text
stringlengths
0
1.25M
meta
stringlengths
47
1.89k
[STATEMENT] theorem \<theta>_asymptotics: "\<theta> \<sim>[at_top] (\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] from \<MM>_minus_ln_limit [PROOF STATE] proof (chain) picking this: (\<And>c. ((\<lambda>x. \<MM> x - ln x) \<longlongrightarrow> c) at_top \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis [PROOF STEP] obtain c where c: "((\<lambda>x. \<MM> x - ln x) \<longlongrightarrow> c) at_top" [PROOF STATE] proof (prove) using this: (\<And>c. ((\<lambda>x. \<MM> x - ln x) \<longlongrightarrow> c) at_top \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis goal (1 subgoal): 1. (\<And>c. ((\<lambda>x. \<MM> x - ln x) \<longlongrightarrow> c) at_top \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: ((\<lambda>x. \<MM> x - ln x) \<longlongrightarrow> c) at_top goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] define r where "r = (\<lambda>x. \<MM> x - ln x - c)" [PROOF STATE] proof (state) this: r = (\<lambda>x. \<MM> x - ln x - c) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have \<MM>_expand: "\<MM> = (\<lambda>x. ln x + c + r x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<MM> = (\<lambda>x. ln x + c + r x) [PROOF STEP] by (simp add: r_def) [PROOF STATE] proof (state) this: \<MM> = (\<lambda>x. ln x + c + r x) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have r: "r \<in> o(\<lambda>_. 1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. r \<in> o(\<lambda>_. 1) [PROOF STEP] unfolding r_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<lambda>x. \<MM> x - ln x - c) \<in> o(\<lambda>_. 1) [PROOF STEP] using tendsto_add[OF c tendsto_const[of "-c"]] [PROOF STATE] proof (prove) using this: ((\<lambda>x. \<MM> x - ln x + - c) \<longlongrightarrow> c + - c) at_top goal (1 subgoal): 1. (\<lambda>x. \<MM> x - ln x - c) \<in> o(\<lambda>_. 1) [PROOF STEP] by (intro smalloI_tendsto) auto [PROOF STATE] proof (state) this: r \<in> o(\<lambda>_. 1) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] define r' where "r' = (\<lambda>x. integral {2..x} r)" [PROOF STATE] proof (state) this: r' = (\<lambda>x. integral {2..x} r) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have integrable_r: "r integrable_on {x..y}" if "2 \<le> x" for x y :: real [PROOF STATE] proof (prove) goal (1 subgoal): 1. r integrable_on {x..y} [PROOF STEP] using that [PROOF STATE] proof (prove) using this: 2 \<le> x goal (1 subgoal): 1. r integrable_on {x..y} [PROOF STEP] unfolding r_def [PROOF STATE] proof (prove) using this: 2 \<le> x goal (1 subgoal): 1. (\<lambda>x. \<MM> x - ln x - c) integrable_on {x..y} [PROOF STEP] by (intro integrable_diff integrable_primes_M) (auto intro!: integrable_continuous_real continuous_intros) [PROOF STATE] proof (state) this: 2 \<le> ?x \<Longrightarrow> r integrable_on {?x..?y} goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] hence integral: "(r has_integral r' x) {2..x}" if "x \<ge> 2" for x [PROOF STATE] proof (prove) using this: 2 \<le> ?x \<Longrightarrow> r integrable_on {?x..?y} goal (1 subgoal): 1. (r has_integral r' x) {2..x} [PROOF STEP] by (auto simp: has_integral_iff r'_def) [PROOF STATE] proof (state) this: 2 \<le> ?x \<Longrightarrow> (r has_integral r' ?x) {2..?x} goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have r': "r' \<in> o(\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. r' \<in> o(\<lambda>x. x) [PROOF STEP] using integrable_r [PROOF STATE] proof (prove) using this: 2 \<le> ?x \<Longrightarrow> r integrable_on {?x..?y} goal (1 subgoal): 1. r' \<in> o(\<lambda>x. x) [PROOF STEP] unfolding r'_def [PROOF STATE] proof (prove) using this: 2 \<le> ?x \<Longrightarrow> r integrable_on {?x..?y} goal (1 subgoal): 1. (\<lambda>x. integral {2..x} r) \<in> o(\<lambda>x. x) [PROOF STEP] by (intro integral_smallo[OF r]) (auto simp: filterlim_ident) [PROOF STATE] proof (state) this: r' \<in> o(\<lambda>x. x) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] define C where "C = 2 * (c + ln 2 - 1)" [PROOF STATE] proof (state) this: C = 2 * (c + ln 2 - 1) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have "\<theta> \<sim>[at_top] (\<lambda>x. x + (r x * x + C - r' x))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x + (r x * x + C - r' x)) [PROOF STEP] proof (intro asymp_equiv_refl_ev eventually_mono[OF eventually_gt_at_top]) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. ?c2 < x \<Longrightarrow> \<theta> x = x + (r x * x + C - r' x) [PROOF STEP] fix x :: real [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. ?c2 < x \<Longrightarrow> \<theta> x = x + (r x * x + C - r' x) [PROOF STEP] assume x: "x > 2" [PROOF STATE] proof (state) this: 2 < x goal (1 subgoal): 1. \<And>x. ?c2 < x \<Longrightarrow> \<theta> x = x + (r x * x + C - r' x) [PROOF STEP] have "(\<MM> has_integral ((x * ln x - x + c * x) - (2 * ln 2 - 2 + c * 2) + r' x)) {2..x}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<MM> has_integral x * ln x - x + c * x - (2 * ln 2 - 2 + c * 2) + r' x) {2..x} [PROOF STEP] unfolding \<MM>_expand [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((\<lambda>x. ln x + c + r x) has_integral x * ln x - x + c * x - (2 * ln 2 - 2 + c * 2) + r' x) {2..x} [PROOF STEP] using x [PROOF STATE] proof (prove) using this: 2 < x goal (1 subgoal): 1. ((\<lambda>x. ln x + c + r x) has_integral x * ln x - x + c * x - (2 * ln 2 - 2 + c * 2) + r' x) {2..x} [PROOF STEP] by (intro has_integral_add[OF fundamental_theorem_of_calculus integral]) (auto simp flip: has_real_derivative_iff_has_vector_derivative intro!: derivative_eq_intros continuous_intros) [PROOF STATE] proof (state) this: (\<MM> has_integral x * ln x - x + c * x - (2 * ln 2 - 2 + c * 2) + r' x) {2..x} goal (1 subgoal): 1. \<And>x. ?c2 < x \<Longrightarrow> \<theta> x = x + (r x * x + C - r' x) [PROOF STEP] from has_integral_unique[OF \<theta>_conv_\<MM>_integral this] [PROOF STATE] proof (chain) picking this: 2 \<le> x \<Longrightarrow> \<MM> x * x - \<theta> x = x * ln x - x + c * x - (2 * ln 2 - 2 + c * 2) + r' x [PROOF STEP] show "\<theta> x = x + (r x * x + C - r' x)" [PROOF STATE] proof (prove) using this: 2 \<le> x \<Longrightarrow> \<MM> x * x - \<theta> x = x * ln x - x + c * x - (2 * ln 2 - 2 + c * 2) + r' x goal (1 subgoal): 1. \<theta> x = x + (r x * x + C - r' x) [PROOF STEP] using x [PROOF STATE] proof (prove) using this: 2 \<le> x \<Longrightarrow> \<MM> x * x - \<theta> x = x * ln x - x + c * x - (2 * ln 2 - 2 + c * 2) + r' x 2 < x goal (1 subgoal): 1. \<theta> x = x + (r x * x + C - r' x) [PROOF STEP] by (simp add: field_simps \<MM>_expand C_def) [PROOF STATE] proof (state) this: \<theta> x = x + (r x * x + C - r' x) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<theta> \<sim>[at_top] (\<lambda>x. x + (r x * x + C - r' x)) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] also [PROOF STATE] proof (state) this: \<theta> \<sim>[at_top] (\<lambda>x. x + (r x * x + C - r' x)) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have "(\<lambda>x. r x * x + C - r' x) \<in> o(\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<lambda>x. r x * x + C - r' x) \<in> o(\<lambda>x. x) [PROOF STEP] proof (intro sum_in_smallo r) [PROOF STATE] proof (state) goal (3 subgoals): 1. (\<lambda>x. r x * x) \<in> o(\<lambda>x. x) 2. (\<lambda>x. C) \<in> o(\<lambda>x. x) 3. r' \<in> o(\<lambda>x. x) [PROOF STEP] show "(\<lambda>_. C) \<in> o(\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<lambda>_. C) \<in> o(\<lambda>x. x) [PROOF STEP] by real_asymp [PROOF STATE] proof (state) this: (\<lambda>_. C) \<in> o(\<lambda>x. x) goal (2 subgoals): 1. (\<lambda>x. r x * x) \<in> o(\<lambda>x. x) 2. r' \<in> o(\<lambda>x. x) [PROOF STEP] qed (insert landau_o.small_big_mult[OF r, of "\<lambda>x. x"] r', simp_all) [PROOF STATE] proof (state) this: (\<lambda>x. r x * x + C - r' x) \<in> o(\<lambda>x. x) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] hence "(\<lambda>x. x + (r x * x + C - r' x)) \<sim>[at_top] (\<lambda>x. x)" [PROOF STATE] proof (prove) using this: (\<lambda>x. r x * x + C - r' x) \<in> o(\<lambda>x. x) goal (1 subgoal): 1. (\<lambda>x. x + (r x * x + C - r' x)) \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] by (subst asymp_equiv_add_right) auto [PROOF STATE] proof (state) this: (\<lambda>x. x + (r x * x + C - r' x)) \<sim>[at_top] (\<lambda>x. x) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (\<And>c d. c \<sim>[at_top] d \<Longrightarrow> c \<sim>[at_top] d) \<Longrightarrow> \<theta> \<sim>[at_top] (\<lambda>a. a) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (\<And>c d. c \<sim>[at_top] d \<Longrightarrow> c \<sim>[at_top] d) \<Longrightarrow> \<theta> \<sim>[at_top] (\<lambda>a. a) goal (1 subgoal): 1. \<theta> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<theta> \<sim>[at_top] (\<lambda>x. x) goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 4441, "file": "Prime_Number_Theorem_Prime_Number_Theorem", "length": 48}
import numpy '''a=list(map(int,input().split())) n=a[0] m=a[1] print( numpy.eye(n, m))''' import numpy print(str(numpy.eye(*map(int,input().split()))).replace('1',' 1').replace('0',' 0')) #helps make identity matrices
{"hexsha": "6e163b891a054dc976b32d4e88858f948a101dd7", "size": 220, "ext": "py", "lang": "Python", "max_stars_repo_path": "Numpy/eyeandidentity.py", "max_stars_repo_name": "TheG0dfath3r/Python", "max_stars_repo_head_hexsha": "73f40e9828b953c3e614a21a8980eaa81b5c066e", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Numpy/eyeandidentity.py", "max_issues_repo_name": "TheG0dfath3r/Python", "max_issues_repo_head_hexsha": "73f40e9828b953c3e614a21a8980eaa81b5c066e", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Numpy/eyeandidentity.py", "max_forks_repo_name": "TheG0dfath3r/Python", "max_forks_repo_head_hexsha": "73f40e9828b953c3e614a21a8980eaa81b5c066e", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2019-09-30T21:17:57.000Z", "max_forks_repo_forks_event_max_datetime": "2019-10-01T16:23:33.000Z", "avg_line_length": 20.0, "max_line_length": 84, "alphanum_fraction": 0.6318181818, "include": true, "reason": "import numpy", "num_tokens": 67}
import cv2 import turicreate as tc from tqdm import tqdm import numpy as np from tools.utils.draw import * from tools.utils.segment import * def predict_on_video(video_path, model_path, confidence_threshold=0.75, iou_threshold=0.25, target_label=None, num_objs=-1, draw_masks=False, draw_frame_num=True): model = tc.load_model(model_path) frames = read_video(video_path) pred_frames = [] for i in tqdm(range(len(frames)), desc='Predicting'): frame = frames[i] # Predict and draw pred = model.predict(get_tc_img(frame), confidence_threshold=confidence_threshold, iou_threshold=iou_threshold, verbose=False) pred = clean_predictions(pred, target_label=target_label, num_objs=num_objs) if draw_masks: crops = get_crops(frame, pred) segs = segment(crops) frame = draw(frame, pred, segs) if draw_frame_num: frame = draw_text(frame, str(i)) frame = tc.object_detector.util.draw_bounding_boxes(get_tc_img(frame), pred).pixel_data pred_frames.append(frame) return pred_frames def get_prediction_sframe(video_path, model_path, target_label=None, num_objs=-1): frames, model = read_video(video_path), tc.load_model(model_path) sf_dict = {'image': [], 'annotations': []} for i in tqdm(range(len(frames)), desc='Predicting'): frame = frames[i] # Predict and draw pred = model.predict(get_tc_img(frame), verbose=False) pred = clean_predictions(pred, target_label=target_label, num_objs=num_objs) sf_dict['image'].append(frame) sf_dict['annotations'].append(pred) return tc.SFrame(sf_dict) def clean_predictions(pred, target_label=None, num_objs=-1): if target_label: pred = [p for p in pred if p['label'] == target_label] if num_objs > 0: pred = sorted(pred, reverse=True, key=lambda x: x['confidence'])[:num_objs] return pred def read_video(video_path, downsize=0.3): video = cv2.VideoCapture(video_path) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) ret, frame = video.read() frames = [] pbar = tqdm(total=frame_count) while ret: if downsize != 1: frame = cv2.resize(frame, None, fx=downsize, fy=downsize) frames.append(frame) ret, frame = video.read() pbar.update(1) pbar.close() return frames def compile_video(frames, fps=30, target='./output.mp4'): assert len(frames) > 0, 'Frames list is empty.' height, width, layers = frames[0].shape codec = cv2.VideoWriter_fourcc(*'mp4v') video = cv2.VideoWriter(target, codec, fps, (width,height)) for frame in tqdm(frames, desc='Writing'): video.write(frame) cv2.destroyAllWindows() video.release() def get_tc_img(img): assert (isinstance(img, np.ndarray)), 'Image is not of type numpy.ndarray.' RAW_FORMAT = 2 return tc.Image(_image_data=img.tobytes(), _width=img.shape[1], _height=img.shape[0], _channels=img.shape[2], _format_enum=RAW_FORMAT, _image_data_size=img.size) def extract_imgs_from_sframe(sframe, target_label='mainPlate', buffer=64, draw_center=False, draw_center_line=False, draw_boundings=False, draw_masks=False, draw_frame_num=True, annotations_col='annotations', image_col='image', masks_col='stateMasks'): sf = list(tc.load_sframe(sframe)) frames = [] frame_num = 0 centers = {} for x in tqdm(sf, desc='Parsing'): img = x[image_col].pixel_data append_centers(x[annotations_col], centers, buffer=buffer, target_label=target_label) if draw_boundings: img = tc.object_detector.util.draw_bounding_boxes(get_tc_img(img), x[annotations_col]).pixel_data if draw_masks: img = draw_mask_data(img, x[masks_col]) if draw_center: img = draw_nearest_centers(img, centers) if draw_center_line: img = draw_center_lines(img, centers, buffer=buffer) if draw_frame_num: img = draw_text(img, str(frame_num)) frames.append(img) frame_num += 1 return frames
{"hexsha": "d9c39ec336e5f4dbde09b4738d4add5c7c8e4d67", "size": 3795, "ext": "py", "lang": "Python", "max_stars_repo_path": "tools/utils/parse.py", "max_stars_repo_name": "vitae-gravitas/model-tester", "max_stars_repo_head_hexsha": "c6de6f7e26043047fd30c9ed66f4dfb75a68a29b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "tools/utils/parse.py", "max_issues_repo_name": "vitae-gravitas/model-tester", "max_issues_repo_head_hexsha": "c6de6f7e26043047fd30c9ed66f4dfb75a68a29b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "tools/utils/parse.py", "max_forks_repo_name": "vitae-gravitas/model-tester", "max_forks_repo_head_hexsha": "c6de6f7e26043047fd30c9ed66f4dfb75a68a29b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.1071428571, "max_line_length": 252, "alphanum_fraction": 0.7354413702, "include": true, "reason": "import numpy", "num_tokens": 994}
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Precompute Fraunhofer fixed representations (logSTFT, logMel) """ import os from pathlib import Path # from omegaconf import OmegaConf import numpy as np # from d2021umaps.utils import IncrementalHDF5 from d2021umaps.logging import ColorLogger, make_timestamp from d2021umaps.features import wavpath_to_mel, wavpath_to_stft # ############################################################################## # # GLOBALS # ############################################################################## CONF = OmegaConf.create() CONF.ROOT_PATH = None # must be given by user! # CONF.WAV_NORM = "none" CONF.WAV_SR = 16000 # WAVs will be resampled to this when loaded CONF.STFT_WINSIZE = 1024 # powers of 2 ideally CONF.STFT_HOPSIZE = 512 CONF.NUM_MELS = 128 CONF.OUT_DIR = "precomputed_features" log_ts = make_timestamp(timezone="Europe/London", with_tz_output=False) CONF.LOG_OUTPATH = os.path.join("logs", "{}_[{}].log".format(log_ts, __file__)) cli_conf = OmegaConf.from_cli() CONF = OmegaConf.merge(CONF, cli_conf) assert CONF.ROOT_PATH is not None, \ "Please provide a ROOT_PATH=... containing train_cut and test_cut!" CONF.ROOT_PATH = str(Path(CONF.ROOT_PATH).resolve()) # in case of softlinks # these variables may depend on CLI input so we set them at the end TRAIN_PATH = os.path.join(CONF.ROOT_PATH, "train_cut") TEST_PATH = os.path.join(CONF.ROOT_PATH, "test_cut") STFT_FREQBINS = int(CONF.STFT_WINSIZE / 2 + 1) STFT_OUTPATH = os.path.join( CONF.OUT_DIR, f"fraunhofer_wavnorm={CONF.WAV_NORM}_stft_win{CONF.STFT_WINSIZE}_" + f"hop{CONF.STFT_HOPSIZE}.h5") MEL_OUTPATH = os.path.join( CONF.OUT_DIR, f"fraunhofer_wavnorm={CONF.WAV_NORM}_mel_win{CONF.STFT_WINSIZE}_" + f"hop{CONF.STFT_HOPSIZE}_m{CONF.NUM_MELS}.h5") # ############################################################################## # # MAIN ROUTINE # ############################################################################## LOGGER = ColorLogger(__file__, CONF.LOG_OUTPATH, filemode="w") LOGGER.info(f"\n\n\nSTARTED SCRIPT: {__file__}") LOGGER.info(OmegaConf.to_yaml(CONF)) def save_stft_dataset(out_path, *paths, in_db=True, root_path=None): """ """ ds_len = len(paths) with IncrementalHDF5(out_path, STFT_FREQBINS, np.float32) as ihdf5: LOGGER.info(f"Writing to {out_path}") for i, abspath in enumerate(paths, 1): if root_path is not None: metadata_str = str(abspath.relative_to(root_path)) else: metadata_str = str(abspath) if i % 100 == 0: LOGGER.info(f"[{i}/{ds_len}] save_stft_dataset: {metadata_str}") arr = wavpath_to_stft( str(abspath), CONF.WAV_SR, wav_norm=CONF.WAV_NORM, n_fft=CONF.STFT_WINSIZE, hop_length=CONF.STFT_HOPSIZE, pad_mode="constant", in_decibels=in_db, logger=LOGGER) if arr is None: # if None, wav had zero samples continue ihdf5.append(arr, metadata_str) # check that file is indeed storing the exact array _, arr_w = arr.shape assert (arr == ihdf5.data_ds[:, -arr_w:]).all(), \ "Should never happen" LOGGER.info(f"Finished writing to {out_path}") def save_mel_dataset(out_path, *paths, in_db=True, root_path=None): """ """ ds_len = len(paths) with IncrementalHDF5(out_path, CONF.NUM_MELS, np.float32) as ihdf5: LOGGER.info(f"Writing to {out_path}") for i, abspath in enumerate(paths, 1): if root_path is not None: metadata_str = str(abspath.relative_to(root_path)) else: metadata_str = str(abspath) if i % 100 == 0: LOGGER.info(f"[{i}/{ds_len}] save_mel_dataset: {metadata_str}") arr = wavpath_to_mel( str(abspath), CONF.WAV_SR, wav_norm=CONF.WAV_NORM, n_mels=CONF.NUM_MELS, hop_length=CONF.STFT_HOPSIZE, pad_mode="constant", in_decibels=in_db, logger=LOGGER) if arr is None: # if None, wav had zero samples continue ihdf5.append(arr, metadata_str) # check that file is indeed storing the exact array _, arr_w = arr.shape assert (arr == ihdf5.data_ds[:, -arr_w:]).all(), \ "Should never happen" LOGGER.info(f"Finished writing to {out_path}") train_paths = list(Path(TRAIN_PATH).glob("**/*.wav")) test_paths = list(Path(TEST_PATH).glob("**/*.wav")) paths = train_paths + test_paths save_mel_dataset(MEL_OUTPATH, *paths, root_path=CONF.ROOT_PATH) save_stft_dataset(STFT_OUTPATH, *paths, root_path=CONF.ROOT_PATH)
{"hexsha": "e8bc0e0cfb812d7c32521e012f61a1e17efddd71", "size": 4763, "ext": "py", "lang": "Python", "max_stars_repo_path": "00c_precompute_fraunhofer_fixed.py", "max_stars_repo_name": "andres-fr/dcase2021_umaps", "max_stars_repo_head_hexsha": "0418b256d484a66958763061170bb2346cb6030a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2021-11-17T14:12:11.000Z", "max_stars_repo_stars_event_max_datetime": "2021-11-30T09:28:21.000Z", "max_issues_repo_path": "00c_precompute_fraunhofer_fixed.py", "max_issues_repo_name": "andres-fr/dcase2021_umaps", "max_issues_repo_head_hexsha": "0418b256d484a66958763061170bb2346cb6030a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "00c_precompute_fraunhofer_fixed.py", "max_forks_repo_name": "andres-fr/dcase2021_umaps", "max_forks_repo_head_hexsha": "0418b256d484a66958763061170bb2346cb6030a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-08-22T14:54:59.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-22T14:54:59.000Z", "avg_line_length": 37.8015873016, "max_line_length": 80, "alphanum_fraction": 0.6115893345, "include": true, "reason": "import numpy", "num_tokens": 1227}
\subsection{Content Analyzer} \label{sec:content-analyzer} \index{Content Analyzer} For this project the data describing the products, offered by an online shop have been semi-structured. It was a text file where each line described a product. An example is given in listing~\ref{lst:product-data}. \begin{lstlisting}[caption={Example product data},label={lst:product-data} ,keywordstyle=\color{black} ,commentstyle=\itshape\color{black} ,identifierstyle=\color{black} ,stringstyle=\color{black} ] ImgURL Brand Product Price Shoulder_Width Model_Length Collar_Type Material http://i1.ztat.net/large/4E/M2/1E/00/0K/11/4EM21E000-K11@4.jpg Emoi en Plus Bluse - dazzling blue 24,95 °(\euro{})° 50 cm 70 cm bei Gr°(\"{o}\ss{})°e 44 Rundhals 100% Polyester http://i2.ztat.net/large/NA/52/1D/03/NA/11/NA521D03N-A11@3.jpg NAF NAF WENT - Bluse - ecru/noir 38,95 °(\euro{})° 55 cm bei Gr°(\"o{}\ss{})°e S Rundhals 64% Viskose, 22% Baumwolle, 10% Modal, 4% Polyamid \end{lstlisting} %\noindent %Since the structure of the input was known, it was possible to filter out all relevant product information without using too fancy IR methods. %With regular expressions all relevant informations such as the product\_image-url, brand, product, price, collar type and material have been extracted and stored in a database. From each line describing a product information such as the image URL and materials have been extracted. Except from the image URL every word separated by whitespace has been interpreted as term. Since a RS could theoretically handle any kind of item afar from products, a distinction has been made between documents in general and products. The relation between a product and a document has been illustrated in figure~\ref{fig:ertermdocumentassignment}. \begin{figure}[h] \center \includegraphics[scale=0.5]{inc/implementation/contentanalyzer/er_term_document_assignment} \caption{ER diagram of documents, products and associated terms} \label{fig:ertermdocumentassignment} \end{figure} Because there is a N-to-N relation between \textit{Product} and \textit{Term}, an intermediate table is necessary when transforming the ER-diagram into a relational model. Therefore the table \textit{TermDocumentAssigner} has been introduced. The relational model looks as follows: \begin{quote} \textbf{Document}{(\underline{document\_id})}\\ \textbf{Product}{(\underline{document\_id[Document]}, image\_name)}\\ \textbf{Term}{(\underline{term\_id}, name)}\\ \textbf{TermDocumentAssigner}{(\underline{document\_id[Document], term\_id[Term]}, count)}\\ \end{quote} Because \textit{TermDocumentAssigner} will be very often used to query all terms of a document, it might be useful to create an index on \textit{document\_id}. Implicitly there will also be one on the combined primary key \textit{document\_id, term\_id}. The tables, implemented by the RS built for this thesis, filled with example data may look as in table~\ref{tab:tablestermdocumentproduct}. Table~\ref{tab:tablestermdocumentproduct} will serve as resource for terms and documents to illustrate subsequent examples. \begin{table} \center % Document \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l } \rowcolor{\dustRowHead} \textbf{Document}\\\hline document\_id\\\hline 1\\ 2\\ 3\\ \end{tabular} \quad % Product \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l | l } \rowcolor{\dustRowHead} \multicolumn{2}{ c }{\textbf{Product}}\\\hline document\_id & image\_name\\\hline 1 & image\_1.png\\ 2 & image\_2.png\\ 3 & image\_3.png\\ \end{tabular} %~\\ \hfill\\ %TermDocumentAssigner \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l | l | l } \rowcolor{\dustRowHead} \multicolumn{3}{c}{\textbf{TermDocumentAssigner}}\\\hline document\_id & term\_id & count\\\hline 1 & 1 & 1\\ 1 & 2 & 1\\ 1 & 4 & 1\\ 2 & 1 & 1\\ 2 & 3 & 1\\ 2 & 7 & 1\\ 3 & 4 & 1\\ 3 & 5 & 1\\ 3 & 6 & 1\\ \end{tabular} \quad % Term \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l | l } \rowcolor{\dustRowHead} \multicolumn{2}{ c }{\textbf{Term}}\\\hline term\_id & name\\\hline 1 & blouse\\ 2 & blue\\ 3 & polyester\\ 4 & cotton\\ 5 & green\\ 6 & trouser\\ 7 & white\\ \end{tabular} \caption{Table layout defined by figure~\ref{fig:ertermdocumentassignment}} \label{tab:tablestermdocumentproduct} \end{table} %\noindent As already mentioned before, Rocchio's algorithm works best with tf-idf vectors. With the theory described in section~\ref{sec:tfidf} the next big step is to show how vectors for this project have been built. As a short reminder: all products are described through their terms. In order to build tf-idf vectors, one also has to build term frequency-, as well as inverse document frequency vectors - these are the preconditions. Since these tasks are fairly similar, some design patterns help realizing them. The \gls{abstract factory} pattern proofed to be very handy for this task. For each necessary vector (tf, idf, tf-idf) one can build a vector creator which shares the design of the other vector creators. Therefore the abstract class \textit{VectorCreator} has been introduced. The \textit{VectorCreator} offers the abstract method \textit{\_get\_vector(document\_id:int):DocumentVector} which will be responsible for creating all vectors. All inherited classes will implement the abstract method with a procedure to create an instance of \textit{DocumentVector}. A UML-diagram of \textit{DocumentVector} and some derived classes is shown in figure~\ref{fig:uml-document-vectors}. \begin{figure}[h] \center \includegraphics[scale=0.4]{inc/implementation/contentanalyzer/uml_document_vectors} \caption{Document vectors} \label{fig:uml-document-vectors} \end{figure} \FloatBarrier \paragraph{Term frequency vector} \index{Term Frequency} A term frequency vector representing a document consists of the count of a term's occurrences. The current implementation uses the SQL query displayed in listing~\ref{lst:tf-query} for generating the tf vector. The result of a query may look as in table~\ref{tab:tf-query-result} (based on the tables shown in figure~\ref{fig:ertermdocumentassignment}). The result of the query shown in listing~\ref{lst:tf-query} will finally be stored in the \textit{TermFrequencyVector} class derived from \textit{DocumentVector}. \begin{table} \center \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l|l|l } \rowcolor{\dustRowHead} \multicolumn{3}{c}{\textbf{$\text{tf}_\text{document\_1}$}}\\\hline term\_id & name & value \\\hline 1 & blouse & 1\\ 2 & blue & 1\\ 3 & polyester & 0\\ 4 & cotton & 1\\ 5 & green & 0\\ 6 & trouser & 0\\ 7 & white & 0\\ \end{tabular} \quad \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l|l|l } \rowcolor{\dustRowHead} \multicolumn{3}{c}{\textbf{$\text{tf}_\text{document\_2}$}}\\\hline term\_id & name & value\\\hline 1 & blouse & 1\\ 2 & blue & 0\\ 3 & polyester & 1\\ 4 & cotton & 0\\ 5 & green & 0\\ 6 & trouser & 0\\ 7 & white & 1\\ \end{tabular} \hfill\\ \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l|l|l } \rowcolor{\dustRowHead} \multicolumn{3}{ c }{\textbf{$\text{tf}_\text{document\_3}$}}\\\hline term\_id & name & value\\\hline 1 & blouse & 0\\ 2 & blue & 0\\ 3 & polyester & 0\\ 4 & cotton & 1\\ 5 & green & 1\\ 6 & trouser & 1\\ 7 & white & 0\\ \end{tabular} \caption{Possible result of the query in listing~\ref{lst:tf-query}} \label{tab:tf-query-result} \end{table} \begin{lstlisting}[language=SQL,caption={SQL query for generating tf-vectors},label={lst:tf-query},float=h] -- :document_id is a parameter given to the method SELECT [t].[term_id] , [t].[name] , CASE WHEN [a].[document_id] IS NULL THEN 0 ELSE [a].[count] END AS [value] FROM [Term] AS [t] LEFT OUTER JOIN [TermDocumentAssigner] AS [a] ON [t].[term_id] = [a].[term_id] AND [document_id] = :document_id ORDER BY [t].[term_id] ; \end{lstlisting} \FloatBarrier \paragraph{Document frequency vector} \index{Document Frequency} In contrast to \textit{TermFrequencyVector} the \textit{DocumentFrequencyVector} resembles the whole collection of documents, rather than a single one. Therefore the parameter \textit{document\_id} can be omitted. But in order to sustain uniformity between all classes inheriting from \textit{VectorCreator} it will be carried along but set to a null value. To make the source code more readable, the SQL code for querying the document-frequency values has been outsourced to a SQL-View as shown in listing~\ref{lst:df-view}. This little tweak (which has no influence on execution-speed) left the query for df-vectors as simple as shown in listing~\ref{lst:df-query}. The result for the example is given in table~\ref{tab:df-query-result}. \begin{lstlisting}[language=SQL,caption={SQL statement to create the \textit{DocumentFrequency}-view},label={lst:df-view},float=h] CREATE VIEW IF NOT EXISTS [DocumentFrequency] AS SELECT [t].[term_id] , [t].[name] , CASE WHEN [a].[count] IS NULL THEN 0 ELSE [a].[count] END AS [value] FROM [Term] as [t] LEFT OUTER JOIN ( SELECT [term_id] , SUM([document_id]) AS [count] FROM [TermDocumentAssigner] GROUP BY [term_id] ) AS [a] ON [t].[term_id] = [a].[term_id] ORDER BY [t].[term_id] ; \end{lstlisting} \begin{lstlisting}[language=SQL,caption={SQL query for generating df-vectors},label={lst:df-query},float=h] SELECT [term_id] , [name] , [value] FROM [DocumentFrequency] ; \end{lstlisting} \begin{table} \center \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l | l | l } \rowcolor{\dustRowHead} \multicolumn{3}{ c }{\textbf{df}}\\\hline term\_id & name & value\\\hline 1 & blouse & 2\\ 2 & blue & 1\\ 3 & polyester & 1\\ 4 & cotton & 2\\ 5 & green & 1\\ 6 & trouser & 1\\ 7 & white & 1\\ \end{tabular} \caption{Possible results of the query in figure~\ref{lst:df-query}} \label{tab:df-query-result} \end{table} \FloatBarrier \paragraph{Inverse document frequency vector} \index{Inverse Document Frequency} For building idf-vectors one can use df-vectors (and their source code) as basis. The inverse document frequency is the logarithm of the total count of documents in a collection divided by a term's document frequency. Another SQL-View called N-view will provide the number of documents, while the code for creating idf-vectors get outsourced into its own view once more. Since the SQL implementation of \gls{sqlite3} does not offer a logarithm-function, one has to define his very own. Fortunately the standard python library for connecting to sqlite3-databases supports the creation of functions as shown in listing~\ref{lst:idf-log-function}. \begin{lstlisting}[language=Python,caption={Preparing the log-function for SQL-statement in listing~\ref{lst:idf-view}},label={lst:idf-log-function},float=h] def _create_log_function(self, conn): conn.create_function('log10', 1, InverseDocumentFrequencyVectorCreator.log_10) pass def log_10(x): base = 10 return math.log(x, base) \end{lstlisting} \begin{lstlisting}[language=SQL,caption={SQL-statement to create the InverseDocumentFrequency-view},label={lst:idf-view},float=h] CREATE VIEW IF NOT EXISTS [InverseDocumentFrequency] AS SELECT [term_id] , [name] , log10 ( CAST ((SELECT [document_count] from [N]) AS REAL) / [df].[value] ) AS [value] FROM [DocumentFrequency] AS [df] ORDER BY [term_id] ; \end{lstlisting} \begin{lstlisting}[language=SQL,caption={SQL-statement to create the N-view},label={lst:n-view},float=h] CREATE VIEW IF NOT EXISTS [N] AS SELECT (SELECT COUNT(*) FROM [Document]) AS [document_count] , (SELECT COUNT(*) FROM [Term]) AS [term_count] ; \end{lstlisting} \begin{lstlisting}[language=SQL,caption={SQL-query for generating idf-vectors},label={fig:idf-query},float=h] SELECT [term_id] , [name] , [value] FROM [InverseDocumentFrequency] ; \end{lstlisting} \begin{table} \center \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l | l | l } \rowcolor{\dustRowHead} \multicolumn{3}{ c }{\textbf{idf}}\\\hline term\_id & name & value\\\hline 1 & blouse & $\log_{10}(3/2) \approx 0.18$\\ 2 & blue & $\log_{10}(3/1) \approx 0.48$\\ 3 & polyester & $\log_{10}(3/1) \approx 0.48$\\ 4 & cotton & $\log_{10}(3/2) \approx 0.18$\\ 5 & green & $\log_{10}(3/1) \approx 0.48$\\ 6 & trouser & $\log_{10}(3/1) \approx 0.48$\\ 7 & white & $\log_{10}(3/1) \approx 0.48$\\ \end{tabular} \caption{Possible results of the query in figure~\ref{fig:idf-query}} \label{tab:idf-query-result} \end{table} \FloatBarrier \paragraph{Tf-idf vector} \index{TfIdf} Finally one can create tf-idf vectors which are the combination of tf- and idf-vectors (as explained in section~\ref{sec:tfidf}). Since tf-idf is merely the multiplication of term frequency with the corresponding inverse document frequency, it is rather simple to create. Listing~\ref{lst:tfidf-code} shows the creation of a \textit{TfIdfVector} in the method \textit{\_create\_vector()}, whereas the multiplication is in method \textit{\_get\_values()}. \begin{lstlisting}[language=Python,caption={Python code for calculating tfidf-vectos on basis on tf- and idf-vectors},label={lst:tfidf-code},float=h] class TfIdfVectorCreator(VectorCreator): def __init__(self, db_connection_str): super(TfIdfVectorCreator, self).__init__(db_connection_str) self._tf_creator = TermFrequencyVectorCreator(db_connection_str) self._idf_creator = InverseDocumentFrequencyVectorCreator(db_connection_str) pass def _create_vector(self, document_id): tf_vector = self._tf_creator.get_vector(document_id) idf_vector = self._idf_creator.get_vector(document_id) tfidf_vector = TfIdfVector() for triple in self._get_values(tf_vector, idf_vector): tfidf_vector.add_to_vector(triple) return tfidf_vector def _get_values(self, tfv, idfv): ingredients = zip(tfv.term_id, tfv.description, tfv.values, idfv.values) for (tf_tid, tf_desc, tf_val, idf_val) in ingredients: yield (tf_tid, tf_desc, tf_val * idf_val) pass pass \end{lstlisting} \begin{table} \center \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l|l|l } \rowcolor{\dustRowHead} \multicolumn{3}{ c }{\textbf{$\text{tf-idf}_\text{document\_1}$}}\\\hline term\_id & name & value\\\hline 1 & blouse & $\approx 0.18$\\ 2 & blue & $\approx 0.48$\\ 3 & polyester & 0\\ 4 & cotton & $\approx 0.18$\\ 5 & green & 0\\ 6 & trouser & 0\\ 7 & white & 0\\ \end{tabular} \quad \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l|l|l } \rowcolor{\dustRowHead} \multicolumn{3}{ c }{\textbf{$\text{tf-idf}_\text{document\_2}$}}\\\hline term\_id & name & value\\\hline 1 & blouse & $\approx 0.18$\\ 2 & blue & 0\\ 3 & polyester& $\approx 0.48$\\ 4 & cotton & 0\\ 5 & green & 0\\ 6 & trouser & 0\\ 7 & white & $\approx 0.48$\\ \end{tabular} \hfill\\ \rowcolors{1}{\dustRowFirst}{\dustRowSecond} \begin{tabular}{ l|l|l } \rowcolor{\dustRowHead} \multicolumn{3}{ c }{\textbf{$\text{tf-idf}_\text{document\_3}$}}\\\hline term\_id & name & value\\\hline 1 & blouse & 0\\ 2 & blue & 0\\ 3 & polyester & 0\\ 4 & cotton & $\approx 0.18$\\ 5 & green & $\approx 0.48$\\ 6 & trouser & $\approx 0.48$\\ 7 & white & 0\\ \end{tabular} \caption{Possible result of the function in figure~\ref{lst:tfidf-code}} \label{tab:tfidf-query-result} \end{table} \FloatBarrier With the vectors built, the main task of the content analyzer is done. However there is still one more enhancement one can implement to make the repetitive creation of vectors faster. Through \gls{dynamic programming} one can easily ``re-create" vectors which have already been used once. Since it proves useful, if all inheriting classes of \textit{VectorCreator} can use dynamic programming without explicitly implementing it, one can implement the \textit{VectorCreator} as \gls{proxy}. As a result the \textit{VectorCreator} gets another method called \textit{get\_vector(document\_id:int)} to which the same rules apply as to \textit{\_create\_vector(document\_id:int)}. The buffering of \textit{DocumentVectors} can now be implemented in \textit{get\_vector(document\_id:int)} and all inheriting classes will also posses caching capabilities. The code for dynamic programming is shown in listing~\ref{lst:dynamic-programming}.\\ In order to get a picture of all important vectors and their creation, a UML-diagram has been included (figure~\ref{fig:uml-vectorssimple}). \begin{lstlisting}[language=Python,caption={Dynamic programming},label={lst:dynamic-programming},float=h] class VectorCreator(object): # ... omitted unnecessary code def get_vector(self, document_id=None): if document_id is not None and not isinstance(document_id, int): raise TypeError('document_id must either be an integer or None') if not document_id in self._cache: vector = self._create_vector(document_id) if vector.document_id is None: vector.document_id = document_id self._cache[document_id] = vector return self._cache[document_id]} def _create_vector(self, document_id): # ... creating vector \end{lstlisting} \begin{figure}[h] \center \includegraphics[scale=0.33,angle=90]{inc/implementation/contentanalyzer/uml_vectors_simple} \caption{Abstract and concrete vector fabric} \label{fig:uml-vectorssimple} \end{figure}
{"hexsha": "6164b915564edd4963cac9c9b6c599aa85dba70f", "size": 19833, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "thesis/inc/implementation/contentanalyzer/contentanalyzer.tex", "max_stars_repo_name": "dustywind/bachelor-thesis", "max_stars_repo_head_hexsha": "be06aaeb1b4d73f727a19029a3416a9b8043194d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "thesis/inc/implementation/contentanalyzer/contentanalyzer.tex", "max_issues_repo_name": "dustywind/bachelor-thesis", "max_issues_repo_head_hexsha": "be06aaeb1b4d73f727a19029a3416a9b8043194d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "thesis/inc/implementation/contentanalyzer/contentanalyzer.tex", "max_forks_repo_name": "dustywind/bachelor-thesis", "max_forks_repo_head_hexsha": "be06aaeb1b4d73f727a19029a3416a9b8043194d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 40.6413934426, "max_line_length": 203, "alphanum_fraction": 0.6394897393, "num_tokens": 5643}
-- An Agda example file module test where open import Coinduction open import Data.Bool open import {- pointless comment between import and module name -} Data.Char open import Data.Nat open import Data.Nat.Properties open import Data.String open import Data.List hiding ([_]) open import Data.Vec hiding ([_]) open import Relation.Nullary.Core open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans; inspect; [_]) open SemiringSolver {- this is a {- nested -} comment -} -- Factorial _! : ℕ → ℕ 0 ! = 1 (suc n) ! = (suc n) * n ! -- The binomial coefficient _choose_ : ℕ → ℕ → ℕ _ choose 0 = 1 0 choose _ = 0 (suc n) choose (suc m) = (n choose m) + (n choose (suc m)) -- Pascal's rule choose-too-many : ∀ n m → n ≤ m → n choose (suc m) ≡ 0 choose-too-many .0 m z≤n = refl choose-too-many (suc n) (suc m) (s≤s le) with n choose (suc m) | choose-too-many n m le | n choose (suc (suc m)) | choose-too-many n (suc m) (≤-step le) ... | .0 | refl | .0 | refl = refl _++'_ : ∀ {a n m} {A : Set a} → Vec A n → Vec A m → Vec A (m + n) _++'_ {_} {n} {m} v₁ v₂ rewrite solve 2 (λ a b → b :+ a := a :+ b) refl n m = v₁ Data.Vec.++ v₂ ++'-test : (1 ∷ 2 ∷ 3 ∷ []) ++' (4 ∷ 5 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ++'-test = refl data Coℕ : Set where co0 : Coℕ cosuc : ∞ Coℕ → Coℕ nanana : Coℕ nanana = let two = ♯ cosuc (♯ (cosuc (♯ co0))) in cosuc two abstract data VacuumCleaner : Set where Roomba : VacuumCleaner pointlessLemmaAboutBoolFunctions : (f : Bool → Bool) → f (f (f true)) ≡ f true pointlessLemmaAboutBoolFunctions f with f true | inspect f true ... | true | [ eq₁ ] = trans (cong f eq₁) eq₁ ... | false | [ eq₁ ] with f false | inspect f false ... | true | _ = eq₁ ... | false | [ eq₂ ] = eq₂ mutual isEven : ℕ → Bool isEven 0 = true isEven (suc n) = not (isOdd n) isOdd : ℕ → Bool isOdd 0 = false isOdd (suc n) = not (isEven n) foo : String foo = "Hello World!" nl : Char nl = '\n' private intersperseString : Char → List String → String intersperseString c [] = "" intersperseString c (x ∷ xs) = Data.List.foldl (λ a b → a Data.String.++ Data.String.fromList (c ∷ []) Data.String.++ b) x xs baz : String baz = intersperseString nl (Data.List.replicate 5 foo) postulate Float : Set {-# BUILTIN FLOAT Float #-} pi : Float pi = 3.141593 -- Astronomical unit au : Float au = 1.496e11 -- m plusFloat : Float → Float → Float plusFloat a b = {! !} record Subset (A : Set) (P : A → Set) : Set where constructor _#_ field elem : A .proof : P elem
{"hexsha": "d930a77b6abbd22305d4945b4169cee9ab1a80f0", "size": 2558, "ext": "agda", "lang": "Agda", "max_stars_repo_path": "vendor/bundle/ruby/2.0.0/gems/pygments.rb-0.6.1/vendor/pygments-main/tests/examplefiles/test.agda", "max_stars_repo_name": "agent010101/agent010101.github.io", "max_stars_repo_head_hexsha": "b8bf8ef1bc30999223deb95506b0685b4ec8449a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 23, "max_stars_repo_stars_event_min_datetime": "2015-02-17T18:34:15.000Z", "max_stars_repo_stars_event_max_datetime": "2017-08-25T17:11:52.000Z", "max_issues_repo_path": "vendor/bundle/ruby/2.0.0/gems/pygments.rb-0.6.1/vendor/pygments-main/tests/examplefiles/test.agda", "max_issues_repo_name": "agent010101/agent010101.github.io", "max_issues_repo_head_hexsha": "b8bf8ef1bc30999223deb95506b0685b4ec8449a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 34, "max_issues_repo_issues_event_min_datetime": "2015-05-12T17:54:27.000Z", "max_issues_repo_issues_event_max_datetime": "2019-01-28T14:30:46.000Z", "max_forks_repo_path": "vendor/bundle/ruby/2.0.0/gems/pygments.rb-0.6.1/vendor/pygments-main/tests/examplefiles/test.agda", "max_forks_repo_name": "agent010101/agent010101.github.io", "max_forks_repo_head_hexsha": "b8bf8ef1bc30999223deb95506b0685b4ec8449a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 16, "max_forks_repo_forks_event_min_datetime": "2015-02-06T20:43:39.000Z", "max_forks_repo_forks_event_max_datetime": "2021-02-14T10:05:12.000Z", "avg_line_length": 24.8349514563, "max_line_length": 152, "alphanum_fraction": 0.6082877248, "num_tokens": 922}
/**************************************************************************** * * fkie_potree_rviz_plugin * Copyright © 2018 Fraunhofer FKIE * Author: Timo Röhling * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************/ #include "cloud_loader.h" #include "potree_node.h" #include <OgreManualObject.h> #include <boost/filesystem.hpp> #include <ros/console.h> #include <queue> namespace fkie_potree_rviz_plugin { CloudLoader::CloudLoader(const fs::path& path) { std::string error_msg; if (!isValid(path, error_msg)) throw std::runtime_error(error_msg); fs::path cloud_file = path / "cloud.js"; meta_data_ = std::make_shared<CloudMetaData>(); meta_data_->readFromJson(cloud_file); } bool CloudLoader::isValid(const fs::path& path, std::string& error_msg) { error_msg.clear(); if (!fs::is_directory(path)) { error_msg = "not an existing folder"; return false; } if (fs::is_regular(path / "metadata.json")) { error_msg = "unsupported Potree 2.0 format"; return false; } if (!fs::is_regular(path / "cloud.js")) { error_msg = "not a Potree folder"; return false; } try { CloudMetaData meta_data; meta_data.readFromJson(path / "cloud.js"); return true; } catch (std::exception& e) { error_msg = e.what(); return false; } } std::shared_ptr<PotreeNode> CloudLoader::loadHierarchy() const { std::shared_ptr<PotreeNode> root_node = std::make_shared<PotreeNode>("", meta_data_, meta_data_->bounding_box_); loadNodeHierarchy(root_node); return root_node; } void CloudLoader::loadNodeHierarchy( const std::shared_ptr<PotreeNode>& root_node) const { std::queue<std::shared_ptr<PotreeNode>> next_nodes; next_nodes.push(root_node); char cfg[5]; fs::path hrc_file = fileName(meta_data_, root_node->name(), ".hrc"); std::ifstream f{hrc_file.c_str()}; if (!f.good()) ROS_ERROR_STREAM("failed to read file: " << hrc_file); f.read(cfg, 5); while (f.good()) { std::shared_ptr<PotreeNode> node = next_nodes.front(); next_nodes.pop(); for (int j = 0; j < 8; ++j) { if (cfg[0] & (1 << j)) { if (!node->children_[j]) { std::shared_ptr<PotreeNode> child = std::make_shared<PotreeNode>( node->name() + std::to_string(j), meta_data_, childBB(node->boundingBox(), j), node); node->children_[j] = child; } next_nodes.push(node->children_[j]); } } f.read(cfg, 5); } std::set<PotreeNode*> seen; // save the shared_ptr copy overhead and just // track seen nodes by their address while (!next_nodes.empty()) { std::shared_ptr<PotreeNode> node = next_nodes.front()->parent().lock(); next_nodes.pop(); if (node && seen.insert(node.get()).second) loadNodeHierarchy(node); } } void CloudLoader::loadPoints(const std::shared_ptr<PotreeNode>& node, bool recursive) const { fs::path bin_file = fileName(meta_data_, node->name(), ".bin"); if (!fs::is_regular_file(bin_file)) { ROS_ERROR_STREAM("file not found: " << bin_file); return; } std::size_t size = fs::file_size(bin_file); std::ifstream f{bin_file.c_str()}; if (!f.good()) { ROS_ERROR_STREAM("failed to open file: " << bin_file); return; } std::vector<char> data; data.resize(size); if (!f.read(data.data(), size)) { ROS_ERROR_STREAM("failed to read file: " << bin_file); return; } std::size_t point_count = data.size() / meta_data_->point_byte_size_; if (point_count == 0) { ROS_WARN_STREAM("empty node: " << node->name()); std::lock_guard<std::mutex> lock{node->mutex_}; node->vertex_data_.reset(); node->points_.clear(); node->colors_.clear(); node->point_count_ = 0; node->loaded_ = true; return; } std::vector<Ogre::Vector3> points; std::vector<Ogre::ColourValue> colors; points.reserve(point_count); colors.reserve(point_count); std::size_t offset = 0; Ogre::Vector3 translate = node->bounding_box_.getMinimum(); for (const std::string& attr : meta_data_->point_attributes_) { if (attr == "POSITION_CARTESIAN") { for (std::size_t i = 0; i < point_count; ++i) { std::size_t index = offset + i * meta_data_->point_byte_size_; float x = *reinterpret_cast<std::uint32_t*>(&data[index + 0]) * meta_data_->scale_ + translate.x; float y = *reinterpret_cast<std::uint32_t*>(&data[index + 4]) * meta_data_->scale_ + translate.y; float z = *reinterpret_cast<std::uint32_t*>(&data[index + 8]) * meta_data_->scale_ + translate.z; points.push_back(Ogre::Vector3(x, y, z)); } } else if (attr == "COLOR_PACKED") { for (std::size_t i = 0; i < point_count; ++i) { std::size_t index = offset + i * meta_data_->point_byte_size_; float r = 1.f * data[index + 0] / 255.f; float g = 1.f * data[index + 1] / 255.f; float b = 1.f * data[index + 2] / 255.f; float a = 1.f * data[index + 3] / 255.f; colors.push_back(Ogre::ColourValue(r, g, b, a)); } } offset += CloudMetaData::sizeOf(attr); } if (points.empty()) { ROS_WARN_STREAM("no POSITION_CARTESIAN data: " << node->name()); std::lock_guard<std::mutex> lock{node->mutex_}; node->vertex_data_.reset(); node->points_.clear(); node->colors_.clear(); node->point_count_ = 0; node->loaded_ = true; return; } { std::lock_guard<std::mutex> lock{node->mutex_}; node->points_ = std::move(points); node->colors_ = std::move(colors); node->point_count_ = point_count; node->unique_id_ = "potree:" + bin_file.string(); node->loaded_ = true; } if (recursive) { for (const std::shared_ptr<PotreeNode>& child : node->children_) { if (child) loadPoints(child, true); } } } fs::path CloudLoader::fileName(const std::shared_ptr<CloudMetaData>& meta_data, const std::string& name, const std::string& extension) { fs::path octree_dir = meta_data->cloud_path_ / meta_data->octree_dir_; fs::path result; std::size_t levels = name.length() / meta_data->hierarchy_step_size_; for (std::size_t i = 0; i < levels; ++i) { result /= name.substr(i * meta_data->hierarchy_step_size_, meta_data->hierarchy_step_size_); } result /= std::string("r") + name + extension; if (fs::is_regular_file(octree_dir / "u" / result)) return octree_dir / "u" / result; return octree_dir / "r" / result; } Ogre::AxisAlignedBox CloudLoader::childBB(const Ogre::AxisAlignedBox& parent, int index) { assert(!parent.isInfinite()); Ogre::Vector3 min = parent.getMinimum(), max = parent.getMaximum(), half_size = parent.getHalfSize(); if (index & 1) min.z += half_size.z; else max.z -= half_size.z; if (index & 2) min.y += half_size.y; else max.y -= half_size.y; if (index & 4) min.x += half_size.x; else max.x -= half_size.x; return Ogre::AxisAlignedBox(min, max); } } // namespace fkie_potree_rviz_plugin
{"hexsha": "955dbed0a04680a7d3ecd4df79107c1e4a83b0c2", "size": 8716, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "fkie_potree_rviz_plugin/src/cloud_loader.cpp", "max_stars_repo_name": "fkie/potree_rviz_plugin", "max_stars_repo_head_hexsha": "883c305dd924b8c8ae35c192c087f2bb25899f8d", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 13.0, "max_stars_repo_stars_event_min_datetime": "2018-12-03T08:46:07.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-09T19:32:33.000Z", "max_issues_repo_path": "fkie_potree_rviz_plugin/src/cloud_loader.cpp", "max_issues_repo_name": "fkie/potree_rviz_plugin", "max_issues_repo_head_hexsha": "883c305dd924b8c8ae35c192c087f2bb25899f8d", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 1.0, "max_issues_repo_issues_event_min_datetime": "2021-06-13T22:18:55.000Z", "max_issues_repo_issues_event_max_datetime": "2021-06-14T11:01:54.000Z", "max_forks_repo_path": "fkie_potree_rviz_plugin/src/cloud_loader.cpp", "max_forks_repo_name": "fkie/potree_rviz_plugin", "max_forks_repo_head_hexsha": "883c305dd924b8c8ae35c192c087f2bb25899f8d", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.4014869888, "max_line_length": 80, "alphanum_fraction": 0.5491050941, "num_tokens": 2111}
// Copyright (c) 2007-2013 Hartmut Kaiser // Copyright (c) 2011 Bryce Lelbach // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #if !defined(HPX_UTIL_FULLEMPTYSTORE_JUN_16_2008_0128APM) #define HPX_UTIL_FULLEMPTYSTORE_JUN_16_2008_0128APM #include <memory> #include <hpx/hpx_fwd.hpp> #include <hpx/util/move.hpp> #include <hpx/lcos/local/spinlock.hpp> #include <hpx/util/scoped_unlock.hpp> #include <hpx/util/stringstream.hpp> #include <hpx/runtime/threads/thread_data.hpp> #include <hpx/runtime/threads/thread_helpers.hpp> #include <boost/aligned_storage.hpp> #include <boost/type_traits/alignment_of.hpp> #include <boost/type_traits/add_pointer.hpp> #include <boost/intrusive/slist.hpp> /////////////////////////////////////////////////////////////////////////////// namespace hpx { namespace lcos { namespace detail { /////////////////////////////////////////////////////////////////////////// enum full_empty_state { empty = false, full = true }; /////////////////////////////////////////////////////////////////////////// // data structure holding all counters for full_empty entries struct full_empty_counter_data { full_empty_counter_data() : constructed_(0), destructed_(0), read_enqueued_(0), read_dequeued_(0), set_full_(0) {} boost::atomic_int64_t constructed_; boost::atomic_int64_t destructed_; boost::atomic_int64_t read_enqueued_; boost::atomic_int64_t read_dequeued_; boost::atomic_int64_t set_full_; }; HPX_EXPORT extern full_empty_counter_data full_empty_counter_data_; // call this to register all counter types for full_empty entries void register_counter_types(); /////////////////////////////////////////////////////////////////////////// template <typename Data> class full_empty_entry { public: typedef lcos::local::spinlock mutex_type; private: typedef threads::thread_id_type thread_id_type; // define data structures needed for intrusive slist container used for // the queues struct queue_entry { typedef boost::intrusive::slist_member_hook< boost::intrusive::link_mode<boost::intrusive::normal_link> > hook_type; queue_entry(thread_id_type id) : id_(id) {} thread_id_type id_; hook_type list_hook_; }; typedef boost::intrusive::member_hook< queue_entry, typename queue_entry::hook_type, &queue_entry::list_hook_ > list_option_type; typedef boost::intrusive::slist< queue_entry, list_option_type, boost::intrusive::cache_last<true>, boost::intrusive::constant_time_size<false> > queue_type; struct reset_queue_entry { reset_queue_entry(queue_entry& e, queue_type& q) : e_(e), q_(q), last_(q.last()) {} ~reset_queue_entry() { if (e_.id_) q_.erase(last_); // remove entry from queue } queue_entry& e_; queue_type& q_; typename queue_type::const_iterator last_; }; void log_non_empty_queue(char const* const desc, queue_type& queue) { mutex_type::scoped_lock l(mtx_); while (!queue.empty()) { threads::thread_id_type id = queue.front().id_; queue.front().id_ = 0; queue.pop_front(); // we know that the id is actually the pointer to the thread threads::thread_data_base* thrd = reinterpret_cast<threads::thread_data_base*>(id); LERR_(info) << "~full_empty_entry: aborting pending thread in " << desc << ": " << get_thread_state_name(thrd->get_state()) << "(" << id << "): " << thrd->get_description(); // forcefully abort thread, do not throw error_code ec(lightweight); threads::set_thread_state(id, threads::pending, threads::wait_abort, threads::thread_priority_default, ec); if (ec) { LERR_(error) << "~full_empty_entry: could not abort thread" << get_thread_state_name(thrd->get_state()) << "(" << id << "): " << thrd->get_description(); } } } public: full_empty_entry() : data_(), state_(empty) { ++full_empty_counter_data_.constructed_; } template <typename T0> explicit full_empty_entry(BOOST_FWD_REF(T0) t0) : data_(boost::forward<T0>(t0)), state_(empty) { ++full_empty_counter_data_.constructed_; } ~full_empty_entry() { if (is_used()) { LERR_(info) << "~full_empty_entry: one of the queues is not empty"; log_non_empty_queue("write_queue", write_queue_); log_non_empty_queue("read_and_empty_queue", read_and_empty_queue_); log_non_empty_queue("read_queue", read_queue_); } ++full_empty_counter_data_.destructed_; } // returns whether this entry is currently empty bool is_empty() const { mutex_type::scoped_lock l(mtx_); return state_ == empty; } // sets this entry to empty bool set_empty(error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); return set_empty_locked(ec); } // sets this entry to full bool set_full(error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); return set_full_locked(ec); } template <typename F> bool peek(F f) const { mutex_type::scoped_lock l(mtx_); if (state_ == empty) return false; return f(data_); // pass the data to the provided function } /////////////////////////////////////////////////////////////////////// // enqueue a get operation if full/full queue if entry is empty template <typename T> void enqueue_full_full(T& dest, error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // block if this entry is empty if (state_ == empty) { threads::thread_self* self = threads::get_self_ptr_checked(ec); if (ec) return; threads::thread_id_type id = self->get_thread_id(); // enqueue the request and block this thread queue_entry f(id); read_queue_.push_back(f); ++full_empty_counter_data_.read_enqueued_; reset_queue_entry r(f, read_queue_); { // yield this thread util::scoped_unlock<mutex_type::scoped_lock> ul(l); this_thread::suspend(threads::suspended, "full_empty_entry::enqueue_full_full", ec); if (ec) return; } ++full_empty_counter_data_.read_dequeued_; } // copy the data to the destination dest = data_; if (&ec != &throws) ec = make_success_code(); } // same as above, but for entries without associated data void enqueue_full_full(error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // block if this entry is empty if (state_ == empty) { threads::thread_self* self = threads::get_self_ptr_checked(ec); if (ec) return; threads::thread_id_type id = self->get_thread_id(); // enqueue the request and block this thread queue_entry f(id); read_queue_.push_back(f); ++full_empty_counter_data_.read_enqueued_; reset_queue_entry r(f, read_queue_); { // yield this thread util::scoped_unlock<mutex_type::scoped_lock> ul(l); this_thread::suspend(threads::suspended, "full_empty_entry::enqueue_full_full", ec); if (ec) return; } ++full_empty_counter_data_.read_dequeued_; } if (&ec != &throws) ec = make_success_code(); } /////////////////////////////////////////////////////////////////////// // enqueue a get operation in full/empty queue if entry is empty template <typename T> void enqueue_full_empty(T& dest, error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // block if this entry is empty if (state_ == empty) { threads::thread_self* self = threads::get_self_ptr_checked(ec); if (ec) return; threads::thread_id_type id = self->get_thread_id(); // enqueue the request and block this thread queue_entry f(id); read_and_empty_queue_.push_back(f); reset_queue_entry r(f, read_and_empty_queue_); { // yield this thread util::scoped_unlock<mutex_type::scoped_lock> ul(l); this_thread::suspend(threads::suspended, "full_empty_entry::enqueue_full_empty", ec); if (ec) return; } // move the data to the destination dest = boost::move(data_); } else { // move the data to the destination dest = boost::move(data_); set_empty_locked(ec); // state_ = empty; if (ec) return; } if (&ec != &throws) ec = make_success_code(); } // same as above, but for entries without associated data void enqueue_full_empty(error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // block if this entry is empty if (state_ == empty) { threads::thread_self* self = threads::get_self_ptr_checked(ec); if (ec) return; threads::thread_id_type id = self->get_thread_id(); // enqueue the request and block this thread queue_entry f(id); read_and_empty_queue_.push_back(f); reset_queue_entry r(f, read_and_empty_queue_); { // yield this thread util::scoped_unlock<mutex_type::scoped_lock> ul(l); this_thread::suspend(threads::suspended, "full_empty_entry::enqueue_full_empty", ec); if (ec) return; } } else { set_empty_locked(ec); // state_ = empty if (ec) return; } if (&ec != &throws) ec = make_success_code(); } /////////////////////////////////////////////////////////////////////// // enqueue if entry is full, otherwise fill it template <typename T> void enqueue_if_full(BOOST_FWD_REF(T) src, error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // block if this entry is already full if (state_ == full) { threads::thread_self* self = threads::get_self_ptr_checked(ec); if (ec) return; threads::thread_id_type id = self->get_thread_id(); // enqueue the request and block this thread queue_entry f(id); write_queue_.push_back(f); reset_queue_entry r(f, write_queue_); { // yield this thread util::scoped_unlock<mutex_type::scoped_lock> ul(l); this_thread::suspend(threads::suspended, "full_empty_entry::enqueue_if_full", ec); if (ec) return; } } // set the data data_ = boost::forward<T>(src); // make sure the entry is full set_full_locked(ec); // state_ = full if (ec) return; if (&ec != &throws) ec = make_success_code(); } // same as above, but for entries without associated data void enqueue_if_full(error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // block if this entry is already full if (state_ == full) { threads::thread_self* self = threads::get_self_ptr_checked(ec); if (ec) return; threads::thread_id_type id = self->get_thread_id(); // enqueue the request and block this thread queue_entry f(id); write_queue_.push_back(f); reset_queue_entry r(f, write_queue_); { // yield this thread util::scoped_unlock<mutex_type::scoped_lock> ul(l); this_thread::suspend(threads::suspended, "full_empty_entry::enqueue_if_full", ec); if (ec) return; } } // make sure the entry is full set_full_locked(ec); // state_ = full if (ec) return; if (&ec != &throws) ec = make_success_code(); } /////////////////////////////////////////////////////////////////////// // unconditionally set the data and set the entry to full template <typename T> void set_and_fill(BOOST_FWD_REF(T) src, error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // set the data data_ = boost::forward<T>(src); // make sure the entry is full set_full_locked(ec); // state_ = full } // same as above, but for entries without associated data void set_and_fill(error_code& ec = throws) { mutex_type::scoped_lock l(mtx_); // make sure the entry is full set_full_locked(ec); // state_ = full } // returns whether this entry is still in use bool is_used() const { mutex_type::scoped_lock l(mtx_); return is_used_locked(); } protected: bool set_empty_locked(error_code& ec) { state_ = empty; if (!write_queue_.empty()) { threads::thread_id_type id = write_queue_.front().id_; write_queue_.front().id_ = 0; write_queue_.pop_front(); threads::set_thread_state(id, threads::pending, threads::wait_timeout, threads::thread_priority_default, ec); set_full_locked(ec); // state_ = full if (ec) return false; } // return whether this block needs to be removed return state_ == full && !is_used_locked(); } bool set_full_locked(error_code& ec) { state_ = full; // handle all threads waiting for the block to become full while (!read_queue_.empty()) { threads::thread_id_type id = read_queue_.front().id_; read_queue_.front().id_ = 0; read_queue_.pop_front(); threads::set_thread_state(id, threads::pending, threads::wait_timeout, threads::thread_priority_default, ec); if (ec) return false; ++full_empty_counter_data_.set_full_; } // since we got full now we need to re-activate one thread waiting // for the block to become full if (!read_and_empty_queue_.empty()) { threads::thread_id_type id = read_and_empty_queue_.front().id_; read_and_empty_queue_.front().id_ = 0; read_and_empty_queue_.pop_front(); threads::set_thread_state(id, threads::pending, threads::wait_timeout, threads::thread_priority_default, ec); if (ec) return false; set_empty_locked(ec); // state_ = empty if (ec) return false; } // return whether this block needs to be removed return state_ == full && !is_used_locked(); } bool is_used_locked() const { return !(write_queue_.empty() && read_and_empty_queue_.empty() && read_queue_.empty()); } private: typedef Data value_type; mutable mutex_type mtx_; queue_type write_queue_; // threads waiting in write queue_type read_and_empty_queue_; // threads waiting in read_and_empty queue_type read_queue_; // threads waiting in read value_type data_; // protected data full_empty_state state_; // current full/empty state }; }}} #endif
{"hexsha": "02eb15eb5953f8c048f2011af7dd6337c2cf8797", "size": 17787, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "hpx/lcos/detail/full_empty_entry.hpp", "max_stars_repo_name": "andreasbuhr/hpx", "max_stars_repo_head_hexsha": "4366a90aacbd3e95428a94ab24a1646a67459cc2", "max_stars_repo_licenses": ["BSL-1.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "hpx/lcos/detail/full_empty_entry.hpp", "max_issues_repo_name": "andreasbuhr/hpx", "max_issues_repo_head_hexsha": "4366a90aacbd3e95428a94ab24a1646a67459cc2", "max_issues_repo_licenses": ["BSL-1.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "hpx/lcos/detail/full_empty_entry.hpp", "max_forks_repo_name": "andreasbuhr/hpx", "max_forks_repo_head_hexsha": "4366a90aacbd3e95428a94ab24a1646a67459cc2", "max_forks_repo_licenses": ["BSL-1.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.8155893536, "max_line_length": 99, "alphanum_fraction": 0.5138022151, "num_tokens": 3533}
import cv2 import numpy as np import time cv2.namedWindow('Mywindow') cameraCapture = cv2.VideoCapture(0) #cameraCapture.set(3,64) #cameraCapture.set(4,64) success, image = cameraCapture.read(0) while success and cv2.waitKey(1) == -1: image = cv2.resize(image, (64, 64),interpolation=cv2.INTER_AREA) cv2.imshow('Mywindow',image) print(image.shape) time.sleep(1) success, image = cameraCapture.read(0) cv2.waitKey(30) success, image = cameraCapture.read(0) cv2.destroyWindow('Mywindow') cv2.destroyWindow('ColorWindow') cameraCapture.release()
{"hexsha": "d221e0837c81dcc2e1726953735f56afdab09122", "size": 559, "ext": "py", "lang": "Python", "max_stars_repo_path": "camera.py", "max_stars_repo_name": "Thisislegit/RTCS_hand-_counting_project", "max_stars_repo_head_hexsha": "1c6bbc48cab9dd579809e0919ec00e2be3721dac", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "camera.py", "max_issues_repo_name": "Thisislegit/RTCS_hand-_counting_project", "max_issues_repo_head_hexsha": "1c6bbc48cab9dd579809e0919ec00e2be3721dac", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "camera.py", "max_forks_repo_name": "Thisislegit/RTCS_hand-_counting_project", "max_forks_repo_head_hexsha": "1c6bbc48cab9dd579809e0919ec00e2be3721dac", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 22.36, "max_line_length": 65, "alphanum_fraction": 0.7495527728, "include": true, "reason": "import numpy", "num_tokens": 155}
from __future__ import absolute_import from tensorflow.keras import activations, constraints, initializers, regularizers from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer, Dropout, LeakyReLU, Dense, Concatenate,Reshape import tensorflow as tf import numpy as np import pdb #Custom Layer to extract offense and defense nodes for home and away teams class Game_Vec(Layer): def __init__(self,attention_feat_size,N): super(Game_Vec,self).__init__() self.feat_dim = attention_feat_size self.N = N def call(self,inputs): index = tf.math.add(inputs[0],tf.constant([0,self.N + 1],dtype = tf.int64)) stack = tf.gather(inputs[1],index, axis=1) return stack class To_Sparse(Layer): def __init__(self,): super(To_Sparse,self).__init__() def call(self,inputs): sparse_t = tf.sparse.from_dense(inputs[0], name = 'adj_mat') return sparse_t
{"hexsha": "b7cf183fbaa8cd02b46ffb7ee70f2157d3200937", "size": 964, "ext": "py", "lang": "Python", "max_stars_repo_path": "ncaabGNNs/src/extract_team_GAT.py", "max_stars_repo_name": "joewilaj/sportsGNNs", "max_stars_repo_head_hexsha": "78beb1a7908afa0ff2c6b2d425f4e81fd7dee3c4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 13, "max_stars_repo_stars_event_min_datetime": "2021-02-21T19:06:39.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-14T11:16:56.000Z", "max_issues_repo_path": "ncaabGNNs/src/extract_team_GAT.py", "max_issues_repo_name": "joewilaj/sportsGNNs", "max_issues_repo_head_hexsha": "78beb1a7908afa0ff2c6b2d425f4e81fd7dee3c4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "ncaabGNNs/src/extract_team_GAT.py", "max_forks_repo_name": "joewilaj/sportsGNNs", "max_forks_repo_head_hexsha": "78beb1a7908afa0ff2c6b2d425f4e81fd7dee3c4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-09-28T13:37:47.000Z", "max_forks_repo_forks_event_max_datetime": "2021-09-28T13:37:47.000Z", "avg_line_length": 23.512195122, "max_line_length": 89, "alphanum_fraction": 0.7043568465, "include": true, "reason": "import numpy", "num_tokens": 232}
struct Start <: EdgeModifier s end @testset "Unmeta Node" begin @test unmeta(Node(:a)) == Node(:a) @test unmeta(Node(:a) * Start(4)) == Node(:a) end @testset "Unmeta Edge" begin @test unmeta(Edge(Node(:a), Node(:b))) == Edge(Node(:a), Node(:b)) @test unmeta(Edge(Node(:a), Node(:b)) * Start(4)) == Edge(Node(:a), Node(:b)) end
{"hexsha": "2df7f8c2b1ab787c01d53904adcc55ec8ed2c840", "size": 350, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "test/keep.jl", "max_stars_repo_name": "aaronpeikert/Semi.jl", "max_stars_repo_head_hexsha": "7fbb585ccd8068c3fc48077693d9fff71a024561", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2022-02-04T21:50:45.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-29T07:01:17.000Z", "max_issues_repo_path": "test/keep.jl", "max_issues_repo_name": "aaronpeikert/Semi.jl", "max_issues_repo_head_hexsha": "7fbb585ccd8068c3fc48077693d9fff71a024561", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 22, "max_issues_repo_issues_event_min_datetime": "2022-02-04T11:39:57.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-29T07:00:14.000Z", "max_forks_repo_path": "test/keep.jl", "max_forks_repo_name": "aaronpeikert/StenoGraphs.jl", "max_forks_repo_head_hexsha": "6901c0d17ed91e7b34eb4ea0896bf9e04687cc03", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 23.3333333333, "max_line_length": 81, "alphanum_fraction": 0.5857142857, "num_tokens": 121}
""" Collection of tests for unified device functions """ # global import math import pytest import numpy as np from numbers import Number # local import ivy import ivy.functional.backends.numpy import ivy_tests.test_ivy.helpers as helpers # Tests # # ------# # Device Queries # # dev @pytest.mark.parametrize("x", [1, [], [1], [[0.0, 1.0], [2.0, 3.0]]]) @pytest.mark.parametrize("dtype", ["float32"]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_dev(x, dtype, tensor_fn, device, call): # smoke test if ( (isinstance(x, Number) or len(x) == 0) and tensor_fn == helpers.var_fn and call is helpers.mx_call ): # mxnet does not support 0-dimensional variables pytest.skip() x = tensor_fn(x, dtype, device) ret = ivy.dev(x, as_str=True) # type test assert isinstance(ret, str) # value test assert ret == device # dev_to_str @pytest.mark.parametrize("x", [1, [], [1], [[0.0, 1.0], [2.0, 3.0]]]) @pytest.mark.parametrize("dtype", ["float32"]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_dev_to_str(x, dtype, tensor_fn, device, call): # smoke test if ( (isinstance(x, Number) or len(x) == 0) and tensor_fn == helpers.var_fn and call is helpers.mx_call ): # mxnet does not support 0-dimensional variables pytest.skip() x = tensor_fn(x, dtype, device) device = ivy.dev(x) ret = ivy.dev_to_str(device) # type test assert isinstance(ret, str) # dev_from_str @pytest.mark.parametrize("x", [1, [], [1], [[0.0, 1.0], [2.0, 3.0]]]) @pytest.mark.parametrize("dtype", ["float32"]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_dev_from_str(x, dtype, tensor_fn, device, call): # smoke test if ( (isinstance(x, Number) or len(x) == 0) and tensor_fn == helpers.var_fn and call is helpers.mx_call ): # mxnet does not support 0-dimensional variables pytest.skip() x = tensor_fn(x, dtype, device) device = ivy.dev_from_str(device) ret = ivy.dev_from_str(ivy.dev(x, as_str=True)) # value test if call in [helpers.tf_call, helpers.tf_graph_call]: assert "/" + ":".join(ret[1:].split(":")[-2:]) == "/" + ":".join( device[1:].split(":")[-2:] ) elif call is helpers.torch_call: assert ret.type == device.type else: assert ret == device # compilation test if call is helpers.torch_call: # pytorch scripting does not handle converting string to device return # memory_on_dev @pytest.mark.parametrize("dev_to_check", ["cpu", "gpu:0"]) def test_memory_on_dev(dev_to_check, device, call): if "gpu" in dev_to_check and ivy.num_gpus() == 0: # cannot get amount of memory for gpu which is not present pytest.skip() ret = ivy.total_mem_on_dev(dev_to_check) # type test assert isinstance(ret, float) # value test assert 0 < ret < 64 # compilation test if call is helpers.torch_call: # global variables aren't supported for pytorch scripting pytest.skip() # Device Allocation # # default_device def test_default_device(device, call): # setting and unsetting orig_len = len(ivy.default_device_stack) ivy.set_default_device("cpu") assert len(ivy.default_device_stack) == orig_len + 1 ivy.set_default_device("cpu") assert len(ivy.default_device_stack) == orig_len + 2 ivy.unset_default_device() assert len(ivy.default_device_stack) == orig_len + 1 ivy.unset_default_device() assert len(ivy.default_device_stack) == orig_len # with assert len(ivy.default_device_stack) == orig_len with ivy.DefaultDevice("cpu"): assert len(ivy.default_device_stack) == orig_len + 1 with ivy.DefaultDevice("cpu"): assert len(ivy.default_device_stack) == orig_len + 2 assert len(ivy.default_device_stack) == orig_len + 1 assert len(ivy.default_device_stack) == orig_len # to_dev @pytest.mark.parametrize("x", [1, [], [1], [[0.0, 1.0], [2.0, 3.0]]]) @pytest.mark.parametrize("dtype", ["float32"]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) @pytest.mark.parametrize("with_out", [False, True]) def test_to_dev(x, dtype, tensor_fn, with_out, device, call): # smoke test if ( (isinstance(x, Number) or len(x) == 0) and tensor_fn == helpers.var_fn and call is helpers.mx_call ): # mxnet does not support 0-dimensional variables pytest.skip() x = tensor_fn(x, dtype, device) # create a dummy array for out that is broadcastable to x out = ivy.zeros(ivy.shape(x)) if with_out else None device = ivy.dev(x) x_on_dev = ivy.to_dev(x, device, out=out) dev_from_new_x = ivy.dev(x_on_dev) if with_out: # should be the same array test assert np.allclose(ivy.to_numpy(x_on_dev), ivy.to_numpy(out)) # should be the same device assert ivy.dev(x_on_dev) == ivy.dev(out) # check if native arrays are the same if ivy.current_framework_str() in ["tensorflow", "jax"]: # these frameworks do not support native inplace updates return assert x_on_dev.data is out.data # value test if call in [helpers.tf_call, helpers.tf_graph_call]: assert "/" + ":".join(dev_from_new_x[1:].split(":")[-2:]) == "/" + ":".join( device[1:].split(":")[-2:] ) elif call is helpers.torch_call: assert dev_from_new_x.type == device.type else: assert dev_from_new_x == device # Function Splitting # @pytest.mark.parametrize( "x0", [[[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[9, 8, 7], [6, 5, 4], [3, 2, 1]]] ) @pytest.mark.parametrize( "x1", [[[2, 4, 6], [8, 10, 12], [14, 16, 18]], [[18, 16, 14], [12, 10, 8], [6, 4, 2]]], ) @pytest.mark.parametrize("chunk_size", [1, 3]) @pytest.mark.parametrize("axis", [0, 1]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_split_func_call(x0, x1, chunk_size, axis, tensor_fn, device, call): # inputs in0 = tensor_fn(x0, "float32", device) in1 = tensor_fn(x1, "float32", device) # function def func(t0, t1): return t0 * t1, t0 - t1, t1 - t0 # predictions a, b, c = ivy.split_func_call( func, [in0, in1], "concat", chunk_size=chunk_size, input_axes=axis ) # true a_true, b_true, c_true = func(in0, in1) # value test assert np.allclose(ivy.to_numpy(a), ivy.to_numpy(a_true)) assert np.allclose(ivy.to_numpy(b), ivy.to_numpy(b_true)) assert np.allclose(ivy.to_numpy(c), ivy.to_numpy(c_true)) @pytest.mark.parametrize( "x0", [[[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[9, 8, 7], [6, 5, 4], [3, 2, 1]]] ) @pytest.mark.parametrize( "x1", [[[2, 4, 6], [8, 10, 12], [14, 16, 18]], [[18, 16, 14], [12, 10, 8], [6, 4, 2]]], ) @pytest.mark.parametrize("chunk_size", [1, 3]) @pytest.mark.parametrize("axis", [0, 1]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_split_func_call_with_cont_input( x0, x1, chunk_size, axis, tensor_fn, device, call ): # inputs in0 = ivy.Container(cont_key=tensor_fn(x0, "float32", device)) in1 = ivy.Container(cont_key=tensor_fn(x1, "float32", device)) # function def func(t0, t1): return t0 * t1, t0 - t1, t1 - t0 # predictions a, b, c = ivy.split_func_call( func, [in0, in1], "concat", chunk_size=chunk_size, input_axes=axis ) # true a_true, b_true, c_true = func(in0, in1) # value test assert np.allclose(ivy.to_numpy(a.cont_key), ivy.to_numpy(a_true.cont_key)) assert np.allclose(ivy.to_numpy(b.cont_key), ivy.to_numpy(b_true.cont_key)) assert np.allclose(ivy.to_numpy(c.cont_key), ivy.to_numpy(c_true.cont_key)) @pytest.mark.parametrize("x", [[0, 1, 2, 3, 4, 5]]) @pytest.mark.parametrize("axis", [0]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) @pytest.mark.parametrize("devs_as_dict", [True, False]) def test_distribute_array(x, axis, tensor_fn, devs_as_dict, device, call): # inputs x = tensor_fn(x, "float32", device) # devices devices = list() dev0 = device devices.append(dev0) if "gpu" in device and ivy.num_gpus() > 1: idx = ivy.num_gpus() - 1 dev1 = device[:-1] + str(idx) devices.append(dev1) if devs_as_dict: devices = dict( zip(devices, [int((1 / len(devices)) * x.shape[axis])] * len(devices)) ) # return x_split = ivy.dev_dist_array(x, devices, axis) # shape test assert x_split[dev0].shape[axis] == math.floor(x.shape[axis] / len(devices)) # value test assert min([ivy.dev(x_sub, as_str=True) == ds for ds, x_sub in x_split.items()]) @pytest.mark.parametrize("x", [[0, 1, 2, 3, 4]]) @pytest.mark.parametrize("axis", [0]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_clone_array(x, axis, tensor_fn, device, call): # inputs x = tensor_fn(x, "float32", device) # devices devices = list() dev0 = device devices.append(dev0) if "gpu" in device and ivy.num_gpus() > 1: idx = ivy.num_gpus() - 1 dev1 = device[:-1] + str(idx) devices.append(dev1) # return x_split = ivy.dev_clone_array(x, devices) # shape test assert x_split[dev0].shape[0] == math.floor(x.shape[axis] / len(devices)) # value test assert min([ivy.dev(x_sub, as_str=True) == ds for ds, x_sub in x_split.items()]) @pytest.mark.parametrize("xs", [([0, 1, 2], [3, 4])]) @pytest.mark.parametrize("axis", [0]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_unify_array(xs, axis, tensor_fn, device, call): # devices and inputs devices = list() dev0 = device x = {dev0: tensor_fn(xs[0], "float32", dev0)} devices.append(dev0) if "gpu" in device and ivy.num_gpus() > 1: idx = ivy.num_gpus() - 1 dev1 = device[:-1] + str(idx) x[dev1] = tensor_fn(xs[1], "float32", dev1) devices.append(dev1) # output x_unified = ivy.dev_unify_array(ivy.DevDistItem(x), dev0, "concat", axis) # shape test expected_size = 0 for ds in devices: expected_size += x[ds].shape[axis] assert x_unified.shape[axis] == expected_size # value test assert ivy.dev(x_unified, as_str=True) == dev0 @pytest.mark.parametrize("args", [[[0, 1, 2, 3, 4], "some_str", ([1, 2])]]) @pytest.mark.parametrize("kwargs", [{"a": [0, 1, 2, 3, 4], "b": "another_str"}]) @pytest.mark.parametrize("axis", [0]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_distribute_args(args, kwargs, axis, tensor_fn, device, call): # inputs args = [tensor_fn(args[0], "float32", device)] + args[1:] kwargs = {"a": tensor_fn(kwargs["a"], "float32", device), "b": kwargs["b"]} # devices devices = list() dev0 = device devices.append(dev0) if "gpu" in device and ivy.num_gpus() > 1: idx = ivy.num_gpus() - 1 dev1 = device[:-1] + str(idx) devices.append(dev1) # returns dist_args, dist_kwargs = ivy.dev_dist_nest(args, kwargs, devices, axis=axis) # device specific args for ds in devices: assert dist_args.at_dev(ds) assert dist_kwargs.at_dev(ds) # value test assert min( [ ivy.dev(dist_args_ds[0], as_str=True) == ds for ds, dist_args_ds in dist_args.at_devs().items() ] ) assert min( [ ivy.dev(dist_kwargs_ds["a"], as_str=True) == ds for ds, dist_kwargs_ds in dist_kwargs.at_devs().items() ] ) @pytest.mark.parametrize("args", [[[0, 1, 2, 3, 4], "some_str", ([1, 2])]]) @pytest.mark.parametrize("kwargs", [{"a": [0, 1, 2, 3, 4], "b": "another_str"}]) @pytest.mark.parametrize("axis", [0]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_clone_args(args, kwargs, axis, tensor_fn, device, call): # inputs args = [tensor_fn(args[0], "float32", device)] + args[1:] kwargs = {"a": tensor_fn(kwargs["a"], "float32", device), "b": kwargs["b"]} # devices devices = list() dev0 = device devices.append(dev0) if "gpu" in device and ivy.num_gpus() > 1: idx = ivy.num_gpus() - 1 dev1 = device[:-1] + str(idx) devices.append(dev1) # returns cloned_args, cloned_kwargs = ivy.dev_clone_nest(args, kwargs, devices) # device specific args for ds in devices: assert cloned_args.at_dev(ds) assert cloned_kwargs.at_dev(ds) # value test assert min( [ ivy.dev(dist_args_ds[0], as_str=True) == ds for ds, dist_args_ds in cloned_args.at_devs().items() ] ) assert min( [ ivy.dev(dist_kwargs_ds["a"], as_str=True) == ds for ds, dist_kwargs_ds in cloned_kwargs.at_devs().items() ] ) @pytest.mark.parametrize("args", [[[[0, 1, 2], [3, 4]], "some_str", ([1, 2])]]) @pytest.mark.parametrize("kwargs", [{"a": [[0, 1, 2], [3, 4]], "b": "another_str"}]) @pytest.mark.parametrize("axis", [0]) @pytest.mark.parametrize("tensor_fn", [ivy.array, helpers.var_fn]) def test_unify_args(args, kwargs, axis, tensor_fn, device, call): # devices devices = list() dev0 = device devices.append(dev0) args_dict = dict() args_dict[dev0] = tensor_fn(args[0][0], "float32", dev0) kwargs_dict = dict() kwargs_dict[dev0] = tensor_fn(kwargs["a"][0], "float32", dev0) if "gpu" in device and ivy.num_gpus() > 1: idx = ivy.num_gpus() - 1 dev1 = device[:-1] + str(idx) devices.append(dev1) args_dict[dev1] = tensor_fn(args[0][1], "float32", dev1) kwargs_dict[dev1] = tensor_fn(kwargs["a"][1], "float32", dev1) # inputs args = ivy.DevDistNest([ivy.DevDistItem(args_dict)] + args[1:], devices) kwargs = ivy.DevDistNest( {"a": ivy.DevDistItem(kwargs_dict), "b": kwargs["b"]}, devices ) # outputs args_uni, kwargs_uni = ivy.dev_unify_nest(args, kwargs, dev0, "concat", axis=axis) # shape test expected_size_arg = 0 expected_size_kwarg = 0 for ds in devices: expected_size_arg += args._data[0][ds].shape[axis] expected_size_kwarg += kwargs._data["a"][ds].shape[axis] assert args_uni[0].shape[axis] == expected_size_arg assert kwargs_uni["a"].shape[axis] == expected_size_kwarg # value test assert ivy.dev(args_uni[0], as_str=True) == dev0 assert ivy.dev(kwargs_uni["a"], as_str=True) == dev0
{"hexsha": "6b200402418eb2e91b33f481f753b719c2bfd9fd", "size": 14729, "ext": "py", "lang": "Python", "max_stars_repo_path": "ivy_tests/test_ivy/test_functional/test_core/test_device.py", "max_stars_repo_name": "mattbarrett98/ivy", "max_stars_repo_head_hexsha": "a706e59b907c0f78edb819959cc2035ebf48946f", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "ivy_tests/test_ivy/test_functional/test_core/test_device.py", "max_issues_repo_name": "mattbarrett98/ivy", "max_issues_repo_head_hexsha": "a706e59b907c0f78edb819959cc2035ebf48946f", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "ivy_tests/test_ivy/test_functional/test_core/test_device.py", "max_forks_repo_name": "mattbarrett98/ivy", "max_forks_repo_head_hexsha": "a706e59b907c0f78edb819959cc2035ebf48946f", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.1395348837, "max_line_length": 86, "alphanum_fraction": 0.6177608799, "include": true, "reason": "import numpy", "num_tokens": 4344}
from __future__ import absolute_import import numpy as np from sklearn.metrics import pairwise_distances from graphs import Graph __all__ = ['incremental_neighbor_graph'] def incremental_neighbor_graph(X, precomputed=False, k=None, epsilon=None, weighting='none'): '''See neighbor_graph.''' assert ((k is not None) or (epsilon is not None) ), "Must provide `k` or `epsilon`" assert (_issequence(k) ^ _issequence(epsilon) ), "Exactly one of `k` or `epsilon` must be a sequence." assert weighting in ('binary','none'), "Invalid weighting param: " + weighting is_weighted = weighting == 'none' if precomputed: D = X else: D = pairwise_distances(X, metric='euclidean') # pre-sort for efficiency order = np.argsort(D)[:,1:] if k is None: k = D.shape[0] # generate the sequence of graphs # TODO: convert the core of these loops to Cython for speed W = np.zeros_like(D) I = np.arange(D.shape[0]) if _issequence(k): # varied k, fixed epsilon if epsilon is not None: D[D > epsilon] = 0 old_k = 0 for new_k in k: idx = order[:, old_k:new_k] dist = D[I, idx.T] W[I, idx.T] = dist if is_weighted else 1 yield Graph.from_adj_matrix(W) old_k = new_k else: # varied epsilon, fixed k idx = order[:,:k] dist = D[I, idx.T].T old_i = np.zeros(D.shape[0], dtype=int) for eps in epsilon: for i, row in enumerate(dist): oi = old_i[i] ni = oi + np.searchsorted(row[oi:], eps) rr = row[oi:ni] W[i, idx[i,oi:ni]] = rr if is_weighted else 1 old_i[i] = ni yield Graph.from_adj_matrix(W) def _issequence(x): # Note: isinstance(x, collections.Sequence) fails for numpy arrays return hasattr(x, '__len__')
{"hexsha": "a3349b2b40d0e93044d2c461f3bf11ac984eb63e", "size": 1809, "ext": "py", "lang": "Python", "max_stars_repo_path": "graphs/construction/incremental.py", "max_stars_repo_name": "vishalbelsare/graphs", "max_stars_repo_head_hexsha": "4fbeb025dfe33340335f34300f58dd3809228822", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 15, "max_stars_repo_stars_event_min_datetime": "2015-12-31T21:48:56.000Z", "max_stars_repo_stars_event_max_datetime": "2020-11-09T13:34:41.000Z", "max_issues_repo_path": "graphs/construction/incremental.py", "max_issues_repo_name": "perimosocordiae/graphs", "max_issues_repo_head_hexsha": "4fbeb025dfe33340335f34300f58dd3809228822", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "graphs/construction/incremental.py", "max_forks_repo_name": "perimosocordiae/graphs", "max_forks_repo_head_hexsha": "4fbeb025dfe33340335f34300f58dd3809228822", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 7, "max_forks_repo_forks_event_min_datetime": "2015-09-18T14:26:00.000Z", "max_forks_repo_forks_event_max_datetime": "2018-10-21T11:46:11.000Z", "avg_line_length": 28.265625, "max_line_length": 80, "alphanum_fraction": 0.6246545053, "include": true, "reason": "import numpy", "num_tokens": 500}
# -*- coding: utf-8 -*- """ Created on Mon Jan 25 08:30:01 2021 @author: Ngoc Anh """ from .MovieLens import MovieLens from surprise import KNNBasic from surprise import NormalPredictor from .Evaluator import Evaluator import random import numpy as np def LoadMovieLensData(): ml = MovieLens() print("Loading movie ratings...") data = ml.loadMovieLensLatestSmall() print("\nComputing movie popularity ranks so we can measure novelty later...") rankings = ml.getPopularityRanks() return (ml, data, rankings) def RecommendMovie(user_id): # user_id = input((" UserID ")) np.random.seed(0) random.seed(0) # Load up common data set for the recommender algorithms (ml, evaluationData, rankings) = LoadMovieLensData() # Construct an Evaluator to, you know, evaluate them evaluator = Evaluator(evaluationData, rankings) # User-based KNN UserKNN = KNNBasic(sim_options = {'name': 'cosine', 'user_based': True}) evaluator.AddAlgorithm(UserKNN, "User KNN") # Item-based KNN #ItemKNN = KNNBasic(sim_options = {'name': 'cosine', 'user_based': False}) #evaluator.AddAlgorithm(ItemKNN, "Item KNN") # Just make random recommendations #Random = NormalPredictor() #evaluator.AddAlgorithm(Random, "Random") # Fight! evaluator.Evaluate(False) res = evaluator.SampleTopNRecs(ml, testSubject=user_ID) return res
{"hexsha": "61e26f1c06755c02e5b5f9ea9a809852751c6048", "size": 1410, "ext": "py", "lang": "Python", "max_stars_repo_path": "my_code/Process.py", "max_stars_repo_name": "anhtpn/app_flask", "max_stars_repo_head_hexsha": "ba1509a9bffdec8c4e6c5c98d211d75e3d87541f", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "my_code/Process.py", "max_issues_repo_name": "anhtpn/app_flask", "max_issues_repo_head_hexsha": "ba1509a9bffdec8c4e6c5c98d211d75e3d87541f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "my_code/Process.py", "max_forks_repo_name": "anhtpn/app_flask", "max_forks_repo_head_hexsha": "ba1509a9bffdec8c4e6c5c98d211d75e3d87541f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 25.6363636364, "max_line_length": 82, "alphanum_fraction": 0.695035461, "include": true, "reason": "import numpy", "num_tokens": 361}
import matplotlib.pyplot as plt import numpy as np import os from mpl_toolkits.mplot3d import Axes3D import matplotlib.gridspec as gridspec sample_num = 5 def connect_2D_line(inputs_use, sample_num): # sample_joint = np.reshape( np.asarray(s), (16,2)) sample_joint = np.reshape( np.asarray(inputs_use[sample_num]), (16,2)) plt.figure() for i in range(len(sample_joint)): x, y = sample_joint[i] plt.scatter(x, y) plt.gca().invert_yaxis() def simple_3d_line(tars): sample_joint = np.reshape(np.asarray(tars[0]), (16, 3)) start_points = np.array([6, 5, 4, 0, 1, 2, 0, 7, 8, 10, 11, 8, 13, 14, 8 ]) # start points end_points = np.array([ 5, 4, 0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 14, 15, 9 ]) # end points x_coord_p, y_coord_p, z_coord_p = [], [], [] x_coord_sub_p, y_coord_sub_p, z_coord_sub_p = [], [], [] fig = plt.figure() ax_lb = fig.add_subplot(111, projection='3d') for idx in range(len(sample_joint)): x_coor_p, y_coor_p, z_coor_p = sample_joint[idx] x_coord_p.append(x_coor_p) y_coord_p.append(y_coor_p) z_coord_p.append(z_coor_p) for i in range(len(start_points)): x_coord_sub_p.append([x_coord_p[start_points[i]], x_coord_p[end_points[i]]]) y_coord_sub_p.append([y_coord_p[start_points[i]], y_coord_p[end_points[i]]]) z_coord_sub_p.append([z_coord_p[start_points[i]], z_coord_p[end_points[i]]]) for j in range(len(start_points)): ax_lb.plot(x_coord_sub_p[j], y_coord_sub_p[j], z_coord_sub_p[j]) # ax_lb.plot(x_coord_sub_l[j], y_coord_sub_l[j], z_coord_sub_l[j]) def connect_3D_line(outputs_use, targets_use, sample_num): # start_points = np.array([6, 2, 1, 6, 3, 4, 6, 7, 8, 8, 13, 14, 8, 12, 11]) # start points # end_points = np.array([2, 1, 0, 3, 4, 5, 7, 8, 9, 13, 14, 15, 12, 11, 10]) # end points start_points = np.array([6, 5, 4, 0, 1, 2, 0, 7, 8, 11, 12, 8, 14, 15, 8, 9]) # start points end_points = np.array( [5, 4, 0, 1, 2, 3, 7, 8, 11, 12, 13, 14, 15, 16, 9, 10]) # end points # prediction list x_coord_p, y_coord_p, z_coord_p = [], [], [] x_coord_sub_p, y_coord_sub_p, z_coord_sub_p = [], [], [] # label list x_coord_l, y_coord_l, z_coord_l = [], [], [] x_coord_sub_l, y_coord_sub_l, z_coord_sub_l = [], [], [] pred = np.reshape(outputs_use[sample_num], (17,3)) lb = np.reshape(targets_use[sample_num], (17,3)) fig = plt.figure() ax_pred = fig.add_subplot(121 , projection='3d') ax_pred.title.set_text('Predictions') ax_lb = fig.add_subplot(122, projection='3d') ax_lb.title.set_text('Labels') for idx in range(len(pred)): x_coor_p, y_coor_p, z_coor_p = pred[idx] x_coord_p.append(x_coor_p) y_coord_p.append(y_coor_p) z_coord_p.append(z_coor_p) x_coor_l, y_coor_l, z_coor_l = lb[idx] x_coord_l.append(x_coor_l) y_coord_l.append(y_coor_l) z_coord_l.append(z_coor_l) for i in range(len(start_points)): x_coord_sub_p.append([x_coord_p[start_points[i]], x_coord_p[end_points[i]]]) y_coord_sub_p.append([y_coord_p[start_points[i]], y_coord_p[end_points[i]]]) z_coord_sub_p.append([z_coord_p[start_points[i]], z_coord_p[end_points[i]]]) x_coord_sub_l.append([x_coord_l[start_points[i]], x_coord_l[end_points[i]]]) y_coord_sub_l.append([y_coord_l[start_points[i]], y_coord_l[end_points[i]]]) z_coord_sub_l.append([z_coord_l[start_points[i]], z_coord_l[end_points[i]]]) for j in range(len(start_points)): ax_pred.plot(x_coord_sub_p[j], y_coord_sub_p[j], z_coord_sub_p[j]) ax_lb.plot(x_coord_sub_l[j], y_coord_sub_l[j], z_coord_sub_l[j]) # connect_2D_line(inputs_use, sample_num ) # connect_3D_line(outputs_use, targets_use, sample_num) ######################################################################## # start_points = np.array([6, 5, 4, 0, 1, 2, 0, 7, 8, 11, 12, 8, 14, 15, 8, 9]) # start points # end_points = np.array([5, 4, 0, 1, 2, 3, 7, 8, 11, 12, 13, 14, 15, 16, 9, 10]) # end points # # # 2d inputs list # x_coord, y_coord = [], [] # x_coord_sub, y_coord_sub = [], [] # # # prediction list # x_coord_p, y_coord_p, z_coord_p = [], [], [] # x_coord_sub_p, y_coord_sub_p, z_coord_sub_p = [], [], [] # # # label list # x_coord_l, y_coord_l, z_coord_l = [], [], [] # x_coord_sub_l, y_coord_sub_l, z_coord_sub_l = [], [], [] # # pred = np.reshape(outputs_use[0], (17, 3)) # lb = np.reshape(targets_use[0], (17, 3)) # # inp = np.reshape(inputs_use[0], (16, 2)) # inp = np.vstack(([0, 0], inp)) # # fig2 = plt.figure() # ax_inp = fig2.add_subplot(131) # ax_inp.title.set_text('2D inputs') # # fig = plt.figure() # # ax_pred = fig.add_subplot(132, projection='3d') # ax_pred.title.set_text('Predictions') # # ax_lb = fig.add_subplot(133, projection='3d') # ax_lb.title.set_text('Labels') # # for idx in range(len(pred)): # x_coor, y_coor = inp[idx] # x_coord.append(x_coor) # y_coord.append(y_coor) # # x_coor_p, y_coor_p, z_coor_p = pred[idx] # x_coord_p.append(x_coor_p) # y_coord_p.append(y_coor_p) # z_coord_p.append(z_coor_p) # # x_coor_l, y_coor_l, z_coor_l = lb[idx] # x_coord_l.append(x_coor_l) # y_coord_l.append(y_coor_l) # z_coord_l.append(z_coor_l) # # for i in range(len(start_points)): # x_coord_sub.append([x_coord[start_points[i]], x_coord[end_points[i]]]) # y_coord_sub.append([y_coord[start_points[i]], y_coord[end_points[i]]]) # # x_coord_sub_p.append([x_coord_p[start_points[i]], x_coord_p[end_points[i]]]) # y_coord_sub_p.append([y_coord_p[start_points[i]], y_coord_p[end_points[i]]]) # z_coord_sub_p.append([z_coord_p[start_points[i]], z_coord_p[end_points[i]]]) # # x_coord_sub_l.append([x_coord_l[start_points[i]], x_coord_l[end_points[i]]]) # y_coord_sub_l.append([y_coord_l[start_points[i]], y_coord_l[end_points[i]]]) # z_coord_sub_l.append([z_coord_l[start_points[i]], z_coord_l[end_points[i]]]) # # for j in range(len(start_points)): # ax_inp.plot(x_coord_sub[j], y_coord_sub[j]) # ax_pred.plot(x_coord_sub_p[j], y_coord_sub_p[j], z_coord_sub_p[j]) # ax_lb.plot(x_coord_sub_l[j], y_coord_sub_l[j], z_coord_sub_l[j])
{"hexsha": "022fa02e2cbb4106ed3651e5702b31c1cf874551", "size": 6177, "ext": "py", "lang": "Python", "max_stars_repo_path": "joint_visualization.py", "max_stars_repo_name": "damonchang23/3d_pose_baseline_pytorch", "max_stars_repo_head_hexsha": "5fedd6b2026be43155829a87d5c7ba6d5db64af6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "joint_visualization.py", "max_issues_repo_name": "damonchang23/3d_pose_baseline_pytorch", "max_issues_repo_head_hexsha": "5fedd6b2026be43155829a87d5c7ba6d5db64af6", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2019-08-28T08:41:36.000Z", "max_issues_repo_issues_event_max_datetime": "2019-08-28T08:41:36.000Z", "max_forks_repo_path": "joint_visualization.py", "max_forks_repo_name": "damonchang23/3d_pose_baseline_pytorch", "max_forks_repo_head_hexsha": "5fedd6b2026be43155829a87d5c7ba6d5db64af6", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.7540983607, "max_line_length": 99, "alphanum_fraction": 0.654848632, "include": true, "reason": "import numpy", "num_tokens": 2125}
import argparse import os import torch import json import numpy as np import src.utils.interface_train_tool as train_tool import src.utils.interface_audio_io as audio_io import matplotlib.pyplot as plt import src.trainers.trainer as trainer import src.trainers.tester as tester import src.utils.interface_tensorboard as tensorboard import src.data.dataset as dataset import src.models.model as model import src.optimizers.optimizer as optimizer import src.optimizers.loss as loss os.environ['CUDA_VISIBLE_DEVICES'] = '2' def main(sample_audio): parser = argparse.ArgumentParser(description='waverdeep - WaveBYOL - Feature extractor') parser.add_argument("--configuration", required=False, default='./config/T10-urbansound-WaveBYOL-ResNet50-Adam-15200.json') args = parser.parse_args() now = train_tool.setup_timestamp() with open(args.configuration, 'r') as configuration: config = json.load(configuration) print(">> load pretext model ...") pretext_model = model.load_model(config=config, model_name=config["pretext_model_name"], checkpoint_path=config['pretext_checkpoint']) if config['use_cuda']: pretext_model = pretext_model.cuda() for audio in sample_audio: waveform, sr = audio_io.audio_loader(audio) waveform = waveform.unsqueeze(0) if config['use_cuda']: waveform = waveform.cuda() with torch.no_grad(): out_representation = pretext_model.get_representation(waveform) out_representation = out_representation.detach() print(out_representation.size()) out_representation = out_representation.cpu().numpy() temp = [] for j in range(1): temp.append(out_representation[0][j]) temp = np.vstack(temp) plt.matshow(temp) plt.xlabel('time') plt.colorbar() plt.show() for audio in sample_audio: waveform, sr = audio_io.audio_loader(audio) waveform = waveform.unsqueeze(0) if config['use_cuda']: waveform = waveform.cuda() with torch.no_grad(): out_representation = pretext_model.get_early_representation(waveform) out_representation = out_representation.detach() print(out_representation.size()) out_representation = out_representation.cpu().numpy() temp = [] temp.append(out_representation[0]) temp = np.vstack(temp) plt.matshow(temp) plt.xlabel('time') plt.ylabel('channel') plt.colorbar() plt.show() if __name__ == '__main__': audio_set = [ './dataset_test/41_0514_301_0_07111_00.wav', './dataset_test/41_0514_301_0_07111_01.wav', './dataset_test/41_0514_301_0_07111_02.wav', ] main(audio_set)
{"hexsha": "d7b583004a825117f2f701077401c48cd90fff02", "size": 2853, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/utils/extract_latent_space.py", "max_stars_repo_name": "waverDeep/WaveBYOL", "max_stars_repo_head_hexsha": "ab062c26598e0fa6ab8426498f9920048988b5c1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2022-03-15T00:00:57.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-15T00:00:57.000Z", "max_issues_repo_path": "src/utils/extract_latent_space.py", "max_issues_repo_name": "waverDeep/WaveBYOL", "max_issues_repo_head_hexsha": "ab062c26598e0fa6ab8426498f9920048988b5c1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/utils/extract_latent_space.py", "max_forks_repo_name": "waverDeep/WaveBYOL", "max_forks_repo_head_hexsha": "ab062c26598e0fa6ab8426498f9920048988b5c1", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.1744186047, "max_line_length": 92, "alphanum_fraction": 0.6691202243, "include": true, "reason": "import numpy", "num_tokens": 594}
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from src.embed import L2Embedding as Embedding from src.module import Encoder, Decoder, Postnet, CBHG, Linear #from src.util import get_audio_feat_mask class Tacotron2(nn.Module): """Tacotron2 text-to-speech model (w/o stop prediction) """ def __init__(self, n_mels, linear_dim, in_embed_dim, spkr_embed_dim, paras): super(Tacotron2, self).__init__() self.n_mels = n_mels self.linear_dim = linear_dim if 'separate_postnet' in paras: self.separate_postnet = paras['separate_postnet'] else: self.separate_postnet = False self.encoder = Encoder(in_embed_dim, **paras['encoder']) self.decoder = Decoder( n_mels, enc_embed_dim=self.encoder.enc_embed_dim, spkr_embed_dim=spkr_embed_dim, **paras['decoder']) self.prenet_dim = self.decoder.prenet_dim self.prenet_dropout = self.decoder.prenet_dropout self.loc_aware = self.decoder.loc_aware self.use_summed_weights = self.decoder.use_summed_weights self.n_frames_per_step = self.decoder.n_frames_per_step # Whether to use CBHG to convert mel to linear or not self.postnet = None if linear_dim is not None: self.postnet = nn.Sequential( CBHG(n_mels, K=8), # CBHG output size is 2 * input size nn.Linear(n_mels * 2, linear_dim)) def forward(self, txt_embed, txt_lengths, teacher, spkr_embed, tf_rate=0.0, unpair_max_frame=None): """ Arg: txt_embed: the output of TextEmbedding of shape (B, L, enc_embed_dim) txt_lengths: text lengths before padding (B) teacher: max_dec_step for inference. (B, T, n_mels) for training tf_rate: teacher forcing rate, `1.0` for pure teacher forcing. """ enc_output = self.encoder(txt_embed, txt_lengths) mel_pred, alignment, stop = self.decoder(enc_output, txt_lengths, teacher, spkr_embed, tf_rate=tf_rate, unpair_max_frame=unpair_max_frame) if self.separate_postnet: linear_pred = self.postnet(mel_pred.detach()) if self.postnet is not None else None # For demo else: linear_pred = self.postnet(mel_pred) if self.postnet is not None else None return mel_pred, linear_pred, alignment, stop def create_msg(self): msg = [] msg.append('Model spec.| Model = `TACO-2`\t| Prenet dim = {}\t| Prenet dropout = {}\t'.format( self.prenet_dim, self.prenet_dropout)) msg.append(' | Loc. aware = {}\t| frames/step = {}\t| mel2linear = {}\t| sep_post = {}\t'.format( self.loc_aware. self.n_frames_per_step, self.postnet is not None, self.separate_postnet)) return msg class Tacotron2withCodebook(nn.Module): def __init__(self, n_mels, linear_dim, vocab_size, paras_tts, paras_codebook): super(Tacotron2withCodebook, self).__init__() # Remember to pop 'bone' paras_codebook.pop('bone') self.codebook = Embedding(vocab_size, False, **paras_codebook) self.tts = Tacotron2(n_mels, linear_dim, self.codebook.out_dim, paras_tts) self.n_frames_per_step = self.tts.decoder.n_frames_per_step self.create_msg = self.tts.create_msg def forward(self, txt, txt_lengths, teacher, tf_rate=0.0): txt_embed = self.codebook.inference(txt) mel_pred, alignment, stop = self.tts(txt_embed, txt_lengths, teacher, tf_rate) return mel_pred, alignment, stop
{"hexsha": "f479e58ffc4c6a7806f98758c5b8cb79f85a048c", "size": 3683, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/tts.py", "max_stars_repo_name": "ttaoREtw/semi-tts", "max_stars_repo_head_hexsha": "46750fc68d1547e82bda9341f5029595ded984c8", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 40, "max_stars_repo_stars_event_min_datetime": "2020-07-22T04:49:43.000Z", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:11:30.000Z", "max_issues_repo_path": "src/tts.py", "max_issues_repo_name": "ttaoREtw/semi-tts", "max_issues_repo_head_hexsha": "46750fc68d1547e82bda9341f5029595ded984c8", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2021-12-13T02:39:29.000Z", "max_issues_repo_issues_event_max_datetime": "2021-12-13T02:39:29.000Z", "max_forks_repo_path": "src/tts.py", "max_forks_repo_name": "ttaoREtw/semi-tts", "max_forks_repo_head_hexsha": "46750fc68d1547e82bda9341f5029595ded984c8", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2020-08-16T08:43:40.000Z", "max_forks_repo_forks_event_max_datetime": "2021-02-19T09:53:26.000Z", "avg_line_length": 48.4605263158, "max_line_length": 115, "alphanum_fraction": 0.6535433071, "include": true, "reason": "import numpy", "num_tokens": 916}
//////////////////////////////////////////////////////////////////////// // // This file is part of gmic-8bf, a filter plug-in module that // interfaces with G'MIC-Qt. // // Copyright (c) 2020, 2021 Nicholas Hayes // // This file is licensed under the MIT License. // See LICENSE.txt for complete licensing and attribution information. // //////////////////////////////////////////////////////////////////////// #include "ClipboardUtilWin.h" #include "FileUtil.h" #include "ImageConversionWin.h" #include <vector> #include <boost/algorithm/string.hpp> namespace { std::vector<UINT> GetAvailableClipboardFormats() { std::vector<UINT> formats; UINT format = EnumClipboardFormats(0); while (format != 0) { formats.push_back(format); format = EnumClipboardFormats(format); } return formats; } OSErr GetFileDropPath(std::wstring& path) { OSErr err = noErr; HANDLE hGlobal = GetClipboardData(CF_HDROP); if (hGlobal != nullptr) { HDROP hDrop = static_cast<HDROP>(GlobalLock(hGlobal)); if (hDrop != nullptr) { try { UINT requiredLength = DragQueryFileW(hDrop, 0, nullptr, 0) + 1; if (requiredLength > 1) { path = std::wstring(static_cast<size_t>(requiredLength), '\0'); if (DragQueryFileW(hDrop, 0, &path[0], requiredLength) > 0) { // Remove the NUL-terminator from the end of the string. path.resize(static_cast<size_t>(requiredLength) - 1); } else { err = ioErr; } } else { err = ioErr; } } catch (const std::bad_alloc&) { err = memFullErr; } catch (...) { err = ioErr; } GlobalUnlock(hGlobal); } else { err = ioErr; } } else { err = ioErr; } return err; } bool FileDropIsImage(const std::wstring& path) { static const std::vector<std::wstring> fileExtensions { L".bmp", L".png", L".jpg", L".jpe", L".jpeg", L".jfif", L".gif", L".tif", L".tiff" }; for (const auto& ext : fileExtensions) { if (boost::algorithm::iends_with(path, ext)) { return true; } } return false; } OSErr ProcessFileDrop( const FilterRecordPtr filterRecord, const std::wstring& path, const boost::filesystem::path& gmicInputPath) { return ConvertImageToGmicInputFormatNative(filterRecord, path, gmicInputPath); } OSErr ProcessDib( const FilterRecordPtr filterRecord, UINT format, const boost::filesystem::path& gmicInputPath) { HANDLE hGlobal = GetClipboardData(format); if (hGlobal == nullptr) { return ioErr; } const SIZE_T handleSize = GlobalSize(hGlobal); if (handleSize < sizeof(BITMAPINFOHEADER)) { return ioErr; } OSErr err = noErr; PVOID data = GlobalLock(hGlobal); if (data != nullptr) { try { PBITMAPINFOHEADER pbih = static_cast<PBITMAPINFOHEADER>(data); uint64_t imageDataSize = static_cast<uint64_t>(pbih->biSizeImage); if (imageDataSize == 0) { if (pbih->biCompression != BI_RGB) { err = ioErr; } else { uint64_t stride = ((static_cast<uint64_t>(pbih->biWidth) * pbih->biBitCount + 31) & ~31) / 8; uint64_t height = pbih->biHeight < 0 ? -pbih->biHeight : pbih->biHeight; imageDataSize = stride * height; } } if (err == noErr) { const uint64_t dibSize = static_cast<uint64_t>(pbih->biSize) + static_cast<uint64_t>(pbih->biClrUsed) * sizeof(RGBQUAD) + imageDataSize; if (dibSize > handleSize) { err = ioErr; } else { // Compute the size of the entire file. const uint64_t fileSize = sizeof(BITMAPFILEHEADER) + dibSize; if (fileSize > std::numeric_limits<DWORD>::max()) { err = ioErr; } else { std::vector<BYTE> memoryBmp(static_cast<size_t>(fileSize)); BITMAPFILEHEADER* bfh = reinterpret_cast<BITMAPFILEHEADER*>(memoryBmp.data()); bfh->bfType = 0x4d42; // 0x42 = "B" 0x4d = "M" bfh->bfSize = static_cast<DWORD>(fileSize); bfh->bfReserved1 = 0; bfh->bfReserved2 = 0; bfh->bfOffBits = sizeof(BITMAPFILEHEADER) + pbih->biSize + pbih->biClrUsed * sizeof(RGBQUAD); BYTE* dst = memoryBmp.data() + sizeof(BITMAPFILEHEADER); std::memcpy(dst, data, static_cast<size_t>(dibSize)); err = ConvertImageToGmicInputFormatNative( filterRecord, memoryBmp.data(), memoryBmp.size(), gmicInputPath); } } } } catch (const std::bad_alloc&) { err = memFullErr; } catch (...) { err = ioErr; } GlobalUnlock(hGlobal); } else { err = ioErr; } return err; } OSErr ProcessPng( const FilterRecordPtr filterRecord, UINT format, const boost::filesystem::path& gmicInputPath) { HANDLE hGlobal = GetClipboardData(format); if (hGlobal == nullptr) { return ioErr; } const SIZE_T handleSize = GlobalSize(hGlobal); OSErr err = noErr; PVOID data = GlobalLock(hGlobal); if (data != nullptr) { try { err = ConvertImageToGmicInputFormatNative( filterRecord, data, handleSize, gmicInputPath); } catch (const std::bad_alloc&) { err = memFullErr; } catch (...) { err = ioErr; } GlobalUnlock(hGlobal); } else { err = ioErr; } return err; } OSErr TryProcessClipboardImage( const FilterRecordPtr filterRecord, const std::vector<UINT>& availableFormats, const boost::filesystem::path& gmicInputPath) { static const UINT pngFormatId = RegisterClipboardFormatW(L"PNG"); static const UINT pngMimeFormatId = RegisterClipboardFormatW(L"image/png"); // Used by Qt-based applications OSErr err = noErr; for (const auto& format : availableFormats) { // Pick the first format in the list that we support. if (format == CF_HDROP) { // Web Browsers often download the image and place a link on the clipboard. std::wstring path; if (GetFileDropPath(path) == noErr && FileDropIsImage(path)) { err = ProcessFileDrop(filterRecord, path, gmicInputPath); if (err == noErr) { break; } } } else if (format == CF_DIB || format == CF_DIBV5) { err = ProcessDib(filterRecord, format, gmicInputPath); if (err == noErr) { break; } } else if (format == pngFormatId || format == pngMimeFormatId) { err = ProcessPng(filterRecord, format, gmicInputPath); if (err == noErr) { break; } } } return err; } #if DEBUG_BUILD #include <map> void DumpClipboardFormats(const std::vector<UINT>& availableFormats) { static std::map<UINT, std::string> predefinedFormats { { CF_TEXT, "CF_TEXT" }, { CF_BITMAP, "CF_BITMAP" }, { CF_METAFILEPICT, "CF_METAFILEPICT" }, { CF_SYLK, "CF_SYLK" }, { CF_DIF, "CF_DIF" }, { CF_TIFF, "CF_TIFF" }, { CF_OEMTEXT, "CF_OEMTEXT" }, { CF_DIB, "CF_DIB" }, { CF_PALETTE, "CF_PALETTE" }, { CF_PENDATA, "CF_PENDATA" }, { CF_RIFF, "CF_RIFF" }, { CF_WAVE, "CF_WAVE" }, { CF_UNICODETEXT, "CF_UNICODETEXT" }, { CF_ENHMETAFILE, "CF_ENHMETAFILE" }, { CF_HDROP, "CF_HDROP" }, { CF_LOCALE, "CF_LOCALE" }, { CF_DIBV5, "CF_DIBV5" } }; DebugOut("The clipboard contains %zd formats.", availableFormats.size()); constexpr int formatNameBufferLength = 256; char formatNameBuffer[formatNameBufferLength]{}; for (auto& format : availableFormats) { const auto& predefinedItem = predefinedFormats.find(format); if (predefinedItem != predefinedFormats.end()) { DebugOut("Predefined format %u (%s)", format, predefinedItem->second.c_str()); } else { if (GetClipboardFormatNameA(format, formatNameBuffer, formatNameBufferLength) > 0) { DebugOut("Registered format %u (%s)", format, formatNameBuffer); } else { if (format >= CF_PRIVATEFIRST && format <= CF_PRIVATELAST) { DebugOut("Private format %u", format); } else { DebugOut("Unknown format %u", format); } } } } } #endif // DEBUG_BUILD } OSErr ConvertClipboardImageToGmicInputNative( const FilterRecordPtr filterRecord, const boost::filesystem::path& gmicInputPath) { OSErr err = noErr; // Failure to open the clipboard is not a fatal error, if it cannot be opened // G'MIC will only get one input image. // The same thing that would happen if the clipboard does not contain an image. if (OpenClipboard(nullptr)) { try { const std::vector<UINT>& availableFormats = GetAvailableClipboardFormats(); #if DEBUG_BUILD DumpClipboardFormats(availableFormats); #endif // DEBUG_BUILD err = TryProcessClipboardImage(filterRecord, availableFormats, gmicInputPath); } catch (const std::bad_alloc&) { err = memFullErr; } catch (...) { err = ioErr; } CloseClipboard(); } return err; }
{"hexsha": "345cbe6d2abc8c53194f77660b3a16bf3c1c49d4", "size": 12331, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "src/win/ClipboardUtilWin.cpp", "max_stars_repo_name": "ganego/gmic-8bf", "max_stars_repo_head_hexsha": "ee49ae507da60d648df582772163e059faa9f4f1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/win/ClipboardUtilWin.cpp", "max_issues_repo_name": "ganego/gmic-8bf", "max_issues_repo_head_hexsha": "ee49ae507da60d648df582772163e059faa9f4f1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/win/ClipboardUtilWin.cpp", "max_forks_repo_name": "ganego/gmic-8bf", "max_forks_repo_head_hexsha": "ee49ae507da60d648df582772163e059faa9f4f1", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 28.4124423963, "max_line_length": 121, "alphanum_fraction": 0.4461925229, "num_tokens": 2558}
