introvoyz041's picture
Migrated from GitHub
5e4510c verified
# ===--------------------------------------------------------------------------------------===#
#
# This file implements the evaluator for the matrix multiplication problem with tensor size
# of <2,4,5>
#
# ===--------------------------------------------------------------------------------------===#
#
# Some of the code in this file is adapted from:
#
# google-deepmind/alphaevolve_results:
# Licensed under the Apache License v2.0.
#
# ===--------------------------------------------------------------------------------------===#
import sys
import os
from importlib import __import__
import time
import numpy as np
BENCHMARK = 32
def verify_tensor_decomposition(
decomposition: tuple[np.ndarray, np.ndarray, np.ndarray], n: int, m: int, p: int, rank: int
):
"""Verifies the correctness of the tensor decomposition."""
# Add robustness for cases where the optimizer might fail
if not all(isinstance(arr, np.ndarray) for arr in decomposition) or not decomposition:
raise ValueError("Decomposition must be a tuple of NumPy arrays.")
if any(arr.size == 0 for arr in decomposition):
print("Warning: One or more decomposition arrays are empty. Verification skipped.")
return
# Check that each factor matrix has the correct shape.
factor_matrix_1, factor_matrix_2, factor_matrix_3 = decomposition
if factor_matrix_1.shape != (n * m, rank):
raise ValueError(
f"Expected shape of factor matrix 1 is {(n * m, rank)}. Actual shape is {factor_matrix_1.shape}."
)
if factor_matrix_2.shape != (m * p, rank):
raise ValueError(
f"Expected shape of factor matrix 2 is {(m * p, rank)}. Actual shape is {factor_matrix_2.shape}."
)
if factor_matrix_3.shape != (n * p, rank):
raise ValueError(
f"Expected shape of factor matrix 3 is {(n * p, rank)}. Actual shape is {factor_matrix_3.shape}."
)
# Form the matrix multiplication tensor <n, m, p>.
matmul_tensor = np.zeros((n * m, m * p, n * p), dtype=np.float32)
for i in range(n):
for j in range(m):
for k in range(p):
# Use the standard k*n+i indexing for the third dimension
matmul_tensor[i * m + j, j * p + k, k * n + i] = 1
# Check that the tensor is correctly constructed.
constructed_tensor = np.einsum("ir,jr,kr -> ijk", *decomposition)
# Exact check
if not np.array_equal(constructed_tensor, matmul_tensor):
# If the exact check fails, report the floating-point difference for diagnostics.
diff = np.max(np.abs(constructed_tensor - matmul_tensor))
raise ValueError(
f"Tensor constructed by decomposition does not exactly match the target tensor. Maximum difference is {diff:.6e}."
)
def evaluate(program_path: str):
try:
abs_program_path = os.path.abspath(program_path)
program_dir = os.path.dirname(abs_program_path)
module_name = os.path.splitext(os.path.basename(program_path))[0]
try:
sys.path.insert(0, program_dir)
program = __import__(module_name)
start_time = time.time()
decomposition, n, m, p, loss, rank = program.run()
end_time = time.time()
eval_time = end_time - start_time
except Exception as err:
raise err
finally:
if program_dir in sys.path:
sys.path.remove(program_dir)
verify_tensor_decomposition(decomposition, n, m, p, rank)
success_threshold = 1e-6
if loss > success_threshold:
print(
f"\nWarning: Final loss {loss:.2e} is above the success threshold of {success_threshold:.2e}."
)
inverse_rank = BENCHMARK / rank
return {
"combined_score": inverse_rank,
"loss": loss,
"rank": rank,
"eval_time": float(eval_time),
}
except Exception as e:
return {"combined_score": 0.0, "error": str(e)}