|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace Mapack |
|
|
{ |
|
|
using System; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public class SingularValueDecomposition |
|
|
{ |
|
|
private Matrix U; |
|
|
private Matrix V; |
|
|
private double[] s; |
|
|
private int m; |
|
|
private int n; |
|
|
|
|
|
|
|
|
public SingularValueDecomposition(Matrix value) |
|
|
{ |
|
|
if (value == null) |
|
|
{ |
|
|
throw new ArgumentNullException("value"); |
|
|
} |
|
|
|
|
|
Matrix copy = (Matrix) value.Clone(); |
|
|
double[][] a = copy.Array; |
|
|
m = value.Rows; |
|
|
n = value.Columns; |
|
|
int nu = Math.Min(m,n); |
|
|
s = new double [Math.Min(m+1,n)]; |
|
|
U = new Matrix(m, nu); |
|
|
V = new Matrix(n, n); |
|
|
double[][] u = U.Array; |
|
|
double[][] v = V.Array; |
|
|
double[] e = new double [n]; |
|
|
double[] work = new double [m]; |
|
|
bool wantu = true; |
|
|
bool wantv = true; |
|
|
|
|
|
|
|
|
int nct = Math.Min(m-1,n); |
|
|
int nrt = Math.Max(0,Math.Min(n-2,m)); |
|
|
for (int k = 0; k < Math.Max(nct,nrt); k++) |
|
|
{ |
|
|
if (k < nct) |
|
|
{ |
|
|
|
|
|
|
|
|
s[k] = 0; |
|
|
for (int i = k; i < m; i++) |
|
|
{ |
|
|
s[k] = Hypotenuse(s[k],a[i][k]); |
|
|
} |
|
|
|
|
|
if (s[k] != 0.0) |
|
|
{ |
|
|
if (a[k][k] < 0.0) |
|
|
{ |
|
|
s[k] = -s[k]; |
|
|
} |
|
|
|
|
|
for (int i = k; i < m; i++) |
|
|
{ |
|
|
a[i][k] /= s[k]; |
|
|
} |
|
|
|
|
|
a[k][k] += 1.0; |
|
|
} |
|
|
|
|
|
s[k] = -s[k]; |
|
|
} |
|
|
|
|
|
for (int j = k+1; j < n; j++) |
|
|
{ |
|
|
if ((k < nct) & (s[k] != 0.0)) |
|
|
{ |
|
|
|
|
|
double t = 0; |
|
|
for (int i = k; i < m; i++) |
|
|
t += a[i][k]*a[i][j]; |
|
|
t = -t/a[k][k]; |
|
|
for (int i = k; i < m; i++) |
|
|
a[i][j] += t*a[i][k]; |
|
|
} |
|
|
|
|
|
|
|
|
e[j] = a[k][j]; |
|
|
} |
|
|
|
|
|
if (wantu & (k < nct)) |
|
|
{ |
|
|
|
|
|
|
|
|
for (int i = k; i < m; i++) |
|
|
u[i][k] = a[i][k]; |
|
|
} |
|
|
|
|
|
if (k < nrt) |
|
|
{ |
|
|
|
|
|
|
|
|
e[k] = 0; |
|
|
for (int i = k+1; i < n; i++) |
|
|
{ |
|
|
e[k] = Hypotenuse(e[k],e[i]); |
|
|
} |
|
|
|
|
|
if (e[k] != 0.0) |
|
|
{ |
|
|
if (e[k+1] < 0.0) |
|
|
e[k] = -e[k]; |
|
|
|
|
|
for (int i = k+1; i < n; i++) |
|
|
e[i] /= e[k]; |
|
|
|
|
|
e[k+1] += 1.0; |
|
|
} |
|
|
|
|
|
e[k] = -e[k]; |
|
|
if ((k+1 < m) & (e[k] != 0.0)) |
|
|
{ |
|
|
|
|
|
for (int i = k+1; i < m; i++) |
|
|
work[i] = 0.0; |
|
|
|
|
|
for (int j = k+1; j < n; j++) |
|
|
for (int i = k+1; i < m; i++) |
|
|
work[i] += e[j]*a[i][j]; |
|
|
|
|
|
for (int j = k+1; j < n; j++) |
