|
|
Namespace MathEx |
|
|
|
|
|
Public Class LMFit |
|
|
|
|
|
Public Enum FitType |
|
|
SecondDegreePoly = 0 |
|
|
ThirdDegreePoly = 1 |
|
|
FourthDegreePoly = 2 |
|
|
Linear = 3 |
|
|
FifthDegreePoly = 4 |
|
|
SixthDegreePoly = 5 |
|
|
Pvap = 6 |
|
|
Cp = 7 |
|
|
LiqVisc = 8 |
|
|
HVap = 9 |
|
|
LiqDens = 10 |
|
|
End Enum |
|
|
|
|
|
Private _x, _y As Double() |
|
|
Private sum As Double |
|
|
Private its As Integer = 0 |
|
|
|
|
|
Public Function GetCoeffs(ByVal x As Double(), ByVal y As Double(), ByVal inest As Double(), ByVal fittype As FitType, |
|
|
ByVal epsg As Double, ByVal epsf As Double, ByVal epsx As Double, ByVal maxits As Integer) As Tuple(Of Double(), String, Double, Integer) |
|
|
|
|
|
Dim lmsolve As New MathEx.LM.levenbergmarquardt |
|
|
Select Case fittype |
|
|
Case LMFit.FitType.SecondDegreePoly |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvsdp) |
|
|
Case LMFit.FitType.ThirdDegreePoly |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvstp) |
|
|
Case LMFit.FitType.FourthDegreePoly |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvftp) |
|
|
Case LMFit.FitType.Linear |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvlin) |
|
|
Case LMFit.FitType.FifthDegreePoly |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvfdp) |
|
|
Case LMFit.FitType.SixthDegreePoly |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvxdp) |
|
|
Case LMFit.FitType.Pvap |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvpvap) |
|
|
Case LMFit.FitType.Cp |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvcp) |
|
|
Case LMFit.FitType.LiqVisc |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvlvisc) |
|
|
Case LMFit.FitType.HVap |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvhvap) |
|
|
Case LMFit.FitType.LiqDens |
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fvliqdens) |
|
|
End Select |
|
|
|
|
|
Dim newc(UBound(inest) + 1) As Double |
|
|
Dim i As Integer = 1 |
|
|
Do |
|
|
newc(i) = inest(i - 1) |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(inest) + 2 |
|
|
|
|
|
Me._x = x |
|
|
Me._y = y |
|
|
|
|
|
Dim info As Integer = 56 |
|
|
|
|
|
its = 0 |
|
|
lmsolve.levenbergmarquardtminimize(inest.Length, _x.Length, newc, epsg, epsf, epsx, maxits, info) |
|
|
|
|
|
Dim coeffs(UBound(inest)) As Double |
|
|
|
|
|
i = 0 |
|
|
Do |
|
|
coeffs(i) = newc(i + 1) |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(inest) + 1 |
|
|
|
|
|
Return New Tuple(Of Double(), String, Double, Integer)(coeffs, GetInfo(info), sum, its) |
|
|
|
|
|
End Function |
|
|
|
|
|
Private Function GetInfo(code As Integer) |
|
|
|
|
|
Select Case code |
|
|
Case -1 |
|
|
Return "Wrong parameters were specified" |
|
|
Case 0 |
|
|
Return "Interrupted by user" |
|
|
Case 1 |
|
|
Return "Relative decrease of sum of function values squares (real and predicted on the base of extrapolation) is less or equal EpsF" |
|
|
Case 2 |
|
|
Return "Relative change of solution Is less Or equal EpsX." |
|
|
Case 3 |
|
|
Return "Conditions (1) And (2) are fulfilled." |
|
|
Case 4 |
|
|
Return "Cosine of the angle between vector of function values and each of the Jacobian columns is less or equal EpsG by absolute value." |
|
|
Case 5 |
|
|
Return "Number of iterations exceeds MaxIts." |
|
|
Case 6 |
|
|
Return "EpsF Is too small. It is impossible to get a better result." |
|
|
Case 7 |
|
|
Return "EpsX Is too small. It Is impossible to get a better result." |
|
|
Case 8 |
|
|
Return "EpsG Is too small. Vector of functions is orthogonal to Jacobian columns with near-machine precision." |
|
|
Case Else |
|
|
Return "" |
|
|
End Select |
|
|
|
|
|
End Function |
|
|
|
|
|
Public Sub fvsdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
sum = 0.0# |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 |
|
|
fjac(i, 2) = _x(i - 1) |
