index
int64 1
214
| id
stringlengths 11
11
| title
stringlengths 11
100
| url
stringlengths 43
43
| vtt_file
stringlengths 17
108
| text
stringlengths 19
436k
|
|---|---|---|---|---|---|
2
|
akgy9S33jDM
|
Stress-Strain Curves of Concrete and Steel Reinforcement - BS8110. Reinforced Concrete Design.
|
https://www.youtube.com/watch?v=akgy9S33jDM
|
Stress-Strain_Curves_of_Concrete_and_Steel_Reinforcement_-_BS8110._Reinforced_Concrete_Design..en.vtt
|
Hello<00:00:00.320><c> everyone.</c><00:00:01.360><c> Uh</c><00:00:01.760><c> this</c><00:00:02.000><c> is</c><00:00:02.240><c> Dr.</c><00:00:02.560><c> Shriil</c> Hello everyone. Uh this is Dr. Shriil Hello everyone. Uh this is Dr. Shriil Gamal<00:00:03.679><c> and</c><00:00:04.400><c> in</c><00:00:04.720><c> today's</c><00:00:05.200><c> video</c><00:00:05.759><c> we</c><00:00:06.000><c> will</c><00:00:06.240><c> be</c> Gamal and in today's video we will be Gamal and in today's video we will be learning<00:00:07.040><c> about</c><00:00:07.440><c> the</c><00:00:07.759><c> stress</c><00:00:08.240><c> strain</c><00:00:08.639><c> curves</c> learning about the stress strain curves learning about the stress strain curves in<00:00:09.519><c> concrete</c> in concrete in concrete and<00:00:11.679><c> steel</c><00:00:11.920><c> reinforcement</c><00:00:12.719><c> according</c><00:00:13.200><c> to</c><00:00:13.519><c> the</c> and steel reinforcement according to the and steel reinforcement according to the bridge<00:00:14.320><c> standard.</c><00:00:15.759><c> So</c><00:00:16.080><c> before</c><00:00:16.400><c> going</c><00:00:16.720><c> to</c><00:00:16.880><c> the</c> bridge standard. So before going to the bridge standard. So before going to the stress<00:00:17.520><c> strain</c><00:00:18.000><c> curves</c><00:00:18.480><c> and</c><00:00:18.880><c> explaining</c><00:00:19.439><c> them</c> stress strain curves and explaining them stress strain curves and explaining them let's<00:00:20.320><c> learn</c><00:00:20.640><c> together</c><00:00:21.199><c> what</c><00:00:21.520><c> is</c><00:00:21.760><c> the</c><00:00:22.000><c> meaning</c> let's learn together what is the meaning let's learn together what is the meaning of<00:00:23.279><c> stress.</c><00:00:24.640><c> the</c><00:00:24.880><c> stress</c><00:00:25.920><c> if</c><00:00:26.160><c> we</c><00:00:26.480><c> have</c><00:00:27.279><c> uh</c><00:00:27.680><c> any</c> of stress. the stress if we have uh any of stress. the stress if we have uh any concrete<00:00:28.720><c> block</c><00:00:29.199><c> under</c><00:00:30.240><c> compression</c><00:00:30.800><c> forces</c> concrete block under compression forces concrete block under compression forces or<00:00:32.079><c> let's</c><00:00:32.399><c> say</c><00:00:32.640><c> we</c><00:00:32.880><c> have</c><00:00:34.000><c> uh</c><00:00:34.320><c> steer</c> or let's say we have uh steer or let's say we have uh steer reinforcing<00:00:35.520><c> bars</c><00:00:35.920><c> under</c><00:00:36.320><c> tensile</c><00:00:36.880><c> forces.</c> reinforcing bars under tensile forces. reinforcing bars under tensile forces. So<00:00:37.600><c> what</c><00:00:37.840><c> is</c><00:00:38.000><c> the</c><00:00:38.160><c> stress</c><00:00:38.480><c> in</c><00:00:39.040><c> the</c><00:00:39.280><c> concrete</c><00:00:39.760><c> or</c> So what is the stress in the concrete or So what is the stress in the concrete or the<00:00:40.239><c> stress</c><00:00:40.559><c> in</c><00:00:40.800><c> the</c><00:00:40.960><c> rebar</c><00:00:41.760><c> the</c><00:00:42.000><c> stress</c><00:00:42.320><c> is</c> the stress in the rebar the stress is the stress in the rebar the stress is always<00:00:43.040><c> equals</c><00:00:43.440><c> to</c><00:00:43.840><c> the</c><00:00:44.079><c> applied</c><00:00:44.559><c> force</c> always equals to the applied force always equals to the applied force divided<00:00:45.680><c> by</c><00:00:46.000><c> the</c><00:00:46.239><c> cross-sectional</c><00:00:46.960><c> area.</c><00:00:48.000><c> So</c> divided by the cross-sectional area. So divided by the cross-sectional area. So the<00:00:48.399><c> stress</c><00:00:48.960><c> equals</c><00:00:49.520><c> force</c><00:00:50.160><c> divided</c><00:00:50.640><c> by</c><00:00:50.960><c> area.</c> the stress equals force divided by area. the stress equals force divided by area. So<00:00:52.320><c> in</c><00:00:52.559><c> the</c><00:00:52.719><c> case</c><00:00:52.879><c> of</c><00:00:53.120><c> concrete</c><00:00:53.600><c> cube</c><00:00:54.079><c> the</c> So in the case of concrete cube the So in the case of concrete cube the force<00:00:54.559><c> is</c><00:00:54.800><c> the</c><00:00:54.960><c> compression</c><00:00:55.440><c> force</c><00:00:56.239><c> and</c><00:00:56.559><c> the</c> force is the compression force and the force is the compression force and the area<00:00:57.039><c> will</c><00:00:57.280><c> be</c><00:00:57.440><c> the</c><00:00:57.600><c> area</c><00:00:57.840><c> of</c><00:00:58.000><c> the</c><00:00:58.160><c> concrete</c> area will be the area of the concrete area will be the area of the concrete cube<00:01:00.000><c> and</c><00:01:00.239><c> the</c><00:01:00.480><c> same</c><00:01:00.719><c> case</c><00:01:01.039><c> also</c><00:01:01.359><c> in</c><00:01:01.600><c> the</c><00:01:01.840><c> steel</c> cube and the same case also in the steel cube and the same case also in the steel rebar<00:01:03.359><c> the</c><00:01:03.760><c> force</c><00:01:04.159><c> will</c><00:01:04.400><c> be</c><00:01:04.559><c> the</c><00:01:04.720><c> tension</c> rebar the force will be the tension rebar the force will be the tension force<00:01:05.439><c> in</c><00:01:05.680><c> the</c><00:01:05.920><c> bar</c><00:01:06.400><c> and</c><00:01:06.640><c> the</c><00:01:06.880><c> area</c><00:01:07.280><c> will</c><00:01:07.600><c> be</c> force in the bar and the area will be force in the bar and the area will be the<00:01:08.400><c> cross-sectional</c><00:01:09.200><c> area</c><00:01:09.439><c> of</c><00:01:09.600><c> the</c> the cross-sectional area of the the cross-sectional area of the reinforcing<00:01:11.040><c> steel</c><00:01:11.680><c> bar.</c><00:01:12.320><c> So</c><00:01:12.560><c> it</c><00:01:12.799><c> is</c><00:01:12.960><c> always</c> reinforcing steel bar. So it is always reinforcing steel bar. So it is always that<00:01:13.760><c> stress</c><00:01:14.320><c> equals</c><00:01:14.880><c> force</c><00:01:15.760><c> divided</c><00:01:16.240><c> by</c> that stress equals force divided by that stress equals force divided by area.<00:01:17.360><c> Therefore</c><00:01:17.759><c> the</c><00:01:18.000><c> unit</c><00:01:18.320><c> of</c><00:01:18.479><c> the</c><00:01:18.720><c> stress</c> area. Therefore the unit of the stress area. Therefore the unit of the stress equals<00:01:19.680><c> unit</c><00:01:20.000><c> of</c><00:01:20.240><c> force.</c><00:01:20.720><c> It</c><00:01:20.960><c> could</c><00:01:21.200><c> be</c><00:01:21.439><c> kilon</c> equals unit of force. It could be kilon equals unit of force. It could be kilon newton<00:01:22.240><c> or</c><00:01:22.479><c> newton</c><00:01:22.960><c> or</c><00:01:23.200><c> ton</c><00:01:23.920><c> divided</c><00:01:24.479><c> by</c><00:01:25.600><c> uh</c> newton or newton or ton divided by uh newton or newton or ton divided by uh area<00:01:27.280><c> which</c><00:01:27.520><c> is</c><00:01:27.759><c> could</c><00:01:28.000><c> be</c><00:01:28.240><c> mm²ared</c><00:01:29.439><c> or</c><00:01:30.640><c> uh</c> area which is could be mm²ared or uh area which is could be mm²ared or uh m²ared.<00:01:32.159><c> So</c><00:01:32.320><c> it</c><00:01:32.560><c> is</c><00:01:32.720><c> always</c><00:01:33.040><c> kon</c><00:01:33.840><c> per</c><00:01:34.000><c> meter</c> m²ared. So it is always kon per meter m²ared. So it is always kon per meter square<00:01:35.280><c> newton</c><00:01:35.680><c> per</c><00:01:35.840><c> millime</c><00:01:36.400><c> squared</c><00:01:36.880><c> and</c><00:01:37.119><c> so</c> square newton per millime squared and so square newton per millime squared and so on. on. on. So<00:01:39.439><c> the</c><00:01:39.759><c> second</c><00:01:40.079><c> part</c><00:01:40.400><c> is</c><00:01:40.720><c> the</c><00:01:40.880><c> strain.</c><00:01:41.439><c> What</c> So the second part is the strain. What So the second part is the strain. What is<00:01:41.920><c> a</c><00:01:42.159><c> strain?</c><00:01:43.200><c> Let's</c><00:01:43.520><c> assume</c><00:01:43.920><c> that</c><00:01:44.159><c> we</c><00:01:44.400><c> have</c><00:01:44.560><c> a</c> is a strain? Let's assume that we have a is a strain? Let's assume that we have a steer<00:01:45.040><c> reinforcing</c><00:01:45.680><c> bar</c><00:01:46.000><c> fixed</c><00:01:46.479><c> from</c><00:01:46.640><c> one</c> steer reinforcing bar fixed from one steer reinforcing bar fixed from one side<00:01:47.520><c> with</c><00:01:47.840><c> an</c><00:01:48.159><c> initial</c><00:01:48.880><c> length</c><00:01:49.360><c> equals</c><00:01:49.920><c> L</c> side with an initial length equals L side with an initial length equals L sub0.<00:01:51.360><c> So</c><00:01:51.600><c> what</c><00:01:51.840><c> is</c><00:01:52.079><c> going</c><00:01:52.159><c> to</c><00:01:52.320><c> happen</c><00:01:52.560><c> if</c><00:01:52.720><c> we</c> sub0. So what is going to happen if we sub0. So what is going to happen if we apply<00:01:53.200><c> a</c><00:01:53.280><c> tension</c><00:01:53.680><c> force</c><00:01:54.000><c> on</c><00:01:54.240><c> that</c><00:01:54.399><c> bar?</c><00:01:54.720><c> Let's</c> apply a tension force on that bar? Let's apply a tension force on that bar? Let's apply<00:01:55.360><c> a</c><00:01:55.439><c> tension</c><00:01:55.759><c> force.</c><00:01:56.799><c> So</c><00:01:57.600><c> under</c><00:01:58.079><c> this</c> apply a tension force. So under this apply a tension force. So under this tension<00:01:58.640><c> force,</c><00:01:58.960><c> we</c><00:01:59.119><c> will</c><00:01:59.280><c> have</c><00:01:59.600><c> elongation</c> tension force, we will have elongation tension force, we will have elongation of<00:02:00.479><c> the</c><00:02:00.719><c> bar.</c><00:02:01.200><c> So</c><00:02:01.360><c> the</c><00:02:01.600><c> bar</c><00:02:01.840><c> will</c><00:02:02.399><c> elongate</c><00:02:03.439><c> the</c> of the bar. So the bar will elongate the of the bar. So the bar will elongate the length<00:02:03.920><c> will</c><00:02:04.240><c> increase</c><00:02:04.560><c> with</c><00:02:04.799><c> a</c><00:02:05.040><c> distance</c> length will increase with a distance length will increase with a distance equals<00:02:05.920><c> to</c><00:02:06.079><c> delta</c><00:02:06.560><c> L.</c><00:02:07.040><c> So</c><00:02:07.200><c> the</c><00:02:07.439><c> initial</c><00:02:07.920><c> length</c> equals to delta L. So the initial length equals to delta L. So the initial length is<00:02:08.479><c> L</c><00:02:08.800><c> sub0</c><00:02:09.679><c> and</c><00:02:09.920><c> we</c><00:02:10.160><c> have</c><00:02:10.479><c> additional</c><00:02:11.039><c> length</c> is L sub0 and we have additional length is L sub0 and we have additional length due<00:02:11.760><c> to</c><00:02:11.920><c> the</c><00:02:12.239><c> applied</c><00:02:12.800><c> force</c><00:02:13.280><c> equals</c><00:02:13.840><c> to</c><00:02:14.640><c> delta</c> due to the applied force equals to delta due to the applied force equals to delta L.<00:02:15.360><c> So</c><00:02:15.599><c> what</c><00:02:15.840><c> is</c><00:02:16.000><c> the</c><00:02:16.160><c> strain?</c><00:02:16.959><c> The</c><00:02:17.200><c> strain</c><00:02:17.599><c> is</c> L. So what is the strain? The strain is L. So what is the strain? The strain is known<00:02:18.160><c> by</c><00:02:18.480><c> the</c><00:02:19.760><c> increase</c><00:02:20.080><c> in</c><00:02:20.480><c> length</c><00:02:21.040><c> which</c><00:02:21.280><c> is</c> known by the increase in length which is known by the increase in length which is delta<00:02:21.840><c> L</c><00:02:22.080><c> divided</c><00:02:22.480><c> by</c><00:02:22.640><c> the</c><00:02:22.879><c> original</c><00:02:23.200><c> length.</c> delta L divided by the original length. delta L divided by the original length. So<00:02:23.840><c> the</c><00:02:24.000><c> strain</c><00:02:24.560><c> equals</c><00:02:25.280><c> the</c><00:02:25.760><c> elongation</c><00:02:26.480><c> or</c> So the strain equals the elongation or So the strain equals the elongation or the<00:02:27.040><c> increase</c><00:02:27.360><c> in</c><00:02:27.599><c> the</c><00:02:27.760><c> length</c><00:02:28.000><c> divided</c><00:02:28.480><c> by</c> the increase in the length divided by the increase in the length divided by the<00:02:28.879><c> original</c><00:02:29.200><c> length.</c><00:02:29.840><c> And</c><00:02:30.000><c> we</c><00:02:30.160><c> can</c><00:02:30.319><c> see</c><00:02:30.400><c> that</c> the original length. And we can see that the original length. And we can see that both<00:02:30.959><c> of</c><00:02:31.120><c> them</c><00:02:31.360><c> are</c><00:02:31.760><c> length.</c><00:02:32.160><c> This</c><00:02:32.319><c> is</c><00:02:32.480><c> length</c> both of them are length. This is length both of them are length. This is length in<00:02:33.040><c> meter</c><00:02:33.680><c> meter</c><00:02:34.160><c> millimeter</c><00:02:34.720><c> millimeter.</c><00:02:35.360><c> So</c> in meter meter millimeter millimeter. So in meter meter millimeter millimeter. So it<00:02:35.680><c> is</c><00:02:35.760><c> unitless.</c><00:02:36.560><c> no</c><00:02:36.800><c> units</c><00:02:37.200><c> for</c><00:02:37.840><c> the</c><00:02:38.080><c> strain.</c> it is unitless. no units for the strain. it is unitless. no units for the strain. So<00:02:39.519><c> after</c><00:02:39.920><c> we</c><00:02:40.319><c> know</c><00:02:40.560><c> the</c><00:02:40.879><c> stress</c><00:02:41.200><c> and</c><00:02:41.519><c> the</c> So after we know the stress and the So after we know the stress and the strain<00:02:42.720><c> definitions</c><00:02:43.760><c> this</c><00:02:44.080><c> stress</c><00:02:44.400><c> and</c><00:02:44.640><c> the</c> strain definitions this stress and the strain definitions this stress and the strains<00:02:45.360><c> can</c><00:02:45.680><c> be</c><00:02:46.000><c> compressive</c><00:02:47.360><c> stress</c><00:02:47.760><c> or</c> strains can be compressive stress or strains can be compressive stress or strain<00:02:48.480><c> if</c><00:02:48.720><c> we</c><00:02:48.879><c> have</c><00:02:49.040><c> a</c><00:02:49.280><c> compression</c><00:02:49.840><c> force</c> strain if we have a compression force strain if we have a compression force and<00:02:50.800><c> for</c><00:02:51.120><c> an</c><00:02:51.360><c> example</c><00:02:51.760><c> for</c><00:02:52.000><c> that</c><00:02:52.239><c> is</c><00:02:52.400><c> the</c> and for an example for that is the and for an example for that is the concrete<00:02:53.040><c> cube</c><00:02:53.360><c> under</c><00:02:53.680><c> compression</c><00:02:54.239><c> force</c> concrete cube under compression force concrete cube under compression force and<00:02:55.360><c> also</c><00:02:55.760><c> it</c><00:02:55.920><c> could</c><00:02:56.160><c> be</c><00:02:56.480><c> tensile</c><00:02:57.360><c> stress</c><00:02:57.840><c> and</c> and also it could be tensile stress and and also it could be tensile stress and strains<00:02:59.440><c> and</c><00:02:59.760><c> for</c><00:03:00.000><c> example</c><00:03:00.400><c> for</c><00:03:00.640><c> that</c><00:03:01.040><c> we</c><00:03:01.360><c> have</c> strains and for example for that we have strains and for example for that we have the<00:03:02.159><c> steel</c><00:03:02.480><c> bars</c><00:03:02.879><c> under</c><00:03:03.200><c> tension</c><00:03:03.680><c> force.</c><00:03:04.080><c> So</c> the steel bars under tension force. So the steel bars under tension force. So we<00:03:04.400><c> will</c><00:03:04.560><c> have</c><00:03:04.720><c> tensile</c><00:03:05.440><c> stresses</c><00:03:05.920><c> and</c> we will have tensile stresses and we will have tensile stresses and tensile<00:03:06.879><c> strains</c><00:03:07.360><c> in</c><00:03:07.599><c> the</c><00:03:08.239><c> bars.