problem_id
stringlengths
32
32
link
stringlengths
75
84
problem
stringlengths
14
5.33k
solution
stringlengths
15
6.63k
letter
stringclasses
5 values
answer
stringclasses
957 values
1ed68df992ee78bbedf113c527ad4a5c
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_1
What is the value of \[2^{1+2+3}-(2^1+2^2+2^3)?\] $\textbf{(A) }0 \qquad \textbf{(B) }50 \qquad \textbf{(C) }52 \qquad \textbf{(D) }54 \qquad \textbf{(E) }57$
We evaluate the given expression to get that \[2^{1+2+3}-(2^1+2^2+2^3)=2^6-(2^1+2^2+2^3)=64-2-4-8=50 \implies \boxed{50}\]
B
50
c558ae0aa1bad8fe2974852f2d62f80d
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_3
The sum of two natural numbers is $17402$ . One of the two numbers is divisible by $10$ . If the units digit of that number is erased, the other number is obtained. What is the difference of these two numbers? $\textbf{(A)} ~10272\qquad\textbf{(B)} ~11700\qquad\textbf{(C)} ~13362\qquad\textbf{(D)} ~14238\qquad\textbf{(E)} ~15426$
The units digit of a multiple of $10$ will always be $0$ . We add a $0$ whenever we multiply by $10$ . So, removing the units digit is equal to dividing by $10$ Let the smaller number (the one we get after removing the units digit) be $a$ . This means the bigger number would be $10a$ We know the sum is $10a+a = 11a$ so $11a=17402$ . So $a=1582$ . The difference is $10a-a = 9a$ . So, the answer is $9(1582) = \boxed{14238}$
D
14238
c558ae0aa1bad8fe2974852f2d62f80d
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_3
The sum of two natural numbers is $17402$ . One of the two numbers is divisible by $10$ . If the units digit of that number is erased, the other number is obtained. What is the difference of these two numbers? $\textbf{(A)} ~10272\qquad\textbf{(B)} ~11700\qquad\textbf{(C)} ~13362\qquad\textbf{(D)} ~14238\qquad\textbf{(E)} ~15426$
Since the unit's place of a multiple of $10$ is $0$ , the other integer must end with a $2$ , for both integers sum up to a number ending in a $2$ . Thus, the unit's place of the difference must be $10-2=8$ , and the only answer choice that ends with an $8$ is $\boxed{14238}$
D
14238
c558ae0aa1bad8fe2974852f2d62f80d
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_3
The sum of two natural numbers is $17402$ . One of the two numbers is divisible by $10$ . If the units digit of that number is erased, the other number is obtained. What is the difference of these two numbers? $\textbf{(A)} ~10272\qquad\textbf{(B)} ~11700\qquad\textbf{(C)} ~13362\qquad\textbf{(D)} ~14238\qquad\textbf{(E)} ~15426$
Let the larger number be $\underline{ABCD0}.$ It follows that the smaller number is $\underline{ABCD}.$ Adding vertically, we have \[\begin{array}{cccccc} & A & B & C & D & 0 \\ +\quad & & A & B & C & D \\ \hline & & & & & \\ [-2.5ex] & 1 & 7 & 4 & 0 & 2 \\ \end{array}\] Working from right to left, we get \[D=2\implies C=8 \implies B=5 \implies A=1.\] The larger number is $15820$ and the smaller number is $1582.$ Their difference is $15820-1582=\boxed{14238}.$
D
14238
c558ae0aa1bad8fe2974852f2d62f80d
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_3
The sum of two natural numbers is $17402$ . One of the two numbers is divisible by $10$ . If the units digit of that number is erased, the other number is obtained. What is the difference of these two numbers? $\textbf{(A)} ~10272\qquad\textbf{(B)} ~11700\qquad\textbf{(C)} ~13362\qquad\textbf{(D)} ~14238\qquad\textbf{(E)} ~15426$
We know that the larger number has a units digit of $0$ since it is divisible by 10. If $D$ is the ten's digit of the larger number, then $D$ is the units digit of the smaller number. Since the sum of the natural numbers has a unit's digit of $2$ $D=2$ The units digit of the larger number is $0$ and the units digit of the smaller number is $2$ , so the positive difference between the numbers is 8. There is only one answer choice that has this units digit, and that is $\boxed{14238}.$
D
14238
c3b42ef478e5e167c2dfab3fcfa0f733
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_5
When a student multiplied the number $66$ by the repeating decimal, \[\underline{1}.\underline{a} \ \underline{b} \ \underline{a} \ \underline{b}\ldots=\underline{1}.\overline{\underline{a} \ \underline{b}},\] where $a$ and $b$ are digits, he did not notice the notation and just multiplied $66$ times $\underline{1}.\underline{a} \ \underline{b}.$ Later he found that his answer is $0.5$ less than the correct answer. What is the $2$ -digit number $\underline{a} \ \underline{b}?$ $\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75$
We are given that $66\Bigl(\underline{1}.\overline{\underline{a} \ \underline{b}}\Bigr)-0.5=66\Bigl(\underline{1}.\underline{a} \ \underline{b}\Bigr),$ from which \begin{align*} 66\Bigl(\underline{1}.\overline{\underline{a} \ \underline{b}}\Bigr)-66\Bigl(\underline{1}.\underline{a} \ \underline{b}\Bigr)&=0.5 \\ 66\Bigl(\underline{1}.\overline{\underline{a} \ \underline{b}} - \underline{1}.\underline{a} \ \underline{b}\Bigr)&=0.5 \\ 66\Bigl(\underline{0}.\underline{0} \ \underline{0} \ \overline{\underline{a} \ \underline{b}}\Bigr)&=0.5 \\ 66\left(\frac{1}{100}\cdot\underline{0}.\overline{\underline{a} \ \underline{b}}\right)&=\frac12 \\ \underline{0}.\overline{\underline{a} \ \underline{b}}&=\frac{25}{33} \\ \underline{0}.\overline{\underline{a} \ \underline{b}}&=0.\overline{75} \\ \underline{a} \ \underline{b}&=\boxed{75} ~MRENTHUSIASM
E
75
c3b42ef478e5e167c2dfab3fcfa0f733
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_5
When a student multiplied the number $66$ by the repeating decimal, \[\underline{1}.\underline{a} \ \underline{b} \ \underline{a} \ \underline{b}\ldots=\underline{1}.\overline{\underline{a} \ \underline{b}},\] where $a$ and $b$ are digits, he did not notice the notation and just multiplied $66$ times $\underline{1}.\underline{a} \ \underline{b}.$ Later he found that his answer is $0.5$ less than the correct answer. What is the $2$ -digit number $\underline{a} \ \underline{b}?$ $\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75$
It is known that $\underline{0}.\overline{\underline{a} \ \underline{b}}=\frac{\underline{a} \ \underline{b}}{99}$ and $\underline{0}.\underline{a} \ \underline{b}=\frac{\underline{a} \ \underline{b}}{100}.$ Let $x=\underline{a} \ \underline{b}.$ We have \[66\biggl(1+\frac{x}{99}\biggr)-66\biggl(1+\frac{x}{100}\biggr)=0.5.\] Expanding and simplifying give $\frac{x}{150}=0.5,$ so $x=\boxed{75}.$
E
75
c3b42ef478e5e167c2dfab3fcfa0f733
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_5
When a student multiplied the number $66$ by the repeating decimal, \[\underline{1}.\underline{a} \ \underline{b} \ \underline{a} \ \underline{b}\ldots=\underline{1}.\overline{\underline{a} \ \underline{b}},\] where $a$ and $b$ are digits, he did not notice the notation and just multiplied $66$ times $\underline{1}.\underline{a} \ \underline{b}.$ Later he found that his answer is $0.5$ less than the correct answer. What is the $2$ -digit number $\underline{a} \ \underline{b}?$ $\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75$
We have \[66 \cdot \left(1 + \frac{10a+b}{100}\right) + \frac{1}{2} = 66 \cdot \left(1+ \frac{10a+b}{99}\right).\] Expanding both sides, we have \[66 + \frac{33(10a+b)}{50} + \frac{1}{2} = 66 + \frac{2(10a+b)}{3}.\] Subtracting $66$ from both sides, we have \[\frac{33(10a+b)}{50} + \frac{1}{2} = \frac{2(10a+b)}{3}.\] Multiplying both sides by $50 \cdot 3 = 150,$ we have \[99(10a+b) + 75 = 100(10a+b).\] Thus, the answer is $10a+b = \boxed{75}.$
E
75
4ca1c65710560352d1d328fc76889f51
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_6
A deck of cards has only red cards and black cards. The probability of a randomly chosen card being red is $\frac13$ . When $4$ black cards are added to the deck, the probability of choosing red becomes $\frac14$ . How many cards were in the deck originally? $\textbf{(A) }6 \qquad \textbf{(B) }9 \qquad \textbf{(C) }12 \qquad \textbf{(D) }15 \qquad \textbf{(E) }18$
If the probability of choosing a red card is $\frac{1}{3}$ , the red and black cards are in ratio $1:2$ . This means at the beginning there are $x$ red cards and $2x$ black cards. After $4$ black cards are added, there are $2x+4$ black cards. This time, the probability of choosing a red card is $\frac{1}{4}$ so the ratio of red to black cards is $1:3$ . This means in the new deck the number of black cards is also $3x$ for the same $x$ red cards. So, $3x = 2x + 4$ and $x=4$ meaning there are $4$ red cards in the deck at the start and $2(4) = 8$ black cards. So, the answer is $8+4 = 12 = \boxed{12}$
C
12
4ca1c65710560352d1d328fc76889f51
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_6
A deck of cards has only red cards and black cards. The probability of a randomly chosen card being red is $\frac13$ . When $4$ black cards are added to the deck, the probability of choosing red becomes $\frac14$ . How many cards were in the deck originally? $\textbf{(A) }6 \qquad \textbf{(B) }9 \qquad \textbf{(C) }12 \qquad \textbf{(D) }15 \qquad \textbf{(E) }18$
In terms of the number of cards, the original deck is $3$ times the red cards, and the final deck is $4$ times the red cards. So, the final deck is $\frac43$ times the original deck. We are given that adding $4$ cards to the original deck is the same as increasing the original deck by $\frac13$ of itself. Since $4$ cards are equal to $\frac13$ of the original deck, the original deck has $4\cdot3=\boxed{12}$ cards.
C
12
4ca1c65710560352d1d328fc76889f51
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_6
A deck of cards has only red cards and black cards. The probability of a randomly chosen card being red is $\frac13$ . When $4$ black cards are added to the deck, the probability of choosing red becomes $\frac14$ . How many cards were in the deck originally? $\textbf{(A) }6 \qquad \textbf{(B) }9 \qquad \textbf{(C) }12 \qquad \textbf{(D) }15 \qquad \textbf{(E) }18$
Suppose there were $x$ cards in the deck originally. Now, the deck has $x+4$ cards, which must be a multiple of $4.$ Only $12+4=16$ is a multiple of $4,$ so the answer is $x=\boxed{12}.$
C
12
a0348834b1e5c4a96bf17d965b05fe07
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_7
What is the least possible value of $(xy-1)^2+(x+y)^2$ for real numbers $x$ and $y$ $\textbf{(A)} ~0\qquad\textbf{(B)} ~\frac{1}{4}\qquad\textbf{(C)} ~\frac{1}{2} \qquad\textbf{(D)} ~1 \qquad\textbf{(E)} ~2$
Expanding, we get that the expression is $x^2+2xy+y^2+x^2y^2-2xy+1$ or $x^2+y^2+x^2y^2+1$ . By the Trivial Inequality (all squares are nonnegative) the minimum value for this is $\boxed{1}$ , which can be achieved at $x=y=0$
D
1
a0348834b1e5c4a96bf17d965b05fe07
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_7
What is the least possible value of $(xy-1)^2+(x+y)^2$ for real numbers $x$ and $y$ $\textbf{(A)} ~0\qquad\textbf{(B)} ~\frac{1}{4}\qquad\textbf{(C)} ~\frac{1}{2} \qquad\textbf{(D)} ~1 \qquad\textbf{(E)} ~2$
We expand the original expression, then factor the result by grouping: \begin{align*} (xy-1)^2+(x+y)^2&=\left(x^2y^2-2xy+1\right)+\left(x^2+2xy+y^2\right) \\ &=x^2y^2+x^2+y^2+1 \\ &=x^2\left(y^2+1\right)+\left(y^2+1\right) \\ &=\left(x^2+1\right)\left(y^2+1\right). \end{align*} Clearly, both factors are positive. By the Trivial Inequality, we have \[\left(x^2+1\right)\left(y^2+1\right)\geq\left(0+1\right)\left(0+1\right)=\boxed{1}.\] Note that the least possible value of $(xy-1)^2+(x+y)^2$ occurs at $x=y=0.$
D
1
a0348834b1e5c4a96bf17d965b05fe07
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_7
What is the least possible value of $(xy-1)^2+(x+y)^2$ for real numbers $x$ and $y$ $\textbf{(A)} ~0\qquad\textbf{(B)} ~\frac{1}{4}\qquad\textbf{(C)} ~\frac{1}{2} \qquad\textbf{(D)} ~1 \qquad\textbf{(E)} ~2$
Like solution 1, expand and simplify the original equation to $x^2+y^2+x^2y^2+1$ and let $f(x, y) = x^2+y^2+x^2y^2+1$ . To find local extrema, find where $\nabla f(x, y) = \boldsymbol{0}$ . First, find the first partial derivative with respect to x and y and find where they are $0$ \[\frac{\partial f}{\partial x} = 2x + 2xy^{2} = 2x(1 + y^{2}) = 0 \implies x = 0\] \[\frac{\partial f}{\partial y} = 2y + 2yx^{2} = 2y(1 + x^{2}) = 0 \implies y = 0\] Thus, there is a local extremum at $(0, 0)$ . Because this is the only extremum, we can assume that this is a minimum because the problem asks for the minimum (though this can also be proven using the partial second derivative test) and the global minimum since it's the only minimum, meaning $f(0, 0)$ is the minimum of $f(x, y)$ . Plugging $(0, 0)$ into $f(x, y)$ , we find 1 $\implies \boxed{1}$
D
1
ec06ce966ec85c54faca67ddaf9efafa
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_10
Two right circular cones with vertices facing down as shown in the figure below contain the same amount of liquid. The radii of the tops of the liquid surfaces are $3$ cm and $6$ cm. Into each cone is dropped a spherical marble of radius $1$ cm, which sinks to the bottom and is completely submerged without spilling any liquid. What is the ratio of the rise of the liquid level in the narrow cone to the rise of the liquid level in the wide cone? [asy] size(350); defaultpen(linewidth(0.8)); real h1 = 10, r = 3.1, s=0.75; pair P = (r,h1), Q = (-r,h1), Pp = s * P, Qp = s * Q; path e = ellipse((0,h1),r,0.9), ep = ellipse((0,h1*s),r*s,0.9); draw(ellipse(origin,r*(s-0.1),0.8)); fill(ep,gray(0.8)); fill(origin--Pp--Qp--cycle,gray(0.8)); draw((-r,h1)--(0,0)--(r,h1)^^e); draw(subpath(ep,0,reltime(ep,0.5)),linetype("4 4")); draw(subpath(ep,reltime(ep,0.5),reltime(ep,1))); draw(Qp--(0,Qp.y),Arrows(size=8)); draw(origin--(0,12),linetype("4 4")); draw(origin--(r*(s-0.1),0)); label("$3$",(-0.9,h1*s),N,fontsize(10)); real h2 = 7.5, r = 6, s=0.6, d = 14; pair P = (d+r-0.05,h2-0.15), Q = (d-r+0.05,h2-0.15), Pp = s * P + (1-s)*(d,0), Qp = s * Q + (1-s)*(d,0); path e = ellipse((d,h2),r,1), ep = ellipse((d,h2*s+0.09),r*s,1); draw(ellipse((d,0),r*(s-0.1),0.8)); fill(ep,gray(0.8)); fill((d,0)--Pp--Qp--cycle,gray(0.8)); draw(P--(d,0)--Q^^e); draw(subpath(ep,0,reltime(ep,0.5)),linetype("4 4")); draw(subpath(ep,reltime(ep,0.5),reltime(ep,1))); draw(Qp--(d,Qp.y),Arrows(size=8)); draw((d,0)--(d,10),linetype("4 4")); draw((d,0)--(d+r*(s-0.1),0)); label("$6$",(d-r/4,h2*s-0.06),N,fontsize(10)); [/asy] $\textbf{(A) }1:1 \qquad \textbf{(B) }47:43 \qquad \textbf{(C) }2:1 \qquad \textbf{(D) }40:13 \qquad \textbf{(E) }4:1$
The heights of the cones are not given, so suppose the heights are very large (i.e. tending towards infinity) in order to approximate the cones as cylinders with base radii $3$ and $6$ and infinitely large height. Then the base area of the wide cylinder is $4$ times that of the narrow cylinder. Since we are dropping a ball of the same volume into each cylinder, the water level in the narrow cone/cylinder should rise $\boxed{4}$ times as much.