|
|
{ |
|
|
double t = -e[j]/e[k+1]; |
|
|
for (int i = k+1; i < m; i++) |
|
|
a[i][j] += t*work[i]; |
|
|
} |
|
|
} |
|
|
|
|
|
if (wantv) |
|
|
{ |
|
|
|
|
|
for (int i = k+1; i < n; i++) |
|
|
v[i][k] = e[i]; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
int p = Math.Min(n,m+1); |
|
|
if (nct < n) s[nct] = a[nct][nct]; |
|
|
if (m < p) s[p-1] = 0.0; |
|
|
if (nrt+1 < p) e[nrt] = a[nrt][p-1]; |
|
|
e[p-1] = 0.0; |
|
|
|
|
|
|
|
|
if (wantu) |
|
|
{ |
|
|
for (int j = nct; j < nu; j++) |
|
|
{ |
|
|
for (int i = 0; i < m; i++) |
|
|
u[i][j] = 0.0; |
|
|
u[j][j] = 1.0; |
|
|
} |
|
|
|
|
|
for (int k = nct-1; k >= 0; k--) |
|
|
{ |
|
|
if (s[k] != 0.0) |
|
|
{ |
|
|
for (int j = k+1; j < nu; j++) |
|
|
{ |
|
|
double t = 0; |
|
|
for (int i = k; i < m; i++) |
|
|
t += u[i][k]*u[i][j]; |
|
|
|
|
|
t = -t/u[k][k]; |
|
|
for (int i = k; i < m; i++) |
|
|
u[i][j] += t*u[i][k]; |
|
|
} |
|
|
|
|
|
for (int i = k; i < m; i++ ) |
|
|
u[i][k] = -u[i][k]; |
|
|
|
|
|
u[k][k] = 1.0 + u[k][k]; |
|
|
for (int i = 0; i < k-1; i++) |
|
|
u[i][k] = 0.0; |
|
|
} |
|
|
else |
|
|
{ |
|
|
for (int i = 0; i < m; i++) |
|
|
u[i][k] = 0.0; |
|
|
u[k][k] = 1.0; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (wantv) |
|
|
{ |
|
|
for (int k = n-1; k >= 0; k--) |
|
|
{ |
|
|
if ((k < nrt) & (e[k] != 0.0)) |
|
|
{ |
|
|
for (int j = k+1; j < nu; j++) |
|
|
{ |
|
|
double t = 0; |
|
|
for (int i = k+1; i < n; i++) |
|
|
t += v[i][k]*v[i][j]; |
|
|
|
|
|
t = -t/v[k+1][k]; |
|
|
for (int i = k+1; i < n; i++) |
|
|
v[i][j] += t*v[i][k]; |
|
|
} |
|
|
} |
|
|
|
|
|
for (int i = 0; i < n; i++) |
|
|
v[i][k] = 0.0; |
|
|
v[k][k] = 1.0; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
int pp = p-1; |
|
|
int iter = 0; |
|
|
double eps = Math.Pow(2.0,-52.0); |
|
|
while (p > 0) |
|
|
{ |
|
|
int k,kase; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (k = p-2; k >= -1; k--) |
|
|
{ |
|
|
if (k == -1) |
|
|
break; |
|
|
|
|
|
if (Math.Abs(e[k]) <= eps*(Math.Abs(s[k]) + Math.Abs(s[k+1]))) |
|
|
{ |
|
|
e[k] = 0.0; |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
if (k == p-2) |
|
|
{ |
|
|
kase = 4; |
|
|
} |
|
|
else |
|
|
{ |
|
|
int ks; |
|
|
for (ks = p-1; ks >= k; ks--) |
|
|
{ |
|
|
if (ks == k) |
|
|
break; |
|
|
|
|
|
double t = (ks != p ? Math.Abs(e[ks]) : 0.0) + (ks != k+1 ? Math.Abs(e[ks-1]) : 0.0); |
|
|
if (Math.Abs(s[ks]) <= eps*t) |
|
|
{ |
|
|
s[ks] = 0.0; |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
if (ks == k) |
|
|
kase = 3; |