```python from IPython.display import Image Image('../../../python_for_probability_statistics_and_machine_learning.jpg') ``` # Support Vector Machines Support Vector Machines (SVM) originated from the statistical learning theory developed by Vapnik-Chervonenkis. As such, it represents a deep application of statistical theory that incorporates the VC dimension concepts we discussed in the first section. Let's start by looking at some pictures. Consider the two-dimensional classification problem shown in [Figure](#fig:svm_001). [Figure](#fig:svm_001) shows two classes (gray and white circles) that can be separated by any of the lines shown. Specifically, any such separating line can be written as the locus of points ($\mathbf{x}$) in the two-dimensional plane that satisfy the following, <!-- dom:FIGURE: [fig-machine_learning/svm_001.png, width=500 frac=0.45] In the two-dimensional plane, the two classes (gray and white circles) are easily separated by any one of the lines shown. <div id="fig:svm_001"></div> --> <!-- begin figure --> <div id="fig:svm_001"></div> <p>In the two-dimensional plane, the two classes (gray and white circles) are easily separated by any one of the lines shown.</p> <!-- end figure --> $$ \beta_0 + \boldsymbol{\beta}^T \mathbf{x} = 0 $$ To classify an arbitrary $\mathbf{x}$ using this line, we just compute the sign of $\beta_0+\boldsymbol{\beta}^T \mathbf{x}$ and assign one class to the positive sign and the other class to the negative sign. To uniquely specify such a separating line (or, hyperplane in a higher-dimensional space) we need additional criteria. [Figure](#fig:svm_002) shows the data with two bordering parallel lines that form a margin around the central separating line. The *maximal margin algorithm* finds the widest margin and the unique separating line. As a consequence, the algorithm uncovers the elements in the data that touch the margins. These are the *support* elements. The other elements away from the border are not relevent to the solution. This reduces model variance because the solution is insensitive to the removal of elements other than these supporting elements (usually a small minority). <!-- dom:FIGURE: [fig-machine_learning/svm_002.png, width=500 frac=0.55] The maximal margin algorithm finds the separating line that maximizes the margin shown. The elements that touch the margins are the support elements. The dotted elements are not relevent to the solution. <div id="fig:svm_002"></div> --> <!-- begin figure --> <div id="fig:svm_002"></div> <p>The maximal margin algorithm finds the separating line that maximizes the margin shown. The elements that touch the margins are the support elements. The dotted elements are not relevent to the solution.</p> <!-- end figure --> To see how this works for linearly separable classes, consider a training set consisting of $\lbrace (\mathbf{x},y) \rbrace$ where $y\in \lbrace -1,1 \rbrace$. For any point $\mathbf{x}_i$, we compute the functional margin as $\hat{ \gamma_i }=y_i (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i)$. Thus, $\hat{\gamma}_i >0$ when $\mathbf{x}_i$ is correctly classified. The geometrical margin is $\gamma = \hat{\gamma}/\lVert\boldsymbol{\beta}\rVert$. When $\mathbf{x}_i$ is correctly classified, the geometrical margin is equal to the perpendicular distance from $\mathbf{x}_i$ to the line. Let's look see how the maximal margin algorithm works. Let $M$ be the width of the margin. The maximal margin algorithm is can be formulated as a quadratic programming problem. We want to simultaneously maximize the margin $M$ while ensuring that all of the data points are correctly classified. $$ \begin{aligned} & \underset{\beta_0,\boldsymbol{\beta},\lVert\boldsymbol{\beta}\rVert=1}{\text{m aximize}} & & M \\\ & \text{subject to:} & & y_i(\beta_0+\boldsymbol{\beta}^T \mathbf{x}_i) \geq M, \; i = 1, \ldots, N. \end{aligned} $$ The first line says we want to generate a maximum value for $M$ by adjusting $\beta_0$ and $\boldsymbol{\beta}$ while keeping $\lVert\boldsymbol{\beta}\rVert=1$. The functional margins for each $i^{th}$ data element are the constraints to the problem and must be satisfied for every proposed solution. In words, the constraints enforce that the elements have to be correctly classified and outside of the margin around the separating line. With some reformulation, it turns out that $M=1/\lVert\boldsymbol{\beta}\rVert$ and this can be put into the following standard format, $$ \begin{aligned} & \underset{\beta_0,\boldsymbol{\beta}}{\text{minimize}} & & \lVert\boldsymbol{\beta}\rVert \\\ & \text{subject to:} & & y_i(\beta_0+\boldsymbol{\beta}^T \mathbf{x}_i) \geq 1, \; i = 1, \ldots, N. \end{aligned} $$ This is a convex optimization problem and can be solved using powerful methods in that area. The situation becomes more complex when the two classes are not separable and we have to allow some unavoidable mixing between the two classes in the solution. This means that the contraints have to modified as in the following, $$ y_i(\beta_0+\boldsymbol{\beta}^T \mathbf{x}_i) \geq M(1-\xi_i) $$ where the $\xi_i$ are the slack variables and represent the proportional amount tha the prediction is on the wrong side of the margin. Thus, elements are misclassified when $\xi_i>1$. With these additional variables, we have a more general formulation of the convex optimization problem, $$ \begin{aligned} & \underset{\beta_0,\boldsymbol{\beta}}{\text{minimize}} & & \lVert\boldsymbol{\beta}\rVert \\\ & \text{subject to:} & & y_i(\beta_0+\boldsymbol{\beta}^T \mathbf{x}_i) \geq 1-\xi_i, \\\ & & & \xi_i \geq 0, \sum \xi_i \leq \texttt{constant}, \; i = 1, \ldots, N. \end{aligned} $$ which can be rewritten in the following equivalent form, <!-- Equation labels as ordinary links --> <div id="eq:svm"></div> $$ \begin{equation} \begin{aligned} & \underset{\beta_0,\boldsymbol{\beta}}{\text{minimize}} & & \frac{1}{2}\lVert\boldsymbol{\beta}\rVert + C \sum \xi_i \\\ & \text{subject to:} & & y_i(\beta_0+\boldsymbol{\beta}^T \mathbf{x}_i) \geq 1-\xi_i, \xi_i \geq 0 \; i = 1, \ldots, N. \end{aligned} \end{equation} \label{eq:svm} \tag{1} $$ Because the $\xi_i$ terms are all positive, the objective is to maximize the margin (i.e., minimize $\lVert\boldsymbol{\beta}\rVert$) while minimizing the proportional drift of the predictions to the wrong side of the margin (i.e., $C \sum \xi_i$). Thus, large values of $C$ shunt algorithmic focus towards the correctly classified points near the decision boundary and small values focus on further data. The value $C$ is a hyperparameter for the SVM. The good news is that all of these complicated pieces are handled neatly inside of Scikit-learn. The following sets up the linear *kernel* for the SVM (more on kernels soon), ```python from sklearn.datasets import make_blobs from sklearn.svm import SVC sv = SVC(kernel='linear') ``` We can create some synthetic data using `make_blobs` and then fit it to the SVM, ```python X,y=make_blobs(n_samples=200, centers=2, n_features=2, random_state=0,cluster_std=.5) sv.fit(X,y) ``` SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) After fitting, the SVM now has the estimated support vectors and the coefficients of the $\boldsymbol{\beta}$ in the `sv.support_vectors_` and `sv.coef_` attributes, respectively. [Figure](#fig:svm_003) shows the two sample classes (white and gray circles) and the line separating them that was found by the maximal margin algorithm. The two parallel dotted lines show the margin. The large circles enclose the support vectors, which are the data elements that are relevent to the solution. Notice that only these elements can touch the edges of the margins. ```python %matplotlib inline from matplotlib.pylab import subplots import numpy as np xi = np.linspace(X[:,0].min(),X[:,0].max(),100) fig,ax=subplots() _=ax.scatter(X[:,0],X[:,1],c=y,s=50,cmap='gray',marker='o',alpha=.3) _=ax.plot(sv.support_vectors_[:,0],sv.support_vectors_[:,1],'ko',markersize=20,alpha=.2) _=ax.plot(xi,-sv.coef_[0,0]/sv.coef_[0,1]*xi- sv.intercept_/sv.coef_[0,1],'k',lw=3.) margin = np.linalg.norm(sv.coef_) _=ax.plot(xi,-sv.coef_[0,0]/sv.coef_[0,1]*xi-(sv.intercept_+margin/2.)/sv.coef_[0,1],'--k',lw=3.) _=ax.plot(xi,-sv.coef_[0,0]/sv.coef_[0,1]*xi-(sv.intercept_-margin/2.)/sv.coef_[0,1],'--k',lw=3.) ``` <!-- dom:FIGURE: [fig-machine_learning/svm_003.png, width=500 frac=0.75] The two class shown (white and gray circles) are linearly separable. The maximal margin solution is shown by the dark black line in the middle. The dotted lines show the extent of the margin. The large circles indicate the support vectors for the maximal margin solution. <div id="fig:svm_003"></div> --> <!-- begin figure --> <div id="fig:svm_003"></div> <p>The two class shown (white and gray circles) are linearly separable. The maximal margin solution is shown by the dark black line in the middle. The dotted lines show the extent of the margin. The large circles indicate the support vectors for the maximal margin solution.</p> <!-- end figure --> ```python def draw_margins(sv,X,y,ax=None): sv.fit(X,y) xi = np.linspace(X[:,0].min(),X[:,0].max(),100) if ax is None: fig,ax=subplots() _=ax.scatter(X[:,0],X[:,1],c=y,s=50,cmap='gray',marker='o',alpha=.3) _=ax.plot(sv.support_vectors_[:,0],sv.support_vectors_[:,1],'ko',markersize=20,alpha=.2) _=ax.plot(xi,-sv.coef_[0,0]/sv.coef_[0,1]*xi- sv.intercept_/sv.coef_[0,1],'k',lw=3.) margin = np.linalg.norm(sv.coef_) _=ax.plot(xi,-sv.coef_[0,0]/sv.coef_[0,1]*xi- (sv.intercept_+margin/2.)/sv.coef_[0,1],'--k',lw=3.) _=ax.plot(xi,-sv.coef_[0,0]/sv.coef_[0,1]*xi- (sv.intercept_-margin/2.)/sv.coef_[0,1],'--k',lw=3.) ``` ```python X, y = make_blobs(n_samples=50, centers=2, n_features=2, cluster_std=1,random_state=0) fig,axs = subplots(2,2,sharex=True,sharey=True) #fig.set_size_inches((12,6)) sv = SVC(kernel='linear',C=.0100) draw_margins(sv,X,y,ax=axs[0,0]) _=axs[0,0].set_title('C=0.01') sv = SVC(kernel='linear',C=1) draw_margins(sv,X,y,ax=axs[0,1]) _=axs[0,1].set_title('C=1') sv = SVC(kernel='linear',C=100) draw_margins(sv,X,y,ax=axs[1,0]) _=axs[1,0].set_title('C=100') sv = SVC(kernel='linear',C=10000) draw_margins(sv,X,y,ax=axs[1,1]) _=axs[1,1].set_title('C=10000') ``` [Figure](#fig:svm_004) shows what happens when the value of $C$ changes. Increasing this value emphasizes the $\xi$ part of the objective function in Equation [eq:svm](#eq:svm). As shown in the top left panel, a small value for $C$ means that the algorithm is willing to accept many support vectors at the expense of maximizing the margin. That is, the proportional amount that predictions are on the wrong side of the margin is more acceptable with smaller $C$. As the value of $C$ increases, there are fewer support vectors because the optimization process prefers to eliminate support vectors that are far away from the margins and accept fewer of these that encroach into the margin. Note that as the value of $C$ progresses through this figure, the separating line tilts slightly. <!-- dom:FIGURE: [fig-machine_learning/svm_004.png, width=500 frac=0.95] The maximal margin algorithm finds the separating line that maximizes the margin shown. The elements that touch the margins are the support elements. The dotted elements are not relevent to the solution. <div id="fig:svm_004"></div> --> <!-- begin figure --> <div id="fig:svm_004"></div> <p>The maximal margin algorithm finds the separating line that maximizes the margin shown. The elements that touch the margins are the support elements. The dotted elements are not relevent to the solution.</p> <!-- end figure --> ## Kernel Tricks Support Vector Machines provide a powerful method to deal with linear separations, but they can also apply to non-linear boundaries by exploiting the so-called *kernel trick*. The convex optimization formulation of the SVM includes a *dual* formulation that leads to a solution that requires only the inner-products of the features. The kernel trick is to substitute inner-products by nonlinear kernel functions. This can be thought of as mapping the original features onto a possibly infinite dimensional space of new features. That is, if the data are not linearly separable in two-dimensional space (for example) maybe they are separable in three-dimensional space (or higher)? To make this concrete, suppose the original input space is $\mathbb{R}^n$ and we want to use a non-linear mapping $\psi:\mathbf{x} \mapsto \mathcal{F}$ where $\mathcal{F}$ is an inner-product space of higher dimension. The kernel trick is to calculate the inner-product in $\mathcal{F}$ using a kernel function, $K(\mathbf{x}_i,\mathbf{x}_j) = \langle \psi(\mathbf{x}_i),\psi(\mathbf{x}_j)\rangle$. The long way to compute this is to first compute $\psi(\mathbf{x})$ and then do the inner-product. The kernel-trick way to do it is to use the kernel function and avoid computing $\psi$. In other words, the kernel function returns what the inner-product in $\mathcal{F}$ would have returned if $\psi$ had been applied. For example, to achieve an $n^{th}$ polynomial mapping of the input space, we can use $\kappa(\mathbf{x}_i,\mathbf{x}_j)=(\mathbf{x}_i^T\mathbf{x}_j+\theta)^n$. For example, suppose the input space is $\mathbb{R}^2$ and $\mathcal{F}=\mathbb{R}^4$ and we have the following mapping, $$ \psi(\mathbf{x}) : (x_0,x_1) \mapsto (x_0^2,x_1^2,x_0 x_1, x_1 x_0) $$ The inner product in $\mathcal{F}$ is then, $$ \langle \psi(\mathbf{x}),\psi(\mathbf{y}) \rangle = \langle \mathbf{x},\mathbf{y} \rangle^2 $$ In other words, the kernel is the square of the inner product in input space. The advantage of using the kernel instead of simply enlarging the feature space is computational because you only need to compute the kernel on all distinct pairs of the input space. The following example should help make this concrete. First we create some Sympy variables, ```python import sympy as S x0,x1=S.symbols('x:2',real=True) y0,y1=S.symbols('y:2',real=True) ``` Next, we create the $\psi$ function that maps into $\mathbb{R}^4$ and the corresponding kernel function, ```python psi = lambda x,y: (x**2,y**2,x*y,x*y) kern = lambda x,y: S.Matrix(x).dot(y)**2 ``` Notice that the inner product in $\mathbb{R}^4$ is equal to the kernel function, which only uses wthe $\mathbb{R}^2$ variables. ```python print(S.Matrix(psi(x0,x1)).dot(psi(y0,y1))) print(S.expand(kern((x0,x1),(y0,y1)))) # same as above ``` x0**2*y0**2 + 2*x0*x1*y0*y1 + x1**2*y1**2 x0**2*y0**2 + 2*x0*x1*y0*y1 + x1**2*y1**2 **Polynomial Regression Using Kernels.** Recall our favorite linear regression problem from the regularization chapter, $$ \min_{\boldsymbol{\beta}} \Vert y - \mathbf{X}\boldsymbol{\beta}\Vert^2 $$ where $\mathbf{X}$ is a $n\times m$ matrix with $m>n$. As we discussed, there are multiple solutions to this problem. The least-squares solution is the following: $$ \boldsymbol{\beta}_{LS}=\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{\text{-1}}\mathbf{ y} $$ Given a new feature vector $\mathbf{x}$, the corresponding estimator for $\mathbf{y}$ is the following, $$ \hat{\mathbf{y}} = \mathbf{x}^T\boldsymbol{\beta}_{LS}=\mathbf{x}^T\mathbf{X}^T( \mathbf{X}\mathbf{X}^T)^{\text{-1}}\mathbf{y} $$ Using the kernel trick, the solution can be written more generally as the following, $$ \hat{\mathbf{y}}=\mathbf{k}(\mathbf{x})^T\mathbf{K}^{\text{-1}}\mathbf{y} $$ where the $n\times n$ kernel matrix $\mathbf{K}$ replaces $\mathbf{X}\mathbf{X}^T$ and where $\mathbf{k}(\mathbf{x})$ is a $n$-vector of components $\mathbf{k}(\mathbf{x})=[\kappa(\mathbf{x}_i,\mathbf{x})]$ and where $\mathbf{K}_{i,j}=\kappa(\mathbf{x}_i,\mathbf{x}_j)$ for the kernel function $\kappa$. With this more general setup, we can substitute $\kappa(\mathbf{x}_i,\mathbf{x}_j)=(\mathbf{x}_i^T\mathbf{x}_j+\theta)^n$ for $n^{th}$-order polynomial regression [[bauckhagenumpy]](#bauckhagenumpy). Note that ridge regression can also be incorporated by inverting $(\mathbf{K}+\alpha \mathbf{I})$, which can help stabilize poorly conditioned $\mathbf{K}$ matrices with a tunable $\alpha$ hyper-parameter [[bauckhagenumpy]](#bauckhagenumpy). For some kernels, the enlarged $\mathcal{F}$ space is infinite-dimensional. Mercer's conditions provide technical restrictions on the kernel functions. Powerful, well-studied kernels have been implemented in Scikit-learn. The advantage of kernel functions may evaporate for when $n\rightarrow m$ in which case using the $\psi$ functions instead can be more practicable. <!-- !bt --> <!-- \begin{pyconsole} --> <!-- sv = SVC(kernel='rbf',C=1000) --> <!-- sv.fit(X,y) --> <!-- \end{pyconsole} --> <!-- !et --> <!-- FIGURE: [fig-machine_learning/svm_005.png, width=500 frac=0.85] Using a radial basis function kernel, the SVM can generate a curved separating surface that can classify the two classes shown. <div id="fig:svm_005"></div> --> <!-- As shown in [Figure](#fig:svm_002), the maximal margin algorithm finds the --> <!-- separating line that maximizes the margin shown. As a result, the data shown by --> <!-- the dotted circles are no longer relevant to the *support* of the line. That --> <!-- is, the dotted circles could be removed with changing the final result. --> <!-- Kernel trick --> <!-- objective function includes VC dimension --> <!-- *Modern Multivariate Statistical Techniques Izenman, p. 371* --> <!-- *Learning and Soft computing by Kecman, p.154, 171, 186* --> <!-- *Mastering machine learning with Scikit-learn, p.174* --> <!-- *Gaussian Processes for Machine Learning, p. 163* --> <!-- *Elements of statistical learning p.418* --> <!-- *Kernel methods pattern Taylor p.43* --> <!-- *Learning with Kernels, p.43* --> <!-- *An Intro to Machine Learning by james, p.362* --> ```python from matplotlib.pylab import cm xi = np.linspace(X[:,0].min(),X[:,0].max(),100) yi = np.linspace(X[:,1].min(),X[:,1].max(),100) fig,ax=subplots() _=ax.scatter(X[:,0],X[:,1],c=y,s=50,cmap='gray',marker='o',alpha=.3) Xi,Yi = np.meshgrid(xi,yi) Zi=sv.predict(np.c_[Xi.ravel(),Yi.ravel()]).reshape(Xi.shape) _=ax.contourf(Xi,Yi,Zi,cmap=cm.Paired,alpha=0.2); ```
{"hexsha": "8bf326becb141dc929f1ec4ead3eac5c14561ade", "size": 236626, "ext": "ipynb", "lang": "Jupyter Notebook", "max_stars_repo_path": "chapters/machine_learning/notebooks/svm.ipynb", "max_stars_repo_name": "nsydn/Python-for-Probability-Statistics-and-Machine-Learning", "max_stars_repo_head_hexsha": "d3e0f8ea475525a694a975dbfd2bf80bc2967cc6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 570, "max_stars_repo_stars_event_min_datetime": "2016-05-05T19:08:27.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T05:09:19.000Z", "max_issues_repo_path": "chapters/machine_learning/notebooks/svm.ipynb", "max_issues_repo_name": "crlsmcl/https-github.com-unpingco-Python-for-Probability-Statistics-and-Machine-Learning", "max_issues_repo_head_hexsha": "6fd69459a28c0b76b37fad79b7e8e430d09a86a5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2016-05-12T22:18:58.000Z", "max_issues_repo_issues_event_max_datetime": "2019-11-06T14:37:06.000Z", "max_forks_repo_path": "chapters/machine_learning/notebooks/svm.ipynb", "max_forks_repo_name": "crlsmcl/https-github.com-unpingco-Python-for-Probability-Statistics-and-Machine-Learning", "max_forks_repo_head_hexsha": "6fd69459a28c0b76b37fad79b7e8e430d09a86a5", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 276, "max_forks_repo_forks_event_min_datetime": "2016-05-27T01:42:05.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-27T11:20:27.000Z", "avg_line_length": 341.9450867052, "max_line_length": 114721, "alphanum_fraction": 0.9165856668, "converted": true, "num_tokens": 5402}
{- True 0 False False 4 42 42 True False [33, 42, 42, 42, 42] [42, 42, 33, 42, 42] [42, 42, 42, 42, 33] [33, 42, 42, 42] [42, 42, 33, 42] [42, 42, 42, 33] False True -} import Data.Vector main : IO () main = do let e = the (Vector Int) empty printLn (null e) printLn (length e) printLn (elem 42 e) let a = replicate 4 (the Int 42) printLn (null a) printLn (length a) printLn (a !! 0) printLn (a !! 3) printLn (elem 42 a) printLn (elem 33 a) printLn (unsafeInsertAt 0 33 a) printLn (unsafeInsertAt 2 33 a) printLn (unsafeInsertAt (length a) 33 a) printLn (unsafeReplaceAt 0 33 a) printLn (unsafeReplaceAt 2 33 a) printLn (maybe a (\index => unsafeReplaceAt index 33 a) (lastIndex a)) printLn (elem 33 a) printLn (elem 33 (singleton 33)) -- Local Variables: -- idris-load-packages: ("cil") -- End:
{"hexsha": "2a9896936aea44753a6b0e1cd06d05375a37a551", "size": 837, "ext": "idr", "lang": "Idris", "max_stars_repo_path": "Tests/Vector.idr", "max_stars_repo_name": "timjs/iris-clean", "max_stars_repo_head_hexsha": "b2ed1f982beec936cb6fe32e8fa6b97a1da4a4f6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 146, "max_stars_repo_stars_event_min_datetime": "2015-07-27T12:33:10.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-25T22:26:35.000Z", "max_issues_repo_path": "Tests/Vector.idr", "max_issues_repo_name": "timjs/iris-clean", "max_issues_repo_head_hexsha": "b2ed1f982beec936cb6fe32e8fa6b97a1da4a4f6", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 27, "max_issues_repo_issues_event_min_datetime": "2015-09-21T15:08:05.000Z", "max_issues_repo_issues_event_max_datetime": "2022-02-20T13:55:12.000Z", "max_forks_repo_path": "Tests/Vector.idr", "max_forks_repo_name": "timjs/iris-clean", "max_forks_repo_head_hexsha": "b2ed1f982beec936cb6fe32e8fa6b97a1da4a4f6", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 14, "max_forks_repo_forks_event_min_datetime": "2015-09-21T12:24:16.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-16T21:10:06.000Z", "avg_line_length": 17.4375, "max_line_length": 72, "alphanum_fraction": 0.6379928315, "num_tokens": 342}
C Copyright(C) 1999-2020 National Technology & Engineering Solutions C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with C NTESS, the U.S. Government retains certain rights in this software. C C See packages/seacas/LICENSE for details SUBROUTINE LINE3 (COORD, NUMNP, DIST, T, NDIM, P1, P2, TOLER, * NODEL, BOUND, SORTYP, MAP, SORUP, INUM, OPT, SELECT) DIMENSION COORD (NUMNP,*), DIST(*), T(*), P1(*), P2(*), * TOLER(2), MAP(*) CHARACTER*(*) NODEL, BOUND, SORTYP, OPT LOGICAL SORUP, SELECT(*), ISABRT include 'nu_io.blk' CALL LOCOUT ('LINE', NDIM, NODEL, TOLER, SORTYP, P1, P2, BOUND) IF (BOUND(:3) .EQ. 'BOU') THEN BMULT = 1.0 ELSE BMULT = 0.0 END IF TEMP = TOLER(1) TOLER(1) = MAX(0.0, TEMP - TOLER(2)) TOLER(2) = MAX(0.0, TEMP + TOLER(2)) A = P2(1) - P1(1) B = P2(2) - P1(2) C = P2(3) - P1(3) X1 = P1(1) Y1 = P1(2) Z1 = P1(3) DLINE = A**2 + B**2 + C**2 IF (DLINE .EQ. 0.0) THEN CALL PRTERR ('CMDERR', 'Zero length line input') RETURN END IF DO 10 I=1, NUMNP IF (SELECT(I)) THEN X0 = COORD(I,1) Y0 = COORD(I,2) Z0 = COORD(I,3) T(I) = -1. * (A * (X1 - X0) + B * (Y1 - Y0) + C * (Z1 - Z0)) * / (A**2 + B**2 + C**2) X = X1 + A * T(I) Y = Y1 + B * T(I) Z = Z1 + C * T(I) DIST(I) = (X - X0)**2 + (Y - Y0)**2 + (Z - Z0)**2 END IF 10 CONTINUE INUM = 0 DISMIN = 1.0E38 DO 20 I=1, NUMNP IF (SELECT(I)) THEN DISMIN = MIN(DIST(I), ABS(DISMIN-TEMP)) IF (DIST(I) .GE. TOLER(1)**2 .AND. DIST(I) .LE. TOLER(2)**2 * .AND. BMULT * T(I) .GE. 0.0 .AND. BMULT * T(I) .LE. 1.0) * THEN INUM = INUM + 1 MAP(INUM) = I END IF END IF 20 CONTINUE IF (SORTYP .EQ. 'X') THEN CALL INDEXX (COORD(1,1), MAP, INUM, .FALSE.) ELSE IF (SORTYP .EQ. 'Y') THEN CALL INDEXX (COORD(1,2), MAP, INUM, .FALSE.) ELSE IF (SORTYP .EQ. 'Z') THEN CALL INDEXX (COORD(1,3), MAP, INUM, .FALSE.) ELSE IF (SORTYP .EQ. 'T' .OR. SORTYP .EQ. 'PARAMETR') THEN CALL INDEXX (T, MAP, INUM, .FALSE.) ELSE IF (SORTYP .EQ. 'DISTANCE') THEN CALL INDEXX (DIST, MAP, INUM, .FALSE.) END IF IF (SORUP) THEN IBEG = 1 IEND = INUM IINC = 1 ELSE IBEG = INUM IEND = 1 IINC = -1 END IF IF (OPT .EQ. '*' .OR. INDEX(OPT, 'P') .GT. 0) THEN DO 30 IO=IOMIN, IOMAX WRITE (IO, 40) NODEL 30 CONTINUE 40 FORMAT (/,T50,'DISTANCE',/2X,A8,T16,'X',T26,'Y',T36,'Z', * T45,'NORMAL',T55,'PARAMETRIC',/) DO 60 IN = IBEG, IEND, IINC IF (ISABRT()) RETURN I = MAP(IN) DO 50 IO=IOMIN, IOMAX WRITE (IO, 90) I, (COORD(I,J),J=1,3), SQRT(DIST(I)), * T(I) 50 CONTINUE 60 CONTINUE IF (INUM .EQ. 0) THEN DO 70 IO=IOMIN, IOMAX WRITE (IO, 80) SQRT(DISMIN) 70 CONTINUE END IF END IF 80 FORMAT (/' None found within range, minimum distance = ', * 1PE12.3,/) 90 FORMAT (I10, 3(F10.4), 2(1PE12.3)) RETURN END
{"hexsha": "0b57d85ddca2d18e8aa274d5420295cabb30d141", "size": 3495, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "packages/seacas/applications/numbers/nu_line3.f", "max_stars_repo_name": "jschueller/seacas", "max_stars_repo_head_hexsha": "14c34ae08b757cba43a3a03ec0f129c8a168a9d3", "max_stars_repo_licenses": ["Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "NetCDF", "BSL-1.0", "X11", "BSD-3-Clause"], "max_stars_count": 82, "max_stars_repo_stars_event_min_datetime": "2016-02-04T18:38:25.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-29T03:01:49.000Z", "max_issues_repo_path": "packages/seacas/applications/numbers/nu_line3.f", "max_issues_repo_name": "jschueller/seacas", "max_issues_repo_head_hexsha": "14c34ae08b757cba43a3a03ec0f129c8a168a9d3", "max_issues_repo_licenses": ["Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "NetCDF", "BSL-1.0", "X11", "BSD-3-Clause"], "max_issues_count": 206, "max_issues_repo_issues_event_min_datetime": "2015-11-20T01:57:47.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:12:04.000Z", "max_forks_repo_path": "packages/seacas/applications/numbers/nu_line3.f", "max_forks_repo_name": "jschueller/seacas", "max_forks_repo_head_hexsha": "14c34ae08b757cba43a3a03ec0f129c8a168a9d3", "max_forks_repo_licenses": ["Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "NetCDF", "BSL-1.0", "X11", "BSD-3-Clause"], "max_forks_count": 68, "max_forks_repo_forks_event_min_datetime": "2016-01-13T22:46:51.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-31T06:25:05.000Z", "avg_line_length": 30.1293103448, "max_line_length": 75, "alphanum_fraction": 0.4615164521, "num_tokens": 1321}
/** * Copyright (C) 2012 ciere consulting, ciere.com * Copyright (C) 2011, 2012 Object Modeling Designs * * Distributed under the Boost Software License, Version 1.0. (See accompanying * file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) * * */ #ifndef CIERE_JSON_IO_IMPL_HPP #define CIERE_JSON_IO_IMPL_HPP #include <string> #include <fstream> #include <istream> #include <ios> #include <boost/foreach.hpp> #include <boost/spirit/include/qi.hpp> #include <boost/spirit/include/support_istream_iterator.hpp> #include "../io.hpp" #include "../parser/grammar.hpp" namespace ciere { namespace json { namespace spirit = boost::spirit; namespace detail { struct printer : public boost::static_visitor<> { printer(std::ostream& s) : stream(s) {} void operator()(string_t const & utf) const { stream << '"'; typedef ::boost::uint32_t ucs4_char; typedef boost::u8_to_u32_iterator<std::string::const_iterator> iter_t; iter_t f = utf.begin(); iter_t l = utf.end(); for (iter_t i = f; i != l; ++i) { ucs4_char c = *i; switch (c) { case 0: stream << "\\0"; break; case 0x7: stream << "\\a"; break; case 0x8: stream << "\\b"; break; case 0x9: stream << "\\t"; break; case 0xA: stream << "\\n"; break; case 0xB: stream << "\\v"; break; case 0xC: stream << "\\f"; break; case 0xD: stream << "\\r"; break; case 0x1B: stream << "\\e"; break; case '"': stream << "\\\""; break; case '\\': stream << "\\\\"; break; case 0xA0: stream << "\\_"; break; case 0x85: stream << "\\N"; break; case 0x2028: stream << "\\L"; break; case 0x2029: stream << "\\P"; break; default: stream << boost::spirit::to_utf8(c); } } stream << '"'; } template< typename T > void operator()(T const & value) const { stream << value; } void operator()(double d) const { // javascript's handling of NaN and +/-Infinity // isn't so great. JSON simply follows the javascript // standard. We can output nan and infinity; however, // we cannot actually parse it back in afaict because // the javascript side is generating a null? // // TODO: clear this up with something definitive if(boost::math::isnan(d)) { stream << "NaN"; return; } if(boost::math::isinf(d)) { if(d < 0.0) { stream << '-'; } stream << "Infinity"; return; } stream << d; } void operator()(bool_t value) const { stream << (value?"true":"false"); } void operator()(null_t value) const { stream << "null"; } void operator()(object_t const & obj) const { stream << "{"; bool first = true; BOOST_FOREACH( object_t::value_type const & v, obj ) { if( first ) { first = false; } else { stream << ", "; } stream << '"' << v.first << "\":"; boost::apply_visitor( *this,v.second); } stream << "}"; } void operator()(array_t const & arr) const { stream << "["; bool first = true; BOOST_FOREACH( value const & v, arr ) { if( first ) { first = false; } else { stream << ", "; } boost::apply_visitor(*this,v); } stream << "]"; } std::ostream& stream; }; } inline std::ostream& operator<<(std::ostream& stream, value const & v) { boost::apply_visitor(detail::printer(stream),v); return stream; } inline std::istream& operator>>( std::istream& stream, value& object ) { if( !json::read( stream, object ) ) { stream.setstate( std::ios_base::failbit ); } return stream; } inline bool read( std::istream& stream, value& object) { typedef parser::grammar< spirit::istream_iterator > grammar_t; stream.unsetf( std::ios::skipws ); spirit::istream_iterator iter( stream ); spirit::istream_iterator end_iter; grammar_t grammar; return( spirit::qi::phrase_parse( iter, end_iter, grammar, spirit::ascii::space_type(), object ) ); } inline bool read( std::string const & filename, value& object) { std::ifstream stream( filename.c_str() ); if( !stream.is_open() ) { return false; } return read( stream, object ); } inline value construct( std::string const & input ) { typedef std::string::const_iterator iter_t; typedef parser::grammar<iter_t> grammar_t; grammar_t grammar; json::value value; iter_t iter = input.begin(); iter_t end = input.end(); spirit::qi::phrase_parse( iter, end, grammar, spirit::ascii::space_type(), value ); return value; } }} #endif // CIERE_JSON_IO_IMPL_HPP
{"hexsha": "0b310382052277597cc06ec1ea1d648ef775a45d", "size": 6120, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "libs/spirit/example/qi/json/json/detail/io_impl.hpp", "max_stars_repo_name": "Abce/boost", "max_stars_repo_head_hexsha": "2d7491a27211aa5defab113f8e2d657c3d85ca93", "max_stars_repo_licenses": ["BSL-1.0"], "max_stars_count": 85.0, "max_stars_repo_stars_event_min_datetime": "2015-02-08T20:36:17.000Z", "max_stars_repo_stars_event_max_datetime": "2021-11-14T20:38:31.000Z", "max_issues_repo_path": "libs/boost/libs/spirit/example/qi/json/json/detail/io_impl.hpp", "max_issues_repo_name": "flingone/frameworks_base_cmds_remoted", "max_issues_repo_head_hexsha": "4509d9f0468137ed7fd8d100179160d167e7d943", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 9.0, "max_issues_repo_issues_event_min_datetime": "2015-01-28T16:33:19.000Z", "max_issues_repo_issues_event_max_datetime": "2020-04-12T23:03:28.000Z", "max_forks_repo_path": "libs/boost/libs/spirit/example/qi/json/json/detail/io_impl.hpp", "max_forks_repo_name": "flingone/frameworks_base_cmds_remoted", "max_forks_repo_head_hexsha": "4509d9f0468137ed7fd8d100179160d167e7d943", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 27.0, "max_forks_repo_forks_event_min_datetime": "2015-01-28T16:33:30.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-12T05:04:39.000Z", "avg_line_length": 29.2822966507, "max_line_length": 83, "alphanum_fraction": 0.4514705882, "num_tokens": 1328}
from keras.models import Sequential from keras.layers import Dense, Activation import numpy as np # 定义模型 if False: # 一种定义模型的写法 model1 = Sequential([ Dense(32, units=784), Activation('relu'), Dense(10), Activation('softmax'), ]) if False: # 一种定义模型的写法 model2 = Sequential() model2.add(Dense(32, input_shape=(784, None))) model2.add(Activation('relu')) model2.add(Dense(10)) model2.add(Activation('softmax')) if True: # 一种定义模型的写法,个人更倾向于这种写法,简单明了分层更清晰 model = Sequential() model.add(Dense(32, activation='rule', input_shape=(784, None))) model.add(Dense(10, activation='softmax')) # 编译:指定损失函数loss 优化器optimizer 指标列表metrics model.compile( optimizer='rmsprop', loss = 'categorical_crossentropy', metrics = ['accuracy'] ) # 训练 data = np.random.random((1000, 100)) labels = np.random.randint(10, size=(1000, 1)) model.fit(data, labels, epochs=10, batch_size=32)
{"hexsha": "5ec818a97cacf311726f4c886fb22bc7452e2854", "size": 942, "ext": "py", "lang": "Python", "max_stars_repo_path": "kkeras/sequential_first_try.py", "max_stars_repo_name": "daigouwei/TensorFlow", "max_stars_repo_head_hexsha": "3716b1cdf79f9203adfc2bc77eb3a367a153cc22", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "kkeras/sequential_first_try.py", "max_issues_repo_name": "daigouwei/TensorFlow", "max_issues_repo_head_hexsha": "3716b1cdf79f9203adfc2bc77eb3a367a153cc22", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "kkeras/sequential_first_try.py", "max_forks_repo_name": "daigouwei/TensorFlow", "max_forks_repo_head_hexsha": "3716b1cdf79f9203adfc2bc77eb3a367a153cc22", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 25.4594594595, "max_line_length": 68, "alphanum_fraction": 0.6719745223, "include": true, "reason": "import numpy", "num_tokens": 303}
# -*- coding: utf-8 -*- """ Copyright 2020 Andrea López Incera. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Please acknowledge the authors when re-using this code and maintain this notice intact. Code written by Andrea López Incera, used and analysed in, 'Honeybee communication during collective defence is shaped by predation.' Andrea López-Incera, Morgane Nouvian, Katja Ried, Thomas Müller and Hans J. Briegel. """ import numpy as np import beesting_predator_pheromone import ps_agent_bee #parameters we set for environment: group_size=100 num_bins=10 min_units_perbin=3 full_resolution=False range_predators=[16,40] perc_false_alarms=0 rew_scaling='linear' #predator's parameters: kill_rate=1 time_attack=0 visual_time_delay=10 #parameters we set for the PS agent: gamma_damping=0.003#float between 0 and 1. Forgetting. eta_glow_damping=0#float between 0 and 1. Setting it to 1 effectively deactivates glow. 0 means that there is no damping (remembers everything with equal intensity). policy_type='standard'#usual computation of prob distribution according to h matrix. beta_softmax=1#irrelevant if policy_type is standard. num_reflections=0 #effectively deactivates reflections. init_mode='standard'#standard means that the initial probabilities are 0.5 for stinging and 0.5 for chilling. init_psting=0.2 #simulation parameters: num_trials=80000 #number of trials (defensive events). num_pop=50 #number of populations (trained independently). #initialization of the "environment". env=beesting_predator_pheromone.Beesting_predator(group_size, num_bins, min_units_perbin, full_resolution,range_predators,perc_false_alarms,rew_scaling) #record of performance for all the populations. learning_curve_allpop=np.zeros([num_pop,num_trials]) prob_stinging_allpop=np.zeros([num_pop,env.num_percepts_list[0]]) number_stung_allpop=np.zeros([num_pop,num_trials]) which_sting=np.zeros([num_pop,group_size]) predator_sth_allpop=np.zeros([num_pop,num_trials]) predator_kills_allpop=np.zeros([num_pop,num_trials]) for pop in range(num_pop): #initialize ensemble of PS agents agent_list=[] for i in range(group_size): agent_list.append(ps_agent_bee.BasicPSAgent(env.num_actions,env.num_percepts_list,\ gamma_damping, eta_glow_damping, policy_type, beta_softmax, num_reflections,init_mode,init_psting)) #initialize a record of performance for this population. learning_curve=np.zeros(num_trials) number_stung=np.zeros(num_trials) which_stingevol=np.zeros([1000,group_size]) sth=np.zeros(num_trials) kills=np.zeros(num_trials) ps_evolution=np.zeros([num_trials,env.num_percepts_list[0]]) #interaction of this population for i_trial in range(num_trials): for i in range(group_size):#reset g matrix to not mix the actions of current trial with past trials. agent_list[i].g_matrix=np.zeros((agent_list[i].num_actions, agent_list[i].num_percepts), dtype=np.float64) #define global g matrix, where the collective performance will be stored. global_g_matrix=np.zeros((agent_list[i].num_actions, agent_list[i].num_percepts), dtype=np.float64) #initialize defensive event test_sting=np.zeros(group_size) #array with the boolean value of each agent's action (0 hasn't stung yet, 1 has stung). test_killed=0 #no kills yet. test_predator=1 #predator is there. predator_leaving=0 #predator is not leaving. counter_pher=0 #no pheromone in the air. counter_rounds_nopredator=0 ps=np.zeros(env.num_percepts_list[0]) #initialize record of p_s for each percept at the current trial. predator_resistance=env.rchoose() #random choice of predator (s_th) #sequential decision process of the group. for i in range(group_size): action=agent_list[i].deliberate_and_learn(env.get_percept(counter_pher,predator_leaving),0) counter_pher+=np.copy(action) test_sting[i]=action test_predator=env.scare_predator(np.sum(test_sting),predator_resistance) #check if predator is scared away. if test_predator and i>=time_attack:#predator's attack, only if it is not already scared away. test_killed+=kill_rate if (test_predator+1)%2: #if predator is scared away... counter_rounds_nopredator+=1 if counter_rounds_nopredator>=visual_time_delay: predator_leaving=1 #...bee perceives the visual stimulus of "predator is leaving" after some time delay. reward=env.get_reward(group_size-min(group_size,np.sum(test_sting)+np.sum(test_killed))) #save performance for this trial learning_curve[i_trial]=reward number_stung[i_trial]=np.sum(test_sting) which_stingevol[i_trial%1000]=test_sting sth[i_trial]=predator_resistance kills[i_trial]=np.sum(test_killed) for i in range(env.num_percepts_list[0]): #save current probability of stinging for each percept. ps[i]=agent_list[0].h_matrix[1,i]/np.sum(agent_list[0].h_matrix[:,i]) ps_evolution[i_trial]=ps #update h matrix for i in range(group_size):#sum up all g matrices into one. global_g_matrix += agent_list[i].g_matrix for i in range(group_size):#update the h matrix. agent_list[i].h_matrix = agent_list[i].h_matrix - agent_list[i].gamma_damping * (agent_list[i].h_matrix - 1.) + global_g_matrix * reward #save data for this population learning_curve_allpop[pop]=learning_curve for i in range(env.num_percepts_list[0]): prob_stinging_allpop[pop,i]=agent_list[0].h_matrix[1,i]/np.sum(agent_list[0].h_matrix[:,i])#all agents have same h matrix. number_stung_allpop[pop]=number_stung which_sting[pop]=np.sum(which_stingevol,axis=0)/1000 predator_sth_allpop[pop]=sth predator_kills_allpop[pop]=kills
{"hexsha": "2f08f9a7e5f29f666a7083e8369d18f210e5dca2", "size": 6353, "ext": "py", "lang": "Python", "max_stars_repo_path": "learning.py", "max_stars_repo_name": "qic-ibk/CollectiveStinging", "max_stars_repo_head_hexsha": "da59a19e9e4cab6dbfd91bfb63d982bfd4ee0f70", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "learning.py", "max_issues_repo_name": "qic-ibk/CollectiveStinging", "max_issues_repo_head_hexsha": "da59a19e9e4cab6dbfd91bfb63d982bfd4ee0f70", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "learning.py", "max_forks_repo_name": "qic-ibk/CollectiveStinging", "max_forks_repo_head_hexsha": "da59a19e9e4cab6dbfd91bfb63d982bfd4ee0f70", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 43.8137931034, "max_line_length": 166, "alphanum_fraction": 0.7023453487, "include": true, "reason": "import numpy", "num_tokens": 1532}
#include <stdlib.h> #include <math.h> #include <gsl/gsl_matrix.h> #include <gsl/gsl_permutation.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_rng.h> #include "design.h" /*This function computes the p-distance between 2 points in D dimensions: the exponent p is tunable*/ double distance(double *x,double *y,int D,double p){ double dist = 0.0; int i; for(i=0;i<D;i++){ dist += pow(fabs(x[i]-y[i]),p); } return pow(dist,1.0/p); } /*This is the cost function of the problem: it is a sum of all the reciprocal of the pairs distances, with some tunable exponent lambda; note that the final 1/lambda exponentiation is not performed here!*/ double cost(gsl_matrix *data,int Npoints,int D,double p,double lambda){ double sum = 0.0; int i,j; for(i=0;i<Npoints;i++){ for(j=i+1;j<Npoints;j++){ //Add the contribution of pair (i,j) to the cost function sum += pow(pow(D,1.0/p)/distance(gsl_matrix_ptr(data,i,0),gsl_matrix_ptr(data,j,0),D,p),lambda); } } return (2.0/(Npoints*(Npoints-1)))*sum; } /*This computes the cost function in the particular case in which all the points are equally spaced on the diagonal of the hypercube*/ double diagonalCost(int Npoints,double lambda){ double sum = 0.0; int i,j; for(i=0;i<Npoints;i++){ for(j=i+1;j<Npoints;j++){ //Add the contribution of pair (i,j) to the cost function sum += pow((Npoints-1)*1.0/(j-i),lambda); } } return (2.0/(Npoints*(Npoints-1)))*sum; } /*This function computes the variation of the cost when a pair of coordinates is exchanged; this function also performs an in-place swap of the coordinates. More specifically: this function swaps coordinate d of points i1 and i2 and returns the variation of the cost function due to this swap*/ /**/ double swap(gsl_matrix *data,int Npoints,int D,double p,double lambda,int i1,int i2, int d){ double costBefore,costAfter,temp; int i; //initialize to 0 costBefore = costAfter = 0.0; /*compute the contribution of points i1 and i2 to the cost function, before swapping; sum over all the particles except i1 and i2*/ for(i=0;i<Npoints;i++){ if(i!=i1 && i!=i2){ costBefore += pow(pow(D,1.0/p)/distance(gsl_matrix_ptr(data,i,0),gsl_matrix_ptr(data,i1,0),D,p),lambda) + pow(pow(D,1.0/p)/distance(gsl_matrix_ptr(data,i,0),gsl_matrix_ptr(data,i2,0),D,p),lambda); } } //perform the coordinate swap temp = gsl_matrix_get(data,i1,d); gsl_matrix_set(data,i1,d,gsl_matrix_get(data,i2,d)); gsl_matrix_set(data,i2,d,temp); /*compute the contribution of points i1 and i2 to the cost function, after swapping; sum over all the particles except i1 and i2*/ for(i=0;i<Npoints;i++){ if(i!=i1 && i!=i2){ costAfter += pow(pow(D,1.0/p)/distance(gsl_matrix_ptr(data,i,0),gsl_matrix_ptr(data,i1,0),D,p),lambda) + pow(pow(D,1.0/p)/distance(gsl_matrix_ptr(data,i,0),gsl_matrix_ptr(data,i2,0),D,p),lambda); } } //return the cost difference return (2.0/(Npoints*(Npoints-1)))*(costAfter - costBefore); } /*This function swaps the particle pair back: needed if the original swap didn't improve the cost function*/ void swapBack(gsl_matrix *data,int i1,int i2,int d){ double temp; //perform the coordinate swap temp = gsl_matrix_get(data,i1,d); gsl_matrix_set(data,i1,d,gsl_matrix_get(data,i2,d)); gsl_matrix_set(data,i2,d,temp); } /*Main design sampler*/ double sample(int Npoints,int D,double p,double lambda,int seed,int maxIterations,gsl_matrix *data,double *costValues){ int i,d,i1,i2,iterCount; const gsl_rng_type *T; gsl_rng *r; gsl_permutation *perm = gsl_permutation_alloc(Npoints); double currentCost,deltaCost,deltaPerc; //Initialize random number generator gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc(T); //Initialize permutation gsl_permutation_init(perm); //Initialize random number generator with provided seed gsl_rng_set(r,seed); //Initialize the point coordinates in data with random permutations of (1..Npoints) to enforce latin hypercube structure for(d=0;d<D;d++){ //Shuffle the numbers gsl_ran_shuffle(r,perm->data,Npoints,sizeof(size_t)); //Permute coordinates for(i=0;i<Npoints;i++){ gsl_matrix_set(data,i,d,(double)perm->data[i]/(Npoints-1)); } } /*The loop does the following: it swaps a random coordinate of a random pair, checks if the cost is lower. If so, it keeps the configuration, otherwise it reverses it and tries a new one.*/ iterCount = 0; currentCost = cost(data,Npoints,D,p,lambda); deltaPerc = 0.0; while(1){ //Decide which coordinate to swap of which pair i1 = gsl_rng_uniform_int(r,Npoints); while((i2=gsl_rng_uniform_int(r,Npoints))==i1); d = gsl_rng_uniform_int(r,D); //Compute the change in the cost function deltaCost = swap(data,Npoints,D,p,lambda,i1,i2,d); /*Check if gain in cost is positive or negative: if positive, revert the swap, if negative keep it; anyway, log the result*/ if(deltaCost>=0){ swapBack(data,i1,i2,d); } else{ currentCost += deltaCost; deltaPerc = deltaCost/currentCost; } //Save the current cost to array costValues[iterCount] = currentCost; //Criterion to break the loop if(++iterCount == maxIterations) break; } //Release resources for random number generator and permutations gsl_rng_free(r); gsl_permutation_free(perm); //Return the relative cost change due to the last iteration return deltaPerc; }
{"hexsha": "f99fec28cf49bce2c454c7f2beae670453f83130", "size": 5389, "ext": "c", "lang": "C", "max_stars_repo_path": "lenstools/extern/design.c", "max_stars_repo_name": "asabyr/LensTools", "max_stars_repo_head_hexsha": "e155d6d39361e550906cec00dbbc57686a4bca5c", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2021-04-27T02:03:11.000Z", "max_stars_repo_stars_event_max_datetime": "2021-04-27T02:03:11.000Z", "max_issues_repo_path": "lenstools/extern/design.c", "max_issues_repo_name": "asabyr/LensTools", "max_issues_repo_head_hexsha": "e155d6d39361e550906cec00dbbc57686a4bca5c", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "lenstools/extern/design.c", "max_forks_repo_name": "asabyr/LensTools", "max_forks_repo_head_hexsha": "e155d6d39361e550906cec00dbbc57686a4bca5c", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 25.9086538462, "max_line_length": 199, "alphanum_fraction": 0.7133048803, "num_tokens": 1542}
'''This script will perform a classification task on the data generated in sim_data.py. Each positive sample has approximately half it's variants a specific sequence. It is a simple task so should quickly achieve perfect accuracy unless you start with bad weights. Note: the loss will be much higher than the cross entropy loss due to regularization.''' ##perform imports and set the GPU you want to use import numpy as np import pickle import tensorflow as tf from tensorflow.python.framework.ops import disable_eager_execution from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold disable_eager_execution() physical_devices = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[-1], True) tf.config.experimental.set_visible_devices(physical_devices[-1], 'GPU') import pathlib path = pathlib.Path.cwd() if path.stem == 'ATGC': cwd = path else: cwd = list(path.parents)[::-1][path.parts.index('ATGC')] import sys sys.path.append(str(cwd)) from model.CustomKerasModels import InputFeatures, ATGC from model.CustomKerasTools import BatchGenerator, Losses ##load the instance and sample data D, samples = pickle.load(open(cwd / 'figures' / 'controls' / 'samples' / 'sim_data.pkl', 'rb')) ##perform embeddings with a zero vector for index 0 strand_emb_mat = np.concatenate([np.zeros(2)[np.newaxis, :], np.diag(np.ones(2))], axis=0) D['strand_emb'] = strand_emb_mat[D['strand']] chr_emb_mat = np.concatenate([np.zeros(24)[np.newaxis, :], np.diag(np.ones(24))], axis=0) D['chr_emb'] = chr_emb_mat[D['chr']] frame_emb_mat = np.concatenate([np.zeros(3)[np.newaxis, :], np.diag(np.ones(3))], axis=0) D['cds_emb'] = frame_emb_mat[D['cds']] ##choose your instance concepts, here a sequence concept of length 6, embedding dim 4, strand 2, and 4 kernels per 5p, 3p, ref, alt. features = [InputFeatures.VariantSequence(6, 4, 2, [4, 4, 4, 4], {'5p': D['seq_5p'], '3p': D['seq_3p'], 'ref': D['seq_ref'], 'alt': D['seq_alt'], 'strand': D['strand_emb'], 'cds': D['cds_emb']}, use_frame=False, fusion_dimension=64) ] ##choose your sample concepts sample_features = () # set y label and weights y_label = np.stack([[0, 1] if i==1 else [1, 0] for i in samples['classes']]) y_strat = np.argmax(y_label, axis=-1) class_counts = dict(zip(*np.unique(y_strat, return_counts=True))) y_weights = np.array([1 / class_counts[_] for _ in y_strat]) y_weights /= np.sum(y_weights) ##build the model atgc = ATGC(features, sample_features=sample_features, aggregation_dimension=64, fusion_dimension=32) atgc.build_instance_encoder_model(return_latent=False) atgc.build_sample_encoder_model() atgc.build_mil_model(output_dim=y_label.shape[1], output_extra=1, output_type='anlulogits', aggregation='recursion', mil_hidden=(16, 8)) metrics = [Losses.Weighted.CrossEntropyfromlogits.cross_entropy_weighted, Losses.Weighted.Accuracy.accuracy] atgc.mil_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001, clipvalue=10000), loss=Losses.Weighted.CrossEntropyfromlogits.cross_entropy_weighted, metrics=metrics) callbacks = [tf.keras.callbacks.EarlyStopping(monitor='val_cross_entropy_weighted', min_delta=0.001, patience=5, mode='min', restore_best_weights=True)] initial_weights = atgc.mil_model.get_weights() ##perform 8 fold stratification weights = [] test_idxs = [] for idx_train, idx_test in StratifiedKFold(n_splits=8, random_state=0, shuffle=True).split(y_strat, y_strat): idx_train, idx_valid = [idx_train[idx] for idx in list(StratifiedShuffleSplit(n_splits=1, test_size=50, random_state=0).split(np.zeros_like(y_strat)[idx_train], y_strat[idx_train]))[0]] batch_gen_train = BatchGenerator(x_instance_sample_idx=D['sample_idx'], x_instance_features=features, x_sample=sample_features, y_label=y_label, y_stratification=y_strat, y_weights=y_weights, sampling_approach='minibatch', batch_size=32, idx_sample=idx_train) data_valid = next(BatchGenerator(x_instance_sample_idx=D['sample_idx'], x_instance_features=features, x_sample=sample_features, y_label=y_label, y_stratification=y_strat, y_weights=y_weights, sampling_approach=None, idx_sample=idx_valid).data_generator()) atgc.mil_model.set_weights(initial_weights) atgc.mil_model.fit(batch_gen_train.data_generator(), steps_per_epoch=batch_gen_train.n_splits, epochs=10000, validation_data=data_valid, shuffle=False, callbacks=callbacks) weights.append(atgc.mil_model.get_weights()) test_idxs.append(idx_test) ##check evaluations on the test set for each Kfold for weight, idx in zip(weights, test_idxs): atgc.mil_model.set_weights(weight) data_test = next(BatchGenerator(x_instance_sample_idx=D['sample_idx'], x_instance_features=features, x_sample=sample_features, y_label=y_label, y_stratification=y_strat, y_weights=y_weights, sampling_approach=None, idx_sample=idx).data_generator()) print(atgc.mil_model.evaluate(data_test[0], data_test[1]))
{"hexsha": "4064535a4ff1ca8023bbd401ae9c122e3644c0ef", "size": 5256, "ext": "py", "lang": "Python", "max_stars_repo_path": "figures/controls/samples/sim_run.py", "max_stars_repo_name": "OmnesRes/ATGC", "max_stars_repo_head_hexsha": "c4fc4d6a0ac99bf083232686dcd0b634ff597f8a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "figures/controls/samples/sim_run.py", "max_issues_repo_name": "OmnesRes/ATGC", "max_issues_repo_head_hexsha": "c4fc4d6a0ac99bf083232686dcd0b634ff597f8a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "figures/controls/samples/sim_run.py", "max_forks_repo_name": "OmnesRes/ATGC", "max_forks_repo_head_hexsha": "c4fc4d6a0ac99bf083232686dcd0b634ff597f8a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 49.5849056604, "max_line_length": 189, "alphanum_fraction": 0.7300228311, "include": true, "reason": "import numpy", "num_tokens": 1289}
import torch import numpy as np import torch.nn as nn import warnings warnings.filterwarnings('ignore') if torch.cuda.is_available(): device = 'cuda' else : device = 'cpu' def entropy_threshold(teacher,confidence_loader,n_class): dct = {} sample_entropy = {} soft = nn.Softmax() for i in range(n_class): dct[i] = dct.get(i,0) sample_entropy[i] = sample_entropy.get(i,[]) for i,(image,label) in enumerate(confidence_loader): batch_size = image.shape[0] image = image.to(device) with torch.no_grad(): batch_pred = teacher(image) for j in range(batch_size): logits= batch_pred[j] final_pred = soft(logits) topk_vals, pred_classes= final_pred.topk(2) top_class = pred_classes[0].item() entropy = 0 final_pred = final_pred.cpu().numpy() for k in range(n_class): entropy+=(-1*final_pred[k]*np.log(final_pred[k])) sample_entropy[top_class].append(entropy) top_entropy = {} for i in range(n_class): temp_lst = sample_entropy[i] temp_lst.sort() top_entropy[i] = temp_lst[:100] # taking top 10 % into account new_entropy={} for i in range(n_class): new_entropy[i] = sum(top_entropy[i])/100 return new_entropy
{"hexsha": "b9368fdceb17df772463c7191e5b3358766f1f29", "size": 1401, "ext": "py", "lang": "Python", "max_stars_repo_path": "entropy.py", "max_stars_repo_name": "shauryat97/SampleSelectionBasedKnowledgeDistillation", "max_stars_repo_head_hexsha": "13cb7e201378230cada0cc7476d1b517da75129e", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "entropy.py", "max_issues_repo_name": "shauryat97/SampleSelectionBasedKnowledgeDistillation", "max_issues_repo_head_hexsha": "13cb7e201378230cada0cc7476d1b517da75129e", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "entropy.py", "max_forks_repo_name": "shauryat97/SampleSelectionBasedKnowledgeDistillation", "max_forks_repo_head_hexsha": "13cb7e201378230cada0cc7476d1b517da75129e", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.5813953488, "max_line_length": 71, "alphanum_fraction": 0.5881513205, "include": true, "reason": "import numpy", "num_tokens": 320}
/* Copyright (c) 2016, 2020, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TORRENT_STORE_BUFFER #define TORRENT_STORE_BUFFER #include <unordered_map> #include <mutex> #include "libtorrent/storage_defs.hpp" #include "libtorrent/aux_/disable_warnings_push.hpp" #include <boost/functional/hash.hpp> #include "libtorrent/aux_/disable_warnings_pop.hpp" namespace libtorrent { namespace aux { // uniquely identifies a torrent and offset. It is used as the key in the // dictionary mapping locations to write jobs struct torrent_location { torrent_location(storage_index_t const t, piece_index_t const p, int o) : torrent(t), piece(p), offset(o) {} storage_index_t torrent; piece_index_t piece; int offset; bool operator==(torrent_location const& rhs) const { return std::tie(torrent, piece, offset) == std::tie(rhs.torrent, rhs.piece, rhs.offset); } }; } } namespace std { template <> struct hash<libtorrent::aux::torrent_location> { using argument_type = libtorrent::aux::torrent_location; using result_type = std::size_t; std::size_t operator()(argument_type const& l) const { using namespace libtorrent; std::size_t ret = 0; boost::hash_combine(ret, std::hash<storage_index_t>{}(l.torrent)); boost::hash_combine(ret, std::hash<piece_index_t>{}(l.piece)); boost::hash_combine(ret, std::hash<int>{}(l.offset)); return ret; } }; } namespace libtorrent { namespace aux { struct store_buffer { template <typename Fun> bool get(torrent_location const loc, Fun f) { std::unique_lock<std::mutex> l(m_mutex); auto it = m_store_buffer.find(loc); if (it != m_store_buffer.end()) { f(it->second); return true; } return false; } void insert(torrent_location const loc, char* buf) { std::lock_guard<std::mutex> l(m_mutex); m_store_buffer.insert({loc, buf}); } void erase(torrent_location const loc) { std::lock_guard<std::mutex> l(m_mutex); auto it = m_store_buffer.find(loc); TORRENT_ASSERT(it != m_store_buffer.end()); m_store_buffer.erase(it); } private: std::mutex m_mutex; std::unordered_map<torrent_location, char*> m_store_buffer; }; } } #endif
{"hexsha": "0b5c5351084b83272316284995bc5fee7a99732f", "size": 3585, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "include/libtorrent/aux_/store_buffer.hpp", "max_stars_repo_name": "bitwiseworks/libtorrent-os2", "max_stars_repo_head_hexsha": "6bb656e0938ee517b87ecdc3f9309890691a0d11", "max_stars_repo_licenses": ["BSL-1.0", "BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "include/libtorrent/aux_/store_buffer.hpp", "max_issues_repo_name": "bitwiseworks/libtorrent-os2", "max_issues_repo_head_hexsha": "6bb656e0938ee517b87ecdc3f9309890691a0d11", "max_issues_repo_licenses": ["BSL-1.0", "BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "include/libtorrent/aux_/store_buffer.hpp", "max_forks_repo_name": "bitwiseworks/libtorrent-os2", "max_forks_repo_head_hexsha": "6bb656e0938ee517b87ecdc3f9309890691a0d11", "max_forks_repo_licenses": ["BSL-1.0", "BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.3664122137, "max_line_length": 78, "alphanum_fraction": 0.7520223152, "num_tokens": 840}
function convective_adjust!(x) # remove negative gradients from temperature profile for i in length(x)-3:-1:2 if x[i] > x[i+1] if x[i-1] > x[i]; x[i] = x[i+1] else; x[i] = (x[i-1]+x[i+1])/2 end end end end
{"hexsha": "26ddac46de15d47d64fd46c5f7fbe62e23049f75", "size": 270, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/data/convective_adjust.jl", "max_stars_repo_name": "adelinehillier/LearnConvection", "max_stars_repo_head_hexsha": "2a5b0cebe1a31777578293d59bff60b0808343b0", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2020-09-14T19:53:44.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-15T08:51:59.000Z", "max_issues_repo_path": "src/data/convective_adjust.jl", "max_issues_repo_name": "adelinehillier/LearnConvection", "max_issues_repo_head_hexsha": "2a5b0cebe1a31777578293d59bff60b0808343b0", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2020-09-06T00:19:00.000Z", "max_issues_repo_issues_event_max_datetime": "2020-09-06T00:19:00.000Z", "max_forks_repo_path": "src/data/convective_adjust.jl", "max_forks_repo_name": "adelinehillier/LearnConvection", "max_forks_repo_head_hexsha": "2a5b0cebe1a31777578293d59bff60b0808343b0", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.5454545455, "max_line_length": 56, "alphanum_fraction": 0.4851851852, "num_tokens": 91}
function p = vonMises_prob( x, m, k, use_log ) %VONMIS_PROB Calculates the probability of x coming from a Von Mises %distribution with mean mu and concentration parameter k. % p = vonMises_prob( x, m, k, use_log ) if nargin < 4, use_log = 0; end [d N] = size(x); m = m(:); M = m*ones(1,N); denom = (2*pi)*besseli(0,k); mahal = (k*cos(x-M)); if use_log p = mahal-log(denom); else p = exp(mahal)/denom; end
{"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/KPMstats/vonMises_prob.m"}
function extract_params!(pm) if haskey(pm, "user_defined_params") user_defined_params = pm["user_defined_params"] pm = delete!(pm, "user_defined_params") # else # user_defined_param = NaN end return pm, user_defined_param end
{"hexsha": "4bf1f6fb194bef239890b34535036939fb658242", "size": 266, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/input/tools.jl", "max_stars_repo_name": "lvzhibai/PandaModels.jl", "max_stars_repo_head_hexsha": "4f69c5d4bac95904039413478d0dbc8e734b01cd", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/input/tools.jl", "max_issues_repo_name": "lvzhibai/PandaModels.jl", "max_issues_repo_head_hexsha": "4f69c5d4bac95904039413478d0dbc8e734b01cd", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/input/tools.jl", "max_forks_repo_name": "lvzhibai/PandaModels.jl", "max_forks_repo_head_hexsha": "4f69c5d4bac95904039413478d0dbc8e734b01cd", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 26.6, "max_line_length": 55, "alphanum_fraction": 0.6729323308, "num_tokens": 66}
#! /usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'maxim' import ast import collections import numbers import os import random import string import sys from six import iteritems from six.moves import urllib import numpy as np def smart_str(val): if type(val) in [float, np.float32, np.float64] and val: return '%.6f' % val if abs(val) > 1e-6 else '%e' % val if type(val) == dict: return '{%s}' % ', '.join(['%s: %s' % (repr(k), smart_str(val[k])) for k in sorted(val.keys())]) if type(val) in [list, tuple]: return '[%s]' % ', '.join(['%s' % smart_str(i) for i in val]) return repr(val) def str_to_dict(s): return ast.literal_eval(s) def zip_longest(list1, list2): len1 = len(list1) len2 = len(list2) for i in range(max(len1, len2)): yield (list1[i % len1], list2[i % len2]) def deep_update(dict_, upd): for key, value in iteritems(upd): if isinstance(value, collections.Mapping): recursive = deep_update(dict_.get(key, {}), value) dict_[key] = recursive else: dict_[key] = upd[key] return dict_ def mini_batch(total, size): return zip(range(0, total, size), range(size, total + size, size)) def random_id(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def safe_concat(list_): list_ = [i for i in list_ if i is not None] if len(list_) == 0: return None if type(list_[0]) == np.ndarray: return np.concatenate(list_) return list_ def call(obj, *args): if callable(obj): return obj(*args) apply = getattr(obj, 'apply', None) if callable(apply): return apply(*args) def slice_dict(d, key_prefix): return {key[len(key_prefix):]: value for key, value in iteritems(d) if key.startswith(key_prefix)} def as_function(val, presets, default=None): if callable(val): return val preset = presets.get(val, default) if preset is not None: return preset raise ValueError('Value is not recognized: ', val) def as_numeric_function(val, presets, default=None): if isinstance(val, numbers.Number): def const(*_): return val return const return as_function(val, presets, default) def download_if_needed(url, path, filename=None): from .logging import info, debug if not os.path.exists(path): os.makedirs(path) filename = filename or os.path.basename(url) full_path = os.path.join(path, filename) if not os.path.exists(full_path): info('Downloading %s, please wait...' % filename) result_path, _ = urllib.request.urlretrieve(url, full_path, _report_hook) stat = os.stat(result_path) info('Successfully downloaded "%s" (%d Kb)' % (filename, stat.st_size / 1024)) return result_path else: debug('Already downloaded:', full_path) return full_path def _report_hook(block_num, block_size, total_size): read_so_far = block_num * block_size if total_size > 0: percent = read_so_far * 1e2 / total_size s = '\r%5.1f%% %*d / %d' % (percent, len(str(total_size)), read_so_far, total_size) sys.stdout.write(s) if read_so_far >= total_size: # near the end sys.stdout.write('\n') else: # total size is unknown sys.stdout.write('read %d\n' % (read_so_far,))
{"hexsha": "bb7cdc8c38bf6aa850a48f04de72443577c3a532", "size": 3243, "ext": "py", "lang": "Python", "max_stars_repo_path": "hyperengine/base/util.py", "max_stars_repo_name": "KOLANICH/hyper-engine", "max_stars_repo_head_hexsha": "60ba73438fdbef9320a849ee65f36da977f68eca", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "hyperengine/base/util.py", "max_issues_repo_name": "KOLANICH/hyper-engine", "max_issues_repo_head_hexsha": "60ba73438fdbef9320a849ee65f36da977f68eca", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "hyperengine/base/util.py", "max_forks_repo_name": "KOLANICH/hyper-engine", "max_forks_repo_head_hexsha": "60ba73438fdbef9320a849ee65f36da977f68eca", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.025, "max_line_length": 100, "alphanum_fraction": 0.6688251619, "include": true, "reason": "import numpy", "num_tokens": 896}
[STATEMENT] lemma subgraph_no_last_branch_chain: assumes "subgraph C T" and "finite (verts T)" and "verts C \<subseteq> verts T - {x. \<exists>y\<in>last_branching_points. x \<rightarrow>\<^sup>*\<^bsub>T\<^esub> y}" shows "wf_digraph.is_chain C" [PROOF STATE] proof (prove) goal (1 subgoal): 1. wf_digraph.is_chain C [PROOF STEP] using assms finite_branch_impl_last_branch subgraph_no_branch_chain last_branch_is_branch [PROOF STATE] proof (prove) using this: Shortest_Path_Tree.subgraph C T finite (verts T) verts C \<subseteq> verts T - {x. \<exists>y\<in>last_branching_points. x \<rightarrow>\<^sup>*\<^bsub>T\<^esub> y} \<lbrakk>finite (verts T); \<exists>y\<in>branching_points. ?x \<rightarrow>\<^sup>*\<^bsub>T\<^esub> y; directed_tree T ?r\<rbrakk> \<Longrightarrow> \<exists>z\<in>last_branching_points. ?x \<rightarrow>\<^sup>*\<^bsub>T\<^esub> z \<lbrakk>Shortest_Path_Tree.subgraph ?C T; verts ?C \<subseteq> verts T - {x. \<exists>y\<in>branching_points. x \<rightarrow>\<^sup>*\<^bsub>T\<^esub> y}\<rbrakk> \<Longrightarrow> wf_digraph.is_chain ?C ?y \<in> last_branching_points \<Longrightarrow> ?y \<in> branching_points goal (1 subgoal): 1. wf_digraph.is_chain C [PROOF STEP] by (smt (verit, ccfv_SIG) Collect_cong directed_tree_axioms)
{"llama_tokens": 503, "file": "Query_Optimization_Directed_Tree_Additions", "length": 2}
! nicked and adapted from IFEFFIT, the Interactive XAFS Analysis Library SUBROUTINE PGVPORT (XLEFT, XRIGHT, YBOT, YTOP) REAL XLEFT, XRIGHT, YBOT, YTOP END SUBROUTINE PGWNAD (X1, X2, Y1, Y2) REAL X1, X2, Y1, Y2 END SUBROUTINE PGCONS (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR) INTEGER IDIM, JDIM, I1, I2, J1, J2, NC REAL A(IDIM,JDIM), C(*), TR(6) END INTEGER FUNCTION PGBEGIN (UNIT, FILE, NXSUB, NYSUB) INTEGER UNIT CHARACTER*(*) FILE INTEGER NXSUB, NYSUB PGBEGIN=1 END SUBROUTINE PGSVP (XLEFT, XRIGHT, YBOT, YTOP) REAL XLEFT, XRIGHT, YBOT, YTOP END SUBROUTINE PGQWIN (X1, X2, Y1, Y2) REAL X1, X2, Y1, Y2 END SUBROUTINE PGQVP (UNITS, X1, X2, Y1, Y2) INTEGER UNITS REAL X1, X2, Y1, Y2 END SUBROUTINE PGLAB (XLBL, YLBL, TOPLBL) CHARACTER*(*) XLBL, YLBL, TOPLBL END SUBROUTINE PGLABEL (XLBL, YLBL, TOPLBL) CHARACTER*(*) XLBL, YLBL, TOPLBL END SUBROUTINE PGENV (XMIN, XMAX, YMIN, YMAX, JUST, AXIS) REAL XMIN, XMAX, YMIN, YMAX INTEGER JUST, AXIS END subroutine pgend return end subroutine pgclos return end integer function pgopen(i) integer i pgopen = 0 return end subroutine pgqid(i) integer i i = 0 return end c subroutine pgslct(i) integer i return end c subroutine pgbeg(i, file, j, k) integer i,j, k character*(*) file print*, ' pgplot not installed' return end c subroutine pgqinf(type, arg, i) integer i character*(*) type, arg i = 0 return end c subroutine pgpage return end c subroutine pgbbuf return end c subroutine pgask(flag) logical flag return end c subroutine pgeras return end c subroutine pgsls(i) integer i return end c subroutine pgsch(x) real x return end c subroutine pgscf(i) integer i return end c subroutine pgslw(i) integer i return end c subroutine pgvstd return end c subroutine pgpt1(x1,x2,i) real x1,x2 integer i return end c subroutine pgrnge(x1,x2,x3,x4) real x1,x2,x3,x4 return end c subroutine pgsci(i) integer i return end c subroutine pgswin(x1,x2,x3,x4) real x1,x2,x3,x4 return end c subroutine pgbox(s1,x1,i1,s2,x2,i2) integer i1, i2 character*(*) s1, s2 real x1, x2 return end c subroutine pgmtxt(s1, x1, x2, x3, s2) character*(*) s1, s2 real x1, x2, x3 return end c subroutine pgline(i1,x1,x2) integer i1 real x1(*), x2(*) return end c subroutine pgpt(i1,x1,x2,i2) integer i1, i2 real x1(*), x2(*) return end c subroutine pgtext(x1, x2, s1) character*(*) s1 real x1, x2 return end c subroutine pgebuf return end c subroutine pgscrn(i1,s1,i2) character*(*) s1 integer i1, i2 return end c subroutine pgscr(i,r,g,b) integer i real r, g, b return end c integer function pgcurs(x,y,c) real x,y character*(*) c pgcurs = 1 x = 0 y = 0 c = 'a' return end c subroutine pgsah(i,x,y) real x,y integer i return end subroutine pgarro(x,y,u,v) real x,y,u,v return end integer function pgband(m,n,x1,y1,x,y,c) real x1,y1,x,y character*(*) c integer m,n pgband = 1 x = x1 y = y1 c = 'a' m = 0 return end subroutine pgqndt(i) integer i return end subroutine pgqdt(i,s1,i2,s2,i3,i4) integer i, i2, i3, i4 character s1*(*), s2*(*) return end subroutine pgerry(n,x,y1,y2,t) integer i real x(*), y1(*), y2(*), t return end subroutine pgerrx(n,x,y1,y2,t) integer i real x(*), y1(*), y2(*), t return end
{"hexsha": "476174d2b9e29cded3aee245bd8cfb913f6f39f9", "size": 4642, "ext": "f", "lang": "FORTRAN", "max_stars_repo_path": "src/amuse/community/galactics/gas_src/src/pgstub.f", "max_stars_repo_name": "rknop/amuse", "max_stars_repo_head_hexsha": "85d5bdcc29cfc87dc69d91c264101fafd6658aec", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 131, "max_stars_repo_stars_event_min_datetime": "2015-06-04T09:06:57.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-01T12:11:29.000Z", "max_issues_repo_path": "src/amuse/community/galactics/gas_src/src/pgstub.f", "max_issues_repo_name": "rknop/amuse", "max_issues_repo_head_hexsha": "85d5bdcc29cfc87dc69d91c264101fafd6658aec", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 690, "max_issues_repo_issues_event_min_datetime": "2015-10-17T12:18:08.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T16:15:58.000Z", "max_forks_repo_path": "src/amuse/community/galactics/gas_src/src/pgstub.f", "max_forks_repo_name": "rieder/amuse", "max_forks_repo_head_hexsha": "3ac3b6b8f922643657279ddee5c8ab3fc0440d5e", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 102, "max_forks_repo_forks_event_min_datetime": "2015-01-22T10:00:29.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-09T13:29:43.000Z", "avg_line_length": 18.6425702811, "max_line_length": 73, "alphanum_fraction": 0.4862128393, "num_tokens": 1502}
# ------------------------------------------------------------------------ # Copyright (c) 2021 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ DETR model and criterion classes. """ import copy import math import numpy as np import torch import torch.nn.functional as F from torch import nn, Tensor from typing import List from util import box_ops from util.misc import (NestedTensor, nested_tensor_from_tensor_list, accuracy, get_world_size, interpolate, get_rank, is_dist_avail_and_initialized, inverse_sigmoid) from models.structures import Instances, Boxes, pairwise_iou, matched_boxlist_iou from .backbone import build_backbone from .matcher import build_matcher from .deformable_transformer_plus import build_deforamble_transformer from .qim import build as build_query_interaction_layer from .memory_bank import build_memory_bank from .deformable_detr import SetCriterion, MLP from .segmentation import sigmoid_focal_loss class ClipMatcher(SetCriterion): def __init__(self, num_classes, matcher, weight_dict, losses): """ Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__(num_classes, matcher, weight_dict, losses) self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.losses = losses self.focal_loss = True self.losses_dict = {} self._current_frame_idx = 0 def initialize_for_single_clip(self, gt_instances: List[Instances]): self.gt_instances = gt_instances self.num_samples = 0 self.sample_device = None self._current_frame_idx = 0 self.losses_dict = {} def _step(self): self._current_frame_idx += 1 def calc_loss_for_track_scores(self, track_instances: Instances): frame_id = self._current_frame_idx - 1 gt_instances = self.gt_instances[frame_id] outputs = { 'pred_logits': track_instances.track_scores[None], } device = track_instances.track_scores.device num_tracks = len(track_instances) src_idx = torch.arange(num_tracks, dtype=torch.long, device=device) tgt_idx = track_instances.matched_gt_idxes # -1 for FP tracks and disappeared tracks track_losses = self.get_loss('labels', outputs=outputs, gt_instances=[gt_instances], indices=[(src_idx, tgt_idx)], num_boxes=1) self.losses_dict.update( {'frame_{}_track_{}'.format(frame_id, key): value for key, value in track_losses.items()}) def get_num_boxes(self, num_samples): num_boxes = torch.as_tensor(num_samples, dtype=torch.float, device=self.sample_device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() return num_boxes def get_loss(self, loss, outputs, gt_instances, indices, num_boxes, **kwargs): loss_map = { 'labels': self.loss_labels, 'cardinality': self.loss_cardinality, 'boxes': self.loss_boxes, } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, gt_instances, indices, num_boxes, **kwargs) def loss_boxes(self, outputs, gt_instances: List[Instances], indices: List[tuple], num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ # We ignore the regression loss of the track-disappear slots. #TODO: Make this filter process more elegant. filtered_idx = [] for src_per_img, tgt_per_img in indices: keep = tgt_per_img != -1 filtered_idx.append((src_per_img[keep], tgt_per_img[keep])) indices = filtered_idx idx = self._get_src_permutation_idx(indices) src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([gt_per_img.boxes[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) # for pad target, don't calculate regression loss, judged by whether obj_id=-1 target_obj_ids = torch.cat([gt_per_img.obj_ids[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) # size(16) mask = (target_obj_ids != -1) loss_bbox = F.l1_loss(src_boxes[mask], target_boxes[mask], reduction='none') loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes[mask]), box_ops.box_cxcywh_to_xyxy(target_boxes[mask]))) losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes losses['loss_giou'] = loss_giou.sum() / num_boxes return losses def loss_labels(self, outputs, gt_instances: List[Instances], indices, num_boxes, log=False): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) # The matched gt for disappear track query is set -1. labels = [] for gt_per_img, (_, J) in zip(gt_instances, indices): labels_per_img = torch.ones_like(J) # set labels of track-appear slots to 0. if len(gt_per_img) > 0: labels_per_img[J != -1] = gt_per_img.labels[J[J != -1]] labels.append(labels_per_img) target_classes_o = torch.cat(labels) target_classes[idx] = target_classes_o if self.focal_loss: gt_labels_target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[:, :, :-1] # no loss for the last (background) class gt_labels_target = gt_labels_target.to(src_logits) loss_ce = sigmoid_focal_loss(src_logits.flatten(1), gt_labels_target.flatten(1), alpha=0.25, gamma=2, num_boxes=num_boxes, mean_in_dim1=False) loss_ce = loss_ce.sum() else: loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {'loss_ce': loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses def match_for_single_frame(self, outputs: dict): outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} gt_instances_i = self.gt_instances[self._current_frame_idx] # gt instances of i-th image. track_instances: Instances = outputs_without_aux['track_instances'] pred_logits_i = track_instances.pred_logits # predicted logits of i-th image. pred_boxes_i = track_instances.pred_boxes # predicted boxes of i-th image. obj_idxes = gt_instances_i.obj_ids obj_idxes_list = obj_idxes.detach().cpu().numpy().tolist() obj_idx_to_gt_idx = {obj_idx: gt_idx for gt_idx, obj_idx in enumerate(obj_idxes_list)} outputs_i = { 'pred_logits': pred_logits_i.unsqueeze(0), 'pred_boxes': pred_boxes_i.unsqueeze(0), } # step1. inherit and update the previous tracks. num_disappear_track = 0 for j in range(len(track_instances)): obj_id = track_instances.obj_idxes[j].item() # set new target idx. if obj_id >= 0: if obj_id in obj_idx_to_gt_idx: track_instances.matched_gt_idxes[j] = obj_idx_to_gt_idx[obj_id] else: num_disappear_track += 1 track_instances.matched_gt_idxes[j] = -1 # track-disappear case. else: track_instances.matched_gt_idxes[j] = -1 full_track_idxes = torch.arange(len(track_instances), dtype=torch.long).to(pred_logits_i.device) matched_track_idxes = (track_instances.obj_idxes >= 0) # occu prev_matched_indices = torch.stack( [full_track_idxes[matched_track_idxes], track_instances.matched_gt_idxes[matched_track_idxes]], dim=1).to( pred_logits_i.device) # step2. select the unmatched slots. # note that the FP tracks whose obj_idxes are -2 will not be selected here. unmatched_track_idxes = full_track_idxes[track_instances.obj_idxes == -1] # step3. select the untracked gt instances (new tracks). tgt_indexes = track_instances.matched_gt_idxes tgt_indexes = tgt_indexes[tgt_indexes != -1] tgt_state = torch.zeros(len(gt_instances_i)).to(pred_logits_i.device) tgt_state[tgt_indexes] = 1 untracked_tgt_indexes = torch.arange(len(gt_instances_i)).to(pred_logits_i.device)[tgt_state == 0] # untracked_tgt_indexes = select_unmatched_indexes(tgt_indexes, len(gt_instances_i)) untracked_gt_instances = gt_instances_i[untracked_tgt_indexes] def match_for_single_decoder_layer(unmatched_outputs, matcher): new_track_indices = matcher(unmatched_outputs, [untracked_gt_instances]) # list[tuple(src_idx, tgt_idx)] src_idx = new_track_indices[0][0] tgt_idx = new_track_indices[0][1] # concat src and tgt. new_matched_indices = torch.stack([unmatched_track_idxes[src_idx], untracked_tgt_indexes[tgt_idx]], dim=1).to(pred_logits_i.device) return new_matched_indices # step4. do matching between the unmatched slots and GTs. unmatched_outputs = { 'pred_logits': track_instances.pred_logits[unmatched_track_idxes].unsqueeze(0), 'pred_boxes': track_instances.pred_boxes[unmatched_track_idxes].unsqueeze(0), } new_matched_indices = match_for_single_decoder_layer(unmatched_outputs, self.matcher) # step5. update obj_idxes according to the new matching result. track_instances.obj_idxes[new_matched_indices[:, 0]] = gt_instances_i.obj_ids[new_matched_indices[:, 1]].long() track_instances.matched_gt_idxes[new_matched_indices[:, 0]] = new_matched_indices[:, 1] # step6. calculate iou. active_idxes = (track_instances.obj_idxes >= 0) & (track_instances.matched_gt_idxes >= 0) active_track_boxes = track_instances.pred_boxes[active_idxes] if len(active_track_boxes) > 0: gt_boxes = gt_instances_i.boxes[track_instances.matched_gt_idxes[active_idxes]] active_track_boxes = box_ops.box_cxcywh_to_xyxy(active_track_boxes) gt_boxes = box_ops.box_cxcywh_to_xyxy(gt_boxes) track_instances.iou[active_idxes] = matched_boxlist_iou(Boxes(active_track_boxes), Boxes(gt_boxes)) # step7. merge the unmatched pairs and the matched pairs. matched_indices = torch.cat([new_matched_indices, prev_matched_indices], dim=0) # step8. calculate losses. self.num_samples += len(gt_instances_i) + num_disappear_track self.sample_device = pred_logits_i.device for loss in self.losses: new_track_loss = self.get_loss(loss, outputs=outputs_i, gt_instances=[gt_instances_i], indices=[(matched_indices[:, 0], matched_indices[:, 1])], num_boxes=1) self.losses_dict.update( {'frame_{}_{}'.format(self._current_frame_idx, key): value for key, value in new_track_loss.items()}) if 'aux_outputs' in outputs: for i, aux_outputs in enumerate(outputs['aux_outputs']): unmatched_outputs_layer = { 'pred_logits': aux_outputs['pred_logits'][0, unmatched_track_idxes].unsqueeze(0), 'pred_boxes': aux_outputs['pred_boxes'][0, unmatched_track_idxes].unsqueeze(0), } new_matched_indices_layer = match_for_single_decoder_layer(unmatched_outputs_layer, self.matcher) matched_indices_layer = torch.cat([new_matched_indices_layer, prev_matched_indices], dim=0) for loss in self.losses: if loss == 'masks': # Intermediate masks losses are too costly to compute, we ignore them. continue l_dict = self.get_loss(loss, aux_outputs, gt_instances=[gt_instances_i], indices=[(matched_indices_layer[:, 0], matched_indices_layer[:, 1])], num_boxes=1, ) self.losses_dict.update( {'frame_{}_aux{}_{}'.format(self._current_frame_idx, i, key): value for key, value in l_dict.items()}) self._step() return track_instances def forward(self, outputs, input_data: dict): # losses of each frame are calculated during the model's forwarding and are outputted by the model as outputs['losses_dict]. losses = outputs.pop("losses_dict") num_samples = self.get_num_boxes(self.num_samples) for loss_name, loss in losses.items(): losses[loss_name] /= num_samples return losses class RuntimeTrackerBase(object): def __init__(self, score_thresh=0.8, filter_score_thresh=0.6, miss_tolerance=5): self.score_thresh = score_thresh self.filter_score_thresh = filter_score_thresh self.miss_tolerance = miss_tolerance self.max_obj_id = 0 def clear(self): self.max_obj_id = 0 def update(self, track_instances: Instances): track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0 for i in range(len(track_instances)): if track_instances.obj_idxes[i] == -1 and track_instances.scores[i] >= self.score_thresh: # print("track {} has score {}, assign obj_id {}".format(i, track_instances.scores[i], self.max_obj_id)) track_instances.obj_idxes[i] = self.max_obj_id self.max_obj_id += 1 elif track_instances.obj_idxes[i] >= 0 and track_instances.scores[i] < self.filter_score_thresh: track_instances.disappear_time[i] += 1 if track_instances.disappear_time[i] >= self.miss_tolerance: # Set the obj_id to -1. # Then this track will be removed by TrackEmbeddingLayer. track_instances.obj_idxes[i] = -1 class TrackerPostProcess(nn.Module): """ This module converts the model's output into the format expected by the coco api""" def __init__(self): super().__init__() @torch.no_grad() def forward(self, track_instances: Instances, target_size) -> Instances: """ Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits = track_instances.pred_logits out_bbox = track_instances.pred_boxes prob = out_logits.sigmoid() # prob = out_logits[...,:1].sigmoid() scores, labels = prob.max(-1) # convert to [x0, y0, x1, y1] format boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_size scale_fct = torch.Tensor([img_w, img_h, img_w, img_h]).to(boxes) boxes = boxes * scale_fct[None, :] track_instances.boxes = boxes track_instances.scores = scores track_instances.labels = labels # track_instances.remove('pred_logits') # track_instances.remove('pred_boxes') return track_instances def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class MOTR(nn.Module): def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, criterion, track_embed, aux_loss=True, with_box_refine=False, two_stage=False, memory_bank=None): """ Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_classes: number of object classes num_queries: number of object queries, ie detection slot. This is the maximal number of objects DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. with_box_refine: iterative bounding box refinement two_stage: two-stage Deformable DETR """ super().__init__() self.num_queries = num_queries self.track_embed = track_embed self.transformer = transformer hidden_dim = transformer.d_model self.num_classes = num_classes self.class_embed = nn.Linear(hidden_dim, num_classes) self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) self.num_feature_levels = num_feature_levels if not two_stage: self.query_embed = nn.Embedding(num_queries, hidden_dim * 2) if num_feature_levels > 1: num_backbone_outs = len(backbone.strides) input_proj_list = [] for _ in range(num_backbone_outs): in_channels = backbone.num_channels[_] input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )) for _ in range(num_feature_levels - num_backbone_outs): input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, hidden_dim), )) in_channels = hidden_dim self.input_proj = nn.ModuleList(input_proj_list) else: self.input_proj = nn.ModuleList([ nn.Sequential( nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )]) self.backbone = backbone self.aux_loss = aux_loss self.with_box_refine = with_box_refine self.two_stage = two_stage prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(num_classes) * bias_value nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) # if two-stage, the last class_embed and bbox_embed is for region proposal generation num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers if with_box_refine: self.class_embed = _get_clones(self.class_embed, num_pred) self.bbox_embed = _get_clones(self.bbox_embed, num_pred) nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) # hack implementation for iterative bounding box refinement self.transformer.decoder.bbox_embed = self.bbox_embed else: nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) self.transformer.decoder.bbox_embed = None if two_stage: # hack implementation for two-stage self.transformer.decoder.class_embed = self.class_embed for box_embed in self.bbox_embed: nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) self.post_process = TrackerPostProcess() self.track_base = RuntimeTrackerBase() self.criterion = criterion self.memory_bank = memory_bank self.mem_bank_len = 0 if memory_bank is None else memory_bank.max_his_length def _generate_empty_tracks(self): track_instances = Instances((1, 1)) num_queries, dim = self.query_embed.weight.shape # (300, 512) device = self.query_embed.weight.device track_instances.ref_pts = self.transformer.reference_points(self.query_embed.weight[:, :dim // 2]) track_instances.query_pos = self.query_embed.weight track_instances.output_embedding = torch.zeros((num_queries, dim >> 1), device=device) track_instances.obj_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device) track_instances.matched_gt_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device) track_instances.disappear_time = torch.zeros((len(track_instances), ), dtype=torch.long, device=device) track_instances.iou = torch.zeros((len(track_instances),), dtype=torch.float, device=device) track_instances.scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device) track_instances.track_scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device) track_instances.pred_boxes = torch.zeros((len(track_instances), 4), dtype=torch.float, device=device) track_instances.pred_logits = torch.zeros((len(track_instances), self.num_classes), dtype=torch.float, device=device) mem_bank_len = self.mem_bank_len track_instances.mem_bank = torch.zeros((len(track_instances), mem_bank_len, dim // 2), dtype=torch.float32, device=device) track_instances.mem_padding_mask = torch.ones((len(track_instances), mem_bank_len), dtype=torch.bool, device=device) track_instances.save_period = torch.zeros((len(track_instances), ), dtype=torch.float32, device=device) return track_instances.to(self.query_embed.weight.device) def clear(self): self.track_base.clear() @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{'pred_logits': a, 'pred_boxes': b, } for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] def _forward_single_image(self, samples, track_instances: Instances): features, pos = self.backbone(samples) src, mask = features[-1].decompose() assert mask is not None srcs = [] masks = [] for l, feat in enumerate(features): src, mask = feat.decompose() srcs.append(self.input_proj[l](src)) masks.append(mask) assert mask is not None if self.num_feature_levels > len(srcs): _len_srcs = len(srcs) for l in range(_len_srcs, self.num_feature_levels): if l == _len_srcs: src = self.input_proj[l](features[-1].tensors) else: src = self.input_proj[l](srcs[-1]) m = samples.mask mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) srcs.append(src) masks.append(mask) pos.append(pos_l) hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, track_instances.query_pos, ref_pts=track_instances.ref_pts) outputs_classes = [] outputs_coords = [] for lvl in range(hs.shape[0]): if lvl == 0: reference = init_reference else: reference = inter_references[lvl - 1] reference = inverse_sigmoid(reference) outputs_class = self.class_embed[lvl](hs[lvl]) tmp = self.bbox_embed[lvl](hs[lvl]) if reference.shape[-1] == 4: tmp += reference else: assert reference.shape[-1] == 2 tmp[..., :2] += reference outputs_coord = tmp.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) outputs_class = torch.stack(outputs_classes) outputs_coord = torch.stack(outputs_coords) ref_pts_all = torch.cat([init_reference[None], inter_references[:, :, :, :2]], dim=0) out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1], 'ref_pts': ref_pts_all[5]} if self.aux_loss: out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) with torch.no_grad(): if self.training: track_scores = outputs_class[-1, 0, :].sigmoid().max(dim=-1).values else: track_scores = outputs_class[-1, 0, :, 0].sigmoid() track_instances.scores = track_scores track_instances.pred_logits = outputs_class[-1, 0] track_instances.pred_boxes = outputs_coord[-1, 0] track_instances.output_embedding = hs[-1, 0] if self.training: # the track id will be assigned by the mather. out['track_instances'] = track_instances track_instances = self.criterion.match_for_single_frame(out) else: # each track will be assigned an unique global id by the track base. self.track_base.update(track_instances) if self.memory_bank is not None: track_instances = self.memory_bank(track_instances) # track_instances.track_scores = track_instances.track_scores[..., 0] # track_instances.scores = track_instances.track_scores.sigmoid() if self.training: self.criterion.calc_loss_for_track_scores(track_instances) tmp = {} tmp['init_track_instances'] = self._generate_empty_tracks() tmp['track_instances'] = track_instances out_track_instances = self.track_embed(tmp) out['track_instances'] = out_track_instances return out @torch.no_grad() def inference_single_image(self, img, ori_img_size, track_instances=None): if not isinstance(img, NestedTensor): img = nested_tensor_from_tensor_list(img) # if track_instances is None: # track_instances = self._generate_empty_tracks() track_instances = self._generate_empty_tracks() res = self._forward_single_image(img, track_instances=track_instances) track_instances = res['track_instances'] track_instances = self.post_process(track_instances, ori_img_size) ret = {'track_instances': track_instances} if 'ref_pts' in res: ref_pts = res['ref_pts'] img_h, img_w = ori_img_size scale_fct = torch.Tensor([img_w, img_h]).to(ref_pts) ref_pts = ref_pts * scale_fct[None] ret['ref_pts'] = ref_pts return ret def forward(self, data: dict): if self.training: self.criterion.initialize_for_single_clip(data['gt_instances']) frames = data['imgs'] # list of Tensor. outputs = { 'pred_logits': [], 'pred_boxes': [], } track_instances = self._generate_empty_tracks() for frame in frames: if not isinstance(frame, NestedTensor): frame = nested_tensor_from_tensor_list([frame]) frame_res = self._forward_single_image(frame, track_instances) track_instances = frame_res['track_instances'] outputs['pred_logits'].append(frame_res['pred_logits']) outputs['pred_boxes'].append(frame_res['pred_boxes']) if not self.training: outputs['track_instances'] = track_instances else: outputs['losses_dict'] = self.criterion.losses_dict return outputs def build(args): dataset_to_num_classes = { 'coco': 91, 'coco_panoptic': 250, 'e2e_mot': 1, 'e2e_joint': 1, 'e2e_static_mot': 1 } assert args.dataset_file in dataset_to_num_classes num_classes = dataset_to_num_classes[args.dataset_file] device = torch.device(args.device) backbone = build_backbone(args) transformer = build_deforamble_transformer(args) d_model = transformer.d_model hidden_dim = args.dim_feedforward query_interaction_layer = build_query_interaction_layer(args, args.query_interaction_layer, d_model, hidden_dim, d_model*2) img_matcher = build_matcher(args) num_frames_per_batch = max(args.sampler_lengths) weight_dict = {} for i in range(num_frames_per_batch): weight_dict.update({"frame_{}_loss_ce".format(i): args.cls_loss_coef, 'frame_{}_loss_bbox'.format(i): args.bbox_loss_coef, 'frame_{}_loss_giou'.format(i): args.giou_loss_coef, }) # TODO this is a hack if args.aux_loss: for i in range(num_frames_per_batch): for j in range(args.dec_layers - 1): weight_dict.update({"frame_{}_aux{}_loss_ce".format(i, j): args.cls_loss_coef, 'frame_{}_aux{}_loss_bbox'.format(i, j): args.bbox_loss_coef, 'frame_{}_aux{}_loss_giou'.format(i, j): args.giou_loss_coef, }) if args.memory_bank_type is not None and len(args.memory_bank_type) > 0: memory_bank = build_memory_bank(args, d_model, hidden_dim, d_model * 2) for i in range(num_frames_per_batch): weight_dict.update({"frame_{}_track_loss_ce".format(i): args.cls_loss_coef}) else: memory_bank = None losses = ['labels', 'boxes'] criterion = ClipMatcher(num_classes, matcher=img_matcher, weight_dict=weight_dict, losses=losses) criterion.to(device) postprocessors = {} model = MOTR( backbone, transformer, track_embed=query_interaction_layer, num_feature_levels=args.num_feature_levels, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, criterion=criterion, with_box_refine=args.with_box_refine, two_stage=args.two_stage, memory_bank=memory_bank, ) return model, criterion, postprocessors
{"hexsha": "b9f74fdf8520385a79653a557631fa4a9ac1b9fc", "size": 33011, "ext": "py", "lang": "Python", "max_stars_repo_path": "tutorials/motr/motr_det.py", "max_stars_repo_name": "hyperfraise/ByteTrack", "max_stars_repo_head_hexsha": "d742a3321c14a7412f024f2218142c7441c1b699", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1039, "max_stars_repo_stars_event_min_datetime": "2021-10-14T01:15:56.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T12:51:17.000Z", "max_issues_repo_path": "tutorials/motr/motr_det.py", "max_issues_repo_name": "messedad/ByteTrack", "max_issues_repo_head_hexsha": "9e5efb7bc237ea2c33ecbd1e29ba5cc99f09c1e7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 133, "max_issues_repo_issues_event_min_datetime": "2021-10-14T10:53:16.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-30T10:26:29.000Z", "max_forks_repo_path": "tutorials/motr/motr_det.py", "max_forks_repo_name": "messedad/ByteTrack", "max_forks_repo_head_hexsha": "9e5efb7bc237ea2c33ecbd1e29ba5cc99f09c1e7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 241, "max_forks_repo_forks_event_min_datetime": "2021-10-14T01:33:44.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-31T08:13:35.000Z", "avg_line_length": 48.6887905605, "max_line_length": 185, "alphanum_fraction": 0.6293659689, "include": true, "reason": "import numpy", "num_tokens": 7064}
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import sys, os sys.path.append(os.pardir) # parent directory #import tensorflow as tf import numpy as np #import matplotlib.pyplot as plt #import matplotlib.animation as animation #import matplotlib.gridspec as gridspec from sklearn.feature_extraction import image # from PIL import Image import cv2 import glob import random import struct def genImgListWithFilename(folderpath, imgType, start, end): # input : path # output : imgList # path안의 이미지들을 리스트로 만들어준다. imgList = [] for i in range(start, end+1): filepath = folderpath+ '/' + str(i) + '.' + imgType image = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) # B, G, R # cv2.imshow('ddd',image) # cv2.waitKey(0) imgList.append(image) return imgList def cvRotateImg(img, angle): rows = img.shape[0] cols = img.shape[1] M = cv2.getRotationMatrix2D(((cols-1)/2.0, (rows-1)/2.0), angle, 1.0) return cv2.warpAffine(img,M,(cols,rows)) def getImages(path, format='png'): # input : path # output : imgList imgList = [] for filepath in glob.glob(path + "/*."+format): # make a image list with images in path # img = Image.open(filepath) # keep = img.copy() # imgList.append(keep) # img.close() img = cv2.imread(filepath, cv2.IMREAD_COLOR) # B, G, R cv2.IMREAD_COLOR IMREAD_GRAYSCALE print(filepath, img.shape) # cv2.imshow('ddd',img) # cv2.waitKey(0) imgList.append(img) return imgList class dotdict(dict): def __getattr__(self, name): return self[name] if __name__ == '__main__': settings = dotdict({ # 'dataPath' : '../../../JKcloud/DB_JK/DAGM2007_dataset', 'dataPath' : '../../DB_JK/PaintCode_dataset/', 'image_shape' : (104, 113, 1), 'generated_image_folder' : 'Generated_Images2/', 'feature_shape' : (32,32,1), }) temp_folder = settings.dataPath + "PaintCode/" if not os.path.exists( temp_folder ): os.mkdir( temp_folder ) train_dir = temp_folder + "Train/" if not os.path.exists(train_dir): os.mkdir( train_dir ) test_dir = temp_folder + "Test/" if not os.path.exists(test_dir): os.mkdir(test_dir) for i in range(10): no_dir = train_dir + str(i) if not os.path.exists(no_dir): os.mkdir(no_dir) no_dir = test_dir + str(i) if not os.path.exists(no_dir): os.mkdir(no_dir) image_li = getImages(settings.dataPath, format='jpg') height = image_li[0].shape[0] width = image_li[0].shape[1] print("height :", height, "width :", width) temp_folder = "Cropped_original_images/" if not os.path.exists(temp_folder): os.mkdir(temp_folder) cropedImg_li = [] dh = int(width/4) for i, img in enumerate(image_li): for k in range(4): cropedImg = img[:, k*dh:(k+1)*dh] cropedImg = cropedImg[4:-10, 11:-12] cropedImg = cv2.resize(cropedImg, (settings.feature_shape[0], settings.feature_shape[0]), interpolation=cv2.INTER_AREA) # cropedImg = cv2.resize(cropedImg, (settings.feature_shape[0], settings.feature_shape[1]), interpolation=cv2.INTER_CUBIC+cv2.INTER_LINEAR) # cv2.imshow('ddd', cropedImg) # cv2.waitKey(0) #아무키나 누르면 지나감 안에 값이 1이면 그냥 지나가지만 키를 눌렀을때 반응함 cropedImg_li.append(cropedImg) cv2.imwrite(temp_folder + str(i) + "-" + str(4+k) + ".jpg", cropedImg) if not os.path.exists(settings.generated_image_folder): os.mkdir(settings.generated_image_folder) # one -> eight for i, img in enumerate(cropedImg_li): vertical_flip_img = cv2.flip(img,1) for k in range(0,4): augmentedImg1 = cvRotateImg(img, 90*k) augmentedImg2 = cvRotateImg(vertical_flip_img, 90*k) cv2.imwrite(settings.generated_image_folder + str(i) + "-" + str(90*k) + ".jpg", augmentedImg1) cv2.imwrite(settings.generated_image_folder + str(i) + "-flip-" + str(90*k) + ".jpg", augmentedImg2)
{"hexsha": "c289d5e3350925e05d7996f6907e5262870a0e73", "size": 4494, "ext": "py", "lang": "Python", "max_stars_repo_path": "PaintCode_classification/gen_data.py", "max_stars_repo_name": "sjk0709/PaintCode_classification", "max_stars_repo_head_hexsha": "0663f68592b7685dc1c1008f6433ae1d60f21dc4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "PaintCode_classification/gen_data.py", "max_issues_repo_name": "sjk0709/PaintCode_classification", "max_issues_repo_head_hexsha": "0663f68592b7685dc1c1008f6433ae1d60f21dc4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "PaintCode_classification/gen_data.py", "max_forks_repo_name": "sjk0709/PaintCode_classification", "max_forks_repo_head_hexsha": "0663f68592b7685dc1c1008f6433ae1d60f21dc4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.3053435115, "max_line_length": 151, "alphanum_fraction": 0.5763239875, "include": true, "reason": "import numpy", "num_tokens": 1202}
"""The orbit solution class.""" import numpy as np import scipy.optimize as sp_optimize import opihiexarata.library as library import opihiexarata.library.error as error import opihiexarata.library.hint as hint import opihiexarata.orbit as orbit class OrbitSolution(hint.ExarataSolution): """This is the class which solves a record of observations to derive the orbital parameters of asteroids or objects in general. A record of observations must be provided. Attributes ---------- semimajor_axis : float The semimajor axis of the orbit solved, in AU. semimajor_axis_error : float The error on the semimajor axis of the orbit solved, in AU. eccentricity : float The eccentricity of the orbit solved. eccentricity_error : float The error on the eccentricity of the orbit solved. inclination : float The angle of inclination of the orbit solved, in degrees. inclination_error : float The error on the angle of inclination of the orbit solved, in degrees. longitude_ascending_node : float The longitude of the ascending node of the orbit solved, in degrees. longitude_ascending_node_error : float The error on the longitude of the ascending node of the orbit solved, in degrees. argument_perihelion : float The argument of perihelion of the orbit solved, in degrees. argument_perihelion_error : float The error on the argument of perihelion of the orbit solved, in degrees. mean_anomaly : float The mean anomaly of the orbit solved, in degrees. mean_anomaly_error : float The error on the mean anomaly of the orbit solved, in degrees. true_anomaly : float The true anomaly of the orbit solved, in degrees. This value is calculated from the mean anomaly. true_anomaly_error : float The error on the true anomaly of the orbit solved, in degrees. This value is calculated from the error on the mean anomaly. modified_julian_date : float The modified Julian date used by the engine to calculate the osculating orbital elements. """ def __init__( self, observation_record: list[str], solver_engine: hint.OrbitEngine ) -> None: """The initialization function. Provided the list of observations, solves the orbit for the Keplarian orbits. Additional representations of the orbits in different coordinate frames are provided via computation. TODO Parameters ---------- observation_record : list A list of the standard MPC 80-column observation records. Each element of the list should be a string representing the observation. solver_engine : OrbitEngine The engine which will be used to complete the orbital elements from the observation record. Returns ------- None """ # Check that the solver engine is a valid submission, that is is an # expected engine class. if isinstance(solver_engine, library.engine.OrbitEngine): raise error.EngineError( "The orbit solver engine provided should be the engine class" " itself, not an instance thereof." ) elif issubclass(solver_engine, library.engine.OrbitEngine): # It is fine, the user submitted a valid orbit engine. pass else: raise error.EngineError( "The provided orbit engine is not a valid engine which can be" " used for orbit solutions." ) # Derive the orbital elements using the proper vehicle function for # the desired engine is that is to be used. if issubclass(solver_engine, orbit.OrbfitOrbitDeterminerEngine): # Solve using Orbfit. raw_orbit_results = _vehicle_orbfit_orbit_determiner( observation_record=observation_record ) else: # There is no vehicle function, the engine is not supported. raise error.EngineError( "The provided orbit engine `{eng}` is not supported, there is no" " associated vehicle function for it.".format(eng=str(solver_engine)) ) # Sanity check on the dictionary-like return. if not isinstance(raw_orbit_results, dict): raise error.DevelopmentError( "The results of the orbit engines should be a dictionary. The orbit" " engine used, and the subsequent vehicle function: {engtype}".format( engtype=solver_engine ) ) else: # Quick type checking; everything should be float or at the least # float-convertable. This may be unneeded but it does not hurt. orbit_results = { keydex: float(valuedex) for keydex, valuedex in raw_orbit_results.items() } # Extract the needed values from the results of the engine. try: # Semimajor self.semimajor_axis = orbit_results["semimajor_axis"] self.semimajor_axis_error = orbit_results["semimajor_axis_error"] # Eccentricity self.eccentricity = orbit_results["eccentricity"] self.eccentricity_error = orbit_results["eccentricity_error"] # Inclination self.inclination = orbit_results["inclination"] self.inclination_error = orbit_results["inclination_error"] # Longitude self.longitude_ascending_node = orbit_results["longitude_ascending_node"] self.longitude_ascending_node_error = orbit_results[ "longitude_ascending_node_error" ] # Perihelion self.argument_perihelion = orbit_results["argument_perihelion"] self.argument_perihelion_error = orbit_results["argument_perihelion_error"] # Mean anomaly self.mean_anomaly = orbit_results["mean_anomaly"] self.mean_anomaly_error = orbit_results["mean_anomaly_error"] # MJD self.modified_julian_date = orbit_results["modified_julian_date"] except KeyError: raise error.EngineError( "The engine results provided are insufficient for this orbit" " solver. Either the engine cannot be used because it cannot provide" " the needed results, or the vehicle function does not pull the" " required results from the engine." ) # Calculating the eccentric anomaly and error from the provided values. ( eccentric_anomaly, eccentric_anomaly_error, ) = self.__calculate_eccentric_anomaly() self.eccentric_anomaly = eccentric_anomaly self.eccentric_anomaly_error = eccentric_anomaly_error # Calculating the true anomaly and error from the provided values. true_anomaly, true_anomaly_error = self.__calculate_true_anomaly() self.true_anomaly = true_anomaly self.true_anomaly_error = true_anomaly_error # All done. return None def __calculate_eccentric_anomaly(self) -> tuple[float, float]: """Calculating the eccentric anomaly and error from the mean anomaly. Parameters ---------- None Returns ------- eccentric_anomaly : float The eccentric anomaly as derived from the mean anomaly. eccentric_anomaly_error : float The eccentric anomaly error derived as an average from the upper and lower ranges of the mean anomaly. """ # Needed orbital values. eccentricity = self.eccentricity mean_anomaly = self.mean_anomaly mean_anomaly_error = self.mean_anomaly_error # Calculating the eccentric anomaly. eccentric_anomaly = _calculate_eccentric_anomaly( mean_anomaly=mean_anomaly, eccentricity=eccentricity ) # And the error using upper and lower bound method. lower_eccentric_anomaly = _calculate_eccentric_anomaly( mean_anomaly=mean_anomaly - mean_anomaly_error, eccentricity=eccentricity ) upper_eccentric_anomaly = _calculate_eccentric_anomaly( mean_anomaly=mean_anomaly + mean_anomaly_error, eccentricity=eccentricity ) bounds_eccentric_anomaly = np.array( [lower_eccentric_anomaly, upper_eccentric_anomaly], dtype=float ) eccentric_anomaly_error = np.mean( np.abs(bounds_eccentric_anomaly - eccentric_anomaly) ) return eccentric_anomaly, eccentric_anomaly_error def __calculate_true_anomaly(self) -> tuple[float, float]: """Calculating the true anomaly and error from the eccentric anomaly. Parameters ---------- None Returns ------- true_anomaly : float The true anomaly as derived from the mean anomaly. true_anomaly_error : float The true anomaly error derived as an average from the upper and lower ranges of the eccentric anomaly. """ # Needed orbital values. eccentricity = self.eccentricity eccentric_anomaly = self.eccentric_anomaly eccentric_anomaly_error = self.eccentric_anomaly_error # Calculating the eccentric anomaly. true_anomaly = _calculate_true_anomaly( eccentric_anomaly=eccentric_anomaly, eccentricity=eccentricity ) # And the error using upper and lower bound method. lower_true_anomaly = _calculate_true_anomaly( eccentric_anomaly=eccentric_anomaly - eccentric_anomaly_error, eccentricity=eccentricity, ) upper_true_anomaly = _calculate_true_anomaly( eccentric_anomaly=eccentric_anomaly + eccentric_anomaly_error, eccentricity=eccentricity, ) bounds_true_anomaly = np.array( [lower_true_anomaly, upper_true_anomaly], dtype=float ) true_anomaly_error = np.mean(np.abs(bounds_true_anomaly - true_anomaly)) return true_anomaly, true_anomaly_error def _calculate_eccentric_anomaly(mean_anomaly: float, eccentricity: float) -> float: """Calculate the eccentric anomaly from the mean anomaly and eccentricity of an orbit. This is found iteratively using Newton's method. Parameters ---------- mean_anomaly : float The mean anomaly of the orbit, in degrees. Returns ------- eccentric_anomaly : float The eccentric anomaly as derived from the mean anomaly, in degrees. """ # Converting first to radians. radian_mean_anomaly = mean_anomaly * (np.pi / 180) # The main equation to solve using the root finding algorithm; as derived # from Kepler's equation. def root_kepler_equation(ecc_ano=0, mean_ano=0, eccen=0): return ecc_ano - eccen * np.sin(ecc_ano) - mean_ano def root_kepler_equation_prime(ecc_ano=0, mean_ano=0, eccen=0): return 1 - eccen * np.cos(ecc_ano) # Initial guess. High eccentricities are better served by a different # initial guess than the native one. if eccentricity <= 0.7: initial_guess = radian_mean_anomaly else: initial_guess = np.pi # Using the root finding algorithm to find the eccentric anomaly. root_results = sp_optimize.root_scalar( f=lambda ec_an: root_kepler_equation( ecc_ano=ec_an, mean_ano=radian_mean_anomaly, eccen=eccentricity ), fprime=lambda ec_an: root_kepler_equation_prime( ecc_ano=ec_an, mean_ano=radian_mean_anomaly, eccen=eccentricity ), method="newton", x0=initial_guess, ) # Scipy gives a class back rather than just a tuple of values. Who knows # why. radian_eccentric_anomaly = root_results.root # Converting back to degrees. eccentric_anomaly = radian_eccentric_anomaly * (180 / np.pi) return eccentric_anomaly def _calculate_true_anomaly(eccentric_anomaly: float, eccentricity: float) -> float: """Calculate the true anomaly from the mean anomaly and eccentricity of an orbit. Parameters ---------- eccentric_anomaly : float The eccentric anomaly of the orbit, in degrees. Returns ------- true_anomaly : float The true anomaly as derived from the eccentric anomaly, in degrees. """ # Converting first to radians. radian_eccentric_anomaly = eccentric_anomaly * (np.pi / 180) # Using just the tangent version. There is no expectation that the # eccentricity will be close to 1. e_ratio = (1 + eccentricity) / (1 - eccentricity) radian_true_anomaly = 2 * np.arctan( np.sqrt(e_ratio) * np.tan(radian_eccentric_anomaly / 2) ) # Converting back to degrees. true_anomaly = radian_true_anomaly * (180 / np.pi) return true_anomaly def _vehicle_orbfit_orbit_determiner(observation_record: list[str]) -> dict: """This uses the Orbfit engine to calculate orbital elements from the observation record. The results are then returned to be managed by the main class. Parameters ---------- observation_record : list The MPC standard 80-column record for observations of the asteroid by which the orbit shall be computed from. Returns ------- orbit_results : dict The results of the orbit computation using the Orbfit engine. Namely, this returns the 6 classical Kepler elements, using mean anamonly. """ # Creating the Orbfit class. It does an correct installation check. If # the installation is wrong, it is mentioned. Catching it should it fail # to add context as well as the stack trace should give the error # information. try: orbfit = orbit.OrbfitOrbitDeterminerEngine() except error.InstallError: raise error.InstallError( "The Orbfit engine is not properly installed; thus it cannot be used to" " compute the orbital elements for this solution class." ) # Solving for the orbit. This engine has a record-based solution function # so just using it. kepler_elements, kepler_error, mjd = orbfit.solve_orbit_via_record( observation_record=observation_record ) # Converting the the results from this engine to the standard output # expected by the vehicle functions for orbit solving. orbit_results = { "semimajor_axis": kepler_elements["semimajor_axis"], "semimajor_axis_error": kepler_error["semimajor_axis_error"], "eccentricity": kepler_elements["eccentricity"], "eccentricity_error": kepler_error["eccentricity_error"], "inclination": kepler_elements["inclination"], "inclination_error": kepler_error["inclination_error"], "longitude_ascending_node": kepler_elements["longitude_ascending_node"], "longitude_ascending_node_error": kepler_error[ "longitude_ascending_node_error" ], "argument_perihelion": kepler_elements["argument_perihelion"], "argument_perihelion_error": kepler_error["argument_perihelion_error"], "mean_anomaly": kepler_elements["mean_anomaly"], "mean_anomaly_error": kepler_error["mean_anomaly_error"], "modified_julian_date": mjd, } # All done. return orbit_results
{"hexsha": "26df490e6a1fa040c74f9251d2d9fe5adbbd4ece", "size": 15598, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/opihiexarata/orbit/solution.py", "max_stars_repo_name": "psmd-iberutaru/OpihiExarata", "max_stars_repo_head_hexsha": "f0b595d7712ec68c972a7261e6bacc66410ba8b3", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/opihiexarata/orbit/solution.py", "max_issues_repo_name": "psmd-iberutaru/OpihiExarata", "max_issues_repo_head_hexsha": "f0b595d7712ec68c972a7261e6bacc66410ba8b3", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2022-03-02T03:37:58.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-15T11:05:32.000Z", "max_forks_repo_path": "src/opihiexarata/orbit/solution.py", "max_forks_repo_name": "psmd-iberutaru/OpihiExarata", "max_forks_repo_head_hexsha": "f0b595d7712ec68c972a7261e6bacc66410ba8b3", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 40.832460733, "max_line_length": 89, "alphanum_fraction": 0.6666239261, "include": true, "reason": "import numpy,import scipy", "num_tokens": 3382}
[STATEMENT] lemma lran_empty[simp]: "lran a l l = []" "lran a l h = [] \<longleftrightarrow> h\<le>l" [PROOF STATE] proof (prove) goal (1 subgoal): 1. lran a l l = [] &&& (lran a l h = []) = (h \<le> l) [PROOF STEP] by (subst lran.simps; auto)+
{"llama_tokens": 116, "file": "IMP2_lib_IMP2_Aux_Lemmas", "length": 1}
""" abstract type AbstractMetricParams{T} end Abstract type used to dispatch different geodesic problems. """ abstract type AbstractMetricParams{T} end # contains the full metric components (this type needed for DiffGeoSymbolics) abstract type AbstractMetric{T} <: AbstractMatrix{T} end metric_params(m::AbstractMetric{T}) where {T} = error("Not implemented for metric $(typeof(m))") """ geodesic_eq(m::AbstractMetricParams{T}, u, v) geodesic_eq!(m::AbstractMetricParams{T}, u, v) Calculate the acceleration components of the geodesic equation given a position `u`, a velocity `v`, and a metric `m`. """ geodesic_eq(m::AbstractMetricParams{T}, u, v) where {T} = error("Not implemented for metric parameters $(typeof(m))") geodesic_eq!(m::AbstractMetricParams{T}, u, v) where {T} = error("Not implemented for metric parameters $(typeof(m))") """ constrain(m::AbstractMetricParams{T}, u, v; μ::T=0.0f0) Give time component which would constrain a velocity vector `v` at position `x` to be a geodesic with mass `μ`. """ constrain(m::AbstractMetricParams{T}, u, v; μ::T = 0.0) where {T} = error("Not implemented for metric parameters $(typeof(m))") """ on_chart(m::AbstractMetricParams{T}, u) Check if point `u` is a valid point for the metric described by `m`. Returns false is `u` is a singularity. """ on_chart(m::AbstractMetricParams{T}, u) where {T} = !(sum(u) ≈ 0) """ inner_radius(m::AbstractMetricParams{T}) Return the innermost valid coordinate relative to the origin, for use in geodesic tracing. This usually represents some property of the metric, e.g. event horizon radius in Kerr/Schwarzschild metrics, or throat diameter in worm hole metrics. """ inner_radius(m::AbstractMetricParams{T}) where {T} = convert(T, 0.0) """ metric_type(m::AbstractMetricParams{T}) Return the [`AbstractMetric`](@ref) type associated with the metric parameters `m`. """ metric_type(m::AbstractMetricParams{T}) where {T} = error("Not implemented for metric parameters $(typeof(m))") """ metric(m::AbstractMetricParams{T}, u) Numerically evaluate the corresponding metric for [`AbstractMetricParams`](@ref), given parameter values `m` and some point `u`. """ metric(m::AbstractMetricParams{T}, u) where {T} = error("Not implemented for metric $(typeof(m))") # do we actually want to support this? # since if it's a symbolic matrix, you can subs other ways better? #""" # metric(m::AbstractMetric{T}, u) # #Evaluate the metric at a point `u`. #""" #metric(m::AbstractMetric{T}, u) where {T} = error("Not implemented for metric $(typeof(m))") export AbstractMetricParams, geodesic_eq, geodesic_eq!, constrain, on_chart, inner_radius, metric_type
{"hexsha": "83db162a9298d212973cc037331f9f8ed77cd345", "size": 2719, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/metric-params.jl", "max_stars_repo_name": "astro-group-bristol/GeodesicBase.jl", "max_stars_repo_head_hexsha": "0cb60aeba81a2fe21e363824ae3fe86dbb52a15d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/metric-params.jl", "max_issues_repo_name": "astro-group-bristol/GeodesicBase.jl", "max_issues_repo_head_hexsha": "0cb60aeba81a2fe21e363824ae3fe86dbb52a15d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2022-01-12T14:17:44.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-12T14:17:44.000Z", "max_forks_repo_path": "src/metric-params.jl", "max_forks_repo_name": "astro-group-bristol/GeodesicBase.jl", "max_forks_repo_head_hexsha": "0cb60aeba81a2fe21e363824ae3fe86dbb52a15d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.369047619, "max_line_length": 118, "alphanum_fraction": 0.714233174, "num_tokens": 695}
