*v(5416))*v(7522))/5040d0 v(5711)=statev(25)*v(5435)+statev(27)*v(5469)+v(5196)*v(7509) v(5631)=statev(26)*v(5196)+statev(24)*v(5469)+v(5435)*v(7511) v(5485)=statev(23)*v(5196)+statev(28)*v(5435)+v(5469)*v(7510) v(5432)=(7d0*(360d0*v(3668)+120d0*v(5248)+30d0*v(5298)+6d0*v(5348)+v(5414))+v(7522)*(v(3635)*v(470)+v(3550)*v(487)+v& &(392)*v(5128)+v(391)*v(5398)+v(389)*v(5414)+v(3601)*v(8090)))/5040d0 v(5710)=statev(25)*v(5432)+statev(27)*v(5468)+v(5195)*v(7509) v(5630)=statev(26)*v(5195)+statev(24)*v(5468)+v(5432)*v(7511) v(5484)=statev(23)*v(5195)+statev(28)*v(5432)+v(5468)*v(7510) v(5431)=(7d0*(360d0*v(3667)+120d0*v(5247)+30d0*v(5297)+6d0*v(5347)+v(5413))+v(7522)*(v(3634)*v(470)+v(3548)*v(487)+v& &(392)*v(5127)+v(391)*v(5397)+v(389)*v(5413)+v(3600)*v(8090)))/5040d0 v(5709)=statev(25)*v(5431)+statev(27)*v(5467)+v(5194)*v(7509) v(5629)=statev(26)*v(5194)+statev(24)*v(5467)+v(5431)*v(7511) v(5483)=statev(23)*v(5194)+statev(28)*v(5431)+v(5467)*v(7510) v(5430)=(7d0*(360d0*v(3666)+120d0*v(5246)+30d0*v(5296)+6d0*v(5346)+v(5412))+v(7522)*(v(3633)*v(470)+v(3546)*v(487)+v& &(392)*v(5126)+v(391)*v(5396)+v(389)*v(5412)+v(3599)*v(8090)))/5040d0 v(5708)=statev(25)*v(5430)+statev(27)*v(5466)+v(5193)*v(7509) v(5628)=statev(26)*v(5193)+statev(24)*v(5466)+v(5430)*v(7511) v(5482)=statev(23)*v(5193)+statev(28)*v(5430)+v(5466)*v(7510) v(5429)=(7d0*(360d0*v(3665)+120d0*v(5245)+30d0*v(5295)+6d0*v(5345)+v(5411))+v(7522)*(v(3632)*v(470)+v(3545)*v(487)+v& &(392)*v(5125)+v(391)*v(5395)+v(389)*v(5411)+v(3598)*v(8090)))/5040d0 v(5707)=statev(25)*v(5429)+statev(27)*v(5465)+v(5192)*v(7509) v(5627)=statev(26)*v(5192)+statev(24)*v(5465)+v(5429)*v(7511) v(5481)=statev(23)*v(5192)+statev(28)*v(5429)+v(5465)*v(7510) v(5428)=(7d0*(360d0*v(3664)+120d0*v(5244)+30d0*v(5294)+6d0*v(5344)+v(5410))+v(7522)*(v(3631)*v(470)+v(3544)*v(487)+v& &(392)*v(5124)+v(391)*v(5394)+v(389)*v(5410)+v(3597)*v(8090)))/5040d0 v(5706)=statev(25)*v(5428)+statev(27)*v(5464)+v(5191)*v(7509) v(5626)=statev(26)*v(5191)+statev(24)*v(5464)+v(5428)*v(7511) v(5480)=statev(23)*v(5191)+statev(28)*v(5428)+v(5464)*v(7510) v(5427)=(7d0*(360d0*v(3663)+120d0*v(5243)+30d0*v(5293)+6d0*v(5343)+v(5409))+v(7522)*(v(3630)*v(470)+v(3543)*v(487)+v& &(392)*v(5123)+v(391)*v(5393)+v(389)*v(5409)+v(3596)*v(8090)))/5040d0 v(5705)=statev(25)*v(5427)+statev(27)*v(5463)+v(5190)*v(7509) v(5625)=statev(26)*v(5190)+statev(24)*v(5463)+v(5427)*v(7511) v(5479)=statev(23)*v(5190)+statev(28)*v(5427)+v(5463)*v(7510) v(5426)=(7d0*(360d0*v(3662)+120d0*v(5242)+30d0*v(5292)+6d0*v(5342)+v(5408))+v(7522)*(v(3629)*v(470)+v(3542)*v(487)+v& &(392)*v(5122)+v(391)*v(5392)+v(389)*v(5408)+v(3595)*v(8090)))/5040d0 v(5704)=statev(25)*v(5426)+statev(27)*v(5462)+v(5189)*v(7509) v(5624)=statev(26)*v(5189)+statev(24)*v(5462)+v(5426)*v(7511) v(5478)=statev(23)*v(5189)+statev(28)*v(5426)+v(5462)*v(7510) v(5425)=v(3661)/2d0+v(5241)/6d0+v(5291)/24d0+v(5341)/120d0+v(5407)/720d0+v(8084)+((v(3628)*v(470)+v(3594)*v(485)+v(3541& &)*v(487)+v(392)*v(5121)+v(391)*v(5391)+v(389)*v(5407))*v(7522)+v(7518)*(v(391)*v(485)+v(8093)))/5040d0 v(5703)=statev(25)*v(5425)+statev(27)*v(5461)+v(5188)*v(7509) v(5623)=statev(26)*v(5188)+statev(24)*v(5461)+v(5425)*v(7511) v(5477)=statev(23)*v(5188)+statev(28)*v(5425)+v(5461)*v(7510) v(507)=(7d0*(360d0*v(478)+120d0*v(480)+30d0*v(484)+6d0*v(486)+v(487))+v(7522)*(v(391)*v(8090)+v(8093)))/5040d0 v(506)=v(487)*v(8027) v(512)=(2520d0*v(474)+840d0*v(476)+210d0*v(479)+42d0*v(482)+7d0*v(485)+v(506)+v(8085)*v(8090)+v(8094))/5040d0 v(489)=statev(23)*v(472)+statev(28)*v(507)+v(512)*v(7510) v(492)=v(490)+v(491)+v(232)*v(5493) v(5526)=v(3692)+v(3762)+(v(3558)*v(492)+v(389)*v(5510))*v(7522) v(5525)=v(3691)+v(3761)+(v(3557)*v(492)+v(389)*v(5509))*v(7522) v(5524)=v(3690)+v(3760)+(v(3556)*v(492)+v(389)*v(5508))*v(7522) v(5523)=v(3689)+v(3759)+(v(3555)*v(492)+v(389)*v(5507))*v(7522) v(5522)=v(3688)+v(3758)+(v(3554)*v(492)+v(389)*v(5506))*v(7522) v(5521)=v(3687)+v(3757)+(v(3553)*v(492)+v(389)*v(5505))*v(7522) v(5520)=v(3686)+v(3756)+(v(3552)*v(492)+v(389)*v(5504))*v(7522) v(5519)=v(3685)+v(3755)+(v(3551)*v(492)+v(389)*v(5503))*v(7522) v(5518)=v(3684)+v(3754)+(v(3550)*v(492)+v(389)*v(5502))*v(7522) v(5517)=v(3683)+v(3753)+(v(3548)*v(492)+v(389)*v(5501))*v(7522) v(5516)=v(3682)+v(3752)+(v(3546)*v(492)+v(389)*v(5500))*v(7522) v(5515)=v(3681)+v(3751)+(v(3545)*v(492)+v(389)*v(5499))*v(7522) v(5514)=v(3680)+v(3750)+(v(3544)*v(492)+v(389)*v(5498))*v(7522) v(5513)=v(3679)+v(3749)+(v(3543)*v(492)+v(389)*v(5497))*v(7522) v(5512)=v(3678)+v(3748)+(v(3542)*v(492)+v(389)*v(5496))*v(7522) v(5511)=v(3677)+v(3747)+v(5494)*v(8095)+v(492)*v(8096) v(495)=v(493)+v(494)+v(492)*v(8095) v(5542)=v(4855)+v(5274)+(v(3558)*v(495)+v(389)*v(5526))*v(7522) v(5541)=v(4854)+v(5273)+(v(3557)*v(495)+v(389)*v(5525))*v(7522) v(5540)=v(4853)+v(5272)+(v(3556)*v(495)+v(389)*v(5524))*v(7522) v(5539)=v(4852)+v(5271)+(v(3555)*v(495)+v(389)*v(5523))*v(7522) v(5538)=v(4851)+v(5270)+(v(3554)*v(495)+v(389)*v(5522))*v(7522) v(5537)=v(4850)+v(5269)+(v(3553)*v(495)+v(389)*v(5521))*v(7522) v(5536)=v(4849)+v(5268)+(v(3552)*v(495)+v(389)*v(5520))*v(7522) v(5535)=v(4848)+v(5267)+(v(3551)*v(495)+v(389)*v(5519))*v(7522) v(5534)=v(4847)+v(5266)+(v(3550)*v(495)+v(389)*v(5518))*v(7522) v(5533)=v(4846)+v(5265)+(v(3548)*v(495)+v(389)*v(5517))*v(7522) v(5532)=v(4845)+v(5264)+(v(3546)*v(495)+v(389)*v(5516))*v(7522) v(5531)=v(4844)+v(5263)+(v(3545)*v(495)+v(389)*v(5515))*v(7522) v(5530)=v(4843)+v(5262)+(v(3544)*v(495)+v(389)*v(5514))*v(7522) v(5529)=v(4842)+v(5261)+(v(3543)*v(495)+v(389)*v(5513))*v(7522) v(5528)=v(4841)+v(5260)+(v(3542)*v(495)+v(389)*v(5512))*v(7522) v(5527)=v(4840)+v(5259)+v(5511)*v(8095)+v(495)*v(8096) v(498)=v(496)+v(497)+v(495)*v(8095) v(5558)=v(4972)+v(5324)+(v(3558)*v(498)+v(389)*v(5542))*v(7522) v(5557)=v(4971)+v(5323)+(v(3557)*v(498)+v(389)*v(5541))*v(7522) v(5556)=v(4970)+v(5322)+(v(3556)*v(498)+v(389)*v(5540))*v(7522) v(5555)=v(4969)+v(5321)+(v(3555)*v(498)+v(389)*v(5539))*v(7522) v(5554)=v(4968)+v(5320)+(v(3554)*v(498)+v(389)*v(5538))*v(7522) v(5553)=v(4967)+v(5319)+(v(3553)*v(498)+v(389)*v(5537))*v(7522) v(5552)=v(4966)+v(5318)+(v(3552)*v(498)+v(389)*v(5536))*v(7522) v(5551)=v(4965)+v(5317)+(v(3551)*v(498)+v(389)*v(5535))*v(7522) v(5550)=v(4964)+v(5316)+(v(3550)*v(498)+v(389)*v(5534))*v(7522) v(5549)=v(4963)+v(5315)+(v(3548)*v(498)+v(389)*v(5533))*v(7522) v(5548)=v(4962)+v(5314)+(v(3546)*v(498)+v(389)*v(5532))*v(7522) v(5547)=v(4961)+v(5313)+(v(3545)*v(498)+v(389)*v(5531))*v(7522) v(5546)=v(4960)+v(5312)+(v(3544)*v(498)+v(389)*v(5530))*v(7522) v(5545)=v(4959)+v(5311)+(v(3543)*v(498)+v(389)*v(5529))*v(7522) v(5544)=v(4958)+v(5310)+(v(3542)*v(498)+v(389)*v(5528))*v(7522) v(5543)=v(4957)+v(5309)+v(5527)*v(8095)+v(498)*v(8096) v(501)=v(499)+v(500)+v(498)*v(8095) v(5574)=v(5021)+v(5374)+(v(3558)*v(501)+v(389)*v(5558))*v(7522) v(5573)=v(5020)+v(5373)+(v(3557)*v(501)+v(389)*v(5557))*v(7522) v(5572)=v(5019)+v(5372)+(v(3556)*v(501)+v(389)*v(5556))*v(7522) v(5571)=v(5018)+v(5371)+(v(3555)*v(501)+v(389)*v(5555))*v(7522) v(5570)=v(5017)+v(5370)+(v(3554)*v(501)+v(389)*v(5554))*v(7522) v(5569)=v(5016)+v(5369)+(v(3553)*v(501)+v(389)*v(5553))*v(7522) v(5568)=v(5015)+v(5368)+(v(3552)*v(501)+v(389)*v(5552))*v(7522) v(5567)=v(5014)+v(5367)+(v(3551)*v(501)+v(389)*v(5551))*v(7522) v(5566)=v(5013)+v(5366)+(v(3550)*v(501)+v(389)*v(5550))*v(7522) v(5565)=v(5012)+v(5365)+(v(3548)*v(501)+v(389)*v(5549))*v(7522) v(5564)=v(5011)+v(5364)+(v(3546)*v(501)+v(389)*v(5548))*v(7522) v(5563)=v(5010)+v(5363)+(v(3545)*v(501)+v(389)*v(5547))*v(7522) v(5562)=v(5009)+v(5362)+(v(3544)*v(501)+v(389)*v(5546))*v(7522) v(5561)=v(5008)+v(5361)+(v(3543)*v(501)+v(389)*v(5545))*v(7522) v(5560)=v(5007)+v(5360)+(v(3542)*v(501)+v(389)*v(5544))*v(7522) v(5559)=v(5006)+v(5359)+v(5543)*v(8095)+v(501)*v(8096) v(504)=v(502)+v(503)+v(501)*v(8095) v(8097)=5040d0+v(504) v(5590)=(v(5120)+v(5460)+2520d0*v(5510)+840d0*v(5526)+210d0*v(5542)+42d0*v(5558)+7d0*v(5574)+v(7522)*(v(389)*v(5574)+v& &(3558)*v(8097)))/5040d0 v(5782)=statev(23)*v(5154)+statev(28)*v(5590)+v(5444)*v(7510) v(5654)=statev(27)*v(5444)+statev(25)*v(5590)+v(5154)*v(7509) v(5606)=statev(26)*v(5154)+statev(24)*v(5444)+v(5590)*v(7511) v(5589)=(v(5119)+v(5459)+2520d0*v(5509)+840d0*v(5525)+210d0*v(5541)+42d0*v(5557)+7d0*v(5573)+v(7522)*(v(389)*v(5573)+v& &(3557)*v(8097)))/5040d0 v(5781)=statev(23)*v(5153)+statev(28)*v(5589)+v(5443)*v(7510) v(5653)=statev(27)*v(5443)+statev(25)*v(5589)+v(5153)*v(7509) v(5605)=statev(26)*v(5153)+statev(24)*v(5443)+v(5589)*v(7511) v(5588)=(v(5118)+v(5458)+2520d0*v(5508)+840d0*v(5524)+210d0*v(5540)+42d0*v(5556)+7d0*v(5572)+v(7522)*(v(389)*v(5572)+v& &(3556)*v(8097)))/5040d0 v(5780)=statev(23)*v(5152)+statev(28)*v(5588)+v(5442)*v(7510) v(5652)=statev(27)*v(5442)+statev(25)*v(5588)+v(5152)*v(7509) v(5604)=statev(26)*v(5152)+statev(24)*v(5442)+v(5588)*v(7511) v(5587)=(v(5117)+v(5457)+2520d0*v(5507)+840d0*v(5523)+210d0*v(5539)+42d0*v(5555)+7d0*v(5571)+v(7522)*(v(389)*v(5571)+v& &(3555)*v(8097)))/5040d0 v(5779)=statev(23)*v(5151)+statev(28)*v(5587)+v(5441)*v(7510) v(5651)=statev(27)*v(5441)+statev(25)*v(5587)+v(5151)*v(7509) v(5603)=statev(26)*v(5151)+statev(24)*v(5441)+v(5587)*v(7511) v(5586)=(v(5116)+v(5456)+2520d0*v(5506)+840d0*v(5522)+210d0*v(5538)+42d0*v(5554)+7d0*v(5570)+v(7522)*(v(389)*v(5570)+v& &(3554)*v(8097)))/5040d0 v(5778)=statev(23)*v(5150)+statev(28)*v(5586)+v(5440)*v(7510) v(5650)=statev(27)*v(5440)+statev(25)*v(5586)+v(5150)*v(7509) v(5602)=statev(26)*v(5150)+statev(24)*v(5440)+v(5586)*v(7511) v(5585)=(v(5115)+v(5455)+2520d0*v(5505)+840d0*v(5521)+210d0*v(5537)+42d0*v(5553)+7d0*v(5569)+v(7522)*(v(389)*v(5569)+v& &(3553)*v(8097)))/5040d0 v(5777)=statev(23)*v(5149)+statev(28)*v(5585)+v(5439)*v(7510) v(5649)=statev(27)*v(5439)+statev(25)*v(5585)+v(5149)*v(7509) v(5601)=statev(26)*v(5149)+statev(24)*v(5439)+v(5585)*v(7511) v(5584)=(v(5114)+v(5454)+2520d0*v(5504)+840d0*v(5520)+210d0*v(5536)+42d0*v(5552)+7d0*v(5568)+v(7522)*(v(389)*v(5568)+v& &(3552)*v(8097)))/5040d0 v(5776)=statev(23)*v(5148)+statev(28)*v(5584)+v(5437)*v(7510) v(5648)=statev(27)*v(5437)+statev(25)*v(5584)+v(5148)*v(7509) v(5600)=statev(26)*v(5148)+statev(24)*v(5437)+v(5584)*v(7511) v(5583)=(v(5113)+v(5453)+2520d0*v(5503)+840d0*v(5519)+210d0*v(5535)+42d0*v(5551)+7d0*v(5567)+v(7522)*(v(389)*v(5567)+v& &(3551)*v(8097)))/5040d0 v(5775)=statev(23)*v(5147)+statev(28)*v(5583)+v(5435)*v(7510) v(5647)=statev(27)*v(5435)+statev(25)*v(5583)+v(5147)*v(7509) v(5599)=statev(26)*v(5147)+statev(24)*v(5435)+v(5583)*v(7511) v(5582)=(v(5112)+v(5452)+2520d0*v(5502)+840d0*v(5518)+210d0*v(5534)+42d0*v(5550)+7d0*v(5566)+v(7522)*(v(389)*v(5566)+v& &(3550)*v(8097)))/5040d0 v(5774)=statev(23)*v(5146)+statev(28)*v(5582)+v(5432)*v(7510) v(5646)=statev(27)*v(5432)+statev(25)*v(5582)+v(5146)*v(7509) v(5598)=statev(26)*v(5146)+statev(24)*v(5432)+v(5582)*v(7511) v(5581)=(v(5111)+v(5451)+2520d0*v(5501)+840d0*v(5517)+210d0*v(5533)+42d0*v(5549)+7d0*v(5565)+v(7522)*(v(389)*v(5565)+v& &(3548)*v(8097)))/5040d0 v(5773)=statev(23)*v(5145)+statev(28)*v(5581)+v(5431)*v(7510) v(5645)=statev(27)*v(5431)+statev(25)*v(5581)+v(5145)*v(7509) v(5597)=statev(26)*v(5145)+statev(24)*v(5431)+v(5581)*v(7511) v(5580)=(v(5110)+v(5450)+2520d0*v(5500)+840d0*v(5516)+210d0*v(5532)+42d0*v(5548)+7d0*v(5564)+v(7522)*(v(389)*v(5564)+v& &(3546)*v(8097)))/5040d0 v(5772)=statev(23)*v(5144)+statev(28)*v(5580)+v(5430)*v(7510) v(5644)=statev(27)*v(5430)+statev(25)*v(5580)+v(5144)*v(7509) v(5596)=statev(26)*v(5144)+statev(24)*v(5430)+v(5580)*v(7511) v(5579)=(v(5109)+v(5449)+2520d0*v(5499)+840d0*v(5515)+210d0*v(5531)+42d0*v(5547)+7d0*v(5563)+v(7522)*(v(389)*v(5563)+v& &(3545)*v(8097)))/5040d0 v(5771)=statev(23)*v(5143)+statev(28)*v(5579)+v(5429)*v(7510) v(5643)=statev(27)*v(5429)+statev(25)*v(5579)+v(5143)*v(7509) v(5595)=statev(26)*v(5143)+statev(24)*v(5429)+v(5579)*v(7511) v(5578)=(v(5108)+v(5448)+2520d0*v(5498)+840d0*v(5514)+210d0*v(5530)+42d0*v(5546)+7d0*v(5562)+v(7522)*(v(389)*v(5562)+v& &(3544)*v(8097)))/5040d0 v(5770)=statev(23)*v(5142)+statev(28)*v(5578)+v(5428)*v(7510) v(5642)=statev(27)*v(5428)+statev(25)*v(5578)+v(5142)*v(7509) v(5594)=statev(26)*v(5142)+statev(24)*v(5428)+v(5578)*v(7511) v(5577)=(v(5107)+v(5447)+2520d0*v(5497)+840d0*v(5513)+210d0*v(5529)+42d0*v(5545)+7d0*v(5561)+v(7522)*(v(389)*v(5561)+v& &(3543)*v(8097)))/5040d0 v(5769)=statev(23)*v(5141)+statev(28)*v(5577)+v(5427)*v(7510) v(5641)=statev(27)*v(5427)+statev(25)*v(5577)+v(5141)*v(7509) v(5593)=statev(26)*v(5141)+statev(24)*v(5427)+v(5577)*v(7511) v(5576)=(v(5106)+v(5446)+2520d0*v(5496)+840d0*v(5512)+210d0*v(5528)+42d0*v(5544)+7d0*v(5560)+v(7522)*(v(389)*v(5560)+v& &(3542)*v(8097)))/5040d0 v(5768)=statev(23)*v(5140)+statev(28)*v(5576)+v(5426)*v(7510) v(5640)=statev(27)*v(5426)+statev(25)*v(5576)+v(5140)*v(7509) v(5592)=statev(26)*v(5140)+statev(24)*v(5426)+v(5576)*v(7511) v(5575)=(v(5105)+v(5445)+2520d0*v(5494)+840d0*v(5511)+210d0*v(5527)+42d0*v(5543)+7d0*v(5559)+v(389)*(v(5559)*v(7522)+v& &(7518)*v(8097))+v(8097)*v(8098))/5040d0 v(5767)=statev(23)*v(5139)+statev(28)*v(5575)+v(5425)*v(7510) v(5639)=statev(27)*v(5425)+statev(25)*v(5575)+v(5139)*v(7509) v(5591)=statev(26)*v(5139)+statev(24)*v(5425)+v(5575)*v(7511) v(514)=(5040d0+2520d0*v(492)+840d0*v(495)+210d0*v(498)+42d0*v(501)+7d0*v(504)+v(505)+v(506)+v(8095)*v(8097))/5040d0 v(509)=statev(24)*v(507)+statev(26)*v(508)+v(514)*v(7511) v(511)=statev(28)*v(508)+statev(23)*v(510)+v(472)*v(7510) v(513)=statev(26)*v(472)+statev(24)*v(512)+v(507)*v(7511) v(515)=statev(27)*v(507)+statev(25)*v(514)+v(508)*v(7509) v(516)=statev(24)*v(472)+statev(26)*v(510)+v(508)*v(7511) v(5702)=v(509)*v(5222)+v(471)*v(5606)-v(516)*v(5654)-v(515)*v(5670) v(5701)=v(509)*v(5221)+v(471)*v(5605)-v(516)*v(5653)-v(515)*v(5669) v(5700)=v(509)*v(5220)+v(471)*v(5604)-v(516)*v(5652)-v(515)*v(5668) v(5699)=v(509)*v(5219)+v(471)*v(5603)-v(516)*v(5651)-v(515)*v(5667) v(5698)=v(509)*v(5218)+v(471)*v(5602)-v(516)*v(5650)-v(515)*v(5666) v(5697)=v(509)*v(5217)+v(471)*v(5601)-v(516)*v(5649)-v(515)*v(5665) v(5696)=v(509)*v(5216)+v(471)*v(5600)-v(516)*v(5648)-v(515)*v(5664) v(5695)=v(509)*v(5215)+v(471)*v(5599)-v(516)*v(5647)-v(515)*v(5663) v(5694)=v(509)*v(5214)+v(471)*v(5598)-v(516)*v(5646)-v(515)*v(5662) v(5693)=v(509)*v(5213)+v(471)*v(5597)-v(516)*v(5645)-v(515)*v(5661) v(5692)=v(509)*v(5212)+v(471)*v(5596)-v(516)*v(5644)-v(515)*v(5660) v(5691)=v(509)*v(5211)+v(471)*v(5595)-v(516)*v(5643)-v(515)*v(5659) v(5690)=v(509)*v(5210)+v(471)*v(5594)-v(516)*v(5642)-v(515)*v(5658) v(5689)=v(509)*v(5209)+v(471)*v(5593)-v(516)*v(5641)-v(515)*v(5657) v(5688)=v(509)*v(5208)+v(471)*v(5592)-v(516)*v(5640)-v(515)*v(5656) v(5687)=v(509)*v(5207)+v(471)*v(5591)-v(516)*v(5639)-v(515)*v(5655) v(5686)=-(v(516)*v(5492))+v(513)*v(5622)+v(511)*v(5638)-v(489)*v(5670) v(5685)=-(v(516)*v(5491))+v(513)*v(5621)+v(511)*v(5637)-v(489)*v(5669) v(5684)=-(v(516)*v(5490))+v(513)*v(5620)+v(511)*v(5636)-v(489)*v(5668) v(5683)=-(v(516)*v(5489))+v(513)*v(5619)+v(511)*v(5635)-v(489)*v(5667) v(5682)=-(v(516)*v(5488))+v(513)*v(5618)+v(511)*v(5634)-v(489)*v(5666) v(5681)=-(v(516)*v(5487))+v(513)*v(5617)+v(511)*v(5633)-v(489)*v(5665) v(5680)=-(v(516)*v(5486))+v(513)*v(5616)+v(511)*v(5632)-v(489)*v(5664) v(5679)=-(v(516)*v(5485))+v(513)*v(5615)+v(511)*v(5631)-v(489)*v(5663) v(5678)=-(v(516)*v(5484))+v(513)*v(5614)+v(511)*v(5630)-v(489)*v(5662) v(5677)=-(v(516)*v(5483))+v(513)*v(5613)+v(511)*v(5629)-v(489)*v(5661) v(5676)=-(v(516)*v(5482))+v(513)*v(5612)+v(511)*v(5628)-v(489)*v(5660) v(5675)=-(v(516)*v(5481))+v(513)*v(5611)+v(511)*v(5627)-v(489)*v(5659) v(5674)=-(v(516)*v(5480))+v(513)*v(5610)+v(511)*v(5626)-v(489)*v(5658) v(5673)=-(v(516)*v(5479))+v(513)*v(5609)+v(511)*v(5625)-v(489)*v(5657) v(5672)=-(v(516)*v(5478))+v(513)*v(5608)+v(511)*v(5624)-v(489)*v(5656) v(5671)=-(v(516)*v(5477))+v(513)*v(5607)+v(511)*v(5623)-v(489)*v(5655) v(562)=v(511)*v(513)-v(489)*v(516) v(6016)=(v(562)*v(562)) v(553)=v(471)*v(509)-v(515)*v(516) v(6091)=(v(553)*v(553)) v(517)=statev(25)*v(507)+statev(27)*v(512)+v(472)*v(7509) v(5766)=-(v(517)*v(5606))+v(515)*v(5638)+v(513)*v(5654)-v(509)*v(5718) v(5765)=-(v(517)*v(5605))+v(515)*v(5637)+v(513)*v(5653)-v(509)*v(5717) v(5764)=-(v(517)*v(5604))+v(515)*v(5636)+v(513)*v(5652)-v(509)*v(5716) v(5763)=-(v(517)*v(5603))+v(515)*v(5635)+v(513)*v(5651)-v(509)*v(5715) v(5762)=-(v(517)*v(5602))+v(515)*v(5634)+v(513)*v(5650)-v(509)*v(5714) v(5761)=-(v(517)*v(5601))+v(515)*v(5633)+v(513)*v(5649)-v(509)*v(5713) v(5760)=-(v(517)*v(5600))+v(515)*v(5632)+v(513)*v(5648)-v(509)*v(5712) v(5759)=-(v(517)*v(5599))+v(515)*v(5631)+v(513)*v(5647)-v(509)*v(5711) v(5758)=-(v(517)*v(5598))+v(515)*v(5630)+v(513)*v(5646)-v(509)*v(5710) v(5757)=-(v(517)*v(5597))+v(515)*v(5629)+v(513)*v(5645)-v(509)*v(5709) v(5756)=-(v(517)*v(5596))+v(515)*v(5628)+v(513)*v(5644)-v(509)*v(5708) v(5755)=-(v(517)*v(5595))+v(515)*v(5627)+v(513)*v(5643)-v(509)*v(5707) v(5754)=-(v(517)*v(5594))+v(515)*v(5626)+v(513)*v(5642)-v(509)*v(5706) v(5753)=-(v(517)*v(5593))+v(515)*v(5625)+v(513)*v(5641)-v(509)*v(5705) v(5752)=-(v(517)*v(5592))+v(515)*v(5624)+v(513)*v(5640)-v(509)*v(5704) v(5751)=-(v(517)*v(5591))+v(515)*v(5623)+v(513)*v(5639)-v(509)*v(5703) v(5750)=-(v(513)*v(5222))-v(471)*v(5638)+v(517)*v(5670)+v(516)*v(5718) v(5749)=-(v(513)*v(5221))-v(471)*v(5637)+v(517)*v(5669)+v(516)*v(5717) v(5748)=-(v(513)*v(5220))-v(471)*v(5636)+v(517)*v(5668)+v(516)*v(5716) v(5747)=-(v(513)*v(5219))-v(471)*v(5635)+v(517)*v(5667)+v(516)*v(5715) v(5746)=-(v(513)*v(5218))-v(471)*v(5634)+v(517)*v(5666)+v(516)*v(5714) v(5745)=-(v(513)*v(5217))-v(471)*v(5633)+v(517)*v(5665)+v(516)*v(5713) v(5744)=-(v(513)*v(5216))-v(471)*v(5632)+v(517)*v(5664)+v(516)*v(5712) v(5743)=-(v(513)*v(5215))-v(471)*v(5631)+v(517)*v(5663)+v(516)*v(5711) v(5742)=-(v(513)*v(5214))-v(471)*v(5630)+v(517)*v(5662)+v(516)*v(5710) v(5741)=-(v(513)*v(5213))-v(471)*v(5629)+v(517)*v(5661)+v(516)*v(5709) v(5740)=-(v(513)*v(5212))-v(471)*v(5628)+v(517)*v(5660)+v(516)*v(5708) v(5739)=-(v(513)*v(5211))-v(471)*v(5627)+v(517)*v(5659)+v(516)*v(5707) v(5738)=-(v(513)*v(5210))-v(471)*v(5626)+v(517)*v(5658)+v(516)*v(5706) v(5737)=-(v(513)*v(5209))-v(471)*v(5625)+v(517)*v(5657)+v(516)*v(5705) v(5736)=-(v(513)*v(5208))-v(471)*v(5624)+v(517)*v(5656)+v(516)*v(5704) v(5735)=-(v(513)*v(5207))-v(471)*v(5623)+v(517)*v(5655)+v(516)*v(5703) v(5734)=v(489)*v(5222)+v(471)*v(5492)-v(517)*v(5622)-v(511)*v(5718) v(5733)=v(489)*v(5221)+v(471)*v(5491)-v(517)*v(5621)-v(511)*v(5717) v(5732)=v(489)*v(5220)+v(471)*v(5490)-v(517)*v(5620)-v(511)*v(5716) v(5731)=v(489)*v(5219)+v(471)*v(5489)-v(517)*v(5619)-v(511)*v(5715) v(5730)=v(489)*v(5218)+v(471)*v(5488)-v(517)*v(5618)-v(511)*v(5714) v(5729)=v(489)*v(5217)+v(471)*v(5487)-v(517)*v(5617)-v(511)*v(5713) v(5728)=v(489)*v(5216)+v(471)*v(5486)-v(517)*v(5616)-v(511)*v(5712) v(5727)=v(489)*v(5215)+v(471)*v(5485)-v(517)*v(5615)-v(511)*v(5711) v(5726)=v(489)*v(5214)+v(471)*v(5484)-v(517)*v(5614)-v(511)*v(5710) v(5725)=v(489)*v(5213)+v(471)*v(5483)-v(517)*v(5613)-v(511)*v(5709) v(5724)=v(489)*v(5212)+v(471)*v(5482)-v(517)*v(5612)-v(511)*v(5708) v(5723)=v(489)*v(5211)+v(471)*v(5481)-v(517)*v(5611)-v(511)*v(5707) v(5722)=v(489)*v(5210)+v(471)*v(5480)-v(517)*v(5610)-v(511)*v(5706) v(5721)=v(489)*v(5209)+v(471)*v(5479)-v(517)*v(5609)-v(511)*v(5705) v(5720)=v(489)*v(5208)+v(471)*v(5478)-v(517)*v(5608)-v(511)*v(5704) v(5719)=v(489)*v(5207)+v(471)*v(5477)-v(517)*v(5607)-v(511)*v(5703) v(561)=v(471)*v(489)-v(511)*v(517) v(6015)=(v(561)*v(561)) v(560)=-(v(471)*v(513))+v(516)*v(517) v(6014)=(v(560)*v(560)) v(8109)=v(6014)+v(6015)+v(6016) v(554)=v(513)*v(515)-v(509)*v(517) v(6053)=(v(554)*v(554)) v(518)=statev(23)*v(508)+statev(28)*v(514)+v(507)*v(7510) v(5996)=v(518)*v(560)+v(509)*v(561)+v(515)*v(562) v(5998)=1d0/v(5996)**3 v(8099)=(-2d0)*v(5998) v(6013)=(v(5606)*v(561)+v(562)*v(5654)+v(515)*v(5686)+v(509)*v(5734)+v(518)*v(5750)+v(560)*v(5782))*v(8099) v(6012)=(v(5605)*v(561)+v(562)*v(5653)+v(515)*v(5685)+v(509)*v(5733)+v(518)*v(5749)+v(560)*v(5781))*v(8099) v(6011)=(v(5604)*v(561)+v(562)*v(5652)+v(515)*v(5684)+v(509)*v(5732)+v(518)*v(5748)+v(560)*v(5780))*v(8099) v(6010)=(v(5603)*v(561)+v(562)*v(5651)+v(515)*v(5683)+v(509)*v(5731)+v(518)*v(5747)+v(560)*v(5779))*v(8099) v(6009)=(v(5602)*v(561)+v(562)*v(5650)+v(515)*v(5682)+v(509)*v(5730)+v(518)*v(5746)+v(560)*v(5778))*v(8099) v(6008)=(v(5601)*v(561)+v(562)*v(5649)+v(515)*v(5681)+v(509)*v(5729)+v(518)*v(5745)+v(560)*v(5777))*v(8099) v(6007)=(v(5600)*v(561)+v(562)*v(5648)+v(515)*v(5680)+v(509)*v(5728)+v(518)*v(5744)+v(560)*v(5776))*v(8099) v(6006)=(v(5599)*v(561)+v(562)*v(5647)+v(515)*v(5679)+v(509)*v(5727)+v(518)*v(5743)+v(560)*v(5775))*v(8099) v(6005)=(v(5598)*v(561)+v(562)*v(5646)+v(515)*v(5678)+v(509)*v(5726)+v(518)*v(5742)+v(560)*v(5774))*v(8099) v(6004)=(v(5597)*v(561)+v(562)*v(5645)+v(515)*v(5677)+v(509)*v(5725)+v(518)*v(5741)+v(560)*v(5773))*v(8099) v(6003)=(v(5596)*v(561)+v(562)*v(5644)+v(515)*v(5676)+v(509)*v(5724)+v(518)*v(5740)+v(560)*v(5772))*v(8099) v(6002)=(v(5595)*v(561)+v(562)*v(5643)+v(515)*v(5675)+v(509)*v(5723)+v(518)*v(5739)+v(560)*v(5771))*v(8099) v(6001)=(v(5594)*v(561)+v(562)*v(5642)+v(515)*v(5674)+v(509)*v(5722)+v(518)*v(5738)+v(560)*v(5770))*v(8099) v(6000)=(v(5593)*v(561)+v(562)*v(5641)+v(515)*v(5673)+v(509)*v(5721)+v(518)*v(5737)+v(560)*v(5769))*v(8099) v(5999)=(v(5592)*v(561)+v(562)*v(5640)+v(515)*v(5672)+v(509)*v(5720)+v(518)*v(5736)+v(560)*v(5768))*v(8099) v(5997)=(v(5591)*v(561)+v(562)*v(5639)+v(515)*v(5671)+v(509)*v(5719)+v(518)*v(5735)+v(560)*v(5767))*v(8099) v(5846)=v(509)*v(5492)+v(489)*v(5606)-v(518)*v(5638)-v(513)*v(5782) v(5845)=v(509)*v(5491)+v(489)*v(5605)-v(518)*v(5637)-v(513)*v(5781) v(5844)=v(509)*v(5490)+v(489)*v(5604)-v(518)*v(5636)-v(513)*v(5780) v(5843)=v(509)*v(5489)+v(489)*v(5603)-v(518)*v(5635)-v(513)*v(5779) v(5842)=v(509)*v(5488)+v(489)*v(5602)-v(518)*v(5634)-v(513)*v(5778) v(5841)=v(509)*v(5487)+v(489)*v(5601)-v(518)*v(5633)-v(513)*v(5777) v(5840)=v(509)*v(5486)+v(489)*v(5600)-v(518)*v(5632)-v(513)*v(5776) v(5839)=v(509)*v(5485)+v(489)*v(5599)-v(518)*v(5631)-v(513)*v(5775) v(5838)=v(509)*v(5484)+v(489)*v(5598)-v(518)*v(5630)-v(513)*v(5774) v(5837)=v(509)*v(5483)+v(489)*v(5597)-v(518)*v(5629)-v(513)*v(5773) v(5836)=v(509)*v(5482)+v(489)*v(5596)-v(518)*v(5628)-v(513)*v(5772) v(5835)=v(509)*v(5481)+v(489)*v(5595)-v(518)*v(5627)-v(513)*v(5771) v(5834)=v(509)*v(5480)+v(489)*v(5594)-v(518)*v(5626)-v(513)*v(5770) v(5833)=v(509)*v(5479)+v(489)*v(5593)-v(518)*v(5625)-v(513)*v(5769) v(5832)=v(509)*v(5478)+v(489)*v(5592)-v(518)*v(5624)-v(513)*v(5768) v(5831)=v(509)*v(5477)+v(489)*v(5591)-v(518)*v(5623)-v(513)*v(5767) v(5830)=-(v(511)*v(5606))-v(509)*v(5622)+v(518)*v(5670)+v(516)*v(5782) v(5829)=-(v(511)*v(5605))-v(509)*v(5621)+v(518)*v(5669)+v(516)*v(5781) v(5828)=-(v(511)*v(5604))-v(509)*v(5620)+v(518)*v(5668)+v(516)*v(5780) v(5827)=-(v(511)*v(5603))-v(509)*v(5619)+v(518)*v(5667)+v(516)*v(5779) v(5826)=-(v(511)*v(5602))-v(509)*v(5618)+v(518)*v(5666)+v(516)*v(5778) v(5825)=-(v(511)*v(5601))-v(509)*v(5617)+v(518)*v(5665)+v(516)*v(5777) v(5824)=-(v(511)*v(5600))-v(509)*v(5616)+v(518)*v(5664)+v(516)*v(5776) v(5823)=-(v(511)*v(5599))-v(509)*v(5615)+v(518)*v(5663)+v(516)*v(5775) v(5822)=-(v(511)*v(5598))-v(509)*v(5614)+v(518)*v(5662)+v(516)*v(5774) v(5821)=-(v(511)*v(5597))-v(509)*v(5613)+v(518)*v(5661)+v(516)*v(5773) v(5820)=-(v(511)*v(5596))-v(509)*v(5612)+v(518)*v(5660)+v(516)*v(5772) v(5819)=-(v(511)*v(5595))-v(509)*v(5611)+v(518)*v(5659)+v(516)*v(5771) v(5818)=-(v(511)*v(5594))-v(509)*v(5610)+v(518)*v(5658)+v(516)*v(5770) v(5817)=-(v(511)*v(5593))-v(509)*v(5609)+v(518)*v(5657)+v(516)*v(5769) v(5816)=-(v(511)*v(5592))-v(509)*v(5608)+v(518)*v(5656)+v(516)*v(5768) v(5815)=-(v(511)*v(5591))-v(509)*v(5607)+v(518)*v(5655)+v(516)*v(5767) v(5814)=-(v(518)*v(5222))+v(515)*v(5622)+v(511)*v(5654)-v(471)*v(5782) v(5813)=-(v(518)*v(5221))+v(515)*v(5621)+v(511)*v(5653)-v(471)*v(5781) v(5812)=-(v(518)*v(5220))+v(515)*v(5620)+v(511)*v(5652)-v(471)*v(5780) v(5811)=-(v(518)*v(5219))+v(515)*v(5619)+v(511)*v(5651)-v(471)*v(5779) v(5810)=-(v(518)*v(5218))+v(515)*v(5618)+v(511)*v(5650)-v(471)*v(5778) v(5809)=-(v(518)*v(5217))+v(515)*v(5617)+v(511)*v(5649)-v(471)*v(5777) v(5808)=-(v(518)*v(5216))+v(515)*v(5616)+v(511)*v(5648)-v(471)*v(5776) v(5807)=-(v(518)*v(5215))+v(515)*v(5615)+v(511)*v(5647)-v(471)*v(5775) v(5806)=-(v(518)*v(5214))+v(515)*v(5614)+v(511)*v(5646)-v(471)*v(5774) v(5805)=-(v(518)*v(5213))+v(515)*v(5613)+v(511)*v(5645)-v(471)*v(5773) v(5804)=-(v(518)*v(5212))+v(515)*v(5612)+v(511)*v(5644)-v(471)*v(5772) v(5803)=-(v(518)*v(5211))+v(515)*v(5611)+v(511)*v(5643)-v(471)*v(5771) v(5802)=-(v(518)*v(5210))+v(515)*v(5610)+v(511)*v(5642)-v(471)*v(5770) v(5801)=-(v(518)*v(5209))+v(515)*v(5609)+v(511)*v(5641)-v(471)*v(5769) v(5800)=-(v(518)*v(5208))+v(515)*v(5608)+v(511)*v(5640)-v(471)*v(5768) v(5799)=-(v(518)*v(5207))+v(515)*v(5607)+v(511)*v(5639)-v(471)*v(5767) v(5798)=-(v(515)*v(5492))-v(489)*v(5654)+v(518)*v(5718)+v(517)*v(5782) v(5797)=-(v(515)*v(5491))-v(489)*v(5653)+v(518)*v(5717)+v(517)*v(5781) v(5796)=-(v(515)*v(5490))-v(489)*v(5652)+v(518)*v(5716)+v(517)*v(5780) v(5795)=-(v(515)*v(5489))-v(489)*v(5651)+v(518)*v(5715)+v(517)*v(5779) v(5794)=-(v(515)*v(5488))-v(489)*v(5650)+v(518)*v(5714)+v(517)*v(5778) v(5793)=-(v(515)*v(5487))-v(489)*v(5649)+v(518)*v(5713)+v(517)*v(5777) v(5792)=-(v(515)*v(5486))-v(489)*v(5648)+v(518)*v(5712)+v(517)*v(5776) v(5791)=-(v(515)*v(5485))-v(489)*v(5647)+v(518)*v(5711)+v(517)*v(5775) v(5790)=-(v(515)*v(5484))-v(489)*v(5646)+v(518)*v(5710)+v(517)*v(5774) v(5789)=-(v(515)*v(5483))-v(489)*v(5645)+v(518)*v(5709)+v(517)*v(5773) v(5788)=-(v(515)*v(5482))-v(489)*v(5644)+v(518)*v(5708)+v(517)*v(5772) v(5787)=-(v(515)*v(5481))-v(489)*v(5643)+v(518)*v(5707)+v(517)*v(5771) v(5786)=-(v(515)*v(5480))-v(489)*v(5642)+v(518)*v(5706)+v(517)*v(5770) v(5785)=-(v(515)*v(5479))-v(489)*v(5641)+v(518)*v(5705)+v(517)*v(5769) v(5784)=-(v(515)*v(5478))-v(489)*v(5640)+v(518)*v(5704)+v(517)*v(5768) v(5783)=-(v(515)*v(5477))-v(489)*v(5639)+v(518)*v(5703)+v(517)*v(5767) v(558)=-(v(489)*v(515))+v(517)*v(518) v(6055)=(v(558)*v(558)) v(557)=v(511)*v(515)-v(471)*v(518) v(6093)=(v(557)*v(557)) v(556)=-(v(509)*v(511))+v(516)*v(518) v(8112)=v(553)*v(560)+v(557)*v(561)+v(556)*v(562) v(6092)=(v(556)*v(556)) v(8106)=v(6091)+v(6092)+v(6093) v(555)=v(489)*v(509)-v(513)*v(518) v(8114)=v(553)*v(554)+v(555)*v(556)+v(557)*v(558) v(8110)=v(554)*v(560)+v(558)*v(561)+v(555)*v(562) v(6054)=(v(555)*v(555)) v(8107)=v(6053)+v(6054)+v(6055) v(519)=1d0/v(5847)**2 v(8100)=(-2d0)*v(519) v(7254)=v(519)*v(8111) v(7221)=v(519)*v(8113) v(7188)=v(519)*v(8115) v(5948)=v(533)*v(8100) v(5947)=v(534)*v(8100) v(5946)=v(530)*v(8100) v(5963)=v(4660)*v(5946)+v(4772)*v(5947)+v(4788)*v(5948)-v(5864)*v(8101) v(5979)=v(5963)/3d0 v(5962)=v(4659)*v(5946)+v(4771)*v(5947)+v(4787)*v(5948)-v(5863)*v(8101) v(5978)=v(5962)/3d0 v(5961)=v(4658)*v(5946)+v(4770)*v(5947)+v(4786)*v(5948)-v(5862)*v(8101) v(5977)=v(5961)/3d0 v(5960)=v(4657)*v(5946)+v(4769)*v(5947)+v(4785)*v(5948)-v(5861)*v(8101) v(5976)=v(5960)/3d0 v(5959)=v(4656)*v(5946)+v(4768)*v(5947)+v(4784)*v(5948)-v(5860)*v(8101) v(5975)=v(5959)/3d0 v(5958)=v(4655)*v(5946)+v(4767)*v(5947)+v(4783)*v(5948)-v(5859)*v(8101) v(5974)=v(5958)/3d0 v(5957)=v(4654)*v(5946)+v(4766)*v(5947)+v(4782)*v(5948)-v(5858)*v(8101) v(5973)=v(5957)/3d0 v(5956)=v(4653)*v(5946)+v(4765)*v(5947)+v(4781)*v(5948)-v(5857)*v(8101) v(5972)=v(5956)/3d0 v(5955)=v(4652)*v(5946)+v(4764)*v(5947)+v(4780)*v(5948)-v(5856)*v(8101) v(5971)=v(5955)/3d0 v(5954)=v(4651)*v(5946)+v(4763)*v(5947)+v(4779)*v(5948)-v(5855)*v(8101) v(5970)=v(5954)/3d0 v(5953)=v(4650)*v(5946)+v(4762)*v(5947)+v(4778)*v(5948)-v(5854)*v(8101) v(5969)=v(5953)/3d0 v(5952)=v(4649)*v(5946)+v(4761)*v(5947)+v(4777)*v(5948)-v(5853)*v(8101) v(5968)=v(5952)/3d0 v(5951)=v(4648)*v(5946)+v(4760)*v(5947)+v(4776)*v(5948)-v(5852)*v(8101) v(5967)=v(5951)/3d0 v(5950)=v(4647)*v(5946)+v(4759)*v(5947)+v(4775)*v(5948)-v(5851)*v(8101) v(5966)=v(5950)/3d0 v(5949)=v(4646)*v(5946)+v(4758)*v(5947)+v(4774)*v(5948)-v(5850)*v(8101) v(5965)=v(5949)/3d0 v(5945)=v(4645)*v(5946)+v(4757)*v(5947)+v(4773)*v(5948)-v(5848)*v(8101) v(5964)=v(5945)/3d0 v(5910)=-(v(532)*v(8100)) v(5909)=-(v(535)*v(8100)) v(5908)=-(v(531)*v(8100)) v(5925)=v(4724)*v(5908)+v(4756)*v(5909)+v(4804)*v(5910)+v(5864)*v(8102) v(5941)=-v(5925)/3d0 v(5924)=v(4723)*v(5908)+v(4755)*v(5909)+v(4803)*v(5910)+v(5863)*v(8102) v(5940)=-v(5924)/3d0 v(5923)=v(4722)*v(5908)+v(4754)*v(5909)+v(4802)*v(5910)+v(5862)*v(8102) v(5939)=-v(5923)/3d0 v(5922)=v(4721)*v(5908)+v(4753)*v(5909)+v(4801)*v(5910)+v(5861)*v(8102) v(5938)=-v(5922)/3d0 v(5921)=v(4720)*v(5908)+v(4752)*v(5909)+v(4800)*v(5910)+v(5860)*v(8102) v(5937)=-v(5921)/3d0 v(5920)=v(4719)*v(5908)+v(4751)*v(5909)+v(4799)*v(5910)+v(5859)*v(8102) v(5936)=-v(5920)/3d0 v(5919)=v(4718)*v(5908)+v(4750)*v(5909)+v(4798)*v(5910)+v(5858)*v(8102) v(5935)=-v(5919)/3d0 v(5918)=v(4717)*v(5908)+v(4749)*v(5909)+v(4797)*v(5910)+v(5857)*v(8102) v(5934)=-v(5918)/3d0 v(5917)=v(4716)*v(5908)+v(4748)*v(5909)+v(4796)*v(5910)+v(5856)*v(8102) v(5933)=-v(5917)/3d0 v(5916)=v(4715)*v(5908)+v(4747)*v(5909)+v(4795)*v(5910)+v(5855)*v(8102) v(5932)=-v(5916)/3d0 v(5915)=v(4714)*v(5908)+v(4746)*v(5909)+v(4794)*v(5910)+v(5854)*v(8102) v(5931)=-v(5915)/3d0 v(5914)=v(4713)*v(5908)+v(4745)*v(5909)+v(4793)*v(5910)+v(5853)*v(8102) v(5930)=-v(5914)/3d0 v(5913)=v(4712)*v(5908)+v(4744)*v(5909)+v(4792)*v(5910)+v(5852)*v(8102) v(5929)=-v(5913)/3d0 v(5912)=v(4711)*v(5908)+v(4743)*v(5909)+v(4791)*v(5910)+v(5851)*v(8102) v(5928)=-v(5912)/3d0 v(5911)=v(4710)*v(5908)+v(4742)*v(5909)+v(4790)*v(5910)+v(5850)*v(8102) v(5927)=-v(5911)/3d0 v(5907)=v(4709)*v(5908)+v(4741)*v(5909)+v(4789)*v(5910)+v(5848)*v(8102) v(5926)=-v(5907)/3d0 v(5888)=1d0/v(519)**0.13333333333333333d1 v(8103)=-v(5888)/3d0 v(5903)=v(5864)*v(8103) v(5902)=v(5863)*v(8103) v(5901)=v(5862)*v(8103) v(5900)=v(5861)*v(8103) v(5899)=v(5860)*v(8103) v(5898)=v(5859)*v(8103) v(5897)=v(5858)*v(8103) v(5896)=v(5857)*v(8103) v(5895)=v(5856)*v(8103) v(5894)=v(5855)*v(8103) v(5893)=v(5854)*v(8103) v(5892)=v(5853)*v(8103) v(5891)=v(5852)*v(8103) v(5890)=v(5851)*v(8103) v(5889)=v(5850)*v(8103) v(5887)=v(5848)*v(8103) v(5871)=v(537)*v(8100) v(5870)=v(538)*v(8100) v(5869)=v(539)*v(8100) v(5886)=v(4644)*v(5869)+v(4692)*v(5870)+v(4708)*v(5871)-v(5864)*v(8104) v(5995)=v(5886)/3d0 v(5885)=v(4643)*v(5869)+v(4691)*v(5870)+v(4707)*v(5871)-v(5863)*v(8104) v(5994)=v(5885)/3d0 v(5884)=v(4642)*v(5869)+v(4690)*v(5870)+v(4706)*v(5871)-v(5862)*v(8104) v(5993)=v(5884)/3d0 v(5883)=v(4641)*v(5869)+v(4689)*v(5870)+v(4705)*v(5871)-v(5861)*v(8104) v(5992)=v(5883)/3d0 v(5882)=v(4640)*v(5869)+v(4688)*v(5870)+v(4704)*v(5871)-v(5860)*v(8104) v(5991)=v(5882)/3d0 v(5881)=v(4639)*v(5869)+v(4687)*v(5870)+v(4703)*v(5871)-v(5859)*v(8104) v(5990)=v(5881)/3d0 v(5880)=v(4638)*v(5869)+v(4686)*v(5870)+v(4702)*v(5871)-v(5858)*v(8104) v(5989)=v(5880)/3d0 v(5879)=v(4637)*v(5869)+v(4685)*v(5870)+v(4701)*v(5871)-v(5857)*v(8104) v(5988)=v(5879)/3d0 v(5878)=v(4636)*v(5869)+v(4684)*v(5870)+v(4700)*v(5871)-v(5856)*v(8104) v(5987)=v(5878)/3d0 v(5877)=v(4635)*v(5869)+v(4683)*v(5870)+v(4699)*v(5871)-v(5855)*v(8104) v(5986)=v(5877)/3d0 v(5876)=v(4634)*v(5869)+v(4682)*v(5870)+v(4698)*v(5871)-v(5854)*v(8104) v(5985)=v(5876)/3d0 v(5875)=v(4633)*v(5869)+v(4681)*v(5870)+v(4697)*v(5871)-v(5853)*v(8104) v(5984)=v(5875)/3d0 v(5874)=v(4632)*v(5869)+v(4680)*v(5870)+v(4696)*v(5871)-v(5852)*v(8104) v(5983)=v(5874)/3d0 v(5873)=v(4631)*v(5869)+v(4679)*v(5870)+v(4695)*v(5871)-v(5851)*v(8104) v(5982)=v(5873)/3d0 v(5872)=v(4630)*v(5869)+v(4678)*v(5870)+v(4694)*v(5871)-v(5850)*v(8104) v(5981)=v(5872)/3d0 v(5868)=v(4629)*v(5869)+v(4677)*v(5870)+v(4693)*v(5871)-v(5848)*v(8104) v(5980)=v(5868)/3d0 v(526)=-(v(519)*v(8104)) v(524)=1d0/v(519)**0.3333333333333333d0 v(8179)=-(mpar(9)*v(524)) v(523)=v(519)*v(8102) v(528)=-v(523)/3d0 v(522)=-(v(519)*v(8101)) v(527)=v(522)/3d0 v(7140)=(-2d0/3d0)*v(526)+v(527)+v(528) v(521)=v(526)/3d0 v(7104)=v(521)+(-2d0/3d0)*v(522)+v(528) v(7070)=v(521)+(2d0/3d0)*v(523)+v(527) v(542)=1d0/v(5996)**2 v(8105)=(-2d0)*v(542) v(6213)=v(542)*v(8110) v(6196)=v(542)*v(8112) v(6179)=v(542)*v(8114) v(6097)=v(556)*v(8105) v(6096)=v(557)*v(8105) v(6095)=v(553)*v(8105) v(6112)=v(5702)*v(6095)+v(5814)*v(6096)+v(5830)*v(6097)-v(6013)*v(8106) v(6128)=v(6112)/3d0 v(6111)=v(5701)*v(6095)+v(5813)*v(6096)+v(5829)*v(6097)-v(6012)*v(8106) v(6127)=v(6111)/3d0 v(6110)=v(5700)*v(6095)+v(5812)*v(6096)+v(5828)*v(6097)-v(6011)*v(8106) v(6126)=v(6110)/3d0 v(6109)=v(5699)*v(6095)+v(5811)*v(6096)+v(5827)*v(6097)-v(6010)*v(8106) v(6125)=v(6109)/3d0 v(6108)=v(5698)*v(6095)+v(5810)*v(6096)+v(5826)*v(6097)-v(6009)*v(8106) v(6124)=v(6108)/3d0 v(6107)=v(5697)*v(6095)+v(5809)*v(6096)+v(5825)*v(6097)-v(6008)*v(8106) v(6123)=v(6107)/3d0 v(6106)=v(5696)*v(6095)+v(5808)*v(6096)+v(5824)*v(6097)-v(6007)*v(8106) v(6122)=v(6106)/3d0 v(6105)=v(5695)*v(6095)+v(5807)*v(6096)+v(5823)*v(6097)-v(6006)*v(8106) v(6121)=v(6105)/3d0 v(6104)=v(5694)*v(6095)+v(5806)*v(6096)+v(5822)*v(6097)-v(6005)*v(8106) v(6120)=v(6104)/3d0 v(6103)=v(5693)*v(6095)+v(5805)*v(6096)+v(5821)*v(6097)-v(6004)*v(8106) v(6119)=v(6103)/3d0 v(6102)=v(5692)*v(6095)+v(5804)*v(6096)+v(5820)*v(6097)-v(6003)*v(8106) v(6118)=v(6102)/3d0 v(6101)=v(5691)*v(6095)+v(5803)*v(6096)+v(5819)*v(6097)-v(6002)*v(8106) v(6117)=v(6101)/3d0 v(6100)=v(5690)*v(6095)+v(5802)*v(6096)+v(5818)*v(6097)-v(6001)*v(8106) v(6116)=v(6100)/3d0 v(6099)=v(5689)*v(6095)+v(5801)*v(6096)+v(5817)*v(6097)-v(6000)*v(8106) v(6115)=v(6099)/3d0 v(6098)=v(5688)*v(6095)+v(5800)*v(6096)+v(5816)*v(6097)-v(5999)*v(8106) v(6114)=v(6098)/3d0 v(6094)=v(5687)*v(6095)+v(5799)*v(6096)+v(5815)*v(6097)-v(5997)*v(8106) v(6113)=v(6094)/3d0 v(6059)=-(v(555)*v(8105)) v(6058)=-(v(558)*v(8105)) v(6057)=-(v(554)*v(8105)) v(6074)=v(5766)*v(6057)+v(5798)*v(6058)+v(5846)*v(6059)+v(6013)*v(8107) v(6090)=-v(6074)/3d0 v(6073)=v(5765)*v(6057)+v(5797)*v(6058)+v(5845)*v(6059)+v(6012)*v(8107) v(6089)=-v(6073)/3d0 v(6072)=v(5764)*v(6057)+v(5796)*v(6058)+v(5844)*v(6059)+v(6011)*v(8107) v(6088)=-v(6072)/3d0 v(6071)=v(5763)*v(6057)+v(5795)*v(6058)+v(5843)*v(6059)+v(6010)*v(8107) v(6087)=-v(6071)/3d0 v(6070)=v(5762)*v(6057)+v(5794)*v(6058)+v(5842)*v(6059)+v(6009)*v(8107) v(6086)=-v(6070)/3d0 v(6069)=v(5761)*v(6057)+v(5793)*v(6058)+v(5841)*v(6059)+v(6008)*v(8107) v(6085)=-v(6069)/3d0 v(6068)=v(5760)*v(6057)+v(5792)*v(6058)+v(5840)*v(6059)+v(6007)*v(8107) v(6084)=-v(6068)/3d0 v(6067)=v(5759)*v(6057)+v(5791)*v(6058)+v(5839)*v(6059)+v(6006)*v(8107) v(6083)=-v(6067)/3d0 v(6066)=v(5758)*v(6057)+v(5790)*v(6058)+v(5838)*v(6059)+v(6005)*v(8107) v(6082)=-v(6066)/3d0 v(6065)=v(5757)*v(6057)+v(5789)*v(6058)+v(5837)*v(6059)+v(6004)*v(8107) v(6081)=-v(6065)/3d0 v(6064)=v(5756)*v(6057)+v(5788)*v(6058)+v(5836)*v(6059)+v(6003)*v(8107) v(6080)=-v(6064)/3d0 v(6063)=v(5755)*v(6057)+v(5787)*v(6058)+v(5835)*v(6059)+v(6002)*v(8107) v(6079)=-v(6063)/3d0 v(6062)=v(5754)*v(6057)+v(5786)*v(6058)+v(5834)*v(6059)+v(6001)*v(8107) v(6078)=-v(6062)/3d0 v(6061)=v(5753)*v(6057)+v(5785)*v(6058)+v(5833)*v(6059)+v(6000)*v(8107) v(6077)=-v(6061)/3d0 v(6060)=v(5752)*v(6057)+v(5784)*v(6058)+v(5832)*v(6059)+v(5999)*v(8107) v(6076)=-v(6060)/3d0 v(6056)=v(5751)*v(6057)+v(5783)*v(6058)+v(5831)*v(6059)+v(5997)*v(8107) v(6075)=-v(6056)/3d0 v(6037)=1d0/v(542)**0.13333333333333333d1 v(8108)=-v(6037)/3d0 v(6052)=v(6013)*v(8108) v(6051)=v(6012)*v(8108) v(6050)=v(6011)*v(8108) v(6049)=v(6010)*v(8108) v(6048)=v(6009)*v(8108) v(6047)=v(6008)*v(8108) v(6046)=v(6007)*v(8108) v(6045)=v(6006)*v(8108) v(6044)=v(6005)*v(8108) v(6043)=v(6004)*v(8108) v(6042)=v(6003)*v(8108) v(6041)=v(6002)*v(8108) v(6040)=v(6001)*v(8108) v(6039)=v(6000)*v(8108) v(6038)=v(5999)*v(8108) v(6036)=v(5997)*v(8108) v(6020)=v(560)*v(8105) v(6019)=v(561)*v(8105) v(6018)=v(562)*v(8105) v(6035)=v(5686)*v(6018)+v(5734)*v(6019)+v(5750)*v(6020)-v(6013)*v(8109) v(6144)=v(6035)/3d0 v(6034)=v(5685)*v(6018)+v(5733)*v(6019)+v(5749)*v(6020)-v(6012)*v(8109) v(6143)=v(6034)/3d0 v(6033)=v(5684)*v(6018)+v(5732)*v(6019)+v(5748)*v(6020)-v(6011)*v(8109) v(6142)=v(6033)/3d0 v(6032)=v(5683)*v(6018)+v(5731)*v(6019)+v(5747)*v(6020)-v(6010)*v(8109) v(6141)=v(6032)/3d0 v(6031)=v(5682)*v(6018)+v(5730)*v(6019)+v(5746)*v(6020)-v(6009)*v(8109) v(6140)=v(6031)/3d0 v(6030)=v(5681)*v(6018)+v(5729)*v(6019)+v(5745)*v(6020)-v(6008)*v(8109) v(6139)=v(6030)/3d0 v(6029)=v(5680)*v(6018)+v(5728)*v(6019)+v(5744)*v(6020)-v(6007)*v(8109) v(6138)=v(6029)/3d0 v(6028)=v(5679)*v(6018)+v(5727)*v(6019)+v(5743)*v(6020)-v(6006)*v(8109) v(6137)=v(6028)/3d0 v(6027)=v(5678)*v(6018)+v(5726)*v(6019)+v(5742)*v(6020)-v(6005)*v(8109) v(6136)=v(6027)/3d0 v(6026)=v(5677)*v(6018)+v(5725)*v(6019)+v(5741)*v(6020)-v(6004)*v(8109) v(6135)=v(6026)/3d0 v(6025)=v(5676)*v(6018)+v(5724)*v(6019)+v(5740)*v(6020)-v(6003)*v(8109) v(6134)=v(6025)/3d0 v(6024)=v(5675)*v(6018)+v(5723)*v(6019)+v(5739)*v(6020)-v(6002)*v(8109) v(6133)=v(6024)/3d0 v(6023)=v(5674)*v(6018)+v(5722)*v(6019)+v(5738)*v(6020)-v(6001)*v(8109) v(6132)=v(6023)/3d0 v(6022)=v(5673)*v(6018)+v(5721)*v(6019)+v(5737)*v(6020)-v(6000)*v(8109) v(6131)=v(6022)/3d0 v(6021)=v(5672)*v(6018)+v(5720)*v(6019)+v(5736)*v(6020)-v(5999)*v(8109) v(6130)=v(6021)/3d0 v(6017)=v(5671)*v(6018)+v(5719)*v(6019)+v(5735)*v(6020)-v(5997)*v(8109) v(6129)=v(6017)/3d0 v(549)=-(v(542)*v(8109)) v(547)=1d0/v(542)**0.3333333333333333d0 v(8178)=-(mpar(11)*v(547)) v(6229)=mpar(11)*(v(6052)*v(6213)+v(547)*(v(542)*(v(555)*v(5686)+v(558)*v(5734)+v(554)*v(5750)+v(560)*v(5766)+v(561)*v& &(5798)+v(562)*v(5846))+v(6013)*v(8110))) v(7286)=v(3156)-v(6229)+mpar(9)*(-(v(5903)*v(7254))-v(524)*(v(519)*(v(4708)*v(531)+v(4644)*v(532)+v(4692)*v(535)+v(4724& &)*v(537)+v(4756)*v(538)+v(4804)*v(539))+v(5864)*v(8111))) v(8190)=2d0*v(7286) v(6228)=mpar(11)*(v(6051)*v(6213)+v(547)*(v(542)*(v(555)*v(5685)+v(558)*v(5733)+v(554)*v(5749)+v(560)*v(5765)+v(561)*v& &(5797)+v(562)*v(5845))+v(6012)*v(8110))) v(7284)=v(3154)-v(6228)+mpar(9)*(-(v(5902)*v(7254))-v(524)*(v(519)*(v(4707)*v(531)+v(4643)*v(532)+v(4691)*v(535)+v(4723& &)*v(537)+v(4755)*v(538)+v(4803)*v(539))+v(5863)*v(8111))) v(8197)=2d0*v(7284) v(6227)=mpar(11)*(v(6050)*v(6213)+v(547)*(v(542)*(v(555)*v(5684)+v(558)*v(5732)+v(554)*v(5748)+v(560)*v(5764)+v(561)*v& &(5796)+v(562)*v(5844))+v(6011)*v(8110))) v(7282)=v(3152)-v(6227)+mpar(9)*(-(v(5901)*v(7254))-v(524)*(v(519)*(v(4706)*v(531)+v(4642)*v(532)+v(4690)*v(535)+v(4722& &)*v(537)+v(4754)*v(538)+v(4802)*v(539))+v(5862)*v(8111))) v(8200)=2d0*v(7282) v(6226)=mpar(11)*(v(6049)*v(6213)+v(547)*(v(542)*(v(555)*v(5683)+v(558)*v(5731)+v(554)*v(5747)+v(560)*v(5763)+v(561)*v& &(5795)+v(562)*v(5843))+v(6010)*v(8110))) v(7280)=v(3150)-v(6226)+mpar(9)*(-(v(5900)*v(7254))-v(524)*(v(519)*(v(4705)*v(531)+v(4641)*v(532)+v(4689)*v(535)+v(4721& &)*v(537)+v(4753)*v(538)+v(4801)*v(539))+v(5861)*v(8111))) v(8203)=2d0*v(7280) v(6225)=mpar(11)*(v(6048)*v(6213)+v(547)*(v(542)*(v(555)*v(5682)+v(558)*v(5730)+v(554)*v(5746)+v(560)*v(5762)+v(561)*v& &(5794)+v(562)*v(5842))+v(6009)*v(8110))) v(7278)=v(3148)-v(6225)+mpar(9)*(-(v(5899)*v(7254))-v(524)*(v(519)*(v(4704)*v(531)+v(4640)*v(532)+v(4688)*v(535)+v(4720& &)*v(537)+v(4752)*v(538)+v(4800)*v(539))+v(5860)*v(8111))) v(8206)=2d0*v(7278) v(6224)=mpar(11)*(v(6047)*v(6213)+v(547)*(v(542)*(v(555)*v(5681)+v(558)*v(5729)+v(554)*v(5745)+v(560)*v(5761)+v(561)*v& &(5793)+v(562)*v(5841))+v(6008)*v(8110))) v(7276)=-v(6224)+mpar(9)*(-(v(5898)*v(7254))-v(524)*(v(519)*(v(4703)*v(531)+v(4639)*v(532)+v(4687)*v(535)+v(4719)*v(537& &)+v(4751)*v(538)+v(4799)*v(539))+v(5859)*v(8111))) v(8209)=2d0*v(7276) v(6223)=mpar(11)*(v(6046)*v(6213)+v(547)*(v(542)*(v(555)*v(5680)+v(558)*v(5728)+v(554)*v(5744)+v(560)*v(5760)+v(561)*v& &(5792)+v(562)*v(5840))+v(6007)*v(8110))) v(7274)=-v(6223)+mpar(9)*(-(v(5897)*v(7254))-v(524)*(v(519)*(v(4702)*v(531)+v(4638)*v(532)+v(4686)*v(535)+v(4718)*v(537& &)+v(4750)*v(538)+v(4798)*v(539))+v(5858)*v(8111))) v(8212)=2d0*v(7274) v(6222)=mpar(11)*(v(6045)*v(6213)+v(547)*(v(542)*(v(555)*v(5679)+v(558)*v(5727)+v(554)*v(5743)+v(560)*v(5759)+v(561)*v& &(5791)+v(562)*v(5839))+v(6006)*v(8110))) v(7272)=-v(6222)+mpar(9)*(-(v(5896)*v(7254))-v(524)*(v(519)*(v(4701)*v(531)+v(4637)*v(532)+v(4685)*v(535)+v(4717)*v(537& &)+v(4749)*v(538)+v(4797)*v(539))+v(5857)*v(8111))) v(8215)=2d0*v(7272) v(6221)=mpar(11)*(v(6044)*v(6213)+v(547)*(v(542)*(v(555)*v(5678)+v(558)*v(5726)+v(554)*v(5742)+v(560)*v(5758)+v(561)*v& &(5790)+v(562)*v(5838))+v(6005)*v(8110))) v(7270)=-v(6221)+mpar(9)*(-(v(5895)*v(7254))-v(524)*(v(519)*(v(4700)*v(531)+v(4636)*v(532)+v(4684)*v(535)+v(4716)*v(537& &)+v(4748)*v(538)+v(4796)*v(539))+v(5856)*v(8111))) v(8218)=2d0*v(7270) v(6220)=mpar(11)*(v(6043)*v(6213)+v(547)*(v(542)*(v(555)*v(5677)+v(558)*v(5725)+v(554)*v(5741)+v(560)*v(5757)+v(561)*v& &(5789)+v(562)*v(5837))+v(6004)*v(8110))) v(7268)=-v(6220)+mpar(9)*(-(v(5894)*v(7254))-v(524)*(v(519)*(v(4699)*v(531)+v(4635)*v(532)+v(4683)*v(535)+v(4715)*v(537& &)+v(4747)*v(538)+v(4795)*v(539))+v(5855)*v(8111))) v(8221)=2d0*v(7268) v(6219)=mpar(11)*(v(6042)*v(6213)+v(547)*(v(542)*(v(555)*v(5676)+v(558)*v(5724)+v(554)*v(5740)+v(560)*v(5756)+v(561)*v& &(5788)+v(562)*v(5836))+v(6003)*v(8110))) v(7266)=v(3146)-v(6219)+mpar(9)*(-(v(5893)*v(7254))-v(524)*(v(519)*(v(4698)*v(531)+v(4634)*v(532)+v(4682)*v(535)+v(4714& &)*v(537)+v(4746)*v(538)+v(4794)*v(539))+v(5854)*v(8111))) v(8224)=2d0*v(7266) v(6218)=mpar(11)*(v(6041)*v(6213)+v(547)*(v(542)*(v(555)*v(5675)+v(558)*v(5723)+v(554)*v(5739)+v(560)*v(5755)+v(561)*v& &(5787)+v(562)*v(5835))+v(6002)*v(8110))) v(7264)=v(3144)-v(6218)+mpar(9)*(-(v(5892)*v(7254))-v(524)*(v(519)*(v(4697)*v(531)+v(4633)*v(532)+v(4681)*v(535)+v(4713& &)*v(537)+v(4745)*v(538)+v(4793)*v(539))+v(5853)*v(8111))) v(8227)=2d0*v(7264) v(6217)=mpar(11)*(v(6040)*v(6213)+v(547)*(v(542)*(v(555)*v(5674)+v(558)*v(5722)+v(554)*v(5738)+v(560)*v(5754)+v(561)*v& &(5786)+v(562)*v(5834))+v(6001)*v(8110))) v(7262)=v(3142)-v(6217)+mpar(9)*(-(v(5891)*v(7254))-v(524)*(v(519)*(v(4696)*v(531)+v(4632)*v(532)+v(4680)*v(535)+v(4712& &)*v(537)+v(4744)*v(538)+v(4792)*v(539))+v(5852)*v(8111))) v(8230)=2d0*v(7262) v(6216)=mpar(11)*(v(6039)*v(6213)+v(547)*(v(542)*(v(555)*v(5673)+v(558)*v(5721)+v(554)*v(5737)+v(560)*v(5753)+v(561)*v& &(5785)+v(562)*v(5833))+v(6000)*v(8110))) v(7260)=v(3140)-v(6216)+mpar(9)*(-(v(5890)*v(7254))-v(524)*(v(519)*(v(4695)*v(531)+v(4631)*v(532)+v(4679)*v(535)+v(4711& &)*v(537)+v(4743)*v(538)+v(4791)*v(539))+v(5851)*v(8111))) v(8233)=2d0*v(7260) v(6215)=mpar(11)*(v(6038)*v(6213)+v(547)*(v(542)*(v(555)*v(5672)+v(558)*v(5720)+v(554)*v(5736)+v(560)*v(5752)+v(561)*v& &(5784)+v(562)*v(5832))+v(5999)*v(8110))) v(7258)=v(3138)-v(6215)+mpar(9)*(-(v(5889)*v(7254))-v(524)*(v(519)*(v(4694)*v(531)+v(4630)*v(532)+v(4678)*v(535)+v(4710& &)*v(537)+v(4742)*v(538)+v(4790)*v(539))+v(5850)*v(8111))) v(8236)=2d0*v(7258) v(6214)=mpar(11)*(v(6036)*v(6213)+v(547)*(v(542)*(v(555)*v(5671)+v(558)*v(5719)+v(554)*v(5735)+v(560)*v(5751)+v(561)*v& &(5783)+v(562)*v(5831))+v(5997)*v(8110))) v(7256)=v(3136)-v(6214)+mpar(9)*(-(v(5887)*v(7254))-v(524)*(v(519)*(v(4693)*v(531)+v(4629)*v(532)+v(4677)*v(535)+v(4709& &)*v(537)+v(4741)*v(538)+v(4789)*v(539))+v(5848)*v(8111))) v(8194)=2d0*v(7256) v(6212)=mpar(11)*(v(6052)*v(6196)+v(547)*(v(542)*(v(556)*v(5686)+v(560)*v(5702)+v(557)*v(5734)+v(553)*v(5750)+v(561)*v& &(5814)+v(562)*v(5830))+v(6013)*v(8112))) v(7253)=v(3134)-v(6212)+mpar(9)*(-(v(5903)*v(7221))-v(524)*(v(519)*(v(4708)*v(530)+v(4644)*v(533)+v(4692)*v(534)+v(4660& &)*v(537)+v(4772)*v(538)+v(4788)*v(539))+v(5864)*v(8113))) v(8189)=2d0*v(7253) v(6211)=mpar(11)*(v(6051)*v(6196)+v(547)*(v(542)*(v(556)*v(5685)+v(560)*v(5701)+v(557)*v(5733)+v(553)*v(5749)+v(561)*v& &(5813)+v(562)*v(5829))+v(6012)*v(8112))) v(7251)=v(3132)-v(6211)+mpar(9)*(-(v(5902)*v(7221))-v(524)*(v(519)*(v(4707)*v(530)+v(4643)*v(533)+v(4691)*v(534)+v(4659& &)*v(537)+v(4771)*v(538)+v(4787)*v(539))+v(5863)*v(8113))) v(8196)=2d0*v(7251) v(6210)=mpar(11)*(v(6050)*v(6196)+v(547)*(v(542)*(v(556)*v(5684)+v(560)*v(5700)+v(557)*v(5732)+v(553)*v(5748)+v(561)*v& &(5812)+v(562)*v(5828))+v(6011)*v(8112))) v(7249)=v(3130)-v(6210)+mpar(9)*(-(v(5901)*v(7221))-v(524)*(v(519)*(v(4706)*v(530)+v(4642)*v(533)+v(4690)*v(534)+v(4658& &)*v(537)+v(4770)*v(538)+v(4786)*v(539))+v(5862)*v(8113))) v(8199)=2d0*v(7249) v(6209)=mpar(11)*(v(6049)*v(6196)+v(547)*(v(542)*(v(556)*v(5683)+v(560)*v(5699)+v(557)*v(5731)+v(553)*v(5747)+v(561)*v& &(5811)+v(562)*v(5827))+v(6010)*v(8112))) v(7247)=v(3128)-v(6209)+mpar(9)*(-(v(5900)*v(7221))-v(524)*(v(519)*(v(4705)*v(530)+v(4641)*v(533)+v(4689)*v(534)+v(4657& &)*v(537)+v(4769)*v(538)+v(4785)*v(539))+v(5861)*v(8113))) v(8202)=2d0*v(7247) v(6208)=mpar(11)*(v(6048)*v(6196)+v(547)*(v(542)*(v(556)*v(5682)+v(560)*v(5698)+v(557)*v(5730)+v(553)*v(5746)+v(561)*v& &(5810)+v(562)*v(5826))+v(6009)*v(8112))) v(7245)=v(3126)-v(6208)+mpar(9)*(-(v(5899)*v(7221))-v(524)*(v(519)*(v(4704)*v(530)+v(4640)*v(533)+v(4688)*v(534)+v(4656& &)*v(537)+v(4768)*v(538)+v(4784)*v(539))+v(5860)*v(8113))) v(8205)=2d0*v(7245) v(6207)=mpar(11)*(v(6047)*v(6196)+v(547)*(v(542)*(v(556)*v(5681)+v(560)*v(5697)+v(557)*v(5729)+v(553)*v(5745)+v(561)*v& &(5809)+v(562)*v(5825))+v(6008)*v(8112))) v(7243)=-v(6207)+mpar(9)*(-(v(5898)*v(7221))-v(524)*(v(519)*(v(4703)*v(530)+v(4639)*v(533)+v(4687)*v(534)+v(4655)*v(537& &)+v(4767)*v(538)+v(4783)*v(539))+v(5859)*v(8113))) v(8208)=2d0*v(7243) v(6206)=mpar(11)*(v(6046)*v(6196)+v(547)*(v(542)*(v(556)*v(5680)+v(560)*v(5696)+v(557)*v(5728)+v(553)*v(5744)+v(561)*v& &(5808)+v(562)*v(5824))+v(6007)*v(8112))) v(7241)=-v(6206)+mpar(9)*(-(v(5897)*v(7221))-v(524)*(v(519)*(v(4702)*v(530)+v(4638)*v(533)+v(4686)*v(534)+v(4654)*v(537& &)+v(4766)*v(538)+v(4782)*v(539))+v(5858)*v(8113))) v(8211)=2d0*v(7241) v(6205)=mpar(11)*(v(6045)*v(6196)+v(547)*(v(542)*(v(556)*v(5679)+v(560)*v(5695)+v(557)*v(5727)+v(553)*v(5743)+v(561)*v& &(5807)+v(562)*v(5823))+v(6006)*v(8112))) v(7239)=-v(6205)+mpar(9)*(-(v(5896)*v(7221))-v(524)*(v(519)*(v(4701)*v(530)+v(4637)*v(533)+v(4685)*v(534)+v(4653)*v(537& &)+v(4765)*v(538)+v(4781)*v(539))+v(5857)*v(8113))) v(8214)=2d0*v(7239) v(6204)=mpar(11)*(v(6044)*v(6196)+v(547)*(v(542)*(v(556)*v(5678)+v(560)*v(5694)+v(557)*v(5726)+v(553)*v(5742)+v(561)*v& &(5806)+v(562)*v(5822))+v(6005)*v(8112))) v(7237)=-v(6204)+mpar(9)*(-(v(5895)*v(7221))-v(524)*(v(519)*(v(4700)*v(530)+v(4636)*v(533)+v(4684)*v(534)+v(4652)*v(537& &)+v(4764)*v(538)+v(4780)*v(539))+v(5856)*v(8113))) v(8217)=2d0*v(7237) v(6203)=mpar(11)*(v(6043)*v(6196)+v(547)*(v(542)*(v(556)*v(5677)+v(560)*v(5693)+v(557)*v(5725)+v(553)*v(5741)+v(561)*v& &(5805)+v(562)*v(5821))+v(6004)*v(8112))) v(7235)=-v(6203)+mpar(9)*(-(v(5894)*v(7221))-v(524)*(v(519)*(v(4699)*v(530)+v(4635)*v(533)+v(4683)*v(534)+v(4651)*v(537& &)+v(4763)*v(538)+v(4779)*v(539))+v(5855)*v(8113))) v(8220)=2d0*v(7235) v(6202)=mpar(11)*(v(6042)*v(6196)+v(547)*(v(542)*(v(556)*v(5676)+v(560)*v(5692)+v(557)*v(5724)+v(553)*v(5740)+v(561)*v& &(5804)+v(562)*v(5820))+v(6003)*v(8112))) v(7233)=v(3124)-v(6202)+mpar(9)*(-(v(5893)*v(7221))-v(524)*(v(519)*(v(4698)*v(530)+v(4634)*v(533)+v(4682)*v(534)+v(4650& &)*v(537)+v(4762)*v(538)+v(4778)*v(539))+v(5854)*v(8113))) v(8223)=2d0*v(7233) v(6201)=mpar(11)*(v(6041)*v(6196)+v(547)*(v(542)*(v(556)*v(5675)+v(560)*v(5691)+v(557)*v(5723)+v(553)*v(5739)+v(561)*v& &(5803)+v(562)*v(5819))+v(6002)*v(8112))) v(7231)=v(3122)-v(6201)+mpar(9)*(-(v(5892)*v(7221))-v(524)*(v(519)*(v(4697)*v(530)+v(4633)*v(533)+v(4681)*v(534)+v(4649& &)*v(537)+v(4761)*v(538)+v(4777)*v(539))+v(5853)*v(8113))) v(8226)=2d0*v(7231) v(6200)=mpar(11)*(v(6040)*v(6196)+v(547)*(v(542)*(v(556)*v(5674)+v(560)*v(5690)+v(557)*v(5722)+v(553)*v(5738)+v(561)*v& &(5802)+v(562)*v(5818))+v(6001)*v(8112))) v(7229)=v(3120)-v(6200)+mpar(9)*(-(v(5891)*v(7221))-v(524)*(v(519)*(v(4696)*v(530)+v(4632)*v(533)+v(4680)*v(534)+v(4648& &)*v(537)+v(4760)*v(538)+v(4776)*v(539))+v(5852)*v(8113))) v(8229)=2d0*v(7229) v(6199)=mpar(11)*(v(6039)*v(6196)+v(547)*(v(542)*(v(556)*v(5673)+v(560)*v(5689)+v(557)*v(5721)+v(553)*v(5737)+v(561)*v& &(5801)+v(562)*v(5817))+v(6000)*v(8112))) v(7227)=v(3118)-v(6199)+mpar(9)*(-(v(5890)*v(7221))-v(524)*(v(519)*(v(4695)*v(530)+v(4631)*v(533)+v(4679)*v(534)+v(4647& &)*v(537)+v(4759)*v(538)+v(4775)*v(539))+v(5851)*v(8113))) v(8232)=2d0*v(7227) v(6198)=mpar(11)*(v(6038)*v(6196)+v(547)*(v(542)*(v(556)*v(5672)+v(560)*v(5688)+v(557)*v(5720)+v(553)*v(5736)+v(561)*v& &(5800)+v(562)*v(5816))+v(5999)*v(8112))) v(7225)=v(3116)-v(6198)+mpar(9)*(-(v(5889)*v(7221))-v(524)*(v(519)*(v(4694)*v(530)+v(4630)*v(533)+v(4678)*v(534)+v(4646& &)*v(537)+v(4758)*v(538)+v(4774)*v(539))+v(5850)*v(8113))) v(8235)=2d0*v(7225) v(6197)=mpar(11)*(v(6036)*v(6196)+v(547)*(v(542)*(v(556)*v(5671)+v(560)*v(5687)+v(557)*v(5719)+v(553)*v(5735)+v(561)*v& &(5799)+v(562)*v(5815))+v(5997)*v(8112))) v(7223)=v(3114)-v(6197)+mpar(9)*(-(v(5887)*v(7221))-v(524)*(v(519)*(v(4693)*v(530)+v(4629)*v(533)+v(4677)*v(534)+v(4645& &)*v(537)+v(4757)*v(538)+v(4773)*v(539))+v(5848)*v(8113))) v(8193)=2d0*v(7223) v(6195)=mpar(11)*(v(6052)*v(6179)+v(547)*(v(542)*(v(554)*v(5702)+v(553)*v(5766)+v(557)*v(5798)+v(558)*v(5814)+v(555)*v& &(5830)+v(556)*v(5846))+v(6013)*v(8114))) v(7220)=v(3112)-v(6195)+mpar(9)*(-(v(5903)*v(7188))-v(524)*(v(519)*(v(4724)*v(530)+v(4660)*v(531)+v(4788)*v(532)+v(4804& &)*v(533)+v(4756)*v(534)+v(4772)*v(535))+v(5864)*v(8115))) v(8188)=2d0*v(7220) v(6194)=mpar(11)*(v(6051)*v(6179)+v(547)*(v(542)*(v(554)*v(5701)+v(553)*v(5765)+v(557)*v(5797)+v(558)*v(5813)+v(555)*v& &(5829)+v(556)*v(5845))+v(6012)*v(8114))) v(7218)=v(3110)-v(6194)+mpar(9)*(-(v(5902)*v(7188))-v(524)*(v(519)*(v(4723)*v(530)+v(4659)*v(531)+v(4787)*v(532)+v(4803& &)*v(533)+v(4755)*v(534)+v(4771)*v(535))+v(5863)*v(8115))) v(8195)=2d0*v(7218) v(6193)=mpar(11)*(v(6050)*v(6179)+v(547)*(v(542)*(v(554)*v(5700)+v(553)*v(5764)+v(557)*v(5796)+v(558)*v(5812)+v(555)*v& &(5828)+v(556)*v(5844))+v(6011)*v(8114))) v(7216)=v(3108)-v(6193)+mpar(9)*(-(v(5901)*v(7188))-v(524)*(v(519)*(v(4722)*v(530)+v(4658)*v(531)+v(4786)*v(532)+v(4802& &)*v(533)+v(4754)*v(534)+v(4770)*v(535))+v(5862)*v(8115))) v(8198)=2d0*v(7216) v(6192)=mpar(11)*(v(6049)*v(6179)+v(547)*(v(542)*(v(554)*v(5699)+v(553)*v(5763)+v(557)*v(5795)+v(558)*v(5811)+v(555)*v& &(5827)+v(556)*v(5843))+v(6010)*v(8114))) v(7214)=v(3106)-v(6192)+mpar(9)*(-(v(5900)*v(7188))-v(524)*(v(519)*(v(4721)*v(530)+v(4657)*v(531)+v(4785)*v(532)+v(4801& &)*v(533)+v(4753)*v(534)+v(4769)*v(535))+v(5861)*v(8115))) v(8201)=2d0*v(7214) v(6191)=mpar(11)*(v(6048)*v(6179)+v(547)*(v(542)*(v(554)*v(5698)+v(553)*v(5762)+v(557)*v(5794)+v(558)*v(5810)+v(555)*v& &(5826)+v(556)*v(5842))+v(6009)*v(8114))) v(7212)=v(3104)-v(6191)+mpar(9)*(-(v(5899)*v(7188))-v(524)*(v(519)*(v(4720)*v(530)+v(4656)*v(531)+v(4784)*v(532)+v(4800& &)*v(533)+v(4752)*v(534)+v(4768)*v(535))+v(5860)*v(8115))) v(8204)=2d0*v(7212) v(6190)=mpar(11)*(v(6047)*v(6179)+v(547)*(v(542)*(v(554)*v(5697)+v(553)*v(5761)+v(557)*v(5793)+v(558)*v(5809)+v(555)*v& &(5825)+v(556)*v(5841))+v(6008)*v(8114))) v(7210)=-v(6190)+mpar(9)*(-(v(5898)*v(7188))-v(524)*(v(519)*(v(4719)*v(530)+v(4655)*v(531)+v(4783)*v(532)+v(4799)*v(533& &)+v(4751)*v(534)+v(4767)*v(535))+v(5859)*v(8115))) v(8207)=2d0*v(7210) v(6189)=mpar(11)*(v(6046)*v(6179)+v(547)*(v(542)*(v(554)*v(5696)+v(553)*v(5760)+v(557)*v(5792)+v(558)*v(5808)+v(555)*v& &(5824)+v(556)*v(5840))+v(6007)*v(8114))) v(7208)=-v(6189)+mpar(9)*(-(v(5897)*v(7188))-v(524)*(v(519)*(v(4718)*v(530)+v(4654)*v(531)+v(4782)*v(532)+v(4798)*v(533& &)+v(4750)*v(534)+v(4766)*v(535))+v(5858)*v(8115))) v(8210)=2d0*v(7208) v(6188)=mpar(11)*(v(6045)*v(6179)+v(547)*(v(542)*(v(554)*v(5695)+v(553)*v(5759)+v(557)*v(5791)+v(558)*v(5807)+v(555)*v& &(5823)+v(556)*v(5839))+v(6006)*v(8114))) v(7206)=-v(6188)+mpar(9)*(-(v(5896)*v(7188))-v(524)*(v(519)*(v(4717)*v(530)+v(4653)*v(531)+v(4781)*v(532)+v(4797)*v(533& &)+v(4749)*v(534)+v(4765)*v(535))+v(5857)*v(8115))) v(8213)=2d0*v(7206) v(6187)=mpar(11)*(v(6044)*v(6179)+v(547)*(v(542)*(v(554)*v(5694)+v(553)*v(5758)+v(557)*v(5790)+v(558)*v(5806)+v(555)*v& &(5822)+v(556)*v(5838))+v(6005)*v(8114))) v(7204)=-v(6187)+mpar(9)*(-(v(5895)*v(7188))-v(524)*(v(519)*(v(4716)*v(530)+v(4652)*v(531)+v(4780)*v(532)+v(4796)*v(533& &)+v(4748)*v(534)+v(4764)*v(535))+v(5856)*v(8115))) v(8216)=2d0*v(7204) v(6186)=mpar(11)*(v(6043)*v(6179)+v(547)*(v(542)*(v(554)*v(5693)+v(553)*v(5757)+v(557)*v(5789)+v(558)*v(5805)+v(555)*v& &(5821)+v(556)*v(5837))+v(6004)*v(8114))) v(7202)=-v(6186)+mpar(9)*(-(v(5894)*v(7188))-v(524)*(v(519)*(v(4715)*v(530)+v(4651)*v(531)+v(4779)*v(532)+v(4795)*v(533& &)+v(4747)*v(534)+v(4763)*v(535))+v(5855)*v(8115))) v(8219)=2d0*v(7202) v(6185)=mpar(11)*(v(6042)*v(6179)+v(547)*(v(542)*(v(554)*v(5692)+v(553)*v(5756)+v(557)*v(5788)+v(558)*v(5804)+v(555)*v& &(5820)+v(556)*v(5836))+v(6003)*v(8114))) v(7200)=v(3102)-v(6185)+mpar(9)*(-(v(5893)*v(7188))-v(524)*(v(519)*(v(4714)*v(530)+v(4650)*v(531)+v(4778)*v(532)+v(4794& &)*v(533)+v(4746)*v(534)+v(4762)*v(535))+v(5854)*v(8115))) v(8222)=2d0*v(7200) v(6184)=mpar(11)*(v(6041)*v(6179)+v(547)*(v(542)*(v(554)*v(5691)+v(553)*v(5755)+v(557)*v(5787)+v(558)*v(5803)+v(555)*v& &(5819)+v(556)*v(5835))+v(6002)*v(8114))) v(7198)=v(3100)-v(6184)+mpar(9)*(-(v(5892)*v(7188))-v(524)*(v(519)*(v(4713)*v(530)+v(4649)*v(531)+v(4777)*v(532)+v(4793& &)*v(533)+v(4745)*v(534)+v(4761)*v(535))+v(5853)*v(8115))) v(8225)=2d0*v(7198) v(6183)=mpar(11)*(v(6040)*v(6179)+v(547)*(v(542)*(v(554)*v(5690)+v(553)*v(5754)+v(557)*v(5786)+v(558)*v(5802)+v(555)*v& &(5818)+v(556)*v(5834))+v(6001)*v(8114))) v(7196)=v(3098)-v(6183)+mpar(9)*(-(v(5891)*v(7188))-v(524)*(v(519)*(v(4712)*v(530)+v(4648)*v(531)+v(4776)*v(532)+v(4792& &)*v(533)+v(4744)*v(534)+v(4760)*v(535))+v(5852)*v(8115))) v(8228)=2d0*v(7196) v(6182)=mpar(11)*(v(6039)*v(6179)+v(547)*(v(542)*(v(554)*v(5689)+v(553)*v(5753)+v(557)*v(5785)+v(558)*v(5801)+v(555)*v& &(5817)+v(556)*v(5833))+v(6000)*v(8114))) v(7194)=v(3096)-v(6182)+mpar(9)*(-(v(5890)*v(7188))-v(524)*(v(519)*(v(4711)*v(530)+v(4647)*v(531)+v(4775)*v(532)+v(4791& &)*v(533)+v(4743)*v(534)+v(4759)*v(535))+v(5851)*v(8115))) v(8231)=2d0*v(7194) v(6181)=mpar(11)*(v(6038)*v(6179)+v(547)*(v(542)*(v(554)*v(5688)+v(553)*v(5752)+v(557)*v(5784)+v(558)*v(5800)+v(555)*v& &(5816)+v(556)*v(5832))+v(5999)*v(8114))) v(7192)=v(3094)-v(6181)+mpar(9)*(-(v(5889)*v(7188))-v(524)*(v(519)*(v(4710)*v(530)+v(4646)*v(531)+v(4774)*v(532)+v(4790& &)*v(533)+v(4742)*v(534)+v(4758)*v(535))+v(5850)*v(8115))) v(8234)=2d0*v(7192) v(6180)=mpar(11)*(v(6036)*v(6179)+v(547)*(v(542)*(v(554)*v(5687)+v(553)*v(5751)+v(557)*v(5783)+v(558)*v(5799)+v(555)*v& &(5815)+v(556)*v(5831))+v(5997)*v(8114))) v(7190)=v(3092)-v(6180)+mpar(9)*(-(v(5887)*v(7188))-v(524)*(v(519)*(v(4709)*v(530)+v(4645)*v(531)+v(4773)*v(532)+v(4789& &)*v(533)+v(4741)*v(534)+v(4757)*v(535))+v(5848)*v(8115))) v(8192)=2d0*v(7190) v(546)=v(542)*v(8107) v(551)=-v(546)/3d0 v(545)=-(v(542)*v(8106)) v(550)=v(545)/3d0 v(7138)=(-2d0/3d0)*v(549)+v(550)+v(551) v(7187)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6035)+v(6090)+v(6128)))-v(6052)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5886)& &+v(5941)+v(5979)))-v(5903)*v(7140))+v(7948) v(7184)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6034)+v(6089)+v(6127)))-v(6051)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5885)& &+v(5940)+v(5978)))-v(5902)*v(7140))+v(7951) v(7181)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6033)+v(6088)+v(6126)))-v(6050)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5884)& &+v(5939)+v(5977)))-v(5901)*v(7140))+v(7954) v(7178)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6032)+v(6087)+v(6125)))-v(6049)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5883)& &+v(5938)+v(5976)))-v(5900)*v(7140))+v(7957) v(7175)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6031)+v(6086)+v(6124)))-v(6048)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5882)& &+v(5937)+v(5975)))-v(5899)*v(7140))+v(7960) v(7172)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6030)+v(6085)+v(6123)))-v(6047)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5881)& &+v(5936)+v(5974)))-v(5898)*v(7140)) v(7169)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6029)+v(6084)+v(6122)))-v(6046)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5880)& &+v(5935)+v(5973)))-v(5897)*v(7140)) v(7166)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6028)+v(6083)+v(6121)))-v(6045)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5879)& &+v(5934)+v(5972)))-v(5896)*v(7140)) v(7163)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6027)+v(6082)+v(6120)))-v(6044)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5878)& &+v(5933)+v(5971)))-v(5895)*v(7140)) v(7160)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6026)+v(6081)+v(6119)))-v(6043)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5877)& &+v(5932)+v(5970)))-v(5894)*v(7140)) v(7157)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6025)+v(6080)+v(6118)))-v(6042)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5876)& &+v(5931)+v(5969)))-v(5893)*v(7140))+v(7963) v(7154)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6024)+v(6079)+v(6117)))-v(6041)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5875)& &+v(5930)+v(5968)))-v(5892)*v(7140))+v(7966) v(7151)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6023)+v(6078)+v(6116)))-v(6040)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5874)& &+v(5929)+v(5967)))-v(5891)*v(7140))+v(7969) v(7148)=v(2894)+(2d0/3d0)*v(2908)+v(2946)+mpar(11)*(-(v(547)*((-2d0/3d0)*v(6022)+v(6077)+v(6115)))-v(6039)*v(7138))& &+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5873)+v(5928)+v(5966)))-v(5890)*v(7140)) v(7145)=v(2893)+(2d0/3d0)*v(2907)+v(2945)+mpar(11)*(-(v(547)*((-2d0/3d0)*v(6021)+v(6076)+v(6114)))-v(6038)*v(7138))& &+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5872)+v(5927)+v(5965)))-v(5889)*v(7140)) v(7142)=mpar(11)*(-(v(547)*((-2d0/3d0)*v(6017)+v(6075)+v(6113)))-v(6036)*v(7138))+mpar(9)*(-(v(524)*((-2d0/3d0)*v(5868)& &+v(5926)+v(5964)))-v(5887)*v(7140))+v(7974) v(544)=v(549)/3d0 v(6162)=v(544)+(-2d0/3d0)*v(545)+v(551) v(6178)=mpar(11)*(v(547)*(v(6090)+(-2d0/3d0)*v(6112)+v(6144))+v(6052)*v(6162)) v(7137)=-v(6178)+mpar(9)*(-(v(524)*(v(5941)+(-2d0/3d0)*v(5963)+v(5995)))-v(5903)*v(7104))+v(7949) v(6177)=mpar(11)*(v(547)*(v(6089)+(-2d0/3d0)*v(6111)+v(6143))+v(6051)*v(6162)) v(7135)=-v(6177)+mpar(9)*(-(v(524)*(v(5940)+(-2d0/3d0)*v(5962)+v(5994)))-v(5902)*v(7104))+v(7952) v(6176)=mpar(11)*(v(547)*(v(6088)+(-2d0/3d0)*v(6110)+v(6142))+v(6050)*v(6162)) v(7133)=-v(6176)+mpar(9)*(-(v(524)*(v(5939)+(-2d0/3d0)*v(5961)+v(5993)))-v(5901)*v(7104))+v(7955) v(6175)=mpar(11)*(v(547)*(v(6087)+(-2d0/3d0)*v(6109)+v(6141))+v(6049)*v(6162)) v(7131)=-v(6175)+mpar(9)*(-(v(524)*(v(5938)+(-2d0/3d0)*v(5960)+v(5992)))-v(5900)*v(7104))+v(7958) v(6174)=mpar(11)*(v(547)*(v(6086)+(-2d0/3d0)*v(6108)+v(6140))+v(6048)*v(6162)) v(7129)=-v(6174)+mpar(9)*(-(v(524)*(v(5937)+(-2d0/3d0)*v(5959)+v(5991)))-v(5899)*v(7104))+v(7961) v(6173)=mpar(11)*(v(547)*(v(6085)+(-2d0/3d0)*v(6107)+v(6139))+v(6047)*v(6162)) v(7127)=-v(6173)+mpar(9)*(-(v(524)*(v(5936)+(-2d0/3d0)*v(5958)+v(5990)))-v(5898)*v(7104)) v(6172)=mpar(11)*(v(547)*(v(6084)+(-2d0/3d0)*v(6106)+v(6138))+v(6046)*v(6162)) v(7125)=-v(6172)+mpar(9)*(-(v(524)*(v(5935)+(-2d0/3d0)*v(5957)+v(5989)))-v(5897)*v(7104)) v(6171)=mpar(11)*(v(547)*(v(6083)+(-2d0/3d0)*v(6105)+v(6137))+v(6045)*v(6162)) v(7123)=-v(6171)+mpar(9)*(-(v(524)*(v(5934)+(-2d0/3d0)*v(5956)+v(5988)))-v(5896)*v(7104)) v(6170)=mpar(11)*(v(547)*(v(6082)+(-2d0/3d0)*v(6104)+v(6136))+v(6044)*v(6162)) v(7121)=-v(6170)+mpar(9)*(-(v(524)*(v(5933)+(-2d0/3d0)*v(5955)+v(5987)))-v(5895)*v(7104)) v(6169)=mpar(11)*(v(547)*(v(6081)+(-2d0/3d0)*v(6103)+v(6135))+v(6043)*v(6162)) v(7119)=-v(6169)+mpar(9)*(-(v(524)*(v(5932)+(-2d0/3d0)*v(5954)+v(5986)))-v(5894)*v(7104)) v(6168)=mpar(11)*(v(547)*(v(6080)+(-2d0/3d0)*v(6102)+v(6134))+v(6042)*v(6162)) v(7117)=-v(6168)+mpar(9)*(-(v(524)*(v(5931)+(-2d0/3d0)*v(5953)+v(5985)))-v(5893)*v(7104))+v(7964) v(6167)=mpar(11)*(v(547)*(v(6079)+(-2d0/3d0)*v(6101)+v(6133))+v(6041)*v(6162)) v(7115)=-v(6167)+mpar(9)*(-(v(524)*(v(5930)+(-2d0/3d0)*v(5952)+v(5984)))-v(5892)*v(7104))+v(7967) v(6166)=mpar(11)*(v(547)*(v(6078)+(-2d0/3d0)*v(6100)+v(6132))+v(6040)*v(6162)) v(7113)=-v(6166)+mpar(9)*(-(v(524)*(v(5929)+(-2d0/3d0)*v(5951)+v(5983)))-v(5891)*v(7104))+v(7970) v(6165)=mpar(11)*(v(547)*(v(6077)+(-2d0/3d0)*v(6099)+v(6131))+v(6039)*v(6162)) v(7111)=v(2894)+v(2919)+(2d0/3d0)*v(2935)-v(6165)+mpar(9)*(-(v(524)*(v(5928)+(-2d0/3d0)*v(5950)+v(5982)))-v(5890)*v& &(7104)) v(6164)=mpar(11)*(v(547)*(v(6076)+(-2d0/3d0)*v(6098)+v(6130))+v(6038)*v(6162)) v(7109)=v(2893)+v(2918)-v(6164)+mpar(9)*(-(v(524)*(v(5927)+(-2d0/3d0)*v(5949)+v(5981)))-v(5889)*v(7104))+v(7108) v(6163)=mpar(11)*(v(547)*(v(6075)+(-2d0/3d0)*v(6094)+v(6129))+v(6036)*v(6162)) v(7106)=-v(6163)+mpar(9)*(-(v(524)*(v(5926)+(-2d0/3d0)*v(5945)+v(5980)))-v(5887)*v(7104))+v(7975) v(6145)=v(544)+(2d0/3d0)*v(546)+v(550) v(6161)=mpar(11)*(v(547)*((2d0/3d0)*v(6074)+v(6128)+v(6144))+v(6052)*v(6145)) v(7103)=-v(6161)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5925)+v(5979)+v(5995)))-v(5903)*v(7070))+v(7947) v(6160)=mpar(11)*(v(547)*((2d0/3d0)*v(6073)+v(6127)+v(6143))+v(6051)*v(6145)) v(7101)=-v(6160)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5924)+v(5978)+v(5994)))-v(5902)*v(7070))+v(7950) v(6159)=mpar(11)*(v(547)*((2d0/3d0)*v(6072)+v(6126)+v(6142))+v(6050)*v(6145)) v(7099)=-v(6159)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5923)+v(5977)+v(5993)))-v(5901)*v(7070))+v(7953) v(6158)=mpar(11)*(v(547)*((2d0/3d0)*v(6071)+v(6125)+v(6141))+v(6049)*v(6145)) v(7097)=-v(6158)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5922)+v(5976)+v(5992)))-v(5900)*v(7070))+v(7956) v(6157)=mpar(11)*(v(547)*((2d0/3d0)*v(6070)+v(6124)+v(6140))+v(6048)*v(6145)) v(7095)=-v(6157)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5921)+v(5975)+v(5991)))-v(5899)*v(7070))+v(7959) v(6156)=mpar(11)*(v(547)*((2d0/3d0)*v(6069)+v(6123)+v(6139))+v(6047)*v(6145)) v(7093)=-v(6156)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5920)+v(5974)+v(5990)))-v(5898)*v(7070)) v(6155)=mpar(11)*(v(547)*((2d0/3d0)*v(6068)+v(6122)+v(6138))+v(6046)*v(6145)) v(7091)=-v(6155)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5919)+v(5973)+v(5989)))-v(5897)*v(7070)) v(6154)=mpar(11)*(v(547)*((2d0/3d0)*v(6067)+v(6121)+v(6137))+v(6045)*v(6145)) v(7089)=-v(6154)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5918)+v(5972)+v(5988)))-v(5896)*v(7070)) v(6153)=mpar(11)*(v(547)*((2d0/3d0)*v(6066)+v(6120)+v(6136))+v(6044)*v(6145)) v(7087)=-v(6153)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5917)+v(5971)+v(5987)))-v(5895)*v(7070)) v(6152)=mpar(11)*(v(547)*((2d0/3d0)*v(6065)+v(6119)+v(6135))+v(6043)*v(6145)) v(7085)=-v(6152)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5916)+v(5970)+v(5986)))-v(5894)*v(7070)) v(6151)=mpar(11)*(v(547)*((2d0/3d0)*v(6064)+v(6118)+v(6134))+v(6042)*v(6145)) v(7083)=-v(6151)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5915)+v(5969)+v(5985)))-v(5893)*v(7070))+v(7962) v(6150)=mpar(11)*(v(547)*((2d0/3d0)*v(6063)+v(6117)+v(6133))+v(6041)*v(6145)) v(7081)=-v(6150)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5914)+v(5968)+v(5984)))-v(5892)*v(7070))+v(7965) v(6149)=mpar(11)*(v(547)*((2d0/3d0)*v(6062)+v(6116)+v(6132))+v(6040)*v(6145)) v(7079)=-v(6149)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5913)+v(5967)+v(5983)))-v(5891)*v(7070))+v(7968) v(6148)=mpar(11)*(v(547)*((2d0/3d0)*v(6061)+v(6115)+v(6131))+v(6039)*v(6145)) v(7077)=v(2919)+v(2946)-v(6148)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5912)+v(5966)+v(5982)))-v(5890)*v(7070))+v(7076) v(6147)=mpar(11)*(v(547)*((2d0/3d0)*v(6060)+v(6114)+v(6130))+v(6038)*v(6145)) v(7074)=(2d0/3d0)*v(2882)+v(2918)+v(2945)-v(6147)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5911)+v(5965)+v(5981)))-v(5889)*v(7070& &)) v(6146)=mpar(11)*(v(547)*((2d0/3d0)*v(6056)+v(6113)+v(6129))+v(6036)*v(6145)) v(7072)=-v(6146)+mpar(9)*(-(v(524)*((2d0/3d0)*v(5907)+v(5964)+v(5980)))-v(5887)*v(7070))+v(7973) v(565)=-v(117)+v(7496)*x(12) v(8134)=v(565)*v(7522) v(6318)=-(v(565)*v(8007)) v(6323)=-(v(6318)*v(7496)) v(6315)=(v(565)*v(565)) v(6299)=v(565)*v(8122) v(566)=-v(119)+v(7496)*x(13) v(8131)=v(566)*v(7522) v(8116)=v(232)*v(566) v(6630)=-(v(566)*v(8007)) v(6627)=(v(566)*v(566)) v(6306)=v(7496)*v(8116) v(6635)=2d0*v(6306) v(6284)=-(v(768)*v(8116)) v(567)=-v(120)+v(7496)*v(7532) v(8128)=v(567)*v(7522) v(8117)=v(232)*v(567) v(6818)=-(v(567)*v(8007)) v(6815)=(v(567)*v(567)) v(6304)=-(v(782)*v(8117)) v(6286)=v(7496)*v(8117) v(6832)=-(v(567)*v(6286)*v(8118)) v(6267)=v(6286)+v(6306) v(568)=-v(121)+v(7496)*x(14) v(8120)=v(232)*v(568) v(8119)=v(568)*v(7522) v(6385)=v(6323)*v(8119) v(6337)=-(v(6286)*v(8119)) v(6302)=-(v(782)*v(8120)) v(6266)=v(7496)*v(8120) v(8121)=v(6266)*v(7522) v(6609)=v(6266)/2d0 v(8155)=5040d0*v(6609) v(6359)=v(566)*v(8121) v(6358)=v(6359)+v(6385) v(6371)=v(6358)*v(8119) v(6293)=v(568)*v(8121) v(6234)=(-2d0)*v(8120) v(6239)=-(v(6234)*v(7496)) v(6238)=v(6234)*v(768) v(6237)=v(6234)*v(767) v(6236)=v(6234)*v(766) v(6235)=v(6234)*v(765) v(6233)=v(6234)*v(764) v(6231)=(v(568)*v(568)) v(6232)=v(1738)*v(6231) v(588)=v(232)*v(6231) v(569)=-v(122)+v(7496)*x(16) v(8124)=-(v(232)*v(569)) v(8123)=v(569)*v(7522) v(6669)=v(6635)*v(8123) v(6301)=v(569)*v(8122) v(6276)=v(6266)*v(8123) v(6264)=v(7496)*v(8124) v(6775)=-v(6264)/2d0 v(6274)=v(6264)*v(8123) v(6665)=v(6274)+v(6293) v(6243)=2d0*v(8124) v(6248)=-(v(6243)*v(7496)) v(6247)=v(6243)*v(783) v(6634)=v(6238)+v(6247)+v(6630)*v(714) v(6246)=v(6243)*v(782) v(6633)=v(6237)+v(6246)+v(6630)*v(713) v(6245)=v(6243)*v(768) v(6632)=v(6236)+v(6245)+v(6630)*v(712) v(6244)=v(6243)*v(781) v(6631)=v(6235)+v(6244)+v(6630)*v(711) v(6242)=v(6243)*v(780) v(6629)=v(6233)+v(6242)+v(6630)*v(710) v(6240)=(v(569)*v(569)) v(6241)=v(1738)*v(6240) v(6628)=v(6232)+v(6241)+v(1738)*v(6627) v(605)=v(232)*v(6240) v(570)=-v(123)+v(7496)*x(15) v(8133)=v(568)*v(569)-v(566)*v(570) v(8130)=-(v(567)*v(568))+v(569)*v(570) v(8127)=-(v(565)*v(569))+v(568)*v(570) v(8126)=v(232)*v(570) v(8125)=v(570)*v(7522) v(6387)=v(6323)*v(8125) v(6363)=-(v(6306)*v(8125)) v(6334)=v(6239)*v(8125) v(6598)=v(6334)/6d0 v(6425)=v(6334)*v(8123) v(6374)=v(6334)*v(8119) v(6347)=v(6334)*v(8125) v(6305)=v(6304)-v(232)*(-(v(570)*v(714))+v(569)*v(768)+v(565)*v(782)+v(568)*v(783)) v(6303)=v(6301)+v(6302)-v(232)*(-(v(570)*v(713))-v(566)*v(797)) v(6300)=v(6299)-v(232)*(-(v(570)*v(712))+v(569)*v(766)+v(567)*v(767)+v(568)*v(768)) v(6298)=-(v(232)*(-(v(570)*v(711))+v(569)*v(765)+v(568)*v(781)+v(565)*v(796)+v(567)*v(796))) v(6297)=-(v(232)*(-(v(570)*v(710))+v(569)*v(764)+v(568)*v(780)+v(565)*v(795)+v(567)*v(795))) v(6296)=v(1738)*v(8133) v(6285)=v(6284)-v(232)*(-(v(568)*v(737))+v(565)*v(768)+v(569)*v(782)+v(570)*v(783)) v(6283)=v(6299)-v(232)*(-(v(568)*v(736))+v(566)*v(767)+v(570)*v(782)+v(569)*v(797)) v(6281)=-(v(768)*v(8126)) v(6282)=v(6281)+v(6301)-v(232)*(-(v(568)*v(735))-v(567)*v(766)) v(6280)=-(v(232)*(-(v(568)*v(734))+v(565)*v(765)+v(566)*v(765)+v(570)*v(781)+v(569)*v(796))) v(6279)=-(v(232)*(-(v(568)*v(733))+v(565)*v(764)+v(566)*v(764)+v(570)*v(780)+v(569)*v(795))) v(6278)=v(1738)*v(8130) v(6265)=v(7496)*v(8126) v(6614)=-v(6265)/2d0 v(8150)=(-5040d0)*v(6614) v(6313)=-(v(6265)*v(8125)) v(6384)=v(6293)+v(6313) v(6295)=v(6265)*v(8119) v(6275)=v(6265)*v(8123) v(6263)=v(6281)+v(6302)-v(232)*(-(v(569)*v(704))-v(565)*v(783)) v(6262)=v(6304)-v(232)*(-(v(569)*v(703))+v(570)*v(767)+v(566)*v(782)+v(568)*v(797)) v(6261)=v(6284)-v(232)*(-(v(569)*v(702))+v(570)*v(766)+v(568)*v(767)+v(567)*v(768)) v(6260)=-(v(232)*(-(v(569)*v(701))+v(570)*v(765)+v(566)*v(781)+v(567)*v(781)+v(568)*v(796))) v(6259)=-(v(232)*(-(v(569)*v(700))+v(570)*v(764)+v(566)*v(780)+v(567)*v(780)+v(568)*v(795))) v(6258)=v(1738)*v(8127) v(6252)=(-2d0)*v(8126) v(6257)=-(v(6252)*v(7496)) v(6256)=v(6252)*v(782) v(6822)=v(6247)+v(6256)+v(6818)*v(737) v(6322)=v(6238)+v(6256)+v(6318)*v(704) v(6255)=v(6252)*v(797) v(6821)=v(6246)+v(6255)+v(6818)*v(736) v(6321)=v(6237)+v(6255)+v(6318)*v(703) v(6254)=v(6252)*v(767) v(6820)=v(6245)+v(6254)+v(6818)*v(735) v(6320)=v(6236)+v(6254)+v(6318)*v(702) v(6253)=v(6252)*v(796) v(6819)=v(6244)+v(6253)+v(6818)*v(734) v(6319)=v(6235)+v(6253)+v(6318)*v(701) v(6251)=v(6252)*v(795) v(6817)=v(6242)+v(6251)+v(6818)*v(733) v(6317)=v(6233)+v(6251)+v(6318)*v(700) v(6249)=(v(570)*v(570)) v(6250)=v(1738)*v(6249) v(6816)=v(6241)+v(6250)+v(1738)*v(6815) v(6316)=v(6232)+v(6250)+v(1738)*v(6315) v(606)=v(232)*v(6249) v(593)=v(232)*v(8127) v(6644)=v(593)*v(6592) v(6646)=v(6295)-v(6644)+v(6669) v(6655)=v(6646)*v(8123) v(6645)=v(6646)-v(6669)+v(6264)*v(8128) v(6654)=v(6645)*v(8123) v(6700)=v(6371)+v(6654)+v(6665)*v(8131) v(6277)=v(6644)+v(6267)*v(8123) v(8129)=v(6277)+v(6295) v(6835)=v(6248)*v(8128)+v(8129) v(6670)=v(6669)+v(8129) v(6273)=v(7522)*(v(569)*v(6263)-v(593)*v(783)) v(6272)=v(7522)*(v(569)*v(6262)-v(593)*v(782)) v(6271)=v(7522)*(v(569)*v(6261)-v(593)*v(768)) v(6270)=v(7522)*(v(569)*v(6260)-v(593)*v(781)) v(6269)=v(7522)*(v(569)*v(6259)-v(593)*v(780)) v(6268)=v(569)*(v(593)*v(7518)+v(6258)*v(7522)) v(609)=v(593)*v(8123) v(574)=v(232)*v(8130) v(6642)=v(574)*v(6771) v(6639)=v(574)*v(6604) v(6336)=v(574)*v(6592) v(6360)=-v(6275)+v(6336)+v(6359) v(6372)=v(6360)*v(8119) v(6338)=v(6275)+v(6336)-v(6337) v(6881)=v(6338)/6d0 v(6657)=v(6338)*v(8123) v(6349)=v(6338)*v(8125) v(6327)=v(574)*v(6768) v(6294)=v(6336)+v(6337) v(8132)=v(6275)+v(6294) v(6668)=v(6239)*v(8131)+v(8132) v(6386)=v(6385)+v(8132) v(6292)=v(6327)+v(6285)*v(8119) v(6291)=v(6639)+v(6283)*v(8119) v(6290)=v(7522)*(v(568)*v(6282)-v(574)*v(766)) v(6289)=v(7522)*(v(568)*v(6280)-v(574)*v(765)) v(6288)=v(7522)*(v(568)*v(6279)-v(574)*v(764)) v(6287)=v(568)*(v(574)*v(7518)+v(6278)*v(7522)) v(590)=v(574)*v(8119) v(573)=v(232)*v(8133) v(6355)=v(573)*v(6771) v(6331)=v(573)*v(6592) v(8135)=v(6276)-v(6331) v(6364)=v(6276)+v(6331)-v(6363) v(6801)=v(6364)/6d0 v(6656)=v(6364)*v(8123) v(6375)=v(6364)*v(8119) v(6449)=v(6349)+v(6375)+v(6334)*v(8134) v(6333)=-(v(6265)*v(8128))+v(8135) v(6346)=v(6333)*v(8125) v(6446)=v(6346)+v(6372)+v(6384)*v(8134) v(6332)=v(6387)+v(8135) v(6345)=v(6332)*v(8125) v(6314)=v(6331)+v(6363) v(8136)=v(6276)+v(6314) v(6834)=v(6257)*v(8128)+v(8136) v(6388)=v(6387)+v(8136) v(6312)=v(6355)+v(6305)*v(8125) v(6311)=v(7522)*(v(570)*v(6303)-v(573)*v(797)) v(6310)=v(7522)*(v(570)*v(6300)-v(573)*v(767)) v(6309)=v(7522)*(v(570)*v(6298)-v(573)*v(796)) v(6308)=v(7522)*(v(570)*v(6297)-v(573)*v(795)) v(6307)=v(570)*(v(573)*v(7518)+v(6296)*v(7522)) v(608)=v(573)*v(8125) v(571)=v(588)+v(606)+v(232)*v(6315) v(8138)=v(568)*v(571)+v(569)*v(573)+v(566)*v(574) v(8137)=v(570)*v(571)+v(567)*v(573)+v(569)*v(574) v(6382)=v(571)*v(6592) v(6383)=v(6293)+v(6382)+v(6323)*v(8134) v(6396)=(v(569)*v(6332)+v(566)*v(6358)+v(568)*v(6383))*v(7522) v(6409)=v(6396)*v(8119) v(6381)=v(6292)+v(6312)+(v(565)*v(6322)-v(571)*v(704))*v(7522) v(6380)=v(6291)+v(6311)+(v(565)*v(6321)-v(571)*v(703))*v(7522) v(6379)=v(6290)+v(6310)+(v(565)*v(6320)-v(571)*v(702))*v(7522) v(6378)=v(6289)+v(6309)+(v(565)*v(6319)-v(571)*v(701))*v(7522) v(6377)=v(6288)+v(6308)+(v(565)*v(6317)-v(571)*v(700))*v(7522) v(6376)=v(6287)+v(6307)+v(565)*(v(571)*v(7518)+v(6316)*v(7522)) v(6361)=-v(6274)+v(6382)-v(6306)*v(8128) v(6362)=v(6361)+v(6239)*v(8119) v(6357)=v(7522)*(v(566)*v(6285)+v(569)*v(6305)+v(568)*v(6322)-v(574)*v(714)-v(571)*v(768)-v(573)*v(783)) v(6354)=v(571)*v(6604) v(6356)=v(6354)+v(6355)+(v(566)*v(6283)+v(569)*v(6303)+v(568)*v(6321)-v(574)*v(713))*v(7522) v(6353)=v(7522)*(v(566)*v(6282)+v(569)*v(6300)+v(568)*v(6320)-v(574)*v(712)-v(571)*v(766)-v(573)*v(768)) v(6352)=v(7522)*(v(566)*v(6280)+v(569)*v(6298)+v(568)*v(6319)-v(574)*v(711)-v(571)*v(765)-v(573)*v(781)) v(6351)=v(7522)*(v(566)*v(6279)+v(569)*v(6297)+v(568)*v(6317)-v(574)*v(710)-v(571)*v(764)-v(573)*v(780)) v(6350)=(v(566)*v(6278)+v(569)*v(6296)+v(568)*v(6316))*v(7522)+v(7518)*v(8138) v(6335)=v(6361)+v(6257)*v(8125) v(6400)=(v(566)*v(6334)+v(569)*v(6335)+v(568)*v(6388))*v(7522) v(6486)=v(6400)*v(8123) v(6436)=v(6400)*v(8125) v(6412)=v(6400)*v(8119) v(6330)=v(7522)*(v(569)*v(6285)+v(567)*v(6305)+v(570)*v(6322)-v(573)*v(737)-v(571)*v(782)-v(574)*v(783)) v(6329)=v(6642)+v(7522)*(v(569)*v(6283)+v(567)*v(6303)+v(570)*v(6321)-v(573)*v(736)-v(571)*v(797)) v(6328)=v(6327)+v(6354)+(v(569)*v(6282)+v(567)*v(6300)+v(570)*v(6320)-v(573)*v(735))*v(7522) v(6326)=v(7522)*(v(569)*v(6280)+v(567)*v(6298)+v(570)*v(6319)-v(573)*v(734)-v(574)*v(781)-v(571)*v(796)) v(6325)=v(7522)*(v(569)*v(6279)+v(567)*v(6297)+v(570)*v(6317)-v(573)*v(733)-v(574)*v(780)-v(571)*v(795)) v(6324)=(v(569)*v(6278)+v(567)*v(6296)+v(570)*v(6316))*v(7522)+v(7518)*v(8137) v(577)=v(7522)*v(8137) v(6401)=v(577)*v(6592) v(6423)=-v(6401)+(v(567)*v(6333)+v(569)*v(6360)+v(570)*v(6384))*v(7522) v(6435)=v(6423)*v(8125) v(6422)=-v(6401)+(v(567)*v(6332)+v(569)*v(6358)+v(570)*v(6383))*v(7522) v(6434)=v(6422)*v(8125) v(6402)=v(6374)+v(6401)+v(6657)+v(6364)*v(8131) v(6704)=-v(6401)+v(6402) v(6691)=v(6402)*v(8123) v(6413)=v(6402)*v(8119) v(6393)=v(577)*v(6771) v(6348)=v(6401)+v(6335)*v(8125) v(6846)=v(6348)+v(6657)+v(6834)*v(8128) v(6448)=v(6348)+v(6374)+v(6388)*v(8134) v(6344)=v(6393)+v(6330)*v(8125) v(6343)=v(7522)*(v(570)*v(6329)-v(577)*v(797)) v(6342)=v(7522)*(v(570)*v(6328)-v(577)*v(767)) v(6341)=v(7522)*(v(570)*v(6326)-v(577)*v(796)) v(6340)=v(7522)*(v(570)*v(6325)-v(577)*v(795)) v(6339)=v(570)*(v(577)*v(7518)+v(6324)*v(7522)) v(612)=v(577)*v(8125) v(576)=v(7522)*v(8138) v(6677)=v(576)*v(6771) v(6674)=v(576)*v(6604) v(6418)=v(576)*v(6768) v(6397)=v(576)*v(6592) v(6427)=v(6347)+v(6397)+v(6656)+v(6338)*v(8128) v(6845)=-v(6397)+v(6427) v(6857)=v(6436)+v(6691)+v(6845)*v(8128) v(6692)=v(6427)*v(8123) v(6739)=v(6412)+v(6692)+v(6704)*v(8131) v(6438)=v(6427)*v(8125) v(6510)=v(6413)+v(6438)+v(6449)*v(8134) v(6398)=v(6397)+(v(569)*v(6333)+v(566)*v(6360)+v(568)*v(6384))*v(7522) v(6410)=v(6398)*v(8119) v(6507)=v(6410)+v(6435)+v(6446)*v(8134) v(6373)=v(6397)+v(6362)*v(8119) v(6703)=v(6373)+v(6656)+v(6668)*v(8131) v(6447)=v(6347)+v(6373)+v(6386)*v(8134) v(6370)=v(6418)+v(6357)*v(8119) v(6369)=v(6674)+v(6356)*v(8119) v(6368)=v(7522)*(v(568)*v(6353)-v(576)*v(766)) v(6367)=v(7522)*(v(568)*v(6352)-v(576)*v(765)) v(6366)=v(7522)*(v(568)*v(6351)-v(576)*v(764)) v(6365)=v(568)*(v(576)*v(7518)+v(6350)*v(7522)) v(592)=v(576)*v(8119) v(572)=v(590)+v(608)+v(571)*v(8134) v(8141)=v(570)*v(572)+v(569)*v(576)+v(567)*v(577) v(8140)=v(568)*v(572)+v(566)*v(576)+v(569)*v(577) v(6444)=v(6344)+v(6370)+(v(565)*v(6381)-v(572)*v(704))*v(7522) v(6443)=v(6343)+v(6369)+(v(565)*v(6380)-v(572)*v(703))*v(7522) v(6442)=v(6342)+v(6368)+(v(565)*v(6379)-v(572)*v(702))*v(7522) v(6441)=v(6341)+v(6367)+(v(565)*v(6378)-v(572)*v(701))*v(7522) v(6440)=v(6340)+v(6366)+(v(565)*v(6377)-v(572)*v(700))*v(7522) v(6439)=v(6339)+v(6365)+v(565)*(v(572)*v(7518)+v(6376)*v(7522)) v(6424)=v(572)*v(6592) v(8139)=v(6424)+v(6425) v(6445)=v(6345)+v(6371)+v(6424)+v(6383)*v(8134) v(6483)=(v(566)*v(6396)+v(569)*v(6422)+v(568)*v(6445))*v(7522) v(6495)=v(6483)*v(8119) v(6426)=(v(567)*v(6335)+v(570)*v(6388))*v(7522)+v(8139) v(6421)=v(7522)*(v(567)*v(6330)+v(569)*v(6357)+v(570)*v(6381)-v(577)*v(737)-v(572)*v(782)-v(576)*v(783)) v(6420)=v(6677)+v(7522)*(v(567)*v(6329)+v(569)*v(6356)+v(570)*v(6380)-v(577)*v(736)-v(572)*v(797)) v(6417)=v(572)*v(6604) v(6419)=v(6417)+v(6418)+(v(567)*v(6328)+v(569)*v(6353)+v(570)*v(6379)-v(577)*v(735))*v(7522) v(6416)=v(7522)*(v(567)*v(6326)+v(569)*v(6352)+v(570)*v(6378)-v(577)*v(734)-v(576)*v(781)-v(572)*v(796)) v(6415)=v(7522)*(v(567)*v(6325)+v(569)*v(6351)+v(570)*v(6377)-v(577)*v(733)-v(576)*v(780)-v(572)*v(795)) v(6414)=(v(567)*v(6324)+v(569)*v(6350)+v(570)*v(6376))*v(7522)+v(7518)*v(8141) v(6399)=(v(566)*v(6362)+v(568)*v(6386))*v(7522)+v(8139) v(6460)=(v(569)*v(6399)+v(567)*v(6400)+v(570)*v(6447))*v(7522) v(6558)=v(6460)*v(8123) v(6498)=v(6460)*v(8119) v(6472)=v(6460)*v(8125) v(6395)=v(7522)*(v(569)*v(6330)+v(566)*v(6357)+v(568)*v(6381)-v(576)*v(714)-v(572)*v(768)-v(577)*v(783)) v(6394)=v(6393)+v(6417)+(v(569)*v(6329)+v(566)*v(6356)+v(568)*v(6380)-v(576)*v(713))*v(7522) v(6392)=v(7522)*(v(569)*v(6328)+v(566)*v(6353)+v(568)*v(6379)-v(576)*v(712)-v(572)*v(766)-v(577)*v(768)) v(6391)=v(7522)*(v(569)*v(6326)+v(566)*v(6352)+v(568)*v(6378)-v(576)*v(711)-v(572)*v(765)-v(577)*v(781)) v(6390)=v(7522)*(v(569)*v(6325)+v(566)*v(6351)+v(568)*v(6377)-v(576)*v(710)-v(572)*v(764)-v(577)*v(780)) v(6389)=(v(569)*v(6324)+v(566)*v(6350)+v(568)*v(6376))*v(7522)+v(7518)*v(8140) v(580)=v(7522)*v(8140) v(6712)=v(580)*v(6771) v(6709)=v(580)*v(6604) v(6462)=v(580)*v(6592) v(6484)=v(6462)+(v(566)*v(6398)+v(569)*v(6423)+v(568)*v(6446))*v(7522) v(6496)=v(6484)*v(8119) v(6463)=v(6462)+v(6691)+(v(567)*v(6427)+v(570)*v(6449))*v(7522) v(6727)=v(6463)*v(8123) v(6750)=v(6498)+v(6727)+v(6739)*v(8131) v(6474)=v(6463)*v(8125) v(6453)=v(580)*v(6768) v(6411)=v(6462)+v(6399)*v(8119) v(6738)=v(6411)+v(6691)+v(6703)*v(8131) v(6508)=v(6411)+v(6436)+v(6447)*v(8134) v(6408)=v(6453)+v(6395)*v(8119) v(6407)=v(6709)+v(6394)*v(8119) v(6406)=v(7522)*(v(568)*v(6392)-v(580)*v(766)) v(6405)=v(7522)*(v(568)*v(6391)-v(580)*v(765)) v(6404)=v(7522)*(v(568)*v(6390)-v(580)*v(764)) v(6403)=v(568)*(v(580)*v(7518)+v(6389)*v(7522)) v(596)=v(580)*v(8119) v(579)=v(7522)*v(8141) v(6480)=v(579)*v(6771) v(6457)=v(579)*v(6592) v(6488)=v(6457)+v(6692)+(v(566)*v(6402)+v(568)*v(6449))*v(7522) v(6726)=v(6488)*v(8123) v(6869)=v(6472)+v(6726)+v(6857)*v(8128) v(6499)=v(6488)*v(8119) v(6521)=v(6474)+v(6499)+v(6510)*v(8134) v(6459)=-v(6457)+(v(569)*v(6398)+v(567)*v(6423)+v(570)*v(6446))*v(7522) v(6471)=v(6459)*v(8125) v(6518)=v(6471)+v(6496)+v(6507)*v(8134) v(6458)=-v(6457)+(v(569)*v(6396)+v(567)*v(6422)+v(570)*v(6445))*v(7522) v(6470)=v(6458)*v(8125) v(6437)=v(6457)+v(6426)*v(8125) v(6858)=v(6437)+v(6692)+v(6846)*v(8128) v(6509)=v(6412)+v(6437)+v(6448)*v(8134) v(6433)=v(6480)+v(6421)*v(8125) v(6432)=v(7522)*(v(570)*v(6420)-v(579)*v(797)) v(6431)=v(7522)*(v(570)*v(6419)-v(579)*v(767)) v(6430)=v(7522)*(v(570)*v(6416)-v(579)*v(796)) v(6429)=v(7522)*(v(570)*v(6415)-v(579)*v(795)) v(6428)=v(570)*(v(579)*v(7518)+v(6414)*v(7522)) v(614)=v(579)*v(8125) v(575)=v(592)+v(612)+v(572)*v(8134) v(8144)=v(568)*v(575)+v(569)*v(579)+v(566)*v(580) v(8143)=v(570)*v(575)+v(567)*v(579)+v(569)*v(580) v(6505)=v(6408)+v(6433)+(v(565)*v(6444)-v(575)*v(704))*v(7522) v(6504)=v(6407)+v(6432)+(v(565)*v(6443)-v(575)*v(703))*v(7522) v(6503)=v(6406)+v(6431)+(v(565)*v(6442)-v(575)*v(702))*v(7522) v(6502)=v(6405)+v(6430)+(v(565)*v(6441)-v(575)*v(701))*v(7522) v(6501)=v(6404)+v(6429)+(v(565)*v(6440)-v(575)*v(700))*v(7522) v(6500)=v(6403)+v(6428)+v(565)*(v(575)*v(7518)+v(6439)*v(7522)) v(6485)=v(575)*v(6592) v(8142)=v(6485)+v(6486) v(6506)=v(6409)+v(6434)+v(6485)+v(6445)*v(8134) v(6556)=(v(569)*v(6458)+v(566)*v(6483)+v(568)*v(6506))*v(7522) v(6580)=v(6556)*v(8119) v(6487)=(v(566)*v(6399)+v(568)*v(6447))*v(7522)+v(8142) v(6532)=(v(567)*v(6460)+v(569)*v(6487)+v(570)*v(6508))*v(7522) v(6612)=v(6532)*v(8123) v(6584)=v(6532)*v(8119) v(6545)=v(6532)*v(8125) v(6482)=v(7522)*(v(566)*v(6395)+v(569)*v(6421)+v(568)*v(6444)-v(580)*v(714)-v(575)*v(768)-v(579)*v(783)) v(6479)=v(575)*v(6604) v(6481)=v(6479)+v(6480)+(v(566)*v(6394)+v(569)*v(6420)+v(568)*v(6443)-v(580)*v(713))*v(7522) v(6478)=v(7522)*(v(566)*v(6392)+v(569)*v(6419)+v(568)*v(6442)-v(580)*v(712)-v(575)*v(766)-v(579)*v(768)) v(6477)=v(7522)*(v(566)*v(6391)+v(569)*v(6416)+v(568)*v(6441)-v(580)*v(711)-v(575)*v(765)-v(579)*v(781)) v(6476)=v(7522)*(v(566)*v(6390)+v(569)*v(6415)+v(568)*v(6440)-v(580)*v(710)-v(575)*v(764)-v(579)*v(780)) v(6475)=(v(566)*v(6389)+v(569)*v(6414)+v(568)*v(6439))*v(7522)+v(7518)*v(8144) v(6461)=(v(567)*v(6426)+v(570)*v(6448))*v(7522)+v(8142) v(6456)=v(7522)*(v(569)*v(6395)+v(567)*v(6421)+v(570)*v(6444)-v(579)*v(737)-v(575)*v(782)-v(580)*v(783)) v(6455)=v(6712)+v(7522)*(v(569)*v(6394)+v(567)*v(6420)+v(570)*v(6443)-v(579)*v(736)-v(575)*v(797)) v(6454)=v(6453)+v(6479)+(v(569)*v(6392)+v(567)*v(6419)+v(570)*v(6442)-v(579)*v(735))*v(7522) v(6452)=v(7522)*(v(569)*v(6391)+v(567)*v(6416)+v(570)*v(6441)-v(579)*v(734)-v(580)*v(781)-v(575)*v(796)) v(6451)=v(7522)*(v(569)*v(6390)+v(567)*v(6415)+v(570)*v(6440)-v(579)*v(733)-v(580)*v(780)-v(575)*v(795)) v(6450)=(v(569)*v(6389)+v(567)*v(6414)+v(570)*v(6439))*v(7522)+v(7518)*v(8143) v(583)=v(7522)*v(8143) v(6553)=v(583)*v(6771) v(6529)=v(583)*v(6592) v(6560)=v(6529)+v(6727)+(v(566)*v(6488)+v(568)*v(6510))*v(7522) v(6788)=v(6560)*v(8123) v(6882)=(v(6545)+v(6788)+210d0*v(6845)+42d0*v(6857)+7d0*v(6869)+5040d0*v(6881)+v(6869)*v(8128))/5040d0 v(6585)=v(6560)*v(8119) v(6531)=-v(6529)+(v(567)*v(6459)+v(569)*v(6484)+v(570)*v(6507))*v(7522) v(6544)=v(6531)*v(8125) v(6530)=-v(6529)+(v(567)*v(6458)+v(569)*v(6483)+v(570)*v(6506))*v(7522) v(6543)=v(6530)*v(8125) v(6473)=v(6529)+v(6461)*v(8125) v(6870)=v(6473)+v(6727)+v(6858)*v(8128) v(6520)=v(6473)+v(6498)+v(6509)*v(8134) v(6469)=v(6553)+v(6456)*v(8125) v(6468)=v(7522)*(v(570)*v(6455)-v(583)*v(797)) v(6467)=v(7522)*(v(570)*v(6454)-v(583)*v(767)) v(6466)=v(7522)*(v(570)*v(6452)-v(583)*v(796)) v(6465)=v(7522)*(v(570)*v(6451)-v(583)*v(795)) v(6464)=v(570)*(v(583)*v(7518)+v(6450)*v(7522)) v(618)=v(583)*v(8125) v(582)=v(7522)*v(8144) v(6758)=v(582)*v(6771) v(6755)=v(582)*v(6604) v(6535)=v(582)*v(6592) v(6557)=v(6535)+(v(569)*v(6459)+v(566)*v(6484)+v(568)*v(6507))*v(7522) v(6581)=v(6557)*v(8119) v(6595)=(840d0*v(6384)+210d0*v(6446)+42d0*v(6507)+7d0*v(6518)+v(6544)+v(6581)+v(6518)*v(8134))/5040d0 v(6536)=v(6535)+v(6726)+(v(567)*v(6463)+v(570)*v(6510))*v(7522) v(6789)=v(6536)*v(8123) v(8149)=v(6789)+5040d0*v(6801) v(6802)=(v(6584)+210d0*v(6704)+42d0*v(6739)+7d0*v(6750)+v(6750)*v(8131)+v(8149))/5040d0 v(6547)=v(6536)*v(8125) v(6599)=(210d0*v(6449)+42d0*v(6510)+7d0*v(6521)+v(6547)+v(6585)+5040d0*v(6598)+v(6521)*v(8134))/5040d0 v(6525)=v(582)*v(6768) v(6497)=v(6535)+v(6487)*v(8119) v(6749)=v(6497)+v(6726)+v(6738)*v(8131) v(6519)=v(6472)+v(6497)+v(6508)*v(8134) v(6494)=v(6525)+v(6482)*v(8119) v(6493)=v(6755)+v(6481)*v(8119) v(6492)=v(7522)*(v(568)*v(6478)-v(582)*v(766)) v(6491)=v(7522)*(v(568)*v(6477)-v(582)*v(765)) v(6490)=v(7522)*(v(568)*v(6476)-v(582)*v(764)) v(6489)=v(568)*(v(582)*v(7518)+v(6475)*v(7522)) v(598)=v(582)*v(8119) v(578)=v(596)+v(614)+v(575)*v(8134) v(8152)=v(568)*v(578)+v(566)*v(582)+v(569)*v(583) v(8148)=v(570)*v(578)+v(569)*v(582)+v(567)*v(583) v(6555)=v(7522)*(v(569)*v(6456)+v(566)*v(6482)+v(568)*v(6505)-v(582)*v(714)-v(578)*v(768)-v(583)*v(783)) v(6552)=v(578)*v(6604) v(6554)=v(6552)+v(6553)+(v(569)*v(6455)+v(566)*v(6481)+v(568)*v(6504)-v(582)*v(713))*v(7522) v(6551)=v(7522)*(v(569)*v(6454)+v(566)*v(6478)+v(568)*v(6503)-v(582)*v(712)-v(578)*v(766)-v(583)*v(768)) v(6550)=v(7522)*(v(569)*v(6452)+v(566)*v(6477)+v(568)*v(6502)-v(582)*v(711)-v(578)*v(765)-v(583)*v(781)) v(6549)=v(7522)*(v(569)*v(6451)+v(566)*v(6476)+v(568)*v(6501)-v(582)*v(710)-v(578)*v(764)-v(583)*v(780)) v(6548)=(v(569)*v(6450)+v(566)*v(6475)+v(568)*v(6500))*v(7522)+v(7518)*v(8152) v(8160)=v(6548)*v(7522) v(6533)=v(578)*v(6592) v(8145)=v(6533)+v(6558) v(6559)=(v(566)*v(6487)+v(568)*v(6508))*v(7522)+v(8145) v(6570)=v(6400)/24d0+v(6460)/120d0+v(6532)/720d0+v(6598)+v(6775)+((v(570)*v(6519)+v(567)*v(6532)+v(569)*v(6559))*v(7522& &))/5040d0 v(7021)=statev(53)*v(6570) v(6976)=v(6570)*v(7515) v(6917)=statev(56)*v(6570) v(6534)=(v(567)*v(6461)+v(570)*v(6509))*v(7522)+v(8145) v(6528)=v(7522)*(v(567)*v(6456)+v(569)*v(6482)+v(570)*v(6505)-v(583)*v(737)-v(578)*v(782)-v(582)*v(783)) v(6527)=v(6758)+v(7522)*(v(567)*v(6455)+v(569)*v(6481)+v(570)*v(6504)-v(583)*v(736)-v(578)*v(797)) v(6526)=v(6525)+v(6552)+(v(567)*v(6454)+v(569)*v(6478)+v(570)*v(6503)-v(583)*v(735))*v(7522) v(6524)=v(7522)*(v(567)*v(6452)+v(569)*v(6477)+v(570)*v(6502)-v(583)*v(734)-v(582)*v(781)-v(578)*v(796)) v(6523)=v(7522)*(v(567)*v(6451)+v(569)*v(6476)+v(570)*v(6501)-v(583)*v(733)-v(582)*v(780)-v(578)*v(795)) v(6522)=(v(567)*v(6450)+v(569)*v(6475)+v(570)*v(6500))*v(7522)+v(7518)*v(8148) v(6517)=v(6470)+v(6495)+v(6533)+v(6506)*v(8134) v(6610)=(840d0*v(6358)+210d0*v(6396)+42d0*v(6483)+7d0*v(6556)+v(6517)*v(8119)+v(6530)*v(8123)+v(6556)*v(8131)+v(8155))& &/5040d0 v(6516)=v(6469)+v(6494)+(v(565)*v(6505)-v(578)*v(704))*v(7522) v(6515)=v(6468)+v(6493)+(v(565)*v(6504)-v(578)*v(703))*v(7522) v(6514)=v(6467)+v(6492)+(v(565)*v(6503)-v(578)*v(702))*v(7522) v(6513)=v(6466)+v(6491)+(v(565)*v(6502)-v(578)*v(701))*v(7522) v(6512)=v(6465)+v(6490)+(v(565)*v(6501)-v(578)*v(700))*v(7522) v(6511)=v(6464)+v(6489)+v(565)*(v(578)*v(7518)+v(6500)*v(7522)) v(581)=v(598)+v(618)+v(578)*v(8134) v(8153)=5040d0+v(581) v(8158)=v(6511)*v(7522)+v(7518)*v(8153) v(6605)=v(581)*v(6604) v(8159)=5040d0*v(6604)+v(6605) v(6593)=v(581)*v(6592) v(8146)=v(6593)+v(8164) v(8147)=v(6612)+v(8146) v(6613)=((-2520d0)*v(6286)+840d0*v(6362)+210d0*v(6399)+42d0*v(6487)+7d0*v(6559)+v(6519)*v(8119)+v(6559)*v(8131)+v(8147)& &)/5040d0 v(6594)=((-5040d0)*v(6267)+840d0*v(6383)+210d0*v(6445)+42d0*v(6506)+7d0*v(6517)+v(6543)+v(6580)+v(6517)*v(8134)+v(8146)& &)/5040d0 v(6571)=((-2520d0)*v(6306)+840d0*v(6335)+210d0*v(6426)+42d0*v(6461)+7d0*v(6534)+v(6520)*v(8125)+v(6534)*v(8128)+v(8147)& &)/5040d0 v(584)=v(7522)*v(8148) v(8154)=v(584)*v(7518)+v(6522)*v(7522) v(6606)=v(584)*v(6771) v(6567)=v(584)*v(6592) v(6615)=(210d0*v(6402)+42d0*v(6488)+7d0*v(6560)+v(6567)+v(6521)*v(8119)+v(6560)*v(8131)+v(8149)+v(8150))/5040d0 v(7022)=v(6615)*v(7516) v(7023)=statev(58)*v(6882)+v(7021)+v(7022) v(6943)=statev(54)*v(6615) v(6928)=statev(57)*v(6615) v(6929)=statev(55)*v(6882)+v(6928)+v(6976) v(6893)=v(6917)+v(6943)+v(6882)*v(7517) v(6569)=(840d0*v(6333)+210d0*v(6423)+42d0*v(6459)+7d0*v(6531)-v(6567)+v(6557)*v(8123)+v(6518)*v(8125)+v(6531)*v(8128)-v& &(8150))/5040d0 v(6568)=(840d0*v(6332)+210d0*v(6422)+42d0*v(6458)+7d0*v(6530)-v(6567)+v(6556)*v(8123)+v(6517)*v(8125)+v(6530)*v(8128))& &/5040d0 v(6938)=statev(56)*v(6594)+statev(54)*v(6610)+v(6568)*v(7517) v(6902)=statev(58)*v(6568)+statev(53)*v(6594)+v(6610)*v(7516) v(6622)=statev(55)*v(6568)+statev(57)*v(6610)+v(6594)*v(7515) v(6546)=v(6567)+v(6534)*v(8125) v(8151)=5040d0*v(6265)+v(6546) v(6883)=(v(6789)+840d0*v(6834)+210d0*v(6846)+42d0*v(6858)+7d0*v(6870)+v(6870)*v(8128)+v(8151))/5040d0 v(6597)=(840d0*v(6388)+210d0*v(6448)+42d0*v(6509)+7d0*v(6520)+v(6584)+v(6520)*v(8134)+v(8151))/5040d0 v(6941)=statev(54)*v(6570)+statev(56)*v(6597)+v(6571)*v(7517) v(6905)=statev(58)*v(6571)+statev(53)*v(6597)+v(6570)*v(7516) v(6625)=statev(57)*v(6570)+statev(55)*v(6571)+v(6597)*v(7515) v(6542)=v(6606)+v(6528)*v(8125) v(6541)=v(7522)*(v(570)*v(6527)-v(584)*v(797)) v(6540)=v(7522)*(v(570)*v(6526)-v(584)*v(767)) v(6539)=v(7522)*(v(570)*v(6524)-v(584)*v(796)) v(6538)=v(7522)*(v(570)*v(6523)-v(584)*v(795)) v(6537)=v(570)*v(8154) v(620)=v(584)*v(8125) v(585)=v(7522)*v(8152) v(8157)=v(585)*v(7518) v(8172)=v(8157)+v(8160) v(6773)=v(585)*v(6771) v(6769)=v(585)*v(6604) v(6608)=(7d0*(360d0*v(6285)+120d0*v(6357)+30d0*v(6395)+6d0*v(6482)+v(6555)+720d0*v(6768))+v(7522)*(v(568)*v(6516)+v(569& &)*v(6528)+v(566)*v(6555)-v(585)*v(714)-v(581)*v(768)-v(584)*v(783)))/5040d0 v(6607)=(2520d0*v(6283)+840d0*v(6356)+210d0*v(6394)+42d0*v(6481)+7d0*v(6554)+v(6606)+(v(568)*v(6515)+v(569)*v(6527)+v& &(566)*v(6554)-v(585)*v(713))*v(7522)+v(8159))/5040d0 v(6603)=(7d0*(360d0*v(6282)+120d0*v(6353)+30d0*v(6392)+6d0*v(6478)+v(6551))+v(7522)*(v(568)*v(6514)+v(569)*v(6526)+v& &(566)*v(6551)-v(585)*v(712)-v(584)*v(768)-v(766)*v(8153)))/5040d0 v(6602)=(7d0*(360d0*v(6280)+120d0*v(6352)+30d0*v(6391)+6d0*v(6477)+v(6550))+v(7522)*(v(568)*v(6513)+v(569)*v(6524)+v& &(566)*v(6550)-v(585)*v(711)-v(584)*v(781)-v(765)*v(8153)))/5040d0 v(6601)=(7d0*(360d0*v(6279)+120d0*v(6351)+30d0*v(6390)+6d0*v(6476)+v(6549))+v(7522)*(v(568)*v(6512)+v(569)*v(6523)+v& &(566)*v(6549)-v(585)*v(710)-v(584)*v(780)-v(764)*v(8153)))/5040d0 v(6600)=(2520d0*v(6278)+840d0*v(6350)+210d0*v(6389)+42d0*v(6475)+7d0*v(6548)+v(6548)*v(8131)+v(569)*v(8154)+v(566)*v& &(8157)+v(568)*v(8158))/5040d0 v(6582)=v(585)*v(6592) v(6611)=(840d0*v(6360)+210d0*v(6398)+42d0*v(6484)+7d0*v(6557)+v(6582)+v(6518)*v(8119)+v(6531)*v(8123)+v(6557)*v(8131)+v& &(8155))/5040d0 v(6939)=statev(56)*v(6595)+statev(54)*v(6611)+v(6569)*v(7517) v(6903)=statev(58)*v(6569)+statev(53)*v(6595)+v(6611)*v(7516) v(6623)=statev(55)*v(6569)+statev(57)*v(6611)+v(6595)*v(7515) v(6583)=v(6582)+v(6559)*v(8119) v(8156)=5040d0*v(6266)+v(6583) v(6800)=(840d0*v(6668)+210d0*v(6703)+42d0*v(6738)+7d0*v(6749)+v(6788)+v(6749)*v(8131)+v(8156))/5040d0 v(6975)=statev(55)*v(6615)+statev(57)*v(6800)+v(6613)*v(7515) v(6916)=statev(56)*v(6613)+statev(54)*v(6800)+v(6615)*v(7517) v(6812)=statev(53)*v(6613)+statev(58)*v(6615)+v(6800)*v(7516) v(6596)=(840d0*v(6386)+210d0*v(6447)+42d0*v(6508)+7d0*v(6519)+v(6545)+v(6519)*v(8134)+v(8156))/5040d0 v(6940)=statev(56)*v(6596)+statev(54)*v(6613)+v(6570)*v(7517) v(6904)=statev(58)*v(6570)+statev(53)*v(6596)+v(6613)*v(7516) v(6624)=statev(55)*v(6570)+statev(57)*v(6613)+v(6596)*v(7515) v(6578)=v(585)*v(6768) v(6579)=v(6578)+v(6555)*v(8119) v(6591)=(2520d0*v(6322)+840d0*v(6381)+210d0*v(6444)+42d0*v(6505)+7d0*v(6516)+v(6542)+v(6579)+v(7522)*(v(565)*v(6516)-v& &(704)*v(8153)))/5040d0 v(6577)=v(6769)+v(6554)*v(8119) v(6590)=(2520d0*v(6321)+840d0*v(6380)+210d0*v(6443)+42d0*v(6504)+7d0*v(6515)+v(6541)+v(6577)+v(7522)*(v(565)*v(6515)-v& &(703)*v(8153)))/5040d0 v(6576)=v(7522)*(v(568)*v(6551)-v(585)*v(766)) v(6589)=(2520d0*v(6320)+840d0*v(6379)+210d0*v(6442)+42d0*v(6503)+7d0*v(6514)+v(6540)+v(6576)+v(7522)*(v(565)*v(6514)-v& &(702)*v(8153)))/5040d0 v(6575)=v(7522)*(v(568)*v(6550)-v(585)*v(765)) v(6588)=(2520d0*v(6319)+840d0*v(6378)+210d0*v(6441)+42d0*v(6502)+7d0*v(6513)+v(6539)+v(6575)+v(7522)*(v(565)*v(6513)-v& &(701)*v(8153)))/5040d0 v(6574)=v(7522)*(v(568)*v(6549)-v(585)*v(764)) v(6587)=(2520d0*v(6317)+840d0*v(6377)+210d0*v(6440)+42d0*v(6501)+7d0*v(6512)+v(6538)+v(6574)+v(7522)*(v(565)*v(6512)-v& &(700)*v(8153)))/5040d0 v(6573)=v(568)*v(8172) v(6586)=(2520d0*v(6316)+840d0*v(6376)+210d0*v(6439)+42d0*v(6500)+7d0*v(6511)+v(6537)+v(6573)+v(565)*v(8158))/5040d0 v(6572)=v(6427)/24d0+v(6463)/120d0+v(6536)/720d0+v(6609)+v(6881)+(v(6582)+v(6788)+(v(570)*v(6521)+v(567)*v(6536))*v& &(7522))/5040d0 v(7024)=statev(53)*v(6571)+statev(58)*v(6883)+v(6572)*v(7516) v(6977)=statev(55)*v(6572) v(6978)=statev(57)*v(6802)+v(6976)+v(6977) v(6942)=v(6572)*v(7517) v(6944)=statev(56)*v(6599)+v(6942)+v(6943) v(6930)=statev(57)*v(6572)+statev(55)*v(6883)+v(6571)*v(7515) v(6918)=statev(54)*v(6802)+v(6917)+v(6942) v(6906)=statev(58)*v(6572) v(6907)=statev(53)*v(6599)+v(6906)+v(7022) v(6894)=statev(56)*v(6571)+statev(54)*v(6572)+v(6883)*v(7517) v(6813)=v(6906)+v(7021)+v(6802)*v(7516) v(6626)=v(6928)+v(6977)+v(6599)*v(7515) v(6566)=(v(7522)*(v(570)*v(6516)+v(567)*v(6528)+v(569)*v(6555)-v(584)*v(737)-v(581)*v(782)-v(585)*v(783))+7d0*(360d0*v& &(6305)+120d0*v(6330)+30d0*v(6421)+6d0*v(6456)+v(6528)+v(8169)))/5040d0 v(6937)=statev(56)*v(6591)+statev(54)*v(6608)+v(6566)*v(7517) v(6901)=statev(58)*v(6566)+statev(53)*v(6591)+v(6608)*v(7516) v(6621)=statev(55)*v(6566)+statev(57)*v(6608)+v(6591)*v(7515) v(6565)=(2520d0*v(6303)+840d0*v(6329)+210d0*v(6420)+42d0*v(6455)+7d0*v(6527)+v(6773)+v(7522)*(v(570)*v(6515)+v(567)*v& &(6527)+v(569)*v(6554)-v(584)*v(736)-v(797)*v(8153)))/5040d0 v(6936)=statev(56)*v(6590)+statev(54)*v(6607)+v(6565)*v(7517) v(6900)=statev(58)*v(6565)+statev(53)*v(6590)+v(6607)*v(7516) v(6620)=statev(55)*v(6565)+statev(57)*v(6607)+v(6590)*v(7515) v(6564)=(2520d0*v(6300)+840d0*v(6328)+210d0*v(6419)+42d0*v(6454)+7d0*v(6526)+v(6578)+(v(570)*v(6514)+v(567)*v(6526)+v& &(569)*v(6551)-v(584)*v(735))*v(7522)+v(8159))/5040d0 v(6935)=statev(56)*v(6589)+statev(54)*v(6603)+v(6564)*v(7517) v(6899)=statev(58)*v(6564)+statev(53)*v(6589)+v(6603)*v(7516) v(6619)=statev(55)*v(6564)+statev(57)*v(6603)+v(6589)*v(7515) v(6563)=(7d0*(360d0*v(6298)+120d0*v(6326)+30d0*v(6416)+6d0*v(6452)+v(6524))+v(7522)*(v(570)*v(6513)+v(567)*v(6524)+v& &(569)*v(6550)-v(584)*v(734)-v(585)*v(781)-5040d0*v(796)-v(581)*v(796)))/5040d0 v(6934)=statev(56)*v(6588)+statev(54)*v(6602)+v(6563)*v(7517) v(6898)=statev(58)*v(6563)+statev(53)*v(6588)+v(6602)*v(7516) v(6618)=statev(55)*v(6563)+statev(57)*v(6602)+v(6588)*v(7515) v(6562)=(7d0*(360d0*v(6297)+120d0*v(6325)+30d0*v(6415)+6d0*v(6451)+v(6523))+v(7522)*(v(570)*v(6512)+v(567)*v(6523)+v& &(569)*v(6549)-v(584)*v(733)-v(585)*v(780)-5040d0*v(795)-v(581)*v(795)))/5040d0 v(6933)=statev(56)*v(6587)+statev(54)*v(6601)+v(6562)*v(7517) v(6897)=statev(58)*v(6562)+statev(53)*v(6587)+v(6601)*v(7516) v(6617)=statev(55)*v(6562)+statev(57)*v(6601)+v(6587)*v(7515) v(6561)=(2520d0*v(6296)+840d0*v(6324)+210d0*v(6414)+42d0*v(6450)+7d0*v(6522)+v(567)*v(8154)+v(569)*v(8157)+v(570)*v& &(8158)+v(569)*v(8160))/5040d0 v(6932)=statev(56)*v(6586)+statev(54)*v(6600)+v(6561)*v(7517) v(6896)=statev(58)*v(6561)+statev(53)*v(6586)+v(6600)*v(7516) v(6616)=statev(55)*v(6561)+statev(57)*v(6600)+v(6586)*v(7515) v(623)=(7d0*(360d0*v(573)+120d0*v(577)+30d0*v(579)+6d0*v(583)+v(584))+v(7522)*(v(567)*v(584)+v(569)*v(585)+v(570)*v& &(8153)))/5040d0 v(603)=v(585)*v(8119) v(8174)=5040d0+v(603) v(625)=(2520d0*v(571)+840d0*v(572)+210d0*v(575)+42d0*v(578)+7d0*v(581)+v(620)+v(8134)*v(8153)+v(8174))/5040d0 v(587)=(7d0*(360d0*v(574)+120d0*v(576)+30d0*v(580)+6d0*v(582)+v(585))+v(7522)*(v(569)*v(584)+v(566)*v(585)+v(568)*v& &(8153)))/5040d0 v(586)=statev(57)*v(587)+statev(55)*v(623)+v(625)*v(7515) v(589)=v(588)+v(605)+v(232)*v(6627) v(8161)=v(570)*v(574)+v(569)*v(589)+v(567)*v(593) v(6666)=v(589)*v(6592) v(6667)=v(6293)+v(6666)+v(6635)*v(8131) v(6664)=v(6273)+v(6292)+(v(566)*v(6634)-v(589)*v(714))*v(7522) v(6663)=v(6272)+v(6291)+(v(566)*v(6633)-v(589)*v(713))*v(7522) v(6662)=v(6271)+v(6290)+(v(566)*v(6632)-v(589)*v(712))*v(7522) v(6661)=v(6270)+v(6289)+(v(566)*v(6631)-v(589)*v(711))*v(7522) v(6660)=v(6269)+v(6288)+(v(566)*v(6629)-v(589)*v(710))*v(7522) v(6659)=v(6268)+v(6287)+v(566)*(v(589)*v(7518)+v(6628)*v(7522)) v(6647)=-v(6313)+v(6666)+(v(569)*v(6248)+v(567)*v(6267))*v(7522) v(6643)=v(6642)+v(7522)*(v(567)*v(6263)+v(570)*v(6285)+v(569)*v(6634)-v(593)*v(737)-v(589)*v(783)) v(6641)=v(7522)*(v(567)*v(6262)+v(570)*v(6283)+v(569)*v(6633)-v(593)*v(736)-v(589)*v(782)-v(574)*v(797)) v(6640)=v(6639)+v(7522)*(v(567)*v(6261)+v(570)*v(6282)+v(569)*v(6632)-v(593)*v(735)-v(589)*v(768)) v(6638)=v(7522)*(v(567)*v(6260)+v(570)*v(6280)+v(569)*v(6631)-v(593)*v(734)-v(589)*v(781)-v(574)*v(796)) v(6637)=v(7522)*(v(567)*v(6259)+v(570)*v(6279)+v(569)*v(6629)-v(593)*v(733)-v(589)*v(780)-v(574)*v(795)) v(6636)=(v(567)*v(6258)+v(570)*v(6278)+v(569)*v(6628))*v(7522)+v(7518)*v(8161) v(595)=v(7522)*v(8161) v(6679)=v(595)*v(6592) v(6681)=-v(6679)+(v(570)*v(6360)+v(567)*v(6646)+v(569)*v(6667))*v(7522) v(6690)=v(6681)*v(8123) v(6680)=-v(6679)+(v(570)*v(6358)+v(567)*v(6645)+v(569)*v(6665))*v(7522) v(6689)=v(6680)*v(8123) v(6735)=v(6409)+v(6689)+v(6700)*v(8131) v(6658)=v(6679)+v(6647)*v(8123) v(6847)=v(6349)+v(6658)+v(6835)*v(8128) v(6705)=v(6375)+v(6658)+v(6670)*v(8131) v(6653)=v(7522)*(v(569)*v(6643)-v(595)*v(783)) v(6652)=v(7522)*(v(569)*v(6641)-v(595)*v(782)) v(6651)=v(7522)*(v(569)*v(6640)-v(595)*v(768)) v(6650)=v(7522)*(v(569)*v(6638)-v(595)*v(781)) v(6649)=v(7522)*(v(569)*v(6637)-v(595)*v(780)) v(6648)=v(569)*(v(595)*v(7518)+v(6636)*v(7522)) v(611)=v(595)*v(8123) v(591)=v(590)+v(609)+v(589)*v(8131) v(8162)=v(570)*v(576)+v(569)*v(591)+v(567)*v(595) v(6701)=v(591)*v(6592) v(6702)=v(6372)+v(6655)+v(6701)+v(6667)*v(8131) v(6699)=v(6370)+v(6653)+(v(566)*v(6664)-v(591)*v(714))*v(7522) v(6698)=v(6369)+v(6652)+(v(566)*v(6663)-v(591)*v(713))*v(7522) v(6697)=v(6368)+v(6651)+(v(566)*v(6662)-v(591)*v(712))*v(7522) v(6696)=v(6367)+v(6650)+(v(566)*v(6661)-v(591)*v(711))*v(7522) v(6695)=v(6366)+v(6649)+(v(566)*v(6660)-v(591)*v(710))*v(7522) v(6694)=v(6365)+v(6648)+v(566)*(v(591)*v(7518)+v(6659)*v(7522)) v(6682)=v(6425)+v(6701)+(v(567)*v(6647)+v(569)*v(6670))*v(7522) v(6678)=v(6677)+v(7522)*(v(570)*v(6357)+v(567)*v(6643)+v(569)*v(6664)-v(595)*v(737)-v(591)*v(783)) v(6676)=v(7522)*(v(570)*v(6356)+v(567)*v(6641)+v(569)*v(6663)-v(595)*v(736)-v(591)*v(782)-v(576)*v(797)) v(6675)=v(6674)+v(7522)*(v(570)*v(6353)+v(567)*v(6640)+v(569)*v(6662)-v(595)*v(735)-v(591)*v(768)) v(6673)=v(7522)*(v(570)*v(6352)+v(567)*v(6638)+v(569)*v(6661)-v(595)*v(734)-v(591)*v(781)-v(576)*v(796)) v(6672)=v(7522)*(v(570)*v(6351)+v(567)*v(6637)+v(569)*v(6660)-v(595)*v(733)-v(591)*v(780)-v(576)*v(795)) v(6671)=(v(570)*v(6350)+v(567)*v(6636)+v(569)*v(6659))*v(7522)+v(7518)*v(8162) v(599)=v(7522)*v(8162) v(6714)=v(599)*v(6592) v(6716)=-v(6714)+(v(570)*v(6398)+v(567)*v(6681)+v(569)*v(6702))*v(7522) v(6725)=v(6716)*v(8123) v(6715)=-v(6714)+(v(570)*v(6396)+v(567)*v(6680)+v(569)*v(6700))*v(7522) v(6724)=v(6715)*v(8123) v(6747)=v(6495)+v(6724)+v(6735)*v(8131) v(6693)=v(6714)+v(6682)*v(8123) v(6859)=v(6438)+v(6693)+v(6847)*v(8128) v(6740)=v(6413)+v(6693)+v(6705)*v(8131) v(6688)=v(7522)*(v(569)*v(6678)-v(599)*v(783)) v(6687)=v(7522)*(v(569)*v(6676)-v(599)*v(782)) v(6686)=v(7522)*(v(569)*v(6675)-v(599)*v(768)) v(6685)=v(7522)*(v(569)*v(6673)-v(599)*v(781)) v(6684)=v(7522)*(v(569)*v(6672)-v(599)*v(780)) v(6683)=v(569)*(v(599)*v(7518)+v(6671)*v(7522)) v(615)=v(599)*v(8123) v(594)=v(592)+v(611)+v(591)*v(8131) v(8163)=v(570)*v(580)+v(569)*v(594)+v(567)*v(599) v(6736)=v(594)*v(6592) v(6737)=v(6410)+v(6690)+v(6736)+v(6702)*v(8131) v(6734)=v(6408)+v(6688)+(v(566)*v(6699)-v(594)*v(714))*v(7522) v(6733)=v(6407)+v(6687)+(v(566)*v(6698)-v(594)*v(713))*v(7522) v(6732)=v(6406)+v(6686)+(v(566)*v(6697)-v(594)*v(712))*v(7522) v(6731)=v(6405)+v(6685)+(v(566)*v(6696)-v(594)*v(711))*v(7522) v(6730)=v(6404)+v(6684)+(v(566)*v(6695)-v(594)*v(710))*v(7522) v(6729)=v(6403)+v(6683)+v(566)*(v(594)*v(7518)+v(6694)*v(7522)) v(6717)=v(6736)+(v(570)*v(6402)+v(567)*v(6682)+v(569)*v(6705))*v(7522) v(6713)=v(6712)+v(7522)*(v(570)*v(6395)+v(567)*v(6678)+v(569)*v(6699)-v(599)*v(737)-v(594)*v(783)) v(6711)=v(7522)*(v(570)*v(6394)+v(567)*v(6676)+v(569)*v(6698)-v(599)*v(736)-v(594)*v(782)-v(580)*v(797)) v(6710)=v(6709)+v(7522)*(v(570)*v(6392)+v(567)*v(6675)+v(569)*v(6697)-v(599)*v(735)-v(594)*v(768)) v(6708)=v(7522)*(v(570)*v(6391)+v(567)*v(6673)+v(569)*v(6696)-v(599)*v(734)-v(594)*v(781)-v(580)*v(796)) v(6707)=v(7522)*(v(570)*v(6390)+v(567)*v(6672)+v(569)*v(6695)-v(599)*v(733)-v(594)*v(780)-v(580)*v(795)) v(6706)=(v(570)*v(6389)+v(567)*v(6671)+v(569)*v(6694))*v(7522)+v(7518)*v(8163) v(601)=v(7522)*v(8163) v(6760)=v(601)*v(6592) v(6762)=-v(6760)+(v(570)*v(6484)+v(567)*v(6716)+v(569)*v(6737))*v(7522) v(6787)=v(6762)*v(8123) v(6761)=-v(6760)+(v(570)*v(6483)+v(567)*v(6715)+v(569)*v(6735))*v(7522) v(6786)=v(6761)*v(8123) v(6797)=(v(6580)+840d0*v(6665)+210d0*v(6700)+42d0*v(6735)+7d0*v(6747)+v(6786)+v(6747)*v(8131))/5040d0 v(6728)=v(6760)+v(6717)*v(8123) v(6871)=v(6474)+v(6728)+v(6859)*v(8128) v(6751)=v(6499)+v(6728)+v(6740)*v(8131) v(6723)=v(7522)*(v(569)*v(6713)-v(601)*v(783)) v(6722)=v(7522)*(v(569)*v(6711)-v(601)*v(782)) v(6721)=v(7522)*(v(569)*v(6710)-v(601)*v(768)) v(6720)=v(7522)*(v(569)*v(6708)-v(601)*v(781)) v(6719)=v(7522)*(v(569)*v(6707)-v(601)*v(780)) v(6718)=v(569)*(v(601)*v(7518)+v(6706)*v(7522)) v(617)=v(601)*v(8123) v(597)=v(596)+v(615)+v(594)*v(8131) v(8166)=v(570)*v(582)+v(569)*v(597)+v(567)*v(601) v(6763)=v(597)*v(6592) v(6764)=v(6763)+(v(570)*v(6488)+v(567)*v(6717)+v(569)*v(6740))*v(7522) v(6759)=v(6758)+v(7522)*(v(570)*v(6482)+v(567)*v(6713)+v(569)*v(6734)-v(601)*v(737)-v(597)*v(783)) v(6757)=v(7522)*(v(570)*v(6481)+v(567)*v(6711)+v(569)*v(6733)-v(601)*v(736)-v(597)*v(782)-v(582)*v(797)) v(6756)=v(6755)+v(7522)*(v(570)*v(6478)+v(567)*v(6710)+v(569)*v(6732)-v(601)*v(735)-v(597)*v(768)) v(6754)=v(7522)*(v(570)*v(6477)+v(567)*v(6708)+v(569)*v(6731)-v(601)*v(734)-v(597)*v(781)-v(582)*v(796)) v(6753)=v(7522)*(v(570)*v(6476)+v(567)*v(6707)+v(569)*v(6730)-v(601)*v(733)-v(597)*v(780)-v(582)*v(795)) v(6752)=(v(570)*v(6475)+v(567)*v(6706)+v(569)*v(6729))*v(7522)+v(7518)*v(8166) v(8171)=v(6752)*v(7522) v(6748)=v(6496)+v(6725)+v(6763)+v(6737)*v(8131) v(6746)=v(6494)+v(6723)+(v(566)*v(6734)-v(597)*v(714))*v(7522) v(6745)=v(6493)+v(6722)+(v(566)*v(6733)-v(597)*v(713))*v(7522) v(6744)=v(6492)+v(6721)+(v(566)*v(6732)-v(597)*v(712))*v(7522) v(6743)=v(6491)+v(6720)+(v(566)*v(6731)-v(597)*v(711))*v(7522) v(6742)=v(6490)+v(6719)+(v(566)*v(6730)-v(597)*v(710))*v(7522) v(6741)=v(6489)+v(6718)+v(566)*(v(597)*v(7518)+v(6729)*v(7522)) v(600)=v(598)+v(617)+v(597)*v(8131) v(8167)=5040d0+v(600) v(8173)=v(6741)*v(7522)+v(7518)*v(8167) v(6798)=v(600)*v(6592) v(8165)=v(6798)+v(8164) v(6799)=v(6306)+(v(6581)+840d0*v(6667)+210d0*v(6702)+42d0*v(6737)+7d0*v(6748)+v(6787)+v(6748)*v(8131)+v(8165))/5040d0 v(6779)=(2520d0*v(6267)+840d0*v(6647)+210d0*v(6682)+42d0*v(6717)+7d0*v(6764)+(v(570)*v(6560)+v(569)*v(6751)+v(567)*v& &(6764))*v(7522)+v(8165))/5040d0 v(602)=v(7522)*v(8166) v(8170)=v(602)*v(7518) v(6785)=v(7522)*(v(569)*v(6759)-v(602)*v(783)) v(6796)=(v(6579)+2520d0*v(6634)+840d0*v(6664)+210d0*v(6699)+42d0*v(6734)+7d0*v(6746)+v(6785)+v(7522)*(v(566)*v(6746)-v& &(714)*v(8167)))/5040d0 v(6784)=v(7522)*(v(569)*v(6757)-v(602)*v(782)) v(6795)=(v(6577)+2520d0*v(6633)+840d0*v(6663)+210d0*v(6698)+42d0*v(6733)+7d0*v(6745)+v(6784)+v(7522)*(v(566)*v(6745)-v& &(713)*v(8167)))/5040d0 v(6783)=v(7522)*(v(569)*v(6756)-v(602)*v(768)) v(6794)=(v(6576)+2520d0*v(6632)+840d0*v(6662)+210d0*v(6697)+42d0*v(6732)+7d0*v(6744)+v(6783)+v(7522)*(v(566)*v(6744)-v& &(712)*v(8167)))/5040d0 v(6782)=v(7522)*(v(569)*v(6754)-v(602)*v(781)) v(6793)=(v(6575)+2520d0*v(6631)+840d0*v(6661)+210d0*v(6696)+42d0*v(6731)+7d0*v(6743)+v(6782)+v(7522)*(v(566)*v(6743)-v& &(711)*v(8167)))/5040d0 v(6781)=v(7522)*(v(569)*v(6753)-v(602)*v(780)) v(6792)=(v(6574)+2520d0*v(6629)+840d0*v(6660)+210d0*v(6695)+42d0*v(6730)+7d0*v(6742)+v(6781)+v(7522)*(v(566)*v(6742)-v& &(710)*v(8167)))/5040d0 v(6780)=v(569)*(v(8170)+v(8171)) v(6791)=(v(6573)+2520d0*v(6628)+840d0*v(6659)+210d0*v(6694)+42d0*v(6729)+7d0*v(6741)+v(6780)+v(566)*v(8173))/5040d0 v(6777)=-(v(602)*v(6592)) v(6790)=-v(6777)+v(6764)*v(8123) v(8168)=(-5040d0)*v(6264)+v(6790) v(6884)=(v(6547)+840d0*v(6835)+210d0*v(6847)+42d0*v(6859)+7d0*v(6871)+v(6871)*v(8128)+v(8168))/5040d0 v(7025)=statev(53)*v(6572)+statev(58)*v(6884)+v(6779)*v(7516) v(6931)=statev(57)*v(6779)+statev(55)*v(6884)+v(6572)*v(7515) v(6895)=statev(56)*v(6572)+statev(54)*v(6779)+v(6884)*v(7517) v(6803)=(v(6585)+840d0*v(6670)+210d0*v(6705)+42d0*v(6740)+7d0*v(6751)+v(6751)*v(8131)+v(8168))/5040d0 v(6979)=statev(55)*v(6779)+statev(57)*v(6803)+v(6615)*v(7515) v(6919)=statev(56)*v(6615)+statev(54)*v(6803)+v(6779)*v(7517) v(6814)=statev(53)*v(6615)+statev(58)*v(6779)+v(6803)*v(7516) v(6778)=(840d0*v(6646)+210d0*v(6681)+42d0*v(6716)+7d0*v(6762)+v(6777)+(v(570)*v(6557)+v(569)*v(6748)+v(567)*v(6762))*v& &(7522))/5040d0 v(6974)=statev(55)*v(6778)+statev(57)*v(6799)+v(6611)*v(7515) v(6915)=statev(56)*v(6611)+statev(54)*v(6799)+v(6778)*v(7517) v(6811)=statev(53)*v(6611)+statev(58)*v(6778)+v(6799)*v(7516) v(6776)=(840d0*v(6645)+210d0*v(6680)+42d0*v(6715)+7d0*v(6761)-5040d0*v(6775)+v(6777)+(v(570)*v(6556)+v(569)*v(6747)+v& &(567)*v(6761))*v(7522))/5040d0 v(6973)=statev(55)*v(6776)+statev(57)*v(6797)+v(6610)*v(7515) v(6914)=statev(56)*v(6610)+statev(54)*v(6797)+v(6776)*v(7517) v(6810)=statev(53)*v(6610)+statev(58)*v(6776)+v(6797)*v(7516) v(6774)=(2520d0*v(6263)+840d0*v(6643)+210d0*v(6678)+42d0*v(6713)+7d0*v(6759)+v(6773)+v(7522)*(v(570)*v(6555)+v(569)*v& &(6746)+v(567)*v(6759)-v(602)*v(737)-v(783)*v(8167)))/5040d0 v(6972)=statev(55)*v(6774)+statev(57)*v(6796)+v(6608)*v(7515) v(6913)=statev(56)*v(6608)+statev(54)*v(6796)+v(6774)*v(7517) v(6809)=statev(53)*v(6608)+statev(58)*v(6774)+v(6796)*v(7516) v(6772)=(v(7522)*(v(570)*v(6554)+v(569)*v(6745)+v(567)*v(6757)-v(602)*v(736)-v(600)*v(782)-v(585)*v(797))+7d0*(360d0*v& &(6262)+120d0*v(6641)+30d0*v(6676)+6d0*v(6711)+v(6757)+v(8169)))/5040d0 v(6971)=statev(55)*v(6772)+statev(57)*v(6795)+v(6607)*v(7515) v(6912)=statev(56)*v(6607)+statev(54)*v(6795)+v(6772)*v(7517) v(6808)=statev(53)*v(6607)+statev(58)*v(6772)+v(6795)*v(7516) v(6770)=(2520d0*v(6261)+840d0*v(6640)+210d0*v(6675)+42d0*v(6710)+7d0*v(6756)+5040d0*v(6768)+v(6769)+v(7522)*(v(570)*v& &(6551)+v(569)*v(6744)+v(567)*v(6756)-v(602)*v(735)-v(600)*v(768)))/5040d0 v(6970)=statev(55)*v(6770)+statev(57)*v(6794)+v(6603)*v(7515) v(6911)=statev(56)*v(6603)+statev(54)*v(6794)+v(6770)*v(7517) v(6807)=statev(53)*v(6603)+statev(58)*v(6770)+v(6794)*v(7516) v(6767)=(7d0*(360d0*v(6260)+120d0*v(6638)+30d0*v(6673)+6d0*v(6708)+v(6754))+v(7522)*(v(570)*v(6550)+v(569)*v(6743)+v& &(567)*v(6754)-v(602)*v(734)-v(585)*v(796)-v(781)*v(8167)))/5040d0 v(6969)=statev(55)*v(6767)+statev(57)*v(6793)+v(6602)*v(7515) v(6910)=statev(56)*v(6602)+statev(54)*v(6793)+v(6767)*v(7517) v(6806)=statev(53)*v(6602)+statev(58)*v(6767)+v(6793)*v(7516) v(6766)=(7d0*(360d0*v(6259)+120d0*v(6637)+30d0*v(6672)+6d0*v(6707)+v(6753))+v(7522)*(v(570)*v(6549)+v(569)*v(6742)+v& &(567)*v(6753)-v(602)*v(733)-v(585)*v(795)-v(780)*v(8167)))/5040d0 v(6968)=statev(55)*v(6766)+statev(57)*v(6792)+v(6601)*v(7515) v(6909)=statev(56)*v(6601)+statev(54)*v(6792)+v(6766)*v(7517) v(6805)=statev(53)*v(6601)+statev(58)*v(6766)+v(6792)*v(7516) v(6765)=(2520d0*v(6258)+840d0*v(6636)+210d0*v(6671)+42d0*v(6706)+7d0*v(6752)+v(567)*v(8170)+v(567)*v(8171)+v(570)*v& &(8172)+v(569)*v(8173))/5040d0 v(6967)=statev(55)*v(6765)+statev(57)*v(6791)+v(6600)*v(7515) v(6908)=statev(56)*v(6600)+statev(54)*v(6791)+v(6765)*v(7517) v(6804)=statev(53)*v(6600)+statev(58)*v(6765)+v(6791)*v(7516) v(622)=(7d0*(360d0*v(593)+120d0*v(595)+30d0*v(599)+6d0*v(601)+v(602))+v(7522)*(v(570)*v(585)+v(567)*v(602)+v(569)*v& &(8167)))/5040d0 v(621)=v(602)*v(8123) v(627)=(2520d0*v(589)+840d0*v(591)+210d0*v(594)+42d0*v(597)+7d0*v(600)+v(621)+v(8131)*v(8167)+v(8174))/5040d0 v(604)=statev(53)*v(587)+statev(58)*v(622)+v(627)*v(7516) v(607)=v(605)+v(606)+v(232)*v(6815) v(6831)=-(v(607)*v(6592)) v(6833)=v(6313)+v(6831)+v(6832) v(6830)=v(6274)-v(6313)+v(6833) v(6829)=v(6273)+v(6312)+(v(567)*v(6822)-v(607)*v(737))*v(7522) v(6828)=v(6272)+v(6311)+(v(567)*v(6821)-v(607)*v(736))*v(7522) v(6827)=v(6271)+v(6310)+(v(567)*v(6820)-v(607)*v(735))*v(7522) v(6826)=v(6270)+v(6309)+(v(567)*v(6819)-v(607)*v(734))*v(7522) v(6825)=v(6269)+v(6308)+(v(567)*v(6817)-v(607)*v(733))*v(7522) v(6824)=v(6268)+v(6307)+v(567)*(v(607)*v(7518)+v(6816)*v(7522)) v(610)=v(608)+v(609)+v(607)*v(8128) v(6843)=-(v(610)*v(6592)) v(6844)=v(6346)+v(6655)+v(6843)+v(6833)*v(8128) v(6842)=v(6345)+v(6654)+v(6843)+v(6830)*v(8128) v(6841)=v(6344)+v(6653)+(v(567)*v(6829)-v(610)*v(737))*v(7522) v(6840)=v(6343)+v(6652)+(v(567)*v(6828)-v(610)*v(736))*v(7522) v(6839)=v(6342)+v(6651)+(v(567)*v(6827)-v(610)*v(735))*v(7522) v(6838)=v(6341)+v(6650)+(v(567)*v(6826)-v(610)*v(734))*v(7522) v(6837)=v(6340)+v(6649)+(v(567)*v(6825)-v(610)*v(733))*v(7522) v(6836)=v(6339)+v(6648)+v(567)*(v(610)*v(7518)+v(6824)*v(7522)) v(613)=v(611)+v(612)+v(610)*v(8128) v(6855)=-(v(613)*v(6592)) v(6856)=v(6435)+v(6690)+v(6855)+v(6844)*v(8128) v(6854)=v(6434)+v(6689)+v(6855)+v(6842)*v(8128) v(6853)=v(6433)+v(6688)+(v(567)*v(6841)-v(613)*v(737))*v(7522) v(6852)=v(6432)+v(6687)+(v(567)*v(6840)-v(613)*v(736))*v(7522) v(6851)=v(6431)+v(6686)+(v(567)*v(6839)-v(613)*v(735))*v(7522) v(6850)=v(6430)+v(6685)+(v(567)*v(6838)-v(613)*v(734))*v(7522) v(6849)=v(6429)+v(6684)+(v(567)*v(6837)-v(613)*v(733))*v(7522) v(6848)=v(6428)+v(6683)+v(567)*(v(613)*v(7518)+v(6836)*v(7522)) v(616)=v(614)+v(615)+v(613)*v(8128) v(6867)=-(v(616)*v(6592)) v(6868)=v(6471)+v(6725)+v(6867)+v(6856)*v(8128) v(6866)=v(6470)+v(6724)+v(6867)+v(6854)*v(8128) v(6865)=v(6469)+v(6723)+(v(567)*v(6853)-v(616)*v(737))*v(7522) v(6864)=v(6468)+v(6722)+(v(567)*v(6852)-v(616)*v(736))*v(7522) v(6863)=v(6467)+v(6721)+(v(567)*v(6851)-v(616)*v(735))*v(7522) v(6862)=v(6466)+v(6720)+(v(567)*v(6850)-v(616)*v(734))*v(7522) v(6861)=v(6465)+v(6719)+(v(567)*v(6849)-v(616)*v(733))*v(7522) v(6860)=v(6464)+v(6718)+v(567)*(v(616)*v(7518)+v(6848)*v(7522)) v(619)=v(617)+v(618)+v(616)*v(8128) v(8176)=5040d0+v(619) v(6879)=-(v(619)*v(6592)) v(8175)=(-5040d0)*v(6286)+v(6879)-v(8164) v(6880)=(v(6544)+v(6787)+840d0*v(6833)+210d0*v(6844)+42d0*v(6856)+7d0*v(6868)+v(6868)*v(8128)+v(8175))/5040d0 v(7020)=statev(53)*v(6569)+statev(58)*v(6880)+v(6778)*v(7516) v(6927)=statev(57)*v(6778)+statev(55)*v(6880)+v(6569)*v(7515) v(6892)=statev(56)*v(6569)+statev(54)*v(6778)+v(6880)*v(7517) v(6878)=(v(6543)+v(6786)+840d0*v(6830)+210d0*v(6842)+42d0*v(6854)+7d0*v(6866)+v(6866)*v(8128)+v(8175))/5040d0 v(7019)=statev(53)*v(6568)+statev(58)*v(6878)+v(6776)*v(7516) v(6926)=statev(57)*v(6776)+statev(55)*v(6878)+v(6568)*v(7515) v(6891)=statev(56)*v(6568)+statev(54)*v(6776)+v(6878)*v(7517) v(6877)=(v(6542)+v(6785)+2520d0*v(6822)+840d0*v(6829)+210d0*v(6841)+42d0*v(6853)+7d0*v(6865)+v(7522)*(v(567)*v(6865)-v& &(737)*v(8176)))/5040d0 v(7018)=statev(53)*v(6566)+statev(58)*v(6877)+v(6774)*v(7516) v(6925)=statev(57)*v(6774)+statev(55)*v(6877)+v(6566)*v(7515) v(6890)=statev(56)*v(6566)+statev(54)*v(6774)+v(6877)*v(7517) v(6876)=(v(6541)+v(6784)+2520d0*v(6821)+840d0*v(6828)+210d0*v(6840)+42d0*v(6852)+7d0*v(6864)+v(7522)*(v(567)*v(6864)-v& &(736)*v(8176)))/5040d0 v(7017)=statev(53)*v(6565)+statev(58)*v(6876)+v(6772)*v(7516) v(6924)=statev(57)*v(6772)+statev(55)*v(6876)+v(6565)*v(7515) v(6889)=statev(56)*v(6565)+statev(54)*v(6772)+v(6876)*v(7517) v(6875)=(v(6540)+v(6783)+2520d0*v(6820)+840d0*v(6827)+210d0*v(6839)+42d0*v(6851)+7d0*v(6863)+v(7522)*(v(567)*v(6863)-v& &(735)*v(8176)))/5040d0 v(7016)=statev(53)*v(6564)+statev(58)*v(6875)+v(6770)*v(7516) v(6923)=statev(57)*v(6770)+statev(55)*v(6875)+v(6564)*v(7515) v(6888)=statev(56)*v(6564)+statev(54)*v(6770)+v(6875)*v(7517) v(6874)=(v(6539)+v(6782)+2520d0*v(6819)+840d0*v(6826)+210d0*v(6838)+42d0*v(6850)+7d0*v(6862)+v(7522)*(v(567)*v(6862)-v& &(734)*v(8176)))/5040d0 v(7015)=statev(53)*v(6563)+statev(58)*v(6874)+v(6767)*v(7516) v(6922)=statev(57)*v(6767)+statev(55)*v(6874)+v(6563)*v(7515) v(6887)=statev(56)*v(6563)+statev(54)*v(6767)+v(6874)*v(7517) v(6873)=(v(6538)+v(6781)+2520d0*v(6817)+840d0*v(6825)+210d0*v(6837)+42d0*v(6849)+7d0*v(6861)+v(7522)*(v(567)*v(6861)-v& &(733)*v(8176)))/5040d0 v(7014)=statev(53)*v(6562)+statev(58)*v(6873)+v(6766)*v(7516) v(6921)=statev(57)*v(6766)+statev(55)*v(6873)+v(6562)*v(7515) v(6886)=statev(56)*v(6562)+statev(54)*v(6766)+v(6873)*v(7517) v(6872)=(v(6537)+v(6780)+2520d0*v(6816)+840d0*v(6824)+210d0*v(6836)+42d0*v(6848)+7d0*v(6860)+v(567)*(v(6860)*v(7522)+v& &(7518)*v(8176)))/5040d0 v(7013)=statev(53)*v(6561)+statev(58)*v(6872)+v(6765)*v(7516) v(6920)=statev(57)*v(6765)+statev(55)*v(6872)+v(6561)*v(7515) v(6885)=statev(56)*v(6561)+statev(54)*v(6765)+v(6872)*v(7517) v(629)=(5040d0+2520d0*v(607)+840d0*v(610)+210d0*v(613)+42d0*v(616)+7d0*v(619)+v(620)+v(621)+v(8128)*v(8176))/5040d0 v(624)=statev(54)*v(622)+statev(56)*v(623)+v(629)*v(7517) v(626)=statev(58)*v(623)+statev(53)*v(625)+v(587)*v(7516) v(628)=statev(56)*v(587)+statev(54)*v(627)+v(622)*v(7517) v(630)=statev(57)*v(622)+statev(55)*v(629)+v(623)*v(7515) v(631)=statev(54)*v(587)+statev(56)*v(625)+v(623)*v(7517) v(6966)=v(624)*v(6626)+v(586)*v(6895)-v(631)*v(6931)-v(630)*v(6944) v(6965)=v(624)*v(6625)+v(586)*v(6894)-v(631)*v(6930)-v(630)*v(6941) v(6964)=v(624)*v(6624)+v(586)*v(6893)-v(631)*v(6929)-v(630)*v(6940) v(6963)=v(624)*v(6623)+v(586)*v(6892)-v(631)*v(6927)-v(630)*v(6939) v(6962)=v(624)*v(6622)+v(586)*v(6891)-v(631)*v(6926)-v(630)*v(6938) v(6961)=v(624)*v(6621)+v(586)*v(6890)-v(631)*v(6925)-v(630)*v(6937) v(6960)=v(624)*v(6620)+v(586)*v(6889)-v(631)*v(6924)-v(630)*v(6936) v(6959)=v(624)*v(6619)+v(586)*v(6888)-v(631)*v(6923)-v(630)*v(6935) v(6958)=v(624)*v(6618)+v(586)*v(6887)-v(631)*v(6922)-v(630)*v(6934) v(6957)=v(624)*v(6617)+v(586)*v(6886)-v(631)*v(6921)-v(630)*v(6933) v(6956)=v(624)*v(6616)+v(586)*v(6885)-v(631)*v(6920)-v(630)*v(6932) v(6955)=-(v(631)*v(6814))+v(628)*v(6907)+v(626)*v(6919)-v(604)*v(6944) v(6954)=-(v(631)*v(6813))+v(628)*v(6905)+v(626)*v(6918)-v(604)*v(6941) v(6953)=-(v(631)*v(6812))+v(628)*v(6904)+v(626)*v(6916)-v(604)*v(6940) v(6952)=-(v(631)*v(6811))+v(628)*v(6903)+v(626)*v(6915)-v(604)*v(6939) v(6951)=-(v(631)*v(6810))+v(628)*v(6902)+v(626)*v(6914)-v(604)*v(6938) v(6950)=-(v(631)*v(6809))+v(628)*v(6901)+v(626)*v(6913)-v(604)*v(6937) v(6949)=-(v(631)*v(6808))+v(628)*v(6900)+v(626)*v(6912)-v(604)*v(6936) v(6948)=-(v(631)*v(6807))+v(628)*v(6899)+v(626)*v(6911)-v(604)*v(6935) v(6947)=-(v(631)*v(6806))+v(628)*v(6898)+v(626)*v(6910)-v(604)*v(6934) v(6946)=-(v(631)*v(6805))+v(628)*v(6897)+v(626)*v(6909)-v(604)*v(6933) v(6945)=-(v(631)*v(6804))+v(628)*v(6896)+v(626)*v(6908)-v(604)*v(6932) v(674)=v(626)*v(628)-v(604)*v(631) v(7374)=(v(674)*v(674)) v(666)=v(586)*v(624)-v(630)*v(631) v(7344)=(v(666)*v(666)) v(632)=statev(55)*v(622)+statev(57)*v(627)+v(587)*v(7515) v(7012)=-(v(632)*v(6895))+v(630)*v(6919)+v(628)*v(6931)-v(624)*v(6979) v(7011)=-(v(632)*v(6894))+v(630)*v(6918)+v(628)*v(6930)-v(624)*v(6978) v(7010)=-(v(632)*v(6893))+v(630)*v(6916)+v(628)*v(6929)-v(624)*v(6975) v(7009)=-(v(632)*v(6892))+v(630)*v(6915)+v(628)*v(6927)-v(624)*v(6974) v(7008)=-(v(632)*v(6891))+v(630)*v(6914)+v(628)*v(6926)-v(624)*v(6973) v(7007)=-(v(632)*v(6890))+v(630)*v(6913)+v(628)*v(6925)-v(624)*v(6972) v(7006)=-(v(632)*v(6889))+v(630)*v(6912)+v(628)*v(6924)-v(624)*v(6971) v(7005)=-(v(632)*v(6888))+v(630)*v(6911)+v(628)*v(6923)-v(624)*v(6970) v(7004)=-(v(632)*v(6887))+v(630)*v(6910)+v(628)*v(6922)-v(624)*v(6969) v(7003)=-(v(632)*v(6886))+v(630)*v(6909)+v(628)*v(6921)-v(624)*v(6968) v(7002)=-(v(632)*v(6885))+v(630)*v(6908)+v(628)*v(6920)-v(624)*v(6967) v(7001)=-(v(628)*v(6626))-v(586)*v(6919)+v(632)*v(6944)+v(631)*v(6979) v(7000)=-(v(628)*v(6625))-v(586)*v(6918)+v(632)*v(6941)+v(631)*v(6978) v(6999)=-(v(628)*v(6624))-v(586)*v(6916)+v(632)*v(6940)+v(631)*v(6975) v(6998)=-(v(628)*v(6623))-v(586)*v(6915)+v(632)*v(6939)+v(631)*v(6974) v(6997)=-(v(628)*v(6622))-v(586)*v(6914)+v(632)*v(6938)+v(631)*v(6973) v(6996)=-(v(628)*v(6621))-v(586)*v(6913)+v(632)*v(6937)+v(631)*v(6972) v(6995)=-(v(628)*v(6620))-v(586)*v(6912)+v(632)*v(6936)+v(631)*v(6971) v(6994)=-(v(628)*v(6619))-v(586)*v(6911)+v(632)*v(6935)+v(631)*v(6970) v(6993)=-(v(628)*v(6618))-v(586)*v(6910)+v(632)*v(6934)+v(631)*v(6969) v(6992)=-(v(628)*v(6617))-v(586)*v(6909)+v(632)*v(6933)+v(631)*v(6968) v(6991)=-(v(628)*v(6616))-v(586)*v(6908)+v(632)*v(6932)+v(631)*v(6967) v(6990)=v(604)*v(6626)+v(586)*v(6814)-v(632)*v(6907)-v(626)*v(6979) v(6989)=v(604)*v(6625)+v(586)*v(6813)-v(632)*v(6905)-v(626)*v(6978) v(6988)=v(604)*v(6624)+v(586)*v(6812)-v(632)*v(6904)-v(626)*v(6975) v(6987)=v(604)*v(6623)+v(586)*v(6811)-v(632)*v(6903)-v(626)*v(6974) v(6986)=v(604)*v(6622)+v(586)*v(6810)-v(632)*v(6902)-v(626)*v(6973) v(6985)=v(604)*v(6621)+v(586)*v(6809)-v(632)*v(6901)-v(626)*v(6972) v(6984)=v(604)*v(6620)+v(586)*v(6808)-v(632)*v(6900)-v(626)*v(6971) v(6983)=v(604)*v(6619)+v(586)*v(6807)-v(632)*v(6899)-v(626)*v(6970) v(6982)=v(604)*v(6618)+v(586)*v(6806)-v(632)*v(6898)-v(626)*v(6969) v(6981)=v(604)*v(6617)+v(586)*v(6805)-v(632)*v(6897)-v(626)*v(6968) v(6980)=v(604)*v(6616)+v(586)*v(6804)-v(632)*v(6896)-v(626)*v(6967) v(675)=v(586)*v(604)-v(626)*v(632) v(7375)=(v(675)*v(675)) v(673)=-(v(586)*v(628))+v(631)*v(632) v(7373)=(v(673)*v(673)) v(8184)=v(7373)+v(7374)+v(7375) v(667)=v(628)*v(630)-v(624)*v(632) v(7327)=(v(667)*v(667)) v(633)=statev(53)*v(623)+statev(58)*v(629)+v(622)*v(7516) v(7314)=v(633)*v(673)+v(630)*v(674)+v(624)*v(675) v(7316)=1d0/v(7314)**3 v(8177)=(-2d0)*v(7316) v(7326)=(v(675)*v(6895)+v(674)*v(6931)+v(630)*v(6955)+v(624)*v(6990)+v(633)*v(7001)+v(673)*v(7025))*v(8177) v(7325)=(v(675)*v(6894)+v(674)*v(6930)+v(630)*v(6954)+v(624)*v(6989)+v(633)*v(7000)+v(673)*v(7024))*v(8177) v(7324)=(v(675)*v(6893)+v(674)*v(6929)+v(630)*v(6953)+v(624)*v(6988)+v(633)*v(6999)+v(673)*v(7023))*v(8177) v(7323)=(v(675)*v(6892)+v(674)*v(6927)+v(630)*v(6952)+v(624)*v(6987)+v(633)*v(6998)+v(673)*v(7020))*v(8177) v(7322)=(v(675)*v(6891)+v(674)*v(6926)+v(630)*v(6951)+v(624)*v(6986)+v(633)*v(6997)+v(673)*v(7019))*v(8177) v(7321)=(v(675)*v(6890)+v(674)*v(6925)+v(630)*v(6950)+v(624)*v(6985)+v(633)*v(6996)+v(673)*v(7018))*v(8177) v(7320)=(v(675)*v(6889)+v(674)*v(6924)+v(630)*v(6949)+v(624)*v(6984)+v(633)*v(6995)+v(673)*v(7017))*v(8177) v(7319)=(v(675)*v(6888)+v(674)*v(6923)+v(630)*v(6948)+v(624)*v(6983)+v(633)*v(6994)+v(673)*v(7016))*v(8177) v(7318)=(v(675)*v(6887)+v(674)*v(6922)+v(630)*v(6947)+v(624)*v(6982)+v(633)*v(6993)+v(673)*v(7015))*v(8177) v(7317)=(v(675)*v(6886)+v(674)*v(6921)+v(630)*v(6946)+v(624)*v(6981)+v(633)*v(6992)+v(673)*v(7014))*v(8177) v(7315)=(v(675)*v(6885)+v(674)*v(6920)+v(630)*v(6945)+v(624)*v(6980)+v(633)*v(6991)+v(673)*v(7013))*v(8177) v(7069)=v(624)*v(6814)+v(604)*v(6895)-v(633)*v(6919)-v(628)*v(7025) v(7068)=v(624)*v(6813)+v(604)*v(6894)-v(633)*v(6918)-v(628)*v(7024) v(7067)=v(624)*v(6812)+v(604)*v(6893)-v(633)*v(6916)-v(628)*v(7023) v(7066)=v(624)*v(6811)+v(604)*v(6892)-v(633)*v(6915)-v(628)*v(7020) v(7065)=v(624)*v(6810)+v(604)*v(6891)-v(633)*v(6914)-v(628)*v(7019) v(7064)=v(624)*v(6809)+v(604)*v(6890)-v(633)*v(6913)-v(628)*v(7018) v(7063)=v(624)*v(6808)+v(604)*v(6889)-v(633)*v(6912)-v(628)*v(7017) v(7062)=v(624)*v(6807)+v(604)*v(6888)-v(633)*v(6911)-v(628)*v(7016) v(7061)=v(624)*v(6806)+v(604)*v(6887)-v(633)*v(6910)-v(628)*v(7015) v(7060)=v(624)*v(6805)+v(604)*v(6886)-v(633)*v(6909)-v(628)*v(7014) v(7059)=v(624)*v(6804)+v(604)*v(6885)-v(633)*v(6908)-v(628)*v(7013) v(7058)=-(v(626)*v(6895))-v(624)*v(6907)+v(633)*v(6944)+v(631)*v(7025) v(7057)=-(v(626)*v(6894))-v(624)*v(6905)+v(633)*v(6941)+v(631)*v(7024) v(7056)=-(v(626)*v(6893))-v(624)*v(6904)+v(633)*v(6940)+v(631)*v(7023) v(7055)=-(v(626)*v(6892))-v(624)*v(6903)+v(633)*v(6939)+v(631)*v(7020) v(7054)=-(v(626)*v(6891))-v(624)*v(6902)+v(633)*v(6938)+v(631)*v(7019) v(7053)=-(v(626)*v(6890))-v(624)*v(6901)+v(633)*v(6937)+v(631)*v(7018) v(7052)=-(v(626)*v(6889))-v(624)*v(6900)+v(633)*v(6936)+v(631)*v(7017) v(7051)=-(v(626)*v(6888))-v(624)*v(6899)+v(633)*v(6935)+v(631)*v(7016) v(7050)=-(v(626)*v(6887))-v(624)*v(6898)+v(633)*v(6934)+v(631)*v(7015) v(7049)=-(v(626)*v(6886))-v(624)*v(6897)+v(633)*v(6933)+v(631)*v(7014) v(7048)=-(v(626)*v(6885))-v(624)*v(6896)+v(633)*v(6932)+v(631)*v(7013) v(7047)=-(v(633)*v(6626))+v(630)*v(6907)+v(626)*v(6931)-v(586)*v(7025) v(7046)=-(v(633)*v(6625))+v(630)*v(6905)+v(626)*v(6930)-v(586)*v(7024) v(7045)=-(v(633)*v(6624))+v(630)*v(6904)+v(626)*v(6929)-v(586)*v(7023) v(7044)=-(v(633)*v(6623))+v(630)*v(6903)+v(626)*v(6927)-v(586)*v(7020) v(7043)=-(v(633)*v(6622))+v(630)*v(6902)+v(626)*v(6926)-v(586)*v(7019) v(7042)=-(v(633)*v(6621))+v(630)*v(6901)+v(626)*v(6925)-v(586)*v(7018) v(7041)=-(v(633)*v(6620))+v(630)*v(6900)+v(626)*v(6924)-v(586)*v(7017) v(7040)=-(v(633)*v(6619))+v(630)*v(6899)+v(626)*v(6923)-v(586)*v(7016) v(7039)=-(v(633)*v(6618))+v(630)*v(6898)+v(626)*v(6922)-v(586)*v(7015) v(7038)=-(v(633)*v(6617))+v(630)*v(6897)+v(626)*v(6921)-v(586)*v(7014) v(7037)=-(v(633)*v(6616))+v(630)*v(6896)+v(626)*v(6920)-v(586)*v(7013) v(7036)=-(v(630)*v(6814))-v(604)*v(6931)+v(633)*v(6979)+v(632)*v(7025) v(7035)=-(v(630)*v(6813))-v(604)*v(6930)+v(633)*v(6978)+v(632)*v(7024) v(7034)=-(v(630)*v(6812))-v(604)*v(6929)+v(633)*v(6975)+v(632)*v(7023) v(7033)=-(v(630)*v(6811))-v(604)*v(6927)+v(633)*v(6974)+v(632)*v(7020) v(7032)=-(v(630)*v(6810))-v(604)*v(6926)+v(633)*v(6973)+v(632)*v(7019) v(7031)=-(v(630)*v(6809))-v(604)*v(6925)+v(633)*v(6972)+v(632)*v(7018) v(7030)=-(v(630)*v(6808))-v(604)*v(6924)+v(633)*v(6971)+v(632)*v(7017) v(7029)=-(v(630)*v(6807))-v(604)*v(6923)+v(633)*v(6970)+v(632)*v(7016) v(7028)=-(v(630)*v(6806))-v(604)*v(6922)+v(633)*v(6969)+v(632)*v(7015) v(7027)=-(v(630)*v(6805))-v(604)*v(6921)+v(633)*v(6968)+v(632)*v(7014) v(7026)=-(v(630)*v(6804))-v(604)*v(6920)+v(633)*v(6967)+v(632)*v(7013) v(671)=-(v(604)*v(630))+v(632)*v(633) v(7329)=(v(671)*v(671)) v(670)=v(626)*v(630)-v(586)*v(633) v(7346)=(v(670)*v(670)) v(669)=-(v(624)*v(626))+v(631)*v(633) v(8239)=v(666)*v(673)+v(669)*v(674)+v(670)*v(675) v(7345)=(v(669)*v(669)) v(8186)=v(7344)+v(7345)+v(7346) v(668)=v(604)*v(624)-v(628)*v(633) v(8238)=v(667)*v(673)+v(668)*v(674)+v(671)*v(675) v(8237)=v(666)*v(667)+v(668)*v(669)+v(670)*v(671) v(7328)=(v(668)*v(668)) v(8187)=v(7327)+v(7328)+v(7329) v(635)=(2d0/3d0)*v(352)+v(636)+v(638)+v(6145)*v(8178)+v(7070)*v(8179) v(637)=(2d0/3d0)*v(342)+v(636)+v(639)+v(6162)*v(8178)+v(7104)*v(8179) v(640)=(2d0/3d0)*v(347)+v(638)+v(639)+v(7138)*v(8178)+v(7140)*v(8179) v(641)=v(354)+v(6179)*v(8178)+v(7188)*v(8179) v(8182)=2d0*v(641) v(642)=v(355)+v(6196)*v(8178)+v(7221)*v(8179) v(8181)=2d0*v(642) v(643)=v(356)+v(6213)*v(8178)+v(7254)*v(8179) v(8180)=2d0*v(643) v(7293)=v(169)*v(635)+v(183)*v(637)+v(191)*v(640)+v(1536)*v(641)+v(1540)*v(642)+v(214)*v(8180) v(7292)=v(168)*v(635)+v(181)*v(637)+v(190)*v(640)+v(1539)*v(641)+v(207)*v(8180)+v(205)*v(8181) v(7291)=v(167)*v(635)+v(178)*v(637)+v(187)*v(640)+v(199)*v(8180)+v(198)*v(8181)+v(196)*v(8182) v(7290)=v(166)*v(635)+v(174)*v(637)+v(186)*v(640)+v(191)*v(8180)+v(190)*v(8181)+v(187)*v(8182) v(7289)=v(161)*v(635)+v(172)*v(637)+v(174)*v(640)+v(183)*v(8180)+v(181)*v(8181)+v(178)*v(8182) v(7288)=v(156)*v(635)+v(161)*v(637)+v(166)*v(640)+v(169)*v(8180)+v(168)*v(8181)+v(167)*v(8182) v(7298)=1d0/sqrt(v(635)*v(7288)+v(637)*v(7289)+v(640)*v(7290)+v(7293)*v(8180)+v(7292)*v(8181)+v(7291)*v(8182)) v(8191)=v(7298)/2d0 v(656)=1d0/v(7314)**2 v(8183)=2d0*v(656) v(7432)=v(656)*v(8239) v(7430)=v(656)*v(8238) v(7428)=v(656)*v(8237) v(7380)=v(673)*v(8183) v(7379)=v(675)*v(8183) v(7378)=v(674)*v(8183) v(7400)=(-(v(6955)*v(7378))-v(6990)*v(7379)-v(7001)*v(7380)-v(7326)*v(8184))/3d0 v(7398)=(-(v(6954)*v(7378))-v(6989)*v(7379)-v(7000)*v(7380)-v(7325)*v(8184))/3d0 v(7396)=(-(v(6953)*v(7378))-v(6988)*v(7379)-v(6999)*v(7380)-v(7324)*v(8184))/3d0 v(7394)=(-(v(6952)*v(7378))-v(6987)*v(7379)-v(6998)*v(7380)-v(7323)*v(8184))/3d0 v(7392)=(-(v(6951)*v(7378))-v(6986)*v(7379)-v(6997)*v(7380)-v(7322)*v(8184))/3d0 v(7390)=(-(v(6950)*v(7378))-v(6985)*v(7379)-v(6996)*v(7380)-v(7321)*v(8184))/3d0 v(7388)=(-(v(6949)*v(7378))-v(6984)*v(7379)-v(6995)*v(7380)-v(7320)*v(8184))/3d0 v(7386)=(-(v(6948)*v(7378))-v(6983)*v(7379)-v(6994)*v(7380)-v(7319)*v(8184))/3d0 v(7384)=(-(v(6947)*v(7378))-v(6982)*v(7379)-v(6993)*v(7380)-v(7318)*v(8184))/3d0 v(7382)=(-(v(6946)*v(7378))-v(6981)*v(7379)-v(6992)*v(7380)-v(7317)*v(8184))/3d0 v(7377)=(-(v(6945)*v(7378))-v(6980)*v(7379)-v(6991)*v(7380)-v(7315)*v(8184))/3d0 v(7362)=1d0/v(656)**0.13333333333333333d1 v(8185)=-v(7362)/3d0 v(7372)=v(7326)*v(8185) v(7371)=v(7325)*v(8185) v(7370)=v(7324)*v(8185) v(7369)=v(7323)*v(8185) v(7368)=v(7322)*v(8185) v(7367)=v(7321)*v(8185) v(7366)=v(7320)*v(8185) v(7365)=v(7319)*v(8185) v(7364)=v(7318)*v(8185) v(7363)=v(7317)*v(8185) v(7361)=v(7315)*v(8185) v(7350)=-(v(669)*v(8183)) v(7349)=-(v(670)*v(8183)) v(7348)=-(v(666)*v(8183)) v(7360)=v(6966)*v(7348)+v(7047)*v(7349)+v(7058)*v(7350)-v(7326)*v(8186) v(7359)=v(6965)*v(7348)+v(7046)*v(7349)+v(7057)*v(7350)-v(7325)*v(8186) v(7358)=v(6964)*v(7348)+v(7045)*v(7349)+v(7056)*v(7350)-v(7324)*v(8186) v(7357)=v(6963)*v(7348)+v(7044)*v(7349)+v(7055)*v(7350)-v(7323)*v(8186) v(7356)=v(6962)*v(7348)+v(7043)*v(7349)+v(7054)*v(7350)-v(7322)*v(8186) v(7355)=v(6961)*v(7348)+v(7042)*v(7349)+v(7053)*v(7350)-v(7321)*v(8186) v(7354)=v(6960)*v(7348)+v(7041)*v(7349)+v(7052)*v(7350)-v(7320)*v(8186) v(7353)=v(6959)*v(7348)+v(7040)*v(7349)+v(7051)*v(7350)-v(7319)*v(8186) v(7352)=v(6958)*v(7348)+v(7039)*v(7349)+v(7050)*v(7350)-v(7318)*v(8186) v(7351)=v(6957)*v(7348)+v(7038)*v(7349)+v(7049)*v(7350)-v(7317)*v(8186) v(7347)=v(6956)*v(7348)+v(7037)*v(7349)+v(7048)*v(7350)-v(7315)*v(8186) v(7333)=-(v(668)*v(8183)) v(7332)=-(v(671)*v(8183)) v(7331)=-(v(667)*v(8183)) v(7343)=v(7012)*v(7331)+v(7036)*v(7332)+v(7069)*v(7333)-v(7326)*v(8187) v(7342)=v(7011)*v(7331)+v(7035)*v(7332)+v(7068)*v(7333)-v(7325)*v(8187) v(7341)=v(7010)*v(7331)+v(7034)*v(7332)+v(7067)*v(7333)-v(7324)*v(8187) v(7340)=v(7009)*v(7331)+v(7033)*v(7332)+v(7066)*v(7333)-v(7323)*v(8187) v(7339)=v(7008)*v(7331)+v(7032)*v(7332)+v(7065)*v(7333)-v(7322)*v(8187) v(7338)=v(7007)*v(7331)+v(7031)*v(7332)+v(7064)*v(7333)-v(7321)*v(8187) v(7337)=v(7006)*v(7331)+v(7030)*v(7332)+v(7063)*v(7333)-v(7320)*v(8187) v(7336)=v(7005)*v(7331)+v(7029)*v(7332)+v(7062)*v(7333)-v(7319)*v(8187) v(7335)=v(7004)*v(7331)+v(7028)*v(7332)+v(7061)*v(7333)-v(7318)*v(8187) v(7334)=v(7003)*v(7331)+v(7027)*v(7332)+v(7060)*v(7333)-v(7317)*v(8187) v(7330)=v(7002)*v(7331)+v(7026)*v(7332)+v(7059)*v(7333)-v(7315)*v(8187) v(663)=-(v(656)*v(8187)) v(662)=-(v(656)*v(8186)) v(660)=1d0/v(656)**0.3333333333333333d0 v(661)=-(v(656)*v(8184))/3d0 v(7426)=v(661)+(-2d0/3d0)*v(662)+v(663)/3d0 v(7424)=v(661)+v(662)/3d0+(-2d0/3d0)*v(663) dRdX(1,1)=v(8191)*(v(7072)*v(7288)+v(7106)*v(7289)+v(7142)*v(7290)+v(7291)*v(8192)+v(8182)*(v(1305)*v(635)+v(1365)*v& &(637)+v(1413)*v(640)+v(167)*v(7072)+v(178)*v(7106)+v(187)*v(7142)+v(1539)*v(7223)+v(1536)*v(7256)+v(1473)*v(8180)+v& &(1461)*v(8181)+v(1449)*v(8182)+v(196)*v(8192))+v(7292)*v(8193)+v(8181)*(v(1317)*v(635)+v(1377)*v(637)+v(1425)*v(640)+v& &(168)*v(7072)+v(181)*v(7106)+v(190)*v(7142)+v(1539)*v(7190)+v(1540)*v(7256)+v(1497)*v(8180)+v(1485)*v(8181)+v(1461)*v& &(8182)+v(205)*v(8193))+v(7293)*v(8194)+v(635)*(v(1269)*v(635)+v(1281)*v(637)+v(1293)*v(640)+v(156)*v(7072)+v(161)*v& &(7106)+v(166)*v(7142)+v(1329)*v(8180)+v(1317)*v(8181)+v(1305)*v(8182)+v(167)*v(8192)+v(168)*v(8193)+v(169)*v(8194))+v& &(637)*(v(1281)*v(635)+v(1341)*v(637)+v(1353)*v(640)+v(161)*v(7072)+v(172)*v(7106)+v(174)*v(7142)+v(1389)*v(8180)+v(1377& &)*v(8181)+v(1365)*v(8182)+v(178)*v(8192)+v(181)*v(8193)+v(183)*v(8194))+v(640)*(v(1293)*v(635)+v(1353)*v(637)+v(1401)*v& &(640)+v(166)*v(7072)+v(174)*v(7106)+v(186)*v(7142)+v(1437)*v(8180)+v(1425)*v(8181)+v(1413)*v(8182)+v(187)*v(8192)+v(190& &)*v(8193)+v(191)*v(8194))+v(8180)*(v(1329)*v(635)+v(1389)*v(637)+v(1437)*v(640)+v(169)*v(7072)+v(183)*v(7106)+v(191)*v& &(7142)+v(1536)*v(7190)+v(1540)*v(7223)+v(1509)*v(8180)+v(1497)*v(8181)+v(1473)*v(8182)+v(214)*v(8194)))+v(7518)*(-(mpar& &(4)*mpar(5)*dexp(-(mpar(4)*v(116))))-mpar(6)*mpar(7)*dexp(-(mpar(6)*v(116)))) dRdX(1,2)=v(8191)*(v(7074)*v(7288)+v(7109)*v(7289)+v(7145)*v(7290)+v(635)*(v(1271)*v(635)+v(1283)*v(637)+v(1295)*v(640)& &+v(156)*v(7074)+v(161)*v(7109)+v(166)*v(7145)+v(1645)*v(7192)+v(1673)*v(7225)+v(1705)*v(7258)+v(1331)*v(8180)+v(1319)*v& &(8181)+v(1307)*v(8182))+v(637)*(v(1283)*v(635)+v(1343)*v(637)+v(1355)*v(640)+v(161)*v(7074)+v(172)*v(7109)+v(174)*v& &(7145)+v(1648)*v(7192)+v(1676)*v(7225)+v(1708)*v(7258)+v(1391)*v(8180)+v(1379)*v(8181)+v(1367)*v(8182))+v(7291)*v(8234)& &+v(8182)*(v(1307)*v(635)+v(1367)*v(637)+v(1415)*v(640)+v(167)*v(7074)+v(178)*v(7109)+v(187)*v(7145)+v(1539)*v(7225)+v& &(1536)*v(7258)+v(1475)*v(8180)+v(1463)*v(8181)+v(1451)*v(8182)+v(196)*v(8234))+v(7292)*v(8235)+v(8181)*(v(1319)*v(635)& &+v(1379)*v(637)+v(1427)*v(640)+v(168)*v(7074)+v(181)*v(7109)+v(190)*v(7145)+v(1539)*v(7192)+v(1540)*v(7258)+v(1499)*v& &(8180)+v(1487)*v(8181)+v(1463)*v(8182)+v(205)*v(8235))+v(7293)*v(8236)+v(640)*(v(1295)*v(635)+v(1355)*v(637)+v(1403)*v& &(640)+v(166)*v(7074)+v(174)*v(7109)+v(186)*v(7145)+v(1439)*v(8180)+v(1427)*v(8181)+v(1415)*v(8182)+v(187)*v(8234)+v(190& &)*v(8235)+v(191)*v(8236))+v(8180)*(v(1331)*v(635)+v(1391)*v(637)+v(1439)*v(640)+v(169)*v(7074)+v(183)*v(7109)+v(191)*v& &(7145)+v(1536)*v(7192)+v(1540)*v(7225)+v(1511)*v(8180)+v(1499)*v(8181)+v(1475)*v(8182)+v(214)*v(8236))) dRdX(1,3)=v(8191)*(v(7077)*v(7288)+v(7111)*v(7289)+v(7148)*v(7290)+v(635)*(v(1272)*v(635)+v(1284)*v(637)+v(1296)*v(640)& &+v(156)*v(7077)+v(161)*v(7111)+v(166)*v(7148)+v(1645)*v(7194)+v(1673)*v(7227)+v(1705)*v(7260)+v(1332)*v(8180)+v(1320)*v& &(8181)+v(1308)*v(8182))+v(637)*(v(1284)*v(635)+v(1344)*v(637)+v(1356)*v(640)+v(161)*v(7077)+v(172)*v(7111)+v(174)*v& &(7148)+v(1648)*v(7194)+v(1676)*v(7227)+v(1708)*v(7260)+v(1392)*v(8180)+v(1380)*v(8181)+v(1368)*v(8182))+v(7291)*v(8231)& &+v(8182)*(v(1308)*v(635)+v(1368)*v(637)+v(1416)*v(640)+v(167)*v(7077)+v(178)*v(7111)+v(187)*v(7148)+v(1539)*v(7227)+v& &(1536)*v(7260)+v(1476)*v(8180)+v(1464)*v(8181)+v(1452)*v(8182)+v(196)*v(8231))+v(7292)*v(8232)+v(8181)*(v(1320)*v(635)& &+v(1380)*v(637)+v(1428)*v(640)+v(168)*v(7077)+v(181)*v(7111)+v(190)*v(7148)+v(1539)*v(7194)+v(1540)*v(7260)+v(1500)*v& &(8180)+v(1488)*v(8181)+v(1464)*v(8182)+v(205)*v(8232))+v(7293)*v(8233)+v(640)*(v(1296)*v(635)+v(1356)*v(637)+v(1404)*v& &(640)+v(166)*v(7077)+v(174)*v(7111)+v(186)*v(7148)+v(1440)*v(8180)+v(1428)*v(8181)+v(1416)*v(8182)+v(187)*v(8231)+v(190& &)*v(8232)+v(191)*v(8233))+v(8180)*(v(1332)*v(635)+v(1392)*v(637)+v(1440)*v(640)+v(169)*v(7077)+v(183)*v(7111)+v(191)*v& &(7148)+v(1536)*v(7194)+v(1540)*v(7227)+v(1512)*v(8180)+v(1500)*v(8181)+v(1476)*v(8182)+v(214)*v(8233))) dRdX(1,4)=v(8191)*(v(7079)*v(7288)+v(7113)*v(7289)+v(7151)*v(7290)+v(635)*(v(1273)*v(635)+v(1285)*v(637)+v(1297)*v(640)& &+v(156)*v(7079)+v(161)*v(7113)+v(166)*v(7151)+v(1645)*v(7196)+v(1673)*v(7229)+v(1705)*v(7262)+v(1333)*v(8180)+v(1321)*v& &(8181)+v(1309)*v(8182))+v(637)*(v(1285)*v(635)+v(1345)*v(637)+v(1357)*v(640)+v(161)*v(7079)+v(172)*v(7113)+v(174)*v& &(7151)+v(1648)*v(7196)+v(1676)*v(7229)+v(1708)*v(7262)+v(1393)*v(8180)+v(1381)*v(8181)+v(1369)*v(8182))+v(7291)*v(8228)& &+v(8182)*(v(1309)*v(635)+v(1369)*v(637)+v(1417)*v(640)+v(167)*v(7079)+v(178)*v(7113)+v(187)*v(7151)+v(1539)*v(7229)+v& &(1536)*v(7262)+v(1477)*v(8180)+v(1465)*v(8181)+v(1453)*v(8182)+v(196)*v(8228))+v(7292)*v(8229)+v(8181)*(v(1321)*v(635)& &+v(1381)*v(637)+v(1429)*v(640)+v(168)*v(7079)+v(181)*v(7113)+v(190)*v(7151)+v(1539)*v(7196)+v(1540)*v(7262)+v(1501)*v& &(8180)+v(1489)*v(8181)+v(1465)*v(8182)+v(205)*v(8229))+v(7293)*v(8230)+v(640)*(v(1297)*v(635)+v(1357)*v(637)+v(1405)*v& &(640)+v(166)*v(7079)+v(174)*v(7113)+v(186)*v(7151)+v(1441)*v(8180)+v(1429)*v(8181)+v(1417)*v(8182)+v(187)*v(8228)+v(190& &)*v(8229)+v(191)*v(8230))+v(8180)*(v(1333)*v(635)+v(1393)*v(637)+v(1441)*v(640)+v(169)*v(7079)+v(183)*v(7113)+v(191)*v& &(7151)+v(1536)*v(7196)+v(1540)*v(7229)+v(1513)*v(8180)+v(1501)*v(8181)+v(1477)*v(8182)+v(214)*v(8230))) dRdX(1,5)=v(8191)*(v(7081)*v(7288)+v(7115)*v(7289)+v(7154)*v(7290)+v(635)*(v(1274)*v(635)+v(1286)*v(637)+v(1298)*v(640)& &+v(156)*v(7081)+v(161)*v(7115)+v(166)*v(7154)+v(1645)*v(7198)+v(1673)*v(7231)+v(1705)*v(7264)+v(1334)*v(8180)+v(1322)*v& &(8181)+v(1310)*v(8182))+v(637)*(v(1286)*v(635)+v(1346)*v(637)+v(1358)*v(640)+v(161)*v(7081)+v(172)*v(7115)+v(174)*v& &(7154)+v(1648)*v(7198)+v(1676)*v(7231)+v(1708)*v(7264)+v(1394)*v(8180)+v(1382)*v(8181)+v(1370)*v(8182))+v(7291)*v(8225)& &+v(8182)*(v(1310)*v(635)+v(1370)*v(637)+v(1418)*v(640)+v(167)*v(7081)+v(178)*v(7115)+v(187)*v(7154)+v(1539)*v(7231)+v& &(1536)*v(7264)+v(1478)*v(8180)+v(1466)*v(8181)+v(1454)*v(8182)+v(196)*v(8225))+v(7292)*v(8226)+v(8181)*(v(1322)*v(635)& &+v(1382)*v(637)+v(1430)*v(640)+v(168)*v(7081)+v(181)*v(7115)+v(190)*v(7154)+v(1539)*v(7198)+v(1540)*v(7264)+v(1502)*v& &(8180)+v(1490)*v(8181)+v(1466)*v(8182)+v(205)*v(8226))+v(7293)*v(8227)+v(640)*(v(1298)*v(635)+v(1358)*v(637)+v(1406)*v& &(640)+v(166)*v(7081)+v(174)*v(7115)+v(186)*v(7154)+v(1442)*v(8180)+v(1430)*v(8181)+v(1418)*v(8182)+v(187)*v(8225)+v(190& &)*v(8226)+v(191)*v(8227))+v(8180)*(v(1334)*v(635)+v(1394)*v(637)+v(1442)*v(640)+v(169)*v(7081)+v(183)*v(7115)+v(191)*v& &(7154)+v(1536)*v(7198)+v(1540)*v(7231)+v(1514)*v(8180)+v(1502)*v(8181)+v(1478)*v(8182)+v(214)*v(8227))) dRdX(1,6)=v(8191)*(v(7083)*v(7288)+v(7117)*v(7289)+v(7157)*v(7290)+v(635)*(v(1275)*v(635)+v(1287)*v(637)+v(1299)*v(640)& &+v(156)*v(7083)+v(161)*v(7117)+v(166)*v(7157)+v(1645)*v(7200)+v(1673)*v(7233)+v(1705)*v(7266)+v(1335)*v(8180)+v(1323)*v& &(8181)+v(1311)*v(8182))+v(637)*(v(1287)*v(635)+v(1347)*v(637)+v(1359)*v(640)+v(161)*v(7083)+v(172)*v(7117)+v(174)*v& &(7157)+v(1648)*v(7200)+v(1676)*v(7233)+v(1708)*v(7266)+v(1395)*v(8180)+v(1383)*v(8181)+v(1371)*v(8182))+v(7291)*v(8222)& &+v(8182)*(v(1311)*v(635)+v(1371)*v(637)+v(1419)*v(640)+v(167)*v(7083)+v(178)*v(7117)+v(187)*v(7157)+v(1539)*v(7233)+v& &(1536)*v(7266)+v(1479)*v(8180)+v(1467)*v(8181)+v(1455)*v(8182)+v(196)*v(8222))+v(7292)*v(8223)+v(8181)*(v(1323)*v(635)& &+v(1383)*v(637)+v(1431)*v(640)+v(168)*v(7083)+v(181)*v(7117)+v(190)*v(7157)+v(1539)*v(7200)+v(1540)*v(7266)+v(1503)*v& &(8180)+v(1491)*v(8181)+v(1467)*v(8182)+v(205)*v(8223))+v(7293)*v(8224)+v(640)*(v(1299)*v(635)+v(1359)*v(637)+v(1407)*v& &(640)+v(166)*v(7083)+v(174)*v(7117)+v(186)*v(7157)+v(1443)*v(8180)+v(1431)*v(8181)+v(1419)*v(8182)+v(187)*v(8222)+v(190& &)*v(8223)+v(191)*v(8224))+v(8180)*(v(1335)*v(635)+v(1395)*v(637)+v(1443)*v(640)+v(169)*v(7083)+v(183)*v(7117)+v(191)*v& &(7157)+v(1536)*v(7200)+v(1540)*v(7233)+v(1515)*v(8180)+v(1503)*v(8181)+v(1479)*v(8182)+v(214)*v(8224))) dRdX(1,7)=v(8191)*(v(635)*(v(156)*v(7085)+v(161)*v(7119)+v(166)*v(7160)+v(1645)*v(7202)+v(1673)*v(7235)+v(1705)*v(7268)& &)+v(637)*(v(161)*v(7085)+v(172)*v(7119)+v(174)*v(7160)+v(1648)*v(7202)+v(1676)*v(7235)+v(1708)*v(7268))+v(7085)*v(7288)& &+v(7119)*v(7289)+v(7160)*v(7290)+v(7291)*v(8219)+v(8182)*(v(167)*v(7085)+v(178)*v(7119)+v(187)*v(7160)+v(1539)*v(7235)& &+v(1536)*v(7268)+v(196)*v(8219))+v(7292)*v(8220)+v(8181)*(v(168)*v(7085)+v(181)*v(7119)+v(190)*v(7160)+v(1539)*v(7202)& &+v(1540)*v(7268)+v(205)*v(8220))+v(7293)*v(8221)+v(640)*(v(166)*v(7085)+v(174)*v(7119)+v(186)*v(7160)+v(187)*v(8219)+v& &(190)*v(8220)+v(191)*v(8221))+v(8180)*(v(169)*v(7085)+v(183)*v(7119)+v(191)*v(7160)+v(1536)*v(7202)+v(1540)*v(7235)+v& &(214)*v(8221))) dRdX(1,8)=v(8191)*(v(635)*(v(156)*v(7087)+v(161)*v(7121)+v(166)*v(7163)+v(1645)*v(7204)+v(1673)*v(7237)+v(1705)*v(7270)& &)+v(637)*(v(161)*v(7087)+v(172)*v(7121)+v(174)*v(7163)+v(1648)*v(7204)+v(1676)*v(7237)+v(1708)*v(7270))+v(7087)*v(7288)& &+v(7121)*v(7289)+v(7163)*v(7290)+v(7291)*v(8216)+v(8182)*(v(167)*v(7087)+v(178)*v(7121)+v(187)*v(7163)+v(1539)*v(7237)& &+v(1536)*v(7270)+v(196)*v(8216))+v(7292)*v(8217)+v(8181)*(v(168)*v(7087)+v(181)*v(7121)+v(190)*v(7163)+v(1539)*v(7204)& &+v(1540)*v(7270)+v(205)*v(8217))+v(7293)*v(8218)+v(640)*(v(166)*v(7087)+v(174)*v(7121)+v(186)*v(7163)+v(187)*v(8216)+v& &(190)*v(8217)+v(191)*v(8218))+v(8180)*(v(169)*v(7087)+v(183)*v(7121)+v(191)*v(7163)+v(1536)*v(7204)+v(1540)*v(7237)+v& &(214)*v(8218))) dRdX(1,9)=v(8191)*(v(635)*(v(156)*v(7089)+v(161)*v(7123)+v(166)*v(7166)+v(1645)*v(7206)+v(1673)*v(7239)+v(1705)*v(7272)& &)+v(637)*(v(161)*v(7089)+v(172)*v(7123)+v(174)*v(7166)+v(1648)*v(7206)+v(1676)*v(7239)+v(1708)*v(7272))+v(7089)*v(7288)& &+v(7123)*v(7289)+v(7166)*v(7290)+v(7291)*v(8213)+v(8182)*(v(167)*v(7089)+v(178)*v(7123)+v(187)*v(7166)+v(1539)*v(7239)& &+v(1536)*v(7272)+v(196)*v(8213))+v(7292)*v(8214)+v(8181)*(v(168)*v(7089)+v(181)*v(7123)+v(190)*v(7166)+v(1539)*v(7206)& &+v(1540)*v(7272)+v(205)*v(8214))+v(7293)*v(8215)+v(640)*(v(166)*v(7089)+v(174)*v(7123)+v(186)*v(7166)+v(187)*v(8213)+v& &(190)*v(8214)+v(191)*v(8215))+v(8180)*(v(169)*v(7089)+v(183)*v(7123)+v(191)*v(7166)+v(1536)*v(7206)+v(1540)*v(7239)+v& &(214)*v(8215))) dRdX(1,10)=v(8191)*(v(635)*(v(156)*v(7091)+v(161)*v(7125)+v(166)*v(7169)+v(1645)*v(7208)+v(1673)*v(7241)+v(1705)*v(7274& &))+v(637)*(v(161)*v(7091)+v(172)*v(7125)+v(174)*v(7169)+v(1648)*v(7208)+v(1676)*v(7241)+v(1708)*v(7274))+v(7091)*v(7288& &)+v(7125)*v(7289)+v(7169)*v(7290)+v(7291)*v(8210)+v(8182)*(v(167)*v(7091)+v(178)*v(7125)+v(187)*v(7169)+v(1539)*v(7241)& &+v(1536)*v(7274)+v(196)*v(8210))+v(7292)*v(8211)+v(8181)*(v(168)*v(7091)+v(181)*v(7125)+v(190)*v(7169)+v(1539)*v(7208)& &+v(1540)*v(7274)+v(205)*v(8211))+v(7293)*v(8212)+v(640)*(v(166)*v(7091)+v(174)*v(7125)+v(186)*v(7169)+v(187)*v(8210)+v& &(190)*v(8211)+v(191)*v(8212))+v(8180)*(v(169)*v(7091)+v(183)*v(7125)+v(191)*v(7169)+v(1536)*v(7208)+v(1540)*v(7241)+v& &(214)*v(8212))) dRdX(1,11)=v(8191)*(v(635)*(v(156)*v(7093)+v(161)*v(7127)+v(166)*v(7172)+v(1645)*v(7210)+v(1673)*v(7243)+v(1705)*v(7276& &))+v(637)*(v(161)*v(7093)+v(172)*v(7127)+v(174)*v(7172)+v(1648)*v(7210)+v(1676)*v(7243)+v(1708)*v(7276))+v(7093)*v(7288& &)+v(7127)*v(7289)+v(7172)*v(7290)+v(7291)*v(8207)+v(8182)*(v(167)*v(7093)+v(178)*v(7127)+v(187)*v(7172)+v(1539)*v(7243)& &+v(1536)*v(7276)+v(196)*v(8207))+v(7292)*v(8208)+v(8181)*(v(168)*v(7093)+v(181)*v(7127)+v(190)*v(7172)+v(1539)*v(7210)& &+v(1540)*v(7276)+v(205)*v(8208))+v(7293)*v(8209)+v(640)*(v(166)*v(7093)+v(174)*v(7127)+v(186)*v(7172)+v(187)*v(8207)+v& &(190)*v(8208)+v(191)*v(8209))+v(8180)*(v(169)*v(7093)+v(183)*v(7127)+v(191)*v(7172)+v(1536)*v(7210)+v(1540)*v(7243)+v& &(214)*v(8209))) dRdX(1,12)=v(8191)*(v(7095)*v(7288)+v(7129)*v(7289)+v(7175)*v(7290)+v(635)*(v(1276)*v(635)+v(1288)*v(637)+v(1300)*v(640& &)+v(156)*v(7095)+v(161)*v(7129)+v(166)*v(7175)+v(1645)*v(7212)+v(1673)*v(7245)+v(1705)*v(7278)+v(1336)*v(8180)+v(1324& &)*v(8181)+v(1312)*v(8182))+v(637)*(v(1288)*v(635)+v(1348)*v(637)+v(1360)*v(640)+v(161)*v(7095)+v(172)*v(7129)+v(174)*v& &(7175)+v(1648)*v(7212)+v(1676)*v(7245)+v(1708)*v(7278)+v(1396)*v(8180)+v(1384)*v(8181)+v(1372)*v(8182))+v(7291)*v(8204)& &+v(8182)*(v(1312)*v(635)+v(1372)*v(637)+v(1420)*v(640)+v(167)*v(7095)+v(178)*v(7129)+v(187)*v(7175)+v(1539)*v(7245)+v& &(1536)*v(7278)+v(1480)*v(8180)+v(1468)*v(8181)+v(1456)*v(8182)+v(196)*v(8204))+v(7292)*v(8205)+v(8181)*(v(1324)*v(635)& &+v(1384)*v(637)+v(1432)*v(640)+v(168)*v(7095)+v(181)*v(7129)+v(190)*v(7175)+v(1539)*v(7212)+v(1540)*v(7278)+v(1504)*v& &(8180)+v(1492)*v(8181)+v(1468)*v(8182)+v(205)*v(8205))+v(7293)*v(8206)+v(640)*(v(1300)*v(635)+v(1360)*v(637)+v(1408)*v& &(640)+v(166)*v(7095)+v(174)*v(7129)+v(186)*v(7175)+v(1444)*v(8180)+v(1432)*v(8181)+v(1420)*v(8182)+v(187)*v(8204)+v(190& &)*v(8205)+v(191)*v(8206))+v(8180)*(v(1336)*v(635)+v(1396)*v(637)+v(1444)*v(640)+v(169)*v(7095)+v(183)*v(7129)+v(191)*v& &(7175)+v(1536)*v(7212)+v(1540)*v(7245)+v(1516)*v(8180)+v(1504)*v(8181)+v(1480)*v(8182)+v(214)*v(8206))) dRdX(1,13)=v(8191)*(v(7097)*v(7288)+v(7131)*v(7289)+v(7178)*v(7290)+v(635)*(v(1277)*v(635)+v(1289)*v(637)+v(1301)*v(640& &)+v(156)*v(7097)+v(161)*v(7131)+v(166)*v(7178)+v(1645)*v(7214)+v(1673)*v(7247)+v(1705)*v(7280)+v(1337)*v(8180)+v(1325& &)*v(8181)+v(1313)*v(8182))+v(637)*(v(1289)*v(635)+v(1349)*v(637)+v(1361)*v(640)+v(161)*v(7097)+v(172)*v(7131)+v(174)*v& &(7178)+v(1648)*v(7214)+v(1676)*v(7247)+v(1708)*v(7280)+v(1397)*v(8180)+v(1385)*v(8181)+v(1373)*v(8182))+v(7291)*v(8201)& &+v(8182)*(v(1313)*v(635)+v(1373)*v(637)+v(1421)*v(640)+v(167)*v(7097)+v(178)*v(7131)+v(187)*v(7178)+v(1539)*v(7247)+v& &(1536)*v(7280)+v(1481)*v(8180)+v(1469)*v(8181)+v(1457)*v(8182)+v(196)*v(8201))+v(7292)*v(8202)+v(8181)*(v(1325)*v(635)& &+v(1385)*v(637)+v(1433)*v(640)+v(168)*v(7097)+v(181)*v(7131)+v(190)*v(7178)+v(1539)*v(7214)+v(1540)*v(7280)+v(1505)*v& &(8180)+v(1493)*v(8181)+v(1469)*v(8182)+v(205)*v(8202))+v(7293)*v(8203)+v(640)*(v(1301)*v(635)+v(1361)*v(637)+v(1409)*v& &(640)+v(166)*v(7097)+v(174)*v(7131)+v(186)*v(7178)+v(1445)*v(8180)+v(1433)*v(8181)+v(1421)*v(8182)+v(187)*v(8201)+v(190& &)*v(8202)+v(191)*v(8203))+v(8180)*(v(1337)*v(635)+v(1397)*v(637)+v(1445)*v(640)+v(169)*v(7097)+v(183)*v(7131)+v(191)*v& &(7178)+v(1536)*v(7214)+v(1540)*v(7247)+v(1517)*v(8180)+v(1505)*v(8181)+v(1481)*v(8182)+v(214)*v(8203))) dRdX(1,14)=v(8191)*(v(7099)*v(7288)+v(7133)*v(7289)+v(7181)*v(7290)+v(635)*(v(1278)*v(635)+v(1290)*v(637)+v(1302)*v(640& &)+v(156)*v(7099)+v(161)*v(7133)+v(166)*v(7181)+v(1645)*v(7216)+v(1673)*v(7249)+v(1705)*v(7282)+v(1338)*v(8180)+v(1326& &)*v(8181)+v(1314)*v(8182))+v(637)*(v(1290)*v(635)+v(1350)*v(637)+v(1362)*v(640)+v(161)*v(7099)+v(172)*v(7133)+v(174)*v& &(7181)+v(1648)*v(7216)+v(1676)*v(7249)+v(1708)*v(7282)+v(1398)*v(8180)+v(1386)*v(8181)+v(1374)*v(8182))+v(7291)*v(8198)& &+v(8182)*(v(1314)*v(635)+v(1374)*v(637)+v(1422)*v(640)+v(167)*v(7099)+v(178)*v(7133)+v(187)*v(7181)+v(1539)*v(7249)+v& &(1536)*v(7282)+v(1482)*v(8180)+v(1470)*v(8181)+v(1458)*v(8182)+v(196)*v(8198))+v(7292)*v(8199)+v(8181)*(v(1326)*v(635)& &+v(1386)*v(637)+v(1434)*v(640)+v(168)*v(7099)+v(181)*v(7133)+v(190)*v(7181)+v(1539)*v(7216)+v(1540)*v(7282)+v(1506)*v& &(8180)+v(1494)*v(8181)+v(1470)*v(8182)+v(205)*v(8199))+v(7293)*v(8200)+v(640)*(v(1302)*v(635)+v(1362)*v(637)+v(1410)*v& &(640)+v(166)*v(7099)+v(174)*v(7133)+v(186)*v(7181)+v(1446)*v(8180)+v(1434)*v(8181)+v(1422)*v(8182)+v(187)*v(8198)+v(190& &)*v(8199)+v(191)*v(8200))+v(8180)*(v(1338)*v(635)+v(1398)*v(637)+v(1446)*v(640)+v(169)*v(7099)+v(183)*v(7133)+v(191)*v& &(7181)+v(1536)*v(7216)+v(1540)*v(7249)+v(1518)*v(8180)+v(1506)*v(8181)+v(1482)*v(8182)+v(214)*v(8200))) dRdX(1,15)=v(8191)*(v(7101)*v(7288)+v(7135)*v(7289)+v(7184)*v(7290)+v(635)*(v(1279)*v(635)+v(1291)*v(637)+v(1303)*v(640& &)+v(156)*v(7101)+v(161)*v(7135)+v(166)*v(7184)+v(1645)*v(7218)+v(1673)*v(7251)+v(1705)*v(7284)+v(1339)*v(8180)+v(1327& &)*v(8181)+v(1315)*v(8182))+v(637)*(v(1291)*v(635)+v(1351)*v(637)+v(1363)*v(640)+v(161)*v(7101)+v(172)*v(7135)+v(174)*v& &(7184)+v(1648)*v(7218)+v(1676)*v(7251)+v(1708)*v(7284)+v(1399)*v(8180)+v(1387)*v(8181)+v(1375)*v(8182))+v(7291)*v(8195)& &+v(8182)*(v(1315)*v(635)+v(1375)*v(637)+v(1423)*v(640)+v(167)*v(7101)+v(178)*v(7135)+v(187)*v(7184)+v(1539)*v(7251)+v& &(1536)*v(7284)+v(1483)*v(8180)+v(1471)*v(8181)+v(1459)*v(8182)+v(196)*v(8195))+v(7292)*v(8196)+v(8181)*(v(1327)*v(635)& &+v(1387)*v(637)+v(1435)*v(640)+v(168)*v(7101)+v(181)*v(7135)+v(190)*v(7184)+v(1539)*v(7218)+v(1540)*v(7284)+v(1507)*v& &(8180)+v(1495)*v(8181)+v(1471)*v(8182)+v(205)*v(8196))+v(7293)*v(8197)+v(640)*(v(1303)*v(635)+v(1363)*v(637)+v(1411)*v& &(640)+v(166)*v(7101)+v(174)*v(7135)+v(186)*v(7184)+v(1447)*v(8180)+v(1435)*v(8181)+v(1423)*v(8182)+v(187)*v(8195)+v(190& &)*v(8196)+v(191)*v(8197))+v(8180)*(v(1339)*v(635)+v(1399)*v(637)+v(1447)*v(640)+v(169)*v(7101)+v(183)*v(7135)+v(191)*v& &(7184)+v(1536)*v(7218)+v(1540)*v(7251)+v(1519)*v(8180)+v(1507)*v(8181)+v(1483)*v(8182)+v(214)*v(8197))) dRdX(1,16)=(v(7103)*v(7288)+v(7137)*v(7289)+v(7187)*v(7290)+v(7291)*v(8188)+v(8182)*(v(1316)*v(635)+v(1376)*v(637)+v& &(1424)*v(640)+v(167)*v(7103)+v(178)*v(7137)+v(187)*v(7187)+v(1539)*v(7253)+v(1536)*v(7286)+v(1484)*v(8180)+v(1472)*v& &(8181)+v(1460)*v(8182)+v(196)*v(8188))+v(7292)*v(8189)+v(8181)*(v(1328)*v(635)+v(1388)*v(637)+v(1436)*v(640)+v(168)*v& &(7103)+v(181)*v(7137)+v(190)*v(7187)+v(1539)*v(7220)+v(1540)*v(7286)+v(1508)*v(8180)+v(1496)*v(8181)+v(1472)*v(8182)+v& &(205)*v(8189))+v(7293)*v(8190)+v(635)*(v(1280)*v(635)+v(1292)*v(637)+v(1304)*v(640)+v(156)*v(7103)+v(161)*v(7137)+v(166& &)*v(7187)+v(1340)*v(8180)+v(1328)*v(8181)+v(1316)*v(8182)+v(167)*v(8188)+v(168)*v(8189)+v(169)*v(8190))+v(637)*(v(1292& &)*v(635)+v(1352)*v(637)+v(1364)*v(640)+v(161)*v(7103)+v(172)*v(7137)+v(174)*v(7187)+v(1400)*v(8180)+v(1388)*v(8181)+v& &(1376)*v(8182)+v(178)*v(8188)+v(181)*v(8189)+v(183)*v(8190))+v(640)*(v(1304)*v(635)+v(1364)*v(637)+v(1412)*v(640)+v(166& &)*v(7103)+v(174)*v(7137)+v(186)*v(7187)+v(1448)*v(8180)+v(1436)*v(8181)+v(1424)*v(8182)+v(187)*v(8188)+v(190)*v(8189)+v& &(191)*v(8190))+v(8180)*(v(1340)*v(635)+v(1400)*v(637)+v(1448)*v(640)+v(169)*v(7103)+v(183)*v(7137)+v(191)*v(7187)+v& &(1536)*v(7220)+v(1540)*v(7253)+v(1520)*v(8180)+v(1508)*v(8181)+v(1484)*v(8182)+v(214)*v(8190)))*v(8191) dRdX(2,1)=-v(7072) dRdX(2,2)=1d0-v(7074) dRdX(2,3)=-v(7077) dRdX(2,4)=-v(7079) dRdX(2,5)=-v(7081) dRdX(2,6)=-v(7083) dRdX(2,7)=-v(7085) dRdX(2,8)=-v(7087) dRdX(2,9)=-v(7089) dRdX(2,10)=-v(7091) dRdX(2,11)=-v(7093) dRdX(2,12)=-v(7095) dRdX(2,13)=-v(7097) dRdX(2,14)=-v(7099) dRdX(2,15)=-v(7101) dRdX(2,16)=-v(7103) dRdX(3,1)=-v(7106) dRdX(3,2)=-v(7109) dRdX(3,3)=1d0-v(7111) dRdX(3,4)=-v(7113) dRdX(3,5)=-v(7115) dRdX(3,6)=-v(7117) dRdX(3,7)=-v(7119) dRdX(3,8)=-v(7121) dRdX(3,9)=-v(7123) dRdX(3,10)=-v(7125) dRdX(3,11)=-v(7127) dRdX(3,12)=-v(7129) dRdX(3,13)=-v(7131) dRdX(3,14)=-v(7133) dRdX(3,15)=-v(7135) dRdX(3,16)=-v(7137) dRdX(4,1)=-v(7190) dRdX(4,2)=-v(7192) dRdX(4,3)=-v(7194) dRdX(4,4)=1d0-v(7196) dRdX(4,5)=-v(7198) dRdX(4,6)=-v(7200) dRdX(4,7)=-v(7202) dRdX(4,8)=-v(7204) dRdX(4,9)=-v(7206) dRdX(4,10)=-v(7208) dRdX(4,11)=-v(7210) dRdX(4,12)=-v(7212) dRdX(4,13)=-v(7214) dRdX(4,14)=-v(7216) dRdX(4,15)=-v(7218) dRdX(4,16)=-v(7220) dRdX(5,1)=-v(7256) dRdX(5,2)=-v(7258) dRdX(5,3)=-v(7260) dRdX(5,4)=-v(7262) dRdX(5,5)=1d0-v(7264) dRdX(5,6)=-v(7266) dRdX(5,7)=-v(7268) dRdX(5,8)=-v(7270) dRdX(5,9)=-v(7272) dRdX(5,10)=-v(7274) dRdX(5,11)=-v(7276) dRdX(5,12)=-v(7278) dRdX(5,13)=-v(7280) dRdX(5,14)=-v(7282) dRdX(5,15)=-v(7284) dRdX(5,16)=-v(7286) dRdX(6,1)=-v(7223) dRdX(6,2)=-v(7225) dRdX(6,3)=-v(7227) dRdX(6,4)=-v(7229) dRdX(6,5)=-v(7231) dRdX(6,6)=1d0-v(7233) dRdX(6,7)=-v(7235) dRdX(6,8)=-v(7237) dRdX(6,9)=-v(7239) dRdX(6,10)=-v(7241) dRdX(6,11)=-v(7243) dRdX(6,12)=-v(7245) dRdX(6,13)=-v(7247) dRdX(6,14)=-v(7249) dRdX(6,15)=-v(7251) dRdX(6,16)=-v(7253) dRdX(7,1)=-v(6146) dRdX(7,2)=-v(6147) dRdX(7,3)=-v(6148) dRdX(7,4)=-v(6149) dRdX(7,5)=-v(6150) dRdX(7,6)=-v(6151) dRdX(7,7)=1d0-v(6152) dRdX(7,8)=-v(6153) dRdX(7,9)=-v(6154) dRdX(7,10)=-v(6155) dRdX(7,11)=-v(6156) dRdX(7,12)=-v(6157) dRdX(7,13)=-v(6158) dRdX(7,14)=-v(6159) dRdX(7,15)=-v(6160) dRdX(7,16)=-v(6161) dRdX(8,1)=-v(6163) dRdX(8,2)=-v(6164) dRdX(8,3)=-v(6165) dRdX(8,4)=-v(6166) dRdX(8,5)=-v(6167) dRdX(8,6)=-v(6168) dRdX(8,7)=-v(6169) dRdX(8,8)=1d0-v(6170) dRdX(8,9)=-v(6171) dRdX(8,10)=-v(6172) dRdX(8,11)=-v(6173) dRdX(8,12)=-v(6174) dRdX(8,13)=-v(6175) dRdX(8,14)=-v(6176) dRdX(8,15)=-v(6177) dRdX(8,16)=-v(6178) dRdX(9,1)=-v(6180) dRdX(9,2)=-v(6181) dRdX(9,3)=-v(6182) dRdX(9,4)=-v(6183) dRdX(9,5)=-v(6184) dRdX(9,6)=-v(6185) dRdX(9,7)=-v(6186) dRdX(9,8)=-v(6187) dRdX(9,9)=1d0-v(6188) dRdX(9,10)=-v(6189) dRdX(9,11)=-v(6190) dRdX(9,12)=-v(6191) dRdX(9,13)=-v(6192) dRdX(9,14)=-v(6193) dRdX(9,15)=-v(6194) dRdX(9,16)=-v(6195) dRdX(10,1)=-v(6214) dRdX(10,2)=-v(6215) dRdX(10,3)=-v(6216) dRdX(10,4)=-v(6217) dRdX(10,5)=-v(6218) dRdX(10,6)=-v(6219) dRdX(10,7)=-v(6220) dRdX(10,8)=-v(6221) dRdX(10,9)=-v(6222) dRdX(10,10)=1d0-v(6223) dRdX(10,11)=-v(6224) dRdX(10,12)=-v(6225) dRdX(10,13)=-v(6226) dRdX(10,14)=-v(6227) dRdX(10,15)=-v(6228) dRdX(10,16)=-v(6229) dRdX(11,1)=-v(6197) dRdX(11,2)=-v(6198) dRdX(11,3)=-v(6199) dRdX(11,4)=-v(6200) dRdX(11,5)=-v(6201) dRdX(11,6)=-v(6202) dRdX(11,7)=-v(6203) dRdX(11,8)=-v(6204) dRdX(11,9)=-v(6205) dRdX(11,10)=-v(6206) dRdX(11,11)=1d0-v(6207) dRdX(11,12)=-v(6208) dRdX(11,13)=-v(6209) dRdX(11,14)=-v(6210) dRdX(11,15)=-v(6211) dRdX(11,16)=-v(6212) dRdX(12,1)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7330)+v(7347)/3d0+v(7377)))-v(7361)*v(7424)) dRdX(12,2)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7334)+v(7351)/3d0+v(7382)))-v(7363)*v(7424)) dRdX(12,3)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7335)+v(7352)/3d0+v(7384)))-v(7364)*v(7424)) dRdX(12,4)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7336)+v(7353)/3d0+v(7386)))-v(7365)*v(7424)) dRdX(12,5)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7337)+v(7354)/3d0+v(7388)))-v(7366)*v(7424)) dRdX(12,6)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7338)+v(7355)/3d0+v(7390)))-v(7367)*v(7424)) dRdX(12,7)=0d0 dRdX(12,8)=0d0 dRdX(12,9)=0d0 dRdX(12,10)=0d0 dRdX(12,11)=0d0 dRdX(12,12)=1d0+mpar(15)*(-(v(660)*((-2d0/3d0)*v(7339)+v(7356)/3d0+v(7392)))-v(7368)*v(7424)) dRdX(12,13)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7340)+v(7357)/3d0+v(7394)))-v(7369)*v(7424)) dRdX(12,14)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7341)+v(7358)/3d0+v(7396)))-v(7370)*v(7424)) dRdX(12,15)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7342)+v(7359)/3d0+v(7398)))-v(7371)*v(7424)) dRdX(12,16)=mpar(15)*(-(v(660)*((-2d0/3d0)*v(7343)+v(7360)/3d0+v(7400)))-v(7372)*v(7424)) dRdX(13,1)=mpar(15)*(-(v(660)*(v(7330)/3d0+(-2d0/3d0)*v(7347)+v(7377)))-v(7361)*v(7426)) dRdX(13,2)=mpar(15)*(-(v(660)*(v(7334)/3d0+(-2d0/3d0)*v(7351)+v(7382)))-v(7363)*v(7426)) dRdX(13,3)=mpar(15)*(-(v(660)*(v(7335)/3d0+(-2d0/3d0)*v(7352)+v(7384)))-v(7364)*v(7426)) dRdX(13,4)=mpar(15)*(-(v(660)*(v(7336)/3d0+(-2d0/3d0)*v(7353)+v(7386)))-v(7365)*v(7426)) dRdX(13,5)=mpar(15)*(-(v(660)*(v(7337)/3d0+(-2d0/3d0)*v(7354)+v(7388)))-v(7366)*v(7426)) dRdX(13,6)=mpar(15)*(-(v(660)*(v(7338)/3d0+(-2d0/3d0)*v(7355)+v(7390)))-v(7367)*v(7426)) dRdX(13,7)=0d0 dRdX(13,8)=0d0 dRdX(13,9)=0d0 dRdX(13,10)=0d0 dRdX(13,11)=0d0 dRdX(13,12)=mpar(15)*(-(v(660)*(v(7339)/3d0+(-2d0/3d0)*v(7356)+v(7392)))-v(7368)*v(7426)) dRdX(13,13)=1d0+mpar(15)*(-(v(660)*(v(7340)/3d0+(-2d0/3d0)*v(7357)+v(7394)))-v(7369)*v(7426)) dRdX(13,14)=mpar(15)*(-(v(660)*(v(7341)/3d0+(-2d0/3d0)*v(7358)+v(7396)))-v(7370)*v(7426)) dRdX(13,15)=mpar(15)*(-(v(660)*(v(7342)/3d0+(-2d0/3d0)*v(7359)+v(7398)))-v(7371)*v(7426)) dRdX(13,16)=mpar(15)*(-(v(660)*(v(7343)/3d0+(-2d0/3d0)*v(7360)+v(7400)))-v(7372)*v(7426)) dRdX(14,1)=mpar(15)*(-(v(7361)*v(7428))-v(660)*(v(656)*(v(667)*v(6956)+v(666)*v(7002)+v(670)*v(7026)+v(671)*v(7037)+v& &(668)*v(7048)+v(669)*v(7059))+v(7315)*v(8237))) dRdX(14,2)=mpar(15)*(-(v(7363)*v(7428))-v(660)*(v(656)*(v(667)*v(6957)+v(666)*v(7003)+v(670)*v(7027)+v(671)*v(7038)+v& &(668)*v(7049)+v(669)*v(7060))+v(7317)*v(8237))) dRdX(14,3)=mpar(15)*(-(v(7364)*v(7428))-v(660)*(v(656)*(v(667)*v(6958)+v(666)*v(7004)+v(670)*v(7028)+v(671)*v(7039)+v& &(668)*v(7050)+v(669)*v(7061))+v(7318)*v(8237))) dRdX(14,4)=mpar(15)*(-(v(7365)*v(7428))-v(660)*(v(656)*(v(667)*v(6959)+v(666)*v(7005)+v(670)*v(7029)+v(671)*v(7040)+v& &(668)*v(7051)+v(669)*v(7062))+v(7319)*v(8237))) dRdX(14,5)=mpar(15)*(-(v(7366)*v(7428))-v(660)*(v(656)*(v(667)*v(6960)+v(666)*v(7006)+v(670)*v(7030)+v(671)*v(7041)+v& &(668)*v(7052)+v(669)*v(7063))+v(7320)*v(8237))) dRdX(14,6)=mpar(15)*(-(v(7367)*v(7428))-v(660)*(v(656)*(v(667)*v(6961)+v(666)*v(7007)+v(670)*v(7031)+v(671)*v(7042)+v& &(668)*v(7053)+v(669)*v(7064))+v(7321)*v(8237))) dRdX(14,7)=0d0 dRdX(14,8)=0d0 dRdX(14,9)=0d0 dRdX(14,10)=0d0 dRdX(14,11)=0d0 dRdX(14,12)=mpar(15)*(-(v(7368)*v(7428))-v(660)*(v(656)*(v(667)*v(6962)+v(666)*v(7008)+v(670)*v(7032)+v(671)*v(7043)+v& &(668)*v(7054)+v(669)*v(7065))+v(7322)*v(8237))) dRdX(14,13)=mpar(15)*(-(v(7369)*v(7428))-v(660)*(v(656)*(v(667)*v(6963)+v(666)*v(7009)+v(670)*v(7033)+v(671)*v(7044)+v& &(668)*v(7055)+v(669)*v(7066))+v(7323)*v(8237))) dRdX(14,14)=1d0+mpar(15)*(-(v(7370)*v(7428))-v(660)*(v(656)*(v(667)*v(6964)+v(666)*v(7010)+v(670)*v(7034)+v(671)*v(7045& &)+v(668)*v(7056)+v(669)*v(7067))+v(7324)*v(8237))) dRdX(14,15)=mpar(15)*(-(v(7371)*v(7428))-v(660)*(v(656)*(v(667)*v(6965)+v(666)*v(7011)+v(670)*v(7035)+v(671)*v(7046)+v& &(668)*v(7057)+v(669)*v(7068))+v(7325)*v(8237))) dRdX(14,16)=mpar(15)*(-(v(7372)*v(7428))-v(660)*(v(656)*(v(667)*v(6966)+v(666)*v(7012)+v(670)*v(7036)+v(671)*v(7047)+v& &(668)*v(7058)+v(669)*v(7069))+v(7326)*v(8237))) dRdX(15,1)=mpar(15)*(-(v(7361)*v(7430))-v(660)*(v(656)*(v(668)*v(6945)+v(671)*v(6980)+v(667)*v(6991)+v(673)*v(7002)+v& &(675)*v(7026)+v(674)*v(7059))+v(7315)*v(8238))) dRdX(15,2)=mpar(15)*(-(v(7363)*v(7430))-v(660)*(v(656)*(v(668)*v(6946)+v(671)*v(6981)+v(667)*v(6992)+v(673)*v(7003)+v& &(675)*v(7027)+v(674)*v(7060))+v(7317)*v(8238))) dRdX(15,3)=mpar(15)*(-(v(7364)*v(7430))-v(660)*(v(656)*(v(668)*v(6947)+v(671)*v(6982)+v(667)*v(6993)+v(673)*v(7004)+v& &(675)*v(7028)+v(674)*v(7061))+v(7318)*v(8238))) dRdX(15,4)=mpar(15)*(-(v(7365)*v(7430))-v(660)*(v(656)*(v(668)*v(6948)+v(671)*v(6983)+v(667)*v(6994)+v(673)*v(7005)+v& &(675)*v(7029)+v(674)*v(7062))+v(7319)*v(8238))) dRdX(15,5)=mpar(15)*(-(v(7366)*v(7430))-v(660)*(v(656)*(v(668)*v(6949)+v(671)*v(6984)+v(667)*v(6995)+v(673)*v(7006)+v& &(675)*v(7030)+v(674)*v(7063))+v(7320)*v(8238))) dRdX(15,6)=mpar(15)*(-(v(7367)*v(7430))-v(660)*(v(656)*(v(668)*v(6950)+v(671)*v(6985)+v(667)*v(6996)+v(673)*v(7007)+v& &(675)*v(7031)+v(674)*v(7064))+v(7321)*v(8238))) dRdX(15,7)=0d0 dRdX(15,8)=0d0 dRdX(15,9)=0d0 dRdX(15,10)=0d0 dRdX(15,11)=0d0 dRdX(15,12)=mpar(15)*(-(v(7368)*v(7430))-v(660)*(v(656)*(v(668)*v(6951)+v(671)*v(6986)+v(667)*v(6997)+v(673)*v(7008)+v& &(675)*v(7032)+v(674)*v(7065))+v(7322)*v(8238))) dRdX(15,13)=mpar(15)*(-(v(7369)*v(7430))-v(660)*(v(656)*(v(668)*v(6952)+v(671)*v(6987)+v(667)*v(6998)+v(673)*v(7009)+v& &(675)*v(7033)+v(674)*v(7066))+v(7323)*v(8238))) dRdX(15,14)=mpar(15)*(-(v(7370)*v(7430))-v(660)*(v(656)*(v(668)*v(6953)+v(671)*v(6988)+v(667)*v(6999)+v(673)*v(7010)+v& &(675)*v(7034)+v(674)*v(7067))+v(7324)*v(8238))) dRdX(15,15)=1d0+mpar(15)*(-(v(7371)*v(7430))-v(660)*(v(656)*(v(668)*v(6954)+v(671)*v(6989)+v(667)*v(7000)+v(673)*v(7011& &)+v(675)*v(7035)+v(674)*v(7068))+v(7325)*v(8238))) dRdX(15,16)=mpar(15)*(-(v(7372)*v(7430))-v(660)*(v(656)*(v(668)*v(6955)+v(671)*v(6990)+v(667)*v(7001)+v(673)*v(7012)+v& &(675)*v(7036)+v(674)*v(7069))+v(7326)*v(8238))) dRdX(16,1)=mpar(15)*(-(v(7361)*v(7432))-v(660)*(v(656)*(v(669)*v(6945)+v(673)*v(6956)+v(670)*v(6980)+v(666)*v(6991)+v& &(675)*v(7037)+v(674)*v(7048))+v(7315)*v(8239))) dRdX(16,2)=mpar(15)*(-(v(7363)*v(7432))-v(660)*(v(656)*(v(669)*v(6946)+v(673)*v(6957)+v(670)*v(6981)+v(666)*v(6992)+v& &(675)*v(7038)+v(674)*v(7049))+v(7317)*v(8239))) dRdX(16,3)=mpar(15)*(-(v(7364)*v(7432))-v(660)*(v(656)*(v(669)*v(6947)+v(673)*v(6958)+v(670)*v(6982)+v(666)*v(6993)+v& &(675)*v(7039)+v(674)*v(7050))+v(7318)*v(8239))) dRdX(16,4)=mpar(15)*(-(v(7365)*v(7432))-v(660)*(v(656)*(v(669)*v(6948)+v(673)*v(6959)+v(670)*v(6983)+v(666)*v(6994)+v& &(675)*v(7040)+v(674)*v(7051))+v(7319)*v(8239))) dRdX(16,5)=mpar(15)*(-(v(7366)*v(7432))-v(660)*(v(656)*(v(669)*v(6949)+v(673)*v(6960)+v(670)*v(6984)+v(666)*v(6995)+v& &(675)*v(7041)+v(674)*v(7052))+v(7320)*v(8239))) dRdX(16,6)=mpar(15)*(-(v(7367)*v(7432))-v(660)*(v(656)*(v(669)*v(6950)+v(673)*v(6961)+v(670)*v(6985)+v(666)*v(6996)+v& &(675)*v(7042)+v(674)*v(7053))+v(7321)*v(8239))) dRdX(16,7)=0d0 dRdX(16,8)=0d0 dRdX(16,9)=0d0 dRdX(16,10)=0d0 dRdX(16,11)=0d0 dRdX(16,12)=mpar(15)*(-(v(7368)*v(7432))-v(660)*(v(656)*(v(669)*v(6951)+v(673)*v(6962)+v(670)*v(6986)+v(666)*v(6997)+v& &(675)*v(7043)+v(674)*v(7054))+v(7322)*v(8239))) dRdX(16,13)=mpar(15)*(-(v(7369)*v(7432))-v(660)*(v(656)*(v(669)*v(6952)+v(673)*v(6963)+v(670)*v(6987)+v(666)*v(6998)+v& &(675)*v(7044)+v(674)*v(7055))+v(7323)*v(8239))) dRdX(16,14)=mpar(15)*(-(v(7370)*v(7432))-v(660)*(v(656)*(v(669)*v(6953)+v(673)*v(6964)+v(670)*v(6988)+v(666)*v(6999)+v& &(675)*v(7045)+v(674)*v(7056))+v(7324)*v(8239))) dRdX(16,15)=mpar(15)*(-(v(7371)*v(7432))-v(660)*(v(656)*(v(669)*v(6954)+v(673)*v(6965)+v(670)*v(6989)+v(666)*v(7000)+v& &(675)*v(7046)+v(674)*v(7057))+v(7325)*v(8239))) dRdX(16,16)=1d0+mpar(15)*(-(v(7372)*v(7432))-v(660)*(v(656)*(v(669)*v(6955)+v(673)*v(6966)+v(670)*v(6990)+v(666)*v(7001& &)+v(675)*v(7047)+v(674)*v(7058))+v(7326)*v(8239))) END SUBROUTINE !