</c><00:03:09.440><c> Now</c><00:03:10.319><c> what</c><00:03:10.640><c> is</c> tensile strains in the bars. Now what is tensile strains in the bars. Now what is the<00:03:10.959><c> stress</c><00:03:11.440><c> strain</c><00:03:11.760><c> relation</c><00:03:12.239><c> of</c><00:03:12.560><c> concrete?</c> the stress strain relation of concrete? the stress strain relation of concrete? This<00:03:13.920><c> stress</c><00:03:14.319><c> strain</c><00:03:14.640><c> relationship</c><00:03:15.200><c> of</c> This stress strain relationship of This stress strain relationship of concrete<00:03:15.920><c> is</c><00:03:16.159><c> very</c><00:03:16.480><c> important</c><00:03:17.040><c> because</c><00:03:17.519><c> using</c> concrete is very important because using concrete is very important because using this<00:03:18.239><c> one</c><00:03:18.480><c> we</c><00:03:18.800><c> can</c><00:03:19.440><c> analyze</c><00:03:20.080><c> and</c><00:03:20.640><c> understand</c> this one we can analyze and understand this one we can analyze and understand uh<00:03:21.920><c> the</c><00:03:22.159><c> internal</c><00:03:22.800><c> stresses</c><00:03:23.360><c> and</c><00:03:24.159><c> design</c><00:03:24.640><c> of</c> uh the internal stresses and design of uh the internal stresses and design of reinforced<00:03:26.000><c> concrete</c><00:03:26.480><c> sections.</c><00:03:26.959><c> So</c><00:03:27.120><c> how</c><00:03:27.360><c> we</c> reinforced concrete sections. So how we reinforced concrete sections. So how we measure<00:03:28.080><c> the</c><00:03:28.319><c> stress</c><00:03:28.720><c> strain</c><00:03:29.040><c> relation</c><00:03:29.360><c> in</c> measure the stress strain relation in measure the stress strain relation in concrete?<00:03:30.159><c> We</c><00:03:30.400><c> do</c><00:03:30.560><c> that</c><00:03:31.200><c> using</c><00:03:31.760><c> concrete</c><00:03:32.239><c> cube</c> concrete? We do that using concrete cube concrete? We do that using concrete cube or<00:03:32.799><c> concrete</c><00:03:33.599><c> cylinder</c><00:03:34.080><c> under</c><00:03:35.040><c> uh</c> or concrete cylinder under uh or concrete cylinder under uh compression<00:03:35.760><c> force.</c><00:03:36.560><c> So</c><00:03:36.799><c> the</c><00:03:37.040><c> force</c><00:03:38.080><c> will</c><00:03:38.480><c> get</c> compression force. So the force will get compression force. So the force will get it<00:03:38.879><c> from</c><00:03:39.120><c> the</c><00:03:39.599><c> machine</c><00:03:39.920><c> itself</c><00:03:40.640><c> and</c><00:03:40.959><c> the</c> it from the machine itself and the it from the machine itself and the strains<00:03:41.599><c> will</c><00:03:41.920><c> measure</c><00:03:42.239><c> them</c><00:03:42.480><c> using</c><00:03:42.879><c> LVDTs</c> strains will measure them using LVDTs strains will measure them using LVDTs connected<00:03:44.640><c> to</c><00:03:45.360><c> the</c><00:03:46.080><c> uh</c><00:03:46.400><c> cube</c><00:03:46.799><c> and</c><00:03:46.959><c> the</c> connected to the uh cube and the connected to the uh cube and the machine.<00:03:47.920><c> So</c><00:03:48.159><c> how</c><00:03:48.400><c> to</c><00:03:48.560><c> do</c><00:03:48.720><c> that?</c><00:03:49.040><c> You</c><00:03:49.200><c> apply</c><00:03:49.519><c> a</c> machine. So how to do that? You apply a machine. So how to do that? You apply a force<00:03:50.480><c> using</c><00:03:51.040><c> the</c><00:03:51.280><c> machine</c><00:03:52.080><c> and</c><00:03:52.319><c> then</c><00:03:52.560><c> we</c><00:03:52.799><c> have</c> force using the machine and then we have force using the machine and then we have a<00:03:53.120><c> vertical</c><00:03:53.519><c> axis.</c><00:03:54.080><c> we</c><00:03:54.319><c> will</c><00:03:54.480><c> draw</c><00:03:54.720><c> the</c><00:03:54.959><c> stress</c> a vertical axis. we will draw the stress a vertical axis. we will draw the stress which<00:03:56.000><c> is</c><00:03:56.159><c> equal</c><00:03:56.480><c> the</c><00:03:56.720><c> force</c><00:03:56.959><c> divided</c><00:03:57.439><c> by</c><00:03:57.519><c> the</c> which is equal the force divided by the which is equal the force divided by the cross-sectional<00:03:58.480><c> area</c><00:03:59.200><c> and</c><00:03:59.439><c> the</c><00:03:59.680><c> strain</c><00:04:00.159><c> it</c> cross-sectional area and the strain it cross-sectional area and the strain it will<00:04:00.480><c> be</c><00:04:00.640><c> the</c><00:04:00.879><c> change</c><00:04:01.120><c> in</c><00:04:01.280><c> the</c><00:04:01.439><c> length</c><00:04:01.760><c> divided</c> will be the change in the length divided will be the change in the length divided by<00:04:02.319><c> the</c><00:04:02.560><c> original</c><00:04:02.879><c> length.</c><00:04:03.439><c> So</c><00:04:03.680><c> under</c><00:04:04.000><c> this</c> by the original length. So under this by the original length. So under this applied<00:04:04.640><c> load</c><00:04:04.879><c> from</c><00:04:05.040><c> the</c><00:04:05.280><c> machine</c><00:04:06.560><c> we</c><00:04:06.799><c> will</c> applied load from the machine we will applied load from the machine we will have<00:04:07.120><c> this</c><00:04:07.519><c> strain</c><00:04:08.480><c> relation</c><00:04:08.879><c> of</c><00:04:09.200><c> concrete</c> have this strain relation of concrete have this strain relation of concrete until<00:04:10.480><c> it</c><00:04:10.720><c> reaches</c><00:04:11.120><c> a</c><00:04:11.360><c> maximum</c><00:04:12.159><c> force</c><00:04:12.879><c> or</c><00:04:13.120><c> the</c> until it reaches a maximum force or the until it reaches a maximum force or the crushing<00:04:14.480><c> uh</c><00:04:14.720><c> strain</c><00:04:15.200><c> of</c><00:04:15.519><c> the</c><00:04:15.920><c> concrete</c> crushing uh strain of the concrete crushing uh strain of the concrete cylinder<00:04:16.799><c> or</c><00:04:17.040><c> concrete</c><00:04:17.680><c> tube.</c><00:04:18.479><c> However,</c><00:04:18.959><c> this</c> cylinder or concrete tube. However, this cylinder or concrete tube. However, this stress<00:04:19.680><c> strain</c><00:04:20.079><c> curve</c><00:04:20.400><c> you</c><00:04:20.639><c> can</c><00:04:20.799><c> see</c><00:04:20.959><c> it</c><00:04:21.199><c> is</c> stress strain curve you can see it is stress strain curve you can see it is nonlinear<00:04:22.479><c> and</c><00:04:22.880><c> is</c><00:04:23.120><c> difficult</c><00:04:23.440><c> to</c><00:04:23.680><c> be</c><00:04:23.919><c> used</c><00:04:24.240><c> to</c> nonlinear and is difficult to be used to nonlinear and is difficult to be used to analyze<00:04:25.520><c> and</c><00:04:25.759><c> design</c><00:04:26.160><c> of</c><00:04:26.320><c> reinforced</c> analyze and design of reinforced analyze and design of reinforced concrete<00:04:27.280><c> section.</c><00:04:27.840><c> So</c><00:04:29.280><c> different</c><00:04:29.680><c> design</c> concrete section. So different design concrete section. So different design codes<00:04:30.479><c> they</c><00:04:30.880><c> use</c><00:04:31.280><c> idealized</c><00:04:32.080><c> stress</c><00:04:32.400><c> strain</c> codes they use idealized stress strain codes they use idealized stress strain curves.<00:04:33.520><c> They</c><00:04:33.840><c> have</c><00:04:34.000><c> to</c><00:04:34.240><c> make</c><00:04:34.639><c> changes</c><00:04:35.120><c> to</c> curves. They have to make changes to curves. They have to make changes to simplify<00:04:36.000><c> this</c><00:04:36.400><c> stress</c><00:04:36.720><c> strain</c><00:04:37.120><c> curve</c><00:04:37.440><c> to</c><00:04:37.680><c> be</c> simplify this stress strain curve to be simplify this stress strain curve to be easier<00:04:38.240><c> for</c><00:04:39.199><c> engineers</c><00:04:39.919><c> to</c><00:04:40.240><c> use</c><00:04:40.960><c> in</c><00:04:41.280><c> the</c> easier for engineers to use in the easier for engineers to use in the design<00:04:41.840><c> and</c><00:04:42.080><c> in</c><00:04:42.240><c> the</c><00:04:42.400><c> analysis</c><00:04:42.800><c> of</c><00:04:42.960><c> the</c> design and in the analysis of the design and in the analysis of the section.<00:04:43.440><c> So</c><00:04:43.600><c> this</c><00:04:43.840><c> is</c><00:04:43.919><c> the</c><00:04:44.160><c> original</c><00:04:44.560><c> stress</c> section. So this is the original stress section. So this is the original stress strain<00:04:45.280><c> curve</c><00:04:46.080><c> where</c><00:04:46.400><c> is</c><00:04:46.639><c> the</c><00:04:47.040><c> idealized</c><00:04:48.000><c> one.</c> strain curve where is the idealized one. strain curve where is the idealized one. The<00:04:48.720><c> idealized</c><00:04:49.360><c> one</c><00:04:49.680><c> is</c><00:04:50.240><c> this</c><00:04:50.720><c> curve</c><00:04:51.199><c> here.</c><00:04:51.440><c> We</c> The idealized one is this curve here. We The idealized one is this curve here. We can<00:04:51.840><c> see</c><00:04:52.000><c> it</c><00:04:52.240><c> start</c><00:04:52.560><c> by</c><00:04:52.800><c> nonlinear</c><00:04:53.440><c> part</c><00:04:54.160><c> until</c> can see it start by nonlinear part until can see it start by nonlinear part until reaching<00:04:54.800><c> a</c><00:04:55.040><c> maximum</c><00:04:55.520><c> value</c><00:04:55.840><c> then</c><00:04:56.080><c> goes</c> reaching a maximum value then goes reaching a maximum value then goes horizontal<00:04:56.960><c> until</c><00:04:57.759><c> the</c><00:04:58.240><c> crushing</c><00:04:58.639><c> of</c><00:04:58.880><c> the</c> horizontal until the crushing of the horizontal until the crushing of the concrete.<00:04:59.759><c> So</c><00:05:00.000><c> let's</c><00:05:00.400><c> understand</c><00:05:00.880><c> this</c> concrete. So let's understand this concrete. So let's understand this stress<00:05:01.600><c> strain</c><00:05:01.919><c> curve.</c><00:05:02.560><c> The</c><00:05:02.800><c> maximum</c><00:05:03.280><c> value</c> stress strain curve. The maximum value stress strain curve. The maximum value here<00:05:03.919><c> according</c><00:05:04.320><c> to</c><00:05:04.479><c> the</c><00:05:04.800><c> BS</c><00:05:05.280><c> code</c><00:05:06.240><c> equals</c><00:05:06.720><c> to</c> here according to the BS code equals to here according to the BS code equals to 67<00:05:08.320><c> FCU</c><00:05:09.120><c> divided</c><00:05:09.680><c> by</c><00:05:10.160><c> gamma</c><00:05:10.560><c> M</c><00:05:11.759><c> 67</c><00:05:12.479><c> FCU</c><00:05:13.199><c> divided</c> 67 FCU divided by gamma M 67 FCU divided 67 FCU divided by gamma M 67 FCU divided by<00:05:13.840><c> gamma</c><00:05:14.240><c> M.</c><00:05:14.720><c> So</c><00:05:14.960><c> what</c><00:05:15.199><c> is</c><00:05:15.280><c> the</c><00:05:15.520><c> FCU?</c><00:05:16.160><c> It</c><00:05:16.320><c> is</c> by gamma M. So what is the FCU? It is by gamma M. So what is the FCU? It is the<00:05:16.639><c> concrete</c><00:05:17.039><c> compressive</c><00:05:18.160><c> strength</c> the concrete compressive strength the concrete compressive strength concrete<00:05:19.520><c> compressive</c><00:05:20.000><c> strength</c><00:05:20.320><c> of</c><00:05:20.560><c> the</c> concrete compressive strength of the concrete compressive strength of the concrete<00:05:21.280><c> cube</c><00:05:22.320><c> and</c><00:05:22.639><c> the</c><00:05:22.880><c> gamma</c><00:05:23.280><c> m</c><00:05:23.520><c> is</c><00:05:23.680><c> a</c> concrete cube and the gamma m is a concrete cube and the gamma m is a material<00:05:24.400><c> safety</c><00:05:24.800><c> factor</c><00:05:25.520><c> and</c><00:05:25.759><c> according</c><00:05:26.240><c> to</c> material safety factor and according to material safety factor and according to the<00:05:26.639><c> bridge</c><00:05:27.039><c> standard</c><00:05:27.440><c> the</c><00:05:27.680><c> material</c><00:05:28.080><c> safety</c> the bridge standard the material safety the bridge standard the material safety factor<00:05:28.960><c> equals</c><00:05:29.840><c> 1.5</c><00:05:30.960><c> for</c><00:05:31.280><c> concrete</c><00:05:32.240><c> in</c> factor equals 1.5 for concrete in factor equals 1.5 for concrete in flexure<00:05:32.960><c> under</c><00:05:33.280><c> compression</c><00:05:34.000><c> it</c><00:05:34.240><c> is</c><00:05:34.479><c> 1.5.</c><00:05:35.919><c> So</c> flexure under compression it is 1.5. So flexure under compression it is 1.5. So if<00:05:36.479><c> we</c><00:05:36.639><c> replace</c><00:05:36.960><c> the</c><00:05:37.199><c> value</c><00:05:37.440><c> of</c><00:05:37.600><c> gamma</c><00:05:38.000><c> m</c><00:05:38.240><c> here</c> if we replace the value of gamma m here if we replace the value of gamma m here by<00:05:38.720><c> 1.5</c><00:05:39.520><c> let's</c><00:05:39.840><c> do</c><00:05:40.000><c> that.</c><00:05:40.560><c> So</c><00:05:41.280><c> 67</c><00:05:41.840><c> FCU</c><00:05:42.560><c> divided</c> by 1.5 let's do that. So 67 FCU divided by 1.5 let's do that. So 67 FCU divided by<00:05:43.360><c> 1.5</c><00:05:44.160><c> which</c><00:05:44.400><c> is</c><00:05:44.560><c> the</c><00:05:44.720><c> gamma</c><00:05:45.120><c> m</c><00:05:45.600><c> this</c><00:05:45.840><c> will</c> by 1.5 which is the gamma m this will by 1.5 which is the gamma m this will equal equal equal 045<00:05:48.720><c> FCU.</c><00:05:49.759><c> So</c><00:05:50.080><c> the</c><00:05:50.400><c> maximum</c><00:05:50.960><c> value</c><00:05:51.600><c> of</c><00:05:51.840><c> the</c> 045 FCU. So the maximum value of the 045 FCU. So the maximum value of the stress<00:05:52.560><c> in</c><00:05:52.880><c> the</c><00:05:53.280><c> concrete</c><00:05:53.840><c> cube</c><00:05:54.800><c> equals</c><00:05:55.840><c> 045</c> stress in the concrete cube equals 045 stress in the concrete cube equals 045 FCU<00:05:57.520><c> which</c><00:05:58.000><c> means</c><00:05:58.320><c> it</c><00:05:58.560><c> is</c><00:05:58.720><c> less</c><00:05:58.960><c> than</c><00:05:59.280><c> 50%</c><00:06:00.080><c> of</c> FCU which means it is less than 50% of FCU which means it is less than 50% of the<00:06:00.560><c> concrete</c><00:06:01.039><c> compressive</c><00:06:01.600><c> strength</c><00:06:01.919><c> of</c><00:06:02.080><c> the</c> the concrete compressive strength of the the concrete compressive strength of the cube.<00:06:02.960><c> And</c><00:06:03.120><c> why</c><00:06:03.440><c> is</c><00:06:03.600><c> that</c><00:06:03.919><c> difference?</c><00:06:04.800><c> to</c> cube. And why is that difference? to cube. And why is that difference? to have<00:06:05.600><c> a</c><00:06:05.919><c> good</c><00:06:06.160><c> factor</c><00:06:06.479><c> of</c><00:06:06.720><c> safety</c><00:06:07.360><c> and</c><00:06:07.680><c> to</c> have a good factor of safety and to have a good factor of safety and to ensure<00:06:08.160><c> that</c><00:06:08.400><c> we</c><00:06:08.639><c> will</c><00:06:08.800><c> not</c><00:06:08.960><c> have</c><00:06:09.440><c> a</c><00:06:09.759><c> crushing</c> ensure that we will not have a crushing ensure that we will not have a crushing of<00:06:10.560><c> the</c><00:06:11.199><c> concrete.</c> of the concrete. of the concrete. So<00:06:13.520><c> the</c><00:06:13.840><c> maximum</c><00:06:14.319><c> strain</c><00:06:14.720><c> here</c><00:06:15.039><c> it</c><00:06:15.280><c> is</c><00:06:15.440><c> very</c> So the maximum strain here it is very So the maximum strain here it is very important<00:06:16.160><c> point</c><00:06:16.560><c> according</c><00:06:16.960><c> to</c><00:06:17.039><c> the</c><00:06:17.280><c> BS</c> important point according to the BS important point according to the BS code.