text
stringlengths
0
1.25M
meta
stringlengths
47
1.89k
"""This test module verifies all circuit operation, gate, and circuit methods.""" from __future__ import annotations import numpy as np import pytest from hypothesis import given from bqskit.ir.circuit import Circuit from bqskit.ir.gate import Gate from bqskit.ir.gates import CNOTGate from bqskit.ir.gates import ConstantUnitaryGate from bqskit.ir.gates import CPIGate from bqskit.ir.gates import HGate from bqskit.ir.gates import XGate from bqskit.ir.gates.constant.cx import CXGate from bqskit.ir.operation import Operation from bqskit.ir.point import CircuitPoint from bqskit.ir.point import CircuitPointLike from bqskit.utils.test.strategies import circuits from bqskit.utils.test.strategies import operations from bqskit.utils.test.types import invalid_type_test from bqskit.utils.test.types import valid_type_test def check_no_idle_cycles(circuit: Circuit) -> None: for cycle_index in range(circuit.num_cycles): assert not circuit._is_cycle_idle(cycle_index) class TestCheckValidOperation: """This tests `circuit.check_valid_operation`.""" @valid_type_test(Circuit(1).check_valid_operation) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).check_valid_operation) def test_invalid_type(self) -> None: pass def test_location_mismatch_1(self, qubit_gate: Gate) -> None: circuit = Circuit(qubit_gate.num_qudits) location = list(range(qubit_gate.num_qudits)) location[-1] += 1 params = [0] * qubit_gate.num_params op = Operation(qubit_gate, location, params) try: circuit.check_valid_operation(op) except ValueError: return except BaseException: assert False, 'Unexpected Exception' assert False def test_location_mismatch_2(self, qutrit_gate: Gate) -> None: circuit = Circuit(qutrit_gate.num_qudits, qutrit_gate.radixes) location = list(range(qutrit_gate.num_qudits)) location[-1] += 1 params = [0] * qutrit_gate.num_params op = Operation(qutrit_gate, location, params) try: circuit.check_valid_operation(op) except ValueError: return except BaseException: assert False, 'Unexpected Exception' assert False def test_radix_mismatch_1(self, qubit_gate: Gate) -> None: circuit = Circuit(qubit_gate.num_qudits, [3] * qubit_gate.num_qudits) location = list(range(qubit_gate.num_qudits)) params = [0] * qubit_gate.num_params op = Operation(qubit_gate, location, params) try: circuit.check_valid_operation(op) except ValueError: return except BaseException: assert False, 'Unexpected Exception' assert False def test_radix_mismatch_2(self, qutrit_gate: Gate) -> None: circuit = Circuit(qutrit_gate.num_qudits) location = list(range(qutrit_gate.num_qudits)) params = [0] * qutrit_gate.num_params op = Operation(qutrit_gate, location, params) try: circuit.check_valid_operation(op) except ValueError: return except BaseException: assert False, 'Unexpected Exception' assert False def test_valid_1(self, gate: Gate) -> None: circuit = Circuit(gate.num_qudits, gate.radixes) location = list(range(gate.num_qudits)) params = [0] * gate.num_params circuit.check_valid_operation(Operation(gate, location, params)) def test_valid_2(self, gate: Gate) -> None: circuit = Circuit(gate.num_qudits + 2, (2, 2) + gate.radixes) location = [x + 2 for x in list(range(gate.num_qudits))] params = [0] * gate.num_params circuit.check_valid_operation(Operation(gate, location, params)) def test_valid_3(self) -> None: circuit = Circuit(2, [3, 2]) gate = ConstantUnitaryGate(np.identity(6), [2, 3]) circuit.check_valid_operation(Operation(gate, [1, 0])) class TestGetOperation: """This tests `circuit.get_operation`.""" @valid_type_test(Circuit(1).get_operation) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).get_operation) def test_invalid_type(self) -> None: pass @pytest.mark.parametrize( 'point', [ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), ], ) def test_return_type(self, point: CircuitPointLike) -> None: circuit = Circuit(5) for i in range(5): circuit.append_gate(HGate(), [0]) circuit.append_gate(HGate(), [1]) circuit.append_gate(HGate(), [2]) circuit.append_gate(HGate(), [3]) circuit.append_gate(HGate(), [4]) assert isinstance(circuit.get_operation(point), Operation) @pytest.mark.parametrize( 'point', [ (-1000, 0), (1, -100), (-8, -8), (-6, -6), (-7, 4), (1000, 0), (1, 100), (8, 8), (6, 6), (5, 4), (3, 8), (2, 9), (8, 2), ], ) def test_index_error_out_of_bounds(self, point: CircuitPointLike) -> None: circuit = Circuit(5) for i in range(5): circuit.append_gate(HGate(), [0]) circuit.append_gate(HGate(), [1]) circuit.append_gate(HGate(), [2]) circuit.append_gate(HGate(), [3]) circuit.append_gate(HGate(), [4]) try: circuit.get_operation(point) except IndexError: return assert False, 'Should not have reached here.' def test_correctness_1(self, r6_qudit_circuit: Circuit) -> None: for x in range(r6_qudit_circuit.num_cycles): for y in range(r6_qudit_circuit.num_qudits): correct = r6_qudit_circuit._circuit[x][y] if correct is not None: assert correct is r6_qudit_circuit.get_operation((x, y)) else: try: r6_qudit_circuit.get_operation((x, y)) except IndexError: pass except BaseException: assert False, 'Unexpected exception.' def test_correctness_2(self) -> None: circuit = Circuit(2) circuit.append_gate(HGate(), [0]) circuit.append_gate(CNOTGate(), [0, 1]) assert circuit.get_operation((0, 0)).gate == HGate() assert circuit.get_operation((1, 0)).gate == CNOTGate() assert circuit.get_operation((1, 1)).gate == CNOTGate() def test_example(self) -> None: circuit = Circuit(2) circuit.append_gate(HGate(), [0]) circuit.append_gate(CNOTGate(), [0, 1]) circuit.get_operation((1, 0)).__repr__() == 'CNOTGate@(0,1)' class TestPoint: """This tests `circuit.point`.""" @valid_type_test(Circuit(1).point) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).point, [IndexError]) def test_invalid_type(self) -> None: pass def test_return_type(self) -> None: circuit = Circuit(5) for i in range(5): circuit.append_gate(HGate(), [0]) circuit.append_gate(HGate(), [1]) circuit.append_gate(HGate(), [2]) circuit.append_gate(HGate(), [3]) circuit.append_gate(HGate(), [4]) assert isinstance(circuit.point(HGate()), CircuitPoint) def test_correctness_1(self, r6_qudit_circuit: Circuit) -> None: for x in range(r6_qudit_circuit.num_cycles): for y in range(r6_qudit_circuit.num_qudits): op = r6_qudit_circuit._circuit[x][y] if op is not None: point = r6_qudit_circuit.point(op, (x, y)) assert r6_qudit_circuit.get_operation(point) is op point = r6_qudit_circuit.point(op, (x, y), (x, y)) assert r6_qudit_circuit.get_operation(point) is op point = r6_qudit_circuit.point(op.gate, (x, y)) assert r6_qudit_circuit.get_operation(point) is op point = r6_qudit_circuit.point(op.gate, (x, y), (x, y)) assert r6_qudit_circuit.get_operation(point) is op def test_correctness_2(self) -> None: circuit = Circuit(2) circuit.append_gate(HGate(), [0]) circuit.append_gate(CNOTGate(), [0, 1]) assert circuit.point(HGate()) == (0, 0) assert circuit.point(CNOTGate()) == (1, 0) assert circuit.point(Operation(HGate(), [0])) == (0, 0) assert circuit.point(Operation(CNOTGate(), [0, 1])) == (1, 0) try: circuit.point(Operation(CNOTGate(), [1, 0])) except ValueError: return assert False, 'Should not have reached here.' def test_invalid_value_1(self) -> None: circuit = Circuit(2) circuit.append_gate(HGate(), [0]) circuit.append_gate(CNOTGate(), [0, 1]) try: circuit.point(CPIGate()) except ValueError: return assert False, 'Should not have reached here.' def test_invalid_value_2(self) -> None: circuit = Circuit(2) circuit.append_gate(HGate(), [0]) circuit.append_gate(CNOTGate(), [0, 1]) try: circuit.point(XGate()) except ValueError: return assert False, 'Should not have reached here.' def test_example(self) -> None: circuit = Circuit(1) opH = Operation(HGate(), [0]) circuit.append(opH) assert circuit.point(opH).__repr__( ) == '(0, 0)' opX = Operation(XGate(), [0]) circuit.append(opX) assert circuit.point(opX).__repr__( ) == '(1, 0)' class TestAppend: """This tests `circuit.append`.""" @valid_type_test(Circuit(1).append) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).append) def test_invalid_type(self) -> None: pass @given(circuits()) def test_reconstruct(self, circuit: Circuit) -> None: new_circuit = Circuit(circuit.num_qudits, circuit.radixes) for op in circuit: new_circuit.append(op) check_no_idle_cycles(new_circuit) assert new_circuit.get_unitary() == circuit.get_unitary() class TestAppendGate: """This tests `circuit.append_gate`.""" @valid_type_test(Circuit(1).append_gate) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).append_gate, [ValueError]) def test_invalid_type(self) -> None: pass @given(circuits()) def test_reconstruct(self, circuit: Circuit) -> None: new_circuit = Circuit(circuit.num_qudits, circuit.radixes) for op in circuit: new_circuit.append_gate(op.gate, op.location, op.params) check_no_idle_cycles(new_circuit) assert new_circuit.get_unitary() == circuit.get_unitary() class TestAppendCircuit: """This tests `circuit.append_circuit`.""" @valid_type_test(Circuit(1).append_circuit) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).append_circuit) def test_invalid_type(self) -> None: pass @given(circuits()) def test_reconstruct(self, circuit: Circuit) -> None: new_circuit = Circuit(circuit.num_qudits, circuit.radixes) new_circuit.append_circuit(circuit, list(range(circuit.num_qudits))) check_no_idle_cycles(new_circuit) assert new_circuit.get_unitary() == circuit.get_unitary() @given(circuits()) def test_reconstruct_larger(self, circuit: Circuit) -> None: new_circ = Circuit(circuit.num_qudits + 1, circuit.radixes + (2,)) new_circ.append_circuit(circuit, list(range(circuit.num_qudits))) check_no_idle_cycles(new_circ) circuit.append_qudit() assert new_circ.get_unitary() == circuit.get_unitary() class TestExtend: """This tests `circuit.extend`.""" @valid_type_test(Circuit(1).extend) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).extend) def test_invalid_type(self) -> None: pass @given(circuits()) def test_reconstruct(self, circuit: Circuit) -> None: new_circuit = Circuit(circuit.num_qudits, circuit.radixes) new_circuit.extend(circuit) check_no_idle_cycles(new_circuit) assert new_circuit.get_unitary() == circuit.get_unitary() class TestInsert: """This tests `circuit.insert`.""" @valid_type_test(Circuit(1).insert) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).insert, [ValueError]) def test_invalid_type(self) -> None: pass def test_empty(self) -> None: circuit = Circuit(2) circuit.insert(0, Operation(CXGate(), (0, 1))) assert circuit[0, 0] == Operation(CXGate(), (0, 1)) @given(circuits((2, 2, 2, 2)), operations(2, max_qudit=3)) def test_insert(self, circuit: Circuit, op: Operation) -> None: circuit.insert(0, op) assert circuit[0, op.location[0]] == op circuit.insert(circuit.num_cycles, op) assert circuit[-1, op.location[0]] == op check_no_idle_cycles(circuit) class TestInsertGate: """This tests `circuit.insert_gate`.""" @valid_type_test(Circuit(1).insert_gate) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).insert_gate, [ValueError]) def test_invalid_type(self) -> None: pass def test_empty(self) -> None: circuit = Circuit(2) circuit.insert_gate(0, CXGate(), (0, 1)) assert circuit[0, 0] == Operation(CXGate(), (0, 1)) @given(circuits((2, 2, 2, 2)), operations(2, max_qudit=3)) def test_insert(self, circuit: Circuit, op: Operation) -> None: circuit.insert_gate(0, op.gate, op.location, op.params) assert circuit[0, op.location[0]] == op circuit.insert_gate(circuit.num_cycles, op.gate, op.location, op.params) assert circuit[-1, op.location[0]] == op check_no_idle_cycles(circuit) class TestInsertCircuit: """This tests `circuit.insert_circuit`.""" @valid_type_test(Circuit(1).insert_circuit) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).insert_circuit, [ValueError, AttributeError]) def test_invalid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_apply(self, circuit: Circuit) -> None: new_circuit = Circuit(circuit.num_qudits, circuit.radixes) location = list(range(circuit.num_qudits)) new_circuit.insert_circuit(0, circuit, location) U = circuit.get_unitary() assert U == new_circuit.get_unitary() check_no_idle_cycles(circuit) new_circuit.insert_circuit(new_circuit.num_cycles, circuit, location) assert U @ U == new_circuit.get_unitary() check_no_idle_cycles(circuit) new_circuit.insert_circuit( 0, circuit, location, ) assert U @ U @ U == new_circuit.get_unitary() check_no_idle_cycles(circuit) class TestRemove: """This tests `circuit.remove`.""" @valid_type_test(Circuit(1).remove) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).remove) def test_invalid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_remove(self, circuit: Circuit) -> None: num_ops = circuit.num_operations while num_ops > 0: op = list(circuit.operations())[0] old_count = circuit.count(op) circuit.remove(op) assert num_ops - circuit.num_operations == 1 assert old_count - circuit.count(op) == 1 num_ops = circuit.num_operations check_no_idle_cycles(circuit) class TestRemoveAll: """This tests `circuit.remove_all`.""" @valid_type_test(Circuit(1).remove_all) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).remove_all) def test_invalid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_remove_all_op(self, circuit: Circuit) -> None: num_ops = circuit.num_operations while num_ops > 0: op = list(circuit.operations())[0] old_count = circuit.count(op) circuit.remove_all(op) assert num_ops - circuit.num_operations == old_count assert circuit.count(op) == 0 with pytest.raises((ValueError, IndexError)): circuit.point(op) num_ops = circuit.num_operations check_no_idle_cycles(circuit) @given(circuits((2, 2, 2, 2))) def test_remove_all_gate(self, circuit: Circuit) -> None: num_ops = circuit.num_operations while num_ops > 0: op = list(circuit.operations())[0] old_count = circuit.count(op.gate) circuit.remove_all(op.gate) assert num_ops - circuit.num_operations == old_count assert circuit.count(op.gate) == 0 with pytest.raises((ValueError, IndexError)): circuit.point(op.gate) num_ops = circuit.num_operations check_no_idle_cycles(circuit) class TestCount: """This tests `circuit.count`.""" @valid_type_test(Circuit(1).count) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).count) def test_invalid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_count_op(self, circuit: Circuit) -> None: for op in circuit: count = circuit.count(op) start = (0, 0) for i in range(count): start = circuit.point(op, start) start = (start[0] + 1, 0) with pytest.raises((ValueError, IndexError)): circuit.point(op, start) @given(circuits((2, 2, 2, 2))) def test_count_gate(self, circuit: Circuit) -> None: for op in circuit: count = circuit.count(op.gate) assert count == len([op2 for op2 in circuit if op2.gate == op.gate]) class TestPop: """This tests `circuit.pop`.""" @valid_type_test(Circuit(1).pop) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).pop) def test_invalid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_pop_all(self, circuit: Circuit) -> None: for x in range(circuit.num_operations): assert isinstance(circuit.pop(), Operation) check_no_idle_cycles(circuit) assert circuit.num_operations == 0 class TestBatchPop: """This tests `circuit.batch_pop`.""" @valid_type_test(Circuit(1).batch_pop) def test_valid_type(self) -> None: pass @invalid_type_test(Circuit(1).batch_pop, [IndexError]) def test_invalid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_batch_pop_all(self, circuit: Circuit) -> None: if circuit.num_operations == 0: return pts = [ (x, y) for x in range(circuit.num_cycles) for y in range(circuit.num_qudits) ] popped_circuit = circuit.batch_pop(pts) assert isinstance(popped_circuit, Circuit) check_no_idle_cycles(popped_circuit) assert circuit.num_operations == 0 class TestReplace: """This tests `circuit.replace`.""" @valid_type_test(Circuit(1).replace) def test_valid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_replace(self, circuit: Circuit) -> None: if circuit.num_operations == 0: return op = list(circuit.operations())[0] point = circuit.point(op) U = circuit.get_unitary() circuit.replace(point, op) assert circuit.get_unitary() == U class TestBatchReplace: """This tests `circuit.replace`.""" @valid_type_test(Circuit(1).batch_replace) def test_valid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_batch_replace(self, circuit: Circuit) -> None: ops = list(circuit.operations()) ops = ops[:1] if len(ops) > 2 else ops points = [circuit.point(op) for op in ops] U = circuit.get_unitary() circuit.batch_replace(points, ops) assert circuit.get_unitary() == U class TestReplaceGate: """This tests `circuit.replace_gate`.""" @valid_type_test(Circuit(1).replace) def test_valid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_replace(self, circuit: Circuit) -> None: if circuit.num_operations == 0: return op = list(circuit.operations())[0] point = circuit.point(op) U = circuit.get_unitary() circuit.replace_gate(point, op.gate, op.location, op.params) assert circuit.get_unitary() == U class TestReplaceWithCircuit: """This tests `circuit.replace_with_circuit`.""" @valid_type_test(Circuit(1).replace) def test_valid_type(self) -> None: pass @given(circuits((2, 2, 2, 2))) def test_replace(self, circuit: Circuit) -> None: if circuit.num_operations == 0: return op = list(circuit.operations())[0] circ = Circuit.from_operation(op) point = circuit.point(op) U = circuit.get_unitary() circuit.replace_with_circuit(point, circ) assert circuit.get_unitary() == U class TestCopy: """This tests `circuit.copy`.""" @given(circuits((2, 2, 2, 2))) def test_copy(self, circuit: Circuit) -> None: new_circuit = circuit.copy() new_circuit.get_unitary() == circuit.get_unitary() class TestBecome: """This tests `circuit.copy`.""" @given(circuits((2, 2, 2, 2))) def test_become(self, circuit: Circuit) -> None: new_circuit = Circuit(circuit.num_qudits, circuit.radixes) new_circuit.become(circuit) new_circuit.get_unitary() == circuit.get_unitary() class TestClear: """This tests `circuit.clear`.""" @given(circuits((2, 2, 2, 2))) def test_clear(self, circuit: Circuit) -> None: circuit.clear() assert circuit.num_operations == 0 assert len(circuit.gate_set) == 0 assert circuit.depth == 0 assert circuit.parallelism == 0 assert circuit.num_cycles == 0 assert len(circuit.active_qudits) == 0
{"hexsha": "530f60877c1187e365901f57c99067cae5d58b89", "size": 22840, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/ir/circuit/test_op_gate_circ_methods.py", "max_stars_repo_name": "jkalloor3/bqskit", "max_stars_repo_head_hexsha": "ad34a6eae3c0e62d2bd960cd4cd841ba8e845811", "max_stars_repo_licenses": ["BSD-3-Clause-LBNL"], "max_stars_count": 13, "max_stars_repo_stars_event_min_datetime": "2021-05-26T21:32:26.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-15T17:48:10.000Z", "max_issues_repo_path": "tests/ir/circuit/test_op_gate_circ_methods.py", "max_issues_repo_name": "jkalloor3/bqskit", "max_issues_repo_head_hexsha": "ad34a6eae3c0e62d2bd960cd4cd841ba8e845811", "max_issues_repo_licenses": ["BSD-3-Clause-LBNL"], "max_issues_count": 20, "max_issues_repo_issues_event_min_datetime": "2021-05-26T20:17:15.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-27T20:04:10.000Z", "max_forks_repo_path": "tests/ir/circuit/test_op_gate_circ_methods.py", "max_forks_repo_name": "jkalloor3/bqskit", "max_forks_repo_head_hexsha": "ad34a6eae3c0e62d2bd960cd4cd841ba8e845811", "max_forks_repo_licenses": ["BSD-3-Clause-LBNL"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2021-10-05T16:00:47.000Z", "max_forks_repo_forks_event_max_datetime": "2021-10-08T01:30:06.000Z", "avg_line_length": 32.2598870056, "max_line_length": 80, "alphanum_fraction": 0.6124343257, "include": true, "reason": "import numpy", "num_tokens": 5718}
import torch from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import recall_score import numpy as np def torch_to_numpy(y): if torch.cuda.is_available(): return y.detach().cpu().numpy() return y.detach().numpy() def cont_to_binary(y): return [1 if x >= 0.5 else 0 for x in y] def recall(y_hat, y): y = torch_to_numpy(y) y_hat = cont_to_binary(torch_to_numpy(y_hat)) return recall_score(y, y_hat) def f1(y_hat, y): y = torch_to_numpy(y) y_hat = cont_to_binary(torch_to_numpy(y_hat)) return f1_score(y, y_hat) def accuracy(y_hat, y): final_y_hat = [] if torch.cuda.is_available(): y_hat = y_hat.detach().cpu().numpy() y = y.detach().cpu().numpy() else: y_hat = y_hat.detach().numpy() y = y.detach().numpy() final_y_hat += [1 if x > 0.5 else 0 for x in y_hat] return (sum(1 for a, b in zip(final_y_hat, y) if a == b) / float(len(final_y_hat)))*100 def cm(y_hat, y): final_y_hat = [] final_y = [] if torch.cuda.is_available(): y_hat = y_hat.detach().cpu().numpy() y = y.detach().cpu().numpy() else: y_hat = y_hat.detach().numpy() y = y.detach().numpy() final_y_hat += [1 if x > 0.5 else 0 for x in y_hat] final_y += [1 if x > 0.5 else 0 for x in y] tn, fp, fn, tp = confusion_matrix(final_y, final_y_hat).ravel() # False Positive, False, negative, True positive, true negative return [tp, tn, fp, fn] def average_array(data): if data == []: return 0 return sum(data)/len(data) def average_arrays(data): return np.average(data, axis=0)
{"hexsha": "d9f05f217bd5db29ba806d6fc952d8d43e6fe958", "size": 1550, "ext": "py", "lang": "Python", "max_stars_repo_path": "calc.py", "max_stars_repo_name": "josharnoldjosh/visdom-plot", "max_stars_repo_head_hexsha": "fde386a4c0dc6b842de4eb59487866b0ebf46706", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2019-07-15T15:44:04.000Z", "max_stars_repo_stars_event_max_datetime": "2019-07-15T15:44:04.000Z", "max_issues_repo_path": "calc.py", "max_issues_repo_name": "josharnoldjosh/visdom-plot", "max_issues_repo_head_hexsha": "fde386a4c0dc6b842de4eb59487866b0ebf46706", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "calc.py", "max_forks_repo_name": "josharnoldjosh/visdom-plot", "max_forks_repo_head_hexsha": "fde386a4c0dc6b842de4eb59487866b0ebf46706", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.6785714286, "max_line_length": 88, "alphanum_fraction": 0.6780645161, "include": true, "reason": "import numpy", "num_tokens": 460}
# Based on https://colab.research.google.com/github/reiinakano/neural-painters/blob/master/notebooks/generate_stroke_examples.ipynb from lib import surface, tiledsurface, brush import torch import numpy as np from PIL import Image def point_on_curve_1(t, cx, cy, sx, sy, x1, y1, x2, y2): ratio = t / 100.0 x3, y3 = multiply_add(sx, sy, x1, y1, ratio) x4, y4 = multiply_add(cx, cy, x2, y2, ratio) x5, y5 = difference(x3, y3, x4, y4) x, y = multiply_add(x3, y3, x5, y5, ratio) return x, y def length_and_normal(x1, y1, x2, y2): x, y = difference(x1, y1, x2, y2) length = np.sqrt(x * x + y * y) if length == 0.0: x, y = 0.0, 0.0 else: x, y = x / length, y / length return length, x, y def multiply_add(x1, y1, x2, y2, d): x3, y3 = multiply(x2, y2, d) x, y = add(x1, y1, x3, y3) return x, y def multiply(x, y, d): # Multiply vector x = x * d y = y * d return x, y def add(x1, y1, x2, y2): # Add vectors x = x1 + x2 y = y1 + y2 return x, y def difference(x1, y1, x2, y2): # Difference in x and y between two points x = x2 - x1 y = y2 - y1 return x, y def midpoint(x1, y1, x2, y2): # Midpoint between 2 points x = (x1 + x2) / 2.0 y = (y1 + y2) / 2.0 return x, y class MyPaintImagesDataLoader: def __init__(self, H=32, W=32): self.rng = np.random.default_rng(42) self.head = 0.25 self.tail = 0.75 self.surface = tiledsurface.Surface() with open("gan_stroke_generator/brushes/classic/dry_brush.myb") as brush_file: self.brush_info = brush.BrushInfo(brush_file.read()) self.brush = brush.Brush(self.brush_info) self.H = H self.W = W self.num_action = 9 self.num_images = int(10e9) def _stroke_to(self, x, y, pressure): duration = 0.1 self.brush.stroke_to( self.surface.backend, x, y, pressure, 0.0, 0.0, duration, 0.0, 0.0, 0.0 ) self.surface.end_atomic() self.surface.begin_atomic() def _line_settings(self, entry_pressure, pressure): p2 = (entry_pressure + pressure) / 2 prange1 = p2 - entry_pressure prange2 = pressure - p2 return p2, prange1, prange2 def curve( self, control_x, control_y, start_x, start_y, ex, ey, entry_pressure, pressure ): ( midpoint_p, prange1, prange2, ) = self._line_settings(entry_pressure, pressure) points_in_curve = 100 mx, my = midpoint(start_x, start_y, ex, ey) length, nx, ny = length_and_normal(mx, my, control_x, control_y) cx, cy = multiply_add(mx, my, nx, ny, length * 2) x1, y1 = difference(start_x, start_y, cx, cy) x2, y2 = difference(cx, cy, ex, ey) head = points_in_curve * self.head head_range = int(head) + 1 tail = points_in_curve * self.tail tail_range = int(tail) + 1 tail_length = points_in_curve - tail # Beginning px, py = point_on_curve_1(1, cx, cy, start_x, start_y, x1, y1, x2, y2) length, nx, ny = length_and_normal(start_x, start_y, px, py) bx, by = multiply_add(start_x, start_y, nx, ny, 0.25) self._stroke_to(bx, by, entry_pressure) pressure = abs(1 / head * prange1 + entry_pressure) self._stroke_to(px, py, pressure) for i in range(2, head_range): px, py = point_on_curve_1(i, cx, cy, start_x, start_y, x1, y1, x2, y2) pressure = abs(i / head * prange1 + entry_pressure) self._stroke_to(px, py, pressure) # Middle for i in range(head_range, tail_range): px, py = point_on_curve_1(i, cx, cy, start_x, start_y, x1, y1, x2, y2) self._stroke_to(px, py, midpoint_p) # End for i in range(tail_range, points_in_curve + 1): px, py = point_on_curve_1(i, cx, cy, start_x, start_y, x1, y1, x2, y2) pressure = abs((i - tail) / tail_length * prange2 + midpoint_p) self._stroke_to(px, py, pressure) return pressure def draw_stroke( self, start_x, start_y, end_x, end_y, control_x, control_y, entry_pressure, pressure, size, color_rgb, ): start_x = start_x * self.H start_y = start_y * self.W end_x = end_x * self.H end_y = end_y * self.W control_x = control_x * self.H control_y = control_y * self.W self.brush.brushinfo.set_color_rgb(color_rgb) self.brush.brushinfo.set_base_value("radius_logarithmic", size) # Move brush to starting point without leaving it on the canvas. self._stroke_to(start_x, start_y, 0) self.curve( control_x, control_y, start_x, start_y, end_x, end_y, entry_pressure, pressure, ) # Relieve brush pressure for next jump self._stroke_to(end_x, end_y, 0) self.surface.end_atomic() self.surface.begin_atomic() def get_mypaint_image( self, start_x, start_y, end_x, end_y, control_x, control_y, entry_pressure, pressure, size, color_rgb, ): self.draw_stroke( start_x, start_y, end_x, end_y, control_x, control_y, entry_pressure, pressure, size, color_rgb, ) rect = [0, 0, self.H, self.W] scanline_strips = surface.scanline_strips_iter(self.surface, rect, single_tile_pattern=True) img = next(scanline_strips) self.surface.clear() self.surface.end_atomic() self.surface.begin_atomic() return img def random_action(self): return self.rng.uniform(size=[self.num_action]) def __len__(self): return self.num_images def __iter__(self): for _ in range(self.num_images): action = self.random_action() img = self.get_mypaint_image( start_x=action[0], start_y=action[1], end_x=action[2], end_y=action[3], control_x=action[4], control_y=action[5], pressure=action[6], entry_pressure=action[7], size=action[8], color_rgb=[1, 1, 1], ) img = Image.fromarray(img).convert('L') # We need to create batch of size 1 img = np.expand_dims(img, axis=0) # We need to create a channel for img img = np.expand_dims(img, axis=0) action = np.expand_dims(action, axis=0) yield { "stroke": torch.from_numpy(img.astype(float) / 255.0), "action": torch.from_numpy(action), }
{"hexsha": "0a6eb0aa97bb599028187806421d967b0b35d7f0", "size": 7085, "ext": "py", "lang": "Python", "max_stars_repo_path": "gan_stroke_generator/mypaint_images_data_loader.py", "max_stars_repo_name": "mxpoliakov/PaintTransformerGAN", "max_stars_repo_head_hexsha": "be845607ad1d839319ab9d11b9c6de3f7c11ded0", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "gan_stroke_generator/mypaint_images_data_loader.py", "max_issues_repo_name": "mxpoliakov/PaintTransformerGAN", "max_issues_repo_head_hexsha": "be845607ad1d839319ab9d11b9c6de3f7c11ded0", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "gan_stroke_generator/mypaint_images_data_loader.py", "max_forks_repo_name": "mxpoliakov/PaintTransformerGAN", "max_forks_repo_head_hexsha": "be845607ad1d839319ab9d11b9c6de3f7c11ded0", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.2768595041, "max_line_length": 131, "alphanum_fraction": 0.5525758645, "include": true, "reason": "import numpy", "num_tokens": 2014}
# -*- coding: utf-8 -*- # File generated according to Generator/ClassesRef/Simulation/OP.csv # WARNING! All changes made in this file will be lost! """Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Simulation/OP """ from os import linesep from sys import getsizeof from logging import getLogger from ._check import check_var, raise_ from ..Functions.get_logger import get_logger from ..Functions.save import save from ..Functions.load import load_init_dict from ..Functions.Load.import_class import import_class from copy import deepcopy from ._frozen import FrozenClass # Import all class method # Try/catch to remove unnecessary dependencies in unused method try: from ..Methods.Simulation.OP.get_machine_from_parent import get_machine_from_parent except ImportError as error: get_machine_from_parent = error from numpy import isnan from ._check import InitUnKnowClassError class OP(FrozenClass): """Define the Operating Point of the simulation""" VERSION = 1 # cf Methods.Simulation.OP.get_machine_from_parent if isinstance(get_machine_from_parent, ImportError): get_machine_from_parent = property( fget=lambda x: raise_( ImportError( "Can't use OP method get_machine_from_parent: " + str(get_machine_from_parent) ) ) ) else: get_machine_from_parent = get_machine_from_parent # generic save method is available in all object save = save # get_logger method is available in all object get_logger = get_logger def __init__( self, N0=None, felec=None, Tem_av_ref=None, Pem_av_ref=None, Pem_av_in=None, efficiency=None, init_dict=None, init_str=None, ): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for pyleecan type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "N0" in list(init_dict.keys()): N0 = init_dict["N0"] if "felec" in list(init_dict.keys()): felec = init_dict["felec"] if "Tem_av_ref" in list(init_dict.keys()): Tem_av_ref = init_dict["Tem_av_ref"] if "Pem_av_ref" in list(init_dict.keys()): Pem_av_ref = init_dict["Pem_av_ref"] if "Pem_av_in" in list(init_dict.keys()): Pem_av_in = init_dict["Pem_av_in"] if "efficiency" in list(init_dict.keys()): efficiency = init_dict["efficiency"] # Set the properties (value check and convertion are done in setter) self.parent = None self.N0 = N0 self.felec = felec self.Tem_av_ref = Tem_av_ref self.Pem_av_ref = Pem_av_ref self.Pem_av_in = Pem_av_in self.efficiency = efficiency # The class is frozen, for now it's impossible to add new properties self._freeze() def __str__(self): """Convert this object in a readeable string (for print)""" OP_str = "" if self.parent is None: OP_str += "parent = None " + linesep else: OP_str += "parent = " + str(type(self.parent)) + " object" + linesep OP_str += "N0 = " + str(self.N0) + linesep OP_str += "felec = " + str(self.felec) + linesep OP_str += "Tem_av_ref = " + str(self.Tem_av_ref) + linesep OP_str += "Pem_av_ref = " + str(self.Pem_av_ref) + linesep OP_str += "Pem_av_in = " + str(self.Pem_av_in) + linesep OP_str += "efficiency = " + str(self.efficiency) + linesep return OP_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False if other.N0 != self.N0: return False if other.felec != self.felec: return False if other.Tem_av_ref != self.Tem_av_ref: return False if other.Pem_av_ref != self.Pem_av_ref: return False if other.Pem_av_in != self.Pem_av_in: return False if other.efficiency != self.efficiency: return False return True def compare(self, other, name="self", ignore_list=None, is_add_value=False): """Compare two objects and return list of differences""" if ignore_list is None: ignore_list = list() if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() if ( other._N0 is not None and self._N0 is not None and isnan(other._N0) and isnan(self._N0) ): pass elif other._N0 != self._N0: if is_add_value: val_str = " (self=" + str(self._N0) + ", other=" + str(other._N0) + ")" diff_list.append(name + ".N0" + val_str) else: diff_list.append(name + ".N0") if ( other._felec is not None and self._felec is not None and isnan(other._felec) and isnan(self._felec) ): pass elif other._felec != self._felec: if is_add_value: val_str = ( " (self=" + str(self._felec) + ", other=" + str(other._felec) + ")" ) diff_list.append(name + ".felec" + val_str) else: diff_list.append(name + ".felec") if ( other._Tem_av_ref is not None and self._Tem_av_ref is not None and isnan(other._Tem_av_ref) and isnan(self._Tem_av_ref) ): pass elif other._Tem_av_ref != self._Tem_av_ref: if is_add_value: val_str = ( " (self=" + str(self._Tem_av_ref) + ", other=" + str(other._Tem_av_ref) + ")" ) diff_list.append(name + ".Tem_av_ref" + val_str) else: diff_list.append(name + ".Tem_av_ref") if ( other._Pem_av_ref is not None and self._Pem_av_ref is not None and isnan(other._Pem_av_ref) and isnan(self._Pem_av_ref) ): pass elif other._Pem_av_ref != self._Pem_av_ref: if is_add_value: val_str = ( " (self=" + str(self._Pem_av_ref) + ", other=" + str(other._Pem_av_ref) + ")" ) diff_list.append(name + ".Pem_av_ref" + val_str) else: diff_list.append(name + ".Pem_av_ref") if ( other._Pem_av_in is not None and self._Pem_av_in is not None and isnan(other._Pem_av_in) and isnan(self._Pem_av_in) ): pass elif other._Pem_av_in != self._Pem_av_in: if is_add_value: val_str = ( " (self=" + str(self._Pem_av_in) + ", other=" + str(other._Pem_av_in) + ")" ) diff_list.append(name + ".Pem_av_in" + val_str) else: diff_list.append(name + ".Pem_av_in") if ( other._efficiency is not None and self._efficiency is not None and isnan(other._efficiency) and isnan(self._efficiency) ): pass elif other._efficiency != self._efficiency: if is_add_value: val_str = ( " (self=" + str(self._efficiency) + ", other=" + str(other._efficiency) + ")" ) diff_list.append(name + ".efficiency" + val_str) else: diff_list.append(name + ".efficiency") # Filter ignore differences diff_list = list(filter(lambda x: x not in ignore_list, diff_list)) return diff_list def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object S += getsizeof(self.N0) S += getsizeof(self.felec) S += getsizeof(self.Tem_av_ref) S += getsizeof(self.Pem_av_ref) S += getsizeof(self.Pem_av_in) S += getsizeof(self.efficiency) return S def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs): """ Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int How to handle ndarray (0: tolist, 1: copy, 2: nothing) keep_function : bool True to keep the function object, else return str Optional keyword input parameter is for internal use only and may prevent json serializability. """ OP_dict = dict() OP_dict["N0"] = self.N0 OP_dict["felec"] = self.felec OP_dict["Tem_av_ref"] = self.Tem_av_ref OP_dict["Pem_av_ref"] = self.Pem_av_ref OP_dict["Pem_av_in"] = self.Pem_av_in OP_dict["efficiency"] = self.efficiency # The class name is added to the dict for deserialisation purpose OP_dict["__class__"] = "OP" return OP_dict def copy(self): """Creates a deepcopy of the object""" # Handle deepcopy of all the properties N0_val = self.N0 felec_val = self.felec Tem_av_ref_val = self.Tem_av_ref Pem_av_ref_val = self.Pem_av_ref Pem_av_in_val = self.Pem_av_in efficiency_val = self.efficiency # Creates new object of the same type with the copied properties obj_copy = type(self)( N0=N0_val, felec=felec_val, Tem_av_ref=Tem_av_ref_val, Pem_av_ref=Pem_av_ref_val, Pem_av_in=Pem_av_in_val, efficiency=efficiency_val, ) return obj_copy def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.N0 = None self.felec = None self.Tem_av_ref = None self.Pem_av_ref = None self.Pem_av_in = None self.efficiency = None def _get_N0(self): """getter of N0""" return self._N0 def _set_N0(self, value): """setter of N0""" check_var("N0", value, "float") self._N0 = value N0 = property( fget=_get_N0, fset=_set_N0, doc=u"""Rotor speed :Type: float """, ) def _get_felec(self): """getter of felec""" return self._felec def _set_felec(self, value): """setter of felec""" check_var("felec", value, "float") self._felec = value felec = property( fget=_get_felec, fset=_set_felec, doc=u"""Electrical Frequency :Type: float """, ) def _get_Tem_av_ref(self): """getter of Tem_av_ref""" return self._Tem_av_ref def _set_Tem_av_ref(self, value): """setter of Tem_av_ref""" check_var("Tem_av_ref", value, "float") self._Tem_av_ref = value Tem_av_ref = property( fget=_get_Tem_av_ref, fset=_set_Tem_av_ref, doc=u"""Output average electromagnetic torque :Type: float """, ) def _get_Pem_av_ref(self): """getter of Pem_av_ref""" return self._Pem_av_ref def _set_Pem_av_ref(self, value): """setter of Pem_av_ref""" check_var("Pem_av_ref", value, "float") self._Pem_av_ref = value Pem_av_ref = property( fget=_get_Pem_av_ref, fset=_set_Pem_av_ref, doc=u"""Output average Electromagnetic Power :Type: float """, ) def _get_Pem_av_in(self): """getter of Pem_av_in""" return self._Pem_av_in def _set_Pem_av_in(self, value): """setter of Pem_av_in""" check_var("Pem_av_in", value, "float") self._Pem_av_in = value Pem_av_in = property( fget=_get_Pem_av_in, fset=_set_Pem_av_in, doc=u"""Input average power (e.g. for generator mode) :Type: float """, ) def _get_efficiency(self): """getter of efficiency""" return self._efficiency def _set_efficiency(self, value): """setter of efficiency""" check_var("efficiency", value, "float") self._efficiency = value efficiency = property( fget=_get_efficiency, fset=_set_efficiency, doc=u"""Efficiency :Type: float """, )
{"hexsha": "7b25b9f195638c9ec6fda5e889bbd21e50a01ac7", "size": 14008, "ext": "py", "lang": "Python", "max_stars_repo_path": "pyleecan/Classes/OP.py", "max_stars_repo_name": "Eomys/Pyleecan", "max_stars_repo_head_hexsha": "4d7f0cbabf0311006963e7a2f435db2ecd901118", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2017-11-27T10:14:34.000Z", "max_stars_repo_stars_event_max_datetime": "2018-09-20T11:30:32.000Z", "max_issues_repo_path": "pyleecan/Classes/OP.py", "max_issues_repo_name": "Eomys/Pyleecan", "max_issues_repo_head_hexsha": "4d7f0cbabf0311006963e7a2f435db2ecd901118", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pyleecan/Classes/OP.py", "max_forks_repo_name": "Eomys/Pyleecan", "max_forks_repo_head_hexsha": "4d7f0cbabf0311006963e7a2f435db2ecd901118", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.96, "max_line_length": 105, "alphanum_fraction": 0.5379069103, "include": true, "reason": "from numpy", "num_tokens": 3345}
import random from itertools import product from collections import namedtuple import numpy as np import tensorflow as tf from neupy import layers from neupy.utils import asfloat, shape_to_tuple from neupy.layers.convolutions import conv_output_shape, deconv_output_shape from neupy.exceptions import LayerConnectionError from base import BaseTestCase class ConvLayersTestCase(BaseTestCase): def get_shape(self, value): shape = self.eval(tf.shape(value)) return tuple(shape) def test_convolution_params(self): inp = layers.Input((5, 5, 1)) conv = layers.Convolution((2, 2, 6)) # Propagate data through the network in # order to trigger initialization (inp >> conv).outputs self.assertEqual((2, 2, 1, 6), self.get_shape(conv.weight)) self.assertEqual((6,), self.get_shape(conv.bias)) def test_conv_shapes(self): paddings = ['valid', 'same'] strides = [(1, 1), (2, 1), (2, 2)] x = asfloat(np.random.random((20, 12, 11, 2))) for stride, padding in product(strides, paddings): network = layers.join( layers.Input((12, 11, 2)), layers.Convolution((3, 4, 5), padding=padding, stride=stride), ) y = self.eval(network.output(x)) self.assertShapesEqual( y.shape[1:], network.output_shape[1:], msg='padding={} and stride={}'.format(padding, stride), ) def test_valid_strides(self): Case = namedtuple("Case", "stride expected_output") testcases = ( Case(stride=(4, 4), expected_output=(4, 4)), Case(stride=(4,), expected_output=(4, 1)), Case(stride=4, expected_output=(4, 4)), ) for testcase in testcases: conv = layers.Convolution( (2, 3, 1), stride=testcase.stride) msg = "Input stride size: {}".format(testcase.stride) self.assertEqual( testcase.expected_output, conv.stride, msg=msg) def test_conv_invalid_strides(self): invalid_strides = ( (4, 4, 4), -10, (-5, -5), (-5, 5), (-5, 0), ) for stride in invalid_strides: msg = "Input stride size: {}".format(stride) with self.assertRaises(ValueError, msg=msg): layers.Convolution((2, 3, 1), stride=stride) def test_valid_padding(self): valid_paddings = ('VALID', 'SAME', 'same', 'valid', 10, 1, (7, 1)) for padding in valid_paddings: layers.Convolution((2, 3, 1), padding=padding) def test_invalid_padding(self): invalid_paddings = ('invalid mode', -10, (10, -5)) for padding in invalid_paddings: msg = "Padding: {}".format(padding) with self.assertRaises(ValueError, msg=msg): layers.Convolution((2, 3, 1), padding=padding) def test_conv_output_shape_func_exceptions(self): with self.assertRaises(ValueError): # Wrong stride value conv_output_shape( dimension_size=5, filter_size=5, padding='VALID', stride='not int') with self.assertRaises(ValueError): # Wrong filter size value conv_output_shape( dimension_size=5, filter_size='not int', padding='SAME', stride=5) with self.assertRaisesRegexp(ValueError, "unknown \S+ padding value"): # Wrong padding value conv_output_shape( dimension_size=5, filter_size=5, padding=1.5, stride=5, ) def test_conv_output_shape_int_padding(self): output_shape = conv_output_shape( dimension_size=10, padding=3, filter_size=5, stride=5, ) self.assertEqual(output_shape, 3) def test_conv_unknown_dim_size(self): shape = conv_output_shape( dimension_size=None, filter_size=5, padding='VALID', stride=5, ) self.assertEqual(shape, None) def test_conv_invalid_padding_exception(self): error_msg = "greater or equal to zero" with self.assertRaisesRegexp(ValueError, error_msg): layers.Convolution((1, 3, 3), padding=-1) error_msg = "Tuple .+ greater or equal to zero" with self.assertRaisesRegexp(ValueError, error_msg): layers.Convolution((1, 3, 3), padding=(2, -1)) with self.assertRaisesRegexp(ValueError, "invalid string value"): layers.Convolution((1, 3, 3), padding='NOT_SAME') with self.assertRaisesRegexp(ValueError, "contains two elements"): layers.Convolution((1, 3, 3), padding=(3, 3, 3)) def test_conv_invalid_input_shape(self): with self.assertRaises(LayerConnectionError): layers.join( layers.Input(10), layers.Convolution((1, 3, 3)), ) def test_conv_with_custom_int_padding(self): network = layers.join( layers.Input((5, 5, 1)), layers.Convolution((3, 3, 1), bias=0, weight=1, padding=2), ) x = asfloat(np.ones((1, 5, 5, 1))) expected_output = np.array([ [1, 2, 3, 3, 3, 2, 1], [2, 4, 6, 6, 6, 4, 2], [3, 6, 9, 9, 9, 6, 3], [3, 6, 9, 9, 9, 6, 3], [3, 6, 9, 9, 9, 6, 3], [2, 4, 6, 6, 6, 4, 2], [1, 2, 3, 3, 3, 2, 1], ]).reshape((1, 7, 7, 1)) actual_output = self.eval(network.output(x)) np.testing.assert_array_almost_equal(expected_output, actual_output) def test_conv_with_custom_tuple_padding(self): inp = layers.Input((5, 5, 1)) conv = layers.Convolution((3, 3, 1), bias=0, weight=1, padding=(0, 2)) network = (inp >> conv) network.outputs x = asfloat(np.ones((1, 5, 5, 1))) expected_output = np.array([ [3, 6, 9, 9, 9, 6, 3], [3, 6, 9, 9, 9, 6, 3], [3, 6, 9, 9, 9, 6, 3], ]).reshape((1, 3, 7, 1)) actual_output = self.eval(network.output(x)) np.testing.assert_array_almost_equal(expected_output, actual_output) self.assertShapesEqual(network.output_shape, (None, 3, 7, 1)) def test_conv_without_bias(self): inp = layers.Input((5, 5, 1)) conv = layers.Convolution((3, 3, 1), bias=None, weight=1) network = inp >> conv network.outputs x = asfloat(np.ones((1, 5, 5, 1))) expected_output = 9 * np.ones((1, 3, 3, 1)) actual_output = self.eval(network.output(x)) np.testing.assert_array_almost_equal(expected_output, actual_output) def test_conv_unknown_input_width_and_height(self): network = layers.join( layers.Input((None, None, 3)), layers.Convolution((3, 3, 5)), ) self.assertShapesEqual(network.output_shape, (None, None, None, 5)) input_value = asfloat(np.ones((1, 12, 12, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 10, 10, 5)) input_value = asfloat(np.ones((1, 21, 21, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 19, 19, 5)) def test_dilated_convolution(self): network = layers.join( layers.Input((6, 6, 1)), layers.Convolution((3, 3, 1), dilation=2, weight=1, bias=None), ) input_value = asfloat(np.arange(36).reshape(1, 6, 6, 1)) actual_output = self.eval(network.output(input_value)) self.assertShapesEqual(actual_output.shape, (1, 2, 2, 1)) self.assertShapesEqual( actual_output.shape[1:], network.output_shape[1:]) actual_output = actual_output[0, :, :, 0] expected_output = np.array([ [126, 135], # every row value adds +1 per filter value (+9) [180, 189], # every col value adds +6 per filter value (+54) ]) np.testing.assert_array_almost_equal(actual_output, expected_output) def test_convolution_repr(self): layer = layers.Convolution((3, 3, 10), name='conv') self.assertEqual( str(layer), ( "Convolution((3, 3, 10), padding='VALID', stride=(1, 1), " "dilation=(1, 1), weight=HeNormal(gain=2), bias=Constant(0), " "name='conv')" ) ) def test_conv_output_shape_when_input_unknown(self): block = layers.join( layers.Convolution((3, 3, 32)), layers.Relu(), layers.BatchNorm(), ) self.assertShapesEqual(block.input_shape, None) self.assertShapesEqual(block.output_shape, (None, None, None, 32)) class DeconvolutionTestCase(BaseTestCase): def test_deconvolution(self): network = layers.join( layers.Input((10, 10, 3)), layers.Convolution((3, 3, 7)), layers.Deconvolution((3, 3, 4)), ) shapes = network.output_shapes_per_layer shapes = {l: shape_to_tuple(s) for l, s in shapes.items()} self.assertDictEqual( shapes, { network.layers[0]: (None, 10, 10, 3), network.layers[1]: (None, 8, 8, 7), network.layers[2]: (None, 10, 10, 4), } ) input_value = asfloat(np.random.random((1, 10, 10, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 10, 10, 4)) def test_deconvolution_same_padding(self): network = layers.join( layers.Input((10, 10, 3)), layers.Convolution((3, 3, 7), padding='same'), layers.Deconvolution((3, 3, 4), padding='same'), ) shapes = network.output_shapes_per_layer shapes = {l: shape_to_tuple(s) for l, s in shapes.items()} self.assertDictEqual( shapes, { network.layers[0]: (None, 10, 10, 3), network.layers[1]: (None, 10, 10, 7), network.layers[2]: (None, 10, 10, 4), } ) input_value = asfloat(np.random.random((1, 10, 10, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 10, 10, 4)) def test_deconvolution_int_padding(self): network = layers.join( layers.Input((10, 10, 3)), layers.Convolution((3, 3, 7), padding=9), layers.Deconvolution((3, 3, 4), padding=9), ) shapes = network.output_shapes_per_layer shapes = {l: shape_to_tuple(s) for l, s in shapes.items()} self.assertDictEqual( shapes, { network.layers[0]: (None, 10, 10, 3), network.layers[1]: (None, 26, 26, 7), network.layers[2]: (None, 10, 10, 4), } ) input_value = asfloat(np.random.random((1, 10, 10, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 10, 10, 4)) def test_deconvolution_tuple_padding(self): network = layers.join( layers.Input((10, 10, 3)), layers.Convolution((3, 3, 7), padding=(9, 3)), layers.Deconvolution((3, 3, 4), padding=(9, 3)), ) shapes = network.output_shapes_per_layer shapes = {l: shape_to_tuple(s) for l, s in shapes.items()} self.assertSequenceEqual( shapes, { network.layers[0]: (None, 10, 10, 3), network.layers[1]: (None, 26, 14, 7), network.layers[2]: (None, 10, 10, 4), } ) input_value = asfloat(np.random.random((1, 10, 10, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 10, 10, 4)) def test_deconv_unknown_input_width_and_height(self): network = layers.join( layers.Input((None, None, 3)), layers.Convolution((3, 3, 7)), layers.Deconvolution((3, 3, 4)), ) shapes = network.output_shapes_per_layer shapes = {l: shape_to_tuple(s) for l, s in shapes.items()} self.assertDictEqual( shapes, { network.layers[0]: (None, None, None, 3), network.layers[1]: (None, None, None, 7), network.layers[2]: (None, None, None, 4), } ) input_value = asfloat(np.random.random((1, 10, 10, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 10, 10, 4)) input_value = asfloat(np.random.random((1, 7, 7, 3))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape, (1, 7, 7, 4)) def test_deconv_output_shape(self): self.assertEqual(None, deconv_output_shape(None, 3, 'same', 1)) self.assertEqual(12, deconv_output_shape(10, 3, 'valid', 1)) self.assertEqual(16, deconv_output_shape(10, 7, 'valid', 1)) self.assertEqual(10, deconv_output_shape(10, 3, 'same', 1)) self.assertEqual(14, deconv_output_shape(4, 5, 'valid', 3)) self.assertEqual(12, deconv_output_shape(4, 3, 'same', 3)) self.assertEqual(12, deconv_output_shape(4, 7, 'same', 3)) def test_deconv_output_shape_exception(self): with self.assertRaisesRegexp(ValueError, "unknown \S+ padding"): deconv_output_shape(10, 3, padding='xxx', stride=1) with self.assertRaisesRegexp(ValueError, "doesn't support dilation"): deconv_output_shape(10, 3, padding='valid', stride=1, dilation=2) def test_deconvolution_for_random_cases(self): # A few random cases will check if output shape computed from # the network is the same as the shape that we get after we # propagated input through the network. for test_id in range(30): width = random.randint(7, 20) height = random.randint(7, 20) fh = random.randint(1, 7) fw = random.randint(1, 7) pad = random.choice([ 'valid', 'same', random.randint(0, 10), ( random.randint(0, 10), random.randint(0, 10), ), ]) stride = random.choice([ random.randint(1, 4), ( random.randint(1, 4), random.randint(1, 4), ), ]) print('\n------------') print("Test case #{}".format(test_id)) print('------------') print("Image shape: {}x{}".format(height, width)) print("Filter shape: {}x{}".format(fh, fw)) print("Padding: {}".format(pad)) print("Stride: {}".format(stride)) network = layers.join( layers.Input((height, width, 1)), layers.Convolution((fh, fw, 2), padding=pad, stride=stride), layers.Deconvolution((fh, fw, 1), padding=pad, stride=stride), ) input_value = asfloat(np.random.random((1, height, width, 1))) actual_output = self.eval(network.output(input_value)) self.assertEqual(actual_output.shape[1:], network.output_shape[1:]) def test_deconvolution_repr(self): layer = layers.Deconvolution((3, 3, 10), name='deconv') self.assertEqual( str(layer), ( "Deconvolution((3, 3, 10), padding='VALID', stride=(1, 1), " "weight=HeNormal(gain=2), bias=Constant(0), name='deconv')" ) )
{"hexsha": "31228390ffd504c6e9eabf6f98d46fa2f607a7d2", "size": 16048, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/layers/test_convolution.py", "max_stars_repo_name": "FrostByte266/neupy", "max_stars_repo_head_hexsha": "4b7127e5e4178b0cce023ba36542f5ad3f1d798c", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 801, "max_stars_repo_stars_event_min_datetime": "2015-09-23T09:24:47.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-29T19:19:03.000Z", "max_issues_repo_path": "tests/layers/test_convolution.py", "max_issues_repo_name": "FrostByte266/neupy", "max_issues_repo_head_hexsha": "4b7127e5e4178b0cce023ba36542f5ad3f1d798c", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 277, "max_issues_repo_issues_event_min_datetime": "2015-09-22T19:48:50.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-11T23:25:32.000Z", "max_forks_repo_path": "tests/layers/test_convolution.py", "max_forks_repo_name": "FrostByte266/neupy", "max_forks_repo_head_hexsha": "4b7127e5e4178b0cce023ba36542f5ad3f1d798c", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 194, "max_forks_repo_forks_event_min_datetime": "2015-09-23T15:03:57.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-31T13:54:46.000Z", "avg_line_length": 35.8214285714, "max_line_length": 79, "alphanum_fraction": 0.55639332, "include": true, "reason": "import numpy", "num_tokens": 4106}
function SphereGenerator() return SphereGenerator(()) end function ball_on_support(obj::SphereGenerator, arg0::List) return jcall(obj, "ballOnSupport", EnclosingBall, (List,), arg0) end
{"hexsha": "07139665f09eaa3b3283e1f18e79b8c05de75337", "size": 196, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "gen/HipparchusWrapper/GeometryWrapper/EuclideanWrapper/ThreedWrapper/sphere_generator.jl", "max_stars_repo_name": "JuliaAstrodynamics/Orekit.jl", "max_stars_repo_head_hexsha": "e2dd3d8b2085dcbb1d2c75471dab42d6ddf52c99", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2020-09-07T12:26:02.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-15T16:02:35.000Z", "max_issues_repo_path": "gen/HipparchusWrapper/GeometryWrapper/EuclideanWrapper/ThreedWrapper/sphere_generator.jl", "max_issues_repo_name": "JuliaSpace/Orekit.jl", "max_issues_repo_head_hexsha": "e2dd3d8b2085dcbb1d2c75471dab42d6ddf52c99", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2020-09-05T10:16:29.000Z", "max_issues_repo_issues_event_max_datetime": "2020-09-30T05:17:19.000Z", "max_forks_repo_path": "gen/HipparchusWrapper/GeometryWrapper/EuclideanWrapper/ThreedWrapper/sphere_generator.jl", "max_forks_repo_name": "JuliaSpace/Orekit.jl", "max_forks_repo_head_hexsha": "e2dd3d8b2085dcbb1d2c75471dab42d6ddf52c99", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 21.7777777778, "max_line_length": 68, "alphanum_fraction": 0.75, "num_tokens": 48}
from collections import deque from importlib import reload import ddpg_agents from ddpg_agents import Agent import torch import matplotlib.pyplot as plt from unityagents import UnityEnvironment import numpy as np import pandas as pd import datetime #env = UnityEnvironment(file_name='./Reacher_single/Reacher_Linux_NoVis/Reacher.x86_64') env = UnityEnvironment(file_name='./Reacher_single/Reacher_Linux/Reacher.x86_64') # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] # reset the environment env_info = env.reset(train_mode=True)[brain_name] # number of agents num_agents = len(env_info.agents) print('Number of agents:', num_agents) # size of each action action_size = brain.vector_action_space_size print('Size of each action:', action_size) # examine the state space states = env_info.vector_observations state_size = states.shape[1] print('There are {} agents. Each observes a state with length: {}'.format(states.shape[0], state_size)) print('The state for the first agent looks like:', states[0]) print('state size is {} action size is {}'.format(state_size,action_size)) def ddpg(n_episodes=1000, max_t=300, print_every=1, num_updates = 10): agent = Agent(state_size=state_size, action_size=action_size, random_seed=2, num_updates = num_updates) scores_deque = deque(maxlen=print_every) scores = [] for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=True)[brain_name] states = env_info.vector_observations agent.reset() score = np.zeros(num_agents) for t in range(max_t): if i_episode == 1 and t == 1: print('training started successfully') actions = agent.act(states,add_noise=True) # print('next action is {}'.format(action)) env_info = env.step(actions)[brain_name] next_states = env_info.vector_observations rewards = env_info.rewards dones = env_info.local_done if i_episode == 1 and t == 1: print('variables are rewards: {} actions: {}'.format(rewards,actions)) # print(done) # next_state, reward, done, _ = env.step(action) for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones): agent.step(state, action, reward, next_state, done , t) states = next_states # print('reward is {}'.format(rewards)) score += rewards if t % 10 == 0: print('episode {} action {}'.format(i_episode, t)) if np.any(done): print('completed episode {} at t of {}'.format(i_episode,t)) # print(done) break scores_deque.append(np.mean(score)) scores.append(np.mean(score)) # print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)), end="") torch.save(agent.actor_local.state_dict(), 'checkpoint_actor.pth') torch.save(agent.critic_local.state_dict(), 'checkpoint_critic.pth') if i_episode % print_every == 0: print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque))) return scores if __name__=='__main__': for i_update in [8,7,6]: scores = ddpg(300,1000,num_updates = i_update) dt = datetime.datetime.now() time_for_name = dt.strftime("%d_%H:%M") df = pd.DataFrame({'scores': scores }) df.to_csv('results/training_result{}update{}.csv'.format(time_for_name,i_update)) fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(1, len(scores)+1), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.savefig('results/training_plot{}update{}.png'.format(time_for_name,i_update))
{"hexsha": "e9eaa0b6e7aa7a0421dfced4417e5dc77f210090", "size": 3824, "ext": "py", "lang": "Python", "max_stars_repo_path": "p2_continuous-control/run_single.py", "max_stars_repo_name": "thanakijwanavit/deep-reinforcement-learning", "max_stars_repo_head_hexsha": "af057d72c6262faa9bd8426082b1f70ea00c7b9c", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "p2_continuous-control/run_single.py", "max_issues_repo_name": "thanakijwanavit/deep-reinforcement-learning", "max_issues_repo_head_hexsha": "af057d72c6262faa9bd8426082b1f70ea00c7b9c", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 12, "max_issues_repo_issues_event_min_datetime": "2019-12-16T22:23:57.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-10T00:26:35.000Z", "max_forks_repo_path": "p2_continuous-control/run_single.py", "max_forks_repo_name": "thanakijwanavit/deep-reinforcement-learning", "max_forks_repo_head_hexsha": "af057d72c6262faa9bd8426082b1f70ea00c7b9c", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 42.021978022, "max_line_length": 112, "alphanum_fraction": 0.6610878661, "include": true, "reason": "import numpy", "num_tokens": 900}
from napari_apr_viewer import napari_get_reader, napari_get_writer, napari_write_image import pyapr import numpy as np import os # tmp_path is a pytest fixture def test_writer(tmp_path): """Test writer plugin.""" file_dir = os.path.dirname(os.path.abspath(__file__)) my_test_file = os.path.join(file_dir, 'files', 'spheres_tiny.apr') reader = napari_get_reader(my_test_file) layer_data_list = reader([my_test_file, my_test_file]) layer_data_tuple = layer_data_list[0] # directory to write to target_path = os.path.join(tmp_path, 'some_dir') layer_types = [x[2] for x in layer_data_list] # get writer writer = napari_get_writer(target_path, layer_types) assert callable(writer) for i, x in enumerate(layer_data_list): if 'name' not in x[1]: x[1]['name'] = 'data{}'.format(i) # write multiple paths = writer(target_path, layer_data_list) assert isinstance(paths, list) assert len(paths) == len(layer_data_list) == 2 assert None not in paths # check correctness apr_gt = layer_data_tuple[0].apr parts_gt = layer_data_tuple[0].parts assert _read_and_compare(paths, apr_gt, parts_gt) # write single target_path = os.path.join(tmp_path, 'myfile.apr') path = napari_write_image(target_path, layer_data_tuple) assert path is not None # check correctness assert _read_and_compare(path, apr_gt, parts_gt) def _read_and_compare(path, apr_gt: pyapr.APR, parts_gt: pyapr.ShortParticles): if isinstance(path, str): apr, parts = pyapr.io.read(path) assert apr.total_number_particles() == apr_gt.total_number_particles() > 0 assert all([apr.org_dims(i) == apr_gt.org_dims(i) for i in range(3)]) assert len(parts) == len(parts_gt) np.testing.assert_allclose(np.array(parts, copy=False), np.array(parts_gt, copy=False)) return True elif isinstance(path, list): return all([_read_and_compare(p, apr_gt, parts_gt) for p in path]) return False
{"hexsha": "74470c24d308ec96ff6152ae00d50a24cd38b797", "size": 2035, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/napari_apr_viewer/_tests/test_writer.py", "max_stars_repo_name": "AdaptiveParticles/napari-apr-viewer", "max_stars_repo_head_hexsha": "cc7089bc418dd5ff08f74dce7024920d387fd6c6", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 5, "max_stars_repo_stars_event_min_datetime": "2021-12-01T07:59:07.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-24T11:24:19.000Z", "max_issues_repo_path": "src/napari_apr_viewer/_tests/test_writer.py", "max_issues_repo_name": "AdaptiveParticles/napari-apr-viewer", "max_issues_repo_head_hexsha": "cc7089bc418dd5ff08f74dce7024920d387fd6c6", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2021-12-10T12:51:27.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-05T18:15:19.000Z", "max_forks_repo_path": "src/napari_apr_viewer/_tests/test_writer.py", "max_forks_repo_name": "AdaptiveParticles/napari-apr-viewer", "max_forks_repo_head_hexsha": "cc7089bc418dd5ff08f74dce7024920d387fd6c6", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.9166666667, "max_line_length": 95, "alphanum_fraction": 0.6987714988, "include": true, "reason": "import numpy", "num_tokens": 519}
from __future__ import absolute_import, division, print_function import logging import os import json import numpy as np from collections import OrderedDict import torch from inference.models.vgg import VGGRatioEstimator from inference.models.resnet import ResNetRatioEstimator from inference.trainer import RatioTrainer from inference.utils import create_missing_folders, load_and_check, get_optimizer from inference.utils import get_loss, clean_log_r, clean_t from inference.utils import restrict_samplesize logger = logging.getLogger(__name__) class ParameterizedRatioEstimator(object): theta_mean = np.array([0.1, -2.0]) theta_std = np.array([0.1, 0.5]) def __init__( self, resolution=64, n_parameters=2, n_aux=0, architecture="resnet", log_input=False, rescale_inputs=True, rescale_theta=True, zero_bias=False, ): self.resolution = resolution self.n_parameters = n_parameters self.n_aux = n_aux self.log_input = log_input self.rescale_inputs = rescale_inputs self.rescale_theta = rescale_theta self.architecture = architecture self.x_scaling_mean = None self.x_scaling_std = None self.aux_scaling_mean = None self.aux_scaling_std = None self._create_model(zero_bias) def train( self, method, x, theta, theta_alt, aux=None, log_r_xz=None, log_r_xz_alt=None, t_xz=None, t_xz_alt=None, alpha=1.0, optimizer="adam", n_epochs=50, batch_size=256, initial_lr=0.001, final_lr=0.0001, nesterov_momentum=None, validation_split=0.25, validation_split_seed=None, early_stopping=True, limit_samplesize=None, verbose="some", update_input_rescaling=True, validation_loss_before=None, ): logger.info("Starting training") logger.info(" Method: %s", method) if method in ["cascal", "rascal", "alices"]: logger.info(" alpha: %s", alpha) logger.info(" Batch size: %s", batch_size) logger.info(" Optimizer: %s", optimizer) logger.info(" Epochs: %s", n_epochs) logger.info( " Learning rate: %s initially, decaying to %s", initial_lr, final_lr, ) if optimizer == "sgd": logger.info(" Nesterov momentum: %s", nesterov_momentum) logger.info(" Validation split: %s", validation_split) logger.info(" Early stopping: %s", early_stopping) if limit_samplesize is None: logger.info(" Samples: all") else: logger.info(" Samples: %s", limit_samplesize) logger.info(" Update x rescaling: %s", update_input_rescaling) # Load training data logger.info("Loading training data") theta = load_and_check(theta, memmap=False) theta_alt = load_and_check(theta_alt, memmap=False) x = load_and_check(x, memmap=True) log_r_xz = load_and_check(log_r_xz, memmap=False) log_r_xz_alt = load_and_check(log_r_xz_alt, memmap=False) t_xz = load_and_check(t_xz, memmap=False) t_xz_alt = load_and_check(t_xz_alt, memmap=False) aux = load_and_check(aux, memmap=False) self._check_required_data(method, log_r_xz, log_r_xz_alt, t_xz, t_xz_alt) if update_input_rescaling: self._initialize_input_transform(x, aux) # Clean up input data if log_r_xz is not None: log_r_xz = log_r_xz.reshape((-1, 1)) log_r_xz_alt = log_r_xz_alt.reshape((-1, 1)) theta = theta.reshape((-1, 2)) theta_alt = theta_alt.reshape((-1, 2)) log_r_xz = clean_log_r(log_r_xz) log_r_xz_alt = clean_log_r(log_r_xz_alt) t_xz = clean_t(t_xz) t_xz_alt = clean_t(t_xz_alt) # Rescale aux, theta, and t_xz aux = self._transform_aux(aux) theta = self._transform_theta(theta) theta_alt = self._transform_theta(theta_alt) if t_xz is not None: t_xz = self._transform_t_xz(t_xz) t_xz_alt = self._transform_t_xz(t_xz_alt) # Infer dimensions of problem n_samples = x.shape[0] n_parameters = theta.shape[1] resolution_x = x.shape[1] resolution_y = x.shape[2] n_aux = 0 if aux is None else aux.shape[1] logger.info( "Found %s samples with %s parameters, image resolution %s x %s, and %s auxiliary parameters", n_samples, n_parameters, resolution_x, resolution_y, n_aux, ) if resolution_x != resolution_y: raise RuntimeError( "Currently only supports square images, but found resolution {} x {}".format( resolution_x, resolution_y ) ) resolution = resolution_x if n_aux != self.n_aux: raise RuntimeError( "Number of auxiliary variables found in data ({}) does not match number of" "auxiliary variables in model ({})".format(n_aux, self.n_aux) ) if aux is not None and aux.shape[0] != n_samples: raise RuntimeError( "Number of samples in auxiliary variables does not match number of" "samples ({})".format(aux.shape[0], n_samples) ) # Limit sample size if limit_samplesize is not None and limit_samplesize < n_samples: logger.info( "Only using %s of %s training samples", limit_samplesize, n_samples ) x, theta, theta_alt, log_r_xz, log_r_xz_alt, t_xz, t_xz_alt, aux = restrict_samplesize( limit_samplesize, x, theta, theta_alt, log_r_xz, log_r_xz_alt, t_xz, t_xz_alt, aux ) # Check consistency of input with model if n_parameters != self.n_parameters: raise RuntimeError( "Number of parameters does not match model: {} vs {}".format( n_parameters, self.n_parameters ) ) if resolution != self.resolution: raise RuntimeError( "Number of observables does not match model: {} vs {}".format( resolution, self.resolution ) ) # Data data = self._package_training_data(method, x, theta, theta_alt, log_r_xz, log_r_xz_alt, t_xz, t_xz_alt, aux) # Losses loss_functions, loss_labels, loss_weights = get_loss(method, alpha) # Optimizer opt, opt_kwargs = get_optimizer(optimizer, nesterov_momentum) # Train model logger.info("Training model") trainer = RatioTrainer(self.model, run_on_gpu=True) result = trainer.train( data=data, loss_functions=loss_functions, loss_weights=loss_weights, loss_labels=loss_labels, epochs=n_epochs, batch_size=batch_size, optimizer=opt, optimizer_kwargs=opt_kwargs, initial_lr=initial_lr, final_lr=final_lr, validation_split=validation_split, validation_split_seed=validation_split_seed, early_stopping=early_stopping, verbose=verbose, validation_loss_before=validation_loss_before, ) return result def log_likelihood_ratio( self, x, theta, aux=None, test_all_combinations=True, evaluate_score=False, evaluate_grad_x=False, batch_size=1000, grad_x_theta_index=0, ): if self.model is None: raise ValueError("No model -- train or load model before evaluating it!") # Load training data logger.debug("Loading evaluation data") x = load_and_check(x, memmap=True) aux = load_and_check(aux) theta = load_and_check(theta) # Rescale theta and aux aux = self._transform_aux(aux) theta = self._transform_theta(theta) # Evaluate if test_all_combinations: logger.debug("Starting ratio evaluation for all combinations") all_log_r_hat = [] all_t_hat = [] all_grad_x = None for i, this_theta in enumerate(theta): logger.debug( "Starting ratio evaluation for thetas %s / %s: %s", i + 1, len(theta), this_theta, ) _, log_r_hat, t_hat, x_grad = self._evaluate( theta0s=[this_theta], xs=x, auxs=aux, evaluate_score=evaluate_score, evaluate_grad_x=evaluate_grad_x, batch_size=batch_size, ) all_log_r_hat.append(log_r_hat) all_t_hat.append(t_hat) if x_grad is not None and i == grad_x_theta_index: all_grad_x = x_grad all_log_r_hat = np.array(all_log_r_hat) all_t_hat = np.array(all_t_hat) else: logger.debug("Starting ratio evaluation") _, all_log_r_hat, all_t_hat, all_grad_x = self._evaluate( theta0s=theta, xs=x, auxs=aux, evaluate_score=evaluate_score, evaluate_grad_x=evaluate_grad_x, batch_size=batch_size, ) logger.debug("Evaluation done") return all_log_r_hat, all_t_hat, all_grad_x def _evaluate( self, theta0s, xs, auxs=None, evaluate_score=False, evaluate_grad_x=False, run_on_gpu=True, double_precision=False, batch_size=1000, ): # Batches n_xs = len(xs) n_batches = (n_xs - 1) // batch_size + 1 # results all_s, all_log_r, all_t, all_x_grad = [], [], [], [] for i_batch in range(n_batches): x_batch = np.asarray( np.copy(xs[i_batch * batch_size : (i_batch + 1) * batch_size]) ) if len(theta0s) == n_xs: theta_batch = np.copy( theta0s[i_batch * batch_size : (i_batch + 1) * batch_size] ) else: theta_batch = np.repeat( np.copy(theta0s).reshape(1, -1), x_batch.shape[0], axis=0 ) if auxs is not None: aux_batch = np.copy( auxs[i_batch * batch_size : (i_batch + 1) * batch_size] ) else: aux_batch = None s, log_r, t, x_grad = self._evaluate_batch( theta_batch, x_batch, aux_batch, evaluate_score, evaluate_grad_x, run_on_gpu, double_precision, ) all_s.append(s) all_log_r.append(log_r) if t is not None: all_t.append(t) if x_grad is not None: all_x_grad.append(x_grad) # mash together all_s = np.concatenate(all_s, 0) all_log_r = np.concatenate(all_log_r, 0) if len(all_t) > 0: all_t = np.concatenate(all_t, 0) else: all_t = None if len(all_x_grad) > 0: all_x_grad = np.concatenate(all_x_grad, 0) else: all_x_grad = None return all_s, all_log_r, all_t, all_x_grad def _evaluate_batch( self, theta0s, xs, auxs, evaluate_score, evaluate_grad_x, run_on_gpu, double_precision, ): # CPU or GPU? run_on_gpu = run_on_gpu and torch.cuda.is_available() device = torch.device("cuda" if run_on_gpu else "cpu") dtype = torch.double if double_precision else torch.float # Prepare data self.model = self.model.to(device, dtype) theta0s = torch.from_numpy(theta0s).to(device, dtype) xs = torch.from_numpy(xs).to(device, dtype) if auxs is not None: auxs = torch.from_numpy(auxs).to(device, dtype) # Evaluate ratio estimator with score or x gradients: if evaluate_score or evaluate_grad_x: self.model.eval() if evaluate_score: theta0s.requires_grad = True if evaluate_grad_x: xs.requires_grad = True s, log_r, t, x_grad = self.model( theta0s, xs, aux=auxs, track_score=evaluate_score, return_grad_x=evaluate_grad_x, create_gradient_graph=False, ) # Copy back tensors to CPU if run_on_gpu: s = s.cpu() log_r = log_r.cpu() if t is not None: t = t.cpu() if x_grad is not None: x_grad = x_grad.cpu() # Get data and return s = s.detach().numpy().flatten() log_r = log_r.detach().numpy().flatten() if t is not None: t = t.detach().numpy() if x_grad is not None: x_grad = x_grad.detach().numpy() # Evaluate ratio estimator without score: else: with torch.no_grad(): self.model.eval() s, log_r, _, _ = self.model( theta0s, xs, aux=auxs, track_score=False, return_grad_x=False, create_gradient_graph=False, ) # Copy back tensors to CPU if run_on_gpu: s = s.cpu() log_r = log_r.cpu() # Get data and return s = s.detach().numpy().flatten() log_r = log_r.detach().numpy().flatten() t = None x_grad = None return s, log_r, t, x_grad def save(self, filename, save_model=False): if self.model is None: raise ValueError("No model -- train or load model before saving!") # Check paths create_missing_folders([os.path.dirname(filename)]) # Save settings logger.debug("Saving settings to %s_settings.json", filename) settings = self._wrap_settings() with open(filename + "_settings.json", "w") as f: json.dump(settings, f) # Save state dict logger.debug("Saving state dictionary to %s_state_dict.pt", filename) torch.save(self.model.state_dict(), filename + "_state_dict.pt") # Save model if save_model: logger.debug("Saving model to %s_model.pt", filename) torch.save(self.model, filename + "_model.pt") def load(self, filename): # Load settings and create model logger.debug("Loading settings from %s_settings.json", filename) with open(filename + "_settings.json", "r") as f: settings = json.load(f) self._unwrap_settings(settings) self._create_model() # Load state dict logger.debug("Loading state dictionary from %s_state_dict.pt", filename) self.model.load_state_dict( torch.load(filename + "_state_dict.pt", map_location="cpu") ) def _create_model(self, zero_bias=False): logger.info("Creating model") logger.info(" Architecture: %s", self.architecture) logger.info(" Log input: %s", self.log_input) logger.info( " Rescale input: %s", self.x_scaling_std is not None and self.x_scaling_mean is not None, ) logger.info( " Weight initialization: %s", "zero bias" if zero_bias else "default" ) if self.architecture in ["resnet", "resnet18"]: self.model = ResNetRatioEstimator( n_parameters=self.n_parameters, n_aux=self.n_aux, n_hidden=512, log_input=self.log_input, input_mean=self.x_scaling_mean, input_std=self.x_scaling_std, zero_bias=zero_bias, ) elif self.architecture == "resnet50": self.model = ResNetRatioEstimator( n_parameters=self.n_parameters, n_aux=self.n_aux, cfg=50, n_hidden=1024, log_input=self.log_input, input_mean=self.x_scaling_mean, input_std=self.x_scaling_std, zero_bias=zero_bias, ) elif self.architecture == "vgg": self.model = VGGRatioEstimator( n_parameters=self.n_parameters, log_input=self.log_input, input_mean=self.x_scaling_mean, input_std=self.x_scaling_std, ) else: raise RuntimeError("Unknown architecture {}".format(self.architecture)) logger.info("Model has %s trainable parameters", self._count_model_parameters()) def _count_model_parameters(self): return sum(p.numel() for p in self.model.parameters() if p.requires_grad) def _initialize_input_transform(self, x, aux=None, n_eval=1000): if self.rescale_inputs and self.log_input: self.x_scaling_mean = np.mean(np.log(1. + x[:n_eval])) self.x_scaling_std = np.maximum(np.std(np.log(1. + x[:n_eval])), 1.0e-6) elif self.rescale_inputs and (not self.log_input): self.x_scaling_mean = np.mean(x) self.x_scaling_std = np.maximum(np.std(x), 1.0e-6) else: self.x_scaling_mean = None self.x_scaling_std = None if self.rescale_inputs and aux is not None: self.aux_scaling_mean = np.mean(aux, axis=0) self.aux_scaling_std = np.maximum(np.std(aux, axis=0), 1.0e-6) else: self.aux_scaling_mean = None self.aux_scaling_std = None self.model.input_mean = self.x_scaling_mean self.model.input_std = self.x_scaling_std def _transform_aux(self, aux): if ( aux is not None and self.aux_scaling_mean is not None and self.aux_scaling_std is not None ): aux = aux - self.aux_scaling_mean[np.newaxis, :] aux = aux / self.aux_scaling_std[np.newaxis, :] return aux def _transform_theta(self, theta): if self.rescale_theta: theta = theta - self.theta_mean[np.newaxis, :] theta = theta / self.theta_std[np.newaxis, :] return theta def _transform_t_xz(self, t_xz): if self.rescale_theta: t_xz = t_xz * self.theta_std[np.newaxis, :] return t_xz def _wrap_settings(self): settings = { "resolution": self.resolution, "n_parameters": self.n_parameters, "n_aux": self.n_aux, "architecture": self.architecture, "log_input": self.log_input, "rescale_inputs": self.rescale_inputs, "x_scaling_mean": self.x_scaling_mean, "x_scaling_std": self.x_scaling_std, "rescale_theta": self.rescale_theta, "aux_scaling_mean": [] if self.aux_scaling_mean is None else list(self.aux_scaling_mean), "aux_scaling_std": [] if self.aux_scaling_std is None else list(self.aux_scaling_std), } return settings def _unwrap_settings(self, settings): self.resolution = int(settings["resolution"]) self.n_parameters = int(settings["n_parameters"]) self.n_aux = int(settings["n_aux"]) self.architecture = str(settings["architecture"]) self.log_input = bool(settings["log_input"]) self.rescale_inputs = str(settings["rescale_inputs"]) self.x_scaling_mean = float(settings["x_scaling_mean"]) self.x_scaling_std = float(settings["x_scaling_std"]) self.rescale_theta = bool(settings["rescale_theta"]) self.aux_scaling_mean = list(settings["aux_scaling_mean"]) if len(self.aux_scaling_mean) == 0: self.aux_scaling_mean = None else: self.aux_scaling_mean = np.array(self.aux_scaling_mean) self.aux_scaling_std = list(settings["aux_scaling_std"]) if len(self.aux_scaling_std) == 0: self.aux_scaling_std = None else: self.aux_scaling_std = np.array(self.aux_scaling_std) @staticmethod def _check_required_data(method, r_xz, r_xz_alt, t_xz, t_xz_alt): if method in ["cascal", "alices", "rascal"] and (t_xz is None or t_xz_alt is None): raise RuntimeError( "Method {} requires joint score information".format(method) ) if method in ["rolr", "alices", "rascal"] and (r_xz is None or r_xz_alt is None): raise RuntimeError( "Method {} requires joint likelihood ratio information".format(method) ) @staticmethod def _package_training_data(method, x, theta, theta_alt, log_r_xz, log_r_xz_alt, t_xz, t_xz_alt, aux=None): data = OrderedDict() data["x"] = x data["theta"] = theta data["theta_alt"] = theta_alt if method in ["rolr", "alice", "alices", "rascal"]: data["log_r_xz"] = log_r_xz data["log_r_xz_alt"] = log_r_xz_alt if method in ["cascal", "alices", "rascal"]: data["t_xz"] = t_xz data["t_xz_alt"] = t_xz_alt if aux is not None: data["aux"] = aux return data
{"hexsha": "965bd7b66514a35aa02d9dd569447155e63bf799", "size": 22307, "ext": "py", "lang": "Python", "max_stars_repo_path": "inference/estimator.py", "max_stars_repo_name": "matthewfeickert/mining-for-substructure-lens", "max_stars_repo_head_hexsha": "9360e678aac78b6b260dab55ce264bfddea0c206", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 24, "max_stars_repo_stars_event_min_datetime": "2019-09-06T02:55:57.000Z", "max_stars_repo_stars_event_max_datetime": "2021-11-26T19:55:44.000Z", "max_issues_repo_path": "inference/estimator.py", "max_issues_repo_name": "johannbrehmer/mining-for-substructure-lens", "max_issues_repo_head_hexsha": "a15a257051b68adad7ca88a388b0084abab1d97f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "inference/estimator.py", "max_forks_repo_name": "johannbrehmer/mining-for-substructure-lens", "max_forks_repo_head_hexsha": "a15a257051b68adad7ca88a388b0084abab1d97f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 11, "max_forks_repo_forks_event_min_datetime": "2019-09-04T15:42:08.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-01T21:24:13.000Z", "avg_line_length": 34.9092331768, "max_line_length": 116, "alphanum_fraction": 0.5589276909, "include": true, "reason": "import numpy", "num_tokens": 4957}
!------------------------------------------------------------------------------------------------------------- ! !> \file CompExcessGibbsEnergyIDWZ.f90 !> \brief Compute the partial molar 'excess' Gibbs energy of solution phase constituents in an IDWZ !! solution phase. !> \author P. Bajpai !> \sa CompExcessGibbsEnergy.f90 !> \sa CompExcessGibbsEnergyRKMP.f90 !> \sa CompExcessGibbsEnergySUBL.f90 !> \date December 3, 2018 ! ! ! Revisions: ! ========== ! ! Date Programmer Description of change ! ---- ---------- --------------------- ! 12/03/2018 P.Bajpai Original code. ! ! ! Purpose: ! ======== ! !> \details The purpose of this subroutine is to compute the partial molar excess Gibbs energy of mixing !! (dPartialExcessGibbs) of all constituents in a non-ideal solution phase designated as 'QKTO' !! (Quasi-chemical Kohlter-TOop). The PolyRegular subroutine computes the excess Gibbs energy of mixing of !! a regular solution sub-system (see PolyRegular for a definition) and the KohlerInterpolate subroutine !! performs a Kohler interpolation of a sub-system to a phase. !! !! The molar excess Gibbs energy of mixing of a binary sub-system for a QKTO model is: !! !! \f$ g_{\lambda,z}^{ex} = L_z x_1^a x_2^b \f$ !! !! where \f$ L_z \f$ is the mixing parameter, \f$ x_1 \f$ and \f$ x_2 \f$ are the mole fractions for !! constituents 1 and 2 in the binary term and \f$ a \f$ and \f$ b \f$ are the exponents for constituents !! 1 and 2, respectively. !! !! The molar excess Gibbs energy of mixing for solution phase \f$ \lambda \f$ using Kohler's interpolation !! scheme gives !! !! \f$ g_{\lambda}^{ex} = (x_1 + x_2)^2 g_{\lambda,z}^{ex} \f$ !! !! Similarly, the molar excess Gibbs energy of mixing of a ternary sub-system for a QKTO model is: !! !! \f$ g_{\lambda,z}^{ex} = L_z x_1^a x_2^b x_3^c \f$ !! !! which is related to the molar excess Gibbs energy of mixing of the phase via Kohler's interpolation: !! !! \f$ g_{\lambda}^{ex} = (x_1 + x_2 + x_3)^2 g_{\lambda,z}^{ex} \f$ !! ! ! Pertinent variables: ! ==================== ! !> \param[in] iSolnIndex Absolute index of a solution phase ! ! nSpeciesPhase Highest index number of a species in a particular solution phase ! nParam Number of parameters ! iParam Index number of a parameter. ! dChemicalPotential The estimated chemical potential vector. To be precise, this is defined as the ! molar Gibbs energy of the pure species minus the proper chemical potential ! defined by the element potentials. ! dPartialExcessGibbs Partial molar excess Gibbs energy of mixing of species. ! dPartialExcessGibbsLast Partial molar excess Gibbs energy of mixing of species from the last iteration. ! dMolFraction Current estimated mole fraction. ! !------------------------------------------------------------------------------------------------------------- subroutine CompExcessGibbsEnergyIDWZ(iSolnIndex) USE ModuleThermo USE ModuleGEMSolver implicit none integer :: iParam, iSolnIndex real(8) :: dGParam, xT real(8), dimension(nMaxParam) :: dPartialGParam !dPartialExcessGibbs(iSolnIndex) = 0 return end subroutine CompExcessGibbsEnergyIDWZ
{"hexsha": "81ba5338bfb47ece816586cd203f5cee384352d6", "size": 3760, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "src/CompExcessGibbsEnergyIDWZ.f90", "max_stars_repo_name": "parikshitbajpai/thermochimica", "max_stars_repo_head_hexsha": "34a3f3e8a92e9e93f8fc7a739d0c6c00bcddca12", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/CompExcessGibbsEnergyIDWZ.f90", "max_issues_repo_name": "parikshitbajpai/thermochimica", "max_issues_repo_head_hexsha": "34a3f3e8a92e9e93f8fc7a739d0c6c00bcddca12", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/CompExcessGibbsEnergyIDWZ.f90", "max_forks_repo_name": "parikshitbajpai/thermochimica", "max_forks_repo_head_hexsha": "34a3f3e8a92e9e93f8fc7a739d0c6c00bcddca12", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 43.2183908046, "max_line_length": 115, "alphanum_fraction": 0.5515957447, "num_tokens": 994}
import numpy as np import trax #from trax import layers as tl #from trax.fastmath import numpy as fastnp #from trax.supervised import training # UNIT TEST for UNQ_C1 def test_get_conversation(target): data = {'file1.json': {'log':[{'text': 'hi'}, {'text': 'hello'}, {'text': 'nice'}]}, 'file2.json':{'log':[{'text': 'a b'}, {'text': ''}, {'text': 'good '}, {'text': 'no?'}]}} res1 = target('file1.json', data) res2 = target('file2.json', data) expected1 = ' Person 1: hi Person 2: hello Person 1: nice' expected2 = ' Person 1: a b Person 2: Person 1: good Person 2: no?' success = 0 fails = 0 try: assert res1 == expected1 success += 1 except ValueError: print('Error in test 1 \nResult : ', res1, 'x \nExpected: ', expected1) fails += 1 try: assert res2 == expected2 success += 1 except: print('Error in test 2 \nResult : ', res2, ' \nExpected: ', expected2) fails += 1 if fails == 0: print("\033[92m All tests passed") else: print('\033[92m', success," Tests passed") print('\033[91m', fails, " Tests failed") # UNIT TEST for UNQ_C2 def test_reversible_layer_forward(target): f1 = lambda x: x + 2 g1 = lambda x: x * 3 f2 = lambda x: x + 1 g2 = lambda x: x * 2 input_vector1 = np.array([1, 2, 3, 4, 5, 6, 7, 8]) expected1 = np.array([8, 10, 12, 14, 29, 36, 43, 50]) input_vector2 = np.array([1] * 128) expected2 = np.array([3] * 64 + [7] * 64) success = 0 fails = 0 try: res = target(input_vector1, f1, g1) assert isinstance(res, np.ndarray) success += 1 except: print('Wrong type! Output is not of type np.ndarray') fails += 1 try: res = target(input_vector1, f1, g1) assert np.allclose(res, expected1) success += 1 except ValueError: print('Error in test 1 \nResult : ', res, 'x \nExpected: ', expected1) fails += 1 try: res = target(input_vector2, f2, g2) assert np.allclose(res, expected2) success += 1 except: print('Error in test 2 \nResult : ', res, ' \nExpected: ', expected2) fails += 1 if fails == 0: print("\033[92m All tests passed") else: print('\033[92m', success," Tests passed") print('\033[91m', fails, " Tests failed") # UNIT TEST for UNQ_C3 def test_reversible_layer_reverse(target): f1 = lambda x: x + 2 g1 = lambda x: x * 3 f2 = lambda x: x + 1 g2 = lambda x: x * 2 input_vector1 = np.array([1, 2, 3, 4, 5, 6, 7, 8]) expected1 = np.array([-3, 0, 3, 6, 2, 0, -2, -4]) input_vector2 = np.array([1] * 128) expected2 = np.array([1] * 64 + [-1] * 64) success = 0 fails = 0 try: res = target(input_vector1, f1, g1) assert isinstance(res, np.ndarray) success += 1 except: print('Wrong type! Output is not of type np.ndarray') fails += 1 try: res = target(input_vector1, f1, g1) assert np.allclose(res, expected1) success += 1 except ValueError: print('Error in test 1 \nResult : ', res, 'x \nExpected: ', expected1) fails += 1 try: res = target(input_vector2, f2, g2) assert np.allclose(res, expected2) success += 1 except: print('Error in test 2 \nResult : ', res, ' \nExpected: ', expected2) fails += 1 if fails == 0: print("\033[92m All tests passed") else: print('\033[92m', success," Tests passed") print('\033[91m', fails, " Tests failed") # UNIT TEST for UNQ_C4 def test_ReformerLM(target): test_cases = [ { "name":"layer_len_check", "expected":11, "error":"We found {} layers in your model. It should be 11.\nCheck the LSTM stack before the dense layer" }, { "name":"simple_test_check", "expected":"Serial[ShiftRight(1)Embedding_train_512DropoutPositionalEncodingDup_out2ReversibleSerial_in2_out2[ReversibleHalfResidualV2_in2_out2[Serial[LayerNorm]SelfAttention]ReversibleSwap_in2_out2ReversibleHalfResidualV2_in2_out2[Serial[LayerNormDense_2048DropoutFastGeluDense_512Dropout]]ReversibleSwap_in2_out2ReversibleHalfResidualV2_in2_out2[Serial[LayerNorm]SelfAttention]ReversibleSwap_in2_out2ReversibleHalfResidualV2_in2_out2[Serial[LayerNormDense_2048DropoutFastGeluDense_512Dropout]]ReversibleSwap_in2_out2]Concatenate_in2LayerNormDropoutDense_trainLogSoftmax]", "error":"The ReformerLM is not defined properly." } ] temp_model = target('train') success = 0 fails = 0 for test_case in test_cases: try: if test_case['name'] == "simple_test_check": assert test_case["expected"] == str(temp_model).replace(' ', '').replace('\n','') success += 1 if test_case['name'] == "layer_len_check": if test_case["expected"] == len(temp_model.sublayers): success += 1 else: print(test_case["error"].format(len(temp_model.sublayers))) fails += 1 except: print(test_case['error']) fails += 1 if fails == 0: print("\033[92m All tests passed") else: print('\033[92m', success," Tests passed") print('\033[91m', fails, " Tests failed") # UNIT TEST for UNQ_C5 def test_tasks(train_task, eval_task): target = train_task success = 0 fails = 0 # Test the labeled data parameter for train_task try: strlabel = str(target._labeled_data) assert ("generator" in strlabel) and ("add_loss_weights" in strlabel) success += 1 except: fails += 1 print("Wrong labeled data parameter in train_task") # Test the cross entropy loss data parameter try: strlabel = str(target._loss_layer) assert(strlabel == "CrossEntropyLoss_in3") success += 1 except: fails += 1 print("Wrong loss functions. CrossEntropyLoss_in3 was expected") # Test the optimizer parameter try: assert(isinstance(target.optimizer, trax.optimizers.adam.Adam)) success += 1 except: fails += 1 print("Wrong optimizer") # Test the schedule parameter try: assert(isinstance(target._lr_schedule,trax.supervised.lr_schedules._BodyAndTail)) success += 1 except: fails += 1 print("Wrong learning rate schedule type") # Test the _n_steps_per_checkpoint parameter try: assert(target._n_steps_per_checkpoint==10) success += 1 except: fails += 1 print("Wrong checkpoint step frequency") target = eval_task # Test the labeled data parameter for eval_task try: strlabel = str(target._labeled_data) assert ("generator" in strlabel) and ("add_loss_weights" in strlabel) success += 1 except: fails += 1 print("Wrong labeled data parameter in eval_task") # Test the metrics in eval_task try: strlabel = str(target._metrics).replace(' ', '') assert(strlabel == "[CrossEntropyLoss_in3,Accuracy_in3]") success += 1 except: fails += 1 print(f"Wrong metrics. found {strlabel} but expected [CrossEntropyLoss_in3,Accuracy_in3]") if fails == 0: print("\033[92m All tests passed") else: print('\033[92m', success," Tests passed") print('\033[91m', fails, " Tests failed")
{"hexsha": "f72ce252a89798bc51b81ba3b3a05a173b92e02c", "size": 8096, "ext": "py", "lang": "Python", "max_stars_repo_path": "Natural Language Processing with Attention Models/Week 4 - Chatbot/w4_unittest.py", "max_stars_repo_name": "meet-seth/Coursera-Deep-Learning", "max_stars_repo_head_hexsha": "6fbf9d406468c825ffa1ff2e177dbfd43084bace", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 362, "max_stars_repo_stars_event_min_datetime": "2020-10-08T07:34:25.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T05:11:30.000Z", "max_issues_repo_path": "NLP/Learn_by_deeplearning.ai/Course 4 - Attention Models /Labs/Week 4/w4_unittest.py", "max_issues_repo_name": "abcd1758323829/skills", "max_issues_repo_head_hexsha": "195fad43e99de5efe6491817ad2b79e12665cc2a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 7, "max_issues_repo_issues_event_min_datetime": "2020-07-07T16:10:23.000Z", "max_issues_repo_issues_event_max_datetime": "2021-06-04T08:17:55.000Z", "max_forks_repo_path": "NLP/Learn_by_deeplearning.ai/Course 4 - Attention Models /Labs/Week 4/w4_unittest.py", "max_forks_repo_name": "abcd1758323829/skills", "max_forks_repo_head_hexsha": "195fad43e99de5efe6491817ad2b79e12665cc2a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 238, "max_forks_repo_forks_event_min_datetime": "2020-10-08T12:01:31.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-25T08:10:42.000Z", "avg_line_length": 31.874015748, "max_line_length": 580, "alphanum_fraction": 0.5610177866, "include": true, "reason": "import numpy", "num_tokens": 2199}
[STATEMENT] lemma singleDSourceEmpty_Acc: assumes "DAcc i C = {S}" and "isNotDSource i S" shows "Acc i C = {S}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Acc i C = {S} [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. Acc i C = {S} [PROOF STEP] have AccC:"(Acc i C) = (DAcc i C) \<union> (\<Union> S \<in> (DAcc i C). (Acc i S))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Acc i C = DAcc i C \<union> \<Union> (Acc i ` DAcc i C) [PROOF STEP] by (rule AccDef) [PROOF STATE] proof (state) this: Acc i C = DAcc i C \<union> \<Union> (Acc i ` DAcc i C) goal (1 subgoal): 1. Acc i C = {S} [PROOF STEP] from assms [PROOF STATE] proof (chain) picking this: DAcc i C = {S} isNotDSource i S [PROOF STEP] have "Acc i S = {}" [PROOF STATE] proof (prove) using this: DAcc i C = {S} isNotDSource i S goal (1 subgoal): 1. Acc i S = {} [PROOF STEP] by (simp add: isNotDSource_EmptyAcc) [PROOF STATE] proof (state) this: Acc i S = {} goal (1 subgoal): 1. Acc i C = {S} [PROOF STEP] with AccC [PROOF STATE] proof (chain) picking this: Acc i C = DAcc i C \<union> \<Union> (Acc i ` DAcc i C) Acc i S = {} [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: Acc i C = DAcc i C \<union> \<Union> (Acc i ` DAcc i C) Acc i S = {} goal (1 subgoal): 1. Acc i C = {S} [PROOF STEP] by (metis SUP_empty UN_insert Un_commute Un_empty_left assms(1)) [PROOF STATE] proof (state) this: Acc i C = {S} goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 678, "file": "ComponentDependencies_DataDependencies", "length": 10}
**==effn.spg processed by SPAG 4.50J at 14:50 on 30 Jun 1995 FUNCTION EFFN(I,Zeff,T) IMPLICIT NONE C*** Start of declarations inserted by SPAG REAL EFFN , eye , f1 , f2 , f3 , T , t3 , xx , Zeff INTEGER I , no C*** End of declarations inserted by SPAG t3 = T/(Zeff*Zeff*1000.0) xx = 0.4342*LOG(t3) IF ( t3.LE.1.0 ) THEN f1 = 0.266 f2 = 0.13 f3 = 0.13 ELSEIF ( t3.LT.10.**5 ) THEN f1 = 0.266 + 0.1068*xx - 0.074*SIN(1.2566*xx) f2 = 0.130 + 0.1160*xx - 0.074*SIN(1.2566*xx) f3 = 0.130 - 0.0120*xx + 0.050*EXP(-(xx-2.)*(xx-2.)) ELSE f1 = 0.80 f2 = 0.71 f3 = 0.07 ENDIF IF ( I.NE.0 ) THEN IF ( I.GT.18 ) GOTO 200 IF ( I.EQ.2 ) THEN EFFN = 8.0 ELSEIF ( I.EQ.3 ) THEN EFFN = 8. - (4.*f1) ELSEIF ( I.EQ.4 ) THEN EFFN = 8.*(1.-f1) ELSEIF ( I.EQ.5 ) THEN EFFN = 6.6667*(1.-f1) ELSEIF ( I.EQ.6 ) THEN EFFN = 5.33333*(1.-f1) ELSEIF ( I.EQ.7 ) THEN EFFN = 4.*(1.-f1) ELSEIF ( I.EQ.8 ) THEN EFFN = 2.6667*(1.-f1) ELSEIF ( I.EQ.9 ) THEN EFFN = 1.33333*(1.-f1) ELSEIF ( I.EQ.10 ) THEN EFFN = 18. ELSEIF ( I.EQ.11 ) THEN EFFN = 18. - (9.*f2) ELSEIF ( I.EQ.12 ) THEN EFFN = 18.0*(1.-f2) ELSEIF ( I.EQ.13 ) THEN EFFN = 18.*(1.-f2) - 1.*(9.*f3) ELSEIF ( I.EQ.14 ) THEN EFFN = 18.*(1.-f2) - 2.*(9.*f3) ELSEIF ( I.EQ.15 ) THEN EFFN = 18.*(1.-f2) - 3.*(9.*f3) ELSEIF ( I.EQ.16 ) THEN EFFN = 18.*(1.-f2) - 4.*(9.*f3) ELSEIF ( I.EQ.17 ) THEN EFFN = 18.*(1.-f2) - 45.0*f3 ELSEIF ( I.EQ.18 ) THEN GOTO 200 ELSE GOTO 100 ENDIF GOTO 300 ENDIF 100 eye = I EFFN = 2. - eye GOTO 300 200 no = 28 - I EFFN = no*1.8*(1.-3.*f3-f2) IF ( EFFN.LT.0 ) THEN eye = I EFFN = 60. - eye C GUARD PACKAGE FOR I = 17 C PROBABLY UNNECESSARY IF ( EFFN.LE.0 ) EFFN = 1.0 ENDIF 300 RETURN END
{"hexsha": "49b4c15fec074630557a01b5cd9623c2954a4b47", "size": 2281, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "xspec/tools/raysmith/effn.f", "max_stars_repo_name": "DougBurke/xspeclmodels", "max_stars_repo_head_hexsha": "4e9caf971af51ab88eb0f8cf678a11f014710013", "max_stars_repo_licenses": ["CC0-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "xspec/tools/raysmith/effn.f", "max_issues_repo_name": "DougBurke/xspeclmodels", "max_issues_repo_head_hexsha": "4e9caf971af51ab88eb0f8cf678a11f014710013", "max_issues_repo_licenses": ["CC0-1.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "xspec/tools/raysmith/effn.f", "max_forks_repo_name": "DougBurke/xspeclmodels", "max_forks_repo_head_hexsha": "4e9caf971af51ab88eb0f8cf678a11f014710013", "max_forks_repo_licenses": ["CC0-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 28.8734177215, "max_line_length": 62, "alphanum_fraction": 0.4234984656, "num_tokens": 944}
!========================================================================== elemental function gsw_entropy_part (sa, t, p) !========================================================================== ! ! entropy minus the terms that are a function of only SA ! ! sa : Absolute Salinity [g/kg] ! t : in-situ temperature [deg C] ! p : sea pressure [dbar] ! ! gsw_entropy_part : entropy part !-------------------------------------------------------------------------- use gsw_mod_teos10_constants, only : gsw_sfac use gsw_mod_kinds implicit none real (r8), intent(in) :: sa, t, p real (r8) :: gsw_entropy_part real (r8) :: x2, x, y, z, g03, g08 x2 = gsw_sfac*sa x = sqrt(x2) y = t*0.025_r8 z = p*1e-4_r8 g03 = z*(-270.983805184062_r8 + & z*(776.153611613101_r8 + z*(-196.51255088122_r8 + (28.9796526294175_r8 - 2.13290083518327_r8*z)*z))) + & y*(-24715.571866078_r8 + z*(2910.0729080936_r8 + & z*(-1513.116771538718_r8 + z*(546.959324647056_r8 + z*(-111.1208127634436_r8 + 8.68841343834394_r8*z)))) + & y*(2210.2236124548363_r8 + z*(-2017.52334943521_r8 + & z*(1498.081172457456_r8 + z*(-718.6359919632359_r8 + (146.4037555781616_r8 - 4.9892131862671505_r8*z)*z))) + & y*(-592.743745734632_r8 + z*(1591.873781627888_r8 + & z*(-1207.261522487504_r8 + (608.785486935364_r8 - 105.4993508931208_r8*z)*z)) + & y*(290.12956292128547_r8 + z*(-973.091553087975_r8 + & z*(602.603274510125_r8 + z*(-276.361526170076_r8 + 32.40953340386105_r8*z))) + & y*(-113.90630790850321_r8 + y*(21.35571525415769_r8 - 67.41756835751434_r8*z) + & z*(381.06836198507096_r8 + z*(-133.7383902842754_r8 + 49.023632509086724_r8*z))))))) g08 = x2*(z*(729.116529735046_r8 + & z*(-343.956902961561_r8 + z*(124.687671116248_r8 + z*(-31.656964386073_r8 + 7.04658803315449_r8*z)))) + & x*( x*(y*(-137.1145018408982_r8 + y*(148.10030845687618_r8 + y*(-68.5590309679152_r8 + 12.4848504784754_r8*y))) - & 22.6683558512829_r8*z) + z*(-175.292041186547_r8 + (83.1923927801819_r8 - 29.483064349429_r8*z)*z) + & y*(-86.1329351956084_r8 + z*(766.116132004952_r8 + z*(-108.3834525034224_r8 + 51.2796974779828_r8*z)) + & y*(-30.0682112585625_r8 - 1380.9597954037708_r8*z + y*(3.50240264723578_r8 + 938.26075044542_r8*z)))) + & y*(1760.062705994408_r8 + y*(-675.802947790203_r8 + & y*(365.7041791005036_r8 + y*(-108.30162043765552_r8 + 12.78101825083098_r8*y) + & z*(-1190.914967948748_r8 + (298.904564555024_r8 - 145.9491676006352_r8*z)*z)) + & z*(2082.7344423998043_r8 + z*(-614.668925894709_r8 + (340.685093521782_r8 - 33.3848202979239_r8*z)*z))) + & z*(-1721.528607567954_r8 + z*(674.819060538734_r8 + & z*(-356.629112415276_r8 + (88.4080716616_r8 - 15.84003094423364_r8*z)*z))))) gsw_entropy_part = -(g03 + g08)*0.025_r8 return end function !--------------------------------------------------------------------------
{"hexsha": "0160db551fd26a0d06aaedf74883922235f4f710", "size": 2980, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "MOM6-interface/MOM6/src/equation_of_state/TEOS10/gsw_entropy_part.f90", "max_stars_repo_name": "minsukji/ci-debug", "max_stars_repo_head_hexsha": "3e8bbbe6652b702b61d2896612f6aa8e4aa6c803", "max_stars_repo_licenses": ["Apache-2.0", "CC0-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "MOM6-interface/MOM6/src/equation_of_state/TEOS10/gsw_entropy_part.f90", "max_issues_repo_name": "minsukji/ci-debug", "max_issues_repo_head_hexsha": "3e8bbbe6652b702b61d2896612f6aa8e4aa6c803", "max_issues_repo_licenses": ["Apache-2.0", "CC0-1.0"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2021-05-21T20:21:16.000Z", "max_issues_repo_issues_event_max_datetime": "2021-10-06T17:52:34.000Z", "max_forks_repo_path": "MOM6-interface/MOM6/src/equation_of_state/TEOS10/gsw_entropy_part.f90", "max_forks_repo_name": "minsukji/ci-debug", "max_forks_repo_head_hexsha": "3e8bbbe6652b702b61d2896612f6aa8e4aa6c803", "max_forks_repo_licenses": ["Apache-2.0", "CC0-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 47.3015873016, "max_line_length": 119, "alphanum_fraction": 0.5919463087, "num_tokens": 1132}
Require Import Lia Setoid Program.Basics. From hahn Require Import Hahn. From PromisingLib Require Import Basic Language. From imm Require Import Events Prog Execution ProgToExecution. Require Import AuxDef. Require Import AuxRel. Require Import EventStructure. Require Import LblStep. Require Import ProgLoc. Require Import Consistency. Require Import EventToAction. Set Implicit Arguments. Local Open Scope program_scope. Definition thread_lts (t : thread_id) : Language.t (list label) := @Language.mk (list label) (list Instr.t) state init is_terminal (ilbl_step t). Definition prog_init_threads (prog : Prog.t) : IdentMap.t {lang : Language.t (list label) & Language.state lang} := IdentMap.mapi (fun tid (linstr : list Instr.t) => existT _ (thread_lts tid) (ProgToExecution.init linstr)) prog. Definition stable_prog_type := IdentMap.t { linstr & stable_lprog linstr }. Definition stable_prog_to_prog (prog : stable_prog_type) : Prog.t := (IdentMap.map (fun x => projT1 x) prog). Lemma stable_prog_to_prog_in prog thread : IdentMap.In thread (stable_prog_to_prog prog) <-> IdentMap.In thread prog. Proof. unfold stable_prog_to_prog. eapply RegMap.Facts.map_in_iff. Qed. Lemma stable_prog_to_prog_no_init prog (PROG_NINIT : ~ IdentMap.In tid_init prog) : ~ IdentMap.In tid_init (stable_prog_to_prog prog). Proof. by rewrite stable_prog_to_prog_in. Qed. Definition prog_init_K (prog : stable_prog_type) : list (cont_label * {lang : Language.t (list label) & Language.state lang}) := map (fun tidc => let tid := fst tidc in let linstr := projT1 (snd tidc) in let STBL := projT2 (snd tidc) in let st' := proj1_sig (get_stable tid (init linstr) STBL (rt_refl _ _ (init linstr))) in (CInit tid, existT _ (thread_lts tid) st')) (RegMap.elements prog). Definition prog_l_es_init (prog : stable_prog_type) (locs : list location) := ES.init (undup locs) (prog_init_K prog). Definition prog_es_init (prog : stable_prog_type) := prog_l_es_init prog (prog_locs (stable_prog_to_prog prog)). Lemma prog_es_init_alt (prog : stable_prog_type) : prog_es_init prog = ES.init (prog_locs (stable_prog_to_prog prog)) (prog_init_K prog). Proof. unfold prog_es_init, prog_l_es_init, prog_locs. rewrite undup_nodup; eauto. apply NoDup_nodup. Qed. Definition g_locs (G : execution) := undup (flatten (map (fun e => match e with | InitEvent l => [l] | _ => [] end) (acts G))). Definition prog_g_es_init prog (G : execution) := prog_l_es_init prog (g_locs G). Lemma prog_g_es_init_alt prog (G : execution) : prog_g_es_init prog G = ES.init (g_locs G) (prog_init_K prog). Proof. unfold prog_g_es_init, prog_l_es_init, g_locs. rewrite undup_nodup; auto. Qed. Lemma prog_l_es_init_ninit locs prog : ES.acts_ninit_set (prog_l_es_init prog locs) ≡₁ ∅. Proof. split; [|basic_solver]. red. unfold prog_l_es_init, ES.init. intros x HH. apply HH. red. split; auto. apply HH. Qed. Lemma prog_g_es_init_ninit G prog : ES.acts_ninit_set (prog_g_es_init prog G) ≡₁ ∅. Proof. apply prog_l_es_init_ninit. Qed. Lemma prog_l_es_init_sb locs prog : ES.sb (prog_l_es_init prog locs) ≡ ∅₂. Proof. split; [|basic_solver]. unfold prog_l_es_init, ES.init. simpls. Qed. Lemma prog_g_es_init_sb G prog : ES.sb (prog_g_es_init prog G) ≡ ∅₂. Proof. apply prog_l_es_init_sb. Qed. Lemma prog_l_es_init_jf locs prog : ES.jf (prog_l_es_init prog locs) ≡ ∅₂. Proof. split; [|basic_solver]. unfold prog_l_es_init, ES.init. simpls. Qed. Lemma prog_g_es_init_jf G prog : ES.jf (prog_g_es_init prog G) ≡ ∅₂. Proof. apply prog_l_es_init_jf. Qed. Lemma prog_l_es_init_sw locs prog : sw (prog_l_es_init prog locs) ≡ ∅₂. Proof. split; [|basic_solver]. unfold sw. rewrite prog_l_es_init_jf. basic_solver. Qed. Lemma prog_g_es_init_sw G prog : sw (prog_g_es_init prog G) ≡ ∅₂. Proof. apply prog_l_es_init_sw. Qed. Lemma prog_l_es_init_hb locs prog : hb (prog_l_es_init prog locs) ≡ ∅₂. Proof. split; [|basic_solver]. unfold hb. rewrite prog_l_es_init_sw, prog_l_es_init_sb. rewrite ct_no_step; basic_solver. Qed. Lemma prog_g_es_init_hb G prog : hb (prog_g_es_init prog G) ≡ ∅₂. Proof. apply prog_l_es_init_hb. Qed. Lemma prog_l_es_init_cf locs prog : ES.cf (prog_l_es_init prog locs) ≡ ∅₂. Proof. split; [|basic_solver]. unfold ES.cf. rewrite prog_l_es_init_ninit. basic_solver. Qed. Lemma prog_g_es_init_cf G prog : ES.cf (prog_g_es_init prog G) ≡ ∅₂. Proof. apply prog_l_es_init_cf. Qed. Lemma prog_l_es_init_psc_f locs prog : psc_f (prog_l_es_init prog locs) Weakestmo ≡ ∅₂. Proof. unfold psc_f. rewrite prog_l_es_init_hb. basic_solver. Qed. Lemma prog_l_es_init_scb locs prog : scb (prog_l_es_init prog locs) ≡ ∅₂. Proof. unfold scb. unfold ES.fr, ES.rf. rewrite prog_l_es_init_sb. rewrite prog_l_es_init_hb. rewrite prog_l_es_init_jf. basic_solver. Qed. Lemma prog_l_es_init_psc_base locs prog : psc_base (prog_l_es_init prog locs) ≡ ∅₂. Proof. unfold psc_base. rewrite prog_l_es_init_scb. basic_solver. Qed. Lemma prog_l_es_init_rmw locs prog : ES.rmw (prog_l_es_init prog locs) ≡ ∅₂. Proof. split; [|basic_solver]. unfold prog_l_es_init, ES.init. simpls. Qed. Hint Rewrite prog_g_es_init_ninit prog_g_es_init_sb prog_g_es_init_jf prog_g_es_init_sw prog_g_es_init_hb prog_g_es_init_cf : prog_g_es_init_db. Hint Rewrite prog_l_es_init_ninit prog_l_es_init_sb prog_l_es_init_jf prog_l_es_init_sw prog_l_es_init_hb prog_l_es_init_cf prog_l_es_init_psc_f prog_l_es_init_psc_base prog_l_es_init_rmw : prog_l_es_init_db. Lemma prog_l_es_init_consistent locs prog : @es_consistent (prog_l_es_init prog locs) Weakestmo. Proof. constructor; unfold ecf, ES.jfe, ES.icf. all: autorewrite with prog_l_es_init_db; auto. (* 7: apply acyclic_disj. *) all: basic_solver. Qed. Lemma prog_g_es_init_consistent G prog : @es_consistent (prog_g_es_init prog G) Weakestmo. Proof. apply prog_l_es_init_consistent. Qed. Lemma prog_es_init_consistent prog : @es_consistent (prog_es_init prog) Weakestmo. Proof. apply prog_l_es_init_consistent. Qed. Lemma prog_l_es_init_act_in prog locs e (ACT : ES.acts_set (prog_l_es_init prog locs) e) : exists l, In (e, init_write l) (indexed_list (map init_write (undup locs))). Proof. ins. assert (exists b, In (e, b) (indexed_list (map init_write (undup locs)))) as [b IN]. { apply indexed_list_range. desf. } assert (In b (map init_write (undup locs))) as BIN. { clear -IN. apply In_map_snd in IN. rewrite <- indexed_list_map_snd; eauto. } apply in_map_iff in BIN. destruct BIN as [l [LB INL]]. rewrite <- LB in *. simpls. desf. eauto. Qed. Lemma prog_g_es_init_act_in prog G e (ACT : ES.acts_set (prog_g_es_init prog G) e) : exists l, In (e, init_write l) (indexed_list (map init_write (g_locs G))). Proof. apply prog_l_es_init_act_in in ACT. unfold g_locs in *. rewrite undup_nodup in ACT; auto. Qed. Lemma prog_l_es_init_act_lab prog locs e (ACT : ES.acts_set (prog_l_es_init prog locs) e) : exists l, ES.lab (prog_l_es_init prog locs) e = Astore Xpln Opln l 0. Proof. apply prog_l_es_init_act_in in ACT. destruct ACT as [l LL]. exists l. unfold ES.lab, prog_g_es_init, ES.init. apply l2f_in; desf. apply indexed_list_fst_nodup. Qed. Lemma prog_g_es_init_act_lab prog G e (ACT : ES.acts_set (prog_g_es_init prog G) e) : exists l, ES.lab (prog_g_es_init prog G) e = Astore Xpln Opln l 0. Proof. by apply prog_l_es_init_act_lab. Qed. Lemma prog_l_es_init_w locs prog : ES.acts_set (prog_l_es_init prog locs) ≡₁ ES.acts_set (prog_l_es_init prog locs) ∩₁ (fun a => is_true (is_w (ES.lab (prog_l_es_init prog locs)) a)). Proof. split; [|basic_solver]. unfolder. intros. split; auto. unfold is_w. apply prog_l_es_init_act_lab in H. desf. Qed. Lemma prog_g_es_init_w G prog : ES.acts_set (prog_g_es_init prog G) ≡₁ ES.acts_set (prog_g_es_init prog G) ∩₁ (fun a => is_true (is_w (ES.lab (prog_g_es_init prog G)) a)). Proof. apply prog_l_es_init_w. Qed. Lemma prog_l_es_seqn locs prog x : ES.seqn (prog_l_es_init prog locs) x = 0. Proof. unfold ES.seqn. autorewrite with prog_l_es_init_db; eauto. relsf. apply countNatP_empty. Qed. Lemma prog_g_es_seqn G prog x : ES.seqn (prog_g_es_init prog G) x = 0. Proof. apply prog_l_es_seqn. Qed. Lemma prog_l_es_init_init locs prog : ES.acts_set (prog_l_es_init prog locs) ≡₁ ES.acts_init_set (prog_l_es_init prog locs). Proof. unfold ES.acts_init_set. simpls. basic_solver. Qed. Lemma prog_es_init_init prog : ES.acts_set (prog_es_init prog) ≡₁ ES.acts_init_set (prog_es_init prog). Proof. apply prog_l_es_init_init. Qed. Lemma prog_g_es_init_init G prog : ES.acts_set (prog_g_es_init prog G) ≡₁ ES.acts_init_set (prog_g_es_init prog G). Proof. apply prog_l_es_init_init. Qed. Lemma length_nempty {A : Type} (l : list A) (nEmpty : l <> []) : 0 < length l. Proof. unfold length. destruct l. { intuition. } apply Nat.lt_0_succ. Qed. Lemma prog_l_es_init_nempty locs prog (nInitProg : ~ IdentMap.In tid_init prog) (nLocsEmpty : locs <> []) : ~ ES.acts_init_set (prog_l_es_init prog locs) ≡₁ ∅. Proof. intros HH. eapply HH. apply prog_l_es_init_init. unfold ES.acts_set. unfold prog_l_es_init, ES.init. simpls. erewrite map_length. eapply length_nempty. by apply undup_nonnil. Qed. Lemma prog_g_es_init_nempty G prog (nInitProg : ~ IdentMap.In tid_init prog) (nLocsEmpty : g_locs G <> []) : ~ ES.acts_init_set (prog_g_es_init prog G) ≡₁ ∅. Proof. by apply prog_l_es_init_nempty. Qed. Lemma prog_l_es_init_wf locs prog (nInitProg : ~ IdentMap.In tid_init prog) (nLocsEmpty : locs <> []) : ES.Wf (prog_l_es_init prog locs). Proof. assert (NoDup (map init_write (undup locs))) as NNDD. { apply nodup_map. 2: { ins. intros HH. inv HH. } unfold g_locs. apply nodup_undup. } constructor. all: autorewrite with prog_l_es_init_db; auto. all: simpls. all: try basic_solver. { ins. red. exists b. splits; auto. red. split; auto. } { intros e [AA BB]. eapply prog_l_es_init_act_lab; eauto. } { red. ins. destruct SX as [SX _]. apply prog_l_es_init_act_in in SX. destruct SY as [SY _]. apply prog_l_es_init_act_in in SY. desf. assert (l0 = l); subst. { unfold loc, init_write in *. erewrite l2f_in in EQ; eauto. 2: by apply indexed_list_fst_nodup. erewrite l2f_in in EQ; eauto. 2: by apply indexed_list_fst_nodup. desf. } eapply indexed_list_snd_nodup; eauto. } { apply prog_l_es_init_nempty; eauto. } { red. basic_solver. } { unfolder. ins. eexists. splits; eauto. 2: by red. apply prog_l_es_seqn. } { rewrite prog_l_es_init_w. type_solver. } { intros ol a b [[EA _] WA] [[EB _] WB]. set (CA := EA). apply prog_l_es_init_act_in in CA. desf. set (CB := EB). apply prog_l_es_init_act_in in CB. desf. assert (l0 = l); subst. { unfold loc, init_write in *. erewrite l2f_in in WB; eauto. 2: by apply indexed_list_fst_nodup. erewrite l2f_in in WB; eauto. 2: by apply indexed_list_fst_nodup. desf. } unfolder. ins. exfalso. apply nEW. splits; auto. clear -CA CB NNDD. eapply indexed_list_snd_nodup; eauto. } { split; [|basic_solver]. unfolder. ins. desf. splits; auto. all: eapply prog_l_es_init_w; eauto. Unshelve. all: auto. } { intros HH. desf. unfold prog_l_es_init, ES.init, ES.cont_thread, ES.cont_set in *. simpls. unfold prog_init_K in KK. apply in_map_iff in KK. desf. destruct x as [tid k]; simpls; desf. apply RegMap.elements_complete in KK0. apply nInitProg. apply RegMap.Facts.in_find_iff. rewrite KK0. desf. } { intros HH. desf. inv RMW. } { unfold prog_l_es_init, ES.init, ES.cont_thread, ES.cont_set in *. simpls. unfold prog_init_K in *. ins. apply in_map_iff in CK. apply in_map_iff in CK'. desf. destruct x. destruct x0. apply RegMap.elements_complete in CK0. apply RegMap.elements_complete in CK'0. simpls; desf. } { ins. by apply prog_l_es_init_ninit in EE. } { ins. exfalso. red in inK. unfold prog_g_es_init, ES.init in *. simpls. unfold prog_init_K in *. apply in_map_iff in inK. desf. } ins. exfalso. unfold ES.cont_adjacent in ADJ. desc. unfold ES.cont_set, ES.cont, prog_g_es_init, prog_init_K in KK'. simpl in KK'. apply in_map_iff in KK'. destruct KK' as [HA [HB HC]]. inversion HB. congruence. Qed. Lemma prog_g_es_init_wf G prog (nInitProg : ~ IdentMap.In tid_init prog) (nLocsEmpty : g_locs G <> []) : ES.Wf (prog_g_es_init prog G). Proof. by apply prog_l_es_init_wf. Qed. Lemma prog_es_init_wf prog (nInitProg : ~ IdentMap.In tid_init prog) (nLocsEmpty : prog_locs (stable_prog_to_prog prog) <> []) : ES.Wf (prog_es_init prog). Proof. by apply prog_l_es_init_wf. Qed. Lemma prog_g_es_init_same_lab prog G (WF : Wf G) : eq_dom (ES.acts_set (prog_g_es_init prog G)) (ES.lab (prog_g_es_init prog G)) (Execution.lab G ∘ e2a (prog_g_es_init prog G)). Proof. red. ins. arewrite (undup (g_locs G) = g_locs G). { unfold g_locs. rewrite undup_nodup; auto. } unfold compose. apply prog_g_es_init_act_in in DX. desf. rewrite prog_g_es_init_alt. unfold e2a, ES.init, ES.acts_set in *; simpls; desf. unfold Events.loc. erewrite l2f_in; [|by apply indexed_list_fst_nodup|by eauto]. simpls. rewrite wf_init_lab; auto. Qed. Lemma prog_l_es_init_K prog locs k state (INK : ES.cont_set (prog_l_es_init prog locs) (k, existT _ (thread_lts (ES.cont_thread (prog_l_es_init prog locs) k)) state)) : exists thread, ⟪ KTID : k = CInit thread ⟫ /\ ⟪ STEPS : (istep thread [])* (init (instrs state)) state ⟫ /\ ⟪ STBL : stable_state state ⟫. Proof. assert (forall A B (c : A) (a b : B) (OO : (c, a) = (c, b)), a = b) as OO. { ins. inv OO. } ins. red in INK. unfold prog_l_es_init, ES.init, prog_init_K, ES.cont_thread in *. simpls. apply in_map_iff in INK. desc. inv INK. destruct x. simpls. desf. apply OO in INK. inv INK. destruct s; simpls. eexists; splits; eauto. all: pose (AA := @proj2_sig _ _ (get_stable t (init x) s (rt_refl state (step t) (init x)))). arewrite (instrs (proj1_sig (get_stable t (init x) s (rt_refl state (step t) (init x)))) = instrs (init x)). all: red in AA; desf. eapply steps_same_instrs; eauto. apply eps_steps_in_steps. eauto. Qed. Lemma prog_g_es_init_K prog G k state (INK : ES.cont_set (prog_g_es_init prog G) (k, existT _ (thread_lts (ES.cont_thread (prog_g_es_init prog G) k)) state)) : exists thread, ⟪ KTID : k = CInit thread ⟫ /\ ⟪ STEPS : (istep thread [])* (init (instrs state)) state ⟫ /\ ⟪ STBL : stable_state state ⟫. Proof. by apply prog_l_es_init_K. Qed. Lemma prog_l_es_init_lab prog locs e : << ELAB : ES.lab (prog_l_es_init prog locs) e = Afence Orlx >> \/ exists l, << ELAB : ES.lab (prog_l_es_init prog locs) e = init_write l >>. Proof. unfold prog_l_es_init, ES.init. simpls. unnw. edestruct @l2f_v with (A:=nat) (l:=indexed_list (map init_write (undup locs))) (a:=e) (DEC:=Nat.eq_dec). { apply indexed_list_fst_nodup. } 2: { desf. left. eauto. } desf. right. generalize dependent e. unfold indexed_list in *. remember 0 as n. clear Heqn. generalize dependent n. induction (undup locs); simpls. ins. desf; eauto. Qed. Lemma prog_g_es_init_lab prog G e : << ELAB : ES.lab (prog_g_es_init prog G) e = Afence Orlx >> \/ exists l, << ELAB : ES.lab (prog_g_es_init prog G) e = init_write l >>. Proof. apply prog_l_es_init_lab. Qed. Lemma traverse_map_indexed_list {A B} (f : A -> B) l : indexed_list (map f l) = map (fun p : nat * A => let (a, b) := p in (a, f b)) (indexed_list l). Proof. unfold indexed_list in *. remember 0 as n. clear Heqn. generalize dependent n. induction l; simpls. congruence. Qed. Lemma prog_l_es_init_init_loc prog locs : (fun l => In l locs) ≡₁ ES.init_loc (prog_l_es_init prog locs). Proof. split. { intros l L_IN. apply in_undup_iff in L_IN. specialize (indexed_list_in_exists l (undup locs) L_IN) as [e Foo]. exists e. splits. { apply prog_l_es_init_init. unfold prog_l_es_init, ES.init. unfold ES.acts_set, ES.next_act. rewrite length_map. apply indexed_list_range. eauto. } unfold prog_l_es_init, ES.init. simpl. unfold Events.loc. arewrite ((list_to_fun Nat.eq_dec (Afence Orlx) (indexed_list (map init_write (undup locs)))) e = init_write l); [|done]. apply l2f_in. { apply indexed_list_fst_nodup. } rewrite traverse_map_indexed_list. eapply in_map with (f := (fun p : nat * location => let (a, b) := p in (a, init_write b))) in Foo. auto. } intros l [a HH]. desf. unfold prog_l_es_init, ES.init, ES.lab in LOCA. specialize (l2f_codom (indexed_list (map init_write (undup locs))) a (Afence Orlx) Nat.eq_dec) as RR. desf; unfold loc in LOCA; desf. all: rewrite traverse_map_indexed_list in RR; apply in_map_iff in RR; desf. apply In_map_snd in RR0. rewrite indexed_list_map_snd in RR0. by apply in_undup_iff. Qed. Lemma prog_g_init_init_loc prog G : (fun l => In l (g_locs G)) ≡₁ ES.init_loc (prog_g_es_init prog G). Proof. by apply prog_l_es_init_init_loc. Qed. Lemma prog_es_init_init_loc prog : (fun l => In l (prog_locs (stable_prog_to_prog prog))) ≡₁ ES.init_loc (prog_es_init prog). Proof. by apply prog_l_es_init_init_loc. Qed.
