| /// ------------------------------------------------------ | |
| /// RandomOps - (Pseudo) Random Number Generator For C# | |
| /// Copyright (C) 2003-2010 Magnus Erik Hvass Pedersen. | |
| /// Please see the file license.txt for license details. | |
| /// RandomOps on the internet: http://www.Hvass-Labs.org/ | |
| /// ------------------------------------------------------ | |
| using System; | |
| using System.Diagnostics; | |
| namespace RandomOps | |
| { | |
| /// <remarks> | |
| /// Implements RNG for a hypersphere. The methods are taken from: | |
| /// [1] Marsaglia, G. "Choosing a Point from the Surface of a Sphere." | |
| /// Ann. Math. Stat. 43, 645-646, 1972. | |
| /// [2] Muller, M. E. "A Note on a Method for Generating Points Uniformly | |
| /// on n-Dimensional Spheres." | |
| /// Comm. Assoc. Comput. Mach. 2, 19-20, Apr. 1959. | |
| /// </remarks> | |
| public abstract partial class Random | |
| { | |
| /// <summary> | |
| /// Generate a uniform random point on the unit-radius 3-dimensional sphere. | |
| /// Thread-safe if Disk() is thread-safe. | |
| /// </summary> | |
| public virtual double[] Sphere3() | |
| { | |
| double[] x = new double[3]; | |
| Sphere3(ref x); | |
| return x; | |
| } | |
| /// <summary> | |
| /// Generate a uniform random point on the unit-radius 3-dimensional sphere. | |
| /// Thread-safe if Disk() is thread-safe. | |
| /// </summary> | |
| /// <param name="x">Array to hold the random point.</param> | |
| public virtual void Sphere3(ref double[] x) | |
| { | |
| double v1, v2, s; | |
| // Pick two uniform numbers in the unit-radius 2-dim ball. | |
| Disk(out v1, out v2, out s); | |
| double a = Math.Sqrt(1 - s); | |
| x[0] = 2 * v1 * a; | |
| x[1] = 2 * v2 * a; | |
| x[2] = 1 - 2 * s; | |
| } | |
| /// <summary> | |
| /// Generate a uniform random point on the unit-radius 4-dimensional sphere. | |
| /// Thread-safe if Disk() is thread-safe. | |
| /// </summary> | |
| public virtual double[] Sphere4() | |
| { | |
| double[] x = new double[4]; | |
| Sphere4(ref x); | |
| return x; | |
| } | |
| /// <summary> | |
| /// Generate a uniform random point on the unit-radius 4-dimensional sphere. | |
| /// Thread-safe if Disk() is thread-safe. | |
| /// </summary> | |
| /// <param name="x">Array to hold the random point.</param> | |
| public virtual void Sphere4(ref double[] x) | |
| { | |
| double v1, v2, v3, v4, s1, s2; | |
| // Pick uniform numbers in the unit-radius 2-dim ball. | |
| Disk(out v1, out v2, out s1); | |
| Disk(out v3, out v4, out s2); | |
| double a = Math.Sqrt((1 - s1) / s2); | |
| x[0] = v1; | |
| x[1] = v2; | |
| x[2] = v3 * a; | |
| x[3] = v4 * a; | |
| } | |
| /// <summary> | |
| /// Generate a uniform random point on the n-dimensional hypersphere. | |
| /// Thread-safe if Gauss() is thread-safe. | |
| /// </summary> | |
| /// <param name="n">Dimensionality of hypersphere.</param> | |
| /// <param name="r">Radius of hypersphere.</param> | |
| public virtual double[] Sphere(int n, double r) | |
| { | |
| Debug.Assert(n > 0); | |
| double[] x = new double[n]; | |
| Sphere(ref x, r); | |
| return x; | |
| } | |
| /// <summary> | |
| /// Generate a uniform random point on the n-dimensional hypersphere. | |
| /// Thread-safe if Gauss() is thread-safe, and each thread supplies | |
| /// its own array x. | |
| /// </summary> | |
| /// <param name="x">Array to hold the random point.</param> | |
| /// <param name="r">Radius of hypersphere.</param> | |
| public virtual void Sphere(ref double[] x, double r) | |
| { | |
| Debug.Assert(x != null); | |
| int n = x.Length; | |
| Debug.Assert(n > 0); | |
| double sum = 0; | |
| int i; | |
| for (i = 0; i < n; i++) | |
| { | |
| // Draw a gaussian (aka. normal) random number. | |
| double a = Gauss(); | |
| // Store the element. | |
| x[i] = a; | |
| // Accumulate sum of squared elements. | |
| sum += a * a; | |
| } | |
| // Adjust elements to get a certain radius. | |
| double rInv = r / Math.Sqrt(sum); | |
| for (i = 0; i < n; i++) | |
| { | |
| x[i] *= rInv; | |
| } | |
| } | |
| } | |
| } | |