<00:06:18.400><c> This</c><00:06:18.720><c> value</c><00:06:19.120><c> here</c><00:06:19.440><c> it</c><00:06:19.759><c> calls</c><00:06:20.080><c> epsilon</c> code. This value here it calls epsilon code. This value here it calls epsilon CU<00:06:21.840><c> which</c><00:06:22.080><c> is</c><00:06:22.160><c> the</c><00:06:22.479><c> ultimate</c><00:06:22.880><c> strain</c><00:06:23.280><c> in</c><00:06:23.520><c> the</c> CU which is the ultimate strain in the CU which is the ultimate strain in the concrete<00:06:24.160><c> cube</c><00:06:24.720><c> and</c><00:06:24.960><c> we</c><00:06:25.120><c> can</c><00:06:25.280><c> see</c><00:06:25.440><c> here</c><00:06:25.680><c> the</c> concrete cube and we can see here the concrete cube and we can see here the maximum<00:06:26.400><c> value</c><00:06:27.039><c> or</c><00:06:27.360><c> the</c><00:06:27.600><c> ultimate</c><00:06:27.919><c> strain</c> maximum value or the ultimate strain maximum value or the ultimate strain equals<00:06:29.360><c> 035.</c> equals 035. equals 035. So<00:06:32.319><c> what</c><00:06:32.800><c> does</c><00:06:32.960><c> it</c><00:06:33.199><c> mean</c><00:06:33.440><c> this</c><00:06:33.680><c> value?</c><00:06:34.000><c> It</c> So what does it mean this value? It So what does it mean this value? It means<00:06:34.400><c> if</c><00:06:34.639><c> the</c><00:06:34.880><c> strains</c><00:06:35.199><c> in</c><00:06:35.440><c> the</c><00:06:35.600><c> concrete</c> means if the strains in the concrete means if the strains in the concrete reached<00:06:37.199><c> this</c><00:06:37.680><c> value</c><00:06:38.080><c> which</c><00:06:38.240><c> is</c><00:06:38.400><c> a</c> reached this value which is a reached this value which is a compressive<00:06:39.120><c> strains.</c><00:06:40.000><c> If</c><00:06:40.160><c> it</c><00:06:40.319><c> reaches</c><00:06:40.720><c> that</c> compressive strains. If it reaches that compressive strains. If it reaches that value<00:06:41.520><c> it</c><00:06:41.759><c> means</c><00:06:42.000><c> we</c><00:06:42.319><c> assume</c><00:06:42.639><c> that</c><00:06:42.960><c> the</c> value it means we assume that the value it means we assume that the concrete<00:06:44.080><c> will</c><00:06:44.319><c> crush</c><00:06:44.960><c> and</c><00:06:45.280><c> it</c><00:06:45.440><c> will</c><00:06:45.600><c> not</c><00:06:45.840><c> be</c> concrete will crush and it will not be concrete will crush and it will not be able<00:06:46.160><c> to</c><00:06:46.319><c> resist</c><00:06:46.800><c> any</c><00:06:47.120><c> additional</c><00:06:48.080><c> forces</c><00:06:48.479><c> or</c> able to resist any additional forces or able to resist any additional forces or any<00:06:49.039><c> additional</c><00:06:49.440><c> compressive</c><00:06:50.000><c> strains.</c><00:06:50.800><c> So</c> any additional compressive strains. So any additional compressive strains. So once<00:06:51.360><c> we</c><00:06:51.520><c> reach</c><00:06:51.919><c> this</c><00:06:52.160><c> value</c><00:06:52.639><c> we</c><00:06:52.880><c> assume</c><00:06:53.440><c> that</c> once we reach this value we assume that once we reach this value we assume that the<00:06:54.080><c> concrete</c><00:06:54.479><c> is</c><00:06:54.639><c> already</c><00:06:55.120><c> crushed</c><00:06:55.520><c> and</c><00:06:55.759><c> we</c> the concrete is already crushed and we the concrete is already crushed and we have<00:06:56.080><c> a</c><00:06:56.319><c> collapse</c><00:06:56.720><c> of</c><00:06:56.960><c> the</c><00:06:57.759><c> section</c><00:06:58.160><c> that</c><00:06:58.479><c> we</c> have a collapse of the section that we have a collapse of the section that we are<00:06:58.960><c> designing</c><00:06:59.360><c> or</c><00:06:59.680><c> analyzing.</c> are designing or analyzing. are designing or analyzing. What<00:07:02.319><c> is</c><00:07:02.479><c> the</c><00:07:03.360><c> uh</c><00:07:04.080><c> slope</c><00:07:04.479><c> of</c><00:07:04.639><c> that</c><00:07:04.880><c> one?</c><00:07:05.199><c> The</c> What is the uh slope of that one? The What is the uh slope of that one? The initial<00:07:05.759><c> slope</c><00:07:06.160><c> here</c><00:07:06.400><c> from</c><00:07:06.639><c> the</c><00:07:06.880><c> beginning</c><00:07:08.240><c> of</c> initial slope here from the beginning of initial slope here from the beginning of this<00:07:08.880><c> stress</c><00:07:09.280><c> strain</c><00:07:09.599><c> curve.</c><00:07:09.919><c> It</c><00:07:10.160><c> will</c><00:07:10.240><c> give</c> this stress strain curve. It will give this stress strain curve. It will give us<00:07:10.560><c> the</c><00:07:10.720><c> modus</c><00:07:11.199><c> oracity</c><00:07:11.759><c> of</c><00:07:12.000><c> the</c><00:07:12.639><c> concrete.</c><00:07:13.280><c> So</c> us the modus oracity of the concrete. So us the modus oracity of the concrete. So this<00:07:14.319><c> E</c><00:07:14.720><c> sub</c><00:07:15.120><c> C</c><00:07:15.360><c> equals</c><00:07:15.680><c> the</c><00:07:15.840><c> modulus</c><00:07:16.319><c> or</c><00:07:16.639><c> 60</c> this E sub C equals the modulus or 60 this E sub C equals the modulus or 60 and<00:07:17.440><c> we</c><00:07:17.680><c> can</c><00:07:17.840><c> get</c><00:07:17.919><c> it</c><00:07:18.160><c> from</c><00:07:18.479><c> this</c><00:07:18.880><c> equation</c><00:07:19.280><c> in</c> and we can get it from this equation in and we can get it from this equation in Kon<00:07:20.240><c> per</c><00:07:20.400><c> millm</c><00:07:21.520><c> squared.</c><00:07:22.160><c> So</c><00:07:22.400><c> the</c><00:07:22.720><c> important</c> Kon per millm squared. So the important Kon per millm squared. So the important points<00:07:23.599><c> here</c><00:07:23.840><c> in</c><00:07:24.160><c> the</c><00:07:24.319><c> stress</c><00:07:24.720><c> strain</c><00:07:25.120><c> curve</c> points here in the stress strain curve points here in the stress strain curve according<00:07:25.919><c> to</c><00:07:26.080><c> the</c><00:07:26.240><c> BSU</c><00:07:26.720><c> code</c><00:07:26.960><c> is</c><00:07:27.199><c> the</c><00:07:27.759><c> maximum</c> according to the BSU code is the maximum according to the BSU code is the maximum stress<00:07:28.960><c> equals</c><00:07:29.520><c> 045</c><00:07:30.479><c> FCU</c><00:07:31.520><c> and</c><00:07:31.759><c> the</c><00:07:32.080><c> ultimate</c> stress equals 045 FCU and the ultimate stress equals 045 FCU and the ultimate strain<00:07:33.039><c> equals</c><00:07:33.599><c> 0.0035.</c> strain equals 0.0035. strain equals 0.0035. In<00:07:36.080><c> other</c><00:07:36.319><c> codes</c><00:07:36.639><c> like</c><00:07:36.880><c> the</c><00:07:37.039><c> ACI</c><00:07:37.599><c> code,</c><00:07:38.000><c> the</c> In other codes like the ACI code, the In other codes like the ACI code, the ultimate<00:07:38.639><c> strain</c><00:07:39.120><c> here</c><00:07:39.440><c> is</c><00:07:39.759><c> not</c><00:07:40.319><c> 00035.</c><00:07:41.520><c> It</c><00:07:41.680><c> is</c> ultimate strain here is not 00035. It is ultimate strain here is not 00035. It is only<00:07:42.160><c> 0.003.</c> only 0.003. only 0.003. But<00:07:44.000><c> according</c><00:07:44.400><c> to</c><00:07:44.560><c> the</c><00:07:44.720><c> BS</c><00:07:45.199><c> code,</c><00:07:45.520><c> this</c><00:07:45.680><c> is</c> But according to the BS code, this is But according to the BS code, this is the<00:07:45.919><c> value</c><00:07:46.160><c> that</c><00:07:46.400><c> we</c><00:07:46.560><c> have</c><00:07:46.720><c> to</c><00:07:46.960><c> consider.</c><00:07:47.599><c> And</c> the value that we have to consider. And the value that we have to consider. And if<00:07:48.000><c> we</c><00:07:48.240><c> exceeded</c><00:07:48.639><c> that</c><00:07:48.880><c> value,</c><00:07:49.199><c> we</c><00:07:49.360><c> have</c><00:07:49.440><c> a</c> if we exceeded that value, we have a if we exceeded that value, we have a collapse<00:07:50.080><c> of</c><00:07:50.240><c> the</c><00:07:51.039><c> concrete.</c> collapse of the concrete. collapse of the concrete. Now<00:07:53.120><c> let's</c><00:07:53.520><c> move</c><00:07:53.680><c> to</c><00:07:54.080><c> the</c><00:07:54.479><c> stress</c><00:07:54.960><c> strain</c> Now let's move to the stress strain Now let's move to the stress strain curve<00:07:55.680><c> of</c><00:07:55.919><c> the</c><00:07:56.080><c> second</c><00:07:56.879><c> part</c><00:07:57.199><c> of</c><00:07:57.759><c> uh</c> curve of the second part of uh curve of the second part of uh reinforced<00:07:58.560><c> concrete</c><00:07:58.960><c> section</c><00:07:59.360><c> which</c><00:07:59.520><c> is</c><00:07:59.599><c> the</c> reinforced concrete section which is the reinforced concrete section which is the steel<00:08:00.240><c> reinforcement.</c><00:08:01.360><c> How</c><00:08:01.680><c> we</c><00:08:01.919><c> measure</c><00:08:02.240><c> the</c> steel reinforcement. How we measure the steel reinforcement. How we measure the stress<00:08:02.879><c> strain</c><00:08:03.199><c> curve</c><00:08:03.680><c> and</c><00:08:04.319><c> steel</c><00:08:04.800><c> bar?</c><00:08:05.360><c> We</c> stress strain curve and steel bar? We stress strain curve and steel bar? We put<00:08:06.080><c> a</c><00:08:06.319><c> steel</c><00:08:06.639><c> bar</c><00:08:06.960><c> in</c><00:08:07.520><c> a</c><00:08:07.759><c> tensile</c><00:08:08.560><c> under</c> put a steel bar in a tensile under put a steel bar in a tensile under tension<00:08:09.360><c> in</c><00:08:09.680><c> a</c><00:08:09.919><c> machine</c><00:08:10.240><c> and</c><00:08:10.479><c> we</c><00:08:10.639><c> apply</c><00:08:10.879><c> a</c> tension in a machine and we apply a tension in a machine and we apply a tension<00:08:11.440><c> force</c><00:08:11.840><c> here.</c><00:08:12.240><c> Then</c><00:08:12.479><c> again</c><00:08:13.120><c> we</c><00:08:13.360><c> will</c> tension force here. Then again we will tension force here. Then again we will get<00:08:13.680><c> the</c><00:08:13.919><c> stress</c><00:08:14.160><c> and</c><00:08:14.400><c> draw</c><00:08:14.639><c> it</c><00:08:14.800><c> in</c><00:08:14.960><c> the</c> get the stress and draw it in the get the stress and draw it in the vertical<00:08:15.440><c> axis</c><00:08:15.759><c> and</c><00:08:16.000><c> the</c><00:08:16.160><c> strain</c><00:08:16.479><c> will</c><00:08:16.639><c> be</c><00:08:16.720><c> in</c> vertical axis and the strain will be in vertical axis and the strain will be in the<00:08:17.039><c> horizontal</c><00:08:17.520><c> axis.</c><00:08:18.479><c> So</c><00:08:18.879><c> because</c><00:08:19.280><c> the</c> the horizontal axis. So because the the horizontal axis. So because the steel<00:08:20.000><c> is</c><00:08:20.160><c> a</c><00:08:20.319><c> homogeneous</c><00:08:21.039><c> material</c><00:08:21.520><c> so</c><00:08:22.240><c> it</c> steel is a homogeneous material so it steel is a homogeneous material so it behaves<00:08:22.960><c> in</c><00:08:23.199><c> the</c><00:08:23.440><c> same</c><00:08:23.680><c> d</c><00:08:24.400><c> way</c><00:08:24.800><c> under</c><00:08:25.199><c> tension</c> behaves in the same d way under tension behaves in the same d way under tension or<00:08:25.840><c> in</c><00:08:26.080><c> under</c><00:08:26.479><c> compression.</c> or in under compression. or in under compression. So<00:08:28.479><c> here</c><00:08:28.879><c> this</c><00:08:29.120><c> is</c><00:08:29.360><c> showing</c><00:08:29.599><c> the</c><00:08:29.840><c> stress</c> So here this is showing the stress So here this is showing the stress strain<00:08:30.639><c> curve</c><00:08:31.120><c> for</c><00:08:32.240><c> mild</c><00:08:32.719><c> steel.</c><00:08:33.279><c> Okay,</c><00:08:33.680><c> for</c> strain curve for mild steel. Okay, for strain curve for mild steel. Okay, for mild<00:08:34.399><c> steel</c><00:08:34.719><c> we</c><00:08:34.959><c> can</c><00:08:35.120><c> see</c><00:08:35.279><c> that</c><00:08:35.519><c> we</c><00:08:35.839><c> reach</c><00:08:36.080><c> a</c> mild steel we can see that we reach a mild steel we can see that we reach a maximum<00:08:36.800><c> value</c><00:08:37.120><c> here</c><00:08:37.440><c> which</c><00:08:37.680><c> is</c><00:08:37.919><c> the</c><00:08:38.320><c> F</c><00:08:38.640><c> yield</c> maximum value here which is the F yield maximum value here which is the F yield the<00:08:39.200><c> yield</c><00:08:39.919><c> stress</c><00:08:40.800><c> and</c><00:08:41.039><c> then</c><00:08:41.279><c> we</c><00:08:41.519><c> have</c><00:08:41.680><c> a</c> the yield stress and then we have a the yield stress and then we have a horizontal<00:08:42.560><c> almost</c><00:08:42.959><c> horizontal</c><00:08:43.680><c> value</c><00:08:44.159><c> then</c> horizontal almost horizontal value then horizontal almost horizontal value then we<00:08:44.640><c> have</c><00:08:45.600><c> uh</c><00:08:45.760><c> a</c><00:08:46.000><c> small</c><00:08:46.399><c> increase</c><00:08:46.800><c> at</c><00:08:47.279><c> the</c><00:08:47.519><c> end.</c> we have uh a small increase at the end. we have uh a small increase at the end. This<00:08:48.320><c> is</c><00:08:48.480><c> for</c><00:08:48.959><c> mild</c><00:08:49.440><c> steel</c><00:08:50.160><c> and</c><00:08:50.399><c> also</c><00:08:50.640><c> we</c><00:08:50.880><c> have</c> This is for mild steel and also we have This is for mild steel and also we have another<00:08:51.519><c> type</c><00:08:51.760><c> of</c><00:08:52.000><c> steel</c><00:08:52.399><c> called</c><00:08:52.959><c> high</c><00:08:53.279><c> yield</c> another type of steel called high yield another type of steel called high yield steel<00:08:54.080><c> or</c><00:08:54.320><c> high</c><00:08:54.640><c> strength</c><00:08:55.120><c> steel</c><00:08:55.760><c> and</c><00:08:56.000><c> we</c><00:08:56.240><c> can</c> steel or high strength steel and we can steel or high strength steel and we can see<00:08:56.560><c> here</c><00:08:57.360><c> both</c><00:08:57.600><c> of</c><00:08:57.760><c> the</c><00:08:58.320><c> two</c><00:08:59.120><c> uh</c><00:08:59.360><c> types</c><00:08:59.680><c> of</c> see here both of the two uh types of see here both of the two uh types of steel<00:09:00.240><c> they</c><00:09:00.560><c> have</c><00:09:00.640><c> the</c><00:09:00.880><c> same</c><00:09:01.040><c> slope</c><00:09:01.440><c> here.</c><00:09:01.680><c> So</c> steel they have the same slope here. So steel they have the same slope here. So it<00:09:02.000><c> means</c><00:09:02.160><c> the</c><00:09:02.320><c> modulus</c><00:09:02.800><c> or</c><00:09:03.040><c> 60</c><00:09:03.360><c> is</c><00:09:03.519><c> similar</c> it means the modulus or 60 is similar it means the modulus or 60 is similar but<00:09:04.640><c> it</c><00:09:04.959><c> has</c><00:09:05.279><c> for</c><00:09:05.600><c> high</c><00:09:05.839><c> yield</c><00:09:06.160><c> steel</c><00:09:06.480><c> it</c><00:09:06.720><c> has</c> but it has for high yield steel it has but it has for high yield steel it has higher<00:09:07.760><c> stresses</c><00:09:08.560><c> and</c><00:09:08.880><c> we</c><00:09:09.040><c> can</c><00:09:09.200><c> see</c><00:09:09.360><c> that</c><00:09:09.839><c> no</c> higher stresses and we can see that no higher stresses and we can see that no clear clear clear uh<00:09:12.320><c> yielding</c><00:09:13.120><c> as</c><00:09:13.440><c> in</c><00:09:13.680><c> the</c><00:09:13.920><c> case</c><00:09:14.080><c> of</c><00:09:14.240><c> mild</c> uh yielding as in the case of mild uh yielding as in the case of mild steel.<00:09:15.120><c> So</c><00:09:15.279><c> how</c><00:09:15.519><c> they</c><00:09:15.760><c> measure</c><00:09:16.320><c> the</c><00:09:16.560><c> yield</c><00:09:16.800><c> or</c> steel. So how they measure the yield or steel. So how they measure the yield or how<00:09:17.200><c> they</c><00:09:17.440><c> calculate</c><00:09:17.839><c> the</c><00:09:18.000><c> yield</c><00:09:18.480><c> stress</c><00:09:19.760><c> uh</c> how they calculate the yield stress uh how they calculate the yield stress uh in<00:09:20.480><c> high</c><00:09:20.720><c> yield</c><00:09:21.200><c> steel.</c><00:09:22.000><c> Okay.