{"author": "weakmemory", "repo": "weakestmoToImm", "sha": "7061b6279887aa5777f13b5c5ed6a10fae6740a5", "save_path": "github-repos/coq/weakmemory-weakestmoToImm", "path": "github-repos/coq/weakmemory-weakestmoToImm/weakestmoToImm-7061b6279887aa5777f13b5c5ed6a10fae6740a5/src/construction/ProgES.v"}
#!/bin/python3 import sys sys.path.append(".") from adder_graph import adder_graph from adder_graph import adder_node as node import networkx as nx import pydot g = adder_graph(4) g.add_node(node(0,0,'buffer_node'),style='invis') g.add_node(node(1,0,'buffer_node')) g.add_node(node(0,1,'black')) g.add_node(node(1,1,'black')) g.add_node(node(0,2,'grey')) g.add_node(node(1,2,'grey')) g.add_edge(g[0,0],('gout',0),g[0,1],('gin',0)) g.add_edge(g[0,0],('gout',0),g[1,1],('gin',0)) g.add_edge(g[1,0],('gout',0),g[1,1],('gin',1)) g.add_edge(g[0,1],('pout',0),g[0,2],('gin',1)) g.add_edge(g[0,1],('gout',0),g[1,2],('gin',0)) g.add_edge(g[1,1],('gout',0),g[1,2],('gin',0)) g.add_edge(g[1,1],('pout',0),g[1,2],('gin',1)) # Node connecting to two separate children via different ports adj_list=g.adj[g[0,1]] assert(g[0,2] in adj_list) assert(g[1,2] in adj_list) assert(g[0,1].outs['pout'][0]==3) assert(g[0,2].ins['gin'][1]==3) assert(adj_list[g[0,2]][0]['ins']==('pout',0)) assert(adj_list[g[1,2]][0]['outs']==('gin',0)) # Node connecting to child via multiple ports adj_list=g.adj[g[1,1]] assert(g[1,2] in adj_list) assert(len(adj_list.keys())==3) assert(adj_list[g[1,2]][0]['outs']!=adj_list[g[1,2]][1]['outs']) assert(adj_list[g[1,2]][0]['ins']!=adj_list[g[1,2]][1]['ins']) # Node connecting to two separate children via same port adj_list=g.adj[g[0,0]] assert(g[0,1] in adj_list) assert(g[1,1] in adj_list) assert(adj_list[g[0,1]][0]['ins']==adj_list[g[1,1]][0]['ins']) assert(g[1,1]._flat()==" assign n6=1'b0&1'b0;\n assign n5=n2|(1'b0&n1);\n") #pg=nx.drawing.nx_pydot.to_pydot(g) #pg.write_png('output.png',prog='neato')
{"hexsha": "803ccf79d51b88ad6d95276c0596a6dc5a69863e", "size": 1635, "ext": "py", "lang": "Python", "max_stars_repo_path": "unit_tests/graph_test.py", "max_stars_repo_name": "tdene/synth_opt_adders", "max_stars_repo_head_hexsha": "c94ba6e61468e8867f7a3f8d5af252b0e42664a0", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 24, "max_stars_repo_stars_event_min_datetime": "2021-04-19T21:07:23.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-27T19:33:38.000Z", "max_issues_repo_path": "unit_tests/graph_test.py", "max_issues_repo_name": "tdene/synth_opt_adders", "max_issues_repo_head_hexsha": "c94ba6e61468e8867f7a3f8d5af252b0e42664a0", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 15, "max_issues_repo_issues_event_min_datetime": "2022-01-17T03:12:01.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-14T14:44:57.000Z", "max_forks_repo_path": "unit_tests/graph_test.py", "max_forks_repo_name": "tdene/synth_opt_adders", "max_forks_repo_head_hexsha": "c94ba6e61468e8867f7a3f8d5af252b0e42664a0", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2021-06-09T23:05:45.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-09T22:01:46.000Z", "avg_line_length": 27.25, "max_line_length": 75, "alphanum_fraction": 0.6409785933, "include": true, "reason": "import networkx", "num_tokens": 641}
import nltk from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import string import numpy as np f = open('nltk.txt','r',errors='ignore') t = f.read() t = t.replace('\n','').lower() f.close() st = nltk.sent_tokenize(t) wt = nltk.word_tokenize(t) lemmer = nltk.stem.WordNetLemmatizer() def lemTokens(tokens): return [lemmer.lemmatize(token) for token in tokens] remove_punc_dict = dict((ord(punc),None) for punc in string.punctuation) def lemNormalize(text): return lemTokens(nltk.word_tokenize(text.lower().translate(remove_punc_dict))) def response(input): st.append(input) tv = TfidfVectorizer(tokenizer=lemNormalize,stop_words='english') tfidf = tv.fit_transform(st) vals = cosine_similarity(tfidf[-1],tfidf) idx = vals.argsort()[0][-2] flat = vals.flatten() flat.sort() req_tfdif = flat[-2] if req_tfdif == 0: print("Response Error: Don't understand") else: print("\nANSWER: " + st[idx]) response("who is jarvis?")
{"hexsha": "456a49fc26497b78dc236e864f90e09125ba4454", "size": 1095, "ext": "py", "lang": "Python", "max_stars_repo_path": "nltkTest.py", "max_stars_repo_name": "pranjal-joshi/Florence", "max_stars_repo_head_hexsha": "ffc022f0c0b4625b4236d78b42bf551c64690cfc", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "nltkTest.py", "max_issues_repo_name": "pranjal-joshi/Florence", "max_issues_repo_head_hexsha": "ffc022f0c0b4625b4236d78b42bf551c64690cfc", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "nltkTest.py", "max_forks_repo_name": "pranjal-joshi/Florence", "max_forks_repo_head_hexsha": "ffc022f0c0b4625b4236d78b42bf551c64690cfc", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 26.7073170732, "max_line_length": 83, "alphanum_fraction": 0.6757990868, "include": true, "reason": "import numpy", "num_tokens": 275}
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette('colorblind', n_colors=4) # dist - acc dist_grouped = pd.read_csv('figures/wiki_dist_correctness_after.csv') conditions = [ (dist_grouped['locality'] == 0), (dist_grouped['locality'] == 1), (dist_grouped['locality'] == 2), (dist_grouped['locality'] == 3)] choices = ['no locality', 'same category, different section', 'same section, different category', 'same section, same category'] dist_grouped['Locality'] = np.select(conditions, choices) dist_grouped['Accuracy'] = dist_grouped['correctness'] dist_grouped['Neg. Distance'] = dist_grouped['dist_right'] fig, ax = plt.subplots(1, 1, figsize=(5, 4)) # sns.scatterplot(x='Neg. Distance', y='Accuracy', hue='Locality', data=dist_grouped, s=8, # palette=color, ax=ax[0], legend=False) grouped = pd.read_csv('figures/wiki_rank_after.csv') grouped = grouped.loc[grouped['rank'] <= 200] conditions = [ (grouped['locality'] == 0), (grouped['locality'] == 1), (grouped['locality'] == 2), (grouped['locality'] == 3)] grouped['Locality'] = np.select(conditions, choices) grouped['Rank'] = grouped['rank'] grouped['Accuracy'] = grouped['correctness'] grouped['Neg. Distance (Modified)'] = grouped['dist'] # rank - acc # sns.scatterplot(x='Rank', y='Accuracy', hue='Locality', data=grouped, s=8, # palette=color, ax=ax[1], legend=False) # rank - dist sns.scatterplot(x='Rank', y='Neg. Distance (Modified)', hue='Locality', data=grouped, s=8, palette=color) fig.tight_layout() plt.savefig('figures/wiki_after.pdf')
{"hexsha": "2229cd515f05f8388592d6c8f8ec0b2d47d9d0a7", "size": 1697, "ext": "py", "lang": "Python", "max_stars_repo_path": "plot_wiki_after.py", "max_stars_repo_name": "frankxu2004/knnlm", "max_stars_repo_head_hexsha": "7a668a916b08a0e82072c8f49eef4a10ad4a8505", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-11-04T01:29:35.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-04T13:46:52.000Z", "max_issues_repo_path": "plot_wiki_after.py", "max_issues_repo_name": "frankxu2004/knnlm-locality", "max_issues_repo_head_hexsha": "7a668a916b08a0e82072c8f49eef4a10ad4a8505", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "plot_wiki_after.py", "max_forks_repo_name": "frankxu2004/knnlm-locality", "max_forks_repo_head_hexsha": "7a668a916b08a0e82072c8f49eef4a10ad4a8505", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.0188679245, "max_line_length": 90, "alphanum_fraction": 0.6588096641, "include": true, "reason": "import numpy", "num_tokens": 469}
""" match two list of stars, provided by ra/dec degree """ import numpy as np import scipy.stats as ss def star_match ( list_a, list_b, a_ra, a_dec, b_ra, b_dec, a_mag=-1, b_mag=-1, dis_limit=0.002, mag_limit=-3, allow_dup=False ) : """match two list :param list_a: list a of stars, each item is a star, stars as list with property :param list_b: list b of stars :param a_ra: ra field index in list a :param a_dec: dec field index in list a :param b_ra: ra field index in list b :param b_dec: dec field index in list b :param a_mag: mag field index in list a, -1 means no mag, default is -1 :param b_mag: mag field index in list a, -1 means no mag, default is -1 :param dis_limit: distance limit when matching, default is 0.002 deg, 7.2 arcsec :param mag_limit: mag difference when checking, 0 means no check, minus means times of sigma, positive is mag difference, default is -3 :param allow_dup: allow duplicate mapping or not, default is False :returns: 3 items tuple, index of a, index of b, distance """ len_a = len(list_a) len_b = len(list_b) ra_a = np.array([k[a_ra] for k in list_a]) dec_a = np.array([k[a_dec] for k in list_a]) ra_b = np.array([k[b_ra] for k in list_b]) dec_b = np.array([k[b_dec] for k in list_b]) if a_mag >= 0 : mag_a = np.array([k[a_mag] for k in list_a]) else : mag_a = np.zeros(len_a) if b_mag >= 0 : mag_b = np.array([k[b_mag] for k in list_b]) else : mag_b = np.zeros(len_b) ra_scale = np.cos(np.median(dec_a) / 180.0 * np.pi) ix_a = np.argsort(dec_a) ix_b = np.argsort(dec_b) out_a , out_b = [] , [] #dis_ra, dis_dec = [], [] #dis_ra/dec only used for debug, test residual dis_ab = [] pbf = pbt = 0 # point b from/to for pa in range(len_a) : ix_pa = ix_a[pa] ra_p, dec_p = ra_a[ix_pa], dec_a[ix_pa] # pb walk down to first position [pbf]>=[pa]-dis, [pbt]>=[pa]+dis while pbf < len_b and dec_b[ix_b[pbf]] < dec_p - dis_limit : pbf += 1 while pbt < len_b and dec_b[ix_b[pbt]] < dec_p + dis_limit : pbt += 1 # exit if p2f runout if pbf >= len_b : break # skip if no near star if pbt - pbf < 1 : continue # check real distance, include ra for ix_pb in ix_b[range(pbf, pbt)] : d_ra = ra_p - ra_b[ix_pb] d_dec = dec_p - dec_b[ix_pb] dis = np.sqrt((d_ra * ra_scale) ** 2 + d_dec ** 2) if dis < dis_limit : out_a.append(ix_pa) out_b.append(ix_pb) #dis_ra.append(d_ra) #dis_dec.append(d_dec) dis_ab.append(dis) out_a = np.array(out_a) out_b = np.array(out_b) #dis_ra = np.array(dis_ra) #dis_dec = np.array(dis_dec) dis_ab = np.array(dis_ab) if a_mag >= 0 and b_mag >= 0 and mag_limit != 0 : # mag difference limit check mag_diff = mag_a[out_a] - mag_b[out_b] if mag_limit < 0 : mag_diff_clip, ml, mh = ss.sigmaclip(mag_diff, 3, 3) std = mag_diff_clip.std() mea = mag_diff_clip.mean() mag_limit_x = - std * mag_limit else : mea = mag_diff.mean() mag_limit_x = mag_limit ix_m = np.where(np.abs(mag_diff - mea) < mag_limit_x) out_a = out_a[ix_m] out_b = out_b[ix_m] dis_ab = dis_ab[ix_m] if not allow_dup : ix_keep = [] uq_a = np.unique(out_a) for u in uq_a : ix_dup = np.where(out_a == u) ix_min = ix_dup[0][ dis_ab[ix_dup].argmin() ] ix_keep.append(ix_min) out_a = out_a[ix_keep] out_b = out_b[ix_keep] dis_ab = dis_ab[ix_keep] ix_keep = [] uq_b = np.unique(out_b) for u in uq_b : ix_dup = np.where(out_b == u) ix_min = ix_dup[0][ dis_ab[ix_dup].argmin() ] ix_keep.append(ix_min) out_a = out_a[ix_keep] out_b = out_b[ix_keep] dis_ab = dis_ab[ix_keep] return (out_a, out_b, dis_ab)
{"hexsha": "f3baf89b5e3a23bbcab31cc7bc8a937811784be8", "size": 4203, "ext": "py", "lang": "Python", "max_stars_repo_path": "star_match.py", "max_stars_repo_name": "RapidLzj/201603", "max_stars_repo_head_hexsha": "dbcefad4a833a936f469186a7eb7106da9a91e74", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "star_match.py", "max_issues_repo_name": "RapidLzj/201603", "max_issues_repo_head_hexsha": "dbcefad4a833a936f469186a7eb7106da9a91e74", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "star_match.py", "max_forks_repo_name": "RapidLzj/201603", "max_forks_repo_head_hexsha": "dbcefad4a833a936f469186a7eb7106da9a91e74", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.3193277311, "max_line_length": 84, "alphanum_fraction": 0.5667380443, "include": true, "reason": "import numpy,import scipy", "num_tokens": 1244}
[STATEMENT] lemma mult_mono_nonpos_nonpos: "a * b \<le> c * d" if "a \<ge> c" "a \<le> 0" "b \<ge> d" "d \<le> 0" for a b c d::real [PROOF STATE] proof (prove) goal (1 subgoal): 1. a * b \<le> c * d [PROOF STEP] by (meson dual_order.trans mult_left_mono_neg mult_right_mono_neg that)
{"llama_tokens": 138, "file": null, "length": 1}
export name, email, time, time_offset typealias MaybeSignature Union(Void, Signature) #TODO: better date / time integration when this becomes available in Base Signature(name::AbstractString, email::AbstractString) = begin sig_ptr = Ptr{SignatureStruct}[0] @check ccall((:git_signature_now, libgit2), Cint, (Ptr{Ptr{SignatureStruct}}, Ptr{UInt8}, Ptr{UInt8}), sig_ptr, name, email) s = Signature(sig_ptr[1]) ccall((:git_signature_free, libgit2), Void, (Ptr{SignatureStruct},), sig_ptr[1]) return s end Signature(ptr::Ptr{SignatureStruct}) = begin sig = unsafe_load(ptr)::SignatureStruct name = utf8(bytestring(sig.name)) email = utf8(bytestring(sig.email)) time = sig.when.time offset = sig.when.offset return Signature(name, email, time, offset) end Base.show(io::IO, s::Signature) = begin time_str = strftime("%Y-%m-%d %H:%M:%S %Z", s.time) print(io, "Signature(\"$(name(s))\",\"$(email(s))\",\"$time_str\")") end Base.(:(==))(sig1::Signature, sig2::Signature) = (sig1.name == sig2.name && sig1.email == sig2.email && sig1.time == sig2.time && sig1.time_offset == sig2.time_offset) Base.isequal(sig1::Signature, sig2::Signature) = (sig1 == sig2) Base.convert(::Type{Ptr{SignatureStruct}}, sig::Signature) = begin sig_ptr = Ptr{SignatureStruct}[0] @check ccall((:git_signature_new, libgit2), Cint, (Ptr{Ptr{SignatureStruct}}, Ptr{UInt8}, Ptr{UInt8}, Cint, Cint), sig_ptr, sig.name, sig.email, sig.time, sig.time_offset) return sig_ptr[1]::Ptr{SignatureStruct} end name(s::Signature) = s.name email(s::Signature) = s.email #TODO: remove Base.time(s::Signature) = s.time time_offset(s::Signature) = s.time_offset
{"hexsha": "ec9d6f1a53b41d243112511168dcdc6010f05f4b", "size": 1892, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/signature.jl", "max_stars_repo_name": "UnofficialJuliaMirrorSnapshots/LibGit2.jl-76f85450-5226-5b5a-8eaa-529ad045b433", "max_stars_repo_head_hexsha": "5e0adc9e9b9b1bb1963169f7a8e59fb72b79a73f", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/signature.jl", "max_issues_repo_name": "UnofficialJuliaMirrorSnapshots/LibGit2.jl-76f85450-5226-5b5a-8eaa-529ad045b433", "max_issues_repo_head_hexsha": "5e0adc9e9b9b1bb1963169f7a8e59fb72b79a73f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/signature.jl", "max_forks_repo_name": "UnofficialJuliaMirrorSnapshots/LibGit2.jl-76f85450-5226-5b5a-8eaa-529ad045b433", "max_forks_repo_head_hexsha": "5e0adc9e9b9b1bb1963169f7a8e59fb72b79a73f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 37.84, "max_line_length": 91, "alphanum_fraction": 0.616807611, "num_tokens": 503}
(* Title: HOL/Word/WordBitwise.thy Authors: Thomas Sewell, NICTA and Sascha Boehme, TU Muenchen *) theory WordBitwise imports Word begin text \<open>Helper constants used in defining addition\<close> definition xor3 :: "bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool" where "xor3 a b c = (a = (b = c))" definition carry :: "bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool" where "carry a b c = ((a \<and> (b \<or> c)) \<or> (b \<and> c))" lemma carry_simps: "carry True a b = (a \<or> b)" "carry a True b = (a \<or> b)" "carry a b True = (a \<or> b)" "carry False a b = (a \<and> b)" "carry a False b = (a \<and> b)" "carry a b False = (a \<and> b)" by (auto simp add: carry_def) lemma xor3_simps: "xor3 True a b = (a = b)" "xor3 a True b = (a = b)" "xor3 a b True = (a = b)" "xor3 False a b = (a \<noteq> b)" "xor3 a False b = (a \<noteq> b)" "xor3 a b False = (a \<noteq> b)" by (simp_all add: xor3_def) text \<open>Breaking up word equalities into equalities on their bit lists. Equalities are generated and manipulated in the reverse order to to_bl.\<close> lemma word_eq_rbl_eq: "(x = y) = (rev (to_bl x) = rev (to_bl y))" by simp lemma rbl_word_or: "rev (to_bl (x OR y)) = map2 op \<or> (rev (to_bl x)) (rev (to_bl y))" by (simp add: map2_def zip_rev bl_word_or rev_map) lemma rbl_word_and: "rev (to_bl (x AND y)) = map2 op \<and> (rev (to_bl x)) (rev (to_bl y))" by (simp add: map2_def zip_rev bl_word_and rev_map) lemma rbl_word_xor: "rev (to_bl (x XOR y)) = map2 op \<noteq> (rev (to_bl x)) (rev (to_bl y))" by (simp add: map2_def zip_rev bl_word_xor rev_map) lemma rbl_word_not: "rev (to_bl (NOT x)) = map Not (rev (to_bl x))" by (simp add: bl_word_not rev_map) lemma bl_word_sub: "to_bl (x - y) = to_bl (x + (- y))" by simp lemma rbl_word_1: "rev (to_bl (1 :: ('a :: len0) word)) = takefill False (len_of TYPE('a)) [True]" apply (rule_tac s="rev (to_bl (word_succ (0 :: 'a word)))" in trans) apply simp apply (simp only: rtb_rbl_ariths(1)[OF refl]) apply simp apply (case_tac "len_of TYPE('a)") apply simp apply (simp add: takefill_alt) done lemma rbl_word_if: "rev (to_bl (if P then x else y)) = map2 (If P) (rev (to_bl x)) (rev (to_bl y))" by (simp add: map2_def split_def) lemma rbl_add_carry_Cons: "(if car then rbl_succ else id) (rbl_add (x # xs) (y # ys)) = xor3 x y car # (if carry x y car then rbl_succ else id) (rbl_add xs ys)" by (simp add: carry_def xor3_def) lemma rbl_add_suc_carry_fold: "length xs = length ys \<Longrightarrow> \<forall>car. (if car then rbl_succ else id) (rbl_add xs ys) = (foldr (\<lambda>(x, y) res car. xor3 x y car # res (carry x y car)) (zip xs ys) (\<lambda>_. [])) car" apply (erule list_induct2) apply simp apply (simp only: rbl_add_carry_Cons) apply simp done lemma to_bl_plus_carry: "to_bl (x + y) = rev (foldr (\<lambda>(x, y) res car. xor3 x y car # res (carry x y car)) (rev (zip (to_bl x) (to_bl y))) (\<lambda>_. []) False)" using rbl_add_suc_carry_fold[where xs="rev (to_bl x)" and ys="rev (to_bl y)"] apply (simp add: word_add_rbl[OF refl refl]) apply (drule_tac x=False in spec) apply (simp add: zip_rev) done definition "rbl_plus cin xs ys = foldr (\<lambda>(x, y) res car. xor3 x y car # res (carry x y car)) (zip xs ys) (\<lambda>_. []) cin" lemma rbl_plus_simps: "rbl_plus cin (x # xs) (y # ys) = xor3 x y cin # rbl_plus (carry x y cin) xs ys" "rbl_plus cin [] ys = []" "rbl_plus cin xs [] = []" by (simp_all add: rbl_plus_def) lemma rbl_word_plus: "rev (to_bl (x + y)) = rbl_plus False (rev (to_bl x)) (rev (to_bl y))" by (simp add: rbl_plus_def to_bl_plus_carry zip_rev) definition "rbl_succ2 b xs = (if b then rbl_succ xs else xs)" lemma rbl_succ2_simps: "rbl_succ2 b [] = []" "rbl_succ2 b (x # xs) = (b \<noteq> x) # rbl_succ2 (x \<and> b) xs" by (simp_all add: rbl_succ2_def) lemma twos_complement: "- x = word_succ (NOT x)" using arg_cong[OF word_add_not[where x=x], where f="\<lambda>a. a - x + 1"] by (simp add: word_succ_p1 word_sp_01[unfolded word_succ_p1] del: word_add_not) lemma rbl_word_neg: "rev (to_bl (- x)) = rbl_succ2 True (map Not (rev (to_bl x)))" by (simp add: twos_complement word_succ_rbl[OF refl] bl_word_not rev_map rbl_succ2_def) lemma rbl_word_cat: "rev (to_bl (word_cat x y :: ('a :: len0) word)) = takefill False (len_of TYPE('a)) (rev (to_bl y) @ rev (to_bl x))" by (simp add: word_cat_bl word_rev_tf) lemma rbl_word_slice: "rev (to_bl (slice n w :: ('a :: len0) word)) = takefill False (len_of TYPE('a)) (drop n (rev (to_bl w)))" apply (simp add: slice_take word_rev_tf rev_take) apply (cases "n < len_of TYPE('b)", simp_all) done lemma rbl_word_ucast: "rev (to_bl (ucast x :: ('a :: len0) word)) = takefill False (len_of TYPE('a)) (rev (to_bl x))" apply (simp add: to_bl_ucast takefill_alt) apply (simp add: rev_drop) apply (case_tac "len_of TYPE('a) < len_of TYPE('b)") apply simp_all done lemma rbl_shiftl: "rev (to_bl (w << n)) = takefill False (size w) (replicate n False @ rev (to_bl w))" by (simp add: bl_shiftl takefill_alt word_size rev_drop) lemma rbl_shiftr: "rev (to_bl (w >> n)) = takefill False (size w) (drop n (rev (to_bl w)))" by (simp add: shiftr_slice rbl_word_slice word_size) definition "drop_nonempty v n xs = (if n < length xs then drop n xs else [last (v # xs)])" lemma drop_nonempty_simps: "drop_nonempty v (Suc n) (x # xs) = drop_nonempty x n xs" "drop_nonempty v 0 (x # xs) = (x # xs)" "drop_nonempty v n [] = [v]" by (simp_all add: drop_nonempty_def) definition "takefill_last x n xs = takefill (last (x # xs)) n xs" lemma takefill_last_simps: "takefill_last z (Suc n) (x # xs) = x # takefill_last x n xs" "takefill_last z 0 xs = []" "takefill_last z n [] = replicate n z" apply (simp_all add: takefill_last_def) apply (simp_all add: takefill_alt) done lemma rbl_sshiftr: "rev (to_bl (w >>> n)) = takefill_last False (size w) (drop_nonempty False n (rev (to_bl w)))" apply (cases "n < size w") apply (simp add: bl_sshiftr takefill_last_def word_size takefill_alt rev_take last_rev drop_nonempty_def) apply (subgoal_tac "(w >>> n) = of_bl (replicate (size w) (msb w))") apply (simp add: word_size takefill_last_def takefill_alt last_rev word_msb_alt word_rev_tf drop_nonempty_def take_Cons') apply (case_tac "len_of TYPE('a)", simp_all) apply (rule word_eqI) apply (simp add: nth_sshiftr word_size test_bit_of_bl msb_nth) done lemma nth_word_of_int: "(word_of_int x :: ('a :: len0) word) !! n = (n < len_of TYPE('a) \<and> bin_nth x n)" apply (simp add: test_bit_bl word_size to_bl_of_bin) apply (subst conj_cong[OF refl], erule bin_nth_bl) apply (auto) done lemma nth_scast: "(scast (x :: ('a :: len) word) :: ('b :: len) word) !! n = (n < len_of TYPE('b) \<and> (if n < len_of TYPE('a) - 1 then x !! n else x !! (len_of TYPE('a) - 1)))" by (simp add: scast_def nth_word_of_int nth_sint) lemma rbl_word_scast: "rev (to_bl (scast x :: ('a :: len) word)) = takefill_last False (len_of TYPE('a)) (rev (to_bl x))" apply (rule nth_equalityI) apply (simp add: word_size takefill_last_def) apply (clarsimp simp: nth_scast takefill_last_def nth_takefill word_size nth_rev to_bl_nth) apply (cases "len_of TYPE('b)") apply simp apply (clarsimp simp: less_Suc_eq_le linorder_not_less last_rev word_msb_alt[symmetric] msb_nth) done definition rbl_mul :: "bool list \<Rightarrow> bool list \<Rightarrow> bool list" where "rbl_mul xs ys = foldr (\<lambda>x sm. rbl_plus False (map (op \<and> x) ys) (False # sm)) xs []" lemma rbl_mul_simps: "rbl_mul (x # xs) ys = rbl_plus False (map (op \<and> x) ys) (False # rbl_mul xs ys)" "rbl_mul [] ys = []" by (simp_all add: rbl_mul_def) lemma takefill_le2: "length xs \<le> n \<Longrightarrow> takefill x m (takefill x n xs) = takefill x m xs" by (simp add: takefill_alt replicate_add[symmetric]) lemma take_rbl_plus: "\<forall>n b. take n (rbl_plus b xs ys) = rbl_plus b (take n xs) (take n ys)" apply (simp add: rbl_plus_def take_zip[symmetric]) apply (rule_tac list="zip xs ys" in list.induct) apply simp apply (clarsimp simp: split_def) apply (case_tac n, simp_all) done lemma word_rbl_mul_induct: fixes y :: "'a :: len word" shows "length xs \<le> size y \<Longrightarrow> rbl_mul xs (rev (to_bl y)) = take (length xs) (rev (to_bl (of_bl (rev xs) * y)))" proof (induct xs) case Nil show ?case by (simp add: rbl_mul_simps) next case (Cons z zs) have rbl_word_plus': "\<And>(x :: 'a word) y. to_bl (x + y) = rev (rbl_plus False (rev (to_bl x)) (rev (to_bl y)))" by (simp add: rbl_word_plus[symmetric]) have mult_bit: "to_bl (of_bl [z] * y) = map (op \<and> z) (to_bl y)" apply (cases z) apply (simp cong: map_cong) apply (simp add: map_replicate_const cong: map_cong) done have shiftl: "\<And>xs. of_bl xs * 2 * y = (of_bl xs * y) << 1" by (simp add: shiftl_t2n) have zip_take_triv: "\<And>xs ys n. n = length ys \<Longrightarrow> zip (take n xs) ys = zip xs ys" by (rule nth_equalityI, simp_all) show ?case using Cons apply (simp add: trans [OF of_bl_append add.commute] rbl_mul_simps rbl_word_plus' Cons.hyps distrib_right mult_bit shiftl rbl_shiftl) apply (simp add: takefill_alt word_size rev_map take_rbl_plus min_def) apply (simp add: rbl_plus_def zip_take_triv) done qed lemma rbl_word_mul: fixes x :: "'a :: len word" shows "rev (to_bl (x * y)) = rbl_mul (rev (to_bl x)) (rev (to_bl y))" using word_rbl_mul_induct[where xs="rev (to_bl x)" and y=y] by (simp add: word_size) text \<open>Breaking up inequalities into bitlist properties.\<close> definition "rev_bl_order F xs ys = (length xs = length ys \<and> ((xs = ys \<and> F) \<or> (\<exists>n < length xs. drop (Suc n) xs = drop (Suc n) ys \<and> \<not> xs ! n \<and> ys ! n)))" lemma rev_bl_order_simps: "rev_bl_order F [] [] = F" "rev_bl_order F (x # xs) (y # ys) = rev_bl_order ((y \<and> \<not> x) \<or> ((y \<or> \<not> x) \<and> F)) xs ys" apply (simp_all add: rev_bl_order_def) apply (rule conj_cong[OF refl]) apply (cases "xs = ys") apply (simp add: nth_Cons') apply blast apply (simp add: nth_Cons') apply safe apply (rule_tac x="n - 1" in exI) apply simp apply (rule_tac x="Suc n" in exI) apply simp done lemma rev_bl_order_rev_simp: "length xs = length ys \<Longrightarrow> rev_bl_order F (xs @ [x]) (ys @ [y]) = ((y \<and> \<not> x) \<or> ((y \<or> \<not> x) \<and> rev_bl_order F xs ys))" apply (induct arbitrary: F rule: list_induct2) apply (auto simp add: rev_bl_order_simps) done lemma rev_bl_order_bl_to_bin: "length xs = length ys \<Longrightarrow> rev_bl_order True xs ys = (bl_to_bin (rev xs) \<le> bl_to_bin (rev ys)) \<and> rev_bl_order False xs ys = (bl_to_bin (rev xs) < bl_to_bin (rev ys))" apply (induct xs ys rule: list_induct2) apply (simp_all add: rev_bl_order_simps bl_to_bin_app_cat) apply (auto simp add: bl_to_bin_def Bit_B0 Bit_B1 add1_zle_eq Bit_def) done lemma word_le_rbl: fixes x :: "('a :: len0) word" shows "(x \<le> y) = rev_bl_order True (rev (to_bl x)) (rev (to_bl y))" by (simp add: rev_bl_order_bl_to_bin word_le_def) lemma word_less_rbl: fixes x :: "('a :: len0) word" shows "(x < y) = rev_bl_order False (rev (to_bl x)) (rev (to_bl y))" by (simp add: word_less_alt rev_bl_order_bl_to_bin) lemma word_sint_msb_eq: "sint x = uint x - (if msb x then 2 ^ size x else 0)" apply (cases "msb x") apply (rule word_sint.Abs_eqD[where 'a='a], simp_all) apply (simp add: word_size wi_hom_syms word_of_int_2p_len) apply (simp add: sints_num word_size) apply (rule conjI) apply (simp add: le_diff_eq') apply (rule order_trans[where y="2 ^ (len_of TYPE('a) - 1)"]) apply (simp add: power_Suc[symmetric]) apply (simp add: linorder_not_less[symmetric] mask_eq_iff[symmetric]) apply (rule notI, drule word_eqD[where x="size x - 1"]) apply (simp add: msb_nth word_ops_nth_size word_size) apply (simp add: order_less_le_trans[where y=0]) apply (rule word_uint.Abs_eqD[where 'a='a], simp_all) apply (simp add: linorder_not_less uints_num word_msb_sint) apply (rule order_less_le_trans[OF sint_lt]) apply simp done lemma word_sle_msb_le: "(x <=s y) = ((msb y --> msb x) \<and> ((msb x \<and> \<not> msb y) \<or> (x <= y)))" apply (simp add: word_sle_def word_sint_msb_eq word_size word_le_def) apply safe apply (rule order_trans[OF _ uint_ge_0]) apply (simp add: order_less_imp_le) apply (erule notE[OF leD]) apply (rule order_less_le_trans[OF _ uint_ge_0]) apply simp done lemma word_sless_msb_less: "(x <s y) = ((msb y --> msb x) \<and> ((msb x \<and> \<not> msb y) \<or> (x < y)))" by (auto simp add: word_sless_def word_sle_msb_le) definition "map_last f xs = (if xs = [] then [] else butlast xs @ [f (last xs)])" lemma map_last_simps: "map_last f [] = []" "map_last f [x] = [f x]" "map_last f (x # y # zs) = x # map_last f (y # zs)" by (simp_all add: map_last_def) lemma word_sle_rbl: "(x <=s y) = rev_bl_order True (map_last Not (rev (to_bl x))) (map_last Not (rev (to_bl y)))" using word_msb_alt[where w=x] word_msb_alt[where w=y] apply (simp add: word_sle_msb_le word_le_rbl) apply (subgoal_tac "length (to_bl x) = length (to_bl y)") apply (cases "to_bl x", simp) apply (cases "to_bl y", simp) apply (clarsimp simp: map_last_def rev_bl_order_rev_simp) apply auto done lemma word_sless_rbl: "(x <s y) = rev_bl_order False (map_last Not (rev (to_bl x))) (map_last Not (rev (to_bl y)))" using word_msb_alt[where w=x] word_msb_alt[where w=y] apply (simp add: word_sless_msb_less word_less_rbl) apply (subgoal_tac "length (to_bl x) = length (to_bl y)") apply (cases "to_bl x", simp) apply (cases "to_bl y", simp) apply (clarsimp simp: map_last_def rev_bl_order_rev_simp) apply auto done text \<open>Lemmas for unpacking rev (to_bl n) for numerals n and also for irreducible values and expressions.\<close> lemma rev_bin_to_bl_simps: "rev (bin_to_bl 0 x) = []" "rev (bin_to_bl (Suc n) (numeral (num.Bit0 nm))) = False # rev (bin_to_bl n (numeral nm))" "rev (bin_to_bl (Suc n) (numeral (num.Bit1 nm))) = True # rev (bin_to_bl n (numeral nm))" "rev (bin_to_bl (Suc n) (numeral (num.One))) = True # replicate n False" "rev (bin_to_bl (Suc n) (- numeral (num.Bit0 nm))) = False # rev (bin_to_bl n (- numeral nm))" "rev (bin_to_bl (Suc n) (- numeral (num.Bit1 nm))) = True # rev (bin_to_bl n (- numeral (nm + num.One)))" "rev (bin_to_bl (Suc n) (- numeral (num.One))) = True # replicate n True" "rev (bin_to_bl (Suc n) (- numeral (num.Bit0 nm + num.One))) = True # rev (bin_to_bl n (- numeral (nm + num.One)))" "rev (bin_to_bl (Suc n) (- numeral (num.Bit1 nm + num.One))) = False # rev (bin_to_bl n (- numeral (nm + num.One)))" "rev (bin_to_bl (Suc n) (- numeral (num.One + num.One))) = False # rev (bin_to_bl n (- numeral num.One))" apply (simp_all add: bin_to_bl_def) apply (simp_all only: bin_to_bl_aux_alt) apply (simp_all) apply (simp_all add: bin_to_bl_zero_aux bin_to_bl_minus1_aux) done lemma to_bl_upt: "to_bl x = rev (map (op !! x) [0 ..< size x])" apply (rule nth_equalityI) apply (simp add: word_size) apply (clarsimp simp: to_bl_nth word_size nth_rev) done lemma rev_to_bl_upt: "rev (to_bl x) = map (op !! x) [0 ..< size x]" by (simp add: to_bl_upt) lemma upt_eq_list_intros: "j <= i \<Longrightarrow> [i ..< j] = []" "\<lbrakk> i = x; x < j; [x + 1 ..< j] = xs \<rbrakk> \<Longrightarrow> [i ..< j] = (x # xs)" by (simp_all add: upt_eq_Nil_conv upt_eq_Cons_conv) text \<open>Tactic definition\<close> ML \<open> structure Word_Bitwise_Tac = struct val word_ss = simpset_of @{theory_context Word}; fun mk_nat_clist ns = List.foldr (uncurry (Thm.mk_binop @{cterm "Cons :: nat => _"})) @{cterm "[] :: nat list"} ns; fun upt_conv ctxt ct = case Thm.term_of ct of (@{const upt} $ n $ m) => let val (i, j) = apply2 (snd o HOLogic.dest_number) (n, m); val ns = map (Numeral.mk_cnumber @{ctyp nat}) (i upto (j - 1)) |> mk_nat_clist; val prop = Thm.mk_binop @{cterm "op = :: nat list => _"} ct ns |> Thm.apply @{cterm Trueprop}; in try (fn () => Goal.prove_internal ctxt [] prop (K (REPEAT_DETERM (resolve_tac ctxt @{thms upt_eq_list_intros} 1 ORELSE simp_tac (put_simpset word_ss ctxt) 1))) |> mk_meta_eq) () end | _ => NONE; val expand_upt_simproc = Simplifier.make_simproc @{context} "expand_upt" {lhss = [@{term "upt x y"}], proc = K upt_conv}; fun word_len_simproc_fn ctxt ct = case Thm.term_of ct of Const (@{const_name len_of}, _) $ t => (let val T = fastype_of t |> dest_Type |> snd |> the_single val n = Numeral.mk_cnumber @{ctyp nat} (Word_Lib.dest_binT T); val prop = Thm.mk_binop @{cterm "op = :: nat => _"} ct n |> Thm.apply @{cterm Trueprop}; in Goal.prove_internal ctxt [] prop (K (simp_tac (put_simpset word_ss ctxt) 1)) |> mk_meta_eq |> SOME end handle TERM _ => NONE | TYPE _ => NONE) | _ => NONE; val word_len_simproc = Simplifier.make_simproc @{context} "word_len" {lhss = [@{term "len_of x"}], proc = K word_len_simproc_fn}; (* convert 5 or nat 5 to Suc 4 when n_sucs = 1, Suc (Suc 4) when n_sucs = 2, or just 5 (discarding nat) when n_sucs = 0 *) fun nat_get_Suc_simproc_fn n_sucs ctxt ct = let val (f $ arg) = Thm.term_of ct; val n = (case arg of @{term nat} $ n => n | n => n) |> HOLogic.dest_number |> snd; val (i, j) = if n > n_sucs then (n_sucs, n - n_sucs) else (n, 0); val arg' = List.foldr (op $) (HOLogic.mk_number @{typ nat} j) (replicate i @{term Suc}); val _ = if arg = arg' then raise TERM ("", []) else (); fun propfn g = HOLogic.mk_eq (g arg, g arg') |> HOLogic.mk_Trueprop |> Thm.cterm_of ctxt; val eq1 = Goal.prove_internal ctxt [] (propfn I) (K (simp_tac (put_simpset word_ss ctxt) 1)); in Goal.prove_internal ctxt [] (propfn (curry (op $) f)) (K (simp_tac (put_simpset HOL_ss ctxt addsimps [eq1]) 1)) |> mk_meta_eq |> SOME end handle TERM _ => NONE; fun nat_get_Suc_simproc n_sucs ts = Simplifier.make_simproc @{context} "nat_get_Suc" {lhss = map (fn t => t $ @{term "n :: nat"}) ts, proc = K (nat_get_Suc_simproc_fn n_sucs)}; val no_split_ss = simpset_of (put_simpset HOL_ss @{context} |> Splitter.del_split @{thm if_split}); val expand_word_eq_sss = (simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms word_eq_rbl_eq word_le_rbl word_less_rbl word_sle_rbl word_sless_rbl}), map simpset_of [ put_simpset no_split_ss @{context} addsimps @{thms rbl_word_plus rbl_word_and rbl_word_or rbl_word_not rbl_word_neg bl_word_sub rbl_word_xor rbl_word_cat rbl_word_slice rbl_word_scast rbl_word_ucast rbl_shiftl rbl_shiftr rbl_sshiftr rbl_word_if}, put_simpset no_split_ss @{context} addsimps @{thms to_bl_numeral to_bl_neg_numeral to_bl_0 rbl_word_1}, put_simpset no_split_ss @{context} addsimps @{thms rev_rev_ident rev_replicate rev_map to_bl_upt word_size} addsimprocs [word_len_simproc], put_simpset no_split_ss @{context} addsimps @{thms list.simps split_conv replicate.simps list.map zip_Cons_Cons zip_Nil drop_Suc_Cons drop_0 drop_Nil foldr.simps map2_Cons map2_Nil takefill_Suc_Cons takefill_Suc_Nil takefill.Z rbl_succ2_simps rbl_plus_simps rev_bin_to_bl_simps append.simps takefill_last_simps drop_nonempty_simps rev_bl_order_simps} addsimprocs [expand_upt_simproc, nat_get_Suc_simproc 4 [@{term replicate}, @{term "takefill x"}, @{term drop}, @{term "bin_to_bl"}, @{term "takefill_last x"}, @{term "drop_nonempty x"}]], put_simpset no_split_ss @{context} addsimps @{thms xor3_simps carry_simps if_bool_simps} ]) fun tac ctxt = let val (ss, sss) = expand_word_eq_sss; in foldr1 (op THEN_ALL_NEW) ((CHANGED o safe_full_simp_tac (put_simpset ss ctxt)) :: map (fn ss => safe_full_simp_tac (put_simpset ss ctxt)) sss) end; end \<close> method_setup word_bitwise = \<open>Scan.succeed (fn ctxt => Method.SIMPLE_METHOD (Word_Bitwise_Tac.tac ctxt 1))\<close> "decomposer for word equalities and inequalities into bit propositions" end
{"author": "SEL4PROJ", "repo": "jormungand", "sha": "bad97f9817b4034cd705cd295a1f86af880a7631", "save_path": "github-repos/isabelle/SEL4PROJ-jormungand", "path": "github-repos/isabelle/SEL4PROJ-jormungand/jormungand-bad97f9817b4034cd705cd295a1f86af880a7631/case_study/isabelle/src/HOL/Word/WordBitwise.thy"}
# basic libs import numpy as np import json import os import random from scipy import signal # pytorch import torch from torch.utils.data import Dataset np.random.seed(42) class Dataset_train(Dataset): def __init__(self, patients,aug): self.patients = patients self.aug = aug def __len__(self): return len(self.patients) def __getitem__(self, idx): X, y = self.load_data(idx) X = torch.tensor(X, dtype=torch.float) y = torch.tensor(y, dtype=torch.float) return X, y def load_data(self, id, train=True): if self.patients[id][0] == 'A': data_folder = 'A' elif self.patients[id][0] == 'Q': data_folder = 'B' elif self.patients[id][0] == 'I': data_folder = 'C' elif self.patients[id][0] == 'S': data_folder = 'D' elif self.patients[id][0] == 'H': data_folder = 'E' elif self.patients[id][0] == 'E': data_folder = 'F' else: a = self.patients[id] print(1) data_folder = f'./data/{data_folder}/formatted/' # load waveforms X = np.load(data_folder+self.patients[id] + '.npy') # load annotation y = json.load(open(data_folder + self.patients[id] + '.json')) # Scale waveform amplitudes X = (X - np.mean(X)) / np.std(X) """ Maybe try this (see method below). X = apply_amplitude_scaling(X=X, y=y) """ # TODO: Seb's augmentation implementation point # We need a way to inform this method of the sample rate for the dataset. fs_training = 350 if self.aug is True: X = self.apply_augmentation(waveform=X, meta_data=y, fs_training=fs_training, max_samples=19000) #padding if X.shape[0] < 38000: padding = np.zeros((38000 - X.shape[0], X.shape[1])) X = np.concatenate([X, padding], axis=0) return X, y['labels_training_merged'] # if train: # # load annotation # y = json.load(open(data_folder+self.patients[id] + '.json')) # # return X, y['labels_training_merged'] # else: # return X @staticmethod def apply_amplitude_scaling(X, y): """Get rpeaks for each channel and scale waveform amplitude by median rpeak amplitude of lead I.""" if y['rpeaks']: for channel_rpeaks in y['rpeaks']: if channel_rpeaks: return X / np.median(X[y['rpeaks'][0], 0]) return (X - X.mean()) / X.std() def apply_augmentation(self, waveform, meta_data, fs_training, max_samples): # Random resample waveform = self._random_resample(waveform=waveform, meta_data=meta_data, fs_training=fs_training, probability=0.25, max_samples=max_samples) # Random amplitude scale waveform = self._random_scale(waveform=waveform, probability=0.5) # Apply synthetic noise waveform = self._add_synthetic_noise(waveform=waveform, fs_training=fs_training, probability=0.25) return waveform def _random_resample(self, waveform, meta_data, fs_training, probability, max_samples): """Randomly resample waveform. bradycardia=3, sinus bradycardia=20, sinus tachycardia=22 """ if ( meta_data['hr'] != 'nan' and all(meta_data['labels_training_merged'][label] == 0 for label in [3, 20, 22]) and self._coin_flip(probability=probability) ): # Get waveform duration duration = waveform.shape[0] / fs_training # Physiological limits hr_new = int(meta_data['hr'] * np.random.uniform(0.9, 1.1)) if hr_new > 300: hr_new = 300 elif hr_new < 40: hr_new = 40 else: pass # Get new duration duration_new = duration * meta_data['hr'] / hr_new # Get number of samples samples = int(duration_new * fs_training) if samples > max_samples: samples = max_samples # Resample waveform waveform = signal.resample_poly(waveform, samples, waveform.shape[0], axis=0).astype(np.float32) return waveform else: return waveform def _random_scale(self, waveform, probability): """Apply random scale factor between 0.25 and 3 to the waveform amplitudes.""" # Get random scale factor scale_factor = random.uniform(0.25, 3.) if self._coin_flip(probability): return waveform * scale_factor return waveform def _add_synthetic_noise(self, waveform, fs_training, probability): """Add different kinds of synthetic noise to the signal.""" waveform = waveform.squeeze() for idx in range(waveform.shape[1]): waveform[:, idx] = self._generate_baseline_wandering_noise(waveform=waveform[:, idx], fs=fs_training, probability=probability) waveform[:, idx] = self._generate_high_frequency_noise(waveform=waveform[:, idx], fs=fs_training, probability=probability) waveform[:, idx] = self._generate_gaussian_noise(waveform=waveform[:, idx], probability=probability) waveform[:, idx] = self._generate_pulse_noise(waveform=waveform[:, idx], probability=probability) return waveform def _generate_baseline_wandering_noise(self, waveform, fs, probability): """Adds baseline wandering to the input signal.""" waveform = waveform.squeeze() if self._coin_flip(probability): # Generate time array time = np.arange(len(waveform)) * 1 / fs # Get number of baseline signals baseline_signals = random.randint(1, 5) # Loop through baseline signals for baseline_signal in range(baseline_signals): # Add noise waveform += random.uniform(0.01, 0.75) * np.sin(2 * np.pi * random.uniform(0.001, 0.5) * time + random.uniform(0, 60)) return waveform def _generate_high_frequency_noise(self, waveform, fs, probability=0.5): """Adds high frequency sinusoidal noise to the input signal.""" waveform = waveform.squeeze() if self._coin_flip(probability): # Generate time array time = np.arange(len(waveform)) * 1 / fs # Add noise waveform += random.uniform(0.001, 0.3) * np.sin(2 * np.pi * random.uniform(50, 200) * time + random.uniform(0, 60)) return waveform def _generate_gaussian_noise(self, waveform, probability=0.5): """Adds white noise noise to the input signal.""" waveform = waveform.squeeze() if self._coin_flip(probability): waveform += np.random.normal(loc=0.0, scale=random.uniform(0.01, 0.25), size=len(waveform)) return waveform def _generate_pulse_noise(self, waveform, probability=0.5): """Adds gaussian pulse to the input signal.""" waveform = waveform.squeeze() if self._coin_flip(probability): # Get pulse pulse = signal.gaussian(int(len(waveform) * random.uniform(0.05, 0.010)), std=random.randint(50, 200)) pulse = np.diff(pulse) # Get remainder remainder = len(waveform) - len(pulse) if remainder >= 0: left_pad = int(remainder * random.uniform(0., 1.)) right_pad = remainder - left_pad pulse = np.pad(pulse, (left_pad, right_pad), 'constant', constant_values=0) pulse = pulse / pulse.max() waveform += pulse * random.uniform(waveform.max() * 1.5, waveform.max() * 2) return waveform @staticmethod def _coin_flip(probability): if random.random() < probability: return True return False def get_labels(self): """ :param ids: a list of ids for loading from the database :return: y: numpy array of labels, shape(n_samples,n_labels) """ for index, record in enumerate(self.patients): if record[0] == 'A': data_folder = 'A' elif record[0] == 'Q': data_folder = 'B' elif record[0] == 'I': data_folder = 'C' elif record[0] == 'S': data_folder = 'D' elif record[0] == 'H': data_folder = 'E' elif record[0] == 'E': data_folder = 'F' data_folder = f'./data/{data_folder}/formatted/' if index == 0: y = np.array([json.load(open(data_folder+record + '.json'))['labels_training_merged']]) y = np.reshape(y, (1, 27)) else: temp = np.array([json.load(open(data_folder+record + '.json'))['labels_training_merged']]) temp = np.reshape(temp, (1, 27)) y = np.concatenate((y, temp), axis=0) return y def my_collate(self,batch): """ This function was created to handle a variable-length of the :param batch: tuple(data,target) :return: list[data_tensor(batch_size,n_samples_channels), target_tensor(batch_size,n_classes)] """ data = [item[0] for item in batch] target = [item[1] for item in batch] # define the max size of the batch m_size = 0 for element in data: if m_size < element.shape[0]: m_size = element.shape[0] # zero pooling for index, element in enumerate(data): if m_size > element.shape[0]: padding = np.zeros((m_size-element.shape[0], element.shape[1])) padding = torch.from_numpy(padding) data[index] = torch.cat([element, padding], dim=0) padding = padding.detach() data = torch.stack(data) target = torch.stack(target) return [data, target] class Dataset_test(Dataset_train): def __init__(self, patients): super().__init__(patients=patients) def __getitem__(self, idx): X,y = self.load_data(idx, train=False) X = torch.tensor(X, dtype=torch.float) return X
{"hexsha": "9f26b1d0b181eeb219c726b796c6a784cee9d5c5", "size": 10724, "ext": "py", "lang": "Python", "max_stars_repo_path": "kardioml/models/deepecg/train/data_generator_pytorch.py", "max_stars_repo_name": "Seb-Good/physionet-challenge-2020", "max_stars_repo_head_hexsha": "c6f1648a148335babc0a26d8a589120616327548", "max_stars_repo_licenses": ["BSD-2-Clause"], "max_stars_count": 13, "max_stars_repo_stars_event_min_datetime": "2020-12-18T08:09:34.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-15T04:51:46.000Z", "max_issues_repo_path": "kardioml/models/deepecg/train/data_generator_pytorch.py", "max_issues_repo_name": "Seb-Good/physionet-challenge-2020", "max_issues_repo_head_hexsha": "c6f1648a148335babc0a26d8a589120616327548", "max_issues_repo_licenses": ["BSD-2-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "kardioml/models/deepecg/train/data_generator_pytorch.py", "max_forks_repo_name": "Seb-Good/physionet-challenge-2020", "max_forks_repo_head_hexsha": "c6f1648a148335babc0a26d8a589120616327548", "max_forks_repo_licenses": ["BSD-2-Clause"], "max_forks_count": 14, "max_forks_repo_forks_event_min_datetime": "2020-09-16T21:07:38.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-23T14:01:24.000Z", "avg_line_length": 34.0444444444, "max_line_length": 114, "alphanum_fraction": 0.5609847072, "include": true, "reason": "import numpy,from scipy", "num_tokens": 2454}
from collections import defaultdict from typing import Any, Dict, List, Optional, Type, Tuple, Mapping, Iterable import math from functools import total_ordering import numpy as np import yaml import shapely.geometry import shapely.ops import conveyor_msgs.msg Range = Tuple[float, float] Position = Tuple[float, float, float] LED = Tuple[str, Position] class Belt: def __init__(self, uid: str, centerline: shapely.geometry.LineString, width: float): self.uid = uid self.centerline = centerline self.width = width def __hash__(self) -> int: return hash(self.uid) def __repr__(self) -> str: return repr(self.uid) @property def length(self) -> float: return self.centerline.length @classmethod def load(cls: Type, uid: int, centerline: str, width: float, **kwargs: Any) -> 'Belt': return cls(uid=uid, width=width, centerline=shapely.geometry.LineString(centerline)) @classmethod def from_strip(cls: Type, strip: 'Strip', width: float = 0.1) -> 'Belt': return cls(uid=f'strip_{strip.uid}', width=width, centerline=strip.line) @total_ordering class Strip: def __init__(self, uid: int, line: shapely.geometry.LineString, pixels: int, direction: int): self.uid = uid self.line = line self.pixels = pixels self.direction = direction @property def length(self) -> float: return self.line.length def draw(self, color: List[int], intervals: List[Range]) -> np.ndarray: data: List[List[int]] = [[0, 0, 0]] * (self.pixels) le = self.pixels for a, b in intervals: i0 = math.ceil(a * le) i1 = math.floor(b * le) data[i0:i1] = [color] * (i1 - i0) if self.direction == -1: data = data[::-1] return np.array(data) def __hash__(self) -> int: return hash(self.uid) def __repr__(self) -> str: return repr(self.uid) def __eq__(self, other: Any) -> bool: return self is other def __ne__(self, other: Any) -> bool: return not (self == other) def __lt__(self, other: 'Strip') -> bool: return self.uid < other.uid @classmethod def load(cls, uid: int, line: str, pixels: int, direction: int, **kwargs: Any) -> 'Strip': return cls(uid=uid, pixels=pixels, line=shapely.geometry.LineString(line), direction=direction) DecomposedBelt = List[Tuple[Range, Tuple[Strip, Range]]] Decomposition = Mapping[Belt, DecomposedBelt] PositionOnBelt = Tuple[Belt, float] IntervalOnStrip = Tuple[Strip, Range] def overlap(dec: DecomposedBelt, a: float, b: float, belt: Belt) -> DecomposedBelt: rs: DecomposedBelt = [] for ((c, d), strip_interval) in dec: if b < c or a > d: continue strip, (e, f) = strip_interval x, y = c, d if b < d: y = b p = belt.centerline.interpolate(b, normalized=True) f = strip.line.project(p, normalized=True) if a > c: x = a p = belt.centerline.interpolate(a, normalized=True) e = strip.line.project(p, normalized=True) rs.append(((x, y), (strip, (e, f)))) return rs class LEDs: def __init__(self, leds: List[LED]) -> None: self.leds = {led[0]: led[1] for led in leds} @classmethod def load(cls, data: Dict[str, Any], **kwargs: Any) -> 'LEDs': return cls( leds=[(uid, value['position']) for uid, value in data.get('leds', {}).items()]) @classmethod def load_file(cls, path: str, **kwargs: Any) -> 'LEDs': with open(path, 'r') as f: data = yaml.safe_load(f) return cls.load(data, **kwargs) class Map: @property def belts(self) -> Iterable[Belt]: return self._belts.values() @property def bounding_box(self) -> Tuple[float, float, float, float]: union = shapely.ops.unary_union([belt.centerline for belt in self.belts]) return union.bounds @property def strips(self) -> Iterable[Strip]: return self._strips.values() def point_from_msg(self, msg: conveyor_msgs.msg.PositionOnStrip) -> Tuple[float, float, float]: belt = self._belts[msg.name] x, y, z = belt.centerline.interpolate(msg.position, normalized=True).coords[0] return x, y, z def __init__(self, belts: List[Belt], strips: List[Strip], links: List[Tuple[str, str]], tol: float = 0.01, tol_o: float = 1e-3) -> None: if not belts: # There are only strips ... emulate belts with strips belts = [Belt.from_strip(strip) for strip in strips] self._belts = {b.uid: b for b in belts} self._strips = {s.uid: s for s in strips} self._next_belt: Dict[Belt, Belt] = {} self._previous_belt: Dict[Belt, Belt] = {} for b1 in self.belts: p1 = b1.centerline.interpolate(0, normalized=True) p2 = b1.centerline.interpolate(1, normalized=True) m = b1.width * 0.5 + tol for b2 in self.belts: if b1 is b2: continue if p1.distance(b2.centerline) < m: self._previous_belt[b1] = b2 if p2.distance(b2.centerline) < m: self._next_belt[b1] = b2 if links: for b1_id, b2_id in links: b1, b2 = self._belts[b1_id], self._belts[b2_id] self._next_belt[b1] = b2 self._previous_belt[b2] = b1 dec: Decomposition = defaultdict(list) for strip in self.strips: for belt in self.belts: l1 = strip.line z1 = l1.coords[0][2] l2 = belt.centerline z2 = l2.coords[0][2] d = l1.distance(l2) if (abs(z1 - z2) < 0.5 and d < 0.5 * belt.width + tol): a = l1.project(l2.interpolate(0, normalized=True), normalized=True) b = l1.project(l2.interpolate(1, normalized=True), normalized=True) c = l2.project(l1.interpolate(a, normalized=True), normalized=True) d = l2.project(l1.interpolate(b, normalized=True), normalized=True) if (b - a) > tol_o and (d - c) > tol_o: dec[belt].append(((c, d), (strip, (a, b)))) self.dec = dec def draw(self) -> None: from matplotlib import pyplot for belt in self.belts: pyplot.plot(*belt.centerline.xy, '-', label=f'Belt {belt}') for strip in self.strips: pyplot.plot(*strip.line.xy, '--', label=f'Strip {strip}') pyplot.legend() pyplot.axis('equal') @classmethod def load(cls, data: Dict[str, Any], **kwargs: Any) -> 'Map': return cls( belts=[Belt.load(uid=uid, **value) for uid, value in data.get('belts', {}).items()], strips=[Strip.load(uid=uid, **value) for uid, value in data.get('strips', {}).items()], links=[(link['from'], link['to']) for link in data.get('links', [])], **kwargs) @classmethod def load_file(cls, path: str, **kwargs: Any) -> 'Map': with open(path, 'r') as f: data = yaml.safe_load(f) return cls.load(data, **kwargs) def project_interval(self, a: PositionOnBelt, b: PositionOnBelt) -> Decomposition: (belt_a, s_a) = a (belt_b, s_b) = b if belt_a is belt_b: return {belt_a: overlap(self.dec[belt_a], s_a, s_b, belt_a)} return {belt_a: overlap(self.dec[belt_a], s_a, 1, belt_a), belt_b: overlap(self.dec[belt_b], 0, s_b, belt_b)} def next_belt(self, belt: Belt) -> Optional[Belt]: return self._next_belt.get(belt) def previous_belt(self, belt: Belt) -> Optional[Belt]: return self._previous_belt.get(belt) def interval(self, belt: Belt, position: float, width: float ) -> Tuple[PositionOnBelt, PositionOnBelt]: le = belt.centerline.length s = position * belt.centerline.length a = s - width / 2 b = s + width / 2 p1, p2 = (belt, a / le), (belt, b / le) if a < 0: p_belt = self.previous_belt(belt) if p_belt: a += p_belt.centerline.length p1 = (p_belt, a / p_belt.centerline.length) else: p1 = (belt, 0) else: p1 = (belt, a / le) if b > le: n_belt = self.next_belt(belt) if n_belt: b -= belt.centerline.length p2 = (n_belt, b / n_belt.centerline.length) else: p2 = (belt, 1) else: p2 = (belt, b / le) return p1, p2 def strips_near(self, belt_uid: str, position: float, width: float ) -> List[IntervalOnStrip]: belt = self._belts[belt_uid] a, b = self.interval(belt, position, width) projection = self.project_interval(a, b) return [strip_interval for intervals in projection.values() for _, strip_interval in intervals if strip_interval]
{"hexsha": "c8bec67319ad9f1fe2e6533a6f9200362f264920", "size": 9258, "ext": "py", "lang": "Python", "max_stars_repo_path": "docker/pointing-user-interface/code/conveyor_utils/conveyor_utils/utils.py", "max_stars_repo_name": "Gabry993/pointing-user-interface-hri", "max_stars_repo_head_hexsha": "187b1db496a30edcf606b4c0a4e9388556df946a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2021-11-02T18:37:22.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-08T10:07:52.000Z", "max_issues_repo_path": "docker/pointing-user-interface/code/conveyor_utils/conveyor_utils/utils.py", "max_issues_repo_name": "Gabry993/pointing-user-interface-hri", "max_issues_repo_head_hexsha": "187b1db496a30edcf606b4c0a4e9388556df946a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "docker/pointing-user-interface/code/conveyor_utils/conveyor_utils/utils.py", "max_forks_repo_name": "Gabry993/pointing-user-interface-hri", "max_forks_repo_head_hexsha": "187b1db496a30edcf606b4c0a4e9388556df946a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.2015209125, "max_line_length": 99, "alphanum_fraction": 0.5647007993, "include": true, "reason": "import numpy", "num_tokens": 2467}
#!/usr/bin/env python # Deborah Pelacani Cruz # https://github.com/dekape import context import fullwaveqc.inversion as inv import numpy as np import os def test_thisfunction(): assert 1 def test_functional(): dir_path = os.path.abspath(os.path.dirname(__file__)) job_path = os.path.join(dir_path, "test_data/PARBASE25_8-job001.log") iter, func = inv.functional(job_path, plot=False) assert (iter == np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])).all() assert (func == np.array([38270., 36650., 36260., 36500., 36100., 36470., 36290., 36520., 36060., 35990., 33260., 33420., 33280.])).all() return def test_steplen(): dir_path = os.path.abspath(os.path.dirname(__file__)) job_path = os.path.join(dir_path, "test_data/PARBASE25_8-job001.log") iter, slen = inv.steplen(job_path, plot=False) assert (iter == np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])).all() assert (np.allclose(slen, np.array([6.27, 2.152, -1.833, 6.97, -1.678, 7.408, -2.136, 9.502, 0.2, 6.58, -1.868, 3.464, -1.204]))) return
{"hexsha": "e1a7dd49468c628ac375ac4d970374d8798d6ebf", "size": 1125, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_inversion.py", "max_stars_repo_name": "msc-acse/acse-9-independent-research-project-dekape", "max_stars_repo_head_hexsha": "d3d2236e47e8604803850c7cacceb826c7649bcb", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tests/test_inversion.py", "max_issues_repo_name": "msc-acse/acse-9-independent-research-project-dekape", "max_issues_repo_head_hexsha": "d3d2236e47e8604803850c7cacceb826c7649bcb", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2019-07-22T08:47:34.000Z", "max_issues_repo_issues_event_max_datetime": "2019-07-22T08:47:34.000Z", "max_forks_repo_path": "tests/test_inversion.py", "max_forks_repo_name": "msc-acse/acse-9-independent-research-project-dekape", "max_forks_repo_head_hexsha": "d3d2236e47e8604803850c7cacceb826c7649bcb", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.2903225806, "max_line_length": 117, "alphanum_fraction": 0.6151111111, "include": true, "reason": "import numpy", "num_tokens": 424}
[STATEMENT] lemma real_sqrt_sum_squares_less: "\<bar>x\<bar> < u / sqrt 2 \<Longrightarrow> \<bar>y\<bar> < u / sqrt 2 \<Longrightarrow> sqrt (x\<^sup>2 + y\<^sup>2) < u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> sqrt (x\<^sup>2 + y\<^sup>2) < u [PROOF STEP] apply (rule power2_less_imp_less) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> (sqrt (x\<^sup>2 + y\<^sup>2))\<^sup>2 < u\<^sup>2 2. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> 0 \<le> u [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> x\<^sup>2 + y\<^sup>2 < u\<^sup>2 2. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> 0 \<le> u [PROOF STEP] apply (drule power_strict_mono [OF _ abs_ge_zero pos2]) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>\<bar>y\<bar> < u / sqrt 2; \<bar>x\<bar>\<^sup>2 < (u / sqrt 2)\<^sup>2\<rbrakk> \<Longrightarrow> x\<^sup>2 + y\<^sup>2 < u\<^sup>2 2. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> 0 \<le> u [PROOF STEP] apply (drule power_strict_mono [OF _ abs_ge_zero pos2]) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>\<bar>x\<bar>\<^sup>2 < (u / sqrt 2)\<^sup>2; \<bar>y\<bar>\<^sup>2 < (u / sqrt 2)\<^sup>2\<rbrakk> \<Longrightarrow> x\<^sup>2 + y\<^sup>2 < u\<^sup>2 2. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> 0 \<le> u [PROOF STEP] apply (simp add: power_divide) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> 0 \<le> u [PROOF STEP] apply (drule order_le_less_trans [OF abs_ge_zero]) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<bar>y\<bar> < u / sqrt 2; 0 < u / sqrt 2\<rbrakk> \<Longrightarrow> 0 \<le> u [PROOF STEP] apply (simp add: zero_less_divide_iff) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
{"llama_tokens": 1058, "file": null, "length": 8}
# # bias_experiment.py # # Experiment in Paper's Section 3.1.1 # import collections import json import os import shutil import tempfile from copy import deepcopy import click import numpy as np import pandas as pd import torch from ceem import logger, utils from ceem.dynamics import * from ceem.learner import * from ceem.opt_criteria import * from ceem.ceem import CEEM from ceem.smoother import * from ceem.systems import LorenzAttractor, default_lorenz_attractor @click.command() @click.option('--sys-seed', default=4, type=int) @click.option('--num-seeds', default=10, type=int) @click.option('--logdir', default='./data/bias_experiment', type=click.Path()) def run(sys_seed, num_seeds, logdir): # Delete old version if os.path.exists(logdir): shutil.rmtree(logdir) os.mkdir(logdir) results = collections.defaultdict(list) ystd = 1e-2 for wstd in [1e-1, 1e-2, 1e-3]: for seed in range(num_seeds): tmpdir = tempfile.mkdtemp() sigma, rho, beta = train(seed, tmpdir, sys_seed, ystd, wstd) results['ystd'].append(ystd) results['wstd'].append(wstd) results['seed'].append(seed) results['sigma'].append(sigma) results['rho'].append(rho) results['beta'].append(beta) df = pd.DataFrame(results) df.to_pickle(os.path.join(logdir, 'results.pkl')) wstd = 1e-3 for ystd in [1e-1, 5e-2]: for seed in range(num_seeds): tmpdir = tempfile.mkdtemp() sigma, rho, beta = train(seed, tmpdir, sys_seed, ystd, wstd) results['ystd'].append(ystd) results['wstd'].append(wstd) results['seed'].append(seed) results['sigma'].append(sigma) results['rho'].append(rho) results['beta'].append(beta) df = pd.DataFrame(results) df.to_pickle(os.path.join(logdir, 'results.pkl')) df = pd.DataFrame(results) df.to_pickle(os.path.join(logdir, 'results.pkl')) def train(seed, logdir, sys_seed, ystd, wstd): torch.set_default_dtype(torch.float64) logger.setup(logdir, action='d') # Number of timesteps in the trajectory T = 128 n = 3 # Batch size B = 1 k = 1 utils.set_rng_seed(sys_seed) true_system = default_lorenz_attractor() dt = true_system._dt utils.set_rng_seed(43) # simulate the system x0mean = torch.tensor([[-6] * k + [-6] * k + [24.] * k]).unsqueeze(0) # seed for real now utils.set_rng_seed(seed) # Rollout with noise xs = [x0mean] xs[0] += 5. * torch.randn_like(xs[0]) with torch.no_grad(): for t in range(T - 1): xs.append( true_system.step(torch.tensor([0.] * B), xs[-1]) + wstd * torch.randn_like(xs[-1])) xs = torch.cat(xs, dim=1) t = torch.tensor(range(T)).unsqueeze(0).to(torch.get_default_dtype()) y = true_system.observe(t, xs).detach() y += ystd * torch.randn_like(y) # Observation noise # prep system system = deepcopy(true_system) true_params = parameters_to_vector(true_system.parameters()) params = true_params * ((torch.rand_like(true_params) - 0.5) / 5. + 1.) # within 10% vector_to_parameters(params, system.parameters()) params = list(system.parameters()) # specify smoothing criteria B = 1 smoothing_criteria = [] for b in range(B): obscrit = GaussianObservationCriterion(torch.ones(2), t[b:b + 1], y[b:b + 1]) dyncrit = GaussianDynamicsCriterion(wstd / ystd * torch.ones(3), t[b:b + 1]) smoothing_criteria.append(GroupSOSCriterion([obscrit, dyncrit])) smooth_solver_kwargs = {'verbose': 0, 'tr_rho': 0.001} # specify learning criteria learning_criteria = [GaussianDynamicsCriterion(torch.ones(3), t)] learning_params = [params] learning_opts = ['scipy_minimize'] learner_opt_kwargs = {'method': 'Nelder-Mead', 'tr_rho': 0.01} # instantiate CEEM def ecb(epoch): logger.logkv('test/rho', float(system._rho)) logger.logkv('test/sigma', float(system._sigma)) logger.logkv('test/beta', float(system._beta)) logger.logkv('test/rho_pcterr_log10', float(torch.log10((true_system._rho - system._rho).abs() / true_system._rho))) logger.logkv( 'test/sigma_pcterr_log10', float(torch.log10((true_system._sigma - system._sigma).abs() / true_system._sigma))) logger.logkv( 'test/beta_pcterr_log10', float(torch.log10((true_system._beta - system._beta).abs() / true_system._beta))) return epoch_callbacks = [ecb] class Last10Errors: def __init__(self): return last_10_errors = Last10Errors last_10_errors._arr = [] def tcb(epoch): params = list(system.parameters()) vparams = parameters_to_vector(params) error = (vparams - true_params).norm().item() last_10_errors._arr.append(float(error)) logger.logkv('test/log10_error', np.log10(error)) if len(last_10_errors._arr) > 10: last_10_errors._arr = last_10_errors._arr[-10:] l10err = torch.tensor(last_10_errors._arr) convcrit = float((l10err.min() - l10err.max()).abs()) logger.logkv('test/log10_convcrit', np.log10(convcrit)) if convcrit < 1e-4: return True return False termination_callback = tcb ceem = CEEM(smoothing_criteria, learning_criteria, learning_params, learning_opts, epoch_callbacks, termination_callback) # run CEEM x0 = torch.zeros_like(xs) ceem.train(xs=x0, sys=system, nepochs=500, smooth_solver_kwargs=smooth_solver_kwargs, learner_opt_kwargs=learner_opt_kwargs) return float(system._sigma), float(system._rho), float(system._beta) if __name__ == '__main__': run()
{"hexsha": "77a0afb9a2b36a5df87a213bb9a692803a03eac8", "size": 5963, "ext": "py", "lang": "Python", "max_stars_repo_path": "experiments/lorenz/bias_experiment.py", "max_stars_repo_name": "sisl/CEEM", "max_stars_repo_head_hexsha": "6154587fe3cdb92e8b7f70eedb1262caa1553cc8", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 5, "max_stars_repo_stars_event_min_datetime": "2020-06-21T16:50:42.000Z", "max_stars_repo_stars_event_max_datetime": "2021-03-14T04:02:01.000Z", "max_issues_repo_path": "experiments/lorenz/bias_experiment.py", "max_issues_repo_name": "sisl/CEEM", "max_issues_repo_head_hexsha": "6154587fe3cdb92e8b7f70eedb1262caa1553cc8", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2021-03-13T07:46:36.000Z", "max_issues_repo_issues_event_max_datetime": "2021-03-16T05:14:47.000Z", "max_forks_repo_path": "experiments/lorenz/bias_experiment.py", "max_forks_repo_name": "sisl/CEEM", "max_forks_repo_head_hexsha": "6154587fe3cdb92e8b7f70eedb1262caa1553cc8", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-03-30T12:08:20.000Z", "max_forks_repo_forks_event_max_datetime": "2021-03-30T12:08:20.000Z", "avg_line_length": 26.9819004525, "max_line_length": 99, "alphanum_fraction": 0.6288780815, "include": true, "reason": "import numpy", "num_tokens": 1557}
(* Title: HOL/Analysis/Gamma_Function.thy Author: Manuel Eberl, TU München *) section \<open>The Gamma Function\<close> theory Gamma_Function imports Equivalence_Lebesgue_Henstock_Integration Summation_Tests Harmonic_Numbers "HOL-Library.Nonpos_Ints" "HOL-Library.Periodic_Fun" begin text \<open> Several equivalent definitions of the Gamma function and its most important properties. Also contains the definition and some properties of the log-Gamma function and the Digamma function and the other Polygamma functions. Based on the Gamma function, we also prove the Weierstra{\ss} product form of the sin function and, based on this, the solution of the Basel problem (the sum over all \<^term>\<open>1 / (n::nat)^2\<close>. \<close> lemma pochhammer_eq_0_imp_nonpos_Int: "pochhammer (x::'a::field_char_0) n = 0 \<Longrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0" by (auto simp: pochhammer_eq_0_iff) lemma closed_nonpos_Ints [simp]: "closed (\<int>\<^sub>\<le>\<^sub>0 :: 'a :: real_normed_algebra_1 set)" proof - have "\<int>\<^sub>\<le>\<^sub>0 = (of_int ` {n. n \<le> 0} :: 'a set)" by (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int) also have "closed \<dots>" by (rule closed_of_int_image) finally show ?thesis . qed lemma plus_one_in_nonpos_Ints_imp: "z + 1 \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0" using nonpos_Ints_diff_Nats[of "z+1" "1"] by simp_all lemma of_int_in_nonpos_Ints_iff: "(of_int n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n \<le> 0" by (auto simp: nonpos_Ints_def) lemma one_plus_of_int_in_nonpos_Ints_iff: "(1 + of_int n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n \<le> -1" proof - have "1 + of_int n = (of_int (n + 1) :: 'a)" by simp also have "\<dots> \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n + 1 \<le> 0" by (subst of_int_in_nonpos_Ints_iff) simp_all also have "\<dots> \<longleftrightarrow> n \<le> -1" by presburger finally show ?thesis . qed lemma one_minus_of_nat_in_nonpos_Ints_iff: "(1 - of_nat n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n > 0" proof - have "(1 - of_nat n :: 'a) = of_int (1 - int n)" by simp also have "\<dots> \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n > 0" by (subst of_int_in_nonpos_Ints_iff) presburger finally show ?thesis . qed lemma fraction_not_in_ints: assumes "\<not>(n dvd m)" "n \<noteq> 0" shows "of_int m / of_int n \<notin> (\<int> :: 'a :: {division_ring,ring_char_0} set)" proof assume "of_int m / (of_int n :: 'a) \<in> \<int>" then obtain k where "of_int m / of_int n = (of_int k :: 'a)" by (elim Ints_cases) with assms have "of_int m = (of_int (k * n) :: 'a)" by (auto simp add: field_split_simps) hence "m = k * n" by (subst (asm) of_int_eq_iff) hence "n dvd m" by simp with assms(1) show False by contradiction qed lemma fraction_not_in_nats: assumes "\<not>n dvd m" "n \<noteq> 0" shows "of_int m / of_int n \<notin> (\<nat> :: 'a :: {division_ring,ring_char_0} set)" proof assume "of_int m / of_int n \<in> (\<nat> :: 'a set)" also note Nats_subset_Ints finally have "of_int m / of_int n \<in> (\<int> :: 'a set)" . moreover have "of_int m / of_int n \<notin> (\<int> :: 'a set)" using assms by (intro fraction_not_in_ints) ultimately show False by contradiction qed lemma not_in_Ints_imp_not_in_nonpos_Ints: "z \<notin> \<int> \<Longrightarrow> z \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto simp: Ints_def nonpos_Ints_def) lemma double_in_nonpos_Ints_imp: assumes "2 * (z :: 'a :: field_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0" shows "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<or> z + 1/2 \<in> \<int>\<^sub>\<le>\<^sub>0" proof- from assms obtain k where k: "2 * z = - of_nat k" by (elim nonpos_Ints_cases') thus ?thesis by (cases "even k") (auto elim!: evenE oddE simp: field_simps) qed lemma sin_series: "(\<lambda>n. ((-1)^n / fact (2*n+1)) *\<^sub>R z^(2*n+1)) sums sin z" proof - from sin_converges[of z] have "(\<lambda>n. sin_coeff n *\<^sub>R z^n) sums sin z" . also have "(\<lambda>n. sin_coeff n *\<^sub>R z^n) sums sin z \<longleftrightarrow> (\<lambda>n. ((-1)^n / fact (2*n+1)) *\<^sub>R z^(2*n+1)) sums sin z" by (subst sums_mono_reindex[of "\<lambda>n. 2*n+1", symmetric]) (auto simp: sin_coeff_def strict_mono_def ac_simps elim!: oddE) finally show ?thesis . qed lemma cos_series: "(\<lambda>n. ((-1)^n / fact (2*n)) *\<^sub>R z^(2*n)) sums cos z" proof - from cos_converges[of z] have "(\<lambda>n. cos_coeff n *\<^sub>R z^n) sums cos z" . also have "(\<lambda>n. cos_coeff n *\<^sub>R z^n) sums cos z \<longleftrightarrow> (\<lambda>n. ((-1)^n / fact (2*n)) *\<^sub>R z^(2*n)) sums cos z" by (subst sums_mono_reindex[of "\<lambda>n. 2*n", symmetric]) (auto simp: cos_coeff_def strict_mono_def ac_simps elim!: evenE) finally show ?thesis . qed lemma sin_z_over_z_series: fixes z :: "'a :: {real_normed_field,banach}" assumes "z \<noteq> 0" shows "(\<lambda>n. (-1)^n / fact (2*n+1) * z^(2*n)) sums (sin z / z)" proof - from sin_series[of z] have "(\<lambda>n. z * ((-1)^n / fact (2*n+1)) * z^(2*n)) sums sin z" by (simp add: field_simps scaleR_conv_of_real) from sums_mult[OF this, of "inverse z"] and assms show ?thesis by (simp add: field_simps) qed lemma sin_z_over_z_series': fixes z :: "'a :: {real_normed_field,banach}" assumes "z \<noteq> 0" shows "(\<lambda>n. sin_coeff (n+1) *\<^sub>R z^n) sums (sin z / z)" proof - from sums_split_initial_segment[OF sin_converges[of z], of 1] have "(\<lambda>n. z * (sin_coeff (n+1) *\<^sub>R z ^ n)) sums sin z" by simp from sums_mult[OF this, of "inverse z"] assms show ?thesis by (simp add: field_simps) qed lemma has_field_derivative_sin_z_over_z: fixes A :: "'a :: {real_normed_field,banach} set" shows "((\<lambda>z. if z = 0 then 1 else sin z / z) has_field_derivative 0) (at 0 within A)" (is "(?f has_field_derivative ?f') _") proof (rule has_field_derivative_at_within) have "((\<lambda>z::'a. \<Sum>n. of_real (sin_coeff (n+1)) * z^n) has_field_derivative (\<Sum>n. diffs (\<lambda>n. of_real (sin_coeff (n+1))) n * 0^n)) (at 0)" proof (rule termdiffs_strong) from summable_ignore_initial_segment[OF sums_summable[OF sin_converges[of "1::'a"]], of 1] show "summable (\<lambda>n. of_real (sin_coeff (n+1)) * (1::'a)^n)" by (simp add: of_real_def) qed simp also have "(\<lambda>z::'a. \<Sum>n. of_real (sin_coeff (n+1)) * z^n) = ?f" proof fix z show "(\<Sum>n. of_real (sin_coeff (n+1)) * z^n) = ?f z" by (cases "z = 0") (insert sin_z_over_z_series'[of z], simp_all add: scaleR_conv_of_real sums_iff sin_coeff_def) qed also have "(\<Sum>n. diffs (\<lambda>n. of_real (sin_coeff (n + 1))) n * (0::'a) ^ n) = diffs (\<lambda>n. of_real (sin_coeff (Suc n))) 0" by simp also have "\<dots> = 0" by (simp add: sin_coeff_def diffs_def) finally show "((\<lambda>z::'a. if z = 0 then 1 else sin z / z) has_field_derivative 0) (at 0)" . qed lemma round_Re_minimises_norm: "norm ((z::complex) - of_int m) \<ge> norm (z - of_int (round (Re z)))" proof - let ?n = "round (Re z)" have "norm (z - of_int ?n) = sqrt ((Re z - of_int ?n)\<^sup>2 + (Im z)\<^sup>2)" by (simp add: cmod_def) also have "\<bar>Re z - of_int ?n\<bar> \<le> \<bar>Re z - of_int m\<bar>" by (rule round_diff_minimal) hence "sqrt ((Re z - of_int ?n)\<^sup>2 + (Im z)\<^sup>2) \<le> sqrt ((Re z - of_int m)\<^sup>2 + (Im z)\<^sup>2)" by (intro real_sqrt_le_mono add_mono) (simp_all add: abs_le_square_iff) also have "\<dots> = norm (z - of_int m)" by (simp add: cmod_def) finally show ?thesis . qed lemma Re_pos_in_ball: assumes "Re z > 0" "t \<in> ball z (Re z/2)" shows "Re t > 0" proof - have "Re (z - t) \<le> norm (z - t)" by (rule complex_Re_le_cmod) also from assms have "\<dots> < Re z / 2" by (simp add: dist_complex_def) finally show "Re t > 0" using assms by simp qed lemma no_nonpos_Int_in_ball_complex: assumes "Re z > 0" "t \<in> ball z (Re z/2)" shows "t \<notin> \<int>\<^sub>\<le>\<^sub>0" using Re_pos_in_ball[OF assms] by (force elim!: nonpos_Ints_cases) lemma no_nonpos_Int_in_ball: assumes "t \<in> ball z (dist z (round (Re z)))" shows "t \<notin> \<int>\<^sub>\<le>\<^sub>0" proof assume "t \<in> \<int>\<^sub>\<le>\<^sub>0" then obtain n where "t = of_int n" by (auto elim!: nonpos_Ints_cases) have "dist z (of_int n) \<le> dist z t + dist t (of_int n)" by (rule dist_triangle) also from assms have "dist z t < dist z (round (Re z))" by simp also have "\<dots> \<le> dist z (of_int n)" using round_Re_minimises_norm[of z] by (simp add: dist_complex_def) finally have "dist t (of_int n) > 0" by simp with \<open>t = of_int n\<close> show False by simp qed lemma no_nonpos_Int_in_ball': assumes "(z :: 'a :: {euclidean_space,real_normed_algebra_1}) \<notin> \<int>\<^sub>\<le>\<^sub>0" obtains d where "d > 0" "\<And>t. t \<in> ball z d \<Longrightarrow> t \<notin> \<int>\<^sub>\<le>\<^sub>0" proof (rule that) from assms show "setdist {z} \<int>\<^sub>\<le>\<^sub>0 > 0" by (subst setdist_gt_0_compact_closed) auto next fix t assume "t \<in> ball z (setdist {z} \<int>\<^sub>\<le>\<^sub>0)" thus "t \<notin> \<int>\<^sub>\<le>\<^sub>0" using setdist_le_dist[of z "{z}" t "\<int>\<^sub>\<le>\<^sub>0"] by force qed lemma no_nonpos_Real_in_ball: assumes z: "z \<notin> \<real>\<^sub>\<le>\<^sub>0" and t: "t \<in> ball z (if Im z = 0 then Re z / 2 else abs (Im z) / 2)" shows "t \<notin> \<real>\<^sub>\<le>\<^sub>0" using z proof (cases "Im z = 0") assume A: "Im z = 0" with z have "Re z > 0" by (force simp add: complex_nonpos_Reals_iff) with t A Re_pos_in_ball[of z t] show ?thesis by (force simp add: complex_nonpos_Reals_iff) next assume A: "Im z \<noteq> 0" have "abs (Im z) - abs (Im t) \<le> abs (Im z - Im t)" by linarith also have "\<dots> = abs (Im (z - t))" by simp also have "\<dots> \<le> norm (z - t)" by (rule abs_Im_le_cmod) also from A t have "\<dots> \<le> abs (Im z) / 2" by (simp add: dist_complex_def) finally have "abs (Im t) > 0" using A by simp thus ?thesis by (force simp add: complex_nonpos_Reals_iff) qed subsection \<open>The Euler form and the logarithmic Gamma function\<close> text \<open> We define the Gamma function by first defining its multiplicative inverse \<open>rGamma\<close>. This is more convenient because \<open>rGamma\<close> is entire, which makes proofs of its properties more convenient because one does not have to watch out for discontinuities. (e.g. \<open>rGamma\<close> fulfils \<open>rGamma z = z * rGamma (z + 1)\<close> everywhere, whereas the \<open>\<Gamma>\<close> function does not fulfil the analogous equation on the non-positive integers) We define the \<open>\<Gamma>\<close> function (resp.\ its reciprocale) in the Euler form. This form has the advantage that it is a relatively simple limit that converges everywhere. The limit at the poles is 0 (due to division by 0). The functional equation \<open>Gamma (z + 1) = z * Gamma z\<close> follows immediately from the definition. \<close> definition\<^marker>\<open>tag important\<close> Gamma_series :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where "Gamma_series z n = fact n * exp (z * of_real (ln (of_nat n))) / pochhammer z (n+1)" definition Gamma_series' :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where "Gamma_series' z n = fact (n - 1) * exp (z * of_real (ln (of_nat n))) / pochhammer z n" definition rGamma_series :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where "rGamma_series z n = pochhammer z (n+1) / (fact n * exp (z * of_real (ln (of_nat n))))" lemma Gamma_series_altdef: "Gamma_series z n = inverse (rGamma_series z n)" and rGamma_series_altdef: "rGamma_series z n = inverse (Gamma_series z n)" unfolding Gamma_series_def rGamma_series_def by simp_all lemma rGamma_series_minus_of_nat: "eventually (\<lambda>n. rGamma_series (- of_nat k) n = 0) sequentially" using eventually_ge_at_top[of k] by eventually_elim (auto simp: rGamma_series_def pochhammer_of_nat_eq_0_iff) lemma Gamma_series_minus_of_nat: "eventually (\<lambda>n. Gamma_series (- of_nat k) n = 0) sequentially" using eventually_ge_at_top[of k] by eventually_elim (auto simp: Gamma_series_def pochhammer_of_nat_eq_0_iff) lemma Gamma_series'_minus_of_nat: "eventually (\<lambda>n. Gamma_series' (- of_nat k) n = 0) sequentially" using eventually_gt_at_top[of k] by eventually_elim (auto simp: Gamma_series'_def pochhammer_of_nat_eq_0_iff) lemma rGamma_series_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma_series z \<longlonglongrightarrow> 0" by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule rGamma_series_minus_of_nat, simp) lemma Gamma_series_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma_series z \<longlonglongrightarrow> 0" by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule Gamma_series_minus_of_nat, simp) lemma Gamma_series'_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma_series' z \<longlonglongrightarrow> 0" by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule Gamma_series'_minus_of_nat, simp) lemma Gamma_series_Gamma_series': assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(\<lambda>n. Gamma_series' z n / Gamma_series z n) \<longlonglongrightarrow> 1" proof (rule Lim_transform_eventually) from eventually_gt_at_top[of "0::nat"] show "eventually (\<lambda>n. z / of_nat n + 1 = Gamma_series' z n / Gamma_series z n) sequentially" proof eventually_elim fix n :: nat assume n: "n > 0" from n z have "Gamma_series' z n / Gamma_series z n = (z + of_nat n) / of_nat n" by (cases n, simp) (auto simp add: Gamma_series_def Gamma_series'_def pochhammer_rec' dest: pochhammer_eq_0_imp_nonpos_Int plus_of_nat_eq_0_imp) also from n have "\<dots> = z / of_nat n + 1" by (simp add: field_split_simps) finally show "z / of_nat n + 1 = Gamma_series' z n / Gamma_series z n" .. qed have "(\<lambda>x. z / of_nat x) \<longlonglongrightarrow> 0" by (rule tendsto_norm_zero_cancel) (insert tendsto_mult[OF tendsto_const[of "norm z"] lim_inverse_n], simp add: norm_divide inverse_eq_divide) from tendsto_add[OF this tendsto_const[of 1]] show "(\<lambda>n. z / of_nat n + 1) \<longlonglongrightarrow> 1" by simp qed text \<open> We now show that the series that defines the \<open>\<Gamma>\<close> function in the Euler form converges and that the function defined by it is continuous on the complex halfspace with positive real part. We do this by showing that the logarithm of the Euler series is continuous and converges locally uniformly, which means that the log-Gamma function defined by its limit is also continuous. This will later allow us to lift holomorphicity and continuity from the log-Gamma function to the inverse of the Gamma function, and from that to the Gamma function itself. \<close> definition\<^marker>\<open>tag important\<close> ln_Gamma_series :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> nat \<Rightarrow> 'a" where "ln_Gamma_series z n = z * ln (of_nat n) - ln z - (\<Sum>k=1..n. ln (z / of_nat k + 1))" definition\<^marker>\<open>tag unimportant\<close> ln_Gamma_series' :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> nat \<Rightarrow> 'a" where "ln_Gamma_series' z n = - euler_mascheroni*z - ln z + (\<Sum>k=1..n. z / of_nat n - ln (z / of_nat k + 1))" definition ln_Gamma :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> 'a" where "ln_Gamma z = lim (ln_Gamma_series z)" text \<open> We now show that the log-Gamma series converges locally uniformly for all complex numbers except the non-positive integers. We do this by proving that the series is locally Cauchy. \<close> context begin private lemma ln_Gamma_series_complex_converges_aux: fixes z :: complex and k :: nat assumes z: "z \<noteq> 0" and k: "of_nat k \<ge> 2*norm z" "k \<ge> 2" shows "norm (z * ln (1 - 1/of_nat k) + ln (z/of_nat k + 1)) \<le> 2*(norm z + norm z^2) / of_nat k^2" proof - let ?k = "of_nat k :: complex" and ?z = "norm z" have "z *ln (1 - 1/?k) + ln (z/?k+1) = z*(ln (1 - 1/?k :: complex) + 1/?k) + (ln (1+z/?k) - z/?k)" by (simp add: algebra_simps) also have "norm ... \<le> ?z * norm (ln (1-1/?k) + 1/?k :: complex) + norm (ln (1+z/?k) - z/?k)" by (subst norm_mult [symmetric], rule norm_triangle_ineq) also have "norm (Ln (1 + -1/?k) - (-1/?k)) \<le> (norm (-1/?k))\<^sup>2 / (1 - norm(-1/?k))" using k by (intro Ln_approx_linear) (simp add: norm_divide) hence "?z * norm (ln (1-1/?k) + 1/?k) \<le> ?z * ((norm (1/?k))^2 / (1 - norm (1/?k)))" by (intro mult_left_mono) simp_all also have "... \<le> (?z * (of_nat k / (of_nat k - 1))) / of_nat k^2" using k by (simp add: field_simps power2_eq_square norm_divide) also have "... \<le> (?z * 2) / of_nat k^2" using k by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps) also have "norm (ln (1+z/?k) - z/?k) \<le> norm (z/?k)^2 / (1 - norm (z/?k))" using k by (intro Ln_approx_linear) (simp add: norm_divide) hence "norm (ln (1+z/?k) - z/?k) \<le> ?z^2 / of_nat k^2 / (1 - ?z / of_nat k)" by (simp add: field_simps norm_divide) also have "... \<le> (?z^2 * (of_nat k / (of_nat k - ?z))) / of_nat k^2" using k by (simp add: field_simps power2_eq_square) also have "... \<le> (?z^2 * 2) / of_nat k^2" using k by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps) also note add_divide_distrib [symmetric] finally show ?thesis by (simp only: distrib_left mult.commute) qed lemma ln_Gamma_series_complex_converges: assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0" assumes d: "d > 0" "\<And>n. n \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> norm (z - of_int n) > d" shows "uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n :: complex)" proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI') fix e :: real assume e: "e > 0" define e'' where "e'' = (SUP t\<in>ball z d. norm t + norm t^2)" define e' where "e' = e / (2*e'')" have "bounded ((\<lambda>t. norm t + norm t^2) ` cball z d)" by (intro compact_imp_bounded compact_continuous_image) (auto intro!: continuous_intros) hence "bounded ((\<lambda>t. norm t + norm t^2) ` ball z d)" by (rule bounded_subset) auto hence bdd: "bdd_above ((\<lambda>t. norm t + norm t^2) ` ball z d)" by (rule bounded_imp_bdd_above) with z d(1) d(2)[of "-1"] have e''_pos: "e'' > 0" unfolding e''_def by (subst less_cSUP_iff) (auto intro!: add_pos_nonneg bexI[of _ z]) have e'': "norm t + norm t^2 \<le> e''" if "t \<in> ball z d" for t unfolding e''_def using that by (rule cSUP_upper[OF _ bdd]) from e z e''_pos have e': "e' > 0" unfolding e'_def by (intro divide_pos_pos mult_pos_pos add_pos_pos) (simp_all add: field_simps) have "summable (\<lambda>k. inverse ((real_of_nat k)^2))" by (rule inverse_power_summable) simp from summable_partial_sum_bound[OF this e'] obtain M where M: "\<And>m n. M \<le> m \<Longrightarrow> norm (\<Sum>k = m..n. inverse ((real k)\<^sup>2)) < e'" by auto define N where "N = max 2 (max (nat \<lceil>2 * (norm z + d)\<rceil>) M)" { from d have "\<lceil>2 * (cmod z + d)\<rceil> \<ge> \<lceil>0::real\<rceil>" by (intro ceiling_mono mult_nonneg_nonneg add_nonneg_nonneg) simp_all hence "2 * (norm z + d) \<le> of_nat (nat \<lceil>2 * (norm z + d)\<rceil>)" unfolding N_def by (simp_all) also have "... \<le> of_nat N" unfolding N_def by (subst of_nat_le_iff) (rule max.coboundedI2, rule max.cobounded1) finally have "of_nat N \<ge> 2 * (norm z + d)" . moreover have "N \<ge> 2" "N \<ge> M" unfolding N_def by simp_all moreover have "(\<Sum>k=m..n. 1/(of_nat k)\<^sup>2) < e'" if "m \<ge> N" for m n using M[OF order.trans[OF \<open>N \<ge> M\<close> that]] unfolding real_norm_def by (subst (asm) abs_of_nonneg) (auto intro: sum_nonneg simp: field_split_simps) moreover note calculation } note N = this show "\<exists>M. \<forall>t\<in>ball z d. \<forall>m\<ge>M. \<forall>n>m. dist (ln_Gamma_series t m) (ln_Gamma_series t n) < e" unfolding dist_complex_def proof (intro exI[of _ N] ballI allI impI) fix t m n assume t: "t \<in> ball z d" and mn: "m \<ge> N" "n > m" from d(2)[of 0] t have "0 < dist z 0 - dist z t" by (simp add: field_simps dist_complex_def) also have "dist z 0 - dist z t \<le> dist 0 t" using dist_triangle[of 0 z t] by (simp add: dist_commute) finally have t_nz: "t \<noteq> 0" by auto have "norm t \<le> norm z + norm (t - z)" by (rule norm_triangle_sub) also from t have "norm (t - z) < d" by (simp add: dist_complex_def norm_minus_commute) also have "2 * (norm z + d) \<le> of_nat N" by (rule N) also have "N \<le> m" by (rule mn) finally have norm_t: "2 * norm t < of_nat m" by simp have "ln_Gamma_series t m - ln_Gamma_series t n = (-(t * Ln (of_nat n)) - (-(t * Ln (of_nat m)))) + ((\<Sum>k=1..n. Ln (t / of_nat k + 1)) - (\<Sum>k=1..m. Ln (t / of_nat k + 1)))" by (simp add: ln_Gamma_series_def algebra_simps) also have "(\<Sum>k=1..n. Ln (t / of_nat k + 1)) - (\<Sum>k=1..m. Ln (t / of_nat k + 1)) = (\<Sum>k\<in>{1..n}-{1..m}. Ln (t / of_nat k + 1))" using mn by (simp add: sum_diff) also from mn have "{1..n}-{1..m} = {Suc m..n}" by fastforce also have "-(t * Ln (of_nat n)) - (-(t * Ln (of_nat m))) = (\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1)) - t * Ln (of_nat k))" using mn by (subst sum_telescope'' [symmetric]) simp_all also have "... = (\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1) / of_nat k))" using mn N by (intro sum_cong_Suc) (simp_all del: of_nat_Suc add: field_simps Ln_of_nat Ln_of_nat_over_of_nat) also have "of_nat (k - 1) / of_nat k = 1 - 1 / (of_nat k :: complex)" if "k \<in> {Suc m..n}" for k using that of_nat_eq_0_iff[of "Suc i" for i] by (cases k) (simp_all add: field_split_simps) hence "(\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1) / of_nat k)) = (\<Sum>k = Suc m..n. t * Ln (1 - 1 / of_nat k))" using mn N by (intro sum.cong) simp_all also note sum.distrib [symmetric] also have "norm (\<Sum>k=Suc m..n. t * Ln (1 - 1/of_nat k) + Ln (t/of_nat k + 1)) \<le> (\<Sum>k=Suc m..n. 2 * (norm t + (norm t)\<^sup>2) / (real_of_nat k)\<^sup>2)" using t_nz N(2) mn norm_t by (intro order.trans[OF norm_sum sum_mono[OF ln_Gamma_series_complex_converges_aux]]) simp_all also have "... \<le> 2 * (norm t + norm t^2) * (\<Sum>k=Suc m..n. 1 / (of_nat k)\<^sup>2)" by (simp add: sum_distrib_left) also have "... < 2 * (norm t + norm t^2) * e'" using mn z t_nz by (intro mult_strict_left_mono N mult_pos_pos add_pos_pos) simp_all also from e''_pos have "... = e * ((cmod t + (cmod t)\<^sup>2) / e'')" by (simp add: e'_def field_simps power2_eq_square) also from e''[OF t] e''_pos e have "\<dots> \<le> e * 1" by (intro mult_left_mono) (simp_all add: field_simps) finally show "norm (ln_Gamma_series t m - ln_Gamma_series t n) < e" by simp qed qed end lemma ln_Gamma_series_complex_converges': assumes z: "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "\<exists>d>0. uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n)" proof - define d' where "d' = Re z" define d where "d = (if d' > 0 then d' / 2 else norm (z - of_int (round d')) / 2)" have "of_int (round d') \<in> \<int>\<^sub>\<le>\<^sub>0" if "d' \<le> 0" using that by (intro nonpos_Ints_of_int) (simp_all add: round_def) with assms have d_pos: "d > 0" unfolding d_def by (force simp: not_less) have "d < cmod (z - of_int n)" if "n \<in> \<int>\<^sub>\<le>\<^sub>0" for n proof (cases "Re z > 0") case True from nonpos_Ints_nonpos[OF that] have n: "n \<le> 0" by simp from True have "d = Re z/2" by (simp add: d_def d'_def) also from n True have "\<dots> < Re (z - of_int n)" by simp also have "\<dots> \<le> norm (z - of_int n)" by (rule complex_Re_le_cmod) finally show ?thesis . next case False with assms nonpos_Ints_of_int[of "round (Re z)"] have "z \<noteq> of_int (round d')" by (auto simp: not_less) with False have "d < norm (z - of_int (round d'))" by (simp add: d_def d'_def) also have "\<dots> \<le> norm (z - of_int n)" unfolding d'_def by (rule round_Re_minimises_norm) finally show ?thesis . qed hence conv: "uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n)" by (intro ln_Gamma_series_complex_converges d_pos z) simp_all from d_pos conv show ?thesis by blast qed lemma ln_Gamma_series_complex_converges'': "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> convergent (ln_Gamma_series z)" by (drule ln_Gamma_series_complex_converges') (auto intro: uniformly_convergent_imp_convergent) theorem ln_Gamma_complex_LIMSEQ: "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln_Gamma_series z \<longlonglongrightarrow> ln_Gamma z" using ln_Gamma_series_complex_converges'' by (simp add: convergent_LIMSEQ_iff ln_Gamma_def) lemma exp_ln_Gamma_series_complex: assumes "n > 0" "z \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "exp (ln_Gamma_series z n :: complex) = Gamma_series z n" proof - from assms obtain m where m: "n = Suc m" by (cases n) blast from assms have "z \<noteq> 0" by (intro notI) auto with assms have "exp (ln_Gamma_series z n) = (of_nat n) powr z / (z * (\<Prod>k=1..n. exp (Ln (z / of_nat k + 1))))" unfolding ln_Gamma_series_def powr_def by (simp add: exp_diff exp_sum) also from assms have "(\<Prod>k=1..n. exp (Ln (z / of_nat k + 1))) = (\<Prod>k=1..n. z / of_nat k + 1)" by (intro prod.cong[OF refl], subst exp_Ln) (auto simp: field_simps plus_of_nat_eq_0_imp) also have "... = (\<Prod>k=1..n. z + k) / fact n" by (simp add: fact_prod) (subst prod_dividef [symmetric], simp_all add: field_simps) also from m have "z * ... = (\<Prod>k=0..n. z + k) / fact n" by (simp add: prod.atLeast0_atMost_Suc_shift prod.atLeast_Suc_atMost_Suc_shift del: prod.cl_ivl_Suc) also have "(\<Prod>k=0..n. z + k) = pochhammer z (Suc n)" unfolding pochhammer_prod by (simp add: prod.atLeast0_atMost_Suc atLeastLessThanSuc_atLeastAtMost) also have "of_nat n powr z / (pochhammer z (Suc n) / fact n) = Gamma_series z n" unfolding Gamma_series_def using assms by (simp add: field_split_simps powr_def) finally show ?thesis . qed lemma ln_Gamma_series'_aux: assumes "(z::complex) \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(\<lambda>k. z / of_nat (Suc k) - ln (1 + z / of_nat (Suc k))) sums (ln_Gamma z + euler_mascheroni * z + ln z)" (is "?f sums ?s") unfolding sums_def proof (rule Lim_transform) show "(\<lambda>n. ln_Gamma_series z n + of_real (harm n - ln (of_nat n)) * z + ln z) \<longlonglongrightarrow> ?s" (is "?g \<longlonglongrightarrow> _") by (intro tendsto_intros ln_Gamma_complex_LIMSEQ euler_mascheroni_LIMSEQ_of_real assms) have A: "eventually (\<lambda>n. (\<Sum>k<n. ?f k) - ?g n = 0) sequentially" using eventually_gt_at_top[of "0::nat"] proof eventually_elim fix n :: nat assume n: "n > 0" have "(\<Sum>k<n. ?f k) = (\<Sum>k=1..n. z / of_nat k - ln (1 + z / of_nat k))" by (subst atLeast0LessThan [symmetric], subst sum.shift_bounds_Suc_ivl [symmetric], subst atLeastLessThanSuc_atLeastAtMost) simp_all also have "\<dots> = z * of_real (harm n) - (\<Sum>k=1..n. ln (1 + z / of_nat k))" by (simp add: harm_def sum_subtractf sum_distrib_left divide_inverse) also from n have "\<dots> - ?g n = 0" by (simp add: ln_Gamma_series_def sum_subtractf algebra_simps) finally show "(\<Sum>k<n. ?f k) - ?g n = 0" . qed show "(\<lambda>n. (\<Sum>k<n. ?f k) - ?g n) \<longlonglongrightarrow> 0" by (subst tendsto_cong[OF A]) simp_all qed lemma uniformly_summable_deriv_ln_Gamma: assumes z: "(z :: 'a :: {real_normed_field,banach}) \<noteq> 0" and d: "d > 0" "d \<le> norm z/2" shows "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. inverse (of_nat (Suc i)) - inverse (z + of_nat (Suc i)))" (is "uniformly_convergent_on _ (\<lambda>k z. \<Sum>i<k. ?f i z)") proof (rule Weierstrass_m_test'_ev) { fix t assume t: "t \<in> ball z d" have "norm z = norm (t + (z - t))" by simp have "norm (t + (z - t)) \<le> norm t + norm (z - t)" by (rule norm_triangle_ineq) also from t d have "norm (z - t) < norm z / 2" by (simp add: dist_norm) finally have A: "norm t > norm z / 2" using z by (simp add: field_simps) have "norm t = norm (z + (t - z))" by simp also have "\<dots> \<le> norm z + norm (t - z)" by (rule norm_triangle_ineq) also from t d have "norm (t - z) \<le> norm z / 2" by (simp add: dist_norm norm_minus_commute) also from z have "\<dots> < norm z" by simp finally have B: "norm t < 2 * norm z" by simp note A B } note ball = this show "eventually (\<lambda>n. \<forall>t\<in>ball z d. norm (?f n t) \<le> 4 * norm z * inverse (of_nat (Suc n)^2)) sequentially" using eventually_gt_at_top apply eventually_elim proof safe fix t :: 'a assume t: "t \<in> ball z d" from z ball[OF t] have t_nz: "t \<noteq> 0" by auto fix n :: nat assume n: "n > nat \<lceil>4 * norm z\<rceil>" from ball[OF t] t_nz have "4 * norm z > 2 * norm t" by simp also from n have "\<dots> < of_nat n" by linarith finally have n: "of_nat n > 2 * norm t" . hence "of_nat n > norm t" by simp hence t': "t \<noteq> -of_nat (Suc n)" by (intro notI) (simp del: of_nat_Suc) with t_nz have "?f n t = 1 / (of_nat (Suc n) * (1 + of_nat (Suc n)/t))" by (simp add: field_split_simps eq_neg_iff_add_eq_0 del: of_nat_Suc) also have "norm \<dots> = inverse (of_nat (Suc n)) * inverse (norm (of_nat (Suc n)/t + 1))" by (simp add: norm_divide norm_mult field_split_simps del: of_nat_Suc) also { from z t_nz ball[OF t] have "of_nat (Suc n) / (4 * norm z) \<le> of_nat (Suc n) / (2 * norm t)" by (intro divide_left_mono mult_pos_pos) simp_all also have "\<dots> < norm (of_nat (Suc n) / t) - norm (1 :: 'a)" using t_nz n by (simp add: field_simps norm_divide del: of_nat_Suc) also have "\<dots> \<le> norm (of_nat (Suc n)/t + 1)" by (rule norm_diff_ineq) finally have "inverse (norm (of_nat (Suc n)/t + 1)) \<le> 4 * norm z / of_nat (Suc n)" using z by (simp add: field_split_simps norm_divide mult_ac del: of_nat_Suc) } also have "inverse (real_of_nat (Suc n)) * (4 * norm z / real_of_nat (Suc n)) = 4 * norm z * inverse (of_nat (Suc n)^2)" by (simp add: field_split_simps power2_eq_square del: of_nat_Suc) finally show "norm (?f n t) \<le> 4 * norm z * inverse (of_nat (Suc n)^2)" by (simp del: of_nat_Suc) qed next show "summable (\<lambda>n. 4 * norm z * inverse ((of_nat (Suc n))^2))" by (subst summable_Suc_iff) (simp add: summable_mult inverse_power_summable) qed subsection \<open>The Polygamma functions\<close> lemma summable_deriv_ln_Gamma: "z \<noteq> (0 :: 'a :: {real_normed_field,banach}) \<Longrightarrow> summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat (Suc n)))" unfolding summable_iff_convergent by (rule uniformly_convergent_imp_convergent, rule uniformly_summable_deriv_ln_Gamma[of z "norm z/2"]) simp_all definition\<^marker>\<open>tag important\<close> Polygamma :: "nat \<Rightarrow> ('a :: {real_normed_field,banach}) \<Rightarrow> 'a" where "Polygamma n z = (if n = 0 then (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) - euler_mascheroni else (-1)^Suc n * fact n * (\<Sum>k. inverse ((z + of_nat k)^Suc n)))" abbreviation\<^marker>\<open>tag important\<close> Digamma :: "('a :: {real_normed_field,banach}) \<Rightarrow> 'a" where "Digamma \<equiv> Polygamma 0" lemma Digamma_def: "Digamma z = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) - euler_mascheroni" by (simp add: Polygamma_def) lemma summable_Digamma: assumes "(z :: 'a :: {real_normed_field,banach}) \<noteq> 0" shows "summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))" proof - have sums: "(\<lambda>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n)) sums (0 - inverse (z + of_nat 0))" by (intro telescope_sums filterlim_compose[OF tendsto_inverse_0] tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat) from summable_add[OF summable_deriv_ln_Gamma[OF assms] sums_summable[OF sums]] show "summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))" by simp qed lemma summable_offset: assumes "summable (\<lambda>n. f (n + k) :: 'a :: real_normed_vector)" shows "summable f" proof - from assms have "convergent (\<lambda>m. \<Sum>n<m. f (n + k))" using summable_iff_convergent by blast hence "convergent (\<lambda>m. (\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k)))" by (intro convergent_add convergent_const) also have "(\<lambda>m. (\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k))) = (\<lambda>m. \<Sum>n<m+k. f n)" proof fix m :: nat have "{..