E
4
e1d7d878b90c220299a523c9534ea595
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_12
All the roots of the polynomial $z^6-10z^5+Az^4+Bz^3+Cz^2+Dz+16$ are positive integers, possibly repeated. What is the value of $B$ $\textbf{(A) }{-}88 \qquad \textbf{(B) }{-}80 \qquad \textbf{(C) }{-}64 \qquad \textbf{(D) }{-}41\qquad \textbf{(E) }{-}40$
By Vieta's formulas, the sum of the six roots is $10$ and the product of the six roots is $16$ . By inspection, we see the roots are $1, 1, 2, 2, 2,$ and $2$ , so the function is $(z-1)^2(z-2)^4=(z^2-2z+1)(z^4-8z^3+24z^2-32z+16)$ . Therefore, calculating just the $z^3$ terms, we get $B = -32 - 48 - 8 = \boxed{88}$
A
88
e1d7d878b90c220299a523c9534ea595
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_12
All the roots of the polynomial $z^6-10z^5+Az^4+Bz^3+Cz^2+Dz+16$ are positive integers, possibly repeated. What is the value of $B$ $\textbf{(A) }{-}88 \qquad \textbf{(B) }{-}80 \qquad \textbf{(C) }{-}64 \qquad \textbf{(D) }{-}41\qquad \textbf{(E) }{-}40$
Using the same method as Solution 1, we find that the roots are $2, 2, 2, 2, 1,$ and $1$ . Note that $B$ is the negation of the 3rd symmetric sum of the roots. Using casework on the number of 1's in each of the $\binom {6}{3} = 20$ products $r_a \cdot r_b \cdot r_c,$ we obtain \[B= - \left(\binom {4}{3} \binom {2}{0} \cdot 2^{3} + \binom {4}{2} \binom{2}{1} \cdot 2^{2} \cdot 1 + \binom {4}{1} \binom {2}{2} \cdot 2 \right) = -\left(32+48+8 \right) = \boxed{88}.\] ~ike.chen
A
88
9d45fa97b07490b82376fd3afd48d701
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_13
Of the following complex numbers $z$ , which one has the property that $z^5$ has the greatest real part? $\textbf{(A) }{-}2 \qquad \textbf{(B) }{-}\sqrt3+i \qquad \textbf{(C) }{-}\sqrt2+\sqrt2 i \qquad \textbf{(D) }{-}1+\sqrt3 i\qquad \textbf{(E) }2i$
First, $\textbf{(B)}$ is $2\text{cis}(150)$ $\textbf{(C)}$ is $2\text{cis}(135)$ $\textbf{(D)}$ is $2\text{cis}(120)$ Taking the real part of the $5$ th power of each we have: $\textbf{(A): }(-2)^5=-32$ $\textbf{(B): }32\cos(750)=32\cos(30)=16\sqrt{3}$ $\textbf{(C): }32\cos(675)=32\cos(-45)=16\sqrt{2}$ $\textbf{(D): }32\cos(600)=32\cos(240)<0$ $\textbf{(E): }(2i)^5=32i$ , whose real part is $0$ Thus, the answer is $\boxed{3}$
B
3
9d45fa97b07490b82376fd3afd48d701
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_13
Of the following complex numbers $z$ , which one has the property that $z^5$ has the greatest real part? $\textbf{(A) }{-}2 \qquad \textbf{(B) }{-}\sqrt3+i \qquad \textbf{(C) }{-}\sqrt2+\sqrt2 i \qquad \textbf{(D) }{-}1+\sqrt3 i\qquad \textbf{(E) }2i$
We rewrite each answer choice to the polar form \[z=r\operatorname{cis}\theta=r(\cos\theta+i\sin\theta),\] where $r$ is the magnitude of $z$ such that $r\geq0,$ and $\theta$ is the argument of $z$ such that $0\leq\theta<2\pi.$ By De Moivre's Theorem , the real part of $z^5$ is \[\operatorname{Re}\left(z^5\right)=r^5\cos{(5\theta)}.\] We construct a table as follows: \[\begin{array}{c|ccc|ccc|cclclclcc} & & & & & & & & & & & & & & & \\ [-2ex] \textbf{Choice} & & \boldsymbol{r} & & & \boldsymbol{\theta} & & & & & & \multicolumn{1}{c}{\boldsymbol{\operatorname{Re}\left(z^5\right)}} & & & & \\ [0.5ex] \hline & & & & & & & & & & & & & & & \\ [-1ex] \textbf{(A)} & & 2 & & & \pi & & & &32\cos{(5\pi)}&=&32\cos\pi&=&32(-1)& & \\ [2ex] \textbf{(B)} & & 2 & & & \tfrac{5\pi}{6} & & & &32\cos{\tfrac{25\pi}{6}}&=&32\cos{\tfrac{\pi}{6}}&=&32\left(\tfrac{\sqrt3}{2}\right)& & \\ [2ex] \textbf{(C)} & & 2 & & & \tfrac{3\pi}{4} & & & &32\cos{\tfrac{15\pi}{4}}&=&32\cos{\tfrac{7\pi}{4}}&=&32\left(\tfrac{\sqrt2}{2}\right)& & \\ [2ex] \textbf{(D)} & & 2 & & & \tfrac{2\pi}{3} & & & &32\cos{\tfrac{10\pi}{3}}&=&32\cos{\tfrac{4\pi}{3}}&=&32\left(-\tfrac{1}{2}\right)& & \\ [2ex] \textbf{(E)} & & 2 & & & \tfrac{\pi}{2} & & & &32\cos{\tfrac{5\pi}{2}}&=&32\cos{\tfrac{\pi}{2}}&=&32\left(0\right)& & \\ [1ex] \end{array}\] Clearly, the answer is $\boxed{3}.$
B
3
9d45fa97b07490b82376fd3afd48d701
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_13
Of the following complex numbers $z$ , which one has the property that $z^5$ has the greatest real part? $\textbf{(A) }{-}2 \qquad \textbf{(B) }{-}\sqrt3+i \qquad \textbf{(C) }{-}\sqrt2+\sqrt2 i \qquad \textbf{(D) }{-}1+\sqrt3 i\qquad \textbf{(E) }2i$
To find the real part of $z^5,$ we only need the terms with even powers of $i:$ \begin{align*} \operatorname{Re}\left(z^5\right)&=\operatorname{Re}\left((a+bi)^5\right) \\ &=\sum_{k=0}^{2}\binom{5}{2k}a^{5-2k}(bi)^{2k} \\ &=\binom50 a^{5}(bi)^{0} + \binom52 a^{3}(bi)^{2} + \binom54 a^{1}(bi)^{4} \\ &=a^5 - 10a^3b^2 + 5ab^4. \end{align*} We find the real parts of $\textbf{(B)},\textbf{(C)},$ and $\textbf{(D)}$ directly: Therefore, the answer is $\boxed{3}.$
B
3
9d45fa97b07490b82376fd3afd48d701
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_13
Of the following complex numbers $z$ , which one has the property that $z^5$ has the greatest real part? $\textbf{(A) }{-}2 \qquad \textbf{(B) }{-}\sqrt3+i \qquad \textbf{(C) }{-}\sqrt2+\sqrt2 i \qquad \textbf{(D) }{-}1+\sqrt3 i\qquad \textbf{(E) }2i$
The full expansion of $z^5$ is \begin{align*} z^5&=(a+bi)^5 \\ &=\sum_{k=0}^{5}\binom5k a^{5-k}(bi)^k \\ &=\binom50 a^{5}(bi)^0+\binom51 a^{4}(bi)^1+\binom52 a^{3}(bi)^2+\binom53 a^{2}(bi)^3+\binom54 a^{1}(bi)^4+\binom55 a^{0}(bi)^5 \\ &=a^5+5a^4bi-10a^3b^2-10a^2b^3i+5ab^4+b^5i \\ &=\left(a^5-10a^3b^2+5ab^4\right) + \left(5a^4b-10a^2b^3+b^5\right)i. \end{align*} We find the full expansions of $\textbf{(B)},\textbf{(C)},$ and $\textbf{(D)},$ then extract their real parts: Therefore, the answer is $\boxed{3}.$
B
3
34d068c8fde48d92560dfdbb33d2b6a7
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_14
What is the value of \[\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?\] $\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2200\qquad \textbf{(E) }21000$
We will apply the following logarithmic identity: \[\log_{p^n}{q^n}=\log_{p}{q},\] which can be proven by the Change of Base Formula: \[\log_{p^n}{q^n}=\frac{\log_{p}{q^n}}{\log_{p}{p^n}}=\frac{n\log_{p}{q}}{n}=\log_{p}{q}.\] Now, we simplify the expressions inside the summations: \begin{align*} \log_{5^k}{{3^k}^2}&=\log_{5^k}{(3^k)^k} \\ &=k\log_{5^k}{3^k} \\ &=k\log_{5}{3}, \end{align*} and \begin{align*} \log_{9^k}{25^k}&=\log_{3^{2k}}{5^{2k}} \\ &=\log_{3}{5}. \end{align*} Using these results, we evaluate the original expression: \begin{align*} \left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)&=\left(\sum_{k=1}^{20} k\log_{5}{3}\right)\cdot\left(\sum_{k=1}^{100} \log_{3}{5}\right) \\ &= \left(\log_{5}{3}\cdot\sum_{k=1}^{20} k\right)\cdot\left(\log_{3}{5}\cdot\sum_{k=1}^{100} 1\right) \\ &= \left(\sum_{k=1}^{20} k\right)\cdot\left(\sum_{k=1}^{100} 1\right) \\ &= \frac{21\cdot20}{2}\cdot100 \\ &= \boxed{21000} ~MRENTHUSIASM (Solution)
E
21000
34d068c8fde48d92560dfdbb33d2b6a7
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_14
What is the value of \[\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?\] $\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2200\qquad \textbf{(E) }21000$
First, we can get rid of the $k$ exponents using properties of logarithms: \[\log_{5^k} 3^{k^2} = k^2 \cdot \frac{1}{k} \cdot \log_{5} 3 = k\log_{5} 3 = \log_{5} 3^k.\] (Leaving the single $k$ in the exponent will come in handy later). Similarly, \[\log_{9^k} 25^{k} = k \cdot \frac{1}{k} \cdot \log_{9} 25 = \log_{9} 5^2.\] Then, evaluating the first few terms in each parentheses, we can find the simplified expanded forms of each sum using the additive property of logarithms: \begin{align*} \sum_{k=1}^{20} \log_{5} 3^k &= \log_{5} 3^1 + \log_{5} 3^2 + \dots + \log_{5} 3^{20} \\ &= \log_{5} 3^{(1 + 2 + \dots + 20)} \\ &= \log_{5} 3^{\frac{20(20+1)}{2}} &&\hspace{15mm}(*) \\ &= \log_{5} 3^{210}, \\ \sum_{k=1}^{100} \log_{9} 5^2 &= \log_{9} 5^2 + \log_{9} 5^2 + \dots + \log_{9} 5^2 \\ &= \log_{9} 5^{2(100)} \\ &= \log_{9} 5^{200}. \end{align*} In $(*),$ we use the triangular numbers equation: \[1 + 2 + \dots + n = \frac{n(n+1)}{2} = \frac{20(20+1)}{2} = 210.\] Finally, multiplying the two logarithms together, we can use the chain rule property of logarithms to simplify: \[\log_{a} b\log_{x} y = \log_{a} y\log_{x} b.\] Thus, \begin{align*} \left(\log_{5} 3^{210}\right)\left(\log_{3^2} 5^{200}\right) &= \left(\log_{5} 5^{200}\right)\left(\log_{3^2} 3^{210}\right) \\ &= \left(\log_{5} 5^{200}\right)\left(\log_{3} 3^{105}\right) \\ &= (200)(105) \\ &= \boxed{21000} ~Joeya (Solution)
E
21000
34d068c8fde48d92560dfdbb33d2b6a7
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_14
What is the value of \[\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?\] $\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2200\qquad \textbf{(E) }21000$
In $\sum_{k=1}^{20} \log_{5^k} 3^{k^2},$ note that the addends are greater than $1$ for all $k\geq2.$ In $\sum_{k=1}^{100} \log_{9^k} 25^k,$ note that the addends are greater than $1$ for all $k\geq1.$ We have the inequality \[\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)>\left(\sum_{k=2}^{20} 1\right)\cdot\left(\sum_{k=1}^{100} 1\right)=19\cdot100=1900,\] which eliminates choices $\textbf{(A)}, \textbf{(B)},$ and $\textbf{(C)}.$ We get the answer $\boxed{21000}$ by either an educated guess or a continued approximation:
E
21000
34d068c8fde48d92560dfdbb33d2b6a7
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_14
What is the value of \[\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?\] $\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2200\qquad \textbf{(E) }21000$
Using the identity \[\log_{p^n}{q^n}=\log_{p}{q},\] simplify \begin{align*} \log_{5^k}{{3^k}^2}&=\log_{5^k}{(3^k)^k} \\ &=\log_{5}{3^k} \\ \end{align*} and \begin{align*} \log_{9^k}{25^k}&=\log_{3^{2k}}{5^{2k}} \\ &=\log_{3}{5}. \end{align*} . Now we have the product: \[\left(\sum_{k=1}^{20} \log_{5} 3^{k}\right)\cdot\left(\sum_{k=1}^{100} \log_{3} 5\right)\] \begin{align*} \sum_{k=1}^{20} \log_{5} 3^k &= \log_{5} 3^1 + \log_{5} 3^2 + \dots + \log_{5} 3^{20} \\ &= \log_{5} 3^{(1 + 2 + \dots + 20)} \\ &= \log_{5} 3^{\frac{20(20+1)}{2}} \\ &= \log_{5} 3^{210} \\ &= {210}\cdot\log_{5} {3}, \\ \sum_{k=1}^{100}\log_{3} {5} &= {100}\cdot\log_{3} {5}. \end{align*} With the reciprocal rule the logarithms cancel out leaving: $\boxed{21000}.$
E
21000
d58cd8604be9d082660f3ff1820ce755
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_16
In the following list of numbers, the integer $n$ appears $n$ times in the list for $1 \leq n \leq 200$ \[1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \ldots, 200, 200, \ldots , 200\] What is the median of the numbers in this list? $\textbf{(A)} ~100.5 \qquad\textbf{(B)} ~134 \qquad\textbf{(C)} ~142 \qquad\textbf{(D)} ~150.5 \qquad\textbf{(E)} ~167$
The $x$ th number of this sequence is $\left\lceil\frac{-1\pm\sqrt{1+8x}}{2}\right\rceil$ via the quadratic formula. We can see that if we halve $x$ we end up getting $\left\lceil\frac{-1\pm\sqrt{1+4x}}{2}\right\rceil$ . This is approximately the number divided by $\sqrt{2}$ $\frac{200}{\sqrt{2}} = 141.4$ and since $142$ looks like the only number close to it, it is answer $\boxed{142}$ ~Lopkiloinm
C
142
d58cd8604be9d082660f3ff1820ce755
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_16
In the following list of numbers, the integer $n$ appears $n$ times in the list for $1 \leq n \leq 200$ \[1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \ldots, 200, 200, \ldots , 200\] What is the median of the numbers in this list? $\textbf{(A)} ~100.5 \qquad\textbf{(B)} ~134 \qquad\textbf{(C)} ~142 \qquad\textbf{(D)} ~150.5 \qquad\textbf{(E)} ~167$
We can look at answer choice $\textbf{(C)}$ , which is $142$ first. That means that the number of numbers from $1$ to $142$ is roughly the number of numbers from $143$ to $200$ The number of numbers from $1$ to $142$ is $\frac{142(142+1)}{2}$ which is approximately $10000.$ The number of numbers from $143$ to $200$ is $\frac{200(200+1)}{2}-\frac{142(142+1)}{2}$ which is approximately $10000$ as well. Therefore, we can be relatively sure the answer choice is $\boxed{142}.$
C
142
d58cd8604be9d082660f3ff1820ce755
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_16
In the following list of numbers, the integer $n$ appears $n$ times in the list for $1 \leq n \leq 200$ \[1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \ldots, 200, 200, \ldots , 200\] What is the median of the numbers in this list? $\textbf{(A)} ~100.5 \qquad\textbf{(B)} ~134 \qquad\textbf{(C)} ~142 \qquad\textbf{(D)} ~150.5 \qquad\textbf{(E)} ~167$
We can arrange the numbers in the following pattern: \[ \begin{array}{cccccc} \ &\ &\ &\ &\ 200 & \\ \ &\ &\ &\ 199 & \ 200 & \\ \ &\ &\ \iddots& \ \vdots& \ \vdots& \\ \ &\ 2& \ \cdots& \ 199& \ 200& \\ 1 & \ 2 & \ \cdots& \ 199& \ 200& \end{array} \] We can see this as a isosceles right triangle, with legs of length $200.$ [asy]draw((0,0)--(200,200)--(200,0)--cycle); draw((142,0)--(142,142)); label("$x$",(142,0)--(142,142),E); label("$x$",(0,0)--(142,0),S); label("$200$",(200,0)--(200,200),E); [/asy] Let $x$ be the side length such that both sides of the triangle have the same area. The desired answer is then around $x$ because about half of the numbers in the list fall on each side. Solving for $x$ yields: \begin{align*} \frac{x^2}{2} =& \:\frac{1}{2} \cdot \frac{200^2}{2} \\ x^2 =& \:\frac{1}{2}\cdot 200^2 \\ x =& \:\frac{200}{\sqrt{2}} = \: 100\sqrt{2} \approx 141. \end{align*} We see that $\boxed{142}$ is the closest to $x$ by far, and thus, can be relatively certain this is the answer.
