Dwsim / data /DWSIM.Math /LMFit.vb
introvoyz041's picture
Migrated from GitHub
b1b3bae verified
Namespace MathEx
Public Class LMFit
Public Enum FitType
SecondDegreePoly = 0
ThirdDegreePoly = 1
FourthDegreePoly = 2
Linear = 3
FifthDegreePoly = 4
SixthDegreePoly = 5
Pvap = 6
Cp = 7
LiqVisc = 8
HVap = 9
LiqDens = 10
End Enum
Private _x, _y As Double()
Private sum As Double
Private its As Integer = 0
Public Function GetCoeffs(ByVal x As Double(), ByVal y As Double(), ByVal inest As Double(), ByVal fittype As FitType,
ByVal epsg As Double, ByVal epsf As Double, ByVal epsx As Double, ByVal maxits As Integer) As Tuple(Of Double(), String, Double, Integer)
Dim lmsolve As New MathEx.LM.levenbergmarquardt
Select Case fittype
Case LMFit.FitType.SecondDegreePoly
lmsolve.DefineFuncGradDelegate(AddressOf fvsdp)
Case LMFit.FitType.ThirdDegreePoly
lmsolve.DefineFuncGradDelegate(AddressOf fvstp)
Case LMFit.FitType.FourthDegreePoly
lmsolve.DefineFuncGradDelegate(AddressOf fvftp)
Case LMFit.FitType.Linear
lmsolve.DefineFuncGradDelegate(AddressOf fvlin)
Case LMFit.FitType.FifthDegreePoly
lmsolve.DefineFuncGradDelegate(AddressOf fvfdp)
Case LMFit.FitType.SixthDegreePoly
lmsolve.DefineFuncGradDelegate(AddressOf fvxdp)
Case LMFit.FitType.Pvap
lmsolve.DefineFuncGradDelegate(AddressOf fvpvap)
Case LMFit.FitType.Cp
lmsolve.DefineFuncGradDelegate(AddressOf fvcp)
Case LMFit.FitType.LiqVisc
lmsolve.DefineFuncGradDelegate(AddressOf fvlvisc)
Case LMFit.FitType.HVap
lmsolve.DefineFuncGradDelegate(AddressOf fvhvap)
Case LMFit.FitType.LiqDens
lmsolve.DefineFuncGradDelegate(AddressOf fvliqdens)
End Select
Dim newc(UBound(inest) + 1) As Double
Dim i As Integer = 1
Do
newc(i) = inest(i - 1)
i = i + 1
Loop Until i = UBound(inest) + 2
Me._x = x
Me._y = y
Dim info As Integer = 56
its = 0
lmsolve.levenbergmarquardtminimize(inest.Length, _x.Length, newc, epsg, epsf, epsx, maxits, info)
Dim coeffs(UBound(inest)) As Double
i = 0
Do
coeffs(i) = newc(i + 1)
i = i + 1
Loop Until i = UBound(inest) + 1
Return New Tuple(Of Double(), String, Double, Integer)(coeffs, GetInfo(info), sum, its)
End Function
Private Function GetInfo(code As Integer)
Select Case code
Case -1
Return "Wrong parameters were specified"
Case 0
Return "Interrupted by user"
Case 1
Return "Relative decrease of sum of function values squares (real and predicted on the base of extrapolation) is less or equal EpsF"
Case 2
Return "Relative change of solution Is less Or equal EpsX."
Case 3
Return "Conditions (1) And (2) are fulfilled."
Case 4
Return "Cosine of the angle between vector of function values and each of the Jacobian columns is less or equal EpsG by absolute value."
Case 5
Return "Number of iterations exceeds MaxIts."
Case 6
Return "EpsF Is too small. It is impossible to get a better result."
Case 7
Return "EpsX Is too small. It Is impossible to get a better result."
Case 8
Return "EpsG Is too small. Vector of functions is orthogonal to Jacobian columns with near-machine precision."