<m+k} = {..<k} \<union> {k..<m+k}" by auto also have "(\<Sum>n\<in>\<dots>. f n) = (\<Sum>n<k. f n) + (\<Sum>n=k..<m+k. f n)" by (rule sum.union_disjoint) auto also have "(\<Sum>n=k..<m+k. f n) = (\<Sum>n=0..<m+k-k. f (n + k))" using sum.shift_bounds_nat_ivl [of f 0 k m] by simp finally show "(\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k)) = (\<Sum>n<m+k. f n)" by (simp add: atLeast0LessThan) qed finally have "(\<lambda>a. sum f {..<a}) \<longlonglongrightarrow> lim (\<lambda>m. sum f {..<m + k})" by (auto simp: convergent_LIMSEQ_iff dest: LIMSEQ_offset) thus ?thesis by (auto simp: summable_iff_convergent convergent_def) qed lemma Polygamma_converges: fixes z :: "'a :: {real_normed_field,banach}" assumes z: "z \<noteq> 0" and n: "n \<ge> 2" shows "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. inverse ((z + of_nat i)^n))" proof (rule Weierstrass_m_test'_ev) define e where "e = (1 + d / norm z)" define m where "m = nat \<lceil>norm z * e\<rceil>" { fix t assume t: "t \<in> ball z d" have "norm t = norm (z + (t - z))" by simp also have "\<dots> \<le> norm z + norm (t - z)" by (rule norm_triangle_ineq) also from t have "norm (t - z) < d" by (simp add: dist_norm norm_minus_commute) finally have "norm t < norm z * e" using z by (simp add: divide_simps e_def) } note ball = this show "eventually (\<lambda>k. \<forall>t\<in>ball z d. norm (inverse ((t + of_nat k)^n)) \<le> inverse (of_nat (k - m)^n)) sequentially" using eventually_gt_at_top[of m] apply eventually_elim proof (intro ballI) fix k :: nat and t :: 'a assume k: "k > m" and t: "t \<in> ball z d" from k have "real_of_nat (k - m) = of_nat k - of_nat m" by (simp add: of_nat_diff) also have "\<dots> \<le> norm (of_nat k :: 'a) - norm z * e" unfolding m_def by (subst norm_of_nat) linarith also from ball[OF t] have "\<dots> \<le> norm (of_nat k :: 'a) - norm t" by simp also have "\<dots> \<le> norm (of_nat k + t)" by (rule norm_diff_ineq) finally have "inverse ((norm (t + of_nat k))^n) \<le> inverse (real_of_nat (k - m)^n)" using k n by (intro le_imp_inverse_le power_mono) (simp_all add: add_ac del: of_nat_Suc) thus "norm (inverse ((t + of_nat k)^n)) \<le> inverse (of_nat (k - m)^n)" by (simp add: norm_inverse norm_power power_inverse) qed have "summable (\<lambda>k. inverse ((real_of_nat k)^n))" using inverse_power_summable[of n] n by simp hence "summable (\<lambda>k. inverse ((real_of_nat (k + m - m))^n))" by simp thus "summable (\<lambda>k. inverse ((real_of_nat (k - m))^n))" by (rule summable_offset) qed lemma Polygamma_converges': fixes z :: "'a :: {real_normed_field,banach}" assumes z: "z \<noteq> 0" and n: "n \<ge> 2" shows "summable (\<lambda>k. inverse ((z + of_nat k)^n))" using uniformly_convergent_imp_convergent[OF Polygamma_converges[OF assms, of 1], of z] by (simp add: summable_iff_convergent) theorem Digamma_LIMSEQ: fixes z :: "'a :: {banach,real_normed_field}" assumes z: "z \<noteq> 0" shows "(\<lambda>m. of_real (ln (real m)) - (\<Sum>n<m. inverse (z + of_nat n))) \<longlonglongrightarrow> Digamma z" proof - have "(\<lambda>n. of_real (ln (real n / (real (Suc n))))) \<longlonglongrightarrow> (of_real (ln 1) :: 'a)" by (intro tendsto_intros LIMSEQ_n_over_Suc_n) simp_all hence "(\<lambda>n. of_real (ln (real n / (real n + 1)))) \<longlonglongrightarrow> (0 :: 'a)" by (simp add: add_ac) hence lim: "(\<lambda>n. of_real (ln (real n)) - of_real (ln (real n + 1))) \<longlonglongrightarrow> (0::'a)" proof (rule Lim_transform_eventually) show "eventually (\<lambda>n. of_real (ln (real n / (real n + 1))) = of_real (ln (real n)) - (of_real (ln (real n + 1)) :: 'a)) at_top" using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: ln_div) qed from summable_Digamma[OF z] have "(\<lambda>n. inverse (of_nat (n+1)) - inverse (z + of_nat n)) sums (Digamma z + euler_mascheroni)" by (simp add: Digamma_def summable_sums) from sums_diff[OF this euler_mascheroni_sum] have "(\<lambda>n. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1)) - inverse (z + of_nat n)) sums Digamma z" by (simp add: add_ac) hence "(\<lambda>m. (\<Sum>n<m. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1))) - (\<Sum>n<m. inverse (z + of_nat n))) \<longlonglongrightarrow> Digamma z" by (simp add: sums_def sum_subtractf) also have "(\<lambda>m. (\<Sum>n<m. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1)))) = (\<lambda>m. of_real (ln (m + 1)) :: 'a)" by (subst sum_lessThan_telescope) simp_all finally show ?thesis by (rule Lim_transform) (insert lim, simp) qed theorem Polygamma_LIMSEQ: fixes z :: "'a :: {banach,real_normed_field}" assumes "z \<noteq> 0" and "n > 0" shows "(\<lambda>k. inverse ((z + of_nat k)^Suc n)) sums ((-1) ^ Suc n * Polygamma n z / fact n)" using Polygamma_converges'[OF assms(1), of "Suc n"] assms(2) by (simp add: sums_iff Polygamma_def) theorem has_field_derivative_ln_Gamma_complex [derivative_intros]: fixes z :: complex assumes z: "z \<notin> \<real>\<^sub>\<le>\<^sub>0" shows "(ln_Gamma has_field_derivative Digamma z) (at z)" proof - have not_nonpos_Int [simp]: "t \<notin> \<int>\<^sub>\<le>\<^sub>0" if "Re t > 0" for t using that by (auto elim!: nonpos_Ints_cases') from z have z': "z \<notin> \<int>\<^sub>\<le>\<^sub>0" and z'': "z \<noteq> 0" using nonpos_Ints_subset_nonpos_Reals nonpos_Reals_zero_I by blast+ let ?f' = "\<lambda>z k. inverse (of_nat (Suc k)) - inverse (z + of_nat (Suc k))" let ?f = "\<lambda>z k. z / of_nat (Suc k) - ln (1 + z / of_nat (Suc k))" and ?F' = "\<lambda>z. \<Sum>n. ?f' z n" define d where "d = min (norm z/2) (if Im z = 0 then Re z / 2 else abs (Im z) / 2)" from z have d: "d > 0" "norm z/2 \<ge> d" by (auto simp add: complex_nonpos_Reals_iff d_def) have ball: "Im t = 0 \<longrightarrow> Re t > 0" if "dist z t < d" for t using no_nonpos_Real_in_ball[OF z, of t] that unfolding d_def by (force simp add: complex_nonpos_Reals_iff) have sums: "(\<lambda>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n)) sums (0 - inverse (z + of_nat 0))" by (intro telescope_sums filterlim_compose[OF tendsto_inverse_0] tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat) have "((\<lambda>z. \<Sum>n. ?f z n) has_field_derivative ?F' z) (at z)" using d z ln_Gamma_series'_aux[OF z'] apply (intro has_field_derivative_series'(2)[of "ball z d" _ _ z] uniformly_summable_deriv_ln_Gamma) apply (auto intro!: derivative_eq_intros add_pos_pos mult_pos_pos dest!: ball simp: field_simps sums_iff nonpos_Reals_divide_of_nat_iff simp del: of_nat_Suc) apply (auto simp add: complex_nonpos_Reals_iff) done with z have "((\<lambda>z. (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z) has_field_derivative ?F' z - euler_mascheroni - inverse z) (at z)" by (force intro!: derivative_eq_intros simp: Digamma_def) also have "?F' z - euler_mascheroni - inverse z = (?F' z + -inverse z) - euler_mascheroni" by simp also from sums have "-inverse z = (\<Sum>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n))" by (simp add: sums_iff) also from sums summable_deriv_ln_Gamma[OF z''] have "?F' z + \<dots> = (\<Sum>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))" by (subst suminf_add) (simp_all add: add_ac sums_iff) also have "\<dots> - euler_mascheroni = Digamma z" by (simp add: Digamma_def) finally have "((\<lambda>z. (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z) has_field_derivative Digamma z) (at z)" . moreover from eventually_nhds_ball[OF d(1), of z] have "eventually (\<lambda>z. ln_Gamma z = (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z) (nhds z)" proof eventually_elim fix t assume "t \<in> ball z d" hence "t \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto dest!: ball elim!: nonpos_Ints_cases) from ln_Gamma_series'_aux[OF this] show "ln_Gamma t = (\<Sum>k. ?f t k) - euler_mascheroni * t - Ln t" by (simp add: sums_iff) qed ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl]) qed declare has_field_derivative_ln_Gamma_complex[THEN DERIV_chain2, derivative_intros] lemma Digamma_1 [simp]: "Digamma (1 :: 'a :: {real_normed_field,banach}) = - euler_mascheroni" by (simp add: Digamma_def) lemma Digamma_plus1: assumes "z \<noteq> 0" shows "Digamma (z+1) = Digamma z + 1/z" proof - have sums: "(\<lambda>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k))) sums (inverse (z + of_nat 0) - 0)" by (intro telescope_sums'[OF filterlim_compose[OF tendsto_inverse_0]] tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat) have "Digamma (z+1) = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat (Suc k))) - euler_mascheroni" (is "_ = suminf ?f - _") by (simp add: Digamma_def add_ac) also have "suminf ?f = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) + (\<Sum>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k)))" using summable_Digamma[OF assms] sums by (subst suminf_add) (simp_all add: add_ac sums_iff) also have "(\<Sum>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k))) = 1/z" using sums by (simp add: sums_iff inverse_eq_divide) finally show ?thesis by (simp add: Digamma_def[of z]) qed theorem Polygamma_plus1: assumes "z \<noteq> 0" shows "Polygamma n (z + 1) = Polygamma n z + (-1)^n * fact n / (z ^ Suc n)" proof (cases "n = 0") assume n: "n \<noteq> 0" let ?f = "\<lambda>k. inverse ((z + of_nat k) ^ Suc n)" have "Polygamma n (z + 1) = (-1) ^ Suc n * fact n * (\<Sum>k. ?f (k+1))" using n by (simp add: Polygamma_def add_ac) also have "(\<Sum>k. ?f (k+1)) + (\<Sum>k<1. ?f k) = (\<Sum>k. ?f k)" using Polygamma_converges'[OF assms, of "Suc n"] n by (subst suminf_split_initial_segment [symmetric]) simp_all hence "(\<Sum>k. ?f (k+1)) = (\<Sum>k. ?f k) - inverse (z ^ Suc n)" by (simp add: algebra_simps) also have "(-1) ^ Suc n * fact n * ((\<Sum>k. ?f k) - inverse (z ^ Suc n)) = Polygamma n z + (-1)^n * fact n / (z ^ Suc n)" using n by (simp add: inverse_eq_divide algebra_simps Polygamma_def) finally show ?thesis . qed (insert assms, simp add: Digamma_plus1 inverse_eq_divide) theorem Digamma_of_nat: "Digamma (of_nat (Suc n) :: 'a :: {real_normed_field,banach}) = harm n - euler_mascheroni" proof (induction n) case (Suc n) have "Digamma (of_nat (Suc (Suc n)) :: 'a) = Digamma (of_nat (Suc n) + 1)" by simp also have "\<dots> = Digamma (of_nat (Suc n)) + inverse (of_nat (Suc n))" by (subst Digamma_plus1) (simp_all add: inverse_eq_divide del: of_nat_Suc) also have "Digamma (of_nat (Suc n) :: 'a) = harm n - euler_mascheroni " by (rule Suc) also have "\<dots> + inverse (of_nat (Suc n)) = harm (Suc n) - euler_mascheroni" by (simp add: harm_Suc) finally show ?case . qed (simp add: harm_def) lemma Digamma_numeral: "Digamma (numeral n) = harm (pred_numeral n) - euler_mascheroni" by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc, subst Digamma_of_nat) (rule refl) lemma Polygamma_of_real: "x \<noteq> 0 \<Longrightarrow> Polygamma n (of_real x) = of_real (Polygamma n x)" unfolding Polygamma_def using summable_Digamma[of x] Polygamma_converges'[of x "Suc n"] by (simp_all add: suminf_of_real) lemma Polygamma_Real: "z \<in> \<real> \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> Polygamma n z \<in> \<real>" by (elim Reals_cases, hypsubst, subst Polygamma_of_real) simp_all lemma Digamma_half_integer: "Digamma (of_nat n + 1/2 :: 'a :: {real_normed_field,banach}) = (\<Sum>k<n. 2 / (of_nat (2*k+1))) - euler_mascheroni - of_real (2 * ln 2)" proof (induction n) case 0 have "Digamma (1/2 :: 'a) = of_real (Digamma (1/2))" by (simp add: Polygamma_of_real [symmetric]) also have "Digamma (1/2::real) = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (of_nat k + 1/2)) - euler_mascheroni" by (simp add: Digamma_def add_ac) also have "(\<Sum>k. inverse (of_nat (Suc k) :: real) - inverse (of_nat k + 1/2)) = (\<Sum>k. inverse (1/2) * (inverse (2 * of_nat (Suc k)) - inverse (2 * of_nat k + 1)))" by (simp_all add: add_ac inverse_mult_distrib[symmetric] ring_distribs del: inverse_divide) also have "\<dots> = - 2 * ln 2" using sums_minus[OF alternating_harmonic_series_sums'] by (subst suminf_mult) (simp_all add: algebra_simps sums_iff) finally show ?case by simp next case (Suc n) have nz: "2 * of_nat n + (1:: 'a) \<noteq> 0" using of_nat_neq_0[of "2*n"] by (simp only: of_nat_Suc) (simp add: add_ac) hence nz': "of_nat n + (1/2::'a) \<noteq> 0" by (simp add: field_simps) have "Digamma (of_nat (Suc n) + 1/2 :: 'a) = Digamma (of_nat n + 1/2 + 1)" by simp also from nz' have "\<dots> = Digamma (of_nat n + 1/2) + 1 / (of_nat n + 1/2)" by (rule Digamma_plus1) also from nz nz' have "1 / (of_nat n + 1/2 :: 'a) = 2 / (2 * of_nat n + 1)" by (subst divide_eq_eq) simp_all also note Suc finally show ?case by (simp add: add_ac) qed lemma Digamma_one_half: "Digamma (1/2) = - euler_mascheroni - of_real (2 * ln 2)" using Digamma_half_integer[of 0] by simp lemma Digamma_real_three_halves_pos: "Digamma (3/2 :: real) > 0" proof - have "-Digamma (3/2 :: real) = -Digamma (of_nat 1 + 1/2)" by simp also have "\<dots> = 2 * ln 2 + euler_mascheroni - 2" by (subst Digamma_half_integer) simp also note euler_mascheroni_less_13_over_22 also note ln2_le_25_over_36 finally show ?thesis by simp qed theorem has_field_derivative_Polygamma [derivative_intros]: fixes z :: "'a :: {real_normed_field,euclidean_space}" assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z within A)" proof (rule has_field_derivative_at_within, cases "n = 0") assume n: "n = 0" let ?f = "\<lambda>k z. inverse (of_nat (Suc k)) - inverse (z + of_nat k)" let ?F = "\<lambda>z. \<Sum>k. ?f k z" and ?f' = "\<lambda>k z. inverse ((z + of_nat k)\<^sup>2)" from no_nonpos_Int_in_ball'[OF z] obtain d where d: "0 < d" "\<And>t. t \<in> ball z d \<Longrightarrow> t \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto from z have summable: "summable (\<lambda>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k))" by (intro summable_Digamma) force from z have conv: "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. inverse ((z + of_nat i)\<^sup>2))" by (intro Polygamma_converges) auto with d have "summable (\<lambda>k. inverse ((z + of_nat k)\<^sup>2))" unfolding summable_iff_convergent by (auto dest!: uniformly_convergent_imp_convergent simp: summable_iff_convergent ) have "(?F has_field_derivative (\<Sum>k. ?f' k z)) (at z)" proof (rule has_field_derivative_series'[of "ball z d" _ _ z]) fix k :: nat and t :: 'a assume t: "t \<in> ball z d" from t d(2)[of t] show "((\<lambda>z. ?f k z) has_field_derivative ?f' k t) (at t within ball z d)" by (auto intro!: derivative_eq_intros simp: power2_eq_square simp del: of_nat_Suc dest!: plus_of_nat_eq_0_imp elim!: nonpos_Ints_cases) qed (insert d(1) summable conv, (assumption|simp)+) with z show "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z)" unfolding Digamma_def [abs_def] Polygamma_def [abs_def] using n by (force simp: power2_eq_square intro!: derivative_eq_intros) next assume n: "n \<noteq> 0" from z have z': "z \<noteq> 0" by auto from no_nonpos_Int_in_ball'[OF z] obtain d where d: "0 < d" "\<And>t. t \<in> ball z d \<Longrightarrow> t \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto define n' where "n' = Suc n" from n have n': "n' \<ge> 2" by (simp add: n'_def) have "((\<lambda>z. \<Sum>k. inverse ((z + of_nat k) ^ n')) has_field_derivative (\<Sum>k. - of_nat n' * inverse ((z + of_nat k) ^ (n'+1)))) (at z)" proof (rule has_field_derivative_series'[of "ball z d" _ _ z]) fix k :: nat and t :: 'a assume t: "t \<in> ball z d" with d have t': "t \<notin> \<int>\<^sub>\<le>\<^sub>0" "t \<noteq> 0" by auto show "((\<lambda>a. inverse ((a + of_nat k) ^ n')) has_field_derivative - of_nat n' * inverse ((t + of_nat k) ^ (n'+1))) (at t within ball z d)" using t' by (fastforce intro!: derivative_eq_intros simp: divide_simps power_diff dest: plus_of_nat_eq_0_imp) next have "uniformly_convergent_on (ball z d) (\<lambda>k z. (- of_nat n' :: 'a) * (\<Sum>i<k. inverse ((z + of_nat i) ^ (n'+1))))" using z' n by (intro uniformly_convergent_mult Polygamma_converges) (simp_all add: n'_def) thus "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. - of_nat n' * inverse ((z + of_nat i :: 'a) ^ (n'+1)))" by (subst (asm) sum_distrib_left) simp qed (insert Polygamma_converges'[OF z' n'] d, simp_all) also have "(\<Sum>k. - of_nat n' * inverse ((z + of_nat k) ^ (n' + 1))) = (- of_nat n') * (\<Sum>k. inverse ((z + of_nat k) ^ (n' + 1)))" using Polygamma_converges'[OF z', of "n'+1"] n' by (subst suminf_mult) simp_all finally have "((\<lambda>z. \<Sum>k. inverse ((z + of_nat k) ^ n')) has_field_derivative - of_nat n' * (\<Sum>k. inverse ((z + of_nat k) ^ (n' + 1)))) (at z)" . from DERIV_cmult[OF this, of "(-1)^Suc n * fact n :: 'a"] show "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z)" unfolding n'_def Polygamma_def[abs_def] using n by (simp add: algebra_simps) qed declare has_field_derivative_Polygamma[THEN DERIV_chain2, derivative_intros] lemma isCont_Polygamma [continuous_intros]: fixes f :: "_ \<Rightarrow> 'a :: {real_normed_field,euclidean_space}" shows "isCont f z \<Longrightarrow> f z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>x. Polygamma n (f x)) z" by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_Polygamma]]) lemma continuous_on_Polygamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A (Polygamma n :: _ \<Rightarrow> 'a :: {real_normed_field,euclidean_space})" by (intro continuous_at_imp_continuous_on isCont_Polygamma[OF continuous_ident] ballI) blast lemma isCont_ln_Gamma_complex [continuous_intros]: fixes f :: "'a::t2_space \<Rightarrow> complex" shows "isCont f z \<Longrightarrow> f z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>z. ln_Gamma (f z)) z" by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_ln_Gamma_complex]]) lemma continuous_on_ln_Gamma_complex [continuous_intros]: fixes A :: "complex set" shows "A \<inter> \<real>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A ln_Gamma" by (intro continuous_at_imp_continuous_on ballI isCont_ln_Gamma_complex[OF continuous_ident]) fastforce lemma deriv_Polygamma: assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "deriv (Polygamma m) z = Polygamma (Suc m) (z :: 'a :: {real_normed_field,euclidean_space})" by (intro DERIV_imp_deriv has_field_derivative_Polygamma assms) thm has_field_derivative_Polygamma lemma higher_deriv_Polygamma: assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(deriv ^^ n) (Polygamma m) z = Polygamma (m + n) (z :: 'a :: {real_normed_field,euclidean_space})" proof - have "eventually (\<lambda>u. (deriv ^^ n) (Polygamma m) u = Polygamma (m + n) u) (nhds z)" proof (induction n) case (Suc n) from Suc.IH have "eventually (\<lambda>z. eventually (\<lambda>u. (deriv ^^ n) (Polygamma m) u = Polygamma (m + n) u) (nhds z)) (nhds z)" by (simp add: eventually_eventually) hence "eventually (\<lambda>z. deriv ((deriv ^^ n) (Polygamma m)) z = deriv (Polygamma (m + n)) z) (nhds z)" by eventually_elim (intro deriv_cong_ev refl) moreover have "eventually (\<lambda>z. z \<in> UNIV - \<int>\<^sub>\<le>\<^sub>0) (nhds z)" using assms by (intro eventually_nhds_in_open open_Diff open_UNIV) auto ultimately show ?case by eventually_elim (simp_all add: deriv_Polygamma) qed simp_all thus ?thesis by (rule eventually_nhds_x_imp_x) qed lemma deriv_ln_Gamma_complex: assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0" shows "deriv ln_Gamma z = Digamma (z :: complex)" by (intro DERIV_imp_deriv has_field_derivative_ln_Gamma_complex assms) lemma higher_deriv_ln_Gamma_complex: assumes "(x::complex) \<notin> \<real>\<^sub>\<le>\<^sub>0" shows "(deriv ^^ j) ln_Gamma x = (if j = 0 then ln_Gamma x else Polygamma (j - 1) x)" proof (cases j) case (Suc j') have "(deriv ^^ j') (deriv ln_Gamma) x = (deriv ^^ j') Digamma x" using eventually_nhds_in_open[of "UNIV - \<real>\<^sub>\<le>\<^sub>0" x] assms by (intro higher_deriv_cong_ev refl) (auto elim!: eventually_mono simp: open_Diff deriv_ln_Gamma_complex) also have "\<dots> = Polygamma j' x" using assms by (subst higher_deriv_Polygamma) (auto elim!: nonpos_Ints_cases simp: complex_nonpos_Reals_iff) finally show ?thesis using Suc by (simp del: funpow.simps add: funpow_Suc_right) qed simp_all text \<open> We define a type class that captures all the fundamental properties of the inverse of the Gamma function and defines the Gamma function upon that. This allows us to instantiate the type class both for the reals and for the complex numbers with a minimal amount of proof duplication. \<close> class\<^marker>\<open>tag unimportant\<close> Gamma = real_normed_field + complete_space + fixes rGamma :: "'a \<Rightarrow> 'a" assumes rGamma_eq_zero_iff_aux: "rGamma z = 0 \<longleftrightarrow> (\<exists>n. z = - of_nat n)" assumes differentiable_rGamma_aux1: "(\<And>n. z \<noteq> - of_nat n) \<Longrightarrow> let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) \<longlonglongrightarrow> d) - scaleR euler_mascheroni 1 in filterlim (\<lambda>y. (rGamma y - rGamma z + rGamma z * d * (y - z)) /\<^sub>R norm (y - z)) (nhds 0) (at z)" assumes differentiable_rGamma_aux2: "let z = - of_nat n in filterlim (\<lambda>y. (rGamma y - rGamma z - (-1)^n * (prod of_nat {1..n}) * (y - z)) /\<^sub>R norm (y - z)) (nhds 0) (at z)" assumes rGamma_series_aux: "(\<And>n. z \<noteq> - of_nat n) \<Longrightarrow> let fact' = (\<lambda>n. prod of_nat {1..n}); exp = (\<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x^k /\<^sub>R fact k) \<longlonglongrightarrow> e); pochhammer' = (\<lambda>a n. (\<Prod>n = 0..n. a + of_nat n)) in filterlim (\<lambda>n. pochhammer' z n / (fact' n * exp (z * (ln (of_nat n) *\<^sub>R 1)))) (nhds (rGamma z)) sequentially" begin subclass banach .. end definition "Gamma z = inverse (rGamma z)" subsection \<open>Basic properties\<close> lemma Gamma_nonpos_Int: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma z = 0" and rGamma_nonpos_Int: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma z = 0" using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases') lemma Gamma_nonzero: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma z \<noteq> 0" and rGamma_nonzero: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma z \<noteq> 0" using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases') lemma Gamma_eq_zero_iff: "Gamma z = 0 \<longleftrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0" and rGamma_eq_zero_iff: "rGamma z = 0 \<longleftrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0" using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases') lemma rGamma_inverse_Gamma: "rGamma z = inverse (Gamma z)" unfolding Gamma_def by simp lemma rGamma_series_LIMSEQ [tendsto_intros]: "rGamma_series z \<longlonglongrightarrow> rGamma z" proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") case False hence "z \<noteq> - of_nat n" for n by auto from rGamma_series_aux[OF this] show ?thesis by (simp add: rGamma_series_def[abs_def] fact_prod pochhammer_Suc_prod exp_def of_real_def[symmetric] suminf_def sums_def[abs_def] atLeast0AtMost) qed (insert rGamma_eq_zero_iff[of z], simp_all add: rGamma_series_nonpos_Ints_LIMSEQ) theorem Gamma_series_LIMSEQ [tendsto_intros]: "Gamma_series z \<longlonglongrightarrow> Gamma z" proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") case False hence "(\<lambda>n. inverse (rGamma_series z n)) \<longlonglongrightarrow> inverse (rGamma z)" by (intro tendsto_intros) (simp_all add: rGamma_eq_zero_iff) also have "(\<lambda>n. inverse (rGamma_series z n)) = Gamma_series z" by (simp add: rGamma_series_def Gamma_series_def[abs_def]) finally show ?thesis by (simp add: Gamma_def) qed (insert Gamma_eq_zero_iff[of z], simp_all add: Gamma_series_nonpos_Ints_LIMSEQ) lemma Gamma_altdef: "Gamma z = lim (Gamma_series z)" using Gamma_series_LIMSEQ[of z] by (simp add: limI) lemma rGamma_1 [simp]: "rGamma 1 = 1" proof - have A: "eventually (\<lambda>n. rGamma_series 1 n = of_nat (Suc n) / of_nat n) sequentially" using eventually_gt_at_top[of "0::nat"] by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochhammer_fact field_split_simps pochhammer_rec' dest!: pochhammer_eq_0_imp_nonpos_Int) have "rGamma_series 1 \<longlonglongrightarrow> 1" by (subst tendsto_cong[OF A]) (rule LIMSEQ_Suc_n_over_n) moreover have "rGamma_series 1 \<longlonglongrightarrow> rGamma 1" by (rule tendsto_intros) ultimately show ?thesis by (intro LIMSEQ_unique) qed lemma rGamma_plus1: "z * rGamma (z + 1) = rGamma z" proof - let ?f = "\<lambda>n. (z + 1) * inverse (of_nat n) + 1" have "eventually (\<lambda>n. ?f n * rGamma_series z n = z * rGamma_series (z + 1) n) sequentially" using eventually_gt_at_top[of "0::nat"] proof eventually_elim fix n :: nat assume n: "n > 0" hence "z * rGamma_series (z + 1) n = inverse (of_nat n) * pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat n))))" by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add exp_of_real) also from n have "\<dots> = ?f n * rGamma_series z n" by (subst pochhammer_rec') (simp_all add: field_split_simps rGamma_series_def) finally show "?f n * rGamma_series z n = z * rGamma_series (z + 1) n" .. qed moreover have "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> ((z+1) * 0 + 1) * rGamma z" by (intro tendsto_intros lim_inverse_n) hence "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> rGamma z" by simp ultimately have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> rGamma z" by (blast intro: Lim_transform_eventually) moreover have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> z * rGamma (z + 1)" by (intro tendsto_intros) ultimately show "z * rGamma (z + 1) = rGamma z" using LIMSEQ_unique by blast qed lemma pochhammer_rGamma: "rGamma z = pochhammer z n * rGamma (z + of_nat n)" proof (induction n arbitrary: z) case (Suc n z) have "rGamma z = pochhammer z n * rGamma (z + of_nat n)" by (rule Suc.IH) also note rGamma_plus1 [symmetric] finally show ?case by (simp add: add_ac pochhammer_rec') qed simp_all theorem Gamma_plus1: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma (z + 1) = z * Gamma z" using rGamma_plus1[of z] by (simp add: rGamma_inverse_Gamma field_simps Gamma_eq_zero_iff) theorem pochhammer_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> pochhammer z n = Gamma (z + of_nat n) / Gamma z" using pochhammer_rGamma[of z] by (simp add: rGamma_inverse_Gamma Gamma_eq_zero_iff field_simps) lemma Gamma_0 [simp]: "Gamma 0 = 0" and rGamma_0 [simp]: "rGamma 0 = 0" and Gamma_neg_1 [simp]: "Gamma (- 1) = 0" and rGamma_neg_1 [simp]: "rGamma (- 1) = 0" and Gamma_neg_numeral [simp]: "Gamma (- numeral n) = 0" and rGamma_neg_numeral [simp]: "rGamma (- numeral n) = 0" and Gamma_neg_of_nat [simp]: "Gamma (- of_nat m) = 0" and rGamma_neg_of_nat [simp]: "rGamma (- of_nat m) = 0" by (simp_all add: rGamma_eq_zero_iff Gamma_eq_zero_iff) lemma Gamma_1 [simp]: "Gamma 1 = 1" unfolding Gamma_def by simp theorem Gamma_fact: "Gamma (1 + of_nat n) = fact n" by (simp add: pochhammer_fact pochhammer_Gamma of_nat_in_nonpos_Ints_iff flip: of_nat_Suc) lemma Gamma_numeral: "Gamma (numeral n) = fact (pred_numeral n)" by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc, subst of_nat_Suc, subst Gamma_fact) (rule refl) lemma Gamma_of_int: "Gamma (of_int n) = (if n > 0 then fact (nat (n - 1)) else 0)" proof (cases "n > 0") case True hence "Gamma (of_int n) = Gamma (of_nat (Suc (nat (n - 1))))" by (subst of_nat_Suc) simp_all with True show ?thesis by (subst (asm) of_nat_Suc, subst (asm) Gamma_fact) simp qed (simp_all add: Gamma_eq_zero_iff nonpos_Ints_of_int) lemma rGamma_of_int: "rGamma (of_int n) = (if n > 0 then inverse (fact (nat (n - 1))) else 0)" by (simp add: Gamma_of_int rGamma_inverse_Gamma) lemma Gamma_seriesI: assumes "(\<lambda>n. g n / Gamma_series z n) \<longlonglongrightarrow> 1" shows "g \<longlonglongrightarrow> Gamma z" proof (rule Lim_transform_eventually) have "1/2 > (0::real)" by simp from tendstoD[OF assms, OF this] show "eventually (\<lambda>n. g n / Gamma_series z n * Gamma_series z n = g n) sequentially" by (force elim!: eventually_mono simp: dist_real_def) from assms have "(\<lambda>n. g n / Gamma_series z n * Gamma_series z n) \<longlonglongrightarrow> 1 * Gamma z" by (intro tendsto_intros) thus "(\<lambda>n. g n / Gamma_series z n * Gamma_series z n) \<longlonglongrightarrow> Gamma z" by simp qed lemma Gamma_seriesI': assumes "f \<longlonglongrightarrow> rGamma z" assumes "(\<lambda>n. g n * f n) \<longlonglongrightarrow> 1" assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "g \<longlonglongrightarrow> Gamma z" proof (rule Lim_transform_eventually) have "1/2 > (0::real)" by simp from tendstoD[OF assms(2), OF this] show "eventually (\<lambda>n. g n * f n / f n = g n) sequentially" by (force elim!: eventually_mono simp: dist_real_def) from assms have "(\<lambda>n. g n * f n / f n) \<longlonglongrightarrow> 1 / rGamma z" by (intro tendsto_divide assms) (simp_all add: rGamma_eq_zero_iff) thus "(\<lambda>n. g n * f n / f n) \<longlonglongrightarrow> Gamma z" by (simp add: Gamma_def divide_inverse) qed lemma Gamma_series'_LIMSEQ: "Gamma_series' z \<longlonglongrightarrow> Gamma z" by (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") (simp_all add: Gamma_nonpos_Int Gamma_seriesI[OF Gamma_series_Gamma_series'] Gamma_series'_nonpos_Ints_LIMSEQ[of z]) subsection \<open>Differentiability\<close> lemma has_field_derivative_rGamma_no_nonpos_int: assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(rGamma has_field_derivative -rGamma z * Digamma z) (at z within A)" proof (rule has_field_derivative_at_within) from assms have "z \<noteq> - of_nat n" for n by auto from differentiable_rGamma_aux1[OF this] show "(rGamma has_field_derivative -rGamma z * Digamma z) (at z)" unfolding Digamma_def suminf_def sums_def[abs_def] has_field_derivative_def has_derivative_def netlimit_at by (simp add: Let_def bounded_linear_mult_right mult_ac of_real_def [symmetric]) qed lemma has_field_derivative_rGamma_nonpos_int: "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n) within A)" apply (rule has_field_derivative_at_within) using differentiable_rGamma_aux2[of n] unfolding Let_def has_field_derivative_def has_derivative_def netlimit_at by (simp only: bounded_linear_mult_right mult_ac of_real_def [symmetric] fact_prod) simp lemma has_field_derivative_rGamma [derivative_intros]: "(rGamma has_field_derivative (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>norm z\<rfloor>) * fact (nat \<lfloor>norm z\<rfloor>) else -rGamma z * Digamma z)) (at z within A)" using has_field_derivative_rGamma_no_nonpos_int[of z A] has_field_derivative_rGamma_nonpos_int[of "nat \<lfloor>norm z\<rfloor>" A] by (auto elim!: nonpos_Ints_cases') declare has_field_derivative_rGamma_no_nonpos_int [THEN DERIV_chain2, derivative_intros] declare has_field_derivative_rGamma [THEN DERIV_chain2, derivative_intros] declare has_field_derivative_rGamma_nonpos_int [derivative_intros] declare has_field_derivative_rGamma_no_nonpos_int [derivative_intros] declare has_field_derivative_rGamma [derivative_intros] theorem has_field_derivative_Gamma [derivative_intros]: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> (Gamma has_field_derivative Gamma z * Digamma z) (at z within A)" unfolding Gamma_def [abs_def] by (fastforce intro!: derivative_eq_intros simp: rGamma_eq_zero_iff) declare has_field_derivative_Gamma[THEN DERIV_chain2, derivative_intros] (* TODO: Hide ugly facts properly *) hide_fact rGamma_eq_zero_iff_aux differentiable_rGamma_aux1 differentiable_rGamma_aux2 differentiable_rGamma_aux2 rGamma_series_aux Gamma_class.rGamma_eq_zero_iff_aux lemma continuous_on_rGamma [continuous_intros]: "continuous_on A rGamma" by (rule DERIV_continuous_on has_field_derivative_rGamma)+ lemma continuous_on_Gamma [continuous_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A Gamma" by (rule DERIV_continuous_on has_field_derivative_Gamma)+ blast lemma isCont_rGamma [continuous_intros]: "isCont f z \<Longrightarrow> isCont (\<lambda>x. rGamma (f x)) z" by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_rGamma]]) lemma isCont_Gamma [continuous_intros]: "isCont f z \<Longrightarrow> f z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>x. Gamma (f x)) z" by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_Gamma]]) subsection\<^marker>\<open>tag unimportant\<close> \<open>The complex Gamma function\<close> instantiation\<^marker>\<open>tag unimportant\<close> complex :: Gamma begin definition\<^marker>\<open>tag unimportant\<close> rGamma_complex :: "complex \<Rightarrow> complex" where "rGamma_complex z = lim (rGamma_series z)" lemma rGamma_series_complex_converges: "convergent (rGamma_series (z :: complex))" (is "?thesis1") and rGamma_complex_altdef: "rGamma z = (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then 0 else exp (-ln_Gamma z))" (is "?thesis2") proof - have "?thesis1 \<and> ?thesis2" proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") case False have "rGamma_series z \<longlonglongrightarrow> exp (- ln_Gamma z)" proof (rule Lim_transform_eventually) from ln_Gamma_series_complex_converges'[OF False] obtain d where "0 < d" "uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n)" by auto from this(1) uniformly_convergent_imp_convergent[OF this(2), of z] have "ln_Gamma_series z \<longlonglongrightarrow> lim (ln_Gamma_series z)" by (simp add: convergent_LIMSEQ_iff) thus "(\<lambda>n. exp (-ln_Gamma_series z n)) \<longlonglongrightarrow> exp (- ln_Gamma z)" unfolding convergent_def ln_Gamma_def by (intro tendsto_exp tendsto_minus) from eventually_gt_at_top[of "0::nat"] exp_ln_Gamma_series_complex False show "eventually (\<lambda>n. exp (-ln_Gamma_series z n) = rGamma_series z n) sequentially" by (force elim!: eventually_mono simp: exp_minus Gamma_series_def rGamma_series_def) qed with False show ?thesis by (auto simp: convergent_def rGamma_complex_def intro!: limI) next case True then obtain k where "z = - of_nat k" by (erule nonpos_Ints_cases') also have "rGamma_series \<dots> \<longlonglongrightarrow> 0" by (subst tendsto_cong[OF rGamma_series_minus_of_nat]) (simp_all add: convergent_const) finally show ?thesis using True by (auto simp: rGamma_complex_def convergent_def intro!: limI) qed thus "?thesis1" "?thesis2" by blast+ qed context\<^marker>\<open>tag unimportant\<close> begin (* TODO: duplication *) private lemma rGamma_complex_plus1: "z * rGamma (z + 1) = rGamma (z :: complex)" proof - let ?f = "\<lambda>n. (z + 1) * inverse (of_nat n) + 1" have "eventually (\<lambda>n. ?f n * rGamma_series z n = z * rGamma_series (z + 1) n) sequentially" using eventually_gt_at_top[of "0::nat"] proof eventually_elim fix n :: nat assume n: "n > 0" hence "z * rGamma_series (z + 1) n = inverse (of_nat n) * pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat n))))" by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add exp_of_real) also from n have "\<dots> = ?f n * rGamma_series z n" by (subst pochhammer_rec') (simp_all add: field_split_simps rGamma_series_def add_ac) finally show "?f n * rGamma_series z n = z * rGamma_series (z + 1) n" .. qed moreover have "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> ((z+1) * 0 + 1) * rGamma z" using rGamma_series_complex_converges by (intro tendsto_intros lim_inverse_n) (simp_all add: convergent_LIMSEQ_iff rGamma_complex_def) hence "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> rGamma z" by simp ultimately have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> rGamma z" by (blast intro: Lim_transform_eventually) moreover have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> z * rGamma (z + 1)" using rGamma_series_complex_converges by (auto intro!: tendsto_mult simp: rGamma_complex_def convergent_LIMSEQ_iff) ultimately show "z * rGamma (z + 1) = rGamma z" using LIMSEQ_unique by blast qed private lemma has_field_derivative_rGamma_complex_no_nonpos_Int: assumes "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)" proof - have diff: "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)" if "Re z > 0" for z proof (subst DERIV_cong_ev[OF refl _ refl]) from that have "eventually (\<lambda>t. t \<in> ball z (Re z/2)) (nhds z)" by (intro eventually_nhds_in_nhd) simp_all thus "eventually (\<lambda>t. rGamma t = exp (- ln_Gamma t)) (nhds z)" using no_nonpos_Int_in_ball_complex[OF that] by (auto elim!: eventually_mono simp: rGamma_complex_altdef) next have "z \<notin> \<real>\<^sub>\<le>\<^sub>0" using that by (simp add: complex_nonpos_Reals_iff) with that show "((\<lambda>t. exp (- ln_Gamma t)) has_field_derivative (-rGamma z * Digamma z)) (at z)" by (force elim!: nonpos_Ints_cases intro!: derivative_eq_intros simp: rGamma_complex_altdef) qed from assms show "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)" proof (induction "nat \<lfloor>1 - Re z\<rfloor>" arbitrary: z) case (Suc n z) from Suc.prems have z: "z \<noteq> 0" by auto from Suc.hyps have "n = nat \<lfloor>- Re z\<rfloor>" by linarith hence A: "n = nat \<lfloor>1 - Re (z + 1)\<rfloor>" by simp from Suc.prems have B: "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" by (force dest: plus_one_in_nonpos_Ints_imp) have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1)) z) has_field_derivative -rGamma (z + 1) * (Digamma (z + 1) * z - 1)) (at z)" by (rule derivative_eq_intros DERIV_chain Suc refl A B)+ (simp add: algebra_simps) also have "(\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) = rGamma" by (simp add: rGamma_complex_plus1) also from z have "Digamma (z + 1) * z - 1 = z * Digamma z" by (subst Digamma_plus1) (simp_all add: field_simps) also have "-rGamma (z + 1) * (z * Digamma z) = -rGamma z * Digamma z" by (simp add: rGamma_complex_plus1[of z, symmetric]) finally show ?case . qed (intro diff, simp) qed private lemma rGamma_complex_1: "rGamma (1 :: complex) = 1" proof - have A: "eventually (\<lambda>n. rGamma_series 1 n = of_nat (Suc n) / of_nat n) sequentially" using eventually_gt_at_top[of "0::nat"] by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochhammer_fact field_split_simps pochhammer_rec' dest!: pochhammer_eq_0_imp_nonpos_Int) have "rGamma_series 1 \<longlonglongrightarrow> 1" by (subst tendsto_cong[OF A]) (rule LIMSEQ_Suc_n_over_n) thus "rGamma 1 = (1 :: complex)" unfolding rGamma_complex_def by (rule limI) qed private lemma has_field_derivative_rGamma_complex_nonpos_Int: "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n :: complex))" proof (induction n) case 0 have A: "(0::complex) + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" by simp have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) has_field_derivative 1) (at 0)" by (rule derivative_eq_intros DERIV_chain refl has_field_derivative_rGamma_complex_no_nonpos_Int A)+ (simp add: rGamma_complex_1) thus ?case by (simp add: rGamma_complex_plus1) next case (Suc n) hence A: "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat (Suc n) + 1 :: complex))" by simp have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) has_field_derivative (- 1) ^ Suc n * fact (Suc n)) (at (- of_nat (Suc n)))" by (rule derivative_eq_intros refl A DERIV_chain)+ (simp add: algebra_simps rGamma_complex_altdef) thus ?case by (simp add: rGamma_complex_plus1) qed instance proof fix z :: complex show "(rGamma z = 0) \<longleftrightarrow> (\<exists>n. z = - of_nat n)" by (auto simp: rGamma_complex_altdef elim!: nonpos_Ints_cases') next fix z :: complex assume "\<And>n. z \<noteq> - of_nat n" hence "z \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases') from has_field_derivative_rGamma_complex_no_nonpos_Int[OF this] show "let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) \<longlonglongrightarrow> d) - euler_mascheroni *\<^sub>R 1 in (\<lambda>y. (rGamma y - rGamma z + rGamma z * d * (y - z)) /\<^sub>R cmod (y - z)) \<midarrow>z\<rightarrow> 0" by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def] of_real_def[symmetric] suminf_def) next fix n :: nat from has_field_derivative_rGamma_complex_nonpos_Int[of n] show "let z = - of_nat n in (\<lambda>y. (rGamma y - rGamma z - (- 1) ^ n * prod of_nat {1..n} * (y - z)) /\<^sub>R cmod (y - z)) \<midarrow>z\<rightarrow> 0" by (simp add: has_field_derivative_def has_derivative_def fact_prod Let_def) next fix z :: complex from rGamma_series_complex_converges[of z] have "rGamma_series z \<longlonglongrightarrow> rGamma z" by (simp add: convergent_LIMSEQ_iff rGamma_complex_def) thus "let fact' = \<lambda>n. prod of_nat {1..n}; exp = \<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x ^ k /\<^sub>R fact k) \<longlonglongrightarrow> e; pochhammer' = \<lambda>a n. \<Prod>n = 0..n. a + of_nat n in (\<lambda>n. pochhammer' z n / (fact' n * exp (z * ln (real_of_nat n) *\<^sub>R 1))) \<longlonglongrightarrow> rGamma z" by (simp add: fact_prod pochhammer_Suc_prod rGamma_series_def [abs_def] exp_def of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost) qed end end lemma Gamma_complex_altdef: "Gamma z = (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then 0 else exp (ln_Gamma (z :: complex)))" unfolding Gamma_def rGamma_complex_altdef by (simp add: exp_minus) lemma cnj_rGamma: "cnj (rGamma z) = rGamma (cnj z)" proof - have "rGamma_series (cnj z) = (\<lambda>n. cnj (rGamma_series z n))" by (intro ext) (simp_all add: rGamma_series_def exp_cnj) also have "... \<longlonglongrightarrow> cnj (rGamma z)" by (intro tendsto_cnj tendsto_intros) finally show ?thesis unfolding rGamma_complex_def by (intro sym[OF limI]) qed lemma cnj_Gamma: "cnj (Gamma z) = Gamma (cnj z)" unfolding Gamma_def by (simp add: cnj_rGamma) lemma Gamma_complex_real: "z \<in> \<real> \<Longrightarrow> Gamma z \<in> (\<real> :: complex set)" and rGamma_complex_real: "z \<in> \<real> \<Longrightarrow> rGamma z \<in> \<real>" by (simp_all add: Reals_cnj_iff cnj_Gamma cnj_rGamma) lemma field_differentiable_rGamma: "rGamma field_differentiable (at z within A)" using has_field_derivative_rGamma[of z] unfolding field_differentiable_def by blast lemma holomorphic_rGamma [holomorphic_intros]: "rGamma holomorphic_on A" unfolding holomorphic_on_def by (auto intro!: field_differentiable_rGamma) lemma holomorphic_rGamma' [holomorphic_intros]: assumes "f holomorphic_on A" shows "(\<lambda>x. rGamma (f x)) holomorphic_on A" proof - have "rGamma \<circ> f holomorphic_on A" using assms by (intro holomorphic_on_compose assms holomorphic_rGamma) thus ?thesis by (simp only: o_def) qed lemma analytic_rGamma: "rGamma analytic_on A" unfolding analytic_on_def by (auto intro!: exI[of _ 1] holomorphic_rGamma) lemma field_differentiable_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma field_differentiable (at z within A)" using has_field_derivative_Gamma[of z] unfolding field_differentiable_def by auto lemma holomorphic_Gamma [holomorphic_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma holomorphic_on A" unfolding holomorphic_on_def by (auto intro!: field_differentiable_Gamma) lemma holomorphic_Gamma' [holomorphic_intros]: assumes "f holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> f x \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(\<lambda>x. Gamma (f x)) holomorphic_on A" proof - have "Gamma \<circ> f holomorphic_on A" using assms by (intro holomorphic_on_compose assms holomorphic_Gamma) auto thus ?thesis by (simp only: o_def) qed lemma analytic_Gamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma analytic_on A" by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open) (auto intro!: holomorphic_Gamma) lemma field_differentiable_ln_Gamma_complex: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln_Gamma field_differentiable (at (z::complex) within A)" by (rule field_differentiable_within_subset[of _ _ UNIV]) (force simp: field_differentiable_def intro!: derivative_intros)+ lemma holomorphic_ln_Gamma [holomorphic_intros]: "A \<inter> \<real>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> ln_Gamma holomorphic_on A" unfolding holomorphic_on_def by (auto intro!: field_differentiable_ln_Gamma_complex) lemma analytic_ln_Gamma: "A \<inter> \<real>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> ln_Gamma analytic_on A" by (rule analytic_on_subset[of _ "UNIV - \<real>\<^sub>\<le>\<^sub>0"], subst analytic_on_open) (auto intro!: holomorphic_ln_Gamma) lemma has_field_derivative_rGamma_complex' [derivative_intros]: "(rGamma has_field_derivative (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>-Re z\<rfloor>) * fact (nat \<lfloor>-Re z\<rfloor>) else -rGamma z * Digamma z)) (at z within A)" using has_field_derivative_rGamma[of z] by (auto elim!: nonpos_Ints_cases') declare has_field_derivative_rGamma_complex'[THEN DERIV_chain2, derivative_intros] lemma field_differentiable_Polygamma: fixes z :: complex shows "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Polygamma n field_differentiable (at z within A)" using has_field_derivative_Polygamma[of z n] unfolding field_differentiable_def by auto lemma holomorphic_on_Polygamma [holomorphic_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Polygamma n holomorphic_on A" unfolding holomorphic_on_def by (auto intro!: field_differentiable_Polygamma) lemma analytic_on_Polygamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Polygamma n analytic_on A" by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open) (auto intro!: holomorphic_on_Polygamma) subsection\<^marker>\<open>tag unimportant\<close> \<open>The real Gamma function\<close> lemma rGamma_series_real: "eventually (\<lambda>n. rGamma_series x n = Re (rGamma_series (of_real x) n)) sequentially" using eventually_gt_at_top[of "0 :: nat"] proof eventually_elim fix n :: nat assume n: "n > 0" have "Re (rGamma_series (of_real x) n) = Re (of_real (pochhammer x (Suc n)) / (fact n * exp (of_real (x * ln (real_of_nat n)))))" using n by (simp add: rGamma_series_def powr_def pochhammer_of_real) also from n have "\<dots> = Re (of_real ((pochhammer x (Suc n)) / (fact n * (exp (x * ln (real_of_nat n))))))" by (subst exp_of_real) simp also from n have "\<dots> = rGamma_series x n" by (subst Re_complex_of_real) (simp add: rGamma_series_def powr_def) finally show "rGamma_series x n = Re (rGamma_series (of_real x) n)" .. qed instantiation\<^marker>\<open>tag unimportant\<close> real :: Gamma begin definition "rGamma_real x = Re (rGamma (of_real x :: complex))" instance proof fix x :: real have "rGamma x = Re (rGamma (of_real x))" by (simp add: rGamma_real_def) also have "of_real \<dots> = rGamma (of_real x :: complex)" by (intro of_real_Re rGamma_complex_real) simp_all also have "\<dots> = 0 \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0" by (simp add: rGamma_eq_zero_iff of_real_in_nonpos_Ints_iff) also have "\<dots> \<longleftrightarrow> (\<exists>n. x = - of_nat n)" by (auto elim!: nonpos_Ints_cases') finally show "(rGamma x) = 0 \<longleftrightarrow> (\<exists>n. x = - real_of_nat n)" by simp next fix x :: real assume "\<And>n. x \<noteq> - of_nat n" hence x: "complex_of_real x \<notin> \<int>\<^sub>\<le>\<^sub>0" by (subst of_real_in_nonpos_Ints_iff) (auto elim!: nonpos_Ints_cases') then have "x \<noteq> 0" by auto with x have "(rGamma has_field_derivative - rGamma x * Digamma x) (at x)" by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_field simp: Polygamma_of_real rGamma_real_def [abs_def]) thus "let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (x + of_nat k)) \<longlonglongrightarrow> d) - euler_mascheroni *\<^sub>R 1 in (\<lambda>y. (rGamma y - rGamma x + rGamma x * d * (y - x)) /\<^sub>R norm (y - x)) \<midarrow>x\<rightarrow> 0" by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def] of_real_def[symmetric] suminf_def) next fix n :: nat have "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n :: real))" by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_field simp: Polygamma_of_real rGamma_real_def [abs_def]) thus "let x = - of_nat n in (\<lambda>y. (rGamma y - rGamma x - (- 1) ^ n * prod of_nat {1..n} * (y - x)) /\<^sub>R norm (y - x)) \<midarrow>x::real\<rightarrow> 0" by (simp add: has_field_derivative_def has_derivative_def fact_prod Let_def) next fix x :: real have "rGamma_series x \<longlonglongrightarrow> rGamma x" proof (rule Lim_transform_eventually) show "(\<lambda>n. Re (rGamma_series (of_real x) n)) \<longlonglongrightarrow> rGamma x" unfolding rGamma_real_def by (intro tendsto_intros) qed (insert rGamma_series_real, simp add: eq_commute) thus "let fact' = \<lambda>n. prod of_nat {1..n}; exp = \<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x ^ k /\<^sub>R fact k) \<longlonglongrightarrow> e; pochhammer' = \<lambda>a n. \<Prod>n = 0..n. a + of_nat n in (\<lambda>n. pochhammer' x n / (fact' n * exp (x * ln (real_of_nat n) *\<^sub>R 1))) \<longlonglongrightarrow> rGamma x" by (simp add: fact_prod pochhammer_Suc_prod rGamma_series_def [abs_def] exp_def of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost) qed end lemma rGamma_complex_of_real: "rGamma (complex_of_real x) = complex_of_real (rGamma x)" unfolding rGamma_real_def using rGamma_complex_real by simp lemma Gamma_complex_of_real: "Gamma (complex_of_real x) = complex_of_real (Gamma x)" unfolding Gamma_def by (simp add: rGamma_complex_of_real) lemma rGamma_real_altdef: "rGamma x = lim (rGamma_series (x :: real))" by (rule sym, rule limI, rule tendsto_intros) lemma Gamma_real_altdef1: "Gamma x = lim (Gamma_series (x :: real))" by (rule sym, rule limI, rule tendsto_intros) lemma Gamma_real_altdef2: "Gamma x = Re (Gamma (of_real x))" using rGamma_complex_real[OF Reals_of_real[of x]] by (elim Reals_cases) (simp only: Gamma_def rGamma_real_def of_real_inverse[symmetric] Re_complex_of_real) lemma ln_Gamma_series_complex_of_real: "x > 0 \<Longrightarrow> n > 0 \<Longrightarrow> ln_Gamma_series (complex_of_real x) n = of_real (ln_Gamma_series x n)" proof - assume xn: "x > 0" "n > 0" have "Ln (complex_of_real x / of_nat k + 1) = of_real (ln (x / of_nat k + 1))" if "k \<ge> 1" for k using that xn by (subst Ln_of_real [symmetric]) (auto intro!: add_nonneg_pos simp: field_simps) with xn show ?thesis by (simp add: ln_Gamma_series_def Ln_of_real) qed lemma ln_Gamma_real_converges: assumes "(x::real) > 0" shows "convergent (ln_Gamma_series x)" proof - have "(\<lambda>n. ln_Gamma_series (complex_of_real x) n) \<longlonglongrightarrow> ln_Gamma (of_real x)" using assms by (intro ln_Gamma_complex_LIMSEQ) (auto simp: of_real_in_nonpos_Ints_iff) moreover from eventually_gt_at_top[of "0::nat"] have "eventually (\<lambda>n. complex_of_real (ln_Gamma_series x n) = ln_Gamma_series (complex_of_real x) n) sequentially" by eventually_elim (simp add: ln_Gamma_series_complex_of_real assms) ultimately have "(\<lambda>n. complex_of_real (ln_Gamma_series x n)) \<longlonglongrightarrow> ln_Gamma (of_real x)" by (subst tendsto_cong) assumption+ from tendsto_Re[OF this] show ?thesis by (auto simp: convergent_def) qed lemma ln_Gamma_real_LIMSEQ: "(x::real) > 0 \<Longrightarrow> ln_Gamma_series x \<longlonglongrightarrow> ln_Gamma x" using ln_Gamma_real_converges[of x] unfolding ln_Gamma_def by (simp add: convergent_LIMSEQ_iff) lemma ln_Gamma_complex_of_real: "x > 0 \<Longrightarrow> ln_Gamma (complex_of_real x) = of_real (ln_Gamma x)" proof (unfold ln_Gamma_def, rule limI, rule Lim_transform_eventually) assume x: "x > 0" show "eventually (\<lambda>n. of_real (ln_Gamma_series x n) = ln_Gamma_series (complex_of_real x) n) sequentially" using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: ln_Gamma_series_complex_of_real x) qed (intro tendsto_of_real, insert ln_Gamma_real_LIMSEQ[of x], simp add: ln_Gamma_def) lemma Gamma_real_pos_exp: "x > (0 :: real) \<Longrightarrow> Gamma x = exp (ln_Gamma x)" by (auto simp: Gamma_real_altdef2 Gamma_complex_altdef of_real_in_nonpos_Ints_iff ln_Gamma_complex_of_real exp_of_real) lemma ln_Gamma_real_pos: "x > 0 \<Longrightarrow> ln_Gamma x = ln (Gamma x :: real)" unfolding Gamma_real_pos_exp by simp lemma ln_Gamma_complex_conv_fact: "n > 0 \<Longrightarrow> ln_Gamma (of_nat n :: complex) = ln (fact (n - 1))" using ln_Gamma_complex_of_real[of "real n"] Gamma_fact[of "n - 1", where 'a = real] by (simp add: ln_Gamma_real_pos of_nat_diff Ln_of_real [symmetric]) lemma ln_Gamma_real_conv_fact: "n > 0 \<Longrightarrow> ln_Gamma (real n) = ln (fact (n - 1))" using Gamma_fact[of "n - 1", where 'a = real] by (simp add: ln_Gamma_real_pos of_nat_diff Ln_of_real [symmetric]) lemma Gamma_real_pos [simp, intro]: "x > (0::real) \<Longrightarrow> Gamma x > 0" by (simp add: Gamma_real_pos_exp) lemma Gamma_real_nonneg [simp, intro]: "x > (0::real) \<Longrightarrow> Gamma x \<ge> 0" by (simp add: Gamma_real_pos_exp) lemma has_field_derivative_ln_Gamma_real [derivative_intros]: assumes x: "x > (0::real)" shows "(ln_Gamma has_field_derivative Digamma x) (at x)" proof (subst DERIV_cong_ev[OF refl _ refl]) from assms show "((Re \<circ> ln_Gamma \<circ> complex_of_real) has_field_derivative Digamma x) (at x)" by (auto intro!: derivative_eq_intros has_vector_derivative_real_field simp: Polygamma_of_real o_def) from eventually_nhds_in_nhd[of x "{0<..}"] assms show "eventually (\<lambda>y. ln_Gamma y = (Re \<circ> ln_Gamma \<circ> of_real) y) (nhds x)" by (auto elim!: eventually_mono simp: ln_Gamma_complex_of_real interior_open) qed lemma field_differentiable_ln_Gamma_real: "x > 0 \<Longrightarrow> ln_Gamma field_differentiable (at (x::real) within A)" by (rule field_differentiable_within_subset[of _ _ UNIV]) (auto simp: field_differentiable_def intro!: derivative_intros)+ declare has_field_derivative_ln_Gamma_real[THEN DERIV_chain2, derivative_intros] lemma deriv_ln_Gamma_real: assumes "z > 0" shows "deriv ln_Gamma z = Digamma (z :: real)" by (intro DERIV_imp_deriv has_field_derivative_ln_Gamma_real assms) lemma higher_deriv_ln_Gamma_real: assumes "(x::real) > 0" shows "(deriv ^^ j) ln_Gamma x = (if j = 0 then ln_Gamma x else Polygamma (j - 1) x)" proof (cases j) case (Suc j') have "(deriv ^^ j') (deriv ln_Gamma) x = (deriv ^^ j') Digamma x" using eventually_nhds_in_open[of "{0<..}" x] assms by (intro higher_deriv_cong_ev refl) (auto elim!: eventually_mono simp: open_Diff deriv_ln_Gamma_real) also have "\<dots> = Polygamma j' x" using assms by (subst higher_deriv_Polygamma) (auto elim!: nonpos_Ints_cases simp: complex_nonpos_Reals_iff) finally show ?thesis using Suc by (simp del: funpow.simps add: funpow_Suc_right) qed simp_all lemma higher_deriv_ln_Gamma_complex_of_real: assumes "(x :: real) > 0" shows "(deriv ^^ j) ln_Gamma (complex_of_real x) = of_real ((deriv ^^ j) ln_Gamma x)" using assms by (auto simp: higher_deriv_ln_Gamma_real higher_deriv_ln_Gamma_complex ln_Gamma_complex_of_real Polygamma_of_real) lemma has_field_derivative_rGamma_real' [derivative_intros]: "(rGamma has_field_derivative (if x \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>-x\<rfloor>) * fact (nat \<lfloor>-x\<rfloor>) else -rGamma x * Digamma x)) (at x within A)" using has_field_derivative_rGamma[of x] by (force elim!: nonpos_Ints_cases') declare has_field_derivative_rGamma_real'[THEN DERIV_chain2, derivative_intros] lemma Polygamma_real_odd_pos: assumes "(x::real) \<notin> \<int>\<^sub>\<le>\<^sub>0" "odd n" shows "Polygamma n x > 0" proof - from assms have "x \<noteq> 0" by auto with assms show ?thesis unfolding Polygamma_def using Polygamma_converges'[of x "Suc n"] by (auto simp: zero_less_power_eq simp del: power_Suc dest: plus_of_nat_eq_0_imp intro!: mult_pos_pos suminf_pos) qed lemma Polygamma_real_even_neg: assumes "(x::real) > 0" "n > 0" "even n" shows "Polygamma n x < 0" using assms unfolding Polygamma_def using Polygamma_converges'[of x "Suc n"] by (auto intro!: mult_pos_pos suminf_pos) lemma Polygamma_real_strict_mono: assumes "x > 0" "x < (y::real)" "even n" shows "Polygamma n x < Polygamma n y" proof - have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>" using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases) then obtain \<xi> where \<xi>: "x < \<xi>" "\<xi> < y" and Polygamma: "Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>" by auto note Polygamma also from \<xi> assms have "(y - x) * Polygamma (Suc n) \<xi> > 0" by (intro mult_pos_pos Polygamma_real_odd_pos) (auto elim!: nonpos_Ints_cases) finally show ?thesis by simp qed lemma Polygamma_real_strict_antimono: assumes "x > 0" "x < (y::real)" "odd n" shows "Polygamma n x > Polygamma n y" proof - have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>" using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases) then obtain \<xi> where \<xi>: "x < \<xi>" "\<xi> < y" and Polygamma: "Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>" by auto note Polygamma also from \<xi> assms have "(y - x) * Polygamma (Suc n) \<xi> < 0" by (intro mult_pos_neg Polygamma_real_even_neg) simp_all finally show ?thesis by simp qed lemma Polygamma_real_mono: assumes "x > 0" "x \<le> (y::real)" "even n" shows "Polygamma n x \<le> Polygamma n y" using Polygamma_real_strict_mono[OF assms(1) _ assms(3), of y] assms(2) by (cases "x = y") simp_all lemma Digamma_real_strict_mono: "(0::real) < x \<Longrightarrow> x < y \<Longrightarrow> Digamma x < Digamma y" by (rule Polygamma_real_strict_mono) simp_all lemma Digamma_real_mono: "(0::real) < x \<Longrightarrow> x \<le> y \<Longrightarrow> Digamma x \<le> Digamma y" by (rule Polygamma_real_mono) simp_all lemma Digamma_real_ge_three_halves_pos: assumes "x \<ge> 3/2" shows "Digamma (x :: real) > 0" proof - have "0 < Digamma (3/2 :: real)" by (fact Digamma_real_three_halves_pos) also from assms have "\<dots> \<le> Digamma x" by (intro Polygamma_real_mono) simp_all finally show ?thesis . qed lemma ln_Gamma_real_strict_mono: assumes "x \<ge> 3/2" "x < y" shows "ln_Gamma (x :: real) < ln_Gamma y" proof - have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> ln_Gamma y - ln_Gamma x = (y - x) * Digamma \<xi>" using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases) then obtain \<xi> where \<xi>: "x < \<xi>" "\<xi> < y" and ln_Gamma: "ln_Gamma y - ln_Gamma x = (y - x) * Digamma \<xi>" by auto note ln_Gamma also from \<xi> assms have "(y - x) * Digamma \<xi> > 0" by (intro mult_pos_pos Digamma_real_ge_three_halves_pos) simp_all finally show ?thesis by simp qed lemma Gamma_real_strict_mono: assumes "x \<ge> 3/2" "x < y" shows "Gamma (x :: real) < Gamma y" proof - from Gamma_real_pos_exp[of x] assms have "Gamma x = exp (ln_Gamma x)" by simp also have "\<dots> < exp (ln_Gamma y)" by (intro exp_less_mono ln_Gamma_real_strict_mono assms) also from Gamma_real_pos_exp[of y] assms have "\<dots> = Gamma y" by simp finally show ?thesis . qed theorem log_convex_Gamma_real: "convex_on {0<..} (ln \<circ> Gamma :: real \<Rightarrow> real)" by (rule convex_on_realI[of _ _ Digamma]) (auto intro!: derivative_eq_intros Polygamma_real_mono Gamma_real_pos simp: o_def Gamma_eq_zero_iff elim!: nonpos_Ints_cases') subsection \<open>The uniqueness of the real Gamma function\<close> text \<open> The following is a proof of the Bohr--Mollerup theorem, which states that any log-convex function \<open>G\<close> on the positive reals that fulfils \<open>G(1) = 1\<close> and satisfies the functional equation \<open>G(x + 1) = x G(x)\<close> must be equal to the Gamma function. In principle, if \<open>G\<close> is a holomorphic complex function, one could then extend this from the positive reals to the entire complex plane (minus the non-positive integers, where the Gamma function is not defined). \<close> context\<^marker>\<open>tag unimportant\<close> fixes G :: "real \<Rightarrow> real" assumes G_1: "G 1 = 1" assumes G_plus1: "x > 0 \<Longrightarrow> G (x + 1) = x * G x" assumes G_pos: "x > 0 \<Longrightarrow> G x > 0" assumes log_convex_G: "convex_on {0<..} (ln \<circ> G)" begin private lemma G_fact: "G (of_nat n + 1) = fact n" using G_plus1[of "real n + 1" for n] by (induction n) (simp_all add: G_1 G_plus1) private definition S :: "real \<Rightarrow> real \<Rightarrow> real" where "S x y = (ln (G y) - ln (G x)) / (y - x)" private lemma S_eq: "n \<ge> 2 \<Longrightarrow> S (of_nat n) (of_nat n + x) = (ln (G (real n + x)) - ln (fact (n - 1))) / x" by (subst G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff) private lemma G_lower: assumes x: "x > 0" and n: "n \<ge> 1" shows "Gamma_series x n \<le> G x" proof - have "(ln \<circ> G) (real (Suc n)) \<le> ((ln \<circ> G) (real (Suc n) + x) - (ln \<circ> G) (real (Suc n) - 1)) / (real (Suc n) + x - (real (Suc n) - 1)) * (real (Suc n) - (real (Suc n) - 1)) + (ln \<circ> G) (real (Suc n) - 1)" using x n by (intro convex_onD_Icc' convex_on_subset[OF log_convex_G]) auto hence "S (of_nat n) (of_nat (Suc n)) \<le> S (of_nat (Suc n)) (of_nat (Suc n) + x)" unfolding S_def using x by (simp add: field_simps) also have "S (of_nat n) (of_nat (Suc n)) = ln (fact n) - ln (fact (n-1))" unfolding S_def using n by (subst (1 2) G_fact [symmetric]) (simp_all add: add_ac of_nat_diff) also have "\<dots> = ln (fact n / fact (n-1))" by (subst ln_div) simp_all also from n have "fact n / fact (n - 1) = n" by (cases n) simp_all finally have "x * ln (real n) + ln (fact n) \<le> ln (G (real (Suc n) + x))" using x n by (subst (asm) S_eq) (simp_all add: field_simps) also have "x * ln (real n) + ln (fact n) = ln (exp (x * ln (real n)) * fact n)" using x by (simp add: ln_mult) finally have "exp (x * ln (real n)) * fact n \<le> G (real (Suc n) + x)" using x by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos) also have "G (real (Suc n) + x) = pochhammer x (Suc n) * G x" using G_plus1[of "real (Suc n) + x" for n] G_plus1[of x] x by (induction n) (simp_all add: pochhammer_Suc add_ac) finally show "Gamma_series x n \<le> G x" using x by (simp add: field_simps pochhammer_pos Gamma_series_def) qed private lemma G_upper: assumes x: "x > 0" "x \<le> 1" and n: "n \<ge> 2" shows "G x \<le> Gamma_series x n * (1 + x / real n)" proof - have "(ln \<circ> G) (real n + x) \<le> ((ln \<circ> G) (real n + 1) - (ln \<circ> G) (real n)) / (real n + 1 - (real n)) * ((real n + x) - real n) + (ln \<circ> G) (real n)" using x n by (intro convex_onD_Icc' convex_on_subset[OF log_convex_G]) auto hence "S (of_nat n) (of_nat n + x) \<le> S (of_nat n) (of_nat n + 1)" unfolding S_def using x by (simp add: field_simps) also from n have "S (of_nat n) (of_nat n + 1) = ln (fact n) - ln (fact (n-1))" by (subst (1 2) G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff) also have "\<dots> = ln (fact n / (fact (n-1)))" using n by (subst ln_div) simp_all also from n have "fact n / fact (n - 1) = n" by (cases n) simp_all finally have "ln (G (real n + x)) \<le> x * ln (real n) + ln (fact (n - 1))" using x n by (subst (asm) S_eq) (simp_all add: field_simps) also have "\<dots> = ln (exp (x * ln (real n)) * fact (n - 1))" using x by (simp add: ln_mult) finally have "G (real n + x) \<le> exp (x * ln (real n)) * fact (n - 1)" using x by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos) also have "G (real n + x) = pochhammer x n * G x" using G_plus1[of "real n + x" for n] x by (induction n) (simp_all add: pochhammer_Suc add_ac) finally have "G x \<le> exp (x * ln (real n)) * fact (n- 1) / pochhammer x n" using x by (simp add: field_simps pochhammer_pos) also from n have "fact (n - 1) = fact n / n" by (cases n) simp_all also have "exp (x * ln (real n)) * \<dots> / pochhammer x n = Gamma_series x n * (1 + x / real n)" using n x by (simp add: Gamma_series_def divide_simps pochhammer_Suc) finally show ?thesis . qed private lemma G_eq_Gamma_aux: assumes x: "x > 0" "x \<le> 1" shows "G x = Gamma x" proof (rule antisym) show "G x \<ge> Gamma x" proof (rule tendsto_upperbound) from G_lower[of x] show "eventually (\<lambda>n. Gamma_series x n \<le> G x) sequentially" using x by (auto intro: eventually_mono[OF eventually_ge_at_top[of "1::nat"]]) qed (simp_all add: Gamma_series_LIMSEQ) next show "G x \<le> Gamma x" proof (rule tendsto_lowerbound) have "(\<lambda>n. Gamma_series x n * (1 + x / real n)) \<longlonglongrightarrow> Gamma x * (1 + 0)" by (rule tendsto_intros real_tendsto_divide_at_top Gamma_series_LIMSEQ filterlim_real_sequentially)+ thus "(\<lambda>n. Gamma_series x n * (1 + x / real n)) \<longlonglongrightarrow> Gamma x" by simp next from G_upper[of x] show "eventually (\<lambda>n. Gamma_series x n * (1 + x / real n) \<ge> G x) sequentially" using x by (auto intro: eventually_mono[OF eventually_ge_at_top[of "2::nat"]]) qed simp_all qed theorem Gamma_pos_real_unique: assumes x: "x > 0" shows "G x = Gamma x" proof - have G_eq: "G (real n + x) = Gamma (real n + x)" if "x \<in> {0<..1}" for n x using that proof (induction n) case (Suc n) from Suc have "x + real n > 0" by simp hence "x + real n \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto with Suc show ?case using G_plus1[of "real n + x"] Gamma_plus1[of "real n + x"] by (auto simp: add_ac) qed (simp_all add: G_eq_Gamma_aux) show ?thesis proof (cases "frac x = 0") case True hence "x = of_int (floor x)" by (simp add: frac_def) with x have x_eq: "x = of_nat (nat (floor x) - 1) + 1" by simp show ?thesis by (subst (1 2) x_eq, rule G_eq) simp_all next case False from assms have x_eq: "x = of_nat (nat (floor x)) + frac x" by (simp add: frac_def) have frac_le_1: "frac x \<le> 1" unfolding frac_def by linarith show ?thesis by (subst (1 2) x_eq, rule G_eq, insert False frac_le_1) simp_all qed qed end subsection \<open>The Beta function\<close> definition Beta where "Beta a b = Gamma a * Gamma b / Gamma (a + b)" lemma Beta_altdef: "Beta a b = Gamma a * Gamma b * rGamma (a + b)" by (simp add: inverse_eq_divide Beta_def Gamma_def) lemma Beta_commute: "Beta a b = Beta b a" unfolding Beta_def by (simp add: ac_simps) lemma has_field_derivative_Beta1 [derivative_intros]: assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0" "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "((\<lambda>x. Beta x y) has_field_derivative (Beta x y * (Digamma x - Digamma (x + y)))) (at x within A)" unfolding Beta_altdef by (rule DERIV_cong, (rule derivative_intros assms)+) (simp add: algebra_simps) lemma Beta_pole1: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0" by (auto simp add: Beta_def elim!: nonpos_Ints_cases') lemma Beta_pole2: "y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0" by (auto simp add: Beta_def elim!: nonpos_Ints_cases') lemma Beta_zero: "x + y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0" by (auto simp add: Beta_def elim!: nonpos_Ints_cases') lemma has_field_derivative_Beta2 [derivative_intros]: assumes "y \<notin> \<int>\<^sub>\<le>\<^sub>0" "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "((\<lambda>y. Beta x y) has_field_derivative (Beta x y * (Digamma y - Digamma (x + y)))) (at y within A)" using has_field_derivative_Beta1[of y x A] assms by (simp add: Beta_commute add_ac) theorem Beta_plus1_plus1: assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0" "y \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "Beta (x + 1) y + Beta x (y + 1) = Beta x y" proof - have "Beta (x + 1) y + Beta x (y + 1) = (Gamma (x + 1) * Gamma y + Gamma x * Gamma (y + 1)) * rGamma ((x + y) + 1)" by (simp add: Beta_altdef add_divide_distrib algebra_simps) also have "\<dots> = (Gamma x * Gamma y) * ((x + y) * rGamma ((x + y) + 1))" by (subst assms[THEN Gamma_plus1])+ (simp add: algebra_simps) also from assms have "\<dots> = Beta x y" unfolding Beta_altdef by (subst rGamma_plus1) simp finally show ?thesis . qed theorem Beta_plus1_left: assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(x + y) * Beta (x + 1) y = x * Beta x y" proof - have "(x + y) * Beta (x + 1) y = Gamma (x + 1) * Gamma y * ((x + y) * rGamma ((x + y) + 1))" unfolding Beta_altdef by (simp only: ac_simps) also have "\<dots> = x * Beta x y" unfolding Beta_altdef by (subst assms[THEN Gamma_plus1] rGamma_plus1)+ (simp only: ac_simps) finally show ?thesis . qed theorem Beta_plus1_right: assumes "y \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(x + y) * Beta x (y + 1) = y * Beta x y" using Beta_plus1_left[of y x] assms by (simp_all add: Beta_commute add.commute) lemma Gamma_Gamma_Beta: assumes "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "Gamma x * Gamma y = Beta x y * Gamma (x + y)" unfolding Beta_altdef using assms Gamma_eq_zero_iff[of "x+y"] by (simp add: rGamma_inverse_Gamma) subsection \<open>Legendre duplication theorem\<close> context begin private lemma Gamma_legendre_duplication_aux: fixes z :: "'a :: Gamma" assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "Gamma z * Gamma (z + 1/2) = exp ((1 - 2*z) * of_real (ln 2)) * Gamma (1/2) * Gamma (2*z)" proof - let ?powr = "\<lambda>b a. exp (a * of_real (ln (of_nat b)))" let ?h = "\<lambda>n. (fact (n-1))\<^sup>2 / fact (2*n-1) * of_nat (2^(2*n)) * exp (1/2 * of_real (ln (real_of_nat n)))" { fix z :: 'a assume z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" let ?g = "\<lambda>n. ?powr 2 (2*z) * Gamma_series' z n * Gamma_series' (z + 1/2) n / Gamma_series' (2*z) (2*n)" have "eventually (\<lambda>n. ?g n = ?h n) sequentially" using eventually_gt_at_top proof eventually_elim fix n :: nat assume n: "n > 0" let ?f = "fact (n - 1) :: 'a" and ?f' = "fact (2*n - 1) :: 'a" have A: "exp t * exp t = exp (2*t :: 'a)" for t by (subst exp_add [symmetric]) simp have A: "Gamma_series' z n * Gamma_series' (z + 1/2) n = ?f^2 * ?powr n (2*z + 1/2) / (pochhammer z n * pochhammer (z + 1/2) n)" by (simp add: Gamma_series'_def exp_add ring_distribs power2_eq_square A mult_ac) have B: "Gamma_series' (2*z) (2*n) = ?f' * ?powr 2 (2*z) * ?powr n (2*z) / (of_nat (2^(2*n)) * pochhammer z n * pochhammer (z+1/2) n)" using n by (simp add: Gamma_series'_def ln_mult exp_add ring_distribs pochhammer_double) from z have "pochhammer z n \<noteq> 0" by (auto dest: pochhammer_eq_0_imp_nonpos_Int) moreover from z have "pochhammer (z + 1/2) n \<noteq> 0" by (auto dest: pochhammer_eq_0_imp_nonpos_Int) ultimately have "?powr 2 (2*z) * (Gamma_series' z n * Gamma_series' (z + 1/2) n) / Gamma_series' (2*z) (2*n) = ?f^2 / ?f' * of_nat (2^(2*n)) * (?powr n ((4*z + 1)/2) * ?powr n (-2*z))" using n unfolding A B by (simp add: field_split_simps exp_minus) also have "?powr n ((4*z + 1)/2) * ?powr n (-2*z) = ?powr n (1/2)" by (simp add: algebra_simps exp_add[symmetric] add_divide_distrib) finally show "?g n = ?h n" by (simp only: mult_ac) qed moreover from z double_in_nonpos_Ints_imp[of z] have "2 * z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto hence "?g \<longlonglongrightarrow> ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)" using LIMSEQ_subseq_LIMSEQ[OF Gamma_series'_LIMSEQ, of "(*)2" "2*z"] by (intro tendsto_intros Gamma_series'_LIMSEQ) (simp_all add: o_def strict_mono_def Gamma_eq_zero_iff) ultimately have "?h \<longlonglongrightarrow> ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)" by (blast intro: Lim_transform_eventually) } note lim = this from assms double_in_nonpos_Ints_imp[of z] have z': "2 * z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto from fraction_not_in_ints[of 2 1] have "(1/2 :: 'a) \<notin> \<int>\<^sub>\<le>\<^sub>0" by (intro not_in_Ints_imp_not_in_nonpos_Ints) simp_all with lim[of "1/2 :: 'a"] have "?h \<longlonglongrightarrow> 2 * Gamma (1/2 :: 'a)" by (simp add: exp_of_real) from LIMSEQ_unique[OF this lim[OF assms]] z' show ?thesis by (simp add: field_split_simps Gamma_eq_zero_iff ring_distribs exp_diff exp_of_real) qed text \<open> The following lemma is somewhat annoying. With a little bit of complex analysis (Cauchy's integral theorem, to be exact), this would be completely trivial. However, we want to avoid depending on the complex analysis session at this point, so we prove it the hard way. \<close> private lemma Gamma_reflection_aux: defines "h \<equiv> \<lambda>z::complex. if z \<in> \<int> then 0 else (of_real pi * cot (of_real pi*z) + Digamma z - Digamma (1 - z))" defines "a \<equiv> complex_of_real pi" obtains h' where "continuous_on UNIV h'" "\<And>z. (h has_field_derivative (h' z)) (at z)" proof - define f where "f n = a * of_real (cos_coeff (n+1) - sin_coeff (n+2))" for n define F where "F z = (if z = 0 then 0 else (cos (a*z) - sin (a*z)/(a*z)) / z)" for z define g where "g n = complex_of_real (sin_coeff (n+1))" for n define G where "G z = (if z = 0 then 1 else sin (a*z)/(a*z))" for z have a_nz: "a \<noteq> 0" unfolding a_def by simp have "(\<lambda>n. f n * (a*z)^n) sums (F z) \<and> (\<lambda>n. g n * (a*z)^n) sums (G z)" if "abs (Re z) < 1" for z proof (cases "z = 0"; rule conjI) assume "z \<noteq> 0" note z = this that from z have sin_nz: "sin (a*z) \<noteq> 0" unfolding a_def by (auto simp: sin_eq_0) have "(\<lambda>n. of_real (sin_coeff n) * (a*z)^n) sums (sin (a*z))" using sin_converges[of "a*z"] by (simp add: scaleR_conv_of_real) from sums_split_initial_segment[OF this, of 1] have "(\<lambda>n. (a*z) * of_real (sin_coeff (n+1)) * (a*z)^n) sums (sin (a*z))" by (simp add: mult_ac) from sums_mult[OF this, of "inverse (a*z)"] z a_nz have A: "(\<lambda>n. g n * (a*z)^n) sums (sin (a*z)/(a*z))" by (simp add: field_simps g_def) with z show "(\<lambda>n. g n * (a*z)^n) sums (G z)" by (simp add: G_def) from A z a_nz sin_nz have g_nz: "(\<Sum>n. g n * (a*z)^n) \<noteq> 0" by (simp add: sums_iff g_def) have [simp]: "sin_coeff (Suc 0) = 1" by (simp add: sin_coeff_def) from sums_split_initial_segment[OF sums_diff[OF cos_converges[of "a*z"] A], of 1] have "(\<lambda>n. z * f n * (a*z)^n) sums (cos (a*z) - sin (a*z) / (a*z))" by (simp add: mult_ac scaleR_conv_of_real ring_distribs f_def g_def) from sums_mult[OF this, of "inverse z"] z assms show "(\<lambda>n. f n * (a*z)^n) sums (F z)" by (simp add: divide_simps mult_ac f_def F_def) next assume z: "z = 0" have "(\<lambda>n. f n * (a * z) ^ n) sums f 0" using powser_sums_zero[of f] z by simp with z show "(\<lambda>n. f n * (a * z) ^ n) sums (F z)" by (simp add: f_def F_def sin_coeff_def cos_coeff_def) have "(\<lambda>n. g n * (a * z) ^ n) sums g 0" using powser_sums_zero[of g] z by simp with z show "(\<lambda>n. g n * (a * z) ^ n) sums (G z)" by (simp add: g_def G_def sin_coeff_def cos_coeff_def) qed note sums = conjunct1[OF this] conjunct2[OF this] define h2 where [abs_def]: "h2 z = (\<Sum>n. f n * (a*z)^n) / (\<Sum>n. g n * (a*z)^n) + Digamma (1 + z) - Digamma (1 - z)" for z define POWSER where [abs_def]: "POWSER f z = (\<Sum>n. f n * (z^n :: complex))" for f z define POWSER' where [abs_def]: "POWSER' f z = (\<Sum>n. diffs f n * (z^n))" for f and z :: complex define h2' where [abs_def]: "h2' z = a * (POWSER g (a*z) * POWSER' f (a*z) - POWSER f (a*z) * POWSER' g (a*z)) / (POWSER g (a*z))^2 + Polygamma 1 (1 + z) + Polygamma 1 (1 - z)" for z have h_eq: "h t = h2 t" if "abs (Re t) < 1" for t proof - from that have t: "t \<in> \<int> \<longleftrightarrow> t = 0" by (auto elim!: Ints_cases) hence "h t = a*cot (a*t) - 1/t + Digamma (1 + t) - Digamma (1 - t)" unfolding h_def using Digamma_plus1[of t] by (force simp: field_simps a_def) also have "a*cot (a*t) - 1/t = (F t) / (G t)" using t by (auto simp add: divide_simps sin_eq_0 cot_def a_def F_def G_def) also have "\<dots> = (\<Sum>n. f n * (a*t)^n) / (\<Sum>n. g n * (a*t)^n)" using sums[of t] that by (simp add: sums_iff) finally show "h t = h2 t" by (simp only: h2_def) qed let ?A = "{z. abs (Re z) < 1}" have "open ({z. Re z < 1} \<inter> {z. Re z > -1})" using open_halfspace_Re_gt open_halfspace_Re_lt by auto also have "({z. Re z < 1} \<inter> {z. Re z > -1}) = {z. abs (Re z) < 1}" by auto finally have open_A: "open ?A" . hence [simp]: "interior ?A = ?A" by (simp add: interior_open) have summable_f: "summable (\<lambda>n. f n * z^n)" for z by (rule powser_inside, rule sums_summable, rule sums[of "\<i> * of_real (norm z + 1) / a"]) (simp_all add: norm_mult a_def del: of_real_add) have summable_g: "summable (\<lambda>n. g n * z^n)" for z by (rule powser_inside, rule sums_summable, rule sums[of "\<i> * of_real (norm z + 1) / a"]) (simp_all add: norm_mult a_def del: of_real_add) have summable_fg': "summable (\<lambda>n. diffs f n * z^n)" "summable (\<lambda>n. diffs g n * z^n)" for z by (intro termdiff_converges_all summable_f summable_g)+ have "(POWSER f has_field_derivative (POWSER' f z)) (at z)" "(POWSER g has_field_derivative (POWSER' g z)) (at z)" for z unfolding POWSER_def POWSER'_def by (intro termdiffs_strong_converges_everywhere summable_f summable_g)+ note derivs = this[THEN DERIV_chain2[OF _ DERIV_cmult[OF DERIV_ident]], unfolded POWSER_def] have "isCont (POWSER f) z" "isCont (POWSER g) z" "isCont (POWSER' f) z" "isCont (POWSER' g) z" for z unfolding POWSER_def POWSER'_def by (intro isCont_powser_converges_everywhere summable_f summable_g summable_fg')+ note cont = this[THEN isCont_o2[rotated], unfolded POWSER_def POWSER'_def] { fix z :: complex assume z: "abs (Re z) < 1" define d where "d = \<i> * of_real (norm z + 1)" have d: "abs (Re d) < 1" "norm z < norm d" by (simp_all add: d_def norm_mult del: of_real_add) have "eventually (\<lambda>z. h z = h2 z) (nhds z)" using eventually_nhds_in_nhd[of z ?A] using h_eq z by (auto elim!: eventually_mono) moreover from sums(2)[OF z] z have nz: "(\<Sum>n. g n * (a * z) ^ n) \<noteq> 0" unfolding G_def by (auto simp: sums_iff sin_eq_0 a_def) have A: "z \<in> \<int> \<longleftrightarrow> z = 0" using z by (auto elim!: Ints_cases) have no_int: "1 + z \<in> \<int> \<longleftrightarrow> z = 0" using z Ints_diff[of "1+z" 1] A by (auto elim!: nonpos_Ints_cases) have no_int': "1 - z \<in> \<int> \<longleftrightarrow> z = 0" using z Ints_diff[of 1 "1-z"] A by (auto elim!: nonpos_Ints_cases) from no_int no_int' have no_int: "1 - z \<notin> \<int>\<^sub>\<le>\<^sub>0" "1 + z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto have "(h2 has_field_derivative h2' z) (at z)" unfolding h2_def by (rule DERIV_cong, (rule derivative_intros refl derivs[unfolded POWSER_def] nz no_int)+) (auto simp: h2'_def POWSER_def field_simps power2_eq_square) ultimately have deriv: "(h has_field_derivative h2' z) (at z)" by (subst DERIV_cong_ev[OF refl _ refl]) from sums(2)[OF z] z have "(\<Sum>n. g n * (a * z) ^ n) \<noteq> 0" unfolding G_def by (auto simp: sums_iff a_def sin_eq_0) hence "isCont h2' z" using no_int unfolding h2'_def[abs_def] POWSER_def POWSER'_def by (intro continuous_intros cont continuous_on_compose2[OF _ continuous_on_Polygamma[of "{z. Re z > 0}"]]) auto note deriv and this } note A = this interpret h: periodic_fun_simple' h proof fix z :: complex show "h (z + 1) = h z" proof (cases "z \<in> \<int>") assume z: "z \<notin> \<int>" hence A: "z + 1 \<notin> \<int>" "z \<noteq> 0" using Ints_diff[of "z+1" 1] by auto hence "Digamma (z + 1) - Digamma (-z) = Digamma z - Digamma (-z + 1)" by (subst (1 2) Digamma_plus1) simp_all with A z show "h (z + 1) = h z" by (simp add: h_def sin_plus_pi cos_plus_pi ring_distribs cot_def) qed (simp add: h_def) qed have h2'_eq: "h2' (z - 1) = h2' z" if z: "Re z > 0" "Re z < 1" for z proof - have "((\<lambda>z. h (z - 1)) has_field_derivative h2' (z - 1)) (at z)" by (rule DERIV_cong, rule DERIV_chain'[OF _ A(1)]) (insert z, auto intro!: derivative_eq_intros) hence "(h has_field_derivative h2' (z - 1)) (at z)" by (subst (asm) h.minus_1) moreover from z have "(h has_field_derivative h2' z) (at z)" by (intro A) simp_all ultimately show "h2' (z - 1) = h2' z" by (rule DERIV_unique) qed define h2'' where "h2'' z = h2' (z - of_int \<lfloor>Re z\<rfloor>)" for z have deriv: "(h has_field_derivative h2'' z) (at z)" for z proof - fix z :: complex have B: "\<bar>Re z - real_of_int \<lfloor>Re z\<rfloor>\<bar> < 1" by linarith have "((\<lambda>t. h (t - of_int \<lfloor>Re z\<rfloor>)) has_field_derivative h2'' z) (at z)" unfolding h2''_def by (rule DERIV_cong, rule DERIV_chain'[OF _ A(1)]) (insert B, auto intro!: derivative_intros) thus "(h has_field_derivative h2'' z) (at z)" by (simp add: h.minus_of_int) qed have cont: "continuous_on UNIV h2''" proof (intro continuous_at_imp_continuous_on ballI) fix z :: complex define r where "r = \<lfloor>Re z\<rfloor>" define A where "A = {t. of_int r - 1 < Re t \<and> Re t < of_int r + 1}" have "continuous_on A (\<lambda>t. h2' (t - of_int r))" unfolding A_def by (intro continuous_at_imp_continuous_on isCont_o2[OF _ A(2)] ballI continuous_intros) (simp_all add: abs_real_def) moreover have "h2'' t = h2' (t - of_int r)" if t: "t \<in> A" for t proof (cases "Re t \<ge> of_int r") case True from t have "of_int r - 1 < Re t" "Re t < of_int r + 1" by (simp_all add: A_def) with True have "\<lfloor>Re t\<rfloor> = \<lfloor>Re z\<rfloor>" unfolding r_def by linarith thus ?thesis by (auto simp: r_def h2''_def) next case False from t have t: "of_int r - 1 < Re t" "Re t < of_int r + 1" by (simp_all add: A_def) with False have t': "\<lfloor>Re t\<rfloor> = \<lfloor>Re z\<rfloor> - 1" unfolding r_def by linarith moreover from t False have "h2' (t - of_int r + 1 - 1) = h2' (t - of_int r + 1)" by (intro h2'_eq) simp_all ultimately show ?thesis by (auto simp: r_def h2''_def algebra_simps t') qed ultimately have "continuous_on A h2''" by (subst continuous_on_cong[OF refl]) moreover { have "open ({t. of_int r - 1 < Re t} \<inter> {t. of_int r + 1 > Re t})" by (intro open_Int open_halfspace_Re_gt open_halfspace_Re_lt) also have "{t. of_int r - 1 < Re t} \<inter> {t. of_int r + 1 > Re t} = A" unfolding A_def by blast finally have "open A" . } ultimately have C: "isCont h2'' t" if "t \<in> A" for t using that by (subst (asm) continuous_on_eq_continuous_at) auto have "of_int r - 1 < Re z" "Re z < of_int r + 1" unfolding r_def by linarith+ thus "isCont h2'' z" by (intro C) (simp_all add: A_def) qed from that[OF cont deriv] show ?thesis . qed lemma Gamma_reflection_complex: fixes z :: complex shows "Gamma z * Gamma (1 - z) = of_real pi / sin (of_real pi * z)" proof - let ?g = "\<lambda>z::complex. Gamma z * Gamma (1 - z) * sin (of_real pi * z)" define g where [abs_def]: "g z = (if z \<in> \<int> then of_real pi else ?g z)" for z :: complex let ?h = "\<lambda>z::complex. (of_real pi * cot (of_real pi*z) + Digamma z - Digamma (1 - z))" define h where [abs_def]: "h z = (if z \<in> \<int> then 0 else ?h z)" for z :: complex \<comment> \<open>@{term g} is periodic with period 1.\<close> interpret g: periodic_fun_simple' g proof fix z :: complex show "g (z + 1) = g z" proof (cases "z \<in> \<int>") case False hence "z * g z = z * Beta z (- z + 1) * sin (of_real pi * z)" by (simp add: g_def Beta_def) also have "z * Beta z (- z + 1) = (z + 1 + -z) * Beta (z + 1) (- z + 1)" using False Ints_diff[of 1 "1 - z"] nonpos_Ints_subset_Ints by (subst Beta_plus1_left [symmetric]) auto also have "\<dots> * sin (of_real pi * z) = z * (Beta (z + 1) (-z) * sin (of_real pi * (z + 1)))" using False Ints_diff[of "z+1" 1] Ints_minus[of "-z"] nonpos_Ints_subset_Ints by (subst Beta_plus1_right) (auto simp: ring_distribs sin_plus_pi) also from False have "Beta (z + 1) (-z) * sin (of_real pi * (z + 1)) = g (z + 1)" using Ints_diff[of "z+1" 1] by (auto simp: g_def Beta_def) finally show "g (z + 1) = g z" using False by (subst (asm) mult_left_cancel) auto qed (simp add: g_def) qed \<comment> \<open>@{term g} is entire.