C
142
6a7dc78217c1416fec1c5e58a1be3729
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_17
Trapezoid $ABCD$ has $\overline{AB}\parallel\overline{CD},BC=CD=43$ , and $\overline{AD}\perp\overline{BD}$ . Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$ , and let $P$ be the midpoint of $\overline{BD}$ . Given that $OP=11$ , the length of $AD$ can be written in the form $m\sqrt{n}$ , where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$ $\textbf{(A) }65 \qquad \textbf{(B) }132 \qquad \textbf{(C) }157 \qquad \textbf{(D) }194\qquad \textbf{(E) }215$
Angle chasing* reveals that $\triangle BPC\sim\triangle BDA$ , therefore \[2=\frac{BD}{BP}=\frac{AB}{BC}=\frac{AB}{43},\] or $AB=86$ Additional angle chasing shows that $\triangle ABO\sim\triangle CDO$ , therefore \[2=\frac{AB}{CD}=\frac{BO}{OD}=\frac{BP+11}{BP-11},\] or $BP=33$ and $BD=66$ Since $\triangle ADB$ is right, the Pythagorean theorem implies that \[AD=\sqrt{86^2-66^2}=4\sqrt{190}.\] The answer is $4+190=\boxed{194}$
D
194
6a7dc78217c1416fec1c5e58a1be3729
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_17
Trapezoid $ABCD$ has $\overline{AB}\parallel\overline{CD},BC=CD=43$ , and $\overline{AD}\perp\overline{BD}$ . Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$ , and let $P$ be the midpoint of $\overline{BD}$ . Given that $OP=11$ , the length of $AD$ can be written in the form $m\sqrt{n}$ , where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$ $\textbf{(A) }65 \qquad \textbf{(B) }132 \qquad \textbf{(C) }157 \qquad \textbf{(D) }194\qquad \textbf{(E) }215$
Since $\triangle BCD$ is isosceles with base $\overline{BD},$ it follows that median $\overline{CP}$ is also an altitude. Let $OD=x$ and $CP=h,$ so $PB=x+11.$ Since $\angle AOD=\angle COP$ by vertical angles, we conclude that $\triangle AOD\sim\triangle COP$ by AA, from which $\frac{AD}{CP}=\frac{OD}{OP},$ or \[AD=CP\cdot\frac{OD}{OP}=h\cdot\frac{x}{11}.\] Let the brackets denote areas. Notice that $[AOD]=[BOC]$ (By the same base and height, we deduce that $[ACD]=[BDC].$ Subtracting $[OCD]$ from both sides gives $[AOD]=[BOC].$ ). Doubling both sides produces \begin{align*} 2[AOD]&=2[BOC] \\ OD\cdot AD&=OB\cdot CP \\ x\left(\frac{hx}{11}\right)&=(x+22)h \\ x^2&=11(x+22). \end{align*} Rearranging and factoring result in $(x-22)(x+11)=0,$ from which $x=22.$ Applying the Pythagorean Theorem to right $\triangle CPB,$ we have \[h=\sqrt{43^2-33^2}=\sqrt{(43+33)(43-33)}=\sqrt{760}=2\sqrt{190}.\] Finally, we get \[AD=h\cdot\frac{x}{11}=4\sqrt{190},\] so the answer is $4+190=\boxed{194}.$
D
194
6a7dc78217c1416fec1c5e58a1be3729
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_17
Trapezoid $ABCD$ has $\overline{AB}\parallel\overline{CD},BC=CD=43$ , and $\overline{AD}\perp\overline{BD}$ . Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$ , and let $P$ be the midpoint of $\overline{BD}$ . Given that $OP=11$ , the length of $AD$ can be written in the form $m\sqrt{n}$ , where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$ $\textbf{(A) }65 \qquad \textbf{(B) }132 \qquad \textbf{(C) }157 \qquad \textbf{(D) }194\qquad \textbf{(E) }215$
Let $CP = y$ $CP$ a is perpendicular bisector of $DB.$ Then, let $DO = x,$ thus $DP = PB = 11+x.$ (1) $\triangle CPO \sim \triangle ADO,$ so we get $\frac{AD}{x} = \frac{y}{11},$ or $AD = \frac{xy}{11}.$ (2) Applying Pythagorean Theorem on $\triangle CDP$ gives $(11+x)^2 + y^2 = 43^2.$ (3) $\triangle BPC \sim \triangle BDA$ with ratio $1:2,$ so $AD = 2y$ using the fact that $P$ is the midpoint of $BD$ Thus, $\frac{xy}{11} = 2y,$ or $x = 22.$ And $y = \sqrt{43^2 - 33^2} = 2 \sqrt{190},$ so $AD = 4 \sqrt{190}$ and the answer is $4+190=\boxed{194}.$
D
194
6a7dc78217c1416fec1c5e58a1be3729
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_17
Trapezoid $ABCD$ has $\overline{AB}\parallel\overline{CD},BC=CD=43$ , and $\overline{AD}\perp\overline{BD}$ . Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$ , and let $P$ be the midpoint of $\overline{BD}$ . Given that $OP=11$ , the length of $AD$ can be written in the form $m\sqrt{n}$ , where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$ $\textbf{(A) }65 \qquad \textbf{(B) }132 \qquad \textbf{(C) }157 \qquad \textbf{(D) }194\qquad \textbf{(E) }215$
Observe that $\triangle BPC$ is congruent to $\triangle DPC$ ; both are similar to $\triangle BDA$ . Let's extend $\overline{AD}$ and $\overline{BC}$ past points $D$ and $C$ respectively, such that they intersect at a point $E$ . Observe that $\angle BDE$ is $90$ degrees, and that $\angle DBE \cong \angle PBC \cong \angle DBA \implies \angle DBE \cong \angle DBA$ . Thus, by ASA, we know that $\triangle ABD \cong \triangle EBD$ , thus, $AD = ED$ , meaning $D$ is the midpoint of $AE$ . Let $M$ be the midpoint of $\overline{DE}$ . Note that $\triangle CME$ is congruent to $\triangle BPC$ , thus $BC = CE$ , meaning $C$ is the midpoint of $\overline{BE}.$ Therefore, $\overline{AC}$ and $\overline{BD}$ are both medians of $\triangle ABE$ . This means that $O$ is the centroid of $\triangle ABE$ ; therefore, because the centroid divides the median in a 2:1 ratio, $\frac{BO}{2} = DO = \frac{BD}{3}$ . Recall that $P$ is the midpoint of $BD$ $DP = \frac{BD}{2}$ . The question tells us that $OP = 11$ $DP-DO=11$ ; we can write this in terms of $DB$ $\frac{DB}{2}-\frac{DB}{3} = \frac{DB}{6} = 11 \implies DB = 66$ We are almost finished. Each side length of $\triangle ABD$ is twice as long as the corresponding side length $\triangle CBP$ or $\triangle CPD$ , since those triangles are similar; this means that $AB = 2 \cdot 43 = 86$ . Now, by Pythagorean theorem on $\triangle ABD$ $AB^{2} - BD^{2} = AD^{2} \implies 86^{2}-66^{2} = AD^{2} \implies AD = \sqrt{3040} \implies AD = 4 \sqrt{190}$ The answer is $4+190 = \boxed{194}$
D
194
6a7dc78217c1416fec1c5e58a1be3729
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_17
Trapezoid $ABCD$ has $\overline{AB}\parallel\overline{CD},BC=CD=43$ , and $\overline{AD}\perp\overline{BD}$ . Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$ , and let $P$ be the midpoint of $\overline{BD}$ . Given that $OP=11$ , the length of $AD$ can be written in the form $m\sqrt{n}$ , where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$ $\textbf{(A) }65 \qquad \textbf{(B) }132 \qquad \textbf{(C) }157 \qquad \textbf{(D) }194\qquad \textbf{(E) }215$
Since $P$ is the midpoint of isosceles triangle $BCD$ , it would be pretty easy to see that $CP\perp BD$ . Since $AD\perp BD$ as well, $AD\parallel CP$ . Connecting $AP$ , it’s obvious that $[ADC]=[ADP]$ . Since $DP=BP$ $[APB]=[ADC]$ Since $P$ is the midpoint of $BD$ , the height of $\triangle APB$ on side $AB$ is half that of $\triangle ADC$ on $CD$ . Since $[APB]=[ADC]$ $AB=2CD$ As a basic property of a trapezoid, $\triangle AOB \sim \triangle COD$ , so $\frac{OB}{OD}=\frac{AB}{CD}=2$ , or $OB=2OD$ . Letting $OD=x$ , then $PB=DP=11+x$ , and $OB=22+x$ . Hence $22+x=2x$ and $x=22$ Since $\triangle AOD \sim \triangle COP$ $\frac{AD}{PC}=\frac{OD}{OP}=2$ . Since $PD=11+22=33$ $PC=\sqrt{43^2-33^2}=\sqrt{760}$ So, $AD=2\sqrt{760}=4\sqrt{190}$ . The correct answer is $\boxed{194}$
D
194
6a7dc78217c1416fec1c5e58a1be3729
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_17
Trapezoid $ABCD$ has $\overline{AB}\parallel\overline{CD},BC=CD=43$ , and $\overline{AD}\perp\overline{BD}$ . Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$ , and let $P$ be the midpoint of $\overline{BD}$ . Given that $OP=11$ , the length of $AD$ can be written in the form $m\sqrt{n}$ , where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$ $\textbf{(A) }65 \qquad \textbf{(B) }132 \qquad \textbf{(C) }157 \qquad \textbf{(D) }194\qquad \textbf{(E) }215$
Let $D$ be the origin of the cartesian coordinate plane, $B$ lie on the positive $x$ -axis, and $A$ lie on the negative $y$ -axis. Then let the coordinates of $B = (2a,0), A = (0, -2b).$ Then the slope of $AB$ is $\frac{b}{a}.$ Since $AB \parallel CD$ the slope of $CD$ is the same. Note that as $\triangle DCB$ is isosceles $C$ lies on $x = a.$ Thus since $CD$ has equation $y = \frac{b}{a}x$ $D$ is the origin), $C = (a,b).$ Therefore $AC$ has equation $y = \frac{3b}{a}x - 2b$ and intersects $BD$ $x$ -axis) at $O =\left(\frac{2}{3}a, 0\right).$ The midpoint of $BD$ is $P = (a,0),$ so $OP = \frac{a}{3} = 11,$ from which $a = 33.$ Then by Pythagorean theorem on $\triangle DPC$ $\triangle DBC$ is isosceles), we have $b = \sqrt{43^2 - 33^2} = 2\sqrt{190},$ so $2b=4\sqrt{190}.$ Finally, the answer is $4+190=\boxed{194}.$
D
194
6641d1fb83badc84df3499103214a203
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_19
How many solutions does the equation $\sin \left( \frac{\pi}2 \cos x\right)=\cos \left( \frac{\pi}2 \sin x\right)$ have in the closed interval $[0,\pi]$ $\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3\qquad \textbf{(E) }4$
The ranges of $\frac{\pi}2 \sin x$ and $\frac{\pi}2 \cos x$ are both $\left[-\frac{\pi}2, \frac{\pi}2 \right],$ which is included in the range of $\arcsin,$ so we can use it with no issues. \begin{align*} \frac{\pi}2 \cos x &= \arcsin \left( \cos \left( \frac{\pi}2 \sin x\right)\right) \\ \frac{\pi}2 \cos x &= \arcsin \left( \sin \left( \frac{\pi}2 - \frac{\pi}2 \sin x\right)\right) \\ \frac{\pi}2 \cos x &= \frac{\pi}2 - \frac{\pi}2 \sin x \\ \cos x &= 1 - \sin x \\ \cos x + \sin x &= 1. \end{align*} This only happens at $x = 0, \frac{\pi}2$ on the interval $[0,\pi],$ because one of $\sin$ and $\cos$ must be $1$ and the other $0.$ Therefore, the answer is $\boxed{2}.$
C
2
6641d1fb83badc84df3499103214a203
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_19
How many solutions does the equation $\sin \left( \frac{\pi}2 \cos x\right)=\cos \left( \frac{\pi}2 \sin x\right)$ have in the closed interval $[0,\pi]$ $\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3\qquad \textbf{(E) }4$
By the Cofunction Identity $\cos\theta=\sin\left(\frac{\pi}{2}-\theta\right),$ we rewrite the given equation: \[\sin \left(\frac{\pi}2 \cos x\right) = \sin \left(\frac{\pi}2 - \frac{\pi}2 \sin x\right).\] Recall that if $\sin\theta=\sin\phi,$ then $\theta=\phi+2n\pi$ or $\theta=\pi-\phi+2n\pi$ for some integer $n.$ Therefore, we have two cases: Together, we obtain $\boxed{2}.$
C
2
6641d1fb83badc84df3499103214a203
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_19
How many solutions does the equation $\sin \left( \frac{\pi}2 \cos x\right)=\cos \left( \frac{\pi}2 \sin x\right)$ have in the closed interval $[0,\pi]$ $\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3\qquad \textbf{(E) }4$
This problem is equivalent to counting the intersections of the graphs of $y=\sin\left(\frac{\pi}{2}\cos x\right)$ and $y=\cos\left(\frac{\pi}{2}\sin x\right)$ in the closed interval $[0,\pi].$ We construct a table of values, as shown below: \[\begin{array}{c|ccc} & & & \\ [-2ex] & \boldsymbol{x=0} & \boldsymbol{x=\frac{\pi}{2}} & \boldsymbol{x=\pi} \\ [1.5ex] \hline & & & \\ [-1ex] \boldsymbol{\cos x} & 1 & 0 & -1 \\ [1.5ex] \boldsymbol{\frac{\pi}{2}\cos x} & \frac{\pi}{2} & 0 & -\frac{\pi}{2} \\ [1.5ex] \boldsymbol{\sin\left(\frac{\pi}{2}\cos x\right)} & 1 & 0 & -1 \\ [1.5ex] \hline & & & \\ [-1ex] \boldsymbol{\sin x} & 0 & 1 & 0 \\ [1.5ex] \boldsymbol{\frac{\pi}{2}\sin x} & 0 & \frac{\pi}{2} & 0 \\ [1.5ex] \boldsymbol{\cos\left(\frac{\pi}{2}\sin x\right)} & 1 & 0 & 1 \\ [1ex] \end{array}\] For $x\in[0,\pi],$ note that: For the graphs to intersect, we need $\sin\left(\frac{\pi}{2}\cos x\right)\in[0,1].$ This occurs when $\frac{\pi}{2}\cos x\in\left[0,\frac{\pi}{2}\right].$ By the Cofunction Identity $\cos\theta=\sin\left(\frac{\pi}{2}-\theta\right),$ we rewrite the given equation: \[\sin\left(\frac{\pi}{2}\cos x\right) = \sin\left(\frac{\pi}{2}-\frac{\pi}{2}\sin x\right).\] Since $\frac{\pi}{2}\cos x\in\left[0,\frac{\pi}{2}\right]$ and $\frac{\pi}{2}\sin x\in\left[0,\frac{\pi}{2}\right],$ it follows that $x\in\left[0,\frac{\pi}{2}\right]$ and $\frac{\pi}{2}-\frac{\pi}{2}\sin x\in\left[0,\frac{\pi}{2}\right].$ We can apply the arcsine function to both sides, then rearrange and simplify: \begin{align*} \frac{\pi}{2}\cos x &= \frac{\pi}{2}-\frac{\pi}{2}\sin x \\ \sin x + \cos x &= 1. \end{align*} From Case 1 in Solution 2, we conclude that $(0,1)$ and $\left(\frac{\pi}{2},0\right)$ are the only points of intersection, as shown below: [asy] /* Made by MRENTHUSIASM */ size(600,200); real f(real x) { return sin(pi/2*cos(x)); } real g(real x) { return cos(pi/2*sin(x)); } draw(graph(f,0,pi),red,"$y=\sin\left(\frac{\pi}{2}\cos x\right)$"); draw(graph(g,0,pi),blue,"$y=\cos\left(\frac{\pi}{2}\sin x\right)$"); real xMin = 0; real xMax = 5/4*pi; real yMin = -2; real yMax = 2; //Draws the horizontal gridlines void horizontalLines() { for (real i = yMin+1; i < yMax; ++i) { draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); } } //Draws the vertical gridlines void verticalLines() { for (real i = xMin+pi/2; i < xMax; i+=pi/2) { draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); } } //Draws the horizontal ticks void horizontalTicks() { for (real i = yMin+1; i < yMax; ++i) { draw((-1/8,i)--(1/8,i), black+linewidth(1)); } } //Draws the vertical ticks void verticalTicks() { for (real i = xMin+pi/2; i < xMax; i+=pi/2) { draw((i,-1/8)--(i,1/8), black+linewidth(1)); } } horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("$x$",(xMax,0),(2,0)); label("$y$",(0,yMax),(0,2)); pair A[]; A[0] = (pi/2,0); A[1] = (pi,0); A[2] = (0,1); A[3] = (0,0); A[4] = (0,-1); label("$\frac{\pi}{2}$",A[0],(0,-2.5)); label("$\pi$",A[1],(0,-2.5)); label("$1$",A[2],(-2.5,0)); label("$0$",A[3],(-2.5,0)); label("$-1$",A[4],(-2.5,0)); dot((0,1),linewidth(5)); dot((pi/2,0),linewidth(5)); add(legend(),point(E),40E,UnFill); [/asy] Therefore, the answer is $\boxed{2}.$
C
2
025243729c85ac610334bd4992f5d153
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_21
The five solutions to the equation \[(z-1)(z^2+2z+4)(z^2+4z+6)=0\] may be written in the form $x_k+y_ki$ for $1\le k\le 5,$ where $x_k$ and $y_k$ are real. Let $\mathcal E$ be the unique ellipse that passes through the points $(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),$ and $(x_5,y_5)$ . The eccentricity of $\mathcal E$ can be written in the form $\sqrt{\frac mn}$ , where $m$ and $n$ are relatively prime positive integers. What is $m+n$ ? (Recall that the eccentricity of an ellipse $\mathcal E$ is the ratio $\frac ca$ , where $2a$ is the length of the major axis of $\mathcal E$ and $2c$ is the is the distance between its two foci.) $\textbf{(A) }7 \qquad \textbf{(B) }9 \qquad \textbf{(C) }11 \qquad \textbf{(D) }13\qquad \textbf{(E) }15$
The solutions to this equation are $z = 1$ $z = -1 \pm i\sqrt 3$ , and $z = -2\pm i\sqrt 2$ . Consider the five points $(1,0)$ $\left(-1,\pm\sqrt 3\right)$ , and $\left(-2,\pm\sqrt 2\right)$ ; these are the five points which lie on $\mathcal E$ . Note that since these five points are symmetric about the $x$ -axis, so must $\mathcal E$ Now let $r=b/a$ denote the ratio of the length of the minor axis of $\mathcal E$ to the length of its major axis. Remark that if we perform a transformation of the plane which scales every $x$ -coordinate by a factor of $r$ $\mathcal E$ is sent to a circle $\mathcal E'$ . Thus, the problem is equivalent to finding the value of $r$ such that $(r,0)$ $\left(-r,\pm\sqrt 3\right)$ , and $\left(-2r,\pm\sqrt 2\right)$ all lie on a common circle; equivalently, it suffices to determine the value of $r$ such that the circumcenter of the triangle formed by the points $P_1 = (r,0)$ $P_2 = \left(-r,\sqrt 3\right)$ , and $P_3 = \left(-2r,\sqrt 2\right)$ lies on the $x$ -axis. Recall that the circumcenter of a triangle $ABC$ is the intersection point of the perpendicular bisectors of its three sides. The equations of the perpendicular bisectors of the segments $\overline{P_1P_2}$ and $\overline{P_1P_3}$ are \[y = \tfrac{\sqrt 3}2 + \tfrac{2r}{\sqrt 3}x\qquad\text{and}\qquad y = \tfrac{\sqrt 2}2 + \tfrac{3r}{\sqrt 2}\left(x + \tfrac r2\right)\] respectively. These two lines have different slopes for $r\neq 0$ , so indeed they will intersect at some point $(x_0,y_0)$ ; we want $y_0 = 0$ . Plugging $y = 0$ into the first equation yields $x = -\tfrac{3}{4r}$ , and so plugging $y=0$ into the second equation and simplifying yields \[-\tfrac{1}{3r} = x + \tfrac r2 = -\tfrac{3}{4r} + \tfrac{r}{2}.\] Solving yields $r=\sqrt{\tfrac 56}$ Finally, recall that the lengths $a$ $b$ , and $c$ (where $c$ is the distance between the foci of $\mathcal E$ ) satisfy $c = \sqrt{a^2 - b^2}$ . Thus the eccentricity of $\mathcal E$ is $\tfrac ca = \sqrt{1 - \left(\tfrac ba\right)^2} = \sqrt{\tfrac 16}$ and the requested answer is $\boxed{7}$
A
7
025243729c85ac610334bd4992f5d153
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_21
The five solutions to the equation \[(z-1)(z^2+2z+4)(z^2+4z+6)=0\] may be written in the form $x_k+y_ki$ for $1\le k\le 5,$ where $x_k$ and $y_k$ are real. Let $\mathcal E$ be the unique ellipse that passes through the points $(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),$ and $(x_5,y_5)$ . The eccentricity of $\mathcal E$ can be written in the form $\sqrt{\frac mn}$ , where $m$ and $n$ are relatively prime positive integers. What is $m+n$ ? (Recall that the eccentricity of an ellipse $\mathcal E$ is the ratio $\frac ca$ , where $2a$ is the length of the major axis of $\mathcal E$ and $2c$ is the is the distance between its two foci.) $\textbf{(A) }7 \qquad \textbf{(B) }9 \qquad \textbf{(C) }11 \qquad \textbf{(D) }13\qquad \textbf{(E) }15$
Completing the square in the original equation, we have \[(z-1)\left((z+1)^2+3\right)\left((z+2)^2+2\right)=0,\] from which $z=1,-1\pm\sqrt{3}i,-2\pm\sqrt{2}i.$ Now, we will find the equation of an ellipse $\mathcal E$ that passes through $(1,0),\left(-1,\pm\sqrt3\right),$ and $\left(-2,\pm\sqrt2\right)$ in the $xy$ -plane. By symmetry, the center of $\mathcal E$ must be on the $x$ -axis. The formula of $\mathcal E$ is \[\frac{(x-h)^2}{a^2}+\frac{y^2}{b^2}=1, \hspace{44.5mm} (\bigstar)\] with the center $(h,0)$ and the axes' lengths $2a$ and $2b.$ Plugging the points $(1,0),\left(-1,\sqrt3\right),$ and $\left(-2,\sqrt2\right)$ into $(\bigstar),$ respectively, we have the following system of equations: \begin{align*} \frac{(1-h)^2}{a^2}&=1, \\ \frac{(-1-h)^2}{a^2}+\frac{{\sqrt3}^2}{b^2}&=1, \\ \frac{(-2-h)^2}{a^2}+\frac{{\sqrt2}^2}{b^2}&=1. \end{align*} Since $t^2=(-t)^2$ holds for all real numbers $t,$ we clear fractions and simplify: \begin{align*} (1-h)^2&=a^2, \hspace{30.25mm} &(1)\\ b^2(1+h)^2 + 3a^2 &= a^2b^2, &(2)\\ b^2(2+h)^2 + 2a^2 &= a^2b^2. &(3) \end{align*} Applying the Transitive Property to $(2)$ and $(3),$ we isolate $a^2:$ \begin{align*} b^2(1+h)^2 + 3a^2 &= b^2(2+h)^2 + 2a^2 \\ a^2 &= b^2\left((2+h)^2-(1+h)^2\right) \\ a^2 &= b^2(2h+3). \hspace{26.75mm} (*) \end{align*} Substituting $(1)$ and $(*)$ into $(2),$ we solve for $h:$ \begin{align*} b^2(1+h)^2 + 3\underbrace{b^2(2h+3)}_{\text{by }(*)} &= \underbrace{(1-h)^2}_{\text{by }(1)}b^2 \\ (1+h)^2+3(2h+3)&=(1-h)^2 \\ 1+2h+h^2+6h+9&=1-2h+h^2 \\ 10h&=-9 \\ h&=-\frac{9}{10}. \end{align*} Substituting this into $(1),$ we get $a^2=\frac{361}{100}.$ Substituting the current results into $(*),$ we get $b^2=\frac{361}{120}.$ Finally, we obtain \[c^2 = a^2-b^2 = 361\left(\frac{1}{100}-\frac{1}{120}\right) = \frac{361}{600},\] from which \[\frac{c}{a}=\sqrt{\frac{c^2}{a^2}}=\sqrt{\frac{361/600}{361/100}}=\sqrt{\frac 16}.\] The answer is $1+6=\boxed{7}.$