</c><00:09:22.399><c> What</c><00:09:22.640><c> they</c><00:09:22.880><c> do</c> in high yield steel. Okay. What they do in high yield steel. Okay. What they do they<00:09:23.440><c> draw</c><00:09:24.000><c> a</c><00:09:24.240><c> line</c><00:09:24.800><c> parall</c><00:09:25.200><c> to</c><00:09:25.440><c> the</c><00:09:25.600><c> initial</c> they draw a line parall to the initial they draw a line parall to the initial part<00:09:26.320><c> of</c><00:09:26.480><c> the</c><00:09:26.720><c> stress</c><00:09:27.120><c> strain</c><00:09:27.519><c> curve</c><00:09:28.160><c> at</c><00:09:28.640><c> 0.002</c> part of the stress strain curve at 0.002 part of the stress strain curve at 0.002 002<00:09:30.480><c> uh</c><00:09:30.720><c> strains</c><00:09:31.360><c> until</c><00:09:31.760><c> it</c><00:09:32.000><c> intersects</c><00:09:32.560><c> with</c> 002 uh strains until it intersects with 002 uh strains until it intersects with the<00:09:32.959><c> section</c><00:09:33.279><c> and</c><00:09:33.440><c> from</c><00:09:33.680><c> that</c><00:09:33.920><c> we</c><00:09:34.160><c> can</c><00:09:34.320><c> get</c><00:09:34.720><c> the</c> the section and from that we can get the the section and from that we can get the value<00:09:35.440><c> here</c><00:09:35.920><c> that</c><00:09:36.240><c> we</c><00:09:36.399><c> can</c><00:09:36.640><c> consider</c><00:09:37.120><c> as</c><00:09:37.360><c> yield</c> value here that we can consider as yield value here that we can consider as yield stress<00:09:38.640><c> in</c><00:09:39.120><c> this</c><00:09:39.440><c> high</c><00:09:39.680><c> yield</c><00:09:40.160><c> steel.</c><00:09:40.959><c> So</c> stress in this high yield steel. So stress in this high yield steel. So again<00:09:41.920><c> these</c><00:09:42.320><c> curves</c><00:09:42.720><c> are</c><00:09:42.959><c> difficult</c><00:09:43.360><c> to</c><00:09:43.600><c> be</c> again these curves are difficult to be again these curves are difficult to be used<00:09:44.640><c> to</c><00:09:45.040><c> analyze</c><00:09:45.680><c> and</c><00:09:45.920><c> design</c><00:09:46.240><c> of</c><00:09:46.480><c> reinforced</c> used to analyze and design of reinforced used to analyze and design of reinforced concrete<00:09:47.440><c> section</c><00:09:47.839><c> and</c><00:09:48.080><c> therefore</c><00:09:48.720><c> the</c><00:09:49.040><c> codes</c> concrete section and therefore the codes concrete section and therefore the codes need<00:09:49.839><c> to</c><00:09:50.080><c> simplify</c><00:09:50.640><c> this</c><00:09:51.200><c> and</c><00:09:51.440><c> get</c><00:09:51.920><c> an</c> need to simplify this and get an need to simplify this and get an idealized<00:09:52.959><c> stress</c><00:09:53.360><c> strain</c><00:09:53.680><c> curve</c><00:09:54.160><c> for</c><00:09:54.560><c> steel.</c> idealized stress strain curve for steel. idealized stress strain curve for steel. What<00:09:55.120><c> is</c><00:09:55.279><c> this</c><00:09:55.519><c> idealized</c><00:09:56.240><c> stress</c><00:09:56.560><c> strain</c> What is this idealized stress strain What is this idealized stress strain curve<00:09:57.120><c> for</c><00:09:57.279><c> a</c><00:09:57.360><c> steel?</c><00:09:57.600><c> You</c><00:09:57.839><c> can</c><00:09:58.000><c> see</c><00:09:58.480><c> it</c><00:09:58.720><c> is</c> curve for a steel? You can see it is curve for a steel? You can see it is only<00:09:59.279><c> a</c><00:09:59.600><c> straight</c><00:10:00.320><c> two</c><00:10:00.640><c> straight</c><00:10:00.959><c> parts</c> only a straight two straight parts only a straight two straight parts connected<00:10:01.839><c> together.</c><00:10:02.399><c> The</c><00:10:02.640><c> first</c><00:10:02.880><c> part</c><00:10:03.360><c> here</c> connected together. The first part here connected together. The first part here it<00:10:04.240><c> is</c><00:10:04.720><c> straight</c><00:10:05.279><c> and</c><00:10:05.680><c> inclined</c><00:10:06.240><c> part</c><00:10:06.640><c> until</c> it is straight and inclined part until it is straight and inclined part until reaching<00:10:07.519><c> a</c><00:10:07.760><c> maximum</c><00:10:08.160><c> value.</c><00:10:08.560><c> Then</c><00:10:08.800><c> it</c><00:10:08.959><c> goes</c> reaching a maximum value. Then it goes reaching a maximum value. Then it goes strain<00:10:09.920><c> until</c><00:10:10.640><c> failure.</c><00:10:11.519><c> So</c><00:10:11.839><c> what</c><00:10:12.160><c> are</c><00:10:12.320><c> the</c> strain until failure. So what are the strain until failure. So what are the important<00:10:13.040><c> values</c><00:10:13.360><c> in</c><00:10:13.600><c> this</c><00:10:14.640><c> strain</c><00:10:15.360><c> curve</c><00:10:15.680><c> of</c> important values in this strain curve of important values in this strain curve of steer<00:10:16.160><c> reinforcement</c><00:10:16.880><c> according</c><00:10:17.279><c> to</c><00:10:17.519><c> the</c><00:10:17.839><c> BS</c> steer reinforcement according to the BS steer reinforcement according to the BS code.<00:10:18.959><c> The</c><00:10:19.279><c> maximum</c><00:10:19.680><c> value</c><00:10:20.000><c> here</c><00:10:20.320><c> equals</c><00:10:20.880><c> F</c> code. The maximum value here equals F code. The maximum value here equals F yield<00:10:21.600><c> divided</c><00:10:22.079><c> by</c><00:10:22.240><c> gamma</c><00:10:22.720><c> m.</c><00:10:23.360><c> So</c><00:10:23.680><c> fy</c><00:10:24.240><c> here</c><00:10:24.480><c> it</c> yield divided by gamma m. So fy here it yield divided by gamma m. So fy here it means<00:10:24.959><c> the</c><00:10:25.200><c> yield</c><00:10:25.680><c> stress</c><00:10:26.720><c> and</c><00:10:26.959><c> this</c><00:10:27.200><c> yield</c> means the yield stress and this yield means the yield stress and this yield stress<00:10:28.079><c> will</c><00:10:28.560><c> depends</c><00:10:28.959><c> on</c><00:10:29.200><c> the</c><00:10:29.920><c> type</c><00:10:30.240><c> of</c><00:10:30.399><c> the</c> stress will depends on the type of the stress will depends on the type of the steel<00:10:30.880><c> we</c><00:10:31.120><c> are</c><00:10:31.279><c> using.</c><00:10:31.680><c> For</c><00:10:31.920><c> high</c><00:10:32.160><c> yield</c><00:10:32.560><c> steel</c> steel we are using. For high yield steel steel we are using. For high yield steel you<00:10:33.040><c> have</c><00:10:33.200><c> a</c><00:10:33.360><c> higher</c><00:10:33.680><c> yield</c><00:10:34.000><c> distress.</c> you have a higher yield distress. you have a higher yield distress. What<00:10:35.920><c> is</c><00:10:36.079><c> gamma</c><00:10:36.480><c> m?</c><00:10:36.720><c> Gamma</c><00:10:37.040><c> m</c><00:10:37.279><c> again</c><00:10:37.600><c> it</c><00:10:37.760><c> is</c><00:10:37.839><c> a</c> What is gamma m? Gamma m again it is a What is gamma m? Gamma m again it is a material<00:10:38.399><c> safety</c><00:10:38.800><c> factor</c><00:10:39.279><c> but</c><00:10:40.079><c> the</c><00:10:40.320><c> material</c> material safety factor but the material material safety factor but the material safety<00:10:41.040><c> factor</c><00:10:41.440><c> for</c><00:10:41.760><c> steel</c><00:10:42.240><c> equals</c><00:10:42.800><c> 1.05.</c><00:10:44.160><c> So</c> safety factor for steel equals 1.05. So safety factor for steel equals 1.05. So it<00:10:44.560><c> is</c><00:10:44.640><c> much</c><00:10:44.959><c> lower</c><00:10:45.279><c> than</c><00:10:45.440><c> the</c><00:10:45.680><c> material</c> it is much lower than the material it is much lower than the material safety<00:10:46.480><c> factor</c><00:10:46.800><c> of</c><00:10:47.040><c> concrete</c><00:10:47.519><c> which</c><00:10:47.760><c> was</c><00:10:48.079><c> 1.5.</c> safety factor of concrete which was 1.5. safety factor of concrete which was 1.5. Here<00:10:49.519><c> it</c><00:10:49.760><c> is</c><00:10:49.920><c> only</c><00:10:50.240><c> 1.05.</c> Here it is only 1.05. Here it is only 1.05. And<00:10:52.720><c> why</c><00:10:52.959><c> it</c><00:10:53.200><c> is</c><00:10:53.440><c> a</c><00:10:53.680><c> small</c><00:10:54.000><c> value</c><00:10:54.320><c> like</c><00:10:54.560><c> this?</c> And why it is a small value like this? And why it is a small value like this? Because<00:10:55.279><c> the</c><00:10:55.519><c> steel</c><00:10:55.839><c> reinforcement</c><00:10:56.480><c> is</c><00:10:56.720><c> made</c> Because the steel reinforcement is made Because the steel reinforcement is made under<00:10:57.279><c> good</c><00:10:57.519><c> quality</c><00:10:57.920><c> control</c><00:10:58.320><c> in</c><00:10:58.800><c> factories.</c> under good quality control in factories. under good quality control in factories. So<00:10:59.760><c> there</c><00:11:00.000><c> is</c><00:11:00.560><c> no</c><00:11:00.800><c> big</c><00:11:01.120><c> difference</c><00:11:01.519><c> between</c> So there is no big difference between So there is no big difference between the<00:11:02.720><c> uh</c><00:11:03.120><c> strain</c><00:11:03.519><c> or</c><00:11:03.760><c> the</c><00:11:04.399><c> yield</c><00:11:04.959><c> strength</c><00:11:05.600><c> of</c> the uh strain or the yield strength of the uh strain or the yield strength of different<00:11:06.399><c> bar.</c><00:11:06.880><c> So</c><00:11:07.279><c> therefore</c><00:11:07.680><c> they</c><00:11:08.000><c> use</c><00:11:08.560><c> a</c> different bar. So therefore they use a different bar. So therefore they use a small<00:11:09.279><c> value</c><00:11:09.600><c> or</c><00:11:10.000><c> a</c><00:11:10.320><c> material</c><00:11:10.800><c> safety</c><00:11:11.200><c> factor</c> small value or a material safety factor small value or a material safety factor with<00:11:12.160><c> close</c><00:11:12.399><c> to</c><00:11:12.800><c> one.</c><00:11:13.519><c> So</c><00:11:13.760><c> again</c><00:11:14.240><c> let's</c><00:11:15.519><c> get</c> with close to one. So again let's get with close to one. So again let's get this<00:11:16.240><c> one</c><00:11:16.560><c> and</c><00:11:16.800><c> substitute</c><00:11:17.279><c> the</c><00:11:17.519><c> value</c><00:11:17.760><c> of</c> this one and substitute the value of this one and substitute the value of gamma<00:11:18.240><c> m</c><00:11:18.480><c> by</c><00:11:18.640><c> 1.05.</c><00:11:20.000><c> So</c><00:11:20.399><c> Field</c><00:11:21.040><c> divided</c><00:11:21.519><c> by</c> gamma m by 1.05. So Field divided by gamma m by 1.05. So Field divided by 1.05<00:11:22.720><c> will</c><00:11:22.959><c> equals</c><00:11:23.680><c> approximately</c><00:11:24.640><c> 0.95</c> 1.05 will equals approximately 0.95 1.05 will equals approximately 0.95 Field.<00:11:27.040><c> So</c><00:11:27.279><c> this</c><00:11:27.600><c> means</c><00:11:27.920><c> that</c><00:11:28.480><c> the</c><00:11:28.720><c> maximum</c> Field. So this means that the maximum Field. So this means that the maximum stress<00:11:29.600><c> that</c><00:11:29.839><c> can</c><00:11:30.000><c> be</c><00:11:30.160><c> reached</c><00:11:30.800><c> or</c><00:11:31.040><c> can</c><00:11:31.279><c> be</c><00:11:31.760><c> uh</c> stress that can be reached or can be uh stress that can be reached or can be uh carried<00:11:32.320><c> by</c><00:11:32.720><c> the</c><00:11:33.920><c> steel</c><00:11:34.399><c> bar</c><00:11:34.720><c> equals</c><00:11:35.519><c> 95%</c><00:11:36.640><c> of</c> carried by the steel bar equals 95% of carried by the steel bar equals 95% of the<00:11:37.279><c> F</c><00:11:37.600><c> yield</c><00:11:38.240><c> this</c><00:11:38.880><c> additional</c><00:11:39.440><c> 5%</c><00:11:40.240><c> is</c><00:11:40.480><c> only</c> the F yield this additional 5% is only the F yield this additional 5% is only for<00:11:40.959><c> the</c><00:11:41.200><c> safety</c><00:11:41.839><c> factor.</c><00:11:42.720><c> Okay.</c><00:11:43.040><c> So</c><00:11:43.279><c> this</c><00:11:43.440><c> is</c> for the safety factor. Okay. So this is for the safety factor. Okay. So this is the<00:11:43.839><c> maximum</c><00:11:44.720><c> 95</c><00:11:45.360><c> F</c><00:11:45.760><c> yield.</c><00:11:46.640><c> And</c><00:11:47.200><c> uh</c><00:11:47.440><c> of</c><00:11:47.680><c> course</c> the maximum 95 F yield. And uh of course the maximum 95 F yield. And uh of course at<00:11:48.240><c> this</c><00:11:48.480><c> value</c><00:11:48.800><c> also</c><00:11:49.040><c> we</c><00:11:49.279><c> can</c><00:11:49.440><c> calculate</c><00:11:49.839><c> the</c> at this value also we can calculate the at this value also we can calculate the strain<00:11:51.040><c> yield</c><00:11:51.519><c> strain</c><00:11:51.839><c> of</c><00:11:52.079><c> the</c><00:11:52.320><c> steel</c> strain yield strain of the steel strain yield strain of the steel reinforcement. reinforcement. reinforcement. And<00:11:55.120><c> this</c><00:11:55.360><c> is</c><00:11:55.519><c> the</c><00:11:55.839><c> yield</c><00:11:56.320><c> strain</c><00:11:56.800><c> and</c><00:11:57.040><c> we</c><00:11:57.200><c> can</c> And this is the yield strain and we can And this is the yield strain and we can get<00:11:57.519><c> it</c><00:11:57.760><c> by</c><00:11:58.000><c> dividing</c><00:11:58.560><c> the</c><00:11:58.800><c> stress</c><00:11:59.440><c> divided</c><00:11:59.920><c> by</c> get it by dividing the stress divided by get it by dividing the stress divided by the<00:12:00.160><c> modulus</c><00:12:00.720><c> or</c><00:12:00.959><c> 60.</c><00:12:01.680><c> And</c><00:12:01.839><c> we</c><00:12:02.079><c> can</c><00:12:02.240><c> get</c><00:12:02.399><c> the</c> the modulus or 60. And we can get the the modulus or 60. And we can get the yield<00:12:03.040><c> strain.</c><00:12:03.920><c> Of</c><00:12:04.160><c> course</c><00:12:04.640><c> the</c><00:12:05.440><c> uh</c><00:12:05.680><c> slope</c><00:12:06.079><c> of</c> yield strain. Of course the uh slope of yield strain. Of course the uh slope of this<00:12:06.560><c> curve</c><00:12:06.880><c> which</c><00:12:07.120><c> is</c><00:12:07.279><c> the</c><00:12:07.440><c> stress</c><00:12:07.839><c> over</c> this curve which is the stress over this curve which is the stress over strain<00:12:08.800><c> equals</c><00:12:09.200><c> the</c><00:12:09.440><c> modus</c><00:12:09.920><c> or</c><00:12:10.240><c> 60</c><00:12:10.480><c> of</c><00:12:10.639><c> the</c> strain equals the modus or 60 of the strain equals the modus or 60 of the steel.<00:12:11.360><c> And</c><00:12:11.600><c> we</c><00:12:11.839><c> can</c><00:12:11.920><c> see</c><00:12:12.079><c> here</c><00:12:12.320><c> it</c><00:12:12.560><c> is</c><00:12:12.720><c> a</c> steel. And we can see here it is a steel. And we can see here it is a constant<00:12:13.440><c> value</c><00:12:14.000><c> 200</c><00:12:14.800><c> kon</c><00:12:15.200><c> newton</c><00:12:15.519><c> per</c><00:12:15.680><c> millm</c> constant value 200 kon newton per millm constant value 200 kon newton per millm squared.<00:12:17.040><c> So</c><00:12:17.279><c> it</c><00:12:17.600><c> is</c><00:12:17.760><c> very</c><00:12:18.000><c> important</c><00:12:18.480><c> here</c><00:12:18.720><c> to</c> squared. So it is very important here to squared. So it is very important here to mention<00:12:19.360><c> that</c><00:12:20.160><c> for</c><00:12:20.560><c> all</c><00:12:20.959><c> or</c><00:12:21.279><c> different</c><00:12:21.680><c> types</c> mention that for all or different types mention that for all or different types of<00:12:22.240><c> steel</c><00:12:22.639><c> the</c><00:12:22.959><c> modus</c><00:12:23.519><c> or</c><00:12:23.839><c> 60</c><00:12:24.079><c> is</c><00:12:24.240><c> a</c><00:12:24.480><c> constant</c> of steel the modus or 60 is a constant of steel the modus or 60 is a constant value.<00:12:25.760><c> The</c><00:12:26.000><c> E</c><00:12:26.959><c> is</c><00:12:27.600><c> 200</c><00:12:28.320><c> kon</c><00:12:28.959><c> per</c><00:12:29.360><c> mm²</c><00:12:30.320><c> and</c><00:12:30.560><c> this</c> value. The E is 200 kon per mm² and this value. The E is 200 kon per mm² and this is<00:12:31.040><c> for</c><00:12:31.920><c> different</c><00:12:32.480><c> types</c><00:12:32.959><c> or</c><00:12:33.279><c> different</c> is for different types or different is for different types or different categories<00:12:34.079><c> of</c><00:12:34.320><c> steel.