\<close> have g_g': "(g has_field_derivative (h z * g z)) (at z)" for z :: complex proof (cases "z \<in> \<int>") let ?h' = "\<lambda>z. Beta z (1 - z) * ((Digamma z - Digamma (1 - z)) * sin (z * of_real pi) + of_real pi * cos (z * of_real pi))" case False from False have "eventually (\<lambda>t. t \<in> UNIV - \<int>) (nhds z)" by (intro eventually_nhds_in_open) (auto simp: open_Diff) hence "eventually (\<lambda>t. g t = ?g t) (nhds z)" by eventually_elim (simp add: g_def) moreover { from False Ints_diff[of 1 "1-z"] have "1 - z \<notin> \<int>" by auto hence "(?g has_field_derivative ?h' z) (at z)" using nonpos_Ints_subset_Ints by (auto intro!: derivative_eq_intros simp: algebra_simps Beta_def) also from False have "sin (of_real pi * z) \<noteq> 0" by (subst sin_eq_0) auto hence "?h' z = h z * g z" using False unfolding g_def h_def cot_def by (simp add: field_simps Beta_def) finally have "(?g has_field_derivative (h z * g z)) (at z)" . } ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl]) next case True then obtain n where z: "z = of_int n" by (auto elim!: Ints_cases) let ?t = "(\<lambda>z::complex. if z = 0 then 1 else sin z / z) \<circ> (\<lambda>z. of_real pi * z)" have deriv_0: "(g has_field_derivative 0) (at 0)" proof (subst DERIV_cong_ev[OF refl _ refl]) show "eventually (\<lambda>z. g z = of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z) (nhds 0)" using eventually_nhds_ball[OF zero_less_one, of "0::complex"] proof eventually_elim fix z :: complex assume z: "z \<in> ball 0 1" show "g z = of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z" proof (cases "z = 0") assume z': "z \<noteq> 0" with z have z'': "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z \<notin> \<int>" by (auto elim!: Ints_cases) from Gamma_plus1[OF this(1)] have "Gamma z = Gamma (z + 1) / z" by simp with z'' z' show ?thesis by (simp add: g_def ac_simps) qed (simp add: g_def) qed have "(?t has_field_derivative (0 * of_real pi)) (at 0)" using has_field_derivative_sin_z_over_z[of "UNIV :: complex set"] by (intro DERIV_chain) simp_all thus "((\<lambda>z. of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z) has_field_derivative 0) (at 0)" by (auto intro!: derivative_eq_intros simp: o_def) qed have "((g \<circ> (\<lambda>x. x - of_int n)) has_field_derivative 0 * 1) (at (of_int n))" using deriv_0 by (intro DERIV_chain) (auto intro!: derivative_eq_intros) also have "g \<circ> (\<lambda>x. x - of_int n) = g" by (intro ext) (simp add: g.minus_of_int) finally show "(g has_field_derivative (h z * g z)) (at z)" by (simp add: z h_def) qed have g_eq: "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * g z" if "Re z > -1" "Re z < 2" for z proof (cases "z \<in> \<int>") case True with that have "z = 0 \<or> z = 1" by (force elim!: Ints_cases) moreover have "g 0 * g (1/2) = Gamma (1/2)^2 * g 0" using fraction_not_in_ints[where 'a = complex, of 2 1] by (simp add: g_def power2_eq_square) moreover have "g (1/2) * g 1 = Gamma (1/2)^2 * g 1" using fraction_not_in_ints[where 'a = complex, of 2 1] by (simp add: g_def power2_eq_square Beta_def algebra_simps) ultimately show ?thesis by force next case False hence z: "z/2 \<notin> \<int>" "(z+1)/2 \<notin> \<int>" using Ints_diff[of "z+1" 1] by (auto elim!: Ints_cases) hence z': "z/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" "(z+1)/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases) from z have "1-z/2 \<notin> \<int>" "1-((z+1)/2) \<notin> \<int>" using Ints_diff[of 1 "1-z/2"] Ints_diff[of 1 "1-((z+1)/2)"] by auto hence z'': "1-z/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" "1-((z+1)/2) \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases) from z have "g (z/2) * g ((z+1)/2) = (Gamma (z/2) * Gamma ((z+1)/2)) * (Gamma (1-z/2) * Gamma (1-((z+1)/2))) * (sin (of_real pi * z/2) * sin (of_real pi * (z+1)/2))" by (simp add: g_def) also from z' Gamma_legendre_duplication_aux[of "z/2"] have "Gamma (z/2) * Gamma ((z+1)/2) = exp ((1-z) * of_real (ln 2)) * Gamma (1/2) * Gamma z" by (simp add: add_divide_distrib) also from z'' Gamma_legendre_duplication_aux[of "1-(z+1)/2"] have "Gamma (1-z/2) * Gamma (1-(z+1)/2) = Gamma (1-z) * Gamma (1/2) * exp (z * of_real (ln 2))" by (simp add: add_divide_distrib ac_simps) finally have "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * (Gamma z * Gamma (1-z) * (2 * (sin (of_real pi*z/2) * sin (of_real pi*(z+1)/2))))" by (simp add: add_ac power2_eq_square exp_add ring_distribs exp_diff exp_of_real) also have "sin (of_real pi*(z+1)/2) = cos (of_real pi*z/2)" using cos_sin_eq[of "- of_real pi * z/2", symmetric] by (simp add: ring_distribs add_divide_distrib ac_simps) also have "2 * (sin (of_real pi*z/2) * cos (of_real pi*z/2)) = sin (of_real pi * z)" by (subst sin_times_cos) (simp add: field_simps) also have "Gamma z * Gamma (1 - z) * sin (complex_of_real pi * z) = g z" using \<open>z \<notin> \<int>\<close> by (simp add: g_def) finally show ?thesis . qed have g_eq: "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * g z" for z proof - define r where "r = \<lfloor>Re z / 2\<rfloor>" have "Gamma (1/2)^2 * g z = Gamma (1/2)^2 * g (z - of_int (2*r))" by (simp only: g.minus_of_int) also have "of_int (2*r) = 2 * of_int r" by simp also have "Re z - 2 * of_int r > -1" "Re z - 2 * of_int r < 2" unfolding r_def by linarith+ hence "Gamma (1/2)^2 * g (z - 2 * of_int r) = g ((z - 2 * of_int r)/2) * g ((z - 2 * of_int r + 1)/2)" unfolding r_def by (intro g_eq[symmetric]) simp_all also have "(z - 2 * of_int r) / 2 = z/2 - of_int r" by simp also have "g \<dots> = g (z/2)" by (rule g.minus_of_int) also have "(z - 2 * of_int r + 1) / 2 = (z + 1)/2 - of_int r" by simp also have "g \<dots> = g ((z+1)/2)" by (rule g.minus_of_int) finally show ?thesis .. qed have g_nz [simp]: "g z \<noteq> 0" for z :: complex unfolding g_def using Ints_diff[of 1 "1 - z"] by (auto simp: Gamma_eq_zero_iff sin_eq_0 dest!: nonpos_Ints_Int) have h_eq: "h z = (h (z/2) + h ((z+1)/2)) / 2" for z proof - have "((\<lambda>t. g (t/2) * g ((t+1)/2)) has_field_derivative (g (z/2) * g ((z+1)/2)) * ((h (z/2) + h ((z+1)/2)) / 2)) (at z)" by (auto intro!: derivative_eq_intros g_g'[THEN DERIV_chain2] simp: field_simps) hence "((\<lambda>t. Gamma (1/2)^2 * g t) has_field_derivative Gamma (1/2)^2 * g z * ((h (z/2) + h ((z+1)/2)) / 2)) (at z)" by (subst (1 2) g_eq[symmetric]) simp from DERIV_cmult[OF this, of "inverse ((Gamma (1/2))^2)"] have "(g has_field_derivative (g z * ((h (z/2) + h ((z+1)/2))/2))) (at z)" using fraction_not_in_ints[where 'a = complex, of 2 1] by (simp add: divide_simps Gamma_eq_zero_iff not_in_Ints_imp_not_in_nonpos_Ints) moreover have "(g has_field_derivative (g z * h z)) (at z)" using g_g'[of z] by (simp add: ac_simps) ultimately have "g z * h z = g z * ((h (z/2) + h ((z+1)/2))/2)" by (intro DERIV_unique) thus "h z = (h (z/2) + h ((z+1)/2)) / 2" by simp qed obtain h' where h'_cont: "continuous_on UNIV h'" and h_h': "\<And>z. (h has_field_derivative h' z) (at z)" unfolding h_def by (erule Gamma_reflection_aux) have h'_eq: "h' z = (h' (z/2) + h' ((z+1)/2)) / 4" for z proof - have "((\<lambda>t. (h (t/2) + h ((t+1)/2)) / 2) has_field_derivative ((h' (z/2) + h' ((z+1)/2)) / 4)) (at z)" by (fastforce intro!: derivative_eq_intros h_h'[THEN DERIV_chain2]) hence "(h has_field_derivative ((h' (z/2) + h' ((z+1)/2))/4)) (at z)" by (subst (asm) h_eq[symmetric]) from h_h' and this show "h' z = (h' (z/2) + h' ((z+1)/2)) / 4" by (rule DERIV_unique) qed have h'_zero: "h' z = 0" for z proof - define m where "m = max 1 \<bar>Re z\<bar>" define B where "B = {t. abs (Re t) \<le> m \<and> abs (Im t) \<le> abs (Im z)}" have "closed ({t. Re t \<ge> -m} \<inter> {t. Re t \<le> m} \<inter> {t. Im t \<ge> -\<bar>Im z\<bar>} \<inter> {t. Im t \<le> \<bar>Im z\<bar>})" (is "closed ?B") by (intro closed_Int closed_halfspace_Re_ge closed_halfspace_Re_le closed_halfspace_Im_ge closed_halfspace_Im_le) also have "?B = B" unfolding B_def by fastforce finally have "closed B" . moreover have "bounded B" unfolding bounded_iff proof (intro ballI exI) fix t assume t: "t \<in> B" have "norm t \<le> \<bar>Re t\<bar> + \<bar>Im t\<bar>" by (rule cmod_le) also from t have "\<bar>Re t\<bar> \<le> m" unfolding B_def by blast also from t have "\<bar>Im t\<bar> \<le> \<bar>Im z\<bar>" unfolding B_def by blast finally show "norm t \<le> m + \<bar>Im z\<bar>" by - simp qed ultimately have compact: "compact B" by (subst compact_eq_bounded_closed) blast define M where "M = (SUP z\<in>B. norm (h' z))" have "compact (h' ` B)" by (intro compact_continuous_image continuous_on_subset[OF h'_cont] compact) blast+ hence bdd: "bdd_above ((\<lambda>z. norm (h' z)) ` B)" using bdd_above_norm[of "h' ` B"] by (simp add: image_comp o_def compact_imp_bounded) have "norm (h' z) \<le> M" unfolding M_def by (intro cSUP_upper bdd) (simp_all add: B_def m_def) also have "M \<le> M/2" proof (subst M_def, subst cSUP_le_iff) have "z \<in> B" unfolding B_def m_def by simp thus "B \<noteq> {}" by auto next show "\<forall>z\<in>B. norm (h' z) \<le> M/2" proof fix t :: complex assume t: "t \<in> B" from h'_eq[of t] t have "h' t = (h' (t/2) + h' ((t+1)/2)) / 4" by (simp) also have "norm \<dots> = norm (h' (t/2) + h' ((t+1)/2)) / 4" by simp also have "norm (h' (t/2) + h' ((t+1)/2)) \<le> norm (h' (t/2)) + norm (h' ((t+1)/2))" by (rule norm_triangle_ineq) also from t have "abs (Re ((t + 1)/2)) \<le> m" unfolding m_def B_def by auto with t have "t/2 \<in> B" "(t+1)/2 \<in> B" unfolding B_def by auto hence "norm (h' (t/2)) + norm (h' ((t+1)/2)) \<le> M + M" unfolding M_def by (intro add_mono cSUP_upper bdd) (auto simp: B_def) also have "(M + M) / 4 = M / 2" by simp finally show "norm (h' t) \<le> M/2" by - simp_all qed qed (insert bdd, auto) hence "M \<le> 0" by simp finally show "h' z = 0" by simp qed have h_h'_2: "(h has_field_derivative 0) (at z)" for z using h_h'[of z] h'_zero[of z] by simp have g_real: "g z \<in> \<real>" if "z \<in> \<real>" for z unfolding g_def using that by (auto intro!: Reals_mult Gamma_complex_real) have h_real: "h z \<in> \<real>" if "z \<in> \<real>" for z unfolding h_def using that by (auto intro!: Reals_mult Reals_add Reals_diff Polygamma_Real) have g_nz: "g z \<noteq> 0" for z unfolding g_def using Ints_diff[of 1 "1-z"] by (auto simp: Gamma_eq_zero_iff sin_eq_0) from h'_zero h_h'_2 have "\<exists>c. \<forall>z\<in>UNIV. h z = c" by (intro has_field_derivative_zero_constant) (simp_all add: dist_0_norm) then obtain c where c: "\<And>z. h z = c" by auto have "\<exists>u. u \<in> closed_segment 0 1 \<and> Re (g 1) - Re (g 0) = Re (h u * g u * (1 - 0))" by (intro complex_mvt_line g_g') then obtain u where u: "u \<in> closed_segment 0 1" "Re (g 1) - Re (g 0) = Re (h u * g u)" by auto from u(1) have u': "u \<in> \<real>" unfolding closed_segment_def by (auto simp: scaleR_conv_of_real) from u' g_real[of u] g_nz[of u] have "Re (g u) \<noteq> 0" by (auto elim!: Reals_cases) with u(2) c[of u] g_real[of u] g_nz[of u] u' have "Re c = 0" by (simp add: complex_is_Real_iff g.of_1) with h_real[of 0] c[of 0] have "c = 0" by (auto elim!: Reals_cases) with c have A: "h z * g z = 0" for z by simp hence "(g has_field_derivative 0) (at z)" for z using g_g'[of z] by simp hence "\<exists>c'. \<forall>z\<in>UNIV. g z = c'" by (intro has_field_derivative_zero_constant) simp_all then obtain c' where c: "\<And>z. g z = c'" by (force) from this[of 0] have "c' = pi" unfolding g_def by simp with c have "g z = pi" by simp show ?thesis proof (cases "z \<in> \<int>") case False with \<open>g z = pi\<close> show ?thesis by (auto simp: g_def divide_simps) next case True then obtain n where n: "z = of_int n" by (elim Ints_cases) with sin_eq_0[of "of_real pi * z"] have "sin (of_real pi * z) = 0" by force moreover have "of_int (1 - n) \<in> \<int>\<^sub>\<le>\<^sub>0" if "n > 0" using that by (intro nonpos_Ints_of_int) simp ultimately show ?thesis using n by (cases "n \<le> 0") (auto simp: Gamma_eq_zero_iff nonpos_Ints_of_int) qed qed lemma rGamma_reflection_complex: "rGamma z * rGamma (1 - z :: complex) = sin (of_real pi * z) / of_real pi" using Gamma_reflection_complex[of z] by (simp add: Gamma_def field_split_simps split: if_split_asm) lemma rGamma_reflection_complex': "rGamma z * rGamma (- z :: complex) = -z * sin (of_real pi * z) / of_real pi" proof - have "rGamma z * rGamma (-z) = -z * (rGamma z * rGamma (1 - z))" using rGamma_plus1[of "-z", symmetric] by simp also have "rGamma z * rGamma (1 - z) = sin (of_real pi * z) / of_real pi" by (rule rGamma_reflection_complex) finally show ?thesis by simp qed lemma Gamma_reflection_complex': "Gamma z * Gamma (- z :: complex) = - of_real pi / (z * sin (of_real pi * z))" using rGamma_reflection_complex'[of z] by (force simp add: Gamma_def field_split_simps) lemma Gamma_one_half_real: "Gamma (1/2 :: real) = sqrt pi" proof - from Gamma_reflection_complex[of "1/2"] fraction_not_in_ints[where 'a = complex, of 2 1] have "Gamma (1/2 :: complex)^2 = of_real pi" by (simp add: power2_eq_square) hence "of_real pi = Gamma (complex_of_real (1/2))^2" by simp also have "\<dots> = of_real ((Gamma (1/2))^2)" by (subst Gamma_complex_of_real) simp_all finally have "Gamma (1/2)^2 = pi" by (subst (asm) of_real_eq_iff) simp_all moreover have "Gamma (1/2 :: real) \<ge> 0" using Gamma_real_pos[of "1/2"] by simp ultimately show ?thesis by (rule real_sqrt_unique [symmetric]) qed lemma Gamma_one_half_complex: "Gamma (1/2 :: complex) = of_real (sqrt pi)" proof - have "Gamma (1/2 :: complex) = Gamma (of_real (1/2))" by simp also have "\<dots> = of_real (sqrt pi)" by (simp only: Gamma_complex_of_real Gamma_one_half_real) finally show ?thesis . qed theorem Gamma_legendre_duplication: fixes z :: complex assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "Gamma z * Gamma (z + 1/2) = exp ((1 - 2*z) * of_real (ln 2)) * of_real (sqrt pi) * Gamma (2*z)" using Gamma_legendre_duplication_aux[OF assms] by (simp add: Gamma_one_half_complex) end subsection\<^marker>\<open>tag unimportant\<close> \<open>Limits and residues\<close> text \<open> The inverse of the Gamma function has simple zeros: \<close> lemma rGamma_zeros: "(\<lambda>z. rGamma z / (z + of_nat n)) \<midarrow> (- of_nat n) \<rightarrow> ((-1)^n * fact n :: 'a :: Gamma)" proof (subst tendsto_cong) let ?f = "\<lambda>z. pochhammer z n * rGamma (z + of_nat (Suc n)) :: 'a" from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV] show "eventually (\<lambda>z. rGamma z / (z + of_nat n) = ?f z) (at (- of_nat n))" by (subst pochhammer_rGamma[of _ "Suc n"]) (auto elim!: eventually_mono simp: field_split_simps pochhammer_rec' eq_neg_iff_add_eq_0) have "isCont ?f (- of_nat n)" by (intro continuous_intros) thus "?f \<midarrow> (- of_nat n) \<rightarrow> (- 1) ^ n * fact n" unfolding isCont_def by (simp add: pochhammer_same) qed text \<open> The simple zeros of the inverse of the Gamma function correspond to simple poles of the Gamma function, and their residues can easily be computed from the limit we have just proven: \<close> lemma Gamma_poles: "filterlim Gamma at_infinity (at (- of_nat n :: 'a :: Gamma))" proof - from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV] have "eventually (\<lambda>z. rGamma z \<noteq> (0 :: 'a)) (at (- of_nat n))" by (auto elim!: eventually_mono nonpos_Ints_cases' simp: rGamma_eq_zero_iff dist_of_nat dist_minus) with isCont_rGamma[of "- of_nat n :: 'a", OF continuous_ident] have "filterlim (\<lambda>z. inverse (rGamma z) :: 'a) at_infinity (at (- of_nat n))" unfolding isCont_def by (intro filterlim_compose[OF filterlim_inverse_at_infinity]) (simp_all add: filterlim_at) moreover have "(\<lambda>z. inverse (rGamma z) :: 'a) = Gamma" by (intro ext) (simp add: rGamma_inverse_Gamma) ultimately show ?thesis by (simp only: ) qed lemma Gamma_residues: "(\<lambda>z. Gamma z * (z + of_nat n)) \<midarrow> (- of_nat n) \<rightarrow> ((-1)^n / fact n :: 'a :: Gamma)" proof (subst tendsto_cong) let ?c = "(- 1) ^ n / fact n :: 'a" from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV] show "eventually (\<lambda>z. Gamma z * (z + of_nat n) = inverse (rGamma z / (z + of_nat n))) (at (- of_nat n))" by (auto elim!: eventually_mono simp: field_split_simps rGamma_inverse_Gamma) have "(\<lambda>z. inverse (rGamma z / (z + of_nat n))) \<midarrow> (- of_nat n) \<rightarrow> inverse ((- 1) ^ n * fact n :: 'a)" by (intro tendsto_intros rGamma_zeros) simp_all also have "inverse ((- 1) ^ n * fact n) = ?c" by (simp_all add: field_simps flip: power_mult_distrib) finally show "(\<lambda>z. inverse (rGamma z / (z + of_nat n))) \<midarrow> (- of_nat n) \<rightarrow> ?c" . qed subsection \<open>Alternative definitions\<close> subsubsection \<open>Variant of the Euler form\<close> definition Gamma_series_euler' where "Gamma_series_euler' z n = inverse z * (\<Prod>k=1..n. exp (z * of_real (ln (1 + inverse (of_nat k)))) / (1 + z / of_nat k))" context begin private lemma Gamma_euler'_aux1: fixes z :: "'a :: {real_normed_field,banach}" assumes n: "n > 0" shows "exp (z * of_real (ln (of_nat n + 1))) = (\<Prod>k=1..n. exp (z * of_real (ln (1 + 1 / of_nat k))))" proof - have "(\<Prod>k=1..n. exp (z * of_real (ln (1 + 1 / of_nat k)))) = exp (z * of_real (\<Sum>k = 1..n. ln (1 + 1 / real_of_nat k)))" by (subst exp_sum [symmetric]) (simp_all add: sum_distrib_left) also have "(\<Sum>k=1..n. ln (1 + 1 / of_nat k) :: real) = ln (\<Prod>k=1..n. 1 + 1 / real_of_nat k)" by (subst ln_prod [symmetric]) (auto intro!: add_pos_nonneg) also have "(\<Prod>k=1..n. 1 + 1 / of_nat k :: real) = (\<Prod>k=1..n. (of_nat k + 1) / of_nat k)" by (intro prod.cong) (simp_all add: field_split_simps) also have "(\<Prod>k=1..n. (of_nat k + 1) / of_nat k :: real) = of_nat n + 1" by (induction n) (simp_all add: prod.nat_ivl_Suc' field_split_simps) finally show ?thesis .. qed theorem Gamma_series_euler': assumes z: "(z :: 'a :: Gamma) \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(\<lambda>n. Gamma_series_euler' z n) \<longlonglongrightarrow> Gamma z" proof (rule Gamma_seriesI, rule Lim_transform_eventually) let ?f = "\<lambda>n. fact n * exp (z * of_real (ln (of_nat n + 1))) / pochhammer z (n + 1)" let ?r = "\<lambda>n. ?f n / Gamma_series z n" let ?r' = "\<lambda>n. exp (z * of_real (ln (of_nat (Suc n) / of_nat n)))" from z have z': "z \<noteq> 0" by auto have "eventually (\<lambda>n. ?r' n = ?r n) sequentially" using z by (auto simp: field_split_simps Gamma_series_def ring_distribs exp_diff ln_div intro: eventually_mono eventually_gt_at_top[of "0::nat"] dest: pochhammer_eq_0_imp_nonpos_Int) moreover have "?r' \<longlonglongrightarrow> exp (z * of_real (ln 1))" by (intro tendsto_intros LIMSEQ_Suc_n_over_n) simp_all ultimately show "?r \<longlonglongrightarrow> 1" by (force intro: Lim_transform_eventually) from eventually_gt_at_top[of "0::nat"] show "eventually (\<lambda>n. ?r n = Gamma_series_euler' z n / Gamma_series z n) sequentially" proof eventually_elim fix n :: nat assume n: "n > 0" from n z' have "Gamma_series_euler' z n = exp (z * of_real (ln (of_nat n + 1))) / (z * (\<Prod>k=1..n. (1 + z / of_nat k)))" by (subst Gamma_euler'_aux1) (simp_all add: Gamma_series_euler'_def prod.distrib prod_inversef[symmetric] divide_inverse) also have "(\<Prod>k=1..n. (1 + z / of_nat k)) = pochhammer (z + 1) n / fact n" proof (cases n) case (Suc n') then show ?thesis unfolding pochhammer_prod fact_prod by (simp add: atLeastLessThanSuc_atLeastAtMost field_simps prod_dividef prod.atLeast_Suc_atMost_Suc_shift del: prod.cl_ivl_Suc) qed auto also have "z * \<dots> = pochhammer z (Suc n) / fact n" by (simp add: pochhammer_rec) finally show "?r n = Gamma_series_euler' z n / Gamma_series z n" by simp qed qed end subsubsection \<open>Weierstrass form\<close> definition Gamma_series_Weierstrass :: "'a :: {banach,real_normed_field} \<Rightarrow> nat \<Rightarrow> 'a" where "Gamma_series_Weierstrass z n = exp (-euler_mascheroni * z) / z * (\<Prod>k=1..n. exp (z / of_nat k) / (1 + z / of_nat k))" definition\<^marker>\<open>tag unimportant\<close> rGamma_series_Weierstrass :: "'a :: {banach,real_normed_field} \<Rightarrow> nat \<Rightarrow> 'a" where "rGamma_series_Weierstrass z n = exp (euler_mascheroni * z) * z * (\<Prod>k=1..n. (1 + z / of_nat k) * exp (-z / of_nat k))" lemma Gamma_series_Weierstrass_nonpos_Ints: "eventually (\<lambda>k. Gamma_series_Weierstrass (- of_nat n) k = 0) sequentially" using eventually_ge_at_top[of n] by eventually_elim (auto simp: Gamma_series_Weierstrass_def) lemma rGamma_series_Weierstrass_nonpos_Ints: "eventually (\<lambda>k. rGamma_series_Weierstrass (- of_nat n) k = 0) sequentially" using eventually_ge_at_top[of n] by eventually_elim (auto simp: rGamma_series_Weierstrass_def) theorem Gamma_Weierstrass_complex: "Gamma_series_Weierstrass z \<longlonglongrightarrow> Gamma (z :: complex)" proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") case True then obtain n where "z = - of_nat n" by (elim nonpos_Ints_cases') also from True have "Gamma_series_Weierstrass \<dots> \<longlonglongrightarrow> Gamma z" by (simp add: tendsto_cong[OF Gamma_series_Weierstrass_nonpos_Ints] Gamma_nonpos_Int) finally show ?thesis . next case False hence z: "z \<noteq> 0" by auto let ?f = "(\<lambda>x. \<Prod>x = Suc 0..x. exp (z / of_nat x) / (1 + z / of_nat x))" have A: "exp (ln (1 + z / of_nat n)) = (1 + z / of_nat n)" if "n \<ge> 1" for n :: nat using False that by (subst exp_Ln) (auto simp: field_simps dest!: plus_of_nat_eq_0_imp) have "(\<lambda>n. \<Sum>k=1..n. z / of_nat k - ln (1 + z / of_nat k)) \<longlonglongrightarrow> ln_Gamma z + euler_mascheroni * z + ln z" using ln_Gamma_series'_aux[OF False] by (simp only: atLeastLessThanSuc_atLeastAtMost [symmetric] One_nat_def sum.shift_bounds_Suc_ivl sums_def atLeast0LessThan) from tendsto_exp[OF this] False z have "?f \<longlonglongrightarrow> z * exp (euler_mascheroni * z) * Gamma z" by (simp add: exp_add exp_sum exp_diff mult_ac Gamma_complex_altdef A) from tendsto_mult[OF tendsto_const[of "exp (-euler_mascheroni * z) / z"] this] z show "Gamma_series_Weierstrass z \<longlonglongrightarrow> Gamma z" by (simp add: exp_minus field_split_simps Gamma_series_Weierstrass_def [abs_def]) qed lemma tendsto_complex_of_real_iff: "((\<lambda>x. complex_of_real (f x)) \<longlongrightarrow> of_real c) F = (f \<longlongrightarrow> c) F" by (rule tendsto_of_real_iff) lemma Gamma_Weierstrass_real: "Gamma_series_Weierstrass x \<longlonglongrightarrow> Gamma (x :: real)" using Gamma_Weierstrass_complex[of "of_real x"] unfolding Gamma_series_Weierstrass_def[abs_def] by (subst tendsto_complex_of_real_iff [symmetric]) (simp_all add: exp_of_real[symmetric] Gamma_complex_of_real) lemma rGamma_Weierstrass_complex: "rGamma_series_Weierstrass z \<longlonglongrightarrow> rGamma (z :: complex)" proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") case True then obtain n where "z = - of_nat n" by (elim nonpos_Ints_cases') also from True have "rGamma_series_Weierstrass \<dots> \<longlonglongrightarrow> rGamma z" by (simp add: tendsto_cong[OF rGamma_series_Weierstrass_nonpos_Ints] rGamma_nonpos_Int) finally show ?thesis . next case False have "rGamma_series_Weierstrass z = (\<lambda>n. inverse (Gamma_series_Weierstrass z n))" by (simp add: rGamma_series_Weierstrass_def[abs_def] Gamma_series_Weierstrass_def exp_minus divide_inverse prod_inversef[symmetric] mult_ac) also from False have "\<dots> \<longlonglongrightarrow> inverse (Gamma z)" by (intro tendsto_intros Gamma_Weierstrass_complex) (simp add: Gamma_eq_zero_iff) finally show ?thesis by (simp add: Gamma_def) qed subsubsection \<open>Binomial coefficient form\<close> lemma Gamma_gbinomial: "(\<lambda>n. ((z + of_nat n) gchoose n) * exp (-z * of_real (ln (of_nat n)))) \<longlonglongrightarrow> rGamma (z+1)" proof (cases "z = 0") case False show ?thesis proof (rule Lim_transform_eventually) let ?powr = "\<lambda>a b. exp (b * of_real (ln (of_nat a)))" show "eventually (\<lambda>n. rGamma_series z n / z = ((z + of_nat n) gchoose n) * ?powr n (-z)) sequentially" proof (intro always_eventually allI) fix n :: nat from False have "((z + of_nat n) gchoose n) = pochhammer z (Suc n) / z / fact n" by (simp add: gbinomial_pochhammer' pochhammer_rec) also have "pochhammer z (Suc n) / z / fact n * ?powr n (-z) = rGamma_series z n / z" by (simp add: rGamma_series_def field_split_simps exp_minus) finally show "rGamma_series z n / z = ((z + of_nat n) gchoose n) * ?powr n (-z)" .. qed from False have "(\<lambda>n. rGamma_series z n / z) \<longlonglongrightarrow> rGamma z / z" by (intro tendsto_intros) also from False have "rGamma z / z = rGamma (z + 1)" using rGamma_plus1[of z] by (simp add: field_simps) finally show "(\<lambda>n. rGamma_series z n / z) \<longlonglongrightarrow> rGamma (z+1)" . qed qed (simp_all add: binomial_gbinomial [symmetric]) lemma gbinomial_minus': "(a + of_nat b) gchoose b = (- 1) ^ b * (- (a + 1) gchoose b)" by (subst gbinomial_minus) (simp add: power_mult_distrib [symmetric]) lemma gbinomial_asymptotic: fixes z :: "'a :: Gamma" shows "(\<lambda>n. (z gchoose n) / ((-1)^n / exp ((z+1) * of_real (ln (real n))))) \<longlonglongrightarrow> inverse (Gamma (- z))" unfolding rGamma_inverse_Gamma [symmetric] using Gamma_gbinomial[of "-z-1"] by (subst (asm) gbinomial_minus') (simp add: add_ac mult_ac divide_inverse power_inverse [symmetric]) lemma fact_binomial_limit: "(\<lambda>n. of_nat ((k + n) choose n) / of_nat (n ^ k) :: 'a :: Gamma) \<longlonglongrightarrow> 1 / fact k" proof (rule Lim_transform_eventually) have "(\<lambda>n. of_nat ((k + n) choose n) / of_real (exp (of_nat k * ln (real_of_nat n)))) \<longlonglongrightarrow> 1 / Gamma (of_nat (Suc k) :: 'a)" (is "?f \<longlonglongrightarrow> _") using Gamma_gbinomial[of "of_nat k :: 'a"] by (simp add: binomial_gbinomial Gamma_def field_split_simps exp_of_real [symmetric] exp_minus) also have "Gamma (of_nat (Suc k)) = fact k" by (simp add: Gamma_fact) finally show "?f \<longlonglongrightarrow> 1 / fact k" . show "eventually (\<lambda>n. ?f n = of_nat ((k + n) choose n) / of_nat (n ^ k)) sequentially" using eventually_gt_at_top[of "0::nat"] proof eventually_elim fix n :: nat assume n: "n > 0" from n have "exp (real_of_nat k * ln (real_of_nat n)) = real_of_nat (n^k)" by (simp add: exp_of_nat_mult) thus "?f n = of_nat ((k + n) choose n) / of_nat (n ^ k)" by simp qed qed lemma binomial_asymptotic': "(\<lambda>n. of_nat ((k + n) choose n) / (of_nat (n ^ k) / fact k) :: 'a :: Gamma) \<longlonglongrightarrow> 1" using tendsto_mult[OF fact_binomial_limit[of k] tendsto_const[of "fact k :: 'a"]] by simp lemma gbinomial_Beta: assumes "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "((z::'a::Gamma) gchoose n) = inverse ((z + 1) * Beta (z - of_nat n + 1) (of_nat n + 1))" using assms proof (induction n arbitrary: z) case 0 hence "z + 2 \<notin> \<int>\<^sub>\<le>\<^sub>0" using plus_one_in_nonpos_Ints_imp[of "z+1"] by (auto simp: add.commute) with 0 show ?case by (auto simp: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric] add.commute) next case (Suc n z) show ?case proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") case True with Suc.prems have "z = 0" by (auto elim!: nonpos_Ints_cases simp: algebra_simps one_plus_of_int_in_nonpos_Ints_iff) show ?thesis proof (cases "n = 0") case True with \<open>z = 0\<close> show ?thesis by (simp add: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric]) next case False with \<open>z = 0\<close> show ?thesis by (simp_all add: Beta_pole1 one_minus_of_nat_in_nonpos_Ints_iff) qed next case False have "(z gchoose (Suc n)) = ((z - 1 + 1) gchoose (Suc n))" by simp also have "\<dots> = (z - 1 gchoose n) * ((z - 1) + 1) / of_nat (Suc n)" by (subst gbinomial_factors) (simp add: field_simps) also from False have "\<dots> = inverse (of_nat (Suc n) * Beta (z - of_nat n) (of_nat (Suc n)))" (is "_ = inverse ?x") by (subst Suc.IH) (simp_all add: field_simps Beta_pole1) also have "of_nat (Suc n) \<notin> (\<int>\<^sub>\<le>\<^sub>0 :: 'a set)" by (subst of_nat_in_nonpos_Ints_iff) simp_all hence "?x = (z + 1) * Beta (z - of_nat (Suc n) + 1) (of_nat (Suc n) + 1)" by (subst Beta_plus1_right [symmetric]) simp_all finally show ?thesis . qed qed theorem gbinomial_Gamma: assumes "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" shows "(z gchoose n) = Gamma (z + 1) / (fact n * Gamma (z - of_nat n + 1))" proof - have "(z gchoose n) = Gamma (z + 2) / (z + 1) / (fact n * Gamma (z - of_nat n + 1))" by (subst gbinomial_Beta[OF assms]) (simp_all add: Beta_def Gamma_fact [symmetric] add_ac) also from assms have "Gamma (z + 2) / (z + 1) = Gamma (z + 1)" using Gamma_plus1[of "z+1"] by (auto simp add: field_split_simps) finally show ?thesis . qed subsubsection \<open>Integral form\<close> lemma integrable_on_powr_from_0': assumes a: "a > (-1::real)" and c: "c \<ge> 0" shows "(\<lambda>x. x powr a) integrable_on {0<..c}" proof - from c have *: "{0<..c} - {0..c} = {}" "{0..c} - {0<..c} = {0}" by auto show ?thesis by (rule integrable_spike_set [OF integrable_on_powr_from_0[OF a c]]) (simp_all add: *) qed lemma absolutely_integrable_Gamma_integral: assumes "Re z > 0" "a > 0" shows "(\<lambda>t. complex_of_real t powr (z - 1) / of_real (exp (a * t))) absolutely_integrable_on {0<..}" (is "?f absolutely_integrable_on _") proof - have "((\<lambda>x. (Re z - 1) * (ln x / x)) \<longlongrightarrow> (Re z - 1) * 0) at_top" by (intro tendsto_intros ln_x_over_x_tendsto_0) hence "((\<lambda>x. ((Re z - 1) * ln x) / x) \<longlongrightarrow> 0) at_top" by simp from order_tendstoD(2)[OF this, of "a/2"] and \<open>a > 0\<close> have "eventually (\<lambda>x. (Re z - 1) * ln x / x < a/2) at_top" by simp from eventually_conj[OF this eventually_gt_at_top[of 0]] obtain x0 where "\<forall>x\<ge>x0. (Re z - 1) * ln x / x < a/2 \<and> x > 0" by (auto simp: eventually_at_top_linorder) hence "x0 > 0" by simp have "x powr (Re z - 1) / exp (a * x) < exp (-(a/2) * x)" if "x \<ge> x0" for x proof - from that and \<open>\<forall>x\<ge>x0. _\<close> have x: "(Re z - 1) * ln x / x < a / 2" "x > 0" by auto have "x powr (Re z - 1) = exp ((Re z - 1) * ln x)" using \<open>x > 0\<close> by (simp add: powr_def) also from x have "(Re z - 1) * ln x < (a * x) / 2" by (simp add: field_simps) finally show ?thesis by (simp add: field_simps exp_add [symmetric]) qed note x0 = \<open>x0 > 0\<close> this have "?f absolutely_integrable_on ({0<..x0} \<union> {x0..})" proof (rule set_integrable_Un) show "?f absolutely_integrable_on {0<..x0}" unfolding set_integrable_def proof (rule Bochner_Integration.integrable_bound [OF _ _ AE_I2]) show "integrable lebesgue (\<lambda>x. indicat_real {0<..x0} x *\<^sub>R x powr (Re z - 1))" using x0(1) assms by (intro nonnegative_absolutely_integrable_1 [unfolded set_integrable_def] integrable_on_powr_from_0') auto show "(\<lambda>x. indicat_real {0<..x0} x *\<^sub>R (x powr (z - 1) / exp (a * x))) \<in> borel_measurable lebesgue" by (intro measurable_completion) (auto intro!: borel_measurable_continuous_on_indicator continuous_intros) fix x :: real have "x powr (Re z - 1) / exp (a * x) \<le> x powr (Re z - 1) / 1" if "x \<ge> 0" using that assms by (intro divide_left_mono) auto thus "norm (indicator {0<..x0} x *\<^sub>R ?f x) \<le> norm (indicator {0<..x0} x *\<^sub>R x powr (Re z - 1))" by (simp_all add: norm_divide norm_powr_real_powr indicator_def) qed next show "?f absolutely_integrable_on {x0..}" unfolding set_integrable_def proof (rule Bochner_Integration.integrable_bound [OF _ _ AE_I2]) show "integrable lebesgue (\<lambda>x. indicat_real {x0..} x *\<^sub>R exp (- (a / 2) * x))" using assms by (intro nonnegative_absolutely_integrable_1 [unfolded set_integrable_def] integrable_on_exp_minus_to_infinity) auto show "(\<lambda>x. indicat_real {x0..} x *\<^sub>R (x powr (z - 1) / exp (a * x))) \<in> borel_measurable lebesgue" using x0(1) by (intro measurable_completion) (auto intro!: borel_measurable_continuous_on_indicator continuous_intros) fix x :: real show "norm (indicator {x0..} x *\<^sub>R ?f x) \<le> norm (indicator {x0..} x *\<^sub>R exp (-(a/2) * x))" using x0 by (auto simp: norm_divide norm_powr_real_powr indicator_def less_imp_le) qed qed auto also have "{0<..x0} \<union> {x0..} = {0<..}" using x0(1) by auto finally show ?thesis . qed lemma integrable_Gamma_integral_bound: fixes a c :: real assumes a: "a > -1" and c: "c \<ge> 0" defines "f \<equiv> \<lambda>x. if x \<in> {0..c} then x powr a else exp (-x/2)" shows "f integrable_on {0..}" proof - have "f integrable_on {0..c}" by (rule integrable_spike_finite[of "{}", OF _ _ integrable_on_powr_from_0[of a c]]) (insert a c, simp_all add: f_def) moreover have A: "(\<lambda>x. exp (-x/2)) integrable_on {c..}" using integrable_on_exp_minus_to_infinity[of "1/2"] by simp have "f integrable_on {c..}" by (rule integrable_spike_finite[of "{c}", OF _ _ A]) (simp_all add: f_def) ultimately show "f integrable_on {0..}" by (rule integrable_Un') (insert c, auto simp: max_def) qed theorem Gamma_integral_complex: assumes z: "Re z > 0" shows "((\<lambda>t. of_real t powr (z - 1) / of_real (exp t)) has_integral Gamma z) {0..}" proof - have A: "((\<lambda>t. (of_real t) powr (z - 1) * of_real ((1 - t) ^ n)) has_integral (fact n / pochhammer z (n+1))) {0..1}" if "Re z > 0" for n z using that proof (induction n arbitrary: z) case 0 have "((\<lambda>t. complex_of_real t powr (z - 1)) has_integral (of_real 1 powr z / z - of_real 0 powr z / z)) {0..1}" using 0 by (intro fundamental_theorem_of_calculus_interior) (auto intro!: continuous_intros derivative_eq_intros has_vector_derivative_real_field) thus ?case by simp next case (Suc n) let ?f = "\<lambda>t. complex_of_real t powr z / z" let ?f' = "\<lambda>t. complex_of_real t powr (z - 1)" let ?g = "\<lambda>t. (1 - complex_of_real t) ^ Suc n" let ?g' = "\<lambda>t. - ((1 - complex_of_real t) ^ n) * of_nat (Suc n)" have "((\<lambda>t. ?f' t * ?g t) has_integral (of_nat (Suc n)) * fact n / pochhammer z (n+2)) {0..1}" (is "(_ has_integral ?I) _") proof (rule integration_by_parts_interior[where f' = ?f' and g = ?g]) from Suc.prems show "continuous_on {0..1} ?f" "continuous_on {0..1} ?g" by (auto intro!: continuous_intros) next fix t :: real assume t: "t \<in> {0<..<1}" show "(?f has_vector_derivative ?f' t) (at t)" using t Suc.prems by (auto intro!: derivative_eq_intros has_vector_derivative_real_field) show "(?g has_vector_derivative ?g' t) (at t)" by (rule has_vector_derivative_real_field derivative_eq_intros refl)+ simp_all next from Suc.prems have [simp]: "z \<noteq> 0" by auto from Suc.prems have A: "Re (z + of_nat n) > 0" for n by simp have [simp]: "z + of_nat n \<noteq> 0" "z + 1 + of_nat n \<noteq> 0" for n using A[of n] A[of "Suc n"] by (auto simp add: add.assoc simp del: plus_complex.sel) have "((\<lambda>x. of_real x powr z * of_real ((1 - x) ^ n) * (- of_nat (Suc n) / z)) has_integral fact n / pochhammer (z+1) (n+1) * (- of_nat (Suc n) / z)) {0..1}" (is "(?A has_integral ?B) _") using Suc.IH[of "z+1"] Suc.prems by (intro has_integral_mult_left) (simp_all add: add_ac pochhammer_rec) also have "?A = (\<lambda>t. ?f t * ?g' t)" by (intro ext) (simp_all add: field_simps) also have "?B = - (of_nat (Suc n) * fact n / pochhammer z (n+2))" by (simp add: field_split_simps pochhammer_rec prod.shift_bounds_cl_Suc_ivl del: of_nat_Suc) finally show "((\<lambda>t. ?f t * ?g' t) has_integral (?f 1 * ?g 1 - ?f 0 * ?g 0 - ?I)) {0..1}" by simp qed (simp_all add: bounded_bilinear_mult) thus ?case by simp qed have B: "((\<lambda>t. if t \<in> {0..of_nat n} then of_real t powr (z - 1) * (1 - of_real t / of_nat n) ^ n else 0) has_integral (of_nat n powr z * fact n / pochhammer z (n+1))) {0..}" for n proof (cases "n > 0") case [simp]: True hence [simp]: "n \<noteq> 0" by auto with has_integral_affinity01[OF A[OF z, of n], of "inverse (of_nat n)" 0] have "((\<lambda>x. (of_nat n - of_real x) ^ n * (of_real x / of_nat n) powr (z - 1) / of_nat n ^ n) has_integral fact n * of_nat n / pochhammer z (n+1)) ((\<lambda>x. real n * x)`{0..1})" (is "(?f has_integral ?I) ?ivl") by (simp add: field_simps scaleR_conv_of_real) also from True have "((\<lambda>x. real n*x)`{0..1}) = {0..real n}" by (subst image_mult_atLeastAtMost) simp_all also have "?f = (\<lambda>x. (of_real x / of_nat n) powr (z - 1) * (1 - of_real x / of_nat n) ^ n)" using True by (intro ext) (simp add: field_simps) finally have "((\<lambda>x. (of_real x / of_nat n) powr (z - 1) * (1 - of_real x / of_nat n) ^ n) has_integral ?I) {0..real n}" (is ?P) . also have "?P \<longleftrightarrow> ((\<lambda>x. exp ((z - 1) * of_real (ln (x / of_nat n))) * (1 - of_real x / of_nat n) ^ n) has_integral ?I) {0..real n}" by (intro has_integral_spike_finite_eq[of "{0}"]) (auto simp: powr_def Ln_of_real [symmetric]) also have "\<dots> \<longleftrightarrow> ((\<lambda>x. exp ((z - 1) * of_real (ln x - ln (of_nat n))) * (1 - of_real x / of_nat n) ^ n) has_integral ?I) {0..real n}" by (intro has_integral_spike_finite_eq[of "{0}"]) (simp_all add: ln_div) finally have \<dots> . note B = has_integral_mult_right[OF this, of "exp ((z - 1) * ln (of_nat n))"] have "((\<lambda>x. exp ((z - 1) * of_real (ln x)) * (1 - of_real x / of_nat n) ^ n) has_integral (?I * exp ((z - 1) * ln (of_nat n)))) {0..real n}" (is ?P) by (insert B, subst (asm) mult.assoc [symmetric], subst (asm) exp_add [symmetric]) (simp add: algebra_simps) also have "?P \<longleftrightarrow> ((\<lambda>x. of_real x powr (z - 1) * (1 - of_real x / of_nat n) ^ n) has_integral (?I * exp ((z - 1) * ln (of_nat n)))) {0..real n}" by (intro has_integral_spike_finite_eq[of "{0}"]) (simp_all add: powr_def Ln_of_real) also have "fact n * of_nat n / pochhammer z (n+1) * exp ((z - 1) * Ln (of_nat n)) = (of_nat n powr z * fact n / pochhammer z (n+1))" by (auto simp add: powr_def algebra_simps exp_diff exp_of_real) finally show ?thesis by (subst has_integral_restrict) simp_all next case False thus ?thesis by (subst has_integral_restrict) (simp_all add: has_integral_refl) qed have "eventually (\<lambda>n. Gamma_series z n = of_nat n powr z * fact n / pochhammer z (n+1)) sequentially" using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: powr_def algebra_simps Gamma_series_def) from this and Gamma_series_LIMSEQ[of z] have C: "(\<lambda>k. of_nat k powr z * fact k / pochhammer z (k+1)) \<longlonglongrightarrow> Gamma z" by (blast intro: Lim_transform_eventually) { fix x :: real assume x: "x \<ge> 0" have lim_exp: "(\<lambda>k. (1 - x / real k) ^ k) \<longlonglongrightarrow> exp (-x)" using tendsto_exp_limit_sequentially[of "-x"] by simp have "(\<lambda>k. of_real x powr (z - 1) * of_real ((1 - x / of_nat k) ^ k)) \<longlonglongrightarrow> of_real x powr (z - 1) * of_real (exp (-x))" (is ?P) by (intro tendsto_intros lim_exp) also from eventually_gt_at_top[of "nat \<lceil>x\<rceil>"] have "eventually (\<lambda>k. of_nat k > x) sequentially" by eventually_elim linarith hence "?P \<longleftrightarrow> (\<lambda>k. if x \<le> of_nat k then of_real x powr (z - 1) * of_real ((1 - x / of_nat k) ^ k) else 0) \<longlonglongrightarrow> of_real x powr (z - 1) * of_real (exp (-x))" by (intro tendsto_cong) (auto elim!: eventually_mono) finally have \<dots> . } hence D: "\<forall>x\<in>{0..}. (\<lambda>k. if x \<in> {0..real k} then of_real x powr (z - 1) * (1 - of_real x / of_nat k) ^ k else 0) \<longlonglongrightarrow> of_real x powr (z - 1) / of_real (exp x)" by (simp add: exp_minus field_simps cong: if_cong) have "((\<lambda>x. (Re z - 1) * (ln x / x)) \<longlongrightarrow> (Re z - 1) * 0) at_top" by (intro tendsto_intros ln_x_over_x_tendsto_0) hence "((\<lambda>x. ((Re z - 1) * ln x) / x) \<longlongrightarrow> 0) at_top" by simp from order_tendstoD(2)[OF this, of "1/2"] have "eventually (\<lambda>x. (Re z - 1) * ln x / x < 1/2) at_top" by simp from eventually_conj[OF this eventually_gt_at_top[of 0]] obtain x0 where "\<forall>x\<ge>x0. (Re z - 1) * ln x / x < 1/2 \<and> x > 0" by (auto simp: eventually_at_top_linorder) hence x0: "x0 > 0" "\<And>x. x \<ge> x0 \<Longrightarrow> (Re z - 1) * ln x < x / 2" by auto define h where "h = (\<lambda>x. if x \<in> {0..x0} then x powr (Re z - 1) else exp (-x/2))" have le_h: "x powr (Re z - 1) * exp (-x) \<le> h x" if x: "x \<ge> 0" for x proof (cases "x > x0") case True from True x0(1) have "x powr (Re z - 1) * exp (-x) = exp ((Re z - 1) * ln x - x)" by (simp add: powr_def exp_diff exp_minus field_simps exp_add) also from x0(2)[of x] True have "\<dots> < exp (-x/2)" by (simp add: field_simps) finally show ?thesis using True by (auto simp add: h_def) next case False from x have "x powr (Re z - 1) * exp (- x) \<le> x powr (Re z - 1) * 1" by (intro mult_left_mono) simp_all with False show ?thesis by (auto simp add: h_def) qed have E: "\<forall>x\<in>{0..}. cmod (if x \<in> {0..real k} then of_real x powr (z - 1) * (1 - complex_of_real x / of_nat k) ^ k else 0) \<le> h x" (is "\<forall>x\<in>_. ?f x \<le> _") for k proof safe fix x :: real assume x: "x \<ge> 0" { fix x :: real and n :: nat assume x: "x \<le> of_nat n" have "(1 - complex_of_real x / of_nat n) = complex_of_real ((1 - x / of_nat n))" by simp also have "norm \<dots> = \<bar>(1 - x / real n)\<bar>" by (subst norm_of_real) (rule refl) also from x have "\<dots> = (1 - x / real n)" by (intro abs_of_nonneg) (simp_all add: field_split_simps) finally have "cmod (1 - complex_of_real x / of_nat n) = 1 - x / real n" . } note D = this from D[of x k] x have "?f x \<le> (if of_nat k \<ge> x \<and> k > 0 then x powr (Re z - 1) * (1 - x / real k) ^ k else 0)" by (auto simp: norm_mult norm_powr_real_powr norm_power intro!: mult_nonneg_nonneg) also have "\<dots> \<le> x powr (Re z - 1) * exp (-x)" by (auto intro!: mult_left_mono exp_ge_one_minus_x_over_n_power_n) also from x have "\<dots> \<le> h x" by (rule le_h) finally show "?f x \<le> h x" . qed have F: "h integrable_on {0..}" unfolding h_def by (rule integrable_Gamma_integral_bound) (insert assms x0(1), simp_all) show ?thesis by (rule has_integral_dominated_convergence[OF B F E D C]) qed lemma Gamma_integral_real: assumes x: "x > (0 :: real)" shows "((\<lambda>t. t powr (x - 1) / exp t) has_integral Gamma x) {0..}" proof - have A: "((\<lambda>t. complex_of_real t powr (complex_of_real x - 1) / complex_of_real (exp t)) has_integral complex_of_real (Gamma x)) {0..}" using Gamma_integral_complex[of x] assms by (simp_all add: Gamma_complex_of_real powr_of_real) have "((\<lambda>t. complex_of_real (t powr (x - 1) / exp t)) has_integral of_real (Gamma x)) {0..}" by (rule has_integral_eq[OF _ A]) (simp_all add: powr_of_real [symmetric]) from has_integral_linear[OF this bounded_linear_Re] show ?thesis by (simp add: o_def) qed lemma absolutely_integrable_Gamma_integral': assumes "Re z > 0" shows "(\<lambda>t. complex_of_real t powr (z - 1) / of_real (exp t)) absolutely_integrable_on {0<..}" using absolutely_integrable_Gamma_integral [OF assms zero_less_one] by simp lemma Gamma_integral_complex': assumes z: "Re z > 0" shows "((\<lambda>t. of_real t powr (z - 1) / of_real (exp t)) has_integral Gamma z) {0<..}" proof - have "((\<lambda>t. of_real t powr (z - 1) / of_real (exp t)) has_integral Gamma z) {0..}" by (rule Gamma_integral_complex) fact+ hence "((\<lambda>t. if t \<in> {0<..} then of_real t powr (z - 1) / of_real (exp t) else 0) has_integral Gamma z) {0..}" by (rule has_integral_spike [of "{0}", rotated 2]) auto also have "?this = ?thesis" by (subst has_integral_restrict) auto finally show ?thesis . qed lemma Gamma_conv_nn_integral_real: assumes "s > (0::real)" shows "Gamma s = nn_integral lborel (\<lambda>t. ennreal (indicator {0..} t * t powr (s - 1) / exp t))" using nn_integral_has_integral_lebesgue[OF _ Gamma_integral_real[OF assms]] by simp lemma integrable_Beta: assumes "a > 0" "b > (0::real)" shows "set_integrable lborel {0..1} (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))" proof - define C where "C = max 1 ((1/2) powr (b - 1))" define D where "D = max 1 ((1/2) powr (a - 1))" have C: "(1 - x) powr (b - 1) \<le> C" if "x \<in> {0..1/2}" for x proof (cases "b < 1") case False with that have "(1 - x) powr (b - 1) \<le> (1 powr (b - 1))" by (intro powr_mono2) auto thus ?thesis by (auto simp: C_def) qed (insert that, auto simp: max.coboundedI1 max.coboundedI2 powr_mono2' powr_mono2 C_def) have D: "x powr (a - 1) \<le> D" if "x \<in> {1/2..1}" for x proof (cases "a < 1") case False with that have "x powr (a - 1) \<le> (1 powr (a - 1))" by (intro powr_mono2) auto thus ?thesis by (auto simp: D_def) next case True qed (insert that, auto simp: max.coboundedI1 max.coboundedI2 powr_mono2' powr_mono2 D_def) have [simp]: "C \<ge> 0" "D \<ge> 0" by (simp_all add: C_def D_def) have I1: "set_integrable lborel {0..1/2} (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))" unfolding set_integrable_def proof (rule Bochner_Integration.integrable_bound[OF _ _ AE_I2]) have "(\<lambda>t. t powr (a - 1)) integrable_on {0..1/2}" by (rule integrable_on_powr_from_0) (use assms in auto) hence "(\<lambda>t. t powr (a - 1)) absolutely_integrable_on {0..1/2}" by (subst absolutely_integrable_on_iff_nonneg) auto from integrable_mult_right[OF this [unfolded set_integrable_def], of C] show "integrable lborel (\<lambda>x. indicat_real {0..1/2} x *\<^sub>R (C * x powr (a - 1)))" by (subst (asm) integrable_completion) (auto simp: mult_ac) next fix x :: real have "x powr (a - 1) * (1 - x) powr (b - 1) \<le> x powr (a - 1) * C" if "x \<in> {0..1/2}" using that by (intro mult_left_mono powr_mono2 C) auto thus "norm (indicator {0..1/2} x *\<^sub>R (x powr (a - 1) * (1 - x) powr (b - 1))) \<le> norm (indicator {0..1/2} x *\<^sub>R (C * x powr (a - 1)))" by (auto simp: indicator_def abs_mult mult_ac) qed (auto intro!: AE_I2 simp: indicator_def) have I2: "set_integrable lborel {1/2..1} (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))" unfolding set_integrable_def proof (rule Bochner_Integration.integrable_bound[OF _ _ AE_I2]) have "(\<lambda>t. t powr (b - 1)) integrable_on {0..1/2}" by (rule integrable_on_powr_from_0) (use assms in auto) hence "(\<lambda>t. t powr (b - 1)) integrable_on (cbox 0 (1/2))" by simp from integrable_affinity[OF this, of "-1" 1] have "(\<lambda>t. (1 - t) powr (b - 1)) integrable_on {1/2..1}" by simp hence "(\<lambda>t. (1 - t) powr (b - 1)) absolutely_integrable_on {1/2..1}" by (subst absolutely_integrable_on_iff_nonneg) auto from integrable_mult_right[OF this [unfolded set_integrable_def], of D] show "integrable lborel (\<lambda>x. indicat_real {1/2..1} x *\<^sub>R (D * (1 - x) powr (b - 1)))" by (subst (asm) integrable_completion) (auto simp: mult_ac) next fix x :: real have "x powr (a - 1) * (1 - x) powr (b - 1) \<le> D * (1 - x) powr (b - 1)" if "x \<in> {1/2..1}" using that by (intro mult_right_mono powr_mono2 D) auto thus "norm (indicator {1/2..1} x *\<^sub>R (x powr (a - 1) * (1 - x) powr (b - 1))) \<le> norm (indicator {1/2..1} x *\<^sub>R (D * (1 - x) powr (b - 1)))" by (auto simp: indicator_def abs_mult mult_ac) qed (auto intro!: AE_I2 simp: indicator_def) have "set_integrable lborel ({0..1/2} \<union> {1/2..1}) (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))" by (intro set_integrable_Un I1 I2) auto also have "{0..1/2} \<union> {1/2..1} = {0..(1::real)}" by auto finally show ?thesis . qed lemma integrable_Beta': assumes "a > 0" "b > (0::real)" shows "(\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1)) integrable_on {0..1}" using integrable_Beta[OF assms] by (rule set_borel_integral_eq_integral) theorem has_integral_Beta_real: assumes a: "a > 0" and b: "b > (0 :: real)" shows "((\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1)) has_integral Beta a b) {0..1}" proof - define B where "B = integral {0..1} (\<lambda>x. x powr (a - 1) * (1 - x) powr (b - 1))" have [simp]: "B \<ge> 0" unfolding B_def using a b by (intro integral_nonneg integrable_Beta') auto from a b have "ennreal (Gamma a * Gamma b) = (\<integral>\<^sup>+ t. ennreal (indicator {0..} t * t powr (a - 1) / exp t) \<partial>lborel) * (\<integral>\<^sup>+ t. ennreal (indicator {0..} t * t powr (b - 1) / exp t) \<partial>lborel)" by (subst ennreal_mult') (simp_all add: Gamma_conv_nn_integral_real) also have "\<dots> = (\<integral>\<^sup>+t. \<integral>\<^sup>+u. ennreal (indicator {0..} t * t powr (a - 1) / exp t) * ennreal (indicator {0..} u * u powr (b - 1) / exp u) \<partial>lborel \<partial>lborel)" by (simp add: nn_integral_cmult nn_integral_multc) also have "\<dots> = (\<integral>\<^sup>+t. \<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{0..}) (t,u) * t powr (a - 1) * u powr (b - 1) / exp (t + u)) \<partial>lborel \<partial>lborel)" by (intro nn_integral_cong) (auto simp: indicator_def divide_ennreal ennreal_mult' [symmetric] exp_add) also have "\<dots> = (\<integral>\<^sup>+t. \<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{t..}) (t,u) * t powr (a - 1) * (u - t) powr (b - 1) / exp u) \<partial>lborel \<partial>lborel)" proof (rule nn_integral_cong, goal_cases) case (1 t) have "(\<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{0..}) (t,u) * t powr (a - 1) * u powr (b - 1) / exp (t + u)) \<partial>distr lborel borel ((+) (-t))) = (\<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{t..}) (t,u) * t powr (a - 1) * (u - t) powr (b - 1) / exp u) \<partial>lborel)" by (subst nn_integral_distr) (auto intro!: nn_integral_cong simp: indicator_def) thus ?case by (subst (asm) lborel_distr_plus) qed also have "\<dots> = (\<integral>\<^sup>+u. \<integral>\<^sup>+t. ennreal (indicator ({0..}\<times>{t..}) (t,u) * t powr (a - 1) * (u - t) powr (b - 1) / exp u) \<partial>lborel \<partial>lborel)" by (subst lborel_pair.Fubini') (auto simp: case_prod_unfold indicator_def cong: measurable_cong_sets) also have "\<dots> = (\<integral>\<^sup>+u. \<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) * ennreal (indicator {0..} u / exp u) \<partial>lborel \<partial>lborel)" by (intro nn_integral_cong) (auto simp: indicator_def ennreal_mult' [symmetric]) also have "\<dots> = (\<integral>\<^sup>+u. (\<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) \<partial>lborel) * ennreal (indicator {0..} u / exp u) \<partial>lborel)" by (subst nn_integral_multc [symmetric]) auto also have "\<dots> = (\<integral>\<^sup>+u. (\<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) \<partial>lborel) * ennreal (indicator {0<..} u / exp u) \<partial>lborel)" by (intro nn_integral_cong_AE eventually_mono[OF AE_lborel_singleton[of 0]]) (auto simp: indicator_def) also have "\<dots> = (\<integral>\<^sup>+u. ennreal B * ennreal (indicator {0..} u / exp u * u powr (a + b - 1)) \<partial>lborel)" proof (intro nn_integral_cong, goal_cases) case (1 u) show ?case proof (cases "u > 0") case True have "(\<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) \<partial>lborel) = (\<integral>\<^sup>+t. ennreal (indicator {0..1} t * (u * t) powr (a - 1) * (u - u * t) powr (b - 1)) \<partial>distr lborel borel ((*) (1 / u)))" (is "_ = nn_integral _ ?f") using True by (subst nn_integral_distr) (auto simp: indicator_def field_simps intro!: nn_integral_cong) also have "distr lborel borel ((*) (1 / u)) = density lborel (\<lambda>_. u)" using \<open>u > 0\<close> by (subst lborel_distr_mult) auto also have "nn_integral \<dots> ?f = (\<integral>\<^sup>+x. ennreal (indicator {0..1} x * (u * (u * x) powr (a - 1) * (u * (1 - x)) powr (b - 1))) \<partial>lborel)" using \<open>u > 0\<close> by (subst nn_integral_density) (auto simp: ennreal_mult' [symmetric] algebra_simps) also have "\<dots> = (\<integral>\<^sup>+x. ennreal (u powr (a + b - 1)) * ennreal (indicator {0..1} x * x powr (a - 1) * (1 - x) powr (b - 1)) \<partial>lborel)" using \<open>u > 0\<close> a b by (intro nn_integral_cong) (auto simp: indicator_def powr_mult powr_add powr_diff mult_ac ennreal_mult' [symmetric]) also have "\<dots> = ennreal (u powr (a + b - 1)) * (\<integral>\<^sup>+x. ennreal (indicator {0..1} x * x powr (a - 1) * (1 - x) powr (b - 1)) \<partial>lborel)" by (subst nn_integral_cmult) auto also have "((\<lambda>x. x powr (a - 1) * (1 - x) powr (b - 1)) has_integral integral {0..1} (\<lambda>x. x powr (a - 1) * (1 - x) powr (b - 1))) {0..1}" using a b by (intro integrable_integral integrable_Beta') from nn_integral_has_integral_lebesgue[OF _ this] a b have "(\<integral>\<^sup>+x. ennreal (indicator {0..1} x * x powr (a - 1) * (1 - x) powr (b - 1)) \<partial>lborel) = B" by (simp add: mult_ac B_def) finally show ?thesis using \<open>u > 0\<close> by (simp add: ennreal_mult' [symmetric] mult_ac) qed auto qed also have "\<dots> = ennreal B * ennreal (Gamma (a + b))" using a b by (subst nn_integral_cmult) (auto simp: Gamma_conv_nn_integral_real) also have "\<dots> = ennreal (B * Gamma (a + b))" by (subst (1 2) mult.commute, intro ennreal_mult' [symmetric]) (use a b in auto) finally have "B = Beta a b" using a b Gamma_real_pos[of "a + b"] by (subst (asm) ennreal_inj) (auto simp: field_simps Beta_def Gamma_eq_zero_iff) moreover have "(\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1)) integrable_on {0..1}" by (intro integrable_Beta' a b) ultimately show ?thesis by (simp add: has_integral_iff B_def) qed subsection \<open>The Weierstra{\ss} product formula for the sine\<close> theorem sin_product_formula_complex: fixes z :: complex shows "(\<lambda>n. of_real pi * z * (\<Prod>k=1..n. 1 - z^2 / of_nat k^2)) \<longlonglongrightarrow> sin (of_real pi * z)" proof - let ?f = "rGamma_series_Weierstrass" have "(\<lambda>n. (- of_real pi * inverse z) * (?f z n * ?f (- z) n)) \<longlonglongrightarrow> (- of_real pi * inverse z) * (rGamma z * rGamma (- z))" by (intro tendsto_intros rGamma_Weierstrass_complex) also have "(\<lambda>n. (- of_real pi * inverse z) * (?f z n * ?f (-z) n)) = (\<lambda>n. of_real pi * z * (\<Prod>k=1..n. 1 - z^2 / of_nat k ^ 2))" proof fix n :: nat have "(- of_real pi * inverse z) * (?f z n * ?f (-z) n) = of_real pi * z * (\<Prod>k=1..n. (of_nat k - z) * (of_nat k + z) / of_nat k ^ 2)" by (simp add: rGamma_series_Weierstrass_def mult_ac exp_minus divide_simps prod.distrib[symmetric] power2_eq_square) also have "(\<Prod>k=1..n. (of_nat k - z) * (of_nat k + z) / of_nat k ^ 2) = (\<Prod>k=1..n. 1 - z^2 / of_nat k ^ 2)" by (intro prod.cong) (simp_all add: power2_eq_square field_simps) finally show "(- of_real pi * inverse z) * (?f z n * ?f (-z) n) = of_real pi * z * \<dots>" by (simp add: field_split_simps) qed also have "(- of_real pi * inverse z) * (rGamma z * rGamma (- z)) = sin (of_real pi * z)" by (subst rGamma_reflection_complex') (simp add: field_split_simps) finally show ?thesis . qed lemma sin_product_formula_real: "(\<lambda>n. pi * (x::real) * (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)) \<longlonglongrightarrow> sin (pi * x)" proof - from sin_product_formula_complex[of "of_real x"] have "(\<lambda>n. of_real pi * of_real x * (\<Prod>k=1..n. 1 - (of_real x)^2 / (of_nat k)^2)) \<longlonglongrightarrow> sin (of_real pi * of_real x :: complex)" (is "?f \<longlonglongrightarrow> ?y") . also have "?f = (\<lambda>n. of_real (pi * x * (\<Prod>k=1..n. 1 - x^2 / (of_nat k^2))))" by simp also have "?y = of_real (sin (pi * x))" by (simp only: sin_of_real [symmetric] of_real_mult) finally show ?thesis by (subst (asm) tendsto_of_real_iff) qed lemma sin_product_formula_real': assumes "x \<noteq> (0::real)" shows "(\<lambda>n. (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)) \<longlonglongrightarrow> sin (pi * x) / (pi * x)" using tendsto_divide[OF sin_product_formula_real[of x] tendsto_const[of "pi * x"]] assms by simp theorem wallis: "(\<lambda>n. \<Prod>k=1..n. (4*real k^2) / (4*real k^2 - 1)) \<longlonglongrightarrow> pi / 2" proof - from tendsto_inverse[OF tendsto_mult[OF sin_product_formula_real[of "1/2"] tendsto_const[of "2/pi"]]] have "(\<lambda>n. (\<Prod>k=1..n. inverse (1 - (1/2)\<^sup>2 / (real k)\<^sup>2))) \<longlonglongrightarrow> pi/2" by (simp add: prod_inversef [symmetric]) also have "(\<lambda>n. (\<Prod>k=1..n. inverse (1 - (1/2)\<^sup>2 / (real k)\<^sup>2))) = (\<lambda>n. (\<Prod>k=1..n. (4*real k^2)/(4*real k^2 - 1)))" by (intro ext prod.cong refl) (simp add: field_split_simps) finally show ?thesis . qed subsection \<open>The Solution to the Basel problem\<close> theorem inverse_squares_sums: "(\<lambda>n. 1 / (n + 1)\<^sup>2) sums (pi\<^sup>2 / 6)" proof - define P where "P x n = (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)" for x :: real and n define K where "K = (\<Sum>n. inverse (real_of_nat (Suc n))^2)" define f where [abs_def]: "f x = (\<Sum>n. P x n / of_nat (Suc n)^2)" for x define g where [abs_def]: "g x = (1 - sin (pi * x) / (pi * x))" for x have sums: "(\<lambda>n. P x n / of_nat (Suc n)^2) sums (if x = 0 then K else g x / x^2)" for x proof (cases "x = 0") assume x: "x = 0" have "summable (\<lambda>n. inverse ((real_of_nat (Suc n))\<^sup>2))" using inverse_power_summable[of 2] by (subst summable_Suc_iff) simp thus ?thesis by (simp add: x g_def P_def K_def inverse_eq_divide power_divide summable_sums) next assume x: "x \<noteq> 0" have "(\<lambda>n. P x n - P x (Suc n)) sums (P x 0 - sin (pi * x) / (pi * x))" unfolding P_def using x by (intro telescope_sums' sin_product_formula_real') also have "(\<lambda>n. P x n - P x (Suc n)) = (\<lambda>n. (x^2 / of_nat (Suc n)^2) * P x n)" unfolding P_def by (simp add: prod.nat_ivl_Suc' algebra_simps) also have "P x 0 = 1" by (simp add: P_def) finally have "(\<lambda>n. x\<^sup>2 / (of_nat (Suc n))\<^sup>2 * P x n) sums (1 - sin (pi * x) / (pi * x))" . from sums_divide[OF this, of "x^2"] x show ?thesis unfolding g_def by simp qed have "continuous_on (ball 0 1) f" proof (rule uniform_limit_theorem; (intro always_eventually allI)?) show "uniform_limit (ball 0 1) (\<lambda>n x. \<Sum>k<n. P x k / of_nat (Suc k)^2) f sequentially" proof (unfold f_def, rule Weierstrass_m_test) fix n :: nat and x :: real assume x: "x \<in> ball 0 1" { fix k :: nat assume k: "k \<ge> 1" from x have "x^2 < 1" by (auto simp: abs_square_less_1) also from k have "\<dots> \<le> of_nat k^2" by simp finally have "(1 - x^2 / of_nat k^2) \<in> {0..1}" using k by (simp_all add: field_simps del: of_nat_Suc) } hence "(\<Prod>k=1..n. abs (1 - x^2 / of_nat k^2)) \<le> (\<Prod>k=1..n. 1)" by (intro prod_mono) simp thus "norm (P x n / (of_nat (Suc n)^2)) \<le> 1 / of_nat (Suc n)^2" unfolding P_def by (simp add: field_simps abs_prod del: of_nat_Suc) qed (subst summable_Suc_iff, insert inverse_power_summable[of 2], simp add: inverse_eq_divide) qed (auto simp: P_def intro!: continuous_intros) hence "isCont f 0" by (subst (asm) continuous_on_eq_continuous_at) simp_all hence "(f \<midarrow> 0 \<rightarrow> f 0)" by (simp add: isCont_def) also have "f 0 = K" unfolding f_def P_def K_def by (simp add: inverse_eq_divide power_divide) finally have "f \<midarrow> 0 \<rightarrow> K" . moreover have "f \<midarrow> 0 \<rightarrow> pi^2 / 6" proof (rule Lim_transform_eventually) define f' where [abs_def]: "f' x = (\<Sum>n. - sin_coeff (n+3) * pi ^ (n+2) * x^n)" for x have "eventually (\<lambda>x. x \<noteq> (0::real)) (at 0)" by (auto simp add: eventually_at intro!: exI[of _ 1]) thus "eventually (\<lambda>x. f' x = f x) (at 0)" proof eventually_elim fix x :: real assume x: "x \<noteq> 0" have "sin_coeff 1 = (1 :: real)" "sin_coeff 2 = (0::real)" by (simp_all add: sin_coeff_def) with sums_split_initial_segment[OF sums_minus[OF sin_converges], of 3 "pi*x"] have "(\<lambda>n. - (sin_coeff (n+3) * (pi*x)^(n+3))) sums (pi * x - sin (pi*x))" by (simp add: eval_nat_numeral) from sums_divide[OF this, of "x^3 * pi"] x have "(\<lambda>n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums ((1 - sin (pi*x) / (pi*x)) / x^2)" by (simp add: field_split_simps eval_nat_numeral) with x have "(\<lambda>n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums (g x / x^2)" by (simp add: g_def) hence "f' x = g x / x^2" by (simp add: sums_iff f'_def) also have "\<dots> = f x" using sums[of x] x by (simp add: sums_iff g_def f_def) finally show "f' x = f x" . qed have "isCont f' 0" unfolding f'_def proof (intro isCont_powser_converges_everywhere) fix x :: real show "summable (\<lambda>n. -sin_coeff (n+3) * pi^(n+2) * x^n)" proof (cases "x = 0") assume x: "x \<noteq> 0" from summable_divide[OF sums_summable[OF sums_split_initial_segment[OF sin_converges[of "pi*x"]], of 3], of "-pi*x^3"] x show ?thesis by (simp add: field_split_simps eval_nat_numeral) qed (simp only: summable_0_powser) qed hence "f' \<midarrow> 0 \<rightarrow> f' 0" by (simp add: isCont_def) also have "f' 0 = pi * pi / fact 3" unfolding f'_def by (subst powser_zero) (simp add: sin_coeff_def) finally show "f' \<midarrow> 0 \<rightarrow> pi^2 / 6" by (simp add: eval_nat_numeral) qed ultimately have "K = pi^2 / 6" by (rule LIM_unique) moreover from inverse_power_summable[of 2] have "summable (\<lambda>n. (inverse (real_of_nat (Suc n)))\<^sup>2)" by (subst summable_Suc_iff) (simp add: power_inverse) ultimately show ?thesis unfolding K_def by (auto simp add: sums_iff power_divide inverse_eq_divide) qed end
{"author": "seL4", "repo": "isabelle", "sha": "e1ab32a3bb41728cd19541063283e37919978a4c", "save_path": "github-repos/isabelle/seL4-isabelle", "path": "github-repos/isabelle/seL4-isabelle/isabelle-e1ab32a3bb41728cd19541063283e37919978a4c/src/HOL/Analysis/Gamma_Function.thy"}
# Re-exported imports import pandas as pd from numpy import nan, where from re import sub # Hidden imports import builtins as _builtins from inspect import stack as _stack from keyword import iskeyword as _iskeyword from pkg_resources import get_distribution as _get_distribution from sys import stderr as _logfile __version__ = _get_distribution("unitable").version # Global data frame _df = pd.DataFrame() # Utility functions for manipulating caller's locals _builtins = frozenset(dir(_builtins)) def _generate(name): """ Generate a new variable in the caller's locals. Test if the variable name is valid. """ _locals = _stack()[2][0].f_locals if _iskeyword(name): raise ValueError("cannot name variable '{}' because it is a Python keyword".format(name)) if name in _builtins: raise ValueError("cannot name variable '{}' because it is a Python builtin".format(name)) if name in _locals: raise ValueError("cannot name variable '{}' because that name is already in use".format(name)) if not name.isidentifier(): raise ValueError("cannot name variable '{}' because it is an invalid Python variable name".format(name)) _locals[name] = _df[name] def _drop(name): """ Drop a variable from the caller's locals. """ global _df _locals = _stack()[2][0].f_locals if name in _locals and name in _df.columns: _locals.pop(name) else: raise ValueError("cannot drop variable '{}' because it is not currently loaded".format(name)) def _get_name(obj): if isinstance(obj, str) or isinstance(obj, bytes): return str(obj) elif hasattr(obj, "name"): return obj.name else: raise ValueError("unknown variable '{}'".format(str(obj))) # DataFrame def input(values): global _df for name in _df.columns: _drop(name) _df = pd.DataFrame(values) for name in _df.columns: _generate(name) print("inputted", len(_df.columns), "variables and", len(_df), "observations", file=_logfile) data_frame = input def clear(): global _df unkept = _df.columns.tolist() _df = pd.DataFrame() for name in unkept: _drop(name) print("dropped", len(unkept), "variables", file=_logfile) # Input/Output def _sanitize_name(name): return sub(r"[^A-Za-z0-9]", "_", name) def read_csv(filename, **kwargs): global _df for name in _df.columns: _drop(name) _df = pd.read_csv(filename, **kwargs) _df.columns = list(map(_sanitize_name, _df.columns)) for name in _df.columns: _generate(name) print("read", len(_df.columns), "variables from", filename, file=_logfile) def read_tsv(filename, **kwargs): global _df for name in _df.columns: _drop(name) _df = pd.read_csv(filename, sep="\t", **kwargs) _df.columns = list(map(_sanitize_name, _df.columns)) for name in _df.columns: _generate(name) print("read", len(_df.columns), "variables from", filename, file=_logfile) def read_fwf(filename, **kwargs): global _df for name in _df.columns: _drop(name) _df = pd.read_fwf(filename, **kwargs) _df.columns = list(map(_sanitize_name, _df.columns)) for name in _df.columns: _generate(name) print("read", len(_df.columns), "variables from", filename, file=_logfile) def read_excel(filename, **kwargs): global _df for name in _df.columns: _drop(name) _df = pd.read_excel(filename, **kwargs) _df.columns = list(map(_sanitize_name, _df.columns)) for name in _df.columns: _generate(name) print("read", len(_df.columns), "variables from", filename, file=_logfile) import_delimited = read_csv def write_csv(filename, index=False, **kwargs): _df.to_csv(filename, index=index, float_format="%g", **kwargs) print("wrote", len(_df.columns), "variables to", filename, file=_logfile) def write_tsv(filename, index=False, **kwargs): _df.to_csv(filename, index=index, float_format="%g", sep="\t", **kwargs) print("wrote", len(_df.columns), "variables to", filename, file=_logfile) export_delimited = write_csv # Column Operations def generate(name, value): global _df _df.loc[:, name] = value _generate(name) def replace(variable, value): global _df name = _get_name(variable) _drop(name) _df.loc[:, name] = value _generate(name) def drop(variable): global _df name = _get_name(variable) _drop(name) del _df[name] def rename(variable, name): global _df old_name = _get_name(variable) if old_name != name: _drop(old_name) _df.rename(columns={old_name: name}, inplace=True) _generate(name) # Filtering def list_if(condition): return _df[condition] def keep_if(condition): global _df n = len(_df) for name in _df.columns: _drop(name) _df = _df.loc[condition, :] for name in _df.columns: _generate(name) print("kept", len(_df), "of", n, "observations", file=_logfile) filter = keep_if def drop_if(condition): global _df n = len(_df) for name in _df.columns: _drop(name) _df = _df.loc[~condition, :] for name in _df.columns: _generate(name) print("kept", len(_df), "of", n, "observations", file=_logfile) def drop_duplicates(*args, **kwargs): global _df n = len(_df) for name in _df.columns: _drop(name) _df = _df.drop_duplicates(*args, **kwargs) for name in _df.columns: _generate(name) print("kept", len(_df), "of", n, "observations", file=_logfile) def keep(*variables): global _df kept = list(map(_get_name, variables)) kept_set = frozenset(kept) for name in _df.columns: if name not in kept_set: _drop(name) _df = _df[kept] print("kept", len(_df.columns), "variables", file=_logfile) ## Sorting by Values def sort(*variables): global _df for name in _df.columns: _drop(name) _df = _df.sort_values(list(map(_get_name, variables))) for name in _df.columns: _generate(name) # String Functions ## Finding Length of String def strlen(variable): return variable.str.len() ## Finding Position of Substring def strpos(variable, substr): return variable.str.find(substr) ## Extracting Substring by Position def substr(variable, start, end): return variable.str[start:end] ## Extracting nth Word def word(variable, n): return variable.str.split(" ", expand=True)[n] ## Changing Case def strupper(variable): return variable.str.upper() def strlower(variable): return variable.str.lower() def strproper(variable): return variable.str.title() # Merging def merge(df, **kwargs): global _df for name in _df.columns: _drop(name) _df = _df.merge(df, **kwargs) for name in _df.columns: _generate(name) def append(df, **kwargs): global _df for name in _df.columns: _drop(name) _df = _df.append(df, ignore_index=True, **kwargs) for name in _df.columns: _generate(name) # Missing Data def dropna(**kwargs): global _df n = len(_df) for name in _df.columns: _drop(name) _df = _df.dropna(**kwargs) for name in _df.columns: _generate(name) print("dropped", n - len(_df), "of", n, "observrations", file=_logfile) # Aggregation def groupby(*variables): return _df.groupby(list(map(_get_name, variables))) # Dimensions def nrow(): return len(_df) def ncol(): return len(_df.columns) def col_names(): return _df.columns.tolist() def col_types(): return _df.dtypes
{"hexsha": "aed82bdb6d5e7bb1e53b6985e46629517a63277f", "size": 7699, "ext": "py", "lang": "Python", "max_stars_repo_path": "unitable/__init__.py", "max_stars_repo_name": "mhowison/unitable", "max_stars_repo_head_hexsha": "d0841c907b897ea5c77f488cd01b54c57b39f0b2", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:38:02.000Z", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:38:02.000Z", "max_issues_repo_path": "unitable/__init__.py", "max_issues_repo_name": "mhowison/unitable", "max_issues_repo_head_hexsha": "d0841c907b897ea5c77f488cd01b54c57b39f0b2", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "unitable/__init__.py", "max_forks_repo_name": "mhowison/unitable", "max_forks_repo_head_hexsha": "d0841c907b897ea5c77f488cd01b54c57b39f0b2", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 28.098540146, "max_line_length": 113, "alphanum_fraction": 0.6550201325, "include": true, "reason": "from numpy", "num_tokens": 1931}
\documentclass[a4paper]{article} \usepackage[left = .85in, right = .5in, top = 1in, bottom = 1in]{geometry} \usepackage{listings} \title{\Huge Assignment 8 \\ \Large Implementation of DLL Flow Control \\ Stop and Wait Protocol Using Java} \begin{document} \section{Abstract} \subsection{} \section{Algorithm} \subsection{Sender} \begin{enumerate} \item Create Socket to connect to server. \item Create object of ObjectOutputStream and ObjectInputStream to send and receive data from receiver. \item When frameNoCount < msgSize \begin{enumerate} \item Create packet of data length 1, including seqNo. \item Write frame in invoking Stream. \item Store frame and increase seqNo then send the frame. \item Wait for acknowledgement. if(ack == seqNo), send next frame. \item When frameNoCount = msgSize, end msg. \item if(ack != seqNo), resend data. \end{enumerate} \end{enumerate} \subsection(Receiver) \begin{enumerate} \item Create socket and objects of ObjectOutputStream and ObjectInputStream. \item Read frame from invoking stream. \item If sequence number of frame is 1 which is expected, frame is accepted and acknowledgement is sent to sender, else this is duplicate. \end{enumerate} \end{document}
{"hexsha": "16436f08c3567fc220e7fc462c6e840c9e5005ba", "size": 1224, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "Networking/assignment8/assignment8.tex", "max_stars_repo_name": "ANSEduGroup/6th-sem-labs", "max_stars_repo_head_hexsha": "705f3041190fba4fdb49a7dc18f1f1d8e10c1dbe", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Networking/assignment8/assignment8.tex", "max_issues_repo_name": "ANSEduGroup/6th-sem-labs", "max_issues_repo_head_hexsha": "705f3041190fba4fdb49a7dc18f1f1d8e10c1dbe", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2017-04-10T09:15:30.000Z", "max_issues_repo_issues_event_max_datetime": "2017-04-10T09:16:28.000Z", "max_forks_repo_path": "Networking/assignment8/assignment8.tex", "max_forks_repo_name": "ANSEduGroup/6th-sem-labs", "max_forks_repo_head_hexsha": "705f3041190fba4fdb49a7dc18f1f1d8e10c1dbe", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.0, "max_line_length": 140, "alphanum_fraction": 0.7638888889, "num_tokens": 311}
! @@name: fort_sp_common.4f ! @@type: F-fixed ! @@compilable: no ! @@linkable: no ! @@expect: failure SUBROUTINE COMMON_WRONG() COMMON /C/ X,Y ! Incorrect because X is a constituent element of C !$OMP PARALLEL PRIVATE(/C/), SHARED(X) ! { error "PGF90-S-0155-x is used in multiple data sharing clauses" } ! do work here !$OMP END PARALLEL END SUBROUTINE COMMON_WRONG
{"hexsha": "de2d0186a2774ee057f0983abbbb332b442a6097", "size": 400, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "test/openmp_examples/sources/Example_fort_sp_common.4f.f", "max_stars_repo_name": "kammerdienerb/flang", "max_stars_repo_head_hexsha": "8cc4a02b94713750f09fe6b756d33daced0b4a74", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 716, "max_stars_repo_stars_event_min_datetime": "2017-05-17T17:58:45.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T11:20:58.000Z", "max_issues_repo_path": "test/openmp_examples/sources/Example_fort_sp_common.4f.f", "max_issues_repo_name": "kammerdienerb/flang", "max_issues_repo_head_hexsha": "8cc4a02b94713750f09fe6b756d33daced0b4a74", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 794, "max_issues_repo_issues_event_min_datetime": "2017-05-18T19:27:40.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T23:22:11.000Z", "max_forks_repo_path": "test/openmp_examples/sources/Example_fort_sp_common.4f.f", "max_forks_repo_name": "kammerdienerb/flang", "max_forks_repo_head_hexsha": "8cc4a02b94713750f09fe6b756d33daced0b4a74", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 157, "max_forks_repo_forks_event_min_datetime": "2017-05-17T18:50:33.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-30T07:06:45.000Z", "avg_line_length": 30.7692307692, "max_line_length": 110, "alphanum_fraction": 0.655, "num_tokens": 125}
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import division import tensorflow as tf import cv2 import numpy as np from libs.label_name_dict.label_dict import NAME_LABEL_MAP from libs.configs import cfgs def max_length_limitation(length, length_limitation): return tf.cond(tf.less(length, length_limitation), true_fn=lambda: length, false_fn=lambda: length_limitation) def short_side_resize(img_tensor, gtboxes_and_label, target_shortside_len, length_limitation=1200): ''' :param img_tensor:[h, w, c], gtboxes_and_label:[-1, 9]. :param target_shortside_len: :param length_limitation: set max length to avoid OUT OF MEMORY :return: ''' img_h, img_w = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1] new_h, new_w = tf.cond(tf.less(img_h, img_w), true_fn=lambda: (target_shortside_len, max_length_limitation(target_shortside_len * img_w // img_h, length_limitation)), false_fn=lambda: (max_length_limitation(target_shortside_len * img_h // img_w, length_limitation), target_shortside_len)) img_tensor = tf.expand_dims(img_tensor, axis=0) img_tensor = tf.image.resize_bilinear(img_tensor, [new_h, new_w]) x1, y1, x2, y2, x3, y3, x4, y4, label = tf.unstack(gtboxes_and_label, axis=1) x1, x2, x3, x4 = x1 * new_w // img_w, x2 * new_w // img_w, x3 * new_w // img_w, x4 * new_w // img_w y1, y2, y3, y4 = y1 * new_h // img_h, y2 * new_h // img_h, y3 * new_h // img_h, y4 * new_h // img_h img_tensor = tf.squeeze(img_tensor, axis=0) # ensure image tensor rank is 3 return img_tensor, tf.transpose(tf.stack([x1, y1, x2, y2, x3, y3, x4, y4, label], axis=0)), new_h, new_w def short_side_resize_for_inference_data(img_tensor, target_shortside_len, length_limitation=1200, is_resize=True): if is_resize: img_h, img_w = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1] new_h, new_w = tf.cond(tf.less(img_h, img_w), true_fn=lambda: (target_shortside_len, max_length_limitation(target_shortside_len * img_w // img_h, length_limitation)), false_fn=lambda: (max_length_limitation(target_shortside_len * img_h // img_w, length_limitation), target_shortside_len)) img_tensor = tf.expand_dims(img_tensor, axis=0) img_tensor = tf.image.resize_bilinear(img_tensor, [new_h, new_w]) img_tensor = tf.squeeze(img_tensor, axis=0) # ensure image tensor rank is 3 return img_tensor def flip_left_to_right(img_tensor, gtboxes_and_label): h, w = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1] img_tensor = tf.image.flip_left_right(img_tensor) x1, y1, x2, y2, x3, y3, x4, y4, label = tf.unstack(gtboxes_and_label, axis=1) new_x1 = w - x1 new_x2 = w - x2 new_x3 = w - x3 new_x4 = w - x4 return img_tensor, tf.transpose(tf.stack([new_x1, y1, new_x2, y2, new_x3, y3, new_x4, y4, label], axis=0)) def random_flip_left_right(img_tensor, gtboxes_and_label): img_tensor, gtboxes_and_label= tf.cond(tf.less(tf.random_uniform(shape=[], minval=0, maxval=1), 0.5), lambda: flip_left_to_right(img_tensor, gtboxes_and_label), lambda: (img_tensor, gtboxes_and_label)) return img_tensor, gtboxes_and_label def aspect_ratio_jittering(img_tensor, gtboxes_and_label, aspect_ratio=(0.8, 1.5)): ratio_list = tf.range(aspect_ratio[0], aspect_ratio[1], delta=0.025) ratio = tf.random_shuffle(ratio_list)[0] img_h, img_w = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1] areas = img_h * img_w areas = tf.cast(areas, tf.float32) short_side = tf.sqrt(areas / ratio) long_side = short_side * ratio short_side = tf.cast(short_side, tf.int32) long_side = tf.cast(long_side, tf.int32) image, gtbox, new_h, new_w = tf.cond(tf.less(img_w, img_h), true_fn=lambda: tf_resize_image(img_tensor, gtboxes_and_label, short_side, long_side), false_fn=lambda: tf_resize_image(img_tensor, gtboxes_and_label, long_side, short_side)) return image, gtbox, new_h, new_w def tf_resize_image(image, gtbox, rw, rh): img_h, img_w = tf.shape(image)[0], tf.shape(image)[1] image = tf.image.resize_bilinear(tf.expand_dims(image, axis=0), (rh, rw)) x1, y1, x2, y2, x3, y3, x4, y4, label = tf.unstack(gtbox, axis=1) new_x1 = x1 * rw // img_w new_x2 = x2 * rw // img_w new_x3 = x3 * rw // img_w new_x4 = x4 * rw // img_w new_y1 = y1 * rh // img_h new_y2 = y2 * rh // img_h new_y3 = y3 * rh // img_h new_y4 = y4 * rh // img_h gtbox = tf.transpose(tf.stack([new_x1, new_y1, new_x2, new_y2, new_x3, new_y3, new_x4, new_y4, label], axis=0)) return tf.squeeze(image, axis=0), gtbox, rh, rw def flip_up_down(img_tensor, gtboxes_and_label): h, w = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1] img_tensor = tf.image.flip_up_down(img_tensor) x1, y1, x2, y2, x3, y3, x4, y4, label = tf.unstack(gtboxes_and_label, axis=1) new_y1 = h - y1 new_y2 = h - y2 new_y3 = h - y3 new_y4 = h - y4 return img_tensor, tf.transpose(tf.stack([x1, new_y1, x2, new_y2, x3, new_y3, x4, new_y4, label], axis=0)) def random_flip_up_down(img_tensor, gtboxes_and_label): img_tensor, gtboxes_and_label = tf.cond(tf.less(tf.random_uniform(shape=[], minval=0, maxval=1), 0.5), lambda: flip_up_down(img_tensor, gtboxes_and_label), lambda: (img_tensor, gtboxes_and_label)) return img_tensor, gtboxes_and_label def random_rgb2gray(img_tensor, gtboxes_and_label): ''' :param img_tensor: tf.float32 :return: ''' def rgb2gray(img, gtboxes_and_label): label = gtboxes_and_label[:, -1] #if cfgs.DATASET_NAME.startswith('DOTA'): # if NAME_LABEL_MAP['swimming-pool'] in label: # # do not change color, because swimming-pool need color # return img coin = np.random.rand() if coin < 0.3: img = np.asarray(img, dtype=np.float32) r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] gray = r * 0.299 + g * 0.587 + b * 0.114 img = np.stack([gray, gray, gray], axis=2) return img else: return img h, w, c = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1], tf.shape(img_tensor)[2] img_tensor = tf.py_func(rgb2gray, inp=[img_tensor, gtboxes_and_label], Tout=tf.float32) img_tensor = tf.reshape(img_tensor, shape=[h, w, c]) return img_tensor def rotate_img_np(img, gtboxes_and_label, r_theta): h, w, c = img.shape center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, r_theta, 1.0) cos, sin = np.abs(M[0, 0]), np.abs(M[0, 1]) nW, nH = int(h*sin + w*cos), int(h*cos + w*sin) # new W and new H M[0, 2] += (nW/2) - center[0] M[1, 2] += (nH/2) - center[1] rotated_img = cv2.warpAffine(img, M, (nW, nH)) # ------- new_points_list = [] obj_num = len(gtboxes_and_label) for st in range(0, 7, 2): points = gtboxes_and_label[:, st:st+2] expand_points = np.concatenate((points, np.ones(shape=(obj_num, 1))), axis=1) new_points = np.dot(M, expand_points.T) new_points = new_points.T new_points_list.append(new_points) gtboxes = np.concatenate(new_points_list, axis=1) gtboxes_and_label = np.concatenate((gtboxes, gtboxes_and_label[:, -1].reshape(-1, 1)), axis=1) gtboxes_and_label = np.asarray(gtboxes_and_label, dtype=np.int32) return rotated_img, gtboxes_and_label def rotate_img(img_tensor, gtboxes_and_label): # thetas = tf.constant([-30, -60, -90, 30, 60, 90]) thetas = tf.range(-90, 90+16, delta=15) # -90, -75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 90 theta = tf.random_shuffle(thetas)[0] img_tensor, gtboxes_and_label = tf.py_func(rotate_img_np, inp=[img_tensor, gtboxes_and_label, theta], Tout=[tf.float32, tf.int32]) h, w, c = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1], tf.shape(img_tensor)[2] img_tensor = tf.reshape(img_tensor, [h, w, c]) gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 9]) return img_tensor, gtboxes_and_label def random_rotate_img(img_tensor, gtboxes_and_label): img_tensor, gtboxes_and_label = tf.cond(tf.less(tf.random_uniform(shape=[], minval=0, maxval=1), 0.6), lambda: rotate_img(img_tensor, gtboxes_and_label), lambda: (img_tensor, gtboxes_and_label)) return img_tensor, gtboxes_and_label
{"hexsha": "863c17d66d3cacc5f614095e275b6c16c59da6ee", "size": 9345, "ext": "py", "lang": "Python", "max_stars_repo_path": "data/io/image_preprocess_multi_gpu.py", "max_stars_repo_name": "RomStriker/R3Det_Tensorflow", "max_stars_repo_head_hexsha": "34bad1a99d4472281f2653448cdd43378f06f753", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "data/io/image_preprocess_multi_gpu.py", "max_issues_repo_name": "RomStriker/R3Det_Tensorflow", "max_issues_repo_head_hexsha": "34bad1a99d4472281f2653448cdd43378f06f753", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "data/io/image_preprocess_multi_gpu.py", "max_forks_repo_name": "RomStriker/R3Det_Tensorflow", "max_forks_repo_head_hexsha": "34bad1a99d4472281f2653448cdd43378f06f753", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.5974576271, "max_line_length": 127, "alphanum_fraction": 0.6071696094, "include": true, "reason": "import numpy", "num_tokens": 2641}
#ifndef TYPELIB_IOPLUGINS_HH #define TYPELIB_IOPLUGINS_HH #include <boost/type_traits/is_base_and_derived.hpp> #include <boost/mpl/if.hpp> namespace Typelib { class ExportPlugin; class ImportPlugin; class Exporter; class Importer; template<typename Type> struct plugin_traits { typedef typename boost::mpl::if_ < boost::is_base_and_derived<Exporter, Type> , ExportPlugin , ImportPlugin >::type plugin_base; typedef typename boost::mpl::if_ < boost::is_base_and_derived<Exporter, Type> , Exporter , Importer >::type object_base; }; template<typename Type> class GenericIOPlugin : public plugin_traits<Type>::plugin_base { public: GenericIOPlugin(char const* name) : plugin_traits<Type>::plugin_base(name) {} typename plugin_traits<Type>::object_base* create() { return new Type; } }; class TypeDefinitionPlugin { public: virtual ~TypeDefinitionPlugin() {} virtual void registerTypes(Typelib::Registry& registry) = 0; }; } #define TYPELIB_REGISTER_IO2(name, klass1, klass2) extern "C" void registerPlugins(Typelib::PluginManager& manager) {\ manager.add(new Typelib::GenericIOPlugin<klass1>(#name)); \ manager.add(new Typelib::GenericIOPlugin<klass2>(#name)); \ } #define TYPELIB_REGISTER_IO1(name, klass1) extern "C" void registerPlugins(Typelib::PluginManager& manager) {\ manager.add(new Typelib::GenericIOPlugin<klass1>(#name)); \ } #endif
{"hexsha": "0ff481cb0bf4992123da31753c49408d80016d96", "size": 1584, "ext": "hh", "lang": "C++", "max_stars_repo_path": "typelib/plugins.hh", "max_stars_repo_name": "maltewi/tools-typelib", "max_stars_repo_head_hexsha": "c0a28415b6cea4d5500a00d6e7003554d684748e", "max_stars_repo_licenses": ["CECILL-B"], "max_stars_count": 7.0, "max_stars_repo_stars_event_min_datetime": "2015-05-29T09:59:27.000Z", "max_stars_repo_stars_event_max_datetime": "2020-05-15T13:41:18.000Z", "max_issues_repo_path": "typelib/plugins.hh", "max_issues_repo_name": "maltewi/tools-typelib", "max_issues_repo_head_hexsha": "c0a28415b6cea4d5500a00d6e7003554d684748e", "max_issues_repo_licenses": ["CECILL-B"], "max_issues_count": 68.0, "max_issues_repo_issues_event_min_datetime": "2015-01-06T17:02:27.000Z", "max_issues_repo_issues_event_max_datetime": "2021-01-27T23:54:05.000Z", "max_forks_repo_path": "typelib/plugins.hh", "max_forks_repo_name": "rock-core/tools-typelib", "max_forks_repo_head_hexsha": "b15a6c8500db4add544a8ffd6d1d795c65c5283b", "max_forks_repo_licenses": ["CECILL-B"], "max_forks_count": 18.0, "max_forks_repo_forks_event_min_datetime": "2015-03-20T10:57:52.000Z", "max_forks_repo_forks_event_max_datetime": "2021-01-27T18:53:14.000Z", "avg_line_length": 27.3103448276, "max_line_length": 118, "alphanum_fraction": 0.663510101, "num_tokens": 375}
using TiledIteration: TileIterator using FFTW: fft, dct function upsample(x::AbstractArray{T,D}, factor::NTuple{D}, offset::NTuple{D} = (fill(0,D)...,)) where {T,D} @assert all(0 .<= offset .< factor) "offset is out of range" szout = size(x) .* factor setindex!(zeros(T, szout), x, StepRange.(offset .+ 1, factor, szout)...) end function downsample(x::AbstractArray{T,D}, factor::NTuple{D}, offset::NTuple{D}=(fill(0,D)...,)) where {T,D} @assert all(0 .<= offset .< factor) "offset is out of range" x[StepRange.(offset .+ 1, factor, size(x))...] end # function downsampledview(x::AbstractArray{T,D}, factor::NTuple{D}, offset::NTuple{D}=(fill(0,D)...,)) where {T,D} # @assert all(0 .<= offset .< factor) "offset is out of range" # @view x[StepRange.(offset .+ 1, factor, size(x))...] # end representationmatrix(f, sz::NTuple) = representationmatrix(f, sz...) function representationmatrix(f::Function, sz::Integer...) hcat([ setindex!(zeros(sz), 1, idx) |> f |> vec for idx in 1:prod(sz) ]...) end Base.@pure function haarbasis(d::Integer) w = walsh(d) @views [ reshape(w[p,:], fill(2,d)...) |> Array for p in 1:size(w, 1)] end Base.@pure function walsh(n::Integer) # ifelse(n >= 0, sub_walsh(Val(n)), error("n must to be a positive")) # this code is not work correctly. if n >= 0; sub_walsh(Val(n)) else error("n must to be a positive") end end function sub_walsh(::Val{N}) where {N} w = sub_walsh(Val(N-1)) return [ w w ; w -w ] end sub_walsh(::Val{0}) = 1 # matrix-formed CDFT operator for D-dimensional signal cdftmtx(sz::NTuple) = cdftmtx(sz...) cdftmtx(sz::Integer...) = cdftmtx(Float64, sz...) cdftmtx(T::Type, sz::NTuple) = cdftmtx(T, sz...) cdftmtx(::Type, sz::Integer...) = cdftmtx(Float64, sz...) cdftmtx(::Type{Complex{T}}, sz...) where {T} = cdftmtx(T, sz...) Base.@pure function cdftmtx(::Type{T}, sz::Integer...) where T<:AbstractFloat len = prod(sz) mtx = representationmatrix(x->fft(T.(x)), sz) rm = Diagonal(Complex{T}[ cis(-angle(mtx[n,end])/2) for n in 1:len ]) complex(T).(rm * mtx / sqrt(len)) end permdctmtx(sz::NTuple) = permdctmtx(sz...) permdctmtx(sz::Integer...) = permdctmtx(Float64, sz...) permdctmtx(T::Type, sz::NTuple) = permdctmtx(T, sz...) permdctmtx(::Type, sz::Integer...) = permdctmtx(Float64, sz...) Base.@pure function permdctmtx(::Type{T}, sz::Integer...) where T<:AbstractFloat mtx = representationmatrix(x->dct(T.(x)), sz) isevenids = map(ci->iseven(sum(ci.I .- 1)), CartesianIndices(sz)) |> vec permids = sortperm(isevenids; rev=true, alg=Base.DEFAULT_STABLE) @views vcat([ transpose(mtx[pi,:]) for pi in permids ]...) end function getMatrixB(P::Integer, angs::AbstractVector{T}) where T @assert (length(angs) == fld(P,4)) "mismatch number of channels" hP = fld(P,2) psangs = (2 .* angs .+ pi) ./ 4 ss, cs = sin.(psangs), cos.(psangs) LC = map(ss, cs) do s, c [ (-1im*c) (-1im*s); c (-s) ] end LS = map(ss, cs) do s, c [ s c; (1im*s) (-1im*c) ] end pbm = ones(fill(hP % 2,2)...) C = cat(LC..., pbm; dims=[1,2]) S = cat(LS..., 1im*pbm; dims=[1,2]) [ C conj(C); S conj(S) ] / sqrt(convert(T,2)) end function analysisbank(nsolt::AbstractNsolt) M = prod(decimations(nsolt)) ord = orders(nsolt) # create inpulse signal matrix mtx0 = reverse(Matrix(I, M, M .* prod(ord .+ 1) ), dims=1) krncenter = initialStep(nsolt, mtx0 ) nStrides = (cumprod([ M, (ord[1:end-1] .+ 1)... ])...,) rotdimsfcns = (fill(identity, ndims(nsolt))...,) krnsym = extendAtoms(nsolt, krncenter, nStrides, rotdimsfcns, border=:circular_traditional) return shiftFilterSymmetry(nsolt, krnsym) end # compatible mode for SaivDr # function analysisbank_compatible(nsolt::AbstractNsolt) # #function analysisbank(nsolt::AbstractNsolt) # M = prod(decimations(nsolt)) # ord = orders(nsolt) # # # create inpulse signal matrix # mtx0 = reverse(Matrix(I, M, M .* prod(ord .+ 1) ), dims=1) # # mtx0 = circshift(mtx0, (0, -M)) # krncenter = initialStep(nsolt, mtx0 ) # # nStrides = (cumprod([ M, (ord[1:end-1] .+ 1)... ])...,) # rotdimsfcns = (fill(identity, ndims(nsolt))...,) # krnsym = extendAtoms(nsolt, krncenter, nStrides, rotdimsfcns, border=:circular_traditional) # # return shiftFilterSymmetry(nsolt, krnsym) # end kernels(pfb::PolyphaseFB) = (analysiskernels(pfb), synthesiskernels(pfb)) function analysiskernels(pfb::PolyphaseFB) df = decimations(pfb) afb = analysisbank(pfb) @views map([ reshape(afb[p,:], prod(df), :) for p in 1:size(afb, 1)]) do vf out = similar(vf, kernelsize(pfb)...) for (idx, tile) in enumerate(TileIterator(axes(out), df)) out[tile...] = reshape(vf[:, idx], df...) end out end end function synthesiskernels(cc::AbstractNsolt) map(analysiskernels(cc)) do af reshape(af .|> conj |> vec |> reverse, size(af)) end end function mdarray2polyphase(x::AbstractArray{TX,D}, szBlock::NTuple{D,TS}) where {TX,D,TS<:Integer} nBlocks = fld.(size(x), szBlock) @assert all(size(x) .% szBlock .== 0) "size error. input data: $(size(x)), block size: $(szBlock)." # outdata = hcat([ vec(@view x[tile...]) for tile in TileIterator(axes(x), szBlock)]...) outdata = similar(x, prod(szBlock), prod(nBlocks)) @views for (idx, tile) in enumerate(TileIterator(axes(x), szBlock)) outdata[:,idx] = vec(x[tile...]) end PolyphaseVector(outdata, nBlocks) end function polyphase2mdarray(x::PolyphaseVector{TX,D}, szBlock::NTuple{D,TS}) where {TX,D,TS<:Integer} @assert (size(x.data, 1) == prod(szBlock)) "size mismatch! 'prod(szBlock)' must be equal to $(size(x.data,1))." out = similar(x.data, (x.nBlocks .* szBlock)...) @views for (idx, tile) in enumerate(TileIterator(axes(out), szBlock)) out[tile...] = reshape(x.data[:,idx], szBlock...) end out end function rotatedimspv(x::PolyphaseVector{T,D}) where {T,D} data = rotatedimspv(x.data, x.nBlocks[1]) nBlocks = (x.nBlocks[2:end]..., x.nBlocks[1]) return PolyphaseVector(data, nBlocks) end function irotatedimspv(x::PolyphaseVector{T,D}) where {T,D} data = irotatedimspv(x.data, x.nBlocks[1]) nBlocks = (x.nBlocks[end], x.nBlocks[2:end]...) return PolyphaseVector(data, nBlocks) end function rotatedimspv(x::AbstractMatrix, nBlocks::Integer) @views hcat([ x[:, (1:nBlocks:end) .+ idx] for idx = 0:nBlocks-1 ]...) end irotatedimspv(x::AbstractMatrix, nBlocks::Integer) = rotatedimspv(x, fld(size(x, 2), nBlocks)) @inline function unnormalized_butterfly!(xu::T, xl::T) where {T<:AbstractMatrix} tu, tl = (xu + xl, xu - xl) xu .= tu xl .= tl nothing end @inline function half_butterfly!(xu::T, xl::T) where {T<:AbstractMatrix} tu, tl = (xu + xl, xu - xl) ./ 2 xu .= tu xl .= tl nothing end function shiftcoefs!(V::Val{:circular}, k::Integer, mtxup::AbstractMatrix, mtxlw::AbstractMatrix, nShift::Integer) if isodd(k) shiftcoefs_odd!(V, mtxlw, nShift) else shiftcoefs_even!(V, mtxup, nShift) end nothing end function shiftcoefs_odd!(::Val{:circular}, mtx::AbstractMatrix, nShift::Integer) mtx .= circshift(mtx, (0, nShift)) end shiftcoefs_even!(V::Val{:circular}, mtx, nShift) = shiftcoefs_odd!(V, mtx, -nShift) adjshiftcoefs!(v::Val{:circular}, k, mtxup, mtxlw, nShift::Integer) = shiftcoefs!(v, k, mtxup, mtxlw, -nShift) # function shiftcoefs!(::Val{:zero}, k::Integer, mtxup::AbstractMatrix, mtxlw::AbstractMatrix, nShift::Integer) # if isodd(k) # mtxlw[:, 1+nShift:end] .= @view mtxlw[:, 1:end-nShift] # mtxlw[:, 1:nShift] .= 0 # else # mtxup[:, 1:end-nShift] .= @view mtxup[:, 1+nShift:end] # mtxup[:, end-nShift+1:end] .= 0 # end # nothing # end # # function adjshiftcoefs!(::Val{:zero}, k::Integer, mtxup::AbstractMatrix, mtxlw::AbstractMatrix, nShift::Integer) # if isodd(k) # mtxlw[:, 1:end-nShift] .= @view mtxlw[:, 1+nShift:end] # mtxlw[:, end-nShift+1:end] .= 0 # else # mtxup[:, 1+nShift:end] .= @view mtxup[:, 1:end-nShift] # mtxup[:, 1:nShift] .= 0 # end # nothing # end function shiftcoefs!(::Val{:circular_traditional}, ::Integer, ::Any, mtxlw::AbstractMatrix, nShift::Integer) mtxlw .= circshift(mtxlw, (0, nShift)) end adjshiftcoefs!(v::Val{:circular_traditional}, k, mtxup, mtxlw, nShift::Integer) = shiftcoefs!(v, k, mtxup, mtxlw, -nShift)
{"hexsha": "a9893e5670fea416f40bbf6ecbcff7ccdb912996", "size": 8522, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/polyphaseMatrices.jl", "max_stars_repo_name": "nixir/MDCDL", "max_stars_repo_head_hexsha": "db176ca1f9adb775168cab3a6c7eeafa0757124c", "max_stars_repo_licenses": ["BSD-2-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/polyphaseMatrices.jl", "max_issues_repo_name": "nixir/MDCDL", "max_issues_repo_head_hexsha": "db176ca1f9adb775168cab3a6c7eeafa0757124c", "max_issues_repo_licenses": ["BSD-2-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/polyphaseMatrices.jl", "max_forks_repo_name": "nixir/MDCDL", "max_forks_repo_head_hexsha": "db176ca1f9adb775168cab3a6c7eeafa0757124c", "max_forks_repo_licenses": ["BSD-2-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.6422764228, "max_line_length": 122, "alphanum_fraction": 0.6286083079, "num_tokens": 2832}
''' This script holds general meta data & configuration paths required for pipeline operation ''' import os import numpy as np # comment out the next line to use in an experiment #assert False, 'you are importing the template config.py file, import your local experiment specific file' #################################################################################### ############################## experiment details ################################## #################################################################################### ## path parameters -- These MUST be adjusted to your specific dataset myloc= os.getcwd() # location of this script (WSL file structure) data_dir= './pre-registered_imgs/' # otherwise use this # data_dir = '/mnt/z/Marilyne/Axioscan/6-Dhivya/New_folder/Test_D1/' # use this if examining images before pre-registration via tutorial.ipynb # Specify the experiment here slide_name= 'D1' scene_name= 'None' # use 'None' to specify no scene name (cap sensitive) # These paths probably don't need to be adjusted lib_dir= '/mnt/c/Users/Public/cyclicIF_processing/cyclicIF_registration/workflow/libs' script_dir= '/mnt/c/Users/Public/cyclicIF_processing/cyclicIF_registration/workflow/scripts' output_dir= '/mnt/d/cyclicIF_outputs/6_Dhivya/D1/registered_imgs/' # this is path to registered cores #################################################################################### ############################## core segmentation ################################### #################################################################################### # image downsampling for core segmentation # default ~10 downsample_proportion = 10 # remove connected components that are smaller than this # REMEMBER THIS SCALES WITH `downsample_proportion` # NOTE: this may need to be adjusted for different core sizes or types # default ~ 2000 min_obj_size = int( 4e4 / downsample_proportion ) # threshold value used to select core regions (after a gaussian blur) # default ~ 0.75 core_seg_quantile = 0.74 # (Dhiva D1) #0.785 (Pejovic) # padding used when selecting a core, eg selects core bounding box + 2*padding # default ~ 10 padding = 20 # segmentation params # larger values will create more blur gaussian_blur_variance = 4000 # core matching clustering method # options: 'k-means-constrained', 'dbscan' # note: k-means-constrained has issues if later rounds have more identified cores # default ~ dbscan clustering_method = 'dbscan' # IF DBSCAN # minimum distance between points to be considered within the same neighborhood eps = 0.12 # (pejovic~0.15) min_samples = 2 feats = ['center_x', 'center_y'] feat_importance = np.array([1,1]) #################################################################################### ################################### GENERAL ######################################## #################################################################################### # this isn't used anywhere - YET - SimpleITK does use spacing, but I haven't changed it yet - worried how it might change results pixel_width = 0.65 # microns pixel_height = 0.65 # microns #################################################################################### ############################## REGISTRATION ######################################## #################################################################################### num_hist_bins = 256 learning_rate = 1e-1 # deprecated - not used in powell optimizer min_step = 1e-10 # deprecated - not used in powell optimizer iterations = 500 sampling_percentage = 1.0 # x100% stepLength=1 stepTolerance = 1e-7 valueTolerance = 1e-7 #################################################################################### ############################## QUALITY CONTROL ##################################### #################################################################################### QC_dice_coef = 0.4 # this is the one uesd in `generate_QC_file.py` 12/30/2020 FPR_threshold = 0.5 FNR_threshold = 0.5 hausdorff_distance_threshold = 0.2 #################################################################################### ############################## DEDUST PARAMS ##################################### #################################################################################### dedust_gaussian_var = 1e-1 dust_thresh_quantile = 0.999