************************************************************** !* AceGen 6.702 Windows (4 May 16) * !* Co. J. Korelc 2013 4 Dec 19 21:46:47 * !************************************************************** ! User : Full professional version ! Notebook : MainFile ! Evaluation time : 707 s Mode : Optimal ! Number of formulae : 5439 Method: Automatic ! Subroutine : plastic_output size: 157507 ! Total size of Mathematica code : 157507 subexpressions ! Total size of Fortran code : 368811 bytes !******************* S U B R O U T I N E ********************** SUBROUTINE plastic_output(x,mpar,statev,Fnew,Jinv,sigma,ddsdde,statevNew,dwp) USE SMSUtility IMPLICIT NONE DOUBLE PRECISION v(6428),x(16),mpar(16),statev(58),Fnew(9),Jinv(16,16),sigma(6),ddsdde(6,6),statevNew(58),dwp v(6379)=1d0/mpar(16) v(6378)=v(6379)*x(12) v(6041)=1d0/mpar(12) v(6037)=1d0/mpar(10) v(5722)=8d0*x(5)*x(6) v(5712)=8d0*x(4) v(5724)=v(5712)*x(6) v(5723)=v(5712)*x(5) v(5709)=2d0*x(5) v(5708)=2d0*x(4) v(5706)=x(5)**2 v(5716)=4d0*v(5706) v(5704)=x(6)**2 v(5714)=4d0*v(5704) v(5702)=x(4)**2 v(5711)=4d0*v(5702) v(5685)=2d0*x(6) v(5666)=mpar(14)**2 v(5675)=4d0*v(5666) v(5674)=2d0*v(5666) v(5605)=2d0*mpar(14) v(5575)=(-8d0)*statev(48) v(5569)=(-8d0)*statev(47) v(5555)=1d0/(Fnew(6)*(Fnew(4)*Fnew(5)-Fnew(2)*Fnew(7))+Fnew(3)*(Fnew(1)*Fnew(2)-Fnew(4)*Fnew(8))+(-(Fnew(1)*Fnew(5))& &+Fnew(7)*Fnew(8))*Fnew(9)) v(6423)=v(5555)/4d0 v(5554)=2d0*x(15) v(5553)=2d0*x(16) v(5552)=2d0*x(14) v(5551)=-x(12)-x(13) v(5550)=-x(7)-x(8) v(5549)=2d0*v(5704) v(5548)=2d0*v(5706) v(5547)=2d0*v(5702) v(5546)=x(3)**2 v(5545)=x(2)**2 v(5544)=2d0*x(2) v(5543)=2d0*x(3) v(5542)=-x(2)-x(3) v(5707)=(v(5542)*v(5542)) v(5541)=dabs(x(1)) v(5540)=4d0*x(6) v(5736)=v(5540)*x(3) v(5718)=v(5540)*v(5542) v(5539)=4d0*x(5) v(5732)=v(5539)*x(3) v(5717)=v(5539)*v(5542) v(5538)=4d0*x(4) v(5737)=v(5538)*x(3) v(5719)=v(5538)*v(5542) v(5537)=dsign(1.d0,x(1)) v(5536)=1d0+statev(52) v(5535)=1d0+statev(51) v(5534)=1d0+statev(50) v(5533)=1d0+statev(3) v(5532)=1d0+statev(2) v(5531)=1d0+statev(1) v(5530)=1d0+statev(22) v(5529)=1d0+statev(21) v(5528)=1d0+statev(20) v(5527)=1d0+statev(13) v(5526)=1d0+statev(12) v(5525)=1d0+statev(11) v(5524)=(-1d0/3d0)+statev(40) v(5581)=2d0*v(5524) v(5523)=(-1d0/3d0)+statev(36) v(5580)=2d0*v(5523) v(5522)=(-1d0/3d0)+statev(35) v(5579)=2d0*v(5522) v(5521)=0.5d0+statev(34) v(5578)=4d0*v(5521) v(5520)=0.5d0+statev(33) v(5577)=4d0*v(5520) v(5519)=0.5d0+statev(32) v(5576)=4d0*v(5519) v(5518)=(2d0/3d0)+statev(31) v(5517)=(2d0/3d0)+statev(30) v(5516)=(2d0/3d0)+statev(29) v(5515)=1d0-mpar(8) v(2489)=2d0*v(5537)*v(5541) v(1638)=dexp((-7d0)*mpar(13)*v(5541)) v(1641)=(-1d0)+v(1638) v(5571)=v(1641)/7d0 v(1497)=(-2d0)*v(5542) v(5735)=-(v(1497)*x(3)) v(1498)=v(1497)+v(5543) v(1496)=v(1497)+v(5544) v(216)=v(5545)+v(5546)+v(5547)+v(5548)+v(5549)+v(5707) v(1510)=0.1d-19+v(216) v(1509)=1d0/sqrt(v(1510)) v(1512)=-v(1509)/(2d0*v(1510)) v(1516)=v(1512)*v(5540) v(1585)=v(1516)*x(4) v(1708)=v(1585)*v(5569) v(1554)=v(1516)*v(5542) v(1531)=v(1516)*x(3) v(1521)=v(1516)*x(2) v(1515)=v(1512)*v(5539) v(1599)=v(1515)*x(6) v(1584)=v(1515)*x(4) v(5582)=2d0*v(1584) v(1697)=v(1584)*v(5575) v(1553)=v(1515)*v(5542) v(1530)=v(1515)*x(3) v(1520)=v(1515)*x(2) v(1514)=v(1512)*v(5538) v(1552)=v(1514)*v(5542) v(1529)=v(1514)*x(3) v(1519)=v(1514)*x(2) v(1513)=v(1498)*v(1512) v(1613)=v(1513)*x(5) v(1598)=v(1513)*x(6) v(1582)=v(1513)*x(4) v(1518)=v(1513)*x(2) v(1511)=v(1496)*v(1512) v(1612)=v(1511)*x(5) v(1597)=v(1511)*x(6) v(1581)=v(1511)*x(4) v(1527)=v(1511)*x(3) v(1502)=1d0/sqrt(v(216)) v(1504)=-v(1502)/(2d0*v(216)) v(1508)=v(1504)*v(5540) v(1507)=v(1504)*v(5539) v(1506)=v(1504)*v(5538) v(1505)=v(1498)*v(1504) v(1503)=v(1496)*v(1504) v(1614)=v(1509)+v(1515)*x(5) v(1600)=v(1509)+v(1516)*x(6) v(1583)=v(1509)+v(1514)*x(4) v(1551)=-v(1509)+v(1513)*v(5542) v(1550)=-v(1509)+v(1511)*v(5542) v(1528)=v(1509)+v(1513)*x(3) v(1517)=v(1509)+v(1511)*x(2) v(1625)=v(1554)*v(5551)+v(1585)*v(5552)+v(1600)*v(5553)+v(1599)*v(5554)+v(1521)*x(12)+v(1531)*x(13) v(1624)=v(1553)*v(5551)+v(1584)*v(5552)+v(1599)*v(5553)+v(1614)*v(5554)+v(1520)*x(12)+v(1530)*x(13) v(1623)=v(1552)*v(5551)+v(1583)*v(5552)+v(1585)*v(5553)+v(1584)*v(5554)+v(1519)*x(12)+v(1529)*x(13) v(1622)=v(1551)*v(5551)+v(1582)*v(5552)+v(1598)*v(5553)+v(1613)*v(5554)+v(1518)*x(12)+v(1528)*x(13) v(1621)=v(1550)*v(5551)+v(1581)*v(5552)+v(1597)*v(5553)+v(1612)*v(5554)+v(1517)*x(12)+v(1527)*x(13) v(117)=v(1509)*x(2) v(5557)=(-2d0)*v(117) v(5556)=(-4d0)*v(117) v(1710)=statev(38)*v(5556) v(1698)=statev(39)*v(5556) v(1686)=statev(37)*v(5556) v(1637)=v(1521)*v(5557) v(1636)=v(1520)*v(5557) v(1635)=v(1519)*v(5557) v(1634)=v(1518)*v(5557) v(1633)=v(1517)*v(5557) v(217)=-(v(117)*x(12)) v(119)=v(1509)*x(3) v(5559)=(-2d0)*v(119) v(5558)=(-4d0)*v(119) v(1711)=statev(42)*v(5558) v(1699)=statev(43)*v(5558) v(1687)=statev(41)*v(5558) v(1549)=v(1531)*v(5559) v(1548)=v(1530)*v(5559) v(1547)=v(1529)*v(5559) v(1546)=v(1528)*v(5559) v(1545)=v(1527)*v(5559) v(1544)=v(1521)*v(5559) v(1542)=v(1520)*v(5559) v(1540)=v(1519)*v(5559) v(1538)=-(v(119)*v(1518))-v(117)*v(1528) v(1537)=-(v(119)*v(1517))-v(117)*v(1527) v(218)=-(v(119)*x(13)) v(137)=(-1d0/3d0)-v(117)*v(119) v(127)=(2d0/3d0)-(v(119)*v(119)) v(120)=v(1509)*v(5542) v(5561)=(-2d0)*v(120) v(5560)=(-4d0)*v(120) v(1678)=statev(46)*v(5560) v(5592)=v(1678)+v(1699) v(1676)=statev(45)*v(5560) v(5593)=v(1676)+v(1711) v(1673)=statev(44)*v(5560) v(5590)=v(1673)+v(1687) v(1627)=v(119)-v(120) v(1626)=v(117)-v(120) v(1580)=v(1554)*v(5561) v(1579)=v(1553)*v(5561) v(1578)=v(1552)*v(5561) v(1577)=v(1551)*v(5561) v(1576)=v(1550)*v(5561) v(1575)=v(1521)*v(5561) v(1573)=v(1520)*v(5561) v(1571)=v(1519)*v(5561) v(1569)=-(v(120)*v(1518))-v(117)*v(1551) v(1568)=-(v(120)*v(1517))-v(117)*v(1550) v(1567)=v(1531)*v(5561) v(1565)=v(1530)*v(5561) v(1563)=v(1529)*v(5561) v(1561)=-(v(120)*v(1528))-v(119)*v(1551) v(1560)=-(v(120)*v(1527))-v(119)*v(1550) v(219)=-(v(120)*v(5551)) v(144)=(-1d0/3d0)-v(119)*v(120) v(139)=(-1d0/3d0)-v(117)*v(120) v(129)=(2d0/3d0)-(v(120)*v(120)) v(121)=v(1509)*x(4) v(5563)=(-2d0)*v(121) v(5562)=(-4d0)*v(121) v(1653)=statev(44)*v(5562) v(5574)=2d0*v(1653) v(1645)=statev(41)*v(5562) v(5573)=2d0*v(1645) v(1642)=statev(37)*v(5562) v(5572)=2d0*v(1642) v(1596)=v(1585)*v(5563) v(1595)=v(1584)*v(5563) v(1594)=v(1583)*v(5563) v(1593)=v(1582)*v(5563) v(1592)=v(1581)*v(5563) v(220)=v(5563)*x(14) v(131)=0.5d0-(v(121)*v(121)) v(122)=v(1509)*x(6) v(5566)=(-2d0)*v(122) v(5565)=(-4d0)*v(122) v(5564)=(-8d0)*v(122) v(1700)=statev(49)*v(5564) v(1659)=statev(47)*v(5564) v(1654)=statev(45)*v(5565) v(5587)=2d0*v(1654) v(1647)=statev(42)*v(5565) v(5585)=2d0*v(1647) v(1643)=statev(38)*v(5565) v(5583)=2d0*v(1643) v(1611)=v(1600)*v(5566) v(1610)=v(1599)*v(5566) v(1609)=v(1585)*v(5566) v(1608)=v(1598)*v(5566) v(1607)=v(1597)*v(5566) v(221)=v(5566)*x(16) v(133)=0.5d0-(v(122)*v(122)) v(123)=v(1509)*x(5) v(5570)=(-2d0)*v(123) v(5568)=(-4d0)*v(123) v(5567)=(-8d0)*v(123) v(1664)=statev(49)*v(5567) v(5597)=2d0*v(1664) v(1661)=statev(48)*v(5567) v(5600)=v(1659)+v(1661) v(5591)=2d0*v(1661) v(5596)=2d0*v(1659)+v(5591) v(1655)=statev(46)*v(5568) v(5595)=v(1653)+v(1654)+v(1655) v(5588)=2d0*v(1655) v(1649)=statev(43)*v(5568) v(5599)=v(1645)+v(1647)+v(1649) v(5586)=2d0*v(1649) v(5594)=v(5585)+v(5586) v(1644)=statev(39)*v(5568) v(5598)=v(1642)+v(1643)+v(1644) v(5584)=2d0*v(1644) v(5589)=v(5583)+v(5584) v(1632)=v(1599)*v(5570) v(1712)=v(5571)*(v(1599)*v(1700)+v(122)*v(1708)+v(1637)*v(5516)+v(1549)*v(5517)+v(1580)*v(5518)+v(1596)*v(5576)+v(1611& &)*v(5577)+v(1632)*v(5578)+v(1544)*v(5579)+v(1575)*v(5580)+v(1567)*v(5581)+v(1521)*(v(1643)+v(5572)+v(5584))+v(1531)*(v& &(1647)+v(5573)+v(5586))+v(1554)*(v(1654)+v(5574)+v(5588))+v(1585)*v(5591)+v(1600)*(v(1664)+v(1710)+v(121)*v(5569)+v& &(5593))) v(5644)=v(117)*v(1712) v(5633)=v(119)*v(1712) v(5620)=v(120)*v(1712) v(5611)=v(121)*v(1712) v(1631)=v(1614)*v(5570) v(1701)=v(5571)*(v(1599)*v(1664)+v(123)*v(1697)+v(1636)*v(5516)+v(1548)*v(5517)+v(1579)*v(5518)+v(1595)*v(5576)+v(1610& &)*v(5577)+v(1631)*v(5578)+v(1542)*v(5579)+v(1573)*v(5580)+v(1565)*v(5581)+v(1659)*v(5582)+v(1520)*(v(1644)+v(5572)+v& &(5583))+v(1530)*(v(1649)+v(5573)+v(5585))+v(1553)*(v(1655)+v(5574)+v(5587))+v(1614)*(v(1698)+v(1700)+v(121)*v(5575)+v& &(5592))) v(5645)=v(117)*v(1701) v(5634)=v(119)*v(1701) v(5621)=v(120)*v(1701) v(5613)=v(121)*v(1701) v(1630)=-(v(123)*v(5582)) v(1689)=v(5571)*(v(121)*(v(1697)+v(1708))+v(1635)*v(5516)+v(1547)*v(5517)+v(1578)*v(5518)+v(1594)*v(5576)+v(1609)*v& &(5577)+v(1630)*v(5578)+v(1540)*v(5579)+v(1571)*v(5580)+v(1563)*v(5581)+v(1700)*v(5582)+v(1552)*(v(1653)+v(5587)+v(5588)& &)+v(1519)*(v(1642)+v(5589))+v(1529)*(v(1645)+v(5594))+v(1583)*(v(1686)+v(5590)+v(5600))) v(5652)=v(117)*v(1689) v(5641)=v(119)*v(1689) v(5630)=v(120)*v(1689) v(5626)=-(v(122)*v(1689)) v(1629)=v(1613)*v(5570) v(1679)=v(5571)*(v(1634)*v(5516)+v(1546)*v(5517)+v(1577)*v(5518)+v(1593)*v(5576)+v(1608)*v(5577)+v(1629)*v(5578)+v(1538& &)*v(5579)+v(1569)*v(5580)+v(1561)*v(5581)+v(1518)*(v(5572)+v(5589))+v(1613)*v(5592)+v(1551)*v(5595)+v(1582)*(v(5590)+v& &(5596))+v(1598)*(v(5593)+v(5597))+v(1528)*v(5599)) v(1628)=v(1612)*v(5570) v(1669)=v(5571)*(v(1612)*(v(1678)+v(1698))+v(1633)*v(5516)+v(1545)*v(5517)+v(1576)*v(5518)+v(1592)*v(5576)+v(1607)*v& &(5577)+v(1628)*v(5578)+v(1537)*v(5579)+v(1568)*v(5580)+v(1560)*v(5581)+v(1527)*(v(5573)+v(5594))+v(1550)*v(5595)+v(1581& &)*(v(1673)+v(1686)+v(5596))+v(1597)*(v(1676)+v(1710)+v(5597))+v(1517)*v(5598)) v(222)=v(5570)*x(15) v(226)=-v(217)-v(218)-v(219)-v(220)-v(221)-v(222) v(2477)=-(v(1599)*v(226)) v(2473)=-(v(1584)*v(226)) v(2464)=-(v(123)*v(226))+x(15) v(5756)=-(v(1502)*v(2464)) v(2452)=-(v(1585)*v(226)) v(2443)=-(v(122)*v(226))+x(16) v(5761)=-(v(1502)*v(2443)) v(2426)=-(v(121)*v(226))+x(14) v(5766)=-(v(1502)*v(2426)) v(2411)=-(v(120)*v(226))+v(5551) v(5771)=-(v(1502)*v(2411)) v(2395)=-(v(119)*v(226))+x(13) v(5774)=-(v(1502)*v(2395)) v(2380)=-(v(117)*v(226))+x(12) v(5786)=-(v(1502)*v(2380)) v(157)=1d0+v(217)+v(218)+v(219)+v(220)+v(221)+v(222) v(5668)=0.15d1*v(157) v(135)=0.5d0-(v(123)*v(123)) v(124)=(2d0/3d0)-(v(117)*v(117)) v(1639)=v(122)*v(1664)+v(124)*v(5516)+v(127)*v(5517)+v(129)*v(5518)+v(131)*v(5576)+v(133)*v(5577)+v(135)*v(5578)+v(137& &)*v(5579)+v(139)*v(5580)+v(144)*v(5581)+v(120)*v(5595)+v(117)*v(5598)+v(119)*v(5599)+v(121)*v(5600) v(1640)=-(mpar(13)*v(1638)*v(1639)*v(5537)) v(5604)=mpar(14)*v(1640) v(5603)=-(v(121)*v(1640)) v(5602)=-(v(122)*v(1640)) v(5601)=-(v(123)*v(1640)) v(1997)=v(122)*v(5601) v(1989)=v(121)*v(5601) v(1980)=v(121)*v(5602) v(1968)=v(120)*v(5601) v(1955)=v(120)*v(5602) v(1941)=v(120)*v(5603) v(1928)=v(119)*v(5601) v(1914)=v(119)*v(5602) v(1899)=v(119)*v(5603) v(1882)=v(144)*v(5604) v(1868)=v(117)*v(5601) v(1854)=v(117)*v(5602) v(1839)=v(117)*v(5603) v(1822)=v(139)*v(5604) v(1804)=v(137)*v(5604) v(1786)=v(135)*v(5604) v(1797)=v(1786)*v(5605) v(1768)=v(133)*v(5604) v(1779)=v(1768)*v(5605) v(1750)=v(131)*v(5604) v(1761)=v(1750)*v(5605) v(1738)=v(129)*v(5604) v(1726)=v(127)*v(5604) v(1714)=v(124)*v(5604) v(126)=v(1639)*v(5571) v(5665)=-(v(121)*v(126)) v(5649)=v(126)*v(1521) v(5648)=v(126)*v(1517)+v(117)*v(1669) v(5643)=v(126)*v(1520) v(5642)=-(v(117)*v(126)) v(5638)=v(126)*v(1531) v(5636)=v(126)*v(1528)+v(119)*v(1679) v(5632)=v(126)*v(1530) v(5631)=-(v(119)*v(126)) v(5629)=v(126)*v(1583) v(5625)=v(126)*v(1554) v(5624)=v(126)*v(1550)+v(120)*v(1669) v(5623)=v(126)*v(1551)+v(120)*v(1679) v(5619)=v(126)*v(1553) v(5618)=-(v(120)*v(126)) v(5615)=v(121)*v(1689)+v(5629) v(5614)=v(126)*v(1585) v(5610)=-(v(126)*v(1600)) v(5609)=v(126)*v(1584) v(5608)=-(v(126)*v(1614)) v(5607)=(-2d0)*v(126) v(5647)=-(v(117)*v(1679))+v(1518)*v(5607) v(5637)=-(v(119)*v(1669))+v(1527)*v(5607) v(5617)=-(v(121)*v(1669))+v(1581)*v(5607) v(5616)=-(v(121)*v(1679))+v(1582)*v(5607) v(5606)=v(126)*v(1599) v(2004)=-(v(122)*(v(123)*v(1712)+v(5606)))+v(123)*v(5610) v(2003)=-(v(123)*(v(122)*v(1701)+v(5606)))+v(122)*v(5608) v(2001)=v(123)*(-(v(122)*v(1679))+v(1598)*v(5607)) v(1999)=v(123)*(-(v(122)*v(1669))+v(1597)*v(5607)) v(1995)=v(121)*v(5608)-v(123)*(v(5609)+v(5613)) v(1994)=-(v(121)*v(5609))-v(123)*v(5615) v(1993)=v(123)*v(5616) v(1991)=v(123)*v(5617) v(1988)=v(121)*v(5610)-v(122)*(v(5611)+v(5614)) v(1986)=-(v(122)*v(5609)) v(5612)=2d0*v(1986) v(2002)=v(5612)+v(123)*v(5626) v(1996)=-(v(123)*v(5611))+v(5612) v(1987)=v(5612)-v(122)*v(5613) v(1985)=-(v(121)*v(5614))-v(122)*v(5615) v(1984)=v(122)*v(5616) v(1982)=v(122)*v(5617) v(1972)=v(120)*v(5608)-v(123)*(v(5619)+v(5621)) v(1970)=v(1613)*v(5618)-v(123)*v(5623) v(1969)=v(1612)*v(5618)-v(123)*v(5624) v(1961)=v(120)*v(5610)-v(122)*(v(5620)+v(5625)) v(1959)=-(v(122)*v(5619)) v(5622)=2d0*v(1959) v(1973)=-(v(123)*v(5620))+v(5622) v(1960)=-(v(122)*v(5621))+v(5622) v(1957)=v(1598)*v(5618)-v(122)*v(5623) v(1956)=v(1597)*v(5618)-v(122)*v(5624) v(1947)=-(v(121)*v(5625)) v(5627)=2d0*v(1947) v(1958)=v(120)*v(5626)+v(5627) v(1948)=-(v(120)*v(5611))+v(5627) v(1945)=-(v(121)*v(5619)) v(5628)=2d0*v(1945) v(1971)=v(5628)-v(123)*v(5630) v(1946)=-(v(120)*v(5613))+v(5628) v(1944)=-(v(120)*v(5629))-v(121)*(v(126)*v(1552)+v(5630)) v(1943)=v(1582)*v(5618)-v(121)*v(5623) v(1942)=v(1581)*v(5618)-v(121)*v(5624) v(1933)=v(119)*v(5608)-v(123)*(v(5632)+v(5634)) v(1931)=v(1613)*v(5631)-v(123)*v(5636) v(1930)=v(123)*v(5637) v(1921)=v(1600)*v(5631)-v(122)*(v(5633)+v(5638)) v(1919)=-(v(122)*v(5632)) v(5635)=2d0*v(1919) v(1934)=-(v(123)*v(5633))+v(5635) v(1920)=-(v(122)*v(5634))+v(5635) v(1917)=v(1598)*v(5631)-v(122)*v(5636) v(1916)=v(122)*v(5637) v(1906)=-(v(121)*v(5638)) v(5639)=2d0*v(1906) v(1918)=v(119)*v(5626)+v(5639) v(1907)=-(v(119)*v(5611))+v(5639) v(1904)=-(v(121)*v(5632)) v(5640)=2d0*v(1904) v(1932)=v(5640)-v(123)*v(5641) v(1905)=-(v(119)*v(5613))+v(5640) v(1903)=-(v(119)*v(5629))-v(121)*(v(126)*v(1529)+v(5641)) v(1902)=v(1582)*v(5631)-v(121)*v(5636) v(1901)=v(121)*v(5637) v(1892)=mpar(14)*(v(126)*v(1567)+v(144)*v(1712)) v(1890)=mpar(14)*(v(126)*v(1565)+v(144)*v(1701)) v(1888)=mpar(14)*(v(126)*v(1563)+v(144)*v(1689)) v(1886)=mpar(14)*(v(126)*v(1561)+v(144)*v(1679)) v(1884)=mpar(14)*(v(126)*v(1560)+v(144)*v(1669)) v(1873)=v(117)*v(5608)-v(123)*(v(5643)+v(5645)) v(1871)=v(123)*v(5647) v(1869)=v(1612)*v(5642)-v(123)*v(5648) v(1861)=v(1600)*v(5642)-v(122)*(v(5644)+v(5649)) v(1859)=-(v(122)*v(5643)) v(5646)=2d0*v(1859) v(1874)=-(v(123)*v(5644))+v(5646) v(1860)=-(v(122)*v(5645))+v(5646) v(1857)=v(122)*v(5647) v(1855)=v(1597)*v(5642)-v(122)*v(5648) v(1846)=-(v(121)*v(5649)) v(5650)=2d0*v(1846) v(1858)=v(117)*v(5626)+v(5650) v(1847)=-(v(117)*v(5611))+v(5650) v(1844)=-(v(121)*v(5643)) v(5651)=2d0*v(1844) v(1872)=v(5651)-v(123)*v(5652) v(1845)=-(v(117)*v(5613))+v(5651) v(1843)=-(v(117)*v(5629))-v(121)*(v(126)*v(1519)+v(5652)) v(1842)=v(121)*v(5647) v(1840)=v(1581)*v(5642)-v(121)*v(5648) v(1832)=mpar(14)*(v(126)*v(1575)+v(139)*v(1712)) v(1830)=mpar(14)*(v(126)*v(1573)+v(139)*v(1701)) v(1828)=mpar(14)*(v(126)*v(1571)+v(139)*v(1689)) v(1826)=mpar(14)*(v(126)*v(1569)+v(139)*v(1679)) v(1824)=mpar(14)*(v(126)*v(1568)+v(139)*v(1669)) v(1814)=mpar(14)*(v(126)*v(1544)+v(137)*v(1712)) v(1812)=mpar(14)*(v(126)*v(1542)+v(137)*v(1701)) v(1810)=mpar(14)*(v(126)*v(1540)+v(137)*v(1689)) v(1808)=mpar(14)*(v(126)*v(1538)+v(137)*v(1679)) v(1806)=mpar(14)*(v(126)*v(1537)+v(137)*v(1669)) v(1796)=mpar(14)*(v(126)*v(1632)+v(135)*v(1712)) v(1802)=v(1796)*v(5605) v(1794)=mpar(14)*(v(126)*v(1631)+v(135)*v(1701)) v(1801)=v(1794)*v(5605) v(1792)=mpar(14)*(v(126)*v(1630)+v(135)*v(1689)) v(1800)=v(1792)*v(5605) v(1790)=mpar(14)*(v(126)*v(1629)+v(135)*v(1679)) v(1799)=v(1790)*v(5605) v(1788)=mpar(14)*(v(126)*v(1628)+v(135)*v(1669)) v(1798)=v(1788)*v(5605) v(1778)=mpar(14)*(v(126)*v(1611)+v(133)*v(1712)) v(1784)=v(1778)*v(5605) v(1776)=mpar(14)*(v(126)*v(1610)+v(133)*v(1701)) v(1783)=v(1776)*v(5605) v(1774)=mpar(14)*(v(126)*v(1609)+v(133)*v(1689)) v(1782)=v(1774)*v(5605) v(1772)=mpar(14)*(v(126)*v(1608)+v(133)*v(1679)) v(1781)=v(1772)*v(5605) v(1770)=mpar(14)*(v(126)*v(1607)+v(133)*v(1669)) v(1780)=v(1770)*v(5605) v(1760)=mpar(14)*(v(126)*v(1596)+v(131)*v(1712)) v(1766)=v(1760)*v(5605) v(1758)=mpar(14)*(v(126)*v(1595)+v(131)*v(1701)) v(1765)=v(1758)*v(5605) v(1756)=mpar(14)*(v(126)*v(1594)+v(131)*v(1689)) v(1764)=v(1756)*v(5605) v(1754)=mpar(14)*(v(126)*v(1593)+v(131)*v(1679)) v(1763)=v(1754)*v(5605) v(1752)=mpar(14)*(v(126)*v(1592)+v(131)*v(1669)) v(1762)=v(1752)*v(5605) v(1748)=mpar(14)*(v(126)*v(1580)+v(129)*v(1712)) v(1746)=mpar(14)*(v(126)*v(1579)+v(129)*v(1701)) v(1744)=mpar(14)*(v(126)*v(1578)+v(129)*v(1689)) v(1742)=mpar(14)*(v(126)*v(1577)+v(129)*v(1679)) v(1740)=mpar(14)*(v(126)*v(1576)+v(129)*v(1669)) v(1736)=mpar(14)*(v(126)*v(1549)+v(127)*v(1712)) v(1734)=mpar(14)*(v(126)*v(1548)+v(127)*v(1701)) v(1732)=mpar(14)*(v(126)*v(1547)+v(127)*v(1689)) v(1730)=mpar(14)*(v(126)*v(1546)+v(127)*v(1679)) v(1728)=mpar(14)*(v(126)*v(1545)+v(127)*v(1669)) v(1724)=mpar(14)*(v(126)*v(1637)+v(124)*v(1712)) v(1722)=mpar(14)*(v(126)*v(1636)+v(124)*v(1701)) v(1720)=mpar(14)*(v(126)*v(1635)+v(124)*v(1689)) v(1718)=mpar(14)*(v(126)*v(1634)+v(124)*v(1679)) v(1716)=mpar(14)*(v(126)*v(1633)+v(124)*v(1669)) v(125)=statev(29)+v(124)*v(126) v(158)=(2d0/3d0)+mpar(14)*v(125) v(5673)=2d0*v(158) v(128)=statev(30)+v(126)*v(127) v(170)=(2d0/3d0)+mpar(14)*v(128) v(5725)=v(158)+v(170) v(5671)=2d0*v(170) v(130)=statev(31)+v(126)*v(129) v(173)=(2d0/3d0)+mpar(14)*v(130) v(5701)=v(158)+v(173) v(5696)=v(170)+v(173) v(5669)=2d0*v(173) v(132)=statev(32)+v(126)*v(131) v(192)=0.5d0+mpar(14)*v(132) v(5683)=4d0*v(192) v(175)=v(192)*v(5605) v(134)=statev(33)+v(126)*v(133) v(200)=0.5d0+mpar(14)*v(134) v(5681)=4d0*v(200) v(179)=v(200)*v(5605) v(5686)=v(175)+v(179) v(136)=statev(34)+v(126)*v(135) v(208)=0.5d0+mpar(14)*v(136) v(5677)=4d0*v(208) v(182)=v(208)*v(5605) v(5689)=v(175)+v(182) v(5679)=v(179)+v(182) v(138)=statev(35)+v(126)*v(137) v(159)=(-1d0/3d0)+mpar(14)*v(138) v(5653)=2d0*v(159) v(1820)=v(1814)*v(5653) v(1819)=v(1812)*v(5653) v(1818)=v(1810)*v(5653) v(1817)=v(1808)*v(5653) v(1816)=v(1806)*v(5653) v(1815)=v(1804)*v(5653) v(171)=(v(159)*v(159)) v(140)=statev(36)+v(126)*v(139) v(160)=(-1d0/3d0)+mpar(14)*v(140) v(5654)=2d0*v(160) v(1838)=v(1832)*v(5654) v(1837)=v(1830)*v(5654) v(1836)=v(1828)*v(5654) v(1835)=v(1826)*v(5654) v(1834)=v(1824)*v(5654) v(1833)=v(1822)*v(5654) v(184)=(v(160)*v(160)) v(141)=statev(37)+v(121)*v(5642) v(5655)=2d0*v(141) v(1853)=v(1847)*v(5655) v(1852)=v(1845)*v(5655) v(1851)=v(1843)*v(5655) v(1850)=v(1842)*v(5655) v(1849)=v(1840)*v(5655) v(1848)=v(1839)*v(5655) v(193)=(v(141)*v(141)) v(142)=statev(38)+v(122)*v(5642) v(5656)=2d0*v(142) v(1867)=v(1861)*v(5656) v(1866)=v(1860)*v(5656) v(1865)=v(1858)*v(5656) v(1864)=v(1857)*v(5656) v(1863)=v(1855)*v(5656) v(1862)=v(1854)*v(5656) v(201)=(v(142)*v(142)) v(143)=statev(39)+v(123)*v(5642) v(5657)=2d0*v(143) v(1880)=v(1874)*v(5657) v(1879)=v(1873)*v(5657) v(1878)=v(1872)*v(5657) v(1877)=v(1871)*v(5657) v(1876)=v(1869)*v(5657) v(1875)=v(1868)*v(5657) v(209)=(v(143)*v(143)) v(145)=statev(40)+v(126)*v(144) v(162)=(-1d0/3d0)+mpar(14)*v(145) v(5658)=2d0*v(162) v(1898)=v(1892)*v(5658) v(1897)=v(1890)*v(5658) v(1896)=v(1888)*v(5658) v(1895)=v(1886)*v(5658) v(1894)=v(1884)*v(5658) v(1893)=v(1882)*v(5658) v(185)=(v(162)*v(162)) v(146)=statev(41)+v(121)*v(5631) v(5659)=2d0*v(146) v(1913)=v(1907)*v(5659) v(1912)=v(1905)*v(5659) v(1911)=v(1903)*v(5659) v(1910)=v(1902)*v(5659) v(1909)=v(1901)*v(5659) v(1908)=v(1899)*v(5659) v(194)=(v(146)*v(146)) v(147)=statev(42)+v(122)*v(5631) v(5660)=2d0*v(147) v(1927)=v(1921)*v(5660) v(1926)=v(1920)*v(5660) v(1925)=v(1918)*v(5660) v(1924)=v(1917)*v(5660) v(1923)=v(1916)*v(5660) v(1922)=v(1914)*v(5660) v(202)=(v(147)*v(147)) v(148)=statev(43)+v(123)*v(5631) v(5661)=2d0*v(148) v(1940)=v(1934)*v(5661) v(1939)=v(1933)*v(5661) v(1938)=v(1932)*v(5661) v(1937)=v(1931)*v(5661) v(1936)=v(1930)*v(5661) v(1935)=v(1928)*v(5661) v(210)=(v(148)*v(148)) v(149)=statev(44)+v(121)*v(5618) v(5662)=2d0*v(149) v(1954)=v(1948)*v(5662) v(1953)=v(1946)*v(5662) v(1952)=v(1944)*v(5662) v(1951)=v(1943)*v(5662) v(1950)=v(1942)*v(5662) v(1949)=v(1941)*v(5662) v(195)=(v(149)*v(149)) v(150)=statev(45)+v(122)*v(5618) v(5663)=2d0*v(150) v(1967)=v(1961)*v(5663) v(1966)=v(1960)*v(5663) v(1965)=v(1958)*v(5663) v(1964)=v(1957)*v(5663) v(1963)=v(1956)*v(5663) v(1962)=v(1955)*v(5663) v(203)=(v(150)*v(150)) v(151)=statev(46)+v(123)*v(5618) v(5664)=2d0*v(151) v(1979)=v(1973)*v(5664) v(1978)=v(1972)*v(5664) v(1977)=v(1971)*v(5664) v(1976)=v(1970)*v(5664) v(1975)=v(1969)*v(5664) v(1974)=v(1968)*v(5664) v(211)=(v(151)*v(151)) v(152)=statev(47)+v(122)*v(5665) v(153)=statev(48)+v(123)*v(5665) v(154)=statev(49)-v(122)*v(123)*v(126) v(2219)=(v(173)*v(173))+v(184)+v(185)+2d0*(v(195)+v(203)+v(211))*v(5666) v(5667)=0.15d1*v(2219) v(2229)=v(5566)*v(5667) v(2228)=v(5570)*v(5667) v(2227)=v(5563)*v(5667) v(2226)=-(v(1627)*v(5667)) v(2225)=-(v(1626)*v(5667)) v(2224)=-(v(1625)*v(5667))+v(5668)*(v(1838)+v(1898)+2d0*(v(1954)+v(1967)+v(1979))*v(5666)+v(1748)*v(5669)) v(2223)=-(v(1624)*v(5667))+v(5668)*(v(1837)+v(1897)+2d0*(v(1953)+v(1966)+v(1978))*v(5666)+v(1746)*v(5669)) v(2222)=-(v(1623)*v(5667))+v(5668)*(v(1836)+v(1896)+2d0*(v(1952)+v(1965)+v(1977))*v(5666)+v(1744)*v(5669)) v(2221)=-(v(1622)*v(5667))+v(5668)*(v(1835)+v(1895)+2d0*(v(1951)+v(1964)+v(1976))*v(5666)+v(1742)*v(5669)) v(2220)=-(v(1621)*v(5667))+v(5668)*(v(1834)+v(1894)+2d0*(v(1950)+v(1963)+v(1975))*v(5666)+v(1740)*v(5669)) v(2218)=v(5668)*(v(1833)+v(1893)+2d0*(v(1949)+v(1962)+v(1974))*v(5666)+v(1738)*v(5669)) v(2159)=(v(170)*v(170))+v(171)+v(185)+2d0*(v(194)+v(202)+v(210))*v(5666) v(5670)=0.15d1*v(2159) v(2169)=v(5566)*v(5670) v(2168)=v(5570)*v(5670) v(2167)=v(5563)*v(5670) v(2166)=-(v(1627)*v(5670)) v(2165)=-(v(1626)*v(5670)) v(2164)=-(v(1625)*v(5670))+v(5668)*(v(1820)+v(1898)+2d0*(v(1913)+v(1927)+v(1940))*v(5666)+v(1736)*v(5671)) v(2163)=-(v(1624)*v(5670))+v(5668)*(v(1819)+v(1897)+2d0*(v(1912)+v(1926)+v(1939))*v(5666)+v(1734)*v(5671)) v(2162)=-(v(1623)*v(5670))+v(5668)*(v(1818)+v(1896)+2d0*(v(1911)+v(1925)+v(1938))*v(5666)+v(1732)*v(5671)) v(2161)=-(v(1622)*v(5670))+v(5668)*(v(1817)+v(1895)+2d0*(v(1910)+v(1924)+v(1937))*v(5666)+v(1730)*v(5671)) v(2160)=-(v(1621)*v(5670))+v(5668)*(v(1816)+v(1894)+2d0*(v(1909)+v(1923)+v(1936))*v(5666)+v(1728)*v(5671)) v(2158)=v(5668)*(v(1815)+v(1893)+2d0*(v(1908)+v(1922)+v(1935))*v(5666)+v(1726)*v(5671)) v(2087)=(v(158)*v(158))+v(171)+v(184)+2d0*(v(193)+v(201)+v(209))*v(5666) v(5672)=0.15d1*v(2087) v(2097)=v(5566)*v(5672) v(2096)=v(5570)*v(5672) v(2095)=v(5563)*v(5672) v(2094)=-(v(1627)*v(5672)) v(2093)=-(v(1626)*v(5672)) v(2092)=-(v(1625)*v(5672))+v(5668)*(v(1820)+v(1838)+2d0*(v(1853)+v(1867)+v(1880))*v(5666)+v(1724)*v(5673)) v(2091)=-(v(1624)*v(5672))+v(5668)*(v(1819)+v(1837)+2d0*(v(1852)+v(1866)+v(1879))*v(5666)+v(1722)*v(5673)) v(2090)=-(v(1623)*v(5672))+v(5668)*(v(1818)+v(1836)+2d0*(v(1851)+v(1865)+v(1878))*v(5666)+v(1720)*v(5673)) v(2089)=-(v(1622)*v(5672))+v(5668)*(v(1817)+v(1835)+2d0*(v(1850)+v(1864)+v(1877))*v(5666)+v(1718)*v(5673)) v(2088)=-(v(1621)*v(5672))+v(5668)*(v(1816)+v(1834)+2d0*(v(1849)+v(1863)+v(1876))*v(5666)+v(1716)*v(5673)) v(2086)=v(5668)*(v(1815)+v(1833)+2d0*(v(1848)+v(1862)+v(1875))*v(5666)+v(1714)*v(5673)) v(2085)=v(1847)*v(5674) v(2084)=v(1845)*v(5674) v(2083)=v(1843)*v(5674) v(2082)=v(1842)*v(5674) v(2081)=v(1840)*v(5674) v(2080)=v(1839)*v(5674) v(2079)=v(1861)*v(5674) v(2078)=v(1860)*v(5674) v(2077)=v(1858)*v(5674) v(2076)=v(1857)*v(5674) v(2075)=v(1855)*v(5674) v(2074)=v(1854)*v(5674) v(2073)=v(1874)*v(5674) v(2072)=v(1873)*v(5674) v(2071)=v(1872)*v(5674) v(2070)=v(1871)*v(5674) v(2069)=v(1869)*v(5674) v(2068)=v(1868)*v(5674) v(2067)=v(1921)*v(5674) v(2066)=v(1920)*v(5674) v(2065)=v(1918)*v(5674) v(2064)=v(1917)*v(5674) v(2063)=v(1916)*v(5674) v(2062)=v(1914)*v(5674) v(2061)=v(1934)*v(5674) v(2060)=v(1933)*v(5674) v(2059)=v(1932)*v(5674) v(2058)=v(1931)*v(5674) v(2057)=v(1930)*v(5674) v(2056)=v(1928)*v(5674) v(2055)=v(1907)*v(5674) v(2054)=v(1905)*v(5674) v(2053)=v(1903)*v(5674) v(2052)=v(1902)*v(5674) v(2051)=v(1901)*v(5674) v(2050)=v(1899)*v(5674) v(2049)=v(1988)*v(5674) v(2048)=v(1987)*v(5674) v(2047)=v(1985)*v(5674) v(2046)=v(1984)*v(5674) v(2045)=v(1982)*v(5674) v(2044)=v(1980)*v(5674) v(2043)=v(1973)*v(5674) v(2042)=v(1972)*v(5674) v(2041)=v(1971)*v(5674) v(2040)=v(1970)*v(5674) v(2039)=v(1969)*v(5674) v(2038)=v(1968)*v(5674) v(2037)=v(2004)*v(5674) v(2036)=v(2003)*v(5674) v(2035)=v(2002)*v(5674) v(2034)=v(2001)*v(5674) v(2033)=v(1999)*v(5674) v(2032)=v(1997)*v(5674) v(2026)=v(152)*v(5675) v(2031)=v(1988)*v(2026) v(2030)=v(1987)*v(2026) v(2029)=v(1985)*v(2026) v(2028)=v(1984)*v(2026) v(2027)=v(1982)*v(2026) v(2025)=v(1980)*v(2026) v(2024)=v(1996)*v(5674) v(2023)=v(1995)*v(5674) v(2022)=v(1994)*v(5674) v(2021)=v(1993)*v(5674) v(2020)=v(1991)*v(5674) v(2019)=v(1989)*v(5674) v(2013)=v(153)*v(5675) v(2018)=v(1996)*v(2013) v(2017)=v(1995)*v(2013) v(2016)=v(1994)*v(2013) v(2015)=v(1993)*v(2013) v(2014)=v(1991)*v(2013) v(2012)=v(1989)*v(2013) v(2266)=v(5668)*(v(2012)+v(2025)+(v(1848)+v(1908)+v(1949))*v(5666)+v(1750)*v(5683)) v(2006)=v(154)*v(5675) v(2011)=v(2004)*v(2006) v(2010)=v(2003)*v(2006) v(2009)=v(2002)*v(2006) v(2008)=v(2001)*v(2006) v(2007)=v(1999)*v(2006) v(2005)=v(1997)*v(2006) v(2326)=v(5668)*(v(2005)+v(2012)+(v(1875)+v(1935)+v(1974))*v(5666)+v(1786)*v(5677)) v(2302)=v(5668)*(v(2005)+v(2025)+(v(1862)+v(1922)+v(1962))*v(5666)+v(1768)*v(5681)) v(213)=(v(154)*v(154))*v(5674) v(212)=(v(153)*v(153))*v(5674) v(2327)=2d0*(v(208)*v(208))+v(212)+v(213)+(v(209)+v(210)+v(211))*v(5666) v(5676)=0.15d1*v(2327) v(2337)=v(5566)*v(5676) v(2336)=v(5570)*v(5676) v(2335)=v(5563)*v(5676) v(2334)=-(v(1627)*v(5676)) v(2333)=-(v(1626)*v(5676)) v(2332)=-(v(1625)*v(5676))+v(5668)*(v(2011)+v(2018)+(v(1880)+v(1940)+v(1979))*v(5666)+v(1796)*v(5677)) v(2331)=-(v(1624)*v(5676))+v(5668)*(v(2010)+v(2017)+(v(1879)+v(1939)+v(1978))*v(5666)+v(1794)*v(5677)) v(2330)=-(v(1623)*v(5676))+v(5668)*(v(2009)+v(2016)+(v(1878)+v(1938)+v(1977))*v(5666)+v(1792)*v(5677)) v(2329)=-(v(1622)*v(5676))+v(5668)*(v(2008)+v(2015)+(v(1877)+v(1937)+v(1976))*v(5666)+v(1790)*v(5677)) v(2328)=-(v(1621)*v(5676))+v(5668)*(v(2007)+v(2014)+(v(1876)+v(1936)+v(1975))*v(5666)+v(1788)*v(5677)) v(206)=v(153)*v(5674) v(2315)=v(152)*v(206)+(v(142)*v(143)+v(147)*v(148)+v(150)*v(151))*v(5666)+v(154)*v(5679) v(5678)=0.15d1*v(2315) v(2325)=v(5566)*v(5678) v(2485)=v(2325)*v(5539) v(2324)=v(5570)*v(5678) v(2365)=v(2324)*v(5685) v(5715)=v(2365)*v(5709) v(5705)=v(2365)*v(5685) v(2323)=v(5563)*v(5678) v(2322)=-(v(1627)*v(5678)) v(2321)=-(v(1626)*v(5678)) v(2320)=-(v(1625)*v(5678))+v(5668)*(v(154)*(v(1784)+v(1802))+v(152)*v(2024)+v(1988)*v(206)+(v(143)*v(1861)+v(142)*v& &(1874)+v(148)*v(1921)+v(147)*v(1934)+v(151)*v(1961)+v(150)*v(1973))*v(5666)+v(2004)*v(5679)) v(2319)=-(v(1624)*v(5678))+v(5668)*(v(154)*(v(1783)+v(1801))+v(152)*v(2023)+v(1987)*v(206)+(v(143)*v(1860)+v(142)*v& &(1873)+v(148)*v(1920)+v(147)*v(1933)+v(151)*v(1960)+v(150)*v(1972))*v(5666)+v(2003)*v(5679)) v(2318)=-(v(1623)*v(5678))+v(5668)*(v(154)*(v(1782)+v(1800))+v(152)*v(2022)+v(1985)*v(206)+(v(143)*v(1858)+v(142)*v& &(1872)+v(148)*v(1918)+v(147)*v(1932)+v(151)*v(1958)+v(150)*v(1971))*v(5666)+v(2002)*v(5679)) v(2317)=-(v(1622)*v(5678))+v(5668)*(v(154)*(v(1781)+v(1799))+v(152)*v(2021)+v(1984)*v(206)+(v(143)*v(1857)+v(142)*v& &(1871)+v(148)*v(1917)+v(147)*v(1931)+v(151)*v(1957)+v(150)*v(1970))*v(5666)+v(2001)*v(5679)) v(2316)=-(v(1621)*v(5678))+v(5668)*(v(154)*(v(1780)+v(1798))+v(152)*v(2020)+v(1982)*v(206)+(v(143)*v(1855)+v(142)*v& &(1869)+v(148)*v(1916)+v(147)*v(1930)+v(151)*v(1956)+v(150)*v(1969))*v(5666)+v(1999)*v(5679)) v(2314)=v(5668)*(v(154)*(v(1779)+v(1797))+v(152)*v(2019)+v(1980)*v(206)+(v(143)*v(1854)+v(142)*v(1868)+v(148)*v(1914)+v& &(147)*v(1928)+v(151)*v(1955)+v(150)*v(1968))*v(5666)+v(1997)*v(5679)) v(204)=(v(152)*v(152))*v(5674) v(2303)=2d0*(v(200)*v(200))+v(204)+v(213)+(v(201)+v(202)+v(203))*v(5666) v(5680)=0.15d1*v(2303) v(2313)=v(5566)*v(5680) v(2312)=v(5570)*v(5680) v(2311)=v(5563)*v(5680) v(2310)=-(v(1627)*v(5680)) v(2309)=-(v(1626)*v(5680)) v(2308)=-(v(1625)*v(5680))+v(5668)*(v(2011)+v(2031)+(v(1867)+v(1927)+v(1967))*v(5666)+v(1778)*v(5681)) v(2307)=-(v(1624)*v(5680))+v(5668)*(v(2010)+v(2030)+(v(1866)+v(1926)+v(1966))*v(5666)+v(1776)*v(5681)) v(2306)=-(v(1623)*v(5680))+v(5668)*(v(2009)+v(2029)+(v(1865)+v(1925)+v(1965))*v(5666)+v(1774)*v(5681)) v(2305)=-(v(1622)*v(5680))+v(5668)*(v(2008)+v(2028)+(v(1864)+v(1924)+v(1964))*v(5666)+v(1772)*v(5681)) v(2304)=-(v(1621)*v(5680))+v(5668)*(v(2007)+v(2027)+(v(1863)+v(1923)+v(1963))*v(5666)+v(1770)*v(5681)) v(2267)=2d0*(v(192)*v(192))+v(204)+v(212)+(v(193)+v(194)+v(195))*v(5666) v(5682)=0.15d1*v(2267) v(2277)=v(5566)*v(5682) v(2276)=v(5570)*v(5682) v(2275)=v(5563)*v(5682) v(2274)=-(v(1627)*v(5682)) v(2273)=-(v(1626)*v(5682)) v(2272)=-(v(1625)*v(5682))+v(5668)*(v(2018)+v(2031)+(v(1853)+v(1913)+v(1954))*v(5666)+v(1760)*v(5683)) v(2271)=-(v(1624)*v(5682))+v(5668)*(v(2017)+v(2030)+(v(1852)+v(1912)+v(1953))*v(5666)+v(1758)*v(5683)) v(2270)=-(v(1623)*v(5682))+v(5668)*(v(2016)+v(2029)+(v(1851)+v(1911)+v(1952))*v(5666)+v(1756)*v(5683)) v(2269)=-(v(1622)*v(5682))+v(5668)*(v(2015)+v(2028)+(v(1850)+v(1910)+v(1951))*v(5666)+v(1754)*v(5683)) v(2268)=-(v(1621)*v(5682))+v(5668)*(v(2014)+v(2027)+(v(1849)+v(1909)+v(1950))*v(5666)+v(1752)*v(5683)) v(197)=v(154)*v(5674) v(2279)=v(153)*v(197)+(v(141)*v(142)+v(146)*v(147)+v(149)*v(150))*v(5666)+v(152)*v(5686) v(5684)=0.15d1*v(2279) v(2289)=v(5566)*v(5684) v(2288)=v(5570)*v(5684) v(2287)=v(5563)*v(5684) v(2462)=v(2287)*v(5540) v(2364)=v(2287)*v(5685) v(5720)=v(2364)*v(5708) v(5703)=v(2364)*v(5685) v(2286)=-(v(1627)*v(5684)) v(2285)=-(v(1626)*v(5684)) v(2284)=-(v(1625)*v(5684))+v(5668)*(v(152)*(v(1766)+v(1784))+v(197)*v(1996)+v(153)*v(2037)+(v(142)*v(1847)+v(141)*v& &(1861)+v(147)*v(1907)+v(146)*v(1921)+v(150)*v(1948)+v(149)*v(1961))*v(5666)+v(1988)*v(5686)) v(2283)=-(v(1624)*v(5684))+v(5668)*(v(152)*(v(1765)+v(1783))+v(197)*v(1995)+v(153)*v(2036)+(v(142)*v(1845)+v(141)*v& &(1860)+v(147)*v(1905)+v(146)*v(1920)+v(150)*v(1946)+v(149)*v(1960))*v(5666)+v(1987)*v(5686)) v(2282)=-(v(1623)*v(5684))+v(5668)*(v(152)*(v(1764)+v(1782))+v(197)*v(1994)+v(153)*v(2035)+(v(142)*v(1843)+v(141)*v& &(1858)+v(147)*v(1903)+v(146)*v(1918)+v(150)*v(1944)+v(149)*v(1958))*v(5666)+v(1985)*v(5686)) v(2281)=-(v(1622)*v(5684))+v(5668)*(v(152)*(v(1763)+v(1781))+v(197)*v(1993)+v(153)*v(2034)+(v(142)*v(1842)+v(141)*v& &(1857)+v(147)*v(1902)+v(146)*v(1917)+v(150)*v(1943)+v(149)*v(1957))*v(5666)+v(1984)*v(5686)) v(2280)=-(v(1621)*v(5684))+v(5668)*(v(152)*(v(1762)+v(1780))+v(197)*v(1991)+v(153)*v(2033)+(v(142)*v(1840)+v(141)*v& &(1855)+v(147)*v(1901)+v(146)*v(1916)+v(150)*v(1942)+v(149)*v(1956))*v(5666)+v(1982)*v(5686)) v(2278)=v(5668)*(v(152)*(v(1761)+v(1779))+v(197)*v(1989)+v(153)*v(2032)+(v(142)*v(1839)+v(141)*v(1854)+v(147)*v(1899)+v& &(146)*v(1914)+v(150)*v(1941)+v(149)*v(1955))*v(5666)+v(1980)*v(5686)) v(2255)=mpar(14)*(v(143)*v(160)+v(148)*v(162)+v(151)*v(173))+v(151)*v(182)+v(150)*v(197)+v(149)*v(206) v(5687)=0.15d1*v(2255) v(2265)=v(5566)*v(5687) v(2264)=v(5570)*v(5687) v(2263)=v(5563)*v(5687) v(2262)=-(v(1627)*v(5687)) v(2261)=-(v(1626)*v(5687)) v(2260)=(v(151)*v(1802)+v(1961)*v(197)+v(182)*v(1973)+mpar(14)*(v(151)*v(1748)+v(143)*v(1832)+v(160)*v(1874)+v(148)*v& &(1892)+v(162)*v(1934)+v(173)*v(1973))+v(149)*v(2024)+v(150)*v(2037)+v(1948)*v(206))*v(5668)-v(1625)*v(5687) v(2259)=(v(151)*v(1801)+v(1960)*v(197)+v(182)*v(1972)+mpar(14)*(v(151)*v(1746)+v(143)*v(1830)+v(160)*v(1873)+v(148)*v& &(1890)+v(162)*v(1933)+v(173)*v(1972))+v(149)*v(2023)+v(150)*v(2036)+v(1946)*v(206))*v(5668)-v(1624)*v(5687) v(5760)=v(2259)*v(5542) v(2258)=(v(151)*v(1800)+v(1958)*v(197)+v(182)*v(1971)+mpar(14)*(v(151)*v(1744)+v(143)*v(1828)+v(160)*v(1872)+v(148)*v& &(1888)+v(162)*v(1932)+v(173)*v(1971))+v(149)*v(2022)+v(150)*v(2035)+v(1944)*v(206))*v(5668)-v(1623)*v(5687) v(2257)=(v(151)*v(1799)+v(1957)*v(197)+v(182)*v(1970)+mpar(14)*(v(151)*v(1742)+v(143)*v(1826)+v(160)*v(1871)+v(148)*v& &(1886)+v(162)*v(1931)+v(173)*v(1970))+v(149)*v(2021)+v(150)*v(2034)+v(1943)*v(206))*v(5668)-v(1622)*v(5687) v(2256)=(v(151)*v(1798)+v(182)*v(1969)+mpar(14)*(v(151)*v(1740)+v(143)*v(1824)+v(160)*v(1869)+v(148)*v(1884)+v(162)*v& &(1930)+v(173)*v(1969))+v(1956)*v(197)+v(149)*v(2020)+v(150)*v(2033)+v(1942)*v(206))*v(5668)-v(1621)*v(5687) v(2254)=(v(151)*v(1797)+v(182)*v(1968)+mpar(14)*(v(151)*v(1738)+v(143)*v(1822)+v(160)*v(1868)+v(148)*v(1882)+v(162)*v& &(1928)+v(173)*v(1968))+v(1955)*v(197)+v(149)*v(2019)+v(150)*v(2032)+v(1941)*v(206))*v(5668) v(189)=v(5664)*v(5666) v(188)=v(152)*v(5674) v(2291)=v(154)*v(188)+(v(141)*v(143)+v(146)*v(148)+v(149)*v(151))*v(5666)+v(153)*v(5689) v(5688)=0.15d1*v(2291) v(2301)=v(5566)*v(5688) v(2300)=v(5570)*v(5688) v(2299)=v(5563)*v(5688) v(2484)=v(2299)*v(5539) v(2362)=v(2299)*v(5709) v(5721)=v(2362)*v(5708) v(5713)=v(2362)*v(5709) v(2298)=-(v(1627)*v(5688)) v(2297)=-(v(1626)*v(5688)) v(2296)=-(v(1625)*v(5688))+v(5668)*(v(153)*(v(1766)+v(1802))+v(188)*v(2004)+v(154)*v(2049)+(v(143)*v(1847)+v(141)*v& &(1874)+v(148)*v(1907)+v(146)*v(1934)+v(151)*v(1948)+v(149)*v(1973))*v(5666)+v(1996)*v(5689)) v(2295)=-(v(1624)*v(5688))+v(5668)*(v(153)*(v(1765)+v(1801))+v(188)*v(2003)+v(154)*v(2048)+(v(143)*v(1845)+v(141)*v& &(1873)+v(148)*v(1905)+v(146)*v(1933)+v(151)*v(1946)+v(149)*v(1972))*v(5666)+v(1995)*v(5689)) v(2294)=-(v(1623)*v(5688))+v(5668)*(v(153)*(v(1764)+v(1800))+v(188)*v(2002)+v(154)*v(2047)+(v(143)*v(1843)+v(141)*v& &(1872)+v(148)*v(1903)+v(146)*v(1932)+v(151)*v(1944)+v(149)*v(1971))*v(5666)+v(1994)*v(5689)) v(2293)=-(v(1622)*v(5688))+v(5668)*(v(153)*(v(1763)+v(1799))+v(188)*v(2001)+v(154)*v(2046)+(v(143)*v(1842)+v(141)*v& &(1871)+v(148)*v(1902)+v(146)*v(1931)+v(151)*v(1943)+v(149)*v(1970))*v(5666)+v(1993)*v(5689)) v(2292)=-(v(1621)*v(5688))+v(5668)*(v(153)*(v(1762)+v(1798))+v(188)*v(1999)+v(154)*v(2045)+(v(143)*v(1840)+v(141)*v& &(1869)+v(148)*v(1901)+v(146)*v(1930)+v(151)*v(1942)+v(149)*v(1969))*v(5666)+v(1991)*v(5689)) v(2290)=v(5668)*(v(153)*(v(1761)+v(1797))+v(188)*v(1997)+v(154)*v(2044)+(v(143)*v(1839)+v(141)*v(1868)+v(148)*v(1899)+v& &(146)*v(1928)+v(151)*v(1941)+v(149)*v(1968))*v(5666)+v(1989)*v(5689)) v(2243)=mpar(14)*(v(142)*v(160)+v(147)*v(162)+v(150)*v(173))+v(150)*v(179)+v(149)*v(188)+v(154)*v(189) v(5690)=0.15d1*v(2243) v(2253)=v(5566)*v(5690) v(2252)=v(5570)*v(5690) v(2251)=v(5563)*v(5690) v(2250)=-(v(1627)*v(5690)) v(2249)=-(v(1626)*v(5690)) v(2248)=(v(150)*v(1784)+v(188)*v(1948)+v(179)*v(1961)+mpar(14)*(v(150)*v(1748)+v(142)*v(1832)+v(160)*v(1861)+v(147)*v& &(1892)+v(162)*v(1921)+v(173)*v(1961))+v(189)*v(2004)+v(154)*v(2043)+v(149)*v(2049))*v(5668)-v(1625)*v(5690) v(5764)=v(2248)*v(5542) v(2247)=(v(150)*v(1783)+v(188)*v(1946)+v(179)*v(1960)+mpar(14)*(v(150)*v(1746)+v(142)*v(1830)+v(160)*v(1860)+v(147)*v& &(1890)+v(162)*v(1920)+v(173)*v(1960))+v(189)*v(2003)+v(154)*v(2042)+v(149)*v(2048))*v(5668)-v(1624)*v(5690) v(2246)=(v(150)*v(1782)+v(188)*v(1944)+v(179)*v(1958)+mpar(14)*(v(150)*v(1744)+v(142)*v(1828)+v(160)*v(1858)+v(147)*v& &(1888)+v(162)*v(1918)+v(173)*v(1958))+v(189)*v(2002)+v(154)*v(2041)+v(149)*v(2047))*v(5668)-v(1623)*v(5690) v(2245)=(v(150)*v(1781)+v(188)*v(1943)+v(179)*v(1957)+mpar(14)*(v(150)*v(1742)+v(142)*v(1826)+v(160)*v(1857)+v(147)*v& &(1886)+v(162)*v(1917)+v(173)*v(1957))+v(189)*v(2001)+v(154)*v(2040)+v(149)*v(2046))*v(5668)-v(1622)*v(5690) v(2244)=(v(150)*v(1780)+v(188)*v(1942)+v(179)*v(1956)+mpar(14)*(v(150)*v(1740)+v(142)*v(1824)+v(160)*v(1855)+v(147)*v& &(1884)+v(162)*v(1916)+v(173)*v(1956))+v(189)*v(1999)+v(154)*v(2039)+v(149)*v(2045))*v(5668)-v(1621)*v(5690) v(2242)=(v(150)*v(1779)+v(188)*v(1941)+v(179)*v(1955)+mpar(14)*(v(150)*v(1738)+v(142)*v(1822)+v(160)*v(1854)+v(147)*v& &(1882)+v(162)*v(1914)+v(173)*v(1955))+v(189)*v(1997)+v(154)*v(2038)+v(149)*v(2044))*v(5668) v(2231)=mpar(14)*(v(141)*v(160)+v(146)*v(162)+v(149)*v(173))+v(149)*v(175)+v(150)*v(188)+v(153)*v(189) v(5691)=0.15d1*v(2231) v(2241)=v(5566)*v(5691) v(2240)=v(5570)*v(5691) v(2239)=v(5563)*v(5691) v(2238)=-(v(1627)*v(5691)) v(2237)=-(v(1626)*v(5691)) v(2236)=(v(149)*v(1766)+v(175)*v(1948)+mpar(14)*(v(149)*v(1748)+v(141)*v(1832)+v(160)*v(1847)+v(146)*v(1892)+v(162)*v& &(1907)+v(173)*v(1948))+v(188)*v(1961)+v(189)*v(1996)+v(153)*v(2043)+v(150)*v(2049))*v(5668)-v(1625)*v(5691) v(2235)=(v(149)*v(1765)+v(175)*v(1946)+mpar(14)*(v(149)*v(1746)+v(141)*v(1830)+v(160)*v(1845)+v(146)*v(1890)+v(162)*v& &(1905)+v(173)*v(1946))+v(188)*v(1960)+v(189)*v(1995)+v(153)*v(2042)+v(150)*v(2048))*v(5668)-v(1624)*v(5691) v(2234)=(v(149)*v(1764)+v(175)*v(1944)+mpar(14)*(v(149)*v(1744)+v(141)*v(1828)+v(160)*v(1843)+v(146)*v(1888)+v(162)*v& &(1903)+v(173)*v(1944))+v(188)*v(1958)+v(189)*v(1994)+v(153)*v(2041)+v(150)*v(2047))*v(5668)-v(1623)*v(5691) v(5770)=v(2234)*v(5542) v(2233)=(v(149)*v(1763)+v(175)*v(1943)+mpar(14)*(v(149)*v(1742)+v(141)*v(1826)+v(160)*v(1842)+v(146)*v(1886)+v(162)*v& &(1902)+v(173)*v(1943))+v(188)*v(1957)+v(189)*v(1993)+v(153)*v(2040)+v(150)*v(2046))*v(5668)-v(1622)*v(5691) v(2232)=(v(149)*v(1762)+v(175)*v(1942)+mpar(14)*(v(149)*v(1740)+v(141)*v(1824)+v(160)*v(1840)+v(146)*v(1884)+v(162)*v& &(1901)+v(173)*v(1942))+v(188)*v(1956)+v(189)*v(1991)+v(153)*v(2039)+v(150)*v(2045))*v(5668)-v(1621)*v(5691) v(2230)=(v(149)*v(1761)+v(175)*v(1941)+mpar(14)*(v(149)*v(1738)+v(141)*v(1822)+v(160)*v(1839)+v(146)*v(1882)+v(162)*v& &(1899)+v(173)*v(1941))+v(188)*v(1955)+v(189)*v(1989)+v(153)*v(2038)+v(150)*v(2044))*v(5668) v(180)=v(5659)*v(5666) v(177)=v(5661)*v(5666) v(2195)=mpar(14)*(v(142)*v(159)+v(150)*v(162)+v(147)*v(170))+v(154)*v(177)+v(147)*v(179)+v(152)*v(180) v(5692)=0.15d1*v(2195) v(2205)=v(5566)*v(5692) v(2204)=v(5570)*v(5692) v(2203)=v(5563)*v(5692) v(2202)=-(v(1627)*v(5692)) v(2201)=-(v(1626)*v(5692)) v(2200)=(v(147)*v(1784)+v(179)*v(1921)+mpar(14)*(v(147)*v(1736)+v(142)*v(1814)+v(159)*v(1861)+v(150)*v(1892)+v(170)*v& &(1921)+v(162)*v(1961))+v(180)*v(1988)+v(177)*v(2004)+v(152)*v(2055)+v(154)*v(2061))*v(5668)-v(1625)*v(5692) v(5763)=v(2200)*x(3) v(2199)=(v(147)*v(1783)+v(179)*v(1920)+mpar(14)*(v(147)*v(1734)+v(142)*v(1812)+v(159)*v(1860)+v(150)*v(1890)+v(170)*v& &(1920)+v(162)*v(1960))+v(180)*v(1987)+v(177)*v(2003)+v(152)*v(2054)+v(154)*v(2060))*v(5668)-v(1624)*v(5692) v(2198)=(v(147)*v(1782)+v(179)*v(1918)+mpar(14)*(v(147)*v(1732)+v(142)*v(1810)+v(159)*v(1858)+v(150)*v(1888)+v(170)*v& &(1918)+v(162)*v(1958))+v(180)*v(1985)+v(177)*v(2002)+v(152)*v(2053)+v(154)*v(2059))*v(5668)-v(1623)*v(5692) v(2197)=(v(147)*v(1781)+v(179)*v(1917)+mpar(14)*(v(147)*v(1730)+v(142)*v(1808)+v(159)*v(1857)+v(150)*v(1886)+v(170)*v& &(1917)+v(162)*v(1957))+v(180)*v(1984)+v(177)*v(2001)+v(152)*v(2052)+v(154)*v(2058))*v(5668)-v(1622)*v(5692) v(2196)=(v(147)*v(1780)+v(179)*v(1916)+mpar(14)*(v(147)*v(1728)+v(142)*v(1806)+v(159)*v(1855)+v(150)*v(1884)+v(170)*v& &(1916)+v(162)*v(1956))+v(180)*v(1982)+v(177)*v(1999)+v(152)*v(2051)+v(154)*v(2057))*v(5668)-v(1621)*v(5692) v(2194)=(v(147)*v(1779)+v(179)*v(1914)+mpar(14)*(v(147)*v(1726)+v(142)*v(1804)+v(159)*v(1854)+v(150)*v(1882)+v(170)*v& &(1914)+v(162)*v(1955))+v(180)*v(1980)+v(177)*v(1997)+v(152)*v(2050)+v(154)*v(2056))*v(5668) v(176)=v(5660)*v(5666) v(2207)=mpar(14)*(v(143)*v(159)+v(151)*v(162)+v(148)*v(170))+v(154)*v(176)+v(153)*v(180)+v(148)*v(182) v(5693)=0.15d1*v(2207) v(2217)=v(5566)*v(5693) v(2216)=v(5570)*v(5693) v(2215)=v(5563)*v(5693) v(2214)=-(v(1627)*v(5693)) v(2213)=-(v(1626)*v(5693)) v(2212)=(v(148)*v(1802)+v(182)*v(1934)+mpar(14)*(v(148)*v(1736)+v(143)*v(1814)+v(159)*v(1874)+v(151)*v(1892)+v(170)*v& &(1934)+v(162)*v(1973))+v(180)*v(1996)+v(176)*v(2004)+v(153)*v(2055)+v(154)*v(2067))*v(5668)-v(1625)*v(5693) v(2211)=(v(148)*v(1801)+v(182)*v(1933)+mpar(14)*(v(148)*v(1734)+v(143)*v(1812)+v(159)*v(1873)+v(151)*v(1890)+v(170)*v& &(1933)+v(162)*v(1972))+v(180)*v(1995)+v(176)*v(2003)+v(153)*v(2054)+v(154)*v(2066))*v(5668)-v(1624)*v(5693) v(5758)=v(2211)*x(3) v(2210)=(v(148)*v(1800)+v(182)*v(1932)+mpar(14)*(v(148)*v(1732)+v(143)*v(1810)+v(159)*v(1872)+v(151)*v(1888)+v(170)*v& &(1932)+v(162)*v(1971))+v(180)*v(1994)+v(176)*v(2002)+v(153)*v(2053)+v(154)*v(2065))*v(5668)-v(1623)*v(5693) v(2209)=(v(148)*v(1799)+v(182)*v(1931)+mpar(14)*(v(148)*v(1730)+v(143)*v(1808)+v(159)*v(1871)+v(151)*v(1886)+v(170)*v& &(1931)+v(162)*v(1970))+v(180)*v(1993)+v(176)*v(2001)+v(153)*v(2052)+v(154)*v(2064))*v(5668)-v(1622)*v(5693) v(2208)=(v(148)*v(1798)+v(182)*v(1930)+mpar(14)*(v(148)*v(1728)+v(143)*v(1806)+v(159)*v(1869)+v(151)*v(1884)+v(170)*v& &(1930)+v(162)*v(1969))+v(180)*v(1991)+v(176)*v(1999)+v(153)*v(2051)+v(154)*v(2063))*v(5668)-v(1621)*v(5693) v(2206)=(v(148)*v(1797)+v(182)*v(1928)+mpar(14)*(v(148)*v(1726)+v(143)*v(1804)+v(159)*v(1868)+v(151)*v(1882)+v(170)*v& &(1928)+v(162)*v(1968))+v(180)*v(1989)+v(176)*v(1997)+v(153)*v(2050)+v(154)*v(2062))*v(5668) v(2183)=mpar(14)*(v(141)*v(159)+v(149)*v(162)+v(146)*v(170))+v(146)*v(175)+v(152)*v(176)+v(153)*v(177) v(5694)=0.15d1*v(2183) v(2193)=v(5566)*v(5694) v(2192)=v(5570)*v(5694) v(2191)=v(5563)*v(5694) v(2190)=-(v(1627)*v(5694)) v(2189)=-(v(1626)*v(5694)) v(2188)=(v(146)*v(1766)+v(175)*v(1907)+mpar(14)*(v(146)*v(1736)+v(141)*v(1814)+v(159)*v(1847)+v(149)*v(1892)+v(170)*v& &(1907)+v(162)*v(1948))+v(176)*v(1988)+v(177)*v(1996)+v(153)*v(2061)+v(152)*v(2067))*v(5668)-v(1625)*v(5694) v(2187)=(v(146)*v(1765)+v(175)*v(1905)+mpar(14)*(v(146)*v(1734)+v(141)*v(1812)+v(159)*v(1845)+v(149)*v(1890)+v(170)*v& &(1905)+v(162)*v(1946))+v(176)*v(1987)+v(177)*v(1995)+v(153)*v(2060)+v(152)*v(2066))*v(5668)-v(1624)*v(5694) v(2186)=(v(146)*v(1764)+v(175)*v(1903)+mpar(14)*(v(146)*v(1732)+v(141)*v(1810)+v(159)*v(1843)+v(149)*v(1888)+v(170)*v& &(1903)+v(162)*v(1944))+v(176)*v(1985)+v(177)*v(1994)+v(153)*v(2059)+v(152)*v(2065))*v(5668)-v(1623)*v(5694) v(5769)=v(2186)*x(3) v(2185)=(v(146)*v(1763)+v(175)*v(1902)+mpar(14)*(v(146)*v(1730)+v(141)*v(1808)+v(159)*v(1842)+v(149)*v(1886)+v(170)*v& &(1902)+v(162)*v(1943))+v(176)*v(1984)+v(177)*v(1993)+v(153)*v(2058)+v(152)*v(2064))*v(5668)-v(1622)*v(5694) v(2184)=(v(146)*v(1762)+v(175)*v(1901)+mpar(14)*(v(146)*v(1728)+v(141)*v(1806)+v(159)*v(1840)+v(149)*v(1884)+v(170)*v& &(1901)+v(162)*v(1942))+v(176)*v(1982)+v(177)*v(1991)+v(153)*v(2057)+v(152)*v(2063))*v(5668)-v(1621)*v(5694) v(2182)=(v(146)*v(1761)+v(175)*v(1899)+mpar(14)*(v(146)*v(1726)+v(141)*v(1804)+v(159)*v(1839)+v(149)*v(1882)+v(170)*v& &(1899)+v(162)*v(1941))+v(176)*v(1980)+v(177)*v(1989)+v(153)*v(2056)+v(152)*v(2062))*v(5668) v(2171)=v(159)*v(160)+v(150)*v(176)+v(151)*v(177)+v(149)*v(180)+v(162)*v(5696) v(5695)=0.15d1*v(2171) v(2181)=v(5566)*v(5695) v(5773)=v(2181)*v(5542) v(2180)=v(5570)*v(5695) v(5775)=v(2180)*v(5542) v(2179)=v(5563)*v(5695) v(5776)=v(2179)*v(5542) v(2178)=-(v(1627)*v(5695)) v(5777)=v(2178)*v(5542) v(2177)=-(v(1626)*v(5695)) v(5778)=v(2177)*v(5542) v(2176)=-(v(1625)*v(5695))+v(5668)*(v(162)*(v(1736)+v(1748))+v(160)*v(1814)+v(159)*v(1832)+v(180)*v(1948)+v(176)*v(1961& &)+v(177)*v(1973)+v(149)*v(2055)+v(151)*v(2061)+v(150)*v(2067)+v(1892)*v(5696)) v(2175)=-(v(1624)*v(5695))+v(5668)*(v(162)*(v(1734)+v(1746))+v(160)*v(1812)+v(159)*v(1830)+v(180)*v(1946)+v(176)*v(1960& &)+v(177)*v(1972)+v(149)*v(2054)+v(151)*v(2060)+v(150)*v(2066)+v(1890)*v(5696)) v(2174)=-(v(1623)*v(5695))+v(5668)*(v(162)*(v(1732)+v(1744))+v(160)*v(1810)+v(159)*v(1828)+v(180)*v(1944)+v(176)*v(1958& &)+v(177)*v(1971)+v(149)*v(2053)+v(151)*v(2059)+v(150)*v(2065)+v(1888)*v(5696)) v(2173)=-(v(1622)*v(5695))+v(5668)*(v(162)*(v(1730)+v(1742))+v(160)*v(1808)+v(159)*v(1826)+v(180)*v(1943)+v(176)*v(1957& &)+v(177)*v(1970)+v(149)*v(2052)+v(151)*v(2058)+v(150)*v(2064)+v(1886)*v(5696)) v(5780)=-(v(1497)*v(2173))+v(2185)*v(5538)+v(2209)*v(5539)+v(2197)*v(5540) v(2172)=-(v(1621)*v(5695))+v(5668)*(v(162)*(v(1728)+v(1740))+v(160)*v(1806)+v(159)*v(1824)+v(180)*v(1942)+v(176)*v(1956& &)+v(177)*v(1969)+v(149)*v(2051)+v(151)*v(2057)+v(150)*v(2063)+v(1884)*v(5696)) v(5781)=-(v(1497)*v(2172))+v(2184)*v(5538)+v(2208)*v(5539)+v(2196)*v(5540) v(2170)=v(5668)*(v(162)*(v(1726)+v(1738))+v(160)*v(1804)+v(159)*v(1822)+v(180)*v(1941)+v(176)*v(1955)+v(177)*v(1968)+v& &(149)*v(2050)+v(151)*v(2056)+v(150)*v(2062)+v(1882)*v(5696)) v(5782)=v(2170)*v(5542) v(165)=v(5657)*v(5666) v(164)=v(5656)*v(5666) v(2123)=mpar(14)*(v(141)*v(158)+v(146)*v(159)+v(149)*v(160))+v(152)*v(164)+v(153)*v(165)+v(141)*v(175) v(5697)=0.15d1*v(2123) v(2133)=v(5566)*v(5697) v(2132)=v(5570)*v(5697) v(2131)=v(5563)*v(5697) v(2130)=-(v(1627)*v(5697)) v(2129)=-(v(1626)*v(5697)) v(2128)=(v(141)*v(1766)+v(175)*v(1847)+mpar(14)*(v(141)*v(1724)+v(146)*v(1814)+v(149)*v(1832)+v(158)*v(1847)+v(159)*v& &(1907)+v(160)*v(1948))+v(164)*v(1988)+v(165)*v(1996)+v(153)*v(2073)+v(152)*v(2079))*v(5668)-v(1625)*v(5697) v(2127)=(v(141)*v(1765)+v(175)*v(1845)+mpar(14)*(v(141)*v(1722)+v(146)*v(1812)+v(149)*v(1830)+v(158)*v(1845)+v(159)*v& &(1905)+v(160)*v(1946))+v(164)*v(1987)+v(165)*v(1995)+v(153)*v(2072)+v(152)*v(2078))*v(5668)-v(1624)*v(5697) v(2126)=(v(141)*v(1764)+v(175)*v(1843)+mpar(14)*(v(141)*v(1720)+v(146)*v(1810)+v(149)*v(1828)+v(158)*v(1843)+v(159)*v& &(1903)+v(160)*v(1944))+v(164)*v(1985)+v(165)*v(1994)+v(153)*v(2071)+v(152)*v(2077))*v(5668)-v(1623)*v(5697) v(5768)=v(2126)*x(2) v(2125)=(v(141)*v(1763)+v(175)*v(1842)+mpar(14)*(v(141)*v(1718)+v(146)*v(1808)+v(149)*v(1826)+v(158)*v(1842)+v(159)*v& &(1902)+v(160)*v(1943))+v(164)*v(1984)+v(165)*v(1993)+v(153)*v(2070)+v(152)*v(2076))*v(5668)-v(1622)*v(5697) v(2124)=(v(141)*v(1762)+v(175)*v(1840)+mpar(14)*(v(141)*v(1716)+v(146)*v(1806)+v(149)*v(1824)+v(158)*v(1840)+v(159)*v& &(1901)+v(160)*v(1942))+v(164)*v(1982)+v(165)*v(1991)+v(153)*v(2069)+v(152)*v(2075))*v(5668)-v(1621)*v(5697) v(2122)=(v(141)*v(1761)+v(175)*v(1839)+mpar(14)*(v(141)*v(1714)+v(146)*v(1804)+v(149)*v(1822)+v(158)*v(1839)+v(159)*v& &(1899)+v(160)*v(1941))+v(164)*v(1980)+v(165)*v(1989)+v(153)*v(2068)+v(152)*v(2074))*v(5668) v(163)=v(5655)*v(5666) v(2147)=mpar(14)*(v(143)*v(158)+v(148)*v(159)+v(151)*v(160))+v(153)*v(163)+v(154)*v(164)+v(143)*v(182) v(5698)=0.15d1*v(2147) v(2157)=v(5566)*v(5698) v(2156)=v(5570)*v(5698) v(2155)=v(5563)*v(5698) v(2154)=-(v(1627)*v(5698)) v(2153)=-(v(1626)*v(5698)) v(2152)=(v(143)*v(1802)+v(182)*v(1874)+mpar(14)*(v(143)*v(1724)+v(148)*v(1814)+v(151)*v(1832)+v(158)*v(1874)+v(159)*v& &(1934)+v(160)*v(1973))+v(163)*v(1996)+v(164)*v(2004)+v(154)*v(2079)+v(153)*v(2085))*v(5668)-v(1625)*v(5698) v(2151)=(v(143)*v(1801)+v(182)*v(1873)+mpar(14)*(v(143)*v(1722)+v(148)*v(1812)+v(151)*v(1830)+v(158)*v(1873)+v(159)*v& &(1933)+v(160)*v(1972))+v(163)*v(1995)+v(164)*v(2003)+v(154)*v(2078)+v(153)*v(2084))*v(5668)-v(1624)*v(5698) v(5757)=v(2151)*x(2) v(2150)=(v(143)*v(1800)+v(182)*v(1872)+mpar(14)*(v(143)*v(1720)+v(148)*v(1810)+v(151)*v(1828)+v(158)*v(1872)+v(159)*v& &(1932)+v(160)*v(1971))+v(163)*v(1994)+v(164)*v(2002)+v(154)*v(2077)+v(153)*v(2083))*v(5668)-v(1623)*v(5698) v(2149)=(v(143)*v(1799)+v(182)*v(1871)+mpar(14)*(v(143)*v(1718)+v(148)*v(1808)+v(151)*v(1826)+v(158)*v(1871)+v(159)*v& &(1931)+v(160)*v(1970))+v(163)*v(1993)+v(164)*v(2001)+v(154)*v(2076)+v(153)*v(2082))*v(5668)-v(1622)*v(5698) v(2148)=(v(143)*v(1798)+v(182)*v(1869)+mpar(14)*(v(143)*v(1716)+v(148)*v(1806)+v(151)*v(1824)+v(158)*v(1869)+v(159)*v& &(1930)+v(160)*v(1969))+v(163)*v(1991)+v(164)*v(1999)+v(154)*v(2075)+v(153)*v(2081))*v(5668)-v(1621)*v(5698) v(2146)=(v(143)*v(1797)+v(182)*v(1868)+mpar(14)*(v(143)*v(1714)+v(148)*v(1804)+v(151)*v(1822)+v(158)*v(1868)+v(159)*v& &(1928)+v(160)*v(1968))+v(163)*v(1989)+v(164)*v(1997)+v(154)*v(2074)+v(153)*v(2080))*v(5668) v(2135)=mpar(14)*(v(142)*v(158)+v(147)*v(159)+v(150)*v(160))+v(152)*v(163)+v(154)*v(165)+v(142)*v(179) v(5699)=0.15d1*v(2135) v(2145)=v(5566)*v(5699) v(2144)=v(5570)*v(5699) v(2143)=v(5563)*v(5699) v(2142)=-(v(1627)*v(5699)) v(2141)=-(v(1626)*v(5699)) v(2140)=(v(142)*v(1784)+v(179)*v(1861)+mpar(14)*(v(142)*v(1724)+v(147)*v(1814)+v(150)*v(1832)+v(158)*v(1861)+v(159)*v& &(1921)+v(160)*v(1961))+v(163)*v(1988)+v(165)*v(2004)+v(154)*v(2073)+v(152)*v(2085))*v(5668)-v(1625)*v(5699) v(5762)=v(2140)*x(2) v(2139)=(v(142)*v(1783)+v(179)*v(1860)+mpar(14)*(v(142)*v(1722)+v(147)*v(1812)+v(150)*v(1830)+v(158)*v(1860)+v(159)*v& &(1920)+v(160)*v(1960))+v(163)*v(1987)+v(165)*v(2003)+v(154)*v(2072)+v(152)*v(2084))*v(5668)-v(1624)*v(5699) v(2138)=(v(142)*v(1782)+v(179)*v(1858)+mpar(14)*(v(142)*v(1720)+v(147)*v(1810)+v(150)*v(1828)+v(158)*v(1858)+v(159)*v& &(1918)+v(160)*v(1958))+v(163)*v(1985)+v(165)*v(2002)+v(154)*v(2071)+v(152)*v(2083))*v(5668)-v(1623)*v(5699) v(2137)=(v(142)*v(1781)+v(179)*v(1857)+mpar(14)*(v(142)*v(1718)+v(147)*v(1808)+v(150)*v(1826)+v(158)*v(1857)+v(159)*v& &(1917)+v(160)*v(1957))+v(163)*v(1984)+v(165)*v(2001)+v(154)*v(2070)+v(152)*v(2082))*v(5668)-v(1622)*v(5699) v(2136)=(v(142)*v(1780)+v(179)*v(1855)+mpar(14)*(v(142)*v(1716)+v(147)*v(1806)+v(150)*v(1824)+v(158)*v(1855)+v(159)*v& &(1916)+v(160)*v(1956))+v(163)*v(1982)+v(165)*v(1999)+v(154)*v(2069)+v(152)*v(2081))*v(5668)-v(1621)*v(5699) v(2134)=(v(142)*v(1779)+v(179)*v(1854)+mpar(14)*(v(142)*v(1714)+v(147)*v(1804)+v(150)*v(1822)+v(158)*v(1854)+v(159)*v& &(1914)+v(160)*v(1955))+v(163)*v(1980)+v(165)*v(1997)+v(154)*v(2068)+v(152)*v(2080))*v(5668) v(2111)=v(159)*v(162)+v(149)*v(163)+v(150)*v(164)+v(151)*v(165)+v(160)*v(5701) v(5700)=0.15d1*v(2111) v(2121)=v(5566)*v(5700) v(5784)=v(2121)*v(5542) v(2120)=v(5570)*v(5700) v(5787)=v(2120)*v(5542) v(2119)=v(5563)*v(5700) v(5789)=v(2119)*v(5542) v(2118)=-(v(1627)*v(5700)) v(5791)=v(2118)*v(5542) v(2117)=-(v(1626)*v(5700)) v(5793)=v(2117)*v(5542) v(2116)=-(v(1625)*v(5700))+v(5668)*(v(160)*(v(1724)+v(1748))+v(162)*v(1814)+v(159)*v(1892)+v(163)*v(1948)+v(164)*v(1961& &)+v(165)*v(1973)+v(151)*v(2073)+v(150)*v(2079)+v(149)*v(2085)+v(1832)*v(5701)) v(2115)=-(v(1624)*v(5700))+v(5668)*(v(160)*(v(1722)+v(1746))+v(162)*v(1812)+v(159)*v(1890)+v(163)*v(1946)+v(164)*v(1960& &)+v(165)*v(1972)+v(151)*v(2072)+v(150)*v(2078)+v(149)*v(2084)+v(1830)*v(5701)) v(2114)=-(v(1623)*v(5700))+v(5668)*(v(160)*(v(1720)+v(1744))+v(162)*v(1810)+v(159)*v(1888)+v(163)*v(1944)+v(164)*v(1958& &)+v(165)*v(1971)+v(151)*v(2071)+v(150)*v(2077)+v(149)*v(2083)+v(1828)*v(5701)) v(2113)=-(v(1622)*v(5700))+v(5668)*(v(160)*(v(1718)+v(1742))+v(162)*v(1808)+v(159)*v(1886)+v(163)*v(1943)+v(164)*v(1957& &)+v(165)*v(1970)+v(151)*v(2070)+v(150)*v(2076)+v(149)*v(2082)+v(1826)*v(5701)) v(2112)=-(v(1621)*v(5700))+v(5668)*(v(160)*(v(1716)+v(1740))+v(162)*v(1806)+v(159)*v(1884)+v(163)*v(1942)+v(164)*v(1956& &)+v(165)*v(1969)+v(151)*v(2069)+v(150)*v(2075)+v(149)*v(2081)+v(1824)*v(5701)) v(2110)=v(5668)*(v(160)*(v(1714)+v(1738))+v(162)*v(1804)+v(159)*v(1882)+v(163)*v(1941)+v(164)*v(1955)+v(165)*v(1968)+v& &(151)*v(2068)+v(150)*v(2074)+v(149)*v(2080)+v(1822)*v(5701)) v(5801)=v(2110)*v(5542) v(2099)=v(160)*v(162)+v(146)*v(163)+v(147)*v(164)+v(148)*v(165)+v(159)*v(5725) v(5710)=0.15d1*v(2099) v(2109)=v(5566)*v(5710) v(5783)=v(2109)*x(3) v(2366)=v(2097)*v(5545)+v(2169)*v(5546)+2d0*v(5703)+2d0*v(5705)+v(2229)*v(5707)+v(2277)*v(5711)+v(2313)*v(5714)+v(2337& &)*v(5716)+v(2265)*v(5717)+v(2253)*v(5718)+v(2241)*v(5719)+v(2301)*v(5723)+v(5543)*(v(2205)*v(5685)+v(2193)*v(5708)+v& &(2217)*v(5709)+v(5773))+v(5544)*(v(2145)*v(5685)+v(2133)*v(5708)+v(2157)*v(5709)+v(5783)+v(5784)) v(2108)=v(5570)*v(5710) v(5785)=v(2108)*x(3) v(2363)=v(2096)*v(5545)+v(2168)*v(5546)+v(2228)*v(5707)+v(2276)*v(5711)+2d0*v(5713)+v(2312)*v(5714)+2d0*v(5715)+v(2336& &)*v(5716)+v(2264)*v(5717)+v(2252)*v(5718)+v(2240)*v(5719)+v(2288)*v(5724)+v(5543)*(v(2204)*v(5685)+v(2192)*v(5708)+v& &(2216)*v(5709)+v(5775))+v(5544)*(v(2144)*v(5685)+v(2132)*v(5708)+v(2156)*v(5709)+v(5785)+v(5787)) v(2107)=v(5563)*v(5710) v(5788)=v(2107)*x(3) v(2361)=v(2095)*v(5545)+v(2167)*v(5546)+v(2227)*v(5707)+v(2275)*v(5711)+v(2311)*v(5714)+v(2335)*v(5716)+v(2263)*v(5717)& &+v(2251)*v(5718)+v(2239)*v(5719)+2d0*v(5720)+2d0*v(5721)+v(2323)*v(5722)+v(5543)*(v(2203)*v(5685)+v(2191)*v(5708)+v& &(2215)*v(5709)+v(5776))+v(5544)*(v(2143)*v(5685)+v(2131)*v(5708)+v(2155)*v(5709)+v(5788)+v(5789)) v(2106)=-(v(1627)*v(5710)) v(5790)=v(2106)*x(3) v(2360)=v(2094)*v(5545)+v(2166)*v(5546)+v(2226)*v(5707)+v(2274)*v(5711)+v(2310)*v(5714)+v(2334)*v(5716)+v(2262)*v(5717)& &+v(2250)*v(5718)+v(2238)*v(5719)+v(2322)*v(5722)+v(2298)*v(5723)+v(2286)*v(5724)+v(5543)*(v(2202)*v(5685)+v(2190)*v& &(5708)+v(2214)*v(5709)+v(5777))+v(5544)*(v(2142)*v(5685)+v(2130)*v(5708)+v(2154)*v(5709)+v(5790)+v(5791)) v(2105)=-(v(1626)*v(5710)) v(5792)=v(2105)*x(3) v(2359)=v(2093)*v(5545)+v(2165)*v(5546)+v(2225)*v(5707)+v(2273)*v(5711)+v(2309)*v(5714)+v(2333)*v(5716)+v(2261)*v(5717)& &+v(2249)*v(5718)+v(2237)*v(5719)+v(2321)*v(5722)+v(2297)*v(5723)+v(2285)*v(5724)+v(5543)*(v(2201)*v(5685)+v(2189)*v& &(5708)+v(2213)*v(5709)+v(5778))+v(5544)*(v(2141)*v(5685)+v(2129)*v(5708)+v(2153)*v(5709)+v(5792)+v(5793)) v(2104)=-(v(1625)*v(5710))+v(5668)*(v(159)*(v(1724)+v(1736))+v(162)*v(1832)+v(160)*v(1892)+v(163)*v(1907)+v(164)*v(1921& &)+v(165)*v(1934)+v(148)*v(2073)+v(147)*v(2079)+v(146)*v(2085)+v(1814)*v(5725)) v(5794)=-(v(1497)*v(2116))+v(2128)*v(5538)+v(2152)*v(5539)+v(2104)*v(5543) v(2103)=-(v(1624)*v(5710))+v(5668)*(v(159)*(v(1722)+v(1734))+v(162)*v(1830)+v(160)*v(1890)+v(163)*v(1905)+v(164)*v(1920& &)+v(165)*v(1933)+v(148)*v(2072)+v(147)*v(2078)+v(146)*v(2084)+v(1812)*v(5725)) v(5795)=-(v(1497)*v(2115))+v(2127)*v(5538)+v(2139)*v(5540)+v(2103)*v(5543) v(2102)=-(v(1623)*v(5710))+v(5668)*(v(159)*(v(1720)+v(1732))+v(162)*v(1828)+v(160)*v(1888)+v(163)*v(1903)+v(164)*v(1918& &)+v(165)*v(1932)+v(148)*v(2071)+v(147)*v(2077)+v(146)*v(2083)+v(1810)*v(5725)) v(5797)=-(v(1497)*v(2114))+v(2150)*v(5539)+v(2138)*v(5540)+v(2102)*v(5543) v(2101)=-(v(1622)*v(5710))+v(5668)*(v(159)*(v(1718)+v(1730))+v(162)*v(1826)+v(160)*v(1886)+v(163)*v(1902)+v(164)*v(1917& &)+v(165)*v(1931)+v(148)*v(2070)+v(147)*v(2076)+v(146)*v(2082)+v(1808)*v(5725)) v(5798)=-(v(1497)*v(2113))+v(2125)*v(5538)+v(2149)*v(5539)+v(2137)*v(5540)+v(2101)*v(5543) v(2100)=-(v(1621)*v(5710))+v(5668)*(v(159)*(v(1716)+v(1728))+v(162)*v(1824)+v(160)*v(1884)+v(163)*v(1901)+v(164)*v(1916& &)+v(165)*v(1930)+v(148)*v(2069)+v(147)*v(2075)+v(146)*v(2081)+v(1806)*v(5725)) v(5799)=-(v(1497)*v(2112))+v(2124)*v(5538)+v(2148)*v(5539)+v(2136)*v(5540)+v(2100)*v(5543) v(2098)=v(5668)*(v(159)*(v(1714)+v(1726))+v(162)*v(1822)+v(160)*v(1882)+v(163)*v(1899)+v(164)*v(1914)+v(165)*v(1928)+v& &(148)*v(2068)+v(147)*v(2074)+v(146)*v(2080)+v(1804)*v(5725)) v(5800)=v(2098)*x(3) v(2338)=v(2086)*v(5545)+v(2158)*v(5546)+v(2218)*v(5707)+v(2266)*v(5711)+v(2302)*v(5714)+v(2326)*v(5716)+v(2254)*v(5717)& &+v(2242)*v(5718)+v(2230)*v(5719)+v(2314)*v(5722)+v(2290)*v(5723)+v(2278)*v(5724)+v(5543)*(v(2194)*v(5685)+v(2182)*v& &(5708)+v(2206)*v(5709)+v(5782))+v(5544)*(v(2134)*v(5685)+v(2122)*v(5708)+v(2146)*v(5709)+v(5800)+v(5801)) v(156)=v(157)*v(5672) v(5753)=v(156)*x(2) v(161)=v(157)*v(5710) v(5754)=v(161)*x(3) v(5750)=v(161)*x(2) v(2398)=2d0*v(161) v(166)=v(157)*v(5700) v(5755)=v(166)*v(5542) v(2384)=(-2d0)*v(166) v(2340)=v(166)*x(2) v(167)=v(157)*v(5697) v(5749)=v(167)*x(2) v(2429)=2d0*v(167) v(168)=v(157)*v(5699) v(5747)=v(168)*x(2) v(2446)=2d0*v(168) v(169)=v(157)*v(5698) v(5744)=v(169)*x(2) v(2467)=2d0*v(169) v(5729)=v(5755)+v(2429)*x(4)+v(2467)*x(5)+v(2446)*x(6) v(2339)=v(5729)+v(5753)+v(5754) v(172)=v(157)*v(5670) v(5751)=v(172)*x(3) v(174)=v(157)*v(5695) v(5752)=v(174)*v(5542) v(2400)=(-2d0)*v(174) v(2341)=v(174)*x(3) v(178)=v(157)*v(5694) v(2432)=2d0*v(178) v(181)=v(157)*v(5692) v(2449)=2d0*v(181) v(183)=v(157)*v(5693) v(2470)=2d0*v(183) v(5727)=v(5752)+v(2432)*x(4)+v(2470)*x(5)+v(2449)*x(6) v(2348)=v(5727)+v(5750)+v(5751) v(186)=v(157)*v(5667) v(2415)=(-2d0)*v(186) v(2342)=v(186)*v(5542) v(187)=v(157)*v(5691) v(2430)=2d0*v(187) v(2343)=v(2430)*x(4) v(190)=v(157)*v(5690) v(2447)=2d0*v(190) v(2344)=v(2447)*x(6) v(191)=v(157)*v(5687) v(2468)=2d0*v(191) v(2345)=v(2468)*x(5) v(5726)=-v(2342)-v(2343)-v(2344)-v(2345) v(2347)=-v(2340)-v(2341)+v(5726) v(5728)=v(2347)+v(5726) v(2349)=v(2348)+v(2089)*v(5545)+v(2161)*v(5546)+v(2221)*v(5707)+v(2269)*v(5711)+v(2305)*v(5714)+v(2329)*v(5716)+v(2257& &)*v(5717)+v(2245)*v(5718)+v(2233)*v(5719)+v(2317)*v(5722)+v(2293)*v(5723)+v(2281)*v(5724)+v(5727)+v(5728)+(v(161)-v(166& &)+v(5798))*x(2)+(v(172)-v(174)+v(5780))*x(3) v(2346)=v(2339)+v(2088)*v(5545)+v(2160)*v(5546)+v(2220)*v(5707)+v(2268)*v(5711)+v(2304)*v(5714)+v(2328)*v(5716)+v(2256& &)*v(5717)+v(2244)*v(5718)+v(2232)*v(5719)+v(2316)*v(5722)+v(2292)*v(5723)+v(2280)*v(5724)+v(5728)+v(5729)+(v(156)-v(166& &)+v(5799))*x(2)+(v(161)-v(174)+v(5781))*x(3) v(196)=v(157)*v(5682) v(198)=v(157)*v(5684) v(2451)=4d0*v(198) v(2356)=2d0*v(198) v(5733)=v(2356)*x(4) v(5731)=v(2356)*x(6) v(199)=v(157)*v(5688) v(2472)=4d0*v(199) v(2353)=2d0*v(199) v(5738)=v(2353)*x(4) v(5730)=v(2353)*x(5) v(5748)=v(2430)*v(5542)+2d0*v(5730)+2d0*v(5731)+v(2432)*x(3) v(2350)=v(187)*v(5542)+v(196)*v(5708)+v(5730)+v(5731)+v(5749)+v(178)*x(3) v(5740)=2d0*v(2350) v(2351)=v(2090)*v(5545)+v(2162)*v(5546)+v(2222)*v(5707)+v(2270)*v(5711)+v(2306)*v(5714)+v(2330)*v(5716)+v(2258)*v(5717)& &+v(2246)*v(5718)+v(2318)*v(5722)+v(2210)*v(5732)+v(2174)*v(5735)+v(2198)*v(5736)+v(5740)+v(5748)+v(5538)*(v(196)+v(2282& &)*v(5685)+v(2294)*v(5709)+v(5768)+v(5769)+v(5770))+(v(2429)+v(5797))*x(2) v(205)=v(157)*v(5680) v(207)=v(157)*v(5678) v(2476)=4d0*v(207) v(2357)=2d0*v(207) v(5739)=v(2357)*x(6) v(5743)=v(2468)*v(5542)+2d0*v(5738)+2d0*v(5739)+v(2470)*x(3) v(5734)=v(2357)*x(5) v(5746)=v(2447)*v(5542)+2d0*v(5733)+2d0*v(5734)+v(2449)*x(3) v(2355)=v(190)*v(5542)+v(205)*v(5685)+v(5733)+v(5734)+v(5747)+v(181)*x(3) v(5742)=2d0*v(2355) v(2358)=v(2092)*v(5545)+v(2164)*v(5546)+v(2224)*v(5707)+v(2272)*v(5711)+v(2308)*v(5714)+v(2332)*v(5716)+v(2260)*v(5717)& &+v(2236)*v(5719)+v(2296)*v(5723)+v(2212)*v(5732)+v(2176)*v(5735)+v(2188)*v(5737)+v(5742)+v(5746)+v(5540)*(v(205)+v(2284& &)*v(5708)+v(2320)*v(5709)+v(5762)+v(5763)+v(5764))+(v(2446)+v(5794))*x(2) v(214)=v(157)*v(5676) v(2352)=v(191)*v(5542)+v(214)*v(5709)+v(5738)+v(5739)+v(5744)+v(183)*x(3) v(5741)=2d0*v(2352) v(2354)=v(2091)*v(5545)+v(2163)*v(5546)+v(2223)*v(5707)+v(2271)*v(5711)+v(2307)*v(5714)+v(2331)*v(5716)+v(2247)*v(5718)& &+v(2235)*v(5719)+v(2283)*v(5724)+v(2175)*v(5735)+v(2199)*v(5736)+v(2187)*v(5737)+v(5741)+v(5743)+v(5539)*(v(214)+v(2319& &)*v(5685)+v(2295)*v(5708)+v(5757)+v(5758)+v(5760))+(v(2467)+v(5795))*x(2) v(215)=-(v(2347)*v(5542))+v(2339)*x(2)+v(2348)*x(3)+v(5740)*x(4)+v(5741)*x(5)+v(5742)*x(6) v(5796)=-(v(215)*v(2380)) v(5779)=-(v(215)*v(2395)) v(5772)=-(v(215)*v(2411)) v(5767)=-(v(215)*v(2426)) v(5765)=-(v(215)*v(2443)) v(5759)=-(v(215)*v(2464)) v(5745)=v(1502)*v(215) v(2480)=v(123)*v(5745) v(2465)=v(214)*v(5539)+v(5743)+2d0*v(5744)-v(2464)*v(5745) v(2457)=v(122)*v(5745) v(2487)=-(v(2457)*v(5570)) v(2444)=v(205)*v(5540)-v(2443)*v(5745)+v(5746)+2d0*v(5747) v(2438)=v(121)*v(5745) v(2482)=-(v(2438)*v(5570)) v(2459)=-(v(2438)*v(5566)) v(2427)=v(196)*v(5538)-v(2426)*v(5745)+v(5748)+2d0*v(5749) v(2423)=-(v(120)*v(5745)) v(2412)=2d0*v(2340)+2d0*v(2341)+2d0*v(2342)+v(187)*v(5538)+v(191)*v(5539)+v(190)*v(5540)-v(2411)*v(5745) v(2407)=v(119)*v(5745) v(2396)=v(178)*v(5538)+v(183)*v(5539)+v(181)*v(5540)-v(2395)*v(5745)+2d0*v(5750)+2d0*v(5751)+2d0*v(5752) v(2391)=v(117)*v(5745) v(2381)=v(167)*v(5538)+v(169)*v(5539)+v(168)*v(5540)-v(2380)*v(5745)+2d0*v(5753)+2d0*v(5754)+2d0*v(5755) v(2367)=1d0/sqrt(v(215)) v(5802)=v(2367)/2d0 v(2369)=-(v(5802)/v(215)) v(2379)=v(2366)*v(2369) v(2378)=v(2363)*v(2369) v(2377)=v(2361)*v(2369) v(2376)=v(2360)*v(2369) v(2375)=v(2359)*v(2369) v(2374)=v(2358)*v(2369) v(2373)=v(2354)*v(2369) v(2372)=v(2351)*v(2369) v(2371)=v(2349)*v(2369) v(2370)=v(2346)*v(2369) v(2368)=v(2338)*v(2369) v(2488)=(v(2379)*v(2465)+v(2367)*(-(v(1497)*v(2265))+v(2487)+v(2301)*v(5538)+v(2337)*v(5539)+v(2325)*v(5540)+v(2217)*v& &(5543)+v(2157)*v(5544)+v(2366)*v(5756)))/2d0 v(2486)=(v(2378)*v(2465)+v(2367)*(-(v(1497)*v(2264))+v(2484)+v(2485)+v(2336)*v(5539)+v(2216)*v(5543)+v(2156)*v(5544)+((& &-1d0)-v(123)*v(5570))*v(5745)+v(2363)*v(5756)))/2d0 v(2483)=(v(2377)*v(2465)+v(2367)*(-(v(1497)*v(2263))+v(2482)+v(2299)*v(5538)+v(2335)*v(5539)+v(2323)*v(5540)+v(2215)*v& &(5543)+v(2155)*v(5544)+v(2361)*v(5756)))/2d0 v(2481)=(v(2376)*v(2465)+v(2367)*(-(v(1497)*v(2262))+v(1627)*v(2480)+v(2298)*v(5538)+v(2334)*v(5539)+v(2322)*v(5540)+v& &(2214)*v(5543)+v(2154)*v(5544)+v(2360)*v(5756)))/2d0 v(2479)=(v(2375)*v(2465)+v(2367)*(-(v(1497)*v(2261))+v(1626)*v(2480)+v(2297)*v(5538)+v(2333)*v(5539)+v(2321)*v(5540)+v& &(2213)*v(5543)+v(2153)*v(5544)+v(2359)*v(5756)))/2d0 v(2478)=(v(2374)*v(2465)+v(2367)*(-(v(1497)*v(2260))+v(2476)+v(2296)*v(5538)+v(2332)*v(5539)+v(2320)*v(5540)+v(2212)*v& &(5543)+v(2152)*v(5544)+(v(123)*v(1625)-v(2477))*v(5745)+v(2358)*v(5756)+v(1508)*v(5759)))/2d0 v(2475)=(v(2373)*v(2465)+v(2367)*(4d0*v(214)+v(2295)*v(5538)+v(2331)*v(5539)+v(2319)*v(5540)+(v(123)*v(1624)+v(1614)*v& &(226))*v(5745)+v(2354)*v(5756)+2d0*v(5757)+2d0*v(5758)+v(1507)*v(5759)+2d0*v(5760)))/2d0 v(2474)=(v(2372)*v(2465)+v(2367)*(-(v(1497)*v(2258))+v(2472)+v(2294)*v(5538)+v(2330)*v(5539)+v(2318)*v(5540)+v(2210)*v& &(5543)+v(2150)*v(5544)+(v(123)*v(1623)-v(2473))*v(5745)+v(2351)*v(5756)+v(1506)*v(5759)))/2d0 v(2471)=(v(2371)*v(2465)+v(2367)*(-(v(1497)*v(2257))-v(2468)+v(2470)+v(2293)*v(5538)+v(2329)*v(5539)+v(2317)*v(5540)+v& &(2209)*v(5543)+v(2149)*v(5544)+(v(123)*v(1622)+v(1613)*v(226))*v(5745)+v(2349)*v(5756)+v(1505)*v(5759)))/2d0 v(2469)=(v(2370)*v(2465)+v(2367)*(-(v(1497)*v(2256))+v(2467)-v(2468)+v(2292)*v(5538)+v(2328)*v(5539)+v(2316)*v(5540)+v& &(2208)*v(5543)+v(2148)*v(5544)+(v(123)*v(1621)+v(1612)*v(226))*v(5745)+v(2346)*v(5756)+v(1503)*v(5759)))/2d0 v(2466)=(v(2368)*v(2465)+v(2367)*(-(v(1497)*v(2254))+v(2290)*v(5538)+v(2326)*v(5539)+v(2314)*v(5540)+v(2206)*v(5543)+v& &(2146)*v(5544)+v(2338)*v(5756)))/2d0 v(2463)=(v(2379)*v(2444)+v(2367)*(-(v(1497)*v(2253))+v(2462)+v(2485)+v(2313)*v(5540)+v(2205)*v(5543)+v(2145)*v(5544)+((& &-1d0)-v(122)*v(5566))*v(5745)+v(2366)*v(5761)))/2d0 v(2461)=(v(2378)*v(2444)+v(2367)*(-(v(1497)*v(2252))+v(2487)+v(2288)*v(5538)+v(2324)*v(5539)+v(2312)*v(5540)+v(2204)*v& &(5543)+v(2144)*v(5544)+v(2363)*v(5761)))/2d0 v(2460)=(v(2377)*v(2444)+v(2367)*(-(v(1497)*v(2251))+v(2459)+v(2287)*v(5538)+v(2323)*v(5539)+v(2311)*v(5540)+v(2203)*v& &(5543)+v(2143)*v(5544)+v(2361)*v(5761)))/2d0 v(2458)=(v(2376)*v(2444)+v(2367)*(-(v(1497)*v(2250))+v(1627)*v(2457)+v(2286)*v(5538)+v(2322)*v(5539)+v(2310)*v(5540)+v& &(2202)*v(5543)+v(2142)*v(5544)+v(2360)*v(5761)))/2d0 v(2456)=(v(2375)*v(2444)+v(2367)*(-(v(1497)*v(2249))+v(1626)*v(2457)+v(2285)*v(5538)+v(2321)*v(5539)+v(2309)*v(5540)+v& &(2201)*v(5543)+v(2141)*v(5544)+v(2359)*v(5761)))/2d0 v(2455)=(v(2374)*v(2444)+v(2367)*(4d0*v(205)+v(2284)*v(5538)+v(2320)*v(5539)+v(2308)*v(5540)+(v(122)*v(1625)+v(1600)*v& &(226))*v(5745)+v(2358)*v(5761)+2d0*v(5762)+2d0*v(5763)+2d0*v(5764)+v(1508)*v(5765)))/2d0 v(2454)=(v(2373)*v(2444)+v(2367)*(-(v(1497)*v(2247))+v(2476)+v(2283)*v(5538)+v(2319)*v(5539)+v(2307)*v(5540)+v(2199)*v& &(5543)+v(2139)*v(5544)+(v(122)*v(1624)-v(2477))*v(5745)+v(2354)*v(5761)+v(1507)*v(5765)))/2d0 v(2453)=(v(2372)*v(2444)+v(2367)*(-(v(1497)*v(2246))+v(2451)+v(2282)*v(5538)+v(2318)*v(5539)+v(2306)*v(5540)+v(2198)*v& &(5543)+v(2138)*v(5544)+(v(122)*v(1623)-v(2452))*v(5745)+v(2351)*v(5761)+v(1506)*v(5765)))/2d0 v(2450)=(v(2371)*v(2444)+v(2367)*(-(v(1497)*v(2245))-v(2447)+v(2449)+v(2281)*v(5538)+v(2317)*v(5539)+v(2305)*v(5540)+v& &(2197)*v(5543)+v(2137)*v(5544)+(v(122)*v(1622)+v(1598)*v(226))*v(5745)+v(2349)*v(5761)+v(1505)*v(5765)))/2d0 v(2448)=(v(2370)*v(2444)+v(2367)*(-(v(1497)*v(2244))+v(2446)-v(2447)+v(2280)*v(5538)+v(2316)*v(5539)+v(2304)*v(5540)+v& &(2196)*v(5543)+v(2136)*v(5544)+(v(122)*v(1621)+v(1597)*v(226))*v(5745)+v(2346)*v(5761)+v(1503)*v(5765)))/2d0 v(2445)=(v(2368)*v(2444)+v(2367)*(-(v(1497)*v(2242))+v(2278)*v(5538)+v(2314)*v(5539)+v(2302)*v(5540)+v(2194)*v(5543)+v& &(2134)*v(5544)+v(2338)*v(5761)))/2d0 v(2442)=(v(2379)*v(2427)+v(2367)*(-(v(1497)*v(2241))+v(2459)+v(2277)*v(5538)+v(2301)*v(5539)+v(2289)*v(5540)+v(2193)*v& &(5543)+v(2133)*v(5544)+v(2366)*v(5766)))/2d0 v(2441)=(v(2378)*v(2427)+v(2367)*(-(v(1497)*v(2240))+v(2482)+v(2276)*v(5538)+v(2300)*v(5539)+v(2288)*v(5540)+v(2192)*v& &(5543)+v(2132)*v(5544)+v(2363)*v(5766)))/2d0 v(2440)=(v(2377)*v(2427)+v(2367)*(-(v(1497)*v(2239))+v(2462)+v(2484)+v(2275)*v(5538)+v(2191)*v(5543)+v(2131)*v(5544)+((& &-1d0)-v(121)*v(5563))*v(5745)+v(2361)*v(5766)))/2d0 v(2439)=(v(2376)*v(2427)+v(2367)*(-(v(1497)*v(2238))+v(1627)*v(2438)+v(2274)*v(5538)+v(2298)*v(5539)+v(2286)*v(5540)+v& &(2190)*v(5543)+v(2130)*v(5544)+v(2360)*v(5766)))/2d0 v(2437)=(v(2375)*v(2427)+v(2367)*(-(v(1497)*v(2237))+v(1626)*v(2438)+v(2273)*v(5538)+v(2297)*v(5539)+v(2285)*v(5540)+v& &(2189)*v(5543)+v(2129)*v(5544)+v(2359)*v(5766)))/2d0 v(2436)=(v(2374)*v(2427)+v(2367)*(-(v(1497)*v(2236))+v(2451)+v(2272)*v(5538)+v(2296)*v(5539)+v(2284)*v(5540)+v(2188)*v& &(5543)+v(2128)*v(5544)+(v(121)*v(1625)-v(2452))*v(5745)+v(2358)*v(5766)+v(1508)*v(5767)))/2d0 v(2435)=(v(2373)*v(2427)+v(2367)*(-(v(1497)*v(2235))+v(2472)+v(2271)*v(5538)+v(2295)*v(5539)+v(2283)*v(5540)+v(2187)*v& &(5543)+v(2127)*v(5544)+(v(121)*v(1624)-v(2473))*v(5745)+v(2354)*v(5766)+v(1507)*v(5767)))/2d0 v(2434)=(v(2372)*v(2427)+v(2367)*(4d0*v(196)+v(2270)*v(5538)+v(2294)*v(5539)+v(2282)*v(5540)+(v(121)*v(1623)+v(1583)*v& &(226))*v(5745)+v(2351)*v(5766)+v(1506)*v(5767)+2d0*v(5768)+2d0*v(5769)+2d0*v(5770)))/2d0 v(2433)=(v(2371)*v(2427)+v(2367)*(-(v(1497)*v(2233))-v(2430)+v(2432)+v(2269)*v(5538)+v(2293)*v(5539)+v(2281)*v(5540)+v& &(2185)*v(5543)+v(2125)*v(5544)+(v(121)*v(1622)+v(1582)*v(226))*v(5745)+v(2349)*v(5766)+v(1505)*v(5767)))/2d0 v(2431)=(v(2370)*v(2427)+v(2367)*(-(v(1497)*v(2232))+v(2429)-v(2430)+v(2268)*v(5538)+v(2292)*v(5539)+v(2280)*v(5540)+v& &(2184)*v(5543)+v(2124)*v(5544)+(v(121)*v(1621)+v(1581)*v(226))*v(5745)+v(2346)*v(5766)+v(1503)*v(5767)))/2d0 v(2428)=(v(2368)*v(2427)+v(2367)*(-(v(1497)*v(2230))+v(2266)*v(5538)+v(2290)*v(5539)+v(2278)*v(5540)+v(2182)*v(5543)+v& &(2122)*v(5544)+v(2338)*v(5766)))/2d0 v(2425)=(v(2379)*v(2412)+v(2367)*(-(v(1497)*v(2229))+v(2241)*v(5538)+v(2265)*v(5539)+v(2253)*v(5540)+v(2181)*v(5543)+v& &(2121)*v(5544)+v(2423)*v(5566)+v(2366)*v(5771)))/2d0 v(2424)=(v(2378)*v(2412)+v(2367)*(-(v(1497)*v(2228))+v(2240)*v(5538)+v(2264)*v(5539)+v(2252)*v(5540)+v(2180)*v(5543)+v& &(2120)*v(5544)+v(2423)*v(5570)+v(2363)*v(5771)))/2d0 v(2422)=(v(2377)*v(2412)+v(2367)*(-(v(1497)*v(2227))+v(2239)*v(5538)+v(2263)*v(5539)+v(2251)*v(5540)+v(2179)*v(5543)+v& &(2119)*v(5544)+v(2423)*v(5563)+v(2361)*v(5771)))/2d0 v(2421)=(v(2376)*v(2412)+v(2367)*(-(v(1497)*v(2226))+v(2238)*v(5538)+v(2262)*v(5539)+v(2250)*v(5540)+v(2178)*v(5543)+v& &(2118)*v(5544)+(1d0+v(120)*v(1627))*v(5745)+v(2360)*v(5771)))/2d0 v(2420)=(v(2375)*v(2412)+v(2367)*(-(v(1497)*v(2225))+v(2237)*v(5538)+v(2261)*v(5539)+v(2249)*v(5540)+v(2177)*v(5543)+v& &(2117)*v(5544)+(1d0+v(120)*v(1626))*v(5745)+v(2359)*v(5771)))/2d0 v(2419)=(v(2374)*v(2412)+v(2367)*(4d0*v(190)-v(1497)*v(2224)+v(2236)*v(5538)+v(2260)*v(5539)+v(2248)*v(5540)+v(2176)*v& &(5543)+v(2116)*v(5544)+(v(120)*v(1625)+v(1554)*v(226))*v(5745)+v(2358)*v(5771)+v(1508)*v(5772)))/2d0 v(2418)=(v(2373)*v(2412)+v(2367)*(4d0*v(191)-v(1497)*v(2223)+v(2235)*v(5538)+v(2259)*v(5539)+v(2247)*v(5540)+v(2175)*v& &(5543)+v(2115)*v(5544)+(v(120)*v(1624)+v(1553)*v(226))*v(5745)+v(2354)*v(5771)+v(1507)*v(5772)))/2d0 v(2417)=(v(2372)*v(2412)+v(2367)*(4d0*v(187)-v(1497)*v(2222)+v(2234)*v(5538)+v(2258)*v(5539)+v(2246)*v(5540)+v(2174)*v& &(5543)+v(2114)*v(5544)+(v(120)*v(1623)+v(1552)*v(226))*v(5745)+v(2351)*v(5771)+v(1506)*v(5772)))/2d0 v(2416)=(v(2371)*v(2412)+v(2367)*(-(v(1497)*v(2221))-v(2400)+v(2415)+v(2233)*v(5538)+v(2257)*v(5539)+v(2245)*v(5540)+v& &(2173)*v(5543)+v(2113)*v(5544)+(v(120)*v(1622)+v(1551)*v(226))*v(5745)+v(2349)*v(5771)+v(1505)*v(5772)))/2d0 v(2414)=(v(2370)*v(2412)+v(2367)*(-(v(1497)*v(2220))-v(2384)+v(2415)+v(2232)*v(5538)+v(2256)*v(5539)+v(2244)*v(5540)+v& &(2172)*v(5543)+v(2112)*v(5544)+(v(120)*v(1621)+v(1550)*v(226))*v(5745)+v(2346)*v(5771)+v(1503)*v(5772)))/2d0 v(2413)=(v(2368)*v(2412)+v(2367)*(-(v(1497)*v(2218))+v(2230)*v(5538)+v(2254)*v(5539)+v(2242)*v(5540)+v(2170)*v(5543)+v& &(2110)*v(5544)+v(2338)*v(5771)))/2d0 v(5849)=v(2413)*v(5541) v(2410)=(v(2379)*v(2396)+v(2367)*(v(2193)*v(5538)+v(2217)*v(5539)+v(2205)*v(5540)+v(2169)*v(5543)+v(2109)*v(5544)-v& &(2407)*v(5566)+2d0*v(5773)+v(2366)*v(5774)))/2d0 v(2409)=(v(2378)*v(2396)+v(2367)*(v(2192)*v(5538)+v(2216)*v(5539)+v(2204)*v(5540)+v(2168)*v(5543)+v(2108)*v(5544)-v& &(2407)*v(5570)+v(2363)*v(5774)+2d0*v(5775)))/2d0 v(2408)=(v(2377)*v(2396)+v(2367)*(v(2191)*v(5538)+v(2215)*v(5539)+v(2203)*v(5540)+v(2167)*v(5543)+v(2107)*v(5544)-v& &(2407)*v(5563)+v(2361)*v(5774)+2d0*v(5776)))/2d0 v(2406)=(v(2376)*v(2396)+v(2367)*(v(2190)*v(5538)+v(2214)*v(5539)+v(2202)*v(5540)+v(2166)*v(5543)+v(2106)*v(5544)+((& &-1d0)+v(119)*v(1627))*v(5745)+v(2360)*v(5774)+2d0*v(5777)))/2d0 v(2405)=(v(2375)*v(2396)+v(2367)*(v(1626)*v(2407)+v(2189)*v(5538)+v(2213)*v(5539)+v(2201)*v(5540)+v(2165)*v(5543)+v& &(2105)*v(5544)+v(2359)*v(5774)+2d0*v(5778)))/2d0 v(2404)=(v(2374)*v(2396)+v(2367)*(4d0*v(181)-v(1497)*v(2176)+v(2188)*v(5538)+v(2212)*v(5539)+v(2200)*v(5540)+v(2164)*v& &(5543)+v(2104)*v(5544)+(v(119)*v(1625)+v(1531)*v(226))*v(5745)+v(2358)*v(5774)+v(1508)*v(5779)))/2d0 v(2403)=(v(2373)*v(2396)+v(2367)*(4d0*v(183)-v(1497)*v(2175)+v(2187)*v(5538)+v(2211)*v(5539)+v(2199)*v(5540)+v(2163)*v& &(5543)+v(2103)*v(5544)+(v(119)*v(1624)+v(1530)*v(226))*v(5745)+v(2354)*v(5774)+v(1507)*v(5779)))/2d0 v(2402)=(v(2372)*v(2396)+v(2367)*(4d0*v(178)-v(1497)*v(2174)+v(2186)*v(5538)+v(2210)*v(5539)+v(2198)*v(5540)+v(2162)*v& &(5543)+v(2102)*v(5544)+(v(119)*v(1623)+v(1529)*v(226))*v(5745)+v(2351)*v(5774)+v(1506)*v(5779)))/2d0 v(2401)=(v(2371)*v(2396)+v(2367)*(2d0*v(172)+v(2400)+v(2161)*v(5543)+v(2101)*v(5544)+(v(119)*v(1622)+v(1528)*v(226))*v& &(5745)+v(2349)*v(5774)+v(1505)*v(5779)+v(5780)))/2d0 v(2399)=(v(2370)*v(2396)+v(2367)*(v(2398)+v(2400)+v(2160)*v(5543)+v(2100)*v(5544)+(v(119)*v(1621)+v(1527)*v(226))*v& &(5745)+v(2346)*v(5774)+v(1503)*v(5779)+v(5781)))/2d0 v(2397)=(v(2368)*v(2396)+v(2367)*(v(2182)*v(5538)+v(2206)*v(5539)+v(2194)*v(5540)+v(2158)*v(5543)+v(2098)*v(5544)+v& &(2338)*v(5774)+2d0*v(5782)))/2d0 v(5843)=v(2397)*v(5541) v(2394)=(v(2379)*v(2381)+v(2367)*(v(2133)*v(5538)+v(2157)*v(5539)+v(2145)*v(5540)+v(2097)*v(5544)-v(2391)*v(5566)+2d0*v& &(5783)+2d0*v(5784)+v(2366)*v(5786)))/2d0 v(2393)=(v(2378)*v(2381)+v(2367)*(v(2132)*v(5538)+v(2156)*v(5539)+v(2144)*v(5540)+v(2096)*v(5544)-v(2391)*v(5570)+2d0*v& &(5785)+v(2363)*v(5786)+2d0*v(5787)))/2d0 v(2392)=(v(2377)*v(2381)+v(2367)*(v(2131)*v(5538)+v(2155)*v(5539)+v(2143)*v(5540)+v(2095)*v(5544)-v(2391)*v(5563)+v& &(2361)*v(5786)+2d0*v(5788)+2d0*v(5789)))/2d0 v(2390)=(v(2376)*v(2381)+v(2367)*(v(1627)*v(2391)+v(2130)*v(5538)+v(2154)*v(5539)+v(2142)*v(5540)+v(2094)*v(5544)+v& &(2360)*v(5786)+2d0*v(5790)+2d0*v(5791)))/2d0 v(2389)=(v(2375)*v(2381)+v(2367)*(v(2129)*v(5538)+v(2153)*v(5539)+v(2141)*v(5540)+v(2093)*v(5544)+((-1d0)+v(117)*v(1626& &))*v(5745)+v(2359)*v(5786)+2d0*v(5792)+2d0*v(5793)))/2d0 v(2388)=(v(2374)*v(2381)+v(2367)*(4d0*v(168)+v(2140)*v(5540)+v(2092)*v(5544)+(v(117)*v(1625)+v(1521)*v(226))*v(5745)+v& &(2358)*v(5786)+v(5794)+v(1508)*v(5796)))/2d0 v(2387)=(v(2373)*v(2381)+v(2367)*(4d0*v(169)+v(2151)*v(5539)+v(2091)*v(5544)+(v(117)*v(1624)+v(1520)*v(226))*v(5745)+v& &(2354)*v(5786)+v(5795)+v(1507)*v(5796)))/2d0 v(2386)=(v(2372)*v(2381)+v(2367)*(4d0*v(167)+v(2126)*v(5538)+v(2090)*v(5544)+(v(117)*v(1623)+v(1519)*v(226))*v(5745)+v& &(2351)*v(5786)+v(1506)*v(5796)+v(5797)))/2d0 v(2385)=(v(2371)*v(2381)+v(2367)*(v(2384)+v(2398)+v(2089)*v(5544)+(v(117)*v(1622)+v(1518)*v(226))*v(5745)+v(2349)*v& &(5786)+v(1505)*v(5796)+v(5798)))/2d0 v(2383)=(v(2370)*v(2381)+v(2367)*(2d0*v(156)+v(2384)+v(2088)*v(5544)+(v(117)*v(1621)+v(1517)*v(226))*v(5745)+v(2346)*v& &(5786)+v(1503)*v(5796)+v(5799)))/2d0 v(2382)=(v(2368)*v(2381)+v(2367)*(v(2122)*v(5538)+v(2146)*v(5539)+v(2134)*v(5540)+v(2086)*v(5544)+v(2338)*v(5786)+2d0*v& &(5800)+2d0*v(5801)))/2d0 v(5832)=v(2382)*v(5541) v(223)=v(2381)*v(5802) v(5824)=v(223)*v(5537)+v(5832) v(5823)=v(223)*v(5541) v(369)=(v(223)*v(223)) v(227)=v(2396)*v(5802) v(5838)=v(227)*v(5537)+v(5843) v(5837)=v(227)*v(5541) v(5804)=v(223)+v(227) v(370)=(v(227)*v(227)) v(228)=v(2412)*v(5802) v(5847)=v(228)*v(5537)+v(5849) v(5846)=v(228)*v(5541) v(5806)=v(227)+v(228) v(5803)=v(223)+v(228) v(371)=(v(228)*v(228)) v(229)=v(2427)*v(5802) v(6034)=2d0*v(229) v(5822)=v(229)*v(5537)+v(2428)*v(5541) v(5816)=v(229)*v(5541) v(372)=(v(229)*v(229)) v(230)=v(2444)*v(5802) v(6035)=2d0*v(230) v(5836)=v(230)*v(5537)+v(2445)*v(5541) v(5814)=v(230)*v(5541) v(373)=(v(230)*v(230)) v(231)=v(2465)*v(5802) v(6036)=2d0*v(231) v(5820)=v(231)*v(5537)+v(2466)*v(5541) v(5818)=v(231)*v(5541) v(5817)=v(229)*v(230)+v(231)*v(5803) v(5815)=v(230)*v(231)+v(229)*v(5804) v(5813)=v(229)*v(231)+v(230)*v(5806) v(374)=(v(231)*v(231)) v(232)=(v(5541)*v(5541)) v(5807)=2d0*v(232) v(5812)=v(223)*v(5807) v(5811)=v(228)*v(5807) v(5810)=v(231)*v(5807) v(5809)=v(227)*v(5807) v(5808)=v(230)*v(5807) v(5805)=v(229)*v(5807) v(2610)=v(232)*(v(231)*(v(2394)+v(2425))+v(230)*v(2442)+v(229)*v(2463)+v(2488)*v(5803)) v(2609)=v(232)*(v(231)*(v(2393)+v(2424))+v(230)*v(2441)+v(229)*v(2461)+v(2486)*v(5803)) v(2608)=v(232)*(v(231)*(v(2392)+v(2422))+v(230)*v(2440)+v(229)*v(2460)+v(2483)*v(5803)) v(2607)=v(232)*(v(231)*(v(2390)+v(2421))+v(230)*v(2439)+v(229)*v(2458)+v(2481)*v(5803)) v(2606)=v(232)*(v(231)*(v(2389)+v(2420))+v(230)*v(2437)+v(229)*v(2456)+v(2479)*v(5803)) v(2605)=v(232)*(v(231)*(v(2388)+v(2419))+v(230)*v(2436)+v(229)*v(2455)+v(2478)*v(5803)) v(2604)=v(232)*(v(231)*(v(2387)+v(2418))+v(230)*v(2435)+v(229)*v(2454)+v(2475)*v(5803)) v(2603)=v(232)*(v(231)*(v(2386)+v(2417))+v(230)*v(2434)+v(229)*v(2453)+v(2474)*v(5803)) v(2602)=v(232)*(v(231)*(v(2385)+v(2416))+v(230)*v(2433)+v(229)*v(2450)+v(2471)*v(5803)) v(2601)=v(232)*(v(231)*(v(2383)+v(2414))+v(230)*v(2431)+v(229)*v(2448)+v(2469)*v(5803)) v(2600)=v(232)*(v(231)*(v(2382)+v(2413))+v(230)*v(2428)+v(229)*v(2445)+v(2466)*v(5803))+v(2489)*v(5817) v(2588)=v(232)*(v(229)*(v(2394)+v(2410))+v(231)*v(2463)+v(230)*v(2488)+v(2442)*v(5804)) v(2587)=v(232)*(v(229)*(v(2393)+v(2409))+v(231)*v(2461)+v(230)*v(2486)+v(2441)*v(5804)) v(2586)=v(232)*(v(229)*(v(2392)+v(2408))+v(231)*v(2460)+v(230)*v(2483)+v(2440)*v(5804)) v(2585)=v(232)*(v(229)*(v(2390)+v(2406))+v(231)*v(2458)+v(230)*v(2481)+v(2439)*v(5804)) v(2584)=v(232)*(v(229)*(v(2389)+v(2405))+v(231)*v(2456)+v(230)*v(2479)+v(2437)*v(5804)) v(2583)=v(232)*(v(229)*(v(2388)+v(2404))+v(231)*v(2455)+v(230)*v(2478)+v(2436)*v(5804)) v(2582)=v(232)*(v(229)*(v(2387)+v(2403))+v(231)*v(2454)+v(230)*v(2475)+v(2435)*v(5804)) v(2581)=v(232)*(v(229)*(v(2386)+v(2402))+v(231)*v(2453)+v(230)*v(2474)+v(2434)*v(5804)) v(2580)=v(232)*(v(229)*(v(2385)+v(2401))+v(231)*v(2450)+v(230)*v(2471)+v(2433)*v(5804)) v(2579)=v(232)*(v(229)*(v(2383)+v(2399))+v(231)*v(2448)+v(230)*v(2469)+v(2431)*v(5804)) v(2578)=v(232)*(v(229)*(v(2382)+v(2397))+v(231)*v(2445)+v(230)*v(2466)+v(2428)*v(5804))+v(2489)*v(5815) v(2577)=v(2442)*v(5805) v(2575)=v(2441)*v(5805) v(2573)=v(2440)*v(5805) v(2571)=v(2439)*v(5805) v(2569)=v(2437)*v(5805) v(2567)=v(2436)*v(5805) v(2565)=v(2435)*v(5805) v(2563)=v(2434)*v(5805) v(2561)=v(2433)*v(5805) v(2559)=v(2431)*v(5805) v(2557)=v(2489)*v(372)+v(2428)*v(5805) v(2544)=v(232)*(v(230)*(v(2410)+v(2425))+v(231)*v(2442)+v(229)*v(2488)+v(2463)*v(5806)) v(2543)=v(232)*(v(230)*(v(2409)+v(2424))+v(231)*v(2441)+v(229)*v(2486)+v(2461)*v(5806)) v(2542)=v(232)*(v(230)*(v(2408)+v(2422))+v(231)*v(2440)+v(229)*v(2483)+v(2460)*v(5806)) v(2541)=v(232)*(v(230)*(v(2406)+v(2421))+v(231)*v(2439)+v(229)*v(2481)+v(2458)*v(5806)) v(2540)=v(232)*(v(230)*(v(2405)+v(2420))+v(231)*v(2437)+v(229)*v(2479)+v(2456)*v(5806)) v(2539)=v(232)*(v(230)*(v(2404)+v(2419))+v(231)*v(2436)+v(229)*v(2478)+v(2455)*v(5806)) v(2538)=v(232)*(v(230)*(v(2403)+v(2418))+v(231)*v(2435)+v(229)*v(2475)+v(2454)*v(5806)) v(2537)=v(232)*(v(230)*(v(2402)+v(2417))+v(231)*v(2434)+v(229)*v(2474)+v(2453)*v(5806)) v(2536)=v(232)*(v(230)*(v(2401)+v(2416))+v(231)*v(2433)+v(229)*v(2471)+v(2450)*v(5806)) v(2535)=v(232)*(v(230)*(v(2399)+v(2414))+v(231)*v(2431)+v(229)*v(2469)+v(2448)*v(5806)) v(2534)=v(232)*(v(230)*(v(2397)+v(2413))+v(231)*v(2428)+v(229)*v(2466)+v(2445)*v(5806))+v(2489)*v(5813) v(2533)=v(2463)*v(5808) v(2929)=v(2533)+v(2577)+v(2410)*v(5809) v(2531)=v(2461)*v(5808) v(2927)=v(2531)+v(2575)+v(2409)*v(5809) v(2529)=v(2460)*v(5808) v(2925)=v(2529)+v(2573)+v(2408)*v(5809) v(2527)=v(2458)*v(5808) v(2923)=v(2527)+v(2571)+v(2406)*v(5809) v(2525)=v(2456)*v(5808) v(2921)=v(2525)+v(2569)+v(2405)*v(5809) v(2523)=v(2455)*v(5808) v(2919)=v(2523)+v(2567)+v(2404)*v(5809) v(2521)=v(2454)*v(5808) v(2917)=v(2521)+v(2565)+v(2403)*v(5809) v(2519)=v(2453)*v(5808) v(2915)=v(2519)+v(2563)+v(2402)*v(5809) v(2517)=v(2450)*v(5808) v(2913)=v(2517)+v(2561)+v(2401)*v(5809) v(2515)=v(2448)*v(5808) v(2911)=v(2515)+v(2559)+v(2399)*v(5809) v(2513)=v(2489)*v(373)+v(2445)*v(5808) v(2909)=v(2513)+v(2557)+v(2489)*v(370)+v(2397)*v(5809) v(2511)=v(2488)*v(5810) v(3116)=v(2511)+v(2533)+v(2425)*v(5811) v(2643)=v(2511)+v(2577)+v(2394)*v(5812) v(2509)=v(2486)*v(5810) v(3114)=v(2509)+v(2531)+v(2424)*v(5811) v(2641)=v(2509)+v(2575)+v(2393)*v(5812) v(2507)=v(2483)*v(5810) v(3112)=v(2507)+v(2529)+v(2422)*v(5811) v(2639)=v(2507)+v(2573)+v(2392)*v(5812) v(2505)=v(2481)*v(5810) v(3110)=v(2505)+v(2527)+v(2421)*v(5811) v(2637)=v(2505)+v(2571)+v(2390)*v(5812) v(2503)=v(2479)*v(5810) v(3108)=v(2503)+v(2525)+v(2420)*v(5811) v(2635)=v(2503)+v(2569)+v(2389)*v(5812) v(2501)=v(2478)*v(5810) v(3106)=v(2501)+v(2523)+v(2419)*v(5811) v(2633)=v(2501)+v(2567)+v(2388)*v(5812) v(2499)=v(2475)*v(5810) v(3104)=v(2499)+v(2521)+v(2418)*v(5811) v(2631)=v(2499)+v(2565)+v(2387)*v(5812) v(2497)=v(2474)*v(5810) v(3102)=v(2497)+v(2519)+v(2417)*v(5811) v(2629)=v(2497)+v(2563)+v(2386)*v(5812) v(2495)=v(2471)*v(5810) v(3100)=v(2495)+v(2517)+v(2416)*v(5811) v(2627)=v(2495)+v(2561)+v(2385)*v(5812) v(2493)=v(2469)*v(5810) v(3098)=v(2493)+v(2515)+v(2414)*v(5811) v(2625)=v(2493)+v(2559)+v(2383)*v(5812) v(2491)=v(2489)*v(374)+v(2466)*v(5810) v(3096)=v(2491)+v(2513)+v(2489)*v(371)+v(2413)*v(5811) v(2623)=v(2491)+v(2557)+v(2489)*v(369)+v(2382)*v(5812) v(268)=v(232)*v(374) v(267)=v(232)*v(373) v(255)=v(232)*v(5813) v(2555)=(v(230)*v(2544)+v(2463)*v(255))*v(5541) v(2554)=(v(230)*v(2543)+v(2461)*v(255))*v(5541) v(2553)=(v(230)*v(2542)+v(2460)*v(255))*v(5541) v(2552)=(v(230)*v(2541)+v(2458)*v(255))*v(5541) v(2551)=(v(230)*v(2540)+v(2456)*v(255))*v(5541) v(2550)=(v(230)*v(2539)+v(2455)*v(255))*v(5541) v(2549)=(v(230)*v(2538)+v(2454)*v(255))*v(5541) v(2548)=(v(230)*v(2537)+v(2453)*v(255))*v(5541) v(2547)=(v(230)*v(2536)+v(2450)*v(255))*v(5541) v(2546)=(v(230)*v(2535)+v(2448)*v(255))*v(5541) v(2545)=v(2534)*v(5814)+v(255)*v(5836) v(271)=v(255)*v(5814) v(250)=v(232)*v(372) v(236)=v(232)*v(5815) v(2599)=(v(236)*v(2442)+v(229)*v(2588))*v(5541) v(2598)=(v(236)*v(2441)+v(229)*v(2587))*v(5541) v(2597)=(v(236)*v(2440)+v(229)*v(2586))*v(5541) v(2596)=(v(236)*v(2439)+v(229)*v(2585))*v(5541) v(2595)=(v(236)*v(2437)+v(229)*v(2584))*v(5541) v(2594)=(v(236)*v(2436)+v(229)*v(2583))*v(5541) v(2593)=(v(236)*v(2435)+v(229)*v(2582))*v(5541) v(2592)=(v(236)*v(2434)+v(229)*v(2581))*v(5541) v(2591)=(v(236)*v(2433)+v(229)*v(2580))*v(5541) v(2590)=(v(236)*v(2431)+v(229)*v(2579))*v(5541) v(2589)=v(2578)*v(5816)+v(236)*v(5822) v(252)=v(236)*v(5816) v(235)=v(232)*v(5817) v(2621)=(v(235)*v(2488)+v(231)*v(2610))*v(5541) v(2620)=(v(235)*v(2486)+v(231)*v(2609))*v(5541) v(2619)=(v(235)*v(2483)+v(231)*v(2608))*v(5541) v(2618)=(v(235)*v(2481)+v(231)*v(2607))*v(5541) v(2617)=(v(235)*v(2479)+v(231)*v(2606))*v(5541) v(2616)=(v(235)*v(2478)+v(231)*v(2605))*v(5541) v(2615)=(v(235)*v(2475)+v(231)*v(2604))*v(5541) v(2614)=(v(235)*v(2474)+v(231)*v(2603))*v(5541) v(2613)=(v(235)*v(2471)+v(231)*v(2602))*v(5541) v(2612)=(v(235)*v(2469)+v(231)*v(2601))*v(5541) v(2611)=v(2600)*v(5818)+v(235)*v(5820) v(270)=v(235)*v(5818) v(233)=v(250)+v(268)+v(232)*v(369) v(5821)=v(229)*v(233)+v(230)*v(235)+v(227)*v(236) v(5819)=v(231)*v(233)+v(228)*v(235)+v(230)*v(236) v(2698)=v(2599)+v(2621)+(v(233)*v(2394)+v(223)*v(2643))*v(5541) v(2697)=v(2598)+v(2620)+(v(233)*v(2393)+v(223)*v(2641))*v(5541) v(2696)=v(2597)+v(2619)+(v(233)*v(2392)+v(223)*v(2639))*v(5541) v(2695)=v(2596)+v(2618)+(v(233)*v(2390)+v(223)*v(2637))*v(5541) v(2694)=v(2595)+v(2617)+(v(233)*v(2389)+v(223)*v(2635))*v(5541) v(2693)=v(2594)+v(2616)+(v(233)*v(2388)+v(223)*v(2633))*v(5541) v(2692)=v(2593)+v(2615)+(v(233)*v(2387)+v(223)*v(2631))*v(5541) v(2691)=v(2592)+v(2614)+(v(233)*v(2386)+v(223)*v(2629))*v(5541) v(2690)=v(2591)+v(2613)+(v(233)*v(2385)+v(223)*v(2627))*v(5541) v(2689)=v(2590)+v(2612)+(v(233)*v(2383)+v(223)*v(2625))*v(5541) v(2688)=v(2589)+v(2611)+v(2623)*v(5823)+v(233)*v(5824) v(2676)=(v(236)*v(2410)+v(233)*v(2442)+v(235)*v(2463)+v(227)*v(2588)+v(230)*v(2610)+v(229)*v(2643))*v(5541) v(2675)=(v(236)*v(2409)+v(233)*v(2441)+v(235)*v(2461)+v(227)*v(2587)+v(230)*v(2609)+v(229)*v(2641))*v(5541) v(2674)=(v(236)*v(2408)+v(233)*v(2440)+v(235)*v(2460)+v(227)*v(2586)+v(230)*v(2608)+v(229)*v(2639))*v(5541) v(2673)=(v(236)*v(2406)+v(233)*v(2439)+v(235)*v(2458)+v(227)*v(2585)+v(230)*v(2607)+v(229)*v(2637))*v(5541) v(2672)=(v(236)*v(2405)+v(233)*v(2437)+v(235)*v(2456)+v(227)*v(2584)+v(230)*v(2606)+v(229)*v(2635))*v(5541) v(2671)=(v(236)*v(2404)+v(233)*v(2436)+v(235)*v(2455)+v(227)*v(2583)+v(230)*v(2605)+v(229)*v(2633))*v(5541) v(2670)=(v(236)*v(2403)+v(233)*v(2435)+v(235)*v(2454)+v(227)*v(2582)+v(230)*v(2604)+v(229)*v(2631))*v(5541) v(2669)=(v(236)*v(2402)+v(233)*v(2434)+v(235)*v(2453)+v(227)*v(2581)+v(230)*v(2603)+v(229)*v(2629))*v(5541) v(2668)=(v(236)*v(2401)+v(233)*v(2433)+v(235)*v(2450)+v(227)*v(2580)+v(230)*v(2602)+v(229)*v(2627))*v(5541) v(2667)=(v(236)*v(2399)+v(233)*v(2431)+v(235)*v(2448)+v(227)*v(2579)+v(230)*v(2601)+v(229)*v(2625))*v(5541) v(2666)=(v(236)*v(2397)+v(233)*v(2428)+v(235)*v(2445)+v(227)*v(2578)+v(230)*v(2600)+v(229)*v(2623))*v(5541)+v(5537)*v& &(5821) v(2654)=(v(235)*v(2425)+v(236)*v(2463)+v(233)*v(2488)+v(230)*v(2588)+v(228)*v(2610)+v(231)*v(2643))*v(5541) v(2653)=(v(235)*v(2424)+v(236)*v(2461)+v(233)*v(2486)+v(230)*v(2587)+v(228)*v(2609)+v(231)*v(2641))*v(5541) v(2652)=(v(235)*v(2422)+v(236)*v(2460)+v(233)*v(2483)+v(230)*v(2586)+v(228)*v(2608)+v(231)*v(2639))*v(5541) v(2651)=(v(235)*v(2421)+v(236)*v(2458)+v(233)*v(2481)+v(230)*v(2585)+v(228)*v(2607)+v(231)*v(2637))*v(5541) v(2650)=(v(235)*v(2420)+v(236)*v(2456)+v(233)*v(2479)+v(230)*v(2584)+v(228)*v(2606)+v(231)*v(2635))*v(5541) v(2649)=(v(235)*v(2419)+v(236)*v(2455)+v(233)*v(2478)+v(230)*v(2583)+v(228)*v(2605)+v(231)*v(2633))*v(5541) v(2648)=(v(235)*v(2418)+v(236)*v(2454)+v(233)*v(2475)+v(230)*v(2582)+v(228)*v(2604)+v(231)*v(2631))*v(5541) v(2647)=(v(235)*v(2417)+v(236)*v(2453)+v(233)*v(2474)+v(230)*v(2581)+v(228)*v(2603)+v(231)*v(2629))*v(5541) v(2646)=(v(235)*v(2416)+v(236)*v(2450)+v(233)*v(2471)+v(230)*v(2580)+v(228)*v(2602)+v(231)*v(2627))*v(5541) v(2645)=(v(235)*v(2414)+v(236)*v(2448)+v(233)*v(2469)+v(230)*v(2579)+v(228)*v(2601)+v(231)*v(2625))*v(5541) v(2644)=(v(235)*v(2413)+v(236)*v(2445)+v(233)*v(2466)+v(230)*v(2578)+v(228)*v(2600)+v(231)*v(2623))*v(5541)+v(5537)*v& &(5819) v(239)=v(5541)*v(5819) v(2665)=(v(239)*v(2488)+v(231)*v(2654))*v(5541) v(2664)=(v(239)*v(2486)+v(231)*v(2653))*v(5541) v(2663)=(v(239)*v(2483)+v(231)*v(2652))*v(5541) v(2662)=(v(239)*v(2481)+v(231)*v(2651))*v(5541) v(2661)=(v(239)*v(2479)+v(231)*v(2650))*v(5541) v(2660)=(v(239)*v(2478)+v(231)*v(2649))*v(5541) v(2659)=(v(239)*v(2475)+v(231)*v(2648))*v(5541) v(2658)=(v(239)*v(2474)+v(231)*v(2647))*v(5541) v(2657)=(v(239)*v(2471)+v(231)*v(2646))*v(5541) v(2656)=(v(239)*v(2469)+v(231)*v(2645))*v(5541) v(2655)=v(2644)*v(5818)+v(239)*v(5820) v(274)=v(239)*v(5818) v(238)=v(5541)*v(5821) v(2687)=(v(238)*v(2442)+v(229)*v(2676))*v(5541) v(2686)=(v(238)*v(2441)+v(229)*v(2675))*v(5541) v(2685)=(v(238)*v(2440)+v(229)*v(2674))*v(5541) v(2684)=(v(238)*v(2439)+v(229)*v(2673))*v(5541) v(2683)=(v(238)*v(2437)+v(229)*v(2672))*v(5541) v(2682)=(v(238)*v(2436)+v(229)*v(2671))*v(5541) v(2681)=(v(238)*v(2435)+v(229)*v(2670))*v(5541) v(2680)=(v(238)*v(2434)+v(229)*v(2669))*v(5541) v(2679)=(v(238)*v(2433)+v(229)*v(2668))*v(5541) v(2678)=(v(238)*v(2431)+v(229)*v(2667))*v(5541) v(2677)=v(2666)*v(5816)+v(238)*v(5822) v(254)=v(238)*v(5816) v(234)=v(252)+v(270)+v(233)*v(5823) v(5826)=v(231)*v(234)+v(230)*v(238)+v(228)*v(239) v(5825)=v(229)*v(234)+v(227)*v(238)+v(230)*v(239) v(2753)=v(2665)+v(2687)+(v(234)*v(2394)+v(223)*v(2698))*v(5541) v(2752)=v(2664)+v(2686)+(v(234)*v(2393)+v(223)*v(2697))*v(5541) v(2751)=v(2663)+v(2685)+(v(234)*v(2392)+v(223)*v(2696))*v(5541) v(2750)=v(2662)+v(2684)+(v(234)*v(2390)+v(223)*v(2695))*v(5541) v(2749)=v(2661)+v(2683)+(v(234)*v(2389)+v(223)*v(2694))*v(5541) v(2748)=v(2660)+v(2682)+(v(234)*v(2388)+v(223)*v(2693))*v(5541) v(2747)=v(2659)+v(2681)+(v(234)*v(2387)+v(223)*v(2692))*v(5541) v(2746)=v(2658)+v(2680)+(v(234)*v(2386)+v(223)*v(2691))*v(5541) v(2745)=v(2657)+v(2679)+(v(234)*v(2385)+v(223)*v(2690))*v(5541) v(2744)=v(2656)+v(2678)+(v(234)*v(2383)+v(223)*v(2689))*v(5541) v(2743)=v(2655)+v(2677)+v(2688)*v(5823)+v(234)*v(5824) v(2731)=(v(239)*v(2425)+v(238)*v(2463)+v(234)*v(2488)+v(228)*v(2654)+v(230)*v(2676)+v(231)*v(2698))*v(5541) v(2730)=(v(239)*v(2424)+v(238)*v(2461)+v(234)*v(2486)+v(228)*v(2653)+v(230)*v(2675)+v(231)*v(2697))*v(5541) v(2729)=(v(239)*v(2422)+v(238)*v(2460)+v(234)*v(2483)+v(228)*v(2652)+v(230)*v(2674)+v(231)*v(2696))*v(5541) v(2728)=(v(239)*v(2421)+v(238)*v(2458)+v(234)*v(2481)+v(228)*v(2651)+v(230)*v(2673)+v(231)*v(2695))*v(5541) v(2727)=(v(239)*v(2420)+v(238)*v(2456)+v(234)*v(2479)+v(228)*v(2650)+v(230)*v(2672)+v(231)*v(2694))*v(5541) v(2726)=(v(239)*v(2419)+v(238)*v(2455)+v(234)*v(2478)+v(228)*v(2649)+v(230)*v(2671)+v(231)*v(2693))*v(5541) v(2725)=(v(239)*v(2418)+v(238)*v(2454)+v(234)*v(2475)+v(228)*v(2648)+v(230)*v(2670)+v(231)*v(2692))*v(5541) v(2724)=(v(239)*v(2417)+v(238)*v(2453)+v(234)*v(2474)+v(228)*v(2647)+v(230)*v(2669)+v(231)*v(2691))*v(5541) v(2723)=(v(239)*v(2416)+v(238)*v(2450)+v(234)*v(2471)+v(228)*v(2646)+v(230)*v(2668)+v(231)*v(2690))*v(5541) v(2722)=(v(239)*v(2414)+v(238)*v(2448)+v(234)*v(2469)+v(228)*v(2645)+v(230)*v(2667)+v(231)*v(2689))*v(5541) v(2721)=(v(239)*v(2413)+v(238)*v(2445)+v(234)*v(2466)+v(228)*v(2644)+v(230)*v(2666)+v(231)*v(2688))*v(5541)+v(5537)*v& &(5826) v(2709)=(v(238)*v(2410)+v(234)*v(2442)+v(239)*v(2463)+v(230)*v(2654)+v(227)*v(2676)+v(229)*v(2698))*v(5541) v(2708)=(v(238)*v(2409)+v(234)*v(2441)+v(239)*v(2461)+v(230)*v(2653)+v(227)*v(2675)+v(229)*v(2697))*v(5541) v(2707)=(v(238)*v(2408)+v(234)*v(2440)+v(239)*v(2460)+v(230)*v(2652)+v(227)*v(2674)+v(229)*v(2696))*v(5541) v(2706)=(v(238)*v(2406)+v(234)*v(2439)+v(239)*v(2458)+v(230)*v(2651)+v(227)*v(2673)+v(229)*v(2695))*v(5541) v(2705)=(v(238)*v(2405)+v(234)*v(2437)+v(239)*v(2456)+v(230)*v(2650)+v(227)*v(2672)+v(229)*v(2694))*v(5541) v(2704)=(v(238)*v(2404)+v(234)*v(2436)+v(239)*v(2455)+v(230)*v(2649)+v(227)*v(2671)+v(229)*v(2693))*v(5541) v(2703)=(v(238)*v(2403)+v(234)*v(2435)+v(239)*v(2454)+v(230)*v(2648)+v(227)*v(2670)+v(229)*v(2692))*v(5541) v(2702)=(v(238)*v(2402)+v(234)*v(2434)+v(239)*v(2453)+v(230)*v(2647)+v(227)*v(2669)+v(229)*v(2691))*v(5541) v(2701)=(v(238)*v(2401)+v(234)*v(2433)+v(239)*v(2450)+v(230)*v(2646)+v(227)*v(2668)+v(229)*v(2690))*v(5541) v(2700)=(v(238)*v(2399)+v(234)*v(2431)+v(239)*v(2448)+v(230)*v(2645)+v(227)*v(2667)+v(229)*v(2689))*v(5541) v(2699)=(v(238)*v(2397)+v(234)*v(2428)+v(239)*v(2445)+v(230)*v(2644)+v(227)*v(2666)+v(229)*v(2688))*v(5541)+v(5537)*v& &(5825) v(242)=v(5541)*v(5825) v(2720)=(v(242)*v(2442)+v(229)*v(2709))*v(5541) v(2719)=(v(242)*v(2441)+v(229)*v(2708))*v(5541) v(2718)=(v(242)*v(2440)+v(229)*v(2707))*v(5541) v(2717)=(v(242)*v(2439)+v(229)*v(2706))*v(5541) v(2716)=(v(242)*v(2437)+v(229)*v(2705))*v(5541) v(2715)=(v(242)*v(2436)+v(229)*v(2704))*v(5541) v(2714)=(v(242)*v(2435)+v(229)*v(2703))*v(5541) v(2713)=(v(242)*v(2434)+v(229)*v(2702))*v(5541) v(2712)=(v(242)*v(2433)+v(229)*v(2701))*v(5541) v(2711)=(v(242)*v(2431)+v(229)*v(2700))*v(5541) v(2710)=v(2699)*v(5816)+v(242)*v(5822) v(258)=v(242)*v(5816) v(241)=v(5541)*v(5826) v(2742)=(v(241)*v(2488)+v(231)*v(2731))*v(5541) v(2741)=(v(241)*v(2486)+v(231)*v(2730))*v(5541) v(2740)=(v(241)*v(2483)+v(231)*v(2729))*v(5541) v(2739)=(v(241)*v(2481)+v(231)*v(2728))*v(5541) v(2738)=(v(241)*v(2479)+v(231)*v(2727))*v(5541) v(2737)=(v(241)*v(2478)+v(231)*v(2726))*v(5541) v(2736)=(v(241)*v(2475)+v(231)*v(2725))*v(5541) v(2735)=(v(241)*v(2474)+v(231)*v(2724))*v(5541) v(2734)=(v(241)*v(2471)+v(231)*v(2723))*v(5541) v(2733)=(v(241)*v(2469)+v(231)*v(2722))*v(5541) v(2732)=v(2721)*v(5818)+v(241)*v(5820) v(276)=v(241)*v(5818) v(237)=v(254)+v(274)+v(234)*v(5823) v(5828)=v(229)*v(237)+v(230)*v(241)+v(227)*v(242) v(5827)=v(231)*v(237)+v(228)*v(241)+v(230)*v(242) v(2808)=v(2720)+v(2742)+(v(237)*v(2394)+v(223)*v(2753))*v(5541) v(2807)=v(2719)+v(2741)+(v(237)*v(2393)+v(223)*v(2752))*v(5541) v(2806)=v(2718)+v(2740)+(v(237)*v(2392)+v(223)*v(2751))*v(5541) v(2805)=v(2717)+v(2739)+(v(237)*v(2390)+v(223)*v(2750))*v(5541) v(2804)=v(2716)+v(2738)+(v(237)*v(2389)+v(223)*v(2749))*v(5541) v(2803)=v(2715)+v(2737)+(v(237)*v(2388)+v(223)*v(2748))*v(5541) v(2802)=v(2714)+v(2736)+(v(237)*v(2387)+v(223)*v(2747))*v(5541) v(2801)=v(2713)+v(2735)+(v(237)*v(2386)+v(223)*v(2746))*v(5541) v(2800)=v(2712)+v(2734)+(v(237)*v(2385)+v(223)*v(2745))*v(5541) v(2799)=v(2711)+v(2733)+(v(237)*v(2383)+v(223)*v(2744))*v(5541) v(2798)=v(2710)+v(2732)+v(2743)*v(5823)+v(237)*v(5824) v(2786)=(v(2410)*v(242)+v(237)*v(2442)+v(241)*v(2463)+v(227)*v(2709)+v(230)*v(2731)+v(229)*v(2753))*v(5541) v(2785)=(v(2409)*v(242)+v(237)*v(2441)+v(241)*v(2461)+v(227)*v(2708)+v(230)*v(2730)+v(229)*v(2752))*v(5541) v(2784)=(v(2408)*v(242)+v(237)*v(2440)+v(241)*v(2460)+v(227)*v(2707)+v(230)*v(2729)+v(229)*v(2751))*v(5541) v(2783)=(v(2406)*v(242)+v(237)*v(2439)+v(241)*v(2458)+v(227)*v(2706)+v(230)*v(2728)+v(229)*v(2750))*v(5541) v(2782)=(v(2405)*v(242)+v(237)*v(2437)+v(241)*v(2456)+v(227)*v(2705)+v(230)*v(2727)+v(229)*v(2749))*v(5541) v(2781)=(v(2404)*v(242)+v(237)*v(2436)+v(241)*v(2455)+v(227)*v(2704)+v(230)*v(2726)+v(229)*v(2748))*v(5541) v(2780)=(v(2403)*v(242)+v(237)*v(2435)+v(241)*v(2454)+v(227)*v(2703)+v(230)*v(2725)+v(229)*v(2747))*v(5541) v(2779)=(v(2402)*v(242)+v(237)*v(2434)+v(241)*v(2453)+v(227)*v(2702)+v(230)*v(2724)+v(229)*v(2746))*v(5541) v(2778)=(v(2401)*v(242)+v(237)*v(2433)+v(241)*v(2450)+v(227)*v(2701)+v(230)*v(2723)+v(229)*v(2745))*v(5541) v(2777)=(v(2399)*v(242)+v(237)*v(2431)+v(241)*v(2448)+v(227)*v(2700)+v(230)*v(2722)+v(229)*v(2744))*v(5541) v(2776)=(v(2397)*v(242)+v(237)*v(2428)+v(241)*v(2445)+v(227)*v(2699)+v(230)*v(2721)+v(229)*v(2743))*v(5541)+v(5537)*v& &(5828) v(2764)=(v(241)*v(2425)+v(242)*v(2463)+v(237)*v(2488)+v(230)*v(2709)+v(228)*v(2731)+v(231)*v(2753))*v(5541) v(2763)=(v(241)*v(2424)+v(242)*v(2461)+v(237)*v(2486)+v(230)*v(2708)+v(228)*v(2730)+v(231)*v(2752))*v(5541) v(2762)=(v(241)*v(2422)+v(242)*v(2460)+v(237)*v(2483)+v(230)*v(2707)+v(228)*v(2729)+v(231)*v(2751))*v(5541) v(2761)=(v(241)*v(2421)+v(242)*v(2458)+v(237)*v(2481)+v(230)*v(2706)+v(228)*v(2728)+v(231)*v(2750))*v(5541) v(2760)=(v(241)*v(2420)+v(242)*v(2456)+v(237)*v(2479)+v(230)*v(2705)+v(228)*v(2727)+v(231)*v(2749))*v(5541) v(2759)=(v(241)*v(2419)+v(242)*v(2455)+v(237)*v(2478)+v(230)*v(2704)+v(228)*v(2726)+v(231)*v(2748))*v(5541) v(2758)=(v(241)*v(2418)+v(242)*v(2454)+v(237)*v(2475)+v(230)*v(2703)+v(228)*v(2725)+v(231)*v(2747))*v(5541) v(2757)=(v(241)*v(2417)+v(242)*v(2453)+v(237)*v(2474)+v(230)*v(2702)+v(228)*v(2724)+v(231)*v(2746))*v(5541) v(2756)=(v(241)*v(2416)+v(242)*v(2450)+v(237)*v(2471)+v(230)*v(2701)+v(228)*v(2723)+v(231)*v(2745))*v(5541) v(2755)=(v(241)*v(2414)+v(242)*v(2448)+v(237)*v(2469)+v(230)*v(2700)+v(228)*v(2722)+v(231)*v(2744))*v(5541) v(2754)=(v(241)*v(2413)+v(242)*v(2445)+v(237)*v(2466)+v(230)*v(2699)+v(228)*v(2721)+v(231)*v(2743))*v(5541)+v(5537)*v& &(5827) v(245)=v(5541)*v(5827) v(2775)=(v(245)*v(2488)+v(231)*v(2764))*v(5541) v(2774)=(v(245)*v(2486)+v(231)*v(2763))*v(5541) v(2773)=(v(245)*v(2483)+v(231)*v(2762))*v(5541) v(2772)=(v(245)*v(2481)+v(231)*v(2761))*v(5541) v(2771)=(v(245)*v(2479)+v(231)*v(2760))*v(5541) v(2770)=(v(245)*v(2478)+v(231)*v(2759))*v(5541) v(2769)=(v(245)*v(2475)+v(231)*v(2758))*v(5541) v(2768)=(v(245)*v(2474)+v(231)*v(2757))*v(5541) v(2767)=(v(245)*v(2471)+v(231)*v(2756))*v(5541) v(2766)=(v(245)*v(2469)+v(231)*v(2755))*v(5541) v(2765)=v(2754)*v(5818)+v(245)*v(5820) v(280)=v(245)*v(5818) v(244)=v(5541)*v(5828) v(2797)=(v(244)*v(2442)+v(229)*v(2786))*v(5541) v(2796)=(v(244)*v(2441)+v(229)*v(2785))*v(5541) v(2795)=(v(244)*v(2440)+v(229)*v(2784))*v(5541) v(2794)=(v(2439)*v(244)+v(229)*v(2783))*v(5541) v(2793)=(v(2437)*v(244)+v(229)*v(2782))*v(5541) v(2792)=(v(2436)*v(244)+v(229)*v(2781))*v(5541) v(2791)=(v(2435)*v(244)+v(229)*v(2780))*v(5541) v(2790)=(v(2434)*v(244)+v(229)*v(2779))*v(5541) v(2789)=(v(2433)*v(244)+v(229)*v(2778))*v(5541) v(2788)=(v(2431)*v(244)+v(229)*v(2777))*v(5541) v(2787)=v(2776)*v(5816)+v(244)*v(5822) v(260)=v(244)*v(5816) v(240)=v(258)+v(276)+v(237)*v(5823) v(5830)=v(229)*v(240)+v(227)*v(244)+v(230)*v(245) v(5829)=v(231)*v(240)+v(230)*v(244)+v(228)*v(245) v(2852)=(v(2410)*v(244)+v(240)*v(2442)+v(245)*v(2463)+v(230)*v(2764)+v(227)*v(2786)+v(229)*v(2808))*v(5541) v(2851)=(v(2409)*v(244)+v(240)*v(2441)+v(245)*v(2461)+v(230)*v(2763)+v(227)*v(2785)+v(229)*v(2807))*v(5541) v(2850)=(v(2408)*v(244)+v(240)*v(2440)+v(245)*v(2460)+v(230)*v(2762)+v(227)*v(2784)+v(229)*v(2806))*v(5541) v(2849)=(v(240)*v(2439)+v(2406)*v(244)+v(245)*v(2458)+v(230)*v(2761)+v(227)*v(2783)+v(229)*v(2805))*v(5541) v(2848)=(v(240)*v(2437)+v(2405)*v(244)+v(245)*v(2456)+v(230)*v(2760)+v(227)*v(2782)+v(229)*v(2804))*v(5541) v(2847)=(v(240)*v(2436)+v(2404)*v(244)+v(245)*v(2455)+v(230)*v(2759)+v(227)*v(2781)+v(229)*v(2803))*v(5541) v(2846)=(v(240)*v(2435)+v(2403)*v(244)+v(245)*v(2454)+v(230)*v(2758)+v(227)*v(2780)+v(229)*v(2802))*v(5541) v(2845)=(v(240)*v(2434)+v(2402)*v(244)+v(245)*v(2453)+v(230)*v(2757)+v(227)*v(2779)+v(229)*v(2801))*v(5541) v(2844)=(v(240)*v(2433)+v(2401)*v(244)+v(245)*v(2450)+v(230)*v(2756)+v(227)*v(2778)+v(229)*v(2800))*v(5541) v(2843)=(v(240)*v(2431)+v(2399)*v(244)+v(2448)*v(245)+v(230)*v(2755)+v(227)*v(2777)+v(229)*v(2799))*v(5541) v(2842)=(v(240)*v(2428)+v(2397)*v(244)+v(2445)*v(245)+v(230)*v(2754)+v(227)*v(2776)+v(229)*v(2798))*v(5541)+v(5537)*v& &(5830) v(2830)=(v(2425)*v(245)+v(244)*v(2463)+v(240)*v(2488)+v(228)*v(2764)+v(230)*v(2786)+v(231)*v(2808))*v(5541) v(2829)=(v(2424)*v(245)+v(244)*v(2461)+v(240)*v(2486)+v(228)*v(2763)+v(230)*v(2785)+v(231)*v(2807))*v(5541) v(2828)=(v(2422)*v(245)+v(244)*v(2460)+v(240)*v(2483)+v(228)*v(2762)+v(230)*v(2784)+v(231)*v(2806))*v(5541) v(2827)=(v(2421)*v(245)+v(244)*v(2458)+v(240)*v(2481)+v(228)*v(2761)+v(230)*v(2783)+v(231)*v(2805))*v(5541) v(2826)=(v(2420)*v(245)+v(244)*v(2456)+v(240)*v(2479)+v(228)*v(2760)+v(230)*v(2782)+v(231)*v(2804))*v(5541) v(2825)=(v(2419)*v(245)+v(244)*v(2455)+v(240)*v(2478)+v(228)*v(2759)+v(230)*v(2781)+v(231)*v(2803))*v(5541) v(2824)=(v(2418)*v(245)+v(244)*v(2454)+v(240)*v(2475)+v(228)*v(2758)+v(230)*v(2780)+v(231)*v(2802))*v(5541) v(2823)=(v(2417)*v(245)+v(244)*v(2453)+v(240)*v(2474)+v(228)*v(2757)+v(230)*v(2779)+v(231)*v(2801))*v(5541) v(2822)=(v(2416)*v(245)+v(244)*v(2450)+v(240)*v(2471)+v(228)*v(2756)+v(230)*v(2778)+v(231)*v(2800))*v(5541) v(2821)=(v(244)*v(2448)+v(2414)*v(245)+v(240)*v(2469)+v(228)*v(2755)+v(230)*v(2777)+v(231)*v(2799))*v(5541) v(2820)=(v(244)*v(2445)+v(2413)*v(245)+v(240)*v(2466)+v(228)*v(2754)+v(230)*v(2776)+v(231)*v(2798))*v(5541)+v(5537)*v& &(5829) v(2819)=v(2775)+v(2797)+(v(2394)*v(240)+v(223)*v(2808))*v(5541) v(2818)=v(2774)+v(2796)+(v(2393)*v(240)+v(223)*v(2807))*v(5541) v(2817)=v(2773)+v(2795)+(v(2392)*v(240)+v(223)*v(2806))*v(5541) v(2816)=v(2772)+v(2794)+(v(2390)*v(240)+v(223)*v(2805))*v(5541) v(2815)=v(2771)+v(2793)+(v(2389)*v(240)+v(223)*v(2804))*v(5541) v(2814)=v(2770)+v(2792)+(v(2388)*v(240)+v(223)*v(2803))*v(5541) v(2813)=v(2769)+v(2791)+(v(2387)*v(240)+v(223)*v(2802))*v(5541) v(2812)=v(2768)+v(2790)+(v(2386)*v(240)+v(223)*v(2801))*v(5541) v(2811)=v(2767)+v(2789)+(v(2385)*v(240)+v(223)*v(2800))*v(5541) v(2810)=v(2766)+v(2788)+(v(2383)*v(240)+v(223)*v(2799))*v(5541) v(2809)=v(2765)+v(2787)+v(2798)*v(5823)+v(240)*v(5824) v(243)=v(260)+v(280)+v(240)*v(5823) v(5831)=5040d0+v(243) v(246)=v(5541)*v(5829) v(2841)=(v(246)*v(2488)+v(231)*v(2830))*v(5541) v(2840)=(v(246)*v(2486)+v(231)*v(2829))*v(5541) v(2839)=(v(246)*v(2483)+v(231)*v(2828))*v(5541) v(2838)=(v(246)*v(2481)+v(231)*v(2827))*v(5541) v(2837)=(v(246)*v(2479)+v(231)*v(2826))*v(5541) v(2836)=(v(246)*v(2478)+v(231)*v(2825))*v(5541) v(2835)=(v(246)*v(2475)+v(231)*v(2824))*v(5541) v(2834)=(v(246)*v(2474)+v(231)*v(2823))*v(5541) v(2833)=(v(246)*v(2471)+v(231)*v(2822))*v(5541) v(2832)=(v(246)*v(2469)+v(231)*v(2821))*v(5541) v(2831)=v(2820)*v(5818)+v(246)*v(5820) v(282)=v(246)*v(5818) v(247)=v(5541)*v(5830) v(5834)=v(230)*v(246)+v(227)*v(247) v(5833)=v(228)*v(246)+v(230)*v(247) v(2896)=(7d0*(360d0*v(2588)+120d0*v(2676)+30d0*v(2709)+6d0*v(2786)+v(2852))+v(5541)*(v(246)*v(2463)+v(2410)*v(247)+v& &(229)*v(2819)+v(230)*v(2830)+v(227)*v(2852)+v(2442)*v(5831)))/5040d0 v(2895)=(7d0*(360d0*v(2587)+120d0*v(2675)+30d0*v(2708)+6d0*v(2785)+v(2851))+v(5541)*(v(246)*v(2461)+v(2409)*v(247)+v& &(229)*v(2818)+v(230)*v(2829)+v(227)*v(2851)+v(2441)*v(5831)))/5040d0 v(2894)=(7d0*(360d0*v(2586)+120d0*v(2674)+30d0*v(2707)+6d0*v(2784)+v(2850))+v(5541)*(v(246)*v(2460)+v(2408)*v(247)+v& &(229)*v(2817)+v(230)*v(2828)+v(227)*v(2850)+v(2440)*v(5831)))/5040d0 v(2893)=(7d0*(360d0*v(2585)+120d0*v(2673)+30d0*v(2706)+6d0*v(2783)+v(2849))+v(5541)*(v(2458)*v(246)+v(2406)*v(247)+v& &(229)*v(2816)+v(230)*v(2827)+v(227)*v(2849)+v(2439)*v(5831)))/5040d0 v(2892)=(7d0*(360d0*v(2584)+120d0*v(2672)+30d0*v(2705)+6d0*v(2782)+v(2848))+v(5541)*(v(2456)*v(246)+v(2405)*v(247)+v& &(229)*v(2815)+v(230)*v(2826)+v(227)*v(2848)+v(2437)*v(5831)))/5040d0 v(2891)=(7d0*(360d0*v(2583)+120d0*v(2671)+30d0*v(2704)+6d0*v(2781)+v(2847))+v(5541)*(v(2455)*v(246)+v(2404)*v(247)+v& &(229)*v(2814)+v(230)*v(2825)+v(227)*v(2847)+v(2436)*v(5831)))/5040d0 v(2890)=(7d0*(360d0*v(2582)+120d0*v(2670)+30d0*v(2703)+6d0*v(2780)+v(2846))+v(5541)*(v(2454)*v(246)+v(2403)*v(247)+v& &(229)*v(2813)+v(230)*v(2824)+v(227)*v(2846)+v(2435)*v(5831)))/5040d0 v(2889)=(7d0*(360d0*v(2581)+120d0*v(2669)+30d0*v(2702)+6d0*v(2779)+v(2845))+v(5541)*(v(2453)*v(246)+v(2402)*v(247)+v& &(229)*v(2812)+v(230)*v(2823)+v(227)*v(2845)+v(2434)*v(5831)))/5040d0 v(2888)=(7d0*(360d0*v(2580)+120d0*v(2668)+30d0*v(2701)+6d0*v(2778)+v(2844))+v(5541)*(v(2450)*v(246)+v(2401)*v(247)+v& &(229)*v(2811)+v(230)*v(2822)+v(227)*v(2844)+v(2433)*v(5831)))/5040d0 v(2887)=(7d0*(360d0*v(2579)+120d0*v(2667)+30d0*v(2700)+6d0*v(2777)+v(2843))+v(5541)*(v(2448)*v(246)+v(2399)*v(247)+v& &(229)*v(2810)+v(230)*v(2821)+v(227)*v(2843)+v(2431)*v(5831)))/5040d0 v(2886)=v(2578)/2d0+v(2666)/6d0+v(2699)/24d0+v(2776)/120d0+v(2842)/720d0+v(5822)+((v(2428)*v(243)+v(2445)*v(246)+v(2397& &)*v(247)+v(229)*v(2809)+v(230)*v(2820)+v(227)*v(2842))*v(5541)+v(5537)*(v(229)*v(243)+v(5834)))/5040d0 v(2874)=(v(2442)*v(247)+v(229)*v(2852))*v(5541) v(2885)=(2520d0*v(2643)+840d0*v(2698)+210d0*v(2753)+42d0*v(2808)+7d0*v(2819)+v(2841)+v(2874)+v(5541)*(v(223)*v(2819)+v& &(2394)*v(5831)))/5040d0 v(2873)=(v(2441)*v(247)+v(229)*v(2851))*v(5541) v(2884)=(2520d0*v(2641)+840d0*v(2697)+210d0*v(2752)+42d0*v(2807)+7d0*v(2818)+v(2840)+v(2873)+v(5541)*(v(223)*v(2818)+v& &(2393)*v(5831)))/5040d0 v(2872)=(v(2440)*v(247)+v(229)*v(2850))*v(5541) v(2883)=(2520d0*v(2639)+840d0*v(2696)+210d0*v(2751)+42d0*v(2806)+7d0*v(2817)+v(2839)+v(2872)+v(5541)*(v(223)*v(2817)+v& &(2392)*v(5831)))/5040d0 v(2871)=(v(2439)*v(247)+v(229)*v(2849))*v(5541) v(2882)=(2520d0*v(2637)+840d0*v(2695)+210d0*v(2750)+42d0*v(2805)+7d0*v(2816)+v(2838)+v(2871)+v(5541)*(v(223)*v(2816)+v& &(2390)*v(5831)))/5040d0 v(2870)=(v(2437)*v(247)+v(229)*v(2848))*v(5541) v(2881)=(2520d0*v(2635)+840d0*v(2694)+210d0*v(2749)+42d0*v(2804)+7d0*v(2815)+v(2837)+v(2870)+v(5541)*(v(223)*v(2815)+v& &(2389)*v(5831)))/5040d0 v(2869)=(v(2436)*v(247)+v(229)*v(2847))*v(5541) v(2880)=(2520d0*v(2633)+840d0*v(2693)+210d0*v(2748)+42d0*v(2803)+7d0*v(2814)+v(2836)+v(2869)+v(5541)*(v(223)*v(2814)+v& &(2388)*v(5831)))/5040d0 v(2868)=(v(2435)*v(247)+v(229)*v(2846))*v(5541) v(2879)=(2520d0*v(2631)+840d0*v(2692)+210d0*v(2747)+42d0*v(2802)+7d0*v(2813)+v(2835)+v(2868)+v(5541)*(v(223)*v(2813)+v& &(2387)*v(5831)))/5040d0 v(2867)=(v(2434)*v(247)+v(229)*v(2845))*v(5541) v(2878)=(2520d0*v(2629)+840d0*v(2691)+210d0*v(2746)+42d0*v(2801)+7d0*v(2812)+v(2834)+v(2867)+v(5541)*(v(223)*v(2812)+v& &(2386)*v(5831)))/5040d0 v(2866)=(v(2433)*v(247)+v(229)*v(2844))*v(5541) v(2877)=(2520d0*v(2627)+840d0*v(2690)+210d0*v(2745)+42d0*v(2800)+7d0*v(2811)+v(2833)+v(2866)+v(5541)*(v(223)*v(2811)+v& &(2385)*v(5831)))/5040d0 v(2865)=(v(2431)*v(247)+v(229)*v(2843))*v(5541) v(2876)=(2520d0*v(2625)+840d0*v(2689)+210d0*v(2744)+42d0*v(2799)+7d0*v(2810)+v(2832)+v(2865)+v(5541)*(v(223)*v(2810)+v& &(2383)*v(5831)))/5040d0 v(2864)=v(2842)*v(5816)+v(247)*v(5822) v(2875)=(2520d0*v(2623)+840d0*v(2688)+210d0*v(2743)+42d0*v(2798)+7d0*v(2809)+v(2831)+v(2864)+v(223)*(v(2809)*v(5541)+v& &(5537)*v(5831))+v(5831)*v(5832))/5040d0 v(2863)=(7d0*(360d0*v(2610)+120d0*v(2654)+30d0*v(2731)+6d0*v(2764)+v(2830))+(v(2425)*v(246)+v(2463)*v(247)+5040d0*v& &(2488)+v(243)*v(2488)+v(231)*v(2819)+v(228)*v(2830)+v(230)*v(2852))*v(5541))/5040d0 v(3226)=statev(7)*v(2885)+statev(5)*v(2896)+v(2863)*v(5533) v(3193)=statev(9)*v(2863)+statev(4)*v(2885)+v(2896)*v(5532) v(2907)=statev(6)*v(2863)+statev(8)*v(2896)+v(2885)*v(5531) v(2862)=(7d0*(360d0*v(2609)+120d0*v(2653)+30d0*v(2730)+6d0*v(2763)+v(2829))+(v(2424)*v(246)+v(2461)*v(247)+5040d0*v& &(2486)+v(243)*v(2486)+v(231)*v(2818)+v(228)*v(2829)+v(230)*v(2851))*v(5541))/5040d0 v(3225)=statev(7)*v(2884)+statev(5)*v(2895)+v(2862)*v(5533) v(3192)=statev(9)*v(2862)+statev(4)*v(2884)+v(2895)*v(5532) v(2906)=statev(6)*v(2862)+statev(8)*v(2895)+v(2884)*v(5531) v(2861)=(7d0*(360d0*v(2608)+120d0*v(2652)+30d0*v(2729)+6d0*v(2762)+v(2828))+(v(2422)*v(246)+v(2460)*v(247)+5040d0*v& &(2483)+v(243)*v(2483)+v(231)*v(2817)+v(228)*v(2828)+v(230)*v(2850))*v(5541))/5040d0 v(3224)=statev(7)*v(2883)+statev(5)*v(2894)+v(2861)*v(5533) v(3191)=statev(9)*v(2861)+statev(4)*v(2883)+v(2894)*v(5532) v(2905)=statev(6)*v(2861)+statev(8)*v(2894)+v(2883)*v(5531) v(2860)=(7d0*(360d0*v(2607)+120d0*v(2651)+30d0*v(2728)+6d0*v(2761)+v(2827))+(v(2421)*v(246)+v(2458)*v(247)+5040d0*v& &(2481)+v(243)*v(2481)+v(231)*v(2816)+v(228)*v(2827)+v(230)*v(2849))*v(5541))/5040d0 v(3223)=statev(7)*v(2882)+statev(5)*v(2893)+v(2860)*v(5533) v(3190)=statev(9)*v(2860)+statev(4)*v(2882)+v(2893)*v(5532) v(2904)=statev(6)*v(2860)+statev(8)*v(2893)+v(2882)*v(5531) v(2859)=(7d0*(360d0*v(2606)+120d0*v(2650)+30d0*v(2727)+6d0*v(2760)+v(2826))+(v(2420)*v(246)+v(2456)*v(247)+5040d0*v& &(2479)+v(243)*v(2479)+v(231)*v(2815)+v(228)*v(2826)+v(230)*v(2848))*v(5541))/5040d0 v(3222)=statev(7)*v(2881)+statev(5)*v(2892)+v(2859)*v(5533) v(3189)=statev(9)*v(2859)+statev(4)*v(2881)+v(2892)*v(5532) v(2903)=statev(6)*v(2859)+statev(8)*v(2892)+v(2881)*v(5531) v(2858)=(7d0*(360d0*v(2605)+120d0*v(2649)+30d0*v(2726)+6d0*v(2759)+v(2825))+(v(2419)*v(246)+v(2455)*v(247)+5040d0*v& &(2478)+v(243)*v(2478)+v(231)*v(2814)+v(228)*v(2825)+v(230)*v(2847))*v(5541))/5040d0 v(3221)=statev(7)*v(2880)+statev(5)*v(2891)+v(2858)*v(5533) v(3188)=statev(9)*v(2858)+statev(4)*v(2880)+v(2891)*v(5532) v(2902)=statev(6)*v(2858)+statev(8)*v(2891)+v(2880)*v(5531) v(2857)=(7d0*(360d0*v(2604)+120d0*v(2648)+30d0*v(2725)+6d0*v(2758)+v(2824))+(v(2418)*v(246)+v(2454)*v(247)+5040d0*v& &(2475)+v(243)*v(2475)+v(231)*v(2813)+v(228)*v(2824)+v(230)*v(2846))*v(5541))/5040d0 v(3220)=statev(7)*v(2879)+statev(5)*v(2890)+v(2857)*v(5533) v(3187)=statev(9)*v(2857)+statev(4)*v(2879)+v(2890)*v(5532) v(2901)=statev(6)*v(2857)+statev(8)*v(2890)+v(2879)*v(5531) v(2856)=(7d0*(360d0*v(2603)+120d0*v(2647)+30d0*v(2724)+6d0*v(2757)+v(2823))+(v(2417)*v(246)+v(2453)*v(247)+5040d0*v& &(2474)+v(243)*v(2474)+v(231)*v(2812)+v(228)*v(2823)+v(230)*v(2845))*v(5541))/5040d0 v(3219)=statev(7)*v(2878)+statev(5)*v(2889)+v(2856)*v(5533) v(3186)=statev(9)*v(2856)+statev(4)*v(2878)+v(2889)*v(5532) v(2900)=statev(6)*v(2856)+statev(8)*v(2889)+v(2878)*v(5531) v(2855)=(7d0*(360d0*v(2602)+120d0*v(2646)+30d0*v(2723)+6d0*v(2756)+v(2822))+(v(2416)*v(246)+v(2450)*v(247)+5040d0*v& &(2471)+v(243)*v(2471)+v(231)*v(2811)+v(228)*v(2822)+v(230)*v(2844))*v(5541))/5040d0 v(3218)=statev(7)*v(2877)+statev(5)*v(2888)+v(2855)*v(5533) v(3185)=statev(9)*v(2855)+statev(4)*v(2877)+v(2888)*v(5532) v(2899)=statev(6)*v(2855)+statev(8)*v(2888)+v(2877)*v(5531) v(2854)=(7d0*(360d0*v(2601)+120d0*v(2645)+30d0*v(2722)+6d0*v(2755)+v(2821))+(v(2414)*v(246)+5040d0*v(2469)+v(243)*v& &(2469)+v(2448)*v(247)+v(231)*v(2810)+v(228)*v(2821)+v(230)*v(2843))*v(5541))/5040d0 v(3217)=statev(7)*v(2876)+statev(5)*v(2887)+v(2854)*v(5533) v(3184)=statev(9)*v(2854)+statev(4)*v(2876)+v(2887)*v(5532) v(2898)=statev(6)*v(2854)+statev(8)*v(2887)+v(2876)*v(5531) v(2853)=v(2600)/2d0+v(2644)/6d0+v(2721)/24d0+v(2754)/120d0+v(2820)/720d0+v(5820)+((v(2413)*v(246)+v(243)*v(2466)+v(2445& &)*v(247)+v(231)*v(2809)+v(228)*v(2820)+v(230)*v(2842))*v(5541)+v(5537)*(v(231)*v(243)+v(5833)))/5040d0 v(3216)=statev(7)*v(2875)+statev(5)*v(2886)+v(2853)*v(5533) v(3183)=statev(9)*v(2853)+statev(4)*v(2875)+v(2886)*v(5532) v(2897)=statev(6)*v(2853)+statev(8)*v(2886)+v(2875)*v(5531) v(285)=(7d0*(360d0*v(235)+120d0*v(239)+30d0*v(241)+6d0*v(245)+v(246))+v(5541)*(v(231)*v(5831)+v(5833)))/5040d0 v(265)=v(247)*v(5816) v(5845)=5040d0+v(265) v(287)=(2520d0*v(233)+840d0*v(234)+210d0*v(237)+42d0*v(240)+7d0*v(243)+v(282)+v(5823)*v(5831)+v(5845))/5040d0 v(249)=(7d0*(360d0*v(236)+120d0*v(238)+30d0*v(242)+6d0*v(244)+v(247))+v(5541)*(v(229)*v(5831)+v(5834)))/5040d0 v(248)=statev(8)*v(249)+statev(6)*v(285)+v(287)*v(5531) v(251)=v(250)+v(267)+v(232)*v(370) v(5835)=v(231)*v(236)+v(230)*v(251)+v(228)*v(255) v(2962)=v(2555)+v(2599)+(v(2410)*v(251)+v(227)*v(2929))*v(5541) v(2961)=v(2554)+v(2598)+(v(2409)*v(251)+v(227)*v(2927))*v(5541) v(2960)=v(2553)+v(2597)+(v(2408)*v(251)+v(227)*v(2925))*v(5541) v(2959)=v(2552)+v(2596)+(v(2406)*v(251)+v(227)*v(2923))*v(5541) v(2958)=v(2551)+v(2595)+(v(2405)*v(251)+v(227)*v(2921))*v(5541) v(2957)=v(2550)+v(2594)+(v(2404)*v(251)+v(227)*v(2919))*v(5541) v(2956)=v(2549)+v(2593)+(v(2403)*v(251)+v(227)*v(2917))*v(5541) v(2955)=v(2548)+v(2592)+(v(2402)*v(251)+v(227)*v(2915))*v(5541) v(2954)=v(2547)+v(2591)+(v(2401)*v(251)+v(227)*v(2913))*v(5541) v(2953)=v(2546)+v(2590)+(v(2399)*v(251)+v(227)*v(2911))*v(5541) v(2952)=v(2545)+v(2589)+v(2909)*v(5837)+v(251)*v(5838) v(2940)=(v(236)*v(2488)+v(2463)*v(251)+v(228)*v(2544)+v(2425)*v(255)+v(231)*v(2588)+v(230)*v(2929))*v(5541) v(2939)=(v(236)*v(2486)+v(2461)*v(251)+v(228)*v(2543)+v(2424)*v(255)+v(231)*v(2587)+v(230)*v(2927))*v(5541) v(2938)=(v(236)*v(2483)+v(2460)*v(251)+v(228)*v(2542)+v(2422)*v(255)+v(231)*v(2586)+v(230)*v(2925))*v(5541) v(2937)=(v(236)*v(2481)+v(2458)*v(251)+v(228)*v(2541)+v(2421)*v(255)+v(231)*v(2585)+v(230)*v(2923))*v(5541) v(2936)=(v(236)*v(2479)+v(2456)*v(251)+v(228)*v(2540)+v(2420)*v(255)+v(231)*v(2584)+v(230)*v(2921))*v(5541) v(2935)=(v(236)*v(2478)+v(2455)*v(251)+v(228)*v(2539)+v(2419)*v(255)+v(231)*v(2583)+v(230)*v(2919))*v(5541) v(2934)=(v(236)*v(2475)+v(2454)*v(251)+v(228)*v(2538)+v(2418)*v(255)+v(231)*v(2582)+v(230)*v(2917))*v(5541) v(2933)=(v(236)*v(2474)+v(2453)*v(251)+v(228)*v(2537)+v(2417)*v(255)+v(231)*v(2581)+v(230)*v(2915))*v(5541) v(2932)=(v(236)*v(2471)+v(2450)*v(251)+v(228)*v(2536)+v(2416)*v(255)+v(231)*v(2580)+v(230)*v(2913))*v(5541) v(2931)=(v(236)*v(2469)+v(2448)*v(251)+v(228)*v(2535)+v(2414)*v(255)+v(231)*v(2579)+v(230)*v(2911))*v(5541) v(2930)=(v(236)*v(2466)+v(2445)*v(251)+v(228)*v(2534)+v(2413)*v(255)+v(231)*v(2578)+v(230)*v(2909))*v(5541)+v(5537)*v& &(5835) v(257)=v(5541)*v(5835) v(2951)=(v(2463)*v(257)+v(230)*v(2940))*v(5541) v(2950)=(v(2461)*v(257)+v(230)*v(2939))*v(5541) v(2949)=(v(2460)*v(257)+v(230)*v(2938))*v(5541) v(2948)=(v(2458)*v(257)+v(230)*v(2937))*v(5541) v(2947)=(v(2456)*v(257)+v(230)*v(2936))*v(5541) v(2946)=(v(2455)*v(257)+v(230)*v(2935))*v(5541) v(2945)=(v(2454)*v(257)+v(230)*v(2934))*v(5541) v(2944)=(v(2453)*v(257)+v(230)*v(2933))*v(5541) v(2943)=(v(2450)*v(257)+v(230)*v(2932))*v(5541) v(2942)=(v(2448)*v(257)+v(230)*v(2931))*v(5541) v(2941)=v(2930)*v(5814)+v(257)*v(5836) v(273)=v(257)*v(5814) v(253)=v(252)+v(271)+v(251)*v(5837) v(5839)=v(231)*v(238)+v(230)*v(253)+v(228)*v(257) v(2995)=v(2687)+v(2951)+(v(2410)*v(253)+v(227)*v(2962))*v(5541) v(2994)=v(2686)+v(2950)+(v(2409)*v(253)+v(227)*v(2961))*v(5541) v(2993)=v(2685)+v(2949)+(v(2408)*v(253)+v(227)*v(2960))*v(5541) v(2992)=v(2684)+v(2948)+(v(2406)*v(253)+v(227)*v(2959))*v(5541) v(2991)=v(2683)+v(2947)+(v(2405)*v(253)+v(227)*v(2958))*v(5541) v(2990)=v(2682)+v(2946)+(v(2404)*v(253)+v(227)*v(2957))*v(5541) v(2989)=v(2681)+v(2945)+(v(2403)*v(253)+v(227)*v(2956))*v(5541) v(2988)=v(2680)+v(2944)+(v(2402)*v(253)+v(227)*v(2955))*v(5541) v(2987)=v(2679)+v(2943)+(v(2401)*v(253)+v(227)*v(2954))*v(5541) v(2986)=v(2678)+v(2942)+(v(2399)*v(253)+v(227)*v(2953))*v(5541) v(2985)=v(2677)+v(2941)+v(2952)*v(5837)+v(253)*v(5838) v(2973)=(v(238)*v(2488)+v(2463)*v(253)+v(2425)*v(257)+v(231)*v(2676)+v(228)*v(2940)+v(230)*v(2962))*v(5541) v(2972)=(v(238)*v(2486)+v(2461)*v(253)+v(2424)*v(257)+v(231)*v(2675)+v(228)*v(2939)+v(230)*v(2961))*v(5541) v(2971)=(v(238)*v(2483)+v(2460)*v(253)+v(2422)*v(257)+v(231)*v(2674)+v(228)*v(2938)+v(230)*v(2960))*v(5541) v(2970)=(v(238)*v(2481)+v(2458)*v(253)+v(2421)*v(257)+v(231)*v(2673)+v(228)*v(2937)+v(230)*v(2959))*v(5541) v(2969)=(v(238)*v(2479)+v(2456)*v(253)+v(2420)*v(257)+v(231)*v(2672)+v(228)*v(2936)+v(230)*v(2958))*v(5541) v(2968)=(v(238)*v(2478)+v(2455)*v(253)+v(2419)*v(257)+v(231)*v(2671)+v(228)*v(2935)+v(230)*v(2957))*v(5541) v(2967)=(v(238)*v(2475)+v(2454)*v(253)+v(2418)*v(257)+v(231)*v(2670)+v(228)*v(2934)+v(230)*v(2956))*v(5541) v(2966)=(v(238)*v(2474)+v(2453)*v(253)+v(2417)*v(257)+v(231)*v(2669)+v(228)*v(2933)+v(230)*v(2955))*v(5541) v(2965)=(v(238)*v(2471)+v(2450)*v(253)+v(2416)*v(257)+v(231)*v(2668)+v(228)*v(2932)+v(230)*v(2954))*v(5541) v(2964)=(v(238)*v(2469)+v(2448)*v(253)+v(2414)*v(257)+v(231)*v(2667)+v(228)*v(2931)+v(230)*v(2953))*v(5541) v(2963)=(v(238)*v(2466)+v(2445)*v(253)+v(2413)*v(257)+v(231)*v(2666)+v(228)*v(2930)+v(230)*v(2952))*v(5541)+v(5537)*v& &(5839) v(261)=v(5541)*v(5839) v(2984)=(v(2463)*v(261)+v(230)*v(2973))*v(5541) v(2983)=(v(2461)*v(261)+v(230)*v(2972))*v(5541) v(2982)=(v(2460)*v(261)+v(230)*v(2971))*v(5541) v(2981)=(v(2458)*v(261)+v(230)*v(2970))*v(5541) v(2980)=(v(2456)*v(261)+v(230)*v(2969))*v(5541) v(2979)=(v(2455)*v(261)+v(230)*v(2968))*v(5541) v(2978)=(v(2454)*v(261)+v(230)*v(2967))*v(5541) v(2977)=(v(2453)*v(261)+v(230)*v(2966))*v(5541) v(2976)=(v(2450)*v(261)+v(230)*v(2965))*v(5541) v(2975)=(v(2448)*v(261)+v(230)*v(2964))*v(5541) v(2974)=v(2963)*v(5814)+v(261)*v(5836) v(277)=v(261)*v(5814) v(256)=v(254)+v(273)+v(253)*v(5837) v(5840)=v(231)*v(242)+v(230)*v(256)+v(228)*v(261) v(3028)=v(2720)+v(2984)+(v(2410)*v(256)+v(227)*v(2995))*v(5541) v(3027)=v(2719)+v(2983)+(v(2409)*v(256)+v(227)*v(2994))*v(5541) v(3026)=v(2718)+v(2982)+(v(2408)*v(256)+v(227)*v(2993))*v(5541) v(3025)=v(2717)+v(2981)+(v(2406)*v(256)+v(227)*v(2992))*v(5541) v(3024)=v(2716)+v(2980)+(v(2405)*v(256)+v(227)*v(2991))*v(5541) v(3023)=v(2715)+v(2979)+(v(2404)*v(256)+v(227)*v(2990))*v(5541) v(3022)=v(2714)+v(2978)+(v(2403)*v(256)+v(227)*v(2989))*v(5541) v(3021)=v(2713)+v(2977)+(v(2402)*v(256)+v(227)*v(2988))*v(5541) v(3020)=v(2712)+v(2976)+(v(2401)*v(256)+v(227)*v(2987))*v(5541) v(3019)=v(2711)+v(2975)+(v(2399)*v(256)+v(227)*v(2986))*v(5541) v(3018)=v(2710)+v(2974)+v(2985)*v(5837)+v(256)*v(5838) v(3006)=(v(242)*v(2488)+v(2463)*v(256)+v(2425)*v(261)+v(231)*v(2709)+v(228)*v(2973)+v(230)*v(2995))*v(5541) v(3005)=(v(242)*v(2486)+v(2461)*v(256)+v(2424)*v(261)+v(231)*v(2708)+v(228)*v(2972)+v(230)*v(2994))*v(5541) v(3004)=(v(242)*v(2483)+v(2460)*v(256)+v(2422)*v(261)+v(231)*v(2707)+v(228)*v(2971)+v(230)*v(2993))*v(5541) v(3003)=(v(242)*v(2481)+v(2458)*v(256)+v(2421)*v(261)+v(231)*v(2706)+v(228)*v(2970)+v(230)*v(2992))*v(5541) v(3002)=(v(242)*v(2479)+v(2456)*v(256)+v(2420)*v(261)+v(231)*v(2705)+v(228)*v(2969)+v(230)*v(2991))*v(5541) v(3001)=(v(242)*v(2478)+v(2455)*v(256)+v(2419)*v(261)+v(231)*v(2704)+v(228)*v(2968)+v(230)*v(2990))*v(5541) v(3000)=(v(242)*v(2475)+v(2454)*v(256)+v(2418)*v(261)+v(231)*v(2703)+v(228)*v(2967)+v(230)*v(2989))*v(5541) v(2999)=(v(242)*v(2474)+v(2453)*v(256)+v(2417)*v(261)+v(231)*v(2702)+v(228)*v(2966)+v(230)*v(2988))*v(5541) v(2998)=(v(242)*v(2471)+v(2450)*v(256)+v(2416)*v(261)+v(231)*v(2701)+v(228)*v(2965)+v(230)*v(2987))*v(5541) v(2997)=(v(242)*v(2469)+v(2448)*v(256)+v(2414)*v(261)+v(231)*v(2700)+v(228)*v(2964)+v(230)*v(2986))*v(5541) v(2996)=(v(242)*v(2466)+v(2445)*v(256)+v(2413)*v(261)+v(231)*v(2699)+v(228)*v(2963)+v(230)*v(2985))*v(5541)+v(5537)*v& &(5840) v(263)=v(5541)*v(5840) v(3017)=(v(2463)*v(263)+v(230)*v(3006))*v(5541) v(3016)=(v(2461)*v(263)+v(230)*v(3005))*v(5541) v(3015)=(v(2460)*v(263)+v(230)*v(3004))*v(5541) v(3014)=(v(2458)*v(263)+v(230)*v(3003))*v(5541) v(3013)=(v(2456)*v(263)+v(230)*v(3002))*v(5541) v(3012)=(v(2455)*v(263)+v(230)*v(3001))*v(5541) v(3011)=(v(2454)*v(263)+v(230)*v(3000))*v(5541) v(3010)=(v(2453)*v(263)+v(230)*v(2999))*v(5541) v(3009)=(v(2450)*v(263)+v(230)*v(2998))*v(5541) v(3008)=(v(2448)*v(263)+v(230)*v(2997))*v(5541) v(3007)=v(2996)*v(5814)+v(263)*v(5836) v(279)=v(263)*v(5814) v(259)=v(258)+v(277)+v(256)*v(5837) v(5841)=v(231)*v(244)+v(230)*v(259)+v(228)*v(263) v(3050)=(v(244)*v(2488)+v(2463)*v(259)+v(2425)*v(263)+v(231)*v(2786)+v(228)*v(3006)+v(230)*v(3028))*v(5541) v(3049)=(v(244)*v(2486)+v(2461)*v(259)+v(2424)*v(263)+v(231)*v(2785)+v(228)*v(3005)+v(230)*v(3027))*v(5541) v(3048)=(v(244)*v(2483)+v(2460)*v(259)+v(2422)*v(263)+v(231)*v(2784)+v(228)*v(3004)+v(230)*v(3026))*v(5541) v(3047)=(v(244)*v(2481)+v(2458)*v(259)+v(2421)*v(263)+v(231)*v(2783)+v(228)*v(3003)+v(230)*v(3025))*v(5541) v(3046)=(v(244)*v(2479)+v(2456)*v(259)+v(2420)*v(263)+v(231)*v(2782)+v(228)*v(3002)+v(230)*v(3024))*v(5541) v(3045)=(v(244)*v(2478)+v(2455)*v(259)+v(2419)*v(263)+v(231)*v(2781)+v(228)*v(3001)+v(230)*v(3023))*v(5541) v(3044)=(v(244)*v(2475)+v(2454)*v(259)+v(2418)*v(263)+v(231)*v(2780)+v(228)*v(3000)+v(230)*v(3022))*v(5541) v(3043)=(v(244)*v(2474)+v(2453)*v(259)+v(2417)*v(263)+v(231)*v(2779)+v(228)*v(2999)+v(230)*v(3021))*v(5541) v(3042)=(v(244)*v(2471)+v(2450)*v(259)+v(2416)*v(263)+v(231)*v(2778)+v(228)*v(2998)+v(230)*v(3020))*v(5541) v(3041)=(v(244)*v(2469)+v(2448)*v(259)+v(2414)*v(263)+v(231)*v(2777)+v(228)*v(2997)+v(230)*v(3019))*v(5541) v(3040)=(v(244)*v(2466)+v(2445)*v(259)+v(2413)*v(263)+v(231)*v(2776)+v(228)*v(2996)+v(230)*v(3018))*v(5541)+v(5537)*v& &(5841) v(3039)=v(2797)+v(3017)+(v(2410)*v(259)+v(227)*v(3028))*v(5541) v(3038)=v(2796)+v(3016)+(v(2409)*v(259)+v(227)*v(3027))*v(5541) v(3037)=v(2795)+v(3015)+(v(2408)*v(259)+v(227)*v(3026))*v(5541) v(3036)=v(2794)+v(3014)+(v(2406)*v(259)+v(227)*v(3025))*v(5541) v(3035)=v(2793)+v(3013)+(v(2405)*v(259)+v(227)*v(3024))*v(5541) v(3034)=v(2792)+v(3012)+(v(2404)*v(259)+v(227)*v(3023))*v(5541) v(3033)=v(2791)+v(3011)+(v(2403)*v(259)+v(227)*v(3022))*v(5541) v(3032)=v(2790)+v(3010)+(v(2402)*v(259)+v(227)*v(3021))*v(5541) v(3031)=v(2789)+v(3009)+(v(2401)*v(259)+v(227)*v(3020))*v(5541) v(3030)=v(2788)+v(3008)+(v(2399)*v(259)+v(227)*v(3019))*v(5541) v(3029)=v(2787)+v(3007)+v(3018)*v(5837)+v(259)*v(5838) v(262)=v(260)+v(279)+v(259)*v(5837) v(5842)=5040d0+v(262) v(264)=v(5541)*v(5841) v(5844)=v(231)*v(247)+v(228)*v(264) v(3072)=(v(2463)*v(264)+v(230)*v(3050))*v(5541) v(3083)=(v(2874)+2520d0*v(2929)+840d0*v(2962)+210d0*v(2995)+42d0*v(3028)+7d0*v(3039)+v(3072)+v(5541)*(v(227)*v(3039)+v& &(2410)*v(5842)))/5040d0 v(3071)=(v(2461)*v(264)+v(230)*v(3049))*v(5541) v(3082)=(v(2873)+2520d0*v(2927)+840d0*v(2961)+210d0*v(2994)+42d0*v(3027)+7d0*v(3038)+v(3071)+v(5541)*(v(227)*v(3038)+v& &(2409)*v(5842)))/5040d0 v(3070)=(v(2460)*v(264)+v(230)*v(3048))*v(5541) v(3081)=(v(2872)+2520d0*v(2925)+840d0*v(2960)+210d0*v(2993)+42d0*v(3026)+7d0*v(3037)+v(3070)+v(5541)*(v(227)*v(3037)+v& &(2408)*v(5842)))/5040d0 v(3069)=(v(2458)*v(264)+v(230)*v(3047))*v(5541) v(3080)=(v(2871)+2520d0*v(2923)+840d0*v(2959)+210d0*v(2992)+42d0*v(3025)+7d0*v(3036)+v(3069)+v(5541)*(v(227)*v(3036)+v& &(2406)*v(5842)))/5040d0 v(3068)=(v(2456)*v(264)+v(230)*v(3046))*v(5541) v(3079)=(v(2870)+2520d0*v(2921)+840d0*v(2958)+210d0*v(2991)+42d0*v(3024)+7d0*v(3035)+v(3068)+v(5541)*(v(227)*v(3035)+v& &(2405)*v(5842)))/5040d0 v(3067)=(v(2455)*v(264)+v(230)*v(3045))*v(5541) v(3078)=(v(2869)+2520d0*v(2919)+840d0*v(2957)+210d0*v(2990)+42d0*v(3023)+7d0*v(3034)+v(3067)+v(5541)*(v(227)*v(3034)+v& &(2404)*v(5842)))/5040d0 v(3066)=(v(2454)*v(264)+v(230)*v(3044))*v(5541) v(3077)=(v(2868)+2520d0*v(2917)+840d0*v(2956)+210d0*v(2989)+42d0*v(3022)+7d0*v(3033)+v(3066)+v(5541)*(v(227)*v(3033)+v& &(2403)*v(5842)))/5040d0 v(3065)=(v(2453)*v(264)+v(230)*v(3043))*v(5541) v(3076)=(v(2867)+2520d0*v(2915)+840d0*v(2955)+210d0*v(2988)+42d0*v(3021)+7d0*v(3032)+v(3065)+v(5541)*(v(227)*v(3032)+v& &(2402)*v(5842)))/5040d0 v(3064)=(v(2450)*v(264)+v(230)*v(3042))*v(5541) v(3075)=(v(2866)+2520d0*v(2913)+840d0*v(2954)+210d0*v(2987)+42d0*v(3020)+7d0*v(3031)+v(3064)+v(5541)*(v(227)*v(3031)+v& &(2401)*v(5842)))/5040d0 v(3063)=(v(2448)*v(264)+v(230)*v(3041))*v(5541) v(3074)=(v(2865)+2520d0*v(2911)+840d0*v(2953)+210d0*v(2986)+42d0*v(3019)+7d0*v(3030)+v(3063)+v(5541)*(v(227)*v(3030)+v& &(2399)*v(5842)))/5040d0 v(3062)=v(3040)*v(5814)+v(264)*v(5836) v(3073)=(v(2864)+2520d0*v(2909)+840d0*v(2952)+210d0*v(2985)+42d0*v(3018)+7d0*v(3029)+v(3062)+v(227)*(v(3029)*v(5541)+v& &(5537)*v(5842))+v(5842)*v(5843))/5040d0 v(3061)=(7d0*(360d0*v(2544)+120d0*v(2940)+30d0*v(2973)+6d0*v(3006)+v(3050))+v(5541)*(v(247)*v(2488)+v(2425)*v(264)+v& &(231)*v(2852)+v(230)*v(3039)+v(228)*v(3050)+v(2463)*v(5842)))/5040d0 v(3259)=statev(6)*v(3061)+statev(8)*v(3083)+v(2896)*v(5531) v(3204)=statev(7)*v(2896)+statev(5)*v(3083)+v(3061)*v(5533) v(3094)=statev(4)*v(2896)+statev(9)*v(3061)+v(3083)*v(5532) v(3060)=(7d0*(360d0*v(2543)+120d0*v(2939)+30d0*v(2972)+6d0*v(3005)+v(3049))+v(5541)*(v(247)*v(2486)+v(2424)*v(264)+v& &(231)*v(2851)+v(230)*v(3038)+v(228)*v(3049)+v(2461)*v(5842)))/5040d0 v(3258)=statev(6)*v(3060)+statev(8)*v(3082)+v(2895)*v(5531) v(3203)=statev(7)*v(2895)+statev(5)*v(3082)+v(3060)*v(5533) v(3093)=statev(4)*v(2895)+statev(9)*v(3060)+v(3082)*v(5532) v(3059)=(7d0*(360d0*v(2542)+120d0*v(2938)+30d0*v(2971)+6d0*v(3004)+v(3048))+v(5541)*(v(247)*v(2483)+v(2422)*v(264)+v& &(231)*v(2850)+v(230)*v(3037)+v(228)*v(3048)+v(2460)*v(5842)))/5040d0 v(3257)=statev(6)*v(3059)+statev(8)*v(3081)+v(2894)*v(5531) v(3202)=statev(7)*v(2894)+statev(5)*v(3081)+v(3059)*v(5533) v(3092)=statev(4)*v(2894)+statev(9)*v(3059)+v(3081)*v(5532) v(3058)=(7d0*(360d0*v(2541)+120d0*v(2937)+30d0*v(2970)+6d0*v(3003)+v(3047))+v(5541)*(v(247)*v(2481)+v(2421)*v(264)+v& &(231)*v(2849)+v(230)*v(3036)+v(228)*v(3047)+v(2458)*v(5842)))/5040d0 v(3256)=statev(6)*v(3058)+statev(8)*v(3080)+v(2893)*v(5531) v(3201)=statev(7)*v(2893)+statev(5)*v(3080)+v(3058)*v(5533) v(3091)=statev(4)*v(2893)+statev(9)*v(3058)+v(3080)*v(5532) v(3057)=(7d0*(360d0*v(2540)+120d0*v(2936)+30d0*v(2969)+6d0*v(3002)+v(3046))+v(5541)*(v(247)*v(2479)+v(2420)*v(264)+v& &(231)*v(2848)+v(230)*v(3035)+v(228)*v(3046)+v(2456)*v(5842)))/5040d0 v(3255)=statev(6)*v(3057)+statev(8)*v(3079)+v(2892)*v(5531) v(3200)=statev(7)*v(2892)+statev(5)*v(3079)+v(3057)*v(5533) v(3090)=statev(4)*v(2892)+statev(9)*v(3057)+v(3079)*v(5532) v(3056)=(7d0*(360d0*v(2539)+120d0*v(2935)+30d0*v(2968)+6d0*v(3001)+v(3045))+v(5541)*(v(247)*v(2478)+v(2419)*v(264)+v& &(231)*v(2847)+v(230)*v(3034)+v(228)*v(3045)+v(2455)*v(5842)))/5040d0 v(3254)=statev(6)*v(3056)+statev(8)*v(3078)+v(2891)*v(5531) v(3199)=statev(7)*v(2891)+statev(5)*v(3078)+v(3056)*v(5533) v(3089)=statev(4)*v(2891)+statev(9)*v(3056)+v(3078)*v(5532) v(3055)=(7d0*(360d0*v(2538)+120d0*v(2934)+30d0*v(2967)+6d0*v(3000)+v(3044))+v(5541)*(v(247)*v(2475)+v(2418)*v(264)+v& &(231)*v(2846)+v(230)*v(3033)+v(228)*v(3044)+v(2454)*v(5842)))/5040d0 v(3253)=statev(6)*v(3055)+statev(8)*v(3077)+v(2890)*v(5531) v(3198)=statev(7)*v(2890)+statev(5)*v(3077)+v(3055)*v(5533) v(3088)=statev(4)*v(2890)+statev(9)*v(3055)+v(3077)*v(5532) v(3054)=(7d0*(360d0*v(2537)+120d0*v(2933)+30d0*v(2966)+6d0*v(2999)+v(3043))+v(5541)*(v(247)*v(2474)+v(2417)*v(264)+v& &(231)*v(2845)+v(230)*v(3032)+v(228)*v(3043)+v(2453)*v(5842)))/5040d0 v(3252)=statev(6)*v(3054)+statev(8)*v(3076)+v(2889)*v(5531) v(3197)=statev(7)*v(2889)+statev(5)*v(3076)+v(3054)*v(5533) v(3087)=statev(4)*v(2889)+statev(9)*v(3054)+v(3076)*v(5532) v(3053)=(7d0*(360d0*v(2536)+120d0*v(2932)+30d0*v(2965)+6d0*v(2998)+v(3042))+v(5541)*(v(247)*v(2471)+v(2416)*v(264)+v& &(231)*v(2844)+v(230)*v(3031)+v(228)*v(3042)+v(2450)*v(5842)))/5040d0 v(3251)=statev(6)*v(3053)+statev(8)*v(3075)+v(2888)*v(5531) v(3196)=statev(7)*v(2888)+statev(5)*v(3075)+v(3053)*v(5533) v(3086)=statev(4)*v(2888)+statev(9)*v(3053)+v(3075)*v(5532) v(3052)=(7d0*(360d0*v(2535)+120d0*v(2931)+30d0*v(2964)+6d0*v(2997)+v(3041))+v(5541)*(v(2469)*v(247)+v(2414)*v(264)+v& &(231)*v(2843)+v(230)*v(3030)+v(228)*v(3041)+v(2448)*v(5842)))/5040d0 v(3250)=statev(6)*v(3052)+statev(8)*v(3074)+v(2887)*v(5531) v(3195)=statev(7)*v(2887)+statev(5)*v(3074)+v(3052)*v(5533) v(3085)=statev(4)*v(2887)+statev(9)*v(3052)+v(3074)*v(5532) v(3051)=v(2534)/2d0+v(2930)/6d0+v(2963)/24d0+v(2996)/120d0+v(3040)/720d0+v(5836)+((v(2466)*v(247)+v(2445)*v(262)+v(2413& &)*v(264)+v(231)*v(2842)+v(230)*v(3029)+v(228)*v(3040))*v(5541)+v(5537)*(v(230)*v(262)+v(5844)))/5040d0 v(3249)=statev(6)*v(3051)+statev(8)*v(3073)+v(2886)*v(5531) v(3194)=statev(7)*v(2886)+statev(5)*v(3073)+v(3051)*v(5533) v(3084)=statev(4)*v(2886)+statev(9)*v(3051)+v(3073)*v(5532) v(284)=(7d0*(360d0*v(255)+120d0*v(257)+30d0*v(261)+6d0*v(263)+v(264))+v(5541)*(v(230)*v(5842)+v(5844)))/5040d0 v(283)=v(264)*v(5814) v(289)=(2520d0*v(251)+840d0*v(253)+210d0*v(256)+42d0*v(259)+7d0*v(262)+v(283)+v(5837)*v(5842)+v(5845))/5040d0 v(266)=statev(4)*v(249)+statev(9)*v(284)+v(289)*v(5532) v(269)=v(267)+v(268)+v(232)*v(371) v(3127)=v(2555)+v(2621)+(v(2425)*v(269)+v(228)*v(3116))*v(5541) v(3126)=v(2554)+v(2620)+(v(2424)*v(269)+v(228)*v(3114))*v(5541) v(3125)=v(2553)+v(2619)+(v(2422)*v(269)+v(228)*v(3112))*v(5541) v(3124)=v(2552)+v(2618)+(v(2421)*v(269)+v(228)*v(3110))*v(5541) v(3123)=v(2551)+v(2617)+(v(2420)*v(269)+v(228)*v(3108))*v(5541) v(3122)=v(2550)+v(2616)+(v(2419)*v(269)+v(228)*v(3106))*v(5541) v(3121)=v(2549)+v(2615)+(v(2418)*v(269)+v(228)*v(3104))*v(5541) v(3120)=v(2548)+v(2614)+(v(2417)*v(269)+v(228)*v(3102))*v(5541) v(3119)=v(2547)+v(2613)+(v(2416)*v(269)+v(228)*v(3100))*v(5541) v(3118)=v(2546)+v(2612)+(v(2414)*v(269)+v(228)*v(3098))*v(5541) v(3117)=v(2545)+v(2611)+v(3096)*v(5846)+v(269)*v(5847) v(272)=v(270)+v(271)+v(269)*v(5846) v(3138)=v(2665)+v(2951)+(v(2425)*v(272)+v(228)*v(3127))*v(5541) v(3137)=v(2664)+v(2950)+(v(2424)*v(272)+v(228)*v(3126))*v(5541) v(3136)=v(2663)+v(2949)+(v(2422)*v(272)+v(228)*v(3125))*v(5541) v(3135)=v(2662)+v(2948)+(v(2421)*v(272)+v(228)*v(3124))*v(5541) v(3134)=v(2661)+v(2947)+(v(2420)*v(272)+v(228)*v(3123))*v(5541) v(3133)=v(2660)+v(2946)+(v(2419)*v(272)+v(228)*v(3122))*v(5541) v(3132)=v(2659)+v(2945)+(v(2418)*v(272)+v(228)*v(3121))*v(5541) v(3131)=v(2658)+v(2944)+(v(2417)*v(272)+v(228)*v(3120))*v(5541) v(3130)=v(2657)+v(2943)+(v(2416)*v(272)+v(228)*v(3119))*v(5541) v(3129)=v(2656)+v(2942)+(v(2414)*v(272)+v(228)*v(3118))*v(5541) v(3128)=v(2655)+v(2941)+v(3117)*v(5846)+v(272)*v(5847) v(275)=v(273)+v(274)+v(272)*v(5846) v(3149)=v(2742)+v(2984)+(v(2425)*v(275)+v(228)*v(3138))*v(5541) v(3148)=v(2741)+v(2983)+(v(2424)*v(275)+v(228)*v(3137))*v(5541) v(3147)=v(2740)+v(2982)+(v(2422)*v(275)+v(228)*v(3136))*v(5541) v(3146)=v(2739)+v(2981)+(v(2421)*v(275)+v(228)*v(3135))*v(5541) v(3145)=v(2738)+v(2980)+(v(2420)*v(275)+v(228)*v(3134))*v(5541) v(3144)=v(2737)+v(2979)+(v(2419)*v(275)+v(228)*v(3133))*v(5541) v(3143)=v(2736)+v(2978)+(v(2418)*v(275)+v(228)*v(3132))*v(5541) v(3142)=v(2735)+v(2977)+(v(2417)*v(275)+v(228)*v(3131))*v(5541) v(3141)=v(2734)+v(2976)+(v(2416)*v(275)+v(228)*v(3130))*v(5541) v(3140)=v(2733)+v(2975)+(v(2414)*v(275)+v(228)*v(3129))*v(5541) v(3139)=v(2732)+v(2974)+v(3128)*v(5846)+v(275)*v(5847) v(278)=v(276)+v(277)+v(275)*v(5846) v(3160)=v(2775)+v(3017)+(v(2425)*v(278)+v(228)*v(3149))*v(5541) v(3159)=v(2774)+v(3016)+(v(2424)*v(278)+v(228)*v(3148))*v(5541) v(3158)=v(2773)+v(3015)+(v(2422)*v(278)+v(228)*v(3147))*v(5541) v(3157)=v(2772)+v(3014)+(v(2421)*v(278)+v(228)*v(3146))*v(5541) v(3156)=v(2771)+v(3013)+(v(2420)*v(278)+v(228)*v(3145))*v(5541) v(3155)=v(2770)+v(3012)+(v(2419)*v(278)+v(228)*v(3144))*v(5541) v(3154)=v(2769)+v(3011)+(v(2418)*v(278)+v(228)*v(3143))*v(5541) v(3153)=v(2768)+v(3010)+(v(2417)*v(278)+v(228)*v(3142))*v(5541) v(3152)=v(2767)+v(3009)+(v(2416)*v(278)+v(228)*v(3141))*v(5541) v(3151)=v(2766)+v(3008)+(v(2414)*v(278)+v(228)*v(3140))*v(5541) v(3150)=v(2765)+v(3007)+v(3139)*v(5846)+v(278)*v(5847) v(281)=v(279)+v(280)+v(278)*v(5846) v(5848)=5040d0+v(281) v(3171)=(v(2841)+v(3072)+2520d0*v(3116)+840d0*v(3127)+210d0*v(3138)+42d0*v(3149)+7d0*v(3160)+v(5541)*(v(228)*v(3160)+v& &(2425)*v(5848)))/5040d0 v(3303)=statev(4)*v(2863)+statev(9)*v(3171)+v(3061)*v(5532) v(3215)=statev(8)*v(3061)+statev(6)*v(3171)+v(2863)*v(5531) v(3182)=statev(7)*v(2863)+statev(5)*v(3061)+v(3171)*v(5533) v(3170)=(v(2840)+v(3071)+2520d0*v(3114)+840d0*v(3126)+210d0*v(3137)+42d0*v(3148)+7d0*v(3159)+v(5541)*(v(228)*v(3159)+v& &(2424)*v(5848)))/5040d0 v(3302)=statev(4)*v(2862)+statev(9)*v(3170)+v(3060)*v(5532) v(3214)=statev(8)*v(3060)+statev(6)*v(3170)+v(2862)*v(5531) v(3181)=statev(7)*v(2862)+statev(5)*v(3060)+v(3170)*v(5533) v(3169)=(v(2839)+v(3070)+2520d0*v(3112)+840d0*v(3125)+210d0*v(3136)+42d0*v(3147)+7d0*v(3158)+v(5541)*(v(228)*v(3158)+v& &(2422)*v(5848)))/5040d0 v(3301)=statev(4)*v(2861)+statev(9)*v(3169)+v(3059)*v(5532) v(3213)=statev(8)*v(3059)+statev(6)*v(3169)+v(2861)*v(5531) v(3180)=statev(7)*v(2861)+statev(5)*v(3059)+v(3169)*v(5533) v(3168)=(v(2838)+v(3069)+2520d0*v(3110)+840d0*v(3124)+210d0*v(3135)+42d0*v(3146)+7d0*v(3157)+v(5541)*(v(228)*v(3157)+v& &(2421)*v(5848)))/5040d0 v(3300)=statev(4)*v(2860)+statev(9)*v(3168)+v(3058)*v(5532) v(3212)=statev(8)*v(3058)+statev(6)*v(3168)+v(2860)*v(5531) v(3179)=statev(7)*v(2860)+statev(5)*v(3058)+v(3168)*v(5533) v(3167)=(v(2837)+v(3068)+2520d0*v(3108)+840d0*v(3123)+210d0*v(3134)+42d0*v(3145)+7d0*v(3156)+v(5541)*(v(228)*v(3156)+v& &(2420)*v(5848)))/5040d0 v(3299)=statev(4)*v(2859)+statev(9)*v(3167)+v(3057)*v(5532) v(3211)=statev(8)*v(3057)+statev(6)*v(3167)+v(2859)*v(5531) v(3178)=statev(7)*v(2859)+statev(5)*v(3057)+v(3167)*v(5533) v(3166)=(v(2836)+v(3067)+2520d0*v(3106)+840d0*v(3122)+210d0*v(3133)+42d0*v(3144)+7d0*v(3155)+v(5541)*(v(228)*v(3155)+v& &(2419)*v(5848)))/5040d0 v(3298)=statev(4)*v(2858)+statev(9)*v(3166)+v(3056)*v(5532) v(3210)=statev(8)*v(3056)+statev(6)*v(3166)+v(2858)*v(5531) v(3177)=statev(7)*v(2858)+statev(5)*v(3056)+v(3166)*v(5533) v(3165)=(v(2835)+v(3066)+2520d0*v(3104)+840d0*v(3121)+210d0*v(3132)+42d0*v(3143)+7d0*v(3154)+v(5541)*(v(228)*v(3154)+v& &(2418)*v(5848)))/5040d0 v(3297)=statev(4)*v(2857)+statev(9)*v(3165)+v(3055)*v(5532) v(3209)=statev(8)*v(3055)+statev(6)*v(3165)+v(2857)*v(5531) v(3176)=statev(7)*v(2857)+statev(5)*v(3055)+v(3165)*v(5533) v(3164)=(v(2834)+v(3065)+2520d0*v(3102)+840d0*v(3120)+210d0*v(3131)+42d0*v(3142)+7d0*v(3153)+v(5541)*(v(228)*v(3153)+v& &(2417)*v(5848)))/5040d0 v(3296)=statev(4)*v(2856)+statev(9)*v(3164)+v(3054)*v(5532) v(3208)=statev(8)*v(3054)+statev(6)*v(3164)+v(2856)*v(5531) v(3175)=statev(7)*v(2856)+statev(5)*v(3054)+v(3164)*v(5533) v(3163)=(v(2833)+v(3064)+2520d0*v(3100)+840d0*v(3119)+210d0*v(3130)+42d0*v(3141)+7d0*v(3152)+v(5541)*(v(228)*v(3152)+v& &(2416)*v(5848)))/5040d0 v(3295)=statev(4)*v(2855)+statev(9)*v(3163)+v(3053)*v(5532) v(3207)=statev(8)*v(3053)+statev(6)*v(3163)+v(2855)*v(5531) v(3174)=statev(7)*v(2855)+statev(5)*v(3053)+v(3163)*v(5533) v(3162)=(v(2832)+v(3063)+2520d0*v(3098)+840d0*v(3118)+210d0*v(3129)+42d0*v(3140)+7d0*v(3151)+v(5541)*(v(228)*v(3151)+v& &(2414)*v(5848)))/5040d0 v(3294)=statev(4)*v(2854)+statev(9)*v(3162)+v(3052)*v(5532) v(3206)=statev(8)*v(3052)+statev(6)*v(3162)+v(2854)*v(5531) v(3173)=statev(7)*v(2854)+statev(5)*v(3052)+v(3162)*v(5533) v(3161)=(v(2831)+v(3062)+2520d0*v(3096)+840d0*v(3117)+210d0*v(3128)+42d0*v(3139)+7d0*v(3150)+v(228)*(v(3150)*v(5541)+v& &(5537)*v(5848))+v(5848)*v(5849))/5040d0 v(3293)=statev(4)*v(2853)+statev(9)*v(3161)+v(3051)*v(5532) v(3205)=statev(8)*v(3051)+statev(6)*v(3161)+v(2853)*v(5531) v(3172)=statev(7)*v(2853)+statev(5)*v(3051)+v(3161)*v(5533) v(291)=(5040d0+2520d0*v(269)+840d0*v(272)+210d0*v(275)+42d0*v(278)+7d0*v(281)+v(282)+v(283)+v(5846)*v(5848))/5040d0 v(286)=statev(5)*v(284)+statev(7)*v(285)+v(291)*v(5533) v(288)=statev(9)*v(285)+statev(4)*v(287)+v(249)*v(5532) v(290)=statev(7)*v(249)+statev(5)*v(289)+v(284)*v(5533) v(292)=statev(8)*v(284)+statev(6)*v(291)+v(285)*v(5531) v(293)=statev(5)*v(249)+statev(7)*v(287)+v(285)*v(5533) v(3248)=v(286)*v(2907)+v(248)*v(3182)-v(293)*v(3215)-v(292)*v(3226) v(3247)=v(286)*v(2906)+v(248)*v(3181)-v(293)*v(3214)-v(292)*v(3225) v(3246)=v(286)*v(2905)+v(248)*v(3180)-v(293)*v(3213)-v(292)*v(3224) v(3245)=v(286)*v(2904)+v(248)*v(3179)-v(293)*v(3212)-v(292)*v(3223) v(3244)=v(286)*v(2903)+v(248)*v(3178)-v(293)*v(3211)-v(292)*v(3222) v(3243)=v(286)*v(2902)+v(248)*v(3177)-v(293)*v(3210)-v(292)*v(3221) v(3242)=v(286)*v(2901)+v(248)*v(3176)-v(293)*v(3209)-v(292)*v(3220) v(3241)=v(286)*v(2900)+v(248)*v(3175)-v(293)*v(3208)-v(292)*v(3219) v(3240)=v(286)*v(2899)+v(248)*v(3174)-v(293)*v(3207)-v(292)*v(3218) v(3239)=v(286)*v(2898)+v(248)*v(3173)-v(293)*v(3206)-v(292)*v(3217) v(3238)=v(286)*v(2897)+v(248)*v(3172)-v(293)*v(3205)-v(292)*v(3216) v(3237)=-(v(293)*v(3094))+v(290)*v(3193)+v(288)*v(3204)-v(266)*v(3226) v(3236)=-(v(293)*v(3093))+v(290)*v(3192)+v(288)*v(3203)-v(266)*v(3225) v(3235)=-(v(293)*v(3092))+v(290)*v(3191)+v(288)*v(3202)-v(266)*v(3224) v(3234)=-(v(293)*v(3091))+v(290)*v(3190)+v(288)*v(3201)-v(266)*v(3223) v(3233)=-(v(293)*v(3090))+v(290)*v(3189)+v(288)*v(3200)-v(266)*v(3222) v(3232)=-(v(293)*v(3089))+v(290)*v(3188)+v(288)*v(3199)-v(266)*v(3221) v(3231)=-(v(293)*v(3088))+v(290)*v(3187)+v(288)*v(3198)-v(266)*v(3220) v(3230)=-(v(293)*v(3087))+v(290)*v(3186)+v(288)*v(3197)-v(266)*v(3219) v(3229)=-(v(293)*v(3086))+v(290)*v(3185)+v(288)*v(3196)-v(266)*v(3218) v(3228)=-(v(293)*v(3085))+v(290)*v(3184)+v(288)*v(3195)-v(266)*v(3217) v(3227)=-(v(293)*v(3084))+v(290)*v(3183)+v(288)*v(3194)-v(266)*v(3216) v(304)=v(288)*v(290)-v(266)*v(293) v(300)=v(248)*v(286)-v(292)*v(293) v(294)=statev(6)*v(284)+statev(8)*v(289)+v(249)*v(5531) v(3292)=v(266)*v(2907)+v(248)*v(3094)-v(294)*v(3193)-v(288)*v(3259) v(3291)=v(266)*v(2906)+v(248)*v(3093)-v(294)*v(3192)-v(288)*v(3258) v(3290)=v(266)*v(2905)+v(248)*v(3092)-v(294)*v(3191)-v(288)*v(3257) v(3289)=v(266)*v(2904)+v(248)*v(3091)-v(294)*v(3190)-v(288)*v(3256) v(3288)=v(266)*v(2903)+v(248)*v(3090)-v(294)*v(3189)-v(288)*v(3255) v(3287)=v(266)*v(2902)+v(248)*v(3089)-v(294)*v(3188)-v(288)*v(3254) v(3286)=v(266)*v(2901)+v(248)*v(3088)-v(294)*v(3187)-v(288)*v(3253) v(3285)=v(266)*v(2900)+v(248)*v(3087)-v(294)*v(3186)-v(288)*v(3252) v(3284)=v(266)*v(2899)+v(248)*v(3086)-v(294)*v(3185)-v(288)*v(3251) v(3283)=v(266)*v(2898)+v(248)*v(3085)-v(294)*v(3184)-v(288)*v(3250) v(3282)=v(266)*v(2897)+v(248)*v(3084)-v(294)*v(3183)-v(288)*v(3249) v(3281)=-(v(290)*v(2907))-v(248)*v(3204)+v(294)*v(3226)+v(293)*v(3259) v(3280)=-(v(290)*v(2906))-v(248)*v(3203)+v(294)*v(3225)+v(293)*v(3258) v(3279)=-(v(290)*v(2905))-v(248)*v(3202)+v(294)*v(3224)+v(293)*v(3257) v(3278)=-(v(290)*v(2904))-v(248)*v(3201)+v(294)*v(3223)+v(293)*v(3256) v(3277)=-(v(290)*v(2903))-v(248)*v(3200)+v(294)*v(3222)+v(293)*v(3255) v(3276)=-(v(290)*v(2902))-v(248)*v(3199)+v(294)*v(3221)+v(293)*v(3254) v(3275)=-(v(290)*v(2901))-v(248)*v(3198)+v(294)*v(3220)+v(293)*v(3253) v(3274)=-(v(290)*v(2900))-v(248)*v(3197)+v(294)*v(3219)+v(293)*v(3252) v(3273)=-(v(2899)*v(290))-v(248)*v(3196)+v(294)*v(3218)+v(293)*v(3251) v(3272)=-(v(2898)*v(290))-v(248)*v(3195)+v(294)*v(3217)+v(293)*v(3250) v(3271)=-(v(2897)*v(290))-v(248)*v(3194)+v(294)*v(3216)+v(293)*v(3249) v(3270)=-(v(294)*v(3182))+v(292)*v(3204)+v(290)*v(3215)-v(286)*v(3259) v(3269)=-(v(294)*v(3181))+v(292)*v(3203)+v(290)*v(3214)-v(286)*v(3258) v(3268)=-(v(294)*v(3180))+v(292)*v(3202)+v(290)*v(3213)-v(286)*v(3257) v(3267)=-(v(294)*v(3179))+v(292)*v(3201)+v(290)*v(3212)-v(286)*v(3256) v(3266)=-(v(294)*v(3178))+v(292)*v(3200)+v(290)*v(3211)-v(286)*v(3255) v(3265)=-(v(294)*v(3177))+v(292)*v(3199)+v(290)*v(3210)-v(286)*v(3254) v(3264)=-(v(294)*v(3176))+v(292)*v(3198)+v(290)*v(3209)-v(286)*v(3253) v(3263)=-(v(294)*v(3175))+v(292)*v(3197)+v(290)*v(3208)-v(286)*v(3252) v(3262)=-(v(294)*v(3174))+v(292)*v(3196)+v(290)*v(3207)-v(286)*v(3251) v(3261)=-(v(294)*v(3173))+v(292)*v(3195)+v(290)*v(3206)-v(286)*v(3250) v(3260)=-(v(294)*v(3172))+v(292)*v(3194)+v(290)*v(3205)-v(286)*v(3249) v(308)=v(290)*v(292)-v(286)*v(294) v(306)=-(v(248)*v(290))+v(293)*v(294) v(305)=v(248)*v(266)-v(288)*v(294) v(295)=statev(4)*v(285)+statev(9)*v(291)+v(284)*v(5532) v(3348)=v(292)*v(304)+v(286)*v(305)+v(295)*v(306) v(3350)=1d0/v(3348)**2 v(3360)=-((v(305)*v(3182)+v(304)*v(3215)+v(292)*v(3237)+v(295)*v(3281)+v(286)*v(3292)+v(306)*v(3303))*v(3350)) v(5850)=v(3348)*v(3360) v(5927)=v(3248)+v(300)*v(5850) v(5896)=v(3281)+v(306)*v(5850) v(5895)=v(3292)+v(305)*v(5850) v(5894)=v(3237)+v(304)*v(5850) v(5861)=v(3270)+v(308)*v(5850) v(3359)=-((v(305)*v(3181)+v(304)*v(3214)+v(292)*v(3236)+v(295)*v(3280)+v(286)*v(3291)+v(306)*v(3302))*v(3350)) v(5851)=v(3348)*v(3359) v(5930)=v(3247)+v(300)*v(5851) v(5899)=v(3280)+v(306)*v(5851) v(5898)=v(3291)+v(305)*v(5851) v(5897)=v(3236)+v(304)*v(5851) v(5864)=v(3269)+v(308)*v(5851) v(3358)=-((v(305)*v(3180)+v(304)*v(3213)+v(292)*v(3235)+v(295)*v(3279)+v(286)*v(3290)+v(306)*v(3301))*v(3350)) v(5852)=v(3348)*v(3358) v(5933)=v(3246)+v(300)*v(5852) v(5902)=v(3279)+v(306)*v(5852) v(5901)=v(3290)+v(305)*v(5852) v(5900)=v(3235)+v(304)*v(5852) v(5867)=v(3268)+v(308)*v(5852) v(3357)=-((v(305)*v(3179)+v(304)*v(3212)+v(292)*v(3234)+v(295)*v(3278)+v(286)*v(3289)+v(306)*v(3300))*v(3350)) v(5853)=v(3348)*v(3357) v(5936)=v(3245)+v(300)*v(5853) v(5905)=v(3278)+v(306)*v(5853) v(5904)=v(3289)+v(305)*v(5853) v(5903)=v(3234)+v(304)*v(5853) v(5870)=v(3267)+v(308)*v(5853) v(3356)=-((v(305)*v(3178)+v(304)*v(3211)+v(292)*v(3233)+v(295)*v(3277)+v(286)*v(3288)+v(306)*v(3299))*v(3350)) v(5854)=v(3348)*v(3356) v(5939)=v(3244)+v(300)*v(5854) v(5908)=v(3277)+v(306)*v(5854) v(5907)=v(3288)+v(305)*v(5854) v(5906)=v(3233)+v(304)*v(5854) v(5873)=v(3266)+v(308)*v(5854) v(3355)=-((v(305)*v(3177)+v(304)*v(3210)+v(292)*v(3232)+v(295)*v(3276)+v(286)*v(3287)+v(306)*v(3298))*v(3350)) v(5855)=v(3348)*v(3355) v(5942)=v(3243)+v(300)*v(5855) v(5911)=v(3276)+v(306)*v(5855) v(5910)=v(3287)+v(305)*v(5855) v(5909)=v(3232)+v(304)*v(5855) v(5876)=v(3265)+v(308)*v(5855) v(3354)=-((v(305)*v(3176)+v(304)*v(3209)+v(292)*v(3231)+v(295)*v(3275)+v(286)*v(3286)+v(306)*v(3297))*v(3350)) v(5856)=v(3348)*v(3354) v(5945)=v(3242)+v(300)*v(5856) v(5914)=v(3275)+v(306)*v(5856) v(5913)=v(3286)+v(305)*v(5856) v(5912)=v(3231)+v(304)*v(5856) v(5879)=v(3264)+v(308)*v(5856) v(3353)=-((v(305)*v(3175)+v(304)*v(3208)+v(292)*v(3230)+v(295)*v(3274)+v(286)*v(3285)+v(306)*v(3296))*v(3350)) v(5857)=v(3348)*v(3353) v(5948)=v(3241)+v(300)*v(5857) v(5917)=v(3274)+v(306)*v(5857) v(5916)=v(3285)+v(305)*v(5857) v(5915)=v(3230)+v(304)*v(5857) v(5882)=v(3263)+v(308)*v(5857) v(3352)=-((v(305)*v(3174)+v(304)*v(3207)+v(292)*v(3229)+v(295)*v(3273)+v(286)*v(3284)+v(306)*v(3295))*v(3350)) v(5858)=v(3348)*v(3352) v(5951)=v(3240)+v(300)*v(5858) v(5920)=v(3273)+v(306)*v(5858) v(5919)=v(3284)+v(305)*v(5858) v(5918)=v(3229)+v(304)*v(5858) v(5885)=v(3262)+v(308)*v(5858) v(3351)=-((v(305)*v(3173)+v(304)*v(3206)+v(292)*v(3228)+v(295)*v(3272)+v(286)*v(3283)+v(306)*v(3294))*v(3350)) v(5859)=v(3348)*v(3351) v(5954)=v(3239)+v(300)*v(5859) v(5923)=v(3272)+v(306)*v(5859) v(5922)=v(3283)+v(305)*v(5859) v(5921)=v(3228)+v(304)*v(5859) v(5888)=v(3261)+v(308)*v(5859) v(3349)=-((v(305)*v(3172)+v(304)*v(3205)+v(292)*v(3227)+v(295)*v(3271)+v(286)*v(3282)+v(306)*v(3293))*v(3350)) v(5860)=v(3348)*v(3349) v(5957)=v(3238)+v(300)*v(5860) v(5926)=v(3271)+v(306)*v(5860) v(5925)=v(3282)+v(305)*v(5860) v(5924)=v(3227)+v(304)*v(5860) v(5891)=v(3260)+v(308)*v(5860) v(3347)=-(v(2907)*v(295))+v(292)*v(3193)+v(288)*v(3215)-v(248)*v(3303) v(3346)=-(v(2906)*v(295))+v(292)*v(3192)+v(288)*v(3214)-v(248)*v(3302) v(3345)=-(v(2905)*v(295))+v(292)*v(3191)+v(288)*v(3213)-v(248)*v(3301) v(3344)=-(v(2904)*v(295))+v(292)*v(3190)+v(288)*v(3212)-v(248)*v(3300) v(3343)=-(v(2903)*v(295))+v(292)*v(3189)+v(288)*v(3211)-v(248)*v(3299) v(3342)=-(v(2902)*v(295))+v(292)*v(3188)+v(288)*v(3210)-v(248)*v(3298) v(3341)=-(v(2901)*v(295))+v(292)*v(3187)+v(288)*v(3209)-v(248)*v(3297) v(3340)=-(v(2900)*v(295))+v(292)*v(3186)+v(288)*v(3208)-v(248)*v(3296) v(3339)=-(v(2899)*v(295))+v(292)*v(3185)+v(288)*v(3207)-v(248)*v(3295) v(3338)=-(v(2898)*v(295))+v(292)*v(3184)+v(288)*v(3206)-v(248)*v(3294) v(3337)=-(v(2897)*v(295))+v(292)*v(3183)+v(288)*v(3205)-v(248)*v(3293) v(3336)=-(v(288)*v(3182))-v(286)*v(3193)+v(295)*v(3226)+v(293)*v(3303) v(3335)=-(v(288)*v(3181))-v(286)*v(3192)+v(295)*v(3225)+v(293)*v(3302) v(3334)=-(v(288)*v(3180))-v(286)*v(3191)+v(295)*v(3224)+v(293)*v(3301) v(3333)=-(v(288)*v(3179))-v(286)*v(3190)+v(295)*v(3223)+v(293)*v(3300) v(3332)=-(v(288)*v(3178))-v(286)*v(3189)+v(295)*v(3222)+v(293)*v(3299) v(3331)=-(v(288)*v(3177))-v(286)*v(3188)+v(295)*v(3221)+v(293)*v(3298) v(3330)=-(v(288)*v(3176))-v(286)*v(3187)+v(295)*v(3220)+v(293)*v(3297) v(3329)=-(v(288)*v(3175))-v(286)*v(3186)+v(295)*v(3219)+v(293)*v(3296) v(3328)=-(v(288)*v(3174))-v(286)*v(3185)+v(295)*v(3218)+v(293)*v(3295) v(3327)=-(v(288)*v(3173))-v(286)*v(3184)+v(295)*v(3217)+v(293)*v(3294) v(3326)=-(v(288)*v(3172))-v(286)*v(3183)+v(295)*v(3216)+v(293)*v(3293) v(3325)=v(286)*v(3094)+v(266)*v(3182)-v(295)*v(3204)-v(290)*v(3303) v(3324)=v(286)*v(3093)+v(266)*v(3181)-v(295)*v(3203)-v(290)*v(3302) v(3323)=v(286)*v(3092)+v(266)*v(3180)-v(295)*v(3202)-v(290)*v(3301) v(3322)=v(286)*v(3091)+v(266)*v(3179)-v(295)*v(3201)-v(290)*v(3300) v(3321)=v(286)*v(3090)+v(266)*v(3178)-v(295)*v(3200)-v(290)*v(3299) v(3320)=v(286)*v(3089)+v(266)*v(3177)-v(295)*v(3199)-v(290)*v(3298) v(3319)=v(286)*v(3088)+v(266)*v(3176)-v(295)*v(3198)-v(290)*v(3297) v(3318)=v(286)*v(3087)+v(266)*v(3175)-v(295)*v(3197)-v(290)*v(3296) v(3317)=v(286)*v(3086)+v(266)*v(3174)-v(295)*v(3196)-v(290)*v(3295) v(3316)=v(286)*v(3085)+v(266)*v(3173)-v(295)*v(3195)-v(290)*v(3294) v(3315)=v(286)*v(3084)+v(266)*v(3172)-v(295)*v(3194)-v(290)*v(3293) v(3314)=-(v(292)*v(3094))-v(266)*v(3215)+v(295)*v(3259)+v(294)*v(3303) v(3313)=-(v(292)*v(3093))-v(266)*v(3214)+v(295)*v(3258)+v(294)*v(3302) v(3312)=-(v(292)*v(3092))-v(266)*v(3213)+v(295)*v(3257)+v(294)*v(3301) v(3311)=-(v(292)*v(3091))-v(266)*v(3212)+v(295)*v(3256)+v(294)*v(3300) v(3310)=-(v(292)*v(3090))-v(266)*v(3211)+v(295)*v(3255)+v(294)*v(3299) v(3309)=-(v(292)*v(3089))-v(266)*v(3210)+v(295)*v(3254)+v(294)*v(3298) v(3308)=-(v(292)*v(3088))-v(266)*v(3209)+v(295)*v(3253)+v(294)*v(3297) v(3307)=-(v(292)*v(3087))-v(266)*v(3208)+v(295)*v(3252)+v(294)*v(3296) v(3306)=-(v(292)*v(3086))-v(266)*v(3207)+v(295)*v(3251)+v(294)*v(3295) v(3305)=-(v(292)*v(3085))-v(266)*v(3206)+v(295)*v(3250)+v(294)*v(3294) v(3304)=-(v(292)*v(3084))-v(266)*v(3205)+v(295)*v(3249)+v(294)*v(3293) v(310)=-(v(266)*v(292))+v(294)*v(295) v(5893)=v(3304)+v(310)*v(5860) v(5890)=v(3305)+v(310)*v(5859) v(5887)=v(3306)+v(310)*v(5858) v(5884)=v(3307)+v(310)*v(5857) v(5881)=v(3308)+v(310)*v(5856) v(5878)=v(3309)+v(310)*v(5855) v(5875)=v(3310)+v(310)*v(5854) v(5872)=v(3311)+v(310)*v(5853) v(5869)=v(3312)+v(310)*v(5852) v(5866)=v(3313)+v(310)*v(5851) v(5863)=v(3314)+v(310)*v(5850) v(309)=v(266)*v(286)-v(290)*v(295) v(5892)=v(3315)+v(309)*v(5860) v(5889)=v(3316)+v(309)*v(5859) v(5886)=v(3317)+v(309)*v(5858) v(5883)=v(3318)+v(309)*v(5857) v(5880)=v(3319)+v(309)*v(5856) v(5877)=v(3320)+v(309)*v(5855) v(5874)=v(3321)+v(309)*v(5854) v(5871)=v(3322)+v(309)*v(5853) v(5868)=v(3323)+v(309)*v(5852) v(5865)=v(3324)+v(309)*v(5851) v(5862)=v(3325)+v(309)*v(5850) v(302)=-(v(286)*v(288))+v(293)*v(295) v(5959)=v(3326)+v(302)*v(5860) v(5956)=v(3327)+v(302)*v(5859) v(5953)=v(3328)+v(302)*v(5858) v(5950)=v(3329)+v(302)*v(5857) v(5947)=v(3330)+v(302)*v(5856) v(5944)=v(3331)+v(302)*v(5855) v(5941)=v(3332)+v(302)*v(5854) v(5938)=v(3333)+v(302)*v(5853) v(5935)=v(3334)+v(302)*v(5852) v(5932)=v(3335)+v(302)*v(5851) v(5929)=v(3336)+v(302)*v(5850) v(301)=v(288)*v(292)-v(248)*v(295) v(5958)=v(3337)+v(301)*v(5860) v(5955)=v(3338)+v(301)*v(5859) v(5952)=v(3339)+v(301)*v(5858) v(5949)=v(3340)+v(301)*v(5857) v(5946)=v(3341)+v(301)*v(5856) v(5943)=v(3342)+v(301)*v(5855) v(5940)=v(3343)+v(301)*v(5854) v(5937)=v(3344)+v(301)*v(5853) v(5934)=v(3345)+v(301)*v(5852) v(5931)=v(3346)+v(301)*v(5851) v(5928)=v(3347)+v(301)*v(5850) v(3459)=(Fnew(9)*v(5927)+Fnew(3)*v(5928)+Fnew(6)*v(5929))/v(3348) v(3458)=(Fnew(9)*v(5930)+Fnew(3)*v(5931)+Fnew(6)*v(5932))/v(3348) v(3457)=(Fnew(9)*v(5933)+Fnew(3)*v(5934)+Fnew(6)*v(5935))/v(3348) v(3456)=(Fnew(9)*v(5936)+Fnew(3)*v(5937)+Fnew(6)*v(5938))/v(3348) v(3455)=(Fnew(9)*v(5939)+Fnew(3)*v(5940)+Fnew(6)*v(5941))/v(3348) v(3454)=(Fnew(9)*v(5942)+Fnew(3)*v(5943)+Fnew(6)*v(5944))/v(3348) v(3453)=(Fnew(9)*v(5945)+Fnew(3)*v(5946)+Fnew(6)*v(5947))/v(3348) v(3452)=(Fnew(9)*v(5948)+Fnew(3)*v(5949)+Fnew(6)*v(5950))/v(3348) v(3451)=(Fnew(9)*v(5951)+Fnew(3)*v(5952)+Fnew(6)*v(5953))/v(3348) v(3450)=(Fnew(9)*v(5954)+Fnew(3)*v(5955)+Fnew(6)*v(5956))/v(3348) v(3449)=(Fnew(9)*v(5957)+Fnew(3)*v(5958)+Fnew(6)*v(5959))/v(3348) v(3448)=(Fnew(2)*v(5861)+Fnew(8)*v(5862)+Fnew(5)*v(5863))/v(3348) v(3447)=(Fnew(2)*v(5864)+Fnew(8)*v(5865)+Fnew(5)*v(5866))/v(3348) v(3446)=(Fnew(2)*v(5867)+Fnew(8)*v(5868)+Fnew(5)*v(5869))/v(3348) v(3445)=(Fnew(2)*v(5870)+Fnew(8)*v(5871)+Fnew(5)*v(5872))/v(3348) v(3444)=(Fnew(2)*v(5873)+Fnew(8)*v(5874)+Fnew(5)*v(5875))/v(3348) v(3443)=(Fnew(2)*v(5876)+Fnew(8)*v(5877)+Fnew(5)*v(5878))/v(3348) v(3442)=(Fnew(2)*v(5879)+Fnew(8)*v(5880)+Fnew(5)*v(5881))/v(3348) v(3441)=(Fnew(2)*v(5882)+Fnew(8)*v(5883)+Fnew(5)*v(5884))/v(3348) v(3440)=(Fnew(2)*v(5885)+Fnew(8)*v(5886)+Fnew(5)*v(5887))/v(3348) v(3439)=(Fnew(2)*v(5888)+Fnew(8)*v(5889)+Fnew(5)*v(5890))/v(3348) v(3438)=(Fnew(2)*v(5891)+Fnew(8)*v(5892)+Fnew(5)*v(5893))/v(3348) v(3437)=(Fnew(1)*v(5894)+Fnew(7)*v(5895)+Fnew(4)*v(5896))/v(3348) v(3436)=(Fnew(1)*v(5897)+Fnew(7)*v(5898)+Fnew(4)*v(5899))/v(3348) v(3435)=(Fnew(1)*v(5900)+Fnew(7)*v(5901)+Fnew(4)*v(5902))/v(3348) v(3434)=(Fnew(1)*v(5903)+Fnew(7)*v(5904)+Fnew(4)*v(5905))/v(3348) v(3433)=(Fnew(1)*v(5906)+Fnew(7)*v(5907)+Fnew(4)*v(5908))/v(3348) v(3432)=(Fnew(1)*v(5909)+Fnew(7)*v(5910)+Fnew(4)*v(5911))/v(3348) v(3431)=(Fnew(1)*v(5912)+Fnew(7)*v(5913)+Fnew(4)*v(5914))/v(3348) v(3430)=(Fnew(1)*v(5915)+Fnew(7)*v(5916)+Fnew(4)*v(5917))/v(3348) v(3429)=(Fnew(1)*v(5918)+Fnew(7)*v(5919)+Fnew(4)*v(5920))/v(3348) v(3428)=(Fnew(1)*v(5921)+Fnew(7)*v(5922)+Fnew(4)*v(5923))/v(3348) v(3427)=(Fnew(1)*v(5924)+Fnew(7)*v(5925)+Fnew(4)*v(5926))/v(3348) v(3426)=(Fnew(9)*v(5861)+Fnew(6)*v(5862)+Fnew(3)*v(5863))/v(3348) v(3425)=(Fnew(9)*v(5864)+Fnew(6)*v(5865)+Fnew(3)*v(5866))/v(3348) v(3424)=(Fnew(9)*v(5867)+Fnew(6)*v(5868)+Fnew(3)*v(5869))/v(3348) v(3423)=(Fnew(9)*v(5870)+Fnew(6)*v(5871)+Fnew(3)*v(5872))/v(3348) v(3422)=(Fnew(9)*v(5873)+Fnew(6)*v(5874)+Fnew(3)*v(5875))/v(3348) v(3421)=(Fnew(9)*v(5876)+Fnew(6)*v(5877)+Fnew(3)*v(5878))/v(3348) v(3420)=(Fnew(9)*v(5879)+Fnew(6)*v(5880)+Fnew(3)*v(5881))/v(3348) v(3419)=(Fnew(9)*v(5882)+Fnew(6)*v(5883)+Fnew(3)*v(5884))/v(3348) v(3418)=(Fnew(9)*v(5885)+Fnew(6)*v(5886)+Fnew(3)*v(5887))/v(3348) v(3417)=(Fnew(9)*v(5888)+Fnew(6)*v(5889)+Fnew(3)*v(5890))/v(3348) v(3416)=(Fnew(9)*v(5891)+Fnew(6)*v(5892)+Fnew(3)*v(5893))/v(3348) v(3415)=(Fnew(8)*v(5894)+Fnew(5)*v(5895)+Fnew(2)*v(5896))/v(3348) v(3414)=(Fnew(8)*v(5897)+Fnew(5)*v(5898)+Fnew(2)*v(5899))/v(3348) v(3413)=(Fnew(8)*v(5900)+Fnew(5)*v(5901)+Fnew(2)*v(5902))/v(3348) v(3412)=(Fnew(8)*v(5903)+Fnew(5)*v(5904)+Fnew(2)*v(5905))/v(3348) v(3411)=(Fnew(8)*v(5906)+Fnew(5)*v(5907)+Fnew(2)*v(5908))/v(3348) v(3410)=(Fnew(8)*v(5909)+Fnew(5)*v(5910)+Fnew(2)*v(5911))/v(3348) v(3409)=(Fnew(8)*v(5912)+Fnew(5)*v(5913)+Fnew(2)*v(5914))/v(3348) v(3408)=(Fnew(8)*v(5915)+Fnew(5)*v(5916)+Fnew(2)*v(5917))/v(3348) v(3407)=(Fnew(8)*v(5918)+Fnew(5)*v(5919)+Fnew(2)*v(5920))/v(3348) v(3406)=(Fnew(8)*v(5921)+Fnew(5)*v(5922)+Fnew(2)*v(5923))/v(3348) v(3405)=(Fnew(8)*v(5924)+Fnew(5)*v(5925)+Fnew(2)*v(5926))/v(3348) v(3404)=(Fnew(4)*v(5927)+Fnew(7)*v(5928)+Fnew(1)*v(5929))/v(3348) v(3403)=(Fnew(4)*v(5930)+Fnew(7)*v(5931)+Fnew(1)*v(5932))/v(3348) v(3402)=(Fnew(4)*v(5933)+Fnew(7)*v(5934)+Fnew(1)*v(5935))/v(3348) v(3401)=(Fnew(4)*v(5936)+Fnew(7)*v(5937)+Fnew(1)*v(5938))/v(3348) v(3400)=(Fnew(4)*v(5939)+Fnew(7)*v(5940)+Fnew(1)*v(5941))/v(3348) v(3399)=(Fnew(4)*v(5942)+Fnew(7)*v(5943)+Fnew(1)*v(5944))/v(3348) v(3398)=(Fnew(4)*v(5945)+Fnew(7)*v(5946)+Fnew(1)*v(5947))/v(3348) v(3397)=(Fnew(4)*v(5948)+Fnew(7)*v(5949)+Fnew(1)*v(5950))/v(3348) v(3396)=(Fnew(4)*v(5951)+Fnew(7)*v(5952)+Fnew(1)*v(5953))/v(3348) v(3395)=(Fnew(4)*v(5954)+Fnew(7)*v(5955)+Fnew(1)*v(5956))/v(3348) v(3394)=(Fnew(4)*v(5957)+Fnew(7)*v(5958)+Fnew(1)*v(5959))/v(3348) v(3393)=(Fnew(6)*v(5894)+Fnew(3)*v(5895)+Fnew(9)*v(5896))/v(3348) v(3392)=(Fnew(6)*v(5897)+Fnew(3)*v(5898)+Fnew(9)*v(5899))/v(3348) v(3391)=(Fnew(6)*v(5900)+Fnew(3)*v(5901)+Fnew(9)*v(5902))/v(3348) v(3390)=(Fnew(6)*v(5903)+Fnew(3)*v(5904)+Fnew(9)*v(5905))/v(3348) v(3389)=(Fnew(6)*v(5906)+Fnew(3)*v(5907)+Fnew(9)*v(5908))/v(3348) v(3388)=(Fnew(6)*v(5909)+Fnew(3)*v(5910)+Fnew(9)*v(5911))/v(3348) v(3387)=(Fnew(6)*v(5912)+Fnew(3)*v(5913)+Fnew(9)*v(5914))/v(3348) v(3386)=(Fnew(6)*v(5915)+Fnew(3)*v(5916)+Fnew(9)*v(5917))/v(3348) v(3385)=(Fnew(6)*v(5918)+Fnew(3)*v(5919)+Fnew(9)*v(5920))/v(3348) v(3384)=(Fnew(6)*v(5921)+Fnew(3)*v(5922)+Fnew(9)*v(5923))/v(3348) v(3383)=(Fnew(6)*v(5924)+Fnew(3)*v(5925)+Fnew(9)*v(5926))/v(3348) v(3382)=(Fnew(2)*v(5927)+Fnew(5)*v(5928)+Fnew(8)*v(5929))/v(3348) v(3381)=(Fnew(2)*v(5930)+Fnew(5)*v(5931)+Fnew(8)*v(5932))/v(3348) v(3380)=(Fnew(2)*v(5933)+Fnew(5)*v(5934)+Fnew(8)*v(5935))/v(3348) v(3379)=(Fnew(2)*v(5936)+Fnew(5)*v(5937)+Fnew(8)*v(5938))/v(3348) v(3378)=(Fnew(2)*v(5939)+Fnew(5)*v(5940)+Fnew(8)*v(5941))/v(3348) v(3377)=(Fnew(2)*v(5942)+Fnew(5)*v(5943)+Fnew(8)*v(5944))/v(3348) v(3376)=(Fnew(2)*v(5945)+Fnew(5)*v(5946)+Fnew(8)*v(5947))/v(3348) v(3375)=(Fnew(2)*v(5948)+Fnew(5)*v(5949)+Fnew(8)*v(5950))/v(3348) v(3374)=(Fnew(2)*v(5951)+Fnew(5)*v(5952)+Fnew(8)*v(5953))/v(3348) v(3373)=(Fnew(2)*v(5954)+Fnew(5)*v(5955)+Fnew(8)*v(5956))/v(3348) v(3372)=(Fnew(2)*v(5957)+Fnew(5)*v(5958)+Fnew(8)*v(5959))/v(3348) v(3371)=(Fnew(4)*v(5861)+Fnew(1)*v(5862)+Fnew(7)*v(5863))/v(3348) v(3370)=(Fnew(4)*v(5864)+Fnew(1)*v(5865)+Fnew(7)*v(5866))/v(3348) v(3369)=(Fnew(4)*v(5867)+Fnew(1)*v(5868)+Fnew(7)*v(5869))/v(3348) v(3368)=(Fnew(4)*v(5870)+Fnew(1)*v(5871)+Fnew(7)*v(5872))/v(3348) v(3367)=(Fnew(4)*v(5873)+Fnew(1)*v(5874)+Fnew(7)*v(5875))/v(3348) v(3366)=(Fnew(4)*v(5876)+Fnew(1)*v(5877)+Fnew(7)*v(5878))/v(3348) v(3365)=(Fnew(4)*v(5879)+Fnew(1)*v(5880)+Fnew(7)*v(5881))/v(3348) v(3364)=(Fnew(4)*v(5882)+Fnew(1)*v(5883)+Fnew(7)*v(5884))/v(3348) v(3363)=(Fnew(4)*v(5885)+Fnew(1)*v(5886)+Fnew(7)*v(5887))/v(3348) v(3362)=(Fnew(4)*v(5888)+Fnew(1)*v(5889)+Fnew(7)*v(5890))/v(3348) v(3361)=(Fnew(4)*v(5891)+Fnew(1)*v(5892)+Fnew(7)*v(5893))/v(3348) v(979)=v(306)/v(3348) v(978)=v(304)/v(3348) v(977)=v(305)/v(3348) v(976)=v(302)/v(3348) v(975)=v(301)/v(3348) v(974)=v(300)/v(3348) v(973)=v(310)/v(3348) v(972)=v(308)/v(3348) v(971)=v(309)/v(3348) v(297)=(Fnew(4)*v(308)+Fnew(1)*v(309)+Fnew(7)*v(310))/v(3348) v(5960)=2d0*v(297) v(986)=v(5960)*v(973) v(995)=-v(986)/3d0 