</c><00:12:34.800><c> So</c><00:12:35.040><c> if</c><00:12:35.279><c> we</c><00:12:35.440><c> assume</c> categories of steel. So if we assume categories of steel. So if we assume that<00:12:36.000><c> this</c><00:12:36.240><c> is</c><00:12:36.320><c> the</c><00:12:36.480><c> mild</c><00:12:36.959><c> steel</c><00:12:38.079><c> the</c><00:12:38.320><c> Field</c> that this is the mild steel the Field that this is the mild steel the Field for<00:12:39.040><c> the</c><00:12:39.200><c> mild</c><00:12:39.600><c> steel</c><00:12:39.920><c> it</c><00:12:40.160><c> is</c><00:12:40.320><c> 250</c><00:12:41.120><c> megapascal</c> for the mild steel it is 250 megapascal for the mild steel it is 250 megapascal or<00:12:42.079><c> Newton</c><00:12:42.399><c> per</c><00:12:42.639><c> millm</c><00:12:43.120><c> squared</c><00:12:43.760><c> and</c><00:12:44.000><c> for</c><00:12:44.160><c> the</c> or Newton per millm squared and for the or Newton per millm squared and for the other<00:12:44.639><c> type</c><00:12:44.880><c> of</c><00:12:45.120><c> steel</c><00:12:45.519><c> which</c><00:12:45.760><c> is</c><00:12:45.839><c> the</c><00:12:46.079><c> high</c> other type of steel which is the high other type of steel which is the high yield<00:12:46.639><c> or</c><00:12:46.880><c> high</c><00:12:47.200><c> strength</c><00:12:47.680><c> steel</c><00:12:48.000><c> the</c><00:12:48.160><c> F</c><00:12:48.480><c> yield</c> yield or high strength steel the F yield yield or high strength steel the F yield equals<00:12:49.360><c> 460</c><00:12:50.639><c> megapascal.</c><00:12:51.920><c> What</c><00:12:52.160><c> we</c><00:12:52.320><c> can</c><00:12:52.480><c> see</c> equals 460 megapascal. What we can see equals 460 megapascal. What we can see here<00:12:52.959><c> from</c><00:12:53.200><c> the</c><00:12:53.360><c> two</c><00:12:53.600><c> curve</c><00:12:54.000><c> that</c><00:12:54.240><c> both</c><00:12:54.399><c> of</c> here from the two curve that both of here from the two curve that both of them<00:12:54.720><c> they</c><00:12:55.040><c> have</c><00:12:55.279><c> exactly</c><00:12:56.000><c> the</c><00:12:56.240><c> same</c><00:12:56.480><c> slope.</c> them they have exactly the same slope. them they have exactly the same slope. So<00:12:57.279><c> for</c><00:12:57.600><c> different</c><00:12:57.920><c> categories</c><00:12:58.480><c> of</c><00:12:58.720><c> steel</c> So for different categories of steel So for different categories of steel mild<00:13:00.800><c> steel</c><00:13:01.120><c> or</c><00:13:01.360><c> high</c><00:13:01.519><c> yield</c><00:13:01.920><c> steel</c><00:13:02.399><c> we</c><00:13:02.800><c> always</c> mild steel or high yield steel we always mild steel or high yield steel we always assume<00:13:03.680><c> that</c><00:13:03.920><c> the</c><00:13:04.160><c> modus</c><00:13:04.639><c> or</c><00:13:04.959><c> 60</c><00:13:05.279><c> will</c><00:13:05.519><c> be</c><00:13:05.680><c> the</c> assume that the modus or 60 will be the assume that the modus or 60 will be the same<00:13:06.079><c> value</c><00:13:06.959><c> 200</c><00:13:07.680><c> kon</c><00:13:08.320><c> per</c><00:13:08.560><c> millm</c><00:13:09.040><c> squared</c><00:13:09.519><c> but</c> same value 200 kon per millm squared but same value 200 kon per millm squared but the<00:13:09.920><c> difference</c><00:13:10.240><c> between</c><00:13:10.720><c> will</c><00:13:11.040><c> be</c><00:13:11.360><c> for</c><00:13:11.600><c> the</c> the difference between will be for the the difference between will be for the yield<00:13:12.639><c> strength</c><00:13:14.000><c> this</c><00:13:14.240><c> is</c><00:13:14.480><c> 250</c><00:13:15.360><c> the</c><00:13:15.600><c> yield</c> yield strength this is 250 the yield yield strength this is 250 the yield strength<00:13:16.320><c> for</c><00:13:16.480><c> high</c><00:13:16.720><c> yield</c><00:13:17.120><c> steel</c><00:13:17.360><c> is</c><00:13:17.680><c> 460</c><00:13:18.800><c> and</c> strength for high yield steel is 460 and strength for high yield steel is 460 and therefore<00:13:19.760><c> the</c><00:13:20.880><c> yield</c><00:13:21.360><c> strain</c><00:13:22.160><c> here</c><00:13:22.480><c> will</c><00:13:22.800><c> be</c> therefore the yield strain here will be therefore the yield strain here will be different<00:13:23.760><c> that</c><00:13:24.000><c> from</c><00:13:24.320><c> the</c><00:13:24.560><c> yield</c><00:13:24.880><c> strain</c><00:13:25.200><c> of</c> different that from the yield strain of different that from the yield strain of the<00:13:25.600><c> high</c><00:13:25.920><c> yield</c><00:13:26.480><c> steel</c><00:13:26.639><c> steel.</c><00:13:27.519><c> This</c><00:13:27.839><c> is</c><00:13:28.000><c> the</c> the high yield steel steel. This is the the high yield steel steel. This is the idealized<00:13:29.120><c> stress</c><00:13:29.440><c> strain</c><00:13:29.760><c> care</c><00:13:30.000><c> for</c><00:13:30.320><c> steel</c> idealized stress strain care for steel idealized stress strain care for steel under<00:13:30.959><c> tension</c><00:13:31.360><c> or</c><00:13:31.600><c> under</c><00:13:31.920><c> compression.</c><00:13:32.560><c> It</c> under tension or under compression. It under tension or under compression. It is<00:13:33.120><c> the</c><00:13:33.440><c> same.</c><00:13:34.160><c> This</c><00:13:34.399><c> will</c><00:13:34.639><c> be</c><00:13:34.880><c> the</c><00:13:35.120><c> end</c><00:13:35.279><c> of</c><00:13:35.839><c> our</c> is the same. This will be the end of our is the same. This will be the end of our lecture<00:13:36.959><c> today.</c><00:13:38.000><c> Uh</c><00:13:38.399><c> if</c><00:13:38.560><c> you</c><00:13:38.720><c> like</c><00:13:38.880><c> the</c> lecture today. Uh if you like the lecture today. Uh if you like the lecture,<00:13:39.519><c> please</c><00:13:39.839><c> like,</c><00:13:40.240><c> subscribe</c><00:13:41.040><c> and</c> lecture, please like, subscribe and lecture, please like, subscribe and click<00:13:42.240><c> uh</c><00:13:42.399><c> the</c><00:13:42.639><c> bell</c><00:13:42.880><c> to</c><00:13:43.040><c> receive</c><00:13:43.519><c> all</c><00:13:44.160><c> new</c> click uh the bell to receive all new click uh the bell to receive all new videos.<00:13:45.519><c> Thank</c><00:13:45.760><c> you</c><00:13:46.079><c> and</c><00:13:46.399><c> follow</c><00:13:46.639><c> me</c><00:13:46.880><c> to</c><00:13:47.279><c> see</c> videos. Thank you and follow me to see videos. Thank you and follow me to see the<00:13:47.920><c> coming</c><00:13:48.240><c> videos.</c><00:13:48.880><c> And</c><00:13:50.160><c> uh</c><00:13:50.560><c> goodbye.</c>
|
3
|
RzpS9ZYH44I
|
Understand Reinforced Concrete Design - Analysis of RC Sections - BS8110
|
https://www.youtube.com/watch?v=RzpS9ZYH44I
|
Understand_Reinforced_Concrete_Design_-_Analysis_of_RC_Sections_-_BS8110.en.vtt
|
Hello<00:00:00.320><c> everyone.</c><00:00:01.360><c> This</c><00:00:01.600><c> is</c><00:00:01.680><c> Dr.</c><00:00:02.000><c> Shriil</c><00:00:02.480><c> Gaml</c> Hello everyone. This is Dr. Shriil Gaml Hello everyone. This is Dr. Shriil Gaml and<00:00:03.360><c> today</c><00:00:03.679><c> we</c><00:00:03.919><c> are</c><00:00:04.080><c> going</c><00:00:04.240><c> to</c><00:00:04.400><c> continue</c><00:00:04.720><c> our</c> and today we are going to continue our and today we are going to continue our videos<00:00:05.440><c> about</c><00:00:06.720><c> uh</c><00:00:07.040><c> reinforced</c><00:00:07.680><c> concrete</c> videos about uh reinforced concrete videos about uh reinforced concrete design<00:00:08.960><c> according</c><00:00:09.360><c> to</c><00:00:09.519><c> the</c><00:00:09.760><c> BS</c><00:00:10.160><c> code.</c><00:00:10.880><c> In</c> design according to the BS code. In design according to the BS code. In today's<00:00:11.360><c> video</c><00:00:11.759><c> we</c><00:00:11.920><c> will</c><00:00:12.080><c> be</c><00:00:12.240><c> talking</c><00:00:12.559><c> about</c> today's video we will be talking about today's video we will be talking about the<00:00:13.280><c> analysis</c><00:00:13.759><c> of</c><00:00:13.920><c> reinforced</c><00:00:14.639><c> concrete</c> the analysis of reinforced concrete the analysis of reinforced concrete sections<00:00:16.560><c> under</c><00:00:17.119><c> flexual</c><00:00:17.840><c> loading.</c><00:00:19.199><c> If</c><00:00:19.439><c> we</c> sections under flexual loading. If we sections under flexual loading. If we have<00:00:19.680><c> a</c><00:00:20.160><c> simply</c><00:00:20.640><c> supported</c><00:00:21.119><c> beam</c><00:00:21.359><c> as</c><00:00:21.600><c> we</c><00:00:21.760><c> can</c> have a simply supported beam as we can have a simply supported beam as we can see<00:00:22.400><c> and</c><00:00:22.560><c> if</c><00:00:22.720><c> we</c><00:00:22.880><c> apply</c><00:00:23.199><c> some</c><00:00:23.359><c> load</c><00:00:23.600><c> on</c><00:00:23.840><c> this</c> see and if we apply some load on this see and if we apply some load on this beam<00:00:24.320><c> so</c><00:00:24.480><c> the</c><00:00:24.720><c> beam</c><00:00:24.960><c> will</c><00:00:25.119><c> deflect.</c><00:00:26.240><c> This</c><00:00:26.480><c> will</c> beam so the beam will deflect. This will beam so the beam will deflect. This will result<00:00:27.119><c> in</c><00:00:28.560><c> tensile</c><00:00:29.279><c> forces</c><00:00:29.679><c> at</c><00:00:29.920><c> the</c><00:00:30.080><c> bottom</c> result in tensile forces at the bottom result in tensile forces at the bottom layer<00:00:30.640><c> of</c><00:00:30.720><c> the</c><00:00:30.880><c> beam</c><00:00:31.279><c> and</c><00:00:32.559><c> compressive</c><00:00:33.120><c> forces</c> layer of the beam and compressive forces layer of the beam and compressive forces at<00:00:33.760><c> the</c><00:00:33.920><c> upper</c><00:00:34.399><c> layers</c><00:00:34.640><c> of</c><00:00:34.800><c> the</c><00:00:34.960><c> beam.</c><00:00:35.520><c> So</c><00:00:35.680><c> if</c> at the upper layers of the beam. So if at the upper layers of the beam. So if we<00:00:36.000><c> take</c><00:00:36.160><c> a</c><00:00:36.320><c> section</c><00:00:36.960><c> of</c><00:00:37.200><c> this</c><00:00:37.440><c> beam,</c><00:00:37.840><c> we'll</c> we take a section of this beam, we'll we take a section of this beam, we'll find<00:00:38.399><c> that</c><00:00:39.200><c> the</c><00:00:39.760><c> stress</c><00:00:40.480><c> distribution</c><00:00:41.120><c> at</c><00:00:41.440><c> the</c> find that the stress distribution at the find that the stress distribution at the initial<00:00:42.640><c> uh</c><00:00:42.800><c> loading</c><00:00:43.280><c> stages</c><00:00:43.680><c> will</c><00:00:44.000><c> be</c><00:00:45.040><c> uh</c> initial uh loading stages will be uh initial uh loading stages will be uh triangle.<00:00:45.920><c> As</c><00:00:46.160><c> we</c><00:00:46.320><c> can</c><00:00:46.480><c> see</c><00:00:47.039><c> under</c><00:00:47.920><c> under</c><00:00:48.160><c> the</c> triangle. As we can see under under the triangle. As we can see under under the neutral<00:00:48.719><c> axis</c><00:00:49.680><c> we</c><00:00:50.000><c> have</c><00:00:50.239><c> compressive</c> neutral axis we have compressive neutral axis we have compressive uh<00:00:52.719><c> stresses.</c><00:00:53.360><c> Above</c><00:00:53.600><c> the</c><00:00:53.760><c> neutral</c><00:00:54.079><c> axis</c><00:00:54.480><c> we</c> uh stresses. Above the neutral axis we uh stresses. Above the neutral axis we have<00:00:54.879><c> tensile</c><00:00:55.520><c> stresses</c><00:00:56.000><c> and</c><00:00:56.480><c> strains.</c><00:00:57.360><c> So</c><00:00:57.520><c> if</c> have tensile stresses and strains. So if have tensile stresses and strains. So if we<00:00:58.000><c> draw</c><00:00:58.239><c> this</c><00:00:58.960><c> in</c><00:00:59.520><c> 2D,</c><00:01:00.079><c> this</c><00:01:00.239><c> is</c><00:01:00.399><c> showing</c><00:01:00.640><c> the</c> we draw this in 2D, this is showing the we draw this in 2D, this is showing the cross-section<00:01:01.440><c> and</c><00:01:01.680><c> the</c><00:01:01.840><c> reinforcement.</c> cross-section and the reinforcement. cross-section and the reinforcement. This<00:01:03.039><c> dot</c><00:01:03.359><c> line</c><00:01:03.520><c> is</c><00:01:03.760><c> the</c><00:01:03.920><c> neutral</c><00:01:04.239><c> axis.</c> This dot line is the neutral axis. This dot line is the neutral axis. So<00:01:05.680><c> the</c><00:01:05.920><c> strain</c><00:01:06.240><c> distribution</c><00:01:06.880><c> will</c><00:01:07.200><c> be</c> So the strain distribution will be So the strain distribution will be always<00:01:08.080><c> linear.</c> always linear. always linear. Uh<00:01:10.080><c> at</c><00:01:10.320><c> the</c><00:01:10.479><c> top</c><00:01:10.720><c> we</c><00:01:10.960><c> have</c><00:01:11.200><c> epsom</c><00:01:11.760><c> C</c><00:01:12.240><c> the</c> Uh at the top we have epsom C the Uh at the top we have epsom C the compressive<00:01:12.880><c> strength</c><00:01:13.200><c> in</c><00:01:13.360><c> the</c><00:01:13.439><c> concrete.</c><00:01:14.159><c> At</c> compressive strength in the concrete. At compressive strength in the concrete. At the<00:01:14.560><c> bottom</c><00:01:14.880><c> layer</c><00:01:15.040><c> we</c><00:01:15.200><c> have</c><00:01:15.360><c> epsomt</c><00:01:16.080><c> which</c><00:01:16.240><c> is</c> the bottom layer we have epsomt which is the bottom layer we have epsomt which is the<00:01:16.720><c> tensile</c><00:01:17.280><c> strength</c><00:01:17.600><c> in</c><00:01:17.759><c> the</c><00:01:17.920><c> concrete.</c> the tensile strength in the concrete. the tensile strength in the concrete. And<00:01:18.960><c> the</c><00:01:19.200><c> distance</c><00:01:19.520><c> from</c><00:01:19.840><c> the</c><00:01:20.000><c> compression</c> And the distance from the compression And the distance from the compression outer<00:01:21.920><c> surface</c><00:01:22.320><c> of</c><00:01:22.479><c> the</c><00:01:22.720><c> cross-section</c><00:01:23.280><c> to</c> outer surface of the cross-section to outer surface of the cross-section to the<00:01:23.600><c> neutral</c><00:01:24.000><c> axis</c><00:01:24.799><c> we</c><00:01:25.119><c> call</c><00:01:25.280><c> it</c><00:01:25.840><c> x.</c><00:01:26.960><c> So</c><00:01:27.280><c> the</c> the neutral axis we call it x. So the the neutral axis we call it x. So the strain<00:01:27.920><c> will</c><00:01:28.240><c> be</c><00:01:28.400><c> always</c><00:01:28.960><c> linear</c><00:01:29.920><c> and</c><00:01:30.720><c> before</c> strain will be always linear and before strain will be always linear and before cracking<00:01:31.840><c> the</c><00:01:32.079><c> loads</c><00:01:32.479><c> are</c><00:01:32.799><c> very</c><00:01:33.200><c> small.</c><00:01:34.240><c> So</c> cracking the loads are very small. So cracking the loads are very small. So also<00:01:34.799><c> the</c><00:01:35.119><c> stress</c><00:01:35.439><c> will</c><00:01:35.680><c> be</c><00:01:36.000><c> linear.