{"hexsha": "80fc4173756463158815a1f71a051e3232bebcf1", "size": 4475, "ext": "py", "lang": "Python", "max_stars_repo_path": "workflow/libs/_config.py", "max_stars_repo_name": "nathanieljevans/cyclicIF_registration", "max_stars_repo_head_hexsha": "0483b8354d0e2b666ca1b47848dca3222c5ddb69", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "workflow/libs/_config.py", "max_issues_repo_name": "nathanieljevans/cyclicIF_registration", "max_issues_repo_head_hexsha": "0483b8354d0e2b666ca1b47848dca3222c5ddb69", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2021-06-04T16:04:46.000Z", "max_issues_repo_issues_event_max_datetime": "2021-06-25T17:08:18.000Z", "max_forks_repo_path": "workflow/libs/_config.py", "max_forks_repo_name": "nathanieljevans/cyclicIF_registration", "max_forks_repo_head_hexsha": "0483b8354d0e2b666ca1b47848dca3222c5ddb69", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 42.2169811321, "max_line_length": 143, "alphanum_fraction": 0.5027932961, "include": true, "reason": "import numpy", "num_tokens": 870}
import numpy as np import scipy, os from scipy.signal import butter,lfilter from scipy.ndimage.filters import gaussian_filter1d import matplotlib.pyplot as plt from matplotlib.pyplot import mlab import xml.etree.ElementTree samplingRate=30000. #================================================================================================= #------------operations on continuous traces------------------------------------- #================================================================================================= npix_p3_reference_channels = np.array([ 36, 75, 112, 151, 188, 227, 264, 303, 340, 379]) npix_p2_reference_channels = np.array([1,18,33,50,65,82,97,114,99]) skip_channels = npix_p3_reference_channels #default to phase 3 reference channels def get_chunk(mm,start,end,channels,sampling_rate=30000): chunk = mm[int(start*sampling_rate*int(channels)):int(np.floor(end*sampling_rate*(int(channels))))] #print np.shape(chunk) return np.reshape(chunk,(int(channels),-1),order='F') * 0.195 #filter a bit of continuous data. uses butterworth filter. def filterTrace(trace, low, high, sampleHz, order): low = float(low) high = float(high) nyq = 0.5 * sampleHz low = low / nyq high = high / nyq b, a = butter(order, [low, high], btype='band') filtered = lfilter(b, a, trace) return filtered #developmental filter version. not used. def filterTrace_hard(trace, low, high, sampleHz, order): low = float(low) high = float(high) nyq = 0.5 * sampleHz low = low / nyq high = high / nyq scipy.signal.band_stop_obj() b, a = butter(order, [low, high], btype='band') filtered = lfilter(b, a, trace) scipy.signal.lfilter() return filtered #wrapper for filtering continous data of different forms. #data can be a single continuous trace, a dictionary containing a key called 'data' whose value is a continous trace, or a dictionary of traces, or a dicit def filtr(data,low, high, sampleHz, order): if type(data) is dict: if 'data' in data.keys(): return filterTrace(data['data'],low, high, sampleHz, order) else: out = {} for i,key in enumerate(data.keys()): out[key] = data[key] out[key]['data']= filterTrace(data[key]['data'],low, high, sampleHz, order) return out else: return filterTrace(data,low, high, sampleHz, order) #notch filter a continous trace by filtering in a narrow range and subtracting that from the input trace. def notch(data,freq, sampleHz): order = 1 low = freq-2 high = freq +2 if type(data) is dict: if 'data' in data.keys(): return data['data'] - filterTrace(data['data'],low, high, sampleHz, order) else: out = {} for i,key in enumerate(data.keys()): out[key] = data[key] out[key]['data']= data[key]['data'] - filterTrace(data[key]['data'],low, high, sampleHz, order) return out else: return data - filterTrace(data,low, high, sampleHz, order) #average a continuous trace around a set of timestamps def average_trials(data,timestamps,window,sampleFreq=25000.): alltrials = np.zeros((len(timestamps),window*sampleFreq)) average = np.zeros(window*sampleFreq) skipped = 0 for i,onset in enumerate(timestamps): average += data[onset:onset+window*sampleFreq]#-np.mean(data[onset:onset-500]) alltrials[i,:] = data[onset:onset+window*sampleFreq]#-np.mean(data[onset:onset-500]) # if np.max(np.abs(data[onset:onset+window*sampleFreq]-np.mean(data[onset:onset+5000]))) < 40000000.0: # average += data[onset:onset+window*sampleFreq]-np.mean(data[onset:onset+5000]) # alltrials[i,:] = data[onset:onset+window*sampleFreq]-np.mean(data[onset:onset+5000]) # else: # skipped += 1 # print 'skipped trial: '+str(i+1) # alltrials[i,:] = data[onset:onset+window*sampleFreq]-np.mean(data[onset:onset+5000]) return alltrials,average/float(len(timestamps-skipped)) #average all continuous traces in an array around a set of timestamps def average_trials_array(data,timestamps,window,output='avg'): avgs = {} alltrials={} for i,key in enumerate(data.keys()): if 'data' in data[key].keys(): avgs[key]={} alltrials[key]={} alltrials[key]['data'],avgs[key]['data'] = average_trials(data[key]['data'],timestamps,window) if output == 'trials': return alltrials if output == 'both': return (alltrials,avgs) if output=='avg': return avgs #note: this CSD code does not work! -dan def CSD_1D(data,channelmap=[],prefix='100_CH',point=1000): if channelmap == []: channelmap = data.keys() elec_pos = [] pots=[] for i,key in enumerate(channelmap[0]): key = prefix+str(key).replace(prefix,'') pots.append([data[key]['data'][point]]) elec_pos.append([(i+i)/2]) pots=np.array(pots) elec_pos=np.array(elec_pos) params = { 'xmin': 0, 'xmax': 65.0, 'source_type': 'step', 'n_sources': 64, 'sigma': 0.1 } k = KCSD(elec_pos, pots, params) k.estimate_pots() k.estimate_csd() k.plot_all() #note: this CSD code does not work! -dan def CSD_1D_time(data,channelmap=[],prefix='100_CH',point=1000): if channelmap == []: channelmap = data.keys() numPoints = len(data[data.keys()[0]]['data']) out_csd = np.zeros((len(data.keys()),numPoints)) out_pots = np.zeros((len(data.keys()),numPoints)) for point in range(numPoints): print(point) elec_pos = [] pots=[] for i,key in enumerate(channelmap[0]): key = prefix+str(key).replace(prefix,'') pots.append([data[key]['data'][point]]) elec_pos.append([i+i]) pots=np.array(pots) elec_pos=np.array(elec_pos) params = { 'xmin': 0, 'xmax': 130.0, 'source_type': 'step', 'n_sources': 128, 'sigma': 0.2, } k = KCSD(elec_pos, pots, params) k.estimate_pots() k.estimate_csd() out_csd[0:np.shape(k.solver.estimated_csd)[0],point]= k.solver.estimated_csd[:,0] out_pots[0:np.shape(k.solver.estimated_pots)[0],point]= k.solver.estimated_pots[:,0] return out_csd,out_pots #k.plot_all() def etree_to_dict(t): d = {t.tag : map(etree_to_dict, t.getchildren())} d.update(('@' + k, v) for k, v in t.attrib.iteritems()) d['text'] = t.text return d def get_channel_count(path,from_channel_map = True,from_templates=False): d = etree_to_dict(xml.etree.ElementTree.parse(os.path.join(path,'settings.xml')).getroot()) chs =0 if from_templates: return np.load(open(os.path.join(path,'templates.npy'))).shape[-1] if d['SETTINGS'][1]['SIGNALCHAIN'][0]['@name'] == 'Sources/Neuropix': for info in d['SETTINGS'][1]['SIGNALCHAIN'][0]['PROCESSOR'][:385]: if 'CHANNEL' in info.keys(): if info['CHANNEL'][0]['@record'] == '1': chs +=1 return chs if d['SETTINGS'][1]['SIGNALCHAIN'][0]['@name'] == 'Sources/Rhythm FPGA': if from_channel_map: for nm in d['SETTINGS'][1]['SIGNALCHAIN']: name = nm['@name'] if name == 'Filters/Channel Map': #chs = np.shape(d['SETTINGS'][1]['SIGNALCHAIN'][0]['PROCESSOR'][0]['CHANNEL_INFO'])[0] for info in nm['PROCESSOR']: if 'CHANNEL' in info.keys(): if info['CHANNEL'][0]['@record'] == '1': chs +=1 else: for info in d['SETTINGS'][1]['SIGNALCHAIN'][0]['PROCESSOR'][:385]: if 'CHANNEL' in info.keys(): if info['CHANNEL'][0]['@record'] == '1': chs +=1 return chs #returns the root mean squared of the input data def RMS(data,start=0,window=0,despike=False): start = start * samplingRate# sampling rate if window == 0: window = len(data) else: window = window * samplingRate # sampling rate #chunk = filterTrace(data[start:start+window], 70, 6000, 25000, 3)[200:window] chunk = data[int(start):int(start)+int(window)] - np.mean(data[int(start):int(start)+int(window)]) if despike: chunk = despike_trace(chunk,threshold=180) return np.sqrt(sum(chunk**2)/float(len(chunk))) def despike_trace(trace,threshold_sd = 2.5,**kwargs): if 'threshold' in kwargs.keys(): threshold = kwargs['threshold'] else: threshold = np.mean(trace)+threshold_sd*np.std(trace) spike_times_a = mlab.cross_from_below(trace,threshold) spike_times_b = mlab.cross_from_below(trace,-1*threshold) for spike_time in np.concatenate((spike_times_b,spike_times_a)): if spike_time > 30 and spike_time < len(trace)-30: trace[spike_time - 20:spike_time + 20] = 0#np.random.uniform(-1*threshold,threshold,60) return trace def spikeamplitudes_trace(trace,threshold_sd = 3.0,percentile = 0.9,**kwargs): if 'threshold' in kwargs.keys(): threshold = kwargs['threshold'] else: threshold = np.mean(trace)+threshold_sd*np.std(trace) spike_times_a = mlab.cross_from_below(trace,threshold) amps=[] for spike_time in spike_times_a: if spike_time > 30 and spike_time < len(trace)-30: amps.extend([np.max(np.abs(trace[spike_time-30:spike_time+30]))]) if not len(amps) > 10: amps= [0] return np.sort(amps)[int(len(amps)*percentile)]# / 5.0 #returns the peak to peak range of the input data def p2p(data,start=0,window=0): start = start * samplingRate# sampling rate if window == 0: window = len(data) else: window = window * samplingRate # sampling rate chunk = data[start:start+window] return np.max(chunk)-np.min(chunk) #computes a power spectrum of the input data #optionally, plot the computed spectrum def b(data,start=0,window=0,plot=False,ymin=1e-24,ymax=1e8,title='',samplingRate=2500): start = start * samplingRate# sampling rate if window == 0: window = len(data) else: window = window * samplingRate # sampling rate chunk = data[start:start+window]/1e6 ps = np.abs(np.fft.fft(chunk))**2 time_step = 1. / samplingRate freqs = np.fft.fftfreq(chunk.size, time_step) idx = np.argsort(freqs) ps = scipy.signal.savgol_filter(ps,5,3) if plot: plt.plot(freqs[idx], ps[idx]); plt.xlim(xmin=0.01); plt.ylim(ymin=ymin,ymax=ymax) plt.xscale('log') plt.yscale('log') plt.ylabel(r'$power\/density\/\frac{V^2}{Hz}$',color='k',fontsize=18) plt.xlabel(r'$frequency,\/ Hz$',color='k',fontsize=24) plt.tick_params(axis='both', which='major', labelsize=24)#;plt.locator_params(axis='y',nbins=6) plt.title(title) return (freqs[idx], ps[idx]) def periodogram(data,start=0,window=0,plot=False,ymin=1e-24,ymax=1e8,title='',samplingRate=2500): start = start * samplingRate# sampling rate if window == 0: window = len(data) else: window = window * samplingRate # sampling rate chunk = data[start:start+window] f,pXX = scipy.signal.periodogram(chunk,samplingRate,nfft=samplingRate) pXX = scipy.signal.savgol_filter(pXX,3,1) if plot: plt.plot(f, pXX); plt.xlim(xmin=0.5); plt.ylim(ymin=ymin,ymax=ymax) plt.xscale('log') plt.yscale('log') plt.ylabel(r'$power\/density\/\frac{V^2}{Hz}$',color='k',fontsize=18) plt.xlabel(r'$frequency,\/ Hz$',color='k',fontsize=24) plt.tick_params(axis='both', which='major', labelsize=24)#;plt.locator_params(axis='y',nbins=6) plt.title(title) return (f, pXX) def welch_power(data,samplingRate=2500,start=0,window=0,plot=False,ymin=1e-24,ymax=1e8,title=''): start = start * samplingRate# sampling rate if window == 0: window = len(data);print(window) else: window = window * samplingRate # sampling rate chunk = data[start:start+window] f,pXX = scipy.signal.welch(chunk,samplingRate,nfft=samplingRate/2) #pXX = scipy.signal.savgol_filter(pXX,3,1) if plot: plt.plot(f, pXX); plt.xlim(xmin=0.01); plt.ylim(ymin=ymin,ymax=ymax) plt.xscale('log') plt.yscale('log') plt.ylabel(r'$power\/density\/\frac{V^2}{Hz}$',color='k',fontsize=18) plt.xlabel(r'$frequency,\/ Hz$',color='k',fontsize=24) plt.tick_params(axis='both', which='major', labelsize=24)#;plt.locator_params(axis='y',nbins=6) plt.title(title) return (f, pXX) #measure the cross-spectral coherence between two traces. def coherence(x,y,samplingRate = 30000,returnval=None): spectrum, frequencies = mlab.cohere(x,y,Fs=float(samplingRate),NFFT=int(samplingRate)/5) if returnval: if type(returnval) is float: return np.interp(returnval,frequencies,spectrum) if type(returnval) is tuple: return np.trapz(spectrum[np.where(frequencies==returnval[0])[0]:np.where(frequencies==returnval[1])[0]],dx=5.0) else: return (spectrum, frequencies) def get_surface_channel_spikeband(path,start=2.,end=10.,sampling_rate=30000,plot=False,filter_size=2,sigma=1.,filter=False,probemap=None): mm = np.memmap(path, dtype=np.int16, mode='r') print(os.path.dirname(path)) num_channels = get_channel_count(os.path.dirname(path),from_channel_map=False) print(num_channels) chunk = get_chunk(mm,start,end,num_channels,sampling_rate) if probemap is not None: chunk = chunk[probemap,:] plt.imshow(chunk[:,:30000]);plt.gca().set_aspect(100) plt.figure() rms = [] good_channels = [] for ch in range(np.shape(chunk)[0]): if ch not in skip_channels: if filter: data = filtr(chunk[ch,:],300,6000,sampling_rate,3) else: data = chunk[ch,:] rms.extend([RMS(data)]) good_channels.extend([ch]) threshold = np.mean(gaussian_filter1d(rms,filter_size)[::-1][:5])+np.std(gaussian_filter1d(rms,filter_size)[::-1][:5])*sigma #assumes the last 5 are out of the brain; uses the mean + sd of these 5 as the threshold for pial surface # print(np.where(np.array(rms)<8.)) # print(good_channels[np.where(np.array(rms)<8.)[0].astype(int)]) if plot: plt.plot(good_channels,gaussian_filter1d(rms,filter_size)) plt.gca().axhline(threshold,color='r') plt.xlabel('channel number') plt.ylabel('spike band RMS') #print(np.where(np.array(rms)<6.)) del mm try: surface_channel = good_channels[mlab.cross_from_above(gaussian_filter1d(rms,filter_size),threshold)[0]] return surface_channel except: return None def get_surface_channel_gamma(path,start=2.,end=10.,sampling_rate=2500,plot=False): mm = np.memmap(path, dtype=np.int16, mode='r') num_channels = get_channel_count(os.path.dirname(path)) chunk = get_chunk(mm,start,end,num_channels,sampling_rate) gm = [] good_channels = [] for ch in range(np.shape(chunk)[0]): if ch not in skip_channels: f,pXX = welch_power(chunk[ch,:],start=2,window=8) gm.extend([pXX[np.where(f>40.)[0][0]]]) good_channels.extend([ch]) threshold = np.max(gm[::-1][:5]) #assumes the last 5 are out of the brain; uses the max gamma on these channels as the threshold surface_channel = good_channels[mlab.cross_from_above(gaussian_filter1d(gm,0),threshold)[0]] if plot: plt.plot(good_channels,gaussian_filter1d(gm,2)) plt.gca().axhline(threshold,color='r') del mm return surface_channel def get_surface_channel_freq(path,frequency_range=[1,5],start=2.,end=10.,sampling_rate=2500,filter_size=2,sigma=2.,plot=False,filter=False,probemap=None): mm = np.memmap(path, dtype=np.int16, mode='r') num_channels = get_channel_count(os.path.dirname(path),from_channel_map=False) chunk = get_chunk(mm,start,end,num_channels,sampling_rate) if probemap is not None: chunk = chunk[probemap,:] gm = [] good_channels = [] for ch in range(np.shape(chunk)[0]): if ch not in skip_channels: if filter: data = filtr(chunk[ch,:],0.1,300,sampling_rate,3) else: data = chunk[ch,:] f,pXX = welch_power(chunk[ch,:],start=2,window=8) gm.extend([np.mean(pXX[np.where((f>frequency_range[0])&(f<frequency_range[1]))[0]])]) good_channels.extend([ch]) #threshold = np.mean(gm[::-1][:5]) #assumes the last 5 are out of the brain; uses the max gamma on these channels as the threshold threshold = np.mean(gaussian_filter1d(gm,filter_size)[::-1][:5])+np.std(gaussian_filter1d(gm,filter_size)[::-1][:5])*sigma if plot: plt.plot(good_channels,gaussian_filter1d(gm,filter_size)) plt.gca().axhline(threshold,color='r') plt.xlabel('channel number') plt.ylabel('power in '+str(frequency_range[0])+' to '+str(frequency_range[1])+' band') try: surface_channel = good_channels[mlab.cross_from_above(gaussian_filter1d(gm,filter_size),threshold)[-1]] return surface_channel except: return None del mm return surface_channel def get_probe_freq(path,frequency_range=[1,5],start=2.,end=10.,sampling_rate=2500,filter=False,probemap=None): mm = np.memmap(path, dtype=np.int16, mode='r') num_channels = get_channel_count(os.path.dirname(path),from_channel_map=False) chunk = get_chunk(mm,start,end,num_channels,sampling_rate) if probemap is not None: chunk = chunk[probemap,:] gm = [] good_channels = [] for ch in range(np.shape(chunk)[0]): if ch not in skip_channels: if filter != False: data = filtr(chunk[ch,:],filter[0],filter[1],sampling_rate,3) else: data = chunk[ch,:] f,pXX = welch_power(chunk[ch,:],start=2,window=8) gm.extend([np.mean(pXX[np.where((f>frequency_range[0])&(f<frequency_range[1]))[0]])]) good_channels.extend([ch]) del mm return gm def get_probe_spikeband(path,start=2.,end=10.,sampling_rate=30000,plot=False,filter_size=2,sigma=1.,filter=False,probemap=None): mm = np.memmap(path, dtype=np.int16, mode='r') num_channels = get_channel_count(os.path.dirname(path),from_channel_map=False) #print num_channels chunk = get_chunk(mm,start,end,num_channels,sampling_rate) if probemap is not None: chunk = chunk[probemap,:] plt.imshow(chunk[:,:30000]);plt.gca().set_aspect(100) plt.figure() rms = [] good_channels = [] for ch in range(np.shape(chunk)[0]): if ch not in skip_channels: if filter: data = filtr(chunk[ch,:],300,6000,sampling_rate,3) else: data = chunk[ch,:] rms.extend([RMS(data)]) good_channels.extend([ch]) del mm return rms #=================================================================================================
{"hexsha": "54bf33623288a303f516cf288873cfa29717e9e6", "size": 18401, "ext": "py", "lang": "Python", "max_stars_repo_path": "utils/continuous_traces.py", "max_stars_repo_name": "danieljdenman/neuropixels_invitro", "max_stars_repo_head_hexsha": "22ba9f0c7ce9cd562e6e351bf96a312b757df1b4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "utils/continuous_traces.py", "max_issues_repo_name": "danieljdenman/neuropixels_invitro", "max_issues_repo_head_hexsha": "22ba9f0c7ce9cd562e6e351bf96a312b757df1b4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "utils/continuous_traces.py", "max_forks_repo_name": "danieljdenman/neuropixels_invitro", "max_forks_repo_head_hexsha": "22ba9f0c7ce9cd562e6e351bf96a312b757df1b4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.1510638298, "max_line_length": 232, "alphanum_fraction": 0.648606054, "include": true, "reason": "import numpy,import scipy,from scipy", "num_tokens": 5173}
# Copyright 2021 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import sympy import cirq import cirq.testing q0, q1, q2, q3 = cirq.LineQubit.range(4) def test_raises_for_non_commuting_paulis(): with pytest.raises(ValueError, match='commuting'): cirq.PauliSumExponential(cirq.X(q0) + cirq.Z(q0), np.pi / 2) def test_raises_for_non_hermitian_pauli(): with pytest.raises(ValueError, match='hermitian'): cirq.PauliSumExponential(cirq.X(q0) + 1j * cirq.Z(q1), np.pi / 2) @pytest.mark.parametrize( 'psum_exp, expected_qubits', ( (cirq.PauliSumExponential(cirq.Z(q1), np.pi / 2), (q1,)), ( cirq.PauliSumExponential(2j * cirq.X(q0) + 3j * cirq.Y(q2), sympy.Symbol("theta")), (q0, q2), ), ( cirq.PauliSumExponential(cirq.X(q0) * cirq.Y(q1) + cirq.Y(q2) * cirq.Z(q3), np.pi), (q0, q1, q2, q3), ), ), ) def test_pauli_sum_exponential_qubits(psum_exp, expected_qubits): assert psum_exp.qubits == expected_qubits @pytest.mark.parametrize( 'psum_exp, expected_psum_exp', ( ( cirq.PauliSumExponential(cirq.Z(q0), np.pi / 2), cirq.PauliSumExponential(cirq.Z(q1), np.pi / 2), ), ( cirq.PauliSumExponential(2j * cirq.X(q0) + 3j * cirq.Y(q2), sympy.Symbol("theta")), cirq.PauliSumExponential(2j * cirq.X(q1) + 3j * cirq.Y(q3), sympy.Symbol("theta")), ), ( cirq.PauliSumExponential(cirq.X(q0) * cirq.Y(q1) + cirq.Y(q1) * cirq.Z(q3), np.pi), cirq.PauliSumExponential(cirq.X(q1) * cirq.Y(q2) + cirq.Y(q2) * cirq.Z(q3), np.pi), ), ), ) def test_pauli_sum_exponential_with_qubits(psum_exp, expected_psum_exp): assert psum_exp.with_qubits(*expected_psum_exp.qubits) == expected_psum_exp @pytest.mark.parametrize( 'psum, exp', ( (cirq.Z(q0), np.pi / 2), (2 * cirq.X(q0) + 3 * cirq.Y(q2), 1), (cirq.X(q0) * cirq.Y(q1) + cirq.Y(q1) * cirq.Z(q3), np.pi), ), ) def test_with_parameters_resolved_by(psum, exp): psum_exp = cirq.PauliSumExponential(psum, sympy.Symbol("theta")) resolver = cirq.ParamResolver({"theta": exp}) actual = cirq.resolve_parameters(psum_exp, resolver) expected = cirq.PauliSumExponential(psum, exp) assert actual == expected def test_pauli_sum_exponential_parameterized_matrix_raises(): with pytest.raises(ValueError, match='parameterized'): cirq.PauliSumExponential(cirq.X(q0) + cirq.Z(q1), sympy.Symbol("theta")).matrix() @pytest.mark.parametrize( 'psum_exp, expected_unitary', ( (cirq.PauliSumExponential(cirq.X(q0), np.pi / 2), np.array([[0, 1j], [1j, 0]])), ( cirq.PauliSumExponential(2j * cirq.X(q0) + 3j * cirq.Z(q1), np.pi / 2), np.array([[1j, 0, 0, 0], [0, -1j, 0, 0], [0, 0, 1j, 0], [0, 0, 0, -1j]]), ), ), ) def test_pauli_sum_exponential_has_correct_unitary(psum_exp, expected_unitary): assert cirq.has_unitary(psum_exp) assert np.allclose(cirq.unitary(psum_exp), expected_unitary) @pytest.mark.parametrize( 'psum_exp, power, expected_psum', ( ( cirq.PauliSumExponential(cirq.Z(q1), np.pi / 2), 5, cirq.PauliSumExponential(cirq.Z(q1), 5 * np.pi / 2), ), ( cirq.PauliSumExponential(2j * cirq.X(q0) + 3j * cirq.Y(q2), sympy.Symbol("theta")), 5, cirq.PauliSumExponential(2j * cirq.X(q0) + 3j * cirq.Y(q2), 5 * sympy.Symbol("theta")), ), ( cirq.PauliSumExponential(cirq.X(q0) * cirq.Y(q1) + cirq.Y(q2) * cirq.Z(q3), np.pi), 5, cirq.PauliSumExponential(cirq.X(q0) * cirq.Y(q1) + cirq.Y(q2) * cirq.Z(q3), 5 * np.pi), ), ), ) def test_pauli_sum_exponential_pow(psum_exp, power, expected_psum): assert psum_exp**power == expected_psum @pytest.mark.parametrize( 'psum_exp', ( (cirq.PauliSumExponential(0, np.pi / 2)), (cirq.PauliSumExponential(2j * cirq.X(q0) + 3j * cirq.Z(q1), np.pi / 2)), ), ) def test_pauli_sum_exponential_repr(psum_exp): cirq.testing.assert_equivalent_repr(psum_exp) @pytest.mark.parametrize( 'psum_exp, expected_str', ( (cirq.PauliSumExponential(0, np.pi / 2), 'exp(j * 1.5707963267948966 * (0.000))'), ( cirq.PauliSumExponential(2j * cirq.X(q0) + 4j * cirq.Y(q1), 2), 'exp(2 * (2.000j*X(q(0))+4.000j*Y(q(1))))', ), ( cirq.PauliSumExponential(0.5 * cirq.X(q0) + 0.6 * cirq.Y(q1), sympy.Symbol("theta")), 'exp(j * theta * (0.500*X(q(0))+0.600*Y(q(1))))', ), ), ) def test_pauli_sum_exponential_formatting(psum_exp, expected_str): assert str(psum_exp) == expected_str
{"hexsha": "50c4720ca1f44d616f06d6810259cd68d6738bb3", "size": 5370, "ext": "py", "lang": "Python", "max_stars_repo_path": "cirq-core/cirq/ops/pauli_sum_exponential_test.py", "max_stars_repo_name": "Nexuscompute/Cirq", "max_stars_repo_head_hexsha": "640ef8f82d6a56ec95361388ce7976e096cca906", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2022-02-05T22:17:39.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-05T22:17:39.000Z", "max_issues_repo_path": "cirq-core/cirq/ops/pauli_sum_exponential_test.py", "max_issues_repo_name": "pavoljuhas/Cirq", "max_issues_repo_head_hexsha": "b6d6577be61d216ce2f29f8c64ae5879cf3087d5", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 4, "max_issues_repo_issues_event_min_datetime": "2022-01-16T14:12:15.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-24T03:58:46.000Z", "max_forks_repo_path": "cirq-core/cirq/ops/pauli_sum_exponential_test.py", "max_forks_repo_name": "Nexuscompute/Cirq", "max_forks_repo_head_hexsha": "640ef8f82d6a56ec95361388ce7976e096cca906", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.1481481481, "max_line_length": 99, "alphanum_fraction": 0.6143389199, "include": true, "reason": "import numpy,import sympy", "num_tokens": 1739}
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import unittest import itertools import abc import logging import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.inference as paddle_infer from paddle import compat as cpt from typing import * from program_config import TensorConfig, OpConfig, ProgramConfig from auto_scan_test import AutoScanTest logging.basicConfig(level=logging.INFO, format="%(message)s") class TrtLayerAutoScanTest(AutoScanTest): class TensorRTParam: ''' TensorRT subgraph engine parameters. ''' def __init__(self, workspace_size, max_batch_size, min_subgraph_size, precision, use_static, use_calib_mode): self.workspace_size = workspace_size self.max_batch_size = max_batch_size self.min_subgraph_size = min_subgraph_size self.precision = precision self.use_static = use_static self.use_calib_mode = use_calib_mode class DynamicShapeParam: ''' Prepare TensorRT subgraph engine dynamic shape parameters. ''' def __init__(self, min_input_shape, max_input_shape, optim_input_shape, disable_trt_plugin_fp16): self.min_input_shape = min_input_shape self.max_input_shape = max_input_shape self.optim_input_shape = optim_input_shape self.disable_trt_plugin_fp16 = disable_trt_plugin_fp16 def __init__(self, methodName='runTest'): super(TrtLayerAutoScanTest, self).__init__(methodName) self.trt_param = self.TensorRTParam( workspace_size=0, max_batch_size=4, min_subgraph_size=0, precision=paddle_infer.PrecisionType.Float32, use_static=False, use_calib_mode=False) self.dynamic_shape = self.DynamicShapeParam({}, {}, {}, False) def update_program_input_and_weight_with_attr(self, op_attr_list): raise NotImplementedError @abc.abstractmethod def sample_program_configs(self): all_op_attrs_keys = [] all_op_attrs_values = [] for op_config in self.ops_config: all_op_attrs_keys.append(list(op_config["op_attrs"].keys())) all_op_attrs_values.extend(list(op_config["op_attrs"].values())) if len(all_op_attrs_values) == 0: all_op_attrs_values.append([None]) for attrs_sample in itertools.product(*all_op_attrs_values): op_attr_list = [] index = 0 ops = [] log_str = 'TEST_CASE: ' for i in range(len(self.ops_config)): op_config = self.ops_config[i] op_attr = dict( zip( list(op_config["op_attrs"].keys()), attrs_sample[ index:index + len(op_config["op_attrs"])])) if i != len(self.ops_config) - 1: log_str += op_config['op_type'] + str(op_attr) + ' + ' else: log_str += op_config['op_type'] + str(op_attr) op_attr_list.append(op_attr) index = index + len(op_config["op_attrs"]) ops.append( OpConfig( type=op_config["op_type"], inputs=op_config["op_inputs"], outputs=op_config["op_outputs"], attrs=op_attr)) logging.info(log_str) self.update_program_input_and_weight_with_attr(op_attr_list) # if no weight need to save, we create a place_holder to help seriazlie params. if not self.program_weights: self.program_weights = { "place_holder_weight": TensorConfig( shape=[1], data=np.array([1]).astype(np.float32)) } program_config = ProgramConfig( ops=ops, weights=self.program_weights, inputs=self.program_inputs, outputs=self.program_outputs) yield program_config def create_program_config( self, use_trt=True, precision_mode=paddle_infer.PrecisionType.Float32): config = paddle_infer.Config() config.disable_glog_info() config.enable_use_gpu(100, 0) if use_trt: config.switch_ir_debug() config.enable_tensorrt_engine( max_batch_size=self.trt_param.max_batch_size, workspace_size=self.trt_param.workspace_size, min_subgraph_size=self.trt_param.min_subgraph_size, precision_mode=precision_mode, use_static=self.trt_param.use_static, use_calib_mode=self.trt_param.use_calib_mode) if len(self.dynamic_shape.min_input_shape ) != 0 and self.dynamic_shape.min_input_shape.keys( ) == self.dynamic_shape.max_input_shape.keys( ) and self.dynamic_shape.min_input_shape.keys( ) == self.dynamic_shape.opt_input_shape.keys(): config.set_trt_dynamic_shape_info( self.dynamic_shape.min_input_shape, self.dynamic_shape.max_input_shape, self.dynamic_shape.opt_input_shape, self.dynamic_shape.disable_trt_plugin_fp16) return config @abc.abstractmethod def sample_predictor_configs(self): def precision_to_str(p): if p == paddle_infer.PrecisionType.Float32: return 'float32' elif p == paddle_infer.PrecisionType.Half: return 'half' elif p == paddle_infer.PrecisionType.Int8: return 'int8' else: raise NotImplementedError('not supported type.') trt_log_str = '' if len(self.dynamic_shape.min_input_shape ) != 0 and self.dynamic_shape.min_input_shape.keys( ) == self.dynamic_shape.max_input_shape.keys( ) and self.dynamic_shape.min_input_shape.keys( ) == self.dynamic_shape.opt_input_shape.keys(): trt_log_str += 'dynamic_shape ' else: trt_log_str += 'static_shape ' trt_log_str += precision_to_str(self.trt_param.precision) logging.info(' --------- gpu inference ---------') yield self.create_program_config(use_trt=False) logging.info(' --------- trt ' + trt_log_str + ' inference ---------') yield self.create_program_config( use_trt=True, precision_mode=self.trt_param.precision)
{"hexsha": "715006771878795674d9391b926be40d2ed27bc1", "size": 7338, "ext": "py", "lang": "Python", "max_stars_repo_path": "python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py", "max_stars_repo_name": "shiyutang/Paddle", "max_stars_repo_head_hexsha": "5c27c2c00bdb69619fa2bf715f6a0e0708579569", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-09-03T14:11:48.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-03T14:11:48.000Z", "max_issues_repo_path": "python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py", "max_issues_repo_name": "shiyutang/Paddle", "max_issues_repo_head_hexsha": "5c27c2c00bdb69619fa2bf715f6a0e0708579569", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py", "max_forks_repo_name": "shiyutang/Paddle", "max_forks_repo_head_hexsha": "5c27c2c00bdb69619fa2bf715f6a0e0708579569", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 40.7666666667, "max_line_length": 91, "alphanum_fraction": 0.6113382393, "include": true, "reason": "import numpy", "num_tokens": 1457}
# coding: utf-8 # 2021/3/23 @ tongshiwei import logging import numpy as np import torch from tqdm import tqdm from torch import nn from EduCDM import CDM from sklearn.metrics import roc_auc_score, accuracy_score class MFNet(nn.Module): """Matrix Factorization Network""" def __init__(self, user_num, item_num, latent_dim): super(MFNet, self).__init__() self.user_num = user_num self.item_num = item_num self.latent_dim = latent_dim self.user_embedding = nn.Embedding(self.user_num, self.latent_dim) self.item_embedding = nn.Embedding(self.item_num, self.latent_dim) self.response = nn.Linear(2 * self.latent_dim, 1) def forward(self, user_id, item_id): user = self.user_embedding(user_id) item = self.item_embedding(item_id) return torch.squeeze(torch.sigmoid(self.response(torch.cat([user, item], dim=-1))), dim=-1) class MCD(CDM): """Matrix factorization based Cognitive Diagnosis Model""" def __init__(self, user_num, item_num, latent_dim): super(MCD, self).__init__() self.mf_net = MFNet(user_num, item_num, latent_dim) def train(self, train_data, test_data=None, *, epoch: int, device="cpu", lr=0.001) -> ...: loss_function = nn.BCELoss() trainer = torch.optim.Adam(self.mf_net.parameters(), lr) for e in range(epoch): losses = [] for batch_data in tqdm(train_data, "Epoch %s" % e): user_id, item_id, response = batch_data user_id: torch.Tensor = user_id.to(device) item_id: torch.Tensor = item_id.to(device) predicted_response: torch.Tensor = self.mf_net(user_id, item_id) response: torch.Tensor = response.to(device) loss = loss_function(predicted_response, response) # back propagation trainer.zero_grad() loss.backward() trainer.step() losses.append(loss.mean().item()) print("[Epoch %d] LogisticLoss: %.6f" % (e, float(np.mean(losses)))) if test_data is not None: auc, accuracy = self.eval(test_data, device=device) print("[Epoch %d] auc: %.6f, accuracy: %.6f" % (e, auc, accuracy)) def eval(self, test_data, device="cpu") -> tuple: self.mf_net.eval() y_pred = [] y_true = [] for batch_data in tqdm(test_data, "evaluating"): user_id, item_id, response = batch_data user_id: torch.Tensor = user_id.to(device) item_id: torch.Tensor = item_id.to(device) pred: torch.Tensor = self.mf_net(user_id, item_id) y_pred.extend(pred.tolist()) y_true.extend(response.tolist()) self.mf_net.train() return roc_auc_score(y_true, y_pred), accuracy_score(y_true, np.array(y_pred) >= 0.5) def save(self, filepath): torch.save(self.mf_net.state_dict(), filepath) logging.info("save parameters to %s" % filepath) def load(self, filepath): self.mf_net.load_state_dict(torch.load(filepath)) logging.info("load parameters from %s" % filepath)
{"hexsha": "4233812bc509df9fef7c9a1ef10c37d25915b5dd", "size": 3211, "ext": "py", "lang": "Python", "max_stars_repo_path": "EduCDM/MCD/MCD.py", "max_stars_repo_name": "24miaoge/EduCDM", "max_stars_repo_head_hexsha": "49f7cc28dcef748624fbd7cc7a524826abc5f37e", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-09-02T05:44:43.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-02T05:44:43.000Z", "max_issues_repo_path": "EduCDM/MCD/MCD.py", "max_issues_repo_name": "24miaoge/EduCDM", "max_issues_repo_head_hexsha": "49f7cc28dcef748624fbd7cc7a524826abc5f37e", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "EduCDM/MCD/MCD.py", "max_forks_repo_name": "24miaoge/EduCDM", "max_forks_repo_head_hexsha": "49f7cc28dcef748624fbd7cc7a524826abc5f37e", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.908045977, "max_line_length": 99, "alphanum_fraction": 0.6178760511, "include": true, "reason": "import numpy", "num_tokens": 747}
from sklearn.decomposition import PCA import load_data import numpy as np """Using PCA(principle component analisys) to reduce the dimensions of data""" #loading mnist data x_scaled, y = load_data.fetch_data() #separating training and testing datas train_x = x_scaled[:60000, :] train_y = y[:60000] test_x = x_scaled[60000:, :] test_y = y[60000:] #creating a pca object pca = PCA(.95) #0.95 percentage of information will be preserved. pca.fit(train_x) #resampling the data to new dimensions train_x = pca.transform(train_x) test_x = pca.transform(test_x) #saving processed data into .npy file np.save('train_x', train_x ) np.save('train_y', train_y ) np.save('test_x', test_x) np.save('test_y', test_y)
{"hexsha": "9e31031190f5f704d254e0a67fcc980d394c2a62", "size": 713, "ext": "py", "lang": "Python", "max_stars_repo_path": "pca.py", "max_stars_repo_name": "ShafeekSaleem/MNIST", "max_stars_repo_head_hexsha": "f738ce3f43483bdba93d120b0684f53e300718f6", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "pca.py", "max_issues_repo_name": "ShafeekSaleem/MNIST", "max_issues_repo_head_hexsha": "f738ce3f43483bdba93d120b0684f53e300718f6", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pca.py", "max_forks_repo_name": "ShafeekSaleem/MNIST", "max_forks_repo_head_hexsha": "f738ce3f43483bdba93d120b0684f53e300718f6", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.5862068966, "max_line_length": 78, "alphanum_fraction": 0.747545582, "include": true, "reason": "import numpy", "num_tokens": 196}
MODULE mecih_I INTERFACE !...Generated by Pacific-Sierra Research 77to90 4.4G 10:47:25 03/09/06 SUBROUTINE mecih (DIAG, CIMAT, NMOS, LAB, XY) USE vast_kind_param,ONLY: DOUBLE REAL(DOUBLE), DIMENSION(*), INTENT(IN) :: DIAG REAL(DOUBLE), DIMENSION(*), INTENT(out) :: cimat REAL(DOUBLE), DIMENSION(*), INTENT(in) :: xy INTEGER, INTENT(IN) :: LAB END SUBROUTINE END INTERFACE END MODULE
{"hexsha": "6ed0fe2359f1aec46a3fb25e0100b9ab93dd0aee", "size": 479, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "2006_MOPAC7.1/src_interfaces/mecih_I.f90", "max_stars_repo_name": "openmopac/MOPAC-archive", "max_stars_repo_head_hexsha": "01510e44246de34a991529297a10bcf831336038", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2021-12-16T20:53:27.000Z", "max_stars_repo_stars_event_max_datetime": "2021-12-16T20:54:11.000Z", "max_issues_repo_path": "2006_MOPAC7.1/src_interfaces/mecih_I.f90", "max_issues_repo_name": "openmopac/MOPAC-archive", "max_issues_repo_head_hexsha": "01510e44246de34a991529297a10bcf831336038", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "2006_MOPAC7.1/src_interfaces/mecih_I.f90", "max_forks_repo_name": "openmopac/MOPAC-archive", "max_forks_repo_head_hexsha": "01510e44246de34a991529297a10bcf831336038", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.8461538462, "max_line_length": 76, "alphanum_fraction": 0.5866388309, "num_tokens": 152}
import numpy as np import pandas as pd from bs4 import BeautifulSoup import pickle import re from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer import nltk nltk.download('stopwords') from nltk.corpus import stopwords def process_text(review): # Extract text from html review_text = BeautifulSoup(review,features="html.parser").get_text() # Remove non-letters review_text = re.sub("[^a-zA-Z]"," ", review_text) # Convert words to lower case and split them words = review_text.lower().split() # Remove stopwords stops = set(stopwords.words("english")) words = [w for w in words if not w in stops] review_processed = " ".join(words) return review_processed def train(X_train, y_train): # Pre-process text X = X_train.apply(lambda x: process_text(x)) # Transform text to features vect = TfidfVectorizer() vect.fit(X) X_featurized = vect.transform(X) # Train model model = RandomForestClassifier() model.fit(X_featurized, y_train) # Save model and vectorizer pickle.dump(model, open('./models/model.pkl','wb')) pickle.dump(vect, open('./models/vect.pkl','wb')) return def predict(review, model, vect): label = {0: 'negative', 1: 'positive'} review = process_text(review) X = vect.transform([review]) y = model.predict(X)[0] proba = np.max(model.predict_proba(X)) return label[y], proba if __name__ == '__main__': # Run model training train_data = pd.read_csv('data/labeledTrainData.tsv',header=0,delimiter='\t',quoting=3) X_train = train_data['review'] y_train = train_data['sentiment'] train(X_train,y_train) print('Training complete')
{"hexsha": "46aae082f26230ef84e66583b4868e42ff0ea6b8", "size": 1743, "ext": "py", "lang": "Python", "max_stars_repo_path": "5_deployment/streamlit_deploy_example/model.py", "max_stars_repo_name": "DukeAIPI/AIPI540-Deep-Learning-Applications", "max_stars_repo_head_hexsha": "1f8786ef45dd0405608a8782d15e2498153e67a1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 12, "max_stars_repo_stars_event_min_datetime": "2022-01-03T22:25:36.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T17:49:38.000Z", "max_issues_repo_path": "5_deployment/streamlit_deploy_example/model.py", "max_issues_repo_name": "DukeAIPI/AIPI540-Deep-Learning-Applications", "max_issues_repo_head_hexsha": "1f8786ef45dd0405608a8782d15e2498153e67a1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2022-01-10T14:44:37.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-15T23:25:20.000Z", "max_forks_repo_path": "5_deployment/streamlit_deploy_example/model.py", "max_forks_repo_name": "DukeAIPI/AIPI540-Deep-Learning-Applications", "max_forks_repo_head_hexsha": "1f8786ef45dd0405608a8782d15e2498153e67a1", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 17, "max_forks_repo_forks_event_min_datetime": "2022-01-04T02:02:10.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-11T16:36:33.000Z", "avg_line_length": 30.5789473684, "max_line_length": 91, "alphanum_fraction": 0.6953528399, "include": true, "reason": "import numpy", "num_tokens": 429}
# -*- coding: utf-8 -*- """ Created on Wed Aug 25 16:26:32 2021 @author: kibong """ # In[] from AAA import Wav2Vec2Tokenizer, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import sounddevice as sd import torch import numpy as np # load model and tokenizer tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") # define function to read in sound file def map_to_array(batch): speech, fs = sf.read(batch["file"]) batch["speech"] = speech batch["fs"] = fs return batch # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") ds = ds.map(map_to_array) waveform = np.array(ds["speech"][0]) fs = np.array(ds["fs"][0]) sd.play(waveform, fs) print('Sample rate:',fs,'Hz') print('Total time:',len(waveform)/fs,'s') # tokenize input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids) # In[] # from datasets import load_dataset # from AAA import Wav2Vec2ForCTC, Wav2Vec2Tokenizer # import soundfile as sf # import torch # from jiwer import wer # librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda") # tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") # def map_to_array(batch): # speech, _ = sf.read(batch["file"]) # batch["speech"] = speech # return batch # librispeech_eval = librispeech_eval.map(map_to_array) # def map_to_pred(batch): # input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values # with torch.no_grad(): # logits = model(input_values.to("cuda")).logits # predicted_ids = torch.argmax(logits, dim=-1) # transcription = tokenizer.batch_decode(predicted_ids) # batch["transcription"] = transcription # return batch # result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) # print("WER:", wer(result["text"], result["transcription"]))
{"hexsha": "eea706ca676425299c07f5fd5c4faf98ec462d66", "size": 2438, "ext": "py", "lang": "Python", "max_stars_repo_path": "wav2vec2_libribase_example.py", "max_stars_repo_name": "kkb131/radar2txt", "max_stars_repo_head_hexsha": "4deb26db596c314233299c40684c4f84876dfd6d", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-10-03T07:42:58.000Z", "max_stars_repo_stars_event_max_datetime": "2021-10-12T04:55:30.000Z", "max_issues_repo_path": "wav2vec2_libribase_example.py", "max_issues_repo_name": "kkb131/radar2txt", "max_issues_repo_head_hexsha": "4deb26db596c314233299c40684c4f84876dfd6d", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "wav2vec2_libribase_example.py", "max_forks_repo_name": "kkb131/radar2txt", "max_forks_repo_head_hexsha": "4deb26db596c314233299c40684c4f84876dfd6d", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.7317073171, "max_line_length": 112, "alphanum_fraction": 0.7034454471, "include": true, "reason": "import numpy", "num_tokens": 653}
import numpy as np import matplotlib.pyplot as plt #---------------------Import coordinate file-------------------------# f_x = 'simple_bulk/img/subdataset1_geometry/x.txt' f_l = 'simple_bulk/img/subdataset1_geometry/l.txt' x = np.loadtxt(f_x, dtype = int) l = np.loadtxt(f_l, dtype = int) #-------------------Column Parameters---------------------------------# L = 40 # length of column w = 5 # width of column #-------------------Generate Image-------------------------------------# def img_gen(L,w,x,l,ii): # L and w are coumn dimensions # x and l are files to generate geometry # ii is the column number to be generated x = x l = l img = np.zeros((L,w), dtype = bool) img[0,0:w] = 1 img[-1,0:w] = 1 for jj in range(1,L-1): img[jj,x[ii][jj]-l[ii][jj]:x[ii][jj]+l[ii][jj]] = 1 return img img = [] for ii in range(0,x.shape): img.append(img_gen(L,w,x,l,ii)) #img ouput, save as array of images if want to convert to graph img = np.asarray(img) np.save('subdataset1/img/img.npy',img)
{"hexsha": "813004577d0875d8992c9b8d236857fe6cfa7fdc", "size": 1069, "ext": "py", "lang": "Python", "max_stars_repo_path": "Domain/subdataset1_domain/subdataset1_img.py", "max_stars_repo_name": "pprachas/ABC_dataset", "max_stars_repo_head_hexsha": "61c915853c0229295e728f869b11b113ee59f098", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Domain/subdataset1_domain/subdataset1_img.py", "max_issues_repo_name": "pprachas/ABC_dataset", "max_issues_repo_head_hexsha": "61c915853c0229295e728f869b11b113ee59f098", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Domain/subdataset1_domain/subdataset1_img.py", "max_forks_repo_name": "pprachas/ABC_dataset", "max_forks_repo_head_hexsha": "61c915853c0229295e728f869b11b113ee59f098", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.4102564103, "max_line_length": 99, "alphanum_fraction": 0.5378858746, "include": true, "reason": "import numpy", "num_tokens": 302}
# -*- coding: utf-8 -*- """ Created on Mon Feb 17 00:42:53 2020 @author: kai """ import time start = time.time() import numpy as np import os import sys import tensorflow as tf import cv2 from PIL import Image import pandas as pd #if tf.__version__ < '1.4.0': # raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') os.chdir('C:\\tensorflow_models\\research\\object_detection') #Env setup # This is needed to display the images. #%matplotlib inline # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") #Object detection imports from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util #Model preparation MODEL_NAME = 'cuccumber_saved_model' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'cuccumber.pbtxt') NUM_CLASSES = 2 #Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # Loading label map label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Helper code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) #Detection # For the sake of simplicity we will use only 2 images: # image1.jpg # image2.jpg # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS. PATH_TO_TEST_IMAGES_DIR = 'test_images' TEST_IMAGE_DIRS = os.listdir('C:\\tensorflow_models\\research\\object_detection\\test_images') os.chdir('C:\\tensorflow_models\\research\\object_detection\\test_images') # Size, in inches, of the output images. IMAGE_SIZE = (12, 8) output_image_path = ("C:\\tensorflow_models\\research\\object_detection\\_result") # 另外加了输出识别结果框的坐标,保存为.csv表格文件 output_csv_path = ("C:\\tensorflow_models\\research\\object_detection\\_result") for image_folder in TEST_IMAGE_DIRS: with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # Definite input and output Tensors for detection_graph image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') TEST_IMAGE_PATHS = os.listdir(os.path.join(image_folder)) os.makedirs(output_image_path+image_folder) data = pd.DataFrame() for image_path in TEST_IMAGE_PATHS: image = Image.open(image_folder + '//'+image_path) width, height = image.size # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) # Actual detection. (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) #write images #保存识别结果图片 cv2.imwrite(output_image_path+image_folder+'\\'+image_path.split('\\')[-1],cv2.cvtColor(image_np , cv2.COLOR_RGB2BGR)) s_boxes = boxes[scores > 0.5] s_classes = classes[scores > 0.5] s_scores=scores[scores>0.5] #write table #保存位置坐标结果到 .csv表格 for i in range(len(s_classes)): newdata= pd.DataFrame(0, index=range(1), columns=range(7)) newdata.iloc[0,0] = image_path.split("\\")[-1].split('.')[0] newdata.iloc[0,1] = s_boxes[i][0]*height #ymin newdata.iloc[0,2] = s_boxes[i][1]*width #xmin newdata.iloc[0,3] = s_boxes[i][2]*height #ymax newdata.iloc[0,4] = s_boxes[i][3]*width #xmax newdata.iloc[0,5] = s_scores[i] newdata.iloc[0,6] = s_classes[i] data = data.append(newdata) data.to_csv(output_csv_path+image_folder+'.csv',index = False) end = time.time() print("Execution Time: ", end - start)
{"hexsha": "762f0ba328927034542b6b12e4e6f00fb49ee8f0", "size": 5960, "ext": "py", "lang": "Python", "max_stars_repo_path": "research/object_detection/testing.py", "max_stars_repo_name": "kailliang/Object_Detection", "max_stars_repo_head_hexsha": "34a6592980c09d021994f51e297556bc98e1461a", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "research/object_detection/testing.py", "max_issues_repo_name": "kailliang/Object_Detection", "max_issues_repo_head_hexsha": "34a6592980c09d021994f51e297556bc98e1461a", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "research/object_detection/testing.py", "max_forks_repo_name": "kailliang/Object_Detection", "max_forks_repo_head_hexsha": "34a6592980c09d021994f51e297556bc98e1461a", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 37.25, "max_line_length": 129, "alphanum_fraction": 0.6661073826, "include": true, "reason": "import numpy", "num_tokens": 1399}
! DESCRIPTION: ! use procedure pointer to invok different subprograms possesing indentical interfaces ! compare it with function pointer in C. module Calc_mod implicit none private public :: Calc_debug, Calc_normal, Calc_proc interface function Calc_proc(real_arg, opt_format) result (ret_val) real, intent(in) :: real_arg character (*), intent(in), optional :: opt_format real :: ret_val end function Calc_proc end interface contains function Calc_debug(arg1, opt_format) result(ret_val) real, intent(in) :: arg1 character (*), intent(in), optional :: opt_format real :: ret_val ret_val = 0.0 print *,"WITH DEBUG" end function Calc_debug function Calc_normal(arg1, opt_format) result(ret_val) real, intent(in) :: arg1 character (*), intent(in), optional :: opt_format real :: ret_val ret_val = 0.0 print *,"NORMAL" end function Calc_normal end module Calc_mod program Proc_pointer_test use Calc_mod, only: Calc_debug, Calc_normal, Calc_proc implicit none procedure (Calc_proc), pointer :: calc_func_ptr => null () real :: func_value = 0.0, real_arg = 0.0 integer :: i_two_pass logical :: debug_on = .false. do i_two_pass = 1, 2 if (debug_on) then calc_func_ptr => Calc_debug else calc_func_ptr => Calc_normal end if select case(i_two_pass) case (1) func_value = calc_func_ptr(real_arg) debug_on = .not. debug_on ! make sure next time it will select the other case. case(2) func_value = Calc_func_ptr (real_arg, "WM") end select end do end program Proc_pointer_test
{"hexsha": "ec5dac217d85ab73b804921824873e7d6821b470", "size": 1778, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "modern_fotran/NewAttribute/procedure_pointer.f90", "max_stars_repo_name": "ComplicatedPhenomenon/Fortran_Takeoff", "max_stars_repo_head_hexsha": "a13180050367e59a91973af96ab680c2b76097be", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "modern_fotran/NewAttribute/procedure_pointer.f90", "max_issues_repo_name": "ComplicatedPhenomenon/Fortran_Takeoff", "max_issues_repo_head_hexsha": "a13180050367e59a91973af96ab680c2b76097be", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "modern_fotran/NewAttribute/procedure_pointer.f90", "max_forks_repo_name": "ComplicatedPhenomenon/Fortran_Takeoff", "max_forks_repo_head_hexsha": "a13180050367e59a91973af96ab680c2b76097be", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 26.5373134328, "max_line_length": 97, "alphanum_fraction": 0.6361079865, "num_tokens": 439}
# -------------- #Header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #path of the data file- path data = pd.read_csv(path, sep=',', delimiter=None) data['Gender'].replace(to_replace="-", value="Agender", inplace=True) #print(data) gender_count = data['Gender'].value_counts() gender_count.plot(kind='bar', stacked=False, figsize=(5,5)) plt.ylabel("No. of SHeros") plt.xticks(rotation=45) #Code starts here # -------------- #Code starts here alignment = data['Alignment'].value_counts() print(alignment) alignment.plot(kind='pie', label="Character Alignment" ,autopct="%1.1f%%") # -------------- #Code starts here sc_df = data[['Strength', 'Combat']] ic_df = data[['Intelligence', 'Combat']] sc_covariance = sc_df.Strength.cov(sc_df.Combat) ic_covariance = ic_df.Intelligence.cov(ic_df.Combat) sc_strength = sc_df['Strength'].std() sc_combat = sc_df['Combat'].std() ic_intelligence = ic_df['Intelligence'].std() ic_combat = ic_df['Combat'].std() sc_pearson = sc_covariance / (sc_strength * sc_combat) print(sc_pearson) ic_pearson = ic_covariance / (ic_intelligence * ic_combat) print(ic_pearson) # -------------- #Code starts here total_high = data['Total'].quantile(q=0.99) super_best = data[data['Total'] > total_high] super_best_names = list(super_best['Name']) print(super_best_names) print(type(super_best_names)) # -------------- #Code starts here fig, (ax_1, ax_2, ax_3) = plt.subplots(1,3) ax_1.boxplot(super_best['Intelligence']) ax_2.boxplot(super_best['Speed']) ax_3.boxplot(super_best['Power']) ax_1.set_title('Intelligence') ax_2.set_title('Speed') ax_3.set_title('Power') #fig.subplots_adjust(hspace=0.7) plt.tight_layout()
{"hexsha": "fc06d3f0921a2f7b6b47cc36398dccc74985fd90", "size": 1750, "ext": "py", "lang": "Python", "max_stars_repo_path": "Statistics/code.py", "max_stars_repo_name": "hn1201/ga-learner-dsmp-repo", "max_stars_repo_head_hexsha": "c42656551e930d13df98f6631bb63fe179035ed8", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Statistics/code.py", "max_issues_repo_name": "hn1201/ga-learner-dsmp-repo", "max_issues_repo_head_hexsha": "c42656551e930d13df98f6631bb63fe179035ed8", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Statistics/code.py", "max_forks_repo_name": "hn1201/ga-learner-dsmp-repo", "max_forks_repo_head_hexsha": "c42656551e930d13df98f6631bb63fe179035ed8", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 23.0263157895, "max_line_length": 75, "alphanum_fraction": 0.6805714286, "include": true, "reason": "import numpy", "num_tokens": 469}
//================================================================================================== /*! @file @copyright 2015 NumScale SAS @copyright 2015 J.T. Lapreste Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt) */ //================================================================================================== #ifndef BOOST_SIMD_ARCH_COMMON_GENERIC_FUNCTION_REC_HPP_INCLUDED #define BOOST_SIMD_ARCH_COMMON_GENERIC_FUNCTION_REC_HPP_INCLUDED #include <boost/simd/function/rec.hpp> #include <boost/dispatch/function/overload.hpp> #include <boost/config.hpp> namespace boost { namespace simd { namespace ext { namespace bd = boost::dispatch; BOOST_DISPATCH_OVERLOAD ( rec_ , (typename T) , bd::cpu_ , bd::generic_<bd::unspecified_<T>> , boost::simd::fast_tag ) { BOOST_FORCEINLINE T operator()(T const& a , fast_tag const& ) const BOOST_NOEXCEPT { return rec(a); } }; } } } #endif
{"hexsha": "88aef82445affc87262c9f6ba98f5767eabd5e03", "size": 1184, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "include/boost/simd/arch/common/generic/function/rec.hpp", "max_stars_repo_name": "yaeldarmon/boost.simd", "max_stars_repo_head_hexsha": "561316cc54bdc6353ca78f3b6d7e9120acd11144", "max_stars_repo_licenses": ["BSL-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "include/boost/simd/arch/common/generic/function/rec.hpp", "max_issues_repo_name": "yaeldarmon/boost.simd", "max_issues_repo_head_hexsha": "561316cc54bdc6353ca78f3b6d7e9120acd11144", "max_issues_repo_licenses": ["BSL-1.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "include/boost/simd/arch/common/generic/function/rec.hpp", "max_forks_repo_name": "yaeldarmon/boost.simd", "max_forks_repo_head_hexsha": "561316cc54bdc6353ca78f3b6d7e9120acd11144", "max_forks_repo_licenses": ["BSL-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.1578947368, "max_line_length": 100, "alphanum_fraction": 0.5084459459, "num_tokens": 224}
using DataFrames using Gadfly using Colors include("theory.jl") include("transitions.jl") tr_chains_d1(θ, N_H, N_E, p_H, p_E) = tr_chains(θ, N_H, N_E, p_H, p_E, 1) tr_chains_d2(θ, N_H, N_E, p_H, p_E) = tr_chains(θ, N_H, N_E, p_H, p_E, 2) tr_chains_d10(θ, N_H, N_E, p_H, p_E) = tr_chains(θ, N_H, N_E, p_H, p_E, 10) tr_chains_d50(θ, N_H, N_E, p_H, p_E) = tr_chains(θ, N_H, N_E, p_H, p_E, 50) tr_chains_d100(θ, N_H, N_E, p_H, p_E) = tr_chains(θ, N_H, N_E, p_H, p_E, 100) conj_chains_d1(λ_E, λ_H, p_H, p_E) = conj_chains(λ_E, λ_H, p_H, p_E, 1) theory_chains_d1(λ_E, λ_H, p_H, p_E) = theory_chains_upper(λ_E, λ_H, p_H, p_E, 1) conj_chains_d50(λ_E, λ_H, p_H, p_E) = conj_chains(λ_E, λ_H, p_H, p_E, 50) theory_chains_d50(λ_E, λ_H, p_H, p_E) = theory_chains_upper(λ_E, λ_H, p_H, p_E, 50) function run_sim(θ, p_E, p_H, T, transition) N_H = 0 N_E = 0 hist = DataFrame(time = Array{Float64}(0), N_E = Array{Float64}(0), N_H = Array{Float64}(0)) for i in 1:T (N_H, N_E) = transition(θ, N_H, N_E, p_H, p_E) push!(hist, (i, N_E, N_H)) end return hist #mean(hist[convert(3*T/4):T,:N_H]) end #Runs markov chain, not the Jump Process. function run_sim(λ_E, λ_H, p_E, p_H, T, transition) θ= λ_H/(λ_H + λ_E) if transition in [theory_prioE_lower, theory_prioE_upper, conj_prioE, theory_chains_d1, conj_chains_d1, theory_chains_d50, conj_chains_d50] return transition(λ_E, λ_H, p_E, p_H) else h = run_sim(θ, p_E, p_H, T, transition) h[:w_H] = h[:N_H]/λ_H h[:w_E] = h[:N_E]/λ_E return mean(h[Int(3*T/4):T, :w_H]) end end function run_sim_E(λ_E, λ_H, p_E, p_H, T, transition) θ= λ_H/(λ_H + λ_E) h = run_sim(θ, p_E, p_H, T, transition) h[:w_H] = h[:N_H]/λ_H h[:w_E] = h[:N_E]/λ_E return mean(h[Int(3*T/4):T, :w_E]) end function run_multiple_sim(λ_E_range, λ_H_range, p_E_range, p_H_range, transitions_list; w_E = false) df = DataFrame(λ_H = Array{Float64}(0), λ_E = Array{Float64}(0), θ = Array{Float64}(0), p_H = Array{Float64}(0), p_E = Array{Float64}(0)) for transition in transitions_list df[Symbol(transition)] = Array{Float64}(0) end v = zeros(5 + length(transitions_list)) for λ_H in λ_H_range v[1] = λ_H for λ_E in λ_E_range v[2] = λ_E θ = λ_H/(λ_H + λ_E) v[3] = θ for p_H in p_H_range v[4] = p_H for p_E in p_E_range v[5] = p_E for (k, transition) in enumerate(transitions_list) v[5 + k] = run_sim(λ_E, λ_H, p_E, p_H, T, transition) if w_E v[5 + k] = run_sim_E(λ_E, λ_H, p_E, p_H, T, transition) end end push!(df, v) end end end end return df end
{"hexsha": "7edc7746ced57591c4886cf3946c60ca6e05a620", "size": 3086, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/run_sim.jl", "max_stars_repo_name": "mburq/matching_thickness", "max_stars_repo_head_hexsha": "7f0c17e9d97be80d4af242e81d4f78b0aac930db", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/run_sim.jl", "max_issues_repo_name": "mburq/matching_thickness", "max_issues_repo_head_hexsha": "7f0c17e9d97be80d4af242e81d4f78b0aac930db", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/run_sim.jl", "max_forks_repo_name": "mburq/matching_thickness", "max_forks_repo_head_hexsha": "7f0c17e9d97be80d4af242e81d4f78b0aac930db", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 35.0681818182, "max_line_length": 100, "alphanum_fraction": 0.546338302, "num_tokens": 1130}
string_1 = abcd efg string_2 = abc" $\?M string_3 = \?\\'"
{"hexsha": "9ea0b3236e6c43a8f01324a98fc05c68498b2908", "size": 62, "ext": "r", "lang": "R", "max_stars_repo_path": "test/unittest/types/tst.stringconstants.r", "max_stars_repo_name": "alan-maguire/dtrace-utils", "max_stars_repo_head_hexsha": "53b33a89ef7eaeba5ce06d50a4c73fe91c1fa99e", "max_stars_repo_licenses": ["UPL-1.0"], "max_stars_count": 66, "max_stars_repo_stars_event_min_datetime": "2018-04-16T14:28:20.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-15T14:36:05.000Z", "max_issues_repo_path": "test/unittest/types/tst.stringconstants.r", "max_issues_repo_name": "tjfontaine/dtrace-utils", "max_issues_repo_head_hexsha": "1bd5b3825ca0dd641694f795734b9bbbfd3f2ebb", "max_issues_repo_licenses": ["UPL-1.0"], "max_issues_count": 13, "max_issues_repo_issues_event_min_datetime": "2021-01-06T16:28:59.000Z", "max_issues_repo_issues_event_max_datetime": "2021-12-10T18:46:58.000Z", "max_forks_repo_path": "test/unittest/types/tst.stringconstants.r", "max_forks_repo_name": "tjfontaine/dtrace-utils", "max_forks_repo_head_hexsha": "1bd5b3825ca0dd641694f795734b9bbbfd3f2ebb", "max_forks_repo_licenses": ["UPL-1.0"], "max_forks_count": 15, "max_forks_repo_forks_event_min_datetime": "2018-07-23T22:35:23.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:36.000Z", "avg_line_length": 7.75, "max_line_length": 20, "alphanum_fraction": 0.564516129, "num_tokens": 30}
""" usage: kfold_partition_dataset.py [-h] [-i IMAGEDIR] [-o OUTPUTDIR] [-k KFOLDS] [-x] [-s SEED] Partition dataset of images into training and testing sets optional arguments: -h, --help show this help message and exit -i IMAGEDIR, --imageDir IMAGEDIR Path to the folder where the image dataset is stored. If not specified, the CWD will be used. -o OUTPUTDIR, --outputDir OUTPUTDIR Path to the output folder where the train and test dirs should be created. Defaults to the same directory as IMAGEDIR. -k KFOLDS, --kfolds KFOLDS The number of folds over the total number of images, used for k-fold cross validation. The default is 10. -x, --xml Set this flag if you want the xml annotation files to be processed and copied over. -s, --seed SEED Set the seed for shuffling randomization. """ import os import re from shutil import copyfile import argparse import math import random # Imports for k-fold cross-validation from sklearn.model_selection import KFold import numpy as np def iterate_dir(source, dest, k, copy_xml): source = source.replace('\\', '/') dest = dest.replace('\\', '/') # Shuffle images first so we get a good test. images = [f for f in os.listdir(source) if re.search(r'([a-zA-Z0-9\s_\\.\-\(\):])+(.JPG|.jpg|.jpeg|.png)$', f)] random.shuffle(images) if images == None or len(images) == 0: print("Error: No images found.") exit(1) # Fold data set into [k] folds. # For each fold, use 1/[k] as validation data and [k]-1/[k] as test data. np_images = np.array(images) kf = KFold(n_splits=k, shuffle=False) print(kf) # Count keeps track of which fold we are in. kfold_count = 0 for train_index, test_index in kf.split(np_images): print(f"Current fold: {kfold_count}") print(f"Size of training data: {train_index.size} Size of testing data: {test_index.size}") # Make directories. train_dir = os.path.join(dest, f'train_{kfold_count}fold') test_dir = os.path.join(dest, f'test_{kfold_count}fold') if not os.path.exists(train_dir): os.makedirs(train_dir) if not os.path.exists(test_dir): os.makedirs(test_dir) # Copy training images. train_images = np.take(np_images, train_index) for filename in train_images: copyfile(os.path.join(source, filename), os.path.join(train_dir, filename)) if copy_xml: xml_filename = os.path.splitext(filename)[0]+'.xml' copyfile(os.path.join(source, "../Annotations", xml_filename), os.path.join(train_dir, xml_filename)) # Copy testing images. test_images = np.take(np_images, test_index) for filename in test_images: copyfile(os.path.join(source, filename), os.path.join(test_dir, filename)) if copy_xml: xml_filename = os.path.splitext(filename)[0]+'.xml' copyfile(os.path.join(source, "../Annotations", xml_filename), os.path.join(test_dir,xml_filename)) # Update count. kfold_count += 1 # Example command: python3 scripts/preprocessing/kfold_partition_dataset.py -i ../ECUSTFD-resized-/JPEGImages/ -o workspace/ -k 5 def main(): # Initiate argument parser parser = argparse.ArgumentParser(description="Partition dataset of images into training and testing sets based on k-folds.", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( '-i', '--imageDir', help='Path to the folder where the image dataset is stored. If not specified, the CWD will be used.', type=str, default=os.getcwd() ) parser.add_argument( '-o', '--outputDir', help='Path to the output folder where the train and test dirs should be created. ' 'Defaults to the same directory as IMAGEDIR.', type=str, default=None ) parser.add_argument( '-k', '--kfolds', help='The number of folds over the total number of images used for cross-validation. The default is 10.', default=10, type=int) parser.add_argument( '-x', '--xml', help='Set this flag if you want the xml annotation files to be processed and copied over.', action='store_true' ) parser.add_argument( '-s', '--seed', help='Set the seed for shuffling randomization.', default=10, type=int) args = parser.parse_args() if args.outputDir is None: args.outputDir = args.imageDir if args.imageDir is None: print("Error: Need image directory.") sys.exit(1) # Seed random random.seed(args.seed) print(f"Random seed is {args.seed}.") # Now we are ready to start the iteration iterate_dir(args.imageDir, args.outputDir, args.kfolds, args.xml) if __name__ == '__main__': main()
{"hexsha": "2877f1f9f56dfe1998bf4c5990a19c38a3966486", "size": 5034, "ext": "py", "lang": "Python", "max_stars_repo_path": "scripts/preprocessing/kfold_partition_dataset.py", "max_stars_repo_name": "kallentu/chowdr", "max_stars_repo_head_hexsha": "47efd86025836e04c251c06f86c32d5519b2e0a7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2020-10-03T02:12:00.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-09T20:48:46.000Z", "max_issues_repo_path": "scripts/preprocessing/kfold_partition_dataset.py", "max_issues_repo_name": "kallentu/chowdr", "max_issues_repo_head_hexsha": "47efd86025836e04c251c06f86c32d5519b2e0a7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 19, "max_issues_repo_issues_event_min_datetime": "2020-10-03T02:17:47.000Z", "max_issues_repo_issues_event_max_datetime": "2020-11-20T03:50:04.000Z", "max_forks_repo_path": "scripts/preprocessing/kfold_partition_dataset.py", "max_forks_repo_name": "kallentu/chowdr", "max_forks_repo_head_hexsha": "47efd86025836e04c251c06f86c32d5519b2e0a7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2021-03-31T08:09:53.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-12T10:43:29.000Z", "avg_line_length": 36.4782608696, "max_line_length": 142, "alphanum_fraction": 0.6324990068, "include": true, "reason": "import numpy", "num_tokens": 1188}
# Authors: Soledad Galli <solegalli@protonmail.com> # License: BSD 3 clause import numpy as np import pandas as pd from feature_engine.outliers import Winsorizer class OutlierTrimmer(Winsorizer): """The OutlierTrimmer() removes observations with outliers from the dataset. The OutlierTrimmer() first calculates the maximum and /or minimum values beyond which a value will be considered an outlier, and thus removed. Limits are determined using: - a Gaussian approximation - the inter-quantile range proximity rule - percentiles. **Gaussian limits:** - right tail: mean + 3* std - left tail: mean - 3* std **IQR limits:** - right tail: 75th quantile + 3* IQR - left tail: 25th quantile - 3* IQR where IQR is the inter-quartile range: 75th quantile - 25th quantile. **percentiles or quantiles:** - right tail: 95th percentile - left tail: 5th percentile You can select how far out to cap the maximum or minimum values with the parameter `'fold'`. If `capping_method='gaussian'` fold gives the value to multiply the std. If `capping_method='iqr'` fold is the value to multiply the IQR. If `capping_method='quantile'`, fold is the percentile on each tail that should be censored. For example, if fold=0.05, the limits will be the 5th and 95th percentiles. If fold=0.1, the limits will be the 10th and 90th percentiles. The OutlierTrimmer() works only with numerical variables. A list of variables can be indicated. Alternatively, it will select all numerical variables. The transformer first finds the values at one or both tails of the distributions (fit). The transformer then removes observations with outliers from the dataframe (transform). More details in the :ref:`User Guide <outlier_trimmer>`. Parameters ---------- capping_method: str, default='gaussian' Desired capping method. Can take 'gaussian', 'iqr' or 'quantiles'. **'gaussian'**: the transformer will find the maximum and / or minimum values to cap the variables using the Gaussian approximation. **'iqr'**: the transformer will find the boundaries using the IQR proximity rule. **'quantiles'**: the limits are given by the percentiles. tail: str, default='right' Whether to cap outliers on the right, left or both tails of the distribution. Can take 'left', 'right' or 'both'. fold: int or float, default=3 How far out to to place the capping values. The number that will multiply the std or IQR to calculate the capping values. Recommended values, 2 or 3 for the gaussian approximation, or 1.5 or 3 for the IQR proximity rule. If `capping_method='quantile'`, then `'fold'` indicates the percentile. So if `fold=0.05`, the limits will be the 95th and 5th percentiles. **Note**: Outliers will be removed up to a maximum of the 20th percentiles on both sides. Thus, when `capping_method='quantile'`, then `'fold'` takes values between 0 and 0.20. variables: list, default=None The list of variables for which the outliers will be removed. If None, the transformer will find and select all numerical variables. missing_values: string, default='raise' Indicates if missing values should be ignored or raised. Sometimes we want to remove outliers in the raw, original data, sometimes, we may want to remove outliers in the already pre-transformed data. If missing_values='ignore', the transformer will ignore missing data when learning the capping parameters or transforming the data. If missing_values='raise' the transformer will return an error if the training or the datasets to transform contain missing values. Attributes ---------- right_tail_caps_: Dictionary with the maximum values above which values will be removed. left_tail_caps_ : Dictionary with the minimum values below which values will be removed. variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Find maximum and minimum values. transform: Remove outliers. fit_transform: Fit to the data. Then transform it. """ def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Remove observations with outliers from the dataframe. Parameters ---------- X : pandas dataframe of shape = [n_samples, n_features] The data to be transformed. Returns ------- X_new: pandas dataframe of shape = [n_samples, n_features] The dataframe without outlier observations. """ X = self._check_transform_input_and_state(X) for feature in self.right_tail_caps_.keys(): outliers = np.where( X[feature] > self.right_tail_caps_[feature], True, False ) X = X.loc[~outliers] for feature in self.left_tail_caps_.keys(): outliers = np.where(X[feature] < self.left_tail_caps_[feature], True, False) X = X.loc[~outliers] return X
{"hexsha": "0719241ff61a300d8a928a61ae9664764ba7b856", "size": 5332, "ext": "py", "lang": "Python", "max_stars_repo_path": "feature_engine/outliers/trimmer.py", "max_stars_repo_name": "david-cortes/feature_engine", "max_stars_repo_head_hexsha": "702328d1a072d0911441e10b4eb98b3bfbf19215", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2022-01-02T19:35:50.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-02T19:35:50.000Z", "max_issues_repo_path": "feature_engine/outliers/trimmer.py", "max_issues_repo_name": "david-cortes/feature_engine", "max_issues_repo_head_hexsha": "702328d1a072d0911441e10b4eb98b3bfbf19215", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "feature_engine/outliers/trimmer.py", "max_forks_repo_name": "david-cortes/feature_engine", "max_forks_repo_head_hexsha": "702328d1a072d0911441e10b4eb98b3bfbf19215", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.8496732026, "max_line_length": 88, "alphanum_fraction": 0.6701050263, "include": true, "reason": "import numpy", "num_tokens": 1244}
##################################################### ## librealsense T265 streams test ## ##################################################### # This assumes .so file is found on the same directory import pyrealsense2 as rs # Prettier prints for reverse-engineering from pprint import pprint import numpy as np # Get realsense pipeline handle pipe = rs.pipeline() # Print all connected devices and find the T265 devices = rs.context().devices for i in range(len(devices)): print('Found device:', devices[i].get_info(rs.camera_info.name), ', with serial number: ', devices[i].get_info(rs.camera_info.serial_number)) # Configure the pipeline cfg = rs.config() # Prints a list of available streams, not all are supported by each device print('Available streams:') pprint(dir(rs.stream)) # Enable streams you are interested in cfg.enable_stream(rs.stream.pose) # Positional data (translation, rotation, velocity etc) cfg.enable_stream(rs.stream.fisheye, 1) # Left camera cfg.enable_stream(rs.stream.fisheye, 2) # Right camera # Start the configured pipeline pipe.start(cfg) try: while(1): frames = pipe.wait_for_frames() # Left fisheye camera frame left = frames.get_fisheye_frame(1) left_data = np.asanyarray(left.get_data()) # Right fisheye camera frame right = frames.get_fisheye_frame(2) right_data = np.asanyarray(right.get_data()) print('Left frame', left_data.shape) print('Right frame', right_data.shape) # Positional data frame pose = frames.get_pose_frame() if pose: pose_data = pose.get_pose_data() print("\nFrame number: %5.0f" % (pose.frame_number)) print("Position xyz: % 2.4f % 2.4f % 2.4f" % (pose_data.translation.x, pose_data.translation.y, pose_data.translation.z)) print("Velocity xyz: % 2.4f % 2.4f % 2.4f" % (pose_data.velocity.x, pose_data.velocity.y, pose_data.velocity.z)) print("Accelera xyz: % 2.4f % 2.4f % 2.4f" % (pose_data.acceleration.x, pose_data.acceleration.y, pose_data.acceleration.z)) print("Quatern xyzw: % 2.4f % 2.4f % 2.4f % 2.4f" % (pose_data.rotation.x, pose_data.rotation.y, pose_data.rotation.z, pose_data.rotation.w)) finally: pipe.stop()
{"hexsha": "6e84ae94c14ebfb605193bbe24901c111acf28e5", "size": 2293, "ext": "py", "lang": "Python", "max_stars_repo_path": "robot/src/vision_to_mavros/scripts/t265_test_streams.py", "max_stars_repo_name": "mikobski/Robot-Inspekcyjny", "max_stars_repo_head_hexsha": "925491fc43b71bdaa54dccf60d38da59d244181d", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "robot/src/vision_to_mavros/scripts/t265_test_streams.py", "max_issues_repo_name": "mikobski/Robot-Inspekcyjny", "max_issues_repo_head_hexsha": "925491fc43b71bdaa54dccf60d38da59d244181d", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 6, "max_issues_repo_issues_event_min_datetime": "2020-08-19T21:21:58.000Z", "max_issues_repo_issues_event_max_datetime": "2020-10-05T13:33:19.000Z", "max_forks_repo_path": "robot/src/vision_to_mavros/scripts/t265_test_streams.py", "max_forks_repo_name": "mikobski/Critbot", "max_forks_repo_head_hexsha": "925491fc43b71bdaa54dccf60d38da59d244181d", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 38.2166666667, "max_line_length": 153, "alphanum_fraction": 0.6506759703, "include": true, "reason": "import numpy", "num_tokens": 579}
from gym_torcs import TorcsEnv import numpy as np img_dim = [64,64,3] action_dim = 1 steps = 1000 batch_size = 32 nb_epoch = 100 def get_teacher_action(ob): steer = ob.angle*10/np.pi steer -= ob.trackPos*0.10 return np.array([steer]) def img_reshape(input_img): _img = np.transpose(input_img, (1, 2, 0)) _img = np.flipud(_img) _img = np.reshape(_img, (1, img_dim[0], img_dim[1], img_dim[2])) return _img images_all = np.zeros((0, img_dim[0], img_dim[1], img_dim[2])) actions_all = np.zeros((0,action_dim)) rewards_all = np.zeros((0,)) img_list = [] action_list = [] reward_list = [] env = TorcsEnv(vision=True, throttle=False) ob = env.reset(relaunch=True) print('Collecting data...') for i in range(steps): if i == 0: act = np.array([0.0]) else: act = get_teacher_action(ob) if i%100 == 0: print(i) ob, reward, done, _ = env.step(act) img_list.append(ob.img) action_list.append(act) reward_list.append(np.array([reward])) env.end() print('Packing data into arrays...') for img, act, rew in zip(img_list, action_list, reward_list): images_all = np.concatenate([images_all, img_reshape(img)], axis=0) actions_all = np.concatenate([actions_all, np.reshape(act, [1,action_dim])], axis=0) rewards_all = np.concatenate([rewards_all, rew], axis=0) from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import Adam #model from https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py model = Sequential() model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=img_dim)) model.add(Activation('relu')) model.add(Convolution2D(32, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 3, 3, border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(action_dim)) model.add(Activation('tanh')) model.compile(loss='mean_squared_error', optimizer=Adam(lr=1e-4), metrics=['mean_squared_error']) model.fit(images_all, actions_all, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True) output_file = open('results.txt', 'w') #aggregate and retrain dagger_itr = 5 for itr in range(dagger_itr): ob_list = [] env = TorcsEnv(vision=True, throttle=False) ob = env.reset(relaunch=True) reward_sum = 0.0 for i in range(steps): act = model.predict(img_reshape(ob.img)) ob, reward, done, _ = env.step(act) if done is True: break else: ob_list.append(ob) reward_sum += reward print(i, reward, reward_sum, done, str(act[0])) print('Episode done ', itr, i, reward_sum) output_file.write('Number of Steps: %02d\t Reward: %0.04f\n'%(i, reward_sum)) env.end() if i==(steps-1): break for ob in ob_list: images_all = np.concatenate([images_all, img_reshape(ob.img)], axis=0) actions_all = np.concatenate([actions_all, np.reshape(get_teacher_action(ob), [1,action_dim])], axis=0) model.fit(images_all, actions_all, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True)
{"hexsha": "5828ceda2b923cfac53fd92f6d112a5caa0246d0", "size": 3599, "ext": "py", "lang": "Python", "max_stars_repo_path": "dagger.py", "max_stars_repo_name": "havefun28/imitation-dagger", "max_stars_repo_head_hexsha": "6460b53ae3bdfc9801c5ea621ccc1da4e575c9c7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 67, "max_stars_repo_stars_event_min_datetime": "2017-01-23T05:06:30.000Z", "max_stars_repo_stars_event_max_datetime": "2021-11-19T12:57:27.000Z", "max_issues_repo_path": "dagger.py", "max_issues_repo_name": "RuihanGao/imitation-dagger", "max_issues_repo_head_hexsha": "6460b53ae3bdfc9801c5ea621ccc1da4e575c9c7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 4, "max_issues_repo_issues_event_min_datetime": "2017-03-28T16:40:59.000Z", "max_issues_repo_issues_event_max_datetime": "2019-04-07T22:15:38.000Z", "max_forks_repo_path": "dagger.py", "max_forks_repo_name": "RuihanGao/imitation-dagger", "max_forks_repo_head_hexsha": "6460b53ae3bdfc9801c5ea621ccc1da4e575c9c7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 27, "max_forks_repo_forks_event_min_datetime": "2017-03-09T17:24:36.000Z", "max_forks_repo_forks_event_max_datetime": "2020-08-25T13:59:27.000Z", "avg_line_length": 28.3385826772, "max_line_length": 111, "alphanum_fraction": 0.6574048347, "include": true, "reason": "import numpy", "num_tokens": 992}
SUBROUTINE TG_QRNG ( gdatim, rngtyp, gtype, iret ) C************************************************************************ C* TG_QRNG * C* * C* This subroutine determines whether a GDATIM is a singular time, * C* multiple times based on forecast hour, or multiple times based on * C* cycles. * C* * C* TG_QRNG ( GDATIM, RNGTYP, GTYPE, IRET ) * C* * C* Input parameters: * C* GDATIM CHAR* Input time * C* * C* Output parameters: * C* RNGTYP INTEGER Type of time indicator * C* = 0 - not a range * C* = 1 - range as forecast hours * C* = 2 - range as cycle hours * C* GTYPE LOGICAL Grid time indicator * C* .TRUE. - start with a letter * C* .FALSE. - start with a numeric * C* IRET INTEGER Return code * C* As TG_RANG * C** * C* Log: * C* D.W.Plummer/NCEP 7/98 From TG_RANG * C* T. Lee/GSC 7/99 Checked grid time type * C************************************************************************ CHARACTER*(*) gdatim INTEGER rngtyp C* CHARACTER tstart*20, tstop*20, tinc*20, ctype*1, ginput*48 C CHARACTER xxxx*1 LOGICAL qtype, gtype QTYPE (xxxx) = ( ( xxxx (1:1) .eq. 'F' ) .or. + ( xxxx (1:1) .eq. 'A' ) .or. + ( xxxx (1:1) .eq. 'G' ) .or. + ( xxxx (1:1) .eq. 'V' ) .or. + ( xxxx (1:1) .eq. 'I' ) ) C------------------------------------------------------------------------ iret = 0 rngtyp = 0 gtype = .false. C CALL ST_LCUC ( gdatim, ginput, ier ) gtype = QTYPE ( ginput (1:1) ) .or. ( ginput (1:1) .eq. 'L' ) C C* Break range into parts. C CALL ST_RANG ( ginput, tstart, tstop, tinc, itype, ier ) C C* The returned itype from ST_RANG should not be confused with C* rngtyp... itype indicates whether ginput is a range ( =0, C* not a range), a range w/o and increment (=1), or a range w/ C* increment (=2). C C* If this is not a range, check for "ALL". C IF ( itype .eq. 0 ) THEN indall = INDEX ( ginput, 'ALL' ) C C* If ALL is not included somewhere (ALL or FALL or GALL, etc,), C* this is not a time range, return w/ rngtyp = 0. C IF ( indall .eq. 0 ) THEN RETURN C C* If the entire string is "ALL", assume this is a forecast C* hour range, return w/ rngtyp = 1. C ELSE IF ( ginput .eq. 'ALL' ) THEN rngtyp = 1 RETURN C C* If ALL is first, but not entire string, assume this is a C* cycle range, return w/ rngtyp = 2. C ELSE IF ( indall .eq. 1 ) THEN rngtyp = 2 RETURN C C* Check for FALL, AALL, GALL, IALL. C ELSE ctype = ginput ( indall-1 : indall-1 ) IF ( ( ctype .eq. 'F' ) .or. ( ctype .eq. 'A' ) .or. + ( ctype .eq. 'G' ) .or. ( ctype .eq. 'I' ) ) THEN rngtyp = 1 RETURN ELSE iret = -7 RETURN END IF END IF END IF C IF ( tstart .eq. 'FIRST' .or. tstop .eq. 'LAST' ) THEN rngtyp = 1 RETURN END IF C C* Check for FIRST or LAST followed by forecast type. C* Assume this format indicates a cycle range. C IF ( ( tstart ( : 5 ) .eq. 'FIRST' ) .and. + ( QTYPE ( tstart (6:6) ) ) ) THEN rngtyp = 2 RETURN ELSE IF ( ( tstop ( : 4 ) .eq. 'LAST' ) .and. + ( QTYPE ( tstop (5:5) ) ) ) THEN rngtyp = 2 RETURN END IF C C* Check for first character being valid. C* Assume this format indicates a forecast range. C IF ( QTYPE ( tstart (1:1) ) .or. + QTYPE ( tstop (1:1) ) ) THEN rngtyp = 1 RETURN END IF C* RETURN END
{"hexsha": "02687df18c665e4e1c17033f9f1a160e2b39a70e", "size": 3714, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "gempak/source/gemlib/tg/tgqrng.f", "max_stars_repo_name": "oxelson/gempak", "max_stars_repo_head_hexsha": "e7c477814d7084c87d3313c94e192d13d8341fa1", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 42, "max_stars_repo_stars_event_min_datetime": "2015-06-03T15:26:21.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-28T22:36:03.000Z", "max_issues_repo_path": "gempak/source/gemlib/tg/tgqrng.f", "max_issues_repo_name": "oxelson/gempak", "max_issues_repo_head_hexsha": "e7c477814d7084c87d3313c94e192d13d8341fa1", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 60, "max_issues_repo_issues_event_min_datetime": "2015-05-11T21:36:08.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-29T16:22:42.000Z", "max_forks_repo_path": "gempak/source/gemlib/tg/tgqrng.f", "max_forks_repo_name": "oxelson/gempak", "max_forks_repo_head_hexsha": "e7c477814d7084c87d3313c94e192d13d8341fa1", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 27, "max_forks_repo_forks_event_min_datetime": "2016-06-06T21:55:14.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-18T18:23:28.000Z", "avg_line_length": 29.2440944882, "max_line_length": 73, "alphanum_fraction": 0.4981152396, "num_tokens": 1310}
from __future__ import division from __future__ import print_function import os import time import math import numpy as np import pyopencl as cl class CLWrapper: "class holds information about OpenCL state" def __init__(self, batchSize, maxT, maxC, kernelVariant=1, enableGPUDebug=False): "specify size: number of batch elements, number of time-steps, number of characters. Set kernelVariant to either 1 or 2. Set enableGPUDebug to True to debug kernel via CodeXL." # force rebuild of program such that GPU debugger can attach to kernel self.enableGPUDebug = enableGPUDebug if enableGPUDebug: os.environ['PYOPENCL_COMPILER_OUTPUT'] = '1' os.environ['PYOPENCL_NO_CACHE'] = '1' #consts self.batchSize = batchSize self.maxT = maxT self.maxC = maxC assert kernelVariant in [1, 2] self.kernelVariant = kernelVariant # platform, context, queue platforms = cl.get_platforms() assert platforms self.platform = platforms[0] # take first platform devices = self.platform.get_devices(cl.device_type.GPU) # get GPU devices assert devices self.device = devices[0] # take first GPU self.context = cl.Context([self.device]) # context contains the first GPU self.queue = cl.CommandQueue(self.context, self.device) # command queue to first GPU # buffer sizeOfFloat32 = 4 batchBufSize = batchSize * maxC * maxT * sizeOfFloat32 self.batchBuf = cl.Buffer(self.context, cl.mem_flags.READ_ONLY, size=batchBufSize, hostbuf=None) self.res = np.zeros([batchSize, maxT]).astype(np.int32) self.resBuf = cl.Buffer(self.context, cl.mem_flags.WRITE_ONLY, self.res.nbytes) self.tmpBuf = cl.Buffer(self.context, cl.mem_flags.WRITE_ONLY, self.res.nbytes) # compile program and use defines for program-constants to avoid passing private variables buildOptions = '-D STEP_BEGIN={} -D MAX_T={} -D MAX_C={}'.format(2 ** math.ceil(math.log2(maxT)), maxT, maxC) self.program = cl.Program(self.context, open('BestPathCL.cl').read()).build(buildOptions) # variant 1: single pass if kernelVariant == 1: self.kernel1 = cl.Kernel(self.program, 'bestPathAndCollapse') self.kernel1.set_arg(0, self.batchBuf) self.kernel1.set_arg(1, self.resBuf) # all time-steps must fit into a work-group assert maxT <= self.kernel1.get_work_group_info(cl.kernel_work_group_info.WORK_GROUP_SIZE, self.device) # variant 2: two passes else: # kernel1: calculate best path self.kernel1 = cl.Kernel(self.program, 'bestPath') self.kernel1.set_arg(0, self.batchBuf) self.kernel1.set_arg(1, self.tmpBuf) # kernel2: collapse best path self.kernel2 = cl.Kernel(self.program, 'collapsePath') self.kernel2.set_arg(0, self.tmpBuf) self.kernel2.set_arg(1, self.resBuf) # all chars must fit into a work-group assert maxC <= self.kernel1.get_work_group_info(cl.kernel_work_group_info.WORK_GROUP_SIZE, self.device) def compute(self, batch): "compute best path for each batch element. Returns blank-terminated label strings for batch elements." # measure time in GPU debug mode if self.enableGPUDebug: t0 = time.time() # copy batch to device cl.enqueue_write_buffer(self.queue, self.batchBuf, batch.astype(np.float32), is_blocking=False) # one pass if self.kernelVariant == 1: cl.enqueue_nd_range_kernel(self.queue, self.kernel1, (self.batchSize, self.maxT), (1, self.maxT)) # two passes else: cl.enqueue_nd_range_kernel(self.queue, self.kernel1, (self.batchSize, self.maxT, self.maxC), (1, 1, self.maxC)) cl.enqueue_nd_range_kernel(self.queue, self.kernel2, (self.batchSize,), None) # copy result back from GPU and return it cl.enqueue_read_buffer(self.queue, self.resBuf, self.res, is_blocking=True) # measure time in GPU debug mode if self.enableGPUDebug: t1 = time.time() print('BestPathCL.compute(...) time: ', t1-t0) return self.res def ctcBestPathCL(batch, classes, clWrapper): "implements best path decoding on the GPU with OpenCL" # compute best labeling labelStrBatch = clWrapper.compute(batch) #go over batch blank = len(classes) charStrBatch = [] for b in range(clWrapper.batchSize): # map to chars charStr = '' for label in labelStrBatch[b]: if label == blank: break charStr += classes[label] charStrBatch.append(charStr) return charStrBatch def testBestPathCL(): "test decoder" classes = 'ab' mat = np.array([[0.4, 0, 0.6], [0.4, 0, 0.6]]) maxT, maxC = mat.shape clWrapper = CLWrapper(1, maxT, maxC, enableGPUDebug=True) print('Test best path decoding (CL)') expected = '' actual = ctcBestPathCL(np.stack([mat]), classes, clWrapper)[0] print('Expected: "' + expected + '"') print('Actual: "' + actual + '"') print('OK' if expected == actual else 'ERROR') if __name__ == '__main__': testBestPathCL()
{"hexsha": "8a3e200e8fa4ee6120626e660d715562af57377f", "size": 4768, "ext": "py", "lang": "Python", "max_stars_repo_path": "ctc_decoder/BestPathCL.py", "max_stars_repo_name": "markschoene/CTCDecoder", "max_stars_repo_head_hexsha": "fbb21853c0b38b6d9a7ba5f86401547f8f655b4c", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2022-03-30T12:42:36.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T16:15:48.000Z", "max_issues_repo_path": "src/BestPathCL.py", "max_issues_repo_name": "YongGuCheng/CTCDecoder", "max_issues_repo_head_hexsha": "bdd9ab0c87650c611829714760b57d8ba36d52da", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/BestPathCL.py", "max_forks_repo_name": "YongGuCheng/CTCDecoder", "max_forks_repo_head_hexsha": "bdd9ab0c87650c611829714760b57d8ba36d52da", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-02-09T16:04:51.000Z", "max_forks_repo_forks_event_max_datetime": "2021-02-09T16:04:51.000Z", "avg_line_length": 33.5774647887, "max_line_length": 178, "alphanum_fraction": 0.7277684564, "include": true, "reason": "import numpy", "num_tokens": 1317}
\subsubsection{FX Option} The \lstinline!FXOptionData! node is the trade data container for the \emph{FxOption} trade type. FX options with exercise styles \emph{European} or \emph{American} are supported. The \lstinline!FXOptionData! node includes one and only one \lstinline!OptionData! trade component sub-node plus elements specific to the FX Option. The structure of an \lstinline!FXOptionData! node for an FX Option is shown in Listing \ref{lst:fxoption_data}. \begin{listing}[H] %\hrule\medskip \begin{minted}[fontsize=\footnotesize]{xml} <FxOptionData> <OptionData> ... </OptionData> <BoughtCurrency>...</BoughtCurrency> <BoughtAmount>...</BoughtAmount> <SoldCurrency>...</SoldCurrency> <SoldAmount>...</SoldAmount> <FXIndex>...</FXIndex> </FxOptionData> \end{minted} \caption{FX Option data} \label{lst:fxoption_data} \end{listing} The meanings and allowable values of the elements in the \lstinline!FXOptionData! node follow below. \begin{itemize} \item OptionData: This is a trade component sub-node outlined in section \ref{ss:option_data}. Note that the FX option type allows for \emph{European} and \emph{American} option styles only. For option type \emph{Put}, Bought and Sold currencies/amounts are switched compared to the trade data node. For example, a holder of BoughtCurrency EUR SoldCurrency JPY FX Call Option has the right to buy EUR using JPY, while holder of the Put counterpart has the right to buy JPY using EUR, or equivalently sell EUR for JPY. \item BoughtCurrency: The bought currency of the FX option. See OptionData above for more details. Allowable values: See Currency in Table \ref{tab:allow_stand_data}. \item BoughtAmount: The amount in the BoughtCurrency. Allowable values: Any positive real number. \item SoldCurrency: The sold currency of the FX option. See OptionData above for more details. Allowable values: See Currency in Table \ref{tab:allow_stand_data}. \item SoldAmount: The amount in the SoldCurrency. Allowable values: Any positive real number. \item FXIndex [Optional]: If the option \textit{European}, has cash settlement and is subject to \textit{Automatic Exercise}, as indicated by the \lstinline!AutomaticExercise! node under \lstinline!OptionData!, this node must be populated with a valid FX index. The FX index is used to retrieve an FX rate on the expiry date that is in turn used to determine the payoff on the cash settlement date. The payoff is in the \lstinline!SoldCurrency! i.e.\ the domestic currency. Allowable values: A valid FX index from the Table \ref{tab:fxindex_data}. \end{itemize} Note that FX Options also cover Precious Metals Options, i.e. with currencies XAU, XAG, XPT, XPD.
