|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys, os, time, numpy as np |
|
|
import sympy as sp |
|
|
|
|
|
BENCHMARK = 0.3215872333529007 |
|
|
|
|
|
x = sp.symbols("x") |
|
|
|
|
|
|
|
|
def _hermite_4k_polys(m: int): |
|
|
degrees = [4 * k for k in range(m)] |
|
|
Hs = [sp.polys.orthopolys.hermite_poly(n=d, x=x, polys=False) for d in degrees] |
|
|
return Hs, degrees |
|
|
|
|
|
|
|
|
def _construct_P_with_forced_zero(coeffs: np.ndarray) -> sp.Expr: |
|
|
""" |
|
|
Given m input coeffs (c0..c_{m-1}), build the Hermite combo |
|
|
c0*H0 + ... + c_{m-1}*H_{4(m-1)} + c_last*H_{4m} |
|
|
where c_last is chosen so that P(0) = 0. |
|
|
Also flip sign if limit at +inf is negative. |
|
|
""" |
|
|
m = len(coeffs) |
|
|
Hs, _ = _hermite_4k_polys(m + 1) |
|
|
rc = [sp.Rational(c) for c in coeffs] |
|
|
|
|
|
partial = sum(rc[i] * Hs[i] for i in range(m)) |
|
|
a = Hs[m].subs(x, 0) |
|
|
b = -partial.subs(x, 0) |
|
|
c_last = sp.Rational(b) / sp.Rational(a) |
|
|
|
|
|
P = partial + c_last * Hs[m] |
|
|
|
|
|
|
|
|
if sp.limit(P, x, sp.oo) < 0: |
|
|
P = -P |
|
|
|
|
|
return sp.simplify(P) |
|
|
|
|
|
|
|
|
def _largest_positive_root_of_P_over_x2(P: sp.Expr) -> float: |
|
|
|
|
|
gq = sp.exquo(P, x**2) |
|
|
roots = sp.real_roots(gq, x) |
|
|
if not roots: |
|
|
raise ValueError("No real roots for P(x)/x^2.") |
|
|
|
|
|
|
|
|
best = None |
|
|
for r in roots: |
|
|
r_approx = r.eval_rational(n=200) |
|
|
eps = sp.Rational(1, 10**198) |
|
|
left = gq.subs(x, r_approx - eps) |
|
|
right = gq.subs(x, r_approx + eps) |
|
|
if (left > 0 and right < 0) or (left < 0 and right > 0): |
|
|
if best is None or r_approx > best: |
|
|
best = r_approx |
|
|
|
|
|
if best is None: |
|
|
raise ValueError("No root with a verified sign change for P(x)/x^2.") |
|
|
return float(best) |
|
|
|
|
|
|
|
|
def compute_c4_and_rmax(input_coeffs: np.ndarray): |
|
|
P = _construct_P_with_forced_zero(input_coeffs) |
|
|
|
|
|
assert P.subs(x, 0) == 0, "P(0) != 0 after forcing." |
|
|
assert sp.limit(P, x, sp.oo) > 0, "Limit at +inf is not positive." |
|
|
|
|
|
rmax = _largest_positive_root_of_P_over_x2(P) |
|
|
c4 = (rmax**2) / (2.0 * np.pi) |
|
|
return c4, rmax |
|
|
|
|
|
|
|
|
def verify_c4_solution_strict( |
|
|
user_coeffs: np.ndarray, reported_c4: float, reported_rmax: float, atol=1e-9, rtol=1e-9 |
|
|
): |
|
|
c4, rmax = compute_c4_and_rmax(np.asarray(user_coeffs, dtype=float)) |
|
|
|
|
|
if not np.isclose(c4, reported_c4, rtol=rtol, atol=atol): |
|
|
raise ValueError(f"C4 mismatch: reported {reported_c4:.12f}, recomputed {c4:.12f}") |
|
|
|
|
|
if not np.isclose(rmax, reported_rmax, rtol=rtol, atol=atol): |
|
|
raise ValueError(f"r_max mismatch: reported {reported_rmax:.12f}, recomputed {rmax:.12f}") |
|
|
|
|
|
return c4, rmax |
|
|
|
|
|
|
|
|
def evaluate(program_path: str): |
|
|
try: |
|
|
abs_program_path = os.path.abspath(program_path) |
|
|
program_dir = os.path.dirname(abs_program_path) |
|
|
module_name = os.path.splitext(os.path.basename(program_path))[0] |
|
|
|
|
|
try: |
|
|
sys.path.insert(0, program_dir) |
|
|
program = __import__(module_name) |
|
|
t0 = time.time() |
|
|
coeffs, c4_bound, r_max = program.run() |
|
|
t1 = time.time() |
|
|
finally: |
|
|
if program_dir in sys.path: |
|
|
sys.path.remove(program_dir) |
|
|
|
|
|
coeffs = np.asarray(coeffs, dtype=float) |
|
|
|
|
|
c4, rmax = verify_c4_solution_strict(coeffs, float(c4_bound), float(r_max)) |
|
|
|
|
|
return { |
|
|
"c4_bound": float(c4), |
|
|
"combined_score": float(BENCHMARK / c4), |
|
|
"r_max": float(rmax), |
|
|
"coeffs": coeffs.tolist(), |
|
|
"eval_time": float(t1 - t0), |
|
|
} |
|
|
except Exception as e: |
|
|
return {"combined_score": 0.0, "error": str(e)} |
|
|
|