|
|
else if (ks == p-1) |
|
|
kase = 1; |
|
|
else |
|
|
{ |
|
|
kase = 2; |
|
|
k = ks; |
|
|
} |
|
|
} |
|
|
|
|
|
k++; |
|
|
|
|
|
|
|
|
switch (kase) |
|
|
{ |
|
|
|
|
|
case 1: |
|
|
{ |
|
|
double f = e[p-2]; |
|
|
e[p-2] = 0.0; |
|
|
for (int j = p-2; j >= k; j--) |
|
|
{ |
|
|
double t = Hypotenuse(s[j],f); |
|
|
double cs = s[j]/t; |
|
|
double sn = f/t; |
|
|
s[j] = t; |
|
|
if (j != k) |
|
|
{ |
|
|
f = -sn*e[j-1]; |
|
|
e[j-1] = cs*e[j-1]; |
|
|
} |
|
|
|
|
|
if (wantv) |
|
|
{ |
|
|
for (int i = 0; i < n; i++) |
|
|
{ |
|
|
t = cs*v[i][j] + sn*v[i][p-1]; |
|
|
v[i][p-1] = -sn*v[i][j] + cs*v[i][p-1]; |
|
|
v[i][j] = t; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
break; |
|
|
|
|
|
|
|
|
case 2: |
|
|
{ |
|
|
double f = e[k-1]; |
|
|
e[k-1] = 0.0; |
|
|
for (int j = k; j < p; j++) |
|
|
{ |
|
|
double t = Hypotenuse(s[j],f); |
|
|
double cs = s[j]/t; |
|
|
double sn = f/t; |
|
|
s[j] = t; |
|
|
f = -sn*e[j]; |
|
|
e[j] = cs*e[j]; |
|
|
if (wantu) |
|
|
{ |
|
|
for (int i = 0; i < m; i++) |
|
|
{ |
|
|
t = cs*u[i][j] + sn*u[i][k-1]; |
|
|
u[i][k-1] = -sn*u[i][j] + cs*u[i][k-1]; |
|
|
u[i][j] = t; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
break; |
|
|
|
|
|
|
|
|
case 3: |
|
|
{ |
|
|
|
|
|
double scale = Math.Max(Math.Max(Math.Max(Math.Max(Math.Abs(s[p-1]),Math.Abs(s[p-2])),Math.Abs(e[p-2])), Math.Abs(s[k])),Math.Abs(e[k])); |
|
|
double sp = s[p-1]/scale; |
|
|
double spm1 = s[p-2]/scale; |
|
|
double epm1 = e[p-2]/scale; |
|
|
double sk = s[k]/scale; |
|
|
double ek = e[k]/scale; |
|
|
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; |
|
|
double c = (sp*epm1)*(sp*epm1); |
|
|
double shift = 0.0; |
|
|
if ((b != 0.0) | (c != 0.0)) |
|
|
{ |
|
|
shift = Math.Sqrt(b*b + c); |
|
|
if (b < 0.0) |
|
|
shift = -shift; |
|
|
shift = c/(b + shift); |
|
|
} |
|
|
|
|
|
double f = (sk + sp)*(sk - sp) + shift; |
|
|
double g = sk*ek; |
|
|
|
|
|
|
|
|
for (int j = k; j < p-1; j++) |
|
|
{ |
|
|
double t = Hypotenuse(f,g); |
|
|
double cs = f/t; |
|
|
double sn = g/t; |
|
|
if (j != k) |
|
|
e[j-1] = t; |
|
|
f = cs*s[j] + sn*e[j]; |
|
|
e[j] = cs*e[j] - sn*s[j]; |
|
|
g = sn*s[j+1]; |
|
|
s[j+1] = cs*s[j+1]; |
|
|
if (wantv) |
|
|
{ |
|
|
for (int i = 0; i < n; i++) |
|
|
{ |
|
|
t = cs*v[i][j] + sn*v[i][j+1]; |
|
|
v[i][j+1] = -sn*v[i][j] + cs*v[i][j+1]; |
|
|
v[i][j] = t; |
|
|
} |
|
|
} |
|
|
|
|
|
t = Hypotenuse(f, g); |
|
|
cs = f/t; |
|
|
sn = g/t; |
|
|
s[j] = t; |
|
|
f = cs*e[j] + sn*s[j+1]; |
|
|
s[j+1] = -sn*e[j] + cs*s[j+1]; |