v(983)=v(5960)*v(972) v(992)=-v(983)/3d0 v(980)=v(5960)*v(971) v(989)=-v(980)/3d0 v(298)=(Fnew(2)*v(300)+Fnew(5)*v(301)+Fnew(8)*v(302))/v(3348) v(5961)=2d0*v(298) v(1005)=v(5961)*v(976) v(1014)=-v(1005)/3d0 v(1002)=v(5961)*v(975) v(1011)=-v(1002)/3d0 v(999)=v(5961)*v(974) v(1008)=-v(999)/3d0 v(299)=(Fnew(6)*v(304)+Fnew(3)*v(305)+Fnew(9)*v(306))/v(3348) v(5962)=2d0*v(299) v(1024)=v(5962)*v(979) v(1033)=-v(1024)/3d0 v(1021)=v(5962)*v(978) v(1030)=-v(1021)/3d0 v(1018)=v(5962)*v(977) v(1027)=-v(1018)/3d0 v(303)=(Fnew(4)*v(300)+Fnew(7)*v(301)+Fnew(1)*v(302))/v(3348) v(5963)=2d0*v(303) v(1040)=v(303)*v(973)+v(297)*v(975) v(1037)=v(303)*v(972)+v(297)*v(974) v(1034)=v(303)*v(971)+v(297)*v(976) v(1004)=v(5963)*v(975) v(1013)=-v(1004)/3d0 v(1001)=v(5963)*v(974) v(1010)=-v(1001)/3d0 v(998)=v(5963)*v(976) v(1007)=-v(998)/3d0 v(307)=(Fnew(8)*v(304)+Fnew(5)*v(305)+Fnew(2)*v(306))/v(3348) v(5964)=2d0*v(307) v(1068)=v(307)*v(976)+v(298)*v(978) v(1065)=v(307)*v(975)+v(298)*v(977) v(1062)=v(307)*v(974)+v(298)*v(979) v(1023)=v(5964)*v(978) v(1032)=-v(1023)/3d0 v(1020)=v(5964)*v(977) v(1029)=-v(1020)/3d0 v(1017)=v(5964)*v(979) v(1026)=-v(1017)/3d0 v(311)=(Fnew(9)*v(308)+Fnew(6)*v(309)+Fnew(3)*v(310))/v(3348) v(5965)=2d0*v(311) v(1096)=v(299)*v(972)+v(311)*v(979) v(1093)=v(299)*v(971)+v(311)*v(978) v(1090)=v(299)*v(973)+v(311)*v(977) v(988)=v(5965)*v(972) v(997)=-v(988)/3d0 v(985)=v(5965)*v(971) v(994)=-v(985)/3d0 v(982)=v(5965)*v(973) v(991)=-v(982)/3d0 v(312)=(Fnew(1)*v(304)+Fnew(7)*v(305)+Fnew(4)*v(306))/v(3348) v(5966)=2d0*v(312) v(3514)=2d0*(v(299)*v(3393)+v(307)*v(3415)+v(312)*v(3437)) v(3525)=-v(3514)/3d0 v(3513)=2d0*(v(299)*v(3392)+v(307)*v(3414)+v(312)*v(3436)) v(3524)=-v(3513)/3d0 v(3512)=2d0*(v(299)*v(3391)+v(307)*v(3413)+v(312)*v(3435)) v(3523)=-v(3512)/3d0 v(3511)=2d0*(v(299)*v(3390)+v(307)*v(3412)+v(312)*v(3434)) v(3522)=-v(3511)/3d0 v(3510)=2d0*(v(299)*v(3389)+v(307)*v(3411)+v(312)*v(3433)) v(3521)=-v(3510)/3d0 v(3509)=2d0*(v(299)*v(3388)+v(307)*v(3410)+v(312)*v(3432)) v(3520)=-v(3509)/3d0 v(3508)=2d0*(v(299)*v(3387)+v(307)*v(3409)+v(312)*v(3431)) v(3519)=-v(3508)/3d0 v(3507)=2d0*(v(299)*v(3386)+v(307)*v(3408)+v(312)*v(3430)) v(3518)=-v(3507)/3d0 v(3506)=2d0*(v(299)*v(3385)+v(307)*v(3407)+v(312)*v(3429)) v(3517)=-v(3506)/3d0 v(3505)=2d0*(v(299)*v(3384)+v(307)*v(3406)+v(312)*v(3428)) v(3516)=-v(3505)/3d0 v(3504)=2d0*(v(299)*v(3383)+v(307)*v(3405)+v(312)*v(3427)) v(3515)=-v(3504)/3d0 v(1094)=v(312)*v(973)+v(297)*v(977) v(1091)=v(312)*v(972)+v(297)*v(979) v(1088)=v(312)*v(971)+v(297)*v(978) v(1067)=v(312)*v(975)+v(303)*v(977) v(1064)=v(312)*v(974)+v(303)*v(979) v(1061)=v(312)*v(976)+v(303)*v(978) v(1022)=v(5966)*v(977) v(1031)=-v(1022)/3d0 v(1019)=v(5966)*v(979) v(1028)=-v(1019)/3d0 v(1016)=v(5966)*v(978) v(1025)=-v(1016)/3d0 v(313)=(Fnew(2)*v(308)+Fnew(8)*v(309)+Fnew(5)*v(310))/v(3348) v(5967)=2d0*v(313) v(3602)=v(312)*v(3371)+v(311)*v(3393)+v(313)*v(3415)+v(299)*v(3426)+v(297)*v(3437)+v(307)*v(3448) v(3601)=v(312)*v(3370)+v(311)*v(3392)+v(313)*v(3414)+v(299)*v(3425)+v(297)*v(3436)+v(307)*v(3447) v(3600)=v(312)*v(3369)+v(311)*v(3391)+v(313)*v(3413)+v(299)*v(3424)+v(297)*v(3435)+v(307)*v(3446) v(3599)=v(312)*v(3368)+v(311)*v(3390)+v(313)*v(3412)+v(299)*v(3423)+v(297)*v(3434)+v(307)*v(3445) v(3598)=v(312)*v(3367)+v(311)*v(3389)+v(313)*v(3411)+v(299)*v(3422)+v(297)*v(3433)+v(307)*v(3444) v(3597)=v(312)*v(3366)+v(311)*v(3388)+v(313)*v(3410)+v(299)*v(3421)+v(297)*v(3432)+v(307)*v(3443) v(3596)=v(312)*v(3365)+v(311)*v(3387)+v(313)*v(3409)+v(299)*v(3420)+v(297)*v(3431)+v(307)*v(3442) v(3595)=v(312)*v(3364)+v(311)*v(3386)+v(313)*v(3408)+v(299)*v(3419)+v(297)*v(3430)+v(307)*v(3441) v(3594)=v(312)*v(3363)+v(311)*v(3385)+v(313)*v(3407)+v(299)*v(3418)+v(297)*v(3429)+v(307)*v(3440) v(3593)=v(312)*v(3362)+v(311)*v(3384)+v(313)*v(3406)+v(299)*v(3417)+v(297)*v(3428)+v(307)*v(3439) v(3592)=v(312)*v(3361)+v(311)*v(3383)+v(313)*v(3405)+v(299)*v(3416)+v(297)*v(3427)+v(307)*v(3438) v(3470)=2d0*(v(297)*v(3371)+v(311)*v(3426)+v(313)*v(3448)) v(3481)=-v(3470)/3d0 v(3469)=2d0*(v(297)*v(3370)+v(311)*v(3425)+v(313)*v(3447)) v(3480)=-v(3469)/3d0 v(3468)=2d0*(v(297)*v(3369)+v(311)*v(3424)+v(313)*v(3446)) v(3479)=-v(3468)/3d0 v(3467)=2d0*(v(297)*v(3368)+v(311)*v(3423)+v(313)*v(3445)) v(3478)=-v(3467)/3d0 v(3466)=2d0*(v(297)*v(3367)+v(311)*v(3422)+v(313)*v(3444)) v(3477)=-v(3466)/3d0 v(3465)=2d0*(v(297)*v(3366)+v(311)*v(3421)+v(313)*v(3443)) v(3476)=-v(3465)/3d0 v(3464)=2d0*(v(297)*v(3365)+v(311)*v(3420)+v(313)*v(3442)) v(3475)=-v(3464)/3d0 v(3463)=2d0*(v(297)*v(3364)+v(311)*v(3419)+v(313)*v(3441)) v(3474)=-v(3463)/3d0 v(3462)=2d0*(v(297)*v(3363)+v(311)*v(3418)+v(313)*v(3440)) v(3473)=-v(3462)/3d0 v(3461)=2d0*(v(297)*v(3362)+v(311)*v(3417)+v(313)*v(3439)) v(3472)=-v(3461)/3d0 v(3460)=2d0*(v(297)*v(3361)+v(311)*v(3416)+v(313)*v(3438)) v(3471)=-v(3460)/3d0 v(1095)=v(307)*v(971)+v(313)*v(978) v(1092)=v(307)*v(973)+v(313)*v(977) v(1089)=v(307)*v(972)+v(313)*v(979) v(1041)=v(298)*v(971)+v(313)*v(976) v(1038)=v(298)*v(973)+v(313)*v(975) v(1035)=v(298)*v(972)+v(313)*v(974) v(987)=v(5967)*v(971) v(996)=-v(987)/3d0 v(984)=v(5967)*v(973) v(993)=-v(984)/3d0 v(981)=v(5967)*v(972) v(990)=-v(981)/3d0 v(314)=(Fnew(9)*v(300)+Fnew(3)*v(301)+Fnew(6)*v(302))/v(3348) v(5968)=2d0*v(314) v(3569)=v(307)*v(3382)+v(314)*v(3393)+v(312)*v(3404)+v(298)*v(3415)+v(303)*v(3437)+v(299)*v(3459) v(3568)=v(307)*v(3381)+v(314)*v(3392)+v(312)*v(3403)+v(298)*v(3414)+v(303)*v(3436)+v(299)*v(3458) v(3567)=v(307)*v(3380)+v(314)*v(3391)+v(312)*v(3402)+v(298)*v(3413)+v(303)*v(3435)+v(299)*v(3457) v(3566)=v(307)*v(3379)+v(314)*v(3390)+v(312)*v(3401)+v(298)*v(3412)+v(303)*v(3434)+v(299)*v(3456) v(3565)=v(307)*v(3378)+v(314)*v(3389)+v(312)*v(3400)+v(298)*v(3411)+v(303)*v(3433)+v(299)*v(3455) v(3564)=v(307)*v(3377)+v(314)*v(3388)+v(312)*v(3399)+v(298)*v(3410)+v(303)*v(3432)+v(299)*v(3454) v(3563)=v(307)*v(3376)+v(314)*v(3387)+v(312)*v(3398)+v(298)*v(3409)+v(303)*v(3431)+v(299)*v(3453) v(3562)=v(307)*v(3375)+v(314)*v(3386)+v(312)*v(3397)+v(298)*v(3408)+v(303)*v(3430)+v(299)*v(3452) v(3561)=v(307)*v(3374)+v(314)*v(3385)+v(312)*v(3396)+v(298)*v(3407)+v(303)*v(3429)+v(299)*v(3451) v(3560)=v(307)*v(3373)+v(314)*v(3384)+v(312)*v(3395)+v(298)*v(3406)+v(303)*v(3428)+v(299)*v(3450) v(3559)=v(307)*v(3372)+v(314)*v(3383)+v(312)*v(3394)+v(298)*v(3405)+v(303)*v(3427)+v(299)*v(3449) v(3536)=v(303)*v(3371)+v(313)*v(3382)+v(297)*v(3404)+v(314)*v(3426)+v(298)*v(3448)+v(311)*v(3459) v(3535)=v(303)*v(3370)+v(313)*v(3381)+v(297)*v(3403)+v(314)*v(3425)+v(298)*v(3447)+v(311)*v(3458) v(3534)=v(303)*v(3369)+v(313)*v(3380)+v(297)*v(3402)+v(314)*v(3424)+v(298)*v(3446)+v(311)*v(3457) v(3533)=v(303)*v(3368)+v(313)*v(3379)+v(297)*v(3401)+v(314)*v(3423)+v(298)*v(3445)+v(311)*v(3456) v(3532)=v(303)*v(3367)+v(313)*v(3378)+v(297)*v(3400)+v(314)*v(3422)+v(298)*v(3444)+v(311)*v(3455) v(3531)=v(303)*v(3366)+v(313)*v(3377)+v(297)*v(3399)+v(314)*v(3421)+v(298)*v(3443)+v(311)*v(3454) v(3530)=v(303)*v(3365)+v(313)*v(3376)+v(297)*v(3398)+v(314)*v(3420)+v(298)*v(3442)+v(311)*v(3453) v(3529)=v(303)*v(3364)+v(313)*v(3375)+v(297)*v(3397)+v(314)*v(3419)+v(298)*v(3441)+v(311)*v(3452) v(3528)=v(303)*v(3363)+v(313)*v(3374)+v(297)*v(3396)+v(314)*v(3418)+v(298)*v(3440)+v(311)*v(3451) v(3527)=v(303)*v(3362)+v(313)*v(3373)+v(297)*v(3395)+v(314)*v(3417)+v(298)*v(3439)+v(311)*v(3450) v(3526)=v(303)*v(3361)+v(313)*v(3372)+v(297)*v(3394)+v(314)*v(3416)+v(298)*v(3438)+v(311)*v(3449) v(3492)=2d0*(v(298)*v(3382)+v(303)*v(3404)+v(314)*v(3459)) v(3503)=-v(3492)/3d0 v(3491)=2d0*(v(298)*v(3381)+v(303)*v(3403)+v(314)*v(3458)) v(3502)=-v(3491)/3d0 v(3490)=2d0*(v(298)*v(3380)+v(303)*v(3402)+v(314)*v(3457)) v(3501)=-v(3490)/3d0 v(3489)=2d0*(v(298)*v(3379)+v(303)*v(3401)+v(314)*v(3456)) v(3500)=-v(3489)/3d0 v(3488)=2d0*(v(298)*v(3378)+v(303)*v(3400)+v(314)*v(3455)) v(3499)=-v(3488)/3d0 v(3487)=2d0*(v(298)*v(3377)+v(303)*v(3399)+v(314)*v(3454)) v(3498)=-v(3487)/3d0 v(3486)=2d0*(v(298)*v(3376)+v(303)*v(3398)+v(314)*v(3453)) v(3497)=-v(3486)/3d0 v(3485)=2d0*(v(298)*v(3375)+v(303)*v(3397)+v(314)*v(3452)) v(3496)=-v(3485)/3d0 v(3484)=2d0*(v(298)*v(3374)+v(303)*v(3396)+v(314)*v(3451)) v(3495)=-v(3484)/3d0 v(3483)=2d0*(v(298)*v(3373)+v(303)*v(3395)+v(314)*v(3450)) v(3494)=-v(3483)/3d0 v(3482)=2d0*(v(298)*v(3372)+v(303)*v(3394)+v(314)*v(3449)) v(3493)=-v(3482)/3d0 v(1069)=v(299)*v(974)+v(314)*v(979) v(1066)=v(299)*v(976)+v(314)*v(978) v(1063)=v(299)*v(975)+v(314)*v(977) v(1042)=v(314)*v(972)+v(311)*v(974) v(1039)=v(314)*v(971)+v(311)*v(976) v(1036)=v(314)*v(973)+v(311)*v(975) v(1006)=v(5968)*v(974) v(1015)=-v(1006)/3d0 v(1003)=v(5968)*v(976) v(1012)=-v(1003)/3d0 v(1000)=v(5968)*v(975) v(1009)=-v(1000)/3d0 v(315)=(v(297)*v(297))+(v(311)*v(311))+(v(313)*v(313)) v(335)=-v(315)/3d0 v(316)=(v(298)*v(298))+(v(303)*v(303))+(v(314)*v(314)) v(336)=-v(316)/3d0 v(317)=(v(299)*v(299))+(v(307)*v(307))+(v(312)*v(312)) v(1185)=(2d0/3d0)*v(317)+v(335)+v(336) v(328)=-v(317)/3d0 v(1195)=(2d0/3d0)*v(316)+v(328)+v(335) v(1175)=(2d0/3d0)*v(315)+v(328)+v(336) v(318)=v(297)*v(303)+v(298)*v(313)+v(311)*v(314) v(5969)=2d0*v(318) v(3547)=v(3536)*v(5969) v(3558)=v(316)*v(3470)+v(315)*v(3492)-v(3547) v(3546)=v(3535)*v(5969) v(3557)=v(316)*v(3469)+v(315)*v(3491)-v(3546) v(3545)=v(3534)*v(5969) v(3556)=v(316)*v(3468)+v(315)*v(3490)-v(3545) v(3544)=v(3533)*v(5969) v(3555)=v(316)*v(3467)+v(315)*v(3489)-v(3544) v(3543)=v(3532)*v(5969) v(3554)=v(316)*v(3466)+v(315)*v(3488)-v(3543) v(3542)=v(3531)*v(5969) v(3553)=v(316)*v(3465)+v(315)*v(3487)-v(3542) v(3541)=v(3530)*v(5969) v(3552)=v(316)*v(3464)+v(315)*v(3486)-v(3541) v(3540)=v(3529)*v(5969) v(3551)=v(316)*v(3463)+v(315)*v(3485)-v(3540) v(3539)=v(3528)*v(5969) v(3550)=v(316)*v(3462)+v(315)*v(3484)-v(3539) v(3538)=v(3527)*v(5969) v(3549)=v(316)*v(3461)+v(315)*v(3483)-v(3538) v(3537)=v(3526)*v(5969) v(3548)=v(316)*v(3460)+v(315)*v(3482)-v(3537) v(1051)=v(1042)*v(5969) v(1060)=-v(1051)+v(1006)*v(315)+v(316)*v(988) v(1050)=v(1041)*v(5969) v(1059)=-v(1050)+v(1005)*v(315)+v(316)*v(987) v(1049)=v(1040)*v(5969) v(1058)=-v(1049)+v(1004)*v(315)+v(316)*v(986) v(1048)=v(1039)*v(5969) v(1057)=-v(1048)+v(1003)*v(315)+v(316)*v(985) v(1047)=v(1038)*v(5969) v(1056)=-v(1047)+v(1002)*v(315)+v(316)*v(984) v(1046)=v(1037)*v(5969) v(1055)=-v(1046)+v(1001)*v(315)+v(316)*v(983) v(1045)=v(1036)*v(5969) v(1054)=-v(1045)+v(1000)*v(315)+v(316)*v(982) v(1044)=v(1035)*v(5969) v(1053)=-v(1044)+v(316)*v(981)+v(315)*v(999) v(1043)=v(1034)*v(5969) v(1052)=-v(1043)+v(316)*v(980)+v(315)*v(998) v(334)=(v(318)*v(318)) v(350)=v(315)*v(316)-v(334) v(319)=v(298)*v(307)+v(303)*v(312)+v(299)*v(314) v(5993)=v(319)*v(3592) v(5991)=v(319)*v(3593) v(5989)=v(319)*v(3594) v(5987)=v(319)*v(3595) v(5985)=v(319)*v(3596) v(5983)=v(319)*v(3597) v(5981)=v(319)*v(3598) v(5979)=v(319)*v(3599) v(5977)=v(319)*v(3600) v(5975)=v(319)*v(3601) v(5973)=v(319)*v(3602) v(5970)=2d0*v(319) v(3580)=v(3569)*v(5970) v(3591)=v(317)*v(3492)+v(316)*v(3514)-v(3580) v(3579)=v(3568)*v(5970) v(3590)=v(317)*v(3491)+v(316)*v(3513)-v(3579) v(3578)=v(3567)*v(5970) v(3589)=v(317)*v(3490)+v(316)*v(3512)-v(3578) v(3577)=v(3566)*v(5970) v(3588)=v(317)*v(3489)+v(316)*v(3511)-v(3577) v(3576)=v(3565)*v(5970) v(3587)=v(317)*v(3488)+v(316)*v(3510)-v(3576) v(3575)=v(3564)*v(5970) v(3586)=v(317)*v(3487)+v(316)*v(3509)-v(3575) v(3574)=v(3563)*v(5970) v(3585)=v(317)*v(3486)+v(316)*v(3508)-v(3574) v(3573)=v(3562)*v(5970) v(3584)=v(317)*v(3485)+v(316)*v(3507)-v(3573) v(3572)=v(3561)*v(5970) v(3583)=v(317)*v(3484)+v(316)*v(3506)-v(3572) v(3571)=v(3560)*v(5970) v(3582)=v(317)*v(3483)+v(316)*v(3505)-v(3571) v(3570)=v(3559)*v(5970) v(3581)=v(317)*v(3482)+v(316)*v(3504)-v(3570) v(1145)=v(318)*v(5970) v(1078)=v(1069)*v(5970) v(1087)=-v(1078)+v(1024)*v(316)+v(1006)*v(317) v(1077)=v(1068)*v(5970) v(1086)=-v(1077)+v(1023)*v(316)+v(1005)*v(317) v(1076)=v(1067)*v(5970) v(1085)=-v(1076)+v(1022)*v(316)+v(1004)*v(317) v(1075)=v(1066)*v(5970) v(1084)=-v(1075)+v(1021)*v(316)+v(1003)*v(317) v(1074)=v(1065)*v(5970) v(1083)=-v(1074)+v(1020)*v(316)+v(1002)*v(317) v(1073)=v(1064)*v(5970) v(1082)=-v(1073)+v(1019)*v(316)+v(1001)*v(317) v(1072)=v(1063)*v(5970) v(1081)=-v(1072)+v(1018)*v(316)+v(1000)*v(317) v(1071)=v(1062)*v(5970) v(1080)=-v(1071)+v(1017)*v(316)+v(317)*v(999) v(1070)=v(1061)*v(5970) v(1079)=-v(1070)+v(1016)*v(316)+v(317)*v(998) v(322)=(v(319)*v(319)) v(339)=v(316)*v(317)-v(322) v(320)=v(299)*v(311)+v(297)*v(312)+v(307)*v(313) v(5992)=v(320)*v(3559) v(5990)=v(320)*v(3560) v(5988)=v(320)*v(3561) v(5986)=v(320)*v(3562) v(5984)=v(320)*v(3563) v(5982)=v(320)*v(3564) v(5980)=v(320)*v(3565) v(5978)=v(320)*v(3566) v(5976)=v(320)*v(3567) v(5974)=v(320)*v(3568) v(5972)=v(320)*v(3569) v(5971)=2d0*v(320) v(3646)=v(3602)*v(5971) v(3657)=v(317)*v(3470)+v(315)*v(3514)-v(3646) v(3645)=v(3601)*v(5971) v(3656)=v(317)*v(3469)+v(315)*v(3513)-v(3645) v(3644)=v(3600)*v(5971) v(3655)=v(317)*v(3468)+v(315)*v(3512)-v(3644) v(3643)=v(3599)*v(5971) v(3654)=v(317)*v(3467)+v(315)*v(3511)-v(3643) v(3642)=v(3598)*v(5971) v(3653)=v(317)*v(3466)+v(315)*v(3510)-v(3642) v(3641)=v(3597)*v(5971) v(3652)=v(317)*v(3465)+v(315)*v(3509)-v(3641) v(3640)=v(3596)*v(5971) v(3651)=v(317)*v(3464)+v(315)*v(3508)-v(3640) v(3639)=v(3595)*v(5971) v(3650)=v(317)*v(3463)+v(315)*v(3507)-v(3639) v(3638)=v(3594)*v(5971) v(3649)=v(317)*v(3462)+v(315)*v(3506)-v(3638) v(3637)=v(3593)*v(5971) v(3648)=v(317)*v(3461)+v(315)*v(3505)-v(3637) v(3636)=v(3592)*v(5971) v(3647)=v(317)*v(3460)+v(315)*v(3504)-v(3636) v(3635)=-(v(318)*v(3514))-v(317)*v(3536)+v(5972)+v(5973) v(3634)=-(v(318)*v(3513))-v(317)*v(3535)+v(5974)+v(5975) v(3633)=-(v(318)*v(3512))-v(317)*v(3534)+v(5976)+v(5977) v(3632)=-(v(318)*v(3511))-v(317)*v(3533)+v(5978)+v(5979) v(3631)=-(v(318)*v(3510))-v(317)*v(3532)+v(5980)+v(5981) v(3630)=-(v(318)*v(3509))-v(317)*v(3531)+v(5982)+v(5983) v(3629)=-(v(318)*v(3508))-v(317)*v(3530)+v(5984)+v(5985) v(3628)=-(v(318)*v(3507))-v(317)*v(3529)+v(5986)+v(5987) v(3627)=-(v(318)*v(3506))-v(317)*v(3528)+v(5988)+v(5989) v(3626)=-(v(318)*v(3505))-v(317)*v(3527)+v(5990)+v(5991) v(3625)=-(v(318)*v(3504))-v(317)*v(3526)+v(5992)+v(5993) v(3624)=-(v(319)*v(3470))+v(320)*v(3536)-v(315)*v(3569)+v(318)*v(3602) v(3623)=-(v(319)*v(3469))+v(320)*v(3535)-v(315)*v(3568)+v(318)*v(3601) v(3622)=-(v(319)*v(3468))+v(320)*v(3534)-v(315)*v(3567)+v(318)*v(3600) v(3621)=-(v(319)*v(3467))+v(320)*v(3533)-v(315)*v(3566)+v(318)*v(3599) v(3620)=-(v(319)*v(3466))+v(320)*v(3532)-v(315)*v(3565)+v(318)*v(3598) v(3619)=-(v(319)*v(3465))+v(320)*v(3531)-v(315)*v(3564)+v(318)*v(3597) v(3618)=-(v(319)*v(3464))+v(320)*v(3530)-v(315)*v(3563)+v(318)*v(3596) v(3617)=-(v(319)*v(3463))+v(320)*v(3529)-v(315)*v(3562)+v(318)*v(3595) v(3616)=-(v(319)*v(3462))+v(320)*v(3528)-v(315)*v(3561)+v(318)*v(3594) v(3615)=-(v(319)*v(3461))+v(320)*v(3527)-v(315)*v(3560)+v(318)*v(3593) v(3614)=-(v(319)*v(3460))+v(320)*v(3526)-v(315)*v(3559)+v(318)*v(3592) v(3613)=-(v(320)*v(3492))+v(319)*v(3536)+v(318)*v(3569)-v(316)*v(3602) v(3612)=-(v(320)*v(3491))+v(319)*v(3535)+v(318)*v(3568)-v(316)*v(3601) v(3611)=-(v(320)*v(3490))+v(319)*v(3534)+v(318)*v(3567)-v(316)*v(3600) v(3610)=-(v(320)*v(3489))+v(319)*v(3533)+v(318)*v(3566)-v(316)*v(3599) v(3609)=-(v(320)*v(3488))+v(319)*v(3532)+v(318)*v(3565)-v(316)*v(3598) v(3608)=-(v(320)*v(3487))+v(319)*v(3531)+v(318)*v(3564)-v(316)*v(3597) v(3607)=-(v(320)*v(3486))+v(319)*v(3530)+v(318)*v(3563)-v(316)*v(3596) v(3606)=-(v(320)*v(3485))+v(319)*v(3529)+v(318)*v(3562)-v(316)*v(3595) v(3605)=-(v(320)*v(3484))+v(319)*v(3528)+v(318)*v(3561)-v(316)*v(3594) v(3604)=-(v(320)*v(3483))+v(319)*v(3527)+v(318)*v(3560)-v(316)*v(3593) v(3603)=-(v(320)*v(3482))+v(319)*v(3526)+v(318)*v(3559)-v(316)*v(3592) v(1144)=v(318)*v(5971) v(1142)=v(319)*v(5971) v(1132)=v(1096)*v(5971) v(1141)=-v(1132)+v(1024)*v(315)+v(317)*v(988) v(1131)=v(1095)*v(5971) v(1140)=-v(1131)+v(1023)*v(315)+v(317)*v(987) v(1130)=v(1094)*v(5971) v(1139)=-v(1130)+v(1022)*v(315)+v(317)*v(986) v(1129)=v(1093)*v(5971) v(1138)=-v(1129)+v(1021)*v(315)+v(317)*v(985) v(1128)=v(1092)*v(5971) v(1137)=-v(1128)+v(1020)*v(315)+v(317)*v(984) v(1127)=v(1091)*v(5971) v(1136)=-v(1127)+v(1019)*v(315)+v(317)*v(983) v(1126)=v(1090)*v(5971) v(1135)=-v(1126)+v(1018)*v(315)+v(317)*v(982) v(1125)=v(1089)*v(5971) v(1134)=-v(1125)+v(1017)*v(315)+v(317)*v(981) v(1124)=v(1088)*v(5971) v(1133)=-v(1124)+v(1016)*v(315)+v(317)*v(980) v(1123)=-(v(1042)*v(317))-v(1024)*v(318)+v(1096)*v(319)+v(1069)*v(320) v(1122)=-(v(1041)*v(317))-v(1023)*v(318)+v(1095)*v(319)+v(1068)*v(320) v(1121)=-(v(1040)*v(317))-v(1022)*v(318)+v(1094)*v(319)+v(1067)*v(320) v(1120)=-(v(1039)*v(317))-v(1021)*v(318)+v(1093)*v(319)+v(1066)*v(320) v(1119)=-(v(1038)*v(317))-v(1020)*v(318)+v(1092)*v(319)+v(1065)*v(320) v(1118)=-(v(1037)*v(317))-v(1019)*v(318)+v(1091)*v(319)+v(1064)*v(320) v(1117)=-(v(1036)*v(317))-v(1018)*v(318)+v(1090)*v(319)+v(1063)*v(320) v(1116)=-(v(1035)*v(317))-v(1017)*v(318)+v(1089)*v(319)+v(1062)*v(320) v(1115)=-(v(1034)*v(317))-v(1016)*v(318)+v(1088)*v(319)+v(1061)*v(320) v(1114)=-(v(1069)*v(315))+v(1096)*v(318)+v(1042)*v(320)-v(319)*v(988) v(1113)=-(v(1068)*v(315))+v(1095)*v(318)+v(1041)*v(320)-v(319)*v(987) v(1112)=-(v(1067)*v(315))+v(1094)*v(318)+v(1040)*v(320)-v(319)*v(986) v(1111)=-(v(1066)*v(315))+v(1093)*v(318)+v(1039)*v(320)-v(319)*v(985) v(1110)=-(v(1065)*v(315))+v(1092)*v(318)+v(1038)*v(320)-v(319)*v(984) v(1109)=-(v(1064)*v(315))+v(1091)*v(318)+v(1037)*v(320)-v(319)*v(983) v(1108)=-(v(1063)*v(315))+v(1090)*v(318)+v(1036)*v(320)-v(319)*v(982) v(1107)=-(v(1062)*v(315))+v(1089)*v(318)+v(1035)*v(320)-v(319)*v(981) v(1106)=-(v(1061)*v(315))+v(1088)*v(318)+v(1034)*v(320)-v(319)*v(980) v(1105)=-(v(1096)*v(316))+v(1069)*v(318)+v(1042)*v(319)-v(1006)*v(320) v(1104)=-(v(1095)*v(316))+v(1068)*v(318)+v(1041)*v(319)-v(1005)*v(320) v(1103)=-(v(1094)*v(316))+v(1067)*v(318)+v(1040)*v(319)-v(1004)*v(320) v(1102)=-(v(1093)*v(316))+v(1066)*v(318)+v(1039)*v(319)-v(1003)*v(320) v(1101)=-(v(1092)*v(316))+v(1065)*v(318)+v(1038)*v(319)-v(1002)*v(320) v(1100)=-(v(1091)*v(316))+v(1064)*v(318)+v(1037)*v(319)-v(1001)*v(320) v(1099)=-(v(1090)*v(316))+v(1063)*v(318)+v(1036)*v(319)-v(1000)*v(320) v(1098)=-(v(1089)*v(316))+v(1062)*v(318)+v(1035)*v(319)-v(320)*v(999) v(1097)=-(v(1088)*v(316))+v(1061)*v(318)+v(1034)*v(319)-v(320)*v(998) v(351)=v(318)*v(319)-v(316)*v(320) v(346)=-(v(315)*v(319))+v(318)*v(320) v(341)=-(v(317)*v(318))+v(319)*v(320) v(326)=(v(320)*v(320)) v(3679)=-(v(322)*v(3470))-v(326)*v(3492)+v(350)*v(3514)+v(1142)*v(3536)+v(317)*v(3558)-v(315)*v(3580)-v(316)*v(3646)& &+2d0*v(318)*(v(5972)+v(5973)) v(3677)=-(v(322)*v(3469))-v(326)*v(3491)+v(350)*v(3513)+v(1142)*v(3535)+v(317)*v(3557)-v(315)*v(3579)-v(316)*v(3645)& &+2d0*v(318)*(v(5974)+v(5975)) v(3675)=-(v(322)*v(3468))-v(326)*v(3490)+v(350)*v(3512)+v(1142)*v(3534)+v(317)*v(3556)-v(315)*v(3578)-v(316)*v(3644)& &+2d0*v(318)*(v(5976)+v(5977)) v(3673)=-(v(322)*v(3467))-v(326)*v(3489)+v(350)*v(3511)+v(1142)*v(3533)+v(317)*v(3555)-v(315)*v(3577)-v(316)*v(3643)& &+2d0*v(318)*(v(5978)+v(5979)) v(3671)=-(v(322)*v(3466))-v(326)*v(3488)+v(350)*v(3510)+v(1142)*v(3532)+v(317)*v(3554)-v(315)*v(3576)-v(316)*v(3642)& &+2d0*v(318)*(v(5980)+v(5981)) v(3669)=-(v(322)*v(3465))-v(326)*v(3487)+v(350)*v(3509)+v(1142)*v(3531)+v(317)*v(3553)-v(315)*v(3575)-v(316)*v(3641)& &+2d0*v(318)*(v(5982)+v(5983)) v(3667)=-(v(322)*v(3464))-v(326)*v(3486)+v(350)*v(3508)+v(1142)*v(3530)+v(317)*v(3552)-v(315)*v(3574)-v(316)*v(3640)& &+2d0*v(318)*(v(5984)+v(5985)) v(3665)=-(v(322)*v(3463))-v(326)*v(3485)+v(350)*v(3507)+v(1142)*v(3529)+v(317)*v(3551)-v(315)*v(3573)-v(316)*v(3639)& &+2d0*v(318)*(v(5986)+v(5987)) v(3663)=-(v(322)*v(3462))-v(326)*v(3484)+v(350)*v(3506)+v(1142)*v(3528)+v(317)*v(3550)-v(315)*v(3572)-v(316)*v(3638)& &+2d0*v(318)*(v(5988)+v(5989)) v(3661)=-(v(322)*v(3461))-v(326)*v(3483)+v(350)*v(3505)+v(1142)*v(3527)+v(317)*v(3549)-v(315)*v(3571)-v(316)*v(3637)& &+2d0*v(318)*(v(5990)+v(5991)) v(3659)=-(v(322)*v(3460))-v(326)*v(3482)+v(350)*v(3504)+v(1142)*v(3526)+v(317)*v(3548)-v(315)*v(3570)-v(316)*v(3636)& &+2d0*v(318)*(v(5992)+v(5993)) v(1153)=v(1042)*v(1142)+v(1069)*v(1144)+v(1096)*v(1145)-v(1078)*v(315)-v(1132)*v(316)+v(1060)*v(317)-v(1006)*v(326)+v& &(1024)*v(350)-v(322)*v(988) v(1152)=v(1041)*v(1142)+v(1068)*v(1144)+v(1095)*v(1145)-v(1077)*v(315)-v(1131)*v(316)+v(1059)*v(317)-v(1005)*v(326)+v& &(1023)*v(350)-v(322)*v(987) v(1151)=v(1040)*v(1142)+v(1067)*v(1144)+v(1094)*v(1145)-v(1076)*v(315)-v(1130)*v(316)+v(1058)*v(317)-v(1004)*v(326)+v& &(1022)*v(350)-v(322)*v(986) v(1150)=v(1039)*v(1142)+v(1066)*v(1144)+v(1093)*v(1145)-v(1075)*v(315)-v(1129)*v(316)+v(1057)*v(317)-v(1003)*v(326)+v& &(1021)*v(350)-v(322)*v(985) v(1149)=v(1038)*v(1142)+v(1065)*v(1144)+v(1092)*v(1145)-v(1074)*v(315)-v(1128)*v(316)+v(1056)*v(317)-v(1002)*v(326)+v& &(1020)*v(350)-v(322)*v(984) v(1148)=v(1037)*v(1142)+v(1064)*v(1144)+v(1091)*v(1145)-v(1073)*v(315)-v(1127)*v(316)+v(1055)*v(317)-v(1001)*v(326)+v& &(1019)*v(350)-v(322)*v(983) v(1147)=v(1036)*v(1142)+v(1063)*v(1144)+v(1090)*v(1145)-v(1072)*v(315)-v(1126)*v(316)+v(1054)*v(317)-v(1000)*v(326)+v& &(1018)*v(350)-v(322)*v(982) v(1146)=v(1035)*v(1142)+v(1062)*v(1144)+v(1089)*v(1145)-v(1071)*v(315)-v(1125)*v(316)+v(1053)*v(317)+v(1017)*v(350)-v& &(322)*v(981)-v(326)*v(999) v(1143)=v(1034)*v(1142)+v(1061)*v(1144)+v(1088)*v(1145)-v(1070)*v(315)-v(1124)*v(316)+v(1052)*v(317)+v(1016)*v(350)-v& &(322)*v(980)-v(326)*v(998) v(345)=v(315)*v(317)-v(326) v(323)=v(1142)*v(318)-v(315)*v(322)-v(316)*v(326)+v(317)*v(350) v(6030)=v(341)/v(323) v(5997)=sqrt(v(323)) v(3680)=1d0/v(5997) v(5996)=mpar(2)*(1d0-v(3680)/2d0) v(5994)=-(mpar(2)*((-2d0)+v(3680)))/2d0 v(3702)=v(3679)*v(5994) v(3700)=v(3677)*v(5994) v(3698)=v(3675)*v(5994) v(3696)=v(3673)*v(5994) v(3694)=v(3671)*v(5994) v(3692)=v(3669)*v(5994) v(3690)=v(3667)*v(5994) v(3688)=v(3665)*v(5994) v(3686)=v(3663)*v(5994) v(3684)=v(3661)*v(5994) v(3682)=v(3659)*v(5994) v(1216)=1d0/v(323)**0.23333333333333334d1 v(3801)=(-4d0/3d0)*v(1216)*v(3679) v(3800)=(-4d0/3d0)*v(1216)*v(3677) v(3799)=(-4d0/3d0)*v(1216)*v(3675) v(3798)=(-4d0/3d0)*v(1216)*v(3673) v(3797)=(-4d0/3d0)*v(1216)*v(3671) v(3796)=(-4d0/3d0)*v(1216)*v(3669) v(3795)=(-4d0/3d0)*v(1216)*v(3667) v(3794)=(-4d0/3d0)*v(1216)*v(3665) v(3793)=(-4d0/3d0)*v(1216)*v(3663) v(3792)=(-4d0/3d0)*v(1216)*v(3661) v(3791)=(-4d0/3d0)*v(1216)*v(3659) v(1224)=(-4d0/3d0)*v(1153)*v(1216) v(1223)=(-4d0/3d0)*v(1152)*v(1216) v(1222)=(-4d0/3d0)*v(1151)*v(1216) v(1221)=(-4d0/3d0)*v(1150)*v(1216) v(1220)=(-4d0/3d0)*v(1149)*v(1216) v(1219)=(-4d0/3d0)*v(1148)*v(1216) v(1218)=(-4d0/3d0)*v(1147)*v(1216) v(1217)=(-4d0/3d0)*v(1146)*v(1216) v(1215)=(-4d0/3d0)*v(1143)*v(1216) v(1206)=1d0/v(323)**2 v(3790)=-(v(1206)*v(3679)) v(3789)=-(v(1206)*v(3677)) v(3788)=-(v(1206)*v(3675)) v(3787)=-(v(1206)*v(3673)) v(3786)=-(v(1206)*v(3671)) v(3785)=-(v(1206)*v(3669)) v(3784)=-(v(1206)*v(3667)) v(3783)=-(v(1206)*v(3665)) v(3782)=-(v(1206)*v(3663)) v(3781)=-(v(1206)*v(3661)) v(3780)=-(v(1206)*v(3659)) v(1214)=-(v(1153)*v(1206)) v(1213)=-(v(1152)*v(1206)) v(1212)=-(v(1151)*v(1206)) v(1211)=-(v(1150)*v(1206)) v(1210)=-(v(1149)*v(1206)) v(1209)=-(v(1148)*v(1206)) v(1208)=-(v(1147)*v(1206)) v(1207)=-(v(1146)*v(1206)) v(1205)=-(v(1143)*v(1206)) v(1165)=1d0/v(323)**0.13333333333333333d1 v(6026)=mpar(1)*v(1165) v(5995)=-v(1165)/3d0 v(3713)=v(3679)*v(5995) v(3712)=v(3677)*v(5995) v(3711)=v(3675)*v(5995) v(3710)=v(3673)*v(5995) v(3709)=v(3671)*v(5995) v(3708)=v(3669)*v(5995) v(3707)=v(3667)*v(5995) v(3706)=v(3665)*v(5995) v(3705)=v(3663)*v(5995) v(3704)=v(3661)*v(5995) v(3703)=v(3659)*v(5995) v(1174)=v(1153)*v(5995) v(1173)=v(1152)*v(5995) v(1172)=v(1151)*v(5995) v(1171)=v(1150)*v(5995) v(1170)=v(1149)*v(5995) v(1169)=v(1148)*v(5995) v(1168)=v(1147)*v(5995) v(1167)=v(1146)*v(5995) v(1166)=v(1143)*v(5995) v(1164)=v(1153)*v(5996) v(1163)=v(1152)*v(5996) v(1162)=v(1151)*v(5996) v(1161)=v(1150)*v(5996) v(1160)=v(1149)*v(5996) v(1159)=v(1148)*v(5996) v(1158)=v(1147)*v(5996) v(1157)=v(1146)*v(5996) v(1155)=v(1143)*v(5996) v(330)=mpar(2)*(v(323)-v(5997)) v(329)=1d0/v(323)**0.3333333333333333d0 v(6025)=mpar(1)*v(329) v(6024)=mpar(1)*(v(1166)*v(1195)+v(329)*(v(1025)+v(989)+(2d0/3d0)*v(998))) v(6023)=mpar(1)*(v(1166)*v(1185)+v(329)*(v(1007)+(2d0/3d0)*v(1016)+v(989))) v(6022)=mpar(1)*(v(1166)*v(1175)+v(329)*(v(1007)+v(1025)+(2d0/3d0)*v(980))) v(6021)=mpar(1)*(v(1167)*v(1195)+v(329)*(v(1026)+v(990)+(2d0/3d0)*v(999))) v(6020)=mpar(1)*(v(1167)*v(1185)+v(329)*(v(1008)+(2d0/3d0)*v(1017)+v(990))) v(6019)=mpar(1)*(v(1167)*v(1175)+v(329)*(v(1008)+v(1026)+(2d0/3d0)*v(981))) v(6018)=mpar(1)*(v(1168)*v(1195)+v(329)*((2d0/3d0)*v(1000)+v(1027)+v(991))) v(6017)=mpar(1)*(v(1168)*v(1185)+v(329)*(v(1009)+(2d0/3d0)*v(1018)+v(991))) v(6016)=mpar(1)*(v(1168)*v(1175)+v(329)*(v(1009)+v(1027)+(2d0/3d0)*v(982))) v(6015)=mpar(1)*(v(1169)*v(1195)+v(329)*((2d0/3d0)*v(1001)+v(1028)+v(992))) v(6014)=mpar(1)*(v(1169)*v(1185)+v(329)*(v(1010)+(2d0/3d0)*v(1019)+v(992))) v(6013)=mpar(1)*(v(1169)*v(1175)+v(329)*(v(1010)+v(1028)+(2d0/3d0)*v(983))) v(6012)=mpar(1)*(v(1170)*v(1195)+v(329)*((2d0/3d0)*v(1002)+v(1029)+v(993))) v(6011)=mpar(1)*(v(1170)*v(1185)+v(329)*(v(1011)+(2d0/3d0)*v(1020)+v(993))) v(6010)=mpar(1)*(v(1170)*v(1175)+v(329)*(v(1011)+v(1029)+(2d0/3d0)*v(984))) v(6009)=mpar(1)*(v(1171)*v(1195)+v(329)*((2d0/3d0)*v(1003)+v(1030)+v(994))) v(6008)=mpar(1)*(v(1171)*v(1185)+v(329)*(v(1012)+(2d0/3d0)*v(1021)+v(994))) v(6007)=mpar(1)*(v(1171)*v(1175)+v(329)*(v(1012)+v(1030)+(2d0/3d0)*v(985))) v(6006)=mpar(1)*(v(1172)*v(1195)+v(329)*((2d0/3d0)*v(1004)+v(1031)+v(995))) v(6005)=mpar(1)*(v(1172)*v(1185)+v(329)*(v(1013)+(2d0/3d0)*v(1022)+v(995))) v(6004)=mpar(1)*(v(1172)*v(1175)+v(329)*(v(1013)+v(1031)+(2d0/3d0)*v(986))) v(6003)=mpar(1)*(v(1173)*v(1195)+v(329)*((2d0/3d0)*v(1005)+v(1032)+v(996))) v(6002)=mpar(1)*(v(1173)*v(1185)+v(329)*(v(1014)+(2d0/3d0)*v(1023)+v(996))) v(6001)=mpar(1)*(v(1173)*v(1175)+v(329)*(v(1014)+v(1032)+(2d0/3d0)*v(987))) v(6000)=mpar(1)*(v(1174)*v(1195)+v(329)*((2d0/3d0)*v(1006)+v(1033)+v(997))) v(5999)=mpar(1)*(v(1174)*v(1185)+v(329)*(v(1015)+(2d0/3d0)*v(1024)+v(997))) v(5998)=mpar(1)*(v(1174)*v(1175)+v(329)*(v(1015)+v(1033)+(2d0/3d0)*v(988))) v(3779)=v(3702)+mpar(1)*(v(329)*(v(3481)+(2d0/3d0)*v(3492)+v(3525))+v(1195)*v(3713)) v(3777)=v(3700)+mpar(1)*(v(329)*(v(3480)+(2d0/3d0)*v(3491)+v(3524))+v(1195)*v(3712)) v(3775)=v(3698)+mpar(1)*(v(329)*(v(3479)+(2d0/3d0)*v(3490)+v(3523))+v(1195)*v(3711)) v(3773)=v(3696)+mpar(1)*(v(329)*(v(3478)+(2d0/3d0)*v(3489)+v(3522))+v(1195)*v(3710)) v(3771)=v(3694)+mpar(1)*(v(329)*(v(3477)+(2d0/3d0)*v(3488)+v(3521))+v(1195)*v(3709)) v(3769)=v(3692)+mpar(1)*(v(329)*(v(3476)+(2d0/3d0)*v(3487)+v(3520))+v(1195)*v(3708)) v(3767)=v(3690)+mpar(1)*(v(329)*(v(3475)+(2d0/3d0)*v(3486)+v(3519))+v(1195)*v(3707)) v(3765)=v(3688)+mpar(1)*(v(329)*(v(3474)+(2d0/3d0)*v(3485)+v(3518))+v(1195)*v(3706)) v(3763)=v(3686)+mpar(1)*(v(329)*(v(3473)+(2d0/3d0)*v(3484)+v(3517))+v(1195)*v(3705)) v(3761)=v(3684)+mpar(1)*(v(329)*(v(3472)+(2d0/3d0)*v(3483)+v(3516))+v(1195)*v(3704)) v(3759)=v(3682)+mpar(1)*(v(329)*(v(3471)+(2d0/3d0)*v(3482)+v(3515))+v(1195)*v(3703)) v(3757)=v(3702)+mpar(1)*(v(329)*(v(3481)+v(3503)+(2d0/3d0)*v(3514))+v(1185)*v(3713)) v(3755)=v(3700)+mpar(1)*(v(329)*(v(3480)+v(3502)+(2d0/3d0)*v(3513))+v(1185)*v(3712)) v(3753)=v(3698)+mpar(1)*(v(329)*(v(3479)+v(3501)+(2d0/3d0)*v(3512))+v(1185)*v(3711)) v(3751)=v(3696)+mpar(1)*(v(329)*(v(3478)+v(3500)+(2d0/3d0)*v(3511))+v(1185)*v(3710)) v(3749)=v(3694)+mpar(1)*(v(329)*(v(3477)+v(3499)+(2d0/3d0)*v(3510))+v(1185)*v(3709)) v(3747)=v(3692)+mpar(1)*(v(329)*(v(3476)+v(3498)+(2d0/3d0)*v(3509))+v(1185)*v(3708)) v(3745)=v(3690)+mpar(1)*(v(329)*(v(3475)+v(3497)+(2d0/3d0)*v(3508))+v(1185)*v(3707)) v(3743)=v(3688)+mpar(1)*(v(329)*(v(3474)+v(3496)+(2d0/3d0)*v(3507))+v(1185)*v(3706)) v(3741)=v(3686)+mpar(1)*(v(329)*(v(3473)+v(3495)+(2d0/3d0)*v(3506))+v(1185)*v(3705)) v(3739)=v(3684)+mpar(1)*(v(329)*(v(3472)+v(3494)+(2d0/3d0)*v(3505))+v(1185)*v(3704)) v(3737)=v(3682)+mpar(1)*(v(329)*(v(3471)+v(3493)+(2d0/3d0)*v(3504))+v(1185)*v(3703)) v(3735)=v(3702)+mpar(1)*(v(329)*((2d0/3d0)*v(3470)+v(3503)+v(3525))+v(1175)*v(3713)) v(3733)=v(3700)+mpar(1)*(v(329)*((2d0/3d0)*v(3469)+v(3502)+v(3524))+v(1175)*v(3712)) v(3731)=v(3698)+mpar(1)*(v(329)*((2d0/3d0)*v(3468)+v(3501)+v(3523))+v(1175)*v(3711)) v(3729)=v(3696)+mpar(1)*(v(329)*((2d0/3d0)*v(3467)+v(3500)+v(3522))+v(1175)*v(3710)) v(3727)=v(3694)+mpar(1)*(v(329)*((2d0/3d0)*v(3466)+v(3499)+v(3521))+v(1175)*v(3709)) v(3725)=v(3692)+mpar(1)*(v(329)*((2d0/3d0)*v(3465)+v(3498)+v(3520))+v(1175)*v(3708)) v(3723)=v(3690)+mpar(1)*(v(329)*((2d0/3d0)*v(3464)+v(3497)+v(3519))+v(1175)*v(3707)) v(3721)=v(3688)+mpar(1)*(v(329)*((2d0/3d0)*v(3463)+v(3496)+v(3518))+v(1175)*v(3706)) v(3719)=v(3686)+mpar(1)*(v(329)*((2d0/3d0)*v(3462)+v(3495)+v(3517))+v(1175)*v(3705)) v(3717)=v(3684)+mpar(1)*(v(329)*((2d0/3d0)*v(3461)+v(3494)+v(3516))+v(1175)*v(3704)) v(3715)=v(3682)+mpar(1)*(v(329)*((2d0/3d0)*v(3460)+v(3493)+v(3515))+v(1175)*v(3703)) v(1204)=v(1164)+v(6000) v(1203)=v(1163)+v(6003) v(1202)=v(1162)+v(6006) v(1201)=v(1161)+v(6009) v(1200)=v(1160)+v(6012) v(1199)=v(1159)+v(6015) v(1198)=v(1158)+v(6018) v(1197)=v(1157)+v(6021) v(1196)=v(1155)+v(6024) v(1194)=v(1164)+v(5999) v(1193)=v(1163)+v(6002) v(1192)=v(1162)+v(6005) v(1191)=v(1161)+v(6008) v(1190)=v(1160)+v(6011) v(1189)=v(1159)+v(6014) v(1188)=v(1158)+v(6017) v(1187)=v(1157)+v(6020) v(1186)=v(1155)+v(6023) v(1184)=v(1164)+v(5998) v(1183)=v(1163)+v(6001) v(1182)=v(1162)+v(6004) v(1181)=v(1161)+v(6007) v(1180)=v(1160)+v(6010) v(1179)=v(1159)+v(6013) v(1178)=v(1158)+v(6016) v(1177)=v(1157)+v(6019) v(1176)=v(1155)+v(6022) v(352)=v(330)+v(1175)*v(6025) v(6032)=v(339)*v(352) v(6029)=v(351)*v(352) v(654)=-v(352)/3d0 v(360)=v(352)-x(2)-x(7) v(364)=-v(360)/3d0 v(347)=v(330)+v(1185)*v(6025) v(6028)=v(347)*v(350) v(6027)=v(346)*v(347) v(651)=-v(347)/3d0 v(363)=-v(347)+v(5542)+v(5550) v(359)=v(363)/3d0 v(342)=v(330)+v(1195)*v(6025) v(6031)=v(342)*v(345) v(653)=-v(342)/3d0 v(358)=-v(342)+x(3)+x(8) v(362)=v(358)/3d0 v(3845)=mpar(1)*(v(1165)*v(3536)+v(318)*v(3801)) v(3844)=mpar(1)*(v(1165)*v(3535)+v(318)*v(3800)) v(3843)=mpar(1)*(v(1165)*v(3534)+v(318)*v(3799)) v(3842)=mpar(1)*(v(1165)*v(3533)+v(318)*v(3798)) v(3841)=mpar(1)*(v(1165)*v(3532)+v(318)*v(3797)) v(3840)=mpar(1)*(v(1165)*v(3531)+v(318)*v(3796)) v(3839)=mpar(1)*(v(1165)*v(3530)+v(318)*v(3795)) v(3838)=mpar(1)*(v(1165)*v(3529)+v(318)*v(3794)) v(3837)=mpar(1)*(v(1165)*v(3528)+v(318)*v(3793)) v(3836)=mpar(1)*(v(1165)*v(3527)+v(318)*v(3792)) v(3835)=mpar(1)*(v(1165)*v(3526)+v(318)*v(3791)) v(3834)=mpar(1)*(v(1165)*v(3613)+v(351)*v(3801)) v(3833)=mpar(1)*(v(1165)*v(3612)+v(351)*v(3800)) v(3832)=mpar(1)*(v(1165)*v(3611)+v(351)*v(3799)) v(3831)=mpar(1)*(v(1165)*v(3610)+v(351)*v(3798)) v(3830)=mpar(1)*(v(1165)*v(3609)+v(351)*v(3797)) v(3829)=mpar(1)*(v(1165)*v(3608)+v(351)*v(3796)) v(3828)=mpar(1)*(v(1165)*v(3607)+v(351)*v(3795)) v(3827)=mpar(1)*(v(1165)*v(3606)+v(351)*v(3794)) v(3826)=mpar(1)*(v(1165)*v(3605)+v(351)*v(3793)) v(3825)=mpar(1)*(v(1165)*v(3604)+v(351)*v(3792)) v(3824)=mpar(1)*(v(1165)*v(3603)+v(351)*v(3791)) v(3823)=mpar(1)*(v(1165)*v(3569)+v(319)*v(3801)) v(3822)=mpar(1)*(v(1165)*v(3568)+v(319)*v(3800)) v(3821)=mpar(1)*(v(1165)*v(3567)+v(319)*v(3799)) v(3820)=mpar(1)*(v(1165)*v(3566)+v(319)*v(3798)) v(3819)=mpar(1)*(v(1165)*v(3565)+v(319)*v(3797)) v(3818)=mpar(1)*(v(1165)*v(3564)+v(319)*v(3796)) v(3817)=mpar(1)*(v(1165)*v(3563)+v(319)*v(3795)) v(3816)=mpar(1)*(v(1165)*v(3562)+v(319)*v(3794)) v(3815)=mpar(1)*(v(1165)*v(3561)+v(319)*v(3793)) v(3814)=mpar(1)*(v(1165)*v(3560)+v(319)*v(3792)) v(3813)=mpar(1)*(v(1165)*v(3559)+v(319)*v(3791)) v(3812)=mpar(1)*(v(1165)*v(3602)+v(320)*v(3801)) v(3811)=mpar(1)*(v(1165)*v(3601)+v(320)*v(3800)) v(3810)=mpar(1)*(v(1165)*v(3600)+v(320)*v(3799)) v(3809)=mpar(1)*(v(1165)*v(3599)+v(320)*v(3798)) v(3808)=mpar(1)*(v(1165)*v(3598)+v(320)*v(3797)) v(3807)=mpar(1)*(v(1165)*v(3597)+v(320)*v(3796)) v(3806)=mpar(1)*(v(1165)*v(3596)+v(320)*v(3795)) v(3805)=mpar(1)*(v(1165)*v(3595)+v(320)*v(3794)) v(3804)=mpar(1)*(v(1165)*v(3594)+v(320)*v(3793)) v(3803)=mpar(1)*(v(1165)*v(3593)+v(320)*v(3792)) v(3802)=mpar(1)*(v(1165)*v(3592)+v(320)*v(3791)) v(1260)=mpar(1)*(v(1042)*v(1165)+v(1224)*v(318)) v(1259)=mpar(1)*(v(1041)*v(1165)+v(1223)*v(318)) v(1258)=mpar(1)*(v(1040)*v(1165)+v(1222)*v(318)) v(1257)=mpar(1)*(v(1039)*v(1165)+v(1221)*v(318)) v(1256)=mpar(1)*(v(1038)*v(1165)+v(1220)*v(318)) v(1255)=mpar(1)*(v(1037)*v(1165)+v(1219)*v(318)) v(1254)=mpar(1)*(v(1036)*v(1165)+v(1218)*v(318)) v(1253)=mpar(1)*(v(1035)*v(1165)+v(1217)*v(318)) v(1252)=mpar(1)*(v(1034)*v(1165)+v(1215)*v(318)) v(1251)=mpar(1)*(v(1105)*v(1165)+v(1224)*v(351)) v(1250)=mpar(1)*(v(1104)*v(1165)+v(1223)*v(351)) v(1249)=mpar(1)*(v(1103)*v(1165)+v(1222)*v(351)) v(1248)=mpar(1)*(v(1102)*v(1165)+v(1221)*v(351)) v(1247)=mpar(1)*(v(1101)*v(1165)+v(1220)*v(351)) v(1246)=mpar(1)*(v(1100)*v(1165)+v(1219)*v(351)) v(1245)=mpar(1)*(v(1099)*v(1165)+v(1218)*v(351)) v(1244)=mpar(1)*(v(1098)*v(1165)+v(1217)*v(351)) v(1243)=mpar(1)*(v(1097)*v(1165)+v(1215)*v(351)) v(1242)=mpar(1)*(v(1069)*v(1165)+v(1224)*v(319)) v(1241)=mpar(1)*(v(1068)*v(1165)+v(1223)*v(319)) v(1240)=mpar(1)*(v(1067)*v(1165)+v(1222)*v(319)) v(1239)=mpar(1)*(v(1066)*v(1165)+v(1221)*v(319)) v(1238)=mpar(1)*(v(1065)*v(1165)+v(1220)*v(319)) v(1237)=mpar(1)*(v(1064)*v(1165)+v(1219)*v(319)) v(1236)=mpar(1)*(v(1063)*v(1165)+v(1218)*v(319)) v(1235)=mpar(1)*(v(1062)*v(1165)+v(1217)*v(319)) v(1234)=mpar(1)*(v(1061)*v(1165)+v(1215)*v(319)) v(1233)=mpar(1)*(v(1096)*v(1165)+v(1224)*v(320)) v(1232)=mpar(1)*(v(1095)*v(1165)+v(1223)*v(320)) v(1231)=mpar(1)*(v(1094)*v(1165)+v(1222)*v(320)) v(1230)=mpar(1)*(v(1093)*v(1165)+v(1221)*v(320)) v(1229)=mpar(1)*(v(1092)*v(1165)+v(1220)*v(320)) v(1228)=mpar(1)*(v(1091)*v(1165)+v(1219)*v(320)) v(1227)=mpar(1)*(v(1090)*v(1165)+v(1218)*v(320)) v(1226)=mpar(1)*(v(1089)*v(1165)+v(1217)*v(320)) v(1225)=mpar(1)*(v(1088)*v(1165)+v(1215)*v(320)) v(349)=v(320)*v(6026) v(344)=v(319)*v(6026) v(3933)=v(349)*v(3635)+v(344)*v(3657)+(v(347)*v(3624)+v(346)*v(3757))/v(323)+v(341)*v(3812)+v(345)*v(3823)+v(3790)*v& &(6027) v(3932)=v(349)*v(3634)+v(344)*v(3656)+(v(347)*v(3623)+v(346)*v(3755))/v(323)+v(341)*v(3811)+v(345)*v(3822)+v(3789)*v& &(6027) v(3931)=v(349)*v(3633)+v(344)*v(3655)+(v(347)*v(3622)+v(346)*v(3753))/v(323)+v(341)*v(3810)+v(345)*v(3821)+v(3788)*v& &(6027) v(3930)=v(349)*v(3632)+v(344)*v(3654)+(v(347)*v(3621)+v(346)*v(3751))/v(323)+v(341)*v(3809)+v(345)*v(3820)+v(3787)*v& &(6027) v(3929)=v(349)*v(3631)+v(344)*v(3653)+(v(347)*v(3620)+v(346)*v(3749))/v(323)+v(341)*v(3808)+v(345)*v(3819)+v(3786)*v& &(6027) v(3928)=v(349)*v(3630)+v(344)*v(3652)+(v(347)*v(3619)+v(346)*v(3747))/v(323)+v(341)*v(3807)+v(345)*v(3818)+v(3785)*v& &(6027) v(3927)=v(349)*v(3629)+v(344)*v(3651)+(v(347)*v(3618)+v(346)*v(3745))/v(323)+v(341)*v(3806)+v(345)*v(3817)+v(3784)*v& &(6027) v(3926)=v(349)*v(3628)+v(344)*v(3650)+(v(347)*v(3617)+v(346)*v(3743))/v(323)+v(341)*v(3805)+v(345)*v(3816)+v(3783)*v& &(6027) v(3925)=v(349)*v(3627)+v(344)*v(3649)+(v(347)*v(3616)+v(346)*v(3741))/v(323)+v(341)*v(3804)+v(345)*v(3815)+v(3782)*v& &(6027) v(3924)=v(349)*v(3626)+v(344)*v(3648)+(v(347)*v(3615)+v(346)*v(3739))/v(323)+v(341)*v(3803)+v(345)*v(3814)+v(3781)*v& &(6027) v(3923)=v(349)*v(3625)+v(344)*v(3647)+(v(347)*v(3614)+v(346)*v(3737))/v(323)+v(341)*v(3802)+v(345)*v(3813)+v(3780)*v& &(6027) v(3856)=v(344)*v(3624)+v(346)*v(3823) v(3855)=v(344)*v(3623)+v(346)*v(3822) v(3854)=v(344)*v(3622)+v(346)*v(3821) v(3853)=v(344)*v(3621)+v(346)*v(3820) v(3852)=v(344)*v(3620)+v(346)*v(3819) v(3851)=v(344)*v(3619)+v(346)*v(3818) v(3850)=v(344)*v(3618)+v(346)*v(3817) v(3849)=v(344)*v(3617)+v(346)*v(3816) v(3848)=v(344)*v(3616)+v(346)*v(3815) v(3847)=v(344)*v(3615)+v(346)*v(3814) v(3846)=v(344)*v(3614)+v(346)*v(3813) v(1332)=v(1233)*v(341)+v(1141)*v(344)+v(1242)*v(345)+(v(1194)*v(346)+v(1114)*v(347))/v(323)+v(1123)*v(349)+v(1214)*v& &(6027) v(1331)=v(1232)*v(341)+v(1140)*v(344)+v(1241)*v(345)+(v(1193)*v(346)+v(1113)*v(347))/v(323)+v(1122)*v(349)+v(1213)*v& &(6027) v(1330)=v(1231)*v(341)+v(1139)*v(344)+v(1240)*v(345)+(v(1192)*v(346)+v(1112)*v(347))/v(323)+v(1121)*v(349)+v(1212)*v& &(6027) v(1329)=v(1230)*v(341)+v(1138)*v(344)+v(1239)*v(345)+(v(1191)*v(346)+v(1111)*v(347))/v(323)+v(1120)*v(349)+v(1211)*v& &(6027) v(1328)=v(1229)*v(341)+v(1137)*v(344)+v(1238)*v(345)+(v(1190)*v(346)+v(1110)*v(347))/v(323)+v(1119)*v(349)+v(1210)*v& &(6027) v(1327)=v(1228)*v(341)+v(1136)*v(344)+v(1237)*v(345)+(v(1189)*v(346)+v(1109)*v(347))/v(323)+v(1118)*v(349)+v(1209)*v& &(6027) v(1326)=v(1227)*v(341)+v(1135)*v(344)+v(1236)*v(345)+(v(1188)*v(346)+v(1108)*v(347))/v(323)+v(1117)*v(349)+v(1208)*v& &(6027) v(1325)=v(1226)*v(341)+v(1134)*v(344)+v(1235)*v(345)+(v(1187)*v(346)+v(1107)*v(347))/v(323)+v(1116)*v(349)+v(1207)*v& &(6027) v(1324)=v(1225)*v(341)+v(1133)*v(344)+v(1234)*v(345)+(v(1186)*v(346)+v(1106)*v(347))/v(323)+v(1115)*v(349)+v(1205)*v& &(6027) v(1269)=v(1114)*v(344)+v(1242)*v(346) v(1268)=v(1113)*v(344)+v(1241)*v(346) v(1267)=v(1112)*v(344)+v(1240)*v(346) v(1266)=v(1111)*v(344)+v(1239)*v(346) v(1265)=v(1110)*v(344)+v(1238)*v(346) v(1264)=v(1109)*v(344)+v(1237)*v(346) v(1263)=v(1108)*v(344)+v(1236)*v(346) v(1262)=v(1107)*v(344)+v(1235)*v(346) v(1261)=v(1106)*v(344)+v(1234)*v(346) v(340)=v(351)*v(6026) v(3867)=v(340)*v(3602)+v(320)*v(3834) v(3911)=(v(347)*v(3558)+v(350)*v(3757))/v(323)+v(3856)+v(3867)+v(3790)*v(6028) v(3866)=v(340)*v(3601)+v(320)*v(3833) v(3910)=(v(347)*v(3557)+v(350)*v(3755))/v(323)+v(3855)+v(3866)+v(3789)*v(6028) v(3865)=v(340)*v(3600)+v(320)*v(3832) v(3909)=(v(347)*v(3556)+v(350)*v(3753))/v(323)+v(3854)+v(3865)+v(3788)*v(6028) v(3864)=v(340)*v(3599)+v(320)*v(3831) v(3908)=(v(347)*v(3555)+v(350)*v(3751))/v(323)+v(3853)+v(3864)+v(3787)*v(6028) v(3863)=v(340)*v(3598)+v(320)*v(3830) v(3907)=(v(347)*v(3554)+v(350)*v(3749))/v(323)+v(3852)+v(3863)+v(3786)*v(6028) v(3862)=v(340)*v(3597)+v(320)*v(3829) v(3906)=(v(347)*v(3553)+v(350)*v(3747))/v(323)+v(3851)+v(3862)+v(3785)*v(6028) v(3861)=v(340)*v(3596)+v(320)*v(3828) v(3905)=(v(347)*v(3552)+v(350)*v(3745))/v(323)+v(3850)+v(3861)+v(3784)*v(6028) v(3860)=v(340)*v(3595)+v(320)*v(3827) v(3904)=(v(347)*v(3551)+v(350)*v(3743))/v(323)+v(3849)+v(3860)+v(3783)*v(6028) v(3859)=v(340)*v(3594)+v(320)*v(3826) v(3903)=(v(347)*v(3550)+v(350)*v(3741))/v(323)+v(3848)+v(3859)+v(3782)*v(6028) v(3858)=v(340)*v(3593)+v(320)*v(3825) v(3902)=(v(347)*v(3549)+v(350)*v(3739))/v(323)+v(3847)+v(3858)+v(3781)*v(6028) v(3857)=v(340)*v(3592)+v(320)*v(3824) v(3901)=(v(347)*v(3548)+v(350)*v(3737))/v(323)+v(3846)+v(3857)+v(3780)*v(6028) v(1278)=v(1251)*v(320)+v(1096)*v(340) v(1314)=v(1269)+v(1278)+(v(1060)*v(347)+v(1194)*v(350))/v(323)+v(1214)*v(6028) v(1277)=v(1250)*v(320)+v(1095)*v(340) v(1313)=v(1268)+v(1277)+(v(1059)*v(347)+v(1193)*v(350))/v(323)+v(1213)*v(6028) v(1276)=v(1249)*v(320)+v(1094)*v(340) v(1312)=v(1267)+v(1276)+(v(1058)*v(347)+v(1192)*v(350))/v(323)+v(1212)*v(6028) v(1275)=v(1248)*v(320)+v(1093)*v(340) v(1311)=v(1266)+v(1275)+(v(1057)*v(347)+v(1191)*v(350))/v(323)+v(1211)*v(6028) v(1274)=v(1247)*v(320)+v(1092)*v(340) v(1310)=v(1265)+v(1274)+(v(1056)*v(347)+v(1190)*v(350))/v(323)+v(1210)*v(6028) v(1273)=v(1246)*v(320)+v(1091)*v(340) v(1309)=v(1264)+v(1273)+(v(1055)*v(347)+v(1189)*v(350))/v(323)+v(1209)*v(6028) v(1272)=v(1245)*v(320)+v(1090)*v(340) v(1308)=v(1263)+v(1272)+(v(1054)*v(347)+v(1188)*v(350))/v(323)+v(1208)*v(6028) v(1271)=v(1244)*v(320)+v(1089)*v(340) v(1307)=v(1262)+v(1271)+(v(1053)*v(347)+v(1187)*v(350))/v(323)+v(1207)*v(6028) v(1270)=v(1243)*v(320)+v(1088)*v(340) v(1306)=v(1261)+v(1270)+(v(1052)*v(347)+v(1186)*v(350))/v(323)+v(1205)*v(6028) v(338)=v(318)*v(6026) v(3977)=v(349)*v(3558)+v(338)*v(3624)+(v(352)*v(3613)+v(351)*v(3735))/v(323)+v(350)*v(3812)+v(346)*v(3845)+v(3790)*v& &(6029) v(3976)=v(349)*v(3557)+v(338)*v(3623)+(v(352)*v(3612)+v(351)*v(3733))/v(323)+v(350)*v(3811)+v(346)*v(3844)+v(3789)*v& &(6029) v(3975)=v(349)*v(3556)+v(338)*v(3622)+(v(352)*v(3611)+v(351)*v(3731))/v(323)+v(350)*v(3810)+v(346)*v(3843)+v(3788)*v& &(6029) v(3974)=v(349)*v(3555)+v(338)*v(3621)+(v(352)*v(3610)+v(351)*v(3729))/v(323)+v(350)*v(3809)+v(346)*v(3842)+v(3787)*v& &(6029) v(3973)=v(349)*v(3554)+v(338)*v(3620)+(v(352)*v(3609)+v(351)*v(3727))/v(323)+v(350)*v(3808)+v(346)*v(3841)+v(3786)*v& &(6029) v(3972)=v(349)*v(3553)+v(338)*v(3619)+(v(352)*v(3608)+v(351)*v(3725))/v(323)+v(350)*v(3807)+v(346)*v(3840)+v(3785)*v& &(6029) v(3971)=v(349)*v(3552)+v(338)*v(3618)+(v(352)*v(3607)+v(351)*v(3723))/v(323)+v(350)*v(3806)+v(346)*v(3839)+v(3784)*v& &(6029) v(3970)=v(349)*v(3551)+v(338)*v(3617)+(v(352)*v(3606)+v(351)*v(3721))/v(323)+v(350)*v(3805)+v(346)*v(3838)+v(3783)*v& &(6029) v(3969)=v(349)*v(3550)+v(338)*v(3616)+(v(352)*v(3605)+v(351)*v(3719))/v(323)+v(350)*v(3804)+v(346)*v(3837)+v(3782)*v& &(6029) v(3968)=v(349)*v(3549)+v(338)*v(3615)+(v(352)*v(3604)+v(351)*v(3717))/v(323)+v(350)*v(3803)+v(346)*v(3836)+v(3781)*v& &(6029) v(3967)=v(349)*v(3548)+v(338)*v(3614)+(v(352)*v(3603)+v(351)*v(3715))/v(323)+v(350)*v(3802)+v(346)*v(3835)+v(3780)*v& &(6029) v(3922)=v(340)*v(3569)+v(338)*v(3591)+v(342)*(v(3635)/v(323)+v(341)*v(3790))+v(319)*v(3834)+v(339)*v(3845)+v(3779)*v& &(6030) v(3921)=v(340)*v(3568)+v(338)*v(3590)+v(342)*(v(3634)/v(323)+v(341)*v(3789))+v(319)*v(3833)+v(339)*v(3844)+v(3777)*v& &(6030) v(3920)=v(340)*v(3567)+v(338)*v(3589)+v(342)*(v(3633)/v(323)+v(341)*v(3788))+v(319)*v(3832)+v(339)*v(3843)+v(3775)*v& &(6030) v(3919)=v(340)*v(3566)+v(338)*v(3588)+v(342)*(v(3632)/v(323)+v(341)*v(3787))+v(319)*v(3831)+v(339)*v(3842)+v(3773)*v& &(6030) v(3918)=v(340)*v(3565)+v(338)*v(3587)+v(342)*(v(3631)/v(323)+v(341)*v(3786))+v(319)*v(3830)+v(339)*v(3841)+v(3771)*v& &(6030) v(3917)=v(340)*v(3564)+v(338)*v(3586)+v(342)*(v(3630)/v(323)+v(341)*v(3785))+v(319)*v(3829)+v(339)*v(3840)+v(3769)*v& &(6030) v(3916)=v(340)*v(3563)+v(338)*v(3585)+v(342)*(v(3629)/v(323)+v(341)*v(3784))+v(319)*v(3828)+v(339)*v(3839)+v(3767)*v& &(6030) v(3915)=v(340)*v(3562)+v(338)*v(3584)+v(342)*(v(3628)/v(323)+v(341)*v(3783))+v(319)*v(3827)+v(339)*v(3838)+v(3765)*v& &(6030) v(3914)=v(340)*v(3561)+v(338)*v(3583)+v(342)*(v(3627)/v(323)+v(341)*v(3782))+v(319)*v(3826)+v(339)*v(3837)+v(3763)*v& &(6030) v(3913)=v(340)*v(3560)+v(338)*v(3582)+v(342)*(v(3626)/v(323)+v(341)*v(3781))+v(319)*v(3825)+v(339)*v(3836)+v(3761)*v& &(6030) v(3912)=v(340)*v(3559)+v(338)*v(3581)+v(342)*(v(3625)/v(323)+v(341)*v(3780))+v(319)*v(3824)+v(339)*v(3835)+v(3759)*v& &(6030) v(3878)=v(338)*v(3635)+v(341)*v(3845) v(3900)=(v(342)*v(3657)+v(345)*v(3779))/v(323)+v(3856)+v(3878)+v(3790)*v(6031) v(3889)=(v(352)*v(3591)+v(339)*v(3735))/v(323)+v(3867)+v(3878)+v(3790)*v(6032) v(3877)=v(338)*v(3634)+v(341)*v(3844) v(3899)=(v(342)*v(3656)+v(345)*v(3777))/v(323)+v(3855)+v(3877)+v(3789)*v(6031) v(3888)=(v(352)*v(3590)+v(339)*v(3733))/v(323)+v(3866)+v(3877)+v(3789)*v(6032) v(3876)=v(338)*v(3633)+v(341)*v(3843) v(3898)=(v(342)*v(3655)+v(345)*v(3775))/v(323)+v(3854)+v(3876)+v(3788)*v(6031) v(3887)=(v(352)*v(3589)+v(339)*v(3731))/v(323)+v(3865)+v(3876)+v(3788)*v(6032) v(3875)=v(338)*v(3632)+v(341)*v(3842) v(3897)=(v(342)*v(3654)+v(345)*v(3773))/v(323)+v(3853)+v(3875)+v(3787)*v(6031) v(3886)=(v(352)*v(3588)+v(339)*v(3729))/v(323)+v(3864)+v(3875)+v(3787)*v(6032) v(3874)=v(338)*v(3631)+v(341)*v(3841) v(3896)=(v(342)*v(3653)+v(345)*v(3771))/v(323)+v(3852)+v(3874)+v(3786)*v(6031) v(3885)=(v(352)*v(3587)+v(339)*v(3727))/v(323)+v(3863)+v(3874)+v(3786)*v(6032) v(3873)=v(338)*v(3630)+v(341)*v(3840) v(3895)=(v(342)*v(3652)+v(345)*v(3769))/v(323)+v(3851)+v(3873)+v(3785)*v(6031) v(3884)=(v(352)*v(3586)+v(339)*v(3725))/v(323)+v(3862)+v(3873)+v(3785)*v(6032) v(3872)=v(338)*v(3629)+v(341)*v(3839) v(3894)=(v(342)*v(3651)+v(345)*v(3767))/v(323)+v(3850)+v(3872)+v(3784)*v(6031) v(3883)=(v(352)*v(3585)+v(339)*v(3723))/v(323)+v(3861)+v(3872)+v(3784)*v(6032) v(3871)=v(338)*v(3628)+v(341)*v(3838) v(3893)=(v(342)*v(3650)+v(345)*v(3765))/v(323)+v(3849)+v(3871)+v(3783)*v(6031) v(3882)=(v(352)*v(3584)+v(339)*v(3721))/v(323)+v(3860)+v(3871)+v(3783)*v(6032) v(3870)=v(338)*v(3627)+v(341)*v(3837) v(3892)=(v(342)*v(3649)+v(345)*v(3763))/v(323)+v(3848)+v(3870)+v(3782)*v(6031) v(3881)=(v(352)*v(3583)+v(339)*v(3719))/v(323)+v(3859)+v(3870)+v(3782)*v(6032) v(3869)=v(338)*v(3626)+v(341)*v(3836) v(3891)=(v(342)*v(3648)+v(345)*v(3761))/v(323)+v(3847)+v(3869)+v(3781)*v(6031) v(3880)=(v(352)*v(3582)+v(339)*v(3717))/v(323)+v(3858)+v(3869)+v(3781)*v(6032) v(3868)=v(338)*v(3625)+v(341)*v(3835) v(3890)=(v(342)*v(3647)+v(345)*v(3759))/v(323)+v(3846)+v(3868)+v(3780)*v(6031) v(3879)=(v(352)*v(3581)+v(339)*v(3715))/v(323)+v(3857)+v(3868)+v(3780)*v(6032) v(1371)=v(1114)*v(338)+v(1260)*v(346)+v(1060)*v(349)+v(1233)*v(350)+(v(1184)*v(351)+v(1105)*v(352))/v(323)+v(1214)*v& &(6029) v(1422)=v(1332)*v(298)+v(1314)*v(307)+v(1371)*v(313) v(1389)=v(1371)*v(297)+v(1332)*v(303)+v(1314)*v(312) v(1370)=v(1113)*v(338)+v(1259)*v(346)+v(1059)*v(349)+v(1232)*v(350)+(v(1183)*v(351)+v(1104)*v(352))/v(323)+v(1213)*v& &(6029) v(1399)=v(1313)*v(299)+v(1370)*v(311)+v(1331)*v(314) v(1388)=v(1370)*v(297)+v(1331)*v(303)+v(1313)*v(312) v(1369)=v(1112)*v(338)+v(1258)*v(346)+v(1058)*v(349)+v(1231)*v(350)+(v(1182)*v(351)+v(1103)*v(352))/v(323)+v(1212)*v& &(6029) v(1420)=v(1330)*v(298)+v(1312)*v(307)+v(1369)*v(313) v(1398)=v(1312)*v(299)+v(1369)*v(311)+v(1330)*v(314) v(1368)=v(1111)*v(338)+v(1257)*v(346)+v(1057)*v(349)+v(1230)*v(350)+(v(1181)*v(351)+v(1102)*v(352))/v(323)+v(1211)*v& &(6029) v(1419)=v(1329)*v(298)+v(1311)*v(307)+v(1368)*v(313) v(1386)=v(1368)*v(297)+v(1329)*v(303)+v(1311)*v(312) v(1367)=v(1110)*v(338)+v(1256)*v(346)+v(1056)*v(349)+v(1229)*v(350)+(v(1180)*v(351)+v(1101)*v(352))/v(323)+v(1210)*v& &(6029) v(1395)=v(1310)*v(299)+v(1367)*v(311)+v(1328)*v(314) v(1385)=v(1367)*v(297)+v(1328)*v(303)+v(1310)*v(312) v(1366)=v(1109)*v(338)+v(1255)*v(346)+v(1055)*v(349)+v(1228)*v(350)+(v(1179)*v(351)+v(1100)*v(352))/v(323)+v(1209)*v& &(6029) v(1417)=v(1327)*v(298)+v(1309)*v(307)+v(1366)*v(313) v(1394)=v(1309)*v(299)+v(1366)*v(311)+v(1327)*v(314) v(1365)=v(1108)*v(338)+v(1254)*v(346)+v(1054)*v(349)+v(1227)*v(350)+(v(1178)*v(351)+v(1099)*v(352))/v(323)+v(1208)*v& &(6029) v(1416)=v(1326)*v(298)+v(1308)*v(307)+v(1365)*v(313) v(1383)=v(1365)*v(297)+v(1326)*v(303)+v(1308)*v(312) v(1364)=v(1107)*v(338)+v(1253)*v(346)+v(1053)*v(349)+v(1226)*v(350)+(v(1177)*v(351)+v(1098)*v(352))/v(323)+v(1207)*v& &(6029) v(1391)=v(1307)*v(299)+v(1364)*v(311)+v(1325)*v(314) v(1382)=v(1364)*v(297)+v(1325)*v(303)+v(1307)*v(312) v(1363)=v(1106)*v(338)+v(1252)*v(346)+v(1052)*v(349)+v(1225)*v(350)+(v(1176)*v(351)+v(1097)*v(352))/v(323)+v(1205)*v& &(6029) v(1414)=v(1324)*v(298)+v(1306)*v(307)+v(1363)*v(313) v(1390)=v(1306)*v(299)+v(1363)*v(311)+v(1324)*v(314) v(1323)=v(1251)*v(319)+v(1087)*v(338)+v(1260)*v(339)+v(1069)*v(340)+(v(1123)/v(323)+v(1214)*v(341))*v(342)+v(1204)*v& &(6030) v(1322)=v(1250)*v(319)+v(1086)*v(338)+v(1259)*v(339)+v(1068)*v(340)+(v(1122)/v(323)+v(1213)*v(341))*v(342)+v(1203)*v& &(6030) v(1321)=v(1249)*v(319)+v(1085)*v(338)+v(1258)*v(339)+v(1067)*v(340)+(v(1121)/v(323)+v(1212)*v(341))*v(342)+v(1202)*v& &(6030) v(1320)=v(1248)*v(319)+v(1084)*v(338)+v(1257)*v(339)+v(1066)*v(340)+(v(1120)/v(323)+v(1211)*v(341))*v(342)+v(1201)*v& &(6030) v(1319)=v(1247)*v(319)+v(1083)*v(338)+v(1256)*v(339)+v(1065)*v(340)+(v(1119)/v(323)+v(1210)*v(341))*v(342)+v(1200)*v& &(6030) v(1318)=v(1246)*v(319)+v(1082)*v(338)+v(1255)*v(339)+v(1064)*v(340)+(v(1118)/v(323)+v(1209)*v(341))*v(342)+v(1199)*v& &(6030) v(1317)=v(1245)*v(319)+v(1081)*v(338)+v(1254)*v(339)+v(1063)*v(340)+(v(1117)/v(323)+v(1208)*v(341))*v(342)+v(1198)*v& &(6030) v(1316)=v(1244)*v(319)+v(1080)*v(338)+v(1253)*v(339)+v(1062)*v(340)+(v(1116)/v(323)+v(1207)*v(341))*v(342)+v(1197)*v& &(6030) v(1315)=v(1243)*v(319)+v(1079)*v(338)+v(1252)*v(339)+v(1061)*v(340)+(v(1115)/v(323)+v(1205)*v(341))*v(342)+v(1196)*v& &(6030) v(1287)=v(1123)*v(338)+v(1260)*v(341) v(1305)=v(1269)+v(1287)+(v(1141)*v(342)+v(1204)*v(345))/v(323)+v(1214)*v(6031) v(1362)=v(1305)*v(298)+v(1332)*v(307)+v(1323)*v(313) v(1341)=v(1323)*v(297)+v(1305)*v(303)+v(1332)*v(312) v(1296)=v(1278)+v(1287)+(v(1184)*v(339)+v(1087)*v(352))/v(323)+v(1214)*v(6032) v(1431)=v(1323)*v(298)+v(1371)*v(307)+v(1296)*v(313) v(1380)=v(1296)*v(297)+v(1323)*v(303)+v(1371)*v(312) v(1286)=v(1122)*v(338)+v(1259)*v(341) v(1304)=v(1268)+v(1286)+(v(1140)*v(342)+v(1203)*v(345))/v(323)+v(1213)*v(6031) v(1351)=v(1331)*v(299)+v(1322)*v(311)+v(1304)*v(314) v(1340)=v(1322)*v(297)+v(1304)*v(303)+v(1331)*v(312) v(1295)=v(1277)+v(1286)+(v(1183)*v(339)+v(1086)*v(352))/v(323)+v(1213)*v(6032) v(1411)=v(1370)*v(299)+v(1295)*v(311)+v(1322)*v(314) v(1379)=v(1295)*v(297)+v(1322)*v(303)+v(1370)*v(312) v(1285)=v(1121)*v(338)+v(1258)*v(341) v(1303)=v(1267)+v(1285)+(v(1139)*v(342)+v(1202)*v(345))/v(323)+v(1212)*v(6031) v(1360)=v(1303)*v(298)+v(1330)*v(307)+v(1321)*v(313) v(1350)=v(1330)*v(299)+v(1321)*v(311)+v(1303)*v(314) v(1294)=v(1276)+v(1285)+(v(1182)*v(339)+v(1085)*v(352))/v(323)+v(1212)*v(6032) v(1429)=v(1321)*v(298)+v(1369)*v(307)+v(1294)*v(313) v(1410)=v(1369)*v(299)+v(1294)*v(311)+v(1321)*v(314) v(1284)=v(1120)*v(338)+v(1257)*v(341) v(1302)=v(1266)+v(1284)+(v(1138)*v(342)+v(1201)*v(345))/v(323)+v(1211)*v(6031) v(1359)=v(1302)*v(298)+v(1329)*v(307)+v(1320)*v(313) v(1338)=v(1320)*v(297)+v(1302)*v(303)+v(1329)*v(312) v(1293)=v(1275)+v(1284)+(v(1181)*v(339)+v(1084)*v(352))/v(323)+v(1211)*v(6032) v(1428)=v(1320)*v(298)+v(1368)*v(307)+v(1293)*v(313) v(1377)=v(1293)*v(297)+v(1320)*v(303)+v(1368)*v(312) v(1283)=v(1119)*v(338)+v(1256)*v(341) v(1301)=v(1265)+v(1283)+(v(1137)*v(342)+v(1200)*v(345))/v(323)+v(1210)*v(6031) v(1347)=v(1328)*v(299)+v(1319)*v(311)+v(1301)*v(314) v(1337)=v(1319)*v(297)+v(1301)*v(303)+v(1328)*v(312) v(1292)=v(1274)+v(1283)+(v(1180)*v(339)+v(1083)*v(352))/v(323)+v(1210)*v(6032) v(1407)=v(1367)*v(299)+v(1292)*v(311)+v(1319)*v(314) v(1376)=v(1292)*v(297)+v(1319)*v(303)+v(1367)*v(312) v(1282)=v(1118)*v(338)+v(1255)*v(341) v(1300)=v(1264)+v(1282)+(v(1136)*v(342)+v(1199)*v(345))/v(323)+v(1209)*v(6031) v(1357)=v(1300)*v(298)+v(1327)*v(307)+v(1318)*v(313) v(1346)=v(1327)*v(299)+v(1318)*v(311)+v(1300)*v(314) v(1291)=v(1273)+v(1282)+(v(1179)*v(339)+v(1082)*v(352))/v(323)+v(1209)*v(6032) v(1426)=v(1318)*v(298)+v(1366)*v(307)+v(1291)*v(313) v(1406)=v(1366)*v(299)+v(1291)*v(311)+v(1318)*v(314) v(1281)=v(1117)*v(338)+v(1254)*v(341) v(1299)=v(1263)+v(1281)+(v(1135)*v(342)+v(1198)*v(345))/v(323)+v(1208)*v(6031) v(1356)=v(1299)*v(298)+v(1326)*v(307)+v(1317)*v(313) v(1335)=v(1317)*v(297)+v(1299)*v(303)+v(1326)*v(312) v(1290)=v(1272)+v(1281)+(v(1178)*v(339)+v(1081)*v(352))/v(323)+v(1208)*v(6032) v(1425)=v(1317)*v(298)+v(1365)*v(307)+v(1290)*v(313) v(1374)=v(1290)*v(297)+v(1317)*v(303)+v(1365)*v(312) v(1280)=v(1116)*v(338)+v(1253)*v(341) v(1298)=v(1262)+v(1280)+(v(1134)*v(342)+v(1197)*v(345))/v(323)+v(1207)*v(6031) v(1343)=v(1325)*v(299)+v(1316)*v(311)+v(1298)*v(314) v(1334)=v(1316)*v(297)+v(1298)*v(303)+v(1325)*v(312) v(1289)=v(1271)+v(1280)+(v(1177)*v(339)+v(1080)*v(352))/v(323)+v(1207)*v(6032) v(1403)=v(1364)*v(299)+v(1289)*v(311)+v(1316)*v(314) v(1373)=v(1289)*v(297)+v(1316)*v(303)+v(1364)*v(312) v(1279)=v(1115)*v(338)+v(1252)*v(341) v(1297)=v(1261)+v(1279)+(v(1133)*v(342)+v(1196)*v(345))/v(323)+v(1205)*v(6031) v(1354)=v(1297)*v(298)+v(1324)*v(307)+v(1315)*v(313) v(1342)=v(1324)*v(299)+v(1315)*v(311)+v(1297)*v(314) v(1288)=v(1270)+v(1279)+(v(1176)*v(339)+v(1079)*v(352))/v(323)+v(1205)*v(6032) v(1423)=v(1315)*v(298)+v(1363)*v(307)+v(1288)*v(313) v(1402)=v(1363)*v(299)+v(1288)*v(311)+v(1315)*v(314) v(333)=v(344)*v(346) v(332)=v(320)*v(340) v(325)=v(338)*v(341) v(324)=v(325)+v(332)+v(6032)/v(323) v(331)=v(325)+v(333)+v(6031)/v(323) v(337)=v(332)+v(333)+v(6028)/v(323) v(343)=v(338)*v(339)+v(319)*v(340)+v(342)*v(6030) v(348)=v(344)*v(345)+v(341)*v(349)+v(6027)/v(323) v(4190)=v(1323)*v(315)+v(1305)*v(318)+v(1332)*v(320)+v(1042)*v(331)+v(1096)*v(348)+v(343)*v(988) v(4189)=v(1322)*v(315)+v(1304)*v(318)+v(1331)*v(320)+v(1041)*v(331)+v(1095)*v(348)+v(343)*v(987) v(4188)=v(1321)*v(315)+v(1303)*v(318)+v(1330)*v(320)+v(1040)*v(331)+v(1094)*v(348)+v(343)*v(986) v(4187)=v(1320)*v(315)+v(1302)*v(318)+v(1329)*v(320)+v(1039)*v(331)+v(1093)*v(348)+v(343)*v(985) v(4186)=v(1319)*v(315)+v(1301)*v(318)+v(1328)*v(320)+v(1038)*v(331)+v(1092)*v(348)+v(343)*v(984) v(4185)=v(1318)*v(315)+v(1300)*v(318)+v(1327)*v(320)+v(1037)*v(331)+v(1091)*v(348)+v(343)*v(983) v(4184)=v(1317)*v(315)+v(1299)*v(318)+v(1326)*v(320)+v(1036)*v(331)+v(1090)*v(348)+v(343)*v(982) v(4183)=v(1316)*v(315)+v(1298)*v(318)+v(1325)*v(320)+v(1035)*v(331)+v(1089)*v(348)+v(343)*v(981) v(4182)=v(1315)*v(315)+v(1297)*v(318)+v(1324)*v(320)+v(1034)*v(331)+v(1088)*v(348)+v(343)*v(980) v(3966)=v(331)*v(3382)+v(343)*v(3448)+v(3415)*v(348)+v(298)*v(3900)+v(313)*v(3922)+v(307)*v(3933) v(3965)=v(331)*v(3381)+v(343)*v(3447)+v(3414)*v(348)+v(298)*v(3899)+v(313)*v(3921)+v(307)*v(3932) v(3964)=v(331)*v(3380)+v(343)*v(3446)+v(3413)*v(348)+v(298)*v(3898)+v(313)*v(3920)+v(307)*v(3931) v(3963)=v(331)*v(3379)+v(343)*v(3445)+v(3412)*v(348)+v(298)*v(3897)+v(313)*v(3919)+v(307)*v(3930) v(3962)=v(331)*v(3378)+v(343)*v(3444)+v(3411)*v(348)+v(298)*v(3896)+v(313)*v(3918)+v(307)*v(3929) v(3961)=v(331)*v(3377)+v(343)*v(3443)+v(3410)*v(348)+v(298)*v(3895)+v(313)*v(3917)+v(307)*v(3928) v(3960)=v(331)*v(3376)+v(343)*v(3442)+v(3409)*v(348)+v(298)*v(3894)+v(313)*v(3916)+v(307)*v(3927) v(3959)=v(331)*v(3375)+v(343)*v(3441)+v(3408)*v(348)+v(298)*v(3893)+v(313)*v(3915)+v(307)*v(3926) v(3958)=v(331)*v(3374)+v(343)*v(3440)+v(3407)*v(348)+v(298)*v(3892)+v(313)*v(3914)+v(307)*v(3925) v(3957)=v(331)*v(3373)+v(343)*v(3439)+v(3406)*v(348)+v(298)*v(3891)+v(313)*v(3913)+v(307)*v(3924) v(3956)=v(331)*v(3372)+v(343)*v(3438)+v(3405)*v(348)+v(298)*v(3890)+v(313)*v(3912)+v(307)*v(3923) v(3955)=v(3426)*v(343)+v(331)*v(3459)+v(3393)*v(348)+v(314)*v(3900)+v(311)*v(3922)+v(299)*v(3933) v(3954)=v(3425)*v(343)+v(331)*v(3458)+v(3392)*v(348)+v(314)*v(3899)+v(311)*v(3921)+v(299)*v(3932) v(3953)=v(3424)*v(343)+v(331)*v(3457)+v(3391)*v(348)+v(314)*v(3898)+v(311)*v(3920)+v(299)*v(3931) v(3952)=v(3423)*v(343)+v(331)*v(3456)+v(3390)*v(348)+v(314)*v(3897)+v(311)*v(3919)+v(299)*v(3930) v(3951)=v(3422)*v(343)+v(331)*v(3455)+v(3389)*v(348)+v(314)*v(3896)+v(311)*v(3918)+v(299)*v(3929) v(3950)=v(3421)*v(343)+v(331)*v(3454)+v(3388)*v(348)+v(314)*v(3895)+v(311)*v(3917)+v(299)*v(3928) v(3949)=v(3420)*v(343)+v(331)*v(3453)+v(3387)*v(348)+v(314)*v(3894)+v(311)*v(3916)+v(299)*v(3927) v(3948)=v(3419)*v(343)+v(331)*v(3452)+v(3386)*v(348)+v(314)*v(3893)+v(311)*v(3915)+v(299)*v(3926) v(3947)=v(3418)*v(343)+v(331)*v(3451)+v(3385)*v(348)+v(314)*v(3892)+v(311)*v(3914)+v(299)*v(3925) v(3946)=v(3417)*v(343)+v(331)*v(3450)+v(3384)*v(348)+v(314)*v(3891)+v(311)*v(3913)+v(299)*v(3924) v(3945)=v(3416)*v(343)+v(331)*v(3449)+v(3383)*v(348)+v(314)*v(3890)+v(311)*v(3912)+v(299)*v(3923) v(3944)=v(331)*v(3404)+v(3371)*v(343)+v(3437)*v(348)+v(303)*v(3900)+v(297)*v(3922)+v(312)*v(3933) v(3943)=v(331)*v(3403)+v(3370)*v(343)+v(3436)*v(348)+v(303)*v(3899)+v(297)*v(3921)+v(312)*v(3932) v(3942)=v(331)*v(3402)+v(3369)*v(343)+v(3435)*v(348)+v(303)*v(3898)+v(297)*v(3920)+v(312)*v(3931) v(3941)=v(331)*v(3401)+v(3368)*v(343)+v(3434)*v(348)+v(303)*v(3897)+v(297)*v(3919)+v(312)*v(3930) v(3940)=v(331)*v(3400)+v(3367)*v(343)+v(3433)*v(348)+v(303)*v(3896)+v(297)*v(3918)+v(312)*v(3929) v(3939)=v(331)*v(3399)+v(3366)*v(343)+v(3432)*v(348)+v(303)*v(3895)+v(297)*v(3917)+v(312)*v(3928) v(3938)=v(331)*v(3398)+v(3365)*v(343)+v(3431)*v(348)+v(303)*v(3894)+v(297)*v(3916)+v(312)*v(3927) v(3937)=v(331)*v(3397)+v(3364)*v(343)+v(3430)*v(348)+v(303)*v(3893)+v(297)*v(3915)+v(312)*v(3926) v(3936)=v(331)*v(3396)+v(3363)*v(343)+v(3429)*v(348)+v(303)*v(3892)+v(297)*v(3914)+v(312)*v(3925) v(3935)=v(331)*v(3395)+v(3362)*v(343)+v(3428)*v(348)+v(303)*v(3891)+v(297)*v(3913)+v(312)*v(3924) v(3934)=v(331)*v(3394)+v(3361)*v(343)+v(3427)*v(348)+v(303)*v(3890)+v(297)*v(3912)+v(312)*v(3923) v(1352)=v(343)*v(972)+v(331)*v(974)+v(348)*v(979) v(1355)=v(1352)+v(1298)*v(298)+v(1325)*v(307)+v(1316)*v(313) v(1353)=v(1352)+v(1332)*v(299)+v(1323)*v(311)+v(1305)*v(314) v(1348)=v(343)*v(971)+v(331)*v(976)+v(348)*v(978) v(1361)=v(1348)+v(1304)*v(298)+v(1331)*v(307)+v(1322)*v(313) v(1349)=v(1348)+v(1329)*v(299)+v(1320)*v(311)+v(1302)*v(314) v(1344)=v(343)*v(973)+v(331)*v(975)+v(348)*v(977) v(1358)=v(1344)+v(1301)*v(298)+v(1328)*v(307)+v(1319)*v(313) v(1345)=v(1344)+v(1326)*v(299)+v(1317)*v(311)+v(1299)*v(314) v(1339)=v(1344)+v(1321)*v(297)+v(1303)*v(303)+v(1330)*v(312) v(1336)=v(1352)+v(1318)*v(297)+v(1300)*v(303)+v(1327)*v(312) v(1333)=v(1348)+v(1315)*v(297)+v(1297)*v(303)+v(1324)*v(312) v(960)=v(303)*v(331)+v(297)*v(343)+v(312)*v(348) v(956)=v(314)*v(331)+v(311)*v(343)+v(299)*v(348) v(952)=v(298)*v(331)+v(313)*v(343)+v(307)*v(348) v(353)=v(338)*v(346)+v(349)*v(350)+v(6029)/v(323) v(4208)=v(1371)*v(317)+v(1323)*v(319)+v(1296)*v(320)+v(1096)*v(324)+v(1069)*v(343)+v(1024)*v(353) v(4207)=v(1370)*v(317)+v(1322)*v(319)+v(1295)*v(320)+v(1095)*v(324)+v(1068)*v(343)+v(1023)*v(353) v(4206)=v(1369)*v(317)+v(1321)*v(319)+v(1294)*v(320)+v(1094)*v(324)+v(1067)*v(343)+v(1022)*v(353) v(4205)=v(1368)*v(317)+v(1320)*v(319)+v(1293)*v(320)+v(1093)*v(324)+v(1066)*v(343)+v(1021)*v(353) v(4204)=v(1367)*v(317)+v(1319)*v(319)+v(1292)*v(320)+v(1092)*v(324)+v(1065)*v(343)+v(1020)*v(353) v(4203)=v(1366)*v(317)+v(1318)*v(319)+v(1291)*v(320)+v(1091)*v(324)+v(1064)*v(343)+v(1019)*v(353) v(4202)=v(1365)*v(317)+v(1317)*v(319)+v(1290)*v(320)+v(1090)*v(324)+v(1063)*v(343)+v(1018)*v(353) v(4201)=v(1364)*v(317)+v(1316)*v(319)+v(1289)*v(320)+v(1089)*v(324)+v(1062)*v(343)+v(1017)*v(353) v(4200)=v(1363)*v(317)+v(1315)*v(319)+v(1288)*v(320)+v(1088)*v(324)+v(1061)*v(343)+v(1016)*v(353) v(4199)=v(1332)*v(316)+v(1371)*v(318)+v(1314)*v(319)+v(1069)*v(337)+v(1006)*v(348)+v(1042)*v(353) v(4198)=v(1331)*v(316)+v(1370)*v(318)+v(1313)*v(319)+v(1068)*v(337)+v(1005)*v(348)+v(1041)*v(353) v(4197)=v(1330)*v(316)+v(1369)*v(318)+v(1312)*v(319)+v(1067)*v(337)+v(1004)*v(348)+v(1040)*v(353) v(4196)=v(1329)*v(316)+v(1368)*v(318)+v(1311)*v(319)+v(1066)*v(337)+v(1003)*v(348)+v(1039)*v(353) v(4195)=v(1328)*v(316)+v(1367)*v(318)+v(1310)*v(319)+v(1065)*v(337)+v(1002)*v(348)+v(1038)*v(353) v(4194)=v(1327)*v(316)+v(1366)*v(318)+v(1309)*v(319)+v(1064)*v(337)+v(1001)*v(348)+v(1037)*v(353) v(4193)=v(1326)*v(316)+v(1365)*v(318)+v(1308)*v(319)+v(1063)*v(337)+v(1000)*v(348)+v(1036)*v(353) v(4192)=v(1325)*v(316)+v(1364)*v(318)+v(1307)*v(319)+v(1062)*v(337)+v(1035)*v(353)+v(348)*v(999) v(4191)=v(1324)*v(316)+v(1363)*v(318)+v(1306)*v(319)+v(1061)*v(337)+v(1034)*v(353)+v(348)*v(998) v(4043)=v(3382)*v(343)+v(324)*v(3448)+v(3415)*v(353)+v(313)*v(3889)+v(298)*v(3922)+v(307)*v(3977) v(4042)=v(3381)*v(343)+v(324)*v(3447)+v(3414)*v(353)+v(313)*v(3888)+v(298)*v(3921)+v(307)*v(3976) v(4041)=v(3380)*v(343)+v(324)*v(3446)+v(3413)*v(353)+v(313)*v(3887)+v(298)*v(3920)+v(307)*v(3975) v(4040)=v(3379)*v(343)+v(324)*v(3445)+v(3412)*v(353)+v(313)*v(3886)+v(298)*v(3919)+v(307)*v(3974) v(4039)=v(3378)*v(343)+v(324)*v(3444)+v(3411)*v(353)+v(313)*v(3885)+v(298)*v(3918)+v(307)*v(3973) v(4038)=v(3377)*v(343)+v(324)*v(3443)+v(3410)*v(353)+v(313)*v(3884)+v(298)*v(3917)+v(307)*v(3972) v(4037)=v(3376)*v(343)+v(324)*v(3442)+v(3409)*v(353)+v(313)*v(3883)+v(298)*v(3916)+v(307)*v(3971) v(4036)=v(3375)*v(343)+v(324)*v(3441)+v(3408)*v(353)+v(313)*v(3882)+v(298)*v(3915)+v(307)*v(3970) v(4035)=v(3374)*v(343)+v(324)*v(3440)+v(3407)*v(353)+v(313)*v(3881)+v(298)*v(3914)+v(307)*v(3969) v(4034)=v(3373)*v(343)+v(324)*v(3439)+v(3406)*v(353)+v(313)*v(3880)+v(298)*v(3913)+v(307)*v(3968) v(4033)=v(3372)*v(343)+v(324)*v(3438)+v(3405)*v(353)+v(313)*v(3879)+v(298)*v(3912)+v(307)*v(3967) v(4032)=v(337)*v(3415)+v(3382)*v(348)+v(3448)*v(353)+v(307)*v(3911)+v(298)*v(3933)+v(313)*v(3977) v(4031)=v(337)*v(3414)+v(3381)*v(348)+v(3447)*v(353)+v(307)*v(3910)+v(298)*v(3932)+v(313)*v(3976) v(4030)=v(337)*v(3413)+v(3380)*v(348)+v(3446)*v(353)+v(307)*v(3909)+v(298)*v(3931)+v(313)*v(3975) v(4029)=v(337)*v(3412)+v(3379)*v(348)+v(3445)*v(353)+v(307)*v(3908)+v(298)*v(3930)+v(313)*v(3974) v(4028)=v(337)*v(3411)+v(3378)*v(348)+v(3444)*v(353)+v(307)*v(3907)+v(298)*v(3929)+v(313)*v(3973) v(4027)=v(337)*v(3410)+v(3377)*v(348)+v(3443)*v(353)+v(307)*v(3906)+v(298)*v(3928)+v(313)*v(3972) v(4026)=v(337)*v(3409)+v(3376)*v(348)+v(3442)*v(353)+v(307)*v(3905)+v(298)*v(3927)+v(313)*v(3971) v(4025)=v(337)*v(3408)+v(3375)*v(348)+v(3441)*v(353)+v(307)*v(3904)+v(298)*v(3926)+v(313)*v(3970) v(4024)=v(337)*v(3407)+v(3374)*v(348)+v(3440)*v(353)+v(307)*v(3903)+v(298)*v(3925)+v(313)*v(3969) v(4023)=v(337)*v(3406)+v(3373)*v(348)+v(3439)*v(353)+v(307)*v(3902)+v(298)*v(3924)+v(313)*v(3968) v(4022)=v(337)*v(3405)+v(3372)*v(348)+v(3438)*v(353)+v(307)*v(3901)+v(298)*v(3923)+v(313)*v(3967) v(4021)=v(324)*v(3426)+v(343)*v(3459)+v(3393)*v(353)+v(311)*v(3889)+v(314)*v(3922)+v(299)*v(3977) v(4020)=v(324)*v(3425)+v(343)*v(3458)+v(3392)*v(353)+v(311)*v(3888)+v(314)*v(3921)+v(299)*v(3976) v(4019)=v(324)*v(3424)+v(343)*v(3457)+v(3391)*v(353)+v(311)*v(3887)+v(314)*v(3920)+v(299)*v(3975) v(4018)=v(324)*v(3423)+v(343)*v(3456)+v(3390)*v(353)+v(311)*v(3886)+v(314)*v(3919)+v(299)*v(3974) v(4017)=v(324)*v(3422)+v(343)*v(3455)+v(3389)*v(353)+v(311)*v(3885)+v(314)*v(3918)+v(299)*v(3973) v(4016)=v(324)*v(3421)+v(343)*v(3454)+v(3388)*v(353)+v(311)*v(3884)+v(314)*v(3917)+v(299)*v(3972) v(4015)=v(324)*v(3420)+v(343)*v(3453)+v(3387)*v(353)+v(311)*v(3883)+v(314)*v(3916)+v(299)*v(3971) v(4014)=v(324)*v(3419)+v(343)*v(3452)+v(3386)*v(353)+v(311)*v(3882)+v(314)*v(3915)+v(299)*v(3970) v(4013)=v(324)*v(3418)+v(343)*v(3451)+v(3385)*v(353)+v(311)*v(3881)+v(314)*v(3914)+v(299)*v(3969) v(4012)=v(324)*v(3417)+v(343)*v(3450)+v(3384)*v(353)+v(311)*v(3880)+v(314)*v(3913)+v(299)*v(3968) v(4011)=v(324)*v(3416)+v(343)*v(3449)+v(3383)*v(353)+v(311)*v(3879)+v(314)*v(3912)+v(299)*v(3967) v(4010)=v(337)*v(3393)+v(3459)*v(348)+v(3426)*v(353)+v(299)*v(3911)+v(314)*v(3933)+v(311)*v(3977) v(4009)=v(337)*v(3392)+v(3458)*v(348)+v(3425)*v(353)+v(299)*v(3910)+v(314)*v(3932)+v(311)*v(3976) v(4008)=v(337)*v(3391)+v(3457)*v(348)+v(3424)*v(353)+v(299)*v(3909)+v(314)*v(3931)+v(311)*v(3975) v(4007)=v(337)*v(3390)+v(3456)*v(348)+v(3423)*v(353)+v(299)*v(3908)+v(314)*v(3930)+v(311)*v(3974) v(4006)=v(337)*v(3389)+v(3455)*v(348)+v(3422)*v(353)+v(299)*v(3907)+v(314)*v(3929)+v(311)*v(3973) v(4005)=v(337)*v(3388)+v(3454)*v(348)+v(3421)*v(353)+v(299)*v(3906)+v(314)*v(3928)+v(311)*v(3972) v(4004)=v(337)*v(3387)+v(3453)*v(348)+v(3420)*v(353)+v(299)*v(3905)+v(314)*v(3927)+v(311)*v(3971) v(4003)=v(337)*v(3386)+v(3452)*v(348)+v(3419)*v(353)+v(299)*v(3904)+v(314)*v(3926)+v(311)*v(3970) v(4002)=v(337)*v(3385)+v(3451)*v(348)+v(3418)*v(353)+v(299)*v(3903)+v(314)*v(3925)+v(311)*v(3969) v(4001)=v(337)*v(3384)+v(3450)*v(348)+v(3417)*v(353)+v(299)*v(3902)+v(314)*v(3924)+v(311)*v(3968) v(4000)=v(337)*v(3383)+v(3449)*v(348)+v(3416)*v(353)+v(299)*v(3901)+v(314)*v(3923)+v(311)*v(3967) v(3999)=v(337)*v(3437)+v(3404)*v(348)+v(3371)*v(353)+v(312)*v(3911)+v(303)*v(3933)+v(297)*v(3977) v(3998)=v(337)*v(3436)+v(3403)*v(348)+v(3370)*v(353)+v(312)*v(3910)+v(303)*v(3932)+v(297)*v(3976) v(3997)=v(337)*v(3435)+v(3402)*v(348)+v(3369)*v(353)+v(312)*v(3909)+v(303)*v(3931)+v(297)*v(3975) v(3996)=v(337)*v(3434)+v(3401)*v(348)+v(3368)*v(353)+v(312)*v(3908)+v(303)*v(3930)+v(297)*v(3974) v(3995)=v(337)*v(3433)+v(3400)*v(348)+v(3367)*v(353)+v(312)*v(3907)+v(303)*v(3929)+v(297)*v(3973) v(3994)=v(337)*v(3432)+v(3399)*v(348)+v(3366)*v(353)+v(312)*v(3906)+v(303)*v(3928)+v(297)*v(3972) v(3993)=v(337)*v(3431)+v(3398)*v(348)+v(3365)*v(353)+v(312)*v(3905)+v(303)*v(3927)+v(297)*v(3971) v(3992)=v(337)*v(3430)+v(3397)*v(348)+v(3364)*v(353)+v(312)*v(3904)+v(303)*v(3926)+v(297)*v(3970) v(3991)=v(337)*v(3429)+v(3396)*v(348)+v(3363)*v(353)+v(312)*v(3903)+v(303)*v(3925)+v(297)*v(3969) v(3990)=v(337)*v(3428)+v(3395)*v(348)+v(3362)*v(353)+v(312)*v(3902)+v(303)*v(3924)+v(297)*v(3968) v(3989)=v(337)*v(3427)+v(3394)*v(348)+v(3361)*v(353)+v(312)*v(3901)+v(303)*v(3923)+v(297)*v(3967) v(3988)=v(324)*v(3371)+v(3404)*v(343)+v(3437)*v(353)+v(297)*v(3889)+v(303)*v(3922)+v(312)*v(3977) v(3987)=v(324)*v(3370)+v(3403)*v(343)+v(3436)*v(353)+v(297)*v(3888)+v(303)*v(3921)+v(312)*v(3976) v(3986)=v(324)*v(3369)+v(3402)*v(343)+v(3435)*v(353)+v(297)*v(3887)+v(303)*v(3920)+v(312)*v(3975) v(3985)=v(324)*v(3368)+v(3401)*v(343)+v(3434)*v(353)+v(297)*v(3886)+v(303)*v(3919)+v(312)*v(3974) v(3984)=v(324)*v(3367)+v(3400)*v(343)+v(3433)*v(353)+v(297)*v(3885)+v(303)*v(3918)+v(312)*v(3973) v(3983)=v(324)*v(3366)+v(3399)*v(343)+v(3432)*v(353)+v(297)*v(3884)+v(303)*v(3917)+v(312)*v(3972) v(3982)=v(324)*v(3365)+v(3398)*v(343)+v(3431)*v(353)+v(297)*v(3883)+v(303)*v(3916)+v(312)*v(3971) v(3981)=v(324)*v(3364)+v(3397)*v(343)+v(3430)*v(353)+v(297)*v(3882)+v(303)*v(3915)+v(312)*v(3970) v(3980)=v(324)*v(3363)+v(3396)*v(343)+v(3429)*v(353)+v(297)*v(3881)+v(303)*v(3914)+v(312)*v(3969) v(3979)=v(324)*v(3362)+v(3395)*v(343)+v(3428)*v(353)+v(297)*v(3880)+v(303)*v(3913)+v(312)*v(3968) v(3978)=v(324)*v(3361)+v(3394)*v(343)+v(3427)*v(353)+v(297)*v(3879)+v(303)*v(3912)+v(312)*v(3967) v(1412)=v(324)*v(972)+v(343)*v(974)+v(353)*v(979) v(1424)=v(1412)+v(1316)*v(298)+v(1364)*v(307)+v(1289)*v(313) v(1413)=v(1412)+v(1371)*v(299)+v(1296)*v(311)+v(1323)*v(314) v(1408)=v(324)*v(971)+v(343)*v(976)+v(353)*v(978) v(1430)=v(1408)+v(1322)*v(298)+v(1370)*v(307)+v(1295)*v(313) v(1409)=v(1408)+v(1368)*v(299)+v(1293)*v(311)+v(1320)*v(314) v(1404)=v(324)*v(973)+v(343)*v(975)+v(353)*v(977) v(1427)=v(1404)+v(1319)*v(298)+v(1367)*v(307)+v(1292)*v(313) v(1405)=v(1404)+v(1365)*v(299)+v(1290)*v(311)+v(1317)*v(314) v(1400)=v(353)*v(972)+v(348)*v(974)+v(337)*v(979) v(1415)=v(1400)+v(1325)*v(298)+v(1307)*v(307)+v(1364)*v(313) v(1401)=v(1400)+v(1314)*v(299)+v(1371)*v(311)+v(1332)*v(314) v(1396)=v(353)*v(971)+v(348)*v(976)+v(337)*v(978) v(1421)=v(1396)+v(1331)*v(298)+v(1313)*v(307)+v(1370)*v(313) v(1397)=v(1396)+v(1311)*v(299)+v(1368)*v(311)+v(1329)*v(314) v(1392)=v(353)*v(973)+v(348)*v(975)+v(337)*v(977) v(1418)=v(1392)+v(1328)*v(298)+v(1310)*v(307)+v(1367)*v(313) v(1393)=v(1392)+v(1308)*v(299)+v(1365)*v(311)+v(1326)*v(314) v(1387)=v(1392)+v(1369)*v(297)+v(1330)*v(303)+v(1312)*v(312) v(1384)=v(1400)+v(1366)*v(297)+v(1327)*v(303)+v(1309)*v(312) v(1381)=v(1396)+v(1363)*v(297)+v(1324)*v(303)+v(1306)*v(312) v(1378)=v(1404)+v(1294)*v(297)+v(1321)*v(303)+v(1369)*v(312) v(1375)=v(1412)+v(1291)*v(297)+v(1318)*v(303)+v(1366)*v(312) v(1372)=v(1408)+v(1288)*v(297)+v(1315)*v(303)+v(1363)*v(312) v(962)=v(297)*v(324)+v(303)*v(343)+v(312)*v(353) v(961)=v(312)*v(337)+v(303)*v(348)+v(297)*v(353) v(1493)=v(962)*v(972)+v(960)*v(974)+v(961)*v(979) v(1471)=v(962)*v(973)+v(960)*v(975)+v(961)*v(977) v(1469)=v(962)*v(971)+v(960)*v(976)+v(961)*v(978) v(958)=v(299)*v(337)+v(314)*v(348)+v(311)*v(353) v(957)=v(311)*v(324)+v(314)*v(343)+v(299)*v(353) v(1489)=v(957)*v(972)+v(956)*v(974)+v(958)*v(979) v(1484)=v(957)*v(971)+v(956)*v(976)+v(958)*v(978) v(1461)=v(957)*v(973)+v(956)*v(975)+v(958)*v(977) v(954)=v(307)*v(337)+v(298)*v(348)+v(313)*v(353) v(953)=v(313)*v(324)+v(298)*v(343)+v(307)*v(353) v(1480)=v(953)*v(971)+v(952)*v(976)+v(954)*v(978) v(1475)=v(953)*v(973)+v(952)*v(975)+v(954)*v(977) v(1453)=v(953)*v(972)+v(952)*v(974)+v(954)*v(979) v(354)=v(318)*v(331)+v(315)*v(343)+v(320)*v(348) v(355)=v(319)*v(337)+v(316)*v(348)+v(318)*v(353) v(356)=v(320)*v(324)+v(319)*v(343)+v(317)*v(353) v(357)=v(359)+(2d0/3d0)*v(360)+v(362) v(361)=(-2d0/3d0)*v(358)+v(359)+v(364) v(365)=v(362)+(-2d0/3d0)*v(363)+v(364) v(366)=v(354)-x(4)-x(9) v(367)=v(355)-x(11)-x(6) v(368)=v(356)-x(10)-x(5) v(375)=sqrt(v(369)+v(370)+v(371)+2d0*v(372)+2d0*v(373)+2d0*v(374)) v(6033)=v(5515)/v(375) v(4244)=v(6033)*(v(223)*v(5998)+v(228)*v(5999)+v(227)*v(6000)+v(4190)*v(6034)+v(4199)*v(6035)+v(4208)*v(6036)) v(4243)=v(6033)*(v(223)*v(6001)+v(228)*v(6002)+v(227)*v(6003)+v(4189)*v(6034)+v(4198)*v(6035)+v(4207)*v(6036)) v(4242)=v(6033)*(v(223)*v(6004)+v(228)*v(6005)+v(227)*v(6006)+v(4188)*v(6034)+v(4197)*v(6035)+v(4206)*v(6036)) v(4241)=v(6033)*(v(223)*v(6007)+v(228)*v(6008)+v(227)*v(6009)+v(4187)*v(6034)+v(4196)*v(6035)+v(4205)*v(6036)) v(4240)=v(6033)*(v(223)*v(6010)+v(228)*v(6011)+v(227)*v(6012)+v(4186)*v(6034)+v(4195)*v(6035)+v(4204)*v(6036)) v(4239)=v(6033)*(v(223)*v(6013)+v(228)*v(6014)+v(227)*v(6015)+v(4185)*v(6034)+v(4194)*v(6035)+v(4203)*v(6036)) v(4238)=v(6033)*(v(223)*v(6016)+v(228)*v(6017)+v(227)*v(6018)+v(4184)*v(6034)+v(4193)*v(6035)+v(4202)*v(6036)) v(4237)=v(6033)*(v(223)*v(6019)+v(228)*v(6020)+v(227)*v(6021)+v(4183)*v(6034)+v(4192)*v(6035)+v(4201)*v(6036)) v(4236)=v(6033)*(v(223)*v(6022)+v(228)*v(6023)+v(227)*v(6024)+v(4182)*v(6034)+v(4191)*v(6035)+v(4200)*v(6036)) v(387)=v(6033)*(v(228)*v(5550)+v(6036)*x(10)+v(6035)*x(11)+v(223)*x(7)+v(227)*x(8)+v(6034)*x(9)) v(378)=v(6033)*(v(223)*v(357)+v(227)*v(361)+v(228)*v(365)+v(366)*v(6034)+v(367)*v(6035)+v(368)*v(6036)) v(377)=0.15d1*mpar(8)*v(375) v(4318)=(v(377)*v(4208)+v(231)*v(4244))*v(6037) v(4317)=(v(377)*v(4207)+v(231)*v(4243))*v(6037) v(4316)=(v(377)*v(4206)+v(231)*v(4242))*v(6037) v(4315)=(v(377)*v(4205)+v(231)*v(4241))*v(6037) v(4314)=(v(377)*v(4204)+v(231)*v(4240))*v(6037) v(4313)=(v(377)*v(4203)+v(231)*v(4239))*v(6037) v(4312)=(v(377)*v(4202)+v(231)*v(4238))*v(6037) v(4311)=(v(377)*v(4201)+v(231)*v(4237))*v(6037) v(4310)=(v(377)*v(4200)+v(231)*v(4236))*v(6037) v(4299)=(v(377)*v(4199)+v(230)*v(4244))*v(6037) v(4298)=(v(377)*v(4198)+v(230)*v(4243))*v(6037) v(4297)=(v(377)*v(4197)+v(230)*v(4242))*v(6037) v(4296)=(v(377)*v(4196)+v(230)*v(4241))*v(6037) v(4295)=(v(377)*v(4195)+v(230)*v(4240))*v(6037) v(4294)=(v(377)*v(4194)+v(230)*v(4239))*v(6037) v(4293)=(v(377)*v(4193)+v(230)*v(4238))*v(6037) v(4292)=(v(377)*v(4192)+v(230)*v(4237))*v(6037) v(4291)=(v(377)*v(4191)+v(230)*v(4236))*v(6037) v(4280)=(v(377)*v(4190)+v(229)*v(4244))*v(6037) v(4279)=(v(377)*v(4189)+v(229)*v(4243))*v(6037) v(4278)=(v(377)*v(4188)+v(229)*v(4242))*v(6037) v(4277)=(v(377)*v(4187)+v(229)*v(4241))*v(6037) v(4276)=(v(377)*v(4186)+v(229)*v(4240))*v(6037) v(4275)=(v(377)*v(4185)+v(229)*v(4239))*v(6037) v(4274)=(v(377)*v(4184)+v(229)*v(4238))*v(6037) v(4273)=(v(377)*v(4183)+v(229)*v(4237))*v(6037) v(4272)=(v(377)*v(4182)+v(229)*v(4236))*v(6037) v(4271)=(v(228)*v(4244)+v(377)*v(5999))*v(6037) v(4270)=(v(228)*v(4243)+v(377)*v(6002))*v(6037) v(4269)=(v(228)*v(4242)+v(377)*v(6005))*v(6037) v(4268)=(v(228)*v(4241)+v(377)*v(6008))*v(6037) v(4267)=(v(228)*v(4240)+v(377)*v(6011))*v(6037) v(4266)=(v(228)*v(4239)+v(377)*v(6014))*v(6037) v(4265)=(v(228)*v(4238)+v(377)*v(6017))*v(6037) v(4264)=(v(228)*v(4237)+v(377)*v(6020))*v(6037) v(4263)=(v(228)*v(4236)+v(377)*v(6023))*v(6037) v(4262)=(v(227)*v(4244)+v(377)*v(6000))*v(6037) v(4261)=(v(227)*v(4243)+v(377)*v(6003))*v(6037) v(4260)=(v(227)*v(4242)+v(377)*v(6006))*v(6037) v(4259)=(v(227)*v(4241)+v(377)*v(6009))*v(6037) v(4258)=(v(227)*v(4240)+v(377)*v(6012))*v(6037) v(4257)=(v(227)*v(4239)+v(377)*v(6015))*v(6037) v(4256)=(v(227)*v(4238)+v(377)*v(6018))*v(6037) v(4255)=(v(227)*v(4237)+v(377)*v(6021))*v(6037) v(4254)=(v(227)*v(4236)+v(377)*v(6024))*v(6037) v(4253)=(v(223)*v(4244)+v(377)*v(5998))*v(6037) v(4252)=(v(223)*v(4243)+v(377)*v(6001))*v(6037) v(4251)=(v(223)*v(4242)+v(377)*v(6004))*v(6037) v(4250)=(v(223)*v(4241)+v(377)*v(6007))*v(6037) v(4249)=(v(223)*v(4240)+v(377)*v(6010))*v(6037) v(4248)=(v(223)*v(4239)+v(377)*v(6013))*v(6037) v(4247)=(v(223)*v(4238)+v(377)*v(6016))*v(6037) v(4246)=(v(223)*v(4237)+v(377)*v(6019))*v(6037) v(4245)=(v(223)*v(4236)+v(377)*v(6022))*v(6037) v(376)=-v(223)+(v(357)*v(377)+v(223)*v(378))*v(6037) v(6044)=v(376)*v(5541) v(4384)=v(376)*v(5807) v(379)=-v(227)+(v(361)*v(377)+v(227)*v(378))*v(6037) v(6048)=v(379)*v(5541) v(6039)=v(376)+v(379) v(4610)=v(379)*v(5807) v(380)=-v(228)+(v(365)*v(377)+v(228)*v(378))*v(6037) v(6052)=v(380)*v(5541) v(6040)=v(379)+v(380) v(6038)=v(376)+v(380) v(4755)=v(380)*v(5807) v(381)=-v(229)+(v(366)*v(377)+v(229)*v(378))*v(6037) v(6043)=v(381)*v(5541) v(4282)=v(381)*v(5807) v(4290)=v(4280)*v(4282) v(4289)=v(4279)*v(4282) v(4288)=v(4278)*v(4282) v(4287)=v(4277)*v(4282) v(4286)=v(4276)*v(4282) v(4285)=v(4275)*v(4282) v(4284)=v(4274)*v(4282) v(4283)=v(4273)*v(4282) v(4281)=v(4272)*v(4282) v(410)=v(232)*(v(381)*v(381)) v(382)=-v(230)+(v(367)*v(377)+v(230)*v(378))*v(6037) v(6047)=v(382)*v(5541) v(4301)=v(382)*v(5807) v(4309)=v(4299)*v(4301) v(4618)=v(4290)+v(4309)+v(4262)*v(4610) v(4308)=v(4298)*v(4301) v(4617)=v(4289)+v(4308)+v(4261)*v(4610) v(4307)=v(4297)*v(4301) v(4616)=v(4288)+v(4307)+v(4260)*v(4610) v(4306)=v(4296)*v(4301) v(4615)=v(4287)+v(4306)+v(4259)*v(4610) v(4305)=v(4295)*v(4301) v(4614)=v(4286)+v(4305)+v(4258)*v(4610) v(4304)=v(4294)*v(4301) v(4613)=v(4285)+v(4304)+v(4257)*v(4610) v(4303)=v(4293)*v(4301) v(4612)=v(4284)+v(4303)+v(4256)*v(4610) v(4302)=v(4292)*v(4301) v(4611)=v(4283)+v(4302)+v(4255)*v(4610) v(4300)=v(4291)*v(4301) v(4609)=v(4281)+v(4300)+v(4254)*v(4610) v(427)=v(232)*(v(382)*v(382)) v(383)=-v(231)+(v(368)*v(377)+v(231)*v(378))*v(6037) v(6042)=v(383)*v(5541) v(4373)=v(232)*(v(383)*(v(4253)+v(4271))+v(382)*v(4280)+v(381)*v(4299)+v(4318)*v(6038)) v(4372)=v(232)*(v(383)*(v(4252)+v(4270))+v(382)*v(4279)+v(381)*v(4298)+v(4317)*v(6038)) v(4371)=v(232)*(v(383)*(v(4251)+v(4269))+v(382)*v(4278)+v(381)*v(4297)+v(4316)*v(6038)) v(4370)=v(232)*(v(383)*(v(4250)+v(4268))+v(382)*v(4277)+v(381)*v(4296)+v(4315)*v(6038)) v(4369)=v(232)*(v(383)*(v(4249)+v(4267))+v(382)*v(4276)+v(381)*v(4295)+v(4314)*v(6038)) v(4368)=v(232)*(v(383)*(v(4248)+v(4266))+v(382)*v(4275)+v(381)*v(4294)+v(4313)*v(6038)) v(4367)=v(232)*(v(383)*(v(4247)+v(4265))+v(382)*v(4274)+v(381)*v(4293)+v(4312)*v(6038)) v(4366)=v(232)*(v(383)*(v(4246)+v(4264))+v(382)*v(4273)+v(381)*v(4292)+v(4311)*v(6038)) v(4365)=v(232)*(v(383)*(v(4245)+v(4263))+v(382)*v(4272)+v(381)*v(4291)+v(4310)*v(6038)) v(4355)=v(232)*(v(381)*(v(4253)+v(4262))+v(383)*v(4299)+v(382)*v(4318)+v(4280)*v(6039)) v(4354)=v(232)*(v(381)*(v(4252)+v(4261))+v(383)*v(4298)+v(382)*v(4317)+v(4279)*v(6039)) v(4353)=v(232)*(v(381)*(v(4251)+v(4260))+v(383)*v(4297)+v(382)*v(4316)+v(4278)*v(6039)) v(4352)=v(232)*(v(381)*(v(4250)+v(4259))+v(383)*v(4296)+v(382)*v(4315)+v(4277)*v(6039)) v(4351)=v(232)*(v(381)*(v(4249)+v(4258))+v(383)*v(4295)+v(382)*v(4314)+v(4276)*v(6039)) v(4350)=v(232)*(v(381)*(v(4248)+v(4257))+v(383)*v(4294)+v(382)*v(4313)+v(4275)*v(6039)) v(4349)=v(232)*(v(381)*(v(4247)+v(4256))+v(383)*v(4293)+v(382)*v(4312)+v(4274)*v(6039)) v(4348)=v(232)*(v(381)*(v(4246)+v(4255))+v(383)*v(4292)+v(382)*v(4311)+v(4273)*v(6039)) v(4347)=v(232)*(v(381)*(v(4245)+v(4254))+v(383)*v(4291)+v(382)*v(4310)+v(4272)*v(6039)) v(4337)=v(232)*(v(382)*(v(4262)+v(4271))+v(383)*v(4280)+v(381)*v(4318)+v(4299)*v(6040)) v(4336)=v(232)*(v(382)*(v(4261)+v(4270))+v(383)*v(4279)+v(381)*v(4317)+v(4298)*v(6040)) v(4335)=v(232)*(v(382)*(v(4260)+v(4269))+v(383)*v(4278)+v(381)*v(4316)+v(4297)*v(6040)) v(4334)=v(232)*(v(382)*(v(4259)+v(4268))+v(383)*v(4277)+v(381)*v(4315)+v(4296)*v(6040)) v(4333)=v(232)*(v(382)*(v(4258)+v(4267))+v(383)*v(4276)+v(381)*v(4314)+v(4295)*v(6040)) v(4332)=v(232)*(v(382)*(v(4257)+v(4266))+v(383)*v(4275)+v(381)*v(4313)+v(4294)*v(6040)) v(4331)=v(232)*(v(382)*(v(4256)+v(4265))+v(383)*v(4274)+v(381)*v(4312)+v(4293)*v(6040)) v(4330)=v(232)*(v(382)*(v(4255)+v(4264))+v(383)*v(4273)+v(381)*v(4311)+v(4292)*v(6040)) v(4329)=v(232)*(v(382)*(v(4254)+v(4263))+v(383)*v(4272)+v(381)*v(4310)+v(4291)*v(6040)) v(4320)=v(383)*v(5807) v(4328)=v(4318)*v(4320) v(4763)=v(4309)+v(4328)+v(4271)*v(4755) v(4392)=v(4290)+v(4328)+v(4253)*v(4384) v(4327)=v(4317)*v(4320) v(4762)=v(4308)+v(4327)+v(4270)*v(4755) v(4391)=v(4289)+v(4327)+v(4252)*v(4384) v(4326)=v(4316)*v(4320) v(4761)=v(4307)+v(4326)+v(4269)*v(4755) v(4390)=v(4288)+v(4326)+v(4251)*v(4384) v(4325)=v(4315)*v(4320) v(4760)=v(4306)+v(4325)+v(4268)*v(4755) v(4389)=v(4287)+v(4325)+v(4250)*v(4384) v(4324)=v(4314)*v(4320) v(4759)=v(4305)+v(4324)+v(4267)*v(4755) v(4388)=v(4286)+v(4324)+v(4249)*v(4384) v(4323)=v(4313)*v(4320) v(4758)=v(4304)+v(4323)+v(4266)*v(4755) v(4387)=v(4285)+v(4323)+v(4248)*v(4384) v(4322)=v(4312)*v(4320) v(4757)=v(4303)+v(4322)+v(4265)*v(4755) v(4386)=v(4284)+v(4322)+v(4247)*v(4384) v(4321)=v(4311)*v(4320) v(4756)=v(4302)+v(4321)+v(4264)*v(4755) v(4385)=v(4283)+v(4321)+v(4246)*v(4384) v(4319)=v(4310)*v(4320) v(4754)=v(4300)+v(4319)+v(4263)*v(4755) v(4383)=v(4281)+v(4319)+v(4245)*v(4384) v(428)=v(232)*(v(383)*v(383)) v(415)=v(232)*(v(381)*v(383)+v(382)*v(6040)) v(4346)=(v(415)*v(4299)+v(382)*v(4337))*v(5541) v(4345)=(v(415)*v(4298)+v(382)*v(4336))*v(5541) v(4344)=(v(415)*v(4297)+v(382)*v(4335))*v(5541) v(4343)=(v(415)*v(4296)+v(382)*v(4334))*v(5541) v(4342)=(v(415)*v(4295)+v(382)*v(4333))*v(5541) v(4341)=(v(415)*v(4294)+v(382)*v(4332))*v(5541) v(4340)=(v(415)*v(4293)+v(382)*v(4331))*v(5541) v(4339)=(v(415)*v(4292)+v(382)*v(4330))*v(5541) v(4338)=(v(415)*v(4291)+v(382)*v(4329))*v(5541) v(431)=v(415)*v(6047) v(396)=v(232)*(v(382)*v(383)+v(381)*v(6039)) v(4364)=(v(396)*v(4280)+v(381)*v(4355))*v(5541) v(4363)=(v(396)*v(4279)+v(381)*v(4354))*v(5541) v(4362)=(v(396)*v(4278)+v(381)*v(4353))*v(5541) v(4361)=(v(396)*v(4277)+v(381)*v(4352))*v(5541) v(4360)=(v(396)*v(4276)+v(381)*v(4351))*v(5541) v(4359)=(v(396)*v(4275)+v(381)*v(4350))*v(5541) v(4358)=(v(396)*v(4274)+v(381)*v(4349))*v(5541) v(4357)=(v(396)*v(4273)+v(381)*v(4348))*v(5541) v(4356)=(v(396)*v(4272)+v(381)*v(4347))*v(5541) v(412)=v(396)*v(6043) v(395)=v(232)*(v(381)*v(382)+v(383)*v(6038)) v(4382)=(v(395)*v(4318)+v(383)*v(4373))*v(5541) v(4381)=(v(395)*v(4317)+v(383)*v(4372))*v(5541) v(4380)=(v(395)*v(4316)+v(383)*v(4371))*v(5541) v(4379)=(v(395)*v(4315)+v(383)*v(4370))*v(5541) v(4378)=(v(395)*v(4314)+v(383)*v(4369))*v(5541) v(4377)=(v(395)*v(4313)+v(383)*v(4368))*v(5541) v(4376)=(v(395)*v(4312)+v(383)*v(4367))*v(5541) v(4375)=(v(395)*v(4311)+v(383)*v(4366))*v(5541) v(4374)=(v(395)*v(4310)+v(383)*v(4365))*v(5541) v(430)=v(395)*v(6042) v(386)=-v(223)+v(6041)*(v(223)*v(387)+v(377)*x(7)) v(6064)=v(386)*v(5541) v(388)=-v(227)+v(6041)*(v(227)*v(387)+v(377)*x(8)) v(6067)=v(388)*v(5541) v(389)=-v(228)+(v(228)*v(387)+v(377)*v(5550))*v(6041) v(6070)=v(389)*v(5541) v(390)=-v(229)+v(6041)*(v(229)*v(387)+v(377)*x(9)) v(6063)=v(390)*v(5541) v(473)=v(232)*(v(390)*v(390)) v(391)=-v(230)+v(6041)*(v(230)*v(387)+v(377)*x(11)) v(6066)=v(391)*v(5541) v(490)=v(232)*(v(391)*v(391)) v(392)=-v(231)+v(6041)*(v(231)*v(387)+v(377)*x(10)) v(6062)=v(392)*v(5541) v(491)=v(232)*(v(392)*v(392)) v(478)=v(232)*((v(388)+v(389))*v(391)+v(390)*v(392)) v(494)=v(478)*v(6066) v(459)=v(232)*((v(386)+v(388))*v(390)+v(391)*v(392)) v(475)=v(459)*v(6063) v(458)=v(232)*(v(390)*v(391)+(v(386)+v(389))*v(392)) v(493)=v(458)*v(6062) v(393)=v(232)*(v(376)*v(376))+v(410)+v(428) v(4437)=v(4364)+v(4382)+(v(393)*v(4253)+v(376)*v(4392))*v(5541) v(4436)=v(4363)+v(4381)+(v(393)*v(4252)+v(376)*v(4391))*v(5541) v(4435)=v(4362)+v(4380)+(v(393)*v(4251)+v(376)*v(4390))*v(5541) v(4434)=v(4361)+v(4379)+(v(393)*v(4250)+v(376)*v(4389))*v(5541) v(4433)=v(4360)+v(4378)+(v(393)*v(4249)+v(376)*v(4388))*v(5541) v(4432)=v(4359)+v(4377)+(v(393)*v(4248)+v(376)*v(4387))*v(5541) v(4431)=v(4358)+v(4376)+(v(393)*v(4247)+v(376)*v(4386))*v(5541) v(4430)=v(4357)+v(4375)+(v(393)*v(4246)+v(376)*v(4385))*v(5541) v(4429)=v(4356)+v(4374)+(v(393)*v(4245)+v(376)*v(4383))*v(5541) v(4419)=(v(396)*v(4262)+v(393)*v(4280)+v(395)*v(4299)+v(379)*v(4355)+v(382)*v(4373)+v(381)*v(4392))*v(5541) v(4418)=(v(396)*v(4261)+v(393)*v(4279)+v(395)*v(4298)+v(379)*v(4354)+v(382)*v(4372)+v(381)*v(4391))*v(5541) v(4417)=(v(396)*v(4260)+v(393)*v(4278)+v(395)*v(4297)+v(379)*v(4353)+v(382)*v(4371)+v(381)*v(4390))*v(5541) v(4416)=(v(396)*v(4259)+v(393)*v(4277)+v(395)*v(4296)+v(379)*v(4352)+v(382)*v(4370)+v(381)*v(4389))*v(5541) v(4415)=(v(396)*v(4258)+v(393)*v(4276)+v(395)*v(4295)+v(379)*v(4351)+v(382)*v(4369)+v(381)*v(4388))*v(5541) v(4414)=(v(396)*v(4257)+v(393)*v(4275)+v(395)*v(4294)+v(379)*v(4350)+v(382)*v(4368)+v(381)*v(4387))*v(5541) v(4413)=(v(396)*v(4256)+v(393)*v(4274)+v(395)*v(4293)+v(379)*v(4349)+v(382)*v(4367)+v(381)*v(4386))*v(5541) v(4412)=(v(396)*v(4255)+v(393)*v(4273)+v(395)*v(4292)+v(379)*v(4348)+v(382)*v(4366)+v(381)*v(4385))*v(5541) v(4411)=(v(396)*v(4254)+v(393)*v(4272)+v(395)*v(4291)+v(379)*v(4347)+v(382)*v(4365)+v(381)*v(4383))*v(5541) v(4401)=(v(395)*v(4271)+v(396)*v(4299)+v(393)*v(4318)+v(382)*v(4355)+v(380)*v(4373)+v(383)*v(4392))*v(5541) v(4400)=(v(395)*v(4270)+v(396)*v(4298)+v(393)*v(4317)+v(382)*v(4354)+v(380)*v(4372)+v(383)*v(4391))*v(5541) v(4399)=(v(395)*v(4269)+v(396)*v(4297)+v(393)*v(4316)+v(382)*v(4353)+v(380)*v(4371)+v(383)*v(4390))*v(5541) v(4398)=(v(395)*v(4268)+v(396)*v(4296)+v(393)*v(4315)+v(382)*v(4352)+v(380)*v(4370)+v(383)*v(4389))*v(5541) v(4397)=(v(395)*v(4267)+v(396)*v(4295)+v(393)*v(4314)+v(382)*v(4351)+v(380)*v(4369)+v(383)*v(4388))*v(5541) v(4396)=(v(395)*v(4266)+v(396)*v(4294)+v(393)*v(4313)+v(382)*v(4350)+v(380)*v(4368)+v(383)*v(4387))*v(5541) v(4395)=(v(395)*v(4265)+v(396)*v(4293)+v(393)*v(4312)+v(382)*v(4349)+v(380)*v(4367)+v(383)*v(4386))*v(5541) v(4394)=(v(395)*v(4264)+v(396)*v(4292)+v(393)*v(4311)+v(382)*v(4348)+v(380)*v(4366)+v(383)*v(4385))*v(5541) v(4393)=(v(395)*v(4263)+v(396)*v(4291)+v(393)*v(4310)+v(382)*v(4347)+v(380)*v(4365)+v(383)*v(4383))*v(5541) v(399)=(v(383)*v(393)+v(380)*v(395)+v(382)*v(396))*v(5541) v(4410)=(v(399)*v(4318)+v(383)*v(4401))*v(5541) v(4409)=(v(399)*v(4317)+v(383)*v(4400))*v(5541) v(4408)=(v(399)*v(4316)+v(383)*v(4399))*v(5541) v(4407)=(v(399)*v(4315)+v(383)*v(4398))*v(5541) v(4406)=(v(399)*v(4314)+v(383)*v(4397))*v(5541) v(4405)=(v(399)*v(4313)+v(383)*v(4396))*v(5541) v(4404)=(v(399)*v(4312)+v(383)*v(4395))*v(5541) v(4403)=(v(399)*v(4311)+v(383)*v(4394))*v(5541) v(4402)=(v(399)*v(4310)+v(383)*v(4393))*v(5541) v(434)=v(399)*v(6042) v(398)=(v(381)*v(393)+v(382)*v(395)+v(379)*v(396))*v(5541) v(4428)=(v(398)*v(4280)+v(381)*v(4419))*v(5541) v(4427)=(v(398)*v(4279)+v(381)*v(4418))*v(5541) v(4426)=(v(398)*v(4278)+v(381)*v(4417))*v(5541) v(4425)=(v(398)*v(4277)+v(381)*v(4416))*v(5541) v(4424)=(v(398)*v(4276)+v(381)*v(4415))*v(5541) v(4423)=(v(398)*v(4275)+v(381)*v(4414))*v(5541) v(4422)=(v(398)*v(4274)+v(381)*v(4413))*v(5541) v(4421)=(v(398)*v(4273)+v(381)*v(4412))*v(5541) v(4420)=(v(398)*v(4272)+v(381)*v(4411))*v(5541) v(414)=v(398)*v(6043) v(394)=v(412)+v(430)+v(393)*v(6044) v(4482)=v(4410)+v(4428)+(v(394)*v(4253)+v(376)*v(4437))*v(5541) v(4481)=v(4409)+v(4427)+(v(394)*v(4252)+v(376)*v(4436))*v(5541) v(4480)=v(4408)+v(4426)+(v(394)*v(4251)+v(376)*v(4435))*v(5541) v(4479)=v(4407)+v(4425)+(v(394)*v(4250)+v(376)*v(4434))*v(5541) v(4478)=v(4406)+v(4424)+(v(394)*v(4249)+v(376)*v(4433))*v(5541) v(4477)=v(4405)+v(4423)+(v(394)*v(4248)+v(376)*v(4432))*v(5541) v(4476)=v(4404)+v(4422)+(v(394)*v(4247)+v(376)*v(4431))*v(5541) v(4475)=v(4403)+v(4421)+(v(394)*v(4246)+v(376)*v(4430))*v(5541) v(4474)=v(4402)+v(4420)+(v(394)*v(4245)+v(376)*v(4429))*v(5541) v(4464)=(v(399)*v(4271)+v(398)*v(4299)+v(394)*v(4318)+v(380)*v(4401)+v(382)*v(4419)+v(383)*v(4437))*v(5541) v(4463)=(v(399)*v(4270)+v(398)*v(4298)+v(394)*v(4317)+v(380)*v(4400)+v(382)*v(4418)+v(383)*v(4436))*v(5541) v(4462)=(v(399)*v(4269)+v(398)*v(4297)+v(394)*v(4316)+v(380)*v(4399)+v(382)*v(4417)+v(383)*v(4435))*v(5541) v(4461)=(v(399)*v(4268)+v(398)*v(4296)+v(394)*v(4315)+v(380)*v(4398)+v(382)*v(4416)+v(383)*v(4434))*v(5541) v(4460)=(v(399)*v(4267)+v(398)*v(4295)+v(394)*v(4314)+v(380)*v(4397)+v(382)*v(4415)+v(383)*v(4433))*v(5541) v(4459)=(v(399)*v(4266)+v(398)*v(4294)+v(394)*v(4313)+v(380)*v(4396)+v(382)*v(4414)+v(383)*v(4432))*v(5541) v(4458)=(v(399)*v(4265)+v(398)*v(4293)+v(394)*v(4312)+v(380)*v(4395)+v(382)*v(4413)+v(383)*v(4431))*v(5541) v(4457)=(v(399)*v(4264)+v(398)*v(4292)+v(394)*v(4311)+v(380)*v(4394)+v(382)*v(4412)+v(383)*v(4430))*v(5541) v(4456)=(v(399)*v(4263)+v(398)*v(4291)+v(394)*v(4310)+v(380)*v(4393)+v(382)*v(4411)+v(383)*v(4429))*v(5541) v(4446)=(v(398)*v(4262)+v(394)*v(4280)+v(399)*v(4299)+v(382)*v(4401)+v(379)*v(4419)+v(381)*v(4437))*v(5541) v(4445)=(v(398)*v(4261)+v(394)*v(4279)+v(399)*v(4298)+v(382)*v(4400)+v(379)*v(4418)+v(381)*v(4436))*v(5541) v(4444)=(v(398)*v(4260)+v(394)*v(4278)+v(399)*v(4297)+v(382)*v(4399)+v(379)*v(4417)+v(381)*v(4435))*v(5541) v(4443)=(v(398)*v(4259)+v(394)*v(4277)+v(399)*v(4296)+v(382)*v(4398)+v(379)*v(4416)+v(381)*v(4434))*v(5541) v(4442)=(v(398)*v(4258)+v(394)*v(4276)+v(399)*v(4295)+v(382)*v(4397)+v(379)*v(4415)+v(381)*v(4433))*v(5541) v(4441)=(v(398)*v(4257)+v(394)*v(4275)+v(399)*v(4294)+v(382)*v(4396)+v(379)*v(4414)+v(381)*v(4432))*v(5541) v(4440)=(v(398)*v(4256)+v(394)*v(4274)+v(399)*v(4293)+v(382)*v(4395)+v(379)*v(4413)+v(381)*v(4431))*v(5541) v(4439)=(v(398)*v(4255)+v(394)*v(4273)+v(399)*v(4292)+v(382)*v(4394)+v(379)*v(4412)+v(381)*v(4430))*v(5541) v(4438)=(v(398)*v(4254)+v(394)*v(4272)+v(399)*v(4291)+v(382)*v(4393)+v(379)*v(4411)+v(381)*v(4429))*v(5541) v(402)=(v(381)*v(394)+v(379)*v(398)+v(382)*v(399))*v(5541) v(4455)=(v(402)*v(4280)+v(381)*v(4446))*v(5541) v(4454)=(v(402)*v(4279)+v(381)*v(4445))*v(5541) v(4453)=(v(402)*v(4278)+v(381)*v(4444))*v(5541) v(4452)=(v(402)*v(4277)+v(381)*v(4443))*v(5541) v(4451)=(v(402)*v(4276)+v(381)*v(4442))*v(5541) v(4450)=(v(402)*v(4275)+v(381)*v(4441))*v(5541) v(4449)=(v(402)*v(4274)+v(381)*v(4440))*v(5541) v(4448)=(v(402)*v(4273)+v(381)*v(4439))*v(5541) v(4447)=(v(402)*v(4272)+v(381)*v(4438))*v(5541) v(418)=v(402)*v(6043) v(401)=(v(383)*v(394)+v(382)*v(398)+v(380)*v(399))*v(5541) v(4473)=(v(401)*v(4318)+v(383)*v(4464))*v(5541) v(4472)=(v(401)*v(4317)+v(383)*v(4463))*v(5541) v(4471)=(v(401)*v(4316)+v(383)*v(4462))*v(5541) v(4470)=(v(401)*v(4315)+v(383)*v(4461))*v(5541) v(4469)=(v(401)*v(4314)+v(383)*v(4460))*v(5541) v(4468)=(v(401)*v(4313)+v(383)*v(4459))*v(5541) v(4467)=(v(401)*v(4312)+v(383)*v(4458))*v(5541) v(4466)=(v(401)*v(4311)+v(383)*v(4457))*v(5541) v(4465)=(v(401)*v(4310)+v(383)*v(4456))*v(5541) v(436)=v(401)*v(6042) v(397)=v(414)+v(434)+v(394)*v(6044) v(4527)=v(4455)+v(4473)+(v(397)*v(4253)+v(376)*v(4482))*v(5541) v(4526)=v(4454)+v(4472)+(v(397)*v(4252)+v(376)*v(4481))*v(5541) v(4525)=v(4453)+v(4471)+(v(397)*v(4251)+v(376)*v(4480))*v(5541) v(4524)=v(4452)+v(4470)+(v(397)*v(4250)+v(376)*v(4479))*v(5541) v(4523)=v(4451)+v(4469)+(v(397)*v(4249)+v(376)*v(4478))*v(5541) v(4522)=v(4450)+v(4468)+(v(397)*v(4248)+v(376)*v(4477))*v(5541) v(4521)=v(4449)+v(4467)+(v(397)*v(4247)+v(376)*v(4476))*v(5541) v(4520)=v(4448)+v(4466)+(v(397)*v(4246)+v(376)*v(4475))*v(5541) v(4519)=v(4447)+v(4465)+(v(397)*v(4245)+v(376)*v(4474))*v(5541) v(4509)=(v(402)*v(4262)+v(397)*v(4280)+v(401)*v(4299)+v(379)*v(4446)+v(382)*v(4464)+v(381)*v(4482))*v(5541) v(4508)=(v(402)*v(4261)+v(397)*v(4279)+v(401)*v(4298)+v(379)*v(4445)+v(382)*v(4463)+v(381)*v(4481))*v(5541) v(4507)=(v(402)*v(4260)+v(397)*v(4278)+v(401)*v(4297)+v(379)*v(4444)+v(382)*v(4462)+v(381)*v(4480))*v(5541) v(4506)=(v(402)*v(4259)+v(397)*v(4277)+v(401)*v(4296)+v(379)*v(4443)+v(382)*v(4461)+v(381)*v(4479))*v(5541) v(4505)=(v(402)*v(4258)+v(397)*v(4276)+v(401)*v(4295)+v(379)*v(4442)+v(382)*v(4460)+v(381)*v(4478))*v(5541) v(4504)=(v(402)*v(4257)+v(397)*v(4275)+v(401)*v(4294)+v(379)*v(4441)+v(382)*v(4459)+v(381)*v(4477))*v(5541) v(4503)=(v(402)*v(4256)+v(397)*v(4274)+v(401)*v(4293)+v(379)*v(4440)+v(382)*v(4458)+v(381)*v(4476))*v(5541) v(4502)=(v(402)*v(4255)+v(397)*v(4273)+v(401)*v(4292)+v(379)*v(4439)+v(382)*v(4457)+v(381)*v(4475))*v(5541) v(4501)=(v(402)*v(4254)+v(397)*v(4272)+v(401)*v(4291)+v(379)*v(4438)+v(382)*v(4456)+v(381)*v(4474))*v(5541) v(4491)=(v(401)*v(4271)+v(402)*v(4299)+v(397)*v(4318)+v(382)*v(4446)+v(380)*v(4464)+v(383)*v(4482))*v(5541) v(4490)=(v(401)*v(4270)+v(402)*v(4298)+v(397)*v(4317)+v(382)*v(4445)+v(380)*v(4463)+v(383)*v(4481))*v(5541) v(4489)=(v(401)*v(4269)+v(402)*v(4297)+v(397)*v(4316)+v(382)*v(4444)+v(380)*v(4462)+v(383)*v(4480))*v(5541) v(4488)=(v(401)*v(4268)+v(402)*v(4296)+v(397)*v(4315)+v(382)*v(4443)+v(380)*v(4461)+v(383)*v(4479))*v(5541) v(4487)=(v(401)*v(4267)+v(402)*v(4295)+v(397)*v(4314)+v(382)*v(4442)+v(380)*v(4460)+v(383)*v(4478))*v(5541) v(4486)=(v(401)*v(4266)+v(402)*v(4294)+v(397)*v(4313)+v(382)*v(4441)+v(380)*v(4459)+v(383)*v(4477))*v(5541) v(4485)=(v(401)*v(4265)+v(402)*v(4293)+v(397)*v(4312)+v(382)*v(4440)+v(380)*v(4458)+v(383)*v(4476))*v(5541) v(4484)=(v(401)*v(4264)+v(402)*v(4292)+v(397)*v(4311)+v(382)*v(4439)+v(380)*v(4457)+v(383)*v(4475))*v(5541) v(4483)=(v(401)*v(4263)+v(402)*v(4291)+v(397)*v(4310)+v(382)*v(4438)+v(380)*v(4456)+v(383)*v(4474))*v(5541) v(405)=(v(383)*v(397)+v(380)*v(401)+v(382)*v(402))*v(5541) v(4500)=(v(405)*v(4318)+v(383)*v(4491))*v(5541) v(4499)=(v(405)*v(4317)+v(383)*v(4490))*v(5541) v(4498)=(v(405)*v(4316)+v(383)*v(4489))*v(5541) v(4497)=(v(405)*v(4315)+v(383)*v(4488))*v(5541) v(4496)=(v(405)*v(4314)+v(383)*v(4487))*v(5541) v(4495)=(v(405)*v(4313)+v(383)*v(4486))*v(5541) v(4494)=(v(405)*v(4312)+v(383)*v(4485))*v(5541) v(4493)=(v(405)*v(4311)+v(383)*v(4484))*v(5541) v(4492)=(v(405)*v(4310)+v(383)*v(4483))*v(5541) v(440)=v(405)*v(6042) v(404)=(v(381)*v(397)+v(382)*v(401)+v(379)*v(402))*v(5541) v(4518)=(v(404)*v(4280)+v(381)*v(4509))*v(5541) v(4517)=(v(404)*v(4279)+v(381)*v(4508))*v(5541) v(4516)=(v(404)*v(4278)+v(381)*v(4507))*v(5541) v(4515)=(v(404)*v(4277)+v(381)*v(4506))*v(5541) v(4514)=(v(404)*v(4276)+v(381)*v(4505))*v(5541) v(4513)=(v(404)*v(4275)+v(381)*v(4504))*v(5541) v(4512)=(v(404)*v(4274)+v(381)*v(4503))*v(5541) v(4511)=(v(404)*v(4273)+v(381)*v(4502))*v(5541) v(4510)=(v(404)*v(4272)+v(381)*v(4501))*v(5541) v(420)=v(404)*v(6043) v(400)=v(418)+v(436)+v(397)*v(6044) v(4563)=(v(404)*v(4262)+v(400)*v(4280)+v(405)*v(4299)+v(382)*v(4491)+v(379)*v(4509)+v(381)*v(4527))*v(5541) v(4562)=(v(404)*v(4261)+v(400)*v(4279)+v(405)*v(4298)+v(382)*v(4490)+v(379)*v(4508)+v(381)*v(4526))*v(5541) v(4561)=(v(404)*v(4260)+v(400)*v(4278)+v(405)*v(4297)+v(382)*v(4489)+v(379)*v(4507)+v(381)*v(4525))*v(5541) v(4560)=(v(404)*v(4259)+v(400)*v(4277)+v(405)*v(4296)+v(382)*v(4488)+v(379)*v(4506)+v(381)*v(4524))*v(5541) v(4559)=(v(404)*v(4258)+v(400)*v(4276)+v(405)*v(4295)+v(382)*v(4487)+v(379)*v(4505)+v(381)*v(4523))*v(5541) v(4558)=(v(404)*v(4257)+v(400)*v(4275)+v(405)*v(4294)+v(382)*v(4486)+v(379)*v(4504)+v(381)*v(4522))*v(5541) v(4557)=(v(404)*v(4256)+v(400)*v(4274)+v(405)*v(4293)+v(382)*v(4485)+v(379)*v(4503)+v(381)*v(4521))*v(5541) v(4556)=(v(404)*v(4255)+v(400)*v(4273)+v(405)*v(4292)+v(382)*v(4484)+v(379)*v(4502)+v(381)*v(4520))*v(5541) v(4555)=(v(404)*v(4254)+v(400)*v(4272)+v(405)*v(4291)+v(382)*v(4483)+v(379)*v(4501)+v(381)*v(4519))*v(5541) v(4545)=(v(405)*v(4271)+v(404)*v(4299)+v(400)*v(4318)+v(380)*v(4491)+v(382)*v(4509)+v(383)*v(4527))*v(5541) v(4544)=(v(405)*v(4270)+v(404)*v(4298)+v(400)*v(4317)+v(380)*v(4490)+v(382)*v(4508)+v(383)*v(4526))*v(5541) v(4543)=(v(405)*v(4269)+v(404)*v(4297)+v(400)*v(4316)+v(380)*v(4489)+v(382)*v(4507)+v(383)*v(4525))*v(5541) v(4542)=(v(405)*v(4268)+v(404)*v(4296)+v(400)*v(4315)+v(380)*v(4488)+v(382)*v(4506)+v(383)*v(4524))*v(5541) v(4541)=(v(405)*v(4267)+v(404)*v(4295)+v(400)*v(4314)+v(380)*v(4487)+v(382)*v(4505)+v(383)*v(4523))*v(5541) v(4540)=(v(405)*v(4266)+v(404)*v(4294)+v(400)*v(4313)+v(380)*v(4486)+v(382)*v(4504)+v(383)*v(4522))*v(5541) v(4539)=(v(405)*v(4265)+v(404)*v(4293)+v(400)*v(4312)+v(380)*v(4485)+v(382)*v(4503)+v(383)*v(4521))*v(5541) v(4538)=(v(405)*v(4264)+v(404)*v(4292)+v(400)*v(4311)+v(380)*v(4484)+v(382)*v(4502)+v(383)*v(4520))*v(5541) v(4537)=(v(405)*v(4263)+v(404)*v(4291)+v(400)*v(4310)+v(380)*v(4483)+v(382)*v(4501)+v(383)*v(4519))*v(5541) v(4536)=v(4500)+v(4518)+(v(400)*v(4253)+v(376)*v(4527))*v(5541) v(4535)=v(4499)+v(4517)+(v(400)*v(4252)+v(376)*v(4526))*v(5541) v(4534)=v(4498)+v(4516)+(v(400)*v(4251)+v(376)*v(4525))*v(5541) v(4533)=v(4497)+v(4515)+(v(400)*v(4250)+v(376)*v(4524))*v(5541) v(4532)=v(4496)+v(4514)+(v(400)*v(4249)+v(376)*v(4523))*v(5541) v(4531)=v(4495)+v(4513)+(v(400)*v(4248)+v(376)*v(4522))*v(5541) v(4530)=v(4494)+v(4512)+(v(400)*v(4247)+v(376)*v(4521))*v(5541) v(4529)=v(4493)+v(4511)+(v(400)*v(4246)+v(376)*v(4520))*v(5541) v(4528)=v(4492)+v(4510)+(v(400)*v(4245)+v(376)*v(4519))*v(5541) v(403)=v(420)+v(440)+v(400)*v(6044) v(6045)=5040d0+v(403) v(406)=(v(383)*v(400)+v(382)*v(404)+v(380)*v(405))*v(5541) v(4554)=(v(406)*v(4318)+v(383)*v(4545))*v(5541) v(4553)=(v(406)*v(4317)+v(383)*v(4544))*v(5541) v(4552)=(v(406)*v(4316)+v(383)*v(4543))*v(5541) v(4551)=(v(406)*v(4315)+v(383)*v(4542))*v(5541) v(4550)=(v(406)*v(4314)+v(383)*v(4541))*v(5541) v(4549)=(v(406)*v(4313)+v(383)*v(4540))*v(5541) v(4548)=(v(406)*v(4312)+v(383)*v(4539))*v(5541) v(4547)=(v(406)*v(4311)+v(383)*v(4538))*v(5541) v(4546)=(v(406)*v(4310)+v(383)*v(4537))*v(5541) v(442)=v(406)*v(6042) v(407)=(v(381)*v(400)+v(379)*v(404)+v(382)*v(405))*v(5541) v(4599)=(7d0*(360d0*v(4355)+120d0*v(4419)+30d0*v(4446)+6d0*v(4509)+v(4563))+v(5541)*(v(407)*v(4262)+v(406)*v(4299)+v& &(381)*v(4536)+v(382)*v(4545)+v(379)*v(4563)+v(4280)*v(6045)))/5040d0 v(4598)=(7d0*(360d0*v(4354)+120d0*v(4418)+30d0*v(4445)+6d0*v(4508)+v(4562))+v(5541)*(v(407)*v(4261)+v(406)*v(4298)+v& &(381)*v(4535)+v(382)*v(4544)+v(379)*v(4562)+v(4279)*v(6045)))/5040d0 v(4597)=(7d0*(360d0*v(4353)+120d0*v(4417)+30d0*v(4444)+6d0*v(4507)+v(4561))+v(5541)*(v(407)*v(4260)+v(406)*v(4297)+v& &(381)*v(4534)+v(382)*v(4543)+v(379)*v(4561)+v(4278)*v(6045)))/5040d0 v(4596)=(7d0*(360d0*v(4352)+120d0*v(4416)+30d0*v(4443)+6d0*v(4506)+v(4560))+v(5541)*(v(407)*v(4259)+v(406)*v(4296)+v& &(381)*v(4533)+v(382)*v(4542)+v(379)*v(4560)+v(4277)*v(6045)))/5040d0 v(4595)=(7d0*(360d0*v(4351)+120d0*v(4415)+30d0*v(4442)+6d0*v(4505)+v(4559))+v(5541)*(v(407)*v(4258)+v(406)*v(4295)+v& &(381)*v(4532)+v(382)*v(4541)+v(379)*v(4559)+v(4276)*v(6045)))/5040d0 v(4594)=(7d0*(360d0*v(4350)+120d0*v(4414)+30d0*v(4441)+6d0*v(4504)+v(4558))+v(5541)*(v(407)*v(4257)+v(406)*v(4294)+v& &(381)*v(4531)+v(382)*v(4540)+v(379)*v(4558)+v(4275)*v(6045)))/5040d0 v(4593)=(7d0*(360d0*v(4349)+120d0*v(4413)+30d0*v(4440)+6d0*v(4503)+v(4557))+v(5541)*(v(407)*v(4256)+v(406)*v(4293)+v& &(381)*v(4530)+v(382)*v(4539)+v(379)*v(4557)+v(4274)*v(6045)))/5040d0 v(4592)=(7d0*(360d0*v(4348)+120d0*v(4412)+30d0*v(4439)+6d0*v(4502)+v(4556))+v(5541)*(v(407)*v(4255)+v(406)*v(4292)+v& &(381)*v(4529)+v(382)*v(4538)+v(379)*v(4556)+v(4273)*v(6045)))/5040d0 v(4591)=(7d0*(360d0*v(4347)+120d0*v(4411)+30d0*v(4438)+6d0*v(4501)+v(4555))+v(5541)*(v(407)*v(4254)+v(406)*v(4291)+v& &(381)*v(4528)+v(382)*v(4537)+v(379)*v(4555)+v(4272)*v(6045)))/5040d0 v(4581)=(v(407)*v(4280)+v(381)*v(4563))*v(5541) v(4590)=(2520d0*v(4392)+840d0*v(4437)+210d0*v(4482)+42d0*v(4527)+7d0*v(4536)+v(4554)+v(4581)+v(5541)*(v(376)*v(4536)+v& &(4253)*v(6045)))/5040d0 v(4580)=(v(407)*v(4279)+v(381)*v(4562))*v(5541) v(4589)=(2520d0*v(4391)+840d0*v(4436)+210d0*v(4481)+42d0*v(4526)+7d0*v(4535)+v(4553)+v(4580)+v(5541)*(v(376)*v(4535)+v& &(4252)*v(6045)))/5040d0 v(4579)=(v(407)*v(4278)+v(381)*v(4561))*v(5541) v(4588)=(2520d0*v(4390)+840d0*v(4435)+210d0*v(4480)+42d0*v(4525)+7d0*v(4534)+v(4552)+v(4579)+v(5541)*(v(376)*v(4534)+v& &(4251)*v(6045)))/5040d0 v(4578)=(v(407)*v(4277)+v(381)*v(4560))*v(5541) v(4587)=(2520d0*v(4389)+840d0*v(4434)+210d0*v(4479)+42d0*v(4524)+7d0*v(4533)+v(4551)+v(4578)+v(5541)*(v(376)*v(4533)+v& &(4250)*v(6045)))/5040d0 v(4577)=(v(407)*v(4276)+v(381)*v(4559))*v(5541) v(4586)=(2520d0*v(4388)+840d0*v(4433)+210d0*v(4478)+42d0*v(4523)+7d0*v(4532)+v(4550)+v(4577)+v(5541)*(v(376)*v(4532)+v& &(4249)*v(6045)))/5040d0 v(4576)=(v(407)*v(4275)+v(381)*v(4558))*v(5541) v(4585)=(2520d0*v(4387)+840d0*v(4432)+210d0*v(4477)+42d0*v(4522)+7d0*v(4531)+v(4549)+v(4576)+v(5541)*(v(376)*v(4531)+v& &(4248)*v(6045)))/5040d0 v(4575)=(v(407)*v(4274)+v(381)*v(4557))*v(5541) v(4584)=(2520d0*v(4386)+840d0*v(4431)+210d0*v(4476)+42d0*v(4521)+7d0*v(4530)+v(4548)+v(4575)+v(5541)*(v(376)*v(4530)+v& &(4247)*v(6045)))/5040d0 v(4574)=(v(407)*v(4273)+v(381)*v(4556))*v(5541) v(4583)=(2520d0*v(4385)+840d0*v(4430)+210d0*v(4475)+42d0*v(4520)+7d0*v(4529)+v(4547)+v(4574)+v(5541)*(v(376)*v(4529)+v& &(4246)*v(6045)))/5040d0 v(4573)=(v(407)*v(4272)+v(381)*v(4555))*v(5541) v(4582)=(2520d0*v(4383)+840d0*v(4429)+210d0*v(4474)+42d0*v(4519)+7d0*v(4528)+v(4546)+v(4573)+v(5541)*(v(376)*v(4528)+v& &(4245)*v(6045)))/5040d0 v(4572)=(7d0*(360d0*v(4373)+120d0*v(4401)+30d0*v(4464)+6d0*v(4491)+v(4545))+(v(406)*v(4271)+v(407)*v(4299)+5040d0*v& &(4318)+v(403)*v(4318)+v(383)*v(4536)+v(380)*v(4545)+v(382)*v(4563))*v(5541))/5040d0 v(4853)=statev(17)*v(4590)+statev(15)*v(4599)+v(4572)*v(5527) v(4826)=statev(19)*v(4572)+statev(14)*v(4590)+v(4599)*v(5526) v(4608)=statev(16)*v(4572)+statev(18)*v(4599)+v(4590)*v(5525) v(4571)=(7d0*(360d0*v(4372)+120d0*v(4400)+30d0*v(4463)+6d0*v(4490)+v(4544))+(v(406)*v(4270)+v(407)*v(4298)+5040d0*v& &(4317)+v(403)*v(4317)+v(383)*v(4535)+v(380)*v(4544)+v(382)*v(4562))*v(5541))/5040d0 v(4852)=statev(17)*v(4589)+statev(15)*v(4598)+v(4571)*v(5527) v(4825)=statev(19)*v(4571)+statev(14)*v(4589)+v(4598)*v(5526) v(4607)=statev(16)*v(4571)+statev(18)*v(4598)+v(4589)*v(5525) v(4570)=(7d0*(360d0*v(4371)+120d0*v(4399)+30d0*v(4462)+6d0*v(4489)+v(4543))+(v(406)*v(4269)+v(407)*v(4297)+5040d0*v& &(4316)+v(403)*v(4316)+v(383)*v(4534)+v(380)*v(4543)+v(382)*v(4561))*v(5541))/5040d0 v(4851)=statev(17)*v(4588)+statev(15)*v(4597)+v(4570)*v(5527) v(4824)=statev(19)*v(4570)+statev(14)*v(4588)+v(4597)*v(5526) v(4606)=statev(16)*v(4570)+statev(18)*v(4597)+v(4588)*v(5525) v(4569)=(7d0*(360d0*v(4370)+120d0*v(4398)+30d0*v(4461)+6d0*v(4488)+v(4542))+(v(406)*v(4268)+v(407)*v(4296)+5040d0*v& &(4315)+v(403)*v(4315)+v(383)*v(4533)+v(380)*v(4542)+v(382)*v(4560))*v(5541))/5040d0 v(4850)=statev(17)*v(4587)+statev(15)*v(4596)+v(4569)*v(5527) v(4823)=statev(19)*v(4569)+statev(14)*v(4587)+v(4596)*v(5526) v(4605)=statev(16)*v(4569)+statev(18)*v(4596)+v(4587)*v(5525) v(4568)=(7d0*(360d0*v(4369)+120d0*v(4397)+30d0*v(4460)+6d0*v(4487)+v(4541))+(v(406)*v(4267)+v(407)*v(4295)+5040d0*v& &(4314)+v(403)*v(4314)+v(383)*v(4532)+v(380)*v(4541)+v(382)*v(4559))*v(5541))/5040d0 v(4849)=statev(17)*v(4586)+statev(15)*v(4595)+v(4568)*v(5527) v(4822)=statev(19)*v(4568)+statev(14)*v(4586)+v(4595)*v(5526) v(4604)=statev(16)*v(4568)+statev(18)*v(4595)+v(4586)*v(5525) v(4567)=(7d0*(360d0*v(4368)+120d0*v(4396)+30d0*v(4459)+6d0*v(4486)+v(4540))+(v(406)*v(4266)+v(407)*v(4294)+5040d0*v& &(4313)+v(403)*v(4313)+v(383)*v(4531)+v(380)*v(4540)+v(382)*v(4558))*v(5541))/5040d0 v(4848)=statev(17)*v(4585)+statev(15)*v(4594)+v(4567)*v(5527) v(4821)=statev(19)*v(4567)+statev(14)*v(4585)+v(4594)*v(5526) v(4603)=statev(16)*v(4567)+statev(18)*v(4594)+v(4585)*v(5525) v(4566)=(7d0*(360d0*v(4367)+120d0*v(4395)+30d0*v(4458)+6d0*v(4485)+v(4539))+(v(406)*v(4265)+v(407)*v(4293)+5040d0*v& &(4312)+v(403)*v(4312)+v(383)*v(4530)+v(380)*v(4539)+v(382)*v(4557))*v(5541))/5040d0 v(4847)=statev(17)*v(4584)+statev(15)*v(4593)+v(4566)*v(5527) v(4820)=statev(19)*v(4566)+statev(14)*v(4584)+v(4593)*v(5526) v(4602)=statev(16)*v(4566)+statev(18)*v(4593)+v(4584)*v(5525) v(4565)=(7d0*(360d0*v(4366)+120d0*v(4394)+30d0*v(4457)+6d0*v(4484)+v(4538))+(v(406)*v(4264)+v(407)*v(4292)+5040d0*v& &(4311)+v(403)*v(4311)+v(383)*v(4529)+v(380)*v(4538)+v(382)*v(4556))*v(5541))/5040d0 v(4846)=statev(17)*v(4583)+statev(15)*v(4592)+v(4565)*v(5527) v(4819)=statev(19)*v(4565)+statev(14)*v(4583)+v(4592)*v(5526) v(4601)=statev(16)*v(4565)+statev(18)*v(4592)+v(4583)*v(5525) v(4564)=(7d0*(360d0*v(4365)+120d0*v(4393)+30d0*v(4456)+6d0*v(4483)+v(4537))+(v(406)*v(4263)+v(407)*v(4291)+5040d0*v& &(4310)+v(403)*v(4310)+v(383)*v(4528)+v(380)*v(4537)+v(382)*v(4555))*v(5541))/5040d0 v(4845)=statev(17)*v(4582)+statev(15)*v(4591)+v(4564)*v(5527) v(4818)=statev(19)*v(4564)+statev(14)*v(4582)+v(4591)*v(5526) v(4600)=statev(16)*v(4564)+statev(18)*v(4591)+v(4582)*v(5525) v(445)=(7d0*(360d0*v(395)+120d0*v(399)+30d0*v(401)+6d0*v(405)+v(406))+v(5541)*(v(380)*v(406)+v(382)*v(407)+v(383)*v& &(6045)))/5040d0 v(425)=v(407)*v(6043) v(6050)=5040d0+v(425) v(447)=(2520d0*v(393)+840d0*v(394)+210d0*v(397)+42d0*v(400)+7d0*v(403)+v(442)+v(6044)*v(6045)+v(6050))/5040d0 v(409)=(7d0*(360d0*v(396)+120d0*v(398)+30d0*v(402)+6d0*v(404)+v(407))+v(5541)*(v(382)*v(406)+v(379)*v(407)+v(381)*v& &(6045)))/5040d0 v(408)=statev(18)*v(409)+statev(16)*v(445)+v(447)*v(5525) v(6046)=2d0*v(408) v(5079)=v(4608)*v(6046) v(5078)=v(4607)*v(6046) v(5077)=v(4606)*v(6046) v(5076)=v(4605)*v(6046) v(5075)=v(4604)*v(6046) v(5074)=v(4603)*v(6046) v(5073)=v(4602)*v(6046) v(5072)=v(4601)*v(6046) v(5071)=v(4600)*v(6046) v(411)=v(232)*(v(379)*v(379))+v(410)+v(427) v(4645)=v(4346)+v(4364)+(v(411)*v(4262)+v(379)*v(4618))*v(5541) v(4644)=v(4345)+v(4363)+(v(411)*v(4261)+v(379)*v(4617))*v(5541) v(4643)=v(4344)+v(4362)+(v(411)*v(4260)+v(379)*v(4616))*v(5541) v(4642)=v(4343)+v(4361)+(v(411)*v(4259)+v(379)*v(4615))*v(5541) v(4641)=v(4342)+v(4360)+(v(411)*v(4258)+v(379)*v(4614))*v(5541) v(4640)=v(4341)+v(4359)+(v(411)*v(4257)+v(379)*v(4613))*v(5541) v(4639)=v(4340)+v(4358)+(v(411)*v(4256)+v(379)*v(4612))*v(5541) v(4638)=v(4339)+v(4357)+(v(411)*v(4255)+v(379)*v(4611))*v(5541) v(4637)=v(4338)+v(4356)+(v(411)*v(4254)+v(379)*v(4609))*v(5541) v(4627)=(v(415)*v(4271)+v(411)*v(4299)+v(396)*v(4318)+v(380)*v(4337)+v(383)*v(4355)+v(382)*v(4618))*v(5541) v(4626)=(v(415)*v(4270)+v(411)*v(4298)+v(396)*v(4317)+v(380)*v(4336)+v(383)*v(4354)+v(382)*v(4617))*v(5541) v(4625)=(v(415)*v(4269)+v(411)*v(4297)+v(396)*v(4316)+v(380)*v(4335)+v(383)*v(4353)+v(382)*v(4616))*v(5541) v(4624)=(v(415)*v(4268)+v(411)*v(4296)+v(396)*v(4315)+v(380)*v(4334)+v(383)*v(4352)+v(382)*v(4615))*v(5541) v(4623)=(v(415)*v(4267)+v(411)*v(4295)+v(396)*v(4314)+v(380)*v(4333)+v(383)*v(4351)+v(382)*v(4614))*v(5541) v(4622)=(v(415)*v(4266)+v(411)*v(4294)+v(396)*v(4313)+v(380)*v(4332)+v(383)*v(4350)+v(382)*v(4613))*v(5541) v(4621)=(v(415)*v(4265)+v(411)*v(4293)+v(396)*v(4312)+v(380)*v(4331)+v(383)*v(4349)+v(382)*v(4612))*v(5541) v(4620)=(v(415)*v(4264)+v(411)*v(4292)+v(396)*v(4311)+v(380)*v(4330)+v(383)*v(4348)+v(382)*v(4611))*v(5541) v(4619)=(v(415)*v(4263)+v(411)*v(4291)+v(396)*v(4310)+v(380)*v(4329)+v(383)*v(4347)+v(382)*v(4609))*v(5541) v(417)=(v(383)*v(396)+v(382)*v(411)+v(380)*v(415))*v(5541) v(4636)=(v(417)*v(4299)+v(382)*v(4627))*v(5541) v(4635)=(v(417)*v(4298)+v(382)*v(4626))*v(5541) v(4634)=(v(417)*v(4297)+v(382)*v(4625))*v(5541) v(4633)=(v(417)*v(4296)+v(382)*v(4624))*v(5541) v(4632)=(v(417)*v(4295)+v(382)*v(4623))*v(5541) v(4631)=(v(417)*v(4294)+v(382)*v(4622))*v(5541) v(4630)=(v(417)*v(4293)+v(382)*v(4621))*v(5541) v(4629)=(v(417)*v(4292)+v(382)*v(4620))*v(5541) v(4628)=(v(417)*v(4291)+v(382)*v(4619))*v(5541) v(433)=v(417)*v(6047) v(413)=v(412)+v(431)+v(411)*v(6048) v(4672)=v(4428)+v(4636)+(v(413)*v(4262)+v(379)*v(4645))*v(5541) v(4671)=v(4427)+v(4635)+(v(413)*v(4261)+v(379)*v(4644))*v(5541) v(4670)=v(4426)+v(4634)+(v(413)*v(4260)+v(379)*v(4643))*v(5541) v(4669)=v(4425)+v(4633)+(v(413)*v(4259)+v(379)*v(4642))*v(5541) v(4668)=v(4424)+v(4632)+(v(413)*v(4258)+v(379)*v(4641))*v(5541) v(4667)=v(4423)+v(4631)+(v(413)*v(4257)+v(379)*v(4640))*v(5541) v(4666)=v(4422)+v(4630)+(v(413)*v(4256)+v(379)*v(4639))*v(5541) v(4665)=v(4421)+v(4629)+(v(413)*v(4255)+v(379)*v(4638))*v(5541) v(4664)=v(4420)+v(4628)+(v(413)*v(4254)+v(379)*v(4637))*v(5541) v(4654)=(v(417)*v(4271)+v(413)*v(4299)+v(398)*v(4318)+v(383)*v(4419)+v(380)*v(4627)+v(382)*v(4645))*v(5541) v(4653)=(v(417)*v(4270)+v(413)*v(4298)+v(398)*v(4317)+v(383)*v(4418)+v(380)*v(4626)+v(382)*v(4644))*v(5541) v(4652)=(v(417)*v(4269)+v(413)*v(4297)+v(398)*v(4316)+v(383)*v(4417)+v(380)*v(4625)+v(382)*v(4643))*v(5541) v(4651)=(v(417)*v(4268)+v(413)*v(4296)+v(398)*v(4315)+v(383)*v(4416)+v(380)*v(4624)+v(382)*v(4642))*v(5541) v(4650)=(v(417)*v(4267)+v(413)*v(4295)+v(398)*v(4314)+v(383)*v(4415)+v(380)*v(4623)+v(382)*v(4641))*v(5541) v(4649)=(v(417)*v(4266)+v(413)*v(4294)+v(398)*v(4313)+v(383)*v(4414)+v(380)*v(4622)+v(382)*v(4640))*v(5541) v(4648)=(v(417)*v(4265)+v(413)*v(4293)+v(398)*v(4312)+v(383)*v(4413)+v(380)*v(4621)+v(382)*v(4639))*v(5541) v(4647)=(v(417)*v(4264)+v(413)*v(4292)+v(398)*v(4311)+v(383)*v(4412)+v(380)*v(4620)+v(382)*v(4638))*v(5541) v(4646)=(v(417)*v(4263)+v(413)*v(4291)+v(398)*v(4310)+v(383)*v(4411)+v(380)*v(4619)+v(382)*v(4637))*v(5541) v(421)=(v(383)*v(398)+v(382)*v(413)+v(380)*v(417))*v(5541) v(4663)=(v(421)*v(4299)+v(382)*v(4654))*v(5541) v(4662)=(v(421)*v(4298)+v(382)*v(4653))*v(5541) v(4661)=(v(421)*v(4297)+v(382)*v(4652))*v(5541) v(4660)=(v(421)*v(4296)+v(382)*v(4651))*v(5541) v(4659)=(v(421)*v(4295)+v(382)*v(4650))*v(5541) v(4658)=(v(421)*v(4294)+v(382)*v(4649))*v(5541) v(4657)=(v(421)*v(4293)+v(382)*v(4648))*v(5541) v(4656)=(v(421)*v(4292)+v(382)*v(4647))*v(5541) v(4655)=(v(421)*v(4291)+v(382)*v(4646))*v(5541) v(437)=v(421)*v(6047) v(416)=v(414)+v(433)+v(413)*v(6048) v(4699)=v(4455)+v(4663)+(v(416)*v(4262)+v(379)*v(4672))*v(5541) v(4698)=v(4454)+v(4662)+(v(416)*v(4261)+v(379)*v(4671))*v(5541) v(4697)=v(4453)+v(4661)+(v(416)*v(4260)+v(379)*v(4670))*v(5541) v(4696)=v(4452)+v(4660)+(v(416)*v(4259)+v(379)*v(4669))*v(5541) v(4695)=v(4451)+v(4659)+(v(416)*v(4258)+v(379)*v(4668))*v(5541) v(4694)=v(4450)+v(4658)+(v(416)*v(4257)+v(379)*v(4667))*v(5541) v(4693)=v(4449)+v(4657)+(v(416)*v(4256)+v(379)*v(4666))*v(5541) v(4692)=v(4448)+v(4656)+(v(416)*v(4255)+v(379)*v(4665))*v(5541) v(4691)=v(4447)+v(4655)+(v(416)*v(4254)+v(379)*v(4664))*v(5541) v(4681)=(v(421)*v(4271)+v(416)*v(4299)+v(402)*v(4318)+v(383)*v(4446)+v(380)*v(4654)+v(382)*v(4672))*v(5541) v(4680)=(v(421)*v(4270)+v(416)*v(4298)+v(402)*v(4317)+v(383)*v(4445)+v(380)*v(4653)+v(382)*v(4671))*v(5541) v(4679)=(v(421)*v(4269)+v(416)*v(4297)+v(402)*v(4316)+v(383)*v(4444)+v(380)*v(4652)+v(382)*v(4670))*v(5541) v(4678)=(v(421)*v(4268)+v(416)*v(4296)+v(402)*v(4315)+v(383)*v(4443)+v(380)*v(4651)+v(382)*v(4669))*v(5541) v(4677)=(v(421)*v(4267)+v(416)*v(4295)+v(402)*v(4314)+v(383)*v(4442)+v(380)*v(4650)+v(382)*v(4668))*v(5541) v(4676)=(v(421)*v(4266)+v(416)*v(4294)+v(402)*v(4313)+v(383)*v(4441)+v(380)*v(4649)+v(382)*v(4667))*v(5541) v(4675)=(v(421)*v(4265)+v(416)*v(4293)+v(402)*v(4312)+v(383)*v(4440)+v(380)*v(4648)+v(382)*v(4666))*v(5541) v(4674)=(v(421)*v(4264)+v(416)*v(4292)+v(402)*v(4311)+v(383)*v(4439)+v(380)*v(4647)+v(382)*v(4665))*v(5541) v(4673)=(v(421)*v(4263)+v(416)*v(4291)+v(402)*v(4310)+v(383)*v(4438)+v(380)*v(4646)+v(382)*v(4664))*v(5541) v(423)=(v(383)*v(402)+v(382)*v(416)+v(380)*v(421))*v(5541) v(4690)=(v(423)*v(4299)+v(382)*v(4681))*v(5541) v(4689)=(v(423)*v(4298)+v(382)*v(4680))*v(5541) v(4688)=(v(423)*v(4297)+v(382)*v(4679))*v(5541) v(4687)=(v(423)*v(4296)+v(382)*v(4678))*v(5541) v(4686)=(v(423)*v(4295)+v(382)*v(4677))*v(5541) v(4685)=(v(423)*v(4294)+v(382)*v(4676))*v(5541) v(4684)=(v(423)*v(4293)+v(382)*v(4675))*v(5541) v(4683)=(v(423)*v(4292)+v(382)*v(4674))*v(5541) v(4682)=(v(423)*v(4291)+v(382)*v(4673))*v(5541) v(439)=v(423)*v(6047) v(419)=v(418)+v(437)+v(416)*v(6048) v(4717)=(v(423)*v(4271)+v(419)*v(4299)+v(404)*v(4318)+v(383)*v(4509)+v(380)*v(4681)+v(382)*v(4699))*v(5541) v(4716)=(v(423)*v(4270)+v(419)*v(4298)+v(404)*v(4317)+v(383)*v(4508)+v(380)*v(4680)+v(382)*v(4698))*v(5541) v(4715)=(v(423)*v(4269)+v(419)*v(4297)+v(404)*v(4316)+v(383)*v(4507)+v(380)*v(4679)+v(382)*v(4697))*v(5541) v(4714)=(v(423)*v(4268)+v(419)*v(4296)+v(404)*v(4315)+v(383)*v(4506)+v(380)*v(4678)+v(382)*v(4696))*v(5541) v(4713)=(v(423)*v(4267)+v(419)*v(4295)+v(404)*v(4314)+v(383)*v(4505)+v(380)*v(4677)+v(382)*v(4695))*v(5541) v(4712)=(v(423)*v(4266)+v(419)*v(4294)+v(404)*v(4313)+v(383)*v(4504)+v(380)*v(4676)+v(382)*v(4694))*v(5541) v(4711)=(v(423)*v(4265)+v(419)*v(4293)+v(404)*v(4312)+v(383)*v(4503)+v(380)*v(4675)+v(382)*v(4693))*v(5541) v(4710)=(v(423)*v(4264)+v(419)*v(4292)+v(404)*v(4311)+v(383)*v(4502)+v(380)*v(4674)+v(382)*v(4692))*v(5541) v(4709)=(v(423)*v(4263)+v(419)*v(4291)+v(404)*v(4310)+v(383)*v(4501)+v(380)*v(4673)+v(382)*v(4691))*v(5541) v(4708)=v(4518)+v(4690)+(v(419)*v(4262)+v(379)*v(4699))*v(5541) v(4707)=v(4517)+v(4689)+(v(419)*v(4261)+v(379)*v(4698))*v(5541) v(4706)=v(4516)+v(4688)+(v(419)*v(4260)+v(379)*v(4697))*v(5541) v(4705)=v(4515)+v(4687)+(v(419)*v(4259)+v(379)*v(4696))*v(5541) v(4704)=v(4514)+v(4686)+(v(419)*v(4258)+v(379)*v(4695))*v(5541) v(4703)=v(4513)+v(4685)+(v(419)*v(4257)+v(379)*v(4694))*v(5541) v(4702)=v(4512)+v(4684)+(v(419)*v(4256)+v(379)*v(4693))*v(5541) v(4701)=v(4511)+v(4683)+(v(419)*v(4255)+v(379)*v(4692))*v(5541) v(4700)=v(4510)+v(4682)+(v(419)*v(4254)+v(379)*v(4691))*v(5541) v(422)=v(420)+v(439)+v(419)*v(6048) v(6049)=5040d0+v(422) v(424)=(v(383)*v(404)+v(382)*v(419)+v(380)*v(423))*v(5541) v(4735)=(v(424)*v(4299)+v(382)*v(4717))*v(5541) v(4744)=(v(4581)+2520d0*v(4618)+840d0*v(4645)+210d0*v(4672)+42d0*v(4699)+7d0*v(4708)+v(4735)+v(5541)*(v(379)*v(4708)+v& &(4262)*v(6049)))/5040d0 v(4734)=(v(424)*v(4298)+v(382)*v(4716))*v(5541) v(4743)=(v(4580)+2520d0*v(4617)+840d0*v(4644)+210d0*v(4671)+42d0*v(4698)+7d0*v(4707)+v(4734)+v(5541)*(v(379)*v(4707)+v& &(4261)*v(6049)))/5040d0 v(4733)=(v(424)*v(4297)+v(382)*v(4715))*v(5541) v(4742)=(v(4579)+2520d0*v(4616)+840d0*v(4643)+210d0*v(4670)+42d0*v(4697)+7d0*v(4706)+v(4733)+v(5541)*(v(379)*v(4706)+v& &(4260)*v(6049)))/5040d0 v(4732)=(v(424)*v(4296)+v(382)*v(4714))*v(5541) v(4741)=(v(4578)+2520d0*v(4615)+840d0*v(4642)+210d0*v(4669)+42d0*v(4696)+7d0*v(4705)+v(4732)+v(5541)*(v(379)*v(4705)+v& &(4259)*v(6049)))/5040d0 v(4731)=(v(424)*v(4295)+v(382)*v(4713))*v(5541) v(4740)=(v(4577)+2520d0*v(4614)+840d0*v(4641)+210d0*v(4668)+42d0*v(4695)+7d0*v(4704)+v(4731)+v(5541)*(v(379)*v(4704)+v& &(4258)*v(6049)))/5040d0 v(4730)=(v(424)*v(4294)+v(382)*v(4712))*v(5541) v(4739)=(v(4576)+2520d0*v(4613)+840d0*v(4640)+210d0*v(4667)+42d0*v(4694)+7d0*v(4703)+v(4730)+v(5541)*(v(379)*v(4703)+v& &(4257)*v(6049)))/5040d0 v(4729)=(v(424)*v(4293)+v(382)*v(4711))*v(5541) v(4738)=(v(4575)+2520d0*v(4612)+840d0*v(4639)+210d0*v(4666)+42d0*v(4693)+7d0*v(4702)+v(4729)+v(5541)*(v(379)*v(4702)+v& &(4256)*v(6049)))/5040d0 v(4728)=(v(424)*v(4292)+v(382)*v(4710))*v(5541) v(4737)=(v(4574)+2520d0*v(4611)+840d0*v(4638)+210d0*v(4665)+42d0*v(4692)+7d0*v(4701)+v(4728)+v(5541)*(v(379)*v(4701)+v& &(4255)*v(6049)))/5040d0 v(4727)=(v(424)*v(4291)+v(382)*v(4709))*v(5541) v(4736)=(v(4573)+2520d0*v(4609)+840d0*v(4637)+210d0*v(4664)+42d0*v(4691)+7d0*v(4700)+v(4727)+v(5541)*(v(379)*v(4700)+v& &(4254)*v(6049)))/5040d0 v(4726)=(7d0*(360d0*v(4337)+120d0*v(4627)+30d0*v(4654)+6d0*v(4681)+v(4717))+v(5541)*(v(424)*v(4271)+v(407)*v(4318)+v& &(383)*v(4563)+v(382)*v(4708)+v(380)*v(4717)+v(4299)*v(6049)))/5040d0 v(4880)=statev(16)*v(4726)+statev(18)*v(4744)+v(4599)*v(5525) v(6076)=v(408)*v(4880) v(6338)=(-2d0)*v(6076) v(4835)=statev(17)*v(4599)+statev(15)*v(4744)+v(4726)*v(5527) v(4753)=statev(14)*v(4599)+statev(19)*v(4726)+v(4744)*v(5526) v(4725)=(7d0*(360d0*v(4336)+120d0*v(4626)+30d0*v(4653)+6d0*v(4680)+v(4716))+v(5541)*(v(424)*v(4270)+v(407)*v(4317)+v& &(383)*v(4562)+v(382)*v(4707)+v(380)*v(4716)+v(4298)*v(6049)))/5040d0 v(4879)=statev(16)*v(4725)+statev(18)*v(4743)+v(4598)*v(5525) v(6082)=v(408)*v(4879) v(6344)=(-2d0)*v(6082) v(4834)=statev(17)*v(4598)+statev(15)*v(4743)+v(4725)*v(5527) v(4752)=statev(14)*v(4598)+statev(19)*v(4725)+v(4743)*v(5526) v(4724)=(7d0*(360d0*v(4335)+120d0*v(4625)+30d0*v(4652)+6d0*v(4679)+v(4715))+v(5541)*(v(424)*v(4269)+v(407)*v(4316)+v& &(383)*v(4561)+v(382)*v(4706)+v(380)*v(4715)+v(4297)*v(6049)))/5040d0 v(4878)=statev(16)*v(4724)+statev(18)*v(4742)+v(4597)*v(5525) v(6088)=v(408)*v(4878) v(6348)=(-2d0)*v(6088) v(4833)=statev(17)*v(4597)+statev(15)*v(4742)+v(4724)*v(5527) v(4751)=statev(14)*v(4597)+statev(19)*v(4724)+v(4742)*v(5526) v(4723)=(7d0*(360d0*v(4334)+120d0*v(4624)+30d0*v(4651)+6d0*v(4678)+v(4714))+v(5541)*(v(424)*v(4268)+v(407)*v(4315)+v& &(383)*v(4560)+v(382)*v(4705)+v(380)*v(4714)+v(4296)*v(6049)))/5040d0 v(4877)=statev(16)*v(4723)+statev(18)*v(4741)+v(4596)*v(5525) v(6091)=v(408)*v(4877) v(6352)=(-2d0)*v(6091) v(4832)=statev(17)*v(4596)+statev(15)*v(4741)+v(4723)*v(5527) v(4750)=statev(14)*v(4596)+statev(19)*v(4723)+v(4741)*v(5526) v(4722)=(7d0*(360d0*v(4333)+120d0*v(4623)+30d0*v(4650)+6d0*v(4677)+v(4713))+v(5541)*(v(424)*v(4267)+v(407)*v(4314)+v& &(383)*v(4559)+v(382)*v(4704)+v(380)*v(4713)+v(4295)*v(6049)))/5040d0 v(4876)=statev(16)*v(4722)+statev(18)*v(4740)+v(4595)*v(5525) v(6094)=v(408)*v(4876) v(6356)=(-2d0)*v(6094) v(4831)=statev(17)*v(4595)+statev(15)*v(4740)+v(4722)*v(5527) v(4749)=statev(14)*v(4595)+statev(19)*v(4722)+v(4740)*v(5526) v(4721)=(7d0*(360d0*v(4332)+120d0*v(4622)+30d0*v(4649)+6d0*v(4676)+v(4712))+v(5541)*(v(424)*v(4266)+v(407)*v(4313)+v& &(383)*v(4558)+v(382)*v(4703)+v(380)*v(4712)+v(4294)*v(6049)))/5040d0 v(4875)=statev(16)*v(4721)+statev(18)*v(4739)+v(4594)*v(5525) v(6097)=v(408)*v(4875) v(6360)=(-2d0)*v(6097) v(4830)=statev(17)*v(4594)+statev(15)*v(4739)+v(4721)*v(5527) v(4748)=statev(14)*v(4594)+statev(19)*v(4721)+v(4739)*v(5526) v(4720)=(7d0*(360d0*v(4331)+120d0*v(4621)+30d0*v(4648)+6d0*v(4675)+v(4711))+v(5541)*(v(424)*v(4265)+v(407)*v(4312)+v& &(383)*v(4557)+v(382)*v(4702)+v(380)*v(4711)+v(4293)*v(6049)))/5040d0 v(4874)=statev(16)*v(4720)+statev(18)*v(4738)+v(4593)*v(5525) v(6100)=v(408)*v(4874) v(6364)=(-2d0)*v(6100) v(4829)=statev(17)*v(4593)+statev(15)*v(4738)+v(4720)*v(5527) v(4747)=statev(14)*v(4593)+statev(19)*v(4720)+v(4738)*v(5526) v(4719)=(7d0*(360d0*v(4330)+120d0*v(4620)+30d0*v(4647)+6d0*v(4674)+v(4710))+v(5541)*(v(424)*v(4264)+v(407)*v(4311)+v& &(383)*v(4556)+v(382)*v(4701)+v(380)*v(4710)+v(4292)*v(6049)))/5040d0 v(4873)=statev(16)*v(4719)+statev(18)*v(4737)+v(4592)*v(5525) v(6103)=v(408)*v(4873) v(6368)=(-2d0)*v(6103) v(4828)=statev(17)*v(4592)+statev(15)*v(4737)+v(4719)*v(5527) v(4746)=statev(14)*v(4592)+statev(19)*v(4719)+v(4737)*v(5526) v(4718)=(7d0*(360d0*v(4329)+120d0*v(4619)+30d0*v(4646)+6d0*v(4673)+v(4709))+v(5541)*(v(424)*v(4263)+v(407)*v(4310)+v& &(383)*v(4555)+v(382)*v(4700)+v(380)*v(4709)+v(4291)*v(6049)))/5040d0 v(4872)=statev(16)*v(4718)+statev(18)*v(4736)+v(4591)*v(5525) v(6106)=v(408)*v(4872) v(6372)=(-2d0)*v(6106) v(4827)=statev(17)*v(4591)+statev(15)*v(4736)+v(4718)*v(5527) v(4745)=statev(14)*v(4591)+statev(19)*v(4718)+v(4736)*v(5526) v(444)=(7d0*(360d0*v(415)+120d0*v(417)+30d0*v(421)+6d0*v(423)+v(424))+v(5541)*(v(383)*v(407)+v(380)*v(424)+v(382)*v& &(6049)))/5040d0 v(443)=v(424)*v(6047) v(449)=(2520d0*v(411)+840d0*v(413)+210d0*v(416)+42d0*v(419)+7d0*v(422)+v(443)+v(6048)*v(6049)+v(6050))/5040d0 v(426)=statev(14)*v(409)+statev(19)*v(444)+v(449)*v(5526) v(6373)=v(426)*v(4818) v(6369)=v(426)*v(4819) v(6365)=v(426)*v(4820) v(6361)=v(426)*v(4821) v(6357)=v(426)*v(4822) v(6353)=v(426)*v(4823) v(6349)=v(426)*v(4824) v(6345)=v(426)*v(4825) v(6339)=v(426)*v(4826) v(6334)=v(426)*v(4600)+v(408)*v(4745) v(6333)=-(v(426)*v(4845)) v(6327)=v(426)*v(4601)+v(408)*v(4746) v(6326)=-(v(426)*v(4846)) v(6320)=v(426)*v(4602)+v(408)*v(4747) v(6319)=-(v(426)*v(4847)) v(6313)=v(426)*v(4603)+v(408)*v(4748) v(6312)=-(v(426)*v(4848)) v(6306)=v(426)*v(4604)+v(408)*v(4749) v(6305)=-(v(426)*v(4849)) v(6299)=v(426)*v(4605)+v(408)*v(4750) v(6298)=-(v(426)*v(4850)) v(6292)=v(426)*v(4606)+v(408)*v(4751) v(6291)=-(v(426)*v(4851)) v(6281)=v(426)*v(4607)+v(408)*v(4752) v(6280)=-(v(426)*v(4852)) v(6274)=v(408)*v(426) v(6269)=v(426)*v(4608)+v(408)*v(4753) v(6268)=-(v(426)*v(4853)) v(6051)=2d0*v(426) v(5043)=v(4753)*v(6051) v(5042)=v(4752)*v(6051) v(5041)=v(4751)*v(6051) v(5040)=v(4750)*v(6051) v(5039)=v(4749)*v(6051) v(5038)=v(4748)*v(6051) v(5037)=v(4747)*v(6051) v(5036)=v(4746)*v(6051) v(5035)=v(4745)*v(6051) v(429)=v(232)*(v(380)*v(380))+v(427)+v(428) v(4772)=v(4346)+v(4382)+(v(4271)*v(429)+v(380)*v(4763))*v(5541) v(4771)=v(4345)+v(4381)+(v(4270)*v(429)+v(380)*v(4762))*v(5541) v(4770)=v(4344)+v(4380)+(v(4269)*v(429)+v(380)*v(4761))*v(5541) v(4769)=v(4343)+v(4379)+(v(4268)*v(429)+v(380)*v(4760))*v(5541) v(4768)=v(4342)+v(4378)+(v(4267)*v(429)+v(380)*v(4759))*v(5541) v(4767)=v(4341)+v(4377)+(v(4266)*v(429)+v(380)*v(4758))*v(5541) v(4766)=v(4340)+v(4376)+(v(4265)*v(429)+v(380)*v(4757))*v(5541) v(4765)=v(4339)+v(4375)+(v(4264)*v(429)+v(380)*v(4756))*v(5541) v(4764)=v(4338)+v(4374)+(v(4263)*v(429)+v(380)*v(4754))*v(5541) v(432)=v(430)+v(431)+v(429)*v(6052) v(4781)=v(4410)+v(4636)+(v(4271)*v(432)+v(380)*v(4772))*v(5541) v(4780)=v(4409)+v(4635)+(v(4270)*v(432)+v(380)*v(4771))*v(5541) v(4779)=v(4408)+v(4634)+(v(4269)*v(432)+v(380)*v(4770))*v(5541) v(4778)=v(4407)+v(4633)+(v(4268)*v(432)+v(380)*v(4769))*v(5541) v(4777)=v(4406)+v(4632)+(v(4267)*v(432)+v(380)*v(4768))*v(5541) v(4776)=v(4405)+v(4631)+(v(4266)*v(432)+v(380)*v(4767))*v(5541) v(4775)=v(4404)+v(4630)+(v(4265)*v(432)+v(380)*v(4766))*v(5541) v(4774)=v(4403)+v(4629)+(v(4264)*v(432)+v(380)*v(4765))*v(5541) v(4773)=v(4402)+v(4628)+(v(4263)*v(432)+v(380)*v(4764))*v(5541) v(435)=v(433)+v(434)+v(432)*v(6052) v(4790)=v(4473)+v(4663)+(v(4271)*v(435)+v(380)*v(4781))*v(5541) v(4789)=v(4472)+v(4662)+(v(4270)*v(435)+v(380)*v(4780))*v(5541) v(4788)=v(4471)+v(4661)+(v(4269)*v(435)+v(380)*v(4779))*v(5541) v(4787)=v(4470)+v(4660)+(v(4268)*v(435)+v(380)*v(4778))*v(5541) v(4786)=v(4469)+v(4659)+(v(4267)*v(435)+v(380)*v(4777))*v(5541) v(4785)=v(4468)+v(4658)+(v(4266)*v(435)+v(380)*v(4776))*v(5541) v(4784)=v(4467)+v(4657)+(v(4265)*v(435)+v(380)*v(4775))*v(5541) v(4783)=v(4466)+v(4656)+(v(4264)*v(435)+v(380)*v(4774))*v(5541) v(4782)=v(4465)+v(4655)+(v(4263)*v(435)+v(380)*v(4773))*v(5541) v(438)=v(436)+v(437)+v(435)*v(6052) v(4799)=v(4500)+v(4690)+(v(4271)*v(438)+v(380)*v(4790))*v(5541) v(4798)=v(4499)+v(4689)+(v(4270)*v(438)+v(380)*v(4789))*v(5541) v(4797)=v(4498)+v(4688)+(v(4269)*v(438)+v(380)*v(4788))*v(5541) v(4796)=v(4497)+v(4687)+(v(4268)*v(438)+v(380)*v(4787))*v(5541) v(4795)=v(4496)+v(4686)+(v(4267)*v(438)+v(380)*v(4786))*v(5541) v(4794)=v(4495)+v(4685)+(v(4266)*v(438)+v(380)*v(4785))*v(5541) v(4793)=v(4494)+v(4684)+(v(4265)*v(438)+v(380)*v(4784))*v(5541) v(4792)=v(4493)+v(4683)+(v(4264)*v(438)+v(380)*v(4783))*v(5541) v(4791)=v(4492)+v(4682)+(v(4263)*v(438)+v(380)*v(4782))*v(5541) v(441)=v(439)+v(440)+v(438)*v(6052) v(6053)=5040d0+v(441) v(4808)=(v(4554)+v(4735)+2520d0*v(4763)+840d0*v(4772)+210d0*v(4781)+42d0*v(4790)+7d0*v(4799)+v(5541)*(v(380)*v(4799)+v& &(4271)*v(6053)))/5040d0 v(4916)=statev(14)*v(4572)+statev(19)*v(4808)+v(4726)*v(5526) v(6151)=v(426)*v(4916) v(6152)=(-2d0)*v(6151) v(4844)=statev(18)*v(4726)+statev(16)*v(4808)+v(4572)*v(5525) v(6213)=v(408)*v(4844) v(4817)=statev(17)*v(4572)+statev(15)*v(4726)+v(4808)*v(5527) v(4807)=(v(4553)+v(4734)+2520d0*v(4762)+840d0*v(4771)+210d0*v(4780)+42d0*v(4789)+7d0*v(4798)+v(5541)*(v(380)*v(4798)+v& &(4270)*v(6053)))/5040d0 v(4915)=statev(14)*v(4571)+statev(19)*v(4807)+v(4725)*v(5526) v(6161)=v(426)*v(4915) v(6162)=(-2d0)*v(6161) v(4843)=statev(18)*v(4725)+statev(16)*v(4807)+v(4571)*v(5525) v(6220)=v(408)*v(4843) v(4816)=statev(17)*v(4571)+statev(15)*v(4725)+v(4807)*v(5527) v(4806)=(v(4552)+v(4733)+2520d0*v(4761)+840d0*v(4770)+210d0*v(4779)+42d0*v(4788)+7d0*v(4797)+v(5541)*(v(380)*v(4797)+v& &(4269)*v(6053)))/5040d0 v(4914)=statev(14)*v(4570)+statev(19)*v(4806)+v(4724)*v(5526) v(6168)=v(426)*v(4914) v(6169)=(-2d0)*v(6168) v(4842)=statev(18)*v(4724)+statev(16)*v(4806)+v(4570)*v(5525) v(6227)=v(408)*v(4842) v(4815)=statev(17)*v(4570)+statev(15)*v(4724)+v(4806)*v(5527) v(4805)=(v(4551)+v(4732)+2520d0*v(4760)+840d0*v(4769)+210d0*v(4778)+42d0*v(4787)+7d0*v(4796)+v(5541)*(v(380)*v(4796)+v& &(4268)*v(6053)))/5040d0 v(4913)=statev(14)*v(4569)+statev(19)*v(4805)+v(4723)*v(5526) v(6174)=v(426)*v(4913) v(6175)=(-2d0)*v(6174) v(4841)=statev(18)*v(4723)+statev(16)*v(4805)+v(4569)*v(5525) v(6233)=v(408)*v(4841) v(4814)=statev(17)*v(4569)+statev(15)*v(4723)+v(4805)*v(5527) v(4804)=(v(4550)+v(4731)+2520d0*v(4759)+840d0*v(4768)+210d0*v(4777)+42d0*v(4786)+7d0*v(4795)+v(5541)*(v(380)*v(4795)+v& &(4267)*v(6053)))/5040d0 v(4912)=statev(14)*v(4568)+statev(19)*v(4804)+v(4722)*v(5526) v(6180)=v(426)*v(4912) v(6181)=(-2d0)*v(6180) v(4840)=statev(18)*v(4722)+statev(16)*v(4804)+v(4568)*v(5525) v(6239)=v(408)*v(4840) v(4813)=statev(17)*v(4568)+statev(15)*v(4722)+v(4804)*v(5527) v(4803)=(v(4549)+v(4730)+2520d0*v(4758)+840d0*v(4767)+210d0*v(4776)+42d0*v(4785)+7d0*v(4794)+v(5541)*(v(380)*v(4794)+v& &(4266)*v(6053)))/5040d0 v(4911)=statev(14)*v(4567)+statev(19)*v(4803)+v(4721)*v(5526) v(6186)=v(426)*v(4911) v(6187)=(-2d0)*v(6186) v(4839)=statev(18)*v(4721)+statev(16)*v(4803)+v(4567)*v(5525) v(6245)=v(408)*v(4839) v(4812)=statev(17)*v(4567)+statev(15)*v(4721)+v(4803)*v(5527) v(4802)=(v(4548)+v(4729)+2520d0*v(4757)+840d0*v(4766)+210d0*v(4775)+42d0*v(4784)+7d0*v(4793)+v(5541)*(v(380)*v(4793)+v& &(4265)*v(6053)))/5040d0 v(4910)=statev(14)*v(4566)+statev(19)*v(4802)+v(4720)*v(5526) v(6192)=v(426)*v(4910) v(6193)=(-2d0)*v(6192) v(4838)=statev(18)*v(4720)+statev(16)*v(4802)+v(4566)*v(5525) v(6251)=v(408)*v(4838) v(4811)=statev(17)*v(4566)+statev(15)*v(4720)+v(4802)*v(5527) v(4801)=(v(4547)+v(4728)+2520d0*v(4756)+840d0*v(4765)+210d0*v(4774)+42d0*v(4783)+7d0*v(4792)+v(5541)*(v(380)*v(4792)+v& &(4264)*v(6053)))/5040d0 v(4909)=statev(14)*v(4565)+statev(19)*v(4801)+v(4719)*v(5526) v(6198)=v(426)*v(4909) v(6199)=(-2d0)*v(6198) v(4837)=statev(18)*v(4719)+statev(16)*v(4801)+v(4565)*v(5525) v(6257)=v(408)*v(4837) v(4810)=statev(17)*v(4565)+statev(15)*v(4719)+v(4801)*v(5527) v(4800)=(v(4546)+v(4727)+2520d0*v(4754)+840d0*v(4764)+210d0*v(4773)+42d0*v(4782)+7d0*v(4791)+v(5541)*(v(380)*v(4791)+v& &(4263)*v(6053)))/5040d0 v(4908)=statev(14)*v(4564)+statev(19)*v(4800)+v(4718)*v(5526) v(6204)=v(426)*v(4908) v(6205)=(-2d0)*v(6204) v(4836)=statev(18)*v(4718)+statev(16)*v(4800)+v(4564)*v(5525) v(6263)=v(408)*v(4836) v(4809)=statev(17)*v(4564)+statev(15)*v(4718)+v(4800)*v(5527) v(451)=(5040d0+2520d0*v(429)+840d0*v(432)+210d0*v(435)+42d0*v(438)+7d0*v(441)+v(442)+v(443)+v(6052)*v(6053))/5040d0 v(446)=statev(15)*v(444)+statev(17)*v(445)+v(451)*v(5527) v(6207)=v(446)*v(4827) v(6201)=v(446)*v(4828) v(6195)=v(446)*v(4829) v(6189)=v(446)*v(4830) v(6183)=v(446)*v(4831) v(6177)=v(446)*v(4832) v(6171)=v(446)*v(4833) v(6164)=v(446)*v(4834) v(6154)=v(446)*v(4835) v(6054)=2d0*v(446) v(6259)=-(v(4845)*v(6054)) v(6253)=-(v(4846)*v(6054)) v(6247)=-(v(4847)*v(6054)) v(6241)=-(v(4848)*v(6054)) v(6235)=-(v(4849)*v(6054)) v(6229)=-(v(4850)*v(6054)) v(6223)=-(v(4851)*v(6054)) v(6216)=-(v(4852)*v(6054)) v(6209)=-(v(4853)*v(6054)) v(5115)=v(4817)*v(6054) v(5114)=v(4816)*v(6054) v(5113)=v(4815)*v(6054) v(5112)=v(4814)*v(6054) v(5111)=v(4813)*v(6054) v(5110)=v(4812)*v(6054) v(5109)=v(4811)*v(6054) v(5108)=v(4810)*v(6054) v(5107)=v(4809)*v(6054) v(448)=statev(19)*v(445)+statev(14)*v(447)+v(409)*v(5526) v(6336)=-(v(448)*v(4872)) v(6329)=-(v(448)*v(4873)) v(6322)=-(v(448)*v(4874)) v(6315)=-(v(448)*v(4875)) v(6308)=-(v(448)*v(4876)) v(6301)=-(v(448)*v(4877)) v(6294)=-(v(448)*v(4878)) v(6283)=-(v(448)*v(4879)) v(6271)=-(v(448)*v(4880)) v(6260)=v(448)*v(4908) v(6261)=(-2d0)*v(6260) v(6254)=v(448)*v(4909) v(6255)=(-2d0)*v(6254) v(6248)=v(448)*v(4910) v(6249)=(-2d0)*v(6248) v(6242)=v(448)*v(4911) v(6243)=(-2d0)*v(6242) v(6236)=v(448)*v(4912) v(6237)=(-2d0)*v(6236) v(6230)=v(448)*v(4913) v(6231)=(-2d0)*v(6230) v(6224)=v(448)*v(4914) v(6225)=(-2d0)*v(6224) v(6217)=v(448)*v(4915) v(6218)=(-2d0)*v(6217) v(6210)=v(448)*v(4916) v(6211)=(-2d0)*v(6210) v(6108)=v(426)*v(448) v(6105)=v(448)*v(4745)+v(6373) v(6144)=v(6105)+v(6106) v(6102)=v(448)*v(4746)+v(6369) v(6141)=v(6102)+v(6103) v(6099)=v(448)*v(4747)+v(6365) v(6138)=v(6099)+v(6100) v(6096)=v(448)*v(4748)+v(6361) v(6135)=v(6096)+v(6097) v(6093)=v(448)*v(4749)+v(6357) v(6132)=v(6093)+v(6094) v(6090)=v(448)*v(4750)+v(6353) v(6129)=v(6090)+v(6091) v(6087)=v(448)*v(4751)+v(6349) v(6126)=v(6087)+v(6088) v(6081)=v(448)*v(4752)+v(6345) v(6120)=v(6081)+v(6082) v(6075)=v(448)*v(4753)+v(6339) v(6115)=v(6075)+v(6076) v(6055)=2d0*v(448) v(6374)=-(v(4745)*v(6055))-2d0*v(6373) v(6370)=-(v(4746)*v(6055))-2d0*v(6369) v(6366)=-(v(4747)*v(6055))-2d0*v(6365) v(6362)=-(v(4748)*v(6055))-2d0*v(6361) v(6358)=-(v(4749)*v(6055))-2d0*v(6357) v(6354)=-(v(4750)*v(6055))-2d0*v(6353) v(6350)=-(v(4751)*v(6055))-2d0*v(6349) v(6346)=-(v(4752)*v(6055))-2d0*v(6345) v(6340)=-(v(4753)*v(6055))-2d0*v(6339) v(5097)=v(4826)*v(6055) v(5096)=v(4825)*v(6055) v(5095)=v(4824)*v(6055) v(5094)=v(4823)*v(6055) v(5093)=v(4822)*v(6055) v(5092)=v(4821)*v(6055) v(5091)=v(4820)*v(6055) v(5090)=v(4819)*v(6055) v(5089)=v(4818)*v(6055) v(450)=statev(17)*v(409)+statev(15)*v(449)+v(444)*v(5527) v(6331)=v(450)*v(4818)+v(448)*v(4827) v(6324)=v(450)*v(4819)+v(448)*v(4828) v(6317)=v(450)*v(4820)+v(448)*v(4829) v(6310)=v(450)*v(4821)+v(448)*v(4830) v(6303)=v(450)*v(4822)+v(448)*v(4831) v(6296)=v(450)*v(4823)+v(448)*v(4832) v(6289)=v(450)*v(4824)+v(448)*v(4833) v(6278)=v(450)*v(4825)+v(448)*v(4834) v(6272)=v(448)*v(450) v(6266)=v(450)*v(4826)+v(448)*v(4835) v(6206)=v(450)*v(4809) v(6208)=(-2d0)*(v(6206)+v(6207)) v(6200)=v(450)*v(4810) v(6202)=(-2d0)*(v(6200)+v(6201)) v(6194)=v(450)*v(4811) v(6196)=(-2d0)*(v(6194)+v(6195)) v(6188)=v(450)*v(4812) v(6190)=(-2d0)*(v(6188)+v(6189)) v(6182)=v(450)*v(4813) v(6184)=(-2d0)*(v(6182)+v(6183)) v(6176)=v(450)*v(4814) v(6178)=(-2d0)*(v(6176)+v(6177)) v(6170)=v(450)*v(4815) v(6172)=(-2d0)*(v(6170)+v(6171)) v(6163)=v(450)*v(4816) v(6165)=(-2d0)*(v(6163)+v(6164)) v(6156)=v(446)*v(450) v(6153)=v(450)*v(4817) v(6155)=(-2d0)*(v(6153)+v(6154)) v(6145)=v(450)*v(4845) v(6142)=v(450)*v(4846) v(6139)=v(450)*v(4847) v(6136)=v(450)*v(4848) v(6133)=v(450)*v(4849) v(6130)=v(450)*v(4850) v(6127)=v(450)*v(4851) v(6121)=v(450)*v(4852) v(6116)=v(450)*v(4853) v(6056)=2d0*v(450) v(6371)=-(v(4845)*v(6056)) v(6367)=-(v(4846)*v(6056)) v(6363)=-(v(4847)*v(6056)) v(6359)=-(v(4848)*v(6056)) v(6355)=-(v(4849)*v(6056)) v(6351)=-(v(4850)*v(6056)) v(6347)=-(v(4851)*v(6056)) v(6343)=-(v(4852)*v(6056)) v(6337)=-(v(4853)*v(6056)) v(5052)=v(4835)*v(6056) v(5051)=v(4834)*v(6056) v(5050)=v(4833)*v(6056) v(5049)=v(4832)*v(6056) v(5048)=v(4831)*v(6056) v(5047)=v(4830)*v(6056) v(5046)=v(4829)*v(6056) v(5045)=v(4828)*v(6056) v(5044)=v(4827)*v(6056) v(452)=statev(18)*v(444)+statev(16)*v(451)+v(445)*v(5525) v(6262)=v(452)*v(4600) v(6330)=v(6260)+v(6262)+v(6263) v(6264)=(-2d0)*(v(6262)+v(6263)) v(6256)=v(452)*v(4601) v(6323)=v(6254)+v(6256)+v(6257) v(6258)=(-2d0)*(v(6256)+v(6257)) v(6250)=v(452)*v(4602) v(6316)=v(6248)+v(6250)+v(6251) v(6252)=(-2d0)*(v(6250)+v(6251)) v(6244)=v(452)*v(4603) v(6309)=v(6242)+v(6244)+v(6245) v(6246)=(-2d0)*(v(6244)+v(6245)) v(6238)=v(452)*v(4604) v(6302)=v(6236)+v(6238)+v(6239) v(6240)=(-2d0)*(v(6238)+v(6239)) v(6232)=v(452)*v(4605) v(6295)=v(6230)+v(6232)+v(6233) v(6234)=(-2d0)*(v(6232)+v(6233)) v(6226)=v(452)*v(4606) v(6288)=v(6224)+v(6226)+v(6227) v(6228)=(-2d0)*(v(6226)+v(6227)) v(6219)=v(452)*v(4607) v(6277)=v(6217)+v(6219)+v(6220) v(6221)=(-2d0)*(v(6219)+v(6220)) v(6215)=v(408)*v(452) v(6212)=v(452)*v(4608) v(6265)=v(6210)+v(6212)+v(6213) v(6214)=(-2d0)*(v(6212)+v(6213)) v(6057)=2d0*v(452) v(6203)=-(v(4872)*v(6057)) v(6197)=-(v(4873)*v(6057)) v(6191)=-(v(4874)*v(6057)) v(6185)=-(v(4875)*v(6057)) v(6179)=-(v(4876)*v(6057)) v(6173)=-(v(4877)*v(6057)) v(6167)=-(v(4878)*v(6057)) v(6160)=-(v(4879)*v(6057)) v(6150)=-(v(4880)*v(6057)) v(5133)=v(4844)*v(6057) v(5132)=v(4843)*v(6057) v(5131)=v(4842)*v(6057) v(5130)=v(4841)*v(6057) v(5129)=v(4840)*v(6057) v(5128)=v(4839)*v(6057) v(5127)=v(4838)*v(6057) v(5126)=v(4837)*v(6057) v(5125)=v(4836)*v(6057) v(453)=statev(15)*v(409)+statev(17)*v(447)+v(445)*v(5527) v(6332)=-(v(453)*v(4745)) v(6325)=-(v(453)*v(4746)) v(6318)=-(v(453)*v(4747)) v(6311)=-(v(453)*v(4748)) v(6304)=-(v(453)*v(4749)) v(6297)=-(v(453)*v(4750)) v(6290)=-(v(453)*v(4751)) v(6279)=-(v(453)*v(4752)) v(6276)=v(446)*v(453)+v(6215) v(6273)=-(v(426)*v(453)) v(6284)=v(6272)-v(6273) v(6267)=-(v(453)*v(4753)) v(6111)=v(450)*v(453) v(6107)=v(453)*v(4827)+v(6145) v(6104)=v(453)*v(4828)+v(6142) v(6101)=v(453)*v(4829)+v(6139) v(6098)=v(453)*v(4830)+v(6136) v(6095)=v(453)*v(4831)+v(6133) v(6092)=v(453)*v(4832)+v(6130) v(6089)=v(453)*v(4833)+v(6127) v(6083)=v(453)*v(4834)+v(6121) v(6079)=v(453)*v(4835)+v(6116) v(6078)=v(6108)+v(6111) v(6058)=2d0*v(453) v(6341)=-(v(426)*v(6055))-v(450)*v(6058) v(6222)=-(v(446)*v(6058))-2d0*v(6215) v(5088)=v(4853)*v(6058) v(5087)=v(4852)*v(6058) v(5086)=v(4851)*v(6058) v(5085)=v(4850)*v(6058) v(5084)=v(4849)*v(6058) v(5083)=v(4848)*v(6058) v(5082)=v(4847)*v(6058) v(5081)=v(4846)*v(6058) v(5080)=v(4845)*v(6058) v(4871)=v(446)*v(4608)+v(408)*v(4817)-v(453)*v(4844)-v(452)*v(4853) v(4870)=v(446)*v(4607)+v(408)*v(4816)-v(453)*v(4843)-v(452)*v(4852) v(4869)=v(446)*v(4606)+v(408)*v(4815)-v(453)*v(4842)-v(452)*v(4851) v(4868)=v(446)*v(4605)+v(408)*v(4814)-v(453)*v(4841)-v(452)*v(4850) v(4867)=v(446)*v(4604)+v(408)*v(4813)-v(453)*v(4840)-v(452)*v(4849) v(4866)=v(446)*v(4603)+v(408)*v(4812)-v(453)*v(4839)-v(452)*v(4848) v(4865)=v(446)*v(4602)+v(408)*v(4811)-v(453)*v(4838)-v(452)*v(4847) v(4864)=v(446)*v(4601)+v(408)*v(4810)-v(453)*v(4837)-v(452)*v(4846) v(4863)=v(446)*v(4600)+v(408)*v(4809)-v(453)*v(4836)-v(452)*v(4845) v(4862)=v(6266)+v(6267)+v(6268) v(4861)=v(6278)+v(6279)+v(6280) v(4860)=v(6289)+v(6290)+v(6291) v(4859)=v(6296)+v(6297)+v(6298) v(4858)=v(6303)+v(6304)+v(6305) v(4857)=v(6310)+v(6311)+v(6312) v(4856)=v(6317)+v(6318)+v(6319) v(4855)=v(6324)+v(6325)+v(6326) v(4854)=v(6331)+v(6332)+v(6333) v(552)=v(6272)+v(6273) v(4972)=(v(552)*v(552)) v(545)=v(408)*v(446)-v(452)*v(453) v(5005)=(v(545)*v(545)) v(454)=statev(16)*v(444)+statev(18)*v(449)+v(409)*v(5525) v(6335)=-(v(454)*v(4818)) v(6328)=-(v(454)*v(4819)) v(6321)=-(v(454)*v(4820)) v(6314)=-(v(454)*v(4821)) v(6307)=-(v(454)*v(4822)) v(6300)=-(v(454)*v(4823)) v(6293)=-(v(454)*v(4824)) v(6282)=-(v(454)*v(4825)) v(6275)=-(v(448)*v(454)) v(6285)=v(6274)-v(6275) v(6270)=-(v(454)*v(4826)) v(6146)=v(454)*v(4600) v(6143)=v(454)*v(4601) v(6140)=v(454)*v(4602) v(6137)=v(454)*v(4603) v(6134)=v(454)*v(4604) v(6131)=v(454)*v(4605) v(6128)=v(454)*v(4606) v(6122)=v(454)*v(4607) v(6118)=v(454)*v(4608) v(6109)=v(408)*v(454) v(6149)=v(6109)+v(6111) v(6114)=v(6108)+v(6109) v(6059)=2d0*v(454) v(6166)=-(v(452)*v(6059))-2d0*v(6156) v(5061)=v(4880)*v(6059) v(5060)=v(4879)*v(6059) v(5059)=v(4878)*v(6059) v(5058)=v(4877)*v(6059) v(5057)=v(4876)*v(6059) v(5056)=v(4875)*v(6059) v(5055)=v(4874)*v(6059) v(5054)=v(4873)*v(6059) v(5053)=v(4872)*v(6059) v(4907)=-(v(454)*v(4817))+v(452)*v(4835)+v(450)*v(4844)-v(446)*v(4880) v(4906)=-(v(454)*v(4816))+v(452)*v(4834)+v(450)*v(4843)-v(446)*v(4879) v(4905)=-(v(454)*v(4815))+v(452)*v(4833)+v(450)*v(4842)-v(446)*v(4878) v(4904)=-(v(454)*v(4814))+v(452)*v(4832)+v(450)*v(4841)-v(446)*v(4877) v(4903)=-(v(454)*v(4813))+v(452)*v(4831)+v(450)*v(4840)-v(446)*v(4876) v(4902)=-(v(454)*v(4812))+v(452)*v(4830)+v(450)*v(4839)-v(446)*v(4875) v(4901)=-(v(454)*v(4811))+v(452)*v(4829)+v(450)*v(4838)-v(446)*v(4874) v(4900)=-(v(454)*v(4810))+v(452)*v(4828)+v(450)*v(4837)-v(446)*v(4873) v(4899)=-(v(454)*v(4809))+v(452)*v(4827)+v(450)*v(4836)-v(446)*v(4872) v(4898)=-(v(450)*v(4608))-v(408)*v(4835)+v(454)*v(4853)+v(453)*v(4880) v(4897)=-(v(450)*v(4607))-v(408)*v(4834)+v(454)*v(4852)+v(453)*v(4879) v(4896)=-(v(450)*v(4606))-v(408)*v(4833)+v(454)*v(4851)+v(453)*v(4878) v(4895)=-(v(450)*v(4605))-v(408)*v(4832)+v(454)*v(4850)+v(453)*v(4877) v(4894)=-(v(450)*v(4604))-v(408)*v(4831)+v(454)*v(4849)+v(453)*v(4876) v(4893)=-(v(450)*v(4603))-v(408)*v(4830)+v(454)*v(4848)+v(453)*v(4875) v(4892)=-(v(450)*v(4602))-v(408)*v(4829)+v(454)*v(4847)+v(453)*v(4874) v(4891)=-(v(450)*v(4601))-v(408)*v(4828)+v(454)*v(4846)+v(453)*v(4873) v(4890)=-(v(450)*v(4600))-v(408)*v(4827)+v(454)*v(4845)+v(453)*v(4872) v(4889)=v(6269)+v(6270)+v(6271) v(4888)=v(6281)+v(6282)+v(6283) v(4887)=v(6292)+v(6293)+v(6294) v(4886)=v(6299)+v(6300)+v(6301) v(4885)=v(6306)+v(6307)+v(6308) v(4884)=v(6313)+v(6314)+v(6315) v(4883)=v(6320)+v(6321)+v(6322) v(4882)=v(6327)+v(6328)+v(6329) v(4881)=v(6334)+v(6335)+v(6336) v(554)=v(6274)+v(6275) v(4974)=(v(554)*v(554)) v(553)=-(v(408)*v(450))+v(453)*v(454) v(4973)=(v(553)*v(553)) v(6073)=-v(4972)-v(4973)-v(4974) v(546)=v(450)*v(452)-v(446)*v(454) v(4984)=(v(546)*v(546)) v(455)=statev(14)*v(445)+statev(19)*v(451)+v(444)*v(5526) v(6123)=v(448)*v(455)+v(6215) v(6084)=v(426)*v(455)+v(6156) v(6060)=2d0*v(455) v(5124)=v(4916)*v(6060) v(5123)=v(4915)*v(6060) v(5122)=v(4914)*v(6060) v(5121)=v(4913)*v(6060) v(5120)=v(4912)*v(6060) v(5119)=v(4911)*v(6060) v(5118)=v(4910)*v(6060) v(5117)=v(4909)*v(6060) v(5116)=v(4908)*v(6060) v(4961)=v(452)*v(4862)+v(446)*v(4889)+v(455)*v(4898)+v(4844)*v(552)+v(4916)*v(553)+v(4817)*v(554) v(4960)=v(452)*v(4861)+v(446)*v(4888)+v(455)*v(4897)+v(4843)*v(552)+v(4915)*v(553)+v(4816)*v(554) v(4959)=v(452)*v(4860)+v(446)*v(4887)+v(455)*v(4896)+v(4842)*v(552)+v(4914)*v(553)+v(4815)*v(554) v(4958)=v(452)*v(4859)+v(446)*v(4886)+v(455)*v(4895)+v(4841)*v(552)+v(4913)*v(553)+v(4814)*v(554) v(4957)=v(452)*v(4858)+v(446)*v(4885)+v(455)*v(4894)+v(4840)*v(552)+v(4912)*v(553)+v(4813)*v(554) v(4956)=v(452)*v(4857)+v(446)*v(4884)+v(455)*v(4893)+v(4839)*v(552)+v(4911)*v(553)+v(4812)*v(554) v(4955)=v(452)*v(4856)+v(446)*v(4883)+v(455)*v(4892)+v(4838)*v(552)+v(4910)*v(553)+v(4811)*v(554) v(4954)=v(452)*v(4855)+v(446)*v(4882)+v(455)*v(4891)+v(4837)*v(552)+v(4909)*v(553)+v(4810)*v(554) v(4953)=v(452)*v(4854)+v(446)*v(4881)+v(455)*v(4890)+v(4836)*v(552)+v(4908)*v(553)+v(4809)*v(554) v(4952)=-(v(455)*v(4608))+v(452)*v(4826)+v(448)*v(4844)-v(408)*v(4916) v(4951)=-(v(455)*v(4607))+v(452)*v(4825)+v(448)*v(4843)-v(408)*v(4915) v(4950)=-(v(455)*v(4606))+v(452)*v(4824)+v(448)*v(4842)-v(408)*v(4914) v(4949)=-(v(455)*v(4605))+v(452)*v(4823)+v(448)*v(4841)-v(408)*v(4913) v(4948)=-(v(455)*v(4604))+v(452)*v(4822)+v(448)*v(4840)-v(408)*v(4912) v(4947)=-(v(455)*v(4603))+v(452)*v(4821)+v(448)*v(4839)-v(408)*v(4911) v(4946)=-(v(455)*v(4602))+v(452)*v(4820)+v(448)*v(4838)-v(408)*v(4910) v(4945)=-(v(455)*v(4601))+v(452)*v(4819)+v(448)*v(4837)-v(408)*v(4909) v(4944)=-(v(455)*v(4600))+v(452)*v(4818)+v(448)*v(4836)-v(408)*v(4908) v(4943)=-(v(452)*v(4753))-v(426)*v(4844)+v(455)*v(4880)+v(454)*v(4916) v(4942)=-(v(452)*v(4752))-v(426)*v(4843)+v(455)*v(4879)+v(454)*v(4915) v(4941)=-(v(452)*v(4751))-v(426)*v(4842)+v(455)*v(4878)+v(454)*v(4914) v(4940)=-(v(452)*v(4750))-v(426)*v(4841)+v(455)*v(4877)+v(454)*v(4913) v(4939)=-(v(452)*v(4749))-v(426)*v(4840)+v(455)*v(4876)+v(454)*v(4912) v(4938)=-(v(452)*v(4748))-v(426)*v(4839)+v(455)*v(4875)+v(454)*v(4911) v(4937)=-(v(452)*v(4747))-v(426)*v(4838)+v(455)*v(4874)+v(454)*v(4910) v(4936)=-(v(452)*v(4746))-v(426)*v(4837)+v(455)*v(4873)+v(454)*v(4909) v(4935)=-(v(452)*v(4745))-v(426)*v(4836)+v(455)*v(4872)+v(454)*v(4908) v(4934)=v(446)*v(4753)+v(426)*v(4817)-v(455)*v(4835)-v(450)*v(4916) v(4933)=v(446)*v(4752)+v(426)*v(4816)-v(455)*v(4834)-v(450)*v(4915) v(4932)=v(446)*v(4751)+v(426)*v(4815)-v(455)*v(4833)-v(450)*v(4914) v(4931)=v(446)*v(4750)+v(426)*v(4814)-v(455)*v(4832)-v(450)*v(4913) v(4930)=v(446)*v(4749)+v(426)*v(4813)-v(455)*v(4831)-v(450)*v(4912) v(4929)=v(446)*v(4748)+v(426)*v(4812)-v(455)*v(4830)-v(450)*v(4911) v(4928)=v(446)*v(4747)+v(426)*v(4811)-v(455)*v(4829)-v(450)*v(4910) v(4927)=v(446)*v(4746)+v(426)*v(4810)-v(455)*v(4828)-v(450)*v(4909) v(4926)=v(446)*v(4745)+v(426)*v(4809)-v(455)*v(4827)-v(450)*v(4908) v(4925)=-(v(448)*v(4817))-v(446)*v(4826)+v(455)*v(4853)+v(453)*v(4916) v(4924)=-(v(448)*v(4816))-v(446)*v(4825)+v(455)*v(4852)+v(453)*v(4915) v(4923)=-(v(448)*v(4815))-v(446)*v(4824)+v(455)*v(4851)+v(453)*v(4914) v(4922)=-(v(448)*v(4814))-v(446)*v(4823)+v(455)*v(4850)+v(453)*v(4913) v(4921)=-(v(448)*v(4813))-v(446)*v(4822)+v(455)*v(4849)+v(453)*v(4912) v(4920)=-(v(448)*v(4812))-v(446)*v(4821)+v(455)*v(4848)+v(453)*v(4911) v(4919)=-(v(448)*v(4811))-v(446)*v(4820)+v(455)*v(4847)+v(453)*v(4910) v(4918)=-(v(448)*v(4810))-v(446)*v(4819)+v(455)*v(4846)+v(453)*v(4909) v(4917)=-(v(448)*v(4809))-v(446)*v(4818)+v(455)*v(4845)+v(453)*v(4908) v(550)=-(v(446)*v(448))+v(453)*v(455) v(5007)=(v(550)*v(550)) v(549)=v(426)*v(446)-v(450)*v(455) v(4986)=(v(549)*v(549)) v(548)=-(v(426)*v(452))+v(454)*v(455) v(6375)=v(549)*v(552)+v(546)*v(553)+v(548)*v(554) v(4985)=(v(548)*v(548)) v(6072)=v(4984)+v(4985)+v(4986) v(547)=v(448)*v(452)-v(408)*v(455) v(6377)=v(545)*v(546)+v(547)*v(548)+v(549)*v(550) v(6376)=v(550)*v(552)+v(545)*v(553)+v(547)*v(554) v(5006)=(v(547)*v(547)) v(6071)=-v(5005)-v(5006)-v(5007) v(520)=v(452)*v(552)+v(455)*v(553)+v(446)*v(554) v(5163)=1d0/v(520)**6 v(4963)=1d0/v(520)**3 v(6061)=(-2d0)*v(4963) v(4971)=v(4961)*v(6061) v(4970)=v(4960)*v(6061) v(4969)=v(4959)*v(6061) v(4968)=v(4958)*v(6061) v(4967)=v(4957)*v(6061) v(4966)=v(4956)*v(6061) v(4965)=v(4955)*v(6061) v(4964)=v(4954)*v(6061) v(4962)=v(4953)*v(6061) v(456)=v(232)*(v(386)*v(386))+v(473)+v(491) v(462)=(v(392)*v(456)+v(389)*v(458)+v(391)*v(459))*v(5541) v(497)=v(462)*v(6062) v(461)=(v(390)*v(456)+v(391)*v(458)+v(388)*v(459))*v(5541) v(477)=v(461)*v(6063) v(457)=v(475)+v(493)+v(456)*v(6064) v(465)=(v(390)*v(457)+v(388)*v(461)+v(391)*v(462))*v(5541) v(481)=v(465)*v(6063) v(464)=(v(392)*v(457)+v(391)*v(461)+v(389)*v(462))*v(5541) v(499)=v(464)*v(6062) v(460)=v(477)+v(497)+v(457)*v(6064) v(468)=(v(392)*v(460)+v(389)*v(464)+v(391)*v(465))*v(5541) v(503)=v(468)*v(6062) v(467)=(v(390)*v(460)+v(391)*v(464)+v(388)*v(465))*v(5541) v(483)=v(467)*v(6063) v(463)=v(481)+v(499)+v(460)*v(6064) v(466)=v(483)+v(503)+v(463)*v(6064) v(6065)=5040d0+v(466) v(469)=(v(392)*v(463)+v(391)*v(467)+v(389)*v(468))*v(5541) v(505)=v(469)*v(6062) v(470)=(v(390)*v(463)+v(388)*v(467)+v(391)*v(468))*v(5541) v(508)=(7d0*(360d0*v(458)+120d0*v(462)+30d0*v(464)+6d0*v(468)+v(469))+v(5541)*(v(389)*v(469)+v(391)*v(470)+v(392)*v& &(6065)))/5040d0 v(488)=v(470)*v(6063) v(6068)=5040d0+v(488) v(510)=(2520d0*v(456)+840d0*v(457)+210d0*v(460)+42d0*v(463)+7d0*v(466)+v(505)+v(6064)*v(6065)+v(6068))/5040d0 v(472)=(7d0*(360d0*v(459)+120d0*v(461)+30d0*v(465)+6d0*v(467)+v(470))+v(5541)*(v(391)*v(469)+v(388)*v(470)+v(390)*v& &(6065)))/5040d0 v(471)=statev(27)*v(472)+statev(25)*v(508)+v(510)*v(5528) v(474)=v(232)*(v(388)*v(388))+v(473)+v(490) v(480)=(v(392)*v(459)+v(391)*v(474)+v(389)*v(478))*v(5541) v(496)=v(480)*v(6066) v(476)=v(475)+v(494)+v(474)*v(6067) v(484)=(v(392)*v(461)+v(391)*v(476)+v(389)*v(480))*v(5541) v(500)=v(484)*v(6066) v(479)=v(477)+v(496)+v(476)*v(6067) v(486)=(v(392)*v(465)+v(391)*v(479)+v(389)*v(484))*v(5541) v(502)=v(486)*v(6066) v(482)=v(481)+v(500)+v(479)*v(6067) v(485)=v(483)+v(502)+v(482)*v(6067) v(6069)=5040d0+v(485) v(487)=(v(392)*v(467)+v(391)*v(482)+v(389)*v(486))*v(5541) v(507)=(7d0*(360d0*v(478)+120d0*v(480)+30d0*v(484)+6d0*v(486)+v(487))+v(5541)*(v(392)*v(470)+v(389)*v(487)+v(391)*v& &(6069)))/5040d0 v(506)=v(487)*v(6066) v(512)=(2520d0*v(474)+840d0*v(476)+210d0*v(479)+42d0*v(482)+7d0*v(485)+v(506)+v(6068)+v(6067)*v(6069))/5040d0 v(489)=statev(23)*v(472)+statev(28)*v(507)+v(512)*v(5529) v(492)=v(232)*(v(389)*v(389))+v(490)+v(491) v(495)=v(493)+v(494)+v(492)*v(6070) v(498)=v(496)+v(497)+v(495)*v(6070) v(501)=v(499)+v(500)+v(498)*v(6070) v(504)=v(502)+v(503)+v(501)*v(6070) v(514)=(5040d0+2520d0*v(492)+840d0*v(495)+210d0*v(498)+42d0*v(501)+7d0*v(504)+v(505)+v(506)+(5040d0+v(504))*v(6070))& &/5040d0 v(509)=statev(24)*v(507)+statev(26)*v(508)+v(514)*v(5530) v(511)=statev(28)*v(508)+statev(23)*v(510)+v(472)*v(5529) v(513)=statev(26)*v(472)+statev(24)*v(512)+v(507)*v(5530) v(515)=statev(27)*v(507)+statev(25)*v(514)+v(508)*v(5528) v(516)=statev(24)*v(472)+statev(26)*v(510)+v(508)*v(5530) v(577)=v(511)*v(513)-v(489)*v(516) v(568)=v(471)*v(509)-v(515)*v(516) v(517)=statev(25)*v(507)+statev(27)*v(512)+v(472)*v(5528) v(576)=v(471)*v(489)-v(511)*v(517) v(575)=-(v(471)*v(513))+v(516)*v(517) v(569)=v(513)*v(515)-v(509)*v(517) v(518)=statev(23)*v(508)+statev(28)*v(514)+v(507)*v(5529) v(573)=-(v(489)*v(515))+v(517)*v(518) v(572)=v(511)*v(515)-v(471)*v(518) v(571)=-(v(509)*v(511))+v(516)*v(518) v(570)=v(489)*v(509)-v(513)*v(518) v(519)=1d0/v(520)**2 v(5274)=v(519)*v(6375) v(5255)=v(519)*v(6376) v(5236)=v(519)*v(6377) v(5016)=v(519)*((-2d0)*v(4871)*v(545)-2d0*v(4952)*v(547)-2d0*v(4925)*v(550))+v(4971)*v(6071) v(5025)=v(5016)/3d0 v(5015)=v(519)*((-2d0)*v(4870)*v(545)-2d0*v(4951)*v(547)-2d0*v(4924)*v(550))+v(4970)*v(6071) v(5024)=v(5015)/3d0 v(5014)=v(519)*((-2d0)*v(4869)*v(545)-2d0*v(4950)*v(547)-2d0*v(4923)*v(550))+v(4969)*v(6071) v(5023)=v(5014)/3d0 v(5013)=v(519)*((-2d0)*v(4868)*v(545)-2d0*v(4949)*v(547)-2d0*v(4922)*v(550))+v(4968)*v(6071) v(5022)=v(5013)/3d0 v(5012)=v(519)*((-2d0)*v(4867)*v(545)-2d0*v(4948)*v(547)-2d0*v(4921)*v(550))+v(4967)*v(6071) v(5021)=v(5012)/3d0 v(5011)=v(519)*((-2d0)*v(4866)*v(545)-2d0*v(4947)*v(547)-2d0*v(4920)*v(550))+v(4966)*v(6071) v(5020)=v(5011)/3d0 v(5010)=v(519)*((-2d0)*v(4865)*v(545)-2d0*v(4946)*v(547)-2d0*v(4919)*v(550))+v(4965)*v(6071) v(5019)=v(5010)/3d0 v(5009)=v(519)*((-2d0)*v(4864)*v(545)-2d0*v(4945)*v(547)-2d0*v(4918)*v(550))+v(4964)*v(6071) v(5018)=v(5009)/3d0 v(5008)=v(519)*((-2d0)*v(4863)*v(545)-2d0*v(4944)*v(547)-2d0*v(4917)*v(550))+v(4962)*v(6071) v(5017)=v(5008)/3d0 v(4995)=v(519)*(2d0*v(4907)*v(546)+2d0*v(4943)*v(548)+2d0*v(4934)*v(549))+v(4971)*v(6072) v(5004)=-v(4995)/3d0 v(4994)=v(519)*(2d0*v(4906)*v(546)+2d0*v(4942)*v(548)+2d0*v(4933)*v(549))+v(4970)*v(6072) v(5003)=-v(4994)/3d0 v(4993)=v(519)*(2d0*v(4905)*v(546)+2d0*v(4941)*v(548)+2d0*v(4932)*v(549))+v(4969)*v(6072) v(5002)=-v(4993)/3d0 v(4992)=v(519)*(2d0*v(4904)*v(546)+2d0*v(4940)*v(548)+2d0*v(4931)*v(549))+v(4968)*v(6072) v(5001)=-v(4992)/3d0 v(4991)=v(519)*(2d0*v(4903)*v(546)+2d0*v(4939)*v(548)+2d0*v(4930)*v(549))+v(4967)*v(6072) v(5000)=-v(4991)/3d0 v(4990)=v(519)*(2d0*v(4902)*v(546)+2d0*v(4938)*v(548)+2d0*v(4929)*v(549))+v(4966)*v(6072) v(4999)=-v(4990)/3d0 