|
|
fjac(i, 3) = _x(i - 1) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvstp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
sum = 0.0# |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 |
|
|
fjac(i, 2) = _x(i - 1) |
|
|
fjac(i, 3) = _x(i - 1) ^ 2 |
|
|
fjac(i, 4) = _x(i - 1) ^ 3 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvftp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
sum = 0.0# |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 |
|
|
fjac(i, 2) = _x(i - 1) |
|
|
fjac(i, 3) = _x(i - 1) ^ 2 |
|
|
fjac(i, 4) = _x(i - 1) ^ 3 |
|
|
fjac(i, 5) = _x(i - 1) ^ 4 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvfdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
sum = 0.0# |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4 + x(6) * _x(i - 1) ^ 5) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 |
|
|
fjac(i, 2) = _x(i - 1) |
|
|
fjac(i, 3) = _x(i - 1) ^ 2 |
|
|
fjac(i, 4) = _x(i - 1) ^ 3 |
|
|
fjac(i, 5) = _x(i - 1) ^ 4 |
|
|
fjac(i, 6) = _x(i - 1) ^ 5 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvxdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
sum = 0.0# |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4 + x(6) * _x(i - 1) ^ 5 + x(7) * _x(i - 1) ^ 6) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 |
|
|
fjac(i, 2) = _x(i - 1) |
|
|
fjac(i, 3) = _x(i - 1) ^ 2 |
|
|
fjac(i, 4) = _x(i - 1) ^ 3 |
|
|
fjac(i, 5) = _x(i - 1) ^ 4 |
|
|
fjac(i, 6) = _x(i - 1) ^ 5 |
|
|
fjac(i, 7) = _x(i - 1) ^ 6 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvlin(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
sum = 0.0# |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1)) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 |
|
|
fjac(i, 2) = _x(i - 1) |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvpvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
sum = 0.0# |
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
Dim fval As Double = 0 |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) |
|
|
fjac(i, 1) = fval |
|
|
fjac(i, 2) = fval * 1 / _x(i - 1) |
|
|
fjac(i, 3) = fval * Math.Log(_x(i - 1)) |
|
|
fjac(i, 4) = fval * _x(i - 1) ^ x(5) |
|
|
fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1)) |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvcp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
sum = 0.0# |
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 |
|
|
fjac(i, 2) = _x(i - 1) |
|
|
fjac(i, 3) = _x(i - 1) ^ 2 |
|
|
fjac(i, 4) = _x(i - 1) ^ 3 |
|
|
fjac(i, 5) = _x(i - 1) ^ 4 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvlvisc(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
sum = 0 |
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
Dim fval As Double = 0 |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) |
|
|
fjac(i, 1) = fval |
|
|
fjac(i, 2) = fval * 1 / _x(i - 1) |
|
|
fjac(i, 3) = fval * Math.Log(_x(i - 1)) |
|
|
fjac(i, 4) = fval * _x(i - 1) ^ x(5) |
|
|
fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1)) |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvhvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
sum = 0.0# |
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2)) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
Dim fval As Double = 0 |
|
|
|
|
|
fval = (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2)) |
|
|
fjac(i, 1) = fval |
|
|
fjac(i, 2) = fval |
|
|
fjac(i, 3) = fval * _x(i - 1) |
|
|
fjac(i, 4) = fval * _x(i - 1) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Public Sub fvliqdens(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
|
|
|
sum = 0.0# |
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + (x(1) / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4))) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
|
|
|