Case Else
Return ""
End Select
End Function
Public Sub fvsdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2
Dim i As Integer
If iflag = 1 Then
sum = 0.0#
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvstp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2 + D * T ^ 3
Dim i As Integer
If iflag = 1 Then
sum = 0.0#
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2 + D * T ^ 3
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
fjac(i, 4) = _x(i - 1) ^ 3
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvftp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4
Dim i As Integer
If iflag = 1 Then
sum = 0.0#
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
fjac(i, 4) = _x(i - 1) ^ 3
fjac(i, 5) = _x(i - 1) ^ 4
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvfdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5
Dim i As Integer
If iflag = 1 Then
sum = 0.0#
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4 + x(6) * _x(i - 1) ^ 5)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
fjac(i, 4) = _x(i - 1) ^ 3
fjac(i, 5) = _x(i - 1) ^ 4
fjac(i, 6) = _x(i - 1) ^ 5
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvxdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5 + G * T ^ 6
Dim i As Integer
If iflag = 1 Then
sum = 0.0#
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4 + x(6) * _x(i - 1) ^ 5 + x(7) * _x(i - 1) ^ 6)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5 + G * T ^ 6
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
fjac(i, 4) = _x(i - 1) ^ 3
fjac(i, 5) = _x(i - 1) ^ 4
fjac(i, 6) = _x(i - 1) ^ 5
fjac(i, 7) = _x(i - 1) ^ 6
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvlin(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T
Dim i As Integer
If iflag = 1 Then
sum = 0.0#
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvpvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
Dim fval As Double = 0
i = 1
Do
'Math.Exp(A + B / T + C * Math.Log(T) + D * T ^ E)
fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
fjac(i, 1) = fval
fjac(i, 2) = fval * 1 / _x(i - 1)
fjac(i, 3) = fval * Math.Log(_x(i - 1))
fjac(i, 4) = fval * _x(i - 1) ^ x(5)
fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1))
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvcp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
fjac(i, 4) = _x(i - 1) ^ 3
fjac(i, 5) = _x(i - 1) ^ 4
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvlvisc(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
sum = 0
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
Dim fval As Double = 0
i = 1
Do
'Math.Exp(A + B / T + C * Math.Log(T) + D * T ^ E)
fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
fjac(i, 1) = fval
fjac(i, 2) = fval * 1 / _x(i - 1)
fjac(i, 3) = fval * Math.Log(_x(i - 1))
fjac(i, 4) = fval * _x(i - 1) ^ x(5)
fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1))
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvhvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A * (1 - Tr) ^ (B + C * Tr + D * Tr ^ 2)
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
Dim fval As Double = 0
'A * (1 - Tr) ^ (B + C * Tr + D * Tr ^ 2)
fval = (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2))
fjac(i, 1) = fval
fjac(i, 2) = fval
fjac(i, 3) = fval * _x(i - 1)
fjac(i, 4) = fval * _x(i - 1) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvliqdens(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'a / b^[1 + (1 - t/c)^d]
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4)))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'a / b^[1 + (1 - t/c)^d]
fjac(i, 1) = 1 / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4))
fjac(i, 2) = -(x(1) * (x(3) - _x(i - 1)) ^ x(4) + x(1) * x(3) ^ x(4)) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + 2 * x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4))
fjac(i, 3) = x(1) * Math.Log(x(2)) * x(4) * (x(3) - _x(i - 1)) ^ x(4) * _x(i - 1) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 1) * _x(i - 1) - x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 2))
fjac(i, 4) = -(x(1) * Math.Log(x(2)) * Math.Log(x(3) - _x(i - 1)) - x(1) * Math.Log(x(2)) * Math.Log(x(3))) * (x(3) - _x(i - 1)) ^ x(4) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4))
fjac(i, 5) = 0
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
'Generic Function Implementation
Private FunctionPointer As Func(Of Double(), Double, Double)
Public Function GetCoeffs(x As Double(), y As Double(), inest As Double(),
epsg As Double, maxits As Integer, fp As Func(Of Double(), Double, Double)) As Object
Dim lmsolve As New MathEx.LM.levenbergmarquardt()
FunctionPointer = fp
lmsolve.DefineFuncGradDelegate(AddressOf fgeneric)
Dim newc(UBound(inest) + 1) As Double
Dim i As Integer = 1
Do
newc(i) = inest(i - 1)
i = i + 1
Loop Until i = UBound(inest) + 2
_x = x
_y = y
Dim info As Integer = 56
its = 0
lmsolve.levenbergmarquardtminimize(inest.Length, _x.Length, newc, epsg, epsg, epsg, maxits, info)
Dim coeffs(UBound(inest)) As Double
i = 0
Do
coeffs(i) = newc(i + 1)
i = i + 1
Loop Until i = UBound(inest) + 1
Dim ycalc = _x.Select(Function(xval) FunctionPointer.Invoke(newc, xval)).ToList()
Dim ymean = y.Sum / y.Count
Dim SST = y.Select(Function(yval) (yval - ymean) ^ 2).Sum
Dim errors As New List(Of Double)
Dim errors2 As New List(Of Double)
For i = 0 To y.Count - 1
errors.Add((y(i) - ycalc(i)) / y(i) * 100.0)
errors2.Add((y(i) - ycalc(i)) ^ 2)
Next
Dim R2 = 1.0 - errors2.Sum / SST
Return New Object() {coeffs, info, sum, its, ycalc, errors, R2}
End Function
Public Sub fgeneric(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + FunctionPointer.Invoke(x, _x(i - 1))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
Dim grad = FunctionGradient(x, _x(i - 1))
For j = 1 To x.Length - 1
fjac(i, j) = grad(j)
Next
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Private Function FunctionGradient(ByVal x() As Double, xval As Double) As Double()
Dim epsilon As Double = 0.1
Dim f1, f2 As Double
Dim g(x.Length - 1), x1(x.Length - 1), x2(x.Length - 1) As Double
Dim j, k As Integer
For j = 1 To x.Length - 1
For k = 1 To x.Length - 1
x1(k) = x(k)
x2(k) = x(k)
Next
If x(j) <> 0.0# Then
x1(j) = x(j) * (1.0# + epsilon)
x2(j) = x(j) * (1.0# - epsilon)
Else
x1(j) = x(j) + epsilon
x2(j) = x(j) - epsilon
End If
f1 = FunctionPointer.Invoke(x1, xval)
f2 = FunctionPointer.Invoke(x2, xval)
g(j) = (f2 - f1) / (x2(j) - x1(j))
Next
Return g
End Function
End Class
End Namespace