{"hexsha": "9c6012e11c31d57fc1e0a0ebedc51fcfeb364f16", "size": 2692, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "Docs/UserGuide/tradedata/fxoption.tex", "max_stars_repo_name": "nvolfango/Engine", "max_stars_repo_head_hexsha": "a5ee0fc09d5a50ab36e50d55893b6e484d6e7004", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-02-24T20:43:38.000Z", "max_stars_repo_stars_event_max_datetime": "2021-02-24T20:43:38.000Z", "max_issues_repo_path": "Docs/UserGuide/tradedata/fxoption.tex", "max_issues_repo_name": "zhangjiayin/Engine", "max_issues_repo_head_hexsha": "a5ee0fc09d5a50ab36e50d55893b6e484d6e7004", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Docs/UserGuide/tradedata/fxoption.tex", "max_forks_repo_name": "zhangjiayin/Engine", "max_forks_repo_head_hexsha": "a5ee0fc09d5a50ab36e50d55893b6e484d6e7004", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 48.0714285714, "max_line_length": 473, "alphanum_fraction": 0.7771173848, "num_tokens": 687}
"""Data transformations supporting using Prophet on bounded data.""" import abc import numpy as np import pandas as pd from scipy import special class Transform(abc.ABC): """Abstract interface to data transformation used to help Prophet forecast in bounded domains. Converts bounded real data to and from Prophet's working space in which they are unbounded. Once the data are in the working space, a Prophet model can be trained and used for forecasting. The forecasts need to be converted from the working space back to real space by the same instance of `Transform` class. Implementations must ensure that the result of converting finite real data to work space does not produce NaNs or infinities. Transformation from real to working space must be strictly order-preserving. """ @abc.abstractmethod def to_work_series(self, data: pd.Series) -> pd.Series: """Converts data from real space to working space. Raises: ValueError if `data` do not respect the lower and upper bound. """ ... @abc.abstractmethod def to_real_series(self, data: pd.Series) -> pd.Series: """Converts data from working space to real space.""" ... @property @abc.abstractmethod def lower_bound(self) -> float: """Lower bound for real data.""" ... @property @abc.abstractmethod def upper_bound(self) -> float: """Upper bound for real data.""" ... class Logarithmic(Transform): """Transforms non-negative data to/from unbounded representation using a shifted log-transform. Given eps > 0, Y_work = ln(eps + Y_real) Y_real = max(exp(Y_work) - eps, 0) """ def __init__(self, eps: float): """Constructor. Args: eps: Positive constant added to real data before calculating the logarithm, to avoid producing -Infinity from finite inputs. """ super().__init__() if not (eps > 0): raise ValueError(f'Epsilon must be positive, got {eps}') self._eps = eps def to_work_series(self, data: pd.Series) -> pd.Series: if not (np.amin(data) >= self.lower_bound): raise ValueError('Real data out of bounds') return np.log(self._eps + data) def to_real_series(self, data: pd.Series) -> pd.Series: return (np.exp(data) - self._eps).clip(self.lower_bound, None) @property def lower_bound(self) -> float: return 0 @property def upper_bound(self) -> float: return np.inf class Logit(Transform): """Transforms data in [0, 1] range to/from unbounded representation using a "compressed" logit transform. Given 0 < eps << 1/2, Y_work = logit( eps + Y_real * (1 - 2 * eps) ) Y_real = min( max( (expit(Y_work) - eps) / (1 - 2 * eps), 0), 1) where logit(p) = ln( p / (1 - p) ) and expit(x) = 1 / (1 + exp(-x)). """ def __init__(self, eps: float): """Constructor. Args: eps: Used to compress the data range from [0, 1] to [eps, 1 - eps], so that the logit transform does not yield +/- Infinity on valid data. """ super().__init__() if not (eps > 0): raise ValueError(f'Epsilon must be positive, got {eps}') if not (eps < 0.5): raise ValueError(f'Epsilon must be < 1/2, got {eps}') self._eps = eps self._width = 1 - 2 * eps def to_work_series(self, data: pd.Series) -> pd.Series: if not (np.amin(data) >= self.lower_bound and np.amax(data) <= self.upper_bound): raise ValueError('Real data out of bounds') return special.logit(self._eps + data * self._width) def to_real_series(self, data: pd.Series) -> pd.Series: return ((special.expit(data) - self._eps) / self._width).clip(self.lower_bound, self.upper_bound) @property def lower_bound(self) -> float: return 0 @property def upper_bound(self) -> float: return 1
{"hexsha": "851343e80e2aaef3bffddd9738b7e9a9c296c56e", "size": 4063, "ext": "py", "lang": "Python", "max_stars_repo_path": "prophet_utils/transforms.py", "max_stars_repo_name": "WilliamHo1999/prophet-utils", "max_stars_repo_head_hexsha": "13a165d50ec3280215aefc980c60d60859cc9b05", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2021-08-14T11:31:45.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-10T09:09:59.000Z", "max_issues_repo_path": "prophet_utils/transforms.py", "max_issues_repo_name": "Hey-Savvie/prophet-utils", "max_issues_repo_head_hexsha": "13a165d50ec3280215aefc980c60d60859cc9b05", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "prophet_utils/transforms.py", "max_forks_repo_name": "Hey-Savvie/prophet-utils", "max_forks_repo_head_hexsha": "13a165d50ec3280215aefc980c60d60859cc9b05", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.0152671756, "max_line_length": 122, "alphanum_fraction": 0.6207236032, "include": true, "reason": "import numpy,from scipy", "num_tokens": 989}
#!/usr/bin/env python # coding: utf-8 import numpy as np import pandas as pd import scipy as sp from sklearn.preprocessing import MinMaxScaler def _neutralize(df, columns, by, proportion=1.0): scores = df[columns] exposures = df[by].values scores = scores - proportion * \ exposures.dot(np.linalg.pinv(exposures).dot(scores)) return scores / scores.std() def _normalize(df): X = (df.rank(method="first") - 0.5) / len(df) return sp.stats.norm.ppf(X) def normalize_and_neutralize(df, columns, by, proportion=1.0): # Convert the scores to a normal distribution df[columns] = _normalize(df[columns]) df[columns] = _neutralize(df, columns, by, proportion) return df[columns] TOURNAMENT_NAME = "" TARGET_NAME = f"target" PREDICTION_NAME = f"prediction" BENCHMARK = 0 BAND = 0.2 def score(df): # method="first" breaks ties based on order in array return np.corrcoef( df[TARGET_NAME], df[PREDICTION_NAME].rank(pct=True, method="first") )[0, 1] # The payout function def payout(scores): return ((scores - BENCHMARK) / BAND).clip(lower=-1, upper=1) def Output(p): return (1. / (1 + np.exp(-p))) def GPI(data): return Output(0.097947 * np.tanh((((data["feature_strength19"]) + (((((data["feature_charisma63"]) - (((data["feature_dexterity6"]) - (((data["feature_wisdom36"]) + (((((-((data["feature_constitution56"])))) + (((((data["feature_charisma75"]) - (data["feature_dexterity14"]))) - (data["feature_wisdom3"])))) / 2.0)))))))) - (((data["feature_dexterity14"]) - (((data["feature_charisma63"]) - (data["feature_dexterity7"])))))))) / 2.0)) + 0.099022 * np.tanh((((((((data["feature_charisma55"]) * (data["feature_strength34"]))) * (((data["feature_constitution42"]) * (data["feature_charisma76"]))))) + (((data["feature_strength1"]) - (((data["feature_constitution38"]) - (((((data["feature_charisma76"]) * (((data["feature_charisma55"]) * (data["feature_strength34"]))))) - ((((data["feature_constitution24"]) + (((data["feature_dexterity12"]) - (data["feature_charisma19"])))) / 2.0))))))))) / 2.0)) + 0.093451 * np.tanh(((((-((((((data["feature_constitution62"]) - (((data["feature_constitution18"]) + (((data["feature_charisma58"]) + ((((-((np.tanh((data["feature_constitution79"])))))) - (data["feature_constitution6"]))))))))) / 2.0))))) + ((((data["feature_wisdom20"]) + (((data["feature_wisdom26"]) * (((data["feature_charisma41"]) - (data["feature_charisma43"])))))) / 2.0))) / 2.0)) + 0.100000 * np.tanh(((data["feature_constitution66"]) * (((data["feature_dexterity2"]) * (((data["feature_constitution94"]) * ((((-((((((-((((((data["feature_constitution111"]) * (np.tanh((data["feature_dexterity4"]))))) * (((data["feature_dexterity2"]) * (((data["feature_strength30"]) + (data["feature_dexterity4"])))))))))) + (((data["feature_constitution16"]) - (data["feature_charisma46"])))) / 2.0))))) * 2.0)))))))) + 0.100000 * np.tanh(((data["feature_intelligence2"]) * ((((data["feature_dexterity14"]) + ((((-1.0)) + (((((((data["feature_wisdom44"]) + (data["feature_charisma10"])) / 2.0)) + (((((((data["feature_dexterity9"]) + (((data["feature_wisdom35"]) - (data["feature_charisma69"]))))) - (((data["feature_intelligence2"]) * (data["feature_intelligence2"]))))) - (data["feature_charisma69"])))) / 2.0))))) / 2.0)))) + 0.100000 * np.tanh((((((data["feature_intelligence6"]) + (((data["feature_wisdom23"]) * (((data["feature_wisdom23"]) - (data["feature_charisma10"])))))) / 2.0)) * ((((((data["feature_wisdom23"]) - (data["feature_charisma16"]))) + ((-((((data["feature_wisdom37"]) - ((((((((data["feature_charisma10"]) + (((data["feature_charisma3"]) - (data["feature_constitution50"]))))) * 2.0)) + (data["feature_wisdom23"])) / 2.0)))))))) / 2.0)))) + 0.099804 * np.tanh(((data["feature_charisma50"]) * ((-((((((((data["feature_charisma50"]) - (np.tanh(((((((data["feature_wisdom18"]) + (data["feature_wisdom18"])) / 2.0)) - (data["feature_wisdom41"]))))))) * (data["feature_wisdom8"]))) * ((-((((((data["feature_charisma28"]) - (np.tanh((((data["feature_wisdom45"]) - (data["feature_strength1"]))))))) * (data["feature_wisdom18"]))))))))))))) + 0.099804 * np.tanh(((((data["feature_dexterity11"]) * (np.tanh((((data["feature_dexterity11"]) * (np.tanh((((((data["feature_constitution2"]) - (((data["feature_dexterity11"]) - ((((((data["feature_constitution65"]) + (((data["feature_intelligence9"]) / 2.0))) / 2.0)) * 2.0)))))) / 2.0)))))))))) * ((-((np.tanh((data["feature_dexterity11"])))))))) + 0.099609 * np.tanh(((((data["feature_dexterity9"]) * (((data["feature_wisdom13"]) * (((data["feature_charisma85"]) * ((((((((data["feature_wisdom13"]) + (((data["feature_constitution50"]) - (data["feature_constitution91"])))) / 2.0)) * (((data["feature_wisdom13"]) * (((((data["feature_dexterity9"]) * (((((data["feature_charisma81"]) * (data["feature_wisdom13"]))) * 2.0)))) * 2.0)))))) * 2.0)))))))) / 2.0)) + 0.100000 * np.tanh((-((((data["feature_dexterity4"]) * ((((data["feature_wisdom2"]) + (((data["feature_wisdom36"]) * (((data["feature_wisdom36"]) * (((((data["feature_wisdom1"]) - (((data["feature_wisdom36"]) + (np.tanh(((-((data["feature_strength10"])))))))))) - (((((data["feature_dexterity4"]) + (np.tanh(((-((data["feature_strength10"])))))))) + (data["feature_constitution55"])))))))))) / 2.0)))))))) def GPII(data): return Output(0.099902 * np.tanh((((((data["feature_charisma37"]) - (data["feature_dexterity11"]))) + (((data["feature_constitution81"]) - (((data["feature_dexterity3"]) - (((((((((((data["feature_charisma37"]) - (data["feature_dexterity11"]))) - (((data["feature_charisma69"]) - (data["feature_charisma19"]))))) + (((data["feature_charisma6"]) - (data["feature_constitution81"])))) / 2.0)) + (((data["feature_charisma6"]) - (data["feature_charisma69"])))) / 2.0))))))) / 2.0)) + 0.097556 * np.tanh(((((((data["feature_strength4"]) + (((((data["feature_charisma63"]) * (((data["feature_charisma63"]) * (((data["feature_strength34"]) + (((((((((data["feature_strength34"]) + (data["feature_strength36"]))) + (data["feature_strength36"]))) * (data["feature_strength36"]))) * (data["feature_dexterity1"]))))))))) - (((((data["feature_dexterity7"]) / 2.0)) * 2.0)))))) - (data["feature_constitution38"]))) / 2.0)) + 0.099902 * np.tanh((((((((data["feature_wisdom35"]) - (np.tanh((((((data["feature_wisdom16"]) * 2.0)) + (data["feature_constitution110"]))))))) / 2.0)) + (((((((-((((data["feature_constitution110"]) - (((data["feature_charisma58"]) + (data["feature_wisdom42"])))))))) - (data["feature_dexterity12"]))) + ((((data["feature_wisdom8"]) + ((-((((data["feature_strength2"]) - (data["feature_wisdom32"]))))))) / 2.0))) / 2.0))) / 2.0)) + 0.095112 * np.tanh(((data["feature_strength19"]) * ((((((((data["feature_charisma85"]) * (data["feature_strength19"]))) + (((data["feature_wisdom23"]) - (data["feature_strength19"])))) / 2.0)) + ((((data["feature_charisma78"]) + ((((((data["feature_constitution31"]) * (data["feature_charisma45"]))) + (((((data["feature_constitution31"]) * (data["feature_strength19"]))) - (((data["feature_constitution11"]) - ((-((data["feature_strength19"]))))))))) / 2.0))) / 2.0)))))) + 0.089736 * np.tanh((-((((data["feature_wisdom2"]) * (((data["feature_constitution46"]) * ((((-((((data["feature_wisdom2"]) - (((((((data["feature_charisma57"]) * 2.0)) / 2.0)) - ((-((((data["feature_constitution27"]) + (data["feature_charisma34"]))))))))))))) / 2.0))))))))) + 0.099511 * np.tanh(((data["feature_charisma50"]) * (((((((data["feature_charisma45"]) + (data["feature_charisma5"]))) + (data["feature_intelligence5"]))) * (((data["feature_wisdom10"]) * (((((data["feature_wisdom42"]) * (data["feature_wisdom27"]))) * ((((data["feature_constitution90"]) + (((((data["feature_charisma79"]) + (data["feature_intelligence5"]))) * (data["feature_wisdom42"])))) / 2.0)))))))))) + 0.100000 * np.tanh(((((((data["feature_charisma35"]) - (np.tanh((data["feature_constitution19"]))))) - (np.tanh((data["feature_strength13"]))))) * ((((data["feature_dexterity13"]) + ((((data["feature_dexterity13"]) + ((-((((((data["feature_constitution15"]) * (((data["feature_charisma74"]) + (data["feature_strength18"]))))) + (data["feature_constitution19"]))))))) / 2.0))) / 2.0)))) + 0.100000 * np.tanh(((((data["feature_dexterity2"]) + (((data["feature_dexterity8"]) + (((data["feature_intelligence8"]) * (((((-3.0)) + ((-((data["feature_constitution40"]))))) / 2.0)))))))) * ((((data["feature_constitution108"]) + ((-(((((data["feature_wisdom24"]) + (np.tanh((((((data["feature_dexterity2"]) * (data["feature_dexterity2"]))) * (data["feature_wisdom33"])))))) / 2.0)))))) / 2.0)))) + 0.099804 * np.tanh(((data["feature_wisdom22"]) * ((-((((((data["feature_charisma69"]) * (((((data["feature_constitution91"]) / 2.0)) + (((((data["feature_charisma35"]) + (((((-((data["feature_charisma69"])))) + (((((((data["feature_dexterity12"]) - (data["feature_strength12"]))) / 2.0)) * 2.0))) / 2.0)))) - (data["feature_constitution91"]))))))) / 2.0))))))) + 0.100000 * np.tanh(((((data["feature_constitution108"]) * (((((-((data["feature_constitution6"])))) + (((((data["feature_wisdom11"]) * 2.0)) + (((np.tanh((((data["feature_constitution108"]) - (data["feature_charisma11"]))))) * 2.0))))) / 2.0)))) * (((((data["feature_wisdom1"]) * (((((data["feature_constitution96"]) - (data["feature_charisma11"]))) + (data["feature_wisdom39"]))))) * ((-((data["feature_constitution6"]))))))))) def GPIII(data): return Output(0.099902 * np.tanh((((((((data["feature_charisma76"]) * (data["feature_strength1"]))) + (((data["feature_charisma19"]) - (data["feature_dexterity11"]))))) + (((((((-((data["feature_dexterity7"])))) + ((((((data["feature_charisma54"]) - (data["feature_dexterity7"]))) + (((((((data["feature_charisma76"]) * (data["feature_charisma67"]))) * 2.0)) * (data["feature_dexterity7"])))) / 2.0))) / 2.0)) * 2.0))) / 2.0)) + 0.100000 * np.tanh(((((((((((((((np.tanh((data["feature_charisma28"]))) - (data["feature_constitution114"]))) + (((((data["feature_charisma5"]) * (data["feature_charisma5"]))) / 2.0)))) + (((data["feature_wisdom35"]) - ((((data["feature_dexterity12"]) + (data["feature_constitution102"])) / 2.0)))))) / 2.0)) - ((((data["feature_dexterity12"]) + (data["feature_constitution102"])) / 2.0)))) + (data["feature_charisma63"]))) / 2.0)) + 0.100000 * np.tanh((((((data["feature_strength34"]) + (np.tanh((np.tanh(((-((((((((data["feature_dexterity3"]) * 2.0)) * 2.0)) - (((data["feature_charisma77"]) - (((data["feature_constitution84"]) - (((data["feature_constitution34"]) - (((data["feature_wisdom16"]) - (((data["feature_constitution34"]) - ((((data["feature_charisma83"]) + (((data["feature_dexterity4"]) * 2.0))) / 2.0)))))))))))))))))))))) / 2.0)) / 2.0)) + 0.100000 * np.tanh(((data["feature_charisma85"]) * (((data["feature_strength19"]) * (((data["feature_strength19"]) * (((((data["feature_constitution42"]) * (data["feature_dexterity9"]))) * (((data["feature_strength19"]) * (((((((data["feature_strength1"]) * (((data["feature_strength19"]) + (data["feature_charisma2"]))))) + ((-((((data["feature_constitution42"]) - (data["feature_dexterity9"])))))))) + (data["feature_charisma2"]))))))))))))) + 0.100000 * np.tanh(np.tanh(((((((((((data["feature_constitution101"]) / 2.0)) / 2.0)) + (((data["feature_wisdom10"]) * (np.tanh((((np.tanh(((((((-((data["feature_strength9"])))) * 2.0)) * 2.0)))) * 2.0))))))) / 2.0)) * (((data["feature_dexterity6"]) - (((data["feature_wisdom42"]) + ((((data["feature_strength10"]) + (((data["feature_wisdom42"]) - (data["feature_dexterity6"])))) / 2.0)))))))))) + 0.100000 * np.tanh(((((0.0)) + ((((data["feature_wisdom23"]) + ((-(((((((data["feature_constitution7"]) + ((-((((data["feature_charisma10"]) - (data["feature_intelligence4"]))))))) / 2.0)) + ((((data["feature_charisma69"]) + ((((data["feature_constitution47"]) + (np.tanh((((data["feature_constitution46"]) - (((data["feature_charisma10"]) - (data["feature_constitution47"])))))))) / 2.0))) / 2.0)))))))) / 2.0))) / 2.0)) + 0.100000 * np.tanh(((data["feature_dexterity1"]) * ((((-((((data["feature_charisma6"]) * (((data["feature_wisdom43"]) - (((((((-(((-((((data["feature_strength3"]) + (data["feature_charisma45"]))))))))) * (((data["feature_charisma45"]) * (((data["feature_constitution70"]) * 2.0)))))) + (((((data["feature_strength3"]) * 2.0)) / 2.0))) / 2.0))))))))) / 2.0)))) + 0.094135 * np.tanh((((-(((((-((data["feature_wisdom4"])))) * ((((data["feature_charisma29"]) + (((data["feature_strength24"]) * (((data["feature_strength15"]) + (((((data["feature_constitution63"]) + (data["feature_constitution54"]))) * 2.0))))))) / 2.0))))))) * (((data["feature_constitution85"]) * (((data["feature_constitution4"]) * ((-((((((data["feature_strength15"]) * (data["feature_constitution46"]))) * 2.0))))))))))) + 0.097165 * np.tanh((-(((((((((((data["feature_charisma13"]) + (((data["feature_wisdom26"]) + (data["feature_charisma79"]))))) * (data["feature_wisdom26"]))) + (data["feature_intelligence3"])) / 2.0)) * ((((((data["feature_intelligence3"]) + (((data["feature_wisdom42"]) * ((-((((data["feature_charisma13"]) + (((data["feature_charisma45"]) + (data["feature_charisma79"]))))))))))) / 2.0)) / 2.0))))))) + 0.097165 * np.tanh(((data["feature_constitution108"]) * (np.tanh((((data["feature_constitution108"]) * ((((data["feature_constitution39"]) + (((data["feature_dexterity8"]) - (((data["feature_intelligence8"]) + (((data["feature_constitution63"]) - (((data["feature_dexterity8"]) * ((((data["feature_dexterity5"]) + (((data["feature_dexterity2"]) - (((data["feature_constitution108"]) + (data["feature_constitution39"])))))) / 2.0))))))))))) / 2.0))))))))) def GPIV(data): return Output(0.099902 * np.tanh(((data["feature_charisma63"]) - ((((((data["feature_dexterity6"]) + (data["feature_dexterity14"])) / 2.0)) + ((((((((-2.0)) * (((data["feature_wisdom23"]) - (((data["feature_charisma9"]) - ((-((((data["feature_dexterity4"]) - (((data["feature_strength34"]) - (((data["feature_dexterity6"]) - ((((data["feature_charisma58"]) + (data["feature_dexterity6"])) / 2.0))))))))))))))))) / 2.0)) / 2.0)))))) + 0.100000 * np.tanh((((((((data["feature_charisma13"]) * (data["feature_charisma54"]))) + ((-((((data["feature_constitution32"]) + (((data["feature_constitution91"]) + ((-((((((data["feature_dexterity1"]) * (data["feature_charisma37"]))) + (((data["feature_strength4"]) * (((data["feature_charisma37"]) + (((data["feature_constitution59"]) * (((data["feature_charisma54"]) + (data["feature_constitution18"])))))))))))))))))))))) / 2.0)) / 2.0)) + 0.094330 * np.tanh(((data["feature_wisdom7"]) * ((-((((data["feature_intelligence3"]) - ((((data["feature_strength22"]) + (((np.tanh((((data["feature_constitution104"]) * (data["feature_strength19"]))))) * (((((((data["feature_strength22"]) - ((-((data["feature_strength19"])))))) - ((-((data["feature_wisdom7"])))))) - ((-((data["feature_wisdom26"]))))))))) / 2.0))))))))) + 0.100000 * np.tanh(((data["feature_constitution101"]) * (((((((((data["feature_charisma53"]) + ((((((data["feature_charisma5"]) + (((((data["feature_constitution12"]) * ((((((data["feature_dexterity13"]) - (data["feature_constitution114"]))) + (data["feature_dexterity13"])) / 2.0)))) - (data["feature_constitution114"])))) / 2.0)) * 2.0)))) * (data["feature_wisdom42"]))) - (np.tanh((data["feature_wisdom16"]))))) / 2.0)))) + 0.093157 * np.tanh(((((((((((data["feature_dexterity4"]) * (data["feature_wisdom36"]))) * (data["feature_wisdom36"]))) + (np.tanh(((-3.0)))))) + (data["feature_charisma29"]))) * (np.tanh((((data["feature_dexterity7"]) + (np.tanh(((-((((((data["feature_wisdom36"]) - (((data["feature_constitution85"]) - (data["feature_strength30"]))))) * (data["feature_constitution78"])))))))))))))) + 0.099707 * np.tanh(((((data["feature_strength3"]) * ((((data["feature_charisma66"]) + (((((((((data["feature_intelligence11"]) + (data["feature_dexterity5"]))) * ((-((((data["feature_dexterity5"]) * ((-((data["feature_dexterity8"]))))))))))) - (data["feature_constitution4"]))) - (((data["feature_intelligence11"]) * (((data["feature_constitution16"]) * (data["feature_intelligence11"])))))))) / 2.0)))) * (data["feature_strength1"]))) + 0.099902 * np.tanh((((((data["feature_wisdom43"]) + ((((data["feature_constitution78"]) + (((data["feature_wisdom33"]) - (((data["feature_wisdom40"]) + (((data["feature_constitution108"]) + (data["feature_wisdom20"])))))))) / 2.0))) / 2.0)) * (((((-((((data["feature_charisma63"]) + (data["feature_dexterity11"])))))) + (((data["feature_wisdom20"]) * (((data["feature_wisdom33"]) * (((data["feature_wisdom33"]) * 2.0))))))) / 2.0)))) + 0.099609 * np.tanh(np.tanh((((((data["feature_charisma35"]) * ((-((((((data["feature_intelligence4"]) * ((((data["feature_intelligence4"]) + (((((data["feature_dexterity3"]) * (((data["feature_charisma35"]) * ((-((data["feature_charisma35"])))))))) * (((data["feature_dexterity3"]) * (((data["feature_intelligence5"]) * (((data["feature_charisma35"]) * 2.0))))))))) / 2.0)))) * 2.0))))))) / 2.0)))) + 0.099804 * np.tanh((((((data["feature_wisdom22"]) + (((data["feature_constitution16"]) * (((((np.tanh(((((data["feature_wisdom41"]) + (((data["feature_constitution97"]) - (((data["feature_constitution81"]) * (data["feature_constitution70"])))))) / 2.0)))) + ((-((((data["feature_constitution16"]) * (data["feature_dexterity12"])))))))) + ((-((data["feature_dexterity12"]))))))))) / 2.0)) * (((data["feature_constitution100"]) * (data["feature_constitution91"]))))) + 0.088270 * np.tanh(((data["feature_charisma75"]) * (((data["feature_strength30"]) * (((((np.tanh((((data["feature_intelligence12"]) + (((data["feature_intelligence12"]) - (((((data["feature_strength15"]) + (((((data["feature_constitution4"]) + (((data["feature_wisdom3"]) - (data["feature_constitution113"]))))) - (data["feature_constitution34"]))))) * 2.0)))))))) * (((data["feature_constitution113"]) * 2.0)))) / 2.0))))))) def GPV(data): return Output(0.099902 * np.tanh((((data["feature_charisma18"]) + ((-(((((((data["feature_dexterity11"]) + (((((((((data["feature_dexterity14"]) + ((-((((data["feature_constitution81"]) - (((data["feature_charisma69"]) - (data["feature_strength22"]))))))))) / 2.0)) * 2.0)) + ((((data["feature_charisma69"]) + ((-((((data["feature_constitution89"]) - (((data["feature_dexterity14"]) - (data["feature_charisma42"]))))))))) / 2.0))) / 2.0))) / 2.0)) * 2.0)))))) / 2.0)) + 0.097556 * np.tanh(((((data["feature_dexterity7"]) * (((((data["feature_dexterity1"]) * (((((((data["feature_strength19"]) * (data["feature_charisma63"]))) * (data["feature_charisma63"]))) * 2.0)))) * (data["feature_strength4"]))))) - ((((data["feature_dexterity7"]) + (((((((((data["feature_dexterity7"]) - (data["feature_strength34"]))) * 2.0)) - (data["feature_charisma63"]))) / 2.0))) / 2.0)))) + 0.100000 * np.tanh((((data["feature_wisdom23"]) + ((-((((((((np.tanh((data["feature_intelligence2"]))) + ((-((((data["feature_constitution42"]) - ((((((data["feature_constitution110"]) + (np.tanh((data["feature_constitution62"])))) / 2.0)) * 2.0)))))))) / 2.0)) + ((((np.tanh((np.tanh((((((((data["feature_constitution62"]) * 2.0)) * 2.0)) * 2.0)))))) + (data["feature_intelligence8"])) / 2.0))) / 2.0)))))) / 2.0)) + 0.099902 * np.tanh(((data["feature_dexterity7"]) * ((((data["feature_wisdom42"]) + ((-(((((((data["feature_wisdom7"]) - ((-(((((((data["feature_dexterity7"]) + (data["feature_wisdom7"])) / 2.0)) - (data["feature_wisdom42"])))))))) + (((((data["feature_constitution78"]) - (data["feature_charisma53"]))) - (((data["feature_charisma85"]) - (data["feature_wisdom7"])))))) / 2.0)))))) / 2.0)))) + 0.099707 * np.tanh(((((data["feature_constitution85"]) * ((((((((data["feature_constitution50"]) + (data["feature_constitution38"])) / 2.0)) * (data["feature_constitution50"]))) * 2.0)))) * ((-((((((((data["feature_constitution38"]) + (data["feature_intelligence4"])) / 2.0)) + ((-((((data["feature_charisma55"]) - ((((((data["feature_constitution38"]) - (data["feature_dexterity12"]))) + (np.tanh((np.tanh((data["feature_intelligence4"])))))) / 2.0)))))))) / 2.0))))))) + 0.100000 * np.tanh((-(((-((((((((((((data["feature_wisdom26"]) + (((data["feature_charisma5"]) - (data["feature_strength32"])))) / 2.0)) * (data["feature_wisdom3"]))) + ((((((((((data["feature_wisdom35"]) * (data["feature_wisdom3"]))) + (((data["feature_charisma5"]) - (data["feature_wisdom25"])))) / 2.0)) * (data["feature_wisdom20"]))) - (np.tanh((data["feature_charisma16"])))))) / 2.0)) * (data["feature_wisdom3"]))))))))) + 0.098729 * np.tanh(((data["feature_dexterity4"]) * (((data["feature_dexterity4"]) * (((data["feature_dexterity4"]) * ((((((data["feature_charisma12"]) * (((((data["feature_constitution52"]) + (data["feature_wisdom11"]))) * (data["feature_charisma76"]))))) + (((data["feature_constitution18"]) - (np.tanh((((((data["feature_constitution98"]) + (data["feature_constitution16"]))) * 2.0))))))) / 2.0)))))))) + 0.099120 * np.tanh((((((data["feature_charisma10"]) / 2.0)) + ((((-((((((data["feature_constitution12"]) * (data["feature_constitution68"]))) - (((((data["feature_charisma13"]) - (((data["feature_constitution46"]) - (((data["feature_charisma6"]) - (((data["feature_intelligence3"]) * 2.0)))))))) / 2.0))))))) / 2.0))) / 2.0)) + 0.098925 * np.tanh(((data["feature_constitution54"]) * ((((-((((data["feature_strength15"]) - ((((data["feature_charisma3"]) + ((((((((((data["feature_charisma19"]) * (data["feature_strength15"]))) * 2.0)) * (((((data["feature_charisma19"]) * (data["feature_strength15"]))) * 2.0)))) + (((((data["feature_charisma19"]) * 2.0)) * (np.tanh((data["feature_wisdom19"])))))) / 2.0))) / 2.0))))))) / 2.0)))) + 0.099902 * np.tanh(((data["feature_charisma32"]) * (((data["feature_charisma58"]) * (((((data["feature_strength30"]) + (data["feature_wisdom29"]))) * (((data["feature_charisma77"]) * (((((data["feature_strength15"]) + (((((data["feature_wisdom29"]) + (data["feature_constitution30"]))) * (data["feature_strength1"]))))) * (((data["feature_intelligence7"]) * (data["feature_intelligence7"])))))))))))))) def GPVI(data): return Output(0.100000 * np.tanh((((((data["feature_charisma37"]) * (((data["feature_charisma54"]) * (data["feature_charisma63"]))))) + (((((data["feature_charisma76"]) * (data["feature_strength34"]))) - (((((data["feature_dexterity14"]) - (((data["feature_charisma63"]) - (np.tanh((data["feature_dexterity6"]))))))) + (((data["feature_dexterity4"]) - (data["feature_constitution30"])))))))) / 2.0)) + 0.100000 * np.tanh((((data["feature_strength1"]) + (((((data["feature_wisdom23"]) - ((((data["feature_wisdom7"]) + (((data["feature_constitution114"]) - (np.tanh((np.tanh((data["feature_charisma10"])))))))) / 2.0)))) - (((data["feature_charisma69"]) + (((((data["feature_constitution75"]) - (((data["feature_wisdom36"]) / 2.0)))) / 2.0))))))) / 2.0)) + 0.100000 * np.tanh((((((((data["feature_dexterity13"]) * (((((data["feature_strength19"]) + ((-((np.tanh((np.tanh((data["feature_constitution110"])))))))))) * 2.0)))) + (((data["feature_charisma5"]) + ((-((np.tanh((((np.tanh((((((data["feature_dexterity13"]) * 2.0)) * (((data["feature_dexterity4"]) + (data["feature_charisma5"]))))))) + (data["feature_dexterity4"]))))))))))) / 2.0)) / 2.0)) + 0.099511 * np.tanh((((-((((((data["feature_constitution93"]) - (((((data["feature_charisma53"]) * ((-(((((data["feature_strength9"]) + (np.tanh((data["feature_wisdom22"])))) / 2.0))))))) * ((((-((((((((data["feature_constitution93"]) * (data["feature_wisdom35"]))) + (data["feature_wisdom35"]))) + (((data["feature_constitution93"]) * (data["feature_wisdom36"])))))))) * 2.0)))))) / 2.0))))) / 2.0)) + 0.096090 * np.tanh(((data["feature_dexterity4"]) * ((-((((data["feature_dexterity4"]) * (((((((data["feature_wisdom46"]) - (((((data["feature_wisdom42"]) * (data["feature_dexterity4"]))) - (np.tanh((((data["feature_wisdom46"]) - (((data["feature_constitution39"]) - (data["feature_wisdom46"]))))))))))) - (data["feature_wisdom42"]))) / 2.0))))))))) + 0.099902 * np.tanh(((data["feature_wisdom43"]) * (np.tanh((((((data["feature_charisma58"]) - (np.tanh((((((data["feature_intelligence2"]) + (((((data["feature_intelligence2"]) + (((data["feature_intelligence4"]) - (data["feature_charisma59"]))))) - (data["feature_constitution104"]))))) + (((data["feature_dexterity7"]) + (((data["feature_intelligence2"]) + (((data["feature_intelligence2"]) - (data["feature_constitution104"]))))))))))))) / 2.0)))))) + 0.100000 * np.tanh(((data["feature_dexterity14"]) * (((data["feature_charisma47"]) * ((((data["feature_dexterity9"]) + ((((((data["feature_constitution71"]) + (((((data["feature_wisdom10"]) * 2.0)) * (((((((data["feature_wisdom10"]) * 2.0)) - (((np.tanh((data["feature_constitution82"]))) * 2.0)))) * (data["feature_strength3"])))))) / 2.0)) - (((data["feature_strength13"]) * 2.0))))) / 2.0)))))) + 0.100000 * np.tanh(((((data["feature_wisdom10"]) * (((((data["feature_intelligence12"]) + (((((data["feature_dexterity6"]) * (((((data["feature_constitution63"]) - (((data["feature_charisma50"]) - (data["feature_constitution24"]))))) * ((-((((((data["feature_constitution63"]) - (((((data["feature_intelligence12"]) * (data["feature_wisdom8"]))) - (data["feature_constitution63"]))))) * 2.0))))))))) / 2.0)))) / 2.0)))) / 2.0)) + 0.100000 * np.tanh(((data["feature_constitution103"]) * (((data["feature_wisdom21"]) * (((data["feature_constitution2"]) * (((data["feature_constitution54"]) * (((data["feature_wisdom21"]) * (((data["feature_wisdom8"]) + (((((data["feature_constitution2"]) + (((((data["feature_constitution105"]) - (data["feature_wisdom13"]))) + (data["feature_intelligence9"]))))) * ((-((((data["feature_intelligence9"]) - (data["feature_wisdom13"])))))))))))))))))))) + 0.099804 * np.tanh(((((((data["feature_constitution86"]) * (data["feature_strength36"]))) * (data["feature_strength36"]))) * (((data["feature_strength36"]) * (((data["feature_strength36"]) * (np.tanh((((data["feature_charisma70"]) - ((((((((data["feature_constitution12"]) + (data["feature_constitution40"]))) + (np.tanh((data["feature_constitution6"])))) / 2.0)) + (((data["feature_wisdom38"]) - (((data["feature_charisma63"]) / 2.0))))))))))))))))) def GPVII(data): return Output(0.099902 * np.tanh(((((((((((((data["feature_wisdom42"]) * (data["feature_wisdom44"]))) - (((data["feature_dexterity6"]) + ((-((((data["feature_charisma63"]) - ((-((((data["feature_constitution102"]) * (((data["feature_charisma81"]) - (((data["feature_dexterity12"]) * 2.0)))))))))))))))))) + (((data["feature_charisma81"]) * (data["feature_charisma63"])))) / 2.0)) * 2.0)) + ((-((data["feature_dexterity4"]))))) / 2.0)) + 0.100000 * np.tanh(((((data["feature_strength19"]) - (((data["feature_constitution85"]) + ((-(((((((((data["feature_strength1"]) * (data["feature_strength19"]))) * 2.0)) + (data["feature_charisma1"])) / 2.0))))))))) * ((((((((data["feature_strength1"]) * (data["feature_dexterity9"]))) * (data["feature_charisma85"]))) + (((data["feature_constitution81"]) * (data["feature_charisma54"])))) / 2.0)))) + 0.099902 * np.tanh((-(((((data["feature_charisma69"]) + (((((-((((((data["feature_charisma69"]) + (((data["feature_strength34"]) + (((data["feature_charisma6"]) - (data["feature_intelligence2"]))))))) + (((data["feature_charisma79"]) + (((data["feature_wisdom32"]) - (data["feature_intelligence2"])))))))))) + (data["feature_constitution7"])) / 2.0))) / 2.0))))) + 0.099511 * np.tanh(((((data["feature_strength19"]) * (((data["feature_constitution26"]) * (data["feature_constitution50"]))))) * (((data["feature_charisma46"]) - (((data["feature_constitution15"]) - (((data["feature_dexterity2"]) + (((((data["feature_constitution114"]) * (((data["feature_dexterity2"]) + (((data["feature_strength19"]) - (data["feature_constitution38"]))))))) - (data["feature_constitution114"]))))))))))) + 0.100000 * np.tanh(((((((-((data["feature_dexterity7"])))) + (((data["feature_wisdom20"]) - ((((((((data["feature_constitution46"]) - (((((data["feature_wisdom12"]) - (data["feature_strength1"]))) * ((-((data["feature_dexterity7"])))))))) - (data["feature_intelligence5"]))) + (((data["feature_wisdom12"]) - (data["feature_strength1"])))) / 2.0))))) / 2.0)) / 2.0)) + 0.099902 * np.tanh(((data["feature_charisma57"]) * ((-((((((((((data["feature_charisma83"]) * (data["feature_charisma57"]))) + ((-((data["feature_charisma36"]))))) / 2.0)) + (((((((((((data["feature_wisdom30"]) * (((data["feature_intelligence9"]) * 2.0)))) * (data["feature_charisma83"]))) * (data["feature_intelligence9"]))) * (data["feature_intelligence9"]))) * (data["feature_intelligence9"])))) / 2.0))))))) + 0.099511 * np.tanh(((data["feature_wisdom8"]) * ((-(((-((((((((((data["feature_constitution97"]) - (data["feature_charisma35"]))) + (data["feature_wisdom41"]))) * (data["feature_strength14"]))) * (((data["feature_strength9"]) * ((((((((data["feature_wisdom8"]) + (data["feature_constitution97"])) / 2.0)) + (data["feature_strength9"]))) * ((((data["feature_charisma28"]) + (data["feature_wisdom22"])) / 2.0)))))))))))))))) + 0.100000 * np.tanh((((-((((data["feature_constitution69"]) * (((((data["feature_strength10"]) * (((((((data["feature_charisma34"]) + (((((data["feature_constitution6"]) * (data["feature_constitution6"]))) - (data["feature_intelligence4"]))))) + (data["feature_constitution69"]))) * (data["feature_intelligence4"]))))) * (((((data["feature_constitution69"]) - (data["feature_dexterity9"]))) / 2.0))))))))) * 2.0)) + 0.100000 * np.tanh(np.tanh((((((data["feature_strength13"]) - (((((((((((((data["feature_charisma11"]) * (data["feature_dexterity7"]))) - (data["feature_strength13"]))) + (data["feature_charisma11"])) / 2.0)) - (data["feature_constitution65"]))) + (data["feature_dexterity11"])) / 2.0)))) * (((((((data["feature_charisma11"]) * (data["feature_charisma45"]))) - (data["feature_dexterity11"]))) / 2.0)))))) + 0.099316 * np.tanh(((((np.tanh((data["feature_wisdom42"]))) * (((((data["feature_wisdom19"]) * (((data["feature_constitution92"]) * 2.0)))) * (data["feature_wisdom42"]))))) * (((((data["feature_charisma50"]) * (((data["feature_charisma50"]) * ((((((data["feature_constitution102"]) + (((((data["feature_charisma37"]) * 2.0)) * 2.0)))) + (((data["feature_charisma37"]) + (data["feature_constitution102"])))) / 2.0)))))) / 2.0))))) def GPVIII(data): return Output(0.099902 * np.tanh((((data["feature_charisma46"]) + ((-((((np.tanh((((data["feature_charisma69"]) * ((((((data["feature_dexterity7"]) + (((data["feature_dexterity7"]) - (data["feature_charisma11"]))))) + (((((data["feature_dexterity14"]) + (((data["feature_dexterity11"]) - (data["feature_wisdom5"]))))) + (data["feature_dexterity6"])))) / 2.0)))))) * 2.0)))))) / 2.0)) + 0.100000 * np.tanh((((((data["feature_constitution30"]) * (data["feature_charisma18"]))) + ((((((((((((data["feature_dexterity1"]) * 2.0)) * (((((data["feature_charisma63"]) * 2.0)) * (data["feature_strength1"]))))) + (data["feature_dexterity12"])) / 2.0)) * (((((((data["feature_strength3"]) * (data["feature_charisma63"]))) * ((((data["feature_charisma63"]) + (data["feature_strength14"])) / 2.0)))) * 2.0)))) - (data["feature_dexterity12"])))) / 2.0)) + 0.099902 * np.tanh((((((data["feature_dexterity3"]) * (((data["feature_wisdom36"]) - (((data["feature_wisdom12"]) - (((((data["feature_wisdom23"]) * (((((data["feature_charisma79"]) * 2.0)) / 2.0)))) - (data["feature_strength13"]))))))))) + (((((((((data["feature_strength14"]) / 2.0)) * 2.0)) - (((data["feature_constitution114"]) - (((data["feature_wisdom23"]) * (data["feature_charisma79"]))))))) / 2.0))) / 2.0)) + 0.100000 * np.tanh((((((np.tanh((((data["feature_strength9"]) * (data["feature_wisdom20"]))))) + ((-((((data["feature_constitution20"]) - (((data["feature_charisma28"]) * ((((((((((((((data["feature_charisma13"]) * (((data["feature_wisdom20"]) * 2.0)))) + (data["feature_strength21"])) / 2.0)) * 2.0)) * (data["feature_charisma13"]))) * (data["feature_intelligence6"]))) * 2.0)))))))))) / 2.0)) / 2.0)) + 0.100000 * np.tanh((((((data["feature_charisma85"]) + ((-((((data["feature_dexterity7"]) + (((((data["feature_intelligence4"]) + (((((((data["feature_dexterity6"]) - (data["feature_constitution39"]))) + (((data["feature_intelligence4"]) * ((((((data["feature_constitution58"]) + ((-((((data["feature_dexterity6"]) - (data["feature_constitution39"]))))))) / 2.0)) - (data["feature_charisma61"]))))))) * 2.0)))) / 2.0)))))))) / 2.0)) / 2.0)) + 0.099707 * np.tanh(((((data["feature_constitution41"]) * (((data["feature_charisma35"]) + (data["feature_constitution41"]))))) * (np.tanh((((data["feature_charisma35"]) * ((-(((((data["feature_constitution4"]) + ((-((((data["feature_dexterity2"]) * (((data["feature_constitution81"]) + ((((((data["feature_constitution81"]) + (data["feature_constitution20"])) / 2.0)) * (((data["feature_charisma67"]) + (data["feature_strength3"]))))))))))))) / 2.0))))))))))) + 0.096188 * np.tanh(((data["feature_wisdom24"]) * (((np.tanh((((((data["feature_constitution90"]) / 2.0)) - (np.tanh((((((((data["feature_intelligence2"]) - ((((data["feature_dexterity12"]) + (data["feature_intelligence2"])) / 2.0)))) + (((data["feature_intelligence2"]) + (np.tanh((np.tanh(((-((data["feature_strength13"])))))))))))) * 2.0)))))))) / 2.0)))) + 0.100000 * np.tanh(((data["feature_intelligence4"]) * (((data["feature_intelligence4"]) * ((-(((((((data["feature_intelligence11"]) * (data["feature_constitution75"]))) + (((((data["feature_constitution50"]) + (((data["feature_intelligence4"]) - (((((data["feature_constitution19"]) + (data["feature_intelligence4"]))) + (data["feature_charisma10"]))))))) / 2.0))) / 2.0))))))))) + 0.099316 * np.tanh((-(((((((((((((((data["feature_constitution64"]) * (data["feature_charisma6"]))) * (data["feature_wisdom7"]))) * 2.0)) + (data["feature_dexterity9"])) / 2.0)) * (((data["feature_wisdom7"]) - ((((data["feature_constitution113"]) + (((((data["feature_intelligence12"]) * ((((data["feature_constitution113"]) + (data["feature_constitution67"])) / 2.0)))) * 2.0))) / 2.0)))))) * (data["feature_charisma71"])))))) + 0.099902 * np.tanh(((((data["feature_dexterity7"]) * (((((((((data["feature_wisdom42"]) * (data["feature_wisdom22"]))) - (((data["feature_constitution78"]) + (((((data["feature_constitution56"]) + (((data["feature_constitution65"]) - (data["feature_charisma9"]))))) - (np.tanh((((data["feature_charisma82"]) * (data["feature_wisdom42"]))))))))))) + (data["feature_wisdom42"]))) / 2.0)))) / 2.0))) def GPIX(data): return Output(0.099902 * np.tanh((((data["feature_charisma76"]) + ((-(((((data["feature_constitution110"]) + (((((((data["feature_dexterity11"]) + (((data["feature_dexterity4"]) - (data["feature_charisma85"]))))) * 2.0)) - (((((((((data["feature_charisma46"]) - (data["feature_dexterity14"]))) + (data["feature_constitution42"]))) - (data["feature_dexterity14"]))) + (data["feature_constitution42"])))))) / 2.0)))))) / 2.0)) + 0.100000 * np.tanh((((((data["feature_charisma28"]) + ((((((((data["feature_dexterity9"]) + (data["feature_charisma1"]))) * (((((((data["feature_charisma10"]) - (np.tanh((data["feature_charisma69"]))))) + (data["feature_strength34"]))) * 2.0)))) + (((data["feature_wisdom23"]) - ((((((((0.318310)) + (data["feature_charisma69"]))) + (data["feature_intelligence2"]))) * 2.0))))) / 2.0))) / 2.0)) / 2.0)) + 0.099902 * np.tanh(((data["feature_dexterity8"]) * (((data["feature_dexterity8"]) * (((data["feature_wisdom36"]) - (((data["feature_wisdom2"]) + ((((data["feature_constitution37"]) + ((-((((((data["feature_strength3"]) * (data["feature_strength1"]))) * 2.0)))))) / 2.0)))))))))) + 0.100000 * np.tanh(np.tanh(((((((data["feature_charisma79"]) + ((((((((data["feature_wisdom20"]) + (((data["feature_strength22"]) - ((((data["feature_wisdom1"]) + ((((((data["feature_constitution114"]) - (data["feature_charisma31"]))) + (((data["feature_constitution62"]) + (data["feature_strength22"])))) / 2.0))) / 2.0))))) / 2.0)) - ((((data["feature_charisma31"]) + ((((data["feature_constitution114"]) + (data["feature_intelligence4"])) / 2.0))) / 2.0)))) * 2.0))) / 2.0)) / 2.0)))) + 0.095112 * np.tanh((((data["feature_wisdom23"]) + (np.tanh((np.tanh((((((((((((data["feature_charisma36"]) + ((((-(((((data["feature_dexterity11"]) + (data["feature_intelligence4"])) / 2.0))))) * 2.0))) / 2.0)) + ((((-((((data["feature_dexterity2"]) * (data["feature_wisdom23"])))))) * 2.0))) / 2.0)) * 2.0)) * 2.0))))))) / 2.0)) + 0.100000 * np.tanh(((data["feature_dexterity11"]) * (((data["feature_dexterity5"]) * (((((((data["feature_dexterity4"]) * (data["feature_constitution55"]))) - (((data["feature_wisdom21"]) - (((data["feature_charisma63"]) * (((((data["feature_charisma63"]) * (data["feature_charisma13"]))) - (((data["feature_wisdom21"]) - (((data["feature_charisma63"]) * (data["feature_constitution41"]))))))))))))) / 2.0)))))) + 0.100000 * np.tanh((((((((((data["feature_strength1"]) * (((data["feature_wisdom8"]) * 2.0)))) + (((data["feature_charisma3"]) - (((data["feature_constitution12"]) + (((data["feature_strength13"]) - (((((((data["feature_charisma50"]) * (data["feature_wisdom37"]))) * (data["feature_wisdom37"]))) * (((((((data["feature_wisdom8"]) * 2.0)) * 2.0)) * (data["feature_charisma61"])))))))))))) / 2.0)) / 2.0)) / 2.0)) + 0.099804 * np.tanh(((((data["feature_charisma54"]) - (data["feature_constitution42"]))) * ((((((np.tanh(((((((-((((data["feature_charisma54"]) - (data["feature_constitution21"])))))) * (data["feature_constitution21"]))) * 2.0)))) + ((((data["feature_constitution80"]) + ((-((((((data["feature_charisma54"]) - (data["feature_constitution55"]))) - (((data["feature_constitution21"]) - (data["feature_constitution5"]))))))))) / 2.0))) / 2.0)) / 2.0)))) + 0.086217 * np.tanh(((data["feature_wisdom21"]) * (((data["feature_constitution88"]) * (((data["feature_constitution88"]) * (((((((((data["feature_constitution88"]) * (((data["feature_wisdom34"]) + ((((data["feature_wisdom34"]) + (data["feature_wisdom22"])) / 2.0)))))) * (data["feature_wisdom21"]))) - (((data["feature_constitution75"]) * (data["feature_charisma26"]))))) - (((data["feature_constitution88"]) * (data["feature_dexterity7"]))))))))))) + 0.099902 * np.tanh(((data["feature_charisma63"]) * ((((((((((data["feature_wisdom3"]) * ((-((data["feature_constitution6"])))))) * 2.0)) + (((((data["feature_constitution113"]) - (((data["feature_constitution58"]) - ((((((((data["feature_charisma63"]) * (np.tanh((data["feature_strength19"]))))) + (data["feature_charisma82"])) / 2.0)) * 2.0)))))) * (data["feature_dexterity1"])))) / 2.0)) / 2.0))))) def GPX(data): return Output(0.097947 * np.tanh(((((data["feature_charisma19"]) - ((((data["feature_dexterity12"]) + (((((data["feature_dexterity7"]) - (data["feature_constitution42"]))) - (((((data["feature_charisma37"]) - (((data["feature_dexterity4"]) - ((((((data["feature_strength4"]) - (data["feature_charisma9"]))) + (((((data["feature_charisma67"]) - (data["feature_dexterity11"]))) - (data["feature_constitution110"])))) / 2.0)))))) * 2.0))))) / 2.0)))) / 2.0)) + 0.099804 * np.tanh(((data["feature_charisma85"]) * (((((((((data["feature_constitution97"]) + (data["feature_strength19"]))) * (((((data["feature_charisma46"]) + (data["feature_wisdom42"]))) / 2.0)))) * (((((data["feature_strength14"]) + (((data["feature_dexterity1"]) * (((data["feature_strength19"]) * (data["feature_constitution39"]))))))) * 2.0)))) * (((data["feature_strength19"]) * (((data["feature_charisma85"]) / 2.0)))))))) + 0.099902 * np.tanh((((data["feature_wisdom23"]) + (((((((((data["feature_charisma79"]) - (data["feature_dexterity14"]))) + ((-2.0)))) - ((((-(((((((((data["feature_constitution89"]) + (((data["feature_strength7"]) - (data["feature_wisdom23"]))))) * 2.0)) + (((((data["feature_wisdom34"]) * 2.0)) + (((np.tanh((data["feature_charisma86"]))) * 2.0))))) / 2.0))))) / 2.0)))) / 2.0))) / 2.0)) + 0.100000 * np.tanh(((((((data["feature_charisma63"]) * (((data["feature_charisma63"]) * (data["feature_dexterity9"]))))) + (np.tanh((((((-((data["feature_constitution114"])))) + ((((-((((data["feature_dexterity6"]) - (((((((data["feature_strength9"]) + ((((np.tanh(((-((data["feature_dexterity9"])))))) + (data["feature_charisma58"])) / 2.0))) / 2.0)) + (data["feature_charisma58"])) / 2.0))))))) * 2.0))) / 2.0)))))) / 2.0)) + 0.099902 * np.tanh((-((((((data["feature_constitution31"]) * (((((-1.0)) + ((((((((data["feature_dexterity10"]) + (data["feature_charisma81"])) / 2.0)) - (((data["feature_wisdom22"]) * (((((data["feature_wisdom5"]) - ((((data["feature_charisma81"]) + (data["feature_intelligence3"])) / 2.0)))) / 2.0)))))) * 2.0))) / 2.0)))) * (((data["feature_constitution8"]) - (((data["feature_dexterity6"]) - (data["feature_wisdom22"])))))))))) + 0.099804 * np.tanh(((((data["feature_constitution50"]) * ((((-((((data["feature_constitution50"]) * ((((data["feature_intelligence4"]) + (((((data["feature_wisdom7"]) + ((((-((((data["feature_wisdom42"]) * (((data["feature_wisdom42"]) * (data["feature_dexterity4"])))))))) - (((data["feature_wisdom42"]) * (data["feature_dexterity4"]))))))) - (data["feature_dexterity4"])))) / 2.0))))))) * 2.0)))) / 2.0)) + 0.100000 * np.tanh(((data["feature_wisdom8"]) * (((((data["feature_strength34"]) - (np.tanh(((((data["feature_constitution62"]) + ((((((data["feature_constitution53"]) + (((((data["feature_intelligence2"]) * 2.0)) + (((((data["feature_charisma19"]) + (((((data["feature_dexterity4"]) - (data["feature_constitution97"]))) * 2.0)))) * 2.0))))) / 2.0)) - (data["feature_strength3"])))) / 2.0)))))) / 2.0)))) + 0.099511 * np.tanh(((data["feature_strength28"]) * (((((data["feature_constitution44"]) / 2.0)) * (((data["feature_dexterity4"]) - ((((((((((data["feature_constitution7"]) + (((data["feature_constitution16"]) * (data["feature_strength28"]))))) * (((data["feature_constitution68"]) + (data["feature_constitution24"]))))) * (((data["feature_strength15"]) + (data["feature_constitution24"]))))) + (data["feature_constitution16"])) / 2.0)))))))) + 0.100000 * np.tanh(((data["feature_constitution113"]) * (((data["feature_charisma13"]) * (((((data["feature_intelligence5"]) * (((((data["feature_charisma47"]) - (data["feature_dexterity4"]))) + (((data["feature_charisma54"]) + (((((data["feature_charisma86"]) * (((((data["feature_wisdom35"]) * (data["feature_wisdom35"]))) * (data["feature_wisdom35"]))))) * 2.0)))))))) * (((data["feature_charisma77"]) * (data["feature_charisma13"]))))))))) + 0.100000 * np.tanh((((((data["feature_strength1"]) + ((((-((data["feature_dexterity7"])))) - (((((((((((((((data["feature_constitution46"]) * (data["feature_strength1"]))) * (((data["feature_constitution54"]) * 2.0)))) * (data["feature_charisma67"]))) * (((data["feature_constitution54"]) * 2.0)))) * (data["feature_constitution54"]))) * (data["feature_strength1"]))) * (((data["feature_strength1"]) * 2.0))))))) / 2.0)) / 2.0))) def GPXI(data): return Output(0.100000 * np.tanh(((((((((data["feature_strength4"]) * (data["feature_charisma19"]))) + (((data["feature_strength34"]) + (((((((data["feature_charisma76"]) * (((data["feature_strength4"]) + (data["feature_wisdom8"]))))) * (((data["feature_charisma18"]) * (((data["feature_constitution42"]) + (data["feature_dexterity7"]))))))) - (((data["feature_dexterity7"]) * 2.0)))))))) / 2.0)) / 2.0)) + 0.099707 * np.tanh((-(((((data["feature_dexterity5"]) + ((((((data["feature_dexterity14"]) + ((((data["feature_constitution38"]) + (((((((data["feature_charisma85"]) * (data["feature_charisma69"]))) - (data["feature_charisma46"]))) - (((data["feature_dexterity5"]) * 2.0))))) / 2.0))) / 2.0)) - (((((data["feature_charisma85"]) * 2.0)) / 2.0))))) / 2.0))))) + 0.100000 * np.tanh((((-(((((((((((data["feature_constitution102"]) + (data["feature_constitution102"])) / 2.0)) + (((((np.tanh((((data["feature_constitution40"]) - (data["feature_charisma58"]))))) - (((data["feature_charisma10"]) - (data["feature_constitution10"]))))) - (data["feature_wisdom23"]))))) * ((((data["feature_strength19"]) + (data["feature_wisdom23"])) / 2.0)))) / 2.0))))) / 2.0)) + 0.099511 * np.tanh((-((((data["feature_wisdom3"]) * (((data["feature_constitution78"]) * (np.tanh((((data["feature_dexterity6"]) - (((data["feature_wisdom35"]) * ((((data["feature_charisma77"]) + (((((data["feature_intelligence5"]) + (data["feature_constitution78"]))) * (data["feature_constitution78"])))) / 2.0))))))))))))))) + 0.099902 * np.tanh((((((data["feature_constitution108"]) + (((data["feature_strength3"]) * (data["feature_constitution106"])))) / 2.0)) * ((((((data["feature_constitution52"]) + (data["feature_constitution50"])) / 2.0)) * (np.tanh((((data["feature_dexterity13"]) - ((((data["feature_constitution52"]) + (np.tanh((((((data["feature_constitution108"]) * (((data["feature_constitution82"]) * (data["feature_constitution108"]))))) / 2.0))))) / 2.0)))))))))) + 0.099511 * np.tanh(((((np.tanh((((((-((data["feature_constitution62"])))) + (((data["feature_wisdom10"]) * (((((((((data["feature_wisdom42"]) * (((((data["feature_charisma18"]) * 2.0)) + (data["feature_intelligence12"]))))) + (((data["feature_intelligence12"]) + (data["feature_constitution97"]))))) * (data["feature_wisdom42"]))) - (((data["feature_wisdom10"]) * (data["feature_constitution65"])))))))) / 2.0)))) / 2.0)) / 2.0)) + 0.100000 * np.tanh(((data["feature_charisma67"]) * (((((((((data["feature_wisdom36"]) / 2.0)) + (((data["feature_strength15"]) * ((-((((data["feature_wisdom46"]) - ((((-((((data["feature_wisdom46"]) - (data["feature_constitution9"])))))) * (((data["feature_constitution9"]) * (((data["feature_strength30"]) * (((data["feature_intelligence12"]) + (data["feature_intelligence12"])))))))))))))))))) / 2.0)) / 2.0)))) + 0.099707 * np.tanh(np.tanh((np.tanh((((np.tanh((((data["feature_charisma6"]) * (((data["feature_constitution33"]) * (((data["feature_charisma6"]) * (np.tanh((((data["feature_strength19"]) / 2.0)))))))))))) * (((data["feature_constitution1"]) + (((data["feature_constitution18"]) * (((data["feature_strength19"]) * (((data["feature_constitution18"]) * (((data["feature_constitution18"]) * (data["feature_strength19"]))))))))))))))))) + 0.094233 * np.tanh(((((data["feature_constitution31"]) * (((((((((data["feature_constitution31"]) - (((data["feature_charisma34"]) - (np.tanh(((-((((data["feature_intelligence2"]) * 2.0))))))))))) / 2.0)) / 2.0)) * (((data["feature_wisdom38"]) + (((((data["feature_intelligence2"]) + (data["feature_intelligence8"]))) + (((data["feature_wisdom38"]) - (data["feature_charisma34"]))))))))))) / 2.0)) + 0.090616 * np.tanh(((((((data["feature_wisdom9"]) * (((((((data["feature_charisma41"]) * (data["feature_wisdom41"]))) * ((((data["feature_strength7"]) + ((((data["feature_constitution90"]) + ((-((data["feature_intelligence3"]))))) / 2.0))) / 2.0)))) * 2.0)))) * ((((((data["feature_constitution90"]) + ((-((data["feature_intelligence3"]))))) / 2.0)) + (data["feature_wisdom42"]))))) * (data["feature_charisma41"])))) def GP(data): return .1 * (GPI(data) + GPII(data) + GPIII(data) + GPIV(data) + GPV(data) + GPVI(data) + GPVII(data) + GPVIII(data) + GPIX(data) + GPX(data)) tr = pd.read_csv('numerai_training_data.csv') te = pd.read_csv('numerai_tournament_data.csv') cols = tr.columns[3:] cols tr[PREDICTION_NAME] = GPI(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPII(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPIII(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPIV(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPV(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPVI(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPVII(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPVIII(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPIX(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") tr[PREDICTION_NAME] = GPX(tr) train_correlations = tr.groupby("era").apply(score) print( f"On training the correlation has mean {train_correlations.mean()} and std {train_correlations.std()}") print( f"On training the average per-era payout is {payout(train_correlations).mean()}") print(f"Sharpe {train_correlations.mean()/train_correlations.std()}") validation_data = te[te.data_type == "validation"].copy() validation_data[PREDICTION_NAME] = GP(validation_data) validation_correlations = validation_data.groupby("era").apply(score) print( f"On validation the correlation has mean {validation_correlations.mean()} and std {validation_correlations.std()}") print( f"On validation the average per-era payout is {payout(validation_correlations).mean()}") print(f"Sharpe {validation_correlations.mean()/validation_correlations.std()}") ex = pd.read_csv('example_predictions.csv') ex.prediction = GP(te) ex.to_csv('standard.csv', index=False) features = ['feature_dexterity4', 'feature_charisma63', 'feature_strength19', 'feature_dexterity7', 'feature_wisdom42', 'feature_strength1', 'feature_intelligence4', 'feature_dexterity11', 'feature_wisdom23', 'feature_intelligence2', 'feature_charisma69', 'feature_dexterity6', 'feature_dexterity12', 'feature_dexterity9', 'feature_dexterity14', 'feature_strength34', 'feature_wisdom36', 'feature_constitution114', 'feature_dexterity2', 'feature_charisma35', 'feature_wisdom35', 'feature_charisma10', 'feature_wisdom8', 'feature_charisma54', 'feature_charisma85', 'feature_wisdom7', 'feature_charisma13', 'feature_wisdom22', 'feature_charisma37', 'feature_constitution50', 'feature_strength3', 'feature_charisma5', 'feature_charisma79', 'feature_strength15', 'feature_wisdom20', 'feature_charisma19', 'feature_constitution42', 'feature_charisma76', 'feature_charisma50', 'feature_strength36', 'feature_dexterity1', 'feature_strength13', 'feature_intelligence9', 'feature_constitution16', 'feature_constitution81', 'feature_constitution108', 'feature_charisma58', 'feature_constitution6', 'feature_constitution110', 'feature_wisdom21', 'feature_charisma6', 'feature_strength9', 'feature_constitution113', 'feature_charisma45', 'feature_constitution46', 'feature_constitution54', 'feature_dexterity13', 'feature_dexterity8', 'feature_constitution39', 'feature_charisma11', 'feature_constitution38', 'feature_wisdom13', 'feature_wisdom3', 'feature_charisma81', 'feature_intelligence12', 'feature_wisdom26', 'feature_constitution62', 'feature_constitution63', 'feature_charisma46', 'feature_intelligence3', 'feature_strength22', 'feature_wisdom10', 'feature_intelligence5', 'feature_constitution97', 'feature_constitution102', 'feature_charisma28', 'feature_constitution91', 'feature_dexterity3', 'feature_constitution88', 'feature_charisma67', 'feature_dexterity5', 'feature_wisdom33', 'feature_strength4', 'feature_strength10', 'feature_strength14', 'feature_constitution4', 'feature_constitution12', 'feature_constitution78', 'feature_intelligence11', 'feature_constitution85', 'feature_strength30', 'feature_constitution24', 'feature_wisdom2', 'feature_wisdom46', 'feature_constitution18', 'feature_constitution7', 'feature_wisdom34', 'feature_charisma83', 'feature_constitution34', 'feature_charisma77', 'feature_wisdom43', 'feature_constitution21', 'feature_constitution93', 'feature_charisma9', 'feature_constitution41', 'feature_constitution69', 'feature_charisma53', 'feature_wisdom12', 'feature_constitution30', 'feature_constitution75', 'feature_constitution104', 'feature_charisma55', 'feature_wisdom1', 'feature_constitution55', 'feature_wisdom37', 'feature_charisma57', 'feature_wisdom41', 'feature_charisma3', 'feature_constitution19', 'feature_constitution2', 'feature_constitution31', 'feature_constitution65', 'feature_wisdom16', 'feature_wisdom18', 'feature_intelligence8', 'feature_charisma61', 'feature_charisma75', 'feature_charisma18', 'feature_constitution68', 'feature_constitution89', 'feature_constitution90', 'feature_constitution58', 'feature_constitution20', 'feature_wisdom5', 'feature_wisdom19', 'feature_wisdom29', 'feature_intelligence7', 'feature_charisma36', 'feature_wisdom32', 'feature_charisma47', 'feature_charisma1', 'feature_charisma82', 'feature_charisma34', 'feature_constitution56', 'feature_charisma86', 'feature_constitution47', 'feature_constitution101', 'feature_charisma2', 'feature_charisma31', 'feature_wisdom24', 'feature_constitution70', 'feature_charisma29', 'feature_constitution40', 'feature_constitution15', 'feature_wisdom44', 'feature_intelligence6', 'feature_strength28', 'feature_charisma16', 'feature_wisdom11', 'feature_constitution26', 'feature_constitution8', 'feature_constitution53', 'feature_dexterity10', 'feature_wisdom38', 'feature_charisma70', 'feature_constitution37', 'feature_wisdom30', 'feature_strength7', 'feature_wisdom45', 'feature_constitution92', 'feature_strength21', 'feature_constitution5', 'feature_constitution80', 'feature_constitution64', 'feature_constitution67', 'feature_charisma71', 'feature_constitution86', 'feature_charisma26', 'feature_charisma41', 'feature_constitution105', 'feature_constitution103', 'feature_wisdom27', 'feature_constitution59', 'feature_constitution32', 'feature_charisma74', 'feature_strength18', 'feature_constitution111', 'feature_strength24', 'feature_wisdom4', 'feature_constitution94', 'feature_constitution79', 'feature_strength12', 'feature_constitution66', 'feature_constitution96', 'feature_constitution84', 'feature_wisdom39', 'feature_constitution27', 'feature_charisma66', 'feature_wisdom40', 'feature_charisma43', 'feature_constitution82', 'feature_constitution71', 'feature_charisma59', 'feature_strength2', 'feature_charisma78', 'feature_charisma32', 'feature_constitution98', 'feature_constitution11', 'feature_constitution52', 'feature_charisma12', 'feature_wisdom25', 'feature_strength32', 'feature_charisma42', 'feature_constitution100', 'feature_constitution44'] validation_data = te.copy() validation_data["preds"] = GP(validation_data) validation_data["preds_neutralized"] = validation_data.groupby("era").apply( # neutralize by 50% within each era lambda x: normalize_and_neutralize(x, ["preds"], features, 0.5) ) scaler = MinMaxScaler() validation_data[PREDICTION_NAME] = scaler.fit_transform( validation_data[["preds_neutralized"]]) # transform back to 0-1 validation_correlations = validation_data.groupby("era").apply(score) print( f"On validation the correlation has mean {validation_correlations.mean()} and std {validation_correlations.std()}") print( f"On validation the average per-era payout is {payout(validation_correlations).mean()}") print(f"Sharpe {validation_correlations.mean()/validation_correlations.std()}") ex = pd.read_csv('example_predictions.csv') ex.prediction = validation_data.prediction ex.to_csv('weaksauce.csv', index=False, float_format='%.6f')
{"hexsha": "2cc2ed5f7b2427d7bc96cb72b5365ca0d63a3a33", "size": 60370, "ext": "py", "lang": "Python", "max_stars_repo_path": "allornothing.py", "max_stars_repo_name": "scirpus/numer", "max_stars_repo_head_hexsha": "05c46b6f267c5b7651b79fa009dfe74194a7a0e1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2021-07-20T18:19:48.000Z", "max_stars_repo_stars_event_max_datetime": "2021-08-13T14:51:08.000Z", "max_issues_repo_path": "allornothing.py", "max_issues_repo_name": "scirpus/numer", "max_issues_repo_head_hexsha": "05c46b6f267c5b7651b79fa009dfe74194a7a0e1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "allornothing.py", "max_forks_repo_name": "scirpus/numer", "max_forks_repo_head_hexsha": "05c46b6f267c5b7651b79fa009dfe74194a7a0e1", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 10, "max_forks_repo_forks_event_min_datetime": "2021-07-20T18:19:54.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-13T01:24:36.000Z", "avg_line_length": 140.7226107226, "max_line_length": 507, "alphanum_fraction": 0.6046380653, "include": true, "reason": "import numpy,import scipy", "num_tokens": 17900}
// rocks_sorted_data_impl_test.cpp /** * Copyright (C) 2014 MongoDB Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License, version 3, * as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the GNU Affero General Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #include <memory> #include <boost/shared_ptr.hpp> #include <boost/filesystem/operations.hpp> #include <rocksdb/comparator.h> #include <rocksdb/db.h> #include <rocksdb/options.h> #include <rocksdb/slice.h> #include "mongo/db/operation_context_noop.h" #include "mongo/db/storage/rocks/rocks_engine.h" #include "mongo/db/storage/rocks/rocks_sorted_data_impl.h" #include "mongo/db/storage/rocks/rocks_record_store.h" #include "mongo/db/storage/rocks/rocks_recovery_unit.h" #include "mongo/unittest/temp_dir.h" #include "mongo/unittest/unittest.h" using namespace mongo; namespace mongo { class MyOperationContext : public OperationContextNoop { public: MyOperationContext( rocksdb::DB* db ) : OperationContextNoop( new RocksRecoveryUnit( db, false ) ) { } }; // to be used in testing static std::unique_ptr<rocksdb::Comparator> _rocksComparator( RocksSortedDataImpl::newRocksComparator( Ordering::make( BSON( "a" << 1 ) ) ) ); string _rocksSortedDataTestDir = "mongo-rocks-test"; rocksdb::DB* getDB( string path ) { boost::filesystem::remove_all( path ); rocksdb::Options options = RocksEngine::dbOptions(); // open DB rocksdb::DB* db; rocksdb::Status s = rocksdb::DB::Open(options, path, &db); ASSERT(s.ok()); return db; } const Ordering dummyOrdering = Ordering::make( BSONObj() ); TEST( RocksSortedDataTest, BrainDead ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); BSONObj key = BSON( "" << 1 ); DiskLoc loc( 5, 16 ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT( !sortedData.unindex( &opCtx, key, loc ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); Status res = sortedData.insert( &opCtx, key, loc, true ); ASSERT_OK( res ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT( sortedData.unindex( &opCtx, key, loc ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); sortedData.unindex( &opCtx, key, loc ); uow.commit(); } } } } TEST( RocksSortedDataTest, Locate1 ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); BSONObj key = BSON( "" << 1 ); DiskLoc loc( 5, 16 ); { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( !cursor->locate( key, loc ) ); } { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); Status res = sortedData.insert( &opCtx, key, loc, true ); ASSERT_OK( res ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( cursor->locate( key, loc ) ); ASSERT_EQUALS( key, cursor->getKey() ); ASSERT_EQUALS( loc, cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, Locate2 ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( !cursor->locate( BSON( "a" << 2 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); cursor->advance(); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); cursor->advance(); ASSERT( cursor->isEOF() ); } } } boost::shared_ptr<rocksdb::ColumnFamilyHandle> makeColumnFamily( rocksdb::DB* db ) { rocksdb::ColumnFamilyOptions options; options.comparator = _rocksComparator.get(); rocksdb::ColumnFamilyHandle* cfh; rocksdb::Status s = db->CreateColumnFamily( options, "simpleColumnFamily", &cfh ); ASSERT( s.ok() ); return boost::shared_ptr<rocksdb::ColumnFamilyHandle>( cfh ); } TEST( RocksSortedDataTest, LocateInexact ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { boost::shared_ptr<rocksdb::ColumnFamilyHandle> cfh = makeColumnFamily( db.get() ); RocksSortedDataImpl sortedData( db.get(), cfh.get(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT_FALSE( cursor->locate( BSON( "a" << 2 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, Snapshots ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); // get a cursor scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); // insert some more stuff { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); cursor->advance(); // make sure that the cursor can't "see" anything added after it was created. ASSERT( cursor-> isEOF() ); ASSERT_FALSE( cursor->locate( BSON( "" << 3 ), DiskLoc(1,3) ) ); ASSERT( cursor->isEOF() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionSimple ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( !cursor->locate( BSON( "a" << 1 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); // save the position cursor->savePosition(); // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); // repeat, with a different value ASSERT( !cursor->locate( BSON( "a" << 2 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // save the position cursor->savePosition(); // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionEOF ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( !cursor->locate( BSON( "a" << 1 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); // advance to the end while ( !cursor->isEOF() ) { cursor->advance(); } ASSERT( cursor->isEOF() ); // save the position cursor->savePosition(); // restore position, make sure we're at the end cursor->restorePosition( &opCtx ); ASSERT( cursor->isEOF() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionInsert ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( !cursor->locate( BSON( "" << 3 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); // save the position cursor->savePosition(); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 4 ), DiskLoc(1,4), true ) ); uow.commit(); } } // restore position, make sure we don't see the newly inserted value cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); cursor->advance(); ASSERT( cursor->isEOF() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionDelete2 ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( !cursor->locate( BSON( "" << 2 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // save the position cursor->savePosition(); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT( sortedData.unindex( &opCtx, BSON( "" << 1 ), DiskLoc(1,1) ) ); uow.commit(); } } // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionDelete3 ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, 1 ) ); ASSERT( !cursor->locate( BSON( "" << 2 ), DiskLoc(0,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // save the position cursor->savePosition(); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT( sortedData.unindex( &opCtx, BSON( "" << 3 ), DiskLoc(1,3) ) ); uow.commit(); } } // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // make sure that we can still see the unindexed data, since we're working on // a snapshot cursor->advance(); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); cursor->advance(); ASSERT( cursor->isEOF() ); } } } TEST( RocksSortedDataTest, Locate1Reverse ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); BSONObj key = BSON( "" << 1 ); DiskLoc loc( 5, 16 ); { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT( !cursor->locate( key, loc ) ); } { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); Status res = sortedData.insert( &opCtx, key, loc, true ); ASSERT_OK( res ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT( cursor->locate( key, loc ) ); ASSERT_EQUALS( key, cursor->getKey() ); ASSERT_EQUALS( loc, cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, LocateInexactReverse ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { boost::shared_ptr<rocksdb::ColumnFamilyHandle> cfh = makeColumnFamily( db.get() ); RocksSortedDataImpl sortedData( db.get(), cfh.get(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "a" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "a" << 3 ), DiskLoc(1,1), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT_FALSE( cursor->locate( BSON( "a" << 2 ), DiskLoc(1,1) ) ); ASSERT_FALSE( cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionReverseSimple ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT( !cursor->locate( BSON( "a" << 1 ), DiskLoc(2,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); // save the position cursor->savePosition(); // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); // repeat, with a different value ASSERT( !cursor->locate( BSON( "a" << 2 ), DiskLoc(2,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // save the position cursor->savePosition(); // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionEOFReverse ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 4 ), DiskLoc(1,4), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT_FALSE( cursor->locate( BSON( "" << 2 ), DiskLoc(1,2) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); // advance to the end while ( !cursor->isEOF() ) { cursor->advance(); } ASSERT( cursor->isEOF() ); // save the position cursor->savePosition(); // restore position, make sure we're at the end cursor->restorePosition( &opCtx ); ASSERT( cursor->isEOF() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionInsertReverse ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT( !cursor->locate( BSON( "" << 3 ), DiskLoc(2,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); // save the position cursor->savePosition(); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); uow.commit(); } } // restore position, make sure we don't see the newly inserted value cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); cursor->advance(); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); cursor->advance(); ASSERT( cursor->isEOF() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionDelete1Reverse ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT( !cursor->locate( BSON( "" << 3 ), DiskLoc(2,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); // save the position cursor->savePosition(); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT( sortedData.unindex( &opCtx, BSON( "" << 3 ), DiskLoc(1,3) ) ); uow.commit(); } } // restore position, make sure we still see the deleted key and value, because // we're using a snapshot cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 3 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,3), cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionDelete2Reverse ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT( !cursor->locate( BSON( "" << 2 ), DiskLoc(2,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // save the position cursor->savePosition(); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT( sortedData.unindex( &opCtx, BSON( "" << 1 ), DiskLoc(1,1) ) ); uow.commit(); } } // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); } } } TEST( RocksSortedDataTest, SaveAndRestorePositionDelete3Reverse ) { unittest::TempDir td( _rocksSortedDataTestDir ); scoped_ptr<rocksdb::DB> db( getDB( td.path() ) ); { RocksSortedDataImpl sortedData( db.get(), db->DefaultColumnFamily(), dummyOrdering ); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 1 ), DiskLoc(1,1), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 2 ), DiskLoc(1,2), true ) ); ASSERT_OK( sortedData.insert( &opCtx, BSON( "" << 3 ), DiskLoc(1,3), true ) ); uow.commit(); } } { MyOperationContext opCtx( db.get() ); scoped_ptr<SortedDataInterface::Cursor> cursor( sortedData.newCursor( &opCtx, -1 ) ); ASSERT( !cursor->locate( BSON( "" << 2 ), DiskLoc(2,0) ) ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // save the position cursor->savePosition(); { MyOperationContext opCtx( db.get() ); { WriteUnitOfWork uow( &opCtx ); ASSERT( sortedData.unindex( &opCtx, BSON( "" << 1 ), DiskLoc(1,1) ) ); uow.commit(); } } // restore position cursor->restorePosition( &opCtx ); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 2 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,2), cursor->getDiskLoc() ); // make sure that we can still see the unindexed data, since we're working on // a snapshot cursor->advance(); ASSERT( !cursor->isEOF() ); ASSERT_EQUALS( BSON( "" << 1 ), cursor->getKey() ); ASSERT_EQUALS( DiskLoc(1,1), cursor->getDiskLoc() ); cursor->advance(); ASSERT( cursor->isEOF() ); } } } }
{"hexsha": "78628a668cc7847ed1ca20253a891a7312135503", "size": 36081, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "src/mongo/db/storage/rocks/rocks_sorted_data_impl_test.cpp", "max_stars_repo_name": "cyxddgithub/mongo", "max_stars_repo_head_hexsha": "6eb296a66e1f71f12d5483b7144f96d506b055a3", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2015-07-17T04:37:51.000Z", "max_stars_repo_stars_event_max_datetime": "2015-07-17T04:37:51.000Z", "max_issues_repo_path": "src/mongo/db/storage/rocks/rocks_sorted_data_impl_test.cpp", "max_issues_repo_name": "cyxddgithub/mongo", "max_issues_repo_head_hexsha": "6eb296a66e1f71f12d5483b7144f96d506b055a3", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/mongo/db/storage/rocks/rocks_sorted_data_impl_test.cpp", "max_forks_repo_name": "cyxddgithub/mongo", "max_forks_repo_head_hexsha": "6eb296a66e1f71f12d5483b7144f96d506b055a3", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 38.880387931, "max_line_length": 101, "alphanum_fraction": 0.4795875946, "num_tokens": 8224}
function output = calc_traversal_dist(ai) % This function will generate position coordinates of chain code (ai). Number of % harmonic elements (n), and number of points for reconstruction (m) must be % specified. x_ = 0; y_ = 0; for i = 1 : size(ai, 2) x_ = x_ + sign(6 - ai(i)) * sign(2 - ai(i)); y_ = y_ + sign(4 - ai(i)) * sign(ai(i)); p(i, 1) = x_; p(i, 2) = y_; end output = p; end
{"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/32800-elliptic-fourier-for-shape-analysis/calc_traversal_dist.m"}
/* Copyright (c) 2021, the adamantine authors. * * This file is subject to the Modified BSD License and may not be distributed * without copyright and license information. Please refer to the file LICENSE * for the text and further information on this license. */ #define BOOST_TEST_MODULE DataAssimilator #include <DataAssimilator.hh> #include <Geometry.hh> #include <deal.II/fe/fe_q.h> #include <deal.II/lac/la_parallel_vector.h> #include "main.cc" namespace adamantine { class DataAssimilatorTester { public: void test_constructor() { boost::property_tree::ptree database; // First checking the dealii default values DataAssimilator da0(database); double tol = 1.0e-12; BOOST_CHECK_SMALL(da0._solver_control.tolerance() - 1.0e-10, tol); BOOST_CHECK(da0._solver_control.max_steps() == 100); BOOST_CHECK(da0._additional_data.max_n_tmp_vectors == 30); // Now explicitly setting them database.put("solver.convergence_tolerance", 1.0e-6); database.put("solver.max_iterations", 25); database.put("solver.max_number_of_temp_vectors", 4); DataAssimilator da1(database); BOOST_CHECK_SMALL(da1._solver_control.tolerance() - 1.0e-6, tol); BOOST_CHECK(da1._solver_control.max_steps() == 25); BOOST_CHECK(da1._additional_data.max_n_tmp_vectors == 4); }; void test_calc_kalman_gain() { // Create the DoF mapping MPI_Comm communicator = MPI_COMM_WORLD; boost::property_tree::ptree database; database.put("import_mesh", false); database.put("length", 1); database.put("length_divisions", 2); database.put("height", 1); database.put("height_divisions", 2); adamantine::Geometry<2> geometry(communicator, database); dealii::parallel::distributed::Triangulation<2> const &tria = geometry.get_triangulation(); dealii::FE_Q<2> fe(1); dealii::DoFHandler<2> dof_handler(tria); dof_handler.distribute_dofs(fe); unsigned int sim_size = 5; unsigned int expt_size = 2; dealii::Vector<double> expt_vec(2); expt_vec(0) = 2.5; expt_vec(1) = 9.5; std::pair<std::vector<int>, std::vector<int>> indices_and_offsets; indices_and_offsets.first.resize(2); indices_and_offsets.second.resize(3); // Offset vector is one longer indices_and_offsets.first[0] = 1; indices_and_offsets.first[1] = 3; indices_and_offsets.second[0] = 0; indices_and_offsets.second[1] = 1; indices_and_offsets.second[2] = 2; boost::property_tree::ptree solver_settings_database; DataAssimilator da(solver_settings_database); da._sim_size = sim_size; da._expt_size = expt_size; da._num_ensemble_members = 3; da.update_dof_mapping<2>(dof_handler, indices_and_offsets); // Create the simulation data std::vector<dealii::LA::distributed::Vector<double>> data(3); data[0].reinit(5); data[0](0) = 1.0; data[0](1) = 3.0; data[0](2) = 6.0; data[0](3) = 9.0; data[0](4) = 11.0; data[1].reinit(5); data[1](0) = 1.5; data[1](1) = 3.2; data[1](2) = 6.3; data[1](3) = 9.7; data[1](4) = 11.9; data[2].reinit(5); data[2](0) = 1.1; data[2](1) = 3.1; data[2](2) = 6.1; data[2](3) = 9.1; data[2](4) = 11.1; // Build the sparse experimental covariance matrix dealii::SparsityPattern pattern(expt_size, expt_size, 1); pattern.add(0, 0); pattern.add(1, 1); pattern.compress(); dealii::SparseMatrix<double> R(pattern); R.add(0, 0, 0.002); R.add(1, 1, 0.001); // Create the (perturbed) innovation std::vector<dealii::Vector<double>> perturbed_innovation(3); for (unsigned int sample = 0; sample < perturbed_innovation.size(); ++sample) { perturbed_innovation[sample].reinit(expt_size); dealii::Vector<double> temp = da.calc_Hx(data[sample]); for (unsigned int i = 0; i < expt_size; ++i) { perturbed_innovation[sample][i] = expt_vec[i] - temp[i]; } } perturbed_innovation[0][0] = perturbed_innovation[0][0] + 0.0008; perturbed_innovation[0][1] = perturbed_innovation[0][1] - 0.0005; perturbed_innovation[1][0] = perturbed_innovation[1][0] - 0.001; perturbed_innovation[1][1] = perturbed_innovation[1][1] + 0.0002; perturbed_innovation[2][0] = perturbed_innovation[2][0] + 0.0002; perturbed_innovation[2][1] = perturbed_innovation[2][1] - 0.0009; // Apply the Kalman gain std::vector<dealii::LA::distributed::Vector<double>> forecast_shift = da.apply_kalman_gain(data, R, perturbed_innovation); double tol = 1.0e-4; // Reference solution calculated using Python BOOST_CHECK_CLOSE(forecast_shift[0][0], 0.21352564, tol); BOOST_CHECK_CLOSE(forecast_shift[0][1], -0.14600986, tol); BOOST_CHECK_CLOSE(forecast_shift[0][2], -0.02616469, tol); BOOST_CHECK_CLOSE(forecast_shift[0][3], 0.45321598, tol); BOOST_CHECK_CLOSE(forecast_shift[0][4], 0.69290631, tol); BOOST_CHECK_CLOSE(forecast_shift[1][0], -0.27786325, tol); BOOST_CHECK_CLOSE(forecast_shift[1][1], -0.32946285, tol); BOOST_CHECK_CLOSE(forecast_shift[1][2], -0.31226298, tol); BOOST_CHECK_CLOSE(forecast_shift[1][3], -0.24346351, tol); BOOST_CHECK_CLOSE(forecast_shift[1][4], -0.20906377, tol); BOOST_CHECK_CLOSE(forecast_shift[2][0], 0.12767094, tol); BOOST_CHECK_CLOSE(forecast_shift[2][1], -0.20319395, tol); BOOST_CHECK_CLOSE(forecast_shift[2][2], -0.09290565, tol); BOOST_CHECK_CLOSE(forecast_shift[2][3], 0.34824753, tol); BOOST_CHECK_CLOSE(forecast_shift[2][4], 0.56882413, tol); }; void test_update_dof_mapping() { MPI_Comm communicator = MPI_COMM_WORLD; boost::property_tree::ptree database; database.put("import_mesh", false); database.put("length", 1); database.put("length_divisions", 2); database.put("height", 1); database.put("height_divisions", 2); adamantine::Geometry<2> geometry(communicator, database); dealii::parallel::distributed::Triangulation<2> const &tria = geometry.get_triangulation(); dealii::FE_Q<2> fe(1); dealii::DoFHandler<2> dof_handler(tria); dof_handler.distribute_dofs(fe); unsigned int sim_size = 4; unsigned int expt_size = 3; std::pair<std::vector<int>, std::vector<int>> indices_and_offsets; indices_and_offsets.first.resize(3); indices_and_offsets.second.resize(4); // offset vector is one longer indices_and_offsets.first[0] = 0; indices_and_offsets.first[1] = 1; indices_and_offsets.first[2] = 3; indices_and_offsets.second[0] = 0; indices_and_offsets.second[1] = 1; indices_and_offsets.second[2] = 2; indices_and_offsets.second[3] = 3; boost::property_tree::ptree solver_settings_database; DataAssimilator da(solver_settings_database); da._sim_size = sim_size; da._expt_size = expt_size; da.update_dof_mapping<2>(dof_handler, indices_and_offsets); BOOST_CHECK(da._expt_to_dof_mapping.first[0] == 0); BOOST_CHECK(da._expt_to_dof_mapping.first[1] == 1); BOOST_CHECK(da._expt_to_dof_mapping.first[2] == 2); BOOST_CHECK(da._expt_to_dof_mapping.second[0] == 0); BOOST_CHECK(da._expt_to_dof_mapping.second[1] == 1); BOOST_CHECK(da._expt_to_dof_mapping.second[2] == 3); }; void test_calc_H() { MPI_Comm communicator = MPI_COMM_WORLD; boost::property_tree::ptree database; database.put("import_mesh", false); database.put("length", 1); database.put("length_divisions", 2); database.put("height", 1); database.put("height_divisions", 2); adamantine::Geometry<2> geometry(communicator, database); dealii::parallel::distributed::Triangulation<2> const &tria = geometry.get_triangulation(); dealii::FE_Q<2> fe(1); dealii::DoFHandler<2> dof_handler(tria); dof_handler.distribute_dofs(fe); unsigned int sim_size = 4; unsigned int expt_size = 3; std::pair<std::vector<int>, std::vector<int>> indices_and_offsets; indices_and_offsets.first.resize(3); indices_and_offsets.second.resize(4); // offset vector is one longer indices_and_offsets.first[0] = 0; indices_and_offsets.first[1] = 1; indices_and_offsets.first[2] = 3; indices_and_offsets.second[0] = 0; indices_and_offsets.second[1] = 1; indices_and_offsets.second[2] = 2; indices_and_offsets.second[3] = 3; boost::property_tree::ptree solver_settings_database; DataAssimilator da(solver_settings_database); da._sim_size = sim_size; da._expt_size = expt_size; da.update_dof_mapping<2>(dof_handler, indices_and_offsets); dealii::SparsityPattern pattern(expt_size, sim_size, expt_size); dealii::SparseMatrix<double> H = da.calc_H(pattern); double tol = 1e-12; for (unsigned int i = 0; i < expt_size; ++i) { for (unsigned int j = 0; j < sim_size; ++j) { if (i == 0 && j == 0) BOOST_CHECK_CLOSE(H(i, j), 1.0, tol); else if (i == 1 && j == 1) BOOST_CHECK_CLOSE(H(i, j), 1.0, tol); else if (i == 2 && j == 3) BOOST_CHECK_CLOSE(H(i, j), 1.0, tol); else BOOST_CHECK_CLOSE(H.el(i, j), 0.0, tol); } } }; void test_calc_Hx() { MPI_Comm communicator = MPI_COMM_WORLD; boost::property_tree::ptree database; database.put("import_mesh", false); database.put("length", 1); database.put("length_divisions", 2); database.put("height", 1); database.put("height_divisions", 2); adamantine::Geometry<2> geometry(communicator, database); dealii::parallel::distributed::Triangulation<2> const &tria = geometry.get_triangulation(); dealii::FE_Q<2> fe(1); dealii::DoFHandler<2> dof_handler(tria); dof_handler.distribute_dofs(fe); int sim_size = 4; int expt_size = 3; dealii::LA::distributed::Vector<double> sim_vec(dof_handler.n_dofs()); sim_vec(0) = 2.0; sim_vec(1) = 4.0; sim_vec(2) = 5.0; sim_vec(3) = 7.0; dealii::Vector<double> expt_vec(3); expt_vec(0) = 2.5; expt_vec(1) = 4.5; expt_vec(2) = 8.5; std::pair<std::vector<int>, std::vector<int>> indices_and_offsets; indices_and_offsets.first.resize(3); indices_and_offsets.second.resize(4); // Offset vector is one longer indices_and_offsets.first[0] = 0; indices_and_offsets.first[1] = 1; indices_and_offsets.first[2] = 3; indices_and_offsets.second[0] = 0; indices_and_offsets.second[1] = 1; indices_and_offsets.second[2] = 2; indices_and_offsets.second[3] = 3; boost::property_tree::ptree solver_settings_database; DataAssimilator da(solver_settings_database); da._sim_size = sim_size; da._expt_size = expt_size; da.update_dof_mapping<2>(dof_handler, indices_and_offsets); dealii::Vector<double> Hx = da.calc_Hx(sim_vec); double tol = 1e-10; BOOST_CHECK_CLOSE(Hx(0), 2.0, tol); BOOST_CHECK_CLOSE(Hx(1), 4.0, tol); BOOST_CHECK_CLOSE(Hx(2), 7.0, tol); }; void test_calc_sample_covariance_dense() { double tol = 1e-10; // Trivial case of identical vectors, covariance should be the zero matrix std::vector<dealii::LA::distributed::Vector<double>> data1(3); data1[0].reinit(4); data1[0](0) = 1.0; data1[0](1) = 3.0; data1[0](2) = 6.0; data1[0](3) = 9.0; data1[1].reinit(4); data1[1](0) = 1.0; data1[1](1) = 3.0; data1[1](2) = 6.0; data1[1](3) = 9.0; data1[2].reinit(4); data1[2](0) = 1.0; data1[2](1) = 3.0; data1[2](2) = 6.0; data1[2](3) = 9.0; boost::property_tree::ptree solver_settings_database; DataAssimilator da(solver_settings_database); dealii::FullMatrix<double> cov = da.calc_sample_covariance_dense(data1); // Check results for (unsigned int i = 0; i < 4; ++i) { for (unsigned int j = 0; j < 4; ++j) { BOOST_CHECK_SMALL(std::abs(cov(i, j)), tol); } } // Non-trivial case, using NumPy solution as the reference std::vector<dealii::LA::distributed::Vector<double>> data2(3); data2[0].reinit(5); data2[0](0) = 1.0; data2[0](1) = 3.0; data2[0](2) = 6.0; data2[0](3) = 9.0; data2[0](4) = 11.0; data2[1].reinit(5); data2[1](0) = 1.5; data2[1](1) = 3.2; data2[1](2) = 6.3; data2[1](3) = 9.7; data2[1](4) = 11.9; data2[2].reinit(5); data2[2](0) = 1.1; data2[2](1) = 3.1; data2[2](2) = 6.1; data2[2](3) = 9.1; data2[2](4) = 11.1; da._sim_size = 5; dealii::FullMatrix<double> cov2 = da.calc_sample_covariance_dense(data2); BOOST_CHECK_CLOSE(cov2(0, 0), 0.07, tol); BOOST_CHECK_CLOSE(cov2(1, 0), 0.025, tol); BOOST_CHECK_CLOSE(cov2(2, 0), 0.04, tol); BOOST_CHECK_CLOSE(cov2(3, 0), 0.1, tol); BOOST_CHECK_CLOSE(cov2(4, 0), 0.13, tol); BOOST_CHECK_CLOSE(cov2(0, 1), 0.025, tol); BOOST_CHECK_CLOSE(cov2(1, 1), 0.01, tol); BOOST_CHECK_CLOSE(cov2(2, 1), 0.015, tol); BOOST_CHECK_CLOSE(cov2(3, 1), 0.035, tol); BOOST_CHECK_CLOSE(cov2(4, 1), 0.045, tol); BOOST_CHECK_CLOSE(cov2(0, 2), 0.04, tol); BOOST_CHECK_CLOSE(cov2(1, 2), 0.015, tol); BOOST_CHECK_CLOSE(cov2(2, 2), 0.02333333333333, tol); BOOST_CHECK_CLOSE(cov2(3, 2), 0.05666666666667, tol); BOOST_CHECK_CLOSE(cov2(4, 2), 0.07333333333333, tol); BOOST_CHECK_CLOSE(cov2(0, 3), 0.1, tol); BOOST_CHECK_CLOSE(cov2(1, 3), 0.035, tol); BOOST_CHECK_CLOSE(cov2(2, 3), 0.05666666666667, tol); BOOST_CHECK_CLOSE(cov2(3, 3), 0.14333333333333, tol); BOOST_CHECK_CLOSE(cov2(4, 3), 0.18666666666667, tol); BOOST_CHECK_CLOSE(cov2(0, 4), 0.13, tol); BOOST_CHECK_CLOSE(cov2(1, 4), 0.045, tol); BOOST_CHECK_CLOSE(cov2(2, 4), 0.07333333333333, tol); BOOST_CHECK_CLOSE(cov2(3, 4), 0.18666666666667, tol); BOOST_CHECK_CLOSE(cov2(4, 4), 0.24333333333333, tol); }; void test_fill_noise_vector() { boost::property_tree::ptree solver_settings_database; DataAssimilator da(solver_settings_database); dealii::SparsityPattern pattern(3, 3, 3); pattern.add(0, 0); pattern.add(1, 0); pattern.add(1, 1); pattern.add(0, 1); pattern.add(2, 2); pattern.compress(); dealii::SparseMatrix<double> R(pattern); R.add(0, 0, 0.1); R.add(1, 0, 0.3); R.add(1, 1, 1.0); R.add(0, 1, 0.3); R.add(2, 2, 0.2); std::vector<dealii::Vector<double>> data; dealii::Vector<double> ensemble_member(3); for (unsigned int i = 0; i < 1000; ++i) { da.fill_noise_vector(ensemble_member, R); data.push_back(ensemble_member); } dealii::FullMatrix<double> Rtest = da.calc_sample_covariance_dense(data); double tol = 20.; // Loose 20% tolerance because this is a statistical check BOOST_CHECK_CLOSE(R(0, 0), Rtest(0, 0), tol); BOOST_CHECK_CLOSE(R(1, 0), Rtest(1, 0), tol); BOOST_CHECK_CLOSE(R(1, 1), Rtest(1, 1), tol); BOOST_CHECK_CLOSE(R(0, 1), Rtest(0, 1), tol); BOOST_CHECK_CLOSE(R(2, 2), Rtest(2, 2), tol); }; void test_update_ensemble() { // Create the DoF mapping MPI_Comm communicator = MPI_COMM_WORLD; boost::property_tree::ptree database; database.put("import_mesh", false); database.put("length", 1); database.put("length_divisions", 2); database.put("height", 1); database.put("height_divisions", 2); adamantine::Geometry<2> geometry(communicator, database); dealii::parallel::distributed::Triangulation<2> const &tria = geometry.get_triangulation(); dealii::FE_Q<2> fe(1); dealii::DoFHandler<2> dof_handler(tria); dof_handler.distribute_dofs(fe); int sim_size = 5; int expt_size = 2; std::vector<double> expt_vec(2); expt_vec[0] = 2.5; expt_vec[1] = 9.5; std::pair<std::vector<int>, std::vector<int>> indices_and_offsets; indices_and_offsets.first.resize(2); indices_and_offsets.second.resize(3); // Offset vector is one longer indices_and_offsets.first[0] = 1; indices_and_offsets.first[1] = 3; indices_and_offsets.second[0] = 0; indices_and_offsets.second[1] = 1; indices_and_offsets.second[2] = 2; boost::property_tree::ptree solver_settings_database; DataAssimilator da(solver_settings_database); da._sim_size = sim_size; da._expt_size = expt_size; da._num_ensemble_members = 3; da.update_dof_mapping<2>(dof_handler, indices_and_offsets); // Create the simulation data std::vector<dealii::LA::distributed::Vector<double>> data(3); data[0].reinit(5); data[0](0) = 1.0; data[0](1) = 3.0; data[0](2) = 6.0; data[0](3) = 9.0; data[0](4) = 11.0; data[1].reinit(5); data[1](0) = 1.5; data[1](1) = 3.2; data[1](2) = 6.3; data[1](3) = 9.7; data[1](4) = 11.9; data[2].reinit(5); data[2](0) = 1.1; data[2](1) = 3.1; data[2](2) = 6.1; data[2](3) = 9.1; data[2](4) = 11.1; // Build the sparse experimental covariance matrix dealii::SparsityPattern pattern(expt_size, expt_size, 1); pattern.add(0, 0); pattern.add(1, 1); pattern.compress(); dealii::SparseMatrix<double> R(pattern); R.add(0, 0, 0.002); R.add(1, 1, 0.001); // Save the data at the observation points before assimilation std::vector<double> sim_at_expt_pt_1_before(3); sim_at_expt_pt_1_before.push_back(data[0][1]); sim_at_expt_pt_1_before.push_back(data[1][1]); sim_at_expt_pt_1_before.push_back(data[2][1]); std::vector<double> sim_at_expt_pt_2_before(3); sim_at_expt_pt_2_before.push_back(data[0][3]); sim_at_expt_pt_2_before.push_back(data[1][3]); sim_at_expt_pt_2_before.push_back(data[2][3]); // Update the simulation data da.update_ensemble(data, expt_vec, R); // Save the data at the observation points after assimilation std::vector<double> sim_at_expt_pt_1_after(3); sim_at_expt_pt_1_after.push_back(data[0][1]); sim_at_expt_pt_1_after.push_back(data[1][1]); sim_at_expt_pt_1_after.push_back(data[2][1]); std::vector<double> sim_at_expt_pt_2_after(3); sim_at_expt_pt_2_after.push_back(data[0][3]); sim_at_expt_pt_2_after.push_back(data[1][3]); sim_at_expt_pt_2_after.push_back(data[2][3]); // Check the solution // The observed points should get closer to the experimental values // Large entries in R could make these fail spuriously for (int member = 0; member < 3; ++member) { BOOST_CHECK(std::abs(expt_vec[0] - sim_at_expt_pt_1_after[member]) <= std::abs(expt_vec[0] - sim_at_expt_pt_1_before[member])); BOOST_CHECK(std::abs(expt_vec[1] - sim_at_expt_pt_2_after[member]) <= std::abs(expt_vec[1] - sim_at_expt_pt_2_before[member])); } }; }; BOOST_AUTO_TEST_CASE(data_assimilator) { DataAssimilatorTester dat; dat.test_constructor(); dat.test_update_dof_mapping(); dat.test_calc_sample_covariance_dense(); dat.test_fill_noise_vector(); dat.test_calc_H(); dat.test_calc_Hx(); dat.test_calc_kalman_gain(); dat.test_update_ensemble(); } } // namespace adamantine
{"hexsha": "9e68687847ee7bab0d68841e312fadb6259e7944", "size": 19040, "ext": "cc", "lang": "C++", "max_stars_repo_path": "tests/test_data_assimilator.cc", "max_stars_repo_name": "Rombur/adamantine", "max_stars_repo_head_hexsha": "45dd37397680fad1eaa64dbb311724c4f727a675", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 4.0, "max_stars_repo_stars_event_min_datetime": "2016-09-03T02:08:26.000Z", "max_stars_repo_stars_event_max_datetime": "2021-03-03T01:26:41.000Z", "max_issues_repo_path": "tests/test_data_assimilator.cc", "max_issues_repo_name": "Rombur/adamantine", "max_issues_repo_head_hexsha": "45dd37397680fad1eaa64dbb311724c4f727a675", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 74.0, "max_issues_repo_issues_event_min_datetime": "2016-08-31T18:10:46.000Z", "max_issues_repo_issues_event_max_datetime": "2021-04-08T01:51:44.000Z", "max_forks_repo_path": "tests/test_data_assimilator.cc", "max_forks_repo_name": "Rombur/adamantine", "max_forks_repo_head_hexsha": "45dd37397680fad1eaa64dbb311724c4f727a675", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 3.0, "max_forks_repo_forks_event_min_datetime": "2019-11-12T15:43:38.000Z", "max_forks_repo_forks_event_max_datetime": "2021-01-19T02:58:56.000Z", "avg_line_length": 33.2286212914, "max_line_length": 80, "alphanum_fraction": 0.6592436975, "num_tokens": 6254}
# -*- coding: utf-8 -*- """ Created on Tue Aug 9 10:54:14 2016 @author: yaric """ import numpy as np import pandas as pd from sklearn import decomposition import utils # the input file prefix of data sets input_file_prefix = '../../data/training-' # '../../data/training-small-' output_file_prefix = '../../data/training-preprocessed-' max_pca_components = 19 def createDataFrame(X, y, y_missing): """ Creates pandas data frame from provided numpy arrays """ data = np.concatenate((y, X), axis=1) columns = ['y1', 'y2', 'y3'] for k in range(X.shape[1]): columns.append('X{}'.format(k)) data_df = pd.DataFrame(data, columns=columns) ymiss_df = pd.DataFrame(y_missing, columns=['COVAR_y1_MISSING', 'COVAR_y2_MISSING', 'COVAR_y3_MISSING']) df = data_df.join(ymiss_df) return df # import data train_df = pd.read_csv(input_file_prefix + 'train.csv') validate_df = pd.read_csv(input_file_prefix + 'validate.csv') # keep missing flags for both training and validation ytr_missing = np.array(train_df.loc[ :,'COVAR_y1_MISSING':'COVAR_y3_MISSING'], dtype=bool) yvl_missing = np.array(validate_df.loc[ :,'COVAR_y1_MISSING':'COVAR_y3_MISSING'], dtype=bool) # read data train_df['train_flag'] = True validate_df['train_flag'] = False data = pd.concat((train_df, validate_df)) # remove temporary data del train_df del validate_df # basic formatting Xtr, ytr, Xvl, yvl = utils.format_data(data, preprocessing=False) del data # # do preprocessing # scaler = decomposition.RandomizedPCA() #scaler = decomposition.SparsePCA(n_components=max_pca_components) #scaler = decomposition.PCA(n_components='mle') print 'PCA max features to keep: %d' % (max_pca_components) Xtr = scaler.fit_transform(Xtr) # fit only for train data (http://cs231n.github.io/neural-networks-2/#datapre) Xvl = scaler.transform(Xvl) # # write result # train_df = createDataFrame(Xtr, ytr, ytr_missing) validate_df = createDataFrame(Xvl, yvl, yvl_missing) train_df.to_csv(output_file_prefix + 'train.csv', header=True, index=False) validate_df.to_csv(output_file_prefix + 'validate.csv', header=True, index=False) print '\n---------------------\nResult train:\n%s\n' % (train_df.describe()) print '\n---------------------\nResult validate:\n%s\n' % (validate_df.describe())
{"hexsha": "0cccf7d70575a20bc9b3c90adb7f7f33b358ae05", "size": 2309, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/utils/offline_preprocessor.py", "max_stars_repo_name": "yaricom/timeserieslearning", "max_stars_repo_head_hexsha": "6c6c5dc253b47bd6a22a2a97030adba5c5e7512a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 28, "max_stars_repo_stars_event_min_datetime": "2017-03-08T01:22:58.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-18T05:43:16.000Z", "max_issues_repo_path": "src/utils/offline_preprocessor.py", "max_issues_repo_name": "yaricom/timeserieslearning", "max_issues_repo_head_hexsha": "6c6c5dc253b47bd6a22a2a97030adba5c5e7512a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/utils/offline_preprocessor.py", "max_forks_repo_name": "yaricom/timeserieslearning", "max_forks_repo_head_hexsha": "6c6c5dc253b47bd6a22a2a97030adba5c5e7512a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 9, "max_forks_repo_forks_event_min_datetime": "2017-03-13T03:04:11.000Z", "max_forks_repo_forks_event_max_datetime": "2019-03-16T21:47:27.000Z", "avg_line_length": 28.1585365854, "max_line_length": 110, "alphanum_fraction": 0.708531832, "include": true, "reason": "import numpy", "num_tokens": 613}
import numpy as np from ase.dft import kpoints import pyglib.gutz.ginput as ginput import pyglib.model.tbASE as tb # The following is a simple test for the 1-d Hubbard model. a = tb.AtomsTB("N", [(0, 0, 0)], cell=(1, 1, 1)) a.set_orbitals_spindeg() aTB = tb.TB(a) aTB.set_hop([ ((1, 0, 0), 0, 0, -1), ((-1, 0, 0), 0, 0, -1), ((0, 0, 0), 0, 0, 0), ]) kps_size = (100, 1, 1) kps = kpoints.monkhorst_pack(kps_size) num_k = len(kps) kps_wt = 1.0 / num_k * np.ones((num_k)) if aTB.Atoms.spindeg: kps_wt *= 2 num_e = 1.0 num_band_max = 1 # GPARAMBANDS.h5 h1e_list = [np.array([[0, 0], [0, 0]], dtype=np.complex)] ginput.save_gparambands(kps_wt, num_e, num_band_max, h1e_list=h1e_list) sigma_list = [np.identity(2, dtype=np.int32)] v2e = np.zeros((2, 2, 2, 2), dtype=np.complex) v2e[0, 0, 0, 0] = v2e[0, 0, 1, 1] = v2e[1, 1, 0, 0] = v2e[1, 1, 1, 1] = 6.0 sz = np.asarray(np.diag((1,-1)),dtype=np.complex) # GPARAM.h5 ginput.save_gparam(sigma_list=sigma_list, iembeddiag=-1, v2e_list=[v2e], sz_list=[sz]) # BAREHAM_0.h5 aTB.save_bareham(kps)
{"hexsha": "27bd915d00fef66f697707a37d10b3d46379110d", "size": 1067, "ext": "py", "lang": "Python", "max_stars_repo_path": "ComRISB/pyglib/pyglib/model/test/test_1band_model/REF/test_tb.py", "max_stars_repo_name": "comscope/comsuite", "max_stars_repo_head_hexsha": "d51c43cad0d15dc3b4d1f45e7df777cdddaa9d6c", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 18, "max_stars_repo_stars_event_min_datetime": "2019-06-15T18:08:21.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-30T05:01:29.000Z", "max_issues_repo_path": "ComRISB/pyglib/pyglib/model/test/test_1band_model/REF/test_tb.py", "max_issues_repo_name": "comscope/Comsuite", "max_issues_repo_head_hexsha": "b80ca9f34c519757d337487c489fb655f7598cc2", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "ComRISB/pyglib/pyglib/model/test/test_1band_model/REF/test_tb.py", "max_forks_repo_name": "comscope/Comsuite", "max_forks_repo_head_hexsha": "b80ca9f34c519757d337487c489fb655f7598cc2", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 11, "max_forks_repo_forks_event_min_datetime": "2019-06-05T02:57:55.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-29T02:54:25.000Z", "avg_line_length": 26.0243902439, "max_line_length": 75, "alphanum_fraction": 0.6344892221, "include": true, "reason": "import numpy", "num_tokens": 484}
import matplotlib.pyplot as plt import numpy as np import pandas as pd import math from matplotlib import gridspec from scipy.optimize import curve_fit from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import explained_variance_score from sklearn.metrics import r2_score # --------------------------------------------------------------------------- Approximations def g(x): """``Benchmark function.`` Args: x (int, float): Input. Returns: float: Output. :math:`sin(\\frac{1}{2}x) - 2 cos(2x)` """ return np.sin(0.5 * x) - 2 * np.cos(2 * x) def five_interp(x, a0, a1, a2, a3, a4): """``Approximation degree = 5`` """ return a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + a4 * (x ** 4) def six_interp(x, a0, a1, a2, a3, a4, a5): """``Approximation degree = 6`` """ return a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + a4 * (x ** 4) + a5 * (x ** 5) def seven_interp(x, a0, a1, a2, a3, a4, a5, a6): """``Approximation degree = 7`` """ return ( a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + a4 * (x ** 4) + a5 * (x ** 5) + a6 * (x ** 6) ) def eight_interp(x, a0, a1, a2, a3, a4, a5, a6, a7): """``Approximation degree = 8`` """ return ( a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + a4 * (x ** 4) + a5 * (x ** 5) + a6 * (x ** 6) + a7 * (x ** 7) ) def nine_interp(x, a0, a1, a2, a3, a4, a5, a6, a7, a8): """``Approximation degree = 9`` """ return ( a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + a4 * (x ** 4) + a5 * (x ** 5) + a6 * (x ** 6) + a7 * (x ** 7) + a8 * (x ** 8) ) def ten_interp(x, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9): """``Approximation degree = 10`` """ return ( a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + a4 * (x ** 4) + a5 * (x ** 5) + a6 * (x ** 6) + a7 * (x ** 7) + a8 * (x ** 8) + a9 * (x ** 9) ) # --------------------------------------------------------------------------- 3.2.1 Benchmark Exercise: Naive Approximation SciPy class FCMethod: """This object uses the scipy ``curve fit`` method to naively approximate a specific function. It plots the interpolation and the real function for different nodes and tables the approximation accuracy. Args: a (int): Lower bound of interval. b (int): Upper bound of interval. n (int): Number of interpolation nodes. func (function): Benchmark function. degree (int): Degree of approximation. """ def __init__(self, a, b, n, func, degree): """Constructor method. It uses the exact same arguments as the :class:`PMethod` constructor method. This could be achieved by inheritance as well. """ self.a = a self.b = b self.n = n self.func = func self.degree = degree def check_degree(self, increase): """Increases approximation degree if degree lies between 5 and 10. Args: increase (bool): Increases approximation degree by one unit if True. """ if increase == True and self.degree < 10: self.degree += 1 elif self.degree < 5 or self.degree > 10: print("Degree must be between 5 and 10!") def choose_approx(self): """Chooses approximation function by its degree. """ if self.degree == 5: self.approx = five_interp elif self.degree == 6: self.approx = six_interp elif self.degree == 7: self.approx = seven_interp elif self.degree == 8: self.approx = eight_interp elif self.degree == 9: self.approx = nine_interp elif self.degree == 10: self.approx = ten_interp def fit_curve(self): """Implementation of scipy curve fit method. Uses least square method to find optimal weight. This yield to the interpolation. """ self.xa = np.linspace(self.a, self.b, self.n) self.xb = np.linspace(self.a, self.b, 3 * self.n) self.xc = np.linspace(self.a, self.b, 9 * self.n) self.popta = curve_fit(self.approx, self.xa, self.func(self.xa))[0] self.poptb = curve_fit(self.approx, self.xb, self.func(self.xb))[0] self.poptc = curve_fit(self.approx, self.xc, self.func(self.xc))[0] def plot_naive_interp(self, N, fs, number_1, number_2): """Plots true function and approximation as well as approximation error. Args: N (int): Number of evaluation nodes. fs (tuple): Figuresize number_1 (int, float): Number of first figure. number_2 (int, float: Number of second figure. """ self.x = np.linspace(self.a, self.b, N) fig = plt.figure(figsize=fs) gs = gridspec.GridSpec(2, 1, height_ratios=[1.8, 1]) ax0 = plt.subplot(gs[0]) ax0.plot(self.x, self.func(self.x), label="Real Function") ax0.plot( self.x, self.approx(self.x, *self.popta), label=str(self.n) + " Nodes Approximation", ) ax0.plot( self.x, self.approx(self.x, *self.poptb), label=str(3 * self.n) + " Nodes Approximation", ) ax0.plot( self.x, self.approx(self.x, *self.poptc), label=str(9 * self.n) + " Nodes Approximation", ) ax0.set_title( f"Figure {number_1}: Naive Approximation Output " + str(self.degree) + " Degree" ) plt.grid() plt.legend( title="Naive Approximation for different Nodes", bbox_to_anchor=(1.04, 0.5), loc="center left", shadow=True, fancybox=True, borderaxespad=0, title_fontsize=12, ) plt.setp(ax0.get_xticklabels(), visible=False) ax1 = plt.subplot(gs[1], sharex=ax0) ax1.plot( self.x, self.approx(self.x, *self.popta) - self.func(self.x), label=str(self.n) + " Nodes Error", ) ax1.plot( self.x, self.approx(self.x, *self.poptb) - self.func(self.x), label=str(3 * self.n) + " Nodes Error", ) ax1.plot( self.x, self.approx(self.x, *self.poptc) - self.func(self.x), label=str(9 * self.n) + " Nodes Error", ) ax1.set_title( f"Figure {number_2}: Naive Approximation Error " + str(self.degree) + " Degree" ) plt.subplots_adjust(hspace=0.0) plt.grid() plt.legend( title="Error for different Nodes", bbox_to_anchor=(1.04, 0.5), loc="center left", shadow=True, fancybox=True, borderaxespad=0, title_fontsize=12, ) plt.tight_layout() plt.show() def table_error(self, number): """Returns approximation accuracy. Args: number (int): Number of table. Returns: pd.DataFrame: Approximation accuracy. """ mae = mean_absolute_error(self.approx(self.x, *self.popta), self.func(self.x)) maea = mean_absolute_error(self.approx(self.x, *self.poptb), self.func(self.x)) maeb = mean_absolute_error(self.approx(self.x, *self.poptc), self.func(self.x)) mse = mean_squared_error(self.approx(self.x, *self.popta), self.func(self.x)) msea = mean_squared_error(self.approx(self.x, *self.poptb), self.func(self.x)) mseb = mean_squared_error(self.approx(self.x, *self.poptc), self.func(self.x)) ev = explained_variance_score( self.approx(self.x, *self.popta), self.func(self.x) ) eva = explained_variance_score( self.approx(self.x, *self.poptb), self.func(self.x) ) evb = explained_variance_score( self.approx(self.x, *self.poptc), self.func(self.x) ) r2 = r2_score(self.approx(self.x, *self.popta), self.func(self.x)) r2a = r2_score(self.approx(self.x, *self.poptb), self.func(self.x)) r2b = r2_score(self.approx(self.x, *self.poptc), self.func(self.x)) df = pd.DataFrame( [mae, mse, ev, r2], index=[ "Mean Squared Error", "Mean Absolute Error", "Explained Variance", "$R^2$ Score", ], columns=[str(self.n) + " Nodes"], ) dfa = pd.DataFrame( [maea, msea, eva, r2a], index=[ "Mean Squared Error", "Mean Absolute Error", "Explained Variance", "$R^2$ Score", ], columns=[str(3 * self.n) + " Nodes"], ) dfb = pd.DataFrame( [maeb, mseb, evb, r2b], index=[ "Mean Squared Error", "Mean Absolute Error", "Explained Variance", "$R^2$ Score", ], columns=[str(9 * self.n) + " Nodes"], ) rslt = pd.concat([df, dfa, dfb], axis=1).style.set_caption( f"Table {number}: Accuracy of Naive Approximation for " + str(self.degree) + " Degrees" ) return rslt
{"hexsha": "9605fef62c277fb8f992db78d056b0d9b7124675", "size": 9842, "ext": "py", "lang": "Python", "max_stars_repo_path": "auxiliary/scipy_implementation.py", "max_stars_repo_name": "ArbiKodraj/ML-Approximation", "max_stars_repo_head_hexsha": "e8696fe13e1e8e63f9eb27c68a77b81d578c1a27", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "auxiliary/scipy_implementation.py", "max_issues_repo_name": "ArbiKodraj/ML-Approximation", "max_issues_repo_head_hexsha": "e8696fe13e1e8e63f9eb27c68a77b81d578c1a27", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "auxiliary/scipy_implementation.py", "max_forks_repo_name": "ArbiKodraj/ML-Approximation", "max_forks_repo_head_hexsha": "e8696fe13e1e8e63f9eb27c68a77b81d578c1a27", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.8526645768, "max_line_length": 129, "alphanum_fraction": 0.4953261532, "include": true, "reason": "import numpy,from scipy", "num_tokens": 2627}