fjac(i, 1) = 1 / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4)) |
|
|
fjac(i, 2) = -(x(1) * (x(3) - _x(i - 1)) ^ x(4) + x(1) * x(3) ^ x(4)) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + 2 * x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4)) |
|
|
fjac(i, 3) = x(1) * Math.Log(x(2)) * x(4) * (x(3) - _x(i - 1)) ^ x(4) * _x(i - 1) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 1) * _x(i - 1) - x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 2)) |
|
|
fjac(i, 4) = -(x(1) * Math.Log(x(2)) * Math.Log(x(3) - _x(i - 1)) - x(1) * Math.Log(x(2)) * Math.Log(x(3))) * (x(3) - _x(i - 1)) ^ x(4) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4)) |
|
|
fjac(i, 5) = 0 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
|
|
|
|
|
|
Private FunctionPointer As Func(Of Double(), Double, Double) |
|
|
|
|
|
Public Function GetCoeffs(x As Double(), y As Double(), inest As Double(), |
|
|
epsg As Double, maxits As Integer, fp As Func(Of Double(), Double, Double)) As Object |
|
|
|
|
|
Dim lmsolve As New MathEx.LM.levenbergmarquardt() |
|
|
|
|
|
FunctionPointer = fp |
|
|
|
|
|
lmsolve.DefineFuncGradDelegate(AddressOf fgeneric) |
|
|
|
|
|
Dim newc(UBound(inest) + 1) As Double |
|
|
Dim i As Integer = 1 |
|
|
Do |
|
|
newc(i) = inest(i - 1) |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(inest) + 2 |
|
|
|
|
|
_x = x |
|
|
_y = y |
|
|
|
|
|
Dim info As Integer = 56 |
|
|
|
|
|
its = 0 |
|
|
lmsolve.levenbergmarquardtminimize(inest.Length, _x.Length, newc, epsg, epsg, epsg, maxits, info) |
|
|
|
|
|
Dim coeffs(UBound(inest)) As Double |
|
|
|
|
|
i = 0 |
|
|
Do |
|
|
coeffs(i) = newc(i + 1) |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(inest) + 1 |
|
|
|
|
|
Dim ycalc = _x.Select(Function(xval) FunctionPointer.Invoke(newc, xval)).ToList() |
|
|
|
|
|
Dim ymean = y.Sum / y.Count |
|
|
Dim SST = y.Select(Function(yval) (yval - ymean) ^ 2).Sum |
|
|
|
|
|
Dim errors As New List(Of Double) |
|
|
Dim errors2 As New List(Of Double) |
|
|
For i = 0 To y.Count - 1 |
|
|
errors.Add((y(i) - ycalc(i)) / y(i) * 100.0) |
|
|
errors2.Add((y(i) - ycalc(i)) ^ 2) |
|
|
Next |
|
|
|
|
|
Dim R2 = 1.0 - errors2.Sum / SST |
|
|
|
|
|
Return New Object() {coeffs, info, sum, its, ycalc, errors, R2} |
|
|
|
|
|
End Function |
|
|
|
|
|
Public Sub fgeneric(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) |
|
|
|
|
|
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 |
|
|
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 |
|
|
|
|
|
sum = 0.0# |
|
|
Dim i As Integer |
|
|
If iflag = 1 Then |
|
|
i = 1 |
|
|
Do |
|
|
fvec(i) = -_y(i - 1) + FunctionPointer.Invoke(x, _x(i - 1)) |
|
|
sum += (fvec(i)) ^ 2 |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
ElseIf iflag = 2 Then |
|
|
i = 1 |
|
|
Do |
|
|
Dim grad = FunctionGradient(x, _x(i - 1)) |
|
|
For j = 1 To x.Length - 1 |
|
|
fjac(i, j) = grad(j) |
|
|
Next |
|
|
i = i + 1 |
|
|
Loop Until i = UBound(_y) + 2 |
|
|
End If |
|
|
|
|
|
its += 1 |
|
|
|
|
|
End Sub |
|
|
|
|
|
Private Function FunctionGradient(ByVal x() As Double, xval As Double) As Double() |
|
|
|
|
|
Dim epsilon As Double = 0.1 |
|
|
|
|
|
Dim f1, f2 As Double |
|
|
Dim g(x.Length - 1), x1(x.Length - 1), x2(x.Length - 1) As Double |
|
|
Dim j, k As Integer |
|
|
|
|
|
For j = 1 To x.Length - 1 |
|
|
For k = 1 To x.Length - 1 |
|
|
x1(k) = x(k) |
|
|
x2(k) = x(k) |
|
|
Next |
|
|
If x(j) <> 0.0# Then |
|
|
x1(j) = x(j) * (1.0# + epsilon) |
|
|
x2(j) = x(j) * (1.0# - epsilon) |
|
|
Else |
|
|
x1(j) = x(j) + epsilon |
|
|
x2(j) = x(j) - epsilon |
|
|
End If |
|
|
f1 = FunctionPointer.Invoke(x1, xval) |
|
|
f2 = FunctionPointer.Invoke(x2, xval) |
|
|
g(j) = (f2 - f1) / (x2(j) - x1(j)) |
|
|
Next |
|
|
|
|
|
Return g |
|
|
|
|
|
End Function |
|
|
|
|
|
|
|
|
End Class |
|
|
|
|
|
End Namespace |
|
|
|