""" Kindly install these libraries before executing this code: 1. numpy 2. matplotlib 3. scipy """ import numpy as np import matplotlib.pyplot as plt import cmath import math from numpy import random from scipy.special import beta from scipy import stats import time # if using a Jupyter notebook, kindly uncomment following line: %matplotlib inline def boxMuller(): sample = [50, 5000] random_numbers = [] for i in sample: iter = 50 total_time = 0 for count in range(0, iter): time1 = time.time() U1 = np.random.uniform(size = i) U2 = np.random.uniform(size = i) R = [-2*math.log(ui) for ui in U1] V = [2*math.pi*ui for ui in U2] Z = [] for idx in range(0, i): Z.append(math.sqrt(R[idx]) * math.cos(V[idx])) Z.append(math.sqrt(R[idx]) * math.sin(V[idx])) time2 = time.time() random_numbers.append(Z) count += 1 total_time += time2 - time1 print("\n\n****************** Box-Muller Method ******************") print("Size of sample\t= {}".format(len(Z))) print("Time difference\t= {} sec".format(total_time/iter)) return random_numbers def marsagliaAndBray(): sample = [50, 5000] random_numbers = [] for i in sample: iter = 50 total_time = 0 for count in range(0, iter): X = [] U1 = [] U2 = [] counter = 0 time1 = time.time() while len(X) != i: u1 = np.random.random() u2 = np.random.random() counter += 1 u1 = 2*u1 - 1 u2 = 2*u2 - 1 x = u1*u1 + u2*u2 if(x > 1): continue X.append(x) U1.append(u1) U2.append(u2) Y = [math.sqrt(-2*math.log(x)/x) for x in X] Z = [] for idx in range(0, i): Z.append(U1[idx]*Y[idx]) Z.append(U2[idx]*Y[idx]) time2 = time.time() random_numbers.append(Z) count += 1 total_time += time2 - time1 print("\n\n****************** Marsaglia and Bray Method ******************") print("Size of sample\t= {}".format(len(Z))) print("Time difference\t= {} sec".format(total_time/iter)) return random_numbers def main(): print(" ---------------------- Solutions for sample from N(0, 1) ----------------------") sample1 = boxMuller() sample2 = marsagliaAndBray() if __name__ == "__main__": main()
{"hexsha": "f956182779aad5caf5a3c003695ada5b370d4272", "size": 2536, "ext": "py", "lang": "Python", "max_stars_repo_path": "Lab5/Submission Files/180123053_VishishtPriyadarshi_q2.py", "max_stars_repo_name": "vishishtpriyadarshi/Monte-Carlo-Simulation", "max_stars_repo_head_hexsha": "0e162bdecf774e06ec209914ff16bc31b0f8fc74", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Lab5/Submission Files/180123053_VishishtPriyadarshi_q2.py", "max_issues_repo_name": "vishishtpriyadarshi/Monte-Carlo-Simulation", "max_issues_repo_head_hexsha": "0e162bdecf774e06ec209914ff16bc31b0f8fc74", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Lab5/Submission Files/180123053_VishishtPriyadarshi_q2.py", "max_forks_repo_name": "vishishtpriyadarshi/Monte-Carlo-Simulation", "max_forks_repo_head_hexsha": "0e162bdecf774e06ec209914ff16bc31b0f8fc74", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 22.2456140351, "max_line_length": 92, "alphanum_fraction": 0.5106466877, "include": true, "reason": "import numpy,from numpy,from scipy", "num_tokens": 685}
""" rendering.py -------------- Functions to convert trimesh objects to pyglet/opengl objects. """ import numpy as np try: import pyglet pyglet.options['shadow_window'] = False from pyglet import gl # bring in mode enum GL_LINES, GL_POINTS, GL_TRIANGLES = ( gl.GL_LINES, gl.GL_POINTS, gl.GL_TRIANGLES) except BaseException: # otherwise provide mode flags # this is so we can unit test without pyglet GL_POINTS, GL_LINES, GL_TRIANGLES = (0, 1, 4) from . import util def convert_to_vertexlist(geometry, **kwargs): """ Try to convert various geometry objects to the constructor args for a pyglet indexed vertex list. Parameters ------------ obj : Trimesh, Path2D, Path3D, (n,2) float, (n,3) float Object to render Returns ------------ args : tuple Args to be passed to pyglet indexed vertex list constructor. """ if util.is_instance_named(geometry, 'Trimesh'): return mesh_to_vertexlist(geometry, **kwargs) elif util.is_instance_named(geometry, 'Path'): # works for Path3D and Path2D # both of which inherit from Path return path_to_vertexlist(geometry, **kwargs) elif util.is_instance_named(geometry, 'PointCloud'): # pointcloud objects contain colors return points_to_vertexlist(geometry.vertices, colors=geometry.colors, **kwargs) elif util.is_instance_named(geometry, 'ndarray'): # (n,2) or (n,3) points return points_to_vertexlist(geometry, **kwargs) else: raise ValueError('Geometry passed is not a viewable type!') def mesh_to_vertexlist(mesh, group=None, smooth=True, smooth_threshold=60000): """ Convert a Trimesh object to arguments for an indexed vertex list constructor. Parameters ------------- mesh : trimesh.Trimesh Mesh to be rendered group : str Rendering group for the vertex list smooth : bool Should we try to smooth shade the mesh smooth_threshold : int Maximum number of faces to smooth shade Returns -------------- args : (7,) tuple Args for vertex list constructor """ if hasattr(mesh.visual, 'uv') and mesh.visual.uv is not None: # if the mesh has texture defined pass it to pyglet vertex_count = len(mesh.vertices) normals = mesh.vertex_normals.reshape(-1).tolist() faces = mesh.faces.reshape(-1).tolist() vertices = mesh.vertices.reshape(-1).tolist() # get the per- vertex UV coordinates uv = mesh.visual.uv # if someone passed (n, 3) UVR cut it off here if uv.shape[1] > 2: uv = uv[:, :2] # texcoord as (2,) float color_gl = ('t2f/static', uv.astype(np.float64).reshape(-1).tolist()) elif smooth and len(mesh.faces) < smooth_threshold: # if we have a small number of faces and colors defined # smooth the mesh by merging vertices of faces below # the threshold angle mesh = mesh.smoothed() vertex_count = len(mesh.vertices) normals = mesh.vertex_normals.reshape(-1).tolist() faces = mesh.faces.reshape(-1).tolist() vertices = mesh.vertices.reshape(-1).tolist() color_gl = colors_to_gl(mesh.visual.vertex_colors, vertex_count) else: # we don't have textures or want to smooth so # send a polygon soup of disconnected triangles to opengl vertex_count = len(mesh.triangles) * 3 normals = np.tile(mesh.face_normals, (1, 3)).reshape(-1).tolist() vertices = mesh.triangles.reshape(-1).tolist() faces = np.arange(vertex_count).tolist() colors = np.tile(mesh.visual.face_colors, (1, 3)).reshape((-1, 4)) color_gl = colors_to_gl(colors, vertex_count) # create the ordered tuple for pyglet, use like: # `batch.add_indexed(*args)` args = (vertex_count, # number of vertices GL_TRIANGLES, # mode group, # group faces, # indices ('v3f/static', vertices), ('n3f/static', normals), color_gl) return args def path_to_vertexlist(path, group=None, colors=None, **kwargs): """ Convert a Path3D object to arguments for an indexed vertex list constructor. Parameters ------------- path : trimesh.path.Path3D object Mesh to be rendered group : str Rendering group for the vertex list Returns -------------- args : (7,) tuple Args for vertex list constructor """ # avoid cache check inside tight loop vertices = path.vertices # get (n, 2, (2|3)) lines lines = np.vstack([util.stack_lines(e.discrete(vertices)) for e in path.entities]) count = len(lines) # stack zeros for 2D lines if util.is_shape(vertices, (-1, 2)): lines = lines.reshape((-1, 2)) lines = np.column_stack((lines, np.zeros(len(lines)))) # index for GL is one per point index = np.arange(count).tolist() args = (count, # number of lines GL_LINES, # mode group, # group index, # indices ('v3f/static', lines.reshape(-1)), colors_to_gl(colors, count=count)) # default colors return args def points_to_vertexlist(points, colors=None, group=None, **kwargs): """ Convert a numpy array of 3D points to args for a vertex list constructor. Parameters ------------- points : (n, 3) float Points to be rendered colors : (n, 3) or (n, 4) float Colors for each point group : str Rendering group for the vertex list Returns -------------- args : (7,) tuple Args for vertex list constructor """ points = np.asanyarray(points, dtype=np.float64) if util.is_shape(points, (-1, 2)): points = np.column_stack((points, np.zeros(len(points)))) elif not util.is_shape(points, (-1, 3)): raise ValueError('Pointcloud must be (n,3)!') index = np.arange(len(points)).tolist() args = (len(points), # number of vertices GL_POINTS, # mode group, # group index, # indices ('v3f/static', points.reshape(-1)), colors_to_gl(colors, len(points))) return args def colors_to_gl(colors, count): """ Given a list of colors (or None) return a GL- acceptable list of colors Parameters ------------ colors: (count, (3 or 4)) float Input colors as an array Returns --------- colors_type : str Color type colors_gl : (count,) list Colors to pass to pyglet """ colors = np.asanyarray(colors) count = int(count) if util.is_shape(colors, (count, (3, 4))): # convert the numpy dtype code to an opengl one colors_dtype = {'f': 'f', 'i': 'B', 'u': 'B'}[colors.dtype.kind] # create the data type description string pyglet expects colors_type = 'c' + str(colors.shape[1]) + colors_dtype + '/static' # reshape the 2D array into a 1D one and then convert to a python list colors = colors.reshape(-1).tolist() else: # case where colors are wrong shape, use a default color colors = np.tile([.5, .10, .20], (count, 1)).reshape(-1).tolist() colors_type = 'c3f/static' return colors_type, colors def material_to_texture(material): """ Convert a trimesh.visual.texture.Material object into a pyglet- compatible texture object. Parameters -------------- material : trimesh.visual.texture.Material Material to be converted Returns --------------- texture : pyglet.image.Texture Texture loaded into pyglet form """ # try to extract a PIL image from material if hasattr(material, 'image'): img = material.image else: img = material.baseColorTexture if img is None: return None # use a PNG export to exchange into pyglet # probably a way to do this with a PIL converter with util.BytesIO() as f: # export PIL image as PNG img.save(f, format='png') f.seek(0) # filename used for format guess gl_image = pyglet.image.load(filename='.png', file=f) # turn image into pyglet texture texture = gl_image.get_texture() return texture def matrix_to_gl(matrix): """ Convert a numpy row- major homogenous transformation matrix to a flat column- major GLfloat transformation. Parameters ------------- matrix : (4,4) float Row- major homogenous transform Returns ------------- glmatrix : (16,) gl.GLfloat Transform in pyglet format """ matrix = np.asanyarray(matrix, dtype=np.float64) if matrix.shape != (4, 4): raise ValueError('matrix must be (4,4)!') # switch to column major and flatten to (16,) column = matrix.T.flatten() # convert to GLfloat glmatrix = (gl.GLfloat * 16)(*column) return glmatrix def vector_to_gl(array, *args): """ Convert an array and an optional set of args into a flat vector of gl.GLfloat """ array = np.array(array) if len(args) > 0: array = np.append(array, args) vector = (gl.GLfloat * len(array))(*array) return vector def light_to_gl(light, transform, lightN): """ Convert trimesh.scene.lighting.Light objects into args for gl.glLightFv calls Parameters -------------- light : trimesh.scene.lighting.Light Light object to be converted to GL transform : (4, 4) float Transformation matrix of light lightN : int Result of gl.GL_LIGHT0, gl.GL_LIGHT1, etc Returns -------------- multiarg : [tuple] List of args to pass to gl.glLightFv eg: [gl.glLightfb(*a) for a in multiarg] """ # convert color to opengl gl_color = vector_to_gl(light.color.astype(np.float64) / 255.0) assert len(gl_color) == 4 # cartesian translation from matrix gl_position = vector_to_gl(transform[:3, 3]) # create the different position and color arguments args = [(lightN, gl.GL_POSITION, gl_position), (lightN, gl.GL_SPECULAR, gl_color), (lightN, gl.GL_DIFFUSE, gl_color), (lightN, gl.GL_AMBIENT, gl_color)] return args
{"hexsha": "5a5aba2baaf9f7bbc4d2dbdf3245cf7e1c3daf21", "size": 10778, "ext": "py", "lang": "Python", "max_stars_repo_path": "trimesh/rendering.py", "max_stars_repo_name": "LinJiarui/trimesh", "max_stars_repo_head_hexsha": "5f925bbab447e733d6f1ebf0956b202d18271ee1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2020-05-22T13:56:05.000Z", "max_stars_repo_stars_event_max_datetime": "2020-05-22T13:56:05.000Z", "max_issues_repo_path": "trimesh/rendering.py", "max_issues_repo_name": "LinJiarui/trimesh", "max_issues_repo_head_hexsha": "5f925bbab447e733d6f1ebf0956b202d18271ee1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "trimesh/rendering.py", "max_forks_repo_name": "LinJiarui/trimesh", "max_forks_repo_head_hexsha": "5f925bbab447e733d6f1ebf0956b202d18271ee1", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.2086720867, "max_line_length": 78, "alphanum_fraction": 0.5883280757, "include": true, "reason": "import numpy", "num_tokens": 2592}
#Imports import os, sys import base64 import glob import time, sched import datetime from datetime import timezone from datetime import timedelta from collections import OrderedDict import numpy as np import pandas as pd import socket import psycopg2 import subprocess import pytz import json import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.dates as mdates from bokeh.io import curdoc, save, export_png # , output_file, save from bokeh.models import (TextInput, ColumnDataSource, DateFormatter, RadioGroup,CheckboxButtonGroup,Paragraph, Button, TextAreaInput, Select,CheckboxGroup, RadioButtonGroup, DateFormatter,CheckboxGroup) from bokeh.models.widgets.markups import Div from bokeh.layouts import layout, column, row from bokeh.models.widgets import Panel, Tabs, FileInput from bokeh.models.widgets.tables import DataTable, TableColumn from bokeh.plotting import figure import logging from astropy.time import TimezoneInfo import astropy.units.si as u from util import sky_calendar import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.image import MIMEImage sys.path.append(os.getcwd()) sys.path.append('./ECLAPI-8.0.12/lib') import nightlog as nl from layout import Layout class Report(Layout): def __init__(self): Layout.__init__(self) self.test = False self.report_type = None self.kp_zone = TimezoneInfo(utc_offset=-7*u.hour) self.datefmt = DateFormatter(format="%m/%d/%Y %H:%M:%S") self.timefmt = DateFormatter(format="%m/%d %H:%M") # Figure out where the App is being run: KPNO or NERSC hostname = socket.gethostname() ip_address = socket.gethostbyname(hostname) if 'desi' in hostname: self.location = 'kpno' self.conn = psycopg2.connect(host="desi-db", port="5442", database="desi_dev", user="desi_reader", password="reader") elif 'app' in hostname: #this is not true. Needs to change. self.location = 'nersc' self.conn = psycopg2.connect(host="db.replicator.dev-cattle.stable.spin.nersc.org", port="60042", database="desi_dev", user="desi_reader", password="reader") else: self.location = 'nersc' print(os.environ['NL_DIR']) self.nw_dir = os.environ['NW_DIR'] self.nl_dir = os.environ['NL_DIR'] self.intro_subtitle = Div(text="Connect to Night Log", css_classes=['subt-style']) self.time_note = Div(text="<b> Note: </b> Enter all times as HH:MM (18:18 = 1818 = 6:18pm) in Kitt Peak local time. Either enter the time or hit the <b> Now </b> button if it just occured.", css_classes=['inst-style']) self.exp_info = Div(text="Mandatory fields have an asterisk*.", css_classes=['inst-style'],width=500) self.img_upinst = Div(text="Include images in the Night Log by uploading a png image from your local computer. Select file, write a comment and click Add", css_classes=['inst-style'], width=1000) self.img_upinst2 = Div(text=" Choose image to include with comment: ", css_classes=['inst-style']) self.img_upload = FileInput(accept=".png") self.img_upload.on_change('value', self.upload_image) self.img_upload_comments_os = FileInput(accept=".png") self.img_upload_comments_os.on_change('value', self.upload_image_comments_os) self.img_upload_comments_dqs = FileInput(accept=".png") self.img_upload_comments_dqs.on_change('value', self.upload_image_comments_dqs) self.img_upload_problems = FileInput(accept=".png") self.img_upload_problems.on_change('value', self.upload_image_problems) self.nl_file = None self.milestone_time = None self.plan_time = None self.full_time = None self.DESI_Log = None self.save_telem_plots = False self.buffer = Div(text=' ') self.my_name = 'None' self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.INFO) def clear_input(self, items): """ After submitting something to the log, this will clear the form. """ if isinstance(items, list): for item in items: item.value = ' ' else: items.value = ' ' def get_exposure_list(self): try: current_exp = self.exp_select.value dir_ = os.path.join(self.nw_dir,self.night) exposures = [] for path, subdirs, files in os.walk(dir_): for s in subdirs: exposures.append(s) x = list([str(int(e)) for e in list(exposures)]) x = np.sort(x)[::-1] self.exp_select.options = list(x) if current_exp in ['',' ',np.nan,None]: self.exp_select.value = x[0] else: self.exp_select.value = current_exp except: self.exp_select.options = [] def update_nl_list(self): days = [f for f in os.listdir(self.nl_dir) if os.path.isdir(os.path.join(self.nl_dir,f))] days_ = [] for day in days: try: int(day) days_.append(day) except: pass init_nl_list = np.sort([day for day in days_])[::-1][0:10] self.date_init.options = list(init_nl_list) self.date_init.value = init_nl_list[0] def select_exp(self, attr, old, new): self.exp_enter.value = self.exp_select.value def add_all_to_bad_list(self): self.bad_all = True self.exp_layout_1.children[11] = self.exp_btn self.bad_exp_add() self.exp_alert.text = 'The whole exposure {} has been added to the bad exposure list'.format(self.bad_exp_val) self.clear_input([self.exp_time, self.exp_enter, self.exp_select, self.exp_comment]) def add_some_to_bad_list(self): self.bad_all = False self.exp_layout_1.children[11] = self.bad_layout_2 def get_nightsum(self): ns_date = self.ns_date_input.value ns = {} ns_html = '' for dir_, sdir, f in os.walk(self.nl_dir): for x in f: if 'NightSummary' in x: date = dir_.split('/')[-1] ns[date] = os.path.join(dir_,x) try: filen = ns[ns_date] ns_html += open(filen).read() self.ns_html.text = ns_html except: self.ns_html.text = 'Cannot find NightSummary for this date' def ns_next_date(self): current_date = datetime.datetime.strptime(self.ns_date_input.value,'%Y%m%d') next_night = current_date + timedelta(days=1) self.ns_date_input.value = next_night.strftime('%Y%m%d') self.get_nightsum() def ns_last_date(self): current_date = datetime.datetime.strptime(self.ns_date_input.value,'%Y%m%d') last_night = current_date - timedelta(days=1) self.ns_date_input.value = last_night.strftime('%Y%m%d') self.get_nightsum() def get_time(self, time): """Returns strptime with utc. Takes time zone selection """ date = datetime.datetime.strptime(self.night,'%Y%m%d') try: b = datetime.datetime.strptime(time, '%H:%M') except: try: b = datetime.datetime.strptime(time, '%H%M') except: try: b = datetime.datetime.strptime(time, '%I%M%p') except: print(time) print('need format %H%M, %H:%M, %H:%M%p') t = datetime.time(hour=b.hour, minute=b.minute) if t < datetime.time(hour=12,minute=0): d = date + datetime.timedelta(days=1) else: d = date tt = datetime.datetime.combine(d, t) try: return tt.strftime("%Y%m%dT%H:%M") except: return time def get_strftime(self, time): date = self.night d = datetime.datetime.strptime(date, "%Y%m%d") dt = datetime.datetime.combine(d,time) return dt.strftime("%Y%m%dT%H:%M") def get_night(self): try: date = datetime.datetime.strptime(self.date_init.value, '%Y%m%d') except: date = datetime.datetime.now().date() self.night = date.strftime("%Y%m%d") self.DESI_Log = nl.NightLog(self.night, self.location, self.logger) self.logger.info('Obsday is {}'.format(self.night)) def _dec_to_hm(self,hours): #dec in seconds seconds = hours*3600 hour = seconds // 3600 minutes = (seconds % 3600) // 60 sec = seconds % 60 str_ = '{}:{}'.format(int(hours), int(minutes)) return str_ def _hm_to_dec(self,hm): #hm is a str H:M tt = datetime.datetime.strptime(hm,'%H:%M') dt = tt - datetime.datetime.strptime('00:00','%H:%M') seconds = dt.total_seconds() dec = seconds/3600 return dec def connect_log(self): """Connect to Existing Night Log with Input Date """ self.get_night() if not os.path.exists(self.DESI_Log.obs_dir): for dir_ in [self.DESI_Log.obs_dir, self.DESI_Log.nobs_dir, self.DESI_Log.image_dir]: os.makedirs(dir_) self.connect_txt.text = 'Connected to Night Log for {}'.format(self.night) #Load appropriate layout for each observer self.observer = self.obs_type.active #0=LO; 1=SO if self.observer == 0: self.title.text = 'DESI Nightly Intake - Lead Observer' self.layout.tabs = [self.intro_tab, self.plan_tab, self.milestone_tab_0, self.exp_tab_0, self.prob_tab, self.weather_tab_0, self.check_tab, self.nl_tab_0, self.ns_tab] self.time_tabs = [None, None, None, self.exp_time, self.prob_time, None, None, None] self.connect_txt.text = 'Connected to Night Log for {}'.format(self.night) self.report_type = 'LO' elif self.observer == 1: self.title.text = 'DESI Nightly Intake - Support Observer' self.layout.tabs = [self.intro_tab, self.milestone_tab_1, self.exp_tab_1, self.prob_tab, self.weather_tab_1, self.nl_tab_1, self.ns_tab] self.time_tabs = [None, None, self.exp_time, self.prob_time, None, None, None] self.connect_txt.text = 'Connected to Night Log for {}'.format(self.night) self.report_type = 'SO' elif self.observer == 2: self.title.text = 'DESI Nightly Intake - Non-Observer' self.layout.tabs = [self.intro_tab, self.exp_tab_2, self.prob_tab_1, self.weather_tab_1, self.nl_tab_1, self.ns_tab] self.time_tabs = [None, self.exp_time, self.prob_time, None, None, None] self.connect_txt.text = 'Connected to Night Log for {}'.format(self.night) self.report_type = 'NObs' else: self.connect_txt.text = 'Please identify if you are an observer' self.report_type = 'NObs' #Connec to NightLog self.nl_file = self.DESI_Log.nightlog_html self.nl_subtitle.text = "Current DESI Night Log: {}".format(self.nl_file) meta_dict_file = self.DESI_Log._open_kpno_file_first(self.DESI_Log.meta_json) if os.path.exists(meta_dict_file): try: meta_dict = json.load(open(meta_dict_file,'r')) plan_txt_text="https://desi.lbl.gov/trac/wiki/DESIOperations/ObservingPlans/OpsPlan{}".format(self.night) self.plan_txt.text = '<a href={}>Tonights Plan Here</a>'.format(plan_txt_text) self.so_name_1.value = meta_dict['so_1_firstname']+' '+meta_dict['so_1_lastname'] self.so_name_2.value = meta_dict['so_2_firstname']+' '+meta_dict['so_2_lastname'] self.LO_1.value = meta_dict['LO_firstname_1']+' '+meta_dict['LO_lastname_1'] self.LO_2.value = meta_dict['LO_firstname_2']+' '+meta_dict['LO_lastname_2'] self.OA.value = meta_dict['OA_firstname']+' '+meta_dict['OA_lastname'] self.plots_start = meta_dict['dusk_10_deg'] self.plots_end = meta_dict['dawn_10_deg'] self.display_current_header() except Exception as e: self.connect_txt.text = 'Error with Meta Data File: {}'.format(e) else: self.init_layout.children[10] = self.update_layout self.update_log_status = True contributer_file = self.DESI_Log._open_kpno_file_first(self.DESI_Log.contributer_file) if os.path.exists(contributer_file): try: cont_txt = '' f = open(contributer_file, "r") for line in f: cont_txt += line self.contributer_list.value = cont_txt except Exception as e: self.connect_txt.text = 'Error with Contributer File: {}'.format(e) time_use_file = self.DESI_Log._open_kpno_file_first(self.DESI_Log.time_use) if os.path.exists(time_use_file): try: df = pd.read_csv(time_use_file) data = df.iloc[0] self.obs_time.value = self._dec_to_hm(data['obs_time']) self.test_time.value = self._dec_to_hm(data['test_time']) self.inst_loss_time.value = self._dec_to_hm(data['inst_loss']) self.weather_loss_time.value = self._dec_to_hm(data['weather_loss']) self.tel_loss_time.value = self._dec_to_hm(data['tel_loss']) self.total_time.text = 'Time Documented (hrs): {}'.format(self._dec_to_hm(data['total'])) self.full_time = (datetime.datetime.strptime(meta_dict['dawn_18_deg'], '%Y%m%dT%H:%M') - datetime.datetime.strptime(meta_dict['dusk_18_deg'], '%Y%m%dT%H:%M')).seconds/3600 self.full_time_text.text = 'Total time between 18 deg. twilights (hrs): {}'.format(self._dec_to_hm(self.full_time)) except Exception as e: self.milestone_alert.text = 'Issue with Time Use Data: {}'.format(e) self.current_nl() self.get_exposure_list() def nonobs_entry_exp(self): self.my_name = str(self.nonobs_input_exp.value) self.layout.tabs[1] = self.exp_tab_0 def nonobs_entry_prob(self): self.my_name = str(self.nonobs_input_prob.value) self.layout.tabs[2] = self.prob_tab def add_observer_info(self): """ Initialize Night Log with Input Date """ if self.update_log_status: meta = OrderedDict() meta['LO_firstname_1'], meta['LO_lastname_1'] = self.LO_1.value.split(' ')[0], ' '.join(self.LO_1.value.split(' ')[1:]) meta['LO_firstname_2'], meta['LO_lastname_2'] = self.LO_2.value.split(' ')[0], ' '.join(self.LO_2.value.split(' ')[1:]) meta['so_1_firstname'], meta['so_1_lastname'] = self.so_name_1.value.split(' ')[0], ' '.join(self.so_name_1.value.split(' ')[1:]) meta['so_2_firstname'], meta['so_2_lastname'] = self.so_name_2.value.split(' ')[0], ' '.join(self.so_name_2.value.split(' ')[1:]) meta['OA_firstname'], meta['OA_lastname'] = self.OA.value.split(' ')[0], ' '.join(self.OA.value.split(' ')[1:]) eph = sky_calendar(self.night) meta['time_sunset'] = eph['sunset'] meta['time_sunrise'] = eph['sunrise'] meta['time_moonrise'] = eph['moonrise'] meta['time_moonset'] = eph['moonset'] meta['illumination'] = eph['illumination'] meta['dusk_10_deg'] = eph['dusk_ten'] meta['dusk_12_deg'] = eph['dusk_nautical'] meta['dusk_18_deg'] = eph['dusk_astronomical'] meta['dawn_18_deg'] = eph['dawn_astronomical'] meta['dawn_12_deg'] = eph['dawn_nautical'] meta['dawn_10_deg'] = eph['dawn_ten'] self.full_time = (datetime.datetime.strptime(meta['dawn_18_deg'], '%Y%m%dT%H:%M') - datetime.datetime.strptime(meta['dusk_18_deg'], '%Y%m%dT%H:%M')).seconds/3600 self.full_time_text.text = 'Total time between 18 deg. twilights (hrs): {}'.format(self._dec_to_hm(self.full_time)) self.plots_start = meta['dusk_10_deg'] self.plots_end = meta['dawn_10_deg'] self.DESI_Log.get_started_os(meta) self.connect_txt.text = 'Night Log Observer Data is Updated' self.DESI_Log.write_intro() self.display_current_header() self.update_log_status = False self.intro_layout.children[9] = self.init_btn else: self.intro_layout.children[9] = self.update_layout self.update_log_status = True def display_current_header(self): path = self.DESI_Log._open_kpno_file_first(self.DESI_Log.header_html) nl_file = open(path, 'r') intro = '<h2> NightLog Info: {}</h2>'.format(self.night) for line in nl_file: intro = intro + line + '\n' self.intro_txt.text = intro nl_file.closed def current_nl(self): #try: now = datetime.datetime.now() self.DESI_Log.finish_the_night() path = self.DESI_Log.nightlog_html nl_file = open(path,'r') nl_txt = '' for line in nl_file: nl_txt += line nl_txt += '<h3> All Exposures </h3>' self.nl_text.text = nl_txt nl_file.closed self.nl_alert.text = 'Last Updated on this page: {}'.format(now) self.nl_subtitle.text = "Current DESI Night Log: {}".format(path) self.get_exp_list() self.get_weather() try: self.make_telem_plots() return True except: #print('Something wrong with making telemetry plots') return True #except Exception as e: # self.logger.info('current_nl Exception: %s' % str(e)) # self.nl_alert.text = 'You are not connected to a Night Log' # return False def get_exp_list(self): try: exp_df = pd.read_sql_query(f"SELECT * FROM exposure WHERE night = '{self.night}'", self.conn) if len(exp_df.date_obs) > 0: time = exp_df.date_obs.dt.tz_convert('US/Arizona') exp_df['date_obs'] = time self.explist_source.data = exp_df[['date_obs','id','tileid','program','sequence','flavor','exptime','airmass','seeing']].sort_values(by='id',ascending=False) exp_df = exp_df.sort_values(by='id') exp_df.to_csv(self.DESI_Log.explist_file, index=False) else: self.exptable_alert.text = f'No exposures available for night {self.night}' except Exception as e: self.exptable_alert.text = 'Cannot connect to Exposure Data Base. {}'.format(e) def get_weather(self): if os.path.exists(self.DESI_Log.weather): obs_df = pd.read_csv(self.DESI_Log.weather) t = [datetime.datetime.strptime(tt, "%Y%m%dT%H:%M") for tt in obs_df['Time']] obs_df['Time'] = t self.weather_source.data = obs_df.sort_values(by='Time') else: pass def get_telem_list(self, df, l, item): list_ = [] for r in list(df[l]): try: list_.append(r[item]) except: list_.append(None) return list_ def make_telem_plots(self): start = datetime.datetime.strptime(self.plots_start, "%Y%m%dT%H:%M") start_utc = start.astimezone(tz=timezone.utc).strftime('%Y-%m-%d %H:%M:%S') end = datetime.datetime.strptime(self.plots_end, "%Y%m%dT%H:%M") end_utc = end.astimezone(tz=timezone.utc).strftime('%Y-%m-%d %H:%M:%S') exp_df = pd.read_sql_query(f"SELECT * FROM exposure WHERE date_obs > '{start_utc}' AND date_obs < '{end_utc}'", self.conn) #night = '{self.night}'", self.conn) telem_data = pd.DataFrame(columns = ['time','exp','mirror_temp','truss_temp','air_temp','temp','humidity','wind_speed','airmass','exptime','seeing','tput','skylevel']) if len(exp_df) > 0: exp_df.sort_values('date_obs',inplace=True) telem_data.time = exp_df.date_obs.dt.tz_convert('US/Arizona') telem_data.exp = exp_df.id telem_data.mirror_temp = self.get_telem_list(exp_df, 'telescope','mirror_temp') #[r['mirror_temp'] for r in list(exp_df['telescope'])] #['mirror_temp'] telem_data.truss_temp = self.get_telem_list(exp_df, 'telescope','truss_temp') #[r['truss_temp'] for r in list(exp_df['telescope'])] #exp_df['telescope']['truss_temp'] telem_data.air_temp = self.get_telem_list(exp_df, 'telescope','air_temp')#[r['air_temp'] for r in list(exp_df['telescope'])] #['air_temp'] telem_data.temp = self.get_telem_list(exp_df, 'tower','temperature') #[r['temperature'] for r in list(exp_df['tower'])] #['temperature'] telem_data.humidity = self.get_telem_list(exp_df, 'tower','humidity') #[r['humidity'] for r in list(exp_df['tower'])] #['humidity'] telem_data.wind_speed = self.get_telem_list(exp_df, 'tower','wind_speed') #[r['wind_speed'] for r in list(exp_df['tower'])] #['wind_speed'] telem_data.airmass = exp_df.airmass telem_data.exptime = exp_df.exptime telem_data.seeing = exp_df.seeing tput = [] for x in exp_df['etc']: if x is not None: tput.append(x['transp']) else: tput.append(None) telem_data.tput = tput #exp_df['etc']['transp'] telem_data.skylevel = exp_df.skylevel self.telem_source.data = telem_data #export_png(self.bk_plots) if self.save_telem_plots: plt.style.use('ggplot') plt.rcParams.update({'axes.labelsize': 'small'}) from matplotlib.pyplot import cm color=iter(cm.tab10(np.linspace(0,1,8))) fig = plt.figure(figsize=(10,15)) ax1 = fig.add_subplot(8,1,1) ax1.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), self.get_telem_list(exp_df,'telescope','mirror_temp'), s=10, label='mirror temp') ax1.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), self.get_telem_list(exp_df,'telescope','truss_temp'), s=10, label='truss temp') ax1.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), self.get_telem_list(exp_df,'telescope','air_temp'), s=10, label='air temp') ax1.set_ylabel("Telescope Temperature (C)") ax1.legend() ax1.grid(True) ax1.tick_params(labelbottom=False) ax2 = fig.add_subplot(8,1,2, sharex = ax1) c=next(color) ax2.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), self.get_telem_list(exp_df,'tower','humidity'), s=10, color=c, label='humidity') ax2.set_ylabel("Humidity %") ax2.grid(True) ax2.tick_params(labelbottom=False) ax3 = fig.add_subplot(8,1,3, sharex=ax1) c=next(color) ax3.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), self.get_telem_list(exp_df,'tower','wind_speed'), s=10, color=c, label='wind speed') ax3.set_ylabel("Wind Speed (mph)") ax3.grid(True) ax3.tick_params(labelbottom=False) ax4 = fig.add_subplot(8,1,4, sharex=ax1) c=next(color) ax4.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), exp_df.airmass, s=10, color=c, label='airmass') ax4.set_ylabel("Airmass") ax4.grid(True) ax4.tick_params(labelbottom=False) ax5 = fig.add_subplot(8,1,5, sharex=ax1) c=next(color) ax5.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), exp_df.exptime, s=10, color=c, label='exptime') ax5.set_ylabel("Exposure time (s)") ax5.grid(True) ax5.tick_params(labelbottom=False) ax6 = fig.add_subplot(8,1,6,sharex=ax1) c=next(color) ax6.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), exp_df.seeing, s=10, color=c, label='seeing') ax6.set_ylabel("Seeing") ax6.grid(True) ax6.tick_params(labelbottom=False) ax7 = fig.add_subplot(8,1,7,sharex=ax1) c=next(color) ax7.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), tput, s=10, color=c, label='transparency') ax7.set_ylabel("Transparency (%)") ax7.grid(True) ax7.tick_params(labelbottom=False) ax8 = fig.add_subplot(8,1,8,sharex=ax1) c=next(color) ax8.scatter(exp_df.date_obs.dt.tz_convert('US/Arizona'), exp_df.skylevel, s=10, color=c, label='Sky Level') ax8.set_ylabel("Sky level (AB/arcsec^2)") ax8.grid(True) ax8.set_xlabel("Local Time (MST)") ax8.xaxis.set_major_formatter(mdates.DateFormatter('%m/%d %H:%M', tz=pytz.timezone("US/Arizona"))) ax8.tick_params(labelrotation=45) fig.suptitle("Telemetry for obsday {}".format(self.night),fontsize=14) plt.subplots_adjust(top=0.85) fig.tight_layout() plt.savefig(self.DESI_Log.telem_plots_file) self.save_telem_plots = False def exp_to_html(self): exp_df = pd.read_csv(self.DESI_Log.explist_file) exp_df = exp_df[['date_obs','id','tileid','program','sequence','flavor','exptime','airmass','seeing']].sort_values(by='id',ascending=False) exp_df = exp_df.rename(columns={"date_obs": "Time", "id": "Exp","tileid":'Tile','program':'Program','sequence':'Sequence','flavor':'Flavor','exptime':'Exptime','airmass':'Airmass','seeing':'Seeing'}) exp_html = exp_df.to_html() return exp_html def bad_exp_add(self): exp = self.bad_exp_val cams_dict = {0:'a',1:'b',2:'r',3:'z'} if self.bad_all: bad = True cameras = None elif self.bad_all == False: bad = False cameras = '' for i, cams in enumerate([self.bad_cams_0, self.bad_cams_1, self.bad_cams_2, self.bad_cams_3, self.bad_cams_4, self.bad_cams_5, self.bad_cams_6, self.bad_cams_7, self.bad_cams_8, self.bad_cams_9]): if len(cams.active) == 0: pass else: for c in cams.active: cameras += '{}{}'.format(cams_dict[int(c)],i) self.exp_layout_1.children[11] = self.exp_btn self.exp_alert.text = 'Part of the exposure {} has been added to the bad exposure list'.format(exp) comment = self.bad_comment data = {} data['NIGHT'] = [self.night] data['EXPID'] = [exp] data['BAD'] = [bad] data['BADCAMS'] = [cameras] data['COMMENT'] = [comment] #self.bad_alert.text = 'Submitted Bad Exposure {} @ {}'.format(exp, datetime.datetime.now().strftime('%H:%M.%S')) self.bad_cams_0.active = [] self.bad_cams_1.active = [] self.bad_cams_2.active = [] self.bad_cams_3.active = [] self.bad_cams_4.active = [] self.bad_cams_5.active = [] self.bad_cams_6.active = [] self.bad_cams_7.active = [] self.bad_cams_8.active = [] self.bad_cams_9.active = [] self.clear_input([self.exp_time, self.exp_enter, self.exp_select, self.exp_comment]) self.DESI_Log.add_bad_exp(data) def plan_add_new(self): self.plan_time = None self.plan_add() def milestone_add_new(self): self.milestone_time = None self.milestone_add() def plan_add(self): if self.plan_time is None: ts = datetime.datetime.now().strftime("%Y%m%dT%H:%M:%S") else: ts = self.plan_time data = [ts, self.plan_input.value] self.DESI_Log.add_input(data, 'plan') self.plan_alert.text = 'Last item input: {}'.format(self.plan_input.value) self.clear_input([self.plan_order, self.plan_input]) self.plan_time = None def milestone_add(self): if self.milestone_time is None: ts = datetime.datetime.now().strftime("%Y%m%dT%H:%M:%S") else: ts = self.milestone_time data = [ts, self.milestone_input.value, self.milestone_exp_start.value, self.milestone_exp_end.value, self.milestone_exp_excl.value] self.DESI_Log.add_input(data,'milestone') self.milestone_alert.text = 'Last Milestone Entered: {}'.format(self.milestone_input.value) self.clear_input([self.milestone_input, self.milestone_exp_start, self.milestone_exp_end, self.milestone_exp_excl]) self.milestone_time = None def prob_add(self): """Adds problem to nightlog """ note = ' ' #try: if self.prob_time.value in [None, 'None'," ",""]: note = 'Enter a time' else: img_name, img_data, preview = self.image_uploaded('problem') if self.report_type == 'NObs': my_name = self.my_name else: my_name = self.report_type data = [my_name, self.get_time(self.prob_time.value.strip()), self.prob_input.value.strip(), self.prob_alarm.value.strip(), self.prob_action.value.strip()] self.DESI_Log.add_input(data, 'problem',img_name=img_name, img_data=img_data) self.prob_alert.text = "Last Problem Input: '{}' at {}".format(self.prob_input.value.strip(), self.prob_time.value.strip()) self.clear_input([self.prob_time, self.prob_input, self.prob_alarm, self.prob_action]) #except Exception as e: # self.prob_alert.text = "Problem with your Input: {} - {}".format(note, e) def exp_add(self): quality = None if self.os_exp_option.active == 0: #Time if self.exp_time.value not in [None, 'None'," ", ""]: try: time = self.get_time(self.exp_time.value.strip()) comment = self.exp_comment.value.strip() exp = None except Exception as e: self.exp_alert.text = 'There is something wrong with your input @ {}: {}'.format(datetime.datetime.now().strftime('%H:%M'),e) else: self.exp_alert.text = 'Fill in the time' elif self.os_exp_option.active == 1: #Exposure if self.exp_option.active == 0: try: exp = int(float(self.exp_select.value)) except Exception as e: self.exp_alert.text = "Problem with the Exposure you Selected @ {}: {}".format(datetime.datetime.now().strftime('%H:%M'), e) elif self.exp_option.active ==1: try: exp = int(float(self.exp_enter.value.strip())) except Exception as e: self.exp_alert.text = "Problem with the Exposure you Entered @ {}: {}".format(datetime.datetime.now().strftime('%H:%M'), e) comment = self.exp_comment.value.strip() time = self.get_time(datetime.datetime.now().strftime("%H:%M")) if self.report_type == 'SO': quality = self.quality_list[self.quality_btns.active] if self.report_type == 'NObs': your_name = self.my_name elif self.report_type in ['LO','SO']: your_name = self.report_type #try: img_name, img_data, preview = self.image_uploaded('comment') now = datetime.datetime.now().astimezone(tz=self.kp_zone).strftime("%H:%M") data = [self.get_time(now), exp, quality, self.exp_comment.value.strip(), your_name] self.DESI_Log.add_input(data, 'exp', img_name=img_name, img_data=img_data) self.exp_alert.text = 'Last Input was made @ {}: {}'.format(datetime.datetime.now().strftime("%H:%M"),self.exp_comment.value) #except Exception as e: # self.exp_alert.text = 'Error with your Input @ {}: {}'.format(datetime.datetime.now().strftime('%H:%M'), e) if quality == 'Bad': self.exp_layout_1.children[11] = self.bad_layout_1 self.bad_exp_val = exp self.bad_comment = self.exp_comment.value.strip() else: self.clear_input([self.exp_time, self.exp_enter, self.exp_comment]) def check_add(self): """add checklist time to Night Log """ complete = self.checklist.active check_time = datetime.datetime.now().strftime("%Y%m%dT%H:%M") if len(complete) == len(self.checklist.labels): data = [self.report_type, check_time, self.check_comment.value] self.DESI_Log.add_input(data, 'checklist') self.check_alert.text = "Checklist last submitted at {}".format(check_time[-5:]) else: self.check_alert.text = "Must complete all tasks before submitting checklist" self.clear_input(self.check_comment) self.checklist.active = [] def weather_add(self): """Adds table to Night Log """ now = datetime.datetime.now().astimezone(tz=self.kp_zone).strftime("%Y%m%dT%H:%M") try: self.make_telem_plots() telem_df = pd.DataFrame(self.telem_source.data) this_data = telem_df.iloc[-1] desc = self.weather_desc.value temp = self.get_latest_val(telem_df.temp) #.dropna())[-1] #list(telem_df)[np.isfinite(list(telem_df.temp))][-1] #this_data.temp wind = self.get_latest_val(telem_df.wind_speed) #list(telem_df.wind_speed.dropna())[-1] humidity = self.get_latest_val(telem_df.humidity) #list(telem_df.humidity.dropna())[-1] #this_data.humidity seeing = self.get_latest_val(telem_df.seeing) #list(telem_df.seeing.dropna())[-1] #this_data.seeing tput = self.get_latest_val(telem_df.tput) #list(telem_df.tput.dropna())[-1] skylevel = self.get_latest_val(telem_df.skylevel) #list(telem_df.skylevel.dropna())[-1] data = [now, desc, temp, wind, humidity, seeing, tput, skylevel] except: data = [now, self.weather_desc.value, None, None, None, None, None, None] self.weather_alert.text = 'Not connected to the telemetry DB. Only weather description will be recorded.' df = self.DESI_Log.add_input(data,'weather') self.clear_input([self.weather_desc]) self.get_weather() def get_latest_val(self, l): try: x = list(l.dropna())[-1] except: x = np.nan return x def image_uploaded(self, mode='comment'): img_data = None img_name = None if mode == 'comment': if self.exp_comment.value not in [None, ''] and hasattr(self, 'img_upload_comments_os') and self.img_upload_comments_os.filename not in [None,'','nan',np.nan]: img_data = self.img_upload_comments_os.value.encode('utf-8') input_name = os.path.splitext(str(self.img_upload_comments_os.filename)) img_name = input_name[0] + '_{}.'.format(self.location) + input_name[1] self.img_upload_comments_os.filename = None elif mode == 'problem': if hasattr(self, 'img_upload_problems') and self.img_upload_problems.filename not in [None, '',np.nan, 'nan']: img_data = self.img_upload_problems.value.encode('utf-8') input_name = os.path.splitext(str(self.img_upload_problems.filename)) img_name = input_name[0] + '_{}.'.format(self.location) + input_name[1] self.img_upload_problems.filename = None self.image_location_on_server = f'http://desi-www.kpno.noao.edu:8090/{self.night}/images/{img_name}' width=400 height=400 #http://desi-www.kpno.noao.edu:8090/nightlogs preview = '<img src="%s" width=%s height=%s alt="Uploaded image %s">\n' % (self.image_location_on_server,str(width),str(height),img_name) return img_name, img_data, preview def plan_delete(self): time = self.plan_time self.DESI_Log.delete_item(time, 'plan') self.plan_alert.text = 'Deleted item @ {}: {}'.format(datetime.datetime.now().strftime('%H:%M'),self.plan_input.value) self.clear_input([self.plan_input, self.plan_order]) self.plan_time = None def milestone_delete(self): time = self.milestone_time self.DESI_Log.delete_item(time, 'milestone') self.milestone_alert.text = 'Deleted item @ {}: {}'.format(datetime.datetime.now().strftime('%H:%M'), self.milestone_input.value) self.clear_input([self.milestone_input, self.milestone_load_num]) self.milestone_time = None def progress_delete(self): time = self.get_time(self.exp_time.value.strip()) self.DESI_Log.delete_item(time, 'progress', self.report_type) self.exp_alert.text = 'Deleted item @ {}: {}'.format(datetime.datetime.now().strftime('%H:%M'), self.exp_comment.value) self.clear_input([self.exp_time, self.exp_comment, self.exp_exposure_start]) def problem_delete(self): time = self.get_time(self.prob_time.value.strip()) self.DESI_Log.delete_item(time, 'problem',self.report_type) self.prob_alert.text = 'Deleted item @ {}: {}'.format(datetime.datetime.now().strftime('%H:%M'), self.prob_input.value) self.clear_input([self.prob_time, self.prob_input, self.prob_alarm, self.prob_action]) def plan_load(self): try: b, item = self.DESI_Log.load_index(self.plan_order.value, 'plan') if b: self.plan_input.value = str(item['Objective']) self.plan_time = item['Time'] else: self.plan_alert.text = "That plan item doesn't exist yet. {}".format(item) except Exception as e: self.plan_alert.text = "Issue with loading that plan item: {}".format(e) def milestone_load(self): try: b, item = self.DESI_Log.load_index(int(self.milestone_load_num.value), 'milestone') if b: self.milestone_input.value = str(item['Desc']) self.milestone_exp_start.value = str(item['Exp_Start']) self.milestone_exp_end.value = str(item['Exp_Stop']) self.milestone_exp_excl.value = str(item['Exp_Excl']) self.milestone_time = item['Time'] else: self.milestone_alert.text = "That milestone index doesn't exist yet. {}".format(item) except Exception as e: self.milestone_alert.text = "Issue with loading that milestone: {}".format(e) def exposure_load(self): #Check if progress has been input with a given timestamp try: _exists, item = self.DESI_Log.load_timestamp(self.get_time(self.exp_time.value.strip()), self.report_type, 'exposure') if not _exists: self.exp_alert.text = 'This timestamp does not yet have an input from this user. {}'.format(item) else: self.exp_comment.value = str(item['Comment']) if str(item['Exp_Start']) not in ['', ' ','nan']: self.exp_enter.value = str(item['Exp_Start']) #self.loaded_exposure = True self.exp_option.active = 1 self.os_exp_option.active = 1 #self.exp_exposure_finish.value = str(item['Exp_End']) except Exception as e: self.exp_alert.text = "Issue with loading that exposure: {}".format(e) def problem_load(self): #Check if progress has been input with a given timestamp try: _exists, item = self.DESI_Log.load_timestamp(self.get_time(self.prob_time.value.strip()), self.report_type, 'problem') if not _exists: self.prob_alert.text = 'This timestamp does not yet have an input from this user. {}'.format(item) else: self.prob_input.value = str(item['Problem']) self.prob_alarm.value = str(item['alarm_id']) self.prob_action.value = str(item['action']) except Exception as e: self.prob_alert.text = "Issue with loading that problem: {}".format(e) def add_contributer_list(self): cont_list = self.contributer_list.value self.DESI_Log.add_contributer_list(cont_list) def add_time(self): data = OrderedDict() time_items = OrderedDict({'obs_time':self.obs_time,'test_time':self.test_time,'inst_loss':self.inst_loss_time, 'weather_loss':self.weather_loss_time,'tel_loss':self.tel_loss_time}) total = 0 for name, item in time_items.items(): try: data[name] = float(item.value) total += float(item.value) except: try: dec = self._hm_to_dec(str(item.value)) data[name] = dec total += float(dec) except: data[name] = 0 total += 0 data['18deg'] = self.full_time data['total'] = total self.total_time.text = 'Time Documented (hrs): {}'.format(str(self._dec_to_hm(total))) df = pd.DataFrame(data, index=[0]) df.to_csv(self.DESI_Log.time_use, index=False) def summary_add(self): now = datetime.datetime.now().strftime("%H:%M") half = self.summary_option.active data = OrderedDict() data['SUMMARY_{}'.format(half)] = self.summary_input.value self.DESI_Log.add_summary(data) self.milestone_alert.text = 'Summary Information Entered at {}: {}'.format(now, self.summary_input.value) self.clear_input([self.summary_input]) def summary_load(self): half = self.summary_option.active f = self.DESI_Log.summary_file if os.path.exists(f): try: df = pd.read_csv(f) d = df.iloc[0] self.summary_input.value = d['SUMMARY_{}'.format(half)] except Exception as e: print('Issue loading summary: {}'.format(e)) else: self.milestone_alert.text = 'That summary does not yet exist' def upload_image(self, attr, old, new): self.logger.info(f'Local image file upload: {self.img_upload.filename}') def upload_image_comments_os(self, attr, old, new): self.logger.info(f'Local image file upload (OS comments): {self.img_upload_comments_os.filename}') def upload_image_comments_other(self, attr, old, new): self.logger.info(f'Local image file upload (Other comments): {self.img_upload_comments_other.filename}') def upload_image_comments_dqs(self, attr, old, new): self.logger.info(f'Local image file upload (Other comments): {self.img_upload_comments_dqs.filename}') def upload_image_problems(self, attr, old, new): self.logger.info(f'Local image file upload (Other comments): {self.img_upload_problems.filename}') def time_is_now(self): now = datetime.datetime.now().astimezone(tz=self.kp_zone).strftime("%H:%M") tab = self.layout.active time_input = self.time_tabs[tab] try: time_input.value = now except: return time_input def nl_submit(self): if not self.current_nl(): self.nl_text.text = 'You cannot submit a Night Log to the eLog until you have connected to an existing Night Log or initialized tonights Night Log' else: self.logger.info("Starting Nightlog Submission Process") try: from ECLAPI import ECLConnection, ECLEntry except ImportError: ECLConnection = None self.nl_text.text = "Can't connect to eLog" f = self.DESI_Log._open_kpno_file_first(self.DESI_Log.nightlog_html) nl_file=open(f,'r') lines = nl_file.readlines() nl_html = ' ' for line in lines: nl_html += line e = ECLEntry('Synopsis_Night', text=nl_html, textile=True) subject = 'Night Summary {}'.format(self.night) e.addSubject(subject) url = 'http://desi-www.kpno.noao.edu:8090/ECL/desi' user = 'dos' pw = 'dosuser' #make Paul's plot try: os.system("{}/bin/plotnightobs -n {}".format(os.environ['SURVEYOPSDIR'],self.night)) except Exception as e: self.logger.info('Issues with Pauls plot: {}'.format(e)) if self.test: pass else: elconn = ECLConnection(url, user, pw) response = elconn.post(e) elconn.close() if response[0] != 200: raise Exception(response) self.submit_text.text = "You cannot post to the eLog on this machine" #Add bad exposures try: survey_dir = os.path.join(os.environ['NL_DIR'],'ops') bad_filen = 'bad_exp_list.csv' bad_path = os.path.join(survey_dir, bad_filen) bad_df = pd.read_csv(bad_path) new_bad = self.DESI_Log._combine_compare_csv_files(self.DESI_Log.bad_exp_list, bad=True) bad_df = pd.concat([bad_df, new_bad]) bad_df = bad_df.drop_duplicates(subset=['EXPID'], keep='last') bad_df = bad_df.astype({"NIGHT":int, "EXPID": int,"BAD":bool,"BADCAMS":str,"COMMENT":str}) bad_df.to_csv(bad_path,index=False) err1 = os.system('svn update --non-interactive {}'.format(bad_path)) self.logger.info('SVN added bad exp list {}'.format(err1)) err2 = os.system('svn commit --non-interactive -m "autocommit from night summary submission" {}'.format(bad_path)) self.logger.info('SVN commited bad exp list {}'.format(err2)) except Exception as e: self.logger.info('Cant post to the bad exp list: {}'.format(e)) self.save_telem_plots = True self.current_nl() if self.test: self.email_nightsum(user_email = ["parfa30@gmail.com","parkerf@berkeley.edu"]) else: self.email_nightsum(user_email = ["parfa30@gmail.com","satya.gontcho@gmail.com","desi-nightlog@desi.lbl.gov"]) self.submit_text.text = "Night Log posted to eLog and emailed to collaboration at {}".format(datetime.datetime.now().strftime("%Y%m%d%H:%M")) + '</br>' def email_nightsum(self,user_email = None): try: self.make_telem_plots() except: self.logger.info("Something wrong with telem plots") sender = "noreply-ecl@noao.edu" # Create message container - the correct MIME type is multipart/alternative. msg = MIMEMultipart('html') msg['Subject'] = "Night Summary %s" % self.date_init.value #mjd2iso(mjd) msg['From'] = sender if len(user_email) == 1: msg['To'] = user_email[0] else: msg['To'] = ', '.join(user_email) # Create the body of the message (a plain-text and an HTML version). f = self.DESI_Log._open_kpno_file_first(self.DESI_Log.nightlog_html) nl_file=open(f,'r') lines = nl_file.readlines() nl_html = "" img_names = [] for line in lines: nl_html += line # Add exposures if os.path.exists(self.DESI_Log.explist_file): exp_list = self.exp_to_html() nl_html += ("<h3 id='exposures'>Exposures</h3>") for line in exp_list: nl_html += line nl_text = MIMEText(nl_html, 'html') msg.attach(nl_text) Html_file = open(os.path.join(self.DESI_Log.root_dir,'NightSummary{}.html'.format(self.night)),"w") Html_file.write(nl_html) # Add Paul's plot try: nightops = open(os.path.join(os.environ['DESINIGHTSTATS'],'nightstats{}.png'.format(self.night)),'rb').read() msgImage = MIMEImage(nightops) data_uri = base64.b64encode(nightops).decode('utf-8') img_tag = '<img src="data:image/png;base64,%s" \>' % data_uri msgImage.add_header('Content-Disposition', 'attachment; filename=nightstats{}.png'.format(self.night)) msg.attach(msgImage) Html_file.write(img_tag) except Exception as e: self.logger.info('Problem attachign pauls plot: {}'.format(e)) # Add images if os.path.exists(self.DESI_Log.telem_plots_file): telemplot = open(self.DESI_Log.telem_plots_file, 'rb').read() msgImage = MIMEImage(telemplot) data_uri = base64.b64encode(telemplot).decode('utf-8') img_tag = '<img src="data:image/png;base64,%s" \>' % data_uri msgImage.add_header('Content-Disposition', 'attachment; filename=telem_plots_{}.png'.format(self.night)) msg.attach(msgImage) Html_file.write(img_tag) Html_file.close() text = msg.as_string() # Send the message via local SMTP server. #yag = yagmail.SMTP(sender) #yag.send("parfa30@gmail.com",nl_html,self.DESI_Log.telem_plots_file) s = smtplib.SMTP('localhost') s.sendmail(sender, user_email, text) s.quit() self.logger.info("Email sent")
{"hexsha": "fcd5770a3afb534ad08b737f2011c576f9e7470a", "size": 50147, "ext": "py", "lang": "Python", "max_stars_repo_path": "dni/report.py", "max_stars_repo_name": "ClairePpt/desilo", "max_stars_repo_head_hexsha": "a3f64012d4aa899ed43cebfca06460172d20487d", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "dni/report.py", "max_issues_repo_name": "ClairePpt/desilo", "max_issues_repo_head_hexsha": "a3f64012d4aa899ed43cebfca06460172d20487d", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 39, "max_issues_repo_issues_event_min_datetime": "2020-06-29T18:59:57.000Z", "max_issues_repo_issues_event_max_datetime": "2021-06-09T21:46:47.000Z", "max_forks_repo_path": "dni/report.py", "max_forks_repo_name": "ClairePpt/desilo", "max_forks_repo_head_hexsha": "a3f64012d4aa899ed43cebfca06460172d20487d", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-11-14T19:29:58.000Z", "max_forks_repo_forks_event_max_datetime": "2020-11-14T19:29:58.000Z", "avg_line_length": 46.0064220183, "max_line_length": 226, "alphanum_fraction": 0.5993977706, "include": true, "reason": "import numpy,import astropy,from astropy", "num_tokens": 11916}
[STATEMENT] lemma Disj_commute: "H \<turnstile> B OR A \<Longrightarrow> H \<turnstile> A OR B" [PROOF STATE] proof (prove) goal (1 subgoal): 1. H \<turnstile> B OR A \<Longrightarrow> H \<turnstile> A OR B [PROOF STEP] using DisjConj [of B A B] Ident [of B] [PROOF STATE] proof (prove) using this: B OR A IMP (B IMP B) IMP A OR B \<in> boolean_axioms B IMP B \<in> boolean_axioms goal (1 subgoal): 1. H \<turnstile> B OR A \<Longrightarrow> H \<turnstile> A OR B [PROOF STEP] by (metis Bool MP_same)
{"llama_tokens": 209, "file": "Goedel_HFSet_Semanticless_SyntaxN", "length": 2}
write_to_table <- function(conn, name, value, indices=c(), new=F) { if (RSQLite::dbExistsTable(conn, name) && new) RSQLite::dbRemoveTable(conn, name) if (!RSQLite::dbExistsTable(conn, name)) { RSQLite::dbCreateTable(conn, name, value) for (i in indices) { RSQLite::dbExecute(conn, sprintf('DROP INDEX IF EXISTS %s_%s', name, i)) RSQLite::dbExecute(conn, sprintf('CREATE INDEX %s_%s ON %s (%s);', name, i, name, i)) } } RSQLite::dbAppendTable(conn, name, value) } tc_to_db <- function(conn, tc) { message("\nSaving tokens to DB") d = tc_to_json(tc) suppressWarnings({ write_to_table(conn, 'tc', d, indices='doc_id') }) } doc_exists <- function(conn, doc_ids) { if (RSQLite::dbExistsTable(conn, 'tc')) in_db = RSQLite::dbGetQuery(conn, sprintf('select doc_id from tc where doc_id in (%s);', paste(doc_ids, collapse=',')))$doc_id else in_db = c() !as.character(doc_ids) %in% as.character(in_db) } get_tc <- function(db_file, doc_ids=NULL) { conn <- RSQLite::dbConnect(RSQLite::SQLite(), db_file) if (is.null(doc_ids)) { tc = RSQLite::dbReadTable(conn, 'tc') } else { tc = RSQLite::dbGetQuery(conn, sprintf('select * from tc where doc_id in (%s);', paste(doc_ids, collapse=','))) } tokens = lapply(tc$tokens_json, jsonlite::fromJSON) for (i in 1:length(tokens)) tokens[[i]]$doc_id = tc$doc_id[i] meta = lapply(tc$meta_json, jsonlite::fromJSON) for (i in 1:length(meta)) meta[[i]]$doc_id = tc$doc_id[i] RSQLite::dbDisconnect(conn) corpustools::tokens_to_tcorpus(tokens = data.table::rbindlist(tokens, use.names=T, fill=T), meta = data.table::rbindlist(meta, use.names=T, fill=T)) } tc_db <- function(d, db_file='shinyBZpers.db', udpipe_cores=NULL) { conn <- RSQLite::dbConnect(RSQLite::SQLite(), db_file) to_do = doc_exists(conn, unique(d$id)) if (any(to_do)) { message(sprintf('\nNeed to parse %s documents', sum(to_do))) if (!is.null(udpipe_cores)) tc = corpustools::create_tcorpus(d[to_do,], udpipe_cores=udpipe_cores, doc_col='id', text_columns = c('title','text'), remember_spaces=T, udpipe_model='dutch-alpino') else tc = corpustools::create_tcorpus(d[to_do,], doc_col='id', text_columns = c('title','text'), remember_spaces=T, udpipe_model='dutch-alpino') tc$meta$date = as.POSIXct(tc$meta$date) tc$meta$date = as.character(tc$meta$date) tc$delete_columns(c('xpos','feats')) tc_to_db(conn, tc) } else { message('All articles have already been parsed') } RSQLite::dbDisconnect(conn) return(NULL) } tc_to_json <- function(tc) { .SD = NULL ## for some reason, the original code in the (identical) database preparation ## in shinyBZpers does not work here... Hurray R tokens = data.table::as.data.table(tc$tokens) tokens = tokens[,list(tokens_json=jsonlite::toJSON(as.data.frame(.SD))), by='doc_id'] meta = data.table::as.data.table(tc$meta) meta = meta[,list(meta_json=jsonlite::toJSON(as.data.frame(.SD))), by='doc_id'] merge(tokens,meta,by='doc_id') }
{"hexsha": "ad4cf5b636b13b73fe0ba4e73c92fa75f592348a", "size": 3088, "ext": "r", "lang": "R", "max_stars_repo_path": "R/lib_db.r", "max_stars_repo_name": "vanatteveldt/shinyBZtopics", "max_stars_repo_head_hexsha": "524cad31395d20c9d33ad92660a38522d70342a4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "R/lib_db.r", "max_issues_repo_name": "vanatteveldt/shinyBZtopics", "max_issues_repo_head_hexsha": "524cad31395d20c9d33ad92660a38522d70342a4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2021-03-07T08:48:51.000Z", "max_issues_repo_issues_event_max_datetime": "2021-03-07T10:16:26.000Z", "max_forks_repo_path": "R/lib_db.r", "max_forks_repo_name": "vanatteveldt/shinyBZtopics", "max_forks_repo_head_hexsha": "524cad31395d20c9d33ad92660a38522d70342a4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-03-04T12:54:56.000Z", "max_forks_repo_forks_event_max_datetime": "2021-03-04T12:54:56.000Z", "avg_line_length": 36.3294117647, "max_line_length": 172, "alphanum_fraction": 0.6606217617, "num_tokens": 920}
import socket import argparse import numpy as np import logging BUFF_SIZE = 1024 class Lakeshore240_Simulator: def __init__(self, port, num_channels=8, sn="LSSIM"): self.log = logging.getLogger() self.port = port self.sn = sn self.modname = "SIM_MODULE" self.num_channels = num_channels self.channels = [ChannelSim(i+1, "Channel {}".format(i+1)) for i in range(self.num_channels)] self.cmds = { "*IDN?": self.get_idn, "CRDG?": lambda x: self.get_reading(*x, unit='C'), "FRDG?": lambda x: self.get_reading(*x, unit='F'), "KRDG?": lambda x: self.get_reading(*x, unit='K'), "SRDG?": lambda x: self.get_reading(*x, unit='S'), "MODNAME": self.set_modname, "MODNAME?": self.get_modname, "INNAME": self.set_channel_name, "INNAME?": self.get_channel_name, "INTYPE": self.set_channel_intype, "INTYPE?": self.get_channel_intype, "SET_VALUE": self.set_channel_value } def set_modname(self, name): self.modname = name def get_modname(self): return self.modname def set_channel_value(self, chan, value): chan_index = int(chan) - 1 if not 0 <= chan_index < self.num_channels: self.log.warning(f"chan num must be between 1 and {self.num_channels}") return self.channels[chan_index].set_value(value) def get_channel_intype(self, chan): chan_index = int(chan) - 1 if not 0 <= chan_index < self.num_channels: self.log.warning(f"chan num must be between 1 and {self.num_channels}") return return self.channels[chan_index].get_intype() def set_channel_intype(self, chan, *args): chan_index = int(chan) - 1 if not 0 <= chan_index < self.num_channels: self.log.warning(f"chan num must be between 1 and {self.num_channels}") return args = map(int, args) self.channels[chan_index].set_intype(*args) def get_channel_name(self, chan): if not 0 < int(chan) <= self.num_channels: self.log.warning(f"chan num must be between 1 and {self.num_channels}") return return self.channels[int(chan)-1].name def set_channel_name(self, chan, name): if not 0 < int(chan) <= self.num_channels: self.log.warning(f"chan num must be between 1 and {self.num_channels}") return self.channels[int(chan)-1].name = name def run(self): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Checks self.port plus the next ten to see if they're open for p in range(self.port, self.port+10): try: self.log.info(f"Trying to listen on port {p}") sock.bind(('', p)) break except OSError as e: if e.errno == 48: self.log.warning(f"Address {p} is already in use") else: raise(e) else: print(f"Could not connect to ports in {range(self.port, self.port+5)}") sock.listen(1) while True: self.log.info('waiting for a connection....') conn, client_address = sock.accept() self.log.info(f"Made connection with {client_address}") with conn: # Main data loop while True: data = conn.recv(BUFF_SIZE) if not data: self.log.info("Connection closed by client") break self.log.debug("Command: {}".format(data)) # Only takes first command in case multiple commands are s cmds = data.decode().split(';') for c in cmds: if c.strip() == '': continue cmd_list = c.strip().split(' ') if len(cmd_list) == 1: cmd, args = cmd_list[0], [] else: cmd, args = cmd_list[0], cmd_list[1].split(',') self.log.debug(f"{cmd} {args}") try: cmd_fn = self.cmds.get(cmd) if cmd_fn is None: self.log.warning(f"Command {cmd} is not registered") continue resp = cmd_fn(*args) except TypeError as e: self.log.error(f"Command error: {e}") continue if resp is not None: conn.send(resp.encode()) def get_idn(self): return ','.join([ "Lakeshore", "LSSIM_{}P".format(self.num_channels), self.sn, 'v0.0.0' ]) def get_reading(self, channel_num, unit='S'): chan_index = int(channel_num) - 1 if not 0 <= chan_index < self.num_channels: self.log.warning(f"chan num must be between 1 and {self.num_channels}") return return self.channels[chan_index].get_reading(unit=unit) class ChannelSim: def __init__(self, channel_num, name): self.log = logging.getLogger() self.channel_num = channel_num self.name = name self.sensor_type = 1 self.autorange = 0 self.range = 0 self.current_reversal = 0 self.units = 3 self.enabled = 1 self.value = 100 def get_intype(self): return ','.join([ str(self.sensor_type), str(self.autorange), str(self.range), str(self.current_reversal), str(self.units), str(self.enabled), ]) def set_intype(self, sensor_type, autorange, rng, current_reversal, units, enabled): if sensor_type in [1,2,3]: self.log.debug(f"Setting sensor type to {sensor_type}") self.sensor_type = sensor_type if autorange in [0,1]: self.autorange = autorange if (self.sensor_type in [1,2] and rng in [0]) or \ (self.sensor_type == 3 and rng in range(9)): self.range = rng if self.sensor_type in [2,3] and current_reversal in [0,1]: self.log.debug(f"Setting chan {self.channel_num} " f"current_reversal to {current_reversal}") self.current_reversal = current_reversal if units in [1,2,3,4]: self.log.debug(f"Setting chan {self.channel_num} units to {units}") self.units = units if enabled in [0,1]: self.log.debug(f"Setting chan {self.channel_num} enabled to {enabled}") self.enabled = enabled def set_value(self, value): self.log.debug(f"Setting value to {value}") self.value = float(value) def get_reading(self, unit='S'): if not self.enabled: rv = 0 else: rv = np.random.normal(self.value) return str(rv) def make_parser(parser=None): if parser is None: parser = argparse.ArgumentParser() parser.add_argument('-p', '--port', type=int, default=1094, help="Port which simulator will wait for a connection." "If taken, it will test several consecutive ports" "until it finds one that is free.") parser.add_argument('--num-channels', type=int, default=8, help="Number of channels which the simulator will have.") parser.add_argument('--sn', type=str, default='LS_SIM', help="Serial number for the device") parser.add_argument('--log-file', type=str, default=None, help="File where logs are written") parser.add_argument('--log-level', choices=['debug', 'info', 'warning', 'error'], default='info', help="Minimum log level to be displayed") parser.add_argument('-o', '--log-stdout', action="store_true", help="Log to stdout") return parser if __name__ == '__main__': parser = make_parser() args = parser.parse_args() log_level = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR }[args.log_level] format_string = '%(asctime)-15s [%(levelname)s]: %(message)s' # logging.basicConfig(level=log_level, format=format_string) formatter = logging.Formatter(format_string) log = logging.getLogger() log.setLevel(log_level) if args.log_file is None or args.log_stdout: consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(formatter) log.addHandler(consoleHandler) if args.log_file is not None: fileHandler = logging.FileHandler(args.log_file) fileHandler.setFormatter(formatter) log.addHandler(fileHandler) ls = Lakeshore240_Simulator(args.port, num_channels=args.num_channels, sn=args.sn) ls.run()
{"hexsha": "f6fdd31a041cebd798d1c562b76dc9771df69594", "size": 9451, "ext": "py", "lang": "Python", "max_stars_repo_path": "simulators/lakeshore240/ls240_simulator.py", "max_stars_repo_name": "gdevenyi/socs", "max_stars_repo_head_hexsha": "2f94cbee0246d23a200afdf1dec8208f2c561c71", "max_stars_repo_licenses": ["BSD-2-Clause"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2019-09-02T14:16:53.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-19T20:49:35.000Z", "max_issues_repo_path": "simulators/lakeshore240/ls240_simulator.py", "max_issues_repo_name": "gdevenyi/socs", "max_issues_repo_head_hexsha": "2f94cbee0246d23a200afdf1dec8208f2c561c71", "max_issues_repo_licenses": ["BSD-2-Clause"], "max_issues_count": 183, "max_issues_repo_issues_event_min_datetime": "2019-06-04T20:38:07.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-28T18:45:17.000Z", "max_forks_repo_path": "simulators/lakeshore240/ls240_simulator.py", "max_forks_repo_name": "gdevenyi/socs", "max_forks_repo_head_hexsha": "2f94cbee0246d23a200afdf1dec8208f2c561c71", "max_forks_repo_licenses": ["BSD-2-Clause"], "max_forks_count": 7, "max_forks_repo_forks_event_min_datetime": "2019-06-28T15:55:16.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-02T16:27:44.000Z", "avg_line_length": 33.3957597173, "max_line_length": 88, "alphanum_fraction": 0.5361337425, "include": true, "reason": "import numpy", "num_tokens": 2048}
import warnings import numpy as np import empca from apogee.tools.path import change_dr from apogee.tools import bitmask as bm from sklearn.decomposition import PCA from delfiSpec import util, specproc, specsim from fpca import FPCA # Ignore warnings warnings.filterwarnings("ignore") # Read APOGEE DR14 catalogue change_dr('14') apCat = util.ApogeeCat() # Read M67 cluster APOGEE spectra M67_DM_apogee, M67_GM_apogee = apCat.read_OCCAM_cluster() # Perform APOGEE cuts: Giant members with Iron abundance within M67 limits print(r'M67 GM FE/H limits: [{:.3f}, {:.3f}]'.format(np.min(M67_GM_apogee['FE_H']), np.max(M67_GM_apogee['FE_H']))) print(r'Our GM FE/H limits: [{:.3f}, {:.3f}]'.format(-0.15, 0.15)) apogee_cat_cut = apCat.apogee_cat[(apCat.apogee_cat['FE_H'] > -0.15) & (apCat.apogee_cat['FE_H'] < 0.15) & (apCat.apogee_cat['LOGG'] < 4) & (apCat.apogee_cat['LOGG'] > -1)] # High Signal-to-Noise Ratio cut indx = apogee_cat_cut['SNR'] > 200 apogee_cat_cut = apogee_cat_cut[indx] print('APOGEE giants spectra after FE_H cut: {}'.format(len(apogee_cat_cut))) # Make sure all abundances have "physical values" abundances = ['FE_H', 'C_FE', 'N_FE', 'O_FE', 'NA_FE', 'MG_FE', 'AL_FE', 'SI_FE', 'S_FE', 'K_FE', 'CA_FE', 'TI_FE', 'V_FE', 'MN_FE', 'NI_FE'] for i in range(1, len(abundances)): apogee_cat_cut = apogee_cat_cut[(apogee_cat_cut[abundances[i]] > -1) & (apogee_cat_cut[abundances[i]] < 1)] # Read APOGEE spectra for the above APOGEE cut data_set = apCat.read_allStar_spectra(apogee_cat_cut) # Mask bad pixels using APOGEE bitmask badcombpixmask = bm.badpixmask() pix_err = np.array([bm.apogee_pixmask_int("SIG_SKYLINE"), bm.apogee_pixmask_int("SIG_TELLURIC"), bm.apogee_pixmask_int("PERSIST_HIGH"), bm.apogee_pixmask_int("PERSIST_MED"), bm.apogee_pixmask_int("PERSIST_LOW")]) badcombpixmask += np.sum(2**pix_err) data_set_specproc, data_set_specerr, data_set_specweight = specproc.process_spectra(spectra_info=data_set, badcombpixmask=badcombpixmask) # Mask the spectra based on APOGEE bitmask data_set_specmasked = np.ma.masked_array(data_set_specproc, mask=(data_set_specweight==0)) # Remove spectra with more than 50% masked pixels data_set_maskpixels = np.sum(data_set_specmasked.mask, axis=1) data_set_specmasked = data_set_specmasked[data_set_maskpixels < 50/100*7214] data_set_specerr = data_set_specerr[data_set_maskpixels < 50/100*7214] # Generate an APOGEE data cut that corresponds exactly to the data apogee_cat_cut = apogee_cat_cut[data_set_maskpixels < 50/100*7214] # Simulate theoretical spectra analogous to the training set using its APOGEE parameters data_set_sim = specsim.sim_spectra(apogee_cat_cut) # --------------- FPCA on APOGEE spectra data --------------- # Choose 50 random basis functions rand_ind = np.random.random_integers(0, len(data_set_sim)-1, 50) basis = data_set_sim[rand_ind] # FPCA of masked APOGEE spectra fpca_train_dat = FPCA(data_set_specmasked, 50, phi=basis, xerr=data_set_specerr) fpca_train_dat.alpha_regression() fpca_train_dat.solve_eigenproblem() np.savetxt('data/FPCA_apogee/fpca_dat_eigenvectors_psi_t.dat', fpca_train_dat.psi_cap_t.real[:, ::-1]) np.savetxt('data/FPCA_apogee/fpca_dat_eigenvalues_k_cap.dat', fpca_train_dat.perc_var[::-1]) np.savetxt('data/FPCA_apogee/fpca_dat_spec_mean.dat', fpca_train_dat.sample_mu) # --------------- EMPCA on APOGEE spectral data --------------- # EMPCA of masked APOGEE spectra after mean subtraction data_set_data_mean = data_set_specmasked.mean(axis=0, keepdims=True) data_set_spec_meansub = data_set_specproc - data_set_data_mean model_empca = empca.empca(data_set_spec_meansub, data_set_weight, deltR2=2e-07, niter=10, nvec=50) var_r2 = np.zeros(50) for nvec in np.arange(1, 51): var_r2[nvec-1] = model_empca.R2(nvec=nvec) np.savetxt('data/EMPCA_apogee/empca_dat_eigenvectors_PCs.dat', model_empca.eigvec) np.savetxt('data/EMPCA_apogee/empca_dat_eigenvalues_R2.dat', var_r2) # ---------------- PCA on PSM simulated spectra ---------------- # PCA of simulated spectra data_set_sim_mean = np.mean(data_set_sim, axis=0) data_set_sim = data_set_sim - data_set_sim_mean pca_sim = PCA(n_components=50) pca_sim.fit(data_set_sim) np.savetxt('data/PCA_sim/pca_sim_eigenvectors_PCs.dat', pca_sim.components_) np.savetxt('data/PCA_sim/pca_sim_eigenvalues_percvar.dat', pca_sim.explained_variance_ratio_*100) # Correlations eigenfun_dat = fpca_train_dat.psi_cap_t.real[:, ::-1] eigenvec_dat = model_empca.eigvec eigenvec_sim = pca_sim.components_ # First 10 PCs fpca_corr = np.zeros(10) empca_corr = np.zeros(10) for i in range(10): fpca_corr[i] = 100*np.abs(np.corrcoef(eigenfun_dat[:, i], eigenvec_sim[i])[0][1]) empca_corr[i] = 100*np.abs(np.corrcoef(eigenvec_dat[i], eigenvec_sim[i])[0][1]) np.savetxt('data/fpca_correlations.dat', fpca_corr) np.savetxt('data/empca_correlations.dat', empca_corr)
{"hexsha": "18d061e76abd1af7309cf629a3a4cee482535d8d", "size": 5127, "ext": "py", "lang": "Python", "max_stars_repo_path": "apogee_fpca.py", "max_stars_repo_name": "aaryapatil/specdims", "max_stars_repo_head_hexsha": "acfc644aa06b13c8b34cde984e207b42e948af41", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2021-09-23T12:08:14.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-25T05:20:58.000Z", "max_issues_repo_path": "apogee_fpca.py", "max_issues_repo_name": "aaryapatil/specdims", "max_issues_repo_head_hexsha": "acfc644aa06b13c8b34cde984e207b42e948af41", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "apogee_fpca.py", "max_forks_repo_name": "aaryapatil/specdims", "max_forks_repo_head_hexsha": "acfc644aa06b13c8b34cde984e207b42e948af41", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 42.3719008264, "max_line_length": 107, "alphanum_fraction": 0.7193290423, "include": true, "reason": "import numpy", "num_tokens": 1525}
""" Segmentation Viewer This class allows you to view examples from the Fusion Gallery segmentation dataset. Additionally you can generate an html view for all the files. """ import argparse from pathlib import Path import numpy as np import igl import meshplot as mp import math class SegmentationViewer: def __init__(self, meshes_folder): self.meshes_folder = Path(meshes_folder) assert self.meshes_folder.exists(), "The meshes folder does not exist" bit8_colors = np.array([ [235, 85, 79], # ExtrudeSide [220, 198, 73], # ExtrudeEnd [113, 227, 76], # CutSide [0, 226, 124], # CutEnd [23, 213, 221], # Fillet [92, 99, 222], # Chamfer [176, 57, 223], # RevolveSide [238, 61, 178] # RevolveEnd ] ) self.color_map = bit8_colors / 255.0 def obj_pathname(self, file_stem): obj_pathname = self.meshes_folder / (file_stem + ".obj") return obj_pathname def seg_pathname(self, file_stem): seg_pathname = self.meshes_folder / (file_stem + ".seg") return seg_pathname def load_mesh(self, obj_file): v, f = igl.read_triangle_mesh(str(obj_file)) return v, f def load_data(self, file_stem): obj_pathname = self.obj_pathname(file_stem) if not obj_pathname.exists(): print(f"Waring! -- The file {obj_pathname} does not exist") return None, None, None v, f = self.load_mesh(obj_pathname) seg_pathname = self.seg_pathname(file_stem) if not seg_pathname.exists(): print(f"Warning! -- The file {seg_pathname} does not exist") return None, None, None tris_to_segments = np.loadtxt(seg_pathname, dtype=np.uint64) assert f.shape[0] == tris_to_segments.size, "Expect a segment index for every facet" facet_colors = self.color_map[tris_to_segments] return v, f, facet_colors def view_segmentation(self, file_stem): v, f, facet_colors = self.load_data(file_stem) if v is None: print(f"The data for {file_stem} could not be loaded") return p = mp.plot(v, f, c=facet_colors) def save_html(self, file_stem, output_folder): v, f, facet_colors = self.load_data(file_stem) if v is None: print(f"The data for {file_stem} could not be loaded. Skipping") return output_pathname = output_folder / (file_stem + ".html") mp.website() p = mp.plot(v, f, c=facet_colors) p.save(str(output_pathname)) def create_html(meshes_folder, output_folder): viewer = SegmentationViewer(meshes_folder) obj_files = [ f for f in meshes_folder.glob("**/*.obj")] for file in obj_files: viewer.save_html(file.stem, output_folder) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--meshes_folder", type=str, required=True, help="Path segmentation meshes folder") parser.add_argument("--output_folder", type=str, required=True, help="The folder where you would like to create images") args = parser.parse_args() meshes_folder = Path(args.meshes_folder) if not meshes_folder.exists(): print(f"The folder {meshes_folder} was not found") output_folder = Path(args.output_folder) if not output_folder.exists(): output_folder.mkdir() if not output_folder.exists(): print(f"Failed to create the output folder {output_folder}") # Now create the images for all the files create_html(meshes_folder, output_folder) print("Completed segmentation_viewer.py")
{"hexsha": "1865e0f373d7052422cec106adc7278856efb65f", "size": 3868, "ext": "py", "lang": "Python", "max_stars_repo_path": "tools/segmentation_viewer/segmentation_viewer.py", "max_stars_repo_name": "AutodeskAILab/Fusion360GalleryDataset", "max_stars_repo_head_hexsha": "b6424f4c06535c426b59839a9355d49bd1d8a364", "max_stars_repo_licenses": ["RSA-MD"], "max_stars_count": 193, "max_stars_repo_stars_event_min_datetime": "2020-10-16T12:48:18.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-28T22:01:16.000Z", "max_issues_repo_path": "tools/segmentation_viewer/segmentation_viewer.py", "max_issues_repo_name": "AutodeskAILab/Fusion360GalleryDataset", "max_issues_repo_head_hexsha": "b6424f4c06535c426b59839a9355d49bd1d8a364", "max_issues_repo_licenses": ["RSA-MD"], "max_issues_count": 22, "max_issues_repo_issues_event_min_datetime": "2020-11-04T15:24:21.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T15:35:59.000Z", "max_forks_repo_path": "tools/segmentation_viewer/segmentation_viewer.py", "max_forks_repo_name": "AutodeskAILab/Fusion360GalleryDataset", "max_forks_repo_head_hexsha": "b6424f4c06535c426b59839a9355d49bd1d8a364", "max_forks_repo_licenses": ["RSA-MD"], "max_forks_count": 23, "max_forks_repo_forks_event_min_datetime": "2020-10-17T23:55:57.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-12T01:56:52.000Z", "avg_line_length": 36.4905660377, "max_line_length": 125, "alphanum_fraction": 0.6181489142, "include": true, "reason": "import numpy", "num_tokens": 914}
#include <iostream> #include <cmath> #include <Eigen/Dense> #include "traji.hpp" using namespace std; using namespace std::placeholders; namespace traji { TFloat PathPosition::to_t(const Trajectory &traj) const { return traj._timestamps[segment] + (traj._timestamps[segment+1] - traj._timestamps[segment]) * fraction; } PathPosition PathPosition::from_t(const Trajectory &traj, TFloat t) { auto segment_iter = upper_bound(traj._timestamps.begin(), traj._timestamps.end(), t); auto segment_idx = distance(traj._timestamps.begin(), segment_iter) - 1; segment_idx = min((long)traj.size() - 1L, max(0L, segment_idx)); // clip the segment index auto t0 = traj._timestamps[segment_idx], t1 = traj._timestamps[segment_idx+1]; return PathPosition(segment_idx, (t - t0) / (t1 - t0)); } // this method is analog to PathPosition::from_s(path, s_list) vector<PathPosition> PathPosition::from_t(const Trajectory &path, const std::vector<TFloat> &t_list) { vector<PathPosition> result; result.reserve(t_list.size()); TFloat cur_t = 0; size_t cur_idx = 1; // index of first point that has s larger than cur_s for (auto t : t_list) if (t < cur_t) result.push_back(PathPosition::from_t(path, t)); else { while (t > path._timestamps[cur_idx] && cur_idx < path.size()) cur_idx++; auto t0 = path._timestamps[cur_idx-1], t1 = path._timestamps[cur_idx]; result.push_back(PathPosition(cur_idx - 1, (t - t0) / (t1 - t0))); cur_t = t; } return result; } Vector2 Trajectory::solve_velocity(size_t segment_idx) const { assert (segment_idx >= 0 && segment_idx <= _line.size() - 2); TFloat dt = _timestamps[segment_idx+1] - _timestamps[segment_idx]; TFloat vx = (_line[segment_idx+1].get<0>() - _line[segment_idx].get<0>()) / dt; TFloat vy = (_line[segment_idx+1].get<1>() - _line[segment_idx].get<1>()) / dt; return Vector2(vx, vy); } Vector2 Trajectory::velocity_at(const PathPosition &pos, bool interpolate) const { if (!interpolate || (pos.segment == 0 && pos.fraction < 0.5) || // assume constant speed at both ends (pos.segment == _line.size() - 2 && pos.fraction >= 0.5)) return solve_velocity(pos.segment); else { // linear interpolate based on fraction (position) Vector2 vel1, vel2; TFloat w1, w2; if (pos.fraction < 0.5) { vel1 = solve_velocity(pos.segment - 1); w1 = 0.5 - pos.fraction; vel2 = solve_velocity(pos.segment); w2 = 0.5 + pos.fraction; } else { vel1 = solve_velocity(pos.segment); w1 = 1.5 - pos.fraction; vel2 = solve_velocity(pos.segment + 1); w2 = pos.fraction - 0.5; } return vel1.array() * w1 + vel2.array() * w2; } } Vector2 Trajectory::solve_acceleration(size_t point_idx) const { assert (point_idx >= 1 && point_idx <= _line.size() - 2); TFloat dt = (_timestamps[point_idx+1] - _timestamps[point_idx-1]) / 2; Vector2 vel1 = solve_velocity(point_idx - 1); Vector2 vel2 = solve_velocity(point_idx); return (vel2.array() - vel1.array()) / dt; } Vector2 Trajectory::acceleration_at(const PathPosition &pos, bool interpolate) const { if (_line.size() <= 2) return Vector2(0, 0); // no acceleration for one segment if (pos.segment == 0) return solve_acceleration(1); else if (pos.segment == _line.size() - 2) return solve_acceleration(pos.segment); else if (interpolate) { return solve_acceleration(pos.segment).array() * (1 - pos.fraction) + solve_acceleration(pos.segment + 1).array() * pos.fraction; } else { if (pos.fraction < 0.5) return solve_acceleration(pos.segment); else return solve_acceleration(pos.segment+1); } } Trajectory Trajectory::resample_at(const std::vector<TFloat> &t_list) const { vector<PathPosition> pos_list = PathPosition::from_t(*this, t_list); vector<Point> plist; plist.reserve(t_list.size()); transform(pos_list.begin(), pos_list.end(), std::back_inserter(plist), std::bind(&Path::point_at, this, _1)); return Trajectory(Path(move(plist)), t_list); } QuinticPolyTrajectory::QuinticPolyTrajectory( TFloat T, const Vector3 &x0, const Vector3 &xT, const Vector3 &y0, const Vector3 &yT, bool relax_sx ) : _x_coeffs(), _y_coeffs(), _T(T) { assert (T > 0); TFloat T3 = T * T * T; Vector3 c012x; c012x << x0(0), x0(1), x0(2) / 2; Vector3 c012y; c012y << y0(0), y0(1), y0(2) / 2; Matrix3 M1, M2; M1 << 1, T, T*T, 0, 1, 2*T, 0, 0, 2; M2 << T3, T3*T, T3*T*T, 3*T*T, 4*T3, 5*T3*T, 6*T, 12*T*T, 20*T3; Matrix3 M2inv = M2.inverse(); auto c345y = M2inv * (yT - M1 * c012y); _y_coeffs << c345y(2), c345y(1), c345y(0), c012y(2), c012y(1), c012y(0); if (relax_sx) { auto c34x = M2.block(1,0,2,2).inverse() * (xT.tail(2) - M1.block(1,1,2,2) * c012x.tail(2)); _x_coeffs << 0, c34x(1), c34x(0), c012x(2), c012x(1), c012x(0); } else { auto c345x = M2inv * (xT - M1 * c012x); _x_coeffs << c345x(2), c345x(1), c345x(0), c012x(2), c012x(1), c012x(0); } } Point QuinticPolyTrajectory::point_at(TFloat t) const { TFloat x = _x_coeffs(0), y = _y_coeffs(0); for (size_t i = 1; i < 6; i++) { x = x * t + _x_coeffs(i); y = y * t + _y_coeffs(i); } return Point(x, y); } Vector2 QuinticPolyTrajectory::velocity_at(TFloat t) const { TFloat x = 5 * _x_coeffs(0), y = 5 * _y_coeffs(0); for (size_t i = 1; i < 5; i++) { x = x * t + (5-i) * _x_coeffs(i); y = y * t + (5-i) * _y_coeffs(i); } return Vector2(x, y); } Vector2 QuinticPolyTrajectory::acceleration_at(TFloat t) const { TFloat x = 20 * _x_coeffs(0), y = 20 * _y_coeffs(0); for (size_t i = 1; i < 4; i++) { x = x * t + (5-i) * (4-i) * _x_coeffs(i); y = y * t + (5-i) * (4-i) * _y_coeffs(i); } return Vector2(x, y); } TFloat QuinticPolyTrajectory::tangent_at(TFloat t) const { auto vel = velocity_at(t); return atan2(vel(1), vel(0)); } Trajectory QuinticPolyTrajectory::periodize(TFloat interval) const { auto t = VectorX::LinSpaced((size_t)ceil(_T / interval) + 1, 0, _T).array(); ArrayX x(t.rows()), y(t.rows()); x.setConstant(_x_coeffs(0)); y.setConstant(_y_coeffs(0)); for (size_t i = 1; i < 6; i++) { x = x * t + _x_coeffs(i); y = y * t + _y_coeffs(i); } Trajectory result; result._line.reserve(t.rows()); result._timestamps.reserve(t.rows()); for (size_t i = 0; i < t.rows(); i++) { result._line.emplace_back(x(i), y(i)); result._timestamps.emplace_back(t(i)); } result.update_distance(); return result; } Point CTRATrajectory::point_at(TFloat t) const { TFloat x = _init_state(0), y = _init_state(1), th = _init_state(2); TFloat v = _init_state(3), a = _init_state(4), w = _init_state(5); TFloat nth = th + w * t; TFloat nv = v + a * t; TFloat nx, ny; if (w == 0) { nx = x + (nv + v)/2 * cos(th) * t; ny = y + (nv + v)/2 * sin(th) * t; } else { nx = x + ( nv*w*sin(nth) + a*cos(nth) - v*w*sin(th) - a*cos(th)) / (w*w); ny = y + (-nv*w*cos(nth) + a*sin(nth) + v*w*cos(th) - a*sin(th)) / (w*w); } return Point(nx, ny); } Vector2 CTRATrajectory::velocity_at(TFloat t) const { TFloat nth = tangent_at(t); TFloat nv = _init_state(3) + _init_state(4) * t; return Vector2(nv * cos(nth), nv * sin(nth)); } Trajectory CTRATrajectory::periodize(TFloat interval) const { auto t = VectorX::LinSpaced((size_t)ceil(_T / interval) + 1, 0, _T).array(); TFloat x = _init_state(0), y = _init_state(1), th = _init_state(2); TFloat v = _init_state(3), a = _init_state(4), w = _init_state(5); auto nth = th + w * t; auto nv = v + a * t; VectorX nx, ny; if (w == 0) { nx = x + (nv + v)/2 * cos(th) * t; ny = y + (nv + v)/2 * sin(th) * t; } else { nx = x + ( nv*w*sin(nth) + a*cos(nth) - v*w*sin(th) - a*cos(th)) / (w*w); ny = y + (-nv*w*cos(nth) + a*sin(nth) + v*w*cos(th) - a*sin(th)) / (w*w); } Trajectory result; result._line.reserve(t.rows()); result._timestamps.reserve(t.rows()); for (size_t i = 0; i < t.rows(); i++) { result._line.emplace_back(nx(i), ny(i)); result._timestamps.emplace_back(t(i)); } result.update_distance(); return result; } TFloat tdistance(const Trajectory &lhs, const Trajectory &rhs) { // TODO: this implementation is not correct, we need 3D segment distance TFloat min_dist = numeric_limits<TFloat>::max(); vector<PathPosition> rhs_pos = PathPosition::from_t(lhs, rhs.timestamps()); for (int i = 0; i < rhs_pos.size(); i++) { TFloat dist = distance(lhs.point_at(rhs_pos[i]), rhs.vertices()[i]); min_dist = min(min_dist, dist); } vector<PathPosition> lhs_pos = PathPosition::from_t(rhs, lhs.timestamps()); for (int i = 0; i < lhs_pos.size(); i++) { TFloat dist = distance(rhs.point_at(lhs_pos[i]), lhs.vertices()[i]); min_dist = min(min_dist, dist); } return min_dist; } } namespace std { string to_string(const traji::Trajectory &value) { if (value.size() == 0) return string("[]"); stringstream ss; ss << '[' << to_string(value.vertices()[0]) << " @ " << value.timestamps()[0]; for (size_t i = 1; i < value.size(); i++) ss << ", " << to_string(value.vertices()[i]) << " @ " << value.timestamps()[i]; ss << ']'; return ss.str(); } string to_string(const traji::QuinticPolyTrajectory &value) { stringstream ss; ss << "(T=" << value.T() << ", x_coeffs [" << value.x_coeffs()(0); for (size_t i = 1; i < 6; i++) ss << ", " << value.x_coeffs()(i); ss << "], y_coeffs [" << value.y_coeffs()(0); for (size_t i = 1; i < 6; i++) ss << ", " << value.y_coeffs()(i); ss << "])"; return ss.str(); } } // namespace std
{"hexsha": "ab792c4674c6397f13b45f6363d730c661a00bb9", "size": 11440, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "src/Trajectory.cpp", "max_stars_repo_name": "cmpute/traji", "max_stars_repo_head_hexsha": "192141dfdea26012a17cb0b5ddb99c0d085de0dc", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2.0, "max_stars_repo_stars_event_min_datetime": "2022-01-17T12:03:56.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-18T06:01:18.000Z", "max_issues_repo_path": "src/Trajectory.cpp", "max_issues_repo_name": "cmpute/traji", "max_issues_repo_head_hexsha": "192141dfdea26012a17cb0b5ddb99c0d085de0dc", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/Trajectory.cpp", "max_forks_repo_name": "cmpute/traji", "max_forks_repo_head_hexsha": "192141dfdea26012a17cb0b5ddb99c0d085de0dc", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1.0, "max_forks_repo_forks_event_min_datetime": "2021-12-22T05:02:17.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-22T05:02:17.000Z", "avg_line_length": 33.5483870968, "max_line_length": 112, "alphanum_fraction": 0.5196678322, "num_tokens": 3320}
""" ReducedSpaceEvaluator{T} <: AbstractNLPEvaluator Evaluator working in the reduced space corresponding to the control variable `u`. Once a new point `u` is passed to the evaluator, the user needs to call the method `update!` to find the corresponding state `x(u)` satisfying the equilibrium equation `g(x(u), u) = 0`. Taking as input a given `AbstractFormulation`, the reduced evaluator builds the bounds corresponding to the control `u` and the state `x`, and initiate an `AutoDiffFactory` tailored to the problem. The reduced evaluator could be instantiated on the main memory, or on a specific device (currently, only CUDA is supported). """ mutable struct ReducedSpaceEvaluator{T} <: AbstractNLPEvaluator model::AbstractFormulation x::AbstractVector{T} p::AbstractVector{T} λ::AbstractVector{T} x_min::AbstractVector{T} x_max::AbstractVector{T} u_min::AbstractVector{T} u_max::AbstractVector{T} constraints::Array{Function, 1} g_min::AbstractVector{T} g_max::AbstractVector{T} buffer::AbstractNetworkBuffer autodiff::AutoDiffFactory ∇gᵗ::AbstractMatrix linear_solver::LinearSolvers.AbstractLinearSolver ε_tol::Float64 end function ReducedSpaceEvaluator( model, x, u, p; constraints=Function[state_constraint, power_constraints], linear_solver=DirectSolver(), ε_tol=1e-12, verbose_level=VERBOSE_LEVEL_NONE, ) # First, build up a network buffer buffer = get(model, PhysicalState()) # Initiate adjoint λ = similar(x) # Build up AutoDiff factory jx, ju, adjoint_f = init_autodiff_factory(model, buffer) ad = AutoDiffFactory(jx, ju, adjoint_f) u_min, u_max = bounds(model, Control()) x_min, x_max = bounds(model, State()) MT = model.AT g_min = MT{eltype(x), 1}() g_max = MT{eltype(x), 1}() for cons in constraints cb, cu = bounds(model, cons) append!(g_min, cb) append!(g_max, cu) end return ReducedSpaceEvaluator(model, x, p, λ, x_min, x_max, u_min, u_max, constraints, g_min, g_max, buffer, ad, jx.J, linear_solver, ε_tol) end function ReducedSpaceEvaluator( datafile; device=CPU(), options... ) # Load problem. pf = PS.PowerNetwork(datafile) polar = PolarForm(pf, device) x0 = initial(polar, State()) p = initial(polar, Parameters()) uk = initial(polar, Control()) return ReducedSpaceEvaluator( polar, x0, uk, p; options... ) end n_variables(nlp::ReducedSpaceEvaluator) = length(nlp.u_min) n_constraints(nlp::ReducedSpaceEvaluator) = length(nlp.g_min) initial(nlp::ReducedSpaceEvaluator) = initial(nlp.model, Control()) bounds(nlp::ReducedSpaceEvaluator, ::Variables) = nlp.u_min, nlp.u_max bounds(nlp::ReducedSpaceEvaluator, ::Constraints) = nlp.g_min, nlp.g_max function update!(nlp::ReducedSpaceEvaluator, u; verbose_level=0) x₀ = nlp.x jac_x = nlp.autodiff.Jgₓ # Transfer x, u, p into the network cache transfer!(nlp.model, nlp.buffer, nlp.x, u, nlp.p) # Get corresponding point on the manifold conv = powerflow(nlp.model, jac_x, nlp.buffer, tol=nlp.ε_tol; solver=nlp.linear_solver, verbose_level=verbose_level) if !conv.has_converged @warn("Newton-Raphson algorithm failed to converge ($(conv.norm_residuals))") return conv end ∇gₓ = nlp.autodiff.Jgₓ.J nlp.∇gᵗ = LinearSolvers.get_transpose(nlp.linear_solver, ∇gₓ) # Switch preconditioner to transpose mode if isa(nlp.linear_solver, LinearSolvers.AbstractIterativeLinearSolver) LinearSolvers.update!(nlp.linear_solver, nlp.∇gᵗ) end # Update value of nlp.x with new network state get!(nlp.model, State(), nlp.x, nlp.buffer) # Refresh value of the active power of the generators refresh!(nlp.model, PS.Generator(), PS.ActivePower(), nlp.buffer) return conv end function objective(nlp::ReducedSpaceEvaluator, u) # Take as input the current cache, updated previously in `update!`. cost = cost_production(nlp.model, nlp.buffer.pg) # TODO: determine if we should include λ' * g(x, u), even if ≈ 0 return cost end # compute inplace reduced gradient (g = ∇fᵤ + (∇gᵤ')*λₖ) # equivalent to: g = ∇fᵤ - (∇gᵤ')*λₖ_neg # (take λₖ_neg to avoid computing an intermediate array) function _reduced_gradient!(g, ∇fᵤ, ∇gᵤ, λₖ_neg) g .= ∇fᵤ mul!(g, transpose(∇gᵤ), λₖ_neg, -1.0, 1.0) end function gradient!(nlp::ReducedSpaceEvaluator, g, u) buffer = nlp.buffer xₖ = nlp.x ∇gₓ = nlp.autodiff.Jgₓ.J # Evaluate Jacobian of power flow equation on current u ∇gᵤ = jacobian(nlp.model, nlp.autodiff.Jgᵤ, buffer) # Evaluate adjoint of cost function and update inplace AdjointStackObjective ∂cost(nlp.model, nlp.autodiff.∇f, buffer) ∇fₓ, ∇fᵤ = nlp.autodiff.∇f.∇fₓ, nlp.autodiff.∇f.∇fᵤ # Update (negative) adjoint λₖ_neg = nlp.λ LinearSolvers.ldiv!(nlp.linear_solver, λₖ_neg, nlp.∇gᵗ, ∇fₓ) _reduced_gradient!(g, ∇fᵤ, ∇gᵤ, λₖ_neg) return nothing end function constraint!(nlp::ReducedSpaceEvaluator, g, u) xₖ = nlp.x ϕ = nlp.buffer # First: state constraint mf = 1 mt = 0 for cons in nlp.constraints m_ = size_constraint(nlp.model, cons) mt += m_ cons_ = @view(g[mf:mt]) cons(nlp.model, cons_, ϕ) mf += m_ end end function jacobian_structure!(nlp::ReducedSpaceEvaluator, rows, cols) m, n = n_constraints(nlp), n_variables(nlp) idx = 1 for c in 1:m #number of constraints for i in 1:n # number of variables rows[idx] = c ; cols[idx] = i idx += 1 end end end function jacobian!(nlp::ReducedSpaceEvaluator, jac, u) model = nlp.model xₖ = nlp.x ∇gₓ = nlp.autodiff.Jgₓ.J ∇gᵤ = nlp.autodiff.Jgᵤ.J nₓ = length(xₖ) MT = nlp.model.AT μ = similar(nlp.λ) ∂obj = nlp.autodiff.∇f cnt = 1 for cons in nlp.constraints mc_ = size_constraint(nlp.model, cons) for i_cons in 1:mc_ jacobian(model, cons, i_cons, ∂obj, nlp.buffer) jx, ju = ∂obj.∇fₓ, ∂obj.∇fᵤ # Get adjoint LinearSolvers.ldiv!(nlp.linear_solver, μ, nlp.∇gᵗ, jx) jac[cnt, :] .= (ju .- ∇gᵤ' * μ) cnt += 1 end end end function jtprod!(nlp::ReducedSpaceEvaluator, cons, jv, u, v; start=1) model = nlp.model xₖ = nlp.x ∇gₓ = nlp.autodiff.Jgₓ.J ∇gᵤ = nlp.autodiff.Jgᵤ.J nₓ = length(xₖ) μ = nlp.λ ∂obj = nlp.autodiff.∇f # Get adjoint jtprod(model, cons, ∂obj, nlp.buffer, v) jvx, jvu = ∂obj.∇fₓ, ∂obj.∇fᵤ # jv .+= (ju .- ∇gᵤ' * μ) LinearSolvers.ldiv!(nlp.linear_solver, μ, nlp.∇gᵗ, jvx) jv .+= jvu mul!(jv, transpose(∇gᵤ), μ, -1.0, 1.0) end function jtprod!(nlp::ReducedSpaceEvaluator, jv, u, v) μ = nlp.λ ∇gᵤ = nlp.autodiff.Jgᵤ.J ∂obj = nlp.autodiff.∇f jvx = ∂obj.jvₓ jvu = ∂obj.jvᵤ fill!(jvx, 0) fill!(jvu, 0) fr_ = 0 for cons in nlp.constraints n = size_constraint(nlp.model, cons) mask = fr_+1:fr_+n vv = @view v[mask] # Compute jtprod of current constraint jtprod(nlp.model, cons, ∂obj, nlp.buffer, vv) jvx .+= ∂obj.∇fₓ jvu .+= ∂obj.∇fᵤ fr_ += n end LinearSolvers.ldiv!(nlp.linear_solver, μ, nlp.∇gᵗ, jvx) jv .+= jvu mul!(jv, transpose(∇gᵤ), μ, -1.0, 1.0) return end # Utils function function primal_infeasibility!(nlp::ReducedSpaceEvaluator, cons, u) constraint!(nlp, cons, u) # Evaluate constraints (n_inf, err_inf, n_sup, err_sup) = _check(cons, nlp.g_min, nlp.g_max) return max(err_inf, err_sup) end function primal_infeasibility(nlp::ReducedSpaceEvaluator, u) cons = similar(nlp.g_min) ; fill!(cons, 0) return primal_infeasibility!(nlp, cons, u) end # Printing function sanity_check(nlp::ReducedSpaceEvaluator, u, cons) println("Check violation of constraints") print("Control \t") (n_inf, err_inf, n_sup, err_sup) = _check(u, nlp.u_min, nlp.u_max) @printf("UB: %.4e (%d) LB: %.4e (%d)\n", err_sup, n_sup, err_inf, n_inf) print("State \t") (n_inf, err_inf, n_sup, err_sup) = _check(nlp.x, nlp.x_min, nlp.x_max) @printf("UB: %.4e (%d) LB: %.4e (%d)\n", err_sup, n_sup, err_inf, n_inf) print("Constraints\t") (n_inf, err_inf, n_sup, err_sup) = _check(cons, nlp.g_min, nlp.g_max) @printf("UB: %.4e (%d) LB: %.4e (%d)\n", err_sup, n_sup, err_inf, n_inf) end function Base.show(io::IO, nlp::ReducedSpaceEvaluator) n = n_variables(nlp) m = n_constraints(nlp) println(io, "A ReducedSpaceEvaluator object") println(io, " * device: ", nlp.model.device) println(io, " * #vars: ", n) println(io, " * #cons: ", m) println(io, " * constraints:") for cons in nlp.constraints println(io, " - ", cons) end print(io, " * linear solver: ", nlp.linear_solver) end function reset!(nlp::ReducedSpaceEvaluator) # Reset adjoint fill!(nlp.λ, 0) # Reset initial state x0 = initial(nlp.model, State()) copy!(nlp.x, x0) # Reset buffer nlp.buffer = get(nlp.model, PhysicalState()) end
{"hexsha": "570427146d398506578901a0558fca64734a2113", "size": 9328, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/Evaluators/reduced_evaluator.jl", "max_stars_repo_name": "lcw/ExaPF.jl", "max_stars_repo_head_hexsha": "9435f8a24ac44d08047169378bdd745269af3ef1", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/Evaluators/reduced_evaluator.jl", "max_issues_repo_name": "lcw/ExaPF.jl", "max_issues_repo_head_hexsha": "9435f8a24ac44d08047169378bdd745269af3ef1", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/Evaluators/reduced_evaluator.jl", "max_forks_repo_name": "lcw/ExaPF.jl", "max_forks_repo_head_hexsha": "9435f8a24ac44d08047169378bdd745269af3ef1", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.1973244147, "max_line_length": 85, "alphanum_fraction": 0.6366852487, "num_tokens": 3103}
/* [auto_generated] boost/numeric/odeint/external/thrust/thrust_algebra_dispatcher.hpp [begin_description] algebra_dispatcher specialization for thrust [end_description] Copyright 2013 Karsten Ahnert Copyright 2013 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_EXTERNAL_THRUST_THRUST_ALGEBRA_DISPATCHER_HPP_DEFINED #define BOOST_NUMERIC_ODEINT_EXTERNAL_THRUST_THRUST_ALGEBRA_DISPATCHER_HPP_DEFINED #include <thrust/host_vector.h> #include <thrust/device_vector.h> #include <boost/numeric/odeint/external/thrust/thrust_algebra.hpp> #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp> namespace boost { namespace numeric { namespace odeint { // specialization for thrust host_vector template< class T , class A > struct algebra_dispatcher< thrust::host_vector< T , A > > { typedef thrust_algebra algebra_type; }; // specialization for thrust device_vector template< class T , class A > struct algebra_dispatcher< thrust::device_vector< T , A > > { typedef thrust_algebra algebra_type; }; } // namespace odeint } // namespace numeric } // namespace boost #endif // BOOST_NUMERIC_ODEINT_EXTERNAL_THRUST_THRUST_ALGEBRA_DISPATCHER_HPP_DEFINED
{"hexsha": "5deba2cb570a3919fc432705522db32fa10d9801", "size": 1339, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "ReactAndroid/build/third-party-ndk/boost/boost_1_57_0/boost/numeric/odeint/external/thrust/thrust_algebra_dispatcher.hpp", "max_stars_repo_name": "kimwoongkyu/react-native-0-36-1-woogie", "max_stars_repo_head_hexsha": "4fb2d44945a6305ae3ca87be3872f9432d16f1fb", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 133.0, "max_stars_repo_stars_event_min_datetime": "2018-04-20T14:09:40.000Z", "max_stars_repo_stars_event_max_datetime": "2021-08-15T11:51:25.000Z", "max_issues_repo_path": "ReactAndroid/build/third-party-ndk/boost/boost_1_57_0/boost/numeric/odeint/external/thrust/thrust_algebra_dispatcher.hpp", "max_issues_repo_name": "kimwoongkyu/react-native-0-36-1-woogie", "max_issues_repo_head_hexsha": "4fb2d44945a6305ae3ca87be3872f9432d16f1fb", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 61.0, "max_issues_repo_issues_event_min_datetime": "2015-05-27T11:20:11.000Z", "max_issues_repo_issues_event_max_datetime": "2019-12-20T15:06:21.000Z", "max_forks_repo_path": "ReactAndroid/build/third-party-ndk/boost/boost_1_57_0/boost/numeric/odeint/external/thrust/thrust_algebra_dispatcher.hpp", "max_forks_repo_name": "kimwoongkyu/react-native-0-36-1-woogie", "max_forks_repo_head_hexsha": "4fb2d44945a6305ae3ca87be3872f9432d16f1fb", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": 83.0, "max_forks_repo_forks_event_min_datetime": "2018-04-27T03:58:02.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-11T09:23:40.000Z", "avg_line_length": 25.2641509434, "max_line_length": 84, "alphanum_fraction": 0.7998506348, "num_tokens": 325}
# # author: Jungtaek Kim (jtkim@postech.ac.kr) # last updated: March 22, 2021 # """It defines Gaussian process regression.""" import time import numpy as np import scipy.stats from bayeso import covariance from bayeso import constants from bayeso.gp import gp_kernel from bayeso.utils import utils_gp from bayeso.utils import utils_covariance from bayeso.utils import utils_common from bayeso.utils import utils_logger logger = utils_logger.get_logger('gp') @utils_common.validate_types def sample_functions(mu: np.ndarray, Sigma: np.ndarray, num_samples: int=1 ) -> np.ndarray: """ It samples `num_samples` functions from multivariate Gaussian distribution (mu, Sigma). :param mu: mean vector. Shape: (n, ). :type mu: numpy.ndarray :param Sigma: covariance matrix. Shape: (n, n). :type Sigma: numpy.ndarray :param num_samples: the number of sampled functions :type num_samples: int., optional :returns: sampled functions. Shape: (num_samples, n). :rtype: numpy.ndarray :raises: AssertionError """ assert isinstance(mu, np.ndarray) assert isinstance(Sigma, np.ndarray) assert isinstance(num_samples, int) assert len(mu.shape) == 1 assert len(Sigma.shape) == 2 assert mu.shape[0] == Sigma.shape[0] == Sigma.shape[1] rv = scipy.stats.multivariate_normal(mean=mu, cov=Sigma) list_rvs = [rv.rvs() for _ in range(0, num_samples)] return np.array(list_rvs) @utils_common.validate_types def predict_with_cov(X_train: np.ndarray, Y_train: np.ndarray, X_test: np.ndarray, cov_X_X: np.ndarray, inv_cov_X_X: np.ndarray, hyps: dict, str_cov: str=constants.STR_COV, prior_mu: constants.TYPING_UNION_CALLABLE_NONE=None, debug: bool=False ) -> constants.TYPING_TUPLE_THREE_ARRAYS: """ This function returns posterior mean and posterior standard deviation functions over `X_test`, computed by Gaussian process regression with `X_train`, `Y_train`, `cov_X_X`, `inv_cov_X_X`, and `hyps`. :param X_train: inputs. Shape: (n, d) or (n, m, d). :type X_train: numpy.ndarray :param Y_train: outputs. Shape: (n, 1). :type Y_train: numpy.ndarray :param X_test: inputs. Shape: (l, d) or (l, m, d). :type X_test: numpy.ndarray :param cov_X_X: kernel matrix over `X_train`. Shape: (n, n). :type cov_X_X: numpy.ndarray :param inv_cov_X_X: kernel matrix inverse over `X_train`. Shape: (n, n). :type inv_cov_X_X: numpy.ndarray :param hyps: dictionary of hyperparameters for Gaussian process. :type hyps: dict. :param str_cov: the name of covariance function. :type str_cov: str., optional :param prior_mu: None, or prior mean function. :type prior_mu: NoneType, or callable, optional :param debug: flag for printing log messages. :type debug: bool., optional :returns: a tuple of posterior mean function over `X_test`, posterior standard deviation function over `X_test`, and posterior covariance matrix over `X_test`. Shape: ((l, 1), (l, 1), (l, l)). :rtype: tuple of (numpy.ndarray, numpy.ndarray, numpy.ndarray) :raises: AssertionError """ utils_gp.validate_common_args(X_train, Y_train, str_cov, prior_mu, debug, X_test) assert isinstance(cov_X_X, np.ndarray) assert isinstance(inv_cov_X_X, np.ndarray) assert isinstance(hyps, dict) assert len(cov_X_X.shape) == 2 assert len(inv_cov_X_X.shape) == 2 assert (np.array(cov_X_X.shape) == np.array(inv_cov_X_X.shape)).all() utils_covariance.check_str_cov('predict_with_cov', str_cov, X_train.shape, shape_X2=X_test.shape) prior_mu_train = utils_gp.get_prior_mu(prior_mu, X_train) prior_mu_test = utils_gp.get_prior_mu(prior_mu, X_test) cov_X_Xs = covariance.cov_main(str_cov, X_train, X_test, hyps, False) cov_Xs_Xs = covariance.cov_main(str_cov, X_test, X_test, hyps, True) cov_Xs_Xs = (cov_Xs_Xs + cov_Xs_Xs.T) / 2.0 mu_Xs = np.dot(np.dot(cov_X_Xs.T, inv_cov_X_X), Y_train - prior_mu_train) + prior_mu_test Sigma_Xs = cov_Xs_Xs - np.dot(np.dot(cov_X_Xs.T, inv_cov_X_X), cov_X_Xs) return mu_Xs, np.expand_dims(np.sqrt(np.maximum(np.diag(Sigma_Xs), 0.0)), axis=1), Sigma_Xs @utils_common.validate_types def predict_with_hyps(X_train: np.ndarray, Y_train: np.ndarray, X_test: np.ndarray, hyps: dict, str_cov: str=constants.STR_COV, prior_mu: constants.TYPING_UNION_CALLABLE_NONE=None, debug: bool=False ) -> constants.TYPING_TUPLE_THREE_ARRAYS: """ This function returns posterior mean and posterior standard deviation functions over `X_test`, computed by Gaussian process regression with `X_train`, `Y_train`, and `hyps`. :param X_train: inputs. Shape: (n, d) or (n, m, d). :type X_train: numpy.ndarray :param Y_train: outputs. Shape: (n, 1). :type Y_train: numpy.ndarray :param X_test: inputs. Shape: (l, d) or (l, m, d). :type X_test: numpy.ndarray :param hyps: dictionary of hyperparameters for Gaussian process. :type hyps: dict. :param str_cov: the name of covariance function. :type str_cov: str., optional :param prior_mu: None, or prior mean function. :type prior_mu: NoneType, or callable, optional :param debug: flag for printing log messages. :type debug: bool., optional :returns: a tuple of posterior mean function over `X_test`, posterior standard deviation function over `X_test`, and posterior covariance matrix over `X_test`. Shape: ((l, 1), (l, 1), (l, l)). :rtype: tuple of (numpy.ndarray, numpy.ndarray, numpy.ndarray) :raises: AssertionError """ utils_gp.validate_common_args(X_train, Y_train, str_cov, prior_mu, debug, X_test) assert isinstance(hyps, dict) utils_covariance.check_str_cov('predict_with_hyps', str_cov, X_train.shape, shape_X2=X_test.shape) cov_X_X, inv_cov_X_X, _ = covariance.get_kernel_inverse(X_train, hyps, str_cov, debug=debug) mu_Xs, sigma_Xs, Sigma_Xs = predict_with_cov(X_train, Y_train, X_test, cov_X_X, inv_cov_X_X, hyps, str_cov=str_cov, prior_mu=prior_mu, debug=debug) return mu_Xs, sigma_Xs, Sigma_Xs @utils_common.validate_types def predict_with_optimized_hyps(X_train: np.ndarray, Y_train: np.ndarray, X_test: np.ndarray, str_cov: str=constants.STR_COV, str_optimizer_method: str=constants.STR_OPTIMIZER_METHOD_GP, prior_mu: constants.TYPING_UNION_CALLABLE_NONE=None, fix_noise: float=constants.FIX_GP_NOISE, debug: bool=False ) -> constants.TYPING_TUPLE_THREE_ARRAYS: """ This function returns posterior mean and posterior standard deviation functions over `X_test`, computed by the Gaussian process regression optimized with `X_train` and `Y_train`. :param X_train: inputs. Shape: (n, d) or (n, m, d). :type X_train: numpy.ndarray :param Y_train: outputs. Shape: (n, 1). :type Y_train: numpy.ndarray :param X_test: inputs. Shape: (l, d) or (l, m, d). :type X_test: numpy.ndarray :param str_cov: the name of covariance function. :type str_cov: str., optional :param str_optimizer_method: the name of optimization method. :type str_optimizer_method: str., optional :param prior_mu: None, or prior mean function. :type prior_mu: NoneType, or callable, optional :param fix_noise: flag for fixing a noise. :type fix_noise: bool., optional :param debug: flag for printing log messages. :type debug: bool., optional :returns: a tuple of posterior mean function over `X_test`, posterior standard deviation function over `X_test`, and posterior covariance matrix over `X_test`. Shape: ((l, 1), (l, 1), (l, l)). :rtype: tuple of (numpy.ndarray, numpy.ndarray, numpy.ndarray) :raises: AssertionError """ utils_gp.validate_common_args(X_train, Y_train, str_cov, prior_mu, debug, X_test) assert isinstance(str_optimizer_method, str) assert isinstance(fix_noise, bool) utils_covariance.check_str_cov('predict_with_optimized_kernel', str_cov, X_train.shape, shape_X2=X_test.shape) assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP time_start = time.time() cov_X_X, inv_cov_X_X, hyps = gp_kernel.get_optimized_kernel(X_train, Y_train, prior_mu, str_cov, str_optimizer_method=str_optimizer_method, fix_noise=fix_noise, debug=debug) mu_Xs, sigma_Xs, Sigma_Xs = predict_with_cov(X_train, Y_train, X_test, cov_X_X, inv_cov_X_X, hyps, str_cov=str_cov, prior_mu=prior_mu, debug=debug) time_end = time.time() if debug: logger.debug('time consumed to construct gpr: %.4f sec.', time_end - time_start) return mu_Xs, sigma_Xs, Sigma_Xs
{"hexsha": "b6db27deaeae8f1971599a29771cdd4314445fff", "size": 8729, "ext": "py", "lang": "Python", "max_stars_repo_path": "bayeso/gp/gp.py", "max_stars_repo_name": "jungtaekkim/bayeso", "max_stars_repo_head_hexsha": "d11c9ff8037cf7fd3f9b41362eaab120f1224c71", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 76, "max_stars_repo_stars_event_min_datetime": "2018-01-18T03:03:14.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-07T06:41:41.000Z", "max_issues_repo_path": "bayeso/gp/gp.py", "max_issues_repo_name": "POSTECH-CVLab/bayeso", "max_issues_repo_head_hexsha": "d11c9ff8037cf7fd3f9b41362eaab120f1224c71", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 20, "max_issues_repo_issues_event_min_datetime": "2018-06-29T16:48:03.000Z", "max_issues_repo_issues_event_max_datetime": "2021-04-19T00:30:57.000Z", "max_forks_repo_path": "bayeso/gp/gp.py", "max_forks_repo_name": "POSTECH-CVLab/bayeso", "max_forks_repo_head_hexsha": "d11c9ff8037cf7fd3f9b41362eaab120f1224c71", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 4, "max_forks_repo_forks_event_min_datetime": "2020-01-07T06:24:17.000Z", "max_forks_repo_forks_event_max_datetime": "2021-06-11T06:21:42.000Z", "avg_line_length": 39.4977375566, "max_line_length": 95, "alphanum_fraction": 0.7117653798, "include": true, "reason": "import numpy,import scipy", "num_tokens": 2390}
using LinearAlgebra using Test using CompScienceMeshes using SauterSchwabQuadrature using StaticArrays pI = point(1,5,3) pII = point(2,5,3) pIII = point(7,1,0) pIV = point(5,1,-3) Sourcechart = simplex(pI,pIII,pII) Testchart = simplex(pI,pIV,pII) Accuracy = 12 ce = CommonEdge(SauterSchwabQuadrature._legendre(Accuracy,0.0,1.0)) function integrand(x,y) return(((x-pI)'*(y-pII))*exp(-im*1*norm(x-y))/(4pi*norm(x-y))) end function INTEGRAND(û,v̂) n1 = neighborhood(Testchart, û) n2 = neighborhood(Sourcechart, v̂) x = cartesian(n1) y = cartesian(n2) output = integrand(x,y)*jacobian(n1)*jacobian(n2) return(output) end result = sauterschwab_parameterized(INTEGRAND, ce)- verifintegral2(Sourcechart, Testchart, integrand, Accuracy) @test norm(result) < 1.e-3 kernel(x,y) = 1/norm(cartesian(x)-cartesian(y)) t1 = simplex( @SVector[0.180878, -0.941848, -0.283207], @SVector[0.0, -0.92388, -0.382683], @SVector[0.0, -0.980785, -0.19509]) t2 = simplex( @SVector[0.180878, -0.941848, -0.283207], @SVector[0.0, -0.92388, -0.382683], @SVector[0.158174, -0.881178, -0.44554]) @test indexin(t1.vertices, t2.vertices) == [1, 2, nothing] rt = RTRefSpace{Float64}() igd = generate_integrand_uv(kernel, rt, rt, t1, t2) i5 = sauterschwab_parameterized(igd, CommonEdge(SauterSchwabQuadrature._legendre(5,0.0,1.0))) i10 = sauterschwab_parameterized(igd, CommonEdge(SauterSchwabQuadrature._legendre(10,0.0,1.0))) i15 = sauterschwab_parameterized(igd, CommonEdge(SauterSchwabQuadrature._legendre(15,0.0,1.0))) # brute numerical approach q1 = quadpoints(t1, 10) q2 = quadpoints(t2, 10) M = N = numfunctions(rt) iref = zero(i5) for (x,w1) in q1 f = rt(x) for (y,w2) in q2 g = rt(y) G = kernel(x,y) ds = w1*w2 global iref += SMatrix{M,N}([dot(f[i][1], G*g[j][1])*ds for i=1:M, j=1:N]) end end include(joinpath(dirname(@__FILE__,),"numquad.jl")) ibf = numquad(kernel, rt, rt, t1, t2, zero(i5)) @test i5 ≈ iref atol=1e-3 @test i10 ≈ iref atol=1e-3 @test i10 ≈ ibf atol=1e-3 @test i10 ≈ i15 atol=1e-5 # Test the more (or less) singular case of the second kind kernel function kernel2nd(x,y) r = cartesian(x) - cartesian(y) R = norm(r) gradgreen = - r / R^3 @SMatrix [ 0 -gradgreen[3] gradgreen[2] gradgreen[3] 0 -gradgreen[1] -gradgreen[2] gradgreen[1] 0 ] end igd = generate_integrand_uv(kernel2nd, rt, rt, t1, t2) i10 = sauterschwab_parameterized(igd, CommonEdge(SauterSchwabQuadrature._legendre(10,0.0,1.0))) i15 = sauterschwab_parameterized(igd, CommonEdge(SauterSchwabQuadrature._legendre(15,0.0,1.0))) i20 = sauterschwab_parameterized(igd, CommonEdge(SauterSchwabQuadrature._legendre(20,0.0,1.0))) iref = numquad(kernel2nd, rt, rt, t1, t2, zero(i15)) # # Compare to BEAST: # tqd = CompScienceMeshes.quadpoints(rt, [t1], (12,)) # bqd = CompScienceMeshes.quadpoints(rt, [t2], (13,)) # # SE_strategy = BEAST.WiltonSEStrategy( # tqd[1,1], # BEAST.DoubleQuadStrategy( # tqd[1,1], # bqd[1,1])) # # op = BEAST.MWDoubleLayer3D(0.0) # z2 = zeros(3,3) # BEAST.momintegrals!(op, rt, rt, t1, t2, z2, SE_strategy)
{"hexsha": "86fc04fa7978f9f6fde04ad7b39484174ea10d12", "size": 3131, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "test/test_ce_p_verification.jl", "max_stars_repo_name": "UnofficialJuliaMirror/SauterSchwabQuadrature.jl-535c7bfe-2023-5c1d-b712-654ef9d93a38", "max_stars_repo_head_hexsha": "419fb564912814b5e033df52e255db707349b600", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2017-12-23T16:54:33.000Z", "max_stars_repo_stars_event_max_datetime": "2017-12-23T16:54:33.000Z", "max_issues_repo_path": "test/test_ce_p_verification.jl", "max_issues_repo_name": "UnofficialJuliaMirror/SauterSchwabQuadrature.jl-535c7bfe-2023-5c1d-b712-654ef9d93a38", "max_issues_repo_head_hexsha": "419fb564912814b5e033df52e255db707349b600", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2018-07-23T12:35:34.000Z", "max_issues_repo_issues_event_max_datetime": "2018-07-23T12:44:53.000Z", "max_forks_repo_path": "test/test_ce_p_verification.jl", "max_forks_repo_name": "UnofficialJuliaMirror/SauterSchwabQuadrature.jl-535c7bfe-2023-5c1d-b712-654ef9d93a38", "max_forks_repo_head_hexsha": "419fb564912814b5e033df52e255db707349b600", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 5, "max_forks_repo_forks_event_min_datetime": "2017-10-31T14:02:31.000Z", "max_forks_repo_forks_event_max_datetime": "2020-08-25T06:47:26.000Z", "avg_line_length": 26.5338983051, "max_line_length": 95, "alphanum_fraction": 0.6793356755, "num_tokens": 1230}