v(4989)=v(519)*(2d0*v(4901)*v(546)+2d0*v(4937)*v(548)+2d0*v(4928)*v(549))+v(4965)*v(6072) v(4998)=-v(4989)/3d0 v(4988)=v(519)*(2d0*v(4900)*v(546)+2d0*v(4936)*v(548)+2d0*v(4927)*v(549))+v(4964)*v(6072) v(4997)=-v(4988)/3d0 v(4987)=v(519)*(2d0*v(4899)*v(546)+2d0*v(4935)*v(548)+2d0*v(4926)*v(549))+v(4962)*v(6072) v(4996)=-v(4987)/3d0 v(4983)=v(519)*((-2d0)*v(4862)*v(552)-2d0*v(4898)*v(553)-2d0*v(4889)*v(554))+v(4971)*v(6073) v(5034)=v(4983)/3d0 v(4982)=v(519)*((-2d0)*v(4861)*v(552)-2d0*v(4897)*v(553)-2d0*v(4888)*v(554))+v(4970)*v(6073) v(5033)=v(4982)/3d0 v(4981)=v(519)*((-2d0)*v(4860)*v(552)-2d0*v(4896)*v(553)-2d0*v(4887)*v(554))+v(4969)*v(6073) v(5032)=v(4981)/3d0 v(4980)=v(519)*((-2d0)*v(4859)*v(552)-2d0*v(4895)*v(553)-2d0*v(4886)*v(554))+v(4968)*v(6073) v(5031)=v(4980)/3d0 v(4979)=v(519)*((-2d0)*v(4858)*v(552)-2d0*v(4894)*v(553)-2d0*v(4885)*v(554))+v(4967)*v(6073) v(5030)=v(4979)/3d0 v(4978)=v(519)*((-2d0)*v(4857)*v(552)-2d0*v(4893)*v(553)-2d0*v(4884)*v(554))+v(4966)*v(6073) v(5029)=v(4978)/3d0 v(4977)=v(519)*((-2d0)*v(4856)*v(552)-2d0*v(4892)*v(553)-2d0*v(4883)*v(554))+v(4965)*v(6073) v(5028)=v(4977)/3d0 v(4976)=v(519)*((-2d0)*v(4855)*v(552)-2d0*v(4891)*v(553)-2d0*v(4882)*v(554))+v(4964)*v(6073) v(5027)=v(4976)/3d0 v(4975)=v(519)*((-2d0)*v(4854)*v(552)-2d0*v(4890)*v(553)-2d0*v(4881)*v(554))+v(4962)*v(6073) v(5026)=v(4975)/3d0 v(541)=v(519)*v(6073) v(538)=v(519)*v(6072) v(543)=-v(538)/3d0 v(537)=v(519)*v(6071) v(542)=v(537)/3d0 v(5217)=(-2d0/3d0)*v(541)+v(542)+v(543) v(536)=v(541)/3d0 v(5198)=v(536)+(-2d0/3d0)*v(537)+v(543) v(5179)=v(536)+(2d0/3d0)*v(538)+v(542) v(521)=(v(426)*v(426)) v(522)=(v(450)*v(450)) v(6074)=-v(521)-v(522) v(523)=(v(454)*v(454)) v(6080)=-v(522)-v(523) v(6112)=v(448)*v(6080) v(6086)=v(426)*v(450)*v(453)+v(6112) v(6077)=-v(521)-v(523) v(6110)=v(453)*v(6077) v(6085)=v(426)*v(448)*v(450)+v(6110) v(5070)=v(408)*v(4844)*v(6074)+v(452)*(v(408)*(-v(5043)-v(5052))+v(4608)*v(6074)+v(4880)*v(6078))+v(455)*(v(450)*v(453& &)*v(4753)+v(448)*(-v(5052)-v(5061))+v(426)*(v(6076)+v(6079))+v(4826)*v(6080))+v(4817)*v(6085)+v(4916)*v(6086)+v(446)*(v& &(426)*v(448)*v(4835)+v(453)*(-v(5043)-v(5061))+v(4853)*v(6077)+v(450)*v(6115))+v(454)*(v(4844)*v(6078)+v(452)*(v(6075)& &+v(6079))+v(4608)*v(6084)+v(408)*(v(455)*v(4753)+v(6151)+v(6153)+v(6154))) v(5069)=v(408)*v(4843)*v(6074)+v(452)*(v(408)*(-v(5042)-v(5051))+v(4607)*v(6074)+v(4879)*v(6078))+v(455)*(v(450)*v(453& &)*v(4752)+v(448)*(-v(5051)-v(5060))+v(4825)*v(6080)+v(426)*(v(6082)+v(6083)))+v(4816)*v(6085)+v(4915)*v(6086)+v(446)*(v& &(426)*v(448)*v(4834)+v(453)*(-v(5042)-v(5060))+v(4852)*v(6077)+v(450)*v(6120))+v(454)*(v(4843)*v(6078)+v(452)*(v(6081)& &+v(6083))+v(4607)*v(6084)+v(408)*(v(455)*v(4752)+v(6161)+v(6163)+v(6164))) v(5068)=v(408)*v(4842)*v(6074)+v(452)*(v(408)*(-v(5041)-v(5050))+v(4606)*v(6074)+v(4878)*v(6078))+v(4815)*v(6085)+v& &(4914)*v(6086)+v(455)*(v(450)*v(453)*v(4751)+v(448)*(-v(5050)-v(5059))+v(4824)*v(6080)+v(426)*(v(6088)+v(6089)))+v(446& &)*(v(426)*v(448)*v(4833)+v(453)*(-v(5041)-v(5059))+v(4851)*v(6077)+v(450)*v(6126))+v(454)*(v(4842)*v(6078)+v(4606)*v& &(6084)+v(452)*(v(6087)+v(6089))+v(408)*(v(455)*v(4751)+v(6168)+v(6170)+v(6171))) v(5067)=v(408)*v(4841)*v(6074)+v(452)*(v(408)*(-v(5040)-v(5049))+v(4605)*v(6074)+v(4877)*v(6078))+v(4814)*v(6085)+v& &(4913)*v(6086)+v(455)*(v(450)*v(453)*v(4750)+v(448)*(-v(5049)-v(5058))+v(4823)*v(6080)+v(426)*(v(6091)+v(6092)))+v(446& &)*(v(426)*v(448)*v(4832)+v(453)*(-v(5040)-v(5058))+v(4850)*v(6077)+v(450)*v(6129))+v(454)*(v(4841)*v(6078)+v(4605)*v& &(6084)+v(452)*(v(6090)+v(6092))+v(408)*(v(455)*v(4750)+v(6174)+v(6176)+v(6177))) v(5066)=v(408)*v(4840)*v(6074)+v(452)*(v(408)*(-v(5039)-v(5048))+v(4604)*v(6074)+v(4876)*v(6078))+v(4813)*v(6085)+v& &(4912)*v(6086)+v(455)*(v(450)*v(453)*v(4749)+v(448)*(-v(5048)-v(5057))+v(4822)*v(6080)+v(426)*(v(6094)+v(6095)))+v(446& &)*(v(426)*v(448)*v(4831)+v(453)*(-v(5039)-v(5057))+v(4849)*v(6077)+v(450)*v(6132))+v(454)*(v(4840)*v(6078)+v(4604)*v& &(6084)+v(452)*(v(6093)+v(6095))+v(408)*(v(455)*v(4749)+v(6180)+v(6182)+v(6183))) v(5065)=v(408)*v(4839)*v(6074)+v(452)*(v(408)*(-v(5038)-v(5047))+v(4603)*v(6074)+v(4875)*v(6078))+v(4812)*v(6085)+v& &(4911)*v(6086)+v(455)*(v(450)*v(453)*v(4748)+v(448)*(-v(5047)-v(5056))+v(4821)*v(6080)+v(426)*(v(6097)+v(6098)))+v(446& &)*(v(426)*v(448)*v(4830)+v(453)*(-v(5038)-v(5056))+v(4848)*v(6077)+v(450)*v(6135))+v(454)*(v(4839)*v(6078)+v(4603)*v& &(6084)+v(452)*(v(6096)+v(6098))+v(408)*(v(455)*v(4748)+v(6186)+v(6188)+v(6189))) v(5064)=v(408)*v(4838)*v(6074)+v(452)*(v(408)*(-v(5037)-v(5046))+v(4602)*v(6074)+v(4874)*v(6078))+v(4811)*v(6085)+v& &(4910)*v(6086)+v(455)*(v(450)*v(453)*v(4747)+v(448)*(-v(5046)-v(5055))+v(4820)*v(6080)+v(426)*(v(6100)+v(6101)))+v(446& &)*(v(426)*v(448)*v(4829)+v(453)*(-v(5037)-v(5055))+v(4847)*v(6077)+v(450)*v(6138))+v(454)*(v(4838)*v(6078)+v(4602)*v& &(6084)+v(452)*(v(6099)+v(6101))+v(408)*(v(455)*v(4747)+v(6192)+v(6194)+v(6195))) v(5063)=v(408)*v(4837)*v(6074)+v(452)*(v(408)*(-v(5036)-v(5045))+v(4601)*v(6074)+v(4873)*v(6078))+v(4810)*v(6085)+v& &(4909)*v(6086)+v(455)*(v(450)*v(453)*v(4746)+v(448)*(-v(5045)-v(5054))+v(4819)*v(6080)+v(426)*(v(6103)+v(6104)))+v(446& &)*(v(426)*v(448)*v(4828)+v(453)*(-v(5036)-v(5054))+v(4846)*v(6077)+v(450)*v(6141))+v(454)*(v(4837)*v(6078)+v(4601)*v& &(6084)+v(452)*(v(6102)+v(6104))+v(408)*(v(455)*v(4746)+v(6198)+v(6200)+v(6201))) v(5062)=v(408)*v(4836)*v(6074)+v(452)*(v(408)*(-v(5035)-v(5044))+v(4600)*v(6074)+v(4872)*v(6078))+v(4809)*v(6085)+v& &(4908)*v(6086)+v(455)*(v(450)*v(453)*v(4745)+v(448)*(-v(5044)-v(5053))+v(4818)*v(6080)+v(426)*(v(6106)+v(6107)))+v(446& &)*(v(426)*v(448)*v(4827)+v(453)*(-v(5035)-v(5053))+v(4845)*v(6077)+v(450)*v(6144))+v(454)*(v(4836)*v(6078)+v(4600)*v& &(6084)+v(452)*(v(6105)+v(6107))+v(408)*(v(455)*v(4745)+v(6204)+v(6206)+v(6207))) v(524)=v(452)*(v(408)*v(6074)+v(454)*v(6078))+v(446)*(v(6110)+v(450)*v(6114))+v(455)*(v(6112)+v(426)*v(6149)) v(525)=(v(408)*v(408)) v(526)=(v(453)*v(453)) v(6119)=-v(525)-v(526) v(6148)=v(426)*v(6119) v(6125)=v(408)*v(448)*v(454)+v(6148) v(527)=(v(448)*v(448)) v(6117)=-v(526)-v(527) v(6147)=v(454)*v(6117) v(6124)=v(408)*v(426)*v(448)+v(6147) v(6113)=-v(525)-v(527) v(5167)=(-2d0)*v(426)*v(448)*v(450)*v(453)-v(525)*v(6074)-v(526)*v(6077)-v(527)*v(6080)+v(408)*v(454)*v(6341) v(5106)=v(450)*v(4817)*v(6113)+v(446)*(v(450)*(-v(5079)-v(5097))+v(4835)*v(6113)+v(4853)*v(6114))+v(452)*(v(426)*v(448& &)*v(4608)+v(454)*(-v(5088)-v(5097))+v(408)*(v(6075)+v(6116))+v(4880)*v(6117))+v(455)*(v(408)*v(454)*v(4826)+v(426)*(-v& &(5079)-v(5088))+v(448)*(v(6076)+v(6116)+v(6118))+v(4753)*v(6119))+v(4844)*v(6124)+v(4916)*v(6125)+v(453)*(v(4817)*v& &(6114)+v(446)*(v(6115)+v(6118))+v(4835)*v(6123)+v(450)*(v(455)*v(4826)+v(6265))) v(5105)=v(450)*v(4816)*v(6113)+v(446)*(v(450)*(-v(5078)-v(5096))+v(4834)*v(6113)+v(4852)*v(6114))+v(452)*(v(426)*v(448& &)*v(4607)+v(454)*(-v(5087)-v(5096))+v(4879)*v(6117)+v(408)*(v(6081)+v(6121)))+v(455)*(v(408)*v(454)*v(4825)+v(426)*(-v& &(5078)-v(5087))+v(4752)*v(6119)+v(448)*(v(6082)+v(6121)+v(6122)))+v(4843)*v(6124)+v(4915)*v(6125)+v(453)*(v(4816)*v& &(6114)+v(446)*(v(6120)+v(6122))+v(4834)*v(6123)+v(450)*(v(455)*v(4825)+v(6277))) v(5104)=v(450)*v(4815)*v(6113)+v(446)*(v(450)*(-v(5077)-v(5095))+v(4833)*v(6113)+v(4851)*v(6114))+v(4842)*v(6124)+v& &(4914)*v(6125)+v(452)*(v(426)*v(448)*v(4606)+v(454)*(-v(5086)-v(5095))+v(4878)*v(6117)+v(408)*(v(6087)+v(6127)))+v(455& &)*(v(408)*v(454)*v(4824)+v(426)*(-v(5077)-v(5086))+v(4751)*v(6119)+v(448)*(v(6088)+v(6127)+v(6128)))+v(453)*(v(4815)*v& &(6114)+v(4833)*v(6123)+v(446)*(v(6126)+v(6128))+v(450)*(v(455)*v(4824)+v(6288))) v(5103)=v(450)*v(4814)*v(6113)+v(446)*(v(450)*(-v(5076)-v(5094))+v(4832)*v(6113)+v(4850)*v(6114))+v(4841)*v(6124)+v& &(4913)*v(6125)+v(452)*(v(426)*v(448)*v(4605)+v(454)*(-v(5085)-v(5094))+v(4877)*v(6117)+v(408)*(v(6090)+v(6130)))+v(455& &)*(v(408)*v(454)*v(4823)+v(426)*(-v(5076)-v(5085))+v(4750)*v(6119)+v(448)*(v(6091)+v(6130)+v(6131)))+v(453)*(v(4814)*v& &(6114)+v(4832)*v(6123)+v(446)*(v(6129)+v(6131))+v(450)*(v(455)*v(4823)+v(6295))) v(5102)=v(450)*v(4813)*v(6113)+v(446)*(v(450)*(-v(5075)-v(5093))+v(4831)*v(6113)+v(4849)*v(6114))+v(4840)*v(6124)+v& &(4912)*v(6125)+v(452)*(v(426)*v(448)*v(4604)+v(454)*(-v(5084)-v(5093))+v(4876)*v(6117)+v(408)*(v(6093)+v(6133)))+v(455& &)*(v(408)*v(454)*v(4822)+v(426)*(-v(5075)-v(5084))+v(4749)*v(6119)+v(448)*(v(6094)+v(6133)+v(6134)))+v(453)*(v(4813)*v& &(6114)+v(4831)*v(6123)+v(446)*(v(6132)+v(6134))+v(450)*(v(455)*v(4822)+v(6302))) v(5101)=v(450)*v(4812)*v(6113)+v(446)*(v(450)*(-v(5074)-v(5092))+v(4830)*v(6113)+v(4848)*v(6114))+v(4839)*v(6124)+v& &(4911)*v(6125)+v(452)*(v(426)*v(448)*v(4603)+v(454)*(-v(5083)-v(5092))+v(4875)*v(6117)+v(408)*(v(6096)+v(6136)))+v(455& &)*(v(408)*v(454)*v(4821)+v(426)*(-v(5074)-v(5083))+v(4748)*v(6119)+v(448)*(v(6097)+v(6136)+v(6137)))+v(453)*(v(4812)*v& &(6114)+v(4830)*v(6123)+v(446)*(v(6135)+v(6137))+v(450)*(v(455)*v(4821)+v(6309))) v(5100)=v(450)*v(4811)*v(6113)+v(446)*(v(450)*(-v(5073)-v(5091))+v(4829)*v(6113)+v(4847)*v(6114))+v(4838)*v(6124)+v& &(4910)*v(6125)+v(452)*(v(426)*v(448)*v(4602)+v(454)*(-v(5082)-v(5091))+v(4874)*v(6117)+v(408)*(v(6099)+v(6139)))+v(455& &)*(v(408)*v(454)*v(4820)+v(426)*(-v(5073)-v(5082))+v(4747)*v(6119)+v(448)*(v(6100)+v(6139)+v(6140)))+v(453)*(v(4811)*v& &(6114)+v(4829)*v(6123)+v(446)*(v(6138)+v(6140))+v(450)*(v(455)*v(4820)+v(6316))) v(5099)=v(450)*v(4810)*v(6113)+v(446)*(v(450)*(-v(5072)-v(5090))+v(4828)*v(6113)+v(4846)*v(6114))+v(4837)*v(6124)+v& &(4909)*v(6125)+v(452)*(v(426)*v(448)*v(4601)+v(454)*(-v(5081)-v(5090))+v(4873)*v(6117)+v(408)*(v(6102)+v(6142)))+v(455& &)*(v(408)*v(454)*v(4819)+v(426)*(-v(5072)-v(5081))+v(4746)*v(6119)+v(448)*(v(6103)+v(6142)+v(6143)))+v(453)*(v(4810)*v& &(6114)+v(4828)*v(6123)+v(446)*(v(6141)+v(6143))+v(450)*(v(455)*v(4819)+v(6323))) v(5098)=v(450)*v(4809)*v(6113)+v(446)*(v(450)*(-v(5071)-v(5089))+v(4827)*v(6113)+v(4845)*v(6114))+v(4836)*v(6124)+v& &(4908)*v(6125)+v(452)*(v(426)*v(448)*v(4600)+v(454)*(-v(5080)-v(5089))+v(4872)*v(6117)+v(408)*(v(6105)+v(6145)))+v(455& &)*(v(408)*v(454)*v(4818)+v(426)*(-v(5071)-v(5080))+v(4745)*v(6119)+v(448)*(v(6106)+v(6145)+v(6146)))+v(453)*(v(4809)*v& &(6114)+v(4827)*v(6123)+v(446)*(v(6144)+v(6146))+v(450)*(v(455)*v(4818)+v(6330))) v(528)=v(446)*(v(450)*v(6113)+v(453)*v(6114))+v(452)*(v(408)*v(6078)+v(6147))+v(455)*(v(6148)+v(448)*v(6149)) v(529)=(v(446)*v(446)) v(530)=(v(455)*v(455)) v(6157)=v(529)+v(530) v(6287)=v(446)*v(452)*v(453)-v(408)*v(6157) v(531)=(v(452)*v(452)) v(6159)=v(530)+v(531) v(6286)=v(408)*v(446)*v(452)-v(453)*v(6159) v(6158)=v(529)+v(531) v(5160)=-(v(5133)*v(6074))-v(5115)*v(6077)-v(5124)*v(6080)+v(446)*v(450)*(v(6150)+v(6152))+v(454)*((-2d0)*v(446)*v(450& &)*v(4844)+v(452)*(v(6152)+v(6155)))+v(5061)*v(6157)+v(5043)*v(6158)+v(5052)*v(6159)+v(455)*(v(426)*(-(v(4844)*v(6059))& &+v(6150)+v(6155))+v(4753)*v(6166)) v(5159)=-(v(5132)*v(6074))-v(5114)*v(6077)-v(5123)*v(6080)+v(5060)*v(6157)+v(5042)*v(6158)+v(5051)*v(6159)+v(446)*v(450& &)*(v(6160)+v(6162))+v(454)*((-2d0)*v(446)*v(450)*v(4843)+v(452)*(v(6162)+v(6165)))+v(455)*(v(426)*(-(v(4843)*v(6059))+v& &(6160)+v(6165))+v(4752)*v(6166)) v(5158)=-(v(5131)*v(6074))-v(5113)*v(6077)-v(5122)*v(6080)+v(5059)*v(6157)+v(5041)*v(6158)+v(5050)*v(6159)+v(446)*v(450& &)*(v(6167)+v(6169))+v(455)*(v(4751)*v(6166)+v(426)*(-(v(4842)*v(6059))+v(6167)+v(6172)))+v(454)*((-2d0)*v(446)*v(450)*v& &(4842)+v(452)*(v(6169)+v(6172))) v(5157)=-(v(5130)*v(6074))-v(5112)*v(6077)-v(5121)*v(6080)+v(5058)*v(6157)+v(5040)*v(6158)+v(5049)*v(6159)+v(446)*v(450& &)*(v(6173)+v(6175))+v(455)*(v(4750)*v(6166)+v(426)*(-(v(4841)*v(6059))+v(6173)+v(6178)))+v(454)*((-2d0)*v(446)*v(450)*v& &(4841)+v(452)*(v(6175)+v(6178))) v(5156)=-(v(5129)*v(6074))-v(5111)*v(6077)-v(5120)*v(6080)+v(5057)*v(6157)+v(5039)*v(6158)+v(5048)*v(6159)+v(446)*v(450& &)*(v(6179)+v(6181))+v(455)*(v(4749)*v(6166)+v(426)*(-(v(4840)*v(6059))+v(6179)+v(6184)))+v(454)*((-2d0)*v(446)*v(450)*v& &(4840)+v(452)*(v(6181)+v(6184))) v(5155)=-(v(5128)*v(6074))-v(5110)*v(6077)-v(5119)*v(6080)+v(5056)*v(6157)+v(5038)*v(6158)+v(5047)*v(6159)+v(446)*v(450& &)*(v(6185)+v(6187))+v(455)*(v(4748)*v(6166)+v(426)*(-(v(4839)*v(6059))+v(6185)+v(6190)))+v(454)*((-2d0)*v(446)*v(450)*v& &(4839)+v(452)*(v(6187)+v(6190))) v(5154)=-(v(5127)*v(6074))-v(5109)*v(6077)-v(5118)*v(6080)+v(5055)*v(6157)+v(5037)*v(6158)+v(5046)*v(6159)+v(446)*v(450& &)*(v(6191)+v(6193))+v(455)*(v(4747)*v(6166)+v(426)*(-(v(4838)*v(6059))+v(6191)+v(6196)))+v(454)*((-2d0)*v(446)*v(450)*v& &(4838)+v(452)*(v(6193)+v(6196))) v(5153)=-(v(5126)*v(6074))-v(5108)*v(6077)-v(5117)*v(6080)+v(5054)*v(6157)+v(5036)*v(6158)+v(5045)*v(6159)+v(446)*v(450& &)*(v(6197)+v(6199))+v(455)*(v(4746)*v(6166)+v(426)*(-(v(4837)*v(6059))+v(6197)+v(6202)))+v(454)*((-2d0)*v(446)*v(450)*v& &(4837)+v(452)*(v(6199)+v(6202))) v(5152)=-(v(5125)*v(6074))-v(5107)*v(6077)-v(5116)*v(6080)+v(5053)*v(6157)+v(5035)*v(6158)+v(5044)*v(6159)+v(446)*v(450& &)*(v(6203)+v(6205))+v(455)*(v(4745)*v(6166)+v(426)*(-(v(4836)*v(6059))+v(6203)+v(6208)))+v(454)*((-2d0)*v(446)*v(450)*v& &(4836)+v(452)*(v(6205)+v(6208))) v(5151)=-(v(5115)*v(6113))-v(5133)*v(6117)-v(5124)*v(6119)+v(5079)*v(6157)+v(5097)*v(6158)+v(5088)*v(6159)+v(408)*v(452& &)*(v(6209)+v(6211))+v(453)*((-2d0)*v(408)*v(452)*v(4817)+v(446)*(v(6211)+v(6214)))+v(455)*(v(448)*(-(v(4817)*v(6058))+v& &(6209)+v(6214))+v(4826)*v(6222)) v(5150)=-(v(5114)*v(6113))-v(5132)*v(6117)-v(5123)*v(6119)+v(5078)*v(6157)+v(5096)*v(6158)+v(5087)*v(6159)+v(408)*v(452& &)*(v(6216)+v(6218))+v(453)*((-2d0)*v(408)*v(452)*v(4816)+v(446)*(v(6218)+v(6221)))+v(455)*(v(448)*(-(v(4816)*v(6058))+v& &(6216)+v(6221))+v(4825)*v(6222)) v(5149)=-(v(5113)*v(6113))-v(5131)*v(6117)-v(5122)*v(6119)+v(5077)*v(6157)+v(5095)*v(6158)+v(5086)*v(6159)+v(408)*v(452& &)*(v(6223)+v(6225))+v(455)*(v(4824)*v(6222)+v(448)*(-(v(4815)*v(6058))+v(6223)+v(6228)))+v(453)*((-2d0)*v(408)*v(452)*v& &(4815)+v(446)*(v(6225)+v(6228))) v(5148)=-(v(5112)*v(6113))-v(5130)*v(6117)-v(5121)*v(6119)+v(5076)*v(6157)+v(5094)*v(6158)+v(5085)*v(6159)+v(408)*v(452& &)*(v(6229)+v(6231))+v(455)*(v(4823)*v(6222)+v(448)*(-(v(4814)*v(6058))+v(6229)+v(6234)))+v(453)*((-2d0)*v(408)*v(452)*v& &(4814)+v(446)*(v(6231)+v(6234))) v(5147)=-(v(5111)*v(6113))-v(5129)*v(6117)-v(5120)*v(6119)+v(5075)*v(6157)+v(5093)*v(6158)+v(5084)*v(6159)+v(408)*v(452& &)*(v(6235)+v(6237))+v(455)*(v(4822)*v(6222)+v(448)*(-(v(4813)*v(6058))+v(6235)+v(6240)))+v(453)*((-2d0)*v(408)*v(452)*v& &(4813)+v(446)*(v(6237)+v(6240))) v(5146)=-(v(5110)*v(6113))-v(5128)*v(6117)-v(5119)*v(6119)+v(5074)*v(6157)+v(5092)*v(6158)+v(5083)*v(6159)+v(408)*v(452& &)*(v(6241)+v(6243))+v(455)*(v(4821)*v(6222)+v(448)*(-(v(4812)*v(6058))+v(6241)+v(6246)))+v(453)*((-2d0)*v(408)*v(452)*v& &(4812)+v(446)*(v(6243)+v(6246))) v(5145)=-(v(5109)*v(6113))-v(5127)*v(6117)-v(5118)*v(6119)+v(5073)*v(6157)+v(5091)*v(6158)+v(5082)*v(6159)+v(408)*v(452& &)*(v(6247)+v(6249))+v(455)*(v(4820)*v(6222)+v(448)*(-(v(4811)*v(6058))+v(6247)+v(6252)))+v(453)*((-2d0)*v(408)*v(452)*v& &(4811)+v(446)*(v(6249)+v(6252))) v(5144)=-(v(5108)*v(6113))-v(5126)*v(6117)-v(5117)*v(6119)+v(5072)*v(6157)+v(5090)*v(6158)+v(5081)*v(6159)+v(408)*v(452& &)*(v(6253)+v(6255))+v(455)*(v(4819)*v(6222)+v(448)*(-(v(4810)*v(6058))+v(6253)+v(6258)))+v(453)*((-2d0)*v(408)*v(452)*v& &(4810)+v(446)*(v(6255)+v(6258))) v(5143)=-(v(5107)*v(6113))-v(5125)*v(6117)-v(5116)*v(6119)+v(5071)*v(6157)+v(5089)*v(6158)+v(5080)*v(6159)+v(408)*v(452& &)*(v(6259)+v(6261))+v(455)*(v(4818)*v(6222)+v(448)*(-(v(4809)*v(6058))+v(6259)+v(6264)))+v(453)*((-2d0)*v(408)*v(452)*v& &(4809)+v(446)*(v(6261)+v(6264))) v(5142)=-(v(448)*v(4753)*v(6158))+v(454)*(v(446)*v(453)*v(4844)+v(408)*(-v(5115)-v(5124))-v(4608)*v(6157)+v(452)*(v(453& &)*v(4817)+v(446)*v(4853)+v(6210)))+v(450)*(v(408)*v(452)*v(4817)+v(453)*(-v(5124)-v(5133))-v(4853)*v(6159)+v(446)*v& &(6265))+v(426)*(v(448)*(-v(5115)-v(5133))-v(4826)*v(6158)+v(4916)*v(6276))+v(455)*(v(446)*(v(6266)-v(6267)-v(6268))+v& &(452)*(v(6269)-v(6270)-v(6271))+v(4817)*v(6284)+v(4844)*v(6285))+v(4835)*v(6286)+v(4880)*v(6287) v(5141)=-(v(448)*v(4752)*v(6158))+v(454)*(v(446)*v(453)*v(4843)+v(408)*(-v(5114)-v(5123))-v(4607)*v(6157)+v(452)*(v(453& &)*v(4816)+v(446)*v(4852)+v(6217)))+v(426)*(v(448)*(-v(5114)-v(5132))-v(4825)*v(6158)+v(4915)*v(6276))+v(450)*(v(408)*v& &(452)*v(4816)+v(453)*(-v(5123)-v(5132))-v(4852)*v(6159)+v(446)*v(6277))+v(455)*(v(446)*(v(6278)-v(6279)-v(6280))+v(452& &)*(v(6281)-v(6282)-v(6283))+v(4816)*v(6284)+v(4843)*v(6285))+v(4834)*v(6286)+v(4879)*v(6287) v(5140)=-(v(448)*v(4751)*v(6158))+v(454)*(v(446)*v(453)*v(4842)+v(408)*(-v(5113)-v(5122))-v(4606)*v(6157)+v(452)*(v(453& &)*v(4815)+v(446)*v(4851)+v(6224)))+v(426)*(v(448)*(-v(5113)-v(5131))-v(4824)*v(6158)+v(4914)*v(6276))+v(4833)*v(6286)+v& &(4878)*v(6287)+v(450)*(v(408)*v(452)*v(4815)+v(453)*(-v(5122)-v(5131))-v(4851)*v(6159)+v(446)*v(6288))+v(455)*(v(4815& &)*v(6284)+v(4842)*v(6285)+v(446)*(v(6289)-v(6290)-v(6291))+v(452)*(v(6292)-v(6293)-v(6294))) v(5139)=-(v(448)*v(4750)*v(6158))+v(454)*(v(446)*v(453)*v(4841)+v(408)*(-v(5112)-v(5121))-v(4605)*v(6157)+v(452)*(v(453& &)*v(4814)+v(446)*v(4850)+v(6230)))+v(426)*(v(448)*(-v(5112)-v(5130))-v(4823)*v(6158)+v(4913)*v(6276))+v(4832)*v(6286)+v& &(4877)*v(6287)+v(450)*(v(408)*v(452)*v(4814)+v(453)*(-v(5121)-v(5130))-v(4850)*v(6159)+v(446)*v(6295))+v(455)*(v(4814& &)*v(6284)+v(4841)*v(6285)+v(446)*(v(6296)-v(6297)-v(6298))+v(452)*(v(6299)-v(6300)-v(6301))) v(5138)=-(v(448)*v(4749)*v(6158))+v(454)*(v(446)*v(453)*v(4840)+v(408)*(-v(5111)-v(5120))-v(4604)*v(6157)+v(452)*(v(453& &)*v(4813)+v(446)*v(4849)+v(6236)))+v(426)*(v(448)*(-v(5111)-v(5129))-v(4822)*v(6158)+v(4912)*v(6276))+v(4831)*v(6286)+v& &(4876)*v(6287)+v(450)*(v(408)*v(452)*v(4813)+v(453)*(-v(5120)-v(5129))-v(4849)*v(6159)+v(446)*v(6302))+v(455)*(v(4813& &)*v(6284)+v(4840)*v(6285)+v(446)*(v(6303)-v(6304)-v(6305))+v(452)*(v(6306)-v(6307)-v(6308))) v(5137)=-(v(448)*v(4748)*v(6158))+v(454)*(v(446)*v(453)*v(4839)+v(408)*(-v(5110)-v(5119))-v(4603)*v(6157)+v(452)*(v(453& &)*v(4812)+v(446)*v(4848)+v(6242)))+v(426)*(v(448)*(-v(5110)-v(5128))-v(4821)*v(6158)+v(4911)*v(6276))+v(4830)*v(6286)+v& &(4875)*v(6287)+v(450)*(v(408)*v(452)*v(4812)+v(453)*(-v(5119)-v(5128))-v(4848)*v(6159)+v(446)*v(6309))+v(455)*(v(4812& &)*v(6284)+v(4839)*v(6285)+v(446)*(v(6310)-v(6311)-v(6312))+v(452)*(v(6313)-v(6314)-v(6315))) v(5136)=-(v(448)*v(4747)*v(6158))+v(454)*(v(446)*v(453)*v(4838)+v(408)*(-v(5109)-v(5118))-v(4602)*v(6157)+v(452)*(v(453& &)*v(4811)+v(446)*v(4847)+v(6248)))+v(426)*(v(448)*(-v(5109)-v(5127))-v(4820)*v(6158)+v(4910)*v(6276))+v(4829)*v(6286)+v& &(4874)*v(6287)+v(450)*(v(408)*v(452)*v(4811)+v(453)*(-v(5118)-v(5127))-v(4847)*v(6159)+v(446)*v(6316))+v(455)*(v(4811& &)*v(6284)+v(4838)*v(6285)+v(446)*(v(6317)-v(6318)-v(6319))+v(452)*(v(6320)-v(6321)-v(6322))) v(5135)=-(v(448)*v(4746)*v(6158))+v(454)*(v(446)*v(453)*v(4837)+v(408)*(-v(5108)-v(5117))-v(4601)*v(6157)+v(452)*(v(453& &)*v(4810)+v(446)*v(4846)+v(6254)))+v(426)*(v(448)*(-v(5108)-v(5126))-v(4819)*v(6158)+v(4909)*v(6276))+v(4828)*v(6286)+v& &(4873)*v(6287)+v(450)*(v(408)*v(452)*v(4810)+v(453)*(-v(5117)-v(5126))-v(4846)*v(6159)+v(446)*v(6323))+v(455)*(v(4810& &)*v(6284)+v(4837)*v(6285)+v(446)*(v(6324)-v(6325)-v(6326))+v(452)*(v(6327)-v(6328)-v(6329))) v(5134)=-(v(448)*v(4745)*v(6158))+v(454)*(v(446)*v(453)*v(4836)+v(408)*(-v(5107)-v(5116))-v(4600)*v(6157)+v(452)*(v(453& &)*v(4809)+v(446)*v(4845)+v(6260)))+v(426)*(v(448)*(-v(5107)-v(5125))-v(4818)*v(6158)+v(4908)*v(6276))+v(4827)*v(6286)+v& &(4872)*v(6287)+v(450)*(v(408)*v(452)*v(4809)+v(453)*(-v(5116)-v(5125))-v(4845)*v(6159)+v(446)*v(6330))+v(455)*(v(4809& &)*v(6284)+v(4836)*v(6285)+v(446)*(v(6331)-v(6332)-v(6333))+v(452)*(v(6334)-v(6335)-v(6336))) v(532)=-(v(426)*v(448)*v(6158))+v(455)*(v(446)*v(6284)+v(452)*v(6285))+v(450)*v(6286)+v(454)*v(6287) v(533)=(-2d0)*v(408)*v(446)*v(452)*v(453)-v(529)*v(6113)-v(531)*v(6117)-v(530)*v(6119)+v(448)*v(455)*v(6222) v(5165)=v(528)*v(532)-v(524)*v(533) v(534)=(-2d0)*v(446)*v(450)*v(452)*v(454)-v(531)*v(6074)-v(529)*v(6077)-v(530)*v(6080)+v(426)*v(455)*v(6166) v(5166)=-(v(524)*v(532))+v(528)*v(534) v(5164)=-(v(532)*v(532))+v(533)*v(534) v(5162)=v(5164)*v(5167)+v(5165)*v(524)-v(5166)*v(528) v(5170)=((-6d0)*v(5162))/v(520)**7 v(5161)=v(5162)*v(5163) v(5169)=1d0/v(5161)**0.13333333333333333d1 v(6342)=-v(5169)/3d0 v(5178)=(v(4961)*v(5170)+v(5163)*(v(5070)*v(5165)-v(5106)*v(5166)+v(524)*(-(v(5151)*v(524))+v(5142)*v(528)+v(5106)*v& &(532)-v(5070)*v(533))-v(528)*(-(v(5142)*v(524))+v(5160)*v(528)-v(5070)*v(532)+v(5106)*v(534))+v(5167)*((-2d0)*v(5142)*v& &(532)+v(5160)*v(533)+v(5151)*v(534))+v(5164)*(-(v(5079)*v(6074))-v(5088)*v(6077)-v(5097)*v(6080)-v(5052)*v(6113)-v(5061& &)*v(6117)-v(5043)*v(6119)+v(426)*v(448)*(v(6337)+v(6338))+v(453)*((-2d0)*v(426)*v(448)*v(4835)+v(450)*(v(6338)+v(6340))& &)+v(454)*(v(408)*(-(v(4835)*v(6058))+v(6337)+v(6340))+v(4608)*v(6341)))))*v(6342) v(5177)=v(6342)*(v(4960)*v(5170)+v(5163)*(v(5069)*v(5165)-v(5105)*v(5166)+v(524)*(-(v(5150)*v(524))+v(5141)*v(528)+v& &(5105)*v(532)-v(5069)*v(533))-v(528)*(-(v(5141)*v(524))+v(5159)*v(528)-v(5069)*v(532)+v(5105)*v(534))+v(5167)*((-2d0)*v& &(5141)*v(532)+v(5159)*v(533)+v(5150)*v(534))+v(5164)*(-(v(5078)*v(6074))-v(5087)*v(6077)-v(5096)*v(6080)-v(5051)*v(6113& &)-v(5060)*v(6117)-v(5042)*v(6119)+v(426)*v(448)*(v(6343)+v(6344))+v(454)*(v(4607)*v(6341)+v(408)*(-(v(4834)*v(6058))+v& &(6343)+v(6346)))+v(453)*((-2d0)*v(426)*v(448)*v(4834)+v(450)*(v(6344)+v(6346)))))) v(5176)=v(6342)*(v(4959)*v(5170)+v(5163)*(v(5068)*v(5165)-v(5104)*v(5166)+v(524)*(-(v(5149)*v(524))+v(5140)*v(528)+v& &(5104)*v(532)-v(5068)*v(533))-v(528)*(-(v(5140)*v(524))+v(5158)*v(528)-v(5068)*v(532)+v(5104)*v(534))+v(5167)*((-2d0)*v& &(5140)*v(532)+v(5158)*v(533)+v(5149)*v(534))+v(5164)*(-(v(5077)*v(6074))-v(5086)*v(6077)-v(5095)*v(6080)-v(5050)*v(6113& &)-v(5059)*v(6117)-v(5041)*v(6119)+v(426)*v(448)*(v(6347)+v(6348))+v(454)*(v(4606)*v(6341)+v(408)*(-(v(4833)*v(6058))+v& &(6347)+v(6350)))+v(453)*((-2d0)*v(426)*v(448)*v(4833)+v(450)*(v(6348)+v(6350)))))) v(5175)=v(6342)*(v(4958)*v(5170)+v(5163)*(v(5067)*v(5165)-v(5103)*v(5166)+v(524)*(-(v(5148)*v(524))+v(5139)*v(528)+v& &(5103)*v(532)-v(5067)*v(533))-v(528)*(-(v(5139)*v(524))+v(5157)*v(528)-v(5067)*v(532)+v(5103)*v(534))+v(5167)*((-2d0)*v& &(5139)*v(532)+v(5157)*v(533)+v(5148)*v(534))+v(5164)*(-(v(5076)*v(6074))-v(5085)*v(6077)-v(5094)*v(6080)-v(5049)*v(6113& &)-v(5058)*v(6117)-v(5040)*v(6119)+v(426)*v(448)*(v(6351)+v(6352))+v(454)*(v(4605)*v(6341)+v(408)*(-(v(4832)*v(6058))+v& &(6351)+v(6354)))+v(453)*((-2d0)*v(426)*v(448)*v(4832)+v(450)*(v(6352)+v(6354)))))) v(5174)=v(6342)*(v(4957)*v(5170)+v(5163)*(v(5066)*v(5165)-v(5102)*v(5166)+v(524)*(-(v(5147)*v(524))+v(5138)*v(528)+v& &(5102)*v(532)-v(5066)*v(533))-v(528)*(-(v(5138)*v(524))+v(5156)*v(528)-v(5066)*v(532)+v(5102)*v(534))+v(5167)*((-2d0)*v& &(5138)*v(532)+v(5156)*v(533)+v(5147)*v(534))+v(5164)*(-(v(5075)*v(6074))-v(5084)*v(6077)-v(5093)*v(6080)-v(5048)*v(6113& &)-v(5057)*v(6117)-v(5039)*v(6119)+v(426)*v(448)*(v(6355)+v(6356))+v(454)*(v(4604)*v(6341)+v(408)*(-(v(4831)*v(6058))+v& &(6355)+v(6358)))+v(453)*((-2d0)*v(426)*v(448)*v(4831)+v(450)*(v(6356)+v(6358)))))) v(5173)=v(6342)*(v(4956)*v(5170)+v(5163)*(v(5065)*v(5165)-v(5101)*v(5166)+v(524)*(-(v(5146)*v(524))+v(5137)*v(528)+v& &(5101)*v(532)-v(5065)*v(533))-v(528)*(-(v(5137)*v(524))+v(5155)*v(528)-v(5065)*v(532)+v(5101)*v(534))+v(5167)*((-2d0)*v& &(5137)*v(532)+v(5155)*v(533)+v(5146)*v(534))+v(5164)*(-(v(5074)*v(6074))-v(5083)*v(6077)-v(5092)*v(6080)-v(5047)*v(6113& &)-v(5056)*v(6117)-v(5038)*v(6119)+v(426)*v(448)*(v(6359)+v(6360))+v(454)*(v(4603)*v(6341)+v(408)*(-(v(4830)*v(6058))+v& &(6359)+v(6362)))+v(453)*((-2d0)*v(426)*v(448)*v(4830)+v(450)*(v(6360)+v(6362)))))) v(5172)=v(6342)*(v(4955)*v(5170)+v(5163)*(v(5064)*v(5165)-v(5100)*v(5166)+v(524)*(-(v(5145)*v(524))+v(5136)*v(528)+v& &(5100)*v(532)-v(5064)*v(533))-v(528)*(-(v(5136)*v(524))+v(5154)*v(528)-v(5064)*v(532)+v(5100)*v(534))+v(5167)*((-2d0)*v& &(5136)*v(532)+v(5154)*v(533)+v(5145)*v(534))+v(5164)*(-(v(5073)*v(6074))-v(5082)*v(6077)-v(5091)*v(6080)-v(5046)*v(6113& &)-v(5055)*v(6117)-v(5037)*v(6119)+v(426)*v(448)*(v(6363)+v(6364))+v(454)*(v(4602)*v(6341)+v(408)*(-(v(4829)*v(6058))+v& &(6363)+v(6366)))+v(453)*((-2d0)*v(426)*v(448)*v(4829)+v(450)*(v(6364)+v(6366)))))) v(5171)=v(6342)*(v(4954)*v(5170)+v(5163)*(v(5063)*v(5165)-v(5099)*v(5166)+v(524)*(-(v(5144)*v(524))+v(5135)*v(528)+v& &(5099)*v(532)-v(5063)*v(533))-v(528)*(-(v(5135)*v(524))+v(5153)*v(528)-v(5063)*v(532)+v(5099)*v(534))+v(5167)*((-2d0)*v& &(5135)*v(532)+v(5153)*v(533)+v(5144)*v(534))+v(5164)*(-(v(5072)*v(6074))-v(5081)*v(6077)-v(5090)*v(6080)-v(5045)*v(6113& &)-v(5054)*v(6117)-v(5036)*v(6119)+v(426)*v(448)*(v(6367)+v(6368))+v(454)*(v(4601)*v(6341)+v(408)*(-(v(4828)*v(6058))+v& &(6367)+v(6370)))+v(453)*((-2d0)*v(426)*v(448)*v(4828)+v(450)*(v(6368)+v(6370)))))) v(5168)=v(6342)*(v(4953)*v(5170)+v(5163)*(v(5062)*v(5165)-v(5098)*v(5166)+v(524)*(-(v(5143)*v(524))+v(5134)*v(528)+v& &(5098)*v(532)-v(5062)*v(533))-v(528)*(-(v(5134)*v(524))+v(5152)*v(528)-v(5062)*v(532)+v(5098)*v(534))+v(5167)*((-2d0)*v& &(5134)*v(532)+v(5152)*v(533)+v(5143)*v(534))+v(5164)*(-(v(5071)*v(6074))-v(5080)*v(6077)-v(5089)*v(6080)-v(5044)*v(6113& &)-v(5053)*v(6117)-v(5035)*v(6119)+v(426)*v(448)*(v(6371)+v(6372))+v(454)*(v(4600)*v(6341)+v(408)*(-(v(4827)*v(6058))+v& &(6371)+v(6374)))+v(453)*((-2d0)*v(426)*v(448)*v(4827)+v(450)*(v(6372)+v(6374)))))) v(539)=1d0/v(5161)**0.3333333333333333d0 v(6390)=-(mpar(9)*v(539)) v(5292)=v(4208)+mpar(9)*(-(v(5178)*v(5274))-v(539)*(v(519)*(v(4898)*v(546)+v(4889)*v(548)+v(4862)*v(549)+v(4934)*v(552)& &+v(4907)*v(553)+v(4943)*v(554))+v(4971)*v(6375))) v(6397)=2d0*v(5292) v(5290)=v(4207)+mpar(9)*(-(v(5177)*v(5274))-v(539)*(v(519)*(v(4897)*v(546)+v(4888)*v(548)+v(4861)*v(549)+v(4933)*v(552)& &+v(4906)*v(553)+v(4942)*v(554))+v(4970)*v(6375))) v(6401)=2d0*v(5290) v(5288)=v(4206)+mpar(9)*(-(v(5176)*v(5274))-v(539)*(v(519)*(v(4896)*v(546)+v(4887)*v(548)+v(4860)*v(549)+v(4932)*v(552)& &+v(4905)*v(553)+v(4941)*v(554))+v(4969)*v(6375))) v(6404)=2d0*v(5288) v(5286)=v(4205)+mpar(9)*(-(v(5175)*v(5274))-v(539)*(v(519)*(v(4895)*v(546)+v(4886)*v(548)+v(4859)*v(549)+v(4931)*v(552)& &+v(4904)*v(553)+v(4940)*v(554))+v(4968)*v(6375))) v(6407)=2d0*v(5286) v(5284)=v(4204)+mpar(9)*(-(v(5174)*v(5274))-v(539)*(v(519)*(v(4894)*v(546)+v(4885)*v(548)+v(4858)*v(549)+v(4930)*v(552)& &+v(4903)*v(553)+v(4939)*v(554))+v(4967)*v(6375))) v(6410)=2d0*v(5284) v(5282)=v(4203)+mpar(9)*(-(v(5173)*v(5274))-v(539)*(v(519)*(v(4893)*v(546)+v(4884)*v(548)+v(4857)*v(549)+v(4929)*v(552)& &+v(4902)*v(553)+v(4938)*v(554))+v(4966)*v(6375))) v(6413)=2d0*v(5282) v(5280)=v(4202)+mpar(9)*(-(v(5172)*v(5274))-v(539)*(v(519)*(v(4892)*v(546)+v(4883)*v(548)+v(4856)*v(549)+v(4928)*v(552)& &+v(4901)*v(553)+v(4937)*v(554))+v(4965)*v(6375))) v(6416)=2d0*v(5280) v(5278)=v(4201)+mpar(9)*(-(v(5171)*v(5274))-v(539)*(v(519)*(v(4891)*v(546)+v(4882)*v(548)+v(4855)*v(549)+v(4927)*v(552)& &+v(4900)*v(553)+v(4936)*v(554))+v(4964)*v(6375))) v(6419)=2d0*v(5278) v(5276)=v(4200)+mpar(9)*(-(v(5168)*v(5274))-v(539)*(v(519)*(v(4890)*v(546)+v(4881)*v(548)+v(4854)*v(549)+v(4926)*v(552)& &+v(4899)*v(553)+v(4935)*v(554))+v(4962)*v(6375))) v(6422)=2d0*v(5276) v(5273)=v(4199)+mpar(9)*(-(v(5178)*v(5255))-v(539)*(v(519)*(v(4898)*v(545)+v(4889)*v(547)+v(4862)*v(550)+v(4925)*v(552)& &+v(4871)*v(553)+v(4952)*v(554))+v(4971)*v(6376))) v(6396)=2d0*v(5273) v(5271)=v(4198)+mpar(9)*(-(v(5177)*v(5255))-v(539)*(v(519)*(v(4897)*v(545)+v(4888)*v(547)+v(4861)*v(550)+v(4924)*v(552)& &+v(4870)*v(553)+v(4951)*v(554))+v(4970)*v(6376))) v(6400)=2d0*v(5271) v(5269)=v(4197)+mpar(9)*(-(v(5176)*v(5255))-v(539)*(v(519)*(v(4896)*v(545)+v(4887)*v(547)+v(4860)*v(550)+v(4923)*v(552)& &+v(4869)*v(553)+v(4950)*v(554))+v(4969)*v(6376))) v(6403)=2d0*v(5269) v(5267)=v(4196)+mpar(9)*(-(v(5175)*v(5255))-v(539)*(v(519)*(v(4895)*v(545)+v(4886)*v(547)+v(4859)*v(550)+v(4922)*v(552)& &+v(4868)*v(553)+v(4949)*v(554))+v(4968)*v(6376))) v(6406)=2d0*v(5267) v(5265)=v(4195)+mpar(9)*(-(v(5174)*v(5255))-v(539)*(v(519)*(v(4894)*v(545)+v(4885)*v(547)+v(4858)*v(550)+v(4921)*v(552)& &+v(4867)*v(553)+v(4948)*v(554))+v(4967)*v(6376))) v(6409)=2d0*v(5265) v(5263)=v(4194)+mpar(9)*(-(v(5173)*v(5255))-v(539)*(v(519)*(v(4893)*v(545)+v(4884)*v(547)+v(4857)*v(550)+v(4920)*v(552)& &+v(4866)*v(553)+v(4947)*v(554))+v(4966)*v(6376))) v(6412)=2d0*v(5263) v(5261)=v(4193)+mpar(9)*(-(v(5172)*v(5255))-v(539)*(v(519)*(v(4892)*v(545)+v(4883)*v(547)+v(4856)*v(550)+v(4919)*v(552)& &+v(4865)*v(553)+v(4946)*v(554))+v(4965)*v(6376))) v(6415)=2d0*v(5261) v(5259)=v(4192)+mpar(9)*(-(v(5171)*v(5255))-v(539)*(v(519)*(v(4891)*v(545)+v(4882)*v(547)+v(4855)*v(550)+v(4918)*v(552)& &+v(4864)*v(553)+v(4945)*v(554))+v(4964)*v(6376))) v(6418)=2d0*v(5259) v(5257)=v(4191)+mpar(9)*(-(v(5168)*v(5255))-v(539)*(v(519)*(v(4890)*v(545)+v(4881)*v(547)+v(4854)*v(550)+v(4917)*v(552)& &+v(4863)*v(553)+v(4944)*v(554))+v(4962)*v(6376))) v(6421)=2d0*v(5257) v(5254)=v(4190)+mpar(9)*(-(v(5178)*v(5236))-v(539)*(v(519)*(v(4907)*v(545)+v(4871)*v(546)+v(4943)*v(547)+v(4952)*v(548)& &+v(4925)*v(549)+v(4934)*v(550))+v(4971)*v(6377))) v(6395)=2d0*v(5254) v(5252)=v(4189)+mpar(9)*(-(v(5177)*v(5236))-v(539)*(v(519)*(v(4906)*v(545)+v(4870)*v(546)+v(4942)*v(547)+v(4951)*v(548)& &+v(4924)*v(549)+v(4933)*v(550))+v(4970)*v(6377))) v(6399)=2d0*v(5252) v(5250)=v(4188)+mpar(9)*(-(v(5176)*v(5236))-v(539)*(v(519)*(v(4905)*v(545)+v(4869)*v(546)+v(4941)*v(547)+v(4950)*v(548)& &+v(4923)*v(549)+v(4932)*v(550))+v(4969)*v(6377))) v(6402)=2d0*v(5250) v(5248)=v(4187)+mpar(9)*(-(v(5175)*v(5236))-v(539)*(v(519)*(v(4904)*v(545)+v(4868)*v(546)+v(4940)*v(547)+v(4949)*v(548)& &+v(4922)*v(549)+v(4931)*v(550))+v(4968)*v(6377))) v(6405)=2d0*v(5248) v(5246)=v(4186)+mpar(9)*(-(v(5174)*v(5236))-v(539)*(v(519)*(v(4903)*v(545)+v(4867)*v(546)+v(4939)*v(547)+v(4948)*v(548)& &+v(4921)*v(549)+v(4930)*v(550))+v(4967)*v(6377))) v(6408)=2d0*v(5246) v(5244)=v(4185)+mpar(9)*(-(v(5173)*v(5236))-v(539)*(v(519)*(v(4902)*v(545)+v(4866)*v(546)+v(4938)*v(547)+v(4947)*v(548)& &+v(4920)*v(549)+v(4929)*v(550))+v(4966)*v(6377))) v(6411)=2d0*v(5244) v(5242)=v(4184)+mpar(9)*(-(v(5172)*v(5236))-v(539)*(v(519)*(v(4901)*v(545)+v(4865)*v(546)+v(4937)*v(547)+v(4946)*v(548)& &+v(4919)*v(549)+v(4928)*v(550))+v(4965)*v(6377))) v(6414)=2d0*v(5242) v(5240)=v(4183)+mpar(9)*(-(v(5171)*v(5236))-v(539)*(v(519)*(v(4900)*v(545)+v(4864)*v(546)+v(4936)*v(547)+v(4945)*v(548)& &+v(4918)*v(549)+v(4927)*v(550))+v(4964)*v(6377))) v(6417)=2d0*v(5240) v(5238)=v(4182)+mpar(9)*(-(v(5168)*v(5236))-v(539)*(v(519)*(v(4899)*v(545)+v(4863)*v(546)+v(4935)*v(547)+v(4944)*v(548)& &+v(4917)*v(549)+v(4926)*v(550))+v(4962)*v(6377))) v(6420)=2d0*v(5238) v(5235)=mpar(9)*(-(v(5178)*v(5217))-((-2d0/3d0)*v(4983)+v(5004)+v(5025))*v(539))+v(5999) v(5233)=mpar(9)*(-(v(5177)*v(5217))-((-2d0/3d0)*v(4982)+v(5003)+v(5024))*v(539))+v(6002) v(5231)=mpar(9)*(-(v(5176)*v(5217))-((-2d0/3d0)*v(4981)+v(5002)+v(5023))*v(539))+v(6005) v(5229)=mpar(9)*(-(v(5175)*v(5217))-((-2d0/3d0)*v(4980)+v(5001)+v(5022))*v(539))+v(6008) v(5227)=mpar(9)*(-(v(5174)*v(5217))-((-2d0/3d0)*v(4979)+v(5000)+v(5021))*v(539))+v(6011) v(5225)=mpar(9)*(-(v(5173)*v(5217))-((-2d0/3d0)*v(4978)+v(4999)+v(5020))*v(539))+v(6014) v(5223)=mpar(9)*(-(v(5172)*v(5217))-((-2d0/3d0)*v(4977)+v(4998)+v(5019))*v(539))+v(6017) v(5221)=mpar(9)*(-(v(5171)*v(5217))-((-2d0/3d0)*v(4976)+v(4997)+v(5018))*v(539))+v(6020) v(5219)=mpar(9)*(-(v(5168)*v(5217))-((-2d0/3d0)*v(4975)+v(4996)+v(5017))*v(539))+v(6023) v(5216)=mpar(9)*(-(v(5178)*v(5198))-(v(5004)+(-2d0/3d0)*v(5016)+v(5034))*v(539))+v(6000) v(5214)=mpar(9)*(-(v(5177)*v(5198))-(v(5003)+(-2d0/3d0)*v(5015)+v(5033))*v(539))+v(6003) v(5212)=mpar(9)*(-(v(5176)*v(5198))-(v(5002)+(-2d0/3d0)*v(5014)+v(5032))*v(539))+v(6006) v(5210)=mpar(9)*(-(v(5175)*v(5198))-(v(5001)+(-2d0/3d0)*v(5013)+v(5031))*v(539))+v(6009) v(5208)=mpar(9)*(-(v(5174)*v(5198))-(v(5000)+(-2d0/3d0)*v(5012)+v(5030))*v(539))+v(6012) v(5206)=mpar(9)*(-(v(5173)*v(5198))-(v(4999)+(-2d0/3d0)*v(5011)+v(5029))*v(539))+v(6015) v(5204)=mpar(9)*(-(v(5172)*v(5198))-(v(4998)+(-2d0/3d0)*v(5010)+v(5028))*v(539))+v(6018) v(5202)=mpar(9)*(-(v(5171)*v(5198))-(v(4997)+(-2d0/3d0)*v(5009)+v(5027))*v(539))+v(6021) v(5200)=mpar(9)*(-(v(5168)*v(5198))-(v(4996)+(-2d0/3d0)*v(5008)+v(5026))*v(539))+v(6024) v(5197)=mpar(9)*(-(v(5178)*v(5179))-((2d0/3d0)*v(4995)+v(5025)+v(5034))*v(539))+v(5998) v(5195)=mpar(9)*(-(v(5177)*v(5179))-((2d0/3d0)*v(4994)+v(5024)+v(5033))*v(539))+v(6001) v(5193)=mpar(9)*(-(v(5176)*v(5179))-((2d0/3d0)*v(4993)+v(5023)+v(5032))*v(539))+v(6004) v(5191)=mpar(9)*(-(v(5175)*v(5179))-((2d0/3d0)*v(4992)+v(5022)+v(5031))*v(539))+v(6007) v(5189)=mpar(9)*(-(v(5174)*v(5179))-((2d0/3d0)*v(4991)+v(5021)+v(5030))*v(539))+v(6010) v(5187)=mpar(9)*(-(v(5173)*v(5179))-((2d0/3d0)*v(4990)+v(5020)+v(5029))*v(539))+v(6013) v(5185)=mpar(9)*(-(v(5172)*v(5179))-((2d0/3d0)*v(4989)+v(5019)+v(5028))*v(539))+v(6016) v(5183)=mpar(9)*(-(v(5171)*v(5179))-((2d0/3d0)*v(4988)+v(5018)+v(5027))*v(539))+v(6019) v(5181)=mpar(9)*(-(v(5168)*v(5179))-((2d0/3d0)*v(4987)+v(5017)+v(5026))*v(539))+v(6022) v(557)=1d0/(v(518)*v(575)+v(509)*v(576)+v(515)*v(577))**2 v(564)=-(v(557)*((v(575)*v(575))+(v(576)*v(576))+(v(577)*v(577)))) v(562)=1d0/v(557)**0.3333333333333333d0 v(6389)=-(mpar(11)*v(562)) v(6391)=v(557)*v(6389) v(561)=v(557)*((v(569)*v(569))+(v(570)*v(570))+(v(573)*v(573))) v(566)=-v(561)/3d0 v(560)=-(v(557)*((v(568)*v(568))+(v(571)*v(571))+(v(572)*v(572)))) v(565)=v(560)/3d0 v(559)=v(564)/3d0 v(580)=-v(117)+v(6378) v(6382)=v(5541)*v(580) v(581)=-v(119)+v(6379)*x(13) v(6385)=v(5541)*v(581) v(582)=-v(120)+v(5551)*v(6379) v(6388)=v(5541)*v(582) v(583)=-v(121)+v(6379)*x(14) v(6381)=v(5541)*v(583) v(603)=v(232)*(v(583)*v(583)) v(584)=-v(122)+v(6379)*x(16) v(6384)=v(5541)*v(584) v(620)=v(232)*(v(584)*v(584)) v(585)=-v(123)+v(6379)*x(15) v(6380)=v(5541)*v(585) v(621)=v(232)*(v(585)*v(585)) v(608)=v(232)*(-(v(580)*v(584))+v(583)*v(585)) v(624)=v(608)*v(6384) v(589)=v(232)*(-(v(582)*v(583))+v(584)*v(585)) v(605)=v(589)*v(6381) v(588)=v(232)*(v(583)*v(584)-v(581)*v(585)) v(623)=v(588)*v(6380) v(586)=v(232)*(v(580)*v(580))+v(603)+v(621) v(592)=v(5541)*(v(585)*v(586)+v(582)*v(588)+v(584)*v(589)) v(627)=v(592)*v(6380) v(591)=v(5541)*(v(583)*v(586)+v(584)*v(588)+v(581)*v(589)) v(607)=v(591)*v(6381) v(587)=v(605)+v(623)+v(586)*v(6382) v(595)=v(5541)*(v(583)*v(587)+v(581)*v(591)+v(584)*v(592)) v(611)=v(595)*v(6381) v(594)=v(5541)*(v(585)*v(587)+v(584)*v(591)+v(582)*v(592)) v(629)=v(594)*v(6380) v(590)=v(607)+v(627)+v(587)*v(6382) v(598)=v(5541)*(v(585)*v(590)+v(582)*v(594)+v(584)*v(595)) v(633)=v(598)*v(6380) v(597)=v(5541)*(v(583)*v(590)+v(584)*v(594)+v(581)*v(595)) v(613)=v(597)*v(6381) v(593)=v(611)+v(629)+v(590)*v(6382) v(596)=v(613)+v(633)+v(593)*v(6382) v(6383)=5040d0+v(596) v(599)=v(5541)*(v(585)*v(593)+v(584)*v(597)+v(582)*v(598)) v(635)=v(599)*v(6380) v(600)=v(5541)*(v(583)*v(593)+v(581)*v(597)+v(584)*v(598)) v(638)=(7d0*(360d0*v(588)+120d0*v(592)+30d0*v(594)+6d0*v(598)+v(599))+v(5541)*(v(582)*v(599)+v(584)*v(600)+v(585)*v& &(6383)))/5040d0 v(618)=v(600)*v(6381) v(6386)=5040d0+v(618) v(640)=(2520d0*v(586)+840d0*v(587)+210d0*v(590)+42d0*v(593)+7d0*v(596)+v(635)+v(6382)*v(6383)+v(6386))/5040d0 v(602)=(7d0*(360d0*v(589)+120d0*v(591)+30d0*v(595)+6d0*v(597)+v(600))+v(5541)*(v(584)*v(599)+v(581)*v(600)+v(583)*v& &(6383)))/5040d0 v(604)=v(232)*(v(581)*v(581))+v(603)+v(620) v(610)=v(5541)*(v(585)*v(589)+v(584)*v(604)+v(582)*v(608)) v(626)=v(610)*v(6384) v(606)=v(605)+v(624)+v(604)*v(6385) v(614)=v(5541)*(v(585)*v(591)+v(584)*v(606)+v(582)*v(610)) v(630)=v(614)*v(6384) v(609)=v(607)+v(626)+v(606)*v(6385) v(616)=v(5541)*(v(585)*v(595)+v(584)*v(609)+v(582)*v(614)) v(632)=v(616)*v(6384) v(612)=v(611)+v(630)+v(609)*v(6385) v(615)=v(613)+v(632)+v(612)*v(6385) v(6387)=5040d0+v(615) v(617)=v(5541)*(v(585)*v(597)+v(584)*v(612)+v(582)*v(616)) v(637)=(7d0*(360d0*v(608)+120d0*v(610)+30d0*v(614)+6d0*v(616)+v(617))+v(5541)*(v(585)*v(600)+v(582)*v(617)+v(584)*v& &(6387)))/5040d0 v(636)=v(617)*v(6384) v(642)=(2520d0*v(604)+840d0*v(606)+210d0*v(609)+42d0*v(612)+7d0*v(615)+v(636)+v(6386)+v(6385)*v(6387))/5040d0 v(622)=v(232)*(v(582)*v(582))+v(620)+v(621) v(625)=v(623)+v(624)+v(622)*v(6388) v(628)=v(626)+v(627)+v(625)*v(6388) v(631)=v(629)+v(630)+v(628)*v(6388) v(634)=v(632)+v(633)+v(631)*v(6388) v(644)=(5040d0+2520d0*v(622)+840d0*v(625)+210d0*v(628)+42d0*v(631)+7d0*v(634)+v(635)+v(636)+(5040d0+v(634))*v(6388))& &/5040d0 v(650)=(2d0/3d0)*v(352)+(v(559)+(2d0/3d0)*v(561)+v(565))*v(6389)+v(5179)*v(6390)+v(651)+v(653) v(652)=(2d0/3d0)*v(342)+(v(559)+(-2d0/3d0)*v(560)+v(566))*v(6389)+v(5198)*v(6390)+v(651)+v(654) v(655)=(2d0/3d0)*v(347)+((-2d0/3d0)*v(564)+v(565)+v(566))*v(6389)+v(5217)*v(6390)+v(653)+v(654) v(656)=v(354)+v(5236)*v(6390)+(v(568)*v(569)+v(570)*v(571)+v(572)*v(573))*v(6391) v(6394)=2d0*v(656) v(657)=v(355)+v(5255)*v(6390)+(v(568)*v(575)+v(572)*v(576)+v(571)*v(577))*v(6391) v(6393)=2d0*v(657) v(658)=v(356)+v(5274)*v(6390)+(v(569)*v(575)+v(573)*v(576)+v(570)*v(577))*v(6391) v(6392)=2d0*v(658) v(5299)=v(214)*v(6392)+v(169)*v(650)+v(183)*v(652)+v(191)*v(655)+v(2353)*v(656)+v(2357)*v(657) v(5298)=v(207)*v(6392)+v(205)*v(6393)+v(168)*v(650)+v(181)*v(652)+v(190)*v(655)+v(2356)*v(656) v(5297)=v(199)*v(6392)+v(198)*v(6393)+v(196)*v(6394)+v(167)*v(650)+v(178)*v(652)+v(187)*v(655) v(5296)=v(191)*v(6392)+v(190)*v(6393)+v(187)*v(6394)+v(166)*v(650)+v(174)*v(652)+v(186)*v(655) v(5295)=v(183)*v(6392)+v(181)*v(6393)+v(178)*v(6394)+v(161)*v(650)+v(172)*v(652)+v(174)*v(655) v(5294)=v(169)*v(6392)+v(168)*v(6393)+v(167)*v(6394)+v(156)*v(650)+v(161)*v(652)+v(166)*v(655) v(5301)=1d0/sqrt(v(5299)*v(6392)+v(5298)*v(6393)+v(5297)*v(6394)+v(5294)*v(650)+v(5295)*v(652)+v(5296)*v(655)) v(6398)=v(5301)/2d0 v(5309)=v(6398)*(v(5197)*v(5294)+v(5216)*v(5295)+v(5235)*v(5296)+v(5297)*v(6395)+v(6394)*(v(167)*v(5197)+v(178)*v(5216)& &+v(187)*v(5235)+v(2356)*v(5273)+v(2353)*v(5292)+v(196)*v(6395))+v(5298)*v(6396)+v(6393)*(v(168)*v(5197)+v(181)*v(5216)& &+v(190)*v(5235)+v(2356)*v(5254)+v(2357)*v(5292)+v(205)*v(6396))+v(5299)*v(6397)+v(6392)*(v(169)*v(5197)+v(183)*v(5216)& &+v(191)*v(5235)+v(2353)*v(5254)+v(2357)*v(5273)+v(214)*v(6397))+(v(156)*v(5197)+v(161)*v(5216)+v(166)*v(5235)+v(167)*v& &(6395)+v(168)*v(6396)+v(169)*v(6397))*v(650)+(v(161)*v(5197)+v(172)*v(5216)+v(174)*v(5235)+v(178)*v(6395)+v(181)*v(6396& &)+v(183)*v(6397))*v(652)+(v(166)*v(5197)+v(174)*v(5216)+v(186)*v(5235)+v(187)*v(6395)+v(190)*v(6396)+v(191)*v(6397))*v& &(655)) v(5308)=v(6398)*(v(5195)*v(5294)+v(5214)*v(5295)+v(5233)*v(5296)+v(5297)*v(6399)+v(6394)*(v(167)*v(5195)+v(178)*v(5214)& &+v(187)*v(5233)+v(2356)*v(5271)+v(2353)*v(5290)+v(196)*v(6399))+v(5298)*v(6400)+v(6393)*(v(168)*v(5195)+v(181)*v(5214)& &+v(190)*v(5233)+v(2356)*v(5252)+v(2357)*v(5290)+v(205)*v(6400))+v(5299)*v(6401)+v(6392)*(v(169)*v(5195)+v(183)*v(5214)& &+v(191)*v(5233)+v(2353)*v(5252)+v(2357)*v(5271)+v(214)*v(6401))+(v(156)*v(5195)+v(161)*v(5214)+v(166)*v(5233)+v(167)*v& &(6399)+v(168)*v(6400)+v(169)*v(6401))*v(650)+(v(161)*v(5195)+v(172)*v(5214)+v(174)*v(5233)+v(178)*v(6399)+v(181)*v(6400& &)+v(183)*v(6401))*v(652)+(v(166)*v(5195)+v(174)*v(5214)+v(186)*v(5233)+v(187)*v(6399)+v(190)*v(6400)+v(191)*v(6401))*v& &(655)) v(5307)=v(6398)*(v(5193)*v(5294)+v(5212)*v(5295)+v(5231)*v(5296)+v(5297)*v(6402)+v(5298)*v(6403)+v(5299)*v(6404)+v(6394& &)*(v(167)*v(5193)+v(178)*v(5212)+v(187)*v(5231)+v(196)*v(6402)+v(198)*v(6403)+v(199)*v(6404))+v(6393)*(v(168)*v(5193)+v& &(181)*v(5212)+v(190)*v(5231)+v(198)*v(6402)+v(205)*v(6403)+v(207)*v(6404))+v(6392)*(v(169)*v(5193)+v(183)*v(5212)+v(191& &)*v(5231)+v(199)*v(6402)+v(207)*v(6403)+v(214)*v(6404))+(v(156)*v(5193)+v(161)*v(5212)+v(166)*v(5231)+v(167)*v(6402)+v& &(168)*v(6403)+v(169)*v(6404))*v(650)+(v(161)*v(5193)+v(172)*v(5212)+v(174)*v(5231)+v(178)*v(6402)+v(181)*v(6403)+v(183& &)*v(6404))*v(652)+(v(166)*v(5193)+v(174)*v(5212)+v(186)*v(5231)+v(187)*v(6402)+v(190)*v(6403)+v(191)*v(6404))*v(655)) v(5306)=v(6398)*(v(5191)*v(5294)+v(5210)*v(5295)+v(5229)*v(5296)+v(5297)*v(6405)+v(6394)*(v(167)*v(5191)+v(178)*v(5210)& &+v(187)*v(5229)+v(2356)*v(5267)+v(2353)*v(5286)+v(196)*v(6405))+v(5298)*v(6406)+v(6393)*(v(168)*v(5191)+v(181)*v(5210)& &+v(190)*v(5229)+v(2356)*v(5248)+v(2357)*v(5286)+v(205)*v(6406))+v(5299)*v(6407)+v(6392)*(v(169)*v(5191)+v(183)*v(5210)& &+v(191)*v(5229)+v(2353)*v(5248)+v(2357)*v(5267)+v(214)*v(6407))+(v(156)*v(5191)+v(161)*v(5210)+v(166)*v(5229)+v(167)*v& &(6405)+v(168)*v(6406)+v(169)*v(6407))*v(650)+(v(161)*v(5191)+v(172)*v(5210)+v(174)*v(5229)+v(178)*v(6405)+v(181)*v(6406& &)+v(183)*v(6407))*v(652)+(v(166)*v(5191)+v(174)*v(5210)+v(186)*v(5229)+v(187)*v(6405)+v(190)*v(6406)+v(191)*v(6407))*v& &(655)) v(5305)=v(6398)*(v(5189)*v(5294)+v(5208)*v(5295)+v(5227)*v(5296)+v(5297)*v(6408)+v(6394)*(v(167)*v(5189)+v(178)*v(5208)& &+v(187)*v(5227)+v(2356)*v(5265)+v(2353)*v(5284)+v(196)*v(6408))+v(5298)*v(6409)+v(6393)*(v(168)*v(5189)+v(181)*v(5208)& &+v(190)*v(5227)+v(2356)*v(5246)+v(2357)*v(5284)+v(205)*v(6409))+v(5299)*v(6410)+v(6392)*(v(169)*v(5189)+v(183)*v(5208)& &+v(191)*v(5227)+v(2353)*v(5246)+v(2357)*v(5265)+v(214)*v(6410))+(v(156)*v(5189)+v(161)*v(5208)+v(166)*v(5227)+v(167)*v& &(6408)+v(168)*v(6409)+v(169)*v(6410))*v(650)+(v(161)*v(5189)+v(172)*v(5208)+v(174)*v(5227)+v(178)*v(6408)+v(181)*v(6409& &)+v(183)*v(6410))*v(652)+(v(166)*v(5189)+v(174)*v(5208)+v(186)*v(5227)+v(187)*v(6408)+v(190)*v(6409)+v(191)*v(6410))*v& &(655)) v(5304)=v(6398)*(v(5187)*v(5294)+v(5206)*v(5295)+v(5225)*v(5296)+v(5297)*v(6411)+v(6394)*(v(167)*v(5187)+v(178)*v(5206)& &+v(187)*v(5225)+v(2356)*v(5263)+v(2353)*v(5282)+v(196)*v(6411))+v(5298)*v(6412)+v(6393)*(v(168)*v(5187)+v(181)*v(5206)& &+v(190)*v(5225)+v(2356)*v(5244)+v(2357)*v(5282)+v(205)*v(6412))+v(5299)*v(6413)+v(6392)*(v(169)*v(5187)+v(183)*v(5206)& &+v(191)*v(5225)+v(2353)*v(5244)+v(2357)*v(5263)+v(214)*v(6413))+(v(156)*v(5187)+v(161)*v(5206)+v(166)*v(5225)+v(167)*v& &(6411)+v(168)*v(6412)+v(169)*v(6413))*v(650)+(v(161)*v(5187)+v(172)*v(5206)+v(174)*v(5225)+v(178)*v(6411)+v(181)*v(6412& &)+v(183)*v(6413))*v(652)+(v(166)*v(5187)+v(174)*v(5206)+v(186)*v(5225)+v(187)*v(6411)+v(190)*v(6412)+v(191)*v(6413))*v& &(655)) v(5303)=v(6398)*(v(5185)*v(5294)+v(5204)*v(5295)+v(5223)*v(5296)+v(5297)*v(6414)+v(6394)*(v(167)*v(5185)+v(178)*v(5204)& &+v(187)*v(5223)+v(2356)*v(5261)+v(2353)*v(5280)+v(196)*v(6414))+v(5298)*v(6415)+v(6393)*(v(168)*v(5185)+v(181)*v(5204)& &+v(190)*v(5223)+v(2356)*v(5242)+v(2357)*v(5280)+v(205)*v(6415))+v(5299)*v(6416)+v(6392)*(v(169)*v(5185)+v(183)*v(5204)& &+v(191)*v(5223)+v(2353)*v(5242)+v(2357)*v(5261)+v(214)*v(6416))+(v(156)*v(5185)+v(161)*v(5204)+v(166)*v(5223)+v(167)*v& &(6414)+v(168)*v(6415)+v(169)*v(6416))*v(650)+(v(161)*v(5185)+v(172)*v(5204)+v(174)*v(5223)+v(178)*v(6414)+v(181)*v(6415& &)+v(183)*v(6416))*v(652)+(v(166)*v(5185)+v(174)*v(5204)+v(186)*v(5223)+v(187)*v(6414)+v(190)*v(6415)+v(191)*v(6416))*v& &(655)) v(5302)=v(6398)*(v(5183)*v(5294)+v(5202)*v(5295)+v(5221)*v(5296)+v(5297)*v(6417)+v(6394)*(v(167)*v(5183)+v(178)*v(5202)& &+v(187)*v(5221)+v(2356)*v(5259)+v(2353)*v(5278)+v(196)*v(6417))+v(5298)*v(6418)+v(6393)*(v(168)*v(5183)+v(181)*v(5202)& &+v(190)*v(5221)+v(2356)*v(5240)+v(2357)*v(5278)+v(205)*v(6418))+v(5299)*v(6419)+v(6392)*(v(169)*v(5183)+v(183)*v(5202)& &+v(191)*v(5221)+v(2353)*v(5240)+v(2357)*v(5259)+v(214)*v(6419))+(v(156)*v(5183)+v(161)*v(5202)+v(166)*v(5221)+v(167)*v& &(6417)+v(168)*v(6418)+v(169)*v(6419))*v(650)+(v(161)*v(5183)+v(172)*v(5202)+v(174)*v(5221)+v(178)*v(6417)+v(181)*v(6418& &)+v(183)*v(6419))*v(652)+(v(166)*v(5183)+v(174)*v(5202)+v(186)*v(5221)+v(187)*v(6417)+v(190)*v(6418)+v(191)*v(6419))*v& &(655)) v(5300)=v(6398)*(v(5181)*v(5294)+v(5200)*v(5295)+v(5219)*v(5296)+v(5297)*v(6420)+v(6394)*(v(167)*v(5181)+v(178)*v(5200)& &+v(187)*v(5219)+v(2356)*v(5257)+v(2353)*v(5276)+v(196)*v(6420))+v(5298)*v(6421)+v(6393)*(v(168)*v(5181)+v(181)*v(5200)& &+v(190)*v(5219)+v(2356)*v(5238)+v(2357)*v(5276)+v(205)*v(6421))+v(5299)*v(6422)+v(6392)*(v(169)*v(5181)+v(183)*v(5200)& &+v(191)*v(5219)+v(2353)*v(5238)+v(2357)*v(5257)+v(214)*v(6422))+(v(156)*v(5181)+v(161)*v(5200)+v(166)*v(5219)+v(167)*v& &(6420)+v(168)*v(6421)+v(169)*v(6422))*v(650)+(v(161)*v(5181)+v(172)*v(5200)+v(174)*v(5219)+v(178)*v(6420)+v(181)*v(6421& &)+v(183)*v(6422))*v(652)+(v(166)*v(5181)+v(174)*v(5200)+v(186)*v(5219)+v(187)*v(6420)+v(190)*v(6421)+v(191)*v(6422))*v& &(655)) v(5415)=Jinv(1,2)*v(5197)+Jinv(1,3)*v(5216)+Jinv(1,4)*v(5254)+Jinv(1,6)*v(5273)+Jinv(1,5)*v(5292)-Jinv(1,1)*v(5309) v(5403)=Jinv(1,2)*v(5195)+Jinv(1,3)*v(5214)+Jinv(1,4)*v(5252)+Jinv(1,6)*v(5271)+Jinv(1,5)*v(5290)-Jinv(1,1)*v(5308) v(5391)=Jinv(1,2)*v(5193)+Jinv(1,3)*v(5212)+Jinv(1,4)*v(5250)+Jinv(1,6)*v(5269)+Jinv(1,5)*v(5288)-Jinv(1,1)*v(5307) v(5379)=Jinv(1,2)*v(5191)+Jinv(1,3)*v(5210)+Jinv(1,4)*v(5248)+Jinv(1,6)*v(5267)+Jinv(1,5)*v(5286)-Jinv(1,1)*v(5306) v(5367)=Jinv(1,2)*v(5189)+Jinv(1,3)*v(5208)+Jinv(1,4)*v(5246)+Jinv(1,6)*v(5265)+Jinv(1,5)*v(5284)-Jinv(1,1)*v(5305) v(5355)=Jinv(1,2)*v(5187)+Jinv(1,3)*v(5206)+Jinv(1,4)*v(5244)+Jinv(1,6)*v(5263)+Jinv(1,5)*v(5282)-Jinv(1,1)*v(5304) v(5343)=Jinv(1,2)*v(5185)+Jinv(1,3)*v(5204)+Jinv(1,4)*v(5242)+Jinv(1,6)*v(5261)+Jinv(1,5)*v(5280)-Jinv(1,1)*v(5303) v(5331)=Jinv(1,2)*v(5183)+Jinv(1,3)*v(5202)+Jinv(1,4)*v(5240)+Jinv(1,6)*v(5259)+Jinv(1,5)*v(5278)-Jinv(1,1)*v(5302) v(5319)=Jinv(1,2)*v(5181)+Jinv(1,3)*v(5200)+Jinv(1,4)*v(5238)+Jinv(1,6)*v(5257)+Jinv(1,5)*v(5276)-Jinv(1,1)*v(5300) v(5416)=Jinv(2,2)*v(5197)+Jinv(2,3)*v(5216)+Jinv(2,4)*v(5254)+Jinv(2,6)*v(5273)+Jinv(2,5)*v(5292)-Jinv(2,1)*v(5309) v(5404)=Jinv(2,2)*v(5195)+Jinv(2,3)*v(5214)+Jinv(2,4)*v(5252)+Jinv(2,6)*v(5271)+Jinv(2,5)*v(5290)-Jinv(2,1)*v(5308) v(5392)=Jinv(2,2)*v(5193)+Jinv(2,3)*v(5212)+Jinv(2,4)*v(5250)+Jinv(2,6)*v(5269)+Jinv(2,5)*v(5288)-Jinv(2,1)*v(5307) v(5380)=Jinv(2,2)*v(5191)+Jinv(2,3)*v(5210)+Jinv(2,4)*v(5248)+Jinv(2,6)*v(5267)+Jinv(2,5)*v(5286)-Jinv(2,1)*v(5306) v(5368)=Jinv(2,2)*v(5189)+Jinv(2,3)*v(5208)+Jinv(2,4)*v(5246)+Jinv(2,6)*v(5265)+Jinv(2,5)*v(5284)-Jinv(2,1)*v(5305) v(5356)=Jinv(2,2)*v(5187)+Jinv(2,3)*v(5206)+Jinv(2,4)*v(5244)+Jinv(2,6)*v(5263)+Jinv(2,5)*v(5282)-Jinv(2,1)*v(5304) v(5344)=Jinv(2,2)*v(5185)+Jinv(2,3)*v(5204)+Jinv(2,4)*v(5242)+Jinv(2,6)*v(5261)+Jinv(2,5)*v(5280)-Jinv(2,1)*v(5303) v(5332)=Jinv(2,2)*v(5183)+Jinv(2,3)*v(5202)+Jinv(2,4)*v(5240)+Jinv(2,6)*v(5259)+Jinv(2,5)*v(5278)-Jinv(2,1)*v(5302) v(5320)=Jinv(2,2)*v(5181)+Jinv(2,3)*v(5200)+Jinv(2,4)*v(5238)+Jinv(2,6)*v(5257)+Jinv(2,5)*v(5276)-Jinv(2,1)*v(5300) v(5417)=Jinv(3,2)*v(5197)+Jinv(3,3)*v(5216)+Jinv(3,4)*v(5254)+Jinv(3,6)*v(5273)+Jinv(3,5)*v(5292)-Jinv(3,1)*v(5309) v(5405)=Jinv(3,2)*v(5195)+Jinv(3,3)*v(5214)+Jinv(3,4)*v(5252)+Jinv(3,6)*v(5271)+Jinv(3,5)*v(5290)-Jinv(3,1)*v(5308) v(5393)=Jinv(3,2)*v(5193)+Jinv(3,3)*v(5212)+Jinv(3,4)*v(5250)+Jinv(3,6)*v(5269)+Jinv(3,5)*v(5288)-Jinv(3,1)*v(5307) v(5381)=Jinv(3,2)*v(5191)+Jinv(3,3)*v(5210)+Jinv(3,4)*v(5248)+Jinv(3,6)*v(5267)+Jinv(3,5)*v(5286)-Jinv(3,1)*v(5306) v(5369)=Jinv(3,2)*v(5189)+Jinv(3,3)*v(5208)+Jinv(3,4)*v(5246)+Jinv(3,6)*v(5265)+Jinv(3,5)*v(5284)-Jinv(3,1)*v(5305) v(5357)=Jinv(3,2)*v(5187)+Jinv(3,3)*v(5206)+Jinv(3,4)*v(5244)+Jinv(3,6)*v(5263)+Jinv(3,5)*v(5282)-Jinv(3,1)*v(5304) v(5345)=Jinv(3,2)*v(5185)+Jinv(3,3)*v(5204)+Jinv(3,4)*v(5242)+Jinv(3,6)*v(5261)+Jinv(3,5)*v(5280)-Jinv(3,1)*v(5303) v(5333)=Jinv(3,2)*v(5183)+Jinv(3,3)*v(5202)+Jinv(3,4)*v(5240)+Jinv(3,6)*v(5259)+Jinv(3,5)*v(5278)-Jinv(3,1)*v(5302) v(5321)=Jinv(3,2)*v(5181)+Jinv(3,3)*v(5200)+Jinv(3,4)*v(5238)+Jinv(3,6)*v(5257)+Jinv(3,5)*v(5276)-Jinv(3,1)*v(5300) v(5418)=Jinv(4,2)*v(5197)+Jinv(4,3)*v(5216)+Jinv(4,4)*v(5254)+Jinv(4,6)*v(5273)+Jinv(4,5)*v(5292)-Jinv(4,1)*v(5309) v(5406)=Jinv(4,2)*v(5195)+Jinv(4,3)*v(5214)+Jinv(4,4)*v(5252)+Jinv(4,6)*v(5271)+Jinv(4,5)*v(5290)-Jinv(4,1)*v(5308) v(5394)=Jinv(4,2)*v(5193)+Jinv(4,3)*v(5212)+Jinv(4,4)*v(5250)+Jinv(4,6)*v(5269)+Jinv(4,5)*v(5288)-Jinv(4,1)*v(5307) v(5382)=Jinv(4,2)*v(5191)+Jinv(4,3)*v(5210)+Jinv(4,4)*v(5248)+Jinv(4,6)*v(5267)+Jinv(4,5)*v(5286)-Jinv(4,1)*v(5306) v(5370)=Jinv(4,2)*v(5189)+Jinv(4,3)*v(5208)+Jinv(4,4)*v(5246)+Jinv(4,6)*v(5265)+Jinv(4,5)*v(5284)-Jinv(4,1)*v(5305) v(5358)=Jinv(4,2)*v(5187)+Jinv(4,3)*v(5206)+Jinv(4,4)*v(5244)+Jinv(4,6)*v(5263)+Jinv(4,5)*v(5282)-Jinv(4,1)*v(5304) v(5346)=Jinv(4,2)*v(5185)+Jinv(4,3)*v(5204)+Jinv(4,4)*v(5242)+Jinv(4,6)*v(5261)+Jinv(4,5)*v(5280)-Jinv(4,1)*v(5303) v(5334)=Jinv(4,2)*v(5183)+Jinv(4,3)*v(5202)+Jinv(4,4)*v(5240)+Jinv(4,6)*v(5259)+Jinv(4,5)*v(5278)-Jinv(4,1)*v(5302) v(5322)=Jinv(4,2)*v(5181)+Jinv(4,3)*v(5200)+Jinv(4,4)*v(5238)+Jinv(4,6)*v(5257)+Jinv(4,5)*v(5276)-Jinv(4,1)*v(5300) v(5419)=Jinv(5,2)*v(5197)+Jinv(5,3)*v(5216)+Jinv(5,4)*v(5254)+Jinv(5,6)*v(5273)+Jinv(5,5)*v(5292)-Jinv(5,1)*v(5309) v(5407)=Jinv(5,2)*v(5195)+Jinv(5,3)*v(5214)+Jinv(5,4)*v(5252)+Jinv(5,6)*v(5271)+Jinv(5,5)*v(5290)-Jinv(5,1)*v(5308) v(5395)=Jinv(5,2)*v(5193)+Jinv(5,3)*v(5212)+Jinv(5,4)*v(5250)+Jinv(5,6)*v(5269)+Jinv(5,5)*v(5288)-Jinv(5,1)*v(5307) v(5383)=Jinv(5,2)*v(5191)+Jinv(5,3)*v(5210)+Jinv(5,4)*v(5248)+Jinv(5,6)*v(5267)+Jinv(5,5)*v(5286)-Jinv(5,1)*v(5306) v(5371)=Jinv(5,2)*v(5189)+Jinv(5,3)*v(5208)+Jinv(5,4)*v(5246)+Jinv(5,6)*v(5265)+Jinv(5,5)*v(5284)-Jinv(5,1)*v(5305) v(5359)=Jinv(5,2)*v(5187)+Jinv(5,3)*v(5206)+Jinv(5,4)*v(5244)+Jinv(5,6)*v(5263)+Jinv(5,5)*v(5282)-Jinv(5,1)*v(5304) v(5347)=Jinv(5,2)*v(5185)+Jinv(5,3)*v(5204)+Jinv(5,4)*v(5242)+Jinv(5,6)*v(5261)+Jinv(5,5)*v(5280)-Jinv(5,1)*v(5303) v(5335)=Jinv(5,2)*v(5183)+Jinv(5,3)*v(5202)+Jinv(5,4)*v(5240)+Jinv(5,6)*v(5259)+Jinv(5,5)*v(5278)-Jinv(5,1)*v(5302) v(5323)=Jinv(5,2)*v(5181)+Jinv(5,3)*v(5200)+Jinv(5,4)*v(5238)+Jinv(5,6)*v(5257)+Jinv(5,5)*v(5276)-Jinv(5,1)*v(5300) v(5420)=Jinv(6,2)*v(5197)+Jinv(6,3)*v(5216)+Jinv(6,4)*v(5254)+Jinv(6,6)*v(5273)+Jinv(6,5)*v(5292)-Jinv(6,1)*v(5309) v(5408)=Jinv(6,2)*v(5195)+Jinv(6,3)*v(5214)+Jinv(6,4)*v(5252)+Jinv(6,6)*v(5271)+Jinv(6,5)*v(5290)-Jinv(6,1)*v(5308) v(5396)=Jinv(6,2)*v(5193)+Jinv(6,3)*v(5212)+Jinv(6,4)*v(5250)+Jinv(6,6)*v(5269)+Jinv(6,5)*v(5288)-Jinv(6,1)*v(5307) v(5384)=Jinv(6,2)*v(5191)+Jinv(6,3)*v(5210)+Jinv(6,4)*v(5248)+Jinv(6,6)*v(5267)+Jinv(6,5)*v(5286)-Jinv(6,1)*v(5306) v(5372)=Jinv(6,2)*v(5189)+Jinv(6,3)*v(5208)+Jinv(6,4)*v(5246)+Jinv(6,6)*v(5265)+Jinv(6,5)*v(5284)-Jinv(6,1)*v(5305) v(5360)=Jinv(6,2)*v(5187)+Jinv(6,3)*v(5206)+Jinv(6,4)*v(5244)+Jinv(6,6)*v(5263)+Jinv(6,5)*v(5282)-Jinv(6,1)*v(5304) v(5348)=Jinv(6,2)*v(5185)+Jinv(6,3)*v(5204)+Jinv(6,4)*v(5242)+Jinv(6,6)*v(5261)+Jinv(6,5)*v(5280)-Jinv(6,1)*v(5303) v(5336)=Jinv(6,2)*v(5183)+Jinv(6,3)*v(5202)+Jinv(6,4)*v(5240)+Jinv(6,6)*v(5259)+Jinv(6,5)*v(5278)-Jinv(6,1)*v(5302) v(5324)=Jinv(6,2)*v(5181)+Jinv(6,3)*v(5200)+Jinv(6,4)*v(5238)+Jinv(6,6)*v(5257)+Jinv(6,5)*v(5276)-Jinv(6,1)*v(5300) v(5421)=Jinv(12,2)*v(5197)+Jinv(12,3)*v(5216)+Jinv(12,4)*v(5254)+Jinv(12,6)*v(5273)+Jinv(12,5)*v(5292)-Jinv(12,1)*v& &(5309) v(5409)=Jinv(12,2)*v(5195)+Jinv(12,3)*v(5214)+Jinv(12,4)*v(5252)+Jinv(12,6)*v(5271)+Jinv(12,5)*v(5290)-Jinv(12,1)*v& &(5308) v(5397)=Jinv(12,2)*v(5193)+Jinv(12,3)*v(5212)+Jinv(12,4)*v(5250)+Jinv(12,6)*v(5269)+Jinv(12,5)*v(5288)-Jinv(12,1)*v& &(5307) v(5385)=Jinv(12,2)*v(5191)+Jinv(12,3)*v(5210)+Jinv(12,4)*v(5248)+Jinv(12,6)*v(5267)+Jinv(12,5)*v(5286)-Jinv(12,1)*v& &(5306) v(5373)=Jinv(12,2)*v(5189)+Jinv(12,3)*v(5208)+Jinv(12,4)*v(5246)+Jinv(12,6)*v(5265)+Jinv(12,5)*v(5284)-Jinv(12,1)*v& &(5305) v(5361)=Jinv(12,2)*v(5187)+Jinv(12,3)*v(5206)+Jinv(12,4)*v(5244)+Jinv(12,6)*v(5263)+Jinv(12,5)*v(5282)-Jinv(12,1)*v& &(5304) v(5349)=Jinv(12,2)*v(5185)+Jinv(12,3)*v(5204)+Jinv(12,4)*v(5242)+Jinv(12,6)*v(5261)+Jinv(12,5)*v(5280)-Jinv(12,1)*v& &(5303) v(5337)=Jinv(12,2)*v(5183)+Jinv(12,3)*v(5202)+Jinv(12,4)*v(5240)+Jinv(12,6)*v(5259)+Jinv(12,5)*v(5278)-Jinv(12,1)*v& &(5302) v(5325)=Jinv(12,2)*v(5181)+Jinv(12,3)*v(5200)+Jinv(12,4)*v(5238)+Jinv(12,6)*v(5257)+Jinv(12,5)*v(5276)-Jinv(12,1)*v& &(5300) v(5422)=Jinv(13,2)*v(5197)+Jinv(13,3)*v(5216)+Jinv(13,4)*v(5254)+Jinv(13,6)*v(5273)+Jinv(13,5)*v(5292)-Jinv(13,1)*v& &(5309) v(5410)=Jinv(13,2)*v(5195)+Jinv(13,3)*v(5214)+Jinv(13,4)*v(5252)+Jinv(13,6)*v(5271)+Jinv(13,5)*v(5290)-Jinv(13,1)*v& &(5308) v(5398)=Jinv(13,2)*v(5193)+Jinv(13,3)*v(5212)+Jinv(13,4)*v(5250)+Jinv(13,6)*v(5269)+Jinv(13,5)*v(5288)-Jinv(13,1)*v& &(5307) v(5386)=Jinv(13,2)*v(5191)+Jinv(13,3)*v(5210)+Jinv(13,4)*v(5248)+Jinv(13,6)*v(5267)+Jinv(13,5)*v(5286)-Jinv(13,1)*v& &(5306) v(5374)=Jinv(13,2)*v(5189)+Jinv(13,3)*v(5208)+Jinv(13,4)*v(5246)+Jinv(13,6)*v(5265)+Jinv(13,5)*v(5284)-Jinv(13,1)*v& &(5305) v(5362)=Jinv(13,2)*v(5187)+Jinv(13,3)*v(5206)+Jinv(13,4)*v(5244)+Jinv(13,6)*v(5263)+Jinv(13,5)*v(5282)-Jinv(13,1)*v& &(5304) v(5350)=Jinv(13,2)*v(5185)+Jinv(13,3)*v(5204)+Jinv(13,4)*v(5242)+Jinv(13,6)*v(5261)+Jinv(13,5)*v(5280)-Jinv(13,1)*v& &(5303) v(5338)=Jinv(13,2)*v(5183)+Jinv(13,3)*v(5202)+Jinv(13,4)*v(5240)+Jinv(13,6)*v(5259)+Jinv(13,5)*v(5278)-Jinv(13,1)*v& &(5302) v(5326)=Jinv(13,2)*v(5181)+Jinv(13,3)*v(5200)+Jinv(13,4)*v(5238)+Jinv(13,6)*v(5257)+Jinv(13,5)*v(5276)-Jinv(13,1)*v& &(5300) v(5423)=Jinv(14,2)*v(5197)+Jinv(14,3)*v(5216)+Jinv(14,4)*v(5254)+Jinv(14,6)*v(5273)+Jinv(14,5)*v(5292)-Jinv(14,1)*v& &(5309) v(5411)=Jinv(14,2)*v(5195)+Jinv(14,3)*v(5214)+Jinv(14,4)*v(5252)+Jinv(14,6)*v(5271)+Jinv(14,5)*v(5290)-Jinv(14,1)*v& &(5308) v(5399)=Jinv(14,2)*v(5193)+Jinv(14,3)*v(5212)+Jinv(14,4)*v(5250)+Jinv(14,6)*v(5269)+Jinv(14,5)*v(5288)-Jinv(14,1)*v& &(5307) v(5387)=Jinv(14,2)*v(5191)+Jinv(14,3)*v(5210)+Jinv(14,4)*v(5248)+Jinv(14,6)*v(5267)+Jinv(14,5)*v(5286)-Jinv(14,1)*v& &(5306) v(5375)=Jinv(14,2)*v(5189)+Jinv(14,3)*v(5208)+Jinv(14,4)*v(5246)+Jinv(14,6)*v(5265)+Jinv(14,5)*v(5284)-Jinv(14,1)*v& &(5305) v(5363)=Jinv(14,2)*v(5187)+Jinv(14,3)*v(5206)+Jinv(14,4)*v(5244)+Jinv(14,6)*v(5263)+Jinv(14,5)*v(5282)-Jinv(14,1)*v& &(5304) v(5351)=Jinv(14,2)*v(5185)+Jinv(14,3)*v(5204)+Jinv(14,4)*v(5242)+Jinv(14,6)*v(5261)+Jinv(14,5)*v(5280)-Jinv(14,1)*v& &(5303) v(5339)=Jinv(14,2)*v(5183)+Jinv(14,3)*v(5202)+Jinv(14,4)*v(5240)+Jinv(14,6)*v(5259)+Jinv(14,5)*v(5278)-Jinv(14,1)*v& &(5302) v(5327)=Jinv(14,2)*v(5181)+Jinv(14,3)*v(5200)+Jinv(14,4)*v(5238)+Jinv(14,6)*v(5257)+Jinv(14,5)*v(5276)-Jinv(14,1)*v& &(5300) v(5424)=Jinv(15,2)*v(5197)+Jinv(15,3)*v(5216)+Jinv(15,4)*v(5254)+Jinv(15,6)*v(5273)+Jinv(15,5)*v(5292)-Jinv(15,1)*v& &(5309) v(5412)=Jinv(15,2)*v(5195)+Jinv(15,3)*v(5214)+Jinv(15,4)*v(5252)+Jinv(15,6)*v(5271)+Jinv(15,5)*v(5290)-Jinv(15,1)*v& &(5308) v(5400)=Jinv(15,2)*v(5193)+Jinv(15,3)*v(5212)+Jinv(15,4)*v(5250)+Jinv(15,6)*v(5269)+Jinv(15,5)*v(5288)-Jinv(15,1)*v& &(5307) v(5388)=Jinv(15,2)*v(5191)+Jinv(15,3)*v(5210)+Jinv(15,4)*v(5248)+Jinv(15,6)*v(5267)+Jinv(15,5)*v(5286)-Jinv(15,1)*v& &(5306) v(5376)=Jinv(15,2)*v(5189)+Jinv(15,3)*v(5208)+Jinv(15,4)*v(5246)+Jinv(15,6)*v(5265)+Jinv(15,5)*v(5284)-Jinv(15,1)*v& &(5305) v(5364)=Jinv(15,2)*v(5187)+Jinv(15,3)*v(5206)+Jinv(15,4)*v(5244)+Jinv(15,6)*v(5263)+Jinv(15,5)*v(5282)-Jinv(15,1)*v& &(5304) v(5352)=Jinv(15,2)*v(5185)+Jinv(15,3)*v(5204)+Jinv(15,4)*v(5242)+Jinv(15,6)*v(5261)+Jinv(15,5)*v(5280)-Jinv(15,1)*v& &(5303) v(5340)=Jinv(15,2)*v(5183)+Jinv(15,3)*v(5202)+Jinv(15,4)*v(5240)+Jinv(15,6)*v(5259)+Jinv(15,5)*v(5278)-Jinv(15,1)*v& &(5302) v(5328)=Jinv(15,2)*v(5181)+Jinv(15,3)*v(5200)+Jinv(15,4)*v(5238)+Jinv(15,6)*v(5257)+Jinv(15,5)*v(5276)-Jinv(15,1)*v& &(5300) v(5425)=Jinv(16,2)*v(5197)+Jinv(16,3)*v(5216)+Jinv(16,4)*v(5254)+Jinv(16,6)*v(5273)+Jinv(16,5)*v(5292)-Jinv(16,1)*v& &(5309) v(5413)=Jinv(16,2)*v(5195)+Jinv(16,3)*v(5214)+Jinv(16,4)*v(5252)+Jinv(16,6)*v(5271)+Jinv(16,5)*v(5290)-Jinv(16,1)*v& &(5308) v(5401)=Jinv(16,2)*v(5193)+Jinv(16,3)*v(5212)+Jinv(16,4)*v(5250)+Jinv(16,6)*v(5269)+Jinv(16,5)*v(5288)-Jinv(16,1)*v& &(5307) v(5389)=Jinv(16,2)*v(5191)+Jinv(16,3)*v(5210)+Jinv(16,4)*v(5248)+Jinv(16,6)*v(5267)+Jinv(16,5)*v(5286)-Jinv(16,1)*v& &(5306) v(5377)=Jinv(16,2)*v(5189)+Jinv(16,3)*v(5208)+Jinv(16,4)*v(5246)+Jinv(16,6)*v(5265)+Jinv(16,5)*v(5284)-Jinv(16,1)*v& &(5305) v(5365)=Jinv(16,2)*v(5187)+Jinv(16,3)*v(5206)+Jinv(16,4)*v(5244)+Jinv(16,6)*v(5263)+Jinv(16,5)*v(5282)-Jinv(16,1)*v& &(5304) v(5353)=Jinv(16,2)*v(5185)+Jinv(16,3)*v(5204)+Jinv(16,4)*v(5242)+Jinv(16,6)*v(5261)+Jinv(16,5)*v(5280)-Jinv(16,1)*v& &(5303) v(5341)=Jinv(16,2)*v(5183)+Jinv(16,3)*v(5202)+Jinv(16,4)*v(5240)+Jinv(16,6)*v(5259)+Jinv(16,5)*v(5278)-Jinv(16,1)*v& &(5302) v(5329)=Jinv(16,2)*v(5181)+Jinv(16,3)*v(5200)+Jinv(16,4)*v(5238)+Jinv(16,6)*v(5257)+Jinv(16,5)*v(5276)-Jinv(16,1)*v& &(5300) v(4044)=v(303)*v(3934)+v(297)*v(3978)+v(312)*v(3989)+v(3394)*v(960)+v(3427)*v(961)+v(3361)*v(962) v(4045)=v(298)*v(3956)+v(307)*v(4022)+v(313)*v(4033)+v(3372)*v(952)+v(3438)*v(953)+v(3405)*v(954) v(4046)=v(314)*v(3945)+v(299)*v(4000)+v(311)*v(4011)+v(3449)*v(956)+v(3416)*v(957)+v(3383)*v(958) v(4047)=v(303)*v(3956)+v(312)*v(4022)+v(297)*v(4033)+v(3394)*v(952)+v(3361)*v(953)+v(3427)*v(954) v(4048)=v(298)*v(3945)+v(307)*v(4000)+v(313)*v(4011)+v(3372)*v(956)+v(3438)*v(957)+v(3405)*v(958) v(4049)=v(314)*v(3934)+v(311)*v(3978)+v(299)*v(3989)+v(3449)*v(960)+v(3383)*v(961)+v(3416)*v(962) v(4050)=v(303)*v(3935)+v(297)*v(3979)+v(312)*v(3990)+v(3395)*v(960)+v(3428)*v(961)+v(3362)*v(962) v(4051)=v(298)*v(3957)+v(307)*v(4023)+v(313)*v(4034)+v(3373)*v(952)+v(3439)*v(953)+v(3406)*v(954) v(4052)=v(314)*v(3946)+v(299)*v(4001)+v(311)*v(4012)+v(3450)*v(956)+v(3417)*v(957)+v(3384)*v(958) v(4053)=v(303)*v(3957)+v(312)*v(4023)+v(297)*v(4034)+v(3395)*v(952)+v(3362)*v(953)+v(3428)*v(954) v(4054)=v(298)*v(3946)+v(307)*v(4001)+v(313)*v(4012)+v(3373)*v(956)+v(3439)*v(957)+v(3406)*v(958) v(4055)=v(314)*v(3935)+v(311)*v(3979)+v(299)*v(3990)+v(3450)*v(960)+v(3384)*v(961)+v(3417)*v(962) v(4056)=v(303)*v(3936)+v(297)*v(3980)+v(312)*v(3991)+v(3396)*v(960)+v(3429)*v(961)+v(3363)*v(962) v(4057)=v(298)*v(3958)+v(307)*v(4024)+v(313)*v(4035)+v(3374)*v(952)+v(3440)*v(953)+v(3407)*v(954) v(4058)=v(314)*v(3947)+v(299)*v(4002)+v(311)*v(4013)+v(3451)*v(956)+v(3418)*v(957)+v(3385)*v(958) v(4059)=v(303)*v(3958)+v(312)*v(4024)+v(297)*v(4035)+v(3396)*v(952)+v(3363)*v(953)+v(3429)*v(954) v(4060)=v(298)*v(3947)+v(307)*v(4002)+v(313)*v(4013)+v(3374)*v(956)+v(3440)*v(957)+v(3407)*v(958) v(4061)=v(314)*v(3936)+v(311)*v(3980)+v(299)*v(3991)+v(3451)*v(960)+v(3385)*v(961)+v(3418)*v(962) v(4062)=v(303)*v(3937)+v(297)*v(3981)+v(312)*v(3992)+v(3397)*v(960)+v(3430)*v(961)+v(3364)*v(962) v(4063)=v(298)*v(3959)+v(307)*v(4025)+v(313)*v(4036)+v(3375)*v(952)+v(3441)*v(953)+v(3408)*v(954) v(4064)=v(314)*v(3948)+v(299)*v(4003)+v(311)*v(4014)+v(3452)*v(956)+v(3419)*v(957)+v(3386)*v(958) v(4065)=v(303)*v(3959)+v(312)*v(4025)+v(297)*v(4036)+v(3397)*v(952)+v(3364)*v(953)+v(3430)*v(954) v(4066)=v(298)*v(3948)+v(307)*v(4003)+v(313)*v(4014)+v(3375)*v(956)+v(3441)*v(957)+v(3408)*v(958) v(4067)=v(314)*v(3937)+v(311)*v(3981)+v(299)*v(3992)+v(3452)*v(960)+v(3386)*v(961)+v(3419)*v(962) v(4068)=v(303)*v(3938)+v(297)*v(3982)+v(312)*v(3993)+v(3398)*v(960)+v(3431)*v(961)+v(3365)*v(962) v(4069)=v(298)*v(3960)+v(307)*v(4026)+v(313)*v(4037)+v(3376)*v(952)+v(3442)*v(953)+v(3409)*v(954) v(4070)=v(314)*v(3949)+v(299)*v(4004)+v(311)*v(4015)+v(3453)*v(956)+v(3420)*v(957)+v(3387)*v(958) v(4071)=v(303)*v(3960)+v(312)*v(4026)+v(297)*v(4037)+v(3398)*v(952)+v(3365)*v(953)+v(3431)*v(954) v(4072)=v(298)*v(3949)+v(307)*v(4004)+v(313)*v(4015)+v(3376)*v(956)+v(3442)*v(957)+v(3409)*v(958) v(4073)=v(314)*v(3938)+v(311)*v(3982)+v(299)*v(3993)+v(3453)*v(960)+v(3387)*v(961)+v(3420)*v(962) v(4074)=v(303)*v(3939)+v(297)*v(3983)+v(312)*v(3994)+v(3399)*v(960)+v(3432)*v(961)+v(3366)*v(962) v(4075)=v(298)*v(3961)+v(307)*v(4027)+v(313)*v(4038)+v(3377)*v(952)+v(3443)*v(953)+v(3410)*v(954) v(4076)=v(314)*v(3950)+v(299)*v(4005)+v(311)*v(4016)+v(3454)*v(956)+v(3421)*v(957)+v(3388)*v(958) v(4077)=v(303)*v(3961)+v(312)*v(4027)+v(297)*v(4038)+v(3399)*v(952)+v(3366)*v(953)+v(3432)*v(954) v(4078)=v(298)*v(3950)+v(307)*v(4005)+v(313)*v(4016)+v(3377)*v(956)+v(3443)*v(957)+v(3410)*v(958) v(4079)=v(314)*v(3939)+v(311)*v(3983)+v(299)*v(3994)+v(3454)*v(960)+v(3388)*v(961)+v(3421)*v(962) v(4080)=v(303)*v(3940)+v(297)*v(3984)+v(312)*v(3995)+v(3400)*v(960)+v(3433)*v(961)+v(3367)*v(962) v(4081)=v(298)*v(3962)+v(307)*v(4028)+v(313)*v(4039)+v(3378)*v(952)+v(3444)*v(953)+v(3411)*v(954) v(4082)=v(314)*v(3951)+v(299)*v(4006)+v(311)*v(4017)+v(3455)*v(956)+v(3422)*v(957)+v(3389)*v(958) v(4083)=v(303)*v(3962)+v(312)*v(4028)+v(297)*v(4039)+v(3400)*v(952)+v(3367)*v(953)+v(3433)*v(954) v(4084)=v(298)*v(3951)+v(307)*v(4006)+v(313)*v(4017)+v(3378)*v(956)+v(3444)*v(957)+v(3411)*v(958) v(4085)=v(314)*v(3940)+v(311)*v(3984)+v(299)*v(3995)+v(3455)*v(960)+v(3389)*v(961)+v(3422)*v(962) v(4086)=v(303)*v(3941)+v(297)*v(3985)+v(312)*v(3996)+v(3401)*v(960)+v(3434)*v(961)+v(3368)*v(962) v(4087)=v(298)*v(3963)+v(307)*v(4029)+v(313)*v(4040)+v(3379)*v(952)+v(3445)*v(953)+v(3412)*v(954) v(4088)=v(314)*v(3952)+v(299)*v(4007)+v(311)*v(4018)+v(3456)*v(956)+v(3423)*v(957)+v(3390)*v(958) v(4089)=v(303)*v(3963)+v(312)*v(4029)+v(297)*v(4040)+v(3401)*v(952)+v(3368)*v(953)+v(3434)*v(954) v(4090)=v(298)*v(3952)+v(307)*v(4007)+v(313)*v(4018)+v(3379)*v(956)+v(3445)*v(957)+v(3412)*v(958) v(4091)=v(314)*v(3941)+v(311)*v(3985)+v(299)*v(3996)+v(3456)*v(960)+v(3390)*v(961)+v(3423)*v(962) v(4092)=v(303)*v(3942)+v(297)*v(3986)+v(312)*v(3997)+v(3402)*v(960)+v(3435)*v(961)+v(3369)*v(962) v(4093)=v(298)*v(3964)+v(307)*v(4030)+v(313)*v(4041)+v(3380)*v(952)+v(3446)*v(953)+v(3413)*v(954) v(4094)=v(314)*v(3953)+v(299)*v(4008)+v(311)*v(4019)+v(3457)*v(956)+v(3424)*v(957)+v(3391)*v(958) v(4095)=v(303)*v(3964)+v(312)*v(4030)+v(297)*v(4041)+v(3402)*v(952)+v(3369)*v(953)+v(3435)*v(954) v(4096)=v(298)*v(3953)+v(307)*v(4008)+v(313)*v(4019)+v(3380)*v(956)+v(3446)*v(957)+v(3413)*v(958) v(4097)=v(314)*v(3942)+v(311)*v(3986)+v(299)*v(3997)+v(3457)*v(960)+v(3391)*v(961)+v(3424)*v(962) v(4098)=v(303)*v(3943)+v(297)*v(3987)+v(312)*v(3998)+v(3403)*v(960)+v(3436)*v(961)+v(3370)*v(962) v(4099)=v(298)*v(3965)+v(307)*v(4031)+v(313)*v(4042)+v(3381)*v(952)+v(3447)*v(953)+v(3414)*v(954) v(4100)=v(314)*v(3954)+v(299)*v(4009)+v(311)*v(4020)+v(3458)*v(956)+v(3425)*v(957)+v(3392)*v(958) v(4101)=v(303)*v(3965)+v(312)*v(4031)+v(297)*v(4042)+v(3403)*v(952)+v(3370)*v(953)+v(3436)*v(954) v(4102)=v(298)*v(3954)+v(307)*v(4009)+v(313)*v(4020)+v(3381)*v(956)+v(3447)*v(957)+v(3414)*v(958) v(4103)=v(314)*v(3943)+v(311)*v(3987)+v(299)*v(3998)+v(3458)*v(960)+v(3392)*v(961)+v(3425)*v(962) v(4104)=v(303)*v(3944)+v(297)*v(3988)+v(312)*v(3999)+v(3404)*v(960)+v(3437)*v(961)+v(3371)*v(962) v(4105)=v(298)*v(3966)+v(307)*v(4032)+v(313)*v(4043)+v(3382)*v(952)+v(3448)*v(953)+v(3415)*v(954) v(4106)=v(314)*v(3955)+v(299)*v(4010)+v(311)*v(4021)+v(3459)*v(956)+v(3426)*v(957)+v(3393)*v(958) v(4107)=v(303)*v(3966)+v(312)*v(4032)+v(297)*v(4043)+v(3404)*v(952)+v(3371)*v(953)+v(3437)*v(954) v(4108)=v(298)*v(3955)+v(307)*v(4010)+v(313)*v(4021)+v(3382)*v(956)+v(3448)*v(957)+v(3415)*v(958) v(4109)=v(314)*v(3944)+v(311)*v(3988)+v(299)*v(3999)+v(3459)*v(960)+v(3393)*v(961)+v(3426)*v(962) v(5310)=v(1469)+v(1372)*v(297)+v(1333)*v(303)+v(1381)*v(312)+v(4044)*v(5319)+v(4050)*v(5320)+v(4056)*v(5321)+v(4062)*v& &(5322)+v(4068)*v(5323)+v(4074)*v(5324)+v(4080)*v(5325)+v(4086)*v(5326)+v(4092)*v(5327)+v(4098)*v(5328)+v(4104)*v(5329) v(5311)=v(1373)*v(297)+v(1334)*v(303)+v(1382)*v(312)+v(4044)*v(5331)+v(4050)*v(5332)+v(4056)*v(5333)+v(4062)*v(5334)+v& &(4068)*v(5335)+v(4074)*v(5336)+v(4080)*v(5337)+v(4086)*v(5338)+v(4092)*v(5339)+v(4098)*v(5340)+v(4104)*v(5341) v(5312)=v(1374)*v(297)+v(1335)*v(303)+v(1383)*v(312)+v(4044)*v(5343)+v(4050)*v(5344)+v(4056)*v(5345)+v(4062)*v(5346)+v& &(4068)*v(5347)+v(4074)*v(5348)+v(4080)*v(5349)+v(4086)*v(5350)+v(4092)*v(5351)+v(4098)*v(5352)+v(4104)*v(5353) v(5313)=v(1493)+v(1375)*v(297)+v(1336)*v(303)+v(1384)*v(312)+v(4044)*v(5355)+v(4050)*v(5356)+v(4056)*v(5357)+v(4062)*v& &(5358)+v(4068)*v(5359)+v(4074)*v(5360)+v(4080)*v(5361)+v(4086)*v(5362)+v(4092)*v(5363)+v(4098)*v(5364)+v(4104)*v(5365) v(5314)=v(1376)*v(297)+v(1337)*v(303)+v(1385)*v(312)+v(4044)*v(5367)+v(4050)*v(5368)+v(4056)*v(5369)+v(4062)*v(5370)+v& &(4068)*v(5371)+v(4074)*v(5372)+v(4080)*v(5373)+v(4086)*v(5374)+v(4092)*v(5375)+v(4098)*v(5376)+v(4104)*v(5377) v(5315)=v(1377)*v(297)+v(1338)*v(303)+v(1386)*v(312)+v(4044)*v(5379)+v(4050)*v(5380)+v(4056)*v(5381)+v(4062)*v(5382)+v& &(4068)*v(5383)+v(4074)*v(5384)+v(4080)*v(5385)+v(4086)*v(5386)+v(4092)*v(5387)+v(4098)*v(5388)+v(4104)*v(5389) v(5316)=v(1471)+v(1378)*v(297)+v(1339)*v(303)+v(1387)*v(312)+v(4044)*v(5391)+v(4050)*v(5392)+v(4056)*v(5393)+v(4062)*v& &(5394)+v(4068)*v(5395)+v(4074)*v(5396)+v(4080)*v(5397)+v(4086)*v(5398)+v(4092)*v(5399)+v(4098)*v(5400)+v(4104)*v(5401) v(5317)=v(1379)*v(297)+v(1340)*v(303)+v(1388)*v(312)+v(4044)*v(5403)+v(4050)*v(5404)+v(4056)*v(5405)+v(4062)*v(5406)+v& &(4068)*v(5407)+v(4074)*v(5408)+v(4080)*v(5409)+v(4086)*v(5410)+v(4092)*v(5411)+v(4098)*v(5412)+v(4104)*v(5413) v(5318)=v(1380)*v(297)+v(1341)*v(303)+v(1389)*v(312)+v(4044)*v(5415)+v(4050)*v(5416)+v(4056)*v(5417)+v(4062)*v(5418)+v& &(4068)*v(5419)+v(4074)*v(5420)+v(4080)*v(5421)+v(4086)*v(5422)+v(4092)*v(5423)+v(4098)*v(5424)+v(4104)*v(5425) v(5330)=v(1354)*v(298)+v(1414)*v(307)+v(1423)*v(313)+v(4045)*v(5319)+v(4051)*v(5320)+v(4057)*v(5321)+v(4063)*v(5322)+v& &(4069)*v(5323)+v(4075)*v(5324)+v(4081)*v(5325)+v(4087)*v(5326)+v(4093)*v(5327)+v(4099)*v(5328)+v(4105)*v(5329) v(5342)=v(1453)+v(1355)*v(298)+v(1415)*v(307)+v(1424)*v(313)+v(4045)*v(5331)+v(4051)*v(5332)+v(4057)*v(5333)+v(4063)*v& &(5334)+v(4069)*v(5335)+v(4075)*v(5336)+v(4081)*v(5337)+v(4087)*v(5338)+v(4093)*v(5339)+v(4099)*v(5340)+v(4105)*v(5341) v(5354)=v(1356)*v(298)+v(1416)*v(307)+v(1425)*v(313)+v(4045)*v(5343)+v(4051)*v(5344)+v(4057)*v(5345)+v(4063)*v(5346)+v& &(4069)*v(5347)+v(4075)*v(5348)+v(4081)*v(5349)+v(4087)*v(5350)+v(4093)*v(5351)+v(4099)*v(5352)+v(4105)*v(5353) v(5366)=v(1357)*v(298)+v(1417)*v(307)+v(1426)*v(313)+v(4045)*v(5355)+v(4051)*v(5356)+v(4057)*v(5357)+v(4063)*v(5358)+v& &(4069)*v(5359)+v(4075)*v(5360)+v(4081)*v(5361)+v(4087)*v(5362)+v(4093)*v(5363)+v(4099)*v(5364)+v(4105)*v(5365) v(5378)=v(1475)+v(1358)*v(298)+v(1418)*v(307)+v(1427)*v(313)+v(4045)*v(5367)+v(4051)*v(5368)+v(4057)*v(5369)+v(4063)*v& &(5370)+v(4069)*v(5371)+v(4075)*v(5372)+v(4081)*v(5373)+v(4087)*v(5374)+v(4093)*v(5375)+v(4099)*v(5376)+v(4105)*v(5377) v(5390)=v(1359)*v(298)+v(1419)*v(307)+v(1428)*v(313)+v(4045)*v(5379)+v(4051)*v(5380)+v(4057)*v(5381)+v(4063)*v(5382)+v& &(4069)*v(5383)+v(4075)*v(5384)+v(4081)*v(5385)+v(4087)*v(5386)+v(4093)*v(5387)+v(4099)*v(5388)+v(4105)*v(5389) v(5402)=v(1360)*v(298)+v(1420)*v(307)+v(1429)*v(313)+v(4045)*v(5391)+v(4051)*v(5392)+v(4057)*v(5393)+v(4063)*v(5394)+v& &(4069)*v(5395)+v(4075)*v(5396)+v(4081)*v(5397)+v(4087)*v(5398)+v(4093)*v(5399)+v(4099)*v(5400)+v(4105)*v(5401) v(5414)=v(1480)+v(1361)*v(298)+v(1421)*v(307)+v(1430)*v(313)+v(4045)*v(5403)+v(4051)*v(5404)+v(4057)*v(5405)+v(4063)*v& &(5406)+v(4069)*v(5407)+v(4075)*v(5408)+v(4081)*v(5409)+v(4087)*v(5410)+v(4093)*v(5411)+v(4099)*v(5412)+v(4105)*v(5413) v(5426)=v(1362)*v(298)+v(1422)*v(307)+v(1431)*v(313)+v(4045)*v(5415)+v(4051)*v(5416)+v(4057)*v(5417)+v(4063)*v(5418)+v& &(4069)*v(5419)+v(4075)*v(5420)+v(4081)*v(5421)+v(4087)*v(5422)+v(4093)*v(5423)+v(4099)*v(5424)+v(4105)*v(5425) v(5427)=v(1390)*v(299)+v(1402)*v(311)+v(1342)*v(314)+v(4046)*v(5319)+v(4052)*v(5320)+v(4058)*v(5321)+v(4064)*v(5322)+v& &(4070)*v(5323)+v(4076)*v(5324)+v(4082)*v(5325)+v(4088)*v(5326)+v(4094)*v(5327)+v(4100)*v(5328)+v(4106)*v(5329) v(5428)=v(1391)*v(299)+v(1403)*v(311)+v(1343)*v(314)+v(4046)*v(5331)+v(4052)*v(5332)+v(4058)*v(5333)+v(4064)*v(5334)+v& &(4070)*v(5335)+v(4076)*v(5336)+v(4082)*v(5337)+v(4088)*v(5338)+v(4094)*v(5339)+v(4100)*v(5340)+v(4106)*v(5341) v(5429)=v(1461)+v(1393)*v(299)+v(1405)*v(311)+v(1345)*v(314)+v(4046)*v(5343)+v(4052)*v(5344)+v(4058)*v(5345)+v(4064)*v& &(5346)+v(4070)*v(5347)+v(4076)*v(5348)+v(4082)*v(5349)+v(4088)*v(5350)+v(4094)*v(5351)+v(4100)*v(5352)+v(4106)*v(5353) v(5430)=v(1394)*v(299)+v(1406)*v(311)+v(1346)*v(314)+v(4046)*v(5355)+v(4052)*v(5356)+v(4058)*v(5357)+v(4064)*v(5358)+v& &(4070)*v(5359)+v(4076)*v(5360)+v(4082)*v(5361)+v(4088)*v(5362)+v(4094)*v(5363)+v(4100)*v(5364)+v(4106)*v(5365) v(5431)=v(1395)*v(299)+v(1407)*v(311)+v(1347)*v(314)+v(4046)*v(5367)+v(4052)*v(5368)+v(4058)*v(5369)+v(4064)*v(5370)+v& &(4070)*v(5371)+v(4076)*v(5372)+v(4082)*v(5373)+v(4088)*v(5374)+v(4094)*v(5375)+v(4100)*v(5376)+v(4106)*v(5377) v(5432)=v(1484)+v(1397)*v(299)+v(1409)*v(311)+v(1349)*v(314)+v(4046)*v(5379)+v(4052)*v(5380)+v(4058)*v(5381)+v(4064)*v& &(5382)+v(4070)*v(5383)+v(4076)*v(5384)+v(4082)*v(5385)+v(4088)*v(5386)+v(4094)*v(5387)+v(4100)*v(5388)+v(4106)*v(5389) v(5433)=v(1398)*v(299)+v(1410)*v(311)+v(1350)*v(314)+v(4046)*v(5391)+v(4052)*v(5392)+v(4058)*v(5393)+v(4064)*v(5394)+v& &(4070)*v(5395)+v(4076)*v(5396)+v(4082)*v(5397)+v(4088)*v(5398)+v(4094)*v(5399)+v(4100)*v(5400)+v(4106)*v(5401) v(5434)=v(1399)*v(299)+v(1411)*v(311)+v(1351)*v(314)+v(4046)*v(5403)+v(4052)*v(5404)+v(4058)*v(5405)+v(4064)*v(5406)+v& &(4070)*v(5407)+v(4076)*v(5408)+v(4082)*v(5409)+v(4088)*v(5410)+v(4094)*v(5411)+v(4100)*v(5412)+v(4106)*v(5413) v(5435)=v(1489)+v(1401)*v(299)+v(1413)*v(311)+v(1353)*v(314)+v(4046)*v(5415)+v(4052)*v(5416)+v(4058)*v(5417)+v(4064)*v& &(5418)+v(4070)*v(5419)+v(4076)*v(5420)+v(4082)*v(5421)+v(4088)*v(5422)+v(4094)*v(5423)+v(4100)*v(5424)+v(4106)*v(5425) v(5436)=v(1480)+v(1423)*v(297)+v(1354)*v(303)+v(1414)*v(312)+v(4047)*v(5319)+v(4053)*v(5320)+v(4059)*v(5321)+v(4065)*v& &(5322)+v(4071)*v(5323)+v(4077)*v(5324)+v(4083)*v(5325)+v(4089)*v(5326)+v(4095)*v(5327)+v(4101)*v(5328)+v(4107)*v(5329) v(5437)=v(1424)*v(297)+v(1355)*v(303)+v(1415)*v(312)+v(4047)*v(5331)+v(4053)*v(5332)+v(4059)*v(5333)+v(4065)*v(5334)+v& &(4071)*v(5335)+v(4077)*v(5336)+v(4083)*v(5337)+v(4089)*v(5338)+v(4095)*v(5339)+v(4101)*v(5340)+v(4107)*v(5341) v(5438)=v(1425)*v(297)+v(1356)*v(303)+v(1416)*v(312)+v(4047)*v(5343)+v(4053)*v(5344)+v(4059)*v(5345)+v(4065)*v(5346)+v& &(4071)*v(5347)+v(4077)*v(5348)+v(4083)*v(5349)+v(4089)*v(5350)+v(4095)*v(5351)+v(4101)*v(5352)+v(4107)*v(5353) v(5439)=v(1453)+v(1426)*v(297)+v(1357)*v(303)+v(1417)*v(312)+v(4047)*v(5355)+v(4053)*v(5356)+v(4059)*v(5357)+v(4065)*v& &(5358)+v(4071)*v(5359)+v(4077)*v(5360)+v(4083)*v(5361)+v(4089)*v(5362)+v(4095)*v(5363)+v(4101)*v(5364)+v(4107)*v(5365) v(5440)=v(1427)*v(297)+v(1358)*v(303)+v(1418)*v(312)+v(4047)*v(5367)+v(4053)*v(5368)+v(4059)*v(5369)+v(4065)*v(5370)+v& &(4071)*v(5371)+v(4077)*v(5372)+v(4083)*v(5373)+v(4089)*v(5374)+v(4095)*v(5375)+v(4101)*v(5376)+v(4107)*v(5377) v(5441)=v(1428)*v(297)+v(1359)*v(303)+v(1419)*v(312)+v(4047)*v(5379)+v(4053)*v(5380)+v(4059)*v(5381)+v(4065)*v(5382)+v& &(4071)*v(5383)+v(4077)*v(5384)+v(4083)*v(5385)+v(4089)*v(5386)+v(4095)*v(5387)+v(4101)*v(5388)+v(4107)*v(5389) v(5442)=v(1475)+v(1429)*v(297)+v(1360)*v(303)+v(1420)*v(312)+v(4047)*v(5391)+v(4053)*v(5392)+v(4059)*v(5393)+v(4065)*v& &(5394)+v(4071)*v(5395)+v(4077)*v(5396)+v(4083)*v(5397)+v(4089)*v(5398)+v(4095)*v(5399)+v(4101)*v(5400)+v(4107)*v(5401) v(5443)=v(1430)*v(297)+v(1361)*v(303)+v(1421)*v(312)+v(4047)*v(5403)+v(4053)*v(5404)+v(4059)*v(5405)+v(4065)*v(5406)+v& &(4071)*v(5407)+v(4077)*v(5408)+v(4083)*v(5409)+v(4089)*v(5410)+v(4095)*v(5411)+v(4101)*v(5412)+v(4107)*v(5413) v(5444)=v(1431)*v(297)+v(1362)*v(303)+v(1422)*v(312)+v(4047)*v(5415)+v(4053)*v(5416)+v(4059)*v(5417)+v(4065)*v(5418)+v& &(4071)*v(5419)+v(4077)*v(5420)+v(4083)*v(5421)+v(4089)*v(5422)+v(4095)*v(5423)+v(4101)*v(5424)+v(4107)*v(5425) v(5445)=v(1342)*v(298)+v(1390)*v(307)+v(1402)*v(313)+v(4048)*v(5319)+v(4054)*v(5320)+v(4060)*v(5321)+v(4066)*v(5322)+v& &(4072)*v(5323)+v(4078)*v(5324)+v(4084)*v(5325)+v(4090)*v(5326)+v(4096)*v(5327)+v(4102)*v(5328)+v(4108)*v(5329) v(5446)=v(1489)+v(1343)*v(298)+v(1391)*v(307)+v(1403)*v(313)+v(4048)*v(5331)+v(4054)*v(5332)+v(4060)*v(5333)+v(4066)*v& &(5334)+v(4072)*v(5335)+v(4078)*v(5336)+v(4084)*v(5337)+v(4090)*v(5338)+v(4096)*v(5339)+v(4102)*v(5340)+v(4108)*v(5341) v(5447)=v(1345)*v(298)+v(1393)*v(307)+v(1405)*v(313)+v(4048)*v(5343)+v(4054)*v(5344)+v(4060)*v(5345)+v(4066)*v(5346)+v& &(4072)*v(5347)+v(4078)*v(5348)+v(4084)*v(5349)+v(4090)*v(5350)+v(4096)*v(5351)+v(4102)*v(5352)+v(4108)*v(5353) v(5448)=v(1346)*v(298)+v(1394)*v(307)+v(1406)*v(313)+v(4048)*v(5355)+v(4054)*v(5356)+v(4060)*v(5357)+v(4066)*v(5358)+v& &(4072)*v(5359)+v(4078)*v(5360)+v(4084)*v(5361)+v(4090)*v(5362)+v(4096)*v(5363)+v(4102)*v(5364)+v(4108)*v(5365) v(5449)=v(1461)+v(1347)*v(298)+v(1395)*v(307)+v(1407)*v(313)+v(4048)*v(5367)+v(4054)*v(5368)+v(4060)*v(5369)+v(4066)*v& &(5370)+v(4072)*v(5371)+v(4078)*v(5372)+v(4084)*v(5373)+v(4090)*v(5374)+v(4096)*v(5375)+v(4102)*v(5376)+v(4108)*v(5377) v(5450)=v(1349)*v(298)+v(1397)*v(307)+v(1409)*v(313)+v(4048)*v(5379)+v(4054)*v(5380)+v(4060)*v(5381)+v(4066)*v(5382)+v& &(4072)*v(5383)+v(4078)*v(5384)+v(4084)*v(5385)+v(4090)*v(5386)+v(4096)*v(5387)+v(4102)*v(5388)+v(4108)*v(5389) v(5451)=v(1350)*v(298)+v(1398)*v(307)+v(1410)*v(313)+v(4048)*v(5391)+v(4054)*v(5392)+v(4060)*v(5393)+v(4066)*v(5394)+v& &(4072)*v(5395)+v(4078)*v(5396)+v(4084)*v(5397)+v(4090)*v(5398)+v(4096)*v(5399)+v(4102)*v(5400)+v(4108)*v(5401) v(5452)=v(1484)+v(1351)*v(298)+v(1399)*v(307)+v(1411)*v(313)+v(4048)*v(5403)+v(4054)*v(5404)+v(4060)*v(5405)+v(4066)*v& &(5406)+v(4072)*v(5407)+v(4078)*v(5408)+v(4084)*v(5409)+v(4090)*v(5410)+v(4096)*v(5411)+v(4102)*v(5412)+v(4108)*v(5413) v(5453)=v(1353)*v(298)+v(1401)*v(307)+v(1413)*v(313)+v(4048)*v(5415)+v(4054)*v(5416)+v(4060)*v(5417)+v(4066)*v(5418)+v& &(4072)*v(5419)+v(4078)*v(5420)+v(4084)*v(5421)+v(4090)*v(5422)+v(4096)*v(5423)+v(4102)*v(5424)+v(4108)*v(5425) v(5454)=v(1381)*v(299)+v(1372)*v(311)+v(1333)*v(314)+v(4049)*v(5319)+v(4055)*v(5320)+v(4061)*v(5321)+v(4067)*v(5322)+v& &(4073)*v(5323)+v(4079)*v(5324)+v(4085)*v(5325)+v(4091)*v(5326)+v(4097)*v(5327)+v(4103)*v(5328)+v(4109)*v(5329) v(5455)=v(1382)*v(299)+v(1373)*v(311)+v(1334)*v(314)+v(4049)*v(5331)+v(4055)*v(5332)+v(4061)*v(5333)+v(4067)*v(5334)+v& &(4073)*v(5335)+v(4079)*v(5336)+v(4085)*v(5337)+v(4091)*v(5338)+v(4097)*v(5339)+v(4103)*v(5340)+v(4109)*v(5341) v(5456)=v(1471)+v(1383)*v(299)+v(1374)*v(311)+v(1335)*v(314)+v(4049)*v(5343)+v(4055)*v(5344)+v(4061)*v(5345)+v(4067)*v& &(5346)+v(4073)*v(5347)+v(4079)*v(5348)+v(4085)*v(5349)+v(4091)*v(5350)+v(4097)*v(5351)+v(4103)*v(5352)+v(4109)*v(5353) v(5457)=v(1384)*v(299)+v(1375)*v(311)+v(1336)*v(314)+v(4049)*v(5355)+v(4055)*v(5356)+v(4061)*v(5357)+v(4067)*v(5358)+v& &(4073)*v(5359)+v(4079)*v(5360)+v(4085)*v(5361)+v(4091)*v(5362)+v(4097)*v(5363)+v(4103)*v(5364)+v(4109)*v(5365) v(5458)=v(1385)*v(299)+v(1376)*v(311)+v(1337)*v(314)+v(4049)*v(5367)+v(4055)*v(5368)+v(4061)*v(5369)+v(4067)*v(5370)+v& &(4073)*v(5371)+v(4079)*v(5372)+v(4085)*v(5373)+v(4091)*v(5374)+v(4097)*v(5375)+v(4103)*v(5376)+v(4109)*v(5377) v(5459)=v(1469)+v(1386)*v(299)+v(1377)*v(311)+v(1338)*v(314)+v(4049)*v(5379)+v(4055)*v(5380)+v(4061)*v(5381)+v(4067)*v& &(5382)+v(4073)*v(5383)+v(4079)*v(5384)+v(4085)*v(5385)+v(4091)*v(5386)+v(4097)*v(5387)+v(4103)*v(5388)+v(4109)*v(5389) v(5460)=v(1387)*v(299)+v(1378)*v(311)+v(1339)*v(314)+v(4049)*v(5391)+v(4055)*v(5392)+v(4061)*v(5393)+v(4067)*v(5394)+v& &(4073)*v(5395)+v(4079)*v(5396)+v(4085)*v(5397)+v(4091)*v(5398)+v(4097)*v(5399)+v(4103)*v(5400)+v(4109)*v(5401) v(5461)=v(1388)*v(299)+v(1379)*v(311)+v(1340)*v(314)+v(4049)*v(5403)+v(4055)*v(5404)+v(4061)*v(5405)+v(4067)*v(5406)+v& &(4073)*v(5407)+v(4079)*v(5408)+v(4085)*v(5409)+v(4091)*v(5410)+v(4097)*v(5411)+v(4103)*v(5412)+v(4109)*v(5413) v(5462)=v(1493)+v(1389)*v(299)+v(1380)*v(311)+v(1341)*v(314)+v(4049)*v(5415)+v(4055)*v(5416)+v(4061)*v(5417)+v(4067)*v& &(5418)+v(4073)*v(5419)+v(4079)*v(5420)+v(4085)*v(5421)+v(4091)*v(5422)+v(4097)*v(5423)+v(4103)*v(5424)+v(4109)*v(5425) sigma(1)=v(5555)*(v(303)*v(960)+v(312)*v(961)+v(297)*v(962)) sigma(2)=v(5555)*(v(298)*v(952)+v(313)*v(953)+v(307)*v(954)) sigma(3)=v(5555)*(v(314)*v(956)+v(311)*v(957)+v(299)*v(958)) sigma(4)=v(5555)*(v(303)*v(952)+v(297)*v(953)+v(312)*v(954)) sigma(5)=v(5555)*(v(314)*v(960)+v(299)*v(961)+v(311)*v(962)) sigma(6)=v(5555)*(v(298)*v(956)+v(313)*v(957)+v(307)*v(958)) ddsdde(1,1)=(Fnew(1)*v(5310)+Fnew(4)*v(5313)+Fnew(7)*v(5316))*v(5555) ddsdde(1,2)=(Fnew(2)*v(5311)+Fnew(5)*v(5314)+Fnew(8)*v(5317))*v(5555) ddsdde(1,3)=(Fnew(3)*v(5312)+Fnew(6)*v(5315)+Fnew(9)*v(5318))*v(5555) ddsdde(1,4)=2d0*(Fnew(8)*v(5310)+Fnew(4)*v(5311)+Fnew(2)*v(5313)+Fnew(7)*v(5314)+Fnew(5)*v(5316)+Fnew(1)*v(5317))*v& &(6423) ddsdde(1,5)=2d0*(Fnew(6)*v(5310)+Fnew(7)*v(5312)+Fnew(9)*v(5313)+Fnew(1)*v(5315)+Fnew(3)*v(5316)+Fnew(4)*v(5318))*v& &(6423) ddsdde(1,6)=2d0*(Fnew(9)*v(5311)+Fnew(5)*v(5312)+Fnew(3)*v(5314)+Fnew(8)*v(5315)+Fnew(6)*v(5317)+Fnew(2)*v(5318))*v& &(6423) ddsdde(2,1)=(Fnew(1)*v(5330)+Fnew(4)*v(5366)+Fnew(7)*v(5402))*v(5555) ddsdde(2,2)=(Fnew(2)*v(5342)+Fnew(5)*v(5378)+Fnew(8)*v(5414))*v(5555) ddsdde(2,3)=(Fnew(3)*v(5354)+Fnew(6)*v(5390)+Fnew(9)*v(5426))*v(5555) ddsdde(2,4)=2d0*(Fnew(8)*v(5330)+Fnew(4)*v(5342)+Fnew(2)*v(5366)+Fnew(7)*v(5378)+Fnew(5)*v(5402)+Fnew(1)*v(5414))*v& &(6423) ddsdde(2,5)=2d0*(Fnew(6)*v(5330)+Fnew(7)*v(5354)+Fnew(9)*v(5366)+Fnew(1)*v(5390)+Fnew(3)*v(5402)+Fnew(4)*v(5426))*v& &(6423) ddsdde(2,6)=2d0*(Fnew(9)*v(5342)+Fnew(5)*v(5354)+Fnew(3)*v(5378)+Fnew(8)*v(5390)+Fnew(6)*v(5414)+Fnew(2)*v(5426))*v& &(6423) ddsdde(3,1)=(Fnew(1)*v(5427)+Fnew(4)*v(5430)+Fnew(7)*v(5433))*v(5555) ddsdde(3,2)=(Fnew(2)*v(5428)+Fnew(5)*v(5431)+Fnew(8)*v(5434))*v(5555) ddsdde(3,3)=(Fnew(3)*v(5429)+Fnew(6)*v(5432)+Fnew(9)*v(5435))*v(5555) ddsdde(3,4)=2d0*(Fnew(8)*v(5427)+Fnew(4)*v(5428)+Fnew(2)*v(5430)+Fnew(7)*v(5431)+Fnew(5)*v(5433)+Fnew(1)*v(5434))*v& &(6423) ddsdde(3,5)=2d0*(Fnew(6)*v(5427)+Fnew(7)*v(5429)+Fnew(9)*v(5430)+Fnew(1)*v(5432)+Fnew(3)*v(5433)+Fnew(4)*v(5435))*v& &(6423) ddsdde(3,6)=2d0*(Fnew(9)*v(5428)+Fnew(5)*v(5429)+Fnew(3)*v(5431)+Fnew(8)*v(5432)+Fnew(6)*v(5434)+Fnew(2)*v(5435))*v& &(6423) ddsdde(4,1)=(Fnew(1)*v(5436)+Fnew(4)*v(5439)+Fnew(7)*v(5442))*v(5555) ddsdde(4,2)=(Fnew(2)*v(5437)+Fnew(5)*v(5440)+Fnew(8)*v(5443))*v(5555) ddsdde(4,3)=(Fnew(3)*v(5438)+Fnew(6)*v(5441)+Fnew(9)*v(5444))*v(5555) ddsdde(4,4)=2d0*(Fnew(8)*v(5436)+Fnew(4)*v(5437)+Fnew(2)*v(5439)+Fnew(7)*v(5440)+Fnew(5)*v(5442)+Fnew(1)*v(5443))*v& &(6423) ddsdde(4,5)=2d0*(Fnew(6)*v(5436)+Fnew(7)*v(5438)+Fnew(9)*v(5439)+Fnew(1)*v(5441)+Fnew(3)*v(5442)+Fnew(4)*v(5444))*v& &(6423) ddsdde(4,6)=2d0*(Fnew(9)*v(5437)+Fnew(5)*v(5438)+Fnew(3)*v(5440)+Fnew(8)*v(5441)+Fnew(6)*v(5443)+Fnew(2)*v(5444))*v& &(6423) ddsdde(5,1)=(Fnew(1)*v(5454)+Fnew(4)*v(5457)+Fnew(7)*v(5460))*v(5555) ddsdde(5,2)=(Fnew(2)*v(5455)+Fnew(5)*v(5458)+Fnew(8)*v(5461))*v(5555) ddsdde(5,3)=(Fnew(3)*v(5456)+Fnew(6)*v(5459)+Fnew(9)*v(5462))*v(5555) ddsdde(5,4)=2d0*(Fnew(8)*v(5454)+Fnew(4)*v(5455)+Fnew(2)*v(5457)+Fnew(7)*v(5458)+Fnew(5)*v(5460)+Fnew(1)*v(5461))*v& &(6423) ddsdde(5,5)=2d0*(Fnew(6)*v(5454)+Fnew(7)*v(5456)+Fnew(9)*v(5457)+Fnew(1)*v(5459)+Fnew(3)*v(5460)+Fnew(4)*v(5462))*v& &(6423) ddsdde(5,6)=2d0*(Fnew(9)*v(5455)+Fnew(5)*v(5456)+Fnew(3)*v(5458)+Fnew(8)*v(5459)+Fnew(6)*v(5461)+Fnew(2)*v(5462))*v& &(6423) ddsdde(6,1)=(Fnew(1)*v(5445)+Fnew(4)*v(5448)+Fnew(7)*v(5451))*v(5555) ddsdde(6,2)=(Fnew(2)*v(5446)+Fnew(5)*v(5449)+Fnew(8)*v(5452))*v(5555) ddsdde(6,3)=(Fnew(3)*v(5447)+Fnew(6)*v(5450)+Fnew(9)*v(5453))*v(5555) ddsdde(6,4)=2d0*(Fnew(8)*v(5445)+Fnew(4)*v(5446)+Fnew(2)*v(5448)+Fnew(7)*v(5449)+Fnew(5)*v(5451)+Fnew(1)*v(5452))*v& &(6423) ddsdde(6,5)=2d0*(Fnew(6)*v(5445)+Fnew(7)*v(5447)+Fnew(9)*v(5448)+Fnew(1)*v(5450)+Fnew(3)*v(5451)+Fnew(4)*v(5453))*v& &(6423) ddsdde(6,6)=2d0*(Fnew(9)*v(5446)+Fnew(5)*v(5447)+Fnew(3)*v(5449)+Fnew(8)*v(5450)+Fnew(6)*v(5452)+Fnew(2)*v(5453))*v& &(6423) statevNew(1)=(-1d0)+v(248) statevNew(2)=(-1d0)+v(266) statevNew(3)=(-1d0)+v(286) statevNew(4)=v(288) statevNew(5)=v(290) statevNew(6)=v(292) statevNew(7)=v(293) statevNew(8)=v(294) statevNew(9)=v(295) statevNew(10)=statev(10)+v(5541) statevNew(11)=(-1d0)+v(408) statevNew(12)=(-1d0)+v(426) statevNew(13)=(-1d0)+v(446) statevNew(14)=v(448) statevNew(15)=v(450) statevNew(16)=v(452) statevNew(17)=v(453) statevNew(18)=v(454) statevNew(19)=v(455) statevNew(20)=(-1d0)+v(471) statevNew(21)=(-1d0)+v(489) statevNew(22)=(-1d0)+v(509) statevNew(23)=v(511) statevNew(24)=v(513) statevNew(25)=v(515) statevNew(26)=v(516) statevNew(27)=v(517) statevNew(28)=v(518) statevNew(29)=v(125) statevNew(30)=v(128) statevNew(31)=v(130) statevNew(32)=v(132) statevNew(33)=v(134) statevNew(34)=v(136) statevNew(35)=v(138) statevNew(36)=v(140) statevNew(37)=v(141) statevNew(38)=v(142) statevNew(39)=v(143) statevNew(40)=v(145) statevNew(41)=v(146) statevNew(42)=v(147) statevNew(43)=v(148) statevNew(44)=v(149) statevNew(45)=v(150) statevNew(46)=v(151) statevNew(47)=v(152) statevNew(48)=v(153) statevNew(49)=v(154) statevNew(50)=(-1d0)+statev(57)*v(602)+statev(55)*v(638)+v(5534)*v(640) statevNew(51)=(-1d0)+statev(53)*v(602)+statev(58)*v(637)+v(5535)*v(642) statevNew(52)=(-1d0)+statev(54)*v(637)+statev(56)*v(638)+v(5536)*v(644) statevNew(53)=v(5535)*v(602)+statev(58)*v(638)+statev(53)*v(640) statevNew(54)=statev(56)*v(602)+v(5536)*v(637)+statev(54)*v(642) statevNew(55)=statev(57)*v(637)+v(5534)*v(638)+statev(55)*v(644) statevNew(56)=statev(54)*v(602)+v(5536)*v(638)+statev(56)*v(640) statevNew(57)=v(5534)*v(602)+statev(55)*v(637)+statev(57)*v(642) statevNew(58)=v(5535)*v(637)+statev(53)*v(638)+statev(58)*v(644) END SUBROUTINE end module acegen_mod
{"hexsha": "1014591d5a00f246635105d6c6cb71feea1d29e3", "size": 953744, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "models/MM2021/src/rmodel.f90", "max_stars_repo_name": "kengwit/MaterialModels", "max_stars_repo_head_hexsha": "97de48a2f3ba8f2d605b892a6e0603c9b3feb42c", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 18, "max_stars_repo_stars_event_min_datetime": "2019-08-12T22:47:14.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-28T01:16:48.000Z", "max_issues_repo_path": "models/MM2021/src/rmodel.f90", "max_issues_repo_name": "kengwit/MaterialModels", "max_issues_repo_head_hexsha": "97de48a2f3ba8f2d605b892a6e0603c9b3feb42c", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2020-08-13T13:43:45.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-19T13:25:19.000Z", "max_forks_repo_path": "models/MM2021/src/rmodel.f90", "max_forks_repo_name": "kengwit/MaterialModels", "max_forks_repo_head_hexsha": "97de48a2f3ba8f2d605b892a6e0603c9b3feb42c", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 21, "max_forks_repo_forks_event_min_datetime": "2019-11-17T00:14:56.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-28T15:03:10.000Z", "avg_line_length": 57.0216429511, "max_line_length": 121, "alphanum_fraction": 0.5954669177, "num_tokens": 566913}
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2021 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine extrapolateshell(yi,yn,ipkon,inum,kon,lakon,nfield,nk, & ne,mi,ndim,orab,ielorien,co,iorienloc,cflag, & ielmat,thicke,ielprop,prop,iflag) ! ! extrapolates field values at the integration points to the ! nodes for user-defined shell elements ! ! iflag=-1: NEG-position ! iflag=0: MID-position ! iflag=1: POS-position ! implicit none ! character*1 cflag character*8 lakon(*) ! integer ipkon(*),inum(*),kon(*),mi(*),ne,iorienloc,nfield,nk,i,j, & ndim,ielorien(mi(3),*),ielmat(mi(3),*),ielprop(*),iflag ! real*8 yi(ndim,mi(1),*),yn(nfield,*),orab(7,*),co(3,*),prop(*), & thicke(mi(3),*) ! do i=1,nk inum(i)=0 enddo ! do i=1,nk do j=1,nfield yn(j,i)=0.d0 enddo enddo ! do i=1,ne ! if(ipkon(i).lt.0) cycle ! if(lakon(i)(1:4).eq.'US45') then call extrapolateshell_us45(yi,yn,ipkon,inum,kon,lakon, & nfield,nk,ne,mi,ndim,orab,ielorien,co,iorienloc,cflag, & ielmat,thicke,ielprop,prop,i,iflag) elseif(lakon(i)(1:3).eq.'US3') then call extrapolateshell_us3(yi,yn,ipkon,inum,kon,lakon, & nfield,nk,ne,mi,ndim,orab,ielorien,co,iorienloc,cflag, & ielmat,thicke,ielprop,prop,i,iflag) else cycle endif ! enddo ! ! taking the mean of nodal contributions coming from different ! elements having the node in common ! do i=1,nk if(inum(i).gt.0) then do j=1,nfield yn(j,i)=yn(j,i)/inum(i) enddo endif enddo ! return end
{"hexsha": "a300ac55698747c0f4e38b734bf2f1fb38803830", "size": 2483, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "ccx_prool/CalculiX/ccx_2.19/src/extrapolateshell.f", "max_stars_repo_name": "alleindrach/calculix-desktop", "max_stars_repo_head_hexsha": "2cb2c434b536eb668ff88bdf82538d22f4f0f711", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "ccx_prool/CalculiX/ccx_2.19/src/extrapolateshell.f", "max_issues_repo_name": "alleindrach/calculix-desktop", "max_issues_repo_head_hexsha": "2cb2c434b536eb668ff88bdf82538d22f4f0f711", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "ccx_prool/CalculiX/ccx_2.19/src/extrapolateshell.f", "max_forks_repo_name": "alleindrach/calculix-desktop", "max_forks_repo_head_hexsha": "2cb2c434b536eb668ff88bdf82538d22f4f0f711", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.2804878049, "max_line_length": 71, "alphanum_fraction": 0.5972613774, "num_tokens": 778}
from numpy.core.fromnumeric import transpose import torch import torch.nn as nn import torchvision.models import torchvision.transforms as tranforms import cv2 from PIL import Image import numpy as np from torchvision.transforms import transforms import random import os gaussain_t = transforms.Compose([ transforms.ToPILImage(), transforms.GaussianBlur(kernel_size=51, sigma=10), ]) inpainting_t = transforms.Compose([ transforms.ToPILImage(), ]) toPIL_t = transforms.Compose([ transforms.ToPILImage(), ]) toTensor = tranforms.Compose([ tranforms.ToTensor(), ]) def preprocessing(imgs, datadir, using_mask=True): mask_path = datadir + '/images_8_mask2' mask_imgs = [os.path.join(mask_path, f) for f in sorted(os.listdir(mask_path))] masks = [] i_train = [i for i in range(imgs.shape[0])] for i in i_train: if(i % 8 == 0): i_train.remove(i) #i_train.remove(1) for i in range(imgs.shape[0]): image = torch.Tensor(imgs[i]) image = image.permute((2,0,1)) mask = torch.ones_like(image) if i in i_train: if using_mask == True: m_img = Image.open(mask_imgs[i]) m_img = toTensor(m_img).cuda() mask = m_img[:3, :, :] image = image * mask image = toPIL_t(image) else: mask = torch.ones_like(image) mask_h, mask_w = int(image.shape[1] / 4), int(image.shape[2] / 4) x = random.randint(0, int(image.shape[1] - image.shape[1]/4)) y = random.randint(0, int(image.shape[2] - image.shape[2]/4)) mask[:, x:x+mask_h, y:mask_w+y] = 0 image = image * mask image = toPIL_t(image) else: print("Not in training set") image = toPIL_t(image) reverse_t = transforms.ToTensor() print('save png') image.save('./preprocess/preprcessed_{}.png'.format(i)) image = reverse_t(image).permute((1, 2, 0)).numpy() print(image.shape) imgs[i] = image masks.append(torch.Tensor(mask).unsqueeze(0)) masks = torch.cat(masks, 0).permute(0, 2, 3, 1) return imgs, masks
{"hexsha": "6694df0e8c5642386c9af46161e981de55a41e50", "size": 2282, "ext": "py", "lang": "Python", "max_stars_repo_path": "preprocessing.py", "max_stars_repo_name": "HGLiu1998/nerf-pytorch", "max_stars_repo_head_hexsha": "3fa976040f1a4ec100dcf6e2ea4695a53f854f6e", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "preprocessing.py", "max_issues_repo_name": "HGLiu1998/nerf-pytorch", "max_issues_repo_head_hexsha": "3fa976040f1a4ec100dcf6e2ea4695a53f854f6e", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "preprocessing.py", "max_forks_repo_name": "HGLiu1998/nerf-pytorch", "max_forks_repo_head_hexsha": "3fa976040f1a4ec100dcf6e2ea4695a53f854f6e", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.0263157895, "max_line_length": 83, "alphanum_fraction": 0.5823838738, "include": true, "reason": "import numpy,from numpy", "num_tokens": 577}
module ThreadsXBenchmarks import JSON using ArgCheck: @argcheck using BangBang using InteractiveUtils: versioninfo using Logging: current_logger using ThreadsX const setup_terminalloggers = """ let Logging = Base.require(Base.PkgId(Base.UUID(0x56ddb016857b54e1b83ddb4d58db5568), "Logging")), TerminalLoggers = Base.require(Base.PkgId( Base.UUID(0x5d786b921e484d6f91516b4477ca9bed), "TerminalLoggers", )) Logging.global_logger(TerminalLoggers.TerminalLogger()) end """ is_using_terminal_logger() = Base.PkgId(parentmodule(typeof(current_logger()))).uuid == Base.UUID(0x5d786b921e484d6f91516b4477ca9bed) function runscript( script::AbstractString, ARGS::AbstractVector{<:AbstractString}; env = nothing, ) @argcheck isfile(script) code = """ $(Base.load_path_setup_code()) $(is_using_terminal_logger() ? setup_terminalloggers : "") let script = popfirst!(ARGS) @eval Base PROGRAM_FILE = \$script include(script) end """ cmd = `$(Base.julia_cmd()) --startup-file=no` if Base.have_color cmd = `$cmd --color=yes` end cmd = `$cmd -e $code $script $ARGS` if env !== nothing fullenv = copy(ENV) for (k, v) in env fullenv[k] = convert(String, v) end cmd = setenv(cmd, fullenv) end run(cmd) end function physical_cores() lines = split(read(`lscpu --parse`, String), "\n", keepempty = false) rows = [map(strip, split(ln, ",")) for ln in lines if !startswith(ln, "#")] return length(Set(r[2] for r in rows)) end function run_nthreads( outdir::AbstractString; nthreads_range::AbstractVector{<:Integer} = 1:physical_cores(), ) @info "Measuring scaling with respect to number of threads" mkpath(outdir) open(versioninfo, joinpath(outdir, "versioninfo.txt"), write = true) scriptdir = joinpath(@__DIR__, "scripts") @info "Running: `scaling_nthreads_baseline.jl`" runscript( joinpath(scriptdir, "scaling_nthreads_baseline.jl"), [joinpath(outdir, "scaling_nthreads_baseline")], env = ["JULIA_NUM_THREADS" => "1"], ) for nthreads in nthreads_range outputstem = joinpath(outdir, "scaling_nthreads-$nthreads") @info "Running: `scaling_nthreads_target.jl` with $nthreads thread(s)" runscript( joinpath(scriptdir, "scaling_nthreads_target.jl"), [outputstem]; env = ["JULIA_NUM_THREADS" => string(nthreads)], ) end return end function run_datasize(outdir::AbstractString; nthreads::Integer = physical_cores()) @info "Measuring scaling with respect to data size" mkpath(outdir) open(versioninfo, joinpath(outdir, "versioninfo.txt"), write = true) @info "Running: `scaling_datasize.jl`" scriptdir = joinpath(@__DIR__, "scripts") runscript( joinpath(scriptdir, "scaling_datasize.jl"), [joinpath(outdir, "scaling_datasize")], env = ["JULIA_NUM_THREADS" => string(nthreads)], ) return end function run_all( outdir::AbstractString; nthreads_range::AbstractVector{<:Integer} = 1:physical_cores(), default_nthreads::Integer = maximum(nthreads_range), ) run_nthreads(outdir; nthreads_range = nthreads_range) # run_datasize(outdir; nthreads = default_nthreads) return end include("loading.jl") end # module
{"hexsha": "2358e7175abab8b117ef7d365ac241c6596b32b4", "size": 3401, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/ThreadsXBenchmarks.jl", "max_stars_repo_name": "tkf/ThreadsXBenchmarks.jl", "max_stars_repo_head_hexsha": "262560c2a39adf642c88112418398d9b736ce1ed", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/ThreadsXBenchmarks.jl", "max_issues_repo_name": "tkf/ThreadsXBenchmarks.jl", "max_issues_repo_head_hexsha": "262560c2a39adf642c88112418398d9b736ce1ed", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/ThreadsXBenchmarks.jl", "max_forks_repo_name": "tkf/ThreadsXBenchmarks.jl", "max_forks_repo_head_hexsha": "262560c2a39adf642c88112418398d9b736ce1ed", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 28.3416666667, "max_line_length": 91, "alphanum_fraction": 0.6686268744, "num_tokens": 909}
import torch import os import random from torch.utils.data import Dataset from PIL import Image import numpy as np import glob # ==================================================================# # == RafD # ==================================================================# class RafD(Dataset): def __init__(self, image_size, mode_data, transform, mode, shuffling=False, verbose=False, **kwargs): self.transform = transform self.image_size = image_size self.shuffling = shuffling self.name = 'RafD' self.verbose = verbose data_root = os.path.join('data', 'RafD', '{}') data_root = data_root.format( 'faces') if mode_data == 'faces' else data_root.format('data') self.lines = sorted( glob.glob(os.path.abspath(os.path.join(data_root, '*.jpg')))) self.mode = 'train' if mode == 'train' else 'test' self.lines = self.get_subjects(self.lines, mode) if self.verbose: print('Start preprocessing %s: %s!' % (self.name, mode)) random.seed(1234) self.preprocess() if self.verbose: print('Finished preprocessing %s: %s (%d)!' % (self.name, mode, self.num_data)) def preprocess(self): self.selected_attrs = [ 'neutral', 'angry', 'contemptuous', 'disgusted', 'fearful', 'happy', 'sad', 'surprised' ] self.idx2cls = { idx: key for idx, key in enumerate(self.selected_attrs) } self.cls2idx = { key: idx for idx, key in enumerate(self.selected_attrs) } self.filenames = [] self.labels = [] lines = self.lines if self.shuffling: random.shuffle(lines) for i, line in enumerate(lines): _class = os.path.basename(line).split('_')[-2] pose = int( os.path.basename(line).split('_')[0].replace('Rafd', '')) if pose == 0 or pose == 180: continue label = [] for value in self.selected_attrs: if _class == value: label.append(1) else: label.append(0) self.filenames.append(line) self.labels.append(label) self.num_data = len(self.filenames) def get_data(self): return self.filenames, self.labels def __getitem__(self, index): image = Image.open(self.filenames[index]).convert('RGB') label = self.labels[index] return self.transform(image), torch.FloatTensor( label), self.filenames[index] def __len__(self): return self.num_data def shuffle(self, seed): random.seed(seed) random.shuffle(self.filenames) random.seed(seed) random.shuffle(self.labels) def get_subjects(self, lines, mode='train'): subjects = sorted( list( set([os.path.basename(line).split('_')[1] for line in lines]))) split = 10 # 90-10 new_lines = [] if mode == 'train': mode_subjects = subjects[:9 * len(subjects) // split] else: mode_subjects = subjects[9 * len(subjects) // split:] for line in lines: subject = os.path.basename(line).split('_')[1] if subject in mode_subjects: new_lines.append(line) return new_lines def train_inception(batch_size, shuffling=False, num_workers=4, **kwargs): from torchvision.models import inception_v3 from misc.utils import to_var, to_cuda, to_data from torchvision import transforms from torch.utils.data import DataLoader import torch.nn.functional as F import torch import torch.nn as nn import tqdm metadata_path = os.path.join('data', 'RafD', 'normal') # inception Norm image_size = 299 transform = [] window = int(image_size / 10) transform += [ transforms.Resize((image_size + window, image_size + window), interpolation=Image.ANTIALIAS) ] transform += [ transforms.RandomResizedCrop( image_size, scale=(0.7, 1.0), ratio=(0.8, 1.2)) ] transform += [transforms.RandomHorizontalFlip()] transform += [transforms.ToTensor()] transform = transforms.Compose(transform) dataset_train = RafD( image_size, metadata_path, transform, 'train', shuffling=True, **kwargs) dataset_test = RafD( image_size, metadata_path, transform, 'test', shuffling=False, **kwargs) train_loader = DataLoader( dataset=dataset_train, batch_size=batch_size, shuffle=False, num_workers=num_workers) test_loader = DataLoader( dataset=dataset_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) num_labels = len(train_loader.dataset.labels[0]) n_epochs = 100 net = inception_v3(pretrained=True, transform_input=True) net.aux_logits = False num_ftrs = net.fc.in_features net.fc = nn.Linear(num_ftrs, num_labels) net_save = metadata_path + '/inception_v3/{}.pth' if not os.path.isdir(os.path.dirname(net_save)): os.makedirs(os.path.dirname(net_save)) print("Model will be saved at: " + net_save) optimizer = torch.optim.RMSprop(net.parameters(), lr=1e-5) # loss = F.cross_entropy(output, target) to_cuda(net) for epoch in range(n_epochs): LOSS = {'train': [], 'test': []} OUTPUT = {'train': [], 'test': []} LABEL = {'train': [], 'test': []} net.eval() for i, (data, label, files) in tqdm.tqdm( enumerate(test_loader), total=len(test_loader), desc='Validating Inception V3 | RafD'): data = to_var(data, volatile=True) label = to_var(torch.max(label, dim=1)[1], volatile=True) out = net(data) loss = F.cross_entropy(out, label) # ipdb.set_trace() LOSS['test'].append(to_data(loss, cpu=True)[0]) OUTPUT['test'].extend( to_data(F.softmax(out, dim=1).max(1)[1], cpu=True).tolist()) LABEL['test'].extend(to_data(label, cpu=True).tolist()) acc_test = (np.array(OUTPUT['test']) == np.array(LABEL['test'])).mean() print('[Test] Loss: {:.4f} Acc: {:.4f}'.format( np.array(LOSS['test']).mean(), acc_test)) net.train() for i, (data, label, files) in tqdm.tqdm( enumerate(train_loader), total=len(train_loader), desc='[{}/{}] Train Inception V3 | RafD'.format( str(epoch).zfill(5), str(n_epochs).zfill(5))): # ipdb.set_trace() data = to_var(data) label = to_var(torch.max(label, dim=1)[1]) out = net(data) # ipdb.set_trace() loss = F.cross_entropy(out, label) optimizer.zero_grad() loss.backward() optimizer.step() LOSS['train'].append(to_data(loss, cpu=True)[0]) OUTPUT['train'].extend( to_data(F.softmax(out, dim=1).max(1)[1], cpu=True).tolist()) LABEL['train'].extend(to_data(label, cpu=True).tolist()) acc_train = (np.array(OUTPUT['train']) == np.array( LABEL['train'])).mean() print('[Train] Loss: {:.4f} Acc: {:.4f}'.format( np.array(LOSS['train']).mean(), acc_train)) torch.save(net.state_dict(), net_save.format(str(epoch).zfill(5))) train_loader.dataset.shuffle(epoch)
{"hexsha": "2d05303466b9f3df7ce0197060f1d71b2da8a36a", "size": 7945, "ext": "py", "lang": "Python", "max_stars_repo_path": "datasets/RafD.py", "max_stars_repo_name": "BCV-Uniandes/SMIT", "max_stars_repo_head_hexsha": "c1084aa5040ac18a48db7679e050c4ce577b8535", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 41, "max_stars_repo_stars_event_min_datetime": "2019-09-05T09:31:23.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-01T13:13:40.000Z", "max_issues_repo_path": "datasets/RafD.py", "max_issues_repo_name": "BCV-Uniandes/SMIT", "max_issues_repo_head_hexsha": "c1084aa5040ac18a48db7679e050c4ce577b8535", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 4, "max_issues_repo_issues_event_min_datetime": "2019-09-26T13:07:07.000Z", "max_issues_repo_issues_event_max_datetime": "2020-12-29T06:55:08.000Z", "max_forks_repo_path": "datasets/RafD.py", "max_forks_repo_name": "BCV-Uniandes/SMIT", "max_forks_repo_head_hexsha": "c1084aa5040ac18a48db7679e050c4ce577b8535", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 14, "max_forks_repo_forks_event_min_datetime": "2019-09-05T09:46:15.000Z", "max_forks_repo_forks_event_max_datetime": "2021-11-07T11:14:01.000Z", "avg_line_length": 33.5232067511, "max_line_length": 79, "alphanum_fraction": 0.5392070485, "include": true, "reason": "import numpy", "num_tokens": 1775}
""" @author: hugonnet get table of glacier number and areas for Table S2 """ import os import pandas as pd import numpy as np df=pd.read_csv('/home/atom/data/validation/Hugonnet_2020/dhdt_int_HR.csv') list_sites = list(set(list(df.site))) nb_gla = [] area_gla = [] for site in list_sites: nb_gla.append(len(df[df.site==site])) area_gla.append(np.nansum(df[df.site==site].area.values/1000000)) df_out = pd.DataFrame() df_out['site']=list_sites df_out['nb_gla']=nb_gla df_out['area']=area_gla df_out.to_csv('/home/atom/ongoing/work_worldwide/tables/table_hr_dem_nb.csv')
{"hexsha": "f50b8909e8be63ef06936f2eae5d107c477fe885", "size": 583, "ext": "py", "lang": "Python", "max_stars_repo_path": "dems/hr_dems/get_nb_area_site.py", "max_stars_repo_name": "subond/ww_tvol_study", "max_stars_repo_head_hexsha": "6fbcae251015a7cd49220abbb054914266b3b4a1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 20, "max_stars_repo_stars_event_min_datetime": "2021-04-28T18:11:43.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-09T13:15:56.000Z", "max_issues_repo_path": "dems/hr_dems/get_nb_area_site.py", "max_issues_repo_name": "subond/ww_tvol_study", "max_issues_repo_head_hexsha": "6fbcae251015a7cd49220abbb054914266b3b4a1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 4, "max_issues_repo_issues_event_min_datetime": "2021-04-28T15:51:43.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-02T19:10:25.000Z", "max_forks_repo_path": "dems/hr_dems/get_nb_area_site.py", "max_forks_repo_name": "rhugonnet/ww_tvol_study", "max_forks_repo_head_hexsha": "f29fc2fca358aa169f6b7cc790e6b6f9f8b55c6f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 9, "max_forks_repo_forks_event_min_datetime": "2021-04-28T17:58:27.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-19T05:51:56.000Z", "avg_line_length": 22.4230769231, "max_line_length": 77, "alphanum_fraction": 0.7392795883, "include": true, "reason": "import numpy", "num_tokens": 173}
[STATEMENT] lemma emeasure_count_space_density_singleton: assumes "x \<in> A" "has_density M (count_space A) f" shows "emeasure M {x} = f x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] proof- [PROOF STATE] proof (state) goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] from has_densityD[OF assms(2)] [PROOF STATE] proof (chain) picking this: f \<in> borel_measurable (count_space A) M = density (count_space A) f space (count_space A) \<noteq> {} [PROOF STEP] have nonneg: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0" [PROOF STATE] proof (prove) using this: f \<in> borel_measurable (count_space A) M = density (count_space A) f space (count_space A) \<noteq> {} goal (1 subgoal): 1. \<And>x. x \<in> A \<Longrightarrow> 0 \<le> f x [PROOF STEP] by simp [PROOF STATE] proof (state) this: ?x \<in> A \<Longrightarrow> 0 \<le> f ?x goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] from assms [PROOF STATE] proof (chain) picking this: x \<in> A has_density M (count_space A) f [PROOF STEP] have M: "M = density (count_space A) f" [PROOF STATE] proof (prove) using this: x \<in> A has_density M (count_space A) f goal (1 subgoal): 1. M = density (count_space A) f [PROOF STEP] by (intro has_densityD) [PROOF STATE] proof (state) this: M = density (count_space A) f goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] from assms [PROOF STATE] proof (chain) picking this: x \<in> A has_density M (count_space A) f [PROOF STEP] have "emeasure M {x} = \<integral>\<^sup>+y. f y * indicator {x} y \<partial>count_space A" [PROOF STATE] proof (prove) using this: x \<in> A has_density M (count_space A) f goal (1 subgoal): 1. emeasure M {x} = set_nn_integral (count_space A) {x} f [PROOF STEP] by (simp add: M emeasure_density) [PROOF STATE] proof (state) this: emeasure M {x} = set_nn_integral (count_space A) {x} f goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] also [PROOF STATE] proof (state) this: emeasure M {x} = set_nn_integral (count_space A) {x} f goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] from assms and nonneg [PROOF STATE] proof (chain) picking this: x \<in> A has_density M (count_space A) f ?x \<in> A \<Longrightarrow> 0 \<le> f ?x [PROOF STEP] have "... = f x" [PROOF STATE] proof (prove) using this: x \<in> A has_density M (count_space A) f ?x \<in> A \<Longrightarrow> 0 \<le> f ?x goal (1 subgoal): 1. set_nn_integral (count_space A) {x} f = f x [PROOF STEP] by (subst nn_integral_indicator_singleton) auto [PROOF STATE] proof (state) this: set_nn_integral (count_space A) {x} f = f x goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: emeasure M {x} = f x [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: emeasure M {x} = f x goal (1 subgoal): 1. emeasure M {x} = f x [PROOF STEP] . [PROOF STATE] proof (state) this: emeasure M {x} = f x goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 1325, "file": "Density_Compiler_Density_Predicates", "length": 18}
# -------------- # Importing header files import numpy as np # Path of the file has been stored in variable called 'path' #New record new_record = [[50, 9, 4, 1, 0, 0, 40, 0]] #Code starts here data = np.genfromtxt(path, delimiter=",", skip_header=1) census = np.concatenate([data,new_record], axis=0) # -------------- #Code starts here age = census[:,0] max_age = age.max(axis=0) min_age = age.min(axis=0) age_mean = age.mean() age_std = np.std(age) # -------------- #Code starts here race_0 = census[census[:,2]==0] race_1 = census[census[:,2]==1] race_2 = census[census[:,2]==2] race_3 = census[census[:,2]==3] race_4 = census[census[:,2]==4] len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) print("Race_0: ",len_0) print("Race_1: ",len_1) print("Race_2: ",len_2) print("Race_3: ",len_3) print("Race_4: ",len_4) race_list=[len_0, len_1, len_2, len_3, len_4] minority_race = race_list.index(min(race_list)) # -------------- #Code starts here #Finding Senior citizens senior_citizens = census[census[:,0]>60] #Summing Work Hours working_hours = senior_citizens[:,6] working_hours_sum = working_hours.sum(axis=0) #No of senior citizens senior_citizens_len = len(senior_citizens) #Average working hours avg_working_hours = working_hours_sum/senior_citizens_len print(avg_working_hours) # -------------- #Code starts here high = census[census[:,1]>10] low = census[census[:,1]<=10] avg_pay_high = high[:,7].mean() avg_pay_low = low[:,7].mean()
{"hexsha": "c45f5866801b1ac6fe7f873129b847f289a5f450", "size": 1581, "ext": "py", "lang": "Python", "max_stars_repo_path": "Getting-Started-with-NumPy/code.py", "max_stars_repo_name": "adrunkmechanicalengineer/ga-learner-dsb-repo", "max_stars_repo_head_hexsha": "b8243ad2965845ae00d1a18fe53a144ba47e991b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Getting-Started-with-NumPy/code.py", "max_issues_repo_name": "adrunkmechanicalengineer/ga-learner-dsb-repo", "max_issues_repo_head_hexsha": "b8243ad2965845ae00d1a18fe53a144ba47e991b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Getting-Started-with-NumPy/code.py", "max_forks_repo_name": "adrunkmechanicalengineer/ga-learner-dsb-repo", "max_forks_repo_head_hexsha": "b8243ad2965845ae00d1a18fe53a144ba47e991b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 20.2692307692, "max_line_length": 61, "alphanum_fraction": 0.6438962682, "include": true, "reason": "import numpy", "num_tokens": 505}
import numpy as np import tensorflow as tf from yadlt.models.autoencoders import stacked_denoising_autoencoder from yadlt.utils import datasets, utilities # #################### # # Flags definition # # #################### # flags = tf.app.flags FLAGS = flags.FLAGS # Global configuration flags.DEFINE_string('dataset', 'mnist', 'Which dataset to use. ["mnist", "cifar10", "custom"]') flags.DEFINE_string('train_dataset', '', 'Path to train set .npy file.') flags.DEFINE_string('train_labels', '', 'Path to train labels .npy file.') flags.DEFINE_string('valid_dataset', '', 'Path to valid set .npy file.') flags.DEFINE_string('valid_labels', '', 'Path to valid labels .npy file.') flags.DEFINE_string('test_dataset', '', 'Path to test set .npy file.') flags.DEFINE_string('test_labels', '', 'Path to test labels .npy file.') flags.DEFINE_string('cifar_dir', '', 'Path to the cifar 10 dataset directory.') flags.DEFINE_boolean('do_pretrain', True, 'Whether or not doing unsupervised pretraining.') flags.DEFINE_string('save_predictions', '', 'Path to a .npy file to save predictions of the model.') flags.DEFINE_string('save_layers_output_test', '', 'Path to a .npy file to save test set output from all the layers of the model.') flags.DEFINE_string('save_layers_output_train', '', 'Path to a .npy file to save train set output from all the layers of the model.') flags.DEFINE_integer('seed', -1, 'Seed for the random generators (>= 0). Useful for testing hyperparameters.') flags.DEFINE_string('name', 'sdae', 'Name for the model.') flags.DEFINE_float('momentum', 0.5, 'Momentum parameter.') # Supervised fine tuning parameters flags.DEFINE_string('finetune_loss_func', 'softmax_cross_entropy', 'Last Layer Loss function. ["softmax_cross_entropy", "mse"]') flags.DEFINE_integer('finetune_num_epochs', 30, 'Number of epochs for the fine-tuning phase.') flags.DEFINE_float('finetune_learning_rate', 0.001, 'Learning rate for the fine-tuning phase.') flags.DEFINE_string('finetune_act_func', 'relu', 'Activation function for the fine-tuning phase. ["sigmoid, "tanh", "relu"]') flags.DEFINE_float('finetune_dropout', 1, 'Dropout parameter.') flags.DEFINE_string('finetune_opt', 'sgd', '["sgd", "adagrad", "momentum", "adam"]') flags.DEFINE_integer('finetune_batch_size', 20, 'Size of each mini-batch for the fine-tuning phase.') # Autoencoder layers specific parameters flags.DEFINE_string('dae_layers', '256,', 'Comma-separated values for the layers in the sdae.') flags.DEFINE_string('dae_regcoef', '5e-4,', 'Regularization parameter for the autoencoders. If 0, no regularization.') flags.DEFINE_string('dae_enc_act_func', 'sigmoid,', 'Activation function for the encoder. ["sigmoid", "tanh"]') flags.DEFINE_string('dae_dec_act_func', 'none,', 'Activation function for the decoder. ["sigmoid", "tanh", "none"]') flags.DEFINE_string('dae_loss_func', 'mse,', 'Loss function. ["mse" or "cross_entropy"]') flags.DEFINE_string('dae_opt', 'sgd,', '["sgd", "ada_grad", "momentum", "adam"]') flags.DEFINE_string('dae_learning_rate', '0.01,', 'Initial learning rate.') flags.DEFINE_string('dae_num_epochs', '10,', 'Number of epochs.') flags.DEFINE_string('dae_batch_size', '10,', 'Size of each mini-batch.') flags.DEFINE_string('dae_corr_type', 'none,', 'Type of input corruption. ["none", "masking", "salt_and_pepper"]') flags.DEFINE_string('dae_corr_frac', '0.0,', 'Fraction of the input to corrupt.') # Conversion of Autoencoder layers parameters from string to their specific type dae_layers = utilities.flag_to_list(FLAGS.dae_layers, 'int') dae_enc_act_func = utilities.flag_to_list(FLAGS.dae_enc_act_func, 'str') dae_dec_act_func = utilities.flag_to_list(FLAGS.dae_dec_act_func, 'str') dae_opt = utilities.flag_to_list(FLAGS.dae_opt, 'str') dae_loss_func = utilities.flag_to_list(FLAGS.dae_loss_func, 'str') dae_learning_rate = utilities.flag_to_list(FLAGS.dae_learning_rate, 'float') dae_regcoef = utilities.flag_to_list(FLAGS.dae_regcoef, 'float') dae_corr_type = utilities.flag_to_list(FLAGS.dae_corr_type, 'str') dae_corr_frac = utilities.flag_to_list(FLAGS.dae_corr_frac, 'float') dae_num_epochs = utilities.flag_to_list(FLAGS.dae_num_epochs, 'int') dae_batch_size = utilities.flag_to_list(FLAGS.dae_batch_size, 'int') # Parameters validation assert all([0. <= cf <= 1. for cf in dae_corr_frac]) assert all([ct in ['masking', 'salt_and_pepper', 'none'] for ct in dae_corr_type]) assert FLAGS.dataset in ['mnist', 'cifar10', 'custom'] assert len(dae_layers) > 0 assert all([af in ['sigmoid', 'tanh'] for af in dae_enc_act_func]) assert all([af in ['sigmoid', 'tanh', 'none'] for af in dae_dec_act_func]) if __name__ == '__main__': utilities.random_seed_np_tf(FLAGS.seed) if FLAGS.dataset == 'mnist': # ################# # # MNIST Dataset # # ################# # trX, trY, vlX, vlY, teX, teY = datasets.load_mnist_dataset(mode='supervised') elif FLAGS.dataset == 'cifar10': # ################### # # Cifar10 Dataset # # ################### # trX, trY, teX, teY = datasets.load_cifar10_dataset(FLAGS.cifar_dir, mode='supervised') # Validation set is the first half of the test set vlX = teX[:5000] vlY = teY[:5000] elif FLAGS.dataset == 'custom': # ################## # # Custom Dataset # # ################## # def load_from_np(dataset_path): if dataset_path != '': return np.load(dataset_path) else: return None trX, trY = load_from_np(FLAGS.train_dataset), load_from_np(FLAGS.train_labels) vlX, vlY = load_from_np(FLAGS.valid_dataset), load_from_np(FLAGS.valid_labels) teX, teY = load_from_np(FLAGS.test_dataset), load_from_np(FLAGS.test_labels) else: trX = None trY = None vlX = None vlY = None teX = None teY = None # Create the object sdae = None dae_enc_act_func = [utilities.str2actfunc(af) for af in dae_enc_act_func] dae_dec_act_func = [utilities.str2actfunc(af) for af in dae_dec_act_func] finetune_act_func = utilities.str2actfunc(FLAGS.finetune_act_func) sdae = stacked_denoising_autoencoder.StackedDenoisingAutoencoder( do_pretrain=FLAGS.do_pretrain, name=FLAGS.name, layers=dae_layers, finetune_loss_func=FLAGS.finetune_loss_func, finetune_learning_rate=FLAGS.finetune_learning_rate, finetune_num_epochs=FLAGS.finetune_num_epochs, finetune_opt=FLAGS.finetune_opt, finetune_batch_size=FLAGS.finetune_batch_size, finetune_dropout=FLAGS.finetune_dropout, enc_act_func=dae_enc_act_func, dec_act_func=dae_dec_act_func, corr_type=dae_corr_type, corr_frac=dae_corr_frac, regcoef=dae_regcoef, loss_func=dae_loss_func, opt=dae_opt, learning_rate=dae_learning_rate, momentum=FLAGS.momentum, num_epochs=dae_num_epochs, batch_size=dae_batch_size, finetune_act_func=finetune_act_func) # Fit the model (unsupervised pretraining) if FLAGS.do_pretrain: encoded_X, encoded_vX = sdae.pretrain(trX, vlX) # Supervised finetuning sdae.fit(trX, trY, vlX, vlY) # Compute the accuracy of the model print('Test set accuracy: {}'.format(sdae.score(teX, teY))) # Save the predictions of the model if FLAGS.save_predictions: print('Saving the predictions for the test set...') np.save(FLAGS.save_predictions, sdae.predict(teX)) def save_layers_output(which_set): if which_set == 'train': trout = sdae.get_layers_output(trX) for i, o in enumerate(trout): np.save(FLAGS.save_layers_output_train + '-layer-' + str(i + 1) + '-train', o) elif which_set == 'test': teout = sdae.get_layers_output(teX) for i, o in enumerate(teout): np.save(FLAGS.save_layers_output_test + '-layer-' + str(i + 1) + '-test', o) # Save output from each layer of the model if FLAGS.save_layers_output_test: print('Saving the output of each layer for the test set') save_layers_output('test') # Save output from each layer of the model if FLAGS.save_layers_output_train: print('Saving the output of each layer for the train set') save_layers_output('train')
{"hexsha": "57fff753b213e7a9ab24dc77d2fc3f915d3f9692", "size": 8345, "ext": "py", "lang": "Python", "max_stars_repo_path": "cmd_line/autoencoders/run_stacked_autoencoder_supervised.py", "max_stars_repo_name": "akmeraki/deep-learning-", "max_stars_repo_head_hexsha": "ddeb1f2848da7b7bee166ad2152b4afc46bb2086", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1093, "max_stars_repo_stars_event_min_datetime": "2016-03-07T23:32:27.000Z", "max_stars_repo_stars_event_max_datetime": "2019-09-19T12:40:30.000Z", "max_issues_repo_path": "Deep-Learning-TensorFlow/cmd_line/autoencoders/run_stacked_autoencoder_supervised.py", "max_issues_repo_name": "zhwhong/awesome-deep-learning", "max_issues_repo_head_hexsha": "ba4302a8d65ac8b63627bcfa8e3b23871fa2c390", "max_issues_repo_licenses": ["CC0-1.0"], "max_issues_count": 68, "max_issues_repo_issues_event_min_datetime": "2016-03-18T15:44:15.000Z", "max_issues_repo_issues_event_max_datetime": "2019-05-13T03:04:21.000Z", "max_forks_repo_path": "Deep-Learning-TensorFlow/cmd_line/autoencoders/run_stacked_autoencoder_supervised.py", "max_forks_repo_name": "zhwhong/awesome-deep-learning", "max_forks_repo_head_hexsha": "ba4302a8d65ac8b63627bcfa8e3b23871fa2c390", "max_forks_repo_licenses": ["CC0-1.0"], "max_forks_count": 459, "max_forks_repo_forks_event_min_datetime": "2016-03-18T05:49:01.000Z", "max_forks_repo_forks_event_max_datetime": "2019-09-13T14:14:11.000Z", "avg_line_length": 47.9597701149, "max_line_length": 133, "alphanum_fraction": 0.6950269623, "include": true, "reason": "import numpy", "num_tokens": 2116}
"""Contains example usage of the features in the OpticSim.jl package.""" module Examples using ..OpticSim using ..OpticSim.Vis # using ..OpticSim.GlassCat use this if you want to type SCHOTT.N_BK7 rather than OpticSim.GlassCat.SCHOTT.N_BK7 using StaticArrays using DataFrames using Images using Unitful using Plots using LinearAlgebra # Create a geometric hemisphere function hemisphere()::CSGTree sph = Sphere(10.0) pln = Plane(0.0, 0.0, -1.0, 0.0, 0.0, 0.0) csgintersection(sph, pln)() #csg operations create a csggenerator which instantiates the csg tree after applying a rigid body transformation. This allows you to make as many instances of the object as you want with different transformations. We just want the CSGTree object rather than a generator. end # Create an optical hemisphere that has optical material properties so it will reflect and refract light. In the previous example the hemisphere object had optical properties of OpticSim.GlassCat.Air, which is the default optical interface, so it won't refract or reflect light. function opticalhemisphere()::CSGOpticalSystem sph = Sphere(10.0, interface = FresnelInterface{Float64}(OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air)) pln = Plane(0.0, 0.0, -1.0, 0.0, 0.0, 0.0, interface = FresnelInterface{Float64}(OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air)) assy = LensAssembly{Float64}(csgintersection(sph, pln)()) return CSGOpticalSystem(assy, Rectangle(1.0, 1.0, SVector{3,Float64}(0.0, 0.0, 1.0), SVector{3,Float64}(0.0, 0.0, -11.0))) end #! format: off cooketriplet(::Type{T} = Float64, detpix::Int = 1000) where {T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, 3, :Stop, 5, 6, :Image], Radius = [Inf, 26.777, 66.604, -35.571, 35.571, 35.571, -26.777, Inf], OptimizeRadius = [false,true,true,true,true,true,true,false], Thickness = [Inf, 4.0, 2.0, 4.0, 2.0, 4.0, 44.748, missing], OptimizeThickness = [false,true,true,true,true,true,true,false], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_SK16, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_SF2, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_SK16, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf, 8.580, 7.513, 7.054, 6.033, 7.003, 7.506, 15.0]), detpix, detpix) export cooketriplet #no longer works cooketripletlensonly(::Type{T} = Float64) where {T<:Real} = AxisymmetricLens{T}( DataFrame(Surface = [:Object, 1, 2, 3, :Stop, 5, 6, :Image], Radius = [Inf, 26.777, 66.604, -35.571, 35.571, 35.571, -26.777, Inf], OptimizeRadius = [false,true,true,true,true,true,true,false], Thickness = [Inf, 4.0, 2.0, 4.0, 2.0, 4.0, 44.748, missing], OptimizeThickness = [false,true,true,true,true,true,true,false], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_SK16, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_SF2, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_SK16, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf, 8.580, 7.513, 7.054, 6.033, 7.003, 7.506, 15.0])) export cooketripletlensonly cooketripletfirstelement(::Type{T} = Float64) where {T<:Real} = AxisymmetricOpticalSystem( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [Inf, -35.571, 35.571, Inf], Thickness = [Inf, 4.0, 44.748, missing], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_SK16, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf, 7.054, 6.033, 15.0])) convexplano(::Type{T} = Float64) where {T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [Inf, 60.0, Inf, Inf], Thickness = [Inf, 10.0, 57.8, missing], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf, 9.0, 9.0, 15.0])) doubleconvex(frontradius::T,rearradius::T) where{T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [T(Inf64), frontradius, rearradius, T(Inf64)], OptimizeRadius = [false,true,true,false], Thickness = [T(Inf64), T(10.0), T(57.8), missing], OptimizeThickness = [false,false,false,false], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [T(Inf64), T(9.0), T(9.0), T(15.0)])) doubleconvexconic(::Type{T} = Float64) where {T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [Inf64, 60, -60, Inf64], OptimizeRadius = [false,true,true,false], Thickness = [Inf64, 10.0, 57.8, missing], OptimizeThickness = [false,false,false,false], Conic = [missing, 0.01, 0.01, missing], OptimizeConic = [false, true, true, false], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf64, 9.0, 9.0, 15.0])) doubleconvexlensonly(frontradius::T,rearradius::T) where{T<:Real} = AxisymmetricLens{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [T(Inf64), frontradius, rearradius, T(Inf64)], OptimizeRadius = [false,true,true,false], Thickness = [T(Inf64), T(10.0), T(57.8), missing], OptimizeThickness = [false,false,false,false], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [T(Inf64), T(9.0), T(9.0), T(15.0)])) export doubleconvexlensonly doubleconvexprescription() = DataFrame( Surface = [:Object, 1, 2, :Image], Radius = [Inf64, 60, -60, Inf64], OptimizeRadius = [false,true,true,false], Thickness = [Inf64, 10.0, 57.8, missing], OptimizeThickness = [false,true,true,false], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf64, 9.0, 9.0, 15.0]) doubleconvex(::Type{T} = Float64; temperature::Unitful.Temperature = OpticSim.GlassCat.TEMP_REF_UNITFUL, pressure::T = T(OpticSim.GlassCat.PRESSURE_REF)) where {T<:Real} = AxisymmetricOpticalSystem{T}(doubleconvexprescription(),temperature = temperature, pressure = pressure) doubleconcave(::Type{T} = Float64) where {T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [Inf64, -41.0, 41.0, Inf64], Thickness = [Inf64, 10.0, 57.8, missing], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf64, 9.0, 9.0, 15.0])) planoconcaverefl(::Type{T} = Float64) where {T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [Inf64, Inf64, -41.0, Inf64], Thickness = [Inf64, 10.0, -57.8, missing], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf64, 9.0, 9.0, 25.0], Reflectance = [missing, missing, 1.0, missing])) concaveplano(::Type{T} = Float64) where {T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [Inf64, -41.0, Inf64, Inf64], Thickness = [Inf64, 10.0, 57.8, missing], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf64, 9.0, 9.0, 15.0])) planoplano(::Type{T} = Float64) where {T<:Real} = AxisymmetricOpticalSystem{T}( DataFrame(Surface = [:Object, 1, 2, :Image], Radius = [Inf64, Inf64, Inf64, Inf64], Thickness = [Inf64, 10.0, 57.8, missing], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf64, 9.0, 9.0, 15.0])) #! format: on end #module SphericalLenses function autodrawrays(lens::AxisymmetricOpticalSystem = cooketriplet(), angle = 10; kwargs...) f1 = HexapolarField(lens, collimated = true, wavelength = 0.45, sourcenum = 1) Vis.drawtracerays(lens, raygenerator = f1, test = true, trackallrays = true, colorbysourcenum = true; kwargs...) f2 = HexapolarField(lens, collimated = true, wavelength = 0.45, sourceangle = angle / 180 * π, sourcenum = 2) Vis.drawtracerays!(lens, raygenerator = f2, test = true, trackallrays = true, colorbysourcenum = true; kwargs...) end function autospotdiag(lens::AxisymmetricOpticalSystem = cooketriplet(); kwargs...) f1 = HexapolarField(lens, collimated = true, wavelength = 0.45, sourcenum = 1) f2 = HexapolarField(lens, collimated = true, wavelength = 0.45, sourceangle = 5 / 180 * π, sourcenum = 2) f3 = HexapolarField(lens, collimated = true, wavelength = 0.45, sourceangle = 10 / 180 * π, sourcenum = 3) Vis.spotdiaggrid(lens, [f1, f2, f3]; kwargs...) end # Display the spot diagram of a simple cooketriplet lens function hexapolarspotdiagramexample(lens = cooketriplet(), numrings::Int = 5, angle = 0.0) Vis.spotdiag(lens, samples = numrings, sourceangle = angle) end function cartesiangridspotdiagramexample(lens = cooketriplet(), numsamples::Int = 5, angle = 0.0) Vis.spotdiag(lens, hexapolar = false, samples = numsamples, sourceangle = angle) end function SchmidtCassegrainTelescope() # glass entrance lens on telescope topsurf = Plane(SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 0.0), interface = FresnelInterface{Float64}(OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air), vishalfsizeu = 12.00075, vishalfsizev = 12.00075) botsurf = AcceleratedParametricSurface(ZernikeSurface(12.00075, radius = -1.14659768e+4, aspherics = [(4, 3.68090959e-7), (6, 2.73643352e-11), (8, 3.20036892e-14)]), 17, interface = FresnelInterface{Float64}(OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air)) coverlens = csgintersection(leaf(Cylinder(12.00075, 1.4)), csgintersection(leaf(topsurf), leaf(botsurf, RigidBodyTransform(OpticSim.rotmatd(0, 180, 0), SVector(0.0, 0.0, -0.65))))) # big mirror with a hole in it bigmirror = ConicLens(OpticSim.GlassCat.SCHOTT.N_BK7, -72.65, -95.2773500000134, 0.077235, Inf, 0.0, 0.2, 12.18263, frontsurfacereflectance = 1.0) bigmirror = csgdifference(bigmirror, leaf(Cylinder(4.0, 0.3, interface = opaqueinterface()), translation(0.0, 0.0, -72.75))) # small mirror supported on a spider smallmirror = SphericalLens(OpticSim.GlassCat.SCHOTT.N_BK7, -40.65, Inf, -49.6845, 1.13365, 4.3223859, backsurfacereflectance = 1.0) obscuration1 = Circle(4.5, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -40.649), interface = opaqueinterface()) obscurations2 = Spider(3, 0.5, 12.0, SVector(0.0, 0.0, -40.65)) # put it together with the detector la = LensAssembly(coverlens(), bigmirror(), smallmirror(), obscuration1, obscurations2...) det = Circle(3.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -92.4542988), interface = opaqueinterface()) return CSGOpticalSystem(la, det) end drawSchmidt(; kwargs...) = Vis.drawtracerays(SchmidtCassegrainTelescope(), raygenerator = UniformOpticalSource(CollimatedSource(GridRectOriginPoints(5, 5, 10.0, 10.0, position = SVector(0.0, 0.0, 20.0))), 0.55), trackallrays = true, colorbynhits = true, test = true, numdivisions = 100; kwargs...) function prism_refraction() # build the triangular prism int = FresnelInterface{Float64}(OpticSim.GlassCat.SCHOTT.N_SF14, OpticSim.GlassCat.Air) s = 2.0 prism = csgintersection(leaf(Plane(SVector(0.0, -1.0, 0.0), SVector(0.0, -s, 0.0), interface = int, vishalfsizeu = 2 * s, vishalfsizev = 2 * s)), csgintersection(Plane(SVector(0.0, sind(30), cosd(30)), SVector(0.0, s * sind(30), s * cosd(30)), interface = int, vishalfsizeu = 2 * s, vishalfsizev = 2 * s), Plane(SVector(0.0, sind(30), -cosd(30)), SVector(0.0, s * sind(30), -s * cosd(30)), interface = int, vishalfsizeu = 2 * s, vishalfsizev = 2 * s))) sys = CSGOpticalSystem(LensAssembly(prism()), Rectangle(15.0, 15.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -20.0), interface = opaqueinterface())) # create some 'white' light rays = Vector{OpticalRay{Float64,3}}(undef, 0) for i in 0:7 λ = ((i / 7) * 200 + 450) / 1000 r = OpticalRay(SVector(0.0, -3.0, 10.0), SVector(0.0, 0.5, -1.0), 1.0, λ) push!(rays, r) end raygen = RayListSource(rays) # draw the result Vis.drawtracerays(sys, raygenerator = raygen, test = true, trackallrays = true) end function zoom_lens(pos = 1) if pos == 0 stop = 2.89 zoom = 9.48 dist = 4.46970613 elseif pos == 1 stop = 3.99 zoom = 4.48 dist = 21.21 else stop = 4.90 zoom = 2.00 dist = 43.81 end #! format: off return AxisymmetricOpticalSystem{Float64}( DataFrame(Surface = [:Object, :Stop, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, :Image], Radius = [Inf64, Inf64, -1.6202203499676E+01, -4.8875855327468E+01, 1.5666614444619E+01, -4.2955326460481E+01, 1.0869565217391E+02, 2.3623907394283E+01, -1.6059097478722E+01, -4.2553191489362E+02, -3.5435861091425E+01, -1.4146272457208E+01, -2.5125628140704E+02, -2.2502250225023E+01, -1.0583130489999E+01, -4.4444444444444E+01, Inf64], Aspherics = [missing, missing, missing, missing, missing, [(4, 1.03860000000E-04), (6, 1.42090000000E-07), (8, -8.84950000000E-09), (10, 1.24770000000E-10), (12, -1.03670000000E-12), (14, 3.65560000000E-15)], missing, missing, [(4, 4.27210000000E-05), (6, 1.24840000000E-07), (8, 9.70790000000E-09), (10, -1.84440000000E-10), (12, 1.86440000000E-12), (14, -7.79750000000E-15)], [(4, 1.13390000000E-04), (6, 4.81650000000E-07), (8, 1.87780000000E-08), (10, -5.75710000000E-10), (12, 8.99940000000E-12), (14, -4.67680000000E-14)], missing, missing, missing, missing, missing, missing, missing], Thickness = [Inf64, 0.0, 5.18, 0.10, 4.40, 0.16, 1.0, 4.96, zoom, 4.04, 1.35, 1.0, 2.80, 3.0, 1.22, dist, missing], Material = [OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.OHARA.S_LAH66, OpticSim.GlassCat.Air, OpticSim.GlassCat.NIKON.LLF6, OpticSim.GlassCat.Air, OpticSim.GlassCat.OHARA.S_TIH6, OpticSim.GlassCat.OHARA.S_FSL5, OpticSim.GlassCat.Air, OpticSim.GlassCat.OHARA.S_FSL5, OpticSim.GlassCat.Air, OpticSim.GlassCat.OHARA.S_LAL8, OpticSim.GlassCat.SCHOTT.S_FL4, OpticSim.GlassCat.Air, OpticSim.GlassCat.OHARA.S_LAH66, OpticSim.GlassCat.Air, missing], SemiDiameter = [Inf64, stop, 3.85433218451, 3.85433218451, 4.36304692871, 4.36304692871, 4.72505505439, 4.72505505439, 4.72505505439, 4.45240784026, 4.45240784026, 4.50974054117, 4.50974054117, 4.50974054117, 4.76271114409, 4.76271114409, 15.0])) #! format: on end function fresnel(convex = true; kwargs...) lens = FresnelLens(OpticSim.GlassCat.SCHOTT.N_BK7, 0.0, convex ? 15.0 : -15.0, 1.0, 8.0, 0.8, conic = 0.1) sys = CSGOpticalSystem(LensAssembly(lens()), Rectangle(15.0, 15.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -25.0), interface = opaqueinterface())) Vis.drawtracerays(sys; test = true, trackallrays = true, numdivisions = 30, kwargs...) end function grating(; period = 1.0, θ = 0.0, λ = 0.55, kwargs...) int = ThinGratingInterface(SVector(0.0, 1.0, 0.0), period, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, minorder = -2, maxorder = 2, reflectance = [0.0, 0.0, 0.1, 0.0, 0.0], transmission = [0.05, 0.1, 0.4, 0.1, 0.05]) grating = ThinGratingSurface(Rectangle(5.0, 5.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 0.0)), int) back = Rectangle(30.0, 30.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 25.0)) sys = CSGOpticalSystem(LensAssembly(grating, back), Rectangle(30.0, 30.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -25.0), interface = opaqueinterface())) Vis.drawtracerays(sys; raygenerator = UniformOpticalSource(CollimatedSource(OriginPoint{Float64}(100, position = SVector(0.0, 0.0, 10.0), direction = SVector(0.0, sind(θ), -cosd(θ)))), λ), trackallrays = true, rayfilter = nothing, kwargs...) end function reflgrating(; period = 1.0, θ = 0.0, λ = 0.55, kwargs...) int = ThinGratingInterface(SVector(0.0, 1.0, 0.0), period, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, minorder = -2, maxorder = 2, transmission = [0.0, 0.0, 0.1, 0.0, 0.0], reflectance = [0.05, 0.1, 0.4, 0.1, 0.05]) grating = ThinGratingSurface(Rectangle(5.0, 5.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 0.0)), int) back = Rectangle(30.0, 30.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -25.0)) sys = CSGOpticalSystem(LensAssembly(grating, back), Rectangle(30.0, 30.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 25.0), interface = opaqueinterface())) Vis.drawtracerays(sys; raygenerator = UniformOpticalSource(CollimatedSource(OriginPoint{Float64}(100, position = SVector(0.0, 0.0, 10.0), direction = SVector(0.0, sind(θ), -cosd(θ)))), λ), trackallrays = true, rayfilter = nothing, kwargs...) end function HOE(refl = false, firstorderonly = false; kwargs...) rect = Rectangle(5.0, 5.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 0.0)) if refl int = HologramInterface(SVector(0.0, -10.0, 20.0), ConvergingBeam, SVector(0.0, 0.0, -200), ConvergingBeam, 0.55, 9.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, !firstorderonly) else int = HologramInterface(SVector(0.0, -10.0, -20.0), ConvergingBeam, SVector(0.0, 0.0, -200), ConvergingBeam, 0.55, 5.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, !firstorderonly) end obj = HologramSurface(rect, int) back = Rectangle(50.0, 50.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 25.0)) sys = CSGOpticalSystem(LensAssembly(obj, back), Rectangle(50.0, 50.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -25.0), interface = opaqueinterface())) Vis.drawtracerays(sys; raygenerator = UniformOpticalSource(GridSource(OriginPoint{Float64}(10, position = SVector(0.0, 0.0, 10.0), direction = SVector(0.0, 0.0, -1.0)), 1, 15, 0.0, π / 6), 0.55), trackallrays = true, rayfilter = nothing, kwargs...) end function HOEfocus(; kwargs...) rect = Rectangle(5.0, 5.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 0.0)) int = HologramInterface(SVector(0.0, -3.0, -20.0), ConvergingBeam, SVector(0.0, 0.0, -1.0), CollimatedBeam, 0.55, 9.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, false) obj = HologramSurface(rect, int) sys = CSGOpticalSystem(LensAssembly(obj), Rectangle(10.0, 10.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -25.0), interface = opaqueinterface())) Vis.drawtracerays(sys; raygenerator = UniformOpticalSource(CollimatedSource(GridRectOriginPoints(5, 5, 3.0, 3.0, position = SVector(0.0, 0.0, 10.0), direction = SVector(0.0, 0.0, -1.0))), 0.55), trackallrays = true, rayfilter = nothing, test = true, kwargs...) end function HOEcollimate(; kwargs...) rect = Rectangle(5.0, 5.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 0.0)) int = HologramInterface(SVector(0.1, -0.05, -1.0), CollimatedBeam, SVector(0.0, 0.0, 10), DivergingBeam, 0.55, 9.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, false) obj = HologramSurface(rect, int) sys = CSGOpticalSystem(LensAssembly(obj), Rectangle(10.0, 10.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -25.0), interface = opaqueinterface())) Vis.drawtracerays(sys; raygenerator = UniformOpticalSource(GridSource(OriginPoint{Float64}(1, position = SVector(0.0, 0.0, 10.0), direction = SVector(0.0, 0.0, -1.0)), 5, 5, π / 4, π / 4), 0.55), trackallrays = true, rayfilter = nothing, test = true, kwargs...) end function eyetrackHOE(nrays = 5000, det = false, showhead = true, zeroorder = false; kwargs...) # TODO update for new specs from Chris hoehalfwidth = 50.0 #25.0 hoehalfheight = 50.0 #22.5 hoecenter = SVector(-8.0 - 25.0, 0.0, -10.0 - 25.0) rect = Rectangle(hoehalfheight, hoehalfwidth, SVector(0.0, 1.0, 0.0), hoecenter) er = 15.0 cornea_rad = 7.85 corneavertex = SVector(0.0, er, 0.0) sourceloc = SVector(-33.0, er, 0.0) camloc = SVector(20.0, 3.0, -11.0) camdir = corneavertex - camloc camdir_norm = normalize(camdir) interfaces = [] # offset = SVector(-5.0, 10.0, -10.0) # for θ in 0:(π / 6):(2π) # ledloc = SVector(20 * cos(θ) + offset[1], 0 + offset[2], 15 * sin(θ) + offset[3]) # int = HologramInterface(ledloc, ConvergingBeam, sourceloc, DivergingBeam, 0.78, 100.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, zeroorder) # push!(interfaces, int) # end dirs = [SVector(0.7713, 0.6350, -0.0437), SVector(0.5667, 0.8111, -0.1445), SVector(0.3400, 0.9349, -0.1017), SVector(0.1492, 0.9878, 0.0445), SVector(0.0249, 0.9686, 0.2474), SVector(-0.0184, 0.8855, 0.4643), SVector(0.0254, 0.7537, 0.6567), SVector(0.1548, 0.5964, 0.7876), SVector(0.3570, 0.4462, 0.8207), SVector(0.5959, 0.3470, 0.7242), SVector(0.7976, 0.3449, 0.4948), SVector(0.8680, 0.4555, 0.1978)] for d in dirs int = HologramInterface(normalize(d), CollimatedBeam, sourceloc, DivergingBeam, 0.78, 100.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, zeroorder) # int = HologramInterface(corneavertex - 10 * d, ConvergingBeam, sourceloc, DivergingBeam, 0.78, 100.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, zeroorder) push!(interfaces, int) end mint = MultiHologramInterface(interfaces...) obj = MultiHologramSurface(rect, mint) cornea = leaf(Sphere(cornea_rad, interface = FresnelInterface{Float64}(OpticSim.GlassCat.EYE.CORNEA, OpticSim.GlassCat.Air, reflectance = 1.0, transmission = 0.0)), translation(0.0, er + cornea_rad, 0.0))() # cam settings fnum = 2.0 fov = 80 sensorrad = 1.0 barrellength = sensorrad / tand(fov / 2) aprad = barrellength / fnum / 2 camrad = max(sensorrad, aprad) camap = Annulus(aprad, camrad, camdir_norm, camloc) distfromcamtoeye = norm(camdir) focallength = 1 / (1 / distfromcamtoeye + 1 / barrellength) camlens = ParaxialLensEllipse(focallength, aprad, aprad, -camdir_norm, camloc) barrelloc = camloc - barrellength / 2 * camdir_norm barreltop = Plane(camdir_norm, camloc) barrelbot = Plane(-camdir_norm, camloc - 3 * barrellength * camdir_norm) barrelrot = OpticSim.rotmatbetween(SVector(0.0, 0.0, 1.0), camdir_norm) cambarrel = csgintersection(barrelbot, csgintersection(barreltop, leaf(Cylinder(camrad, barrellength, interface = opaqueinterface(Float64)), RigidBodyTransform(barrelrot, barrelloc))))() camdet = Circle(sensorrad, camdir_norm, camloc - barrellength * camdir_norm, interface = opaqueinterface(Float64)) # sourceleft = hoecenter[1] + hoehalfwidth - sourceloc[1] # sourceright = hoecenter[1] - hoehalfwidth - sourceloc[1] # sourceleftθ = atan(sourceleft, sourceloc[2]) # sourcerightθ = atan(sourceright, sourceloc[2]) # midθ = (sourceleftθ + sourcerightθ) / 2 # sourcedir = normalize(SVector(er * tan(midθ), -er, 0.0)) # sourceextentθ = abs(midθ - sourcerightθ) # source = CosineOpticalSource(RandomSource(OriginPoint{Float64}(1, position = sourceloc, direction = sourcedir), nrays, sourceextentθ), 1.0, 0.78) rays = Vector{OpticalRay{Float64,3}}(undef, nrays) @simd for i in 1:nrays p = point(rect, rand() * 2 - 1, rand() * 2 - 1) rays[i] = OpticalRay(sourceloc, p - sourceloc, 1.0, 0.78) end source = RayListSource(rays) sys = CSGOpticalSystem(LensAssembly(obj, cornea, camlens, cambarrel, camap), camdet, 800, 800) if det Vis.show(OpticSim.traceMT(sys, source)) else Vis.drawtracerays(sys; raygenerator = source, trackallrays = true, kwargs...) # for θ in 0:(π / 6):(2π) # ledloc = SVector(20 * cos(θ) + offset[1], 0 + offset[2], 15 * sin(θ) + offset[3]) # Vis.draw!(leaf(Sphere(1.0), translation(ledloc...)), color = :red) # end for d in dirs # Vis.draw!(leaf(Sphere(1.0), translation((corneavertex - 10 * d)...)), color = :red) Vis.draw!((corneavertex - 50 * d, corneavertex), color = :red) end if showhead Vis.draw!(joinpath(@__DIR__, "../../OBJ/glasses.obj"), scale = 100.0, transform = RigidBodyTransform(OpticSim.rotmatd(90, 0, 0), [27.0, 45.0, -8.0]), color = :black) Vis.draw!(joinpath(@__DIR__, "../../OBJ/femalehead.obj"), scale = 13.0, transform = RigidBodyTransform(OpticSim.rotmatd(0, 0, 180), [27.0, 105.0, -148.0]), color = :white) end Vis.display() end end function multiHOE(; kwargs...) rect = Rectangle(5.0, 5.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, 0.0)) int1 = HologramInterface(SVector(-5.0, 0.0, -20.0), ConvergingBeam, SVector(0.0, -1.0, -1.0), CollimatedBeam, 0.55, 100.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, false) int2 = HologramInterface(SVector(5.0, 0.0, -20.0), ConvergingBeam, SVector(0.0, 1.0, -1.0), CollimatedBeam, 0.55, 100.0, OpticSim.GlassCat.Air, OpticSim.GlassCat.SCHOTT.N_BK7, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, OpticSim.GlassCat.Air, 0.05, false) mint = MultiHologramInterface(int1, int2) obj = MultiHologramSurface(rect, mint) sys = CSGOpticalSystem(LensAssembly(obj), Rectangle(10.0, 10.0, SVector(0.0, 0.0, 1.0), SVector(0.0, 0.0, -20.0), interface = opaqueinterface())) s1 = UniformOpticalSource(CollimatedSource(RandomRectOriginPoints(500, 3.0, 3.0, position = SVector(0.0, 3.0, 3.0), direction = SVector(0.0, -1.0, -1.0))), 0.55, sourcenum = 1) s2 = UniformOpticalSource(CollimatedSource(RandomRectOriginPoints(500, 3.0, 3.0, position = SVector(0.0, -3.0, 3.0), direction = SVector(0.0, 1.0, -1.0))), 0.55, sourcenum = 2) s3 = UniformOpticalSource(CollimatedSource(RandomRectOriginPoints(500, 3.0, 3.0, position = SVector(0.0, 0.0, 3.0), direction = SVector(0.0, 0.0, -1.0))), 0.55, sourcenum = 3) Vis.drawtracerays(sys; raygenerator = s1, trackallrays = true, colorbysourcenum = true, rayfilter = nothing, kwargs...) Vis.drawtracerays!(sys; raygenerator = s2, trackallrays = true, colorbysourcenum = true, rayfilter = nothing, drawgen = true, kwargs...) Vis.drawtracerays!(sys; raygenerator = s3, trackallrays = true, colorbysourcenum = true, rayfilter = nothing, drawgen = true, kwargs...) end export Examples
{"hexsha": "1972dc98567cd7591de5657f30538572c39612d8", "size": 27408, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/Examples.jl", "max_stars_repo_name": "friggog/OpticSim.jl", "max_stars_repo_head_hexsha": "8c75d8519591f9311020fbd0a5f3ba4444570a61", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/Examples.jl", "max_issues_repo_name": "friggog/OpticSim.jl", "max_issues_repo_head_hexsha": "8c75d8519591f9311020fbd0a5f3ba4444570a61", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/Examples.jl", "max_forks_repo_name": "friggog/OpticSim.jl", "max_forks_repo_head_hexsha": "8c75d8519591f9311020fbd0a5f3ba4444570a61", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 70.2769230769, "max_line_length": 610, "alphanum_fraction": 0.6633099825, "num_tokens": 10363}
import sys import numpy as np import optlang import pytest from cobra.util.solver import linear_reaction_coefficients from numpy.testing._private.utils import assert_almost_equal from optlang.util import solve_with_glpsol from .load_test_model import build_test_model @pytest.fixture def tfa_model(): return build_test_model() def test_num_cons_vars(tfa_model): # tfa_model = build_core_model() num_cons = 2 * 3 * ( len(tfa_model.reactions) - len(tfa_model.Exclude_reactions) ) + len(tfa_model.metabolites) num_vars = ( 2 * (len(tfa_model.metabolites)) + 4 * (len(tfa_model.reactions) - len(tfa_model.Exclude_reactions)) + 2 * len(tfa_model.reactions) ) assert num_cons == len(tfa_model.constraints) assert num_vars == len(tfa_model.variables) def test_solver_instances(tfa_model): if optlang.available_solvers["GUROBI"]: tfa_model.solver = "gurobi" assert tfa_model.gurobi_interface elif optlang.available_solvers["CPLEX"]: tfa_model.solver = "cplex" assert tfa_model.cplex_interface else: pass def test_optimization(tfa_model): solution = tfa_model.optimize() assert_almost_equal(abs(solution.objective_value), 0.8739, decimal=3)
{"hexsha": "c421adf73be333e6ae322e8133fbe59d871504c8", "size": 1268, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_unit/test_tmodel.py", "max_stars_repo_name": "biosustain/multitfa", "max_stars_repo_head_hexsha": "ab5a9bf6c19a94a221c9a137cccfcacdc2c1cb50", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2020-11-27T20:25:57.000Z", "max_stars_repo_stars_event_max_datetime": "2021-03-12T22:01:34.000Z", "max_issues_repo_path": "tests/test_unit/test_tmodel.py", "max_issues_repo_name": "biosustain/multitfa", "max_issues_repo_head_hexsha": "ab5a9bf6c19a94a221c9a137cccfcacdc2c1cb50", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 8, "max_issues_repo_issues_event_min_datetime": "2020-11-29T23:56:31.000Z", "max_issues_repo_issues_event_max_datetime": "2021-04-09T11:23:17.000Z", "max_forks_repo_path": "tests/test_unit/test_tmodel.py", "max_forks_repo_name": "biosustain/multitfa", "max_forks_repo_head_hexsha": "ab5a9bf6c19a94a221c9a137cccfcacdc2c1cb50", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-11-11T09:22:57.000Z", "max_forks_repo_forks_event_max_datetime": "2021-11-11T09:22:57.000Z", "avg_line_length": 26.4166666667, "max_line_length": 75, "alphanum_fraction": 0.7231861199, "include": true, "reason": "import numpy,from numpy", "num_tokens": 324}
import numpy as np import networkx as nx def distance_partition(g): ''' input: NetworkX graph g. Assumption: g is a maximal connected subgraph of RH Graph. output: list of sets of nodes: partition partition[0] = {soln_states} partition[i] = {states | soln_dist(states) = i , i integer g.t.e to 0} ''' partition = {} partition[0] = set([x for x in g.nodes() if 5 == x[1] ]) remaining_nodes = set(g.nodes()) remaining_nodes.difference_update(partition[0]) i = 1 while remaining_nodes: partition[i] = set() for x in partition[i-1]: nbrs = set(g.neighbors(x) ) remaining_nodes.difference_update(nbrs) # delete from neighbors thos in partition[i-2] and partition[i-1] nbrs.difference_update(partition[i-1]) #!!! TDODO - consider ...perhaps an explicit construciton of the dist = 1 set to bootsrap the iteration makes more sense. if i > 1: nbrs.difference_update(partition[i-2]) partition[i].update(nbrs) i=i+1 return partition
{"hexsha": "97db4faa95777a045467384ad5efee3890c303cb", "size": 1193, "ext": "py", "lang": "Python", "max_stars_repo_path": "RushHourPy/numpy_distance_partition.py", "max_stars_repo_name": "crhaithcock/RushHour", "max_stars_repo_head_hexsha": "9c1854dd117e43ec38a6eacf74a8365a6e01f25c", "max_stars_repo_licenses": ["CC0-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "RushHourPy/numpy_distance_partition.py", "max_issues_repo_name": "crhaithcock/RushHour", "max_issues_repo_head_hexsha": "9c1854dd117e43ec38a6eacf74a8365a6e01f25c", "max_issues_repo_licenses": ["CC0-1.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "RushHourPy/numpy_distance_partition.py", "max_forks_repo_name": "crhaithcock/RushHour", "max_forks_repo_head_hexsha": "9c1854dd117e43ec38a6eacf74a8365a6e01f25c", "max_forks_repo_licenses": ["CC0-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 23.3921568627, "max_line_length": 133, "alphanum_fraction": 0.5691533948, "include": true, "reason": "import numpy,import networkx", "num_tokens": 288}