import math import numpy as np import numpy.polynomial as poly from .errors import ColorIndexError, ParamRangeError, MissingParamError def get_BC(**kwargs): """Get bolometric correction (BC) using a variety of calibration relations. Available calibration relations: * `Alonso1995`: returns *BC* in *V* and *K* bands using (*V* − *K*) and [Fe/H] for dwarfs. * `Alonso1999`: returns *BC* using *T*:sub:`eff` and [Fe/H] for giants. * `Flower1996`: returns *BC* using *T*:sub:`eff`. * `Masana2006`: returns *BC* using *T*:sub:`eff`. """ ref = kwargs.pop('ref', None) if ref == 'Alonso1995': bc = _get_dwarf_BC_Alonso1995(**kwargs) elif ref == 'Alonso1999': bc = _get_giant_BC_Alonso1999(**kwargs) elif ref == 'Masana2006': bc = _get_dwarf_BC_Masana2006(**kwargs) elif ref == 'Flower1996': bc = _get_BC_Flower1996(**kwargs) return bc def _get_BC_Flower1996(**kwargs): """Get *BC* in *V* band according to *T*:sub:`eff` using the relation given by `Flower 1996 <http://adsabs.harvard.edu/abs/1996ApJ...469..355F>`_. Args: teff (int or float): Effective temperature (*T*:sub:`eff`). Returns: float: *BC* in *V* band. The coefficients given in Table 6 of `Flower 1996 <http://adsabs.harvard.edu/abs/1996ApJ...469..355F>`_ missed powers of ten. `Torres 2010 <http://adsabs.harvard.edu/abs/2010AJ....140.1158T>`_ gave the corrent version in Table 1. """ coeff1 = [-0.118115450538963E+06, 0.137145973583929E+06, -0.636233812100225E+05, 0.147412923562646E+05, -0.170587278406872E+04, 0.788731721804990E+02, ] coeff2 = [-0.370510203809015E+05, 0.385672629965804E+05, -0.150651486316025E+05, 0.261724637119416E+04, -0.170623810323864E+03, ] coeff3 = [-0.190537291496456E+05, 0.155144866764412E+05, -0.421278819301717E+04, 0.381476328422343E+03, ] teff = kwargs.pop('Teff') logt = math.log10(teff) if logt >= 3.9: coeff = coeff1 elif logt >= 3.7: coeff = coeff2 else: coeff = coeff3 p = poly.Polynomial(coeff) return p(logt) def _get_dwarf_BC_Alonso1995(**kwargs): """Get *BC* in *V* or *K* for dwarfs using the calibration relations given by `Alonso+ 1995 <http://adsabs.harvard.edu/abs/1995A&A...297..197A>`_. Parameters: V_K (float): (*V* − *K*) color FeH (float): [Fe/H] ratio band (str, optional): Either "V" or "K" Returns: float or dict: *BC*:sub:`V` or *BC*:sub:`K`, if `band` is given; or (*BC*:sub:`V`, *BC*:sub:`K`), if `band` is not given Notes: The empirical zero points of the Sun are adopted in Johnson system: * (*V* − *K*)\ :sub:`⊙` = 1.486 * *BC*:sub:`⊙`\ (*V*) = −0.12 * *BC*:sub:`⊙`\ (*K*) = 1.366 Examples: .. code-block:: python from stella.parameter.bc import get_BC # find BC in V band bc_v, bc_k = get_BC(V_K=1.733, FeH=-0.22, ref='Alonso1995') # or bc_v, bc_k = get_BC(index='V-K', color=1.733, FeH=-0.22, ref='Alonso1995') References: * `Alonso et al., 1995, A&A, 297, 197 <http://adsabs.harvard.edu/abs/1995A&A...297..197A>`_ """ reference = 'Alonso, 1995, A&A, 297, 197' V_K = kwargs.pop('V_K', None) if V_K is None: index = kwargs.pop('index', None) if index is not None and index == 'V-K': V_K = kwargs.pop('color', None) FeH = kwargs.pop('FeH', None) band = kwargs.pop('band', None) extrapolation = kwargs.pop('extrapolation',False) if FeH == None: raise MissingParamError('[Fe/H]', reference) if not extrapolation: if FeH < -3.0 or FeH > +0.2: raise ParamRangeError('[Fe/H]', FeH, reference) elif (-0.5 < FeH <= +0.2 and 0.8 < V_K < 3.0) or \ (-1.5 < FeH <= -0.5 and 0.9 < V_K < 2.6) or \ (-2.5 < FeH <= -1.5 and 1.1 < V_K < 2.3) or \ (-3.0 <=FeH <= -2.5 and 1.2 < V_K < 2.0): pass else: raise ParamRangeError('V-K', V_K, reference) # coefficients coming from equation 9 coeff1 = np.array([+2.38619e-4, -1.93659e-4, +6.52621e-5, -7.95862e-6, -1.01449e-5, +8.17345e-6, -2.87876e-6, +5.40944e-7]) # coefficients coming from equation 10 coeff2 = np.array([+2.23403e-4, -1.71897e-4, +5.51085e-5, -6.41071e-6, -3.71945e-5, +4.99847e-5, -2.41517e-5, +4.10655e-6]) # coefficients coming from equation 9 coeff1 = np.array([[+2.38619e-4, -1.93659e-4, +6.52621e-5, -7.95862e-6], [-1.01449e-5, +8.17345e-6, -2.87876e-6, +5.40944e-7]]) # coefficients coming from equation 10 coeff2 = np.array([[+2.23403e-4, -1.71897e-4, +5.51085e-5, -6.41071e-6], [-3.71945e-5, +4.99847e-5, -2.41517e-5, +4.10655e-6]]) phi = lambda coeff: poly.polynomial.polyval2d(FeH, V_K, coeff) VK_sun = 1.486 phi_sun = poly.polynomial.polyval(VK_sun, coeff1[0]) if extrapolation: if V_K <= 1.7: bc_v = -2.5*math.log10(phi(coeff1)/phi_sun) - 0.12 bc_k = -2.5*math.log10(phi(coeff1)/phi_sun) + 1.366 else: bc_v = -2.5*math.log10(phi(coeff2)/phi_sun) - 0.12 bc_k = -2.5*math.log10(phi(coeff2)/phi_sun) + 1.366 else: if 0.9 < V_K <= 1.7: bc_v = -2.5*math.log10(phi(coeff1)/phi_sun) - 0.12 bc_k = -2.5*math.log10(phi(coeff1)/phi_sun) + 1.366 elif 1.7 < V_K <= 2.9: bc_v = -2.5*math.log10(phi(coeff2)/phi_sun) - 0.12 bc_k = -2.5*math.log10(phi(coeff2)/phi_sun) + 1.366 if band is None: return (bc_v, bc_k) elif band == 'V': return bc_v elif band == 'K': return bc_k else: return None def _get_giant_BC_Alonso1999(**kwargs): """Get BC for giants using the calibrations relations given by `Alonso+ 1999 <http://adsabs.harvard.edu/abs/1999A&AS..140..261A>`_. Args: Teff (float or int): *T*:sub:`eff` of the star FeH (float): [Fe/H] abundance ratio extrapolation (bool): use extrapolation of True Returns: float: *BC*:sub:`V` for the star References: * `Alonso et al., 1999, A&AS, 140, 261 <http://adsabs.harvard.edu/abs/1999A&AS..140..261A>`_ """ teff = kwargs.pop('Teff', None) FeH = kwargs.pop('FeH', 0.0) extrapolation = kwargs.pop('extrapolation', False) logt = math.log10(teff) if extrapolation: if logt <= 3.66: choose = 17 else: choose = 18 else: if 3.50 <= logt <= 3.67 and +0.2 >= FeH > -0.5: choose = 17 elif 3.56 <= logt <= 3.67 and -0.5 >= FeH > -1.5: choose = 17 elif 3.58 <= logt <= 3.67 and -1.5 >= FeH > -2.5: choose = 17 elif 3.61 <= logt <= 3.67 and -2.5 >= FeH > -3.0: choose = 17 elif 3.65 <= logt <= 3.96 and +0.2 >= FeH > -0.5: choose = 18 elif 3.65 <= logt <= 3.83 and -0.5 >= FeH > -1.5: choose = 18 elif 3.65 <= logt <= 3.80 and -1.5 >= FeH > -2.5: choose = 18 elif 3.65 <= logt <= 3.74 and -2.5 >= FeH > -3.0: choose = 18 else: raise ValueError x = logt - 3.52 if choose == 17: bc = -5.531e-2/x - 0.6177 + 4.420*x - 2.669*x**2 + 0.6943*x*FeH \ -0.1071*FeH - 8.612e-3*FeH**2 elif choose == 18: bc = -9.930e-2/x + 2.887e-2 + 2.275*x - 4.425*x**2 + 0.3505*x*FeH \ -5.558e-2*FeH - 5.375e-3*FeH**2 return bc def _get_dwarf_BC_Masana2006(**kwargs): """Get BC for dwarfs using the calibration relations given by `Masana+ 2006 <http://adsabs.harvard.edu/abs/2006A&A...450..735M>`_. References ---------- * `Masana et al. 2006, A&A, 450, 735 <http://adsabs.harvard.edu/abs/2006A&A...450..735M>`_ """ index = kwargs.pop('index') color = kwargs.pop('color') FeH = kwargs.pop('FeH', 0.0) logg = kwargs.pop('logg', 4.2) extrapolation = kwargs.pop('extrapolation', False) if index == 'V-K': if extrapolation or \ (-3.0 < FeH < -1.5 and 1.0 < color < 2.9) or \ (-1.5 <= FeH < -0.5 and 0.5 < color < 2.9) or \ (-0.5 <= FeH < 0.0 and 0.4 < color < 3.0) or \ ( 0.5 <= FeH < 0.5 and 0.35 < color < 2.8): if (extrapolation and color < 1.15) or \ (not extrapolation and 0.35 < color < 1.15 and 3.25 <= logg <= 4.75): bc = 0.1275 + 0.9907*color - 0.0395*color**2 + 0.0693*FeH + \ 0.0140*FeH**2 + 0.0120*color*FeH - 0.0253*logg elif (extrapolation and color >= 1.15) or \ (not extrapolation and 1.15 <= color < 3.0 and 3.75 <= logg <= 4.75): bc = -0.1041 + 1.2600*color - 0.1570*color**2 + 0.1460*FeH + \ 0.0010*FeH**2 - 0.0631*color*FeH - 0.0079*logg else: raise ValueError return bc else: raise ValueError else: raise ValueError
{"hexsha": "c9610e8a2058a27d94f96d404fe796f7479bb0dd", "size": 9379, "ext": "py", "lang": "Python", "max_stars_repo_path": "stellarlab/parameter/bc.py", "max_stars_repo_name": "wangleon/stella", "max_stars_repo_head_hexsha": "3942f8e687065bb96760140596747cbbe6dad04b", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "stellarlab/parameter/bc.py", "max_issues_repo_name": "wangleon/stella", "max_issues_repo_head_hexsha": "3942f8e687065bb96760140596747cbbe6dad04b", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "stellarlab/parameter/bc.py", "max_forks_repo_name": "wangleon/stella", "max_forks_repo_head_hexsha": "3942f8e687065bb96760140596747cbbe6dad04b", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-10-02T02:18:28.000Z", "max_forks_repo_forks_event_max_datetime": "2021-10-02T02:18:28.000Z", "avg_line_length": 35.5265151515, "max_line_length": 100, "alphanum_fraction": 0.5333191172, "include": true, "reason": "import numpy", "num_tokens": 3400}
import warnings from typing import Tuple, Any, Dict import numpy import openslide import wx from PIL import Image from antilles.utils.io import DAO def get_screen_size() -> Tuple[int, int]: app = wx.App(False) size = wx.GetDisplaySize() del app return size screen_size = get_screen_size() def get_slide_dims(path: str) -> Tuple[int, int]: with openslide.OpenSlide(DAO.abs(path)) as obj: return obj.dimensions def get_mpp_from_openslide(obj) -> float: mpp_x = float(obj.properties[openslide.PROPERTY_NAME_MPP_X]) mpp_y = float(obj.properties[openslide.PROPERTY_NAME_MPP_Y]) if not numpy.equal(mpp_x, mpp_y): warnings.warn( "MPP values are not equal in x and y directions! " "x: {x}, y: {y}".format(x=mpp_x, y=mpp_y) ) mpp = numpy.average((mpp_x, mpp_y)) else: mpp = mpp_x return mpp def calc_downsample_factor(dims: Tuple[int, int]) -> float: # area in which image is displayed is not quite as big as the screen screen_size_eff = [s * 0.75 for s in screen_size] w, h = dims return max( float(w) / float(screen_size_eff[0]), float(h) / float(screen_size_eff[1]) ) def get_thumbnail(path: str) -> Dict[str, Any]: try: with openslide.OpenSlide(DAO.abs(path)) as obj: dims = obj.dimensions factor = calc_downsample_factor(dims) dims_tn = tuple(int(round(float(s) / factor)) for s in dims) image = obj.get_thumbnail(dims_tn) except openslide.lowlevel.OpenSlideUnsupportedFormatError: with Image.open(DAO.abs(path)) as obj: dims = obj.size factor = calc_downsample_factor(dims) dims_tn = tuple(int(round(float(s) / factor)) for s in dims) image = obj.resize(dims_tn, Image.LANCZOS) return {"factor": factor, "image": image}
{"hexsha": "e2eb243d968cff80d80b0382dbb4c5a426363cbe", "size": 1896, "ext": "py", "lang": "Python", "max_stars_repo_path": "antilles/utils/image.py", "max_stars_repo_name": "biomicrodev/antilles", "max_stars_repo_head_hexsha": "38f1d16494fae750b95d4e9a654038b9aba8e248", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "antilles/utils/image.py", "max_issues_repo_name": "biomicrodev/antilles", "max_issues_repo_head_hexsha": "38f1d16494fae750b95d4e9a654038b9aba8e248", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "antilles/utils/image.py", "max_forks_repo_name": "biomicrodev/antilles", "max_forks_repo_head_hexsha": "38f1d16494fae750b95d4e9a654038b9aba8e248", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 25.9726027397, "max_line_length": 82, "alphanum_fraction": 0.6418776371, "include": true, "reason": "import numpy", "num_tokens": 495}
Require Import ZArith. Definition pow2_p p := Zpos (iter_pos positive xO xH p). Definition mersenne p := (pow2_p p - 1)%Z. Definition next_s mp s := (((s*s) - 2) mod mp)%Z. Definition lucas_residue p := let mp := mersenne p in let pm2 := (p-2)%positive in iter_pos Z (next_s mp) 4%Z pm2. Definition lucas_test p := Zeq_bool (lucas_residue p) 0. Definition p89 := 89%positive. Definition p521 := 521%positive. Definition res := lucas_test p521. Time Eval native_compute in res. (* p521 *)
{"author": "maximedenes", "repo": "native-compute-bench", "sha": "ac7891508239f9cc1f7ba0190b1814fb152d2126", "save_path": "github-repos/coq/maximedenes-native-compute-bench", "path": "github-repos/coq/maximedenes-native-compute-bench/native-compute-bench-ac7891508239f9cc1f7ba0190b1814fb152d2126/src/Lucas.v"}
[STATEMENT] lemma finite_Update: "finite TS \<Longrightarrow> finite ((\<lambda> F. (Rep_pupdate F) (Value ST)) ` (PUpdate (Label TS)))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. finite TS \<Longrightarrow> finite ((\<lambda>F. Rep_pupdate F (Value ST)) ` Expr.PUpdate (Label TS)) [PROOF STEP] by (rule finite_imageI, auto)
{"llama_tokens": 124, "file": "Statecharts_HASem", "length": 1}
import matplotlib import matplotlib.pyplot as plt matplotlib.use('TKAgg') import numpy as np import time, random, math size=11 #array = random.sample((range(1, size + 1)), size) array = list(xrange(size, 0, -1)) def bubble_sort(arr, rects): sorted = True for x in range(0, size - 1): update_plot(arr, '#000000', x-1, x+1, 0, rects) update_plot(arr, '#f3f315', x, x + 2, .3, rects) if arr[x] > arr[x + 1]: tmp = arr[x] arr[x] = arr[x + 1] arr[x + 1] = tmp sorted = False update_plot(arr, '#32cd32', x, x + 2, .3, rects) update_plot(arr, '#000000', size - 2, size, 0, rects) if not sorted: bubble_sort(arr, rects) else: update_plot(arr, '#32cd32', 0, size, 0, rects) def update_plot(arr, color, first, last, nsecs, rects): for x in range(first, last): rects[x].set_height(arr[x]) rects[x].set_facecolor(color) fig.canvas.draw() if nsecs != 0: time.sleep(nsecs) def animated_barplot(): width = 1 rects = plt.bar(range(size), array, width, align = 'center', color='k') plt.title("Bubble Sort") plt.xlabel("Index") plt.tick_params(axis='both', labelbottom='off', labeltop='off', top='off', labelleft='off', left='off', labelright='off', right='off') plt.xticks(np.arange(size), tuple(map(str, range(size)))) bubble_sort(array, rects) fig = plt.figure() win = fig.canvas.manager.window win.after(10, animated_barplot) plt.show()
{"hexsha": "e5ef937a7364aa6fad9938559bf46e279126a130", "size": 1373, "ext": "py", "lang": "Python", "max_stars_repo_path": "57/bubblesort.py", "max_stars_repo_name": "Chutzpah7/Challenges", "max_stars_repo_head_hexsha": "7481eaf49dca9e8f68b8efa58cde778aa20449a5", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "57/bubblesort.py", "max_issues_repo_name": "Chutzpah7/Challenges", "max_issues_repo_head_hexsha": "7481eaf49dca9e8f68b8efa58cde778aa20449a5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "57/bubblesort.py", "max_forks_repo_name": "Chutzpah7/Challenges", "max_forks_repo_head_hexsha": "7481eaf49dca9e8f68b8efa58cde778aa20449a5", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 28.6041666667, "max_line_length": 135, "alphanum_fraction": 0.6605972323, "include": true, "reason": "import numpy", "num_tokens": 440}
import math import importlib import functools def generate_inputs(size): import numpy as np np.random.seed(17) shape = ( math.ceil(2 * size ** (1/3)), math.ceil(2 * size ** (1/3)), math.ceil(0.25 * size ** (1/3)), ) # masks maskT, maskU, maskV, maskW = ((np.random.rand(*shape) < 0.8).astype('float64') for _ in range(4)) # 1d arrays dxt, dxu = (np.random.randn(shape[0]) for _ in range(2)) dyt, dyu = (np.random.randn(shape[1]) for _ in range(2)) dzt, dzw, zt = (np.random.randn(shape[2]) for _ in range(3)) cost, cosu = (np.random.randn(shape[1]) for _ in range(2)) # 3d arrays K_iso, K_iso_steep, K_11, K_22, K_33 = (np.random.randn(*shape) for _ in range(5)) # 4d arrays salt, temp = (np.random.randn(*shape, 3) for _ in range(2)) # 5d arrays Ai_ez, Ai_nz, Ai_bx, Ai_by = (np.zeros((*shape, 2, 2)) for _ in range(4)) return ( maskT, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, salt, temp, zt, K_iso, K_11, K_22, K_33, Ai_ez, Ai_nz, Ai_bx, Ai_by ) def try_import(backend): try: return importlib.import_module(f'.isoneutral_{backend}', __name__) except ImportError: return None def get_callable(backend, size, device='cpu'): backend_module = try_import(backend) inputs = generate_inputs(size) if hasattr(backend_module, 'prepare_inputs'): inputs = backend_module.prepare_inputs(*inputs, device=device) return functools.partial(backend_module.run, *inputs, device=device) __implementations__ = ( 'bohrium', 'cupy', 'numba', 'numpy', 'jax', 'pytorch', 'theano', )
{"hexsha": "c6a56b7377d1abe6a5f7f13caf169f6a21612220", "size": 1714, "ext": "py", "lang": "Python", "max_stars_repo_path": "benchmarks/isoneutral_mixing/__init__.py", "max_stars_repo_name": "mdanatg/pyhpc-benchmarks", "max_stars_repo_head_hexsha": "710d0ab484cae28beab99ddd1167d33574c83b53", "max_stars_repo_licenses": ["Unlicense"], "max_stars_count": 230, "max_stars_repo_stars_event_min_datetime": "2019-11-07T07:58:09.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T14:47:58.000Z", "max_issues_repo_path": "benchmarks/isoneutral_mixing/__init__.py", "max_issues_repo_name": "mdanatg/pyhpc-benchmarks", "max_issues_repo_head_hexsha": "710d0ab484cae28beab99ddd1167d33574c83b53", "max_issues_repo_licenses": ["Unlicense"], "max_issues_count": 10, "max_issues_repo_issues_event_min_datetime": "2019-12-15T19:05:19.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-17T20:19:51.000Z", "max_forks_repo_path": "benchmarks/isoneutral_mixing/__init__.py", "max_forks_repo_name": "mdanatg/pyhpc-benchmarks", "max_forks_repo_head_hexsha": "710d0ab484cae28beab99ddd1167d33574c83b53", "max_forks_repo_licenses": ["Unlicense"], "max_forks_count": 23, "max_forks_repo_forks_event_min_datetime": "2020-02-05T17:30:47.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-08T08:40:05.000Z", "avg_line_length": 25.5820895522, "max_line_length": 101, "alphanum_fraction": 0.6044340723, "include": true, "reason": "import numpy", "num_tokens": 551}
(* Title: Extension Orders Author: Heiko Becker <heikobecker92@gmail.com>, 2016 Author: Jasmin Blanchette <jasmin.blanchette at inria.fr>, 2016 Author: Dmitriy Traytel <traytel@inf.ethz.ch>, 2014 Maintainer: Jasmin Blanchette <jasmin.blanchette at inria.fr> *) section \<open>Extension Orders\<close> theory Extension_Orders imports Lambda_Free_Util Infinite_Chain "HOL-Cardinals.Wellorder_Extension" begin text \<open> This theory defines locales for categorizing extension orders used for orders on \<open>\<lambda>\<close>-free higher-order terms and defines variants of the lexicographic and multiset orders. \<close> subsection \<open>Locales\<close> locale ext = fixes ext :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" assumes mono_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt' y x) \<Longrightarrow> ext gt ys xs \<Longrightarrow> ext gt' ys xs" and map: "finite A \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A \<Longrightarrow> (\<forall>x \<in> A. \<not> gt (f x) (f x)) \<Longrightarrow> (\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt (f z) (f y) \<longrightarrow> gt (f y) (f x) \<longrightarrow> gt (f z) (f x)) \<Longrightarrow> (\<forall>y \<in> A. \<forall>x \<in> A. gt y x \<longrightarrow> gt (f y) (f x)) \<Longrightarrow> ext gt ys xs \<Longrightarrow> ext gt (map f ys) (map f xs)" begin lemma mono[mono]: "gt \<le> gt' \<Longrightarrow> ext gt \<le> ext gt'" using mono_strong by blast end locale ext_irrefl = ext + assumes irrefl: "(\<forall>x \<in> set xs. \<not> gt x x) \<Longrightarrow> \<not> ext gt xs xs" locale ext_trans = ext + assumes trans: "zs \<in> lists A \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A \<Longrightarrow> (\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x) \<Longrightarrow> ext gt zs ys \<Longrightarrow> ext gt ys xs \<Longrightarrow> ext gt zs xs" locale ext_irrefl_before_trans = ext_irrefl + assumes trans_from_irrefl: "finite A \<Longrightarrow> zs \<in> lists A \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A \<Longrightarrow> (\<forall>x \<in> A. \<not> gt x x) \<Longrightarrow> (\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x) \<Longrightarrow> ext gt zs ys \<Longrightarrow> ext gt ys xs \<Longrightarrow> ext gt zs xs" locale ext_trans_before_irrefl = ext_trans + assumes irrefl_from_trans: "(\<forall>z \<in> set xs. \<forall>y \<in> set xs. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x) \<Longrightarrow> (\<forall>x \<in> set xs. \<not> gt x x) \<Longrightarrow> \<not> ext gt xs xs" locale ext_irrefl_trans_strong = ext_irrefl + assumes trans_strong: "(\<forall>z \<in> set zs. \<forall>y \<in> set ys. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x) \<Longrightarrow> ext gt zs ys \<Longrightarrow> ext gt ys xs \<Longrightarrow> ext gt zs xs" sublocale ext_irrefl_trans_strong < ext_irrefl_before_trans by standard (erule irrefl, metis in_listsD trans_strong) sublocale ext_irrefl_trans_strong < ext_trans by standard (metis in_listsD trans_strong) sublocale ext_irrefl_trans_strong < ext_trans_before_irrefl by standard (rule irrefl) locale ext_snoc = ext + assumes snoc: "ext gt (xs @ [x]) xs" locale ext_compat_cons = ext + assumes compat_cons: "ext gt ys xs \<Longrightarrow> ext gt (x # ys) (x # xs)" begin lemma compat_append_left: "ext gt ys xs \<Longrightarrow> ext gt (zs @ ys) (zs @ xs)" by (induct zs) (auto intro: compat_cons) end locale ext_compat_snoc = ext + assumes compat_snoc: "ext gt ys xs \<Longrightarrow> ext gt (ys @ [x]) (xs @ [x])" begin lemma compat_append_right: "ext gt ys xs \<Longrightarrow> ext gt (ys @ zs) (xs @ zs)" by (induct zs arbitrary: xs ys rule: rev_induct) (auto intro: compat_snoc simp del: append_assoc simp: append_assoc[symmetric]) end locale ext_compat_list = ext + assumes compat_list: "y \<noteq> x \<Longrightarrow> gt y x \<Longrightarrow> ext gt (xs @ y # xs') (xs @ x # xs')" locale ext_singleton = ext + assumes singleton: "y \<noteq> x \<Longrightarrow> ext gt [y] [x] \<longleftrightarrow> gt y x" locale ext_compat_list_strong = ext_compat_cons + ext_compat_snoc + ext_singleton begin lemma compat_list: "y \<noteq> x \<Longrightarrow> gt y x \<Longrightarrow> ext gt (xs @ y # xs') (xs @ x # xs')" using compat_append_left[of gt "y # xs'" "x # xs'" xs] compat_append_right[of gt, of "[y]" "[x]" xs'] singleton[of y x gt] by fastforce end sublocale ext_compat_list_strong < ext_compat_list by standard (fact compat_list) locale ext_total = ext + assumes total: "(\<forall>y \<in> A. \<forall>x \<in> A. gt y x \<or> gt x y \<or> y = x) \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A \<Longrightarrow> ext gt ys xs \<or> ext gt xs ys \<or> ys = xs" locale ext_wf = ext + assumes wf: "wfP (\<lambda>x y. gt y x) \<Longrightarrow> wfP (\<lambda>xs ys. ext gt ys xs)" locale ext_hd_or_tl = ext + assumes hd_or_tl: "(\<forall>z y x. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x) \<Longrightarrow> (\<forall>y x. gt y x \<or> gt x y \<or> y = x) \<Longrightarrow> length ys = length xs \<Longrightarrow> ext gt (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> ext gt ys xs" locale ext_wf_bounded = ext_irrefl_before_trans + ext_hd_or_tl begin context fixes gt :: "'a \<Rightarrow> 'a \<Rightarrow> bool" assumes gt_irrefl: "\<And>z. \<not> gt z z" and gt_trans: "\<And>z y x. gt z y \<Longrightarrow> gt y x \<Longrightarrow> gt z x" and gt_total: "\<And>y x. gt y x \<or> gt x y \<or> y = x" and gt_wf: "wfP (\<lambda>x y. gt y x)" begin lemma irrefl_gt: "\<not> ext gt xs xs" using irrefl gt_irrefl by simp lemma trans_gt: "ext gt zs ys \<Longrightarrow> ext gt ys xs \<Longrightarrow> ext gt zs xs" by (rule trans_from_irrefl[of "set zs \<union> set ys \<union> set xs" zs ys xs gt]) (auto intro: gt_trans simp: gt_irrefl) lemma hd_or_tl_gt: "length ys = length xs \<Longrightarrow> ext gt (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> ext gt ys xs" by (rule hd_or_tl) (auto intro: gt_trans simp: gt_total) lemma wf_same_length_if_total: "wfP (\<lambda>xs ys. length ys = n \<and> length xs = n \<and> ext gt ys xs)" proof (induct n) case 0 thus ?case unfolding wfP_def wf_def using irrefl by auto next case (Suc n) note ih = this(1) define gt_hd where "\<And>ys xs. gt_hd ys xs \<longleftrightarrow> gt (hd ys) (hd xs)" define gt_tl where "\<And>ys xs. gt_tl ys xs \<longleftrightarrow> ext gt (tl ys) (tl xs)" have hd_tl: "gt_hd ys xs \<or> gt_tl ys xs" if len_ys: "length ys = Suc n" and len_xs: "length xs = Suc n" and ys_gt_xs: "ext gt ys xs" for n ys xs using len_ys len_xs ys_gt_xs unfolding gt_hd_def gt_tl_def by (cases xs; cases ys) (auto simp: hd_or_tl_gt) show ?case unfolding wfP_iff_no_inf_chain proof (intro notI) let ?gtsn = "\<lambda>ys xs. length ys = n \<and> length xs = n \<and> ext gt ys xs" let ?gtsSn = "\<lambda>ys xs. length ys = Suc n \<and> length xs = Suc n \<and> ext gt ys xs" let ?gttlSn = "\<lambda>ys xs. length ys = Suc n \<and> length xs = Suc n \<and> gt_tl ys xs" assume "\<exists>f. inf_chain ?gtsSn f" then obtain xs where xs_bad: "bad ?gtsSn xs" unfolding inf_chain_def bad_def by blast let ?ff = "worst_chain ?gtsSn gt_hd" have wf_hd: "wf {(xs, ys). gt_hd ys xs}" unfolding gt_hd_def by (rule wfP_app[OF gt_wf, of hd, unfolded wfP_def]) have "inf_chain ?gtsSn ?ff" by (rule worst_chain_bad[OF wf_hd xs_bad]) moreover have "\<not> gt_hd (?ff i) (?ff (Suc i))" for i by (rule worst_chain_not_gt[OF wf_hd xs_bad]) (blast intro: trans_gt) ultimately have tl_bad: "inf_chain ?gttlSn ?ff" unfolding inf_chain_def using hd_tl by blast have "\<not> inf_chain ?gtsn (tl \<circ> ?ff)" using wfP_iff_no_inf_chain[THEN iffD1, OF ih] by blast hence tl_good: "\<not> inf_chain ?gttlSn ?ff" unfolding inf_chain_def gt_tl_def by force show False using tl_bad tl_good by sat qed qed lemma wf_bounded_if_total: "wfP (\<lambda>xs ys. length ys \<le> n \<and> length xs \<le> n \<and> ext gt ys xs)" unfolding wfP_iff_no_inf_chain proof (intro notI, induct n rule: less_induct) case (less n) note ih = this(1) and ex_bad = this(2) let ?gtsle = "\<lambda>ys xs. length ys \<le> n \<and> length xs \<le> n \<and> ext gt ys xs" obtain xs where xs_bad: "bad ?gtsle xs" using ex_bad unfolding inf_chain_def bad_def by blast let ?ff = "worst_chain ?gtsle (\<lambda>ys xs. length ys > length xs)" note wf_len = wf_app[OF wellorder_class.wf, of length, simplified] have ff_bad: "inf_chain ?gtsle ?ff" by (rule worst_chain_bad[OF wf_len xs_bad]) have ffi_bad: "\<And>i. bad ?gtsle (?ff i)" by (rule inf_chain_bad[OF ff_bad]) have len_le_n: "\<And>i. length (?ff i) \<le> n" using worst_chain_pred[OF wf_len xs_bad] by simp have len_le_Suc: "\<And>i. length (?ff i) \<le> length (?ff (Suc i))" using worst_chain_not_gt[OF wf_len xs_bad] not_le_imp_less by (blast intro: trans_gt) show False proof (cases "\<exists>k. length (?ff k) = n") case False hence len_lt_n: "\<And>i. length (?ff i) < n" using len_le_n by (blast intro: le_neq_implies_less) hence nm1_le: "n - 1 < n" by fastforce let ?gtslt = "\<lambda>ys xs. length ys \<le> n - 1 \<and> length xs \<le> n - 1 \<and> ext gt ys xs" have "inf_chain ?gtslt ?ff" using ff_bad len_lt_n unfolding inf_chain_def by (metis (no_types, lifting) Suc_diff_1 le_antisym nat_neq_iff not_less0 not_less_eq_eq) thus False using ih[OF nm1_le] by blast next case True then obtain k where len_eq_n: "length (?ff k) = n" by blast let ?gtssl = "\<lambda>ys xs. length ys = n \<and> length xs = n \<and> ext gt ys xs" have len_eq_n: "length (?ff (i + k)) = n" for i by (induct i) (simp add: len_eq_n, metis (lifting) len_le_n len_le_Suc add_Suc dual_order.antisym) have "inf_chain ?gtsle (\<lambda>i. ?ff (i + k))" by (rule inf_chain_offset[OF ff_bad]) hence "inf_chain ?gtssl (\<lambda>i. ?ff (i + k))" unfolding inf_chain_def using len_eq_n by presburger hence "\<not> wfP (\<lambda>xs ys. ?gtssl ys xs)" using wfP_iff_no_inf_chain by blast thus False using wf_same_length_if_total[of n] by sat qed qed end context fixes gt :: "'a \<Rightarrow> 'a \<Rightarrow> bool" assumes gt_irrefl: "\<And>z. \<not> gt z z" and gt_wf: "wfP (\<lambda>x y. gt y x)" begin lemma wf_bounded: "wfP (\<lambda>xs ys. length ys \<le> n \<and> length xs \<le> n \<and> ext gt ys xs)" proof - obtain Ge' where gt_sub_Ge': "{(x, y). gt y x} \<subseteq> Ge'" and Ge'_wo: "Well_order Ge'" and Ge'_fld: "Field Ge' = UNIV" using total_well_order_extension[OF gt_wf[unfolded wfP_def]] by blast define gt' where "\<And>y x. gt' y x \<longleftrightarrow> y \<noteq> x \<and> (x, y) \<in> Ge'" have gt_imp_gt': "gt \<le> gt'" by (auto simp: gt'_def gt_irrefl intro: gt_sub_Ge'[THEN subsetD]) have gt'_irrefl: "\<And>z. \<not> gt' z z" unfolding gt'_def by simp have gt'_trans: "\<And>z y x. gt' z y \<Longrightarrow> gt' y x \<Longrightarrow> gt' z x" using Ge'_wo unfolding gt'_def well_order_on_def linear_order_on_def partial_order_on_def preorder_on_def trans_def antisym_def by blast have "wf {(x, y). (x, y) \<in> Ge' \<and> x \<noteq> y}" by (rule Ge'_wo[unfolded well_order_on_def set_diff_eq case_prod_eta[symmetric, of "\<lambda>xy. xy \<in> Ge' \<and> xy \<notin> Id"] pair_in_Id_conv, THEN conjunct2]) moreover have "\<And>y x. (x, y) \<in> Ge' \<and> x \<noteq> y \<longleftrightarrow> y \<noteq> x \<and> (x, y) \<in> Ge'" by auto ultimately have gt'_wf: "wfP (\<lambda>x y. gt' y x)" unfolding wfP_def gt'_def by simp have gt'_total: "\<And>x y. gt' y x \<or> gt' x y \<or> y = x" using Ge'_wo unfolding gt'_def well_order_on_def linear_order_on_def total_on_def Ge'_fld by blast have "wfP (\<lambda>xs ys. length ys \<le> n \<and> length xs \<le> n \<and> ext gt' ys xs)" using wf_bounded_if_total gt'_total gt'_irrefl gt'_trans gt'_wf by blast thus ?thesis by (rule wfP_subset) (auto intro: mono[OF gt_imp_gt', THEN predicate2D]) qed end end subsection \<open>Lexicographic Extension\<close> inductive lexext :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" for gt where lexext_Nil: "lexext gt (y # ys) []" | lexext_Cons: "gt y x \<Longrightarrow> lexext gt (y # ys) (x # xs)" | lexext_Cons_eq: "lexext gt ys xs \<Longrightarrow> lexext gt (x # ys) (x # xs)" lemma lexext_simps[simp]: "lexext gt ys [] \<longleftrightarrow> ys \<noteq> []" "\<not> lexext gt [] xs" "lexext gt (y # ys) (x # xs) \<longleftrightarrow> gt y x \<or> x = y \<and> lexext gt ys xs" proof show "lexext gt ys [] \<Longrightarrow> (ys \<noteq> [])" by (metis lexext.cases list.distinct(1)) next show "ys \<noteq> [] \<Longrightarrow> lexext gt ys []" by (metis lexext_Nil list.exhaust) next show "\<not> lexext gt [] xs" using lexext.cases by auto next show "lexext gt (y # ys) (x # xs) = (gt y x \<or> x = y \<and> lexext gt ys xs)" proof - have fwdd: "lexext gt (y # ys) (x # xs) \<longrightarrow> gt y x \<or> x = y \<and> lexext gt ys xs" proof assume "lexext gt (y # ys) (x # xs)" thus "gt y x \<or> x = y \<and> lexext gt ys xs" using lexext.cases by blast qed have backd: "gt y x \<or> x = y \<and> lexext gt ys xs \<longrightarrow> lexext gt (y # ys) (x # xs)" by (simp add: lexext_Cons lexext_Cons_eq) show "lexext gt (y # ys) (x # xs) = (gt y x \<or> x = y \<and> lexext gt ys xs)" using fwdd backd by blast qed qed lemma lexext_mono_strong: assumes "\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt' y x" and "lexext gt ys xs" shows "lexext gt' ys xs" using assms by (induct ys xs rule: list_induct2') auto lemma lexext_map_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt (f y) (f x)) \<Longrightarrow> lexext gt ys xs \<Longrightarrow> lexext gt (map f ys) (map f xs)" by (induct ys xs rule: list_induct2') auto lemma lexext_irrefl: assumes "\<forall>x \<in> set xs. \<not> gt x x" shows "\<not> lexext gt xs xs" using assms by (induct xs) auto lemma lexext_trans_strong: assumes "\<forall>z \<in> set zs. \<forall>y \<in> set ys. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and "lexext gt zs ys" and "lexext gt ys xs" shows "lexext gt zs xs" using assms proof (induct zs arbitrary: ys xs) case (Cons z zs) note zs_trans = this(1) show ?case using Cons(2-4) proof (induct ys arbitrary: xs rule: list.induct) case (Cons y ys) note ys_trans = this(1) and gt_trans = this(2) and zzs_gt_yys = this(3) and yys_gt_xs = this(4) show ?case proof (cases xs) case xs: (Cons x xs) thus ?thesis proof (unfold xs) note yys_gt_xxs = yys_gt_xs[unfolded xs] note gt_trans = gt_trans[unfolded xs] let ?case = "lexext gt (z # zs) (x # xs)" { assume "gt z y" and "gt y x" hence ?case using gt_trans by simp } moreover { assume "gt z y" and "x = y" hence ?case by simp } moreover { assume "y = z" and "gt y x" hence ?case by simp } moreover { assume y_eq_z: "y = z" and zs_gt_ys: "lexext gt zs ys" and x_eq_y: "x = y" and ys_gt_xs: "lexext gt ys xs" have "lexext gt zs xs" by (rule zs_trans[OF _ zs_gt_ys ys_gt_xs]) (meson gt_trans[simplified]) hence ?case by (simp add: x_eq_y y_eq_z) } ultimately show ?case using zzs_gt_yys yys_gt_xxs by force qed qed auto qed auto qed auto lemma lexext_snoc: "lexext gt (xs @ [x]) xs" by (induct xs) auto lemmas lexext_compat_cons = lexext_Cons_eq lemma lexext_compat_snoc_if_same_length: assumes "length ys = length xs" and "lexext gt ys xs" shows "lexext gt (ys @ [x]) (xs @ [x])" using assms(2,1) by (induct rule: lexext.induct) auto lemma lexext_compat_list: "gt y x \<Longrightarrow> lexext gt (xs @ y # xs') (xs @ x # xs')" by (induct xs) auto lemma lexext_singleton: "lexext gt [y] [x] \<longleftrightarrow> gt y x" by simp lemma lexext_total: "(\<forall>y \<in> B. \<forall>x \<in> A. gt y x \<or> gt x y \<or> y = x) \<Longrightarrow> ys \<in> lists B \<Longrightarrow> xs \<in> lists A \<Longrightarrow> lexext gt ys xs \<or> lexext gt xs ys \<or> ys = xs" by (induct ys xs rule: list_induct2') auto lemma lexext_hd_or_tl: "lexext gt (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> lexext gt ys xs" by auto interpretation lexext: ext lexext by standard (fact lexext_mono_strong, rule lexext_map_strong, metis in_listsD) interpretation lexext: ext_irrefl_trans_strong lexext by standard (fact lexext_irrefl, fact lexext_trans_strong) interpretation lexext: ext_snoc lexext by standard (fact lexext_snoc) interpretation lexext: ext_compat_cons lexext by standard (fact lexext_compat_cons) interpretation lexext: ext_compat_list lexext by standard (rule lexext_compat_list) interpretation lexext: ext_singleton lexext by standard (rule lexext_singleton) interpretation lexext: ext_total lexext by standard (fact lexext_total) interpretation lexext: ext_hd_or_tl lexext by standard (rule lexext_hd_or_tl) interpretation lexext: ext_wf_bounded lexext by standard subsection \<open>Reverse (Right-to-Left) Lexicographic Extension\<close> abbreviation lexext_rev :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "lexext_rev gt ys xs \<equiv> lexext gt (rev ys) (rev xs)" lemma lexext_rev_simps[simp]: "lexext_rev gt ys [] \<longleftrightarrow> ys \<noteq> []" "\<not> lexext_rev gt [] xs" "lexext_rev gt (ys @ [y]) (xs @ [x]) \<longleftrightarrow> gt y x \<or> x = y \<and> lexext_rev gt ys xs" by simp+ lemma lexext_rev_cons_cons: assumes "length ys = length xs" shows "lexext_rev gt (y # ys) (x # xs) \<longleftrightarrow> lexext_rev gt ys xs \<or> ys = xs \<and> gt y x" using assms proof (induct arbitrary: y x rule: rev_induct2) case Nil thus ?case by simp next case (snoc y' ys x' xs) show ?case using snoc(2) by auto qed lemma lexext_rev_mono_strong: assumes "\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt' y x" and "lexext_rev gt ys xs" shows "lexext_rev gt' ys xs" using assms by (simp add: lexext_mono_strong) lemma lexext_rev_map_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt (f y) (f x)) \<Longrightarrow> lexext_rev gt ys xs \<Longrightarrow> lexext_rev gt (map f ys) (map f xs)" by (simp add: lexext_map_strong rev_map) lemma lexext_rev_irrefl: assumes "\<forall>x \<in> set xs. \<not> gt x x" shows "\<not> lexext_rev gt xs xs" using assms by (simp add: lexext_irrefl) lemma lexext_rev_trans_strong: assumes "\<forall>z \<in> set zs. \<forall>y \<in> set ys. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and "lexext_rev gt zs ys" and "lexext_rev gt ys xs" shows "lexext_rev gt zs xs" using assms(1) lexext_trans_strong[OF _ assms(2,3), unfolded set_rev] by sat lemma lexext_rev_compat_cons_if_same_length: assumes "length ys = length xs" and "lexext_rev gt ys xs" shows "lexext_rev gt (x # ys) (x # xs)" using assms by (simp add: lexext_compat_snoc_if_same_length) lemma lexext_rev_compat_snoc: "lexext_rev gt ys xs \<Longrightarrow> lexext_rev gt (ys @ [x]) (xs @ [x])" by (simp add: lexext_compat_cons) lemma lexext_rev_compat_list: "gt y x \<Longrightarrow> lexext_rev gt (xs @ y # xs') (xs @ x # xs')" by (induct xs' rule: rev_induct) auto lemma lexext_rev_singleton: "lexext_rev gt [y] [x] \<longleftrightarrow> gt y x" by simp lemma lexext_rev_total: "(\<forall>y \<in> B. \<forall>x \<in> A. gt y x \<or> gt x y \<or> y = x) \<Longrightarrow> ys \<in> lists B \<Longrightarrow> xs \<in> lists A \<Longrightarrow> lexext_rev gt ys xs \<or> lexext_rev gt xs ys \<or> ys = xs" by (rule lexext_total[of _ _ _ "rev ys" "rev xs", simplified]) lemma lexext_rev_hd_or_tl: assumes "length ys = length xs" and "lexext_rev gt (y # ys) (x # xs)" shows "gt y x \<or> lexext_rev gt ys xs" using assms lexext_rev_cons_cons by fastforce interpretation lexext_rev: ext lexext_rev by standard (fact lexext_rev_mono_strong, rule lexext_rev_map_strong, metis in_listsD) interpretation lexext_rev: ext_irrefl_trans_strong lexext_rev by standard (fact lexext_rev_irrefl, fact lexext_rev_trans_strong) interpretation lexext_rev: ext_compat_snoc lexext_rev by standard (fact lexext_rev_compat_snoc) interpretation lexext_rev: ext_compat_list lexext_rev by standard (rule lexext_rev_compat_list) interpretation lexext_rev: ext_singleton lexext_rev by standard (rule lexext_rev_singleton) interpretation lexext_rev: ext_total lexext_rev by standard (fact lexext_rev_total) interpretation lexext_rev: ext_hd_or_tl lexext_rev by standard (rule lexext_rev_hd_or_tl) interpretation lexext_rev: ext_wf_bounded lexext_rev by standard subsection \<open>Generic Length Extension\<close> definition lenext :: "('a list \<Rightarrow> 'a list \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "lenext gts ys xs \<longleftrightarrow> length ys > length xs \<or> length ys = length xs \<and> gts ys xs" lemma lenext_mono_strong: "(gts ys xs \<Longrightarrow> gts' ys xs) \<Longrightarrow> lenext gts ys xs \<Longrightarrow> lenext gts' ys xs" and lenext_map_strong: "(length ys = length xs \<Longrightarrow> gts ys xs \<Longrightarrow> gts (map f ys) (map f xs)) \<Longrightarrow> lenext gts ys xs \<Longrightarrow> lenext gts (map f ys) (map f xs)" and lenext_irrefl: "\<not> gts xs xs \<Longrightarrow> \<not> lenext gts xs xs" and lenext_trans: "(gts zs ys \<Longrightarrow> gts ys xs \<Longrightarrow> gts zs xs) \<Longrightarrow> lenext gts zs ys \<Longrightarrow> lenext gts ys xs \<Longrightarrow> lenext gts zs xs" and lenext_snoc: "lenext gts (xs @ [x]) xs" and lenext_compat_cons: "(length ys = length xs \<Longrightarrow> gts ys xs \<Longrightarrow> gts (x # ys) (x # xs)) \<Longrightarrow> lenext gts ys xs \<Longrightarrow> lenext gts (x # ys) (x # xs)" and lenext_compat_snoc: "(length ys = length xs \<Longrightarrow> gts ys xs \<Longrightarrow> gts (ys @ [x]) (xs @ [x])) \<Longrightarrow> lenext gts ys xs \<Longrightarrow> lenext gts (ys @ [x]) (xs @ [x])" and lenext_compat_list: "gts (xs @ y # xs') (xs @ x # xs') \<Longrightarrow> lenext gts (xs @ y # xs') (xs @ x # xs')" and lenext_singleton: "lenext gts [y] [x] \<longleftrightarrow> gts [y] [x]" and lenext_total: "(gts ys xs \<or> gts xs ys \<or> ys = xs) \<Longrightarrow> lenext gts ys xs \<or> lenext gts xs ys \<or> ys = xs" and lenext_hd_or_tl: "(length ys = length xs \<Longrightarrow> gts (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> gts ys xs) \<Longrightarrow> lenext gts (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> lenext gts ys xs" unfolding lenext_def by auto subsection \<open>Length-Lexicographic Extension\<close> abbreviation len_lexext :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "len_lexext gt \<equiv> lenext (lexext gt)" lemma len_lexext_mono_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt' y x) \<Longrightarrow> len_lexext gt ys xs \<Longrightarrow> len_lexext gt' ys xs" by (rule lenext_mono_strong[OF lexext_mono_strong]) lemma len_lexext_map_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt (f y) (f x)) \<Longrightarrow> len_lexext gt ys xs \<Longrightarrow> len_lexext gt (map f ys) (map f xs)" by (rule lenext_map_strong) (metis lexext_map_strong) lemma len_lexext_irrefl: "(\<forall>x \<in> set xs. \<not> gt x x) \<Longrightarrow> \<not> len_lexext gt xs xs" by (rule lenext_irrefl[OF lexext_irrefl]) lemma len_lexext_trans_strong: "(\<forall>z \<in> set zs. \<forall>y \<in> set ys. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x) \<Longrightarrow> len_lexext gt zs ys \<Longrightarrow> len_lexext gt ys xs \<Longrightarrow> len_lexext gt zs xs" by (rule lenext_trans[OF lexext_trans_strong]) lemma len_lexext_snoc: "len_lexext gt (xs @ [x]) xs" by (rule lenext_snoc) lemma len_lexext_compat_cons: "len_lexext gt ys xs \<Longrightarrow> len_lexext gt (x # ys) (x # xs)" by (intro lenext_compat_cons lexext_compat_cons) lemma len_lexext_compat_snoc: "len_lexext gt ys xs \<Longrightarrow> len_lexext gt (ys @ [x]) (xs @ [x])" by (intro lenext_compat_snoc lexext_compat_snoc_if_same_length) lemma len_lexext_compat_list: "gt y x \<Longrightarrow> len_lexext gt (xs @ y # xs') (xs @ x # xs')" by (intro lenext_compat_list lexext_compat_list) lemma len_lexext_singleton[simp]: "len_lexext gt [y] [x] \<longleftrightarrow> gt y x" by (simp only: lenext_singleton lexext_singleton) lemma len_lexext_total: "(\<forall>y \<in> B. \<forall>x \<in> A. gt y x \<or> gt x y \<or> y = x) \<Longrightarrow> ys \<in> lists B \<Longrightarrow> xs \<in> lists A \<Longrightarrow> len_lexext gt ys xs \<or> len_lexext gt xs ys \<or> ys = xs" by (rule lenext_total[OF lexext_total]) lemma len_lexext_iff_lenlex: "len_lexext gt ys xs \<longleftrightarrow> (xs, ys) \<in> lenlex {(x, y). gt y x}" proof - { assume "length xs = length ys" hence "lexext gt ys xs \<longleftrightarrow> (xs, ys) \<in> lex {(x, y). gt y x}" by (induct xs ys rule: list_induct2) auto } thus ?thesis unfolding lenext_def lenlex_conv by auto qed lemma len_lexext_wf: "wfP (\<lambda>x y. gt y x) \<Longrightarrow> wfP (\<lambda>xs ys. len_lexext gt ys xs)" unfolding wfP_def len_lexext_iff_lenlex by (simp add: wf_lenlex) lemma len_lexext_hd_or_tl: "len_lexext gt (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> len_lexext gt ys xs" using lenext_hd_or_tl lexext_hd_or_tl by metis interpretation len_lexext: ext len_lexext by standard (fact len_lexext_mono_strong, rule len_lexext_map_strong, metis in_listsD) interpretation len_lexext: ext_irrefl_trans_strong len_lexext by standard (fact len_lexext_irrefl, fact len_lexext_trans_strong) interpretation len_lexext: ext_snoc len_lexext by standard (fact len_lexext_snoc) interpretation len_lexext: ext_compat_cons len_lexext by standard (fact len_lexext_compat_cons) interpretation len_lexext: ext_compat_snoc len_lexext by standard (fact len_lexext_compat_snoc) interpretation len_lexext: ext_compat_list len_lexext by standard (rule len_lexext_compat_list) interpretation len_lexext: ext_singleton len_lexext by standard (rule len_lexext_singleton) interpretation len_lexext: ext_total len_lexext by standard (fact len_lexext_total) interpretation len_lexext: ext_wf len_lexext by standard (fact len_lexext_wf) interpretation len_lexext: ext_hd_or_tl len_lexext by standard (rule len_lexext_hd_or_tl) interpretation len_lexext: ext_wf_bounded len_lexext by standard subsection \<open>Reverse (Right-to-Left) Length-Lexicographic Extension\<close> abbreviation len_lexext_rev :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "len_lexext_rev gt \<equiv> lenext (lexext_rev gt)" lemma len_lexext_rev_mono_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt' y x) \<Longrightarrow> len_lexext_rev gt ys xs \<Longrightarrow> len_lexext_rev gt' ys xs" by (rule lenext_mono_strong) (rule lexext_rev_mono_strong) lemma len_lexext_rev_map_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt (f y) (f x)) \<Longrightarrow> len_lexext_rev gt ys xs \<Longrightarrow> len_lexext_rev gt (map f ys) (map f xs)" by (rule lenext_map_strong) (rule lexext_rev_map_strong) lemma len_lexext_rev_irrefl: "(\<forall>x \<in> set xs. \<not> gt x x) \<Longrightarrow> \<not> len_lexext_rev gt xs xs" by (rule lenext_irrefl) (rule lexext_rev_irrefl) lemma len_lexext_rev_trans_strong: "(\<forall>z \<in> set zs. \<forall>y \<in> set ys. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x) \<Longrightarrow> len_lexext_rev gt zs ys \<Longrightarrow> len_lexext_rev gt ys xs \<Longrightarrow> len_lexext_rev gt zs xs" by (rule lenext_trans) (rule lexext_rev_trans_strong) lemma len_lexext_rev_snoc: "len_lexext_rev gt (xs @ [x]) xs" by (rule lenext_snoc) lemma len_lexext_rev_compat_cons: "len_lexext_rev gt ys xs \<Longrightarrow> len_lexext_rev gt (x # ys) (x # xs)" by (intro lenext_compat_cons lexext_rev_compat_cons_if_same_length) lemma len_lexext_rev_compat_snoc: "len_lexext_rev gt ys xs \<Longrightarrow> len_lexext_rev gt (ys @ [x]) (xs @ [x])" by (intro lenext_compat_snoc lexext_rev_compat_snoc) lemma len_lexext_rev_compat_list: "gt y x \<Longrightarrow> len_lexext_rev gt (xs @ y # xs') (xs @ x # xs')" by (intro lenext_compat_list lexext_rev_compat_list) lemma len_lexext_rev_singleton[simp]: "len_lexext_rev gt [y] [x] \<longleftrightarrow> gt y x" by (simp only: lenext_singleton lexext_rev_singleton) lemma len_lexext_rev_total: "(\<forall>y \<in> B. \<forall>x \<in> A. gt y x \<or> gt x y \<or> y = x) \<Longrightarrow> ys \<in> lists B \<Longrightarrow> xs \<in> lists A \<Longrightarrow> len_lexext_rev gt ys xs \<or> len_lexext_rev gt xs ys \<or> ys = xs" by (rule lenext_total[OF lexext_rev_total]) lemma len_lexext_rev_iff_len_lexext: "len_lexext_rev gt ys xs \<longleftrightarrow> len_lexext gt (rev ys) (rev xs)" unfolding lenext_def by simp lemma len_lexext_rev_wf: "wfP (\<lambda>x y. gt y x) \<Longrightarrow> wfP (\<lambda>xs ys. len_lexext_rev gt ys xs)" unfolding len_lexext_rev_iff_len_lexext by (rule wfP_app[of "\<lambda>xs ys. len_lexext gt ys xs" rev, simplified]) (rule len_lexext_wf) lemma len_lexext_rev_hd_or_tl: "len_lexext_rev gt (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> len_lexext_rev gt ys xs" using lenext_hd_or_tl lexext_rev_hd_or_tl by metis interpretation len_lexext_rev: ext len_lexext_rev by standard (fact len_lexext_rev_mono_strong, rule len_lexext_rev_map_strong, metis in_listsD) interpretation len_lexext_rev: ext_irrefl_trans_strong len_lexext_rev by standard (fact len_lexext_rev_irrefl, fact len_lexext_rev_trans_strong) interpretation len_lexext_rev: ext_snoc len_lexext_rev by standard (fact len_lexext_rev_snoc) interpretation len_lexext_rev: ext_compat_cons len_lexext_rev by standard (fact len_lexext_rev_compat_cons) interpretation len_lexext_rev: ext_compat_snoc len_lexext_rev by standard (fact len_lexext_rev_compat_snoc) interpretation len_lexext_rev: ext_compat_list len_lexext_rev by standard (rule len_lexext_rev_compat_list) interpretation len_lexext_rev: ext_singleton len_lexext_rev by standard (rule len_lexext_rev_singleton) interpretation len_lexext_rev: ext_total len_lexext_rev by standard (fact len_lexext_rev_total) interpretation len_lexext_rev: ext_wf len_lexext_rev by standard (fact len_lexext_rev_wf) interpretation len_lexext_rev: ext_hd_or_tl len_lexext_rev by standard (rule len_lexext_rev_hd_or_tl) interpretation len_lexext_rev: ext_wf_bounded len_lexext_rev by standard subsection \<open>Dershowitz--Manna Multiset Extension\<close> definition msetext_dersh where "msetext_dersh gt ys xs = (let N = mset ys; M = mset xs in (\<exists>Y X. Y \<noteq> {#} \<and> Y \<subseteq># N \<and> M = (N - Y) + X \<and> (\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> gt y x))))" text \<open> The following proof is based on that of @{thm[source] less_multiset\<^sub>D\<^sub>M_imp_mult}. \<close> lemma msetext_dersh_imp_mult_rel: assumes ys_a: "ys \<in> lists A" and xs_a: "xs \<in> lists A" and ys_gt_xs: "msetext_dersh gt ys xs" shows "(mset xs, mset ys) \<in> mult {(x, y). x \<in> A \<and> y \<in> A \<and> gt y x}" proof - obtain Y X where y_nemp: "Y \<noteq> {#}" and y_sub_ys: "Y \<subseteq># mset ys" and xs_eq: "mset xs = mset ys - Y + X" and ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> gt y x)" using ys_gt_xs[unfolded msetext_dersh_def Let_def] by blast have ex_y': "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> x \<in> A \<and> y \<in> A \<and> gt y x)" using ex_y y_sub_ys xs_eq ys_a xs_a by (metis in_listsD mset_subset_eqD set_mset_mset union_iff) hence "(mset ys - Y + X, mset ys - Y + Y) \<in> mult {(x, y). x \<in> A \<and> y \<in> A \<and> gt y x}" using y_nemp y_sub_ys by (intro one_step_implies_mult) (auto simp: Bex_def trans_def) thus ?thesis using xs_eq y_sub_ys by (simp add: subset_mset.diff_add) qed lemma msetext_dersh_imp_mult: "msetext_dersh gt ys xs \<Longrightarrow> (mset xs, mset ys) \<in> mult {(x, y). gt y x}" using msetext_dersh_imp_mult_rel[of _ UNIV] by auto lemma mult_imp_msetext_dersh_rel: assumes ys_a: "set_mset (mset ys) \<subseteq> A" and xs_a: "set_mset (mset xs) \<subseteq> A" and in_mult: "(mset xs, mset ys) \<in> mult {(x, y). x \<in> A \<and> y \<in> A \<and> gt y x}" and trans: "\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" shows "msetext_dersh gt ys xs" using in_mult ys_a xs_a unfolding mult_def msetext_dersh_def Let_def proof induct case (base Ys) then obtain y M0 X where "Ys = M0 + {#y#}" and "mset xs = M0 + X" and "\<forall>a. a \<in># X \<longrightarrow> gt y a" unfolding mult1_def by auto thus ?case by (auto intro: exI[of _ "{#y#}"] exI[of _ X]) next case (step Ys Zs) note ys_zs_in_mult1 = this(2) and ih = this(3) and zs_a = this(4) and xs_a = this(5) have Ys_a: "set_mset Ys \<subseteq> A" using ys_zs_in_mult1 zs_a unfolding mult1_def by auto obtain Y X where y_nemp: "Y \<noteq> {#}" and y_sub_ys: "Y \<subseteq># Ys" and xs_eq: "mset xs = Ys - Y + X" and ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> gt y x)" using ih[OF Ys_a xs_a] by blast obtain z M0 Ya where zs_eq: "Zs = M0 + {#z#}" and ys_eq: "Ys = M0 + Ya" and z_gt: "\<forall>y. y \<in># Ya \<longrightarrow> y \<in> A \<and> z \<in> A \<and> gt z y" using ys_zs_in_mult1[unfolded mult1_def] by auto let ?Za = "Y - Ya + {#z#}" let ?Xa = "X + Ya + (Y - Ya) - Y" have xa_sub_x_ya: "set_mset ?Xa \<subseteq> set_mset (X + Ya)" by (metis diff_subset_eq_self in_diffD subsetI subset_mset.diff_diff_right) have x_a: "set_mset X \<subseteq> A" using xs_a xs_eq by auto have ya_a: "set_mset Ya \<subseteq> A" by (simp add: subsetI z_gt) have ex_y': "\<exists>y. y \<in># Y - Ya + {#z#} \<and> gt y x" if x_in: "x \<in># X + Ya" for x proof (cases "x \<in># X") case True then obtain y where y_in: "y \<in># Y" and y_gt_x: "gt y x" using ex_y by blast show ?thesis proof (cases "y \<in># Ya") case False hence "y \<in># Y - Ya + {#z#}" using y_in by fastforce thus ?thesis using y_gt_x by blast next case True hence "y \<in> A" and "z \<in> A" and "gt z y" using z_gt by blast+ hence "gt z x" using trans y_gt_x x_a ya_a x_in by (meson subsetCE union_iff) thus ?thesis by auto qed next case False hence "x \<in># Ya" using x_in by auto hence "x \<in> A" and "z \<in> A" and "gt z x" using z_gt by blast+ thus ?thesis by auto qed show ?case proof (rule exI[of _ ?Za], rule exI[of _ ?Xa], intro conjI) show "Y - Ya + {#z#} \<subseteq># Zs" using mset_subset_eq_mono_add subset_eq_diff_conv y_sub_ys ys_eq zs_eq by fastforce next show "mset xs = Zs - (Y - Ya + {#z#}) + (X + Ya + (Y - Ya) - Y)" unfolding xs_eq ys_eq zs_eq by (auto simp: multiset_eq_iff) next show "\<forall>x. x \<in># X + Ya + (Y - Ya) - Y \<longrightarrow> (\<exists>y. y \<in># Y - Ya + {#z#} \<and> gt y x)" using ex_y' xa_sub_x_ya by blast qed auto qed lemma msetext_dersh_map_strong: assumes compat_f: "\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt (f y) (f x)" and ys_gt_xs: "msetext_dersh gt ys xs" shows "msetext_dersh gt (map f ys) (map f xs)" proof - obtain Y X where y_nemp: "Y \<noteq> {#}" and y_sub_ys: "Y \<subseteq># mset ys" and xs_eq: "mset xs = mset ys - Y + X" and ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> gt y x)" using ys_gt_xs[unfolded msetext_dersh_def Let_def mset_map] by blast have x_sub_xs: "X \<subseteq># mset xs" using xs_eq by simp let ?fY = "image_mset f Y" let ?fX = "image_mset f X" show ?thesis unfolding msetext_dersh_def Let_def mset_map proof (intro exI conjI) show "image_mset f (mset xs) = image_mset f (mset ys) - ?fY + ?fX" using xs_eq[THEN arg_cong, of "image_mset f"] y_sub_ys by (metis image_mset_Diff image_mset_union) next obtain y where y: "\<forall>x. x \<in># X \<longrightarrow> y x \<in># Y \<and> gt (y x) x" using ex_y by moura show "\<forall>fx. fx \<in># ?fX \<longrightarrow> (\<exists>fy. fy \<in># ?fY \<and> gt fy fx)" proof (intro allI impI) fix fx assume "fx \<in># ?fX" then obtain x where fx: "fx = f x" and x_in: "x \<in># X" by auto hence y_in: "y x \<in># Y" and y_gt: "gt (y x) x" using y[rule_format, OF x_in] by blast+ hence "f (y x) \<in># ?fY \<and> gt (f (y x)) (f x)" using compat_f y_sub_ys x_sub_xs x_in by (metis image_eqI in_image_mset mset_subset_eqD set_mset_mset) thus "\<exists>fy. fy \<in># ?fY \<and> gt fy fx" unfolding fx by auto qed qed (auto simp: y_nemp y_sub_ys image_mset_subseteq_mono) qed lemma msetext_dersh_trans: assumes zs_a: "zs \<in> lists A" and ys_a: "ys \<in> lists A" and xs_a: "xs \<in> lists A" and trans: "\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and zs_gt_ys: "msetext_dersh gt zs ys" and ys_gt_xs: "msetext_dersh gt ys xs" shows "msetext_dersh gt zs xs" proof (rule mult_imp_msetext_dersh_rel[OF _ _ _ trans]) show "set_mset (mset zs) \<subseteq> A" using zs_a by auto next show "set_mset (mset xs) \<subseteq> A" using xs_a by auto next let ?Gt = "{(x, y). x \<in> A \<and> y \<in> A \<and> gt y x}" have "(mset xs, mset ys) \<in> mult ?Gt" by (rule msetext_dersh_imp_mult_rel[OF ys_a xs_a ys_gt_xs]) moreover have "(mset ys, mset zs) \<in> mult ?Gt" by (rule msetext_dersh_imp_mult_rel[OF zs_a ys_a zs_gt_ys]) ultimately show "(mset xs, mset zs) \<in> mult ?Gt" unfolding mult_def by simp qed lemma msetext_dersh_irrefl_from_trans: assumes trans: "\<forall>z \<in> set xs. \<forall>y \<in> set xs. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and irrefl: "\<forall>x \<in> set xs. \<not> gt x x" shows "\<not> msetext_dersh gt xs xs" unfolding msetext_dersh_def Let_def proof clarify fix Y X assume y_nemp: "Y \<noteq> {#}" and y_sub_xs: "Y \<subseteq># mset xs" and xs_eq: "mset xs = mset xs - Y + X" and ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> gt y x)" have x_eq_y: "X = Y" using y_sub_xs xs_eq by (metis diff_union_cancelL subset_mset.diff_add) let ?Gt = "{(y, x). y \<in># Y \<and> x \<in># Y \<and> gt y x}" have "?Gt \<subseteq> set_mset Y \<times> set_mset Y" by auto hence fin: "finite ?Gt" by (auto dest!: infinite_super) moreover have "irrefl ?Gt" unfolding irrefl_def using irrefl y_sub_xs by (fastforce dest!: set_mset_mono) moreover have "trans ?Gt" unfolding trans_def using trans y_sub_xs by (fastforce dest!: set_mset_mono) ultimately have acyc: "acyclic ?Gt" by (rule finite_irrefl_trans_imp_wf[THEN wf_acyclic]) have fin_y: "finite (set_mset Y)" using y_sub_xs by simp hence cyc: "\<not> acyclic ?Gt" proof (rule finite_nonempty_ex_succ_imp_cyclic) show "\<forall>x \<in># Y. \<exists>y \<in># Y. (y, x) \<in> ?Gt" using ex_y[unfolded x_eq_y] by auto qed (auto simp: y_nemp) show False using acyc cyc by sat qed lemma msetext_dersh_snoc: "msetext_dersh gt (xs @ [x]) xs" unfolding msetext_dersh_def Let_def proof (intro exI conjI) show "mset xs = mset (xs @ [x]) - {#x#} + {#}" by simp qed auto lemma msetext_dersh_compat_cons: assumes ys_gt_xs: "msetext_dersh gt ys xs" shows "msetext_dersh gt (x # ys) (x # xs)" proof - obtain Y X where y_nemp: "Y \<noteq> {#}" and y_sub_ys: "Y \<subseteq># mset ys" and xs_eq: "mset xs = mset ys - Y + X" and ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> gt y x)" using ys_gt_xs[unfolded msetext_dersh_def Let_def mset_map] by blast show ?thesis unfolding msetext_dersh_def Let_def proof (intro exI conjI) show "Y \<subseteq># mset (x # ys)" using y_sub_ys by (metis add_mset_add_single mset.simps(2) mset_subset_eq_add_left subset_mset.add_increasing2) next show "mset (x # xs) = mset (x # ys) - Y + X" proof - have "X + (mset ys - Y) = mset xs" by (simp add: union_commute xs_eq) hence "mset (x # xs) = X + (mset (x # ys) - Y)" by (metis add_mset_add_single mset.simps(2) mset_subset_eq_multiset_union_diff_commute union_mset_add_mset_right y_sub_ys) thus ?thesis by (simp add: union_commute) qed qed (auto simp: y_nemp ex_y) qed lemma msetext_dersh_compat_snoc: "msetext_dersh gt ys xs \<Longrightarrow> msetext_dersh gt (ys @ [x]) (xs @ [x])" using msetext_dersh_compat_cons[of gt ys xs x] unfolding msetext_dersh_def by simp lemma msetext_dersh_compat_list: assumes y_gt_x: "gt y x" shows "msetext_dersh gt (xs @ y # xs') (xs @ x # xs')" unfolding msetext_dersh_def Let_def proof (intro exI conjI) show "mset (xs @ x # xs') = mset (xs @ y # xs') - {#y#} + {#x#}" by auto qed (auto intro: y_gt_x) lemma msetext_dersh_singleton: "msetext_dersh gt [y] [x] \<longleftrightarrow> gt y x" unfolding msetext_dersh_def Let_def by (auto dest: nonempty_subseteq_mset_eq_singleton simp: nonempty_subseteq_mset_iff_singleton) lemma msetext_dersh_wf: assumes wf_gt: "wfP (\<lambda>x y. gt y x)" shows "wfP (\<lambda>xs ys. msetext_dersh gt ys xs)" proof (rule wfP_subset, rule wfP_app[of "\<lambda>xs ys. (xs, ys) \<in> mult {(x, y). gt y x}" mset]) show "wfP (\<lambda>xs ys. (xs, ys) \<in> mult {(x, y). gt y x})" using wf_gt unfolding wfP_def by (auto intro: wf_mult) next show "(\<lambda>xs ys. msetext_dersh gt ys xs) \<le> (\<lambda>x y. (mset x, mset y) \<in> mult {(x, y). gt y x})" using msetext_dersh_imp_mult by blast qed interpretation msetext_dersh: ext msetext_dersh by standard (fact msetext_dersh_mono_strong, rule msetext_dersh_map_strong, metis in_listsD) interpretation msetext_dersh: ext_trans_before_irrefl msetext_dersh by standard (fact msetext_dersh_trans, fact msetext_dersh_irrefl_from_trans) interpretation msetext_dersh: ext_snoc msetext_dersh by standard (fact msetext_dersh_snoc) interpretation msetext_dersh: ext_compat_cons msetext_dersh by standard (fact msetext_dersh_compat_cons) interpretation msetext_dersh: ext_compat_snoc msetext_dersh by standard (fact msetext_dersh_compat_snoc) interpretation msetext_dersh: ext_compat_list msetext_dersh by standard (rule msetext_dersh_compat_list) interpretation msetext_dersh: ext_singleton msetext_dersh by standard (rule msetext_dersh_singleton) interpretation msetext_dersh: ext_wf msetext_dersh by standard (fact msetext_dersh_wf) subsection \<open>Huet--Oppen Multiset Extension\<close> definition msetext_huet where "msetext_huet gt ys xs = (let N = mset ys; M = mset xs in M \<noteq> N \<and> (\<forall>x. count M x > count N x \<longrightarrow> (\<exists>y. gt y x \<and> count N y > count M y)))" lemma msetext_huet_imp_count_gt: assumes ys_gt_xs: "msetext_huet gt ys xs" shows "\<exists>x. count (mset ys) x > count (mset xs) x" proof - obtain x where "count (mset ys) x \<noteq> count (mset xs) x" using ys_gt_xs[unfolded msetext_huet_def Let_def] by (fastforce intro: multiset_eqI) moreover { assume "count (mset ys) x < count (mset xs) x" hence ?thesis using ys_gt_xs[unfolded msetext_huet_def Let_def] by blast } moreover { assume "count (mset ys) x > count (mset xs) x" hence ?thesis by fast } ultimately show ?thesis by fastforce qed lemma msetext_huet_imp_dersh: assumes huet: "msetext_huet gt ys xs" shows "msetext_dersh gt ys xs" proof (unfold msetext_dersh_def Let_def, intro exI conjI) let ?X = "mset xs - mset ys" let ?Y = "mset ys - mset xs" show "?Y \<noteq> {#}" by (metis msetext_huet_imp_count_gt[OF huet] empty_iff in_diff_count set_mset_empty) show "?Y \<subseteq># mset ys" by auto show "mset xs = mset ys - ?Y + ?X" by (metis add.commute diff_intersect_right_idem multiset_inter_def subset_mset.inf.cobounded2 subset_mset.le_imp_diff_is_add) show "\<forall>x. x \<in># ?X \<longrightarrow> (\<exists>y. y \<in># ?Y \<and> gt y x)" using huet[unfolded msetext_huet_def Let_def, THEN conjunct2] by (meson in_diff_count) qed text \<open> The following proof is based on that of @{thm[source] mult_imp_less_multiset\<^sub>H\<^sub>O}. \<close> lemma mult_imp_msetext_huet: assumes irrefl: "irreflp gt" and trans: "transp gt" and in_mult: "(mset xs, mset ys) \<in> mult {(x, y). gt y x}" shows "msetext_huet gt ys xs" using in_mult unfolding mult_def msetext_huet_def Let_def proof (induct rule: trancl_induct) case (base Ys) thus ?case using irrefl unfolding irreflp_def msetext_huet_def Let_def mult1_def by (auto 0 3 split: if_splits) next case (step Ys Zs) have asym[unfolded antisym_def, simplified]: "antisymp gt" by (rule irreflp_transp_imp_antisymP[OF irrefl trans]) from step(3) have "mset xs \<noteq> Ys" and **: "\<And>x. count Ys x < count (mset xs) x \<Longrightarrow> (\<exists>y. gt y x \<and> count (mset xs) y < count Ys y)" by blast+ from step(2) obtain M0 a K where *: "Zs = M0 + {#a#}" "Ys = M0 + K" "a \<notin># K" "\<And>b. b \<in># K \<Longrightarrow> gt a b" using irrefl unfolding mult1_def irreflp_def by force have "mset xs \<noteq> Zs" proof (cases "K = {#}") case True thus ?thesis using \<open>mset xs \<noteq> Ys\<close> ** *(1,2) irrefl[unfolded irreflp_def] by (metis One_nat_def add.comm_neutral count_single diff_union_cancelL lessI minus_multiset.rep_eq not_add_less2 plus_multiset.rep_eq union_commute zero_less_diff) next case False thus ?thesis proof - obtain aa :: "'a \<Rightarrow> 'a" where f1: "\<forall>a. \<not> count Ys a < count (mset xs) a \<or> gt (aa a) a \<and> count (mset xs) (aa a) < count Ys (aa a)" using "**" by moura have f2: "K + M0 = Ys" using "*"(2) union_ac(2) by blast have f3: "\<And>aa. count Zs aa = count M0 aa + count {#a#} aa" by (simp add: "*"(1)) have f4: "\<And>a. count Ys a = count K a + count M0 a" using f2 by auto have f5: "count K a = 0" by (meson "*"(3) count_inI) have "Zs - M0 = {#a#}" using "*"(1) add_diff_cancel_left' by blast then have f6: "count M0 a < count Zs a" by (metis in_diff_count union_single_eq_member) have "\<And>m. count m a = 0 + count m a" by simp moreover { assume "aa a \<noteq> a" then have "mset xs = Zs \<and> count Zs (aa a) < count K (aa a) + count M0 (aa a) \<longrightarrow> count K (aa a) + count M0 (aa a) < count Zs (aa a)" using f5 f3 f2 f1 "*"(4) asym by (auto dest!: antisympD) } ultimately show ?thesis using f6 f5 f4 f1 by (metis less_imp_not_less) qed qed moreover { assume "count Zs a \<le> count (mset xs) a" with \<open>a \<notin># K\<close> have "count Ys a < count (mset xs) a" unfolding *(1,2) by (auto simp add: not_in_iff) with ** obtain z where z: "gt z a" "count (mset xs) z < count Ys z" by blast with * have "count Ys z \<le> count Zs z" using asym by (auto simp: intro: count_inI dest: antisympD) with z have "\<exists>z. gt z a \<and> count (mset xs) z < count Zs z" by auto } note count_a = this { fix y assume count_y: "count Zs y < count (mset xs) y" have "\<exists>x. gt x y \<and> count (mset xs) x < count Zs x" proof (cases "y = a") case True with count_y count_a show ?thesis by auto next case False show ?thesis proof (cases "y \<in># K") case True with *(4) have "gt a y" by simp then show ?thesis by (cases "count Zs a \<le> count (mset xs) a", blast dest: count_a trans[unfolded transp_def, rule_format], auto dest: count_a) next case False with \<open>y \<noteq> a\<close> have "count Zs y = count Ys y" unfolding *(1,2) by (simp add: not_in_iff) with count_y ** obtain z where z: "gt z y" "count (mset xs) z < count Ys z" by auto show ?thesis proof (cases "z \<in># K") case True with *(4) have "gt a z" by simp with z(1) show ?thesis by (cases "count Zs a \<le> count (mset xs) a") (blast dest: count_a not_le_imp_less trans[unfolded transp_def, rule_format])+ next case False with \<open>a \<notin># K\<close> have "count Ys z \<le> count Zs z" unfolding * by (auto simp add: not_in_iff) with z show ?thesis by auto qed qed qed } ultimately show ?case unfolding msetext_huet_def Let_def by blast qed theorem msetext_huet_eq_dersh: "irreflp gt \<Longrightarrow> transp gt \<Longrightarrow> msetext_dersh gt = msetext_huet gt" using msetext_huet_imp_dersh msetext_dersh_imp_mult mult_imp_msetext_huet by fast lemma msetext_huet_mono_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt' y x) \<Longrightarrow> msetext_huet gt ys xs \<Longrightarrow> msetext_huet gt' ys xs" unfolding msetext_huet_def by (metis less_le_trans mem_Collect_eq not_le not_less0 set_mset_mset[unfolded set_mset_def]) lemma msetext_huet_map: assumes fin: "finite A" and ys_a: "ys \<in> lists A" and xs_a: "xs \<in> lists A" and irrefl_f: "\<forall>x \<in> A. \<not> gt (f x) (f x)" and trans_f: "\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt (f z) (f y) \<longrightarrow> gt (f y) (f x) \<longrightarrow> gt (f z) (f x)" and compat_f: "\<forall>y \<in> A. \<forall>x \<in> A. gt y x \<longrightarrow> gt (f y) (f x)" and ys_gt_xs: "msetext_huet gt ys xs" shows "msetext_huet gt (map f ys) (map f xs)" (is "msetext_huet _ ?fys ?fxs") proof - have irrefl: "\<forall>x \<in> A. \<not> gt x x" using irrefl_f compat_f by blast have ms_xs_ne_ys: "mset xs \<noteq> mset ys" and ex_gt: "\<forall>x. count (mset ys) x < count (mset xs) x \<longrightarrow> (\<exists>y. gt y x \<and> count (mset xs) y < count (mset ys) y)" using ys_gt_xs[unfolded msetext_huet_def Let_def] by blast+ have ex_y: "\<exists>y. gt (f y) (f x) \<and> count (mset ?fxs) (f y) < count (mset (map f ys)) (f y)" if cnt_x: "count (mset xs) x > count (mset ys) x" for x proof - have x_in_a: "x \<in> A" using cnt_x xs_a dual_order.strict_trans2 by fastforce obtain y where y_gt_x: "gt y x" and cnt_y: "count (mset ys) y > count (mset xs) y" using cnt_x ex_gt by blast have y_in_a: "y \<in> A" using cnt_y ys_a dual_order.strict_trans2 by fastforce have wf_gt_f: "wfP (\<lambda>y x. y \<in> A \<and> x \<in> A \<and> gt (f y) (f x))" by (rule finite_irreflp_transp_imp_wfp) (auto elim: trans_f[rule_format] simp: fin irrefl_f Collect_case_prod_Sigma irreflp_def transp_def) obtain yy where fyy_gt_fx: "gt (f yy) (f x)" and cnt_yy: "count (mset ys) yy > count (mset xs) yy" and max_yy: "\<forall>y \<in> A. yy \<in> A \<longrightarrow> gt (f y) (f yy) \<longrightarrow> gt (f y) (f x) \<longrightarrow> count (mset xs) y \<ge> count (mset ys) y" using wfP_eq_minimal[THEN iffD1, OF wf_gt_f, rule_format, of y "{y. gt (f y) (f x) \<and> count (mset xs) y < count (mset ys) y}", simplified] y_gt_x cnt_y by (metis compat_f not_less x_in_a y_in_a) have yy_in_a: "yy \<in> A" using cnt_yy ys_a dual_order.strict_trans2 by fastforce { assume "count (mset ?fxs) (f yy) \<ge> count (mset ?fys) (f yy)" then obtain u where fu_eq_fyy: "f u = f yy" and cnt_u: "count (mset xs) u > count (mset ys) u" using count_image_mset_le_imp_lt cnt_yy mset_map by (metis (mono_tags)) have u_in_a: "u \<in> A" using cnt_u xs_a dual_order.strict_trans2 by fastforce obtain v where v_gt_u: "gt v u" and cnt_v: "count (mset ys) v > count (mset xs) v" using cnt_u ex_gt by blast have v_in_a: "v \<in> A" using cnt_v ys_a dual_order.strict_trans2 by fastforce have fv_gt_fu: "gt (f v) (f u)" using v_gt_u compat_f v_in_a u_in_a by blast hence fv_gt_fyy: "gt (f v) (f yy)" by (simp only: fu_eq_fyy) have "gt (f v) (f x)" using fv_gt_fyy fyy_gt_fx v_in_a yy_in_a x_in_a trans_f by blast hence False using max_yy[rule_format, of v] fv_gt_fyy v_in_a yy_in_a cnt_v by linarith } thus ?thesis using fyy_gt_fx leI by blast qed show ?thesis unfolding msetext_huet_def Let_def proof (intro conjI allI impI) { assume len_eq: "length xs = length ys" obtain x where cnt_x: "count (mset xs) x > count (mset ys) x" using len_eq ms_xs_ne_ys by (metis size_eq_ex_count_lt size_mset) hence "mset ?fxs \<noteq> mset ?fys" using ex_y by fastforce } thus "mset ?fxs \<noteq> mset (map f ys)" by (metis length_map size_mset) next fix fx assume cnt_fx: "count (mset ?fxs) fx > count (mset ?fys) fx" then obtain x where fx: "fx = f x" and cnt_x: "count (mset xs) x > count (mset ys) x" using count_image_mset_lt_imp_lt mset_map by (metis (mono_tags)) thus "\<exists>fy. gt fy fx \<and> count (mset ?fxs) fy < count (mset (map f ys)) fy" using ex_y[OF cnt_x] by blast qed qed lemma msetext_huet_irrefl: "(\<forall>x \<in> set xs. \<not> gt x x) \<Longrightarrow> \<not> msetext_huet gt xs xs" unfolding msetext_huet_def by simp lemma msetext_huet_trans_from_irrefl: assumes fin: "finite A" and zs_a: "zs \<in> lists A" and ys_a: "ys \<in> lists A" and xs_a: "xs \<in> lists A" and irrefl: "\<forall>x \<in> A. \<not> gt x x" and trans: "\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and zs_gt_ys: "msetext_huet gt zs ys" and ys_gt_xs: "msetext_huet gt ys xs" shows "msetext_huet gt zs xs" proof - have wf_gt: "wfP (\<lambda>y x. y \<in> A \<and> x \<in> A \<and> gt y x)" by (rule finite_irreflp_transp_imp_wfp) (auto elim: trans[rule_format] simp: fin irrefl Collect_case_prod_Sigma irreflp_def transp_def) show ?thesis unfolding msetext_huet_def Let_def proof (intro conjI allI impI) obtain x where cnt_x: "count (mset zs) x > count (mset ys) x" using msetext_huet_imp_count_gt[OF zs_gt_ys] by blast have x_in_a: "x \<in> A" using cnt_x zs_a dual_order.strict_trans2 by fastforce obtain xx where cnt_xx: "count (mset zs) xx > count (mset ys) xx" and max_xx: "\<forall>y \<in> A. xx \<in> A \<longrightarrow> gt y xx \<longrightarrow> count (mset ys) y \<ge> count (mset zs) y" using wfP_eq_minimal[THEN iffD1, OF wf_gt, rule_format, of x "{y. count (mset ys) y < count (mset zs) y}", simplified] cnt_x by force have xx_in_a: "xx \<in> A" using cnt_xx zs_a dual_order.strict_trans2 by fastforce show "mset xs \<noteq> mset zs" proof (cases "count (mset ys) xx \<ge> count (mset xs) xx") case True thus ?thesis using cnt_xx by fastforce next case False hence "count (mset ys) xx < count (mset xs) xx" by fastforce then obtain z where z_gt_xx: "gt z xx" and cnt_z: "count (mset ys) z > count (mset xs) z" using ys_gt_xs[unfolded msetext_huet_def Let_def] by blast have z_in_a: "z \<in> A" using cnt_z ys_a dual_order.strict_trans2 by fastforce have "count (mset zs) z \<le> count (mset ys) z" using max_xx[rule_format, of z] z_in_a xx_in_a z_gt_xx by blast moreover { assume "count (mset zs) z < count (mset ys) z" then obtain u where u_gt_z: "gt u z" and cnt_u: "count (mset ys) u < count (mset zs) u" using zs_gt_ys[unfolded msetext_huet_def Let_def] by blast have u_in_a: "u \<in> A" using cnt_u zs_a dual_order.strict_trans2 by fastforce have u_gt_xx: "gt u xx" using trans u_in_a z_in_a xx_in_a u_gt_z z_gt_xx by blast have False using max_xx[rule_format, of u] u_in_a xx_in_a u_gt_xx cnt_u by fastforce } ultimately have "count (mset zs) z = count (mset ys) z" by fastforce thus ?thesis using cnt_z by fastforce qed next fix x assume cnt_x_xz: "count (mset zs) x < count (mset xs) x" have x_in_a: "x \<in> A" using cnt_x_xz xs_a dual_order.strict_trans2 by fastforce let ?case = "\<exists>y. gt y x \<and> count (mset zs) y > count (mset xs) y" { assume cnt_x: "count (mset zs) x < count (mset ys) x" then obtain y where y_gt_x: "gt y x" and cnt_y: "count (mset zs) y > count (mset ys) y" using zs_gt_ys[unfolded msetext_huet_def Let_def] by blast have y_in_a: "y \<in> A" using cnt_y zs_a dual_order.strict_trans2 by fastforce obtain yy where yy_gt_x: "gt yy x" and cnt_yy: "count (mset zs) yy > count (mset ys) yy" and max_yy: "\<forall>y \<in> A. yy \<in> A \<longrightarrow> gt y yy \<longrightarrow> gt y x \<longrightarrow> count (mset ys) y \<ge> count (mset zs) y" using wfP_eq_minimal[THEN iffD1, OF wf_gt, rule_format, of y "{y. gt y x \<and> count (mset ys) y < count (mset zs) y}", simplified] y_gt_x cnt_y by force have yy_in_a: "yy \<in> A" using cnt_yy zs_a dual_order.strict_trans2 by fastforce have ?case proof (cases "count (mset ys) yy \<ge> count (mset xs) yy") case True thus ?thesis using yy_gt_x cnt_yy by fastforce next case False hence "count (mset ys) yy < count (mset xs) yy" by fastforce then obtain z where z_gt_yy: "gt z yy" and cnt_z: "count (mset ys) z > count (mset xs) z" using ys_gt_xs[unfolded msetext_huet_def Let_def] by blast have z_in_a: "z \<in> A" using cnt_z ys_a dual_order.strict_trans2 by fastforce have z_gt_x: "gt z x" using trans z_in_a yy_in_a x_in_a z_gt_yy yy_gt_x by blast have "count (mset zs) z \<le> count (mset ys) z" using max_yy[rule_format, of z] z_in_a yy_in_a z_gt_yy z_gt_x by blast moreover { assume "count (mset zs) z < count (mset ys) z" then obtain u where u_gt_z: "gt u z" and cnt_u: "count (mset ys) u < count (mset zs) u" using zs_gt_ys[unfolded msetext_huet_def Let_def] by blast have u_in_a: "u \<in> A" using cnt_u zs_a dual_order.strict_trans2 by fastforce have u_gt_yy: "gt u yy" using trans u_in_a z_in_a yy_in_a u_gt_z z_gt_yy by blast have u_gt_x: "gt u x" using trans u_in_a z_in_a x_in_a u_gt_z z_gt_x by blast have False using max_yy[rule_format, of u] u_in_a yy_in_a u_gt_yy u_gt_x cnt_u by fastforce } ultimately have "count (mset zs) z = count (mset ys) z" by fastforce thus ?thesis using z_gt_x cnt_z by fastforce qed } moreover { assume "count (mset zs) x \<ge> count (mset ys) x" hence "count (mset ys) x < count (mset xs) x" using cnt_x_xz by fastforce then obtain y where y_gt_x: "gt y x" and cnt_y: "count (mset ys) y > count (mset xs) y" using ys_gt_xs[unfolded msetext_huet_def Let_def] by blast have y_in_a: "y \<in> A" using cnt_y ys_a dual_order.strict_trans2 by fastforce obtain yy where yy_gt_x: "gt yy x" and cnt_yy: "count (mset ys) yy > count (mset xs) yy" and max_yy: "\<forall>y \<in> A. yy \<in> A \<longrightarrow> gt y yy \<longrightarrow> gt y x \<longrightarrow> count (mset xs) y \<ge> count (mset ys) y" using wfP_eq_minimal[THEN iffD1, OF wf_gt, rule_format, of y "{y. gt y x \<and> count (mset xs) y < count (mset ys) y}", simplified] y_gt_x cnt_y by force have yy_in_a: "yy \<in> A" using cnt_yy ys_a dual_order.strict_trans2 by fastforce have ?case proof (cases "count (mset zs) yy \<ge> count (mset ys) yy") case True thus ?thesis using yy_gt_x cnt_yy by fastforce next case False hence "count (mset zs) yy < count (mset ys) yy" by fastforce then obtain z where z_gt_yy: "gt z yy" and cnt_z: "count (mset zs) z > count (mset ys) z" using zs_gt_ys[unfolded msetext_huet_def Let_def] by blast have z_in_a: "z \<in> A" using cnt_z zs_a dual_order.strict_trans2 by fastforce have z_gt_x: "gt z x" using trans z_in_a yy_in_a x_in_a z_gt_yy yy_gt_x by blast have "count (mset ys) z \<le> count (mset xs) z" using max_yy[rule_format, of z] z_in_a yy_in_a z_gt_yy z_gt_x by blast moreover { assume "count (mset ys) z < count (mset xs) z" then obtain u where u_gt_z: "gt u z" and cnt_u: "count (mset xs) u < count (mset ys) u" using ys_gt_xs[unfolded msetext_huet_def Let_def] by blast have u_in_a: "u \<in> A" using cnt_u ys_a dual_order.strict_trans2 by fastforce have u_gt_yy: "gt u yy" using trans u_in_a z_in_a yy_in_a u_gt_z z_gt_yy by blast have u_gt_x: "gt u x" using trans u_in_a z_in_a x_in_a u_gt_z z_gt_x by blast have False using max_yy[rule_format, of u] u_in_a yy_in_a u_gt_yy u_gt_x cnt_u by fastforce } ultimately have "count (mset ys) z = count (mset xs) z" by fastforce thus ?thesis using z_gt_x cnt_z by fastforce qed } ultimately show "\<exists>y. gt y x \<and> count (mset xs) y < count (mset zs) y" by fastforce qed qed lemma msetext_huet_snoc: "msetext_huet gt (xs @ [x]) xs" unfolding msetext_huet_def Let_def by simp lemma msetext_huet_compat_cons: "msetext_huet gt ys xs \<Longrightarrow> msetext_huet gt (x # ys) (x # xs)" unfolding msetext_huet_def Let_def by auto lemma msetext_huet_compat_snoc: "msetext_huet gt ys xs \<Longrightarrow> msetext_huet gt (ys @ [x]) (xs @ [x])" unfolding msetext_huet_def Let_def by auto lemma msetext_huet_compat_list: "y \<noteq> x \<Longrightarrow> gt y x \<Longrightarrow> msetext_huet gt (xs @ y # xs') (xs @ x # xs')" unfolding msetext_huet_def Let_def by auto lemma msetext_huet_singleton: "y \<noteq> x \<Longrightarrow> msetext_huet gt [y] [x] \<longleftrightarrow> gt y x" unfolding msetext_huet_def by simp lemma msetext_huet_wf: "wfP (\<lambda>x y. gt y x) \<Longrightarrow> wfP (\<lambda>xs ys. msetext_huet gt ys xs)" by (erule wfP_subset[OF msetext_dersh_wf]) (auto intro: msetext_huet_imp_dersh) lemma msetext_huet_hd_or_tl: assumes trans: "\<forall>z y x. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and total: "\<forall>y x. gt y x \<or> gt x y \<or> y = x" and len_eq: "length ys = length xs" and yys_gt_xxs: "msetext_huet gt (y # ys) (x # xs)" shows "gt y x \<or> msetext_huet gt ys xs" proof - let ?Y = "mset (y # ys)" let ?X = "mset (x # xs)" let ?Ya = "mset ys" let ?Xa = "mset xs" have Y_ne_X: "?Y \<noteq> ?X" and ex_gt_Y: "\<And>xa. count ?X xa > count ?Y xa \<Longrightarrow> \<exists>ya. gt ya xa \<and> count ?Y ya > count ?X ya" using yys_gt_xxs[unfolded msetext_huet_def Let_def] by auto obtain yy where yy: "\<And>xa. count ?X xa > count ?Y xa \<Longrightarrow> gt (yy xa) xa \<and> count ?Y (yy xa) > count ?X (yy xa)" using ex_gt_Y by metis have cnt_Y_pres: "count ?Ya xa > count ?Xa xa" if "count ?Y xa > count ?X xa" and "xa \<noteq> y" for xa using that by (auto split: if_splits) have cnt_X_pres: "count ?Xa xa > count ?Ya xa" if "count ?X xa > count ?Y xa" and "xa \<noteq> x" for xa using that by (auto split: if_splits) { assume y_eq_x: "y = x" have "?Xa \<noteq> ?Ya" using y_eq_x Y_ne_X by simp moreover have "\<And>xa. count ?Xa xa > count ?Ya xa \<Longrightarrow> \<exists>ya. gt ya xa \<and> count ?Ya ya > count ?Xa ya" proof - fix xa :: 'a assume a1: "count (mset ys) xa < count (mset xs) xa" from ex_gt_Y obtain aa :: "'a \<Rightarrow> 'a" where f3: "\<forall>a. \<not> count (mset (y # ys)) a < count (mset (x # xs)) a \<or> gt (aa a) a \<and> count (mset (x # xs)) (aa a) < count (mset (y # ys)) (aa a)" by (metis (full_types)) then have f4: "\<And>a. count (mset (x # xs)) (aa a) < count (mset (x # ys)) (aa a) \<or> \<not> count (mset (x # ys)) a < count (mset (x # xs)) a" using y_eq_x by meson have "\<And>a as aa. count (mset ((a::'a) # as)) aa = count (mset as) aa \<or> aa = a" by fastforce then have "xa = x \<or> count (mset (x # xs)) (aa xa) < count (mset (x # ys)) (aa xa)" using f4 a1 by (metis (no_types)) then show "\<exists>a. gt a xa \<and> count (mset xs) a < count (mset ys) a" using f3 y_eq_x a1 by (metis (no_types) Suc_less_eq count_add_mset mset.simps(2)) qed ultimately have "msetext_huet gt ys xs" unfolding msetext_huet_def Let_def by simp } moreover { assume x_gt_y: "gt x y" and y_ngt_x: "\<not> gt y x" hence y_ne_x: "y \<noteq> x" by fast obtain z where z_cnt: "count ?X z > count ?Y z" using size_eq_ex_count_lt[of ?Y ?X] size_mset size_mset len_eq Y_ne_X by auto have Xa_ne_Ya: "?Xa \<noteq> ?Ya" proof (cases "z = x") case True hence "yy z \<noteq> y" using y_ngt_x yy z_cnt by blast hence "count ?Ya (yy z) > count ?Xa (yy z)" using cnt_Y_pres yy z_cnt by blast thus ?thesis by auto next case False hence "count ?Xa z > count ?Ya z" using z_cnt cnt_X_pres by blast thus ?thesis by auto qed have "\<exists>ya. gt ya xa \<and> count ?Ya ya > count ?Xa ya" if xa_cnta: "count ?Xa xa > count ?Ya xa" for xa proof (cases "xa = y") case xa_eq_y: True { assume "count ?Ya x > count ?Xa x" moreover have "gt x xa" unfolding xa_eq_y by (rule x_gt_y) ultimately have ?thesis by fast } moreover { assume "count ?Xa x \<ge> count ?Ya x" hence x_cnt: "count ?X x > count ?Y x" by (simp add: y_ne_x) hence yyx_gt_x: "gt (yy x) x" and yyx_cnt: "count ?Y (yy x) > count ?X (yy x)" using yy by blast+ have yyx_ne_y: "yy x \<noteq> y" using y_ngt_x yyx_gt_x by auto have "gt (yy x) xa" unfolding xa_eq_y using trans yyx_gt_x x_gt_y by blast moreover have "count ?Ya (yy x) > count ?Xa (yy x)" using cnt_Y_pres yyx_cnt yyx_ne_y by blast ultimately have ?thesis by blast } ultimately show ?thesis by fastforce next case False hence xa_cnt: "count ?X xa > count ?Y xa" using xa_cnta by fastforce show ?thesis proof (cases "yy xa = y \<and> count ?Ya y \<le> count ?Xa y") case yyxa_ne_y_or: False have yyxa_gt_xa: "gt (yy xa) xa" and yyxa_cnt: "count ?Y (yy xa) > count ?X (yy xa)" using yy[OF xa_cnt] by blast+ have "count ?Ya (yy xa) > count ?Xa (yy xa)" using cnt_Y_pres yyxa_cnt yyxa_ne_y_or by fastforce thus ?thesis using yyxa_gt_xa by blast next case True note yyxa_eq_y = this[THEN conjunct1] and y_cnt = this[THEN conjunct2] { assume "count ?Ya x > count ?Xa x" moreover have "gt x xa" using trans x_gt_y xa_cnt yy yyxa_eq_y by blast ultimately have ?thesis by fast } moreover { assume "count ?Xa x \<ge> count ?Ya x" hence x_cnt: "count ?X x > count ?Y x" by (simp add: y_ne_x) hence yyx_gt_x: "gt (yy x) x" and yyx_cnt: "count ?Y (yy x) > count ?X (yy x)" using yy by blast+ have yyx_ne_y: "yy x \<noteq> y" using y_ngt_x yyx_gt_x by auto have "gt (yy x) xa" using trans x_gt_y xa_cnt yy yyx_gt_x yyxa_eq_y by blast moreover have "count ?Ya (yy x) > count ?Xa (yy x)" using cnt_Y_pres yyx_cnt yyx_ne_y by blast ultimately have ?thesis by blast } ultimately show ?thesis by fastforce qed qed hence "msetext_huet gt ys xs" unfolding msetext_huet_def Let_def using Xa_ne_Ya by fast } ultimately show ?thesis using total by blast qed interpretation msetext_huet: ext msetext_huet by standard (fact msetext_huet_mono_strong, fact msetext_huet_map) interpretation msetext_huet: ext_irrefl_before_trans msetext_huet by standard (fact msetext_huet_irrefl, fact msetext_huet_trans_from_irrefl) interpretation msetext_huet: ext_snoc msetext_huet by standard (fact msetext_huet_snoc) interpretation msetext_huet: ext_compat_cons msetext_huet by standard (fact msetext_huet_compat_cons) interpretation msetext_huet: ext_compat_snoc msetext_huet by standard (fact msetext_huet_compat_snoc) interpretation msetext_huet: ext_compat_list msetext_huet by standard (fact msetext_huet_compat_list) interpretation msetext_huet: ext_singleton msetext_huet by standard (fact msetext_huet_singleton) interpretation msetext_huet: ext_wf msetext_huet by standard (fact msetext_huet_wf) interpretation msetext_huet: ext_hd_or_tl msetext_huet by standard (rule msetext_huet_hd_or_tl) interpretation msetext_huet: ext_wf_bounded msetext_huet by standard subsection \<open>Componentwise Extension\<close> definition cwiseext :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "cwiseext gt ys xs \<longleftrightarrow> length ys = length xs \<and> (\<forall>i < length ys. gt (ys ! i) (xs ! i) \<or> ys ! i = xs ! i) \<and> (\<exists>i < length ys. gt (ys ! i) (xs ! i))" lemma cwiseext_imp_len_lexext: assumes cw: "cwiseext gt ys xs" shows "len_lexext gt ys xs" proof - have len_eq: "length ys = length xs" using cw[unfolded cwiseext_def] by sat moreover have "lexext gt ys xs" proof - obtain j where j_len: "j < length ys" and j_gt: "gt (ys ! j) (xs ! j)" using cw[unfolded cwiseext_def] by blast then obtain j0 where j0_len: "j0 < length ys" and j0_gt: "gt (ys ! j0) (xs ! j0)" and j0_min: "\<And>i. i < j0 \<Longrightarrow> \<not> gt (ys ! i) (xs ! i)" using wf_eq_minimal[THEN iffD1, OF wf_less, rule_format, of _ "{i. gt (ys ! i) (xs ! i)}", simplified, OF j_gt] by (metis less_trans nat_neq_iff) have j0_eq: "\<And>i. i < j0 \<Longrightarrow> ys ! i = xs ! i" using cw[unfolded cwiseext_def] by (metis j0_len j0_min less_trans) have "lexext gt (drop j0 ys) (drop j0 xs)" using lexext_Cons[of gt _ _ "drop (Suc j0) ys" "drop (Suc j0) xs", OF j0_gt] by (metis Cons_nth_drop_Suc j0_len len_eq) thus ?thesis using cw len_eq j0_len j0_min proof (induct j0 arbitrary: ys xs) case (Suc k) note ih0 = this(1) and gts_dropSk = this(2) and cw = this(3) and len_eq = this(4) and Sk_len = this(5) and Sk_min = this(6) have Sk_eq: "\<And>i. i < Suc k \<Longrightarrow> ys ! i = xs ! i" using cw[unfolded cwiseext_def] by (metis Sk_len Sk_min less_trans) have k_len: "k < length ys" using Sk_len by simp have k_min: "\<And>i. i < k \<Longrightarrow> \<not> gt (ys ! i) (xs ! i)" using Sk_min by simp have k_eq: "\<And>i. i < k \<Longrightarrow> ys ! i = xs ! i" using Sk_eq by simp note ih = ih0[OF _ cw len_eq k_len k_min] show ?case proof (cases "k < length ys") case k_lt_ys: True note k_lt_xs = k_lt_ys[unfolded len_eq] obtain x where x: "x = xs ! k" by simp hence y: "x = ys ! k" using Sk_eq[of k] by simp have dropk_xs: "drop k xs = x # drop (Suc k) xs" using k_lt_xs x by (simp add: Cons_nth_drop_Suc) have dropk_ys: "drop k ys = x # drop (Suc k) ys" using k_lt_ys y by (simp add: Cons_nth_drop_Suc) show ?thesis by (rule ih, unfold dropk_xs dropk_ys, rule lexext_Cons_eq[OF gts_dropSk]) next case False hence "drop k xs = []" and "drop k ys = []" using len_eq by simp_all hence "lexext gt [] []" using gts_dropSk by simp hence "lexext gt (drop k ys) (drop k xs)" by simp thus ?thesis by (rule ih) qed qed simp qed ultimately show ?thesis unfolding lenext_def by sat qed lemma cwiseext_mono_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt' y x) \<Longrightarrow> cwiseext gt ys xs \<Longrightarrow> cwiseext gt' ys xs" unfolding cwiseext_def by (induct, force, fast) lemma cwiseext_map_strong: "(\<forall>y \<in> set ys. \<forall>x \<in> set xs. gt y x \<longrightarrow> gt (f y) (f x)) \<Longrightarrow> cwiseext gt ys xs \<Longrightarrow> cwiseext gt (map f ys) (map f xs)" unfolding cwiseext_def by auto lemma cwiseext_irrefl: "(\<forall>x \<in> set xs. \<not> gt x x) \<Longrightarrow> \<not> cwiseext gt xs xs" unfolding cwiseext_def by (blast intro: nth_mem) lemma cwiseext_trans_strong: assumes "\<forall>z \<in> set zs. \<forall>y \<in> set ys. \<forall>x \<in> set xs. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and "cwiseext gt zs ys" and "cwiseext gt ys xs" shows "cwiseext gt zs xs" using assms unfolding cwiseext_def by (metis (mono_tags) nth_mem) lemma cwiseext_compat_cons: "cwiseext gt ys xs \<Longrightarrow> cwiseext gt (x # ys) (x # xs)" unfolding cwiseext_def proof (elim conjE, intro conjI) assume "length ys = length xs" and "\<forall>i < length ys. gt (ys ! i) (xs ! i) \<or> ys ! i = xs ! i" thus "\<forall>i < length (x # ys). gt ((x # ys) ! i) ((x # xs) ! i) \<or> (x # ys) ! i = (x # xs) ! i" by (simp add: nth_Cons') next assume "\<exists>i < length ys. gt (ys ! i) (xs ! i)" thus "\<exists>i < length (x # ys). gt ((x # ys) ! i) ((x # xs) ! i)" by fastforce qed auto lemma cwiseext_compat_snoc: "cwiseext gt ys xs \<Longrightarrow> cwiseext gt (ys @ [x]) (xs @ [x])" unfolding cwiseext_def proof (elim conjE, intro conjI) assume "length ys = length xs" and "\<forall>i < length ys. gt (ys ! i) (xs ! i) \<or> ys ! i = xs ! i" thus "\<forall>i < length (ys @ [x]). gt ((ys @ [x]) ! i) ((xs @ [x]) ! i) \<or> (ys @ [x]) ! i = (xs @ [x]) ! i" by (simp add: nth_append) next assume "length ys = length xs" and "\<exists>i < length ys. gt (ys ! i) (xs ! i)" thus "\<exists>i < length (ys @ [x]). gt ((ys @ [x]) ! i) ((xs @ [x]) ! i)" by (metis length_append_singleton less_Suc_eq nth_append) qed auto lemma cwiseext_compat_list: assumes y_gt_x: "gt y x" shows "cwiseext gt (xs @ y # xs') (xs @ x # xs')" unfolding cwiseext_def proof (intro conjI) show "\<forall>i < length (xs @ y # xs'). gt ((xs @ y # xs') ! i) ((xs @ x # xs') ! i) \<or> (xs @ y # xs') ! i = (xs @ x # xs') ! i" using y_gt_x by (simp add: nth_Cons' nth_append) next show "\<exists>i < length (xs @ y # xs'). gt ((xs @ y # xs') ! i) ((xs @ x # xs') ! i)" using y_gt_x by (metis add_diff_cancel_right' append_is_Nil_conv diff_less length_append length_greater_0_conv list.simps(3) nth_append_length) qed auto lemma cwiseext_singleton: "cwiseext gt [y] [x] \<longleftrightarrow> gt y x" unfolding cwiseext_def by auto lemma cwiseext_wf: "wfP (\<lambda>x y. gt y x) \<Longrightarrow> wfP (\<lambda>xs ys. cwiseext gt ys xs)" by (auto intro: cwiseext_imp_len_lexext wfP_subset[OF len_lexext_wf]) lemma cwiseext_hd_or_tl: "cwiseext gt (y # ys) (x # xs) \<Longrightarrow> gt y x \<or> cwiseext gt ys xs" unfolding cwiseext_def proof (elim conjE, intro disj_imp[THEN iffD2, rule_format] conjI) assume "\<exists>i < length (y # ys). gt ((y # ys) ! i) ((x # xs) ! i)" and "\<not> gt y x" thus "\<exists>i < length ys. gt (ys ! i) (xs ! i)" by (metis (no_types) One_nat_def diff_le_self diff_less dual_order.strict_trans2 length_Cons less_Suc_eq linorder_neqE_nat not_less0 nth_Cons') qed auto locale ext_cwiseext = ext_compat_list + ext_compat_cons begin context fixes gt :: "'a \<Rightarrow> 'a \<Rightarrow> bool" assumes gt_irrefl: "\<not> gt x x" and trans_gt: "ext gt zs ys \<Longrightarrow> ext gt ys xs \<Longrightarrow> ext gt zs xs" begin lemma assumes ys_gtcw_xs: "cwiseext gt ys xs" shows "ext gt ys xs" proof - have "length ys = length xs" by (rule ys_gtcw_xs[unfolded cwiseext_def, THEN conjunct1]) thus ?thesis using ys_gtcw_xs proof (induct rule: list_induct2) case Nil thus ?case unfolding cwiseext_def by simp next case (Cons y ys x xs) note len_ys_eq_xs = this(1) and ih = this(2) and yys_gtcw_xxs = this(3) have xys_gts_xxs: "ext gt (x # ys) (x # xs)" if ys_ne_xs: "ys \<noteq> xs" proof - have ys_gtcw_xs: "cwiseext gt ys xs" using yys_gtcw_xxs unfolding cwiseext_def proof (elim conjE, intro conjI) assume "\<forall>i < length (y # ys). gt ((y # ys) ! i) ((x # xs) ! i) \<or> (y # ys) ! i = (x # xs) ! i" hence ge: "\<forall>i < length ys. gt (ys ! i) (xs ! i) \<or> ys ! i = xs ! i" by auto thus "\<exists>i < length ys. gt (ys ! i) (xs ! i)" using ys_ne_xs len_ys_eq_xs nth_equalityI by blast qed auto hence "ext gt ys xs" by (rule ih) thus "ext gt (x # ys) (x # xs)" by (rule compat_cons) qed have "gt y x \<or> y = x" using yys_gtcw_xxs unfolding cwiseext_def by fastforce moreover { assume y_eq_x: "y = x" have ?case proof (cases "ys = xs") case True hence False using y_eq_x gt_irrefl yys_gtcw_xxs unfolding cwiseext_def by presburger thus ?thesis by sat next case False thus ?thesis using y_eq_x xys_gts_xxs by simp qed } moreover { assume "y \<noteq> x" and "gt y x" hence yys_gts_xys: "ext gt (y # ys) (x # ys)" using compat_list[of _ _ gt "[]"] by simp have ?case proof (cases "ys = xs") case ys_eq_xs: True thus ?thesis using yys_gts_xys by simp next case False thus ?thesis using yys_gts_xys xys_gts_xxs trans_gt by blast qed } ultimately show ?case by sat qed qed end end interpretation cwiseext: ext cwiseext by standard (fact cwiseext_mono_strong, rule cwiseext_map_strong, metis in_listsD) interpretation cwiseext: ext_irrefl_trans_strong cwiseext by standard (fact cwiseext_irrefl, fact cwiseext_trans_strong) interpretation cwiseext: ext_compat_cons cwiseext by standard (fact cwiseext_compat_cons) interpretation cwiseext: ext_compat_snoc cwiseext by standard (fact cwiseext_compat_snoc) interpretation cwiseext: ext_compat_list cwiseext by standard (rule cwiseext_compat_list) interpretation cwiseext: ext_singleton cwiseext by standard (rule cwiseext_singleton) interpretation cwiseext: ext_wf cwiseext by standard (rule cwiseext_wf) interpretation cwiseext: ext_hd_or_tl cwiseext by standard (rule cwiseext_hd_or_tl) interpretation cwiseext: ext_wf_bounded cwiseext by standard end
{"author": "data61", "repo": "PSL", "sha": "2a71eac0db39ad490fe4921a5ce1e4344dc43b12", "save_path": "github-repos/isabelle/data61-PSL", "path": "github-repos/isabelle/data61-PSL/PSL-2a71eac0db39ad490fe4921a5ce1e4344dc43b12/SeLFiE/Example/afp-2020-05-16/thys/Lambda_Free_RPOs/Extension_Orders.thy"}
import numpy as np def iou_metric(y_true_in, y_pred_in): labels = y_true_in y_pred = y_pred_in temp1 = np.histogram2d(labels.flatten(), y_pred.flatten(), bins=([0,0.5,1], [0,0.5, 1])) intersection = temp1[0] area_true = np.histogram(labels,bins=[0,0.5,1])[0] area_pred = np.histogram(y_pred, bins=[0,0.5,1])[0] area_true = np.expand_dims(area_true, -1) area_pred = np.expand_dims(area_pred, 0) # Compute union union = area_true + area_pred - intersection # Exclude background from the analysis intersection = intersection[1:,1:] intersection[intersection == 0] = 1e-9 union = union[1:,1:] union[union == 0] = 1e-9 iou = intersection / union return iou def dice_metric(y_true_in, y_pred_in): labels = y_true_in y_pred = y_pred_in temp1 = np.histogram2d(labels.flatten(), y_pred.flatten(), bins=([0,0.5,1], [0,0.5, 1])) intersection = temp1[0] area_true = np.histogram(labels,bins=[0,0.5,1])[0] area_pred = np.histogram(y_pred, bins=[0,0.5,1])[0] area_true = np.expand_dims(area_true, -1) area_pred = np.expand_dims(area_pred, 0) # Compute union union = area_true + area_pred # Exclude background from the analysis intersection = intersection[1:,1:] intersection[intersection == 0] = 1e-9 union = union[1:,1:] union[union == 0] = 1e-9 dice_m = (2*intersection) / union return dice_m
{"hexsha": "233375fc49d41fffd61d9a1802d0c40cd3587f79", "size": 1496, "ext": "py", "lang": "Python", "max_stars_repo_path": "scores_comp.py", "max_stars_repo_name": "DevikalyanDas/NucleiSegnet-Paper-with-Code", "max_stars_repo_head_hexsha": "d8fbf9cc13160e21166fff905688c93d4900bdd2", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 8, "max_stars_repo_stars_event_min_datetime": "2021-04-27T13:53:49.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-25T01:48:02.000Z", "max_issues_repo_path": "scores_comp.py", "max_issues_repo_name": "DevikalyanDas/NucleiSegnet-Paper-with-Code", "max_issues_repo_head_hexsha": "d8fbf9cc13160e21166fff905688c93d4900bdd2", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2021-05-10T11:11:55.000Z", "max_issues_repo_issues_event_max_datetime": "2021-05-18T09:01:50.000Z", "max_forks_repo_path": "scores_comp.py", "max_forks_repo_name": "DevikalyanDas/NucleiSegnet-Paper-with-Code", "max_forks_repo_head_hexsha": "d8fbf9cc13160e21166fff905688c93d4900bdd2", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-05-12T14:15:33.000Z", "max_forks_repo_forks_event_max_datetime": "2021-05-12T14:15:33.000Z", "avg_line_length": 28.2264150943, "max_line_length": 93, "alphanum_fraction": 0.618315508, "include": true, "reason": "import numpy", "num_tokens": 459}
module BoehmBerarducci %default total NatQ : Type NatQ = (A : Type) -> (A -> A) -> A -> A unNatQ : {A : Type} -> (A -> A) -> A -> NatQ -> A unNatQ f a q = q _ f a succQ : NatQ -> NatQ succQ q = \_, f, a => f (q _ f a) zeroQ : NatQ zeroQ = \_, f, a => a fromNatQ : NatQ -> Nat fromNatQ q = unNatQ S Z q toNatQ : Nat -> NatQ toNatQ (S n) = succQ (toNatQ n) toNatQ Z = zeroQ iterated : Nat -> (a -> a) -> a -> a iterated (S n) f a = f (iterated n f a) iterated Z f a = a test_iterated : (n : Nat) -> iterated n S Z = n test_iterated (S n) = rewrite test_iterated n in Refl test_iterated Z = Refl test_fromNatQ : (n : Nat) -> fromNatQ (iterated n succQ zeroQ) = n test_fromNatQ (S n) = rewrite test_fromNatQ n in Refl test_fromNatQ Z = Refl test_toNatQ : (n : Nat) -> toNatQ n = iterated n succQ zeroQ test_toNatQ (S n) = rewrite test_toNatQ n in Refl test_toNatQ Z = Refl ListQ : Type -> Type ListQ A = (B : Type) -> (A -> B -> B) -> B -> B unListQ : {A, B : Type} -> (A -> B -> B) -> B -> ListQ A -> B unListQ f b q = q _ f b consQ : {A : Type} -> A -> ListQ A -> ListQ A consQ a q = \_, f, b => f a (q _ f b) nilQ : {A : Type} -> ListQ A nilQ = \_, f, b => b fromListQ : {A : Type} -> ListQ A -> List A fromListQ q = unListQ (::) [] q toListQ : {A : Type} -> List A -> ListQ A toListQ (a :: aa) = consQ a (toListQ aa) toListQ [] = nilQ
{"hexsha": "278477ce2148da6d965dc4290414ac975bb485b9", "size": 1377, "ext": "idr", "lang": "Idris", "max_stars_repo_path": "idris-explicit/BoehmBerarducci.idr", "max_stars_repo_name": "mietek/scott-encoding", "max_stars_repo_head_hexsha": "14e819383dd8730e1c3cbd9c2ce53335bd95188b", "max_stars_repo_licenses": ["X11", "MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2015-05-27T19:33:52.000Z", "max_stars_repo_stars_event_max_datetime": "2019-08-08T16:31:59.000Z", "max_issues_repo_path": "idris-explicit/BoehmBerarducci.idr", "max_issues_repo_name": "mietek/scott-encoding", "max_issues_repo_head_hexsha": "14e819383dd8730e1c3cbd9c2ce53335bd95188b", "max_issues_repo_licenses": ["X11", "MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "idris-explicit/BoehmBerarducci.idr", "max_forks_repo_name": "mietek/scott-encoding", "max_forks_repo_head_hexsha": "14e819383dd8730e1c3cbd9c2ce53335bd95188b", "max_forks_repo_licenses": ["X11", "MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 22.95, "max_line_length": 66, "alphanum_fraction": 0.5664488017, "num_tokens": 556}
#include <algorithm> #include <fstream> #include <boost/assert.hpp> #include "nlohmann/json.hpp" #include "utility/type/XY.hpp" #include "utility/type/RowColumn.hpp" #include "utility/wrapper/sfVector2.hpp" #include "utility/wrapper/sfMakeColor.hpp" #include "Menu.hpp" namespace nemo { //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu::Menu( const XYPair pos, const XYPair dim, const Row rows, const Column cols, const XYPair outer_margins, const XYPair inner_margins, const bool align_center, const size_t char_sz, const TextBoxColor option_color, const TextBoxColor cursor_color, const TextBoxColor box_color, const std::string& font_file ) : align_center_(align_center) , rows_(rows) , cols_(cols) , rc1d_conv_(cols) , option_color_(option_color) , cursor_color_(cursor_color) , cursor_rc_({ Row(0), Column(0) }) , char_sz_(char_sz) { const auto x0y0 = XYPair(XValue(0.f), YValue(0.f)); BOOST_ASSERT(pos >= x0y0); BOOST_ASSERT(dim >= x0y0); BOOST_ASSERT(rows > 0); BOOST_ASSERT(cols > 0); BOOST_ASSERT(char_sz > 0); BOOST_ASSERT(outer_margins >= x0y0); BOOST_ASSERT(inner_margins >= x0y0); // Load the font file. BOOST_VERIFY(font_.loadFromFile(font_file)); // Create the menu box. box_.setSize(sfVector2(dim)); box_.setPosition(sfVector2(pos)); box_.setOutlineThickness(-1.f); box_.setFillColor(box_color.backgnd_); box_.setOutlineColor(box_color.border_); // The area of the menu inside the margins is reserved for menu options. From // there, the number of rows and columns of options determine each option's // width and height. For now, inner margins are included in the calculated // width and height. const auto option_dim_v = sfVector2( (dim.x_ - XValue(2.f) * outer_margins.x_) / XValue(int(cols_)), (dim.y_ - YValue(2.f) * outer_margins.y_) / YValue(int(rows_)) ); // Create background cells to contain the menu options in one page. To save // memory, only one page worth is needed since the options outside of them // won't be drawn on screen and all cells' positions stayed the same from // page to page. We can decide the color of a cell later based on the // contained option's colorset. const auto noptions_per_page = int(rows_) * int(cols_); options_.reserve(noptions_per_page); cells_.reserve(noptions_per_page); for (auto i = 0; i < noptions_per_page; ++i) { // Adjust cell cize so that inner margins can be inserted between them. const auto inner_margins_v = sfVector2(inner_margins); const auto cell_dim_v = option_dim_v - 2.f * inner_margins_v; BOOST_ASSERT(cell_dim_v.x > char_sz_ && cell_dim_v.y > char_sz_); sf::RectangleShape cell(cell_dim_v); // Insert inner margins. cell.setOrigin(-inner_margins_v); // Place the cell in the appropriate spot in the menu. Cells are lined // from left to right, down across rows. const auto rc_i = rc1d_conv_.toRowColumn(i); cell.setPosition( inner_margins_v + sfVector2( XValue(option_dim_v.x * int(rc_i.c_)), YValue(option_dim_v.y * int(rc_i.r_)) ) + sfVector2(pos) ); // The colors of the cells are decided in drawOption() since they can // change depending on whether a cursor is hovering over one or if the // client has requested a specific menu option to be colored differently. cell.setOutlineThickness(1.f); cells_.push_back(cell); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu::Menu(const std::string& file) : Menu(parseFile(file)) { } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu& Menu::add(const int id, const std::string& txt) { // Make sure there is no other menu option that has the new ID. const auto it = find(id); BOOST_ASSERT(it == options_.cend()); // Create the option's graphical text. sf::Text option_txt(txt, font_, char_sz_); // Add the option to the menu. options_.push_back({ id, option_txt, option_color_ }); // Preset the option text's position on the menu for future rendering. Since // it was just added to menu, we can use the index of the last element in the // menu option container. presetTextPosition(options_.size() - 1); return *this; } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu& Menu::remove(const int id) { // Delete the option. auto iter = find(id); BOOST_ASSERT(iter != options_.cend()); iter = options_.erase(iter); // All options that followed the deleted one need to have their text's render // positions shifted frontward one slot. presetTextPosition() already // accounts for this when called after the option is deleted. for (auto it = iter; it != options_.cend(); ++it) { presetTextPosition(it - options_.cbegin()); } if (const auto cur_idx = rc1d_conv_.to1D(cursor_rc_); cur_idx == static_cast<decltype(cur_idx)>(options_.size())) { // The cursor was on the last option before one of the options was // removed. Move the cursor frontward because it's now hovering over // an invalidated space. moveLeft(); } return *this; } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu& Menu::changeOptionText(const int id, const std::string& txt) { const auto it = find(id); BOOST_ASSERT(it != options_.cend()); it->txt_.setString(txt); return *this; } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu& Menu::changeOptionColor(const int id, const TextBoxColor color) { const auto it = find(id); BOOST_ASSERT(it != options_.cend()); setOptionColor(it - options_.cbegin(), color); return *this; } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// bool Menu::empty() const noexcept { return options_.empty(); } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::moveUp() noexcept { if (const auto last = rc1d_conv_.toRowColumn(options_.size() - 1); last.r_ == 0) { // Up => left in a horizontal menu, which can be determined based on // whether last menu option is on the first row. move(Direction::Left); } else { // move() checks that the menu isn't empty, so no need to deal with that // here. move(Direction::Up); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::moveDown() noexcept { if (const auto last = rc1d_conv_.toRowColumn(options_.size() - 1); last.r_ == 0) { // Down => right in a horizontal menu. move(Direction::Right); } else { // move() checks that the menu isn't empty. move(Direction::Down); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::moveRight() noexcept { // move() checks that the menu isn't empty, so no need to deal with that // here. if (cols_ == 1) { // Right => down in a vertical menu. The number of columns is always // capped at the number of columns per page, unlike the number of rows in // moveUp() and moveDown()'s cases. move(Direction::Down); } else { move(Direction::Right); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::moveLeft() noexcept { // move() checks that the menu isn't empty. if (cols_ == 1) { // Left => up in a vertical menu. move(Direction::Up); } else { move(Direction::Left); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::draw(sf::RenderWindow& window) { // Draw the menu box. window.draw(box_); // All the menu options aren't going to be drawned on screen. Only the page // of options that has the cursor needs to be drawn. const auto page_sz = cells_.size(); const auto idx = rc1d_conv_.to1D(cursor_rc_); const auto cur_page = idx / page_sz; // Draw from the first to the last option of that page. In case that page // happens to be the last one, since the page doesn't necessarily have all // its rows and columns filled, be sure to stop at the very last option. const auto start = cur_page * page_sz; const auto n = options_.size(); const auto end = std::min(start + page_sz, n); for (auto i = start; i < end; ++i) { drawOption(i, window); } if (n > page_sz) { // The options fill up the menu past one page, so draw the current page // number out of the total. This would let the player would know where // they are. drawPageRef() draws the navigation arrow indicators as well. drawPageRef(window); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// std::optional<int> Menu::cursorAt() const { if (options_.empty()) { // Empty menu. return {}; } const auto idx = rc1d_conv_.to1D(cursor_rc_); return { options_[idx].id_ }; } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::presetTextPosition(const int idx) { BOOST_ASSERT(idx >= 0 && idx < static_cast<decltype(idx)>(options_.size())); // Menu options are positioned from left to right down across rows. After // a page is filled, the graphical positions start over from the top left // for a new page. const auto& cell = cells_[idx % cells_.size()]; auto& txt = options_[idx].txt_; txt.setOrigin(cell.getOrigin()); txt.setPosition(cell.getPosition()); // Vertically center this option in the cell it is placed in. Horizontal // alignment is center if requested during the menu's construction, left // otherwise. constexpr auto center_pt = .475f; const auto cell_size = cell.getSize(); const auto txt_width = txt.getLocalBounds().width; const auto vtalign = center_pt * (cell_size.y - char_sz_); const auto hzalign = align_center_ ? center_pt * (cell_size.x - txt_width) : 10.f; txt.move(sfVector2( XValue(hzalign), YValue(vtalign) )); } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::setOptionColor(const int idx, const TextBoxColor color) { BOOST_ASSERT(idx >= 0 && idx < static_cast<decltype(idx)>(options_.size())); options_[idx].color_ = color; } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::drawOption(const int idx, sf::RenderWindow& window) { BOOST_ASSERT(idx >= 0 && idx < static_cast<decltype(idx)>(options_.size())); // Although we can have pages of menu options, to save memory, we have only a // page worth of cells to use. Grab the one the menu option would be drawn // on. auto& cell = cells_[idx % cells_.size()]; auto& option = options_[idx]; // If the cursor is over this menu option, then use the cursor's colorset // instead of the option's normal set. const auto cursor_idx = rc1d_conv_.to1D(cursor_rc_); const auto color = idx != cursor_idx ? option.color_ : cursor_color_; option.txt_.setFillColor(color.txt_); cell.setFillColor(color.backgnd_); cell.setOutlineColor(color.border_); // Draw the cell first, then the text over it. window.draw(cell); window.draw(option.txt_); } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::drawPageRef(sf::RenderWindow& window) const { // Get the page number the cursor is on as well as the total number of pages // of options the menu has. const auto page_sz = cells_.size(); const auto npages = (options_.size() - 1) / page_sz + 1; const auto cur_page = rc1d_conv_.to1D(cursor_rc_) / page_sz; const auto atpage_txt = std::to_string(cur_page + 1) + " / " + std::to_string(npages); // Draw a small box that will contain the page numbers and maybe the // navigation arrow indicators. constexpr auto atpage_box_height = 25.f; constexpr auto atpage_box_width = 5.f * atpage_box_height; sf::RectangleShape atpage_box(sfVector2( XValue(atpage_box_width), YValue(atpage_box_height) )); // The box should have the same background layer as the menu box's since it // will be appended to the menu. atpage_box.setFillColor(box_.getFillColor()); atpage_box.setOutlineColor(box_.getOutlineColor()); atpage_box.setOutlineThickness(box_.getOutlineThickness()); // Place it directly below the bottom right corner of the menu. atpage_box.setPosition(box_.getPosition() + box_.getSize()); atpage_box.move(sfVector2( XValue(-atpage_box_width), YValue(box_.getOutlineThickness()) )); window.draw(atpage_box); // Draw the page numbers on the right half of the box. constexpr auto atpage_txt_height = float(atpage_box_height) - 9.f; sf::Text atpage(atpage_txt, font_, atpage_txt_height); atpage.setOrigin(sfVector2( XValue(0.f), YValue(-2.f) )); atpage.setPosition( atpage_box.getPosition() + sfVector2(XValue(.5f * atpage_box_width), YValue(0.f)) ); // Use the menu options' default text color for the page number and n // avigation arrow indicators. atpage.setFillColor(option_color_.txt_); window.draw(atpage); if (npages > 1) { // Draw the navigation arrow indicators on the left half of the box. constexpr auto arrow_sz = float(atpage_box_height) - 7.f; constexpr auto arrow_radius = .5f * arrow_sz; constexpr auto arrow_padding = .5f * arrow_radius; // Up arrow. sf::CircleShape up(arrow_radius, 3); up.setFillColor(option_color_.txt_); up.setOrigin(-arrow_padding, -arrow_padding); up.setPosition( atpage_box.getPosition() + sfVector2(XValue(arrow_padding), YValue(2.f)) ); window.draw(up); // Down arrow right next to the up arrow. sf::CircleShape down(up); down.scale(sfVector2( XValue(1.f), YValue(-1.f) )); down.move(sfVector2( XValue(2.f * arrow_radius), YValue(2.5f * arrow_radius) )); window.draw(down); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// void Menu::move(const Direction dir) noexcept { if (options_.empty()) { // No menu options => no cursor => no movement. return; } // The cursor should be able to wrap around the ends of the menu. Moving the // cursor left when it is at the leftmost option should take it to the // rightmost option at the same row, and vice versa. Similarly, moving it up // when it is at the topmost option should take it to the bottomost option at // the same column, and vice versa. The wrapping should take into account // that the bottomost row may be partially filled, which column the cursor // can move to in the last row. // Get the row and column indices of the last option. const auto last = rc1d_conv_.toRowColumn(options_.size() - 1); // Get the rightmost column at the current row the cursor is on. It's needed // when moving left and right. auto& [r, c] = cursor_rc_; const auto right_c = r < last.r_ ? cols_ - Column(1) : last.c_; switch (dir) { // Up/down changes the row index. // If the cursor will move to the bottom row but there's no option exactly // below it, move it to the last option. case Direction::Up: r = r > 0 ? r - Row(1) : last.r_; c = r < last.r_ ? c : std::min(c, last.c_); break; case Direction::Down: r = r < last.r_ ? r + Row(1) : Row(0); c = r < last.r_ ? c : std::min(c, last.c_); break; // Left/right changes the column index case Direction::Right: c = c < right_c ? c + Column(1) : Column(0); break; case Direction::Left: c = c > 0 ? c - Column(1) : right_c; break; default: break; } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// auto Menu::find(const int id) -> decltype(options_.begin()) { auto it = std::find_if(options_.begin(), options_.end(), [id](const auto& option) { return id == option.id_; } ); return it; } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu::Menu(CtorArgs args) : Menu( args.pos_, args.dim_, args.rows_, args.cols_, args.outer_margins_, args.inner_margins_, args.align_center_, args.char_sz_, args.option_color_, args.cursor_color_, args.box_color_, args.font_file_ ) { } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// typename Menu::CtorArgs Menu::parseFile(const std::string& file) const { // Load json file. std::ifstream ifs(file); BOOST_ASSERT(ifs.is_open()); nlohmann::json js; ifs >> js; constexpr auto position = "position"; constexpr auto dimensions = "dimensions"; constexpr auto margins = "margins"; constexpr auto horizontal = "horizontal"; constexpr auto vertical = "vertical"; constexpr auto options = "options"; constexpr auto cursor = "cursor"; constexpr auto box = "box"; constexpr auto colors = "colors"; constexpr auto text = "text"; constexpr auto background = "background"; constexpr auto border = "border"; try { // Extract the customizations. const auto pos = XYPair( XValue(js.at(position).at("x")), YValue(js.at(position).at("y")) ); const auto dim = XYPair( XValue(js.at(dimensions).at("width")), YValue(js.at(dimensions).at("height")) ); const auto outer_margins = XYPair( XValue(js.at(box).at(margins).at(horizontal)), YValue(js.at(box).at(margins).at(vertical)) ); const auto inner_margins = XYPair( XValue(js.at(options).at(margins).at(horizontal)), YValue(js.at(options).at(margins).at(vertical)) ); const auto rows = Row(js.at(options).at("rows")); const auto cols = Column(js.at(options).at("columns")); const auto align_center = js.at(options).at("center"); const auto char_sz = js.at(options).at("size"); const auto font_file = js.at("font"); const auto option_color = TextBoxColor( sfMakeColor(js.at(options).at(colors).at(text)), sfMakeColor(js.at(options).at(colors).at(background)), sfMakeColor(js.at(options).at(colors).at(border)) ); const auto cursor_color = TextBoxColor( sfMakeColor(js.at(cursor).at(colors).at(text)), sfMakeColor(js.at(cursor).at(colors).at(background)), sfMakeColor(js.at(cursor).at(colors).at(border)) ); const auto box_color = TextBoxColor( sf::Color::Black, sfMakeColor(js.at(box).at(colors).at(background)), sfMakeColor(js.at(box).at(colors).at(border)) ); return { pos, dim, rows, cols, outer_margins, inner_margins, align_center, char_sz, option_color, cursor_color, box_color, font_file }; } catch (const nlohmann::json::out_of_range& e) { // BOOST_LOG_TRIVIAL(error) << file << " parsing failed. " << e.what(); return CtorArgs(); } } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// Menu::CtorArgs::CtorArgs( const XYPair pos, const XYPair dim, const Row rows, const Column cols, const XYPair outer_margins, const XYPair inner_margins, const bool align_center, const size_t char_sz, const TextBoxColor option_color, const TextBoxColor cursor_color, const TextBoxColor box_color, const std::string& font_file ) : pos_(pos) , dim_(dim) , rows_(rows) , cols_(cols) , outer_margins_(outer_margins) , inner_margins_(inner_margins) , align_center_(align_center) , char_sz_(char_sz) , option_color_(option_color) , cursor_color_(cursor_color) , box_color_(box_color) , font_file_(font_file) { } //////////////////////////////////////////////////////////////////////////////// // // //////////////////////////////////////////////////////////////////////////////// }