</c><00:01:37.040><c> So</c><00:01:37.200><c> the</c> also the stress will be linear. So the also the stress will be linear. So the strain<00:01:37.680><c> is</c><00:01:37.920><c> linear</c><00:01:38.320><c> and</c><00:01:38.640><c> also</c><00:01:38.880><c> the</c><00:01:39.119><c> stress</c> strain is linear and also the stress strain is linear and also the stress will<00:01:39.600><c> be</c><00:01:39.759><c> linear</c><00:01:40.400><c> and</c><00:01:40.640><c> we</c><00:01:40.799><c> have</c><00:01:40.960><c> compressive</c> will be linear and we have compressive will be linear and we have compressive strain<00:01:41.759><c> at</c><00:01:42.000><c> the</c><00:01:42.400><c> above</c><00:01:42.640><c> the</c><00:01:42.799><c> neutral</c><00:01:43.200><c> axis</c><00:01:43.520><c> and</c> strain at the above the neutral axis and strain at the above the neutral axis and tensile<00:01:44.320><c> strains</c><00:01:44.720><c> in</c><00:01:44.880><c> the</c><00:01:44.960><c> concrete</c><00:01:45.439><c> under</c> tensile strains in the concrete under tensile strains in the concrete under the<00:01:46.640><c> neutral</c><00:01:47.439><c> axis</c><00:01:48.399><c> by</c><00:01:48.720><c> increasing</c><00:01:49.520><c> loads</c><00:01:50.560><c> and</c> the neutral axis by increasing loads and the neutral axis by increasing loads and as<00:01:51.040><c> concrete</c><00:01:51.520><c> is</c><00:01:51.680><c> weak</c><00:01:51.920><c> in</c><00:01:52.079><c> tension</c><00:01:52.560><c> so</c><00:01:52.799><c> the</c> as concrete is weak in tension so the as concrete is weak in tension so the concrete<00:01:53.520><c> under</c><00:01:53.759><c> the</c><00:01:53.920><c> neutral</c><00:01:54.240><c> axis</c><00:01:54.640><c> will</c> concrete under the neutral axis will concrete under the neutral axis will crack<00:01:55.680><c> and</c><00:01:56.000><c> only</c><00:01:56.240><c> the</c><00:01:56.479><c> forces</c><00:01:56.880><c> will</c><00:01:57.040><c> be</c> crack and only the forces will be crack and only the forces will be carried<00:01:57.920><c> the</c><00:01:58.159><c> compression</c><00:01:58.640><c> forces</c><00:01:59.040><c> will</c><00:01:59.200><c> be</c> carried the compression forces will be carried the compression forces will be carried<00:01:59.680><c> by</c><00:02:00.159><c> the</c><00:02:00.479><c> concrete</c><00:02:00.880><c> above</c><00:02:01.200><c> the</c> carried by the concrete above the carried by the concrete above the neutral<00:02:01.680><c> axis.</c><00:02:02.399><c> So</c><00:02:02.719><c> under</c><00:02:02.960><c> the</c><00:02:03.119><c> neutral</c><00:02:03.439><c> axis</c> neutral axis. So under the neutral axis neutral axis. So under the neutral axis no<00:02:04.320><c> concrete</c><00:02:05.360><c> is</c><00:02:05.600><c> there</c><00:02:05.920><c> anymore</c><00:02:06.399><c> and</c><00:02:06.640><c> all</c><00:02:06.799><c> the</c> no concrete is there anymore and all the no concrete is there anymore and all the tensile<00:02:07.439><c> forces</c><00:02:07.759><c> will</c><00:02:08.000><c> be</c><00:02:08.080><c> carried</c><00:02:08.399><c> by</c><00:02:09.039><c> the</c> tensile forces will be carried by the tensile forces will be carried by the reinforcing<00:02:10.160><c> steel</c><00:02:10.959><c> bars.</c><00:02:12.000><c> So</c><00:02:12.319><c> why</c><00:02:12.640><c> this</c><00:02:12.879><c> one</c> reinforcing steel bars. So why this one reinforcing steel bars. So why this one is<00:02:13.760><c> rectangle?</c><00:02:14.720><c> This</c><00:02:14.959><c> is</c><00:02:15.120><c> coming</c><00:02:15.360><c> from</c><00:02:15.520><c> the</c> is rectangle? This is coming from the is rectangle? This is coming from the stress<00:02:16.319><c> strain</c><00:02:17.280><c> relationship.</c><00:02:18.239><c> And</c><00:02:18.480><c> as</c><00:02:18.640><c> you</c> stress strain relationship. And as you stress strain relationship. And as you can<00:02:18.959><c> see</c><00:02:19.120><c> here</c><00:02:19.440><c> at</c><00:02:19.760><c> the</c><00:02:19.920><c> initial</c><00:02:20.319><c> levels</c><00:02:20.720><c> of</c> can see here at the initial levels of can see here at the initial levels of loading<00:02:22.400><c> the</c><00:02:22.879><c> stress</c><00:02:23.200><c> and</c><00:02:23.440><c> the</c><00:02:23.599><c> strain</c><00:02:23.920><c> is</c> loading the stress and the strain is loading the stress and the strain is almost<00:02:24.480><c> linear.</c><00:02:25.280><c> So</c><00:02:25.599><c> this</c><00:02:26.720><c> uh</c><00:02:26.959><c> triangle</c> almost linear. So this uh triangle almost linear. So this uh triangle stress<00:02:28.319><c> block</c><00:02:28.560><c> is</c><00:02:28.879><c> coming</c><00:02:29.120><c> from</c><00:02:29.599><c> this</c> stress block is coming from this stress block is coming from this triangle<00:02:30.480><c> here</c><00:02:30.879><c> because</c><00:02:31.440><c> uh</c><00:02:31.680><c> it</c><00:02:32.000><c> is</c><00:02:32.319><c> almost</c> triangle here because uh it is almost triangle here because uh it is almost linear<00:02:33.200><c> between</c><00:02:33.519><c> the</c><00:02:33.760><c> stress</c><00:02:34.080><c> and</c><00:02:34.319><c> the</c><00:02:34.480><c> strain</c> linear between the stress and the strain linear between the stress and the strain at<00:02:35.760><c> lower</c><00:02:36.160><c> loads</c><00:02:36.800><c> levels.</c><00:02:38.000><c> So</c><00:02:38.160><c> in</c><00:02:38.400><c> 2D</c><00:02:38.879><c> we</c><00:02:39.120><c> will</c> at lower loads levels. So in 2D we will at lower loads levels. So in 2D we will have<00:02:39.519><c> this</c><00:02:40.239><c> stress</c><00:02:40.640><c> and</c><00:02:40.879><c> will</c><00:02:41.040><c> be</c><00:02:41.200><c> called</c> have this stress and will be called have this stress and will be called triangle<00:02:42.480><c> stress</c><00:02:43.200><c> block.</c><00:02:44.560><c> But</c><00:02:44.800><c> at</c><00:02:45.040><c> the</c> triangle stress block. But at the triangle stress block. But at the ultimate<00:02:46.239><c> the</c><00:02:46.720><c> stress</c><00:02:47.120><c> strain</c><00:02:47.599><c> become</c> ultimate the stress strain become ultimate the stress strain become nonlinear nonlinear nonlinear and<00:02:50.319><c> we</c><00:02:50.560><c> can</c><00:02:50.640><c> see</c><00:02:50.800><c> here</c><00:02:51.120><c> the</c><00:02:51.360><c> maximum</c><00:02:51.760><c> is</c><00:02:52.000><c> 045</c> and we can see here the maximum is 045 and we can see here the maximum is 045 FCU<00:02:54.239><c> coming</c><00:02:54.560><c> from</c><00:02:55.200><c> 67</c><00:02:56.000><c> FCU</c><00:02:56.640><c> divided</c><00:02:56.959><c> by</c><00:02:57.200><c> gamma</c> FCU coming from 67 FCU divided by gamma FCU coming from 67 FCU divided by gamma m<00:02:57.840><c> which</c><00:02:58.000><c> is</c><00:02:58.239><c> 1.5</c><00:02:59.599><c> in</c><00:03:00.400><c> uh</c><00:03:00.640><c> the</c><00:03:00.959><c> bridge</c><00:03:01.360><c> standard</c> m which is 1.5 in uh the bridge standard m which is 1.5 in uh the bridge standard code. code. code. Uh<00:03:03.599><c> if</c><00:03:03.840><c> you</c><00:03:04.000><c> want</c><00:03:04.080><c> to</c><00:03:04.239><c> learn</c><00:03:04.480><c> more</c><00:03:04.720><c> about</c><00:03:04.959><c> the</c> Uh if you want to learn more about the Uh if you want to learn more about the stress<00:03:05.519><c> strain</c><00:03:06.319><c> uh</c><00:03:07.200><c> relation</c><00:03:07.599><c> of</c><00:03:07.840><c> steel</c><00:03:08.239><c> and</c> stress strain uh relation of steel and stress strain uh relation of steel and concrete<00:03:09.760><c> we</c><00:03:10.159><c> can</c><00:03:10.319><c> find</c><00:03:10.640><c> in</c><00:03:11.280><c> uh</c><00:03:11.440><c> a</c><00:03:11.760><c> previous</c> concrete we can find in uh a previous concrete we can find in uh a previous video. video. video. So<00:03:14.319><c> for</c><00:03:15.120><c> at</c><00:03:15.599><c> ultimate</c><00:03:16.319><c> the</c><00:03:17.040><c> stress</c><00:03:17.519><c> will</c><00:03:17.760><c> be</c> So for at ultimate the stress will be So for at ultimate the stress will be called<00:03:18.480><c> rectangular</c><00:03:19.120><c> parabolic.</c><00:03:20.159><c> It</c><00:03:20.400><c> will</c><00:03:20.560><c> be</c> called rectangular parabolic. It will be called rectangular parabolic. It will be similar<00:03:20.959><c> to</c><00:03:21.120><c> the</c><00:03:21.360><c> stress</c><00:03:21.760><c> strain</c><00:03:22.640><c> curve</c><00:03:23.440><c> and</c> similar to the stress strain curve and similar to the stress strain curve and instead<00:03:24.080><c> of</c><00:03:24.319><c> having</c><00:03:24.560><c> a</c><00:03:24.879><c> triangle</c><00:03:25.519><c> load</c><00:03:25.920><c> here</c> instead of having a triangle load here instead of having a triangle load here this<00:03:26.879><c> will</c><00:03:27.040><c> be</c><00:03:27.280><c> called</c><00:03:27.519><c> rectangular</c><00:03:28.400><c> uh</c> this will be called rectangular uh this will be called rectangular uh barabolic<00:03:29.440><c> and</c><00:03:29.680><c> in</c><00:03:29.920><c> 2D</c><00:03:30.400><c> it</c><00:03:30.640><c> will</c><00:03:30.959><c> be</c><00:03:31.280><c> this</c> barabolic and in 2D it will be this barabolic and in 2D it will be this shape<00:03:32.000><c> the</c><00:03:32.239><c> height</c><00:03:32.480><c> of</c><00:03:32.720><c> this</c><00:03:33.519><c> stress</c><00:03:34.000><c> is</c><00:03:34.400><c> still</c> shape the height of this stress is still shape the height of this stress is still X.<00:03:35.840><c> And</c><00:03:36.080><c> to</c><00:03:36.400><c> increase</c><00:03:36.640><c> this</c><00:03:36.879><c> one</c><00:03:37.120><c> and</c><00:03:37.360><c> enlarged</c> X. And to increase this one and enlarged X. And to increase this one and enlarged we<00:03:38.159><c> can</c><00:03:38.239><c> see</c><00:03:38.400><c> here</c><00:03:39.040><c> the</c><00:03:39.519><c> maximum</c><00:03:40.080><c> value</c><00:03:40.560><c> equals</c> we can see here the maximum value equals we can see here the maximum value equals 045<00:03:42.000><c> FCU</c><00:03:43.200><c> which</c><00:03:43.440><c> is</c><00:03:43.599><c> the</c><00:03:43.920><c> maximum</c><00:03:44.400><c> value</c><00:03:44.640><c> here.</c> 045 FCU which is the maximum value here. 045 FCU which is the maximum value here. The<00:03:45.200><c> same</c><00:03:45.360><c> height</c><00:03:45.680><c> here</c><00:03:46.000><c> equals</c><00:03:46.319><c> to</c><00:03:46.480><c> the</c><00:03:46.720><c> same</c> The same height here equals to the same The same height here equals to the same height<00:03:47.200><c> here.</c><00:03:48.000><c> So</c><00:03:48.239><c> 045</c><00:03:49.120><c> FCU</c><00:03:50.159><c> and</c><00:03:50.480><c> the</c><00:03:50.959><c> height</c> height here. So 045 FCU and the height height here. So 045 FCU and the height or<00:03:51.599><c> the</c><00:03:51.760><c> length</c><00:03:52.080><c> of</c><00:03:52.319><c> the</c><00:03:52.400><c> other</c><00:03:52.799><c> dimension</c><00:03:53.280><c> of</c> or the length of the other dimension of or the length of the other dimension of the<00:03:53.760><c> rectangular</c><00:03:54.560><c> or</c><00:03:54.799><c> the</c><00:03:55.040><c> rectangular</c> the rectangular or the rectangular the rectangular or the rectangular parabolic<00:03:56.159><c> is</c><00:03:56.720><c> the</c><00:03:57.040><c> same</c><00:03:57.200><c> value</c><00:03:57.599><c> which</c><00:03:57.840><c> is</c><00:03:58.000><c> X.</c> parabolic is the same value which is X. parabolic is the same value which is X. the<00:03:58.799><c> distance</c><00:03:59.120><c> from</c><00:03:59.360><c> the</c><00:03:59.760><c> outer</c><00:04:00.159><c> compression</c> the distance from the outer compression the distance from the outer compression surface<00:04:01.120><c> of</c><00:04:01.200><c> the</c><00:04:01.439><c> concrete</c><00:04:01.840><c> to</c><00:04:02.000><c> the</c><00:04:02.239><c> center</c><00:04:03.120><c> uh</c> surface of the concrete to the center uh surface of the concrete to the center uh line<00:04:03.680><c> or</c><00:04:03.920><c> the</c><00:04:04.560><c> uh</c><00:04:05.360><c> neutral</c><00:04:05.760><c> axis</c><00:04:06.080><c> of</c><00:04:06.319><c> the</c> line or the uh neutral axis of the line or the uh neutral axis of the reinforced<00:04:07.040><c> concrete</c><00:04:08.000><c> section.</c><00:04:09.040><c> The</c><00:04:09.280><c> problem</c> reinforced concrete section. The problem reinforced concrete section. The problem of<00:04:09.760><c> this</c><00:04:10.080><c> rectangular</c><00:04:10.560><c> parabolic</c><00:04:11.200><c> is</c><00:04:11.599><c> that</c><00:04:11.920><c> it</c> of this rectangular parabolic is that it of this rectangular parabolic is that it is<00:04:12.400><c> difficult</c><00:04:12.720><c> to</c><00:04:12.879><c> calculate</c><00:04:14.080><c> this</c><00:04:14.560><c> load</c> is difficult to calculate this load is difficult to calculate this load [snorts]<00:04:14.959><c> the</c><00:04:15.200><c> resultant</c><00:04:15.680><c> load</c><00:04:15.920><c> here</c><00:04:16.239><c> or</c><00:04:16.479><c> to</c> [snorts] the resultant load here or to [snorts] the resultant load here or to find<00:04:17.199><c> the</c><00:04:17.600><c> centrid</c><00:04:18.079><c> of</c><00:04:18.320><c> this</c><00:04:18.639><c> load.</c><00:04:18.959><c> So</c><00:04:19.120><c> it</c><00:04:19.280><c> is</c> find the centrid of this load. So it is find the centrid of this load. So it is difficult<00:04:19.759><c> to</c><00:04:20.000><c> use</c><00:04:20.560><c> this</c><00:04:21.040><c> rectangular</c> difficult to use this rectangular difficult to use this rectangular parabolic<00:04:22.160><c> in</c><00:04:22.639><c> the</c><00:04:22.880><c> analysis</c><00:04:23.360><c> and</c><00:04:23.600><c> design</c><00:04:23.840><c> of</c> parabolic in the analysis and design of parabolic in the analysis and design of reinforced<00:04:24.639><c> concrete</c><00:04:25.360><c> sections.</c><00:04:26.479><c> Therefore,</c> reinforced concrete sections. Therefore, reinforced concrete sections. Therefore, design<00:04:27.600><c> codes</c><00:04:28.080><c> instead</c><00:04:28.400><c> of</c><00:04:28.560><c> using</c><00:04:28.880><c> this</c> design codes instead of using this design codes instead of using this rectangular<00:04:29.759><c> parabolic</c><00:04:30.639><c> they</c><00:04:31.440><c> most</c><00:04:31.680><c> of</c><00:04:31.840><c> the</c> rectangular parabolic they most of the rectangular parabolic they most of the codes<00:04:32.320><c> or</c><00:04:32.560><c> all</c><00:04:32.800><c> design</c><00:04:33.199><c> codes</c><00:04:33.600><c> they</c><00:04:34.320><c> changed</c> codes or all design codes they changed codes or all design codes they changed this<00:04:34.960><c> one</c><00:04:35.120><c> from</c><00:04:35.440><c> rectangular</c><00:04:36.000><c> parabolic</c><00:04:36.560><c> to</c> this one from rectangular parabolic to this one from rectangular parabolic to something<00:04:37.199><c> called</c><00:04:37.600><c> equivalent</c><00:04:38.400><c> rectangular.</c> something called equivalent rectangular. something called equivalent rectangular. equivalent<00:04:40.160><c> rectangular.</c><00:04:40.800><c> We</c><00:04:41.040><c> can</c><00:04:41.199><c> see</c><00:04:41.360><c> here</c> equivalent rectangular. We can see here equivalent rectangular. We can see here now<00:04:42.400><c> it</c><00:04:42.720><c> is</c><00:04:43.280><c> a</c><00:04:43.600><c> rectangle</c><00:04:44.320><c> not</c><00:04:44.560><c> parabolic</c> now it is a rectangle not parabolic now it is a rectangle not parabolic anymore.<00:04:46.320><c> And</c><00:04:46.800><c> the</c><00:04:47.040><c> height</c><00:04:47.360><c> of</c><00:04:47.600><c> this</c><00:04:48.160><c> uh</c> anymore. And the height of this uh anymore. And the height of this uh equivalent<00:04:48.880><c> rectangular</c><00:04:49.600><c> now</c><00:04:49.919><c> is.9x.</c> equivalent rectangular now is.9x. equivalent rectangular now is.9x. It<00:04:51.680><c> is</c><00:04:51.840><c> less</c><00:04:52.080><c> than</c><00:04:52.720><c> the</c><00:04:53.040><c> distance</c><00:04:53.360><c> from</c><00:04:53.680><c> the</c> It is less than the distance from the It is less than the distance from the outer<00:04:54.800><c> concrete</c><00:04:55.759><c> uh</c><00:04:56.080><c> surface</c><00:04:56.560><c> to</c><00:04:56.880><c> the</c><00:04:57.199><c> neutral</c> outer concrete uh surface to the neutral outer concrete uh surface to the neutral axis.<00:04:58.240><c> Let's</c><00:04:58.560><c> enlarge</c><00:04:59.040><c> this</c><00:04:59.280><c> one</c><00:04:59.440><c> and</c><00:04:59.680><c> see</c><00:04:59.840><c> how</c> axis. Let's enlarge this one and see how axis. Let's enlarge this one and see how it<00:05:00.160><c> look.