A
7
025243729c85ac610334bd4992f5d153
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_21
The five solutions to the equation \[(z-1)(z^2+2z+4)(z^2+4z+6)=0\] may be written in the form $x_k+y_ki$ for $1\le k\le 5,$ where $x_k$ and $y_k$ are real. Let $\mathcal E$ be the unique ellipse that passes through the points $(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),$ and $(x_5,y_5)$ . The eccentricity of $\mathcal E$ can be written in the form $\sqrt{\frac mn}$ , where $m$ and $n$ are relatively prime positive integers. What is $m+n$ ? (Recall that the eccentricity of an ellipse $\mathcal E$ is the ratio $\frac ca$ , where $2a$ is the length of the major axis of $\mathcal E$ and $2c$ is the is the distance between its two foci.) $\textbf{(A) }7 \qquad \textbf{(B) }9 \qquad \textbf{(C) }11 \qquad \textbf{(D) }13\qquad \textbf{(E) }15$
Starting from this system of equations from Solution 2: \begin{align*} \frac{(1-h)^2}{a^2}&=1, \\ \frac{(-1-h)^2}{a^2}+\frac{{\sqrt3}^2}{b^2}&=1, \\ \frac{(-2-h)^2}{a^2}+\frac{{\sqrt2}^2}{b^2}&=1. \end{align*} Let $A=a^{-2}$ and $B=b^{-2}$ . Therefore, the system can be rewritten as: \begin{align*} (h^2-2h+1)A&=1, &(1)\\ (h^2+2h+1)A+3B&=1, &(2)\\ (h^2+4h+4)A+2B&=1. &(3) \end{align*} Subtracting $(1)$ from $(2)$ and $(3)$ , we get \[4hA+3B=0\quad\text{and}\quad 3A-6hA+3B=0.\] Plugging the former into the latter and simplifying yields $6A=5B$ . Hence $a^2:b^2=6:5$ . Since $c^2=a^2-b^2$ , we get $a^2=6c^2$ , so the eccentricity is $\frac ca=\sqrt{\frac16}$ Therefore, the answer is $1+6=\boxed{7}$
A
7
025243729c85ac610334bd4992f5d153
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_21
The five solutions to the equation \[(z-1)(z^2+2z+4)(z^2+4z+6)=0\] may be written in the form $x_k+y_ki$ for $1\le k\le 5,$ where $x_k$ and $y_k$ are real. Let $\mathcal E$ be the unique ellipse that passes through the points $(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),$ and $(x_5,y_5)$ . The eccentricity of $\mathcal E$ can be written in the form $\sqrt{\frac mn}$ , where $m$ and $n$ are relatively prime positive integers. What is $m+n$ ? (Recall that the eccentricity of an ellipse $\mathcal E$ is the ratio $\frac ca$ , where $2a$ is the length of the major axis of $\mathcal E$ and $2c$ is the is the distance between its two foci.) $\textbf{(A) }7 \qquad \textbf{(B) }9 \qquad \textbf{(C) }11 \qquad \textbf{(D) }13\qquad \textbf{(E) }15$
The five roots are $1,-1+i\sqrt{3},-1-i\sqrt{3},-2+i\sqrt{2},-2-i\sqrt{2}.$ So, we express this conic in the form $ax^2+by^2+cx+z=0.$ Note that this conic cannot have the $ky$ term since the roots are symmetric about the $x$ -axis. Now we have equations \begin{align*} a+c+z&=0, \\ a+3b-c+z&=0, \\ 4a+2b-2c+z&=0, \end{align*} from which $a:b:c=5:6:9.$ So, the conic can be written in the form $5x^2+6y^2+9x=14.$ If it is written in the form of $\frac{(x-m)^2}{r^2}+\frac{y^2}{s^2}=1,$ then $r^2:s^2=6:5.$ Therefore, the desired eccentricity is $\sqrt{\frac{\sqrt{6-5}}{6}}=\sqrt{\frac{1}{6}},$ and the answer is $1+6=\boxed{7}.$
A
7
025243729c85ac610334bd4992f5d153
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_21
The five solutions to the equation \[(z-1)(z^2+2z+4)(z^2+4z+6)=0\] may be written in the form $x_k+y_ki$ for $1\le k\le 5,$ where $x_k$ and $y_k$ are real. Let $\mathcal E$ be the unique ellipse that passes through the points $(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),$ and $(x_5,y_5)$ . The eccentricity of $\mathcal E$ can be written in the form $\sqrt{\frac mn}$ , where $m$ and $n$ are relatively prime positive integers. What is $m+n$ ? (Recall that the eccentricity of an ellipse $\mathcal E$ is the ratio $\frac ca$ , where $2a$ is the length of the major axis of $\mathcal E$ and $2c$ is the is the distance between its two foci.) $\textbf{(A) }7 \qquad \textbf{(B) }9 \qquad \textbf{(C) }11 \qquad \textbf{(D) }13\qquad \textbf{(E) }15$
After calculating the $5$ points that lie on $\mathcal E$ , we try to find a transformation that sends $\mathcal E$ to the unit circle. Scaling about $(1, 0)$ works, since $(1, 0)$ is already on the unit circle and such a transformation will preserve the ellipse's symmetry about the $x$ -axis. If $2a$ and $2b$ are the lengths of the major and minor axes, respectively, then the ellipse will be scaled by a factor of $r := \frac1a$ in the $x$ -dimension and $s := \frac1b$ in the $y$ -dimension. The transformation then sends the points $\left(-1,\pm\sqrt 3\right)$ and $\left(-2,\pm\sqrt 2\right)$ to the points $\left(1-2r, \pm s\sqrt 3\right)$ and $\left(1-3r, \pm s\sqrt 2\right)$ , respectively. These points are on the unit circle, so \[(1-2r)^2 + 3s^2 = 1 \quad \text{and} \quad (1-3r)^2 + 2s^2 = 1.\] This yields \[4r^2 + 3s^2 = 4r \quad \text{and} \quad 9r^2 + 2s^2 = 6r,\] from which \begin{align*} 12r^2 + 9s^2 &= 18r^2 + 4s^2 \\ \frac{r^2}{s^2} &= \frac56. \end{align*} Recalling that $r = \frac1a$ and $s = \frac1b$ , this implies $\frac{b^2}{a^2} = \frac56$ . From this, we get \[\frac{c^2}{a^2} = \frac{a^2-b^2}{a^2} = 1 - \frac{b^2}{a^2} = \frac{1}{6},\] so $\frac ca = \sqrt{\frac16}$ , giving an answer of $1 + 6 = \boxed{7}$
A
7
3adf979a978a4774a94d061096c5f677
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_24
Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$ . Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$ . If $QR=3\sqrt3$ and $\angle QPR=60^\circ$ , then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$ $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$
Let $O=\Gamma$ be the center of the semicircle and $X=\Omega$ be the center of the circle. Applying the Extended Law of Sines to $\triangle PQR,$ we find the radius of $\odot X:$ \[XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3.\] Alternatively, by the Inscribed Angle Theorem, $\triangle QRX$ is a $30^\circ\text{-}30^\circ\text{-}120^\circ$ triangle with base $QR=3\sqrt3.$ Dividing $\triangle QRX$ into two congruent $30^\circ\text{-}60^\circ\text{-}90^\circ$ triangles, we get that the radius of $\odot X$ is $XQ=XR=3$ by the side-length ratios. Let $M$ be the midpoint of $\overline{QR}.$ By the Perpendicular Chord Bisector Converse, we have $\overline{OM}\perp\overline{QR}$ and $\overline{XM}\perp\overline{QR}.$ Together, points $O, X,$ and $M$ must be collinear. By the SAS Congruence, we have $\triangle QXM\cong\triangle RXM,$ both of which are $30^\circ\text{-}60^\circ\text{-}90^\circ$ triangles. By the side-length ratios, we obtain $RM=\frac{3\sqrt3}{2}, RX=3,$ and $XM=\frac{3}{2}.$ By the Pythagorean Theorem on right $\triangle ORM,$ we get $OM=\frac{13}{2}$ and $OX=OM-XM=5.$ By the Pythagorean Theorem on right $\triangle OXP,$ we get $OP=4.$ Let $C$ be the foot of the perpendicular from $P$ to $\overline{QR},$ and $D$ be the foot of the perpendicular from $X$ to $\overline{PC},$ as shown below: [asy] /* Made by MRENTHUSIASM */ size(300); pair O, X, A, B, P, Q, R, M, C, D; O = (0,0); X = (4,3); A = (-7,0); B = (7,0); P = (4,0); Q = intersectionpoints(Circle(O,7),Circle(X,3))[0]; R = intersectionpoints(Circle(O,7),Circle(X,3))[1]; M = midpoint(Q--R); C = foot(P,Q,R); D = foot(X,P,C); fill(P--Q--R--cycle,yellow); dot("$O$",O,S); dot("$X$",X,N); dot("$A$",A,SW); dot("$B$",B,SE); dot("$P$",P,S); dot("$Q$",Q,E); dot("$R$",R,N); dot("$M$",M,dir(M)); dot("$C$",C,NE); dot("$D$",D,SE); markscalefactor=0.0375; draw(rightanglemark(O,M,R),red); draw(rightanglemark(P,C,M),red); draw(rightanglemark(P,D,X),red); draw(rightanglemark(O,P,X),red); draw(P--Q--R--cycle); draw(arc(O, 7, 0, 180)^^A--B^^Circle(X,3)); draw(O--M^^X--P); draw(P--C^^X--D,dashed); [/asy] Clearly, quadrilateral $XDCM$ is a rectangle. Since $\angle XPD=\angle OXP$ by alternate interior angles, we have $\triangle XPD\sim\triangle OXP$ by the AA Similarity, with the ratio of similitude $\frac{XP}{OX}=\frac 35.$ Therefore, we get $PD=\frac 95$ and $PC=PD+DC=PD+XM=\frac 95 + \frac 32 = \frac{33}{10}.$ The area of $\triangle PQR$ is \[\frac12\cdot QR\cdot PC=\frac12\cdot3\sqrt3\cdot\frac{33}{10}=\frac{99\sqrt3}{20},\] from which the answer is $99+3+20=\boxed{122}.$
D
122
3adf979a978a4774a94d061096c5f677
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_24
Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$ . Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$ . If $QR=3\sqrt3$ and $\angle QPR=60^\circ$ , then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$ $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$
[asy] size(150); draw(circle((7,0),7)); pair A = (0, 0); pair B = (14, 0); draw(A--B); draw(circle((11,3),3)); label("$C$", (7, 0), S); label("$O$", (11, 3), E); label("$P$", (11, 0), S); pair C = (7, 0); pair O = (11, 3); pair P = (11, 0); pair Q = intersectionpoints(circle(C, 7), circle(O, 3))[1]; pair R = intersectionpoints(circle(C, 7), circle(O, 3))[0]; draw(C--O); draw(C--Q); draw(C--R); draw(Q--R); draw(O--P); draw(O--Q); draw(O--R); draw(P--Q); draw(P--R); label("$Q$", Q, N); label("$R$", R, E); [/asy] Suppose we label the points as shown in the diagram above, where $C$ is the center of the semicircle and $O$ is the center of the circle tangent to $\overline{AB}$ . Since $\angle QPR = 60^{\circ}$ , we have $\angle QOR = 2\cdot 60^{\circ}=120^{\circ}$ and $\triangle QOR$ is a $30-30-120$ triangle, which can be split into two $30-60-90$ triangles by the altitude from $O$ . Since $QR=3\sqrt{3},$ we know $OQ=OR=\tfrac{3\sqrt{3}}{\sqrt{3}}=3$ by $30-60-90$ triangles. The area of this part of $\triangle PQR$ is $\frac{1}{2}bh=\tfrac{3\sqrt{3}}{2}\cdot\tfrac{3}{2}=\tfrac{9\sqrt{3}}{4}$ . We would like to add this value to the sum of the areas of the other two parts of $\triangle PQR$ To find the areas of the other two parts of $\triangle PQR$ using the $\sin$ area formula, we need the sides and included angles. Here we know the sides but what we don't know are the angles. So it seems like we will have to use an angle from another triangle and combine them with the angles we already know to find these angles easily. We know that $\angle QOR = 120^{\circ}$ and triangles $\triangle COQ$ and $\triangle COR$ are congruent as they share a side, $CQ=CR,$ and $OQ=OR$ . Therefore $\angle COQ = \angle COR = 120^{\circ}$ . Suppose $CO=x$ . Then $3^{2}+x^{2}-6x\cos{120^{\circ}}=7^{2}$ , and since $\cos{120^{\circ}}=-\tfrac{1}{2}$ , this simplifies to $x^{2}+3x=7^{2}-3^{2}\rightarrow x^{2}+3x-40=0$ . This factors nicely as $(x-5)(x+8)=0$ , so $x=5$ as $x$ can't be $-8$ . Since $CO=5, OP=3$ and $\angle OPC=90^{\circ}$ , we now know that $\triangle OPC$ is a $3-4-5$ right triangle. This may be useful info for later as we might use an angle in this triangle to find the areas of the other two parts of $\triangle PQR$ Let $\angle POC = \alpha$ . Then $\sin\alpha = \tfrac{4}{5}, \cos\alpha = \tfrac{3}{5}, \angle QOP = 120+\alpha,$ and $\angle POR = 120-\alpha$ . The sum of the areas of $\triangle QOP$ and $\triangle POR$ is $3\cdot 3\cdot\tfrac{1}{2}\cdot\left[\sin(120-\alpha)+\sin(120+\alpha)\right]=\tfrac{9}{2}\left[\sin(120-\alpha)+\sin(120+\alpha)\right],$ which we will add to $\tfrac{9\sqrt{3}}{4}$ to get the area of $\triangle PQR$ . Observe that \[\sin(120-\alpha) = \sin 120\cos\alpha-\sin\alpha\cos 120 = \tfrac{\sqrt{3}}{2}\cdot\tfrac{3}{5}-\tfrac{4}{5}\cdot\tfrac{-1}{2}=\tfrac{3\sqrt{3}}{10}+\tfrac{4}{10}=\tfrac{3\sqrt{3}+4}{10}\] and similarly $\sin(120+\alpha)=\tfrac{3\sqrt{3}-4}{10}$ . Adding these two gives $\tfrac{3\sqrt{3}}{5}$ and multiplying that by $\tfrac{9}{2}$ gets us $\tfrac{27\sqrt{3}}{10},$ which we add to $\tfrac{9\sqrt{3}}{4}$ to get $\tfrac{54\sqrt{3}+45\sqrt{3}}{20}=\tfrac{99\sqrt{3}}{20}$ . The answer is $99+3+20=102+20=\boxed{122}.$
D
122
3adf979a978a4774a94d061096c5f677
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_24
Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$ . Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$ . If $QR=3\sqrt3$ and $\angle QPR=60^\circ$ , then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$ $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$
[asy] size(300); pair C = (7, 0); draw(arc(C, 7, 0, 180)); pair A = (0, 0), B = (14, 0); draw(A--B); draw(circle((11,3),3)); label("$A$", A, SSE); label("$B$", B, SSW); label("$C$", (A+B)/2, S); label("$O$", (11, 3), E); label("$P$", (11, 0), S); pair O = (11, 3), P = (11, 0), Q = intersectionpoints(circle(C, 7), circle(O, 3))[1], R = intersectionpoints(circle(C, 7), circle(O, 3))[0], S = (Q+R)/2, N = (121/8, 0), T = (8/11)*N + (3/11)*R, X = (4/7)*T + (3/7)*S; draw(C--O, blue); draw(O--S, red); draw(C--Q); draw(C--R); draw(Q--N--B); draw(O--P); draw(O--Q); draw(O--R); draw(P--Q--R--cycle); draw(B--T); draw(P--X); label("$Q$", Q, NNE); label("$R$", R, E); label("$S$", S, ENE); label("$N$", N, SSE); label("$T$", T, ENE); label("$X$", X, NE); draw(rightanglemark(P, X, Q)); draw(rightanglemark(B, T, R)); draw(rightanglemark(C, S, Q)); [/asy] Define points as shown above, where $N=\overleftrightarrow{PA}\cap\overleftrightarrow{QR}$ . The area of $\triangle PQR$ is simply \[\dfrac{1}{2}PX\cdot QR=\dfrac{3\sqrt{3}}{2}PX;\] it remains to compute the value of $PX$ . Note that $PX$ is simply a weighted average of $BT$ and $CS;$ it is $\dfrac{CP}{BP}$ times closer to $BT$ than it is to $CS$ . Observe that \[CS=\sqrt{CQ^{2}-\left(\dfrac{1}{2}QR\right)^{2}}=\sqrt{7^{2}-\left(\dfrac{3\sqrt{3}}{2}\right)^{2}}=6.5\] since the radius of $\Gamma$ is $7$ as its diameter is $14$ . Note also by the Extended Law of Sines the radius of $\Omega$ is $\dfrac{3\sqrt{3}}{2\sin 60^{\circ}}=3,$ so $OS=3\cos 60^{\circ}=1.5$ . Since $C, O,$ and $S$ are collinear by symmetry we have $CO=CS-OS=5,$ so $CP=\sqrt{5^{2}-3^{2}}=4$ and $BP=7-4=3$ . Therefore, $\triangle OPC$ is a $3\text{-}4\text{-}5$ right triangle; $\triangle OPC\sim\triangle NSC$ since $\angle OPC=\angle CSN=90^{\circ}$ and $\angle OCP=\angle NCS=\sin^{-1}\left(\dfrac{3}{5}\right)$ . Therefore $\dfrac{CN}{CS}=\cfrac{CO}{CP}=\dfrac{5}{4}$ so $CN=\dfrac{5}{4}CS=\dfrac{65}{8}$ . Since $\triangle BTN\sim\triangle CSN,$ we have $\dfrac{BT}{BN}=\dfrac{CS}{CN}=\dfrac{4}{5}$ . Therefore \[BT=\dfrac{4}{5}BN=\dfrac{4}{5}\left(CN-7\right)=\dfrac{4}{5}\cdot\dfrac{9}{8}=\dfrac{36}{40}=0.9;\] so $PX$ is $\dfrac{4}{3}$ times as close to $0.9$ as to $6.5;$ we can compute $PX=\dfrac{4}{7}BT+\dfrac{3}{7}CS=\dfrac{4}{7}\cdot0.9+\dfrac{3}{7}\cdot6.5=3.3$ . The area of $\triangle PQR$ is \[\dfrac{3\sqrt{3}}{2}\cdot 3.3=\dfrac{99\sqrt{3}}{20}\] and $99+3+20=\boxed{122}$
D
122
3adf979a978a4774a94d061096c5f677
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_24
Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$ . Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$ . If $QR=3\sqrt3$ and $\angle QPR=60^\circ$ , then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$ $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$
Let $O_{1}$ be the center of $\odot\Gamma, O_2$ be the center of $\odot\Omega,$ and $M$ be the midpoint of $\overline{QR}.$ We have $O_{1}M=\sqrt{7^2-\left(\frac{3\sqrt3}{2}\right)^2}=\frac{13}{2}$ and by Extended Law of Sines, the radius of $\odot\Omega$ is $\frac{3\sqrt3}{2\sin 60^\circ}=3$ so $O_{2}M=3\cos 60^\circ=\frac{3}{2}.$ Therefore $O_{1}O_{2}=O_{1}M-O_{2}M=5$ and $O_{1}P=\sqrt{5^2 - 3^2}=4.$ Let $X=\overline{AB}\cap\overline{QR}.$ Obviously \[\angle O_{1}PO_{2}=\angle O_{1}MX=90^\circ~\text{and}~\angle PO_{1}O_{2}=\angle MO_{1}X=\arcsin\left(\frac{3}{5}\right)\] so $\triangle PO_{1}O_{2}\sim\triangle MO_{1}X$ with ratio $\frac{PO_{1}}{MO_{1}}=\frac{4}{\tfrac{13}{2}}=\frac{8}{13}.$ Therefore $O_1X=\frac{13}{8}\cdot O_{1}O_{2}=\frac{13}{8}\cdot5=\frac{65}{8}$ and $MX=\frac{13}{8}\cdot PO_{2}=\frac{13}{8}\cdot3=\frac{39}{8}.$ Let $H$ denote the foot of the altitude from $P$ to $\overline{QR}.$ Because $\overline{PH}\parallel\overline{O_{1}M},$ it follows that $\triangle PHX\sim\triangle O_{1}MX.$ This similarity has ratio \[\frac{PX}{O_{1}X}=1-\frac{O_{1}P}{O_{1}X}=1-\frac{4}{\tfrac{65}{8}}=1-\frac{32}{65}=\frac{33}{65}.\] We therefore have $PH=\frac{33}{65}\cdot O_{1}M=\frac{33}{65}\cdot\frac{13}{2}=\frac{33}{10}.$ Finally, the area of $\triangle PQR$ is \[\frac{1}{2}\cdot QR\cdot PH=\frac{1}{2}\cdot3\sqrt3\cdot\frac{33}{10}=\frac{99\sqrt3}{20},\] so the answer is $99+3+20=\boxed{122}.$
D
122
3adf979a978a4774a94d061096c5f677
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_24
Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$ . Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$ . If $QR=3\sqrt3$ and $\angle QPR=60^\circ$ , then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$ $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$
By the Law of Sine in $\triangle PQR$ and its circumcircle $\odot \Omega$ $2r_{\Omega} = \frac{QR}{ \sin 60^{\circ} } = \frac{ 3\sqrt{3} }{ \frac{ \sqrt{3} }{2} } = 6$ $r_{\Omega} = 3$ \[\Gamma \Omega = \sqrt{r_{\Gamma}^2 - \left( \frac{ PQ }{2}\right)^2} - \sqrt{r_{\Omega} - \left( \frac{PQ}{2}\right)^2} = \sqrt{7^2 - \left( \frac{ 3 \sqrt{3} }{2}\right)^2} - \sqrt{3^2 - \left( \frac{ 3 \sqrt{3} }{2}\right)^2} = \frac{13}{2} - \frac32 = 5, \quad \Gamma P = \sqrt{5^2 - 3^2} = 4\] By Power of a Point in $\odot \Gamma$ $PQ \cdot PS = PA \cdot PB = (7+4)(7-4) = 33$ By the Law of Sine in $\triangle PRS$ $\frac{PR}{PS} = \frac{ \sin \angle PSR }{ \sin \angle PRS }$ By the Law of Sine in $\triangle QRS$ and its circumcircle $\odot \Gamma$ $\frac{QR}{ \sin \angle PSR } = 14$ $\frac{ 3\sqrt{3} }{ \sin \angle PSR } = 14$ $\sin \angle PSR = \frac{ 3\sqrt{3} }{14}$ $\cos \angle PSR = \frac{ 13 }{14}$ \[\sin \angle PRS = \sin ( 60^{\circ} - \angle PSR ) = \sin 60^{\circ} \cos \angle PSR - \sin \angle PSR \cos 60^{\circ} = \frac{ \sqrt{3} }{2} \cdot \frac{ 13 }{14} - \frac{ 3\sqrt{3} }{14} \cdot \frac12 = \frac{ 5\sqrt{3} }{14}\] \[\frac{PR}{PS} = \frac{ \frac{ 3\sqrt{3} }{14} }{ \frac{ 5\sqrt{3} }{14} } = \frac35, \quad PQ \cdot PR = PQ \cdot PS \cdot \frac{PR}{PS} = 33 \cdot \frac35 = \frac{99}{5}\] \[[PQR] = \frac12 \cdot \sin 60^{\circ} \cdot PQ \cdot PR = \frac12 \cdot \frac12 \cdot \frac{99}{5} = \frac{ 99\sqrt{3} }{20}, \quad 99 + 3 + 20 = \boxed{122}\]
D
122
3adf979a978a4774a94d061096c5f677
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_24
Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$ . Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$ . If $QR=3\sqrt3$ and $\angle QPR=60^\circ$ , then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$ $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$