{"hexsha": "84a52b96ef5e4034f03838adec5525fa272c2515", "size": 23075, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "src/menu/Menu.cpp", "max_stars_repo_name": "zhec9/nemo", "max_stars_repo_head_hexsha": "b719b89933ce722a14355e7ed825a76dea680501", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/menu/Menu.cpp", "max_issues_repo_name": "zhec9/nemo", "max_issues_repo_head_hexsha": "b719b89933ce722a14355e7ed825a76dea680501", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/menu/Menu.cpp", "max_forks_repo_name": "zhec9/nemo", "max_forks_repo_head_hexsha": "b719b89933ce722a14355e7ed825a76dea680501", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.6964285714, "max_line_length": 80, "alphanum_fraction": 0.523900325, "num_tokens": 4867}
# Electro I. Pregunta bono 2: Análisis en DC gráfico. # Autor : Rafael Moreno # Fecha : 24/01/20 # Prof : Anibal Carpio from matplotlib import pyplot as plt import pandas as pd import numpy as np # Open file filename = 'Grafica Diodo 1-n4004 GP.csv' data = pd.read_csv(filename) # Diode I-V characteristics Vd = data['X--Trace 1::[V_pn]'] Id = data['Y--Trace 1::[V_pn]'] # Load line Il = 5 / 2000 - np.dot(Vd, 1/2000) # Il = Vps / R - Vd / R # (A) to (mA) Id = np.dot(Id,1000) Il = np.dot(Il,1000) # primero se calcula Il - Id # se obtienen los signos correspondientes con np.sign # se determina el cambio de signo con np.diff (donde se cruzan las lineas) # se determina el índice de dicho cambio con np.argwhere # flatten devuelve el arreglo en una dimension idx = np.argwhere(np.diff(np.sign(Il - Id))).flatten() # Plotting plt.plot(Vd, Id, label = 'Característica I-V del Diodo') plt.plot(Vd, Il, label = 'Linea de carga') plt.ylim(0, 3) plt.grid() plt.ylabel('Id (mA)') plt.xlabel('Vd (V)') plt.title('Análisis en DC Gráfico') plt.plot(Vd[idx], Id[idx], 'ro', label = f'Q-point ({Vd[int(idx)]} V,{float(Id[idx])} mA)') plt.legend(loc = 'best') plt.show()
{"hexsha": "c277c7554670717fe7570f08d58e4bbfa1da4997", "size": 1177, "ext": "py", "lang": "Python", "max_stars_repo_path": "Pregunta bono 2.py", "max_stars_repo_name": "ImArcangel/Q-Point-Diode", "max_stars_repo_head_hexsha": "b8c8825493ffe7f286c07a9e212ac5b18ec3bcb6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Pregunta bono 2.py", "max_issues_repo_name": "ImArcangel/Q-Point-Diode", "max_issues_repo_head_hexsha": "b8c8825493ffe7f286c07a9e212ac5b18ec3bcb6", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Pregunta bono 2.py", "max_forks_repo_name": "ImArcangel/Q-Point-Diode", "max_forks_repo_head_hexsha": "b8c8825493ffe7f286c07a9e212ac5b18ec3bcb6", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 26.75, "max_line_length": 91, "alphanum_fraction": 0.6703483432, "include": true, "reason": "import numpy", "num_tokens": 398}
section "Invariant Context Simplifications" theory invContext_simps imports repliss_sem begin text "Here we prove various simplifications for the invariant contexts." lemma invContext_unchanged_happensBefore: assumes "co c \<triangleq> t" and "ts t \<triangleq> Uncommitted" shows "invContextH co to ts (hbOld \<union> vis \<times> {c}) cs ki io ir = invContextH co to ts hbOld cs ki io ir " using assms by (auto simp add: invContextH_def restrict_relation_def committedCallsH_def isCommittedH_def) lemma invContext_unchanged_happensBefore2: assumes "co c = None" shows "invContextH co to ts (hbOld \<union> vis \<times> {c}) cs ki io ir = invContextH co to ts hbOld cs ki io ir " using assms by (auto simp add: invContextH_def restrict_relation_def committedCallsH_def isCommittedH_def) lemma committedCallsH_notin: assumes "co c = None" shows "c \<notin> committedCallsH co ts" by (simp add: assms committedCallsH_def isCommittedH_def) lemma committedCallsH_in: shows "(c \<in> committedCallsH co ts) \<longleftrightarrow> (case co c of None \<Rightarrow> False | Some t \<Rightarrow> ts t \<triangleq> Committed) " by (auto simp add: committedCallsH_def isCommittedH_def split: option.splits) lemma committedCalls_unchanged_callOrigin: assumes a1: "ts t \<triangleq> Uncommitted" and a2: "co c = None" shows "committedCallsH (co(c \<mapsto> t)) ts = committedCallsH co ts" using a1 a2 by (auto simp add: committedCallsH_def isCommittedH_def) lemma invContextH_map_update_all: assumes "co c = None" and "ts t \<triangleq> Uncommitted" shows "invContextH (co(c \<mapsto> t)) to ts hb cs ki io ir = invContextH co to ts hb cs ki io ir " using assms by (auto simp add: invContextH_def committedCallsH_notin committedCalls_unchanged_callOrigin) lemma invContextH_update_calls: assumes "co c \<triangleq> t" and "ts t \<triangleq> Uncommitted" shows "invContextH co to ts hb (cs(c \<mapsto> newCall)) ki io ir = invContextH co to ts hb cs ki io ir " using assms by (auto simp add: invContextH_def committedCallsH_in) lemma committedCallsH_update_uncommitted: assumes "ts t = None" shows "committedCallsH co (ts(t \<mapsto> Uncommitted)) = committedCallsH co ts" using assms by (auto simp add: committedCallsH_def isCommittedH_def, force) lemma invContextH_update_txstatus: assumes "ts t = None" shows "invContextH co to (ts(t\<mapsto>Uncommitted)) hb cs ki io ir = invContextH co to ts hb cs ki io ir " using assms by (auto simp add: invContextH_def restrict_map_def committedCallsH_update_uncommitted) lemmas invContextH_simps = invContextH_update_calls invContextH_map_update_all invContextH_update_txstatus end
{"author": "peterzeller", "repo": "repliss-isabelle", "sha": "f43744678cc9c5a4684e8bd0e9c83510bae1d9a4", "save_path": "github-repos/isabelle/peterzeller-repliss-isabelle", "path": "github-repos/isabelle/peterzeller-repliss-isabelle/repliss-isabelle-f43744678cc9c5a4684e8bd0e9c83510bae1d9a4/invContext_simps.thy"}
from controlSBML.control_sbml import ControlSBML from controlSBML import control_sbml import helpers import numpy as np import pandas as pd import os import unittest import tellurium as te IGNORE_TEST = False IS_PLOT = False TEST_DIR = os.path.dirname(os.path.abspath(__file__)) ANTIMONY_FILE = os.path.join(TEST_DIR, "Model_antimony.ant") ############################# # Tests ############################# class TestControlSBML(unittest.TestCase): def setUp(self): # Cannot modify self.control self.ctlsb = ControlSBML(ANTIMONY_FILE) def testConstructor(self): if IGNORE_TEST: return self.assertTrue("RoadRunner" in str(type(self.ctlsb.roadrunner))) def testConstructWithRoadrunner(self): if IGNORE_TEST: return model = te.loada(helpers.TEST_PATH_1) ctlsb1 = ControlSBML(model) ctlsb2 = ControlSBML(helpers.TEST_PATH_1) diff = set(ctlsb1.get().values()).symmetric_difference( ctlsb2.get().values()) self.assertEqual(len(diff), 0) if __name__ == '__main__': unittest.main()
{"hexsha": "ccae3a660c1f6642e6914411c9b26ebd9748a502", "size": 1114, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/test_control_sbml.py", "max_stars_repo_name": "ModelEngineering/controlSBML", "max_stars_repo_head_hexsha": "64587a7b22961a52aaf2b4e4a04fd1a0e3bc7a6b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tests/test_control_sbml.py", "max_issues_repo_name": "ModelEngineering/controlSBML", "max_issues_repo_head_hexsha": "64587a7b22961a52aaf2b4e4a04fd1a0e3bc7a6b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tests/test_control_sbml.py", "max_forks_repo_name": "ModelEngineering/controlSBML", "max_forks_repo_head_hexsha": "64587a7b22961a52aaf2b4e4a04fd1a0e3bc7a6b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.2173913043, "max_line_length": 73, "alphanum_fraction": 0.6570915619, "include": true, "reason": "import numpy", "num_tokens": 264}
from dataclasses import dataclass from typing import List, Literal from numpy import positive from xarray_dataclasses import Attr from datetime import datetime from toolz import curry @dataclass class VariableAttrs: standard_name: str long_name: str units: str @dataclass class AltitudeAttrs: standard_name: str = "height" long_name: str = "vertical distance above the surface" units: str = "m" positive: str = "up" axis: str = "Z" @dataclass class LatitudeAttrs: standard_name: str = "latitude" units: str = "degree_north" valid_min: float = -90.0 valid_max: float = 90.0 axis: str = "Y" grid_mapping: str = "crs" coordinate_reference_frame: str = "urn:ogc:def:crs:EPSG::4326" @dataclass class LongitudeAttrs: standard_name: str = "longitude" units: str = "degree_east" valid_min: float = -180.0 valid_max: float = 180.0 axis: str = "X" grid_mapping: str = "crs" coordinate_reference_frame: str = "urn:ogc:def:crs:EPSG::4326" @dataclass class TimeAttrs: """Specs for the Time axis.""" standard_name: str = "time" long_name: str = "Time of measurement" axis: str = "T" # units is filled by xarray, based on time interval @dataclass class DepthAttrs: """Specs for the Z axis.""" standard_name: str = "depth" long_name: str = "Depth of measurement" positive: str = "down" units: str = "m" axis: str = "Z" reference: str = "sea_level" coordinate_reference_frame: str = "urn:ogc:def:crs:EPSG::CRF 5831" @dataclass class DatasetAttrs: title: str date_created: datetime keywords: List[str] time_coverage_start: str time_coverage_end: str geospatial_lat_min: float geospatial_lat_max: float geospatial_lon_min: float geospatial_lon_max: float featureType: str keywords_vocabulary: str = "GCM:GCMD Keywords" data_owner: str = "Norwegian Institute for Water Research" summary: str = "" geospatial_vertical_positive: str = "down" processing_level: str = "Missing data has been filled with fillValue." Conventions: str = "CF-1.6, ACDD-1.3" netcdf_version: str = "4" publisher_name: str = "NIVA" publisher_email: str = "post[..]niva.no" publisher_url: str = "niva.no" licence: str = 'Freely distributed. Must credit the source of data, e.g. "Data fra Norsk Institut for Vannforskning", "Based on data from the Norwegian Institute for Water Research". Data and products are licensed under Norwegian license for public data (NLOD) and Creative Commons Attribution 3.0 Norway.' history: str = "Initial data"
{"hexsha": "38f02f9a484bdbd012a489716faa48ac6761e589", "size": 2638, "ext": "py", "lang": "Python", "max_stars_repo_path": "hello-xarray/cfxarray/attributes.py", "max_stars_repo_name": "NIVANorge/s-enda-playground", "max_stars_repo_head_hexsha": "56ae0a8978f0ba8a5546330786c882c31e17757a", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "hello-xarray/cfxarray/attributes.py", "max_issues_repo_name": "NIVANorge/s-enda-playground", "max_issues_repo_head_hexsha": "56ae0a8978f0ba8a5546330786c882c31e17757a", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "hello-xarray/cfxarray/attributes.py", "max_forks_repo_name": "NIVANorge/s-enda-playground", "max_forks_repo_head_hexsha": "56ae0a8978f0ba8a5546330786c882c31e17757a", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.7684210526, "max_line_length": 310, "alphanum_fraction": 0.6899166035, "include": true, "reason": "from numpy", "num_tokens": 742}
from screeninfo import get_monitors import pygame from pygame.locals import * import os import sys from flick import Flick import time from record_data import RecordData from live_recorder import LiveRecorder from sklearn.externals import joblib import numpy as np from preprocess import preprocess_recordings from subprocess import Popen pygame.init() def get_display_resolution(): """ | Returns half of width and height of screen in pixels """ h_str = str(get_monitors()[0]) for char in ['+', '(', ')', 'x']: h_str = h_str.replace(char, '|') w, h = (h_str.split('|')[1], h_str.split('|')[2]) return (int(w)/2, int(h)/2) def time_str(): return time.strftime("%H_%M_%d_%m_%Y", time.gmtime()) def render_waiting_screen(text_string=None, time_black = 0.): pygame.font.init() display_x, display_y = get_display_resolution() display_x, display_y = (2 * display_x, 2 * display_y) os.environ['SDL_VIDEO_CENTERED'] = '1' window = pygame.display.set_mode((display_x, display_y), pygame.NOFRAME, 32) pygame.display.set_caption("SSVEP") if time_black > 0: window.fill((0., 0., 0.)) timer_event = USEREVENT + 1 pygame.time.set_timer(timer_event, int(time_black)*1000) else: myfont = pygame.font.SysFont("arial", 50) press_string = "Please press the Any-Key to continue..." textsurface1 = myfont.render(press_string, False, (0, 0, 0)) text_rect1 = textsurface1.get_rect(center=(display_x/2, display_y/2+100)) if text_string: textsurface2 = myfont.render(text_string, False, (0, 0, 0)) text_rect2 = textsurface2.get_rect(center=(display_x/2, display_y/2-100)) window.fill((100, 100, 150)) window.blit(textsurface1, text_rect1) if text_string: window.blit(textsurface2, text_rect2) pygame.display.update() while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == KEYDOWN: if event.key == K_ESCAPE: exit() else: pygame.quit() return False if not (time_black > 0.): window.blit(textsurface1, text_rect1) if text_string: window.blit(textsurface2, text_rect2) else: if event.type == timer_event: pygame.quit() return False pygame.display.update() def begin_experiment_1(freq, trials=20): if not os.path.isdir("REC"): os.mkdir("REC") render_waiting_screen("Welcome to this experiment") render_waiting_screen("The experiment will start now... there will be breaks between the flickering tiles!") recorder = RecordData(256., 20., freq) recorder.start_recording() for i in range(0, int(trials)): recorder.add_trial(int(freq)) Flick(float(freq)).flicker(15.) recorder.add_trial(0.) render_waiting_screen(text_string=None, time_black=5.) filename = "REC/%s_freq_%s.mat" % (time_str(), freq) recorder.stop_recording_and_dump(filename) recorder.killswitch.terminate = True recorder = None render_waiting_screen("That was the last one, thank you for participation!") sys.exit() def begin_experiment_2(str_list): display_x, display_y = get_display_resolution() display_x, display_y = (2 * display_x, 2 * display_y) os.environ['SDL_VIDEO_CENTERED'] = '1' window = pygame.display.set_mode((display_x, display_y), pygame.NOFRAME, 32) pygame.display.set_caption("SSVEP") window.fill((0, 0, 0)) pygame.display.update() if os.name == 'nt': for command in str_list: command_parts = command.split(" ") #print("start /d "+command) #os.system("start /d "+command) Popen(command_parts) elif os.name == 'posix': os.system("|".join(str_list)) else: print("Could not get OS-name!") def start_live_classifier(): window_metrics = (200, 200) os.environ['SDL_VIDEO_CENTERED'] = '1' window = pygame.display.set_mode(window_metrics, pygame.NOFRAME, 0) pygame.display.set_caption("classifier window") pygame.mouse.set_visible(False) arrow = pygame.transform.scale(pygame.image.load("src/res/arrow.png"), window_metrics) stop = pygame.transform.scale(pygame.image.load("src/res/stop.png"), window_metrics) arrow_metrics = window_metrics window.blit(stop, (0, 0)) pygame.display.update() # Start Recording recorder = LiveRecorder() recorder.start_recording() time.sleep(1) #labels, features = getData(np.load('19_06_05_07_2017_freq_19.mat.npy')) do_run = True model_file_QDA, model_file_LDA, model_file_MLP = ('src/QDA.pkl', 'src/LDA.pkl', 'src/MLP.pkl') QDA = joblib.load(model_file_QDA) LDA = joblib.load(model_file_LDA) MLP = joblib.load(model_file_MLP) label = None time.sleep(5) label_list = [] while do_run: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == KEYDOWN or label: try: a = event.key label = None except AttributeError: event.key = None if event.key == K_ESCAPE: do_run = False elif event.key == K_UP or label == 13.0: # UP is 13 Hz window.fill((0., 0., 0.)) window.blit(rot_center(arrow, 180), (0, 0)) # TODO move robot up elif event.key == K_DOWN or label == 17.0: # DOWN is 17 Hz window.fill((0., 0., 0.)) window.blit(arrow, (0, 0)) # TODO move robot down elif event.key == K_RIGHT or label == 15.0: # RIGHT is 15 Hz window.fill((0., 0., 0.)) window.blit(rot_center(arrow, 90), (0, 0)) # TODO move robot right elif event.key == K_LEFT or label == 19.0: # LEFT is 19 Hz: window.fill((0., 0., 0.)) window.blit(rot_center(arrow, 270), (0, 0)) # TODO move robot left elif event.key == K_SPACE or label == 0.0: # No frequency window.fill((0., 0., 0.)) window.blit(stop, (0, 0)) # TODO stop robot label = None elif event.type == KEYUP: window.fill((0., 0., 0.)) window.blit(stop, (0, 0)) # TODO stop robot pygame.display.flip() features = recorder.get_features() #print(features) label_LDA = LDA.predict([features])[0] label_QDA = QDA.predict([features])[0] label_MLP = MLP.predict([features])[0] print("LDA: %s QDA: %s MLP: %s" %(label_LDA, label_QDA, label_MLP)) for tmp_label in [label_LDA, label_QDA, label_MLP]: label_list.append(tmp_label) if len(label_list) >= 10*3: count_list = [label_list.count(13.), label_list.count(15.)] count_list.append(label_list.count(17.)) count_list.append(label_list.count(19.)) index = np.argmax(count_list) label = [13., 15., 17., 19.][index] print("Mayor Label: %s" % label) label_list = [] #print("Recognized Label: %s" % label) time.sleep(1.) # May dump labeled data after recording? filename = "REC/live_%s_freq_%s.mat" % (time_str(), freq) def rot_center(image, angle): """rotate an image while keeping its center and size""" orig_rect = image.get_rect() rot_image = pygame.transform.rotate(image, angle) rot_rect = orig_rect.copy() rot_rect.center = rot_image.get_rect().center rot_image = rot_image.subsurface(rot_rect).copy() return rot_image if __name__ == "__main__": begin_experiment_1() exit()
{"hexsha": "b31eb948baa84b8041cdc6ef2c36f2f6296ef6ac", "size": 8231, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/ssvep/utils.py", "max_stars_repo_name": "gumpy-hybridBCI/gumpy-Realtime", "max_stars_repo_head_hexsha": "163f72ff4d8734cbfd13848e21ce7d4cafc6e8e9", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2018-04-07T17:30:51.000Z", "max_stars_repo_stars_event_max_datetime": "2021-02-23T09:50:53.000Z", "max_issues_repo_path": "src/utils.py", "max_issues_repo_name": "swxie/SSVEP-Brain-Computer-Interface", "max_issues_repo_head_hexsha": "1c4a0c899475d484f4427a94e65cfbd8b71c6904", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2019-02-09T03:52:20.000Z", "max_issues_repo_issues_event_max_datetime": "2019-02-09T03:52:20.000Z", "max_forks_repo_path": "src/utils.py", "max_forks_repo_name": "swxie/SSVEP-Brain-Computer-Interface", "max_forks_repo_head_hexsha": "1c4a0c899475d484f4427a94e65cfbd8b71c6904", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 5, "max_forks_repo_forks_event_min_datetime": "2019-01-12T02:48:25.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-03T20:07:51.000Z", "avg_line_length": 35.3261802575, "max_line_length": 112, "alphanum_fraction": 0.5821892844, "include": true, "reason": "import numpy", "num_tokens": 2006}
[STATEMENT] lemma dbm_entry_dbm_min3: assumes "dbm_entry_val u (Some c) None (min a b)" shows "dbm_entry_val u (Some c) None b" [PROOF STATE] proof (prove) goal (1 subgoal): 1. dbm_entry_val u (Some c) None b [PROOF STEP] using dbm_entry_val_mono_3[folded less_eq, OF assms] [PROOF STATE] proof (prove) using this: min a b \<le> ?b' \<Longrightarrow> dbm_entry_val u (Some c) None ?b' goal (1 subgoal): 1. dbm_entry_val u (Some c) None b [PROOF STEP] by auto
{"llama_tokens": 206, "file": "Timed_Automata_DBM_Operations", "length": 2}
[STATEMENT] lemma additive_wp_PC: "\<lbrakk> additive (wp a); additive (wp b) \<rbrakk> \<Longrightarrow> additive (wp (a \<^bsub>P\<^esub>\<oplus> b))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>Transformers.additive (wp a); Transformers.additive (wp b)\<rbrakk> \<Longrightarrow> Transformers.additive (wp (a \<^bsub>P\<^esub>\<oplus> b)) [PROOF STEP] by(rule additiveI, simp add:additiveD field_simps wp_eval)
{"llama_tokens": 171, "file": "pGCL_Determinism", "length": 1}
#!/usr/bin/env python import sys,os,string from numpy import * from scipy.interpolate import * from myplotlib import PanelPlot from matplotlib import pyplot import pickle tck_file0 = 'tck.pickle' tck_file1 = 'bs_tck.pickle' f = open(tck_file0) all_tck0 = pickle.load(f) f.close() f = open(tck_file1) all_tcks = pickle.load(f) f.close() dm15_low = 0.6 dm15_high = 2.0 t_low = -10.0 t_high = 70 dm15s = [0.9, 1.1, 1.3, 1.5, 1.7, 1.9] ts = arange(81)/80.0*(t_high - t_low) + t_low #mp = PanelPlot(3,3) mp2 = PanelPlot(3,3) bands = ['u','B','V','g','r','i','Y','J','H'] for j in range(len(bands)): band = bands[j] tck0 = all_tck0[band] tcks = all_tcks[band] #mp.axes[j].text(0.5, 0.9, band, transform=mp.axes[j].transAxes, # verticalalignment='top', horizontalalignment='center') mp2.axes[j].text(0.5, 0.9, band, transform=mp2.axes[j].transAxes, verticalalignment='top', horizontalalignment='center') for k in range(len(dm15s)): dzs = [] z0 = bisplev(ts, dm15s[k], tck0)[:,0] for i in range(len(tcks)): z1 = bisplev(ts, dm15s[k], tcks[i])[:,0] if sometrue(absolute(z1 - z0) > 0.15): continue dzs.append(z1 - z0) if k == 1: mp2.axes[j].plot(ts, dzs[-1], color='0.65') dzs = array(dzs) rms = sqrt(mean(power(dzs, 2), axis=0)) mads = median(absolute(dzs), axis=0) #mp.axes[j].plot(ts, 1.49*mads, '-', label='%.1f' % (dm15s[k])) if k == 1: mp2.axes[j].plot(ts, rms, '-', color='red', linewidth=2) #mp.axes[0].legend(prop={'size':8}) #mp.xlabel('$t - t_{max}(B)$ (days)') mp2.xlabel('$t - t_{max}(B)$ (days)') #mp.ylabel('Median Absolute Deviation') mp2.ylabel('Master - Bootstrap') #mp.set_limits(all_equal=1) mp2.set_limits(all_equal=1) #mp.draw() mp2.draw() pyplot.show() #mp.close() mp2.close()
{"hexsha": "264f452106edc5a2b7227625d5f9aebc95b80ce9", "size": 1852, "ext": "py", "lang": "Python", "max_stars_repo_path": "snpy/CSPtemp/plot_bs_disps.py", "max_stars_repo_name": "emirkmo/snpy", "max_stars_repo_head_hexsha": "2a0153c84477ba8a30310d7dbca3d5a8f24de3c6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2019-01-14T19:40:45.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-05T12:19:39.000Z", "max_issues_repo_path": "snpy/CSPtemp/plot_bs_disps.py", "max_issues_repo_name": "emirkmo/snpy", "max_issues_repo_head_hexsha": "2a0153c84477ba8a30310d7dbca3d5a8f24de3c6", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2017-04-25T20:06:22.000Z", "max_issues_repo_issues_event_max_datetime": "2021-06-09T20:46:41.000Z", "max_forks_repo_path": "snpy/CSPtemp/plot_bs_disps.py", "max_forks_repo_name": "emirkmo/snpy", "max_forks_repo_head_hexsha": "2a0153c84477ba8a30310d7dbca3d5a8f24de3c6", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 8, "max_forks_repo_forks_event_min_datetime": "2017-04-25T19:57:57.000Z", "max_forks_repo_forks_event_max_datetime": "2021-11-12T11:54:19.000Z", "avg_line_length": 26.0845070423, "max_line_length": 69, "alphanum_fraction": 0.6020518359, "include": true, "reason": "from numpy,from scipy", "num_tokens": 659}
% Author: Cristian Gonzales % Created for Physical Time, 2018 \documentclass[11pt]{article} \usepackage[margin=1in]{geometry} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage[document]{ragged2e} \newcommand\tab[1][1cm]{\hspace*{#1}} \begin{document} \Large{\textbf{Sprint 2 Plan}}\\ \Large{\textbf{Product: Physical Time iOS Application}}\\ \Large{\textbf{Team: The Physical Time Team}}\\ \Large{\textbf{Date: February 4, 2018}}\\ %\Large{\textbf{Revised: March 7, 2018}}\\ \vspace{-3mm} \section{Goal} \vspace{-3mm} \tab \normalsize{In short, for this sprint we aim to present a [hardcoded] augmented clock with a decent user interface to navigate to that feature, and other features.} \section{Task Listing} \vspace{-3mm} \begin{itemize} \item As a user, I want to see a augmented clock that displays a 24-hour time format in one clock rotation (usually 12 hours), with 4 hour divisions. \begin{itemize} \item Task 1: Research and find a pluggable clock or d3 plugin to easily visualize a regular clock (3 hour) \item Task 2: Tinker with the values in the clock to augment the value (3 hours) \end{itemize} Total: 6 hours \item As a user, I want to see a decent UI in the works so that I may eas- ily navigate the application and know the exact purpose it serves (with no prior knowledge of the application). \begin{itemize} \item Task 1: Learn about jQuery (2 hours) \item Task 2: Write some boiler plate code for the application skeleton (6 hours) \end{itemize} Total: 8 hours \item As a developer, I want to integrate an easy-to-use visualization frame- work to create the clock (e.g. d3.js). \begin{itemize} \item Task 1: Research about d3.js (1 hours) \item Task 2: Take a look at other alternatives to d3 and tradeoffs in terms of user experience (UX) (3 hours) \end{itemize} Total: 4 hours \end{itemize} \section{Team Roles} \vspace{-3mm} \begin{itemize} \item Khai Hua, developer \item Cristian Gonzales, developer \item Stephen Ouyang, developer (Scrum master) (Product Owner) \item George Somers, developer \end{itemize} \section{Initial Task Assignment} \vspace{-3mm} \begin{itemize} \item George Somers: story 1, task 1 \item Khai Hua: story 1, task 1 \& story 2, task 1 \item Stephen Ouyang: story 1, task 2 \& story 2, task 2 \item Cristian Gonzales: story 2, task 2 \& story 3, task 1 \& 2 \end{itemize} \section{Burnup chart included separately} \section{Scrum board found on Trello} \section{Scrum Times} Wednesday and Friday at noon, and Tuesdays at around 10:30AM with TA. \end{document}
{"hexsha": "e03746de59a2c7daec0c21962bdf10963c3203c6", "size": 2713, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "scrum/sprint2/PTSprint2Plan.tex", "max_stars_repo_name": "Physical-TIme/Physical-Time", "max_stars_repo_head_hexsha": "3563c21d0c34503dcb4e82975e20c82621f9efef", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "scrum/sprint2/PTSprint2Plan.tex", "max_issues_repo_name": "Physical-TIme/Physical-Time", "max_issues_repo_head_hexsha": "3563c21d0c34503dcb4e82975e20c82621f9efef", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "scrum/sprint2/PTSprint2Plan.tex", "max_forks_repo_name": "Physical-TIme/Physical-Time", "max_forks_repo_head_hexsha": "3563c21d0c34503dcb4e82975e20c82621f9efef", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.3188405797, "max_line_length": 190, "alphanum_fraction": 0.6984887578, "num_tokens": 853}
import numpy as np import math from scipy import signal, fft, interpolate def lpfilter_sos(data, dt, cutoff, zero_phase=True): """" Low-pass filter using the second-order representation Butterworth implementation Inputs: data - 2D numpy array, of shape [channels,samples] dt - sampling interval (seconds) cutoff - cutoff frequency (Hz) zero_phase - Boolean flag for applying filter twice (in forward and backward directions) Output: filtered version of data """ sos = signal.iirfilter(N=4, Wn=[cutoff], btype='lowpass', fs=1/dt, output='sos') if zero_phase: return np.float32(signal.sosfilt(sos, data, axis=-1)) else: return np.float32(signal.sosfiltfilt(sos, data, axis=-1)) def lpfilter(data, dt, cutoff, zero_phase=True): """" Low-pass filter using the Butterworth implementation Inputs: data - 2D numpy array, of shape [channels,samples] dt - sampling interval (seconds) cutoff - cutoff frequency (Hz) zero_phase - Boolean flag for applying filter twice (in forward and backward directions) Output: filtered version of data """ b, a = signal.butter(N=4, Wn=cutoff, btype='low', fs=1/dt) if zero_phase: return np.float32(signal.filtfilt(b, a, data, axis=- 1, padtype='odd')) else return np.float32(signal.filt(b, a, data, axis=- 1, padtype='odd')) def bpfilter_sos(data, dt, bp_low, bp_high, zero_phase=True): """" Band-pass filter using the SOS implementation Inputs: data - 2D numpy array, of shape [channels,samples] dt - sampling interval (seconds) bp_low - minimal frequency in the passband (Hz) bp_high - maximal frequency in the passband (Hz) zero_phase - Boolean flag for applying filter twice (in forward and backward directions) Output: filtered version of data """ sos = signal.iirfilter(N=4, Wn=[bp_low, bp_high], btype='bandpass', fs=1/dt, output='sos') if zero_phase: return np.float32(signal.sosfiltfilt(sos, data, axis=-1)) else: return np.float32(signal.sosfilt(sos, data, axis=-1)) def bpfilter(data, dt, bp_low, bp_high, zero_phase=True): """" Band-pass filter using the second-order representation Butterworth Inputs: data - 2D numpy array, of shape [channels,samples] dt - sampling interval (seconds) bp_low - minimal frequency in the passband (Hz) bp_high - maximal frequency in the passband (Hz) zero_phase - Boolean flag for applying filter twice (in forward and backward directions) Output: filtered version of data """ b, a = signal.butter(N=4, Wn=[bp_low, bp_high], btype='bandpass', fs=1/dt) if zero_phase: return np.float32(signal.filtfilt(b, a, data, axis=- 1, padtype='odd')) else: return np.float32(signal.filt(b, a, data, axis=- 1, padtype='odd')) def remove_median(data): """" Sample-by-sample median removal Inputs: data - 2D numpy array, of shape [channels,samples] Output: data after median removal """ data -= np.median(data, axis=0, keepdims=True) return data def clip(data, clip_perc_val): """" Data clipping Inputs: data - 2D numpy array, of shape [channels,samples] clip_perc_val - percentile of data the defines the clipping value. Data are assumed to have both positive and negative values, and clipping also occurs at 100 - clip_perc_val as well to handle negative values Output: data after median removal """ return np.clip(data, np.percentile(data, 100.0 - clip_perc_val), np.percentile(data, clip_perc_val)) def normalization(data, mode): """" Trace-by-trace normalization Inputs: data - 2D numpy array, of shape [channels,samples] mode - normalization type 'std' : standard deviation of each channel 'max' : maximum value of each channel 'L2' : L2 norm of each channel (no mean removal) 'none' : nothing happens Output: data after normalization """ live_traces = np.nonzero(np.sum(np.abs(data), axis=-1)) if mode == 'std': data[live_traces, :] = np.divide(data[live_traces, :], np.std(data[live_traces, :], axis=-1, keepdims=True)) elif mode == 'max': data[live_traces, :] = np.divide(data[live_traces, :], np.amax(np.abs(data[live_traces, :]), axis=-1, keepdims=True)) elif mode == 'L2': data[live_traces, :] = np.divide(data[live_traces, :], np.sqrt(np.sum(np.power(data[live_traces, :], 2.0), axis=-1, keepdims=True))) elif mode == 'none': pass else: raise NameError return data def linear_fv(data, dx, dt, freqs, vels): """" Transform data into a frequency-phase velocity image. Note: works correctly for 2D (line) data. Inputs: data - 2D numpy array, of shape [channels,samples] dx - distance between channels dt - time sampling interval freqs - frequencies (Hz) at which to estimate the transformation vels - phase velocities (m/s) at which to estimate the transformation Output: frequency-phase velocity image at desired [f,v] values """ (nch, nt) = np.shape(data) nscanv = np.size(vels) nf = 2**(math.ceil(math.log(nt, 2))) nk = 2**(math.ceil(math.log(nch, 2))) fft_f = np.arange(-nf/2, nf/2)/nf/dt fft_k = np.arange(-nk/2, nk/2)/nk/dx fk_res = fft.fftshift(fft.fft2(data, s=[nk, nf])) fk_res = np.absolute(fk_res) ones_arr = np.ones(shape=(nscanv,)) fv_map = np.zeros(shape=(len(freqs), len(vels)), dtype=np.float32) interp_fun = interpolate.interp2d(fft_k, fft_f, fk_res.T) for ind, fr in enumerate(freqs): fv_map[ind, :] = np.squeeze(interp_fun(np.divide(ones_arr*fr, vels), fr))/(nch*nt) return fv_map.T def template_matching(data, template, threshold=0.0): """" Applies template matching with approximated normalization Important : this is not a true normalized cross-correlation, which is significantly slower. The autocorrelation of the data is computed as an average value. Inputs: data - 2D numpy array, of shape [channels,samples] template - 2D numpy array, of shape [template_channels,template_samples]. Each dimension has to be smaller than the matching one in data. threshold - minimal cross-correlation value for the function to return a result. Otherwise, returns None Output: List including [channel,sample,cross-correlation value] obtained at the point of maximal cross-correlation """ corr = np.fft.irfft2(np.fft.rfft2(data) * np.fft.rfft2(np.flip(template), data.shape)) temp_autocorr = np.sum(template*template) data_autocorr = np.sum(data*data) * np.prod(template.shape) / np.prod(data.shape) (nxtemp, nttemp) = template.shape corr = corr/np.sqrt(temp_autocorr*data_autocorr) max_val = np.amax(corr) if max_val >= threshold: ind = np.unravel_index(np.argmax(corr, axis=None), corr.shape) return [ind[0]-nxtemp+1, ind[1]-nttemp+1, max_val] else: return None
{"hexsha": "bf1ea0a82e2f7bf6a9a9788f9bcf6167f94cf14d", "size": 7308, "ext": "py", "lang": "Python", "max_stars_repo_path": "signal_processing.py", "max_stars_repo_name": "DAS-RCN/continuous_data_handling", "max_stars_repo_head_hexsha": "cf1f2140c33bbd3c9f164c5c9fb1ff1d1573700e", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2021-09-14T00:55:11.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-30T13:22:06.000Z", "max_issues_repo_path": "signal_processing.py", "max_issues_repo_name": "DAS-RCN/continuous_data_handling", "max_issues_repo_head_hexsha": "cf1f2140c33bbd3c9f164c5c9fb1ff1d1573700e", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "signal_processing.py", "max_forks_repo_name": "DAS-RCN/continuous_data_handling", "max_forks_repo_head_hexsha": "cf1f2140c33bbd3c9f164c5c9fb1ff1d1573700e", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.9344262295, "max_line_length": 125, "alphanum_fraction": 0.6469622332, "include": true, "reason": "import numpy,from scipy", "num_tokens": 1879}
#pragma once #include <boost/predef.h> #if BOOST_ARCH_X86 #include <emmintrin.h> #endif namespace emr { namespace detail { struct no_backoff { void operator()() {} }; class exponential_backoff { public: void operator()() { for (unsigned i = 0; i < count; ++i) do_backoff(); count *= 2; } private: void do_backoff() { #if BOOST_ARCH_X86 _mm_pause(); #else #warning "No backoff implementation available." #endif } unsigned count = 1; }; using backoff = no_backoff; }}
{"hexsha": "c9c8c4805cb1b1c90eb246cc46adf87ff57251a7", "size": 550, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "include/emr/detail/backoff.hpp", "max_stars_repo_name": "mpoeter/emr", "max_stars_repo_head_hexsha": "390ee0c3b92b8ad0adb897177202e1dd2c53a1b7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 43.0, "max_stars_repo_stars_event_min_datetime": "2017-12-07T13:28:02.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-23T13:51:11.000Z", "max_issues_repo_path": "include/emr/detail/backoff.hpp", "max_issues_repo_name": "mpoeter/emr", "max_issues_repo_head_hexsha": "390ee0c3b92b8ad0adb897177202e1dd2c53a1b7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1.0, "max_issues_repo_issues_event_min_datetime": "2019-07-22T17:08:17.000Z", "max_issues_repo_issues_event_max_datetime": "2019-07-24T04:58:09.000Z", "max_forks_repo_path": "include/emr/detail/backoff.hpp", "max_forks_repo_name": "mpoeter/emr", "max_forks_repo_head_hexsha": "390ee0c3b92b8ad0adb897177202e1dd2c53a1b7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2.0, "max_forks_repo_forks_event_min_datetime": "2019-02-26T08:26:53.000Z", "max_forks_repo_forks_event_max_datetime": "2019-10-17T04:06:16.000Z", "avg_line_length": 13.75, "max_line_length": 52, "alphanum_fraction": 0.6, "num_tokens": 144}
C LAST UPDATE 16/03/89 C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C SUBROUTINE GETHDR (ITERM,IPRINT,IUNIT,HFNAM,ISPEC,LSPEC,INCR,MEM, & IFFR,ILFR,IFINC,IHFMAX,IFRMAX,NCHAN,IRC) IMPLICIT NONE C C Purpose: Get header file information C INTEGER ISPEC,LSPEC,INCR,MEM,IFFR,ILFR,IFINC,IHFMAX,IFRMAX,IRC INTEGER ITERM,IPRINT,IUNIT,NCHAN CHARACTER*(*) HFNAM C C ITERM : Terminal input stream C IPRINT : Terminal output stream C IUNIT : Header I/O stream C HFNAM : Header filename C ISPEC : Frame nos. part of filename C LSPEC : Last frame part of file name C INCR : Header file increment C MEM : Memory nos. C IFFR : First frame in sequence C ILFR : Last frame in sequence C IFINC : Frame increment C IHFMAX : Nos. of header file in sequence C IFRMAX : Nos. of frames/file C NCHAN : Nos. of channels C IRC : Return code 0 - successful C 1 - <ctrl-z> C C Calls 4: ERRMSG , FRDATA , GETFIL , RDHDR C C-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- C Local variables: C INTEGER JRC,NFRAME,NDUM CHARACTER*13 FNAM C C JRC : Return code C NFRAME : Nos. of frames C NDUM : Dummy (used in 2d implementation) C FNAM : Binary dataset name C C----------------------------------------------------------------------- IRC=1 10 CALL GETFIL (ITERM,IPRINT,HFNAM,MEM,ISPEC,LSPEC,INCR,IFFR,ILFR, & IFINC,JRC) IF (JRC.EQ.0) THEN CALL RDHDR (HFNAM,FNAM,ISPEC,MEM,IUNIT,NCHAN,NFRAME,NDUM,JRC) IF (JRC.EQ.1) THEN CALL ERRMSG ('Error: Missing values in header file') GOTO 10 ELSEIF (JRC.EQ.2) THEN CALL ERRMSG ('Error: Header file not found') GOTO 10 ELSE IF (IFFR.EQ.0) CALL FRDATA (ITERM,IPRINT,IFFR,ILFR,IFINC, & NCHAN,NFRAME,MEM,JRC) IF (JRC.EQ.0) THEN IHFMAX=1 IFRMAX=1 IF (INCR.NE.0) IHFMAX=((LSPEC-ISPEC)/INCR)+1 IF (IFINC.NE.0) IFRMAX=((ILFR-IFFR)/IFINC)+1 IF (IHFMAX.GT.1.AND.IFRMAX.GT.1) THEN CALL ERRMSG ('Error: Invalid operation') GOTO 10 ENDIF IF (IFFR.GT.NFRAME.OR.ILFR.GT.NFRAME) THEN CALL ERRMSG ('Error: Invalid operation') GOTO 10 ENDIF IRC=0 ENDIF ENDIF ENDIF RETURN END
{"hexsha": "e22b63acfe96ef12c061db926157643373a5e8a2", "size": 2563, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "software/libs/otoko/gethdr.f", "max_stars_repo_name": "scattering-central/CCP13", "max_stars_repo_head_hexsha": "e78440d34d0ac80d2294b131ca17dddcf7505b01", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "software/libs/otoko/gethdr.f", "max_issues_repo_name": "scattering-central/CCP13", "max_issues_repo_head_hexsha": "e78440d34d0ac80d2294b131ca17dddcf7505b01", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "software/libs/otoko/gethdr.f", "max_forks_repo_name": "scattering-central/CCP13", "max_forks_repo_head_hexsha": "e78440d34d0ac80d2294b131ca17dddcf7505b01", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2017-09-05T15:15:22.000Z", "max_forks_repo_forks_event_max_datetime": "2021-01-15T11:13:45.000Z", "avg_line_length": 32.858974359, "max_line_length": 72, "alphanum_fraction": 0.5228248147, "num_tokens": 782}
# Deep Learning - Assignment 1 ## Outline (15 points) #### In this assignment, you will learn: * How to generate random data using python. * Building linear models for simple regression problem on the generated data. * Training the linear models with gradient descent algorithm. * How to alleviate over-fitting for your model. * **Concepts** you will learn: ***Regularization***, ***Model selection***, ***Gradient descent***, ***Over-fitting***, ***Weight decay***, ***Training/Validation/Testing***. #### Tasks In this assignment, we are going to solve a basic linear regression problem by fitting a polynomial function, which we shall use as a running example to motivate a number of key concepts mentioned above. * **Part 1.** Generate training and testing data using python. * **Part 2.** Linear regression with polynomials without regularization. * **Part 3.** Linear regression with polynomials with regularization. #### Environment Python 3.<br> Other libraries should be installed correctly such as numpy, matplotlib, *etc*., according to the dependencies of the assignment. #### Database * Randomly synthesized data. ## Part 1. Generate training and testing data using python Suppose we observe a real-valued input variable $x$ and we wish to use this observation to predict the value of a real-valued target variable $t$. For the present purposes, it is instructive to consider an artificial example using synthetically generated data because we then know the precise process that generated the data for comparison against any learned model. We therefore generate our training data which consists of 10 pairs of $\{x_i, y_i\}$ where $\{x_i\}$ are generated uniformly in range (0, 1), and the corresponding target values $\{y_i\}$ are obtained by first computing the corresponding values of the function $sin(2\pi x)$ and then adding random noise with a Gaussian distribution having standard deviation 0.3. \begin{align*} y_i = sin(2\pi x_i) + \varepsilon, \varepsilon\sim \mathcal{N}(0,\,0.3^{2}). \end{align*} The testing data is created the same way as training data but the number of pairs is 100, in order to give a more complete evaluation of the model to be trained. Please create the required training and testing data below and plot them. You could use numpy to create the data and matplotlib.pyplot to show them. ```python # import libraries import numpy as np import matplotlib.pyplot as plt # your code here x_train = np.random.rand(10, 1) y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, 0.3, (10, 1)) x_test = np.random.rand(100, 1) y_test = np.sin(2 * np.pi * x_test) + np.random.normal(0, 0.3, (100, 1)) plt.plot(x_train, y_train, marker='o', linestyle='none') plt.plot(x_test, y_test, fillstyle='none', marker='o', color='g', linestyle='none') plt.show() ``` ## Part 2. Linear regression with polynomials without regularization Congratulations if you generate the data correctly! However, to make sure all of you use the same data, we have generated it in advance. ```python import pickle with open('data/rawdata.pickle', 'rb') as f: data = pickle.load(f) x_train = data['x_train'] y_train = data['y_train'] x_test = data['x_test'] y_test = data['y_test'] ``` The task in this part is to train a linear model to fit the curve on the training data. Now that we have $\{x, y\}$, we consider using a polynomial function of the form \begin{align} f(x, \pmb{w}) = \omega_0 + \omega_1x + \omega_2x^2 + ... + \omega_Mx^M = \sum_{j=0}^{M}\omega_jx^j, \tag{1} \end{align} where $M$ is the *order* of the polynomial, and $x^j$ denotes $x$ raised to the power of j. The values of the coefficients will be determined by fitting the polynomial to the training data. To do so, we introduce the error function to be minimized: \begin{equation} E(\pmb{w}) = \frac{1}{2}\sum_{i=1}^{N}\{f(x_i, \pmb{w}) - y_i\}^2, \tag{2} \end{equation} where, $N$ is 10 in our case. First of all, to use matrix operation in this case, we re-write the polynomial function (1) in the form of matrix multiplication: $$ \begin{bmatrix} f(x_1, \pmb{w}) \\ f(x_2, \pmb{w}) \\ . \\ . \\ . \\ f(x_N, \pmb{w}) \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & . & . & . & x_1^M \\ 1 & x_2 & x_2^2 & . & . & . & x_2^M \\ . & . & . & . & . & . & . \\ . & . & . & . & . & . & . \\ . & . & . & . & . & . & . \\ 1 & x_N & x_N^2 & . & . & . & x_N^M \end{bmatrix} \begin{bmatrix} \omega_0 \\ \omega_1 \\ . \\ . \\ . \\ \omega_M \end{bmatrix} $$ We call the first matrix on the right hand side feature matrix. We next build the feature matrix and try to solve above minimization problem using [`Gradient Descent Algorithm`](https://towardsdatascience.com/an-introduction-to-gradient-descent-c9cca5739307) and the closed-form analytical solution. Because the result from the closed-form solution is theoretically optimal for the problem, by doing this, we could know how well our gradient descent algorithm performs by comparing the results using gradient descent and closed-form methods respectively. Anyway, I'll give an guidance using $M=3$ as following. ### Part 2.1. Method based on closed-form analysis First, let's quickly solve this using the closed-form analytical solution. In this case, we luckily have this solution to solve the polynomial regression problem. However, in practical problems using deep learning models, which are non-linear and often very complex, there doesn't exist a closed-form solution or extremely difficult to find the solution analytically, the most common way is using gradient descent algorithm. In our case, we will first solve the regression problem using closed-form analysis to get the optimal solution, which can also be seen as the upper bound the gradient descent algorithm goes (because gradient descent algorithm will alwayse find an approximate solution which close to the optimal). First, we calculate the feature matrix based on the matrix formulation and apply [`sklearn.linear_model.LinearRegression`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html) to solve the regression problem. ```python feature_matrix = np.ones_like(x_train) M = 3 for i in range(1, M+1): feature_matrix = np.concatenate((feature_matrix, x_train ** i), axis=1) from sklearn.linear_model import LinearRegression model = LinearRegression(fit_intercept=False).fit(feature_matrix, y_train) ``` Then, show the original training data points and the draw the curve of the function obtained on a single figure. ```python x_curve = np.linspace(0, 1, 10000).reshape(-1, 1) features_curve = np.ones_like(x_curve) for i in range(1, M+1): features_curve = np.concatenate((features_curve, x_curve ** i), axis=1) y_curve = model.predict(features_curve) plt.plot(x_train, y_train, marker='o', linestyle='None') plt.plot(x_curve, y_curve, 'r') plt.show() ``` Now, we have got all the coefficients (noted as $\pmb{w}^*$) of the polynomial function by minimizing the error function (2). Therefore, we can evaluate the residual value of $E(\pmb{w}^*)$ given by (2) for the training and testing data. However, it is sometimes more convenient to use the *root-mean-square* (RMS) error defined by $$ E_{RMS} = \sqrt{2E(\pmb{w}^*)/N} \tag{3} $$ in which the division by $N$ allows us to compare different sizes of data sets on an equal footing, also with the same scale (and in the same units) as the target variable $y$. In order to evaluate the polynomial function we obtained, we do the following: * Calculate and print the RMS error on training data based on equation (3), * Calculate and print the RMS error on testing data based on equation (3), * Get and print the coefficients of the trained function $\omega_0$ ~ $\omega_M$ using [`LinearRegression.coef_`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression). ```python prediction_train = model.predict(feature_matrix) rms_train = np.sqrt(np.sum((prediction_train - y_train) ** 2) / len(prediction_train)) feature_matrix_test = np.ones_like(x_test) for i in range(1, M+1): feature_matrix_test = np.concatenate((feature_matrix_test, x_test ** i), axis=1) prediction_test = model.predict(feature_matrix_test) rms_test = np.sqrt(np.sum((prediction_test - y_test) ** 2) / len(prediction_test)) print('rms error on training data: ', rms_train) print('rms error on testing data: ', rms_test) print('coefficients of the trained function: ', model.coef_) ``` rms error on training data: 0.16066897173745506 rms error on testing data: 0.30943910311337297 coefficients of the trained function: [[ -0.16311694 10.9380811 -30.08577056 19.11555865]] ### Part 2.2. Method based on Gradient Descent Algorithm Once we get the closed-form solution, which is also the optimal solution, the next thing we are supposed to do is to re-solve the problem by gradient descent algorithm, because gradient descent matters a lot in practical applications since we cannot have a closed-form solution for most of the practical problems. Generally, the ingredients make up a gradient descent algorithm are: * defining the learning rate to update our parameters, * defining a loss function or objective function which you should minimize (here we use the error function based on equation (3)), * calculating the gradients of parameters w.r.t. the loss, * update parameters according to the learning rate and gradients to a direction that makes the loss smaller. So, let's do this in that way. ```python # defining a learning rate, you could change it learning_rate = 0.1 # initialize the parameters, here we simply assign each parameter to 1 # becuase M=3, so we totally have 4 parameters (w0, w1, w2, w3) W = np.ones((M+1, 1)) # calculate the feature matrix as before, in order to compute the loss feature_matrix = np.ones_like(x_train) for i in range(1, 4): feature_matrix = np.concatenate((feature_matrix, x_train ** i), axis=1) # iteratively do gradient descent, here we just iterate it 50 times for i in range(50): # calculate the values of the polynomial function F = np.matmul(feature_matrix, W) # calculate the loss, print it every 10 iterations if i % 10 ==0: loss = 0.5 * np.sum((F - y_train) ** 2) print('loss: ', loss) # calcualte the gradients of the parameters # here we have 10 data samples, so we calculate the mean. # please understand this formulation by inferencing the gradients # by yourself with what you learnt in undergraduate school. G = np.mean((F - y_train) * feature_matrix, axis=0).reshape(-1, 1) # update parameters to a direction that makes the loss smaller # so we use '-' here, it is also why we call gradient "descent" W = W - learning_rate * G ``` loss: 34.380066478803926 loss: 4.012740605942455 loss: 2.436307391471592 loss: 1.958278267953077 loss: 1.6626874106866916 Again, we show the original training data points and the draw the curve of the function obtained on a single figure. ```python x_curve = np.linspace(0, 1, 10000).reshape(-1, 1) features_curve = np.ones_like(x_curve) for i in range(1, M+1): features_curve = np.concatenate((features_curve, x_curve ** i), axis=1) #y_curve = model.predict(features_curve) y_curve = features_curve.dot(W) plt.plot(x_train, y_train, marker='o', linestyle='None') plt.plot(x_curve, y_curve, 'r') plt.show() ``` Also, in order to evaluate the polynomial function we obtained, we do the following: * Calculate and print the RMS error on training data based on equation (3), * Calculate and print the RMS error on testing data based on equation (3), * Print the coefficients (parameters). ```python prediction_train = np.matmul(feature_matrix, W) rms_train = np.sqrt(np.sum((prediction_train - y_train) ** 2) / len(prediction_train)) prediction_test = np.matmul(feature_matrix_test, W) rms_test = np.sqrt(np.sum((prediction_test - y_test) ** 2) / len(prediction_test)) print('rms error on training data: ', rms_train) print('rms error on testing data: ', rms_test) print('coefficients of the trained function: ', W) ``` rms error on training data: 0.5422276467732126 rms error on testing data: 0.5918422558573816 coefficients of the trained function: [[ 0.23861297] [-0.26124322] [-0.24765614] [-0.13137266]] #### Question 1. What's the difference between closed-form method and gradient descent method? #### Your answer: ### Part 2.3. Model selection with closed-form solution There remains the problem of choosing the order $M$ of the polynomial, this is actually an example of the concept *model selection*. To see how changing $M$ affects the regression problem being solved, please change $M=$ from 1 to 9, and get the following objectives based on **closed-form analysis**: * Draw all the 9 figures as done above (make sure the function curve and training data points are in the same figure for each case, using plt.subplots), * Calculate all the error values using equation (3) with respect to trainig and testing data for all the 9 cases, and plot this values on a single figure (that means 18 points would be drawn in the figure, with x axis representing $M$ and y axis representing the error value, please use different colors to distinguish training and testing), * Print the coefficients for the 9 polynomial functions. ```python # your code here rmss_train = [] rmss_test = [] fig, ax = plt.subplots(3, 3, figsize=(15, 15)) for M in range(1, 10): feature_matrix = np.ones_like(x_train) for i in range(1, M + 1): feature_matrix = np.concatenate((feature_matrix, x_train ** i), axis=1) model = LinearRegression(fit_intercept=False).fit(feature_matrix, y_train) x_curve = np.linspace(0, 1, 10000).reshape(-1, 1) features_curve = np.ones_like(x_curve) for i in range(1, M + 1): features_curve = np.concatenate((features_curve, x_curve ** i), axis=1) # your code here y_curve = model.predict(features_curve) row = (M-1) // 3 col = (M-1) % 3 ax[row,col].plot(x_train, y_train, marker='o', linestyle='None') ax[row,col].plot(x_curve, y_curve, 'r') prediction_train = model.predict(feature_matrix) rms_train = np.sqrt(np.sum((prediction_train - y_train) ** 2) / len(prediction_train)) feature_matrix_test = np.ones_like(x_test) for i in range(1, M + 1): feature_matrix_test = np.concatenate((feature_matrix_test, x_test ** i), axis=1) prediction_test = model.predict(feature_matrix_test) rms_test = np.sqrt(np.sum((prediction_test - y_test) ** 2) / len(prediction_test)) rmss_train.append(rms_train) rmss_test.append(rms_test) print('\n Results when M = %d' % M) print('rms error on training / testing data: %f / %f' % (rms_train, rms_test)) print('coefficients of the trained function: ', model.coef_) fig.tight_layout() plt.show() M_x = np.linspace(1, 9, 9) ``` ```python plt.plot(M_x, rmss_train, 'b', marker='o', linestyle='None') plt.plot(M_x, rmss_test, 'r', marker='o', linestyle='None') plt.show() ``` In fact, when $M = 9$, the 10 training points would be exactly fitted, and the training loss becomes zero, since the degree of freedom for this regression problem is 10. However, the fitted curve oscillates wildly and gives a very poor representation of the function $sin(2\pi x)$. This behavior is known as **over-fitting**. #### Question 2. Which one is the best one and why? Why the over-fitting happens when $M$ is big? #### Your answer: ### Part 2.4. Gradient descent practice Set $M=9$, based on **gradient descent algorithm**, do the following (During training, print the loss every $n$ iterations to show you are running the gradient descent algorithm to train the model, you could select a $n$ as you like): * Change learning rate and see how fast the training converges, * Change number of iteration to see whether the training loss would be smaller, * Draw the figure as done above when you feel the training is good enough (make sure the function curve and training data points are in the same figure), * Calculate the error values using equation (3) with respect to trainig and testing data, * Print the coefficients (parameters) for the polynomial function. ```python # your code here # defining a learning rate learning_rate = 0.1 # initialize the parameters, here we simply assign each parameter to 1 # becuase M=3, so we totally have 4 parameters (w0, w1, w2, w3) W = np.ones((M+1, 1)) # calculate the feature matrix as before, in order to compute the loss feature_matrix = np.ones_like(x_train) for i in range(1, M+1): feature_matrix = np.concatenate((feature_matrix, x_train ** i), axis=1) # iteratively do gradient descent for i in range(50): # calculate the values of the polynomial function F = np.matmul(feature_matrix, W) # calculate the loss if i % 10 ==0: loss = 0.5 * np.sum((F - y_train) ** 2) print('loss: ', loss) # calcualte the gradients of the parameters # here we have 10 data samples, so we calculate the mean. # please understand this formulation by inferencing the gradients # by yourself with what you learnt in undergraduate school. G = np.mean((F - y_train) * feature_matrix, axis=0).reshape(-1, 1) # update parameters to a direction that makes the loss smaller # so we use '-' here, it is also why we call gradient "descent" W = W - learning_rate * G ``` loss: 108.9576867114645 loss: 4.306569760761631 loss: 2.1385030210300267 loss: 1.5563558849819616 loss: 1.312244278798215 ```python x_curve = np.linspace(0, 1, 10000).reshape(-1, 1) features_curve = np.ones_like(x_curve) for i in range(1, M+1): features_curve = np.concatenate((features_curve, x_curve ** i), axis=1) #y_curve = model.predict(features_curve) y_curve = features_curve.dot(W) plt.plot(x_train, y_train, marker='o', linestyle='None') plt.plot(x_curve, y_curve, 'r') plt.show() ``` ```python prediction_train = np.matmul(feature_matrix, W) rms_train = np.sqrt(np.sum((prediction_train - y_train) ** 2) / len(prediction_train)) prediction_test = np.matmul(feature_matrix_test, W) rms_test = np.sqrt(np.sum((prediction_test - y_test) ** 2) / len(prediction_test)) print('rms error on training data: ', rms_train) print('rms error on testing data: ', rms_test) print('coefficients of the trained function: ', W) ``` rms error on training data: 0.48981780339698056 rms error on testing data: 0.5338034958265429 coefficients of the trained function: [[ 0.35652297] [-0.29036022] [-0.34839046] [-0.27086086] [-0.17482634] [-0.08679106] [-0.01139232] [ 0.05213066] [ 0.10563873] [ 0.15094612]] #### Question 3. Actually, when using gradient descent algorithm, even in the case that $M=9$, it is hard to observe the over-fitting phenomenon. It is because it's difficult to reach the theoretically optimal solution that makes the training loss zero. Regardless of over-fitting, please give your idea to make the training loss smaller when using gradient descent algorithm in this case. #### Your answer: ## Part 3. Linear regression with polynomials with regularization Before introducing regularization, let's think about a way to solve the over-fitting problem. <br> Definitely, through the experiments done above, you somewhat have found that the most direct way is reducing $M$. However, what if we use more training data? ### Part 3.1. Re-visit polynomial regression with extra training data and $M=9$ Finish this step as in Part 2.1 based on closed-form analysis. (*note*: please calculate the RMS error on the original training and testing data) ```python with open('data/extradata.pickle', 'rb') as f: extra_data = pickle.load(f) x_extra = extra_data['x_extra'] y_extra = extra_data['y_extra'] # your code here x_extra_train = np.concatenate((x_train, x_extra), axis=0) y_extra_train = np.concatenate((y_train, y_extra), axis=0) feature_extra_matrix = np.ones_like(x_extra_train) for i in range(1, 10): feature_extra_matrix = np.concatenate((feature_extra_matrix, x_extra_train ** i), axis=1) model = LinearRegression(fit_intercept=False).fit(feature_extra_matrix, y_extra_train) x_curve = np.linspace(0, 1, 10000).reshape(-1, 1) features_curve = np.ones_like(x_curve) for i in range(1, 10): features_curve = np.concatenate((features_curve, x_curve ** i), axis=1) y_curve = model.predict(features_curve) plt.plot(x_train, y_train, marker='o', linestyle='None') plt.plot(x_curve, y_curve, 'r') plt.show() prediction_train = model.predict(feature_matrix) rms_train = np.sqrt(np.sum((prediction_train - y_train) ** 2) / len(prediction_train)) feature_matrix_test = np.ones_like(x_test) for i in range(1, 10): feature_matrix_test = np.concatenate((feature_matrix_test, x_test ** i), axis=1) prediction_test = model.predict(feature_matrix_test) rms_test = np.sqrt(np.sum((prediction_test - y_test) ** 2) / len(prediction_test)) print('rms error on training data: ', rms_train) print('rms error on testing data: ', rms_test) print('coefficients of the trained function: ', model.coef_) ``` #### Question 4. Does introducing more training data in this case alleviate over-fitting? Why? #### Your answer: ### Part 3.2. Re-visit polynomial regression with regularization and $M=9$ We may alleviate the over-fitting problem through introducing more training data, but what if there is no extra training data? In fact, we donnot want to limit the number of parameters in a model according to the size of the available training set, because it also limits the capacity and flexibility of the model. One technique that is often used to control over the over-fitting phenomenon in such cases is that of **regularization**, which involves adding a penalty term to the error function (2) in order to discourage the coefficients from reaching large values. The simplest such penalty term takes the form of a sum of squares of all of the coefficients, leading to a modified error function: $$ \widetilde{E}(\pmb{w})=\frac{1}{2}\sum_{i=1}^{N}\{f(x_i, \pmb{w}) - y_i\}^2 + \frac{\lambda}{2}||\pmb{w}||^2 \tag{4} $$ where $||\pmb{w}||^2\equiv \pmb{w}^T\pmb{w} = \omega_0^2 + \omega_1^2 + ... + \omega_M^2$, and the coefficient $\lambda$ governs the relative importance of the regularization term compared with the sum-of-squares error term. Again, this error function can be minimized exactly in closed form. The regression with such a quadratic regularizer is called *ridge regression*. In the context of neural networks, this approcah is known as **weight decay**. Apart from training and testing data, we also need another data set to test how suitable the $\lambda$ is before we use the model on the testing data. We call this data set **validation** set. Usually, when we have large amount of training data, we create a validation set splitted from the original training data and use the rest of the training data as the new training data. In our case, we only have the training data consisting of 10 data points, so here we use the extra data on Part 3.1 as the validation data. Please solve the ridge regression problem with the polynomial function using **training** data in the following 7 conditions: * $M=9$, $ln\lambda=-35$ ($\lambda=e^{-35}$) * $M=9$, $ln\lambda=-25$ * $M=9$, $ln\lambda=-20$ * $M=9$, $ln\lambda=-15$ * $M=9$, $ln\lambda=-10$ * $M=9$, $ln\lambda=-5$ * $M=9$, $ln\lambda=0$ with the following tasks: 1. Calculate the root-mean-square error based on (3) (not the modified one) on the **training** and **validation** set. Plot the curves of RMS error versus $\ln\lambda$ for training and validation set in a single figure (i.e., in this figure, two curves will be plotted, one for training data and one for validation data. x axis represents $\ln\lambda$ and y axis represents RMS error). 2. Print the coefficients for the obtained 7 ploynomial functions. 3. Find the best value for $\lambda$ among these conditions (`best` means its corresponding RMS on the **validation** set is the smallest), calculate the corresponding RMS error on **testing** data and print it. 4. Draw the curve of the polynomial function in a figure w.r.t the best $\lambda$, in which the 10 original training data points and the 100 testing data points should also be plotted. To sovle the ridge regression problem, we could use [`sklearn.linear_model.Ridge`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html). ```python # your code here feature_matrix = np.ones_like(x_train) for i in range(1, 10): feature_matrix = np.concatenate((feature_matrix, x_train ** i), axis=1) feature_matrix_valid = np.ones_like(x_extra) for i in range(1, 10): feature_matrix_valid = np.concatenate((feature_matrix_valid, x_extra ** i), axis=1) from sklearn.linear_model import Ridge rmss_train = [] rmss_valid = [] best_model = None best_valid = np.finfo(float).max ln_lambdas = [-35, -25, -20, -15, -10, -5, 0] for ln_lambda in ln_lambdas: model = Ridge(alpha=np.exp(ln_lambda), fit_intercept=False).fit(feature_matrix, y_train) prediction_train = model.predict(feature_matrix) rms_train = np.sqrt(np.sum((prediction_train - y_train) ** 2) / len(prediction_train)) prediction_valid = model.predict(feature_matrix_valid) rms_valid = np.sqrt(np.sum((prediction_valid - y_extra) ** 2) / len(prediction_valid)) rmss_train.append(rms_train) rmss_valid.append(rms_valid) print('\n Results when M = %d' % M) print('coefficients of the trained function: ', model.coef_) if rms_valid < best_valid: best_valid = rms_valid best_model = model plt.plot(ln_lambdas, rmss_train, 'b', marker='o') plt.plot(ln_lambdas, rmss_valid, 'r', marker='o') plt.xlabel('ln(lambda)') plt.ylabel('RMS error') plt.show() print(rmss_valid) ``` ```python feature_matrix_test = np.ones_like(x_test) for i in range(1, 10): feature_matrix_test = np.concatenate((feature_matrix_test, x_test ** i), axis=1) prediction_test = best_model.predict(feature_matrix_test) rms_test = np.sqrt(np.sum((prediction_test - y_test) ** 2) / len(prediction_test)) print('rms error on testing data: ', rms_test) x_curve = np.linspace(0, 1, 10000).reshape(-1, 1) features_curve = np.ones_like(x_curve) for i in range(1, 10): features_curve = np.concatenate((features_curve, x_curve ** i), axis=1) y_curve = best_model.predict(features_curve) plt.plot(x_train, y_train, marker='o', linestyle='None') plt.plot(x_test, y_test, fillstyle='none', marker='o', color='g', linestyle='None') plt.plot(x_curve, y_curve, 'r') plt.show() ``` #### Question 5. Does regularization alleviate over-fitting? Why? #### Your answer: ### Part 3.3. Gradient descent practice Choose a $\lambda$ as you like and set $M=9$, calculate and print its rms error on training, validation and testing data respectively, draw the function curve with all the training and testing data on it, based on **gradient descent algorithm**. ***Note***: the loss function is equation (4), when calculating the gradients, remember to also consider the regularizatin component. ```python # your code here # your code here # defining a learning rate M = 9 learning_rate = 0.1 lmda = np.exp(-10) # initialize the parameters, here we simply assign each parameter to 1 # becuase M=3, so we totally have 4 parameters (w0, w1, w2, w3) W = np.ones((M+1, 1)) # calculate the feature matrix as before, in order to compute the loss feature_matrix = np.ones_like(x_train) for i in range(1, M+1): feature_matrix = np.concatenate((feature_matrix, x_train ** i), axis=1) # iteratively do gradient descent for i in range(50): # calculate the values of the polynomial function F = np.matmul(feature_matrix, W) # calculate the loss if i % 10 ==0: loss = 0.5 * np.sum((F - y_train) ** 2) + 0.5 * lmda * np.sum(W ** 2) print('loss: ', loss) # calcualte the gradients of the parameters # here we have 10 data samples, so we calculate the mean. # please understand this formulation by inferencing the gradients # by yourself with what you learnt in undergraduate school. G = np.mean((F - y_train) * feature_matrix, axis=0).reshape(-1, 1) + lmda * W # update parameters to a direction that makes the loss smaller # so we use '-' here, it is also why we call gradient "descent" W = W - learning_rate * G x_curve = np.linspace(0, 1, 10000).reshape(-1, 1) features_curve = np.ones_like(x_curve) for i in range(1, M+1): features_curve = np.concatenate((features_curve, x_curve ** i), axis=1) #y_curve = model.predict(features_curve) y_curve = features_curve.dot(W) plt.plot(x_train, y_train, marker='o', linestyle='None') plt.plot(x_curve, y_curve, 'r') plt.show() prediction_train = np.matmul(feature_matrix, W) rms_train = np.sqrt(np.sum((prediction_train - y_train) ** 2) / len(prediction_train)) prediction_test = np.matmul(feature_matrix_test, W) rms_test = np.sqrt(np.sum((prediction_test - y_test) ** 2) / len(prediction_test)) print('rms error on training data: ', rms_train) print('rms error on testing data: ', rms_test) print('coefficients of the trained function: ', W) ``` ```python ```
{"hexsha": "c743873b7adbb013929f34af0bef140df85e4044", "size": 268557, "ext": "ipynb", "lang": "Jupyter Notebook", "max_stars_repo_path": "assignment1/Assignment1_v2_answer.ipynb", "max_stars_repo_name": "Haoban/Deep-Learning-Lectures-Exercises-Slides", "max_stars_repo_head_hexsha": "da9141fb9da9fde25d1d3edd4efa13f3f8566e70", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "assignment1/Assignment1_v2_answer.ipynb", "max_issues_repo_name": "Haoban/Deep-Learning-Lectures-Exercises-Slides", "max_issues_repo_head_hexsha": "da9141fb9da9fde25d1d3edd4efa13f3f8566e70", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "assignment1/Assignment1_v2_answer.ipynb", "max_forks_repo_name": "Haoban/Deep-Learning-Lectures-Exercises-Slides", "max_forks_repo_head_hexsha": "da9141fb9da9fde25d1d3edd4efa13f3f8566e70", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 227.3979678239, "max_line_length": 100432, "alphanum_fraction": 0.9014250234, "converted": true, "num_tokens": 7717}
import numpy as np import cv2 import os.path # File Searching folders = r"C:\Users\심재윤\PycharmProjects\RGB detection" ### Change Directory with your choice filename = os.listdir(folders) for names in filename : if (names == "makejpg.py") : continue file = folders + "\\" + names a = np.loadtxt(file, dtype='int') # Image Processing Part ### implement these lines cv2.normalize(a, a, 0, 65535, cv2.NORM_MINMAX) np.right_shift(a, 8, a) ### until here # Image Write cv2.imwrite(folders + "\\" + names[:-3] + "jpg", np.uint8(a)) exit(0)
{"hexsha": "74bda2082ac139cdd4523db51169ef77204dd37c", "size": 572, "ext": "py", "lang": "Python", "max_stars_repo_path": "Detector_1/makejpg.py", "max_stars_repo_name": "JaeyoonSSim/Design-Project", "max_stars_repo_head_hexsha": "8a0037bec50b44b3f5d92da5254e79964fdaf9cf", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Detector_1/makejpg.py", "max_issues_repo_name": "JaeyoonSSim/Design-Project", "max_issues_repo_head_hexsha": "8a0037bec50b44b3f5d92da5254e79964fdaf9cf", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Detector_1/makejpg.py", "max_forks_repo_name": "JaeyoonSSim/Design-Project", "max_forks_repo_head_hexsha": "8a0037bec50b44b3f5d92da5254e79964fdaf9cf", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.8695652174, "max_line_length": 94, "alphanum_fraction": 0.6503496503, "include": true, "reason": "import numpy", "num_tokens": 168}
[STATEMENT] lemma joule_alt_def: "joule \<cong>\<^sub>Q newton \<^bold>\<cdot> metre" [PROOF STATE] proof (prove) goal (1 subgoal): 1. joule \<cong>\<^sub>Q newton \<^bold>\<cdot> metre [PROOF STEP] by si_calc
{"llama_tokens": 88, "file": "Physical_Quantities_SI_Derived", "length": 1}
import pytest numpy = pytest.importorskip('numpy') npt = pytest.importorskip('numpy.testing') scipy = pytest.importorskip('scipy') import networkx as nx from networkx.generators.degree_seq import havel_hakimi_graph class TestBetheHessian(object): @classmethod def setup_class(cls): deg = [3, 2, 2, 1, 0] cls.G = havel_hakimi_graph(deg) cls.P = nx.path_graph(3) def test_bethe_hessian(self): "Bethe Hessian matrix" H = numpy.array([[4, -2, 0], [-2, 5, -2], [0, -2, 4]]) permutation = [2, 0, 1] # Bethe Hessian gives expected form npt.assert_equal(nx.bethe_hessian_matrix(self.P, r=2).todense(), H) # nodelist is correctly implemented npt.assert_equal(nx.bethe_hessian_matrix(self.P, r=2, nodelist=permutation).todense(), H[numpy.ix_(permutation, permutation)]) # Equal to Laplacian matrix when r=1 npt.assert_equal(nx.bethe_hessian_matrix(self.G, r=1).todense(), nx.laplacian_matrix(self.G).todense()) # Correct default for the regularizer r npt.assert_equal(nx.bethe_hessian_matrix(self.G).todense(), nx.bethe_hessian_matrix(self.G, r=1.25).todense())
{"hexsha": "2dccae492f2b11d37bcd1b975772a0b4e666bb70", "size": 1309, "ext": "py", "lang": "Python", "max_stars_repo_path": "networkx/linalg/tests/test_bethehessian.py", "max_stars_repo_name": "jmmcd/networkx", "max_stars_repo_head_hexsha": "207ff7d1e9bfaff013ac77c8d6bb79619892c994", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2019-12-03T14:58:04.000Z", "max_stars_repo_stars_event_max_datetime": "2019-12-03T14:58:04.000Z", "max_issues_repo_path": "networkx/linalg/tests/test_bethehessian.py", "max_issues_repo_name": "jmmcd/networkx", "max_issues_repo_head_hexsha": "207ff7d1e9bfaff013ac77c8d6bb79619892c994", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2019-11-13T03:48:53.000Z", "max_issues_repo_issues_event_max_datetime": "2021-02-15T16:52:09.000Z", "max_forks_repo_path": "networkx/linalg/tests/test_bethehessian.py", "max_forks_repo_name": "jmmcd/networkx", "max_forks_repo_head_hexsha": "207ff7d1e9bfaff013ac77c8d6bb79619892c994", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2020-02-13T10:33:34.000Z", "max_forks_repo_forks_event_max_datetime": "2020-08-09T07:59:26.000Z", "avg_line_length": 37.4, "max_line_length": 94, "alphanum_fraction": 0.6088617265, "include": true, "reason": "import networkx,from networkx", "num_tokens": 351}
# !/usr/bin/env python import random import sys import os import rospkg import networkx as nx from cbm_pop_lib.common.chromosome import Chromosome from copy import deepcopy def init_result(tasks, mdvrp, prec, params): result = Chromosome(tasks, mdvrp.max_vehicle_load, prec, mdvrp.sliding_time_windows, mdvrp.n, params) for v in range(mdvrp.k): result.add_route(v) return result def node_predecessors(node, prec): pred = list(prec.predecessors(node)) for p in prec.predecessors(node): pred.extend(node_predecessors(p, prec)) return list(set(pred)) def node_successors(node, prec): succ = list(prec.successors(node)) for s in prec.successors(node): succ.extend(node_successors(s, prec)) return list(set(succ)) def greedy_insertion(mdvrp, problem_params): """Gradually builds the routes by selecting randomly an unserved customer and by inserting it at minimum cost in existing routes. Returns: MDVRP: MDVRP problem instance """ # init prec prec = deepcopy(mdvrp.precedence_graph) for node in mdvrp.precedence_graph: for pred in node_predecessors(node, mdvrp.precedence_graph): if (pred, node) not in prec.edges(): prec.add_edge(pred, node) for succ in node_successors(node, mdvrp.precedence_graph): if (node, succ) not in prec.edges(): prec.add_edge(node, succ) all_tasks = range(1, mdvrp.n + 1) result = init_result(all_tasks, mdvrp, prec, problem_params) # all_tasks = deepcopy(temp) _constr = list(nx.topological_sort(mdvrp.precedence_graph)) constr = [x for x in _constr if x in all_tasks] ord_tasks = [x for x in all_tasks if x not in constr] random.shuffle(ord_tasks) ord_tasks = constr + ord_tasks check_recursion = 0 while len(ord_tasks) > 0: success = result.insertion_minimal_cost( ord_tasks[0], mdvrp.quality_matrix, mdvrp.duration_matrix, mdvrp.setup_duration_matrix, mdvrp.demand_matrix, mdvrp.setup_cost_matrix) if success: del ord_tasks[0] try: c = nx.find_cycle(result.all_constraints) print c # print self.population[-1].routes raw_input("cycle") except nx.exception.NetworkXUnfeasible: pass else: x = ord_tasks.pop(0) if len(ord_tasks) == 0 or check_recursion > len(all_tasks): print result.routes print "couldn't do it ........" print check_recursion raw_input() ord_tasks = deepcopy(all_tasks) random.shuffle(ord_tasks) result = init_result(all_tasks, mdvrp, prec) check_recursion = 0 continue ord_tasks.append(x) check_recursion += 1 # raw_input() return result
{"hexsha": "f3981695594ab3c3b99b667195ed37574d0ef363", "size": 3003, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/cbm_pop_lib/operators/generational_functions.py", "max_stars_repo_name": "barbara0811/cbm_pop_mdvrp_optimization", "max_stars_repo_head_hexsha": "10bfc55a21f48f93ed87ec4c48f07e315795efcd", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-03-18T14:49:05.000Z", "max_stars_repo_stars_event_max_datetime": "2021-03-18T14:49:05.000Z", "max_issues_repo_path": "src/cbm_pop_lib/operators/generational_functions.py", "max_issues_repo_name": "barbara0811/cbm_pop_mdvrp_optimization", "max_issues_repo_head_hexsha": "10bfc55a21f48f93ed87ec4c48f07e315795efcd", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/cbm_pop_lib/operators/generational_functions.py", "max_forks_repo_name": "barbara0811/cbm_pop_mdvrp_optimization", "max_forks_repo_head_hexsha": "10bfc55a21f48f93ed87ec4c48f07e315795efcd", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-03-28T16:31:58.000Z", "max_forks_repo_forks_event_max_datetime": "2021-03-28T16:31:58.000Z", "avg_line_length": 32.6413043478, "max_line_length": 77, "alphanum_fraction": 0.6217116217, "include": true, "reason": "import networkx", "num_tokens": 709}
""" compute_laplace_eig(mesh, matrices, pde, eiglim, neig_max) Compute the Laplace eigenvalues, eigenfunctions and first order moments of products of pairs of eigenfunctions. """ function compute_laplace_eig(model, matrices, eiglim = Inf, neig_max = Inf) # Measure function evaluation time starttime = Base.time() # Extract parameters @unpack mesh, D, T₂ = model @unpack M, S, R, Mx, Q = matrices ncompartment = length(mesh.points) # Compute at most all eigenvalues in the given domain neig = Int(min(neig_max, size(M, 1))) println("Solving Laplace eigenvalue problem, computing $neig eigenvalues.") println("Problem size: $(size(M, 1)) points.") # Solve generalized eigenproblem, computing the smallest eigenvalues only. # If 2 * neig_max_domain >= nnode, a full decomposition is performed, # calling the eig function inside eigs λ, ϕ = eigs(S + Q, M, nev = neig, which = :SR) # λ, ϕ = eigs(Hermitian(S + Q), Hermitian(M), nev = neig, which = :SR); # λ, ϕ = eigen(Hermitian(Matrix(S + Q)), Hermitian(Matrix(M))) # All Laplace eigenvalues are nonnegative all(0 .≤ λ) || @warn "Obtained negative eigenvalues for Laplace operator." findall(λ .< 0) λ[λ.<0] # Only keep modes with length scales larger than minimum inds = λ .≤ eiglim λ = λ[inds] ϕ = ϕ[:, inds] isinf(eiglim) || length(λ) < neig || @warn "No eigenvalues were outside the interval. Consider increasing `neig_max`." eiglim neig_max # Normalize eigenfunctions with mass weighting ϕ ./= .√sum(ϕ .* (M * ϕ), dims = 1) # Compute first order moments of product of pairs of eigenfunctions moments = cat([ϕ' * Mx[dim] * ϕ for dim = 1:3]..., dims = 3) # Compute Laplace relaxation matrix massrelax = ϕ' * R * ϕ values = λ funcs = ϕ totaltime = Base.time() - starttime (; values, funcs, moments, massrelax, totaltime) end
{"hexsha": "15f373c9ca0ee7c791c3220a618f6a9e9b7976f7", "size": 1946, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/matrix_formalism/compute_laplace_eig.jl", "max_stars_repo_name": "tapudodo/SpinDoctor.jl", "max_stars_repo_head_hexsha": "11ebc8095f988e52f14e89a2c0bef9fc0c4e63c0", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/matrix_formalism/compute_laplace_eig.jl", "max_issues_repo_name": "tapudodo/SpinDoctor.jl", "max_issues_repo_head_hexsha": "11ebc8095f988e52f14e89a2c0bef9fc0c4e63c0", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/matrix_formalism/compute_laplace_eig.jl", "max_forks_repo_name": "tapudodo/SpinDoctor.jl", "max_forks_repo_head_hexsha": "11ebc8095f988e52f14e89a2c0bef9fc0c4e63c0", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.75, "max_line_length": 111, "alphanum_fraction": 0.6526207605, "num_tokens": 577}
import numpy as np import odrive import random import time ''' Random controller for physical pendulum ''' cpr = 8192 p0 = 0 t_run = 5 c_max = 3.0 v_max = 3 * cpr dt = 0.05 def p2r(p): return 2 * np.pi * (p/cpr) def v2rs(v): return p2r(v) # copied from gym env for model continuity # it handles wrap, turning pi in to -pi def angle_normalize(x): x = p2r(x) return (((x+np.pi) % (2*np.pi)) - np.pi) def action_rand(): return random.uniform(-c_max, c_max) print("Connecting...") d = odrive.find_any() print("Connected") x = d.axis0 x.controller.config.control_mode = 3 x.controller.pos_setpoint = p0 x.controller.config.control_mode = 1 t_start = time.time() t_last = t_start while t_last - t_start < t_run: t_now = time.time() t_diff = t_now - t_last if t_diff < dt: time.sleep(dt - t_diff) p = x.encoder.pos_cpr v = x.encoder.vel_estimate if abs(v) > v_max: print("Max velocity exceeded: %f" % (v)) c = 0 else: c = action_rand() x.controller.current_setpoint = c t_last = t_now x.controller.current_setpoint = 0
{"hexsha": "34636f9859aa64011dcb4ed4f5ad22c640ab4bb5", "size": 1049, "ext": "py", "lang": "Python", "max_stars_repo_path": "simple/real_pendulum_simple.py", "max_stars_repo_name": "rravenel/furuta_pendulum", "max_stars_repo_head_hexsha": "b2f2a3bb8c6f2676671a24c6f9ea4d8e6479835f", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2021-09-23T16:29:23.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-30T19:55:44.000Z", "max_issues_repo_path": "simple/real_pendulum_simple.py", "max_issues_repo_name": "rravenel/furuta_pendulum", "max_issues_repo_head_hexsha": "b2f2a3bb8c6f2676671a24c6f9ea4d8e6479835f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "simple/real_pendulum_simple.py", "max_forks_repo_name": "rravenel/furuta_pendulum", "max_forks_repo_head_hexsha": "b2f2a3bb8c6f2676671a24c6f9ea4d8e6479835f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 16.9193548387, "max_line_length": 42, "alphanum_fraction": 0.6796949476, "include": true, "reason": "import numpy", "num_tokens": 334}
import numpy as np from logging import getLogger from tensorflow.keras.datasets import fashion_mnist from tensorflow.keras.utils import to_categorical from typing import Tuple logger = getLogger(__name__) def get_fasion_mnist() -> ( Tuple[np.ndarray, np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray], ): width, height, channels = 28, 28, 1 (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x_train = x_train.reshape(x_train.shape[0], width, height, channels) x_test = x_test.reshape(x_test.shape[0], width, height, channels) x_train = x_train.astype("float32") / 255 x_test = x_test.astype("float32") / 255 x_train_s, x_test_s, x_test_b = [], [], [] x_ref, y_ref = [], [] x_train_shape = x_train.shape for i in range(len(x_train)): if y_train[i] == 7: # スニーカーの ID temp = x_train[i] x_train_s.append(temp.reshape((x_train_shape[1:]))) else: temp = x_train[i] x_ref.append(temp.reshape((x_train_shape[1:]))) y_ref.append(y_train[i]) logger.info(f"x_train_s: length = {len(x_train_s)}, shape = {x_train_s[0].shape}") logger.info(f"x_ref: length = {len(x_ref)}, shape = {x_ref[0].shape}") logger.info(f"y_ref: length = {len(y_ref)}, shape = {y_ref[0].shape}") np.random.seed(0) x_ref = np.array(x_ref) number = np.random.choice(np.arange(0, x_ref.shape[0]), 6000, replace=False) x, y = [], [] x_ref_shape = x_ref.shape for i in number: temp = x_ref[i] x.append(temp.reshape((x_ref_shape[1:]))) y.append(y_ref[i]) logger.info(f"x: length = {len(x)}, shape = {x[0].shape}") logger.info(f"y: length = {len(y)}, shape = {y[0].shape}") x_train_s = np.array(x_train_s) x_ref = np.array(x) y_ref = to_categorical(y) for i in range(len(x_test)): if y_test[i] == 7: # スニーカーのID temp = x_test[i, :, :, :] x_test_s.append(temp.reshape((x_train_shape[1:]))) if y_test[i] == 9: temp = x_test[i, :, :, :] x_test_b.append(temp.reshape((x_train_shape[1:]))) x_test_s = np.array(x_test_s) x_test_b = np.array(x_test_b) return (x_train_s, x_ref, y_ref), (x_test_s, x_test_b) if __name__ == "__main__": import logging logging.basicConfig(level=logging.DEBUG) get_fasion_mnist()
{"hexsha": "e75905f591f611248b156a35c60c100006ed76bc", "size": 2388, "ext": "py", "lang": "Python", "max_stars_repo_path": "machine_learning/tf_doc/dataset.py", "max_stars_repo_name": "iimuz/til", "max_stars_repo_head_hexsha": "b100438e8ce2f369331b3be215a4b9cdce9ffda5", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2020-07-25T01:20:08.000Z", "max_stars_repo_stars_event_max_datetime": "2020-10-03T12:58:15.000Z", "max_issues_repo_path": "machine_learning/tf_doc/dataset.py", "max_issues_repo_name": "iimuz/til", "max_issues_repo_head_hexsha": "b100438e8ce2f369331b3be215a4b9cdce9ffda5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 29, "max_issues_repo_issues_event_min_datetime": "2019-09-30T08:04:14.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-12T13:51:08.000Z", "max_forks_repo_path": "machine_learning/tf_doc/dataset.py", "max_forks_repo_name": "iimuz/til", "max_forks_repo_head_hexsha": "b100438e8ce2f369331b3be215a4b9cdce9ffda5", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-08-14T05:15:51.000Z", "max_forks_repo_forks_event_max_datetime": "2020-08-14T05:15:51.000Z", "avg_line_length": 32.2702702703, "max_line_length": 86, "alphanum_fraction": 0.6164154104, "include": true, "reason": "import numpy", "num_tokens": 684}
# This file takes in the C-sin-10-shot and converst it into the ball bouncing state data. import pickle import numpy as np filename = "C-sin_10-shot_legit_2.p" #filename = "bounce-states_100-shot_2.p" new_file = "C-sin_10-shot_legit_stateform.p" tasks = pickle.load(open(filename, "rb")) #Now convert it def restructure(indice="tasks_train"): print("number of tasks: " , len(tasks[indice])) newList = [] for j in range(0,len(tasks[indice])): if j % 100 == 0: print j print(float(j)/len(tasks[indice])) #Limit to the first 1000 if j > 999: break firstTask = tasks[indice][j] dataTask = firstTask[0] infoTask = firstTask[1] traina = dataTask[0] trainb = dataTask[1] inputa = traina[0] labela = traina[1] inputb = trainb[0] labelb = trainb[1] #print('ina shape:',inputa.shape) #print(labela.shape) #print(inputb.shape) #print(labelb.shape) ina_new = np.tile(inputa.ravel(),(6,1)).transpose().reshape(-1,3,2) laa_new = np.tile(labela.ravel(),(200,1)).transpose().reshape(-1,100,2) inb_new = np.tile(inputb.ravel(),(6,1)).transpose().reshape(-1,3,2) lab_new = np.tile(labelb.ravel(),(200,1)).transpose().reshape(-1,100,2) #print("ina_new: " , ina_new) #print("ina_new: " , len(ina_new)) #os.exit() #traina[0] = ina_new #traina[1] = laa_new #trainb[0] = inb_new #trainb[1] = lab_new n_dataTask = [[[ina_new,laa_new],[inb_new,lab_new]],infoTask] #print(n_dataTask) newList.append(n_dataTask) #print("Done") #break #break return newList #tasks[indice] = newList def pullVals(): print("Adding train....") l1 = restructure("tasks_train") print("Adding test ....") l2 = restructure("tasks_test") tasks = {'tasks_train':l1,'tasks_test':l2} #print("Tasks: ", tasks) pickle.dump(tasks, open(new_file, "wb")) pullVals()
{"hexsha": "0fdaf648e82a502f6ee87dbccd6ac35b8d26d1b3", "size": 1815, "ext": "py", "lang": "Python", "max_stars_repo_path": "data/duplicateData.py", "max_stars_repo_name": "iguanaus/maml-auto", "max_stars_repo_head_hexsha": "833ae74f821279c0eddfcaff2ff2ede3c9fc6dc6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "data/duplicateData.py", "max_issues_repo_name": "iguanaus/maml-auto", "max_issues_repo_head_hexsha": "833ae74f821279c0eddfcaff2ff2ede3c9fc6dc6", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "data/duplicateData.py", "max_forks_repo_name": "iguanaus/maml-auto", "max_forks_repo_head_hexsha": "833ae74f821279c0eddfcaff2ff2ede3c9fc6dc6", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 22.4074074074, "max_line_length": 90, "alphanum_fraction": 0.6628099174, "include": true, "reason": "import numpy", "num_tokens": 619}
import pandas as pd import numpy as np from sklearn.impute import KNNImputer from sklearn.preprocessing import LabelEncoder import pickle from imblearn.over_sampling import RandomOverSampler class Preprocessor: """ This class shall be used to clean and transform the data before training. """ def __init__(self, file_object, logger_object): self.file_object = file_object self.logger_object = logger_object def remove_columns(self,data,columns): """ Method Name: remove_columns Description: This method removes the given columns from a pandas dataframe. Output: A pandas DataFrame after removing the specified columns. On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the remove_columns method of the Preprocessor class') self.data=data self.columns=columns try: self.useful_data=self.data.drop(labels=self.columns, axis=1) # drop the labels specified in the columns self.logger_object.log(self.file_object, 'Column removal Successful.Exited the remove_columns method of the Preprocessor class') return self.useful_data except Exception as e: self.logger_object.log(self.file_object,'Exception occured in remove_columns method of the Preprocessor class. Exception message: '+str(e)) self.logger_object.log(self.file_object, 'Column removal Unsuccessful. Exited the remove_columns method of the Preprocessor class') raise Exception() def separate_label_feature(self, data, label_column_name): """ Method Name: separate_label_feature Description: This method separates the features and a Label Coulmns. Output: Returns two separate Dataframes, one containing features and the other containing Labels . On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the separate_label_feature method of the Preprocessor class') try: self.X=data.drop(labels=label_column_name,axis=1) # drop the columns specified and separate the feature columns self.Y=data[label_column_name] # Filter the Label columns self.logger_object.log(self.file_object, 'Label Separation Successful. Exited the separate_label_feature method of the Preprocessor class') return self.X,self.Y except Exception as e: self.logger_object.log(self.file_object,'Exception occured in separate_label_feature method of the Preprocessor class. Exception message: ' + str(e)) self.logger_object.log(self.file_object, 'Label Separation Unsuccessful. Exited the separate_label_feature method of the Preprocessor class') raise Exception() def dropUnnecessaryColumns(self,data,columnNameList): """ Method Name: is_null_present Description: This method drops the unwanted columns as discussed in EDA section. """ data = data.drop(columnNameList,axis=1) return data def replaceInvalidValuesWithNull(self,data): """ Method Name: is_null_present Description: This method replaces invalid values i.e. '?' with null, as discussed in EDA. """ for column in data.columns: count = data[column][data[column] == '?'].count() if count != 0: data[column] = data[column].replace('?', np.nan) return data def is_null_present(self,data): """ Method Name: is_null_present Description: This method checks whether there are null values present in the pandas Dataframe or not. Output: Returns a Boolean Value. True if null values are present in the DataFrame, False if they are not present. On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the is_null_present method of the Preprocessor class') self.null_present = False try: self.null_counts=data.isna().sum() # check for the count of null values per column for i in self.null_counts: if i>0: self.null_present=True break if(self.null_present): # write the logs to see which columns have null values dataframe_with_null = pd.DataFrame() dataframe_with_null['columns'] = data.columns dataframe_with_null['missing values count'] = np.asarray(data.isna().sum()) dataframe_with_null.to_csv('preprocessing_data/null_values.csv') # storing the null column information to file self.logger_object.log(self.file_object,'Finding missing values is a success.Data written to the null values file. Exited the is_null_present method of the Preprocessor class') return self.null_present except Exception as e: self.logger_object.log(self.file_object,'Exception occured in is_null_present method of the Preprocessor class. Exception message: ' + str(e)) self.logger_object.log(self.file_object,'Finding missing values failed. Exited the is_null_present method of the Preprocessor class') raise Exception() def encodeCategoricalValues(self,data): """ Method Name: encodeCategoricalValues Description: This method encodes all the categorical values in the training set. Output: A Dataframe which has all the categorical values encoded. On Failure: Raise Exception """ # We can map the categorical values like below: data['sex'] = data['sex'].map({'F': 0, 'M': 1}) # except for 'Sex' column all the other columns with two categorical data have same value 'f' and 't'. # so instead of mapping indvidually, let's do a smarter work for column in data.columns: if len(data[column].unique()) == 2: data[column] = data[column].map({'f': 0, 't': 1}) # this will map all the rest of the columns as we require. Now there are handful of column left with more than 2 categories. # we will use get_dummies with that. data = pd.get_dummies(data,columns=['referral_source']) encode = LabelEncoder().fit(data['Class']) data['Class'] = encode.transform(data['Class']) # we will save the encoder as pickle to use when we do the prediction. We will need to decode the predcited values # back to original with open('EncoderPickle/enc.pickle', 'wb') as file: pickle.dump(encode, file) return data def encodeCategoricalValuesPrediction(self,data): """ Method Name: encodeCategoricalValuesPrediction Description: This method encodes all the categorical values in the prediction set. Output: A Dataframe which has all the categorical values encoded. On Failure: Raise Exception """ # We can map the categorical values like below: data['sex'] = data['sex'].map({'F': 0, 'M': 1}) cat_data = data.drop(['age','T3','TT4','T4U','FTI','sex'],axis=1) #we do not want to encode values with int or float type # except for 'Sex' column all the other columns with two categorical data have same value 'f' and 't'. # so instead of mapping indvidually, let's do a smarter work for column in cat_data.columns: if (data[column].nunique()) == 1: if data[column].unique()[0]=='f' or data[column].unique()[0]=='F': #map the variables same as we did in training i.e. if only 'f' comes map as 0 as done in training data[column] = data[column].map({data[column].unique()[0] : 0}) else: data[column] = data[column].map({data[column].unique()[0]: 1}) elif (data[column].nunique()) == 2:\ data[column] = data[column].map({'f': 0, 't': 1}) # we will use get dummies for 'referral_source' data = pd.get_dummies(data, columns=['referral_source']) return data def handleImbalanceDataset(self,X,Y): """ Method Name: handleImbalanceDataset Description: This method handles the imbalance in the dataset by oversampling. Output: A Dataframe which is balanced now. On Failure: Raise Exception """ rdsmple = RandomOverSampler() x_sampled, y_sampled = rdsmple.fit_sample(X, Y) return x_sampled,y_sampled def impute_missing_values(self, data): """ Method Name: impute_missing_values Description: This method replaces all the missing values in the Dataframe using KNN Imputer. Output: A Dataframe which has all the missing values imputed. On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the impute_missing_values method of the Preprocessor class') self.data= data try: imputer=KNNImputer(n_neighbors=3, weights='uniform',missing_values=np.nan) self.new_array=imputer.fit_transform(self.data) # impute the missing values # convert the nd-array returned in the step above to a Dataframe # rounding the value because KNNimputer returns value between 0 and 1, but we need either 0 or 1 self.new_data=pd.DataFrame(data=np.round(self.new_array), columns=self.data.columns) self.logger_object.log(self.file_object, 'Imputing missing values Successful. Exited the impute_missing_values method of the Preprocessor class') return self.new_data except Exception as e: self.logger_object.log(self.file_object,'Exception occured in impute_missing_values method of the Preprocessor class. Exception message: ' + str(e)) self.logger_object.log(self.file_object,'Imputing missing values failed. Exited the impute_missing_values method of the Preprocessor class') raise Exception() def get_columns_with_zero_std_deviation(self,data): """ Method Name: get_columns_with_zero_std_deviation Description: This method finds out the columns which have a standard deviation of zero. Output: List of the columns with standard deviation of zero On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the get_columns_with_zero_std_deviation method of the Preprocessor class') self.columns=data.columns self.data_n = data.describe() self.col_to_drop=[] try: for x in self.columns: if (self.data_n[x]['std'] == 0): # check if standard deviation is zero self.col_to_drop.append(x) # prepare the list of columns with standard deviation zero self.logger_object.log(self.file_object, 'Column search for Standard Deviation of Zero Successful. Exited the get_columns_with_zero_std_deviation method of the Preprocessor class') return self.col_to_drop except Exception as e: self.logger_object.log(self.file_object,'Exception occured in get_columns_with_zero_std_deviation method of the Preprocessor class. Exception message: ' + str(e)) self.logger_object.log(self.file_object, 'Column search for Standard Deviation of Zero Failed. Exited the get_columns_with_zero_std_deviation method of the Preprocessor class') raise Exception()
{"hexsha": "c73382e2f1e9999f3a6030517181db37b8df667b", "size": 12757, "ext": "py", "lang": "Python", "max_stars_repo_path": "data_preprocessing/preprocessing.py", "max_stars_repo_name": "dipesg/Thyroid-Classification", "max_stars_repo_head_hexsha": "b5f1a7ef1b8a6c3af6bf188529ed16471e82d8dd", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "data_preprocessing/preprocessing.py", "max_issues_repo_name": "dipesg/Thyroid-Classification", "max_issues_repo_head_hexsha": "b5f1a7ef1b8a6c3af6bf188529ed16471e82d8dd", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "data_preprocessing/preprocessing.py", "max_forks_repo_name": "dipesg/Thyroid-Classification", "max_forks_repo_head_hexsha": "b5f1a7ef1b8a6c3af6bf188529ed16471e82d8dd", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 53.1541666667, "max_line_length": 192, "alphanum_fraction": 0.6052363408, "include": true, "reason": "import numpy", "num_tokens": 2394}
# MIT License # # Copyright (c) 2021 Aditya Shridhar Hegde # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json from cluster.score import Score from cluster.dataset import Dataset import argparse import os import numpy as np from pathlib import Path def encode_label(v): res = 0 for i in range(len(v)): if v[i] == 1: res += (2**i) return res def evaluate(ds, pred_dir, threshold): pred_dir = Path(pred_dir) score_list = [] for rep in pred_dir.glob("rep_*.npy"): pred = np.load(rep.resolve()) pred[pred >= threshold] = 1 pred[pred < threshold] = 0 labels = np.array([encode_label(i) for i in pred]) score_list.append(Score.evaluate_on_dataset(ds, labels)) mean_score_list = [Score.mean(i).all() for i in zip(*score_list)] return mean_score_list def cli_args(): parser = argparse.ArgumentParser( description="Evaluate output of CKP19 meanshift." ) parser.add_argument( "data_dir", help="Path to directory where dataset and labels are stored.", ) parser.add_argument( "dataset", help="Name of dataset. Expects a file by name 'dataset.gz' and 'labels*.gz' containing numpy matrices in text format.", ) parser.add_argument( "pred_dir", help="Path to directory containing output of clustering.", ) parser.add_argument( "--output_dir", default="", help="Path to output directory." ) parser.add_argument( "--threshold", default=0.1, type=float, help="Threshold for converting labels to 0 and 1." ) args = parser.parse_args() return args if __name__ == "__main__": args = cli_args() ds = Dataset.load_gz(args.data_dir, args.dataset) ds.print_stats() print() output = {} output["scores"] = evaluate(ds, args.pred_dir, args.threshold) pred_dir = Path(args.pred_dir) for i, score in enumerate(output["scores"]): print("--- Mean Scores for groundtruth label", i, "---") for k in score: print(k, ":", score[k]) print() with open(os.path.join(args.output_dir, f"{pred_dir.name}.json"), "w") as f: json.dump(output, f)
{"hexsha": "feccc4c6f08e978045883da79a18c472701adf10", "size": 3234, "ext": "py", "lang": "Python", "max_stars_repo_path": "utils/he_meanshift_evaluate.py", "max_stars_repo_name": "encryptogroup/SoK_ppClustering", "max_stars_repo_head_hexsha": "6b008a09bfe3f3b8074e24059ac3e2aa6b87f227", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-06-18T08:09:46.000Z", "max_stars_repo_stars_event_max_datetime": "2021-12-19T05:41:24.000Z", "max_issues_repo_path": "utils/he_meanshift_evaluate.py", "max_issues_repo_name": "encryptogroup/SoK_ppClustering", "max_issues_repo_head_hexsha": "6b008a09bfe3f3b8074e24059ac3e2aa6b87f227", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "utils/he_meanshift_evaluate.py", "max_forks_repo_name": "encryptogroup/SoK_ppClustering", "max_forks_repo_head_hexsha": "6b008a09bfe3f3b8074e24059ac3e2aa6b87f227", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.34, "max_line_length": 127, "alphanum_fraction": 0.6765615337, "include": true, "reason": "import numpy", "num_tokens": 751}
## License: Apache 2.0. See LICENSE file in root directory. ## Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved. #import pyrealsense2 as rs #import numpy as np from classes.realsense import RealSense from classes.objloader import * import copy import numpy as np import cv2 import os #import screeninfo CV_PI = 3.1415926535897932384626433832795 def main(): device = RealSense(21312312312) print("Color intrinsics: ", device.getcolorintrinsics()) print("Depth intrinsics: ", device.getdepthintrinsics()) try: while True: #image2 = device.getdepthstream() #image2 = cv2.applyColorMap(cv2.convertScaleAbs(image2, alpha=0.03), cv2.COLORMAP_BONE) image1 = device.getcolorstream() cv2.imwrite("../raw_output.png", image1) image2 = copy.deepcopy(image1) image3 = copy.deepcopy(image1) image4 = copy.deepcopy(image1) # Color Extraction + Shape identification # https://stackoverflow.com/questions/10948589/choosing-the-correct-upper-and-lower-hsv-boundaries-for-color-detection-withcv # ORANGE hsv = cv2.cvtColor(image2, cv2.COLOR_BGR2HSV) lower_orange = np.array([0, 0, 0],np.uint8) upper_orange = np.array([255, 150, 150],np.uint8) mask = cv2.inRange(hsv, lower_orange, upper_orange) res = cv2.bitwise_and(image2, image2, mask=mask) imgray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(imgray, (5, 5), 0) # TODO: VERY BASIC, TRY OTHER FILTERS #sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) #sharpen = cv2.filter2D(blur, -1, sharpen_kernel) ret, thresholded = cv2.threshold(blurred, 50, 255, 0) # TODO: VERY BASIC, TRY OTHER THRESHHOLDS #thresh = cv2.threshold(sharpen, 160, 255, cv2.THRESH_BINARY_INV)[1] contours, h = cv2.findContours(thresholded, 1, 2) #src_gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) #src_gray = cv2.blur(src_gray, (3, 3)) #canny_output = cv2.Canny(src_gray, 100, 100 * 2) #contours, _ = cv2.findContours(canny_output, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) squares = [] for cnt in contours: approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True) if (len(approx) == 4) & (cv2.contourArea(cnt)>25): #x,y,w,h = cv2.boundingRect(cnt) #cv2.rectangle(image1, (x, y), (x + w, y + h), (36, 255, 12), 2) #cv2.drawContours(image1, [cnt], 0, (0, 0, 255), -1) contour_poly = cv2.approxPolyDP(cnt, 3, True) #boundRect = cv2.boundingRect(contour_poly) center, radius = cv2.minEnclosingCircle(contour_poly) color=(0,255,255) #cv2.drawContours(image1, contour_poly, 1, color) #cv2.rectangle(image1, (int(boundRect[0]), int(boundRect[1])), \ (int(boundRect[0] + boundRect[2]), int(boundRect[1] + boundRect[3])), color, 2) cv2.circle(image1, (int(center[0]), int(center[1])), int(radius), color, 2) squares.append(center) #if len(squares) == 3: # cv2.putText(image1, "CALIBRATED: Detected 3 squares", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA) #else: # cv2.putText(image1, "ERROR: NOT-CALIBRATED", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA) image2 = res # RED hsv = cv2.cvtColor(image3, cv2.COLOR_BGR2HSV) lower_yellow = np.array([0, 50, 50]) upper_yellow = np.array([5, 255, 255]) mask = cv2.inRange(hsv, lower_yellow, upper_yellow) res = cv2.bitwise_and(image3, image3, mask=mask) imgray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) #blurred = cv2.GaussianBlur(imgray, (5, 5), 0) #ret, thresholded = cv2.threshold(blurred, 50, 255, 0) ret, thresholded = cv2.threshold(imgray, 0, 255, cv2.THRESH_BINARY) opening = cv2.morphologyEx(thresholded, cv2.MORPH_OPEN, (12,12)) blurred = cv2.blur(opening,(4,4)) contours, h = cv2.findContours(blurred, 1, 2) edges = cv2.Canny(thresholded, 66, 133, 3) lines = cv2.HoughLines(edges, 1, CV_PI/180, 50, 0, 0) # no big difference #kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) #close = cv2.morphologyEx(thresholded, cv2.MORPH_CLOSE, kernel, iterations=2) #contours, h = cv2.findContours(close, 1, 2) contours, h = cv2.findContours(thresholded, 1, 2) for cnt in contours: approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True) if (len(approx) == 4) & (cv2.contourArea(cnt)>25): contour_poly = cv2.approxPolyDP(cnt, 3, True) center, radius = cv2.minEnclosingCircle(contour_poly) color=(0,0,255) cv2.circle(image1, (int(center[0]), int(center[1])), int(radius), color, 2) image3 = res # green hsv = cv2.cvtColor(image4, cv2.COLOR_BGR2HSV) lower_green = np.array([100, 50, 50], np.uint8) upper_green = np.array([140, 255, 255], np.uint8) mask = cv2.inRange(hsv, lower_green, upper_green) res = cv2.bitwise_and(image4, image4, mask=mask) imgray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(imgray, (5, 5), 0) ret, thresholded = cv2.threshold(blurred, 50, 255, 0) contours, h = cv2.findContours(thresholded, 1, 2) for cnt in contours: approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True) if (len(approx) == 4) & (cv2.contourArea(cnt)>25): contour_poly = cv2.approxPolyDP(cnt, 3, True) center, radius = cv2.minEnclosingCircle(contour_poly) color=(255,0,0) cv2.circle(image1, (int(center[0]), int(center[1])), int(radius), color, 2) image4 = res # Show images #cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) cv2.namedWindow('RealSense', cv2.WND_PROP_FULLSCREEN) #screen_id = 2 #screen = screeninfo.get_monitors()[1] #cv2.moveWindow('RealSense', screen.x - 1, screen.y - 1) cv2.setWindowProperty("RealSense", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) images_H1 = np.hstack((image1, image2)) images_H2 = np.hstack((image3, image4)) images = np.vstack((images_H1, images_H2)) cv2.imshow('RealSense', images) cv2.waitKey(1) finally: # Stop streaming device.stop() if __name__ == '__main__': main()
{"hexsha": "6de7124dc9c738da55dacea4a39b68aceb1aa12e", "size": 7112, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/testSquares.py", "max_stars_repo_name": "snavas/PyMote", "max_stars_repo_head_hexsha": "9ac51251abbc943fcd36fbb58ff5c3031d375c14", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-01-09T13:51:49.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-22T20:32:34.000Z", "max_issues_repo_path": "tests/testSquares.py", "max_issues_repo_name": "snavas/GECCO", "max_issues_repo_head_hexsha": "9ac51251abbc943fcd36fbb58ff5c3031d375c14", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 11, "max_issues_repo_issues_event_min_datetime": "2020-11-20T11:06:34.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-12T00:54:17.000Z", "max_forks_repo_path": "tests/testSquares.py", "max_forks_repo_name": "snavas/PyMote", "max_forks_repo_head_hexsha": "9ac51251abbc943fcd36fbb58ff5c3031d375c14", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 49.3888888889, "max_line_length": 164, "alphanum_fraction": 0.5762092238, "include": true, "reason": "import numpy", "num_tokens": 2038}
C Copyright(C) 1999-2020 National Technology & Engineering Solutions C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with C NTESS, the U.S. Government retains certain rights in this software. C C See packages/seacas/LICENSE for details SUBROUTINE CLOSEG (MSNAP, SNAPDX, NSNAP, X, Y, II, INDEX, XBOT, & XTOP, YBOT, YTOP) C*********************************************************************** C SUBROUTINE CLOSEG = SUBROUTINE TO RETURN CLOSEST GRID LINE C*********************************************************************** C SUBROUTINE CALLED BY: C DIGIT = A SUBROUTINE TO INPUT GEOMETRY C*********************************************************************** C VARIABLES USED: C X = THE X LOCATION IN USER COORDINATES C Y = THE Y LOCATION IN USER COORDINATES C*********************************************************************** DIMENSION SNAPDX(2, MSNAP), NSNAP(2) C FIND CLOSEST GRID CROSSING IN X OR Y XHOLD = X YHOLD = Y CALL SNAPPT (MSNAP, SNAPDX, NSNAP, XHOLD, YHOLD) IF (ABS(XHOLD - X) .LT. ABS(YHOLD - Y)) THEN INDEX = 1 ELSE INDEX = 2 XHOLD = YHOLD END IF C FIND INDEX TO GRID LINE DO 100 I = 1, NSNAP(INDEX) IF (SNAPDX(INDEX, I) .GE. XHOLD) THEN II = I GO TO 110 END IF 100 CONTINUE II = NSNAP(INDEX) 110 CONTINUE C SET GRID LINE LIMITS IF (INDEX .EQ. 1) THEN XBOT = SNAPDX(1, II) XTOP = XBOT YBOT = SNAPDX(2, 1) YTOP = SNAPDX(2, NSNAP(2)) ELSE XBOT = SNAPDX(1, 1) XTOP = SNAPDX(1, NSNAP(1)) YBOT = SNAPDX(2, II) YTOP = YBOT END IF RETURN END
{"hexsha": "40cb450277526fcf6258dfdefcdfa8619363a29e", "size": 1780, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "packages/seacas/applications/fastq/closeg.f", "max_stars_repo_name": "jschueller/seacas", "max_stars_repo_head_hexsha": "14c34ae08b757cba43a3a03ec0f129c8a168a9d3", "max_stars_repo_licenses": ["Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "NetCDF", "BSL-1.0", "X11", "BSD-3-Clause"], "max_stars_count": 82, "max_stars_repo_stars_event_min_datetime": "2016-02-04T18:38:25.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-29T03:01:49.000Z", "max_issues_repo_path": "packages/seacas/applications/fastq/closeg.f", "max_issues_repo_name": "jschueller/seacas", "max_issues_repo_head_hexsha": "14c34ae08b757cba43a3a03ec0f129c8a168a9d3", "max_issues_repo_licenses": ["Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "NetCDF", "BSL-1.0", "X11", "BSD-3-Clause"], "max_issues_count": 206, "max_issues_repo_issues_event_min_datetime": "2015-11-20T01:57:47.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:12:04.000Z", "max_forks_repo_path": "packages/seacas/applications/fastq/closeg.f", "max_forks_repo_name": "jschueller/seacas", "max_forks_repo_head_hexsha": "14c34ae08b757cba43a3a03ec0f129c8a168a9d3", "max_forks_repo_licenses": ["Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "NetCDF", "BSL-1.0", "X11", "BSD-3-Clause"], "max_forks_count": 68, "max_forks_repo_forks_event_min_datetime": "2016-01-13T22:46:51.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-31T06:25:05.000Z", "avg_line_length": 26.1764705882, "max_line_length": 75, "alphanum_fraction": 0.4853932584, "num_tokens": 525}