|
|
g = sn*e[j+1]; |
|
|
e[j+1] = cs*e[j+1]; |
|
|
if (wantu && (j < m-1)) |
|
|
{ |
|
|
for (int i = 0; i < m; i++) |
|
|
{ |
|
|
t = cs*u[i][j] + sn*u[i][j+1]; |
|
|
u[i][j+1] = -sn*u[i][j] + cs*u[i][j+1]; |
|
|
u[i][j] = t; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
e[p-2] = f; |
|
|
iter = iter + 1; |
|
|
} |
|
|
break; |
|
|
|
|
|
|
|
|
case 4: |
|
|
{ |
|
|
|
|
|
if (s[k] <= 0.0) |
|
|
{ |
|
|
s[k] = (s[k] < 0.0 ? -s[k] : 0.0); |
|
|
if (wantv) |
|
|
for (int i = 0; i <= pp; i++) |
|
|
v[i][k] = -v[i][k]; |
|
|
} |
|
|
|
|
|
|
|
|
while (k < pp) |
|
|
{ |
|
|
if (s[k] >= s[k+1]) |
|
|
break; |
|
|
|
|
|
double t = s[k]; |
|
|
s[k] = s[k+1]; |
|
|
s[k+1] = t; |
|
|
if (wantv && (k < n-1)) |
|
|
for (int i = 0; i < n; i++) |
|
|
{ |
|
|
t = v[i][k+1]; |
|
|
v[i][k+1] = v[i][k]; |
|
|
v[i][k] = t; |
|
|
} |
|
|
|
|
|
if (wantu && (k < m-1)) |
|
|
for (int i = 0; i < m; i++) |
|
|
{ |
|
|
t = u[i][k+1]; |
|
|
u[i][k+1] = u[i][k]; |
|
|
u[i][k] = t; |
|
|
} |
|
|
|
|
|
k++; |
|
|
} |
|
|
|
|
|
iter = 0; |
|
|
p--; |
|
|
} |
|
|
break; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public double Condition |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return s[0] / s[Math.Min(m, n) - 1]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public double Norm2 |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return s[0]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
public int Rank |
|
|
{ |
|
|
get |
|
|
{ |
|
|
double eps = Math.Pow(2.0,-52.0); |
|
|
double tol = Math.Max(m, n) * s[0] * eps; |
|
|
int r = 0; |
|
|
for (int i = 0; i < s.Length; i++) |
|
|
{ |
|
|
if (s[i] > tol) |
|
|
{ |
|
|
r++; |
|
|
} |
|
|
} |
|
|
|
|
|
return r; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public double[] Diagonal |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return this.s; |
|
|
} |
|
|
} |
|
|
|
|
|
private static double Hypotenuse(double a, double b) |
|
|
{ |
|
|
if (Math.Abs(a) > Math.Abs(b)) |
|
|
{ |
|
|
double r = b / a; |
|
|
return Math.Abs(a) * Math.Sqrt(1 + r * r); |
|
|
} |
|
|
|
|
|
if (b != 0) |
|
|
{ |
|
|
double r = a / b; |
|
|
return Math.Abs(b) * Math.Sqrt(1 + r * r); |
|
|
} |
|
|
|
|
|
return 0.0; |
|
|
} |
|
|
|
|
|
|
|
|
public Matrix UMatrix |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return this.U; |
|
|
} |
|
|
} |
|
|
|
|
|
public Matrix VMatrix |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return this.V; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|