# coding: UTF8 from sklearn.pipeline import FeatureUnion from sklearn import preprocessing from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor import sklearn.linear_model import img_to_pickle as i_p import features as f import classify import pickle import numpy as np import pandas as pd import datetime import os ROOT = os.path.abspath(os.path.dirname(__file__)) SUBMISSION_DIR = ROOT.replace("script", "tmp/submission") def zero_one(x): return min(max(x, 0.), 1.) def convert_testdata(test_gray_data, feature_rule=f.feature_transformer_rule): data_df = f.make_test_df(test_gray_data) fu = FeatureUnion(transformer_list=feature_rule) Std = preprocessing.StandardScaler() X_test = fu.fit_transform(data_df) #X_test = Std.fit_transform(X_test) return X_test def reprediction(): _, _, _, _, test_gray_data, _, _ = i_p.load_data() test_keys = test_gray_data.keys() test_df = f.make_test_df(test_gray_data) test_df = test_df.reset_index() test_df.columns = ["pngname", "input"] clf_dir = os.path.abspath(os.path.dirname(__file__)) +\ "/../tmp/fit_instance/" savefile = clf_dir + "GB22015_10_04_07_30_36.pickle" fi = open(savefile, "r") clf = pickle.load(fi) fi.close() for i in xrange(len(test_keys)): test_img = test_df[(test_df["pngname"] == test_keys[i])]["input"].as_matrix()[0] imgname = test_keys[i] shape = test_img.shape test_img = {test_keys[i]: test_img} X_middle = convert_testdata(test_img, f.transformer_middle) middle_ratio = X_middle.mean() if middle_ratio >= 0.2: X_test = convert_testdata(test_img) output = clf.predict(X_test) output = np.asarray(output) zo = np.vectorize(zero_one) output = zo(output).reshape(shape) else: X_test = convert_testdata(test_img, f.transformer_gray) output = np.asarray(X_test) zo = np.vectorize(zero_one) output = zo(output).reshape(shape) tmp = [] for row in xrange(len(output)): for column in xrange(len(output[row])): id_ = imgname + "_" + str(row + 1) + "_" + str(column + 1) value = output[row][column] pix = [id_, value] tmp.append(pix) if i == 0: predict_df = pd.DataFrame(tmp) else: tmp_df = pd.DataFrame(tmp) predict_df = pd.concat([predict_df, tmp_df]) predict_df.columns = ["id", "value"] now = datetime.datetime.now() submission_path = SUBMISSION_DIR + "/submission_repredict" + now.strftime("%Y_%m_%d_%H_%M_%S") + ".csv" predict_df.to_csv(submission_path, header=True, index=False) if __name__ == '__main__': reprediction()
{"hexsha": "7da1535713aa8d8d73902b0f4f3ea56bbb02855a", "size": 2854, "ext": "py", "lang": "Python", "max_stars_repo_path": "script/repredict.py", "max_stars_repo_name": "haisland0909/Denoising-Dirty-Documents", "max_stars_repo_head_hexsha": "dcf4be659d045633f7b369db5fa9ad89793669f0", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "script/repredict.py", "max_issues_repo_name": "haisland0909/Denoising-Dirty-Documents", "max_issues_repo_head_hexsha": "dcf4be659d045633f7b369db5fa9ad89793669f0", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 21, "max_issues_repo_issues_event_min_datetime": "2015-08-27T12:36:19.000Z", "max_issues_repo_issues_event_max_datetime": "2015-09-25T13:19:02.000Z", "max_forks_repo_path": "script/repredict.py", "max_forks_repo_name": "haisland0909/Denoising-Dirty-Documents", "max_forks_repo_head_hexsha": "dcf4be659d045633f7b369db5fa9ad89793669f0", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.9803921569, "max_line_length": 107, "alphanum_fraction": 0.6391030133, "include": true, "reason": "import numpy", "num_tokens": 689}
#include <config.h> #include <iostream> #include <cstdio> #include <cstdlib> #include <boost/asio.hpp> #include <libtorrent/session.hpp> #include "command_server.hpp" using namespace boost::asio::ip; namespace lt = libtorrent; const auto UNIX_SOCKET_PATH = "/tmp/arr-torrent-cmd-srv.sock"; void print_usage(const char *prog_name) { std::cout << "usage: " << prog_name << "\n" << "version: " << PACKAGE_VERSION << "\n"; } int main(int argc, char *argv[]) { if (argc > 1) { print_usage(argv[0]); return EXIT_FAILURE; } { lt::settings_pack settings; settings.set_str(lt::settings_pack::listen_interfaces, "0.0.0.0:6881"); lt::session session(settings); // run command server boost::asio::io_service io_service; std::remove(UNIX_SOCKET_PATH); arr::protocol::endpoint endpoint(UNIX_SOCKET_PATH); arr::server server(io_service, endpoint); server.wait_until_quit(); } return EXIT_SUCCESS; }
{"hexsha": "cb92c235b703e3e0446cf9ed88470f7b7af47574", "size": 937, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "daemon/main.cpp", "max_stars_repo_name": "IT-Syndikat/arr-torrent", "max_stars_repo_head_hexsha": "d14e7959294d2bb8a3b7332a269be70838e8109a", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2018-04-24T19:08:10.000Z", "max_stars_repo_stars_event_max_datetime": "2018-04-24T19:08:10.000Z", "max_issues_repo_path": "daemon/main.cpp", "max_issues_repo_name": "IT-Syndikat/arr-torrent", "max_issues_repo_head_hexsha": "d14e7959294d2bb8a3b7332a269be70838e8109a", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "daemon/main.cpp", "max_forks_repo_name": "IT-Syndikat/arr-torrent", "max_forks_repo_head_hexsha": "d14e7959294d2bb8a3b7332a269be70838e8109a", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 19.1224489796, "max_line_length": 73, "alphanum_fraction": 0.6915688367, "num_tokens": 244}
subroutine apaga_lista(lista) integer esco,nl,nc,j,i,ii,m,iostat,ierr,tam(256,10),r,t,aux(256),a,b character (512) arq(256,10),arqaux(256,10),text character (50) tit(1,10) character (50) lista , listaux write(*,"(A41)")'Digite o nome da lista que deseja apagar.' 8 read(*,"(A)",iostat=ierr)listaux if(ierr/=0) then write(*,"(A38)")'Erro na leitura! Digite o nome denovo.' go to 8 end if if(trim(adjustl(listaux)) == 'sair') return if(trim(adjustl(listaux)) == trim(adjustl(lista))) then write(*,"(A77)")'Esta lista esta em uso. Procure outra lista para que possa apagar esta lista,' write(*,"(A)")'ou apague outra lista.' return end if open(unit = 2 , file = trim(adjustl(listaux)) // '.dat' , status = 'old' , iostat = ierr) if(ierr /= 0) then write(*,"(A)")'Erro ao tentar apagrar esta lista. Tente novamente.' go to 8 end if close(unit = 2 , status = 'delete' , iostat = ierr) return end subroutine
{"hexsha": "654855179774f34228648fe22b360b08416c7089", "size": 980, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "codes/Projeto designe/designe final/apaga_lista.f90", "max_stars_repo_name": "danielsanfr/fortran-study", "max_stars_repo_head_hexsha": "101ff0aa552f40542b5bc3e90ee0265f9a74eb48", "max_stars_repo_licenses": ["Unlicense"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "codes/Projeto designe/designe final/apaga_lista.f90", "max_issues_repo_name": "danielsanfr/fortran-study", "max_issues_repo_head_hexsha": "101ff0aa552f40542b5bc3e90ee0265f9a74eb48", "max_issues_repo_licenses": ["Unlicense"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "codes/Projeto designe/designe final/apaga_lista.f90", "max_forks_repo_name": "danielsanfr/fortran-study", "max_forks_repo_head_hexsha": "101ff0aa552f40542b5bc3e90ee0265f9a74eb48", "max_forks_repo_licenses": ["Unlicense"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 20.0, "max_line_length": 97, "alphanum_fraction": 0.6326530612, "num_tokens": 324}
using Dates using TimeZones using CBinding packagedir = joinpath(dirname(pathof(DWDataReader)), "..") includedir = joinpath(packagedir, "src", "include") # CBinding.jl: Set up compiler context c`-std=c99 -Wall -I$(includedir) -lDWDataReaderLib64 -L$(packagedir)` const c"int64_t" = Int64 # CBinding.jl: Create Julia types and bindings for DLL functions from header c""" #include <DWDataReaderLib.h> """j; struct FileInfo sample_rate::Float64 start_store_time::ZonedDateTime duration::Float64 end function Base.show(io::IO, fi::FileInfo) println(io, "$(fi.start_store_time) $(fi.sample_rate) Hz $(fi.duration) s") end """ DWDataReader.File(source; kwargs...) => DWDataReader.File Read DEWESoft input data files (.d7d extension) and return a `DWDataReader.File` object. """ struct File name::String info::FileInfo nchannels::Int64 channels::Cptr{DWChannel} closed::Bool delete::Bool readerid::Int8 lookup::Dict{Symbol,DWChannel} end getname(f::File) = getfield(f, :name) getnchannels(f::File) = getfield(f, :nchannels) function Base.show(io::IO, f::File) println(io, "DWDataReader.File(\"$(getname(f))\"): $(getnchannels(f)) channels") end # Enables f[:channel] via internal lookup Dict function Base.getproperty(f::File, ch::Symbol) lookup = getfield(f, :lookup) return haskey(lookup, ch) ? lookup[ch] : getfield(f, ch) end function Base.getindex(f::File, ch::Symbol) lookup = getfield(f, :lookup) return haskey(lookup, ch) ? lookup[ch] : getfield(f, ch) end # New File objects register via the global readers counter as per DLL requirements global readers = 0 setreaders(r) = (global readers += r) """Deprecated in favor of direct DWChannel.name via `getproperty` mechanism""" function getname(c::DWChannel) replace(String(c.name), r"\0+$" => s"") end # Property access for wrapped DWChannel with null-terminated string truncation function Base.getproperty(c::DWChannel, v::Symbol) x = invoke(getproperty, Tuple{supertype(DWChannel),Symbol}, c, v) return v == :name ? replace(String(x), r"\0+$" => s"") : x end function File( source; # options debug::Bool = false, kw..., ) isempty(source) && throw(ArgumentError("unable to read DW data from empty source")) name = source closed = true delete = false DWInit() # file Reader management readerid = DWDataReader.readers # DWInit creates the first readerid 0 if readerid > 0 # Add reader only if this is not the first status = DWAddReader() status != 0 && throw(status) end DWDataReader.setreaders(1) # Check for matching number of readers num_readers = Ref{Cint}(0) status = DWGetNumReaders(num_readers) status != 0 && throw(status) num_readers[] != readers && throw("DWGetNumReaders=$(num_readers[]) != $(readers)") # Opening the file dwfileinfo = Ref(DWFileInfo()) status = DWOpenDataFile(source, dwfileinfo) status != 0 && throw(status) closed = false fileinfo = FileInfo( dwfileinfo[].sample_rate, startstoretime(dwfileinfo[].start_store_time), dwfileinfo[].duration, ) # How to make this the File AbstractVector{DWChannel} type? nchannels = DWGetChannelListCount() channels = Libc.malloc(DWChannel(), nchannels) DWGetChannelList(channels) lookup = Dict(Symbol(getname(channels[i])) => channels[i] for i = 1:nchannels) File(name, fileinfo, nchannels, channels, closed, delete, readerid, lookup) end """Set this DWFile instance as the active reader""" function activate(f::File, verifyopen::Bool = true) verifyopen && f.closed && error("I/O operation on closed file") status = DWSetActiveReader(f.readerid) status != 0 && throw(status) end function numberofsamples(ch::DWChannel) count = DWGetScaledSamplesCount(ch.index) count < 0 && throw("DWGetScaledSamplesCount($(ch.index))=$(count) should be non-negative") count end """Load and return full speed data as vector""" function scaled(ch::DWChannel, arrayindex = 0) !(0 <= arrayindex < ch.array_size) && throw("arrayIndex is out of range") count = numberofsamples(ch) data = zeros(count * ch.array_size) time = zeros(count) status = DWGetScaledSamples(ch.index, Cint(0), count, data, time) status != 0 && throw(status) return [time data] end function startstoretime(time::Float64) epoch = DateTime(1899, 12, 30) epochutc = ZonedDateTime(epoch, tz"UTC") microseconds = time * 24 * 60 * 60 * 1000 * 1000 epochutc + Dates.Microsecond(round(microseconds)) end
{"hexsha": "5a98e1404acea6ff395b945af4c0e8120cd02e55", "size": 4617, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/file.jl", "max_stars_repo_name": "fleimgruber/DWDataReader.jl", "max_stars_repo_head_hexsha": "4a8a280ed9a34a6af63a295d976e578aeaca1e97", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/file.jl", "max_issues_repo_name": "fleimgruber/DWDataReader.jl", "max_issues_repo_head_hexsha": "4a8a280ed9a34a6af63a295d976e578aeaca1e97", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2021-12-13T14:43:21.000Z", "max_issues_repo_issues_event_max_datetime": "2021-12-13T14:43:30.000Z", "max_forks_repo_path": "src/file.jl", "max_forks_repo_name": "fleimgruber/DWDataReader.jl", "max_forks_repo_head_hexsha": "4a8a280ed9a34a6af63a295d976e578aeaca1e97", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.2215189873, "max_line_length": 88, "alphanum_fraction": 0.6844271172, "num_tokens": 1255}
# coding=utf-8 import numpy as np import torch from PIL import Image def _is_numpy(input): """ Check if input is a numpy object. Args: input (:obj:): input. Returns: (bool): True if input is a numpy object. """ return isinstance(input, np.ndarray) def _is_pil_image(input): """ Check if input is a ``PIL Image``. Args: input (:obj:): input. Returns: (bool): True if input is a ``PIL Image``. """ return isinstance(input, Image.Image) def pil_to_tensor(input): """ Convert a ``PIL Image`` to a tensor of the same type. This function does not support torchscript. Args: input (`PIL.Image.Image`): input PIL image to be converted to tensor. Returns: (torch.Tensor): output tensor. """ if not _is_pil_image(input): raise TypeError("input should be PIL Image. Got {}".format(type(input))) default_float_dtype = torch.get_default_dtype() # handle PIL Image if input.mode == "I": output = torch.from_numpy(np.array(input, np.int32, copy=False)) elif input.mode == "I;16": output = torch.from_numpy(np.array(input, np.int16, copy=False)) elif input.mode == "F": output = torch.from_numpy(np.array(input, np.float32, copy=False)) elif input.mode == "1": output = 255 * torch.from_numpy(np.array(input, np.uint8, copy=False)) else: output = torch.ByteTensor(torch.ByteStorage.from_buffer(input.tobytes())) output = output.view(input.size[1], input.size[0], len(input.getbands())) # put it from HWC to CHW format output = output.permute((2, 0, 1)).contiguous() if isinstance(output, torch.ByteTensor): return output.to(dtype=default_float_dtype).div(255) else: return output
{"hexsha": "8d906e0edf9e2f0cd2f90955b8cd8b179df83686", "size": 1816, "ext": "py", "lang": "Python", "max_stars_repo_path": "cheblienet/datas/functionals.py", "max_stars_repo_name": "haguettaz/ChebLieNet", "max_stars_repo_head_hexsha": "8545122c85513a4b4e8cc34c9f01bacca9140110", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 7, "max_stars_repo_stars_event_min_datetime": "2021-11-25T11:51:01.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-06T18:35:32.000Z", "max_issues_repo_path": "cheblienet/datas/functionals.py", "max_issues_repo_name": "haguettaz/ChebLieNet", "max_issues_repo_head_hexsha": "8545122c85513a4b4e8cc34c9f01bacca9140110", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "cheblienet/datas/functionals.py", "max_forks_repo_name": "haguettaz/ChebLieNet", "max_forks_repo_head_hexsha": "8545122c85513a4b4e8cc34c9f01bacca9140110", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2022-03-06T18:35:42.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-06T18:35:42.000Z", "avg_line_length": 26.3188405797, "max_line_length": 81, "alphanum_fraction": 0.6272026432, "include": true, "reason": "import numpy", "num_tokens": 445}
#### # install.packages("devtools") # devtools::install_github("iobis/obistools") # devtools::install_github("EMODnet/skosxml") # devtools::install_github("EMODnet/EMODnetBiocheck") #### library(obistools) library(EMODnetBiocheck) check_shark_dwca <- function(data_dir_path, dwca_file_name) { dwca_zip_path = paste(data_dir_path, "\\", dwca_file_name, ".zip", sep="") event_file = unz(dwca_zip_path, "event.txt") occurrence_file = unz(dwca_zip_path, "occurrence.txt") emof_file = unz(dwca_zip_path, "extendedmeasurementorfact.txt") event = read.csv(event_file, header = TRUE, sep='\t') occurrence = read.csv(occurrence_file, header = TRUE, sep='\t') emof = read.csv(emof_file, header = TRUE, sep='\t') remove(event_file) remove(occurrence_file) remove(emof_file) IPTreport <- checkdataset(Event = event, Occurrence = occurrence, eMoF = emof) data_summary <- IPTreport$datasummary mof_summary <- IPTreport$mofsummary event_error_table <- IPTreport$dtb$eventerror_table occurrence_error_table <- IPTreport$dtb$occurrenceerror_table emof_error_table <-IPTreport$dtb$emoferror_table general_issues <- IPTreport$dtb$general_issues mof_issues <- IPTreport$dtb$mof_issues write.table(data_summary, paste(data_dir_path, "\\", dwca_file_name, "_SUMMARY_DATA", '.txt', sep=""), na = "NA", sep='\t') write.table(mof_summary, paste(data_dir_path, "\\", dwca_file_name, "_SUMMARY_MOF", '.txt', sep=""), na = "NA", sep='\t') write.table(event_error_table, paste(data_dir_path, "\\", dwca_file_name, "_ERRORS_EVENT", '.txt', sep=""), na = "NA", sep='\t') write.table(occurrence_error_table, paste(data_dir_path, "\\", dwca_file_name, "_ERRORS_OCCURRENCE", '.txt', sep=""), na = "NA", sep='\t') write.table(emof_error_table, paste(data_dir_path, "\\", dwca_file_name, "_ERRORS_EMOF", '.txt', sep=""), na = "NA", sep='\t') write.table(general_issues, paste(data_dir_path, "\\", dwca_file_name, "_ISSUES_GENERAL", '.txt', sep=""), na = "NA", sep='\t') write.table(mof_issues, paste(data_dir_path, "\\", dwca_file_name, "_ISSUES_MOF", '.txt', sep=""), na = "NA", sep='\t') } data_dir_path = "C:\\darwincore\\data" check_shark_dwca(data_dir_path, "dwca-smhi-bacterioplankton-nat_TEST") check_shark_dwca(data_dir_path, "dwca-smhi-zoobenthos-nat_TEST") check_shark_dwca(data_dir_path, "dwca-smhi-phytoplankton-nat_TEST") check_shark_dwca(data_dir_path, "dwca-smhi-zooplankton-nat_TEST")
{"hexsha": "89fa5b20eb7b2ac31501f189a754f950aa965524", "size": 2431, "ext": "r", "lang": "R", "max_stars_repo_path": "R_scripts/iobistools_validation.r", "max_stars_repo_name": "sharkdata/darwincore", "max_stars_repo_head_hexsha": "28937763353ce75b8897c5d8ab1fadb188b302b2", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "R_scripts/iobistools_validation.r", "max_issues_repo_name": "sharkdata/darwincore", "max_issues_repo_head_hexsha": "28937763353ce75b8897c5d8ab1fadb188b302b2", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "R_scripts/iobistools_validation.r", "max_forks_repo_name": "sharkdata/darwincore", "max_forks_repo_head_hexsha": "28937763353ce75b8897c5d8ab1fadb188b302b2", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-08-16T07:57:09.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-16T07:57:09.000Z", "avg_line_length": 45.8679245283, "max_line_length": 140, "alphanum_fraction": 0.7239819005, "num_tokens": 743}
# coding: utf-8 # ## This notebook will help you train a vanilla Point-Cloud AE with the basic architecture we used in our paper. # (it assumes latent_3d_points is in the PYTHONPATH and the structural losses have been compiled) import os import sys sys.path.insert(0, "/home/gy46/") import tqdm import numpy as np import os.path as osp from latent_3d_points.src.ae_templates import mlp_architecture_ala_iclr_18, default_train_params from latent_3d_points.src.autoencoder import Configuration as Conf from latent_3d_points.src.point_net_ae import PointNetAutoEncoder from latent_3d_points.src.in_out import snc_category_to_synth_id, create_dir from latent_3d_points.src.in_out import PointCloudDataSet,load_all_point_clouds_under_folder from latent_3d_points.src.tf_utils import reset_tf_graph from latent_3d_points.src.general_utils import plot_3d_point_cloud # Arguments import argparse parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('train_dir', type=str, default=None, help='Training directory (where we stored the model)') parser.add_argument('--dataset_dir', type=str, default='../data/ModelNet40.PC15k', help='Directory of the dataset.') parser.add_argument('--normalize_shape', action='store_true', help="Whether normalizing shape.") parser.add_argument('--epochs', type=int, default=1000, help="Training epochs.") parser.add_argument('--bneck_size', type=int, default=128, help="Bottleneck size.") args = parser.parse_args() print(args) train_dir = args.train_dir top_in_dir = args.dataset_dir n_pc_points = 2048 # Number of points per model. bneck_size = args.bneck_size # Bottleneck-AE size restore_epoch = args.epochs print("Build model") print("Train dir:%s"%train_dir) print("Load model configuration:") conf_path = os.path.join(train_dir, 'configuration') conf = Conf.load(conf_path) print(conf) reset_tf_graph() print("Build tensorflow graph") ae = PointNetAutoEncoder(conf.experiment_name, conf) ae.restore_model(args.train_dir, epoch=restore_epoch) ##################### # Load Training Set ##################### print("Load data (train set)") tr_shape_lst = [] te_shape_lst = [] tr_lbl = [] te_lbl = [] class_lst = [] for i, f in enumerate(os.listdir(top_in_dir)): # Train tr_class_dir = os.path.join(top_in_dir, f, 'train') if not os.path.isdir(tr_class_dir): continue class_lst.append(f) all_tr_pc_data = load_all_point_clouds_under_folder( tr_class_dir, n_threads=8, file_ending='.npy', max_num_points=n_pc_points, verbose=True, normalize=args.normalize_shape, rotation_axis=None ) tr_pc, _, _ = all_tr_pc_data.full_epoch_data() N = tr_pc.shape[0] tr_shape_lst.append(tr_pc) for _ in range(N): tr_lbl.append(i) # Test te_class_dir = os.path.join(top_in_dir, f, 'test') all_te_pc_data = load_all_point_clouds_under_folder( te_class_dir, n_threads=8, file_ending='.npy', max_num_points=n_pc_points, verbose=True, normalize=args.normalize_shape, rotation_axis=None ) te_pc, _, _ = all_te_pc_data.full_epoch_data() M = te_pc.shape[0] te_shape_lst.append(te_pc) for _ in range(M): te_lbl.append(i) tr_pc = np.concatenate(tr_shape_lst) tr_lbl = np.array(tr_lbl) te_pc = np.concatenate(te_shape_lst) te_lbl = np.array(te_lbl) assert tr_pc.shape[0] == tr_lbl.shape[0] assert te_pc.shape[0] == te_lbl.shape[0] print("Gather latent vectors (train set)") tr_latent = ae.get_latent_codes(tr_pc, batch_size=100) print(tr_latent.shape) tr_latent_save_path = os.path.join(conf.train_dir, 'MN_train_all_latent.npy') tr_label_save_path = os.path.join(conf.train_dir, 'MN_train_all_label.npy') np.save(tr_latent_save_path, tr_latent) np.save(tr_label_save_path, tr_lbl) print("Train latent vectors and labels save path:%s %s"\ %(tr_latent_save_path, tr_label_save_path)) print("Gather latent vectors (test set)") te_latent = ae.get_latent_codes(te_pc, batch_size=100) print(te_latent.shape) te_latent_save_path = os.path.join(conf.train_dir, 'MN_test_all_latent.npy') te_label_save_path = os.path.join(conf.train_dir, 'MN_test_all_label.npy') np.save(te_latent_save_path, te_latent) np.save(te_label_save_path, te_lbl) print("Test latent vectors and labels save path:%s %s"\ %(te_latent_save_path, te_label_save_path)) # Classification print("Classification...") from sklearn.svm import LinearSVC clf = LinearSVC(random_state=0) clf.fit(tr_latent, tr_lbl) test_pred = clf.predict(te_latent) test_gt = te_lbl.flatten() acc = np.mean((test_pred==test_gt).astype(float)) * 100. print("Acc:%s"%acc)
{"hexsha": "78f9656e50e0b59e54cd6898e3b28d1b95b817c1", "size": 4721, "ext": "py", "lang": "Python", "max_stars_repo_path": "scripts/MN_clf.py", "max_stars_repo_name": "stevenygd/latent_3d_points", "max_stars_repo_head_hexsha": "cf8c0888f4489690fa5b692cbd44638f8db2d0ba", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "scripts/MN_clf.py", "max_issues_repo_name": "stevenygd/latent_3d_points", "max_issues_repo_head_hexsha": "cf8c0888f4489690fa5b692cbd44638f8db2d0ba", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "scripts/MN_clf.py", "max_forks_repo_name": "stevenygd/latent_3d_points", "max_forks_repo_head_hexsha": "cf8c0888f4489690fa5b692cbd44638f8db2d0ba", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2020-10-12T04:48:43.000Z", "max_forks_repo_forks_event_max_datetime": "2020-10-12T04:48:43.000Z", "avg_line_length": 35.4962406015, "max_line_length": 113, "alphanum_fraction": 0.7396737979, "include": true, "reason": "import numpy", "num_tokens": 1182}
import sympy as sp def calc_taylor_series(equation, xInit, a, n:int): """ Method to estimate a function using taylor series Parameters: equation: The equation f(x) xInit: Initial value of x a: Another value of x n: number of derivatives """ #Variables and settings x = sp.Symbol('x') fOri = equation xVal = xInit #Initial value of x derivatives = [] #Create derivatives derivatives.append(fOri) for i in range(1, n+1): derivatives.append(sp.diff(derivatives[i-1])) #Calculate derivatives for i in range(len(derivatives)): derivatives[i] = derivatives[i].evalf(subs={x: a}) #Calculate series result = 0 for i in range(len(derivatives)): result += (derivatives[i] * (xVal - a)**i)/sp.factorial(i) return result def calc_maclaurin_series(equation, xInit, n:int): """ Method to estimate a function using maclaurin series Parameters: equation: The equation f(x) xInit: Initial value of x n: number of derivatives """ return calc_taylor_series(equation, xInit, 0, n) def get_derivatives(equation, n:int): derivatives = [] for _ in range(n): derivatives.append(sp.diff(equation)) return derivatives def get_n_derivative(equation, n:int): return get_derivatives(equation, n)[-1] def example(): x = sp.Symbol('x'); ori = (sp.sin(x))**3 print(calc_taylor_series(ori, 0.1, 1.5, 2))
{"hexsha": "4f563e106e1c1af8c9e6273a37d5948bd35301c7", "size": 1512, "ext": "py", "lang": "Python", "max_stars_repo_path": "mid_exam/taylor_series_calculator.py", "max_stars_repo_name": "GiantSweetroll/Computational-Mathematics", "max_stars_repo_head_hexsha": "f94457d1943a7d17379296cac284da88aefa862c", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "mid_exam/taylor_series_calculator.py", "max_issues_repo_name": "GiantSweetroll/Computational-Mathematics", "max_issues_repo_head_hexsha": "f94457d1943a7d17379296cac284da88aefa862c", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "mid_exam/taylor_series_calculator.py", "max_forks_repo_name": "GiantSweetroll/Computational-Mathematics", "max_forks_repo_head_hexsha": "f94457d1943a7d17379296cac284da88aefa862c", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 25.2, "max_line_length": 66, "alphanum_fraction": 0.6236772487, "include": true, "reason": "import sympy", "num_tokens": 414}
!======================================================================== ! ! S P E C F E M 2 D Version 7 . 0 ! -------------------------------- ! ! Main historical authors: Dimitri Komatitsch and Jeroen Tromp ! Princeton University, USA ! and CNRS / University of Marseille, France ! (there are currently many more authors!) ! (c) Princeton University and CNRS / University of Marseille, April 2014 ! ! This software is a computer program whose purpose is to solve ! the two-dimensional viscoelastic anisotropic or poroelastic wave equation ! using a spectral-element method (SEM). ! ! This software is governed by the CeCILL license under French law and ! abiding by the rules of distribution of free software. You can use, ! modify and/or redistribute the software under the terms of the CeCILL ! license as circulated by CEA, CNRS and Inria at the following URL ! "http://www.cecill.info". ! ! As a counterpart to the access to the source code and rights to copy, ! modify and redistribute granted by the license, users are provided only ! with a limited warranty and the software's author, the holder of the ! economic rights, and the successive licensors have only limited ! liability. ! ! In this respect, the user's attention is drawn to the risks associated ! with loading, using, modifying and/or developing or reproducing the ! software by the user in light of its specific status of free software, ! that may mean that it is complicated to manipulate, and that also ! therefore means that it is reserved for developers and experienced ! professionals having in-depth computer knowledge. Users are therefore ! encouraged to load and test the software's suitability as regards their ! requirements in conditions enabling the security of their systems and/or ! data to be ensured and, more generally, to use and operate it in the ! same conditions as regards security. ! ! The full text of the license is available in file "LICENSE". ! !======================================================================== subroutine compute_forces_acoustic_backward(b_potential_dot_dot_acoustic,b_potential_acoustic) ! compute forces in the acoustic elements in forward simulation and in adjoint simulation in adjoint inversion use specfem_par, only: nglob,nspec,nelemabs,it,NSTEP, & assign_external_model,ibool,kmato,numabs,acoustic, & codeabs,codeabs_corner, & density,poroelastcoef,xix,xiz,gammax,gammaz,jacobian, & vpext,rhoext, & hprime_xx,hprimewgll_xx, & hprime_zz,hprimewgll_zz,wxgll,wzgll, & AXISYM,coord, is_on_the_axis,hprimeBar_xx,hprimeBarwglj_xx,xiglj,wxglj, & ibegin_edge1,iend_edge1,ibegin_edge3,iend_edge3, & ibegin_edge4,iend_edge4,ibegin_edge2,iend_edge2, & ib_left,ib_right,ib_bottom,ib_top, & b_absorb_acoustic_left,b_absorb_acoustic_right, & b_absorb_acoustic_bottom,b_absorb_acoustic_top, & STACEY_BOUNDARY_CONDITIONS implicit none include "constants.h" real(kind=CUSTOM_REAL), dimension(nglob) :: b_potential_dot_dot_acoustic, b_potential_acoustic ! local parameters integer :: ispec,i,j,k,iglob,ispecabs,ibegin,iend,jbegin,jend integer :: ifirstelem,ilastelem ! spatial derivatives real(kind=CUSTOM_REAL) :: dux_dxi,dux_dgamma,dux_dxl,dux_dzl real(kind=CUSTOM_REAL) :: xxi real(kind=CUSTOM_REAL), dimension(NGLLX,NGLLZ) :: tempx1,tempx2 real(kind=CUSTOM_REAL), dimension(NGLJ,NGLLZ) :: r_xiplus1 ! Jacobian matrix and determinant real(kind=CUSTOM_REAL) :: xixl,xizl,gammaxl,gammazl,jacobianl ! material properties of the acoustic medium real(kind=CUSTOM_REAL) :: mul_relaxed,lambdal_relaxed,kappal,cpl,rhol ifirstelem = 1 ilastelem = nspec ! loop over spectral elements do ispec = ifirstelem,ilastelem ! acoustic spectral element if( acoustic(ispec) ) then rhol = density(1,kmato(ispec)) ! first double loop over GLL points to compute and store gradients do j = 1,NGLLZ do i = 1,NGLLX ! derivative along x and along z dux_dxi = 0._CUSTOM_REAL; dux_dgamma = 0._CUSTOM_REAL ! first double loop over GLL points to compute and store gradients ! we can merge the two loops because NGLLX == NGLLZ do k = 1,NGLLX if( AXISYM ) then if( is_on_the_axis(ispec) ) then dux_dxi = dux_dxi + b_potential_acoustic(ibool(k,j,ispec)) * hprimeBar_xx(i,k) else dux_dxi = dux_dxi + b_potential_acoustic(ibool(k,j,ispec)) * hprime_xx(i,k) endif else dux_dxi = dux_dxi + b_potential_acoustic(ibool(k,j,ispec)) * hprime_xx(i,k) endif dux_dgamma = dux_dgamma + b_potential_acoustic(ibool(i,k,ispec)) * hprime_zz(j,k) enddo xixl = xix(i,j,ispec) xizl = xiz(i,j,ispec) gammaxl = gammax(i,j,ispec) gammazl = gammaz(i,j,ispec) ! derivatives of potential dux_dxl = dux_dxi * xixl + dux_dgamma * gammaxl dux_dzl = dux_dxi * xizl + dux_dgamma * gammazl if( AXISYM .and. is_on_the_axis(ispec) .and. i == 1 ) then ! dchi/dr=rho * u_r=0 on the axis dux_dxl = ZERO endif jacobianl = jacobian(i,j,ispec) ! if external density model if( assign_external_model ) then rhol = rhoext(i,j,ispec) endif if( AXISYM ) then if( is_on_the_axis(ispec) .and. i == 1 ) then xxi = + gammaz(i,j,ispec) * jacobian(i,j,ispec) r_xiplus1(i,j) = xxi else if( is_on_the_axis(ispec) ) then r_xiplus1(i,j) = coord(1,ibool(i,j,ispec))/(xiglj(i)+ONE) endif endif ! for acoustic medium also add integration weights if( AXISYM ) then if( is_on_the_axis(ispec) ) then tempx1(i,j) = wzgll(j) * r_xiplus1(i,j) * jacobianl * (xixl * dux_dxl + xizl * dux_dzl) / rhol tempx2(i,j) = wxglj(i) * r_xiplus1(i,j) * jacobianl * (gammaxl * dux_dxl + gammazl * dux_dzl) / rhol else tempx1(i,j) = wzgll(j) * coord(1,ibool(i,j,ispec)) * jacobianl * (xixl * dux_dxl + xizl * dux_dzl) / rhol tempx2(i,j) = wxgll(i) * coord(1,ibool(i,j,ispec)) * jacobianl * (gammaxl * dux_dxl + gammazl * dux_dzl) / rhol endif else tempx1(i,j) = wzgll(j) * jacobianl * (xixl * dux_dxl + xizl * dux_dzl) / rhol tempx2(i,j) = wxgll(i) * jacobianl * (gammaxl * dux_dxl + gammazl * dux_dzl) / rhol endif enddo enddo ! first double loop over GLL points to compute and store gradients do j = 1,NGLLZ do i = 1,NGLLX iglob = ibool(i,j,ispec) if( assign_external_model ) then rhol = rhoext(i,j,ispec) cpl = vpext(i,j,ispec) !assuming that in fluid(acoustic) part input cpl is defined by sqrt(kappal/rhol), & !which is not the same as in cpl input in elastic part kappal = rhol * cpl * cpl else lambdal_relaxed = poroelastcoef(1,1,kmato(ispec)) mul_relaxed = poroelastcoef(2,1,kmato(ispec)) kappal = lambdal_relaxed + TWO * mul_relaxed/3._CUSTOM_REAL rhol = density(1,kmato(ispec)) endif enddo enddo ! ! second double-loop over GLL to compute all the terms ! do j = 1,NGLLZ do i = 1,NGLLX iglob = ibool(i,j,ispec) ! along x direction and z direction ! and assemble the contributions do k = 1,NGLLX if( AXISYM ) then if( is_on_the_axis(ispec) ) then b_potential_dot_dot_acoustic(iglob) = b_potential_dot_dot_acoustic(iglob) - & (tempx1(k,j) * hprimeBarwglj_xx(k,i) + tempx2(i,k) * hprimewgll_zz(k,j)) else b_potential_dot_dot_acoustic(iglob) = b_potential_dot_dot_acoustic(iglob) - & (tempx1(k,j) * hprimewgll_xx(k,i) + tempx2(i,k) * hprimewgll_zz(k,j)) endif else b_potential_dot_dot_acoustic(iglob) = b_potential_dot_dot_acoustic(iglob) - & (tempx1(k,j) * hprimewgll_xx(k,i) + tempx2(i,k) * hprimewgll_zz(k,j)) endif enddo enddo ! second loop over the GLL points enddo endif ! end of test if acoustic element enddo ! end of loop over all spectral elements ! !--- absorbing boundaries ! ! The outer boundary condition to use for PML elements in fluid layers is Neumann for the potential ! because we need Dirichlet conditions for the displacement vector, which means Neumann for the potential. ! Thus, there is nothing to enforce explicitly here. ! There is something to enforce explicitly only in the case of elastic elements, for which a Dirichlet ! condition is needed for the displacement vector, which is the vectorial unknown for these elements. ! for Stacey paraxial absorbing conditions (more precisely: Sommerfeld in the case of a fluid) we implement them here if( STACEY_BOUNDARY_CONDITIONS ) then do ispecabs=1,nelemabs ispec = numabs(ispecabs) ! Sommerfeld condition if acoustic if( acoustic(ispec) ) then !--- left absorbing boundary if( codeabs(IEDGE4,ispecabs) ) then i = 1 jbegin = ibegin_edge4(ispecabs) jend = iend_edge4(ispecabs) do j = jbegin,jend iglob = ibool(i,j,ispec) b_potential_dot_dot_acoustic(iglob) = b_potential_dot_dot_acoustic(iglob) - & b_absorb_acoustic_left(j,ib_left(ispecabs),NSTEP-it+1) enddo endif ! end of left absorbing boundary !--- right absorbing boundary if( codeabs(IEDGE2,ispecabs) ) then i = NGLLX jbegin = ibegin_edge2(ispecabs) jend = iend_edge2(ispecabs) do j = jbegin,jend iglob = ibool(i,j,ispec) ! adds (previously) stored contribution b_potential_dot_dot_acoustic(iglob) = b_potential_dot_dot_acoustic(iglob) - & b_absorb_acoustic_right(j,ib_right(ispecabs),NSTEP-it+1) enddo endif ! end of right absorbing boundary !--- bottom absorbing boundary if( codeabs(IEDGE1,ispecabs) ) then j = 1 ibegin = ibegin_edge1(ispecabs) iend = iend_edge1(ispecabs) ! exclude corners to make sure there is no contradiction on the normal if( codeabs_corner(1,ispecabs)) ibegin = 2 if( codeabs_corner(2,ispecabs)) iend = NGLLX-1 do i = ibegin,iend iglob = ibool(i,j,ispec) ! adds (previously) stored contribution b_potential_dot_dot_acoustic(iglob) = b_potential_dot_dot_acoustic(iglob) - & b_absorb_acoustic_bottom(i,ib_bottom(ispecabs),NSTEP-it+1) enddo endif ! end of bottom absorbing boundary !--- top absorbing boundary if( codeabs(IEDGE3,ispecabs) ) then j = NGLLZ ibegin = ibegin_edge3(ispecabs) iend = iend_edge3(ispecabs) ! exclude corners to make sure there is no contradiction on the normal if( codeabs_corner(3,ispecabs)) ibegin = 2 if( codeabs_corner(4,ispecabs)) iend = NGLLX-1 do i = ibegin,iend iglob = ibool(i,j,ispec) b_potential_dot_dot_acoustic(iglob) = b_potential_dot_dot_acoustic(iglob) - & b_absorb_acoustic_top(i,ib_top(ispecabs),NSTEP-it+1) enddo endif ! end of top absorbing boundary endif ! acoustic ispec enddo endif ! end of absorbing boundaries end subroutine compute_forces_acoustic_backward
{"hexsha": "f6dda70703ba1c02a5a85ac72c9aba83464af763", "size": 12304, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "specfem2d/src/specfem2D/compute_forces_acoustic_backward.f90", "max_stars_repo_name": "PanIGGCAS/SeisElastic2D_1.1", "max_stars_repo_head_hexsha": "2872dc514b638237771f4071195f7b8f90e0ce3d", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 11, "max_stars_repo_stars_event_min_datetime": "2020-10-04T01:55:41.000Z", "max_stars_repo_stars_event_max_datetime": "2021-11-14T05:20:50.000Z", "max_issues_repo_path": "specfem2d/src/specfem2D/compute_forces_acoustic_backward.f90", "max_issues_repo_name": "PanIGGCAS/SeisElastic2D_1.1", "max_issues_repo_head_hexsha": "2872dc514b638237771f4071195f7b8f90e0ce3d", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2020-10-31T03:36:34.000Z", "max_issues_repo_issues_event_max_datetime": "2021-05-27T09:36:13.000Z", "max_forks_repo_path": "specfem2d/src/specfem2D/compute_forces_acoustic_backward.f90", "max_forks_repo_name": "PanIGGCAS/SeisElastic2D_1.1", "max_forks_repo_head_hexsha": "2872dc514b638237771f4071195f7b8f90e0ce3d", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 8, "max_forks_repo_forks_event_min_datetime": "2020-12-15T02:04:58.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-15T21:48:35.000Z", "avg_line_length": 43.020979021, "max_line_length": 125, "alphanum_fraction": 0.6137028609, "num_tokens": 3365}
"""Utility functions""" from math import log, pow import numpy as np from ..exceptions import WaveletException def getExponent(value): """Returns the exponent for the data Ex: 8 -> 3 [2 ^ 3]""" return int(log(value) / log(2.)) def scalb(f, scaleFactor): """Return the scale for the factor""" return f * pow(2., scaleFactor) def isPowerOf2(number): """Checks if the length is equal to the power of 2""" power = getExponent(number) result = scalb(1., power) return result == number def decomposeArbitraryLength(number): """ Returns decomposition for the numbers Examples -------- number 42 : 32 + 8 + 2 powers : 5, 3, 1 """ if number < 1: raise WaveletException("Number should be greater than 1") tempArray = list() current = number position = 0 while current >= 1.: power = getExponent(current) tempArray.append(power) current = current - scalb(1., power) position += 1 return tempArray[:position] def threshold(data, value, substitute=0): """Soft thresholding""" magnitude = np.absolute(data) with np.errstate(divide='ignore'): # divide by zero okay as np.inf values get clipped, so ignore warning. thresholded = (1 - value / magnitude) thresholded.clip(min=0, max=None, out=thresholded) thresholded *= data if substitute == 0: return thresholded else: cond = np.less(magnitude, value) return np.where(cond, substitute, thresholded) def mad(data): """ Median Absolute Deviation: a "Robust" version of standard deviation. Indices variability of the sample. https://en.wikipedia.org/wiki/Median_absolute_deviation """ data = np.ma.array(data).compressed() med = np.median(data) return np.median(np.abs(data - med)) def snr(data, axis=0, ddof=0): """ Signal to Noise ratio simply given by mean / standard deviation """ a = np.asanyarray(data) m = a.mean(axis) sd = a.std(axis=axis, ddof=ddof) return np.where(sd == 0, 0, m / sd) def rmse(original, noise): """ Returns the root mean squared error between y and x signals """ return np.sqrt(np.mean(np.power(np.subtract(original, noise), 2))) def snr2(original, noise): with np.errstate(divide='ignore'): numerator = np.sum(np.power(original, 2)) denoiminator = np.sum(np.power(np.subtract(original, noise), 2)) return 10 * np.log10(np.divide(numerator, denoiminator)) def amp_to_db(S, ref=1.0, min_value=1e-5, top_db=80.0): """ Convert an amplitude spectrogram to dB-scaled spectrogram. This is equivalent to ``power_to_db(S**2)`` Parameters ---------- S : array_like input amplitude ref : scalar If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `20 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. min_value : float > 0 [scalar] minimum threshold for `S` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(20 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S`` measured in dB """ S = np.asarray(S) magnitude = np.abs(S) ref_value = np.abs(ref) power = np.square(magnitude, out=magnitude) return power_to_db(power, ref=ref_value ** 2, min_value=min_value ** 2, top_db=top_db) def power_to_db(S, ref=1.0, min_value=1e-10, top_db=80.0): """ Convert a power spectrogram (amplitude squared) to decibel (dB) units This computes the scaling ``10 * log10(S / ref)`` in a numerically stable way. Parameters ---------- S : np.ndarray input power ref : scalar If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `10 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. min_value : float > 0 [scalar] minimum threshold for `abs(S)` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(10 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S_db ~= 10 * log10(S) - 10 * log10(ref)`` """ S = np.asarray(S) if min_value <= 0: raise Exception('min must be strictly positive') if np.issubdtype(S.dtype, np.complexfloating): magnitude = np.abs(S) else: magnitude = S ref_value = np.abs(ref) log_spec = 10.0 * np.log10(np.maximum(min_value, magnitude)) log_spec -= 10.0 * np.log10(np.maximum(min_value, ref_value)) # scaling based on the top db if top_db is not None: if top_db < 0: raise Exception('top_db must be non-negative') log_spec = np.maximum(log_spec, log_spec.max() - top_db) return log_spec
{"hexsha": "fa345d02ad160b20613de5d8c9bc313a8e9e4cd8", "size": 4948, "ext": "py", "lang": "Python", "max_stars_repo_path": "wavelet/util/utility.py", "max_stars_repo_name": "AP-Atul/wavelets-ext", "max_stars_repo_head_hexsha": "00ced22462c369584ebd32f9b5f357f092de0142", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 4, "max_stars_repo_stars_event_min_datetime": "2021-02-01T07:43:10.000Z", "max_stars_repo_stars_event_max_datetime": "2021-04-27T06:58:54.000Z", "max_issues_repo_path": "wavelet/util/utility.py", "max_issues_repo_name": "AP-Atul/wavelets-ext", "max_issues_repo_head_hexsha": "00ced22462c369584ebd32f9b5f357f092de0142", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "wavelet/util/utility.py", "max_forks_repo_name": "AP-Atul/wavelets-ext", "max_forks_repo_head_hexsha": "00ced22462c369584ebd32f9b5f357f092de0142", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.9898989899, "max_line_length": 78, "alphanum_fraction": 0.6073160873, "include": true, "reason": "import numpy", "num_tokens": 1308}
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2016, 2017, 2018, 2019, 2020, 2021 Caleb Bell <Caleb.Andrew.Bell@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. This module contains implementations of most cubic equations of state for mixtures. This includes Peng-Robinson, SRK, Van der Waals, PRSV, TWU and many other variants. For reporting bugs, adding feature requests, or submitting pull requests, please use the `GitHub issue tracker <https://github.com/CalebBell/thermo/>`_. .. contents:: :local: Base Class ========== .. autoclass:: thermo.eos_mix.GCEOSMIX :members: :undoc-members: :show-inheritance: :exclude-members: a_alpha_and_derivatives_numpy, a_alpha_and_derivatives_py, main_derivatives_and_departures, derivatives_and_departures, sequential_substitution_3P, sequential_substitution_VL, stability_Michelsen, stability_iteration_Michelsen, newton_VL, broyden2_VL, d2A_dep_dninjs, d2A_dep_dninjs_Vt, d2A_dninjs_Vt, d2A_dninjs_Vt_another, d2P_dninjs_Vt, d2nA_dninjs_Vt, d3P_dninjnks_Vt, dScomp_dns, d2Scomp_dninjs, dA_dep_dns_Vt, dP_dns_Vt Peng-Robinson Family EOSs ========================= Standard Peng Robinson ---------------------- .. autoclass:: thermo.eos_mix.PRMIX :show-inheritance: :members: eos_pure, a_alphas_vectorized, a_alpha_and_derivatives_vectorized, d3a_alpha_dT3, d3a_alpha_dT3_vectorized, fugacity_coefficients, dlnphis_dT, dlnphis_dP, dlnphis_dzs, ddelta_dzs, ddelta_dns, d2delta_dzizjs, d2delta_dninjs, d3delta_dninjnks, depsilon_dzs, depsilon_dns, d2epsilon_dzizjs, d2epsilon_dninjs, d3epsilon_dninjnks Peng Robinson (1978) -------------------- .. autoclass:: thermo.eos_mix.PR78MIX :show-inheritance: :members: eos_pure Peng Robinson Stryjek-Vera -------------------------- .. autoclass:: thermo.eos_mix.PRSVMIX :show-inheritance: :members: eos_pure, a_alphas_vectorized, a_alpha_and_derivatives_vectorized Peng Robinson Stryjek-Vera 2 ---------------------------- .. autoclass:: thermo.eos_mix.PRSV2MIX :show-inheritance: :members: eos_pure, a_alphas_vectorized, a_alpha_and_derivatives_vectorized Peng Robinson Twu (1995) ------------------------ .. autoclass:: thermo.eos_mix.TWUPRMIX :show-inheritance: :members: eos_pure Peng Robinson Translated ------------------------ .. autoclass:: thermo.eos_mix.PRMIXTranslated :show-inheritance: :members: eos_pure, ddelta_dzs, d2delta_dzizjs, d3delta_dzizjzks, ddelta_dns, d2delta_dninjs, d3delta_dninjnks, depsilon_dzs, depsilon_dns, d2epsilon_dzizjs, d3epsilon_dzizjzks, d2epsilon_dninjs, d3epsilon_dninjnks Peng Robinson Translated-Consistent ----------------------------------- .. autoclass:: thermo.eos_mix.PRMIXTranslatedConsistent :show-inheritance: :members: eos_pure Peng Robinson Translated (Pina-Martinez, Privat, and Jaubert Variant) --------------------------------------------------------------------- .. autoclass:: thermo.eos_mix.PRMIXTranslatedPPJP :show-inheritance: :members: eos_pure SRK Family EOSs =============== Standard SRK ------------ .. autoclass:: thermo.eos_mix.SRKMIX :show-inheritance: :members: eos_pure, dlnphis_dT, dlnphis_dP, a_alphas_vectorized, a_alpha_and_derivatives_vectorized, fugacity_coefficients :exclude-members: Twu SRK (1995) -------------- .. autoclass:: thermo.eos_mix.TWUSRKMIX :show-inheritance: :members: eos_pure API SRK ------- .. autoclass:: thermo.eos_mix.APISRKMIX :show-inheritance: :members: eos_pure SRK Translated -------------- .. autoclass:: thermo.eos_mix.SRKMIXTranslated :show-inheritance: :members: eos_pure, ddelta_dzs, d2delta_dzizjs, d3delta_dzizjzks, ddelta_dns, d2delta_dninjs, d3delta_dninjnks, depsilon_dzs, depsilon_dns, d2epsilon_dzizjs, d3epsilon_dzizjzks, d2epsilon_dninjs, d3epsilon_dninjnks SRK Translated-Consistent ------------------------- .. autoclass:: thermo.eos_mix.SRKMIXTranslatedConsistent :show-inheritance: :members: eos_pure MSRK Translated --------------- .. autoclass:: thermo.eos_mix.MSRKMIXTranslated :show-inheritance: :members: eos_pure Cubic Equation of State with Activity Coefficients ================================================== .. autoclass:: thermo.eos_mix.PSRK :show-inheritance: :members: eos_pure Van der Waals Equation of State =============================== .. autoclass:: thermo.eos_mix.VDWMIX :show-inheritance: :members: eos_pure, dlnphis_dT, dlnphis_dP, a_alphas_vectorized, a_alpha_and_derivatives_vectorized, fugacity_coefficients, ddelta_dzs, ddelta_dns, d2delta_dzizjs, d2delta_dninjs, d3delta_dninjnks Redlich-Kwong Equation of State =============================== .. autoclass:: thermo.eos_mix.RKMIX :show-inheritance: :members: eos_pure, a_alphas_vectorized, a_alpha_and_derivatives_vectorized, ddelta_dzs, ddelta_dns, d2delta_dzizjs, d2delta_dninjs, d3delta_dninjnks Ideal Gas Equation of State =========================== .. autoclass:: thermo.eos_mix.IGMIX :show-inheritance: :members: eos_pure, a_alphas_vectorized, a_alpha_and_derivatives_vectorized Different Mixing Rules ====================== .. autoclass:: thermo.eos_mix.EpsilonZeroMixingRules .. autoclass:: thermo.eos_mix.PSRKMixingRules :members: u, A, a_alpha_and_derivatives :undoc-members: :show-inheritance: Lists of Equations of State =========================== .. autodata:: thermo.eos_mix.eos_mix_list .. autodata:: thermo.eos_mix.eos_mix_no_coeffs_list ''' from __future__ import division __all__ = ['GCEOSMIX', 'PRMIX', 'SRKMIX', 'PR78MIX', 'VDWMIX', 'PRSVMIX', 'PRSV2MIX', 'TWUPRMIX', 'TWUSRKMIX', 'APISRKMIX', 'IGMIX', 'RKMIX', 'PRMIXTranslatedConsistent', 'PRMIXTranslatedPPJP', 'PRMIXTranslated', 'SRKMIXTranslatedConsistent', 'PSRK', 'MSRKMIXTranslated', 'eos_mix_list', 'eos_mix_no_coeffs_list', 'SRKMIXTranslated'] import sys from cmath import log as clog from fluids.numerics import numpy as np, IS_PYPY, newton_system, broyden2, UnconvergedError, trunc_exp, solve_2_direct, catanh from fluids.numerics.arrays import det, subset_matrix from fluids.constants import R from chemicals.utils import normalize, dxs_to_dn_partials, dxs_to_dns, dns_to_dn_partials, d2xs_to_dxdn_partials, d2ns_to_dn2_partials from chemicals.utils import log, exp, sqrt from chemicals.rachford_rice import flash_inner_loop, Rachford_Rice_flash_error, Rachford_Rice_solution2 from chemicals.flash_basic import K_value, Wilson_K_value from thermo import serialize from thermo.eos_mix_methods import (a_alpha_aijs_composition_independent, a_alpha_aijs_composition_independent_support_zeros, a_alpha_and_derivatives, a_alpha_and_derivatives_full, a_alpha_quadratic_terms, a_alpha_and_derivatives_quadratic_terms, G_dep_lnphi_d_helper, eos_mix_dV_dzs, VDW_lnphis, SRK_lnphis, eos_mix_db_dns, PR_translated_ddelta_dns, PR_translated_depsilon_dns, PR_depsilon_dns, PR_translated_d2epsilon_dzizjs, PR_d2epsilon_dninjs, PR_d3epsilon_dninjnks, PR_d2delta_dninjs, PR_d3delta_dninjnks, PR_ddelta_dzs, PR_ddelta_dns, PR_d2epsilon_dzizjs, PR_depsilon_dzs, RK_d3delta_dninjnks, SRK_translated_d2epsilon_dzizjs, SRK_translated_depsilon_dzs, PR_translated_ddelta_dzs, PR_translated_depsilon_dzs, PR_translated_d2epsilon_dninjs, PR_translated_d2delta_dninjs, PR_translated_d3delta_dninjnks, PR_translated_d3epsilon_dninjnks, SRK_translated_ddelta_dns, SRK_translated_depsilon_dns, SRK_translated_d2delta_dninjs, SRK_translated_d2epsilon_dninjs, SRK_translated_d3epsilon_dninjnks, SRK_translated_d3delta_dninjnks) from thermo.eos_alpha_functions import (TwuPR95_a_alpha, TwuSRK95_a_alpha, Twu91_a_alpha, Mathias_Copeman_poly_a_alpha, Soave_1979_a_alpha, PR_a_alpha_and_derivatives_vectorized, PR_a_alphas_vectorized, RK_a_alpha_and_derivatives_vectorized, RK_a_alphas_vectorized, SRK_a_alpha_and_derivatives_vectorized, SRK_a_alphas_vectorized, PRSV_a_alphas_vectorized, PRSV_a_alpha_and_derivatives_vectorized, PRSV2_a_alphas_vectorized, PRSV2_a_alpha_and_derivatives_vectorized, APISRK_a_alphas_vectorized, APISRK_a_alpha_and_derivatives_vectorized) from thermo.eos import * try: (zeros, array, npexp, npsqrt, empty, full, npwhere, npmin, npmax) = ( np.zeros, np.array, np.exp, np.sqrt, np.empty, np.full, np.where, np.min, np.max) except: pass R2 = R*R R_inv = 1.0/R R2_inv = R_inv*R_inv two_root_two = 2*2**0.5 root_two = sqrt(2.) root_two_m1 = root_two - 1.0 root_two_p1 = root_two + 1.0 c1R2_PR = PR.c1R2 c2R_PR = PR.c2R class GCEOSMIX(GCEOS): r'''Class for solving a generic pressure-explicit three-parameter cubic equation of state for a mixture. Does not implement any parameters itself; must be subclassed by a mixture equation of state class which subclasses it. .. math:: P=\frac{RT}{V-b}-\frac{a\alpha(T)}{V^2 + \delta V + \epsilon} ''' nonstate_constants = ('N', 'cmps', 'Tcs', 'Pcs', 'omegas', 'kijs', 'kwargs', 'ais', 'bs') mix_kwargs_to_pure = {} kwargs_square = ('kijs',) '''Tuple of 2D arguments used by the specific EOS. ''' kwargs_linear = tuple() '''Tuple of 1D arguments used by the specific EOS in addition to the conventional ones. ''' multicomponent = True '''All inherited classes of GCEOSMIX are multicomponent. ''' scalar = True '''Whether the model is implemented using pure-Python lists of floats, or numpy arrays of float64. ''' translated = False '''Whether or not the model implements volume translation. ''' def subset(self, idxs, **state_specs): r'''Method to construct a new :obj:`GCEOSMIX` that removes all components not specified in the `idxs` argument. Parameters ---------- idxs : list[int] or Slice Indexes of components that should be included, [-] Returns ------- subset_eos : :obj:`GCEOSMIX` Multicomponent :obj:`GCEOSMIX` at the same specified specs but with a composition normalized to 1 and with fewer components, [-] state_specs : float Keyword arguments which can be any of `T`, `P`, `V`, `zs`; `zs` is optional, as are (`T`, `P`, `V`), but if any of (`T`, `P`, `V`) are specified, a second one is required as well, [various] Notes ----- Subclassing equations of state require their :obj:`kwargs_linear <GCEOSMIX.kwargs_linear>` and :obj:`kwargs_square <GCEOSMIX.kwargs_square>` attributes to be correct for this to work. `Tcs`, `Pcs`, and `omegas` are always assumed to be used. Examples -------- >>> kijs = [[0.0, 0.00076, 0.00171], [0.00076, 0.0, 0.00061], [0.00171, 0.00061, 0.0]] >>> PR3 = PRMIX(Tcs=[469.7, 507.4, 540.3], zs=[0.8168, 0.1501, 0.0331], omegas=[0.249, 0.305, 0.349], Pcs=[3.369E6, 3.012E6, 2.736E6], T=322.29, P=101325.0, kijs=kijs) >>> PR3.subset([1,2]) PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349], kijs=[[0.0, 0.00061], [0.00061, 0.0]], zs=[0.8193231441048036, 0.1806768558951965], T=322.29, P=101325.0) >>> PR3.subset([1,2], T=500.0, P=1e5, zs=[.2, .8]) PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349], kijs=[[0.0, 0.00061], [0.00061, 0.0]], zs=[0.2, 0.8], T=500.0, P=100000.0) >>> PR3.subset([1,2], zs=[.2, .8]) PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349], kijs=[[0.0, 0.00061], [0.00061, 0.0]], zs=[0.2, 0.8], T=322.29, P=101325.0) ''' is_slice = isinstance(idxs, slice) if is_slice: def atindexes(values): return values[idxs] else: def atindexes(values): return [values[i] for i in idxs] if state_specs: kwargs = state_specs if len(kwargs) == 1 and 'zs' in kwargs: kwargs.update(self.state_specs) else: kwargs = self.state_specs if 'zs' not in kwargs: zs = atindexes(self.zs) if not zs: raise ValueError("Cannot create an EOS without any components selected") zs_tot_inv = 1.0/sum(zs) for i in range(len(zs)): zs[i] *= zs_tot_inv kwargs['zs'] = zs kwargs['Tcs'] = atindexes(self.Tcs) kwargs['Pcs'] = atindexes(self.Pcs) kwargs['omegas'] = atindexes(self.omegas) local_kwargs = self.kwargs for k in self.kwargs_linear: kwargs[k] = atindexes(local_kwargs[k]) for k in self.kwargs_square: kwargs[k] = subset_matrix(local_kwargs[k], idxs) return self.__class__(**kwargs) def __repr__(self): s = '%s(Tcs=%s, Pcs=%s, omegas=%s, ' %(self.__class__.__name__, repr(self.Tcs), repr(self.Pcs), repr(self.omegas)) for k, v in self.kwargs.items(): s += '%s=%s, ' %(k, repr(v)) s += 'zs=%s, ' %(repr(self.zs)) if hasattr(self, 'no_T_spec') and self.no_T_spec: s += 'P=%s, V=%s' %(repr(self.P), repr(self.V)) elif self.V is not None: s += 'T=%s, V=%s' %(repr(self.T), repr(self.V)) else: s += 'T=%s, P=%s' %(repr(self.T), repr(self.P)) s += ')' return s @classmethod def from_json(cls, json_repr): r'''Method to create a mixture cubic equation of state from a JSON friendly serialization of another mixture cubic equation of state. Parameters ---------- json_repr : dict Json representation, [-] Returns ------- eos_mix : :obj:`GCEOSMIX` Newly created object from the json serialization, [-] Notes ----- It is important that the input string be in the same format as that created by :obj:`GCEOS.as_json`. Examples -------- >>> import pickle >>> eos = PRSV2MIX(Tcs=[507.6], Pcs=[3025000], omegas=[0.2975], zs=[1], T=299., P=1E6, kappa1s=[0.05104], kappa2s=[0.8634], kappa3s=[0.460]) >>> json_stuff = pickle.dumps(eos.as_json()) >>> new_eos = GCEOSMIX.from_json(pickle.loads(json_stuff)) >>> assert new_eos == eos ''' d = json_repr eos_name = d['py/object'] del d['py/object'] del d['json_version'] if not d['scalar']: d = serialize.naive_lists_to_arrays(d) try: d['raw_volumes'] = tuple(d['raw_volumes']) except: pass try: alpha_coeffs = [tuple(v) for v in d['alpha_coeffs']] d['alpha_coeffs'] = alpha_coeffs except: pass eos = eos_mix_full_path_dict[eos_name] if eos.kwargs_keys: d['kwargs'] = {k: d[k] for k in eos.kwargs_keys} try: d['kwargs']['alpha_coeffs'] = alpha_coeffs except: pass new = eos.__new__(eos) new.__dict__ = d return new def to_TP_zs_fast(self, T, P, zs, only_l=False, only_g=False, full_alphas=True): r'''Method to construct a new :obj:`GCEOSMIX` instance with the same parameters as the existing object. If both instances are at the same temperature, `a_alphas` and `da_alpha_dTs` and `d2a_alpha_dT2s` are shared between the instances. It is always assumed the new object has a differet composition. Optionally, only one set of phase properties can be solved for, increasing speed. Additionally, if `full_alphas` is set to False no temperature derivatives of `a_alpha` will be computed. Those derivatives are not needed in the context of a PT or PVF flash. Parameters ---------- T : float Temperature, [K] P : float Pressure, [Pa] zs : list[float] Mole fractions of each component, [-] only_l : bool When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set. only_g : bool When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set. Returns ------- eos : :obj:`GCEOSMIX` Multicomponent :obj:`GCEOSMIX` at the specified conditions [-] Notes ----- Examples -------- >>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.to_TP_zs_fast(T=300, P=1e5, zs=base.zs) RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.6, 0.4], T=300, P=100000.0) ''' copy_alphas = T == self.T new = self.__class__.__new__(self.__class__) new.N = self.N new.Tcs = self.Tcs new.Pcs = self.Pcs new.omegas = self.omegas new.kijs = self.kijs new.kwargs = self.kwargs new.ais = self.ais new.bs = self.bs new.scalar = self.scalar if copy_alphas: new.a_alphas = self.a_alphas try: new.da_alpha_dTs = self.da_alpha_dTs new.d2a_alpha_dT2s = self.d2a_alpha_dT2s except: pass new.zs = zs new.T = T new.P = P new.V = None new._fast_init_specific(self) new.solve(pure_a_alphas=(not copy_alphas), only_l=only_l, only_g=only_g, full_alphas=full_alphas) return new def to_TP_zs(self, T, P, zs, fugacities=True, only_l=False, only_g=False): r'''Method to construct a new :obj:`GCEOSMIX` instance at `T`, `P`, and `zs` with the same parameters as the existing object. Optionally, only one set of phase properties can be solved for, increasing speed. The fugacities calculation can be be skipped by by setting `fugacities` to False. Parameters ---------- T : float Temperature, [K] P : float Pressure, [Pa] zs : list[float] Mole fractions of each component, [-] fugacities : bool Whether or not to calculate and set the fugacities of each component, [-] only_l : bool When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set. only_g : bool When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set. Returns ------- eos : :obj:`GCEOSMIX` Multicomponent :obj:`GCEOSMIX` at the specified conditions [-] Notes ----- A check for whether or not `T`, `P`, and `zs` are the same as the existing instance is performed; if it is, the existing object is returned. Examples -------- >>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.to_TP_zs(T=300, P=1e5, zs=[.1, 0.9]) RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.1, 0.9], T=300, P=100000.0) ''' if T != self.T or P != self.P or zs != self.zs: return self.__class__(T=T, P=P, zs=zs, Tcs=self.Tcs, Pcs=self.Pcs, omegas=self.omegas, only_l=only_l, only_g=only_g, fugacities=fugacities, **self.kwargs) else: return self def to_PV_zs(self, P, V, zs, fugacities=True, only_l=False, only_g=False): r'''Method to construct a new :obj:`GCEOSMIX` instance at `P`, `V`, and `zs` with the same parameters as the existing object. Optionally, only one set of phase properties can be solved for, increasing speed. The fugacities calculation can be be skipped by by setting `fugacities` to False. Parameters ---------- P : float Pressure, [Pa] V : float Molar volume, [m^3/mol] zs : list[float] Mole fractions of each component, [-] fugacities : bool Whether or not to calculate and set the fugacities of each component, [-] only_l : bool When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set. only_g : bool When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set. Returns ------- eos : :obj:`GCEOSMIX` Multicomponent :obj:`GCEOSMIX` at the specified conditions [-] Notes ----- A check for whether or not `P`, `V`, and `zs` are the same as the existing instance is performed; if it is, the existing object is returned. Examples -------- >>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.to_PV_zs(V=0.004162, P=1e5, zs=[.1, 0.9]) RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.1, 0.9], P=100000.0, V=0.004162) ''' if P == self.P and V == self.V and zs == self.zs: return self return self.__class__(P=P, V=V, zs=zs, Tcs=self.Tcs, Pcs=self.Pcs, omegas=self.omegas, only_l=only_l, only_g=only_g, fugacities=fugacities, **self.kwargs) def to(self, zs=None, T=None, P=None, V=None, fugacities=True): r'''Method to construct a new :obj:`GCEOSMIX` object at two of `T`, `P` or `V` with the specified composition. In the event the specs match those of the current object, it will be returned unchanged. Parameters ---------- zs : list[float], optional Mole fractions of EOS, [-] T : float or None, optional Temperature, [K] P : float or None, optional Pressure, [Pa] V : float or None, optional Molar volume, [m^3/mol] fugacities : bool Whether or not to calculate fugacities, [-] Returns ------- obj : :obj:`GCEOSMIX` Pure component :obj:`GCEOSMIX` at the two specified specs, [-] Notes ----- Constructs the object with parameters `Tcs`, `Pcs`, `omegas`, and `kwargs`. Examples -------- >>> base = PRMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.to(T=300.0, P=1e9).state_specs {'T': 300.0, 'P': 1000000000.0} >>> base.to(T=300.0, V=1.0).state_specs {'T': 300.0, 'V': 1.0} >>> base.to(P=1e5, V=1.0).state_specs {'P': 100000.0, 'V': 1.0} ''' if zs is None: zs = self.zs if T is not None and P is not None: try: sln = self.to_TP_zs_fast(T, P, zs) if fugacities: sln.fugacities() return sln except: return self.to_TP_zs(T, P, zs, fugacities) elif T is not None and V is not None: if T == self.T and V == self.V and zs == self.zs: return self return self.__class__(T=T, V=V, zs=zs, Tcs=self.Tcs, Pcs=self.Pcs, omegas=self.omegas, fugacities=fugacities, **self.kwargs) elif P is not None and V is not None: return self.to_PV_zs(P, V, zs, fugacities) else: return self.__class__(T=T, P=P, V=V, zs=zs, Tcs=self.Tcs, Pcs=self.Pcs, omegas=self.omegas, fugacities=fugacities, **self.kwargs) def to_TP(self, T, P): r'''Method to construct a new :obj:`GCEOSMIX` object at the spcified `T` and `P` with the current composition. In the event the `T` and `P` match the current object's `T` and `P`, it will be returned unchanged. Parameters ---------- T : float Temperature, [K] P : float Pressure, [Pa] Returns ------- obj : :obj:`GCEOSMIX` Pure component :obj:`GCEOSMIX` at specified `T` and `P`, [-] Notes ----- Constructs the object with parameters `Tcs`, `Pcs`, `omegas`, and `kwargs`. Examples -------- >>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> new = base.to_TP(T=10.0, P=2000.0) >>> base.state_specs, new.state_specs ({'T': 500.0, 'P': 1000000.0}, {'T': 10.0, 'P': 2000.0}) ''' return self.to_TP_zs(T, P, zs=self.zs) def to_TV(self, T, V): r'''Method to construct a new :obj:`GCEOSMIX` object at the spcified `T` and `V` with the current composition. In the event the `T` and `V` match the current object's `T` and `V`, it will be returned unchanged. Parameters ---------- T : float Temperature, [K] V : float Molar volume, [m^3/mol] Returns ------- obj : :obj:`GCEOSMIX` Pure component :obj:`GCEOSMIX` at specified `T` and `V`, [-] Notes ----- Constructs the object with parameters `Tcs`, `Pcs`, `omegas`, and `kwargs`. Examples -------- >>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> new = base.to_TV(T=1000000.0, V=1.0) >>> base.state_specs, new.state_specs ({'T': 500.0, 'P': 1000000.0}, {'T': 1000000.0, 'V': 1.0}) ''' if T == self.T and V == self.V: return self return self.__class__(T=T, V=V, zs=self.zs, Tcs=self.Tcs, Pcs=self.Pcs, omegas=self.omegas, fugacities=True, **self.kwargs) def to_PV(self, P, V): r'''Method to construct a new :obj:`GCEOSMIX` object at the spcified `P` and `V` with the current composition. In the event the `P` and `V` match the current object's `P` and `V`, it will be returned unchanged. Parameters ---------- P : float Pressure, [Pa] V : float Molar volume, [m^3/mol] Returns ------- obj : :obj:`GCEOSMIX` Pure component :obj:`GCEOSMIX` at specified `P` and `V`, [-] Notes ----- Constructs the object with parameters `Tcs`, `Pcs`, `omegas`, and `kwargs`. Examples -------- >>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> new = base.to_PV(P=1000000.0, V=1.0) >>> base.state_specs, new.state_specs ({'T': 500.0, 'P': 1000000.0}, {'P': 1000000.0, 'V': 1.0}) ''' if V == self.V and P == self.P: return self return self.__class__(V=V, P=P, zs=self.zs, Tcs=self.Tcs, Pcs=self.Pcs, omegas=self.omegas, fugacities=True, **self.kwargs) def to_mechanical_critical_point(self): r'''Method to construct a new :obj:`GCEOSMIX` object at the current object's properties and composition, but which is at the mechanical critical point. Returns ------- obj : :obj:`GCEOSMIX` Pure component :obj:`GCEOSMIX` at mechanical critical point [-] Examples -------- >>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.to_mechanical_critical_point() RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.6, 0.4], T=151.861, P=3908737.9) ''' T, P = self.mechanical_critical_point() return self.to_TP_zs(T=T, P=P, zs=self.zs) def to_TPV_pure(self, i, T=None, P=None, V=None): r'''Helper method which returns a pure `EOSs` at the specs (two of `T`, `P` and `V`) and base EOS as the mixture for a particular index. Parameters ---------- i : int Index of specified compound, [-] T : float or None, optional Specified temperature, [K] P : float or None, optional Specified pressure, [Pa] V : float or None, optional Specified volume, [m^3/mol] Returns ------- eos_pure : eos A pure-species EOSs at the two specified `T`, `P`, and `V` for component `i`, [-] Notes ----- ''' kwargs = {} mix_kwargs_to_pure = self.mix_kwargs_to_pure for k, v in self.kwargs.items(): if k in mix_kwargs_to_pure: kwargs[mix_kwargs_to_pure[k]] = v[i] return self.eos_pure(T=T, P=P, V=V, Tc=self.Tcs[i], Pc=self.Pcs[i], omega=self.omegas[i], **kwargs) def pures(self): r'''Helper method which returns a list of pure `EOSs` at the same `T` and `P` and base EOS as the mixture. Returns ------- eos_pures : list[eos] A list of pure-species EOSs at the same `T` and `P` as the system, [-] Notes ----- This is useful for i.e. comparing mixture fugacities with the Lewis-Randall rule or when using an activity coefficient model which require pure component fugacities. ''' T, P, N = self.T, self.P, self.N return [self.to_TPV_pure(T=T, P=P, V=None, i=i) for i in range(N)] @property def pseudo_Tc(self): '''Apply a linear mole-fraction mixing rule to compute the average critical temperature, [K]. Examples -------- >>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.pseudo_Tc 151.9 ''' zs = self.zs Tcs = self.Tcs Tc = 0.0 for i in range(self.N): Tc += zs[i]*Tcs[i] return Tc @property def pseudo_Pc(self): '''Apply a linear mole-fraction mixing rule to compute the average critical pressure, [Pa]. Examples -------- >>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.pseudo_Pc 3878000.0 ''' zs = self.zs Pcs = self.Pcs Pc = 0.0 for i in range(self.N): Pc += zs[i]*Pcs[i] return Pc @property def pseudo_omega(self): '''Apply a linear mole-fraction mixing rule to compute the average `omega`, [-]. Examples -------- >>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.pseudo_omega 0.0284 ''' zs = self.zs omegas = self.omegas omega = 0.0 for i in range(self.N): omega += zs[i]*omegas[i] return omega @property def pseudo_a(self): '''Apply a linear mole-fraction mixing rule to compute the average `a` coefficient, [-]. Examples -------- >>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.6, 0.4]) >>> base.pseudo_a 0.17634464184 ''' zs = self.zs ais = self.ais a = 0.0 for i in range(self.N): a += zs[i]*ais[i] return a def Psat(self, T, polish=False): r'''Generic method to calculate vapor pressure of a pure-component equation of state for a specified `T`. An explicit solution is used unless `polish` is True. The result of this function has no physical meaning for multicomponent mixtures, and does not represent either a dew point or a bubble point! Parameters ---------- T : float Temperature, [K] polish : bool, optional Whether to attempt to use a numerical solver to make the solution more precise or not Returns ------- Psat : float Vapor pressure using the pure-component approach, [Pa] Notes ----- For multicomponent mixtures this may serve as a useful guess for the dew and the bubble pressure. ''' if self.N == 1: Tc, Pc, omega, a = self.Tcs[0], self.Pcs[0], self.omegas[0], self.ais[0] else: zs = self.zs Tcs, Pcs, omegas, ais = self.Tcs, self.Pcs, self.omegas, self.ais Tc, Pc, omega, a = 0.0, 0.0, 0.0, 0.0 for i in range(self.N): Tc += Tcs[i]*zs[i] Pc += Pcs[i]*zs[i] omega += omegas[i]*zs[i] a += ais[i]*zs[i] self.Tc, self.Pc, self.omega = Tc, Pc, omega self.a = a Psat = GCEOS.Psat(self, T, polish=False) del self.Tc, self.Pc, self.omega return Psat def a_alpha_and_derivatives(self, T, full=True, quick=True, pure_a_alphas=True): r'''Method to calculate `a_alpha` and its first and second derivatives for an EOS with the Van der Waals mixing rules. Uses the parent class's interface to compute pure component values. Returns `a_alpha`, `da_alpha_dT`, and `d2a_alpha_dT2`. For use in :obj:`solve_T <GCEOSMIX.solve_T>` this returns only `a_alpha` if `full` is False. .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} Parameters ---------- T : float Temperature, [K] full : bool, optional If False, calculates and returns only `a_alpha` quick : bool, optional Only the quick variant is implemented; it is little faster anyhow pure_a_alphas : bool, optional Whether or not to recalculate the a_alpha terms of pure components (for the case of mixtures only) which stay the same as the composition changes (i.e in a PT flash), [-] Returns ------- a_alpha : float Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dT : float Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2 : float Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] Notes ----- The exact expressions can be obtained with the following SymPy expression below, commented out for brevity. >>> from sympy import * # doctest:+SKIP >>> kij, T = symbols('kij, T ') # doctest:+SKIP >>> a_alpha_i, a_alpha_j = symbols('a_alpha_i, a_alpha_j', cls=Function) # doctest:+SKIP >>> a_alpha_ij = (1-kij)*sqrt(a_alpha_i(T)*a_alpha_j(T)) # doctest:+SKIP >>> diff(a_alpha_ij, T) # doctest:+SKIP >>> diff(a_alpha_ij, T, T) # doctest:+SKIP ''' if pure_a_alphas: if full: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = self.a_alpha_and_derivatives_vectorized(T) self.a_alphas, self.da_alpha_dTs, self.d2a_alpha_dT2s = a_alphas, da_alpha_dTs, d2a_alpha_dT2s else: self.a_alphas = a_alphas = self.a_alphas_vectorized(T) da_alpha_dTs = d2a_alpha_dT2s = None else: try: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = self.a_alphas, self.da_alpha_dTs, self.d2a_alpha_dT2s except: if full: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = self.a_alpha_and_derivatives_vectorized(T) self.a_alphas, self.da_alpha_dTs, self.d2a_alpha_dT2s = a_alphas, da_alpha_dTs, d2a_alpha_dT2s else: self.a_alphas = a_alphas = self.a_alphas_vectorized(T) da_alpha_dTs = d2a_alpha_dT2s = None if not IS_PYPY and self.N > 2000: return self.a_alpha_and_derivatives_numpy(a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, full=full, quick=quick) return self.a_alpha_and_derivatives_py(a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, full=full, quick=quick) def a_alpha_and_derivatives_py(self, a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, full=True, quick=True): # For 44 components, takes 150 us in PyPy.; 95 in pythran. Much of that is type conversions. # 4 ms pypy for 44*4, 1.3 ms for pythran, 10 ms python with numpy # 2 components 1.89 pypy, pythran 1.75 us, regular python 12.7 us. # 10 components - regular python 148 us, 9.81 us PyPy, 8.37 pythran in PyPy (flags have no effect; 14.3 us in regular python) zs, kijs, N = self.zs, self.kijs, self.N same_T = T == self.T if quick: try: assert same_T a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = self.a_alpha_ijs, self.a_alpha_roots, self.a_alpha_ij_roots_inv except (AttributeError, AssertionError): try: a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent(a_alphas, kijs) except ZeroDivisionError: a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent_support_zeros(a_alphas, kijs) self.a_alpha_ijs, self.a_alpha_roots, self.a_alpha_ij_roots_inv = a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv else: try: a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent(a_alphas, kijs) except: a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent_support_zeros(a_alphas, kijs) if same_T: self.a_alpha_ijs, self.a_alpha_roots, self.a_alpha_ij_roots_inv = a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv if full: try: a_alpha, da_alpha_dT, d2a_alpha_dT2, a_alpha_ijs, da_alpha_dT_ijs, d2a_alpha_dT2_ijs = a_alpha_and_derivatives_full(a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, zs, kijs, a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv) except: if self.N == 1: a_alpha, da_alpha_dT, d2a_alpha_dT2 = a_alphas[0], da_alpha_dTs[0], d2a_alpha_dT2s[0] d2a_alpha_dT2_ijs, da_alpha_dT_ijs, a_alpha_ijs = [[d2a_alpha_dT2s[0]]], [[da_alpha_dTs[0]]], [[a_alphas[0]]] self.d2a_alpha_dT2_ijs = d2a_alpha_dT2_ijs self.da_alpha_dT_ijs = da_alpha_dT_ijs self.a_alpha_ijs = a_alpha_ijs return a_alpha, da_alpha_dT, d2a_alpha_dT2 else: # Priority - test, fix, and validate a_alpha, _, a_alpha_ijs = a_alpha_and_derivatives(a_alphas, T, zs, kijs, a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv) self.da_alpha_dT_ijs = [] self.a_alpha_ijs = a_alpha_ijs return a_alpha # # DO NOT REMOVE THIS CODE! IT MAKES TIHNGS SLOWER IN PYPY, even though it never runs # cmps = self.cmps # da_alpha_dT, d2a_alpha_dT2 = 0.0, 0.0 # # a_alpha_ijs = [[None]*N for _ in cmps] # a_alpha_roots = [a_alpha_i**0.5 for a_alpha_i in a_alphas] # # if full: # a_alpha_ij_roots = [[None]*N for _ in cmps] # for i in cmps: # kijs_i = kijs[i] # a_alpha_i = a_alphas[i] # a_alpha_ijs_is = a_alpha_ijs[i] # a_alpha_ij_roots_i = a_alpha_ij_roots[i] # for j in cmps: # if j < i: # continue # a_alpha_ij_roots_i[j] = a_alpha_roots[i]*a_alpha_roots[j]#(a_alpha_i*a_alphas[j])**0.5 # a_alpha_ijs_is[j] = a_alpha_ijs[j][i] = (1. - kijs_i[j])*a_alpha_ij_roots_i[j] # else: # for i in cmps: # kijs_i = kijs[i] # a_alpha_i = a_alphas[i] # a_alpha_ijs_is = a_alpha_ijs[i] # for j in cmps: # if j < i: # continue # a_alpha_ijs_is[j] = a_alpha_ijs[j][i] = (1. - kijs_i[j])*a_alpha_roots[i]*a_alpha_roots[j] # # # Faster than an optimized loop in pypy even # z_products = [[zs[i]*zs[j] for j in cmps] for i in cmps] # # a_alpha = 0.0 # for i in cmps: # a_alpha_ijs_i = a_alpha_ijs[i] # z_products_i = z_products[i] # for j in cmps: # if j < i: # continue # elif i != j: # a_alpha += 2.0*a_alpha_ijs_i[j]*z_products_i[j] # else: # a_alpha += a_alpha_ijs_i[j]*z_products_i[j] # # # List comprehension tested to be faster in CPython not pypy ## a_alpha = sum([a_alpha_ijs[i][j]*z_products[i][j] ## for j in self.cmps for i in self.cmps]) # self.a_alpha_ijs = a_alpha_ijs # # da_alpha_dT_ijs = self.da_alpha_dT_ijs = [[None]*N for _ in cmps] # # if full: # for i in cmps: # kijs_i = kijs[i] # a_alphai = a_alphas[i] # z_products_i = z_products[i] # da_alpha_dT_i = da_alpha_dTs[i] # d2a_alpha_dT2_i = d2a_alpha_dT2s[i] # a_alpha_ij_roots_i = a_alpha_ij_roots[i] # for j in cmps: # if j < i: # # skip the duplicates # continue # a_alphaj = a_alphas[j] # x0 = a_alphai*a_alphaj # x0_05 = a_alpha_ij_roots_i[j] # zi_zj = z_products_i[j] # # x1 = a_alphai*da_alpha_dTs[j] # x2 = a_alphaj*da_alpha_dT_i # x1_x2 = x1 + x2 # x3 = 2.0*x1_x2 # # kij_m1 = kijs_i[j] - 1.0 # # da_alpha_dT_ij = -0.5*kij_m1*x1_x2/x0_05 # # # For temperature derivatives of fugacities # da_alpha_dT_ijs[i][j] = da_alpha_dT_ijs[j][i] = da_alpha_dT_ij # # da_alpha_dT_ij *= zi_zj # # d2a_alpha_dT2_ij = zi_zj*kij_m1*(-0.25*x0_05*(x0*( # 2.0*(a_alphai*d2a_alpha_dT2s[j] + a_alphaj*d2a_alpha_dT2_i) # + 4.*da_alpha_dT_i*da_alpha_dTs[j]) - x1*x3 - x2*x3 + x1_x2*x1_x2)/(x0*x0)) # # if i != j: # da_alpha_dT += da_alpha_dT_ij + da_alpha_dT_ij # d2a_alpha_dT2 += d2a_alpha_dT2_ij + d2a_alpha_dT2_ij # else: # da_alpha_dT += da_alpha_dT_ij # d2a_alpha_dT2 += d2a_alpha_dT2_ij # # return a_alpha, da_alpha_dT, d2a_alpha_dT2 # else: # return a_alpha def a_alpha_and_derivatives_py(self, a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, full=True, quick=True): zs, kijs, scalar, N = self.zs, self.kijs, self.scalar, self.N if scalar: self.a_alpha_roots = a_alpha_roots = [sqrt(i) for i in a_alphas] else: self.a_alpha_roots = a_alpha_roots = npsqrt(a_alphas) if full: # Converting kijs into a matrix kills the performance! 5x slower than the performance of the functions. # converting the 1d arrays also takes as long as the function. # a_alpha, da_alpha_dT, d2a_alpha_dT2, self.a_alpha_j_rows, self.da_alpha_dT_j_rows = ( # a_alpha_and_derivatives_quadratic_terms(np.array(a_alphas), np.array(a_alpha_roots), np.array(da_alpha_dTs), # np.array(d2a_alpha_dT2s), T, np.array(zs), np.array(kijs))) if scalar: a_alpha_j_rows, da_alpha_dT_j_rows = [0.0]*N, [0.0]*N else: a_alpha_j_rows, da_alpha_dT_j_rows = zeros(N), zeros(N) a_alpha, da_alpha_dT, d2a_alpha_dT2, self.a_alpha_j_rows, self.da_alpha_dT_j_rows = ( a_alpha_and_derivatives_quadratic_terms(a_alphas, a_alpha_roots, da_alpha_dTs, d2a_alpha_dT2s, T, zs, kijs, a_alpha_j_rows=a_alpha_j_rows, da_alpha_dT_j_rows=da_alpha_dT_j_rows)) return a_alpha, da_alpha_dT, d2a_alpha_dT2 else: # a_alpha, self.a_alpha_j_rows = a_alpha_quadratic_terms(np.array(a_alphas), np.array(a_alpha_roots), T, np.array(zs), np.array(kijs)) a_alpha_j_rows = [0.0]*N if scalar else zeros(N) a_alpha, self.a_alpha_j_rows = a_alpha_quadratic_terms(a_alphas, a_alpha_roots, T, zs, kijs, a_alpha_j_rows=a_alpha_j_rows) return a_alpha def a_alpha_and_derivatives_numpy(self, a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, full=True, quick=True): zs, kijs = self.zs, np.array(self.kijs) a_alphas = np.array(a_alphas) da_alpha_dTs = np.array(da_alpha_dTs) one_minus_kijs = 1.0 - kijs x0 = np.einsum('i,j', a_alphas, a_alphas) x0_05 = npsqrt(x0) a_alpha_ijs = (one_minus_kijs)*x0_05 z_products = np.einsum('i,j', zs, zs) a_alpha = np.einsum('ij,ji', a_alpha_ijs, z_products) if self.scalar: self.a_alpha_ijs = a_alpha_ijs.tolist() else: self.a_alpha_ijs = a_alpha_ijs if full: term0 = np.einsum('j,i', a_alphas, da_alpha_dTs) term7 = (one_minus_kijs)/(x0_05) da_alpha_dT = (z_products*term7*(term0)).sum() term1 = -x0_05/x0*(one_minus_kijs) term2 = np.einsum('i, j', a_alphas, da_alpha_dTs) main3 = da_alpha_dTs/(2.0*a_alphas)*term2 main4 = -np.einsum('i, j', a_alphas, d2a_alpha_dT2s) main6 = -0.5*np.einsum('i, j', da_alpha_dTs, da_alpha_dTs) # Needed for fugacity temperature derivative self.da_alpha_dT_ijs = (0.5*(term7)*(term2 + term0)).tolist() d2a_alpha_dT2 = (z_products*(term1*(main3 + main4 + main6))).sum() return float(a_alpha), float(da_alpha_dT), float(d2a_alpha_dT2) else: return float(a_alpha) def _spinodal_f(self, TPV): # TODO - use `self`, do not create new instance # Work to do - ethane', 'heptane # Specify V, solve P; increase V and keep going # After Effective utilization of equations of state for thermodynamic properties in process simulation '''eos = PRMIX(P=6e6, T=500, Tcs=[305.32, 540.2], Pcs=[4872000.0, 2740000.0], omegas=[0.098, 0.3457], zs=[.5, .5]) def to_solve(T): return eos.to(T=T, P=eos.P, zs=eos.zs)._spinodal_f([T, eos.P]) # Very well could be right eos.to(T=secant(to_solve, eos.T), P=eos.P, zs=eos.zs).rho_l # 3004.715984610371 ''' T, P, V = TPV eos_instance = self.to(T=T, P=P, V=V, zs=self.zs) RT_inv = 1.0/(R*eos_instance.T) if eos_instance.phase == 'l/g': if eos_instance.G_dep_l < eos_instance.G_dep_g: v = eos_instance.d2nA_dninjs_Vt('l') else: v = eos_instance.d2nA_dninjs_Vt('g') elif eos_instance.phase == 'g': v = eos_instance.d2nA_dninjs_Vt('g') else: v = eos_instance.d2nA_dninjs_Vt('l') dGs = [[i*RT_inv for i in row] for row in v] return det(dGs) def _spinodal_at(self, T=None, P=None, V=None): # TODO finish if T is not None: def to_solve(V): return self._spinodal_f((T, None, V)) if 1: from fluids.numerics import linspace Vs = linspace(self.b*(1+1e-7), self.b*1000, 1000) errs = [] for Vi in Vs: try: errs.append(abs(to_solve(Vi))) except: errs.append(1e5) import matplotlib.pyplot as plt plt.semilogy(Vs, errs) plt.show() a = 1 elif P is not None: def to_solve(V): return self._spinodal_f((None, P, V)) elif V is not None: def to_solve(T): return self._spinodal_f((T, None, V)) def _mechanical_critical_point_f_jac(self, TP): '''The criteria for c_goal and d_goal come from a cubic 'roots_cubic', which uses a `f`, `g`, and `h` parameter. When all of them are zero, all three roots are equal. For the eos (a=1), this results in the following system of equations: from sympy import * a = 1 b, c, d = symbols('b, c, d') f = ((3* c / a) - ((b ** 2) / (a ** 2))) / 3 g = (((2 * (b ** 3)) / (a ** 3)) - ((9* b * c) / (a **2)) + (27 * d / a)) /27 h = ((g ** 2) / 4 + (f ** 3) / 27)z solve([Eq(f, 0), Eq(g, 0), Eq(h, 0)], [b, c, d]) The solution (sympy struggled) is: c = b^2/3 d = b^3/27 These two variables switch sign at the criteria, so they work well with a root finding approach. Derived with: from sympy import * P, T, V, R, b_eos, alpha = symbols('P, T, V, R, b_eos, alpha') Tc, Pc, omega = symbols('Tc, Pc, omega') delta, epsilon = symbols('delta, epsilon') a_alpha = alpha(T) eta = b_eos B = b_eos*P/(R*T) deltas = delta*P/(R*T) thetas = a_alpha*P/(R*T)**2 epsilons = epsilon*(P/(R*T))**2 etas = eta*P/(R*T) b = (deltas - B - 1) c = (thetas + epsilons - deltas*(B + 1)) d = -(epsilons*(B + 1) + thetas*etas) c_goal = b*b/3 d_goal = b*b*b/27 F1 = c - c_goal F2 = d - d_goal cse([F1, F2, diff(F1, T), diff(F1, P), diff(F2, T), diff(F2, P)], optimizations='basic') Performance analysis: 77% of this is getting a_alpha and da_alpha_dT. 71% of the outer solver is getting f and this Jacobian. Limited results from optimizing the below code, which was derived with sympy. ''' T, P = float(TP[0]), float(TP[1]) b_eos, delta, epsilon = self.b, self.delta, self.epsilon eta = b_eos try: del self.a_alpha_ijs del self.a_alpha_roots del self.a_alpha_ij_roots_inv except: pass a_alpha, da_alpha_dT, _ = self.a_alpha_and_derivatives(T, full=True) x6 = R_inv x7 = 1.0/T x0 = a_alpha x1 = R_inv*R_inv x2 = x7*x7 x3 = x1*x2 x4 = P*P x5 = epsilon*x3*x4 x8 = P*x6*x7 x9 = delta*x8 x10 = b_eos*x8 x11 = x10 + 1.0 x12 = x11 - x9 x13 = x12*x12 x14 = P*x2*x6 x15 = da_alpha_dT x16 = x6*x7 x17 = x0*x16 x18 = 2.0*epsilon*x8 x19 = delta*x10 x20 = delta*x11 x21 = b_eos - delta x22 = 2.0/3.0*x12*x21 x23 = P*b_eos*x0*x1*x2 x24 = b_eos*x5 x25 = x11*x18 x26 = x13*x21/9.0 F1 = P*x0*x3 - x11*x9 - x13/3.0 + x5 F2 = -x11*x5 + x13*x12/27.0 - b_eos*x0*x4*x6*x1*x7*x2 dF1_dT = x14*(x15*x6 - 2.0*x17 - x18 + x19 + x20 + x22) dF1_dP = x16*(x17 + x18 - x19 - x20 - x22) dF2_dT = x14*(-P*b_eos*x1*x15*x7 + 3.0*x23 + x24 + x25 - x26) dF2_dP = x16*(-2.0*x23 - x24 - x25 + x26) return [F1, F2], [[dF1_dT, dF1_dP], [dF2_dT, dF2_dP]] def mechanical_critical_point(self): r'''Method to calculate the mechanical critical point of a mixture of defined composition. The mechanical critical point is where: .. math:: \frac{\partial P}{\partial \rho}|_T = \frac{\partial^2 P}{\partial \rho^2}|_T = 0 Returns ------- T : float Mechanical critical temperature, [K] P : float Mechanical critical temperature, [Pa] Notes ----- One useful application of the mechanical critical temperature is that the phase identification approach of Venkatarathnam is valid only up to it. Note that the equation of state, when solved at these conditions, will have fairly large (1e-3 - 1e-6) results for the derivatives; but they are the minimum. This is just from floating point precision. It can also be checked looking at the calculated molar volumes - all three (available with :obj:`sorted_volumes <GCEOSMIX.sorted_volumes>`) will be very close (1e-5 difference in practice), again differing because of floating point error. The algorithm here is a custom implementation, using Newton-Raphson's method with the initial guesses described in [1] (mole-weighted critical pressure average, critical temperature average using a quadratic mixing rule). Normally ~4 iterations are needed to solve the system. It is relatively fast, as only one evaluation of `a_alpha` and `da_alpha_dT` are needed per call to function and its jacobian. References ---------- .. [1] Watson, Harry A. J., and Paul I. Barton. "Reliable Flash Calculations: Part 3. A Nonsmooth Approach to Density Extrapolation and Pseudoproperty Evaluation." Industrial & Engineering Chemistry Research, November 11, 2017. https://doi.org/10.1021/acs.iecr.7b03233. .. [2] Mathias P. M., Boston J. F., and Watanasiri S. "Effective Utilization of Equations of State for Thermodynamic Properties in Process Simulation." AIChE Journal 30, no. 2 (June 17, 2004): 182-86. https://doi.org/10.1002/aic.690300203. ''' zs, Tcs, Pcs, N = self.zs, self.Tcs, self.Pcs, self.N Pmc = sum([Pcs[i]*zs[i] for i in range(N)]) Tmc = sum([sqrt(Tcs[i]*Tcs[j])*zs[j]*zs[i] for i in range(N) for j in range(N)]) TP, iterations = newton_system(self._mechanical_critical_point_f_jac, x0=[Tmc, Pmc], jac=True, ytol=1e-10, xtol=1e-12, solve_func=solve_2_direct) T, P = float(TP[0]), float(TP[1]) return T, P def fugacities(self, only_l=False, only_g=False): r'''Helper method for calculating fugacity coefficients for any phases present, using either the overall mole fractions for both phases or using specified mole fractions for each phase. Requires :obj:`fugacity_coefficients <GCEOSMIX.fugacity_coefficients>` to be implemented by each subclassing EOS. In addition to setting `fugacities_l` and/or `fugacities_g`, this also sets the fugacity coefficients `phis_l` and/or `phis_g`. .. math:: \hat \phi_i^g = \frac{\hat f_i^g}{y_i P} .. math:: \hat \phi_i^l = \frac{\hat f_i^l}{x_i P} Note that in a flash calculation, each phase requires their own EOS object. Parameters ---------- only_l : bool When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set. only_g : bool When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set. Notes ----- It is helpful to check that :obj:`fugacity_coefficients <GCEOSMIX.fugacity_coefficients>` has been implemented correctly using the following expression, from [1]_. .. math:: \ln \hat \phi_i = \left[\frac{\partial (n\ln \phi)}{\partial n_i}\right]_{T,P,n_j,V_t} For reference, several expressions for fugacity of a component are as follows, shown in [1]_ and [2]_. .. math:: \ln \hat \phi_i = \int_{0}^P\left(\frac{\hat V_i} {RT} - \frac{1}{P}\right)dP .. math:: \ln \hat \phi_i = \int_V^\infty \left[ \frac{1}{RT}\frac{\partial P}{ \partial n_i} - \frac{1}{V}\right] d V - \ln Z References ---------- .. [1] Hu, Jiawen, Rong Wang, and Shide Mao. "Some Useful Expressions for Deriving Component Fugacity Coefficients from Mixture Fugacity Coefficient." Fluid Phase Equilibria 268, no. 1-2 (June 25, 2008): 7-13. doi:10.1016/j.fluid.2008.03.007. .. [2] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985. ''' P, zs, scalar = self.P, self.zs, self.scalar if not only_g and hasattr(self, 'V_l'): self.lnphis_l = lnphis_l = self.fugacity_coefficients(self.Z_l) if scalar: try: self.phis_l = [exp(i) for i in lnphis_l] except: self.phis_l = [trunc_exp(i, trunc=1e308) for i in lnphis_l] self.fugacities_l = [phi*x*P for phi, x in zip(self.phis_l, zs)] else: self.phis_l = phis_l = npexp(lnphis_l) self.fugacities_l = zs*P*phis_l if not only_l and hasattr(self, 'V_g'): self.lnphis_g = lnphis_g = self.fugacity_coefficients(self.Z_g) if scalar: try: self.phis_g = phis_g = [exp(i) for i in lnphis_g] except: self.phis_g = phis_g = [trunc_exp(i, trunc=1e308) for i in lnphis_g] self.fugacities_g = [phi*y*P for phi, y in zip(phis_g, zs)] else: self.phis_g = phis_g = npexp(lnphis_g) self.fugacities_g = zs*P*phis_g def _eos_lnphis_lowest_Gibbs(self): try: try: if self.G_dep_l < self.G_dep_g: return self.lnphis_l, 'l' else: return self.lnphis_g, 'g' except: # Only one root - take it and set the prefered other phase to be a different type return (self.lnphis_g, 'g') if hasattr(self, 'Z_g') else (self.lnphis_l, 'l') except: self.fugacities() return self._eos_fugacities_lowest_Gibbs() def _eos_fugacities_lowest_Gibbs(self): # TODO delete with property_package.py try: try: if self.G_dep_l < self.G_dep_g: return self.fugacities_l, 'l' else: return self.fugacities_g, 'g' except: # Only one root - take it and set the prefered other phase to be a different type return (self.fugacities_g, 'g') if hasattr(self, 'Z_g') else (self.fugacities_l, 'l') except: self.fugacities() return self._eos_fugacities_lowest_Gibbs() def _dphi_dn(self, zi, i, phase): # obsolete, should be deleted z_copy = list(self.zs) z_copy.pop(i) z_sum = sum(z_copy) + zi z_copy = [j/z_sum if j else 0 for j in z_copy] z_copy.insert(i, zi) eos = self.to_TP_zs(self.T, self.P, z_copy) if phase == 'g': return eos.phis_g[i] elif phase == 'l': return eos.phis_l[i] def _dfugacity_dn(self, zi, i, phase): # obsolete, should be deleted z_copy = list(self.zs) z_copy.pop(i) z_sum = sum(z_copy) + zi z_copy = [j/z_sum if j else 0 for j in z_copy] z_copy.insert(i, zi) eos = self.to_TP_zs(self.T, self.P, z_copy) if phase == 'g': return eos.fugacities_g[i] elif phase == 'l': return eos.fugacities_l[i] def _Stateva_Tsvetkov_TPDF_broken(self, Zz, Zy, zs, ys): # TODO: delete z_log_fugacity_coefficients = self.fugacity_coefficients(Zz) y_log_fugacity_coefficients = self.fugacity_coefficients(Zy) kis = [] for yi, phi_yi, zi, phi_zi in zip(ys, y_log_fugacity_coefficients, zs, z_log_fugacity_coefficients): di = log(zi) + phi_zi try: ki = phi_yi + log(yi) - di except ValueError: ki = phi_yi + log(1e-200) - di kis.append(ki) kis.append(kis[0]) tot = 0.0 for i in range(self.N): t = kis[i+1] - kis[i] tot += t*t return tot def _d_TPD_Michelson_modified(self, Zz, Zy, zs, alphas): r'''Modified objective function for locating the minima of the Tangent Plane Distance function according to [1]_, also shown in [2]_ [2]_. The stationary points of a system are all zeros of this function; so once all zeroes have been located, the stability can be evaluated at the stationary points only. It may be required to use multiple guesses to find all stationary points, and there is no method of confirming all points have been found. This method does not alter the state of the object. .. math:: \frac{\partial \; TPD^*}{\partial \alpha_i} = \sqrt{Y_i} \left[ \ln \phi_i(Y) + \ln(Y_i) - h_i\right] .. math:: \alpha_i = 2 \sqrt{Y_i} .. math:: d_i(z) = \ln z_i + \ln \phi_i(z) Parameters ---------- Zz : float Compressibility factor of the phase undergoing stability testing, (`test` phase), [-] Zy : float Compressibility factor of the trial phase, [-] zs : list[float] Mole fraction composition of the phase undergoing stability testing (`test` phase), [-] alphas : list[float] Twice the square root of the mole numbers of each component, [mol^0.5] Returns ------- err : float Error in solving for stationary points according to the modified TPD method in [1]_, [-] Notes ----- This method is particularly useful because it is not a constrained objective function. This has been verified to return the same roots as other stationary point methods. References ---------- .. [1] Michelsen, Michael L. "The Isothermal Flash Problem. Part I. Stability." Fluid Phase Equilibria 9, no. 1 (December 1982): 1-19. .. [2] Qiu, Lu, Yue Wang, Qi Jiao, Hu Wang, and Rolf D. Reitz. "Development of a Thermodynamically Consistent, Robust and Efficient Phase Equilibrium Solver and Its Validations." Fuel 115 (January 1, 2014): 1-16 ''' # TODO: delete Ys = [(alpha/2.)**2 for alpha in alphas] ys = normalize(Ys) z_log_fugacity_coefficients = self.fugacity_coefficients(Zz) y_log_fugacity_coefficients = self.fugacity_coefficients(Zy) tot = 0 for Yi, phi_yi, zi, phi_zi in zip(Ys, y_log_fugacity_coefficients, zs, z_log_fugacity_coefficients): di = log(zi) + phi_zi if Yi != 0: diff = Yi**0.5*(log(Yi) + phi_yi - di) tot += abs(diff) return tot # def TDP_Michelsen(self, phase): # # z_log_fugacity_coefficients = self.fugacity_coefficients(Zz, zs) # y_log_fugacity_coefficients = self.fugacity_coefficients(Zy, ys) # tot = 0 # for yi, phi_yi, zi, phi_zi in zip(ys, y_log_fugacity_coefficients, zs, z_log_fugacity_coefficients): # hi = di = log(zi) + phi_zi # same as di # # k = log(yi) + phi_yi - hi # # Michaelsum doesn't do the exponents. # Yi = exp(-k)*yi # tot += Yi*(log(Yi) + phi_yi - hi - 1.) # # return 1. + tot # def TDP_Michelsen_modified(self, Zz, Zy, zs, Ys): # # https://www.e-education.psu.edu/png520/m17_p7.html # # Might as well continue # Ys = [abs(float(Yi)) for Yi in Ys] # # Ys only need to be positive # ys = normalize(Ys) # # z_log_fugacity_coefficients = self.fugacity_coefficients(Zz, zs) # y_log_fugacity_coefficients = self.fugacity_coefficients(Zy, ys) # # tot = 0 # for Yi, phi_yi, yi, zi, phi_zi in zip(Ys, y_log_fugacity_coefficients, ys, zs, z_log_fugacity_coefficients): # hi = di = log(zi) + phi_zi # same as di # tot += Yi*(log(Yi) + phi_yi - di - 1.) # return (1. + tot) # # Another formulation, returns the same answers. ## tot += yi*(log(sum(Ys)) +log(yi)+ log(phi_yi) - di - 1.) ## return (1. + sum(Ys)*tot)*1e15 def solve_T(self, P, V, quick=True, solution=None): r'''Generic method to calculate `T` from a specified `P` and `V`. Provides SciPy's `newton` solver, and iterates to solve the general equation for `P`, recalculating `a_alpha` as a function of temperature using :obj:`a_alpha_and_derivatives <GCEOSMIX.a_alpha_and_derivatives>` each iteration. Parameters ---------- P : float Pressure, [Pa] V : float Molar volume, [m^3/mol] quick : bool, optional Unimplemented, although it may be possible to derive explicit expressions as done for many pure-component EOS solution : str or None, optional 'l' or 'g' to specify a liquid of vapor solution (if one exists); if None, will select a solution more likely to be real (closer to STP, attempting to avoid temperatures like 60000 K or 0.0001 K). Returns ------- T : float Temperature, [K] ''' # -4 goes back from object, GCEOS return super(type(self).__mro__[-3], self).solve_T(P=P, V=V, solution=solution) def _err_VL_jacobian(self, lnKsVF, T, P, zs, near_critical=False, err_also=False, info=None): if info is None: info = [] N = self.N lnKs = lnKsVF[:-1] Ks = [exp(lnKi) for lnKi in lnKs] VF = float(lnKsVF[-1]) xs = [zi/(1.0 + VF*(Ki - 1.0)) for zi, Ki in zip(zs, Ks)] ys = [Ki*xi for Ki, xi in zip(Ks, xs)] eos_g = self.to_TP_zs_fast(T=T, P=P, zs=ys, only_g=True) # eos_l = self.to_TP_zs_fast(T=T, P=P, zs=xs, only_l=True) # # eos_g = self.to_TP_zs(T=T, P=P, zs=ys) # eos_l = self.to_TP_zs(T=T, P=P, zs=xs) if not near_critical: # lnphis_g = eos_g.lnphis_g # lnphis_l = eos_l.lnphis_l Z_g = eos_g.Z_g Z_l = eos_l.Z_l else: try: # lnphis_g = eos_g.lnphis_g Z_g = eos_g.Z_g except AttributeError: # lnphis_g = eos_g.lnphis_l Z_g = eos_g.Z_l try: # lnphis_l = eos_l.lnphis_l Z_l = eos_l.Z_l except AttributeError: # lnphis_l = eos_l.lnphis_g Z_l = eos_l.Z_g lnphis_g = eos_g.fugacity_coefficients(Z_g) lnphis_l = eos_l.fugacity_coefficients(Z_l) size = N + 1 J = [[None]*size for i in range(size)] # d_lnphi_dzs_basic_num # d_lnphi_dxs = eos_l.d_lnphi_dzs_basic_num(Z_l, xs) # d_lnphi_dys = eos_g.d_lnphi_dzs_basic_num(Z_g, ys) d_lnphi_dxs = eos_l.dlnphis_dzs(Z_l) d_lnphi_dys = eos_g.dlnphis_dzs(Z_g) # # Handle the zeros and the ones # Half of this is probably wrong! Only gets set for one set of variables? # Numerical jacobian not good enough to tell # for i in range(self.N): # J[i][-2] = 0.0 # J[-2][i] = 0.0 J[N][N] = 1.0 # Last column except last value; believed correct # Was not correct when compared to numerical solution Ksm1 = [Ki - 1.0 for Ki in Ks] RR_denoms_inv2 = [] for i in range(N): t = 1.0 + VF*Ksm1[i] RR_denoms_inv2.append(1.0/(t*t)) RR_terms = [zs[k]*Ksm1[k]*RR_denoms_inv2[k] for k in range(N)] for i in range(N): value = 0.0 d_lnphi_dxs_i, d_lnphi_dys_i = d_lnphi_dxs[i], d_lnphi_dys[i] for k in range(N): # pretty sure indexing is right in the below expression value += RR_terms[k]*(d_lnphi_dxs_i[k] - Ks[k]*d_lnphi_dys_i[k]) J[i][-1] = value # print(value) # def delta(k, j): # if k == j: # return 1.0 # return 0.0 # Main body - expensive to compute! Lots of elements # Can flip around the indexing of i, j on the d_lnphi_ds but still no fix # unsure of correct order! # Reveals bugs in d_lnphi_dxs though. zsKsRRinvs2 = [zs[j]*Ks[j]*RR_denoms_inv2[j] for j in range(N)] one_m_VF = 1.0 - VF for i in range(N): # to N is CORRECT/MATCHES JACOBIAN NUMERICALLY Ji = J[i] d_lnphi_dxs_is, d_lnphi_dys_is = d_lnphi_dxs[i], d_lnphi_dys[i] for j in range(N): # to N is CORRECT/MATCHES JACOBIAN NUMERICALLY value = 1.0 if i == j else 0.0 # value = 0.0 # value += delta(i, j) # print(i, j, value) # Maybe if i == j, can skip the bit below? Tried it once and the solver never converged # term = zs[j]*Ks[j]*RR_denoms_inv2[j] value += zsKsRRinvs2[j]*(VF*d_lnphi_dxs_is[j] + one_m_VF*d_lnphi_dys_is[j]) Ji[j] = value # Last row except last value - good, working # Diff of RR w.r.t each log K bottom_row = J[-1] for j in range(N): # value = 0.0 # RR_l = # RR_l = -Ks[j]*zs[j]*VF/(1.0 + VF*(Ks[j] - 1.0))**2.0 # RR_g = Ks[j]*(1.0 - VF)*zs[j]/(1.0 + VF*(Ks[j] - 1.0))**2.0 # value += # -RR_l bottom_row[j] = zsKsRRinvs2[j]*(one_m_VF) + VF*zsKsRRinvs2[j] # Last row except last value - good, working # bottom_row = J[-1] # for j in range(self.N): # value = 0.0 # for k in range(self.N): # if k == j: # RR_l = -Ks[j]*zs[k]*VF/(1.0 + VF*(Ks[k] - 1.0))**2.0 # RR_g = Ks[j]*(1.0 - VF)*zs[k]/(1.0 + VF*(Ks[k] - 1.0))**2.0 # value += RR_g - RR_l # bottom_row[j] = value # # Last value - good, working, being overwritten dF_ncp1_dB = 0.0 for i in range(N): dF_ncp1_dB -= RR_terms[i]*Ksm1[i] J[-1][-1] = dF_ncp1_dB info[:] = VF, xs, ys, eos_l, eos_g if err_also: err_RR = Rachford_Rice_flash_error(VF, zs, Ks) Fs = [lnKi - lnphi_l + lnphi_g for lnphi_l, lnphi_g, lnKi in zip(lnphis_l, lnphis_g, lnKs)] Fs.append(err_RR) return Fs, J return J def _err_VL(self, lnKsVF, T, P, zs, near_critical=False, info=None): # import numpy as np # tried autograd without luck lnKs = lnKsVF[:-1] # if isinstance(lnKs, np.ndarray): # lnKs = lnKs.tolist() # Ks = np.exp(lnKs) Ks = [exp(lnKi) for lnKi in lnKs] VF = float(lnKsVF[-1]) # VF = lnKsVF[-1] if info is None: info = [] xs = [zi/(1.0 + VF*(Ki - 1.0)) for zi, Ki in zip(zs, Ks)] ys = [Ki*xi for Ki, xi in zip(Ks, xs)] err_RR = Rachford_Rice_flash_error(VF, zs, Ks) eos_g = self.to_TP_zs_fast(T=T, P=P, zs=ys, only_g=True) # eos_g.fugacities() eos_l = self.to_TP_zs_fast(T=T, P=P, zs=xs, only_l=True) # eos_l.fugacities() if not near_critical: lnphis_g = eos_g.lnphis_g lnphis_l = eos_l.lnphis_l else: try: lnphis_g = eos_g.lnphis_g except AttributeError: lnphis_g = eos_g.lnphis_l try: lnphis_l = eos_l.lnphis_l except AttributeError: lnphis_l = eos_l.lnphis_g # Fs = [fl/fg-1.0 for fl, fg in zip(fugacities_l, fugacities_g)] Fs = [lnKi - lnphi_l + lnphi_g for lnphi_l, lnphi_g, lnKi in zip(lnphis_l, lnphis_g, lnKs)] Fs.append(err_RR) info[:] = VF, xs, ys, eos_l, eos_g return Fs def sequential_substitution_3P(self, Ks_y, Ks_z, beta_y, beta_z=0.0, maxiter=1000, xtol=1E-13, near_critical=True, xs=None, ys=None, zs=None, trivial_solution_tol=1e-5): print(Ks_y, Ks_z, beta_y, beta_z) beta_y, beta_z, xs_new, ys_new, zs_new = Rachford_Rice_solution2(ns=self.zs, Ks_y=Ks_y, Ks_z=Ks_z, beta_y=beta_y, beta_z=beta_z) print(beta_y, beta_z, xs_new, ys_new, zs_new) Ks_y = [exp(lnphi_x - lnphi_y) for lnphi_x, lnphi_y in zip(lnphis_x, lnphis_y)] Ks_z = [exp(lnphi_x - lnphi_z) for lnphi_x, lnphi_z in zip(lnphis_x, lnphis_z)] def newton_VL(self, Ks_initial=None, maxiter=30, ytol=1E-7, near_critical=True, xs=None, ys=None, V_over_F=None): T, P, zs = self.T, self.P, self.zs if xs is not None and ys is not None and V_over_F is not None: pass else: if Ks_initial is None: Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] else: Ks = Ks_initial V_over_F, xs, ys = flash_inner_loop(zs, Ks) lnKs_guess = [log(yi/xi) for yi, xi in zip(ys, xs)] + [V_over_F] info = [] def err_and_jacobian(lnKs_guess): err = self._err_VL_jacobian(lnKs_guess, T, P, zs, near_critical=True, err_also=True, info=info) # print(lnKs_guess[-1], err[0]) return err ans, count = newton_system(err_and_jacobian, jac=True, x0=lnKs_guess, ytol=ytol, maxiter=maxiter) V_over_F, xs, ys, eos_l, eos_g = info return V_over_F, xs, ys, eos_l, eos_g def broyden2_VL(self, Ks_initial=None, maxiter=30, ytol=1E-7, xtol=1e-8, near_critical=True, xs=None, ys=None, V_over_F=None): T, P, zs = self.T, self.P, self.zs if xs is not None and ys is not None and V_over_F is not None: pass else: if Ks_initial is None: Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] else: Ks = Ks_initial V_over_F, xs, ys = flash_inner_loop(zs, Ks) lnKs_guess = [log(yi/xi) for yi, xi in zip(ys, xs)] + [V_over_F] info = [] def err_and_jacobian(lnKs_guess): err = self._err_VL_jacobian(lnKs_guess, T, P, zs, near_critical=near_critical, err_also=True, info=info) # print(lnKs_guess[-1], err[0]) return err[0], err[1] def err(lnKs_guess): err = self._err_VL(lnKs_guess, T, P, zs, near_critical=near_critical, info=info) # print(lnKs_guess[-1], err[0]) return err ans, count = broyden2(fun=err, jac=err_and_jacobian, xs=lnKs_guess, xtol=xtol, maxiter=maxiter, jac_has_fun=True, skip_J=True) V_over_F, xs, ys, eos_l, eos_g = info return V_over_F, xs, ys, eos_l, eos_g, count def sequential_substitution_VL(self, Ks_initial=None, maxiter=1000, xtol=1E-13, near_critical=True, Ks_extra=None, xs=None, ys=None, trivial_solution_tol=1e-5, info=None, full_alphas=False): # print(self.zs, Ks) T, P, zs = self.T, self.P, self.zs V_over_F = None if xs is not None and ys is not None: pass else: # TODO use flash_wilson here if Ks_initial is None: Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] else: Ks = Ks_initial xs = None try: V_over_F, xs, ys = flash_inner_loop(zs, Ks) except ValueError as e: if Ks_extra is not None: for Ks in Ks_extra: try: V_over_F, xs, ys = flash_inner_loop(zs, Ks) break except ValueError as e: pass if xs is None: raise(e) # print(xs, ys, 'innerloop') # Z_l_prev = None # Z_g_prev = None for i in range(maxiter): if not near_critical: eos_g = self.to_TP_zs_fast(T=T, P=P, zs=ys, only_l=False, only_g=True, full_alphas=full_alphas) eos_l = self.to_TP_zs_fast(T=T, P=P, zs=xs, only_l=True, only_g=False, full_alphas=full_alphas) lnphis_g = eos_g.fugacity_coefficients(eos_g.Z_g) lnphis_l = eos_l.fugacity_coefficients(eos_l.Z_l) else: eos_g = self.to_TP_zs_fast(T=T, P=P, zs=ys, only_l=False, only_g=True, full_alphas=full_alphas) eos_l = self.to_TP_zs_fast(T=T, P=P, zs=xs, only_l=True, only_g=False, full_alphas=full_alphas) try: lnphis_g = eos_g.fugacity_coefficients(eos_g.Z_g) except AttributeError: lnphis_g = eos_g.fugacity_coefficients(eos_g.Z_l) try: lnphis_l = eos_l.fugacity_coefficients(eos_l.Z_l) except AttributeError: lnphis_l = eos_l.fugacity_coefficients(eos_l.Z_g) # eos_g = self.to_TP_zs(T=self.T, P=self.P, zs=ys) # eos_l = self.to_TP_zs(T=self.T, P=self.P, zs=xs) # if 0: # if hasattr(eos_g, 'lnphis_g') and hasattr(eos_g, 'lnphis_l'): # if Z_l_prev is not None and Z_g_prev is not None: # if abs(eos_g.Z_g - Z_g_prev) < abs(eos_g.Z_l - Z_g_prev): # lnphis_g = eos_g.lnphis_g # fugacities_g = eos_g.fugacities_g # Z_g_prev = eos_g.Z_g # else: # lnphis_g = eos_g.lnphis_l # fugacities_g = eos_g.fugacities_l # Z_g_prev = eos_g.Z_l # else: # if eos_g.G_dep_g < eos_g.lnphis_l: # lnphis_g = eos_g.lnphis_g # fugacities_g = eos_g.fugacities_g # Z_g_prev = eos_g.Z_g # else: # lnphis_g = eos_g.lnphis_l # fugacities_g = eos_g.fugacities_l # Z_g_prev = eos_g.Z_l # else: # try: # lnphis_g = eos_g.lnphis_g#fugacity_coefficients(eos_g.Z_g, ys) # fugacities_g = eos_g.fugacities_g # Z_g_prev = eos_g.Z_g # except AttributeError: # lnphis_g = eos_g.lnphis_l#fugacity_coefficients(eos_g.Z_l, ys) # fugacities_g = eos_g.fugacities_l # Z_g_prev = eos_g.Z_l # if hasattr(eos_l, 'lnphis_g') and hasattr(eos_l, 'lnphis_l'): # if Z_l_prev is not None and Z_g_prev is not None: # if abs(eos_l.Z_l - Z_l_prev) < abs(eos_l.Z_g - Z_l_prev): # lnphis_l = eos_l.lnphis_g # fugacities_l = eos_l.fugacities_g # Z_l_prev = eos_l.Z_g # else: # lnphis_l = eos_l.lnphis_l # fugacities_l = eos_l.fugacities_l # Z_l_prev = eos_l.Z_l # else: # if eos_l.G_dep_g < eos_l.lnphis_l: # lnphis_l = eos_l.lnphis_g # fugacities_l = eos_l.fugacities_g # Z_l_prev = eos_l.Z_g # else: # lnphis_l = eos_l.lnphis_l # fugacities_l = eos_l.fugacities_l # Z_l_prev = eos_l.Z_l # else: # try: # lnphis_l = eos_l.lnphis_g#fugacity_coefficients(eos_l.Z_g, ys) # fugacities_l = eos_l.fugacities_g # Z_l_prev = eos_l.Z_g # except AttributeError: # lnphis_l = eos_l.lnphis_l#fugacity_coefficients(eos_l.Z_l, ys) # fugacities_l = eos_l.fugacities_l # Z_l_prev = eos_l.Z_l # elif 0: # if hasattr(eos_g, 'lnphis_g') and hasattr(eos_g, 'lnphis_l'): # if eos_g.G_dep_g < eos_g.lnphis_l: # lnphis_g = eos_g.lnphis_g # fugacities_g = eos_g.fugacities_g # else: # lnphis_g = eos_g.lnphis_l # fugacities_g = eos_g.fugacities_l # else: # try: # lnphis_g = eos_g.lnphis_g#fugacity_coefficients(eos_g.Z_g, ys) # fugacities_g = eos_g.fugacities_g # except AttributeError: # lnphis_g = eos_g.lnphis_l#fugacity_coefficients(eos_g.Z_l, ys) # fugacities_g = eos_g.fugacities_l # # if hasattr(eos_l, 'lnphis_g') and hasattr(eos_l, 'lnphis_l'): # if eos_l.G_dep_g < eos_l.lnphis_l: # lnphis_l = eos_l.lnphis_g # fugacities_l = eos_l.fugacities_g # else: # lnphis_l = eos_l.lnphis_l # fugacities_l = eos_l.fugacities_l # else: # try: # lnphis_l = eos_l.lnphis_g#fugacity_coefficients(eos_l.Z_g, ys) # fugacities_l = eos_l.fugacities_g # except AttributeError: # lnphis_l = eos_l.lnphis_l#fugacity_coefficients(eos_l.Z_l, ys) # fugacities_l = eos_l.fugacities_l # # else: # print(phis_l, phis_g, 'phis') Ks = [exp(l - g) for l, g in zip(lnphis_l, lnphis_g)] # K_value(phi_l=l, phi_g=g) # print(Ks) # Hack - no idea if this will work # maxK = max(Ks) # if maxK < 1: # Ks[Ks.index(maxK)] = 1.1 # minK = min(Ks) # if minK >= 1: # Ks[Ks.index(minK)] = .9 # print(Ks, 'Ks into RR') V_over_F, xs_new, ys_new = flash_inner_loop(zs, Ks, guess=V_over_F) # if any(i < 0 for i in xs_new): # print('hil', xs_new) # # if any(i < 0 for i in ys_new): # print('hig', ys_new) for xi in xs_new: if xi < 0.0: xs_new_sum = sum(abs(i) for i in xs_new) xs_new = [abs(i)/xs_new_sum for i in xs_new] break for yi in ys_new: if yi < 0.0: ys_new_sum = sum(abs(i) for i in ys_new) ys_new = [abs(i)/ys_new_sum for i in ys_new] break # Claimed error function in CONVENTIONAL AND RAPID FLASH CALCULATIONS FOR THE SOAVE-REDLICH-KWONG AND PENG-ROBINSON EQUATIONS OF STATE err3 = 0.0 # Suggested tolerance 1e-15 for Ki, xi, yi in zip(Ks, xs, ys): # equivalent of fugacity ratio # Could divide by the old Ks as well. err_i = Ki*xi/yi - 1.0 err3 += err_i*err_i # or use absolute for tolerance... # err2 = sum([(exp(l-g)-1.0)**2 ]) # err2 = 0.0 # for l, g in zip(fugacities_l, fugacities_g): # err_i = (l/g-1.0) # err2 += err_i*err_i # Suggested tolerance 1e-15 # This is a better metric because it does not involve hysterisis # print(err3, err2) # err = (sum([abs(x_new - x_old) for x_new, x_old in zip(xs_new, xs)]) + # sum([abs(y_new - y_old) for y_new, y_old in zip(ys_new, ys)])) # print(err, err2) xs, ys = xs_new, ys_new # print(i, 'err', err, err2, 'xs, ys', xs, ys, 'VF', V_over_F) if near_critical: comp_difference = sum([abs(xi - yi) for xi, yi in zip(xs, ys)]) if comp_difference < trivial_solution_tol: raise ValueError("Converged to trivial condition, compositions of both phases equal") # print(xs) if err3 < xtol: break if i == maxiter-1: raise ValueError('End of SS without convergence') if info is not None: info[:] = (i, err3) return V_over_F, xs, ys, eos_l, eos_g def stabiliy_iteration_Michelsen(self, T, P, zs, Ks_initial=None, maxiter=20, xtol=1E-12, liq=True): # checks stability vs. the current zs, mole fractions # liq: whether adding a test liquid phase to see if is stable or not eos_ref = self#.to_TP_zs(T=T, P=P, zs=zs) # If one phase is present - use that phase as the reference phase. # Otherwise, consider the phase with the lowest Gibbs excess energy as # the stable phase fugacities_ref, fugacities_ref_phase = eos_ref._eos_fugacities_lowest_Gibbs() # print(fugacities_ref, fugacities_ref_phase, 'fugacities_ref, fugacities_ref_phase') if Ks_initial is None: Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] else: Ks = Ks_initial same_phase_count = 0.0 for _ in range(maxiter): if liq: zs_test = [zi/Ki for zi, Ki in zip(zs, Ks)] else: zs_test = [zi*Ki for zi, Ki in zip(zs, Ks)] sum_zs_test = sum(zs_test) zs_test_normalized = [zi/sum_zs_test for zi in zs_test] # if liq: # print(zs_test_normalized, sum_zs_test) # to_TP_zs_fast(self, T, P, zs, only_l=False, only_g=False) # IT IS NOT PERMISSIBLE TO DO ONLY ONE ROOT! 2019-03-20 # Breaks lots of stabilities. eos_test = self.to_TP_zs_fast(T=T, P=P, zs=zs_test_normalized, only_l=False, only_g=False, full_alphas=False) fugacities_test, fugacities_phase = eos_test._eos_fugacities_lowest_Gibbs() if fugacities_ref_phase == fugacities_phase: same_phase_count += 1.0 else: same_phase_count = 0 # if liq: # print(fugacities_test, fugacities_ref_phase, fugacities_phase) if liq: corrections = [fi/f_ref*sum_zs_test for fi, f_ref in zip(fugacities_test, fugacities_ref)] else: corrections = [f_ref/(fi*sum_zs_test) for fi, f_ref in zip(fugacities_test, fugacities_ref)] Ks = [Ki*corr for Ki, corr in zip(Ks, corrections)] corrections_minus_1 = [corr - 1.0 for corr in corrections] err = sum([ci*ci for ci in corrections_minus_1]) # print(err, xtol, Ks, corrections) # print('MM iter Ks =', Ks, 'zs', zs_test_normalized, 'MM err', err, xtol, _) if err < xtol: break # elif same_phase_count > 5: # break # It is possible to break if the trivial solution is being approached here also if _ == maxiter-1 and fugacities_ref_phase != fugacities_phase: raise UnconvergedError('End of stability_iteration_Michelsen without convergence') # Fails directly if fugacities_ref_phase == fugacities_phase # Fugacity error: # no, the fugacities are not supposed to be equal # err_equifugacity = 0 # for fi, fref in zip(fugacities_test, fugacities_ref): # err_equifugacity += abs(fi - fref) # if err_equifugacity/P > 1e-3: # sum_zs_test = 1 return sum_zs_test, Ks, fugacities_ref_phase == fugacities_phase def stability_Michelsen(self, T, P, zs, Ks_initial=None, maxiter=20, xtol=1E-12, trivial_criteria=1E-4, stable_criteria=1E-7): # print('MM starting, Ks=', Ks_initial) if Ks_initial is None: Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] else: Ks = Ks_initial zs_sum_g, Ks_g, phase_failure_g = self.stabiliy_iteration_Michelsen(T=T, P=P, zs=zs, Ks_initial=Ks, maxiter=maxiter, xtol=xtol, liq=False) zs_sum_l, Ks_l, phase_failure_l = self.stabiliy_iteration_Michelsen(T=T, P=P, zs=zs, Ks_initial=Ks, maxiter=maxiter, xtol=xtol, liq=True) log_Ks_g = [log(Ki) for Ki in Ks_g] log_Ks_l = [log(Ki) for Ki in Ks_l] lnK_2_tot_g = sum(log_Ki*log_Ki for log_Ki in log_Ks_g) lnK_2_tot_l = sum(log_Ki*log_Ki for log_Ki in log_Ks_l) sum_g_criteria = zs_sum_g - 1.0 sum_l_criteria = zs_sum_l - 1.0 trivial_g, trivial_l = False, False if lnK_2_tot_g < trivial_criteria: trivial_g = True if lnK_2_tot_l < trivial_criteria: trivial_l = True stable = False # print(Ks_l, Ks_g, 'Ks_l, Ks_g') # Table 4.6 Summary of Possible Phase Stability Test Results, # Phase Behavior, Whitson and Brule # There is a typo where Sl appears in the vapor column; this should be # liquid; as shown in https://www.e-education.psu.edu/png520/m17_p7.html g_pass, l_pass = False, False # pass means this phase cannot form another phase if phase_failure_g: g_pass = True if phase_failure_l: l_pass = True if trivial_g: g_pass = True if trivial_l: l_pass = True if sum_g_criteria < stable_criteria: g_pass = True if sum_l_criteria < stable_criteria: l_pass = True # print(l_pass, g_pass, 'l, g test show stable') if phase_failure_g and phase_failure_l: stable = True elif trivial_g and trivial_l: stable = True elif sum_g_criteria < stable_criteria and trivial_l: stable = True elif trivial_g and sum_l_criteria < stable_criteria: stable = True elif sum_g_criteria < stable_criteria and sum_l_criteria < stable_criteria: stable = True # These last two are custom, and it is apparent since they are bad # Also did not document well enough the cases they fail in # Disabled 2018-12-29 # elif trivial_l and sum_l_criteria < stable_criteria: # stable = True # elif trivial_g and sum_g_criteria < stable_criteria: # stable = True # else: # print('lnK_2_tot_g', lnK_2_tot_g , 'lnK_2_tot_l', lnK_2_tot_l, # 'sum_g_criteria', sum_g_criteria, 'sum_l_criteria', sum_l_criteria) # print('stable', stable, 'phase_failure_g', phase_failure_g, 'phase_failure_l', phase_failure_l, # 'sum_g_criteria', sum_g_criteria, 'sum_l_criteria', sum_l_criteria, # 'trivial_g', trivial_g, 'trivial_l', trivial_l) # No need to enumerate unstable results if not stable: # One set may be trivial, which means the other set is approx # the only use used Ks = [K_g*K_l for K_g, K_l in zip(Ks_g, Ks_l)] # print('MM ended', Ks, stable, Ks_g, Ks_l) return stable, Ks, [Ks_g, Ks_l] def _V_over_F_bubble_T_inner(self, T, P, zs, maxiter=20, xtol=1E-3): eos_l = self.to_TP_zs(T=T, P=P, zs=zs) if not hasattr(eos_l, 'V_l'): raise ValueError('At the specified temperature, there is no liquid root') Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] V_over_F, xs, ys = flash_inner_loop(zs, Ks) for i in range(maxiter): eos_g = self.to_TP_zs(T=T, P=P, zs=ys) if not hasattr(eos_g, 'V_g'): phis_g = eos_g.phis_l fugacities_g = eos_g.fugacities_l else: phis_g = eos_g.phis_g fugacities_g = eos_g.fugacities_g Ks = [K_value(phi_l=l, phi_g=g) for l, g in zip(eos_l.phis_l, phis_g)] V_over_F, xs, ys = flash_inner_loop(zs, Ks) err = sum([abs(i-j) for i, j in zip(eos_l.fugacities_l, fugacities_g)]) if err < xtol: break if not hasattr(eos_g, 'V_g'): raise ValueError('At the specified temperature, the solver did not converge to a vapor root') return V_over_F # raise Exception('Could not converge to desired tolerance') def _V_over_F_dew_T_inner(self, T, P, zs, maxiter=20, xtol=1E-10): eos_g = self.to_TP_zs(T=T, P=P, zs=zs) if not hasattr(eos_g, 'V_g'): raise ValueError('At the specified temperature, there is no vapor root') Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] V_over_F, xs, ys = flash_inner_loop(zs, Ks) for i in range(maxiter): eos_l = self.to_TP_zs(T=T, P=P, zs=xs) if not hasattr(eos_l, 'V_l'): phis_l = eos_l.phis_g fugacities_l = eos_l.fugacities_g else: phis_l = eos_l.phis_l fugacities_l = eos_l.fugacities_l Ks = [K_value(phi_l=l, phi_g=g) for l, g in zip(phis_l, eos_g.phis_g)] V_over_F, xs_new, ys_new = flash_inner_loop(zs, Ks) err = (sum([abs(x_new - x_old) for x_new, x_old in zip(xs_new, xs)]) + sum([abs(y_new - y_old) for y_new, y_old in zip(ys_new, ys)])) xs, ys = xs_new, ys_new if xtol < 1E-10: break if not hasattr(eos_l, 'V_l'): raise ValueError('At the specified temperature, the solver did not converge to a liquid root') return V_over_F-1.0 # return abs(V_over_F-1) def _V_over_F_dew_T_inner_accelerated(self, T, P, zs, maxiter=20, xtol=1E-10): '''This is not working. ''' eos_g = self.to_TP_zs(T=T, P=P, zs=zs) if not hasattr(eos_g, 'V_g'): raise ValueError('At the specified temperature, there is no vapor root') Ks = [Wilson_K_value(T, P, Tci, Pci, omega) for Pci, Tci, omega in zip(self.Pcs, self.Tcs, self.omegas)] V_over_F_new, xs, ys = flash_inner_loop(zs, Ks) for i in range(maxiter): eos_l = self.to_TP_zs(T=T, P=P, zs=xs) if not hasattr(eos_l, 'V_l'): phis_l = eos_l.phis_g fugacities_l = eos_l.fugacities_g else: phis_l = eos_l.phis_l fugacities_l = eos_l.fugacities_l if 0.0 < V_over_F_new < 1.0 and i > 2: Rs = [K_value(phi_l=l, phi_g=g) for l, g in zip(phis_l, eos_g.phis_g)] lambdas = [(Ki - 1.0)/(Ki - Rri) for Rri, Ki in zip(Rs, Ks)] Ks = [Ki*Ri**lambda_i for Ki, Ri, lambda_i in zip(Ks, Rs, lambdas)] else: Ks = [K_value(phi_l=l, phi_g=g) for l, g in zip(phis_l, eos_g.phis_g)] V_over_F_new, xs_new, ys_new = flash_inner_loop(zs, Ks) err_new = (sum([abs(x_new - x_old) for x_new, x_old in zip(xs_new, xs)]) + sum([abs(y_new - y_old) for y_new, y_old in zip(ys_new, ys)])) xs, ys = xs_new, ys_new V_over_F_old = V_over_F_new if i == 0: err_old = err_new err_old = err_new if err_new < xtol: break if not hasattr(eos_l, 'V_l'): raise ValueError('At the specified temperature, the solver did not converge to a liquid root') return V_over_F_new-1.0 # return abs(V_over_F-1) # def _a_alpha_j_rows(self): ## try: ## return self.a_alpha_j_rows ## except: ## pass # zs = self.zs # N = self.N # a_alpha_ijs = self.a_alpha_ijs # a_alpha_j_rows = [] # for i in range(N): # l = a_alpha_ijs[i] # sum_term = 0.0 # for j in range(N): # sum_term += zs[j]*l[j] # a_alpha_j_rows.append(sum_term) # self.a_alpha_j_rows = a_alpha_j_rows # return a_alpha_j_rows @property def _a_alpha_j_rows(self): try: return self.a_alpha_j_rows except: pass zs, N = self.zs, self.N a_alpha_ijs = self.a_alpha_ijs if self.scalar: a_alpha_j_rows = [0.0]*N else: a_alpha_j_rows = zeros(N) for i in range(N): l = a_alpha_ijs[i] for j in range(i): a_alpha_j_rows[j] += zs[i]*l[j] a_alpha_j_rows[i] += zs[j]*l[j] a_alpha_j_rows[i] += zs[i]*l[i] self.a_alpha_j_rows = a_alpha_j_rows return a_alpha_j_rows def _set_alpha_matrices(self): try: a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent(self.a_alphas, self.kijs) except ZeroDivisionError: a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent_support_zeros(self.a_alphas, self.kijs) _, _, _, a_alpha_ijs, da_alpha_dT_ijs, d2a_alpha_dT2_ijs = a_alpha_and_derivatives_full( self.a_alphas, self.da_alpha_dTs, self.d2a_alpha_dT2s, self.T, self.zs, self.kijs, a_alpha_ijs, self.a_alpha_roots, a_alpha_ij_roots_inv) self._d2a_alpha_dT2_ijs = d2a_alpha_dT2_ijs self._da_alpha_dT_ijs = da_alpha_dT_ijs self._a_alpha_ijs = a_alpha_ijs @property def a_alpha_ijs(self): r'''Calculate and return the matrix :math:`(a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}}`. Returns ------- a_alpha_ijs : list[list[float]] `a_alpha` terms for each component with every other component, [J^2/mol^2/Pa] Notes ----- In an earlier implementation this matrix was stored each EOS solve; however, allocating that much memory becomes quite expensive for large number of component cases and this is now calculated on-demand only. ''' try: return self._a_alpha_ijs except: self._set_alpha_matrices() return self._a_alpha_ijs @property def da_alpha_dT_ijs(self): r'''Calculate and return the matrix for the temperature derivatives of the alpha terms. .. math:: \frac{\partial (a\alpha)_{ij}}{\partial T} = \frac{\sqrt{\operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}} {\left(T \right)}} \left(1 - k_{ij}\right) \left(\frac{\operatorname{a\alpha_{i}} {\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)}}{2} + \frac{\operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T} \operatorname{ a\alpha_{i}}{\left(T \right)}}{2}\right)}{\operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}}{\left(T \right)}} Returns ------- da_alpha_dT_ijs : list[list[float]] First temperature derivative of `a_alpha` terms for each component with every other component, [J^2/mol^2/Pa/K] Notes ----- In an earlier implementation this matrix was stored each EOS solve; however, allocating that much memory becomes quite expensive for large number of component cases and this is now calculated on-demand only. ''' try: return self._da_alpha_dT_ijs except: self._set_alpha_matrices() return self._da_alpha_dT_ijs @property def d2a_alpha_dT2_ijs(self): r'''Calculate and return the matrix of the second temperature derivatives of the alpha terms. .. math:: \frac{\partial^2 (a\alpha)_{ij}}{\partial T^2} = - \frac{\sqrt{\operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}} {\left(T \right)}} \left(k_{ij} - 1\right) \left(\frac{\left(\operatorname{ a\alpha_{i}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)} + \operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{i}} {\left(T \right)}\right)^{2}}{4 \operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}}{\left(T \right)}} - \frac{\left(\operatorname{a\alpha_{i}} {\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)} + \operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{i}}{\left(T \right)}\right) \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)}}{2 \operatorname{a\alpha_{j}} {\left(T \right)}} - \frac{\left(\operatorname{a\alpha_{i}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)} + \operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{i}}{\left(T \right)}\right) \frac{d}{d T} \operatorname{a\alpha_{i}}{\left(T \right)}}{2 \operatorname{a\alpha_{i}} {\left(T \right)}} + \frac{\operatorname{a\alpha_{i}}{\left(T \right)} \frac{d^{2}}{d T^{2}} \operatorname{a\alpha_{j}}{\left(T \right)}}{2} + \frac{\operatorname{a\alpha_{j}}{\left(T \right)} \frac{d^{2}}{d T^{2}} \operatorname{a\alpha_{i}}{\left(T \right)}}{2} + \frac{d}{d T} \operatorname{a\alpha_{i}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)}\right)} {\operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}} {\left(T \right)}} Returns ------- d2a_alpha_dT2_ijs : list[list[float]] Second temperature derivative of `a_alpha` terms for each component with every other component, [J^2/mol^2/Pa/K^2] Notes ----- In an earlier implementation this matrix was stored each EOS solve; however, allocating that much memory becomes quite expensive for large number of component cases and this is now calculated on-demand only. ''' try: return self._d2a_alpha_dT2_ijs except: self._set_alpha_matrices() return self._d2a_alpha_dT2_ijs @property def _da_alpha_dT_j_rows(self): try: return self.da_alpha_dT_j_rows except: pass zs, N, scalar = self.zs, self.N, self.N da_alpha_dT_ijs = self.da_alpha_dT_ijs # Handle the case of attempting to avoid a full alpha derivative matrix evaluation if not da_alpha_dT_ijs: self.resolve_full_alphas() da_alpha_dT_ijs = self.da_alpha_dT_ijs if scalar: da_alpha_dT_j_rows = [0.0]*N else: da_alpha_dT_j_rows = zeros(N) for i in range(N): l = da_alpha_dT_ijs[i] for j in range(i): da_alpha_dT_j_rows[j] += zs[i]*l[j] da_alpha_dT_j_rows[i] += zs[j]*l[j] da_alpha_dT_j_rows[i] += zs[i]*l[i] self.da_alpha_dT_j_rows = da_alpha_dT_j_rows return da_alpha_dT_j_rows @property def _d2a_alpha_dT2_j_rows(self): try: return self.d2a_alpha_dT2_j_rows except AttributeError: pass d2a_alpha_dT2_ijs, N, scalar = self.d2a_alpha_dT2_ijs, self.N, self.scalar # Handle the case of attempting to avoid a full alpha derivative matrix evaluation if d2a_alpha_dT2_ijs is None: self.resolve_full_alphas() d2a_alpha_dT2_ijs = self.d2a_alpha_dT2_ijs zs = self.zs if scalar: d2a_alpha_dT2_j_rows = [0.0]*N else: d2a_alpha_dT2_j_rows = zeros(N) for i in range(N): l = d2a_alpha_dT2_ijs[i] for j in range(i): d2a_alpha_dT2_j_rows[j] += zs[i]*l[j] d2a_alpha_dT2_j_rows[i] += zs[j]*l[j] d2a_alpha_dT2_j_rows[i] += zs[i]*l[i] self.d2a_alpha_dT2_j_rows = d2a_alpha_dT2_j_rows return d2a_alpha_dT2_j_rows @property def db_dzs(self): r'''Helper method for calculating the composition derivatives of `b`. Note this is independent of the phase. .. math:: \left(\frac{\partial b}{\partial x_i}\right)_{T, P, x_{i\ne j}} = b_i Returns ------- db_dzs : list[float] Composition derivative of `b` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' return self.bs @property def db_dns(self): r'''Helper method for calculating the mole number derivatives of `b`. Note this is independent of the phase. .. math:: \left(\frac{\partial b}{\partial n_i}\right)_{T, P, n_{i\ne j}} = b_i - b Returns ------- db_dns : list[float] Composition derivative of `b` of each component, [m^3/mol^2] Notes ----- This derivative is checked numerically. ''' b = self.b if self.scalar: return [bi - b for bi in self.bs] else: return self.bs - b @property def dnb_dns(self): r'''Helper method for calculating the partial molar derivative of `b`. Note this is independent of the phase. .. math:: \left(\frac{\partial n \cdot b}{\partial n_i}\right)_{T, P, n_{i\ne j}} = b_i Returns ------- dnb_dns : list[float] Partial molar derivative of `b` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' return self.bs @property def d2b_dzizjs(self): r'''Helper method for calculating the second partial mole fraction derivatives of `b`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 b}{\partial x_i \partial x_j} \right)_{T, P, n_{k \ne i,j}} = 0 Returns ------- d2b_dzizjs : list[list[float]] Second mole fraction derivatives of `b` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[0.0]*N for i in range(N)] return zeros((N, N)) @property def d2b_dninjs(self): r'''Helper method for calculating the second partial mole number derivatives of `b`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 b}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,k}} = 2b - b_i - b_j Returns ------- d2b_dninjs : list[list[float]] Second Composition derivative of `b` of each component, [m^3/mol^3] Notes ----- This derivative is checked numerically. ''' bb = 2.0*self.b bs = self.bs if self.scalar: d2b_dninjs = [] for bi in bs: d2b_dninjs.append([bb - bi - bj for bj in bs]) else: N = self.N d2b_dninjs = full((N, N), bb) d2b_dninjs -= bs d2b_dninjs = d2b_dninjs.transpose() d2b_dninjs -= bs return d2b_dninjs @property def d3b_dzizjzks(self): r'''Helper method for calculating the third partial mole fraction derivatives of `b`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 b}{\partial x_i \partial x_j \partial x_k} \right)_{T, P, n_{k \ne i,j,k}} = 0 Returns ------- d3b_dzizjzks : list[list[list[float]]] Third mole fraction derivatives of `b` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[[0.0]*N for _ in range(N)] for _ in range(N)] else: return zeros((N, N, N)) @property def d3b_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `b`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 b}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 2(-3b + b_i + b_j + b_k) Returns ------- d3b_dninjnks : list[list[list[float]]] Third mole number derivative of `b` of each component, [m^3/mol^4] Notes ----- This derivative is checked numerically. ''' bs = self.bs n6b = -6.0*self.b if self.scalar: bs2 = [bi + bi for bi in bs] d3b_dninjnks = [] for bi2 in bs2: d3b_dnjnks = [] for bj2 in bs2: base = n6b + bi2 + bj2 d3b_dnjnks.append([base + bk2 for bk2 in bs2]) d3b_dninjnks.append(d3b_dnjnks) else: bs2 = 2.0*self.bs N = self.N d3b_dninjnks = full((N, N, N), n6b) d3b_dninjnks += bs2 d3b_dninjnks = d3b_dninjnks.transpose((2, 1, 0)) d3b_dninjnks += bs2 d3b_dninjnks = d3b_dninjnks.transpose((0, 2, 1)) d3b_dninjnks += bs2 return d3b_dninjnks @property def d3epsilon_dzizjzks(self): r'''Helper method for calculating the third composition derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \epsilon}{\partial x_i \partial x_j \partial x_k }\right)_{T, P, x_{m\ne i,j,k}} = 0 Returns ------- d2epsilon_dzizjzks : list[list[list[float]]] Composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[[0.0]*N for _ in range(N)] for _ in range(N)] else: return zeros((N, N, N)) @property def d3delta_dzizjzks(self): r'''Helper method for calculating the third composition derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \delta}{\partial x_i \partial x_j \partial x_k }\right)_{T, P, x_{m\ne i,j,k}} = 0 Returns ------- d3delta_dzizjzks : list[list[list[float]]] Third composition derivative of `epsilon` of each component, [m^6/mol^5] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[[0.0]*N for _ in range(N)] for _ in range(N)] else: return zeros((N, N, N)) @property def da_alpha_dzs(self): r'''Helper method for calculating the composition derivatives of `a_alpha`. Note this is independent of the phase. .. math:: \left(\frac{\partial a \alpha}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 2 \cdot \sum_j z_{j} (1 - k_{ij}) \sqrt{ (a \alpha)_i (a \alpha)_j} Returns ------- da_alpha_dzs : list[float] Composition derivative of `alpha` of each component, [kg*m^5/(mol^2*s^2)] Notes ----- This derivative is checked numerically. ''' try: a_alpha_j_rows = self.a_alpha_j_rows except: a_alpha_j_rows = self._a_alpha_j_rows if self.scalar: return [i + i for i in a_alpha_j_rows] return 2.0*a_alpha_j_rows @property def da_alpha_dns(self): r'''Helper method for calculating the mole number derivatives of `a_alpha`. Note this is independent of the phase. .. math:: \left(\frac{\partial a \alpha}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 2 (-a\alpha + \sum_j z_{j} (1 - k_{ij}) \sqrt{ (a \alpha)_i (a \alpha)_j}) Returns ------- da_alpha_dns : list[float] Mole number derivative of `alpha` of each component, [kg*m^5/(mol^3*s^2)] Notes ----- This derivative is checked numerically. ''' try: a_alpha_j_rows = self.a_alpha_j_rows except: a_alpha_j_rows = self._a_alpha_j_rows a_alpha_n_2 = -2.0*self.a_alpha if self.scalar: return [2.0*t + a_alpha_n_2 for t in a_alpha_j_rows] return 2.0*a_alpha_j_rows + a_alpha_n_2 @property def dna_alpha_dns(self): r'''Helper method for calculating the partial molar derivatives of `a_alpha`. Note this is independent of the phase. .. math:: \left(\frac{\partial a \alpha}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 2 (-0.5 a\alpha + \sum_j z_{j} (1 - k_{ij}) \sqrt{ (a \alpha)_i (a \alpha)_j}) Returns ------- dna_alpha_dns : list[float] Partial molar derivative of `alpha` of each component, [kg*m^5/(mol^2*s^2)] Notes ----- This derivative is checked numerically. ''' try: a_alpha_j_rows = self.a_alpha_j_rows except: a_alpha_j_rows = self._a_alpha_j_rows a_alpha = self.a_alpha if self.scalar: return [t + t - a_alpha for t in a_alpha_j_rows] return 2.0*a_alpha_j_rows - a_alpha @property def d2a_alpha_dzizjs(self): r'''Helper method for calculating the second composition derivatives of `a_alpha` (hessian). Note this is independent of the phase. .. math:: \left(\frac{\partial^2 a \alpha}{\partial x_i \partial x_j}\right)_{T, P, x_{k\ne i,j}} = 2 (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} Returns ------- d2a_alpha_dzizjs : list[float] Second composition derivative of `alpha` of each component, [kg*m^5/(mol^2*s^2)] Notes ----- This derivative is checked numerically. ''' a_alpha_ijs = self.a_alpha_ijs if self.scalar: return [[i+i for i in row] for row in a_alpha_ijs] else: return 2.0*a_alpha_ijs @property def d2a_alpha_dninjs(self): r'''Helper method for calculating the second partial molar derivatives of `a_alpha` (hessian). Note this is independent of the phase. .. math:: \left(\frac{\partial^2 a \alpha}{\partial n_i \partial n_j }\right)_{T, P, n_{k\ne i,j}} = 2\left[3(a \alpha) + (a\alpha)_{ij} -2 (\text{term}_{i,j}) \right] .. math:: \text{term}_{i,j} = \sum_k z_k\left((a\alpha)_{ik} + (a\alpha)_{jk} \right) .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} Returns ------- d2a_alpha_dninjs : list[float] Second partial molar derivative of `alpha` of each component, [kg*m^5/(mol^4*s^2)] Notes ----- This derivative is checked numerically. ''' try: a_alpha_j_rows = self.a_alpha_j_rows except: a_alpha_j_rows = self._a_alpha_j_rows a_alpha = self.a_alpha a_alpha_ijs = self.a_alpha_ijs N = self.N zs = self.zs a_alpha3 = 3.0*a_alpha if self.scalar: hessian = [[0.0]*N for _ in range(N)] else: hessian = zeros((N, N)) for i in range(N): for j in range(i+1): if i == j: term = 2.0*a_alpha_j_rows[i] else: term = 0.0 for k in range(N): term += zs[k]*(a_alpha_ijs[i][k] + a_alpha_ijs[j][k]) hessian[i][j] = hessian[j][i] = 2.0*(a_alpha3 + a_alpha_ijs[i][j] -2.0*term) # row.append(2.0*(a_alpha3 + a_alpha_ijs[i][j] -2.0*term)) # hessian.append(row) return hessian @property def d3a_alpha_dzizjzks(self): r'''Helper method for calculating the third composition derivatives of `a_alpha`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 a \alpha}{\partial x_i \partial x_j \partial x_k}\right)_{T, P, x_{m\ne i,j,k}} = 0 Returns ------- d3a_alpha_dzizjzks : list[float] Third composition derivative of `alpha` of each component, [kg*m^5/(mol^2*s^2)] Notes ----- This derivative is checked numerically. ''' N = self.N return [[[0.0]*N for _ in range(N)] for _ in range(N)] @property def d3a_alpha_dninjnks(self): r'''Helper method for calculating the third mole number derivatives of `a_alpha`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 a \alpha}{\partial n_i \partial n_j \partial n_k}\right)_{T, P, n_{m\ne i,j,k}} = 4\left(-6 (a \alpha) - [(a \alpha)_{i,j} + (a \alpha)_{i,k} + (a \alpha)_{j,k}] + 3\sum_m z_m[(a \alpha)_{i,m} + (a \alpha)_{j,m} + (a \alpha)_{k,m}]\right) Returns ------- d3a_alpha_dninjnks : list[float] Third mole number derivative of `alpha` of each component, [kg*m^5/(mol^5*s^2)] Notes ----- This derivative is checked numerically. ''' # Seems correct across diagonal # Each term is of similar magnitude, so likely would notice if brokwn a_alpha = self.a_alpha a_alpha_ijs = self.a_alpha_ijs N = self.N zs = self.zs a_alpha6 = -6.0*a_alpha matrix = [] for i in range(N): l = [] for j in range(N): row = [] for k in range(N): mid = a_alpha_ijs[i][j] + a_alpha_ijs[i][k] + a_alpha_ijs[j][k] last = sum(zs[m]*(a_alpha_ijs[i][m] + a_alpha_ijs[j][m] + a_alpha_ijs[k][m]) for m in range(N)) ele = 4.0*(a_alpha6 - mid + 3.0*last) row.append(ele) l.append(row) matrix.append(l) return matrix @property def da_alpha_dT_dzs(self): r'''Helper method for calculating the composition derivatives of `da_alpha_dT`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 a \alpha}{\partial x_i \partial T} \right)_{P, x_{i\ne j}} = 2 \sum_j -z_{j} (k_{ij} - 1) (a \alpha)_i (a \alpha)_j \frac{\partial (a \alpha)_i}{\partial T} \frac{\partial (a \alpha)_j}{\partial T} \left({ (a \alpha)_i (a \alpha)_j}\right)^{-0.5} Returns ------- da_alpha_dT_dzs : list[float] Composition derivative of `da_alpha_dT` of each component, [kg*m^5/(mol^2*s^2*K)] Notes ----- This derivative is checked numerically. ''' try: da_alpha_dT_j_rows = self.da_alpha_dT_j_rows except: da_alpha_dT_j_rows = self._da_alpha_dT_j_rows return [i + i for i in da_alpha_dT_j_rows] @property def da_alpha_dT_dns(self): r'''Helper method for calculating the mole number derivatives of `da_alpha_dT`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 a \alpha}{\partial n_i \partial T} \right)_{P, n_{i\ne j}} = 2 \left[\sum_j -z_{j} (k_{ij} - 1) (a \alpha)_i (a \alpha)_j \frac{\partial (a \alpha)_i}{\partial T} \frac{\partial (a \alpha)_j}{\partial T} \left({ (a \alpha)_i (a \alpha)_j}\right)^{-0.5} - \frac{\partial a \alpha}{\partial T} \right] Returns ------- da_alpha_dT_dns : list[float] Composition derivative of `da_alpha_dT` of each component, [kg*m^5/(mol^3*s^2*K)] Notes ----- This derivative is checked numerically. ''' try: da_alpha_dT_j_rows = self.da_alpha_dT_j_rows except: da_alpha_dT_j_rows = self._da_alpha_dT_j_rows da_alpha_dT = self.da_alpha_dT return [2.0*(t - da_alpha_dT) for t in da_alpha_dT_j_rows] @property def dna_alpha_dT_dns(self): r'''Helper method for calculating the mole number derivatives of `da_alpha_dT`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 n a \alpha}{\partial n_i \partial T} \right)_{P, n_{i\ne j}} = 2 \left[\sum_j -z_{j} (k_{ij} - 1) (a \alpha)_i (a \alpha)_j \frac{\partial (a \alpha)_i}{\partial T} \frac{\partial (a \alpha)_j}{\partial T} \left({ (a \alpha)_i (a \alpha)_j}\right)^{-0.5} - 0.5 \frac{\partial a \alpha}{\partial T} \right] Returns ------- dna_alpha_dT_dns : list[float] Composition derivative of `da_alpha_dT` of each component, [kg*m^5/(mol^2*s^2*K)] Notes ----- This derivative is checked numerically. ''' try: da_alpha_dT_j_rows = self.da_alpha_dT_j_rows except: da_alpha_dT_j_rows = self._da_alpha_dT_j_rows da_alpha_dT = self.da_alpha_dT return [t + t - da_alpha_dT for t in da_alpha_dT_j_rows] @property def d2a_alpha_dT2_dzs(self): r'''Helper method for calculating the mole number derivatives of `d2a_alpha_dT2`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 a \alpha}{\partial z_i \partial T^2} \right)_{P, z_{i\ne j}} = \text{large expression} Returns ------- d2a_alpha_dT2_dzs : list[float] Composition derivative of `d2a_alpha_dT2` of each component, [kg*m^5/(mol^2*s^2*K^2)] Notes ----- This derivative is checked numerically. ''' try: d2a_alpha_dT2_j_rows = self.d2a_alpha_dT2_j_rows except: d2a_alpha_dT2_j_rows = self._d2a_alpha_dT2_j_rows return [i + i for i in d2a_alpha_dT2_j_rows] @property def d2a_alpha_dT2_dns(self): r'''Helper method for calculating the mole number derivatives of `d2a_alpha_dT2`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 a \alpha}{\partial n_i \partial T^2} \right)_{P, n_{i\ne j}} = f\left(\left(\frac{\partial^3 a\alpha}{\partial z_i \partial T^2} \right)_{P, z_{i\ne j}} \right) Returns ------- d2a_alpha_dT2_dns : list[float] Mole number derivative of `d2a_alpha_dT2` of each component, [kg*m^5/(mol^3*s^2*K^2)] Notes ----- This derivative is checked numerically. ''' try: d2a_alpha_dT2_j_rows = self.d2a_alpha_dT2_j_rows except: d2a_alpha_dT2_j_rows = self._d2a_alpha_dT2_j_rows d2a_alpha_dT2 = self.d2a_alpha_dT2 return [2.0*(t - d2a_alpha_dT2) for t in d2a_alpha_dT2_j_rows] def dV_dzs(self, Z): r'''Calculates the molar volume composition derivative (where the mole fractions do not sum to 1). Verified numerically. Used in many other derivatives, and for the molar volume mole number derivative and partial molar volume calculation. .. math:: \left(\frac{\partial V}{\partial x_i}\right)_{T, P, x_{i\ne j}} = \frac{- R T \left(V^{2}{\left(x \right)} + V{\left(x \right)} \delta{\left(x \right)} + \epsilon{\left(x \right)}\right)^{3} \frac{d}{d x} b{\left(x \right)} + \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} \left(V^{2}{\left(x \right)} + V{\left(x \right)} \delta{\left(x \right)} + \epsilon{\left(x \right)}\right)^{2} \frac{d}{d x} \operatorname{a \alpha}{\left(x \right)} - \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V^{3}{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \frac{d}{d x} \delta{\left(x \right)} - \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V^{2}{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \delta{\left(x \right)} \frac{d}{d x} \delta{\left(x \right)} - \left(V{\left(x \right)} - b{\left(x \right)} \right)^{2} V^{2}{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \frac{d}{d x} \epsilon{ \left(x \right)} - \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \delta{\left(x \right)} \frac{d}{d x} \epsilon{\left(x \right)} - \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \epsilon{\left(x \right)} \frac{d}{d x} \delta{\left(x \right)} - \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} \operatorname{a \alpha}{\left(x \right)} \epsilon{\left(x \right)} \frac{d}{d x} \epsilon{\left(x \right)}}{- R T \left(V^{2}{\left(x \right)} + V{\left(x \right)} \delta{\left(x \right)} + \epsilon{\left(x \right)}\right)^{3} + 2 \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V^{3}{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} + 3 \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V^{2}{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \delta{\left(x \right)} + \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \delta^{2}{\left(x \right)} + 2 \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} V{\left(x \right)} \operatorname{a \alpha}{\left(x \right)} \epsilon{\left(x \right)} + \left(V{\left(x \right)} - b{\left(x \right)}\right)^{2} \operatorname{a \alpha}{\left(x \right)} \delta{\left(x \right)} \epsilon{\left(x \right)}} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dV_dzs : float Molar volume composition derivatives, [m^3/mol] Notes ----- The derivation for the derivative is performed as follows using SymPy. The function source code is an optimized variant created with the `cse` SymPy function, and hand optimized further. >>> from sympy import * # doctest:+SKIP >>> P, T, R, x = symbols('P, T, R, x') # doctest:+SKIP >>> V, delta, epsilon, a_alpha, b = symbols('V, delta, epsilon, a\ \\alpha, b', cls=Function) # doctest:+SKIP >>> CUBIC = R*T/(V(x) - b(x)) - a_alpha(x)/(V(x)*V(x) + delta(x)*V(x) + epsilon(x)) - P # doctest:+SKIP >>> solve(diff(CUBIC, x), Derivative(V(x), x)) # doctest:+SKIP [(-R*T*(V(x)**2 + V(x)*delta(x) + epsilon(x))**3*Derivative(b(x), x) + (V(x) - b(x))**2*(V(x)**2 + V(x)*delta(x) + epsilon(x))**2*Derivative(a \alpha(x), x) - (V(x) - b(x))**2*V(x)**3*a \alpha(x)*Derivative(delta(x), x) - (V(x) - b(x))**2*V(x)**2*a \alpha(x)*delta(x)*Derivative(delta(x), x) - (V(x) - b(x))**2*V(x)**2*a \alpha(x)*Derivative(epsilon(x), x) - (V(x) - b(x))**2*V(x)*a \alpha(x)*delta(x)*Derivative(epsilon(x), x) - (V(x) - b(x))**2*V(x)*a \alpha(x)*epsilon(x)*Derivative(delta(x), x) - (V(x) - b(x))**2*a \alpha(x)*epsilon(x)*Derivative(epsilon(x), x))/(-R*T*(V(x)**2 + V(x)*delta(x) + epsilon(x))**3 + 2*(V(x) - b(x))**2*V(x)**3*a \alpha(x) + 3*(V(x) - b(x))**2*V(x)**2*a \alpha(x)*delta(x) + (V(x) - b(x))**2*V(x)*a \alpha(x)*delta(x)**2 + 2*(V(x) - b(x))**2*V(x)*a \alpha(x)*epsilon(x) + (V(x) - b(x))**2*a \alpha(x)*delta(x)*epsilon(x))] ''' return eos_mix_dV_dzs(self.T, self.P, Z, self.b, self.delta, self.epsilon, self.a_alpha, self.db_dzs, self.ddelta_dzs, self.depsilon_dzs, self.da_alpha_dzs, self.N) def dV_dns(self, Z): r'''Calculates the molar volume mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial V}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial V}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dV_dns : float Molar volume mole number derivatives, [m^3/mol^2] ''' dV_dns = dxs_to_dns(self.dV_dzs(Z), self.zs) if not self.scalar: dV_dns = array(dV_dns) return dV_dns def dnV_dns(self, Z): r'''Calculates the partial molar volume of the specified phase No specific formula is implemented for this property - it is calculated from the molar volume mole fraction derivative. .. math:: \left(\frac{\partial n V}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial V}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dnV_dns : float Partial molar volume of the mixture of the specified phase, [m^3/mol] ''' V = Z*R*self.T/self.P return dxs_to_dn_partials(self.dV_dzs(Z), self.zs, V) def _d2V_dij_wrapper(self, V, d_Vs, dbs, d2bs, d_epsilons, d2_epsilons, d_deltas, d2_deltas, da_alphas, d2a_alphas): T = self.T x0 = V x3 = self.b x4 = x0 - x3 x5 = self.epsilon x6 = x0*x0 x7 = self.delta x8 = x0*x7 x9 = x5 + x6 + x8 x10 = self.a_alpha x11 = x10*x4*x4 x12 = x0 + x0 x13 = x9*x9 x14 = R*T x17 = x4*x4*x4 x18 = x10*x17 x19 = 2*x18 x22 = 4*x18 x27 = x12*x18 x33 = x14*x13*x9 x34 = x33 + x33 x37 = x19*x8 x38 = x17*x9 x39 = x10*x38 hessian = [] N = self.N for i in range(N): row = [] for j in range(N): # TODO optimize this - symmetric, others x15 = d_epsilons[i] x16 = d_epsilons[j] x20 = x16*x19 x21 = d_Vs[i] x24 = d_Vs[j] x23 = x21*x22 x25 = x15*x24 x26 = d_deltas[i] x28 = d_deltas[j] x29 = x21*x24 x30 = 8*x18*x29 x31 = x28*x6 x32 = x24*x26 x35 = x34*dbs[j] x36 = dbs[i] x40 = x38*da_alphas[i] x41 = x38*da_alphas[j] x42 = x21*x41 x43 = x24*x40 x44 = x21*x39 d1 = d2_deltas[i][j] # Derivative(x7, x1, x2) d2 = d2a_alphas[i][j] # Derivative(x10, x1, x2) d3 = d2bs[i][j] # Derivative(x3, x1, x2) d4 = d2_epsilons[i][j] # Derivative(x5, x1, x2) v = ((x0*x16*x23 + x0*x22*x25 - x0*x26*x41 - x0*x28*x40 - x0*x39*d1 - x12*x42 - x12*x43 + x13*x17*d2 + x15*x20 + x15*x27*x28 - x15*x41 + x16*x26*x27 - x16*x40 + x19*x25*x7 + x19*x26*x31 + x19*x29*x7**2 + x20*x21*x7 + x21*x28*x37 + x21*x35 + x22*x32*x6 + x23*x31 + x24*x34*x36 - 2*x24*x44 - x28*x44 - x29*x34 + x30*x6 + x30*x8 + x32*x37 - x32*x39 - x33*x4*d3 - x35*x36 - x39*d4 - x42*x7 - x43*x7)/(x4*x9*(x11*x12 + x11*x7 - x13*x14))) row.append(v) hessian.append(row) return hessian def d2V_dzizjs(self, Z): r'''Calculates the molar volume second composition derivative (where the mole fractions do not sum to 1). Verified numerically. Used in many other derivatives, and for the molar volume second mole number derivative. .. math:: \left(\frac{\partial^2 V}{\partial x_i \partial x_j}\right)_{T, P, x_{k \ne i,j}} = \text{run SymPy code to obtain - very long!} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- d2V_dzizjs : float Molar volume second composition derivatives, [m^3/mol] Notes ----- The derivation for the derivative is performed as follows using SymPy. The function source code is an optimized variant created with the `cse` SymPy function, and hand optimized further. >>> from sympy import * # doctest:+SKIP >>> P, T, R, x1, x2 = symbols('P, T, R, x1, x2') # doctest:+SKIP >>> V, delta, epsilon, a_alpha, b = symbols('V, delta, epsilon, a\ \\alpha, b', cls=Function) # doctest:+SKIP >>> CUBIC = R*T/(V(x1, x2) - b(x1, x2)) - a_alpha(x1, x2)/(V(x1, x2)*V(x1, x2) + delta(x1, x2)*V(x1, x2) + epsilon(x1, x2)) - P # doctest:+SKIP >>> solve(diff(CUBIC, x1, x2), Derivative(V(x1, x2), x1, x2)) # doctest:+SKIP ''' V = Z*self.T*R/self.P dV_dzs = self.dV_dzs(Z) depsilon_dzs = self.depsilon_dzs d2epsilon_dzizjs = self.d2epsilon_dzizjs ddelta_dzs = self.ddelta_dzs d2delta_dzizjs = self.d2delta_dzizjs db_dzs = self.db_dzs d2bs = self.d2b_dzizjs da_alpha_dzs = self.da_alpha_dzs d2a_alpha_dzizjs = self.d2a_alpha_dzizjs return self._d2V_dij_wrapper(V=V, d_Vs=dV_dzs, dbs=db_dzs, d2bs=d2bs, d_epsilons=depsilon_dzs, d2_epsilons=d2epsilon_dzizjs, d_deltas=ddelta_dzs, d2_deltas=d2delta_dzizjs, da_alphas=da_alpha_dzs, d2a_alphas=d2a_alpha_dzizjs) def d2V_dninjs(self, Z): r'''Calculates the molar volume second mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the second mole fraction derivatives. .. math:: \left(\frac{\partial^2 V}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,j}} = f\left( \left(\frac{\partial^2 V}{\partial x_i\partial x_j}\right)_{T, P, x_{k\ne i,j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- d2V_dninjs : float Molar volume second mole number derivatives, [m^3/mol^3] ''' V = Z*self.T*R/self.P dV_dns = self.dV_dns(Z) depsilon_dns = self.depsilon_dns d2epsilon_dninjs = self.d2epsilon_dninjs ddelta_dns = self.ddelta_dns d2delta_dninjs = self.d2delta_dninjs db_dns = self.db_dns d2bs = self.d2b_dninjs da_alpha_dns = self.da_alpha_dns d2a_alpha_dninjs = self.d2a_alpha_dninjs return self._d2V_dij_wrapper(V=V, d_Vs=dV_dns, dbs=db_dns, d2bs=d2bs, d_epsilons=depsilon_dns, d2_epsilons=d2epsilon_dninjs, d_deltas=ddelta_dns, d2_deltas=d2delta_dninjs, da_alphas=da_alpha_dns, d2a_alphas=d2a_alpha_dninjs) def dZ_dzs(self, Z): r'''Calculates the compressibility composition derivatives (where the mole fractions do not sum to 1). No specific formula is implemented for this property - it is calculated from the composition derivative of molar volume, which does have its formula implemented. .. math:: \left(\frac{\partial Z}{\partial x_i}\right)_{T, P, x_{i\ne j}} = \frac{P }{RT} \left(\frac{\partial V}{\partial x_i}\right)_{T, P, x_{i\ne j}} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dZ_dzs : float Compressibility composition derivative, [-] ''' factor = self.P/(self.T*R) return [dV*factor for dV in self.dV_dzs(Z)] def dZ_dns(self, Z): r'''Calculates the compressibility mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial Z}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial Z}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dZ_dns : float Compressibility number derivatives, [1/mol] ''' return dxs_to_dns(self.dZ_dzs(Z), self.zs) def dnZ_dns(self, Z): r'''Calculates the partial compressibility of the specified phase No specific formula is implemented for this property - it is calculated from the compressibility mole fraction derivative. .. math:: \left(\frac{\partial n Z}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial Z}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dnZ_dns : float Partial compressibility of the mixture of the specified phase, [-] ''' return dxs_to_dn_partials(self.dZ_dzs(Z), self.zs, Z) def dH_dep_dzs(self, Z): r'''Calculates the molar departure enthalpy composition derivative (where the mole fractions do not sum to 1). Verified numerically. Useful in solving for enthalpy specifications in newton-type methods, and forms the basis for the molar departure enthalpy mole number derivative and molar partial departure enthalpy. .. math:: \left(\frac{\partial H_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} = P \frac{d}{d x} V{\left(x \right)} + \frac{2 \left(T \frac{\partial}{\partial T} \operatorname{a \alpha}{\left(T,x \right)} - \operatorname{a \alpha}{\left(x \right)}\right) \left(- \delta{\left(x \right)} \frac{d}{d x} \delta{\left(x \right)} + 2 \frac{d}{d x} \epsilon{\left(x \right)}\right) \operatorname{atanh} {\left(\frac{2 V{\left(x \right)} + \delta{\left(x \right)}}{\sqrt{\delta^{2} {\left(x \right)} - 4 \epsilon{\left(x \right)}}} \right)}}{\left(\delta^{2} {\left(x \right)} - 4 \epsilon{\left(x \right)}\right)^{\frac{3}{2}}} + \frac{2 \left(T \frac{\partial}{\partial T} \operatorname{a \alpha} {\left(T,x \right)} - \operatorname{a \alpha}{\left(x \right)}\right) \left(\frac{\left(- \delta{\left(x \right)} \frac{d}{d x} \delta{\left(x \right)} + 2 \frac{d}{d x} \epsilon{\left(x \right)}\right) \left(2 V{\left(x \right)} + \delta{\left(x \right)}\right)}{\left(\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}\right)^{\frac{3}{2}}} + \frac{2 \frac{d}{d x} V{\left(x \right)} + \frac{d}{d x} \delta{\left(x \right)}} {\sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}}\right)}{\left( - \frac{\left(2 V{\left(x \right)} + \delta{\left(x \right)}\right)^{2}}{ \delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}} + 1\right) \sqrt{ \delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} + \frac{2 \left(T \frac{\partial^{2}}{\partial x\partial T} \operatorname{a \alpha} {\left(T,x \right)} - \frac{d}{d x} \operatorname{a \alpha}{\left(x \right)} \right) \operatorname{atanh}{\left(\frac{2 V{\left(x \right)} + \delta{\left(x \right)}}{\sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} \right)}}{\sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dH_dep_dzs : float Departure enthalpy composition derivatives, [J/mol] Notes ----- The derivation for the derivative is performed as follows using SymPy. The function source code is an optimized variant created with the `cse` SymPy function, and hand optimized further. >>> from sympy import * # doctest:+SKIP >>> P, T, V, R, b, a, delta, epsilon, x = symbols('P, T, V, R, b, a, delta, epsilon, x') # doctest:+SKIP >>> V, delta, epsilon, a_alpha, b = symbols('V, delta, epsilon, a_alpha, b', cls=Function) # doctest:+SKIP >>> H_dep = (P*V(x) - R*T + 2/sqrt(delta(x)**2 - 4*epsilon(x))*(T*Derivative(a_alpha(T, x), T) # doctest:+SKIP ... - a_alpha(x))*atanh((2*V(x)+delta(x))/sqrt(delta(x)**2-4*epsilon(x)))) >>> diff(H_dep, x) # doctest:+SKIP P*Derivative(V(x), x) + 2*(T*Derivative(a \alpha(T, x), T) - a \alpha(x))*(-delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*atanh((2*V(x) + delta(x))/sqrt(delta(x)**2 - 4*epsilon(x)))/(delta(x)**2 - 4*epsilon(x))**(3/2) + 2*(T*Derivative(a \alpha(T, x), T) - a \alpha(x))*((-delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*(2*V(x) + delta(x))/(delta(x)**2 - 4*epsilon(x))**(3/2) + (2*Derivative(V(x), x) + Derivative(delta(x), x))/sqrt(delta(x)**2 - 4*epsilon(x)))/((-(2*V(x) + delta(x))**2/(delta(x)**2 - 4*epsilon(x)) + 1)*sqrt(delta(x)**2 - 4*epsilon(x))) + 2*(T*Derivative(a \alpha(T, x), T, x) - Derivative(a \alpha(x), x))*atanh((2*V(x) + delta(x))/sqrt(delta(x)**2 - 4*epsilon(x)))/sqrt(delta(x)**2 - 4*epsilon(x)) ''' P = self.P T = self.T ddelta_dzs = self.ddelta_dzs depsilon_dzs = self.depsilon_dzs da_alpha_dzs = self.da_alpha_dzs da_alpha_dT_dzs = self.da_alpha_dT_dzs dV_dzs = self.dV_dzs(Z) x0 = V = Z*R*T/P x2 = self.delta x3 = x0 + x0 + x2 x4 = self.epsilon x5 = x2*x2 - 4.0*x4 try: x6 = x5**-0.5 except: # VDW has x5 as zero as delta, epsilon = 0 x6 = 1e50 x7 = 2.0*catanh(x3*x6).real x8 = x9 = self.a_alpha x10 = T*self.da_alpha_dT - x8 x13 = x6*x6# 1.0/x5 t0 = x6*x7 t1 = x10*t0*x13 t2 = 2.0*x10*x13/(x13*x3*x3 - 1.0) x3_x13 = x3*x13 dH_dzs = [] for i in range(self.N): x1 = dV_dzs[i] x11 = ddelta_dzs[i] x12 = x11*x2 - 2.0*depsilon_dzs[i] value = (P*x1 - x12*t1 + t2*(x12*x3_x13 - x1 - x1 - x11) + t0*(T*da_alpha_dT_dzs[i] - da_alpha_dzs[i])) dH_dzs.append(value) return dH_dzs def dS_dep_dzs(self, Z): r'''Calculates the molar departure entropy composition derivative (where the mole fractions do not sum to 1). Verified numerically. Useful in solving for entropy specifications in newton-type methods, and forms the basis for the molar departure entropy mole number derivative and molar partial departure entropy. .. math:: \left(\frac{\partial S_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} = \frac{1}{T}\left( \left(\frac{\partial H_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} - \left(\frac{\partial G_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dS_dep_dzs : float Departure entropy composition derivatives, [J/mol/K] Notes ----- ''' dH_dep_dzs = self.dH_dep_dzs(Z) dG_dep_dzs = self.dG_dep_dzs(Z) T_inv = 1.0/self.T return [T_inv*(dH_dep_dzs[i] - dG_dep_dzs[i]) for i in range(self.N)] def dS_dep_dns(self, Z): r'''Calculates the molar departure entropy mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial S_{dep}}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial S_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dS_dep_dns : float Departure entropy mole number derivatives, [J/mol^2/K] ''' return dxs_to_dns(self.dS_dep_dzs(Z), self.zs) def dP_dns_Vt(self, phase): # Checked numerically, working. Evaluated at constant temperature and total volume. r'''from sympy import * Vt, P, T, R, n1, n2, n3, no = symbols('Vt, P, T, R, n1, n2, n3, no') # doctest:+SKIP n, P, V, a_alpha, delta, epsilon, b = symbols('n, P, V, a\ \\alpha, delta, epsilon, b', cls=Function) # doctest:+SKIP da_alpha_dT, d2a_alpha_dT2 = symbols('da_alpha_dT, d2a_alpha_dT2', cls=Function) # doctest:+SKIP n = no + n1 + n2 + n3 P = R*T/(Vt/n-b(n1, n2, n3)) - a_alpha(T, n1, n2, n3)/((Vt/n)**2 + delta(n1, n2, n3)*(Vt/n)+epsilon(n1, n2, n3)) V = Vt/n cse(diff(P, n1)) ''' if phase == 'g': Vt = self.V_g else: Vt = self.V_l T = self.T b = self.b a_alpha = self.a_alpha epsilon = self.epsilon Vt2 = Vt*Vt delta = self.delta x9 = Vt2 + Vt*delta + epsilon depsilon_dns = self.depsilon_dns ddelta_dns = self.ddelta_dns db_dns = self.db_dns da_alpha_dns = self.da_alpha_dns t1 = R*T*1.0/((Vt - b)*(Vt - b)) t2 = 1.0/x9 t3 = a_alpha*t2*t2 t4 = t1*Vt -t3*(Vt*delta + Vt2 + Vt2) dP_dns_Vt = [] for i in range(self.N): v = (t4 + t1*db_dns[i] + t3*(Vt*ddelta_dns[i] + depsilon_dns[i]) - t2*da_alpha_dns[i]) dP_dns_Vt.append(v) return dP_dns_Vt def d2P_dninjs_Vt(self, phase): if phase == 'g': Vt = self.V_g else: Vt = self.V_l T, N = self.T, self.N b = self.b a_alpha = self.a_alpha epsilon = self.epsilon depsilon_dns = self.depsilon_dns ddelta_dns = self.ddelta_dns db_dns = self.db_dns da_alpha_dns = self.da_alpha_dns d2delta_dninjs = self.d2delta_dninjs d2epsilon_dninjs = self.d2epsilon_dninjs d2bs = self.d2b_dninjs d2a_alpha_dninjs = self.d2a_alpha_dninjs x0 = self.a_alpha x1 = self.epsilon x2 = Vt*Vt x5 = self.delta x7 = x1 + x2 + x5*Vt x7_inv = 1.0/x7 x8 = self.b x9 = Vt - x8 x11 = Vt + Vt x12 = R*T x13 = Vt x14 = x7_inv*x7_inv x16 = x2 + x2 + x13*x5 t1 = x0*x14 x9_inv = 1.0/x9 x9_inv2 = x9_inv*x9_inv x9_inv3 = x9_inv*x9_inv2 t2 = t1*(x11*x5 + 6.0*x2) - x12*x11*x9_inv2 t3 = x12*x9_inv2 t4 = 2.0*x12*x9_inv3 t5 = 2.0*x0*x7_inv*x7_inv*x7_inv hess = [[0.0]*N for _ in range(N)] for i in range(N): x15 = ddelta_dns[i] x17 = -x15*Vt + x16 - depsilon_dns[i] t50 = -x13*x15 t51 = t5*x17 t52 = t4*(x13 + db_dns[i]) t53 = x14*x17 t54 = x14*da_alpha_dns[i] t55 = (t51 + t54) iadd = t1*t50 + t52*x13 - x16*t55 for j in range(i+1): x18 = ddelta_dns[j] x19 = x18*Vt + depsilon_dns[j] v = (t2 + iadd + t1*(Vt*d2delta_dninjs[i][j] + d2epsilon_dninjs[i][j] - x13*x18) + t52*db_dns[j] - t53*da_alpha_dns[j] + t55*x19 + t3*d2bs[i][j] - x7_inv*d2a_alpha_dninjs[i][j]) hess[i][j] = hess[j][i] = v return hess def d3P_dninjnks_Vt(self, phase): if phase == 'g': Vt = self.V_g else: Vt = self.V_l T, N = self.T, self.N b = self.b a_alpha = self.a_alpha epsilon = self.epsilon depsilon_dns = self.depsilon_dns ddelta_dns = self.ddelta_dns db_dns = self.db_dns da_alpha_dns = self.da_alpha_dns d2delta_dninjs = self.d2delta_dninjs d2epsilon_dninjs = self.d2epsilon_dninjs d2bs = self.d2b_dninjs d2a_alpha_dninjs = self.d2a_alpha_dninjs d3epsilon_dninjnks = self.d3epsilon_dninjnks d3delta_dninjnks = self.d3delta_dninjnks d3a_alpha_dninjnks = self.d3a_alpha_dninjnks d3b_dninjnks = self.d3b_dninjnks mat = [[[0.0]*N for _ in range(N)] for _ in range(N)] for i in range(N): for j in range(N): for k in range(N): x0 = self.b x1 = 1.0 x2 = Vt/x1 x3 = -x0 + x2 x4 = 6/x1**4 x5 = Vt*x4 x6 = R*T x7 = self.a_alpha x8 = self.epsilon x9 = Vt**2 x10 = x1**(-2) x11 = self.delta x12 = x10*x9 + x11*x2 + x8 x13 = 2/x1**3 x14 = Vt*x13 x15 = Vt*x10 x16 = x6*(x15 + db_dns[k]) x17 = 2/x3**3 x18 = x15 + db_dns[j] x19 = x17*x6 x20 = x15 + db_dns[i] x21 = x12**(-2) x22 = ddelta_dns[i] x23 = x11*x15 + x13*x9 x24 = -x2*x22 + x23 - depsilon_dns[i] x25 = ddelta_dns[j] x26 = -x2*x25 + x23 - depsilon_dns[j] x27 = ddelta_dns[k] x28 = -x2*x27 + x23 - depsilon_dns[j] x29 = da_alpha_dns[k] x30 = d2delta_dninjs[i][j] x31 = -x15*x25 x32 = x4*x9 x33 = x11*x14 x34 = -x15*x22 + x32 + x33 x35 = x2*x30 + x31 + x34 + d2epsilon_dninjs[i][j] x36 = da_alpha_dns[j] x37 = d2delta_dninjs[i][k] x38 = -x15*x27 x39 = x2*x37 + x34 + x38 + d2epsilon_dninjs[i][k] x40 = da_alpha_dns[i] x41 = d2delta_dninjs[j][k] x42 = x2*x41 + x31 + x32 + x33 + x38 + d2epsilon_dninjs[j][k] x43 = 2/x12**3 x44 = x24*x26 x45 = x28*x43 x46 = x43*x7 v = (-x16*x17*(x14 - d2bs[i][j]) + 6*x16*x18*x20/x3**4 - x18*x19*(x14 -d2bs[i][k]) - x19*x20*(x14 - d2bs[j][k]) - x21*x24*d2a_alpha_dninjs[j][k] - x21*x26*d2a_alpha_dninjs[i][k] - x21*x28*d2a_alpha_dninjs[i][j] + x21*x29*x35 + x21*x36*x39 + x21*x40*x42 - x21*x7*(x11*x5 - x14*x22 - x14*x25 - x14*x27 + x15*x30 + x15*x37 + x15*x41 - x2*d3delta_dninjnks[i][j][k] - d3epsilon_dninjnks[i][j][k] + 24*x9/x1**5) - x24*x36*x45 + x24*x42*x46 + x26*x39*x46 - x26*x40*x45 - x29*x43*x44 + x35*x45*x7 + x6*(x5 + d3b_dninjnks[i][j][k])/x3**2 - d3a_alpha_dninjnks[i][j][k]/x12 - 6*x28*x44*x7/x12**4) mat[i][j][k] = v return mat def dH_dep_dns(self, Z): r'''Calculates the molar departure enthalpy mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial H_{dep}}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial H_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dH_dep_dns : float Departure enthalpy mole number derivatives, [J/mol^2] ''' return dxs_to_dns(self.dH_dep_dzs(Z), self.zs) def dnH_dep_dns(self, Z): r'''Calculates the partial molar departure enthalpy. No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial n H_{dep}}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial H_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dnH_dep_dns : float Partial molar departure enthalpies of the phase, [J/mol] ''' try: if Z == self.Z_l: F = self.H_dep_l else: F = self.H_dep_g except: F = self.H_dep_g return dxs_to_dn_partials(self.dH_dep_dzs(Z), self.zs, F) def _G_dep_lnphi_d_helper(self, Z, dbs, depsilons, ddelta, dVs, da_alphas, G=True): return G_dep_lnphi_d_helper(self.T, self.P, self.b, self.delta, self.epsilon, self.a_alpha, self.N, Z, dbs, depsilons, ddelta, dVs, da_alphas, G) def dlnphi_dzs(self, Z): r'''Calculates the mixture log *fugacity coefficient* mole fraction derivatives (where the mole fractions do not sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative of Gibbs free energy. .. math:: \left(\frac{\partial \ln \phi }{\partial x_i}\right)_{T, P, x_{i\ne j}} = \frac{1}{RT}\left( \left(\frac{\partial G_{dep}} {\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dlnphi_dzs : float Mixture log fugacity coefficient mole fraction derivatives, [-] ''' return self._G_dep_lnphi_d_helper(Z, dbs=self.db_dzs, depsilons=self.depsilon_dzs, ddelta=self.ddelta_dzs, dVs=self.dV_dzs(Z), da_alphas=self.da_alpha_dzs, G=False) def dlnphi_dns(self, Z): r'''Calculates the mixture log *fugacity coefficient* mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative of Gibbs free energy. .. math:: \left(\frac{\partial \ln \phi }{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial G_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) This property can be converted into a partial molar property to obtain the individual fugacity coefficients. Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dlnphi_dns : float Mixture log fugacity coefficient mole number derivatives, [1/mol] ''' return self._G_dep_lnphi_d_helper(Z, dbs=self.db_dns, depsilons=self.depsilon_dns, ddelta=self.ddelta_dns, dVs=self.dV_dns(Z), da_alphas=self.da_alpha_dns, G=False) def dG_dep_dzs(self, Z): r'''Calculates the molar departure Gibbs energy composition derivative (where the mole fractions do not sum to 1). Verified numerically. Useful in solving for gibbs minimization calculations or for solving for the true critical point. Also forms the basis for the molar departure Gibbs energy mole number derivative and molar partial departure Gibbs energy. .. math:: \left(\frac{\partial G_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} = P \frac{d}{d x} V{\left(x \right)} - \frac{R T \left(\frac{d}{d x} V{\left(x \right)} - \frac{d}{d x} b{\left(x \right)}\right)}{ V{\left(x \right)} - b{\left(x \right)}} - \frac{2 \left(- \delta{ \left(x \right)} \frac{d}{d x} \delta{\left(x \right)} + 2 \frac{d} {d x} \epsilon{\left(x \right)}\right) \operatorname{a \alpha}{ \left(x \right)} \operatorname{atanh}{\left(\frac{2 V{\left(x \right)}}{\sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} + \frac{\delta{\left(x \right)}}{\sqrt{\delta^{2}{\left( x \right)} - 4 \epsilon{\left(x \right)}}} \right)}}{\left( \delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}\right)^{ \frac{3}{2}}} - \frac{2 \operatorname{atanh}{\left(\frac{2 V{\left( x \right)}}{\sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} + \frac{\delta{\left(x \right)}}{\sqrt{\delta^{2}{\left( x \right)} - 4 \epsilon{\left(x \right)}}} \right)} \frac{d}{d x} \operatorname{a \alpha}{\left(x \right)}}{\sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} - \frac{2 \left(\frac{2 \left(- \delta{\left(x \right)} \frac{d}{d x} \delta{\left(x \right)} + 2 \frac{d}{d x} \epsilon{\left(x \right)}\right) V{\left(x \right)}}{\left(\delta^{2}{\left(x \right)} - 4 \epsilon{ \left(x \right)}\right)^{\frac{3}{2}}} + \frac{\left(- \delta{\left (x \right)} \frac{d}{d x} \delta{\left(x \right)} + 2 \frac{d}{d x} \epsilon{\left(x \right)}\right) \delta{\left(x \right)}}{\left( \delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}\right)^{ \frac{3}{2}}} + \frac{2 \frac{d}{d x} V{\left(x \right)}}{\sqrt{ \delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} + \frac{\frac{d}{d x} \delta{\left(x \right)}}{\sqrt{\delta^{2}{ \left(x \right)} - 4 \epsilon{\left(x \right)}}}\right) \operatorname{a \alpha}{\left(x \right)}}{\left(1 - \left(\frac{2 V{\left(x \right)}}{\sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{ \left(x \right)}}} + \frac{\delta{\left(x \right)}}{\sqrt{ \delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}}\right )^{2}\right) \sqrt{\delta^{2}{\left(x \right)} - 4 \epsilon{\left(x \right)}}} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dG_dep_dzs : float Departure Gibbs free energy composition derivatives, [J/mol] Notes ----- The derivation for the derivative is performed as follows using SymPy. The function source code is an optimized variant created with the `cse` SymPy function, and hand optimized further. >>> from sympy import * # doctest:+SKIP >>> P, T, R, x = symbols('P, T, R, x') # doctest:+SKIP >>> a_alpha, a, delta, epsilon, V, b, da_alpha_dT = symbols('a\ \\alpha, a, delta, epsilon, V, b, da_alpha_dT', cls=Function) # doctest:+SKIP >>> S_dep = R*log(P*V(x)/(R*T)) + R*log(V(x)-b(x))+2*da_alpha_dT(x)*atanh((2*V(x)+delta(x))/sqrt(delta(x)**2-4*epsilon(x)))/sqrt(delta(x)**2-4*epsilon(x))-R*log(V(x)) # doctest:+SKIP >>> H_dep = P*V(x) - R*T + 2*atanh((2*V(x)+delta(x))/sqrt(delta(x)**2-4*epsilon(x)))*(da_alpha_dT(x)*T-a_alpha(x))/sqrt(delta(x)**2-4*epsilon(x)) # doctest:+SKIP >>> G_dep = simplify(H_dep - T*S_dep) # doctest:+SKIP >>> diff(G_dep, x) # doctest:+SKIP P*Derivative(V(x), x) - R*T*(Derivative(V(x), x) - Derivative(b(x), x))/(V(x) - b(x)) - 2*(-delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*a \alpha(x)*atanh(2*V(x)/sqrt(delta(x)**2 - 4*epsilon(x)) + delta(x)/sqrt(delta(x)**2 - 4*epsilon(x)))/(delta(x)**2 - 4*epsilon(x))**(3/2) - 2*atanh(2*V(x)/sqrt(delta(x)**2 - 4*epsilon(x)) + delta(x)/sqrt(delta(x)**2 - 4*epsilon(x)))*Derivative(a \alpha(x), x)/sqrt(delta(x)**2 - 4*epsilon(x)) - 2*(2*(-delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*V(x)/(delta(x)**2 - 4*epsilon(x))**(3/2) + (-delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*delta(x)/(delta(x)**2 - 4*epsilon(x))**(3/2) + 2*Derivative(V(x), x)/sqrt(delta(x)**2 - 4*epsilon(x)) + Derivative(delta(x), x)/sqrt(delta(x)**2 - 4*epsilon(x)))*a \alpha(x)/((1 - (2*V(x)/sqrt(delta(x)**2 - 4*epsilon(x)) + delta(x)/sqrt(delta(x)**2 - 4*epsilon(x)))**2)*sqrt(delta(x)**2 - 4*epsilon(x))) ''' return self._G_dep_lnphi_d_helper(Z, dbs=self.db_dzs, depsilons=self.depsilon_dzs, ddelta=self.ddelta_dzs, dVs=self.dV_dzs(Z), da_alphas=self.da_alpha_dzs, G=True) def dG_dep_dns(self, Z): r'''Calculates the molar departure Gibbs energy mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial G_{dep}}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial G_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Apart from the ideal term, this is the formulation for chemical potential. Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dG_dep_dns : float Departure Gibbs energy mole number derivatives, [J/mol^2] ''' return self._G_dep_lnphi_d_helper(Z, dbs=self.db_dns, depsilons=self.depsilon_dns, ddelta=self.ddelta_dns, dVs=self.dV_dns(Z), da_alphas=self.da_alpha_dns, G=True) def dnG_dep_dns(self, Z): r'''Calculates the partial molar departure Gibbs energy. No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial n G_{dep}}{\partial n_i}\right)_{T, P, n_{i\ne j}} = f\left( \left(\frac{\partial G_{dep}}{\partial x_i}\right)_{T, P, x_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dnG_dep_dns : float Partial molar departure Gibbs energy of the phase, [J/mol] ''' try: if Z == self.Z_l: F = self.G_dep_l else: F = self.G_dep_g except: F = self.G_dep_g dG_dns = self.dG_dep_dns(Z) return dns_to_dn_partials(dG_dns, F) def fugacity_coefficients(self, Z): r'''Generic formula for calculating log fugacity coefficients for each species in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here. Normally this routine is slower than EOS-specific ones, as it does not make assumptions that certain parameters are zero or equal to other parameters. .. math:: \left(\frac{\partial n \ln \phi}{\partial n_i} \right)_{n_{k \ne i}} = \ln \phi _i = \ln \phi + n \left(\frac{\partial \ln \phi}{\partial n_i} \right)_{n_{k\ne i}} .. math:: \left(\frac{\partial \ln \phi }{\partial n_i}\right)_{T, P, n_{i\ne j}} = \frac{1}{RT}\left( \left(\frac{\partial G_{dep}} {\partial n_i}\right)_{T, P, n_{i\ne j}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- log_phis : float Log fugacity coefficient for each species, [-] ''' zs = self.zs try: if Z == self.Z_l: F = self.phi_l else: F = self.phi_g except: F = self.phi_g # This conversion seems numerically safe anyway try: logF = log(F) except: logF = -690.7755278982137 log_phis = dns_to_dn_partials(self.dlnphi_dns(Z), logF) return log_phis if self.scalar else array(log_phis) def _d2_G_dep_lnphi_d2_helper(self, V, d_Vs, d2Vs, dbs, d2bs, d_epsilons, d2_epsilons, d_deltas, d2_deltas, da_alphas, d2a_alphas, G=True): T, P = self.T, self.P N = self.N RT = T*R RT_inv = 1.0/RT hess = [] for i in range(N): row = [] for j in range(N): # x1: i # x2: j x0 = V# V(x1, x2) x3 = d2Vs[i][j] #Derivative(x0, x1, x2) x4 = self.b#b(x1, x2) x5 = x0 - x4 x6 = R*T x7 = d_Vs[i] #Derivative(x0, x1) x8 = d_Vs[j] #Derivative(x0, x2) x9 = self.delta#delta(x1, x2) x10 = self.epsilon#epsilon(x1, x2) x11 = -4*x10 + x9**2 if x11 == 0.0: x11 = 1e-100 x12 = 1/sqrt(x11) x13 = self.a_alpha#alpha(x1, x2) x14 = 2*x0 x15 = x14 + x9 x16 = catanh(x12*x15).real x17 = 2*x16 x18 = d_deltas[i] #Derivative(x9, x1) x19 = x18*x9 - 2*d_epsilons[i]#Derivative(x10, x1) x20 = da_alphas[j]#Derivative(x13, x2) x21 = x17/x11**(3/2) x22 = d_deltas[j]#Derivative(x9, x2) x23 = x22*x9 - 2*d_epsilons[j]#Derivative(x10, x2) x24 = da_alphas[i]#Derivative(x13, x1) x25 = d2_deltas[i][j]#Derivative(x9, x1, x2) x26 = x18*x22 + x25*x9 - 2*d2_epsilons[i][j]#Derivative(x10, x1, x2) x27 = x13*x23 x28 = 2*x7 x29 = 1/x11 x30 = x29*x9 x31 = x19*x29 x32 = x14*x31 - x18 + x19*x30 - x28 x33 = x15**2*x29 - 1 x34 = 2/x33 x35 = x29*x34 x36 = 2*x8 x37 = x23*x29 x38 = x14*x37 - x22 + x23*x30 - x36 x39 = x11**(-2) x40 = x19*x39 x41 = x13*x38 x42 = x32*x39 x43 = x23*x40 v = (P*x3 - x12*x17*d2a_alphas[i][j] + x13*x21*x26 - x13*x35*(-6*x0*x43 + x14*x26*x29 + x18*x37 + x22*x31 - x25 + x26*x30 + x28*x37 - 2*x3 + x31*x36 - 3*x43*x9) - 4*x15*x41*x42/x33**2 + x19*x20*x21 - x20*x32*x35 + x21*x23*x24 - x24*x35*x38 + x27*x34*x42 + x34*x40*x41 - x6*(x3 - d2bs[i][j])/x5 + x6*(x7 - dbs[i])*(x8 - dbs[j])/x5**2 - 6*x16*x19*x27/x11**(5/2)) if not G: v *= RT_inv row.append(v) hess.append(row) return hess def d2lnphi_dzizjs(self, Z): r'''Calculates the mixture log *fugacity coefficient* second mole fraction derivatives (where the mole fractions do not sum to 1). No specific formula is implemented for this property - it is calculated from the second mole fraction derivative of Gibbs free energy. .. math:: \left(\frac{\partial^2 \ln \phi }{\partial x_i\partial x_j}\right)_{T, P, x_{i,j\ne k}} = \frac{1}{RT}\left( \left(\frac{\partial^2 G_{dep}} {\partial x_j \partial x_i}\right)_{T, P, x_{i,j\ne k}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- d2lnphi_dzizjs : float Mixture log fugacity coefficient second mole fraction derivatives, [-] ''' V = Z*self.T*R/self.P dV_dzs = self.dV_dzs(Z) d2Vs = self.d2V_dzizjs(Z) depsilon_dzs = self.depsilon_dzs d2epsilon_dzizjs = self.d2epsilon_dzizjs ddelta_dzs = self.ddelta_dzs d2delta_dzizjs = self.d2delta_dzizjs db_dzs = self.db_dzs d2bs = self.d2b_dzizjs da_alpha_dzs = self.da_alpha_dzs d2a_alpha_dzizjs = self.d2a_alpha_dzizjs return self._d2_G_dep_lnphi_d2_helper(V=V, d_Vs=dV_dzs, d2Vs=d2Vs, dbs=db_dzs, d2bs=d2bs, d_epsilons=depsilon_dzs, d2_epsilons=d2epsilon_dzizjs, d_deltas=ddelta_dzs, d2_deltas=d2delta_dzizjs, da_alphas=da_alpha_dzs, d2a_alphas=d2a_alpha_dzizjs, G=False) def d2lnphi_dninjs(self, Z): r'''Calculates the mixture log *fugacity coefficient* second mole number derivatives (where the mole fraction sum to 1). No specific formula is implemented for this property - it is calculated from the second mole fraction derivative of Gibbs free energy. .. math:: \left(\frac{\partial^2 \ln \phi }{\partial n_i\partial n_j}\right)_{T, P, n_{i,j\ne k}} f\left( \left(\frac{\partial^2 G_{dep}} {\partial x_j \partial x_i}\right)_{T, P, x_{i,j\ne k}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- d2lnphi_dninjs : float Mixture log fugacity coefficient second mole number derivatives, [-] ''' V = Z*self.T*R/self.P dV_dns = self.dV_dns(Z) d2Vs = self.d2V_dninjs(Z) depsilon_dns = self.depsilon_dns d2epsilon_dninjs = self.d2epsilon_dninjs ddelta_dns = self.ddelta_dns d2delta_dninjs = self.d2delta_dninjs db_dns = self.db_dns d2bs = self.d2b_dninjs da_alpha_dns = self.da_alpha_dns d2a_alpha_dninjs = self.d2a_alpha_dninjs return self._d2_G_dep_lnphi_d2_helper(V=V, d2Vs=d2Vs, d_Vs=dV_dns, dbs=db_dns, d2bs=d2bs, d_epsilons=depsilon_dns, d2_epsilons=d2epsilon_dninjs, d_deltas=ddelta_dns, d2_deltas=d2delta_dninjs, da_alphas=da_alpha_dns, d2a_alphas=d2a_alpha_dninjs, G=False) def d2G_dep_dzizjs(self, Z): r'''Calculates the molar departure Gibbs energy second composition derivative (where the mole fractions do not sum to 1). Verified numerically. Useful in solving for gibbs minimization calculations or for solving for the true critical point. Also forms the basis for the molar departure Gibbs energy mole second number derivative. .. math:: \left(\frac{\partial^2 G_{dep}}{\partial x_j \partial x_i}\right)_{T, P, x_{i,j\ne k}} = \text{run SymPy code to obtain - very long!} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- d2G_dep_dzizjs : float Departure Gibbs free energy second composition derivatives, [J/mol] Notes ----- The derivation for the derivative is performed as follows using SymPy. The function source code is an optimized variant created with the `cse` SymPy function, and hand optimized further. >>> from sympy import * # doctest:+SKIP >>> P, T, R, x1, x2 = symbols('P, T, R, x1, x2') # doctest:+SKIP >>> a_alpha, delta, epsilon, V, b = symbols('a\ \\alpha, delta, epsilon, V, b', cls=Function) # doctest:+SKIP >>> da_alpha_dT, d2a_alpha_dT2 = symbols('da_alpha_dT, d2a_alpha_dT2', cls=Function) # doctest:+SKIP >>> S_dep = R*log(P*V(x1, x2)/(R*T)) + R*log(V(x1, x2)-b(x1, x2))+2*da_alpha_dT(x1, x2)*atanh((2*V(x1, x2)+delta(x1, x2))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2)))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2))-R*log(V(x1, x2)) # doctest:+SKIP >>> H_dep = P*V(x1, x2) - R*T + 2*atanh((2*V(x1, x2)+delta(x1, x2))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2)))*(da_alpha_dT(x1, x2)*T-a_alpha(x1, x2))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2)) # doctest:+SKIP >>> G_dep = simplify(H_dep - T*S_dep) # doctest:+SKIP >>> diff(G_dep, x1, x2) # doctest:+SKIP ''' V = Z*self.T*R/self.P dV_dzs = self.dV_dzs(Z) d2Vs = self.d2V_dzizjs(Z) depsilon_dzs = self.depsilon_dzs d2epsilon_dzizjs = self.d2epsilon_dzizjs ddelta_dzs = self.ddelta_dzs d2delta_dzizjs = self.d2delta_dzizjs db_dzs = self.db_dzs d2bs = self.d2b_dzizjs da_alpha_dzs = self.da_alpha_dzs d2a_alpha_dzizjs = self.d2a_alpha_dzizjs return self._d2_G_dep_lnphi_d2_helper(V=V, d_Vs=dV_dzs, d2Vs=d2Vs, dbs=db_dzs, d2bs=d2bs, d_epsilons=depsilon_dzs, d2_epsilons=d2epsilon_dzizjs, d_deltas=ddelta_dzs, d2_deltas=d2delta_dzizjs, da_alphas=da_alpha_dzs, d2a_alphas=d2a_alpha_dzizjs, G=True) def dlnphis_dns(self, Z): r'''Generic formula for calculating the mole number derivaitves of log fugacity coefficients for each species in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here. .. math:: \left(\frac{\partial \ln \phi_i}{\partial n_i}\right)_{P, n_{j \ne i}} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dlnphis_dns : list[list[float]] Mole number derivatives of log fugacity coefficient for each species, [-] Notes ----- ''' dns = self.dlnphi_dns(Z) d2ns = self.d2lnphi_dninjs(Z) return d2ns_to_dn2_partials(d2ns, dns) def dlnfugacities_dns(self, phase): r'''Generic formula for calculating the mole number derivaitves of log fugacities for each species in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here. .. math:: \left(\frac{\partial \ln f_i}{\partial n_i}\right)_{P, n_{j \ne i}} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnfugacities_dns : list[list[float]] Mole number derivatives of log fugacities for each species, [-] Notes ----- ''' zs, N = self.zs, self.N if phase == 'l': Z = self.Z_l try: fugacities = self.fugacities_l except AttributeError: self.fugacities() fugacities = self.fugacities_l else: Z = self.Z_g try: fugacities = self.fugacities_g except AttributeError: self.fugacities() fugacities = self.fugacities_g dlnfugacities_dns = [list(i) for i in self.dfugacities_dns(phase)] fugacities_inv = [1.0/fi for fi in fugacities] for i in range(N): r = dlnfugacities_dns[i] for j in range(N): r[j]*= fugacities_inv[i] return dlnfugacities_dns def dfugacities_dns(self, phase): r'''Generic formula for calculating the mole number derivaitves of fugacities for each species in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here. .. math:: \left(\frac{\partial f_i}{\partial n_i}\right)_{P, n_{j \ne i}} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dfugacities_dns : list[list[float]] Mole number derivatives of fugacities for each species, [-] Notes ----- ''' ''' from sympy import * phifun1, phifun2 = symbols('phifun1, phifun2', cls=Function) n1, n2, P = symbols('n1, n2, P') x1 = n1/(n1+n2) x2 = n2/(n1+n2) to_diff = x2*P*exp(phifun1(n1)) diff(to_diff, n1).subs({n1+n1: 1}) ''' zs = self.zs if phase == 'l': Z = self.Z_l try: phis = self.phis_l except AttributeError: self.fugacities() phis = self.phis_l else: Z = self.Z_g try: phis = self.phis_g except AttributeError: self.fugacities() phis = self.phis_g dlnphis_dns = self.dlnphis_dns(Z) P = self.P N = self.N matrix = [] for i in range(N): phi_P = P*phis[i] ziPphi = phi_P*zs[i] r = dlnphis_dns[i] # row = [ziPphi*(r[j] - 1.0) for j in range(N)] row = [ziPphi*(dlnphis_dns[j][i] - 1.0) for j in range(N)] row[i] += phi_P matrix.append(row) return matrix def d2G_dep_dninjs(self, Z): r'''Calculates the molar departure Gibbs energy mole number derivatives (where the mole fractions sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative. .. math:: \left(\frac{\partial^2 G_{dep}}{\partial n_j \partial n_i}\right)_{T, P, n_{i,j\ne k}} = f\left( \left(\frac{\partial^2 G_{dep}}{\partial x_j \partial x_i}\right)_{T, P, x_{i,j\ne k}} \right) Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- d2G_dep_dninjs : float Departure Gibbs energy second mole number derivatives, [J/mol^3] ''' V = Z*self.T*R/self.P dV_dns = self.dV_dns(Z) d2Vs = self.d2V_dninjs(Z) depsilon_dns = self.depsilon_dns d2epsilon_dninjs = self.d2epsilon_dninjs ddelta_dns = self.ddelta_dns d2delta_dninjs = self.d2delta_dninjs db_dns = self.db_dns d2bs = self.d2b_dninjs da_alpha_dns = self.da_alpha_dns d2a_alpha_dninjs = self.d2a_alpha_dninjs return self._d2_G_dep_lnphi_d2_helper(V=V, d2Vs=d2Vs, d_Vs=dV_dns, dbs=db_dns, d2bs=d2bs, d_epsilons=depsilon_dns, d2_epsilons=d2epsilon_dninjs, d_deltas=ddelta_dns, d2_deltas=d2delta_dninjs, da_alphas=da_alpha_dns, d2a_alphas=d2a_alpha_dninjs, G=True) def _d2_A_dep_d2_helper(self, V, d_Vs, d2Vs, dbs, d2bs, d_epsilons, d2_epsilons, d_deltas, d2_deltas, da_alphas, d2a_alphas): # pass r'''from sympy import * # doctest:+SKIP P, T, R, x1, x2 = symbols('P, T, R, x1, x2') # doctest:+SKIP a_alpha, delta, epsilon, V, b = symbols('a\ \\alpha, delta, epsilon, V, b', cls=Function) # doctest:+SKIP da_alpha_dT, d2a_alpha_dT2 = symbols('da_alpha_dT, d2a_alpha_dT2', cls=Function) # doctest:+SKIP S_dep = R*log(P*V(x1, x2)/(R*T)) + R*log(V(x1, x2)-b(x1, x2))+2*da_alpha_dT(x1, x2)*atanh((2*V(x1, x2)+delta(x1, x2))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2)))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2))-R*log(V(x1, x2)) # doctest:+SKIP H_dep = P*V(x1, x2) - R*T + 2*atanh((2*V(x1, x2)+delta(x1, x2))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2)))*(da_alpha_dT(x1, x2)*T-a_alpha(x1, x2))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2)) # doctest:+SKIP G_dep = simplify(H_dep - T*S_dep) # doctest:+SKIP V_dep = V(x1, x2) - R*T/P U_dep = H_dep - P*V_dep A_dep = simplify(U_dep - T*S_dep) ''' T, P = self.T, self.P b = self.b N = self.N RT = T*R hess = [] for i in range(N): row = [] for j in range(N): x0 = V x3 = b x4 = x0 - x3 x5 = d2Vs[i][j] x6 = R*T x7 = d_Vs[i] x8 = d_Vs[j] x9 = self.delta x10 = self.epsilon x11 = -4*x10 + x9**2 x12 = 1/sqrt(x11) x13 = self.a_alpha x14 = 2*x0 x15 = x14 + x9 x16 = catanh(x12*x15).real x17 = 2*x16 x18 = d_deltas[i] x19 = x18*x9 - 2*d_epsilons[i] x20 = da_alphas[j] x21 = x17/x11**(3/2) x22 = d_deltas[j] x23 = x22*x9 - 2*d_epsilons[j] x24 = da_alphas[i] x25 = d2_deltas[i][j] x26 = x18*x22 + x25*x9 - 2*d2_epsilons[i][j] x27 = x13*x23 x28 = 2*x7 x29 = 1/x11 x30 = x29*x9 x31 = x19*x29 x32 = x14*x31 - x18 + x19*x30 - x28 x33 = x15**2*x29 - 1 x34 = 2/x33 x35 = x29*x34 x36 = 2*x8 x37 = x23*x29 x38 = x14*x37 - x22 + x23*x30 - x36 x39 = x11**(-2) x40 = x19*x39 x41 = x13*x38 x42 = x32*x39 x43 = x23*x40 v = (-x12*x17*d2a_alphas[i][j] + x13*x21*x26 - x13*x35*(-6*x0*x43 + x14*x26*x29 + x18*x37 + x22*x31 - x25 + x26*x30 + x28*x37 + x31*x36 - 3*x43*x9 - 2*x5) - 4*x15*x41*x42/x33**2 + x19*x20*x21 - x20*x32*x35 + x21*x23*x24 - x24*x35*x38 + x27*x34*x42 + x34*x40*x41 - x6*(x5 - d2bs[i][j])/x4 + x6*(x7 - dbs[i])*(x8 - dbs[j])/x4**2 - 6*x16*x19*x27/x11**(5/2.)) row.append(v) hess.append(row) return hess def d2A_dep_dninjs(self, Z): V = Z*self.T*R/self.P dV_dns = self.dV_dns(Z) d2Vs = self.d2V_dninjs(Z) depsilon_dns = self.depsilon_dns d2epsilon_dninjs = self.d2epsilon_dninjs ddelta_dns = self.ddelta_dns d2delta_dninjs = self.d2delta_dninjs db_dns = self.db_dns d2bs = self.d2b_dninjs da_alpha_dns = self.da_alpha_dns d2a_alpha_dninjs = self.d2a_alpha_dninjs return self._d2_A_dep_d2_helper(V=V, d2Vs=d2Vs, d_Vs=dV_dns, dbs=db_dns, d2bs=d2bs, d_epsilons=depsilon_dns, d2_epsilons=d2epsilon_dninjs, d_deltas=ddelta_dns, d2_deltas=d2delta_dninjs, da_alphas=da_alpha_dns, d2a_alphas=d2a_alpha_dninjs) def dA_dep_dns_Vt(self, phase): # pass r''' from sympy import * Vt, P, T, R, n1, n2, n3 = symbols('Vt, P, T, R, n1, n2, n3') # doctest:+SKIP P, V, a_alpha, delta, epsilon, b = symbols('P, V, a\ \\alpha, delta, epsilon, b', cls=Function) # doctest:+SKIP da_alpha_dT, d2a_alpha_dT2 = symbols('da_alpha_dT, d2a_alpha_dT2', cls=Function) # doctest:+SKIP ns = [n1, n2, n3] S_dep = R*log(P(n1, n2, n3)*V(n1, n2, n3)/(R*T)) + R*log(V(n1, n2, n3)-b(n1, n2, n3))+2*da_alpha_dT(n1, n2, n3)*atanh((2*V(n1, n2, n3)+delta(n1, n2, n3))/sqrt(delta(n1, n2, n3)**2-4*epsilon(n1, n2, n3)))/sqrt(delta(n1, n2, n3)**2-4*epsilon(n1, n2, n3))-R*log(V(n1, n2, n3)) H_dep = P(n1, n2, n3)*V(n1, n2, n3) - R*T + 2*atanh((2*V(n1, n2, n3)+delta(n1, n2, n3))/sqrt(delta(n1, n2, n3)**2-4*epsilon(n1, n2, n3)))*(da_alpha_dT(n1, n2, n3)*T-a_alpha(n1, n2, n3))/sqrt(delta(n1, n2, n3)**2-4*epsilon(n1, n2, n3)) G_dep = simplify(H_dep - T*S_dep) V_dep = V(n1, n2, n3) - R*T/P(n1, n2, n3) U_dep = H_dep - P(n1, n2, n3)*V_dep A_dep = simplify(U_dep - T*S_dep) expr = diff(A_dep, n1) for ni in ns: expr = expr.subs(Derivative(V(n1, n2, n3), ni), -Vt) expr = simplify(expr) cse(expr, optimizations='basic') ''' if phase == 'g': Vt = self.V_g else: Vt = self.V_l T, N = self.T, self.N b = self.b a_alpha = self.a_alpha epsilon = self.epsilon depsilon_dns = self.depsilon_dns ddelta_dns = self.ddelta_dns db_dns = self.db_dns da_alpha_dns = self.da_alpha_dns dP_dns_Vt = self.dP_dns_Vt(phase) x0 = self.P x1 = Vt x2 = self.b x3 = x1 - x2 x4 = self.delta x5 = x4**2 x6 = self.epsilon x7 = 4*x6 x8 = x5 - x7 x9 = x8**(7/2) x10 = 2*x1 x11 = x10 + x4 x12 = x11**2 - x5 + x7 x13 = Vt*x0 x14 = x12*x3 x15 = R*T*x9 x16 = x14*x15 x17 = self.a_alpha x18 = x0*x10 x19 = x14*catanh(x11*x8**-0.5).real jac = [] for i in range(N): x20 = ddelta_dns[i] x21 = x20*x4 - 2*depsilon_dns[i] x22 = x17*x18 v = (-(-x0*x1*x12*x15*(Vt + db_dns[i]) + x13*x16 - x16*(-x1*dP_dns_Vt[i] + x13) + x18*x19*x8**3*da_alpha_dns[i] - x19*x21*x22*x8**2 + x22*x3*x8**(5/2)*(x11*x21 + x8*(2*Vt - x20)))/(x0*x1*x12*x3*x9)) jac.append(v) return jac def d2A_dep_dninjs_Vt(self, phase): if phase == 'g': Vt = self.V_g else: Vt = self.V_l T, N = self.T, self.N b = self.b a_alpha = self.a_alpha epsilon = self.epsilon depsilon_dns = self.depsilon_dns ddelta_dns = self.ddelta_dns db_dns = self.db_dns da_alpha_dns = self.da_alpha_dns d2delta_dninjs = self.d2delta_dninjs d2epsilon_dninjs = self.d2epsilon_dninjs d2bs = self.d2b_dninjs d2a_alpha_dninjs = self.d2a_alpha_dninjs dP_dns_Vt = self.dP_dns_Vt(phase) d2P_dninjs_Vt = self.d2P_dninjs_Vt(phase) hess = [[0.0]*N for i in range(N)] for i in range(N): for j in range(i+1): x0 = self.P x1 = x0**2 x2 = Vt#V(n1, n2, n3) x3 = x2**2 x4 = self.b x5 = x2 - x4 x6 = x5**2 x7 = self.delta x8 = x7**2 x9 = self.epsilon x10 = 4*x9 x11 = -x10 + x8 x12 = x11**(25/2) x13 = 2*x2 x14 = x13 + x7 x15 = x10 + x14**2 - x8 x16 = x15**2 x17 = x1*x6 x18 = R*T*x12*x16 x19 = x17*x18 x20 = x1*x18*x3 x21 = Vt*x0 x22 = dP_dns_Vt[i] x23 = -x2*x22 + x21 x24 = 2*Vt x25 = dP_dns_Vt[j] x26 = x18*x2*x6 x27 = self.a_alpha x28 = x17*x3 x29 = 2*x28 x30 = x16*catanh(x14/sqrt(x11)).real x31 = x29*x30 x32 = ddelta_dns[i] x33 = x32*x7 - 2*depsilon_dns[i] x34 = ddelta_dns[j] x35 = x34*x7 - 2*depsilon_dns[j] x36 = x33*x35 x37 = da_alpha_dns[j] x38 = da_alpha_dns[i] x39 = d2delta_dninjs[i][j] x40 = x32*x34 + x39*x7 - 2*d2epsilon_dninjs[i][j] x41 = x11*(x24 - x32) + x13*x33 + x33*x7 x42 = x11*(x24 - x34) + x13*x35 + x35*x7 x43 = x11**(21/2)*x27 x44 = x15*x29 x45 = x43*x44 v = (-(Vt**2*x19 - Vt*x13*x19 + x0*x26*(-Vt*x22 - Vt*x25 + x0*x24 + x2*d2P_dninjs_Vt[i][j]) + x11**(23/2)*x44*(x37*x41 + x38*x42) + x11**12*x31*d2a_alpha_dninjs[i][j] - x11**11*x31*(x27*x40 + x33*x37 + x35*x38) + 6*x11**10*x27*x28*x30*x36 + 4*x14*x28*x41*x42*x43 - x18*x21*x23*x6 + x20*x5*(x24 - d2bs[i][j]) - x20*(Vt + db_dns[i])*(Vt + db_dns[j]) + x23*x25*x26 - x45*(x33*x42 + x35*x41) - x45*(x11**2*(4*Vt + x39) - x11*(x13*x40 - x24*x33 - x24*x35 + x32*x35 + x33*x34 + x40*x7) + 3*x14*x36))/(x1*x12*x16*x3*x6)) hess[i][j] = hess[j][i] = v return hess # @property # def SCp0_l(self): # S_dep = self.S_dep_l # S_dep -= R*sum([zi*log(zi) for zi in self.zs if zi > 0.0]) # ideal composition entropy composition # S_dep -= R*log(self.P/101325.0) # return S_dep # # @property # def ACp0_l(self): # return self.A_dep_l - self.T*(self.SCp0_l - self.S_dep_l) # # @property # def SCp0_g(self): # S_dep = self.S_dep_g # S_dep -= R*sum([zi*log(zi) for zi in self.zs if zi > 0.0]) # ideal composition entropy composition # S_dep -= R*log(self.P/101325.0) # return S_dep # # @property # def ACp0_g(self): # return self.A_dep_g - self.T*(self.SCp0_g - self.S_dep_g) # # def Scomp(self, phase): # v = self.T*R*sum([zi*log(zi) for zi in self.zs if zi > 0.0]) # ideal composition entropy composition # v += R*self.T*log(self.P/101325.0) # return v # # @property # def HCp0_g(self): # return self.H_dep_g # # @property # def HCp0_l(self): # return self.H_dep_l # # @property # def GCp0_g(self): # return self.HCp0_g - self.T*self.SCp0_g # # @property # def GCp0_l(self): # return self.HCp0_l - self.T*self.SCp0_l def dScomp_dns(self, phase): dP_dns_Vt = self.dP_dns_Vt(phase) mRT = -R*self.T zs, N = self.zs, self.N logzs = [log(zi) for zi in zs] tot = 0.0 for i in range(N): tot += zs[i]*logzs[i] const = R*self.T/self.P return [mRT*(tot - logzs[i]) + const*dP_dns_Vt[i] for i in range(N)] def d2Scomp_dninjs(self, phase): '''P_ref = symbols('P_ref') diff(R*T*log(P(n1, n2, n3)/P_ref), n1, n2) ''' dP_dns_Vt = self.dP_dns_Vt(phase) d2P_dninjs_Vt = self.d2P_dninjs_Vt(phase) P = self.P RT = R*self.T const = RT/P zs, N = self.zs, self.N logzs = [log(zi) for zi in zs] hess = [] for i in range(N): row = [] for j in range(N): t = sum(2.0*zs[i]*logzs[i] + 3.0*zs[i] for i in range(N)) if i != j: v = RT*(t - logzs[i] - logzs[j] -4.0) else: v = RT*(t - 2*logzs[i] - 3 - (zs[i] - 1.0)/zs[i]) v += const*(d2P_dninjs_Vt[i][j] - dP_dns_Vt[i]*dP_dns_Vt[j]/P) row.append(v) hess.append(row) return hess # TODO fix the implementation below, make it work tot = 0.0 for i in range(N): tot += zs[i]*logzs[i] tot2m1 = tot + tot - 1.0 hess = [[RT*(tot2m1 - logzs[i] - logzs[j]) for i in range(N)] for j in range(N)] return hess # return d2xs_to_dxdn_partials(hess, zs) # return d2ns_to_dn2_partials(hess, self.dScomp_dns) def d2A_dninjs_Vt(self, phase): if phase == 'g': Vt = self.V_g else: Vt = self.V_l N, zs = self.N, self.zs d2A_dep_dninjs_Vt = self.d2A_dep_dninjs_Vt(phase) d2Scomp_dninjs = self.d2Scomp_dninjs hess = [[0.0]*N for i in range(N)] for i in range(N): for j in range(N): hess[i][j] = d2Scomp_dninjs[i][j] + d2A_dep_dninjs_Vt[i][j] return hess def d2nA_dninjs_Vt(self, phase): d2ns = [[i+j for i, j in zip(r1, r2)] for r1, r2 in zip(self.d2A_dep_dninjs_Vt(phase), self.d2Scomp_dninjs(phase))] dns = [i+j for i, j in zip(self.dA_dep_dns_Vt(phase), self.dScomp_dns(phase))] return d2ns_to_dn2_partials(d2ns, dns) def d2A_dninjs_Vt_another(self, phase): d2ns = [[i+j for i, j in zip(r1, r2)] for r1, r2 in zip(self.d2A_dep_dninjs_Vt(phase), self.d2Scomp_dninjs(phase))] return d2ns # dns = [i+j for i, j in zip(self.dA_dep_dns_Vt(phase), self.dScomp_dns(phase))] # return d2ns_to_dn2_partials(d2ns, dns) def _d_main_derivatives_and_departures_dnx(self, V, db_dns, ddelta_dns, depsilon_dns, da_alpha_dns, da_alpha_dT_dns, d2a_alpha_dT2_dns, dV_dns): T = self.T Z = (self.P*V)/(R*T) x0 = self.a_alpha x2 = self.epsilon x3 = V x4 = self.delta x5 = x2 + x3**2 + x3*x4 x6 = 1/x5 x7 = self.b x8 = x3 - x7 x14 = x5**(-2) x15 = self.da_alpha_dT x16 = x14*x15 x18 = 2*x3 + x4 x23 = x5**(-3) x24 = 2*x23 x27 = x18**2 x28 = x18*x24 dndP_dT_dsn = [] dndP_dV_dns = [] dnd2P_dT2_dns = [] dnd2P_dV2_dns = [] dnd2P_dTdV_dns = [] for i in range(self.N): x1 = da_alpha_dT_dns[i] x9 = dV_dns[i] x10 = R*(x9 - db_dns[i]) x17 = 2*x10/x8**3 x12 = 2*x9 x11 = ddelta_dns[i] x21 = x11 + x12 x22 = x0*x21 x13 = x11*x3 + x12*x3 + x4*x9 + depsilon_dns[i] x25 = x0*x13 x26 = x24*x25 x19 = da_alpha_dns[i] x20 = x14*x19 dndP_dT = -x1*x6 - x10/x8**2 + x13*x16 dndP_dT_dsn.append(dndP_dT) dndP_dV = T*x17 + x14*x22 + x18*x20 - x18*x26 dndP_dV_dns.append(dndP_dV) d2a_alpha_dT2_dn = d2a_alpha_dT2_dns[i] dnd2P_dT2 = x6*(x13*x6*self.d2a_alpha_dT2 - d2a_alpha_dT2_dn) dnd2P_dT2_dns.append(dnd2P_dT2) dnd2P_dV2 = -6*T*x10/x8**4 - 2*x19*x23*x27 + 2*x20 - 2*x22*x28 + 6*x25*x27/x5**4 - 2*x26 dnd2P_dV2_dns.append(dnd2P_dV2) dnd2P_dTdV = x1*x14*x18 - x13*x15*x28 + x16*x21 + x17 dnd2P_dTdV_dns.append(dnd2P_dTdV) return dndP_dT_dsn, dndP_dV_dns, dnd2P_dT2_dns, dnd2P_dV2_dns, dnd2P_dTdV_dns def _d_main_derivatives_and_departures_dn(self, V): Z = (self.P*V)/(R*self.T) db_dns = self.db_dns ddelta_dns = self.ddelta_dns depsilon_dns = self.depsilon_dns dV_dns = self.dV_dns(Z) da_alpha_dns = self.da_alpha_dns da_alpha_dT_dns = self.da_alpha_dT_dns d2a_alpha_dT2_dns = self.d2a_alpha_dT2_dns return self._d_main_derivatives_and_departures_dnx(V, db_dns, ddelta_dns, depsilon_dns, da_alpha_dns, da_alpha_dT_dns, d2a_alpha_dT2_dns, dV_dns) def _d_main_derivatives_and_departures_dz(self, V): Z = (self.P*V)/(R*self.T) db_dzs = self.db_dzs ddelta_dzs = self.ddelta_dzs depsilon_dzs = self.depsilon_dzs dV_dzs = self.dV_dzs(Z) da_alpha_dzs = self.da_alpha_dzs da_alpha_dT_dzs = self.da_alpha_dT_dzs d2a_alpha_dT2_dzs = self.d2a_alpha_dT2_dzs return self._d_main_derivatives_and_departures_dnx(V, db_dzs, ddelta_dzs, depsilon_dzs, da_alpha_dzs, da_alpha_dT_dzs, d2a_alpha_dT2_dzs, dV_dzs) def _dnz_derivatives_and_departures(self, V, n=True): try: if V == self.V_l: l = True else: l = False except: l = False if n: f = self._d_main_derivatives_and_departures_dn else: f = self._d_main_derivatives_and_departures_dz d2P_dTdns, d2P_dVdns, d3P_dT2dns, d3P_dV2dns, d3P_dTdVdns = f(V) # Needed in calculation routines if l: (dP_dT, dP_dV, dV_dT, dV_dP, dT_dV, dT_dP, d2P_dT2, d2P_dV2, d2V_dT2, d2V_dP2, d2T_dV2, d2T_dP2, d2V_dPdT, d2P_dTdV, d2T_dPdV) = (self.dP_dT_l, self.dP_dV_l, self.dV_dT_l, self.dV_dP_l, self.dT_dV_l, self.dT_dP_l, self.d2P_dT2_l, self.d2P_dV2_l, self.d2V_dT2_l, self.d2V_dP2_l, self.d2T_dV2_l, self.d2T_dP2_l, self.d2V_dPdT_l, self.d2P_dTdV_l, self.d2T_dPdV_l) else: (dP_dT, dP_dV, dV_dT, dV_dP, dT_dV, dT_dP, d2P_dT2, d2P_dV2, d2V_dT2, d2V_dP2, d2T_dV2, d2T_dP2, d2V_dPdT, d2P_dTdV, d2T_dPdV) = (self.dP_dT_g, self.dP_dV_g, self.dV_dT_g, self.dV_dP_g, self.dT_dV_g, self.dT_dP_g, self.d2P_dT2_g, self.d2P_dV2_g, self.d2V_dT2_g, self.d2V_dP2_g, self.d2T_dV2_g, self.d2T_dP2_g, self.d2V_dPdT_g, self.d2P_dTdV_g, self.d2T_dPdV_g) d2V_dTdns = [] d2V_dPdns = [] d2T_dVdns = [] d2T_dPdns = [] d3T_dP2dns = [] d3V_dP2dns = [] d3T_dV2dns = [] d3V_dT2dns = [] d3T_dPdVdns = [] d3V_dPdTdns = [] for i in range(self.N): d2P_dTdn, d2P_dVdn, d3P_dT2dn, d3P_dV2dn, d3P_dTdVdn = ( d2P_dTdns[i], d2P_dVdns[i], d3P_dT2dns[i], d3P_dV2dns[i], d3P_dTdVdns[i]) # First derivative - one over the other d2V_dTdn = dP_dT*d2P_dVdn/dP_dV**2 - d2P_dTdn/dP_dV d2V_dTdns.append(d2V_dTdn) # dP_dT # f # dP_dV # g # Second derivative - one over the other d2V_dPdn = dV_dT*d2P_dTdn/dP_dT**2 - d2V_dTdn/dP_dT d2V_dPdns.append(d2V_dPdn) # f = dV_dT # g = dP_dT # Third derivative - inverse of other expression d2T_dVdn = -d2V_dTdn/dV_dT**2 d2T_dVdns.append(d2T_dVdn) # Fourth derivative - inverse of other expression d2T_dPdn = -d2P_dTdn/dP_dT**2 d2T_dPdns.append(d2T_dPdn) # Fifth derivative - starting to get big f = d2P_dT2 df = d3P_dT2dn g = dP_dT dg = d2P_dTdn d3T_dP2dn = 3*f*dg/g**4 - df/g**3 d3T_dP2dns.append(d3T_dP2dn) # Sixth derivative f = d2P_dV2 df = d3P_dV2dn g = dP_dV dg = d2P_dVdn d3V_dP2dn = 3*f*dg/g**4 - df/g**3 d3V_dP2dns.append(d3V_dP2dn) # Seventh - crazy f = d2P_dV2 df = d3P_dV2dn g = dP_dT dg = d2P_dTdn h = dP_dV dh = d2P_dVdn k = d2P_dTdV dk = d3P_dTdVdn j = d2P_dT2 dj = d3P_dT2dn d3T_dV2dn = (f*g**2*dg - g**3*df + 2*g**2*h*dk + 2*g**2*k*dh - g*h**2*dj - 4*g*h*k*dg - 2*g*h*j*dh + 3*h**2*j*dg)/g**4 d3T_dV2dns.append(d3T_dV2dn) # ekghth - crazy f = d2P_dT2 df = d3P_dT2dn g = dP_dV dg = d2P_dVdn h = dP_dT dh = d2P_dTdn k = d2P_dTdV dk = d3P_dTdVdn j = d2P_dV2 dj = d3P_dV2dn d3V_dT2dn = (f*g**2*dg - g**3*df + 2*g**2*h*dk + 2*g**2*k*dh - g*h**2*dj - 4*g*h*k*dg - 2*g*h*j*dh + 3*h**2*j*dg)/g**4 d3V_dT2dns.append(d3V_dT2dn) # nknth f = d2P_dTdV df = d3P_dTdVdn g = dP_dT dg = d2P_dTdn h = dP_dV dh = d2P_dVdn k = d2P_dT2 dk = d3P_dT2dn j = dP_dT dj = d2P_dTdn d3T_dPdVdn = 3*(f*g - h*k)*dj/j**4 - (f*dg + g*df - h*dk- k*dh)/j**3 d3T_dPdVdns.append(d3T_dPdVdn) # tenth f = d2P_dTdV df = d3P_dTdVdn g = dP_dV dg = d2P_dVdn h = dP_dT dh = d2P_dTdn k = d2P_dV2 dk = d3P_dV2dn j = dP_dV dj = d2P_dVdn d3V_dPdTdn = 3*(f*g - h*k)*dj/j**4 - (f*dg + g*df - h*dk- k*dh)/j**3 d3V_dPdTdns.append(d3V_dPdTdn) return (d2P_dTdns, d2P_dVdns, d2V_dTdns, d2V_dPdns, d2T_dVdns, d2T_dPdns, d3P_dT2dns, d3P_dV2dns, d3V_dT2dns, d3V_dP2dns, d3T_dV2dns, d3T_dP2dns, d3V_dPdTdns, d3P_dTdVdns, d3T_dPdVdns) def set_dnzs_derivatives_and_departures(self, n=True, x=True, only_l=False, only_g=False): r'''Sets a number of mole number and/or composition partial derivatives of thermodynamic partial derivatives. The list of properties set is as follows, with all properties suffixed with '_l' or '_g' if `n` is True: d2P_dTdns, d2P_dVdns, d2V_dTdns, d2V_dPdns, d2T_dVdns, d2T_dPdns, d3P_dT2dns, d3P_dV2dns, d3V_dT2dns, d3V_dP2dns, d3T_dV2dns, d3T_dP2dns, d3V_dPdTdns, d3P_dTdVdns, d3T_dPdVdns, dV_dep_dns, dG_dep_dns, dH_dep_dns, dU_dep_dns, dS_dep_dns, dA_dep_dns if `x` is True: d2P_dTdzs, d2P_dVdzs, d2V_dTdzs, d2V_dPdzs, d2T_dVdzs, d2T_dPdzs, d3P_dT2dzs, d3P_dV2dzs, d3V_dT2dzs, d3V_dP2dzs, d3T_dV2dzs, d3T_dP2dzs, d3V_dPdTdzs, d3P_dTdVdzs, d3T_dPdVdzs, dV_dep_dzs, dG_dep_dzs, dH_dep_dzs, dU_dep_dzs, dS_dep_dzs, dA_dep_dzs Parameters ---------- n : bool, optional Whether or not to set the mole number derivatives (sums up to one), [-] x : bool, optional Whether or not to set the composition derivatives (does not sum up to one), [-] only_l : bool, optional Whether or not to set only the liquid-like phase properties (if there are two phases), [-] only_g : bool, optional Whether or not to set only the gas-like phase properties (if there are two phases), [-] Notes ----- ''' N = self.N zs = self.zs T, P = self.T, self.P if n and x: ns = [True, False] elif n: ns = [True] elif x: ns = [False] else: return if only_l: phases = ['l'] elif only_g: phases = ['g'] else: phases = ['l', 'g'] for n in ns: for phase in phases: if phase == 'g': Z, V = self.Z_g, self.V_g else: Z, V = self.Z_l, self.V_l if n: V_fun, G_fun, H_fun = self.dV_dns, self.dG_dep_dns, self.dH_dep_dns else: V_fun, G_fun, H_fun = self.dV_dzs, self.dG_dep_dzs, self.dH_dep_dzs (d2P_dTdns, d2P_dVdns, d2V_dTdns, d2V_dPdns, d2T_dVdns, d2T_dPdns, d3P_dT2dns, d3P_dV2dns, d3V_dT2dns, d3V_dP2dns, d3T_dV2dns, d3T_dP2dns, d3V_dPdTdns, d3P_dTdVdns, d3T_dPdVdns) = self._dnz_derivatives_and_departures(V, n=n) # V dV_dep_dns = V_fun(Z) # G dG_dep_dns = G_fun(Z) # H dH_dep_dns = H_fun(Z) # U dU_dep_dns = [dH_dep_dns[i] - P*dV_dep_dns[i] for i in range(N)] # S dS_dep_dns = [(dG_dep_dns[i] - dH_dep_dns[i])/-T for i in range(N)] # A dA_dep_dns = [dU_dep_dns[i] - T*dS_dep_dns[i] for i in range(N)] if n and phase == 'l': self.d2P_dTdns_l, self.d2P_dVdns_l, self.d2V_dTdns_l = d2P_dTdns, d2P_dVdns, d2V_dTdns self.d2V_dPdns_l, self.d2T_dVdns_l, self.d2T_dPdns_l = d2V_dPdns, d2T_dVdns, d2T_dPdns self.d3P_dT2dns_l, self.d3P_dV2dns_l, self.d3V_dT2dns_l = d3P_dT2dns, d3P_dV2dns, d3V_dT2dns self.d3V_dP2dns_l, self.d3T_dV2dns_l, self.d3T_dP2dns_l = d3V_dP2dns, d3T_dV2dns, d3T_dP2dns self.d3V_dPdTdns_l, self.d3P_dTdVdns_l, self.d3T_dPdVdns_l = d3V_dPdTdns, d3P_dTdVdns, d3T_dPdVdns self.dV_dep_dns_l, self.dG_dep_dns_l, self.dH_dep_dns_l = dV_dep_dns, dG_dep_dns, dH_dep_dns self.dU_dep_dns_l, self.dS_dep_dns_l, self.dA_dep_dns_l = dU_dep_dns, dS_dep_dns, dA_dep_dns if n and phase == 'g': self.d2P_dTdns_g, self.d2P_dVdns_g, self.d2V_dTdns_g = d2P_dTdns, d2P_dVdns, d2V_dTdns self.d2V_dPdns_g, self.d2T_dVdns_g, self.d2T_dPdns_g = d2V_dPdns, d2T_dVdns, d2T_dPdns self.d3P_dT2dns_g, self.d3P_dV2dns_g, self.d3V_dT2dns_g = d3P_dT2dns, d3P_dV2dns, d3V_dT2dns self.d3V_dP2dns_g, self.d3T_dV2dns_g, self.d3T_dP2dns_g = d3V_dP2dns, d3T_dV2dns, d3T_dP2dns self.d3V_dPdTdns_g, self.d3P_dTdVdns_g, self.d3T_dPdVdns_g = d3V_dPdTdns, d3P_dTdVdns, d3T_dPdVdns self.dV_dep_dns_g, self.dG_dep_dns_g, self.dH_dep_dns_g = dV_dep_dns, dG_dep_dns, dH_dep_dns self.dU_dep_dns_g, self.dS_dep_dns_g, self.dA_dep_dns_g = dU_dep_dns, dS_dep_dns, dA_dep_dns if not n and phase == 'g': self.d2P_dTdzs_g, self.d2P_dVdzs_g, self.d2V_dTdzs_g = d2P_dTdns, d2P_dVdns, d2V_dTdns self.d2V_dPdzs_g, self.d2T_dVdzs_g, self.d2T_dPdzs_g = d2V_dPdns, d2T_dVdns, d2T_dPdns self.d3P_dT2dzs_g, self.d3P_dV2dzs_g, self.d3V_dT2dzs_g = d3P_dT2dns, d3P_dV2dns, d3V_dT2dns self.d3V_dP2dzs_g, self.d3T_dV2dzs_g, self.d3T_dP2dzs_g = d3V_dP2dns, d3T_dV2dns, d3T_dP2dns self.d3V_dPdTdzs_g, self.d3P_dTdVdzs_g, self.d3T_dPdVdzs_g = d3V_dPdTdns, d3P_dTdVdns, d3T_dPdVdns self.dV_dep_dzs_g, self.dG_dep_dzs_g, self.dH_dep_dzs_g = dV_dep_dns, dG_dep_dns, dH_dep_dns self.dU_dep_dzs_g, self.dS_dep_dzs_g, self.dA_dep_dzs_g = dU_dep_dns, dS_dep_dns, dA_dep_dns if not n and phase == 'l': self.d2P_dTdzs_l, self.d2P_dVdzs_l, self.d2V_dTdzs_l = d2P_dTdns, d2P_dVdns, d2V_dTdns self.d2V_dPdzs_l, self.d2T_dVdzs_l, self.d2T_dPdzs_l = d2V_dPdns, d2T_dVdns, d2T_dPdns self.d3P_dT2dzs_l, self.d3P_dV2dzs_l, self.d3V_dT2dzs_l = d3P_dT2dns, d3P_dV2dns, d3V_dT2dns self.d3V_dP2dzs_l, self.d3T_dV2dzs_l, self.d3T_dP2dzs_l = d3V_dP2dns, d3T_dV2dns, d3T_dP2dns self.d3V_dPdTdzs_l, self.d3P_dTdVdzs_l, self.d3T_dPdVdzs_l = d3V_dPdTdns, d3P_dTdVdns, d3T_dPdVdns self.dV_dep_dzs_l, self.dG_dep_dzs_l, self.dH_dep_dzs_l = dV_dep_dns, dG_dep_dns, dH_dep_dns self.dU_dep_dzs_l, self.dS_dep_dzs_l, self.dA_dep_dzs_l = dU_dep_dns, dS_dep_dns, dA_dep_dns def dlnphis_dP(self, phase): r'''Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here. Normally this routine is slower than EOS-specific ones, as it does not make assumptions that certain parameters are zero or equal to other parameters. .. math:: \left(\frac{\partial \ln \phi_i}{\partial P}\right)_{T, nj \ne i} = \frac{G_{dep}}{\partial P}_{T, n} + \left(\frac{\partial^2 \ln \phi}{\partial P \partial n_i} \right)_{T, P, n_{j \ne i}} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dP : float Pressure derivatives of log fugacity coefficient for each species, [1/Pa] Notes ----- This expression for the partial derivative of the mixture `lnphi` with respect to pressure and mole number can be derived as follows; to convert to the partial molar `lnphi` pressure and temperature derivative, add ::math::`\frac{G_{dep}/(RT)}{\partial P}_{T, n}`. >>> from sympy import * # doctest:+SKIP >>> P, T, R, n = symbols('P, T, R, n') # doctest:+SKIP >>> a_alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2 = symbols('a_alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2', cls=Function) # doctest:+SKIP >>> S_dep = R*log(P*V(n, P)/(R*T)) + R*log(V(n, P)-b(n))+2*da_alpha_dT(n, T)*atanh((2*V(n, P)+delta(n))/sqrt(delta(n)**2-4*epsilon(n)))/sqrt(delta(n)**2-4*epsilon(n))-R*log(V(n, P)) # doctest:+SKIP >>> H_dep = P*V(n, P) - R*T + 2*atanh((2*V(n, P)+delta(n))/sqrt(delta(n)**2-4*epsilon(n)))*(da_alpha_dT(n, T)*T-a_alpha(n, T))/sqrt(delta(n)**2-4*epsilon(n)) # doctest:+SKIP >>> G_dep = H_dep - T*S_dep # doctest:+SKIP >>> lnphi = simplify(G_dep/(R*T)) # doctest:+SKIP >>> diff(diff(lnphi, P), n) # doctest:+SKIP P*Derivative(V(n, P), P, n)/(R*T) + Derivative(V(n, P), P, n)/V(n, P) - Derivative(V(n, P), P)*Derivative(V(n, P), n)/V(n, P)**2 - Derivative(V(n, P), P, n)/(V(n, P) - b(n)) - (-Derivative(V(n, P), n) + Derivative(b(n), n))*Derivative(V(n, P), P)/(V(n, P) - b(n))**2 + Derivative(V(n, P), n)/(R*T) - 4*(-2*delta(n)*Derivative(delta(n), n) + 4*Derivative(epsilon(n), n))*a_alpha(n, T)*Derivative(V(n, P), P)/(R*T*(1 - (2*V(n, P)/sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 - 4*epsilon(n)))**2)*(delta(n)**2 - 4*epsilon(n))**2) - 4*a_alpha(n, T)*Derivative(V(n, P), P, n)/(R*T*(1 - (2*V(n, P)/sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 - 4*epsilon(n)))**2)*(delta(n)**2 - 4*epsilon(n))) - 4*Derivative(V(n, P), P)*Derivative(a_alpha(n, T), n)/(R*T*(1 - (2*V(n, P)/sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 - 4*epsilon(n)))**2)*(delta(n)**2 - 4*epsilon(n))) - 4*(2*V(n, P)/sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 - 4*epsilon(n)))*(4*(-delta(n)*Derivative(delta(n), n) + 2*Derivative(epsilon(n), n))*V(n, P)/(delta(n)**2 - 4*epsilon(n))**(3/2) + 2*(-delta(n)*Derivative(delta(n), n) + 2*Derivative(epsilon(n), n))*delta(n)/(delta(n)**2 - 4*epsilon(n))**(3/2) + 4*Derivative(V(n, P), n)/sqrt(delta(n)**2 - 4*epsilon(n)) + 2*Derivative(delta(n), n)/sqrt(delta(n)**2 - 4*epsilon(n)))*a_alpha(n, T)*Derivative(V(n, P), P)/(R*T*(1 - (2*V(n, P)/sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 - 4*epsilon(n)))**2)**2*(delta(n)**2 - 4*epsilon(n))) + R*T*(P*Derivative(V(n, P), P)/(R*T) + V(n, P)/(R*T))*Derivative(V(n, P), n)/(P*V(n, P)**2) - R*T*(P*Derivative(V(n, P), P, n)/(R*T) + Derivative(V(n, P), n)/(R*T))/(P*V(n, P)) ''' if phase == 'g': V = self.V_g Z = self.Z_g dV_dP = self.dV_dP_g dG_dep_dP = (self.dH_dep_dP_g - self.T*self.dS_dep_dP_g)/(R*self.T) else: V = self.V_l Z = self.Z_l dV_dP = self.dV_dP_l dG_dep_dP = (self.dH_dep_dP_l - self.T*self.dS_dep_dP_l)/(R*self.T) T = self.T P = self.P dV_dns = self.dV_dns(Z) ddelta_dns = self.ddelta_dns depsilon_dns = self.depsilon_dns da_alpha_dns = self.da_alpha_dns db_dns = self.db_dns d2V_dPdns = self._dnz_derivatives_and_departures(V)[3]# self.d2V_dPdn x0 = V x2 = 1/(R*T) x3 = 1/x0 x6 = dV_dP x8 = self.b x9 = x0 - x8 x10 = 1/P x11 = self.delta x12 = 2*x0 x13 = x11 + x12 x14 = self.epsilon x15 = x11**2 - 4*x14 try: x16 = 1/x15 except ZeroDivisionError: x16 = 1e50 x17 = x13**2*x16 - 1 x18 = 1/x17 x19 = self.a_alpha x20 = 4*x16 x21 = x2*x6 x22 = x18*x21 x25 = 8*x19*x16*x16 t50 = 1.0/(x0*x0) dlnphis_dPs = [] for i in range(self.N): # number dependent calculations x1 = dV_dns[i] # Derivative(x0, n) x7 = x1*t50 x4 = d2V_dPdns[i] #Derivative(x0, P, n) # TODO calculate only this - d2V_dPdn; the T one wants d2V_dTdn x5 = P*x4 x23 = ddelta_dns[i]# Derivative(x11, n) x24 = x11*x23 - 2.0*depsilon_dns[i]#Derivative(x14, n) x26 = x16*x24 dlnphi_dP = (x1*x2 - x10*x3*(x1 + x5) + x10*x7*(P*x6 + x0) - x13*x21*x25*(2*x1 - x11*x26 - x12*x26 + x23)/x17**2 + x18*x19*x2*x20*x4 + x2*x5 + x20*x22*da_alpha_dns[i] - x22*x24*x25 + x3*x4 - x4/x9 - x6*x7 + x6*(x1 - db_dns[i])/x9**2) dlnphis_dPs.append(dlnphi_dP + dG_dep_dP) return dlnphis_dPs def dlnphis_dT(self, phase): r'''Generic formula for calculating the temperature derivaitve of log fugacity coefficients for each species in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here. Normally this routine is slower than EOS-specific ones, as it does not make assumptions that certain parameters are zero or equal to other parameters. .. math:: \left(\frac{\partial \ln \phi_i}{\partial T}\right)_{P, nj \ne i} = \frac{\frac{G_{dep}}{RT}}{\partial T}_{P, n} + \left(\frac{\partial^2 \ln \phi}{\partial T \partial n_i} \right)_{P, n_{j \ne i}} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dT : float Temperature derivatives of log fugacity coefficient for each species, [1/K] Notes ----- This expression for the partial derivative of the mixture `lnphi` with respect to pressure and mole number can be derived as follows; to convert to the partial molar `lnphi` pressure and temperature derivative, add ::math::`\frac{G_{dep}/(RT)}{\partial T}_{P, n}`. >>> from sympy import * # doctest:+SKIP >>> P, T, R, n = symbols('P, T, R, n') # doctest:+SKIP >>> a_alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2 = symbols('a_alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2', cls=Function) # doctest:+SKIP >>> S_dep = R*log(P*V(n, T)/(R*T)) + R*log(V(n, T)-b(n))+2*da_alpha_dT(n, T)*atanh((2*V(n, T)+delta(n))/sqrt(delta(n)**2-4*epsilon(n)))/sqrt(delta(n)**2-4*epsilon(n))-R*log(V(n, T)) # doctest:+SKIP >>> H_dep = P*V(n, T) - R*T + 2*atanh((2*V(n, T)+delta(n))/sqrt(delta(n)**2-4*epsilon(n)))*(da_alpha_dT(n, T)*T-a_alpha(n, T))/sqrt(delta(n)**2-4*epsilon(n)) # doctest:+SKIP >>> G_dep = H_dep - T*S_dep # doctest:+SKIP >>> lnphi = simplify(G_dep/(R*T)) # doctest:+SKIP >>> diff(diff(lnphi, T), n) # doctest:+SKIP ''' T, P, zs, N = self.T, self.P, self.zs, self.N if phase == 'g': V = self.V_g Z = self.Z_g dV_dT = self.dV_dT_g dG_dep_dT = (-T*self.dS_dep_dT_g - self.S_dep_g + self.dH_dep_dT_g)/(R*self.T) dG_dep_dT -= (-T*self.S_dep_g + self.H_dep_g)/(R*self.T*self.T) else: V = self.V_l Z = self.Z_l dV_dT = self.dV_dT_l dG_dep_dT = (-T*self.dS_dep_dT_l - self.S_dep_l + self.dH_dep_dT_l)/(R*self.T) dG_dep_dT -= (-T*self.S_dep_l + self.H_dep_l)/(R*self.T*self.T) '''R, T = symbols('R, T') H, S = symbols('H, S', cls=Function) print(diff((H(T) - T*S(T))/(R*T), T)) # (-T*Derivative(S(T), T) - S(T) + Derivative(H(T), T))/(R*T) - (-T*S(T) + H(T))/(R*T**2) ''' d2V_dTdns = self._dnz_derivatives_and_departures(V, n=True)[2] dV_dns = self.dV_dns(Z) db_dns = self.db_dns da_alpha_dns = self.da_alpha_dns da_alpha_dT_dns = self.da_alpha_dT_dns ddelta_dns = self.ddelta_dns depsilon_dns = self.depsilon_dns x0 = V x1 = 1/x0 x4 = T**(-2) x5 = 1/R x6 = P*x5 x7 = 1/T x9 = dV_dT x11 = self.b x12 = x0 - x11 x13 = self.a_alpha x15 = self.delta x16 = self.epsilon x17 = x15*x15 - 4.0*x16 if x17 == 0.0: x17 = 1e-100 x18 = 1/sqrt(x17) x19 = 2*x0 x20 = x15 + x19 x21 = 2*x5 x22 = x21*catanh(x18*x20).real x23 = x18*x22 x24 = 1/x17 x25 = x20**2*x24 - 1 x26 = 1/x25 x27 = x24*x26 x28 = 4*x27*x5 x29 = x7*x9 x30 = x13*x4 x34 = x7*self.da_alpha_dT x35 = 8*x13*x29*x5/x17**2 dlnphis_dTs = [] for i in range(N): x2 = d2V_dTdns[i] x8 = x2*x7 x3 = dV_dns[i] x10 = x3/x0**2 x14 = da_alpha_dns[i] x31 = ddelta_dns[i] x32 = x15*x31 - 2.0*depsilon_dns[i] x33 = x22*x32/x17**(3/2) x36 = x24*x32 x37 = -x15*x36 - x19*x36 + 2.0*x3 + x31 x38 = x21*x27*x37 dlnphi_dT = (x1*x2 - x1*(x2 - x3*x7) - x10*x9 + x10*(-x0*x7 + x9) + x13*x28*x8 + x14*x23*x4 + x14*x28*x29 - x20*x35*x37/x25**2 - x23*x7*da_alpha_dT_dns[i] - x26*x32*x35 - x3*x4*x6 - x30*x33 - x30*x38 + x33*x34 + x34*x38 + x6*x8 - x2/x12 + x9*(x3 - db_dns[i])/x12**2) dlnphis_dTs.append(dlnphi_dT + dG_dep_dT) return dlnphis_dTs def dlnphis_dzs(self, Z): r'''Generic formula for calculating the mole fraction derivaitves of log fugacity coefficients for each species in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here. .. math:: \left(\frac{\partial \ln \phi_i}{\partial z_i}\right)_{P, z_{j \ne i}} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dlnphis_dzs : list[list[float]] Mole fraction derivatives of log fugacity coefficient for each species (such that the mole fractions do not sum to 1), [-] Notes ----- ''' d2dxs = self.d2lnphi_dzizjs(Z) d2ns = d2xs_to_dxdn_partials(d2dxs, self.zs) if sefl.scalar: return d2ns return array(d2ns) class EpsilonZeroMixingRules(object): @property def depsilon_dzs(self): r'''Helper method for calculating the composition derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial \epsilon}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 0 Returns ------- depsilon_dzs : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' if self.scalar: return [0.0]*self.N return zeros(self.N) @property def depsilon_dns(self): r'''Helper method for calculating the mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial \epsilon}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 0 Returns ------- depsilon_dns : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^3] Notes ----- This derivative is checked numerically. ''' if self.scalar: return [0.0]*self.N return zeros(self.N) @property def d2epsilon_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial x_i \partial x_j}\right)_{T, P, x_{k\ne i,j}} = 0 Returns ------- d2epsilon_dzizjs : list[list[float]] Composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[0.0]*N for i in range(N)] return zeros((N, N)) @property def d2epsilon_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial n_i n_j}\right)_{T, P, n_{k\ne i,j}} = 0 Returns ------- d2epsilon_dninjs : list[list[float]] Second composition derivative of `epsilon` of each component, [m^6/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[0.0]*N for i in range(N)] return zeros((N, N)) @property def d3epsilon_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \epsilon}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 0 Returns ------- d3epsilon_dninjnks : list[list[list[float]]] Third mole number derivative of `epsilon` of each component, [m^6/mol^5] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[[0.0]*N for _ in range(N)] for _ in range(N)] return zeros((N, N, N)) # # Python 2/3 compatibility # try: # eos.__dict__['d3epsilon_dninjnks'] = d3epsilon_dninjnks # eos.__dict__['d2epsilon_dninjs'] = d2epsilon_dninjs # eos.__dict__['d2epsilon_dzizjs'] = d2epsilon_dzizjs # eos.__dict__['depsilon_dns'] = depsilon_dns # eos.__dict__['depsilon_dzs'] = depsilon_dzs # except: # setattr(eos, 'd3epsilon_dninjnks', d3epsilon_dninjnks) # setattr(eos, 'd2epsilon_dninjs', d2epsilon_dninjs) # setattr(eos, 'd2epsilon_dzizjs', d2epsilon_dzizjs) # setattr(eos, 'depsilon_dns', depsilon_dns) # setattr(eos, 'depsilon_dzs', depsilon_dzs) class PSRKMixingRules(object): u = 1.1 A = -0.6466271649250525 # log(1.1/(1.1+1)) A_inv = 1.0/A def a_alpha_and_derivatives(self, T, full=True, quick=True, pure_a_alphas=True): r'''Method to calculate `a_alpha` and its first and second derivatives for an EOS with the PSRK mixing rules. Returns `a_alpha`, `da_alpha_dT`, and `d2a_alpha_dT2`. For use in some methods, this returns only `a_alpha` if `full` is False. .. math:: \alpha = bRT \left[ \sum_i \frac{z_i \alpha_i}{b_i RT} + \frac{1}{A}\left(\frac{G^E}{RT} + \sum_i z_i \ln \left(\frac{b}{b_i}\right) \right)\right] .. math:: \frac{\partial \alpha}{\partial T} = RTb\left[ \sum_i \left(\frac{z_i \frac{\partial \alpha_i}{\partial T}}{RTb_i} -\frac{z_i\alpha_i}{RT^2b_i} \right) + \frac{1}{A}\left(\frac{\frac{\partial G^E}{\partial T}}{RT} - \frac{G^E}{RT^2} \right) \right] + \frac{\alpha}{T} .. math:: \frac{\partial^2 \alpha}{\partial T^2} = b\left[\sum_i \left(\frac{z_i\frac{\partial^2 \alpha_i}{\partial T^2}}{b_i} - \frac{2z_i \frac{\partial \alpha_i}{\partial T}}{T b_i} + \frac{2z_i\alpha_i}{T^2 b_i} \right) + \frac{2}{T}\left[\sum_i \left(\frac{z_i\frac{\partial \alpha_i} {\partial T}}{b_i} - \frac{z_i \alpha_i}{T b_i} \right) + \frac{1}{A}\left(\frac{\partial G^E}{\partial T} - \frac{G^E}{T} \right) \right] + \frac{1}{A}\left( \frac{\partial^2 G^E}{\partial T^2} - \frac{2}{T} \frac{\partial G^E}{\partial T} + 2\frac{G^E}{T^2} \right) \right] Parameters ---------- T : float Temperature, [K] full : bool, optional If False, calculates and returns only `a_alpha` quick : bool, optional Only the quick variant is implemented; it is little faster anyhow pure_a_alphas : bool, optional Whether or not to recalculate the a_alpha terms of pure components (for the case of mixtures only) which stay the same as the composition changes (i.e in a PT flash), [-] Returns ------- a_alpha : float Coefficient calculated by PSRK-specific method, [J^2/mol^2/Pa] da_alpha_dT : float Temperature derivative of coefficient calculated by PSRK-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2 : float Second temperature derivative of coefficient calculated by PSRK-specific method, [J^2/mol^2/Pa/K**2] Notes ----- ''' if pure_a_alphas: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = self.a_alpha_and_derivatives_vectorized(T) self.a_alphas, self.da_alpha_dTs, self.d2a_alpha_dT2s = a_alphas, da_alpha_dTs, d2a_alpha_dT2s else: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = self.a_alphas, self.da_alpha_dTs, self.d2a_alpha_dT2s b, zs, bs = self.b, self.zs, self.bs ge_model = self.ge_model if T != ge_model.T: # TODO make sure this gets set when solve_T is called ge_model = ge_model.to_T_xs(T, zs) self._last_ge = ge_model GE = ge_model.GE() if full: dGE_dT = ge_model.dGE_dT() d2GE_dT2 = ge_model.d2GE_dT2() T_inv = 1.0/T T2_inv = T_inv*T_inv RT_inv = R_inv*T_inv RT2_inv = R_inv*T2_inv A_inv = self.A_inv N = self.N tot0, tot1, d1tot, d2tot, other = 0.0, 0.0, 0.0, 0.0, 0.0 if full: for i in range(N): bi_inv = 1.0/bs[i] # Main component tot0 += zs[i]*a_alphas[i]*bi_inv*RT_inv tot1 += zs[i]*log(b*bi_inv) d1tot += zs[i]*da_alpha_dTs[i]*RT_inv*bi_inv - zs[i]*a_alphas[i]*RT2_inv*bi_inv # TODO go back to just using d1tot # TODO optimize all of this other += zs[i]*da_alpha_dTs[i]*bi_inv - zs[i]*a_alphas[i]*bi_inv*T_inv d2tot += (zs[i]*d2a_alpha_dT2s[i]*bi_inv - 2.0*zs[i]*da_alpha_dTs[i]*T_inv*bi_inv + 2.0*zs[i]*a_alphas[i]*T2_inv*bi_inv) else: for i in range(N): bi_inv = 1.0/bs[i] tot0 += zs[i]*a_alphas[i]*bi_inv*RT_inv tot1 += zs[i]*log(b*bi_inv) a_alpha = R*T*b*(tot0 + A_inv*(GE*RT_inv + tot1)) if full: da_alpha_dT = R*T*b*(d1tot + A_inv*(dGE_dT*RT_inv - GE*RT2_inv)) + a_alpha*T_inv d2a_alpha_dT2 = b*(d2tot + 2.0*T_inv*(other + A_inv*(dGE_dT - GE*T_inv)) + A_inv*(d2GE_dT2 - 2.0*T_inv*dGE_dT + 2.0*GE*T2_inv)) return a_alpha, da_alpha_dT, d2a_alpha_dT2 return a_alpha def solve_T(self, P, V, quick=True, solution=None): T = GCEOS.solve_T(self, P, V, solution=solution) if hasattr(self, '_last_ge') and self._last_ge.T == T: self.ge_model = self._last_ge del self._last_ge else: self.ge_model = self.ge_model.to_T_xs(T, self.zs) return T @property def da_alpha_dzs(self): raise NotImplementedError("TODO") @property def da_alpha_dns(self): raise NotImplementedError("TODO") @property def dna_alpha_dns(self): raise NotImplementedError("TODO") @property def d2a_alpha_dzizjs(self): raise NotImplementedError("TODO") @property def d2a_alpha_dninjs(self): raise NotImplementedError("TODO") @property def d3a_alpha_dzizjzks(self): raise NotImplementedError("TODO") @property def d3a_alpha_dninjnks(self): raise NotImplementedError("TODO") @property def da_alpha_dT_dzs(self): raise NotImplementedError("TODO") @property def da_alpha_dT_dns(self): raise NotImplementedError("TODO") @property def dna_alpha_dT_dns(self): raise NotImplementedError("TODO") @property def d2a_alpha_dT2_dzs(self): raise NotImplementedError("TODO") @property def d2a_alpha_dT2_dns(self): raise NotImplementedError("TODO") class IGMIX(EpsilonZeroMixingRules, GCEOSMIX, IG): r'''Class for solving the ideal gas [1]_ [2]_ equation of state for a mixture of any number of compounds. Subclasses :obj:`thermo.eos.IG`. Solves the EOS on initialization. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P =\frac{RT}{V} Parameters ---------- zs : list[float] Overall mole fractions of all species, [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] Tcs : list[float], optional Critical temperatures of all compounds, [K] Pcs : list[float], optional Critical pressures of all compounds, [Pa] omegas : list[float], optional Acentric factors of all compounds - Not used in this equation of state!, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 and not used[-] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = IGMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, .008], zs=[0.5, 0.5]) >>> eos.phase, eos.V_g ('g', 0.0009561632010876225) Notes ----- Many properties of this object are zero. Many of the arguments are not used and are provided for consistency only. References ---------- .. [1] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985. .. [2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000. ''' eos_pure = IG a_alphas = None da_alpha_dTs = None d2a_alpha_dT2s = None nonstate_constants_specific = () kwargs_keys = ('kijs',) model_id = 0 def _zeros1d(self): return self.zeros1d def _zeros2d(self): return self.zeros2d def _zeros3d(self): N = self.N if self.scalar: return [[[0.0]*N for _ in range(N)] for _ in range(N)] else: return zeros((N, N, N)) @property def a_alpha_roots(self): return self.zeros1d @property def ddelta_dzs(self): r'''Helper method for calculating the composition derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 0 Returns ------- ddelta_dzs : list[float] Composition derivative of `delta` of each component, [m^3/mol] ''' return self.zeros1d @property def ddelta_dns(self): r'''Helper method for calculating the mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 0 Returns ------- ddelta_dns : list[float] Mole number derivative of `delta` of each component, [m^3/mol^2] ''' return self.zeros1d @property def depsilon_dzs(self): r'''Helper method for calculating the composition derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial \epsilon}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 0 Returns ------- depsilon_dzs : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^2] ''' return self.zeros1d @property def depsilon_dns(self): r'''Helper method for calculating the mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial \epsilon}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 0 Returns ------- depsilon_dns : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^3] ''' return self.zeros1d @property def d2delta_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial x_i\partial x_j}\right)_{T, P, x_{k\ne i,j}} = 0 Returns ------- d2delta_dzizjs : list[float] Second Composition derivative of `delta` of each component, [m^3/mol] ''' return self.zeros2d @property def d2delta_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,j}} = 0 Returns ------- d2delta_dninjs : list[list[float]] Second mole number derivative of `delta` of each component, [m^3/mol^3] ''' return self.zeros2d @property def d2epsilon_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial x_i \partial x_j}\right)_{T, P, x_{k\ne i,j}} = 0 Returns ------- d2epsilon_dzizjs : list[list[float]] Second composition derivative of `epsilon` of each component, [m^6/mol^2] ''' return self.zeros2d @property def d2epsilon_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial n_i n_j}\right)_{T, P, n_{k\ne i,j}} = 0 Returns ------- d2epsilon_dninjs : list[list[float]] Second mole number derivative of `epsilon` of each component, [m^6/mol^4] ''' return self.zeros2d @property def d3delta_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \delta}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 0 Returns ------- d3delta_dninjnks : list[list[list[float]]] Third mole number derivative of `delta` of each component, [m^3/mol^4] ''' return self._zeros3d() @property def d3epsilon_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \epsilon}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 0 Returns ------- d3epsilon_dninjnks : list[list[list[float]]] Third mole number derivative of `epsilon` of each component, [m^6/mol^5] ''' return self._zeros3d() def __init__(self, zs, T=None, P=None, V=None, Tcs=None, Pcs=None, omegas=None, kijs=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(zs) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if scalar: self.zeros2d = zeros2d = [[0.0]*N for _ in range(N)] else: self.zeros2d = zeros2d = zeros((N, N)) if kijs is None: kijs = zeros2d self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V self.b = 0.0 self.bs = self.ais = self.zeros1d = self.a_alphas = self.da_alpha_dTs = self.d2a_alpha_dT2s = zeros2d[0] self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.bs = other.bs self.ais = other.ais self.b = other.b self.zeros1d = self.a_alphas = self.da_alpha_dTs = self.d2a_alpha_dT2s = other.zeros1d self.zeros2d = other.zeros2d def a_alphas_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` for the Ideal Gas EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = 0 Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] ''' return self.zeros1d def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the Ideal Gas EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = 0 .. math:: \frac{d a\alpha}{dT} = 0 .. math:: \frac{d^2 a\alpha}{dT^2} = 0 Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] ''' return self.zeros1d, self.zeros1d, self.zeros1d def a_alpha_and_derivatives(self, T, full=True, quick=True, pure_a_alphas=True): # Saves time if full: return 0.0, 0.0, 0.0 return 0.0 try: a_alpha_and_derivatives.__doc__ = GCEOSMIX.a_alpha_and_derivatives.__doc__ except: pass def fugacity_coefficients(self, Z): r'''Calculate and return the fugacity coefficients of the ideal-gas phase (0 by definition). Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- log_phis : float Log fugacity coefficient for each species, [-] ''' return self.zeros1d def dlnphis_dT(self, phase): r'''Calculate and return the temperature derivative of fugacity coefficients of the ideal-gas phase (0 by definition). Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dlnphis_dT : float Temperature derivatives of log fugacity coefficient for each species, [1/K] ''' return self.zeros1d def dlnphis_dP(self, phase): r'''Calculate and return the pressure derivative of fugacity coefficients of the ideal-gas phase (0 by definition). Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dlnphis_dP : float Pressure derivatives of log fugacity coefficient for each species, [1/Pa] ''' return self.zeros1d @property def a_alpha_ijs(self): return self.zeros2d try: a_alpha_ijs.__doc__ = GCEOSMIX.a_alpha_ijs.__doc__ except: pass @property def da_alpha_dT_ijs(self): return self.zeros2d try: da_alpha_dT_ijs.__doc__ = GCEOSMIX.da_alpha_dT_ijs.__doc__ except: pass @property def d2a_alpha_dT2_ijs(self): return self.zeros2d try: d2a_alpha_dT2_ijs.__doc__ = GCEOSMIX.d2a_alpha_dT2_ijs.__doc__ except: pass class RKMIX(EpsilonZeroMixingRules, GCEOSMIX, RK): r'''Class for solving the Redlich Kwong [1]_ [2]_ cubic equation of state for a mixture of any number of compounds. Subclasses :obj:`thermo.eos.RK` . Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P =\frac{RT}{V-b}-\frac{a}{V\sqrt{T}(V+b)} .. math:: a = \sum_i \sum_j z_i z_j {a}_{ij} .. math:: b = \sum_i z_i b_i .. math:: a_{ij} = (1-k_{ij})\sqrt{a_{i}a_{j}} .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i=\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] omegas : float, optional Acentric factors of all compounds - Not used in this equation of state!, [-] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = RKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (4.048414781e-05, 0.00070060605863) Notes ----- The PV solution for `T` is iterative. References ---------- .. [1] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985. .. [2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000. ''' eos_pure = RK kwargs_keys = ('kijs',) model_id = 10002 def __init__(self, Tcs, Pcs, zs, omegas=None, kijs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V c1R2_c2R, c2R = self.c1R2_c2R, self.c2R if scalar: self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs b = float((bs*zs).sum()) self.b = self.delta = b self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): b = 0.0 if self.scalar: for bi, zi in zip(self.bs, self.zs): b += bi*zi else: b = float((self.bs*self.zs).sum()) self.b = self.delta = b def a_alphas_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` for the RK EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = \frac{a}{\sqrt{\frac{T}{Tc}}} Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] Examples -------- >>> eos = RKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.a_alphas_vectorized(115) [0.1449810919468, 0.30019773677] ''' return RK_a_alphas_vectorized(T, self.Tcs, self.ais, a_alphas=[0.0]*self.N if self.scalar else zeros(self.N)) def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the RK EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = \frac{a}{\sqrt{\frac{T}{Tc}}} .. math:: \frac{d a\alpha}{dT} = - \frac{a}{2 T\sqrt{\frac{T}{Tc}}} .. math:: \frac{d^2 a\alpha}{dT^2} = \frac{3 a}{4 T^{2}\sqrt{\frac{T}{Tc}}} Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] Examples -------- >>> eos = RKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.a_alpha_and_derivatives_vectorized(115) ([0.1449810919468, 0.30019773677], [-0.000630352573681, -0.00130520755121], [8.2219900915e-06, 1.7024446320e-05]) ''' N = self.N if self.scalar: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = [0.0]*N, [0.0]*N, [0.0]*N else: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = zeros(N), zeros(N), zeros(N) return RK_a_alpha_and_derivatives_vectorized(T, self.Tcs, self.ais, a_alphas=a_alphas, da_alpha_dTs=da_alpha_dTs, d2a_alpha_dT2s=d2a_alpha_dT2s) def solve_T(self, P, V, solution=None): if self.N == 1 and type(self) is RKMIX: self.Tc = self.Tcs[0] self.Pc = self.Pcs[0] self.a = self.ais[0] T = super(type(self).