import s_discrete open_locale classical noncomputable def s_finset {s : ℕ} (s_ne_zero : s ≠ 0) : finset ℝ := begin let numerators : finset ℕ := finset.range s, let div_by_s_fn : ℕ ↪ ℝ := begin let div_by_s_fn : ℕ → ℝ := λ numerator, ↑numerator / ↑s, have div_by_s_fn_injective : function.injective div_by_s_fn := begin intros num1 num2 num1_div_by_s_eq_num2_div_by_s, dsimp[div_by_s_fn] at num1_div_by_s_eq_num2_div_by_s, have s_cast_ne_zero : (s : ℝ) ≠ 0 := by exact_mod_cast s_ne_zero, have mul_div_cancel_fact1 := mul_div_cancel' (num1 : ℝ) s_cast_ne_zero, have mul_div_cancel_fact2 := mul_div_cancel' (num2 : ℝ) s_cast_ne_zero, replace num1_div_by_s_eq_num2_div_by_s : (s : ℝ) * ((num1 : ℝ) / (s : ℝ)) = (s : ℝ) * ((num2 : ℝ) / (s : ℝ)) := by rw num1_div_by_s_eq_num2_div_by_s, rw [mul_div_cancel_fact1, mul_div_cancel_fact2] at num1_div_by_s_eq_num2_div_by_s, exact_mod_cast num1_div_by_s_eq_num2_div_by_s, end, exact {to_fun := div_by_s_fn, inj' := div_by_s_fn_injective}, end, exact finset.map div_by_s_fn numerators, end lemma s_finset_card {s : ℕ} (s_ne_zero : s ≠ 0) : (s_finset s_ne_zero).card = s := by {rw s_finset, simp only [finset.card_range, finset.card_map],} lemma s_finset_range {s : ℕ} {s_ne_zero : s ≠ 0} {a : ℝ} (a_in_s_finset : a ∈ s_finset s_ne_zero) : 0 ≤ a ∧ a < 1 := begin rw s_finset at a_in_s_finset, simp only [exists_prop, finset.mem_map, function.embedding.coe_fn_mk, finset.mem_range] at a_in_s_finset, rcases a_in_s_finset with ⟨a_num, a_num_lt_s, a_num_div_s_eq_a⟩, have zero_le_s : 0 ≤ s := nat.zero_le s, have cast_zero_le_s : (0 : ℝ) ≤ ↑s := by {exact_mod_cast zero_le_s}, have cast_zero_lt_s : (0 : ℝ) < ↑s := begin cases eq_or_lt_of_le cast_zero_le_s with zero_eq_s zero_lt_s, { exfalso, symmetry' at zero_eq_s, have s_eq_zero : s = 0 := by {exact_mod_cast zero_eq_s}, exact s_ne_zero s_eq_zero, }, exact zero_lt_s, end, have zero_le_a : 0 ≤ a := begin have zero_le_a_num : 0 ≤ a_num := nat.zero_le a_num, have cast_zero_le_a_num : (0 : ℝ) ≤ ↑a_num := by {exact_mod_cast zero_le_a_num}, rw ← a_num_div_s_eq_a, exact div_nonneg cast_zero_le_a_num cast_zero_le_s, end, have a_lt_one : a < 1 := by {rw [← a_num_div_s_eq_a, div_lt_one cast_zero_lt_s], exact_mod_cast a_num_lt_s}, exact ⟨zero_le_a, a_lt_one⟩, end lemma s_finset_distinct_mod_one {s : ℕ} {s_ne_zero : s ≠ 0} {a : ℝ} {b : ℝ} (a_ne_b : a ≠ b) (a_in_s_finset : a ∈ s_finset s_ne_zero) (b_in_s_finset : b ∈ s_finset s_ne_zero) : ne_mod_one a b := begin rcases s_finset_range a_in_s_finset with ⟨zero_le_a, a_lt_one⟩, rcases s_finset_range b_in_s_finset with ⟨zero_le_b, b_lt_one⟩, rintro ⟨a_floor, b_floor, y, zero_le_y, y_lt_one, a_eq_a_floor_add_y, b_eq_b_floor_add_y⟩, rcases eq_or_lt_or_gt a_floor b_floor with a_floor_eq_b_floor | a_floor_lt_b_floor | a_floor_gt_b_floor, { rw [a_floor_eq_b_floor, ← b_eq_b_floor_add_y] at a_eq_a_floor_add_y, exact a_ne_b a_eq_a_floor_add_y, }, { have a_floor_add_one_le_b_floor := int.add_one_le_of_lt a_floor_lt_b_floor, have cast_a_floor_add_one_le_b_floor : (↑a_floor : ℝ) + 1 ≤ ↑b_floor := by {exact_mod_cast a_floor_add_one_le_b_floor}, rw a_eq_a_floor_add_y at zero_le_a a_lt_one, rw b_eq_b_floor_add_y at zero_le_b b_lt_one, clear_except cast_a_floor_add_one_le_b_floor zero_le_a a_lt_one zero_le_b b_lt_one, linarith, }, rw gt at a_floor_gt_b_floor, have b_floor_add_one_le_a_floor := int.add_one_le_of_lt a_floor_gt_b_floor, have cast_a_floor_add_one_le_b_floor : (↑b_floor : ℝ) + 1 ≤ ↑a_floor := by {exact_mod_cast b_floor_add_one_le_a_floor}, rw a_eq_a_floor_add_y at zero_le_a a_lt_one, rw b_eq_b_floor_add_y at zero_le_b b_lt_one, clear_except cast_a_floor_add_one_le_b_floor zero_le_a a_lt_one zero_le_b b_lt_one, linarith, end lemma inductive_replacement_lemma_helper2 {d : ℕ} {s : ℕ} (s_ne_zero : s ≠ 0) (i : fin d) (T : set (point d)) (T_is_tiling : is_tiling T) (T_faceshare_free : tiling_faceshare_free T) (T_is_periodic : is_periodic T_is_tiling) (coords_before_i_handled : ∀ p : point d, p ∈ T → ∀ j : fin d, j.val < i.val → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p j) s_val) : ∀ coords_left : ℕ, ∀ coords : finset ℝ, ∀ goal_finset : finset ℝ, goal_finset ⊆ s_finset s_ne_zero → (∀ coord ∈ coords, ∀ s_val ∈ s_finset s_ne_zero, ne_mod_one coord s_val) → (∀ p ∈ T, ∀ goal_val ∈ goal_finset, ne_mod_one (vector.nth p i) goal_val) → coords_left = coords.card → coords.card ≤ goal_finset.card → ∃ T_shifted : set (point d), ∃ T_shifted_is_tiling : is_tiling T_shifted, tiling_faceshare_free T_shifted ∧ is_periodic T_shifted_is_tiling ∧ (∀ p : point d, p ∈ T_shifted → ∀ j : fin d, j.val < i.val → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p j) s_val) ∧ (∀ p : point d, p ∈ T_shifted → (∀ coord ∈ coords, ne_mod_one (vector.nth p i) coord) ∧ ((∃ goal_val ∈ goal_finset, eq_mod_one (vector.nth p i) goal_val) ∨ p ∈ T)) ∧ (∀ p : point d, p ∈ T_shifted → ∀ j : fin d, j.val > i.val → ∃ p' ∈ T, vector.nth p j = vector.nth p' j) := begin intro coords_left, induction coords_left with coords_left_pred ih, { intros coords goal_finset goal_finset_subset_s_finset coords_inter_s_finset_empty T_disjoint_goal_finset coords_empty coords_card_le_goal_finset_card, use [T, T_is_tiling, T_faceshare_free, T_is_periodic], split, exact coords_before_i_handled, --T_shifted_property_before_i split, { intros p p_in_T,--Prove T_shifted_property_at_i split, { intros coord coord_in_coords, exfalso, --Derive contradiction between coord_in_coords and coords_empty symmetry' at coords_empty, rw finset.card_eq_zero at coords_empty, rw coords_empty at coord_in_coords, exact finset.not_mem_empty coord coord_in_coords, }, right, exact p_in_T, }, intros p p_in_T j j_val_gt_i_val, --Prove T_shifted_property_after_i use [p, p_in_T], }, intros coords goal_finset goal_finset_subset_s_finset coords_disjoint_s_fisnet T_disjoint_goal_finset coords_left_def coords_card_le_goal_finset_card, let coords_list : list ℝ := finset.sort has_le.le coords, let goal_list : list ℝ := finset.sort has_le.le goal_finset, have coords_list_def : coords_list = finset.sort has_le.le coords := by refl, have goal_list_def : goal_list = finset.sort has_le.le goal_finset := by refl, cases finset.sort has_le.le coords with last_coord rest_coords, { exfalso, --coords_left_def says coords.card > 0, so it is impossible that coords_list = list.nil have coords_list_length_eq_coords_card : coords_list.length = coords.card := finset.length_sort real.has_le.le, rw [← coords_list_length_eq_coords_card, coords_list_def, list.length] at coords_left_def, exact nat.succ_ne_zero coords_left_pred coords_left_def, }, cases finset.sort has_le.le goal_finset with last_goal rest_goal_list, { exfalso, --coords.card ≤ goal_finset.card and coords.card > 0, so it is impossible that goal_list = list.nil have goal_finset_card_eq_goal_list_length : goal_list.length = goal_finset.card := finset.length_sort real.has_le.le, rw [← goal_finset_card_eq_goal_list_length, goal_list_def, list.length, ← coords_left_def] at coords_card_le_goal_finset_card, exact nat.not_succ_le_zero coords_left_pred coords_card_le_goal_finset_card, }, have last_goal_in_goal_finset : last_goal ∈ goal_finset := begin rw ← finset.mem_sort real.has_le.le, change last_goal ∈ goal_list, rw goal_list_def, simp only [list.mem_cons_iff, true_or, eq_self_iff_true], end, have last_goal_in_s_finset := finset.mem_of_subset goal_finset_subset_s_finset last_goal_in_goal_finset, let rest_coords_finset : finset ℝ := rest_coords.to_finset, let rest_goal_finset : finset ℝ := rest_goal_list.to_finset, have rest_goal_finset_subset_goal_finset : rest_goal_finset ⊆ goal_finset := begin dsimp[rest_goal_finset], rw finset.subset_iff, intros rest_goal_val rest_goal_val_in_rest_goal_finset, rw list.mem_to_finset at rest_goal_val_in_rest_goal_finset, rw ← finset.mem_sort real.has_le.le, change rest_goal_val ∈ goal_list, rw [goal_list_def, list.mem_cons_iff], right, exact rest_goal_val_in_rest_goal_finset, end, have rest_goal_finset_subset_s_finset : rest_goal_finset ⊆ s_finset s_ne_zero := finset.subset.trans rest_goal_finset_subset_goal_finset goal_finset_subset_s_finset, have rest_coords_finset_subset_coords : rest_coords_finset ⊆ coords := begin dsimp[rest_coords_finset], rw finset.subset_iff, intros coord coord_in_rest_coords, rw list.mem_to_finset at coord_in_rest_coords, rw ← finset.mem_sort real.has_le.le, change coord ∈ coords_list, rw [coords_list_def, list.mem_cons_iff], right, exact coord_in_rest_coords, end, have rest_coords_finset_disjoint_s_finset : ∀ (coord : ℝ), coord ∈ rest_coords_finset → ∀ (s_val : ℝ), s_val ∈ s_finset s_ne_zero → ne_mod_one coord s_val := begin intros coord coord_in_rest_coords_finset s_val s_val_in_s_finset, have coord_in_coords := finset.mem_of_subset rest_coords_finset_subset_coords coord_in_rest_coords_finset, exact coords_disjoint_s_fisnet coord coord_in_coords s_val s_val_in_s_finset, end, have rest_coords_nodup : rest_coords.nodup := begin rw list.nodup, have coords_list_nodup : coords_list.nodup := finset.sort_nodup real.has_le.le coords, rw [list.nodup, coords_list_def, list.pairwise_cons] at coords_list_nodup, exact coords_list_nodup.2, end, have rest_coords_card : coords_left_pred = rest_coords_finset.card := begin dsimp[rest_coords_finset], have coords_list_length : coords_list.length = rest_coords.length + 1 := by {rw coords_list_def, exact list.length_cons last_coord rest_coords}, have coords_list_length_eq_coords_card : coords_list.length = coords.card := by {dsimp[coords_list], apply finset.length_sort}, rw ← coords_left_def at coords_list_length_eq_coords_card, rw list.to_finset_card_of_nodup rest_coords_nodup, clear_except coords_list_length coords_list_length_eq_coords_card, omega, end, have T_disjoint_rest_goal_finset : ∀ (p : vector ℝ d), p ∈ T → ∀ (goal_val : ℝ), goal_val ∈ rest_goal_finset → ne_mod_one (p.nth i) goal_val := begin intros p p_in_T goal_val goal_val_in_rest_goal_finset, have goal_val_in_goal_finset := finset.mem_of_subset rest_goal_finset_subset_goal_finset goal_val_in_rest_goal_finset, exact T_disjoint_goal_finset p p_in_T goal_val goal_val_in_goal_finset, end, have rest_coords_card_le_rest_goal_finset_card : rest_coords_finset.card ≤ rest_goal_finset.card := begin rw ← rest_coords_card, rw [← coords_left_def, nat.succ_eq_add_one] at coords_card_le_goal_finset_card, have coords_left_pred_le_goal_finset_card_sub_one : coords_left_pred ≤ goal_finset.card - 1 := by {clear_except coords_card_le_goal_finset_card, omega}, have goal_finset_card : goal_finset.card = rest_goal_finset.card + 1 := begin rw ← finset.length_sort real.has_le.le, change goal_list.length = rest_goal_finset.card + 1, dsimp[rest_goal_finset], have rest_goal_list_nodup : rest_goal_list.nodup := begin have goal_list_nodup : goal_list.nodup := finset.sort_nodup has_le.le goal_finset, rw [goal_list_def, list.nodup, list.pairwise_cons, ← list.nodup] at goal_list_nodup, exact goal_list_nodup.2, end, rw [goal_list_def, list.length_cons, list.to_finset_card_of_nodup rest_goal_list_nodup], end, rw goal_finset_card at coords_left_pred_le_goal_finset_card_sub_one, simp only [nat.add_succ_sub_one, add_zero] at coords_left_pred_le_goal_finset_card_sub_one, exact coords_left_pred_le_goal_finset_card_sub_one, end, rcases ih rest_coords_finset rest_goal_finset rest_goal_finset_subset_s_finset rest_coords_finset_disjoint_s_finset T_disjoint_rest_goal_finset rest_coords_card rest_coords_card_le_rest_goal_finset_card with ⟨T_shifted_prev, T_shifted_prev_is_tiling, T_shifted_prev_faceshare_free, T_shifted_prev_is_periodic, T_shifted_prev_property_before_i, T_shifted_prev_property_at_i, T_shifted_prev_property_after_i⟩, let T_shifted := shift_tiling T_shifted_prev i last_coord (last_goal - last_coord), rcases replacement_lemma d T_shifted_prev T_shifted_prev_is_tiling last_coord (last_goal - last_coord) i with ⟨T_shifted_is_tiling, T_shifted_prev_faceshare_free_implication⟩, use [T_shifted, T_shifted_is_tiling], have last_goal_not_in_T_shifted_prev : (∀ (t : point d), t ∈ T_shifted_prev → ne_mod_one (vector.nth t i) (last_coord + (last_goal - last_coord))) := begin intros t t_in_T_shifted_prev, simp only [add_sub_cancel'_right], rcases T_shifted_prev_property_at_i t t_in_T_shifted_prev with ⟨t_ne_mod_one_rest_coords, ⟨goal_val, goal_val_in_rest_goal_finset, t_eq_goal_val_mod_one⟩ | t_in_T⟩, { have goal_val_ne_last_goal : goal_val ≠ last_goal := begin have goal_list_nodup : goal_list.nodup := finset.sort_nodup real.has_le.le goal_finset, rw [list.nodup, goal_list_def, list.pairwise_cons] at goal_list_nodup, rcases goal_list_nodup with ⟨last_goal_not_in_rest_goal_list, rest_goal_list_nodup⟩, dsimp[rest_goal_finset] at goal_val_in_rest_goal_finset, rw list.mem_to_finset at goal_val_in_rest_goal_finset, symmetry, exact last_goal_not_in_rest_goal_list goal_val goal_val_in_rest_goal_finset, end, have goal_val_in_s_finset : goal_val ∈ s_finset s_ne_zero := finset.mem_of_subset rest_goal_finset_subset_s_finset goal_val_in_rest_goal_finset, have goal_val_ne_last_goal_mod_one := s_finset_distinct_mod_one goal_val_ne_last_goal goal_val_in_s_finset last_goal_in_s_finset, intro t_eq_last_goal_mod_one, replace t_eq_goal_val_mod_one := eq_mod_one_symmetric t_eq_goal_val_mod_one, exact goal_val_ne_last_goal_mod_one (eq_mod_one_transitive t_eq_goal_val_mod_one t_eq_last_goal_mod_one), }, exact T_disjoint_goal_finset t t_in_T last_goal last_goal_in_goal_finset, end, have T_shifted_faceshare_free := T_shifted_prev_faceshare_free_implication T_shifted_prev_faceshare_free last_goal_not_in_T_shifted_prev, split, exact T_shifted_faceshare_free, split, exact shifted_periodic_tiling_still_periodic T_shifted_prev_is_tiling T_shifted_prev_is_periodic i last_coord (last_goal - last_coord) T_shifted_is_tiling, split, { intros p p_in_T_shifted j j_val_lt_i_val, --Prove T_shifted_property_before_i dsimp[T_shifted] at p_in_T_shifted, rw shift_tiling at p_in_T_shifted, simp only [exists_prop, set.mem_union_eq, set.mem_set_of_eq] at p_in_T_shifted, rcases p_in_T_shifted with ⟨p_in_T_shifted_prev, p_ne_last_coord_mod_one⟩ | ⟨p_prev, p_prev_in_T_shifted_prev, p_def, p_prev_eq_last_coord_mod_one⟩, exact T_shifted_prev_property_before_i p p_in_T_shifted_prev j j_val_lt_i_val, rw [scaled_basis_vector, add_vectors] at p_def, simp only [vector.nth_of_fn] at p_def, rw p_def, simp only [vector.nth_of_fn], have i_ne_j : i ≠ j := by {intro i_eq_j, rw i_eq_j at j_val_lt_i_val, exact lt_irrefl j.val j_val_lt_i_val}, rw [if_neg i_ne_j, add_zero], exact T_shifted_prev_property_before_i p_prev p_prev_in_T_shifted_prev j j_val_lt_i_val, }, split, { intros p p_in_T_shifted, --Prove T_shifted_property_at_i dsimp[T_shifted] at p_in_T_shifted, rw shift_tiling at p_in_T_shifted, simp only [exists_prop, set.mem_union_eq, set.mem_set_of_eq] at p_in_T_shifted, rcases p_in_T_shifted with ⟨p_in_T_shifted_prev, p_ne_last_coord_mod_one⟩ | ⟨p_prev, p_prev_in_T_shifted_prev, p_def, p_prev_eq_last_coord_mod_one⟩, { rcases T_shifted_prev_property_at_i p p_in_T_shifted_prev with ⟨p_ne_rest_coords_mod_one, T_shifted_second_property_at_i⟩, split, { intros coord coord_in_coords, by_cases coord_in_rest_coords_finset : coord ∈ rest_coords_finset, exact p_ne_rest_coords_mod_one coord coord_in_rest_coords_finset, rename coord_in_rest_coords_finset coord_not_in_rest_coords_finset, have coord_in_coords_list : coord ∈ coords_list := by {rw finset.mem_sort, exact coord_in_coords}, rw [coords_list_def, list.mem_cons_eq] at coord_in_coords_list, cases coord_in_coords_list with coord_eq_last_coord coord_in_rest_coords, { rw coord_eq_last_coord, exact p_ne_last_coord_mod_one, }, have coord_in_rest_coords_finset : coord ∈ rest_coords_finset := by {rw list.mem_to_finset, exact coord_in_rest_coords}, exact p_ne_rest_coords_mod_one coord coord_in_rest_coords_finset, }, rcases T_shifted_second_property_at_i with ⟨goal_val, goal_val_in_rest_goal_finset, p_eq_goal_val_mod_one⟩ | p_in_T, { left, have goal_val_in_goal_finset := finset.mem_of_subset rest_goal_finset_subset_goal_finset goal_val_in_rest_goal_finset, use [goal_val, goal_val_in_goal_finset, p_eq_goal_val_mod_one], }, right, exact p_in_T, }, split, { intros coord coord_in_coords p_eq_coord_mod_one, rw [p_def, scaled_basis_vector, add_vectors] at p_eq_coord_mod_one, simp only [if_true, eq_self_iff_true, vector.nth_of_fn] at p_eq_coord_mod_one, replace p_eq_coord_mod_one := subst_summand_eq_mod_one p_prev_eq_last_coord_mod_one p_eq_coord_mod_one, simp only [add_sub_cancel'_right] at p_eq_coord_mod_one, exact coords_disjoint_s_fisnet coord coord_in_coords last_goal last_goal_in_s_finset (eq_mod_one_symmetric p_eq_coord_mod_one), }, left, use [last_goal, last_goal_in_goal_finset], rw [p_def, scaled_basis_vector, add_vectors], simp only [if_true, eq_self_iff_true, vector.nth_of_fn], apply subst_summand_eq_mod_one (eq_mod_one_symmetric p_prev_eq_last_coord_mod_one), simp only [add_sub_cancel'_right], exact eq_mod_one_reflexive last_goal, }, intros p p_in_T_shifted j j_val_gt_i_val, --Prove T_shifted_property_after_i dsimp[T_shifted] at p_in_T_shifted, rw shift_tiling at p_in_T_shifted, simp only [exists_prop, set.mem_union_eq, set.mem_set_of_eq] at p_in_T_shifted, rcases p_in_T_shifted with ⟨p_in_T_shifted_prev, p_ne_last_coord_mod_one⟩ | ⟨p_prev, p_prev_in_T_shifted_prev, p_def, p_prev_eq_last_coord_mod_one⟩, exact T_shifted_prev_property_after_i p p_in_T_shifted_prev j j_val_gt_i_val, rw [scaled_basis_vector, add_vectors] at p_def, simp only [vector.nth_of_fn] at p_def, rw p_def, simp only [vector.nth_of_fn], have i_ne_j : i ≠ j := by {intro i_eq_j, rw i_eq_j at j_val_gt_i_val, exact gt_irrefl j.val j_val_gt_i_val}, rw [if_neg i_ne_j, add_zero], exact T_shifted_prev_property_after_i p_prev p_prev_in_T_shifted_prev j j_val_gt_i_val, end lemma inductive_replacement_lemma_helper1 {d : ℕ} {s : ℕ} (d_ne_zero : d ≠ 0) (s_ne_zero : s ≠ 0) (i : fin d) (T : set (point d)) (T_is_tiling : is_tiling T) (T_faceshare_free : tiling_faceshare_free T) (T_is_periodic : is_periodic T_is_tiling) (T_is_s_discrete : is_s_discrete s T) (coords_before_i_handled : ∀ p : point d, p ∈ T → ∀ j : fin d, j.val < i.val → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p j) s_val) : ∃ T_shifted : set (point d), ∃ T_shifted_is_tiling : is_tiling T_shifted, tiling_faceshare_free T_shifted ∧ is_periodic T_shifted_is_tiling ∧ is_s_discrete s T_shifted ∧ ∀ p : point d, p ∈ T_shifted → ∀ j : fin d, j.val ≤ i.val → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p j) s_val := begin rcases T_is_s_discrete i with ⟨coords, coords_card_le_s, ⟨coords_distinct_mod_one, T_is_s_discrete'⟩⟩, let goal_finset := {s_val ∈ s_finset s_ne_zero | ∀ coord ∈ coords, ne_mod_one coord s_val}, let coords_inter_s_finset := {coord ∈ coords | ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one coord s_val}, have coords_inter_goal_subset_of_coords : coords_inter_s_finset ⊆ coords := by {dsimp[coords_inter_s_finset], simp only [finset.filter_subset]}, have goal_finset_subset_s_finset : goal_finset ⊆ s_finset s_ne_zero := by {dsimp[goal_finset], apply finset.filter_subset}, have coords_to_handle_disjoint_s_finset : ∀ (coord : ℝ), coord ∈ coords \ coords_inter_s_finset → ∀ (s_val : ℝ), s_val ∈ s_finset s_ne_zero → ne_mod_one coord s_val := begin intros coord coord_in_coords_remaining s_val s_val_in_s_finset, dsimp[coords_inter_s_finset, goal_finset] at coord_in_coords_remaining, simp only [not_exists, and_imp, not_and, finset.mem_sdiff, finset.mem_filter] at coord_in_coords_remaining, cases coord_in_coords_remaining with coord_in_coords coord_in_coords_imp, exact coord_in_coords_imp coord_in_coords s_val s_val_in_s_finset, end, have T_disjoint_goal_finset : ∀ (p : vector ℝ d), p ∈ T → ∀ (goal_val : ℝ), goal_val ∈ goal_finset → ne_mod_one (p.nth i) goal_val := begin intros p p_in_T goal_val goal_val_in_goal_finset p_eq_goal_val_mod_one, dsimp[goal_finset] at goal_val_in_goal_finset, simp only [finset.mem_filter] at goal_val_in_goal_finset, cases goal_val_in_goal_finset with goal_val_in_s_finset goal_val_not_in_T, rcases T_is_s_discrete' p p_in_T with ⟨coord, coord_in_coords, p_eq_coord_mod_one⟩, replace p_eq_coord_mod_one := eq_mod_one_symmetric p_eq_coord_mod_one, have coord_eq_goal_val_mod_one := eq_mod_one_transitive p_eq_coord_mod_one p_eq_goal_val_mod_one, exact goal_val_not_in_T coord coord_in_coords coord_eq_goal_val_mod_one, end, have coords_to_handle_card_le_goal_finset_card : (coords \ coords_inter_s_finset).card ≤ goal_finset.card := begin rw finset.card_sdiff, { simp only [tsub_le_iff_right], have goal_finset_card_add_coord_inter_s_card_eq_s_card : goal_finset.card + coords_inter_s_finset.card = (s_finset s_ne_zero).card := begin let s_finset_filter_fn := (λ s_val : ℝ, ∀ (coord : ℝ), coord ∈ coords → ne_mod_one coord s_val), have s_finset_filter_fn_decidable : decidable_pred s_finset_filter_fn := (λ s_val, classical.prop_decidable (s_finset_filter_fn s_val)), let s_finset_filter_fn_neg := (λ s_val : ℝ, ∃ coord ∈ coords, eq_mod_one coord s_val), have not_s_finset_filter_fn_neg_eq_f_finset_filter_fn_neg : not ∘ s_finset_filter_fn = s_finset_filter_fn_neg := begin apply funext, intro s_val, dsimp[s_finset_filter_fn, s_finset_filter_fn_neg], simp only [exists_prop, eq_iff_iff, not_forall], split, { rintro ⟨coord, coord_in_coords, coord_eq_s_val_mod_one⟩, use [coord, coord_in_coords], rw [ne_mod_one, not_not] at coord_eq_s_val_mod_one, exact coord_eq_s_val_mod_one, }, rintro ⟨coord, coord_in_coords, coord_eq_s_val_mod_one⟩, use [coord, coord_in_coords], end, rw ← @finset.filter_card_add_filter_neg_card_eq_card ℝ (s_finset s_ne_zero) s_finset_filter_fn s_finset_filter_fn_decidable, have goal_finset_eq_s_finset_filtered : goal_finset = @finset.filter ℝ s_finset_filter_fn s_finset_filter_fn_decidable (s_finset s_ne_zero) := begin dsimp[goal_finset, s_finset_filter_fn], apply finset.filter_congr_decidable, end, rw goal_finset_eq_s_finset_filtered, simp only [add_right_inj], let f : ℝ → ℝ := (λ coord : ℝ, begin by_cases h : ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one coord s_val, exact classical.some h, exact (-1 : ℝ), end ), convert_to coords_inter_s_finset.card = (finset.image f coords_inter_s_finset).card, { have finset_card_eq_self_card : ∀ s : finset ℝ, ∀ s' : finset ℝ, s = s' → s.card = s'.card := by {intros s s' s_eq_s', rw s_eq_s'}, apply finset_card_eq_self_card, apply finset.ext, intro s_val, split, { intro s_val_in_filtered_set, conv at s_val_in_filtered_set begin find (not ∘ s_finset_filter_fn) {rw not_s_finset_filter_fn_neg_eq_f_finset_filter_fn_neg} end, dsimp[s_finset_filter_fn_neg] at s_val_in_filtered_set, simp only [exists_prop, finset.mem_filter] at s_val_in_filtered_set, rcases s_val_in_filtered_set with ⟨s_val_in_s_finset, ⟨coord, coord_in_coords, coord_eq_s_val_mod_one⟩⟩, rw finset.mem_image, use coord, split, { dsimp[coords_inter_s_finset], simp only [exists_prop, finset.mem_filter], use [coord_in_coords, s_val, s_val_in_s_finset, coord_eq_s_val_mod_one], }, dsimp[f], have if_cond_true : ∃ (s_val : ℝ) (H : s_val ∈ s_finset s_ne_zero), eq_mod_one coord s_val := ⟨s_val, s_val_in_s_finset, coord_eq_s_val_mod_one⟩, convert_to classical.some if_cond_true = s_val, apply dif_pos, rcases classical.some_spec if_cond_true with ⟨classical_some_in_s_finset, coord_eq_classical_some_mod_one⟩, by_contra classical_some_ne_s_val, have classical_some_eq_s_val_mod_one : eq_mod_one (classical.some if_cond_true) s_val := eq_mod_one_transitive (eq_mod_one_symmetric coord_eq_classical_some_mod_one) coord_eq_s_val_mod_one, exact s_finset_distinct_mod_one classical_some_ne_s_val classical_some_in_s_finset s_val_in_s_finset classical_some_eq_s_val_mod_one, }, intro s_val_in_image, conv begin find (not ∘ s_finset_filter_fn) {rw not_s_finset_filter_fn_neg_eq_f_finset_filter_fn_neg} end, dsimp[s_finset_filter_fn_neg], simp only [exists_prop, finset.mem_filter], dsimp[f] at s_val_in_image, rw finset.mem_image at s_val_in_image, simp only [exists_prop] at s_val_in_image, rcases s_val_in_image with ⟨coord, coord_in_coords_inter_s_finset, classical_some_eq_s_val⟩, by_cases if_cond : ∃ (s_val : ℝ), s_val ∈ s_finset s_ne_zero ∧ eq_mod_one coord s_val, { rename if_cond if_cond_true, rw dif_pos if_cond_true at classical_some_eq_s_val, rcases classical.some_spec if_cond_true with ⟨classical_some_in_s_finset, coord_eq_classical_some_mod_one⟩, rw ← classical_some_eq_s_val, have coord_in_coords : coord ∈ coords := begin dsimp[coords_inter_s_finset] at coord_in_coords_inter_s_finset, rw finset.mem_filter at coord_in_coords_inter_s_finset, cases coord_in_coords_inter_s_finset with coord_in_coords _, exact coord_in_coords, end, exact ⟨classical_some_in_s_finset, ⟨coord, coord_in_coords, coord_eq_classical_some_mod_one⟩⟩, }, rename if_cond if_cond_false, exfalso, --Derive contradiction from if_cond_false dsimp[coords_inter_s_finset] at coord_in_coords_inter_s_finset, rw finset.mem_filter at coord_in_coords_inter_s_finset, cases coord_in_coords_inter_s_finset with _ if_cond_true, have if_cond_true' : ∃ s_val : ℝ, s_val ∈ s_finset s_ne_zero ∧ eq_mod_one coord s_val := begin rcases if_cond_true with ⟨s_val, s_val_in_s_finset, coord_eq_s_val_mod_one⟩, use s_val, exact ⟨s_val_in_s_finset, coord_eq_s_val_mod_one⟩, end, exact if_cond_false if_cond_true', }, symmetry, rw finset.card_image_eq_iff_inj_on, rw set.inj_on, intros coord1 coord1_in_coords_inter_s_finset coord2 coord2_in_coords_inter_s_finset f_coord1_eq_f_coord2, rw finset.mem_coe at coord1_in_coords_inter_s_finset coord2_in_coords_inter_s_finset, dsimp[coords_inter_s_finset] at coord1_in_coords_inter_s_finset coord2_in_coords_inter_s_finset, simp only [exists_prop, finset.mem_filter] at coord1_in_coords_inter_s_finset coord2_in_coords_inter_s_finset, rcases coord1_in_coords_inter_s_finset with ⟨coord1_in_coords, ⟨coord1_s_val, coord1_s_val_in_s_finset, coord1_eq_coord1_s_val_mod_one⟩⟩, rcases coord2_in_coords_inter_s_finset with ⟨coord2_in_coords, ⟨coord2_s_val, coord2_s_val_in_s_finset, coord2_eq_coord2_s_val_mod_one⟩⟩, dsimp[f] at f_coord1_eq_f_coord2, have exists_s_val_eq_coord1_mod_one : ∃ (s_val : ℝ) (H : s_val ∈ s_finset s_ne_zero), eq_mod_one coord1 s_val := ⟨coord1_s_val, coord1_s_val_in_s_finset, coord1_eq_coord1_s_val_mod_one⟩, have exists_s_val_eq_coord2_mod_one : ∃ (s_val : ℝ) (H : s_val ∈ s_finset s_ne_zero), eq_mod_one coord2 s_val := ⟨coord2_s_val, coord2_s_val_in_s_finset, coord2_eq_coord2_s_val_mod_one⟩, rw [dif_pos exists_s_val_eq_coord1_mod_one, dif_pos exists_s_val_eq_coord2_mod_one] at f_coord1_eq_f_coord2, rcases classical.some_spec exists_s_val_eq_coord1_mod_one with ⟨classical_some1_in_s_finset, coord1_eq_classical_some1_mod_one⟩, rcases classical.some_spec exists_s_val_eq_coord2_mod_one with ⟨classical_some2_in_s_finset, coord2_eq_classical_some2_mod_one⟩, rw f_coord1_eq_f_coord2 at coord1_eq_classical_some1_mod_one, have coord1_eq_coord2_mod_one : eq_mod_one coord1 coord2 := eq_mod_one_transitive coord1_eq_classical_some1_mod_one (eq_mod_one_symmetric coord2_eq_classical_some2_mod_one), by_contra coord1_ne_coord2, exact coords_distinct_mod_one coord1 coord1_in_coords coord2 coord2_in_coords coord1_ne_coord2 coord1_eq_coord2_mod_one, end, rw [goal_finset_card_add_coord_inter_s_card_eq_s_card, s_finset_card s_ne_zero], exact coords_card_le_s, }, apply finset.filter_subset, end, rcases inductive_replacement_lemma_helper2 s_ne_zero i T T_is_tiling T_faceshare_free T_is_periodic coords_before_i_handled (coords \ coords_inter_s_finset).card (coords \ coords_inter_s_finset) goal_finset goal_finset_subset_s_finset coords_to_handle_disjoint_s_finset T_disjoint_goal_finset (by refl) coords_to_handle_card_le_goal_finset_card with ⟨T_shifted, T_shifted_is_tiling, T_shifted_faceshare_free, T_shifted_is_periodic, T_shifted_property_before_i, T_shifted_property_at_i, T_shifted_property_after_i⟩, use [T_shifted, T_shifted_is_tiling], split, exact T_shifted_faceshare_free, split, exact T_shifted_is_periodic, split, { rw is_s_discrete, intro j, have j_eq_or_lt_or_gt_i := nat_eq_or_lt_or_gt j.val i.val, rcases j_eq_or_lt_or_gt_i with j_val_eq_i_val | j_val_lt_i_val | j_val_gt_i_val, { use s_finset s_ne_zero, split, { apply le_of_eq, exact s_finset_card s_ne_zero, }, split, { intros coord1 coord1_in_s_finset coord2 coord2_in_s_finset coord1_ne_coord2, exact s_finset_distinct_mod_one coord1_ne_coord2 coord1_in_s_finset coord2_in_s_finset, }, intros t t_in_T_shifted, have j_eq_i := fin.eq_of_veq j_val_eq_i_val, rw j_eq_i, cases T_shifted_property_at_i t t_in_T_shifted with coords_not_in_T_shifted T_shifted_has_goal, by_contra goal_false, cases T_shifted_has_goal with goal t_in_T, { simp only [not_exists, exists_prop, not_and] at goal_false, rcases goal with ⟨goal_val, goal_val_in_goal_finset, t_eq_goal_val_mod_one⟩, have goal_val_in_s_finset := finset.mem_of_subset goal_finset_subset_s_finset goal_val_in_goal_finset, exact goal_false goal_val goal_val_in_s_finset t_eq_goal_val_mod_one, }, rcases T_is_s_discrete' t t_in_T with ⟨coord, coord_in_coords, t_eq_mod_one_coord⟩, have coord_in_coords_to_handle : coord ∈ coords \ coords_inter_s_finset := begin dsimp[coords_inter_s_finset], simp only [not_exists, exists_prop, not_and, finset.mem_sdiff, finset.mem_filter], split, exact coord_in_coords, intros coord_in_coords goal_val goal_val_in_goal_finset coord_eq_goal_val_mod_one, have t_eq_goal_val_mod_one := eq_mod_one_transitive t_eq_mod_one_coord coord_eq_goal_val_mod_one, simp only [not_exists, exists_prop, not_and] at goal_false, exact goal_false goal_val goal_val_in_goal_finset t_eq_goal_val_mod_one, end, exact coords_not_in_T_shifted coord coord_in_coords_to_handle t_eq_mod_one_coord, }, { use s_finset s_ne_zero, split, { apply le_of_eq, exact s_finset_card s_ne_zero, }, split, { intros coord1 coord1_in_s_finset coord2 coord2_in_s_finset coord1_ne_coord2, exact s_finset_distinct_mod_one coord1_ne_coord2 coord1_in_s_finset coord2_in_s_finset, }, intros t t_in_T_shifted, exact T_shifted_property_before_i t t_in_T_shifted j j_val_lt_i_val, }, rcases T_is_s_discrete j with ⟨coords, coords_card_le_s, ⟨coords_distinct_mod_one, t_in_T_imp_t_j_in_coords⟩⟩, use [coords, coords_card_le_s], split, exact coords_distinct_mod_one, intros t t_in_T_shifted, rcases T_shifted_property_after_i t t_in_T_shifted j j_val_gt_i_val with ⟨t', t'_in_T, t_eq_t'_at_j⟩, rw t_eq_t'_at_j, exact t_in_T_imp_t_j_in_coords t' t'_in_T, }, intros p p_in_T_shifted j j_val_le_i, cases lt_or_eq_of_le j_val_le_i with j_val_lt_i_val j_val_eq_i_val, exact T_shifted_property_before_i p p_in_T_shifted j j_val_lt_i_val, have j_eq_i : j = i := fin.eq_of_veq j_val_eq_i_val, rw j_eq_i, replace T_shifted_property_at_i := T_shifted_property_at_i p p_in_T_shifted, cases T_shifted_property_at_i with T_shifted_shifts_all_bad_coords T_shifted_coords_all_in_goal_finset, by_contra p_coord_not_in_goal_finset, --Derive contradiction between p_coord_not_in_goal_finset and T_shifted_property_at_i cases T_shifted_coords_all_in_goal_finset with T_shifted_coords_all_in_goal_finset p_in_T, { rcases T_shifted_coords_all_in_goal_finset with ⟨goal_val, goal_val_in_goal_finset, p_eq_goal_val_mod_one⟩, simp only [not_exists, exists_prop, not_and] at p_coord_not_in_goal_finset, have goal_val_in_s_finset := finset.mem_of_subset goal_finset_subset_s_finset goal_val_in_goal_finset, exact p_coord_not_in_goal_finset goal_val goal_val_in_s_finset p_eq_goal_val_mod_one, }, have p_i_in_coords : ∃ coord ∈ coords, eq_mod_one (vector.nth p i) coord := T_is_s_discrete' p p_in_T, rcases p_i_in_coords with ⟨coord, coord_in_coords, p_i_eq_coords_mod_one⟩, by_cases coord_in_goal_finset : coord ∈ goal_finset, { simp only [not_exists, exists_prop, not_and] at p_coord_not_in_goal_finset, have coord_in_s_finset := finset.mem_of_subset goal_finset_subset_s_finset coord_in_goal_finset, exact p_coord_not_in_goal_finset coord coord_in_s_finset p_i_eq_coords_mod_one, }, rename coord_in_goal_finset coord_not_in_goal_finset, have coord_in_coords_to_handle : coord ∈ coords \ coords_inter_s_finset := begin dsimp[coords_inter_s_finset], simp only [not_exists, exists_prop, not_and, finset.mem_sdiff, finset.mem_filter], split, exact coord_in_coords, intros coord_in_coords goal_val goal_val_in_goal_finset coord_eq_goal_val_mod_one, have p_eq_goal_val_mod_one := eq_mod_one_transitive p_i_eq_coords_mod_one coord_eq_goal_val_mod_one, simp only [not_exists, exists_prop, not_and] at p_coord_not_in_goal_finset, exact p_coord_not_in_goal_finset goal_val goal_val_in_goal_finset p_eq_goal_val_mod_one, end, exact T_shifted_shifts_all_bad_coords coord coord_in_coords_to_handle p_i_eq_coords_mod_one, end lemma inductive_replacement_lemma {d : ℕ} {s : ℕ} (d_ne_zero : d ≠ 0) (s_ne_zero : s ≠ 0) (T : set (point d)) (T_is_tiling : is_tiling T) (T_faceshare_free : tiling_faceshare_free T) (T_is_periodic: is_periodic T_is_tiling) (T_is_s_discrete : is_s_discrete s T) : ∃ T_shifted : set (point d), ∃ T_shifted_is_tiling : is_tiling T_shifted, tiling_faceshare_free T_shifted ∧ is_periodic T_shifted_is_tiling ∧ (∀ i : fin d, ∀ p : point d, p ∈ T_shifted → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p i) s_val) := begin let d_sub_one : fin d := ⟨d - 1, nat.pred_lt d_ne_zero⟩, have inductive_replacement_lemma_helper_fact : ∀ i : fin d, i.val < d → ∃ T_shifted : set (point d), ∃ T_shifted_is_tiling : is_tiling T_shifted, tiling_faceshare_free T_shifted ∧ is_periodic T_shifted_is_tiling ∧ is_s_discrete s T_shifted ∧ ∀ p : point d, p ∈ T_shifted → ∀ j : fin d, j.val ≤ i.val → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p j) s_val := begin intro i, induction i.val, { intro zero_lt_d, have coords_before_zero_handled : ∀ p : point d, p ∈ T → ∀ j : fin d, j.val < 0 → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p j) s_val := by {intros p p_in_T j j_lt_zero, exfalso, clear_except j_lt_zero, linarith,}, exact inductive_replacement_lemma_helper1 d_ne_zero s_ne_zero ⟨0, zero_lt_d⟩ T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete coords_before_zero_handled, }, intro n_succ_lt_d, have n_lt_d : n < d := nat.lt_of_succ_lt n_succ_lt_d, rcases ih n_lt_d with ⟨T_shifted_prev, T_shifted_prev_is_tiling, T_shifted_prev_faceshare_free, T_shifted_prev_is_periodic, T_shifted_prev_s_discrete, T_shifted_prev_coord_property⟩, have coords_before_n_succ_handled : ∀ p : point d, p ∈ T_shifted_prev → ∀ j : fin d, j.val < n.succ → ∃ s_val ∈ s_finset s_ne_zero, eq_mod_one (vector.nth p j) s_val := begin intros p p_in_T_shifted_prev j j_lt_n_succ, have j_le_n := nat.le_of_lt_succ j_lt_n_succ, exact T_shifted_prev_coord_property p p_in_T_shifted_prev j j_le_n, end, exact inductive_replacement_lemma_helper1 d_ne_zero s_ne_zero ⟨n.succ, n_succ_lt_d⟩ T_shifted_prev T_shifted_prev_is_tiling T_shifted_prev_faceshare_free T_shifted_prev_is_periodic T_shifted_prev_s_discrete coords_before_n_succ_handled, end, rcases inductive_replacement_lemma_helper_fact d_sub_one (nat.pred_lt d_ne_zero) with ⟨T_shifted, T_shifted_is_tiling, T_shifted_faceshare_free, T_shifted_is_periodic, T_shifted_s_discrete, T_shifted_only_uses_goal_coordinates⟩, use [T_shifted, T_shifted_is_tiling, T_shifted_faceshare_free, T_shifted_is_periodic], intros i p p_in_T_shifted, have i_val_le_d_sub_one_val : i.val ≤ d_sub_one.val := begin have i_val_lt_d := i.property, dsimp only[d_sub_one], exact nat.le_pred_of_lt i_val_lt_d, end, exact T_shifted_only_uses_goal_coordinates p p_in_T_shifted i i_val_le_d_sub_one_val, end lemma goal_clique_with_info_map_fn_yields_fin_double_s_vector {d s : ℕ} (d_ne_zero : d ≠ 0) (s_ne_zero : s ≠ 0) (T : set (point d)) (T_is_tiling : is_tiling T) (T_faceshare_free : tiling_faceshare_free T) (T_is_periodic : is_periodic T_is_tiling) (T_is_s_discrete : is_s_discrete s T) (T_shifted : set (point d)) (T_shifted_is_tiling : is_tiling T_shifted) (T_shifted_faceshare_free : tiling_faceshare_free T_shifted) (T_shifted_contains_only_s_points : ∀ (i : fin d) (p : point d), p ∈ T_shifted → (∃ (s_val : ℝ) (H : s_val ∈ s_finset s_ne_zero), eq_mod_one (vector.nth p i) s_val)) (core_points_finset : finset {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)}) (core_points_finset_card : core_points_finset.card = 2 ^ d) (core_points_finset_property : ∀ (p : point d) (h : ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)), (⟨p, h⟩ : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)}) ∈ core_points_finset) (p : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)}) : ∃ fin_double_s_vector : vector (fin (2*s)) d, ∀ i : fin d, ↑(fin_double_s_vector.nth i).val = ↑s * (((point_to_corner T_shifted_is_tiling p).val).nth i) + s - 1 := begin let p_corner := (point_to_corner T_shifted_is_tiling ↑p).val, have p_corner_def : p_corner = (point_to_corner T_shifted_is_tiling ↑p).val := by refl, have p_corner_property := (point_to_corner T_shifted_is_tiling ↑p).property, rw ← p_corner_def at p_corner_property, rw ← p_corner_def, rcases p_corner_property with ⟨p_corner_in_T_shifted, p_in_p_corner, p_corner_unique⟩, rw cube at p_in_p_corner, simp only [set.mem_set_of_eq] at p_in_p_corner, rw in_cube at p_in_p_corner, have each_coord_is_nat : ∀ i : fin d, ∃ n : ℕ, ↑n = ↑s * vector.nth p_corner i + ↑s - 1 := begin intro i, rcases T_shifted_contains_only_s_points i p_corner p_corner_in_T_shifted with ⟨s_val, s_val_in_s_finset, p_corner_eq_s_val_mod_one⟩, rcases s_finset_range s_val_in_s_finset with ⟨zero_le_s_val, s_val_lt_one⟩, replace p_in_p_corner := p_in_p_corner i, rcases p_in_p_corner with ⟨p_corner_le_p, p_lt_p_corner_add_one⟩, cases p.property i with p_property unnecessary, clear unnecessary, cases p_property i.property with p_eq_zero p_eq_one, { simp only [subtype.val_eq_coe] at p_eq_zero, rw p_eq_zero at p_corner_le_p p_lt_p_corner_add_one, rcases p_corner_eq_s_val_mod_one with ⟨p_corner_floor, zero, y, zero_le_y, y_lt_one, p_corner_def, s_val_def⟩, have zero_eq_zero : zero = 0 := begin rw s_val_def at zero_le_s_val s_val_lt_one, clear_except zero_le_s_val s_val_lt_one zero_le_y y_lt_one, rcases eq_or_lt_or_gt zero 0 with zero_eq_zero | zero_lt_zero | zero_gt_zero, exact zero_eq_zero, { have zero_le_neg_one : zero ≤ -1 := by omega, have cast_zero_le_neg_one : ↑zero ≤ (-1 : ℝ) := by exact_mod_cast zero_le_neg_one, linarith, }, have zero_ge_one : zero ≥ 1 := by omega, have cast_zero_ge_one : ↑zero ≥ (1 : ℝ) := by exact_mod_cast zero_ge_one, linarith, end, have cast_zero_eq_zero : ↑zero = (0 : ℝ) := by exact_mod_cast zero_eq_zero, rw [cast_zero_eq_zero, zero_add] at s_val_def, rw ← s_val_def at p_corner_def, by_cases s_val_eq_zero : s_val = 0, { rw [s_val_eq_zero, add_zero] at p_corner_def, use s * int.to_nat(p_corner_floor) + s - 1, have zero_le_p_corner_floor : 0 ≤ p_corner_floor := begin clear_except p_corner_def p_lt_p_corner_add_one p_corner_le_p, rw p_corner_def at p_lt_p_corner_add_one p_corner_le_p, have h1 : p_corner_floor ≤ 0 := by exact_mod_cast p_corner_le_p, have h2 : 0 < p_corner_floor + 1 := by exact_mod_cast p_lt_p_corner_add_one, omega, end, have p_corner_floor_to_nat_eq_self : ↑p_corner_floor.to_nat = p_corner_floor := int.to_nat_of_nonneg zero_le_p_corner_floor, have cast_p_corner_floor_to_nat_eq_self : ↑p_corner_floor.to_nat = (↑p_corner_floor : ℝ) := by exact_mod_cast p_corner_floor_to_nat_eq_self, have one_le_s : 1 ≤ s := begin rcases nat_eq_or_lt_or_gt s 0 with s_eq_zero | s_lt_zero | s_gt_zero, { exfalso, exact s_ne_zero s_eq_zero, }, { exfalso, exact nat.not_lt_zero s s_lt_zero, }, clear_except s_gt_zero, have zero_lt_s : 0 < s := by linarith, omega, end, rw [nat.add_sub_assoc one_le_s, nat.cast_add (s * p_corner_floor.to_nat) (s - 1), nat.cast_sub one_le_s, nat.cast_mul, cast_p_corner_floor_to_nat_eq_self, p_corner_def, ← add_sub_assoc, nat.cast_one], }, rename s_val_eq_zero s_val_ne_zero, rcases s_finset_range s_val_in_s_finset with ⟨zero_le_s_val, s_val_lt_one⟩, rw s_finset at s_val_in_s_finset, simp only [exists_prop, finset.mem_map, function.embedding.coe_fn_mk, finset.mem_range] at s_val_in_s_finset, rcases s_val_in_s_finset with ⟨s_val_num, s_val_num_lt_s, s_val_num_div_s_eq_s_val⟩, use s_val_num - 1, rcases nat_eq_or_lt_or_gt s_val_num 0 with s_val_num_eq_zero | s_val_num_lt_zero | s_val_num_gt_zero, { exfalso, rw s_val_num_eq_zero at s_val_num_div_s_eq_s_val, simp only [zero_div, nat.cast_zero] at s_val_num_div_s_eq_s_val, symmetry' at s_val_num_div_s_eq_s_val, exact s_val_ne_zero s_val_num_div_s_eq_s_val, }, { exfalso, clear_except s_val_num_lt_zero, linarith, }, have one_le_s_val_num : 1 ≤ s_val_num := by {clear_except s_val_num_gt_zero, omega}, have cast_s_ne_zero : ↑s ≠ (0 : ℝ) := by exact_mod_cast s_ne_zero, have p_corner_floor_eq_neg_one : p_corner_floor = -1 := begin rcases eq_or_lt_or_gt p_corner_floor (-1) with p_corner_floor_eq_neg_one | p_corner_floor_lt_neg_one | p_corner_floor_gt_neg_one, exact p_corner_floor_eq_neg_one, { have p_corner_floor_le_neg_two : p_corner_floor ≤ -2 := by {clear_except p_corner_floor_lt_neg_one, omega}, have cast_p_corner_floor_le_neg_two : ↑p_corner_floor ≤ (-2 : ℝ) := by exact_mod_cast p_corner_floor_le_neg_two, linarith, }, have zero_le_p_corner_floor : 0 ≤ p_corner_floor := by {clear_except p_corner_floor_gt_neg_one, omega}, have cast_zero_le_p_corner_floor : (0 : ℝ) ≤ ↑p_corner_floor := by exact_mod_cast zero_le_p_corner_floor, have zero_ne_s_val : 0 ≠ s_val := by {intro zero_eq_s_val, symmetry' at zero_eq_s_val, exact s_val_ne_zero zero_eq_s_val}, have zero_lt_s_val : 0 < s_val := lt_of_le_of_ne zero_le_s_val zero_ne_s_val, linarith, end, have cast_p_corner_floor_eq_neg_one : ↑p_corner_floor = (-1 : ℝ) := by exact_mod_cast p_corner_floor_eq_neg_one, rw ← s_val_num_div_s_eq_s_val at p_corner_def, rw [nat.cast_sub one_le_s_val_num, p_corner_def, mul_add, mul_div_of_ne_zero ↑s_val_num cast_s_ne_zero, cast_p_corner_floor_eq_neg_one], simp only [nat.cast_one, mul_neg, mul_one, neg_add_cancel_comm], }, simp only [subtype.val_eq_coe] at p_eq_one, rw p_eq_one at p_corner_le_p p_lt_p_corner_add_one, rcases p_corner_eq_s_val_mod_one with ⟨p_corner_floor, zero, y, zero_le_y, y_lt_one, p_corner_def, s_val_def⟩, have zero_eq_zero : zero = 0 := begin rw s_val_def at zero_le_s_val s_val_lt_one, clear_except zero_le_s_val s_val_lt_one zero_le_y y_lt_one, rcases eq_or_lt_or_gt zero 0 with zero_eq_zero | zero_lt_zero | zero_gt_zero, exact zero_eq_zero, { have zero_le_neg_one : zero ≤ -1 := by omega, have cast_zero_le_neg_one : ↑zero ≤ (-1 : ℝ) := by exact_mod_cast zero_le_neg_one, linarith, }, have zero_ge_one : zero ≥ 1 := by omega, have cast_zero_ge_one : ↑zero ≥ (1 : ℝ) := by exact_mod_cast zero_ge_one, linarith, end, have cast_zero_eq_zero : ↑zero = (0 : ℝ) := by exact_mod_cast zero_eq_zero, rw [cast_zero_eq_zero, zero_add] at s_val_def, rw ← s_val_def at p_corner_def, by_cases s_val_eq_zero : s_val = 0, { rw [s_val_eq_zero, add_zero] at p_corner_def, use s * int.to_nat(p_corner_floor) + s - 1, have one_le_p_corner_floor : 1 ≤ p_corner_floor := begin clear_except p_corner_def p_lt_p_corner_add_one, rw p_corner_def at p_lt_p_corner_add_one, have h : 1 < p_corner_floor + 1 := by exact_mod_cast p_lt_p_corner_add_one, omega, end, have zero_le_p_corner_floor : 0 ≤ p_corner_floor := by linarith, have p_corner_floor_to_nat_eq_self : ↑p_corner_floor.to_nat = p_corner_floor := int.to_nat_of_nonneg zero_le_p_corner_floor, have cast_p_corner_floor_to_nat_eq_self : ↑p_corner_floor.to_nat = (↑p_corner_floor : ℝ) := by exact_mod_cast p_corner_floor_to_nat_eq_self, have one_le_s : 1 ≤ s := begin rcases nat_eq_or_lt_or_gt s 0 with s_eq_zero | s_lt_zero | s_gt_zero, { exfalso, exact s_ne_zero s_eq_zero, }, { exfalso, exact nat.not_lt_zero s s_lt_zero, }, clear_except s_gt_zero, have zero_lt_s : 0 < s := by linarith, omega, end, rw [nat.add_sub_assoc one_le_s, nat.cast_add (s * p_corner_floor.to_nat) (s - 1), nat.cast_sub one_le_s, nat.cast_mul, cast_p_corner_floor_to_nat_eq_self, p_corner_def, ← add_sub_assoc, nat.cast_one], }, rename s_val_eq_zero s_val_ne_zero, rcases s_finset_range s_val_in_s_finset with ⟨zero_le_s_val, s_val_lt_one⟩, rw s_finset at s_val_in_s_finset, simp only [exists_prop, finset.mem_map, function.embedding.coe_fn_mk, finset.mem_range] at s_val_in_s_finset, rcases s_val_in_s_finset with ⟨s_val_num, s_val_num_lt_s, s_val_num_div_s_eq_s_val⟩, use ↑s_val_num + ↑s - 1, rcases nat_eq_or_lt_or_gt s_val_num 0 with s_val_num_eq_zero | s_val_num_lt_zero | s_val_num_gt_zero, { exfalso, rw s_val_num_eq_zero at s_val_num_div_s_eq_s_val, simp only [zero_div, nat.cast_zero] at s_val_num_div_s_eq_s_val, symmetry' at s_val_num_div_s_eq_s_val, exact s_val_ne_zero s_val_num_div_s_eq_s_val, }, { exfalso, clear_except s_val_num_lt_zero, linarith, }, have one_le_s_val_num : 1 ≤ s_val_num := by {clear_except s_val_num_gt_zero, omega}, have one_le_s_add_s_val_num : 1 ≤ ↑s_val_num + ↑s := by linarith, have cast_s_ne_zero : ↑s ≠ (0 : ℝ) := by exact_mod_cast s_ne_zero, have p_corner_floor_eq_zero : p_corner_floor = 0 := begin rcases eq_or_lt_or_gt p_corner_floor 0 with p_corner_floor_eq_zero | p_corner_floor_lt_zero | p_corner_floor_gt_zero, exact p_corner_floor_eq_zero, { have p_corner_floor_le_neg_one : p_corner_floor ≤ -1 := by {clear_except p_corner_floor_lt_zero, omega}, have cast_p_corner_floor_le_neg_one : ↑p_corner_floor ≤ (-1 : ℝ) := by exact_mod_cast p_corner_floor_le_neg_one, linarith, }, have one_le_p_corner_floor : 1 ≤ p_corner_floor := by {clear_except p_corner_floor_gt_zero, omega}, have cast_one_le_p_corner_floor : (1 : ℝ) ≤ ↑p_corner_floor := by exact_mod_cast one_le_p_corner_floor, have zero_ne_s_val : 0 ≠ s_val := by {intro zero_eq_s_val, symmetry' at zero_eq_s_val, exact s_val_ne_zero zero_eq_s_val}, have zero_lt_s_val : 0 < s_val := lt_of_le_of_ne zero_le_s_val zero_ne_s_val, linarith, end, have cast_p_corner_floor_eq_zero : ↑p_corner_floor = (0 : ℝ) := by exact_mod_cast p_corner_floor_eq_zero, rw ← s_val_num_div_s_eq_s_val at p_corner_def, rw [nat.cast_sub one_le_s_add_s_val_num, p_corner_def, mul_add, mul_div_of_ne_zero ↑s_val_num cast_s_ne_zero, cast_p_corner_floor_eq_zero], simp only [nat.cast_id, nat.cast_add, zero_add, nat.cast_one, mul_zero], end, have each_coord_lt_double_s : ∀ i : fin d, classical.some (each_coord_is_nat i) < 2 * s := begin intro i, have cast_goal : ↑(classical.some (each_coord_is_nat i)) < (2 : ℝ) * ↑s := begin rw classical.some_spec (each_coord_is_nat i), replace p_in_p_corner := p_in_p_corner i, rcases p_in_p_corner with ⟨p_corner_le_p, p_lt_p_corner_add_one⟩, have p_le_one : vector.nth (↑p : point d) i ≤ (1 : ℝ) := begin cases p.property i with p_property unneeded, simp only [subtype.val_eq_coe] at p_property, cases p_property i.property with p_eq_zero p_eq_one, { rw p_eq_zero, linarith, }, rw p_eq_one, end, have p_corner_le_one : vector.nth p_corner i ≤ 1 := by linarith, have zero_le_p : (0 : ℝ) ≤ vector.nth (↑p : point d) i := begin cases p.property i with p_property unneeded, simp only [subtype.val_eq_coe] at p_property, cases p_property i.property with p_eq_zero p_eq_one, rw p_eq_zero, rw p_eq_one, linarith, end, have neg_one_le_p_corner : -1 ≤ vector.nth p_corner i := by linarith, have zero_le_cast_s : (0 : ℝ) ≤ ↑s := by exact_mod_cast (zero_le s), have goal_sans_sub_one : ↑s * vector.nth p_corner i + ↑s ≤ 2 * ↑s := begin rw mul_comm (2 : ℝ) ↑s, convert_to ↑s * vector.nth p_corner i + ↑s * 1 ≤ ↑s * 2, rw mul_one, rw ← mul_add, apply mul_le_mul, exact le_refl ↑s, linarith, linarith, exact zero_le_cast_s, end, clear_except goal_sans_sub_one, linarith, end, exact_mod_cast cast_goal, end, use vector.of_fn (λ i, ⟨classical.some (each_coord_is_nat i), each_coord_lt_double_s i⟩), intro i, simp only [vector.nth_of_fn], rw classical.some_spec (each_coord_is_nat i), end noncomputable def build_goal_clique_with_info_map_fn {d s : ℕ} (d_ne_zero : d ≠ 0) (s_ne_zero : s ≠ 0) (T : set (point d)) (T_is_tiling : is_tiling T) (T_faceshare_free : tiling_faceshare_free T) (T_is_periodic : is_periodic T_is_tiling) (T_is_s_discrete : is_s_discrete s T) (T_shifted : set (point d)) (T_shifted_is_tiling : is_tiling T_shifted) (T_shifted_faceshare_free : tiling_faceshare_free T_shifted) (T_shifted_contains_only_s_points : ∀ (i : fin d) (p : point d), p ∈ T_shifted → (∃ (s_val : ℝ) (H : s_val ∈ s_finset s_ne_zero), eq_mod_one (vector.nth p i) s_val)) (core_points_finset : finset {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)}) (core_points_finset_card : core_points_finset.card = 2 ^ d) (core_points_finset_property : ∀ (p : point d) (h : ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)), (⟨p, h⟩ : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)}) ∈ core_points_finset) : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)} → {v : vector (fin (2*s)) d // ∃ p : point d, is_core_point p ∧ ∃ p_corner ∈ T_shifted, p ∈ cube p_corner ∧ (∀ alt_corner : point d, alt_corner ∈ T_shifted → p ∈ cube alt_corner → alt_corner = p_corner) ∧ (∀ i : fin d, ↑s * (vector.nth p_corner i) + ↑s - 1 = (vector.nth v i).val)} := begin intro p, use classical.some (goal_clique_with_info_map_fn_yields_fin_double_s_vector d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property p), let res := classical.some (goal_clique_with_info_map_fn_yields_fin_double_s_vector d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property p), have res_def : res = classical.some (goal_clique_with_info_map_fn_yields_fin_double_s_vector d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property p) := by refl, rw ← res_def, have res_property := classical.some_spec (goal_clique_with_info_map_fn_yields_fin_double_s_vector d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property p), rw ← res_def at res_property, let p_corner := (point_to_corner T_shifted_is_tiling p).val, have p_corner_def : p_corner = (point_to_corner T_shifted_is_tiling p).val := by refl, have p_corner_property := (point_to_corner T_shifted_is_tiling p).property, rw ← p_corner_def at p_corner_property, rcases p_corner_property with ⟨p_corner_in_T_shifted, p_in_p_corner, p_corner_unique⟩, use [p.val, (λ i, (and.elim_left (p.property i)) i.property), p_corner, p_corner_in_T_shifted, p_in_p_corner, p_corner_unique], intro i, symmetry, exact res_property i, end lemma periodic_tiling_implies_clique_helper {d s : ℕ} (d_ne_zero : d ≠ 0) (s_ne_zero : s ≠ 0) (T : set (point d)) (T_is_tiling : is_tiling T) (T_faceshare_free : tiling_faceshare_free T) (T_is_periodic : is_periodic T_is_tiling) (T_is_s_discrete : is_s_discrete s T) (T_shifted : set (point d)) (T_shifted_is_tiling : is_tiling T_shifted) (T_shifted_faceshare_free : tiling_faceshare_free T_shifted) (T_shifted_is_periodic : is_periodic T_shifted_is_tiling) (T_shifted_contains_only_s_points : ∀ (i : fin d) (p : point d), p ∈ T_shifted → (∃ (s_val : ℝ) (H : s_val ∈ s_finset s_ne_zero), eq_mod_one (vector.nth p i) s_val)) (core_points_finset : finset {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)}) (core_points_finset_card : core_points_finset.card = 2 ^ d) (core_points_finset_property : ∀ (p : point d) (h : ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)), (⟨p, h⟩ : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)}) ∈ core_points_finset) (goal_clique_with_info_map : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)} ↪ {v : vector (fin (2*s)) d // ∃ (p : point d), is_core_point p ∧ ∃ (p_corner : point d) (H : p_corner ∈ T_shifted), p ∈ cube p_corner ∧ (∀ (alt_corner : point d), alt_corner ∈ T_shifted → p ∈ cube alt_corner → alt_corner = p_corner) ∧ ∀ (i : fin d), ↑s * vector.nth p_corner i + ↑s - 1 = ↑((v.nth i).val)}) (v1 v2 : vector (fin (2 * s)) d) (v1_ne_v2 : v1 ≠ v2) (v1' : vector (fin (2 * s)) d) (core_point1 : point d) (core_point1_is_core_point : is_core_point core_point1) (core_point1_corner : point d) (core_point1_corner_in_T_shifted : core_point1_corner ∈ T_shifted) (core_point1_in_core_point1_corner : core_point1 ∈ cube core_point1_corner) (core_point1_corner_unique : ∀ (alt_corner : point d), alt_corner ∈ T_shifted → core_point1 ∈ cube alt_corner → alt_corner = core_point1_corner) (v2' : vector (fin (2 * s)) d) (core_point2 : point d) (core_point2_is_core_point : is_core_point core_point2) (core_point2_corner : point d) (core_point2_corner_in_T_shifted : core_point2_corner ∈ T_shifted) (core_point2_in_core_point2_corner : core_point2 ∈ cube core_point2_corner) (core_point2_corner_unique : ∀ (alt_corner : point d), alt_corner ∈ T_shifted → core_point2 ∈ cube alt_corner → alt_corner = core_point2_corner) (v2_def : v2' = v2) (v1_def : v1' = v1) (core_point1_corner_v1'_relationship : ∀ (i : fin d), ↑s * vector.nth core_point1_corner i + ↑s - 1 = ↑(↑(v1.nth i) : ℕ)) (core_point2_corner_v2'_relationship : ∀ (i : fin d), ↑s * vector.nth core_point2_corner i + ↑s - 1 = ↑(↑(v2.nth i) : ℕ)) (v1_not_adj_v2 : (∀ (x : fin d), ↑(v1.nth x) = ↑(v2.nth x) + s → ∀ (x_1 : fin d), ¬v1.nth x_1 = v2.nth x_1 → x = x_1) ∧ ∀ (x : fin d), ↑(v2.nth x) = ↑(v1.nth x) + s → ∀ (x_1 : fin d), ¬v2.nth x_1 = v1.nth x_1 → x = x_1) (v1_not_adj_v2_hyp_false : ¬∃ (i : fin d), ↑(v1.nth i) = ↑(v2.nth i) + s ∨ ↑(v2.nth i) = ↑(v1.nth i) + s) : let goal_clique_with_info : finset {v : vector (fin (2*s)) d // ∃ (p : point d), is_core_point p ∧ ∃ (p_corner : point d) (H : p_corner ∈ T_shifted), p ∈ cube p_corner ∧ (∀ (alt_corner : point d), alt_corner ∈ T_shifted → p ∈ cube alt_corner → alt_corner = p_corner) ∧ ∀ (i : fin d), ↑s * vector.nth p_corner i + ↑s - 1 = ↑((v.nth i).val)} := finset.map goal_clique_with_info_map core_points_finset in false := begin intros goal_clique_with_info, simp only [not_exists] at v1_not_adj_v2_hyp_false, have core_point1_corner_ne_core_point2_corner_add_or_sub_1 : ∀ i : fin d, core_point1_corner.nth i ≠ core_point2_corner.nth i + 1 ∧ core_point2_corner.nth i ≠ core_point1_corner.nth i + 1 := begin intro i, replace v1_not_adj_v2_hyp_false := v1_not_adj_v2_hyp_false i, rw not_or_distrib at v1_not_adj_v2_hyp_false, cases v1_not_adj_v2_hyp_false with v1_ne_v2_add_s v2_ne_v1_add_s, replace core_point1_corner_v1'_relationship := core_point1_corner_v1'_relationship i, replace core_point2_corner_v2'_relationship := core_point2_corner_v2'_relationship i, have real_v1_ne_v2_add_s : (↑(↑(v1.nth i) : ℕ) : ℝ) ≠ (↑(↑(v2.nth i) : ℕ) : ℝ) + ↑s := by exact_mod_cast v1_ne_v2_add_s, have real_v2_ne_v1_add_s : (↑(↑(v2.nth i) : ℕ) : ℝ) ≠ (↑(↑(v1.nth i) : ℕ) : ℝ) + ↑s := by exact_mod_cast v2_ne_v1_add_s, rw [← core_point1_corner_v1'_relationship, ← core_point2_corner_v2'_relationship, add_sub_assoc, add_sub_assoc, add_comm (↑s * vector.nth core_point1_corner i) (↑s - 1), add_comm (↑s * vector.nth core_point2_corner i) (↑s - 1), add_assoc] at real_v1_ne_v2_add_s real_v2_ne_v1_add_s, simp only [ne.def, add_right_inj] at real_v1_ne_v2_add_s real_v2_ne_v1_add_s, have rw1 : ↑s * vector.nth core_point1_corner i + ↑s = ↑s * vector.nth core_point1_corner i + ↑s * (1 : ℝ) := by rw mul_one, have rw2 : ↑s * vector.nth core_point2_corner i + ↑s = ↑s * vector.nth core_point2_corner i + ↑s * (1 : ℝ) := by rw mul_one, rw rw1 at real_v2_ne_v1_add_s, rw rw2 at real_v1_ne_v2_add_s, rw ← mul_add at real_v1_ne_v2_add_s real_v2_ne_v1_add_s, simp only [mul_eq_mul_left_iff, nat.cast_eq_zero] at real_v1_ne_v2_add_s real_v2_ne_v1_add_s, rw not_or_distrib at real_v1_ne_v2_add_s real_v2_ne_v1_add_s, exact ⟨real_v1_ne_v2_add_s.1, real_v2_ne_v1_add_s.1⟩, end, let z : int_point d := vector.of_fn (λ i, if(core_point1_corner.nth i < core_point2_corner.nth i + 1 ∧ core_point2_corner.nth i < core_point1_corner.nth i + 1) then 0 else if(core_point2_corner.nth i >= core_point1_corner.nth i + 1) then 1 else -1), let int_core_point1 : int_point d := vector.of_fn (λ i, if(core_point1.nth i = 0) then 0 else 1), have int_point_to_point_int_core_point1_eq_core_point1 : int_point_to_point int_core_point1 = core_point1 := begin apply vector.ext, intro i, rw int_point_to_point, dsimp only[int_core_point1], simp only [vector.nth_of_fn], cases core_point1_is_core_point i with core_point1_eq_zero core_point1_eq_one, rw [if_pos core_point1_eq_zero, core_point1_eq_zero], refl, have core_point1_ne_zero : core_point1.nth i ≠ 0 := by {rw core_point1_eq_one, norm_num}, rw [if_neg core_point1_ne_zero, core_point1_eq_one], norm_num, end, replace T_shifted_is_periodic := T_shifted_is_periodic int_core_point1 z, let core_point1_add_double_z_corner := (int_point_to_corner T_shifted_is_tiling (add_int_vectors int_core_point1 (double_int_vector z))).val, have core_point1_add_double_z_corner_def : core_point1_add_double_z_corner = (int_point_to_corner T_shifted_is_tiling (add_int_vectors int_core_point1 (double_int_vector z))).val := by refl, have core_point1_add_double_z_corner_property := (int_point_to_corner T_shifted_is_tiling (add_int_vectors int_core_point1 (double_int_vector z))).property, rw ← core_point1_add_double_z_corner_def at core_point1_add_double_z_corner_property, rcases core_point1_add_double_z_corner_property with ⟨core_point1_add_double_z_corner_in_T_shifted, core_point1_add_double_z_in_core_point1_add_double_z_corner, core_point1_add_double_z_corner_unique⟩, let shared_point : point d := vector.of_fn (λ i, if(core_point2_corner.nth i >= core_point1_add_double_z_corner.nth i) then core_point2_corner.nth i else core_point1_add_double_z_corner.nth i), rcases T_shifted_is_tiling shared_point with ⟨unique_corner, unique_corner_in_T_shifted, shared_point_in_unique_corner, unique_corner_unique⟩, have shared_point_in_core_point1_add_double_z_corner : shared_point ∈ cube core_point1_add_double_z_corner := begin rw cube, simp only [set.mem_set_of_eq], rw in_cube, simp only [vector.nth_of_fn, ge_iff_le, not_exists], intro i, replace core_point1_corner_ne_core_point2_corner_add_or_sub_1 := core_point1_corner_ne_core_point2_corner_add_or_sub_1 i, split, { by_cases h : vector.nth core_point1_add_double_z_corner i ≤ vector.nth core_point2_corner i, { rw if_pos h, exact h, }, rw if_neg h, }, by_cases h : vector.nth core_point1_add_double_z_corner i ≤ vector.nth core_point2_corner i, { rw if_pos h, have int_core_point1_corner_eq_core_point1_corner : ↑(int_point_to_corner T_shifted_is_tiling int_core_point1) = core_point1_corner := begin rw ← subtype.val_eq_coe, rcases (int_point_to_corner T_shifted_is_tiling int_core_point1).property with ⟨int_core_point1_corner_in_T_shifted, int_core_point1_in_int_core_point1_corner, int_core_point1_corner_unique⟩, conv at int_core_point1_in_int_core_point1_corner begin find (int_point_to_point int_core_point1) {rw int_point_to_point_int_core_point1_eq_core_point1}, end, exact core_point1_corner_unique (int_point_to_corner T_shifted_is_tiling int_core_point1).val int_core_point1_corner_in_T_shifted int_core_point1_in_int_core_point1_corner, end, rw [core_point1_add_double_z_corner_def, T_shifted_is_periodic, double_int_vector, add_vectors], conv begin find (int_point_to_point _) {rw int_point_to_point}, end, simp only [subtype.val_eq_coe, vector.nth_of_fn, ge_iff_le, mul_ite, mul_zero, mul_one, mul_neg], by_cases z_eq_zero : vector.nth core_point1_corner i < vector.nth core_point2_corner i + 1 ∧ vector.nth core_point2_corner i < vector.nth core_point1_corner i + 1, { rw [if_pos z_eq_zero, int.cast_zero, add_zero, int_core_point1_corner_eq_core_point1_corner], exact z_eq_zero.2, }, rename z_eq_zero z_ne_zero, rw cube at core_point1_in_core_point1_corner core_point2_in_core_point2_corner, simp only [set.mem_set_of_eq] at core_point1_in_core_point1_corner core_point2_in_core_point2_corner, rw in_cube at core_point1_in_core_point1_corner core_point2_in_core_point2_corner, replace core_point1_in_core_point1_corner := core_point1_in_core_point1_corner i, replace core_point2_in_core_point2_corner := core_point2_in_core_point2_corner i, by_cases z_eq_one : vector.nth core_point2_corner i ≥ vector.nth core_point1_corner i + 1, { rw [if_neg z_ne_zero, if_pos z_eq_one, int.cast_bit0, int.cast_one, int_core_point1_corner_eq_core_point1_corner], have core_point2_le_one := le_one_of_is_core_point i core_point2_is_core_point, have core_point1_ge_zero := ge_zero_of_is_core_point i core_point1_is_core_point, linarith, }, rename z_eq_one z_ne_one, rw [if_neg z_ne_zero, if_neg z_ne_one, int.cast_neg, int.cast_bit0, int.cast_one, int_core_point1_corner_eq_core_point1_corner], rw [not_and_distrib, not_lt, not_lt] at z_ne_zero, cases z_ne_zero with core_point2_corner_add_one_le_core_point1_corner core_point1_corner_add_one_le_core_point2_corner, { cases lt_or_eq_of_le core_point2_corner_add_one_le_core_point1_corner with goal core_point2_corner_add_one_eq_core_point1_corner, linarith, exfalso, symmetry' at core_point2_corner_add_one_eq_core_point1_corner, exact core_point1_corner_ne_core_point2_corner_add_or_sub_1.1 core_point2_corner_add_one_eq_core_point1_corner, }, linarith, }, rw if_neg h, norm_num, end, have core_point1_add_double_z_corner_eq_unique_corner := unique_corner_unique core_point1_add_double_z_corner core_point1_add_double_z_corner_in_T_shifted shared_point_in_core_point1_add_double_z_corner, have shared_point_in_core_point2_corner : shared_point ∈ cube core_point2_corner := begin rw cube, simp only [set.mem_set_of_eq], rw in_cube, simp only [vector.nth_of_fn, ge_iff_le, not_exists], intro i, replace core_point1_corner_ne_core_point2_corner_add_or_sub_1 := core_point1_corner_ne_core_point2_corner_add_or_sub_1 i, split, { by_cases h : vector.nth core_point1_add_double_z_corner i ≤ vector.nth core_point2_corner i, rw if_pos h, rw if_neg h, simp only [not_le] at h, exact le_of_lt h, }, by_cases h : vector.nth core_point1_add_double_z_corner i ≤ vector.nth core_point2_corner i, { rw if_pos h, norm_num, }, rw if_neg h, have int_core_point1_corner_eq_core_point1_corner : ↑(int_point_to_corner T_shifted_is_tiling int_core_point1) = core_point1_corner := begin rw ← subtype.val_eq_coe, rcases (int_point_to_corner T_shifted_is_tiling int_core_point1).property with ⟨int_core_point1_corner_in_T_shifted, int_core_point1_in_int_core_point1_corner, int_core_point1_corner_unique⟩, conv at int_core_point1_in_int_core_point1_corner begin find (int_point_to_point int_core_point1) {rw int_point_to_point_int_core_point1_eq_core_point1}, end, exact core_point1_corner_unique (int_point_to_corner T_shifted_is_tiling int_core_point1).val int_core_point1_corner_in_T_shifted int_core_point1_in_int_core_point1_corner, end, rw [core_point1_add_double_z_corner_def, T_shifted_is_periodic, double_int_vector, add_vectors], conv begin find (int_point_to_point _) {rw int_point_to_point}, end, simp only [subtype.val_eq_coe, vector.nth_of_fn, ge_iff_le, mul_ite, mul_zero, mul_one, mul_neg], by_cases z_eq_zero : vector.nth core_point1_corner i < vector.nth core_point2_corner i + 1 ∧ vector.nth core_point2_corner i < vector.nth core_point1_corner i + 1, { rw [if_pos z_eq_zero, int.cast_zero, add_zero, int_core_point1_corner_eq_core_point1_corner], exact z_eq_zero.1, }, rename z_eq_zero z_ne_zero, rw cube at core_point1_in_core_point1_corner core_point2_in_core_point2_corner, simp only [set.mem_set_of_eq] at core_point1_in_core_point1_corner core_point2_in_core_point2_corner, rw in_cube at core_point1_in_core_point1_corner core_point2_in_core_point2_corner, replace core_point1_in_core_point1_corner := core_point1_in_core_point1_corner i, replace core_point2_in_core_point2_corner := core_point2_in_core_point2_corner i, by_cases z_eq_one : vector.nth core_point2_corner i ≥ vector.nth core_point1_corner i + 1, { rw [if_neg z_ne_zero, if_pos z_eq_one, int.cast_bit0, int.cast_one, int_core_point1_corner_eq_core_point1_corner], rw [not_and_distrib, not_lt, not_lt] at z_ne_zero, cases z_ne_zero with core_point2_corner_add_one_le_core_point1_corner core_point1_corner_add_one_le_core_point2_corner, linarith, cases lt_or_eq_of_le core_point1_corner_add_one_le_core_point2_corner with goal core_point1_corner_add_one_eq_core_point2_corner, linarith, exfalso, symmetry' at core_point1_corner_add_one_eq_core_point2_corner, exact core_point1_corner_ne_core_point2_corner_add_or_sub_1.2 core_point1_corner_add_one_eq_core_point2_corner, }, rename z_eq_one z_ne_one, rw [if_neg z_ne_zero, if_neg z_ne_one, int.cast_neg, int.cast_bit0, int.cast_one, int_core_point1_corner_eq_core_point1_corner], have core_point2_ge_zero := ge_zero_of_is_core_point i core_point2_is_core_point, have core_point2_le_one := le_one_of_is_core_point i core_point1_is_core_point, linarith, end, have core_point2_corner_eq_unique_corner := unique_corner_unique core_point2_corner core_point2_corner_in_T_shifted shared_point_in_core_point2_corner, have core_point2_corner_eq_core_point1_add_double_z_corner : core_point2_corner = core_point1_add_double_z_corner := by rw [core_point1_add_double_z_corner_eq_unique_corner, core_point2_corner_eq_unique_corner], by_cases core_point1_eq_core_point2 : core_point1 = core_point2, { have v1_eq_v2 : v1 = v2 := begin apply vector.ext, intro i, have cast_cast_goal : (↑(↑(v1.nth i) : ℕ) : ℝ) = (↑(↑(v2.nth i) : ℕ) : ℝ) := begin rw [← core_point1_corner_v1'_relationship i, ← core_point2_corner_v2'_relationship i], simp only [sub_left_inj, add_left_inj, mul_eq_mul_left_iff, nat.cast_eq_zero], left, rw core_point1_eq_core_point2 at core_point1_in_core_point1_corner, rw core_point2_corner_unique core_point1_corner core_point1_corner_in_T_shifted core_point1_in_core_point1_corner, end, have cast_goal : (↑(v1.nth i) : ℕ) = (↑(v2.nth i) : ℕ) := by exact_mod_cast cast_cast_goal, apply fin.eq_of_veq, simp only [fin.val_eq_coe], exact_mod_cast cast_goal, end, exact v1_ne_v2 v1_eq_v2, }, have core_point1_ne_core_point2 : ∃ i : fin d, core_point1.nth i ≠ core_point2.nth i := begin by_contra h, simp only [not_exists_not] at h, exact core_point1_eq_core_point2 (vector.ext h), end, cases core_point1_ne_core_point2 with i core_point1_ne_core_point2, replace core_point1_is_core_point := core_point1_is_core_point i, replace core_point2_is_core_point := core_point2_is_core_point i, rw cube at core_point1_in_core_point1_corner core_point2_in_core_point2_corner core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [set.mem_set_of_eq] at core_point1_in_core_point1_corner core_point2_in_core_point2_corner core_point1_add_double_z_in_core_point1_add_double_z_corner, rw in_cube at core_point1_in_core_point1_corner core_point2_in_core_point2_corner core_point1_add_double_z_in_core_point1_add_double_z_corner, replace core_point1_in_core_point1_corner := core_point1_in_core_point1_corner i, replace core_point2_in_core_point2_corner := core_point2_in_core_point2_corner i, replace core_point1_add_double_z_in_core_point1_add_double_z_corner := core_point1_add_double_z_in_core_point1_add_double_z_corner i, cases core_point1_in_core_point1_corner with core_point1_corner_le_core_point1 core_point1_lt_core_point1_corner_add_one, cases core_point2_in_core_point2_corner with core_point2_corner_le_core_point2 core_point2_lt_core_point2_corner_add_one, rw [int_point_to_point, add_int_vectors, double_int_vector] at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [vector.nth_of_fn, ge_iff_le, mul_ite, mul_zero, mul_one, mul_neg, int.cast_add] at core_point1_add_double_z_in_core_point1_add_double_z_corner, cases core_point1_is_core_point with core_point1_eq_zero core_point1_eq_one, { cases core_point2_is_core_point with core_point2_eq_zero core_point2_eq_one, { rw [core_point1_eq_zero, core_point2_eq_zero] at core_point1_ne_core_point2, exact core_point1_ne_core_point2 (by refl), }, rw if_pos core_point1_eq_zero at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_zero, zero_add] at core_point1_add_double_z_in_core_point1_add_double_z_corner, rw ← core_point2_corner_eq_core_point1_add_double_z_corner at core_point1_add_double_z_in_core_point1_add_double_z_corner, by_cases h1 : vector.nth core_point1_corner i < vector.nth core_point2_corner i + 1 ∧ vector.nth core_point2_corner i < vector.nth core_point1_corner i + 1, { rw if_pos h1 at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_zero] at core_point1_add_double_z_in_core_point1_add_double_z_corner, linarith, }, rw if_neg h1 at core_point1_add_double_z_in_core_point1_add_double_z_corner, by_cases h2 : vector.nth core_point1_corner i + 1 ≤ vector.nth core_point2_corner i, { rw if_pos h2 at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_bit0, int.cast_one] at core_point1_add_double_z_in_core_point1_add_double_z_corner, linarith, }, rw if_neg h2 at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_neg, int.cast_bit0, int.cast_one] at core_point1_add_double_z_in_core_point1_add_double_z_corner, linarith, }, cases core_point2_is_core_point with core_point2_eq_zero core_point2_eq_one, { have core_point1_ne_zero : core_point1.nth i ≠ 0 := by {rw core_point1_eq_one, norm_num}, rw if_neg core_point1_ne_zero at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_one] at core_point1_add_double_z_in_core_point1_add_double_z_corner, rw ← core_point2_corner_eq_core_point1_add_double_z_corner at core_point1_add_double_z_in_core_point1_add_double_z_corner, by_cases h1 : vector.nth core_point1_corner i < vector.nth core_point2_corner i + 1 ∧ vector.nth core_point2_corner i < vector.nth core_point1_corner i + 1, { rw if_pos h1 at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_zero, add_zero, lt_add_iff_pos_left] at core_point1_add_double_z_in_core_point1_add_double_z_corner, linarith, }, rw if_neg h1 at core_point1_add_double_z_in_core_point1_add_double_z_corner, by_cases h2 : vector.nth core_point1_corner i + 1 ≤ vector.nth core_point2_corner i, { rw if_pos h2 at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_bit0, int.cast_one] at core_point1_add_double_z_in_core_point1_add_double_z_corner, linarith, }, rw if_neg h2 at core_point1_add_double_z_in_core_point1_add_double_z_corner, simp only [int.cast_neg, int.cast_bit0, int.cast_one, le_add_neg_iff_add_le, add_neg_lt_iff_le_add'] at core_point1_add_double_z_in_core_point1_add_double_z_corner, linarith, }, rw [core_point1_eq_one, core_point2_eq_one] at core_point1_ne_core_point2, exact core_point1_ne_core_point2 (by refl), end theorem periodic_tiling_implies_clique {d : ℕ} {s : ℕ} (d_ne_zero : d ≠ 0) (s_ne_zero : s ≠ 0) : (∃ (T : set (point d)) (T_is_tiling : is_tiling T), tiling_faceshare_free T ∧ is_periodic T_is_tiling ∧ is_s_discrete s T) → has_clique (Keller_graph d s) (2 ^ d) := begin rintro ⟨T, T_is_tiling, T_faceshare_free, T_is_periodic, T_is_s_discrete⟩, rcases inductive_replacement_lemma d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete with ⟨T_shifted, T_shifted_is_tiling, T_shifted_faceshare_free, T_shifted_is_periodic, T_shifted_contains_only_s_points⟩, have core_points_finset := build_core_points_finset ⟨d, lt_add_one d⟩, rcases core_points_finset with ⟨core_points_finset, core_points_finset_card, core_points_finset_property⟩, have goal_clique_with_info_map : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)} ↪ {v : vector (fin (2*s)) d // ∃ p : point d, is_core_point p ∧ ∃ p_corner ∈ T_shifted, p ∈ cube p_corner ∧ (∀ alt_corner : point d, alt_corner ∈ T_shifted → p ∈ cube alt_corner → alt_corner = p_corner) ∧ (∀ i : fin d, ↑s * (vector.nth p_corner i) + ↑s - 1 = (vector.nth v i).val)} := begin let goal_clique_with_info_map_fn : {p : point d // ∀ (j : fin d), (j.val < d → vector.nth p j = 0 ∨ vector.nth p j = 1) ∧ (j.val ≥ d → vector.nth p j = 0)} → {v : vector (fin (2*s)) d // ∃ p : point d, is_core_point p ∧ ∃ p_corner ∈ T_shifted, p ∈ cube p_corner ∧ (∀ alt_corner : point d, alt_corner ∈ T_shifted → p ∈ cube alt_corner → alt_corner = p_corner) ∧ (∀ i : fin d, ↑s * (vector.nth p_corner i) + ↑s - 1 = (vector.nth v i).val)} := build_goal_clique_with_info_map_fn d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property, have goal_clique_with_info_map_fn_injective : function.injective goal_clique_with_info_map_fn := begin rw function.injective, intros p1 p2 mapped_p1_eq_mapped_p2, dsimp[goal_clique_with_info_map_fn] at mapped_p1_eq_mapped_p2, rw build_goal_clique_with_info_map_fn at mapped_p1_eq_mapped_p2, simp only [subtype.val_eq_coe] at mapped_p1_eq_mapped_p2, let mapped_p1_statement := goal_clique_with_info_map_fn_yields_fin_double_s_vector d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property p1, let mapped_p2_statement := goal_clique_with_info_map_fn_yields_fin_double_s_vector d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property p2, change classical.some mapped_p1_statement = classical.some mapped_p2_statement at mapped_p1_eq_mapped_p2, let mapped_p1 := classical.some mapped_p1_statement, have mapped_p1_def : mapped_p1 = classical.some mapped_p1_statement := by refl, have mapped_p1_property := classical.some_spec mapped_p1_statement, rw ← mapped_p1_def at mapped_p1_property, let mapped_p2 := classical.some mapped_p2_statement, have mapped_p2_def : mapped_p2 = classical.some mapped_p2_statement := by refl, have mapped_p2_property := classical.some_spec mapped_p2_statement, rw ← mapped_p2_def at mapped_p2_property, rw [← mapped_p1_def, ← mapped_p2_def] at mapped_p1_eq_mapped_p2, let p1_corner := (point_to_corner T_shifted_is_tiling ↑p1).val, have p1_corner_def : p1_corner = (point_to_corner T_shifted_is_tiling ↑p1).val := by refl, have p1_corner_property := (point_to_corner T_shifted_is_tiling ↑p1).property, rw ← p1_corner_def at p1_corner_property, rcases p1_corner_property with ⟨p1_corner_in_T_shifted, p1_in_p1_corner, p1_corner_unique⟩, let p2_corner := (point_to_corner T_shifted_is_tiling ↑p2).val, have p2_corner_def : p2_corner = (point_to_corner T_shifted_is_tiling ↑p2).val := by refl, have p2_corner_property := (point_to_corner T_shifted_is_tiling ↑p2).property, rw ← p2_corner_def at p2_corner_property, rcases p2_corner_property with ⟨p2_corner_in_T_shifted, p2_in_p2_corner, p2_corner_unique⟩, have p1_corner_eq_p2_corner : p1_corner = p2_corner := begin apply vector.ext, intro i, replace mapped_p1_property := mapped_p1_property i, replace mapped_p2_property := mapped_p2_property i, rw mapped_p1_eq_mapped_p2 at mapped_p1_property, rw [mapped_p1_property, ← p1_corner_def, ← p2_corner_def] at mapped_p2_property, simp only [add_left_inj, mul_eq_mul_left_iff, nat.cast_eq_zero, sub_left_inj, subtype.val_eq_coe] at mapped_p2_property, cases mapped_p2_property with goal s_eq_zero, exact goal, exfalso, exact s_ne_zero s_eq_zero, end, apply subtype.ext, apply vector.ext, intro i, by_contra p1_ne_p2_at_i, rcases p1.property i with ⟨p1_is_core_point, unneeded1⟩, rcases p2.property i with ⟨p2_is_core_point, unneeded2⟩, clear unneeded1 unneeded2, simp only [subtype.val_eq_coe] at p1_is_core_point p2_is_core_point, replace p1_is_core_point := p1_is_core_point i.property, replace p2_is_core_point := p2_is_core_point i.property, rw cube at p1_in_p1_corner p2_in_p2_corner, simp only [set.mem_set_of_eq] at p1_in_p1_corner p2_in_p2_corner, rw in_cube at p1_in_p1_corner p2_in_p2_corner, replace p1_in_p1_corner := p1_in_p1_corner i, replace p2_in_p2_corner := p2_in_p2_corner i, rw p1_corner_eq_p2_corner at p1_in_p1_corner, cases p1_in_p1_corner with p1_corner_le_p1 p1_lt_p1_corner_add_one, cases p2_in_p2_corner with p2_corner_le_p2 p2_lt_p2_corner_add_one, cases p1_is_core_point with p1_eq_zero p1_eq_one, { cases p2_is_core_point with p2_eq_zero p2_eq_one, { rw [p1_eq_zero, p2_eq_zero] at p1_ne_p2_at_i, exact p1_ne_p2_at_i (by refl), }, rw p1_eq_zero at p1_corner_le_p1 p1_lt_p1_corner_add_one, rw p2_eq_one at p2_corner_le_p2 p2_lt_p2_corner_add_one, linarith, }, cases p2_is_core_point with p2_eq_zero p2_eq_one, { rw p1_eq_one at p1_corner_le_p1 p1_lt_p1_corner_add_one, rw p2_eq_zero at p2_corner_le_p2 p2_lt_p2_corner_add_one, linarith, }, rw [p1_eq_one, p2_eq_one] at p1_ne_p2_at_i, exact p1_ne_p2_at_i (by refl), end, exact {to_fun := goal_clique_with_info_map_fn, inj' := goal_clique_with_info_map_fn_injective}, end, let goal_clique_with_info := finset.map goal_clique_with_info_map core_points_finset, have goal_clique_with_info_card : goal_clique_with_info.card = core_points_finset.card := finset.card_map goal_clique_with_info_map, rw core_points_finset_card at goal_clique_with_info_card, simp only [] at goal_clique_with_info_card, let remove_info_map : {v : vector (fin (2*s)) d // ∃ p : point d, is_core_point p ∧ ∃ p_corner ∈ T_shifted, p ∈ cube p_corner ∧ (∀ alt_corner : point d, alt_corner ∈ T_shifted → p ∈ cube alt_corner → alt_corner = p_corner) ∧ (∀ i : fin d, ↑s * (vector.nth p_corner i) + ↑s - 1 = (vector.nth v i).val)} ↪ vector (fin (2*s)) d := begin let remove_info_map_fn : {v : vector (fin (2*s)) d // ∃ p : point d, is_core_point p ∧ ∃ p_corner ∈ T_shifted, p ∈ cube p_corner ∧ (∀ alt_corner : point d, alt_corner ∈ T_shifted → p ∈ cube alt_corner → alt_corner = p_corner) ∧ (∀ i : fin d, ↑s * (vector.nth p_corner i) + ↑s - 1 = (vector.nth v i).val)} → vector (fin (2*s)) d := λ v, v, have remove_info_map_fn_injective : function.injective remove_info_map_fn := by {rw function.injective, dsimp[remove_info_map_fn], simp}, exact {to_fun := remove_info_map_fn, inj' := remove_info_map_fn_injective}, end, let goal_clique := finset.map remove_info_map goal_clique_with_info, have goal_clique_card : goal_clique.card = goal_clique_with_info.card := finset.card_map remove_info_map, rw goal_clique_with_info_card at goal_clique_card, use [goal_clique, goal_clique_card], intros v1 v2 v1_in_goal_clique v2_in_goal_clique v1_ne_v2, rw Keller_graph, simp only [simple_graph.from_rel_adj, fin.val_eq_coe, exists_and_distrib_left, ne.def], split, exact v1_ne_v2, dsimp[goal_clique] at v1_in_goal_clique v2_in_goal_clique, rw finset.mem_map at v1_in_goal_clique v2_in_goal_clique, simp only [exists_prop, fin.val_eq_coe, finset.mem_map, ge_iff_le, subtype.exists] at v1_in_goal_clique v2_in_goal_clique, rcases v1_in_goal_clique with ⟨v1', ⟨core_point1, core_point1_is_core_point, ⟨core_point1_corner, core_point1_corner_in_T_shifted, core_point1_in_core_point1_corner, core_point1_corner_unique, core_point1_corner_v1'_relationship⟩⟩, redundant, v1_def⟩, clear redundant, rcases v2_in_goal_clique with ⟨v2', ⟨core_point2, core_point2_is_core_point, ⟨core_point2_corner, core_point2_corner_in_T_shifted, core_point2_in_core_point2_corner, core_point2_corner_unique, core_point2_corner_v2'_relationship⟩⟩, redundant, v2_def⟩, clear redundant, dsimp[remove_info_map] at v1_def v2_def, rw v1_def at core_point1_corner_v1'_relationship, rw v2_def at core_point2_corner_v2'_relationship, by_contra v1_not_adj_v2, rw not_or_distrib at v1_not_adj_v2, simp only [not_exists, not_and, not_not] at v1_not_adj_v2, by_cases v1_not_adj_v2_hyp : ∃ i : fin d, ↑(v1.nth i) = ↑(v2.nth i) + s ∨ ↑(v2.nth i) = ↑(v1.nth i) + s, { replace T_shifted_faceshare_free := T_shifted_faceshare_free core_point1_corner core_point1_corner_in_T_shifted core_point2_corner core_point2_corner_in_T_shifted, rw is_facesharing at T_shifted_faceshare_free, simp only [not_exists, not_and, not_forall] at T_shifted_faceshare_free, rcases v1_not_adj_v2_hyp with ⟨i, v1_eq_v2_add_s | v2_eq_v1_add_s⟩, { replace v1_not_adj_v2 := (and.elim_left v1_not_adj_v2) i v1_eq_v2_add_s, have core_point_corners_off_by_one : vector.nth core_point1_corner i - vector.nth core_point2_corner i = 1 := begin replace core_point1_corner_v1'_relationship := core_point1_corner_v1'_relationship i, replace core_point2_corner_v2'_relationship := core_point2_corner_v2'_relationship i, rw v1_eq_v2_add_s at core_point1_corner_v1'_relationship, rw fin.coe_eq_val at core_point1_corner_v1'_relationship core_point2_corner_v2'_relationship, replace core_point1_corner_v1'_relationship : ↑s * vector.nth core_point1_corner i + ↑s - (1 : ℝ) = ↑((v2.nth i).val) + ↑s := by exact_mod_cast core_point1_corner_v1'_relationship, rw ← core_point2_corner_v2'_relationship at core_point1_corner_v1'_relationship, clear_except core_point1_corner_v1'_relationship s_ne_zero, rw add_comm (↑s * vector.nth core_point2_corner i + ↑s - 1) ↑s at core_point1_corner_v1'_relationship, rw [sub_eq_add_neg, sub_eq_add_neg, add_assoc (↑s * vector.nth core_point2_corner i) ↑s (-1), ← add_assoc, add_assoc (↑s * vector.nth core_point1_corner i) ↑s (-1)] at core_point1_corner_v1'_relationship, simp only [add_left_inj] at core_point1_corner_v1'_relationship, have s_times_goal : ↑s * vector.nth core_point1_corner i - ↑s * vector.nth core_point2_corner i = ↑s := by linarith, rw ← mul_sub_left_distrib at s_times_goal, have s_times_goal_div_s : ↑s * (vector.nth core_point1_corner i - vector.nth core_point2_corner i) / ↑s = ↑s / ↑s := by rw s_times_goal, have cast_s_ne_zero : ↑s ≠ (0 : ℝ) := by exact_mod_cast s_ne_zero, rw [mul_div_cancel_left (vector.nth core_point1_corner i - vector.nth core_point2_corner i) cast_s_ne_zero, div_self cast_s_ne_zero] at s_times_goal_div_s, exact s_times_goal_div_s, end, replace T_shifted_faceshare_free := T_shifted_faceshare_free i (or.inl core_point_corners_off_by_one), rcases T_shifted_faceshare_free with ⟨j, i_ne_j_and_core_point1_eq_core_point2_at_j⟩, rw not_or_distrib at i_ne_j_and_core_point1_eq_core_point2_at_j, cases i_ne_j_and_core_point1_eq_core_point2_at_j with i_ne_j core_point1_corner_ne_core_point2_corner_at_j, have v1_ne_v2_at_j : v1.nth j ≠ v2.nth j := begin replace core_point1_corner_v1'_relationship := core_point1_corner_v1'_relationship j, replace core_point2_corner_v2'_relationship := core_point2_corner_v2'_relationship j, intro v1_eq_v2_at_j, rcases real_eq_or_lt_or_gt (core_point1_corner.nth j) (core_point2_corner.nth j) with core_point1_corner_eq_core_point2_corner | core_point1_corner_lt_core_point2_corner | core_point1_corner_gt_core_point2_corner, exact core_point1_corner_ne_core_point2_corner_at_j core_point1_corner_eq_core_point2_corner, { rw [v1_eq_v2_at_j, ← core_point2_corner_v2'_relationship] at core_point1_corner_v1'_relationship, simp only [add_left_inj, mul_eq_mul_left_iff, nat.cast_eq_zero, sub_left_inj] at core_point1_corner_v1'_relationship, cases core_point1_corner_v1'_relationship with core_point1_corner_eq_core_point2_corner s_eq_zero, { rw core_point1_corner_eq_core_point2_corner at core_point1_corner_lt_core_point2_corner, exact lt_irrefl (vector.nth core_point2_corner j) core_point1_corner_lt_core_point2_corner, }, exact s_ne_zero s_eq_zero, }, rw [v1_eq_v2_at_j, ← core_point2_corner_v2'_relationship] at core_point1_corner_v1'_relationship, simp only [add_left_inj, mul_eq_mul_left_iff, nat.cast_eq_zero, sub_left_inj] at core_point1_corner_v1'_relationship, cases core_point1_corner_v1'_relationship with core_point1_corner_eq_core_point2_corner s_eq_zero, { rw core_point1_corner_eq_core_point2_corner at core_point1_corner_gt_core_point2_corner, exact gt_irrefl (vector.nth core_point2_corner j) core_point1_corner_gt_core_point2_corner, }, exact s_ne_zero s_eq_zero, end, exact i_ne_j (v1_not_adj_v2 j v1_ne_v2_at_j), }, --Next case is symmetrical to the above case replace v1_not_adj_v2 := (and.elim_right v1_not_adj_v2) i v2_eq_v1_add_s, have core_point_corners_off_by_one : vector.nth core_point2_corner i - vector.nth core_point1_corner i = 1 := begin replace core_point1_corner_v1'_relationship := core_point1_corner_v1'_relationship i, replace core_point2_corner_v2'_relationship := core_point2_corner_v2'_relationship i, rw v2_eq_v1_add_s at core_point2_corner_v2'_relationship, rw fin.coe_eq_val at core_point1_corner_v1'_relationship core_point2_corner_v2'_relationship, replace core_point2_corner_v2'_relationship : ↑s * vector.nth core_point2_corner i + ↑s - (1 : ℝ) = ↑((v1.nth i).val) + ↑s := by exact_mod_cast core_point2_corner_v2'_relationship, rw ← core_point1_corner_v1'_relationship at core_point2_corner_v2'_relationship, clear_except core_point2_corner_v2'_relationship s_ne_zero, rw add_comm (↑s * vector.nth core_point1_corner i + ↑s - 1) ↑s at core_point2_corner_v2'_relationship, rw [sub_eq_add_neg, sub_eq_add_neg, add_assoc (↑s * vector.nth core_point1_corner i) ↑s (-1), ← add_assoc, add_assoc (↑s * vector.nth core_point2_corner i) ↑s (-1)] at core_point2_corner_v2'_relationship, simp only [add_left_inj] at core_point2_corner_v2'_relationship, have s_times_goal : ↑s * vector.nth core_point2_corner i - ↑s * vector.nth core_point1_corner i = ↑s := by linarith, rw ← mul_sub_left_distrib at s_times_goal, have s_times_goal_div_s : ↑s * (vector.nth core_point2_corner i - vector.nth core_point1_corner i) / ↑s = ↑s / ↑s := by rw s_times_goal, have cast_s_ne_zero : ↑s ≠ (0 : ℝ) := by exact_mod_cast s_ne_zero, rw [mul_div_cancel_left (vector.nth core_point2_corner i - vector.nth core_point1_corner i) cast_s_ne_zero, div_self cast_s_ne_zero] at s_times_goal_div_s, exact s_times_goal_div_s, end, replace T_shifted_faceshare_free := T_shifted_faceshare_free i (or.inr core_point_corners_off_by_one), rcases T_shifted_faceshare_free with ⟨j, i_ne_j_and_core_point1_eq_core_point2_at_j⟩, rw not_or_distrib at i_ne_j_and_core_point1_eq_core_point2_at_j, cases i_ne_j_and_core_point1_eq_core_point2_at_j with i_ne_j core_point1_corner_ne_core_point2_corner_at_j, have v2_ne_v1_at_j : v2.nth j ≠ v1.nth j := begin replace core_point1_corner_v1'_relationship := core_point1_corner_v1'_relationship j, replace core_point2_corner_v2'_relationship := core_point2_corner_v2'_relationship j, intro v2_eq_v1_at_j, rcases real_eq_or_lt_or_gt (core_point1_corner.nth j) (core_point2_corner.nth j) with core_point1_corner_eq_core_point2_corner | core_point1_corner_lt_core_point2_corner | core_point1_corner_gt_core_point2_corner, exact core_point1_corner_ne_core_point2_corner_at_j core_point1_corner_eq_core_point2_corner, { rw [← v2_eq_v1_at_j, ← core_point2_corner_v2'_relationship] at core_point1_corner_v1'_relationship, simp only [add_left_inj, mul_eq_mul_left_iff, nat.cast_eq_zero, sub_left_inj] at core_point1_corner_v1'_relationship, cases core_point1_corner_v1'_relationship with core_point1_corner_eq_core_point2_corner s_eq_zero, { rw core_point1_corner_eq_core_point2_corner at core_point1_corner_lt_core_point2_corner, exact lt_irrefl (vector.nth core_point2_corner j) core_point1_corner_lt_core_point2_corner, }, exact s_ne_zero s_eq_zero, }, rw [← v2_eq_v1_at_j, ← core_point2_corner_v2'_relationship] at core_point1_corner_v1'_relationship, simp only [add_left_inj, mul_eq_mul_left_iff, nat.cast_eq_zero, sub_left_inj] at core_point1_corner_v1'_relationship, cases core_point1_corner_v1'_relationship with core_point1_corner_eq_core_point2_corner s_eq_zero, { rw core_point1_corner_eq_core_point2_corner at core_point1_corner_gt_core_point2_corner, exact gt_irrefl (vector.nth core_point2_corner j) core_point1_corner_gt_core_point2_corner, }, exact s_ne_zero s_eq_zero, end, exact i_ne_j (v1_not_adj_v2 j v2_ne_v1_at_j), }, rename v1_not_adj_v2_hyp v1_not_adj_v2_hyp_false, clear' remove_info_map goal_clique goal_clique_card goal_clique_with_info_card, exact periodic_tiling_implies_clique_helper d_ne_zero s_ne_zero T T_is_tiling T_faceshare_free T_is_periodic T_is_s_discrete T_shifted T_shifted_is_tiling T_shifted_faceshare_free T_shifted_is_periodic T_shifted_contains_only_s_points core_points_finset core_points_finset_card core_points_finset_property goal_clique_with_info_map v1 v2 v1_ne_v2 v1' core_point1 core_point1_is_core_point core_point1_corner core_point1_corner_in_T_shifted core_point1_in_core_point1_corner core_point1_corner_unique v2' core_point2 core_point2_is_core_point core_point2_corner core_point2_corner_in_T_shifted core_point2_in_core_point2_corner core_point2_corner_unique v2_def v1_def core_point1_corner_v1'_relationship core_point2_corner_v2'_relationship v1_not_adj_v2 v1_not_adj_v2_hyp_false, end lemma clique_nonexistence_implies_Keller_conjecture {d : ℕ} (d_gt_zero : d > 0) : ¬has_clique (Keller_graph d (2^(d-1))) (2^d) → Keller_conjecture d := begin intro h, apply periodic_reduction d d_gt_zero, contrapose h, rw not_not, rw periodic_Keller_conjecture at h, simp only [not_forall, not_not, exists_prop, exists_and_distrib_right] at h, rcases h with ⟨T, ⟨T_is_tiling, T_is_periodic⟩, T_faceshare_free⟩, have T_is_s_discrete := s_discrete_upper_bound d T T_is_tiling d_gt_zero T_is_periodic, have d_ne_zero : d ≠ 0 := by linarith, have two_to_the_d_sub_one_ne_zero : 2^(d - 1) ≠ 0 := begin have two_to_the_d_sub_one_pos : 2^(d - 1) > 0 := by norm_num, linarith, end, apply periodic_tiling_implies_clique d_ne_zero two_to_the_d_sub_one_ne_zero, use [T, T_is_tiling, T_faceshare_free, T_is_periodic, T_is_s_discrete], end
{"author": "JOSHCLUNE", "repo": "Keller_reduction", "sha": "dc392b3da352fc1ffcfbecb1d4717d05f5faed4a", "save_path": "github-repos/lean/JOSHCLUNE-Keller_reduction", "path": "github-repos/lean/JOSHCLUNE-Keller_reduction/Keller_reduction-dc392b3da352fc1ffcfbecb1d4717d05f5faed4a/src/no_clique_implies_keller.lean"}
import os import copy import json import logging import pymongo import numpy as np from torch import set_grad_enabled from torch import load from torch import device as D from pymongo import MongoClient from collections import defaultdict from flask import Flask, jsonify, request from flask_cors import CORS from poker_env.env import Poker,flatten import poker_env.datatypes as pdt from poker_env.config import Config from models.model_utils import norm_frequencies from models.networks import OmahaActor,OmahaObsQCritic """ API for connecting the Poker Env with Alex's frontend client for baseline testing the trained bot. """ class API(object): def __init__(self): self.increment_position = {'SB':'BB','BB':'SB'} self.seed = 1458 self.connect() self.game_object = pdt.Globals.GameTypeDict[pdt.GameTypes.OMAHAHI] self.config = Config() self.env_params = { 'game':pdt.GameTypes.OMAHAHI, 'betsizes': self.game_object.rule_params['betsizes'], 'bet_type': self.game_object.rule_params['bettype'], 'n_players': 2, 'pot':self.game_object.state_params['pot'], 'stacksize': self.game_object.state_params['stacksize'], 'cards_per_player': self.game_object.state_params['cards_per_player'], 'starting_street': self.game_object.starting_street, 'global_mapping':self.config.global_mapping, 'state_mapping':self.config.state_mapping, 'obs_mapping':self.config.obs_mapping, 'shuffle':True } self.env = Poker(self.env_params) self.network_params = self.instantiate_network_params() self.actor = OmahaActor(self.seed,self.env.state_space,self.env.action_space,self.env.betsize_space,self.network_params) self.critic = OmahaObsQCritic(self.seed,self.env.state_space,self.env.action_space,self.env.betsize_space,self.network_params) self.load_model(self.actor,self.config.production_actor) self.load_model(self.critic,self.config.production_critic) self.player = {'name':None,'position':'BB'} self.reset_trajectories() def reset_trajectories(self): self.trajectories = defaultdict(lambda:[]) self.trajectory = defaultdict(lambda:{'states':[],'obs':[],'betsize_masks':[],'action_masks':[], 'actions':[],'action_category':[],'action_probs':[],'action_prob':[],'betsize':[],'rewards':[],'value':[]}) def instantiate_network_params(self): device = 'cpu' network_params = copy.deepcopy(self.config.network_params) network_params['maxlen'] = self.config.maxlen network_params['device'] = device return network_params def load_model(self,model,path): if os.path.isfile(path): model.load_state_dict(load(path,map_location=D('cpu'))) set_grad_enabled(False) else: raise ValueError('File does not exist') def connect(self): client = MongoClient('localhost', 27017,maxPoolSize=10000) self.db = client.baseline def update_player_name(self,name:str): """updates player name""" self.player['name'] = name def update_player_position(self,position): self.player['position'] = position def insert_model_outputs(self,model_outputs,action_mask): outputs_json = { 'action':model_outputs['action'], 'action_category':model_outputs['action_category'], 'betsize':model_outputs['betsize'], 'action_prob':model_outputs['action_prob'].detach().numpy().tolist(), 'action_probs':model_outputs['action_probs'].detach().numpy().tolist(), 'value':model_outputs['value'].detach().numpy().tolist(), 'action_mask':action_mask.tolist(), 'player':self.player['name'] } self.db['bot_data'].insert_one(outputs_json) def insert_into_db(self,training_data:dict): """ stores player data in the player_stats collection. takes trajectories and inserts them into db for data analysis and learning. """ stats_json = { 'game':self.env.game, 'player':self.player['name'], 'reward':training_data[self.player['position']][0]['rewards'][0], 'position':self.player['position'], } self.db['player_stats'].insert_one(stats_json) keys = training_data.keys() positions = [position for position in keys if position in ['SB','BB']] for position in positions: for i,poker_round in enumerate(training_data[position]): states = poker_round['states'] observations = poker_round['obs'] actions = poker_round['actions'] action_prob = poker_round['action_prob'] action_probs = poker_round['action_probs'] action_categories = poker_round['action_category'] betsize_masks = poker_round['betsize_masks'] action_masks = poker_round['action_masks'] rewards = poker_round['rewards'] betsizes = poker_round['betsize'] values = poker_round['value'] assert(isinstance(rewards,list)) assert(isinstance(actions,list)) assert(isinstance(action_prob,list)) assert(isinstance(action_probs,list)) assert(isinstance(states,list)) assert(isinstance(values,list)) for step,state in enumerate(states): state_json = { 'game':self.env.game, 'player':self.player['name'], 'poker_round':step, 'state':state.tolist(), 'action_probs':action_probs[step].tolist(), 'action_prob':action_prob[step].tolist(), 'action':actions[step], 'action_category':action_categories[step], 'betsize_mask':betsize_masks[step].tolist(), 'action_mask':action_masks[step].tolist(), 'betsize':betsizes[step], 'reward':rewards[step], 'value':values[step].tolist() } self.db['game_data'].insert_one(state_json) def return_model_outputs(self): query = { 'player':self.player['name'] } player_data = self.db['bot_data'].find(query).sort('_id',-1) action_probs = [] values = [] action_mask = [] for result in player_data: action_probs.append(np.array(result['action_probs'])) values.append(np.array(result['value'])) action_mask.append(np.array(result['action_mask'])) break if action_probs: action_probs = action_probs[0] values = values[0] action_mask = action_mask[0] if np.sum(action_probs) > 0: action_probs *= action_mask action_probs /= np.sum(action_probs) # scale values if np.max(np.abs(values)) > 0: values *= action_mask values /= self.env_params['stacksize'] + self.env_params['pot'] model_outputs = { 'action_probs':action_probs.tolist(), 'q_values':[values.tolist()] } else: model_outputs = { 'action_probs':[0]*self.env.action_space, 'q_values':[0]*self.env.action_space } print(model_outputs) print(action_mask) return model_outputs def return_player_stats(self): """Returns dict of current player stats against the bot.""" query = { 'player':self.player['name'] } # projection ={'reward':1,'hand_num':1,'_id':0} player_data = self.db['player_stats'].find(query) total_hands = self.db['player_stats'].count_documents(query) results = [] position_results = {'SB':0,'BB':0} # total_hands = 0 for result in player_data: results.append(result['reward']) position_results[result['position']] += result['reward'] bb_per_hand = sum(results) / total_hands if total_hands > 0 else 0 sb_bb_per_hand = position_results['SB'] / total_hands if total_hands > 0 else 0 bb_bb_per_hand = position_results['BB'] / total_hands if total_hands > 0 else 0 player_stats = { 'results':sum(results), 'bb_per_hand':round(bb_per_hand,2), 'total_hands':total_hands, 'SB':round(sb_bb_per_hand,2), 'BB':round(bb_bb_per_hand,2), } return player_stats def parse_env_outputs(self,state,action_mask,betsize_mask,done): """Wraps state and passes to frontend. Can be the dummy last state. In which case hero mappings are reversed.""" reward = state[:,-1][:,self.env.state_mapping['hero_stacksize']] - self.env.starting_stack # cards go in a list hero = self.env.players[self.player['position']] villain = self.env.players[self.increment_position[self.player['position']]] state_object = { 'history' :state.tolist(), 'betsizes' :self.env.betsizes.tolist(), 'mapping' :self.env.state_mapping, 'current_player' :pdt.Globals.POSITION_MAPPING[self.env.current_player], 'hero_stack' :hero.stack, 'hero_position' :pdt.Globals.POSITION_MAPPING[hero.position], 'hero_cards' :flatten(hero.hand), 'hero_street_total' :hero.street_total, 'pot' :float(state[:,-1][:,self.env.state_mapping['pot']][0]), 'board_cards' :state[:,-1][:,self.env.state_mapping['board']][0].tolist(), 'villain_stack' :villain.stack, 'villain_position' :pdt.Globals.POSITION_MAPPING[villain.position], 'villain_cards' :flatten(villain.hand), 'villain_street_total' :villain.street_total, 'last_action' :int(state[:,-1][:,self.env.state_mapping['last_action']][0]), 'last_betsize' :float(state[:,-1][:,self.env.state_mapping['last_betsize']][0]), 'last_position' :int(state[:,-1][:,self.env.state_mapping['last_position']][0]), 'last_aggressive_action' :int(state[:,-1][:,self.env.state_mapping['last_aggressive_action']][0]), 'last_aggressive_betsize' :float(state[:,-1][:,self.env.state_mapping['last_aggressive_betsize']][0]), 'last_aggressive_position' :int(state[:,-1][:,self.env.state_mapping['last_aggressive_position']][0]), 'done' :done, 'action_mask' :action_mask.tolist(), 'betsize_mask' :betsize_mask.tolist(), 'street' :int(state[:,-1][:,self.env.state_mapping['street']][0]), 'blind' :bool(state[:,-1][:,self.env.state_mapping['blind']][0]) } outcome_object = { 'player1_reward' :hero.stack - self.env.starting_stack, 'player1_hand' :flatten(hero.hand), 'player2_reward' :villain.stack - self.env.starting_stack, 'player2_hand' :flatten(villain.hand), 'player1_handrank' :hero.handrank, 'player2_handrank' :villain.handrank } json_obj = {'state':state_object,'outcome':outcome_object} return json.dumps(json_obj) def store_state(self,state,obs,action_mask,betsize_mask): cur_player = self.env.current_player self.trajectory[cur_player]['states'].append(copy.copy(state)) self.trajectory[cur_player]['action_masks'].append(copy.copy(action_mask)) self.trajectory[cur_player]['betsize_masks'].append(copy.copy(betsize_mask)) def store_actions(self,actor_outputs): cur_player = self.env.current_player self.trajectory[cur_player]['actions'].append(actor_outputs['action']) self.trajectory[cur_player]['action_category'].append(actor_outputs['action_category']) self.trajectory[cur_player]['action_prob'].append(actor_outputs['action_prob']) self.trajectory[cur_player]['action_probs'].append(actor_outputs['action_probs']) self.trajectory[cur_player]['betsize'].append(actor_outputs['betsize']) self.trajectory[cur_player]['value'].append(actor_outputs['value']) def query_bot(self,state,obs,action_mask,betsize_mask,done): while self.env.current_player != self.player['position'] and not done: actor_outputs = self.actor(state,action_mask,betsize_mask) critic_outputs = self.critic(obs) actor_outputs['value'] = critic_outputs['value'] self.insert_model_outputs(actor_outputs,action_mask) self.store_actions(actor_outputs) state,obs,done,action_mask,betsize_mask = self.env.step(actor_outputs) if not done: self.store_state(state,obs,action_mask,betsize_mask) return state,obs,done,action_mask,betsize_mask def reset(self): assert self.player['name'] is not None assert isinstance(self.player['position'],str) self.reset_trajectories() self.update_player_position(self.increment_position[self.player['position']]) state,obs,done,action_mask,betsize_mask = self.env.reset() self.store_state(state,obs,action_mask,betsize_mask) if self.env.current_player != self.player['position'] and not done: state,obs,done,action_mask,betsize_mask = self.query_bot(state,obs,action_mask,betsize_mask,done) assert self.env.current_player == self.player['position'] return self.parse_env_outputs(state,action_mask,betsize_mask,done) def step(self,action:str,betsize:float): """Maps action + betsize -> to a flat action category""" assert self.player['name'] is not None assert isinstance(self.player['position'],str) if isinstance(betsize,str): betsize = float(betsize) action_type = pdt.Globals.SERVER_ACTION_DICT[action] flat_action_category,betsize_category = self.env.convert_to_category(action_type,betsize) assert isinstance(flat_action_category,int) player_outputs = { 'action':flat_action_category, 'action_category':action_type, 'betsize':betsize_category, 'action_prob':np.array([0]), 'action_probs':np.zeros(self.env.action_space + self.env.betsize_space - 2), 'value':np.zeros(self.env.action_space + self.env.betsize_space - 2) } self.store_actions(player_outputs) state,obs,done,action_mask,betsize_mask = self.env.step(player_outputs) if not done: self.store_state(state,obs,action_mask,betsize_mask) if self.env.current_player != self.player['position']: state,obs,done,action_mask,betsize_mask = self.query_bot(state,obs,action_mask,betsize_mask,done) if done: rewards = self.env.player_rewards() for position in self.trajectory.keys(): N = len(self.trajectory[position]['betsize_masks']) self.trajectory[position]['rewards'] = [rewards[position]] * N self.trajectories[position].append(self.trajectory[position]) self.insert_into_db(self.trajectories) return self.parse_env_outputs(state,action_mask,betsize_mask,done) @property def current_player(self): return self.player # instantiate env api = API() app = Flask(__name__) app.config['CORS_HEADERS'] = 'Content-Type' cors = CORS(app, resources={r"/api/*": {"origins": "http://localhost:*"}}) cors = CORS(app, resources={r"/api/*": {"origins": "http://71.237.218.23*"}}) # This should be replaced with server public ip logging.basicConfig(level=logging.DEBUG) @app.route('/health') def home(): return 'Server is up and running' @app.route('/api/player/name',methods=['POST']) def player(): req_data = json.loads(request.get_data()) api.update_player_name(req_data.get('name')) return 'Updated Name' @app.route('/api/player/stats') def player_stats(): return json.dumps(api.return_player_stats()) @app.route('/api/model/outputs') def model_outputs(): return json.dumps(api.return_model_outputs()) @app.route('/api/model/load',methods=['POST']) def load_model(): req_data = json.loads(request.get_data()) api.load_model(req_data.get('path')) return 'Loaded Model' @app.route('/api/reset') def reset(): return api.reset() @app.route('/api/step', methods=['POST']) def gen_routes(): log = logging.getLogger(__name__) log.info(request.get_data()) req_data = json.loads(request.get_data()) action = req_data.get('action') betsize = req_data.get('betsize') log.info(f'action {action}') log.info(f'betsize {betsize}') return api.step(action,betsize) if __name__ == '__main__': app.run(debug=True, port=4000)
{"hexsha": "d75b77a451554f6e09ffc5961753c9f599ec0c1d", "size": 17554, "ext": "py", "lang": "Python", "max_stars_repo_path": "poker/server.py", "max_stars_repo_name": "MorGriffiths/PokerAI", "max_stars_repo_head_hexsha": "a68400f4918f10dde82574ad19654243c9a65024", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2020-05-24T12:21:36.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-08T03:02:17.000Z", "max_issues_repo_path": "poker/server.py", "max_issues_repo_name": "MorGriffiths/PokerAI", "max_issues_repo_head_hexsha": "a68400f4918f10dde82574ad19654243c9a65024", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2017-04-28T00:25:18.000Z", "max_issues_repo_issues_event_max_datetime": "2018-03-18T20:51:20.000Z", "max_forks_repo_path": "poker/server.py", "max_forks_repo_name": "C5ipo7i/PokerAI", "max_forks_repo_head_hexsha": "a68400f4918f10dde82574ad19654243c9a65024", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2020-11-05T11:57:04.000Z", "max_forks_repo_forks_event_max_datetime": "2021-03-17T17:57:24.000Z", "avg_line_length": 45.9528795812, "max_line_length": 212, "alphanum_fraction": 0.6145607839, "include": true, "reason": "import numpy", "num_tokens": 3769}
(* File: Profile_List_Monadic.thy Copyright 2023 Karlsruhe Institute of Technology (KIT) *) \<^marker>\<open>creator "Valentin Springsklee, Karlsruhe Institute of Technology (KIT)"\<close> section \<open>Refined Profile Evaluation\<close> theory Profile_List_Monadic imports "Verified_Voting_Rule_Construction.Profile" "Verified_Voting_Rule_Construction.Profile_List" Ballot_Refinement begin subsection \<open>Profile Evaluation on List-based Profiles \<close> fun win_count_l :: "'a Profile_List \<Rightarrow> 'a \<Rightarrow> nat" where "win_count_l p a = fold (\<lambda>x ac. if (0 < length x \<and> x!0 = a) then (ac+1) else (ac)) p 0" fun prefer_count_l :: "'a Profile_List \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat" where "prefer_count_l p a b = fold (\<lambda> x ac. (if (b \<lesssim>\<^sub>x a) then (ac+1) else (ac))) p 0" fun wins_l :: "'a \<Rightarrow> 'a Profile_List \<Rightarrow> 'a \<Rightarrow> bool" where "wins_l x p y = (prefer_count_l p x y > prefer_count_l p y x)" fun condorcet_winner_l :: "'a set \<Rightarrow> 'a Profile_List \<Rightarrow> 'a \<Rightarrow> bool" where "condorcet_winner_l A p w = (finite A \<and> profile_l A p \<and> w \<in> A \<and> (\<forall> x \<in> A - {w} . wins_l w p x))" subsection \<open> Monadic definition of profile functions \<close> lemma w_eq_param [sepref_import_param]: "((=), (=)::'a\<Rightarrow>_) \<in> Id \<rightarrow> Id \<rightarrow> Id" by simp definition "index_mon_inv ballot a \<equiv> (\<lambda> (i, found). (i \<le> List_Index.index ballot a) \<and> (found \<longrightarrow> (i = List_Index.index ballot a)))" (* \<and> (\<not>found \<longrightarrow> (i \<le> List_Index.index ballot a)))"*) (* low level optimization for pref count *) definition index_mon :: "'a::{default, heap, hashable} Preference_List \<Rightarrow> 'a::{default, heap, hashable} \<Rightarrow> nat nres" where "index_mon ballot a \<equiv> do { (i, found) \<leftarrow> WHILET (\<lambda>(i, found). (i < (length ballot) \<and> \<not>found)) (\<lambda>(i,_). do { ASSERT (i < (length ballot)); let (c::'a::{default, heap, hashable}) = (ballot ! i); if (a = c) then RETURN (i,True) else RETURN (i+1,False) })(0::nat, False); RETURN (i) }" sepref_definition index_sep is "uncurry index_mon" :: "(arl_assn id_assn)\<^sup>k *\<^sub>a (id_assn)\<^sup>k \<rightarrow>\<^sub>a nat_assn" unfolding index_mon_def apply sepref_dbg_keep done sepref_register index_mon declare index_sep.refine[sepref_fr_rules] lemma isl1_measure: "wf (measure (\<lambda>(i, found). length ballot - i - (if found then 1 else 0)))" by simp lemma index_sound: fixes a:: 'a and l :: "'a list" and i::nat assumes "i \<le> List_Index.index l a" shows "(a = l!i) \<longrightarrow> (i = List_Index.index l a)" by (metis assms(1) index_first le_eq_less_or_eq) lemma index_mon_correct: shows "index_mon ballot a \<le> SPEC (\<lambda> r. r = index ballot a)" unfolding index_mon_def apply (intro WHILET_rule[where I= "index_mon_inv ballot a" and R="measure (\<lambda>(i, found). length ballot - i - (if found then 1 else 0))"] refine_vcg) proof (unfold index_mon_inv_def, simp+, safe, auto) fix aa::nat assume bound: "aa \<le> List_Index.index ballot (ballot ! aa)" (*assume range : "aa < length ballot"*) thus "aa = List_Index.index ballot (ballot ! aa)" by (simp add: index_sound) next fix i assume notnow: "a \<noteq> ballot ! i" assume notyet: "i \<le> List_Index.index ballot a" assume ir: "i < length ballot" from notnow have "i \<noteq> List_Index.index ballot a" by (metis index_eq_iff ir) from notyet this show "Suc i \<le> List_Index.index ballot a" by fastforce next assume ir: "List_Index.index ballot a < length ballot" assume na: "a \<noteq> ballot ! index ballot a" from ir have "a = ballot ! List_Index.index ballot a" by (metis index_eq_iff) from this na show "False" by simp next fix aa assume "aa \<le> List_Index.index ballot a" and "aa \<noteq> List_Index.index ballot a" thus "aa < length ballot" by (metis antisym index_le_size le_neq_implies_less order_trans) qed (* TODO: move to IICF Array List *) lemma index_mon_impl: shows "(index_mon, mop_list_index) \<in> \<langle>Id\<rangle>list_rel \<rightarrow> Id \<rightarrow> \<langle>nat_rel\<rangle>nres_rel" apply (intro fun_relI nres_relI) apply clarsimp apply (refine_vcg index_mon_correct) by simp lemma arl_index_nc_correct: "(uncurry index_sep, uncurry mop_list_index) \<in> (arl_assn id_assn)\<^sup>k *\<^sub>a id_assn\<^sup>k \<rightarrow>\<^sub>a nat_assn" using index_sep.refine[FCOMP index_mon_impl] list_rel_id hr_comp_Id2 by metis (*sepref_decl_impl (ismop) arl_index: arl_index_nc_correct .*) definition rank_mon :: "'a::{default, heap, hashable} Preference_List \<Rightarrow> 'a::{default, heap, hashable} \<Rightarrow> nat nres" where "rank_mon ballot a \<equiv> do { i \<leftarrow> (index_mon ballot a); if (i = length ballot) then RETURN 0 else RETURN (i + 1) }" lemma rank_mon_correct: "rank_mon ballot a \<le> SPEC (\<lambda> r. r = rank_l ballot a)" unfolding rank_mon_def proof (refine_vcg, auto) assume mem: "a \<in> set ballot" from this have "List_Index.index ballot a \<noteq> length ballot" by (simp add: in_set_member index_size_conv) from this show "index_mon ballot a \<le> SPEC (\<lambda>i. i = List_Index.index ballot a \<and> i \<noteq> length ballot)" using index_mon_correct by (metis (mono_tags, lifting) SPEC_cons_rule) next assume nmem: "\<not>a \<in> set ballot" from this have "List_Index.index ballot a = length ballot" by (simp add: in_set_member) from this show "index_mon ballot a \<le> RES {length ballot}" using index_mon_correct by (metis singleton_conv) qed lemma rank_mon_refine: shows "(rank_mon, (\<lambda> ballot a. RETURN (rank_l ballot a)))\<in> Id \<rightarrow> Id \<rightarrow> \<langle>nat_rel\<rangle>nres_rel" by (refine_vcg rank_mon_correct, simp) definition is_less_preferred_than_ref :: "'a::{default, heap, hashable} \<Rightarrow> 'a Preference_List \<Rightarrow> 'a \<Rightarrow> bool nres" ("_ p\<lesssim>\<^sub>_ _" [50, 1000, 51] 50) where "x p\<lesssim>\<^sub>l y \<equiv> do { idxx \<leftarrow> index_mon l x; idxy \<leftarrow> index_mon l y; RETURN (idxx \<noteq> length l \<and> idxy \<noteq> length l \<and> idxx \<ge> idxy)}" lemma is_less_preferred_than_ref_refine: shows "(is_less_preferred_than_ref, RETURN ooo is_less_preferred_than_l) \<in> Id \<rightarrow> \<langle>Id\<rangle>list_rel \<rightarrow> Id \<rightarrow> \<langle>bool_rel\<rangle>nres_rel" unfolding is_less_preferred_than_ref_def is_less_preferred_than_l.simps unfolding comp_apply by (refine_vcg index_mon_correct, auto) sepref_definition is_less_preferred_than_sep is "uncurry2 is_less_preferred_than_ref" :: "(id_assn\<^sup>k *\<^sub>a (ballot_impl_assn id_assn)\<^sup>k *\<^sub>a id_assn\<^sup>k \<rightarrow>\<^sub>a bool_assn)" unfolding is_less_preferred_than_ref_def[abs_def] apply sepref_dbg_keep done sepref_register is_less_preferred_than_ref declare is_less_preferred_than_sep.refine [sepref_fr_rules] lemmas is_less_preferred_than_sep_correct = is_less_preferred_than_sep.refine[FCOMP is_less_preferred_than_ref_refine] text \<open> win-count, multiple refinement steps \<close> definition "wc_invar_fe p0 a \<equiv> \<lambda>(xs,ac). xs = drop (length p0 - length xs) p0 \<and> ac = card {i. i < (length p0 - length xs) \<and> above (p0!i) a = {a}}" definition wc_foreach:: "'a Profile \<Rightarrow> 'a \<Rightarrow> nat nres" where "wc_foreach p a \<equiv> do { (xs,ac) \<leftarrow> WHILEIT (wc_invar_fe p a) (FOREACH_cond (\<lambda>_.True)) (FOREACH_body (\<lambda>x (ac). if (above x a = {a}) then RETURN (ac+1) else RETURN (ac) )) (p,0); RETURN ac }" lemma wc_foreach_correct: shows "wc_foreach p a \<le> SPEC (\<lambda> wc. wc = win_count p a)" unfolding wc_foreach_def wc_invar_fe_def FOREACH_cond_def FOREACH_body_def apply (intro WHILEIT_rule[where R="measure (\<lambda>(xs,_). length xs)"] refine_vcg) apply (safe, simp_all) apply (metis append_Nil diff_le_self drop_Suc drop_all drop_append length_drop tl_drop) proof (-) fix xs:: "'a Profile" assume headr: "xs = drop (length p - length xs) p" assume pnemp: "xs \<noteq> []" from pnemp headr have hdidx: "hd xs = (p!(length p - length xs))" by (metis drop_eq_Nil hd_drop_conv_nth linorder_not_le) assume atop: "above (hd xs) a = {a}" from hdidx this have aba: "above (p!(length p - length xs)) a = {a}" by simp from this aba have comp: "{i. i \<le> (length p) - length xs \<and> above (p ! i) a = {a}} = ({i. i < length p - length xs \<and> above (p ! i) a = {a}} \<union> {(length p - length xs)})" by fastforce from headr have "{i. i \<le> (length p) - length xs \<and> above (p ! i) a = {a}} = {i. i < Suc (length p) - length xs \<and> above (p ! i) a = {a}}" by (metis Suc_diff_le diff_le_self length_drop less_Suc_eq_le) from this comp have "{i. i < Suc (length p) - length xs \<and> above (p ! i) a = {a}} = ({i. i < length p - length xs \<and> above (p ! i) a = {a}} \<union> {(length p - length xs)})" by simp from this show "Suc (card {i. i < (length p) - length xs \<and> above (p ! i) a = {a}}) = card {i. i < Suc (length p) - length xs \<and> above (p ! i) a = {a}}" by fastforce next fix xs:: "'a Profile" fix alt:: "'a" assume headr: "xs = drop (length p - length xs) p" show "tl xs = drop (Suc (length p) - length xs) p" by (metis Suc_diff_le diff_le_self drop_Suc headr length_drop tl_drop) next fix xs:: "'a Profile" fix alt:: "'a" assume headr: "xs = drop (length p - length xs) p" assume pnemp: "xs \<noteq> []" from pnemp headr have hdidx: "hd xs = (p!(length p - length xs))" by (metis drop_eq_Nil hd_drop_conv_nth linorder_not_le) assume xtop: "alt \<in> above (hd xs) a" assume xna: "alt \<noteq> a" from hdidx headr xna xtop show "card {i. i < (length p) - length xs \<and> above (p ! i) a = {a}} = card {i. i < Suc (length p) - length xs \<and> above (p ! i) a = {a}}" by (metis Suc_diff_le diff_le_self insert_absorb insert_iff insert_not_empty length_drop less_Suc_eq ) next fix xs:: "'a Profile" fix alt:: "'a" assume headr: "xs = drop (length p - length xs) p" from headr show "tl xs = drop (Suc (length p) - length xs) p" by (metis Suc_diff_le diff_le_self drop_Suc length_drop tl_drop) next fix xs:: "'a Profile" fix alt:: "'a" assume headr: "xs = drop (length p - length xs) p" assume pnemp: "xs \<noteq> []" from pnemp headr have hdidx: "hd xs = (p!(length p - length xs))" by (metis drop_eq_Nil hd_drop_conv_nth linorder_not_le) assume xtop: "a \<notin> above (hd xs) a" from hdidx this have aba: "above (p!(length p - length xs)) a \<noteq> {a}" by fastforce from this show "card {i. i < (length p) - length xs \<and> above (p ! i) a = {a}} = card {i. i < Suc (length p) - length xs \<and> above (p ! i) a = {a}}" by (metis Suc_diff_le diff_le_self headr length_drop less_Suc_eq) qed schematic_goal wc_code_aux: "RETURN ?wc_code \<le> wc_foreach p a" unfolding wc_foreach_def FOREACH_body_def FOREACH_cond_def by (refine_transfer) concrete_definition win_count_code for p a uses wc_code_aux thm win_count_code_def lemma win_count_equiv: shows "win_count p a = win_count_code p a" proof - from order_trans[OF win_count_code.refine wc_foreach_correct] have "win_count_code p a = win_count p a" by fastforce thus ?thesis by simp qed lemma carde: assumes prof: "profile A p" shows "\<forall>ballot \<in> set p. (rank ballot a = 1) = (above ballot a = {a})" using prof by (metis above_rank profile_set) lemma cardei: assumes prof: "profile A p" shows "\<forall>i < length p. let ballot=(p!i) in ((rank ballot a = 1) = (above ballot a = {a}))" using prof by (metis carde nth_mem) definition "f_inner_rel a \<equiv> (\<lambda>(x::'a Preference_Relation) (ac::nat). (if (rank x a = 1) then RETURN (ac+1) else RETURN (ac) ))" definition wc_foreach_rank:: "'a Profile \<Rightarrow> 'a \<Rightarrow> nat nres" where "wc_foreach_rank p a \<equiv> do { (xs,ac) \<leftarrow> WHILET (FOREACH_cond (\<lambda>_.True)) (FOREACH_body (f_inner_rel a)) (p,0::nat); RETURN ac }" lemma wc_foreach_rank_refine: assumes prof: "profile A p" shows "wc_foreach_rank p a \<le> \<Down> nat_rel (wc_foreach p a)" unfolding wc_foreach_rank_def wc_foreach_def wc_invar_fe_def FOREACH_body_def FOREACH_cond_def f_inner_rel_def apply (refine_vcg) apply (refine_dref_type) \<comment> \<open>Type-based heuristics to instantiate data refinement goals\<close> proof (clarsimp_all simp del: rank.simps) fix x1:: "'a Profile" assume x1ne: "x1 \<noteq> []" assume rest: "x1 = drop (length p - length x1) p" from x1ne rest show "(rank (hd x1) a = Suc 0) = (above (hd x1) a = {a})" using carde by (metis One_nat_def in_set_dropD list.set_sel(1) prof rank.simps) qed lemma rank_refaux: assumes prof: "profile A p" shows "wc_foreach_rank p a \<le> (wc_foreach p a)" using prof wc_foreach_rank_refine by (metis refine_IdD) theorem wc_foreach_rank_correct: assumes prof: "profile A p" shows "wc_foreach_rank p a \<le> SPEC (\<lambda> wc. wc = win_count p a)" using assms ref_two_step[OF wc_foreach_rank_refine wc_foreach_correct] by fastforce subsubsection \<open> Data refinement \<close> text \<open> these auxiliary lemmas illustrate the equivalence of checking the the first candidate on a non empty ballot. \<close> lemma top_above: assumes ne: "length pl > 0" shows "pl!0 = a \<longleftrightarrow> above_l pl a = [a]" unfolding above_l_def proof (simp add: rankdef, safe) assume mem: "pl ! 0 \<in> set pl" assume "a = pl ! 0" have "List_Index.index pl (pl ! 0) = 0" by (simp add: index_eqI) from mem this show "take (Suc (List_Index.index pl (pl ! 0))) pl = [pl ! 0]" by (metis append_Nil index_less_size_conv take0 take_Suc_conv_app_nth) next (*assume mem: "List.member pl a"*) assume "take (Suc (List_Index.index pl a)) pl = [a]" from this show "pl ! 0 = a" by (metis append_Cons append_Nil append_take_drop_id hd_conv_nth list.sel(1)) next assume nm: "\<not> pl ! 0 \<in> set pl" from this have pl_empty: "pl = []" by (metis length_greater_0_conv nth_mem) from ne this pl_empty show "False" by simp qed lemma top_l_above_r: assumes ballot: "ballot_on A pl" and ne: "length pl > 0" shows "pl!0 = a \<longleftrightarrow> above (pl_\<alpha> pl) a = {a}" proof - from ne have listeq: "pl!0 = a \<longleftrightarrow> above_l pl a = [a]" by (simp add: top_above) from assms have above_abstract: "set (above_l pl a) = above (pl_\<alpha> pl) a" by (auto simp add: aboveeq) have list_set: "above_l pl a = [a] \<longleftrightarrow> set (above_l pl a) = {a}" by (metis above_l_def append_self_conv2 gr0I hd_take id_take_nth_drop insert_not_empty list.sel(1) list.set(1) list.set_sel(1) list.simps(15) listeq ne singleton_iff take_eq_Nil) from above_abstract listeq this show ?thesis by (simp) qed definition "f_inner_list a \<equiv> (\<lambda>x ac::nat. (if (rank_l x a = 1) then RETURN (ac+1) else RETURN (ac)))" definition "wc_list_invar p0 a \<equiv> \<lambda>(i,ac::nat). 0 \<le> i \<and> i \<le> length p0" definition "wc_list_invar' p0 a \<equiv> \<lambda>(xs,ac). xs = drop (length p0 - length xs) p0" lemma innerf_eq: fixes A:: "'a set" and l :: "'a Preference_List" and a :: 'a assumes "(l,r) \<in> ballot_rel" shows "f_inner_list a l n \<le> \<Down> nat_rel (f_inner_rel a r n)" unfolding f_inner_list_def f_inner_rel_def apply (refine_vcg) using assms rankeq unfolding ballot_rel_def by (metis in_br_conv) lemma foreachrel: assumes "(pl, pr) \<in> profile_rel" and "pl \<noteq> []" shows "(hd pl, hd pr) \<in> (ballot_rel) \<and> (tl pl, tl pr) \<in> (profile_rel)" using assms by (metis list.collapse list_rel_simp(2) list_rel_simp(4)) definition wc_foreach_list_rank :: "'a Profile_List \<Rightarrow> 'a \<Rightarrow> nat nres" where "wc_foreach_list_rank pl a \<equiv> do { (xs,ac) \<leftarrow> WHILET (FOREACH_cond (\<lambda>_.True)) (FOREACH_body (f_inner_list a)) (pl,0::nat); RETURN ac }" lemma initrel: fixes A:: "'a set" assumes "(pl, pr) \<in> profile_rel" shows "((pl,0::nat), pr , 0::nat) \<in> ((profile_rel \<times>\<^sub>r nat_rel))" using assms by simp lemma wc_foreach_list_rank_refine: fixes A:: "'a set" shows "(wc_foreach_list_rank, wc_foreach_rank) \<in> profile_rel \<rightarrow> Id \<rightarrow> \<langle>Id\<rangle>nres_rel" unfolding wc_foreach_list_rank_def wc_foreach_rank_def FOREACH_cond_def FOREACH_body_def apply (refine_vcg initrel) apply (simp add: initrel) apply refine_dref_type apply (simp add: refine_rel_defs) apply blast apply clarsimp_all using innerf_eq unfolding ballot_rel_def apply (metis param_hd refine_IdD) using foreachrel unfolding ballot_rel_def by (metis) lemma win_count_list_r_refine_os: fixes A:: "'a set" assumes "(pl, pr) \<in> (profile_rel)" shows "wc_foreach_list_rank pl a \<le> \<Down> Id (wc_foreach_rank pr a)" unfolding wc_foreach_list_rank_def wc_foreach_rank_def FOREACH_cond_def FOREACH_body_def using assms apply (refine_vcg wc_foreach_list_rank_refine initrel) apply (simp_all only: refine_rel_defs pl_to_pr_\<alpha>_def) apply refine_dref_type apply (clarsimp_all, safe) using innerf_eq unfolding ballot_rel_def apply (metis (mono_tags, lifting) brI list.rel_sel refine_IdD) using foreachrel using list.rel_sel by blast lemma wc_foreach_list_rank_correct: assumes "(pl, pr) \<in> profile_rel" and "profile_l A pl" shows "wc_foreach_list_rank pl a \<le> SPEC (\<lambda> wc. wc = win_count pr a)" proof (-) from assms have "profile A pr" using profile_ref by (metis) from assms(1) this show "wc_foreach_list_rank pl a \<le> (SPEC (\<lambda>wc. wc = win_count pr a))" using ref_two_step[OF win_count_list_r_refine_os wc_foreach_rank_correct] refine_IdD by (metis) qed lemma top_rank1: assumes ballot: "ballot_on A ballot" and "length ballot > 0" shows "ballot!0 = a \<longleftrightarrow> rank_l ballot a = 1" using assms apply clarsimp apply safe apply (simp add: index_eq_iff) apply (metis nth_index) by simp definition wc_foreach_top:: "'a Profile_List \<Rightarrow> 'a \<Rightarrow> nat nres" where "wc_foreach_top p a \<equiv> do { (xs::'a Profile_List,ac) \<leftarrow> WHILET (FOREACH_cond (\<lambda>_.True)) (FOREACH_body (\<lambda>x (ac). if ((length x > 0) \<and> (x!0 = a)) then RETURN (ac+1) else RETURN (ac) )) (p,0); RETURN ac }" lemma wc_foreach_top_refine_os: fixes A:: "'a set" shows "wc_foreach_top pl a \<le> \<Down> Id (wc_foreach_list_rank pl a)" unfolding wc_foreach_list_rank_def f_inner_list_def wc_foreach_top_def FOREACH_cond_def FOREACH_body_def apply (refine_vcg wc_foreach_list_rank_refine initrel) apply (simp_all only: refine_rel_defs pl_to_pr_\<alpha>_def) apply refine_dref_type apply auto apply (metis gr0I index_first) by (metis index_eq_iff length_pos_if_in_set) lemma wc_foreach_top_correct: assumes "(pl, pr) \<in> profile_rel" and "profile_l A pl" shows "wc_foreach_top pl a \<le> SPEC (\<lambda> wc. wc = win_count pr a)" using assms ref_two_step[OF wc_foreach_top_refine_os wc_foreach_list_rank_correct] refine_IdD by (metis) definition wc_fold:: "'a Profile_List \<Rightarrow> 'a \<Rightarrow> nat nres" where "wc_fold l a \<equiv> nfoldli l (\<lambda>_. True) (\<lambda>x (ac). RETURN (if ((length x > 0) \<and> (x!0 = a))then (ac+1) else (ac)) ) (0)" lemma wc_fold_refine: shows "wc_fold pl a \<le> \<Down> Id (wc_foreach_top pl a)" unfolding wc_fold_def wc_foreach_top_def by (simp add: nfoldli_mono(1) while_eq_nfoldli) theorem wc_fold_correct: assumes "(pl, pr) \<in> profile_rel" and "profile_l A pl" shows "wc_fold pl a \<le> SPEC (\<lambda> wc. wc = win_count pr a)" using assms ref_two_step[OF wc_fold_refine wc_foreach_top_correct] refine_IdD by (metis) lemma nfwcc: "nofail (wc_fold p a)" unfolding wc_fold_def apply (induction p rule: rev_induct, simp) apply simp by (simp add: pw_bind_nofail) lemma win_count_l_correct: shows "(win_count_l, win_count) \<in> (profile_on_A_rel A) \<rightarrow> Id \<rightarrow> nat_rel" apply (auto simp del: win_count_l.simps win_count.simps) apply (rename_tac pl pr) proof (standard, rename_tac a) fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix a:: 'a assume prel: "(pl, pr) \<in> (profile_on_A_rel A)" from prel have profrel: "(pl, pr) \<in> profile_rel" using profile_type_ref by fastforce from prel have profprop: "profile_l A pl" using profile_prop_list by fastforce have "RETURN (win_count_l pl a) = (wc_fold pl a)" unfolding wc_fold_def win_count_l.simps using fold_eq_nfoldli[where l = pl and f = "(\<lambda>x ac. if (0 < length x \<and> x ! 0 = a) then ac + 1 else ac)" and s = 0] by fastforce from this profrel profprop have meq: "RETURN (win_count_l pl a) = RETURN (win_count pr a)" using wc_fold_correct[where pl=pl and pr = pr and A = A and a = a] by (metis mem_Collect_eq nres_order_simps(21)) from meq show "win_count_l pl a = win_count pr a" by simp qed text \<open> pref count \<close> definition pc_foldli:: "'a Profile \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat nres" where "pc_foldli p a b \<equiv> nfoldli p (\<lambda>_.True) (\<lambda>x (ac). if (b \<preceq>\<^sub>x a) then RETURN (ac+1) else RETURN (ac) ) (0::nat)" lemma pc_foldli_correct: shows "pc_foldli p a b \<le> SPEC (\<lambda> wc. wc = prefer_count p a b)" unfolding pc_foldli_def apply (intro nfoldli_rule[where I="\<lambda> proc xs ac. ac = card {i::nat. i < length proc \<and> (let r = (p!i) in (b \<preceq>\<^sub>r a))}"] refine_vcg) proof (clarsimp_all) fix l1:: "'a Profile" fix l2:: "'a Profile" fix x:: "'a Preference_Relation" assume "p = l1 @ x # l2" assume blpa: "(b, a) \<in> x" have pnemp: "l1 @ x # l2 \<noteq> []" by simp have xatl1: "(l1 @ x # l2) ! (length l1) = x" by simp from xatl1 blpa have stone: "{i. i \<le>(length l1) \<and> (b, a) \<in> (l1 @ x # l2) ! i} = {i. i < length l1 \<and> (b, a) \<in> (l1 @ x # l2) ! i} \<union> {length l1}" by fastforce from this have "{i. i < Suc (length l1) \<and> (b, a) \<in> (l1 @ x # l2) ! i} = ({i. i < length l1 \<and> (b, a) \<in> (l1 @ x # l2) ! i} \<union> {length l1})" using less_Suc_eq_le by blast from this show "Suc(card {i. i < length l1 \<and> (b, a) \<in> (l1 @ x # l2) ! i}) = card {i. i < Suc (length l1) \<and> (b, a) \<in> (l1 @ x # l2) ! i}" by fastforce next fix l1:: "'a Profile" fix l2:: "'a Profile" fix x:: "'a Preference_Relation" assume "p = l1 @ x # l2" assume blpa: "(b, a) \<notin> x" have pnemp: "l1 @ x # l2 \<noteq> []" by simp have xatl1: "(l1 @ x # l2) ! (length l1) = x" by simp from xatl1 blpa have stone: "{i. i < Suc (length l1) \<and> (b, a) \<in> (l1 @ x # l2) ! i} = {i. i < length l1 \<and> (b, a) \<in> (l1 @ x # l2) ! i}" using less_Suc_eq_le order_le_less by blast thus "card {i. i < length l1 \<and> (b, a) \<in> (l1 @ x # l2) ! i} = card {i. i < Suc (length l1) \<and> (b, a) \<in> (l1 @ x # l2) ! i}" by fastforce qed definition pc_foldli_list:: "'a Profile_List \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat nres" where "pc_foldli_list p a b \<equiv> nfoldli p (\<lambda>_.True) (\<lambda> x ac. RETURN (if (b \<lesssim>\<^sub>x a) then (ac+1) else (ac))) (0::nat)" lemma pc_fold_monad_eq: shows "RETURN (prefer_count_l p a b) = pc_foldli_list p a b" unfolding pc_foldli_list_def using fold_eq_nfoldli by fastforce lemma pc_foldli_list_refine: shows "(pc_foldli_list, pc_foldli) \<in> profile_rel \<rightarrow> Id \<rightarrow> Id \<rightarrow> \<langle>nat_rel\<rangle>nres_rel" unfolding ballot_rel_def apply (auto simp del : is_less_preferred_than.simps) apply (rename_tac pl pr a b) unfolding pc_foldli_list_def pc_foldli_def apply (refine_vcg nfoldli_rule) apply (auto simp del : is_less_preferred_than_l.simps is_less_preferred_than.simps) apply (rename_tac l r) apply (metis in_br_conv is_less_preferred_than_eq)+ done lemma pc_foldli_list_correct: shows "(pc_foldli_list, (\<lambda> p a b. SPEC (\<lambda> wc. wc = prefer_count p a b))) \<in> profile_rel \<rightarrow> Id \<rightarrow> Id \<rightarrow> \<langle>nat_rel\<rangle>nres_rel" apply(refine_vcg) apply (clarsimp_all simp del: prefer_count.simps) apply (rename_tac pl pr a b) proof - fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix a :: 'a fix b :: 'a assume profr: "(pl, pr) \<in> profile_rel" note ref_two_step[OF pc_foldli_list_refine[THEN fun_relD, THEN fun_relD, THEN fun_relD, THEN nres_relD] pc_foldli_correct, where x5 = pl and p1=pr and x4 = a and a1 = a and x3 = b and b1 = b] refine_IdD from profr this show "pc_foldli_list pl a b \<le> RES {prefer_count pr a b}" by fastforce qed definition prefer_count_monadic_imp:: "'a::{default, heap, hashable} Profile_List \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat nres" where "prefer_count_monadic_imp p a b \<equiv> nfoldli p (\<lambda>_.True) (\<lambda> x ac. do { b_less_a \<leftarrow> is_less_preferred_than_ref b x a; RETURN (if b_less_a then (ac+1) else (ac)) }) (0::nat)" lemma prefer_count_monadic_imp_refine: shows "(prefer_count_monadic_imp, pc_foldli_list) \<in> \<langle>\<langle>Id\<rangle>list_rel\<rangle>list_rel \<rightarrow> Id \<rightarrow> Id \<rightarrow> \<langle>nat_rel\<rangle>nres_rel" unfolding prefer_count_monadic_imp_def pc_foldli_list_def apply (refine_vcg is_less_preferred_than_ref_refine) apply (refine_dref_type) apply (auto simp del : is_less_preferred_than_l.simps) proof (rename_tac b a l) fix a b :: 'a fix l :: "'a Preference_List" assume alpb: "a \<lesssim>\<^sub>l b" note iq = is_less_preferred_than_ref_refine[THEN fun_relD,THEN fun_relD,THEN fun_relD, THEN nres_relD] from alpb iq[where x3= a and x'3 =a and x2 = l and x'2 =l and x1 =b and x'1 =b] show "(a p\<lesssim>\<^sub>l b) \<le> SPEC (\<lambda>b_less_a. b_less_a)" using conc_trans_additional(6) by fastforce next fix a b :: 'a fix l :: "'a Preference_List" assume alpb: "\<not> a \<lesssim>\<^sub>l b" note iq = is_less_preferred_than_ref_refine[THEN fun_relD,THEN fun_relD,THEN fun_relD, THEN nres_relD] from alpb iq[where x3= a and x'3 =a and x2 = l and x'2 =l and x1 =b and x'1 =b] show "(a p\<lesssim>\<^sub>l b) \<le> SPEC (Not)" using conc_trans_additional(6) by fastforce qed theorem prefer_count_monadic_imp_correct: assumes "(pl, pr) \<in> profile_rel" shows "prefer_count_monadic_imp pl a b \<le> SPEC (\<lambda> pc. pc = prefer_count pr a b)" using assms(1) ref_two_step[OF prefer_count_monadic_imp_refine [THEN fun_relD,THEN fun_relD,THEN fun_relD,THEN nres_relD] pc_foldli_list_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD,THEN nres_relD,THEN refine_IdD], where x10 = pl and x5 = pl and x'5 = pr] refine_IdD by (metis list_rel_id IdI) lemma prefer_count_monadic_correct_rel: shows "(prefer_count_monadic_imp, RETURN ooo prefer_count) \<in> profile_rel \<rightarrow> Id \<rightarrow> Id \<rightarrow> \<langle>Id\<rangle>nres_rel" proof (refine_vcg, clarify, unfold comp_apply, (clarsimp simp del: prefer_count.simps), rename_tac pl pr a b) fix a b :: "'a" fix pr :: "'a Profile" fix pl :: "'a Profile_List" assume prel: "(pl, pr) \<in> profile_rel" then show "prefer_count_monadic_imp pl a b \<le> RETURN (prefer_count pr a b) " using ref_two_step[OF prefer_count_monadic_imp_refine [THEN fun_relD,THEN fun_relD,THEN fun_relD,THEN nres_relD] pc_foldli_list_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD,THEN nres_relD,THEN refine_IdD]] IdI unfolding SPEC_eq_is_RETURN(2) by fastforce qed sepref_definition prefer_count_sep is "uncurry2 prefer_count_monadic_imp" :: "(profile_impl_assn id_assn)\<^sup>k *\<^sub>a id_assn\<^sup>k *\<^sub>a id_assn\<^sup>k \<rightarrow>\<^sub>a nat_assn" unfolding prefer_count_monadic_imp_def apply sepref_dbg_keep done sepref_register prefer_count_monadic_imp declare prefer_count_sep.refine [sepref_fr_rules] definition wins_monadic :: "'a::{default, heap, hashable} \<Rightarrow> 'a Profile_List \<Rightarrow> 'a \<Rightarrow> bool nres" where "wins_monadic x p y \<equiv> do { pxy \<leftarrow> prefer_count_monadic_imp p x y; pyx \<leftarrow> prefer_count_monadic_imp p y x; RETURN (pxy > pyx) }" lemma prefer_count_l_correct: shows "(prefer_count_l, prefer_count) \<in> profile_rel \<rightarrow> Id \<rightarrow> Id \<rightarrow> nat_rel" apply (auto simp del: prefer_count_l.simps prefer_count.simps) apply (rename_tac pl pr) proof (standard, standard, rename_tac a b) fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix a:: 'a and b:: 'a assume "(pl, pr) \<in> profile_rel" from this have meq: "RETURN (prefer_count_l pl a b) = RETURN (prefer_count pr a b)" using pc_fold_monad_eq[where p = pl and a=a and b=b] pc_foldli_list_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD,THEN nres_relD, where x3 = pl and x'3=pr and x2 = a and x'2 = a and x1 = b and x'1 = b] by (metis (full_types) RETURN_ref_SPECD pair_in_Id_conv) from meq show "prefer_count_l pl a b = prefer_count pr a b" by simp qed lemma prefer_count_l_eq: fixes pl :: "'a Profile_List" fixes pr :: "'a Profile" assumes prel: "(pl, pr) \<in> profile_rel" shows "prefer_count_l pl a b = prefer_count pr a b" using prefer_count_l_correct[THEN fun_relD, THEN fun_relD, THEN fun_relD, where x2 = pl and x'2 = pr and x1 = a and x'1 = a and x = b and x' = b] assms by auto lemma prefer_count_monadic_imp_ref_l: shows "(prefer_count_monadic_imp, RETURN ooo prefer_count_l) \<in> \<langle>\<langle>Id\<rangle>list_rel\<rangle>list_rel \<rightarrow> Id \<rightarrow> Id \<rightarrow> \<langle>nat_rel\<rangle>nres_rel" proof (clarsimp simp del: prefer_count_l.simps, rename_tac pl a b, refine_vcg, unfold conc_fun_RETURN[symmetric], rule refine_IdI) fix pl :: "'a Profile_List" fix a:: 'a and b:: 'a note pcr = prefer_count_monadic_imp_refine[THEN fun_relD,THEN fun_relD,THEN fun_relD, THEN nres_relD, THEN refine_IdD] pc_fold_monad_eq[symmetric] from this show "prefer_count_monadic_imp pl a b \<le> RETURN (prefer_count_l pl a b)" using IdI list_rel_id by (metis) qed lemma imp_direct_ref: fixes pl :: "'a::{default, heap, hashable} Profile_List" fixes a b :: "'a::{default, heap, hashable}" shows"prefer_count_monadic_imp pl a b \<le> RETURN (prefer_count_l pl a b)" proof - have "(pl, pl) \<in> \<langle>\<langle>Id\<rangle>list_rel\<rangle>list_rel" using list_rel_id IdI by simp thus ?thesis using prefer_count_monadic_imp_ref_l[THEN fun_relD, THEN fun_relD, THEN fun_relD ,THEN nres_relD, THEN refine_IdD] IdI unfolding comp_def by metis qed lemma wins_monadic_correct: shows "(wins_monadic, (\<lambda> A p a. SPEC (\<lambda> is_win. is_win = wins A p a))) \<in> Id \<rightarrow> profile_rel \<rightarrow> Id \<rightarrow> \<langle>bool_rel\<rangle>nres_rel" unfolding wins_monadic_def wins.simps apply (clarsimp simp del: prefer_count.simps) apply (refine_vcg prefer_count_monadic_imp_correct) by (auto) sepref_definition wins_imp is "uncurry2 wins_monadic" :: "(nat_assn\<^sup>k *\<^sub>a (profile_impl_assn id_assn)\<^sup>k *\<^sub>a nat_assn\<^sup>k \<rightarrow>\<^sub>a bool_assn )" unfolding wins_monadic_def apply sepref_dbg_keep done lemma wins_l_correct: shows "(wins_l, wins) \<in> Id \<rightarrow> profile_rel \<rightarrow> Id \<rightarrow> bool_rel" apply(refine_vcg) proof (clarsimp simp del: prefer_count_l.simps prefer_count.simps, rename_tac a pl pr b, safe) fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix a:: 'a and b:: 'a assume a1: "(pl, pr) \<in> profile_rel" assume a2: "prefer_count_l pl b a < prefer_count_l pl a b" note eq = prefer_count_l_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD, where x2= pl and x'2=pr] from eq a1 have "\<forall> alt1 alt2. prefer_count_l pl alt1 alt2 = prefer_count pr alt1 alt2 " by blast from a2 this show "prefer_count pr b a < prefer_count pr a b" by fastforce next fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix a:: 'a and b:: 'a assume a1: "(pl, pr) \<in> profile_rel" assume a2: "prefer_count pr b a < prefer_count pr a b" note eq = prefer_count_l_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD, where x2= pl and x'2=pr] from eq a1 have "\<forall> alt1 alt2. prefer_count_l pl alt1 alt2 = prefer_count pr alt1 alt2 " by blast from a2 this show "prefer_count_l pl b a < prefer_count_l pl a b" by fastforce qed lemma wins_monadic_refine: shows "(wins_monadic, RETURN ooo wins_l) \<in> Id \<rightarrow> \<langle>\<langle>Id\<rangle>list_rel\<rangle>list_rel \<rightarrow> Id \<rightarrow> \<langle>Id\<rangle>nres_rel" unfolding wins_monadic_def wins_l.simps proof (clarsimp simp del: prefer_count_l.simps, rule nres_relI, rule refine_IdI, refine_vcg , unfold SPEC_eq_is_RETURN(1), rename_tac a pl b ) fix pl :: "'a Profile_List" fix a:: 'a and b:: 'a note pcab = imp_direct_ref[where pl = pl and a = a and b = b] note pcba = imp_direct_ref[where pl = pl and a = b and b = a] have "prefer_count_monadic_imp pl a b \<le> SPEC (\<lambda>pab. pab = prefer_count_l pl a b)" using pcab SPEC_eq_is_RETURN(2)[symmetric, where y = "prefer_count_l pl a b"] by metis from this pcab pcba show "prefer_count_monadic_imp pl a b \<le> SPEC (\<lambda>pxy. prefer_count_monadic_imp pl b a \<bind> (\<lambda>pyx. RETURN (pyx < pxy)) \<le> RETURN (prefer_count_l pl b a < prefer_count_l pl a b))" using bind_rule SPEC_cons_rule SPEC_eq_is_RETURN(1) by (smt (z3) order_eq_refl specify_left) qed lemma condorcet_winner_l_correct: shows "(condorcet_winner_l, condorcet_winner) \<in> \<langle>Id\<rangle>set_rel \<rightarrow> profile_rel \<rightarrow> Id \<rightarrow> bool_rel" apply (refine_vcg) apply (clarsimp simp del : wins_l.simps wins.simps) proof (rename_tac A pl pr alt, safe) fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix A:: "'a set" and alt:: 'a assume a1: "(pl, pr) \<in> profile_rel" assume a2: "profile_l A pl" note winc = wins_l_correct[unfolded fref_def, THEN fun_relD, THEN fun_relD,THEN fun_relD, where x2 = alt and x'2 = alt and x1 = pl and x'1 = pr] note profr = profile_ref from a1 a2 profr show "(profile A pr)" by metis next fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix A:: "'a set" and alt:: 'a fix con:: 'a assume a1: "(pl, pr) \<in> profile_rel" assume a2: "con \<in> A" assume a3: "\<not> wins alt pr con" assume altwins: "\<forall>x\<in>A - {alt}. wins_l alt pl x" note winc = wins_l_correct[unfolded fref_def, THEN fun_relD, THEN fun_relD,THEN fun_relD, where x2 = alt and x'2 = alt and x1 = pl and x'1 = pr] from a1 a3 winc have "\<not> wins_l alt pl con" by blast from altwins a2 this show "con = alt" by blast next fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix A:: "'a set" and alt:: 'a assume a1: "(pl, pr) \<in> profile_rel" assume a2: "profile A pr" note winc = wins_l_correct[unfolded fref_def, THEN fun_relD, THEN fun_relD,THEN fun_relD, where x2 = alt and x'2 = alt and x1 = pl and x'1 = pr] note profr = profile_ref from a1 a2 profr show "(profile_l A pl)" by blast next fix pl :: "'a Profile_List" fix pr :: "'a Profile" fix A:: "'a set" and alt:: 'a fix con:: 'a assume a1: "(pl, pr) \<in> profile_rel" assume a2: "con \<in> A" assume a3: "\<not> wins_l alt pl con" assume altwins: "\<forall>x\<in>A - {alt}. wins alt pr x" note winc = wins_l_correct[THEN fun_relD, THEN fun_relD,THEN fun_relD, where x2 = alt and x'2 = alt and x1 = pl and x'1 = pr] from a1 a3 winc have "\<not> wins alt pr con" by blast from altwins a2 this show "con = alt" by blast qed definition condorcet_winner_monadic :: "'a::{default, heap, hashable} set \<Rightarrow> 'a Profile_List \<Rightarrow> 'a \<Rightarrow> bool nres" where "condorcet_winner_monadic A p w \<equiv> if (w \<in> A) then FOREACHc A (\<lambda> sigma. sigma = True) (\<lambda> x b. do { winswx \<leftarrow> wins_monadic w p x; RETURN (if (x = w) then True else ((winswx))) }) (True) else RETURN False" sepref_definition cond_imp is "uncurry2 condorcet_winner_monadic" :: "(alts_set_impl_assn id_assn)\<^sup>k *\<^sub>a (profile_impl_assn id_assn)\<^sup>k *\<^sub>a id_assn\<^sup>k \<rightarrow>\<^sub>a bool_assn" unfolding condorcet_winner_monadic_def wins_monadic_def apply sepref_dbg_keep done sepref_register condorcet_winner_monadic declare cond_imp.refine [sepref_fr_rules] lemma condorcet_winner_monadic_correct: fixes A :: "'a::{default, heap, hashable} set" fixes pl :: "'a::{default, heap, hashable} Profile_List" and pr :: "'a::{default, heap, hashable} Profile" assumes prel: "(pl, pr) \<in> profile_rel" and profp: "profile A pr" assumes fina: "finite A" shows "condorcet_winner_monadic A pl a \<le> SPEC (\<lambda> is_win. is_win = condorcet_winner A pr a)" proof (unfold condorcet_winner_monadic_def RETURN_SPEC_conv FOREACH_def[symmetric] , auto simp del: condorcet_winner.simps) assume winner_in: "a \<in> A" note winsc = wins_monadic_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD,THEN nres_relD, THEN refine_IdD] from winner_in have " FOREACH\<^sub>C A (\<lambda>sigma. sigma) (\<lambda>x b. wins_monadic a pl x \<bind> (\<lambda>winswx. RES {if x = a then True else winswx})) True \<le> SPEC (\<lambda> is_win. is_win = condorcet_winner A pr a)" apply (refine_vcg FOREACHc_rule [where I =" \<lambda> it b. b = (\<forall>x\<in>(A - it) - {a}. wins a pr x)"] winsc prel fina profp) by (auto simp add: winner_in fina profp simp del: wins.simps) from this show " a \<in> A \<Longrightarrow> FOREACH\<^sub>C A (\<lambda>sigma. sigma) (\<lambda>x b. wins_monadic a pl x \<bind> (\<lambda>winswx. RES {if x = a then True else winswx})) True \<le> RES {condorcet_winner A pr a}" by simp next assume aA: "a \<notin> A" assume condwa: "condorcet_winner A pr a" from aA condwa show "False" by simp qed lemma cond_winner_l_unique: fixes A:: "'a set" fixes pl :: "'a Profile_List" fixes pr :: "'a Profile" fixes c :: 'a and w :: 'a assumes prel: "(pl, pr) \<in> profile_rel" and winner_c: "condorcet_winner_l A pl c" and winner_w: "condorcet_winner_l A pl w" shows "w = c" using condorcet_winner_l_correct[THEN fun_relD,THEN fun_relD, THEN fun_relD, where x2 = A and x'2 = A and x1 = pl and x'1 = pr] set_rel_id_simp cond_winner_unique[where A = A and p = pr and c = c and w = w] assms by blast lemma cond_winner_l_unique2: fixes A:: "'a set" fixes pl :: "'a Profile_List" fixes pr :: "'a Profile" fixes x :: 'a and w :: 'a assumes prel: "(pl, pr) \<in> profile_rel" and winner: "condorcet_winner_l A pl w" and not_w: "x \<noteq> w" shows "\<not> condorcet_winner_l A pl x" using condorcet_winner_l_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD, where x2 = A and x'2 = A and x1 = pl and x'1 = pr] set_rel_id_simp cond_winner_unique2[where A = A and p = pr and x = x and w = w] assms by blast lemma cond_winner_unique3_l: fixes A:: "'a set" fixes pl :: "'a Profile_List" fixes pr :: "'a Profile" fixes w :: 'a assumes prel: "(pl, pr) \<in> profile_rel" and wcond: "condorcet_winner_l A pl w" shows "{a \<in> A. condorcet_winner_l A pl a} = {w}" using condorcet_winner_l_correct[THEN fun_relD,THEN fun_relD,THEN fun_relD, where x2 = A and x'2 = A and x1 = pl and x'1 = pr] set_rel_id_simp cond_winner_unique3[where A = A and p = pr and w = w] assms by blast subsubsection \<open>Convert HOL types to heap data structures\<close> definition convert_list :: "'a::{default, heap} list \<Rightarrow> 'a list nres" where "convert_list l \<equiv> nfoldli l (\<lambda> x. True) (\<lambda> x nl. RETURN (nl @ [x])) []" sepref_definition clist is "convert_list" :: "(list_assn id_assn)\<^sup>d \<rightarrow>\<^sub>a (arl_assn nat_assn)" unfolding convert_list_def apply (rewrite in "nfoldli _ _ _ rewrite_HOLE" arl.fold_custom_empty) by sepref definition convert_list_to_set :: "'a::{default, heap} list \<Rightarrow> 'a set nres" where "convert_list_to_set l \<equiv> nfoldli l (\<lambda> x. True) (\<lambda> x ns. RETURN (insert x ns)) {}" sepref_definition convert_list_to_hash_set is "convert_list_to_set" :: "(list_assn id_assn)\<^sup>d \<rightarrow>\<^sub>a (hs.assn nat_assn)" unfolding convert_list_to_set_def apply (rewrite in "nfoldli _ _ _ rewrite_HOLE" hs.fold_custom_empty) by sepref lemma convert_list_correct: shows "(convert_list, RETURN) \<in> \<langle>Id\<rangle>list_rel \<rightarrow> \<langle>\<langle>Id\<rangle>list_rel\<rangle>nres_rel" unfolding convert_list_def apply (clarsimp, intro nres_relI refine_IdI) apply (refine_vcg nfoldli_rule[where I = "(\<lambda> l1 l2 r. (r = l1))"]) by auto lemma convert_list_to_set_correct: shows "(convert_list_to_set, RETURN o set) \<in> \<langle>Id\<rangle>list_rel \<rightarrow> \<langle>\<langle>Id\<rangle>set_rel\<rangle>nres_rel" unfolding convert_list_to_set_def apply (clarsimp, intro nres_relI refine_IdI) apply (refine_vcg nfoldli_rule[where I = "(\<lambda> l1 l2 r. (r = set l1))"]) by auto subsection \<open>Monadic Implementation for Limiting Profiles\<close> definition limit_profile_l :: "'a::{default, hashable, heap} set \<Rightarrow> 'a Profile_List \<Rightarrow> 'a Profile_List nres" where "limit_profile_l A p = nfoldli p (\<lambda>_. True) (\<lambda> x np. do { newb \<leftarrow> (limit_monadic A x); RETURN (op_list_append np newb)}) []" sepref_register limit_monadic declare limit_sep.refine [sepref_fr_rules] sepref_definition limit_profile_sep is "uncurry (limit_profile_l)" :: "(hs.assn id_assn)\<^sup>k *\<^sub>a (profile_impl_assn id_assn )\<^sup>k \<rightarrow>\<^sub>a (profile_impl_assn id_assn )" unfolding limit_profile_l_def apply (rewrite in "nfoldli _ _ _ rewrite_HOLE" HOL_list.fold_custom_empty) apply sepref_dbg_keep done sepref_register limit_profile_l lemma limitp_correct: shows "(uncurry limit_profile_l, uncurry (RETURN oo limit_profile)) \<in> [\<lambda> (A, pl). finite A ]\<^sub>f (\<langle>Id\<rangle>set_rel \<times>\<^sub>r profile_rel) \<rightarrow> \<langle>profile_rel\<rangle>nres_rel" proof(intro frefI, unfold limit_profile_l_def comp_apply SPEC_eq_is_RETURN(2)[symmetric], refine_vcg, auto, rename_tac A pl pr) fix A :: "'a set" fix pl:: "'a Profile_List" fix pr :: "'a Profile" assume fina : "finite A" assume prel: " (pl, pr) \<in> profile_rel" show " nfoldli pl (\<lambda>_. True) (\<lambda>x np. limit_monadic A x \<bind> (\<lambda>newb. RES {np @ [newb]})) [] \<le> \<Down> profile_rel (RES {map (limit A) pr})" apply (refine_vcg limit_monadic_refine nfoldli_rule[where I = "(\<lambda> proc rem r. r = map (limit_l A) proc)"] ) apply (auto simp add: fina) unfolding ballot_rel_def well_formed_pl_def relAPP_def in_br_conv in_br_conv length_map limit_l_sound list_rel_eq_listrel listrel_iff_nth nth_map prel relAPP_def apply safe using length_preserving using prel list_rel_imp_same_length prel apply blast using limit_eq apply (metis ballot_rel_def list_rel_imp_same_length map_in_list_rel_conv nth_map nth_mem prel profile_rel_imp_map_ballots) using limit_eq apply (metis ballot_rel_def list_rel_imp_same_length map_in_list_rel_conv nth_map nth_mem prel profile_rel_imp_map_ballots) using prel limit_l_sound by (metis ballot_rel_def map_in_list_rel_conv nth_map nth_mem profile_rel_imp_map_ballots well_formed_pl_def) qed definition "ballot_assn R \<equiv> (hr_comp (ballot_impl_assn R) ballot_rel)" lemma limit_profile_sep_correct: shows "(uncurry limit_profile_sep, uncurry (RETURN \<circ>\<circ> limit_profile)) \<in> [\<lambda>(a, b). finite a]\<^sub>a (alts_set_impl_assn id_assn)\<^sup>k *\<^sub>a (list_assn (ballot_assn id_assn))\<^sup>k \<rightarrow> list_assn (ballot_assn id_assn)" using limit_profile_sep.refine[FCOMP limitp_correct] set_rel_id hr_comp_Id2 unfolding ballot_assn_def by (simp) declare limit_profile_sep_correct [sepref_fr_rules] lemma limit_profile_sound_sep: shows "s \<subseteq> A \<and> finite_profile A p \<Longrightarrow> <(alts_set_impl_assn nat_assn) s hs * (list_assn (ballot_assn nat_assn)) p hp> limit_profile_sep hs hp < \<lambda>r. \<exists>\<^sub>Ares. list_assn (ballot_assn nat_assn) p hp * (list_assn (ballot_assn nat_assn)) res r * \<up> (finite_profile s res) >\<^sub>t" proof (clarsimp) assume sA: "s \<subseteq> A" assume fina: "finite A" assume prof: "profile A p" from sA fina have fins: "finite s" using rev_finite_subset by blast have postapp: "\<And>x. (\<exists>\<^sub>Axa. alts_set_impl_assn nat_assn s hs * list_assn (ballot_assn nat_assn) p hp * list_assn (ballot_assn nat_assn) xa x * true * \<up> (xa = map (limit s) p)) \<Longrightarrow>\<^sub>A ( \<exists>\<^sub>Ares. list_assn (ballot_assn nat_assn) p hp * list_assn (ballot_assn nat_assn) res x * true * \<up> (finite_profile s res))" using limit_profile_sound[where S = A and p = p and A = s] apply sep_auto using fins apply blast by (simp add: fina prof sA) from this fins show "<alts_set_impl_assn nat_assn s hs * list_assn (ballot_assn nat_assn) p hp> limit_profile_sep hs hp <\<lambda>r. \<exists>\<^sub>Ares. list_assn (ballot_assn nat_assn) p hp * list_assn (ballot_assn nat_assn) res r * true * \<up> (finite_profile s res)>" using limit_profile_sep_correct[THEN hfrefD, THEN hn_refineD, of "(s, p)" "(hs, hp)", simplified] cons_rule[where P = "(alts_set_impl_assn nat_assn) s hs * (list_assn (ballot_assn nat_assn)) p hp" and P' = "(alts_set_impl_assn nat_assn) s hs * (list_assn (hr_comp (ballot_impl_assn nat_assn) ballot_rel)) p hp" and Q = "(\<lambda> r. \<exists>\<^sub>Ax. alts_set_impl_assn nat_assn s hs * list_assn (ballot_assn nat_assn) p hp * list_assn (ballot_assn nat_assn) x r * true * \<up> (x = map (limit s) p))" and Q' = "\<lambda>r. \<exists>\<^sub>Ares. list_assn (ballot_assn nat_assn) p hp * list_assn (ballot_assn nat_assn) res r * true * \<up> (finite_profile s res)" and c = "limit_profile_sep hs hp"] using ent_refl by (simp add: ballot_assn_def) qed end
{"author": "SpringVaS", "repo": "RefinementOfVotingRules", "sha": "a01e44b062fb43e172dff81cffbf941856c977d8", "save_path": "github-repos/isabelle/SpringVaS-RefinementOfVotingRules", "path": "github-repos/isabelle/SpringVaS-RefinementOfVotingRules/RefinementOfVotingRules-a01e44b062fb43e172dff81cffbf941856c977d8/theories/Compositional_Structures/Basic_Modules/Component_Types/Social_Choice_Types/Profile_List_Monadic.thy"}
# Copyright (c) 2021 J.A. Duffek # Copyright (c) 2000 D.M. Spink # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/>. """ nrbruled(crv1::NURBS1D{I,F},crv2::NURBS1D{I,F} )::NURBS2D{I,F} where {I<:Integer,F<:AbstractFloat} Constructs a ruled surface between two NURBS curves. The ruled surface is ruled along the V direction. # Arguments: - `crv1`: First NURBS curve, see [`nrbmak`](@ref). - `crv2`: Second NURBS curve, see [`nrbmak`](@ref). # Output: - `srf`: Ruled NURBS surface. # Examples: ```julia julia> srf = nrbruled(crv1,crv2) ``` Construct a ruled surface between a semicircle and a straight line. ```julia julia> cir = nrbcirc(1.0,[0.0;0.0;0],0.0,1.0*pi); julia> line = nrbline(vec([-1 0.5 1]),vec([1 0.5 1])); julia> srf = nrbruled(cir,line); julia> nrbplot(srf,[20;20]); ``` """ function nrbruled(crv1::NURBS1D{I,F},crv2::NURBS1D{I,F} )::NURBS2D{I,F} where {I<:Integer,F<:AbstractFloat} # ensure both curves have a common degree d = max(crv1.order,crv2.order); crv1 = nrbdegelev(crv1, d - crv1.order); crv2 = nrbdegelev(crv2, d - crv2.order); # merge the knot vectors, to obtain a common knot vector k1 = crv1.knots; k2 = crv2.knots; ku = unique([k1;k2]); n = length(ku); # TODO this is bad, increasing the size without allocating ka = Vector{F}(); kb = Vector{F}(); for i in 1:n i1 = sum(x-> x == ku[i],k1); i2 = sum(x-> x == ku[i],k2); m = max(i1, i2); if m-i1>0; append!(ka, fill(ku[i],m-i1)); end #if if m-i2>0; append!(kb, fill(ku[i],m-i2)); end #if end # for i if !(isempty(ka)); crv1 = nrbkntins(crv1, ka); end # if if !(isempty(kb)); crv2 = nrbkntins(crv2, kb); end # if coefs = cat(crv1.coefs,crv2.coefs,dims=3); return nrbmak(coefs, [crv1.knots,vec([0.0 0.0 1.0 1.0])]); end # nrbruled
{"hexsha": "c817f9e6b3763519c2e0b3cd9154a9d8582f8d37", "size": 2379, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/IGA/nurbs_toolbox/nrbruled.jl", "max_stars_repo_name": "LazyScholar/MagMechFEM_Matlab2Julia", "max_stars_repo_head_hexsha": "367f39b8ddfcee7407bc922df8fecc9a80e1355a", "max_stars_repo_licenses": ["Apache-2.0", "MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/IGA/nurbs_toolbox/nrbruled.jl", "max_issues_repo_name": "LazyScholar/MagMechFEM_Matlab2Julia", "max_issues_repo_head_hexsha": "367f39b8ddfcee7407bc922df8fecc9a80e1355a", "max_issues_repo_licenses": ["Apache-2.0", "MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/IGA/nurbs_toolbox/nrbruled.jl", "max_forks_repo_name": "LazyScholar/MagMechFEM_Matlab2Julia", "max_forks_repo_head_hexsha": "367f39b8ddfcee7407bc922df8fecc9a80e1355a", "max_forks_repo_licenses": ["Apache-2.0", "MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.72, "max_line_length": 79, "alphanum_fraction": 0.6616225305, "num_tokens": 854}