Following Solution 4, We have $O_{1}$ (0,0) , $O_{2}$ (4,3). We can write the equation of the two circles as: \[\odot\Gamma  : x^{2}+y^{2}=7^{2}...(1)\] \[\odot\Omega : (x-4)^{2}+(y-3)^{2}=3^{2}...(2)\] By substituting (1) into (2), we get \[8x+6y-65=0...(3)\] Notice (3) is the relationship between $x$ value and $y$ value, in other words, (3) is the linear equation that go through $R$ and $Q$ . Let the height drops from $P$ to $QR$ at $H$ . Therefore, we have \[Area \triangle PQR =\frac{1}{2}\cdot{QR}\cdot{PH}\] So \[QR=3\sqrt{3}\] And by distance formula, $PH$ is the distance from $P$ (4,0) to $\overline{QR}$ \[PH={\frac{|8\cdot4+6\cdot0-65|}{\sqrt{8^{2}+6^{2}}}=\frac{33}{10}}\] Thus, We get \[Area \triangle PQR =\frac{1}{2}\cdot3\sqrt{3}\cdot\frac{33}{10}=\frac{99\sqrt{3}}{20}\] So the answer is $99+3+20=\boxed{122}.$
D
122
cab6e2c34eed02a6ccaac6b08f28abfa
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_25
Let $d(n)$ denote the number of positive integers that divide $n$ , including $1$ and $n$ . For example, $d(1)=1,d(2)=2,$ and $d(12)=6$ . (This function is known as the divisor function.) Let \[f(n)=\frac{d(n)}{\sqrt [3]n}.\] There is a unique positive integer $N$ such that $f(N)>f(n)$ for all positive integers $n\ne N$ . What is the sum of the digits of $N?$ $\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9$
We consider the prime factorization of $n:$ \[n=\prod_{i=1}^{k}p_i^{e_i}.\] By the Multiplication Principle, we have \[d(n)=\prod_{i=1}^{k}(e_i+1).\] Now, we rewrite $f(n)$ as \[f(n)=\frac{d(n)}{\sqrt [3]n}=\frac{\prod_{i=1}^{k}(e_i+1)}{\prod_{i=1}^{k}p_i^{e_i/3}}=\prod_{i=1}^{k}\frac{e_i+1}{p_i^{{e_i}/3}}.\] As $f(n)>0$ for all positive integers $n,$ note that $f(a)>f(b)$ if and only if $f(a)^3>f(b)^3$ for all positive integers $a$ and $b.$ So, $f(n)$ is maximized if and only if \[f(n)^3=\prod_{i=1}^{k}\frac{(e_i+1)^3}{p_i^{{e_i}}}\] is maximized. For each independent factor $\frac{(e_i+1)^3}{p_i^{e_i}}$ with a fixed prime $p_i,$ where $1\leq i\leq k,$ the denominator grows faster than the numerator, as exponential functions always grow faster than polynomial functions. Therefore, for each prime $p_i$ with $\left(p_1,p_2,p_3,p_4,\ldots\right)=\left(2,3,5,7,\ldots\right),$ we look for the nonnegative integer $e_i$ such that $\frac{(e_i+1)^3}{p_i^{e_i}}$ is a relative maximum: \[\begin{array}{c|c|c|c|c} & & & & \\ [-2.25ex] \boldsymbol{i} & \boldsymbol{p_i} & \boldsymbol{e_i} & \boldsymbol{\dfrac{(e_i+1)^3}{p_i^{e_i}}} & \textbf{Max?} \\ [2.5ex] \hline\hline & & & & \\ [-2ex] 1 & 2 & 0 & 1 & \\ & & 1 & 4 & \\ & & 2 & 27/4 &\\ & & 3 & 8 & \checkmark\\ & & 4 & 125/16 & \\ [0.5ex] \hline & & & & \\ [-2ex] 2 & 3 & 0 & 1 &\\ & & 1 & 8/3 & \\ & & 2 & 3 & \checkmark\\ & & 3 & 64/27 & \\ [0.5ex] \hline & & & & \\ [-2ex] 3 & 5 & 0 & 1 & \\ & & 1 & 8/5 & \checkmark\\ & & 2 & 27/25 & \\ [0.5ex] \hline & & & & \\ [-2ex] 4 & 7 & 0 & 1 & \\ & & 1 & 8/7 & \checkmark\\ & & 2 & 27/49 & \\ [0.5ex] \hline & & & & \\ [-2ex] \geq5 & \geq11 & 0 & 1 & \checkmark \\ & & \geq1 & \leq8/11 & \\ [0.5ex] \end{array}\] Finally, the positive integer we seek is $N=2^3\cdot3^2\cdot5^1\cdot7^1=2520.$ The sum of its digits is $2+5+2+0=\boxed{9}.$
E
9
cab6e2c34eed02a6ccaac6b08f28abfa
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_25
Let $d(n)$ denote the number of positive integers that divide $n$ , including $1$ and $n$ . For example, $d(1)=1,d(2)=2,$ and $d(12)=6$ . (This function is known as the divisor function.) Let \[f(n)=\frac{d(n)}{\sqrt [3]n}.\] There is a unique positive integer $N$ such that $f(N)>f(n)$ for all positive integers $n\ne N$ . What is the sum of the digits of $N?$ $\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9$
The question statement asks for the value of $N$ that maximizes $f(N)$ . Let $N$ start out at $1$ ; we will find what factors to multiply $N$ by, in order for $N$ to maximize the function. First, we will find what power of $2$ to multiply $N$ by. If we multiply $N$ by $2^{a}$ , the numerator of $f$ $d(N)$ , will multiply by a factor of $a+1$ ; this is because the number $2^{a}$ has $a+1$ divisors. The denominator, $\sqrt[3]{N}$ , will simply multiply by $\sqrt[3]{2^{a}}$ . Therefore, the entire function multiplies by a factor of $\frac{a+1}{\sqrt[3]{2^{a}}}$ . We want to find the integer value of $a$ that maximizes this value. By inspection, this is $3$ . Therefore, we multiply $N$ by $8$ ; right now, $N$ is $8$ Next, we will find what power of $3$ to multiply $N$ by. Similar to the previous step, we wish to find the integer value of $a$ that maximizes $\frac{a+1}{\sqrt[3]{3^{a}}}$ . This value, also by inspection, is $2$ We can repeat this step on the rest of the primes to get \[N = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7\] but from $11$ on, $a=0$ will maximize the value of the function, so the prime is not a factor in $N$ . We evaluate $N$ to be $2520$ , so the answer is $\boxed{9}$
E
9
cab6e2c34eed02a6ccaac6b08f28abfa
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_25
Let $d(n)$ denote the number of positive integers that divide $n$ , including $1$ and $n$ . For example, $d(1)=1,d(2)=2,$ and $d(12)=6$ . (This function is known as the divisor function.) Let \[f(n)=\frac{d(n)}{\sqrt [3]n}.\] There is a unique positive integer $N$ such that $f(N)>f(n)$ for all positive integers $n\ne N$ . What is the sum of the digits of $N?$ $\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9$
Using the answer choices to our advantage, we can show that $N$ must be divisible by 9 without explicitly computing $N$ , by exploiting the following fact: Claim : If $n$ is not divisible by 3, then $f(9n) > f(3n) > f(n)$ Proof : Since $d(\cdot)$ is a multiplicative function , we have $d(3n) = d(3)d(n) = 2d(n)$ and $d(9n) = 3d(n)$ . Then \begin{align*} f(3n) &= \frac{2d(n)}{\sqrt[3]{3n}} \approx 1.38 f(n)\\ f(9n) &= \frac{3d(n)}{\sqrt[3]{9n}} \approx 1.44 f(n) \end{align*} Note that the values $\frac{2}{\sqrt[3]{3}}$ and $\frac{3}{\sqrt[3]{9}}$ do not have to be explicitly computed; we only need the fact that $\frac{3}{\sqrt[3]{9}} > \frac{2}{\sqrt[3]{3}} > 1$ which is easy to show by hand. The above claim automatically implies $N$ is a multiple of 9: if $N$ was not divisible by 9, then $f(9N) > f(N)$ which is a contradiction, and if $N$ was divisible by 3 and not 9, then $f(3N) > f(N) > f\left(\frac{N}{3}\right)$ , also a contradiction. Then the sum of digits of $N$ must be a multiple of 9, so only choice $\boxed{9}$ works.
E
9
cab6e2c34eed02a6ccaac6b08f28abfa
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_25
Let $d(n)$ denote the number of positive integers that divide $n$ , including $1$ and $n$ . For example, $d(1)=1,d(2)=2,$ and $d(12)=6$ . (This function is known as the divisor function.) Let \[f(n)=\frac{d(n)}{\sqrt [3]n}.\] There is a unique positive integer $N$ such that $f(N)>f(n)$ for all positive integers $n\ne N$ . What is the sum of the digits of $N?$ $\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9$
The problem mentions the sum of digits - recall that if a number is divisible by 9, then so is the sum of its digits. Guess that the answer must therefore be $\boxed{9}$
E
9
7e05bb0041861a29f445a9d79ff9c0d3
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_1
How many integer values of $x$ satisfy $|x|<3\pi$ $\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20$
Since $3\pi\approx9.42$ , we multiply $9$ by $2$ for the integers from $1$ to $9$ and the integers from $-1$ to $-9$ and add $1$ to account for $0$ to get $\boxed{19}$
D
19
7e05bb0041861a29f445a9d79ff9c0d3
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_1
How many integer values of $x$ satisfy $|x|<3\pi$ $\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20$
$|x|<3\pi$ $\iff$ $-3\pi<x<3\pi$ . Since $\pi$ is approximately $3.14$ $3\pi$ is approximately $9.42$ . We are trying to solve for $-9.42<x<9.42$ , where $x\in\mathbb{Z}$ . Hence, $-9.42<x<9.42$ $\implies$ $-9\leq x\leq9$ , for $x\in\mathbb{Z}$ . The number of integer values of $x$ is $9-(-9)+1=19$ . Therefore, the answer is $\boxed{19}$
D
19
7e05bb0041861a29f445a9d79ff9c0d3
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_1
How many integer values of $x$ satisfy $|x|<3\pi$ $\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20$
$3\pi \approx 9.4.$ There are two cases here. When $x>0, |x|>0,$ and $x = |x|.$ So then $x<9.4$ When $x<0, |x|>0,$ and $x = -|x|.$ So then $-x<9.4$ . Dividing by $-1$ and flipping the sign, we get $x>-9.4.$ From case 1 and 2, we know that $-9.4 < x < 9.4$ . Since $x$ is an integer, we must have $x$ between $-9$ and $9$ . There are a total of \[9-(-9) + 1 = \boxed{19}.\] PureSwag
D
19
7e05bb0041861a29f445a9d79ff9c0d3
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_1
How many integer values of $x$ satisfy $|x|<3\pi$ $\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20$
Looking at the problem, we see that instead of directly saying $x$ , we see that it is $|x|.$ That means all the possible values of $x$ in this case are positive and negative. Rounding $\pi$ to $3$ we get $3(3)=9.$ There are $9$ positive solutions and $9$ negative solutions: $9+9=18.$ But what about zero? Even though zero is neither negative nor positive, but we still need to add it into the solution. Hence, the answer is $9+9+1=18+1=\boxed{19}.$
D
19
7e05bb0041861a29f445a9d79ff9c0d3
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_1
How many integer values of $x$ satisfy $|x|<3\pi$ $\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20$
There are an odd number of integer solutions $x$ to this inequality since if any non-zero integer $x$ satisfies this inequality, then so does $-x,$ and we must also account for $0,$ which gives us the desired. Then, the answer is either $\textbf{(A)}$ or $\textbf{(D)},$ and since $3 \pi > 3 \cdot 3 > 9,$ the answer is at least $9 \cdot 2 + 1 = 19,$ yielding $\boxed{19}.$
D
19
5284020e1b0880883b609fed6455318e
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_2
At a math contest, $57$ students are wearing blue shirts, and another $75$ students are wearing yellow shirts. The $132$ students are assigned into $66$ pairs. In exactly $23$ of these pairs, both students are wearing blue shirts. In how many pairs are both students wearing yellow shirts? $\textbf{(A)} ~23 \qquad\textbf{(B)} ~32 \qquad\textbf{(C)} ~37 \qquad\textbf{(D)} ~41 \qquad\textbf{(E)} ~64$
There are $46$ students paired with a blue partner. The other $11$ students wearing blue shirts must each be paired with a partner wearing a shirt of the opposite color. There are $64$ students remaining. Therefore the requested number of pairs is $\tfrac{64}{2}=\boxed{32}$ ~Punxsutawney Phil
B
32
303f5df0855b3b99bdc741445d6b729f
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_4
Ms. Blackwell gives an exam to two classes. The mean of the scores of the students in the morning class is $84$ , and the afternoon class's mean score is $70$ . The ratio of the number of students in the morning class to the number of students in the afternoon class is $\frac{3}{4}$ . What is the mean of the scores of all the students? $\textbf{(A)} ~74 \qquad\textbf{(B)} ~75 \qquad\textbf{(C)} ~76 \qquad\textbf{(D)} ~77 \qquad\textbf{(E)} ~78$
Let there be $3x$ students in the morning class and $4x$ students in the afternoon class. The total number of students is $3x + 4x = 7x$ . The average is $\frac{3x\cdot84 + 4x\cdot70}{7x}=76$ . Therefore, the answer is $\boxed{76}$
C
76
303f5df0855b3b99bdc741445d6b729f
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_4
Ms. Blackwell gives an exam to two classes. The mean of the scores of the students in the morning class is $84$ , and the afternoon class's mean score is $70$ . The ratio of the number of students in the morning class to the number of students in the afternoon class is $\frac{3}{4}$ . What is the mean of the scores of all the students? $\textbf{(A)} ~74 \qquad\textbf{(B)} ~75 \qquad\textbf{(C)} ~76 \qquad\textbf{(D)} ~77 \qquad\textbf{(E)} ~78$
Suppose the morning class has $m$ students and the afternoon class has $a$ students. We have the following table: \[\begin{array}{c|c|c|c} & & & \\ [-2.5ex] & \textbf{\# of Students} & \textbf{Mean} & \textbf{Total} \\ \hline & & & \\ [-2.5ex] \textbf{Morning} & m & 84 & 84m \\ \hline & & & \\ [-2.5ex] \textbf{Afternoon} & a & 70 & 70a \end{array}\] We are also given that $\frac ma=\frac34,$ which rearranges as $m=\frac34a.$ The mean of the scores of all the students is \[\frac{84m+70a}{m+a}=\frac{84\left(\frac34a\right)+70a}{\frac34a+a}=\frac{133a}{\frac74a}=133\cdot\frac47=\boxed{76}.\] ~MRENTHUSIASM
C
76
303f5df0855b3b99bdc741445d6b729f
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_4
Ms. Blackwell gives an exam to two classes. The mean of the scores of the students in the morning class is $84$ , and the afternoon class's mean score is $70$ . The ratio of the number of students in the morning class to the number of students in the afternoon class is $\frac{3}{4}$ . What is the mean of the scores of all the students? $\textbf{(A)} ~74 \qquad\textbf{(B)} ~75 \qquad\textbf{(C)} ~76 \qquad\textbf{(D)} ~77 \qquad\textbf{(E)} ~78$
Of the average, $\frac{3}{3+4}=\frac{3}{7}$ of the scores came from the morning class and $\frac{4}{7}$ came from the afternoon class. The average is $\frac{3}{7}\cdot 84+\frac{4}{7}\cdot 70=\boxed{76}.$
C
76
303f5df0855b3b99bdc741445d6b729f
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_4
Ms. Blackwell gives an exam to two classes. The mean of the scores of the students in the morning class is $84$ , and the afternoon class's mean score is $70$ . The ratio of the number of students in the morning class to the number of students in the afternoon class is $\frac{3}{4}$ . What is the mean of the scores of all the students? $\textbf{(A)} ~74 \qquad\textbf{(B)} ~75 \qquad\textbf{(C)} ~76 \qquad\textbf{(D)} ~77 \qquad\textbf{(E)} ~78$
WLOG, assume there are $3$ students in the morning class and $4$ in the afternoon class. Then the average is $\frac{3\cdot 84 + 4\cdot 70}{7}=\boxed{76}.$
C
76
8d511d6bcd23d67b853a9e51222da55a
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_5
The point $P(a,b)$ in the $xy$ -plane is first rotated counterclockwise by $90^\circ$ around the point $(1,5)$ and then reflected about the line $y = -x$ . The image of $P$ after these two transformations is at $(-6,3)$ . What is $b - a ?$ $\textbf{(A)} ~1 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~5 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~9$
The final image of $P$ is $(-6,3)$ . We know the reflection rule for reflecting over $y=-x$ is $(x,y) \rightarrow (-y, -x)$ . So before the reflection and after rotation the point is $(-3,6)$ By definition of rotation, the slope between $(-3,6)$ and $(1,5)$ must be perpendicular to the slope between $(a,b)$ and $(1,5)$ . The first slope is $\frac{5-6}{1-(-3)} = \frac{-1}{4}$ . This means the slope of $P$ and $(1,5)$ is $4$ Rotations also preserve distance to the center of rotation, and since we only "travelled" up and down by the slope once to get from $(3,-6)$ to $(1,5)$ it follows we shall only use the slope once to travel from $(1,5)$ to $P$ Therefore point $P$ is located at $(1+1, 5+4) = (2,9)$ . The answer is $9-2 = 7 = \boxed{7}$
D
7
8d511d6bcd23d67b853a9e51222da55a
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_5
The point $P(a,b)$ in the $xy$ -plane is first rotated counterclockwise by $90^\circ$ around the point $(1,5)$ and then reflected about the line $y = -x$ . The image of $P$ after these two transformations is at $(-6,3)$ . What is $b - a ?$ $\textbf{(A)} ~1 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~5 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~9$
Let us reconstruct that coordinate plane as the complex plane. Then, the point $P(a, b)$ becomes $a+b\cdot{i}$ . A $90^\circ$ rotation around the point $(1, 5)$ can be done by translating the point $(1, 5)$ to the origin, rotating around the origin by $90^\circ$ , and then translating the origin back to the point $(1, 5)$ \[a+b\cdot{i} \implies (a-1)+(b-5)\cdot{i} \implies ((a-1)+(b-5)\cdot{i})\cdot{i} = 5-b+(a-1)i \implies 5+1-b+(a-1+5)i = 6-b+(a+4)i.\] By basis reflection rules, the reflection of $(-6, 3)$ about the line $y = -x$ is $(-3, 6)$ . Hence, we have \[6-b+(a+4)i = -3+6i \implies b=9, a=2,\] from which $b-a = 9-2 = \boxed{7}$
D
7
8d511d6bcd23d67b853a9e51222da55a
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_5
The point $P(a,b)$ in the $xy$ -plane is first rotated counterclockwise by $90^\circ$ around the point $(1,5)$ and then reflected about the line $y = -x$ . The image of $P$ after these two transformations is at $(-6,3)$ . What is $b - a ?$ $\textbf{(A)} ~1 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~5 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~9$
Using the same method as in Solution 1, we can obtain that the point before the reflection is $(-3,6)$ . If we let the original point be $(x, y)$ , then we can use that the starting point is $(1,5)$ to obtain two vectors $\langle -4,1 \rangle$ and $\langle x-1, y-5 \rangle$ . We know that two vectors are perpendicular if their dot product is equal to $0$ , and that both points are the same distance ( $\sqrt {17}$ ) from $(1,5)$ Therefore, we can write two equations using these vectors: $(x-1)^2 + (y-5)^2 = 17$ (from distance and pythagorean theorem) and $-4x+y-1 = 0$ (from dot product) Solving, we simplify the second equation to $y=4x+1$ , and plug it into the first equation. We obtain $(x-1)^2 + (4x-4)^2 = 17$ . We can simplify this to the quadratic $17x^2-34x=0$ . When we factor out $17x$ , we find that $x = 2$ or $x = 0$ . However, $x$ cannot equal $0$ . Therefore, $x = 2$ , and plugging this into the second equation gives us that $y = 9$ . Since the point is $(9, 2)$ , we compute $9-2 = \boxed{7}$
D
7
8d511d6bcd23d67b853a9e51222da55a
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_5
The point $P(a,b)$ in the $xy$ -plane is first rotated counterclockwise by $90^\circ$ around the point $(1,5)$ and then reflected about the line $y = -x$ . The image of $P$ after these two transformations is at $(-6,3)$ . What is $b - a ?$ $\textbf{(A)} ~1 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~5 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~9$
Using the same method as in Solution 1 reflecting $(-6,3)$ about the line $y = -x$ gives us $(-3,6).$ Let the original point be $\langle x,y \rangle.$ From point $(1,5),$ we form the vectors $\langle -4,1 \rangle$ and $\langle x-1, y-5 \rangle$ that extend out from the initial point. If they are perpendicular, we know that their dot product has to equal zero. Therefore, \[\langle -4,1 \rangle \cdot \langle x-1, y-5 \rangle = 0 \implies -4x+y-1= 0.\] Now, we have to do some guess and check from the multiple choices. Let $y - x = A$ where $A$ is one of the answer choices. Then, $A -3x = 1.$ By intuition and logical reasoning we deduce that $A$ must be $1 \pmod 3$ so that brings our potential answers down to $\text{\textbf{(A)}}$ and $\text{\textbf{(C)}}.$ If $A = 1$ from $\text{\textbf{(A)}},$ then $x = 0,$ which we can quickly rule out since we know thar $P$ rotated counterclockwise not clockwise. Hence, $\boxed{7}$ is the answer.