</c><00:05:01.120><c> Here</c><00:05:02.000><c> the</c><00:05:02.479><c> stress</c><00:05:02.960><c> equals</c><00:05:03.600><c> 045</c><00:05:04.400><c> FCU</c> it look. Here the stress equals 045 FCU it look. Here the stress equals 045 FCU which<00:05:05.600><c> is</c><00:05:05.759><c> the</c><00:05:05.919><c> maximum</c><00:05:06.800><c> uh</c><00:05:07.120><c> stress</c><00:05:07.840><c> according</c> which is the maximum uh stress according which is the maximum uh stress according to<00:05:08.560><c> the</c><00:05:09.280><c> uh</c><00:05:09.759><c> stress</c><00:05:10.160><c> strain</c><00:05:10.880><c> relationship.</c> to the uh stress strain relationship. to the uh stress strain relationship. This<00:05:12.960><c> value</c><00:05:13.280><c> of</c><00:05:13.520><c> course</c><00:05:13.759><c> differs</c><00:05:14.160><c> from</c><00:05:14.320><c> one</c> This value of course differs from one This value of course differs from one code<00:05:14.800><c> to</c><00:05:15.039><c> another</c><00:05:15.360><c> code.</c><00:05:16.000><c> So</c><00:05:16.160><c> it</c><00:05:16.479><c> depends</c><00:05:16.720><c> on</c> code to another code. So it depends on code to another code. So it depends on the<00:05:17.280><c> code</c><00:05:17.520><c> that</c><00:05:17.759><c> you</c><00:05:17.840><c> are</c><00:05:18.000><c> using.</c><00:05:18.320><c> According</c> the code that you are using. According the code that you are using. According to<00:05:18.880><c> the</c><00:05:19.039><c> BS</c><00:05:19.520><c> code,</c><00:05:19.759><c> this</c><00:05:19.919><c> will</c><00:05:20.080><c> be</c><00:05:20.160><c> the</c><00:05:20.400><c> maximum</c> to the BS code, this will be the maximum to the BS code, this will be the maximum value.<00:05:21.440><c> And</c><00:05:21.759><c> again</c><00:05:22.160><c> the</c><00:05:22.400><c> height</c><00:05:22.720><c> here</c> value. And again the height here value. And again the height here according<00:05:23.440><c> to</c><00:05:23.600><c> the</c><00:05:23.840><c> BS</c><00:05:24.720><c> is</c><00:05:25.280><c> s=.9x.</c> according to the BS is s=.9x. according to the BS is s=.9x. And<00:05:27.120><c> again</c><00:05:27.440><c> it</c><00:05:27.759><c> differs</c><00:05:28.000><c> from</c><00:05:28.240><c> one</c><00:05:28.400><c> code</c><00:05:28.639><c> to</c> And again it differs from one code to And again it differs from one code to another<00:05:29.199><c> but</c><00:05:29.759><c> the</c><00:05:30.000><c> same</c><00:05:30.240><c> concept</c><00:05:30.639><c> of</c><00:05:30.880><c> using</c> another but the same concept of using another but the same concept of using equivalent<00:05:31.759><c> rectangular</c><00:05:32.400><c> it</c><00:05:32.560><c> is</c><00:05:32.880><c> in</c><00:05:33.199><c> all</c> equivalent rectangular it is in all equivalent rectangular it is in all design<00:05:34.479><c> codes</c><00:05:35.199><c> the</c><00:05:35.440><c> the</c><00:05:35.759><c> difference</c><00:05:36.080><c> will</c><00:05:36.320><c> be</c> design codes the the difference will be design codes the the difference will be on<00:05:36.720><c> the</c><00:05:37.039><c> calculating</c><00:05:37.600><c> of</c><00:05:37.759><c> the</c><00:05:37.919><c> value</c><00:05:38.080><c> of</c><00:05:38.400><c> S</c> on the calculating of the value of S on the calculating of the value of S here<00:05:38.960><c> and</c><00:05:39.120><c> calculating</c><00:05:39.680><c> the</c><00:05:39.919><c> value</c><00:05:40.080><c> of</c> here and calculating the value of here and calculating the value of maximum<00:05:41.199><c> stress</c><00:05:41.600><c> but</c><00:05:41.919><c> it</c><00:05:42.080><c> is</c><00:05:42.320><c> still</c><00:05:42.720><c> the</c><00:05:43.039><c> same</c> maximum stress but it is still the same maximum stress but it is still the same by<00:05:43.520><c> using</c><00:05:43.840><c> this</c><00:05:44.160><c> equivalent</c><00:05:44.639><c> rectangle</c><00:05:45.199><c> it</c> by using this equivalent rectangle it by using this equivalent rectangle it will<00:05:45.520><c> be</c><00:05:45.600><c> easy</c><00:05:45.840><c> to</c><00:05:46.000><c> find</c><00:05:46.240><c> the</c><00:05:46.479><c> compression</c> will be easy to find the compression will be easy to find the compression force<00:05:47.680><c> and</c><00:05:47.919><c> to</c><00:05:48.240><c> be</c><00:05:48.400><c> able</c><00:05:48.639><c> to</c><00:05:48.960><c> find</c><00:05:49.280><c> the</c><00:05:50.400><c> uh</c> force and to be able to find the uh force and to be able to find the uh capacity<00:05:51.039><c> of</c><00:05:51.199><c> the</c><00:05:51.440><c> crosssection.</c> capacity of the crosssection. capacity of the crosssection. Let's<00:05:53.520><c> conclude</c><00:05:54.080><c> this.</c><00:05:54.960><c> So</c><00:05:55.759><c> uh</c><00:05:56.000><c> just</c><00:05:56.320><c> after</c> Let's conclude this. So uh just after Let's conclude this. So uh just after cracking<00:05:57.680><c> the</c><00:05:58.400><c> stress</c><00:05:58.800><c> will</c><00:05:59.039><c> be</c><00:05:59.280><c> triangle</c><00:05:59.759><c> as</c> cracking the stress will be triangle as cracking the stress will be triangle as you<00:06:00.160><c> can</c><00:06:00.320><c> see</c><00:06:00.800><c> and</c><00:06:01.039><c> the</c><00:06:01.360><c> forces</c><00:06:02.160><c> the</c><00:06:02.400><c> tensile</c> you can see and the forces the tensile you can see and the forces the tensile forces<00:06:03.199><c> will</c><00:06:03.440><c> be</c><00:06:03.520><c> carried</c><00:06:03.840><c> by</c><00:06:04.080><c> the</c><00:06:04.319><c> tension</c> forces will be carried by the tension forces will be carried by the tension steel.<00:06:05.680><c> At</c><00:06:05.919><c> the</c><00:06:06.160><c> ultimate</c><00:06:06.800><c> we</c><00:06:07.039><c> have</c><00:06:07.199><c> this</c> steel. At the ultimate we have this steel. At the ultimate we have this rectangular<00:06:08.080><c> parabolic</c><00:06:09.039><c> and</c><00:06:09.440><c> to</c><00:06:09.680><c> make</c><00:06:09.840><c> it</c> rectangular parabolic and to make it rectangular parabolic and to make it easier<00:06:10.400><c> for</c><00:06:10.960><c> engineers</c><00:06:11.520><c> to</c><00:06:11.759><c> design</c><00:06:12.240><c> they</c> easier for engineers to design they easier for engineers to design they changed<00:06:12.960><c> this</c><00:06:13.199><c> one</c><00:06:13.360><c> from</c><00:06:13.600><c> rectangular</c> changed this one from rectangular changed this one from rectangular parabolic<00:06:14.639><c> to</c><00:06:15.039><c> equivalent</c><00:06:15.600><c> rectangular</c><00:06:16.160><c> with</c> parabolic to equivalent rectangular with parabolic to equivalent rectangular with a<00:06:16.560><c> height</c><00:06:16.880><c> equals</c><00:06:18.160><c> 9x</c><00:06:18.720><c> and</c><00:06:18.960><c> a</c><00:06:19.120><c> maximum</c><00:06:19.600><c> value</c> a height equals 9x and a maximum value a height equals 9x and a maximum value equals45 equals45 equals45 fcu. fcu. fcu. Let's<00:06:23.840><c> now</c><00:06:24.319><c> learn</c><00:06:24.720><c> how</c><00:06:24.960><c> to</c><00:06:25.280><c> calculate</c><00:06:25.759><c> the</c> Let's now learn how to calculate the Let's now learn how to calculate the value<00:06:26.240><c> of</c><00:06:26.400><c> the</c><00:06:26.639><c> compression</c><00:06:27.039><c> force</c><00:06:27.840><c> and</c><00:06:28.240><c> the</c> value of the compression force and the value of the compression force and the uh<00:06:29.280><c> capacity</c><00:06:29.759><c> of</c><00:06:29.919><c> the</c><00:06:30.080><c> section</c><00:06:30.400><c> or</c><00:06:30.639><c> resisting</c> uh capacity of the section or resisting uh capacity of the section or resisting moment<00:06:31.440><c> capacity</c><00:06:31.759><c> of</c><00:06:31.919><c> the</c><00:06:32.080><c> section.</c><00:06:32.960><c> So</c><00:06:33.280><c> we</c> moment capacity of the section. So we moment capacity of the section. So we have<00:06:33.759><c> here</c><00:06:34.479><c> a</c><00:06:34.800><c> compression</c><00:06:35.199><c> force</c><00:06:35.600><c> we'll</c><00:06:35.840><c> call</c> have here a compression force we'll call have here a compression force we'll call it<00:06:36.160><c> F</c><00:06:36.400><c> subC</c><00:06:37.680><c> and</c><00:06:37.919><c> the</c><00:06:38.160><c> tension</c><00:06:38.479><c> force</c><00:06:38.720><c> in</c><00:06:38.880><c> the</c> it F subC and the tension force in the it F subC and the tension force in the steer<00:06:39.280><c> reinforcement</c><00:06:39.840><c> we'll</c><00:06:40.000><c> call</c><00:06:40.160><c> it</c><00:06:40.319><c> FST</c> steer reinforcement we'll call it FST steer reinforcement we'll call it FST and<00:06:41.919><c> the</c><00:06:42.160><c> distance</c><00:06:42.479><c> of</c><00:06:42.639><c> the</c><00:06:42.800><c> real</c><00:06:43.120><c> arm</c><00:06:43.520><c> will</c><00:06:43.759><c> be</c> and the distance of the real arm will be and the distance of the real arm will be called<00:06:44.400><c> Z.</c><00:06:45.199><c> The</c><00:06:45.440><c> maximum</c><00:06:45.840><c> stress</c><00:06:46.240><c> as</c><00:06:46.479><c> we</c> called Z. The maximum stress as we called Z. The maximum stress as we explained<00:06:47.280><c> equals</c><00:06:47.680><c> 045</c><00:06:48.479><c> fcu</c><00:06:49.520><c> and</c><00:06:49.759><c> the</c><00:06:50.000><c> height</c> explained equals 045 fcu and the height explained equals 045 fcu and the height here<00:06:50.639><c> s</c><00:06:50.960><c> equals</c><00:06:51.520><c> to.9x.</c> here s equals to.9x. here s equals to.9x. The<00:06:53.680><c> cross-section</c><00:06:54.240><c> dimensions</c><00:06:54.800><c> will</c><00:06:55.039><c> be</c> The cross-section dimensions will be The cross-section dimensions will be equal<00:06:55.440><c> to</c><00:06:55.680><c> b.</c><00:06:56.160><c> The</c><00:06:56.400><c> width</c><00:06:56.800><c> and</c><00:06:57.039><c> the</c><00:06:57.199><c> effective</c> equal to b. The width and the effective equal to b. The width and the effective depth<00:06:58.479><c> from</c><00:06:58.720><c> the</c><00:06:59.039><c> compression</c><00:06:59.599><c> surface</c><00:06:59.919><c> to</c> depth from the compression surface to depth from the compression surface to the<00:07:00.319><c> center</c><00:07:00.639><c> line</c><00:07:00.800><c> of</c><00:07:00.960><c> the</c><00:07:01.120><c> tension</c><00:07:01.520><c> steel</c> the center line of the tension steel the center line of the tension steel will<00:07:02.400><c> be</c><00:07:02.560><c> called</c><00:07:02.880><c> d</c><00:07:03.199><c> which</c><00:07:03.440><c> is</c><00:07:03.599><c> the</c><00:07:03.919><c> effective</c> will be called d which is the effective will be called d which is the effective depth.<00:07:05.280><c> Now</c><00:07:05.840><c> let's</c><00:07:06.479><c> make</c><00:07:06.880><c> equilibrium</c> depth. Now let's make equilibrium depth. Now let's make equilibrium between<00:07:07.919><c> the</c><00:07:08.160><c> two</c><00:07:08.319><c> forces.</c><00:07:08.720><c> Summation</c><00:07:09.120><c> of</c> between the two forces. Summation of between the two forces. Summation of force<00:07:09.599><c> in</c><00:07:09.759><c> the</c><00:07:09.919><c> horizontal</c><00:07:10.400><c> direction</c><00:07:10.800><c> should</c> force in the horizontal direction should force in the horizontal direction should be<00:07:11.199><c> zero.</c><00:07:11.680><c> So</c><00:07:12.000><c> summation</c><00:07:12.400><c> of</c><00:07:12.479><c> the</c><00:07:12.639><c> forces</c><00:07:13.120><c> here</c> be zero. So summation of the forces here be zero. So summation of the forces here equal<00:07:13.680><c> to</c><00:07:13.919><c> zero.</c><00:07:14.240><c> So</c><00:07:14.639><c> you'll</c><00:07:15.039><c> find</c><00:07:15.199><c> that</c><00:07:15.599><c> FCC</c> equal to zero. So you'll find that FCC equal to zero. So you'll find that FCC equals<00:07:16.800><c> to</c><00:07:16.960><c> the</c><00:07:17.680><c> FCT</c><00:07:18.720><c> the</c><00:07:19.120><c> compression</c><00:07:19.840><c> equals</c> equals to the FCT the compression equals equals to the FCT the compression equals to<00:07:20.479><c> the</c><00:07:21.039><c> tension.</c><00:07:21.840><c> Let's</c><00:07:22.240><c> get</c><00:07:22.400><c> the</c><00:07:22.560><c> moment.</c> to the tension. Let's get the moment. to the tension. Let's get the moment. The<00:07:23.440><c> moment</c><00:07:23.919><c> from</c><00:07:24.240><c> this</c><00:07:24.479><c> couple</c><00:07:24.960><c> equals</c><00:07:25.440><c> what?</c> The moment from this couple equals what? The moment from this couple equals what? Equals<00:07:26.400><c> if</c><00:07:26.639><c> you</c><00:07:26.720><c> take</c><00:07:26.800><c> a</c><00:07:27.039><c> moment</c><00:07:27.280><c> at</c><00:07:27.520><c> the</c><00:07:28.479><c> uh</c> Equals if you take a moment at the uh Equals if you take a moment at the uh the<00:07:29.120><c> position</c><00:07:29.440><c> of</c><00:07:29.680><c> FCC.</c><00:07:30.560><c> So</c><00:07:30.880><c> it</c><00:07:31.120><c> will</c><00:07:31.280><c> be</c><00:07:31.440><c> FCT</c><00:07:32.240><c> *</c> the position of FCC. So it will be FCT * the position of FCC. So it will be FCT * Z.<00:07:32.960><c> Or</c><00:07:33.120><c> if</c><00:07:33.280><c> you</c><00:07:33.440><c> take</c><00:07:33.520><c> it</c><00:07:33.680><c> down</c><00:07:33.919><c> here,</c><00:07:34.160><c> so</c><00:07:34.319><c> it</c> Z. Or if you take it down here, so it Z. Or if you take it down here, so it will<00:07:34.639><c> be</c><00:07:34.720><c> FCC</c><00:07:35.440><c> *</c><00:07:35.680><c> Z.</c><00:07:36.080><c> So</c><00:07:36.319><c> the</c><00:07:36.560><c> moment</c><00:07:36.880><c> equals</c> will be FCC * Z. So the moment equals will be FCC * Z. So the moment equals the<00:07:37.440><c> compression</c><00:07:38.240><c> force</c><00:07:38.639><c> multiplied</c><00:07:39.199><c> by</c><00:07:39.360><c> the</c> the compression force multiplied by the the compression force multiplied by the liver<00:07:39.759><c> arm</c><00:07:40.319><c> and</c><00:07:40.560><c> meanwhile</c><00:07:41.120><c> it</c><00:07:41.360><c> equals</c><00:07:41.680><c> to</c><00:07:41.840><c> the</c> liver arm and meanwhile it equals to the liver arm and meanwhile it equals to the compression<00:07:42.479><c> the</c><00:07:42.720><c> tension</c><00:07:43.039><c> force</c><00:07:43.680><c> multiplied</c> compression the tension force multiplied compression the tension force multiplied by<00:07:44.639><c> the</c><00:07:44.880><c> liver</c><00:07:45.120><c> arm</c><00:07:45.440><c> because</c><00:07:45.759><c> FCC</c><00:07:46.560><c> equals</c><00:07:46.960><c> to</c> by the liver arm because FCC equals to by the liver arm because FCC equals to the<00:07:47.840><c> FCT.</c><00:07:48.639><c> So</c><00:07:48.800><c> how</c><00:07:49.039><c> much</c><00:07:49.199><c> is</c><00:07:49.360><c> the</c><00:07:49.520><c> FCC</c><00:07:50.160><c> and</c><00:07:50.400><c> how</c> the FCT. So how much is the FCC and how the FCT. So how much is the FCC and how much<00:07:50.639><c> is</c><00:07:50.800><c> the</c><00:07:50.960><c> FSC?</c><00:07:52.000><c> Let's</c><00:07:52.319><c> get</c><00:07:52.560><c> them.</c><00:07:52.800><c> But</c> much is the FSC? Let's get them. But much is the FSC? Let's get them. But before<00:07:53.280><c> doing</c><00:07:53.440><c> that</c><00:07:53.840><c> how</c><00:07:54.080><c> much</c><00:07:54.240><c> is</c><00:07:54.400><c> this</c><00:07:54.639><c> lever</c> before doing that how much is this lever before doing that how much is this lever arm?<00:07:55.599><c> This</c><00:07:55.840><c> lever</c><00:07:56.240><c> arm</c><00:07:56.560><c> equals</c><00:07:57.039><c> to</c><00:07:57.520><c> the</c><00:07:57.919><c> total</c> arm? This lever arm equals to the total arm? This lever arm equals to the total depth<00:07:59.520><c> effective</c><00:08:00.000><c> depth</c><00:08:00.639><c> from</c><00:08:00.879><c> the</c> depth effective depth from the depth effective depth from the compression<00:08:01.440><c> to</c><00:08:01.599><c> the</c><00:08:01.759><c> center</c><00:08:02.080><c> line</c><00:08:02.240><c> of</c><00:08:02.400><c> the</c> compression to the center line of the compression to the center line of the tension<00:08:02.960><c> steel</c><00:08:03.680><c> minus</c><00:08:04.240><c> this</c><00:08:04.639><c> distance</c><00:08:05.120><c> here</c> tension steel minus this distance here tension steel minus this distance here which<00:08:05.759><c> is</c><00:08:05.919><c> the</c><00:08:06.400><c> s</c><00:08:06.800><c> /</c><00:08:07.120><c> two.