MODULE bc_variables implicit none PRIVATE PUBLIC :: n_neighbor, fdinfo_send, fdinfo_recv PUBLIC :: www, sbuf, rbuf PUBLIC :: TYPE_MAIN, zero, Md include 'mpif.h' integer :: n_neighbor(6) integer,allocatable :: fdinfo_send(:,:,:),fdinfo_recv(:,:,:) #ifdef _DRSDFT_ integer,parameter :: TYPE_MAIN=MPI_REAL8 real(8),allocatable :: www(:,:,:,:) real(8),allocatable :: sbuf(:,:,:),rbuf(:,:,:) real(8),parameter :: zero=0.0d0 #else integer,parameter :: TYPE_MAIN=MPI_COMPLEX16 complex(8),allocatable :: www(:,:,:,:) complex(8),allocatable :: sbuf(:,:,:),rbuf(:,:,:) complex(8),parameter :: zero=(0.d0,0.d0) #endif integer :: Md END MODULE bc_variables
{"hexsha": "e4b7d8cb68b0a27bfba6145298a504e60894b5a1", "size": 687, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "src/bc_variables.f90", "max_stars_repo_name": "j-iwata/RSDFT", "max_stars_repo_head_hexsha": "2a961b2c8339a49de9bd09f55e7d6a45b6159d2e", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 7, "max_stars_repo_stars_event_min_datetime": "2016-10-31T02:11:39.000Z", "max_stars_repo_stars_event_max_datetime": "2021-10-04T17:45:30.000Z", "max_issues_repo_path": "src/bc_variables.f90", "max_issues_repo_name": "j-iwata/RSDFT", "max_issues_repo_head_hexsha": "2a961b2c8339a49de9bd09f55e7d6a45b6159d2e", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/bc_variables.f90", "max_forks_repo_name": "j-iwata/RSDFT", "max_forks_repo_head_hexsha": "2a961b2c8339a49de9bd09f55e7d6a45b6159d2e", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2016-10-31T02:11:41.000Z", "max_forks_repo_forks_event_max_datetime": "2020-04-18T14:26:38.000Z", "avg_line_length": 22.9, "max_line_length": 62, "alphanum_fraction": 0.6521106259, "num_tokens": 217}
# # COPYRIGHT: # The Leginon software is Copyright 2003 # The Scripps Research Institute, La Jolla, CA # For terms of the license agreement # see http://ami.scripps.edu/software/leginon-license # import calibrator import calibrationclient import event from leginon import leginondata import node import gui.wx.MagCalibrator import time import libCVwrapper import numpy from pyami import arraystats, mrc, affine, msc import pyami.quietscipy from scipy import ndimage class MagCalibrator(calibrator.Calibrator): ''' ''' panelclass = gui.wx.MagCalibrator.Panel settingsclass = leginondata.MagCalibratorSettingsData defaultsettings = calibrator.Calibrator.defaultsettings defaultsettings.update({ 'minsize': 50, 'maxsize': 500, 'pause': 1.0, 'label': '', 'maxthreshold': 60000, 'maxcount': 5000, 'cutoffpercent': 1.0, 'minbright': 100, 'maxbright': 5000, 'mag1': 5000, 'mag2': 6500, }) def __init__(self, id, session, managerlocation, **kwargs): calibrator.Calibrator.__init__(self, id, session, managerlocation, **kwargs) self.start() def OLDuiStart(self): mag = self.instrument.tem.Magnification print 'MAG', mag mags = self.getMags() print 'MAGS', mags magindex = mags.index(mag) othermag = mags[magindex-1] self.compareToOtherMag(othermag) return print 'MAGINDEX', magindex if magindex == 0: print 'already at lowest mag' return else: previousmags = mags[magindex-5:magindex-1] previousmags.reverse() print 'PREVIOUSMAGS', previousmags self.matchMags(previousmags) def uiStart(self): mag1 = self.settings['mag1'] mag2 = self.settings['mag2'] self.compareTwoMags(mag1, mag2) return mag = self.instrument.tem.Magnification print 'MAG', mag mags = self.getMags() print 'MAGS', mags magindex = mags.index(mag) print 'MAGINDEX', magindex if magindex == 0: print 'already at lowest mag' return steps = self.settings['magsteps'] maglist = mags[magindex-steps:magindex] maglist.reverse() self.acquireMags(maglist) def acquireAcquisitionImageData(self, range=None): if range is None: im = self.acquireImage() else: im = self.acquireWithinRange(*range) im = leginondata.AcquisitionImageData(initializer=im) im['session'] = self.session mag = im['scope']['magnification'] magstring = '%06d' % (mag,) label = self.settings['label'] im['filename'] = self.session['name'] + '-' + label + '-' + magstring im['label'] = label return im def acquireMags(self, maglist): firstim = self.acquireAcquisitionImageData() firstim.insert(force=True) print 'FIRST', firstim['image'] limitmin = self.settings['minbright'] limitmax = self.settings['maxbright'] for mag in maglist: self.logger.info('mag: %s' % (mag,)) self.instrument.tem.Magnification = mag self.pause() im = self.acquireAcquisitionImageData(range=(limitmin,limitmax)) im.insert(force=True) self.logger.info('inserted mag: %s' % (mag,)) def uiTest(self): imdata = self.acquireImage() im = imdata['image'] regions = self.findRegions(im) def pause(self): pause = self.settings['pause'] time.sleep(pause) def getMags(self): mags = self.instrument.tem.Magnifications return mags def compareTwoMags(self, mag1, mag2): minbright = self.settings['minbright'] maxbright = self.settings['maxbright'] ## mag1 self.instrument.tem.Magnification = mag1 self.pause() mag1imdata = self.acquireWithinRange(minbright, maxbright) ## mag2 self.instrument.tem.Magnification = mag2 self.pause() mag2imdata = self.acquireWithinRange(minbright, maxbright) mag1im = mag1imdata['image'] mag2im = mag2imdata['image'] ## compare anglestart = -3 angleend = 3 angleinc = 0.25 scaleguess = float(mag2) / mag1 scalestart = scaleguess - 0.08 scaleend = scaleguess + 0.08 scaleinc = 0.02 prebin = 1 result = msc.findRotationScaleShift(mag1im, mag2im, anglestart, angleend, angleinc, scalestart, scaleend, scaleinc, prebin) if result is None: self.logger.error('could not determine relation') return angle = result[0] scale = result[1] shift = result[2] print 'ANGLE', angle print 'SCALE', scale print 'SHIFT', shift magdata = leginondata.MagnificationComparisonData() magdata['mag1'] = mag1 magdata['mag2'] = mag2 magdata['rotation'] = angle magdata['scale'] = scale magdata['shiftrow'] = shift[0] magdata['shiftcol'] = shift[1] magdata.insert(force=True) def isSaturated(self, im): thresh = self.settings['threshold'] bins = (thresh,) result = numpy.histogram(im, bins=bins) count = result[0][0] maxcount = self.settings['maxcount'] if count > maxcount: self.logger.info('Overflow: %s pixels above %s (max allowed: %s)' % (count, thresh, maxcount)) return True else: return False def isUnderexposed(self, im): thresh = self.settings['threshold'] def brightestStats(self, im, percent): # look only at the brightest 1% of the pixels sortedpixels = numpy.sort(im, axis=None) npixels = len(sortedpixels) nbrightest = int(percent / 100.0 * npixels) brightest = sortedpixels[-nbrightest:] stats = arraystats.all(brightest) self.logger.info('Top %.1f%% stats: mean: %.1f, std: %.1f, min: %.1f, max: %.1f' % (percent, stats['mean'],stats['std'],stats['min'],stats['max'])) return stats def acquireWithinRange(self, min, max): imagedata = self.acquireImage() stats = self.brightestStats(imagedata['image'], self.settings['cutoffpercent']) while not (min < stats['mean'] < max): if stats['mean'] > max: self.logger.info('too bright') # assuming we are greater than crossover, increase lens value i = self.instrument.tem.Intensity if i < 1.0: self.logger.info('spreading beam') self.instrument.tem.Intensity = 1.02 * i else: self.logger.info('decreasing exposure time') t = self.instrument.ccdcamera.ExposureTime self.instrument.ccdcamera.ExposureTime = t / 2 imagedata = self.acquireImage() stats = self.brightestStats(imagedata['image'], self.settings['cutoffpercent']) if stats['mean'] < min: self.logger.info('not bright enough, condensing beam...') # assuming we are greater than crossover, decrease lens value i = self.instrument.tem.Intensity self.instrument.tem.Intensity = 0.98 * i imagedata = self.acquireImage() stats = self.brightestStats(imagedata['image'], self.settings['cutoffpercent']) return imagedata def acquireImage(self): im = calibrator.Calibrator.acquireImage(self) #im['image'] = ndimage.gaussian_filter(im['image'], 1.2) return im def matchMags(self, mags): # acquire first image at current state oldimagedata = self.acquireImage() self.findRegions(oldimagedata['image']) mrc.write(oldimagedata['image'], 'imref.mrc') stats = arraystats.all(oldimagedata['image']) shape = oldimagedata['image'].shape # determine limits to adjust exposure of other mags limitmax = 1.5 * stats['mean'] limitmin = 0.5 * stats['mean'] self.logger.info('image1 mean: %f, limits: %f-%f' % (stats['mean'], limitmin, limitmax)) ## iterate through mags runningresult = numpy.identity(3) for i,mag in enumerate(mags): self.instrument.tem.Magnification = mag self.pause() newimagedata = self.acquireWithinRange(limitmin, limitmax) self.findRegions(newimagedata['image']) mrc.write(newimagedata['image'], 'im%02d.mrc' % (i,)) minsize = self.settings['minsize'] maxsize = self.settings['maxsize'] self.logger.info('matchimages') result = self.matchImages(oldimagedata['image'], newimagedata['image'], minsize, maxsize) runningresult = numpy.dot(result, runningresult) self.logger.info('transforms') final_step = affine.transform(newimagedata['image'], result, shape) final_all = affine.transform(newimagedata['image'], runningresult, shape) self.logger.info('writing result mrcs') mrc.write(final_step, 'trans%02d.mrc' % (i,)) mrc.write(final_all, 'transall%02d.mrc' % (i,)) oldimagedata = newimagedata # self.getMagDiff(imagedata1, imagedata2, result) def getMagDiff(self, imdata1, imdata2, matrix): ccol = imdata1['camera']['dimension']['x'] / 2 - 0.5 crow = imdata1['camera']['dimension']['y'] / 2 - 0.5 center = numpy.array((ccol, crow, 1)) othercenter = numpy.dot(matrix, center) print 'OTHER', othercenter def matchImages(self, im1, im2, minsize, maxsize): result = libCVwrapper.MatchImages(im1, im2, minsize, maxsize, 0, 0, 1, 1) return result def findRegions(self, im): minsize = self.settings['minsize'] maxsize = self.settings['maxsize'] regions, image = libCVwrapper.FindRegions(im, minsize, maxsize, 0, 0, 1, 1) coords = map(self.regionCenter, regions) self.setTargets(coords, 'Peak') return regions def regionCenter(self, region): coord = region['regionEllipse'][:2] coord = coord[1], coord[0] return coord
{"hexsha": "0f3db2400c66e7de37287ddf9dc5f02ba0163950", "size": 8893, "ext": "py", "lang": "Python", "max_stars_repo_path": "leginon/magcalibrator.py", "max_stars_repo_name": "leschzinerlab/myami-3.2-freeHand", "max_stars_repo_head_hexsha": "974b8a48245222de0d9cfb0f433533487ecce60d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "leginon/magcalibrator.py", "max_issues_repo_name": "leschzinerlab/myami-3.2-freeHand", "max_issues_repo_head_hexsha": "974b8a48245222de0d9cfb0f433533487ecce60d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "leginon/magcalibrator.py", "max_forks_repo_name": "leschzinerlab/myami-3.2-freeHand", "max_forks_repo_head_hexsha": "974b8a48245222de0d9cfb0f433533487ecce60d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2019-09-05T20:58:37.000Z", "max_forks_repo_forks_event_max_datetime": "2019-09-05T20:58:37.000Z", "avg_line_length": 30.1457627119, "max_line_length": 149, "alphanum_fraction": 0.6996514112, "include": true, "reason": "import numpy,from scipy", "num_tokens": 2693}
function mori = parents(mori) % variants of an orientation relationship % % Syntax % % ori_parents = ori_child * inv(mori.parents) % % Input % mori - child to parent @orientation relationship % ori_child - child orientation % % Output % ori_parents - all possible parent @orientation % % Example % % parent symmetry % cs_fcc = crystalSymmetry('m-3m', [3.6599 3.6599 3.6599], 'mineral', 'Iron fcc'); % % % child symmetry % cs_bcc = crystalSymmetry('m-3m', [2.866 2.866 2.866], 'mineral', 'Iron bcc') % % % define a bcc child orientation % ori_bcc = orientation.goss(cs_bcc) % % % define Nishiyama Wassermann fcc to bcc orientation relation ship % NW = orientation.NishiyamaWassermann (cs_fcc,cs_bcc) % % % compute a fcc parent orientation related to the bcc child orientation % ori_fcc = ori_bcc * NW % % % compute all symmetrically possible parent orientations % ori_fcc = unique(ori_bcc.symmetrise * NW) % % % same using the function parents % ori_fcc2 = ori_bcc * NW.parents % % See also % orientation/variants % % store child symmetry CS_child = mori.SS; % symmetrise only with respect to child symmetry mori = CS_child * mori; % ignore all variants symmetrically equivalent % with respect to the parent symmetry mori.SS = crystalSymmetry('1'); mori = unique(mori); mori.SS = CS_child;
{"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@orientation/parents.m"}
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `openclsim` package.""" import pytest import simpy import shapely.geometry import logging import datetime import time import numpy as np import pandas as pd from click.testing import CliRunner from openclsim import core from openclsim import model from openclsim import cli logger = logging.getLogger(__name__) @pytest.fixture def env(): simulation_start = datetime.datetime(2019, 1, 1) my_env = simpy.Environment(initial_time=time.mktime(simulation_start.timetuple())) my_env.epoch = time.mktime(simulation_start.timetuple()) return my_env @pytest.fixture def geometry_a(): return shapely.geometry.Point(0, 0) @pytest.fixture def geometry_b(): return shapely.geometry.Point(1, 1) @pytest.fixture def locatable_a(geometry_a): return core.Locatable(geometry_a) @pytest.fixture def locatable_b(geometry_b): return core.Locatable(geometry_b) @pytest.fixture def weather_data(): df = pd.read_csv("tests/test_weather.csv") df.index = df[["Year", "Month", "Day", "Hour"]].apply( lambda s: datetime.datetime(*s), axis=1 ) df = df.drop(["Year", "Month", "Day", "Hour"], axis=1) return df # make a location with metocean data @pytest.fixture def LocationWeather(): return type( "Location with Metocean", ( core.Identifiable, # Give it a name core.Log, # Allow logging of all discrete events core.Locatable, # Add coordinates to extract distance information and visualize core.HasContainer, # Add information on the material available at the site core.HasResource, # Add information on serving equipment core.HasWeather, ), # Add information on metocean data {}, ) # make a location without metocean data @pytest.fixture def Location(): return type( "Location without Metocean", ( core.Identifiable, # Give it a name core.Log, # Allow logging of all discrete events core.Locatable, # Add coordinates to extract distance information and visualize core.HasContainer, # Add information on the material available at the site core.HasResource, ), # Add information on serving equipment {}, ) # make the processors @pytest.fixture def Processor(): return type( "Processor", ( core.Identifiable, core.Processor, core.LoadingFunction, core.UnloadingFunction, core.Log, core.Locatable, ), {}, ) # make the movers @pytest.fixture def Mover(): return type( "Mover", ( core.Identifiable, core.Movable, core.Log, core.HasResource, core.HasContainer, core.HasDepthRestriction, ), {}, ) # Test calculating restrictions def test_calc_restrictions( env, geometry_a, Mover, Processor, LocationWeather, weather_data ): # Initialize the Mover def compute_draught(draught_empty, draught_full): return lambda x: x * (draught_full - draught_empty) + draught_empty data = { "env": env, # The simpy environment "name": "Vessel", # Name "geometry": geometry_a, # Location "capacity": 7_200, # Capacity of the hopper - "Beunvolume" "v": 1, # Speed always 1 m/s "compute_draught": compute_draught(4.0, 7.0), # Variable draught "waves": [0.5, 1], # Waves with specific ukc "ukc": [0.75, 1], # UKC corresponding to the waves "filling": None, } # The filling degree mover = Mover(**data) mover.ActivityID = "Test activity" data = { "env": env, # The simpy environment "name": "Quay Crane", # Name "geometry": geometry_a, # It starts at the "from site" "loading_rate": 1, # Loading rate "unloading_rate": 1, } # Unloading rate crane = Processor(**data) crane.rate = crane.loading crane.ActivityID = "Test activity" # Initialize the LocationWeather data = { "env": env, # The simpy environment defined in the first cel "name": "Limited Location", # The name of the site "geometry": geometry_a, # Location "capacity": 500_000, # The capacity of the site "level": 500_000, # The actual volume of the site "dataframe": weather_data, # The dataframe containing the weather data "bed": -7, } # The level of the seabed with respect to CD location = LocationWeather(**data) # Test weather data at site # The bed level is at CD -7, the tide is at CD. thus the water depth is 7 meters assert location.metocean_data["Water depth"][0] == 7 # The timeseries start is equal to the simulation start assert location.metocean_data.index[0] == datetime.datetime.fromtimestamp(env.now) # Test calculated restrictions mover.calc_depth_restrictions(location, crane) assert mover.depth_data[location.name][0.5]["Volume"] == 3_600 assert mover.depth_data[location.name][0.5]["Draught"] == 5.5 # Test current draught of the mover (empty) assert mover.current_draught == 4.0 # Process an amount of 3_600 from the location into the mover # This takes 3_600 seconds and should be able to start right away start = env.now env.process(crane.process(site=location, ship=mover, desired_level=3_600)) env.run() np.testing.assert_almost_equal(env.now, start + 3_600) # Step forward to 18:00 def step_forward(env): yield env.timeout(17 * 3600) env.process(step_forward(env)) env.run() # Process an amount of 3_600 from the location into the mover # This takes 3_600 seconds and cannot start right away due to tide restrictions start = env.now assert datetime.datetime.fromtimestamp(env.now) == datetime.datetime(2019, 1, 1, 18) assert ( location.metocean_data["Water depth"][datetime.datetime(2019, 1, 1, 21)] == 6.5 ) assert mover.container.level / mover.container.capacity in list( mover.depth_data[location.name].keys() ) env.process(crane.process(ship=mover, site=location, desired_level=0)) env.run() # There should be 3 hours of waiting, 1 hour of processing, so time should be start + 4 hours np.testing.assert_almost_equal(env.now, start + 3_600 + 3 * 3_600) # Test optimal filling # Every 4th hour dredging not possible # sailing 2x 1 hour, dredging + dumping 1 hour, to get cycle with continous "optimal degree at 50%"
{"hexsha": "0ef6b76917f96e21da8e24fddc7dcb95a40df6f3", "size": 6682, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_depth_limitation.py", "max_stars_repo_name": "DreamEmulator/OpenCLSim", "max_stars_repo_head_hexsha": "3e35f8d8c308d6f55b8cc3b695603d755b1ee3d4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tests/test_depth_limitation.py", "max_issues_repo_name": "DreamEmulator/OpenCLSim", "max_issues_repo_head_hexsha": "3e35f8d8c308d6f55b8cc3b695603d755b1ee3d4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tests/test_depth_limitation.py", "max_forks_repo_name": "DreamEmulator/OpenCLSim", "max_forks_repo_head_hexsha": "3e35f8d8c308d6f55b8cc3b695603d755b1ee3d4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.3070175439, "max_line_length": 99, "alphanum_fraction": 0.6462137085, "include": true, "reason": "import numpy", "num_tokens": 1690}
import pandas import numpy as np from typing import List def read_blosum(fn): """ Read .txt encoded blosum matrix and return as dictionary of lists. :param fn: :return: Blosum embedding: keys are amino acids to embed and values are embedding as list (similarity ot other amino acids). """ blosum_tab = pandas.read_csv( filepath_or_buffer=fn, skiprows=2, header=0, delimiter=" ", skipinitialspace=True, index_col=0 ) return blosum_tab.to_dict(orient="list") def encode_as_blosum( x: List[str], blosum_embedding: dict ) -> np.ndarray: """ Embed amino acid sequences in BLOSUM space. Embedding: one dimension for distance to - each amino acid - end-of-sequence char The entries captured are: - each amino acid in dictionary - unobserved amino acids labelled as "*" - end of sequences positions which receive no penalty (value of zero in each dimension) - any element in an unobserved peptide: no penalty (value of zero in each dimension) :param x: Peptide sequences to encode. :param blosum_embedding: Blosum embedding: keys are amino acids to embed and values are embedding as list (similarity ot other amino acids). :return: Peptide sequences in embedding (observations, peptides, sequence positions, embedding dimensions). """ dim_obs = len(x) dim_chains = len(x[0]) dim_pos = np.max([np.max([len(xij) if xij is not None else 0 for xij in xi]) for xi in x]) + 1 # 1 padding dim_aa = len(next(iter(blosum_embedding.values()))) + 1 # Add end-of-sequence dimension to embedding. x_encoded = np.zeros([dim_obs, dim_chains, dim_pos, dim_aa]) for i, xi in enumerate(x): # Loop over observations. for j, xij in enumerate(xi): # Loop over peptides per observation. if xij is None: # Fill with end-of-sequence chars if peptide was not found. x_encoded[i, j, :, -1] = 1 else: for k, aa in enumerate(xij): # Loop over observed sequence positions. x_encoded[i, j, k, :-1] = blosum_embedding[aa] # Fill remaining positions as None. for k in np.arange(len(xij), dim_pos): # Loop over padded remaining sequence positions. x_encoded[i, j, k, -1] = 1 return x_encoded def encode_as_onehot( x: List[str], dict_aa: dict, eos_char: str ): """ Embed amino acid sequences in one-hot-encodeds space. Embedding: one dimension for distance to - each amino acid - unobserved amino acids ("*" entry in BLOSUM matrix) The entries captured are: - each amino acid in dictionary - end of sequences positions - any element in an unobserved peptide labeled as "#" :param x: Peptide sequences to encode. :param dict_aa: Index of each encoded element in categorical embedding. :param eos_char: End-of-sequence char. :return: Peptide sequences in embedding (observations, peptides, sequence positions, embedding dimensions). """ dim_obs = len(x) dim_chains = len(x[0]) dim_pos = np.max([np.max([len(xij) if xij is not None else 0 for xij in xi]) for xi in x]) + 1 # 1 padding dim_aa = len(dict_aa) x_encoded = np.zeros([dim_obs, dim_chains, dim_pos, dim_aa]) for i, xi in enumerate(x): # Loop over observations. for j, xij in enumerate(xi): # Loop over peptides per observation. if xij is None: # Write missing string if peptide was not found. pass else: for k, aa in enumerate(xij): # Loop over observed sequence positions. x_encoded[i, j, k, dict_aa[aa]] = 1 # Fill remaining positions as None. for k in np.arange(len(xij), dim_pos): # Loop over padded remaining sequence positions. x_encoded[i, j, k, dict_aa[eos_char]] = 1 return x_encoded
{"hexsha": "6a764feeb0b92483900469caa8d9c56ff956ea66", "size": 4040, "ext": "py", "lang": "Python", "max_stars_repo_path": "tcellmatch/utils/utils_aa_embedding.py", "max_stars_repo_name": "theislab/tcellmatch", "max_stars_repo_head_hexsha": "ddd344e44147f97f35d6a4e7c3c7677981fd177e", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 25, "max_stars_repo_stars_event_min_datetime": "2019-08-14T22:39:40.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-02T15:42:35.000Z", "max_issues_repo_path": "tcellmatch/utils/utils_aa_embedding.py", "max_issues_repo_name": "theislab/tcellmatch", "max_issues_repo_head_hexsha": "ddd344e44147f97f35d6a4e7c3c7677981fd177e", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2021-07-13T23:40:14.000Z", "max_issues_repo_issues_event_max_datetime": "2021-12-18T10:08:37.000Z", "max_forks_repo_path": "tcellmatch/utils/utils_aa_embedding.py", "max_forks_repo_name": "theislab/tcellmatch", "max_forks_repo_head_hexsha": "ddd344e44147f97f35d6a4e7c3c7677981fd177e", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2020-02-21T20:43:41.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-21T14:38:58.000Z", "avg_line_length": 38.4761904762, "max_line_length": 111, "alphanum_fraction": 0.6321782178, "include": true, "reason": "import numpy", "num_tokens": 989}
import unittest import tensorflow.contrib.keras as keras import numpy as np from vixstructure.models import term_structure_to_spread_price, term_structure_to_spread_price_v2 from vixstructure.models import term_structure_to_single_spread_price from vixstructure.models import mask_output from vixstructure.data import LongPricesDataset class TestModels(unittest.TestCase): def setUp(self): self.dataset = LongPricesDataset("../../data/8_m_settle.csv", "../../data/expirations.csv") def test_term_structure_to_spread_price(self): model = term_structure_to_spread_price(5, 9) self.assertEqual(len(model.layers), 7) def test_mask_output_function_for_lambda_layers(self): input = keras.layers.Input(shape=(9,)) output = keras.layers.Lambda(mask_output)(input) model = keras.models.Model(inputs=input, outputs=output) x, y = self.dataset.dataset() preds = model.predict(x) self.assertEqual(preds.shape, (2655, 6)) self.assertEqual(np.all(preds, axis=0).sum(), 5) self.assertEqual(np.all(preds, axis=1).sum(), 2529) self.assertEqual((preds == 0.).sum(), 126) def test_term_structure_to_spread_prices_v2(self): model = term_structure_to_spread_price_v2(5, 9) x, y = self.dataset.dataset() preds = model.predict(x) self.assertEqual(preds.shape, (2655, 6)) self.assertEqual(np.all(preds, axis=0).sum(), 5) self.assertEqual(np.all(preds, axis=1).sum(), 2529) def test_term_structure_to_single_spread_price(self): """Just test model construction.""" model = term_structure_to_single_spread_price(5, 9) self.assertEqual([layer.output_shape[1] for layer in model.layers], [8, 9, 9, 9, 9, 9, 1]) for distribution in (layer.kernel_initializer.distribution for layer in model.layers if isinstance(layer, keras.layers.Dense)): self.assertEqual(distribution, "uniform") model_reduced_widths = term_structure_to_single_spread_price(5, 9, reduce_width=True) self.assertEqual([layer.output_shape[1] for layer in model_reduced_widths.layers], [8, 9, 7, 6, 4, 3, 1]) for distribution in (layer.kernel_initializer.distribution for layer in model_reduced_widths.layers if isinstance(layer, keras.layers.Dense)): self.assertEqual(distribution, "uniform") def test_term_structure_to_single_spread_price_with_selu(self): model = term_structure_to_single_spread_price(5, 9, activation_function="selu") self.assertEqual([layer.output_shape[1] for layer in model.layers], [8, 9, 9, 9, 9, 9, 1]) vars = [np.square(layer.kernel_initializer.stddev) for layer in model.layers if isinstance(layer, keras.layers.Dense)] self.assertAlmostEqual(1 / vars[0], 8 / 2) for fst, snd in zip(vars[1:], [9, 9, 9, 9, 9]): self.assertAlmostEqual(1 / fst, snd) model_reduced_widths = term_structure_to_single_spread_price(5, 9, reduce_width=True, activation_function="selu") self.assertEqual([layer.output_shape[1] for layer in model_reduced_widths.layers], [8, 9, 7, 6, 4, 3, 1]) vars_reduced_widths = [np.square(layer.kernel_initializer.stddev) for layer in model_reduced_widths.layers if isinstance(layer, keras.layers.Dense)] self.assertAlmostEqual(1 / vars[0], 8 / 2) for fst, snd in zip(vars_reduced_widths[1:], [9, 7, 6, 4, 3]): self.assertAlmostEqual(1 / fst, snd) if __name__ == '__main__': unittest.main()
{"hexsha": "6b1cbcc8a1c0139dd58c60d7e250b8fee03a3228", "size": 3638, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_vixstructure/test_models.py", "max_stars_repo_name": "leyhline/vix-term-structure", "max_stars_repo_head_hexsha": "b00ad5025bc68280a21e58cecbf5944aee03da97", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2017-08-17T10:54:54.000Z", "max_stars_repo_stars_event_max_datetime": "2021-03-07T16:02:33.000Z", "max_issues_repo_path": "tests/test_vixstructure/test_models.py", "max_issues_repo_name": "leyhline/vix-term-structure", "max_issues_repo_head_hexsha": "b00ad5025bc68280a21e58cecbf5944aee03da97", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tests/test_vixstructure/test_models.py", "max_forks_repo_name": "leyhline/vix-term-structure", "max_forks_repo_head_hexsha": "b00ad5025bc68280a21e58cecbf5944aee03da97", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2019-02-22T00:46:45.000Z", "max_forks_repo_forks_event_max_datetime": "2021-02-15T19:29:43.000Z", "avg_line_length": 51.2394366197, "max_line_length": 121, "alphanum_fraction": 0.6822429907, "include": true, "reason": "import numpy", "num_tokens": 896}
import gdspy import numpy as np from ..core.entity import gen_name from ..utils import Vector, parse_entry, val TOLERANCE = 1e-9 # for arcs print("gdspy_version : ", gdspy.__version__) class GdsModeler: gds_object_instances = {} gds_cells = {} dict_units = {"km": 1.0e3, "m": 1.0, "cm": 1.0e-2, "mm": 1.0e-3} # coor_systems = {'Global':[[0,0,0],[1,0]]} # coor_system = coor_systems['Global'] def __init__(self, unit=1.0e-6, precision=1.0e-9): self.unit = unit self.precision = precision gdspy.current_library = gdspy.GdsLibrary() @classmethod def print_instances(cls): for instance_name in cls.gds_object_instances: print(instance_name) def reset_cell(self): del self.cell def create_coor_sys(self, coor_sys="chip", rel_coor=None, ref_name="Global"): # this creates a cell, should not care about the rel_coor if not (coor_sys in gdspy.current_library.cells.keys()): cell = gdspy.Cell(coor_sys) self.gds_cells[coor_sys] = cell else: cell = self.gds_cells[coor_sys] # active cell should be the new cell self.cell = cell def set_coor_sys(self, coor_sys): if coor_sys in self.gds_cells.keys(): self.cell = self.gds_cells[coor_sys] else: raise ValueError("%s cell do not exist" % coor_sys) def copy(self, entity): new_polygon = gdspy.copy(self.gds_object_instances[entity.name], 0, 0) new_name = gen_name(entity.name) self.gds_object_instances[new_name] = new_polygon self.cell.add(new_polygon) def rename(self, entity, name): obj = self.gds_object_instances.pop(entity.name) self.gds_object_instances[name] = obj def generate_gds(self, file, max_points): for instance in self.gds_object_instances.keys(): obj = self.gds_object_instances[instance] if isinstance(obj, gdspy.Polygon) or isinstance(obj, gdspy.PolygonSet): self.gds_object_instances[instance] = obj.fracture( max_points=max_points, precision=1e-9 ) for cell_name in self.gds_cells.keys(): filename = file + "_%s.gds" % cell_name gdspy.write_gds(filename, cells=[cell_name], unit=1.0, precision=1e-9) def get_vertices(self, entity): polygon = self.gds_object_instances[entity.name] return polygon.polygons[0] def set_units(self, units="m"): self.unit = self.dict_units[units] def box(self, pos, size, **kwargs): pass def box_center(self, pos, size, **kwargs): pass def polyline(self, points, closed, **kwargs): # TODO sace of open path # size is the thickness of the polyline for gds, must be a 2D-list with idential elements name = kwargs["name"] layer = kwargs["layer"] points = parse_entry(points) # TODO, this is a dirty fixe cause of Vector3D points_2D = [] for point in points: points_2D.append([point[0], point[1]]) if closed: poly1 = gdspy.Polygon(points_2D, layer=layer) else: poly1 = gdspy.FlexPath(points_2D, 1e-9, layer=layer) self.gds_object_instances[name] = poly1 self.cell.add(poly1) def rect(self, pos, size, **kwargs): pos, size = parse_entry(pos, size) name = kwargs["name"] layer = kwargs["layer"] # This function neglects the z coordinate points = [ (pos[0], pos[1]), (pos[0] + size[0], pos[1] + 0), (pos[0] + size[0], pos[1] + size[1]), (pos[0], pos[1] + size[1]), ] poly1 = gdspy.Polygon(points, layer) self.gds_object_instances[name] = poly1 self.cell.add(poly1) def text(self, pos, size, text, angle, horizontal, **kwargs): pos, size = parse_entry(pos, size) name = kwargs["name"] layer = kwargs["layer"] poly1 = gdspy.Text(text, size, pos, horizontal=horizontal, angle=angle, layer=layer) self.gds_object_instances[name] = poly1 self.cell.add(poly1) def rect_center(self, pos, size, **kwargs): pos, size = parse_entry(pos, size) corner_pos = [val(p) - val(s) / 2 for p, s in zip(pos, size)] self.rect(corner_pos, size, **kwargs) def cylinder(self, pos, radius, height, axis, **kwargs): pass def disk(self, pos, radius, axis, number_of_points=None, **kwargs): pos, radius = parse_entry(pos, radius) name = kwargs["name"] layer = kwargs["layer"] assert axis == "Z", "axis must be 'Z' for the gdsModeler" round1 = gdspy.Round( (pos[0], pos[1]), radius, layer=layer, tolerance=TOLERANCE, number_of_points=number_of_points, ) self.gds_object_instances[name] = round1 self.cell.add(round1) def wirebond(self, pos, ori, ymax, ymin, height="0.1mm", **kwargs): # ori should be normed bond_diam = "20um" pos, ori, ymax, ymin, heigth, bond_diam = parse_entry( (pos, ori, ymax, ymin, height, bond_diam) ) bond1 = pos + ori.orth() * (ymax + 2 * bond_diam) bond2 = pos + ori.orth() * (ymin - 2 * bond_diam) self.disk( bond1, bond_diam / 2, "Z", layer=kwargs["layer"], name=kwargs["name"] + "a", number_of_points=6, ) self.disk( bond2, bond_diam / 2, "Z", layer=kwargs["layer"], name=kwargs["name"] + "b", number_of_points=6, ) def path(self, points, port, fillet, name="", corner="circular bend"): # TODO, this is a dirty fixe cause of Vector3D points_2D = [] for point in points: points_2D.append([point[0], point[1]]) # use dummy layers to recover the right elements layers = [ii for ii in range(len(port.widths))] cable = gdspy.FlexPath( points_2D, port.widths, offset=port.offsets, corners=corner, bend_radius=fillet, gdsii_path=False, tolerance=TOLERANCE, layer=layers, max_points=0, ) # tolerance (meter) is highly important here should be smaller than the smallest dim typ. 100nm polygons = cable.get_polygons() names = [] layers = [] for ii in range(len(polygons)): poly = gdspy.Polygon(polygons[ii]) poly.layers = [port.layers[ii]] current_name = name + "_" + port.subnames[ii] names.append(current_name) layers.append(port.layers[ii]) self.gds_object_instances[current_name] = poly self.cell.add(poly) return names, layers def connect_faces(self, entity1, entity2): pass def delete(self, entity): self.cell.polygons.remove(self.gds_object_instances[entity.name]) self.gds_object_instances.pop(entity.name) def rename_entity(self, entity, name): polygon = self.gds_object_instances.pop(entity.name) self.gds_object_instances[name] = polygon def unite(self, entities, keep_originals=True): blank_entity = entities.pop(0) blank_polygon = self.gds_object_instances.pop(blank_entity.name) self.cell = self.gds_cells[blank_entity.body.name] self.cell.polygons.remove(blank_polygon) tool_polygons = [] for tool_entity in entities: tool_polygon = self.gds_object_instances[tool_entity.name] if isinstance(tool_polygon, gdspy.PolygonSet): for polygon in tool_polygon.polygons: tool_polygons.append(polygon) else: tool_polygons.append(tool_polygon) # 2 unite operation tool_polygon_set = gdspy.PolygonSet(tool_polygons, layer=blank_entity.layer) united = gdspy.boolean( blank_polygon, tool_polygon_set, "or", precision=TOLERANCE, max_points=0, layer=blank_entity.layer, ) self.gds_object_instances[blank_entity.name] = united self.cell.add(united) return blank_entity def intersect(self, entities): raise NotImplementedError() def subtract(self, blank_entities, tool_entities, keep_originals=True): if isinstance(blank_entities, list): for blank_entity in blank_entities: self.subtract(blank_entity, tool_entities, keep_originals=keep_originals) else: blank_entity = blank_entities # 1 We clear the cell of all elements and create lists to store the polygons blank_polygon = self.gds_object_instances.pop(blank_entity.name) self.cell = self.gds_cells[ blank_entity.body.name ] # assumes blank and tool are in same body self.cell.polygons.remove(blank_polygon) tool_polygons = [] for tool_entity in tool_entities: tool_polygon = self.gds_object_instances[tool_entity.name] if isinstance(tool_polygon, gdspy.PolygonSet): for polygon in tool_polygon.polygons: tool_polygons.append(polygon) else: tool_polygons.append(tool_polygon) # 2 subtract operation tool_polygon_set = gdspy.PolygonSet(tool_polygons, layer=blank_entity.layer) subtracted = gdspy.boolean( blank_polygon, tool_polygon_set, "not", precision=TOLERANCE, max_points=0, layer=blank_entity.layer, ) if subtracted is not None: # 3 At last we update the cell and the gds_object_instance self.gds_object_instances[blank_entity.name] = subtracted self.cell.add(subtracted) else: print( "Warning: the entity %s was fully \ subtracted" % blank_entity.name ) dummy = gdspy.Polygon([[0, 0]]) self.gds_object_instances[blank_entity.name] = dummy self.cell.add(dummy) blank_entity.delete() def assign_material(self, *args, **kwargs): pass def assign_perfect_E(self, entity, name=None): pass def assign_impedance(self, entities, ResistanceSq, ReactanceSq, name="impedance"): pass def assign_perfect_E_faces(self, entity): pass def assign_mesh_length(self, entity, length): # , suff = '_mesh'): pass def assign_lumped_rlc(self, entity, r, l, c, start, end, name="RLC"): pass def assign_waveport(self, *args, **kwargs): pass def assign_terminal_auto(self, *args, **kwargs): pass def create_object_from_face(self, name): pass def fillet(self, entity, radius, vertex_indices=None): polygon = self.gds_object_instances[entity.name] if vertex_indices is None: polygon.fillet(radius, max_points=0) else: vertices_number = len(polygon.polygons[0]) radii = [0] * vertices_number for rad, indices in zip(radius, vertex_indices): for index in indices: radii[index] = rad polygon.fillet([radii], max_points=0, precision=TOLERANCE) def get_vertex_ids(self, entity): return None def sweep_along_vector(self, names, vector): self._modeler.SweepAlongVector( self._selections_array(*names), [ "NAME:VectorSweepParameters", "DraftAngle:=", "0deg", "DraftType:=", "Round", "CheckFaceFaceIntersection:=", False, "SweepVectorX:=", vector[0], "SweepVectorY:=", vector[1], "SweepVectorZ:=", vector[2], ], ) def thicken_sheet(self, sheet, thickness, bothsides=False): self._modeler.ThickenSheet( ["NAME:Selections", "Selections:=", sheet, "NewPartsModelFlag:=", "Model"], [ "NAME:SheetThickenParameters", "Thickness:=", thickness, "BothSides:=", bothsides, ], ) def mirrorZ(self, entity): pass def translate(self, entities, vector): """vector is 3-dimentional but with a z=0 component""" if not isinstance(entities, list): entities = [entities] translation_vector = [vector[0], vector[1]] for entity in entities: # if entity!=None: gds_entity = self.gds_object_instances[entity.name] gds_entity.translate(*translation_vector) def rotate(self, entities, angle, center=None): if center is None: center = (0, 0) if not isinstance(entities, list): entities = [entities] for entity in entities: # if entity!=None: gds_entity = self.gds_object_instances[entity.name] gds_entity.rotate(angle / 360 * 2 * np.pi, center=(val(center[0]), val(center[1]))) def rect_array(self, pos, size, columns, rows, spacing, origin=(0, 0), **kwargs): pos, size = parse_entry(pos, size) name = kwargs["name"] layer = kwargs["layer"] points = [ (pos[0], pos[1]), (pos[0] + size[0], pos[1] + 0), (pos[0] + size[0], pos[1] + size[1]), (pos[0], pos[1] + size[1]), ] poly1 = gdspy.Polygon(points, layer) self.gds_object_instances[name] = poly1 cell_to_copy = gdspy.Cell("cell_to_copy") self.gds_cells["cell_to_copy"] = cell_to_copy cell_to_copy.add(poly1) spacing = parse_entry(spacing) cell_array = gdspy.CellArray(cell_to_copy, columns, rows, spacing, origin) polygon_list = cell_array.get_polygons() poly2 = gdspy.PolygonSet(polygon_list, layer) self.cell.add(poly2) self.gds_object_instances[name] = poly2
{"hexsha": "d5e5e6d99fadc5c11d4a2fc801b3719c392305b0", "size": 14596, "ext": "py", "lang": "Python", "max_stars_repo_path": "HFSSdrawpyC12/interfaces/gds_modeler.py", "max_stars_repo_name": "c12qe/HFSSdrawpy", "max_stars_repo_head_hexsha": "ef0d7218fdfe0a9d868deb83f8b50907e99ebd37", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "HFSSdrawpyC12/interfaces/gds_modeler.py", "max_issues_repo_name": "c12qe/HFSSdrawpy", "max_issues_repo_head_hexsha": "ef0d7218fdfe0a9d868deb83f8b50907e99ebd37", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "HFSSdrawpyC12/interfaces/gds_modeler.py", "max_forks_repo_name": "c12qe/HFSSdrawpy", "max_forks_repo_head_hexsha": "ef0d7218fdfe0a9d868deb83f8b50907e99ebd37", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.1028037383, "max_line_length": 106, "alphanum_fraction": 0.5731707317, "include": true, "reason": "import numpy", "num_tokens": 3458}
SUBROUTINE POLATEV2(IPOPT,IGDTNUMI,IGDTMPLI,IGDTLENI, & IGDTNUMO,IGDTMPLO,IGDTLENO, & MI,MO,KM,IBI,LI,UI,VI, & NO,RLAT,RLON,CROT,SROT,IBO,LO,UO,VO,IRET) !$$$ SUBPROGRAM DOCUMENTATION BLOCK ! ! $Revision: 74685 $ ! ! SUBPROGRAM: POLATEV2 INTERPOLATE VECTOR FIELDS (NEIGHBOR) ! PRGMMR: IREDELL ORG: W/NMC23 DATE: 96-04-10 ! ! ABSTRACT: THIS SUBPROGRAM PERFORMS NEIGHBOR INTERPOLATION ! FROM ANY GRID TO ANY GRID FOR VECTOR FIELDS. ! OPTIONS ALLOW CHOOSING THE WIDTH OF THE GRID SQUARE ! (IPOPT(1)) TO SEARCH FOR VALID DATA, WHICH DEFAULTS TO 1 ! (IF IPOPT(1)=-1). ODD WIDTH SQUARES ARE CENTERED ON ! THE NEAREST INPUT GRID POINT; EVEN WIDTH SQUARES ARE ! CENTERED ON THE NEAREST FOUR INPUT GRID POINTS. ! SQUARES ARE SEARCHED FOR VALID DATA IN A SPIRAL PATTERN ! STARTING FROM THE CENTER. NO SEARCHING IS DONE WHERE ! THE OUTPUT GRID IS OUTSIDE THE INPUT GRID. ! ONLY HORIZONTAL INTERPOLATION IS PERFORMED. ! ! THE INPUT AND OUTPUT GRIDS ARE DEFINED BY THEIR GRIB 2 GRID ! DEFINITION TEMPLATE AS DECODED BY THE NCEP G2 LIBRARY. THE ! CODE RECOGNIZES THE FOLLOWING PROJECTIONS, WHERE ! "IGDTNUMI/O" IS THE GRIB 2 GRID DEFINTION TEMPLATE NUMBER ! FOR THE INPUT AND OUTPUT GRIDS, RESPECTIVELY: ! (IGDTNUMI/O=00) EQUIDISTANT CYLINDRICAL ! (IGDTNUMI/O=01) ROTATED EQUIDISTANT CYLINDRICAL. "E" AND ! NON-"E" STAGGERED ! (IGDTNUMI/O=10) MERCATOR CYLINDRICAL ! (IGDTNUMI/O=20) POLAR STEREOGRAPHIC AZIMUTHAL ! (IGDTNUMI/O=30) LAMBERT CONFORMAL CONICAL ! (IGDTNUMI/O=40) GAUSSIAN CYLINDRICAL ! ! THE INPUT AND OUTPUT VECTORS ARE ROTATED SO THAT THEY ARE ! EITHER RESOLVED RELATIVE TO THE DEFINED GRID ! IN THE DIRECTION OF INCREASING X AND Y COORDINATES ! OR RESOLVED RELATIVE TO EASTERLY AND NORTHERLY DIRECTIONS, ! AS DESIGNATED BY THEIR RESPECTIVE GRID DEFINITION SECTIONS. ! ! AS AN ADDED BONUS THE NUMBER OF OUTPUT GRID POINTS ! AND THEIR LATITUDES AND LONGITUDES ARE ALSO RETURNED ! ALONG WITH THEIR VECTOR ROTATION PARAMETERS. ! ON THE OTHER HAND, THE OUTPUT CAN BE A SET OF STATION POINTS ! IF IGDTNUMO<0, IN WHICH CASE THE NUMBER OF POINTS ! AND THEIR LATITUDES AND LONGITUDES MUST BE INPUT ! ALONG WITH THEIR VECTOR ROTATION PARAMETERS. ! ! INPUT BITMAPS WILL BE INTERPOLATED TO OUTPUT BITMAPS. ! OUTPUT BITMAPS WILL ALSO BE CREATED WHEN THE OUTPUT GRID ! EXTENDS OUTSIDE OF THE DOMAIN OF THE INPUT GRID. ! THE OUTPUT FIELD IS SET TO 0 WHERE THE OUTPUT BITMAP IS OFF. ! ! PROGRAM HISTORY LOG: ! 96-04-10 IREDELL ! 1999-04-08 IREDELL SPLIT IJKGDS INTO TWO PIECES ! 2001-06-18 IREDELL INCLUDE SPIRAL SEARCH OPTION ! 2002-01-17 IREDELL SAVE DATA FROM LAST CALL FOR OPTIMIZATION ! 2006-01-04 GAYNO MINOR BUG FIX ! 2007-10-30 IREDELL SAVE WEIGHTS AND THREAD FOR PERFORMANCE ! 2012-06-26 GAYNO FIX OUT-OF-BOUNDS ERROR. SEE NCEPLIBS ! TICKET #9. ! 2015-01-27 GAYNO REPLACE CALLS TO GDSWIZ WITH NEW MERGED ! ROUTINE GDSWZD. ! 2015-07-13 GAYNO CONVERT TO GRIB 2. REPLACE GRIB 1 KGDS ARRAYS ! WITH GRIB 2 GRID DEFINITION TEMPLATE ARRAYS. ! ! USAGE: CALL POLATEV2(IPOPT,IGDTNUMI,IGDTMPLI,IGDTLENI, & ! IGDTNUMO,IGDTMPLO,IGDTLENO, & ! MI,MO,KM,IBI,LI,UI,VI, & ! NO,RLAT,RLON,CROT,SROT,IBO,LO,UO,VO,IRET) ! ! INPUT ARGUMENT LIST: ! IPOPT - INTEGER (20) INTERPOLATION OPTIONS ! IPOPT(1) IS WIDTH OF SQUARE TO EXAMINE IN SPIRAL SEARCH ! (DEFAULTS TO 1 IF IPOPT(1)=-1) ! IGDTNUMI - INTEGER GRID DEFINITION TEMPLATE NUMBER - INPUT GRID. ! CORRESPONDS TO THE GFLD%IGDTNUM COMPONENT OF THE ! NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE: ! 00 - EQUIDISTANT CYLINDRICAL ! 01 - ROTATED EQUIDISTANT CYLINDRICAL. "E" ! AND NON-"E" STAGGERED ! 10 - MERCATOR CYCLINDRICAL ! 20 - POLAR STEREOGRAPHIC AZIMUTHAL ! 30 - LAMBERT CONFORMAL CONICAL ! 40 - GAUSSIAN EQUIDISTANT CYCLINDRICAL ! IGDTMPLI - INTEGER (IGDTLENI) GRID DEFINITION TEMPLATE ARRAY - ! INPUT GRID. CORRESPONDS TO THE GFLD%IGDTMPL COMPONENT ! OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE ! (SECTION 3 INFO). SEE COMMENTS IN ROUTINE ! IPOLATEV FOR COMPLETE DEFINITION. ! IGDTLENI - INTEGER NUMBER OF ELEMENTS OF THE GRID DEFINITION ! TEMPLATE ARRAY - INPUT GRID. CORRESPONDS TO THE GFLD%IGDTLEN ! COMPONENT OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! IGDTNUMO - INTEGER GRID DEFINITION TEMPLATE NUMBER - OUTPUT GRID. ! CORRESPONDS TO THE GFLD%IGDTNUM COMPONENT OF THE ! NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. IGDTNUMO<0 ! MEANS INTERPOLATE TO RANDOM STATION POINTS. ! OTHERWISE, SAME DEFINITION AS "IGDTNUMI". ! IGDTMPLO - INTEGER (IGDTLENO) GRID DEFINITION TEMPLATE ARRAY - ! OUTPUT GRID. CORRESPONDS TO THE GFLD%IGDTMPL COMPONENT ! OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! (SECTION 3 INFO). SEE COMMENTS IN ROUTINE ! IPOLATEV FOR COMPLETE DEFINITION. ! IGDTLENO - INTEGER NUMBER OF ELEMENTS OF THE GRID DEFINITION ! TEMPLATE ARRAY - OUTPUT GRID. CORRESPONDS TO THE GFLD%IGDTLEN ! COMPONENT OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! MI - INTEGER SKIP NUMBER BETWEEN INPUT GRID FIELDS IF KM>1 ! OR DIMENSION OF INPUT GRID FIELDS IF KM=1 ! MO - INTEGER SKIP NUMBER BETWEEN OUTPUT GRID FIELDS IF KM>1 ! OR DIMENSION OF OUTPUT GRID FIELDS IF KM=1 ! KM - INTEGER NUMBER OF FIELDS TO INTERPOLATE ! IBI - INTEGER (KM) INPUT BITMAP FLAGS ! LI - LOGICAL*1 (MI,KM) INPUT BITMAPS (IF SOME IBI(K)=1) ! UI - REAL (MI,KM) INPUT U-COMPONENT FIELDS TO INTERPOLATE ! VI - REAL (MI,KM) INPUT V-COMPONENT FIELDS TO INTERPOLATE ! RLAT - REAL (MO) OUTPUT LATITUDES IN DEGREES (IF IGDTNUMO<0) ! RLON - REAL (MO) OUTPUT LONGITUDES IN DEGREES (IF IGDTNUMO<0) ! CROT - REAL (MO) VECTOR ROTATION COSINES (IF IGDTNUMO<0) ! SROT - REAL (MO) VECTOR ROTATION SINES (IF IGDTNUMO<0) ! (UGRID=CROT*UEARTH-SROT*VEARTH; ! VGRID=SROT*UEARTH+CROT*VEARTH) ! ! OUTPUT ARGUMENT LIST: ! NO - INTEGER NUMBER OF OUTPUT POINTS (ONLY IF IGDTNUMO>=0) ! RLAT - REAL (MO) OUTPUT LATITUDES IN DEGREES (IF IGDTNUMO>=0) ! RLON - REAL (MO) OUTPUT LONGITUDES IN DEGREES (IF IGDTNUMO>=0) ! CROT - REAL (NO) VECTOR ROTATION COSINES (IF IGDTNUMO>=0) ! SROT - REAL (NO) VECTOR ROTATION SINES (IF IGDTNUMO>=0) ! (UGRID=CROT*UEARTH-SROT*VEARTH; ! VGRID=SROT*UEARTH+CROT*VEARTH) ! IBO - INTEGER (KM) OUTPUT BITMAP FLAGS ! LO - LOGICAL*1 (MO,KM) OUTPUT BITMAPS (ALWAYS OUTPUT) ! UO - REAL (MO,KM) OUTPUT U-COMPONENT FIELDS INTERPOLATED ! VO - REAL (MO,KM) OUTPUT V-COMPONENT FIELDS INTERPOLATED ! IRET - INTEGER RETURN CODE ! 0 SUCCESSFUL INTERPOLATION ! 2 UNRECOGNIZED INPUT GRID OR NO GRID OVERLAP ! 3 UNRECOGNIZED OUTPUT GRID ! ! SUBPROGRAMS CALLED: ! CHECK_GRIDS2V CHECK IF INPUT OR OUTPUT GRIDS HAVE CHANGED ! GDSWZD GRID DESCRIPTION SECTION WIZARD ! IJKGDS0 SET UP PARAMETERS FOR IJKGDS1 ! IJKGDS1 RETURN FIELD POSITION FOR A GIVEN GRID POINT ! MOVECT MOVE A VECTOR ALONG A GREAT CIRCLE ! POLFIXV MAKE MULTIPLE POLE VECTOR VALUES CONSISTENT ! ! ATTRIBUTES: ! LANGUAGE: FORTRAN 90 ! !$$$ ! USE GDSWZD_MOD ! IMPLICIT NONE ! INTEGER, INTENT(IN ) :: IPOPT(20) INTEGER, INTENT(IN ) :: IGDTNUMI, IGDTLENI INTEGER, INTENT(IN ) :: IGDTMPLI(IGDTLENI) INTEGER, INTENT(IN ) :: IGDTNUMO, IGDTLENO INTEGER, INTENT(IN ) :: IGDTMPLO(IGDTLENO) INTEGER, INTENT(IN ) :: IBI(KM),MI,MO,KM INTEGER, INTENT(INOUT) :: NO INTEGER, INTENT( OUT) :: IRET, IBO(KM) ! LOGICAL*1, INTENT(IN ) :: LI(MI,KM) LOGICAL*1, INTENT( OUT) :: LO(MO,KM) ! REAL, INTENT(IN ) :: UI(MI,KM),VI(MI,KM) REAL, INTENT(INOUT) :: CROT(MO),SROT(MO) REAL, INTENT(INOUT) :: RLAT(MO),RLON(MO) REAL, INTENT( OUT) :: UO(MO,KM),VO(MO,KM) ! REAL, PARAMETER :: FILL=-9999. ! INTEGER :: IJKGDSA(20) INTEGER :: I1,J1,IXS,JXS,MX INTEGER :: KXS,KXT,IX,JX,NX INTEGER :: MSPIRAL,N,K,NK,NV,IJKGDS1 INTEGER, SAVE :: NOX=-1,IRETX=-1 INTEGER, ALLOCATABLE, SAVE :: NXY(:) ! LOGICAL :: SAME_GRIDI, SAME_GRIDO ! REAL :: CX,SX,CM,SM,UROT,VROT REAL :: XPTS(MO),YPTS(MO) REAL :: CROI(MI),SROI(MI) REAL :: XPTI(MI),YPTI(MI),RLOI(MI),RLAI(MI) REAL, ALLOCATABLE, SAVE :: RLATX(:),RLONX(:),XPTSX(:),YPTSX(:) REAL, ALLOCATABLE, SAVE :: CROTX(:),SROTX(:),CXY(:),SXY(:) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! SET PARAMETERS IRET=0 MSPIRAL=MAX(IPOPT(1),1) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CALL CHECK_GRIDS2V(IGDTNUMI,IGDTMPLI,IGDTLENI, & IGDTNUMO,IGDTMPLO,IGDTLENO, & SAME_GRIDI,SAME_GRIDO) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! SAVE OR SKIP WEIGHT COMPUTATION IF(IRET.EQ.0.AND.(IGDTNUMO.LT.0.OR..NOT.SAME_GRIDI.OR..NOT.SAME_GRIDO))THEN ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! COMPUTE NUMBER OF OUTPUT POINTS AND THEIR LATITUDES AND LONGITUDES. IF(IGDTNUMO.GE.0) THEN CALL GDSWZD(IGDTNUMO,IGDTMPLO,IGDTLENO, 0,MO,FILL,XPTS,YPTS,RLON,RLAT, & NO,CROT,SROT) IF(NO.EQ.0) IRET=3 ENDIF ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! LOCATE INPUT POINTS CALL GDSWZD(IGDTNUMI,IGDTMPLI,IGDTLENI,-1,NO,FILL,XPTS,YPTS,RLON,RLAT,NV) IF(IRET.EQ.0.AND.NV.EQ.0) IRET=2 CALL GDSWZD(IGDTNUMI,IGDTMPLI,IGDTLENI, 0,MI,FILL,XPTI,YPTI,RLOI,RLAI, & NV,CROI,SROI) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! ALLOCATE AND SAVE GRID DATA IF(NOX.NE.NO) THEN IF(NOX.GE.0) DEALLOCATE(RLATX,RLONX,XPTSX,YPTSX,CROTX,SROTX,NXY,CXY,SXY) ALLOCATE(RLATX(NO),RLONX(NO),XPTSX(NO),YPTSX(NO), & CROTX(NO),SROTX(NO),NXY(NO),CXY(NO),SXY(NO)) NOX=NO ENDIF IRETX=IRET ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! COMPUTE WEIGHTS IF(IRET.EQ.0) THEN CALL IJKGDS0(IGDTNUMI,IGDTMPLI,IGDTLENI,IJKGDSA) !$OMP PARALLEL DO PRIVATE(N,CM,SM) SCHEDULE(STATIC) DO N=1,NO RLONX(N)=RLON(N) RLATX(N)=RLAT(N) XPTSX(N)=XPTS(N) YPTSX(N)=YPTS(N) CROTX(N)=CROT(N) SROTX(N)=SROT(N) IF(XPTS(N).NE.FILL.AND.YPTS(N).NE.FILL) THEN NXY(N)=IJKGDS1(NINT(XPTS(N)),NINT(YPTS(N)),IJKGDSA) IF(NXY(N).GT.0) THEN CALL MOVECT(RLAI(NXY(N)),RLOI(NXY(N)),RLAT(N),RLON(N),CM,SM) CXY(N)=CM*CROI(NXY(N))+SM*SROI(NXY(N)) SXY(N)=SM*CROI(NXY(N))-CM*SROI(NXY(N)) ENDIF ELSE NXY(N)=0 ENDIF ENDDO ENDIF ENDIF ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! INTERPOLATE OVER ALL FIELDS IF(IRET.EQ.0.AND.IRETX.EQ.0) THEN IF(IGDTNUMO.GE.0) THEN NO=NOX DO N=1,NO RLON(N)=RLONX(N) RLAT(N)=RLATX(N) CROT(N)=CROTX(N) SROT(N)=SROTX(N) ENDDO ENDIF DO N=1,NO XPTS(N)=XPTSX(N) YPTS(N)=YPTSX(N) ENDDO !$OMP PARALLEL DO & !$OMP PRIVATE(NK,K,N,I1,J1,IXS,JXS,MX,KXS,KXT,IX,JX,NX) & !$OMP PRIVATE(CM,SM,CX,SX,UROT,VROT) SCHEDULE(STATIC) DO NK=1,NO*KM K=(NK-1)/NO+1 N=NK-NO*(K-1) UO(N,K)=0 VO(N,K)=0 LO(N,K)=.FALSE. IF(NXY(N).GT.0) THEN IF(IBI(K).EQ.0.OR.LI(NXY(N),K)) THEN UROT=CXY(N)*UI(NXY(N),K)-SXY(N)*VI(NXY(N),K) VROT=SXY(N)*UI(NXY(N),K)+CXY(N)*VI(NXY(N),K) UO(N,K)=CROT(N)*UROT-SROT(N)*VROT VO(N,K)=SROT(N)*UROT+CROT(N)*VROT LO(N,K)=.TRUE. ! SPIRAL AROUND UNTIL VALID DATA IS FOUND. ELSEIF(MSPIRAL.GT.1) THEN I1=NINT(XPTS(N)) J1=NINT(YPTS(N)) IXS=SIGN(1.,XPTS(N)-I1) JXS=SIGN(1.,YPTS(N)-J1) DO MX=2,MSPIRAL**2 KXS=SQRT(4*MX-2.5) KXT=MX-(KXS**2/4+1) SELECT CASE(MOD(KXS,4)) CASE(1) IX=I1-IXS*(KXS/4-KXT) JX=J1-JXS*KXS/4 CASE(2) IX=I1+IXS*(1+KXS/4) JX=J1-JXS*(KXS/4-KXT) CASE(3) IX=I1+IXS*(1+KXS/4-KXT) JX=J1+JXS*(1+KXS/4) CASE DEFAULT IX=I1-IXS*KXS/4 JX=J1+JXS*(KXS/4-KXT) END SELECT NX=IJKGDS1(IX,JX,IJKGDSA) IF(NX.GT.0) THEN IF(LI(NX,K)) THEN CALL MOVECT(RLAI(NX),RLOI(NX),RLAT(N),RLON(N),CM,SM) CX=CM*CROI(NX)+SM*SROI(NX) SX=SM*CROI(NX)-CM*SROI(NX) UROT=CX*UI(NX,K)-SX*VI(NX,K) VROT=SX*UI(NX,K)+CX*VI(NX,K) UO(N,K)=CROT(N)*UROT-SROT(N)*VROT VO(N,K)=SROT(N)*UROT+CROT(N)*VROT LO(N,K)=.TRUE. EXIT ENDIF ENDIF ENDDO ENDIF ENDIF ENDDO DO K=1,KM IBO(K)=IBI(K) IF(.NOT.ALL(LO(1:NO,K))) IBO(K)=1 ENDDO IF(IGDTNUMO.EQ.0) CALL POLFIXV(NO,MO,KM,RLAT,RLON,IBO,LO,UO,VO) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ELSE IF(IRET.EQ.0) IRET=IRETX IF(IGDTNUMO.GE.0) NO=0 ENDIF ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - END SUBROUTINE POLATEV2 ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SUBROUTINE CHECK_GRIDS2V(IGDTNUMI,IGDTMPLI,IGDTLENI, & IGDTNUMO,IGDTMPLO,IGDTLENO, & SAME_GRIDI, SAME_GRIDO) !$$$ SUBPROGRAM DOCUMENTATION BLOCK ! ! SUBPROGRAM: CHECK_GRIDS2V CHECK GRID INFORMATION ! PRGMMR: GAYNO ORG: W/NMC23 DATE: 2015-07-13 ! ! ABSTRACT: DETERMINE WHETHER THE INPUT OR OUTPUT GRID SPECS ! HAVE CHANGED. ! ! PROGRAM HISTORY LOG: ! 2015-07-13 GAYNO INITIAL VERSION ! ! USAGE: CALL CHECK_GRIDS2V(IGDTNUMI,IGDTMPLI,IGDTLENI, & ! IGDTNUMO,IGDTMPLO, & ! IGDTLENO, SAME_GRIDI, SAME_GRIDO) ! ! INPUT ARGUMENT LIST: ! IGDTNUMI - INTEGER GRID DEFINITION TEMPLATE NUMBER - INPUT GRID. ! CORRESPONDS TO THE GFLD%IGDTNUM COMPONENT OF THE ! NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! IGDTMPLI - INTEGER (IGDTLENI) GRID DEFINITION TEMPLATE ARRAY - ! INPUT GRID. CORRESPONDS TO THE GFLD%IGDTMPL COMPONENT ! OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! IGDTLENI - INTEGER NUMBER OF ELEMENTS OF THE GRID DEFINITION ! TEMPLATE ARRAY - INPUT GRID. CORRESPONDS TO THE GFLD%IGDTLEN ! COMPONENT OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! IGDTNUMO - INTEGER GRID DEFINITION TEMPLATE NUMBER - OUTPUT GRID. ! CORRESPONDS TO THE GFLD%IGDTNUM COMPONENT OF THE ! NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! IGDTMPLO - INTEGER (IGDTLENO) GRID DEFINITION TEMPLATE ARRAY - ! OUTPUT GRID. CORRESPONDS TO THE GFLD%IGDTMPL COMPONENT ! OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! IGDTLENO - INTEGER NUMBER OF ELEMENTS OF THE GRID DEFINITION ! TEMPLATE ARRAY - OUTPUT GRID. CORRESPONDS TO THE GFLD%IGDTLEN ! COMPONENT OF THE NCEP G2 LIBRARY GRIDMOD DATA STRUCTURE. ! ! OUTPUT ARGUMENT LIST: ! SAME_GRIDI - WHEN TRUE, THE INPUT GRID HAS NOT CHANGED BETWEEN CALLS. ! SAME_GRIDO - WHEN TRUE, THE OUTPUT GRID HAS NOT CHANGED BETWEEN CALLS. ! ! ATTRIBUTES: ! LANGUAGE: FORTRAN 90 ! !$$$ IMPLICIT NONE ! INTEGER, INTENT(IN ) :: IGDTNUMI, IGDTLENI INTEGER, INTENT(IN ) :: IGDTMPLI(IGDTLENI) INTEGER, INTENT(IN ) :: IGDTNUMO, IGDTLENO INTEGER, INTENT(IN ) :: IGDTMPLO(IGDTLENO) ! LOGICAL, INTENT( OUT) :: SAME_GRIDI, SAME_GRIDO ! INTEGER, SAVE :: IGDTNUMI_SAVE=-9999 INTEGER, SAVE :: IGDTLENI_SAVE=-9999 INTEGER, SAVE :: IGDTMPLI_SAVE(1000)=-9999 INTEGER, SAVE :: IGDTNUMO_SAVE=-9999 INTEGER, SAVE :: IGDTLENO_SAVE=-9999 INTEGER, SAVE :: IGDTMPLO_SAVE(1000)=-9999 ! ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SAME_GRIDI=.FALSE. IF(IGDTNUMI==IGDTNUMI_SAVE)THEN IF(IGDTLENI==IGDTLENI_SAVE)THEN IF(ALL(IGDTMPLI==IGDTMPLI_SAVE(1:IGDTLENI)))THEN SAME_GRIDI=.TRUE. ENDIF ENDIF ENDIF ! IGDTNUMI_SAVE=IGDTNUMI IGDTLENI_SAVE=IGDTLENI IGDTMPLI_SAVE(1:IGDTLENI)=IGDTMPLI IGDTMPLI_SAVE(IGDTLENI+1:1000)=-9999 ! SAME_GRIDO=.FALSE. IF(IGDTNUMO==IGDTNUMO_SAVE)THEN IF(IGDTLENO==IGDTLENO_SAVE)THEN IF(ALL(IGDTMPLO==IGDTMPLO_SAVE(1:IGDTLENO)))THEN SAME_GRIDO=.TRUE. ENDIF ENDIF ENDIF ! IGDTNUMO_SAVE=IGDTNUMO IGDTLENO_SAVE=IGDTLENO IGDTMPLO_SAVE(1:IGDTLENO)=IGDTMPLO IGDTMPLO_SAVE(IGDTLENO+1:1000)=-9999 ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - END SUBROUTINE CHECK_GRIDS2V
{"hexsha": "116f6fd032f6c352f0afdecd0e466d45bc58b554", "size": 18290, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "third_party_open/wgrib2/ip2lib_d/polatev2.f90", "max_stars_repo_name": "noaa-ocs-modeling/PaHM", "max_stars_repo_head_hexsha": "e5673c9c80a76a06534acb1542c3c16af2e3cd02", "max_stars_repo_licenses": ["CC0-1.0"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2015-06-11T00:07:56.000Z", "max_stars_repo_stars_event_max_datetime": "2019-10-16T10:56:31.000Z", "max_issues_repo_path": "third_party_open/wgrib2/ip2lib_d/polatev2.f90", "max_issues_repo_name": "noaa-ocs-modeling/PaHM", "max_issues_repo_head_hexsha": "e5673c9c80a76a06534acb1542c3c16af2e3cd02", "max_issues_repo_licenses": ["CC0-1.0"], "max_issues_count": 7, "max_issues_repo_issues_event_min_datetime": "2021-06-02T15:54:33.000Z", "max_issues_repo_issues_event_max_datetime": "2021-11-08T19:44:01.000Z", "max_forks_repo_path": "third_party_open/wgrib2/ip2lib_d/polatev2.f90", "max_forks_repo_name": "pvelissariou1/pahm", "max_forks_repo_head_hexsha": "41bd774ef88ce65f4666119593c233f877b655e2", "max_forks_repo_licenses": ["CC0-1.0"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2017-06-12T10:37:02.000Z", "max_forks_repo_forks_event_max_datetime": "2019-10-19T10:26:32.000Z", "avg_line_length": 42.5348837209, "max_line_length": 79, "alphanum_fraction": 0.5592126845, "num_tokens": 6344}
#!/usr/bin/env python3.0 # -*- coding: utf-8 -*- """ Created on Tue Aug 22 14:38:25 2017 @author: wangronin & Bas van Stein """ import pdb import subprocess, os, sys from subprocess import STDOUT, check_output import numpy as np import time import gputil as gp from mipego import mipego from mipego.Surrogate import RandomForest from mipego.SearchSpace import ContinuousSpace, NominalSpace, OrdinalSpace import re import traceback import time #--------------------------- Configuration settings -------------------------------------- # TODO: implement parallel execution of model n_step = 110 n_init_sample = 90 verbose = True save = False logfile = 'mnist.log' class obj_func(object): def __init__(self, program): self.program = program def __call__(self, cfg, gpu_no): print("calling program with gpu "+str(gpu_no)) cmd = ['python3', self.program, '--cfg', str(cfg), str(gpu_no)] outs = "" #outputval = 0 outputval = "" try: outs = str(check_output(cmd,stderr=STDOUT, timeout=40000)) if os.path.isfile(logfile): with open(logfile,'a') as f_handle: f_handle.write(outs) else: with open(logfile,'w') as f_handle: f_handle.write(outs) outs = outs.split("\\n") #TODO_CHRIS hacky solution #outputval = 0 #for i in range(len(outs)-1,1,-1): for i in range(len(outs)-1,-1,-1): #if re.match("^\d+?\.\d+?$", outs[-i]) is None: #CHRIS changed outs[-i] to outs[i] print(outs[i]) if re.match("^\(\-?\d+\.?\d*\e?\+?\-?\d*\,\s\-?\d+\.?\d*\e?\+?\-?\d*\)$", outs[i]) is None: #do nothing a=1 else: #outputval = -1 * float(outs[-i]) outputval = outs[i] #if np.isnan(outputval): # outputval = 0 except subprocess.CalledProcessError as e: traceback.print_exc() print (e.output) except: print ("Unexpected error:") traceback.print_exc() print (outs) #outputval = 0 #TODO_CHRIS hacky solution tuple_str1 = '' tuple_str2 = '' success = True i = 1 try: while outputval[i] != ',': tuple_str1 += outputval[i] i += 1 i += 1 while outputval[i] != ')': tuple_str2 += outputval[i] i += 1 except: print("error in receiving answer from gpu " + str(gpu_no)) success = False try: tuple = (float(tuple_str1),float(tuple_str2),success) except: tuple = (0.0,0.0,False) #return outputval return tuple for it in range(10): np.random.seed(it) #define the search space. objective = obj_func('./all-cnn_bi_mbarrier.py') real_space = ContinuousSpace([0.0, 4.0],'real_space') * 5 integer_space = OrdinalSpace([0,4],'integer_space') * 5 discrete_space = NominalSpace(['0','1','2','3','4'],'discrete_space') * 5 search_space = real_space * integer_space * discrete_space print('starting program...') #available_gpus = gp.getAvailable(limit=2) available_gpus = gp.getAvailable(limit=5) #try: #available_gpus.remove(0)#CHRIS gpu 0 and 5 are differen gpu types on duranium since they are faster, timing will be unreliable, so remove them from list #except: #pass #try: #available_gpus.remove(5) #except: #pass print(available_gpus) n_job = max(min(5,len(available_gpus)),1) # use random forest as the surrogate model #CHRIS two surrogate models are needed time_model = RandomForest(levels=search_space.levels,n_estimators=100) loss_model = RandomForest(levels=search_space.levels,n_estimators=100) opt = mipego(search_space, objective, time_model, loss_model, ftarget=None, minimize=True, noisy=False, max_eval=None, max_iter=n_step, infill='HVI', n_init_sample=n_init_sample, n_point=1, n_job=n_job, n_restart=None, max_infill_eval=None, wait_iter=3, optimizer='MIES', log_file=None, data_file=None, verbose=False, random_seed=None, available_gpus=available_gpus, bi=True,save_name='data_mbarrier_kayfeng_eps_var_alpha_mult_' + str(it),ref_time=None,ref_loss=None,hvi_alpha=0.1) #ref_time=1000.0,ref_loss=1000.0 incumbent, stop_dict = opt.run() #print('incumbent #TODO_CHRIS makes no sense for now:') #for x in incumbent: # try: # print(str(x) + ':' + str(incumbent[x])) # except: # continue #print ('stop_dict:') #for x in stop_dict: # try: # print(str(x) + ':' + str(stop_dict[x])) # except: # continue
{"hexsha": "d4f6462792d7d90bfdad8ac63661dc8725c2deba", "size": 5022, "ext": "py", "lang": "Python", "max_stars_repo_path": "mbarrier_configurator_bi_mult.py", "max_stars_repo_name": "christiaanlamers/sms-mip-ego", "max_stars_repo_head_hexsha": "3601efcb9cfe069e8543d3c29a6102ebbeb9a78c", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "mbarrier_configurator_bi_mult.py", "max_issues_repo_name": "christiaanlamers/sms-mip-ego", "max_issues_repo_head_hexsha": "3601efcb9cfe069e8543d3c29a6102ebbeb9a78c", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "mbarrier_configurator_bi_mult.py", "max_forks_repo_name": "christiaanlamers/sms-mip-ego", "max_forks_repo_head_hexsha": "3601efcb9cfe069e8543d3c29a6102ebbeb9a78c", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.4, "max_line_length": 166, "alphanum_fraction": 0.564516129, "include": true, "reason": "import numpy", "num_tokens": 1280}
function[varargout] = vmoment(varargin) %VMOMENT Central moment over non-NaN elements along a specfied dimension. % % Y=VMOMENT(X,N,DIM) finds the Nth central moment of all non-NaN elements % of X along dimension DIM. % % [Y,NUM]=VMOMENT(X,N,DIM) also outputs the number of non-NaN data points % NUM, which has the same dimension as X. % % [Y1,Y2,...YN]=VMOMENT(X1,X2,...XN,N,DIM) also works. % % VMOMENT(X1,X2,...XN,N,DIM); with no output arguments overwrites the % original input variables. % __________________________________________________________________ % This is part of JLAB --- type 'help jlab' for more information % (C) 2001--2020 J.M. Lilly --- type 'help jlab_license' for details if strcmpi(varargin{1}, '--t') vmoment_test,return end n=varargin{end-1}; ndim=varargin{end}; for i=1:length(varargin)-2 x=varargin{i}; m=vmean(x,ndim); m=vrep(m,size(x,ndim),ndim); %previously I had an abs around (x-m), that was incorrect [varargout{i},numi{i}]=vmean((x-m).^n,ndim); end for i=length(varargin)-1:nargout varargout{i}=numi{i-length(varargin)+2}; end eval(to_overwrite(nargin-2)) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function[]=vmoment_test x1=[1 2 3 nan]; x2=x1; ans1=2/3; vmoment(x1,x2,2,2); reporttest('VMOMENT output overwrite', aresame(x1,ans1) && aresame(x2,ans1)) x1=[1 2 3 nan]; ans2=3; [y1,y2]=vmoment(x1,2,2); reporttest('VMOMENT moment & num', aresame(y1,ans1) && aresame(y2,ans2))
{"author": "jonathanlilly", "repo": "jLab", "sha": "9f32f63e647209bc1cb81c8713deb954857f1919", "save_path": "github-repos/MATLAB/jonathanlilly-jLab", "path": "github-repos/MATLAB/jonathanlilly-jLab/jLab-9f32f63e647209bc1cb81c8713deb954857f1919/jVarfun/vmoment.m"}
#!/usr/bin/env python3 ''' Created on Mon Mar 1 02:21:48 2021 @author: skhalil The script writes the data collected by VNA (.txt) into .s2p format, and plot the S paramters in frequency domain, and impedance in time domain. Some manupulation of S parameter indices is done since the data is for 4-point VNA measurements, where as the skrf library understands it for the 2-point VNA measurements. # *.s2p Files format # Each record contains 1 stimulus value and 4 S-parameters (total of 9 values) #Stim Real (S11) Imag(S11) Real(S21) Imag(S21) Real(S12) Imag(S12) Real(S22) Imag(S22) # ==== our file format for vna_0: ==== #!freq RelS11 ImS11 RelS12 ImS12 RelS13 ImS13 RelS14 ImS14 # parameter in file => read from software # S11 S13 00 01 S11 S12 # ----> ----> # S12 S14 10 11 S21 S22 # ==== our file format for vna_1: ==== #!freq RelS21 ImS21 RelS22 ImS22 RelS23 ImS23 RelS24 ImS24 # parameter in file => read from software # S21 S23 00 01 S11 S12 # ----> ----> # S22 S24 10 11 S21 S22 ''' import csv import sys, re, os from pylab import * import numpy as np import skrf as rf import pylab import pandas as pd from matplotlib import pyplot as plt from matplotlib.ticker import AutoMinorLocator from matplotlib import style import statistics from optparse import OptionParser #rf.stylely() #print(rf.__version__) ################### # helper functions ################### def ensure_dir(file_name): if not os.path.exists(file_name): os.mkdir(file_name) def createLabels(outDir, files): x_labels=[] for i in range(len(files)): ff = str(outDir+"/"+files[i]) label = ff.split('.vna')[0].split('/')[-1:][0] x_labels.append(label) return x_labels def set_axes(ax, title, xmin, xmax, ymin, ymax, nolim): ax.xaxis.set_minor_locator(AutoMinorLocator(2)) ax.yaxis.set_minor_locator(AutoMinorLocator(2)) ax.grid(True, color='0.8', which='minor') ax.grid(True, color='0.4', which='major') ax.set_title(title) # Time domain if not nolim: ax.set_xlim((xmin, xmax)) ax.set_ylim((ymin, ymax)) plt.tight_layout() # https://www.tutorialfor.com/questions-285739.htm def display_mean_impedance(ax, t1, t2, col): lines = ax.get_lines() # Delete all elements of the array (except the last one) correponding to a line drawn in ax. # This is a brute force way of resetting the line data to the data current line. if len(lines)>1: del lines[:-1] # store the line arrays into list. Every line drawn on the ax is considered as data Y = [line.get_ydata() for line in lines] X = [line.get_xdata() for line in lines] # create a table, and since the list X and Y should have size=1, place the first # element (array) in pandas table columns t and Z df = pd.DataFrame() df['t'] = X[0] df['Z'] = Y[0] # get the mean value of Z for a given time difference Z_mean = df.query('t >=@t1 & t<=@t2').agg({'Z': 'mean'}) print("Mean impedance [{0} ns, {1} ns] = {2:.2f} ohms for {3}".format(t1, t2, Z_mean.values[0], lines[0])) # plot the average line x_coor = [t1, t2] y_coor = [Z_mean, Z_mean] ax.plot(x_coor, y_coor, color=col, linewidth=1, label='', linestyle='--') # return mean impedance return Z_mean.values[0] def getName(input_string): match = re.match(r'TP_\w+_\d+', input_string) name = match.group() if '1p4' in name: name = name.replace('1p4', '1.4') return name def analyze(createS2p, inDir, inputTxtFiles, cableName, cableLength, t1, t2, outDir, s2pDir, subfile, comp, times=[]): verbose = False resultsDir = "results" files = [] with open(inputTxtFiles, 'r') as fl: for line in fl.readlines(): files.append(line.strip()) fl.close if verbose: print("input file list: {0}".format(inputTxtFiles)) for f in files: print (" - {0}".format(f)) ensure_dir(s2pDir) ensure_dir(outDir) ensure_dir(resultsDir) ############################ # Create the .s2p files ############################ if createS2p: # convert the .txt files into table with columns corresponding to .s2p format for f in files: infile = pd.read_csv(inDir+'/'+f+'.txt', names=['pt','f','s11R','s11I','s12R','s12I','s13R','s13I','s14R','s14I'], delim_whitespace=True, skiprows=1) infile.dropna(how='all') pd.set_option("display.max_rows", 5) fileindex = 0 # this will be increment to upto 9 corresponding to 10 .s2p files prevF = 0 basename = f.rpartition('.')[0] if verbose: print("f: {0}, basename: {1}".format(f, basename)) for i, row in infile.iterrows(): if row['pt'] == 'PARAMETER:': # new set of points try: if not f.closed: f.close() except: pass filename = s2pDir+'/'+basename+ '_' + str(fileindex)+'.s2p' fileindex += 1 f = open(filename,'w') f.write('# GHZ S RI R 50.0\n') try: #print (row['f'][1:-1], row['s11R'][1:-1], row['s11I'][1:-1], row['s12R'][1:-1] ) f.write(f"!freq Rel{row['f'][1:-1]} Im{row['f'][1:-1]} Rel{row['s11R'][1:-1]} Im{row['s11R'][1:-1]} Rel{row['s11I'][1:-1]} Im{row['s11I'][1:-1]} Rel{row['s12R'][1:-1]} Im{row['s12R'][1:-1]}\n") except: if row['f'][1:-1] == 'SDD': f.write(f"!freq\tRelS11\tImS11\n") prevF = 0 try: if float(row['s11R']) == float(row['s11R']) and float(row['f'])>prevF: f.write(f"{float(row['f']):.3f}\t{float(row['s11R'])}\t{float(row['s11I'])}\t{float(row['s12R'])}\t{float(row['s12I'])}\t{float(row['s13R'])}\t{float(row['s13I'])}\t{float(row['s14R'])}\t{float(row['s14I'])}\n") prevF = float(row['f']) except: pass ######################## # Plots # ######################## S_ij = '' if comp == '11' and subfile == '0': S_ij = '11' elif comp == '12' and subfile == '0': S_ij = '21' elif comp == '21' and subfile == '1': S_ij = '11' i = int(S_ij[0]) j = int(S_ij[1]) labels = createLabels(outDir, files) colors = [ 'xkcd:cherry red', 'xkcd:tangerine', 'xkcd:neon green', 'xkcd:azure', 'xkcd:cyan', 'xkcd:neon purple', 'xkcd:coral', 'xkcd:magenta', 'xkcd:goldenrod', 'xkcd:seafoam green', 'xkcd:lavender', 'xkcd:turquoise', 'xkcd:green', 'xkcd:electric blue', 'xkcd:purple', ] with style.context('seaborn-darkgrid'): fig0 = plt.figure(figsize=(10,4)) fig0.patch.set_facecolor('xkcd:black') plt.style.use('dark_background') ax0=plt.subplot(1,2,1) ax1=plt.subplot(1,2,2) ax0.xaxis.set_minor_locator(AutoMinorLocator(2)) ax0.yaxis.set_minor_locator(AutoMinorLocator(2)) ax0.grid(True, color='0.8', which='minor') ax0.grid(True, color='0.4', which='major') # write csv file csv_file = "{0}/{1}.csv".format(resultsDir, cableName) with open(csv_file, 'w', newline='') as output_csv: output_writer = csv.writer(output_csv) titles = ["Channel", "t1", "t2", "Z_mean"] output_writer.writerow(titles) for n in range(len(labels)): # overwrite times if specified if times: t1 = times[n][0] t2 = times[n][1] label = labels[n] color = colors[n] net = rf.Network(s2pDir+'/'+label+'_'+subfile+'.s2p', f_unit='ghz') # 33 ## ---Frequency Domain Plots---: net_dc = net[i,j].extrapolate_to_dc(kind='linear') net_dc.plot_s_db(label='S'+comp+','+label, ax=ax0, color=color) # set_axes(ax, title, xmin, xmax, ymin, ymax, nolim) set_axes(ax0, 'Frequency Domain', 0.0, 6.0e9, -80.0, 10.0, nolim=False) ## ---Time Domain Plots---: net_dc.plot_z_time_step(pad=0, window='hamming', z0=50, label='TD'+comp+','+label, ax=ax1, color=color) Z_mean = display_mean_impedance(ax1, t1, t2, color) # set_axes(ax, title, xmin, xmax, ymin, ymax, nolim) set_axes(ax1, 'Time Domain', 0.0, 10.0, 0.0, 300.0, nolim=False) # write to csv file output_row = [label, t1, t2, round(Z_mean, 2)] output_writer.writerow(output_row) if cableName: cable_ID = cableName else: cable_ID = getName(labels[0]) if verbose: print("labels[0]: {0}, cable_ID: {1}".format(labels[0], cable_ID)) fig0.savefig("{0}/{1}_freq_time_Z_rf_S{2}.png".format(outDir, cable_ID, comp)) #pylab.show() #input('hold on') def main(): ####################################### # Options # ####################################### parser = OptionParser() parser.add_option('--createS2p', type='int', action='store', default=1, dest='createS2p', help='bool if 1 then create .s2p files, if 0 then they already exist and no need to recreate them') parser.add_option('--inputDir', metavar='T', type='string', action='store', default='../example_data', dest='inputDir', help='directory with example input files') parser.add_option('--inputTxtFiles', metavar='F', type='string', action='store', default = "input_cable_data.txt", dest='inputTxtFiles', help='Input txt files') parser.add_option('--cableName', metavar='T', type='string', action='store', default='', dest='cableName', help='cable name (required for non-standard names)') parser.add_option('--cableLength', metavar='F', type='string', action='store', default = "35", dest='cableLength', help='cable lenght in cm') parser.add_option('--t1', metavar='F', type='float', action='store', default = 0.2, dest='t1', help='start time to take the average on the time domain plot') parser.add_option('--t2', metavar='F', type='float', action='store', default = 0.4, dest='t2', help='stop time to take the average on the time domain plot') parser.add_option('--outputDir', metavar='T', type='string', action='store', default='Plots', dest='outputDir', help='directory to store plots') parser.add_option('--outputTouchstone', metavar='T', type='string', action='store', default='s2pDir', dest='outputTouchstone', help='directory to store resulted touch stone files') parser.add_option('--outputTouchstoneSubFile', metavar='T', type='string', action='store', default='0', dest='outputTouchstoneSubFile', help='subfile to open from one of the 10 created .s2p files') parser.add_option('--SParamterComp', metavar='T', type='string', action='store', default='11', dest='SParamterComp', help='S-paramter to draw') (options,args) = parser.parse_args() createS2p = bool(options.createS2p) inDir = options.inputDir inputTxtFiles = options.inputTxtFiles cableName = options.cableName cableLength = options.cableLength t1 = options.t1 t2 = options.t2 outDir = options.outputDir s2pDir = options.outputTouchstone subfile = options.outputTouchstoneSubFile comp = options.SParamterComp # ========= end: options ============= # analyze(createS2p, inDir, inputTxtFiles, cableName, cableLength, t1, t2, outDir, s2pDir, subfile, comp) if __name__ == "__main__": main()
{"hexsha": "31185240577f1a2bef4584140c38aa4959e340a9", "size": 13487, "ext": "py", "lang": "Python", "max_stars_repo_path": "VNA/python/plotVNAFeatures.py", "max_stars_repo_name": "ku-cms/eLink_Instrumentation", "max_stars_repo_head_hexsha": "ce36df795028098b672b0a818f05a9ee8bb75edb", "max_stars_repo_licenses": ["CC0-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "VNA/python/plotVNAFeatures.py", "max_issues_repo_name": "ku-cms/eLink_Instrumentation", "max_issues_repo_head_hexsha": "ce36df795028098b672b0a818f05a9ee8bb75edb", "max_issues_repo_licenses": ["CC0-1.0"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2021-02-10T20:42:51.000Z", "max_issues_repo_issues_event_max_datetime": "2021-05-23T02:00:41.000Z", "max_forks_repo_path": "VNA/python/plotVNAFeatures.py", "max_forks_repo_name": "ku-cms/eLink_Instrumentation", "max_forks_repo_head_hexsha": "ce36df795028098b672b0a818f05a9ee8bb75edb", "max_forks_repo_licenses": ["CC0-1.0"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2021-04-21T22:26:54.000Z", "max_forks_repo_forks_event_max_datetime": "2021-06-16T19:56:03.000Z", "avg_line_length": 38.9797687861, "max_line_length": 267, "alphanum_fraction": 0.5064135835, "include": true, "reason": "import numpy", "num_tokens": 3517}
import os import time import re import codecs import itertools import numpy as np import pandas as pd import tensorflow as tf import gensim from gensim import utils from twtokenize import tokenize import util from sklearn.model_selection import train_test_split from ftfy import fix_text class streamtwElec(object): def __init__(self, dirname): self.i=0 self.dirname = dirname def __iter__(self): for fname in os.listdir(self.dirname): fname = os.path.join(self.dirname, fname) if not os.path.isfile(fname): continue for line in utils.smart_open(fname): line = line.split('\t') id = line[1] if line[2] == 'positive': sent = 1 elif line[2] == 'negative': sent = -1 elif line[2] == 'neutral': sent = 0 senti = sent + 2 target = line[3].lower().strip() location = line[4] tw = line[-1].lower().strip() tw = fix_text(tw.decode('utf-8')).encode('utf-8') range = [] p = re.compile(r'(?<!\w)({0})(?!\w)'.format(target)) for m in p.finditer(tw.lower()): range.append([m.start(),m.start()+len(m.group())]) if location != 'nan': cc = 0 for a, b in enumerate(range): if b[0]-1 <= int(location) <= b[1]+4: wh = a cc=1 if cc==0: wh = 'nan' else: wh = location if wh == 'nan': tw=tw.replace(target,' '+target+' ') tw=tw.replace(''.join(target.split()),' '+'_'.join(target.split())+' ') tw=tw.replace(target,' '+'_'.join(target.split())+' ') else: try: r = range[wh] except: print "Error at processing election data; at line 118 process_data.py!" tw=tw[:r[0]]+ tw[r[0]:r[1]+2].replace(target, ' '+target+' ') + tw[r[1]+2:] tw=tw[:r[0]]+ tw[r[0]:r[1]+4].replace(''.join(target.split()),' '+'_'.join(target.split())+' ') + tw[r[1]+4:] tw=tw[:r[0]]+ tw[r[0]:r[1]+6].replace(target,' '+'_'.join(target.split())+' ') + tw[r[1]+6:] tweet=tokenize(tw) yield (tweet,'_'.join(target.split()),senti,id,wh) class ElectionData: def __init__(self, batch_size, dynamic_padding=False, preprocessing=False, embedding=True, saved=False, max_length=None): train = ElectionData.read_data('../data/election-data/training/') test = ElectionData.read_data('../data/election-data/testing/') self.batch_size = batch_size self.dynamic_padding = dynamic_padding self.train_tweets, self.train_targets, self.train_y = zip(*train) self.test_tweets, self.test_targets, self.test_y = zip(*test) self.train_left_tweets = [ElectionData.split_tweet(self.train_tweets[i], self.train_targets[i])[0] for i in range(len(self.train_tweets))] self.train_right_tweets = [ElectionData.split_tweet(self.train_tweets[i], self.train_targets[i])[1] for i in range(len(self.train_tweets))] self.test_left_tweets = [ElectionData.split_tweet(self.test_tweets[i], self.test_targets[i])[0] for i in range(len(self.test_tweets))] self.test_right_tweets = [ElectionData.split_tweet(self.test_tweets[i], self.test_targets[i])[1] for i in range(len(self.test_tweets))] self.train_tweets = [ElectionData.replace_target(self.train_tweets[i], self.train_targets[i]) for i in range(len(self.train_tweets))] self.test_tweets = [ElectionData.replace_target(self.test_tweets[i], self.test_targets[i]) for i in range(len(self.test_tweets))] self.train_targets = [train_target.split('_') for train_target in self.train_targets] self.test_targets = [test_target.split('_') for test_target in self.test_targets] # Padding tweets (manually adding '<PAD> tokens') if not self.dynamic_padding: self.train_tweets = util.pad_sequences(self.train_tweets, pad_location='RIGHT') self.test_tweets = util.pad_sequences(self.test_tweets, pad_location='RIGHT') # Building vocabulary self.vocab, self.vocab_inv = util.build_vocabulary(self.train_tweets + self.test_tweets) if embedding: # Vectorizing tweets - Glove embedding start = time.clock() print(' - Loading embedding..') glove, self.glove_vec, self.glove_shape, glove_vocab = util.gensim_load_vec('../resources/wordemb/glove.twitter.word2vec.27B.100d.txt') glove_vocab = [token.encode('utf-8') for token in glove_vocab] self.glove_vocab_dict = {j:i for i, j in enumerate(glove_vocab)} self.glove_vec = np.append(self.glove_vec, [[0]*self.glove_shape[1]], axis=0) self.glove_shape = [self.glove_shape[0]+1, self.glove_shape[1]] print(' - DONE') print("time taken: %f mins"%((time.clock() - start)/60)) if saved==False: start = time.clock() print(' - Matching words-indices') self.train_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in tweet] for tweet in self.train_tweets]) self.train_left_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in tweet] for tweet in self.train_left_tweets]) self.train_right_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in tweet] for tweet in self.train_right_tweets]) self.test_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in tweet] for tweet in self.test_tweets]) self.test_left_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in tweet] for tweet in self.test_left_tweets]) self.test_right_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in tweet] for tweet in self.test_right_tweets]) self.train_target_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in target] for target in self.train_targets]) self.test_target_x = np.array([[self.glove_vocab_dict[token] if token in glove_vocab else 1193514 for token in target] for target in self.test_targets]) self.train_y = pd.get_dummies(self.train_y).values.astype(np.int32) self.train_df = [(self.train_x[i], self.train_left_x[i], self.train_right_x[i], self.train_target_x[i], self.train_y[i]) for i in range(len(self.train_x))] self.test_df = [(self.test_x[i], self.test_left_x[i], self.test_right_x[i], self.test_target_x[i], self.test_y[i]) for i in range(len(self.test_x))] train_y = np.array([d[-1] for d in self.train_df]) self.train_df, self.dev_df = self.build_train_dev(train_y) # Dividing to train and dev set print(' - DONE') print("time taken: %f mins"%((time.clock() - start)/60)) print(" - Saving data") np.save('../data/election-data/train_df.npy', self.train_df) np.save('../data/election-data/dev_df.npy', self.dev_df) np.save('../data/election-data/test_df.npy', self.test_df) print(' - DONE') else: print(" - Loading data") self.train_df = np.load('../data/election-data/train_df.npy') self.dev_df = np.load('../data/election-data/dev_df.npy') self.test_df = np.load('../data/election-data/test_df.npy') print(' - DONE') else: # Vectorizing tweets - one-hot-vector self.train_x = np.array([[self.vocab[token] for token in tweet] for tweet in self.train_tweets]) self.test_x = np.array([[self.vocab[token] for token in tweet] for tweet in self.test_tweets]) self.create_batches() self.reset_batch_pointer() @staticmethod def read_data(data_dir): inputs=streamtwElec(data_dir) data = [] for i in inputs: tw = i[0] target = i[1] if target=='"long_term_economic"_plans': target='long_term_economic' label = i[2] data.append([tw, target, label]) return data @staticmethod def replace_target(tweet, target): tweet = list(itertools.chain.from_iterable((target.split('_')) if item == target else (item, ) for item in tweet)) return tweet @staticmethod def split_tweet(tweet, target): target_index = tweet.index(target) left = tweet[0:target_index] + target.split('_') right = target.split('_') + tweet[target_index+1:] right = [i for i in reversed(right)] return left, right def build_train_dev(self, train_y, dev_size=0.3, random_seed=42): return train_test_split( self.train_df, test_size=dev_size, random_state=random_seed, stratify=train_y) def create_batches(self): self.train_df = self.shuffle_data(self.train_df) # Randomlise data #train set: self.train_x = np.array([d[0] for d in self.train_df]) self.train_size = np.array([len(seq) for seq in self.train_x]) self.train_y = np.array([d[-1] for d in self.train_df]) self.train_left_x = np.array([d[1] for d in self.train_df]) self.train_left_size = np.array([len(seq) for seq in self.train_left_x]) self.train_right_x = np.array([d[2] for d in self.train_df]) self.train_right_size = np.array([len(seq) for seq in self.train_right_x]) self.train_target_x = np.array([d[3] for d in self.train_df]) self.train_x = util.pad_sequences(self.train_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') # Padding self.train_left_x = util.pad_sequences(self.train_left_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') self.train_right_x = util.pad_sequences(self.train_right_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') self.train_x = np.array(self.train_x) self.train_left_x = np.array(self.train_left_x) self.train_right_x = np.array(self.train_right_x) #dev set: self.dev_x = np.array([d[0] for d in self.dev_df]) self.dev_size = np.array([len(seq) for seq in self.dev_x]) self.dev_y = np.array([d[-1] for d in self.dev_df]) self.dev_left_x = np.array([d[1] for d in self.dev_df]) self.dev_left_size = np.array([len(seq) for seq in self.dev_left_x]) self.dev_right_x = np.array([d[2] for d in self.dev_df]) self.dev_right_size = np.array([len(seq) for seq in self.dev_right_x]) self.dev_target_x = np.array([d[3] for d in self.dev_df]) self.dev_x = util.pad_sequences(self.dev_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') # Padding self.dev_left_x = util.pad_sequences(self.dev_left_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') self.dev_right_x = util.pad_sequences(self.dev_right_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') self.dev_x = np.array(self.dev_x) self.dev_left_x = np.array(self.dev_left_x) self.dev_right_x = np.array(self.dev_right_x) #test set: self.test_x = np.array([d[0] for d in self.test_df]) self.test_size = np.array([len(seq) for seq in self.test_x]) self.test_y = np.array([d[-1] for d in self.test_df]) self.test_left_x = np.array([d[1] for d in self.test_df]) self.test_left_size = np.array([len(seq) for seq in self.test_left_x]) self.test_right_x = np.array([d[2] for d in self.test_df]) self.test_right_size = np.array([len(seq) for seq in self.test_right_x]) self.test_target_x = np.array([d[3] for d in self.test_df]) self.test_x = util.pad_sequences(self.test_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') # Padding self.test_left_x = util.pad_sequences(self.test_left_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') self.test_right_x = util.pad_sequences(self.test_right_x, dynamic_padding=self.dynamic_padding, pad_location='RIGHT') self.test_x = np.array(self.test_x) self.test_left_x = np.array(self.test_left_x) self.test_right_x = np.array(self.test_right_x) # Vectorizing labels # self.train_y = pd.get_dummies(self.train_y).values.astype(np.int32) # self.dev_y = pd.get_dummies(self.dev_y).values.astype(np.int32) self.test_y = pd.get_dummies(self.test_y).values.astype(np.int32) # Creating training batches self.num_batches = len(self.train_x)//self.batch_size if self.num_batches==0: assert False, "Not enough data for the batch size." self.batch_df = np.array_split(self.train_df, self.num_batches) # Splitting train set into batches based on num_batches assert np.array([d[-1] for d in self.batch_df[-1]]).shape[1] == 3, "Watch out! All batches must contain 3 labels!" def next_batch(self): df = self.batch_df[self.pointer] x = np.array([d[0] for d in df]) xl = np.array([d[1] for d in df]) xr = np.array([d[2] for d in df]) tar = np.array([d[3] for d in df]) y = np.array([d[-1] for d in df]) # y = pd.get_dummies(y).values.astype(np.int32) seq_len = [len(seq) for seq in x] seq_len_l = [len(seq) for seq in xl] seq_len_r = [len(seq) for seq in xr] if self.dynamic_padding: x = np.array(self.pad_minibatches(x, 'RIGHT')) xl = np.array(self.pad_minibatches(xl, 'RIGHT')) xr = np.array(self.pad_minibatches(xr, 'RIGHT')) self.pointer += 1 return x, y, seq_len, xl, seq_len_l, xr, seq_len_r, tar def reset_batch_pointer(self): self.train_df = self.shuffle_data(self.train_df) self.pointer = 0 def pad_minibatches(self, x, pad_location): x = util.pad_sequences(x, dynamic_padding=self.dynamic_padding, pad_location=pad_location) return x @staticmethod def shuffle_data(a): a = np.array(a) p = np.random.permutation(len(a)) return a[p]
{"hexsha": "41318b0103d513493c10ede6dfee90332b56ae63", "size": 13569, "ext": "py", "lang": "Python", "max_stars_repo_path": "data/electionprocessor.py", "max_stars_repo_name": "bluemonk482/tdlstm", "max_stars_repo_head_hexsha": "29032c3d116866e3d30b29fdf1a0af605c054d93", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 12, "max_stars_repo_stars_event_min_datetime": "2017-10-10T08:00:31.000Z", "max_stars_repo_stars_event_max_datetime": "2019-05-12T07:02:24.000Z", "max_issues_repo_path": "data/electionprocessor.py", "max_issues_repo_name": "bluemonk482/tdlstm", "max_issues_repo_head_hexsha": "29032c3d116866e3d30b29fdf1a0af605c054d93", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2017-01-12T20:56:30.000Z", "max_issues_repo_issues_event_max_datetime": "2018-02-16T17:49:14.000Z", "max_forks_repo_path": "data/electionprocessor.py", "max_forks_repo_name": "bluemonk482/tdlstm", "max_forks_repo_head_hexsha": "29032c3d116866e3d30b29fdf1a0af605c054d93", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 5, "max_forks_repo_forks_event_min_datetime": "2018-01-30T07:43:13.000Z", "max_forks_repo_forks_event_max_datetime": "2019-07-12T08:04:27.000Z", "avg_line_length": 48.9855595668, "max_line_length": 160, "alphanum_fraction": 0.6735942221, "include": true, "reason": "import numpy", "num_tokens": 3540}
program decl_all integer(KIND=8) a integer :: b, c = -10 real(KIND=4) :: d = -99.34 logical :: e = .true. real(4) :: arr(10,-1:100), f integer(2), DIMENSION(1:10,-1:100, 9:10) :: g end program decl_all
{"hexsha": "faf8153d05aa4cacce8c7617db50fa406ff0b10f", "size": 204, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "test/decl/arrays/decl_kind_multi.f90", "max_stars_repo_name": "clementval/fc", "max_stars_repo_head_hexsha": "a5b444963c1b46e4eb34d938d992836d718010f7", "max_stars_repo_licenses": ["BSD-2-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "test/decl/arrays/decl_kind_multi.f90", "max_issues_repo_name": "clementval/fc", "max_issues_repo_head_hexsha": "a5b444963c1b46e4eb34d938d992836d718010f7", "max_issues_repo_licenses": ["BSD-2-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "test/decl/arrays/decl_kind_multi.f90", "max_forks_repo_name": "clementval/fc", "max_forks_repo_head_hexsha": "a5b444963c1b46e4eb34d938d992836d718010f7", "max_forks_repo_licenses": ["BSD-2-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 20.4, "max_line_length": 45, "alphanum_fraction": 0.6176470588, "num_tokens": 85}
import re import pandas as pd import numpy as np from avaml.aggregatedata import PROBLEMS from avaml.aggregatedata.download import CAUSES, REG_ENG_V4, REGOBS_CLASSES, _camel_to_snake, REGOBS_SCALARS def coeff(series): x = np.arange(series.shape[0]) y = series.values return np.linalg.lstsq(np.vstack([x, np.ones(len(x))]).T, y, rcond=None)[0][0] def mode(series): return series.mode().iloc[0] real_funcs = ['min', 'max', 'mean', 'median', 'std', coeff] discrete_funcs = real_funcs + [mode] binary_funcs = ['median', 'mean', coeff] regobs_discrete_funcs = ['sum', coeff] regobs_scalar_funcs = ['max', coeff] real_columns = { 'precip', 'precip_most_exposed', 'temp_freeze_lev', 'temp_lev', 'temp_max', 'temp_min', 'wind_change_speed', 'wind_speed' } discrete_columns = { 'danger_level', 'problem_new-loose', 'problem_wet-loose', 'problem_new-slab', 'problem_drift-slab', 'problem_pwl-slab', 'problem_wet-slab', 'problem_glide', 'problem_amount', } binary_columns = { 'wind_dir_N', 'wind_dir_NE', 'wind_dir_E', 'wind_dir_SE', 'wind_dir_S', 'wind_dir_SW', 'wind_dir_W', 'wind_dir_NW', 'wind_chg_dir_N', 'wind_chg_dir_NE', 'wind_chg_dir_E', 'wind_chg_dir_SE', 'wind_chg_dir_S', 'wind_chg_dir_SW', 'wind_chg_dir_W', 'wind_chg_dir_NW', 'wind_chg_start_0', 'wind_chg_start_6', 'wind_chg_start_12', 'wind_chg_start_18', 'temp_fl_start_0', 'temp_fl_start_6', 'temp_fl_start_12', 'temp_fl_start_18' 'emergency_warning', } for prob in PROBLEMS.values(): discrete_columns = discrete_columns.union({f"problem_{prob}_{attr}" for attr in ['dsize', 'prob', 'trig', 'dist']}) binary_columns = binary_columns.union({f"problem_{prob}_cause_{cause}" for cause in CAUSES.values()}) regobs_discrete_columns = set() for reg_type, reg_eng in REG_ENG_V4.items(): for reg_class, subclasses in REGOBS_CLASSES[reg_type].items(): reg_class = _camel_to_snake(reg_class) for subclass in subclasses.values(): subclass = _camel_to_snake(subclass) for n in range(0, 5): col = f"regobs_{reg_eng}_{reg_class}_{subclass}_{n}" regobs_discrete_columns = regobs_discrete_columns.union({col}) regobs_scalar_columns = set() for reg_type, reg_eng in REG_ENG_V4.items(): for reg_scalar in REGOBS_SCALARS[reg_type].keys(): reg_scalar = _camel_to_snake(reg_scalar) for n in range(0, 5): col = f"regobs_{reg_eng}_{reg_scalar}_{n}" regobs_scalar_columns = regobs_scalar_columns.union({col}) def to_time_parameters(labeled_data): labeled_data = labeled_data.drop_regions() data = labeled_data.data real_groups = data.loc[:, real_columns.intersection(data.columns.get_level_values(0))].T.groupby(level=0) discrete_groups = data.loc[:, discrete_columns.intersection(data.columns.get_level_values(0))].T.groupby(level=0) binary_groups = data.loc[:, binary_columns.intersection(data.columns.get_level_values(0))].T.groupby(level=0) regobs_discrete_groups = data.loc[ :, regobs_discrete_columns.intersection(data.columns.get_level_values(0)) ].T.groupby(by=lambda x: x[0][:-1] + str(x[1])).sum() regobs_discrete_groups = regobs_discrete_groups.groupby(by=lambda x: x[:-2]) regobs_scalar_groups = data.loc[ :, regobs_scalar_columns.intersection(data.columns.get_level_values(0)) ].T.groupby(by=lambda x: x[0][:-1] + str(x[1])).max() regobs_scalar_groups = regobs_scalar_groups.groupby(by=lambda x: x[:-2]) real_groups_params = real_groups.agg(real_funcs).T.unstack() discrete_groups_params = discrete_groups.agg(discrete_funcs).T.unstack() binary_groups_params = binary_groups.agg(binary_funcs).T.unstack() regobs_discrete_groups_params = regobs_discrete_groups.agg(regobs_discrete_funcs).T.unstack() regobs_scalar_groups_params = regobs_scalar_groups.agg(regobs_scalar_funcs).T.unstack() return pd.concat([ real_groups_params, discrete_groups_params, binary_groups_params, regobs_discrete_groups_params, regobs_scalar_groups_params, ], axis=1).sort_index(axis=1)
{"hexsha": "e1b133ab8d52041807d2a1951e1421233cd9cf98", "size": 4263, "ext": "py", "lang": "Python", "max_stars_repo_path": "avaml/aggregatedata/time_parameters.py", "max_stars_repo_name": "NVE/avalanche_ml", "max_stars_repo_head_hexsha": "64b2c13484bf603e2ff7b7ac3d989f4c8372ecde", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-01-06T10:29:44.000Z", "max_stars_repo_stars_event_max_datetime": "2021-01-06T10:29:44.000Z", "max_issues_repo_path": "avaml/aggregatedata/time_parameters.py", "max_issues_repo_name": "NVE/avalanche_ml", "max_issues_repo_head_hexsha": "64b2c13484bf603e2ff7b7ac3d989f4c8372ecde", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 17, "max_issues_repo_issues_event_min_datetime": "2020-06-29T11:50:29.000Z", "max_issues_repo_issues_event_max_datetime": "2021-01-28T15:48:40.000Z", "max_forks_repo_path": "avaml/aggregatedata/time_parameters.py", "max_forks_repo_name": "NVE/avalanche_ml", "max_forks_repo_head_hexsha": "64b2c13484bf603e2ff7b7ac3d989f4c8372ecde", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-06-11T21:35:13.000Z", "max_forks_repo_forks_event_max_datetime": "2020-06-11T21:35:13.000Z", "avg_line_length": 34.104, "max_line_length": 119, "alphanum_fraction": 0.6966924701, "include": true, "reason": "import numpy", "num_tokens": 1135}
import sys import os import logging import time import numpy as np sys.path.append('../../pyNeuIR/') from pyNeuIR.utils.preprocess import pad_sequences, load_idfs, load_histograms from pyNeuIR.utils.pairs_generator import PairsGenerator from pyNeuIR.models.drmm import DRMM, HingeLoss from pyNeuIR.configs.drmm_config import config import torch from torch.autograd import Variable torch.manual_seed(222) use_cuda = torch.cuda.device_count() > 0 if use_cuda: torch.cuda.manual_seed(222) def get_model_size(model): return sum([ p.size(0) if len(p.size()) == 1 else p.size(0)*p.size(1) for p in model.parameters()]) def train(trainloader, validationloader, histograms, idfs, save_dir, experiment_name): global logger drmm = DRMM(1) if use_cuda: drmm = drmm.cuda() criterion = HingeLoss() optimizer = torch.optim.Adagrad(drmm.parameters(),lr = 0.001) logger.info("Start training {} experiment with {} parameters".format(experiment_name, get_model_size(drmm))) for epoch in range(100): train_loss = [] time_start = time.time() for i, data in enumerate(trainloader, 0): queries, docs_h, docs_l = data histograms_h = torch.stack([histograms[qid][doc] for qid, doc in zip(queries, docs_h)]) histograms_l = torch.stack([histograms[qid][doc] for qid, doc in zip(queries, docs_l)]) queries_ids = torch.stack([idfs[qid] for qid in queries]) histograms_h = Variable(histograms_h) histograms_l = Variable(histograms_l) queries_ids = Variable(queries_ids) if use_cuda: histograms_h = histograms_h.cuda() histograms_l = histograms_l.cuda() queries_ids = queries_ids.cuda() score_h = drmm(histograms_h,queries_ids) score_l = drmm(histograms_l,queries_ids) optimizer.zero_grad() loss = criterion(score_h,score_l) train_loss.append(loss.data) loss.backward() optimizer.step() time_training = time.time() - time_start validation_loss = validate(drmm, criterion, validationloader, histograms, idfs) logger.info('Epoch : {}\tTrainingLoss: {}\tValidationLoss: {}\tTime: {}'.format(epoch, np.mean(train_loss).cpu().numpy()[0], validation_loss.cpu().numpy()[0],time_training)) torch.save( drmm.state_dict(), open(os.path.join( save_dir, experiment_name + '_epoch_%d' % (epoch) + '.model'), 'wb' ) ) def validate(drmm, criterion, validationloader, histograms, idfs): validation_losses = [] for i, data in enumerate(validationloader, 0): queries, docs_h, docs_l = data histograms_h = torch.stack([histograms[qid][doc] for qid, doc in zip(queries, docs_h)]) histograms_l = torch.stack([histograms[qid][doc] for qid, doc in zip(queries, docs_l)]) queries_idfs = torch.stack([idfs[qid] for qid in queries]) histograms_h = Variable(histograms_h, requires_grad=False) histograms_l = Variable(histograms_l, requires_grad=False) queries_idfs = Variable(queries_idfs, requires_grad=False) if use_cuda: histograms_h = histograms_h.cuda() histograms_l = histograms_l.cuda() queries_idfs = queries_idfs.cuda() score_h = drmm(histograms_h,queries_idfs) score_l = drmm(histograms_l,queries_idfs) loss = criterion(score_h,score_l) validation_losses.append(loss.data) return np.mean(validation_losses) def main(): train_file = sys.argv[1] validation_file = sys.argv[2] histogram_file = sys.argv[3] save_dir = sys.argv[4] experiment_name = sys.argv[5] logging.basicConfig(filename=experiment_name + ".log", level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S") global logger logger = logging.getLogger(experiment_name) logger.info("Training from {} and validation from {}.".format(train_file,validation_file)) logger.info("Loading histograms from {}.".format(histogram_file)) histograms = load_histograms(histogram_file,5) logger.info("Loading ids from {}.".format(config["queries_idfs"])) idfs = load_idfs(config["queries_idfs"],5) logger.info("Loading training pairs generator.") train_generator = PairsGenerator(config["pairs_file"],train_file) logger.info("Loading validation pairs generator.") validation_generator = PairsGenerator(config["pairs_file"],validation_file) trainloader = torch.utils.data.DataLoader(train_generator, batch_size=20, shuffle=True) validationloader = torch.utils.data.DataLoader(validation_generator, batch_size=len(validation_generator)) train(trainloader, validationloader, histograms, idfs, save_dir, experiment_name) main()
{"hexsha": "bf715ec4467521f01f2a71247b00867217379657", "size": 5127, "ext": "py", "lang": "Python", "max_stars_repo_path": "trainers/train_drmm_idf.py", "max_stars_repo_name": "felipemoraes/pyNeuIR", "max_stars_repo_head_hexsha": "5256857387c8fe57d28167e42077ad1dcade1983", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2019-11-09T19:46:44.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-03T07:58:20.000Z", "max_issues_repo_path": "trainers/train_drmm_idf.py", "max_issues_repo_name": "felipemoraes/pyNeuIR", "max_issues_repo_head_hexsha": "5256857387c8fe57d28167e42077ad1dcade1983", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "trainers/train_drmm_idf.py", "max_forks_repo_name": "felipemoraes/pyNeuIR", "max_forks_repo_head_hexsha": "5256857387c8fe57d28167e42077ad1dcade1983", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2019-06-18T12:31:49.000Z", "max_forks_repo_forks_event_max_datetime": "2020-11-22T08:35:07.000Z", "avg_line_length": 36.3617021277, "max_line_length": 132, "alphanum_fraction": 0.6516481373, "include": true, "reason": "import numpy", "num_tokens": 1183}
// Group E - Excel Visualization // // by Scott Sidoli // // 6-15-19 // // Main.cpp // // In this work we use the excel visualization functionality to produce spreadsheet output for the // four batches. It should be noted that some of the includes need to have the path adjusted to work // other machines. We describe the four batches, create row labels for the S value and column labels // are the call/put prices for a given batch. We use an if-else loop inside a for-loop to produce the // matrix output and then send the output to an excel spreadsheet. We include all our option class // functionality. #include "C:\Users\ssido\OneDrive\Desktop\Level9\Level9\Level9Code\Level9Code\UtilitiesDJD\ExcelDriver\ExcelDriverLite.hpp" #include "C:\Users\ssido\OneDrive\Desktop\Level9\Level9\Level9Code\Level9Code\UtilitiesDJD\ExcelDriver\Utilities.hpp" #include "C:\Users\ssido\OneDrive\Desktop\Level9\Level9\Level9Code\Level9Code\UtilitiesDJD\VectorsAndMatrices\Vector.hpp" #include "C:\Users\ssido\OneDrive\Desktop\Level9\Level9\Level9Code\Level9Code\UtilitiesDJD\ExceptionClasses\DatasimException.hpp" #include <iostream> #include "EuropeanOption.hpp" #include "MeshArray.hpp" #include <boost/tuple/tuple_io.hpp> #include <iostream> #include <string> #include <vector> #include <list> #include <fstream> #include <cmath> #include <boost/numeric/ublas/matrix.hpp> #include "C:\Users\ssido\OneDrive\Desktop\Level9\Level9\Level9Code\Level9Code\UtilitiesDJD\VectorsAndMatrices\NestedMatrix.hpp" using NumericMatrix = boost::numeric::ublas::matrix<double>; // using NumericMatrix = NestedMatrix<double>; using namespace std; int main() { curr_stock_price S_start = (curr_stock_price) 10.0; curr_stock_price S_end = (curr_stock_price) 50.0; curr_stock_price S_interval = (curr_stock_price) 1.0; vector<curr_stock_price> S_array = MeshArray(S_start, S_end, S_interval); // Batch 1 Time T1 = (Time) 0.25; Strike_Price K1 = (Strike_Price)65; Volatility sig1 = (Volatility) 0.30; rate r1 = (rate) 0.08; cost_of_carry b1 = (cost_of_carry) 0.08; curr_stock_price S1 = (curr_stock_price) 60.0; // Create option and set parameters EuropeanOption option1; option1.SetOption(T1, K1, sig1, r1, b1, S1); // Batch 2 Time T2 = (Time) 1.0; Strike_Price K2 = (Strike_Price) 100.0; Volatility sig2 = (Volatility) 0.2; rate r2 = (rate) 0.00; cost_of_carry b2 = (cost_of_carry) 0.00; curr_stock_price S2 = (curr_stock_price) 100.0; // Create option and set parameters EuropeanOption option2; option2.SetOption(T2, K2, sig2, r2, b2, S2); // Batch 3 Time T3 = (Time) 1.0; Strike_Price K3 = (Strike_Price) 10.0; Volatility sig3 = (Volatility) 0.50; rate r3 = (rate) 0.12; cost_of_carry b3 = (cost_of_carry) 0.12; curr_stock_price S3 = (curr_stock_price) 5.0; // Create option and set parameters EuropeanOption option3; option3.SetOption(T3, K3, sig3, r3, b3, S3); // Batch 4 Time T4 = (Time) 30.0; Strike_Price K4 = (Strike_Price) 100.0; Volatility sig4 = (Volatility) 0.30; rate r4 = (rate) 0.08; cost_of_carry b4 = (cost_of_carry) 0.08; curr_stock_price S4 = (curr_stock_price) 100.0; // Create option and set parameters EuropeanOption option4; option4.SetOption(T4, K4, sig4, r4, b4, S4); // Now we create Row and column labels Rows labeled by S-value, column by Batch num call/put stringstream ss; string str; list<string> rowLabels; for (unsigned int i = 0; i < S_array.size(); ++i) { ss << i + 10; ss >> str; rowLabels.push_back(str); ss.clear(); } list<string> colLabels{ "Batch 1 Call", "Batch 1 Put", "Batch 2 Call", "Batch 2 Put", "Batch 3 Call", "Batch 3 Put", "Batch 4 Call", "Batch 4 Put"}; // Now we write the sheet name string sheetName("Option Prices"); NumericMatrix PriceMatrix(rowLabels.size(), colLabels.size()); for (unsigned int i = 0; i < PriceMatrix.size1(); i++) { for (unsigned int j = 0; j < PriceMatrix.size2(); j++) { if (j == 0) { option1.SetOption(S_array[i]); PriceMatrix(i, j) = option1.CallPriceEuro(); } else if ( j == 1) { option1.SetOption(S_array[i]); PriceMatrix(i, j) = option1.PutPriceEuro(); } else if (j == 2) { option2.SetOption(S_array[i]); PriceMatrix(i, j) = option2.CallPriceEuro(); } else if (j == 3) { option2.SetOption(S_array[i]); PriceMatrix(i, j) = option2.PutPriceEuro(); } else if (j == 4) { option3.SetOption(S_array[i]); PriceMatrix(i, j) = option3.CallPriceEuro(); } else if (j == 5) { option3.SetOption(S_array[i]); PriceMatrix(i, j) = option3.PutPriceEuro(); } else if (j == 6) { option4.SetOption(S_array[i]); PriceMatrix(i, j) = option4.CallPriceEuro(); } else if (j == 7) { option4.SetOption(S_array[i]); PriceMatrix(i, j) = option4.PutPriceEuro(); } } } ExcelDriver& excel = ExcelDriver::Instance(); excel.MakeVisible(true); long row = 1; long col = 1; excel.AddMatrix<NumericMatrix>(PriceMatrix, sheetName, rowLabels, colLabels, row, col); return 0; }
{"hexsha": "12e6bbf14445639be03d278daae51fd528df2ed1", "size": 5197, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "GroupE/Level9/Level9/Level9Code/Level9Code/Projects/ExcelVisualisation/ExcelVisualisation/Main.cpp", "max_stars_repo_name": "scottsidoli/C-for-Financial-Engineering---Baruch-Pre-MFE-Certificate", "max_stars_repo_head_hexsha": "79c2fb297a85c914d5f0b8671bb17636801e3ce7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2021-11-05T08:14:37.000Z", "max_stars_repo_stars_event_max_datetime": "2021-11-05T08:14:37.000Z", "max_issues_repo_path": "GroupE/Level9/Level9/Level9Code/Level9Code/Projects/ExcelVisualisation/ExcelVisualisation/Main.cpp", "max_issues_repo_name": "scottsidoli/C-for-Financial-Engineering---Baruch-Pre-MFE-Certificate", "max_issues_repo_head_hexsha": "79c2fb297a85c914d5f0b8671bb17636801e3ce7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "GroupE/Level9/Level9/Level9Code/Level9Code/Projects/ExcelVisualisation/ExcelVisualisation/Main.cpp", "max_forks_repo_name": "scottsidoli/C-for-Financial-Engineering---Baruch-Pre-MFE-Certificate", "max_forks_repo_head_hexsha": "79c2fb297a85c914d5f0b8671bb17636801e3ce7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.9345238095, "max_line_length": 130, "alphanum_fraction": 0.6769289975, "num_tokens": 1605}
from sklearn.feature_selection import f_regression import numpy as np from sklearn import svm from sklearn import linear_model import svmcrossvalidate from array import array # Main #f = open("testdata1.txt") f = open("testdata.txt") mylist = f.readlines() testdata = [] for i in range(0, len(mylist), 1): l = mylist[i].split() for j in range(0, len(l), 1): l[j] = float(l[j]) #testdata.append(l) testdata.append(array('f',l)) f.close() #print(testdata) #f = open("traindata1.txt") f = open("traindata.txt") mylist = f.readlines() train = [] for i in range(0, len(mylist), 1): l = mylist[i].split() for j in range(0, len(l), 1): l[j] = float(l[j]) #train.append(l) train.append(array('f',l)) f.close() #print(train) #X is for train data X = train #f = open("trueclass1.txt") f = open("trueclass.txt") mylist = f.readlines() trainlabels = [] for i in range(0, len(mylist), 1): l = mylist[i].split() for j in range(0, len(l), 1): l[j] = float(l[j]) trainlabels.append(l[0]) f.close() y = trainlabels #print(trainlabels) #f_output = f_regression(X,y) f_output = f_regression(X, y, center=True) #print(f_output[0]) #print(f_output[1]) cols = len(X[0]) indices = [] for i in range(0, cols, 1): indices.append(i) fscores = f_output[0] fscores_dict = {} for i in range(0, len(f_output[0]), 1): fscores_dict[i] = fscores[i] sorted_indices = sorted(indices, key=fscores_dict.__getitem__, reverse=True) #print(sorted_indices) print(sorted_indices[:15]) # Reduce both traindata and testdata to top 15 ranked features newtestdata= [] newtrain = [] rows = len(testdata) cols = len(testdata[0]) print("**testdata**") print(rows) print(cols) for i in range(0, rows, 1): l1 = [] for j in range(0, cols, 1): if (j in sorted_indices[:15]): l1.append(testdata[i][j]) newtestdata.append(l1) rows = len(train) cols = len(train[0]) print("**traindata**") print(rows) print(cols) for i in range(0, rows, 1): l2 = [] for j in range(0, cols, 1): if (j in sorted_indices[:15]): l2.append(train[i][j]) newtrain.append(l2) #print(newtestdata) #print(newtrain) ##### Cross-validated linear SVM ##### [bestC,besterror] = svmcrossvalidate.getbestC(newtrain,trainlabels) print("Best C = ", bestC) print("Best cross validation error = ", besterror) # Predict labels of test data clf = svm.LinearSVC(C=bestC, max_iter=100000) clf.fit(train,trainlabels) prediction = clf.predict(testdata) f = open("testlabel_prediction.txt", 'w') for i in range(0, len(prediction), 1): #print("Predict test label:", int(prediction[i])) f.write(str(int(prediction[i]))+ " " + str(i) + "\n") f.close()
{"hexsha": "5cda13657ddea8bf2b69ce01f981787daa28537c", "size": 2917, "ext": "py", "lang": "Python", "max_stars_repo_path": "_posts/2017007-07-Feature selection in high dimensional data.py", "max_stars_repo_name": "asabade/asabade-asabade.github.io", "max_stars_repo_head_hexsha": "6828fbef05ccf09cd5b4c3e6d421078e6bebe401", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "_posts/2017007-07-Feature selection in high dimensional data.py", "max_issues_repo_name": "asabade/asabade-asabade.github.io", "max_issues_repo_head_hexsha": "6828fbef05ccf09cd5b4c3e6d421078e6bebe401", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "_posts/2017007-07-Feature selection in high dimensional data.py", "max_forks_repo_name": "asabade/asabade-asabade.github.io", "max_forks_repo_head_hexsha": "6828fbef05ccf09cd5b4c3e6d421078e6bebe401", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 22.6124031008, "max_line_length": 77, "alphanum_fraction": 0.603702434, "include": true, "reason": "import numpy", "num_tokens": 792}
import os import cv2 import time import random import traceback import subprocess import numpy as np import concurrent.futures from PyQt5.QtCore import QObject, pyqtSignal # QWidget无法在主线程之外被调用,因此构造一个QObject,使用自定义的信号来触发主线程的槽函数 # 具体可以看:https://stackoverflow.com/questions/2104779/qobject-qplaintextedit-multithreading-issues # stackoverflow中的回答很好的解释了原因,但是没有给出示例代码。 # 我经过搜索以及研究,做出了解决方案,有同样需求的开发者可以参考本程序。 class UpdateLog(QObject): # 写入log框信号 update_signal = pyqtSignal() # 程序出错停止当前执行任务信号 error_stop_signal = pyqtSignal() # 程序执行完成信号 finish_exec_signal = pyqtSignal() def __init__(self): QObject.__init__(self) def update(self): self.update_signal.emit() def error_stop(self): self.error_stop_signal.emit() def finish_exec(self): self.finish_exec_signal.emit() class Utils(): def __init__(self): # debug开关(开启后,成功匹配会弹出图片,上面用圈标明了匹配到的坐标点范围) self.debug = False # 计数 self.cnt = 0 # 分辨率相关 self.screen_height = 2560 self.screen_width = 1440 self.scale_percentage = 100 # log临时堆栈,输出后会pop掉 self.text = [] # 图像匹配阈值 self.threshold = 0.90 # 停止操作回调 self.stop_callback = False # wifi_adb默认地址 self.wifi_adb_addr = "192.168.1.239:5555" # log转发 self.logger = UpdateLog() # 加载图像资源 def load_res(self): # 匹配对象的字典 self.res = {} file_dir = os.path.join(os.getcwd(), "img") temp_list = os.listdir(file_dir) for item in temp_list: self.res[item] = {} res_path = os.path.join(file_dir, item) self.res[item]["img"] = cv2.imread(res_path) # 如果不是原尺寸(1440P),进行对应缩放操作 if self.scale_percentage != 100: self.res[item]["width"] = int(self.res[item]["img"].shape[1] * self.scale_percentage / 100) self.res[item]["height"] = int(self.res[item]["img"].shape[0] * self.scale_percentage / 100) self.res[item]["img"] = cv2.resize(self.res[item]["img"], (self.res[item]["width"], self.res[item]["height"]), interpolation=cv2.INTER_AREA) else: self.res[item]["height"], self.res[item]["width"], self.res[item]["channel"] = self.res[item]["img"].shape[::] # 获取截图 def get_img(self, pop_up_window=False, save_img=False, file_name='screenshot.png'): image_bytes = self.exec_cmd("adb exec-out screencap -p") if image_bytes == b'': self.write_log(f"截图失败!请检查adb是否已经跟手机连接!") self.error_stop() else: self.target_img = cv2.imdecode(np.fromstring(image_bytes, dtype='uint8'), cv2.IMREAD_COLOR) if save_img: cv2.imwrite(file_name, self.target_img) if pop_up_window: self.show_img() def show_img(self): cv2.namedWindow("screenshot", cv2.WINDOW_NORMAL) cv2.resizeWindow('screenshot', 360, 640) cv2.imshow("screenshot", self.target_img) cv2.waitKey(0) cv2.destroyWindow("screenshot") # 匹配并获取中心点 def match(self, img_name): # 从加载好的图像资源中获取数据 find_img = self.res[img_name]["img"] find_height = self.res[img_name]["height"] find_width = self.res[img_name]["width"] # 匹配 try: result = cv2.matchTemplate(self.target_img, find_img, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) except: self.write_log(f"OpenCV对比失败!请使用杂项中的截图功能来测试能否正常截图!") self.error_stop() print(f"{img_name}最大匹配度:{max_val}") if max_val < self.threshold: return False # 计算位置 self.pointUpLeft = max_loc self.pointLowRight = (int(max_loc[0] + find_width), int(max_loc[1] + find_height)) self.pointCentre = (int(max_loc[0] + (find_width / 2)), int(max_loc[1] + (find_height / 2))) if self.debug: self.draw_circle() self.write_log(f"匹配到{img_name},匹配度:{max_val}") return True # 匹配多个结果 def multiple_match(self, img_name): # 用于存放匹配结果 match_res = [] # 从加载好的图像资源中获取数据 find_img = self.res[img_name]["img"] find_height = self.res[img_name]["height"] find_width = self.res[img_name]["width"] # OpenCV匹配多个结果 # https://stackoverflow.com/a/58514954/12766614 try: result = cv2.matchTemplate(self.target_img, find_img, cv2.TM_CCOEFF_NORMED) # max_val设置为1,从而能够进入循环 max_val = 1 cnt = 0 while max_val > self.threshold: min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) if max_val > self.threshold: # 抹除最大值周围的数值,从而可以在下一次找到其它位置的(第二)最大值 result[max_loc[1]-find_height//2:max_loc[1]+find_height//2+1, max_loc[0]-find_width//2:max_loc[0]+find_width//2+1] = 0 # 计算位置 pointUpLeft = max_loc pointLowRight = (int(max_loc[0] + find_width), int(max_loc[1] + find_height)) pointCentre = (int(max_loc[0] + (find_width / 2)), int(max_loc[1] + (find_height / 2))) # image = cv2.rectangle(image, (max_loc[0],max_loc[1]), (max_loc[0]+find_width+1, max_loc[1]+find_height+1), (0,0,0)) # cv2.imwrite(f'output_{cnt}.png', 255*result) 灰阶输出,越亮匹配度越高 cnt += 1 match_res.append(pointCentre) print(f"{img_name}找到{cnt}个,匹配度:{max_val}") except: self.write_log(f"OpenCV对比失败!请使用杂项中的截图功能来测试能否正常截图!") self.error_stop() return match_res # 立即截图,然后匹配,返回boolean def current_match(self, img_name): self.get_img() return self.match(img_name) # 立即截图,然后匹配多个,返回数组,内含若干匹配成功的tuple def current_multiple_match(self, img_name): self.get_img() return self.multiple_match(img_name) # 点击(传入坐标) # 也可以接受比例形式坐标,例如(0.5, 0.5, percentage=True)就是点屏幕中心 # 可以传入randomize=False来禁用坐标的随机偏移 def tap(self, x_coord=None, y_coord=None, percentage=False, randomize=True): if x_coord is None and y_coord is None: x_coord, y_coord = self.get_coord(randomize=randomize) if percentage: x_coord = int(x_coord * self.screen_width * (self.scale_percentage / 100)) y_coord = int(y_coord * self.screen_height * (self.scale_percentage / 100)) x_coord = self.randomize_coord(x_coord, 5) y_coord = self.randomize_coord(y_coord, 5) self.write_log(f"点击坐标:{(x_coord, y_coord)}") cmd = f"adb shell input tap {x_coord} {y_coord}" self.exec_cmd(cmd) # 滑动 / 长按 # 本函数仅用于debug def swipe(self, fromX=None, fromY=None, toX=None, toY=None, swipe_time=200): if toX is None and toY is None: swipe_time = 500 self.write_log(f"长按坐标:{(fromX, fromY)}") cmd = f"adb shell input swipe {fromX} {fromY} {fromX} {fromY} {swipe_time}" else: self.write_log(f"滑动:从{(fromX, fromY)}到{(toX, toY)}") cmd = f"adb shell input swipe {fromX} {fromY} {toX} {toY} {swipe_time}" self.exec_cmd(cmd) # 执行指令 def exec_cmd(self, cmd, new_thread=False, show_output=False): def do_cmd(cmd): pipe = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True) return pipe.stdout.read() if new_thread: if show_output: self.write_log(f"执行{cmd}") with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(do_cmd, cmd) ret_val = future.result() else: if show_output: self.write_log(f"执行{cmd}") ret_val = do_cmd(cmd) if show_output: self.write_log(ret_val.decode("utf-8")) return ret_val # 控制台显示执行次数 def show_cnt(self): self.write_log(f"已重试{self.cnt}次!") # adb连接(WIFI) def adb_connect(self): self.exec_cmd(f"adb connect {self.wifi_adb_addr}", new_thread=True, show_output=True) # adb devices(验证设备是否连接) def adb_devices(self): self.exec_cmd("adb devices", new_thread=True, show_output=True) # 查看adb版本 def adb_version(self): self.exec_cmd("adb --version", new_thread=True, show_output=True) # 画点(测试用) def draw_circle(self): cv2.circle(self.target_img, self.pointUpLeft, 10, (255, 255, 255), 5) cv2.circle(self.target_img, self.pointCentre, 10, (255, 255, 255), 5) cv2.circle(self.target_img, self.pointLowRight, 10, (255, 255, 255), 5) self.show_img() # 获取匹配到的坐标 def get_coord(self, randomize=True): x_coord = self.pointCentre[0] y_coord = self.pointCentre[1] if randomize: x_coord = self.randomize_coord(x_coord, 20) y_coord = self.randomize_coord(y_coord, 15) return x_coord, y_coord # 坐标进行随机偏移处理 def randomize_coord(self, coord, diff): return random.randint(coord - diff, coord + diff) # 在GUI的文本框内写入log def write_log(self, text): self.text.append(text) self.logger.update() # 判断文件是否为空 def is_file_empty(self, file_name): return os.stat(file_name).st_size == 0 # 致命错误时转发到GUI实现停止当前任务 def error_stop(self): self.stop_callback = False self.logger.error_stop() # 等待GUI线程的回调,确保当前任务已经停止 while True: if self.stop_callback: self.stop_callback = False break def auto_screenshot_on_win(self, mode): def check_dir(mode): if not os.path.isdir("homework"): os.mkdir("homework") if not os.path.isdir(os.path.join("homework", mode)): os.mkdir(os.path.join("homework", mode)) if self.ui.checkBox_14.isChecked(): if self.match("stat_button.png"): self.tap() name = time.strftime("%Y-%m-%d_%H%M%S", time.localtime()) + ".png" relative_path = os.path.join("homework", mode, name) check_dir(mode) # sleep3秒,确保能截到图,否则游戏内战斗数据有可能还没加载完全 time.sleep(3) self.get_img(save_img=True, file_name=relative_path) self.current_match("close_stat_button.png") self.tap() self.write_log(f"截图成功,存放在{relative_path}") # 预设的一些指令组 class Command(): def __init__(self): self.utils = Utils() # 指令与执行操作的对应关系 self.func_to_img = { "click_battle_retry": ["after_battle_retry_button.png", "have_func"], "click_next_stage": ["next_stage_button.png", "have_func"], "click_continue": ["continue_button.png", "have_func"], "click_continue_campaign": ["continue_button.png"], "no_click_next_stage": ["next_stage_button.png", "have_func"], "no_click_continue": ["continue_button.png", "have_func"], "click_battle": ["battle_button.png"], "click_battle_pause": ["in_battle_pause_button.png"], "click_battle_exit": ["in_battle_exit_button.png"], "click_next_team": ["next_team_button.png"], "click_challenge": ["challenge_button.png"], "check_boss_stage": ["challenge_boss_button.png"], "check_bundle_pop_up": ["bundle_pop_up.png", "have_func"], "click_challenge_boss_fp": ["challenge_boss_fp_button.png"], "check_level_up": ["level_up.png", "have_func"], "click_idle_chest": ["idle_chest.png"], "click_friend_button": ["friend_button.png"], "click_expand_left_col_button": ["expand_left_col_button.png", "have_func"], "click_send_heart_button": ["send_heart_button.png"], "click_close_friend_ui_button": ["ui_return_button.png"], "click_instant_idle_button": ["instant_idle_button.png"], "click_instant_idle_free_claim_button": ["instant_idle_free_claim_button.png"], "click_instant_idle_close_button": ["instant_idle_close_button.png"], "click_noble_tavern_button": ["noble_tavern_button.png"], "click_friend_summon_pool": ["friend_summon_pool.png"], "click_guild_button": ["guild_button.png"], "click_guild_boss_button": ["guild_boss_button.png"], "click_arena_button": ["arena_button.png"], "click_normal_arena_button": ["normal_arena_button.png"], "click_arena_challenge_button": ["arena_challenge_button.png"], "click_skip_battle_button": ["skip_battle_button.png"], "click_bounty_board_button": ["bounty_board_button.png"], "click_bounty_board_dispatch_all_button": ["bounty_board_dispatch_all_button.png"], "click_bounty_board_collect_all_button": ["bounty_board_collect_all_button.png"], "click_bounty_board_confirm_button": ["bounty_board_confirm_button.png"], "click_tower_button": ["tower_button.png"], "click_tower_main_button": ["tower_main_button.png"] } # 是否杀掉进程 self.stop = False # 以下坐标会在执行“日常任务”模式时自动初始化 # “领地”、“野外”、“战役”点击坐标 self.ranhorn_coord = None self.dark_forest_coord = None self.campaign_coord = None # exec_func函数默认延迟一秒(延迟太短会导致截图太快,从而反复多点几次) self.exec_func_delay = 1 # 自动执行符合触发条件的指令 def exec_func(self, cmd_list, exit_cond=None): afterExecFunc = False exit_loop_flag = False if exit_cond: if "afterExecFunc" in exit_cond: exit_cond = exit_cond.split("@")[1] afterExecFunc = True while True: if self.stop: return self.utils.get_img() if self.stop: return for cmd in cmd_list: if self.stop: return if self.utils.match(self.func_to_img[cmd][0]): if len(self.func_to_img[cmd]) == 1: self.utils.tap() elif self.func_to_img[cmd][1] == "have_func": cmd_func = "self." + cmd + "()" exec(cmd_func) else: self.utils.write_log("【可能出错了】这不正常,匹配到了图片,但是没有执行任何操作") # 如果达成退出条件,就会在执行完毕之后退出exec_func函数 if afterExecFunc and exit_cond == cmd: exit_loop_flag = True break if exit_loop_flag: break if self.stop: return # 防止截图太快重复点击 time.sleep(self.exec_func_delay) # 主线模式(只重试,过关之后不挑战下一关) def story_mode_retry_only(self): self.utils.write_log("开始执行【主线模式(只重试)】!") self.exec_func([ "click_battle_retry", "no_click_next_stage", "click_next_team", "click_battle" ], exit_cond="afterExecFunc@no_click_next_stage") self.utils.logger.finish_exec() # 主线模式(推图) def story_mode(self): self.utils.write_log("开始执行【主线模式(推图)】!") self.exec_func([ "click_battle_retry", "click_next_stage", "click_continue_campaign", "click_next_team", "click_battle", "check_boss_stage", "click_challenge_boss_fp", "check_bundle_pop_up", "check_level_up" ]) self.utils.logger.finish_exec() # 王座之塔模式(只重试,过关之后不挑战下一关) def tower_mode_retry_only(self): self.utils.write_log("开始执行【王座之塔模式(只重试)】!") self.exec_func([ "click_battle_retry", "no_click_continue", "click_challenge", "click_battle" ], exit_cond="afterExecFunc@no_click_continue") self.utils.logger.finish_exec() # 王座之塔模式(推塔) def tower_mode(self): self.utils.write_log("开始执行【王座之塔模式(推塔)】!") self.exec_func([ "click_battle_retry", "click_continue", "click_battle", "click_challenge" ]) self.utils.logger.finish_exec() # 日常任务模式 def daily_mode(self): self.utils.write_log("开始执行【日常任务模式】!") # 初始化“领地”、“野外”、“战役”的坐标 if self.ranhorn_coord is None: self.utils.get_img() try: if not self.utils.match("ranhorn_icon.png"): self.utils.match("ranhorn_icon_chosen.png") self.ranhorn_coord = self.utils.get_coord() if not self.utils.match("dark_forest_icon.png"): self.utils.match("dark_forest_icon_chosen.png") self.dark_forest_coord = self.utils.get_coord() if not self.utils.match("campaign_icon.png"): self.utils.match("campaign_icon_chosen.png") self.campaign_coord = self.utils.get_coord() except: self.utils.write_log("初始化“领地”、“野外”、“战役”的坐标失败,请检查游戏是否在首页") self.utils.error_stop() if self.stop: return # 获取日常任务勾选信息 mission_list = [] if self.utils.ui.checkBox_2.isChecked(): mission_list.append("daily_challenge_boss") if self.utils.ui.checkBox_4.isChecked(): mission_list.append("daily_send_heart") if self.utils.ui.checkBox_5.isChecked(): mission_list.append("daily_instant_idle") if self.utils.ui.checkBox_6.isChecked(): mission_list.append("daily_summon") if self.utils.ui.checkBox_7.isChecked(): mission_list.append("daily_guild_boss") if self.utils.ui.checkBox_8.isChecked(): mission_list.append("daily_arena_battle") if self.utils.ui.checkBox_9.isChecked(): mission_list.append("daily_bounty_board") if self.utils.ui.checkBox_10.isChecked(): mission_list.append("daily_tower") if self.utils.ui.checkBox_11.isChecked(): pass if self.utils.ui.checkBox_12.isChecked(): pass if self.utils.ui.checkBox_13.isChecked(): pass # 箱子会在所有任务开始前后分别领取一次 if self.utils.ui.checkBox_3.isChecked(): self.daily_idle_chest_1st_exec = True mission_list.insert(0, "daily_idle_chest") mission_list.append("daily_idle_chest") # 按照mission list执行每日任务 for mission in mission_list: if self.stop: return func = "self." + mission + "()" exec(func) if self.stop: return time.sleep(2) self.utils.write_log("【日常任务】全部完成!") self.utils.logger.finish_exec() # 日常任务 - 挑战首领1次(20pts) def daily_challenge_boss(self): self.click_campaign_icon() cmd_list = [ "click_battle_exit", "click_battle_pause", "click_battle", "check_boss_stage", "click_challenge_boss_fp", "check_bundle_pop_up", "check_level_up" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_battle_exit") self.utils.write_log("【日常任务】完成 - 挑战首领1次(20pts)!") # 日常任务 - 领取战利品2次(10pts) def daily_idle_chest(self): self.click_campaign_icon() cmd_list = [ "click_idle_chest", ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_idle_chest") self.utils.tap(0.5, 0.9, percentage=True) if self.daily_idle_chest_1st_exec: self.daily_idle_chest_1st_exec = False self.utils.write_log("【日常任务】领取战利品1次,第2次会在其它日常任务执行完毕后领取!") else: self.utils.write_log("【日常任务】完成 - 领取战利品2次(10pts)!") # 日常任务 - 赠送好友友情点1次(10pts) def daily_send_heart(self): self.click_campaign_icon() cmd_list = [ "click_expand_left_col_button", "click_friend_button", "click_send_heart_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_send_heart_button") cmd_list = [ "click_close_friend_ui_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_close_friend_ui_button") self.utils.write_log("【日常任务】完成 - 赠送好友友情点1次(10pts)!") # 日常任务 - 快速挂机1次(10pts) def daily_instant_idle(self): self.click_campaign_icon() cmd_list = [ "click_instant_idle_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_instant_idle_button") if self.utils.current_match('instant_idle_free_claim_button.png'): # 点击“免费领取” self.utils.tap() # 给予设备足够的反应时间后,点击空白处(屏幕下方)关闭“获得奖励”窗口 time.sleep(1) self.utils.tap(0.5, 0.9, percentage=True) self.utils.write_log("【日常任务】完成 - 快速挂机1次(10pts)!") else: self.utils.write_log("【日常任务】执行失败 - 快速挂机1次(10pts)!原因:你已经用完免费快速挂机次数") cmd_list = [ "click_instant_idle_close_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_instant_idle_close_button") # 日常任务 - 在月桂酒馆召唤英雄1次(20pts) def daily_summon(self): self.click_ranhorn_icon() cmd_list = [ "click_noble_tavern_button", "click_friend_summon_pool" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_friend_summon_pool") time.sleep(2) if self.utils.current_match('single_friend_summon_button.png'): # 单抽一次友情池 self.utils.tap() # 给予设备足够的反应时间后,点击卡背 retry_cnt = 0 while not self.utils.current_match('summon_card_backside.png'): time.sleep(2) retry_cnt += 1 if retry_cnt > 5: self.utils.error_stop() self.utils.tap() # 给予设备足够的反应时间后,点击返回 retry_cnt = 0 while not self.utils.current_match('ui_return_button.png'): time.sleep(2) retry_cnt += 1 if retry_cnt > 5: self.utils.error_stop() self.utils.tap() # 等待2秒之后,点击同一位置来关闭“获得奖励”界面 time.sleep(2) self.utils.tap() # 等待2秒之后,点击同一位置来关闭抽卡界面 time.sleep(2) self.utils.tap() self.utils.write_log("【日常任务】完成 - 在月桂酒馆召唤英雄1次(20pts)!") else: self.utils.write_log("【日常任务】执行失败 - 在月桂酒馆召唤英雄1次(20pts)!原因:友情点不够") # 点击返回,回到主界面 self.utils.match('ui_return_button.png') self.utils.tap() # 日常任务 - 参加公会团队狩猎1次(10pts) def daily_guild_boss(self): # 通用的公会boss流程 def boss_fight(): while self.utils.current_match('guild_boss_quick_battle_button.png'): # 点击“扫荡” self.utils.tap() # 给予设备足够的反应时间后,点击“扫荡1次” time.sleep(1) self.utils.current_match('guild_boss_quick_battle_confirm_button.png') self.utils.tap() # 给予设备足够的反应时间后,点击空白处关闭结算界面 time.sleep(2) while self.utils.current_match('guild_boss_fight_victory.png'): self.utils.tap(0.2, 0.9, percentage=True, randomize=False) self.utils.tap(0.2, 0.9, percentage=True, randomize=False) time.sleep(2) self.mission_accomplished = True self.mission_accomplished_cnt += 1 self.mission_accomplished = False self.mission_accomplished_cnt = 0 self.click_ranhorn_icon() cmd_list = [ "click_guild_button", "click_guild_boss_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_guild_boss_button") time.sleep(2) # 先尝试打哥布林 boss_fight() if self.mission_accomplished_cnt > 0: self.utils.write_log(f"【公会Boss】击杀哥布林{self.mission_accomplished_cnt}次!") self.mission_accomplished_cnt = 0 # 再切到右边尝试打远古剑魂 self.utils.current_match('guild_boss_right_arrow.png') self.utils.tap() time.sleep(2) boss_fight() if self.mission_accomplished_cnt > 0: self.utils.write_log(f"【公会Boss】击杀剑魂{self.mission_accomplished_cnt}次!") self.mission_accomplished_cnt = 0 if self.mission_accomplished: self.utils.write_log("【日常任务】完成 - 参加公会团队狩猎1次(10pts)!") else: self.utils.write_log("【日常任务】执行失败 - 参加公会团队狩猎1次(10pts)!原因:你今天已经打过了") # 点击返回,回到主界面 while self.utils.current_match('ui_return_button.png'): self.utils.tap() time.sleep(2) # 日常任务 - 参加竞技场挑战1次(20pts) def daily_arena_battle(self): self.click_dark_forest_icon() cmd_list = [ "click_arena_button", "click_normal_arena_button", "click_arena_challenge_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_arena_challenge_button") mission_complete = False time.sleep(2) # 免费票打完为止 while self.utils.current_match('arena_free_battle_button.png'): # 寻找y值最大的坐标(最下方的挑战) res = self.utils.multiple_match('arena_free_battle_button.png') max_y_idx = 0 if len(res) > 1: for idx in range(len(res) - 1): if res[max_y_idx] < res[idx]: max_y_idx = idx # 使用免费票 self.utils.tap(res[max_y_idx][0], res[max_y_idx][1], randomize=False) time.sleep(2) # 点击战斗 cmd_list = [ "click_skip_battle_button", "click_battle" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_skip_battle_button") time.sleep(2) # 获得奖励界面(点空白处关闭) self.utils.tap(0.5, 0.9, percentage=True) time.sleep(2) # 战斗结算界面(点空白处关闭) self.utils.tap(0.5, 0.9, percentage=True) time.sleep(2) mission_complete = True # 免费票打完了,回退到主界面 if mission_complete: self.utils.write_log("【日常任务】完成 - 参加竞技场挑战1次(20pts)!") else: self.utils.write_log("【日常任务】执行失败 - 参加竞技场挑战1次(20pts)!原因:已经用完免费票") # 依次点击空白,返回,返回 self.utils.tap(0.5, 0.9, percentage=True) time.sleep(2) self.utils.current_match('ui_return_button.png') self.utils.tap() time.sleep(2) self.utils.tap() # 日常任务 - 接受3个悬赏任务(10pts) def daily_bounty_board(self): self.click_dark_forest_icon() # 个人悬赏 - 一键领取&派遣 cmd_list = [ "click_bounty_board_button", "click_bounty_board_collect_all_button", "click_bounty_board_dispatch_all_button", "click_bounty_board_confirm_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_bounty_board_confirm_button") time.sleep(1) # 切换到团队悬赏页面 self.utils.current_match("bounty_board_team_tab.png") self.utils.tap() time.sleep(1) # 团队悬赏 - 一键领取&派遣 cmd_list = [ "click_bounty_board_collect_all_button", "click_bounty_board_dispatch_all_button", "click_bounty_board_confirm_button" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_bounty_board_confirm_button") time.sleep(1) # 点击返回 self.utils.current_match('ui_return_button.png') self.utils.tap() time.sleep(2) self.utils.write_log("【日常任务】完成 - 接受3个悬赏任务(10pts)!") # 日常任务 - 挑战王座之塔1次(10pts) def daily_tower(self): self.click_dark_forest_icon() cmd_list = [ "click_battle_exit", "click_battle_pause", "click_tower_button", "click_tower_main_button", "click_challenge", "click_battle" ] self.exec_func(cmd_list, exit_cond="afterExecFunc@click_battle_exit") time.sleep(1) # 点击返回,返回 self.utils.current_match('ui_return_button.png') self.utils.tap() time.sleep(2) self.utils.tap() time.sleep(2) self.utils.write_log("【日常任务】完成 - 挑战王座之塔1次(10pts)!") # 点击“领地” def click_ranhorn_icon(self): self.utils.tap(self.ranhorn_coord[0], self.ranhorn_coord[1]) # 点击“野外” def click_dark_forest_icon(self): self.utils.tap(self.dark_forest_coord[0], self.dark_forest_coord[1]) # 点击“战役” def click_campaign_icon(self): self.utils.tap(self.campaign_coord[0], self.campaign_coord[1]) # 点击“再次挑战” def click_battle_retry(self): self.utils.cnt += 1 self.utils.show_cnt() self.utils.tap() # 点击“下一关” def click_next_stage(self): # 挑战成功,重置“重试计数” self.utils.cnt = 0 self.utils.write_log("【主线模式】恭喜过关!即将自动开始挑战下一关!") self.utils.auto_screenshot_on_win(mode="main") self.utils.current_match("next_stage_button.png") self.utils.tap() # 只检测,不点击“下一关” def no_click_next_stage(self): # 挑战成功,重置“重试计数” self.utils.cnt = 0 self.utils.write_log("【主线模式】恭喜过关!") self.utils.auto_screenshot_on_win(mode="main") # 点击“点击屏幕继续”(用于王座之塔页面) def click_continue(self): # 挑战成功,重置“重试计数” self.utils.cnt = 0 self.utils.write_log("【王座之塔】恭喜过关!即将自动开始挑战下一关!") self.utils.auto_screenshot_on_win(mode="tower") self.utils.current_match("continue_button.png") self.utils.tap() # 只检测,不点击“点击屏幕继续”(用于王座之塔页面) def no_click_continue(self): # 挑战成功,重置“重试计数” self.utils.cnt = 0 self.utils.write_log("【王座之塔】恭喜过关!") self.utils.auto_screenshot_on_win(mode="tower") # 检测限时礼包弹窗 # 如果过关之后弹出限时礼包购买窗口,直接点击屏幕下方关闭 def check_bundle_pop_up(self): self.utils.tap(0.5, 0.9, percentage=True) self.utils.write_log("检测到有限时礼包弹窗并自动关闭成功!") # 检测升级弹窗 # 如果过关之后弹出升级窗口,直接点击屏幕下方关闭 def check_level_up(self): self.utils.tap(0.5, 0.9, percentage=True) self.utils.write_log("检测到升级弹窗并自动关闭成功!") # 点击右侧展开按钮 def click_expand_left_col_button(self): self.utils.tap(randomize=False)
{"hexsha": "027643faf475a8038f26b795d3a022bf51e579af", "size": 30828, "ext": "py", "lang": "Python", "max_stars_repo_path": "core.py", "max_stars_repo_name": "oscarcx123/afk-arena-tools", "max_stars_repo_head_hexsha": "6cf4b0165a78049af7bcfffc3bc11e94255bf115", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 49, "max_stars_repo_stars_event_min_datetime": "2019-10-21T06:18:45.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-13T03:02:18.000Z", "max_issues_repo_path": "core.py", "max_issues_repo_name": "oscarcx123/afk-arena-tools", "max_issues_repo_head_hexsha": "6cf4b0165a78049af7bcfffc3bc11e94255bf115", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 12, "max_issues_repo_issues_event_min_datetime": "2020-01-09T13:39:48.000Z", "max_issues_repo_issues_event_max_datetime": "2021-01-21T16:18:46.000Z", "max_forks_repo_path": "core.py", "max_forks_repo_name": "oscarcx123/afk-arena-tools", "max_forks_repo_head_hexsha": "6cf4b0165a78049af7bcfffc3bc11e94255bf115", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 7, "max_forks_repo_forks_event_min_datetime": "2020-01-16T08:40:38.000Z", "max_forks_repo_forks_event_max_datetime": "2021-09-15T11:35:01.000Z", "avg_line_length": 36.7, "max_line_length": 156, "alphanum_fraction": 0.5827818866, "include": true, "reason": "import numpy", "num_tokens": 9012}
import numpy as np import openmdao.api as om class KappaComp(om.ExplicitComponent): r""" Computes the term kappa in the drag equation: .. math:: C_D = C_{D0} + \kappa C_{L\alpha} \alpha^2 """ def initialize(self): self.options.declare('num_nodes', types=int) def setup(self): nn = self.options['num_nodes'] # Inputs self.add_input('mach', shape=(nn,), desc='Mach number', units=None) # Outputs self.add_output(name='kappa', val=np.zeros(nn), desc='induced drag coefficient', units=None) # Jacobian ar = np.arange(nn) self.declare_partials(of='kappa', wrt='mach', rows=ar, cols=ar) def compute(self, inputs, outputs): M = inputs['mach'] idx_low = np.where(M < 1.15)[0] idx_high = np.where(M >= 1.15)[0] outputs['kappa'][idx_low] = 0.54 + 0.15 * (1.0 + np.tanh((M[idx_low] - 0.9) / 0.06)) outputs['kappa'][idx_high] = 0.54 + 0.15 * (1.0 + np.tanh(0.25 / 0.06)) \ + 0.14 * (M[idx_high] - 1.15) def compute_partials(self, inputs, partials): M = inputs['mach'] idx_low = np.where(M < 1.15)[0] idx_high = np.where(M >= 1.15)[0] k = 50.0 / 3.0 tanh = np.tanh(k * (M[idx_low] - 0.9)) sech2 = 1.0 - tanh**2 partials['kappa', 'mach'][idx_low] = 2.5 * sech2 partials['kappa', 'mach'][idx_high] = 0.14
{"hexsha": "7c8b0f957832f290668aeb5807c1560d619df0fb", "size": 1431, "ext": "py", "lang": "Python", "max_stars_repo_path": "dymos/examples/min_time_climb/aero/kappa_comp.py", "max_stars_repo_name": "kaushikponnapalli/dymos", "max_stars_repo_head_hexsha": "3fba91d0fc2c0e8460717b1bec80774676287739", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 104, "max_stars_repo_stars_event_min_datetime": "2018-09-08T16:52:27.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-10T23:35:30.000Z", "max_issues_repo_path": "dymos/examples/min_time_climb/aero/kappa_comp.py", "max_issues_repo_name": "kaushikponnapalli/dymos", "max_issues_repo_head_hexsha": "3fba91d0fc2c0e8460717b1bec80774676287739", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 628, "max_issues_repo_issues_event_min_datetime": "2018-06-27T20:32:59.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T19:24:32.000Z", "max_forks_repo_path": "dymos/examples/min_time_climb/aero/kappa_comp.py", "max_forks_repo_name": "kaushikponnapalli/dymos", "max_forks_repo_head_hexsha": "3fba91d0fc2c0e8460717b1bec80774676287739", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 46, "max_forks_repo_forks_event_min_datetime": "2018-06-27T20:54:07.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-19T07:23:32.000Z", "avg_line_length": 27.5192307692, "max_line_length": 100, "alphanum_fraction": 0.5464709993, "include": true, "reason": "import numpy", "num_tokens": 471}