D
7
842cd798a49a7b25cecaf972dbaaf0ff
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_6
An inverted cone with base radius $12 \mathrm{cm}$ and height $18 \mathrm{cm}$ is full of water. The water is poured into a tall cylinder whose horizontal base has radius of $24 \mathrm{cm}$ . What is the height in centimeters of the water in the cylinder? $\textbf{(A)} ~1.5 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~4.5 \qquad\textbf{(E)} ~6$
The volume of a cone is $\frac{1}{3} \cdot\pi \cdot r^2 \cdot h$ where $r$ is the base radius and $h$ is the height. The water completely fills up the cone so the volume of the water is $\frac{1}{3}\cdot18\cdot144\pi = 6\cdot144\pi$ The volume of a cylinder is $\pi \cdot r^2 \cdot h$ so the volume of the water in the cylinder would be $24\cdot24\cdot\pi\cdot h$ We can equate these two expressions because the water volume stays the same like this $24\cdot24\cdot\pi\cdot h = 6\cdot144\pi$ . We get $4h = 6$ and $h=\frac{6}{4}$ So the answer is $\boxed{1.5}.$
A
1.5
842cd798a49a7b25cecaf972dbaaf0ff
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_6
An inverted cone with base radius $12 \mathrm{cm}$ and height $18 \mathrm{cm}$ is full of water. The water is poured into a tall cylinder whose horizontal base has radius of $24 \mathrm{cm}$ . What is the height in centimeters of the water in the cylinder? $\textbf{(A)} ~1.5 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~4.5 \qquad\textbf{(E)} ~6$
The water completely fills up the cone. For now, assume the radius of both cone and cylinder are the same. Then the cone has $\frac{1}{3}$ of the volume of the cylinder, and so the height is divided by $3$ . Then, from the problem statement, the radius is doubled, meaning the area of the base is quadrupled (since $2^2 = 4$ ). Therefore, the height is divided by $3$ and divided by $4$ , which is $18 \div 3 \div 4 = \boxed{1.5}.$
A
1.5
3f08137e1122f9a259950754e838a3f4
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_8
Three equally spaced parallel lines intersect a circle, creating three chords of lengths $38,38,$ and $34$ . What is the distance between two adjacent parallel lines? $\textbf{(A) }5\frac12 \qquad \textbf{(B) }6 \qquad \textbf{(C) }6\frac12 \qquad \textbf{(D) }7 \qquad \textbf{(E) }7\frac12$
[asy] size(8cm); pair O = (0, 0), A = (0, 3), B = (0, 9), R = (19, 3), L = (17, 9); draw(O--A--B); draw(O--R); draw(O--L); label("$A$", A, NE); label("$B$", B, N); label("$R$", R, NE); label("$L$", L, NE); label("$O$", O, S); label("$d$", O--A, W); label("$2d$", A--B, W); label("$r$", O--R, S); label("$r$", O--L, NW); dot(O); dot(A); dot(B); dot(R); dot(L); draw(circle((0, 0), sqrt(370))); draw(-R -- (R.x, -R.y)); draw((-R.x, R.y) -- R); draw((-L.x, L.y) -- L); [/asy] Since two parallel chords have the same length ( $38$ ), they must be equidistant from the center of the circle. Let the perpendicular distance of each chord from the center of the circle be $d$ . Thus, the distance from the center of the circle to the chord of length $34$ is \[2d + d = 3d\] and the distance between each of the chords is just $2d$ . Let the radius of the circle be $r$ . Drawing radii to the points where the lines intersect the circle, we create two different right triangles: By the Pythagorean theorem, we can create the following system of equations: \[19^2 + d^2 = r^2\] \[17^2 + (2d + d)^2 = r^2\] Solving, we find $d = 3$ , so $2d = \boxed{6}$
B
6
3f08137e1122f9a259950754e838a3f4
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_8
Three equally spaced parallel lines intersect a circle, creating three chords of lengths $38,38,$ and $34$ . What is the distance between two adjacent parallel lines? $\textbf{(A) }5\frac12 \qquad \textbf{(B) }6 \qquad \textbf{(C) }6\frac12 \qquad \textbf{(D) }7 \qquad \textbf{(E) }7\frac12$
[asy] real r=sqrt(370); draw(circle((0, 0), r)); pair A = (-19, 3); pair B = (19, 3); draw(A--B); pair C = (-19, -3); pair D = (19, -3); draw(C--D); pair E = (-17, -9); pair F = (17, -9); draw(E--F); pair O = (0, 0); pair P = (0, -3); pair Q = (0, -9); draw(O--Q); draw(O--C); draw(O--D); draw(O--E); draw(O--F); label("$O$", O, N); label("$C$", C, SW); label("$D$", D, SE); label("$E$", E, SW); label("$F$", F, SE); label("$P$", P, SW); label("$Q$", Q, S); [/asy] If $d$ is the requested distance, and $r$ is the radius of the circle, Stewart's Theorem applied to $\triangle OCD$ with cevian $\overleftrightarrow{OP}$ gives \[19\cdot 38\cdot 19 + \tfrac{1}{2}d\cdot 38\cdot\tfrac{1}{2}d=19r^{2}+19r^{2}.\] This simplifies to $13718+\tfrac{19}{2}d^{2}=38r^{2}$ . Similarly, another round of Stewart's Theorem applied to $\triangle OEF$ with cevian $\overleftrightarrow{OQ}$ gives \[17\cdot 34\cdot 17 + \tfrac{3}{2}d\cdot 34\cdot\tfrac{3}{2}d=17r^{2}+17r^{2}.\] This simplifies to $9826+\tfrac{153}{2}d^{2}=34r^{2}$ . Dividing the top equation by $38$ and the bottom equation by $34$ results in the system of equations \begin{align*} 361+\tfrac{1}{4}d^{2} &= r^{2} \\ 289+\tfrac{9}{4}d^{2} &= r^{2} \\ \end{align*} By transitive, $361+\tfrac{1}{4}d^{2}=289+\tfrac{9}{4}d^{2}$ . Therefore $(\tfrac{9}{4}-\tfrac{1}{4})d^{2}=361-289\rightarrow 2d^{2}=72\rightarrow d^{2}=36\rightarrow d=\boxed{6}.$
B
6
69424885b9969b04a91f58d869ba4c02
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_10
Two distinct numbers are selected from the set $\{1,2,3,4,\dots,36,37\}$ so that the sum of the remaining $35$ numbers is the product of these two numbers. What is the difference of these two numbers? $\textbf{(A) }5 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8\qquad \textbf{(D) }9 \qquad \textbf{(E) }10$
The sum of the first $n$ integers is given by $\frac{n(n+1)}{2}$ , so $\frac{37(37+1)}{2}=703$ Therefore, $703-x-y=xy$ Rearranging, $xy+x+y=703$ . We can factor this equation by SFFT to get $(x+1)(y+1)=704$ Looking at the possible divisors of $704 = 2^6\cdot11$ $22$ and $32$ are within the constraints of $0 < x \leq y \leq 37$ so we try those: $(x+1)(y+1) = 22\cdot32$ $x+1=22, y+1 = 32$ $x = 21, y = 31$ Therefore, the difference $y-x=31-21=\boxed{10}$
E
10
34c190f83e3201271249ab07f2bc7656
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_12
Suppose that $S$ is a finite set of positive integers. If the greatest integer in $S$ is removed from $S$ , then the average value (arithmetic mean) of the integers remaining is $32$ . If the least integer in $S$ is also removed, then the average value of the integers remaining is $35$ . If the greatest integer is then returned to the set, the average value of the integers rises to $40$ . The greatest integer in the original set $S$ is $72$ greater than the least integer in $S$ . What is the average value of all the integers in the set $S$ $\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37$
Let the lowest value be $L$ and the highest $G$ , and let the sum be $Z$ and the amount of numbers $n$ . We have $\frac{Z-G}{n-1}=32$ $\frac{Z-L-G}{n-2}=35$ $\frac{Z-L}{n-1}=40$ , and $G=L+72$ . Clearing denominators gives $Z-G=32n-32$ $Z-L-G=35n-70$ , and $Z-L=40n-40$ . We use $G=L+72$ to turn the first equation into $Z-L=32n+40$ . Since $Z-L=40(n-1)$ we substitute it into the equation which gives $n=10$ . Turning the second into $Z-2L=35n+2$ using $G=L+72$ we see $L=8$ and $Z=368$ so the average is $\frac{Z}{n}=\boxed{36.8}$ ~aop2014
D
36.8
34c190f83e3201271249ab07f2bc7656
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_12
Suppose that $S$ is a finite set of positive integers. If the greatest integer in $S$ is removed from $S$ , then the average value (arithmetic mean) of the integers remaining is $32$ . If the least integer in $S$ is also removed, then the average value of the integers remaining is $35$ . If the greatest integer is then returned to the set, the average value of the integers rises to $40$ . The greatest integer in the original set $S$ is $72$ greater than the least integer in $S$ . What is the average value of all the integers in the set $S$ $\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37$
Let $x$ be the greatest integer, $y$ be the smallest, $z$ be the sum of the numbers in S excluding $x$ and $y$ , and $k$ be the number of elements in S. Then, $S=x+y+z$ First, when the greatest integer is removed, $\frac{S-x}{k-1}=32$ When the smallest integer is also removed, $\frac{S-x-y}{k-2}=35$ When the greatest integer is added back, $\frac{S-y}{k-1}=40$ We are given that $x=y+72$ After you substitute $x=y+72$ , you have 3 equations with 3 unknowns $S,$ $y$ and $k$ $S-y-72=32k-32$ $S-2y-72=35k-70$ $S-y=40k-40$ This can be easily solved to yield $k=10$ $y=8$ $S=368$ $\therefore$ average value of all integers in the set $=S/k = 368/10 = \boxed{36.8}$
D
36.8
34c190f83e3201271249ab07f2bc7656
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_12
Suppose that $S$ is a finite set of positive integers. If the greatest integer in $S$ is removed from $S$ , then the average value (arithmetic mean) of the integers remaining is $32$ . If the least integer in $S$ is also removed, then the average value of the integers remaining is $35$ . If the greatest integer is then returned to the set, the average value of the integers rises to $40$ . The greatest integer in the original set $S$ is $72$ greater than the least integer in $S$ . What is the average value of all the integers in the set $S$ $\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37$
We should plug in $36.2$ and assume everything is true except the $35$ part. We then calculate that part and end up with $35.75$ . We also see with the formulas we used with the plug in that when you increase by $0.2$ the $35.75$ part decreases by $0.25$ . The answer is then $\boxed{36.8}$ . You can work backwards because it is multiple choice and you don't have to do critical thinking. ~Lopkiloinm
D
36.8
34c190f83e3201271249ab07f2bc7656
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_12
Suppose that $S$ is a finite set of positive integers. If the greatest integer in $S$ is removed from $S$ , then the average value (arithmetic mean) of the integers remaining is $32$ . If the least integer in $S$ is also removed, then the average value of the integers remaining is $35$ . If the greatest integer is then returned to the set, the average value of the integers rises to $40$ . The greatest integer in the original set $S$ is $72$ greater than the least integer in $S$ . What is the average value of all the integers in the set $S$ $\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37$
Let $S = \{a_1, a_2, a_3, \hdots, a_n\}$ with $a_1 < a_2 < a_3 < \hdots < a_n.$ We are given the following: \[{\begin{cases} \sum_{i=1}^{n-1} a_i = 32(n-1) = 32n-32, \\ \sum_{i=2}^n a_i = 40(n-1) = 40n-40, \\ \sum_{i=2}^{n-1} a_i = 35(n-2) = 35n-70, \\ a_n-a_1 = 72 \implies a_1 + 72 = a_n. \end{cases}}\] Subtracting the third equation from the sum of the first two, we find that \[\sum_{i=1}^n a_i = \left(32n-32\right) + \left(40n-40\right) - \left(35n-70\right) = 37n - 2.\] Furthermore, from the fourth equation, we have \[\sum_{i=2}^{n} a_i - \sum_{i=1}^{n-1} a_i = \left[\left(a_1 + 72\right) + \sum_{i=2}^{n-1} a_i\right] - \left[\left(a_1\right) + \sum_{i=2}^{n-1} a_i\right] = \left(40n-40\right)-\left(32n-32\right).\] Combining like terms and simplifying, we have \[72 = 8n-8 \implies 8n = 80 \implies n=10.\] Thus, the sum of the elements in $S$ is $37 \cdot 10 - 2 = 368,$ and since there are 10 elements in $S,$ the average of the elements in $S$ is $\tfrac{368}{10}=\boxed{36.8}$
D
36.8
8b248ddb0af71e69fe45a34ff1cd3f52
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_13
How many values of $\theta$ in the interval $0<\theta\le 2\pi$ satisfy \[1-3\sin\theta+5\cos3\theta = 0?\] $\textbf{(A) }2 \qquad \textbf{(B) }4 \qquad \textbf{(C) }5\qquad \textbf{(D) }6 \qquad \textbf{(E) }8$
We rearrange to get \[5\cos3\theta = 3\sin\theta-1.\] We can graph two functions in this case: $y=5\cos{3x}$ and $y=3\sin{x} -1$ . Using transformation of functions, we know that $5\cos{3x}$ is just a cosine function with amplitude $5$ and period $\frac{2\pi}{3}$ . Similarly, $3\sin{x} -1$ is just a sine function with amplitude $3$ and shifted $1$ unit downward: [asy] import graph; size(400,200,IgnoreAspect); real Sin(real t) {return 3*sin(t) - 1;} real Cos(real t) {return 5*cos(3*t);} draw(graph(Sin,0, 2pi),red,"$3\sin{x} -1 $"); draw(graph(Cos,0, 2pi),blue,"$5\cos{3x}$"); xaxis("$x$",BottomTop,LeftTicks); yaxis("$y$",LeftRight,RightTicks(trailingzero)); add(legend(),point(E),20E,UnFill); [/asy] So, we have $\boxed{6}$ solutions.