</c><00:08:07.520><c> This</c><00:08:07.840><c> load</c><00:08:08.160><c> or</c><00:08:08.479><c> this</c> which is the s / two. This load or this which is the s / two. This load or this force<00:08:09.120><c> is</c><00:08:09.360><c> exactly</c><00:08:09.759><c> at</c><00:08:10.000><c> the</c><00:08:10.240><c> middle</c><00:08:10.400><c> of</c><00:08:10.639><c> the</c><00:08:11.440><c> uh</c> force is exactly at the middle of the uh force is exactly at the middle of the uh s.<00:08:12.240><c> So</c><00:08:12.479><c> the</c><00:08:12.720><c> distance</c><00:08:13.199><c> above</c><00:08:13.759><c> the</c><00:08:14.000><c> force</c> s. So the distance above the force s. So the distance above the force equals<00:08:14.800><c> s</c><00:08:15.120><c> /</c><00:08:15.440><c> 2.</c><00:08:16.000><c> Then</c><00:08:16.240><c> the</c><00:08:16.639><c> lever</c><00:08:16.960><c> arm</c><00:08:17.360><c> equals</c> equals s / 2. Then the lever arm equals equals s / 2. Then the lever arm equals d<00:08:17.919><c> minus</c><00:08:18.319><c> s</c><00:08:18.639><c> /2.</c><00:08:20.000><c> Let's</c><00:08:20.240><c> now</c><00:08:20.560><c> calculate</c><00:08:21.280><c> the</c><00:08:22.000><c> uh</c> d minus s /2. Let's now calculate the uh d minus s /2. Let's now calculate the uh fcc.<00:08:23.360><c> The</c><00:08:23.599><c> FCC</c><00:08:24.319><c> equals</c><00:08:24.720><c> to</c><00:08:26.000><c> uh</c><00:08:26.240><c> a</c><00:08:26.479><c> force</c><00:08:26.960><c> always</c> fcc. The FCC equals to uh a force always fcc. The FCC equals to uh a force always equal<00:08:27.680><c> to</c><00:08:28.160><c> a</c><00:08:28.479><c> stress</c><00:08:28.879><c> multiplied</c><00:08:29.440><c> by</c><00:08:29.680><c> area.</c><00:08:30.080><c> So</c> equal to a stress multiplied by area. So equal to a stress multiplied by area. So the<00:08:30.479><c> stress</c><00:08:30.720><c> here</c><00:08:31.039><c> equals45</c><00:08:32.399><c> FCU</c><00:08:33.599><c> and</c><00:08:33.919><c> the</c> the stress here equals45 FCU and the the stress here equals45 FCU and the area<00:08:34.399><c> will</c><00:08:34.560><c> be</c><00:08:34.719><c> the</c><00:08:34.880><c> area</c><00:08:35.120><c> of</c><00:08:35.279><c> the</c><00:08:35.919><c> concrete.</c> area will be the area of the concrete. area will be the area of the concrete. The<00:08:37.120><c> area</c><00:08:37.279><c> of</c><00:08:37.440><c> the</c><00:08:37.599><c> concrete</c><00:08:38.080><c> equals</c><00:08:38.640><c> S</c> The area of the concrete equals S The area of the concrete equals S multiplied<00:08:40.000><c> by</c><00:08:40.560><c> B.</c><00:08:41.120><c> So</c><00:08:41.279><c> the</c><00:08:41.519><c> compression</c> multiplied by B. So the compression multiplied by B. So the compression force<00:08:42.959><c> coming</c><00:08:43.279><c> from</c><00:08:43.760><c> this</c><00:08:44.800><c> stress</c><00:08:45.120><c> block</c><00:08:45.440><c> here</c> force coming from this stress block here force coming from this stress block here equals<00:08:46.240><c> to</c><00:08:46.399><c> the</c><00:08:46.720><c> stress</c><00:08:47.120><c> maximum</c><00:08:47.600><c> stress</c><00:08:48.000><c> 045</c> equals to the stress maximum stress 045 equals to the stress maximum stress 045 FZU<00:08:49.760><c> multiplied</c><00:08:50.320><c> by</c><00:08:50.399><c> the</c><00:08:50.640><c> area</c><00:08:50.800><c> of</c><00:08:50.959><c> the</c> FZU multiplied by the area of the FZU multiplied by the area of the concrete<00:08:51.600><c> under</c><00:08:52.000><c> compression</c><00:08:52.800><c> which</c><00:08:53.040><c> is</c><00:08:53.279><c> S</c> concrete under compression which is S concrete under compression which is S multiplied<00:08:54.480><c> by</c><00:08:55.279><c> B.</c><00:08:56.399><c> Uh</c><00:08:56.720><c> meanwhile</c><00:08:57.360><c> the</c><00:08:57.920><c> force</c> multiplied by B. Uh meanwhile the force multiplied by B. Uh meanwhile the force in<00:08:58.399><c> the</c><00:08:58.560><c> tension</c><00:08:59.040><c> steel</c><00:08:59.519><c> again</c><00:09:00.160><c> the</c><00:09:00.399><c> force</c> in the tension steel again the force in the tension steel again the force equals<00:09:01.360><c> stress</c><00:09:01.680><c> in</c><00:09:01.920><c> the</c><00:09:02.080><c> steel</c><00:09:02.480><c> multiplied</c><00:09:03.040><c> by</c> equals stress in the steel multiplied by equals stress in the steel multiplied by the<00:09:03.760><c> area</c><00:09:04.000><c> of</c><00:09:04.160><c> the</c><00:09:04.320><c> steel.</c><00:09:04.640><c> The</c><00:09:04.880><c> maximum</c> the area of the steel. The maximum the area of the steel. The maximum stress<00:09:05.519><c> in</c><00:09:05.760><c> the</c><00:09:05.920><c> steel</c><00:09:06.240><c> assuming</c><00:09:06.720><c> that</c><00:09:06.959><c> it</c> stress in the steel assuming that it stress in the steel assuming that it will<00:09:07.360><c> yield</c><00:09:08.240><c> and</c><00:09:08.560><c> will</c><00:09:08.720><c> be</c><00:09:08.880><c> attention</c> will yield and will be attention will yield and will be attention failure.<00:09:09.920><c> So</c><00:09:10.080><c> it</c><00:09:10.240><c> will</c><00:09:10.320><c> be</c><00:09:10.480><c> the</c><00:09:10.640><c> maximum</c><00:09:11.120><c> 0.95</c> failure. So it will be the maximum 0.95 failure. So it will be the maximum 0.95 F<00:09:12.480><c> yield</c><00:09:13.279><c> which</c><00:09:13.519><c> is</c><00:09:13.760><c> Field</c><00:09:14.320><c> divided</c><00:09:14.640><c> by</c><00:09:14.800><c> gamma</c> F yield which is Field divided by gamma F yield which is Field divided by gamma M<00:09:15.440><c> 1.05</c><00:09:16.480><c> according</c><00:09:16.880><c> to</c><00:09:17.040><c> the</c><00:09:17.200><c> BS</c><00:09:17.600><c> code.</c><00:09:18.320><c> So</c><00:09:18.399><c> it</c> M 1.05 according to the BS code. So it M 1.05 according to the BS code. So it is<00:09:18.800><c> 0.95</c><00:09:19.600><c> Field</c><00:09:20.560><c> multiplied</c><00:09:21.120><c> by</c><00:09:21.279><c> the</c><00:09:21.440><c> area</c><00:09:21.680><c> of</c> is 0.95 Field multiplied by the area of is 0.95 Field multiplied by the area of the<00:09:22.000><c> steel</c><00:09:22.399><c> reinforcement.</c><00:09:23.519><c> So</c><00:09:23.760><c> we</c><00:09:24.000><c> can</c><00:09:24.160><c> find</c> the steel reinforcement. So we can find the steel reinforcement. So we can find the<00:09:24.800><c> compression</c><00:09:25.279><c> force</c><00:09:25.760><c> and</c><00:09:26.000><c> also</c><00:09:26.240><c> we</c><00:09:26.480><c> can</c> the compression force and also we can the compression force and also we can find<00:09:26.800><c> the</c><00:09:27.120><c> tension</c><00:09:27.519><c> force.</c><00:09:28.240><c> The</c><00:09:28.480><c> last</c><00:09:28.720><c> thing</c> find the tension force. The last thing find the tension force. The last thing to<00:09:29.200><c> find</c><00:09:29.839><c> is</c><00:09:30.080><c> to</c><00:09:30.320><c> get</c><00:09:30.480><c> the</c><00:09:31.200><c> uh</c><00:09:31.600><c> capacity</c><00:09:32.240><c> the</c> to find is to get the uh capacity the to find is to get the uh capacity the resisting<00:09:33.040><c> moment</c><00:09:33.279><c> of</c><00:09:33.519><c> the</c><00:09:33.680><c> section.</c><00:09:34.399><c> So</c><00:09:34.640><c> the</c> resisting moment of the section. So the resisting moment of the section. So the moment<00:09:35.120><c> will</c><00:09:35.360><c> be</c><00:09:35.519><c> coming</c><00:09:35.680><c> from</c><00:09:35.920><c> this</c><00:09:36.240><c> couple.</c> moment will be coming from this couple. moment will be coming from this couple. So<00:09:36.959><c> the</c><00:09:37.200><c> moment</c><00:09:37.519><c> equals</c><00:09:37.920><c> FCC</c><00:09:39.120><c> *</c><00:09:39.279><c> Z</c><00:09:40.000><c> and</c><00:09:40.240><c> also</c> So the moment equals FCC * Z and also So the moment equals FCC * Z and also FST<00:09:41.680><c> *</c><00:09:41.920><c> Z</c><00:09:42.320><c> by</c><00:09:42.560><c> substituting</c><00:09:43.279><c> the</c><00:09:43.440><c> FCC</c><00:09:44.080><c> and</c><00:09:44.240><c> FST.</c> FST * Z by substituting the FCC and FST. FST * Z by substituting the FCC and FST. So<00:09:45.760><c> the</c><00:09:46.000><c> moment</c><00:09:46.399><c> coming</c><00:09:46.720><c> from</c><00:09:46.959><c> the</c> So the moment coming from the So the moment coming from the compression<00:09:48.240><c> side</c><00:09:48.720><c> equals</c><00:09:49.200><c> FCC</c><00:09:50.000><c> which</c><00:09:50.320><c> will</c> compression side equals FCC which will compression side equals FCC which will be<00:09:50.800><c> this</c><00:09:51.760><c> term</c><00:09:52.080><c> here45</c><00:09:53.279><c> FCU</c><00:09:54.080><c> *</c><00:09:54.320><c> S</c><00:09:54.640><c> *</c><00:09:54.880><c> B</c> be this term here45 FCU * S * B be this term here45 FCU * S * B multiplied<00:09:55.920><c> by</c><00:09:56.080><c> the</c><00:09:56.240><c> lever</c><00:09:56.560><c> arm</c><00:09:56.880><c> which</c><00:09:57.040><c> is</c><00:09:57.120><c> D</c> multiplied by the lever arm which is D multiplied by the lever arm which is D minus<00:09:57.680><c> S</c><00:09:58.000><c> /</c><00:09:58.320><c> 2.</c><00:09:58.959><c> And</c><00:09:59.120><c> if</c><00:09:59.360><c> we</c><00:09:59.519><c> get</c><00:09:59.600><c> it</c><00:09:59.760><c> from</c><00:09:59.920><c> the</c> minus S / 2. And if we get it from the minus S / 2. And if we get it from the tension<00:10:00.399><c> side</c><00:10:00.800><c> take</c><00:10:00.959><c> a</c><00:10:01.120><c> moment</c><00:10:01.440><c> at</c><00:10:01.680><c> the</c> tension side take a moment at the tension side take a moment at the position<00:10:02.320><c> of</c><00:10:02.560><c> FCC.</c><00:10:03.360><c> So</c><00:10:03.519><c> it</c><00:10:03.680><c> will</c><00:10:03.839><c> be</c><00:10:05.040><c> FST</c> position of FCC. So it will be FST position of FCC. So it will be FST multiplied<00:10:06.880><c> by</c><00:10:07.200><c> D</c><00:10:07.440><c> minus</c><00:10:07.760><c> S</c><00:10:08.000><c> /</c><00:10:08.240><c> 2.</c><00:10:08.480><c> The</c><00:10:08.640><c> FST</c> multiplied by D minus S / 2. The FST multiplied by D minus S / 2. The FST equals.95<00:10:10.640><c> Field</c><00:10:11.360><c> A</c><00:10:12.399><c> multiplied</c><00:10:12.880><c> by</c><00:10:13.040><c> the</c> equals.95 Field A multiplied by the equals.95 Field A multiplied by the liver<00:10:13.519><c> arm</c><00:10:14.000><c> which</c><00:10:14.160><c> is</c><00:10:14.640><c> D</c><00:10:14.959><c> minus</c><00:10:15.440><c> S</c><00:10:15.760><c> over</c><00:10:16.399><c> 2.</c><00:10:17.200><c> In</c> liver arm which is D minus S over 2. In liver arm which is D minus S over 2. In the<00:10:17.680><c> coming</c><00:10:17.920><c> video</c><00:10:18.480><c> we</c><00:10:18.720><c> will</c><00:10:18.880><c> be</c><00:10:19.040><c> talking</c> the coming video we will be talking the coming video we will be talking about<00:10:19.680><c> the</c><00:10:19.839><c> flexure</c><00:10:20.320><c> mod</c><00:10:20.640><c> of</c><00:10:20.800><c> failure</c><00:10:21.760><c> uh</c><00:10:21.839><c> of</c> about the flexure mod of failure uh of about the flexure mod of failure uh of reinforced<00:10:22.720><c> concrete</c><00:10:23.680><c> section.</c><00:10:24.640><c> Uh</c><00:10:25.120><c> thank</c> reinforced concrete section. Uh thank reinforced concrete section. Uh thank you<00:10:25.519><c> for</c><00:10:25.839><c> watching</c><00:10:26.160><c> this</c><00:10:26.480><c> video.</c><00:10:27.360><c> If</c><00:10:27.519><c> you</c><00:10:27.680><c> like</c> you for watching this video. If you like you for watching this video. If you like the<00:10:28.000><c> video</c><00:10:28.320><c> please</c><00:10:28.560><c> click</c><00:10:28.800><c> on</c><00:10:28.959><c> like,</c> the video please click on like, the video please click on like, subscribe<00:10:29.920><c> and</c><00:10:30.399><c> share</c><00:10:30.720><c> with</c><00:10:30.959><c> others.</c><00:10:31.680><c> Thank</c> subscribe and share with others. Thank subscribe and share with others. Thank you<00:10:32.160><c> and</c><00:10:32.399><c> looking</c><00:10:32.720><c> forward</c><00:10:33.120><c> to</c><00:10:33.519><c> see</c><00:10:33.760><c> you</c><00:10:33.920><c> in</c><00:10:34.160><c> a</c> you and looking forward to see you in a you and looking forward to see you in a coming<00:10:34.720><c> video</c><00:10:35.360><c> and</c><00:10:35.600><c> goodbye.</c>
|
4
|
FMxlTXUXrXg
|
Failure Modes of Reinforced Concrete Beam Sections under Flexure (Balanced -Tension - Compression)
|
https://www.youtube.com/watch?v=FMxlTXUXrXg
| "Failure_Modes_of_Reinforced_Concrete_Beam_Sections_under_Flexure_Balanced_-Tension_-_Compression.en(...TRUNCATED)
| "Hello<00:00:01.920><c> everyone.</c><00:00:02.560><c> This</c><00:00:02.720><c> is</c><00:00:02.879(...TRUNCATED)
|
5
|
3AbElFKNDqA
|
Design of Singly Reinforced Concrete Rectangular Sections. How to Design It in 1 Minute? 3 STEPS.
|
https://www.youtube.com/watch?v=3AbElFKNDqA
| "Design_of_Singly_Reinforced_Concrete_Rectangular_Sections._How_to_Design_It_in_1_Minute_3_STEPS..en(...TRUNCATED)
| "hello<00:00:04.960><c> everyone</c><00:00:05.920><c> this</c><00:00:06.160><c> is</c><00:00:06.240>(...TRUNCATED)
|
6
|
LSTo7sG4fPA
|
The Capacity of Singly Reinforced Concrete Rectangular Sections. Three Easy Analysis Steps.
|
https://www.youtube.com/watch?v=LSTo7sG4fPA
|
The_Capacity_of_Singly_Reinforced_Concrete_Rectangular_Sections._Three_Easy_Analysis_Steps..en.vtt
| "good<00:00:02.800><c> morning</c><00:00:03.199><c> everyone</c><00:00:04.080><c> this</c><00:00:04.(...TRUNCATED)
|
7
|
wYbr7HbV1u0
| "Doubly Reinforced Concrete Rectangular Sections (Design and Analysis) - Clear Steps with 2 Examples(...TRUNCATED)
|
https://www.youtube.com/watch?v=wYbr7HbV1u0
|
Design_Charts_for_Singly_and_Doubly_Reinforced_Concrete_Rectangular_Sections.en.vtt
| "hello<00:00:03.419><c> everyone</c><00:00:04.040><c> and</c><00:00:05.040><c> welcome</c><00:00:05.(...TRUNCATED)
|
8
|
fj52UWdBck4
|
Design Charts for Singly and Doubly Reinforced Concrete Rectangular Sections
|
https://www.youtube.com/watch?v=fj52UWdBck4
|
Design_Charts_for_Singly_and_Doubly_Reinforced_Concrete_Rectangular_Sections.en.vtt
| "hello<00:00:03.419><c> everyone</c><00:00:04.040><c> and</c><00:00:05.040><c> welcome</c><00:00:05.(...TRUNCATED)
|
9
|
wmeIHITrpzY
|
Shear Design in Reinforced Concrete (RC) Beams - How to design for Shear Reinforcement
|
https://www.youtube.com/watch?v=wmeIHITrpzY
|
Shear_Design_in_Reinforced_Concrete_RC_Beams_-_How_to_design_for_Shear_Reinforcement.en.vtt
| "good<00:00:00.199><c> morning</c><00:00:00.799><c> everyone</c><00:00:01.480><c> this</c><00:00:01.(...TRUNCATED)
|
10
|
BSxANg7L1hg
|
Design for Shear in Reinforced Concrete (RC) Beams - Design Examples
|
https://www.youtube.com/watch?v=BSxANg7L1hg
|
Design_for_Shear_in_Reinforced_Concrete_RC_Beams_-_Design_Examples.en.vtt
| "hello<00:00:04.400><c> everyone</c><00:00:05.359><c> this</c><00:00:05.480><c> is</c><00:00:05.720>(...TRUNCATED)
|
11
|
ceHYo-7XbYE
|
Design of RC Solid Slabs (Part 1) - Clear and Informative Video
|
https://www.youtube.com/watch?v=ceHYo-7XbYE
|
Design_of_RC_Solid_Slabs_Part_1_-_Clear_and_Informative_Video.en.vtt
| "good<00:00:01.979><c> morning</c><00:00:02.310><c> everyone</c><00:00:02.610><c> this</c><00:00:03.(...TRUNCATED)
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 5