From iris.algebra Require Import gmap agree auth. From iris.proofmode Require Import tactics. From cap_machine Require Export stdpp_extra region_invariants multiple_updates region_invariants_revocation region_invariants_static sts. Require Import stdpp.countable. Import uPred. Section heap. Context {Σ:gFunctors} {memg:memG Σ} {regg:regG Σ} {stsg : STSG Addr region_type Σ} {heapg : heapG Σ} `{MonRef: MonRefG (leibnizO _) CapR_rtc Σ}. Notation STS := (leibnizO (STS_states * STS_rels)). Notation STS_STD := (leibnizO (STS_std_states Addr region_type)). Notation WORLD := (prodO STS_STD STS). Implicit Types W : WORLD. Lemma related_sts_priv_world_revoked_to_uninit W a w : (std W) !! a = Some Revoked -> related_sts_priv_world W (<s[a:=Static {[a:=w]}]s> W). Proof. intros Hrev. split;[|apply related_sts_priv_refl]. split. - rewrite dom_insert_L. set_solver. - intros i x y Hx Hy. destruct (decide (i = a)). + simplify_map_eq. right with Temporary;[left;constructor|]. eright;[|left]. right. constructor. + simplify_map_eq. left. Qed. Lemma related_sts_priv_world_uninit_to_revoked W a w : (std W) !! a = Some (Static {[a:=w]}) -> related_sts_priv_world W (<s[a:=Revoked]s> W). Proof. intros Hrev. split;[|apply related_sts_priv_refl]. split. - rewrite dom_insert_L. set_solver. - intros i x y Hx Hy. destruct (decide (i = a)). + simplify_map_eq. right with Temporary;[left;constructor|]. eright;[|left]. right. constructor. + simplify_map_eq. left. Qed. Lemma related_sts_pub_world_uninit_to_temporary W a w : (std W) !! a = Some (Static {[a:=w]}) -> related_sts_pub_world W (<s[a:=Temporary]s> W). Proof. intros Hrev. split;[|apply related_sts_pub_refl]. split. - rewrite dom_insert_L. set_solver. - intros i x y Hx Hy. destruct (decide (i = a)). + simplify_map_eq. right with Temporary;[|left]. constructor. + simplify_map_eq. left. Qed. (* Lemma that extracts all temporary addresses in W from a list of addresses l *) Lemma extract_temps_from_range W (l : list Addr) : NoDup l -> ∃ l', NoDup l' ∧ Forall (λ (a : Addr), (std W) !! a = Some Temporary <-> a ∈ l') l ∧ Forall (λ (a : Addr), (std W) !! a = Some Temporary) l'. Proof. exists (filter (λ a, (std W) !! a = Some Temporary) l). split. - apply NoDup_filter. auto. - split. + apply Forall_forall. intros x Hx. split;intros. * apply elem_of_list_filter. split;auto. * apply elem_of_list_filter in H0 as [Htemp Hin]. auto. + apply Forall_forall. intros x Hx. apply elem_of_list_filter in Hx as [Htemp Hin]. auto. Qed. Notation "m1 ∖∖ m2" := (map_difference_het m1 m2) (at level 40, left associativity). Definition override_uninitialized : (gmap Addr Word) -> STS_STD → STS_STD := λ (m : gmap Addr Word) (Wstd : gmap Addr region_type), (map_imap (λ a w, Some (Static {[a:=w]})) m) ∪ (Wstd ∖∖ m). Definition override_uninitializedW : (gmap Addr Word) -> WORLD → WORLD := λ m W, (override_uninitialized m W.1,W.2). Notation "m1 >> W" := (override_uninitializedW m1 W) (at level 40, left associativity). Lemma override_uninitializedW_empty W : (∅ : gmap Addr Word) >> W = W. Proof. rewrite /override_uninitializedW /override_uninitialized difference_het_empty /=. destruct W. f_equiv. simpl. rewrite left_id_L. auto. Qed. Lemma override_uninitializedW_insert W (m : gmap Addr Word) a w : (<[a:=w]> m) >> W = std_update (m >> W) a (Static {[a:=w]}). Proof. rewrite /override_uninitializedW /override_uninitialized difference_het_insert_r /=. destruct W. rewrite /std_update /=. f_equiv. rewrite map_imap_insert. rewrite -insert_union_l //. rewrite map_eq'. assert (map_imap (λ (a0 : Addr) (w0 : Word), Some (Static {[a0 := w0]})) m ##ₘ o ∖∖ m) as Hdisj. { apply map_disjoint_spec. intros i t y Ht Hy. apply difference_het_lookup_Some in Hy as [_ Hnone]. rewrite map_lookup_imap in Ht. rewrite Hnone /= in Ht. done. } intros k v. split; intros Hx. - destruct (decide (a = k));[subst;simplify_map_eq;auto|simplify_map_eq]. apply lookup_union_Some in Hx as [Hx | Hx]. + apply lookup_union_Some_l. auto. + rewrite lookup_delete_ne in Hx;auto. apply lookup_union_Some_r; auto. + apply map_disjoint_delete_r. auto. - destruct (decide (a = k));[subst;simplify_map_eq;auto|simplify_map_eq]. apply lookup_union_Some in Hx as [Hx | Hx]. + apply lookup_union_Some_l. auto. + apply lookup_union_Some_r. apply map_disjoint_delete_r;auto. rewrite lookup_delete_ne;auto. + auto. Qed. Lemma override_uninitializedW_commute W (m : gmap Addr Word) : m >> (revoke W) = revoke (m >> W). Proof. induction m using map_ind; [by rewrite !override_uninitializedW_empty|]. rewrite !override_uninitializedW_insert. rewrite IHm. rewrite /std_update /revoke /loc /std /=. repeat f_equiv. rewrite map_eq'. intros k v. destruct (decide (k = i)). - subst. rewrite lookup_insert revoke_monotone_lookup_same;rewrite lookup_insert; auto. - rewrite !lookup_insert_ne //. split; intros. + rewrite -(revoke_monotone_lookup (m >> W).1);auto. rewrite lookup_insert_ne;auto. + rewrite -(revoke_monotone_lookup (m >> W).1) in H0;auto. rewrite lookup_insert_ne;auto. Qed. Lemma override_uninitializedW_lookup_some W (m : gmap Addr Word) i w : m !! i = Some w -> (m >> W).1 !! i = Some (Static {[i:=w]}). Proof. intros Hsome. rewrite /override_uninitializedW /override_uninitialized /=. apply (lookup_union_Some_l (M:=gmap Addr)). rewrite map_lookup_imap Hsome /=. auto. Qed. Lemma override_uninitializedW_lookup_none W (m : gmap Addr Word) i : m !! i = None -> (m >> W).1 !! i = W.1 !! i. Proof. intros Hnone. rewrite /override_uninitializedW /override_uninitialized /=. destruct (W.1 !! i) eqn:Hsome. - apply (lookup_union_Some_r (M:=gmap Addr)). { apply map_disjoint_spec. intros j t y Ht Hy. apply difference_het_lookup_Some in Hy as [_ Hnone']. rewrite map_lookup_imap /= in Ht. rewrite Hnone' /= in Ht. done. } apply difference_het_lookup_Some. split;auto. - apply (lookup_union_None (M:=gmap Addr)). split. + rewrite map_lookup_imap Hnone /=. done. + apply difference_het_lookup_None;[|left;auto]. exact Temporary. Qed. Lemma override_uninitializedW_lookup_nin W (m : gmap Addr Word) i : i ∉ (dom (gset Addr) m) -> (m >> W).1 !! i = W.1 !! i. Proof. intros Hnin. apply override_uninitializedW_lookup_none. apply (not_elem_of_dom (D:=gset Addr)). auto. Qed. Lemma override_uninitializedW_elem_of W (m : gmap Addr Word) i : i ∈ dom (gset Addr) W.1 -> i ∈ dom (gset Addr) (m >> W).1. Proof. intros Hin%elem_of_gmap_dom. apply elem_of_gmap_dom. destruct (m !! i) eqn:Hsome. - apply override_uninitializedW_lookup_some with (W:=W) in Hsome. eauto. - apply override_uninitializedW_lookup_none with (W:=W) in Hsome. rewrite -Hsome in Hin. eauto. Qed. Lemma override_uninitializedW_elem_of_overwritten W (m : gmap Addr Word) i : i ∈ dom (gset Addr) m -> i ∈ dom (gset Addr) (m >> W).1. Proof. intros Hin%elem_of_gmap_dom. apply elem_of_gmap_dom. destruct Hin as [w Hsome]. apply override_uninitializedW_lookup_some with (W:=W) in Hsome. eauto. Qed. Lemma override_uninitializedW_dom W (m : gmap Addr Word) : dom (gset Addr) W.1 ⊆ dom (gset Addr) (m >> W).1. Proof. apply elem_of_subseteq. intros x Hx. apply override_uninitializedW_elem_of. auto. Qed. Lemma override_uninitializedW_dom' W (m: gmap Addr Word) : dom (gset Addr) (override_uninitializedW m W).1 = dom (gset Addr) m ∪ dom (gset Addr) W.1. Proof. rewrite /override_uninitializedW /override_uninitialized. rewrite dom_union_L dom_difference_het. rewrite dom_map_imap_full. 2: by intros; eauto. set Dm := dom (gset Addr) m. set DW := dom (gset Addr) W.1. clearbody Dm DW. rewrite elem_of_equiv_L. intro x. rewrite !elem_of_union !elem_of_difference. split. - intros [? | [? ?] ]. auto. auto. - intros [? | ?]. auto. destruct (decide (x ∈ Dm)); auto. Qed. Lemma related_sts_priv_world_override_uninitializedW W (m : gmap Addr Word) : Forall (λ a : Addr, ∃ ρ, (std W) !! a = Some ρ /\ ρ <> Permanent) (elements (dom (gset Addr) m)) → related_sts_priv_world W (m >> W). Proof. induction m using map_ind; intros. - rewrite override_uninitializedW_empty. apply related_sts_priv_refl_world. - rewrite override_uninitializedW_insert. erewrite dom_insert in H0. erewrite elements_union_singleton in H0; [|eapply not_elem_of_dom; eauto]. eapply Forall_cons in H0. destruct H0 as [A B]. eapply related_sts_priv_trans_world with (m >> W). + eapply IHm. eauto. + destruct A as [ρ [A1 A2] ]. split;[|apply related_sts_priv_refl]. split. * rewrite dom_insert_L. set_solver. * intros r p q Hp Hq. destruct (decide (r = i)). { subst r. rewrite override_uninitializedW_lookup_nin in Hp; [|eapply not_elem_of_dom; eauto]. rewrite A1 in Hp; inv Hp. rewrite lookup_insert in Hq. inv Hq. destruct p; try congruence. - eright. right; constructor. left. - eright. left; constructor. eright. right; constructor. left. - eright. left; constructor. eright. right; constructor. left. } { simplify_map_eq. left. } Qed. (* following lemma takes a map of addresses to words, where the addresses are in a revoked state, and makes them uninitialized *) Lemma region_revoked_to_uninitialized W m : (sts_full_world (revoke W) ∗ region (revoke W) ∗ ([∗ map] a↦w ∈ m, ∃ p φ, ⌜∀ Wv : WORLD * Word, Persistent (φ Wv)⌝ ∗ ⌜p ≠ O⌝ ∗ a ↦ₐ[p] w ∗ rel a p φ) ==∗ (sts_full_world (m >> (revoke W)) ∗ region (m >> (revoke W))))%I. Proof. iIntros "(Hfull & Hr & Hl)". iInduction (m) as [|a w m] "IH" using map_ind. - rewrite override_uninitializedW_empty. iFrame. done. - rewrite override_uninitializedW_insert. iDestruct (big_sepM_insert with "Hl") as "[Hx Hl]";[apply H|]. iMod ("IH" with "Hfull Hr Hl") as "[Hfull Hr] /=". iDestruct "Hx" as (p φ Hpers Hne) "[Hx #Hrel]". rewrite region_eq /region_def. iDestruct "Hr" as (M Mρ) "(HM & #Hdom & #Hdom' & Hr)". iDestruct "Hdom" as %Hdom. iDestruct "Hdom'" as %Hdom'. rewrite rel_eq /rel_def RELS_eq /RELS_def REL_eq /REL_def. iDestruct "Hrel" as (γpred) "[HR Hsaved]". iDestruct (reg_in with "[$HM $HR]") as %HMeq. rewrite HMeq. iDestruct (big_sepM_delete with "Hr") as "[HX Hr]";[apply lookup_insert|]. iDestruct "HX" as (ρ Hρ) "[Hstate HX]". iDestruct "HX" as (γpred' p' φ' Heq Hpers') "[#Hsaved' HX]". inversion Heq;subst. iDestruct (sts_full_state_std with "Hfull Hstate") as %Hx. destruct ρ. { iDestruct "HX" as (v' Hne') "[Hx' _]". iDestruct (cap_duplicate_false with "[$Hx $Hx']") as "Hf"; auto. } { iDestruct "HX" as (v' Hne') "[Hx' _]". iDestruct (cap_duplicate_false with "[$Hx $Hx']") as "Hf"; auto. } 2: { iDestruct "HX" as (v' Hx' Hne') "[Hx' _]". iDestruct (cap_duplicate_false with "[$Hx $Hx']") as "Hf"; auto. } iDestruct (region_map_delete_nonstatic with "Hr") as "Hr";[rewrite Hρ; auto|]. iDestruct (region_map_insert_singleton (Static {[a:=w]}) with "Hr") as "Hr";[eauto|]. apply (related_sts_priv_world_revoked_to_uninit (m >> revoke W) a w) in Hx as Hrelated. iDestruct (monotone_revoke_list_region_def_mono $! Hrelated with "[Hfull] Hr") as "[Hfull Hr]". { rewrite override_uninitializedW_commute;auto. } iMod (sts_update_std _ _ _ (Static {[a:=w]}) with "Hfull Hstate") as "[Hfull Hstate] /=". iDestruct (big_sepM_delete with "[Hstate Hx $Hr]") as "Hr";[apply lookup_insert|..]. { iExists (Static {[a:=w]}). iFrame. iSplit;[iPureIntro;apply lookup_insert|]. iExists _,_,_. iFrame "# ∗". repeat iSplit;eauto. iExists _. iFrame. repeat iSplit;auto;iPureIntro;[apply lookup_singleton|]. intros a' Ha'. apply elem_of_gmap_dom in Ha' as [x Ha']. destruct (decide (a = a'));[subst;simplify_map_eq;auto|simplify_map_eq]. } rewrite -HMeq. iModIntro. iSplitL "Hfull". { rewrite override_uninitializedW_commute;auto. } iExists M,(<[a:=Static {[a:=w]}]>Mρ). iFrame. iPureIntro. split. + rewrite -Hdom. rewrite dom_insert_L. assert (a ∈ dom (gset Addr) (m >> (revoke W)).1) as Hin. { rewrite Hdom HMeq dom_insert_L. set_solver. } set_solver. + rewrite dom_insert_L -Hdom'. assert (a ∈ dom (gset Addr) Mρ) as Hin;[apply elem_of_gmap_dom;eauto|]. set_solver. Qed. (* the following lemma takes some uninitilized states and revokes them. For simplicity we ignore their values *) (* this lemma is used to revoke the range needed for the local stack frame *) Lemma region_uninitialized_to_revoked W (l: list Addr) p φ: NoDup l -> ([∗ list] a ∈ l, ⌜exists w, std W !! a = Some (Static {[a:=w]})⌝ ∗ rel a p φ) ∗ sts_full_world (revoke W) ∗ region (revoke W) ==∗ sts_full_world (std_update_multiple (revoke W) l Revoked) ∗ region (std_update_multiple (revoke W) l Revoked) ∗ ([∗ list] a ∈ l, ∃ v, a ↦ₐ[p] v). Proof. iIntros (Hdup) "(Ha & Hsts & Hr)". iInduction (l) as [|x l] "IH". - simpl. iFrame. done. - iDestruct (big_sepL_cons with "Ha") as "[Hx Ha]". iDestruct "Hx" as "[% Hrelx]". destruct H as [w Hw]. apply NoDup_cons in Hdup as [Hnin Hdup]. iMod ("IH" with "[] Ha Hsts Hr") as "[Hfull [Hr Hx] ] /=";[auto|auto|..]. rewrite region_eq /region_def. iDestruct "Hr" as (M Mρ) "(HM & #Hdom & #Hdom' & Hr)". iDestruct "Hdom" as %Hdom. iDestruct "Hdom'" as %Hdom'. assert (is_Some (M !! x)) as [ρ Hρ]. { apply elem_of_gmap_dom. rewrite -Hdom. apply elem_of_gmap_dom. apply std_sta_update_multiple_is_Some. eauto. rewrite /revoke /revoke_std_sta lookup_fmap Hw /=. eauto. } iDestruct (big_sepM_delete with "Hr") as "[Hw Hr]";[eauto|]. iDestruct "Hw" as (ρ' Hρ') "[Hstate HX]". iDestruct (sts_full_state_std with "Hfull Hstate") as %Hx. rewrite std_sta_update_multiple_lookup_same_i in Hx;auto. rewrite /revoke /revoke_std_sta lookup_fmap Hw /= in Hx. inversion Hx; subst. iDestruct "HX" as (γpred' p' φ' Heq Hpers') "[#Hsaved' HX]". iDestruct "HX" as (v Hlookup Hne) "[HX _]". iDestruct (monotone_revoke_list_region_def_mono with "[] [Hfull] Hr") as "[Hfull Hr]". { iPureIntro. apply related_sts_priv_world_uninit_to_revoked with w. rewrite std_sta_update_multiple_lookup_same_i //. rewrite /revoke /revoke_std_sta lookup_fmap Hw /=. reflexivity. } { rewrite std_update_multiple_revoke_commute. iFrame. auto. } iMod (sts_update_std _ _ _ (Revoked) with "Hfull Hstate") as "[Hfull Hstate] /=". iDestruct (region_map_delete_singleton with "Hr") as "Hr";[rewrite Hρ';eauto|]. iDestruct (region_map_insert_nonstatic Revoked with "Hr") as "Hr";[auto|]. iDestruct (big_sepM_delete with "[$Hr Hstate]") as "Hr";[eauto|..]. { iExists Revoked. iSplit;[rewrite lookup_insert;auto|]. iFrame. iExists _,_,_. repeat iSplit;eauto. } iFrame. iSplitL "Hfull". { rewrite std_update_multiple_revoke_commute //. } rewrite RELS_eq/ RELS_def rel_eq /rel_def REL_eq /REL_def. iDestruct "Hrelx" as (γpred) "[Hrelx Hpredx]". iDestruct (reg_in with "[$HM $Hrelx]") as %HMeq. rewrite HMeq in Hρ. rewrite lookup_insert in Hρ. inv Hρ. inv H0. iModIntro. iSplitL "HM Hr". + iExists M,(<[x:=Revoked]> Mρ). iFrame. repeat iSplit. ++ iPureIntro. rewrite dom_insert_L. rewrite Hdom. assert (x ∈ dom (gset Addr) M) as Hin. apply elem_of_gmap_dom;eauto. rewrite HMeq lookup_insert; eauto. set_solver. ++ iPureIntro. rewrite dom_insert_L. rewrite Hdom'. assert (x ∈ dom (gset Addr) M) as Hin. apply elem_of_gmap_dom;eauto. rewrite HMeq lookup_insert; eauto. set_solver. + simplify_map_eq. iExists v. iFrame. Qed. Lemma std_update_id W a ρ : std W !! a = Some ρ -> <s[a:=ρ]s>W = W. Proof. intros Hstate. destruct W; simpl in *. rewrite /std_update /=. f_equiv. rewrite insert_id;auto. Qed. (* The following lemma reinstates temporary regions, after they have been uninitialized. The list of previously uninitialized resources may have turned temporary in the public future world we consider *) Lemma region_uninitialized_to_temporary_mid_open W W' (m : gmap Addr Word) l : related_sts_pub_world W W' -> (∀ a w, m !! a = Some w -> std W !! a = Some Temporary ∨ std W !! a = Some (Static {[a:=w]})) -> (elements (dom (gset Addr) m)) ## l -> (□ ([∗ map] a↦w ∈ m, ∃ φ p, ⌜∀ Wv : WORLD * Word, Persistent (φ Wv)⌝ ∗ ⌜p ≠ O⌝ ∗ ▷ φ (W',w) ∗ rel a p φ ∗ (if pwl p then future_pub_mono φ w else future_priv_mono φ w)) -∗ open_region_many l W' -∗ sts_full_world W ==∗ open_region_many l W' ∗ sts_full_world (std_update_multiple W (elements (dom (gset Addr) m)) Temporary))%I. Proof. iIntros (Hrelated Hforall Hdisj) "#Hvalid Hr Hsts". iInduction (m) as [|a w m] "IH" using map_ind. - rewrite dom_empty_L elements_empty /=. iFrame. done. - rewrite dom_insert_L. assert (a ∉ dom (gset Addr) m) as Hnin;[apply not_elem_of_dom;auto|]. assert (a ∉ l) as Hninl. { intros Hcontr. apply elem_of_disjoint in Hdisj. apply Hdisj in Hcontr;auto. rewrite dom_insert_L. rewrite elements_union_singleton;auto. constructor. } apply elements_union_singleton in Hnin. apply (std_update_multiple_permutation W _ _ Temporary) in Hnin. rewrite Hnin /=. iDestruct (big_sepM_delete with "Hvalid") as "[Ha Hvalid_rest]";[apply lookup_insert|]. rewrite delete_insert;auto. iMod ("IH" with "[] [] Hvalid_rest Hr Hsts") as "[Hr Hsts]". { iPureIntro. intros a' w' Ha'. apply Hforall. simplify_map_eq. auto. } { iPureIntro. apply elem_of_disjoint. intros x Hm Hx. destruct (decide (a = x));[congruence|]. apply elem_of_disjoint in Hdisj. apply Hdisj in Hx;auto. rewrite dom_insert_L. rewrite elements_union_singleton;[apply elem_of_cons;right;auto|]. apply not_elem_of_dom. auto. } assert (<[a:=w]> m !! a = Some w) as Ha;[apply lookup_insert|]. apply Hforall in Ha as [Htemp | Huninit]. + rewrite std_update_id. iFrame. done. rewrite std_sta_update_multiple_lookup_same_i;auto. intros Hcontr%elem_of_elements%elem_of_gmap_dom. destruct Hcontr. congruence. + rewrite open_region_many_eq /open_region_many_def. iDestruct "Hr" as (M Mρ) "(HM & #Hdom & #Hdom' & Hr)". iDestruct "Hdom" as %Hdom. iDestruct "Hdom'" as %Hdom'. assert (is_Some (M !! a)) as [ρ Hρ]. { apply elem_of_gmap_dom. rewrite -Hdom. destruct Hrelated as [ [Hsub _] _]. apply Hsub. apply elem_of_gmap_dom. eauto. } iDestruct (big_sepM_delete with "Hr") as "[Hw Hr]";[rewrite lookup_delete_list_notin;eauto|]. iDestruct "Hw" as (ρ' Hρ') "[Hstate HX]". iDestruct (sts_full_state_std with "Hsts Hstate") as %Hx. assert (a ∉ elements (dom (gset Addr) m)) as Hnina. { intros Hcontr%elem_of_elements%elem_of_gmap_dom. destruct Hcontr. congruence. } rewrite std_sta_update_multiple_lookup_same_i in Hx;auto. rewrite Huninit in Hx;inversion Hx;subst. iDestruct "HX" as (γpred' p' φ' Heq Hpers') "[#Hsaved' HX]". iDestruct "HX" as (v Hlookup Hne) "[HX _]". iMod (sts_update_std _ _ _ Temporary with "Hsts Hstate") as "[Hfull Hstate] /=". iDestruct (region_map_delete_singleton with "Hr") as "Hr";[rewrite Hρ';eauto|]. iDestruct (region_map_insert_nonstatic Temporary with "Hr") as "Hr";[auto|]. iDestruct "Ha" as (φ p Hpers Hne') "(Hφ & Hrel & Hmono)". rewrite rel_eq /rel_def. iDestruct "Hrel" as (γpred'') "[HREL Hsaved]". rewrite REL_eq RELS_eq /REL_def /RELS_def. iDestruct (reg_in with "[$HM $HREL]") as %Hmeq. iDestruct (big_sepM_delete with "[$Hr HX Hstate]") as "Hr";[rewrite lookup_delete_list_notin;eauto|..]. { iExists Temporary. iSplit;[rewrite lookup_insert;auto|]. iFrame. rewrite Hmeq lookup_insert in Hρ. inversion Hρ. iExists _,_,_. repeat iSplit;eauto. iExists _. iFrame "∗ #". simplify_eq. repeat iSplit;eauto. simplify_map_eq. iFrame. } iFrame. iModIntro. iExists M,(<[a:=Temporary]> Mρ). iFrame. repeat iSplit. ++ iPureIntro. auto. ++ iPureIntro. rewrite dom_insert_L. rewrite Hdom'. assert (a ∈ dom (gset Addr) M) as Hin. apply elem_of_gmap_dom;eauto. set_solver. ++ rewrite delete_list_insert;auto. Qed. Lemma region_uninitialized_to_temporary_mid W W' (m : gmap Addr Word) : related_sts_pub_world W W' -> (∀ a w, m !! a = Some w -> std W !! a = Some Temporary ∨ std W !! a = Some (Static {[a:=w]})) -> (□ ([∗ map] a↦w ∈ m, ∃ φ p, ⌜∀ Wv : WORLD * Word, Persistent (φ Wv)⌝ ∗ ⌜p ≠ O⌝ ∗ ▷ φ (W',w) ∗ rel a p φ ∗ (if pwl p then future_pub_mono φ w else future_priv_mono φ w)) -∗ region W' -∗ sts_full_world W ==∗ region W' ∗ sts_full_world (std_update_multiple W (elements (dom (gset Addr) m)) Temporary))%I. Proof. iIntros (Hrelated HW) "Htemps Hr Hsts". iDestruct (region_open_nil with "Hr") as "Hr". iMod (region_uninitialized_to_temporary_mid_open with "Htemps Hr Hsts") as "[Hr Hsts]";auto. { apply elem_of_disjoint. intros x Hx Hcontr. inversion Hcontr. } iDestruct (region_open_nil with "Hr") as "Hr". iFrame. done. Qed. Lemma dom_eq_uninit_to_temporary_region W (m : gmap Addr Word) : (∀ a, a ∈ dom (gset Addr) m -> std W !! a = Some Temporary ∨ ∃ w, std W !! a = Some (Static {[a:=w]})) -> dom (gset Addr) W.1 = dom (gset Addr) (std_update_multiple W (elements (dom (gset Addr) m)) Temporary).1. Proof. intros Hforall. apply std_update_multiple_dom_equal. intros i Hin%elem_of_elements. apply elem_of_gmap_dom. apply Hforall in Hin as [Hx | [w Hx] ];eauto. Qed. Lemma related_sts_pub_world_uninit_to_temporary_region W (m : gmap Addr Word) : (∀ a, a ∈ dom (gset Addr) m -> std W !! a = Some Temporary ∨ ∃ w, std W !! a = Some (Static {[a:=w]})) -> related_sts_pub_world W (std_update_multiple W (elements (dom (gset Addr) m)) Temporary). Proof. intros Hforall. split;[|rewrite std_update_multiple_loc;apply related_sts_pub_refl]. split. - rewrite (dom_eq_uninit_to_temporary_region _ m);auto. - intros i x y Hx Hy. destruct (decide (i ∈ dom (gset Addr) m)). + apply Hforall in e as HW. rewrite std_sta_update_multiple_lookup_in_i in Hy. 2: { apply elem_of_elements. auto. } inversion Hy;subst. destruct HW as [Htemp | [w Huninit] ]. rewrite Hx in Htemp. simplify_eq. left. rewrite Hx in Huninit. simplify_eq. eright;[|left]. constructor. + rewrite std_sta_update_multiple_lookup_same_i in Hy. 2: { intros Hcontr%elem_of_elements. congruence. } rewrite Hy in Hx. simplify_eq. left. Qed. Lemma region_uninitialized_to_temporary W (m : gmap Addr Word) : (∀ a w, m !! a = Some w -> std W !! a = Some Temporary ∨ std W !! a = Some (Static {[a:=w]})) -> (□ ([∗ map] a↦w ∈ m, ∃ φ p, ⌜∀ Wv : WORLD * Word, Persistent (φ Wv)⌝ ∗ ⌜p ≠ O⌝ ∗ ▷ φ ((std_update_multiple W (elements (dom (gset Addr) m)) Temporary),w) ∗ rel a p φ ∗ (if pwl p then future_pub_mono φ w else future_priv_mono φ w)) -∗ region W -∗ sts_full_world W ==∗ region (std_update_multiple W (elements (dom (gset Addr) m)) Temporary) ∗ sts_full_world (std_update_multiple W (elements (dom (gset Addr) m)) Temporary))%I. Proof. iIntros (Hforall) "#Hvalid Hr Hsts". iDestruct (region_monotone with "[] [] Hr") as "Hr". { iPureIntro. apply dom_eq_uninit_to_temporary_region with (m:=m). intros a Hin%elem_of_gmap_dom. destruct Hin as [w Hin]. apply Hforall in Hin as [Htemp | Huninit];eauto. } { iPureIntro. apply related_sts_pub_world_uninit_to_temporary_region. intros a Hin%elem_of_gmap_dom. destruct Hin as [w Hin]. apply Hforall in Hin as [Htemp | Huninit];eauto. } iMod (region_uninitialized_to_temporary_mid with "Hvalid Hr Hsts") as "[Hr Hsts]";[|auto|]. { apply related_sts_pub_world_uninit_to_temporary_region. intros a Hin%elem_of_gmap_dom. destruct Hin as [w Hin]. apply Hforall in Hin as [Htemp | Huninit];eauto. } iModIntro. iFrame. Qed. Lemma std_update_elements_app_union {A : Type} W (m1 m2 : gmap Addr A) ρ : std_update_multiple W (elements (dom (gset Addr) (m1 ∪ m2))) ρ = std_update_multiple W (elements (dom (gset Addr) m1) ++ elements (dom (gset Addr) m2)) ρ. Proof. rewrite (surjective_pairing (std_update_multiple W (elements (dom _ _) ) _)). erewrite surjective_pairing. repeat rewrite std_update_multiple_loc. f_equiv. apply map_eq'. intros a v. split. + intros Ha. destruct (decide (a ∈ elements (dom (gset Addr) m2))). * rewrite std_sta_update_multiple_lookup_in_i in Ha. inversion Ha. apply std_sta_update_multiple_lookup_in_i. apply elem_of_app;right;auto. revert e;rewrite elem_of_elements =>e. apply elem_of_elements. rewrite dom_union_L. set_solver. * destruct (decide (a ∈ elements (dom (gset Addr) m1))). ** rewrite std_sta_update_multiple_lookup_in_i in Ha. inversion Ha. apply std_sta_update_multiple_lookup_in_i. apply elem_of_app;left;auto. apply elem_of_elements in e. repeat rewrite dom_union_L. apply elem_of_elements. set_solver. ** rewrite std_sta_update_multiple_lookup_same_i in Ha. rewrite std_sta_update_multiple_lookup_same_i;auto. apply not_elem_of_app. split;auto. intros Hcontr%elem_of_elements. rewrite dom_union_L in Hcontr. apply elem_of_union in Hcontr as [Hcontr | Hcontr]. { apply elem_of_elements in Hcontr. done. } { apply elem_of_elements in Hcontr. done. } + intros Ha. destruct (decide (a ∈ (elements (dom (gset Addr) m1) ++ elements (dom (gset Addr) m2)))). * rewrite std_sta_update_multiple_lookup_in_i in Ha;auto. inversion Ha. apply std_sta_update_multiple_lookup_in_i. apply elem_of_elements. rewrite dom_union_L. apply elem_of_app in e as [e | e]; apply elem_of_elements in e;set_solver. * rewrite std_sta_update_multiple_lookup_same_i in Ha;auto. rewrite std_sta_update_multiple_lookup_same_i;auto. rewrite elem_of_elements. apply not_elem_of_app in n. revert n. repeat rewrite elem_of_elements. intros [n1 n2]. rewrite dom_union_L. set_solver. Qed. (* ------------------------------------------ REINSTATE --------------------------------------------------------- *) (* The following lemma reinstates all relevant static and uninitialized invariants to Temporary. It is in the format typically applied in proofs: the local stack frame and leftovers are open, the uninitialized part of the adversary stack is still in region. We need to update both before we close *) (* open_region_many is monotone wrt public future worlds *) Lemma open_region_many_monotone l W W': dom (gset Addr) W.1 = dom (gset Addr) W'.1 → related_sts_pub_world W W' → (open_region_many l W -∗ open_region_many l W')%I. Proof. iIntros (Hdomeq Hrelated) "HW". rewrite open_region_many_eq /open_region_many_def. iDestruct "HW" as (M Mρ) "(Hm & % & % & Hmap)". iExists M, Mρ. iFrame. iSplitR;[iPureIntro;rewrite -Hdomeq;auto|]. iSplitR; auto. iApply region_map_monotone; eauto. Qed. (* The following lemma assumes that m_static contains more than one address *) Lemma region_close_static_and_uninitialized_to_temporary (m_static: gmap Addr Word) (m_uninit: gmap Addr Word) W W' : (W' = (std_update_temp_multiple W (elements (dom (gset Addr) m_static) ++ elements (dom (gset Addr) m_uninit)))) → size m_static > 1 -> (∀ a w, m_uninit !! a = Some w -> std W !! a = Some Temporary ∨ std W !! a = Some (Static {[a:=w]})) -> open_region_many (elements (dom (gset Addr) m_static)) W ∗ sts_full_world W (* The static resources *) ∗ ([∗ map] a↦v ∈ m_static, ∃ p φ, ⌜forall Wv, Persistent (φ Wv)⌝ ∗ temp_resources W' φ a p ∗ rel a p φ) ∗ sts_state_std_many m_static (Static m_static) (* Knowledge about the uninitialized resources *) ∗ (□ ([∗ map] a↦w ∈ m_uninit, ∃ φ p, ⌜∀ Wv : WORLD * Word, Persistent (φ Wv)⌝ ∗ ⌜p ≠ O⌝ ∗ ▷ φ (W',w) ∗ rel a p φ ∗ (if pwl p then future_pub_mono φ w else future_priv_mono φ w))) ==∗ sts_full_world W' ∗ region W'. Proof. iIntros (Heq Hsize Hunint) "(HR & Hsts & Hres & Hst & #Hvalid)". iDestruct (sts_full_state_std_many with "[Hsts Hst]") as %?. by iFrame. assert (related_sts_pub_world W W') as Hrelated. { rewrite Heq. rewrite /std_update_temp_multiple. rewrite std_update_multiple_app. eapply related_sts_pub_trans_world;[apply related_sts_pub_world_static_to_temporary with m_static;eauto|]. apply related_sts_pub_world_uninit_to_temporary_region. intros a Hin. destruct (decide (a ∈ elements (dom (gset Addr) m_static))). - left. apply std_sta_update_multiple_lookup_in_i. auto. - rewrite std_sta_update_multiple_lookup_same_i;auto. apply elem_of_gmap_dom in Hin as [w Hin]. apply Hunint in Hin as [Htemp | Huninit];eauto. } assert (elements (dom (gset Addr) m_uninit) ## elements (dom (gset Addr) m_static)) as Hdisj. { rewrite elem_of_disjoint. intros x Hxuninit Hxstatic. apply elem_of_elements,elem_of_gmap_dom in Hxuninit as [w Hw]. apply Hunint in Hw as [Htemp | Huninit]. - revert H;rewrite Forall_forall =>H. apply H in Hxstatic. congruence. - revert H;rewrite Forall_forall =>H. apply H in Hxstatic. destruct (decide (m_static = {[x:=w]}));[subst;rewrite map_size_singleton in Hsize;lia|congruence]. } iDestruct (open_region_many_monotone _ _ W' with "HR") as "HR";auto. { rewrite Heq. apply std_update_multiple_dom_equal. intros a Hin%elem_of_app. revert H;rewrite Forall_forall =>H. destruct Hin as [Hin | Hin]. - apply elem_of_gmap_dom. eauto. - apply elem_of_elements,elem_of_gmap_dom in Hin as [w Hw]. apply Hunint in Hw as [Htemp | Huninit]; apply elem_of_gmap_dom;eauto. } iMod (region_uninitialized_to_temporary_mid_open with "Hvalid HR Hsts") as "[Hr Hsts]";[auto..|]. iDestruct (region_update_multiple_states _ _ _ Temporary with "[$Hsts $Hst]") as ">[Hsts Hst]". iModIntro. (* iDestruct (open_region_world_static_to_temporary with "Hr") as "Hr"; eauto. *) repeat rewrite -std_update_multiple_app std_update_multiple_app_commute. rewrite Heq. iDestruct (region_close_temporary_many with "[Hr Hres Hst Hsts]") as "(?&?)"; iFrame. Qed. End heap.
{"author": "logsem", "repo": "cerise-stack", "sha": "f68111362730aff998798d63c7d6a0a7176eff44", "save_path": "github-repos/coq/logsem-cerise-stack", "path": "github-repos/coq/logsem-cerise-stack/cerise-stack-f68111362730aff998798d63c7d6a0a7176eff44/theories/region_invariants_uninitialized.v"}
Require Import A1_Plan A2_Orientation A7_Tactics . Require Import B7_Tactics . Require Import C1_Distance C7_Tactics . Require Import F5_Tactics . Require Import G1_Angles G3_ParticularAngle . Require Import H1_Triangles . Require Import I2_Supplement I3_OpposedAngles . Require Import K3_Tactics . Require Import L1_Parallelogramm L2_StrictParallelogramm. Section PARALLELOGRAMM_ANGLES. Lemma ParallelogrammDABeqBCD : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> B <> C -> CongruentAngle D A B B C D. Proof. intros. assert (H4 := ParallelogrammTCongruentBCDDAB A B C D H). step10 H4. apply (ParallelogrammDistinctABDistinctCD A B C D H H0). apply sym_not_eq; apply (ParallelogrammDistinctBCDistinctDA A B C D H H1). Qed. Lemma StrictParallelogrammDABeqBCD : forall A B C D : Point, StrictParallelogramm A B C D -> CongruentAngle D A B B C D. Proof. intros; apply ParallelogrammDABeqBCD. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma ParallelogrammABCeqCDA : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> B <> C -> CongruentAngle A B C C D A. Proof. intros. assert (H4 := ParallelogrammTCongruentABCCDA A B C D H). step10 H4. apply sym_not_eq; apply (ParallelogrammDistinctABDistinctCD A B C D H H0). apply (ParallelogrammDistinctBCDistinctDA A B C D H H1). Qed. Lemma StrictParallelogrammABCeqCDA : forall A B C D : Point, StrictParallelogramm A B C D -> CongruentAngle A B C C D A. Proof. intros; apply ParallelogrammABCeqCDA. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma ParallelogrammBACeqDCA : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> CongruentAngle B A C D C A. Proof. intros; inversion H. assert (H3 := ParallelogrammTCongruentABCCDA A B C D H). step10 H3. apply (ParallelogrammDistinctABDistinctCD A B C D H H0). Qed. Lemma StrictParallelogrammBACeqDCA : forall A B C D : Point, StrictParallelogramm A B C D -> CongruentAngle B A C D C A. Proof. intros; apply ParallelogrammBACeqDCA. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). Qed. Lemma ParallelogrammDACeqBCA : forall A B C D : Point, Parallelogramm A B C D -> B <> C -> CongruentAngle D A C B C A. Proof. intros; inversion H. assert (H3 := ParallelogrammTCongruentABCCDA A B C D H). step10 H3. apply sym_not_eq; apply (ParallelogrammDistinctBCDistinctDA A B C D H H0). Qed. Lemma StrictParallelogrammDACeqBCA : forall A B C D : Point, StrictParallelogramm A B C D -> CongruentAngle D A C B C A. Proof. intros; apply ParallelogrammDACeqBCA. destruct H; immediate10. apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma ParallelogrammABDeqCDB : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> CongruentAngle A B D C D B. Proof. intros; inversion H. assert (H3 := ParallelogrammTCongruentBCDDAB A B C D H). step10 H3. apply sym_not_eq; apply (ParallelogrammDistinctABDistinctCD A B C D H H0). Qed. Lemma StrictParallelogrammABDeqCDB : forall A B C D : Point, StrictParallelogramm A B C D -> CongruentAngle A B D C D B. Proof. intros; apply ParallelogrammABDeqCDB. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). Qed. Lemma ParallelogrammADBeqCBD : forall A B C D : Point, Parallelogramm A B C D -> B <> C -> CongruentAngle A D B C B D. Proof. intros; inversion H. assert (H3 := ParallelogrammTCongruentBCDDAB A B C D H). step10 H3. apply (ParallelogrammDistinctBCDistinctDA A B C D H H0). Qed. Lemma StrictParallelogrammADBeqCBD : forall A B C D : Point, StrictParallelogramm A B C D -> CongruentAngle A D B C B D. Proof. intros; apply ParallelogrammADBeqCBD. destruct H; immediate10. apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma StrictParallelogrammExteriorAngles : forall A B C D E : Point, StrictParallelogramm A B C D -> Between A B E -> CongruentAngle D A B C B E. Proof. intros. since10 (Clockwise C D B). step10 (StrictParallelogrammClockwiseBCD A B C D H). pose (G := StrictPVertex4 C D B H1). pose (H2 := StrictPVertex4Parallelogramm C D B H1); fold G in H2. since10 (Between G B A). apply (SumAngles B G C D A). step10 (StrictParallelogrammClockwiseCDA C D B G H2). immediate10. step10 (StrictParallelogrammClockwiseDAB A B C D H). step10 (StrictParallelogrammBACeqDCA C D B G H2). step10 (StrictParallelogrammABDeqCDB A B C D H). since10 (OpenRay B E G). canonize1. step10 H6. step10 H5. since10 (CongruentAngle C B E C B G). step10 H5. step10 (StrictParallelogrammDABeqBCD A B C D H). step10 (StrictParallelogrammBACeqDCA C D B G H2). Qed. Lemma StrictParallelogrammAlternateAngles : forall A B C D E : Point, StrictParallelogramm A B C D -> Between C B E -> CongruentAngle D A B E B A. Proof. intros. setSymmetricPoint5 A B ipattern:(G). apply (StrictParallelogrammDistinctAB A B C D H). since10 (OpposedAngles B E A C G). since10 (CongruentAngle E B A C B G). step10 H5. apply CongruentAngleSym; apply (StrictParallelogrammExteriorAngles A B C D G H). immediate10. Qed. Lemma ParallelogrammSegmentElongated : forall A B C D : Point, Parallelogramm A B C D -> A <> D -> Segment A B C -> ElongatedAngle D A B. Proof. intros. since10 (Segment D C A). usingChaslesRec2. rewrite <- (ParallelogrammBCeqDA A B C D H). rewrite (DistanceSym D C). rewrite <- (ParallelogrammABeqCD A B C D H). usingChasles2 A C B. from10 H2 (Between D A B). step10 H2. inversion H; immediate10. Qed. Lemma BetweenBetweenElongated : forall A B C E : Point, Between A B E -> Between A C B -> ElongatedAngle C B E. Proof. intros. from10 H (Between C B E). Qed. Lemma ParallelogrammSegmentElongated2 : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> Segment B C A -> ElongatedAngle D A B. Proof. intros. from10 H1 (Between D A B). since10 (Segment A D C). usingChaslesRec2. rewrite (DistanceSym A D). rewrite <- (ParallelogrammBCeqDA A B C D H). rewrite <- (ParallelogrammABeqCD A B C D H). usingChasles2 B A C. step10 H1. inversion H; immediate10. Qed. Lemma BetweenBetweenElongated2 : forall A B C E : Point, Between A B E -> Between C A B -> ElongatedAngle C B E. Proof. intros. from10 H (Between C B E). Qed. Lemma ParallelogrammSegmentNull3 : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> A <> D -> Segment C A B -> NullAngle D A B. Proof. intros. since10 (OpenRay A B D). since10 (OpenRay A B C). step10 H3. since10 (Segment A C D). usingChaslesRec2. rewrite (DistanceSym A D). rewrite <- (ParallelogrammBCeqDA A B C D H). rewrite (DistanceSym D C). rewrite <- (ParallelogrammABeqCD A B C D H). usingChasles2 A B C. Qed. Lemma BetweenBetweenNull3 : forall A B C E : Point, Between A B E -> Between C B A -> NullAngle C B E. Proof. intros. since10 (OpenRay B C E). canonize1. step10 H2. step10 H3. Qed. Lemma ParallelogrammColinearExteriorAngles : forall A B C D E : Point, Parallelogramm A B C D -> A <> D -> Between A B E -> Collinear A B C -> CongruentAngle D A B C B E. Proof. intros. by3SegmentCases1 H2. since10 (ElongatedAngle C B E). apply (BetweenBetweenElongated A). immediate10. step10 H3. inversion H; immediate10. assert (H4 := ParallelogrammDistinctDADistinctBC A B C D H). apply sym_not_eq; apply H4; immediate10. step10 H4. apply (ParallelogrammSegmentElongated A B C D); immediate10. since10 (ElongatedAngle C B E). apply (BetweenBetweenElongated2 A). immediate10. step10 H4. inversion H; immediate10. step10 H3. apply (ParallelogrammSegmentElongated2 A B C D); immediate10. since10 (NullAngle C B E). apply (BetweenBetweenNull3 A). immediate10. step10 H4. apply sym_not_eq; apply (ParallelogrammDistinctDADistinctBC A B C D H). immediate10. step10 H3. apply (ParallelogrammSegmentNull3 A B C D); immediate10. Qed. Lemma ParallelogrammExteriorAngles : forall A B C D E : Point, Parallelogramm A B C D -> A <> D -> Between A B E -> CongruentAngle D A B C B E. Proof. intros. by3Cases1 A B C. pose (H3 := SPDef H H2). apply (StrictParallelogrammExteriorAngles A B C D E H3). immediate10. since10 (Parallelogramm C B A D). do 2 apply ParallelogrammPerm; apply ParallelogrammRev; immediate10. since10 (Clockwise C B A). pose (H5 := SPDef H2 H4). since10 (CongruentAngle D C B E B C). apply (StrictParallelogrammAlternateAngles C B A D E H5); immediate10. step10 H6. since10 (CongruentAngle D A B B C D). apply (ParallelogrammDABeqBCD A B C D H); immediate10. apply ParallelogrammColinearExteriorAngles; immediate10. Qed. Lemma ParallelogrammAlternateAngles : forall A B C D E : Point, Parallelogramm A B C D -> A <> B -> Between C B E -> CongruentAngle D A B E B A. Proof. intros. since10 (CongruentAngle D A B B C D). apply ParallelogrammDABeqBCD; immediate10. step10 H2. since10 (CongruentAngle D C B A B E). apply ParallelogrammExteriorAngles. apply ParallelogrammRev. do 2 apply ParallelogrammPerm; immediate10. apply (ParallelogrammDistinctABDistinctCD A B C D H H0). immediate10. Qed. Lemma ParallelogrammDABSupplementAngleABC : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> B <> C -> Supplement D A B A B C. Proof. intros. setSymmetricPoint5 A B ipattern:(G). since10 (CongruentAngle D A B C B G). assert (H4 := sym_not_eq (ParallelogrammDistinctBCDistinctDA A B C D H H1)). apply (ParallelogrammExteriorAngles A B C D G H H4 H3). step10 H4. Qed. Lemma StrictParallelogrammDABSupplementAngleABC : forall A B C D : Point, StrictParallelogramm A B C D -> Supplement D A B A B C. Proof. intros; apply ParallelogrammDABSupplementAngleABC. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma ParallelogrammABCSupplementAngleBCD : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> B <> C -> Supplement A B C B C D. Proof. intros. assert (H2 := ParallelogrammDABSupplementAngleABC A B C D H H0 H1). step10 H2. apply ParallelogrammDABeqBCD; immediate10. Qed. Lemma StrictParallelogrammABCSupplementAngleBCD : forall A B C D : Point, StrictParallelogramm A B C D -> Supplement A B C B C D. Proof. intros; apply ParallelogrammABCSupplementAngleBCD. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma ParallelogrammBCDSupplementAngleCDA : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> B <> C -> Supplement B C D C D A. Proof. intros. assert (H2 := ParallelogrammABCSupplementAngleBCD A B C D H H0 H1). step10 H2. apply ParallelogrammABCeqCDA; immediate10. Qed. Lemma StrictParallelogrammBCDSupplementAngleCDA : forall A B C D : Point, StrictParallelogramm A B C D -> Supplement B C D C D A. Proof. intros; apply ParallelogrammBCDSupplementAngleCDA. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma ParallelogrammCDASupplementAngleDAB : forall A B C D : Point, Parallelogramm A B C D -> A <> B -> B <> C -> Supplement C D A D A B. Proof. intros. assert (H2 := ParallelogrammBCDSupplementAngleCDA A B C D H H0 H1). step10 H2. apply CongruentAngleSym; apply ParallelogrammDABeqBCD; immediate10. Qed. Lemma StrictParallelogrammCDASupplementAngleDAB : forall A B C D : Point, StrictParallelogramm A B C D -> Supplement C D A D A B. Proof. intros; apply ParallelogrammCDASupplementAngleDAB. destruct H; immediate10. apply (StrictParallelogrammDistinctAB A B C D H). apply (StrictParallelogrammDistinctBC A B C D H). Qed. Lemma CongruentAnglesParallelogramm : forall A B C D : Point, Clockwise A B C -> Clockwise C B D -> CongruentAngle A B C B C D -> Distance A B = Distance C D -> StrictParallelogramm A B D C. Proof. intros. since10 (TCongruent (Tr A B C) (Tr D C B)). since10 (StrictParallelogramm C A B D). apply EquiDistantStrictParallelogramm; immediate10. apply StrictParallelogrammPerm; immediate10. Qed. Lemma SupplementParallelogramm : forall A B C D : Point, Clockwise A B C -> Clockwise B C D -> Supplement A B C B C D -> Distance A B = Distance C D -> StrictParallelogramm A B C D. Proof. intros. setSymmetricPoint5 D C ipattern:(E). since10 (StrictParallelogramm A B E C). apply CongruentAnglesParallelogramm. immediate10. step10 H5. step10 H1. immediate10. since10 (TCongruent (Tr B E C) (Tr A C D)). step10 3. destruct H6 as (Hp, H7). assert (H8 := ParallelogrammBCeqDA A B E C Hp); immediate10. apply ParallelogrammExteriorAngles. inversion H6. do 2 apply ParallelogrammPerm; immediate10. apply sym_not_eq; apply (StrictParallelogrammDistinctBC A B E C H6). immediate10. apply EquiDistantStrictParallelogramm. immediate10. step10 H5. left; apply (StrictParallelogrammClockwiseCDA A B E C H6). immediate10. immediate10. Qed. End PARALLELOGRAMM_ANGLES.
{"author": "coq-contribs", "repo": "euclidean-geometry", "sha": "06838851a5924918d98e5a9c07ffa84021e13af7", "save_path": "github-repos/coq/coq-contribs-euclidean-geometry", "path": "github-repos/coq/coq-contribs-euclidean-geometry/euclidean-geometry-06838851a5924918d98e5a9c07ffa84021e13af7/L4_ParallelogrammAngles.v"}
# # Copyright (C) 2019 Luca Pasqualini # University of Siena - Artificial Intelligence Laboratory - SAILab # # Inspired by the work of David Johnston (C) 2017: https://github.com/dj-on-github/sp800_22_tests # # NistRng is licensed under a BSD 3-Clause. # # You should have received a copy of the license along with this # work. If not, see <https://opensource.org/licenses/BSD-3-Clause>. # Import packages import numpy import scipy.special # Import required src from nistrng import Test, Result class FrequencyWithinBlockTest(Test): """ Frequency within block test as described in NIST paper: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf The focus of the test is the proportion of ones within M-bit blocks. The purpose of this test is to determine whether the frequency of ones in an M-bit block is approximately M/2, as would be expected under an assumption of randomness. For block size M=1, this test degenerates to the Frequency (Monobit) test. The significance value of the test is 0.01. """ def __init__(self): # Define specific test attributes self._sequence_size_min: int = 100 self._default_block_size: int = 20 self._blocks_number_max: int = 100 # Define cache attributes self._last_bits_size: int = -1 self._block_size: int = -1 self._blocks_number: int = -1 # Generate base Test class super(FrequencyWithinBlockTest, self).__init__("Frequency Within Block", 0.01) def _execute(self, bits: numpy.ndarray) -> Result: """ Overridden method of Test class: check its docstring for further information. """ # Reload values is cache is empty or no longer up-to-date # Otherwise, use cache if self._last_bits_size == -1 or self._last_bits_size != bits.size: # Get the number of blocks (N) with the default minimum block size (M) block_size: int = self._default_block_size blocks_number: int = int(bits.size // block_size) # Get the block size (M) if the number of blocks (N) exceed the allowed max if blocks_number >= self._blocks_number_max: blocks_number = self._blocks_number_max - 1 block_size = int(bits.size // blocks_number) # Save in the cache self._last_bits_size = bits.size self._block_size = block_size self._blocks_number = blocks_number else: block_size: int = self._block_size blocks_number: int = self._blocks_number # Initialize a list of fractions block_fractions: numpy.ndarray = numpy.zeros(blocks_number, dtype=float) for i in range(blocks_number): # Get the bits in the current block block: numpy.ndarray = bits[i * block_size:((i + 1) * block_size)] # Compute ones and save the fraction in the array block_fractions[i] = numpy.count_nonzero(block) / block_size # Compute Chi-square chi_square: float = numpy.sum(4.0 * block_size * ((block_fractions[:] - 0.5) ** 2)) # Compute score (P-value) applying the lower incomplete gamma function score: float = scipy.special.gammaincc((blocks_number / 2.0), chi_square / 2.0) # Return result if score >= self.significance_value: return Result(self.name, True, numpy.array(score)) return Result(self.name, False, numpy.array(score)) def is_eligible(self, bits: numpy.ndarray) -> bool: """ Overridden method of Test class: check its docstring for further information. """ # Check for eligibility if bits.size < self._sequence_size_min: return False return True
{"hexsha": "8092041eb98a50f5a09dedd8177a1faca0837cd7", "size": 3849, "ext": "py", "lang": "Python", "max_stars_repo_path": "nistrng/sp800_22r1a/test_frequency_within_block.py", "max_stars_repo_name": "LAllen1996/NistRng", "max_stars_repo_head_hexsha": "3f485fa5d9e30786f474cc57b350389e756fc2cb", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 21, "max_stars_repo_stars_event_min_datetime": "2019-08-24T08:40:07.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-28T13:27:03.000Z", "max_issues_repo_path": "nistrng/sp800_22r1a/test_frequency_within_block.py", "max_issues_repo_name": "LAllen1996/NistRng", "max_issues_repo_head_hexsha": "3f485fa5d9e30786f474cc57b350389e756fc2cb", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 4, "max_issues_repo_issues_event_min_datetime": "2020-11-19T16:55:43.000Z", "max_issues_repo_issues_event_max_datetime": "2021-03-16T13:27:01.000Z", "max_forks_repo_path": "nistrng/sp800_22r1a/test_frequency_within_block.py", "max_forks_repo_name": "LAllen1996/NistRng", "max_forks_repo_head_hexsha": "3f485fa5d9e30786f474cc57b350389e756fc2cb", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 9, "max_forks_repo_forks_event_min_datetime": "2019-11-21T15:11:14.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-23T02:49:24.000Z", "avg_line_length": 42.2967032967, "max_line_length": 139, "alphanum_fraction": 0.6528968563, "include": true, "reason": "import numpy,import scipy", "num_tokens": 906}
import matplotlib.pyplot as plt import numpy as np import qcodes as qc from qcodes import ( Measurement, experiments, initialise_database, initialise_or_create_database_at, load_by_guid, load_by_run_spec, load_experiment, load_last_experiment, load_or_create_experiment, new_experiment, ParameterWithSetpoints, ) from qcodes.dataset.plotting import plot_dataset from qcodes.instrument_drivers.tektronix.keithley_7510 import GeneratedSetPoints from qcodes.loops import Loop from qcodes.logger.logger import start_all_logging # from qcodes.tests.instrument_mocks import DummyInstrument, DummyInstrumentWithMeasurement from OPX_driver import * pulse_len = 1000 config = { "version": 1, "controllers": { "con1": { "type": "opx1", "analog_outputs": { 1: {"offset": +0.0}, 2: {"offset": +0.0}, }, "analog_inputs": { 1: {"offset": +0.0}, }, } }, "elements": { "qe1": { "mixInputs": {"I": ("con1", 1), "Q": ("con1", 2)}, "outputs": {"output1": ("con1", 1)}, "intermediate_frequency": 5e6, "operations": {"playOp": "constPulse", "readout": "readoutPulse"}, "time_of_flight": 180, "smearing": 0, }, }, "pulses": { "constPulse": { "operation": "control", "length": pulse_len, # in ns "waveforms": {"I": "const_wf", "Q": "const_wf"}, }, "readoutPulse": { "operation": "measure", "length": pulse_len, "waveforms": {"I": "const_wf", "Q": "const_wf"}, "digital_marker": "ON", "integration_weights": {"x": "xWeights", "y": "yWeights"}, }, }, "waveforms": { "const_wf": {"type": "constant", "sample": 0.2}, }, "digital_waveforms": { "ON": {"samples": [(1, 0)]}, }, "integration_weights": { "xWeights": { "cosine": [1.0] * (pulse_len // 4), "sine": [0.0] * (pulse_len // 4), }, "yWeights": { "cosine": [0.0] * (pulse_len // 4), "sine": [1.0] * (pulse_len // 4), }, }, } f_pts = 100 voltage_range = np.linspace(0, 10, 10) f_range = np.linspace(0, 100, f_pts) # opx = OPX(config) opx = OPX_SpectrumScan(config) opx.f_start(0) opx.f_stop(100) opx.sim_time(100000) opx.n_points(f_pts) station = qc.Station() station.add_component(opx) exp = load_or_create_experiment( experiment_name="my experiment", sample_name="this sample" ) meas = Measurement(exp=exp, station=station) meas.register_parameter(opx.ext_v) # register the independent parameter meas.register_parameter( opx.spectrum, setpoints=(opx.ext_v,) ) # now register the dependent one with meas.run() as datasaver: for v in voltage_range: opx.ext_v(v) # interact with external device here datasaver.add_result((opx.ext_v, v), (opx.spectrum, opx.spectrum())) dataset = datasaver.dataset plot_dataset(dataset)
{"hexsha": "928a7866c3369c3dea9cfb922d991108e752911e", "size": 3245, "ext": "py", "lang": "Python", "max_stars_repo_path": "examples/external-frameworks/qcodes/demo.py", "max_stars_repo_name": "qua-platform/qua-libs", "max_stars_repo_head_hexsha": "805a3b1a69980b939b370b3ba09434bc26dc45ec", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 21, "max_stars_repo_stars_event_min_datetime": "2021-05-21T08:23:34.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-25T11:30:55.000Z", "max_issues_repo_path": "examples/external-frameworks/qcodes/demo.py", "max_issues_repo_name": "qua-platform/qua-libs", "max_issues_repo_head_hexsha": "805a3b1a69980b939b370b3ba09434bc26dc45ec", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 9, "max_issues_repo_issues_event_min_datetime": "2021-05-13T19:56:00.000Z", "max_issues_repo_issues_event_max_datetime": "2021-12-21T05:11:04.000Z", "max_forks_repo_path": "examples/external-frameworks/qcodes/demo.py", "max_forks_repo_name": "qua-platform/qua-libs", "max_forks_repo_head_hexsha": "805a3b1a69980b939b370b3ba09434bc26dc45ec", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2021-06-21T10:56:40.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-19T14:21:33.000Z", "avg_line_length": 27.974137931, "max_line_length": 92, "alphanum_fraction": 0.5528505393, "include": true, "reason": "import numpy", "num_tokens": 862}
#!/usr/bin/env python # license removed for brevity import rospy import numpy as np import matplotlib.pyplot as plt import scipy.io as sio import math as math from focus_control.msg import status from nav_msgs.msg import Odometry from std_msgs.msg import Float32 def desired_input(): rospy.init_node('desired_data', anonymous=True) pubv = rospy.Publisher('desired_velocity', Float32, queue_size=10) puba = rospy.Publisher('desired_angle', Float32, queue_size=10) rate = rospy.Rate(10) # 10 Hz #READ GPS DATA FROM FILE gps_data = sio.loadmat('/home/acostley/Desktop/Paths/desired_data.mat') desired_velocity = gps_data['veld']; desired_angle = gps_data['thetad']; desired_heading = gps_data['psid']; outvel = Float32() outang = Float32() #output = FloatArray() #out = [desired_velocity, desired_angle, desired_heading] i = 0 while not rospy.is_shutdown(): #out = [desired_velocity[i], desired_angle[i], desired_heading[i]] #output.data = out #rospy.loginfo(desired_velocity[i]) outvel.data = desired_velocity[i] outang.data = desired_angle[i] #outvel.data = 15 #outang.data = 2000 pubv.publish(outvel) puba.publish(outang) i = i +1 rate.sleep() if __name__ == '__main__': try: desired_input() except rospy.ROSInterruptException: pass
{"hexsha": "997f6b6d91181cfbf416549bd0a0e22ad2380b4f", "size": 1303, "ext": "py", "lang": "Python", "max_stars_repo_path": "focus_controller_ws/src/focus_control/src/desired_input.py", "max_stars_repo_name": "rajnikant1010/EVAutomation", "max_stars_repo_head_hexsha": "a9e27e8916fd6dfc060dac1496a3b2f327ef6322", "max_stars_repo_licenses": ["BSD-2-Clause"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2019-06-13T02:41:49.000Z", "max_stars_repo_stars_event_max_datetime": "2021-02-13T15:42:36.000Z", "max_issues_repo_path": "focus_controller_ws/src/focus_control/src/desired_input.py", "max_issues_repo_name": "rajnikant1010/EVAutomation", "max_issues_repo_head_hexsha": "a9e27e8916fd6dfc060dac1496a3b2f327ef6322", "max_issues_repo_licenses": ["BSD-2-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "focus_controller_ws/src/focus_control/src/desired_input.py", "max_forks_repo_name": "rajnikant1010/EVAutomation", "max_forks_repo_head_hexsha": "a9e27e8916fd6dfc060dac1496a3b2f327ef6322", "max_forks_repo_licenses": ["BSD-2-Clause"], "max_forks_count": 8, "max_forks_repo_forks_event_min_datetime": "2017-02-24T02:17:28.000Z", "max_forks_repo_forks_event_max_datetime": "2021-04-22T08:25:00.000Z", "avg_line_length": 25.0576923077, "max_line_length": 72, "alphanum_fraction": 0.7290867229, "include": true, "reason": "import numpy,import scipy", "num_tokens": 364}
""" dot The dot tool returns the dot product of two arrays. import numpy A = numpy.array([ 1, 2 ]) B = numpy.array([ 3, 4 ]) print numpy.dot(A, B) #Output : 11 cross The cross tool returns the cross product of two arrays. import numpy A = numpy.array([ 1, 2 ]) B = numpy.array([ 3, 4 ]) print numpy.cross(A, B) #Output : -2 Task You are given two arrays and . Both have dimensions of X. Your task is to compute their matrix product. Input Format The first line contains the integer . The next lines contains space separated integers of array . The following lines contains space separated integers of array . Output Format Print the matrix multiplication of and . Sample Input 2 1 2 3 4 1 2 3 4 Sample Output [[ 7 10] [15 22]] """ import numpy as np np.set_printoptions(legacy="1.13") N = int(input()) arr1 = np.array([list(map(int, input().split())) for _ in range(N)], int) arr2 = np.array([list(map(int, input().split())) for _ in range(N)], int) print(np.dot(arr1, arr2))
{"hexsha": "13a8e5c6c2c5a3cbc986eed9455f2aa6f52228ab", "size": 1012, "ext": "py", "lang": "Python", "max_stars_repo_path": "Hackerrank_codes/Numpy/numpy_dot_cross_product.py", "max_stars_repo_name": "Vyshnavmt94/HackerRankTasks", "max_stars_repo_head_hexsha": "634c71ccf0bea7585498bcd7d63e34d0334b4678", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Hackerrank_codes/Numpy/numpy_dot_cross_product.py", "max_issues_repo_name": "Vyshnavmt94/HackerRankTasks", "max_issues_repo_head_hexsha": "634c71ccf0bea7585498bcd7d63e34d0334b4678", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Hackerrank_codes/Numpy/numpy_dot_cross_product.py", "max_forks_repo_name": "Vyshnavmt94/HackerRankTasks", "max_forks_repo_head_hexsha": "634c71ccf0bea7585498bcd7d63e34d0334b4678", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 17.4482758621, "max_line_length": 73, "alphanum_fraction": 0.6808300395, "include": true, "reason": "import numpy", "num_tokens": 285}
import torch import torch.nn as nn from torchvision import transforms from tqdm import tqdm import os import cv2 as cv import numpy as np import models import models_v16 from config import device # old_model = models.DIMModel() # new_model = models_v16.DIMModel() from config import device from data_gen import data_transforms from utils import ensure_folder, compute_mse, compute_sad, draw_str IMG_FOLDER = 'alphamatting/input_lowres' ALPHA_FOLDER = 'alphamatting/gt_lowres' TRIMAP_FOLDERS = ['alphamatting/trimap_lowres/Trimap1', 'alphamatting/trimap_lowres/Trimap2'] OUTPUT_FOLDERS = ['alphamatting/output_lowres_older1/Trimap1', 'alphamatting/output_lowres_older1/Trimap2', 'images/alphamatting/output_lowres_older1/Trimap3', ] def migrate(new_model): # print(new_model) checkpoint = 'BEST_checkpoint_older.tar' checkpoint = torch.load(checkpoint) old_model = checkpoint['model'].module # print(dict(old_model.up1.unpool.named_parameters())) # print(old_model) # print("old") # print(dict(old_model.up1.conv.cbr_unit[0].named_parameters())) # print("new") # print(dict(new_model.up1.conv.cbr_unit[0].named_parameters())) l1s = [ old_model.down1.conv1.cbr_unit[0], old_model.down1.conv1.cbr_unit[1], old_model.down1.conv2.cbr_unit[0], old_model.down1.conv2.cbr_unit[1], old_model.down2.conv1.cbr_unit[0], old_model.down2.conv1.cbr_unit[1], old_model.down2.conv2.cbr_unit[0], old_model.down2.conv2.cbr_unit[1], old_model.down3.conv1.cbr_unit[0], old_model.down3.conv1.cbr_unit[1], old_model.down3.conv2.cbr_unit[0], old_model.down3.conv2.cbr_unit[1], old_model.down3.conv3.cbr_unit[0], old_model.down3.conv3.cbr_unit[1], old_model.down4.conv1.cbr_unit[0], old_model.down4.conv1.cbr_unit[1], old_model.down4.conv2.cbr_unit[0], old_model.down4.conv2.cbr_unit[1], old_model.down4.conv3.cbr_unit[0], old_model.down4.conv3.cbr_unit[1], old_model.down5.conv1.cbr_unit[0], old_model.down5.conv1.cbr_unit[1], old_model.down5.conv2.cbr_unit[0], old_model.down5.conv2.cbr_unit[1], old_model.down5.conv3.cbr_unit[0], old_model.down5.conv3.cbr_unit[1], old_model.up5.conv.cbr_unit[0], old_model.up5.conv.cbr_unit[1], old_model.up4.conv.cbr_unit[0], old_model.up4.conv.cbr_unit[1], old_model.up3.conv.cbr_unit[0], old_model.up3.conv.cbr_unit[1], old_model.up2.conv.cbr_unit[0], old_model.up2.conv.cbr_unit[1], old_model.up1.conv.cbr_unit[0], old_model.up1.conv.cbr_unit[1] ] l2s = [ new_model.down1.conv1.cbr_unit[0], new_model.down1.conv1.cbr_unit[1], new_model.down1.conv2.cbr_unit[0], new_model.down1.conv2.cbr_unit[1], new_model.down2.conv1.cbr_unit[0], new_model.down2.conv1.cbr_unit[1], new_model.down2.conv2.cbr_unit[0], new_model.down2.conv2.cbr_unit[1], new_model.down3.conv1.cbr_unit[0], new_model.down3.conv1.cbr_unit[1], new_model.down3.conv2.cbr_unit[0], new_model.down3.conv2.cbr_unit[1], new_model.down3.conv3.cbr_unit[0], new_model.down3.conv3.cbr_unit[1], new_model.down4.conv1.cbr_unit[0], new_model.down4.conv1.cbr_unit[1], new_model.down4.conv2.cbr_unit[0], new_model.down4.conv2.cbr_unit[1], new_model.down4.conv3.cbr_unit[0], new_model.down4.conv3.cbr_unit[1], new_model.down5.conv1.cbr_unit[0], new_model.down5.conv1.cbr_unit[1], new_model.down5.conv2.cbr_unit[0], new_model.down5.conv2.cbr_unit[1], new_model.down5.conv3.cbr_unit[0], new_model.down5.conv3.cbr_unit[1], new_model.up5.conv.cbr_unit[0], new_model.up5.conv.cbr_unit[1], new_model.up4.conv.cbr_unit[0], new_model.up4.conv.cbr_unit[1], new_model.up3.conv.cbr_unit[0], new_model.up3.conv.cbr_unit[1], new_model.up2.conv.cbr_unit[0], new_model.up2.conv.cbr_unit[1], new_model.up1.conv.cbr_unit[0], new_model.up1.conv.cbr_unit[1] ] for l1, l2 in zip(l1s, l2s): if isinstance(l1, nn.Conv2d) and isinstance(l2, nn.Conv2d): if l1.weight.size() == l2.weight.size() and l1.bias.size() == l2.bias.size(): print("success") # l2.weight.data.copy_(l1.weight.data) l2.weight.data = l1.weight.data # l2.bias.data.copy_(l1.bias.data) l2.bias.data = l1.bias.data elif isinstance(l1, nn.BatchNorm2d) and isinstance(l2, nn.BatchNorm2d): if l1.weight.size() == l2.weight.size() and l1.bias.size() == l2.bias.size(): print("success") # l2.weight.data.copy_(l1.weight.data) l2.weight.data = l1.weight.data # l2.bias.data.copy_(l1.bias.data) l2.bias.data = l1.bias.data l2.running_mean.data = l1.running_mean.data l2.running_var.data = l1.running_var.data del checkpoint # print("old") # print(dict(old_model.up1.conv.cbr_unit[0].named_parameters())) # print("new") # print(dict(new_model.up1.conv.cbr_unit[0].named_parameters())) # new_model.load_state_dict(old_model.state_dict()) if __name__ == "__main__": model = models.DIMModel() migrate(model) # print(dict(model.up1.conv.cbr_unit[0].named_parameters())) model = model.to(device) model.eval() # checkpoint = 'BEST_checkpoint_older.tar' # checkpoint = torch.load(checkpoint) # old_model = checkpoint['model'].module # # print(old_model.state_dict()) # print(old_model) # checkpoint = 'checkpoint_0007_0.0650.tar' # checkpoint = torch.load(checkpoint) # model = checkpoint['model'] # model = model.to(device) # model.eval() transformer = data_transforms['valid'] ensure_folder('images') ensure_folder('images/alphamatting') ensure_folder(OUTPUT_FOLDERS[0]) ensure_folder(OUTPUT_FOLDERS[1]) # ensure_folder(OUTPUT_FOLDERS[2]) files = [f for f in os.listdir(IMG_FOLDER) if f.endswith('.png')] for file in tqdm(files): filename = os.path.join(IMG_FOLDER, file) img = cv.imread(filename) filename = os.path.join(ALPHA_FOLDER, file) # print(filename) alpha = cv.imread(filename, 0) alpha = alpha / 255 print(img.shape) h, w = img.shape[:2] x = torch.zeros((1, 4, h, w), dtype=torch.float) image = img[..., ::-1] # RGB image = transforms.ToPILImage()(image) image = transformer(image) x[0:, 0:3, :, :] = image for i in range(2): filename = os.path.join(TRIMAP_FOLDERS[i], file) print('reading {}...'.format(filename)) trimap = cv.imread(filename, 0) x[0:, 3, :, :] = torch.from_numpy(trimap.copy() / 255.) # print(torch.max(x[0:, 3, :, :])) # print(torch.min(x[0:, 3, :, :])) # print(torch.median(x[0:, 3, :, :])) # Move to GPU, if available x = x.type(torch.FloatTensor).to(device) with torch.no_grad(): pred = model(x) pred = pred.cpu().numpy() pred = pred.reshape((h, w)) pred[trimap == 0] = 0.0 pred[trimap == 255] = 1.0 # Calculate loss # loss = criterion(alpha_out, alpha_label) # print(pred.shape) # print(alpha.shape) mse_loss = compute_mse(pred, alpha, trimap) sad_loss = compute_sad(pred, alpha) str_msg = 'sad: %.4f, mse: %.4f' % (sad_loss, mse_loss) print(str_msg) out = (pred.copy() * 255).astype(np.uint8) draw_str(out, (10, 20), str_msg) filename = os.path.join(OUTPUT_FOLDERS[i], file) cv.imwrite(filename, out) print('wrote {}.'.format(filename))
{"hexsha": "efe3acdcd2e02e07161c7b46ab00a6b9f5ee3f5f", "size": 8129, "ext": "py", "lang": "Python", "max_stars_repo_path": "test_model.py", "max_stars_repo_name": "vietnamican/Deep-Image-Matting-PyTorch", "max_stars_repo_head_hexsha": "3e5cbd5c1038e2bc864010b647522024a5ae4c8b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-02-12T13:19:45.000Z", "max_stars_repo_stars_event_max_datetime": "2021-02-12T13:19:45.000Z", "max_issues_repo_path": "test_model.py", "max_issues_repo_name": "vietnamican/Deep-Image-Matting-PyTorch", "max_issues_repo_head_hexsha": "3e5cbd5c1038e2bc864010b647522024a5ae4c8b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "test_model.py", "max_forks_repo_name": "vietnamican/Deep-Image-Matting-PyTorch", "max_forks_repo_head_hexsha": "3e5cbd5c1038e2bc864010b647522024a5ae4c8b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.6171171171, "max_line_length": 161, "alphanum_fraction": 0.618526264, "include": true, "reason": "import numpy", "num_tokens": 2248}
import numpy as np import cv2 import torch import torch.nn.functional as F def to_homogeneous(points): return np.concatenate([points, np.ones((points.shape[0], 1), dtype=points.dtype)], axis=-1) def from_homogeneous(points): return points[:, :-1] / points[:, -1:] def compute_homography_error(H, H_gt, h, w): corners2 = to_homogeneous(np.array([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]])) corners1_gt = np.dot(corners2, np.transpose(H_gt)) corners1_gt = corners1_gt[:, :2] / corners1_gt[:, 2:] corners2_DM = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2) dst_DM_GT = cv2.perspectiveTransform(corners2_DM, H_gt).squeeze() corners1 = np.dot(corners2, np.transpose(H)) corners1 = corners1[:, :2] / corners1[:, 2:] mean_dist = np.mean(np.linalg.norm(corners1 - corners1_gt, axis=1)) return mean_dist def desc_similarity(desc1, desc2): if desc1.shape[0] == 0 or desc2.shape[0] == 0: return None descriptors_a = F.normalize(desc1) descriptors_b = F.normalize(desc2) sim = torch.sqrt(torch.clamp(2 - 2 * (descriptors_a @ descriptors_b.t()), min=0)) return sim
{"hexsha": "bdcb7b3090577f6d49b4d58bcb92cda03c7cbb42", "size": 1175, "ext": "py", "lang": "Python", "max_stars_repo_path": "experiments/service/utils.py", "max_stars_repo_name": "imelekhov/HNDesc", "max_stars_repo_head_hexsha": "47680371c0758518a66d5a12f29dc9ded6ae790d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 14, "max_stars_repo_stars_event_min_datetime": "2021-12-31T12:54:50.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-30T03:28:59.000Z", "max_issues_repo_path": "experiments/service/utils.py", "max_issues_repo_name": "imelekhov/HNDesc", "max_issues_repo_head_hexsha": "47680371c0758518a66d5a12f29dc9ded6ae790d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "experiments/service/utils.py", "max_forks_repo_name": "imelekhov/HNDesc", "max_forks_repo_head_hexsha": "47680371c0758518a66d5a12f29dc9ded6ae790d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2022-01-04T05:44:53.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-04T05:44:53.000Z", "avg_line_length": 30.9210526316, "max_line_length": 96, "alphanum_fraction": 0.6382978723, "include": true, "reason": "import numpy", "num_tokens": 380}
''' File: HAPT_Dataset.py Author: Federico Cruciani Date: 03/10/2019 Version: 1.0 Description: utility functions to load the Human Activities and Postural Transitions (HAPT) dataset ''' import numpy as np import pandas as pd from os.path import expanduser from keras.utils import to_categorical from multiprocessing import Pool as ThreadPool import math import scipy.signal home = expanduser("~") ''' Dataset Info - Labels: 1 WALKING 2 W_UPSTAIRS 3 W_DOWNSTAIRS 4 SITTING 5 STANDING 6 LAYING 7 STAND_TO_SIT 8 SIT_TO_STAND 9 SIT_TO_LIE 10 LIE_TO_SIT 11 STAND_TO_LIE 12 LIE_TO_STAND ''' #Modify this line with the right path. #Dataset available at: http://archive.ics.uci.edu/ml/machine-learning-databases/00341/ ucihapt_datapath = home+"/HAPT_Dataset/" def get_test_uuids(): test_uuids = pd.read_csv(ucihapt_datapath+"Test/subject_id_test.txt",names=["UUID"]) all_test_uuids = np.unique(test_uuids.values) return all_test_uuids def get_train_uuids(): train_uuids = pd.read_csv(ucihapt_datapath+"Train/subject_id_train.txt",names=["UUID"]) all_train_uuids = np.unique(train_uuids.values) return all_train_uuids #Get Data no resampling def get_all_data_multi_thread_noresampling_3D(uuids, n_threads): print("Loading data") print("Initiating pool") print("resampling 50 -> 40 Hz disabled. Doing 3D ") uuids_list = [ [x] for x in uuids ] pool = ThreadPool(n_threads) print("Pool map") test_points = pool.map( get_all_data_noresampling_3D,uuids_list) print("Pool map") pool.close() print("Pool join") pool.join() #Merging data from treads print("Merging threads' data") X_list = [] y_list = [] for res in test_points: #dataset_size += len(res[1]) X_list.extend(res[0]) y_list.extend(res[1]) X_es = np.zeros((len(y_list),128,8)) X_es[:,:] = [x for x in X_list ] y_es = np.zeros(len(y_list)) y_es[:] = [y for y in y_list] y_scaled = to_categorical(y_es, num_classes=7) return (X_es, y_scaled) def get_all_data_noresampling_3D(uuids): gt_df = pd.read_csv(ucihapt_datapath+"RawData/labels.txt",sep="\s",names=['EXP_ID','USER_ID','LABEL','START','END'],engine='python') #exclude other uuids #print( gt_df.head() ) filtered_df = pd.DataFrame(columns=['EXP_ID','USER_ID','LABEL','START','END']) for uuid in uuids: data_uuid = gt_df[ gt_df['USER_ID'] == uuid ] filtered_df = pd.concat([filtered_df,data_uuid], ignore_index=True) X_list = [] y_list = [] for index, row in filtered_df.iterrows(): exp_id = row['EXP_ID'] user_id = row['USER_ID'] start = row['START'] end = row['END'] label = row['LABEL'] str_user_id = str(user_id) if user_id < 10: str_user_id = "0"+str(user_id) str_exp_id = str(exp_id) if exp_id < 10: str_exp_id = "0"+str(exp_id) accfile = ucihapt_datapath+"RawData/acc_exp"+str_exp_id+"_user"+str_user_id+".txt" gyrfile = ucihapt_datapath+"RawData/gyro_exp"+str_exp_id+"_user"+str_user_id+".txt" #print(accfile) acc_data_df = pd.read_csv(accfile,names=['x','y','z'],sep='\s|,', engine='python') gyr_data_df = pd.read_csv(gyrfile,names=['x','y','z'],sep='\s|,', engine='python') acc_x = acc_data_df['x'].values acc_y = acc_data_df['y'].values acc_z = acc_data_df['z'].values gyr_x = gyr_data_df['x'].values gyr_y = gyr_data_df['y'].values gyr_z = gyr_data_df['z'].values acc_mag = [] gyr_mag = [] for i in range(len(acc_x)): acc_mag.append( math.sqrt( (acc_x[i]*acc_x[i]) + (acc_y[i]*acc_y[i]) + (acc_z[i]*acc_z[i]) ) ) gyr_mag.append( math.sqrt( (gyr_x[i]*gyr_x[i]) + (gyr_y[i]*gyr_y[i]) + (gyr_z[i]*gyr_z[i]) ) ) until = start + 128 while until < end: X_point = np.zeros((128,8)) X_point[:,0] = acc_x[start:until] X_point[:,1] = acc_y[start:until] X_point[:,2] = acc_z[start:until] X_point[:,3] = gyr_x[start:until] X_point[:,4] = gyr_y[start:until] X_point[:,5] = gyr_z[start:until] X_point[:,6] = acc_mag[start:until] X_point[:,7] = gyr_mag[start:until] X_list.append(X_point) #Remapping id from 1-12 to 0-6 if label < 7: y_list.append(label-1) else: y_list.append(6) #considering all trainsitions as NULL class 6 start += 64 until += 64 X_es = np.zeros((len(y_list),128,8)) X_es[:,:] = [x for x in X_list ] y_es = np.zeros(len(y_list)) y_es[:] = [y for y in y_list] print("Finished loading: ",uuids) return (X_es, y_es) #Loads data resampling from 50 to 40 Hz def get_all_data_multi_thread_resampling_3D(uuids, n_threads): print("Loading Test set") print("Initiating pool") print("resampling 50 -> 40 Hz Enabled. Doing 3D ") uuids_list = [ [x] for x in uuids ] pool = ThreadPool(n_threads) print("Pool map") test_points = pool.map( get_all_data_noresampling_3D,uuids_list) print("Pool map") pool.close() print("Pool join") pool.join() #Merging data from treads print("Merging threads' data") X_list = [] y_list = [] for res in test_points: #dataset_size += len(res[1]) X_list.extend(res[0]) y_list.extend(res[1]) X_es = np.zeros((len(y_list),128,8)) X_es[:,:] = [x for x in X_list ] y_es = np.zeros(len(y_list)) y_es[:] = [y for y in y_list] y_scaled = to_categorical(y_es, num_classes=7) return (X_es, y_scaled) def get_all_data_resampling_3D(uuids,resampling=True): #Load groundtruth gt_df = pd.read_csv(ucihapt_datapath+"RawData/labels.txt",sep="\s",names=['EXP_ID','USER_ID','LABEL','START','END'],engine='python') #Filter data: only uuids #Empty data frame filtered_df = pd.DataFrame(columns=['EXP_ID','USER_ID','LABEL','START','END']) for uuid in uuids: #add data for user ID is in list data_uuid = gt_df[ gt_df['USER_ID'] == uuid ] filtered_df = pd.concat([filtered_df,data_uuid], ignore_index=True) X_list = [] y_list = [] #Iterating filtered groundtruth for index, row in filtered_df.iterrows(): exp_id = row['EXP_ID'] #Used to retrive raw data file user_id = row['USER_ID'] #Used to retrieve raw data file start = row['START'] #Start of data segment with this label end = row['END'] #End of segment label = row['LABEL'] #Label of this segment str_user_id = str(user_id) if user_id < 10: str_user_id = "0"+str(user_id) str_exp_id = str(exp_id) if exp_id < 10: str_exp_id = "0"+str(exp_id) #Load raw data file accfile = ucihapt_datapath+"RawData/acc_exp"+str_exp_id+"_user"+str_user_id+".txt" gyrfile = ucihapt_datapath+"RawData/gyro_exp"+str_exp_id+"_user"+str_user_id+".txt" acc_data_df = pd.read_csv(accfile,names=['x','y','z'],sep='\s|,', engine='python') gyr_data_df = pd.read_csv(gyrfile,names=['x','y','z'],sep='\s|,', engine='python') acc_x = acc_data_df['x'].values acc_y = acc_data_df['y'].values acc_z = acc_data_df['z'].values gyr_x = gyr_data_df['x'].values gyr_y = gyr_data_df['y'].values gyr_z = gyr_data_df['z'].values #Isolate relevant data acc_x = acc_x[ start:end ] acc_y = acc_z[ start:end ] acc_z = acc_y[ start:end ] gyr_x = gyr_x[ start:end ] gyr_y = gyr_y[ start:end ] gyr_z = gyr_z[ start:end ] #Calculate 3D magnitude of the signals acc_mag = [] gyr_mag = [] for i in range(len(acc_x)): acc_mag.append( math.sqrt( (acc_x[i]*acc_x[i]) + (acc_y[i]*acc_y[i]) + (acc_z[i]*acc_z[i]) ) ) gyr_mag.append( math.sqrt( (gyr_x[i]*gyr_x[i]) + (gyr_y[i]*gyr_y[i]) + (gyr_z[i]*gyr_z[i]) ) ) #Resampling factor: 50 / 40 = 1.25 #downsampling from 50 to 40 Hz for Extrasensory compatibility num_samples_50Hz = end - start num_samples_40Hz = num_samples_50Hz / 1.25 ##DOWNSAMPLING from 50 to 40 Hz acc_x = scipy.signal.resample( acc_x, int(num_samples_40Hz) ) acc_x = scipy.signal.resample( acc_y, int(num_samples_40Hz) ) acc_x = scipy.signal.resample( acc_z, int(num_samples_40Hz) ) gyr_x = scipy.signal.resample( gyr_x, int(num_samples_40Hz) ) gyr_x = scipy.signal.resample( gyr_y, int(num_samples_40Hz) ) gyr_x = scipy.signal.resample( gyr_z, int(num_samples_40Hz) ) acc_mag = scipy.signal.resample( acc_mag, int(num_samples_40Hz) ) gyr_mag = scipy.signal.resample( gyr_mag, int(num_samples_40Hz) ) segment_start = 0 segment_end = num_samples_40Hz #Performing segmentation: sliding window 50% overlap until = segment_start + 128 while until < segment_end: X_point = np.zeros((128,8)) X_point[:,0] = acc_x[segment_start:until] X_point[:,1] = acc_y[segment_start:until] X_point[:,2] = acc_z[segment_start:until] X_point[:,3] = gyr_x[segment_start:until] X_point[:,4] = gyr_y[segment_start:until] X_point[:,5] = gyr_z[segment_start:until] X_point[:,6] = acc_mag[segment_start:until] X_point[:,7] = gyr_mag[segment_start:until] X_list.append(X_point) #All activities + transitions if label < 7: #all activities except transitions y_list.append(label-1) else: #putting all transitions in same class y_list.append(6) segment_start += 64 until += 64 X_es = np.zeros((len(y_list),128,8)) X_es[:,:] = [x for x in X_list ] y_es = np.zeros(len(y_list)) y_es[:] = [y for y in y_list] #y_scaled = to_categorical(y_es, num_classes=7) print("Finished loading: ",uuids) return (X_es, y_es)
{"hexsha": "ac304219a24df0676feb382070af801423957772", "size": 9042, "ext": "py", "lang": "Python", "max_stars_repo_path": "IMU/HAPT_Dataset.py", "max_stars_repo_name": "fcruciani/cnn_rf_har", "max_stars_repo_head_hexsha": "2a7da7ab6eafa749ebbeb7d7f880b6f4b0e9aef7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2020-10-27T02:39:18.000Z", "max_stars_repo_stars_event_max_datetime": "2020-10-27T02:39:18.000Z", "max_issues_repo_path": "IMU/HAPT_Dataset.py", "max_issues_repo_name": "fcruciani/cnn_rf_har", "max_issues_repo_head_hexsha": "2a7da7ab6eafa749ebbeb7d7f880b6f4b0e9aef7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "IMU/HAPT_Dataset.py", "max_forks_repo_name": "fcruciani/cnn_rf_har", "max_forks_repo_head_hexsha": "2a7da7ab6eafa749ebbeb7d7f880b6f4b0e9aef7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.9505300353, "max_line_length": 133, "alphanum_fraction": 0.6927670869, "include": true, "reason": "import numpy,import scipy", "num_tokens": 2950}
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: dataflow.py # Author: Qian Ge <geqian1001@gmail.com> import os import imageio import numpy as np from datetime import datetime import xml.etree.ElementTree as ET import src.utils.utils as utils def identity(inputs, *args): return inputs def load_image(im_path, read_channel=None, pf=(identity, ())): """ Load one image from file and apply pre-process function. Args: im_path (str): directory of image read_channel (int): number of image channels. Image will be read without channel information if ``read_channel`` is None. pf: pre-process fucntion Return: image after pre-processed with size [heigth, width, channel] """ if read_channel is None: im = imageio.imread(im_path) elif read_channel == 3: im = imageio.imread(im_path, as_gray=False, pilmode="RGB") else: im = imageio.imread(im_path, as_gray=True) if len(im.shape) < 3: im = pf[0](im, pf[1]) im = np.reshape(im, [im.shape[0], im.shape[1], 1]) else: im = pf[0](im, pf[1]) return im def parse_bbox_xml(xml_path, class_dict=None, pf=(identity,())): """ Returns: [class_name, [xmin, ymin, xmax, ymax]] """ tree = ET.parse(xml_path) root = tree.getroot() box_list = [] for obj in root.findall('object'): name = obj.find('name').text box = obj.find('bndbox') xmin = float(box.find('xmin').text) ymin = float(box.find('ymin').text) xmax = float(box.find('xmax').text) ymax = float(box.find('ymax').text) box = [xmin, ymin, xmax, ymax] box = pf[0](box, pf[1]) # box_list.append(box) try: # box_list.append((class_dict[name], box)) box_list.append(np.array([class_dict[name],] + box)) except TypeError: # box_list.append((name, box)) box_list.append([name,] + box) try: return np.array(box_list) except ValueError: return box_list def get_class_dict_from_xml(xml_path): file_list = get_file_list(xml_path, 'xml') class_dict = {} reverse_class_dict = {} nclass = 0 max_bbox = 0 for xml_file in file_list: bbox_list = parse_bbox_xml(xml_file) cnt_bbox = 0 for bbox in bbox_list: cnt_bbox += 1 cur_name = bbox[0] if cur_name not in class_dict: class_dict[cur_name] = nclass reverse_class_dict[nclass] = cur_name nclass += 1 max_bbox = max(max_bbox, cnt_bbox) print('Max number of bbox per image: {}'.format(max_bbox)) return class_dict, reverse_class_dict def get_voc_bbox(xml_path): bboxs = [] file_list = get_file_list(xml_path, 'xml') class_dict = {} reverse_class_dict = {} nclass = 0 for xml_file in file_list: bbox_list = parse_bbox_xml(xml_file) bbox_list = [bbox[1:] for bbox in bbox_list] bboxs.extend(bbox_list) return bboxs def vec2onehot(vec, n_class): vec = np.array(vec) one_hot = np.zeros((len(vec), n_class)) one_hot[np.arange(len(vec)), vec] = 1 return one_hot def fill_pf_list(pf_list, n_pf, fill_with_fnc=(identity,())): """ Fill the pre-process function list. Args: pf_list (list): input list of pre-process functions n_pf (int): required number of pre-process functions fill_with_fnc: function used to fill the list Returns: list of pre-process function """ if pf_list == None: return [fill_with_fnc for i in range(n_pf)] new_list = [] pf_list = utils.make_list(pf_list) for pf in pf_list: if not pf: pf = fill_with_fnc new_list.append(pf) pf_list = new_list if len(pf_list) > n_pf: raise ValueError('Invalid number of preprocessing functions') pf_list = pf_list + [fill_with_fnc for i in range(n_pf - len(pf_list))] return pf_list def get_file_list(file_dir, file_ext, sub_name=None): """ Get file list in a directory with sepcific filename and extension Args: file_dir (str): directory of files file_ext (str): filename extension sub_name (str): Part of filename. Can be None. Return: List of filenames under ``file_dir`` as well as subdirectories """ re_list = [] if sub_name is None: return np.array([os.path.join(root, name) for root, dirs, files in os.walk(file_dir) for name in sorted(files) if name.lower().endswith(file_ext)]) else: return np.array([os.path.join(root, name) for root, dirs, files in os.walk(file_dir) for name in sorted(files) if name.lower().endswith(file_ext) and sub_name.lower() in name.lower()]) _RNG_SEED = None def get_rng(obj=None): """ This function is copied from `tensorpack <https://github.com/ppwwyyxx/tensorpack/blob/master/tensorpack/utils/utils.py>`__. Get a good RNG seeded with time, pid and the object. Args: obj: some object to use to generate random seed. Returns: np.random.RandomState: the RNG. """ seed = (id(obj) + os.getpid() + int(datetime.now().strftime("%Y%m%d%H%M%S%f"))) % 4294967295 if _RNG_SEED is not None: seed = _RNG_SEED return np.random.RandomState(seed)
{"hexsha": "441201a1f28263f679fe8c0e382456588898f883", "size": 5656, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/utils/dataflow.py", "max_stars_repo_name": "conan7882/tmp", "max_stars_repo_head_hexsha": "669161ff20770c5698f2e4f5acc3c366a4cd7151", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 7, "max_stars_repo_stars_event_min_datetime": "2019-01-25T03:20:49.000Z", "max_stars_repo_stars_event_max_datetime": "2020-06-25T23:35:18.000Z", "max_issues_repo_path": "src/utils/dataflow.py", "max_issues_repo_name": "conan7882/tmp", "max_issues_repo_head_hexsha": "669161ff20770c5698f2e4f5acc3c366a4cd7151", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2019-03-29T02:51:00.000Z", "max_issues_repo_issues_event_max_datetime": "2019-04-22T22:55:28.000Z", "max_forks_repo_path": "src/utils/dataflow.py", "max_forks_repo_name": "conan7882/tmp", "max_forks_repo_head_hexsha": "669161ff20770c5698f2e4f5acc3c366a4cd7151", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 6, "max_forks_repo_forks_event_min_datetime": "2019-03-29T02:43:42.000Z", "max_forks_repo_forks_event_max_datetime": "2019-12-25T01:40:53.000Z", "avg_line_length": 30.085106383, "max_line_length": 87, "alphanum_fraction": 0.5928217822, "include": true, "reason": "import numpy", "num_tokens": 1399}
/* * This file is a part of HAXX * * Copyright (c) 2017 David Williams-Young * All rights reserved. * * See LICENSE.txt */ #ifdef BOOST_TEST_MODULE #undef BOOST_TEST_MODULE #endif #define BOOST_NO_MAIN #include <boost/test/unit_test.hpp> #include <boost/iterator/counting_iterator.hpp> #include "haxx.hpp" #include <random> #include <iterator> #include <iostream> #include <limits> #include <chrono> // Length constants #define HBLAS1_VECLEN 100 #define HBLAS2_MATLEN (HBLAS1_VECLEN) * (HBLAS1_VECLEN) #define HBLAS1_RAND_MIN -20 #define HBLAS1_RAND_MAX 54 // Setup Random Number generator static std::random_device rd; static std::mt19937 gen(rd()); static std::uniform_real_distribution<> dis(HBLAS1_RAND_MIN,HBLAS1_RAND_MAX); template <typename _F> _F genRandom(); template<> inline double genRandom<double>(){ return double(dis(gen)); } template<> inline std::complex<double> genRandom<std::complex<double>>(){ return std::complex<double>(dis(gen),dis(gen)); } template<> inline HAXX::quaternion<double> genRandom<HAXX::quaternion<double>>(){ return HAXX::quaternion<double>(dis(gen),dis(gen),dis(gen),dis(gen)); } // Index list for HBLAS1 UT conformation static std::vector<int> indx(boost::counting_iterator<int>(0), boost::counting_iterator<int>(HBLAS1_VECLEN)); // Strides to be tested static std::vector<size_t> strides = {1,2,3,5,9}; #define COMPARE_TOL 1e-12 #define CMP_Q(a,b) ( HAXX::norm(((a) * HAXX::inv(b))- 1.) < COMPARE_TOL )
{"hexsha": "bc85759d0c74c1c84f68816f59802a5d21a84b92", "size": 1486, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "tests/haxx_ut.hpp", "max_stars_repo_name": "wavefunction91/HAXX", "max_stars_repo_head_hexsha": "e0c282b70ee009a2a01871979f505bcca89713ba", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 6.0, "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:20:28.000Z", "max_stars_repo_stars_event_max_datetime": "2020-12-28T22:22:55.000Z", "max_issues_repo_path": "tests/haxx_ut.hpp", "max_issues_repo_name": "wavefunction91/HAXX", "max_issues_repo_head_hexsha": "e0c282b70ee009a2a01871979f505bcca89713ba", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tests/haxx_ut.hpp", "max_forks_repo_name": "wavefunction91/HAXX", "max_forks_repo_head_hexsha": "e0c282b70ee009a2a01871979f505bcca89713ba", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 25.186440678, "max_line_length": 82, "alphanum_fraction": 0.7288021534, "num_tokens": 431}
# 从整张图中裁剪224*224,能裁多少裁多少 import numpy as np import os import cv2 import math from utility import Method import torch import torch.nn as nn import torch.nn.functional as f import torchvision.transforms as transforms from nets.models.unet_model import UNet class ImageFusion(Method): block_size = 5 pyramid_level = 4 mean_value = 0.3976813856328417 std_value = 0.05057423681125553 input_size_cnn = 256 center_size = 200 max_input_num = 10 device = "cuda:0" data_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([mean_value], [std_value]), ]) model = UNet(n_channels=1, n_classes=1) model.to(device) project_address = os.getcwd() # sf_ssim_no_aug.pkl sf_ssim.pkl # parameter_address = os.path.join(os.path.join(os.path.join(project_address, 'nets'), 'parameters'), 'sf_ssim_no_aug_val_256.pkl') # model.load_state_dict(torch.load(parameter_address)) # parameter_address = os.path.join(os.path.join(os.path.join(project_address, 'nets'), 'parameters'), '7_new_data_load.pth') # state = torch.load(parameter_address) # model.load_state_dict(state['model']) parameter_address = os.path.join(os.path.join(os.path.join(project_address, 'nets'), 'parameters'), 'sf_ssim_aug_val_256.pkl') model.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(parameter_address).items()}) model.eval() @staticmethod def fuse_by_average(images): """ 均值融合,取两个重合区域逐像素的均值 :param images: 输入两个相同区域的图像 :return:融合后的图像 """ (last_image, next_image) = images # 由于相加后数值可能溢出,需要转变类型 fuse_region = np.uint8((last_image.astype(int) + next_image.astype(int)) / 2) return fuse_region @staticmethod def fuse_by_maximum(images): """ 最大值融合,取两个重合区域逐像素的最大值 :param images: 输入两个相同区域的图像 :return:融合后的图像 """ (last_image, next_image) = images fuse_region = np.maximum(last_image, next_image) return fuse_region @staticmethod def fuse_by_minimum(images): """ 最小值融合,取两个重合区域逐像素的最小值 :param images: 输入两个相同区域的图像 :return: 融合后的图像 """ (last_image, next_image) = images fuse_region = np.minimum(last_image, next_image) return fuse_region @staticmethod def _get_weights_matrix(images): """ 获取权值矩阵 :param images: 带融合两幅图像 :return: last_weight_mat,next_weight_mat """ (last_image, next_image) = images last_weight_mat = np.ones(last_image.shape, dtype=np.float32) next_weight_mat = np.ones(next_image.shape, dtype=np.float32) row, col = last_image.shape[:2] next_weight_mat_1 = next_weight_mat.copy() next_weight_mat_2 = next_weight_mat.copy() # 获取四条线的相加和,判断属于哪种模式 compare_list = [np.count_nonzero(last_image[0: row // 2, 0: col // 2] > 0), np.count_nonzero(last_image[row // 2: row, 0: col // 2] > 0), np.count_nonzero(last_image[row // 2: row, col // 2: col] > 0), np.count_nonzero(last_image[0: row // 2, col // 2: col] > 0)] index = compare_list.index(min(compare_list)) if index == 2: # 重合区域在imageA的上左部分 # self.printAndWrite("上左") row_index = 0 col_index = 0 for j in range(1, col): for i in range(row - 1, -1, -1): if last_image[i, col - j] != -1: row_index = i + 1 break if row_index != 0: break for i in range(col - 1, -1, -1): if last_image[row_index, i] != -1: col_index = i + 1 break # 赋值 for i in range(row_index + 1): if row_index == 0: row_index = 1 next_weight_mat_1[row_index - i, :] = (row_index - i) * 1 / row_index for i in range(col_index + 1): if col_index == 0: col_index = 1 next_weight_mat_2[:, col_index - i] = (col_index - i) * 1 / col_index next_weight_mat = next_weight_mat_1 * next_weight_mat_2 last_weight_mat = 1 - next_weight_mat # elif leftCenter != 0 and bottomCenter != 0 and upCenter == 0 and rightCenter == 0: elif index == 3: # 重合区域在imageA的下左部分 # self.printAndWrite("下左") row_index = 0 col_index = 0 for j in range(1, col): for i in range(row): if last_image[i, col - j] != -1: row_index = i - 1 break if row_index != 0: break for i in range(col - 1, -1, -1): if last_image[row_index, i] != -1: col_index = i + 1 break # 赋值 for i in range(row_index, row): if row_index == 0: row_index = 1 next_weight_mat_1[i, :] = (row - i - 1) * 1 / (row - row_index - 1) for i in range(col_index + 1): if col_index == 0: col_index = 1 next_weight_mat_2[:, col_index - i] = (col_index - i) * 1 / col_index next_weight_mat = next_weight_mat_1 * next_weight_mat_2 last_weight_mat = 1 - next_weight_mat # elif rightCenter != 0 and bottomCenter != 0 and upCenter == 0 and leftCenter == 0: elif index == 0: # 重合区域在imageA的下右部分 row_index = 0 col_index = 0 for j in range(0, col): for i in range(row): if last_image[i, j] != -1: row_index = i - 1 break if row_index != 0: break for i in range(col): if last_image[row_index, i] != -1: col_index = i - 1 break # 赋值 for i in range(row_index, row): if row_index == 0: row_index = 1 next_weight_mat_1[i, :] = (row - i - 1) * 1 / (row - row_index - 1) for i in range(col_index, col): if col_index == 0: col_index = 1 next_weight_mat_2[:, i] = (col - i - 1) * 1 / (col - col_index - 1) next_weight_mat = next_weight_mat_1 * next_weight_mat_2 last_weight_mat = 1 - next_weight_mat # elif upCenter != 0 and rightCenter != 0 and leftCenter == 0 and bottomCenter == 0: elif index == 1: # 重合区域在imageA的上右部分 # self.printAndWrite("上右") row_index = 0 col_index = 0 for j in range(0, col): for i in range(row - 1, -1, -1): if last_image[i, j] != -1: row_index = i + 1 break if row_index != 0: break for i in range(col): if last_image[row_index, i] != -1: col_index = i - 1 break for i in range(row_index + 1): if row_index == 0: row_index = 1 next_weight_mat_1[row_index - i, :] = (row_index - i) * 1 / row_index for i in range(col_index, col): if col_index == 0: col_index = 1 next_weight_mat_2[:, i] = (col - i - 1) * 1 / (col - col_index - 1) next_weight_mat = next_weight_mat_1 * next_weight_mat_2 last_weight_mat = 1 - next_weight_mat return last_weight_mat, next_weight_mat def fuse_by_fade_in_and_fade_out(self, images, offset): """ 渐入渐出融合 :param images:输入两个相同区域的图像 :param dx: 第二张图像相对于第一张图像原点在x方向上的位移 :param dy: 第二张图像相对于第一张图像原点在y方向上的位移 :return:融合后的图像 """ (last_image, next_image) = images (dx, dy) = offset row, col = last_image.shape[:2] last_weight_mat = np.ones(last_image.shape, dtype=np.float32) next_weight_mat = np.ones(next_image.shape, dtype=np.float32) # self.printAndWrite(" ratio: " + str(np.count_nonzero(imageA > -1) / imageA.size)) if np.count_nonzero(last_image > -1) / last_image.size > 0.65: # 如果对于imageA中,非0值占比例比较大,则认为是普通融合 # 根据区域的行列大小来判断,如果行数大于列数,是水平方向 if col <= row: # self.printAndWrite("普通融合-水平方向") for i in range(0, col): # print(dy) if dy >= 0: last_weight_mat[:, i] = last_weight_mat[:, i] * i * 1.0 / col next_weight_mat[:, col - i - 1] = next_weight_mat[:, col - i - 1] * i * 1.0 / col elif dy < 0: last_weight_mat[:, i] = last_weight_mat[:, i] * (col - i) * 1.0 / col next_weight_mat[:, col - i - 1] = next_weight_mat[:, col - i - 1] * (col - i) * 1.0 / col # 根据区域的行列大小来判断,如果列数大于行数,是竖直方向 elif row < col: # self.printAndWrite("普通融合-竖直方向") for i in range(0, row): if dx <= 0: last_weight_mat[i, :] = last_weight_mat[i, :] * i * 1.0 / row next_weight_mat[row - i - 1, :] = next_weight_mat[row - i - 1, :] * i * 1.0 / row elif dx > 0: last_weight_mat[i, :] = last_weight_mat[i, :] * (row - i) * 1.0 / row next_weight_mat[row - i - 1, :] = next_weight_mat[row - i - 1, :] * (row - i) * 1.0 / row else: # 如果对于imageA中,非0值占比例比较小,则认为是拐角融合 # self.printAndWrite("拐角融合") last_weight_mat, next_weight_mat = self._get_weights_matrix(images) last_image[last_image < 0] = next_image[last_image < 0] next_image[next_image == -1] = 0 result = last_weight_mat * last_image.astype(np.int) + next_weight_mat * next_image.astype(np.int) result[result < 0] = 0 result[result > 255] = 255 fuse_region = np.uint8(result) return fuse_region def fuse_by_trigonometric(self, images, offset): """ 三角函数融合 引用自《一种三角函数权重的图像拼接算法》知网 :param images:输入两个相同区域的图像 :param dx: 第二张图像相对于第一张图像原点在x方向上的位移 :param dy: 第二张图像相对于第一张图像原点在y方向上的位移 :return:融合后的图像 """ (last_image, next_image) = images (dx, dy) = offset row, col = last_image.shape[:2] last_weight_mat = np.ones(last_image.shape, dtype=np.float64) next_weight_mat = np.ones(next_image.shape, dtype=np.float64) if np.count_nonzero(last_image > -1) / last_image.size > 0.65: # 如果对于imageA中,非0值占比例比较大,则认为是普通融合 # 根据区域的行列大小来判断,如果行数大于列数,是水平方向 if col <= row: # self.printAndWrite("普通融合-水平方向") for i in range(0, col): if dy >= 0: last_weight_mat[:, i] = last_weight_mat[:, i] * i * 1.0 / col next_weight_mat[:, col - i - 1] = next_weight_mat[:, col - i - 1] * i * 1.0 / col elif dy < 0: last_weight_mat[:, i] = last_weight_mat[:, i] * (col - i) * 1.0 / col next_weight_mat[:, col - i - 1] = next_weight_mat[:, col - i - 1] * (col - i) * 1.0 / col # 根据区域的行列大小来判断,如果列数大于行数,是竖直方向 elif row < col: # self.printAndWrite("普通融合-竖直方向") for i in range(0, row): if dx <= 0: last_weight_mat[i, :] = last_weight_mat[i, :] * i * 1.0 / row next_weight_mat[row - i - 1, :] = next_weight_mat[row - i - 1, :] * i * 1.0 / row elif dx > 0: last_weight_mat[i, :] = last_weight_mat[i, :] * (row - i) * 1.0 / row next_weight_mat[row - i - 1, :] = next_weight_mat[row - i - 1, :] * (row - i) * 1.0 / row else: # 如果对于imageA中,非0值占比例比较小,则认为是拐角融合 # self.printAndWrite("拐角融合") last_weight_mat, next_weight_mat = self._get_weights_matrix(images) last_weight_mat = np.power(np.sin(last_weight_mat * math.pi / 2), 2) next_weight_mat = 1 - last_weight_mat last_image[last_image < 0] = next_image[last_image < 0] next_image[next_image == -1] = 0 result = last_weight_mat * last_image.astype(np.int) + next_weight_mat * next_image.astype(np.int) result[result < 0] = 0 result[result > 255] = 255 fuse_region = np.uint8(result) return fuse_region def fuse_by_possion_image_editing(self, images): """ 泊松融合 引用自: Rez P, Gangnet M, Blake A. Poisson image editing.[J]. Acm Transactions on Graphics, 2003, 22(3):313-318. :param images: 输入两个相同区域的图像 :return: 融合后的图像 """ (last_image, next_image) = images fuse_region = last_image return fuse_region def fuse_by_multi_band_blending(self, images): """ 多分辨率样条融合,重合区域逐像素各取权重0.5,然后使用拉普拉斯金字塔融合 引用自:《A Multiresolution Spline With Application to Image Mosaics》 :param images: 输入两个相同区域的图像 :return: 融合后的图像 """ (last_image, next_image) = images last_lp, last_gp = self._get_laplacian_pyramid(last_image) next_lp, next_gp = self._get_laplacian_pyramid(next_image) fuse_lp = [] for i in range(self.pyramid_level): fuse_lp.append(last_lp[i] * 0.5 + next_lp[i] * 0.5) fuse_region = np.uint8(self._reconstruct(fuse_lp)) return fuse_region def fuse_by_spatial_frequency(self, images): """ 空间频率融合 引用自:《Combination of images with diverse focuses using the spatial frequency》 :param images:输入两个相同区域的图像 :return:融合后的图像 """ (last_image, next_image) = images weight_matrix = self._get_spatial_frequency_matrix(images) fuse_region = last_image * weight_matrix + next_image * (1 - weight_matrix) # print(np.amin(fuse_region), np.amax(fuse_region)) return fuse_region.astype(np.uint8) def _get_spatial_frequency_matrix(self, images, block_size=5): block_num = block_size // 2 (last_image, next_image) = images weight_matrix = np.ones(last_image.shape) if torch.cuda.is_available(): # 将图像打入GPU并增加维度 last_cuda = torch.from_numpy(last_image).float().to(self.device).reshape( (1, 1, last_image.shape[0], last_image.shape[1])) next_cuda = torch.from_numpy(next_image).float().to(self.device).reshape( (1, 1, next_image.shape[0], next_image.shape[1])) # 创建向右/向下平移的卷积核 + 打入GPU + 增加维度 right_shift_kernel = torch.FloatTensor([[0, 0, 0], [1, 0, 0], [0, 0, 0]]).to(self.device).reshape( (1, 1, 3, 3)) bottom_shift_kernel = torch.FloatTensor([[0, 1, 0], [0, 0, 0], [0, 0, 0]]).to(self.device).reshape( (1, 1, 3, 3)) last_right_shift = f.conv2d(last_cuda, right_shift_kernel, padding=1) last_bottom_shift = f.conv2d(last_cuda, bottom_shift_kernel, padding=1) next_right_shift = f.conv2d(next_cuda, right_shift_kernel, padding=1) next_bottom_shift = f.conv2d(next_cuda, bottom_shift_kernel, padding=1) last_sf = torch.pow((last_right_shift - last_cuda), 2) + torch.pow((last_bottom_shift - last_cuda), 2) next_sf = torch.pow((next_right_shift - next_cuda), 2) + torch.pow((next_bottom_shift - next_cuda), 2) add_kernel = torch.ones((block_size, block_size)).float().to(self.device).reshape( (1, 1, block_size, block_size)) last_sf_convolve = f.conv2d(last_sf, add_kernel, padding=block_num) next_sf_convolve = f.conv2d(next_sf, add_kernel, padding=block_num) weight_zeros = torch.zeros((last_sf_convolve.shape[2], last_sf_convolve.shape[3])).to(self.device) weight_ones = torch.ones((last_sf_convolve.shape[2], last_sf_convolve.shape[3])).to(self.device) sf_compare = torch.where(last_sf_convolve.squeeze(0).squeeze(0) > next_sf_convolve.squeeze(0).squeeze(0), weight_ones, weight_zeros) weight_matrix = sf_compare.cpu().numpy() weight_matrix = cv2.bilateralFilter(src=weight_matrix, d=30, sigmaColor=10, sigmaSpace=7) return weight_matrix def fuse_by_sf_and_mbb(self, images): """ 多分辨率样条和空间频率融合叠加,空间频率生成的权值矩阵,生成高斯金字塔然后与拉普拉斯金字塔结合, 最后将上述金字塔生成图像 :param images: 输入两个相同区域的图像 :return: 融合后的图像 """ (last_image, next_image) = images last_lp, last_gp = self._get_laplacian_pyramid(last_image) next_lp, next_gp = self._get_laplacian_pyramid(next_image) weight_matrix = self._get_spatial_frequency_matrix(images) # wm_gp 为weight_matrix的高斯金字塔 wm_gp = self._get_gaussian_pyramid(weight_matrix) fuse_lp = [] for i in range(self.pyramid_level): fuse_lp.append(last_lp[i] * wm_gp[self.pyramid_level - i - 1] + next_lp[i] * (1 - wm_gp[self.pyramid_level - i - 1])) fuse_region = np.uint8(self._reconstruct(fuse_lp)) return fuse_region def fuse_by_deep_fuse(self, images): """ Deep fuse 融合,引用自: Prabhakar K R, Srikar V S, Babu R V.DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs[C]//ICCV. 2017: 4724-4732. :param images: 输入两个相同区域的图像 :return: 融合后的图像 """ (last_image, next_image) = images fuse_region = 0 return fuse_region def fuse_by_our_framework(self, images): """ 本文算法融合,引用自: :param images: 输入两个相同区域的图像 :return: 融合后的图像 """ # 在这里提供接口,包括模型参数引用地址、模型,具体用什么模型在其他py文件封装 (last_image, next_image) = images fuse_region = np.zeros(last_image.shape) # 使用overlap-tile策略裁切 last_input_list = [] next_input_list = [] padding_num = int((self.input_size_cnn - self.center_size) // 2) last_expand = cv2.copyMakeBorder(last_image, padding_num, padding_num, padding_num, padding_num, cv2.BORDER_REFLECT) next_expand = cv2.copyMakeBorder(next_image, padding_num, padding_num, padding_num, padding_num, cv2.BORDER_REFLECT) row_expand, col_expand = last_expand.shape[0:2] row_have_remain = True col_have_remain = True if (row_expand - padding_num * 2) % self.center_size == 0: row_have_remain = False if (col_expand - padding_num * 2) % self.center_size == 0: col_have_remain = False row_num = (row_expand - padding_num * 2) // self.center_size col_num = (col_expand - padding_num * 2) // self.center_size for i in range(row_num + 1): for j in range(col_num + 1): row_start = i * self.center_size row_end = row_start + self.input_size_cnn col_start = j * self.center_size col_end = col_start + self.input_size_cnn if i == row_num: if row_have_remain: row_start = row_expand - self.input_size_cnn row_end = row_expand else: break if j == col_num: if col_have_remain: col_start = col_expand - self.input_size_cnn col_end = col_expand else: continue last_input_list.append(last_expand[row_start: row_end, col_start:col_end]) next_input_list.append(next_expand[row_start: row_end, col_start:col_end]) input_num = len(last_input_list) # 将list转化为Tensor last_input_tensors = self._trans_list_to_tensor(last_input_list, input_num) next_input_tensors = self._trans_list_to_tensor(next_input_list, input_num) # 分步送入网络 output_tensors = None if input_num < self.max_input_num: output_tensors = self._run_network(last_input_tensors, next_input_tensors).data else: output_tensors = torch.zeros([input_num, 1, self.input_size_cnn, self.input_size_cnn]) implement_num = 0 while implement_num < input_num: remain_num = input_num - implement_num if remain_num > self.max_input_num: output_tensors[implement_num:implement_num + self.max_input_num, :] = \ self._run_network( last_input_tensors[implement_num:implement_num + self.max_input_num, :, :, :], next_input_tensors[implement_num:implement_num + self.max_input_num, :, :, :], ).data else: output_tensors[implement_num:input_num, :] = \ self._run_network( last_input_tensors[implement_num: input_num, :, :, :], next_input_tensors[implement_num: input_num, :, :, :], ).data implement_num += self.max_input_num # 将Tensor转化为list output_list = self._trans_tensor_to_list(output_tensors, input_num) row, col = last_image.shape[0:2] row_num, col_num = 0, 0 if col_have_remain: col_num = (col // self.center_size) + 1 else: col_num = col // self.center_size if row_have_remain: row_num = (row // self.center_size) + 1 else: row_num = row // self.center_size for index, output in enumerate(output_list): row_start = (index // col_num) * self.center_size row_end = ((index // col_num) + 1) * self.center_size col_start = (index % col_num) * self.center_size col_end = ((index % col_num) + 1) * self.center_size if row_have_remain and row_start == (row_num - 1) * self.center_size: row_start = row - self.center_size row_end = row if col_have_remain and col_start == (col_num - 1) * self.center_size: col_start = col - self.center_size col_end = col fuse_region[row_start: row_end, col_start: col_end] = \ output[padding_num: padding_num + self.center_size, padding_num: padding_num + self.center_size] # cv2.imwrite("fuse_region.png", fuse_region) # input() return fuse_region def _run_network(self, last_input, next_input): img1, img2 = last_input, next_input with torch.no_grad(): # Forward img1, img2 = img1.to(self.device), img2.to(self.device) img1_lum = img1[:, 0:1] img2_lum = img2[:, 0:1] y_f = self.model.forward(img1_lum, img2_lum) y_f = ((y_f * self.std_value) + self.mean_value) * 255.0 y_f = torch.clamp(y_f, 0, 255, out=None) return y_f def _trans_list_to_tensor(self, input_list, input_num): input_tensors = torch.zeros((input_num, 1, self.input_size_cnn, self.input_size_cnn)) for index, array in enumerate(input_list): input_tensors[index, :, :, :] = \ self.data_transforms(np.expand_dims(array, axis=2).astype(np.float32) / 255) return input_tensors def _trans_tensor_to_list(self, output_tensors, input_num): output_list = [] for i in range(input_num): temp = output_tensors[i, 0, :, :].cpu().numpy().astype(np.uint8) output_list.append(temp) return output_list def _get_gaussian_pyramid(self, input_image): """ 获得图像的高斯金字塔 :param input_image:输入图像 :return: 高斯金字塔,以list形式返回,第一个是原图,以此类推 """ g = input_image.copy().astype(np.float64) gp = [g] # 金字塔结构存到list中 for i in range(self.pyramid_level): g = cv2.pyrDown(g) gp.append(g) return gp def _get_laplacian_pyramid(self, input_image): """ 求一张图像的拉普拉斯金字塔 :param input_image: 输入图像 :return: 拉普拉斯金字塔(laplacian_pyramid, lp, 从小到大),高斯金字塔(gaussian_pyramid, gp,从大到小), 均以list形式 """ gp = self._get_gaussian_pyramid(input_image) lp = [gp[self.pyramid_level - 1]] for i in range(self.pyramid_level - 1, -1, -1): ge = cv2.pyrUp(gp[i]) ge = cv2.resize(ge, (gp[i - 1].shape[1], gp[i - 1].shape[0]), interpolation=cv2.INTER_CUBIC) lp.append(cv2.subtract(gp[i - 1], ge)) return lp, gp @staticmethod def _reconstruct(input_pyramid): """ 根据拉普拉斯金字塔重构图像,该list第一个是最小的原图,后面是更大的拉普拉斯表示 :param input_pyramid: 输入的金字塔 :return: 返回重构的结果图 """ construct_result = input_pyramid[0] for i in range(1, len(input_pyramid)): construct_result = cv2.pyrUp(construct_result) construct_result = cv2.resize(construct_result, (input_pyramid[i].shape[1], input_pyramid[i].shape[0]), interpolation=cv2.INTER_CUBIC) construct_result = cv2.add(construct_result, input_pyramid[i]) return construct_result
{"hexsha": "82c43dd66b0edf931fe62b254fde5c9584af38eb", "size": 25985, "ext": "py", "lang": "Python", "max_stars_repo_path": "second_experiment/crop_all_regions.py", "max_stars_repo_name": "Jacen-Chou/Paste-Video-Classification", "max_stars_repo_head_hexsha": "58af07a343bcd4f95f26a71d6ae9791552b2fe6e", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "second_experiment/crop_all_regions.py", "max_issues_repo_name": "Jacen-Chou/Paste-Video-Classification", "max_issues_repo_head_hexsha": "58af07a343bcd4f95f26a71d6ae9791552b2fe6e", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "second_experiment/crop_all_regions.py", "max_forks_repo_name": "Jacen-Chou/Paste-Video-Classification", "max_forks_repo_head_hexsha": "58af07a343bcd4f95f26a71d6ae9791552b2fe6e", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 44.2674616695, "max_line_length": 139, "alphanum_fraction": 0.5558976332, "include": true, "reason": "import numpy", "num_tokens": 7460}
import numpy as np # metodos para calcular porosidade def PhiVel(vellog, velma, velfl): # calculo da porosidade usando o perfil de velocidade phiv = (vellog - velma) / (velfl - velma) phiv = np.clip(phiv, 0.0, 1.0) return phiv def PhiDens(denslog, densma, densfl): # calculo da porosidade usando o perfil de densidade phid = (denslog - densma) / (densfl - densma) phid = np.clip(phid, 0.0, 1.0) return phid def PhiDensNeut(neutlog, denslog, densma, densfl): # calculo da porosidade usando os perfis de densidade e neutron phid = (denslog - densma) / (densfl - densma) phidn = np.sqrt((phid ** 2 + neutlog ** 2) / 2) phidn = np.clip(phidn, 0.0, 1.0) return phidn
{"hexsha": "b8ae7bea1f9dc43c3e9199fc9a508a62f03262c7", "size": 715, "ext": "py", "lang": "Python", "max_stars_repo_path": "algo/rockphysics/Porosity.py", "max_stars_repo_name": "giruenf/GRIPy-3", "max_stars_repo_head_hexsha": "ea0f5175bbdd966ca2df956f4667a806d035e532", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "algo/rockphysics/Porosity.py", "max_issues_repo_name": "giruenf/GRIPy-3", "max_issues_repo_head_hexsha": "ea0f5175bbdd966ca2df956f4667a806d035e532", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "algo/rockphysics/Porosity.py", "max_forks_repo_name": "giruenf/GRIPy-3", "max_forks_repo_head_hexsha": "ea0f5175bbdd966ca2df956f4667a806d035e532", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.5, "max_line_length": 115, "alphanum_fraction": 0.6601398601, "include": true, "reason": "import numpy", "num_tokens": 266}
""" FluPop(f::Union{AbstractString,IO}, sequencetype::Symbol, headerfields; flulineage=missing, segment=missing, strainfilters = [!is_flu_outlier(flulineage), BioTools.hasdate], separator = '|') Call `readfastastrains` to read `f`. Store the result in a `FluPop` object. """ function FluPop(f::Union{AbstractString,IO}, sequencetype, headerfields; flulineage=missing, segment=missing, strainfilters = flu_usual_filters(flulineage), separator = '|', ignore_read_errors=false) strains = readfastastrains(f, sequencetype, headerfields, separator = separator, strainfilters = strainfilters, ignore_read_errors=ignore_read_errors) return FluPop(strains = Dict{String, eltype(strains)}(String(x[:strain])=>x for x in strains)) end """ AAFluPop(f::Union{AbstractString,IO}, headerfields; [kwargs...]) Call `FluPop(f, :aa, headerfields, [kwargs...]) """ function AAFluPop(f::Union{AbstractString,IO}, headerfields; flulineage=missing, segment=missing, strainfilters = flu_usual_filters(flulineage), separator = '|') return FluPop(f, :aa, headerfields, flulineage=flulineage, segment=segment, strainfilters=strainfilters, separator=separator) end """ read_mutations!(tree::Tree, mutfile::String) Read mutations from a JSON file outputted by augur. Store them into `tree`. ## Note This is in the `Flu` module because it is explicitely designed for use of augur on flu. In particular, it uses the `gene_positions` global. """ function read_mutations!(tree::Tree, mutfile::String; type=:aa, lineage="h3n2", segment="ha") if type == :aa read_mutations_aa!(tree, mutfile, lineage, segment) else @warn "Only implemented for `type=:aa`" end end """ """ function read_mutations_aa!(tree, mutfile::String, lineage, segment) muts = JSON.Parser.parsefile(mutfile)["nodes"] for (label, mut) in muts if haskey(tree.lnodes, label) tmp = Array{TreeTools.Mutation}(undef, 0) for (gene, pos) in gene_offsets[lineage, segment] if haskey(mut["aa_muts"], gene) for m in mut["aa_muts"][gene] push!(tmp, _parse_aa_mut(m)) tmp[end].i = tmp[end].i + pos[1] # Offset for different genes end end end tree.lnodes[label].data.mutations = tmp end end end """ Parse a string of format `XiY` into a `TreeTools.Mutation` object with fields `i`, `X` and `Y`. """ function _parse_aa_mut(m::String) if length(m) < 3 error("Can't parse mutation string of length smaller than 3") end i = parse(Int64, m[2:end-1]) old = AminoAcid(m[1]) new = AminoAcid(m[end]) out = TreeTools.Mutation(i, old, new) return out end
{"hexsha": "277448b0df12d2ce8f18c2d3d8306138360659b6", "size": 2573, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/IO.jl", "max_stars_repo_name": "PierreBarrat/FluPredictibility", "max_stars_repo_head_hexsha": "2325bc3eba688e9d882622704bf4a9713c36fbc4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-07-05T23:10:33.000Z", "max_stars_repo_stars_event_max_datetime": "2021-07-05T23:10:33.000Z", "max_issues_repo_path": "src/IO.jl", "max_issues_repo_name": "PierreBarrat/FluPredictibility", "max_issues_repo_head_hexsha": "2325bc3eba688e9d882622704bf4a9713c36fbc4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/IO.jl", "max_forks_repo_name": "PierreBarrat/FluPredictibility", "max_forks_repo_head_hexsha": "2325bc3eba688e9d882622704bf4a9713c36fbc4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.7654320988, "max_line_length": 151, "alphanum_fraction": 0.7170617956, "num_tokens": 766}
from rdkit import Chem from mordred import Calculator, descriptors from Bio.PDB import PDBParser, Dice from snakemake.shell import shell import pandas as pd import numpy as np import joblib as jl import warnings def reset_indices(chain): for i, residue in enumerate(chain.get_residues(), start=1): res_id = list(residue.id) res_id[1] += 1e5 # deal with negative indices residue.id = tuple(res_id) for i, residue in enumerate(chain.get_residues(), start=1): res_id = list(residue.id) res_id[1] = i residue.id = tuple(res_id) return chain def get_pdb_chunks(full_pdb, window_size, len_residues, token): len_residues += 1 for chain in full_pdb.get_chains(): chain = reset_indices(chain) chain_id = chain.get_id() start_idx, stop_idx = \ list(chain.get_residues())[0].get_id()[1], \ list(chain.get_residues())[-1].get_id()[1] if len_residues <= window_size: windows = [[start_idx, stop_idx]] else: windows = enumerate(range(window_size, len_residues)) for start, end in windows: filename = f"data/temp/{token}/{full_pdb.get_id()}_{start}_{end}.pdb" Dice.extract(full_pdb, chain_id, start, end, filename) mol_obj = Chem.MolFromPDBFile(filename) shell(f"rm {filename}") yield mol_obj smk_obj = snakemake name, path, token = \ smk_obj.wildcards.seq_name, smk_obj.input[0], smk_obj.config["token"] structure = PDBParser().get_structure(name, path) seqs, class_ = jl.load(smk_obj.input[1]) len_residues = len(list(structure.get_residues())) pdbs = get_pdb_chunks(structure, 20, len_residues, token) try: warnings.filterwarnings("ignore") calc = Calculator(descriptors) df = calc.pandas(list(pdbs), quiet=True) df = df.loc[:, [s.dtype in [np.float, np.int] for n, s in df.items()]] df.dropna(axis="columns", inplace=True) df = pd.DataFrame(df.apply(np.mean)).transpose() df.index = [name] df["y"] = [class_] df.to_csv(str(smk_obj.output)) except Exception as e: print(e)
{"hexsha": "19377ecd615a215c895d80d57b1706ea0f159f96", "size": 2142, "ext": "py", "lang": "Python", "max_stars_repo_path": "nodes/encodings/qsar/scripts/compute_qsar.py", "max_stars_repo_name": "spaenigs/peptidereactor", "max_stars_repo_head_hexsha": "17efcb993505934f5b9c2d63f5cc040bb244dde9", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-02-03T12:30:37.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-07T07:03:38.000Z", "max_issues_repo_path": "nodes/encodings/qsar/scripts/compute_qsar.py", "max_issues_repo_name": "spaenigs/peptidereactor", "max_issues_repo_head_hexsha": "17efcb993505934f5b9c2d63f5cc040bb244dde9", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2021-01-04T14:52:27.000Z", "max_issues_repo_issues_event_max_datetime": "2021-01-04T14:52:27.000Z", "max_forks_repo_path": "nodes/encodings/qsar/scripts/compute_qsar.py", "max_forks_repo_name": "spaenigs/peptidereactor", "max_forks_repo_head_hexsha": "17efcb993505934f5b9c2d63f5cc040bb244dde9", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-06-09T16:16:16.000Z", "max_forks_repo_forks_event_max_datetime": "2021-06-09T16:16:16.000Z", "avg_line_length": 31.5, "max_line_length": 81, "alphanum_fraction": 0.6512605042, "include": true, "reason": "import numpy", "num_tokens": 576}
# Simulating Molecules using VQE In this tutorial, we introduce the Variational Quantum Eigensolver (VQE), motivate its use, explain the necessary theory, and demonstrate its implementation in finding the ground state energy of molecules. ## Contents 1. [Introduction](#introduction) 2. [The Variational Method of Quantum Mechanics](#varmethod) 1. [Mathematical Background](#backgroundmath) 2. [Bounding the Ground State](#groundstate) 3. [The Variational Quantum Eigensolver](#vqe) 1. [Variational Forms](#varforms) 2. [Simple Variational Forms](#simplevarform) 3. [Parameter Optimization](#optimization) 4. [Example with a Single Qubit Variational Form](#example) 5. [Structure of Common Variational Forms](#commonvarforms) 4. [VQE Implementation in Qiskit](#implementation) 1. [Running VQE on a Statevector Simulator](#implementationstatevec) 2. [Running VQE on a Noisy Simulator](#implementationnoisy) 5. [Problems](#problems) 6. [References](#references) ## Introduction<a id='introduction'></a> In many applications it is important to find the minimum eigenvalue of a matrix. For example, in chemistry, the minimum eigenvalue of a Hermitian matrix characterizing the molecule is the ground state energy of that system. In the future, the quantum phase estimation algorithm may be used to find the minimum eigenvalue. However, its implementation on useful problems requires circuit depths exceeding the limits of hardware available in the NISQ era. Thus, in 2014, Peruzzo *et al.* proposed VQE to estimate the ground state energy of a molecule using much shallower circuits [1]. Formally stated, given a Hermitian matrix $H$ with an unknown minimum eigenvalue $\lambda_{min}$, associated with the eigenstate $|\psi_{min}\rangle$, VQE provides an estimate $\lambda_{\theta}$ bounding $\lambda_{min}$: \begin{align*} \lambda_{min} \le \lambda_{\theta} \equiv \langle \psi(\theta) |H|\psi(\theta) \rangle \end{align*} where $|\psi(\theta)\rangle$ is the eigenstate associated with $\lambda_{\theta}$. By applying a parameterized circuit, represented by $U(\theta)$, to some arbitrary starting state $|\psi\rangle$, the algorithm obtains an estimate $U(\theta)|\psi\rangle \equiv |\psi(\theta)\rangle$ on $|\psi_{min}\rangle$. The estimate is iteratively optimized by a classical controller changing the parameter $\theta$ minimizing the expectation value of $\langle \psi(\theta) |H|\psi(\theta) \rangle$. ## The Variational Method of Quantum Mechanics<a id='varmethod'></a> ### Mathematical Background<a id='backgroundmath'></a> VQE is an application of the variational method of quantum mechanics. To better understand the variational method, some preliminary mathematical background is provided. An eigenvector, $|\psi_i\rangle$, of a matrix $A$ is invariant under transformation by $A$ up to a scalar multiplicative constant (the eigenvalue $\lambda_i$). That is, \begin{align*} A |\psi_i\rangle = \lambda_i |\psi_i\rangle \end{align*} Furthermore, a matrix $H$ is Hermitian when it is equal to its own conjugate transpose. \begin{align*} H = H^{\dagger} \end{align*} The spectral theorem states that the eigenvalues of a Hermitian matrix must be real. Thus, any eigenvalue of $H$ has the property that $\lambda_i = \lambda_i^*$. As any measurable quantity must be real, Hermitian matrices are suitable for describing the Hamiltonians of quantum systems. Moreover, $H$ may be expressed as \begin{align*} H = \sum_{i = 1}^{N} \lambda_i |\psi_i\rangle \langle \psi_i | \end{align*} where each $\lambda_i$ is the eigenvalue corresponding to the eigenvector $|\psi_i\rangle$. Furthermore, the expectation value of the observable $H$ on an arbitrary quantum state $|\psi\rangle$ is given by \begin{align} \langle H \rangle_{\psi} &\equiv \langle \psi | H | \psi \rangle \end{align} Substituting $H$ with its representation as a weighted sum of its eigenvectors, \begin{align} \langle H \rangle_{\psi} = \langle \psi | H | \psi \rangle &= \langle \psi | \left(\sum_{i = 1}^{N} \lambda_i |\psi_i\rangle \langle \psi_i |\right) |\psi\rangle\\ &= \sum_{i = 1}^{N} \lambda_i \langle \psi | \psi_i\rangle \langle \psi_i | \psi\rangle \\ &= \sum_{i = 1}^{N} \lambda_i | \langle \psi_i | \psi\rangle |^2 \end{align} The last equation demonstrates that the expectation value of an observable on any state can be expressed as a linear combination using the eigenvalues associated with $H$ as the weights. Moreover, each of the weights in the linear combination is greater than or equal to 0, as $| \langle \psi_i | \psi\rangle |^2 \ge 0$ and so it is clear that \begin{align} \lambda_{min} \le \langle H \rangle_{\psi} = \langle \psi | H | \psi \rangle = \sum_{i = 1}^{N} \lambda_i | \langle \psi_i | \psi\rangle |^2 \end{align} The above equation is known as the **variational method** (in some texts it is also known as the variational principle) [2]. It is important to note that this implies that the expectation value of any wave function will always be at least the minimum eigenvalue associated with $H$. Moreover, the expectation value of state $|\psi_{min}\rangle$ is given by $\langle \psi_{min}|H|\psi_{min}\rangle = \langle \psi_{min}|\lambda_{min}|\psi_{min}\rangle = \lambda_{min}$. Thus, as expected, $\langle H \rangle_{\psi_{min}}=\lambda_{min}$. ### Bounding the Ground State<a id='groundstate'></a> When the Hamiltonian of a system is described by the Hermitian matrix $H$ the ground state energy of that system, $E_{gs}$, is the smallest eigenvalue associated with $H$. By arbitrarily selecting a wave function $|\psi \rangle$ (called an *ansatz*) as an initial guess approximating $|\psi_{min}\rangle$, calculating its expectation value, $\langle H \rangle_{\psi}$, and iteratively updating the wave function, arbitrarily tight bounds on the ground state energy of a Hamiltonian may be obtained. ## The Variational Quantum Eigensolver<a id='vqe'></a> ### Variational Forms<a id='varforms'></a> A systematic approach to varying the ansatz is required to implement the variational method on a quantum computer. VQE does so through the use of a parameterized circuit with a fixed form. Such a circuit is often called a *variational form*, and its action may be represented by the linear transformation $U(\theta)$. A variational form is applied to a starting state $|\psi\rangle$ (such as the vacuum state $|0\rangle$, or the Hartree Fock state) and generates an output state $U(\theta)|\psi\rangle\equiv |\psi(\theta)\rangle$. Iterative optimization over $|\psi(\theta)\rangle$ aims to yield an expectation value $\langle \psi(\theta)|H|\psi(\theta)\rangle \approx E_{gs} \equiv \lambda_{min}$. Ideally, $|\psi(\theta)\rangle$ will be close to $|\psi_{min}\rangle$ (where 'closeness' is characterized by either state fidelity, or Manhattan distance) although in practice, useful bounds on $E_{gs}$ can be obtained even if this is not the case. Moreover, a fixed variational form with a polynomial number of parameters can only generate transformations to a polynomially sized subspace of all the states in an exponentially sized Hilbert space. Consequently, various variational forms exist. Some, such as Ry and RyRz are heuristically designed, without consideration of the target domain. Others, such as UCCSD, utilize domain specific knowledge to generate close approximations based on the problem's structure. The structure of common variational forms is discussed in greater depth later in this document. ### Simple Variational Forms<a id='simplevarform'></a> When constructing a variational form we must balance two opposing goals. Ideally, our $n$ qubit variational form would be able to generate any possible state $|\psi\rangle$ where $|\psi\rangle \in \mathbb{C}^N$ and $N=2^n$. However, we would like the variational form to use as few parameters as possible. Here, we aim to give intuition for the construction of variational forms satisfying our first goal, while disregarding the second goal for the sake of simplicity. Consider the case where $n=1$. The U3 gate takes three parameters, $\theta, \phi$ and $\lambda$, and represents the following transformation: \begin{align} U3(\theta, \phi, \lambda) = \begin{pmatrix}\cos(\frac{\theta}{2}) & -e^{i\lambda}\sin(\frac{\theta}{2}) \\ e^{i\phi}\sin(\frac{\theta}{2}) & e^{i\lambda + i\phi}\cos(\frac{\theta}{2}) \end{pmatrix} \end{align} Up to a global phase, any possible single qubit transformation may be implemented by appropriately setting these parameters. Consequently, for the single qubit case, a variational form capable of generating any possible state is given by the circuit: Moreover, this universal 'variational form' only has 3 parameters and thus can be efficiently optimized. It is worth emphasising that the ability to generate an arbitrary state ensures that during the optimization process, the variational form does not limit the set of attainable states over which the expectation value of $H$ can be taken. Ideally, this ensures that the minimum expectation value is limited only by the capabilities of the classical optimizer. A less trivial universal variational form may be derived for the 2 qubit case, where two body interactions, and thus entanglement, must be considered to achieve universality. Based on the work presented by *Shende et al.* [3] the following is an example of a universal parameterized 2 qubit circuit: Allow the transformation performed by the above circuit to be represented by $U(\theta)$. When optimized variationally, the expectation value of $H$ is minimized when $U(\theta)|\psi\rangle \equiv |\psi(\theta)\rangle \approx |\psi_{min}\rangle$. By formulation, $U(\theta)$ may produce a transformation to any possible state, and so this variational form may obtain an arbitrarily tight bound on two qubit ground state energies, only limited by the capabilities of the classical optimizer. ### Parameter Optimization<a id='optimization'></a> Once an efficiently parameterized variational form has been selected, in accordance with the variational method, its parameters must be optimized to minimize the expectation value of the target Hamiltonian. The parameter optimization process has various challenges. For example, quantum hardware has various types of noise and so objective function evaluation (energy calculation) may not necessarily reflect the true objective function. Additionally, some optimizers perform a number of objective function evaluations dependent on cardinality of the parameter set. An appropriate optimizer should be selected by considering the requirements of a application. A popular optimization strategy is gradient decent where each parameter is updated in the direction yielding the largest local change in energy. Consequently, the number of evaluations performed depends on the number of optimization parameters present. This allows the algorithm to quickly find a local optimum in the search space. However, this optimization strategy often gets stuck at poor local optima, and is relatively expensive in terms of the number of circuit evaluations performed. While an intuitive optimization strategy, it is not recommended for use in VQE. An appropriate optimizer for optimizing a noisy objective function is the *Simultaneous Perturbation Stochastic Approximation* optimizer (SPSA). SPSA approximates the gradient of the objective function with only two measurements. It does so by concurrently perturbing all of the parameters in a random fashion, in contrast to gradient decent where each parameter is perturbed independently. When utilizing VQE in either a noisy simulator or on real hardware, SPSA is a recommended as the classical optimizer. When noise is not present in the cost function evaluation (such as when using VQE with a statevector simulator), a wide variety of classical optimizers may be useful. Two such optimizers supported by Qiskit Aqua are the *Sequential Least Squares Programming* optimizer (SLSQP) and the *Constrained Optimization by Linear Approximation* optimizer (COBYLA). It is worth noting that COBYLA only performs one objective function evaluation per optimization iteration (and thus the number of evaluations is independent of the parameter set's cardinality). Therefore, if the objective function is noise-free and minimizing the number of performed evaluations is desirable, it is recommended to try COBYLA. ### Example with a Single Qubit Variational Form<a id='example'></a> We will now use the simple single qubit variational form to solve a problem similar to ground state energy estimation. Specifically, we are given a random probability vector $\vec{x}$ and wish to determine a possible parameterization for our single qubit variational form such that it outputs a probability distribution that is close to $\vec{x}$ (where closeness is defined in terms of the Manhattan distance between the two probability vectors). We first create the random probability vector in python: ```python import numpy as np np.random.seed(999999) target_distr = np.random.rand(2) # We now convert the random vector into a valid probability vector target_distr /= sum(target_distr) ``` We subsequently create a function that takes the parameters of our single U3 variational form as arguments and returns the corresponding quantum circuit: ```python from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_var_form(params): qr = QuantumRegister(1, name="q") cr = ClassicalRegister(1, name='c') qc = QuantumCircuit(qr, cr) qc.u3(params[0], params[1], params[2], qr[0]) qc.measure(qr, cr[0]) return qc ``` Now we specify the objective function which takes as input a list of the variational form's parameters, and returns the cost associated with those parameters: ```python from qiskit import Aer, execute backend = Aer.get_backend("qasm_simulator") NUM_SHOTS = 10000 def get_probability_distribution(counts): output_distr = [v / NUM_SHOTS for v in counts.values()] if len(output_distr) == 1: output_distr.append(0) return output_distr def objective_function(params): # Obtain a quantum circuit instance from the paramters qc = get_var_form(params) # Execute the quantum circuit to obtain the probability distribution associated with the current parameters result = execute(qc, backend, shots=NUM_SHOTS).result() # Obtain the counts for each measured state, and convert those counts into a probability vector output_distr = get_probability_distribution(result.get_counts(qc)) # Calculate the cost as the distance between the output distribution and the target distribution cost = sum([np.abs(output_distr[i] - target_distr[i]) for i in range(2)]) return cost ``` Finally, we create an instance of the COBYLA optimizer, and run the algorithm. Note that the output varies from run to run. Moreover, while close, the obtained distribution might not be exactly the same as the target distribution, however, increasing the number of shots taken will increase the accuracy of the output. ```python from qiskit.aqua.components.optimizers import COBYLA # Initialize the COBYLA optimizer optimizer = COBYLA(maxiter=500, tol=0.0001) # Create the initial parameters (noting that our single qubit variational form has 3 parameters) params = np.random.rand(3) ret = optimizer.optimize(num_vars=3, objective_function=objective_function, initial_point=params) # Obtain the output distribution using the final parameters qc = get_var_form(ret[0]) counts = execute(qc, backend, shots=NUM_SHOTS).result().get_counts(qc) output_distr = get_probability_distribution(counts) print("Target Distribution:", target_distr) print("Obtained Distribution:", output_distr) print("Output Error (Manhattan Distance):", ret[1]) print("Parameters Found:", ret[0]) ``` Target Distribution: [0.51357006 0.48642994] Obtained Distribution: [0.5182, 0.4818] Output Error (Manhattan Distance): 0.0001401187388391789 Parameters Found: [1.59966854 0.66273002 0.28432001] ### Structure of Common Variational Forms<a id='commonvarforms'></a> As already discussed, it is not possible for a polynomially parameterized variational form to generate a transformation to any state. Variational forms can be grouped into two categories, depending on how they deal with this limitation. The first category of variational forms use domain or application specific knowledge to limit the set of possible output states. The second approach uses a heuristic circuit without prior domain or application specific knowledge. The first category of variational forms exploit characteristics of the problem domain to restrict the set of transformations that may be required. For example, when calculating the ground state energy of a molecule, the number of particles in the system is known *a priori*. Therefore, if a starting state with the correct number of particles is used, by limiting the variational form to only producing particle preserving transformations, the number of parameters required to span the new transformation subspace can be greatly reduced. Indeed, by utilizing similar information from Coupled-Cluster theory, the variational form UCCSD can obtain very accurate results for molecular ground state energy estimation when starting from the Hartree Fock state. Another example illustrating the exploitation of domain-specific knowledge follows from considering the set of circuits realizable on real quantum hardware. Extant quantum computers, such as those based on super conducting qubits, have limited qubit connectivity. That is, it is not possible to implement 2-qubit gates on arbitrary qubit pairs (without inserting swap gates). Thus, variational forms have been constructed for specific quantum computer architectures where the circuits are specifically tuned to maximally exploit the natively available connectivity and gates of a given quantum device. Such a variational form was used in 2017 to successfully implement VQE for the estimation of the ground state energies of molecules as large as BeH$_2$ on an IBM quantum computer [4]. In the second approach, gates are layered such that good approximations on a wide range of states may be obtained. Qiskit Aqua supports three such variational forms: RyRz, Ry and SwapRz (we will only discuss the first two). All of these variational forms accept multiple user-specified configurations. Three essential configurations are the number of qubits in the system, the depth setting, and the entanglement setting. A single layer of a variational form specifies a certain pattern of single qubit rotations and CX gates. The depth setting says how many times the variational form should repeat this pattern. By increasing the depth setting, at the cost of increasing the number of parameters that must be optimized, the set of states the variational form can generate increases. Finally, the entanglement setting selects the configuration, and implicitly the number, of CX gates. For example, when the entanglement setting is linear, CX gates are applied to adjacent qubit pairs in order (and thus $n-1$ CX gates are added per layer). When the entanglement setting is full, a CX gate is applied to each qubit pair in each layer. The circuits for RyRz corresponding to `entanglement="full"` and `entanglement="linear"` can be seen by executing the following code snippet: ```python from qiskit.aqua.components.variational_forms import RYRZ entanglements = ["linear", "full"] for entanglement in entanglements: form = RYRZ(num_qubits=4, depth=1, entanglement=entanglement) if entanglement == "linear": print("=============Linear Entanglement:=============") else: print("=============Full Entanglement:=============") # We initialize all parameters to 0 for this demonstration print(form.construct_circuit([0] * form.num_parameters).draw(line_length=100)) print() ``` =============Linear Entanglement:============= ┌───────────┐┌───────┐ ┌───────────┐ ┌───────┐ » q_0: |0>┤ U3(0,0,0) ├┤ U1(0) ├──────────────────■───┤ U3(0,0,0) ├──┤ U1(0) ├────────────────» ├───────────┤├───────┤┌──────────────┐┌─┴─┐┌┴───────────┴─┐└───────┘ ┌───────────┐ » q_1: |0>┤ U3(0,0,0) ├┤ U1(0) ├┤ U2(0,3.1416) ├┤ X ├┤ U2(0,3.1416) ├────■─────┤ U3(0,0,0) ├──» ├───────────┤├───────┤├──────────────┤└───┘└──────────────┘ ┌─┴─┐ ┌┴───────────┴─┐» q_2: |0>┤ U3(0,0,0) ├┤ U1(0) ├┤ U2(0,3.1416) ├───────────────────────┤ X ├──┤ U2(0,3.1416) ├» ├───────────┤├───────┤├──────────────┤ └───┘ └──────────────┘» q_3: |0>┤ U3(0,0,0) ├┤ U1(0) ├┤ U2(0,3.1416) ├──────────────────────────────────────────────» └───────────┘└───────┘└──────────────┘ » « ░ «q_0: ────────────────────────────────────────────────░─ « ┌───────┐ ░ «q_1: ┤ U1(0) ├───────────────────────────────────────░─ « └───────┘ ┌───────────┐ ┌───────┐ ░ «q_2: ────■─────┤ U3(0,0,0) ├────┤ U1(0) ├────────────░─ « ┌─┴─┐ ┌┴───────────┴─┐┌─┴───────┴─┐┌───────┐ ░ «q_3: ──┤ X ├──┤ U2(0,3.1416) ├┤ U3(0,0,0) ├┤ U1(0) ├─░─ « └───┘ └──────────────┘└───────────┘└───────┘ ░ =============Full Entanglement:============= ┌───────────┐┌───────┐ » q_0: |0>┤ U3(0,0,0) ├┤ U1(0) ├──────────────────■────■────────────────────■──────────────────» ├───────────┤├───────┤┌──────────────┐┌─┴─┐ │ ┌──────────────┐ │ » q_1: |0>┤ U3(0,0,0) ├┤ U1(0) ├┤ U2(0,3.1416) ├┤ X ├──┼──┤ U2(0,3.1416) ├──┼──────────────────» ├───────────┤├───────┤├──────────────┤└───┘┌─┴─┐└──────────────┘ │ ┌──────────────┐» q_2: |0>┤ U3(0,0,0) ├┤ U1(0) ├┤ U2(0,3.1416) ├─────┤ X ├──────────────────┼──┤ U2(0,3.1416) ├» ├───────────┤├───────┤├──────────────┤ └───┘ ┌─┴─┐└──────────────┘» q_3: |0>┤ U3(0,0,0) ├┤ U1(0) ├┤ U2(0,3.1416) ├──────────────────────────┤ X ├────────────────» └───────────┘└───────┘└──────────────┘ └───┘ » « ┌───────────┐ ┌───────┐ » «q_0: ─┤ U3(0,0,0) ├─────┤ U1(0) ├──────────────────────────────────────────────────────────────» « └───────────┘ └───────┘ ┌───────────┐ ┌───────┐ » «q_1: ───────────────────────■──────────■───────────────────┤ U3(0,0,0) ├─────┤ U1(0) ├─────────» « ┌──────────────┐ ┌─┴─┐ │ ┌──────────────┐ └───────────┘ └───────┘ » «q_2: ┤ U2(0,3.1416) ├─────┤ X ├────────┼──┤ U2(0,3.1416) ├──────────────────────────────────■──» « ├──────────────┤┌────┴───┴─────┐┌─┴─┐└──────────────┘┌──────────────┐┌──────────────┐┌─┴─┐» «q_3: ┤ U2(0,3.1416) ├┤ U2(0,3.1416) ├┤ X ├────────────────┤ U2(0,3.1416) ├┤ U2(0,3.1416) ├┤ X ├» « └──────────────┘└──────────────┘└───┘ └──────────────┘└──────────────┘└───┘» « ░ «q_0: ───────────────────────────────────────░─ « ░ «q_1: ───────────────────────────────────────░─ « ┌───────────┐ ┌───────┐ ░ «q_2: ─┤ U3(0,0,0) ├────┤ U1(0) ├────────────░─ « ┌┴───────────┴─┐┌─┴───────┴─┐┌───────┐ ░ «q_3: ┤ U2(0,3.1416) ├┤ U3(0,0,0) ├┤ U1(0) ├─░─ « └──────────────┘└───────────┘└───────┘ ░ Assume the depth setting is set to $d$. Then, RyRz has $n\times (d+1)\times 2$ parameters, Ry with linear entanglement has $2n\times(d + \frac{1}{2})$ parameters, and Ry with full entanglement has $d\times n\times \frac{(n + 1)}{2} + n$ parameters. ## VQE Implementation in Qiskit<a id='implementation'></a> This section illustrates an implementation of VQE using the programmatic approach. Qiskit Aqua also enables a declarative implementation, however, it reveals less information about the underlying algorithm. This code, specifically the preparation of qubit operators, is based on the code found in the Qiskit Tutorials repository (and as of July 2019, may be found at: https://github.com/Qiskit/qiskit-tutorials ). The following libraries must first be imported. ```python from qiskit.aqua.algorithms import VQE, ExactEigensolver import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit.aqua.components.variational_forms import RYRZ from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit.aqua.components.optimizers import COBYLA, SPSA, SLSQP from qiskit import IBMQ, BasicAer, Aer from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry import FermionicOperator from qiskit import IBMQ from qiskit.providers.aer import noise from qiskit.aqua import QuantumInstance from qiskit.ignis.mitigation.measurement import CompleteMeasFitter ``` ### Running VQE on a Statevector Simulator<a id='implementationstatevec'></a> We demonstrate the calculation of the ground state energy for LiH at various interatomic distances. A driver for the molecule must be created at each such distance. Note that in this experiment, to reduce the number of qubits used, we freeze the core and remove two unoccupied orbitals. First, we define a function that takes an interatomic distance and returns the appropriate qubit operator, $H$, as well as some other information about the operator. ```python def get_qubit_op(dist): driver = PySCFDriver(atom="Li .0 .0 .0; H .0 .0 " + str(dist), unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() freeze_list = [0] remove_list = [-3, -2] repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals) ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type='parity', threshold=0.00000001) qubitOp = qubitOp.two_qubit_reduced_operator(num_particles) shift = energy_shift + repulsion_energy return qubitOp, num_particles, num_spin_orbitals, shift ``` First, the exact ground state energy is calculated using the qubit operator and a classical exact eigensolver. Subsequently, the initial state $|\psi\rangle$ is created, which the VQE instance uses to produce the final ansatz $\min_{\theta}(|\psi(\theta)\rangle)$. The exact result and the VQE result at each interatomic distance is stored. Observe that the result given by `vqe.run(backend)['energy'] + shift` is equivalent the quantity $\min_{\theta}\left(\langle \psi(\theta)|H|\psi(\theta)\rangle\right)$, where the minimum is not necessarily the global minimum. When initializing the VQE instance with `VQE(qubitOp, var_form, optimizer, 'matrix')` the expectation value of $H$ on $|\psi(\theta)\rangle$ is directly calculated through matrix multiplication. However, when using an actual quantum device, or a true simulator such as the `qasm_simulator` with `VQE(qubitOp, var_form, optimizer, 'paulis')` the calculation of the expectation value is more complicated. A Hamiltonian may be represented as a sum of a Pauli strings, with each Pauli term acting on a qubit as specified by the mapping being used. Each Pauli string has a corresponding circuit appended to the circuit corresponding to $|\psi(\theta)\rangle$. Subsequently, each of these circuits is executed, and all of the results are used to determine the expectation value of $H$ on $|\psi(\theta)\rangle$. In the following example, we initialize the VQE instance with `matrix` mode, and so the expectation value is directly calculated through matrix multiplication. Note that the following code snippet may take a few minutes to run to completion. ```python backend = BasicAer.get_backend("statevector_simulator") distances = np.arange(0.5, 4.0, 0.1) exact_energies = [] vqe_energies = [] optimizer = SLSQP(maxiter=5) for dist in distances: qubitOp, num_particles, num_spin_orbitals, shift = get_qubit_op(dist) result = ExactEigensolver(qubitOp).run() exact_energies.append(result['energy'] + shift) initial_state = HartreeFock( qubitOp.num_qubits, num_spin_orbitals, num_particles, 'parity' ) var_form = UCCSD( qubitOp.num_qubits, depth=1, num_orbitals=num_spin_orbitals, num_particles=num_particles, initial_state=initial_state, qubit_mapping='parity' ) vqe = VQE(qubitOp, var_form, optimizer, 'matrix') results = vqe.run(backend)['energy'] + shift vqe_energies.append(results) print("Interatomic Distance:", np.round(dist, 2), "VQE Result:", results, "Exact Energy:", exact_energies[-1]) print("All energies have been calculated") ``` Interatomic Distance: 0.5 VQE Result: -7.039710219020506 Exact Energy: -7.039732521635202 Interatomic Distance: 0.6 VQE Result: -7.313344302334236 Exact Energy: -7.313345828761008 Interatomic Distance: 0.7 VQE Result: -7.500921095743192 Exact Energy: -7.500922090905936 Interatomic Distance: 0.8 VQE Result: -7.630976914468914 Exact Energy: -7.630978249333209 Interatomic Distance: 0.9 VQE Result: -7.7208107952020795 Exact Energy: -7.720812412134773 Interatomic Distance: 1.0 VQE Result: -7.782240655298441 Exact Energy: -7.782242402637011 Interatomic Distance: 1.1 VQE Result: -7.823597493320795 Exact Energy: -7.82359927636281 Interatomic Distance: 1.2 VQE Result: -7.850696622934822 Exact Energy: -7.850698377596024 Interatomic Distance: 1.3 VQE Result: -7.867561602181376 Exact Energy: -7.867563290110052 Interatomic Distance: 1.4 VQE Result: -7.876999876757721 Exact Energy: -7.877001491818373 Interatomic Distance: 1.5 VQE Result: -7.8810141736656405 Exact Energy: -7.881015715646992 Interatomic Distance: 1.6 VQE Result: -7.881070662952161 Exact Energy: -7.88107204403092 Interatomic Distance: 1.7 VQE Result: -7.878267162143656 Exact Energy: -7.878268167584993 Interatomic Distance: 1.8 VQE Result: -7.873440112155302 Exact Energy: -7.873440293132828 Interatomic Distance: 1.9 VQE Result: -7.86723366674701 Exact Energy: -7.8672339648160285 Interatomic Distance: 2.0 VQE Result: -7.860152327529411 Exact Energy: -7.86015320737878 Interatomic Distance: 2.1 VQE Result: -7.852595105536979 Exact Energy: -7.852595827876738 Interatomic Distance: 2.2 VQE Result: -7.844878726366329 Exact Energy: -7.844879093009722 Interatomic Distance: 2.3 VQE Result: -7.837257439448259 Exact Energy: -7.8372579676155025 Interatomic Distance: 2.4 VQE Result: -7.829935045088515 Exact Energy: -7.829937002623394 Interatomic Distance: 2.5 VQE Result: -7.823070191557451 Exact Energy: -7.82307664213409 Interatomic Distance: 2.6 VQE Result: -7.816782591999657 Exact Energy: -7.816795150472929 Interatomic Distance: 2.7 VQE Result: -7.8111534373726 Exact Energy: -7.811168284803366 Interatomic Distance: 2.8 VQE Result: -7.806218299266321 Exact Energy: -7.806229560089845 Interatomic Distance: 2.9 VQE Result: -7.801962397475152 Exact Energy: -7.8019736023325486 Interatomic Distance: 3.0 VQE Result: -7.798352412318197 Exact Energy: -7.7983634309151295 Interatomic Distance: 3.1 VQE Result: -7.795326815750017 Exact Energy: -7.795340451637537 Interatomic Distance: 3.2 VQE Result: -7.792800698225245 Exact Energy: -7.792834806738612 Interatomic Distance: 3.3 VQE Result: -7.790603799019874 Exact Energy: -7.790774009971014 Interatomic Distance: 3.4 VQE Result: -7.788715354695274 Exact Energy: -7.789088897991478 Interatomic Distance: 3.5 VQE Result: -7.787215781080283 Exact Energy: -7.787716973466144 Interatomic Distance: 3.6 VQE Result: -7.786080393658009 Exact Energy: -7.786603763673838 Interatomic Distance: 3.7 VQE Result: -7.785203497342158 Exact Energy: -7.785702912499886 Interatomic Distance: 3.8 VQE Result: -7.7844795319924325 Exact Energy: -7.784975591698873 Interatomic Distance: 3.9 VQE Result: -7.783853361693722 Exact Energy: -7.7843896116723315 All energies have been calculated ```python plt.plot(distances, exact_energies, label="Exact Energy") plt.plot(distances, vqe_energies, label="VQE Energy") plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy') plt.legend() plt.show() ``` Note that the VQE results are very close to the exact results, and so the exact energy curve is hidden by the VQE curve. ### Running VQE on a Noisy Simulator<a id='implementationnoisy'></a> Here, we calculate the ground state energy for H$_2$ using a noisy simulator and error mitigation. First, we prepare the qubit operator representing the molecule's Hamiltonian: ```python driver = PySCFDriver(atom='H .0 .0 -0.3625; H .0 .0 0.3625', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() num_particles = molecule.num_alpha + molecule.num_beta qubitOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals).mapping(map_type='parity') qubitOp = qubitOp.two_qubit_reduced_operator(num_particles) ``` Now, we load a device coupling map and noise model from the IBMQ provider and create a quantum instance, enabling error mitigation: ```python provider = IBMQ.load_account() backend = Aer.get_backend("qasm_simulator") device = provider.get_backend("ibmqx4") coupling_map = device.configuration().coupling_map noise_model = noise.device.basic_device_noise_model(device.properties()) quantum_instance = QuantumInstance(backend=backend, shots=1000, noise_model=noise_model, coupling_map=coupling_map, measurement_error_mitigation_cls=CompleteMeasFitter, cals_matrix_refresh_period=30,) ``` Finally, we must configure the optimizer, the variational form, and the VQE instance. As the effects of noise increase as the number of two qubit gates circuit depth increase, we use a heuristic variational form (RYRZ) rather than UCCSD as RYRZ has a much shallower circuit than UCCSD and uses substantially fewer two qubit gates. The following code may take a few minutes to run to completion. ```python exact_solution = ExactEigensolver(qubitOp).run() print("Exact Result:", exact_solution['energy']) optimizer = SPSA(max_trials=100) var_form = RYRZ(qubitOp.num_qubits, depth=1, entanglement="linear") vqe = VQE(qubitOp, var_form, optimizer=optimizer, operator_mode="grouped_paulis") ret = vqe.run(quantum_instance) print("VQE Result:", ret['energy']) ``` Exact Result: -1.86712097834127 VQE Result: -1.8220854070067132 When noise mitigation is enabled, even though the result does not fall within chemical accuracy (defined as being within 0.0016 Hartree of the exact result), it is fairly close to the exact solution. ## Problems<a id='problems'></a> 1. You are given a Hamiltonian $H$ with the promise that its ground state is close to a maximally entangled $n$ qubit state. Explain which variational form (or forms) is likely to efficiently and accurately learn the the ground state energy of $H$. You may also answer by creating your own variational form, and explaining why it is appropriate for use with this Hamiltonian. 2. Calculate the number of circuit evaluations performed per optimization iteration, when using the COBYLA optimizer, the `qasm_simulator` with 1000 shots, and a Hamiltonian with 60 Pauli strings. 3. Use VQE to estimate the ground state energy of BeH$_2$ with an interatomic distance of $1.3$Å. You may re-use the function `get_qubit_op(dist)` by replacing `atom="Li .0 .0 .0; H .0 .0 " + str(dist)` with `atom="Be .0 .0 .0; H .0 .0 -" + str(dist) + "; H .0 .0 " + str(dist)` and invoking the function with `get_qubit_op(1.3)`. Note that removing the unoccupied orbitals does not preserve chemical precision for this molecule. However, to get the number of qubits required down to 6 (and thereby allowing efficient simulation on most laptops), the loss of precision is acceptable. While beyond the scope of this exercise, the interested reader may use qubit tapering operations to reduce the number of required qubits to 7, without losing any chemical precision. ## References<a id='references'></a> 1. Peruzzo, Alberto, et al. "A variational eigenvalue solver on a photonic quantum processor." *Nature communications* 5 (2014): 4213. 2. Griffiths, David J., and Darrell F. Schroeter. Introduction to quantum mechanics. *Cambridge University Press*, 2018. 3. Shende, Vivek V., Igor L. Markov, and Stephen S. Bullock. "Minimal universal two-qubit cnot-based circuits." arXiv preprint quant-ph/0308033 (2003). 4. Kandala, Abhinav, et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets." Nature 549.7671 (2017): 242.
{"hexsha": "54eb8862a81ec6c53d236483a3f546cfd7a85d4e", "size": 62856, "ext": "ipynb", "lang": "Jupyter Notebook", "max_stars_repo_path": "ch-applications/vqe-molecules.ipynb", "max_stars_repo_name": "ThePrez/qiskit-textbook", "max_stars_repo_head_hexsha": "f76197ae05ed17157e994adce884dd9f6cf62b18", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2019-09-16T17:52:16.000Z", "max_stars_repo_stars_event_max_datetime": "2019-12-12T03:01:37.000Z", "max_issues_repo_path": "ch-applications/vqe-molecules.ipynb", "max_issues_repo_name": "ThePrez/qiskit-textbook", "max_issues_repo_head_hexsha": "f76197ae05ed17157e994adce884dd9f6cf62b18", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "ch-applications/vqe-molecules.ipynb", "max_forks_repo_name": "ThePrez/qiskit-textbook", "max_forks_repo_head_hexsha": "f76197ae05ed17157e994adce884dd9f6cf62b18", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 89.9227467811, "max_line_length": 17228, "alphanum_fraction": 0.7203449154, "converted": true, "num_tokens": 10290}
""" @author: Guan'an Wang @contact: guan.wang0706@gmail.com """ import numpy as np __all__ = ['accuracy'] def accuracy4tensor(output, target, topk=[1]): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return np.array(res) def accuracy4list(output_list, target, topk=[1]): res = 0 for output in output_list: res += 1/len(output_list) * accuracy4tensor(output, target, topk) return res def accuracy(output, target, topk=[1]): """Computes the precision@k for the specified values of k""" if isinstance(output, list): return accuracy4list(output, target, topk) else: return accuracy4tensor(output, target, topk)
{"hexsha": "cfafe89bb9aaabd30920cd304934abb31915ddf9", "size": 959, "ext": "py", "lang": "Python", "max_stars_repo_path": "lightreid/evaluations/classification.py", "max_stars_repo_name": "nataliamiccini/light-reid", "max_stars_repo_head_hexsha": "1bd823849e4a40c9a17497bb7d7ec6097635f4d6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 296, "max_stars_repo_stars_event_min_datetime": "2020-07-20T02:11:34.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-27T12:42:11.000Z", "max_issues_repo_path": "lightreid/evaluations/classification.py", "max_issues_repo_name": "nataliamiccini/light-reid", "max_issues_repo_head_hexsha": "1bd823849e4a40c9a17497bb7d7ec6097635f4d6", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 33, "max_issues_repo_issues_event_min_datetime": "2020-08-27T03:20:43.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-14T11:25:07.000Z", "max_forks_repo_path": "lightreid/evaluations/classification.py", "max_forks_repo_name": "nataliamiccini/light-reid", "max_forks_repo_head_hexsha": "1bd823849e4a40c9a17497bb7d7ec6097635f4d6", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 61, "max_forks_repo_forks_event_min_datetime": "2020-07-20T06:19:22.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-28T07:10:39.000Z", "avg_line_length": 26.6388888889, "max_line_length": 73, "alphanum_fraction": 0.6412930136, "include": true, "reason": "import numpy", "num_tokens": 270}
Some things Im interested in: University Airport Cal Aggie Flying Farmers Friends of the University Airport VCOA Volvo Show and Swap Meet VCOAs Annual Davis Volvo Show and Swap Meet Yolo Masonic Lodge when is the next Yolo swap meet? Daubert 20130926 18:13:16 nbsp Hey, quick question is the name of the group Friends of University Airport or Friends of the University Airport? Users/JabberWokky Evan JabberWokky Edwards
{"hexsha": "bbff54785b2f36933fa5f921d7f8acb0b8c7c328", "size": 426, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "lab/davisWiki/AndrewHartman.f", "max_stars_repo_name": "voflo/Search", "max_stars_repo_head_hexsha": "55088b2fe6a9d6c90590f090542e0c0e3c188c7d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "lab/davisWiki/AndrewHartman.f", "max_issues_repo_name": "voflo/Search", "max_issues_repo_head_hexsha": "55088b2fe6a9d6c90590f090542e0c0e3c188c7d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "lab/davisWiki/AndrewHartman.f", "max_forks_repo_name": "voflo/Search", "max_forks_repo_head_hexsha": "55088b2fe6a9d6c90590f090542e0c0e3c188c7d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.7692307692, "max_line_length": 179, "alphanum_fraction": 0.8145539906, "num_tokens": 107}
#!/usr/bin/env julia using Dierckx using Test using Random: seed! # Answers 'ans' are from scipy.interpolate, # generated with genanswers.py script. # ----------------------------------------------------------------------------- # Spline1D x = [1., 2., 3.] y = [0., 2., 4.] spl = Spline1D(x, y; k=1, s=length(x)) yi = evaluate(spl, [1.0, 1.5, 2.0]) @test yi ≈ [0.0, 1.0, 2.0] @test evaluate(spl, 1.5) ≈ 1.0 @test get_knots(spl) ≈ [1., 3.] @test get_coeffs(spl) ≈ [0., 4.] @test isapprox(get_residual(spl), 0.0, atol=1.e-30) @test spl([1.0, 1.5, 2.0]) ≈ [0.0, 1.0, 2.0] @test spl(1.5) ≈ 1.0 # test that a copy is returned by get_knots() knots = get_knots(spl) knots[1] = 1000. @test get_knots(spl) ≈ [1., 3.] # test ported from scipy.interpolate testing this bug: # http://mail.scipy.org/pipermail/scipy-dev/2008-March/008507.html x = [-1., -0.65016502, -0.58856235, -0.26903553, -0.17370892, -0.10011001, 0., 0.10011001, 0.17370892, 0.26903553, 0.58856235, 0.65016502, 1.] y = [1.,0.62928599, 0.5797223, 0.39965815, 0.36322694, 0.3508061, 0.35214793, 0.3508061, 0.36322694, 0.39965815, 0.5797223, 0.62928599, 1.] w = [1.00000000e+12, 6.88875973e+02, 4.89314737e+02, 4.26864807e+02, 6.07746770e+02, 4.51341444e+02, 3.17480210e+02, 4.51341444e+02, 6.07746770e+02, 4.26864807e+02, 4.89314737e+02, 6.88875973e+02, 1.00000000e+12] spl = Spline1D(x, y; w=w, s=Float64(length(x))) desired = [0.35100374, 0.51715855, 0.87789547, 0.98719344] actual = evaluate(spl, [0.1, 0.5, 0.9, 0.99]) @test isapprox(actual, desired, atol=5e-4) # test periodic x = [1., 2., 3., 4., 5.] y = [4., 1., 4., 1., 4.] spl = Spline1D(x, y, periodic=true) @test derivative(spl, 1) ≈ derivative(spl, 5) @test derivative(spl, 1, nu=2) ≈ derivative(spl, 5, nu=2) # tests for out-of-range x = [0.0:4.0;] y = x.^3 xp = range(-8.0, stop=13.0, length=100) xp_zeros = Float64[(0. <= xi <= 4.) ? xi : 0.0 for xi in xp] xp_clip = Float64[(0. <= xi <= 4.) ? xi : (xi < 0.0) ? 0.0 : 4. for xi in xp] spl = Spline1D(x, y) t = get_knots(spl)[2: end-1] # knots, excluding those at endpoints spl2 = Spline1D(x, y, t) @test evaluate(spl, xp) ≈ xp_clip.^3 @test evaluate(spl2, xp) ≈ xp_clip.^3 # test other bc's spl = Spline1D(x, y; bc="extrapolate") @test evaluate(spl, xp) ≈ xp.^3 spl = Spline1D(x, y; bc="zero") @test evaluate(spl, xp) ≈ xp_zeros.^3 spl = Spline1D(x, y; bc="error") @test_throws ErrorException evaluate(spl, xp) # test unknown bc @test_throws ErrorException Spline1D(x, y; bc="unknown") # test derivative x = range(0, stop=1, length = 70) y = x.^3 spl = Spline1D(x, y) xt = [0.3, 0.4, 0.5] @test derivative(spl, xt) ≈ 3xt.^2 # test integral x = range(0, stop=10, length = 70) y = x.^2 spl = Spline1D(x, y) @test integrate(spl, 1.0, 5.0) ≈ 5.0^3/3 - 1/3 # test roots x = range(0, stop=10, length = 70) y = (x .- 4).^2 .- 1 spl = Spline1D(x, y) @test roots(spl) ≈ [3, 5] # test that show works. io = IOBuffer() show(io, spl) seek(io, 0) s = read(io, String) @test s[1:9] == "Spline1D(" # test equality seed!(0) x = sort(rand(10)) y = rand(10) sp1 = Spline1D(x, y) sp2 = Spline1D(x, y) sp3 = Spline1D(x.+1, y) sp4 = Spline1D(x, y.+1) @test sp1 == sp2 @test allunique([sp1,sp3,sp4]) # ----------------------------------------------------------------------------- # ParametricSpline u = [1., 2., 3.] x = [1. 2. 3.; 0. 2. 4.] spl = ParametricSpline(u, x, k=1, s=size(x, 2)) xi = evaluate(spl, [1.0, 1.5, 2.0]) @test xi ≈ [1.0 1.5 2.0; 0.0 1.0 2.0] @test evaluate(spl, 1.5) ≈ [1.5, 1.0] @test get_knots(spl) ≈ [1., 3.] @test get_coeffs(spl) ≈ [1.0 3.0; 0.0 4.0] @test isapprox(get_residual(spl), 0.0, atol=1.e-30) @test spl([1.0, 1.5, 2.0]) ≈ [1.0 1.5 2.0; 0.0 1.0 2.0] @test spl(1.5) ≈ [1.5, 1.0] # test that a copy is returned by get_knots() knots = get_knots(spl) knots[1] = 1000. @test get_knots(spl) ≈ [1., 3.] # test periodic x = [23. 24. 25. 25. 24. 23.; 13. 12. 12. 13. 13. 13.] spl = ParametricSpline(x, periodic=true) @test evaluate(spl, 0) ≈ evaluate(spl, 1) @test derivative(spl, 0) ≈ derivative(spl, 1) @test derivative(spl, 0, nu=2) ≈ derivative(spl, 1, nu=2) # tests for out-of-range u = 0.0:4.0 x = [u'.^2; u'.^3] up = range(-8.0, stop=13.0, length = 100) up_zeros = Float64[(0. <= ui <= 4.) ? ui : 0.0 for ui in up] up_clip = Float64[(0. <= ui <= 4.) ? ui : (ui < 0.0) ? 0.0 : 4. for ui in up] spl = ParametricSpline(u, x) t = get_knots(spl)[2: end-1] # knots, excluding those at endpoints spl2 = ParametricSpline(u, x, t) @test evaluate(spl, up) ≈ [up_clip'.^2; up_clip'.^3] @test evaluate(spl2, up) ≈ [up_clip'.^2; up_clip'.^3] # test other bc's spl = ParametricSpline(u, x; bc="extrapolate") @test evaluate(spl, up) ≈ [up'.^2; up'.^3] spl = ParametricSpline(u, x; bc="zero") @test evaluate(spl, up) ≈ [up_zeros'.^2; up_zeros'.^3] spl = ParametricSpline(u, x; bc="error") @test_throws ErrorException evaluate(spl, up) # test unknown bc @test_throws ErrorException ParametricSpline(u, x; bc="unknown") # test derivative u = range(0, stop=1, length = 70) x = [u'.^2; u'.^3] spl = ParametricSpline(u, x) ut = [0.3, 0.4, 0.5] @test derivative(spl, 0.3) ≈ [2*0.3, 3*0.3^2] @test derivative(spl, ut) ≈ [2*ut'; 3*ut'.^2] @test derivative(spl, 0.3, nu=2) ≈ [2.0, 6*0.3] @test derivative(spl, ut, nu=2) ≈ [2*ones(3)'; 6*ut'] # test integral u = range(0, stop=10, length = 70) x = [u'.^2; u'.^3] spl = ParametricSpline(u, x) @test integrate(spl, 1.0, 5.0) ≈ [5.0^3/3 - 1/3, 5.0^4/4 - 1/4] # test that show works. io = IOBuffer() show(io, spl) seek(io, 0) s = read(io, String) @test s[1:17] == "ParametricSpline(" # test equality seed!(0) x = sort(rand(10)) y = rand(3, 10) sp1 = ParametricSpline(x, y) sp2 = ParametricSpline(x, y) sp3 = ParametricSpline(x.+1, y) sp4 = ParametricSpline(x, y.+1) @test sp1 == sp2 @test allunique([sp1,sp3,sp4]) # test too many roots warning x = (0:100) y = (-1).^(0:100) sp = Spline1D(x,y) @test_logs (:warn,Regex("number of zeros exceeded")) roots(sp) # ----------------------------------------------------------------------------- # Spline2D # test linear x = [1., 1., 1., 2., 2., 2., 3., 3., 3.] y = [1., 2., 3., 1., 2., 3., 1., 2., 3.] z = [0., 0., 0., 2., 2., 2., 4., 4., 4.] spl = Spline2D(x, y, z; kx=1, ky=1, s=length(x)) tx, ty = get_knots(spl) @test tx ≈ [1., 3.] @test ty ≈ [1., 3.] @test isapprox(get_residual(spl), 0.0, atol=1e-16) @test evaluate(spl, 2.0, 1.5) ≈ 2.0 @test evalgrid(spl, [1.,1.5,2.], [1.,1.5]) ≈ [0. 0.; 1. 1.; 2. 2.] # test 1-d grid arrays @test evalgrid(spl, [2.0], [1.5])[1, 1] ≈ 2.0 # In this setting, lwrk2 is too small in the default run. x = range(-2, stop=2, length = 80) y = range(-2, stop=2, length = 80) z = x .+ y spl = Spline2D(x, y, z; s=length(x)) @test evaluate(spl, 1.0, 1.0) ≈ 2.0 # In this setting lwrk2 is too small multiple times! # Eventually an error about s being too small is thrown. seed!(0) x = rand(100) y = rand(100) z = sin.(x) .* sin.(y) @test_throws ErrorException Spline2D(x, y, z; kx=1, ky=1, s=0.0) # test grid input creation x = [0.5, 2., 3., 4., 5.5, 8.] y = [0.5, 2., 3., 4.] z = [1. 2. 1. 2.; # shape is (nx, ny) 1. 2. 1. 2.; 1. 2. 3. 2.; 1. 2. 2. 2.; 1. 2. 1. 2.; 1. 2. 3. 1.] spl = Spline2D(x, y, z) # element-wise output xi = [1., 1.5, 2.3, 4.5, 3.3, 3.2, 3.] yi = [1., 2.3, 5.3, 0.5, 3.3, 1.2, 3.] ans = [2.94429906542, 1.25537598131, 2.00063588785, 1.0, 2.93952664, 1.06482509358, 3.0] zi = evaluate(spl, xi, yi) @test zi ≈ ans zi = spl(xi, yi) @test zi ≈ ans # grid output xi = [1., 1.5, 2.3, 4.5] yi = [1., 2.3, 5.3] ans = [2.94429906542 1.16946130841 1.99831775701; 2.80393858478 1.25537598131 1.99873831776; 1.67143209613 1.94853338542 2.00063588785; 1.89392523364 1.8126946729 2.01042056075] zi = evalgrid(spl, xi, yi) @test zi ≈ ans # Test 2-d integration test2d_1(x, y) = 1 - x^2 -y^2 test2d_2(x, y) = cos(x) + sin(y) test2d_3(x, y) = x*exp(x-y) for (f, domain, exact) in [(test2d_1, (0.0, 1.0, 0.0, 1.0), 1.0/3.0), (test2d_2, (0.0, pi, 0.0, pi), 2.0*pi), (test2d_3, (0.0, 1.0, 0.0, 1.0), (ℯ-1.0)/ℯ)] (x0, x1, y0, y1) = domain # define grids for x and y dimensions: npoints = 50 xgrid = range(x0, stop=x1, length = npoints) ygrid = range(y0, stop=y1, length = npoints) fxygrid = zeros(npoints, npoints) for (j, y) in enumerate(ygrid) local j, y for (i, x) in enumerate(xgrid) local i, x fxygrid[i,j] = f(x, y) end end spl1 = Spline2D(xgrid, ygrid, fxygrid) @test isapprox(integrate(spl1, x0, x1, y0, y1), exact, atol=1e-6) end # test equality seed!(0) x = sort(rand(10)) y = sort(rand(10)) z = rand(10,10) sp1 = Spline2D(x, y, z) sp2 = Spline2D(x, y, z) sp3 = Spline2D(x.+1, y, z) sp4 = Spline2D(x, y.+1, z) sp5 = Spline2D(x, y, z.+1) @test sp1 == sp2 @test allunique([sp1, sp3, sp4, sp5]) println("All tests passed.")