D
6
492ec255e7d781fd7dcb6287741b51dc
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_15
The figure is constructed from $11$ line segments, each of which has length $2$ . The area of pentagon $ABCDE$ can be written as $\sqrt{m} + \sqrt{n}$ , where $m$ and $n$ are positive integers. What is $m + n ?$ [asy] /* Made by samrocksnature */ pair A=(-2.4638,4.10658); pair B=(-4,2.6567453480756127); pair C=(-3.47132,0.6335248637894945); pair D=(-1.464483379039766,0.6335248637894945); pair E=(-0.956630463955801,2.6567453480756127); pair F=(-2,2); pair G=(-3,2); draw(A--B--C--D--E--A); draw(A--F--A--G); draw(B--F--C); draw(E--G--D); label("A",A,N); label("B",B,W); label("C",C,S); label("D",D,S); label("E",E,dir(0)); dot(A^^B^^C^^D^^E^^F^^G); [/asy] $\textbf{(A)} ~20 \qquad\textbf{(B)} ~21 \qquad\textbf{(C)} ~22 \qquad\textbf{(D)} ~23 \qquad\textbf{(E)} ~24$
[asy] /* Made by samrocksnature, adapted by Tucker, then adjusted by samrocksnature again, then adjusted by erics118 xD*/ pair A=(-2.4638,4.10658); pair B=(-4,2.6567453480756127); pair C=(-3.47132,0.6335248637894945); pair D=(-1.464483379039766,0.6335248637894945); pair E=(-0.956630463955801,2.6567453480756127); pair F=(-1.85,2); pair G=(-3.1,2); draw(A--G--A--F, lightgray); draw(B--F--C, lightgray); draw(E--G--D, lightgray); dot(F^^G, lightgray); draw(A--B--C--D--E--A); draw(A--C--A--D); label("A",A,N); label("B",B,W); label("C",C,S); label("D",D,S); label("E",E,dir(0)); dot(A^^B^^C^^D^^E); [/asy] Draw diagonals $AC$ and $AD$ to split the pentagon into three parts. We can compute the area for each triangle and sum them up at the end. For triangles $ABC$ and $ADE$ , they each have area $2\cdot\frac{1}{2}\cdot\frac{4\sqrt{3}}{4}=\sqrt{3}$ . For triangle $ACD$ , we can see that $AC=AD=2\sqrt{3}$ and $CD=2$ . Using Pythagorean Theorem, the altitude for this triangle is $\sqrt{11}$ , so the area is $\sqrt{11}$ . Adding each part up, we get $2\sqrt{3}+\sqrt{11}=\sqrt{12}+\sqrt{11} \implies \boxed{23}$
D
23
c44cf575acdc04138e2d6b25fc1d887c
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_16
Let $g(x)$ be a polynomial with leading coefficient $1,$ whose three roots are the reciprocals of the three roots of $f(x)=x^3+ax^2+bx+c,$ where $1<a<b<c.$ What is $g(1)$ in terms of $a,b,$ and $c?$ $\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}$
Note that $f(1/x)$ has the same roots as $g(x)$ , if it is multiplied by some monomial so that the leading term is $x^3$ they will be equal. We have \[f(1/x) = \frac{1}{x^3} + \frac{a}{x^2}+\frac{b}{x} + c\] so we can see that \[g(x) = \frac{x^3}{c}f(1/x)\] Therefore \[g(1) = \frac{1}{c}f(1) = \boxed{1}\]
A
1
c44cf575acdc04138e2d6b25fc1d887c
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_16
Let $g(x)$ be a polynomial with leading coefficient $1,$ whose three roots are the reciprocals of the three roots of $f(x)=x^3+ax^2+bx+c,$ where $1<a<b<c.$ What is $g(1)$ in terms of $a,b,$ and $c?$ $\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}$
Let the three roots of $f(x)$ be $d$ $e$ , and $f$ . (Here e does NOT mean 2.7182818...) We know that $a=-(d+e+f)$ $b=de+ef+df$ , and $c=-def$ , and that $g(1)=1-\frac{1}{d}-\frac{1}{e}-\frac{1}{f}+\frac{1}{de}+\frac{1}{ef}+\frac{1}{df}-\frac{1}{def}$ (Vieta's). This is equal to $\frac{def-de-df-ef+d+e+f-1}{def}$ , which equals $\boxed{1}$ . -dstanz5
A
1
c44cf575acdc04138e2d6b25fc1d887c
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_16
Let $g(x)$ be a polynomial with leading coefficient $1,$ whose three roots are the reciprocals of the three roots of $f(x)=x^3+ax^2+bx+c,$ where $1<a<b<c.$ What is $g(1)$ in terms of $a,b,$ and $c?$ $\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}$
If we let $p, q,$ and $r$ be the roots of $f(x)$ $f(x) = (x-p)(x-q)(x-r)$ and $g(x) = \left(x-\frac{1}{p}\right)\left(x-\frac{1}{q}\right)\left(x-\frac{1}{r}\right)$ . The requested value, $g(1)$ , is then \[\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)\left(1-\frac{1}{r}\right) = \frac{(p-1)(q-1)(r-1)}{pqr}\] The numerator is $-f(1)$ (using the product form of $f(x)$ ) and the denominator is $-c$ , so the answer is \[\frac{f(1)}{c} = \boxed{1}\]
A
1
c44cf575acdc04138e2d6b25fc1d887c
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_16
Let $g(x)$ be a polynomial with leading coefficient $1,$ whose three roots are the reciprocals of the three roots of $f(x)=x^3+ax^2+bx+c,$ where $1<a<b<c.$ What is $g(1)$ in terms of $a,b,$ and $c?$ $\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}$
It is well known that reversing the order of the coefficients of a polynomial turns each root into its corresponding reciprocal. Thus, a polynomial with the desired roots may be written as $cx^3+bx^2+a+1$ . As the problem statement asks for a monic polynomial, our answer is \[\boxed{1}\]
A
1
ea1f05152dbd68ef9816ac79515fb838
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_18
Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$ $\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$
Using the fact $z\bar{z}=|z|^2$ , the equation rewrites itself as \begin{align*} 12z\bar{z}&=2(z+2)(\bar{z}+2)+(z^2+1)(\bar{z}^2+1)+31 \\ -12z\bar{z}+2z\bar{z}+4(z+\bar{z})+8+z^2\bar{z}^2+(z^2+\bar{z}^2)+32&=0 \\ \left((z^2+2z\bar{z}+\bar{z}^2)+4(z+\bar{z})+4\right)+\left(z^2\bar{z}^2-12z\bar{z}+36\right)&=0 \\ (z+\bar{z}+2)^2+(z\bar{z}-6)^2&=0. \end{align*} As the two quantities in the parentheses are real, both quantities must equal $0$ so \[z+\frac6z=z+\bar{z}=\boxed{2}.\]
A
2
ea1f05152dbd68ef9816ac79515fb838
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_18
Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$ $\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$
Let $z = a + bi$ $z^2 = a^2-b^2+2abi$ By the equation given in the problem \[12(a^2+b^2) = 2((a+2)^2 + b^2) + ((a^2-b^2+1)^2 + (2ab)^2) + 31\] \[12a^2 + 12b^2 = 2a^2 + 8a + 8 + 2b^2 + a^4 + b^4 + 1 + 2a^2 - 2b^2 - 2a^2b^2 + 4a^2b^2 + 31\] \[a^4 + b^4 - 8a^2 - 12b^2 + 2a^2b^2 + 8a + 40 = 0\] \[(a^2+b^2)^2 - 12(a^2+b^2) + 4(a^2 + 2a + 1) + 36=0\] \[(a^2 + b^2 - 6)^2 + 4(a+1)^2 = 0\] Therefore, $a^2 + b^2 - 6 = 0$ and $a+1 = 0$ $a = -1$ $b^2 = 6-1 = 5$ $b = \sqrt{5}$ \[z + \frac{6}{z} = \frac{ a^2 - b^2 + 6 + 2abi }{ a+bi } = \frac{ 1 - 5 + 6 + 2(-1)\sqrt{5} i }{ -1 + i \sqrt{5} } = \frac{ 2 - 2i \sqrt{5} }{-1 + i \sqrt{5}} = \boxed{2}\]
A
2
ea1f05152dbd68ef9816ac79515fb838
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_18
Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$ $\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$
Let $x = z + \frac{6}{z}$ . Then $z = \frac{x \pm \sqrt{x^2-24}}{2}$ . From the answer choices, we know that $x$ is real and $x^2<24$ , so $z = \frac{x \pm i\sqrt{24-x^2}}{2}$ . Then we have \[|z|^2 = 6\] \[|z+2|^2 = (\frac{x}{2} + 2)^2 + \frac{24-x^2}{4} = 2x+10\] \[|z^2+1|^2 = |xz -6 +1|^2 = \left(\frac{x^2}{2}-5\right)^2 + \frac{x^2(24-x^2)}{4} = x^2 +25\] Plugging the above back to the original equation, we have \[12*6 = 2(2x+10) + x^2 + 25 + 31\] \[(x+2)^2 = 0\] So $x = \boxed{2}$
A
2
ea1f05152dbd68ef9816ac79515fb838
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_18
Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$ $\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$
There are actually several ways to see that $|z|^2 = 6.$ I present two troll ways of seeing it, and a legitimate way of checking. Rewrite using $w \overline{w} = |w|^2$ $12z \overline{z} + 2(z+2)(\overline{z} + 2) + (z^2+1)(\overline{z}^2+1)+31$ $12 z \overline{z} = 2z \overline{z} + 4z + 4 \overline{z} + 8 + z^2 \overline{z}^2+z^2+\overline{z}^2 + 1 + 31.$ $12 z \overline{z} = 4(z + \overline{z}) + (z \overline{z})^2 + (z + \overline{z})^2 + 40.$ Symmetric in $z$ and $\overline{z},$ so if $w$ is a sol, then so is $\overline{w}$ TROLL OBSERVATION #1: ALL THE ANSWERS ARE REAL. THUS, $z + \frac{6}{z} \in \mathbb{R},$ which means they must be conjugates and so $|z|^2 = 6.$ TROLL OBSERVATION #2: Note that $z+\frac{6}{z} = \overline{z} + \frac{6}{\overline{z}}$ because either solution must give the same answer! which means that $|z|^2 = 6.$ Alternatively, you can check: Let $a = w + \overline{w} \in \mathbb{R},$ and $r = |w|^2 \in \mathbb{R}.$ Thus, we have $a^2+4a+40+r^2-12r=0,$ and the discriminant of this must be nonnegative as $a$ is real. Thus, $16-4(40+r^2-12r) \geq 0$ or $(r-6)^2 \leq 0,$ which forces $r = 6,$ as claimed. Thus, we plug in $z \overline{z} = 6,$ and get: $72 = 4(z + \overline{z}) + 76 + (z + \overline{z})^2,$ ie. $(z+\overline{z})^2 + 4(z + \overline{z}) + 4 = 0,$ or $(z+\overline{z} + 2)^2 = 0,$ which means $z + \overline{z} = \boxed{2} = 6 / z$
A
2
ea1f05152dbd68ef9816ac79515fb838
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_18
Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$ $\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$
Observe that all the answer choices are real. Therefore, $z$ and $\frac{6}{z}$ must be complex conjugates as this is the only way for both their sum (one of the answer choices) and their product ( $6$ ) to be real. Thus $|z|=|\tfrac{6}{z}|=\sqrt{6}$ . We will test all the answer choices, starting with $\textbf{(A)}$ . Suppose the answer is $\textbf{(A)}$ . If $z+\tfrac{6}{z}=-2$ then $z^{2}+2z+6=0$ and $z=\frac{-2\pm\sqrt{4-24}}{2}=-1\pm\sqrt{5}i$ . Note that if $z=-1+\sqrt{5}i$ works, then so does $-1-\sqrt{5}i$ . It is relatively easy to see that if $z=-1+\sqrt{5}i$ , then $12|z|^{2}=12\cdot 6=72, 2|z+2|^{2}=2|1+\sqrt{5}i|=2\cdot 6=12, |z^{2}+1|^{2}=|-3-2\sqrt{5}i|^{2}=29,$ and $72=12+29+31$ . Thus the condition \[12|z|^{2}=2|z+2|^{2}+|z^{2}+1|^{2}+31\] is satisfied for $z+\tfrac{6}{z}=-2$ , and the answer is $\boxed{2}$
A
2
5234f37579662cbd98220e53ad52f604
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_19
Two fair dice, each with at least $6$ faces are rolled. On each face of each die is printed a distinct integer from $1$ to the number of faces on that die, inclusive. The probability of rolling a sum of $7$ is $\frac34$ of the probability of rolling a sum of $10,$ and the probability of rolling a sum of $12$ is $\frac{1}{12}$ . What is the least possible number of faces on the two dice combined? $\textbf{(A) }16 \qquad \textbf{(B) }17 \qquad \textbf{(C) }18\qquad \textbf{(D) }19 \qquad \textbf{(E) }20$
Suppose the dice have $a$ and $b$ faces, and WLOG $a\geq{b}$ . Since each die has at least $6$ faces, there will always be $6$ ways to sum to $7$ . As a result, there must be $\tfrac{4}{3}\cdot6=8$ ways to sum to $10$ . There are at most nine distinct ways to get a sum of $10$ , which are possible whenever $a,b\geq{9}$ . To achieve exactly eight ways, $b$ must have $8$ faces, and $a\geq9$ . Let $n$ be the number of ways to obtain a sum of $12$ , then $\tfrac{n}{8a}=\tfrac{1}{12}\implies n=\tfrac{2}{3}a$ . Since $b=8$ $n\leq8\implies a\leq{12}$ . In addition to $3\mid{a}$ , we only have to test $a=9,12$ , of which both work. Taking the smaller one, our answer becomes $a+b=9+8=\boxed{17}$
B
17
5234f37579662cbd98220e53ad52f604
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_19
Two fair dice, each with at least $6$ faces are rolled. On each face of each die is printed a distinct integer from $1$ to the number of faces on that die, inclusive. The probability of rolling a sum of $7$ is $\frac34$ of the probability of rolling a sum of $10,$ and the probability of rolling a sum of $12$ is $\frac{1}{12}$ . What is the least possible number of faces on the two dice combined? $\textbf{(A) }16 \qquad \textbf{(B) }17 \qquad \textbf{(C) }18\qquad \textbf{(D) }19 \qquad \textbf{(E) }20$
Suppose the dice have $a$ and $b$ faces, and WLOG $a\geq{b}$ . Note that if $a+b=12$ since they are both $6$ , there is one way to make $12$ , and incrementing $a$ or $b$ by one will add another way. This gives us the probability of making a 12 as \[\frac{a+b-11}{ab}=\frac{1}{12}\] Cross-multiplying, we get \[12a+12b-132=ab\] Simon's Favorite Factoring Trick now gives \[(a-12)(b-12)=12\] This narrows the possibilities down to 3 ordered pairs of $(a,b)$ , which are $(13,24)$ $(6,10)$ , and $(8,9)$ . We can obviously ignore the first pair and test the next two straightforwardly. The last pair yields the answer: \[\frac{6}{72}=\frac{3}{4}\left(\frac{9+8-9}{72}\right)\] The answer is then $a+b=8+9=\boxed{17}$
B
17
bf908b449054634826f30b2d6d2c6953
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_22
Arjun and Beth play a game in which they take turns removing one brick or two adjacent bricks from one "wall" among a set of several walls of bricks, with gaps possibly creating new walls. The walls are one brick tall. For example, a set of walls of sizes $4$ and $2$ can be changed into any of the following by one move: $(3,2),(2,1,2),(4),(4,1),(2,2),$ or $(1,1,2).$ [asy] unitsize(4mm); real[] boxes = {0,1,2,3,5,6,13,14,15,17,18,21,22,24,26,27,30,31,32,33}; for(real i:boxes){ draw(box((i,0),(i+1,3))); } draw((8,1.5)--(12,1.5),Arrow()); defaultpen(fontsize(20pt)); label(",",(20,0)); label(",",(29,0)); label(",...",(35.5,0)); [/asy] Arjun plays first, and the player who removes the last brick wins. For which starting configuration is there a strategy that guarantees a win for Beth? $\textbf{(A) }(6,1,1) \qquad \textbf{(B) }(6,2,1) \qquad \textbf{(C) }(6,2,2)\qquad \textbf{(D) }(6,3,1) \qquad \textbf{(E) }(6,3,2)$
We say that a game state is an N-position if it is winning for the next player (the player to move), and a P-position if it is winning for the other player. We are trying to find which of the given states is a P-position. First we note that symmetrical positions are P-positions, as the second player can win by mirroring the first player's moves. It follows that $(6, 1, 1)$ is an N-position, since we can win by moving to $(2, 2, 1, 1)$ ; this rules out $\textbf{(A)}$ . We next look at $(6, 2, 1)$ . The possible next states are \[(6, 2), \enskip (6, 1, 1), \enskip (6, 1), \enskip (5, 2, 1), \enskip (4, 2, 1, 1), \enskip (4, 2, 1), \enskip (3, 2, 2, 1), \enskip (3, 2, 1, 1), \enskip (2, 2, 2, 1).\] None of these are symmetrical, so we might reasonably suspect that they are all N-positions. Indeed, it just so happens that for all of these states except $(6, 2)$ and $(6, 1)$ , we can win by moving to $(2, 2, 1, 1)$ ; it remains to check that $(6, 2)$ and $(6, 1)$ are N-positions. To save ourselves work, it would be nice if we could find a single P-position directly reachable from both $(6, 2)$ and $(6, 1)$ . We notice that $(3, 2, 1)$ is directly reachable from both states, so it would suffice to show that $(3, 2, 1)$ is a P-position. Indeed, the possible next states are \[(3, 2), \enskip (3, 1, 1), \enskip (3, 1), \enskip (2, 2, 1), \enskip (2, 1, 1, 1), \enskip (2, 1, 1),\] which allow for the following refutations: \begin{align*} &(3, 2) \to (2, 2), && &&(3, 1, 1) \to (1, 1, 1, 1), && &&(3, 1) \to (1, 1), \\ &(2, 2, 1) \to (2, 2), && &&(2, 1, 1, 1) \to (1, 1, 1, 1), && &&(2, 1, 1) \to (1, 1). \end{align*} Hence, $(3, 2, 1)$ is a P-position, so $(6, 2)$ and $(6, 1)$ are both N-positions, along with all other possible next states from $(6, 2, 1)$ as noted before. Thus, $(6, 2, 1)$ is a P-position, so our answer is $\boxed{6,2,1}$ as in Solution 2.)