__mro__[-4], self).solve_T(P=P, V=V, solution=solution) del self.Tc del self.Pc del self.a return T else: return super(type(self).__mro__[-3], self).solve_T(P=P, V=V, solution=solution) @property def ddelta_dzs(self): r'''Helper method for calculating the composition derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial x_i}\right)_{T, P, x_{i\ne j}} = b_i Returns ------- ddelta_dzs : list[float] Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' return self.bs @property def ddelta_dns(self): r'''Helper method for calculating the mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial n_i}\right)_{T, P, n_{i\ne j}} = (b_i - b) Returns ------- ddelta_dns : list[float] Mole number derivative of `delta` of each component, [m^3/mol^2] Notes ----- This derivative is checked numerically. ''' b = self.b if self.scalar: return [(bi - b) for bi in self.bs] return self.bs - b @property def d2delta_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial x_i\partial x_j}\right)_{T, P, x_{k\ne i,j}} = 0 Returns ------- d2delta_dzizjs : list[float] Second Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[0.0]*N for i in range(N)] else: return zeros((N, N)) @property def d2delta_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,j}} = 2b - b_i - b_j Returns ------- d2delta_dninjs : list[list[float]] Second mole number derivative of `delta` of each component, [m^3/mol^3] Notes ----- This derivative is checked numerically. ''' return self.d2b_dninjs @property def d3delta_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \delta}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 2(-3b + b_i + b_j + b_k) Returns ------- d3delta_dninjnks : list[list[list[float]]] Third mole number derivative of `delta` of each component, [m^3/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[[0.0]*N for _ in range(N) ] for _ in range(N)] if self.scalar else zeros((N, N, N)) return RK_d3delta_dninjnks(self.b, self.bs, N, out) class PRMIX(GCEOSMIX, PR): r'''Class for solving the Peng-Robinson [1]_ [2]_ cubic equation of state for a mixture of any number of compounds. Subclasses `PR`. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v-b}-\frac{a\alpha(T)}{v(v+b)+b(v-b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i=[1+\kappa_i(1-\sqrt{T_{r,i}})]^2 .. math:: \kappa_i=0.37464+1.54226\omega_i-0.26992\omega^2_i Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = PRMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (3.6257362939e-05, 0.00070066592313) >>> eos.fugacities_l, eos.fugacities_g ([793860.83821, 73468.552253], [436530.92470, 358114.63827]) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Peng, Ding-Yu, and Donald B. Robinson. "A New Two-Constant Equation of State." Industrial & Engineering Chemistry Fundamentals 15, no. 1 (February 1, 1976): 59-64. doi:10.1021/i160057a011. .. [2] Robinson, Donald B., Ding-Yu Peng, and Samuel Y-K Chung. "The Development of the Peng - Robinson Equation and Its Application to Phase Equilibrium in a System Containing Methanol." Fluid Phase Equilibria 24, no. 1 (January 1, 1985): 25-41. doi:10.1016/0378-3812(85)87035-7. ''' eos_pure = PR nonstate_constants_specific = ('kappas', ) kwargs_keys = ('kijs',) model_id = 10200 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V # optimization, unfortunately c1R2_c2R, c2R = self.c1R2_c2R, self.c2R # Also tried to store the inverse of Pcs, without success - slows it down self.scalar = scalar = type(Tcs) is list if scalar: self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] self.kappas = [omega*(-0.26992*omega + 1.54226) + 0.37464 for omega in omegas] b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs self.kappas = omegas*(-0.26992*omegas + 1.54226) + 0.37464 b = float((bs*zs).sum()) self.b = b self.delta = 2.0*b self.epsilon = -b*b self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.kappas = other.kappas if self.scalar: b = 0.0 for bi, zi in zip(self.bs, self.zs): b += bi*zi else: b = float((self.bs*self.zs).sum()) self.b = b self.delta = 2.0*b self.epsilon = -b*b def a_alphas_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` for the PR EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a \left(\kappa \left(- \frac{T^{0.5}}{Tc^{0.5}} + 1\right) + 1\right)^{2} Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] ''' return PR_a_alphas_vectorized(T, self.Tcs, self.ais, self.kappas, a_alphas=[0.0]*self.N if self.scalar else zeros(self.N)) def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the PR EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a \left(\kappa \left(- \frac{T^{0.5}}{Tc^{0.5}} + 1\right) + 1\right)^{2} .. math:: \frac{d a\alpha}{dT} = - \frac{1.0 a \kappa}{T^{0.5} Tc^{0.5}} \left(\kappa \left(- \frac{T^{0.5}}{Tc^{0.5}} + 1\right) + 1\right) .. math:: \frac{d^2 a\alpha}{dT^2} = 0.5 a \kappa \left(- \frac{1}{T^{1.5} Tc^{0.5}} \left(\kappa \left(\frac{T^{0.5}}{Tc^{0.5}} - 1\right) - 1\right) + \frac{\kappa}{T^{1.0} Tc^{1.0}}\right) Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] ''' N = self.N if self.scalar: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = [0.0]*N, [0.0]*N, [0.0]*N else: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = zeros(N), zeros(N), zeros(N) return PR_a_alpha_and_derivatives_vectorized(T, self.Tcs, self.ais, self.kappas, a_alphas=a_alphas, da_alpha_dTs=da_alpha_dTs, d2a_alpha_dT2s=d2a_alpha_dT2s) @property def d3a_alpha_dT3(self): r'''Method to calculate approximately the third temperature derivative of `a_alpha` for the PR EOS. A rigorous calculation has not been implemented. Parameters ---------- T : float Temperature, [K] Returns ------- d3a_alpha_dT3 : float Third temperature derivative :math:`a \alpha`, [J^2/mol^2/Pa/K^3] ''' try: return self._d3a_alpha_dT3 except AttributeError: pass tot = 0.0 zs = self.zs vs = self.d3a_alpha_dT3_vectorized(self.T) for i in range(self.N): tot += zs[i]*vs[i] self._d3a_alpha_dT3 = tot return tot def d3a_alpha_dT3_vectorized(self, T): r'''Method to calculate the third temperature derivative of pure-component `a_alphas` for the PR EOS. This vectorized implementation is added for extra speed. Parameters ---------- T : float Temperature, [K] Returns ------- d3a_alpha_dT3s : list[float] Third temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K^3] ''' ais, kappas, Tcs = self.ais, self.kappas, self.Tcs T_inv = 1.0/T N = self.N d3a_alpha_dT3s = [0.0]*N if self.scalar else zeros(N) for i in range(N): kappa = kappas[i] x0 = 1.0/Tcs[i] x1 = sqrt(T*x0) v = (-ais[i]*0.75*kappa*(kappa*x0 - x1*(kappa*(x1 - 1.0) - 1.0)*T_inv)*T_inv*T_inv) d3a_alpha_dT3s[i] = v return d3a_alpha_dT3s def fugacity_coefficients(self, Z): r'''Literature formula for calculating fugacity coefficients for each species in a mixture. Verified numerically. Applicable to most derivatives of the Peng-Robinson equation of state as well. Called by :obj:`fugacities <GCEOSMIX.fugacities>` on initialization, or by a solver routine which is performing a flash calculation. .. math:: \ln \hat \phi_i = \frac{B_i}{B}(Z-1)-\ln(Z-B) + \frac{A}{2\sqrt{2}B} \left[\frac{B_i}{B} - \frac{2}{a\alpha}\sum_i y_i(a\alpha)_{ij}\right] \ln\left[\frac{Z + (1+\sqrt{2})B}{Z-(\sqrt{2}-1)B}\right] .. math:: A = \frac{(a\alpha)P}{R^2 T^2} .. math:: B = \frac{b P}{RT} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- log_phis : float Log fugacity coefficient for each species, [-] ''' a_alpha = self.a_alpha # a_alpha_ijs = self.a_alpha_ijs T_inv = 1.0/self.T bs, b = self.bs, self.b P_T = self.P*T_inv A = a_alpha*P_T*R2_inv*T_inv B = b*P_T*R_inv # The two log terms need to use a complex log; typically these are # calculated at "liquid" volume solutions which are unstable # and cannot exist try: x0 = log(Z - B) except ValueError: # less than zero x0 = 0.0 root_two_B = B*root_two two_root_two_B = root_two_B + root_two_B ZB = Z + B try: x4 = A*log((ZB + root_two_B)/(ZB - root_two_B)) except ValueError: # less than zero x4 = 0.0 a_alpha_j_rows = self._a_alpha_j_rows try: t50 = 2.0*x4/(a_alpha*two_root_two_B) except ZeroDivisionError: return [0.0]*self.N t51 = (x4 + (Z - 1.0)*two_root_two_B)/(b*two_root_two_B) if self.scalar: return [bs[i]*t51 - x0 - t50*a_alpha_j_rows[i] for i in range(self.N)] else: return bs*t51 - x0 - t50*a_alpha_j_rows def dlnphis_dT(self, phase): r'''Formula for calculating the temperature derivaitve of log fugacity coefficients for each species in a mixture for the Peng-Robinson equation of state. Verified numerically. .. math:: \left(\frac{\partial \ln \phi_i}{\partial T}\right)_{P, nj \ne i} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dT : float Temperature derivatives of log fugacity coefficient for each species, [1/K] Notes ----- This expression was derived using SymPy and optimized with the `cse` technique. ''' zs = self.zs if phase == 'g': Z = self.Z_g dZ_dT = self.dZ_dT_g else: Z = self.Z_l dZ_dT = self.dZ_dT_l bs, b = self.bs, self.b T_inv = 1.0/self.T A = self.a_alpha*self.P*R2_inv*T_inv*T_inv B = b*self.P*R_inv*T_inv x2 = T_inv*T_inv x3 = R_inv x4 = self.P*b*x3 x5 = x2*x4 x8 = x4*T_inv x10 = self.a_alpha x11 = 1.0/self.a_alpha x12 = self.da_alpha_dT x13 = root_two x14 = 1.0/b x15 = x13 + 1.0 # root_two plus 1 x16 = Z + x15*x8 x17 = x13 - 1.0 # root two minus one x18 = x16/(x17*x8 - Z) x19 = log(-x18) x13x14 = x13*x14 x10x13x14_4 = 0.25*x10*x13x14 x19x3 = x19*x3 x24 = x10x13x14_4*x19x3*x2 x25 = 0.25*x12*x13x14*x19x3*T_inv x26 = x10x13x14_4*x3*T_inv*(-dZ_dT + x15*x5 - x18*(dZ_dT + x17*x5))/(x16) x50 = -0.5*x13x14*x19x3*T_inv x51 = -x11*x12 x52 = (dZ_dT + x5)/(x8 - Z) x53 = 2.0*x11 x54 = x52/x50 x55 = x24 - x25 + x26 x56 = dZ_dT/x55 x57 = x53*x55 x58 = x14*(dZ_dT - x55) x59 = x57/x50 + x51 # Composition stuff a_alpha_j_rows = self._a_alpha_j_rows da_alpha_dT_j_rows = self._da_alpha_dT_j_rows d_lnphis_dTs = [x52 + bs[i]*x58 + x50*(x59*a_alpha_j_rows[i] + da_alpha_dT_j_rows[i]) for i in range(self.N)] return d_lnphis_dTs def dlnphis_dP(self, phase): r'''Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a mixture for the Peng-Robinson EOS. Verified numerically. .. math:: \left(\frac{\partial \ln \phi_i}{\partial P}\right)_{T, nj \ne i} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dP : float Pressure derivatives of log fugacity coefficient for each species, [1/Pa] Notes ----- This expression was derived using SymPy and optimized with the `cse` technique. ''' zs = self.zs if phase == 'l': Z, dZ_dP = self.Z_l, self.dZ_dP_l else: Z, dZ_dP = self.Z_g, self.dZ_dP_g a_alpha = self.a_alpha bs, b = self.bs, self.b T_inv = 1.0/self.T x2 = 1.0/b x6 = b*R_inv*T_inv x8 = self.P*x6 x9 = (dZ_dP - x6)/(x8 - Z) x13 = Z + root_two_p1*x8 x15 = (a_alpha*root_two*x2*R_inv*T_inv*(dZ_dP + root_two_p1*x6 + x13*(dZ_dP - root_two_m1*x6)/(root_two_m1*x8 - Z))/(4.0*x13)) x16 = dZ_dP + x15 a_alpha_j_rows = self._a_alpha_j_rows x50 = -2.0/a_alpha d_lnphi_dPs = [] for i in range(self.N): x3 = bs[i]*x2 x10 = x50*a_alpha_j_rows[i] # d_lnphi_dP = dZ_dP*x3 + x15*(x10 + x3) + x9 d_lnphi_dP = x16*x3 + x15*x10 + x9 d_lnphi_dPs.append(d_lnphi_dP) return d_lnphi_dPs def d_lnphi_dzs_analytical0(self, Z, zs): # TODO try to follow "B.5.2.1 Derivatives of Fugacity Coefficient with Respect to Mole Fraction" # "Development of an Equation-of-State Thermal Flooding Simulator" N = self.N cmps_m1 = range(N-1) a_alpha = self.a_alpha a_alpha_ijs = self.a_alpha_ijs T2 = self.T*self.T b = self.b A = a_alpha*self.P/(R2*T2) B = b*self.P/(R*self.T) B2 = B*B Z2 = Z*Z A_B = A/B ZmB = Z - B dZ_dA = (B - Z)/(3.0*Z2 - 2.0*(1.0 - B)*Z + (A - 2.0*B - 3.0*B2)) # 2*(3.0*B + 1)*Z may or may not have Z # Simple phase stability-testing algorithm in the reduction method. dZ_dB = ((-Z2 + 2*(3.0*B + 1)*Z) + (A - 2.0*B - 3.0*B2))/( 3.0*Z2 - 2.0*(1.0 - B)*Z + (A - 2.0*B - 3.0*B2)) Sis = [] for i in range(N): tot = 0.0 for j in range(N): tot += zs[j]*a_alpha_ijs[i][j] Sis.append(tot) Sais = [val/a_alpha for val in Sis] Sbis = [bi/b for bi in self.bs] Snc = Sis[-1] const_A = 2.0*self.P/(R2*T2) dA_dzis = [const_A*(Si - Snc) for Si in Sis[:-1]] const_B = 2.0*self.P/(R*self.T) bnc = self.bs[-1] dB_dzis = [const_B*(self.bs[i] - bnc) for i in range(N)] # Probably wrong, missing dZ_dzs = [dZ_dA*dA_dz_i + dZ_dB*dB_dzi for dA_dz_i, dB_dzi in zip(dA_dzis, dB_dzis)] t1 = (Z2 + 2.0*Z*B - B2) t2 = clog((Z + (root_two + 1.)*B)/(Z - (root_two - 1.)*B)).real t3 = t2*-A/(B*two_root_two) t4 = -t2/(two_root_two*B) a_nc = a_alpha_ijs[-1][-1] # no idea if this is right # Have some converns of what Snc really is dlnphis_dzs_all = [] for i in range(self.N): Diks = [-A_B*(2.0*Sais[i] - Sbis[i])*(Z*dB_dzis[k] - B*dZ_dzs[k])/t1 for k in cmps_m1] Ciks = [t3*(2.0*(a_alpha_ijs[i][k] - a_nc)/a_alpha - 4.0*Sais[i]*(Sais[k] - Snc) + Sbis[i]*(Sbis[k] - Snc)) for k in cmps_m1] x5 = t4*(2.0*Sais[i] - Sbis[i]) Biks = [x5*(dA_dzis[k] - A_B*dB_dzis[k]) for k in cmps_m1 ] Aiks = [Sbis[i]*(dZ_dzs[k] - (Sbis[k] - Snc)*(Z - 1.0)) - (dZ_dzs[k] - dB_dzis[k])/ZmB for k in cmps_m1 ] dlnphis_dzs = [Aik + Bik + Cik + Dik for Aik, Bik, Cik, Dik in zip(Aiks, Biks, Ciks, Diks)] dlnphis_dzs_all.append(dlnphis_dzs) return dlnphis_dzs_all def d_lnphi_dzs_basic_num(self, Z, zs): all_diffs = [] try: if self.G_dep_l < self.G_dep_g: lnphis_ref = self.lnphis_l else: lnphis_ref = self.lnphis_g except: lnphis_ref = self.lnphis_l if hasattr(self, 'G_dep_l') else self.lnphis_g for i in range(len(zs)): zs2 = list(zs) dz = 1e-7#zs2[i]*3e- zs2[i] = zs2[i]+dz # sum_one = sum(zs2) # zs2 = normalize(zs2) eos2 = self.to_TP_zs(T=self.T, P=self.P, zs=zs2) diffs = [] for j in range(len(zs)): try: dlnphis = (eos2.lnphis_g[j] - lnphis_ref[j])/dz except: dlnphis = (eos2.lnphis_l[j] - lnphis_ref[j])/dz diffs.append(dlnphis) all_diffs.append(diffs) import numpy as np return np.array(all_diffs).T.tolist() def d_lnphi_dzs_numdifftools(self, Z, zs): import numpy as np import numdifftools as nd def lnphis_from_zs(zs2): if isinstance(zs2, np.ndarray): zs2 = zs2.tolist() zs2 = normalize(zs2) # Last row suggests the normalization breaks everything! # zs2 = normalize(zs2) # if Z == self.Z_l try: return np.array(self.to_TP_zs(T=self.T, P=self.P, zs=zs2).lnphis_l) except: return np.array(self.to_TP_zs(T=self.T, P=self.P, zs=zs2).lnphis_g) Jfun_partial = nd.Jacobian(lnphis_from_zs, step=1e-4, order=2, method='central') return Jfun_partial(zs) def dlnphis_dzs(self, Z): r'''Calculate and return the mole fraction derivaitves of log fugacity coefficients for each species in a mixture. This formula is specific to the Peng-Robinson equation of state. .. math:: \left(\frac{\partial \ln \phi_i}{\partial z_i}\right)_{P, z_{j \ne i}} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- dlnphis_dzs : list[list[float]] Mole fraction derivatives of log fugacity coefficient for each species (such that the mole fractions do not sum to 1), [-] Notes ----- This formula is from [1]_ but is validated to match the generic implementation. Examples -------- >>> kijs = [[0, 0.00076, 0.00171], [0.00076, 0, 0.00061], [0.00171, 0.00061, 0]] >>> eos = PRMIX(Tcs=[469.7, 507.4, 540.3], zs=[0.8168, 0.1501, 0.0331], omegas=[0.249, 0.305, 0.349], Pcs=[3.369E6, 3.012E6, 2.736E6], T=322.29, P=101325, kijs=kijs) >>> eos.dlnphis_dzs(eos.Z_l) [[0.009938069276, 0.0151503498382, 0.018297235797], [-0.038517738793, -0.05958926042, -0.068438990795], [-0.07057106923, -0.10363920720, -0.14116283024]] References ---------- .. [1] Chang, Yih-Bor. "Development and Application of an Equation of State Compositional Simulator" 1990. https://repositories.lib.utexas.edu/handle/2152/80585. ''' T, P, zs = self.T, self.P, self.zs T2 = T*T T_inv = 1.0/T RT_inv = R_inv*T_inv bs, b = self.bs, self.b a_alpha = self.a_alpha a_alpha_ijs = self.a_alpha_ijs a_alphas = self.a_alphas a_alpha_j_rows = self.a_alpha_j_rows N = len(zs) b2 = b*b b_inv = 1.0/b b2_inv = b_inv*b_inv a_alpha2 = a_alpha*a_alpha A = a_alpha*P*RT_inv*RT_inv B = b*P*RT_inv B_inv = 1.0/B C = 1.0/(Z - B) Zm1 = Z - 1.0 G = (Z + (1.0 + root_two)*B)/(Z + (1.0 - root_two)*B) t4 = 2.0/a_alpha t5 = -A/(two_root_two*B) Eis = [t5*(t4*a_alpha_j_rows[i] - bs[i]*b_inv) for i in range(N)] # ln_phis = [] # for i in range(N): # ln_phis.append(log(C) + Dis[i] + Eis[i]*log(G)) # return ln_phis # Bis = [bi*P/(R*T) for bi in bs] # maybe with a 2 constant? t6 = P*RT_inv dB_dxks = [t6*bk for bk in bs] # THIS IS WRONG - the sum changes w.r.t (or does it?) # Believed right now? const = (P+P)*RT_inv*RT_inv dA_dxks = [const*term_i for term_i in a_alpha_j_rows] dF_dZ_inv = 1.0/(3.0*Z*Z - 2.0*Z*(1.0 - B) + (A - 3.0*B*B - 2.0*B)) t15 = (A - 2.0*B - 3.0*B*B + 2.0*(3.0*B + 1.0)*Z - Z*Z) BmZ = (B - Z) dZ_dxs = [(BmZ*dA_dxks[i] + t15*dB_dxks[i])*dF_dZ_inv for i in range(N)] # function only of k ZmB = Z - B t20 = -1.0/(ZmB*ZmB) dC_dxs = [t20*(dZ_dxs[k] - dB_dxks[k]) for k in range(N)] dD_dxs = [] # dD_dxs = [[0.0]*N for _ in cmps] t55s = [b*dZ_dxs[k] - bs[k]*Zm1 for k in range(N)] for i in range(N): # dD_dxs_i = dD_dxs[i] b_term_ratio = bs[i]*b2_inv dD_dxs.append([b_term_ratio*t55s[k] for k in range(N)]) # for k in range(N): # dD_dxs_i[k] = b_term_ratio*t55s[k] # dD_dxs = [] # for i in range(N): # term = bs[i]/(b*b)*(b*dZ_dxs[i] - b*(Z - 1.0)) # dD_dxs.append(term) # ? Believe this is the only one with multi indexes? t1 = 1.0/(two_root_two*a_alpha*b*B) t2 = t1*A/(a_alpha*b) t50s = [B*dA_dxks[k] - A*dB_dxks[k] for k in range(N)] # problem is in here, tested numerically b_two = b + b t32 = 2.0*a_alpha*b2 t33 = 4.0*b2 t34 = t1*B_inv*a_alpha t35 = -t1*B_inv*b_two # Symmetric matrix! dE_dxs = [[0.0]*N for _ in range(N)] # TODO - makes little sense. Too many i indexes. for i in range(N): zm_aim_tot = a_alpha_j_rows[i] t30 = t34*bs[i] + t35*zm_aim_tot t31 = t33*zm_aim_tot dE_dxs_i = [] a_alpha_ijs_i = a_alpha_ijs[i] for k in range(0, i+1): # Sign was wrong in article - should be a plus second = t2*(t31*a_alpha_j_rows[k] - t32*a_alpha_ijs_i[k] - bs[i]*bs[k]*a_alpha2) dE_dxs[i][k] = dE_dxs[k][i] = t30*t50s[k] + second # dE_dxs_i.append(t1*(first + second)) # dE_dxs.append(dE_dxs_i) t59 = (Z + (1.0 - root_two)*B) t60 = two_root_two/(t59*t59) dG_dxs = [t60*(Z*dB_dxks[k] - B*dZ_dxs[k]) for k in range(N)] G_inv = 1.0/G logG = log(G) C_inv = 1.0/C dlnphis_dxs = [] # dlnphis_dxs = [[0.0]*N for _ in range(N)] t61s = [C_inv*dC_dxi for dC_dxi in dC_dxs] for i in range(N): dD_dxs_i = dD_dxs[i] dE_dxs_i = dE_dxs[i] E_G = Eis[i]*G_inv # dlnphis_dxs_i = dlnphis_dxs[i] dlnphis_dxs_i = [t61s[k] + dD_dxs_i[k] + logG*dE_dxs_i[k] + E_G*dG_dxs[k] for k in range(N)] dlnphis_dxs.append(dlnphis_dxs_i) # return dlnphis_dxs return dlnphis_dxs#, dZ_dxs, dA_dxks, dB_dxks, dC_dxs, dD_dxs, dE_dxs, dG_dxs @property def ddelta_dzs(self): r'''Helper method for calculating the composition derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 2 b_i Returns ------- ddelta_dzs : list[float] Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' N = self.N return PR_ddelta_dzs(self.bs, N, out=[0.0]*N if self.scalar else zeros(N)) @property def ddelta_dns(self): r'''Helper method for calculating the mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 2 (b_i - b) Returns ------- ddelta_dns : list[float] Mole number derivative of `delta` of each component, [m^3/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N return PR_ddelta_dns(self.bs, self.b, N, out=[0.0]*N if self.scalar else zeros(N)) @property def d2delta_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial x_i\partial x_j}\right)_{T, P, x_{k\ne i,j}} = 0 Returns ------- d2delta_dzizjs : list[float] Second Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: return [[0.0]*N for i in range(N)] return zeros((N, N)) @property def d2delta_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,j}} = 4b - 2b_i - 2b_j Returns ------- d2delta_dninjs : list[list[float]] Second mole number derivative of `delta` of each component, [m^3/mol^3] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return PR_d2delta_dninjs(self.b, self.bs, N, out) @property def d3delta_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \delta}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 4(-3b + b_i + b_j + b_k) Returns ------- d3delta_dninjnks : list[list[list[float]]] Third mole number derivative of `delta` of each component, [m^3/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[[0.0]*N for _ in range(N) ] for _ in range(N)] if self.scalar else zeros((N, N, N)) return PR_d3delta_dninjnks(self.b, self.bs, N, out) @property def depsilon_dzs(self): r'''Helper method for calculating the composition derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial \epsilon}{\partial x_i}\right)_{T, P, x_{i\ne j}} = -2 b_i\cdot b Returns ------- depsilon_dzs : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N return PR_depsilon_dzs(self.b, self.bs, N, out=[0.0]*N if self.scalar else zeros(N)) @property def depsilon_dns(self): r'''Helper method for calculating the mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial \epsilon}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 2b(b - b_i) Returns ------- depsilon_dns : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^3] Notes ----- This derivative is checked numerically. ''' N = self.N return PR_depsilon_dns(self.b, self.bs, N, out=[0.0]*N if self.scalar else zeros(N)) @property def d2epsilon_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial x_i \partial x_j}\right)_{T, P, x_{k\ne i,j}} = 2 b_i b_j Returns ------- d2epsilon_dzizjs : list[list[float]] Second composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return PR_d2epsilon_dzizjs(self.b, self.bs, N, out) @property def d2epsilon_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial n_i n_j}\right)_{T, P, n_{k\ne i,j}} = -2b(2b - b_i - b_j) - 2(b - b_i)(b - b_j) Returns ------- d2epsilon_dninjs : list[list[float]] Second mole number derivative of `epsilon` of each component, [m^6/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return PR_d2epsilon_dninjs(self.b, self.bs, N, out) @property def d3epsilon_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \epsilon}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 24b^2 - 12b(b_i + b_j + b_k) + 4(b_i b_j + b_i b_k + b_j b_k) Returns ------- d3epsilon_dninjnks : list[list[list[float]]] Third mole number derivative of `epsilon` of each component, [m^6/mol^5] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[[0.0]*N for _ in range(N) ] for _ in range(N)] if self.scalar else zeros((N, N, N)) return PR_d3epsilon_dninjnks(self.b, self.bs, N, out) def solve_T(self, P, V, quick=True, solution=None): if self.N == 1 and type(self) is PRMIX: self.Tc = self.Tcs[0] self.Pc = self.Pcs[0] self.kappa = self.kappas[0] self.a = self.ais[0] T = super(type(self).__mro__[-4], self).solve_T(P=P, V=V, solution=solution) del self.Tc del self.Pc del self.kappa del self.a return T else: return super(type(self).__mro__[-3], self).solve_T(P=P, V=V, solution=solution) class PRMIXTranslated(PRMIX): r'''Class for solving the Peng-Robinson [1]_ [2]_ translated cubic equation of state for a mixture of any number of compounds. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v + c - b} - \frac{a\alpha(T)}{(v+c)(v + c + b)+b(v + c - b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i=[1+\kappa_i(1-\sqrt{T_{r,i}})]^2 .. math:: \kappa_i=0.37464+1.54226\omega_i-0.26992\omega^2_i Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] cs : list[float], optional Volume translation parameters; always zero in the original implementation, [m^3/mol] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = PRMIXTranslated(T=115, P=1E6, cs=[-4.4e-6, -4.35e-6], Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]]) >>> eos.V_l, eos.V_g (3.9079056337e-05, 0.00060231393016) >>> eos.fugacities_l, eos.fugacities_g ([442838.8615, 108854.48589], [184396.972, 565531.7709]) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Peng, Ding-Yu, and Donald B. Robinson. "A New Two-Constant Equation of State." Industrial & Engineering Chemistry Fundamentals 15, no. 1 (February 1, 1976): 59-64. doi:10.1021/i160057a011. .. [2] Robinson, Donald B., Ding-Yu Peng, and Samuel Y-K Chung. "The Development of the Peng - Robinson Equation and Its Application to Phase Equilibrium in a System Containing Methanol." Fluid Phase Equilibria 24, no. 1 (January 1, 1985): 25-41. doi:10.1016/0378-3812(85)87035-7. ''' translated = True eos_pure = PRTranslated mix_kwargs_to_pure = {'cs': 'c'} kwargs_linear = ('cs',) fugacity_coefficients = GCEOSMIX.fugacity_coefficients dlnphis_dT = GCEOSMIX.dlnphis_dT dlnphis_dP = GCEOSMIX.dlnphis_dP d_lnphi_dzs = GCEOSMIX.dlnphis_dzs P_max_at_V = GCEOSMIX.P_max_at_V model_id = 10202 # All the b derivatives happen to work out to be the same, and are checked numerically solve_T = GCEOS.solve_T kwargs_keys = ('kijs', 'cs') def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, cs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in range(N)] else: kijs = zeros((N, N)) self.kijs = kijs self.T = T self.P = P self.V = V c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: b0s = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*b0s[i] for i in cmps] else: b0s = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*b0s if cs is None: if scalar: cs = [0.0]*N else: cs = zeros(N) if scalar: self.kappas = [omega*(-0.26992*omega + 1.54226) + 0.37464 for omega in omegas] b0, c = 0.0, 0.0 for i in range(N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] bs = [b0s[i] - cs[i] for i in range(N)] else: self.kappas = omegas*(-0.26992*omegas + 1.54226) + 0.37464 b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) bs = b0s - cs self.kwargs = {'kijs': kijs, 'cs': cs} self.cs = cs self.b0s = b0s self.bs = bs self.c = c self.b = b = b0 - c self.delta = 2.0*(c + b0) self.epsilon = -b0*b0 + c*(c + b0 + b0) self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.cs = cs = other.cs self.kappas = other.kappas zs = self.zs self.b0s = b0s = other.b0s if self.scalar: b0, c = 0.0, 0.0 for i in range(self.N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] else: b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) self.c = c self.b = b0 - c self.delta = 2.0*(c + b0) self.epsilon = -b0*b0 + c*(c + b0 + b0) # Very important to be calculated exactly the same way as the other implementation @property def ddelta_dzs(self): r'''Helper method for calculating the composition derivatives of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \delta}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 2 (c_i + b^0_i) Returns ------- ddelta_dzs : list[float] Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' N = self.N return PR_translated_ddelta_dzs(self.b0s, self.cs, N, [0.0]*N if self.scalar else zeros(N)) # Zero in both cases d2delta_dzizjs = PRMIX.d2delta_dzizjs d3delta_dzizjzks = PRMIX.d3delta_dzizjzks @property def ddelta_dns(self): r'''Helper method for calculating the mole number derivatives of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \delta}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 2 (c_i + b^0_i) - \delta Returns ------- ddelta_dns : list[float] Mole number derivative of `delta` of each component, [m^3/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N return PR_translated_ddelta_dns(self.b0s, self.cs, self.delta, N, [0.0]*N if self.scalar else zeros(N)) @property def d2delta_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial^2 \delta}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,j}} = 2\left(\delta - b^0_i - b^0_j - c_i - c_j \right) Returns ------- d2delta_dninjs : list[list[float]] Second mole number derivative of `delta` of each component, [m^3/mol^3] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return PR_translated_d2delta_dninjs(self.b0s, self.cs, self.b, self.c, self.delta, N, out) @property def d3delta_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial^3 \delta}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 4\left(b^0_i + b^0_j + b^0_k + c_i + c_j + c_k \right) - 6 \delta Returns ------- d3delta_dninjnks : list[list[list[float]]] Third mole number derivative of `delta` of each component, [m^3/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[[0.0]*N for _ in range(N)] for _ in range(N)] if self.scalar else zeros((N, N, N)) return PR_translated_d3delta_dninjnks(self.b0s, self.cs, self.delta, N, out) @property def depsilon_dzs(self): r'''Helper method for calculating the composition derivatives of `epsilon`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \epsilon}{\partial x_i}\right)_{T, P, x_{i\ne j}} = c_i(2b^0_i + c) + c(2b^0_i + c_i) - 2b^0 b^0_i Returns ------- depsilon_dzs : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N return PR_translated_depsilon_dzs(self.epsilon, self.c, self.b, self.b0s, self.cs, N, [0.0]*N if self.scalar else zeros(N)) @property def depsilon_dns(self): r'''Helper method for calculating the mole number derivatives of `epsilon`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \epsilon}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 2b^0(b^0 - b^0_i) - c(2b^0 - 2b_i^0 + c - c_i) - (c - c_i)(2b^0 + c) Returns ------- depsilon_dns : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^3] Notes ----- This derivative is checked numerically. ''' epsilon, c, b = self.epsilon, self.c, self.b N, b0s, cs = self.N, self.b0s, self.cs return PR_translated_depsilon_dns(epsilon, c, b, b0s, cs, N, out=([0.0]*N if self.scalar else zeros(N))) @property def d2epsilon_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial x_i \partial x_j}\right)_{T, P, x_{k\ne i,j}} = -2 b^0_i b^0_j + 2b^0_i c_j + 2b^0_j c_i + 2c_i c_j Returns ------- d2epsilon_dzizjs : list[list[float]] Second composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return PR_translated_d2epsilon_dzizjs(self.b0s, self.cs, N=N, out=out) d3epsilon_dzizjzks = GCEOSMIX.d3epsilon_dzizjzks # Zeros @property def d2epsilon_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial n_i n_j}\right)_{T, P, n_{k\ne i,j}} = -2b^0(2b^0 - b_i^0 - b_j^0) + c(4b^0 - 2b^0_i - 2b^0_j + 2c - c_i - c_j) -2(b^0 - b_i^0)(b^0 - b^0_j) + (c - c_i)(2b^0 - 2b^0_j - c_j + c) + (c - c_j)(2b^0 - 2b^0_i - c_i + c) + (2b^0 + c)(2c-c_i - c_j) Returns ------- d2epsilon_dninjs : list[list[float]] Second mole number derivative of `epsilon` of each component, [m^6/mol^4] Notes ----- This derivative is checked numerically. ''' # Not trusted yet - numerical check does not have enough digits N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return PR_translated_d2epsilon_dninjs(self.b0s, self.cs, self.b, self.c, N, out=out) @property def d3epsilon_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \epsilon}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 4b^0(3b^0 - b_i^0 - b_j^0 - b_k^0) -2c(6b^0 - 2(b_i^0 + b_j^0 + b_k^0) + 3c - (c_i + c_j + c_k)) +2(b^0-b_i^0)(2b^0 - b_j^0 - b_k^0) + 2(b^0 - b^0_j)(2b^0 - b_i^0 - b_k^0) +2(b^0-b^0_k)(2b^0 - b^0_i-b^0_j) -(c-c_i)(4b^0 - 2b^0_j - 2b^0_k + 2c - c_j - c_k) -(c-c_j)(4b^0 - 2b^0_i - 2b^0_k + 2c - c_i - c_k) -(c-c_k)(4b^0 - 2b^0_j - 2b^0_i + 2c - c_j - c_i) -2(c + 2b^0)(3c - c_i - c_j - c_k) -(2c - c_i - c_j)(2b^0 + c - 2b^0_k - c_k) -(2c - c_i - c_k)(2b^0 + c - 2b^0_j - c_j) -(2c - c_j - c_k)(2b^0 + c - 2b^0_i - c_i) Returns ------- d3epsilon_dninjnks : list[list[list[float]]] Third mole number derivative of `epsilon` of each component, [m^6/mol^5] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[[0.0]*N for _ in range(N)] for _ in range(N)] if self.scalar else zeros((N, N, N)) return PR_translated_d3epsilon_dninjnks(self.b0s, self.cs, self.b, self.c, self.epsilon, N, out) class PRMIXTranslatedPPJP(PRMIXTranslated): r'''Class for solving the Pina-Martinez, Privat, Jaubert, and Peng revision of the Peng-Robinson equation of state. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v + c - b} - \frac{a\alpha(T)}{(v+c)(v + c + b)+b(v + c - b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i=[1+\kappa_i(1-\sqrt{T_{r,i}})]^2 .. math:: \kappa_i=0.3919 + 1.4996 \omega - 0.2721\omega^2 + 0.1063\omega^3 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] cs : list[float], optional Volume translation parameters, [m^3/mol] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = PRMIXTranslatedPPJP(T=115, P=1E6, cs=[-4.4e-6, -4.35e-6], Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]]) >>> eos.V_l, eos.V_g (3.8989032701e-05, 0.00059686183724) >>> eos.fugacities_l, eos.fugacities_g ([444791.13707, 104520.280997], [184782.600238, 563352.147]) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Pina-Martinez, Andrés, Romain Privat, Jean-Noël Jaubert, and Ding-Yu Peng. "Updated Versions of the Generalized Soave α-Function Suitable for the Redlich-Kwong and Peng-Robinson Equations of State." Fluid Phase Equilibria, December 7, 2018. https://doi.org/10.1016/j.fluid.2018.12.007. ''' eos_pure = PRTranslatedPPJP mix_kwargs_to_pure = {'cs': 'c'} kwargs_linear = ('cs',) kwargs_keys = ('kijs', 'cs') model_id = 10207 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, cs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.T = T self.P = P self.V = V c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: b0s = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*b0s[i] for i in cmps] else: b0s = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*b0s if cs is None: if scalar: cs = [0.0]*N else: cs = zeros(N) if scalar: self.kappas = [omega*(omega*(0.1063*omega - 0.2721) + 1.4996) + 0.3919 for omega in omegas] b0, c = 0.0, 0.0 for i in range(N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] bs = [b0s[i] - cs[i] for i in range(N)] else: self.kappas = omegas*(omegas*(0.1063*omegas - 0.2721) + 1.4996) + 0.3919 b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) bs = b0s - cs self.kwargs = {'kijs': kijs, 'cs': cs} self.cs = cs self.b0s = b0s self.bs = bs self.c = c self.b = b = b0 - c self.delta = 2.0*(c + b0) self.epsilon = -b0*b0 + c*(c + b0 + b0) self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() class PRMIXTranslatedConsistent(Twu91_a_alpha, PRMIXTranslated): r'''Class for solving the volume translated Le Guennec, Privat, and Jaubert revision of the Peng-Robinson equation of state according to [1]_. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v + c - b} - \frac{a\alpha(T)}{(v+c)(v + c + b)+b(v + c - b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha_i = \left(\frac{T}{T_{c}}\right)^{c_{3} \left(c_{2} - 1\right)} e^{c_{1} \left(- \left(\frac{T}{T_{c}} \right)^{c_{2} c_{3}} + 1\right)} If `c` is not provided, they are estimated as: .. math:: c =\frac{R T_c}{P_c}(0.0198\omega - 0.0065) If `alpha_coeffs` is not provided, the parameters `L` and `M` are estimated from the acentric factor as follows: .. math:: L = 0.1290\omega^2 + 0.6039\omega + 0.0877 .. math:: M = 0.1760\omega^2 - 0.2600\omega + 0.8884 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] cs : list[float], optional Volume translation parameters, [m^3/mol] alpha_coeffs : list[tuple(float[3])], optional Coefficients L, M, N (also called C1, C2, C3) of TWU 1991 form, [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = PRMIXTranslatedConsistent(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]]) >>> eos.V_l, eos.V_g (3.675235812e-05, 0.00059709319879) >>> eos.fugacities_l, eos.fugacities_g ([443454.9336, 106184.004057], [184122.74082, 563037.785]) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Le Guennec, Yohann, Romain Privat, and Jean-Noël Jaubert. "Development of the Translated-Consistent Tc-PR and Tc-RK Cubic Equations of State for a Safe and Accurate Prediction of Volumetric, Energetic and Saturation Properties of Pure Compounds in the Sub- and Super-Critical Domains." Fluid Phase Equilibria 429 (December 15, 2016): 301-12. https://doi.org/10.1016/j.fluid.2016.09.003. ''' eos_pure = PRTranslatedConsistent kwargs_linear = ('cs', 'alpha_coeffs') mix_kwargs_to_pure = {'cs': 'c', 'alpha_coeffs': 'alpha_coeffs'} kwargs_keys = ('kijs', 'alpha_coeffs', 'cs') model_id = 10203 # There is an updated set of correlations - which means a revision flag is needed # Analysis of the Combinations of Property Data That Are Suitable for a Safe Estimation of Consistent Twu α-Function Parameters: Updated Parameter Values for the Translated-Consistent tc-PR and tc-RK Cubic Equations of State def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, cs=None, alpha_coeffs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.T = T self.P = P self.V = V c1R2_c2R, c2R = self.c1R2_c2R, self.c2R if scalar: b0s = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*b0s[i] for i in cmps] else: b0s = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*b0s if cs is None: if scalar: cs = [R*Tcs[i]/Pcs[i]*(0.0198*min(max(omegas[i], -0.01), 1.48) - 0.0065) for i in range(N)] else: cs = R*Tcs/Pcs*(0.0198*npmin(npmax(omegas, -0.01), 1.48) - 0.0065) if alpha_coeffs is None: alpha_coeffs = [] for i in range(N): o = min(max(omegas[i], -0.01), 1.48) L = o*(0.1290*o + 0.6039) + 0.0877 M = o*(0.1760*o - 0.2600) + 0.8884 alpha_coeffs.append((L, M, 2.0)) self.kwargs = {'kijs': kijs, 'alpha_coeffs': alpha_coeffs, 'cs': cs} self.alpha_coeffs = alpha_coeffs self.cs = cs if scalar: b0, c = 0.0, 0.0 for i in range(N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] bs = [b0s[i] - cs[i] for i in range(N)] else: b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) bs = b0s - cs self.b0s = b0s self.bs = bs self.c = c self.b = b = b0 - c self.delta = 2.0*(c + b0) self.epsilon = -b0*b0 + c*(c + b0 + b0) self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.cs = cs = other.cs self.alpha_coeffs = other.alpha_coeffs zs = self.zs self.b0s = b0s = other.b0s if self.scalar: b0, c = 0.0, 0.0 for i in range(self.N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] else: b0 = float((zs*b0s).sum()) c = float((zs*cs).sum()) self.c = c self.b = b0 - c self.delta = 2.0*(c + b0) self.epsilon = -b0*b0 + c*(c + b0 + b0) # Very important to be calculated exactly the same way as the other implementation class SRKMIX(EpsilonZeroMixingRules, GCEOSMIX, SRK): r'''Class for solving the Soave-Redlich-Kwong cubic equation of state for a mixture of any number of compounds. Solves the EOS on initialization and calculates fugacities for all components in all phases. The implemented method here is :obj:`fugacity_coefficients <SRKMIX.fugacity_coefficients>`, which implements the formula for fugacity coefficients in a mixture as given in [1]_. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{V-b} - \frac{a\alpha(T)}{V(V+b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i =\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i = \left[1 + m_i\left(1 - \sqrt{\frac{T}{T_{c,i}}}\right)\right]^2 .. math:: m_i = 0.480 + 1.574\omega_i - 0.176\omega_i^2 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> SRK_mix = SRKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> SRK_mix.V_l, SRK_mix.V_g (4.1047569614e-05, 0.0007110158049) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Soave, Giorgio. "Equilibrium Constants from a Modified Redlich-Kwong Equation of State." Chemical Engineering Science 27, no. 6 (June 1972): 1197-1203. doi:10.1016/0009-2509(72)80096-4. .. [2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000. .. [3] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985. ''' eos_pure = SRK nonstate_constants_specific = ('ms',) kwargs_keys = ('kijs', ) model_id = 10100 ddelta_dzs = RKMIX.ddelta_dzs ddelta_dns = RKMIX.ddelta_dns d2delta_dzizjs = RKMIX.d2delta_dzizjs d2delta_dninjs = RKMIX.d2delta_dninjs d3delta_dninjnks = RKMIX.d3delta_dninjnks def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V if self.scalar: self.ais = [self.c1*R2*Tc*Tc/Pc for Tc, Pc in zip(Tcs, Pcs)] self.bs = [self.c2*R*Tc/Pc for Tc, Pc in zip(Tcs, Pcs)] ms = [omega*(1.574 - 0.176*omega) + 0.480 for omega in omegas] b = sum(bi*zi for bi, zi in zip(self.bs, self.zs)) else: Tc_Pc_ratio = Tcs/Pcs self.ais = self.c1R2*Tcs*Tc_Pc_ratio self.bs = bs = self.c2R*Tc_Pc_ratio ms = omegas*(1.574 - 0.176*omegas) + 0.480 b = float((bs*zs).sum()) self.b = b self.ms = ms self.delta = self.b self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.ms = other.ms if self.scalar: self.b = b = sum([bi*zi for bi, zi in zip(self.bs, self.zs)]) else: self.b = b = float((self.bs*self.zs).sum()) self.delta = b def a_alphas_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` for the SRK EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a \left(m \left(- \sqrt{\frac{T}{Tc}} + 1\right) + 1\right)^{2} Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] ''' return SRK_a_alphas_vectorized(T, self.Tcs, self.ais, self.ms, a_alphas=[0.0]*self.N if self.scalar else zeros(self.N)) def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the SRK EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a \left(m \left(- \sqrt{\frac{T}{Tc}} + 1\right) + 1\right)^{2} .. math:: \frac{d a\alpha}{dT} = \frac{a m}{T} \sqrt{\frac{T}{Tc}} \left(m \left(\sqrt{\frac{T}{Tc}} - 1\right) - 1\right) .. math:: \frac{d^2 a\alpha}{dT^2} = \frac{a m \sqrt{\frac{T}{Tc}}}{2 T^{2}} \left(m + 1\right) Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] ''' N = self.N if self.scalar: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = [0.0]*N, [0.0]*N, [0.0]*N else: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = zeros(N), zeros(N), zeros(N) return SRK_a_alpha_and_derivatives_vectorized(T, self.Tcs, self.ais, self.ms, a_alphas=a_alphas, da_alpha_dTs=da_alpha_dTs, d2a_alpha_dT2s=d2a_alpha_dT2s) def fugacity_coefficients(self, Z): r'''Literature formula for calculating fugacity coefficients for each species in a mixture. Verified numerically. Applicable to most derivatives of the SRK equation of state as well. Called by :obj:`fugacities <GCEOSMIX.fugacities>` on initialization, or by a solver routine which is performing a flash calculation. .. math:: \ln \hat \phi_i = \frac{B_i}{B}(Z-1) - \ln(Z-B) + \frac{A}{B} \left[\frac{B_i}{B} - \frac{2}{a \alpha}\sum_i y_i(a\alpha)_{ij} \right]\ln\left(1+\frac{B}{Z}\right) .. math:: A=\frac{a\alpha P}{R^2T^2} .. math:: B = \frac{bP}{RT} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- log_phis : float Log fugacity coefficient for each species, [-] ''' N = self.N return SRK_lnphis(self.T, self.P, Z, self.b, self.a_alpha, self.bs, self.a_alpha_j_rows, N, lnphis=[0.0]*N if self.scalar else zeros(N)) def dlnphis_dT(self, phase): r'''Formula for calculating the temperature derivaitve of log fugacity coefficients for each species in a mixture for the SRK equation of state. Verified numerically. .. math:: \left(\frac{\partial \ln \phi_i}{\partial T}\right)_{P, nj \ne i} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dT : float Temperature derivatives of log fugacity coefficient for each species, [1/K] Notes ----- This expression was derived using SymPy and optimized with the `cse` technique. ''' zs = self.zs if phase == 'g': Z = self.Z_g dZ_dT = self.dZ_dT_g else: Z = self.Z_l dZ_dT = self.dZ_dT_l da_alpha_dT_j_rows = self._da_alpha_dT_j_rows N = self.N P, bs, b = self.P, self.bs, self.b T_inv = 1.0/self.T A = self.a_alpha*P*R2_inv*T_inv*T_inv B = b*P*R_inv*T_inv x2 = T_inv*T_inv x4 = P*b*R_inv x6 = x4*T_inv x8 = self.a_alpha x9 = 1.0/x8 x10 = self.da_alpha_dT x11 = 1.0/b x12 = 1.0/Z x13 = x12*x6 + 1.0 x14 = log(x13) x19 = x11*x14*x2*R_inv*x8 x20 = x10*x11*x14*R_inv*T_inv x21 = P*x12*x2*x8*(dZ_dT*x12 + T_inv)/(R2*x13) x50 = -x11*x14*R_inv*T_inv x51 = -2.0*x10 x52 = (dZ_dT + x2*x4)/(x6 - Z) # Composition stuff d_lnphis_dTs = [] a_alpha_j_rows = self.a_alpha_j_rows for i in range(N): x7 = a_alpha_j_rows[i] x15 = (x50*(x51*x7*x9 + 2.0*da_alpha_dT_j_rows[i]) + x52) x16 = bs[i]*x11 x18 = -x16 + 2.0*x7*x9 d_lhphi_dT = dZ_dT*x16 + x15 + x18*(x19 - x20 + x21) d_lnphis_dTs.append(d_lhphi_dT) return d_lnphis_dTs def dlnphis_dP(self, phase): r'''Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a mixture for the SRK EOS. Verified numerically. .. math:: \left(\frac{\partial \ln \phi_i}{\partial P}\right)_{T, nj \ne i} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dP : float Pressure derivatives of log fugacity coefficient for each species, [1/Pa] Notes ----- This expression was derived using SymPy and optimized with the `cse` technique. ''' zs = self.zs if phase == 'l': Z, dZ_dP = self.Z_l, self.dZ_dP_l else: Z, dZ_dP = self.Z_g, self.dZ_dP_g a_alpha = self.a_alpha N = self.N bs, b = self.bs, self.b T_inv = 1.0/self.T a_alpha_j_rows = self._a_alpha_j_rows RT_inv = T_inv*R_inv x0 = Z x1 = dZ_dP x2 = 1.0/b x4 = b*RT_inv x5 = self.P*x4 x6 = (dZ_dP - x4)/(x5 - Z) x7 = a_alpha x9 = 1./Z x10 = a_alpha*x9*(self.P*dZ_dP*x9 - 1.0)*RT_inv*RT_inv/((x5*x9 + 1.0)) x50 = 2.0/a_alpha d_lnphi_dPs = [] for i in range(N): x8 = x50*a_alpha_j_rows[i] x3 = bs[i]*x2 d_lnphi_dP = dZ_dP*x3 + x10*(x8 - x3) + x6 d_lnphi_dPs.append(d_lnphi_dP) return d_lnphi_dPs class SRKMIXTranslated(SRKMIX): r'''Class for solving the volume translated Soave-Redlich-Kwong cubic equation of state for a mixture of any number of compounds. Subclasses :obj:`SRKMIX`. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{V + c - b} - \frac{a\alpha(T)}{(V + c)(V + c + b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i =\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i = \left[1 + m_i\left(1 - \sqrt{\frac{T}{T_{c,i}}}\right)\right]^2 .. math:: m_i = 0.480 + 1.574\omega_i - 0.176\omega_i^2 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] cs : list[float], optional Volume translation parameters; always zero in the original implementation, [m^3/mol] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = SRKMIXTranslated(T=115, P=1E6, cs=[-4.4e-6, -4.35e-6], Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]]) >>> eos.V_l, eos.V_g (4.35928920e-05, 0.00060927202) Notes ----- For P-V initializations, a numerical solver is used to find T. ''' fugacity_coefficients = GCEOSMIX.fugacity_coefficients dlnphis_dT = GCEOSMIX.dlnphis_dT dlnphis_dP = GCEOSMIX.dlnphis_dP d_lnphi_dzs = GCEOSMIX.dlnphis_dzs P_max_at_V = GCEOSMIX.P_max_at_V solve_T = GCEOS.solve_T model_id = 10101 eos_pure = SRKTranslated translated = True mix_kwargs_to_pure = {'cs': 'c'} kwargs_linear = ('cs',) kwargs_keys = ('kijs', 'cs') def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, cs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if cs is None: if scalar: cs = [0.0]*N else: cs = zeros(N) if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs, 'cs': cs} self.T = T self.P = P self.V = V c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: b0s = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*b0s[i] for i in cmps] self.ms = [0.480 + omega*(1.574 - 0.176*omega) for omega in omegas] else: b0s = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*b0s self.ms = 0.480 + omegas*(1.574 - 0.176*omegas) self.cs = cs if scalar: b0, c = 0.0, 0.0 for i in range(N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] bs = [b0s[i] - cs[i] for i in range(N)] else: b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) bs = b0s - cs self.b0s = b0s self.bs = bs self.c = c self.b = b = b0 - c self.delta = c + c + b0 self.epsilon = c*(b0 + c) self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.cs = cs = other.cs self.ms = other.ms zs = self.zs self.b0s = b0s = other.b0s if self.scalar: b0, c = 0.0, 0.0 for i in range(self.N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] else: b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) self.c = c self.b = b0 - c self.delta = c + c + b0 self.epsilon = c*(b0 + c) @property def ddelta_dzs(self): r'''Helper method for calculating the composition derivatives of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \delta}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 2 (c_i + b^0_i) Returns ------- ddelta_dzs : list[float] Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' b0s, cs = self.b0s, self.cs if self.scalar: return [(2.0*cs[i] + b0s[i]) for i in range(self.N)] return 2.0*cs + b0s # Zero in both cases d2delta_dzizjs = PRMIX.d2delta_dzizjs d3delta_dzizjzks = PRMIX.d3delta_dzizjzks @property def ddelta_dns(self): r'''Helper method for calculating the mole number derivatives of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \delta}{\partial n_i}\right)_{T, P, n_{i\ne j}} = (2 c_i + b^0_i) - \delta Returns ------- ddelta_dns : list[float] Mole number derivative of `delta` of each component, [m^3/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N return SRK_translated_ddelta_dns(self.b0s, self.cs, self.delta, N, out=[0.0]*N if self.scalar else zeros(N)) @property def d2delta_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial^2 \delta}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,j}} = \left(\2(b^0 - c_i - c_j) + 4c - b_i^0 - b_j^0\right) Returns ------- d2delta_dninjs : list[list[float]] Second mole number derivative of `delta` of each component, [m^3/mol^3] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return SRK_translated_d2delta_dninjs(self.b0s, self.cs, self.b, self.c, self.delta, N, out) @property def d3delta_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `delta`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial^3 \delta}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = -6b^0 + 2(b^0_i + b^0_j + b^0_k) + -12c +4(c_i + c_j + c_k) Returns ------- d3delta_dninjnks : list[list[list[float]]] Third mole number derivative of `delta` of each component, [m^3/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[[0.0]*N for _ in range(N)] for _ in range(N)] if self.scalar else zeros((N, N, N)) return SRK_translated_d3delta_dninjnks(self.b0s, self.cs, self.b, self.c, self.delta, N, out) @property def depsilon_dzs(self): r'''Helper method for calculating the composition derivatives of `epsilon`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \epsilon}{\partial x_i}\right)_{T, P, x_{i\ne j}} = c_i b^0 + 2c c_i + b_i c Returns ------- depsilon_dzs : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N out = [0.0]*N if self.scalar else zeros(N) return SRK_translated_depsilon_dzs(self.b0s, self.cs, self.b, self.c, N, out) @property def depsilon_dns(self): r'''Helper method for calculating the mole number derivatives of `epsilon`. Note this is independent of the phase. :math:`b^0` refers to the original `b` parameter not involving any translation. .. math:: \left(\frac{\partial \epsilon}{\partial n_i}\right)_{T, P, n_{i\ne j}} = -b^0(c - c_i) - c(b^0 - b_i^0) - 2c(c - c_i) Returns ------- depsilon_dns : list[float] Composition derivative of `epsilon` of each component, [m^6/mol^3] Notes ----- This derivative is checked numerically. ''' N = self.N return SRK_translated_depsilon_dns(self.b0s, self.cs, self.b, self.c, N, out=[0.0]*N if self.scalar else zeros(N)) @property def d2epsilon_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial x_i \partial x_j}\right)_{T, P, x_{k\ne i,j}} = b^0_i c_j + b^0_j c_i + 2c_i c_j Returns ------- d2epsilon_dzizjs : list[list[float]] Second composition derivative of `epsilon` of each component, [m^6/mol^2] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return SRK_translated_d2epsilon_dzizjs(self.b0s, self.cs, self.b, self.c, N, out=out) d3epsilon_dzizjzks = GCEOSMIX.d3epsilon_dzizjzks # Zeros @property def d2epsilon_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \epsilon}{\partial n_i n_j}\right)_{T, P, n_{k\ne i,j}} = b^0(2c - c_i - c_j) + c(2b^0 - b_i^0 - b_j^0) + 2c(2c - c_i - c_j) +(b^0 - b^0_i)(c - c_j) + (b^0 - b_j^0)(c - c_i) + 2(c - c_i)(c - c_j) Returns ------- d2epsilon_dninjs : list[list[float]] Second mole number derivative of `epsilon` of each component, [m^6/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[0.0]*N for _ in range(N)] if self.scalar else zeros((N, N)) return SRK_translated_d2epsilon_dninjs(self.b0s, self.cs, self.b, self.c, N, out) @property def d3epsilon_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `epsilon`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \epsilon}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = -2b^0(3c - c_i - c_j - c_k) - 2c(3b^0 - b^0_i - b^0_j - b^0_k) - 4c(3c - c_i - c_j - c_k) -(b^0 - b^0_i)(2c - c_j - c_k) -(b^0 - b^0_j)(2c - c_i - c_k) -(b^0 - b^0_k)(2c - c_i - c_j) - (c - c_i)(2b^0 - b^0_j - b^0_k) - (c - c_j)(2b^0 - b^0_i - b^0_k) - (c - c_k)(2b^0 - b^0_i - b^0_j) -2(c - c_i)(2c - c_j - c_k) -2(c - c_j)(2c - c_i - c_k) -2(c - c_k)(2c - c_i - c_j) Returns ------- d3epsilon_dninjnks : list[list[list[float]]] Third mole number derivative of `epsilon` of each component, [m^6/mol^5] Notes ----- This derivative is checked numerically. ''' N = self.N out = [[[0.0]*N for _ in range(N)] for _ in range(N)] if self.scalar else zeros((N, N, N)) return SRK_translated_d3epsilon_dninjnks(self.b0s, self.cs, self.b, self.c, self.epsilon, N, out) class SRKMIXTranslatedConsistent(Twu91_a_alpha, SRKMIXTranslated): r'''Class for solving the volume translated Le Guennec, Privat, and Jaubert revision of the SRK equation of state according to [1]_. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{V + c - b} - \frac{a\alpha(T)}{(V + c)(V + c + b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: \alpha_i = \left(\frac{T}{T_{c,i}}\right)^{c_{3} \left(c_{2} - 1\right)} e^{c_{1} \left(- \left(\frac{T}{T_{c,i}} \right)^{c_{2} c_{3}} + 1\right)} .. math:: b = \sum_i z_i b_i .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i =\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} If `cs` is not provided, they are estimated as: .. math:: c =\frac{R T_c}{P_c}(0.0172\omega - 0.0096) If `alpha_coeffs` is not provided, the parameters `L` and `M` are estimated from each of the acentric factors as follows: .. math:: L = 0.0947\omega^2 + 0.6871\omega + 0.1508 .. math:: M = 0.1615\omega^2 - 0.2349\omega + 0.8876 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] cs : list[float], optional Volume translation parameters, [m^3/mol] alpha_coeffs : list[list[float]] Coefficients for :obj:`thermo.eos_alpha_functions.Twu91_a_alpha`, [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = SRKMIXTranslatedConsistent(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]]) >>> eos.V_l, eos.V_g (3.591044498e-05, 0.0006020501621) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Le Guennec, Yohann, Romain Privat, and Jean-Noël Jaubert. "Development of the Translated-Consistent Tc-PR and Tc-RK Cubic Equations of State for a Safe and Accurate Prediction of Volumetric, Energetic and Saturation Properties of Pure Compounds in the Sub- and Super-Critical Domains." Fluid Phase Equilibria 429 (December 15, 2016): 301-12. https://doi.org/10.1016/j.fluid.2016.09.003. ''' eos_pure = SRKTranslatedConsistent mix_kwargs_to_pure = {'cs': 'c', 'alpha_coeffs': 'alpha_coeffs'} kwargs_linear = ('cs', 'alpha_coeffs') kwargs_keys = ('kijs', 'alpha_coeffs', 'cs') model_id = 10102 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, cs=None, alpha_coeffs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in range(N)] else: kijs = zeros((N, N)) self.kijs = kijs self.T = T self.P = P self.V = V c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: b0s = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*b0s[i] for i in cmps] else: b0s = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*b0s if cs is None: if scalar: cs = [R*Tcs[i]/Pcs[i]*(0.0172*min(max(omegas[i], -0.01), 1.46) + 0.0096) for i in range(N)] else: cs = R*Tcs/Pcs*(0.0172*npmin(npmax(omegas, -0.01), 1.46) + 0.0096) if alpha_coeffs is None: alpha_coeffs = [] for i in range(N): o = min(max(omegas[i], -0.01), 1.46) L = o*(0.0947*o + 0.6871) + 0.1508 M = o*(0.1615*o - 0.2349) + 0.8876 alpha_coeffs.append((L, M, 2.0)) self.kwargs = {'kijs': kijs, 'alpha_coeffs': alpha_coeffs, 'cs': cs} self.alpha_coeffs = alpha_coeffs self.cs = cs if scalar: b0, c = 0.0, 0.0 for i in range(N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] bs = [b0s[i] - cs[i] for i in range(N)] else: b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) bs = b0s - cs self.b0s = b0s self.bs = bs self.c = c self.b = b = b0 - c self.delta = c + c + b0 self.epsilon = c*(b0 + c) self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.cs = cs = other.cs self.alpha_coeffs = other.alpha_coeffs zs = self.zs self.b0s = b0s = other.b0s if self.scalar: b0, c = 0.0, 0.0 for i in range(self.N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] else: b0 = float((b0s*zs).sum()) c = float((cs*zs).sum()) self.c = c self.b = b0 - c self.delta = c + c + b0 self.epsilon = c*(b0 + c) class MSRKMIXTranslated(Soave_1979_a_alpha, SRKMIXTranslatedConsistent): r'''Class for solving the volume translated Soave (1980) alpha function, revision of the Soave-Redlich-Kwong equation of state for a pure compound according to [1]_. Uses two fitting parameters `N` and `M` to more accurately fit the vapor pressure of pure species. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{V + c - b} - \frac{a\alpha(T)}{(V + c)(V + c + b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: \alpha(T)_i = 1 + (1 - T_{r,i})(M + \frac{N}{T_{r,i}}) .. math:: b = \sum_i z_i b_i .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i =\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} This is an older correlation that offers lower accuracy on many properties which were sacrificed to obtain the vapor pressure accuracy. The alpha function of this EOS does not meet any of the consistency requriements for alpha functions. Coefficients can be found in [2]_, or estimated with the method in [3]_. The estimation method in [3]_ works as follows, using the acentric factor and true critical compressibility: .. math:: M = 0.4745 + 2.7349(\omega Z_c) + 6.0984(\omega Z_c)^2 .. math:: N = 0.0674 + 2.1031(\omega Z_c) + 3.9512(\omega Z_c)^2 An alternate estimation scheme is provided in [1]_, which provides analytical solutions to calculate the parameters `M` and `N` from two points on the vapor pressure curve, suggested as 10 mmHg and 1 atm. This is used as an estimation method here if the parameters are not provided, and the two vapor pressure points are obtained from the original SRK equation of state. Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] cs : list[float], optional Volume translation parameters, [m^3/mol] alpha_coeffs : list[list[float]] Coefficients for :obj:`thermo.eos_alpha_functions.Soave_1979_a_alpha`, [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = MSRKMIXTranslated(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]]) >>> eos.V_l, eos.V_g (3.9222990198e-05, 0.00060438075638) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Soave, G. "Rigorous and Simplified Procedures for Determining the Pure-Component Parameters in the Redlich—Kwong—Soave Equation of State." Chemical Engineering Science 35, no. 8 (January 1, 1980): 1725-30. https://doi.org/10.1016/0009-2509(80)85007-X. .. [2] Sandarusi, Jamal A., Arthur J. Kidnay, and Victor F. Yesavage. "Compilation of Parameters for a Polar Fluid Soave-Redlich-Kwong Equation of State." Industrial & Engineering Chemistry Process Design and Development 25, no. 4 (October 1, 1986): 957-63. https://doi.org/10.1021/i200035a020. .. [3] Valderrama, Jose O., Héctor De la Puente, and Ahmed A. Ibrahim. "Generalization of a Polar-Fluid Soave-Redlich-Kwong Equation of State." Fluid Phase Equilibria 93 (February 11, 1994): 377-83. https://doi.org/10.1016/0378-3812(94)87021-7. ''' kwargs_keys = ('kijs', 'alpha_coeffs', 'cs') eos_pure = MSRKTranslated model_id = 10103 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, cs=None, alpha_coeffs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: kijs = [[0.0]*N for i in cmps] self.kijs = kijs self.T = T self.P = P self.V = V c1R2, c2R = self.c1*R2, self.c2*R self.ais = [c1R2*Tcs[i]*Tcs[i]/Pcs[i] for i in cmps] b0s = [c2R*Tcs[i]/Pcs[i] for i in cmps] if cs is None: cs = [0.0]*N # TODO peneloux? Inherit? if alpha_coeffs is None: alpha_coeffs = [] for i in cmps: alpha_coeffs.append(MSRKTranslated.estimate_MN(Tcs[i], Pcs[i], omegas[i], cs[i])) self.kwargs = {'kijs': kijs, 'alpha_coeffs': alpha_coeffs, 'cs': cs} self.alpha_coeffs = alpha_coeffs self.cs = cs b0, c = 0.0, 0.0 for i in cmps: b0 += b0s[i]*zs[i] c += cs[i]*zs[i] self.b0s = b0s self.bs = [b0s[i] - cs[i] for i in cmps] self.c = c self.b = b = b0 - c self.delta = c + c + b0 self.epsilon = c*(b0 + c) self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() class PSRK(Mathias_Copeman_poly_a_alpha, PSRKMixingRules, SRKMIXTranslated): r'''Class for solving the Predictive Soave-Redlich-Kwong [1]_ equation of state for a mixture of any number of compounds. Solves the EOS on initialization. Two of `T`, `P`, and `V` are needed to solve the EOS. .. warning:: This class is not complete! Fugacities and their derivatives among others are not yet implemented. .. math:: P = \frac{RT}{V-b} - \frac{a\alpha(T)}{V(V+b)} .. math:: b = \sum_i z_i b_i .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i =\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] alpha_coeffs : list[list[float]] Coefficients for :obj:`thermo.eos_alpha_functions.Mathias_Copeman_poly_a_alpha`, [-] ge_model : :obj:`thermo.activity.GibbsExcess` object Excess Gibbs free energy model; to match the `PSRK` model, this is a :obj:`thermo.unifac.UNIFAC` object, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] cs : list[float], optional Volume translation parameters; always zero in the original implementation, [m^3/mol] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, equimolar CO2, n-hexane: >>> from thermo.unifac import UNIFAC, PSRKIP, PSRKSG >>> Tcs = [304.2, 507.4] >>> Pcs = [7.37646e6, 3.014419e6] >>> omegas = [0.2252, 0.2975] >>> zs = [0.5, 0.5] >>> Mathias_Copeman_coeffs = [[-1.7039, 0.2515, 0.8252, 1.0], [2.9173, -1.4411, 1.1061, 1.0]] >>> T = 313. >>> P = 1E6 >>> ge_model = UNIFAC.from_subgroups(T=T, xs=zs, chemgroups=[{117: 1}, {1:2, 2:4}], subgroups=PSRKSG, interaction_data=PSRKIP, version=0) >>> eos = PSRK(Tcs=Tcs, Pcs=Pcs, omegas=omegas, zs=zs, ge_model=ge_model, alpha_coeffs=Mathias_Copeman_coeffs, T=T, P=P) >>> eos PSRK(Tcs=[304.2, 507.4], Pcs=[7376460.0, 3014419.0], omegas=[0.2252, 0.2975], kijs=[[0.0, 0.0], [0.0, 0.0]], alpha_coeffs=[[-1.7039, 0.2515, 0.8252, 1.0], [2.9173, -1.4411, 1.1061, 1.0]], cs=[0.0, 0.0], ge_model=UNIFAC(T=313.0, xs=[0.5, 0.5], rs=[1.3, 4.4998000000000005], qs=[0.982, 3.856], Qs=[0.848, 0.54, 0.982], vs=[[0, 2], [0, 4], [1, 0]], psi_abc=([[0.0, 0.0, 919.8], [0.0, 0.0, 919.8], [-38.672, -38.672, 0.0]], [[0.0, 0.0, -3.9132], [0.0, 0.0, -3.9132], [0.8615, 0.8615, 0.0]], [[0.0, 0.0, 0.0046309], [0.0, 0.0, 0.0046309], [-0.0017906, -0.0017906, 0.0]]), version=0), zs=[0.5, 0.5], T=313.0, P=1000000.0) >>> eos.phase, eos.V_l, eos.V_g ('l/g', 0.000110889753959, 0.00197520225546) Notes ----- References ---------- .. [1] Holderbaum, T., and J. Gmehling. "PSRK: A Group Contribution Equation of State Based on UNIFAC.” Fluid Phase Equilibria 70, no. 2-3 (December 30, 1991): 251-65. https://doi.org/10.1016/0378-3812(91)85038-V. ''' eos_pure = SRKTranslated mix_kwargs_to_pure = {'cs': 'c', 'alpha_coeffs': 'alpha_coeffs'} kwargs_linear = ('cs', 'alpha_coeffs') kwargs_keys = ('kijs', 'alpha_coeffs', 'cs', 'ge_model') model_id = 10300 def __init__(self, Tcs, Pcs, omegas, zs, alpha_coeffs, ge_model, kijs=None, cs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: kijs = [[0.0]*N for i in cmps] if cs is None: cs = [0.0]*N self.kijs = kijs self.T = T self.P = P self.V = V c1R2, c2R = self.c1*R2, self.c2*R self.ais = [c1R2*Tcs[i]*Tcs[i]/Pcs[i] for i in cmps] b0s = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.kwargs = {'kijs': kijs, 'alpha_coeffs': alpha_coeffs, 'cs': cs, 'ge_model': ge_model} self.alpha_coeffs = alpha_coeffs self.cs = cs if zs != ge_model.xs or ge_model.T != T: if T is None: T = 298.15 # default value, need to check in a_alpha call ge_model = ge_model.to_T_xs(T, zs) self.ge_model = ge_model b0, c = 0.0, 0.0 for i in cmps: b0 += b0s[i]*zs[i] c += cs[i]*zs[i] self.b0s = b0s self.bs = [b0s[i] - cs[i] for i in cmps] self.c = c self.b = b = b0 - c self.delta = c + c + b0 self.epsilon = c*(b0 + c) self.solve(only_l=only_l, only_g=only_g) # if fugacities: # self.fugacities() def _fast_init_specific(self, other): zs = self.zs self.ge_model = other.ge_model.to_T_xs(self.T, zs) self.cs = cs = other.cs self.alpha_coeffs = other.alpha_coeffs self.b0s = b0s = other.b0s b0, c = 0.0, 0.0 for i in range(self.N): b0 += b0s[i]*zs[i] c += cs[i]*zs[i] self.c = c self.b = b0 - c self.delta = c + c + b0 self.epsilon = c*(b0 + c) class PR78MIX(PRMIX): r'''Class for solving the Peng-Robinson cubic equation of state for a mixture of any number of compounds according to the 1978 variant. Subclasses `PR`. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v-b}-\frac{a\alpha(T)}{v(v+b)+b(v-b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i=[1+\kappa_i(1-\sqrt{T_{r,i}})]^2 .. math:: \kappa_i = 0.37464+1.54226\omega_i-0.26992\omega_i^2 \text{ if } \omega_i \le 0.491 .. math:: \kappa_i = 0.379642 + 1.48503 \omega_i - 0.164423\omega_i^2 + 0.016666 \omega_i^3 \text{ if } \omega_i > 0.491 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa, with modified acentric factors to show the difference between :obj:`PRMIX` >>> eos = PR78MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.6, 0.7], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (3.2396438915e-05, 0.00050433802024) >>> eos.fugacities_l, eos.fugacities_g ([833048.45119, 6160.9088153], [460717.27767, 279598.90103]) Notes ----- This variant is recommended over the original. References ---------- .. [1] Peng, Ding-Yu, and Donald B. Robinson. "A New Two-Constant Equation of State." Industrial & Engineering Chemistry Fundamentals 15, no. 1 (February 1, 1976): 59-64. doi:10.1021/i160057a011. .. [2] Robinson, Donald B., Ding-Yu Peng, and Samuel Y-K Chung. "The Development of the Peng - Robinson Equation and Its Application to Phase Equilibrium in a System Containing Methanol." Fluid Phase Equilibria 24, no. 1 (January 1, 1985): 25-41. doi:10.1016/0378-3812(85)87035-7. ''' eos_pure = PR78 model_id = 10201 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in range(N)] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V c1R2_c2R, c2R = self.c1R2_c2R, self.c2R if scalar: self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] self.kappas = kappas = [omega*(-0.26992*omega + 1.54226) + 0.37464 for omega in omegas] for i, omega in enumerate(omegas): if omega > 0.491: kappas[i] = omega*(omega*(0.016666*omega - 0.164423) + 1.48503) + 0.379642 b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs self.kappas = kappas = omegas*(-0.26992*omegas + 1.54226) + 0.37464 b = float((bs*zs).sum()) high_omega_idxs = npwhere(omegas > 0.491) high_omegas = omegas[high_omega_idxs] kappas[high_omega_idxs] = high_omegas*(high_omegas*(0.016666*high_omegas - 0.164423) + 1.48503) + 0.379642 self.b = b self.delta = 2.*b self.epsilon = -b*b self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() class VDWMIX(EpsilonZeroMixingRules, GCEOSMIX, VDW): r'''Class for solving the Van der Waals [1]_ [2]_ cubic equation of state for a mixture of any number of compounds. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P=\frac{RT}{V-b}-\frac{a}{V^2} .. math:: a = \sum_i \sum_j z_i z_j {a}_{ij} .. math:: b = \sum_i z_i b_i .. math:: a_{ij} = (1-k_{ij})\sqrt{a_{i}a_{j}} .. math:: a_i=\frac{27}{64}\frac{(RT_{c,i})^2}{P_{c,i}} .. math:: b_i=\frac{RT_{c,i}}{8P_{c,i}} Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] omegas : float, optional Acentric factors of all compounds - Not used in equation of state!, [-] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = VDWMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (5.881369844883e-05, 0.00077708723758) >>> eos.fugacities_l, eos.fugacities_g ([854533.266920, 207126.8497276], [448470.736338, 397826.543999]) Notes ----- For P-V initializations, a numerical solver is used to find T. References ---------- .. [1] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985. .. [2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000. ''' eos_pure = VDW nonstate_constants_specific = tuple() kwargs_keys = ('kijs',) model_id = 10001 def __init__(self, Tcs, Pcs, zs, kijs=None, T=None, P=None, V=None, omegas=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) self.Tcs = Tcs self.Pcs = Pcs self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*self.N for i in range(N)] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V c1R2, c2R = self.c1R2, self.c2R if self.scalar: self.ais = [c1R2*Tc*Tc/Pc for Tc, Pc in zip(Tcs, Pcs)] self.bs = [c2R*Tc/Pc for Tc, Pc in zip(Tcs, Pcs)] self.b = sum(bi*zi for bi, zi in zip(self.bs, self.zs)) else: Tc_Pc_ratio = Tcs/Pcs self.ais = c1R2*Tcs*Tc_Pc_ratio self.bs = bs = c2R*Tc_Pc_ratio self.b = float((bs*zs).sum()) self.omegas = omegas self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): if self.scalar: self.b = sum(bi*zi for bi, zi in zip(self.bs, self.zs)) else: self.b = float((self.bs*self.zs).sum()) def a_alphas_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` for the VDW EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] ''' return self.ais def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the VDW EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a .. math:: \frac{d a\alpha}{dT} = 0 .. math:: \frac{d^2 a\alpha}{dT^2} = 0 Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] ''' if self.scalar: zero_array = [0.0]*self.N else: zero_array = zeros(self.N) return self.ais, zero_array, zero_array def fugacity_coefficients(self, Z): r'''Literature formula for calculating fugacity coefficients for each species in a mixture. Verified numerically. Called by `fugacities` on initialization, or by a solver routine which is performing a flash calculation. .. math:: \ln \hat \phi_i = \frac{b_i}{V-b} - \ln\left[Z\left(1 - \frac{b}{V}\right)\right] - \frac{2\sqrt{aa_i}}{RTV} Parameters ---------- Z : float Compressibility of the mixture for a desired phase, [-] Returns ------- log_phis : float Log fugacity coefficient for each species, [-] References ---------- .. [1] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985. ''' N = self.N return VDW_lnphis(self.T, self.P, Z, self.b, self.a_alpha, self.bs, self.a_alpha_roots, N, lnphis=[0.0]*N if self.scalar else zeros(N)) def dlnphis_dT(self, phase): r'''Formula for calculating the temperature derivaitve of log fugacity coefficients for each species in a mixture for the VDW equation of state. Verified numerically. .. math:: \left(\frac{\partial \ln \phi_i}{\partial T}\right)_{P, nj \ne i} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dT : float Temperature derivatives of log fugacity coefficient for each species, [1/K] Notes ----- This expression was derived using SymPy and optimized with the `cse` technique. ''' zs = self.zs if phase == 'g': Z = self.Z_g dZ_dT = self.dZ_dT_g else: Z = self.Z_l dZ_dT = self.dZ_dT_l N = self.N T, P, ais, bs, b = self.T, self.P, self.ais, self.bs, self.b T_inv = 1.0/T T_inv2 = T_inv*T_inv A = self.a_alpha*P*R2_inv*T_inv2 B = b*P*R_inv*T_inv x0 = self.a_alpha x4 = 1.0/Z x5 = 4.0*P*R2_inv*x4*T_inv2*T_inv x8 = 2*P*R2_inv*T_inv2*dZ_dT/Z**2 x9 = P*R2_inv*x4*T_inv2*self.da_alpha_dT/x0 x10 = 1.0/P x11 = R*x10*(T*dZ_dT + Z)/(-R*T*x10*Z + b)**2 x13 = b*T_inv*R_inv x14 = P*x13*x4 - 1.0 x15 = x4*(P*x13*(T_inv + x4*dZ_dT) - x14*dZ_dT)/x14 # Composition stuff d_lnphis_dTs = [] for i in range(N): x1 = (ais[i]*x0)**0.5 d_lhphi_dT = -bs[i]*x11 + x1*x5 + x1*x8 - x1*x9 + x15 d_lnphis_dTs.append(d_lhphi_dT) return d_lnphis_dTs def dlnphis_dP(self, phase): r'''Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a mixture for the VDW EOS. Verified numerically. .. math:: \left(\frac{\partial \ln \phi_i}{\partial P}\right)_{T, nj \ne i} Parameters ---------- phase : str One of 'l' or 'g', [-] Returns ------- dlnphis_dP : float Pressure derivatives of log fugacity coefficient for each species, [1/Pa] Notes ----- This expression was derived using SymPy and optimized with the `cse` technique. ''' zs = self.zs if phase == 'l': Z, dZ_dP = self.Z_l, self.dZ_dP_l else: Z, dZ_dP = self.Z_g, self.dZ_dP_g a_alpha = self.a_alpha N = self.N T, P, bs, b, ais = self.T, self.P, self.bs, self.b, self.ais T_inv = 1.0/T RT_inv = T_inv*R_inv x3 = T_inv*T_inv x5 = 1.0/Z x6 = 2.0*R2_inv*x3*x5 x8 = 2.0*P*R2_inv*x3*dZ_dP*x5*x5 x9 = 1./P x10 = Z*x9 x11 = R*T*x9*(-x10 + dZ_dP)/(-R*T*x10 + b)**2 x12 = P*x5 x13 = b*RT_inv x14 = x12*x13 - 1.0 x15 = -x5*(-x13*(x12*dZ_dP - 1.0) + x14*dZ_dP)/x14 d_lnphi_dPs = [] for i in range(N): x1 = (ais[i]*a_alpha)**0.5 d_lnphi_dP = -bs[i]*x11 - x1*x6 + x1*x8 + x15 d_lnphi_dPs.append(d_lnphi_dP) return d_lnphi_dPs @property def ddelta_dzs(self): r'''Helper method for calculating the composition derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial x_i}\right)_{T, P, x_{i\ne j}} = 0 Returns ------- ddelta_dzs : list[float] Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' if self.scalar: zero_array = [0.0]*self.N else: zero_array = zeros(self.N) return zero_array @property def ddelta_dns(self): r'''Helper method for calculating the mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial \delta}{\partial n_i}\right)_{T, P, n_{i\ne j}} = 0 Returns ------- ddelta_dns : list[float] Mole number derivative of `delta` of each component, [m^3/mol^2] Notes ----- This derivative is checked numerically. ''' if self.scalar: zero_array = [0.0]*self.N else: zero_array = zeros(self.N) return zero_array @property def d2delta_dzizjs(self): r'''Helper method for calculating the second composition derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial x_i\partial x_j}\right)_{T, P, x_{k\ne i,j}} = 0 Returns ------- d2delta_dzizjs : list[float] Second Composition derivative of `delta` of each component, [m^3/mol] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: zero_array = [[0.0]*N for i in range(N)] else: zero_array = zeros((N, N)) return zero_array @property def d2delta_dninjs(self): r'''Helper method for calculating the second mole number derivatives (hessian) of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^2 \delta}{\partial n_i \partial n_j}\right)_{T, P, n_{k\ne i,j}} = 0 Returns ------- d2delta_dninjs : list[list[float]] Second mole number derivative of `delta` of each component, [m^3/mol^3] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: zero_array = [[0.0]*N for i in range(N)] else: zero_array = zeros((N, N)) return zero_array @property def d3delta_dninjnks(self): r'''Helper method for calculating the third partial mole number derivatives of `delta`. Note this is independent of the phase. .. math:: \left(\frac{\partial^3 \delta}{\partial n_i \partial n_j \partial n_k } \right)_{T, P, n_{m \ne i,j,k}} = 0 Returns ------- d3delta_dninjnks : list[list[list[float]]] Third mole number derivative of `delta` of each component, [m^3/mol^4] Notes ----- This derivative is checked numerically. ''' N = self.N if self.scalar: zero_array = [[[0.0]*N for _ in range(N)] for _ in range(N)] else: zero_array = zeros((N, N, N)) return zero_array class PRSVMIX(PRMIX, PRSV): r'''Class for solving the Peng-Robinson-Stryjek-Vera equations of state for a mixture as given in [1]_. Subclasses :obj:`PRMIX` and :obj:`PRSV <thermo.eos.PRSV>`. Solves the EOS on initialization and calculates fugacities for all components in all phases. Inherits the method of calculating fugacity coefficients from :obj:`PRMIX`. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v-b}-\frac{a\alpha(T)}{v(v+b)+b(v-b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i=[1+\kappa_i(1-\sqrt{T_{r,i}})]^2 .. math:: \kappa_i = \kappa_{0,i} + \kappa_{1,i}(1 + T_{r,i}^{0.5})(0.7 - T_{r,i}) .. math:: \kappa_{0,i} = 0.378893 + 1.4897153\omega_i - 0.17131848\omega_i^2 + 0.0196554\omega_i^3 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] kappa1s : list[float], optional Fit parameter; available in [1]_ for over 90 compounds, SRKMIXTranslated[-] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- P-T initialization, two-phase, nitrogen and methane >>> eos = PRSVMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l ('l/g', 3.6235536165e-05, -6349.0055583, -49.1240502472) Notes ----- [1]_ recommends that `kappa1` be set to 0 for Tr > 0.7. This is not done by default; the class boolean `kappa1_Tr_limit` may be set to True and the problem re-solved with that specified if desired. `kappa1_Tr_limit` is not supported for P-V inputs. For P-V initializations, a numerical solver is used to find T. [2]_ and [3]_ are two more resources documenting the PRSV EOS. [4]_ lists `kappa` values for 69 additional compounds. See also :obj:`PRSV2MIX`. Note that tabulated `kappa` values should be used with the critical parameters used in their fits. Both [1]_ and [4]_ only considered vapor pressure in fitting the parameter. References ---------- .. [1] Stryjek, R., and J. H. Vera. "PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures." The Canadian Journal of Chemical Engineering 64, no. 2 (April 1, 1986): 323-33. doi:10.1002/cjce.5450640224. .. [2] Stryjek, R., and J. H. Vera. "PRSV - An Improved Peng-Robinson Equation of State with New Mixing Rules for Strongly Nonideal Mixtures." The Canadian Journal of Chemical Engineering 64, no. 2 (April 1, 1986): 334-40. doi:10.1002/cjce.5450640225. .. [3] Stryjek, R., and J. H. Vera. "Vapor-liquid Equilibrium of Hydrochloric Acid Solutions with the PRSV Equation of State." Fluid Phase Equilibria 25, no. 3 (January 1, 1986): 279-90. doi:10.1016/0378-3812(86)80004-8. .. [4] Proust, P., and J. H. Vera. "PRSV: The Stryjek-Vera Modification of the Peng-Robinson Equation of State. Parameters for Other Pure Compounds of Industrial Interest." The Canadian Journal of Chemical Engineering 67, no. 1 (February 1, 1989): 170-73. doi:10.1002/cjce.5450670125. ''' eos_pure = PRSV nonstate_constants_specific = ('kappa0s', 'kappa1s', 'kappas') mix_kwargs_to_pure = {'kappa1s': 'kappa1'} kwargs_linear = ('kappa1s',) kwargs_keys = ('kijs', 'kappa1s') model_id = 10205 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, kappa1s=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0]*self.N for i in range(N)] else: kijs = zeros((N, N)) self.kijs = kijs if kappa1s is None: if scalar: kappa1s = [0.0 for i in range(N)] else: kappa1s = zeros(N) self.kwargs = {'kijs': kijs, 'kappa1s': kappa1s} self.T = T self.P = P self.V = V c1R2_c2R, c2R = self.c1R2_c2R, self.c2R if scalar: self.kappa0s = [omega*(omega*(0.0196554*omega - 0.17131848) + 1.4897153) + 0.378893 for omega in omegas] self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.kappa0s = omegas*(omegas*(0.0196554*omegas - 0.17131848) + 1.4897153) + 0.378893 self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs b = float((bs*zs).sum()) self.b = b self.delta = 2.0*b self.epsilon = -b*b self.check_sufficient_inputs() if self.V and self.P: # Deal with T-solution here; does NOT support kappa1_Tr_limit. self.kappa1s = kappa1s solution = 'g' if (only_g and not only_l) else ('l' if only_l else None) self.T = self.solve_T(self.P, self.V, solution=solution) else: self.kappa1s = [(0 if (T/Tc > 0.7 and self.kappa1_Tr_limit) else kappa1) for kappa1, Tc in zip(kappa1s, Tcs)] self.kappas = [kappa0 + kappa1*(1 + (self.T/Tc)**0.5)*(0.7 - (self.T/Tc)) for kappa0, kappa1, Tc in zip(self.kappa0s, self.kappa1s, self.Tcs)] self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.kappa0s = other.kappa0s self.kappa1s = other.kappa1s self.kappas = other.kappas if self.scalar: b = 0.0 for bi, zi in zip(self.bs, self.zs): b += bi*zi else: b = float((self.bs*self.zs).sum()) self.b = b self.delta = 2.0*b self.epsilon = -b*b def a_alphas_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` for the PRSV EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a \left(\left(\kappa_{0} + \kappa_{1} \left(\sqrt{\frac{ T}{Tc}} + 1\right) \left(- \frac{T}{Tc} + \frac{7}{10}\right) \right) \left(- \sqrt{\frac{T}{Tc}} + 1\right) + 1\right)^{2} Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] ''' return PRSV_a_alphas_vectorized(T, self.Tcs, self.ais, self.kappa0s, self.kappa1s, a_alphas=[0.0]*self.N if self.scalar else zeros(self.N)) def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the PRSV EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha = a \left(\left(\kappa_{0} + \kappa_{1} \left(\sqrt{\frac{ T}{Tc}} + 1\right) \left(- \frac{T}{Tc} + \frac{7}{10}\right) \right) \left(- \sqrt{\frac{T}{Tc}} + 1\right) + 1\right)^{2} Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] ''' N = self.N if self.scalar: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = [0.0]*N, [0.0]*N, [0.0]*N else: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = zeros(N), zeros(N), zeros(N) return PRSV_a_alpha_and_derivatives_vectorized(T, self.Tcs, self.ais, self.kappa0s, self.kappa1s, a_alphas=a_alphas, da_alpha_dTs=da_alpha_dTs, d2a_alpha_dT2s=d2a_alpha_dT2s) class PRSV2MIX(PRMIX, PRSV2): r'''Class for solving the Peng-Robinson-Stryjek-Vera 2 equations of state for a Mixture as given in [1]_. Subclasses :obj:`PRMIX` and `PRSV2 <thermo.eos.PRSV2>`. Solves the EOS on initialization and calculates fugacities for all components in all phases. Inherits the method of calculating fugacity coefficients from :obj:`PRMIX`. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v-b}-\frac{a\alpha(T)}{v(v+b)+b(v-b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i=[1+\kappa_i(1-\sqrt{T_{r,i}})]^2 .. math:: \kappa_i = \kappa_{0,i} + [\kappa_{1,i} + \kappa_{2,i}(\kappa_{3,i} - T_{r,i})(1-T_{r,i}^{0.5})] (1 + T_{r,i}^{0.5})(0.7 - T_{r,i}) .. math:: \kappa_{0,i} = 0.378893 + 1.4897153\omega_i - 0.17131848\omega_i^2 + 0.0196554\omega_i^3 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] kappa1s : list[float], optional Fit parameter; available in [1]_ for over 90 compounds, [-] kappa2s : list[float], optional Fit parameter; available in [1]_ for over 90 compounds, [-] kappa3s : list[float], optional Fit parameter; available in [1]_ for over 90 compounds, [-] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = PRSV2MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (3.6235536165e-05, 0.00070024238654) >>> eos.fugacities_l, eos.fugacities_g ([794057.58318, 72851.22327], [436553.65618, 357878.11066]) Notes ----- For P-V initializations, a numerical solver is used to find T. Note that tabulated `kappa` values should be used with the critical parameters used in their fits. [1]_ considered only vapor pressure in fitting the parameter. References ---------- .. [1] Stryjek, R., and J. H. Vera. "PRSV2: A Cubic Equation of State for Accurate Vapor-liquid Equilibria Calculations." The Canadian Journal of Chemical Engineering 64, no. 5 (October 1, 1986): 820-26. doi:10.1002/cjce.5450640516. ''' eos_pure = PRSV2 nonstate_constants_specific = ('kappa1s', 'kappa2s', 'kappa3s', 'kappa0s', 'kappas') mix_kwargs_to_pure = {'kappa1s': 'kappa1', 'kappa2s': 'kappa2', 'kappa3s': 'kappa3'} kwargs_linear = ('kappa1s', 'kappa2s', 'kappa3s') kwargs_keys = ('kijs', 'kappa1s', 'kappa2s', 'kappa3s') model_id = 10206 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, kappa1s=None, kappa2s=None, kappa3s=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs if scalar: if kappa1s is None: kappa1s = [0.0]*N if kappa2s is None: kappa2s = [0.0]*N if kappa3s is None: kappa3s = [0.0]*N else: if kappa1s is None: kappa1s = zeros(N) if kappa2s is None: kappa2s = zeros(N) if kappa3s is None: kappa3s = zeros(N) self.kwargs = {'kijs': kijs, 'kappa1s': kappa1s, 'kappa2s': kappa2s, 'kappa3s': kappa3s} self.kappa1s = kappa1s self.kappa2s = kappa2s self.kappa3s = kappa3s self.T = T self.P = P self.V = V c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] self.kappa0s = kappa0s = [omega*(omega*(0.0196554*omega - 0.17131848) + 1.4897153) + 0.378893 for omega in omegas] b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs self.kappa0s = kappa0s = omegas*(omegas*(0.0196554*omegas - 0.17131848) + 1.4897153) + 0.378893 b = float((bs*zs).sum()) self.b = b self.delta = 2.0*b self.epsilon = -b*b if self.V and self.P: solution = 'g' if (only_g and not only_l) else ('l' if only_l else None) self.T = T = self.solve_T(self.P, self.V, solution=solution) if scalar: kappas = [0.0]*N for i in cmps: Tr = T/Tcs[i] sqrtTr = sqrt(Tr) kappas[i] = kappa0s[i] + ((kappa1s[i] + kappa2s[i]*(kappa3s[i] - Tr)*(1. - sqrtTr))*(1. + sqrtTr)*(0.7 - Tr)) else: Trs = T/Tcs sqrtTrs = npsqrt(Trs) kappas = kappa0s + ((kappa1s + kappa2s*(kappa3s - Trs)*(1. - sqrtTrs))*(1. + sqrtTrs)*(0.7 - Trs)) self.kappas = kappas self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.kappa0s = other.kappa0s self.kappa1s = other.kappa1s self.kappa2s = other.kappa2s self.kappa3s = other.kappa3s self.kappas = other.kappas if self.scalar: b = 0.0 for bi, zi in zip(self.bs, self.zs): b += bi*zi else: b = float((self.bs*self.zs).sum()) self.b = b self.delta = b + b self.epsilon = -b*b def a_alphas_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` for the PRSV2 EOS. This vectorized implementation is added for extra speed. Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] Examples -------- >>> eos = PRSV2MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.a_alphas_vectorized(300) [0.0860568595, 0.20174345803] ''' return PRSV2_a_alphas_vectorized(T, self.Tcs, self.ais, self.kappa0s, self.kappa1s, self.kappa2s, self.kappa3s, a_alphas=([0.0]*self.N if self.scalar else zeros(self.N))) def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the PRSV2 EOS. This vectorized implementation is added for extra speed. Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] ''' N = self.N if self.scalar: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = [0.0]*N, [0.0]*N, [0.0]*N else: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = zeros(N), zeros(N), zeros(N) return PRSV2_a_alpha_and_derivatives_vectorized(T, self.Tcs, self.ais, self.kappa0s, self.kappa1s, self.kappa2s, self.kappa3s, a_alphas=a_alphas, da_alpha_dTs=da_alpha_dTs, d2a_alpha_dT2s=d2a_alpha_dT2s) class TWUPRMIX(TwuPR95_a_alpha, PRMIX): r'''Class for solving the Twu [1]_ variant of the Peng-Robinson cubic equation of state for a mixture. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{v-b}-\frac{a\alpha(T)}{v(v+b)+b(v-b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}} .. math:: b_i=0.07780\frac{RT_{c,i}}{P_{c,i}} .. math:: \alpha_i = \alpha_i^{(0)} + \omega_i(\alpha_i^{(1)}-\alpha_i^{(0)}) .. math:: \alpha^{(\text{0 or 1})} = T_{r,i}^{N(M-1)}\exp[L(1-T_{r,i}^{NM})] For sub-critical conditions: L0, M0, N0 = 0.125283, 0.911807, 1.948150; L1, M1, N1 = 0.511614, 0.784054, 2.812520 For supercritical conditions: L0, M0, N0 = 0.401219, 4.963070, -0.2; L1, M1, N1 = 0.024955, 1.248089, -8. Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = TWUPRMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (3.624571041e-05, 0.0007004401318) >>> eos.fugacities_l, eos.fugacities_g ([792155.022163, 73305.88829], [436468.967764, 358049.2495573]) Notes ----- For P-V initializations, a numerical solver is used to find T. Claimed to be more accurate than the PR, PR78 and PRSV equations. References ---------- .. [1] Twu, Chorng H., John E. Coon, and John R. Cunningham. "A New Generalized Alpha Function for a Cubic Equation of State Part 1. Peng-Robinson Equation." Fluid Phase Equilibria 105, no. 1 (March 15, 1995): 49-59. doi:10.1016/0378-3812(94)02601-V. ''' eos_pure = TWUPR P_max_at_V = GCEOS.P_max_at_V solve_T = GCEOS.solve_T kwargs_keys = ('kijs', ) model_id = 10204 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs b = float((bs*zs).sum()) self.b = b self.delta = 2.*b self.epsilon = -b*b self.check_sufficient_inputs() self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): if self.scalar: b = 0.0 for bi, zi in zip(self.bs, self.zs): b += bi*zi else: b = float((self.bs*self.zs).sum()) self.b = b self.delta = 2.0*b self.epsilon = -b*b class TWUSRKMIX(TwuSRK95_a_alpha, SRKMIX): r'''Class for solving the Twu variant of the Soave-Redlich-Kwong cubic equation of state for a mixture. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{V-b} - \frac{a\alpha(T)}{V(V+b)} .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i =\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: \alpha_i = \alpha^{(0,i)} + \omega_i(\alpha^{(1,i)}-\alpha^{(0,i)}) .. math:: \alpha^{(\text{0 or 1, i})} = T_{r,i}^{N(M-1)}\exp[L(1-T_{r,i}^{NM})] For sub-critical conditions: L0, M0, N0 = 0.141599, 0.919422, 2.496441 L1, M1, N1 = 0.500315, 0.799457, 3.291790 For supercritical conditions: L0, M0, N0 = 0.441411, 6.500018, -0.20 L1, M1, N1 = 0.032580, 1.289098, -8.0 Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = TWUSRKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (4.1087927542e-05, 0.00071170732525) >>> eos.fugacities_l, eos.fugacities_g ([809692.830826, 74093.6388157], [441783.431489, 362470.3174107]) Notes ----- For P-V initializations, a numerical solver is used to find T. Claimed to be more accurate than the SRK equation. References ---------- .. [1] Twu, Chorng H., John E. Coon, and John R. Cunningham. "A New Generalized Alpha Function for a Cubic Equation of State Part 2. Redlich-Kwong Equation." Fluid Phase Equilibria 105, no. 1 (March 15, 1995): 61-69. doi:10.1016/0378-3812(94)02602-W. ''' # a_alpha_mro = -5 kwargs_keys = ('kijs', ) eos_pure = TWUSRK P_max_at_V = GCEOS.P_max_at_V solve_T = GCEOS.solve_T model_id = 10104 def __init__(self, Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in range(N)] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs b = float((bs*zs).sum()) self.delta = self.b = b self.check_sufficient_inputs() self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): b = 0.0 bs, zs = self.bs, self.zs if self.scalar: for i in range(self.N): b += bs[i]*zs[i] else: b = float((bs*zs).sum()) self.delta = self.b = b class APISRKMIX(SRKMIX, APISRK): r'''Class for solving the Refinery Soave-Redlich-Kwong cubic equation of state for a mixture of any number of compounds, as shown in the API Databook [1]_. Subclasses :obj:`APISRK <thermo.eos.APISRK>`. Solves the EOS on initialization and calculates fugacities for all components in all phases. Two of `T`, `P`, and `V` are needed to solve the EOS. .. math:: P = \frac{RT}{V-b} - \frac{a\alpha(T)}{V(V+b)} .. math:: a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij} .. math:: (a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}} .. math:: b = \sum_i z_i b_i .. math:: a_i =\left(\frac{R^2(T_{c,i})^{2}}{9(\sqrt[3]{2}-1)P_{c,i}} \right) =\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}} .. math:: b_i =\left( \frac{(\sqrt[3]{2}-1)}{3}\right)\frac{RT_{c,i}}{P_{c,i}} =\frac{0.08664\cdot R T_{c,i}}{P_{c,i}} .. math:: \alpha(T)_i = \left[1 + S_{1,i}\left(1-\sqrt{T_{r,i}}\right) + S_{2,i} \frac{1- \sqrt{T_{r,i}}}{\sqrt{T_{r,i}}}\right]^2 .. math:: S_{1,i} = 0.48508 + 1.55171\omega_i - 0.15613\omega_i^2 \text{ if S1 is not tabulated } Parameters ---------- Tcs : float Critical temperatures of all compounds, [K] Pcs : float Critical pressures of all compounds, [Pa] omegas : float Acentric factors of all compounds, [-] zs : float Overall mole fractions of all species, [-] kijs : list[list[float]], optional n*n size list of lists with binary interaction parameters for the Van der Waals mixing rules, default all 0 [-] T : float, optional Temperature, [K] P : float, optional Pressure, [Pa] V : float, optional Molar volume, [m^3/mol] S1s : float, optional Fit constant or estimated from acentric factor if not provided [-] S2s : float, optional Fit constant or 0 if not provided [-] fugacities : bool, optional Whether or not to calculate fugacity related values (phis, log phis, and fugacities); default True, [-] only_l : bool, optional When true, if there is a liquid and a vapor root, only the liquid root (and properties) will be set; default False, [-] only_g : bool, optional When true, if there is a liquid and a vapor root, only the vapor root (and properties) will be set; default False, [-] Notes ----- For P-V initializations, a numerical solver is used to find T. Examples -------- T-P initialization, nitrogen-methane at 115 K and 1 MPa: >>> eos = APISRKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]]) >>> eos.V_l, eos.V_g (4.101592310e-05, 0.00071046883030) >>> eos.fugacities_l, eos.fugacities_g ([817882.3033, 71620.4823812], [442158.29113, 361519.79877]) References ---------- .. [1] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005. ''' eos_pure = APISRK nonstate_constants_specific = ('S1s', 'S2s') mix_kwargs_to_pure = {'S1s': 'S1', 'S2s': 'S2'} kwargs_linear = ('S1s', 'S2s') kwargs_keys = ('kijs', 'S1s', 'S2s') model_id = 10105 def __init__(self, Tcs, Pcs, zs, omegas=None, kijs=None, T=None, P=None, V=None, S1s=None, S2s=None, fugacities=True, only_l=False, only_g=False): self.N = N = len(Tcs) cmps = range(N) self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.zs = zs self.scalar = scalar = type(zs) is list if kijs is None: if scalar: kijs = [[0.0]*N for i in cmps] else: kijs = zeros((N, N)) self.kijs = kijs self.kwargs = {'kijs': kijs} self.T = T self.P = P self.V = V self.check_sufficient_inputs() # Setup S1s and S2s if S1s is None and omegas is None: raise ValueError('Either acentric factor of S1 is required') if S1s is None: if scalar: self.S1s = [omega*(1.55171 - 0.15613*omega) + 0.48508 for omega in omegas] else: self.S1s = omegas*(1.55171 - 0.15613*omegas) + 0.48508 else: self.S1s = S1s if S2s is None: if scalar: S2s = [0.0]*N else: S2s = zeros(N) self.S2s = S2s self.kwargs = {'S1s': self.S1s, 'S2s': self.S2s} c2R, c1R2_c2R = self.c2R, self.c1R2_c2R if scalar: self.bs = bs = [c2R*Tcs[i]/Pcs[i] for i in cmps] self.ais = [c1R2_c2R*Tcs[i]*bs[i] for i in cmps] b = 0.0 for i in cmps: b += bs[i]*zs[i] else: self.bs = bs = c2R*Tcs/Pcs self.ais = c1R2_c2R*Tcs*bs b = float((bs*zs).sum()) self.b = self.delta = b self.solve(only_l=only_l, only_g=only_g) if fugacities: self.fugacities() def _fast_init_specific(self, other): self.S1s = other.S1s self.S2s = other.S2s if self.scalar: self.delta = self.b = sum([bi*zi for bi, zi in zip(self.bs, self.zs)]) else: self.delta = self.b = float((self.bs*self.zs).sum()) def a_alphas_vectorized(self, T): a_alphas = [0.0]*self.N if self.scalar else zeros(self.N) return APISRK_a_alphas_vectorized(T, self.Tcs, self.ais, self.S1s, self.S2s, a_alphas=a_alphas) def a_alpha_and_derivatives_vectorized(self, T): r'''Method to calculate the pure-component `a_alphas` and their first and second derivatives for the API SRK EOS. This vectorized implementation is added for extra speed. .. math:: a\alpha(T) = a\left[1 + S_1\left(1-\sqrt{T_r}\right) + S_2\frac{1 - \sqrt{T_r}}{\sqrt{T_r}}\right]^2 .. math:: \frac{d a\alpha}{dT} = a\frac{Tc}{T^{2}} \left(- S_{2} \left(\sqrt{ \frac{T}{Tc}} - 1\right) + \sqrt{\frac{T}{Tc}} \left(S_{1} \sqrt{ \frac{T}{Tc}} + S_{2}\right)\right) \left(S_{2} \left(\sqrt{\frac{ T}{Tc}} - 1\right) + \sqrt{\frac{T}{Tc}} \left(S_{1} \left(\sqrt{ \frac{T}{Tc}} - 1\right) - 1\right)\right) .. math:: \frac{d^2 a\alpha}{dT^2} = a\frac{1}{2 T^{3}} \left(S_{1}^{2} T \sqrt{\frac{T}{Tc}} - S_{1} S_{2} T \sqrt{\frac{T}{Tc}} + 3 S_{1} S_{2} Tc \sqrt{\frac{T}{Tc}} + S_{1} T \sqrt{\frac{T}{Tc}} - 3 S_{2}^{2} Tc \sqrt{\frac{T}{Tc}} + 4 S_{2}^{2} Tc + 3 S_{2} Tc \sqrt{\frac{T}{Tc}}\right) Parameters ---------- T : float Temperature, [K] Returns ------- a_alphas : list[float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa] da_alpha_dTs : list[float] Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K] d2a_alpha_dT2s : list[float] Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2] ''' N = self.N if self.scalar: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = [0.0]*N, [0.0]*N, [0.0]*N else: a_alphas, da_alpha_dTs, d2a_alpha_dT2s = zeros(N), zeros(N), zeros(N) return APISRK_a_alpha_and_derivatives_vectorized(T, self.Tcs, self.ais, self.S1s, self.S2s, a_alphas=a_alphas, da_alpha_dTs=da_alpha_dTs, d2a_alpha_dT2s=d2a_alpha_dT2s) def P_max_at_V(self, V): if self.N == 1 and self.S2s[0] == 0: self.ms = self.S1s P_max_at_V = SRK.P_max_at_V(self, V) del self.ms return P_max_at_V return GCEOSMIX.P_max_at_V(self, V) eos_mix_list = [PRMIX, SRKMIX, PR78MIX, VDWMIX, PRSVMIX, PRSV2MIX, TWUPRMIX, TWUSRKMIX, APISRKMIX, IGMIX, RKMIX, PRMIXTranslatedConsistent, PRMIXTranslatedPPJP, SRKMIXTranslatedConsistent, PRMIXTranslated, SRKMIXTranslated] '''List of all exported EOS classes. ''' eos_mix_no_coeffs_list = [PRMIX, SRKMIX, PR78MIX, VDWMIX, TWUPRMIX, TWUSRKMIX, IGMIX, RKMIX, PRMIXTranslatedConsistent, PRMIXTranslated, SRKMIXTranslated, PRMIXTranslatedPPJP, SRKMIXTranslatedConsistent] '''List of all exported EOS classes that do not require special parameters or can fill in their special parameters from other specified parameters. ''' eos_mix_dict = {c.__name__: c for c in eos_mix_list} '''dict : Dict of all cubic mixture equation of state classes, indexed by their class name. ''' eos_mix_full_path_dict = {c.__full_path__: c for c in eos_mix_list} '''dict : Dict of all cubic mixture equation of state classes, indexed by their module path and class name. ''' eos_mix_full_path_reverse_dict = {c: c.__full_path__ for c in eos_mix_list} '''dict : Dict of all cubic mixture equation of state classes, indexed by their module path and class name. '''
{"hexsha": "43859292910a325435a452907759586a392f2abf", "size": 422590, "ext": "py", "lang": "Python", "max_stars_repo_path": "thermo/eos_mix.py", "max_stars_repo_name": "RoryKurek/thermo", "max_stars_repo_head_hexsha": "985279467faa028234ab422a19b69385e5100149", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 380, "max_stars_repo_stars_event_min_datetime": "2016-07-04T09:45:20.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-20T18:09:45.000Z", "max_issues_repo_path": "thermo/eos_mix.py", "max_issues_repo_name": "RoryKurek/thermo", "max_issues_repo_head_hexsha": "985279467faa028234ab422a19b69385e5100149", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 104, "max_issues_repo_issues_event_min_datetime": "2016-07-10T20:47:12.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-22T20:43:39.000Z", "max_forks_repo_path": "thermo/eos_mix.py", "max_forks_repo_name": "RoryKurek/thermo", "max_forks_repo_head_hexsha": "985279467faa028234ab422a19b69385e5100149", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 96, "max_forks_repo_forks_event_min_datetime": "2016-07-05T20:54:05.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-23T03:06:02.000Z", "avg_line_length": 36.4962431989, "max_line_length": 1710, "alphanum_fraction": 0.5428287465, "include": true, "reason": "import numpy,from sympy", "num_tokens": 128725}
import gym from .GridInterface import * import numpy import os class GridTargetSearchAEnv(gym.Env, GridInterface): def __init__(self, render = False, view_camera_distance = 1.5, view_camera_angle = -80.0): gym.Env.__init__(self) GridInterface.__init__(self, render, view_camera_distance, view_camera_angle) self.grid_map = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0], [0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0], [0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] self.reset_interface(self.grid_map) obs = self.update_observation() self.action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2,), dtype=numpy.float32) self.observation_space = gym.spaces.Box(low=-1.0, high=1.0, shape=obs.shape, dtype=numpy.float32) def step(self, action): self.step_interface(action) reward = 0.0 done = False if self.steps >= 1000: reward = 0.0 done = True elif self.on_target(0, 0): reward = 1.0 done = True elif self.out_board(0): reward = -1.0 done = True return self.update_observation(), reward, done, None def reset(self): self.reset_interface(self.grid_map) return self.update_observation() def render(self): pass def close(self): pass class GridTargetSearchADiscreteEnv(gym.Env): def __init__(self, render = False, view_camera_distance = 1.5, view_camera_angle = -80.0): gym.Env.__init__(self) self.env = GridTargetSearchAEnv(render, view_camera_distance, view_camera_angle) self.action_space = gym.spaces.Discrete(16) self.observation_space = self.env.observation_space actions = [] actions.append([ 0.0, 0.0]) actions.append([ 0.0, 0.2]) actions.append([ 0.2, 0.0]) actions.append([ 0.0, -0.2]) actions.append([-0.2, 0.0]) actions.append([ 0.0, 0.5]) actions.append([ 0.5, 0.0]) actions.append([ 0.0, -0.5]) actions.append([-0.5, 0.0]) actions.append([ 0.0, 1.0]) actions.append([ 1.0, 0.0]) actions.append([ 1.0, 1.0]) actions.append([ 0.5, -0.5]) actions.append([-0.5, 0.5]) actions.append([-0.2, -0.2]) actions.append([-0.5, -0.5]) self.actions = numpy.array(actions) def step(self, action): return self.env.step(self.actions[action]) def reset(self): return self.env.reset() def render(self): pass def close(self): pass
{"hexsha": "d244988980f1e8553c80a1c7f6847eaf2fed747e", "size": 3579, "ext": "py", "lang": "Python", "max_stars_repo_path": "gym-aeris/gym_aeris/envs/grid_target_search_a_env.py", "max_stars_repo_name": "michalnand/gym-aeris", "max_stars_repo_head_hexsha": "e3b924ff767073bf3e42339b2763a736851664c5", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "gym-aeris/gym_aeris/envs/grid_target_search_a_env.py", "max_issues_repo_name": "michalnand/gym-aeris", "max_issues_repo_head_hexsha": "e3b924ff767073bf3e42339b2763a736851664c5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "gym-aeris/gym_aeris/envs/grid_target_search_a_env.py", "max_forks_repo_name": "michalnand/gym-aeris", "max_forks_repo_head_hexsha": "e3b924ff767073bf3e42339b2763a736851664c5", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.9553571429, "max_line_length": 106, "alphanum_fraction": 0.4775076837, "include": true, "reason": "import numpy", "num_tokens": 1496}
import copy import numpy as np from nn_lib import * def debug_net(): '''Debug network by calculating gradient and numerical gradient''' frst_layer = 60 hidden = [40, 20] out_layer = 10 # First without regularization network = NetworkObject(inpt = frst_layer, hidden = hidden, outpt = out_layer, lbda = 0) rel_diff = num_grad(network, frst_layer, 1e-4) print("Maximum relative difference in numerical gradient ", end = "") print("without regularization = {:.2e}".format(rel_diff)) # Now with regularization network = NetworkObject(inpt = frst_layer, hidden = hidden, outpt = out_layer, lbda = 0.1) rel_diff = num_grad(network, frst_layer, 1e-4) print("Maximum relative difference in numerical gradient ", end = "") print("with regularization = {:.2e}".format(rel_diff)) def num_grad(network, inpt_siz, eps): # Create random input nExamples = 100 lab = 2 input_arr = np.random.random((nExamples, inpt_siz)) # Calculate analytical gradient network.calc_gradient(input_arr, [lab]*nExamples, nExamples) analyt_grad = network.get_gradient() # Now calculate numerical gradient # Get the thetas and make a copy thetas = network.get_thetas() thetas_cpy = copy.deepcopy(thetas) # For each possible theta, calculate the gradient num_grad = [] for grad in analyt_grad: num_grad.append(grad * 0) # Go theta by theta adding eps and -eps and calculating cost for kk in range(len(num_grad)): nn, mm = np.shape(num_grad[kk]) for ii in range(nn): for jj in range(mm): # Plus thetas_cpy[kk][ii][jj] += eps network.set_thetas(thetas_cpy) jp = network.get_cost(input_arr, [lab]*nExamples) # Minus thetas_cpy[kk][ii][jj] -= 2 * eps network.set_thetas(thetas_cpy) jm = network.get_cost(input_arr, [lab]*nExamples) num_grad[kk][ii][jj] = (jp - jm) / (2 * eps) # Restore copy thetas_cpy[kk][ii][jj] = thetas[kk][ii][jj] rel_diff = None for kk in range(len(num_grad)): diff = np.amax(abs((analyt_grad[kk] - num_grad[kk])/analyt_grad[kk])) if rel_diff is None: rel_diff = diff else: rel_diff = max(diff, rel_diff) return rel_diff debug_net()
{"hexsha": "88b181dd77683e4c39f5a3268259e938dad56a2a", "size": 2448, "ext": "py", "lang": "Python", "max_stars_repo_path": "debug_network.py", "max_stars_repo_name": "AndresYague/neural_network_numbers", "max_stars_repo_head_hexsha": "049c6ece317127b96ea50be589c79e14c7f04e32", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "debug_network.py", "max_issues_repo_name": "AndresYague/neural_network_numbers", "max_issues_repo_head_hexsha": "049c6ece317127b96ea50be589c79e14c7f04e32", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "debug_network.py", "max_forks_repo_name": "AndresYague/neural_network_numbers", "max_forks_repo_head_hexsha": "049c6ece317127b96ea50be589c79e14c7f04e32", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.9873417722, "max_line_length": 77, "alphanum_fraction": 0.6102941176, "include": true, "reason": "import numpy", "num_tokens": 629}
[STATEMENT] lemma rel_mset_size: "rel_mset R M N \<Longrightarrow> size M = size N" [PROOF STATE] proof (prove) goal (1 subgoal): 1. rel_mset R M N \<Longrightarrow> size M = size N [PROOF STEP] unfolding multiset.rel_compp_Grp Grp_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((\<lambda>a b. b = image_mset fst a \<and> a \<in> {x. set_mset x \<subseteq> {(x, y). R x y}})\<inverse>\<inverse> OO (\<lambda>a b. b = image_mset snd a \<and> a \<in> {x. set_mset x \<subseteq> {(x, y). R x y}})) M N \<Longrightarrow> size M = size N [PROOF STEP] by auto
{"llama_tokens": 240, "file": null, "length": 2}
import os import shutil import numpy as np import pandas as pd import time from scipy.special import softmax import sys import tensorflow as tf from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau import h5py import argparse from load_data import * from model import * from config_cnn import * from utils import * # set gpu number os.environ["CUDA_VISIBLE_DEVICES"] = "0" parser = argparse.ArgumentParser() parser.add_argument('-model', '--model_type', help="teacher/student", default='teacher', type=str) parser.add_argument('-bs', '--batch_size', help="batch size used for training", default=64, type=int) parser.add_argument('-lr', '--learning_rate', help="learning rate for adam", default=1e-4, type=float) parser.add_argument('-temp', '--temperature', help="distillation temperature(>1)", default=2, type=float) parser.add_argument('-alpha', '--alpha', help="weight to cce loss with soft targets, 1-alpha to loss with hard targets", default=0.2, type=float) parser.add_argument('-comb', '--combination', help="combining predictions of models in ensemble (am/gm)", default='am', type=str) parser.add_argument('-e', '--num_epochs', help="number of epochs to run", default=50, type=int) parser.add_argument('-es', '--early_stop', default=7, type=int) parser.add_argument('-rd_lr', '--reduce_lr', default=5, type=int) parser.add_argument('-seed', '--rand_seed', default=0, type=int) args = parser.parse_args() np.random.seed(args.rand_seed) teacher_lstm = tf.keras.models.load_model('../lstm_scnn_feat/val_acc-0.6886_teacher_tr_acc-0.9730_bestEp-09_bs-64_lr-0.0001.h5') teacher_cnn = tf.keras.models.load_model('../schluter-cnn/teacher_val_acc-0.7920_tr_acc-0.9405_bestEp-05_bs-32_lr-0.0001_dr-0.2_fs-1.h5') if args.model_type=='teacher': student = Leglaive_RNN(timesteps=CNN_INPUT_SIZE) elif args.model_type=='student': student = RNN_small(timesteps=CNN_INPUT_SIZE) else: print('Invalid model type specified!') sys.exit() opt = Adam(lr=args.learning_rate) # Removing softmax layers teacher_lstm.pop() teacher_cnn.pop() student.pop() student_logits = student.layers[-1].output student_logits_T = Lambda(lambda x: x/args.temperature)(student_logits) probs_T = Softmax(axis=1)(student_logits_T) probs_1 = Softmax(axis=1)(student_logits) output = Concatenate()([probs_1, probs_T]) student = Model(inputs=student.input, outputs=output) student.compile(optimizer=opt, loss=kd_loss(args.alpha, args.temperature), metrics=[acc, categorical_crossentropy, kld_loss]) print('\nStudent Model:\n') print(student.summary()) X_tr, y_train = load_xy_data(None, MEL_JAMENDO_DIR, JAMENDO_LABEL_DIR, 'train') Y_tr = to_categorical(y_train, 2) X_val, y_val = load_xy_data(None, MEL_JAMENDO_DIR, JAMENDO_LABEL_DIR, 'valid') Y_val = to_categorical(y_val, 2) # Train Logits teacher_lstm_tr_logits = teacher_lstm.predict(X_tr, verbose=1) teacher_cnn_tr_logits = teacher_cnn.predict(np.expand_dims(np.swapaxes(X_tr, 1, 2), axis=3), verbose=1) teacher_lstm_tr_prob_T = softmax(teacher_lstm_tr_logits/args.temperature, axis=1) teacher_cnn_tr_prob_T = softmax(teacher_cnn_tr_logits/args.temperature, axis=1) # Val Logits teacher_lstm_val_logits = teacher_lstm.predict(X_val, verbose=1) teacher_cnn_val_logits = teacher_cnn.predict(np.expand_dims(np.swapaxes(X_val, 1, 2), axis=3), verbose=1) teacher_lstm_val_prob_T = softmax(teacher_lstm_val_logits/args.temperature, axis=1) teacher_cnn_val_prob_T = softmax(teacher_cnn_val_logits/args.temperature, axis=1) if args.combination=='am': Y_tr_soft = (teacher_lstm_tr_prob_T+teacher_cnn_tr_prob_T)/2 Y_val_soft = (teacher_lstm_val_prob_T+teacher_cnn_val_prob_T)/2 elif args.combination=='gm': GM = np.sqrt(teacher_lstm_tr_prob_T*teacher_cnn_tr_prob_T) GM /= GM.sum(axis=1)[:, np.newaxis] Y_tr_soft = GM GM = np.sqrt(teacher_lstm_val_prob_T*teacher_cnn_val_prob_T) GM /= GM.sum(axis=1)[:, np.newaxis] Y_val_soft = GM Y_tr = np.concatenate((Y_tr, Y_tr_soft), axis=1) Y_val = np.concatenate((Y_val, Y_val_soft), axis=1) print('\nLoading complete!\n') print("Train Data Shape", X_tr.shape, Y_tr.shape) print("Val Data Shape", X_val.shape, Y_val.shape) timestampTime = time.strftime("%H%M%S") timestampDate = time.strftime("%d%m%Y") timestampLaunch = timestampDate + '_' + timestampTime wts_dir = './weights_'+timestampLaunch+'/' if not os.path.exists(wts_dir): os.makedirs(wts_dir) score_string = 'val_acc-{val_acc:.4f}_kd_tr_acc-{acc:.4f}_bestEp-{epoch:02d}' model_save_name = wts_dir+score_string+'_bs-'+str(args.batch_size)+'_lr-'+str(args.learning_rate)+'_temp-'+str(args.temperature)+'_alpha-'+\ str(args.alpha)+'.h5' checkpoint = ModelCheckpoint(filepath=model_save_name, monitor='val_acc', verbose=1, save_weights_only=True, save_best_only=True, mode='auto') earlyStopping = EarlyStopping(monitor='val_acc', patience=args.early_stop, verbose=1, mode='auto') reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.8, patience=args.reduce_lr, verbose=1, min_lr=1e-8) history = student.fit(X_tr, Y_tr, batch_size=args.batch_size, epochs=args.num_epochs, shuffle=True, validation_data=(X_val, Y_val), callbacks=[checkpoint, earlyStopping, reduce_lr]) tr_loss = history.history['loss'] val_loss = history.history['val_loss'] tr_acc = history.history['acc'] val_acc = history.history['val_acc'] idx, best_val_acc = np.argmax(val_acc), np.max(val_acc) corr_tr_acc = tr_acc[idx] df_save = pd.DataFrame({'tr_loss':tr_loss, 'val_loss':val_loss, 'tr_acc':tr_acc, 'val_acc':val_acc}) best_model_name = 'val_acc-'+'{0:.4f}_kd'.format(best_val_acc)+'_tr_acc-'+'{0:.4f}'.format(corr_tr_acc)+'_bestEp-'+'{:02d}'.format(idx+1)+\ '_bs-'+str(args.batch_size)+'_lr-'+str(args.learning_rate)+'_temp-'+str(args.temperature)+'_alpha-'+ str(args.alpha)+'.h5' save_path = './results/'+args.model_type+'/'+args.combination+'/' if not os.path.exists(save_path): os.makedirs(save_path) scores = test(best_model_name, args.model_type, wts_dir, args) suffix = best_model_name[:-3]+'_acc-{0:.4f}'.format(scores[0])+'_pr-{0:.4f}'.format(scores[1])+'_re-{0:.4f}'.format(scores[2])+\ '_f1-{0:.4f}'.format(scores[3])+'_fp-{0:.4f}'.format(scores[4])+'_fn-{0:.4f}'.format(scores[5]) df_save.to_csv(open(save_path + suffix + '.csv', 'w')) if os.path.exists(wts_dir): shutil.rmtree(wts_dir) print("Finished!")