{"hexsha": "667e8d6e153f3deab60ef803bdd001579ee455c2", "size": 8941, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "test/runtests.jl", "max_stars_repo_name": "fguevaravas/Dierckx.jl", "max_stars_repo_head_hexsha": "c8d50c1b0d7f9c79bd80370a910491089727e420", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 114, "max_stars_repo_stars_event_min_datetime": "2015-03-23T20:43:29.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:41:20.000Z", "max_issues_repo_path": "test/runtests.jl", "max_issues_repo_name": "fguevaravas/Dierckx.jl", "max_issues_repo_head_hexsha": "c8d50c1b0d7f9c79bd80370a910491089727e420", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 72, "max_issues_repo_issues_event_min_datetime": "2015-02-12T15:22:47.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-03T11:12:17.000Z", "max_forks_repo_path": "test/runtests.jl", "max_forks_repo_name": "fguevaravas/Dierckx.jl", "max_forks_repo_head_hexsha": "c8d50c1b0d7f9c79bd80370a910491089727e420", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 39, "max_forks_repo_forks_event_min_datetime": "2015-02-12T16:25:10.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-31T13:07:04.000Z", "avg_line_length": 27.0939393939, "max_line_length": 79, "alphanum_fraction": 0.5749916117, "num_tokens": 4043}
#!/usr/bin/env python # A basic tool that downsamples a radar scan by taking one point for each n import math import rospy import tf import numpy as np from sensor_msgs.msg import LaserScan from geometry_msgs.msg import Point from visualization_msgs.msg import Marker from geometry_msgs.msg import Twist class Coll_avoidance2: def __init__(self): rospy.Subscriber('/cmd_vel_coll', Twist, self.vel) rospy.Subscriber('/down/marker', Marker, self.callback) self.cmd_vel = rospy.Publisher('cmd_vel', Twist, queue_size=10) self.vel=None self.coll_distance=0.5 self.marker=None def callback(self, mark): self.marker = mark.points def vel(self, vel): self.vel=vel def peligro(self): i = 0 enc=False puntos=self.marker orient=0 while(i<len(puntos) and not enc): if(math.fabs(puntos[i].x)<self.coll_distance and math.fabs(puntos[i].y)<0.3): enc=True if(puntos[i].y<0): orient=-1 else: orient=1 else: i+=1 return enc,orient def peligro_lat(self): i = 0 enc=False puntos=self.marker orient=0 while(i<len(puntos) and not enc): if(math.fabs(puntos[i].x)<self.coll_distance and math.fabs(puntos[i].y)>0.3 and math.fabs(puntos[i].y)<1): enc=True rospy.loginfo('X: %f, Y: %f',puntos[i].x, puntos[i].y) if(puntos[i].y<0): orient=-1 else: orient=1 else: i+=1 return enc,orient #,x,y def publish(self): if(self.vel != None and self.marker != None): move_cmd = Twist() if(len(self.marker)==0): lin_vel = self.vel.linear.x angular = self.vel.angular.z else: enc,ori=self.peligro() enc2,ori2=self.peligro_lat() if(enc): rospy.loginfo('PELIGRO!!!!!!!') #angular=0.4*-ori angular=0.4*ori lin_vel=0 elif(enc2): rospy.loginfo('PELIGRO LATTTT!!!!!!!') lin_vel=0.2 #angular=0.1*ori2 angular=0 else: rospy.loginfo('SEGUROO!!!!') lin_vel = self.vel.linear.x angular = self.vel.angular.z # let's go forward at 0.2 m/s move_cmd.linear.x = lin_vel # let's turn at 0 radians/s move_cmd.angular.z = angular self.cmd_vel.publish(move_cmd) def shutdown(self): # stop turtlebot rospy.loginfo("Stop TurtleBot") # a default Twist has linear.x of 0 and angular.z of 0. So it'll stop TurtleBot self.cmd_vel.publish(Twist()) # sleep just makes sure TurtleBot receives the stop command prior to shutting down the script rospy.sleep(1) if __name__ == '__main__': try: # initiliaze rospy.init_node('coll_avoidance', anonymous=False) r = rospy.Rate(10); # Instantiate downsampler ca = Coll_avoidance2() while not rospy.is_shutdown(): ca.publish() # wait for 0.1 seconds (10 HZ) and publish again r.sleep() except: rospy.loginfo("Error coll_avoidance.")
{"hexsha": "e49ccfe8171c212ba029c02860bd3ebf2f2fa065", "size": 3572, "ext": "py", "lang": "Python", "max_stars_repo_path": "scripts/coll_avoidance_bug.py", "max_stars_repo_name": "sejavichan/rva_basic_tools", "max_stars_repo_head_hexsha": "138d5df854e5869718cd9577cbc9d47f832bfdd2", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "scripts/coll_avoidance_bug.py", "max_issues_repo_name": "sejavichan/rva_basic_tools", "max_issues_repo_head_hexsha": "138d5df854e5869718cd9577cbc9d47f832bfdd2", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "scripts/coll_avoidance_bug.py", "max_forks_repo_name": "sejavichan/rva_basic_tools", "max_forks_repo_head_hexsha": "138d5df854e5869718cd9577cbc9d47f832bfdd2", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.7931034483, "max_line_length": 118, "alphanum_fraction": 0.5207166853, "include": true, "reason": "import numpy", "num_tokens": 851}
using RealNeuralNetworks using RealNeuralNetworks.Neurons using RealNeuralNetworks.Neurons.Segments using Test const SWC_BIN_PATH = joinpath(@__DIR__, "../asset/77625.swc.bin") @testset "test Segments" begin # construct a segment neuron = Neurons.load_swc_bin( SWC_BIN_PATH ) # get a random segment println("indexing from neuron...") segment = neuron[5] println("get tortuosity...") @show Segments.get_tortuosity( segment ) println("get tail head radius ratio ...") @show Segments.get_tail_head_radius_ratio( segment ) println("merge segments...") segment2 = neuron[6] merged_segment = merge(segment, segment2) @test length(segment) + length(segment2) == length(merged_segment) println("remove some nodes...") newSegment = Segments.remove_nodes(segment, 2:4) @test length(newSegment) == length(segment) - 3 println("remove redundent nodes...") Segments.remove_redundent_nodes!(segment) end
{"hexsha": "9304bde9a194b666b4958e6f6ed50033c1eb1e58", "size": 978, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "test/Segments.jl", "max_stars_repo_name": "UnofficialJuliaMirror/RealNeuralNetworks.jl-4491297b-8966-5840-8cb9-b189d60f3398", "max_stars_repo_head_hexsha": "e6f19dd0515e2105de0ff7c26997d7de64fb3153", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 20, "max_stars_repo_stars_event_min_datetime": "2018-11-20T01:09:02.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-15T08:15:56.000Z", "max_issues_repo_path": "test/Segments.jl", "max_issues_repo_name": "UnofficialJuliaMirror/RealNeuralNetworks.jl-4491297b-8966-5840-8cb9-b189d60f3398", "max_issues_repo_head_hexsha": "e6f19dd0515e2105de0ff7c26997d7de64fb3153", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 27, "max_issues_repo_issues_event_min_datetime": "2018-08-20T21:24:14.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-03T18:59:00.000Z", "max_forks_repo_path": "test/Segments.jl", "max_forks_repo_name": "UnofficialJuliaMirror/RealNeuralNetworks.jl-4491297b-8966-5840-8cb9-b189d60f3398", "max_forks_repo_head_hexsha": "e6f19dd0515e2105de0ff7c26997d7de64fb3153", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-02-08T11:01:26.000Z", "max_forks_repo_forks_event_max_datetime": "2020-02-08T11:01:26.000Z", "avg_line_length": 30.5625, "max_line_length": 70, "alphanum_fraction": 0.7065439673, "num_tokens": 253}
# This file holds the definition of the functions pertaining to the # PersonnelDatabase type. # The functions of the PersonnelDatabase require the HistoryEntry, History, and # Personnel types. requiredTypes = [ "personnel", "personnelDatabase" ] for reqType in requiredTypes if !isdefined( Symbol( uppercase( string( reqType[ 1 ] ) ) * reqType[ 2:end ] ) ) include( joinpath( typePath, reqType * ".jl" ) ) end # if !isdefined( Symbol( ... end # for reqType in requiredTypes # Load in the type aliases. include( joinpath( typePath, "typeAliases.jl" ) ) # This function tests if the database has the requested attribute. export hasAttribute function hasAttribute( dbase::PersonnelDatabase, attr::AttributeType ) return Symbol( attr ) ∈ dbase.attrs end # hasAttribute( dbase, attr ) # This function adds the given attribute to the database, initializing the # attribute. If some personnel records have this attribute already, it will be # overwritten! export addAttribute! function addAttribute!( dbase::PersonnelDatabase, attr::AttributeType, initContent = nothing ) tmpAttr = Symbol( attr ) # Do nothing if the attribute exists in the database. if hasAttribute( dbase, tmpAttr ) return end # if hasAttribute( dbase, tmpAttr ) push!( dbase.attrs, tmpAttr ) # Update all personnel records to have this attribute. map( person -> person[ tmpAttr ] = initContent, dbase.dbase ) end # addAttribute!( dbase, attr, initContent ) # This function adds the given attributes to the database. export addAttributes! function addAttributes!( dbase::PersonnelDatabase, attrs::Vector{Symbol} ) map( attr -> addAttribute!( dbase, attr ), attrs ) end # addAttributes!( dbase, attrs ) function addAttributes!( dbase::PersonnelDatabase, attrs::Vector{String} ) map( attr -> addAttribute!( dbase, Symbol( attr ) ), attrs ) end # addAttributes!( dbase, attrs ) # This function removes the given attribute from the database. export removeAttribute! function removeAttribute!( dbase::PersonnelDatabase, attr::AttributeType ) tmpAttr = Symbol( attr ) # If the attribute doesn't exist, or it is the ID key, do nothing. if !hasAttribute( dbase, tmpAttr ) || ( tmpAttr === dbase.idKey ) return end # if ( attr ∉ dbase.attrs ) || ... # Otherwise, remove attribute from list. index = find( x -> x == tmpAttr, dbase.attrs ) deleteat!( dbase.attrs, index[ 1 ] ) # Delete field from personnel records. map( person -> removeAttribute!( person, tmpAttr ), dbase.dbase ) end # removeAttribute!( dbase, fiattreld ) # This function removes the given attributes from the database. export removeAttributes! function removeAttributes!( dbase::PersonnelDatabase, attrs::Vector{Symbol} ) # Find all of the requested attributes that are present in the database, and # which aren't the ID field. tmpAttrs = attrs[ unique( find( attr -> ( attr ∈ dbase.attrs ) && ( attr !== dbase.idKey ), attrs ) ) ] if isempty( tmpAttrs ) return end # if isempty( tmpAttrs ) # Find the indices of all the database attributes slated for removal and # remove them. attrsIndex = find( attr -> attr ∈ tmpAttrs, dbase.attrs ) deleteat!( dbase.attrs, sort( attrsIndex ) ) # Remove the appropriate attributes from the personnel records. map( attr -> map( person -> removeAttribute!( person, attr ), dbase.dbase ), tmpAttrs ) end # removeAttributes!( dbase, attrs ) # This function changes the key field of the database. The old key is kept to # make sure nothing gets broken. export changeKey! function changeKey!( dbase::PersonnelDatabase, key::AttributeType ) tmpKey = Symbol( key ) if !hasAttribute( dbase, tmpKey ) warn( "Proposed ID \"$tmpKey\" is not a database attribute. ", "Ignoring request." ) return end # if tmpKey ∉ dbase.attrs # Stringify the contents of the propsed new ID key. map( person -> person[ tmpKey ] = string( person[ tmpKey ] ), dbase.dbase ) # Check if the new key is unique. ids = dbase[ tmpKey ] if length( ids ) > length( unique( ids ) ) warn( "Proposed ID \"$tmpKey\" does not have unique values." ) return end # if length( ids ) ... dbase.idKey = tmpKey end # changeKey!( dbase, key ) # This function adds an entry to the database. export addPersonnel! function addPersonnel!( dbase::PersonnelDatabase, person::Personnel ) # Check if the person has the ID key of the database. if !hasAttribute( person, dbase.idKey ) warn( "Person does not have the \"$(dbase.idKey)\" attribute. ", "Ignoring request." ) return end # if !hasAttribute( person, dbase.idKey ) id = string( person[ dbase.idKey ] ) # Check if the person's ID is not yet in the database. if exists( dbase, id ) warn( "The database already contains an entry with ID \"$id\". ", "Ignoring request." ) return end # if exists( dbase, id ) # Udate the database attribute list. addAttributes!( dbase, collect( keys( person.persData ) ) ) # We create a new record here to make sure that we don't change the original # personnel record. newPerson = person newPerson[ dbase.idKey ] = id # Add attributes that are in the database, but which aren't in the perosnnel # record. newAttrs = dbase.attrs[ find( attr -> !hasAttribute( person, attr ), dbase.attrs ) ] map( attr -> newPerson[ attr ] = nothing, newAttrs ) # Add the enriched copy of the personnel record to the database. push!( dbase.dbase, newPerson ) dbase.persSize += 1 end # addPersonnel!( dbase, person ) # This function adds a number of personnel records to the database. function addPersonnel!( dbase::PersonnelDatabase, persons::Vector{Personnel} ) map( person -> addPersonnel!( dbase, person ), persons ) end # addPersonnel!( dbase, persons ) # This function adds a new personnel record with the given ID to the database. function addPersonnel!( dbase::PersonnelDatabase, personID::String ) # Check if the person's ID is not yet in the database. if exists( dbase, personID ) warn( "The database already contains an entry with ID \"$personID\". ", "Ignoring request." ) return end # if exists( dbase, personID ) # Create a new record with the requested ID. newPerson = Personnel( dbase.idKey, personID ) # Add attributes that are in the database, but which aren't in the perosnnel # record. newAttrs = dbase.attrs[ find( attr -> !hasAttribute( newPerson, attr ), dbase.attrs ) ] map( attr -> newPerson[ attr ] = nothing, newAttrs ) # Add the enriched copy of the personnel record to the database. push!( dbase.dbase, newPerson ) dbase.persSize += 1 end # addPersonnel!( dbase, personID ) # This function adds new personnel records with the given IDs to the database. function addPersonnel!( dbase::PersonnelDatabase, personIDs::Vector{String} ) map( id -> addPersonnel!( dbase, id ), personIDs ) end # addPersonnel!( dbase, personIDs ) # This function removes the personnel member with the requiested ID from the # database. If there is no personnel member with this ID, nothing happens. export removePersonnel! function removePersonnel!( dbase::PersonnelDatabase, id::String ) index = getPosition( dbase, id ) if index != 0 removePersonnel!( dbase, index, false ) end # if index != 0 end # removePersonnel!( dbase, id ) function removePersonnel!( dbase::PersonnelDatabase, ind::T, verifyIndex::Bool = true ) where T <: Integer if verifyIndex && ( ( ind <= 0 ) || ( ind > dbase.persSize ) ) return end # if verifyIndex && ... deleteat!( dbase.dbase, ind ) dbase.persSize -= 1 end # removePersonnel!( dbase, ind, verifyIndex ) function removePersonnel!( dbase::PersonnelDatabase, ids::Vector{String} ) indices = Vector{Int}() for id in ids index = getPosition( dbase, id ) if index != 0 push!( indices, index ) end # if index != 0 end # for id in ids removePersonnel!( dbase, indices, false ) end # removePersonnel!( dbase, ids ) function removePersonnel!( dbase::PersonnelDatabase, inds::Vector{Int}, verifyIndices::Bool= true ) indices = Vector{Int}() # Check which indices are valid. if verifyIndices for index in inds if ( index > 0 ) && ( index <= dbase.persSize ) push!( indices, index ) end # if ( index > 0 ) && ... end # for index ... else indices = inds end # if verifyIndices # Delete the records with those indices. indices = unique( indices ) deleteat!( dbase.dbase, sort( indices ) ) dbase.persSize -= length( indices ) end # removePersonnel!( dbase, inds, verifyIndices ) # This function tests if a personnel member with the requested ID exists in the # personnel database. export exists function exists( dbase::PersonnelDatabase, id::String ) return getPosition( dbase, id ) != 0 end # exists( dbase, id ) # This function returns the position of the person with the given ID in the # personnel database. If the ID doesn't exist, 0 is returned. function getPosition( dbase::PersonnelDatabase, id::String ) index = find( x -> x[ dbase.idKey ] == id, dbase.dbase ) return isempty( index ) ? 0 : index[ 1 ] end # getPosition( dbase, id ) # This function selects all the records in the database with a specific value # for the given attribute. (necessary?) export selectRecords function selectRecords( dbase::PersonnelDatabase, attr::AttributeType, val ) tmpAttr = Symbol( attr ) output = Vector{Personnel}() if !hasAttribute( dbase, tmpAttr ) return output end # !hasAttribute( dbase, tmpAttr ) map( person -> if ( person[ tmpAttr ] == val ) push!( output, person ) end, dbase.dbase ) return output end # selectRecords( dbase, attr, val ) # This function adds a value to a vector attribute. If the attribute's value is # nothing, a vector will be created. If the attribute's value is not a vector, # nothing will happen. export addValue # The function using id as a String has to be written like this, because # otherwise a KeyError is thrown! function addValue( dbase::PersonnelDatabase, id::String, attr::AttributeType, value::String ) index = getPosition( dbase, id ) addValue( dbase, index, attr, value ) end # addValue( dbase, id, attr, value ) function addValue( dbase::PersonnelDatabase, ind::Int, attr::AttributeType, value::String ) if ( ind <= 0 ) || ( ind > dbase.persSize ) return end # if ( ind <= 0 ) || ... addValue( dbase[ ind ], attr, value ) end # addValue( dbase, id, key, value ) # This function gets the number of entries in the personnel database. function Base.length( dbase::PersonnelDatabase ) return dbase.persSize end # length( dbase ) # This function clears the database, and sets the key to the provided symbol. export clearPDB! function clearPDB!( dbase::PersonnelDatabase, key::Symbol = :id ) empty!( dbase.attrs ) empty!( dbase.dbase ) dbase.persSize = 0 addAttribute!( dbase, key ) changeKey!( dbase, key ) end # clearPDB!( dbase, key ) function clearPDB!( dbase::PersonnelDatabase, key::String ) clearPDB!( dbase, Symbol( key ) ) end # clearPDB!( dbase, key ) # This function retrieves the personnel member with the requested ID. function Base.getindex( dbase::PersonnelDatabase, id::String ) index = getPosition( dbase, id ) # Throw an error if the personnel member with the requested ID doesn't # exist. if index == 0 error( "No personnel member with $(string( dbase.idKey )) \"$id\" on ", "record." ) end # if index == 0 return dbase.dbase[ index ] end # Base.getIndex( dbase, id ) # This function retrieves the personnel member with the requested index. function Base.getindex( dbase::PersonnelDatabase, ind::T ) where T <: Integer if ( ind <= 0 ) || ( ind > dbase.persSize ) error( "Cannot request personnel with index $ind: personnel database ", "size is only $(dbase.persSize)." ) end # if ind > dbase.persSize return dbase.dbase[ ind ] end # Base.getindex( dbase, ind ) # This function retrieves the personnel with the requested IDs. function Base.getindex( dbase::PersonnelDatabase, indices::DbIndexArrayType ) return map( index -> dbase[ index ], indices ) end # Base.getindex( dbase, indices ) # This function retrieves the requested field from the personnel with the # requested ID. function Base.getindex( dbase::PersonnelDatabase, index::DbIndexType, attr::AttributeType ) return dbase[ index ][ Symbol( attr ) ] end # Base.getindex( dbase, index, attr ) # This function retrieves the requested attribute from the personnel with the # requested IDs. function Base.getindex( dbase::PersonnelDatabase, indices::DbIndexArrayType, attr::AttributeType ) tmpAttr = Symbol( attr ) output = similar( indices, Any ) map( ii -> output[ ii ] = dbase[ indices[ ii ], tmpAttr ], eachindex( indices ) ) return output end # Base.getindex( dbase, indices, attr ) # This function retrieves the requested attribute at the given time from the # personnel record with the requested index. function Base.getindex( dbase::PersonnelDatabase, index::DbIndexType, attr::AttributeType, timestamp::T ) where T <: Real person = dbase[ index ] return person[ attr, timestamp ] end # Base.getindex( dbase, index, attr, timestamp ) # This function retrieves the requested attribute from the entire database. # XXX There is no overload of this function with a String as second argument # because such a function has been defined prior to retrieve the personnel # member with that value as ID. function Base.getindex( dbase::PersonnelDatabase, field::Symbol ) return dbase[ collect( 1:dbase.persSize ), field ] end # Base.getindex( dbase, field ) # This function sets the given attribute from the personnel with the requested # ID to the provided value. If the attribute does not exist, it gets created # first. If there is no personnel in the database with the provided ID, an # error gets generated. function Base.setindex!( dbase::PersonnelDatabase, data, id::String, attr::AttributeType ) index = getPosition( dbase, id ) # Throw an error if the personnel member with the requested ID doesn't # exist. if index == 0 error( "No personnel member with $(string( dbase.idKey )) \"$id\" on ", "record." ) end # if index == 0 # Make sure the database has the requested field, then fill it in as needed. tmpAttr = Symbol( attr ) addAttribute!( dbase, tmpAttr ) dbase[ index ][ tmpAttr ] = tmpAttr == dbase.idKey ? String( data ) : data end # Base.setindex!( dbase, data, id, attr ) function Base.setindex!( dbase::PersonnelDatabase, data, ind::T, attr::AttributeType ) where T <: Integer # Check if the index is in bounds. if ( ind <= 0 ) || ( ind > dbase.persSize ) error( "Cannot request personnel with index $ind: personnel database ", "size is only $(dbase.persSize)." ) end # if ( ind <= 0 ) || ... # Make sure the database has the requested attribute, then fill it in as # needed. tmpAttr = Symbol( attr ) addAttribute!( dbase, tmpAttr ) dbase[ ind ][ tmpAttr ] = data end # Base.setindex!( dbase, data, ind, attr ) # This function sets the given attribute at the given time from the personnel # with the requested ID to the provided value. If the attribute does not # exist, it gets created first. If there is no personnel in the database with # the provided ID, an error gets generated. function Base.setindex!( dbase::PersonnelDatabase, data, index::DbIndexType, attr::AttributeType, timestamp::T ) where T <: Real tmpAttr = Symbol( attr ) if !hasAttribute( dbase, tmpAttr ) addAttribute!( dbase, tmpAttr, Dict{Symbol, History}() ) end # if !hasAttribute( dbase, tmpAttr ) person = dbase[ index ] person[ attr, timestamp ] = data end # setindex!( dbase, data, index, attr, timestamp ) # This function prints the database. function Base.show( io::IO, dbase::PersonnelDatabase ) print( io, "ID key: $(dbase.idKey)" ) print( io, "\nAttributes: $(dbase.attrs)" ) if dbase.persSize == 0 print( io, "\nNo persons in database." ) return end # if dbase.persSize == 0 print( io, "\nPersonnel members" ) map( person -> displayPersonnel( io, person, dbase.idKey ), dbase.dbase ) end # Base.show( io, dbase )
{"hexsha": "e11e0d96f2ab2eec0a9c16548a05aefe4466809c", "size": 16875, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/Functions/personnelDatabase.jl", "max_stars_repo_name": "Omazaria/ManpowerPlanning.jl", "max_stars_repo_head_hexsha": "21929fb519942f21afde5300edcda2b00d530dcf", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/Functions/personnelDatabase.jl", "max_issues_repo_name": "Omazaria/ManpowerPlanning.jl", "max_issues_repo_head_hexsha": "21929fb519942f21afde5300edcda2b00d530dcf", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/Functions/personnelDatabase.jl", "max_forks_repo_name": "Omazaria/ManpowerPlanning.jl", "max_forks_repo_head_hexsha": "21929fb519942f21afde5300edcda2b00d530dcf", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.8280254777, "max_line_length": 85, "alphanum_fraction": 0.6736592593, "num_tokens": 4359}
#!/usr/bin/python # -*- coding: utf-8 -*- from sklearn.metrics import roc_auc_score,roc_curve,auc,classification_report from sklearn.svm import SVC,SVR,LinearSVR from sklearn.linear_model import SGDRegressor from sklearn.neural_network import MLPClassifier from sklearn.pipeline import Pipeline from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import cross_val_predict from sklearn.model_selection import GridSearchCV from sklearn.model_selection import LeaveOneGroupOut from math import log import json import numpy as np from scipy.stats import spearmanr clf2=Pipeline([('dv',DictVectorizer(sparse=False)),('scl',StandardScaler()),('clf',SVC(class_weight='balanced',probability=True))]) #inclusive mapping coarse_map={u'n_nerelevantno': 0., u'x_izvenpodro\u010dni': 1., u'z_znanstveno': 1., 't_termin':1.} #exclusive mapping #coarse_map={u'n_nerelevantno': 0., u'x_izvenpodro\u010dni': 0., u'z_znanstveno': 0., 't_termin':1.} y=[] group=[] X=[] y1_pred={'frequency':[],'tfidf':[]} for entry in json.load(open('example/kas.term.json')): if entry['length']==1: y.append(np.mean([coarse_map[entry['annotator_'+str(i+1)]] for i in range(4)])) group.append(entry['document_id']) x={} x['tfidf']=entry['tfidf'] x['avgtoklen']=len(entry['most_frequent_sequence']) X.append(x) y_cat=[1 if e>=0.5 else 0 for e in y] X=np.array(X) y_cat=np.array(y_cat) clf2.fit(X,y_cat) from sklearn.externals import joblib joblib.dump(clf2,'model.swt')
{"hexsha": "70b9329fee5fe77c7e5f6a59f5a73edfd9c057b5", "size": 1539, "ext": "py", "lang": "Python", "max_stars_repo_path": "train_swt.py", "max_stars_repo_name": "clarinsi/kas-term", "max_stars_repo_head_hexsha": "5081bb1bab8c89076ec03d980ce14797c8e58d3c", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "train_swt.py", "max_issues_repo_name": "clarinsi/kas-term", "max_issues_repo_head_hexsha": "5081bb1bab8c89076ec03d980ce14797c8e58d3c", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "train_swt.py", "max_forks_repo_name": "clarinsi/kas-term", "max_forks_repo_head_hexsha": "5081bb1bab8c89076ec03d980ce14797c8e58d3c", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 38.475, "max_line_length": 131, "alphanum_fraction": 0.7563352827, "include": true, "reason": "import numpy,from scipy", "num_tokens": 438}
import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import numpy as np from dash.dependencies import Input, Output from plotly import graph_objs as go from plotly.graph_objs import * from datetime import datetime as dt app = dash.Dash( __name__, meta_tags=[{"name": "viewport", "content": "width=device-width"}], ) app.title = "New York Uber Rides" server = app.server # Plotly mapbox public token mapbox_access_token = "pk.eyJ1IjoicGxvdGx5bWFwYm94IiwiYSI6ImNrOWJqb2F4djBnMjEzbG50amg0dnJieG4ifQ.Zme1-Uzoi75IaFbieBDl3A" # Dictionary of important locations in New York list_of_locations = { "Madison Square Garden": {"lat": 40.7505, "lon": -73.9934}, "Yankee Stadium": {"lat": 40.8296, "lon": -73.9262}, "Empire State Building": {"lat": 40.7484, "lon": -73.9857}, "New York Stock Exchange": {"lat": 40.7069, "lon": -74.0113}, "JFK Airport": {"lat": 40.644987, "lon": -73.785607}, "Grand Central Station": {"lat": 40.7527, "lon": -73.9772}, "Times Square": {"lat": 40.7589, "lon": -73.9851}, "Columbia University": {"lat": 40.8075, "lon": -73.9626}, "United Nations HQ": {"lat": 40.7489, "lon": -73.9680}, } # Initialize data frame df1 = pd.read_csv( "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data1.csv", dtype=object, ) df2 = pd.read_csv( "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data2.csv", dtype=object, ) df3 = pd.read_csv( "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data3.csv", dtype=object, ) df = pd.concat([df1, df2, df3], axis=0) df["Date/Time"] = pd.to_datetime(df["Date/Time"], format="%Y-%m-%d %H:%M") df.index = df["Date/Time"] df.drop("Date/Time", 1, inplace=True) totalList = [] for month in df.groupby(df.index.month): dailyList = [] for day in month[1].groupby(month[1].index.day): dailyList.append(day[1]) totalList.append(dailyList) totalList = np.array(totalList) # Layout of Dash App app.layout = html.Div( children=[ html.Div( className="row", children=[ # Column for user controls html.Div( className="four columns div-user-controls", children=[ html.Img( className="logo", src=app.get_asset_url("dash-logo-new.png") ), html.H2("DASH - UBER DATA APP"), html.P( """Select different days using the date picker or by selecting different time frames on the histogram.""" ), html.Div( className="div-for-dropdown", children=[ dcc.DatePickerSingle( id="date-picker", min_date_allowed=dt(2014, 4, 1), max_date_allowed=dt(2014, 9, 30), initial_visible_month=dt(2014, 4, 1), date=dt(2014, 4, 1).date(), display_format="MMMM D, YYYY", style={"border": "0px solid black"}, ) ], ), # Change to side-by-side for mobile layout html.Div( className="row", children=[ html.Div( className="div-for-dropdown", children=[ # Dropdown for locations on map dcc.Dropdown( id="location-dropdown", options=[ {"label": i, "value": i} for i in list_of_locations ], placeholder="Select a location", ) ], ), html.Div( className="div-for-dropdown", children=[ # Dropdown to select times dcc.Dropdown( id="bar-selector", options=[ { "label": str(n) + ":00", "value": str(n), } for n in range(24) ], multi=True, placeholder="Select certain hours", ) ], ), ], ), html.P(id="total-rides"), html.P(id="total-rides-selection"), html.P(id="date-value"), dcc.Markdown( children=[ "Source: [FiveThirtyEight](https://github.com/fivethirtyeight/uber-tlc-foil-response/tree/master/uber-trip-data)" ] ), ], ), # Column for app graphs and plots html.Div( className="eight columns div-for-charts bg-grey", children=[ dcc.Graph(id="map-graph"), html.Div( className="text-padding", children=[ "Select any of the bars on the histogram to section data by time." ], ), dcc.Graph(id="histogram"), ], ), ], ) ] ) # Gets the amount of days in the specified month # Index represents month (0 is April, 1 is May, ... etc.) daysInMonth = [30, 31, 30, 31, 31, 30] # Get index for the specified month in the dataframe monthIndex = pd.Index(["Apr", "May", "June", "July", "Aug", "Sept"]) # Get the amount of rides per hour based on the time selected # This also higlights the color of the histogram bars based on # if the hours are selected def get_selection(month, day, selection): xVal = [] yVal = [] xSelected = [] colorVal = [ "#F4EC15", "#DAF017", "#BBEC19", "#9DE81B", "#80E41D", "#66E01F", "#4CDC20", "#34D822", "#24D249", "#25D042", "#26CC58", "#28C86D", "#29C481", "#2AC093", "#2BBCA4", "#2BB5B8", "#2C99B4", "#2D7EB0", "#2D65AC", "#2E4EA4", "#2E38A4", "#3B2FA0", "#4E2F9C", "#603099", ] # Put selected times into a list of numbers xSelected xSelected.extend([int(x) for x in selection]) for i in range(24): # If bar is selected then color it white if i in xSelected and len(xSelected) < 24: colorVal[i] = "#FFFFFF" xVal.append(i) # Get the number of rides at a particular time yVal.append(len(totalList[month][day][totalList[month][day].index.hour == i])) return [np.array(xVal), np.array(yVal), np.array(colorVal)] # Selected Data in the Histogram updates the Values in the Hours selection dropdown menu @app.callback( Output("bar-selector", "value"), [Input("histogram", "selectedData"), Input("histogram", "clickData")], ) def update_bar_selector(value, clickData): holder = [] if clickData: holder.append(str(int(clickData["points"][0]["x"]))) if value: for x in value["points"]: holder.append(str(int(x["x"]))) return list(set(holder)) # Clear Selected Data if Click Data is used @app.callback(Output("histogram", "selectedData"), [Input("histogram", "clickData")]) def update_selected_data(clickData): if clickData: return {"points": []} # Update the total number of rides Tag @app.callback(Output("total-rides", "children"), [Input("date-picker", "date")]) def update_total_rides(datePicked): date_picked = dt.strptime(datePicked, "%Y-%m-%d") return "Total Number of rides: {:,d}".format( len(totalList[date_picked.month - 4][date_picked.day - 1]) ) # Update the total number of rides in selected times @app.callback( [Output("total-rides-selection", "children"), Output("date-value", "children")], [Input("date-picker", "date"), Input("bar-selector", "value")], ) def update_total_rides_selection(datePicked, selection): firstOutput = "" if selection is not None or len(selection) is not 0: date_picked = dt.strptime(datePicked, "%Y-%m-%d") totalInSelection = 0 for x in selection: totalInSelection += len( totalList[date_picked.month - 4][date_picked.day - 1][ totalList[date_picked.month - 4][date_picked.day - 1].index.hour == int(x) ] ) firstOutput = "Total rides in selection: {:,d}".format(totalInSelection) if ( datePicked is None or selection is None or len(selection) is 24 or len(selection) is 0 ): return firstOutput, (datePicked, " - showing hour(s): All") holder = sorted([int(x) for x in selection]) if holder == list(range(min(holder), max(holder) + 1)): return ( firstOutput, ( datePicked, " - showing hour(s): ", holder[0], "-", holder[len(holder) - 1], ), ) holder_to_string = ", ".join(str(x) for x in holder) return firstOutput, (datePicked, " - showing hour(s): ", holder_to_string) # Update Histogram Figure based on Month, Day and Times Chosen @app.callback( Output("histogram", "figure"), [Input("date-picker", "date"), Input("bar-selector", "value")], ) def update_histogram(datePicked, selection): date_picked = dt.strptime(datePicked, "%Y-%m-%d") monthPicked = date_picked.month - 4 dayPicked = date_picked.day - 1 [xVal, yVal, colorVal] = get_selection(monthPicked, dayPicked, selection) layout = go.Layout( bargap=0.01, bargroupgap=0, barmode="group", margin=go.layout.Margin(l=10, r=0, t=0, b=50), showlegend=False, plot_bgcolor="#323130", paper_bgcolor="#323130", dragmode="select", font=dict(color="white"), xaxis=dict( range=[-0.5, 23.5], showgrid=False, nticks=25, fixedrange=True, ticksuffix=":00", ), yaxis=dict( range=[0, max(yVal) + max(yVal) / 4], showticklabels=False, showgrid=False, fixedrange=True, rangemode="nonnegative", zeroline=False, ), annotations=[ dict( x=xi, y=yi, text=str(yi), xanchor="center", yanchor="bottom", showarrow=False, font=dict(color="white"), ) for xi, yi in zip(xVal, yVal) ], ) return go.Figure( data=[ go.Bar(x=xVal, y=yVal, marker=dict(color=colorVal), hoverinfo="x"), go.Scatter( opacity=0, x=xVal, y=yVal / 2, hoverinfo="none", mode="markers", marker=dict(color="rgb(66, 134, 244, 0)", symbol="square", size=40), visible=True, ), ], layout=layout, ) # Get the Coordinates of the chosen months, dates and times def getLatLonColor(selectedData, month, day): listCoords = totalList[month][day] # No times selected, output all times for chosen month and date if selectedData is None or len(selectedData) is 0: return listCoords listStr = "listCoords[" for time in selectedData: if selectedData.index(time) is not len(selectedData) - 1: listStr += "(totalList[month][day].index.hour==" + str(int(time)) + ") | " else: listStr += "(totalList[month][day].index.hour==" + str(int(time)) + ")]" return eval(listStr) # Update Map Graph based on date-picker, selected data on histogram and location dropdown @app.callback( Output("map-graph", "figure"), [ Input("date-picker", "date"), Input("bar-selector", "value"), Input("location-dropdown", "value"), ], ) def update_graph(datePicked, selectedData, selectedLocation): zoom = 12.0 latInitial = 40.7272 lonInitial = -73.991251 bearing = 0 if selectedLocation: zoom = 15.0 latInitial = list_of_locations[selectedLocation]["lat"] lonInitial = list_of_locations[selectedLocation]["lon"] date_picked = dt.strptime(datePicked, "%Y-%m-%d") monthPicked = date_picked.month - 4 dayPicked = date_picked.day - 1 listCoords = getLatLonColor(selectedData, monthPicked, dayPicked) return go.Figure( data=[ # Data for all rides based on date and time Scattermapbox( lat=listCoords["Lat"], lon=listCoords["Lon"], mode="markers", hoverinfo="lat+lon+text", text=listCoords.index.hour, marker=dict( showscale=True, color=np.append(np.insert(listCoords.index.hour, 0, 0), 23), opacity=0.5, size=5, colorscale=[ [0, "#F4EC15"], [0.04167, "#DAF017"], [0.0833, "#BBEC19"], [0.125, "#9DE81B"], [0.1667, "#80E41D"], [0.2083, "#66E01F"], [0.25, "#4CDC20"], [0.292, "#34D822"], [0.333, "#24D249"], [0.375, "#25D042"], [0.4167, "#26CC58"], [0.4583, "#28C86D"], [0.50, "#29C481"], [0.54167, "#2AC093"], [0.5833, "#2BBCA4"], [1.0, "#613099"], ], colorbar=dict( title="Time of<br>Day", x=0.93, xpad=0, nticks=24, tickfont=dict(color="#d8d8d8"), titlefont=dict(color="#d8d8d8"), thicknessmode="pixels", ), ), ), # Plot of important locations on the map Scattermapbox( lat=[list_of_locations[i]["lat"] for i in list_of_locations], lon=[list_of_locations[i]["lon"] for i in list_of_locations], mode="markers", hoverinfo="text", text=[i for i in list_of_locations], marker=dict(size=8, color="#ffa0a0"), ), ], layout=Layout( autosize=True, margin=go.layout.Margin(l=0, r=35, t=0, b=0), showlegend=False, mapbox=dict( accesstoken=mapbox_access_token, center=dict(lat=latInitial, lon=lonInitial), # 40.7272 # -73.991251 style="dark", bearing=bearing, zoom=zoom, ), updatemenus=[ dict( buttons=( [ dict( args=[ { "mapbox.zoom": 12, "mapbox.center.lon": "-73.991251", "mapbox.center.lat": "40.7272", "mapbox.bearing": 0, "mapbox.style": "dark", } ], label="Reset Zoom", method="relayout", ) ] ), direction="left", pad={"r": 0, "t": 0, "b": 0, "l": 0}, showactive=False, type="buttons", x=0.45, y=0.02, xanchor="left", yanchor="bottom", bgcolor="#323130", borderwidth=1, bordercolor="#6d6d6d", font=dict(color="#FFFFFF"), ) ], ), ) if __name__ == "__main__": app.run_server(debug=True)
{"hexsha": "38d233c80dae4676935862fd0b4baf1d252c22bd", "size": 17927, "ext": "py", "lang": "Python", "max_stars_repo_path": "apps/dash-uber-rides-demo/app.py", "max_stars_repo_name": "ohaanika/dash-sample-apps", "max_stars_repo_head_hexsha": "8a2cfc54548cf729f95a5d0242c058b45dbf4205", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-06-04T10:04:55.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-04T10:04:55.000Z", "max_issues_repo_path": "apps/dash-uber-rides-demo/app.py", "max_issues_repo_name": "ohaanika/dash-sample-apps", "max_issues_repo_head_hexsha": "8a2cfc54548cf729f95a5d0242c058b45dbf4205", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "apps/dash-uber-rides-demo/app.py", "max_forks_repo_name": "ohaanika/dash-sample-apps", "max_forks_repo_head_hexsha": "8a2cfc54548cf729f95a5d0242c058b45dbf4205", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.6401590457, "max_line_length": 145, "alphanum_fraction": 0.4500474145, "include": true, "reason": "import numpy", "num_tokens": 3901}
import numpy as np # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # MAIN # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # def Larsen_wake(x, r, v_inflow, D_r, C_T, I_a, z_hub): D_nb = max(1.08 * D_r, 1.08 * D_r + 21.7 * D_r * (I_a - 0.05)) print(D_nb) D_95 = D_nb + min(z_hub, D_nb) print(D_95) x_0 = ((9.5 * D_r) / ((D_95 / D_r)**3)) - 1 print(x_0) c_1 = ((D_r / 2)**-0.5) * ((C_T * 0.25 * np.pi * D_r**2 * x_0)**(-5/6)) print(c_1) # 138.48000000000002 # 208.48000000000002 # 41.942799982038316 # 6.968226939885172e-06 D_w = 2 * (((35 * 3 * c_1**2) / (2 * np.pi))**(1/5)) * \ ((C_T * 0.25 * np.pi * D_r**2 * x)**(1/3)) print(D_w) v_deficit = (-1 / 9) * ((C_T * 0.25 * np.pi * D_r**2 * (x + x_0)**-2)**(1/3)) * \ ((r**(3/2) * ((3 * (c_1**2) * C_T * 0.25 * np.pi * D_r**2 * (x + x_0)**-2)**(-1/2))) - (((35 / (2 * np.pi))**(3/10)) * ((3 * c_1**2)**(-1/5))))**2 print(v_deficit) v_wake = v_inflow * (1 - v_deficit) return D_w, v_deficit, v_wake class LarsenWake(object): def __init__(self, v_inflow, D_r, C_T, I_a, z_hub): self.v_inflow = v_inflow self.d_rotor = D_r self.c_thrust = C_T self.I_ambient = I_a # assumed to be always greater than 5% self.z_hub = z_hub self._D_nb = max(1.08 * self.d_rotor, 1.08 * self.d_rotor + 21.7 * self.d_rotor * (self.I_ambient - 0.05)) self._D_95 = self._D_nb + min(self.z_hub, self._D_nb) self._x_0 = ((9.5 * self.d_rotor) / ((self._D_95 / self.d_rotor)**3)) - 1 self._c_1 = ((self.d_rotor / 2)**-0.5) * \ ((C_T * 0.25 * np.pi * self.d_rotor**2 * self._x_0)**(-5/6)) self.d_wake = self._wake_width self.v_deficit = self._velocity_deficit self.v_wake = self._velocity_wake def _wake_width(self, x): return 2 * (((35 * 3 * self._c_1**2) / (2 * np.pi))**(1/5)) * ((self.c_thrust * 0.25 * np.pi * self.d_rotor**2 * x)**(1/3)) def _velocity_deficit(self, x, r): return (-1 / 9) * ((self.c_thrust * 0.25 * np.pi * self.d_rotor**2 * (x + self._x_0)**-2)**(1/3)) * \ ((r**(3/2) * ((3 * (self._c_1**2) * self.c_thrust * 0.25 * np.pi * self.d_rotor**2 * (x + self._x_0)**-2)**(-1/2))) - (((35 / (2 * np.pi))**(3/10)) * ((3 * self._c_1**2)**(-1/5))))**2 def _velocity_wake(self, x, r): return self.v_inflow * (1 - self.v_deficit(x, r)) if __name__ == "__main__": # test = LarsenWake(8, 80, 0.8, 0.08, 70) # print(test.d_wake(500)) # print(test.v_deficit(500, 150)) # print(test.v_wake(500, 150)) Larsen_wake(500, 150, 8, 80, 0.8, 0.08, 70)
{"hexsha": "0d43f870fc40c669fcae0a19d72b7b60d55ad00f", "size": 2844, "ext": "py", "lang": "Python", "max_stars_repo_path": "floris/utils/models/wakes/Larsen.py", "max_stars_repo_name": "forestriveral/floris", "max_stars_repo_head_hexsha": "02c31e121283ad6ccae987cfa3aa1bf1e4b43014", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "floris/utils/models/wakes/Larsen.py", "max_issues_repo_name": "forestriveral/floris", "max_issues_repo_head_hexsha": "02c31e121283ad6ccae987cfa3aa1bf1e4b43014", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "floris/utils/models/wakes/Larsen.py", "max_forks_repo_name": "forestriveral/floris", "max_forks_repo_head_hexsha": "02c31e121283ad6ccae987cfa3aa1bf1e4b43014", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 38.9589041096, "max_line_length": 131, "alphanum_fraction": 0.4655414909, "include": true, "reason": "import numpy", "num_tokens": 1111}
using LaTeXTabulars, Test, LaTeXStrings # for testing using LaTeXTabulars: latex_cell "Normalize whitespace, for more convenient testing." squash_whitespace(string) = strip(replace(string, r"[ \n\t]+" => " ")) @test squash_whitespace(" something \n with line breaks \n and stuff \n") == "something with line breaks and stuff" "Comparison using normalized whitespace. For testing." ≅(a, b) = squash_whitespace(a) == squash_whitespace(b) @testset "tabular" begin tb = Tabular("lcl") tlines = [Rule(:top), [L"\alpha", L"\beta", "sum"], Rule(:mid), [1, 2, 3], Rule(), # a nice \hline to make it ugly [4.0 "5" "six"; # a matrix 7 8 9], (CMidRule(1, 2), CMidRule("lr", 1, 1)), # just to test tuples [MultiColumn(2, :c, "centered")], # ragged! Rule(:bottom)] tlatex = raw"\begin{tabular}{lcl} \toprule $\alpha$ & $\beta$ & sum \\ \midrule 1 & 2 & 3 \\ \hline 4.0 & 5 & six \\ 7 & 8 & 9 \\ \cmidrule{1-2} \cmidrule(lr){1-1} \multicolumn{2}{c}{centered} \\ \bottomrule \end{tabular}" tlatex = replace(tlatex, "\r\n"=>"\n") @test latex_tabular(String, tb, tlines) ≅ tlatex tmp = tempname() latex_tabular(tmp, tb, tlines) @test isfile(tmp) && read(tmp, String) ≅ tlatex @test read(tmp, String) ≅ tlatex end @test_throws ArgumentError latex_cell(stdout, MultiColumn(2, :BAD, "")) @test_throws ArgumentError CMidRule(3, 1) # not ≤ @test_throws MethodError latex_cell(stdout, ("un", "supported")) @test_throws MethodError CMidRule(1, 1, 1, 2) # invalid types @testset "longtable" begin lt = LongTable("rrr", ["alpha", "beta", "gamma"]) tlines = [[1 2 3 ; 4.0 "5" "six"], Rule(:h)] tlatex = raw"\begin{longtable}[c]{rrr} \hline alpha & beta & gamma \\ \hline \endfirsthead \multicolumn{3}{l} {{\bfseries \tablename\ \thetable{} --- continued from previous page}} \\ \hline alpha & beta & gamma \\ \hline \endhead \hline \multicolumn{3}{r}{{\bfseries Continued on next page}} \\ \hline \endfoot \hline \endlastfoot 1 & 2 & 3 \\ 4.0 & 5 & six \\ \hline \end{longtable}" tlatex = replace(tlatex, "\r\n"=>"\n") @test latex_tabular(String, lt, tlines) ≅ tlatex tmp = tempname() latex_tabular(tmp, lt, tlines) @test isfile(tmp) && read(tmp, String) ≅ tlatex @test read(tmp, String) ≅ tlatex end
{"hexsha": "59a8c98bd76d3d031f1a65193c19946a57ba6cc8", "size": 2953, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "test/runtests.jl", "max_stars_repo_name": "JuliaTagBot/LaTeXTabulars.jl", "max_stars_repo_head_hexsha": "d17c10b8d7938f191e437ba59a975df822afa8f7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 29, "max_stars_repo_stars_event_min_datetime": "2018-01-23T14:13:33.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-22T14:07:30.000Z", "max_issues_repo_path": "test/runtests.jl", "max_issues_repo_name": "JuliaTagBot/LaTeXTabulars.jl", "max_issues_repo_head_hexsha": "d17c10b8d7938f191e437ba59a975df822afa8f7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 9, "max_issues_repo_issues_event_min_datetime": "2018-03-06T16:32:20.000Z", "max_issues_repo_issues_event_max_datetime": "2021-02-04T14:25:52.000Z", "max_forks_repo_path": "test/runtests.jl", "max_forks_repo_name": "JuliaTagBot/LaTeXTabulars.jl", "max_forks_repo_head_hexsha": "d17c10b8d7938f191e437ba59a975df822afa8f7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2019-01-26T01:19:00.000Z", "max_forks_repo_forks_event_max_datetime": "2020-02-08T11:48:28.000Z", "avg_line_length": 33.9425287356, "max_line_length": 90, "alphanum_fraction": 0.4940738232, "num_tokens": 836}
# -*- coding: utf-8 -*- import numpy as np #import numbers #import re import numba from numba.core import types,cgutils # utils, typing, errors, extending, sigutils from numba import ( njit, generated_jit ) from numba.core.errors import TypingError from numba.extending import ( overload, overload_attribute, overload_method, lower_builtin, # lower_getattr, # lower_setattr, typeof_impl, type_callable, models, register_model, make_attribute_wrapper, box, unbox, NativeValue ) from numba.core.imputils import impl_ret_borrowed#, lower_setattr, lower_getattr # from numba.core.typing.templates import (AttributeTemplate, infer_getattr) # AbstractTemplate, # signature, Registry, infer_getattr) import fractalshades.numpy_utils.xrange as fsx # import math import operator """ Its purpose is to allow the use of Xrange_arrays, polynomials and SA objects inside jitted functions by defining mirrored low-level implementations. By default, Numba will treat all numpy.ndarray subtypes as if they were of the base numpy.ndarray type. On one side, ndarray subtypes can easily use all of the support that Numba has for ndarray methods ; on the other side it is not possible to fully customise the behavior. (This is likely to change in future release of Numba, see https://github.com/numba/numba/pull/6148) The workaround followed here is to provide ad-hoc implementation at datatype level (in numba langage, for our specific numba.types.Record types). User code in jitted function should fully expand the loops to work on individual array elements - indeed numba is made for this. As the extra complexity is not worth it, we drop support for float32, complex64 in numba: only float64, complex128 mantissa are currently supported. NOte: https://numba.pydata.org/numba-doc/latest/proposals/extension-points.html /!\ This submodule has side effects at import time (due to its heavy use of numba operators overload) it should be imported only once (in fractalshades). See https://github.com/pygae/clifford """ numba_float_types = (numba.float64,) numba_complex_types = (numba.complex128,) numba_base_types = numba_float_types + numba_complex_types def numpy_xr_type(base_type): return np.dtype([("mantissa", base_type), ("exp", np.int32)], align=False) def numba_xr_type(base_type): """ Return the numba "extended" Record type for the 2 implemented base type float64, complex128 """ return numba.from_dtype(numpy_xr_type(base_type)) numba_xr_types = tuple(numba_xr_type(dt) for dt in (np.float64, np.complex128)) numba_real_xr_types = tuple(numba_xr_type(dt) for dt in (np.float64,)) #numba_xr_dict = {numba_xr_type(v): v for v in (np.float64, np.complex128)} # Create a datatype for temporary manipulation of Xrange_array items. # This datatype will only be used in numba jitted functions, so we do not # expose a full python implementation (e.g, boxing, unboxing) class Xrange_scalar(): def __init__(self, mantissa, exp): self.mantissa = mantissa self.exp = exp class Xrange_scalar_Type(types.Type): def __init__(self, base_type): super().__init__(name="{}_Xrange_scalar".format(base_type)) self.base_type = base_type self.np_base_type = numba.np.numpy_support.as_dtype(base_type) # dtype.fields["mantissa"][0]) @type_callable(Xrange_scalar) def type_extended_item(context): def typer(mantissa, exp): if (mantissa in numba_base_types) and (exp == numba.int32): return Xrange_scalar_Type(mantissa) return typer @register_model(Xrange_scalar_Type) class Xrange_scalar_Model(models.StructModel): def __init__(self, dmm, fe_type): members = [ ('mantissa', fe_type.base_type), ('exp', numba.int32), ] models.StructModel.__init__(self, dmm, fe_type, members) #for attr in ('mantissa', 'exp'): make_attribute_wrapper(Xrange_scalar_Type, 'mantissa', 'mantissa') make_attribute_wrapper(Xrange_scalar_Type, 'exp', 'exp') @lower_builtin(Xrange_scalar, types.Number, types.Integer) def impl_xrange_scalar(context, builder, sig, args): typ = sig.return_type mantissa, exp = args xrange_scalar = cgutils.create_struct_proxy(typ)(context, builder) xrange_scalar.mantissa = mantissa xrange_scalar.exp = exp return xrange_scalar._getvalue() #@overload_attribute(Xrange_scalar_Type, "np_base_type") #def np_base_type(scalar): # ret = numba.np.numpy_support.as_dtype( # scalar.fields["mantissa"][0]) # return lambda scalar: ret #np_base_type = numba.np.numpy_support.as_dtype( # dtype.fields["mantissa"][0]) # We will support operation between numba_xr_types and Xrange_scalar instances scalar_xr_types = tuple(Xrange_scalar_Type(dt) for dt in numba_base_types) xr_types = numba_xr_types + scalar_xr_types scalar_real_xr_types = tuple(Xrange_scalar_Type(dt) for dt in numba_float_types) real_xr_types = numba_real_xr_types + scalar_real_xr_types def is_xr_type(val): if isinstance(val, Xrange_scalar_Type): return (val.base_type in numba_base_types) if isinstance(val, numba.types.Record): return ( len(val) == 2 and "mantissa" in val.fields and "exp" in val.fields and val.fields["mantissa"][0] in numba_base_types) @overload_attribute(numba.types.Record, "is_xr") def is_xr(rec): ret = tuple(rec.fields.keys()) == ("mantissa", "exp") def impl(rec): return ret return impl # Dedicated typing for Xrange_array adds some overhead with little benefit # -> not implemented by default (passthrough as types.Array) xrange_typing = False xrange_arty = types.Array class XrangeArray(types.Array): # Array type source code # https://github.com/numba/numba/blob/39271156a52c58ca18b15aebcb1c85e4a07e49ed/numba/core/types/npytypes.py#L413 # pd-like use case # https://github.com/numba/numba/blob/39271156a52c58ca18b15aebcb1c85e4a07e49ed/numba/tests/pdlike_usecase.py def __init__(self, dtype, ndim, layout, aligned): layout = 'C' type_name = "Xrange_array" name = "%s(%s, %sd, %s)" % (type_name, dtype, ndim, layout) super().__init__(dtype, ndim, layout, readonly=False, name=name, aligned=aligned) if xrange_typing: numba.extending.register_model(XrangeArray)( numba.extending.models.ArrayModel) @numba.extending.typeof_impl.register(fsx.Xrange_array) def typeof_xrangearray(val, c): arrty = numba.extending.typeof_impl(np.asarray(val), c) return XrangeArray(arrty.dtype, arrty.ndim, arrty.layout, arrty.aligned) xrange_arty = XrangeArray # The default numba typing for integer addition is int64(int32, int32) (?? ...) # See https://numba.pydata.org/numba-doc/latest/proposals/integer-typing.html # 'The typing of Python int values used as function arguments doesn’t change, # as it works satisfyingly and doesn’t surprise the user.' # Here we will need proper int32 addition, substraction... @numba.extending.intrinsic def add_int32(typingctx, src1, src2): # check for accepted types if (src1 == numba.int32) and (src2 == numba.int32): # create the expected type signature # result_type = types.int32 sig = types.int32(types.int32, types.int32) # defines the custom code generation def codegen(context, builder, signature, args): # llvm IRBuilder code here # https://llvmlite.readthedocs.io/en/latest/ (a, b) = args return builder.add(a, b) return sig, codegen @numba.extending.intrinsic def neg_int32(typingctx, src1): if (src1 == numba.int32): sig = types.int32(types.int32) def codegen(context, builder, signature, args): (a,) = args return builder.neg(a) return sig, codegen @numba.extending.intrinsic def sub_int32(typingctx, src1, src2): if (src1 == numba.int32) and (src2 == numba.int32): sig = types.int32(types.int32, types.int32) def codegen(context, builder, signature, args): (a, b) = args return builder.sub(a, b) return sig, codegen @numba.extending.intrinsic def sdiv_int32(typingctx, src1, src2): if (src1 == numba.int32) and (src2 == numba.int32): sig = types.int32(types.int32, types.int32) def codegen(context, builder, signature, args): (a, b) = args return builder.sdiv(a, b) return sig, codegen @numba.extending.intrinsic def mul_int32(typingctx, src1, src2): if (src1 == numba.int32) and (src2 == numba.int32): sig = types.int32(types.int32, types.int32) def codegen(context, builder, signature, args): (a, b) = args return builder.mul(a, b) return sig, codegen @overload(operator.setitem) def extended_setitem_tuple(arr, idx, val): """ Usage : if arr is an Xrange_array, then one will be able to do arr[i] = Xrange_scalar_Type(mantissa, exp) """ if isinstance(arr, xrange_arty) and (val in xr_types): def impl(arr, idx, val): arr[idx]["mantissa"] = val.mantissa arr[idx]["exp"] = val.exp return impl @overload_attribute(numba.types.Record, "is_complex") def is_complex(rec): dtype = rec.fields["mantissa"][0] is_complex = (dtype in numba_complex_types) def impl(rec): return is_complex return impl @overload(operator.neg) def extended_neg(op0): """ Change sign of a Record field """ if (op0 in xr_types): #is_xr_type(op0)):# in xr_types): def impl(op0): return Xrange_scalar(-op0.mantissa, op0.exp) return impl else: # print(op0, op0 in xr_types, xr_types) raise TypingError("datatype not accepted {}".format( op0)) @overload(operator.add)#, debug=True) def extended_add(op0, op1): """ Add 2 Record fields """ if (op0 in xr_types) and (op1 in xr_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0.mantissa, op0.exp, op1.mantissa, op1.exp) return Xrange_scalar(m0_out + m1_out, exp_out) return impl elif (op0 in xr_types) and (op1 in numba_base_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0.mantissa, op0.exp, op1, numba.int32(0)) return Xrange_scalar(m0_out + m1_out, exp_out) return impl elif (op0 in numba_base_types) and (op1 in xr_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0, numba.int32(0), op1.mantissa, op1.exp) return Xrange_scalar(m0_out + m1_out, exp_out) return impl else: raise TypingError("datatype not accepted xr_add({}, {})".format( op0, op1)) @overload(operator.sub) def extended_sub(op0, op1): """ Substract 2 Record fields """ if (op0 in xr_types) and (op1 in xr_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0.mantissa, op0.exp, op1.mantissa, op1.exp) return Xrange_scalar(m0_out - m1_out, exp_out) return impl elif (op0 in xr_types) and (op1 in numba_base_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0.mantissa, op0.exp, op1, numba.int32(0)) return Xrange_scalar(m0_out - m1_out, exp_out) return impl elif (op0 in numba_base_types) and (op1 in xr_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0, numba.int32(0), op1.mantissa, op1.exp) return Xrange_scalar(m0_out - m1_out, exp_out) return impl else: raise TypingError("datatype not accepted xr_sub({}, {})".format( op0, op1)) @generated_jit(nopython=True) def _need_renorm(m): """ Returns True if abs(exponent) is above a given threshold """ threshold = 100 # as 2.**100 = 1.e30 if (m in numba_float_types): def impl(m): bits = numba.cpython.unsafe.numbers.viewer(m, numba.int64) return abs(((bits >> 52) & 0x7ff) - 1023) > threshold return impl elif (m in numba_complex_types): def impl(m): bits = numba.cpython.unsafe.numbers.viewer(m.real, numba.int64) need1 = abs(((bits >> 52) & 0x7ff) - 1023) > threshold bits = numba.cpython.unsafe.numbers.viewer(m.imag, numba.int64) need2 = abs(((bits >> 52) & 0x7ff) - 1023) > threshold return (need1 or need2) return impl else: raise TypingError("datatype not accepted {}".format(m)) @overload(operator.mul) def extended_mul(op0, op1): """ Multiply 2 Record fields """ if (op0 in xr_types) and (op1 in xr_types): def impl(op0, op1): mul = op0.mantissa * op1.mantissa # Need to avoid casting to int64... ! exp = add_int32(op0.exp, op1.exp) if _need_renorm(mul): return Xrange_scalar(*_normalize(mul, exp)) return Xrange_scalar(mul, exp) return impl elif (op0 in xr_types) and (op1 in numba_base_types): def impl(op0, op1): mul = op0.mantissa * op1 if _need_renorm(mul): return Xrange_scalar(*_normalize(mul, op0.exp)) return Xrange_scalar(mul, op0.exp) return impl elif (op0 in numba_base_types) and (op1 in xr_types): def impl(op0, op1): mul = op0 * op1.mantissa if _need_renorm(mul): return Xrange_scalar(*_normalize(mul, op1.exp)) return Xrange_scalar(mul, op1.exp) return impl else: # print(op0 in numba_base_types, op0 in xr_types) # print(op1 in numba_base_types, op1 in xr_types) # TypingError: datatype not accepted xr_mul(float64_Xrange_scalar, Record(mantissa[type=float64;offset=0],exp[type=int32;offset=8];12;False)) raise TypingError("datatype not accepted xr_mul({}, {})".format( op0, op1)) @overload(operator.truediv) def extended_truediv(op0, op1): """ Divide 2 Record fields """ if (op0 in xr_types) and (op1 in xr_types): def impl(op0, op1): mul = op0.mantissa / op1.mantissa exp = sub_int32(op0.exp, op1.exp) if _need_renorm(mul): return Xrange_scalar(*_normalize(mul, exp)) return Xrange_scalar(mul, exp) return impl elif (op0 in xr_types) and (op1 in numba_base_types): def impl(op0, op1): mul = op0.mantissa / op1 if _need_renorm(mul): return Xrange_scalar(*_normalize(mul, op0.exp)) return Xrange_scalar(mul, op0.exp) return impl elif (op0 in numba_base_types) and (op1 in xr_types): def impl(op0, op1): mul = op0 / op1.mantissa exp = neg_int32(op1.exp) if _need_renorm(mul): return Xrange_scalar(*_normalize(mul, exp)) return Xrange_scalar(mul, exp) return impl else: raise TypingError("datatype not accepted xr_mul({}, {})".format( op0, op1)) def extended_overload(compare_operator): @overload(compare_operator) def extended_compare(op0, op1): """ Compare 2 Record fields """ if (op0 in xr_types) and (op1 in xr_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0.mantissa, op0.exp, op1.mantissa, op1.exp) return compare_operator(m0_out, m1_out) return impl elif (op0 in xr_types) and (op1 in numba_base_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0.mantissa, op0.exp, op1, 0) return compare_operator(m0_out, m1_out) return impl elif (op0 in numba_base_types) and (op1 in xr_types): def impl(op0, op1): m0_out, m1_out, exp_out = _coexp_ufunc( op0, 0, op1.mantissa, op1.exp) return compare_operator(m0_out, m1_out) return impl else: raise TypingError("datatype not accepted in compare({}, {})".format( op0, op1)) for compare_operator in ( operator.lt, operator.le, operator.eq, operator.ne, operator.ge, operator.gt ): extended_overload(compare_operator) @overload(np.sqrt) def extended_sqrt(op0): """ sqrt of a Record fields """ if op0 in xr_types: def impl(op0): exp = op0.exp if exp % 2: exp = sdiv_int32(sub_int32(exp, numba.int32(1)), numba.int32(2)) # // 2 m = np.sqrt(op0.mantissa * 2.) else: exp = sdiv_int32(exp, numba.int32(2)) # // 2 m = np.sqrt(op0.mantissa) return Xrange_scalar(m, exp) return impl else: raise TypingError("Datatype not accepted xr_sqrt({})".format( op0)) @generated_jit(nopython=True) def extended_abs2(op0): """ square of abs of a Record field """ if op0 in real_xr_types: def impl(op0): return Xrange_scalar(np.square(op0.mantissa), add_int32(op0.exp, op0.exp)) return impl elif op0 in xr_types: def impl(op0): return Xrange_scalar((op0.mantissa * np.conj(op0.mantissa)).real, add_int32(op0.exp, op0.exp)) return impl else: raise TypingError("Datatype not accepted xr_sqrt({})".format( op0)) @overload(np.abs) def extended_abs(op0): """ abs of a Record field """ if op0 in xr_types: def impl(op0): return Xrange_scalar(np.abs(op0.mantissa), op0.exp) return impl else: raise TypingError("Datatype not accepted xr_sqrt({})".format( op0)) @generated_jit(nopython=True) def _normalize(m, exp): """ Returns a normalized couple """ # Implementation for float if (m in numba_float_types): def impl(m, exp): return _normalize_real(m, exp) # Implementation for complex elif (m in numba_complex_types): def impl(m, exp): nm_re, nexp_re = _normalize_real(m.real, exp) nm_im, nexp_im = _normalize_real(m.imag, exp) co_nm_real, co_nm_imag, co_nexp = _coexp_ufunc( nm_re, nexp_re, nm_im, nexp_im) return (co_nm_real + 1j * co_nm_imag, co_nexp) else: raise TypingError("datatype not accepted {}".format(m)) return impl @njit(types.Tuple((numba.float64, numba.int32))(numba.float64,)) def _frexp(m): """ Faster unsafe equivalent for math.frexp(m) """ # https://github.com/numba/numba/issues/3763 # https://llvm.org/docs/LangRef.html#bitcast-to-instruction bits = numba.cpython.unsafe.numbers.viewer(m, numba.int64) m = numba.cpython.unsafe.numbers.viewer( (bits & 0x8000000000000000) # signe + (0x3ff << 0x34) # exposant (bias) hex(1023) = 0x3ff hex(52) = 0x34 + (bits & 0xfffffffffffff), numba.float64) exp = (((bits >> 52)) & 0x7ff) - 0x3ff # numba.int32 ?? return m, exp @njit(types.Tuple((numba.float64, numba.int32))(numba.float64, numba.int32)) def _normalize_real(m, exp): """ Returns a normalized couple """ if m == 0.: return (m, numba.int32(0)) else: nm, nexp = _frexp(m) return (nm, exp + nexp) @njit(numba.float64(numba.float64, numba.int32)) def _exp2_shift(m, shift): """ Faster unsafe equivalent for math.ldexp(m, shift) """ # https://github.com/numba/numba/issues/3763 # https://llvm.org/docs/LangRef.html#bitcast-to-instruction bits = numba.cpython.unsafe.numbers.viewer(m, numba.int64) exp = max(((bits >> 0x34) & 0x7ff) + shift, 0) return numba.cpython.unsafe.numbers.viewer( (bits & 0x8000000000000000) + (exp << 0x34) + (bits & 0xfffffffffffff), numba.float64) @generated_jit(nopython=True) def _coexp_ufunc(m0, exp0, m1, exp1): """ Returns a co-exp couple of couples """ # Implementation for real if (m0 in numba_float_types) and (m1 in numba_float_types): def impl(m0, exp0, m1, exp1): co_m0, co_m1 = m0, m1 d_exp = exp0 - exp1 if m0 == 0.: exp = exp1 elif m1 == 0.: exp = exp0 elif (exp1 > exp0): co_m0 = _exp2_shift(co_m0, d_exp) exp = exp1 elif (exp0 > exp1): co_m1 = _exp2_shift(co_m1, -d_exp) exp = exp0 else: # exp0 == exp1 exp = exp0 return (co_m0, co_m1, exp) # Implementation for complex elif (m0 in numba_complex_types) or (m1 in numba_complex_types): def impl(m0, exp0, m1, exp1): co_m0, co_m1 = m0, m1 d_exp = exp0 - exp1 if m0 == 0.: exp = exp1 elif m1 == 0.: exp = exp0 elif (exp1 > exp0): co_m0 = (_exp2_shift(co_m0.real, d_exp) + 1j * _exp2_shift(co_m0.imag, d_exp)) exp = exp1 elif (exp0 > exp1): co_m1 = (_exp2_shift(co_m1.real, -d_exp) + 1j * _exp2_shift(co_m1.imag, -d_exp)) exp = exp0 else: # exp0 == exp1 exp = exp0 return (co_m0, co_m1, exp) else: raise TypingError("datatype not accepted {}{}".format(m0, m1)) return impl @overload_method(numba.types.Record, "normalize") def normalize(rec): """ Normalize in-place a xr Record """ dtype = rec.fields["mantissa"][0] # Implementation for float if (dtype in numba_float_types): def impl(rec): m = rec.mantissa if m == 0.: rec.exp = numba.int32(0) else: nm, nexp = _frexp(rec.mantissa) rec.exp += nexp rec.mantissa = nm # Implementation for complex elif (dtype in numba_complex_types): def impl(rec): m = rec.mantissa if m == 0.: rec.exp = numba.int32(0) else: rec.mantissa, rec.exp = _normalize(m, rec.exp) else: raise TypingError("datatype not accepted {}".format(dtype)) return impl # # Implementing the Xrange_polynomial class in numba # https://numba.pydata.org/numba-doc/latest/proposals/extension-points.html # class Xrange_polynomial_Type(types.Type): def __init__(self, dtype, cutdeg): self.dtype = dtype self.np_base_type = numba.np.numpy_support.as_dtype( dtype.fields["mantissa"][0]) # self.cutdeg = cutdeg self.coeffs = types.Array(dtype, 1, 'C') # print("numba_xr_dict", numba_xr_dict) # print("numba_xr_dict", dtype.fields["mantissa"][0]) # The name must be unique if the underlying model is different super().__init__(name="{}_Xrange_polynomial".format( dtype.fields["mantissa"][0])) # @property # def as_array(self): # return self.coeffs # # def copy(self, dtype=None, ndim=1, layout='C'): # assert ndim == 1 # assert layout == 'C' # if dtype is None: # dtype = self.dtype # return type(self)(dtype, self.index) @typeof_impl.register(fsx.Xrange_polynomial) def typeof_xrange_polynomial(val, c): coeffs_arrty = typeof_impl(val.coeffs, c) return Xrange_polynomial_Type(coeffs_arrty.dtype, val.cutdeg) @type_callable(fsx.Xrange_polynomial) def type_xrange_polynomial(context): def typer(coeffs, cutdeg): if (isinstance(coeffs, types.Array) and (coeffs.dtype in numba_xr_types) and isinstance(cutdeg, types.Integer)): return Xrange_polynomial_Type(coeffs.dtype, cutdeg) return typer @register_model(Xrange_polynomial_Type) class XrangePolynomialModel(models.StructModel): def __init__(self, dmm, fe_type): members = [ ('coeffs', fe_type.coeffs), ('cutdeg', numba.int64) # Not that we need, but int32 is painful ] models.StructModel.__init__(self, dmm, fe_type, members) make_attribute_wrapper(Xrange_polynomial_Type, 'coeffs', 'coeffs') make_attribute_wrapper(Xrange_polynomial_Type, 'cutdeg', 'cutdeg') @lower_builtin(fsx.Xrange_polynomial, types.Array, types.Integer) def impl_xrange_polynomial_constructor(context, builder, sig, args): typ = sig.return_type coeffs, cutdeg = args xrange_polynomial = cgutils.create_struct_proxy(typ)(context, builder) xrange_polynomial.coeffs = coeffs # We do not copy !! following implementation in python xrange_polynomial.cutdeg = cutdeg return impl_ret_borrowed(context, builder, typ, xrange_polynomial._getvalue()) @unbox(Xrange_polynomial_Type) def unbox_xrange_polynomial(typ, obj, c): """ Convert a fsx.Xrange_polynomial object to a native xrange_polynomial structure. """ coeffs_obj = c.pyapi.object_getattr_string(obj, "coeffs") cutdeg_obj = c.pyapi.object_getattr_string(obj, "cutdeg") xrange_polynomial = cgutils.create_struct_proxy(typ)(c.context, c.builder) xrange_polynomial.cutdeg = c.pyapi.long_as_longlong(cutdeg_obj) xrange_polynomial.coeffs = c.unbox(typ.coeffs, coeffs_obj).value c.pyapi.decref(coeffs_obj) c.pyapi.decref(cutdeg_obj) is_error = cgutils.is_not_null(c.builder, c.pyapi.err_occurred()) return NativeValue(xrange_polynomial._getvalue(), is_error=is_error) @box(Xrange_polynomial_Type) def box_xrange_polynomial(typ, val, c): """ Convert a native xrange_polynomial structure to a fsx.Xrange_polynomial object """ xrange_polynomial = cgutils.create_struct_proxy(typ )(c.context, c.builder, value=val) classobj = c.pyapi.unserialize(c.pyapi.serialize_object( fsx.Xrange_polynomial)) coeffs_obj = c.box(typ.coeffs, xrange_polynomial.coeffs) cutdeg_obj = c.pyapi.long_from_longlong(xrange_polynomial.cutdeg) xrange_polynomial_obj = c.pyapi.call_function_objargs( classobj, (coeffs_obj, cutdeg_obj)) c.pyapi.decref(classobj) c.pyapi.decref(coeffs_obj) c.pyapi.decref(cutdeg_obj) return xrange_polynomial_obj # # Implementing operations for Xrange_polynomial # @overload(operator.neg) def poly_neg(op0): """ Copy of a polynomial with sign changed """ if isinstance(op0, Xrange_polynomial_Type): def impl(op0): # assert op0.coeffs.size == op0.cutdeg + 1 coeffs = op0.coeffs new_coeffs = np.empty_like(op0.coeffs) for i in range(coeffs.size): new_coeffs[i] = - coeffs[i] return fsx.Xrange_polynomial(new_coeffs, op0.cutdeg) return impl def xr_type_to_base_type(val): if isinstance(val, Xrange_scalar_Type): base_type = val.base_type else: base_type = val.fields["mantissa"][0] return numba.np.numpy_support.as_dtype(base_type) #def get_template() @overload(operator.add) def poly_add(op0, op1): """ Add 2 polynomials or a polynomial and a scalar""" if (isinstance(op0, Xrange_polynomial_Type) and isinstance(op1, Xrange_polynomial_Type) ): # There is no lowering implementation for a structured dtype ; so # we initiate a template of length 1 for the compilation. base_dtres = np.result_type(op0.np_base_type, op1.np_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) def impl(op0, op1): assert op0.cutdeg == op1.cutdeg cutdeg = op0.cutdeg coeffs0 = op0.coeffs coeffs1 = op1.coeffs res_len = min(max(coeffs0.size, coeffs1.size), cutdeg + 1) r01 = min(min(coeffs0.size, coeffs1.size), cutdeg + 1) r0 = min(coeffs0.size, cutdeg + 1) r1 = min(coeffs1.size, cutdeg + 1) new_coeffs = res_template.repeat(res_len) for i in range(r01): new_coeffs[i] = coeffs0[i] + coeffs1[i] for i in range(r01, r0): new_coeffs[i] = coeffs0[i] for i in range(r01, r1): new_coeffs[i] = coeffs1[i] return fsx.Xrange_polynomial(new_coeffs, cutdeg) return impl elif (isinstance(op0, Xrange_polynomial_Type) and (op1 in xr_types) ): scalar_base_type = xr_type_to_base_type(op1) base_dtres = np.result_type(op0.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) def impl(op0, op1): res_len = op0.coeffs.size new_coeffs = res_template.repeat(res_len) for i in range(res_len): new_coeffs[i] = op0.coeffs[i] new_coeffs[0] = new_coeffs[0] + op1 return fsx.Xrange_polynomial(new_coeffs, op0.cutdeg) return impl elif (isinstance(op1, Xrange_polynomial_Type) and (op0 in xr_types) ): scalar_base_type = xr_type_to_base_type(op0) base_dtres = np.result_type(op1.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.empty([1], dtype=res_dtype) def impl(op0, op1): res_len = op1.coeffs.size new_coeffs = res_template.repeat(res_len) for i in range(res_len): new_coeffs[i] = op1.coeffs[i] new_coeffs[0] = new_coeffs[0] + op0 return fsx.Xrange_polynomial(new_coeffs, op1.cutdeg) return impl @overload_method(Xrange_polynomial_Type, '__call__') def xrange_polynomial_call(poly, val): # Implementation for scalars if (val in xr_types): # if isinstance(val, Xrange_scalar_Type): # base_type = val.base_type # else: # base_type = val.fields["mantissa"][0] # base_dtres = numba.np.numpy_support.as_dtype(base_type) base_dtres = xr_type_to_base_type(val) base_dtres = np.result_type(base_dtres, poly.np_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.empty([1], dtype=res_dtype) def call_impl(poly, val): res = res_template.repeat(1) coeffs = poly.coeffs n = coeffs.size res[0] = coeffs[n - 1] for i in range(2, coeffs.size + 1): res[0] = coeffs[n - i] + res[0] * val return res return call_impl # Implementation for arrays elif isinstance(val , xrange_arty): base_type = val.dtype.fields["mantissa"][0] base_dtres = numba.np.numpy_support.as_dtype(base_type) base_dtres = np.result_type(base_dtres, poly.np_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) def call_impl(poly, val): res_len = val.size res = res_template.repeat(res_len) coeffs = poly.coeffs n = coeffs.size for j in range(res_len): res[j] = coeffs[n - 1] for i in range(2, coeffs.size + 1): res[j] = coeffs[n - i] + res[j] * val[j] return res return call_impl @overload_method(Xrange_polynomial_Type, 'deriv') def xrange_polynomial_deriv(poly): # Call self as a function. def call_impl(poly, val, k=1.): coeffs = poly.coeffs n = coeffs.size deriv_coeffs = coeffs[1:] * np.arange(1, n) if k != 1.: mul = 1. for i in range(n - 1): deriv_coeffs[i] = deriv_coeffs[i] * mul mul *= k return fsx.Xrange_polynomial(deriv_coeffs, cutdeg=poly.cutdeg) return call_impl @overload(operator.mul) def poly_mul(op0, op1): """ Multiply 2 polynomials or a polynomial and a scalar""" if (isinstance(op0, Xrange_polynomial_Type) and isinstance(op1, Xrange_polynomial_Type) ): # There is no lowering implementation for a structured dtype ; so # we initiate a template of length 1 for the compilation. base_dtres = np.result_type(op0.np_base_type, op1.np_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) def impl(op0, op1): assert op0.cutdeg == op1.cutdeg cutdeg = op0.cutdeg coeffs0 = op0.coeffs coeffs1 = op1.coeffs l0 = coeffs0.size l1 = coeffs1.size res_len = min(l0 + l1 - 1, cutdeg + 1) new_coeffs = res_template.repeat(res_len) for i in range(res_len): window_min = max(0, i - l1 + 1) window_max = min(l0 - 1, i) for k in range(window_min, window_max + 1): new_coeffs[i] = new_coeffs[i] + coeffs0[k] * coeffs1[i - k] return fsx.Xrange_polynomial(new_coeffs, cutdeg) return impl elif (isinstance(op0, Xrange_polynomial_Type) and (op1 in xr_types) ): scalar_base_type = xr_type_to_base_type(op1) base_dtres = np.result_type(op0.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) def impl(op0, op1): res_len = op0.coeffs.size new_coeffs = res_template.repeat(res_len) for i in range(res_len): new_coeffs[i] = op0.coeffs[i] * op1 return fsx.Xrange_polynomial(new_coeffs, op0.cutdeg) return impl elif (isinstance(op1, Xrange_polynomial_Type) and (op0 in xr_types) ): scalar_base_type = xr_type_to_base_type(op0) base_dtres = np.result_type(op1.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.empty([1], dtype=res_dtype) def impl(op0, op1): res_len = op1.coeffs.size new_coeffs = res_template.repeat(res_len) for i in range(res_len): new_coeffs[i] = op0 * op1.coeffs[i] return fsx.Xrange_polynomial(new_coeffs, op1.cutdeg) return impl # Implementing the Xrange_SA class in numba # https://numba.pydata.org/numba-doc/latest/proposals/extension-points.html # Caveat : unboxing is too complex and not implemented, so jitted function # can return xrange_SA instances but not take xrange_SA as argument. # workarounf is to pass separately xrange_polynomial and err (if not null) # then use xrange_polynomial_to_SA class Xrange_SA_Type(types.Type): def __init__(self, dtype, cutdeg, err): self.dtype = dtype numba_base_type = dtype.fields["mantissa"][0] self.np_base_type = numba.np.numpy_support.as_dtype(numba_base_type) self.coeffs = types.Array(dtype, 1, 'C') err_dtype = numba_xr_type(np.float64) self.err = types.Array(err_dtype, 1, 'C') #self.err = Xrange_scalar_Type(numba.float64) prefix = "{}_Xrange_SA" super().__init__(name=prefix.format(numba_base_type)) @typeof_impl.register(fsx.Xrange_SA) def typeof_xrange_SA(val, c): coeffs_arrty = typeof_impl(val.coeffs, c) return Xrange_SA_Type(coeffs_arrty.dtype, val.cutdeg, val.err) @type_callable(fsx.Xrange_SA) def type_xrange_SA(context): def typer(coeffs, cutdeg, err): if (isinstance(coeffs, types.Array) and (coeffs.dtype in numba_xr_types) and isinstance(cutdeg, types.Integer) and isinstance(err, types.Array) ): return Xrange_SA_Type(coeffs.dtype, cutdeg, err.dtype) return typer @register_model(Xrange_SA_Type) class XrangeSAModel(models.StructModel): def __init__(self, dmm, fe_type): members = [ ('coeffs', fe_type.coeffs), ('cutdeg', numba.int64), # Not that we need, but int32 is painful ('err', fe_type.err) ] models.StructModel.__init__(self, dmm, fe_type, members) make_attribute_wrapper(Xrange_SA_Type, 'coeffs', 'coeffs') make_attribute_wrapper(Xrange_SA_Type, 'cutdeg', 'cutdeg') make_attribute_wrapper(Xrange_SA_Type, 'err', 'err') @lower_builtin(fsx.Xrange_SA, types.Array, types.Integer, types.Array) def impl_xrange_SA_constructor(context, builder, sig, args): typ = sig.return_type coeffs, cutdeg, err = args xrange_SA = cgutils.create_struct_proxy(typ)(context, builder) # We do not copy !! sticking to implementation in python xrange_SA.coeffs = coeffs xrange_SA.cutdeg = cutdeg xrange_SA.err = err return impl_ret_borrowed(context, builder, typ, xrange_SA._getvalue()) @unbox(Xrange_SA_Type) def unbox_xrange_SA(typ, obj, c): """ Convert a fsx.Xrange_polynomial object to a native xrange_polynomial structure. """ coeffs_obj = c.pyapi.object_getattr_string(obj, "coeffs") cutdeg_obj = c.pyapi.object_getattr_string(obj, "cutdeg") err_obj = c.pyapi.object_getattr_string(obj, "err") xrange_sa = cgutils.create_struct_proxy(typ)(c.context, c.builder) xrange_sa.coeffs = c.unbox(typ.coeffs, coeffs_obj).value xrange_sa.cutdeg = c.pyapi.long_as_longlong(cutdeg_obj) xrange_sa.err = c.unbox(typ.err, err_obj).value c.pyapi.decref(coeffs_obj) c.pyapi.decref(cutdeg_obj) c.pyapi.decref(err_obj) is_error = cgutils.is_not_null(c.builder, c.pyapi.err_occurred()) return NativeValue(xrange_sa._getvalue(), is_error=is_error) @box(Xrange_SA_Type) def box_xrange_SA(typ, val, c): """ Convert a native xrange_SA structure to a fsx.Xrange_polynomial object """ xrange_SA = cgutils.create_struct_proxy(typ )(c.context, c.builder, value=val) classobj = c.pyapi.unserialize(c.pyapi.serialize_object( fsx.Xrange_SA)) coeffs_obj = c.box(typ.coeffs, xrange_SA.coeffs) cutdeg_obj = c.pyapi.long_from_longlong(xrange_SA.cutdeg) err_obj = c.box(typ.err, xrange_SA.err) xrange_SA_obj = c.pyapi.call_function_objargs( classobj, (coeffs_obj, cutdeg_obj, err_obj)) c.pyapi.decref(classobj) c.pyapi.decref(coeffs_obj) c.pyapi.decref(cutdeg_obj) c.pyapi.decref(err_obj) return xrange_SA_obj @overload_method(Xrange_SA_Type, 'to_polynomial') def xrange_SA_to_polynomial(sa): """ Convert a xrange_SA to a xrange_polynomial ; err is disregarded """ def impl(sa): return fsx.Xrange_polynomial(sa.coeffs, cutdeg=sa.cutdeg) return impl @overload_method(Xrange_polynomial_Type, 'to_SA') def xrange_polynomial_to_SA(poly): """ Convert a xrange_polynomial to a xrange_SA with err = 0.""" err_template = np.zeros([1], dtype=numpy_xr_type(np.float64)) def impl(poly): return fsx.Xrange_SA(poly.coeffs, cutdeg=poly.cutdeg, err=err_template.copy()) return impl @overload(operator.neg) def sa_neg(op0): """ Copy of a polynomial with sign changed """ if isinstance(op0, Xrange_SA_Type): def impl(op0): # assert op0.coeffs.size == op0.cutdeg + 1 coeffs = op0.coeffs new_coeffs = np.empty_like(op0.coeffs) for i in range(coeffs.size): new_coeffs[i] = - coeffs[i] return fsx.Xrange_SA(new_coeffs, op0.cutdeg, op0.err.copy()) return impl @overload(operator.add) def sa_add(op0, op1): """ Add 2 SA or a SA and a scalar""" if (isinstance(op0, Xrange_SA_Type) and isinstance(op1, Xrange_SA_Type) ): # There is no lowering implementation for a structured dtype ; so # we initiate a template of length 1 for the compilation. base_dtres = np.result_type(op0.np_base_type, op1.np_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) err_template = np.zeros([1], dtype=numpy_xr_type(np.float64)) def impl(op0, op1): assert op0.cutdeg == op1.cutdeg cutdeg = op0.cutdeg coeffs0 = op0.coeffs coeffs1 = op1.coeffs err0 = op0.err err1 = op1.err res_len = min(max(coeffs0.size, coeffs1.size), cutdeg + 1) r01 = min(min(coeffs0.size, coeffs1.size), cutdeg + 1) r0 = min(coeffs0.size, cutdeg + 1) r1 = min(coeffs1.size, cutdeg + 1) new_coeffs = res_template.repeat(res_len) for i in range(r01): new_coeffs[i] = coeffs0[i] + coeffs1[i] for i in range(r01, r0): new_coeffs[i] = coeffs0[i] for i in range(r01, r1): new_coeffs[i] = coeffs1[i] err = err_template.copy() err[0] = err0[0] + err1[0] return fsx.Xrange_SA(new_coeffs, cutdeg, err) return impl elif (isinstance(op0, Xrange_SA_Type) and (op1 in xr_types) ): scalar_base_type = xr_type_to_base_type(op1) base_dtres = np.result_type(op0.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) def impl(op0, op1): res_len = op0.coeffs.size new_coeffs = res_template.repeat(res_len) for i in range(res_len): new_coeffs[i] = op0.coeffs[i] new_coeffs[0] = new_coeffs[0] + op1 return fsx.Xrange_SA(new_coeffs, op0.cutdeg, op0.err.copy()) return impl elif (isinstance(op1, Xrange_SA_Type) and (op0 in xr_types) ): scalar_base_type = xr_type_to_base_type(op0) base_dtres = np.result_type(op1.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) def impl(op0, op1): res_len = op1.coeffs.size new_coeffs = res_template.repeat(res_len) for i in range(res_len): new_coeffs[i] = op1.coeffs[i] new_coeffs[0] = new_coeffs[0] + op0 return fsx.Xrange_SA(new_coeffs, op1.cutdeg, op1.err.copy()) return impl else: print("!!!", op0.__class__, op1.__class__) raise TypingError("sa_add, not a Xrange_SA_Type ({}, {})".format( op0, op1)) @overload(operator.mul) def sa_mul(op0, op1): """ Multiply 2 polynomials or a polynomial and a scalar""" if (isinstance(op0, Xrange_SA_Type) and isinstance(op1, Xrange_SA_Type) ): # There is no lowering implementation for a structured dtype ; so # we initiate a template of length 1 before compilation. base_dtres = np.result_type(op0.np_base_type, op1.np_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) err_template = np.zeros([1], dtype=numpy_xr_type(np.float64)) def impl(op0, op1): assert op0.cutdeg == op1.cutdeg cutdeg = op0.cutdeg coeffs0 = op0.coeffs coeffs1 = op1.coeffs l0 = coeffs0.size l1 = coeffs1.size res_len = min(l0 + l1 - 1, cutdeg + 1) new_coeffs = res_template.repeat(res_len) for i in range(res_len): window_min = max(0, i - l1 + 1) window_max = min(l0 - 1, i) for k in range(window_min, window_max + 1): new_coeffs[i] = new_coeffs[i] + coeffs0[k] * coeffs1[i - k] err0 = op0.err[0] err1 = op1.err[0] # 4 terms to store: err, op_err0, op_err1, err_trunc err = err_template.repeat(4) err_tmp = res_template.copy() # err[0] = err0 * err1 # We will use L2 norm to control truncature error term. # Heuristic based on random walk / magnitude of the sum of iud random # variables # Exact term is : # op_err0 = err0 * np.sum(np.abs(op1)) # op_err1 = err1 * np.sum(np.abs(op0)) # Approximated term : # op_err0 = err0 * np.sqrt(np.sum(op1.abs2())) # op_err1 = err1 * np.sqrt(np.sum(op0.abs2())) # > op_err0 term for i in range(l1): err[1] = err[1] + extended_abs2(coeffs1[i]) err[1] = np.sqrt(err[1]) err[1] = err0 * err[1] # > op_err1 term for i in range(l0): err[2] = err[2] + extended_abs2(coeffs0[i]) err[2] = np.sqrt(err[2]) err[2] = err1 * err[2] # Truncature_term if cutdeg < (l0 + l1 - 2): # compute the missing terms by deg for i in range(res_len, l0 + l1 - 1): window_min = max(0, i - l1 + 1) window_max = min(l0 - 1, i) err_tmp[0] = Xrange_scalar(0., numba.int32(0)) for k in range(window_min, window_max + 1): err_tmp[0] = err_tmp[0] + coeffs0[k] * coeffs1[i - k] err[3] = err[3] + extended_abs2(err_tmp[0]) err[3] = np.sqrt(err[3]) err[0] = (op0.err[0] * op1.err[0]) + err[1] + err[2] + err[3] return fsx.Xrange_SA(new_coeffs, cutdeg, err[0:1]) return impl elif (isinstance(op0, Xrange_SA_Type) and (op1 in xr_types) ): scalar_base_type = xr_type_to_base_type(op1) base_dtres = np.result_type(op0.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) err_template = np.zeros([1], dtype=numpy_xr_type(np.float64)) def impl(op0, op1): res_len = op0.coeffs.size new_coeffs = res_template.repeat(res_len) new_err = err_template.copy() for i in range(res_len): new_coeffs[i] = op0.coeffs[i] * op1 new_err[0] = new_err[0] * np.abs(op1) return fsx.Xrange_SA(new_coeffs, op0.cutdeg, new_err) return impl elif (isinstance(op1, Xrange_SA_Type) and (op0 in xr_types) ): scalar_base_type = xr_type_to_base_type(op0) base_dtres = np.result_type(op1.np_base_type, scalar_base_type) res_dtype = numpy_xr_type(base_dtres) res_template = np.zeros([1], dtype=res_dtype) err_template = np.zeros([1], dtype=numpy_xr_type(np.float64)) def impl(op0, op1): res_len = op1.coeffs.size new_coeffs = res_template.repeat(res_len) new_err = err_template.copy() for i in range(res_len): new_coeffs[i] = op1.coeffs[i] * op0 new_err[0] = new_err[0] * np.abs(op0) return fsx.Xrange_SA(new_coeffs, op1.cutdeg, new_err) return impl else: print("!!!", isinstance(op0, Xrange_SA_Type), isinstance(op1, Xrange_SA_Type)) raise TypingError("sa_add, not a Xrange_SA_Type ({}, {})".format( op0, op1)) # elif (isinstance(op1, Xrange_SA_Type) # and (op0 in xr_types) # ): # scalar_base_type = xr_type_to_base_type(op0) # base_dtres = np.result_type(op1.np_base_type, # scalar_base_type) # res_dtype = numpy_xr_type(base_dtres) # res_template = np.empty([1], dtype=res_dtype) # # def impl(op0, op1): # res_len = op1.coeffs.size # new_coeffs = res_template.repeat(res_len) # for i in range(res_len): # new_coeffs[i] = op0 * op1.coeffs[i] # return fsx.Xrange_polynomial(new_coeffs, op1.cutdeg) # return impl # @staticmethod # def _add(ufunc, inputs, cutdeg, out=None): # """ Add or Subtract 2 Xrange_polynomial """ # op0, op1 = inputs # res_len = min(max(op0.size, op1.size), cutdeg + 1) # op0_len = min(op0.size, res_len) # op1_len = min(op1.size, res_len) # # dtype=np.result_type(op0._mantissa, op1._mantissa) # res = Xrange_array(np.zeros([res_len], dtype=dtype)) # # res[:op0_len] += op0[:op0_len] # if ufunc is np.add: # res[:op1_len] += op1[:op1_len] # elif ufunc is np.subtract: # res[:op1_len] -= op1[:op1_len] # return Xrange_polynomial(res, cutdeg=cutdeg) print("======================================================================") print("IMPORTED NUMBA XR ====================================================") print("======================================================================") #============================================================================== # DEV @numba.njit def test_poly(pol): print("in numba") # print("nb", pol, pol.coeffs.dtype) # pol.coeffs[1] = Xrange_scalar(45678., numba.int32(0)) coeff2 = pol.coeffs.copy() # * Xrange_scalar(2., numba.int32(0)) # print("nb", coeff2) for i in range(len(coeff2)): coeff2[i] = coeff2[i] * coeff2[i] p2 = - fsx.Xrange_polynomial(coeff2, 2) # print("init", p2.cutdeg, p2.coeffs) print("p2 init", p2.cutdeg, p2.coeffs) return p2 @numba.njit def test_poly_call(pol): print("in numba") # print("nb", pol, pol.coeffs.dtype) # pol.coeffs[1] = Xrange_scalar(45678., numba.int32(0)) # coeff2 = pol.coeffs.copy() # * Xrange_scalar(2., numba.int32(0)) ## print("nb", coeff2) # for i in range(len(coeff2)): # coeff2[i] = coeff2[i] * coeff2[i] # p2 = - fsx.Xrange_polynomial(coeff2, 2) ## print("init", p2.cutdeg, p2.coeffs) # print("p2 init", p2.cutdeg, p2.coeffs) return pol.__call__(Xrange_scalar(2., np.int32(0))) @numba.njit def test_polyadd(pol1, pol2): print("in numba") return pol1 + pol2 #@numba.njit #def test_iadd(arr, val): # print("in numba") # for i in range(len(arr)): # arr[i] += val[0] # return arr @numba.njit def test_sa(poly): print("in numba") sa = poly.to_SA() # print("nb", pol, pol.coeffs.dtype) # pol.coeffs[1] = Xrange_scalar(45678., numba.int32(0)) coeff2 = sa.coeffs.copy() # * Xrange_scalar(2., numba.int32(0)) print("coeffs", coeff2) # print("err", sa.err.mantissa, sa.err.exp) return sa @numba.njit def box_add_sa(poly1, poly2): print("in numba") sa1 = poly1.to_SA() sa2 = poly2.to_SA() err = Xrange_scalar(1., numba.int32(1)) print("err###", err.mantissa) sa1.err[0] = err print("err in SA ###", sa1.err) # print("nb", pol, pol.coeffs.dtype) # pol.coeffs[1] = Xrange_scalar(45678., numba.int32(0)) sa_res = sa1 + sa2 # * Xrange_scalar(2., numba.int32(0)) #print("err", sa.err.mantissa, sa.err.exp) return sa_res @numba.njit def test_saadd(sa1, sa2): print("in numba") return sa1 + sa2 if __name__ == "__main__": arr0 = fsx.Xrange_array(["1.e100", "3.14", "2.0"]) #* (1. + 1j) pol0 = fsx.Xrange_polynomial(arr0, 2) arr1 = fsx.Xrange_array(["2.e100", "-3.14", "-0.2"]) #* (1. + 1j) pol1 = fsx.Xrange_polynomial(arr1, 2) res = test_sa(pol0) print("res", res) res = box_add_sa(pol0, pol1) print("res", res) sa0 = fsx.Xrange_SA(arr0, 2, fsx.Xrange_array(8.)) sa1 = fsx.Xrange_SA(arr1, 2, fsx.Xrange_array(8.)) res = test_saadd(sa0, sa1) print("res", res) # print(pol0.coeffs) # print(np.asarray(pol0.coeffs).size) # print(pol0.coeffs.size, pol0.cutdeg + 1) # p_neg = test_poly(pol0) # print("p_neg", p_neg) # arr0 = fsx.Xrange_array(["0.", "1.", "2."]) #* (1. + 1j) # val = fsx.Xrange_array(["1."]) #* (1. + 1j) # test = test_iadd(arr0, val) # print("test", test) # pol0 = fsx.Xrange_polynomial(arr0, 2) # res = test_poly_call(pol0) # print(res.view(fsx.Xrange_array)) # arr1 = fsx.Xrange_array(["1.e100", "3.14", "2.0"]) #* (1. + 1j) # pol1 = fsx.Xrange_polynomial(arr1, 2) # # res = test_polyadd(pol0, pol1) # print("res", res) # # arr0 = fsx.Xrange_array(["1.e100", "3.14", "2.0", "5.0"]) #* (1. + 1j) # pol0 = fsx.Xrange_polynomial(arr0, 3) # arr1 = fsx.Xrange_array(["1.e100", "3.14", "2.0", "6.4"]) #* (1. + 1j) # pol1 = fsx.Xrange_polynomial(arr1, 3) # # res = test_polyadd(pol0, pol1) # print("res", res)
{"hexsha": "0260312053ad51707f9a4c87a35ee2ab53510606", "size": 53333, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/fractalshades/numpy_utils/numba_xr.py", "max_stars_repo_name": "GBillotey/Fractal-shades", "max_stars_repo_head_hexsha": "99c690cb1114ab7edcbfd9836af585fed2b133e8", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-03-06T18:32:51.000Z", "max_stars_repo_stars_event_max_datetime": "2021-07-07T01:35:21.000Z", "max_issues_repo_path": "src/fractalshades/numpy_utils/numba_xr.py", "max_issues_repo_name": "GBillotey/Fractal-shades", "max_issues_repo_head_hexsha": "99c690cb1114ab7edcbfd9836af585fed2b133e8", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/fractalshades/numpy_utils/numba_xr.py", "max_forks_repo_name": "GBillotey/Fractal-shades", "max_forks_repo_head_hexsha": "99c690cb1114ab7edcbfd9836af585fed2b133e8", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.8576364893, "max_line_length": 149, "alphanum_fraction": 0.6092288077, "include": true, "reason": "import numpy,import numba,from numba", "num_tokens": 14500}
(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice fintype. Require Import finfun path matrix. Require Import bigop ssralg poly polydiv ssrnum zmodp div ssrint. Require Import polyorder polyrcf interval polyXY. Require Import qe_rcf_th ordered_qelim mxtens. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GRing.Theory Num.Theory. Local Open Scope nat_scope. Local Open Scope ring_scope. Import ord. Section QF. Variable R : Type. Inductive term : Type := | Var of nat | Const of R | NatConst of nat | Add of term & term | Opp of term | NatMul of term & nat | Mul of term & term | Exp of term & nat. Inductive formula : Type := | Bool of bool | Equal of term & term | Lt of term & term | Le of term & term | And of formula & formula | Or of formula & formula | Implies of formula & formula | Not of formula. Coercion rterm_to_term := fix loop (t : term) : GRing.term R := match t with | Var x => GRing.Var _ x | Const x => GRing.Const x | NatConst n => GRing.NatConst _ n | Add u v => GRing.Add (loop u) (loop v) | Opp u => GRing.Opp (loop u) | NatMul u n => GRing.NatMul (loop u) n | Mul u v => GRing.Mul (loop u) (loop v) | Exp u n => GRing.Exp (loop u) n end. Coercion qfr_to_formula := fix loop (f : formula) : ord.formula R := match f with | Bool b => ord.Bool b | Equal x y => ord.Equal x y | Lt x y => ord.Lt x y | Le x y => ord.Le x y | And f g => ord.And (loop f) (loop g) | Or f g => ord.Or (loop f) (loop g) | Implies f g => ord.Implies (loop f) (loop g) | Not f => ord.Not (loop f) end. Definition to_rterm := fix loop (t : GRing.term R) : term := match t with | GRing.Var x => Var x | GRing.Const x => Const x | GRing.NatConst n => NatConst n | GRing.Add u v => Add (loop u) (loop v) | GRing.Opp u => Opp (loop u) | GRing.NatMul u n => NatMul (loop u) n | GRing.Mul u v => Mul (loop u) (loop v) | GRing.Exp u n => Exp (loop u) n | _ => NatConst 0 end. End QF. Bind Scope qf_scope with term. Bind Scope qf_scope with formula. Arguments Scope Add [_ qf_scope qf_scope]. Arguments Scope Opp [_ qf_scope]. Arguments Scope NatMul [_ qf_scope nat_scope]. Arguments Scope Mul [_ qf_scope qf_scope]. Arguments Scope Mul [_ qf_scope qf_scope]. Arguments Scope Exp [_ qf_scope nat_scope]. Arguments Scope Equal [_ qf_scope qf_scope]. Arguments Scope And [_ qf_scope qf_scope]. Arguments Scope Or [_ qf_scope qf_scope]. Arguments Scope Implies [_ qf_scope qf_scope]. Arguments Scope Not [_ qf_scope]. Implicit Arguments Bool [R]. Prenex Implicits Const Add Opp NatMul Mul Exp Bool Unit And Or Implies Not Lt. Prenex Implicits to_rterm. Notation True := (Bool true). Notation False := (Bool false). Delimit Scope qf_scope with qfT. Notation "''X_' i" := (Var _ i) : qf_scope. Notation "n %:R" := (NatConst _ n) : qf_scope. Notation "x %:T" := (Const x) : qf_scope. Notation "0" := 0%:R%qfT : qf_scope. Notation "1" := 1%:R%qfT : qf_scope. Infix "+" := Add : qf_scope. Notation "- t" := (Opp t) : qf_scope. Notation "t - u" := (Add t (- u)) : qf_scope. Infix "*" := Mul : qf_scope. Infix "*+" := NatMul : qf_scope. Infix "^+" := Exp : qf_scope. Notation "t ^- n" := (t^-1 ^+ n)%qfT : qf_scope. Infix "==" := Equal : qf_scope. Infix "<%" := Lt : qf_scope. Infix "<=%" := Le : qf_scope. Infix "/\" := And : qf_scope. Infix "\/" := Or : qf_scope. Infix "==>" := Implies : qf_scope. Notation "~ f" := (Not f) : qf_scope. Notation "x != y" := (Not (x == y)) : qf_scope. Section evaluation. Variable R : realDomainType. Fixpoint eval (e : seq R) (t : term R) {struct t} : R := match t with | ('X_i)%qfT => e`_i | (x%:T)%qfT => x | (n%:R)%qfT => n%:R | (t1 + t2)%qfT => eval e t1 + eval e t2 | (- t1)%qfT => - eval e t1 | (t1 *+ n)%qfT => eval e t1 *+ n | (t1 * t2)%qfT => eval e t1 * eval e t2 | (t1 ^+ n)%qfT => eval e t1 ^+ n end. Lemma evalE (e : seq R) (t : term R) : eval e t = GRing.eval e t. Proof. by elim: t=> /=; do ?[move->|move=>?]. Qed. Definition qf_eval e := fix loop (f : formula R) : bool := match f with | Bool b => b | t1 == t2 => (eval e t1 == eval e t2)%bool | t1 <% t2 => (eval e t1 < eval e t2)%bool | t1 <=% t2 => (eval e t1 <= eval e t2)%bool | f1 /\ f2 => loop f1 && loop f2 | f1 \/ f2 => loop f1 || loop f2 | f1 ==> f2 => (loop f1 ==> loop f2)%bool | ~ f1 => ~~ loop f1 end%qfT. Lemma qf_evalE (e : seq R) (f : formula R) : qf_eval e f = ord.qf_eval e f. Proof. by elim: f=> /=; do ?[rewrite evalE|move->|move=>?]. Qed. Lemma to_rtermE (t : GRing.term R) : GRing.rterm t -> to_rterm t = t :> GRing.term _. Proof. elim: t=> //=; do ? [ by move=> u hu v hv /andP[ru rv]; rewrite hu ?hv | by move=> u hu *; rewrite hu]. Qed. End evaluation. Import Pdiv.Ring. Definition bind_def T1 T2 T3 (f : (T1 -> T2) -> T3) (k : T1 -> T2) := f k. Notation "'bind' x <- y ; z" := (bind_def y (fun x => z)) (at level 99, x at level 0, y at level 0, format "'[hv' 'bind' x <- y ; '/' z ']'"). Section ProjDef. Variable F : realFieldType. Notation fF := (formula F). Notation tF := (term F). Definition polyF := seq tF. Lemma qf_formF (f : fF) : qf_form f. Proof. by elim: f=> // *; apply/andP; split. Qed. Lemma rtermF (t : tF) : GRing.rterm t. Proof. by elim: t=> //=; do ?[move->|move=>?]. Qed. Lemma rformulaF (f : fF) : rformula f. Proof. by elim: f=> /=; do ?[rewrite rtermF|move->|move=>?]. Qed. Section If. Implicit Types (pf tf ef : formula F). Definition If pf tf ef := (pf /\ tf \/ ~ pf /\ ef)%qfT. End If. Notation "'If' c1 'Then' c2 'Else' c3" := (If c1 c2 c3) (at level 200, right associativity, format "'[hv ' 'If' c1 '/' '[' 'Then' c2 ']' '/' '[' 'Else' c3 ']' ']'"). Notation cps T := ((T -> fF) -> fF). Section Pick. Variables (I : finType) (pred_f then_f : I -> fF) (else_f : fF). Definition Pick := \big[Or/False]_(p : {ffun pred I}) ((\big[And/True]_i (if p i then pred_f i else ~ pred_f i)) /\ (if pick p is Some i then then_f i else else_f))%qfT. Lemma eval_Pick e (qev := qf_eval e) : let P i := qev (pred_f i) in qev Pick = (if pick P is Some i then qev (then_f i) else qev else_f). Proof. move=> P; rewrite ((big_morph qev) false orb) //= big_orE /=. apply/existsP/idP=> [[p] | true_at_P]. rewrite ((big_morph qev) true andb) //= big_andE /=. case/andP=> /forallP eq_p_P. rewrite (@eq_pick _ _ P) => [|i]; first by case: pick. by move/(_ i): eq_p_P => /=; case: (p i) => //=; move/negbTE. exists [ffun i => P i] => /=; apply/andP; split. rewrite ((big_morph qev) true andb) //= big_andE /=. by apply/forallP=> i; rewrite /= ffunE; case Pi: (P i) => //=; apply: negbT. rewrite (@eq_pick _ _ P) => [|i]; first by case: pick true_at_P. by rewrite ffunE. Qed. End Pick. Fixpoint eval_poly (e : seq F) pf := if pf is c :: qf then (eval_poly e qf) * 'X + (eval e c)%:P else 0. Lemma eval_polyP e p : eval_poly e p = Poly (map (eval e) p). Proof. by elim: p=> // a p /= ->; rewrite cons_poly_def. Qed. Fixpoint Size (p : polyF) : cps nat := fun k => if p is c :: q then bind n <- Size q; if n is m.+1 then k m.+2 else If c == 0 Then k 0%N Else k 1%N else k 0%N. Definition Isnull (p : polyF) : cps bool := fun k => bind n <- Size p; k (n == 0%N). Definition LtSize (p q : polyF) : cps bool := fun k => bind n <- Size p; bind m <- Size q; k (n < m)%N. Fixpoint LeadCoef p : cps tF := fun k => if p is c :: q then bind l <- LeadCoef q; If l == 0 Then k c Else k l else k (Const 0). Fixpoint AmulXn (a : tF) (n : nat) : polyF:= if n is n'.+1 then (Const 0) :: (AmulXn a n') else [::a]. Fixpoint AddPoly (p q : polyF) := if p is a::p' then if q is b::q' then (a + b)%qfT :: (AddPoly p' q') else p else q. Local Infix "++" := AddPoly : qf_scope. Definition ScalPoly (c : tF) (p : polyF) : polyF := map (Mul c) p. Local Infix "*:" := ScalPoly : qf_scope. Fixpoint MulPoly (p q : polyF) := if p is a :: p' then (a *: q ++ (0 :: (MulPoly p' q)))%qfT else [::]. Local Infix "**" := MulPoly (at level 40) : qf_scope. Lemma map_poly0 (R R' : ringType) (f : R -> R') : map_poly f 0 = 0. Proof. by rewrite map_polyE polyseq0. Qed. Definition ExpPoly p n := iterop n MulPoly p [::1%qfT]. Local Infix "^^+" := ExpPoly (at level 29) : qf_scope. Definition OppPoly := ScalPoly (@Const F (-1)). Local Notation "-- p" := (OppPoly p) (at level 35) : qf_scope. Local Notation "p -- q" := (p ++ (-- q))%qfT (at level 50) : qf_scope. Definition NatMulPoly n := ScalPoly (NatConst F n). Local Infix "+**" := NatMulPoly (at level 40) : qf_scope. Fixpoint Horner (p : polyF) (x : tF) : tF := if p is a :: p then (Horner p x * x + a)%qfT else 0%qfT. Fixpoint Deriv (p : polyF) : polyF := if p is a :: q then (q ++ (0 :: Deriv q))%qfT else [::]. Fixpoint Rediv_rec_loop (q : polyF) sq cq (c : nat) (qq r : polyF) (n : nat) {struct n} : cps (nat * polyF * polyF) := fun k => bind sr <- Size r; if (sr < sq)%N then k (c, qq, r) else bind lr <- LeadCoef r; let m := AmulXn lr (sr - sq) in let qq1 := (qq ** [::cq] ++ m)%qfT in let r1 := (r ** [::cq] -- m ** q)%qfT in if n is n1.+1 then Rediv_rec_loop q sq cq c.+1 qq1 r1 n1 k else k (c.+1, qq1, r1). Definition Rediv (p : polyF) (q : polyF) : cps (nat * polyF * polyF) := fun k => bind b <- Isnull q; if b then k (0%N, [::Const 0], p) else bind sq <- Size q; bind sp <- Size p; bind lq <- LeadCoef q; Rediv_rec_loop q sq lq 0 [::Const 0] p sp k. Definition Rmod (p : polyF) (q : polyF) (k : polyF -> fF) : fF := Rediv p q (fun d => k d.2)%PAIR. Definition Rdiv (p : polyF) (q : polyF) (k : polyF -> fF) : fF := Rediv p q (fun d => k d.1.2)%PAIR. Definition Rscal (p : polyF) (q : polyF) (k : nat -> fF) : fF := Rediv p q (fun d => k d.1.1)%PAIR. Definition Rdvd (p : polyF) (q : polyF) (k : bool -> fF) : fF := bind r <- Rmod p q; bind r_null <- Isnull r; k r_null. Fixpoint rgcdp_loop n (pp qq : {poly F}) {struct n} := if rmodp pp qq == 0 then qq else if n is n1.+1 then rgcdp_loop n1 qq (rmodp pp qq) else rmodp pp qq. Fixpoint Rgcd_loop n pp qq k {struct n} := bind r <- Rmod pp qq; bind b <- Isnull r; if b then (k qq) else if n is n1.+1 then Rgcd_loop n1 qq r k else k r. Definition Rgcd (p : polyF) (q : polyF) : cps polyF := fun k => let aux p1 q1 k := (bind b <- Isnull p1; if b then k q1 else bind n <- Size p1; Rgcd_loop n p1 q1 k) in bind b <- LtSize p q; if b then aux q p k else aux p q k. Fixpoint BigRgcd (ps : seq polyF) : cps (seq tF) := fun k => if ps is p :: pr then bind r <- BigRgcd pr; Rgcd p r k else k [::Const 0]. Fixpoint Changes (s : seq tF) : cps nat := fun k => if s is a :: q then bind v <- Changes q; If (Lt (a * head 0 q) 0)%qfT Then k (1 + v)%N Else k v else k 0%N. Fixpoint SeqPInfty (ps : seq polyF) : cps (seq tF) := fun k => if ps is p :: ps then bind lp <- LeadCoef p; bind lps <- SeqPInfty ps; k (lp :: lps) else k [::]. Fixpoint SeqMInfty (ps : seq polyF) : cps (seq tF) := fun k => if ps is p :: ps then bind lp <- LeadCoef p; bind sp <- Size p; bind lps <- SeqMInfty ps; k ((-1)%:T ^+ (~~ odd sp) * lp :: lps)%qfT else k [::]. Definition ChangesPoly ps : cps int := fun k => bind mps <- SeqMInfty ps; bind pps <- SeqPInfty ps; bind vm <- Changes mps; bind vp <- Changes pps; k (vm%:Z - vp%:Z). Definition NextMod (p q : polyF) : cps polyF := fun k => bind lq <- LeadCoef q; bind spq <- Rscal p q; bind rpq <- Rmod p q; k (- lq ^+ spq *: rpq)%qfT. Fixpoint ModsAux (p q : polyF) n : cps (seq polyF) := fun k => if n is m.+1 then bind p_eq0 <- Isnull p; if p_eq0 then k [::] else bind npq <- NextMod p q; bind ps <- ModsAux q npq m; k (p :: ps) else k [::]. Definition Mods (p q : polyF) : cps (seq polyF) := fun k => bind sp <- Size p; bind sq <- Size q; ModsAux p q (maxn sp sq.+1) k. Definition PolyComb (sq : seq polyF) (sc : seq int) := reducebig [::1%qfT] (iota 0 (size sq)) (fun i => BigBody i MulPoly true (nth [::] sq i ^^+ comb_exp sc`_i)%qfT). Definition Pcq sq i := (nth [::] (map (PolyComb sq) (sg_tab (size sq))) i). Definition TaqR (p : polyF) (q : polyF) : cps int := fun k => bind r <- Mods p (Deriv p ** q)%qfT; ChangesPoly r k. Definition TaqsR (p : polyF) (sq : seq polyF) (i : nat) : cps tF := fun k => bind n <- TaqR p (Pcq sq i); k ((n%:~R) %:T)%qfT. Fixpoint ProdPoly T (s : seq T) (f : T -> cps polyF) : cps polyF := fun k => if s is a :: s then bind fa <- f a; bind fs <- ProdPoly s f; k (fa ** fs)%qfT else k [::1%qfT]. Definition BoundingPoly (sq : seq polyF) : polyF := Deriv (reducebig [::1%qfT] sq (fun i => BigBody i MulPoly true i)). Definition Coefs (n i : nat) : tF := Const (match n with | 0 => (i == 0%N)%:R | 1 => [:: 2%:R^-1; 2%:R^-1; 0]`_i | n => coefs _ n i end). Definition CcountWeak (p : polyF) (sq : seq polyF) : cps tF := fun k => let fix aux s (i : nat) k := if i is i'.+1 then bind x <- TaqsR p sq i'; aux (x * (Coefs (size sq) i') + s)%qfT i' k else k s in aux 0%qfT (3 ^ size sq)%N k. Definition CcountGt0 (sp sq : seq polyF) : fF := bind p <- BigRgcd sp; bind p0 <- Isnull p; if ~~ p0 then bind c <- CcountWeak p sq; Lt 0%qfT c else let bq := BoundingPoly sq in bind cw <- CcountWeak bq sq; ((reducebig True sq (fun q => BigBody q And true (LeadCoef q (fun lq => Lt 0 lq)))) \/ ((reducebig True sq (fun q => BigBody q And true (bind sq <- Size q; bind lq <- LeadCoef q; Lt 0 ((Opp 1) ^+ (sq).-1 * lq) ))) \/ Lt 0 cw))%qfT. Fixpoint abstrX (i : nat) (t : tF) : polyF := (match t with | 'X_n => if n == i then [::0; 1] else [::t] | - x => -- abstrX i x | x + y => abstrX i x ++ abstrX i y | x * y => abstrX i x ** abstrX i y | x *+ n => n +** abstrX i x | x ^+ n => abstrX i x ^^+ n | _ => [::t] end)%qfT. Definition wproj (n : nat) (s : seq (GRing.term F) * seq (GRing.term F)) : formula F := let sp := map (abstrX n \o to_rterm) s.1%PAIR in let sq := map (abstrX n \o to_rterm) s.2%PAIR in CcountGt0 sp sq. Definition rcf_sat := proj_sat wproj. End ProjDef. Section ProjCorrect. Variable F : rcfType. Implicit Types (e : seq F). Notation fF := (formula F). Notation tF := (term F). Notation polyF := (polyF F). Notation "'If' c1 'Then' c2 'Else' c3" := (If c1 c2 c3) (at level 200, right associativity, format "'[hv ' 'If' c1 '/' '[' 'Then' c2 ']' '/' '[' 'Else' c3 ']' ']'"). Notation cps T := ((T -> fF) -> fF). Local Infix "**" := MulPoly (at level 40) : qf_scope. Local Infix "+**" := NatMulPoly (at level 40) : qf_scope. Local Notation "-- p" := (OppPoly p) (at level 35) : qf_scope. Local Notation "p -- q" := (p ++ (-- q))%qfT (at level 50) : qf_scope. Local Infix "^^+" := ExpPoly (at level 29) : qf_scope. Local Infix "**" := MulPoly (at level 40) : qf_scope. Local Infix "*:" := ScalPoly : qf_scope. Local Infix "++" := AddPoly : qf_scope. Lemma eval_If e pf tf ef (ev := qf_eval e) : ev (If pf Then tf Else ef) = (if ev pf then ev tf else ev ef). Proof. by unlock (If _ Then _ Else _)=> /=; case: ifP => _; rewrite ?orbF. Qed. Lemma eval_Size k p e : qf_eval e (Size p k) = qf_eval e (k (size (eval_poly e p))). Proof. elim: p e k=> [|c p ihp] e k; first by rewrite size_poly0. rewrite ihp /= size_MXaddC -size_poly_eq0; case: size=> //. by rewrite eval_If /=; case: (_ == _). Qed. Lemma eval_Isnull k p e : qf_eval e (Isnull p k) = qf_eval e (k (eval_poly e p == 0)). Proof. by rewrite eval_Size size_poly_eq0. Qed. Lemma eval_LeadCoef e p k k' : (forall x, qf_eval e (k x) = (k' (eval e x))) -> qf_eval e (LeadCoef p k) = k' (lead_coef (eval_poly e p)). Proof. move=> Pk; elim: p k k' Pk=> [|a p ihp] k k' Pk //=. by rewrite lead_coef0 Pk. rewrite (ihp _ (fun l => if l == 0 then qf_eval e (k a) else (k' l))); last first. by move=> x; rewrite eval_If /= !Pk. rewrite lead_coef_eq0; have [->|p_neq0] := altP (_ =P 0). by rewrite mul0r add0r lead_coefC. rewrite lead_coefDl ?lead_coefMX ?size_mulX // ltnS size_polyC. by rewrite (leq_trans (leq_b1 _)) // size_poly_gt0. Qed. Implicit Arguments eval_LeadCoef [e p k]. Prenex Implicits eval_LeadCoef. Lemma eval_AmulXn a n e : eval_poly e (AmulXn a n) = (eval e a)%:P * 'X^n. Proof. elim: n=> [|n] /=; first by rewrite expr0 mulr1 mul0r add0r. by move->; rewrite addr0 -mulrA -exprSr. Qed. Lemma eval_AddPoly p q e : eval_poly e (p ++ q)%qfT = (eval_poly e p) + (eval_poly e q). Proof. elim: p q => [|a p Hp] q /=; first by rewrite add0r. case: q => [|b q] /=; first by rewrite addr0. by rewrite Hp mulrDl rmorphD /= !addrA [X in _ = X + _]addrAC. Qed. Lemma eval_ScalPoly e t p : eval_poly e (ScalPoly t p) = (eval e t) *: (eval_poly e p). Proof. elim: p=> [|a p ihp] /=; first by rewrite scaler0. by rewrite ihp scalerDr scalerAl -!mul_polyC rmorphM. Qed. Lemma eval_MulPoly e p q : eval_poly e (p ** q)%qfT = (eval_poly e p) * (eval_poly e q). Proof. elim: p q=> [|a p Hp] q /=; first by rewrite mul0r. rewrite eval_AddPoly /= eval_ScalPoly Hp. by rewrite addr0 mulrDl addrC mulrAC mul_polyC. Qed. Lemma eval_ExpPoly e p n : eval_poly e (p ^^+ n)%qfT = (eval_poly e p) ^+ n. Proof. case: n=> [|n]; first by rewrite /= expr0 mul0r add0r. rewrite /ExpPoly iteropS exprSr; elim: n=> [|n ihn] //=. by rewrite expr0 mul1r. by rewrite eval_MulPoly ihn exprS mulrA. Qed. Lemma eval_NatMulPoly p n e : eval_poly e (n +** p)%qfT = (eval_poly e p) *+ n. Proof. elim: p; rewrite //= ?mul0rn // => c p ->. rewrite mulrnDl mulr_natl polyC_muln; congr (_+_). by rewrite -mulr_natl mulrAC -mulrA mulr_natl mulrC. Qed. Lemma eval_OppPoly p e : eval_poly e (-- p)%qfT = - eval_poly e p. Proof. elim: p; rewrite //= ?oppr0 // => t ts ->. by rewrite !mulNr !opprD polyC_opp mul1r. Qed. Lemma eval_Horner e p x : eval e (Horner p x) = (eval_poly e p).[eval e x]. Proof. by elim: p => /= [|a p ihp]; rewrite !(horner0, hornerE) // ihp. Qed. Lemma eval_ConstPoly e c : eval_poly e [::c] = (eval e c)%:P. Proof. by rewrite /= mul0r add0r. Qed. Lemma eval_Deriv e p : eval_poly e (Deriv p) = (eval_poly e p)^`(). Proof. elim: p=> [|a p ihp] /=; first by rewrite deriv0. by rewrite eval_AddPoly /= addr0 ihp !derivE. Qed. Definition eval_OpPoly := (eval_MulPoly, eval_AmulXn, eval_AddPoly, eval_OppPoly, eval_NatMulPoly, eval_ConstPoly, eval_Horner, eval_ExpPoly, eval_Deriv, eval_ScalPoly). Lemma eval_Changes e s k : qf_eval e (Changes s k) = qf_eval e (k (changes (map (eval e) s))). Proof. elim: s k=> //= a q ihq k; rewrite ihq eval_If /= -nth0. by case: q {ihq}=> /= [|b q]; [rewrite /= mulr0 ltrr add0n | case: ltrP]. Qed. Lemma eval_SeqPInfty e ps k k' : (forall xs, qf_eval e (k xs) = k' (map (eval e) xs)) -> qf_eval e (SeqPInfty ps k) = k' (map lead_coef (map (eval_poly e) ps)). Proof. elim: ps k k' => [|p ps ihps] k k' Pk /=; first by rewrite Pk. rewrite (eval_LeadCoef (fun lp => k' (lp :: [seq lead_coef i |i <- [seq eval_poly e i | i <- ps]]))) => // lp. rewrite (ihps _ (fun ps => k' (eval e lp :: ps))) => //= lps. by rewrite Pk. Qed. Implicit Arguments eval_SeqPInfty [e ps k]. Prenex Implicits eval_SeqPInfty. Lemma eval_SeqMInfty e ps k k' : (forall xs, qf_eval e (k xs) = k' (map (eval e) xs)) -> qf_eval e (SeqMInfty ps k) = k' (map (fun p : {poly F} => (-1) ^+ (~~ odd (size p)) * lead_coef p) (map (eval_poly e) ps)). Proof. elim: ps k k' => [|p ps ihps] k k' Pk /=; first by rewrite Pk. rewrite (eval_LeadCoef (fun lp => k' ((-1) ^+ (~~ odd (size (eval_poly e p))) * lp :: [seq (-1) ^+ (~~ odd (size p)) * lead_coef p | p : {poly _} <- [seq eval_poly e i | i <- ps]]))) => // lp. rewrite eval_Size /= (ihps _ (fun ps => k' (((-1) ^+ (~~ odd (size (eval_poly e p))) * eval e lp) :: ps))) => //= lps. by rewrite Pk. Qed. Implicit Arguments eval_SeqMInfty [e ps k]. Prenex Implicits eval_SeqMInfty. Lemma eval_ChangesPoly e ps k : qf_eval e (ChangesPoly ps k) = qf_eval e (k (changes_poly (map (eval_poly e) ps))). Proof. rewrite (eval_SeqMInfty (fun mps => qf_eval e (k ((changes mps)%:Z - (changes_pinfty [seq eval_poly e i | i <- ps])%:Z)))) => // mps. rewrite (eval_SeqPInfty (fun pps => qf_eval e (k ((changes (map (eval e) mps))%:Z - (changes pps)%:Z)))) => // pps. by rewrite !eval_Changes. Qed. Fixpoint redivp_rec_loop (q : {poly F}) sq cq (k : nat) (qq r : {poly F})(n : nat) {struct n} := if (size r < sq)%N then (k, qq, r) else let m := (lead_coef r) *: 'X^(size r - sq) in let qq1 := qq * cq%:P + m in let r1 := r * cq%:P - m * q in if n is n1.+1 then redivp_rec_loop q sq cq k.+1 qq1 r1 n1 else (k.+1, qq1, r1). Lemma redivp_rec_loopP q c qq r n : redivp_rec q c qq r n = redivp_rec_loop q (size q) (lead_coef q) c qq r n. Proof. by elim: n c qq r => [| n Pn] c qq r //=; rewrite Pn. Qed. Lemma eval_Rediv_rec_loop e q sq cq c qq r n k k' (d := redivp_rec_loop (eval_poly e q) sq (eval e cq) c (eval_poly e qq) (eval_poly e r) n) : (forall c qq r, qf_eval e (k (c, qq, r)) = k' (c, eval_poly e qq, eval_poly e r)) -> qf_eval e (Rediv_rec_loop q sq cq c qq r n k) = k' d. Proof. move=> Pk; elim: n c qq r k Pk @d=> [|n ihn] c qq r k Pk /=. rewrite eval_Size /=; have [//=|gtq] := ltnP. rewrite (eval_LeadCoef (fun lr => let m := lr *: 'X^(size (eval_poly e r) - sq) in let qq1 := (eval_poly e qq) * (eval e cq)%:P + m in let r1 := (eval_poly e r) * (eval e cq)%:P - m * (eval_poly e q) in k' (c.+1, qq1, r1))) //. by move=> x /=; rewrite Pk /= !eval_OpPoly /= !mul_polyC. rewrite eval_Size /=; have [//=|gtq] := ltnP. rewrite (eval_LeadCoef (fun lr => let m := lr *: 'X^(size (eval_poly e r) - sq) in let qq1 := (eval_poly e qq) * (eval e cq)%:P + m in let r1 := (eval_poly e r) * (eval e cq)%:P - m * (eval_poly e q) in k' (redivp_rec_loop (eval_poly e q) sq (eval e cq) c.+1 qq1 r1 n))) //=. by move=> x; rewrite ihn // !eval_OpPoly /= !mul_polyC. Qed. Implicit Arguments eval_Rediv_rec_loop [e q sq cq c qq r n k]. Prenex Implicits eval_Rediv_rec_loop. Lemma eval_Rediv e p q k k' (d := (redivp (eval_poly e p) (eval_poly e q))) : (forall c qq r, qf_eval e (k (c, qq, r)) = k' (c, eval_poly e qq, eval_poly e r)) -> qf_eval e (Rediv p q k) = k' d. Proof. move=> Pk; rewrite eval_Isnull /d unlock. have [_|p_neq0] /= := boolP (_ == _); first by rewrite Pk /= mul0r add0r. rewrite !eval_Size; set p' := eval_poly e p; set q' := eval_poly e q. rewrite (eval_LeadCoef (fun lq => k' (redivp_rec_loop q' (size q') lq 0 0 p' (size p')))) /=; last first. by move=> x; rewrite (eval_Rediv_rec_loop k') //= mul0r add0r. by rewrite redivp_rec_loopP. Qed. Implicit Arguments eval_Rediv [e p q k]. Prenex Implicits eval_Rediv. Lemma eval_NextMod e p q k k' : (forall p, qf_eval e (k p) = k' (eval_poly e p)) -> qf_eval e (NextMod p q k) = k' (next_mod (eval_poly e p) (eval_poly e q)). Proof. move=> Pk; set p' := eval_poly e p; set q' := eval_poly e q. rewrite (eval_LeadCoef (fun lq => k' (- lq ^+ rscalp p' q' *: rmodp p' q'))) => // lq. rewrite (eval_Rediv (fun spq => k' (- eval e lq ^+ spq.1.1%PAIR *: rmodp p' q'))) => //= spq _ _. rewrite (eval_Rediv (fun mpq => k' (- eval e lq ^+ spq *: mpq.2%PAIR))) => //= _ _ mpq. by rewrite Pk !eval_OpPoly. Qed. Implicit Arguments eval_NextMod [e p q k]. Prenex Implicits eval_NextMod. Lemma eval_Rgcd_loop e n p q k k' : (forall p, qf_eval e (k p) = k' (eval_poly e p)) -> qf_eval e (Rgcd_loop n p q k) = k' (rgcdp_loop n (eval_poly e p) (eval_poly e q)). Proof. elim: n p q k k'=> [|n ihn] p q k k' Pk /=. rewrite (eval_Rediv (fun r => if r.2%PAIR == 0 then k' (eval_poly e q) else k' r.2%PAIR)) /=. by case: eqP. by move=> _ _ r; rewrite eval_Isnull; case: eqP. pose q' := eval_poly e q. rewrite (eval_Rediv (fun r => if r.2%PAIR == 0 then k' q' else k' (rgcdp_loop n q' r.2%PAIR))) /=. by case: eqP. move=> _ _ r; rewrite eval_Isnull; case: eqP; first by rewrite Pk. by rewrite (ihn _ _ _ k'). Qed. Lemma eval_Rgcd e p q k k' : (forall p, qf_eval e (k p) = k' (eval_poly e p)) -> qf_eval e (Rgcd p q k) = k' (rgcdp (eval_poly e p) (eval_poly e q)). Proof. move=> Pk; rewrite /Rgcd /LtSize !eval_Size /rgcdp. case: ltnP=> _; rewrite !eval_Isnull; case: eqP=> // _; by rewrite eval_Size; apply: eval_Rgcd_loop. Qed. Lemma eval_BigRgcd e ps k k' : (forall p, qf_eval e (k p) = k' (eval_poly e p)) -> qf_eval e (BigRgcd ps k) = k' (\big[@rgcdp _/0%:P]_(i <- ps) (eval_poly e i)). Proof. elim: ps k k'=> [|p sp ihsp] k k' Pk /=. by rewrite big_nil Pk /= mul0r add0r. rewrite big_cons (ihsp _ (fun r => k' (rgcdp (eval_poly e p) r))) //. by move=> r; apply: eval_Rgcd. Qed. Implicit Arguments eval_Rgcd [e p q k]. Prenex Implicits eval_Rgcd. Fixpoint mods_aux (p q : {poly F}) (n : nat) : seq {poly F} := if n is m.+1 then if p == 0 then [::] else p :: (mods_aux q (next_mod p q) m) else [::]. Lemma eval_ModsAux e p q n k k' : (forall sp, qf_eval e (k sp) = k' (map (eval_poly e) sp)) -> qf_eval e (ModsAux p q n k) = k' (mods_aux (eval_poly e p) (eval_poly e q) n). Proof. elim: n p q k k'=> [|n ihn] p q k k' Pk; first by rewrite /= Pk. rewrite /= eval_Isnull; have [|ep_neq0] := altP (_ =P _); first by rewrite Pk. set q' := eval_poly e q; set p' := eval_poly e p. rewrite (eval_NextMod (fun npq => k' (p' :: mods_aux q' npq n))) => // npq. by rewrite (ihn _ _ _ (fun ps => k' (p' :: ps))) => // ps; rewrite Pk. Qed. Implicit Arguments eval_ModsAux [e p q n k]. Prenex Implicits eval_ModsAux. Lemma eval_Mods e p q k k' : (forall sp, qf_eval e (k sp) = k' (map (eval_poly e) sp)) -> qf_eval e (Mods p q k) = k' (mods (eval_poly e p) (eval_poly e q)). Proof. by move=> Pk; rewrite !eval_Size; apply: eval_ModsAux. Qed. Implicit Arguments eval_Mods [e p q k]. Prenex Implicits eval_Mods. Lemma eval_TaqR e p q k : qf_eval e (TaqR p q k) = qf_eval e (k (taqR (eval_poly e p) (eval_poly e q))). Proof. rewrite (eval_Mods (fun r => qf_eval e (k (changes_poly r)))). by rewrite !eval_OpPoly. by move=> sp; rewrite !eval_ChangesPoly. Qed. Lemma eval_PolyComb e sq sc : eval_poly e (PolyComb sq sc) = poly_comb (map (eval_poly e) sq) sc. Proof. rewrite /PolyComb /poly_comb size_map. rewrite -BigOp.bigopE -val_enum_ord -filter_index_enum !big_map. apply: (big_ind2 (fun u v => eval_poly e u = v)). + by rewrite /= mul0r add0r. + by move=> x x' y y'; rewrite eval_MulPoly=> -> ->. by move=> i _; rewrite eval_ExpPoly /= (nth_map [::]). Qed. Definition pcq (sq : seq {poly F}) i := (map (poly_comb sq) (sg_tab (size sq)))`_i. Lemma eval_Pcq e sq i : eval_poly e (Pcq sq i) = pcq (map (eval_poly e) sq) i. Proof. rewrite /Pcq /pcq size_map; move: (sg_tab _)=> s. have [ge_is|lt_is] := leqP (size s) i. by rewrite !nth_default ?size_map // /=. rewrite -(nth_map _ 0) ?size_map //; congr _`_i; rewrite -map_comp. by apply: eq_map=> x /=; rewrite eval_PolyComb. Qed. Lemma eval_TaqsR e p sq i k k' : (forall x, qf_eval e (k x) = k' (eval e x)) -> qf_eval e (TaqsR p sq i k) = k' (taqsR (eval_poly e p) (map (eval_poly e) sq) i). Proof. by move=> Pk; rewrite /TaqsR /taqsR eval_TaqR Pk /= eval_Pcq. Qed. Implicit Arguments eval_TaqsR [e p sq i k]. Prenex Implicits eval_TaqsR. Fact invmx_ctmat1 : invmx (map_mx (intr : int -> F) ctmat1) = \matrix_(i, j) (nth [::] [:: [:: 2%:R^-1; - 2%:R^-1; 0]; [:: 2%:R^-1; 2%:R^-1; -1]; [:: 0; 0; 1]] i)`_j :> 'M[F]_3. Proof. rewrite -[lhs in lhs = _]mul1r; apply: (canLR (mulrK _)). exact: ctmat1_unit. symmetry; rewrite /ctmat1. apply/matrixP => i j; rewrite !(big_ord_recl, big_ord0, mxE) /=. have halfP (K : numFieldType) : 2%:R^-1 + 2%:R^-1 = 1 :> K. by rewrite -mulr2n -[_ *+ 2]mulr_natl mulfV // pnatr_eq0. move: i; do ?[case => //=]; move: j; do ?[case => //=] => _ _; rewrite !(mulr1, mul1r, mulrN1, mulN1r, mulr0, mul0r, opprK); by rewrite !(addr0, add0r, oppr0, subrr, addrA, halfP). Qed. Lemma eval_Coefs e n i : eval e (Coefs F n i) = coefs F n i. Proof. case: n => [|[|n]] //=; rewrite /coefs /=. case: i => [|i]; last first. by rewrite nth_default // size_map size_enum_ord expn0. rewrite (nth_map 0) ?size_enum_ord //. set O := _`_0; rewrite (_ : O = ord0). by rewrite ?castmxE ?cast_ord_id map_mx1 invmx1 mxE. by apply: val_inj => /=; rewrite nth_enum_ord. have [lt_i3|le_3i] := ltnP i 3; last first. by rewrite !nth_default // size_map size_enum_ord. rewrite /ctmat /= ?ntensmx1 invmx_ctmat1 /=. rewrite (nth_map 0) ?size_enum_ord // castmxE /=. rewrite !mxE !cast_ord_id //= nth_enum_ord //=. by move: i lt_i3; do 3?case. Qed. Lemma eval_CcountWeak e p sq k k' : (forall x, qf_eval e (k x) = k' (eval e x)) -> qf_eval e (CcountWeak p sq k) = k' (ccount_weak (eval_poly e p) (map (eval_poly e) sq)). Proof. move=> Pk; rewrite /CcountWeak /ccount_weak. set Aux := (fix Aux s i k := match i with 0 => _ | _ => _ end). set aux := (fix aux s i := match i with 0 => _ | _ => _ end). rewrite size_map -[0]/(eval e 0%qfT); move: 0%qfT=> x. elim: (_ ^ _)%N k k' Pk x=> /= [|n ihn] k k' Pk x. by rewrite Pk. rewrite (eval_TaqsR (fun y => k' (aux (y * (coefs F (size sq) n) + eval e x) n))). by rewrite size_map. by move=> y; rewrite (ihn _ k') // -(eval_Coefs e). Qed. Implicit Arguments eval_CcountWeak [e p sq k]. Prenex Implicits eval_CcountWeak. Lemma eval_ProdPoly e T s f k f' k' : (forall x k k', (forall p, (qf_eval e (k p) = k' (eval_poly e p))) -> qf_eval e (f x k) = k' (f' x)) -> (forall p, qf_eval e (k p) = k' (eval_poly e p)) -> qf_eval e (@ProdPoly _ T s f k) = k' (\prod_(x <- s) f' x). Proof. move=> Pf; elim: s k k'=> [|a s ihs] k k' Pk /=. by rewrite big_nil Pk /= !(mul0r, add0r). rewrite (Pf _ _ (fun fa => k' (fa * \prod_(x <- s) f' x))). by rewrite big_cons. move=> fa; rewrite (ihs _ (fun fs => k' (eval_poly e fa * fs))) //. by move=> fs; rewrite Pk eval_OpPoly. Qed. Implicit Arguments eval_ProdPoly [e T s f k]. Prenex Implicits eval_ProdPoly. Lemma eval_BoundingPoly e sq : eval_poly e (BoundingPoly sq) = bounding_poly (map (eval_poly e) sq). Proof. rewrite eval_Deriv -BigOp.bigopE; congr _^`(); rewrite big_map. by apply: big_morph => [p q | ]/=; rewrite ?eval_MulPoly // mul0r add0r. Qed. Lemma eval_CcountGt0 e sp sq : qf_eval e (CcountGt0 sp sq) = ccount_gt0 (map (eval_poly e) sp) (map (eval_poly e) sq). Proof. pose sq' := map (eval_poly e) sq; rewrite /ccount_gt0. rewrite (@eval_BigRgcd _ _ _ (fun p => if p != 0 then 0 < ccount_weak p sq' else let bq := bounding_poly sq' in [|| \big[andb/true]_(q <- sq') (0 < lead_coef q), \big[andb/true]_(q <- sq') (0 < (-1) ^+ (size q).-1 * lead_coef q) | 0 < ccount_weak bq sq'])). by rewrite !big_map. move=> p; rewrite eval_Isnull; case: eqP=> _ /=; last first. by rewrite (eval_CcountWeak (> 0)). rewrite (eval_CcountWeak (fun n => [|| \big[andb/true]_(q <- sq') (0 < lead_coef q), \big[andb/true]_(q <- sq') (0 < (-1) ^+ (size q).-1 * lead_coef q) | 0 < n ])). by rewrite eval_BoundingPoly. move=> n /=; rewrite -!BigOp.bigopE !big_map; congr [|| _, _| _]. apply: (big_ind2 (fun u v => qf_eval e u = v))=> //=. by move=> u v u' v' -> ->. by move=> i _; rewrite (eval_LeadCoef (> 0)). apply: (big_ind2 (fun u v => qf_eval e u = v))=> //=. by move=> u v u' v' -> ->. by move=> i _; rewrite eval_Size (eval_LeadCoef (fun lq => (0 < (-1) ^+ (size (eval_poly e i)).-1 * lq))). Qed. Lemma abstrXP e i t x : (eval_poly e (abstrX i t)).[x] = eval (set_nth 0 e i x) t. Proof. elim: t. - move=> n /=; case ni: (_ == _); rewrite //= ?(mul0r,add0r,addr0,polyC1,mul1r,hornerX,hornerC); by rewrite // nth_set_nth /= ni. - by move=> r; rewrite /= mul0r add0r hornerC. - by move=> r; rewrite /= mul0r add0r hornerC. - by move=> t tP s sP; rewrite /= eval_AddPoly hornerD tP ?sP. - by move=> t tP; rewrite /= eval_OppPoly hornerN tP. - by move=> t tP n; rewrite /= eval_NatMulPoly hornerMn tP. - by move=> t tP s sP; rewrite /= eval_MulPoly hornerM tP ?sP. - by move=> t tP n; rewrite /= eval_ExpPoly horner_exp tP. Qed. Lemma wf_QE_wproj i bc (bc_i := @wproj F i bc) : dnf_rterm (w_to_oclause bc) -> qf_form bc_i && rformula bc_i. Proof. case: bc @bc_i=> sp sq /=; rewrite /dnf_rterm /= /wproj andbT=> /andP[rsp rsq]. by rewrite qf_formF rformulaF. Qed. Lemma valid_QE_wproj i bc (bc' := w_to_oclause bc) (ex_i_bc := ('exists 'X_i, odnf_to_oform [:: bc'])%oT) e : dnf_rterm bc' -> reflect (holds e ex_i_bc) (ord.qf_eval e (wproj i bc)). Proof. case: bc @bc' @ex_i_bc=> sp sq /=; rewrite /dnf_rterm /wproj /= andbT. move=> /andP[rsp rsq]; rewrite -qf_evalE. rewrite eval_CcountGt0 /=; apply: (equivP (ccount_gt0P _ _)). set P1 := (fun x => _); set P2 := (fun x => _). suff: forall x, P1 x <-> P2 x. by move=> hP; split=> [] [x Px]; exists x; rewrite (hP, =^~ hP). move=> x; rewrite /P1 /P2 {P1 P2} !big_map !(big_seq_cond xpredT) /=. rewrite (eq_bigr (fun t => GRing.eval (set_nth 0 e i x) t == 0)); last first. by move=> t /andP[t_in_sp _]; rewrite abstrXP evalE to_rtermE ?(allP rsp). rewrite [X in _ && X](eq_bigr (fun t => 0 < GRing.eval (set_nth 0 e i x) t)); last by move=> t /andP[tsq _]; rewrite abstrXP evalE to_rtermE ?(allP rsq). rewrite -!big_seq_cond !(rwP (qf_evalP _ _)); first last. + elim: sp rsp => //= p sp ihsp /andP[rp rsp]; first by rewrite ihsp. + elim: sq rsq => //= q sq ihsq /andP[rq rsq]; first by rewrite ihsq. rewrite !(rwP andP) (rwP orP) orbF !andbT /=. have unfoldr P s : foldr (fun t => ord.And (P t)) ord.True s = \big[ord.And/ord.True]_(t <- s) P t by rewrite unlock /reducebig. rewrite !unfoldr; set e' := set_nth _ _ _ _. by rewrite !(@big_morph _ _ (ord.qf_eval _) true andb). Qed. Lemma rcf_satP e f : reflect (holds e f) (rcf_sat e f). Proof. exact: (proj_satP wf_QE_wproj valid_QE_wproj). Qed. End ProjCorrect. (* Section Example. *) (* no chances it computes *) (* Require Import rat. *) (* Eval vm_compute in (54%:R / 289%:R + 2%:R^-1 :rat). *) (* Local Open Scope qf_scope. *) (* Notation polyF := (polyF [realFieldType of rat]). *) (* Definition p : polyF := [::'X_2; 'X_1; 'X_0]. *) (* Definition q : polyF := [:: 0; 1]. *) (* Definition sq := [::q]. *) (* Eval vm_compute in MulPoly p q. *) (* Eval vm_compute in Rediv ([:: 1] : polyF) [::1]. *) (* Definition fpq := Eval vm_compute in (CcountWeak p [::q]). *) (* End Example. *)
{"author": "math-comp", "repo": "mathcomp-history-before-github", "sha": "19ef9415e2b509a2327f9ef704268ce8570b607c", "save_path": "github-repos/coq/math-comp-mathcomp-history-before-github", "path": "github-repos/coq/math-comp-mathcomp-history-before-github/mathcomp-history-before-github-19ef9415e2b509a2327f9ef704268ce8570b607c/attic/theories/qe_rcf.v"}
import cv2 import os import numpy as np import faceRecognition as fr import xlrd #This module takes images stored in diskand performs face recognition test_img=cv2.imread('TestImages/a.jpg')#test_img path faces_detected,gray_img=fr.faceDetection(test_img) print("faces_detected:",faces_detected) #Comment belows lines when running this program second time.Since it saves training.yml file in directory #faces,faceID=fr.labels_for_training_data('/home/rahul/FaceRecognition-master/trainingImages') #face_recognizer=fr.train_classifier(faces,faceID) #face_recognizer.save('trainingData.yml') #face_recognizer=cv2.face.LBPHFaceRecognizer_create() face_recognizer = cv2.face_LBPHFaceRecognizer().create() #face_recognizer = cv2.createLBPHFaceRecognizer() #Uncomment below line for subsequent runs face_recognizer.read('trainingData.yml')#use this to load training data for subsequent runs wb = xlrd.open_workbook("db.xls") xl_sheet = wb.sheet_by_index(0) name = dict() for i in range(xl_sheet.nrows): name[int(xl_sheet.cell(i, 0).value)] = xl_sheet.cell(i, 1).value #name={0:"a",1:"b",2:"c",3:"d",4:"e",5:"f",6:"g",7:"h"}#creating dictionary containing names for each label for face in faces_detected: (x,y,w,h)=face roi_gray=gray_img[y:y+h,x:x+h] label,confidence=face_recognizer.predict(roi_gray)#predicting the label of given image print("confidence:",confidence) print("label:",label) fr.draw_rect(test_img,face) predicted_name=name[label] fr.put_text(test_img,predicted_name,x,y) resized_img=cv2.resize(test_img,(300,700)) cv2.imshow("face dtecetion tutorial",resized_img) cv2.waitKey(0)#Waits indefinitely until a key is pressed cv2.destroyAllWindows()
{"hexsha": "da832066f308cbc93327b8978d9a42955bb79fdb", "size": 1702, "ext": "py", "lang": "Python", "max_stars_repo_path": "tester.py", "max_stars_repo_name": "tarungarg2207/Advance-Security-System", "max_stars_repo_head_hexsha": "fb7f624855ee880e26079b4f09f91d187cc4c79b", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tester.py", "max_issues_repo_name": "tarungarg2207/Advance-Security-System", "max_issues_repo_head_hexsha": "fb7f624855ee880e26079b4f09f91d187cc4c79b", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tester.py", "max_forks_repo_name": "tarungarg2207/Advance-Security-System", "max_forks_repo_head_hexsha": "fb7f624855ee880e26079b4f09f91d187cc4c79b", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.4583333333, "max_line_length": 107, "alphanum_fraction": 0.7761457109, "include": true, "reason": "import numpy", "num_tokens": 460}
import tensorflow as tf import numpy as np import deepirl.utils.vizualization as v import time w = 512 h = 512 batch_size = 1024 noise_dim = 32 layers = 10 num_hidden = 64 stddev = 1.0 use_color = False position_scale = 1.2 activation = tf.nn.tanh def get_pos(x: int, y: int, w: int, h: int): x = position_scale * (float(x) - w // 2) / w y = position_scale * (float(y) - h // 2) / h return [x, y, np.sqrt(np.square(x) + np.square(y))] inputs = tf.placeholder(tf.float32, (None, noise_dim + 3, )) x = inputs for i in range(layers): x = tf.layers.dense(x, num_hidden, activation=activation, kernel_initializer=tf.initializers.random_normal(stddev=stddev)) x = tf.exp(x) if use_color: x = tf.layers.dense(x, 3, activation=tf.nn.sigmoid) else: x = tf.reshape(tf.layers.dense(x, 1, activation=tf.nn.sigmoid), [-1]) out = x if use_color: image = np.zeros((h, w, 3), dtype=np.float32) else: image = np.zeros((h, w), dtype=np.float32) wnd = v.Window(w, h) image_drawer = v.ImageDrawer(v.Rect(0, 0, wnd.width, wnd.height)) wnd.add_drawer(image_drawer) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) while True: z = np.random.standard_normal((noise_dim,)) * 10.0 z_batch = np.zeros((batch_size, noise_dim), np.float32) z_batch[:] = z pos_batch = np.zeros((batch_size, 3), np.float32) x_batch = np.zeros((batch_size,), np.uint16) y_batch = np.zeros((batch_size,), np.uint16) idx = 0 for i in range(h): for j in range(w): pos_batch[idx] = get_pos(j, i, w, h) x_batch[idx] = i y_batch[idx] = j idx += 1 if idx >= batch_size: values = sess.run(out, feed_dict={inputs: np.concatenate((z_batch, pos_batch), axis=1)}) for ii, jj, val in zip(x_batch, y_batch, values): image[ii, jj] = val image_drawer.img = image wnd.draw() idx = 0 wnd.draw() time.sleep(2.0)
{"hexsha": "06735e8c49b41b54aaf8e2e5dfd4ef202f543f1d", "size": 2115, "ext": "py", "lang": "Python", "max_stars_repo_path": "deepirl/playground/drawer.py", "max_stars_repo_name": "bshishov/DeepIRL", "max_stars_repo_head_hexsha": "5f02499b364a960bd54d0741282cccf1582cd5d0", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2018-11-28T18:41:57.000Z", "max_stars_repo_stars_event_max_datetime": "2020-09-15T07:52:12.000Z", "max_issues_repo_path": "deepirl/playground/drawer.py", "max_issues_repo_name": "bshishov/DeepIRL", "max_issues_repo_head_hexsha": "5f02499b364a960bd54d0741282cccf1582cd5d0", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "deepirl/playground/drawer.py", "max_forks_repo_name": "bshishov/DeepIRL", "max_forks_repo_head_hexsha": "5f02499b364a960bd54d0741282cccf1582cd5d0", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 28.5810810811, "max_line_length": 126, "alphanum_fraction": 0.5829787234, "include": true, "reason": "import numpy", "num_tokens": 595}
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 18 14:27:27 2019 @author: avelinojaver """ import math import random from pathlib import Path import numpy as np import cv2 from torch.utils.data import Dataset #%% class MergeFlow(Dataset): def __init__(self, ch1_dir = None, ch2_dir = None, img_ext = '.tif', samples_per_epoch = 2000, roi_size = 96, zoom_range = (0.75, 1.5), int_factor_range = (0.2, 1.2), int_base_range = (0., 0.1), patch_scale = True, min_mix_frac = 0.3, scale_int = (0, 255), loc_sigma = 1.5, is_scaled_output = False, is_clipped_output = False, is_preloaded = False, add_inverse = False, shuffle_ch2_color = False ): self.ch1_dir = Path(ch1_dir) self.ch2_dir = Path(ch2_dir) self.samples_per_epoch = samples_per_epoch self.roi_size = roi_size self.roi_padding = math.ceil(roi_size*(math.sqrt(2)-1)/2) self.padded_roi_size = self.roi_size + 2*self.roi_padding self.zoom_range = zoom_range self.int_factor_range = int_factor_range self.int_base_range = int_base_range self.patch_scale = patch_scale self.scale_int = scale_int self.loc_sigma = loc_sigma assert min_mix_frac is None or min_mix_frac <= 0.5 self.min_mix_frac = min_mix_frac self.is_scaled_output = is_scaled_output self.is_clipped_output = is_clipped_output self.add_inverse = add_inverse self.shuffle_ch2_color = shuffle_ch2_color self.is_preloaded = is_preloaded #print(self.ch1_dir) #print(self.ch2_dir) self.ch1_files = [x for x in self.ch1_dir.rglob('*' + img_ext) if not x.name.startswith('.')] self.ch2_files = [x for x in self.ch2_dir.rglob('*' + img_ext) if not x.name.startswith('.')] if self.is_preloaded: self.ch1_files = [cv2.imread(str(x), -1).astype(np.float32) for x in self.ch1_files] self.ch2_files = [cv2.imread(str(x), -1).astype(np.float32) for x in self.ch2_files] def __len__(self): return self.samples_per_epoch def __getitem__(self, ind): ch1_img = self._read_sample(self.ch1_files) ch2_img = self._read_sample(self.ch2_files) if self.shuffle_ch2_color: rand_factor = 0.3*np.random.random_sample(3) + 0.7 rand_factor = rand_factor.astype(np.float32) ch_l = [0,1,2] random.shuffle(ch_l) ch2_img = ch2_img[ch_l, ...]*rand_factor[:, None, None] int_factor = random.uniform(*self.int_factor_range) int_base = random.uniform(*self.int_base_range) ch1_img *= int_factor ch1_img += int_base ch2_img *= int_factor ch2_img += int_base if self.min_mix_frac is not None: mix_factor = random.uniform(self.min_mix_frac, 1 - self.min_mix_frac) A, B = mix_factor*ch1_img, (1 - mix_factor)*ch2_img else: A, B = ch1_img, ch2_img if self.add_inverse: # 1 - ((1-A) + (1-B)) Xin = A + B - 1 else: Xin = A + B if self.is_scaled_output: Xout = np.concatenate((ch1_img, ch2_img), axis=0) else: Xout = np.concatenate((A, B), axis=0) if self.is_clipped_output: Xout = np.clip(Xout, 0, 1) Xin = np.clip(Xin, 0, 1) return Xin, Xout def _read_sample(self, _files): if not self.is_preloaded: _file = random.choice(_files) img = cv2.imread(str(_file), -1) img = img.astype(np.float32) else: img = random.choice(_files) img = self._crop_augment(img) if img.ndim == 3: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if self.patch_scale: bot, top = img.min(), img.max() if bot < top: img_n = (img.astype(np.float32) - bot)/(top - bot) else: #image everything equal, nothing to do here...min_mix_frac img_n = np.zeros(img.shape, np.float32) else: img_n = (img.astype(np.float32) - self.scale_int[0])/(self.scale_int[1] - self.scale_int[0]) if img_n.ndim == 2: img_n = img_n[None] else: img_n = np.rollaxis(img_n, 2, 0) return img_n def _crop_augment(self, img): #### select the limits allowed for a random crop xlims = (self.roi_padding, img.shape[1] - self.roi_size - self.roi_padding - 1) ylims = (self.roi_padding, img.shape[0] - self.roi_size - self.roi_padding - 1) #### crop with padding in order to keep a valid rotation xl = random.randint(*xlims) - self.roi_padding yl = random.randint(*ylims) - self.roi_padding yr = yl + self.padded_roi_size xr = xl + self.padded_roi_size crop_padded = img[yl:yr, xl:xr] if crop_padded.shape[:2] != (self.padded_roi_size, self.padded_roi_size): #import pdb #pdb.set_trace() raise ValueError(f'Incorrect crop size {crop_padded.shape[:2]}. This needs to be debugged.') ##### rotate theta = np.random.uniform(-180, 180) scaling = 1/np.random.uniform(*self.zoom_range) cols, rows = crop_padded.shape[0], crop_padded.shape[1] M = cv2.getRotationMatrix2D((rows/2,cols/2), theta, scaling) translation_matrix = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) M = np.dot(M, translation_matrix) crop_rotated = cv2.warpAffine(crop_padded, M, (rows, cols), borderMode = cv2.BORDER_REFLECT_101) ##### remove padding crop_out = crop_rotated[self.roi_padding:-self.roi_padding, self.roi_padding:-self.roi_padding] ##### flips if random.random() > 0.5: crop_out = crop_out[::-1] if random.random() > 0.5: crop_out = crop_out[:, ::-1] return crop_out #%% if __name__ == '__main__': import matplotlib.pylab as plt root_dir = '/Users/avelinojaver/OneDrive - Nexus365/heba/WoundHealing/manually_filtered/' root_dir = Path(root_dir) flow_args = dict( ch1_dir = root_dir / 'nuclei', ch2_dir = root_dir / 'membrane', img_ext = '.tif', patch_scale = True ) root_dir = Path.home() / 'workspace/denoising/data/inked_slides' flow_args = dict( ch1_dir = root_dir / 'clean', ch2_dir = root_dir / 'ink', img_ext = '.jpg', roi_size = 512, int_factor_range = (0.8, 1.2), int_base_range = (0., 0.05), min_mix_frac = None, patch_scale = False, is_scaled_output = True, is_clipped_output = True, shuffle_ch2_color = False, add_inverse = True ) gen = MergeFlow(**flow_args, is_preloaded = False) # for _ in range(1000): # X, target = gen[0] # assert not np.isnan(X).any() # assert not np.isnan(target).any() # for ii, (X,Y) in enumerate(gen): fig, axs = plt.subplots(1, 3, sharex=True, sharey=True) if Y.shape[0] == 6: y = np.rollaxis(Y, 0, 3) x = np.rollaxis(X, 0, 3) axs[0].imshow(x, vmin = 0., vmax = 1.) axs[1].imshow(y[..., :3], vmin = 0., vmax = 1.) axs[2].imshow(y[..., 3:], vmin = 0., vmax = 1.) else: axs[0].imshow(X[0], vmin = 0., vmax = 1.) axs[1].imshow(Y[0], vmin = 0., vmax = 1.) axs[2].imshow(Y[1], vmin = 0., vmax = 1.) axs[0].set_title('Ch1 + Ch2') axs[1].set_title('Ch1') axs[2].set_title('Ch2') if ii > 3: break
{"hexsha": "867b82f89cc56feff947a3848617e36a15e3d1b7", "size": 8643, "ext": "py", "lang": "Python", "max_stars_repo_path": "cell_localization/flow/_old/flow_merged.py", "max_stars_repo_name": "ver228/cell_localization", "max_stars_repo_head_hexsha": "9739afc7a54f730056945c0a6380896747235099", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-08-10T08:24:23.000Z", "max_stars_repo_stars_event_max_datetime": "2021-08-10T08:24:23.000Z", "max_issues_repo_path": "cell_localization/flow/_old/flow_merged.py", "max_issues_repo_name": "ver228/cell_localization", "max_issues_repo_head_hexsha": "9739afc7a54f730056945c0a6380896747235099", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "cell_localization/flow/_old/flow_merged.py", "max_forks_repo_name": "ver228/cell_localization", "max_forks_repo_head_hexsha": "9739afc7a54f730056945c0a6380896747235099", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.25, "max_line_length": 104, "alphanum_fraction": 0.5178757376, "include": true, "reason": "import numpy", "num_tokens": 2231}
"""Define the types of Game of Life (GoL) initial conditions""" import numpy as np def loaf(): """Create the canvas with the initial values of the loaf""" canvas = np.zeros(shape=(6, 6), dtype=int, order='F') # make the loaf canvas[1][2] = 1 canvas[1][3] = 1 canvas[2][4] = 1 canvas[3][4] = 1 canvas[2][1] = 1 canvas[3][2] = 1 canvas[4][3] = 1 return canvas def beacon(): """Create the canvas with the initial values of the beacon""" canvas = np.zeros(shape=(6, 6), dtype=int, order='F') # make the beacon canvas[1][1] = 1 canvas[1][2] = 1 canvas[2][1] = 1 canvas[4][4] = 1 canvas[3][4] = 1 canvas[4][3] = 1 return canvas def glider(): """Create the canvas with the initial values of the glider""" canvas = np.zeros(shape=(10, 10), dtype=int, order='F') # make the glider canvas[2][3] = 1 canvas[3][3] = 1 canvas[4][3] = 1 canvas[4][2] = 1 canvas[3][1] = 1 return canvas def eater_glider(): """Create the canvas with the initial values of eater and glider""" canvas = np.zeros(shape=(10, 10), dtype=int, order='F') # make the glider canvas[1][6] = 1 canvas[2][5] = 1 canvas[3][5] = 1 canvas[3][6] = 1 canvas[3][7] = 1 # now the eater... canvas[5][3] = 1 canvas[5][4] = 1 canvas[6][4] = 1 canvas[7][1] = 1 canvas[7][2] = 1 canvas[7][3] = 1 canvas[8][1] = 1 return canvas
{"hexsha": "ae55c1828f7dc0edaa6ca5521de4d5ea9970bdaf", "size": 1467, "ext": "py", "lang": "Python", "max_stars_repo_path": "PSet1/P4/classes/types.py", "max_stars_repo_name": "alpha-leo/ComputationalPhysics-Fall2020", "max_stars_repo_head_hexsha": "737769d4a046b4ecea885cafeaf26e26075f7320", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-08-10T14:33:35.000Z", "max_stars_repo_stars_event_max_datetime": "2021-08-10T14:33:35.000Z", "max_issues_repo_path": "PSet1/P4/classes/types.py", "max_issues_repo_name": "alpha-leo/ComputationalPhysics-Fall2020", "max_issues_repo_head_hexsha": "737769d4a046b4ecea885cafeaf26e26075f7320", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "PSet1/P4/classes/types.py", "max_forks_repo_name": "alpha-leo/ComputationalPhysics-Fall2020", "max_forks_repo_head_hexsha": "737769d4a046b4ecea885cafeaf26e26075f7320", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 23.2857142857, "max_line_length": 71, "alphanum_fraction": 0.5501022495, "include": true, "reason": "import numpy", "num_tokens": 544}
"""Dynamic Object Models AgentDoubleInt2D : Double Integrator Model in 2D state: x,y,xdot,ydot AgentSE2 : SE2 Model state x,y,theta Agent2DFixedPath : Model with a pre-defined path Agent_InfoPlanner : Model from the InfoPlanner repository SE2Dynamics : update dynamics function with a control input -- linear, angular velocities SEDynamicsVel : update dynamics function for contant linear and angular velocities """ import numpy as np from envs.target_tracking.metadata import * import envs.env_utils as util # import pyInfoGathering as IGL class Agent(object): def __init__(self, dim, sampling_period, limit, collision_func, margin=MARGIN): self.dim = dim self.sampling_period = sampling_period self.limit = limit self.collision_func = collision_func self.margin = margin def range_check(self): self.state = np.clip(self.state, self.limit[0], self.limit[1]) def collision_check(self, pos): return self.collision_func(pos[:2]) def margin_check(self, pos, target_pos): return np.sqrt(np.sum((pos - target_pos)**2)) < self.margin # no update def reset(self, init_state): self.state = init_state class AgentDoubleInt2D(Agent): def __init__(self, dim, sampling_period, limit, collision_func, margin=MARGIN, A=None, W=None): Agent.__init__(self, dim, sampling_period, limit, collision_func, margin=margin) self.A = np.eye(self.dim) if A is None else A self.W = W def update(self, margin_pos=None): new_state = np.matmul(self.A, self.state) if self.W is not None: noise_sample = np.random.multivariate_normal(np.zeros(self.dim,), self.W) new_state += noise_sample if self.collision_check(new_state[:2]): new_state = self.collision_control(new_state) self.state = new_state def collision_control(self, new_state): new_state[0] = self.state[0] new_state[1] = self.state[1] if self.dim > 2: new_state[2] = -2 * .2 * new_state[2] + np.random.normal(0.0, 0.2)#-0.001*np.sign(new_state[2]) new_state[3] = -2 * .2 * new_state[3] + np.random.normal(0.0, 0.2)#-0.001*np.sign(new_state[3]) return new_state class AgentSE2(Agent): def __init__(self, dim, sampling_period, limit, collision_func, margin=MARGIN, policy=None): Agent.__init__(self, dim, sampling_period, limit, collision_func, margin=margin) self.policy = policy def update(self, control_input=None, margin_pos=None, col=False): """ control_input : [linear_velocity, angular_velocity] margin_pos : a minimum distance to a target """ if control_input is None: control_input = self.policy.get_control(self.state) new_state = SE2Dynamics(self.state, self.sampling_period, control_input) is_col = 0 if self.collision_check(new_state[:2]): is_col = 1 new_state[:2] = self.state[:2] if self.policy is not None: self.policy.collision(new_state) elif margin_pos is not None: if type(margin_pos) != list: margin_pos = [margin_pos] for mp in margin_pos: if self.margin_check(new_state[:2], margin_pos): new_state[:2] = self.state[:2] break self.state = new_state self.range_check() return is_col def SE2Dynamics(x, dt, u): assert(len(x)==3) tw = dt * u[1] # Update the agent state if abs(tw) < 0.001: diff = np.array([dt*u[0]*np.cos(x[2]+tw/2), dt*u[0]*np.sin(x[2]+tw/2), tw]) else: diff = np.array([u[0]/u[1]*(np.sin(x[2]+tw) - np.sin(x[2])), u[0]/u[1]*(np.cos(x[2]) - np.cos(x[2]+tw)), tw]) new_x = x + diff new_x[2] = util.wrap_around(new_x[2]) return new_x def SE2DynamicsVel(x, dt, u=None): assert(len(x)==5) # x = [x,y,theta,v,w] odom = SE2Dynamics(x[:3], dt, x[-2:]) return np.concatenate((odom, x[-2:])) class Agent2DFixedPath(Agent): def __init__(self, dim, sampling_period, limit, collision_func, path, margin=MARGIN): Agent.__init__(self, dim, sampling_period, limit, collision_func, margin=margin) self.path = path def update(self, margin_pos=None): # fixed policy for now self.t += 1 self.state = np.concatenate((self.path[self.t][:2], self.path[self.t][-2:])) def reset(self, init_state): self.t = 0 self.state = np.concatenate((self.path[self.t][:2], self.path[self.t][-2:])) class Agent_InfoPlanner(Agent): def __init__(self, dim, sampling_period, limit, collision_func, se2_env, sensor_obj, margin=MARGIN): Agent.__init__(self, dim, sampling_period, limit, collision_func, margin=margin) self.se2_env = se2_env self.sensor = sensor_obj self.sampling_period = sampling_period self.action_map = {} for (i,v) in enumerate([3,2,1,0]): for (j,w) in enumerate([np.pi/2, 0, -np.pi/2]): self.action_map[3*i+j] = (v,w) def reset(self, init_state, belief_target): self.agent = IGL.Robot(init_state, self.se2_env, belief_target, self.sensor) self.state = self.get_state() return self.state def update(self, action, target_state): action = self.update_filter(action, target_state) self.agent.applyControl([int(action)], 1) self.state = self.get_state() def get_state(self): return np.concatenate((self.agent.getState().position[:2], [self.agent.getState().getYaw()])) def get_state_object(self): return self.agent.getState() def observation(self, target_obj): return self.agent.sensor.senseMultiple(self.get_state_object(), target_obj) def get_belief_state(self): return self.agent.tmm.getTargetState() def get_belief_cov(self): return self.agent.tmm.getCovarianceMatrix() def update_belief(self, GaussianBelief): self.agent.tmm.updateBelief(GaussianBelief.mean, GaussianBelief.cov) def update_filter(self, action, target_state): state = self.get_state() control_input = self.action_map[action] tw = self.sampling_period*control_input[1] # Update the agent state if abs(tw) < 0.001: diff = np.array([self.sampling_period*control_input[0]*np.cos(state[2]+tw/2), self.sampling_period*control_input[0]*np.sin(state[2]+tw/2), tw]) else: diff = np.array([control_input[0]/control_input[1]*(np.sin(state[2]+tw) - np.sin(state[2])), control_input[0]/control_input[1]*(np.cos(state[2]) - np.cos(state[2]+tw)), tw]) new_state = state + diff if len(target_state.shape)==1: target_state = [target_state] target_col = False for n in range(target_state.shape[0]): # For each target target_col = np.sqrt(np.sum((new_state[:2] - target_state[n][:2])**2)) < MARGIN if target_col: break if self.collision_check(new_state) or target_col: # no update new_action = 9 + action%3 else: new_action = action return new_action
{"hexsha": "f977292d970601aa72d787228869263388aa850c", "size": 7534, "ext": "py", "lang": "Python", "max_stars_repo_path": "python/ray/rllib/RL/envs/target_tracking/agent_models.py", "max_stars_repo_name": "christopher-hsu/ray", "max_stars_repo_head_hexsha": "abe84b596253411607a91b3a44c135f5e9ac6ac7", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2019-07-08T15:29:25.000Z", "max_stars_repo_stars_event_max_datetime": "2019-07-08T15:29:25.000Z", "max_issues_repo_path": "python/ray/rllib/RL/envs/target_tracking/agent_models.py", "max_issues_repo_name": "christopher-hsu/ray", "max_issues_repo_head_hexsha": "abe84b596253411607a91b3a44c135f5e9ac6ac7", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "python/ray/rllib/RL/envs/target_tracking/agent_models.py", "max_forks_repo_name": "christopher-hsu/ray", "max_forks_repo_head_hexsha": "abe84b596253411607a91b3a44c135f5e9ac6ac7", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.2211538462, "max_line_length": 107, "alphanum_fraction": 0.6104327051, "include": true, "reason": "import numpy", "num_tokens": 1897}
import sys sys.path.append('..') import numpy as np from truefalsepython import fast_sample random_arr = np.random.random(100) random_probs = random_arr/random_arr.sum() %timeit np.random.choice(random_arr, 1, p = random_probs) # 72.9 µs ± 7.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit fast_sample(random_arr, probs = random_probs) # 31.4 µs ± 404 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
{"hexsha": "b92efe78fe34edb3c12ee7ec35ce5026ad701d15", "size": 443, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/fast_sample.py", "max_stars_repo_name": "PasaOpasen/true-false-python", "max_stars_repo_head_hexsha": "a26ddd7c61471dd4d60d8ece00c6f03750bb7dca", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-01-16T18:46:45.000Z", "max_stars_repo_stars_event_max_datetime": "2021-01-16T18:46:45.000Z", "max_issues_repo_path": "tests/fast_sample.py", "max_issues_repo_name": "PasaOpasen/true-false-python", "max_issues_repo_head_hexsha": "a26ddd7c61471dd4d60d8ece00c6f03750bb7dca", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tests/fast_sample.py", "max_forks_repo_name": "PasaOpasen/true-false-python", "max_forks_repo_head_hexsha": "a26ddd7c61471dd4d60d8ece00c6f03750bb7dca", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 21.0952380952, "max_line_length": 75, "alphanum_fraction": 0.7200902935, "include": true, "reason": "import numpy", "num_tokens": 136}
from flask import Flask, request, render_template, Markup, url_for import cPickle as pickle import json import socket import requests import pandas as pd import numpy as np import pymongo as mdb import operator app = Flask(__name__) # helper function @app.context_processor def add_vars_to_context(): return dict(site_title="Amazon Feature Extractor") # home page @app.route('/') def index(): return render_template('index.html', page_title="Home") # search results page @app.route('/search', methods=['GET', 'POST']) def search(): # create index coll.create_index([("title", "text")]) # setup query query=request.form['queryText'] # get search results search_results = coll.find({'$text':{'$search':query}}, {'score': {'$meta': 'textScore'}}) # sort results search_results.sort([('score', {'$meta': 'textScore'})]).limit(15) # collect results results = [result for result in search_results] # extract output results_html = "" for result in results: title = result["title"] asin = result["asin"] # get avg rating sum_ratings = sum([result["ratings"][key]*int(key) for key in result["ratings"]]) count_ratings = sum([result["ratings"][key] for key in result["ratings"]]) avg_rating = sum_ratings * 1.0 / count_ratings # get star image path rating_rounded = int(round(avg_rating * 2) * 5) fname = 'images/stars_{}.svg'.format(rating_rounded) star_path = url_for('static', filename=fname) #create html url = url_for("product", asin=asin) html = '<div class="search-result">' html += '<span class="result-title"><a href={}>{}</a></span>'.format(url, title) html += '<img class="stars" src="{}" />'.format(star_path) html += '<span class="avg-rating">{}</span></div>'.format(round(avg_rating, 2)) results_html += html return render_template('search.html', page_title="Search Results", results=Markup(results_html) ) # product page @app.route('/product/<string:asin>') def product(asin): # setup vars product = coll.find_one({'asin':asin}) title = product["title"] # get avg rating sum_ratings = sum([product["ratings"][key]*int(key) for key in product["ratings"]]) count_ratings = sum([product["ratings"][key] for key in product["ratings"]]) avg_rating = round(sum_ratings * 1.0 / count_ratings, 2) # get star image path rating_rounded = int(round(avg_rating * 2) * 5) fname = 'images/stars_{}.svg'.format(rating_rounded) star_path = url_for('static', filename=fname) # build html for avg_ratings avg_rating_html = '<img class="stars" src="{}" /><div class="avg-rating">{}</div>'.format(star_path, avg_rating) # build html for ratings distribution dist_bars_html = "" dist_bar_html = '<div class="bar-row"><span class="rating">{}</span>' \ + '<span class="bar"><span class="fill" style="width:{}%;"></span></span>' \ + '<span class="count">{}%</span></div>' """ # 5 star dist for rating in reversed(range(1,6)): count = product["ratings"].get(str(rating), 0) bar_width = round(count * 100.0 / count_ratings, 1) dist_bars_html += dist_bar_html.format(rating, bar_width, bar_width) """ # pos neg dist rating_types = {"+": (5,4), "-": (2,1)} for rating_type in rating_types: ratings = rating_types[rating_type] count = product["ratings"].get(str(ratings[0]), 0) count += product["ratings"].get(str(ratings[1]), 0) bar_width = round(count * 100.0 / count_ratings, 1) dist_bars_html += dist_bar_html.format(rating_type, bar_width, bar_width) # add dist bars html ratings_dist_html = '<div class="dist-ratings">{}</div>'.format(dist_bars_html) # build html for posFeatures feature_html = '<div class="feature-row"><div class="feature">{}</div>' \ + '<div class="bar-row"><span class="rating"></span>' \ + '<span class="bar"><span class="fill" style="width:{}%;"></span></span>' \ + '<span class="value">{}%</span></div></div>' posFeatures_html = "None" if "posFeatures" in product.keys(): posFeatures = sorted(product["posFeatures"], key=lambda x: float(x[1])) temp = "" total_importance = sum([float(feature[1]) for feature in posFeatures]) for feature in posFeatures: rel_importance = round(total_importance / float(feature[1]), 1) temp += feature_html.format(feature[0], rel_importance, rel_importance) posFeatures_html = '<div class="posFeatures">{}</div>'.format(temp.strip(', ')) # build html for negFeatures negFeatures_html = "None" if "negFeatures" in product.keys(): negFeatures = sorted(product["negFeatures"], key=lambda x: float(x[1])) temp = "" total_importance = sum([float(feature[1]) for feature in negFeatures]) for feature in negFeatures: rel_importance = round(total_importance / float(feature[1]), 1) temp += feature_html.format(feature[0], rel_importance, rel_importance) negFeatures_html = '<div class="negFeatures">{}</div>'.format(temp.strip(", ")) return render_template('product.html', page_title=title, product_title=title, avg_rating=Markup(avg_rating_html), ratings_dist=Markup(ratings_dist_html), pos_features=Markup(posFeatures_html), neg_features=Markup(negFeatures_html) ) if __name__ == '__main__': # setup global vars conn = mdb.MongoClient() db = conn.reviews coll = db.products my_port = 8080 my_ip = socket.gethostbyname(socket.gethostname()) app.run(host='0.0.0.0', port=my_port, debug=True)
{"hexsha": "8586bc1f09339ea5bad817a622ca9a0ee12bcd50", "size": 6265, "ext": "py", "lang": "Python", "max_stars_repo_path": "app/app.py", "max_stars_repo_name": "rob-dalton/amazon-product-recommender", "max_stars_repo_head_hexsha": "eca9b376423fdac9fdecb6dee551673d54a80aba", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2016-11-11T15:08:52.000Z", "max_stars_repo_stars_event_max_datetime": "2016-11-11T15:08:52.000Z", "max_issues_repo_path": "app/app.py", "max_issues_repo_name": "rob-dalton/amazon-feature-extractor", "max_issues_repo_head_hexsha": "eca9b376423fdac9fdecb6dee551673d54a80aba", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "app/app.py", "max_forks_repo_name": "rob-dalton/amazon-feature-extractor", "max_forks_repo_head_hexsha": "eca9b376423fdac9fdecb6dee551673d54a80aba", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2016-12-14T07:16:40.000Z", "max_forks_repo_forks_event_max_datetime": "2016-12-14T07:16:40.000Z", "avg_line_length": 35.8, "max_line_length": 116, "alphanum_fraction": 0.5867517957, "include": true, "reason": "import numpy", "num_tokens": 1474}
#!/usr/bin/env python # coding: utf-8 import os import csv import time import random import cPickle import pandas as pd os.environ["CUDA_VISIBLE_DEVICES"]="0" import pylab import matplotlib.pyplot as plt #from IPython.display import Image as IPImage from sklearn import preprocessing #normalized_data, norm = sklearn.preprocessing.normalize(data, norm='l2', axis=0, copy=False, return_norm=True) #version update needed import numpy as np import tensorflow as tf #from tensorflow.models.rnn import rnn, rnn_cell import utils import models def rmse(predictions, targets): return np.sqrt(((predictions - targets) ** 2).mean()) def test(model, save_path, path, model_name, epoch, data_columns, target_features, target_delay, test_data, time_point, time_step, scaler, xrange=5000, file_name='test_output', load_model=False): if load_model : model.load(os.path.join(save_path, path, model_name, str(epoch+1)+'.ckpt')) test_file = os.path.join(save_path, path, model_name, str(epoch+1)+'epoch-'+file_name+'.npz') if os.path.exists(test_file): test_output = np.load(test_file)['arr_0'] test_output = test_output.reshape([-1,len(target_delay)]) print 'test output {} loaded.'.format(test_output.shape) else: test_output = [] for batch in utils.iterate_3d_2(inputs=np.delete(test_data, [data.columns.tolist().index(i) for i in unused_features], axis=2), targets=test_data[:,:,[data.columns.tolist().index(i) for i in target_features]], target_delay=np.array(target_delay), batch_size=batch_size, length = max(test_data.shape), time_point=time_point, time_step=time_step, time_int=1): test_in, test_target = batch test_output.append(model.reconstruct(test_in)) test_output = np.asarray(test_output) print test_output.shape test_output = test_output.reshape([-1,(len(target_features)*len(target_delay))]) print test_output.shape np.savez(os.path.join(save_path,path,model_name, str(epoch+1)+'epoch-'+file_name+'.npz'), [test_output]) print 'test output saved.' for i in range(len(target_delay)): #xrange=10000 if xrange is None: xrange = np.max(test_output.shape) target_data = test_data[0, (time_point*time_step-1 + target_delay[i]):(time_point*time_step-1 + target_delay[i]+test_output.shape[0]), np.where(data.columns==target_features[0])[0][0]] cp = np.append([False],np.diff(target_data)!=0) cp_rmse = rmse(target_data[cp]*scaler.scale_[np.where(data_columns==target_features[0])[0][0]], test_output[cp,i]*scaler.scale_[np.where(data_columns==target_features[0])[0][0]]) all_rmse = rmse(test_output[:, i]*scaler.scale_[np.where(data_columns==target_features[0])[0][0]], test_data[0, (time_point*time_step-1 + target_delay[i]):\ (time_point*time_step-1 + target_delay[i]+test_output.shape[0]), np.where(data_columns==target_features[0])[0][0]] * scaler.scale_[np.where(data.columns==target_features[0])[0][0]] ) test_output_roll = pd.rolling_mean(test_output, batch_size) # print test_output.shape plt.figure(figsize=(15,6)) plt.plot(range(time_point*time_step-1 + target_delay[i], time_point*time_step-1 + target_delay[i]+xrange), test_output[0:xrange,i]*\ scaler.scale_[np.where(data_columns==target_features[0])[0][0]]+\ scaler.mean_[np.where(data_columns==target_features[0])[0][0]], label=target_features[0]+" " +str(target_delay[i])+'min pred', color='red') plt.plot(test_data[0, 0:xrange, np.where(data_columns==target_features[0])[0][0]]*\ scaler.scale_[np.where(data_columns==target_features[0])[0][0]]+\ scaler.mean_[np.where(data_columns==target_features[0])[0][0]], label=target_features[0], color='blue') plt.legend()#fontsize=11) #plt.ylim([1440, 1560]) plt.xlim([0, time_point*time_step-1 + target_delay[i]+xrange]) plt.figtext(0.1, 0.01, 'all_rmse: ' +str(all_rmse)) plt.figtext(0.7, 0.01, 'cp_rmse: ' +str(cp_rmse)) #plt.savefig(os.path.join(save_path, path, model_name, str(xrange)+'-'+str(epoch)+'epoch-'+str(target_delay[i])+'m_test_output.png')) plt.savefig(os.path.join('./', path, model_name, str(xrange)+'-'+str(epoch+1)+'epoch-'+str(target_delay[i])+'m_'+file_name+'.png')) plt.close() class GRCNN(object): def __init__(self, batch_size=128, time_point=1024, in_channels = 126, out_channels=256, ch_multiplier=None, cluster=None, rrcl_iter=[2,2,2,2], rrcl_num=4, forward_layers=[200,3], pool=['n','p','p','p','c'], use_batchnorm=True, scale=1, offset=0.01, epsilon=0.01, nonlinearity=None, keep_probs=None, std=0.01, w_filter_size=9, p_filter_size=4, l_rate=0.01, l_decay=0.95, l_step=1000, optimizer='RMSProp', opt_epsilon=0.1, decay=0.9, momentum=0.9, tpa_coeff=0.0001): print 'start initializing...' self.batch_size = batch_size self.time_point = time_point self.in_channels = in_channels #self.out_channels= ch_multiplier self.out_channels = out_channels if ch_multiplier!=None: print'\'ch_multiplier\' is depreciated. Use \'out_channels\'' self.out_channels = ch_multiplier self.cluster = cluster self.rrcl_iter = rrcl_iter self.rrcl_num = rrcl_num self.use_batchnorm = use_batchnorm self.offset = offset self.scale = scale self.epsilon = epsilon self.nonlinearity = nonlinearity #self.keep_probs = keep_probs self.use_dropout = not (keep_probs == None or keep_probs == [1.0 for i in range(len(keep_probs))]) #if keep_probs == None: # self.keep_probs = [1.0 for i in range(1+rrcl_num+len(forward_layers)-1)] if self.use_dropout and len(keep_probs) != (1 + rrcl_num + len(forward_layers)-1): raise ValueError('\'keep_probs\' length is wrong') self.std = std self.w_filter_size = w_filter_size self.p_filter_size = p_filter_size t=0 for i in range(len(np.unique(self.cluster)) ): t = t+ self.out_channels*np.sum(self.cluster==i)/self.in_channels self.ch_sum = t self.forward_layers = [t] + forward_layers ################ self.pool = pool if len(self.pool) != rrcl_num+1: raise ValueError('Parameter \'pool\' length does not match with the model shape.') global_step = tf.Variable(0, trainable=False) self.l_rate = tf.train.exponential_decay(l_rate, global_step, l_step, l_decay, staircase=True) self.decay = decay self.momentum = momentum self.y = tf.placeholder(tf.float32, [None, self.forward_layers[-1]], name='y'); self.x = [tf.placeholder(tf.float32, [None, 1, time_point, np.sum(cluster==i)], name='x'+str(i)) for i in range(len(np.unique(cluster))) ] self.keep_probs = tf.placeholder(tf.float32, [1+rrcl_num+len(forward_layers)-1], name='keep_probs') self.keep_probs_values = keep_probs print ' start building...' self.build_model( ) print ' done.' # Define loss and optimizer, minimize the squared error #self.cost = tf.reduce_mean(tf.pow(self.y - self.output, 2)) #self.cost = tf.reduce_mean(-tf.reduce_sum(self.y*tf.log(self.output), reduction_indices=[1])) self.cost = tf.reduce_mean(tf.pow(self.y - self.output_layer, 2)) if optimizer=='Adam': self.optimizer = tf.train.AdamOptimizer(self.l_rate, epsilon=opt_epsilon).minimize(self.cost, global_step=global_step) else :#optimizer=='RMSProp': self.optimizer = tf.train.RMSPropOptimizer(self.l_rate, decay=self.decay, momentum=self.momentum).minimize(self.cost, global_step = global_step) # Initializing the tensor flow variables #init = tf.initialize_all_variables() # Launch the session self.session_conf = tf.ConfigProto() self.session_conf.gpu_options.allow_growth = True self.sess = tf.InteractiveSession(config=self.session_conf) #self.sess = tf.InteractiveSession() self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver(max_to_keep=10000) print'done.' def build_model(self): #self.weights, self.biases = self.init_weights() length = self.time_point ##length filter_size = self.w_filter_size while filter_size> length: filter_size = filter_size/2 self.conv1=[] networks=[] for i in range( len(np.unique(self.cluster))): """ conv2d(input, filter, strides=[1,1,1,1], padding='SAME', nonlinearity=None, use_dropout=True, keep_prob=1.0, use_batchnorm=True, std=0.01, offset=1e-10, scale=1, epsilon=1e-10, name='conv2d_default'): """ #print i #print self.x[i], #print [1, self.w_filter_size, np.sum(self.cluster==i), self.out_channels*np.sum(self.cluster==i)/self.in_channels] conv1 = models.conv2d(self.x[i], weight_size=[1, filter_size, np.sum(self.cluster==i), self.out_channels*np.sum(self.cluster==i)/self.in_channels], nonlinearity=self.nonlinearity, pool = self.pool[0], pool_size = self.p_filter_size, use_dropout=self.use_dropout, keep_prob=self.keep_probs[0], use_batchnorm=self.use_batchnorm, std=self.std, offset=self.offset, scale=self.scale, epsilon=self.epsilon, name='conv2d_cluster'+str(i)) self.conv1.append(conv1) networks.append(conv1) #print conv1.get_layer() #(batch, time, in_ch, ch_mult) print ' conv done. {}'.format(conv1.get_layer()) """ self.conv1p = tf.nn.max_pool(value=self.conv1, ksize=[1,1,4,1], strides=[1,1,4,1], padding='SAME') """ #output: (batch_size, 1, in_width, out_channels*in_channels) """ RCL(input, filter, strides=[1,1,1,1], padding='SAME', num_iter=3, nonlinearity=None, use_dropout=True, keep_prob=1.0, use_batchnorm=True, std=0.01, offset=1e-10, scale=1, epsilon=1e-10, name='RCL_default'): """ #networks = self.conv1.get_layer() self.rrcls = [] for r in range(self.rrcl_num): rrcl = [] while filter_size> length: filter_size = filter_size/2 for i in range( len(np.unique(self.cluster))): #print ' cluster{} start'.format(i), tmp = models.RCL(input = networks[i].get_layer(), weight_size = [1, filter_size, self.out_channels*np.sum(self.cluster==i)/self.in_channels, self.out_channels*np.sum(self.cluster==i)/self.in_channels], num_iter = self.rrcl_iter[r], nonlinearity = self.nonlinearity, use_dropout = self.use_dropout, keep_prob = self.keep_probs[1+r], use_batchnorm = self.use_batchnorm, std=self.std, offset=self.offset, scale=self.scale, epsilon=self.epsilon, pool=self.pool[r+1], pool_size=self.p_filter_size, name='RCL'+str(r)+'_cluster'+str(i)) rrcl.append(tmp) #print 'done' networks = rrcl self.rrcls.append(rrcl) length = length/self.p_filter_size print' rrcl{} done'.format(r), print' {}'.format(rrcl[-1].get_layer()) # networks=[] for i in range(len(rrcl)): networks.append( rrcl[i].get_layer()) #print networks[i] self.concat = tf.concat(3, networks) print ' concatenated to {}'.format(self.concat) network = tf.reshape(self.concat, shape=[-1, self.ch_sum])# * self.keep_probs[1]]) ### self.flatten = network print ' flatten to {}'.format(self.flatten) """ (input, weight, nonlinearity=None, use_dropout=False, keep_prob=1.0, use_batchnorm=False, std=0.01, offset=1e-10, scale=1, epsilon=1e-10, name='feedforward_default') """ if len(self.forward_layers) == 2: network = models.feedforward(input = network, weight_size=[self.forward_layers[0], self.forward_layers[1]], nonlinearity=None, use_dropout = False, use_batchnorm = False, std=self.std, offset=self.offset, scale=self.scale, epsilon=self.epsilon, name='output') self.output = network#.get_layer() self.output_layer = network.get_layer() print' feedforward {} done, {}'.format(i+1, self.output_layer) print' model built' else: self.forwards=[] for i in range(len(self.forward_layers)-1 -1): network = models.feedforward(input = network, weight_size=[self.forward_layers[i], self.forward_layers[i+1]], nonlinearity=self.nonlinearity, use_dropout = self.use_dropout, keep_prob = self.keep_probs[1+r], use_batchnorm = self.use_batchnorm, std=self.std, offset=self.offset, scale=self.scale, epsilon=self.epsilon, name='forward'+str(i)) self.forwards.append(network) network = network.get_layer() print' feedforward {} done, {}'.format(i, network) network = models.feedforward(input = network, weight_size=[self.forward_layers[-2], self.forward_layers[-1]], nonlinearity=None, use_dropout = False, use_batchnorm = False, std=self.std, offset=self.offset, scale=self.scale, epsilon=self.epsilon, name='output') self.output = network#.get_layer() self.output_layer = network.get_layer() print' feedforward {} done, {}'.format(i+1, self.output_layer) print' model built' def train(self, data, target, keep_probs=None): ## data: [batch, time_idx] ## x: [batch, in_height, in_width, in_channels] train_feed_dict = {self.x[i]:data[:,:,:,np.where(self.cluster==i)[0]] for i in range(len(np.unique(self.cluster))) } train_feed_dict.update({self.y:target}) if keep_probs is None: train_feed_dict.update({self.keep_probs:self.keep_probs_values}) else: self.keep_probs_values = keep_probs train_feed_dict.update({self.keep_probs:keep_probs}) opt, cost = self.sess.run((self.optimizer, self.cost), feed_dict=train_feed_dict ) return cost def test(self, data, target, keep_probs=None): test_feed_dict = {self.x[i]:data[:,:,:,np.where(self.cluster==i)[0]] for i in range(len(np.unique(self.cluster))) } test_feed_dict.update({self.y:target}) if keep_probs is None: test_feed_dict.update({self.keep_probs:self.keep_probs_values}) else: self.keep_probs_values = keep_probs test_feed_dict.update({self.keep_probs:keep_probs}) cost = self.sess.run(self.cost, feed_dict=test_feed_dict ) return cost def reconstruct(self, data, keep_probs=None): recon_feed_dict = {self.x[i]:data[:,:,:,np.where(self.cluster==i)[0]] for i in range(len(np.unique(self.cluster))) } if keep_probs is None: recon_feed_dict.update({self.keep_probs:self.keep_probs_values}) else: self.keep_probs_values = keep_probs recon_feed_dict.update({self.keep_probs:keep_probs}) return self.sess.run(self.output_layer, feed_dict=recon_feed_dict ) def save(self, save_path='./model.ckpt'): saved_path = self.saver.save(self.sess, save_path) print("Model saved in file: %s"%saved_path) def load(self, load_path = './model.ckpt'): self.saver.restore(self.sess, load_path) print("Model restored") def terminate(self): self.sess.close() tf.reset_default_graph() # Main """ Load Data """ # os.getcwd() #current path #data_path = os.path.join('/data2/data','data3') #data = pd.read_csv( os.path.join(data_path,'toy_data.csv')) data_path = '/data1/data-v0/' data = pd.read_csv(os.path.join(data_path,'data.csv')) #dataColumns = data.columns.tolist() print("data shape: "+data.shape) # data: (time_index, features) cluster = pd.read_csv(os.path.join(data_path, 'data_SpectralClustering10', 'cluster.csv')) print("cluster shape: "+cluster.shape) if data.shape[-1] != cluster.shape[-1]: raise ValueError('wrong cluster file 1') if sum(data.columns == cluster.columns) != data.shape[-1]: raise ValueError('wrong cluster file 2. Possibly not in order.') # standardization scaler = preprocessing.StandardScaler(with_mean=True, with_std=True).fit(data) # scaler.mean_.shape, scaler.scale_.shape #mean, std train_data = data[:int(data.shape[0]*0.8)] valid_data = data[int(data.shape[0]*0.8):int(data.shape[0]*0.9)] test_data = data[int(data.shape[0]*0.9):] print("train data: {} \nvalid data:{} \ntest data:{}".format(train_data.shape, valid_data.shape, test_data.shape)) train_data = scaler.transform(train_data) valid_data = scaler.transform(valid_data) test_data = scaler.transform(test_data) train_data = train_data[np.newaxis,:] valid_data = valid_data[np.newaxis,:] test_data = test_data[np.newaxis,:] print("train data: {} \nvalid data:{} \ntest data:{}".format(train_data.shape, valid_data.shape, test_data.shape)) """ Set Parameters """ unused_features = ['feature_1', 'feature_2'] used_features = [col for col in cluster.columns if col not in unused_features] target_features = ['feature_0'] print(len(used_features), len(target_features)) batch_size = 64 time_step = 1 # length between each timepoint time_int = 1 # interval between each starting point target_delay = np.array([30, 60]) out_channels = 1024 rrcl_num = 4 rrcl_iter = [3,3,3,3] w_filter_size = 9 p_filter_size = 4 time_point = p_filter_size**rrcl_num forward_layers = [200, len(target_delay)] use_batchnorm = False split_train = False nonlinearity = tf.nn.elu keep_probs = [0.5,0.5, 0.5, 0.5, 0.5, 0.5] # None or an array of 1.0 values will turn off the dropout pool=['n','p','p','p','p'] std = 0.01 l_rate = 0.0000001 l_decay = 0.1 l_step = 200*(np.max(train_data.shape)-time_point*time_step-batch_size*time_int-np.max(target_delay))/(batch_size*time_int) # 200 epochs # optimizer = 'RMSProp' decay = 0.8 momentum = 0 tpa_coeff = 10 ## optimizer='Adam' ##opt_epsilon = 1 """ Set Path """ save_path = os.path.join('/data2/data-v0/') path = os.path.join('data-v0') if not os.path.exists(os.path.join('./', path)): os.mkdir(os.path.join('./',path)) if not os.path.exists(os.path.join(save_path,path)): os.mkdir(os.path.join(save_path,path)) path = os.path.join(path, 'data0') if not os.path.exists(os.path.join('./',path)): os.mkdir(os.path.join('./',path)) if not os.path.exists(os.path.join(save_path,path)): os.mkdir(os.path.join(save_path,path)) path = os.path.join(path, 'target-'+ str(target_features)[1:-1].replace("'","").replace(", ","_")) if not os.path.exists(os.path.join('./',path)): os.mkdir(os.path.join('./',path)) if not os.path.exists(os.path.join(save_path,path)): os.mkdir(os.path.join(save_path,path)) path = os.path.join(path, 'use_batch_norm') if use_batchnorm else os.path.join(path, 'no_batch_norm') if not os.path.exists(os.path.join('./',path)): print 'creating difectory {}'.format(path) os.mkdir(os.path.join('./',path)) if not os.path.exists(os.path.join(save_path,path)): os.mkdir(os.path.join(save_path,path)) path = os.path.join(path, 'no_dropout') if (keep_probs == None or keep_probs == [1.0 for i in range(len(keep_probs))]) else os.path.join(path, 'dropout') if not os.path.exists(os.path.join('./',path)): print 'creating difectory {}'.format(path) os.mkdir(os.path.join('./',path)) if not os.path.exists(os.path.join(save_path,path)): os.mkdir(os.path.join(save_path,path)) path = os.path.join(path, 'None') if nonlinearity==None else os.path.join(path, str(nonlinearity).split(" ")[1]) if not os.path.exists(os.path.join('./',path)): print 'creating difectory {}'.format(path) os.mkdir(os.path.join('./',path)) if not os.path.exists(os.path.join(save_path,path)): os.mkdir(os.path.join(save_path,path)) model_name = 'cl6-1-'+str(target_delay)[1:-1].replace(' ','_')+'m-RRCL4_iter'+str(rrcl_iter)[1:-1].replace(', ','_')+'-'+\ str([out_channels] + forward_layers)[1:-1].replace(', ','_')+\ '-keep'+str(keep_probs)[1:-1].replace(', ','_').replace('0.','')+\ '-batch128-tstep1-tint'+str(time_int)+'-std0_01-lrate'+str(l_rate)+\ '-lstep200-l_decay0_1-decay'+str(decay).replace('.','_')+'-mom'+str(momentum).replace('.','_') print(os.path.join(path, model_name)) if not os.path.exists(os.path.join('./', path, model_name)): os.mkdir(os.path.join('./', path, model_name)) print('path created: {}'.format(os.path.join('./',path, model_name))) if not os.path.exists(os.path.join(save_path,path, model_name)): os.mkdir(os.path.join(save_path, path, model_name)) print('path created: {}'.format(os.path.join(save_path, path, model_name))) """ Train """ # train parameters num_epochs = 200 t_loss=[] v_loss=[] val_freq = 1 test_freq = 20 save_freq = 50 train_history = pd.DataFrame(index=np.arange(0, num_epochs), columns=['epoch', 'loss', 'timestamp']) valid_history = pd.DataFrame(index=np.arange(0, num_epochs/val_freq), columns=['epoch', 'loss', 'timestamp']) #val_epoch = range(1,10,1) + range(10,50,5) + range(50,100,10) + range(100, num_epochs+1, 20) #valid_history = pd.DataFrame(index=val_epoch, # columns=['epoch', 'loss', 'timestamp']) if 'model' in globals(): model.terminate() model = GRCNN(batch_size = batch_size, time_point = time_point, # length. in_channels = len(used_features), #number of channels of input data. out_channels = out_channels, cluster = np.asarray(cluster[used_features].loc['cluster'].tolist()), #cluster index list. rrcl_iter = rrcl_iter, # number of iterations in each RRCL. rrcl_num = rrcl_num, # number of RRCLs. forward_layers = forward_layers, # [(concatenated layer node omitted) forward_1, ..., forward_fin, output] use_batchnorm = use_batchnorm, scale=1, offset=1e-10, epsilon=1e-10, # parameters for batch_normalization. nonlinearity = nonlinearity, # nonlinearity function keep_probs = keep_probs, # dropout keep_probs. # Must be in form [conv_layer, RRCL_1, ..., RRCL_fin, forward_1, ..., forward_fin], # length should be rrcl_num + len(forward_layers)-2 # Use None if you don't want to use dropout. pool=pool, std = std, w_filter_size=w_filter_size, # filter size for conv layer and RRCLs. cut into half if too long. p_filter_size=p_filter_size, # max pooling filter size. p_filter_size**rrcl_num must be same as time_point. l_rate=l_rate, l_decay=l_decay, l_step=l_step, decay=decay, momentum=momentum, tpa_coeff=tpa_coeff #optimizer='Adam', ) for epoch in range(num_epochs): loss = 0 ; train_batches = 0 start_time = time.time() flag=False for batch in utils.iterate_3d_2(inputs=np.delete(train_data, [data.columns.tolist().index(i) for i in unused_features], axis=2), targets=train_data[:,:,[data.columns.tolist().index(i) for i in target_features]], target_delay=np.array(target_delay), batch_size=batch_size, length = max(train_data.shape), time_point=time_point, time_step=time_step, time_int=time_int): train_in, train_target = batch train_target = train_target.reshape([batch_size,-1]) train_batches += 1 loss += model.train(data=train_in, target=train_target) if np.isnan(loss): print 'ERROR!' flag=True break if flag: train_history.to_csv(os.path.join('./', path, model_name, "history_train.csv")) valid_history.to_csv(os.path.join('./', path, model_name, "history_valid.csv")) break t_loss.append(loss/train_batches) train_history.loc[epoch] = [epoch+1, t_loss[epoch], time.strftime("%Y-%m-%d-%H:%M", time.localtime())] if(epoch+1)%val_freq ==0: loss = 0 ; val_batches=0 for batch in utils.iterate_3d_2(inputs=np.delete(valid_data, [data.columns.tolist().index(i) for i in unused_features], axis=2), targets=valid_data[:,:,[data.columns.tolist().index(i) for i in target_features]], target_delay=np.array(target_delay), batch_size=batch_size, length = max(valid_data.shape), time_point=time_point, time_step=time_step, time_int=time_int): val_in, val_target = batch val_target = val_target.reshape([batch_size,-1]) val_batches = val_batches+1 loss += model.test(data= val_in, target=val_target) v_loss.append(loss/val_batches) valid_history.loc[epoch/val_freq] = [epoch+1, v_loss[epoch/val_freq], time.strftime("%Y-%m-%d-%H:%M", time.localtime())] if not os.path.exists(os.path.join('./', path, model_name)): os.mkdir( os.path.join('./', path,model_name) ) if(epoch+1)%test_freq==0: test(model, save_path, path, model_name, epoch, data_columns=data.columns, target_features=target_features, target_delay=target_delay, test_data=train_data, time_point=time_point, time_step=time_step, scaler=scaler, xrange=10000, file_name='train_output') print("Epoch {} of {} took {:.3f}s".format(epoch + 1, num_epochs, time.time() - start_time)) print(" training loss:\t{:.6f}".format(t_loss[epoch])) if (epoch+1)%val_freq==0: print(" validation loss:\t{:.6f}".format(loss/val_batches)) if (epoch+1)%save_freq==0: #model.save( os.path.join('./', path, model_name, str(epoch+1)+'.ckpt') ) model.save( os.path.join(save_path, path, model_name, str(epoch+1)+'.ckpt') ) train_history.to_csv(os.path.join('./', path, model_name, "history_train.csv")) valid_history.to_csv(os.path.join('./', path, model_name, "history_valid.csv")) plt.figure(figsize=(15,5)) plt.subplot(121) plt.plot(train_history['loss'].tolist(), label='train loss') plt.plot( range(val_freq, len(train_history)+val_freq, val_freq), valid_history['loss'], label='valid loss', color='Red')#, marker='o' plt.axis([0, len(train_history), 0, 2]) plt.legend(fontsize=12, bbox_to_anchor=(1.05,1),loc=2) #plt.legend(['train loss'])#,'test loss'])#,'accuracy']) plt.title('Loss graph', fontsize=15) plt.xlabel('epoch', fontsize=13) plt.ylabel('loss', fontsize=13) plt.savefig(os.path.join('./', path, model_name, str(len(train_history))+'epochs_tvloss.png')) print os.path.join('./', path, model_name, str(len(train_history))+'epochs_tvloss.png') #plt.savefig(os.path.join(save_path, path, model_name, str(len(train_history))+'epochs_tvloss.png')) #print os.path.join(save_path, path, model_name, str(len(train_history))+'epochs_tvloss.png')
{"hexsha": "0ca04abb34f74e7b480b6e2abccfe3519995fc7d", "size": 30247, "ext": "py", "lang": "Python", "max_stars_repo_path": "GRCNN.py", "max_stars_repo_name": "subin2/Grouped-Convolutional-Neural-Networks", "max_stars_repo_head_hexsha": "4cca3e795e13eded1593d7c2dd9355338901c839", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2019-02-20T07:12:45.000Z", "max_stars_repo_stars_event_max_datetime": "2020-04-27T04:10:54.000Z", "max_issues_repo_path": "GRCNN.py", "max_issues_repo_name": "subin2/Grouped-Convolutional-Neural-Networks", "max_issues_repo_head_hexsha": "4cca3e795e13eded1593d7c2dd9355338901c839", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "GRCNN.py", "max_forks_repo_name": "subin2/Grouped-Convolutional-Neural-Networks", "max_forks_repo_head_hexsha": "4cca3e795e13eded1593d7c2dd9355338901c839", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 47.1872074883, "max_line_length": 153, "alphanum_fraction": 0.5866697524, "include": true, "reason": "import numpy", "num_tokens": 6996}
import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit from astropy.io import ascii from uncertainties import ufloat import uncertainties.unumpy as unp Z=[29,29,29,30,32,35,37,38,40,41,79,79] Z=np.asarray(Z) E=[8.048,8.028,8.905,9.65,11.1031,13.4737,15.1997,16.1046,17.9976,18.9856,13.7336,11.9187] E=np.asarray(E) E=E*1000 enull=1.6021766208*10**(-19) R=13.6 r=10973731.568508 c=299792458 d=201.4*10**(-12) h=ufloat(6.626070040*10**(-34),0.000000081*10**(-34)) Rzwo=r*h.nominal_value*c R=Rzwo E=E*enull a=1/137 theta=(360/(2*np.pi))*(np.arcsin(((c*h.nominal_value)/(2*d*E)))) sigma=Z-np.sqrt(E/R-(a**2*Z**4)/4) print(sigma) print(theta) ascii.write([Z,E/enull,np.round(theta,2),np.round(sigma,2)],'Tabelle_literatur.tex',format='latex') grenz=5*(2*np.pi/360) lambdi=2*d*np.sin(grenz) print("lambda min= ",lambdi) power=(h*c)/lambdi power=power/enull print("Emax= ",power) Etheo=35*1000 Etheo=Etheo*enull ltheo=(h*c)/Etheo print("lamnda theo= ",ltheo ) xalpha1=[44.8,45.2] yalpha1=[5.0,28.0] xalpha2=[45.5,46.0] yalpha2=[15.0,5.0] xbeta1=[40,40.4] ybeta1=[8.0,18.0] xbeta2=[41.2,41.5] ybeta2=[14.0,7.0] def ausgabe(x,y,peak): m=np.sqrt(((y[0]-y[1])/(x[0]-x[1]))**2) b=y[0]-m*x[0] yval=peak/2 value=(yval-b)/m value=value/2 vtheta=value*(2*np.pi/360) Ehalb=(h*c)/(2*d*np.sin(vtheta)) Ehalb=Ehalb/enull print(Ehalb) #print(m) #print(b) print("Wert= ",value) betatheta=20.4*(2*np.pi/360) alphatheta=22.6*(2*np.pi/360) Ealpha=(h.nominal_value*c)/(2*d*np.sin(alphatheta)) Ebeta=(h.nominal_value*c)/(2*d*np.sin(betatheta)) sigmaone=29-np.sqrt(Ebeta/R-(a**2*29**4)/4) sigmazwo=29-np.sqrt((Ebeta-Ealpha)/R-(a**2*29**4)/4) print(sigmaone) print(sigmazwo) ausgabe(xalpha1,yalpha1,28) ausgabe(xalpha2,yalpha2,28) ausgabe(xbeta1,ybeta1,19) ausgabe(xbeta2,ybeta2,19) ########################################################################################### # Absorptionsspektren Ry = ufloat(13.605693009, 0.000000084) #Zink E_zi = h*c/(2*d*np.sin(18.8*2*np.pi/360)*enull) print('E_ZI = ', E_zi) sigma_zn = 30-unp.sqrt(E_zi/Ry - (30**4)/(4*137**2)) print('sigma_zn= ', sigma_zn) #Germanium E_ge = h*c/(2*d*np.sin(16.3*2*np.pi/360)*enull) print('E_GE = ', E_ge) sigma_ge = 32-unp.sqrt(E_ge/Ry - (32**4)/(4*137**2)) print('sigma_ge= ', sigma_ge) #Brom E_br = h*c/(2*d*np.sin(13.35*2*np.pi/360)*enull) print('E_BR = ', E_br) sigma_br = 35-unp.sqrt(E_br/Ry - (35**4)/(4*137**2)) print('sigma_br= ', sigma_br) #Zirkonium E_zr = h*c/(2*d*np.sin(10*2*np.pi/360)*enull) print('E_ZR = ', E_zr) sigma_zr = 40-unp.sqrt(E_zr/Ry - (40**4)/(4*137**2)) print('sigma_zr= ', sigma_zr) #Gold E_au_beta = h*c/(2*d*np.sin(13.0*2*np.pi/360)*enull) E_au_gamma = h*c/(2*d*np.sin(15.2*2*np.pi/360)*enull) print('Gold', E_au_beta/enull, 'zweite:', E_au_gamma) sigma_au = 79-unp.sqrt(4*137*unp.sqrt((E_au_beta-E_au_gamma)/Ry)-5*(E_au_beta-E_au_gamma)/Ry) * (1+19/(32*137**2)*(E_au_gamma-E_au_beta)/Ry)**(1/2) print('SIGMAGOLD= ', sigma_au) ######################################################################################### Ek=[9.55,10.97,13.33,17.73] Ek=np.asarray(Ek)*1000 Z=[30,32,35,40] Zls=np.linspace(29,41) def theorie(x,m,b): return m*x+b ascii.write([np.sqrt(Ek),Z],'tab_007.tex',format='latex',names=["wurzel e","Z"]) plt.plot(Z,np.sqrt(Ek), 'rx', label="Messwerte") params, covariance = curve_fit(theorie,Z,np.sqrt(Ek)) errors = np.sqrt(np.diag(covariance)) ryd=ufloat(params[0],errors[0]) ryd=ryd**2 print('m= Rydbeck=',ryd) print('b=',params[1],errors[1]) plt.plot(Zls, params[0]*Zls+params[1], 'b-', label="Lineare Regression") plt.ylabel(r"$\sqrt{E_\mathrm{K}}$/$\sqrt{\si{\electronvolt}}$") plt.xlabel(r"Kernladungszahl $Z$") plt.xlim(29,41) plt.legend(loc='best') plt.tight_layout() plt.savefig('R.pdf')
{"hexsha": "3b65fef7d568b3407514b5696cfa131b76670b21", "size": 3782, "ext": "py", "lang": "Python", "max_stars_repo_path": "V602/plot.py", "max_stars_repo_name": "nsalewski/laboratory", "max_stars_repo_head_hexsha": "e30d187a3f5227d5e228b0132c3de4d426d85ffb", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-05-05T23:00:28.000Z", "max_stars_repo_stars_event_max_datetime": "2021-05-05T23:00:28.000Z", "max_issues_repo_path": "V602/plot.py", "max_issues_repo_name": "nsalewski/laboratory", "max_issues_repo_head_hexsha": "e30d187a3f5227d5e228b0132c3de4d426d85ffb", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "V602/plot.py", "max_forks_repo_name": "nsalewski/laboratory", "max_forks_repo_head_hexsha": "e30d187a3f5227d5e228b0132c3de4d426d85ffb", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.3178294574, "max_line_length": 147, "alphanum_fraction": 0.6385510312, "include": true, "reason": "import numpy,from scipy,from astropy", "num_tokens": 1544}
# Copyright 2019 GreenWaves Technologies, SAS # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Iterable import numpy as np from graph.dim import Dim from quantization.quantization_record import (FilterQuantizationRecord, QuantizationRecord) def shape_dict(ord_, dims): return [dims[i] for i in ord_] def srange(dim, **kwargs): slice_ = [] for k in dim.order: if k in kwargs: v = kwargs[k] if isinstance(v, Iterable): slice_.append(slice(*v)) elif isinstance(v, int): slice_.append(slice(v, v+1, 1)) else: slice_.append(slice(None)) return tuple(slice_) def zeros(shape, qrec: QuantizationRecord, elem: str): dtype = getattr(qrec, elem).dtype if qrec else None return np.zeros(shape, dtype=dtype) def pad(array: np.array, in_dim: Dim, padding: Dim, pad_type: str): if pad_type == "zero": return np.pad(array, padding.numpy_pad_shape(in_dim),\ 'constant', constant_values=0) raise NotImplementedError() def prepare_acc(biases: np.array, out_dims: Dim, qrec: FilterQuantizationRecord): if biases is None: acc_tensor = zeros(out_dims.shape, qrec, 'acc_q') else: acc_tensor = zeros((out_dims.c, out_dims.h, out_dims.w), qrec, 'acc_q') if qrec and qrec.acc_q != qrec.biases_q: biases = qrec.acc_q.expand_from(biases, qrec.biases_q) for i in range(out_dims.c): acc_tensor[i, :] = biases[i] acc_tensor = acc_tensor.transpose(out_dims.transpose_from_order(('c', 'h', 'w'))) return acc_tensor
{"hexsha": "142b0fe12a02767598e9f7556afa33040dbcae17", "size": 2180, "ext": "py", "lang": "Python", "max_stars_repo_path": "tools/nntool/execution/kernels/utils.py", "max_stars_repo_name": "danieldennett/gap_sdk", "max_stars_repo_head_hexsha": "5667c899025a3a152dbf91e5c18e5b3e422d4ea6", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2020-01-29T15:39:31.000Z", "max_stars_repo_stars_event_max_datetime": "2020-01-29T15:39:31.000Z", "max_issues_repo_path": "tools/nntool/execution/kernels/utils.py", "max_issues_repo_name": "danieldennett/gap_sdk", "max_issues_repo_head_hexsha": "5667c899025a3a152dbf91e5c18e5b3e422d4ea6", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tools/nntool/execution/kernels/utils.py", "max_forks_repo_name": "danieldennett/gap_sdk", "max_forks_repo_head_hexsha": "5667c899025a3a152dbf91e5c18e5b3e422d4ea6", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 38.2456140351, "max_line_length": 89, "alphanum_fraction": 0.6637614679, "include": true, "reason": "import numpy", "num_tokens": 518}