B
6,2,1
bf908b449054634826f30b2d6d2c6953
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_22
Arjun and Beth play a game in which they take turns removing one brick or two adjacent bricks from one "wall" among a set of several walls of bricks, with gaps possibly creating new walls. The walls are one brick tall. For example, a set of walls of sizes $4$ and $2$ can be changed into any of the following by one move: $(3,2),(2,1,2),(4),(4,1),(2,2),$ or $(1,1,2).$ [asy] unitsize(4mm); real[] boxes = {0,1,2,3,5,6,13,14,15,17,18,21,22,24,26,27,30,31,32,33}; for(real i:boxes){ draw(box((i,0),(i+1,3))); } draw((8,1.5)--(12,1.5),Arrow()); defaultpen(fontsize(20pt)); label(",",(20,0)); label(",",(29,0)); label(",...",(35.5,0)); [/asy] Arjun plays first, and the player who removes the last brick wins. For which starting configuration is there a strategy that guarantees a win for Beth? $\textbf{(A) }(6,1,1) \qquad \textbf{(B) }(6,2,1) \qquad \textbf{(C) }(6,2,2)\qquad \textbf{(D) }(6,3,1) \qquad \textbf{(E) }(6,3,2)$
$(6,1,1)$ can be turned into $(2,2,1,1)$ by Arjun, which is symmetric, so Beth will lose. $(6,3,1)$ can be turned into $(3,1,3,1)$ by Arjun, which is symmetric, so Beth will lose. $(6,2,2)$ can be turned into $(2,2,2,2)$ by Arjun, which is symmetric, so Beth will lose. $(6,3,2)$ can be turned into $(3,2,3,2)$ by Arjun, which is symmetric, so Beth will lose. That leaves $(6,2,1)$ or $\boxed{6,2,1}$
B
6,2,1
bf908b449054634826f30b2d6d2c6953
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_22
Arjun and Beth play a game in which they take turns removing one brick or two adjacent bricks from one "wall" among a set of several walls of bricks, with gaps possibly creating new walls. The walls are one brick tall. For example, a set of walls of sizes $4$ and $2$ can be changed into any of the following by one move: $(3,2),(2,1,2),(4),(4,1),(2,2),$ or $(1,1,2).$ [asy] unitsize(4mm); real[] boxes = {0,1,2,3,5,6,13,14,15,17,18,21,22,24,26,27,30,31,32,33}; for(real i:boxes){ draw(box((i,0),(i+1,3))); } draw((8,1.5)--(12,1.5),Arrow()); defaultpen(fontsize(20pt)); label(",",(20,0)); label(",",(29,0)); label(",...",(35.5,0)); [/asy] Arjun plays first, and the player who removes the last brick wins. For which starting configuration is there a strategy that guarantees a win for Beth? $\textbf{(A) }(6,1,1) \qquad \textbf{(B) }(6,2,1) \qquad \textbf{(C) }(6,2,2)\qquad \textbf{(D) }(6,3,1) \qquad \textbf{(E) }(6,3,2)$
Consider the following, much simpler game. Arjun and Beth can each either take 1 or 2 bricks from the right-hand-side of a continuous row of initially $n$ bricks. It is easy to see that for $n$ a multiple of 3, Beth can "mirror" whatever Arjun plays: if he takes 1, she takes 2, and if he takes 2, she takes 1. With this strategy, Beth always takes the last brick. If $n$ is not a multiple of 3, then Arjun takes whichever amount puts Beth in the losing position. The total number of bricks in the initial states given by the answer choices is $8, 9, 10, 10, 11$ . Thus, answer choice $\textbf{(B)}$ appears promising as a winning position for Beth. The difference between this game and the simplified game is that in certain positions, namely those consisting of fragments of size only 1, taking 2 bricks is not allowed. We can assume that for the starting position $(6, 2, 1)$ , Beth always has a move to ensure that she can continue to mirror Arjun throughout the game. (This could be proven rigorously with lots of casework. In particular, she must avoid providing Arjun with a position of 3 continuous bricks, because then he could take the middle block and force a win.) The assumption seems reasonable, so the answer is $\boxed{6,2,1}$
B
6,2,1
bf908b449054634826f30b2d6d2c6953
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_22
Arjun and Beth play a game in which they take turns removing one brick or two adjacent bricks from one "wall" among a set of several walls of bricks, with gaps possibly creating new walls. The walls are one brick tall. For example, a set of walls of sizes $4$ and $2$ can be changed into any of the following by one move: $(3,2),(2,1,2),(4),(4,1),(2,2),$ or $(1,1,2).$ [asy] unitsize(4mm); real[] boxes = {0,1,2,3,5,6,13,14,15,17,18,21,22,24,26,27,30,31,32,33}; for(real i:boxes){ draw(box((i,0),(i+1,3))); } draw((8,1.5)--(12,1.5),Arrow()); defaultpen(fontsize(20pt)); label(",",(20,0)); label(",",(29,0)); label(",...",(35.5,0)); [/asy] Arjun plays first, and the player who removes the last brick wins. For which starting configuration is there a strategy that guarantees a win for Beth? $\textbf{(A) }(6,1,1) \qquad \textbf{(B) }(6,2,1) \qquad \textbf{(C) }(6,2,2)\qquad \textbf{(D) }(6,3,1) \qquad \textbf{(E) }(6,3,2)$
We can start by guessing and checking our solutions. Let's start with $A$ $(6,1,1)$ . Arjun goes first, and he has a winning strategy. His strategy is to cut the 6 block in half, so whatever Beth does, Arjun will copy. If we see this in practice, Arjun has made the block in to $(2,2,1,1)$ . If Beth takes 1, he will take one. If Beth takes 2, he will take 2 as well. Then, we can guess solution $B$ $(6,2,1)$ . If Arjun starts by taking 1 of the blocks, he will either have $(6,1,1)$ $(6,2)$ $(x,y,2,1)$ (Where $x+y = 5$ ). If he has $(6,1,1)$ , Beth can take 2 out of the middle of $(6,1,1)$ to get $(2,2,1,1)$ which we know Arjun will lose because we know by symmetry from answer choice $A$ . If he has $(6,2)$ , Beth will take out one from the edge, and we get $(5,2)$ . Beth can now copy whatever Arjun does, so she will win. Next, if he takes one out to get $(x,y,2,1)$ , we can either have $(4,1,2,1)$ or $(3,2,2,1)$ . If it is the first case, Beth can take the edge 2 out of the 4, which gives us $(2,1,2,1)$ and whatever Arjun does, Beth can do, so she has established a win. If it is the 2nd case, Beth can take out 2 from the 3 to get $(1,2,2,1)$ , in which, Beth can copy whatever Arjun does, so Beth will win. So in all 4 cases, Beth wins. So our answer is $\boxed{6,2,1}$
B
6,2,1
439cb047c1486d416922cb62dd7a0d80
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_23
Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $i$ is $2^{-i}$ for $i=1,2,3,....$ More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is $\frac pq,$ where $p$ and $q$ are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins $3,17,$ and $10.$ ) What is $p+q?$ $\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59$
"Evenly spaced" just means the bins form an arithmetic sequence. Suppose the middle bin in the sequence is $x$ . There are $x-1$ different possibilities for the first bin, and these two bins uniquely determine the final bin. Now, the probability that these $3$ bins are chosen is $6\cdot 2^{-3x} = 6\cdot \frac{1}{8^x}$ , so the probability $x$ is the middle bin is $6\cdot\frac{x-1}{8^x}$ . Then, we want the sum \begin{align*} 6\sum_{x=2}^{\infty}\frac{x-1}{8^x} &= \frac{6}{8}\left[\frac{1}{8} + \frac{2}{8^2} + \frac{3}{8^3}\cdots\right]\\ &= \frac34\left[\left(\frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3}+\cdots \right) + \left(\frac{1}{8^2} + \frac{1}{8^3} + \frac{1}{8^4} + \cdots \right) + \cdots\right]\\ &= \frac34\left[\frac17\cdot \left(1 + \frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3} + \cdots \right)\right]\\ &= \frac34\cdot \frac{8}{49}\\ &= \frac{6}{49} \end{align*} The answer is $6+49=\boxed{55}.$
A
55
439cb047c1486d416922cb62dd7a0d80
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_23
Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $i$ is $2^{-i}$ for $i=1,2,3,....$ More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is $\frac pq,$ where $p$ and $q$ are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins $3,17,$ and $10.$ ) What is $p+q?$ $\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59$
As in solution 1, note that "evenly spaced" means the bins are in arithmetic sequence. We let the first bin be $a$ and the common difference be $d$ . Further note that each $(a, d)$ pair uniquely determines a set of $3$ bins. We have $a\geq1$ because the leftmost bin in the sequence can be any bin, and $d\geq1$ , because the bins must be distinct. This gives us the following sum for the probability: \begin{align*} 6 \sum_{a=1}^{\infty} \sum_{d=1}^{\infty} 2^{-3a-3d} &= 6 \sum_{a=1}^{\infty} \sum_{d=1}^{\infty} 2^{-3a} \cdot 2^{-3d} \\ &= 6 \left( \sum_{a=1}^{\infty} 2^{-3a} \right) \left( \sum_{d=1}^{\infty} 2^{-3d} \right) \\ &= 6 \left( \sum_{a=1}^{\infty} 8^{-a} \right) \left( \sum_{d=1}^{\infty} 8^{-d} \right) \\ &= 6 \left( \frac{1}{7} \right) \left( \frac{1}{7} \right) \\ &= \frac{6}{49} .\end{align*} Therefore the answer is $6 + 49 = \boxed{55}$
A
55
439cb047c1486d416922cb62dd7a0d80
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_23
Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $i$ is $2^{-i}$ for $i=1,2,3,....$ More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is $\frac pq,$ where $p$ and $q$ are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins $3,17,$ and $10.$ ) What is $p+q?$ $\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59$
This is a slightly messier variant of solution 2. If the first ball is in bin $i$ and the second ball is in bin $j>i$ , then the third ball is in bin $2j-i$ . Thus the probability is \begin{align*} 6\sum_{i=1}^{\infty}\sum_{j=i+1}^\infty2^{-i}2^{-j}2^{-2j+i}&=6\sum_{i=1}^{\infty}\sum_{j=i+1}^\infty2^{-3j}\\ &=6\sum_{i=1}^{\infty}\left(\frac{2^{-3(i+1)}}{1-\tfrac{1}{8}}\right)\\ &=6\sum_{i=1}^\infty\frac{8}{7}\cdot2^{-3}\cdot2^{-3i}\\ &=\frac{6}{7}\sum_{i=1}^\infty2^{-3i}\\ &=\frac{6}{7}\cdot\frac{2^{-3}}{1-\tfrac18}\\ &=\frac{6}{49}. \end{align*} Therefore the answer is $6 + 49 = \boxed{55}$
A
55
439cb047c1486d416922cb62dd7a0d80
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_23
Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $i$ is $2^{-i}$ for $i=1,2,3,....$ More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is $\frac pq,$ where $p$ and $q$ are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins $3,17,$ and $10.$ ) What is $p+q?$ $\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59$
Based on the value of $n,$ we construct the following table: \[\begin{array}{c|c|c|c} & & & \\ [-1.5ex] \textbf{Exactly }\boldsymbol{n}\textbf{ Spaces Apart} & \textbf{Bin \#s} & \textbf{Expression} & \textbf{Prob. of One Such Perm.} \\ [1ex] \hline\hline & & & \\ [-1.5ex] n=1 & 1,2,3 & 2^{-1}\cdot2^{-2}\cdot2^{-3} & 2^{-6} \\ [1ex] & 2,3,4 & 2^{-2}\cdot2^{-3}\cdot2^{-4} & 2^{-9} \\ [1ex] & 3,4,5 & 2^{-3}\cdot2^{-4}\cdot2^{-5} & 2^{-12} \\ [1ex] & 4,5,6 & 2^{-4}\cdot2^{-5}\cdot2^{-6} & 2^{-15} \\ [1ex] & \cdots & \cdots & \cdots \\ [1ex] \hline & & & \\ [-1.5ex] n=2 & 1,3,5 & 2^{-1}\cdot2^{-3}\cdot2^{-5} & 2^{-9} \\ [1ex] & 2,4,6 & 2^{-2}\cdot2^{-4}\cdot2^{-6} & 2^{-12} \\ [1ex] & 3,5,7 & 2^{-3}\cdot2^{-5}\cdot2^{-7} & 2^{-15} \\ [1ex] & 4,6,8 & 2^{-4}\cdot2^{-6}\cdot2^{-8} & 2^{-18} \\ [1ex] & \cdots & \cdots & \cdots \\ [1ex] \hline & & & \\ [-1.5ex] n=3 & 1,4,7 & 2^{-1}\cdot2^{-4}\cdot2^{-7} & 2^{-12} \\ [1ex] & 2,5,8 & 2^{-2}\cdot2^{-5}\cdot2^{-8} & 2^{-15} \\ [1ex] & 3,6,9 & 2^{-3}\cdot2^{-6}\cdot2^{-9} & 2^{-18} \\ [1ex] & 4,7,10 & 2^{-4}\cdot2^{-7}\cdot2^{-10} & 2^{-21} \\ [1ex] & \cdots & \cdots & \cdots \\ [1ex] \hline & & & \\ [-1.5ex] \cdots & \cdots & \cdots & \cdots \\ [1ex] \end{array}\] Since three balls have $3!=6$ permutations, the requested probability is \begin{align*} 6\left(\sum_{k=0}^{\infty}2^{-6-3k}+\sum_{k=0}^{\infty}2^{-9-3k}+\sum_{k=0}^{\infty}2^{-12-3k}+\cdots\right)&=6\left(2^{-6}\sum_{k=0}^{\infty}2^{-3k}+2^{-9}\sum_{k=0}^{\infty}2^{-3k}+2^{-12}\sum_{k=0}^{\infty}2^{-3k}+\cdots\right) \\ &=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(2^{-6}+2^{-9}+2^{-12}+\cdots\right) \\ &=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(\sum_{k=0}^{\infty}2^{-6-3k}\right) \\ &=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(2^{-6}\sum_{k=0}^{\infty}2^{-3k}\right) \\ &=\frac{6}{1-2^{-3}}\cdot\frac{2^{-6}}{1-2^{-3}} \\ &=\frac{6}{49} \end{align*} by infinite geometric series, from which the answer is $6+49=\boxed{55}.$
A
55
bf8152d490bb5752c3e75b85a0e6d7da
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_24
Let $ABCD$ be a parallelogram with area $15$ . Points $P$ and $Q$ are the projections of $A$ and $C,$ respectively, onto the line $BD;$ and points $R$ and $S$ are the projections of $B$ and $D,$ respectively, onto the line $AC.$ See the figure, which also shows the relative locations of these points. [asy] size(350); defaultpen(linewidth(0.8)+fontsize(11)); real theta = aTan(1.25/2); pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R; draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6)); draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4")); dot("$A$",A,dir(270)); dot("$B$",B,E); dot("$C$",C,N); dot("$D$",D,W); dot("$P$",P,SE); dot("$Q$",Q,NE); dot("$R$",R,N); dot("$S$",S,dir(270)); [/asy] Suppose $PQ=6$ and $RS=8,$ and let $d$ denote the length of $\overline{BD},$ the longer diagonal of $ABCD.$ Then $d^2$ can be written in the form $m+n\sqrt p,$ where $m,n,$ and $p$ are positive integers and $p$ is not divisible by the square of any prime. What is $m+n+p?$ $\textbf{(A) }81 \qquad \textbf{(B) }89 \qquad \textbf{(C) }97\qquad \textbf{(D) }105 \qquad \textbf{(E) }113$
Let $X$ denote the intersection point of the diagonals $AC$ and $BD$ . Remark that by symmetry $X$ is the midpoint of both $\overline{PQ}$ and $\overline{RS}$ , so $XP = XQ = 3$ and $XR = XS = 4$ . Now note that since $\angle APB = \angle ARB = 90^\circ$ , quadrilateral $ARPB$ is cyclic, and so \[XR\cdot XA = XP\cdot XB,\] which implies $\tfrac{XA}{XB} = \tfrac{XP}{XR} = \tfrac34$ Thus let $x> 0$ be such that $XA = 3x$ and $XB = 4x$ . Then Pythagorean Theorem on $\triangle APX$ yields $AP = \sqrt{AX^2 - XP^2} = 3\sqrt{x^2-1}$ , and so \[[ABCD] = 2[ABD] = AP\cdot BD = 3\sqrt{x^2-1}\cdot 8x = 24x\sqrt{x^2-1}=15\] Solving this for $x^2$ yields $x^2 = \tfrac12 + \tfrac{\sqrt{41}}8$ , and so \[(8x)^2 = 64x^2 = 64\left(\tfrac12 + \tfrac{\sqrt{41}}8\right) = 32 + 8\sqrt{41}.\] The requested answer is $32 + 8 + 41 = \boxed{81}$
A
81
bf8152d490bb5752c3e75b85a0e6d7da
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_24
Let $ABCD$ be a parallelogram with area $15$ . Points $P$ and $Q$ are the projections of $A$ and $C,$ respectively, onto the line $BD;$ and points $R$ and $S$ are the projections of $B$ and $D,$ respectively, onto the line $AC.$ See the figure, which also shows the relative locations of these points. [asy] size(350); defaultpen(linewidth(0.8)+fontsize(11)); real theta = aTan(1.25/2); pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R; draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6)); draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4")); dot("$A$",A,dir(270)); dot("$B$",B,E); dot("$C$",C,N); dot("$D$",D,W); dot("$P$",P,SE); dot("$Q$",Q,NE); dot("$R$",R,N); dot("$S$",S,dir(270)); [/asy] Suppose $PQ=6$ and $RS=8,$ and let $d$ denote the length of $\overline{BD},$ the longer diagonal of $ABCD.$ Then $d^2$ can be written in the form $m+n\sqrt p,$ where $m,n,$ and $p$ are positive integers and $p$ is not divisible by the square of any prime. What is $m+n+p?$ $\textbf{(A) }81 \qquad \textbf{(B) }89 \qquad \textbf{(C) }97\qquad \textbf{(D) }105 \qquad \textbf{(E) }113$
Let $X$ denote the intersection point of the diagonals $AC$ and $BD,$ and let $\theta = \angle{COB}$ . Then, by the given conditions, $XR = 4,$ $XQ = 3,$ $[XCB] = \frac{15}{4}$ . So, \[XC = \frac{3}{\cos \theta}\] \[XB \cos \theta = 4\] \[\frac{1}{2} XB XC \sin \theta = \frac{15}{4}\] Combining the above 3 equations, we get \[\frac{\sin \theta }{\cos^2 \theta} = \frac{5}{8}.\] Since we want to find $d^2 = 4XB^2 = \frac{64}{\cos^2 \theta},$ we let $x = \frac{1}{\cos^2 \theta}.$ Then \[\frac{\sin^2 \theta }{\cos^4 \theta} = \frac{1-\cos ^2 \theta}{\cos^4 \theta} = x^2 - x = \frac{25}{64}.\] Solving this, we get $x = \frac{4 + \sqrt{41}}{8},$ so $d^2 = 64x = 32 + 8\sqrt{41} \rightarrow 32+8+41=\boxed{81}$
A
81
bf8152d490bb5752c3e75b85a0e6d7da
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_24
Let $ABCD$ be a parallelogram with area $15$ . Points $P$ and $Q$ are the projections of $A$ and $C,$ respectively, onto the line $BD;$ and points $R$ and $S$ are the projections of $B$ and $D,$ respectively, onto the line $AC.$ See the figure, which also shows the relative locations of these points. [asy] size(350); defaultpen(linewidth(0.8)+fontsize(11)); real theta = aTan(1.25/2); pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R; draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6)); draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4")); dot("$A$",A,dir(270)); dot("$B$",B,E); dot("$C$",C,N); dot("$D$",D,W); dot("$P$",P,SE); dot("$Q$",Q,NE); dot("$R$",R,N); dot("$S$",S,dir(270)); [/asy] Suppose $PQ=6$ and $RS=8,$ and let $d$ denote the length of $\overline{BD},$ the longer diagonal of $ABCD.$ Then $d^2$ can be written in the form $m+n\sqrt p,$ where $m,n,$ and $p$ are positive integers and $p$ is not divisible by the square of any prime. What is $m+n+p?$ $\textbf{(A) }81 \qquad \textbf{(B) }89 \qquad \textbf{(C) }97\qquad \textbf{(D) }105 \qquad \textbf{(E) }113$
Let $X$ be the intersection of diagonals $AC$ and $BD$ . By symmetry $[\triangle XCB] = \frac{15}{4}$ $XQ = 3$ and $XR = 4$ , so now we have reduced all of the conditions one quadrant. Let $CQ = x$ $XC = \sqrt{x^2+9}$ $RB = \frac{4x}{3}$ by similar triangles and using the area condition we get $\frac{4}{3} \cdot x \cdot \sqrt{x^2+9} = \frac{15}{2}$ . Note that it suffices to find $XB = \frac{4}{3}\sqrt{x^2+9}$ because we can double and square it to get $d^2$ . Solving for $a = x^2$ in the above equation, and then using $d^2 = \frac{64}{9}(x^2+9) = 8\sqrt{41} + 32 \Rightarrow 8+41+32=\boxed{81}$
A
81
bf8152d490bb5752c3e75b85a0e6d7da
https://artofproblemsolving.com/wiki/index.php/2021_AMC_12B_Problems/Problem_24
Let $ABCD$ be a parallelogram with area $15$ . Points $P$ and $Q$ are the projections of $A$ and $C,$ respectively, onto the line $BD;$ and points $R$ and $S$ are the projections of $B$ and $D,$ respectively, onto the line $AC.$ See the figure, which also shows the relative locations of these points. [asy] size(350); defaultpen(linewidth(0.8)+fontsize(11)); real theta = aTan(1.25/2); pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R; draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6)); draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4")); dot("$A$",A,dir(270)); dot("$B$",B,E); dot("$C$",C,N); dot("$D$",D,W); dot("$P$",P,SE); dot("$Q$",Q,NE); dot("$R$",R,N); dot("$S$",S,dir(270)); [/asy] Suppose $PQ=6$ and $RS=8,$ and let $d$ denote the length of $\overline{BD},$ the longer diagonal of $ABCD.$ Then $d^2$ can be written in the form $m+n\sqrt p,$ where $m,n,$ and $p$ are positive integers and $p$ is not divisible by the square of any prime. What is $m+n+p?$ $\textbf{(A) }81 \qquad \textbf{(B) }89 \qquad \textbf{(C) }97\qquad \textbf{(D) }105 \qquad \textbf{(E) }113$
Again, Let $X$ be the intersection of diagonals $AC$ and $BD$ . Note that triangles $\triangle QXC$ and $\triangle BXR$ are similar because they are right triangles and share $\angle CXQ$ . First, call the length of $XB = \frac{d}{2}$ . By the definition of an area of a parallelogram, $CQ \cdot 2XB = 15$ , so $CQ = \frac{15}{d}$ . Using similar triangles on $\triangle QXC$ and $\triangle BXR$ $\frac{CQ}{XQ} = \frac{BR}{XR}$ . Therefore, finding $BR$ $BR = \frac{XR}{XQ} \cdot CQ = \frac{4}{3} \cdot \frac{15}{d} = \frac{20}{d}$ . Now, applying the Pythagorean theorem once, we find $(\frac{20}{d}) ^2$ $(4)^2$ $(\frac{d}{2}) ^2$ . Solving this equation for $d^2$ , we find $d^2=\frac{64+\sqrt{4096+6400}}{2}=32+8\sqrt{41} \rightarrow 32+8+41= \boxed{81}$
A
81