{"hexsha": "02402d7a8505a94dbe6f7dba7a3fe4069f6aa8bb", "size": 6459, "ext": "py", "lang": "Python", "max_stars_repo_path": "enkd_scnn_feat_student-lstm/main_kd.py", "max_stars_repo_name": "mvp18/KD-SVD", "max_stars_repo_head_hexsha": "35b208a2455256b721189dbb0580e22654479761", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "enkd_scnn_feat_student-lstm/main_kd.py", "max_issues_repo_name": "mvp18/KD-SVD", "max_issues_repo_head_hexsha": "35b208a2455256b721189dbb0580e22654479761", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "enkd_scnn_feat_student-lstm/main_kd.py", "max_forks_repo_name": "mvp18/KD-SVD", "max_forks_repo_head_hexsha": "35b208a2455256b721189dbb0580e22654479761", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2022-01-24T09:15:27.000Z", "max_forks_repo_forks_event_max_datetime": "2022-01-24T09:15:27.000Z", "avg_line_length": 42.7748344371, "max_line_length": 145, "alphanum_fraction": 0.750116117, "include": true, "reason": "import numpy,from scipy", "num_tokens": 1768}
from abc import abstractmethod, ABC from collections import deque import numpy as np import time import cv2 def timit(func): def wrapper(*args, **kwargs): tick = time.perf_counter() res = func(*args, **kwargs) tock = time.perf_counter() print(f"[runtime] --- {func.__name__}: {(tock-tick):.3f}(s)") return res return wrapper class VisualOdom(ABC): @abstractmethod def estimate_motion(self): pass @abstractmethod def track_motion(self): pass class MonoCamVisualOdom(VisualOdom): RANSAC_METHOD = cv2.RANSAC RANSAC_THRESHOLD = 0.75 RANSAC_CONF = 0.999 def __init__(self, intrinsic_mtx, nbr_features): self._K = intrinsic_mtx self._nbr_features = nbr_features # more features more stable odom self._kpts_buffer = deque(maxlen=2) self._desc_buffer = deque(maxlen=2) self._frames_buffer = deque(maxlen=2) self._camTFs = [np.eye(4)] # @timit def estimate_motion(self, img1Pts, img2Pts, K): E, mask = cv2.findEssentialMat( img1Pts, img2Pts, K, method=MonoCamVisualOdom.RANSAC_METHOD, prob=MonoCamVisualOdom.RANSAC_CONF, threshold=MonoCamVisualOdom.RANSAC_THRESHOLD ) ret, camR, camT, mask = cv2.recoverPose(E, img1Pts, img2Pts, K) camTF = np.eye(4) # (TF) -> world origin with respect to the camera center camTF[:-1, :-1] = camR.T camTF[:-1, -1:] = -camR.T @ camT self._camTFs.append(self._camTFs[-1] @ camTF) # smooth by the last 3 TFs @abstractmethod def get_features(self, frame:np.ndarray)-> tuple: pass @abstractmethod def match_features(self, desc1:list, desc2:list): pass @staticmethod def get_matches(matches:list, img1Kpts:list, img2Kpts:list): img1_pts = [] img2_pts = [] for match in matches: img1_pts.append(img1Kpts[match.queryIdx].pt) img2_pts.append(img2Kpts[match.trainIdx].pt) return np.array(img1_pts), np.array(img2_pts) @property def trajectory(self): return np.array(self._camTFs)[:, :3, 3] @property def cam_tf(self): return np.array(self._camTFs) @timit def track_motion(self, frame): if len(frame.shape) == 3: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) self._frames_buffer.append(frame) kpts, des = self.get_features(frame) self._kpts_buffer.append(kpts) self._desc_buffer.append(des) if len(self._frames_buffer) == self._frames_buffer.maxlen: matched_pts = self.match_features(*self._desc_buffer) img1_pts, img2_pts = MonoCamVisualOdom.get_matches(matched_pts, *self._kpts_buffer) self.estimate_motion(img1_pts, img2_pts, self._K) class SiftOdom(MonoCamVisualOdom): CONTRAST_THRESHOLD = 0.15 EDGE_THRESHOLD = 15 N_OCTAVE_LAYERS = 5 def __init__(self, *args, **kwargs): super(SiftOdom, self).__init__(*args, **kwargs) self._matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True) self._sift = cv2.SIFT_create( nfeatures=kwargs.get('nfeatures', self._nbr_features), contrastThreshold=kwargs.get('contrastThreshold', SiftOdom.CONTRAST_THRESHOLD), edgeThreshold=kwargs.get('edgeThreshold', SiftOdom.EDGE_THRESHOLD), nOctaveLayers=kwargs.get('nOctaveLayers', SiftOdom.N_OCTAVE_LAYERS) ) def get_features(self, frame:np.uint8): kpts, des = self._sift.detectAndCompute(frame, None) return kpts, des def match_features(self, desc1:list, desc2:list): matched_pts = self._matcher.match(desc1, desc2) sortedMatches = sorted(matched_pts, key=lambda x: x.distance)[:50] return sortedMatches class OrbOdom(MonoCamVisualOdom): EDGE_THRESHOLD = 13 SCORE_TYPE = cv2.ORB_FAST_SCORE def __init__(self, *args, **kwargs): super(OrbOdom, self).__init__(*args, **kwargs) self._matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) self._orb = cv2.ORB_create( nfeatures=kwargs.get('nfeatures', self._nbr_features), edgeThreshold=kwargs.get('edgeThreshold', OrbOdom.EDGE_THRESHOLD), scoreType=kwargs.get('scoreType', OrbOdom.SCORE_TYPE), ) def get_features(self, frame:np.uint8): kpts, des = self._orb.detectAndCompute(frame, None) return kpts, des def match_features(self, desc1:list, desc2:list): matched_pts = self._matcher.match(desc1, desc2) sortedMatches = sorted(matched_pts, key=lambda x: x.distance) return sortedMatches
{"hexsha": "f13f6f0ce9f379ce5f0e1645b4249746ec5c31be", "size": 4742, "ext": "py", "lang": "Python", "max_stars_repo_path": "odom.py", "max_stars_repo_name": "loaywael/VisualOdom", "max_stars_repo_head_hexsha": "c090a78d7166ce12e0b526df0219015949c3de79", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "odom.py", "max_issues_repo_name": "loaywael/VisualOdom", "max_issues_repo_head_hexsha": "c090a78d7166ce12e0b526df0219015949c3de79", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "odom.py", "max_forks_repo_name": "loaywael/VisualOdom", "max_forks_repo_head_hexsha": "c090a78d7166ce12e0b526df0219015949c3de79", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.6312056738, "max_line_length": 95, "alphanum_fraction": 0.6465626318, "include": true, "reason": "import numpy", "num_tokens": 1295}
import shutil import sys import subprocess import glob from tqdm import tqdm import numpy as np import os import argparse from PIL import Image import torch from torch import nn import torch.nn.functional as F import torchvision.models as models import transforms as TF import utils import torchvision C, H, W = 3, 112, 112 def extract_feats(params, model, load_img): global C, H, W model.eval() dir_fc = os.path.join(os.getcwd(), params['output_dir']) if not os.path.isdir(dir_fc): os.mkdir(dir_fc) video_list = os.listdir(params['video_path']) nn = 0 total_len = len(video_list) for video in video_list: print("\n-->: ", video) nn = nn + 1 dst = video if video == 'yz02dWv_shs': print(video, " is too large!") continue outfile = os.path.join(dir_fc, video + '.npy') if os.path.exists(outfile): print(video, " is already processed!") continue image_list = sorted(glob.glob(os.path.join(params['video_path'], dst, '*.jpg'))) # samples = np.round(np.linspace(0, len(image_list) - 1, params['n_frame_steps'])) params_frames = len(image_list) samples = np.round(np.linspace(0, len(image_list) - 1, params_frames)) image_list = [image_list[int(sample)] for sample in samples] images = torch.zeros((len(image_list)//1, C, 1, H, W)) i = 0 for iImg in range(len(image_list)): ii = i//1 img = load_img(image_list[iImg]) images[ii, :, i%1, :, :] = img i += 1 with torch.no_grad(): fc_feats = model(images.cuda()).squeeze() img_feats = fc_feats.cpu().numpy() # Save the inception features # outfile = os.path.join(dir_fc, video + '.npy') np.save(outfile, img_feats) # cleanup #shutil.rmtree(dst) # print(nn) print("Process: ", nn, " / ", total_len, " ------- video id: ", video, " ------- save shape: ", img_feats.shape) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--gpu", dest='gpu', type=str, default='1', help='Set CUDA_VISIBLE_DEVICES environment variable, optional') parser.add_argument("--output_dir", dest='output_dir', type=str, default='./data/feats/r2plus1d', help='directory to store features') parser.add_argument("--n_frame_steps", dest='n_frame_steps', type=int, default=80, help='how many frames to sampler per video') parser.add_argument("--video_path", dest='video_path', type=str, default='./data/frames/', help='path to video dataset') parser.add_argument("--model", dest="model", type=str, default='r2plus1d_18', help='the CNN model you want to use to extract_feats') args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu params = vars(args) if params['model'] == 'r2plus1d_18': model = models.video.r2plus1d_18(pretrained=True) model = nn.Sequential(*list(model.children())[:-1]) for param in model.parameters(): param.requires_grad = False T, C, H, W = 1, 3, 112, 112 load_img = utils.LoadTransformImage() else: print("doesn't support %s" % (params['model'])) model = nn.DataParallel(model) model = model.cuda() extract_feats(params, model, load_img)
{"hexsha": "fc58defc84fbda476a6c5db952d810b3b18017e4", "size": 3516, "ext": "py", "lang": "Python", "max_stars_repo_path": "feat_script/extract_visual_feat/extract_3D_feat.py", "max_stars_repo_name": "GeWu-Lab/MUSIC-AVQA_CVPR2022", "max_stars_repo_head_hexsha": "f704130f37a342b5ff861780282c75cc875221b2", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 12, "max_stars_repo_stars_event_min_datetime": "2022-03-24T04:01:14.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T15:10:11.000Z", "max_issues_repo_path": "feat_script/extract_visual_feat/extract_3D_feat.py", "max_issues_repo_name": "GeWu-Lab/MUSIC-AVQA", "max_issues_repo_head_hexsha": "f704130f37a342b5ff861780282c75cc875221b2", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "feat_script/extract_visual_feat/extract_3D_feat.py", "max_forks_repo_name": "GeWu-Lab/MUSIC-AVQA", "max_forks_repo_head_hexsha": "f704130f37a342b5ff861780282c75cc875221b2", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.1698113208, "max_line_length": 120, "alphanum_fraction": 0.598407281, "include": true, "reason": "import numpy", "num_tokens": 853}
[STATEMENT] lemma proj_same_not_active: assumes "n \<le> n'" and "enat (n'-1) < llength t" and "\<pi>\<^bsub>c\<^esub>(ltake n' t) = \<pi>\<^bsub>c\<^esub>(ltake n t)" shows "\<nexists>k. k\<ge>n \<and> k<n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<not> (\<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub>) [PROOF STEP] proof [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] assume "\<exists>k. k\<ge>n \<and> k<n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub>" [PROOF STATE] proof (state) this: \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> [PROOF STEP] obtain i where "i\<ge>n" and "i<n'" and "\<parallel>c\<parallel>\<^bsub>lnth t i\<^esub>" [PROOF STATE] proof (prove) using this: \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> goal (1 subgoal): 1. (\<And>i. \<lbrakk>n \<le> i; i < n'; \<parallel>c\<parallel>\<^bsub>lnth t i\<^esub>\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: n \<le> i i < n' \<parallel>c\<parallel>\<^bsub>lnth t i\<^esub> goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] moreover [PROOF STATE] proof (state) this: n \<le> i i < n' \<parallel>c\<parallel>\<^bsub>lnth t i\<^esub> goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] from \<open>enat (n'-1)<llength t\<close> and \<open>i<n'\<close> [PROOF STATE] proof (chain) picking this: enat (n' - 1) < llength t i < n' [PROOF STEP] have "i<llength t" [PROOF STATE] proof (prove) using this: enat (n' - 1) < llength t i < n' goal (1 subgoal): 1. enat i < llength t [PROOF STEP] by (metis diff_Suc_1 dual_order.strict_trans enat_ord_simps(2) lessE) [PROOF STATE] proof (state) this: enat i < llength t goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: n \<le> i i < n' \<parallel>c\<parallel>\<^bsub>lnth t i\<^esub> enat i < llength t [PROOF STEP] have "\<pi>\<^bsub>c\<^esub>(ltake (Suc i) t) = (\<pi>\<^bsub>c\<^esub>(ltake i t)) @\<^sub>l ((\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l []\<^sub>l)" [PROOF STATE] proof (prove) using this: n \<le> i i < n' \<parallel>c\<parallel>\<^bsub>lnth t i\<^esub> enat i < llength t goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t = \<pi>\<^bsub>c\<^esub>ltake (enat i) t @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t = \<pi>\<^bsub>c\<^esub>ltake (enat i) t @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] moreover [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t = \<pi>\<^bsub>c\<^esub>ltake (enat i) t @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] from \<open>i<n'\<close> [PROOF STATE] proof (chain) picking this: i < n' [PROOF STEP] have "Suc i \<le> n'" [PROOF STATE] proof (prove) using this: i < n' goal (1 subgoal): 1. Suc i \<le> n' [PROOF STEP] by simp [PROOF STATE] proof (state) this: Suc i \<le> n' goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] hence "lprefix(\<pi>\<^bsub>c\<^esub>(ltake (Suc i) t)) (\<pi>\<^bsub>c\<^esub>(ltake n' t))" [PROOF STATE] proof (prove) using this: Suc i \<le> n' goal (1 subgoal): 1. lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t) (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) [PROOF STEP] by simp [PROOF STATE] proof (state) this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t) (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] then [PROOF STATE] proof (chain) picking this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t) (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) [PROOF STEP] obtain "tl" where "\<pi>\<^bsub>c\<^esub>(ltake n' t) = (\<pi>\<^bsub>c\<^esub>(ltake (Suc i) t)) @\<^sub>l tl" [PROOF STATE] proof (prove) using this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t) (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) goal (1 subgoal): 1. (\<And>tl. \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t @\<^sub>l tl \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using lprefix_conv_lappend [PROOF STATE] proof (prove) using this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t) (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) lprefix ?xs ?ys = (\<exists>zs. ?ys = ?xs @\<^sub>l zs) goal (1 subgoal): 1. (\<And>tl. \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t @\<^sub>l tl \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t @\<^sub>l tl goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] moreover [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t @\<^sub>l tl goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] from \<open>n\<le>i\<close> [PROOF STATE] proof (chain) picking this: n \<le> i [PROOF STEP] have "lprefix(\<pi>\<^bsub>c\<^esub>(ltake n t)) (\<pi>\<^bsub>c\<^esub>(ltake i t))" [PROOF STATE] proof (prove) using this: n \<le> i goal (1 subgoal): 1. lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) [PROOF STEP] by simp [PROOF STATE] proof (state) this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] hence "lprefix(\<pi>\<^bsub>c\<^esub>(ltake n t)) (\<pi>\<^bsub>c\<^esub>(ltake i t))" [PROOF STATE] proof (prove) using this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) goal (1 subgoal): 1. lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) [PROOF STEP] by simp [PROOF STATE] proof (state) this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] then [PROOF STATE] proof (chain) picking this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) [PROOF STEP] obtain "hd" where "\<pi>\<^bsub>c\<^esub>(ltake i t) = (\<pi>\<^bsub>c\<^esub>(ltake n t)) @\<^sub>l hd" [PROOF STATE] proof (prove) using this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) goal (1 subgoal): 1. (\<And>hd. \<pi>\<^bsub>c\<^esub>ltake (enat i) t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using lprefix_conv_lappend [PROOF STATE] proof (prove) using this: lprefix (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) (\<pi>\<^bsub>c\<^esub>ltake (enat i) t) lprefix ?xs ?ys = (\<exists>zs. ?ys = ?xs @\<^sub>l zs) goal (1 subgoal): 1. (\<And>hd. \<pi>\<^bsub>c\<^esub>ltake (enat i) t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat i) t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t = \<pi>\<^bsub>c\<^esub>ltake (enat i) t @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t @\<^sub>l tl \<pi>\<^bsub>c\<^esub>ltake (enat i) t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd [PROOF STEP] have "\<pi>\<^bsub>c\<^esub>(ltake n' t) = (((\<pi>\<^bsub>c\<^esub>(ltake n t)) @\<^sub>l hd) @\<^sub>l ((\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l []\<^sub>l)) @\<^sub>l tl" [PROOF STATE] proof (prove) using this: \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t = \<pi>\<^bsub>c\<^esub>ltake (enat i) t @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat (Suc i)) t @\<^sub>l tl \<pi>\<^bsub>c\<^esub>ltake (enat i) t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l tl [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l tl goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] also [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l tl goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] have "\<dots> = ((\<pi>\<^bsub>c\<^esub>(ltake n t)) @\<^sub>l hd) @\<^sub>l ((\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l tl)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l tl = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) [PROOF STEP] using lappend_snocL1_conv_LCons2[of "(\<pi>\<^bsub>c\<^esub>(ltake n t)) @\<^sub>l hd" "\<sigma>\<^bsub>c\<^esub>(lnth t i)"] [PROOF STATE] proof (prove) using this: \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l ?ys = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l ?ys) goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l tl = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l tl = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] also [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l []\<^sub>l) @\<^sub>l tl = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] have "\<dots> = (\<pi>\<^bsub>c\<^esub>(ltake n t)) @\<^sub>l (hd @\<^sub>l ((\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l tl))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) [PROOF STEP] using lappend_assoc [PROOF STATE] proof (prove) using this: ?xs @\<^sub>l ?ys @\<^sub>l ?zs = ?xs @\<^sub>l (?ys @\<^sub>l ?zs) goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] also [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] have "\<pi>\<^bsub>c\<^esub>(ltake n' t) = (\<pi>\<^bsub>c\<^esub>(ltake n' t)) @\<^sub>l []\<^sub>l" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) [PROOF STEP] have "(\<pi>\<^bsub>c\<^esub>(ltake n' t)) @\<^sub>l []\<^sub>l = (\<pi>\<^bsub>c\<^esub>(ltake n t)) @\<^sub>l (hd @\<^sub>l ((\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l tl))" [PROOF STATE] proof (prove) using this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) goal (1 subgoal): 1. \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) [PROOF STEP] . [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] moreover [PROOF STATE] proof (state) this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] from assms(3) [PROOF STATE] proof (chain) picking this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t [PROOF STEP] have "llength (\<pi>\<^bsub>c\<^esub>(ltake n' t)) = llength (\<pi>\<^bsub>c\<^esub>(ltake n t))" [PROOF STATE] proof (prove) using this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t goal (1 subgoal): 1. llength (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) = llength (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) [PROOF STEP] by simp [PROOF STATE] proof (state) this: llength (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) = llength (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) llength (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) = llength (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) [PROOF STEP] have "lfinite (\<pi>\<^bsub>c\<^esub>(ltake n' t)) \<longrightarrow> []\<^sub>l = hd @\<^sub>l ((\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l tl)" [PROOF STATE] proof (prove) using this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) llength (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) = llength (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) goal (1 subgoal): 1. lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) \<longrightarrow> []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) [PROOF STEP] using assms(3) lappend_eq_lappend_conv[of "\<pi>\<^bsub>c\<^esub>(ltake n' t)" "\<pi>\<^bsub>c\<^esub>(ltake n t)" "[]\<^sub>l"] [PROOF STATE] proof (prove) using this: \<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l (hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl)) llength (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) = llength (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) \<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t llength (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) = llength (\<pi>\<^bsub>c\<^esub>ltake (enat n) t) \<Longrightarrow> (\<pi>\<^bsub>c\<^esub>ltake (enat n') t @\<^sub>l []\<^sub>l = \<pi>\<^bsub>c\<^esub>ltake (enat n) t @\<^sub>l ?vs) = (\<pi>\<^bsub>c\<^esub>ltake (enat n') t = \<pi>\<^bsub>c\<^esub>ltake (enat n) t \<and> (lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) \<longrightarrow> []\<^sub>l = ?vs)) goal (1 subgoal): 1. lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) \<longrightarrow> []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) [PROOF STEP] by simp [PROOF STATE] proof (state) this: lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) \<longrightarrow> []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] moreover [PROOF STATE] proof (state) this: lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) \<longrightarrow> []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] have "lfinite (\<pi>\<^bsub>c\<^esub>(ltake n' t))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) [PROOF STEP] by simp [PROOF STATE] proof (state) this: lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) \<longrightarrow> []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) [PROOF STEP] have "[]\<^sub>l = hd @\<^sub>l ((\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l tl)" [PROOF STATE] proof (prove) using this: lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) \<longrightarrow> []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) lfinite (\<pi>\<^bsub>c\<^esub>ltake (enat n') t) goal (1 subgoal): 1. []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) [PROOF STEP] by simp [PROOF STATE] proof (state) this: []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] hence "(\<sigma>\<^bsub>c\<^esub>(lnth t i)) #\<^sub>l tl = []\<^sub>l" [PROOF STATE] proof (prove) using this: []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) goal (1 subgoal): 1. \<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl = []\<^sub>l [PROOF STEP] using LNil_eq_lappend_iff [PROOF STATE] proof (prove) using this: []\<^sub>l = hd @\<^sub>l (\<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl) ([]\<^sub>l = ?xs @\<^sub>l ?ys) = (?xs = []\<^sub>l \<and> ?ys = []\<^sub>l) goal (1 subgoal): 1. \<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl = []\<^sub>l [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl = []\<^sub>l goal (1 subgoal): 1. \<exists>k\<ge>n. k < n' \<and> \<parallel>c\<parallel>\<^bsub>lnth t k\<^esub> \<Longrightarrow> False [PROOF STEP] thus False [PROOF STATE] proof (prove) using this: \<sigma>\<^bsub>c\<^esub>lnth t i #\<^sub>l tl = []\<^sub>l goal (1 subgoal): 1. False [PROOF STEP] by simp [PROOF STATE] proof (state) this: False goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 10274, "file": "DynamicArchitectures_Configuration_Traces", "length": 69}
# Aiyagari (1994) in Continuous Time #### By [SeHyoun Ahn](http://www.princeton.edu/~sehyouna/) and [Benjamin Moll](http://www.princeton.edu/~moll/) The material in this notebook is based on [Achdou et al. (2015) "Heterogeneous Agent Models in Continuous Time"](http://www.princeton.edu/~moll/HACT.pdf) and follows closely the material in the paper's [online Appendix](http://www.princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf). Additional codes (mainly in MATLAB) can be found [here](http://www.princeton.edu/~moll/HACTproject.htm). The code and its performance should be compared to [QuantEcon's discrete-time version of the Aiyagari model](http://quant-econ.net/py/aiyagari.html). The structure of the code in the present notebook is purposely kept as close as possible to that of the discrete-time code. The continuous-time code is considerably faster. We begin by importing some packages ```python %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy import sparse from scipy.sparse.linalg import spsolve ``` ## Aiyagari Economy The economy can be represented by the following system of equations which we aim to solve numerically: $$ \begin{align*} \rho v_1(a) &= \max_c \ u(c) + v_1'(a)(wz_1 + ra - c) + \lambda_1(v_2(a) - v_1(a))\\ \rho v_2(a) &= \max_c \ u(c) + v_2'(a)(wz_2 + ra - c) + \lambda_2(v_1(a) - v_2(a))\\ 0 &= - \frac{d}{da}[s_1(a)g_1(a)] - \lambda_1 g_1(a) + \lambda_2 g_2(a)\\ 0 &= - \frac{d}{da}[s_2(a)g_2(a)] - \lambda_2 g_2(a) + \lambda_1 g_1(a)\\ 1 &= \int_{\underline{a}}^\infty g_1(a)da + \int_{\underline{a}}^\infty g_2(a)da\\ K &= \int_{\underline{a}}^\infty a g_1(a)da + \int_{\underline{a}}^\infty a g_2(a)da\\ r &= \alpha K^{\alpha-1} - \delta, \quad w=(1-\alpha)K^\alpha \end{align*} $$ where $z_1$ &lt; $z_2$ and $s_j(a)=wz_j + ra -c_j(a)$ and $c_j(a) = (u')^{-1}(v_j(a))$ are optimal savings and consumption. Finally, there is a state constraint $a\geq \underline{a}$. The first order condition $u'(c_j(\underline{a}))=v'_j(\underline{a})$ still holds at the borrowing constraint. However, in order to respect the constraint we need $s_j(\underline{a}) = z_j + ra - c_j(\underline{a}) \geq 0$. Combining this with the FOC, the state constraint motivates a boundary condition $$ \begin{align} v_j'(\underline{a}) \geq u'(z_j + r \underline{a}), \quad j=1,2 \end{align} $$ We use a finite difference method, an in particular an "implicit upwind scheme." The details are explained in the paper's [online Appendix](http://www.princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf). We here provide a brief summary. We approximate the functions $(v_1,v_2,g_1,g_2)$ at $I$ discrete points in the space dimension, $a_i,i=1,...,I$. We use equispaced grids, denote by $\Delta a$ the distance between grid points, and use the short-hand notation $v_{i,j} \equiv v_j(a_i)$ and so on. The derivative $v_{i,j}'=v_j'(a_i)$ is approximated with either a forward or a backward difference approximation $$ \begin{align*} v_j'(a_i) \approx \frac{v_{i+1,j} - v_{i,j}}{\Delta a} \equiv v_{i,j,F}' \\ v_j'(a_i) \approx \frac{v_{i-1,j} - v_{i,j}}{\Delta a} \equiv v_{i,j,B}' \end{align*} $$ An upwind scheme means that we approximate the derivative $v_j'(a_i)$ with a forward difference approximation whenever the drift of the state variable is positive and the backward difference approximation whenever it is negative. An implicit scheme is a particular way of iterating on the value function. In a nutshell, the discretized HJB equation can be written as $$\rho v = u + \mathbf{A} v$$ where $\mathbf{A}$ is $N \times N$ transition matrix with $N = 2 \times I$ and where $I$ is the number of wealth grid points. The matrix $\mathbf{A}$ depends on $v$, i.e. this is a nonlinear problem and we therefore need to iterate (this is where the implicit scheme comes in). The matrix $\mathbf{A}$ has the interpretation of a Poisson transition matrix (or "intensity matrix") on the discretized state space $(a_i,z_j)$. Similarly, one can show that the discretized Kolmogorov Forward equation is $$0 = \mathbf{A}^T g$$ which is an eigenvalue problem. That is, the discretized stationary distribution $g$ is the eigenvector corresponding to a zero eigenvalue of the transpose of the Poisson transition matrix $\mathbf{A}$. The transpose comes from the fact that the differential operator in the KF equation is the "adjoint" of the operator in the HJB equation. And an "adjoint" is the infinite-dimensional analogue of matrix transpose. The matrix $\mathbf{A}$ is found from the discretized HJB equation. Skipping a number of steps it can be written as $$ \begin{align*} &\frac{v^{n+1}_{i,j} - v^{n}_{i,j}}{\Delta} + \rho v_{i,j}^{n+1} = u(c_{i,j}^n) + v_{i-1,j}^{n+1}x_{i,j} + v^{n+1}_{i,j} y_{i,j} + v_{i+1,j}^{n+1} z_{i,j} + v_{i,-j}^{n+1}\lambda_j \quad \mbox{where}\\ &x_{i,j} = -\frac{(s^n_{i,j,B})^-}{\Delta a},\\ &y_{i,j} = - \frac{(s^n_{i,j,F})^+}{\Delta a} + \frac{ (s^n_{i,j,B})^-}{\Delta a} - \lambda_j,\\ &z_{i,j} = \frac{(s^n_{i,j,F})^+}{\Delta a} \end{align*} $$ where $s^n_{i,j,F}$ and $s^n_{i,j,B}$ are the discretized optimal household savings at grid points $(a_i,z_j)$ using forward and backward approximations, and where for any number $x$, the notation $x^+$ means "the positive part of $x$", i.e. $x^+ = \max\{x,0\}$ and analogously $x^{-} = \min\{x,0\}$. This part is what makes it an upwind scheme. This is a system of $2 \times I$ linear equations which can be written in matrix notation as: \begin{equation}\frac{1}{\Delta}(v^{n+1} - v^n) + \rho v^{n+1} = u^n + \mathbf{A}^n v^{n+1} \end{equation} where $$\mathbf{A}^n = \left[\begin{matrix}y_{1,1} & z_{1,1} & 0 & \cdots & 0 & \lambda_1 & 0 & 0 & \cdots & 0 \\ x_{2,1} & y_{2,1} & z_{2,1} & 0 & \cdots & 0 & \lambda_1 & 0 & 0 & \cdots \\ 0 & x_{3,1} & y_{3,1} & z_{3,1} & 0 & \cdots & 0 & \lambda_1 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & x_{I,1} & y_{I,1} & 0 & 0 & 0 & 0 & \lambda_1\\ \lambda_2 & 0 & 0 & 0 & 0 & y_{1,2} & z_{1,2} & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & x_{2,2} & y_{2,2} & z_{2,2} & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 & 0 & 0 & x_{3,2} & y_{3,2} & z_{3,2} & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & 0 & \lambda_2 & 0 & \cdots & 0 & x_{I,2} & y_{I,2} \end{matrix}\right], \quad u^n = \left[\begin{matrix} u(c_{1,1}^n)\\ \vdots \\ \vdots \\ u(c_{I,1}^n)\\ u(c_{1,2}^n) \\ \vdots \\ \vdots \\ u(c_{I,2}^n)\end{matrix}\right]$$ This system can in turn be written as $$ \begin{align*}\mathbf{B}^n v^{n+1} = b^n, \quad \quad \mathbf{B}^n = \left(\frac{1}{\Delta} + \rho\right)\mathbf{I} - \mathbf{A}^n, \quad b^n = u^n + \frac{1}{\Delta}v^n \end{align*} $$ This system of linear equations can be solved very efficiently using sparse matrix routines. In Python this is implemented with the function "spsolve()." #### Summary of Algorithm First consider the algorithm for solving the HJB equations. Guess $v^0_{i,j},i=1,...,I,j=1,2$ and for $n=0,1,2,...$ follow 1. Compute $(v^n_{i,j})'$ using the current guess of the value function and the upwind scheme (forward difference when drift is positive, backward difference when drift is negative) 2. Compute $c^n$ from $c_{i,j}^n = (u')^{-1}[(v_{i,j}^n)']$ 3. Find $v^{n+1}$ by solving the system of linear equations involving the matrix $\mathbf{A}$ described above (implicit scheme) 4. If $v^{n+1}$ is close enough to $v^n$: stop. Otherwise, go to step 1. After solving the HJB equations, solving the Kolmogorov Forward equation: simply solve the eigenvalue problem $0=\mathbf{A}^T g$ described above. That is, once the HJB equation is solved, we basically get the Kolmogorov Forward equation "for free." #### Overview of Code Given this overview of the algorithm, we now briefly describe the code. As in the discrete-time version, we define a "household" class. Household objects contain all the data relevant to solving a household's decision problem. The household class contain: * economic parameters (e.g., w, r) * utility paramters (e.g., discount factor $\rho$) * asset and skill level represented on a grid The household's decision problem is solved by invoking the function solve_bellman() which solves the HJB equation given the relevant parameters saving the value-function as v. We also include the stationary wealth distribution of households in the household object. This is a natural thing to do since this stationary distribution is computed using the household's decision rule. Hence, after computing the decision problem of households, the stationary distribution can be found by invoking compute_stationary_distribution() The definition of the household class is given below. ```python class Household(object): def __init__(self, dep=0.05, ###ADDED DEPRECIATION r=0.03, # interest rate w=1, # wages rho=0.04, # discount factor a_min=1e-10, # minimum asset amount pi=[[-0.33, 0.33], [0.33, -0.33]], # poisson Jumps z_vals=[1.0, 2.0], # exogenous income states a_max=40, a_size=1000, # number of asset grid points delta=1000.0): # Initialize values, and set up grids over a and z self.r, self.w, self.rho, self.dep = r, w, rho, dep self.a_min, self.a_max, self.a_size = a_min, a_max, a_size self.da = (self.a_max-self.a_min)/(self.a_size-1) self.k = 10 self.pi = np.asarray(pi) self.z_vals = np.asarray(z_vals) self.z_size = len(z_vals) self.a_vals = np.linspace(self.a_min, self.a_max, self.a_size) self.n = self.a_size * self.z_size self.delta = delta ###### ADDED TO MATCH LABOR SUPPLY IN .m self.z_ave = (self.z_vals[0]*self.pi[0, 1] + self.z_vals[1]*self.pi[1, 0]) / \ (self.pi[0, 1] + self.pi[1, 0]) # Initial Guess of Value Function self.v = np.log(np.tile(self.a_vals,(self.z_size,1))*self.r +self.w*np.tile(self.z_vals,(self.a_size,1)).transpose())/self.rho # Build skill_transition, the matrix summarizing transitions due to the Poisson income shocks # This is analogous to the Q matrix in the discrete time version of the QuantEcon Aiyagari model self.z_transition = sparse.kron(self.pi,sparse.eye(self.a_size), format="csr") # Preallocation self.v_old = np.zeros((self.z_size,self.a_size)) self.g = np.zeros((self.z_size,self.a_size)) self.dv = np.zeros((self.z_size,self.a_size-1)) self.cf = np.zeros((self.z_size,self.a_size-1)) self.c0 = np.zeros((self.z_size,self.a_size)) self.ssf = np.zeros((self.z_size,self.a_size)) self.ssb = np.zeros((self.z_size,self.a_size)) self.is_forward = np.zeros((self.z_size,self.a_size),'bool') self.is_backward = np.zeros((self.z_size,self.a_size),'bool') self.diag_helper = np.zeros((self.z_size,self.a_size)) self.A = self.z_transition.copy() self.B = self.z_transition.copy() self.AT = self.z_transition.copy() def set_prices(self, r, w): """ Resets prices Calling the method will resolves the Bellman Equation. Parameters: ----------------- r : Interest rate w : wage """ self.r, self.w = r, w self.solve_bellman() def reinitialize_v(self): """ Reinitializes the value function if the value function became NaN """ self.v = np.log(np.tile(self.a_vals,(self.z_size,1))*self.r +self.w*np.tile(self.z_vals,(self.a_size,1)).transpose())/self.rho def solve_bellman(self,maxiter=100,crit=1e-6): """ This function solves the decision problem with the given parameters Parameters: ----------------- maxiter : maximum number of iteration before haulting value function iteration crit : convergence metric, stops if value function does not change more than crit """ dist=100.0 for i in range(maxiter): # compute saving and consumption implied by current guess for value function, using upwind method self.dv = (self.v[:,1:]-self.v[:,:-1])/self.da self.cf = 1.0/self.dv self.c0 = np.tile(self.a_vals,(self.z_size,1))*self.r \ +self.w*np.tile(self.z_vals,(self.a_size,1)).transpose() # computes savings with forward forward difference and backward difference self.ssf[:,:-1] = self.c0[:,:-1]-self.cf self.ssb[:,1:] = self.c0[:,1:]-self.cf # Note that the boundary conditions are handled implicitly as ssf will be zero at a_max and ssb at a_min self.is_forward = self.ssf>0 self.is_backward = self.ssb<0 # Update consumption based on forward or backward difference based on direction of drift self.c0[:,:-1] += (self.cf-self.c0[:,:-1])*self.is_forward[:,:-1] self.c0[:,1:] += (self.cf-self.c0[:,1:])*self.is_backward[:,1:] ###### # UNCOMMENT FOR DEBUGGING #plt.plot(self.a_vals, self.c0.transpose()) #plt.show() self.c0 = np.log(self.c0) # Build the matrix A that summarizes the evolution of the process for (a,z) # This is a Poisson transition matrix (aka intensity matrix) with rows adding up to zero self.A = self.z_transition.copy() self.diag_helper = (-self.ssf*self.is_forward/self.da \ + self.ssb*self.is_backward/self.da).reshape(self.n) self.A += sparse.spdiags(self.diag_helper,0,self.n,self.n) self.diag_helper = (-self.ssb*self.is_backward/self.da).reshape(self.n) self.A += sparse.spdiags(self.diag_helper[1:],-1,self.n,self.n) self.diag_helper = (self.ssf*self.is_forward/self.da).reshape(self.n) self.A += sparse.spdiags(np.hstack((0,self.diag_helper)),1,self.n,self.n) # Solve the system of linear equations corresponding to implicit finite difference scheme self.B = sparse.eye(self.n)*(1/self.delta + self.rho) - self.A self.b = self.c0.reshape(self.n,1) + self.v.reshape(self.n,1)/self.delta self.v_old = self.v.copy() self.v = spsolve(self.B,self.b).reshape(self.z_size,self.a_size) # Compute convergence metric and stop if it satisfies the convergence criterion dist = np.amax(np.absolute(self.v_old-self.v).reshape(self.n)) if dist < crit: break def compute_stationary_distribution(self): """ Solves for the stationary distribution given household decision rules Output: Capital level from the stationary distribution """ self.AT = self.A.transpose().tocsr() # The discretized Kolmogorov Forward equation AT*g=0 is an eigenvalue problem # AT is singular because one of the equation is the distribution adding # up to 1. Here we solve the eigenvalue problem by setting g(1,1)=0.1 # and the equation is solved relative to that value. # Alternatively, one could use a routine for solving eigenvalue problems. b = np.zeros((self.n,1)) b[0] = 0.1 self.AT.data[1:self.AT.indptr[1]] = 0 self.AT.data[0] = 1.0 self.AT.indices[0] = 0 self.AT.eliminate_zeros() self.g = spsolve(self.AT,b).reshape(self.z_size,self.a_size) # Since g was solved taking one of g(1,1) as given, g needs to be # renormalized to add up to 1 self.g = self.g/np.sum(self.g) return np.sum(self.g*(np.tile(self.a_vals,(self.z_size,1)))) ``` For example, if interest rate is 0.05 and wage is 1, we can initialize a household, solve it decision problem, and find the stationary distribution by running ```python lam = 0.11 PI = [[-lam, lam], [lam, -lam]] am=Household(rho=0.05, r=0.02,w=1, pi=PI) am.solve_bellman() am.compute_stationary_distribution() ``` 0.69274641340853271 Once, a household object is created, the object can be reused to solve a different problem by changing parameters. For example, if the interest rate were to change to 0.03 and wage to 0.9, the new problem can be solved by setting parameters directly by ```python am.r=0.02 am.w=0.9 ``` and running ```python am.solve_bellman() am.compute_stationary_distribution() ``` 0.62323720534758664 Alternately, a helper function can be created to automate this process. For example, set_prices(r,w) function resets parameters, and solves the decision problem again. For example, you can run the following to the same effect. ```python am.set_prices(r=0.03,w=0.9) am.compute_stationary_distribution() ``` 1.129833308836365 Given the household class, solving for the steady state becomes really simple. To find the equilibrium, we solve for the capital level that is consistent with household's decisions. Before solving for the actual steady state, we can visualize the capital demand and capital supply. ```python A = 0.1 ##### NOT NECESSARY #N = 0.05 alpha = 0.33 def r_to_w(am, r): return A*(1 - alpha) * \ (alpha*A / (am.dep + r))**(alpha / (1 - alpha)) def rd(am, K): return A*alpha*(am.z_ave / K)**(1 - alpha) - am.dep def prices_to_capital_stock(am, r): """ Map prices to the induced level of capital stock. Parameters: ---------- am : Household An instance of the Household class r : float The interest rate """ w = r_to_w(am, r) # Set new prices and solve the Bellman equation am.set_prices(r, w) # Compute the stationary distribution and capital return am.compute_stationary_distribution() ``` We make a grid of interest rate points, and plot the resulting capital. ```python num_points = 20 r_vals = np.linspace(0.02, 0.048, num_points) # Compute supply of capital k_vals = np.empty(num_points) for i, r in enumerate(r_vals): k_vals[i] = prices_to_capital_stock(am,r) # Plot supply and demand of capital fig, ax = plt.subplots(figsize=(11, 8)) ax.plot(k_vals, r_vals, lw=2, alpha=0.6, label='supply of capital') ax.plot(k_vals, rd(am, k_vals), lw=2, alpha=0.6, label='demand for capital') ax.grid() ax.set_xlabel('capital') ax.set_ylabel('interest rate') ax.legend(loc='upper right') plt.show() ``` Finally, the equilibrium interest rate can be found by using the bisection method, and we can see the equilibrium distribution of assets. ```python # Set parameters for bisection method crit = 1e-6 r_min = 0.02 r_max = 0.05 r = 0.03 # Bisection loop for i in range(100): am.set_prices(r,r_to_w(am, r)) r_new = rd(am, am.compute_stationary_distribution()) if np.absolute(r_new-r)<crit: break elif r_new > r: r_min = r r = (r_max+r_min)/2. else: r_max = r r = (r_max+r_min)/2. # Plot stationary distribution at the equilibrium fig, ax = plt.subplots(figsize=(11, 8)) n=50 # Determine the max asset level to show in the plot ax.plot(am.a_vals[0:n], am.g[0,0:n], lw=2, alpha=0.6, label='low income') ax.plot(am.a_vals[0:n], am.g[1,0:n], lw=2, alpha=0.6, label='high income') ax.grid() ax.set_xlabel('asset position') ax.set_ylabel('distribution') ax.legend(loc='upper right') plt.show() ``` ```python am.r ``` 0.04605979919433595
{"hexsha": "8cf60ff625fbf1aa0b4fc7f89866c4977734787f", "size": 94602, "ext": "ipynb", "lang": "Jupyter Notebook", "max_stars_repo_path": "aiyagari_continuous_time.ipynb", "max_stars_repo_name": "a-parida12/QuantEcon.notebooks", "max_stars_repo_head_hexsha": "b8794ae7d869a0cbc585b56e2c71cefcd2d9cdc6", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 3266, "max_stars_repo_stars_event_min_datetime": "2017-08-06T16:51:46.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-30T07:34:24.000Z", "max_issues_repo_path": "quanteconomics/aiyagari_continuous_time.ipynb", "max_issues_repo_name": "nuhaltinsoy/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials", "max_issues_repo_head_hexsha": "6017441f2d476f9c6c568dd886da43c6c0fd89bd", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 150, "max_issues_repo_issues_event_min_datetime": "2017-08-28T14:59:36.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-11T23:21:35.000Z", "max_forks_repo_path": "quanteconomics/aiyagari_continuous_time.ipynb", "max_forks_repo_name": "nuhaltinsoy/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials", "max_forks_repo_head_hexsha": "6017441f2d476f9c6c568dd886da43c6c0fd89bd", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 1449, "max_forks_repo_forks_event_min_datetime": "2017-08-06T17:40:59.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-31T12:03:24.000Z", "avg_line_length": 155.5953947368, "max_line_length": 34860, "alphanum_fraction": 0.840468489, "converted": true, "num_tokens": 5797}
import jax import jax.numpy as np @jax.jit def interp_dim(x_new, x, y): return jax.vmap(np.interp, in_axes=(0, 0, 0))(x_new, x, y) def searchsorted(bin_locations, inputs, eps=1e-6): # add noise to prevent zeros # bin_locations = bin_locations[..., -1] + eps bin_locations = bin_locations + eps # find bin locations (parallel bisection search) # sum dim print("Bins:", bin_locations.shape) print("Inputs:", inputs[..., None].shape) input_bins = np.sum(inputs[..., None] >= bin_locations, axis=-1) return input_bins
{"hexsha": "5f9ac71d77b422d0c231819f83fadc6fd9ded747", "size": 561, "ext": "py", "lang": "Python", "max_stars_repo_path": "rbig_jax/utils.py", "max_stars_repo_name": "jejjohnson/rbig_jax", "max_stars_repo_head_hexsha": "112e064d5b62631aa03b7563c9eb9f115ab23eb0", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "rbig_jax/utils.py", "max_issues_repo_name": "jejjohnson/rbig_jax", "max_issues_repo_head_hexsha": "112e064d5b62631aa03b7563c9eb9f115ab23eb0", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "rbig_jax/utils.py", "max_forks_repo_name": "jejjohnson/rbig_jax", "max_forks_repo_head_hexsha": "112e064d5b62631aa03b7563c9eb9f115ab23eb0", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.3913043478, "max_line_length": 68, "alphanum_fraction": 0.6577540107, "include": true, "reason": "import jax", "num_tokens": 160}
#** function cost_eens(eqp,ks) cp_tbl=cap_prob_table(eqp)#make capacity probability table eens_all=[]#Create eens array eens=0.0 for i=1:length(cp_tbl[:,1])#loop through rows of cpt ratio_curt=cp_tbl[i,1]/eqp.mva#find PU curtailment ratio diff=wind_module.wind_profs[eqp.wnd].pu.-ratio_curt#find closest PU of wind power series to PU curtail ratio #i_min=argmin(sqrt.((diff[:]).^2))diff[5240] i_min=argmin(abs.((diff[:]))) #i_min=argmin(diff[:]) if ratio_curt>=1#check if curt ratio is at or above full power and set ce=curtailed energy to 0 ce=wind_module.wind_profs[eqp.wnd].ce[1] elseif ratio_curt<=0#check if curt ratio is at or below zero power and set ce to max ce=wind_module.wind_profs[eqp.wnd].ce[length(wind_module.wind_profs[eqp.wnd].ce)] #interpolation is not needed it is already accurate to several decimal points #=elseif i_min < length(diff) && diff[i_min]<0#if curt ratio is a mid point interpolate ce ce=interpolate(ratio_curt,eqp.wnd.pu[i_min],eqp.wnd.pu[i_min+1],eqp.wnd.ce[i_min],eqp.wnd.ce[i_min+1]) elseif i_min > 1 && diff[i_min]>0 ce=interpolate(ratio_curt,eqp.wnd.pu[i_min-1],eqp.wnd.pu[i_min],eqp.wnd.ce[i_min-1],eqp.wnd.ce[i_min])=# else#if exact match occurs ce=wind_module.wind_profs[eqp.wnd].ce[i_min] end push!(eens_all, ce*eqp.mva*cp_tbl[i,2])#multiply PU curtailed energy with max power and availability, then store end eens=sum(eens_all)*npv_years()*ks.E_op#sum all eens and multiply by cost factors return eens end #The calculation of equipment level capacity probability table ** #** function cap_prob_table(eqp) #Calculate Availability of eqiupment A_eqp=1.0/(1.0+eqp.relia.fr*(eqp.relia.mttr*30.0*24.0/8760.0)) #Create combinatorial matrix of 0s and 1s clms=trunc(Int,eqp.num) rows=trunc(Int, 2.0^clms) empty_tbl=blank_table(rows,clms) #Create blank power and availability tables PWR_tbl=zeros(Float32,rows,1) AVL_tbl=ones(Float32,rows,1) #Set powers and availabilities by looping through the CPT for k=1:clms for j=1:rows #if 1 the equipment is functional and the power is added to total #the availability is multiplied if trunc(Int,empty_tbl[j,k])==1 AVL_tbl[j]=AVL_tbl[j]*A_eqp PWR_tbl[j]=min(eqp.mva,PWR_tbl[j]+eqp.elec.mva) #if 0 the equipment is broken and no power is transmitted else AVL_tbl[j]=AVL_tbl[j]*(1-A_eqp) end end end #all unique power levels are extracted tbl_c1=unique(PWR_tbl) tbl_c2=zeros(Float32,length(tbl_c1),1) for k=1:length(tbl_c1) for j=1:length(AVL_tbl) #Availabilities are summed for common power levels if PWR_tbl[j]==tbl_c1[k] tbl_c2[k]=tbl_c2[k]+AVL_tbl[j] end end end #Checks if probability sums to 1 else error is thrown if sum(tbl_c2) > 1.0001 || sum(tbl_c2) < 0.9999 println("sum is: "*string(sum(tbl_c2))) #error("probability does not sum to 1") elseif maximum(tbl_c1) > eqp.mva && minimum(tbl_c1) > 1 #error("power is not correct") else return [tbl_c1 tbl_c2] end end #creates a blank capacity probability table ** #** function blank_table(rows,clms) XFM_CBL=trunc.(Int8,zeros(rows,clms)) #=create all combinations ie transpose( 11101000 11010100 10110010 ) =# round=1 k=1 multi=1 while round<=clms while k<rows while k<=(multi*2^(clms-round)) XFM_CBL[k,round]=1 k=k+1 end multi=multi+2 k=k+2^(clms-round) end round=round+1 k=1 multi=1 end return XFM_CBL end #linearly interpolates 2 points of graph ** #** function interpolate(true_x,min_x,max_x,min_y,max_y) slope=(max_y-min_y)/(max_x-min_x) b=min_y-slope*min_x true_y=slope*true_x+b return true_y end
{"hexsha": "0af769a885101963c50058e1c61956cc4ae7599b", "size": 4053, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/economics/eens/functions.jl", "max_stars_repo_name": "sdwhardy/cordoba.jl", "max_stars_repo_head_hexsha": "49de8a6a5862c6ee9a70f241a498e0a48ef41eed", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/economics/eens/functions.jl", "max_issues_repo_name": "sdwhardy/cordoba.jl", "max_issues_repo_head_hexsha": "49de8a6a5862c6ee9a70f241a498e0a48ef41eed", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/economics/eens/functions.jl", "max_forks_repo_name": "sdwhardy/cordoba.jl", "max_forks_repo_head_hexsha": "49de8a6a5862c6ee9a70f241a498e0a48ef41eed", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.0588235294, "max_line_length": 120, "alphanum_fraction": 0.6469282013, "num_tokens": 1264}
""" pyart.aux_io.d3r_gcpex_nc ========================= Routines for reading GCPEX D3R files. .. autosummary:: :toctree: generated/ read_d3r_gcpex_nc _ncvar_to_dict """ import datetime import numpy as np import netCDF4 from ..config import FileMetadata from ..io.common import make_time_unit_str, _test_arguments from ..core.radar import Radar D3R_FIELD_NAMES = { # corrected reflectivity, horizontal 'Reflectivity': 'reflectivity', # corrected reflectivity, vertical 'DBZV': 'reflectivity', # differential reflectivity 'DifferentialReflectivity': 'differential_reflectivity', 'CrossPolCorrelation': 'cross_correlation_ratio', 'ClutterPowerH': 'clutter_power_h', 'ClutterPowerV': 'clutter_power_v', 'DifferentialPhase': 'differential_phase', 'KDP': 'specific_differential_phase', 'NormalizedCoherentPower': 'normalized_coherent_power', 'Signal+Clutter_toNoise_H': 'signal_to_noise_ratio', 'Velocity': 'velocity', 'SpectralWidth': 'spectrum_width', 'SignalPower_H': 'signal_power_h', } def read_d3r_gcpex_nc(filename, field_names=None, additional_metadata=None, file_field_names=False, exclude_fields=None, **kwargs): """ Read a D3R GCPEX netCDF file. Parameters ---------- filename : str Name of the ODIM_H5 file to read. field_names : dict, optional Dictionary mapping ODIM_H5 field names to radar field names. If a data type found in the file does not appear in this dictionary or has a value of None it will not be placed in the radar.fields dictionary. A value of None, the default, will use the mapping defined in the Py-ART configuration file. additional_metadata : dict of dicts, optional Dictionary of dictionaries to retrieve metadata from during this read. This metadata is not used during any successive file reads unless explicitly included. A value of None, the default, will not introduct any addition metadata and the file specific or default metadata as specified by the Py-ART configuration file will be used. file_field_names : bool, optional True to use the MDV data type names for the field names. If this case the field_names parameter is ignored. The field dictionary will likely only have a 'data' key, unless the fields are defined in `additional_metadata`. exclude_fields : list or None, optional List of fields to exclude from the radar object. This is applied after the `file_field_names` and `field_names` parameters. Returns ------- radar : Radar Radar object containing data from ODIM_H5 file. """ # TODO before moving to pyart.io # * unit test # * add default field mapping, etc to default config # * auto-detect file type with pyart.io.read function # * instrument parameters # * add additional checks for HOW attributes # * support for other objects (SCAN, XSEC) # test for non empty kwargs _test_arguments(kwargs) # create metadata retrieval object if field_names is None: field_names = D3R_FIELD_NAMES filemetadata = FileMetadata('cfradial', field_names, additional_metadata, file_field_names, exclude_fields) # read the data ncobj = netCDF4.Dataset(filename) ncvars = ncobj.variables # One sweep per file nsweeps = 1 # latitude, longitude and altitude latitude = filemetadata('latitude') longitude = filemetadata('longitude') altitude = filemetadata('altitude') latitude['data'] = np.array([ncobj.Latitude], dtype='float64') longitude['data'] = np.array([ncobj.Longitude], dtype='float64') altitude['data'] = np.array([295.], dtype='float64') # metadata metadata = filemetadata('metadata') metadata['source'] = "Colorado State EE - chandrasekar" metadata['original_container'] = 'D3R_gcpex_nc' metadata['nc_conventions'] = ncobj.NetCDFRevision metadata['version'] = ncobj.NetCDFRevision metadata['source'] = "Chandra" metadata['system'] = ncobj.RadarName metadata['software'] = ncobj.NetCDFRevision metadata['sw_version'] = ncobj.NetCDFRevision # sweep_start_ray_index, sweep_end_ray_index sweep_start_ray_index = filemetadata('sweep_start_ray_index') sweep_end_ray_index = filemetadata('sweep_end_ray_index') rays_per_sweep = np.shape(ncvars['Azimuth'][:]) ssri = np.cumsum(np.append([0], rays_per_sweep[:-1])).astype('int32') seri = np.cumsum(rays_per_sweep).astype('int32') - 1 sweep_start_ray_index['data'] = ssri sweep_end_ray_index['data'] = seri # sweep_number sweep_number = filemetadata('sweep_number') sweep_number['data'] = np.arange(nsweeps, dtype='int32') # sweep_mode sweep_mode = filemetadata('sweep_mode') sweep_mode['data'] = np.array(nsweeps * ['azimuth_surveillance']) # scan_type if ncobj.ScanType == 2: scan_type = 'ppi' else: scan_type = 'rhi' # fixed_angle fixed_angle = filemetadata('fixed_angle') if ncobj.ScanType == 2: sweep_el = ncvars['Elevation'][0] else: sweep_el = ncvars['Azimuth'][0] fixed_angle['data'] = np.array([sweep_el], dtype='float32') # elevation elevation = filemetadata('elevation') elevation['data'] = ncvars['Elevation'] # range _range = filemetadata('range') # check that the gate spacing is constant between sweeps rstart = ncvars['StartRange'][:] if any(rstart != rstart[0]): raise ValueError('range start changes between sweeps') rscale = ncvars['GateWidth'][:]/1000. if any(rscale != rscale[0]): raise ValueError('range scale changes between sweeps') nbins = ncobj.NumGates _range['data'] = (np.arange(nbins, dtype='float32') * rscale[0] + rstart[0] * 1000.) _range['meters_to_center_of_first_gate'] = rstart[0] _range['meters_between_gates'] = float(rscale[0]) # azimuth azimuth = filemetadata('azimuth') azimuth['data'] = ncvars['Azimuth'][:] # time _time = filemetadata('time') start_time = datetime.datetime.utcfromtimestamp(ncobj.Time) _time['units'] = make_time_unit_str(start_time) _time['data'] = (ncvars['Time']-ncobj.Time).astype('float32') # fields # all variables with dimensions of 'Radial', 'Gate' are fields keys = [k for k, v in ncvars.items() if v.dimensions == ('Radial', 'Gate')] fields = {} for key in keys: field_name = filemetadata.get_field_name(key) if field_name is None: if exclude_fields is not None and key in exclude_fields: continue field_name = key fields[field_name] = _ncvar_to_dict(ncvars[key]) # instrument_parameters instrument_parameters = None return Radar( _time, _range, fields, metadata, scan_type, latitude, longitude, altitude, sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index, sweep_end_ray_index, azimuth, elevation, instrument_parameters=instrument_parameters) def _ncvar_to_dict(ncvar): """ Convert a NetCDF Dataset variable to a dictionary. """ # copy all attribute except for scaling parameters d = dict((k, getattr(ncvar, k)) for k in ncvar.ncattrs() if k not in ['scale_factor', 'add_offset']) d['data'] = ncvar[:] if np.isscalar(d['data']): # netCDF4 1.1.0+ returns a scalar for 0-dim array, we always want # 1-dim+ arrays with a valid shape. d['data'] = np.array(d['data']) d['data'].shape = (1, ) return d
{"hexsha": "a3bc28e5a8c0d72f58acf48731b481f1956f676f", "size": 7742, "ext": "py", "lang": "Python", "max_stars_repo_path": "pyart/aux_io/d3r_gcpex_nc.py", "max_stars_repo_name": "josephhardinee/pyart", "max_stars_repo_head_hexsha": "909cd4a36bb4cae34349294d2013bc7ad71d0969", "max_stars_repo_licenses": ["OLDAP-2.6", "Python-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "pyart/aux_io/d3r_gcpex_nc.py", "max_issues_repo_name": "josephhardinee/pyart", "max_issues_repo_head_hexsha": "909cd4a36bb4cae34349294d2013bc7ad71d0969", "max_issues_repo_licenses": ["OLDAP-2.6", "Python-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "pyart/aux_io/d3r_gcpex_nc.py", "max_forks_repo_name": "josephhardinee/pyart", "max_forks_repo_head_hexsha": "909cd4a36bb4cae34349294d2013bc7ad71d0969", "max_forks_repo_licenses": ["OLDAP-2.6", "Python-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.1057268722, "max_line_length": 78, "alphanum_fraction": 0.6679152674, "include": true, "reason": "import numpy", "num_tokens": 1942}
[STATEMENT] lemma chainI: assumes "Y 0 = false" "\<And> i. Y (Suc i) \<sqsubseteq> Y i" shows "chain Y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. chain Y [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: Y 0 = false Y (Suc ?i) \<sqsubseteq> Y ?i goal (1 subgoal): 1. chain Y [PROOF STEP] by (auto simp add: chain_def)
{"llama_tokens": 153, "file": "UTP_utp_utp_recursion", "length": 2}
"""Generation and plot of an events file : the neurospin/localizer events. ========================================================================== The protocol described is the simplified version of the so-called "archi standard" localizer event sequence. See Pinel et al., BMC neuroscience 2007 for reference. """ print(__doc__) ######################################################################### # Define the onset times in seconds. Those are typically extracted # from the stimulation software used. import numpy as np onset = np.array([ 0., 2.4, 8.7, 11.4, 15., 18., 20.7, 23.7, 26.7, 29.7, 33., 35.4, 39., 41.7, 44.7, 48., 56.4, 59.7, 62.4, 69., 71.4, 75., 83.4, 87., 89.7, 96., 108., 116.7, 119.4, 122.7, 125.4, 131.4, 135., 137.7, 140.4, 143.4, 146.7, 149.4, 153., 156., 159., 162., 164.4, 167.7, 170.4, 173.7, 176.7, 188.4, 191.7, 195., 198., 201., 203.7, 207., 210., 212.7, 215.7, 218.7, 221.4, 224.7, 227.7, 230.7, 234., 236.7, 246., 248.4, 251.7, 254.7, 257.4, 260.4, 264., 266.7, 269.7, 275.4, 278.4, 284.4, 288., 291., 293.4, 296.7]) ######################################################################### # Associated trial types: these are numbered between 0 and 5, hence # correspond to 6 different conditions. trial_idx = np.array( [3, 3, 0, 2, 5, 3, 5, 2, 3, 5, 1, 2, 4, 4, 2, 2, 4, 0, 2, 3, 3, 4, 2, 2, 5, 1, 2, 3, 5, 1, 3, 4, 2, 2, 1, 2, 5, 0, 3, 1, 4, 2, 3, 4, 2, 2, 0, 0, 2, 4, 3, 3, 1, 1, 1, 3, 3, 0, 3, 0, 3, 2, 3, 5, 4, 0, 2, 2, 2, 3, 1, 0, 0, 3, 1, 5, 4, 3, 5, 5]) ######################################################################### # We may want to map these indices to explicit condition names. # For that, we define a list of 10 strings. condition_ids = ['horizontal checkerboard', 'vertical checkerboard', 'auditory instructions', 'visual instructions', 'visual sentence', 'auditory sentence'] trial_type = np.array([condition_ids[i] for i in trial_idx]) ######################################################################### # We also define a duration (required by BIDS conventions). duration = np.ones_like(onset) ######################################################################### # Form an event dataframe from these information. import pandas as pd events = pd.DataFrame({'trial_type': trial_type, 'onset': onset, 'duration': duration}) ######################################################################### # Export them to a tsv file. tsvfile = 'localizer_events.tsv' events.to_csv(tsvfile, sep='\t', index=False) print("Created the events file in %s " % tsvfile) ######################################################################### # Plot the event dataframe. import matplotlib.pyplot as plt from nilearn.reporting import plot_event plot_event(events, figsize=(12, 4)) plt.show()
{"hexsha": "94184fce103fa31f63812c9da65e31133127f12f", "size": 2950, "ext": "py", "lang": "Python", "max_stars_repo_path": "examples/04_glm_first_level_models/plot_events_file.py", "max_stars_repo_name": "ariekahn/nilearn", "max_stars_repo_head_hexsha": "baa77b18ecee7c4507579214af59d715cc9292f9", "max_stars_repo_licenses": ["BSD-2-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2021-01-21T12:07:53.000Z", "max_stars_repo_stars_event_max_datetime": "2021-01-21T12:07:53.000Z", "max_issues_repo_path": "examples/04_glm_first_level_models/plot_events_file.py", "max_issues_repo_name": "ariekahn/nilearn", "max_issues_repo_head_hexsha": "baa77b18ecee7c4507579214af59d715cc9292f9", "max_issues_repo_licenses": ["BSD-2-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "examples/04_glm_first_level_models/plot_events_file.py", "max_forks_repo_name": "ariekahn/nilearn", "max_forks_repo_head_hexsha": "baa77b18ecee7c4507579214af59d715cc9292f9", "max_forks_repo_licenses": ["BSD-2-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 41.5492957746, "max_line_length": 74, "alphanum_fraction": 0.4847457627, "include": true, "reason": "import numpy", "num_tokens": 957}
import numpy as np import scipy.sparse as sp import torch import torch.utils.data import typing as _typing import torch_geometric from . import target_dependant_sampler class _LayerDependentImportanceSampler( target_dependant_sampler.BasicLayerWiseTargetDependantSampler ): """ Obsolete implementation, unused """ class _Utility: @classmethod def compute_edge_weights( cls, __all_edge_index_with_self_loops: torch.Tensor ) -> torch.Tensor: __out_degree: torch.Tensor = torch_geometric.utils.degree( __all_edge_index_with_self_loops[0] ) __in_degree: torch.Tensor = torch_geometric.utils.degree( __all_edge_index_with_self_loops[1] ) temp_tensor: torch.Tensor = torch.stack( [ __out_degree[__all_edge_index_with_self_loops[0]], __in_degree[__all_edge_index_with_self_loops[1]], ] ) temp_tensor: torch.Tensor = torch.pow(temp_tensor, -0.5) temp_tensor[torch.isinf(temp_tensor)] = 0.0 return temp_tensor[0] * temp_tensor[1] @classmethod def get_candidate_source_nodes_probabilities( cls, all_candidate_edge_indexes: torch.LongTensor, all_edge_index_with_self_loops: torch.Tensor, all_edge_weights: torch.Tensor, ) -> _typing.Tuple[torch.LongTensor, torch.Tensor]: """ :param all_candidate_edge_indexes: :param all_edge_index_with_self_loops: integral edge index with self-loops :param all_edge_weights: :return: (all_source_nodes_indexes, all_source_nodes_probabilities) """ all_candidate_edge_indexes: torch.LongTensor = ( all_candidate_edge_indexes.unique() ) _all_candidate_edges_weights: torch.Tensor = all_edge_weights[ all_candidate_edge_indexes ] all_candidate_source_nodes_indexes: torch.LongTensor = ( all_edge_index_with_self_loops[0, all_candidate_edge_indexes].unique() ) all_candidate_source_nodes_probabilities: torch.Tensor = torch.tensor( [ torch.sum( _all_candidate_edges_weights[ all_edge_index_with_self_loops[ 0, all_candidate_edge_indexes ] == _current_source_node_index ] ).item() / torch.sum(_all_candidate_edges_weights).item() for _current_source_node_index in all_candidate_source_nodes_indexes.tolist() ] ) assert ( all_candidate_source_nodes_indexes.size() == all_candidate_source_nodes_probabilities.size() ) return ( all_candidate_source_nodes_indexes, all_candidate_source_nodes_probabilities, ) @classmethod def filter_selected_edges_by_source_nodes_and_target_nodes( cls, all_edges_with_self_loops: torch.Tensor, selected_source_node_indexes: torch.LongTensor, selected_target_node_indexes: torch.LongTensor, ) -> torch.Tensor: """ :param all_edges_with_self_loops: all edges with self loops :param selected_source_node_indexes: selected source node indexes :param selected_target_node_indexes: selected target node indexes :return: filtered edge indexes """ selected_edges_mask_for_source_nodes: torch.Tensor = torch.zeros( all_edges_with_self_loops.size(1), dtype=torch.bool ) selected_edges_mask_for_source_nodes[ torch.cat( [ torch.where( all_edges_with_self_loops[0] == __current_selected_source_node_index )[0] for __current_selected_source_node_index in selected_source_node_indexes.unique().tolist() ] ).unique() ] = True selected_edges_mask_for_target_nodes: torch.Tensor = torch.zeros( all_edges_with_self_loops.size(1), dtype=torch.bool ) selected_edges_mask_for_target_nodes[ torch.cat( [ torch.where( all_edges_with_self_loops[1] == __current_selected_target_node_index )[0] for __current_selected_target_node_index in selected_target_node_indexes.unique().tolist() ] ) ] = True return torch.where( selected_edges_mask_for_source_nodes & selected_edges_mask_for_target_nodes )[0] def __init__( self, edge_index: torch.LongTensor, target_nodes_indexes: torch.LongTensor, layer_wise_arguments: _typing.Sequence, batch_size: _typing.Optional[int] = 1, num_workers: int = 0, shuffle: bool = True, **kwargs ): super().__init__( torch_geometric.utils.add_remaining_self_loops(edge_index)[0], target_nodes_indexes, layer_wise_arguments, batch_size, num_workers, shuffle, **kwargs ) self.__all_edge_weights: torch.Tensor = self._Utility.compute_edge_weights( self._edge_index ) def _sample_edges_for_layer( self, __current_layer_target_nodes_indexes: torch.LongTensor, __top_layer_target_nodes_indexes: torch.LongTensor, layer_argument: _typing.Any, *args, **kwargs ) -> _typing.Tuple[torch.LongTensor, _typing.Optional[torch.Tensor]]: """ Sample edges for one layer :param __current_layer_target_nodes_indexes: target nodes for current layer :param __top_layer_target_nodes_indexes: target nodes for top layer :param layer_argument: argument for current layer :param args: remaining positional arguments :param kwargs: remaining keyword arguments :return: (edge_id_in_integral_graph, edge_weight) """ if type(layer_argument) != int: raise TypeError elif not layer_argument > 0: raise ValueError else: sampled_node_size_budget: int = layer_argument all_candidate_edge_indexes: torch.LongTensor = torch.cat( [ torch.where(self._edge_index[1] == current_target_node_index)[0] for current_target_node_index in __current_layer_target_nodes_indexes.unique().tolist() ] ).unique() ( __all_candidate_source_nodes_indexes, all_candidate_source_nodes_probabilities, ) = self._Utility.get_candidate_source_nodes_probabilities( all_candidate_edge_indexes, self._edge_index, self.__all_edge_weights * self.__all_edge_weights, ) assert ( __all_candidate_source_nodes_indexes.size() == all_candidate_source_nodes_probabilities.size() ) """ Sampling """ if sampled_node_size_budget < __all_candidate_source_nodes_indexes.numel(): selected_source_node_indexes: torch.LongTensor = ( __all_candidate_source_nodes_indexes[ torch.from_numpy( np.unique( np.random.choice( np.arange(__all_candidate_source_nodes_indexes.numel()), sampled_node_size_budget, p=all_candidate_source_nodes_probabilities.numpy(), replace=False, ) ) ).unique() ].unique() ) else: selected_source_node_indexes: torch.LongTensor = ( __all_candidate_source_nodes_indexes ) selected_source_node_indexes: torch.LongTensor = torch.cat( [selected_source_node_indexes, __top_layer_target_nodes_indexes] ).unique() __selected_edges_indexes: torch.LongTensor = ( self._Utility.filter_selected_edges_by_source_nodes_and_target_nodes( self._edge_index, selected_source_node_indexes, __current_layer_target_nodes_indexes, ).unique() ) non_normalized_selected_edges_weight: torch.Tensor = self.__all_edge_weights[ __selected_edges_indexes ] / torch.tensor( [ all_candidate_source_nodes_probabilities[ __all_candidate_source_nodes_indexes == current_source_node_index ].item() for current_source_node_index in self._edge_index[ 0, __selected_edges_indexes ].tolist() ] ) def __normalize_edges_weight_by_target_nodes( __edge_index: torch.Tensor, __edge_weight: torch.Tensor ) -> torch.Tensor: if __edge_index.size(1) != __edge_weight.numel(): raise ValueError for current_target_node_index in __edge_index[1].unique().tolist(): __current_mask_for_edges: torch.BoolTensor = ( __edge_index[1] == current_target_node_index ) __edge_weight[__current_mask_for_edges] = __edge_weight[ __current_mask_for_edges ] / torch.sum(__edge_weight[__current_mask_for_edges]) return __edge_weight normalized_selected_edges_weight: torch.Tensor = ( __normalize_edges_weight_by_target_nodes( self._edge_index[:, __selected_edges_indexes], non_normalized_selected_edges_weight, ) ) return __selected_edges_indexes, normalized_selected_edges_weight class LayerDependentImportanceSampler( target_dependant_sampler.BasicLayerWiseTargetDependantSampler ): """ The layer-dependent importance sampler from the `"Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks" <https://arxiv.org/abs/1911.07323>`_ literature, which allows for mini-batch training of GNNs on large-scale graphs where full-batch training is not feasible. Arguments ------------ edge_index: A :obj:`torch.LongTensor` that defines the underlying graph connectivity/message passing flow. :obj:`edge_index` holds the indices of a (sparse) adjacency matrix. If :obj:`edge_index` is of type :obj:`torch.LongTensor`, its shape must be defined as :obj:`[2, num_edges]`, where messages from nodes :obj:`edge_index[0]` are sent to nodes in :obj:`edge_index[1]` (in case :obj:`flow="source_to_target"`). target_nodes_indexes: indexes of target nodes to learn representation. layer_wise_arguments: The number of nodes to sample for each layer. It's noteworthy that the target nodes for a specific layer always be preserved as source nodes for that layer, such that the self loops for those target nodes are generally preserved for representation learning. batch_size: number of target nodes for each mini-batch. num_workers: num_workers argument for inner :class:`torch.utils.data.DataLoader` shuffle: whether to shuffle target nodes for mini-batches. """ @classmethod def __compute_edge_weight(cls, edge_index: torch.Tensor) -> torch.Tensor: __num_nodes: int = max(int(edge_index[0].max()), int(edge_index[1].max())) + 1 _temp_tensor: torch.Tensor = torch.stack( [ torch_geometric.utils.degree(edge_index[0], __num_nodes)[edge_index[0]], torch_geometric.utils.degree(edge_index[1], __num_nodes)[edge_index[1]], ] ) _temp_tensor: torch.Tensor = torch.pow(_temp_tensor, -0.5) _temp_tensor[torch.isinf(_temp_tensor)] = 0 return _temp_tensor[0] * _temp_tensor[1] def __init__( self, edge_index: torch.LongTensor, target_nodes_indexes: torch.LongTensor, layer_wise_arguments: _typing.Sequence, batch_size: _typing.Optional[int] = 1, num_workers: int = 0, shuffle: bool = True, **kwargs ): super(LayerDependentImportanceSampler, self).__init__( torch_geometric.utils.add_remaining_self_loops(edge_index)[0], target_nodes_indexes, layer_wise_arguments, batch_size, num_workers, shuffle, **kwargs ) self.__edge_weight: torch.Tensor = self.__compute_edge_weight(self._edge_index) self.__integral_normalized_l_matrix: sp.csr_matrix = sp.csr_matrix( ( self.__edge_weight.numpy(), (self._edge_index[1].numpy(), self._edge_index[0].numpy()), ) ) self.__integral_edges_indexes_sparse_matrix: sp.csr_matrix = sp.csr_matrix( ( np.arange(self._edge_index.size(1)), (self._edge_index[1].numpy(), self._edge_index[0].numpy()), ) ) def __sample_edges( self, __current_layer_target_nodes_indexes: np.ndarray, __top_layer_target_nodes_indexes: np.ndarray, sampled_source_nodes_budget: int, ) -> _typing.Tuple[np.ndarray, np.ndarray, np.ndarray]: """ :param __current_layer_target_nodes_indexes: indexes of target nodes for current layer :param __top_layer_target_nodes_indexes: indexes of target nodes for top layer :param sampled_source_nodes_budget: sampled source nodes budget :return: ( sampled_edges_indexes, sampled_source_nodes_indexes, corresponding probabilities for sampled_source_nodes_indexes ) """ partial_l_matrix: sp.csr_matrix = self.__integral_normalized_l_matrix[ __current_layer_target_nodes_indexes, : ] p: np.ndarray = np.array( np.sum(partial_l_matrix.multiply(partial_l_matrix), axis=0) )[0] p: np.ndarray = p / np.sum(p) _number_of_nodes_to_sample = np.min( [np.sum(p > 0), sampled_source_nodes_budget] ) _selected_source_nodes: np.ndarray = np.unique( np.concatenate( [ np.random.choice( p.size, _number_of_nodes_to_sample, replace=False, p=p ), __top_layer_target_nodes_indexes, ] ) ) _sampled_edges_indexes_sparse_matrix: sp.csr_matrix = ( self.__integral_edges_indexes_sparse_matrix[ __current_layer_target_nodes_indexes, : ] ) _sampled_edges_indexes_sparse_matrix: sp.csc_matrix = ( _sampled_edges_indexes_sparse_matrix.tocsc()[:, _selected_source_nodes] ) _sampled_edges_indexes: np.ndarray = np.unique( _sampled_edges_indexes_sparse_matrix.data ) return _sampled_edges_indexes, _selected_source_nodes, p[_selected_source_nodes] def _sample_edges_for_layer( self, __current_layer_target_nodes_indexes: torch.LongTensor, __top_layer_target_nodes_indexes: torch.LongTensor, layer_argument: _typing.Any, *args, **kwargs ) -> _typing.Tuple[torch.LongTensor, _typing.Optional[torch.Tensor]]: """ Sample edges for one specific layer, expected to be implemented in subclass. Parameters ------------ __current_layer_target_nodes_indexes: target nodes for current layer __top_layer_target_nodes_indexes: target nodes for top layer layer_argument: argument for current layer args: remaining positional arguments kwargs: remaining keyword arguments Returns -------- edge_id_in_integral_graph: the corresponding positional indexes for the `edge_index` of integral graph edge_weight: the optional `edge_weight` for aggregation """ __wrapped_result: _typing.Tuple[ np.ndarray, np.ndarray, np.ndarray ] = self.__sample_edges( __current_layer_target_nodes_indexes.numpy(), __top_layer_target_nodes_indexes.numpy(), layer_argument, ) _sampled_edges_indexes: torch.Tensor = torch.from_numpy(__wrapped_result[0]) _selected_source_nodes: torch.Tensor = torch.from_numpy(__wrapped_result[1]) _selected_source_nodes_probabilities: torch.Tensor = torch.from_numpy( __wrapped_result[2] ) """ Multiply corresponding discount weights """ __selected_source_node_probability_mapping: _typing.Dict[int, float] = dict( zip( _selected_source_nodes.tolist(), _selected_source_nodes_probabilities.tolist(), ) ) _selected_edges_weight: torch.Tensor = self.__edge_weight[ _sampled_edges_indexes ] _selected_edges_weight: torch.Tensor = _selected_edges_weight / torch.tensor( [ __selected_source_node_probability_mapping.get( _current_source_node_index ) for _current_source_node_index in self._edge_index[ 0, _sampled_edges_indexes ].tolist() ] ) """ Normalize edge weight for selected edges by target nodes """ for _current_target_node_index in ( self._edge_index[1, _sampled_edges_indexes].unique().tolist() ): _current_mask_for_selected_edges: torch.BoolTensor = ( self._edge_index[1, _sampled_edges_indexes] == _current_target_node_index ) _selected_edges_weight[ _current_mask_for_selected_edges ] = _selected_edges_weight[_current_mask_for_selected_edges] / torch.sum( _selected_edges_weight[_current_mask_for_selected_edges] ) _sampled_edges_indexes: _typing.Union[ torch.LongTensor, torch.Tensor ] = _sampled_edges_indexes return _sampled_edges_indexes, _selected_edges_weight
{"hexsha": "bc66bdf83323bc3f67dd616bce77dfeebb6ef677", "size": 19191, "ext": "py", "lang": "Python", "max_stars_repo_path": "autogl/module/train/sampling/sampler/layer_dependent_importance_sampler.py", "max_stars_repo_name": "dedsec-9/AutoGL", "max_stars_repo_head_hexsha": "487f2b2f798b9b1363ad5dc100fb410b12222e06", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 824, "max_stars_repo_stars_event_min_datetime": "2020-11-30T14:38:07.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-19T10:14:04.000Z", "max_issues_repo_path": "autogl/module/train/sampling/sampler/layer_dependent_importance_sampler.py", "max_issues_repo_name": "dedsec-9/AutoGL", "max_issues_repo_head_hexsha": "487f2b2f798b9b1363ad5dc100fb410b12222e06", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 38, "max_issues_repo_issues_event_min_datetime": "2020-12-21T12:32:57.000Z", "max_issues_repo_issues_event_max_datetime": "2022-01-31T02:32:05.000Z", "max_forks_repo_path": "autogl/module/train/sampling/sampler/layer_dependent_importance_sampler.py", "max_forks_repo_name": "dedsec-9/AutoGL", "max_forks_repo_head_hexsha": "487f2b2f798b9b1363ad5dc100fb410b12222e06", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 85, "max_forks_repo_forks_event_min_datetime": "2020-12-21T05:16:09.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-28T08:44:22.000Z", "avg_line_length": 39.98125, "max_line_length": 114, "alphanum_fraction": 0.6052837267, "include": true, "reason": "import numpy,import scipy", "num_tokens": 3646}
import tensorflow as tf import numpy as np from pylab import mpl import matplotlib.pyplot as plt import math plt.rcParams['axes.unicode_minus'] = False mpl.rcParams['font.sans-serif'] = ['SimHei'] # 同时我们要在中文前面加上u # 随机种子 tf.set_random_seed(1) np.random.seed(1) # 设置超参数 BATCH_SIZE = 64 # 批量大小 LR_G = 0.0001 # 生成器的学习率 LR_D = 0.0001 # 判别器的学习率 N_IDEAS = 5 # 假设生成了5种不同的信号(5种初始化曲线) num_sample = 15 # 用15个点绘制拟合包络(波形)的形状 # 列表解析式代替了for循环,PAINT_POINTS.shape=(64,15), # np.vstack()默认逐行叠加(axis=0) input_data = np.vstack([np.linspace(-2 * math.pi, 2 * math.pi, num_sample) for _ in range(BATCH_SIZE)]) # (64, 15) def generate_signal(): # 基本的正弦序列,不包括相位偏移或者幅度畸变 signal_shape = np.sin(input_data) return signal_shape with tf.variable_scope('Generator'): """网络结构batch_size --->128--->num_sample""" G_in = tf.placeholder(tf.float32, [None, N_IDEAS]) # 随机的ideals(来源于正态分布) G_l1 = tf.layers.dense(G_in, 128, tf.nn.sigmoid) G_out = tf.layers.dense(G_l1, num_sample) # 生成一副生成信号的包络(15个数据点) with tf.variable_scope('Discriminator'): """判别器与生成器不同,生成器只需要输入生成的信号数据,它无法接触到真实信号, 如果能接触到真实信号数据,那就不用学习了,直接导入到判别器就是0.5的概率,换句话说, 生成器只能通过生成器的误差反馈来调节权重(优化方法可以是梯度下降,随机梯度下降,批量梯度下降,动量下降,或者Adam), 使得逐渐生成逼真实的信号波形出来。""" # 接受真实的信号 true_signal = tf.placeholder(tf.float32, [None, num_sample], name='real_in') """ 回到神经网络的基本知识,我们输入矩阵是一个 ( 特征*样本数 )的矩阵 在使用优化算法的时候,如果选择梯度下降,动量下降或者Adam(虽然这两者基于梯度下降) 他们都会遍历所有的训练样本,然后在进行网络权值的优化,所耗费的时间长 为了让网络学习的更好,可以多按照真实的信号波形产生一些抽样得到的样本来优化网络 """ # 将真实信号输入到判别器,判别器判断这些信号数据来自于真实信号的概率 D_l0 = tf.layers.dense(true_signal, 128, tf.nn.relu, name='Discriminate') prob_from_true_signal = tf.layers.dense(D_l0, 1, tf.nn.sigmoid, name='out') # 输入生成的信号数据,G_out代入到判别器中。 D_l1 = tf.layers.dense(G_out, 128, tf.nn.relu, name='Discriminate', reuse=True) # 代入生成的数据,判别器判断这数据来自生成器的概率 prob_from_generate_signal = tf.layers.dense(D_l1, 1, tf.nn.sigmoid, name='out', reuse=True) """注意到,判别器中当输入生成的信号时,这层是可以重复利用的,通过动态调整这次的权重来完成判别器的loss最小,关键一步。""" # 判别器loss,此时需同时优化两部分的概率 # 使用交叉熵损失 D_loss = -tf.reduce_mean(tf.log(prob_from_true_signal) + tf.log(1 - prob_from_generate_signal)) # 对于生成器的loss,此时prob_from_true_signal是固定的,可以看到生成器并没有输入真实的信号数据, # 所以tf.log(prob_artist0)是一个常数,故在这里不用考虑。 G_loss = tf.reduce_mean(tf.log(1 - prob_from_generate_signal)) train_D = tf.train.AdamOptimizer(LR_D).minimize( D_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator')) train_G = tf.train.AdamOptimizer(LR_G).minimize( G_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Generator')) # 以下两步是TensorFlow必须要做的 sess = tf.Session() sess.run(tf.global_variables_initializer()) plt.ion() # 连续画图 for step in range(5000): every_step_generate_signal = generate_signal() # 真实信号数据,每一轮真实信号的数据都是随机生成的! G_ideas = np.random.randn(BATCH_SIZE, N_IDEAS) # 生成信号的5个可行方法 ''' 再次回归到最初的神经网络,我们的输入矩阵是一个(特征*样本数的矩阵)维矩阵 损失函数不论使用梯度下降,还是动量下降或Adam优化(虽说这两者是基于梯度下降算法的) 都是遍历了所有的样本,学习了所有的样本对神经网络的训练是有好处的 ''' G_signal, pa0, Dl = sess.run([G_out, prob_from_true_signal, D_loss, train_D, train_G], {G_in: G_ideas, true_signal: every_step_generate_signal})[:3] # 训练和获取结果 if step % 100 == 0: # 每100次训练画一次图 plt.cla() plt.plot(input_data[0], G_signal[0], c='black', lw=3, label='真实信号包络') plt.plot(input_data[0], every_step_generate_signal[0], c='red', lw=3, label='生成信号的包络') plt.text(-.5, -2.5, '第{}次训练'.format(step), fontdict={'size': 15}) plt.text(-.5, -1.3, 'D mean accuracy=%.2f ' % pa0.mean(), fontdict={'size': 15}) # -1.38 for G to converge plt.text(-.5, -1.5, 'D score= %.2f ' % -Dl, fontdict={'size': 15}) plt.ylim((-2, 3)) plt.xlim((-2 * math.pi - 1, 2 * math.pi + 1)) plt.legend(loc='upper right', fontsize=12) plt.draw() plt.pause(0.01) plt.ioff() plt.show()
{"hexsha": "9ef885d620cc9cb2ea9d1399165ba056b64131ed", "size": 4034, "ext": "py", "lang": "Python", "max_stars_repo_path": "gan_DAY_2.py", "max_stars_repo_name": "SoulProficiency/MyRepository", "max_stars_repo_head_hexsha": "3738e558190bacb596a89a305408ad6621342930", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-03-26T07:08:09.000Z", "max_stars_repo_stars_event_max_datetime": "2021-06-17T15:16:38.000Z", "max_issues_repo_path": "gan_DAY_2.py", "max_issues_repo_name": "SoulProficiency/MyRepository", "max_issues_repo_head_hexsha": "3738e558190bacb596a89a305408ad6621342930", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "gan_DAY_2.py", "max_forks_repo_name": "SoulProficiency/MyRepository", "max_forks_repo_head_hexsha": "3738e558190bacb596a89a305408ad6621342930", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2021-12-02T03:12:09.000Z", "max_forks_repo_forks_event_max_datetime": "2021-12-02T03:12:09.000Z", "avg_line_length": 38.0566037736, "max_line_length": 116, "alphanum_fraction": 0.6784828954, "include": true, "reason": "import numpy", "num_tokens": 1860}
import tensorflow as tf import numpy as np #from data_utils import get_batch import data_utils import pdb import json from mod_core_rnn_cell_impl import LSTMCell #modified to allow initializing bias in lstm #from tensorflow.contrib.rnn import LSTMCell tf.logging.set_verbosity(tf.logging.ERROR) import mmd from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer from differential_privacy.dp_sgd.dp_optimizer import sanitizer from differential_privacy.privacy_accountant.tf import accountant # --- to do with latent space --- # def sample_Z(batch_size, seq_length, latent_dim, use_time=False, use_noisy_time=False): sample = np.float32(np.random.normal(size=[batch_size, seq_length, latent_dim])) if use_time: print('WARNING: use_time has different semantics') sample[:, :, 0] = np.linspace(0, 1.0/seq_length, num=seq_length) #if use_noisy_time or use_time: # # time grid is time_grid_mult times larger than seq_length # time_grid_mult = 5 # time_grid = (np.arange(seq_length*time_grid_mult)/((seq_length*time_grid_mult)/2)) - 1 # time_axes = [] # for i in range(batch_size): # # randomly chose a starting point in the time grid # starting_point = np.random.choice(np.arange(len(time_grid))[:-seq_length]) # time_axis = time_grid[starting_point:starting_point+seq_length] # if use_noisy_time: # time_axis += np.random.normal(scale=2.0/len(time_axis), size=len(time_axis)) # time_axes.append(time_axis) # sample[:,:,0] = time_axes return sample def sample_C(batch_size, cond_dim=0, max_val=1, one_hot=False): """ return an array of integers (so far we only allow integer-valued conditional values) """ if cond_dim == 0: return None else: if one_hot: assert max_val == 1 C = np.zeros(shape=(batch_size, cond_dim)) # locations labels = np.random.choice(cond_dim, batch_size) C[np.arange(batch_size), labels] = 1 else: C = np.random.choice(max_val+1, size=(batch_size, cond_dim)) return C # --- to do with training --- # def train_epoch(epoch, samples, labels, sess, Z, X, CG, CD, CS, D_loss, G_loss, D_solver, G_solver, batch_size, use_time, D_rounds, G_rounds, seq_length, latent_dim, num_generated_features, cond_dim, max_val, WGAN_clip, one_hot): """ Train generator and discriminator for one epoch. """ for batch_idx in range(0, int(len(samples) / batch_size) - (D_rounds + (cond_dim > 0)*G_rounds), D_rounds + (cond_dim > 0)*G_rounds): # update the discriminator for d in range(D_rounds): X_mb, Y_mb = data_utils.get_batch(samples, batch_size, batch_idx + d, labels) Z_mb = sample_Z(batch_size, seq_length, latent_dim, use_time) if cond_dim > 0: # CGAN Y_mb = Y_mb.reshape(-1, cond_dim) if one_hot: # change all of the labels to a different one offsets = np.random.choice(cond_dim-1, batch_size) + 1 new_labels = (np.argmax(Y_mb, axis=1) + offsets) % cond_dim Y_wrong = np.zeros_like(Y_mb) Y_wrong[np.arange(batch_size), new_labels] = 1 else: # flip all of the bits (assuming binary...) Y_wrong = 1 - Y_mb _ = sess.run(D_solver, feed_dict={X: X_mb, Z: Z_mb, CD: Y_mb, CS: Y_wrong, CG: Y_mb}) else: _ = sess.run(D_solver, feed_dict={X: X_mb, Z: Z_mb}) if WGAN_clip: # clip the weights _ = sess.run([clip_disc_weights]) # update the generator for g in range(G_rounds): if cond_dim > 0: # note we are essentially throwing these X_mb away... X_mb, Y_mb = data_utils.get_batch(samples, batch_size, batch_idx + D_rounds + g, labels) _ = sess.run(G_solver, feed_dict={Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time), CG: Y_mb}) else: _ = sess.run(G_solver, feed_dict={Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)}) # at the end, get the loss if cond_dim > 0: D_loss_curr, G_loss_curr = sess.run([D_loss, G_loss], feed_dict={X: X_mb, Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time), CG: Y_mb, CD: Y_mb}) D_loss_curr = np.mean(D_loss_curr) G_loss_curr = np.mean(G_loss_curr) else: D_loss_curr, G_loss_curr = sess.run([D_loss, G_loss], feed_dict={X: X_mb, Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)}) D_loss_curr = np.mean(D_loss_curr) G_loss_curr = np.mean(G_loss_curr) return D_loss_curr, G_loss_curr def WGAN_loss(Z, X, WGAN_clip=False): raise NotImplementedError G_sample = generator(Z, hidden_units_g, W_out_G, b_out_G, scale_out_G) D_real, D_logit_real, D_logit_real_final = discriminator(X, hidden_units_d, seq_length, batch_size) D_loss = tf.reduce_mean(D_fake) - tf.reduce_mean(D_real) G_loss = -tf.reduce_mean(D_fake) if not WGAN_clip: # gradient penalty from improved WGAN code # ... but it doesn't work in TF for RNNs, so let's skip it for now # alpha = np.random.uniform(size=batch_size, low=0.0, high=1.0).reshape(batch_size, 1, 1) # interpolates = alpha*X + ((1-alpha)*G_sample) # pdb.set_trace() # disc_interpolates, _ = discriminator(interpolates, reuse=True) # gradients = tf.gradients(disc_interpolates, [interpolates])[0] # slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1])) # gradient_penalty = tf.reduce_mean((slopes-1)**2) # now for my own hack # sample a random h h = tf.random_normal(shape=X.shape, stddev=0.1) D_offset, _ = discriminator(X + h, hidden_units_d) gradient_penalty = tf.norm(D_offset - D_real) KAPPA = 1.0 D_loss += KAPPA*gradient_penalty clip_disc_weights = None else: # weight clipping from original WGAN # Build an op to do the weight clipping clip_ops = [] for var in discriminator_vars: clip_bounds = [-.01, .01] clip_ops.append( tf.assign( var, tf.clip_by_value(var, clip_bounds[0], clip_bounds[1]) ) ) clip_disc_weights = tf.group(*clip_ops) return G_loss, D_loss, clip_disc_weights def GAN_loss(Z, X, generator_settings, discriminator_settings, kappa, cond, CG, CD, CS, wrong_labels=False): if cond: # C-GAN G_sample = generator(Z, **generator_settings, c=CG) D_real, D_logit_real = discriminator(X, **discriminator_settings, c=CD) D_fake, D_logit_fake = discriminator(G_sample, reuse=True, **discriminator_settings, c=CG) if wrong_labels: # the discriminator must distinguish between real data with fake labels and real data with real labels, too D_wrong, D_logit_wrong = discriminator(X, reuse=True, **discriminator_settings, c=CS) else: # normal GAN G_sample = generator(Z, **generator_settings) D_real, D_logit_real = discriminator(X, **discriminator_settings) D_fake, D_logit_fake = discriminator(G_sample, reuse=True, **discriminator_settings) D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real)), 1) D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake)), 1) D_loss = D_loss_real + D_loss_fake if cond and wrong_labels: D_loss = D_loss + D_loss_wrong #G_loss = tf.reduce_mean(tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)), axis=1)) G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)), 1) return D_loss, G_loss def GAN_solvers(D_loss, G_loss, learning_rate, batch_size, total_examples, l2norm_bound, batches_per_lot, sigma, dp=False): """ Optimizers """ discriminator_vars = [v for v in tf.trainable_variables() if v.name.startswith('discriminator')] generator_vars = [v for v in tf.trainable_variables() if v.name.startswith('generator')] if dp: print('Using differentially private SGD to train discriminator!') eps = tf.placeholder(tf.float32) delta = tf.placeholder(tf.float32) priv_accountant = accountant.GaussianMomentsAccountant(total_examples) clip = True l2norm_bound = l2norm_bound/batch_size batches_per_lot = 1 gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer( priv_accountant, [l2norm_bound, clip]) # the trick is that we need to calculate the gradient with respect to # each example in the batch, during the DP SGD step D_solver = dp_optimizer.DPGradientDescentOptimizer(learning_rate, [eps, delta], sanitizer=gaussian_sanitizer, sigma=sigma, batches_per_lot=batches_per_lot).minimize(D_loss, var_list=discriminator_vars) else: D_loss_mean_over_batch = tf.reduce_mean(D_loss) D_solver = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(D_loss_mean_over_batch, var_list=discriminator_vars) priv_accountant = None G_loss_mean_over_batch = tf.reduce_mean(G_loss) G_solver = tf.train.AdamOptimizer().minimize(G_loss_mean_over_batch, var_list=generator_vars) return D_solver, G_solver, priv_accountant # --- to do with the model --- # def create_placeholders(batch_size, seq_length, latent_dim, num_generated_features, cond_dim): Z = tf.placeholder(tf.float32, [batch_size, seq_length, latent_dim]) X = tf.placeholder(tf.float32, [batch_size, seq_length, num_generated_features]) CG = tf.placeholder(tf.float32, [batch_size, cond_dim]) CD = tf.placeholder(tf.float32, [batch_size, cond_dim]) CS = tf.placeholder(tf.float32, [batch_size, cond_dim]) return Z, X, CG, CD, CS def generator(z, hidden_units_g, seq_length, batch_size, num_generated_features, reuse=False, parameters=None, cond_dim=0, c=None, learn_scale=True): """ If parameters are supplied, initialise as such """ with tf.variable_scope("generator") as scope: if reuse: scope.reuse_variables() if parameters is None: W_out_G_initializer = tf.truncated_normal_initializer() b_out_G_initializer = tf.truncated_normal_initializer() scale_out_G_initializer = tf.constant_initializer(value=1.0) lstm_initializer = None bias_start = 1.0 else: W_out_G_initializer = tf.constant_initializer(value=parameters['generator/W_out_G:0']) b_out_G_initializer = tf.constant_initializer(value=parameters['generator/b_out_G:0']) try: scale_out_G_initializer = tf.constant_initializer(value=parameters['generator/scale_out_G:0']) except KeyError: scale_out_G_initializer = tf.constant_initializer(value=1) assert learn_scale lstm_initializer = tf.constant_initializer(value=parameters['generator/rnn/lstm_cell/weights:0']) bias_start = parameters['generator/rnn/lstm_cell/biases:0'] W_out_G = tf.get_variable(name='W_out_G', shape=[hidden_units_g, num_generated_features], initializer=W_out_G_initializer) b_out_G = tf.get_variable(name='b_out_G', shape=num_generated_features, initializer=b_out_G_initializer) scale_out_G = tf.get_variable(name='scale_out_G', shape=1, initializer=scale_out_G_initializer, trainable=learn_scale) if cond_dim > 0: # CGAN! assert not c is None repeated_encoding = tf.stack([c]*seq_length, axis=1) inputs = tf.concat([z, repeated_encoding], axis=2) #repeated_encoding = tf.tile(c, [1, tf.shape(z)[1]]) #repeated_encoding = tf.reshape(repeated_encoding, [tf.shape(z)[0], tf.shape(z)[1], cond_dim]) #inputs = tf.concat([repeated_encoding, z], 2) else: inputs = z ## TIMEGAN SPECIFICATIONS def cell(): # d = LSTMCell(num_units=hidden_units_g, # state_is_tuple=True, # initializer=lstm_initializer, # bias_start=bias_start, reuse=reuse) d = tf.nn.rnn_cell.GRUCell(num_units=hidden_units_g, activation=tf.nn.tanh) return d e_cell = tf.nn.rnn_cell.MultiRNNCell([cell() for _ in range(3)]) rnn_outputs, rnn_states = tf.nn.dynamic_rnn(e_cell, inputs, dtype=tf.float32, sequence_length = [seq_length]*batch_size) # rnn_outputs, rnn_states = tf.nn.dynamic_rnn( # cell=cell, # dtype=tf.float32, # sequence_length=[seq_length]*batch_size, # inputs=inputs) rnn_outputs_2d = tf.reshape(rnn_outputs, [-1, hidden_units_g]) logits_2d = tf.matmul(rnn_outputs_2d, W_out_G) + b_out_G output_2d = tf.nn.tanh(logits_2d) output_3d = tf.reshape(output_2d, [-1, seq_length, num_generated_features]) return output_3d def discriminator(x, hidden_units_d, seq_length, batch_size, reuse=False, cond_dim=0, c=None, batch_mean=False): with tf.variable_scope("discriminator") as scope: if reuse: scope.reuse_variables() W_out_D = tf.get_variable(name='W_out_D', shape=[hidden_units_d, 1], initializer=tf.truncated_normal_initializer()) b_out_D = tf.get_variable(name='b_out_D', shape=1, initializer=tf.truncated_normal_initializer()) # W_final_D = tf.get_variable(name='W_final_D', shape=[hidden_units_d, 1], # initializer=tf.truncated_normal_initializer()) # b_final_D = tf.get_variable(name='b_final_D', shape=1, # initializer=tf.truncated_normal_initializer()) if cond_dim > 0: assert not c is None repeated_encoding = tf.stack([c]*seq_length, axis=1) inputs = tf.concat([x, repeated_encoding], axis=2) else: inputs = x # add the average of the inputs to the inputs (mode collapse? if batch_mean: mean_over_batch = tf.stack([tf.reduce_mean(x, axis=0)]*batch_size, axis=0) inputs = tf.concat([x, mean_over_batch], axis=2) # cell = tf.contrib.rnn.LSTMCell(num_units=hidden_units_d, # state_is_tuple=True, # reuse=reuse) # rnn_outputs, rnn_states = tf.nn.dynamic_rnn( # cell=cell, # dtype=tf.float32, # inputs=inputs) ## TIMEGAN SPECIFICATIONS def cell(): d = tf.nn.rnn_cell.GRUCell(num_units=hidden_units_d, activation=tf.nn.tanh) return d e_cell = tf.nn.rnn_cell.MultiRNNCell([cell() for _ in range(3)]) rnn_outputs, rnn_states = tf.nn.dynamic_rnn(e_cell, inputs, dtype=tf.float32, sequence_length = [seq_length]*batch_size) # logit_final = tf.matmul(rnn_outputs[:, -1], W_final_D) + b_final_D logits = tf.einsum('ijk,km', rnn_outputs, W_out_D) + b_out_D # rnn_outputs_flat = tf.reshape(rnn_outputs, [-1, hidden_units_d]) # logits = tf.matmul(rnn_outputs_flat, W_out_D) + b_out_D output = tf.nn.sigmoid(logits) #return output, logits, logit_final return output, logits # --- to do with saving/loading --- # def dump_parameters(identifier, sess): """ Save model parmaters to a numpy file """ dump_path = './experiments/parameters/' + identifier + '.npy' model_parameters = dict() for v in tf.trainable_variables(): model_parameters[v.name] = sess.run(v) np.save(dump_path, model_parameters) print('Recorded', len(model_parameters), 'parameters to', dump_path) return True def load_parameters(identifier): """ Load parameters from a numpy file """ load_path = './experiments/parameters/' + identifier + '.npy' model_parameters = np.load(load_path).item() return model_parameters # --- to do with trained models --- # def sample_trained_model(settings, epoch, num_samples, Z_samples=None, C_samples=None): """ Return num_samples samples from a trained model described by settings dict """ # if settings is a string, assume it's an identifier and load if type(settings) == str: settings = json.load(open('./experiments/settings/' + settings + '.txt', 'r')) print('Sampling', num_samples, 'samples from', settings['identifier'], 'at epoch', epoch) # get the parameters, get other variables parameters = load_parameters(settings['identifier'] + '_' + str(epoch)) # create placeholder, Z samples Z = tf.placeholder(tf.float32, [num_samples, settings['seq_length'], settings['latent_dim']]) CG = tf.placeholder(tf.float32, [num_samples, settings['cond_dim']]) if Z_samples is None: Z_samples = sample_Z(num_samples, settings['seq_length'], settings['latent_dim'], settings['use_time'], use_noisy_time=False) else: assert Z_samples.shape[0] == num_samples # create the generator (GAN or CGAN) if C_samples is None: # normal GAN G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'], num_samples, settings['num_generated_features'], reuse=False, parameters=parameters, cond_dim=settings['cond_dim']) else: assert C_samples.shape[0] == num_samples # CGAN G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'], num_samples, settings['num_generated_features'], reuse=False, parameters=parameters, cond_dim=settings['cond_dim'], c=CG) # sample from it with tf.Session() as sess: sess.run(tf.global_variables_initializer()) if C_samples is None: real_samples = sess.run(G_samples, feed_dict={Z: Z_samples}) else: real_samples = sess.run(G_samples, feed_dict={Z: Z_samples, CG: C_samples}) tf.reset_default_graph() return real_samples # --- to do with inversion --- # def invert(settings, epoch, samples, g_tolerance=None, e_tolerance=0.1, n_iter=None, max_iter=10000, heuristic_sigma=None, C_samples=None): """ Return the latent space points corresponding to a set of a samples ( from gradient descent ) """ # cast samples to float32 samples = np.float32(samples[:, :, :]) # get the model if type(settings) == str: settings = json.load(open('./experiments/settings/' + settings + '.txt', 'r')) num_samples = samples.shape[0] print('Inverting', num_samples, 'samples using model', settings['identifier'], 'at epoch', epoch,) if not g_tolerance is None: print('until gradient norm is below', g_tolerance) else: print('until error is below', e_tolerance) # get parameters parameters = load_parameters(settings['identifier'] + '_' + str(epoch)) # assertions assert samples.shape[2] == settings['num_generated_features'] # create VARIABLE Z Z = tf.get_variable(name='Z', shape=[num_samples, settings['seq_length'], settings['latent_dim']], initializer=tf.random_normal_initializer()) if C_samples is None: # create outputs G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'], num_samples, settings['num_generated_features'], reuse=False, parameters=parameters) fd = None else: CG = tf.placeholder(tf.float32, [num_samples, settings['cond_dim']]) assert C_samples.shape[0] == samples.shape[0] # CGAN G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'], num_samples, settings['num_generated_features'], reuse=False, parameters=parameters, cond_dim=settings['cond_dim'], c=CG) fd = {CG: C_samples} # define loss if heuristic_sigma is None: heuristic_sigma = mmd.median_pairwise_distance(samples) # this is noisy print('heuristic_sigma:', heuristic_sigma) Kxx, Kxy, Kyy, wts = mmd._mix_rbf_kernel(G_samples, samples, sigmas=tf.constant(value=heuristic_sigma, shape=(1, 1))) similarity_per_sample = tf.diag_part(Kxy) reconstruction_error_per_sample = 1 - similarity_per_sample #reconstruction_error_per_sample = tf.reduce_sum((tf.nn.l2_normalize(G_samples, dim=1) - tf.nn.l2_normalize(samples, dim=1))**2, axis=[1,2]) similarity = tf.reduce_mean(similarity_per_sample) reconstruction_error = 1 - similarity # updater # solver = tf.train.AdamOptimizer().minimize(reconstruction_error_per_sample, var_list=[Z]) #solver = tf.train.RMSPropOptimizer(learning_rate=500).minimize(reconstruction_error, var_list=[Z]) solver = tf.train.RMSPropOptimizer(learning_rate=0.1).minimize(reconstruction_error_per_sample, var_list=[Z]) #solver = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=0.9).minimize(reconstruction_error_per_sample, var_list=[Z]) grad_Z = tf.gradients(reconstruction_error_per_sample, Z)[0] grad_per_Z = tf.norm(grad_Z, axis=(1, 2)) grad_norm = tf.reduce_mean(grad_per_Z) #solver = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(reconstruction_error, var_list=[Z]) print('Finding latent state corresponding to samples...') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) error = sess.run(reconstruction_error, feed_dict=fd) g_n = sess.run(grad_norm, feed_dict=fd) print(g_n) i = 0 if not n_iter is None: while i < n_iter: _ = sess.run(solver, feed_dict=fd) error = sess.run(reconstruction_error, feed_dict=fd) i += 1 else: if not g_tolerance is None: while g_n > g_tolerance: _ = sess.run(solver, feed_dict=fd) error, g_n = sess.run([reconstruction_error, grad_norm], feed_dict=fd) i += 1 print(error, g_n) if i > max_iter: break else: while np.abs(error) > e_tolerance: _ = sess.run(solver, feed_dict=fd) error = sess.run(reconstruction_error, feed_dict=fd) i += 1 print(error) if i > max_iter: break Zs = sess.run(Z, feed_dict=fd) error_per_sample = sess.run(reconstruction_error_per_sample, feed_dict=fd) print('Z found in', i, 'iterations with final reconstruction error of', error) tf.reset_default_graph() return Zs, error_per_sample, heuristic_sigma
{"hexsha": "e012127130a83978fbced65a3ab2d82372ce86d2", "size": 23651, "ext": "py", "lang": "Python", "max_stars_repo_path": "model.py", "max_stars_repo_name": "gebob19/RGAN", "max_stars_repo_head_hexsha": "cb8c4c36ff7af0395611f10d5b17c8719fff0b00", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "model.py", "max_issues_repo_name": "gebob19/RGAN", "max_issues_repo_head_hexsha": "cb8c4c36ff7af0395611f10d5b17c8719fff0b00", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "model.py", "max_forks_repo_name": "gebob19/RGAN", "max_forks_repo_head_hexsha": "cb8c4c36ff7af0395611f10d5b17c8719fff0b00", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 47.302, "max_line_length": 170, "alphanum_fraction": 0.6422138599, "include": true, "reason": "import numpy", "num_tokens": 5602}
""" Basics ~~~~~~ Tensor trains are a versatile tensor decomposition. They consist of a list of order-3 tensors known as `cores`. A tensor train encoding an order `d` dense tensor, has `d` cores. The second dimension of these cores coincides with the dimensions of the dense tensor. The first and third dimensions of the cores are known as the `tensor train rank`. For example, below we create a random tensor train encoding a shape ``(10, 12, 8)`` tensor, with tensor train ranks ``(3, 4)`` >>> from ttml.tensor_train import TensorTrain ... ... dims = (10, 12, 8) ... tt_rank = (3, 4) ... tt = TensorTrain.random(dims, tt_rank) ... tt <TensorTrain of order 3 with outer dimensions (10, 12, 8), TT-rank (3, 4), and orthogonalized at mode 2> We can access the cores of the tensor train through simple array indexing or looping. Let's print the shapes of the three cores in this tensor train >>> for core in tt ... print(core.shape) (1, 10, 3) (3, 12, 4) (4, 8, 1) Note that the first dimension of the first core and the last dimension of the last core is always ``1``. Orthogonalization ~~~~~~~~~~~~~~~~~ Note in the representation string above, it is mentioned that the tensor train is ``orthogonalized at mode 2``. This means that the `left-matricization` of the cores to the left of mode 2 (i.e. the first and second cores) are orthogonal. This means that the following contraction is the identity matrix: >>> import numpy as np ... ... np.einsum("abi,abj->ij", tt[0], tt[0]) array([[ 1.00000000e+00, -8.84708973e-17, 3.46944695e-18], [-8.84708973e-17, 1.00000000e+00, -6.93889390e-18], [ 3.46944695e-18, -6.93889390e-18, 1.00000000e+00]]) The same contraction is also an identity matrix for ``tt[1]``. Orthogonalization is extremely important for numerical stability, as well as for working with tangent vectors (more on that later). We can specify on which mode we want the tensor train to be orthogonalized at initialization, but we can also change the orthogonalization mode by using the :meth:`TensorTrain.orthogonalize` method. For example, we can orthogonalize the tensor train on mode 1 below. The mode argument can be any integer, or either of the strings ``'l'`` and ``'r'``. Here ``'l'`` corresponds to a `left orthogonalization`, which is an orthogonalization with respect to `the last mode`. Conversely ``'r'`` corresponds to a `right orthogonalization`, that is, with respect to `the first mode`. >>> tt.orthogonalize(mode=1) ... ... A = np.einsum("abi,abj->ij", tt[0], tt[0]) ... print(np.allclose(A, np.eye(len(A)))) ... ... B = np.einsum("iab,jab->ij", tt[2], tt[2]) ... print(np.allclose(B, np.eye(len(B)))) True True One consequence of orthogonalization is that computing the norm of the the tensor train can be done very efficiently; the (Frobenius) norm of a tensor trained orthogonalized at mode ``mu`` is simply the (Frobenius) norm of core ``mu``. >>> np.isclose(tt.norm(), np.linalg.norm(tt[1])) True Tensor train arithmetic ~~~~~~~~~~~~~~~~~~~~~~~ We can also perform many operations involving two or more tensor trains. Let's first create two new tensor trains with the same outer dimensions, but different tt-ranks. We can then for example contract the tensor trains using the :meth:`TensorTrain.dot` method, or alternatively the ``@`` operator. >>> dims = (4, 6, 6, 5) ... tt1 = TensorTrain.random(dims, (3, 4, 3)) ... tt2 = TensorTrain.random(dims, (2, 2, 2)) ... tt1 @ tt2 0.016860730327956833 We can verify that this is indeed the Frobenius inner product of these two tensors by comparing the result to contracting the two associated dense tensors. We can turn a tensor train into a dense tensor using the :meth:`TensorTrain.dense` method. >>> np.einsum("ijkl,ijkl->", tt1.dense(), tt2.dense()) 0.016860730327956833 We can also add/subtract tensor trains or multiply them by scalars. >>> tt3 = tt1 + 0.1 * tt2 ... tt3 <TensorTrain of order 4 with outer dimensions (4, 6, 6, 5), TT-rank (4, 6, 5), and orthogonalized at mode 3> Truncation ~~~~~~~~~~ Note that when we add tensor trains, the outer dimensions stay the same but in principle the tt-rank increases, becoming at most the sum of the tt-ranks. In many cases the rank of the sum is not the sum of the ranks. For example in the case above, the first rank of ``tt3`` is 4 and not 5=2+3, since the first rank is always bounded by the first dimension (which is 4 in this case). If we now add another copy of ``tt2`` to ``tt3`` we would expect the rank to stay the same, yet this doesn't always happen due to numerical errors. Note that the middle tt-rank below is 8, even though ``tt4`` can be expressed by a rank ``(4, 6, 5)`` tensor train. >>> tt4 = tt3 + tt2 ... tt4 <TensorTrain of order 4 with outer dimensions (4, 6, 6, 5), TT-rank (4, 8, 5), and orthogonalized at mode 3> We can truncate the rank of a tensor train by using the :meth:`TensorTrain.round` method. This uses HOSVD to truncate the tensor train, and it has two methods for rounding; it can round to a pre-specified tt-rank, or it can truncate based on singular values. We do the latter below by specifying the ``eps=1e-16`` keyword, meaning we can round each core in a HOSVD sweep with relative error up to ``1e-16``. >>> tt5 = tt4.round(eps=1e-16, inplace=False) ... print(tt5) ... (tt4 - tt5).norm() <TensorTrain of order 4 with outer dimensions (4, 6, 6, 5), TT-rank (4, 6, 5), and orthogonalized at mode 3> 3.1508721275986887e-15 Note that the rank has decreased to the correct value, while only gathering an error on the order of machine epsilon. This is because the last two singular values of the second unfolding are very small, we can see them using :meth:`TensorTrain.sing_vals`: >>> tt4.sing_vals() [array([1.92032396, 1.1634468 , 0.62421987, 0.4174046 ]), array([1.77671233e+00, 9.81237260e-01, 7.97148647e-01, 6.93386512e-01, 5.05833036e-01, 3.36895334e-01, 2.17444526e-31, 1.32445319e-31]), array([1.95129345, 0.99099654, 0.80976405, 0.38830473, 0.09492614])] We can also round to even lower ranks, at the cost of a higher rounding error. >>> tt6 = tt4.round(max_rank=4, inplace=False) ... (tt4 - tt6).norm() 0.6129466966082833 Here ``max_rank=4`` means all tt-ranks should be at most 4, but we could also supply a tuple of ints here, e.g. ``tt4.round(max_rank = (4, 5, 5))``. Accessing entries ~~~~~~~~~~~~~~~~~ To access any specific entries of the tensor train we can use the :meth:`TensorTrain.gather` method. We need to supply it a list of entries we want to access, encoded as an integer array. For example to access entry (0,0,0,0) and (0,1,0,0) we do the following: >>> tt4.gather(np.array([[0, 0, 0, 0], [0, 1, 0, 0]])) array([ 0.02875322, -0.02476423]) Tangent vectors ~~~~~~~~~~~~~~~ For Riemannian optimization of tensor trains we need to work with tangent vectors on the manifold of tensor trains of specified rank. Tangent vectors are always associated to a particular tensor train (remember: a tensor train is a point on the tensor-train manifold). For efficient manipulation of tangent vectors, we need to have both the left- and right-orthogonalized cores of a tensor train. Since tensor trains are left-orthogonalized by default, we just need to compute the right-orthogonal cores. >>> tt = TensorTrain.random((3, 4, 4, 3), (2, 3, 2)) ... right_cores = tt.orthogonalize(mode="r", inplace=False) ... tv = TensorTrainTangentVector.random(tt, right_cores) ... tv <TensorTrainTangentVector of order 4, outer dimensions (3, 4, 4, 3), and TT-rank (2, 3, 2)> The arguably most important thing we can do with tangent vectors is that using a `'retract'` we can 'move' in the direction of the tangent vector. We can do this using the :meth:`TensorTrain.apply_grad` method. Below we apply the retract of ``tv`` to `tt`, after first multiplying it by ``1e-6`` using the ``alpha`` keyword argument. >>> tt2 = tt.apply_grad(tv, alpha=1e-6) ... (tt-tt2).norm() 8.200339164343568e-07 We see that this changes `tt` on the order of the 'step size' ``alpha`` and the norm of ``tt2``. Transporting a tangent vector to a new point is equivalent to projecting the tangent vector to the tangent space of the new point. This can be done using :meth:`TensorTrain.grad_proj`: >>> tv2 = tt2.grad_proj(tv) <TensorTrainTangentVector of order 4, outer dimensions (3, 4, 4, 3), and TT-rank (2, 3, 2)> We can also perform arithmetic with tangent vectors, like multiplying them by scalars, adding them, or computing inner products (using :meth:`TensorTrainTangentVector.inner` or the ``@`` operator). Note that this only makes mathematical sense if the tangent vectors are associated to the same tensor train. >>> tv1 = TensorTrainTangentVector.random(tt, right_cores) ... tv2 = TensorTrainTangentVector.random(tt, right_cores) ... print((tv1 + tv2).norm()) ... tv3 = tv1 - 0.1 * tv2 ... print(tv1 @ tv3) 1.278782626647999 0.6505614686324931 The way we usually create tangent vectors is as the gradient of some optimization problem. For example we could try to solve a tensor completion problem. We want to approximate an unknown dense tensor using a tensor train based on knowing the values of particular entries of the dense tensor. We can solve this by starting with a random tensor train and applying Riemannian optimization. At each point the `Euclidean gradient` is just linear residual error between the entries in the tensor train and the true value. We can convert this Euclidean gradient into a tangent vector using :meth:`TensorTrain.rgrad_sparse`. Below we illustrate one step of gradient descent for the tensor completion problem. >>> tt = TensorTrain.random((10, 10, 10, 10, 10), (2, 5, 5, 2)) ... ... # Generate 100 random values and 100 random indices of `tt` ... N = 100 ... y = np.random.normal(N) ... idx = [np.random.choice(r, size=N) for r in tt.tt_rank] ... idx = np.stack(idx) ... ... # Compute the initial error and the gradient ... prediction = tt.gather(idx) ... residual = prediction - y ... print(np.linalg.norm(residual)) ... grad = tt.rgrad_sparse(-residual, idx) ... ... # Take a step in gradient direction and compute new error ... tt2 = tt.apply_grad(grad, alpha=10) ... prediction = tt2.gather(idx) ... residual = y - prediction ... print(np.linalg.norm(residual)) initial error: 200.76000727481116 error after step: 191.21863957535254 Alternative backends ~~~~~~~~~~~~~~~~~~~~ So far all the objects we have use were encoded as numpy arrays, but other backends are supported as well. For example to use ``tensorflow`` as a backend for a tensor train, we just need to supply the ``backend`` keyword: >>> tt_tf = TensorTrain.random((4, 4, 4), (2, 2), backend="tensorflow") ... print(tt_tf[0]) Here in principle many backends are supported, such as ``pytorch``, ``dask``, ``jax`` or ``cupy``. Support for other backends is handled by `autoray <https://github.com/jcmgray/autoray>`_. However, not all functionality has been thoroughly tested for most backends. Moreover, all the functions used here are not `compiled`, so usually things end up being fastest for numpy. This may change in the future. In particular :class:`TTML` has very limited support for backends other than numpy, since the ``scikit-learn`` estimators used for initialization only support numpy anyway. """
