| % The Hurst exponent | |
| %-------------------------------------------------------------------------- | |
| % This function does dispersional analysis on a data series, then does a | |
| % Matlab polyfit to a log-log plot to estimate the Hurst exponent of the | |
| % series. | |
| % | |
| % This algorithm is far faster than a full-blown implementation of Hurst's | |
| % algorithm. I got the idea from a 2000 PhD dissertation by Hendrik J | |
| % Blok, and I make no guarantees whatsoever about the rigor of this approach | |
| % or the accuracy of results. Use it at your own risk. | |
| % | |
| % Bill Davidson | |
| % 21 Oct 2003 | |
| function [hurst] = hurst_exponent(data0) % data set | |
| data=data0; % make a local copy | |
| [M,npoints]=size(data0); | |
| yvals=zeros(1,npoints); | |
| xvals=zeros(1,npoints); | |
| data2=zeros(1,npoints); | |
| index=0; | |
| binsize=1; | |
| while npoints>4 | |
| y=std(data); | |
| index=index+1; | |
| xvals(index)=binsize; | |
| yvals(index)=binsize*y; | |
| npoints=fix(npoints/2); | |
| binsize=binsize*2; | |
| for ipoints=1:npoints % average adjacent points in pairs | |
| data2(ipoints)=(data(2*ipoints)+data((2*ipoints)-1))*0.5; | |
| end | |
| data=data2(1:npoints); | |
| end % while | |
| xvals=xvals(1:index); | |
| yvals=yvals(1:index); | |
| logx=log(xvals); | |
| logy=log(yvals); | |
| p2=polyfit(logx,logy,1); | |
| hurst=p2(1); % Hurst exponent is the slope of the linear fit of log-log plot | |
| return; | |