|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function [last,med1,med2,var1,var2,prior1,prior2]=EM(vec) |
|
|
|
|
|
if size(vec,2)>1 |
|
|
len=size(vec,2); |
|
|
else |
|
|
vec=vec'; |
|
|
len=size(vec,2); |
|
|
end |
|
|
|
|
|
c_FA=1; % False Alarm cost |
|
|
c_MA=1; % Missed Alarm cost |
|
|
|
|
|
med=mean(vec); |
|
|
standard=std(vec); |
|
|
mediana=(max(vec)+min(vec))/2; |
|
|
|
|
|
alpha1=0.01*(max(vec)-mediana); % initialization parameter/ righthand side |
|
|
alpha2=0.01*(mediana-min(vec)); % initialization parameter/ lefthand side |
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
% EXPECTATION |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
|
|
|
train1=[]; % Expectation of class 1 |
|
|
train2=[]; |
|
|
train=[]; % Expectation of 'unlabeled' samples |
|
|
|
|
|
for i=1:(len) |
|
|
if (vec(i)<(mediana-alpha2)) |
|
|
train2=[train2 vec(i)]; |
|
|
elseif (vec(i)>(mediana+alpha1)) |
|
|
train1=[train1 vec(i)]; |
|
|
else |
|
|
train=[train vec(i)]; |
|
|
end |
|
|
end |
|
|
|
|
|
n1=length(train1); |
|
|
n2=length(train2); |
|
|
|
|
|
med1=mean(train1); |
|
|
med2=mean(train2); |
|
|
prior1=n1/(n1+n2); |
|
|
prior2=n2/(n1+n2); |
|
|
var1=var(train1); |
|
|
var2=var(train2); |
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
% MAXIMIZATION |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
|
|
|
count=0; |
|
|
dif_med_1=1; % difference between current and previous mean |
|
|
dif_med_2=1; |
|
|
dif_var_1=1; % difference between current and previous variance |
|
|
dif_var_2=1; |
|
|
dif_prior_1=1; % difference between current and previous prior |
|
|
dif_prior_2=1; |
|
|
stop=0.0001; |
|
|
|
|
|
while((dif_med_1>stop)&&(dif_med_2>stop)&&(dif_var_1>stop)&&(dif_var_2>stop)&&(dif_prior_1>stop)&&(dif_prior_2>stop)) |
|
|
|
|
|
count=count+1; |
|
|
|
|
|
med1_old=med1; |
|
|
med2_old=med2; |
|
|
var1_old=var1; |
|
|
var2_old=var2; |
|
|
prior1_old=prior1; |
|
|
prior2_old=prior2; |
|
|
prior1_i=[]; |
|
|
prior2_i=[]; |
|
|
|
|
|
% FOLLOWING FORMULATION IS ACCORDING TO REFERENCE PAPER: |
|
|
|
|
|
for i=1:len |
|
|
prior1_i=[prior1_i prior1_old*Bayes(med1_old,var1_old,vec(i))/... |
|
|
(prior1_old*Bayes(med1_old,var1_old,vec(i))+prior2_old*Bayes(med2_old,var2_old,vec(i)))]; |
|
|
prior2_i=[prior2_i prior2_old*Bayes(med2_old,var2_old,vec(i))/... |
|
|
(prior1_old*Bayes(med1_old,var1_old,vec(i))+prior2_old*Bayes(med2_old,var2_old,vec(i)))]; |
|
|
end |
|
|
|
|
|
|
|
|
prior1=sum(prior1_i)/len; |
|
|
prior2=sum(prior2_i)/len; |
|
|
med1=sum(prior1_i.*vec)/(prior1*len); |
|
|
med2=sum(prior2_i.*vec)/(prior2*len); |
|
|
var1=sum(prior1_i.*((vec-med1_old).^2))/(prior1*len); |
|
|
var2=sum(prior2_i.*((vec-med2_old).^2))/(prior2*len); |
|
|
|
|
|
dif_med_1=abs(med1-med1_old); |
|
|
dif_med_2=abs(med2-med2_old); |
|
|
dif_var_1=abs(var1-var1_old); |
|
|
dif_var_2=abs(var2-var2_old); |
|
|
dif_prior_1=abs(prior1-prior1_old); |
|
|
dif_prior_2=abs(prior2-prior2_old); |
|
|
|
|
|
end |
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
% THRESHOLDING |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
|
|
|
k=c_MA/c_FA; |
|
|
a=(var1-var2)/2; |
|
|
b= ((var2*med1)-(var1*med2)); |
|
|
c=(log((k*prior1*sqrt(var2))/(prior2*sqrt(var1)))*(var2*var1))+(((((med2)^2)*var1)-(((med1)^2)*var2))/2); |
|
|
rad=(b^2)-(4*a*c); |
|
|
if rad<0 |
|
|
disp('Negative Discriminant!'); |
|
|
return; |
|
|
end |
|
|
|
|
|
soglia1=(-b+sqrt(rad))/(2*a); |
|
|
soglia2=(-b-sqrt(rad))/(2*a); |
|
|
|
|
|
if ((soglia1<med2)||(soglia1>med1)) |
|
|
last=soglia2; |
|
|
else |
|
|
last=soglia1; |
|
|
end |
|
|
|
|
|
if isnan(last) % TO PREVENT CRASHES |
|
|
last=mediana; |
|
|
end |
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
function prob=Bayes(med,var,point) |
|
|
if var==0 |
|
|
prob=1; |
|
|
else |
|
|
prob=((1/(sqrt(2*pi*var)))*exp((-1)*((point-med)^2)/(2*var))); |
|
|
end |
|
|
|
|
|
|