{"hexsha": "c568f6287003ca87c826ac420aca1c7affe694ee", "size": 11248, "ext": "py", "lang": "Python", "max_stars_repo_path": "ttml/_tensor_train_doc.py", "max_stars_repo_name": "RikVoorhaar/ttml", "max_stars_repo_head_hexsha": "3786cfc02976f7d6cd5f045f213e28793f4ece61", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "ttml/_tensor_train_doc.py", "max_issues_repo_name": "RikVoorhaar/ttml", "max_issues_repo_head_hexsha": "3786cfc02976f7d6cd5f045f213e28793f4ece61", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "ttml/_tensor_train_doc.py", "max_forks_repo_name": "RikVoorhaar/ttml", "max_forks_repo_head_hexsha": "3786cfc02976f7d6cd5f045f213e28793f4ece61", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 40.4604316547, "max_line_length": 80, "alphanum_fraction": 0.7223506401, "include": true, "reason": "import numpy", "num_tokens": 3226}
# Reference from http://bluewhale.cc/2017-09-22/use-python-opencv-for-image-template-matching-match-template.html import cv2 import numpy as np def similarity(img,tar): # img=cv2.imread(image,0) # tar=cv2.imread(target,0) img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) tar=cv2.cvtColor(tar,cv2.COLOR_BGR2GRAY) img=get_two(img) tar=get_two(tar) ret=cv2.compare(img,tar,cv2.CMP_EQ) ret=np.sum(ret) return ret def match(img,tar): # img=cv2.imread(image,0) # tar=cv2.imread(target,0) ret=cv2.matchTemplate(img,tar,cv2.TM_CCOEFF_NORMED) ret=cv2.minMaxLoc(ret) return ret def match_pos(img,tar): return match(img,tar)[3] def match_val(img,tar): return match(img,tar)[1] def get_arr(image,through=None): ret=cv2.imread(image) if not through is None: ret=ret[:,:,through] return ret def get_two(img,thresh=None): if thresh is None: ret,img=cv2.threshold(img,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU) else: ret,img=cv2.threshold(img,thresh,255,cv2.THRESH_BINARY) return img def match_diff(img,tar): # img=get_arr(image) # tar=get_arr(target) x,y,z=img.shape ret=np.zeros(img.size).reshape((x,y,z)) for i in range(x): for j in range(y): for k in range(z): a=int(img[i][j][k])-int(tar[i][j][k]) if a<100 and a>-100: ret[i][j][k]=0 else: ret[i][j][k]=255 return ret if __name__=='__main__': print("Matcher Here")
{"hexsha": "e98258596f9453490514e698b83b93a26beb3653", "size": 1550, "ext": "py", "lang": "Python", "max_stars_repo_path": "matcher.py", "max_stars_repo_name": "Jerry-Terrasse/LlfSystem", "max_stars_repo_head_hexsha": "069d9e6935cfae19f1d2c17dfe3dcf1a75515f53", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2019-05-15T02:24:16.000Z", "max_stars_repo_stars_event_max_datetime": "2020-07-31T14:03:21.000Z", "max_issues_repo_path": "matcher.py", "max_issues_repo_name": "Jerry-Terrasse/LlfSystem", "max_issues_repo_head_hexsha": "069d9e6935cfae19f1d2c17dfe3dcf1a75515f53", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 5, "max_issues_repo_issues_event_min_datetime": "2019-05-17T13:41:00.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-11T23:46:17.000Z", "max_forks_repo_path": "matcher.py", "max_forks_repo_name": "Jerry-Terrasse/LlfSystem", "max_forks_repo_head_hexsha": "069d9e6935cfae19f1d2c17dfe3dcf1a75515f53", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2019-05-18T03:49:38.000Z", "max_forks_repo_forks_event_max_datetime": "2019-07-27T09:16:05.000Z", "avg_line_length": 26.2711864407, "max_line_length": 113, "alphanum_fraction": 0.62, "include": true, "reason": "import numpy", "num_tokens": 447}
#pragma once #include <Core/RaCore.hpp> #include <Eigen/Core> #include <Eigen/Geometry> namespace Ra { namespace Core { namespace Geometry { /// An oriented bounding box. class Obb { public: using Transform = Eigen::Transform<Scalar, 3, Eigen::Affine>; using Aabb = Eigen::AlignedBox<Scalar, 3>; /// Constructors and destructor. /// Initializes an empty bounding box. inline Obb() : m_aabb(), m_transform( Transform::Identity() ) {} /// Initialize an OBB from an AABB and a transform. inline Obb( const Aabb& aabb, const Transform& tr ) : m_aabb( aabb ), m_transform( tr ) {} /// Default copy constructor and assignment operator. Obb( const Obb& other ) = default; Obb& operator=( const Obb& other ) = default; virtual inline ~Obb() {} /// Return the AABB enclosing this inline Aabb toAabb() const { if ( m_aabb.isEmpty() ) { return m_aabb; } Aabb tmp; for ( int i = 0; i < 8; ++i ) { tmp.extend( worldCorner( i ) ); } return tmp; } /// Extends the OBB with an new point. inline void addPoint( const Eigen::Matrix<Scalar, 3, 1>& p ) { m_aabb.extend( p ); } /// Returns the position of the i^th corner of AABB (model space) inline Eigen::Matrix<Scalar, 3, 1> corner( int i ) const { return m_aabb.corner( static_cast<Aabb::CornerType>( i ) ); } /// Returns the position of the ith corner of the OBB ( world space ) inline Eigen::Matrix<Scalar, 3, 1> worldCorner( int i ) const { return m_transform * m_aabb.corner( static_cast<Aabb::CornerType>( i ) ); } /// Non-const access to the obb transformation Transform& transform() { return m_transform; } /// Const access to the obb transformation const Transform& transform() const { return m_transform; } private: /// The untransformed AABB Aabb m_aabb; /// Orientation of the box. Transform m_transform; }; } // namespace Geometry } // namespace Core } // namespace Ra
{"hexsha": "fd44f0b1dc52762bd8b2cf14650f3b07e7977089", "size": 2034, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "src/Core/Geometry/Obb.hpp", "max_stars_repo_name": "Yasoo31/Radium-Engine", "max_stars_repo_head_hexsha": "e22754d0abe192207fd946509cbd63c4f9e52dd4", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 78.0, "max_stars_repo_stars_event_min_datetime": "2017-12-01T12:23:22.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-31T05:08:09.000Z", "max_issues_repo_path": "src/Core/Geometry/Obb.hpp", "max_issues_repo_name": "neurodiverseEsoteric/Radium-Engine", "max_issues_repo_head_hexsha": "ebebc29d889a9d32e0637e425e589e403d8edef8", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 527.0, "max_issues_repo_issues_event_min_datetime": "2017-09-25T13:05:32.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-31T18:47:44.000Z", "max_forks_repo_path": "src/Core/Geometry/Obb.hpp", "max_forks_repo_name": "neurodiverseEsoteric/Radium-Engine", "max_forks_repo_head_hexsha": "ebebc29d889a9d32e0637e425e589e403d8edef8", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 48.0, "max_forks_repo_forks_event_min_datetime": "2018-01-04T22:08:08.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-03T08:13:41.000Z", "avg_line_length": 29.0571428571, "max_line_length": 94, "alphanum_fraction": 0.6297935103, "num_tokens": 528}
import json import numpy as np import os import random import re import sklearn.linear_model import sklearn.preprocessing import time EMB_DIR = '/tmp/basilica-embeddings/' files = [f for f in os.listdir(EMB_DIR)] random.shuffle(files) train_size = int(len(files)*0.8) x_train = np.zeros((train_size, 2048)) x_test = np.zeros((len(files)-train_size, 2048)) y_train = np.zeros(train_size, dtype=int) y_test = np.zeros(len(files)-train_size, dtype=int) for i in range(train_size): filename = files[i] with open(EMB_DIR + filename, 'r') as f: x_train[i] = json.load(f) y_train[i] = (0 if re.match('.*cat.*', filename) else 1) for i in range(len(files) - train_size): filename = files[train_size+i] with open(EMB_DIR + filename, 'r') as f: x_test[i] = json.load(f) y_test[i] = (0 if re.match('.*cat.*', filename) else 1) x_train = sklearn.preprocessing.normalize(x_train) x_test = sklearn.preprocessing.normalize(x_test) model = sklearn.linear_model.LogisticRegression() model.fit(x_train, y_train) print('Train accuracy: %.3f' % model.score(x_train, y_train)) print('Test accuracy: %.3f' % model.score(x_test, y_test)) test_proba = model.predict_proba(x_test) probabilities = [(pred[y], f) for f, y, pred in zip(files[train_size:], y_test, test_proba)] probabilities.sort() for prob, filename in probabilities[:3]: print('%s: %.2f' % (filename, prob))
{"hexsha": "b128c62dcc41477cd869efb0daf8071ff53646ff", "size": 1406, "ext": "py", "lang": "Python", "max_stars_repo_path": "module2-consuming-data-from-an-api/training_a_classifier.py", "max_stars_repo_name": "nrvanwyck/DS-Unit-3-Sprint-3-Productization-and-Cloud", "max_stars_repo_head_hexsha": "186a2420ddaf0ca1b229982e05867b88d9c66fd5", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "module2-consuming-data-from-an-api/training_a_classifier.py", "max_issues_repo_name": "nrvanwyck/DS-Unit-3-Sprint-3-Productization-and-Cloud", "max_issues_repo_head_hexsha": "186a2420ddaf0ca1b229982e05867b88d9c66fd5", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 5, "max_issues_repo_issues_event_min_datetime": "2021-03-19T03:07:23.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-12T00:00:28.000Z", "max_forks_repo_path": "cats_dogs_demo/training_a_classifier.py", "max_forks_repo_name": "mjh09/twitoff", "max_forks_repo_head_hexsha": "e1ae76b4dd436d979c46ee5770aac82b35755b0a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 31.9545454545, "max_line_length": 92, "alphanum_fraction": 0.7012802276, "include": true, "reason": "import numpy", "num_tokens": 388}
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.autograd import Variable from src.models.lang_model.w2v_averager_model import W2vAveragerModel from src.models.lang_model.embedding_model import EmbeddingModel import src.models.time_series.ts_models as ts import src.models.time_series.latent_to_params as latent_to_params import numpy as np import matplotlib.animation as animation class StripTemporalCF(nn.Module): """ Stripped Megamodel class. Comprises: --- Always Necessary --- Language Model String - Either Avg or Embedding. If avg, uses average word vector features. If embedding, uses a learned embedding from the item id. Latent to params hidden dims: A list of the sizes of the hidden units in the MLP that produces the parameter outputs Time model string: Either LinRegress or OnlyMLP. LinRegress learns slope and intercept for each user, question pair. OnlyMLP directly produces the respones. User Latent Model - Embedding module Time Model - Matrix Factorization (no time), Linear Regression, Markov Chain Latent to Time Series Parameters - MLP for Linear Regression/Markov Chain, Dot Product for Matrix Factorization --- Optional --- Metadata Model - Linear layer (optional), only for politifact task ---------------------------------------------------------------------------- The models are composed in the following structure: question_latent_model ----------------\ \ -> latent_to_time_series_parameters -> time_model / user_latent_model --------------------/> ---------------------------------------------------------------------------- """ def __init__(self, language_model_string, latent_to_params_hidden_dims, time_model_string, task, use_metadata, time_ordinal, language_embed_dim, softmax, metadata_size, num_users, user_embed_size, include_q_embed, question_map_dict, temperature=10): """ Builds the components of the TemporalCF. These are: language_model_string (str): language model latent_to_params_hidden_dims (list): hidden layer dimension sizes for latent to param MLP task (str): whether dataset is 'synthetic', 'politifact' or 'fermi'. Necessary to use the correct time sequence. use_metadata (bool): whether to use metadata in the model softmax (bool): whether to use the softmax in the time series model time_ordinal: whether the time for the linear regression uses times [0, 1, 2] insted of the actual numerical times. include_q_embed: Whether to use an item embedding from the question_id as well as the metadata information. question_map_dict: Maps question text to id. Necessary for include_q_embed. temperature: Temperature to use in the softmax. """ super(StripTemporalCF, self).__init__() self.time_model_string = time_model_string self.include_q_embed = include_q_embed ################################ ######## LANGUAGE MODEL ######## ################################ assert language_model_string in ["avg", "embedding"], "language model not implemented" if include_q_embed: if language_model_string == 'embedding' and question_map_dict is None: raise ValueError("if using embeddings, must provide a `question map dict`" + "to map each question to an embedding") elif language_model_string == "avg": transform_layer = nn.Linear(50, language_embed_dim) self.question_latent_model = nn.Sequential(W2vAveragerModel(False), transform_layer) elif language_model_string == 'embedding': self.question_latent_model = EmbeddingModel(question_map_dict, language_embed_dim) ################################ ######## METADATA ######## ################################ if use_metadata: self.metadata_latent_model = torch.nn.Linear(metadata_size, language_embed_dim) self.user_latent_model = torch.nn.Embedding(num_users, user_embed_size) else: self.metadata_latent_model = None self.user_latent_model = torch.nn.Embedding(num_users, user_embed_size) ################################ ######## TIME SERIES MODEL ######## ################################ if time_model_string == 'LinRegress': if task == 'politifact': # times from politifact task times = np.array([30, 90, 360]) else: # times from Fermi, times = np.array([20, 60, 180]) if time_ordinal: times = np.array([0, 1, 2]) # convert times to FloatTensor, using cuda if necessary self.ts_model = ts.LinRegress(times, temperature=temperature, softmax=softmax) elif time_model_string == 'OnlyMLP': self.ts_model = ts.OnlyMLP(temperature=temperature, softmax=softmax) ################################ ######## LATENT TO PARAM ######## ################################ latent_dimension = user_embed_size if use_metadata: latent_dimension += language_embed_dim if include_q_embed: latent_dimension += language_embed_dim self.latent_to_param = latent_to_params.CatMLP(latent_dimension, latent_to_params_hidden_dims, self.ts_model.param_dim) def forward(self, user_ids, item_texts, metadata_items, return_vals=False): """Combines the forwards of the TemporalCF. Follows structure of class docstring.""" user_vals = self.user_latent_model.forward(user_ids) if self.metadata_latent_model is not None: meta_vals = self.metadata_latent_model.forward(metadata_items) if self.include_q_embed: item_vals = self.question_latent_model.forward(item_texts) item_vals = torch.cat([item_vals, meta_vals], 1) else: item_vals = meta_vals else: if self.include_q_embed: item_vals = self.question_latent_model.forward(item_texts) else: item_vals = None params = self.latent_to_param.forward( user_vals, item_vals, None, None) ans = self.ts_model.forward(params) return ans def cuda(self): super(StripTemporalCF, self).cuda() self.question_latent_model.cuda() self.ts_model.cuda() def cpu(self): super(StripTemporalCF, self).cpu() self.question_latent_model.cpu() self.ts_model.cpu() class CompiledStripTemporalCF: def __init__(self, network, weight, num_epochs, batch_size, optim_params, use_cuda=False, l1_coef=0, optimizer="SGD", cross_entropy=False): """ fit method takes a ContentDataset and fits it for num_epochs (passed at initialisation) Parameters ---------- batch_size (int): the size of each training batch network (ContentMF): a network that fits using user_ids and item_texts num_epochs (int): the number of training epochs optim_params (dict): parameters passed to the Stochastic Gradient Descent (SGD) class use_cuda (bool): set to True to use the GPU """ self.batch_size = batch_size self.network = network self.num_epochs = num_epochs self.optim_params = optim_params self.loss_fn = nn.MSELoss self.use_cuda = use_cuda # by default there is no L1 loss, l1_coef = 0 self.l1_coef = l1_coef self.optimizer = optimizer self.weight = weight self.time_model_string = self.network.time_model_string # TODO: probably move use_cuda and dataloader_extract to a Superclass / MixIn if use_cuda: print('using cuda') self.network.cuda() self.floattype = torch.cuda.FloatTensor self.inttype = torch.cuda.LongTensor self.bytetype = torch.cuda.ByteTensor else: self.floattype = torch.FloatTensor self.inttype = torch.LongTensor self.bytetype = torch.ByteTensor # for param in self.network.parameters(): # param = param/100 # # TODO: not for language def dataloader_extract(self, sample): ratings = Variable(sample['rating'].type(self.floattype)).squeeze() user_ids = Variable(sample['user_id'].type(self.inttype)) item_ids = Variable(sample['item_id'].type(self.inttype)) item_metadata = Variable(sample['item_metadata'].type(self.floattype)) item_text = sample['item_text'] return ratings, user_ids, item_ids, item_metadata, item_text def weighted_mse_loss(self, inputs, targets, weights): return torch.sum(weights * (inputs - targets) ** 2) def fit(self, train_set, train_sampler, val_set, val_sampler, verbose, patience=5000, eps=1e-4, schedule_epochs=[50], schedule_reductions=[5], animate=False): assert len(schedule_epochs) == len(schedule_reductions) import time if animate: fig, axes, ims = self.set_up_animation() self.network.train() t0 = time.time() data_loader = DataLoader( train_set, batch_size=self.batch_size, sampler=train_sampler) param_groups = self.get_param_groups() opt = getattr(optim, self.optimizer)(param_groups) # for L1 loss l1_crit = nn.L1Loss(size_average=False) train_loss_list = [] mse_val_loss_list = [] time_list = [] stopping_counter = 0 min_val_loss = None for epoch in range(self.num_epochs): epoch_loss = 0 total_scored = 0.0 # Number of ratings we score on # Schedule the reduction in the learning rates if len(schedule_epochs) > 0: if epoch == schedule_epochs[0]: schedule_epochs.pop(0) reduction = schedule_reductions.pop(0) for p in opt.param_groups: p['lr'] = p['lr'] / reduction for i, sample in enumerate(data_loader): ratings, user_ids, item_ids, item_metadata, item_text = self.dataloader_extract( sample) # We can get some wacky results if we feed in batches # that are not full-size, so check for this if ratings.size == torch.Size([]): continue # If rating is a singleton tensor if len(ratings) < self.batch_size: continue opt.zero_grad() # We form the prediction as a bs x 3 tensor. # We don't have all the actual responses, so need to # filter out the corresponding predictions where there # are nans in the responses pred = self.network.forward(user_ids, item_text, item_metadata) ones = torch.Tensor(torch.ones(ratings.shape)) weight_matrix = (torch.Tensor(self.weight)*ones).type(self.floattype) # Calculate response mask from ratings response_mask = ~np.isnan(ratings) response_mask = response_mask.type(self.bytetype) # Now we need to only update on the provided targets masked_ratings = torch.masked_select(ratings, response_mask) masked_weights = torch.masked_select(weight_matrix, response_mask) masked_preds = torch.masked_select(pred, response_mask) loss = self.weighted_mse_loss(masked_preds, masked_ratings, masked_weights) # L1 loss reg_loss = 0 for name, param in self.network.named_parameters(): reg_loss += l1_crit(param, torch.zeros_like(param)) loss += self.l1_coef * reg_loss loss.backward() opt.step() epoch_loss += loss.data total_scored += len(masked_ratings) tdiff = time.time() - t0 assert total_scored > 0, "Train set is smaller than batch_size" av_train_loss = ( epoch_loss / total_scored) val_outs = self.validate(val_set, val_sampler) val_mse_loss, masked_preds, masked_ratings, masked_weights, _ = val_outs av_val_loss = val_mse_loss if animate: fig, axes, ims = self.add_animation_panels(fig, axes, ims, train_set, train_sampler, masked_ratings, masked_preds, response_mask, pred, train_loss_list, epoch, mse_val_loss_list) # Early stopping if min_val_loss is None: min_val_loss = av_val_loss elif av_val_loss < min_val_loss - eps: # Reset counter if we have improved validation loss min_val_loss = av_val_loss stopping_counter = 0 else: # Increment counter, stopping if we have plateaued stopping_counter += 1 if stopping_counter > patience: print('Stopping at epoch {}'.format(epoch)) break if verbose: print('epoch {0:4d}\ttrain_loss = {1:6.5f}\tval_mse_loss = {2:6.5f}\tElapsed time: {3:8.1f}'.format( epoch, av_train_loss, val_mse_loss, tdiff)) train_loss_list.append(av_train_loss.item()) mse_val_loss_list.append(val_mse_loss.item()) time_list.append(tdiff) if animate: ani = animation.ArtistAnimation(fig, ims, interval=100, blit=True, repeat_delay=1000, repeat=True) import time ani.save('../results/test{}.mp4'.format(str(time.time()).split('.')[0]), fps=15) return train_loss_list, mse_val_loss_list, time_list def _extract_data(self, dataset, sampler): data_loader = DataLoader(dataset, batch_size=len(dataset), sampler=sampler) assert len(data_loader) == 1, 'data loader should have size 1' sample = next(data_loader.__iter__()) # dataloader takes one (sub)set of the dataset ratings, user_ids, item_ids, item_metadata, item_text = self.dataloader_extract(sample) assert ratings.size() != torch.Size([]), 'ratings size empty' assert len(ratings) >= self.batch_size, 'not enough ratings compared to batch size' return ratings, user_ids, item_ids, item_metadata, item_text def _predict(self, user_ids, item_text, item_metadata): self.network.eval() pred = self.network.forward(user_ids, item_text, item_metadata) self.network.train() return pred def predict(self, dataset, sampler): ratings, user_ids, item_ids, item_metadata, item_text = self._extract_data(dataset, sampler) pred = self._predict(user_ids, item_text, item_metadata) return pred.detach().numpy() def validate(self, dataset, sampler): """For validate we assume we are looking at a set of responses with only slow entries. We set the weight matrix to the unit so that the validation mse is the actual MSE (as opposed to the train, which can be different due to the weighting of different times)""" ratings, user_ids, item_ids, item_metadata, item_text = self._extract_data(dataset, sampler) # valid_loss = self.loss_fn() pred = self._predict(user_ids, item_text, item_metadata) weight_matrix = torch.Tensor(torch.ones(ratings.shape)).type(self.floattype) response_mask = ~np.isnan(ratings) response_mask = response_mask.type(self.bytetype) masked_ratings = torch.masked_select(ratings, response_mask) masked_preds = torch.masked_select(pred, response_mask) masked_weights = torch.masked_select(weight_matrix, response_mask) val_mse_loss = self.weighted_mse_loss(masked_preds, masked_ratings, masked_weights) av_val_mse_loss = val_mse_loss.data / len(masked_ratings) # Return item list sorted by MSE on last item mse = ((pred - ratings)**2) zipped_responses = zip(mse.cpu().data.numpy(), masked_preds.cpu().data.numpy(), masked_ratings.cpu().data.numpy(), user_ids.cpu().data.numpy(), item_ids.cpu().data.numpy(), item_text, item_metadata) return av_val_mse_loss, masked_preds, masked_ratings, masked_weights, list(zipped_responses) def set_up_animation(self): import matplotlib.pyplot as plt fig, axes = plt.subplots(3, 5, figsize=(40, 20)) axes[0, 0].set_xlim([-0.1, 1.1]) axes[0, 0].set_ylim([-0.1, 1.1]) axes[0, 1].set_xlim([-0.1, 1.1]) axes[0, 1].set_ylim([-0.1, 1.1]) axes[1, 4].set_ylim([0.09, 0.13]) ims = [] return fig, axes, ims def get_param_groups(self, remove_lang_weight_decay=True): """Returns a list of parameter groups dictionaries. If remove_lang_weight_decay, we stop any weight decay happening to the language model as it's probably not a good idea to regularize the LSTM weights directly in that way.""" param_groups_list = [] for sub_model in self.network.children(): params = filter(lambda p: p.requires_grad, sub_model.parameters()) optim_params = self.optim_params.copy() optim_params['params'] = params param_groups_list.append(optim_params) return param_groups_list def add_animation_panels(self, fig, axes, ims, train_set, train_sampler, masked_ratings, masked_preds, response_mask, pred, train_loss_list, epoch, mse_val_loss_list): _, _, train_masked_preds, train_masked_ratings, _, _ = self.validate(train_set, train_sampler) im1 = axes[0, 0].scatter(train_masked_ratings.data, train_masked_preds.data, c='b', alpha=0.1) im2 = axes[0, 1].scatter(masked_ratings.data, masked_preds.data, c='b', alpha=0.5) metadata_weights = self.network.metadata_latent_model.weight.detach().numpy()[0] im3 = axes[0, 2].hist(metadata_weights, 20, color='C1', edgecolor='k', linewidth=1) axes[0, 2].set_xlabel('Metadata Weights') user_weights = self.network.user_latent_model.weight.detach().numpy() im4 = axes[0, 3].hist(user_weights, np.linspace(-2, 2, 21), color='C2', linewidth=1, edgecolor='k') axes[0, 3].set_xlabel('User Weights') latent_to_param_weights_1 = self.network.latent_to_param.net.layers[0].weight.detach().numpy().flatten() latent_to_param_weights_2 = self.network.latent_to_param.net.layers[1].weight.detach().numpy().flatten() latent_to_param_weights_3_0 = self.network.latent_to_param.net.layers[2].weight[0, :].detach().numpy().flatten() latent_to_param_weights_3_1 = self.network.latent_to_param.net.layers[2].weight[1, :].detach().numpy().flatten() im5 = axes[0, 4].hist(latent_to_param_weights_1, 10, color='C3', linewidth=1, edgecolor='k') axes[0, 4].set_xlabel('Latent to Param Weights Layer 1') im6 = axes[1, 0].hist(latent_to_param_weights_2, 10, color='C3', linewidth=1, edgecolor='k') axes[1, 0].set_xlabel('Latent to Param Weights Layer 2') im7 = axes[1, 1].hist(latent_to_param_weights_3_0, 10, color='C3', linewidth=1, edgecolor='k') axes[1, 1].set_xlabel('Latent to Param Weights Layer 3 to Slope') im8 = axes[1, 2].hist(latent_to_param_weights_3_1, 10, color='C3', linewidth=1, edgecolor='k') axes[1, 2].set_xlabel('Latent to Param Weights Layer 3 to Intercept') im9 = [] for index, response_row in enumerate(response_mask): if response_row[0] == 1 and response_row[1] == 1 and response_row[2] == 1: # Only plot for full rows: line = axes[1, 3].plot([0, 1, 2], pred[index, :].detach().numpy(), c='k', alpha=0.2) im9.append(line[0]) im10 = [] if len(train_loss_list) > 0: line2 = axes[1, 4].plot(range(epoch), train_loss_list, c='b') line20 = axes[1, 4].scatter([epoch-1], train_loss_list[-1], c='b', s=15) line3 = axes[1, 4].plot(range(epoch), mse_val_loss_list, c='r') line30 = axes[1, 4].scatter([epoch-1], mse_val_loss_list[-1], c='r', s=15) im10.extend([line2[0], line3[0], line20, line30]) to_list = [im1, im2] to_list.extend(im3[2]) to_list.extend(im4[2]) to_list.extend(im5[2]) to_list.extend(im6[2]) to_list.extend(im7[2]) to_list.extend(im8[2]) to_list.extend(im9) to_list.extend(im10) ims.append(to_list) return fig, axes, ims
{"hexsha": "44f54c4d3ea788c108f41fab41d22180e0d12c39", "size": 22519, "ext": "py", "lang": "Python", "max_stars_repo_path": "src/models/content_aware/strip_temporal_cf.py", "max_stars_repo_name": "oughtinc/psj", "max_stars_repo_head_hexsha": "e7c5e987039ce7978234e137167991a61371604b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 5, "max_stars_repo_stars_event_min_datetime": "2018-07-16T23:01:40.000Z", "max_stars_repo_stars_event_max_datetime": "2019-08-18T14:49:06.000Z", "max_issues_repo_path": "src/models/content_aware/strip_temporal_cf.py", "max_issues_repo_name": "oughtinc/psj", "max_issues_repo_head_hexsha": "e7c5e987039ce7978234e137167991a61371604b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2018-07-09T17:33:52.000Z", "max_issues_repo_issues_event_max_datetime": "2018-07-09T17:33:52.000Z", "max_forks_repo_path": "src/models/content_aware/strip_temporal_cf.py", "max_forks_repo_name": "oughtinc/psj", "max_forks_repo_head_hexsha": "e7c5e987039ce7978234e137167991a61371604b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 45.128256513, "max_line_length": 120, "alphanum_fraction": 0.5817753897, "include": true, "reason": "import numpy", "num_tokens": 4751}
#-*-coding: utf-8 -*- #Imagelerde Aritmatik Islemler - Resim Birlestirme import numpy as np import cv2 img1=cv2.imread('resimler/cameraman.tif') img2=cv2.imread('resimler/text.tif') #birlestirilecek resimler aynı boyutta olmalı. #g(X)=(1-a)xF0(X)+axF1(X) denklemi kullanılarak eklenecek #resimlerin agırlık degerleri belirlenir. #dst=a x img1 + b x img2 + y #resimleri belirlenen agırlık degerleri ile birbirine ekler. birlestir=cv2.addWeighted(img1,0.3,img2,0.7,0) cv2.imshow('birsestir',birlestir) cv2.waitKey(0) cv2.destroyAllWindows()
{"hexsha": "1bc34249d85da80faa6d6efd0d8aef3ee70e04c3", "size": 561, "ext": "py", "lang": "Python", "max_stars_repo_path": "Goruntu Isleme/Beginning/ornk12.py", "max_stars_repo_name": "NevzatBOL/Paket-Kurulumlar-", "max_stars_repo_head_hexsha": "f5ce3b8205b11d072b9dadd305c11c278f184388", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 38, "max_stars_repo_stars_event_min_datetime": "2017-11-12T20:26:44.000Z", "max_stars_repo_stars_event_max_datetime": "2022-02-16T08:14:25.000Z", "max_issues_repo_path": "Goruntu Isleme/Beginning/ornk12.py", "max_issues_repo_name": "NevzatBOL/Paket-Kurulumlar-", "max_issues_repo_head_hexsha": "f5ce3b8205b11d072b9dadd305c11c278f184388", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2019-05-02T08:22:26.000Z", "max_issues_repo_issues_event_max_datetime": "2019-08-19T12:43:05.000Z", "max_forks_repo_path": "Goruntu Isleme/Beginning/ornk12.py", "max_forks_repo_name": "NevzatBOL/Paket-Kurulumlar-", "max_forks_repo_head_hexsha": "f5ce3b8205b11d072b9dadd305c11c278f184388", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 24, "max_forks_repo_forks_event_min_datetime": "2018-02-01T18:21:27.000Z", "max_forks_repo_forks_event_max_datetime": "2021-09-15T06:48:47.000Z", "avg_line_length": 29.5263157895, "max_line_length": 61, "alphanum_fraction": 0.7450980392, "include": true, "reason": "import numpy", "num_tokens": 208}
\chapter*{Introduction} \addcontentsline{toc}{section}{Introduction} \chaptermark{Introduction} \pagenumbering{arabic} % ! TODO: Delete this line \lipsum[1-3] Random citation \cite{DUMMY:1} embeddeed in text. \lipsum[4-6]
{"hexsha": "e4434d7cc7bca22bb18871660f8b9bdd3b9d3777", "size": 222, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "chapters/03.Introduction.tex", "max_stars_repo_name": "MECHEDDAL-Hani/Thesis-template", "max_stars_repo_head_hexsha": "dbb83c1686b0be1cc56419a07f81effcad5d6ec6", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 10, "max_stars_repo_stars_event_min_datetime": "2022-03-02T16:34:34.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-14T13:07:30.000Z", "max_issues_repo_path": "chapters/03.Introduction.tex", "max_issues_repo_name": "MECHEDDAL-Hani/Thesis-template", "max_issues_repo_head_hexsha": "dbb83c1686b0be1cc56419a07f81effcad5d6ec6", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "chapters/03.Introduction.tex", "max_forks_repo_name": "MECHEDDAL-Hani/Thesis-template", "max_forks_repo_head_hexsha": "dbb83c1686b0be1cc56419a07f81effcad5d6ec6", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2022-03-08T11:52:05.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-08T11:52:05.000Z", "avg_line_length": 24.6666666667, "max_line_length": 49, "alphanum_fraction": 0.7702702703, "num_tokens": 71}
import time import numpy as np import collections import so3g class Timer(): def __init__(self, block_name=None): self.t0 = time.time() def __enter__(self): return self def report(self): return time.time() - self.t0 def __exit__(self, exc_type, exc_value, exc_traceback): print('Timer block exits after %.6f seconds' % (time.time() - self.t0)) def Qmul(q1, q2, *args): qout = q1[...,:1] * q2 qout[...,1:] += q1[...,1:] * q2[...,:1] qout[...,0] -= (q1[...,1:] * q2[...,1:]).sum(axis=-1) qout[...,1] += q1[...,2]*q2[...,3] - q1[...,3]*q2[...,2] qout[...,2] += q1[...,3]*q2[...,1] - q1[...,1]*q2[...,3] qout[...,3] += q1[...,1]*q2[...,2] - q1[...,2]*q2[...,1] if len(args) == 0: return qout return Qmul(qout, args[0], *args[1:]) def Qroti(n,phi): """ Euler quaternion, appropriate for rotating by angle phi about axis n=(0,1,2). """ phi = np.asarray(phi)/2 out = np.zeros(np.asarray(phi).shape + (4,)) out[...,0 ] = np.cos(phi) out[...,n+1] = np.sin(phi) return out proj_dict = collections.OrderedDict([ ('flat', 'Flat'), ('car' , 'CAR'), ('cea' , 'CEA'), ('arc' , 'ARC'), ('tan' , 'TAN'), ('zea' , 'ZEA'), ]) def get_proj(coord_sys, pol_sys, pxz=None, tiled=False): assert pol_sys in ['T', 'TQU', 'QU'] tiling_word = '_Tiled' if tiled else '_NonTiled' name = f'ProjEng_{proj_dict[coord_sys]}_{pol_sys}{tiling_word}' #.format(proj_dict[coord_sys], pol_sys) cls = getattr(so3g, name) # ProjEng_X_Y if pxz is None: return cls return cls(pxz) def get_proj_precomp(tiled=False): tiling_word = '_Tiled' if tiled else '_NonTiled' name = f'ProjEng_Precomp{tiling_word}' cls = getattr(so3g, name) # ProjEng_X_Y return cls() def get_boresight_quat(system, x, y, gamma=None): if gamma is None: gamma = 0 if system == 'flat': # At each time step, boresight is (x, y, cos(phi), sin(phi)) n_t = len(x) ptg = np.zeros((n_t, 4)) ptg[...,0] = x ptg[...,1] = y ptg[...,2] = np.cos(gamma) ptg[...,3] = np.sin(gamma) elif system in ['car', 'cea']: # boresight needs to point to equinox... ptg = Qmul(Qroti(2, x), Qroti(1, np.pi/2 - y), Qroti(2, np.pi - gamma)) elif system in['arc', 'tan', 'zea']: # boresight needs to point to pole... ptg = Qmul(Qroti(1, y), Qroti(0, x), Qroti(2, gamma)) else: raise ValueError('Unknown system: "%s"' % system) return ptg def get_offsets_quat(system, dx, dy, polphi): if system == 'flat': ofs = np.transpose([dx, dy, np.cos(polphi), np.sin(polphi)]) else: ofs = Qmul(Qroti(0, dx), Qroti(1,-dy), Qroti(2, polphi)) return ofs def linalg_pinv(wmap): try: iwmap = np.linalg.pinv(wmap) except ValueError: # np.linalg.pinv only runs on stacks for numpy>=1.14 (Jan 2018), # so we hack an alternative. iwmap = np.empty(wmap.shape, wmap.dtype) for i in range(wmap.shape[0]): for j in range(wmap.shape[1]): iwmap[i,j] = np.linalg.pinv(wmap[i,j]) return iwmap
{"hexsha": "742c6eabf7f689ee568ae3f1e6866b585334f6f9", "size": 3336, "ext": "py", "lang": "Python", "max_stars_repo_path": "demos/test_utils.py", "max_stars_repo_name": "tskisner/so3g", "max_stars_repo_head_hexsha": "75c1d8dea84f862bdd2c9fa2c2f9d1c5b8da5eec", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 5, "max_stars_repo_stars_event_min_datetime": "2019-09-02T14:17:31.000Z", "max_stars_repo_stars_event_max_datetime": "2022-01-21T16:43:14.000Z", "max_issues_repo_path": "demos/test_utils.py", "max_issues_repo_name": "tskisner/so3g", "max_issues_repo_head_hexsha": "75c1d8dea84f862bdd2c9fa2c2f9d1c5b8da5eec", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 70, "max_issues_repo_issues_event_min_datetime": "2019-05-16T23:42:40.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-23T14:35:35.000Z", "max_forks_repo_path": "demos/test_utils.py", "max_forks_repo_name": "tskisner/so3g", "max_forks_repo_head_hexsha": "75c1d8dea84f862bdd2c9fa2c2f9d1c5b8da5eec", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2020-05-17T18:20:33.000Z", "max_forks_repo_forks_event_max_datetime": "2020-10-22T20:35:44.000Z", "avg_line_length": 28.2711864407, "max_line_length": 79, "alphanum_fraction": 0.5263788969, "include": true, "reason": "import numpy", "num_tokens": 1063}
"""Data Augmentaion for scaling n.i.O images from powertrain""" import argparse from operator import index import os, cv2, random import numpy as np import pandas as pd import scipy import tensorflow as tf import glob import PIL from keras_preprocessing.image import ImageDataGenerator, img_to_array, load_img # ============================================================================== # = param = # ============================================================================== def augmentation(dataset): """Augment all png or jpg images in a folder according to the args that have been passed by the terminal command Args: path Returns: Augmented files in the specified folder """ dataset_path = dataset save_directory = dataset # Keras Imagedatagenerator for automatic augmentation datagen = ImageDataGenerator( rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') '''try: os.mkdir(augmented_images) except OSError: print ("Creation of the directory %s failed" % augmented_images) else: print("Successfully created the directory %s " % augmented_images)''' # define parameters #files = os.listdir(dataset_path) pngs = glob.glob(os.path.join(dataset_path, '*.jpg')) + glob.glob(os.path.join(dataset_path, '*.png')) # define number of loops i=1 aug_images = 1 numb_images = len(pngs)*aug_images for index, j in enumerate(pngs): img = tf.keras.preprocessing.image.load_img(j) x = tf.keras.preprocessing.image.img_to_array(img) # x.shape returns[number of images, height, width, rgb channels] = [1, 1080, 1920, 3] x = x.reshape((1,) + x.shape) i = 1 for batch in datagen.flow(x, batch_size = 1, save_to_dir = save_directory, save_prefix = "aug_%s" %(index), save_format = 'png'): i = i+1 if i > aug_images: break print("Successfully created %s augmented Images" % numb_images) def data_augmentation(dataset, factor): parser = argparse.ArgumentParser(description= 'Data augmentation for training with images') parser.add_argument('--dataset', type=str, help='Directory where images will be augmented') args = parser.parse_args() try: augmentation(args.dataset) except FileNotFoundError: print("Wrong file/folder path") else: print("augmentation.py was successful")
{"hexsha": "635c1be42f077c875f3954a421bff6eda46db309", "size": 2777, "ext": "py", "lang": "Python", "max_stars_repo_path": "augmentation.py", "max_stars_repo_name": "molu1019/CycleGAN-Tensorflow-2", "max_stars_repo_head_hexsha": "69e51007718b76595313b24ed1fb7c3ee5ea346c", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "augmentation.py", "max_issues_repo_name": "molu1019/CycleGAN-Tensorflow-2", "max_issues_repo_head_hexsha": "69e51007718b76595313b24ed1fb7c3ee5ea346c", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "augmentation.py", "max_forks_repo_name": "molu1019/CycleGAN-Tensorflow-2", "max_forks_repo_head_hexsha": "69e51007718b76595313b24ed1fb7c3ee5ea346c", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.0649350649, "max_line_length": 116, "alphanum_fraction": 0.5866042492, "include": true, "reason": "import numpy,import scipy", "num_tokens": 585}
/** * Copyright (c) 2020 libnuls developers (see AUTHORS) * * This file is part of libnuls. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #ifndef LIBNULS_SYSTEM_CHAIN_POINT_HPP #define LIBNULS_SYSTEM_CHAIN_POINT_HPP #include <cstdint> #include <istream> #include <string> #include <vector> #include <boost/functional/hash.hpp> #include <nuls/system/define.hpp> #include <nuls/system/math/hash.hpp> #include <nuls/system/utility/data.hpp> #include <nuls/system/utility/reader.hpp> #include <nuls/system/utility/writer.hpp> namespace libnuls { namespace system { namespace chain { class BC_API point { public: /// This is a sentinel used in .index to indicate no output, e.g. coinbase. /// This value is serialized and defined by consensus, not implementation. static const uint32_t null_index; typedef std::vector<point> list; typedef std::vector<uint32_t> indexes; // Constructors. //------------------------------------------------------------------------- point(); point(point&& other); point(const point& other); point(hash_digest&& hash, uint32_t index); point(const hash_digest& hash, uint32_t index); // Operators. //------------------------------------------------------------------------- /// This class is move assignable and copy assignable. point& operator=(point&& other); point& operator=(const point& other); bool operator<(const point& other) const; bool operator==(const point& other) const; bool operator!=(const point& other) const; // Deserialization. //------------------------------------------------------------------------- static point factory(const data_chunk& data, bool wire=true); static point factory(std::istream& stream, bool wire=true); static point factory(reader& source, bool wire=true); bool from_data(const data_chunk& data, bool wire=true); bool from_data(std::istream& stream, bool wire=true); bool from_data(reader& source, bool wire=true); bool is_valid() const; // Serialization. //------------------------------------------------------------------------- data_chunk to_data(bool wire=true) const; void to_data(std::ostream& stream, bool wire=true) const; void to_data(writer& sink, bool wire=true) const; // Properties (size, accessors, cache). //------------------------------------------------------------------------- static size_t satoshi_fixed_size(bool wire=true); size_t serialized_size(bool wire=true) const; const hash_digest& hash() const; void set_hash(hash_digest&& value); void set_hash(const hash_digest& value); uint32_t index() const; void set_index(uint32_t value); // Utilities. //------------------------------------------------------------------------- /// This is for client-server, not related to consensus or p2p networking. uint64_t checksum() const; // Validation. //------------------------------------------------------------------------- bool is_null() const; protected: point(hash_digest&& hash, uint32_t index, bool valid); point(const hash_digest& hash, uint32_t index, bool valid); void reset(); private: hash_digest hash_; uint32_t index_; bool valid_; }; } // namespace chain } // namespace system } // namespace libnuls #endif
{"hexsha": "ff2e48e5313c8d4f9b9f6d9f01aa249d5352de72", "size": 3989, "ext": "hpp", "lang": "C++", "max_stars_repo_path": "include/nuls/system/chain/point.hpp", "max_stars_repo_name": "ccccbjcn/nuls-v2-cplusplus-sdk", "max_stars_repo_head_hexsha": "3d5a76452fe0673eba490b26e5a95fea3d5788df", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 1.0, "max_stars_repo_stars_event_min_datetime": "2020-04-26T07:32:52.000Z", "max_stars_repo_stars_event_max_datetime": "2020-04-26T07:32:52.000Z", "max_issues_repo_path": "include/nuls/system/chain/point.hpp", "max_issues_repo_name": "CCC-NULS/nuls-cplusplus-sdk", "max_issues_repo_head_hexsha": "3d5a76452fe0673eba490b26e5a95fea3d5788df", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "include/nuls/system/chain/point.hpp", "max_forks_repo_name": "CCC-NULS/nuls-cplusplus-sdk", "max_forks_repo_head_hexsha": "3d5a76452fe0673eba490b26e5a95fea3d5788df", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.9224806202, "max_line_length": 79, "alphanum_fraction": 0.6104286789, "num_tokens": 812}
from __future__ import print_function import numpy as np import theano import theano.tensor as T import lasagne try: input_text = open("shakespeare_input.txt", "r").read() input_text = input_text.decode("utf-8-sig").encode("utf-8") except Exception as e: raise IOError("Couldn't read input file") #Based on training input, predict what follows: generation_phrase = "First Citizen:\nBefore we proceed any further, hear me speak." vocabulary = list(set(input_text)) input_size = len(input_text) vocabulary_size = len(vocabulary) character_to_ix = {char:i for i, char in enumerate(vocabulary)} ix_to_character = {i:char for i, char in enumerate(vocabulary)} lasagne.random.set_rng(np.random.RandomState(1)) #Constants. Constants everywhere. SEQUENCE_SIZE = 20 HIDDEN_SIZE = 512 #Amount of units in the two LSTM layers LEARNING_RATE = 0.01 GRADIENT_CLAMP = 100 #Remove gradients above this number. PRINT_INTERVAL = 1 #How often to check output. EPOCHS = 50 #Number of epochs to train network. BATCH_SIZE = 128 def generate_data(p, batch_size=BATCH_SIZE, data=input_text, pass_target=True): x = np.zeros((batch_size, SEQUENCE_SIZE, vocabulary_size)) y = np.zeros(batch_size) for n in range(batch_size): pointer = n for i in range(SEQUENCE_SIZE): x[n, i, character_to_ix[data[p + pointer + i]]] = 1 if pass_target: y[n] = character_to_ix[data[p + pointer + SEQUENCE_SIZE]] return x, np.array(y, dtype="int32") def main(epochs=EPOCHS): print("Now building network ...") #Build the network, starting at input layer. #Recurrent layers need input of shape: #(batch_size, SEQUENCE_SIZE, number of feature) layer_input = lasagne.layers.InputLayer(shape=(None, None, vocabulary_size)) #Build Long Short Term Memory layer taking "layer_input" as first input. #Clamp the gradient to avoid the problem of exploding gradients. #Clamping/Clipping is defined by the "GRADIENT_CLAMP" ... layer_forward_01 = lasagne.layers.LSTMLayer( layer_input, HIDDEN_SIZE, grad_clipping=GRADIENT_CLAMP, nonlinearity=lasagne.nonlinearities.tanh) layer_forward_02 = lasagne.layers.LSTMLayer( layer_forward_01, HIDDEN_SIZE, grad_clipping=GRADIENT_CLAMP, nonlinearity=lasagne.nonlinearities.tanh) #The layer_forward creates output of dimension: #(batch_size, SEQUENCE_SIZE, HIDDEN_SIZE) #We care only about the final prediction, so we #isolate that quantity and feed it to the next layer. #Output of the sliced layer will be of dimension: #(batch_size, vocabulary_size) layer_forward_slice = lasagne.layers.SliceLayer(layer_forward_02, -1, 1) #The sliced output is parsed through softmax function to create #probability distribution layer_output = lasagne.layers.DenseLayer( layer_forward_slice, num_units=vocabulary_size, W=lasagne.init.Normal(), nonlinearity=lasagne.nonlinearities.softmax) target_values = T.ivector("target_output") network_output = lasagne.layers.get_output(layer_output) cost = T.nnet.categorical_crossentropy(network_output, target_values).mean() #Recieve all parameters from the network. all_parameters = lasagne.layers.get_all_params(layer_output, trainable=True) #Compute AdaGrad updates for training. print("Computing updates ...") updates = lasagne.updates.adagrad(cost, all_parameters, LEARNING_RATE) print("Compiling functions ...") train = theano.function([layer_input.input_var, target_values], cost, updates=updates, allow_input_downcast=True) compute_cost = theano.function([layer_input.input_var, target_values], cost, allow_input_downcast=True) probs = theano.function([layer_input.input_var], network_output, allow_input_downcast=True) def try_stuff(N=200): assert(len(generation_phrase)>=SEQUENCE_SIZE) sample_ix = [] x,_ = generate_data(len(generation_phrase) - SEQUENCE_SIZE, 1, generation_phrase,0) for i in range(N): # Pick the character that got assigned the highest probability ix = np.argmax(probs(x).ravel()) # Alternatively, to sample from the distribution instead: # ix = np.random.choice(np.arange(vocab_size), p=probs(x).ravel()) sample_ix.append(ix) x[:, 0:SEQUENCE_SIZE - 1,:] = x[:, 1:, :] x[:, SEQUENCE_SIZE - 1,:] = 0 x[0, SEQUENCE_SIZE - 1, sample_ix[-1]] = 1. random_snippet = generation_phrase + "".join(ix_to_character[ix] for ix in sample_ix) print("----\n %s \n----" % random_snippet) print("Training ...") print("Seed for generation is: %s" % generation_phrase) p = 0 try: for it in xrange(input_size * epochs / BATCH_SIZE): try_stuff() #Generate text using p^th character as the start. average_cost = 0; for _ in range(PRINT_INTERVAL): x, y = generate_data(p) p += SEQUENCE_SIZE + BATCH_SIZE - 1 if(p + BATCH_SIZE + SEQUENCE_SIZE >= input_size): print("Carriage return") p = 0 average_cost += train(x, y) print("Epoch {} average loss = {}".format(it * 1.0 * PRINT_INTERVAL / input_size * BATCH_SIZE, average_cost / PRINT_INTERVAL)) except KeyboardInterrupt: pass if __name__ == "__main__": main()
{"hexsha": "6743f057dc07be234f855ee223216b5ecd6df3cf", "size": 5587, "ext": "py", "lang": "Python", "max_stars_repo_path": "code/Experiments/Shakespeare/shakespeare.py", "max_stars_repo_name": "matthijsvk/convNets", "max_stars_repo_head_hexsha": "7e65db7857a4e6abfbcab264953eb7741319de6c", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 53, "max_stars_repo_stars_event_min_datetime": "2017-04-18T10:06:20.000Z", "max_stars_repo_stars_event_max_datetime": "2021-12-29T21:26:07.000Z", "max_issues_repo_path": "code/Experiments/Shakespeare/shakespeare.py", "max_issues_repo_name": "matthijsvk/convNets", "max_issues_repo_head_hexsha": "7e65db7857a4e6abfbcab264953eb7741319de6c", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "code/Experiments/Shakespeare/shakespeare.py", "max_forks_repo_name": "matthijsvk/convNets", "max_forks_repo_head_hexsha": "7e65db7857a4e6abfbcab264953eb7741319de6c", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 20, "max_forks_repo_forks_event_min_datetime": "2017-05-03T03:27:09.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-24T07:07:45.000Z", "avg_line_length": 42.9769230769, "max_line_length": 139, "alphanum_fraction": 0.6703060677, "include": true, "reason": "import numpy,import theano", "num_tokens": 1315}
import unittest import matplotlib.pyplot as plt import numpy as np import GooseMPL as gplt class Test_ticks(unittest.TestCase): """ Functions generating ticks. """ def test_log_ticks(self): ticks, labels = gplt.log_ticks((0, 3)) self.assertEqual(list(ticks), [1, 10, 100, 1000]) self.assertEqual(labels, [r"$10^{0}$", r"$10^{1}$", r"$10^{2}$", r"$10^{3}$"]) ticks, labels = gplt.log_ticks((0, 3), keep=[0, -1]) self.assertEqual(list(ticks), [1, 10, 100, 1000]) self.assertEqual(labels, [r"$10^{0}$", "", "", r"$10^{3}$"]) def test_log_ticks_plot(self): fig, ax = plt.subplots() ax.set_xlim([1, 1000]) ax.set_ylim([10, 1000]) ticks, labels = gplt.log_xticks() self.assertEqual(list(ticks), [1, 10, 100, 1000]) self.assertEqual(labels, [r"$10^{0}$", r"$10^{1}$", r"$10^{2}$", r"$10^{3}$"]) ticks, labels = gplt.log_yticks() self.assertEqual(list(ticks), [10, 100, 1000]) self.assertEqual(labels, [r"$10^{1}$", r"$10^{2}$", r"$10^{3}$"]) plt.close(fig) def test_log_minorticks(self): ticks, labels = gplt.log_minorticks((1, 10)) self.assertEqual(list(ticks), [2, 3, 4, 5, 6, 7, 8, 9]) self.assertEqual(labels, ["2", "3", "4", "5", "6", "7", "8", "9"]) def test_log_minorticks_plot(self): fig, ax = plt.subplots() ax.set_xlim([0.1, 10]) ax.set_ylim([0.01, 0.7]) ticks, labels = gplt.log_minorxticks() self.assertEqual( list(ticks), [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 2, 3, 4, 5, 6, 7, 8, 9] ) self.assertEqual( labels, [ "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9", "2", "3", "4", "5", "6", "7", "8", "9", ], ) ticks, labels = gplt.log_minoryticks() self.assertTrue( np.allclose( ticks, [ 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, ], ) ) self.assertEqual( labels, [ "0.02", "0.03", "0.04", "0.05", "0.06", "0.07", "0.08", "0.09", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", ], ) plt.close(fig) class Test_fit_powerlaw(unittest.TestCase): """ Fit a powerlaw. """ def test_prefactor_exponent(self): x = np.linspace(0, 1, 1000) y = 1.2 * x**3.4 prefactor, exponent, _ = gplt.fit_powerlaw(x, y) self.assertTrue(np.isclose(prefactor, 1.2)) self.assertTrue(np.isclose(exponent, 3.4)) def test_prefactor(self): x = np.linspace(0, 1, 1000) y = 1.2 * x**3.4 prefactor, exponent, _ = gplt.fit_powerlaw(x, y, exponent=3.4) self.assertTrue(np.isclose(prefactor, 1.2)) self.assertTrue(np.isclose(exponent, 3.4)) def test_exponent(self): x = np.linspace(0, 1, 1000) y = 1.2 * x**3.4 prefactor, exponent, _ = gplt.fit_powerlaw(x, y, prefactor=1.2) self.assertTrue(np.isclose(prefactor, 1.2)) self.assertTrue(np.isclose(exponent, 3.4)) class Test_fit_exp(unittest.TestCase): """ Fit an exponential. """ def test_prefactor_exponent(self): x = np.linspace(0, 1, 1000) y = 1.2 * np.exp(x * 3.4) prefactor, exponent, _ = gplt.fit_exp(x, y) self.assertTrue(np.isclose(prefactor, 1.2)) self.assertTrue(np.isclose(exponent, 3.4)) def test_prefactor_negative_exponent(self): x = np.linspace(0, 1, 1000) y = 1.2 * np.exp(x * -3.4) prefactor, exponent, _ = gplt.fit_exp(x, y) self.assertTrue(np.isclose(prefactor, 1.2)) self.assertTrue(np.isclose(exponent, -3.4)) def test_prefactor(self): x = np.linspace(0, 1, 1000) y = 1.2 * np.exp(x * 3.4) prefactor, exponent, _ = gplt.fit_exp(x, y, exponent=3.4) self.assertTrue(np.isclose(prefactor, 1.2)) self.assertTrue(np.isclose(exponent, 3.4)) def test_exponent(self): x = np.linspace(0, 1, 1000) y = 1.2 * np.exp(x * 3.4) prefactor, exponent, _ = gplt.fit_exp(x, y, prefactor=1.2) self.assertTrue(np.isclose(prefactor, 1.2)) self.assertTrue(np.isclose(exponent, 3.4)) class Test_fit_log(unittest.TestCase): """ Fit an logarithmic function. """ def test_prefactor_exponent(self): x = np.linspace(0, 1, 1000)[1:] y = 1.2 + 3.4 * np.log(x) offset, prefactor, _ = gplt.fit_log(x, y) self.assertTrue(np.isclose(offset, 1.2)) self.assertTrue(np.isclose(prefactor, 3.4)) def test_prefactor_negative_prefactor(self): x = np.linspace(0, 1, 1000)[1:] y = 1.2 - 3.4 * np.log(x) offset, prefactor, _ = gplt.fit_log(x, y) self.assertTrue(np.isclose(offset, 1.2)) self.assertTrue(np.isclose(prefactor, -3.4)) def test_prefactor(self): x = np.linspace(0, 1, 1000)[1:] y = 1.2 + 3.4 * np.log(x) offset, prefactor, _ = gplt.fit_log(x, y, prefactor=3.4) self.assertTrue(np.isclose(offset, 1.2)) self.assertTrue(np.isclose(prefactor, 3.4)) def test_exponent(self): x = np.linspace(0, 1, 1000)[1:] y = 1.2 + 3.4 * np.log(x) offset, prefactor, _ = gplt.fit_log(x, y, offset=1.2) self.assertTrue(np.isclose(offset, 1.2)) self.assertTrue(np.isclose(prefactor, 3.4)) class Test_fit_linear(unittest.TestCase): """ Fit a linear. """ def test_offset_slope(self): x = np.linspace(0, 1, 1000) y = 1.2 + 3.4 * x offset, slope, _ = gplt.fit_linear(x, y) self.assertTrue(np.isclose(offset, 1.2)) self.assertTrue(np.isclose(slope, 3.4)) def test_slope(self): x = np.linspace(0, 1, 1000) y = 1.2 + 3.4 * x offset, slope, _ = gplt.fit_linear(x, y, slope=3.4) self.assertTrue(np.isclose(offset, 1.2)) self.assertTrue(np.isclose(slope, 3.4)) def test_offset(self): x = np.linspace(0, 1, 1000) y = 1.2 + 3.4 * x offset, slope, _ = gplt.fit_linear(x, y, offset=1.2) self.assertTrue(np.isclose(offset, 1.2)) self.assertTrue(np.isclose(slope, 3.4)) class Test_cdf(unittest.TestCase): """ Cumulative probability density. """ def test_simple(self): data = np.array([0, 0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5]) xr = np.array([0, 1, 2, 3, 4, 5]) pr = np.array([2, 1, 1, 2, 3, 4]) / data.size p, x = gplt.cdf(data, less_equal=True) self.assertTrue(np.allclose(x, xr)) self.assertTrue(np.allclose(p, np.cumsum(pr))) p, x = gplt.cdf(data) self.assertTrue(np.allclose(x, xr)) self.assertTrue(np.allclose(p, np.cumsum([0] + pr.tolist())[:-1])) p, x = gplt.ccdf(data) self.assertTrue(np.allclose(x, xr)) self.assertTrue(np.allclose(p, np.cumsum(pr[::-1])[::-1])) p, x = gplt.ccdf(data, greater_equal=False) self.assertTrue(np.allclose(x, xr)) self.assertTrue(np.allclose(p, np.cumsum([0] + pr[::-1].tolist())[1::-1])) p, x = gplt.cdf(data) pc, xc = gplt.ccdf(data) self.assertTrue(np.allclose(x, xc)) self.assertTrue(np.allclose(1 - p, pc)) def test_random(self): data = np.random.random(10000) p, x = gplt.cdf(data) xp = np.linspace(0, 1, 100) pp = np.interp(xp, x, p) self.assertTrue(np.allclose(xp, pp, rtol=1e-1, atol=1e-1)) p, x = gplt.ccdf(data) xp = np.linspace(0, 1, 100) pp = np.interp(xp, x, p) self.assertTrue(np.allclose(1 - xp, pp, rtol=1e-1, atol=1e-1)) class Test_bin(unittest.TestCase): """ Bin data """ def test_simple(self): xdata = np.array([1, 1, 3, 3, 3, 5, 5]) ydata = np.array([2, 4, 1, 2, 3, 2, 4]) bin_edges = np.array([0, 2, 4, 6]) data = gplt.bin(xdata, ydata, bin_edges) self.assertTrue(np.allclose(data["x"], np.array([1, 3, 5]))) self.assertTrue(np.allclose(data["y"], np.array([3, 2, 3]))) self.assertTrue(np.allclose(data["xerr"], np.array([0, 0, 0]))) self.assertTrue( np.allclose(data["yerr"], np.array([np.std([2, 4]), np.std([1, 2, 3]), np.std([2, 4])])) ) median_data = gplt.bin(xdata, ydata, bin_edges, use_median=False) for key in data: self.assertTrue(np.allclose(data[key], median_data[key])) class Test_histogram_norm(unittest.TestCase): """ Histogram normalisation. """ def test_density(self): data = [0, 0, 0, 1, 1, 2] bin_edges = [-0.5, 0.5, 1.5, 2.5] p = gplt.histogram_norm(*np.histogram(data, bins=bin_edges)) q = gplt.histogram_norm(p, bin_edges) r, _ = np.histogram(data, bins=bin_edges, density=True) self.assertTrue(np.allclose(p, r)) self.assertTrue(np.allclose(q, r)) class Test_histogram_bin_edges2midpoint(unittest.TestCase): """ Midpoints of bins """ def test_simple(self): bin_edges = [-0.5, 0.5, 1.5, 2.5] mid = [0, 1, 2] self.assertTrue(np.allclose(gplt.histogram_bin_edges2midpoint(bin_edges), mid)) class Test_histogram_bin_edges_integer(unittest.TestCase): """ Bin edges. """ def test_front(self): a = [0, 0.5, 1.5, 2.5] b = [0, 1.5, 2.5] self.assertTrue(np.allclose(gplt.histogram_bin_edges_integer(a), b)) def test_middle(self): a = [0, 1.5, 1.6, 2.5] b = [0, 1.6, 2.5] self.assertTrue(np.allclose(gplt.histogram_bin_edges_integer(a), b)) def test_back(self): a = [0, 1.5, 2.5, 2.6] b = [0, 1.5, 2.6] self.assertTrue(np.allclose(gplt.histogram_bin_edges_integer(a), b)) if __name__ == "__main__": unittest.main()
{"hexsha": "fd3b5f45c31c24a372f40b55c96521b29a67beec", "size": 10751, "ext": "py", "lang": "Python", "max_stars_repo_path": "test/main.py", "max_stars_repo_name": "tdegeus/pyplot_ext", "max_stars_repo_head_hexsha": "d084fb6f5a824d9c9c3d1bf9a3c9ef9e579b4d7f", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "test/main.py", "max_issues_repo_name": "tdegeus/pyplot_ext", "max_issues_repo_head_hexsha": "d084fb6f5a824d9c9c3d1bf9a3c9ef9e579b4d7f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "test/main.py", "max_forks_repo_name": "tdegeus/pyplot_ext", "max_forks_repo_head_hexsha": "d084fb6f5a824d9c9c3d1bf9a3c9ef9e579b4d7f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.080604534, "max_line_length": 100, "alphanum_fraction": 0.5085108362, "include": true, "reason": "import numpy", "num_tokens": 3301}
[STATEMENT] lemma in_Gr[simp]: shows "(x,y) \<in> BNF_Def.Gr A f \<longleftrightarrow> x \<in> A \<and> f x = y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((x, y) \<in> BNF_Def.Gr A f) = (x \<in> A \<and> f x = y) [PROOF STEP] unfolding BNF_Def.Gr_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((x, y) \<in> {(a, f a) |a. a \<in> A}) = (x \<in> A \<and> f x = y) [PROOF STEP] by auto
{"llama_tokens": 199, "file": "Graph_Saturation_MissingRelation", "length": 2}
""" Test `sinethesizer.envelopes.user_defined` module. Author: Nikolay Lysenko """ from typing import Any, Dict, List import numpy as np import pytest from sinethesizer.envelopes.user_defined import create_user_defined_envelope from sinethesizer.synth.core import Event @pytest.mark.parametrize( "duration, velocity, frame_rate, " "parts, ratio_at_zero_velocity, envelope_values_on_velocity_order, " "expected", [ ( # `duration` 2, # `velocity` 0.375, # `frame_rate` 10, # `parts` [ { 'values': [0.0, 1.0, 0.9, 0.1, 0.0], 'max_duration': None }, ], # `ratio_at_zero_velocity` 0.2, # `envelope_values_on_velocity_order` 1.0, # `expected` np.array([ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.49, 0.48, 0.47, 0.46, 0.45, 0.35, 0.25, 0.15, 0.05, 0.04, 0.03, 0.02, 0.01, 0.0 ]) ), ( # `duration` 2, # `velocity` 1, # `frame_rate` 10, # `parts` [ { 'values': [0.0, 0.5, 1.0, 0.0], 'max_duration': None }, ], # `ratio_at_zero_velocity` 0.2, # `envelope_values_on_velocity_order` 1.0, # `expected` np.array([ 0, 1 / 12, 2 / 12, 3 / 12, 4 / 12, 5 / 12, 0.5, 8 / 14, 9 / 14, 10 / 14, 11 / 14, 12 / 14, 13 / 14, 1, 5 / 6, 4 / 6, 3 / 6, 2 / 6, 1 / 6, 0 ]) ), ( # `duration` 2, # `velocity` 1, # `frame_rate` 10, # `parts` [ { 'values': [0.0, 0.5, 1.0], 'max_duration': 0.2 }, { 'values': [1.0, 0.7, 0.1], 'max_duration': None }, ], # `ratio_at_zero_velocity` 0.2, # `envelope_values_on_velocity_order` 1.0, # `expected` np.array([ 0.5, 1.0, 1.0, 0.9625, 0.925, 0.8875, 0.85, 0.8125, 0.775, 0.7375, 0.7, 19 / 30, 17 / 30, 15 / 30, 13 / 30, 11 / 30, 9 / 30, 7 / 30, 5 / 30, 3 / 30 ]) ), ( # `duration` 2, # `velocity` 1, # `frame_rate` 10, # `parts` [ { 'values': [0.0, 0.5, 1.0], 'max_duration': None }, { 'values': [1.0, 0.7, 0.1], 'max_duration': None }, ], # `ratio_at_zero_velocity` 0.2, # `envelope_values_on_velocity_order` 1.0, # `expected` np.array([ 0, 0.125, 0.25, 0.375, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1, 0.925, 0.85, 0.775, 0.7, 0.58, 0.46, 0.34, 0.22, 0.1 ]) ), ] ) def test_create_user_defined_envelope( duration: float, velocity: float, frame_rate: int, parts: List[Dict[str, Any]], ratio_at_zero_velocity: float, envelope_values_on_velocity_order: float, expected: np.ndarray ) -> None: """Test `create_user_defined_envelope` function.""" event = Event( instrument='any_instrument', start_time=0, duration=duration, frequency=440, velocity=velocity, effects='', frame_rate=frame_rate ) result = create_user_defined_envelope( event, parts, ratio_at_zero_velocity, envelope_values_on_velocity_order ) np.testing.assert_almost_equal(result, expected)
{"hexsha": "e3d2ef7a39e79996234d8eb0ee0538503cdc4745", "size": 4149, "ext": "py", "lang": "Python", "max_stars_repo_path": "tests/envelopes/test_user_defined.py", "max_stars_repo_name": "Nikolay-Lysenko/sinethesizer", "max_stars_repo_head_hexsha": "fe6855186a00e701113ea5bb4fac104bf8497035", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 8, "max_stars_repo_stars_event_min_datetime": "2019-07-25T12:17:38.000Z", "max_stars_repo_stars_event_max_datetime": "2021-09-04T19:38:21.000Z", "max_issues_repo_path": "tests/envelopes/test_user_defined.py", "max_issues_repo_name": "Nikolay-Lysenko/sinethesizer", "max_issues_repo_head_hexsha": "fe6855186a00e701113ea5bb4fac104bf8497035", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 7, "max_issues_repo_issues_event_min_datetime": "2019-07-20T18:04:54.000Z", "max_issues_repo_issues_event_max_datetime": "2021-08-03T17:31:26.000Z", "max_forks_repo_path": "tests/envelopes/test_user_defined.py", "max_forks_repo_name": "Nikolay-Lysenko/sinethesizer", "max_forks_repo_head_hexsha": "fe6855186a00e701113ea5bb4fac104bf8497035", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2019-10-16T18:44:43.000Z", "max_forks_repo_forks_event_max_datetime": "2019-10-16T18:44:43.000Z", "avg_line_length": 27.2960526316, "max_line_length": 79, "alphanum_fraction": 0.3986502772, "include": true, "reason": "import numpy", "num_tokens": 1217}
subroutine trace_bend_2d(xzt,yzt,xst,yst,ips, tout) real xrmin(1000),yrmin(1000) real t_segm(1000) integer indexx(100) real dxtmp(1000),dytmp(1000),xtmp(1000),ytmp(1000) common/ray_param/ds_ini,ds_segm_min,bend_min0,bend_max0 common/ray/ nodes,xray(1000),yray(1000) common/ray_part/ npart,xpart(1000),ypart(1000),spart(1000),kod_part(1000) common/shift/ dxpart(1000),dypart(1000) totdist=sqrt((xzt-xst)*(xzt-xst)+(yzt-yst)*(yzt-yst)) tout=0 if(totdist.lt.ds_segm_min) then x1=xzt x2=xst xm=(x1+x2)/2. y1=yzt y2=yst ym=(y1+y2)/2. vvv=velocity (xm,ym,ips) tout=ds/vvv return end if nsegm_max = int_best(totdist / ds_segm_min) if(nsegm_max.eq.0) then return end if call streight_line(xzt,yzt,xst,yst,ips, tout) !write(*,*)' streight line: tout=',tout !write(*,*)ds_ini,ds_segm_min,bend_min0,bend_max0 !pause tmin=tout do nsegm=1,nsegm_max !open(22,file='nodes.dat') indexx=0 dpart=1./nsegm val_cur0=bend_max0/nsegm xtmp=xray ytmp=yray do iseg=1,nsegm part1=(iseg-1)*dpart part2=iseg*dpart call part_ray(xzt,yzt,xst,yst,part1,part2) !write(*,*)' iseg=',iseg,' part1=',part1,' part2=',part2 !write(22,*) xpart(1),ypart(1) ttt=0 do inode=1,npart-1 x1=xpart(inode) x2=xpart(inode+1) xm=(x1+x2)/2. y1=ypart(inode) y2=ypart(inode+1) ym=(y1+y2)/2. ds=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)) vvv=velocity (xm,ym,ips) ttt=ttt+ds/vvv !write(*,*)inode,ypart(inode),dypart(inode),' v=',vvv end do tini=ttt !write(*,*)' tini=',tini,' npart=',npart dxpart=0 dypart=0 dxtmp=0 dytmp=0 valtot=0 tmin=tini t_segm(iseg)=tmin val_cur=val_cur0 332 continue do icase=1,2 ind=0 val_bend = (-1)**icase * val_cur 331 continue val = val_bend sss2=spart(npart)/2. sss=0 do inode=2,npart-1 x1=xpart(inode-1) y1=ypart(inode-1) x2=xpart(inode) y2=ypart(inode) x3=xpart(inode+1) y3=ypart(inode+1) ds=sqrt((x2-x1)**2+(y2-y1)**2) sss=sss+ds dx=x3-x1 dy=y3-y1 ds2=sqrt(dx*dx+dy*dy) d_value = val * (1-abs(sss-sss2)/sss2) dxtmp(inode)= - d_value * dy / ds2 dytmp(inode)= d_value * dx / ds2 !write(*,*)inode,d_value,dxpart(inode),dypart(inode) end do ttt=0 sss=0 do inode=1,npart-1 x1= xpart(inode)+ dxpart(inode)+ dxtmp(inode) x2= xpart(inode+1)+ dxpart(inode+1)+ dxtmp(inode+1) xm=(x1+x2)/2. y1= ypart(inode)+ dypart(inode)+ dytmp(inode) y2= ypart(inode+1)+ dypart(inode+1)+ dytmp(inode+1) ym=(y1+y2)/2. ds=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)) sss=sss+ds vvv=velocity (xm,ym,ips) ttt=ttt+ds/vvv !write(*,*)inode,ypart(inode),dypart(inode),' v=',vvv end do tout=ttt !write(*,*)' val_bend=',val_bend,' tout=',tout if(tout.lt.tmin) then ind=ind+1 tmin=tout dxpart=dxpart+dxtmp dypart=dypart+dytmp valtot=valtot+val_bend !write(*,*)' valtot=',valtot,' val_bend=',val_bend,' tmin=',tmin goto 331 else if(ind.ne.0) exit end if end do val_cur = val_cur / 2. if(abs(val_cur).gt.bend_min0) goto 332 do ipp=1,npart kod=kod_part(ipp) if(kod.eq.0) cycle xtmp(kod)=xtmp(kod)+dxpart(ipp) ytmp(kod)=ytmp(kod)+dypart(ipp) xpart(ipp)=xpart(ipp)+dxpart(ipp) ypart(ipp)=ypart(ipp)+dypart(ipp) end do t_segm(iseg)=tmin end do 333 continue ttot=0 do iseg=1,nsegm !write(*,*)' indexx(ip)=',indexx(ip) ttot=ttot+t_segm(iseg) end do !write(22,*)xray(nodes),yray(nodes) !close(22) xray=xtmp yray=ytmp !write(*,*)' val_cur0=',val_cur0,' ttot=',ttot nrefl=0 call remeshing(nrefl) !open(21,file='ray_iter.bln') !write(21,*)nodes !do i=1,nodes !write(21,*)xray(i),yray(i) !end do !close(21) !pause end do tout=ttot ttt=0 sss=0 do inode=1,nodes-1 x1= xray(inode) x2= xray(inode+1) xm=(x1+x2)/2. y1= yray(inode) y2= yray(inode+1) ym=(y1+y2)/2. ds=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)) sss=sss+ds vvv=velocity (xm,ym,ips) !dv= dv_mod_2d(xm,ym) ! write(*,*)xm,ym,' vvv=',vvv !call vel_mod_2d(xm,ym, dv000,dv060,dv120) !write(*,*)' dv000=',dv000,' dv060=',dv060,' dv120=',dv120 ttt=ttt+ds/vvv !write(*,*)inode,ypart(inode),dypart(inode),' v=',vvv end do tout=ttt return end
{"hexsha": "22e95078a3fb481d57bd35fb9ab467122ddcfdf1", "size": 4453, "ext": "f90", "lang": "FORTRAN", "max_stars_repo_path": "PROGRAMS/subr/trace_2d_iso/trace_bend_2d.f90", "max_stars_repo_name": "ilyasnsk/colima_lotos_2019", "max_stars_repo_head_hexsha": "d3ff4f32034e49a32560f170e980b6847b6ea9c7", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 2, "max_stars_repo_stars_event_min_datetime": "2020-10-28T06:16:54.000Z", "max_stars_repo_stars_event_max_datetime": "2021-01-16T02:52:23.000Z", "max_issues_repo_path": "PROGRAMS/subr/trace_2d_iso/trace_bend_2d.f90", "max_issues_repo_name": "ilyasnsk/colima_lotos_2019", "max_issues_repo_head_hexsha": "d3ff4f32034e49a32560f170e980b6847b6ea9c7", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "PROGRAMS/subr/trace_2d_iso/trace_bend_2d.f90", "max_forks_repo_name": "ilyasnsk/colima_lotos_2019", "max_forks_repo_head_hexsha": "d3ff4f32034e49a32560f170e980b6847b6ea9c7", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 18.7100840336, "max_line_length": 74, "alphanum_fraction": 0.6009431844, "num_tokens": 1903}
module HFMod if length(findin("C:\\Users\\Clinton\\Dropbox\\Projects\\SummerProject17",LOAD_PATH)) == 0 push!(LOAD_PATH,"C:\\Users\\Clinton\\Dropbox\\Projects\\SummerProject17") end #=TODO: 1) IV=# #2) Run specifications using DataFrames, Distributions, StatsBase, GZip, JLD, Gadfly, CTMod #importall CT #Set this to an optimal value- I find logical cores *(3/4) works well BLAS.set_num_threads(Int(round((Sys.CPU_CORES*3÷4)))) #if !isdefined(:constDef) const constDef = true #other constants here const DATA_PATH = pwd() * "\\data" const DATA_FILE_NAME = "HFPerformance_2015-2017" const DATA_FILE_NAME_DEAD = DATA_FILE_NAME * "_dead" const DATE_FORMAT_STR = "yyyymmdd" const NOTICE_PERIOD_ADJ = 7 #days to add to the notice (since data are monthly) const MIN_PERIODS_FOR_INCLUSION = 6 #number of periods required for inclusion const T_TEST_THRESHOLD = 2.0 #this is a parameter for identificaiton if the flows are lagged const PERIODS_SAME_AUM_TO_DELETE = 4 #assume 4 consecutive periods of identical aum implies stale data const LAGS_NOTICE_TO_CAPTURE = 3 const LAGS_PERFORMANCE_TO_CAPTURE = 12 const MIN_ASSETS = 10.0 #10,000,000 const START_LAGS_FROM_NOTICE = true #start the performance lags from the notice period (not the redemption date) const RUN_LM_INTERACTIONS = false #run the interaction regressions (takes a while) const RUN_2SLS_INTERACTIONS = false const RESULTS_PATH = pwd() * "\\results" const FOOTER_NAME = "footer.tex" const HEADER_NAME = "header.tex" const USE_AGGRESSIVE_GC = false #this enables very agressive GC which helps memory management at cost of performance const R_TEST_PATH = "C:\\Users\\Clinton\\Dropbox\\Projects\\Summer17RTester\\Summer17RTester" #end ###############HELPER FUNCTIONS #helper function to extract all positive numbers from a string #IN: A string #OUT: A vector of floats, possibly empty function getPosNumsFromString(s::String) len::Int = length(s) preParseS::Vector{Char} = collect(s) #replace non-numerical values with delimitor Ξ for i ∈ 1:len preParseS[i] = (isnumber(s[i]) || ( s[i]=='.' && (i>1 && isnumber(s[i-1]) || ( i<len && isnumber(s[i+1])))))?s[i]:'Ξ' end #split the tokens, keeping only numberical strings sSplit::Vector{String} = split(preParseS,'Ξ',keep=false) #parse and return the values as an array of floats return broadcast((x::String)->Float64(parse(x)),sSplit)::Vector{Float64} end #=helper function which sorts and splits DF on symbol, extracts all positive numeric values, averages them, and replaces the column IN: DataFrame, column symbol, a default value, and whetehr to leave NAs OUT: None explicit. DataFrame modified with numberic column named col, old column is named col_str=# function DFStringtoMeanNum!(DF::DataFrame, col::Symbol; default::Float64=0.0, leaveNAs::Bool=false, silent::Bool=true) oldCol = Symbol(col, "_str") rename!(DF, col, oldCol) DF[:,col] = default sort!(DF, cols=(oldCol)) by(DF, oldCol) do DFSub::SubDataFrame if ~isna(DFSub[1,oldCol]) parsed::Vector{Float64} = #parse the string getPosNumsFromString(DFSub[1,oldCol]) if length(parsed)>0 #if string wasn't all garbage DFSub[:,col] = mean(parsed) elseif !silent#Give a heads up given a garbage incentive fee println("WARNING: Could not parse ", col, ". Value: ", DFSub[1, oldCol], ", Assuming numeric value of ", default) end elseif leaveNAs DFSub[:,col] = NA end end end #takes a vector and writes a string function vec2String(v::Vector{T}, delim::W = "")::String where {T<:Any, W<:Union{AbstractString,Char}} return join(String.(v), delim) end #calculates the t statistic of the Pearson Correlation (Lowry 2017) function tStatOfCor(x::Vector{Float64},y::Vector{Float64}) r::Float64 = cor(x,y) return r/sqrt((1-r^2.0)/(length(x)-2))::Float64 end #this is a type which stores all of the notice lags struct NoticeLagSymbols noticeLags::Vector{Symbol} noticeLagsNo1st::Vector{Symbol} noticeLLags::Vector{Symbol} noticeLLagsNo1st::Vector{Symbol} end #Constructor for the above type #IN: Number of lags #OUT: A container of symbols with the appropraite lags function NoticeLagSymbols(lags::Int)::NoticeLagSymbols noticeLags::Vector{Symbol} = Vector{Symbol}(lags) noticeLagsNo1st::Vector{Symbol} = similar(noticeLags) noticeLLags::Vector{Symbol} = similar(noticeLags) noticeLLagsNo1st::Vector{Symbol} = similar(noticeLags) for i ∈ 1:lags noticeLags[i] = Symbol("noticeLag$i") noticeLagsNo1st[i] = Symbol("noticeLag$(i)No1st") noticeLLags[i] = Symbol("noticeLLag$i") noticeLLagsNo1st[i] = Symbol("noticeLLag$(i)No1st") end return NoticeLagSymbols(noticeLags,noticeLagsNo1st, noticeLLags, noticeLLagsNo1st) end #this is a type which stores all of the performance lags struct PerformanceLagSymbols performanceLags::Vector{Symbol} end #Constructor for the above type #IN: Number of lags #OUT: A container of symbols with the appropraite lags function PerformanceLagSymbols(lags::Int)::PerformanceLagSymbols performanceLags::Vector{Symbol} = Vector{Symbol}(lags) #preallocate for i ∈ 1:lags performanceLags[i] = Symbol("performanceLag$i") end return PerformanceLagSymbols(performanceLags) end contains(e::T where T<:CTExpr, s::String)::Bool = Base.contains("$e",s) ###########Main Methods #U for unlagged, L for lagged, C for corrected, R for corrected but with #a lagged default function PreProcessHFData(;FlowsLaggingProcedure::Char = 'U', newBinary::Bool = false) nPer::Int = 0 #numer of periods dtFormat::DateFormat = DateFormat(DATE_FORMAT_STR) ## a date format object #this allows us to capture a variable amount of lags noticeLS::NoticeLagSymbols = NoticeLagSymbols(LAGS_NOTICE_TO_CAPTURE) performanceLS::PerformanceLagSymbols = PerformanceLagSymbols(LAGS_PERFORMANCE_TO_CAPTURE) #this makes sure we have a binary of the data (Improves load times 3-4x) if !isfile("$DATA_PATH\\$DATA_FILE_NAME.jls") || newBinary #extract from the zip file gHandle::GZipStream = GZip.open("$DATA_PATH\\$DATA_FILE_NAME.gz") write("$DATA_PATH\\$DATA_FILE_NAME.csv", readlines(gHandle,chomp=false)) close(gHandle) gHandle = GZip.open("$DATA_PATH\\$DATA_FILE_NAME_DEAD.gz") write("$DATA_PATH\\$DATA_FILE_NAME_DEAD.csv", readlines(gHandle,chomp=false)) close(gHandle) #write the binary oStream::IOStream = open("$DATA_PATH\\$DATA_FILE_NAME.jls","w+") serialize(oStream, [readtable("$DATA_PATH\\$DATA_FILE_NAME.csv"); readtable("$DATA_PATH\\$DATA_FILE_NAME_DEAD.csv")]) close(oStream) end #load the binary iStream::IOStream = open("$DATA_PATH\\$DATA_FILE_NAME.jls") HFData::DataFrame = deserialize(iStream) close(iStream) println("Initial rows: ", size(HFData,1), ", Initial columns: ", size(HFData,2)) println("Begining pre-processing...") #drop some columns HFData = HFData[:, [:fund_id, :inception, :main_strategy, :sub_strategy, :leverage, :fund_assets, :firm_assets, :returns_denomination, :management_fee, :incentive_fee, :high_watermark, :hurdle_rate, :subscriptions, :redemptions, :advance_notice, :lockup, :fund_assets_as_of, :fund_assets_denomin, :sales_fee, :other_fees, :date_added_to_db, :fund_status, :ucitsiii, :date, :performance, :nav, :assets]] #Drop some null valued fields: HFData = dropNullsFromDF(HFData, [:date, :performance, :assets, :returns_denomination, :management_fee,:advance_notice]) #only want active funds #HFData = HFData[HFData[:,:fund_status].=="Active",:] delete!(HFData,:fund_status) #no need for this anymore HFData = HFData[HFData[:,:assets] .≥ MIN_ASSETS, :] #parse the incentive fees and mangement fees DFStringtoMeanNum!(HFData, :incentive_fee) DFStringtoMeanNum!(HFData, :management_fee) #convert from percentage to decimal HFData[:,:incentive_fee] ./= 100.0 HFData[:,:management_fee] ./= 100.0 HFData[:,:performance] ./= 100.0 #broadcast an anonymous functino to do the type conversions HFData[:,:inception] = ((x::Int)->Date("$x",dtFormat)).(HFData[:,:inception]) HFData[:,:date_added_to_db] = ((x::Int)->Date("$x",dtFormat)).(HFData[:,:date_added_to_db]) HFData[:,:date] = ((x::Int)->Date("$x",dtFormat)).(HFData[:,:date]) HFData[:,:fund_assets_as_of] = ((x::Int)->Date("$x",dtFormat)).(HFData[:,:fund_assets_as_of]) #sort the data by fund id and date sort!(HFData,cols = (:fund_id,:date)) #delStaleAUMDat!(HFData) #clean out some funds with stale aum data by(HFData, :fund_id) do HFSub::SubDataFrame nPer = size(HFSub,1) if nPer > PERIODS_SAME_AUM_TO_DELETE #check if this procedure makes sense identicalAUMs::Int = 1 i::Int = 2 while i ≤ nPer && identicalAUMs < PERIODS_SAME_AUM_TO_DELETE identicalAUMs = (HFSub[i,:assets]==HFSub[i-1,:assets])?identicalAUMs+1:1 i+=1 end if identicalAUMs == PERIODS_SAME_AUM_TO_DELETE #set assets to NA to flag for deletion HFSub[:,:assets] = NA end end end HFData = HFData[~isna(HFData[:,:assets]),:] #delete the identified funds #delete funds with gaps in their performance history, or funds with a #track record less than six months HFData[:,:mcnt]=0 by(HFData, :fund_id) do HFSub::SubDataFrame mcnt::Int = size(HFSub,1) #now check for track record breaks if maximum(HFSub[:,:date]) ≠ Dates.lastdayofmonth(minimum(HFSub[:,:date])+Dates.Month(mcnt)-Dates.Month(1)) mcnt = 0 end HFSub[:,:mcnt] = mcnt end HFData=HFData[~(HFData[:,:mcnt].<MIN_PERIODS_FOR_INCLUSION),:] #get the months of advance notice HFData[:,:months_notice] = broadcast((x::Int)-> ((x+NOTICE_PERIOD_ADJ)÷30)::Int,HFData[:,:advance_notice]) ###The following sections create nessecary columns with placeholders #calculate monthly flows and construct the data set HFData[:,:flows] = 0.0 #flows HFData[:,:redemp_notice] = 0.0 #notifications about flows HFData[:,:rolling_notice] = 0.0 #notifications about flows HFData[:,:lFlows] = 0.0 #will hold log flows HFData[:,:redemp_notice_dt] = Date(1,1,1) #create the appropriate columns for lagged flow notice for i::Int ∈ 1:LAGS_NOTICE_TO_CAPTURE HFData[:,noticeLS.noticeLags[i]] = 0.0 HFData[:,noticeLS.noticeLagsNo1st[i]] = 0.0 HFData[:,noticeLS.noticeLLags[i]] = 0.0 HFData[:,noticeLS.noticeLLagsNo1st[i]] = 0.0 end #create columns for performance lag for i::Int ∈ 1:LAGS_PERFORMANCE_TO_CAPTURE HFData[:,performanceLS.performanceLags[i]] = 0.0 HFData[:,performanceLS.performanceLags[i]] .= NA end ctr = 0 ###This is the main section for manipulating data by fund. We will #adjust the lagging of assets and assign to appropriate lagged variables by(HFData, :fund_id) do HFSub::SubDataFrame nPer = HFSub[1,:mcnt] useLaggingProc::Bool = false #now calculate the flows in the lagged and unlagged flows flowsUnlagged::Vector{Float64} =Vector{Float64}(nPer-1) flowsLagged::Vector{Float64} =Vector{Float64}(nPer-1) for i ∈ 2:nPer #back out the flows: #F_unlagged=A(t)-A(t-1)*(1+r(t)) flowsUnlagged[i-1] = HFSub[i,:assets] - (HFSub[i-1,:assets])*(1.0+HFSub[i,:performance]) #F_lagged=A(t)-A(t-1)*(1+r(t-1)) flowsLagged[i-1] = HFSub[i,:assets] - (HFSub[i-1,:assets])*(1.0+HFSub[i-1,:performance]) end if FlowsLaggingProcedure == 'U' #assume all unlagged useLaggingProc = false elseif FlowsLaggingProcedure == 'L' #assume all lagged useLaggingProc = true #below assumes a comparison process elseif FlowsLaggingProcedure == 'C' || FlowsLaggingProcedure == 'R' #get the differencein performance between lagged and unlagged perfDelta::Vector{Float64} = HFSub[2:end,:performance] .-HFSub[1:(end-1),:performance] #check the correlations flowsUnlaggedT::Float64 = tStatOfCor(flowsUnlagged,perfDelta) flowsLaggedT::Float64 = tStatOfCor(flowsLagged,perfDelta) #='C' Logic: Assume unlagged. If unlagged T test for correlation against return deltas is <-2 (or some other threshold), switch to lagged unless the lagged T stat is greater than 2 'R' Logic: Same as C but reverse.=# if flowsUnlaggedT > -1.0 * T_TEST_THRESHOLD && flowsLaggedT > 1.0 * T_TEST_THRESHOLD useLaggingProc = false elseif flowsUnlaggedT < -1.0 * T_TEST_THRESHOLD && flowsLaggedT < 1.0 * T_TEST_THRESHOLD useLaggingProc = true elseif flowsUnlaggedT * flowsLaggedT ≤ 0.0 if FlowsLaggingProcedure == 'C' useLaggingProc = false elseif FlowsLaggingProcedure == 'R' useLaggingProc = true end end end #now execute the appropriate lagging procedure if useLaggingProc HFSub[end,:flows] = NA HFSub[1:(end-1),:flows] = flowsLagged HFSub[1:(end-1),:lFlows] = flowsLagged ./ (HFSub[2:end,:assets] .- flowsLagged) else HFSub[1,:flows] = NA HFSub[1,:lFlows] = NA HFSub[2:end,:flows] = flowsUnlagged HFSub[2:end,:lFlows] = flowsUnlagged ./ (HFSub[2:end,:assets] .- flowsUnlagged) end #now we look up the notice period to determine the appropriate month #Only will be for negative flows #we will make the table two way, at the expense of redundancy for i::Int ∈ 1:nPer if !isna(HFSub[i,:flows]) && HFSub[i,:flows] < 0.0 && i::Int > HFSub[i,:months_notice] HFSub[i-HFSub[i,:months_notice],:redemp_notice] = HFSub[i,:flows] HFSub[(i-HFSub[i,:months_notice]):(i),:rolling_notice] += HFSub[i,:flows] HFSub[i-HFSub[i,:months_notice],:redemp_notice_dt] = HFSub[i,:date] #record the redemption notificaion lags and performance lags if HFSub[i,:months_notice] > 0 for l::Int ∈ 1:min(LAGS_NOTICE_TO_CAPTURE, HFSub[i,:months_notice]) HFSub[i-l, noticeLS.noticeLags[l]] = HFSub[i,:flows] HFSub[i-l, noticeLS.noticeLLags[l]] = HFSub[i,:lFlows] end end #record the redemption notificaion lags, excluding the first months' notice if HFSub[i,:months_notice] > 1 for l::Int ∈ 1:min(LAGS_NOTICE_TO_CAPTURE, HFSub[i,:months_notice]-1) HFSub[i-l, noticeLS.noticeLagsNo1st[l]] = HFSub[i,:flows] HFSub[i-l, noticeLS.noticeLLagsNo1st[l]] = HFSub[i,:lFlows] end end end end #now assign to the performance lags if START_LAGS_FROM_NOTICE #if true, we start from the end of the notice period for i::Int ∈ 2:nPer if i - 1 - HFSub[i,:months_notice] ≥ 1 #(make sure its positive number) for l::Int ∈ 1:min(i-1- HFSub[i,:months_notice],LAGS_PERFORMANCE_TO_CAPTURE) HFSub[i, performanceLS.performanceLags[l]] = HFSub[i - l, :performance] end end end else for i::Int ∈ 2:nPer for l::Int ∈ 1:min(i-1,LAGS_PERFORMANCE_TO_CAPTURE) HFSub[i, performanceLS.performanceLags[l]] = HFSub[i - l, :performance] end end end end #get a seperate column with net negative flows HFData[:,:negLFlows] = HFData[:,:lFlows] HFData[(~isna(HFData[:,:lFlows])) & (HFData[:,:lFlows].≥0.0),:negLFlows] .= NA #convert string columns to factors HFTypes::Vector{Type} = eltypes(HFData) #all types HFNames::Vector{String} = names(HFData) #all names for i ∈ 1:size(HFData,2) #for all columns if HFTypes[i] == String && !(typeof(HFData[:,i]) <: PooledDataVector) pool!(HFData,Symbol(HFNames[i])) #convert to factor end end #create a factor column for dates HFData[:,:fDate] = HFData[:,:date] pool!(HFData,:fDate) println("Processing complete.") println("Ending rows: ", size(HFData,1), ", Ending columns: ", size(HFData,2)) #save the binary oStream = open("$DATA_PATH\\$(DATA_FILE_NAME)_$(FlowsLaggingProcedure)_clean.jls","w+") serialize(oStream, HFData) close(oStream) end #returns a table with the total flows #High performance requires an initial sort function aggregateOnDate(HFData::DataFrame, lags::Int=5, noFirstNoticeMonth::Bool=false) nDates::Int = size(unique(HFData[:,:date]),1) noticeLS::NoticeLagSymbols = NoticeLagSymbols(lags) #preallocate data frame HFByDate::DataFrame = DataFrame([Date, Int, Float64, Float64, Float64, Float64,Float64], [:date, :numFunds, :totAUM, :totFlows, :totRedemp, :totRollingRedemp, :totRedempNotice], nDates) HFByDate[:,:date] .= unique(HFData[:,:date]) #allocate the lag columns for s ∈ [noticeLS.noticeLags; noticeLS.noticeLagsNo1st] HFByDate[:,s] = 0.0 end #make a lookup table dateTbl = Dict(HFByDate[i,:date] => i for i::Int ∈ 1:nDates) #might be a better way to do this with aggregates and joins, #although this is reasonably fast with a low number of comparisons #Basically we are getting totals for each symbol by a bunch of symbols by date by(HFData, :date) do HFSub::SubDataFrame dateIdx::Int = dateTbl[HFSub[1,:date]] applyToDate::Vector{Bool} = HFByDate[:,:date].==HFSub[1,:date] HFByDate[dateIdx,:numFunds]=size(unique(HFSub[:,:fund_id]),1) HFByDate[dateIdx,:totAUM]=sum(HFSub[~isna(HFSub[:,:assets]),:assets]) HFByDate[dateIdx,:totFlows]=sum(HFSub[~isna(HFSub[:,:flows]),:flows]) HFByDate[dateIdx,:totRedemp]= sum(HFSub[broadcast((x)->ifelse(~isna(x)&&x<0,true, false),HFSub[:,:flows]),:flows]) HFByDate[dateIdx,:totRedempNotice]= sum(HFSub[~isna(HFSub[:,:redemp_notice]),:redemp_notice]) HFByDate[dateIdx,:totRollingRedemp]= sum(HFSub[~isna(HFSub[:,:rolling_notice]),:rolling_notice]) for s ∈ [noticeLS.noticeLags; noticeLS.noticeLagsNo1st] HFByDate[dateIdx,s]= sum(HFSub[~isna(HFSub[:,s]),s]) end end return HFByDate end #this is the main method for analysis function AnalyzeAggregates(;FlowsLaggingProcedure::Char = 'U', verbose::Bool = true) #open the pre-processed data file iStream::IOStream = open("$DATA_PATH\\$(DATA_FILE_NAME)_$(FlowsLaggingProcedure)_clean.jls") HFData::DataFrame = deserialize(iStream) sort!(HFData,cols = (:date, :fund_id)) HFByDate::DataFrame = aggregateOnDate(HFData, LAGS_NOTICE_TO_CAPTURE) performanceLS::PerformanceLagSymbols = PerformanceLagSymbols(LAGS_PERFORMANCE_TO_CAPTURE) XLMSpecs::Vector{CTExpr} = [parse("negLFlows")] XLMNames::Vector{Vector{Symbol}} = [[:intercept; :negLFlows]] #note only non-factor names #####put additional specifications here push!(XLMSpecs, parse("negLFlows + fDate")) push!(XLMNames, [:intercept; :negLFlows]) push!(XLMSpecs, parse("negLFlows + main_strategy")) push!(XLMNames, [:intercept; :negLFlows]) push!(XLMSpecs, parse("negLFlows + " * "$(vec2String(performanceLS.performanceLags, "+"))")) push!(XLMNames, [:intercept; :negLFlows; performanceLS.performanceLags]) push!(XLMSpecs, parse("negLFlows + " * "$(vec2String(performanceLS.performanceLags, "+")) + fDate")) push!(XLMNames, [:intercept; :negLFlows; performanceLS.performanceLags]) push!(XLMSpecs, parse("negLFlows + " * "$(vec2String(performanceLS.performanceLags, "+")) + main_strategy")) push!(XLMNames, [:intercept; :negLFlows; performanceLS.performanceLags]) push!(XLMSpecs, parse("negLFlows + " * "$(vec2String(performanceLS.performanceLags, "+")) + fDate + main_strategy")) push!(XLMNames, [:intercept; :negLFlows; performanceLS.performanceLags]) if RUN_LM_INTERACTIONS push!(XLMSpecs, parse("negLFlows + fDate * main_strategy")) push!(XLMNames, [:intercept; :negLFlows]) push!(XLMSpecs, parse("negLFlows + " * "$(vec2String(performanceLS.performanceLags, "+")) + " * "fDate * main_strategy")) push!(XLMNames, [:intercept; :negLFlows; performanceLS.performanceLags]) end ##### modelsLM::Vector{CTLM} = Vector{CTLM}() #run the LM Specs for i ∈ 1:length(XLMSpecs) if verbose println("Begin Spec RHS: $(XLMSpecs[i])") end push!(modelsLM, CTLM(HFData, XLMSpecs[i], :performance, XNames=XLMNames[i], YName = :performance)) if verbose println("Linear Model X Specification: $(XLMSpecs[i])") println("Names: $(XLMNames[i])") println("β: $(modelsLM[i].β[1:min(10,end)])") println("σ: $(sqrt.(diag(getHomoskedΣ!(modelsLM[i])))[1:min(10,end)])") println("Data points: $(size(modelsLM[i].X,1))\n") end end ##########LM IO descRowNamesLM::Vector{String} = ["Performance Lags", "Date Fixed Effects", "Strategy Fixed Effects", "F.E. Interactions", "N ('000s)"] #need to print the descriptive rows descContentLM::Vector{Vector{String}} = #[fill("",length(modelsLM)) for i∈ 1:length(descRowNamesLM)] [Vector{String}(length(modelsLM))for i∈ 1:length(descRowNamesLM)] #this builds the descriptive rows. There is Probably a better way to do this, #but its fairly specific to the project. for i ∈ 1:length(XLMSpecs) descContentLM[1][i] = "$(contains(XLMSpecs[i], "performanceLag")?"X":"")" descContentLM[2][i] = "$(contains(XLMSpecs[i], "fDate")?"X":"")" descContentLM[3][i] = "$(contains(XLMSpecs[i], "main_strategy")?"X":"")" descContentLM[4][i] = "$(contains(XLMSpecs[i], "*")?"X":"")" descContentLM[5][i] = "$(round(modelsLM[i].N/1000.0,1))" end TableTextLM::String = texTable(modelsLM, getHomoskedΣ!, [:intercept; :negLFlows], caption = "Performance Flows OLS Specifications", colNames = [["($i)" for i∈1:length(modelsLM)]], contentRowNames = ["intercept", "outflows/AUM x 100"], descRowNames = descRowNamesLM, descContent = descContentLM, decimalDigits = 3, columnSepPt = -20, scaling = [1000.0,1000.0], clearMem = USE_AGGRESSIVE_GC) if USE_AGGRESSIVE_GC gc() end #####################2SLS code################### X2SLSSpecs::Vector{CTExpr} = [parse("negLFlows+0")] W2SLSSpecs::Vector{CTExpr} = [Symbol("")] Z2SLSSpecs::Vector{CTExpr} = [parse("noticeLag1+0")] W2SLSNames::Vector{Vector{Symbol}} = [[:intercept]] X2SLSNames::Vector{Vector{Symbol}} = [[:negLFlows]] Z2SLSNames::Vector{Vector{Symbol}} = [[:noticeLag1]] #####put additional 2SLS specifications here push!(W2SLSSpecs, parse("fDate")) push!(W2SLSNames, [:intercept]) push!(W2SLSSpecs, parse("main_strategy")) push!(W2SLSNames, [:intercept]) push!(W2SLSSpecs, parse("$(vec2String(performanceLS.performanceLags, "+"))")) push!(W2SLSNames, [:intercept; performanceLS.performanceLags]) push!(W2SLSSpecs, parse("$(vec2String(performanceLS.performanceLags, "+"))" * " + fDate")) push!(W2SLSNames, [:intercept; performanceLS.performanceLags]) push!(W2SLSSpecs, parse("$(vec2String(performanceLS.performanceLags, "+"))" * " + main_strategy")) push!(W2SLSNames, [:intercept; performanceLS.performanceLags]) push!(W2SLSSpecs, parse("$(vec2String(performanceLS.performanceLags, "+"))" * " + fDate + main_strategy")) push!(W2SLSNames, [:intercept; performanceLS.performanceLags]) if RUN_2SLS_INTERACTIONS #needs too much memory. Would need a mem-mapped array or simialr solution to do this. push!(W2SLSSpecs, parse("fDate * main_strategy")) push!(W2SLSNames, [:intercept]) push!(W2SLSSpecs, parse("$(vec2String(performanceLS.performanceLags, "+"))" * " + fDate * main_strategy")) push!(W2SLSNames, [:intercept; performanceLS.performanceLags]) end ################# run the 2SLS models models2SLS::Vector{CT2SLS} = Vector{CT2SLS}() for iX ∈ 1:length(X2SLSSpecs), iW ∈ 1:length(W2SLSSpecs), iZ ∈ 1:length(Z2SLSSpecs) if verbose #print the specification to run println("Spec X: $(X2SLSSpecs[iX]) Spec W: $(W2SLSSpecs[iW]) Spec Z: $(Z2SLSSpecs[iZ])") end #build the regression model push!(models2SLS, CT2SLS(HFData, X2SLSSpecs[iX], W2SLSSpecs[iW], :performance, Z2SLSSpecs[iZ], XNames=X2SLSNames[iX], WNames = W2SLSNames[iW], YName = :performance, ZNames = Z2SLSNames[iZ])) println(models2SLS[end].ZNames) println(models2SLS[end].Π1) if verbose println("IV Model Specification: X: $(X2SLSSpecs[iX]) W: $(W2SLSSpecs[iW]) Z: $(Z2SLSSpecs[iZ])") println("WNames: $(W2SLSNames[iW])") println("β: $(models2SLS[i].δ2[1:min(10,end)])") println("σ: $(sqrt.(diag(getHomoskedΣ!(models2SLS[i])))[1:min(10,end)])") println("Data points: $(size(models2SLS[i].X,1))\n") end end ##################IO Code for 2SLS descRowNames2SLS::Vector{String} = ["Performance Lags", "Date Fixed Effects", "Strategy Fixed Effects", "N ('000s)"] #need to print the descriptive rows descContent2SLS::Vector{Vector{String}} = #[fill("",length(modelsLM)) for i∈ 1:length(descRowNamesLM)] [Vector{String}(length(models2SLS))for i∈ 1:length(descRowNames2SLS)] #this builds the descriptive rows. There is Probably a better way to do this, #but its fairly specific to the project. for i ∈ 1:length(W2SLSSpecs) descContent2SLS[1][i] = "$(contains(W2SLSSpecs[i], "performanceLag")?"X":"")" descContent2SLS[2][i] = "$(contains(W2SLSSpecs[i], "fDate")?"X":"")" descContent2SLS[3][i] = "$(contains(W2SLSSpecs[i], "main_strategy")?"X":"")" descContent2SLS[4][i] = "$(round(models2SLS[i].N/1000.0,1))" end #note this only works for a single focal var stage12SLS::Vector{CTLM} = [get1stStage(m)[1] for m ∈ models2SLS] TableText1stStage::String = texTable(stage12SLS, getHomoskedΣ!, [:intercept; :noticeLag1], caption = "Performance Flows IV 1st Stage (Focal: Outflows)", colNames = [["($i)" for i∈1:length(models2SLS)]], contentRowNames = ["intercept", "Notifications (frac of fund x1000)"], descRowNames = descRowNames2SLS, descContent = descContent2SLS, decimalDigits = 3, columnSepPt = -20, scaling = [1000.0,1000.0], clearMem = USE_AGGRESSIVE_GC) TableText2SLS::String = texTable(models2SLS, getHomoskedΣ!, [:intercept; :negLFlows], caption = "Performance Flows 2SLS Specifications", colNames = [["Z=1 Month Notification of Flows"],["($i)" for i∈1:length(models2SLS)]], contentRowNames = ["intercept", "outflows/AUM x 1000"], descRowNames = descRowNames2SLS, descContent = descContent2SLS, decimalDigits = 3, columnSepPt = -20, scaling = [1.0,1000.0], widthColNames = [[length(W2SLSSpecs)],ones(Int,length(W2SLSSpecs))], clearMem = USE_AGGRESSIVE_GC) writeTables2File([TableTextLM, TableText1stStage, TableText2SLS], HEADER_NAME, FOOTER_NAME, path=RESULTS_PATH, outName = "RegTables_$FlowsLaggingProcedure.tex") #=plOut::Plot = plot(melt(HFByDate[:,[:date, #:totFlows, :totRedemp, :noticeLag1, :totRedempNotice,:noticeLag1,:noticeLag2]],:date), x=:date,y=:value,color=:variable,Geom.line, Guide.title("Total Fund Flows over Time"), Guide.xlabel("Date"),Guide.ylabel("Flows")) draw(PNG("$(DATA_FILE_NAME)_$(FlowsLaggingProcedure)_flows.png", 7.5inch, 6inch), plOut) =# close(iStream) end function verify2R(;FlowsLaggingProcedure::Char = 'U') #read the seria iStream::IOStream = open("$DATA_PATH\\$(DATA_FILE_NAME)_$(FlowsLaggingProcedure)_clean.jls") HFData::DataFrame = deserialize(iStream) close(iStream) #write the csv writetable("$R_TEST_PATH\\RHFData.csv",HFData) end @time begin #PreProcessHFData(FlowsLaggingProcedure='C', newBinary=false) AnalyzeAggregates(FlowsLaggingProcedure='C', verbose=false) verify2R(FlowsLaggingProcedure='C') end ##Full Pass: #=@time for c ∈ ['C', 'R', 'L', 'U'] PreProcessHFData(FlowsLaggingProcedure=c, newBinary=true) AnalyzeAggregates(FlowsLaggingProcedure=c) end=# end
{"hexsha": "0ca49fc85973ab3032d65eb15c726efc61cc84d6", "size": 28318, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "Old/SummerProject17/SAVE- HF Data Functions-preNLRedux.jl", "max_stars_repo_name": "clintonTE/CCA", "max_stars_repo_head_hexsha": "a555cc1fa4b6d5f1464de44e2e322d32336d1e3a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "Old/SummerProject17/SAVE- HF Data Functions-preNLRedux.jl", "max_issues_repo_name": "clintonTE/CCA", "max_issues_repo_head_hexsha": "a555cc1fa4b6d5f1464de44e2e322d32336d1e3a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "Old/SummerProject17/SAVE- HF Data Functions-preNLRedux.jl", "max_forks_repo_name": "clintonTE/CCA", "max_forks_repo_head_hexsha": "a555cc1fa4b6d5f1464de44e2e322d32336d1e3a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 36.8244473342, "max_line_length": 118, "alphanum_fraction": 0.6697506886, "num_tokens": 8720}
#!/usr/bin/env python # -*- coding: utf-8 -*- #============================================================================== # DOCS #============================================================================== """Move data """ #============================================================================== # IMPORTS #============================================================================== import logging import numpy as np import matplotlib.pyplot as plt import scipy.stats as stats import pandas as pd from django_extensions.management import shells from django_extensions.management.shells import import_objects as _oio from ... import extra_stats as estats #============================================================================== # PATCH IMPORT OBJECTS #============================================================================== def sk_import_objects(*args, **kwargs): data = _oio(*args, **kwargs) data.update(np=np, plt=plt, stats=stats, estats=estats, pd=pd) return data shells.import_objects = sk_import_objects #============================================================================== # LOGGER #============================================================================== logger = logging.getLogger("carpyncho") #============================================================================== # COMMAND #============================================================================== from django_extensions.management.commands import shell_plus class Command(shell_plus.Command): pass #============================================================================== # MAIN #============================================================================== if __name__ == "__main__": print(__doc__)
{"hexsha": "bdd0b5a2c7eccc4bf7ae664e464e4eb1b7daf026", "size": 1772, "ext": "py", "lang": "Python", "max_stars_repo_path": "carpyncho1/skdjango/management/commands/skshell.py", "max_stars_repo_name": "carpyncho/yeolde_carpyncho", "max_stars_repo_head_hexsha": "fba72ebf9d4a3e4e4ea18160310058c6812a0457", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "carpyncho1/skdjango/management/commands/skshell.py", "max_issues_repo_name": "carpyncho/yeolde_carpyncho", "max_issues_repo_head_hexsha": "fba72ebf9d4a3e4e4ea18160310058c6812a0457", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": 2, "max_issues_repo_issues_event_min_datetime": "2020-06-05T19:37:26.000Z", "max_issues_repo_issues_event_max_datetime": "2020-06-05T19:40:38.000Z", "max_forks_repo_path": "carpyncho1/skdjango/management/commands/skshell.py", "max_forks_repo_name": "carpyncho/yeolde_carpyncho", "max_forks_repo_head_hexsha": "fba72ebf9d4a3e4e4ea18160310058c6812a0457", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.2615384615, "max_line_length": 79, "alphanum_fraction": 0.3374717833, "include": true, "reason": "import numpy,import scipy", "num_tokens": 225}
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Computes the spectrogram of a test signal using cupy and cuFFT. Author: Jan Schlüter """ import sys import os import timeit import numpy as np import cupy as cp INPUT_ON_GPU = True OUTPUT_ON_GPU = True from testfile import make_test_signal def spectrogram(signal, sample_rate=22050, frame_len=1024, fps=70): """ Computes a magnitude spectrogram at a given sample rate (in Hz), frame length (in samples) and frame rate (in Hz), on CUDA using cupy. """ if not INPUT_ON_GPU: signal = cp.array(signal.astype(np.float32)) # already blown up to a list of frames win = cp.hanning(frame_len).astype(cp.float32) # apply window function #signal *= win # this doesn't work correctly for some reason. signal = signal * win # perform FFT spect = cp.fft.rfft(signal) # convert into magnitude spectrogram spect = cp.abs(spect) # return if OUTPUT_ON_GPU: cp.cuda.get_current_stream().synchronize() else: return spect.get() def main(): # load input global x, spectrogram x = make_test_signal() # we do the following here because cupy cannot do stride tricks # the actual copying work is included in the benchmark unless INPUT_ON_GPU hop_size = 22050 // 70 frame_len = 1024 frames = len(x) - frame_len + 1 x = np.lib.stride_tricks.as_strided( x, (frames, frame_len), (x.strides[0], x.strides[0]))[::hop_size] if INPUT_ON_GPU: x = cp.array(x.astype(np.float32)) # benchmark times = timeit.repeat( setup='from __main__ import x, spectrogram', stmt='spectrogram(x)', repeat=5, number=32) print("Took %.3fs." % (min(times) / 32)) # save result #assert not OUTPUT_ON_GPU #np.save(sys.argv[0][:-2] + 'npy', spectrogram(x)) if __name__=="__main__": main()
{"hexsha": "bc93ed322f15833ada38ade26d0df82b04900ca0", "size": 1908, "ext": "py", "lang": "Python", "max_stars_repo_path": "bench_cupy.py", "max_stars_repo_name": "zhouxzh/Jetson_nano_stft_benchmark", "max_stars_repo_head_hexsha": "ffa97984f95b9862ac2a10b8459bb7ef241c6c72", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "bench_cupy.py", "max_issues_repo_name": "zhouxzh/Jetson_nano_stft_benchmark", "max_issues_repo_head_hexsha": "ffa97984f95b9862ac2a10b8459bb7ef241c6c72", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "bench_cupy.py", "max_forks_repo_name": "zhouxzh/Jetson_nano_stft_benchmark", "max_forks_repo_head_hexsha": "ffa97984f95b9862ac2a10b8459bb7ef241c6c72", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 26.5, "max_line_length": 92, "alphanum_fraction": 0.6493710692, "include": true, "reason": "import numpy,import cupy", "num_tokens": 515}
"""Defines a segmentation module for evaluation only.""" import os import imageio import numpy as np from detectron2 import model_zoo from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor class SegmentationModule: def __init__(self, load_checkpoint_path: str, debug_dir: str): self.debug_dir = debug_dir cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" ) ) cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.99 cfg.MODEL.WEIGHTS = load_checkpoint_path self.predictor = DefaultPredictor(cfg) def predict(self, img: np.ndarray, debug_id: int) -> np.ndarray: """Predicts binary instance segmentations of objects vs. background for a given image. Args: img: The RGB image to predict segmentations on. Returns: masks: A numpy array of shape (N, H, W) of instance masks. """ # Write the input image for debugging. if self.debug_dir is not None: path = os.path.join( self.debug_dir, f"{debug_id:04}", "seg_input.png" ) os.makedirs(os.path.dirname(path), exist_ok=True) imageio.imwrite(path, img) outputs = self.predictor(img) # This produces a numpy array of shape (N, H, W) containing binary # masks. masks = outputs["instances"].to("cpu")._fields["pred_masks"].numpy() # seg = np.full((320, 480), -1, dtype=np.uint8) # for idx, mask in enumerate(masks): # seg[mask] = idx # mask_img = mask.astype(np.uint8) * 255 # path = f"/home/michelle/tmp/seg_mask_{idx}.png" # imageio.imwrite(path, mask_img) # print(f"Wrote mask image to: {path}") return masks
{"hexsha": "11bc22236dfdf51889e750ffc409cc22110b387b", "size": 2021, "ext": "py", "lang": "Python", "max_stars_repo_path": "system/seg_module.py", "max_stars_repo_name": "jyf588/pytorch-rl-bullet", "max_stars_repo_head_hexsha": "3ac1835d01e658b2078126895ffa0eb11304abb4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "system/seg_module.py", "max_issues_repo_name": "jyf588/pytorch-rl-bullet", "max_issues_repo_head_hexsha": "3ac1835d01e658b2078126895ffa0eb11304abb4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "system/seg_module.py", "max_forks_repo_name": "jyf588/pytorch-rl-bullet", "max_forks_repo_head_hexsha": "3ac1835d01e658b2078126895ffa0eb11304abb4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.8448275862, "max_line_length": 79, "alphanum_fraction": 0.6120732311, "include": true, "reason": "import numpy", "num_tokens": 493}
""" Estimate the correlations in terms of robustness between existing natural and synthetic corruption benchmarks. The computed correlation scores and their associated p-values are saved in pickles at ../Results/benchmark_correlations. Require: performances on ImageNet-C and ImageNet-P of the models defined in ../models.py (obtained using test_inet_c.py, test_inet_p.py) The accuracies of the models defined in ../models.py for all considered natural corruption benchmarks (obtained using test_inet_a.py, test_inet_r.py, test_inet_sk.py, test_inet_v2.py and test_objectnet.py) """ import pandas as pd import numpy as np import pickle import scipy.stats import os import sys p = os.path.abspath('..') sys.path.insert(1, p) natural_bench_name = ["inet_a","inet_r","inet_v2","onet","inet_sk"] syn_bench_name = ["inet_c","inet_p"] natural_bench = [] syn_bench = [] for name in natural_bench_name: with open(os.path.join("../Results/benchmark_correlations","{}_accuracies.pkl".format(name)), 'rb') as f: model_acc = pickle.load(f).squeeze() natural_bench.append(model_acc) for name in syn_bench_name: if name != "inet_p": with open(os.path.join("../Results/benchmark_correlations","{}_accuracies.pkl".format(name)), 'rb') as f: model_acc = pickle.load(f).squeeze() else : with open(os.path.join("../Results/benchmark_correlations","inet_p_mfr.pkl"), 'rb') as f: model_acc = pickle.load(f).squeeze() syn_bench.append(model_acc) with open(os.path.join("../Results/benchmark_correlations","inet_clean_accuracies.pkl"), 'rb') as f: inet_clean_acc = pickle.load(f).squeeze() correlation_array = np.zeros([len(natural_bench),len(syn_bench)]) p_value_array = np.zeros([len(natural_bench),len(syn_bench)]) for i in range(len(natural_bench)): for j in range(len(syn_bench)): if syn_bench_name[j] != "inet_p": correlation_array[i,j], p_value_array[i,j] = scipy.stats.pearsonr(inet_clean_acc-natural_bench[i],inet_clean_acc-syn_bench[j]) else: correlation_array[i,j], p_value_array[i,j] = scipy.stats.pearsonr(inet_clean_acc-natural_bench[i],syn_bench[j]) correlation_array = pd.DataFrame(correlation_array, index=natural_bench_name, columns=syn_bench_name) p_value_array = pd.DataFrame(p_value_array, index=natural_bench_name, columns=syn_bench_name) correlation_array.to_pickle(os.path.join("../Results/benchmark_correlations","existing_bench_correlations.pkl")) correlation_array.to_html(os.path.join("../Results/benchmark_correlations","existing_bench_correlations.html")) p_value_array.to_pickle(os.path.join("../Results/benchmark_correlations","existing_bench_p_values.pkl")) p_value_array.to_html(os.path.join("../Results/benchmark_correlations","existing_bench_p_values.html"))
{"hexsha": "6ebbb44064172bc61a2477aa649a0fd2268dfb16", "size": 2801, "ext": "py", "lang": "Python", "max_stars_repo_path": "bench_correlations/get_existing_bench_correlations.py", "max_stars_repo_name": "bds-ailab/common_corruption_benchmark", "max_stars_repo_head_hexsha": "b6888f1591a2eb03d186628e25550ebd132e0024", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 5, "max_stars_repo_stars_event_min_datetime": "2020-06-19T08:36:20.000Z", "max_stars_repo_stars_event_max_datetime": "2021-11-22T13:34:38.000Z", "max_issues_repo_path": "bench_correlations/get_existing_bench_correlations.py", "max_issues_repo_name": "bds-ailab/common_corruption_benchmark", "max_issues_repo_head_hexsha": "b6888f1591a2eb03d186628e25550ebd132e0024", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2020-07-22T07:12:58.000Z", "max_issues_repo_issues_event_max_datetime": "2020-07-22T07:13:19.000Z", "max_forks_repo_path": "bench_correlations/get_existing_bench_correlations.py", "max_forks_repo_name": "bds-ailab/common_corruption_benchmark", "max_forks_repo_head_hexsha": "b6888f1591a2eb03d186628e25550ebd132e0024", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 48.2931034483, "max_line_length": 209, "alphanum_fraction": 0.7511602999, "include": true, "reason": "import numpy,import scipy", "num_tokens": 683}
from functools import partial import gc from multiprocessing import Pool import sys import numpy as np from tqdm import tqdm from components.spectrum.alignment import pafft if __name__ == '__main__': MZS = sys.argv[1] REFERENCE = sys.argv[2] SPECTRA = sys.argv[3] POOL_SIZE = int(sys.argv[4]) DESTINATION = sys.argv[5] mzs = np.loadtxt(MZS, delimiter=',') reference = np.loadtxt(REFERENCE, delimiter=',') spectra = np.load(SPECTRA, mmap_mode='r') align = partial(pafft, mzs=mzs, reference_counts=reference) with Pool(processes=POOL_SIZE) as pool: aligned = pool.map( align, tqdm(spectra, desc='Alignment')) del spectra gc.collect() with open(DESTINATION, 'wb') as out_file: np.save(out_file, aligned)
{"hexsha": "aa75cc2538fba88d3926a9a3f035953e045761ee", "size": 785, "ext": "py", "lang": "Python", "max_stars_repo_path": "bin/alignment.py", "max_stars_repo_name": "gmrukwa/msi-preprocessing-pipeline", "max_stars_repo_head_hexsha": "bc6d26daba42575babcdf5287999f1f844cf2e8e", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "bin/alignment.py", "max_issues_repo_name": "gmrukwa/msi-preprocessing-pipeline", "max_issues_repo_head_hexsha": "bc6d26daba42575babcdf5287999f1f844cf2e8e", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 5, "max_issues_repo_issues_event_min_datetime": "2019-11-26T19:13:32.000Z", "max_issues_repo_issues_event_max_datetime": "2019-11-29T08:14:28.000Z", "max_forks_repo_path": "bin/alignment.py", "max_forks_repo_name": "gmrukwa/msi-preprocessing-pipeline", "max_forks_repo_head_hexsha": "bc6d26daba42575babcdf5287999f1f844cf2e8e", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 27.0689655172, "max_line_length": 63, "alphanum_fraction": 0.676433121, "include": true, "reason": "import numpy", "num_tokens": 209}