Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr) -> int: maxLen = 0 arr = sorted(arr, key=lambda x: len(x), reverse=True) self.compatible = {} for i in range(len(arr)): currString = arr[i] if self.noDupes(currString): if currString not in self.compatible: self.compatible[currString] = [] for j in range(i+1, len(arr)): if self.noDupes(arr[j]) and self.uniqueChars(currString, arr[j]): self.compatible[currString].append(arr[j]) for key in self.compatible: if len(self.compatible[key]) == 0: length = len(key) else: length = self.findLength(key, key, 0) maxLen = max(maxLen, length) return maxLen def uniqueChars(self, s1, s2): for c in s2: if c in s1: return False return True def noDupes(self, string): counts = {} for c in string: counts[c] = counts.get(c, 0) + 1 if counts[c] > 1: return False return True def findLength(self, currString, totalString, maxLen): for string in self.compatible[currString]: if self.uniqueChars(totalString, string): maxLen = max(maxLen, self.findLength(string, totalString + string, len(totalString) + len(string))) return maxLen
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def __init__(self): self._maxLength = 0 def maxLength(self, arr: List[str]) -> int: self.uniqueLengths(arr, []) return self._maxLength def uniqueLengths(self, arr, concat): result = ''.join(concat) if not self.hasUniqueChars(result): return self._maxLength = max(self._maxLength, len(result)) for i in range(len(arr)): concat.append(arr[i]) self.uniqueLengths(arr[i+1:], concat) concat.pop() def hasUniqueChars(self, concat): counter = Counter(concat) return all([x == 1 for x in counter.values()])
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
from collections import Counter class Solution: def maxLength(self, arr: List[str]) -> int: max_str = 0 for i in range(len(arr)): if self.is_unique(arr[i]) and len(arr[i]) > max_str: max_str = len(arr[i]) concat = [arr[i]] for j in range(i+1, len(arr)): for x in concat: c = x + arr[j] if self.is_unique(c): if len(c) > max_str: max_str = len(c) concat.append(c) return max_str def is_unique(self, str): for v in Counter(str).values(): if v > 1: return False return True
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def is_unique(self, s): return len(set(s)) == len(s) def maxLength(self, arr: List[str]) -> int: dct= {} maxVal = 0 for i in range(0, len(arr)): if self.is_unique(arr[i]): v = frozenset(arr[i]) dct[v] = len(v) maxVal = max(maxVal, len(v)) for j in range(i+1, len(arr)): t = arr[i] + arr[j] val = frozenset(t) if val not in dct.keys(): if self.is_unique(t): # print(t) arr.append(t) dct[val] = len(val) maxVal = max(maxVal, len(val)) print(dct) return maxVal
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def __init__(self): self._maxLength = 0 def maxLength(self, arr: List[str]) -> int: self.uniqueLengths(arr, []) return self._maxLength def uniqueLengths(self, arr, concat): if not self.hasUniqueChars(''.join(concat)): return self._maxLength = max(self._maxLength, len(''.join(concat))) for i in range(len(arr)): concat.append(arr[i]) self.uniqueLengths( arr[i+1:], concat) concat.pop() def hasUniqueChars(self, concat): counter = Counter(concat) return all([x == 1 for x in counter.values()])
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution(object): def maxLength(self, A): for i in range(len(A) - 1, -1, -1): if len(set(A[i])) != len(A[i]): A.pop(i) N = len(A) B = [] for word in A: ct = [0] * 26 for letter in word: ct[ord(letter) - ord('a')] += 1 B.append(ct) self.ans = 0 count = [0] * 26 def search(i): if i == N: cand = sum(count) if cand > self.ans: self.ans = cand return for letter, ct in enumerate(B[i]): if ct and count[letter]: search(i+1) break else: search(i+1) for letter, ct in enumerate(B[i]): if ct: count[letter] += 1 search(i+1) for letter, ct in enumerate(B[i]): if ct: count[letter] -= 1 search(0) return self.ans
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: d = {} def helper(banned,start): if start == len(arr): return len(banned) k = tuple(sorted(str(banned)+str(start))) if k in d: return d[k] string = arr[start] new_set = set() for i in string: if i in banned or i in new_set: return helper(banned,start+1) new_set.add(i) new_banned = banned.union(new_set) val = max(helper(new_banned,start+1),helper(banned,start+1)) d[k] = val return val initial_banned = set() res = helper(initial_banned,0) return res
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: newarr = [] for w in arr: if len(set(w)) == len(w): newarr.append(w) arr = newarr n = len(arr) res = 0 str_masks = [None] * n for i in range(n): wd = arr[i] mask = 0 for ch in wd: ch_pos = ord(ch) - ord('a') mask |= 1 << ch_pos str_masks[i] = mask def dfs(idx, mask, curlen): nonlocal res if idx == n: res = max(res, curlen) return # use arr[idx] if mask & str_masks[idx] == 0: # can use arr[idx] dfs(idx + 1, mask | str_masks[idx], curlen + len(arr[idx])) # not use arr[idx] dfs(idx + 1, mask, curlen) dfs(0, 0, 0) return res
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
from collections import defaultdict class Solution: def maxLength(self, arr: List[str]) -> int: self.longest = 0 def valid(s): d = defaultdict(int) for char in s: d[char] += 1 if d[char] == 2: return False return True def backtrack(curr, ind): if ind == len(arr): if len(curr) > self.longest: self.longest = len(curr) return for i in range(ind, len(arr)): temp = curr+arr[i] if valid(temp): backtrack(curr+arr[i], i + 1) if len(curr) > self.longest: self.longest = len(curr) return for i in range(len(arr)): if valid(arr[i]): backtrack(arr[i], i) return self.longest
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: newarr = [] for cur in arr: newarr.append(collections.Counter(cur)) res = [0] def helper(cur, index): if index == len(arr): res[0] = max(res[0], len(cur)) else: if len(arr[index]) == len(newarr[index]): if not newarr[index] & cur: helper(newarr[index] + cur, index+1) helper(cur, index+1) helper(collections.Counter(''), 0) return res[0]
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: newarr = [] for cur in arr: newarr.append(collections.Counter(cur)) res = [0] def helper(cur, index): if index == len(arr): res[0] = max(res[0], len(cur)) else: if len(arr[index]) == len(newarr[index]) and not newarr[index] & cur: helper(newarr[index] + cur, index+1) helper(cur, index+1) helper(collections.Counter(''), 0) return res[0]
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
from collections import Counter class Solution: def back(self, arr, soln, solns): # print(\"Arr {} | Soln {}\".format(arr, soln)) if not arr: solns.append([len(soln),soln]) return solns for i in range(len(arr)): sa = set(arr[i]) sb = set(soln) c = dict(Counter(arr[i])) if max(c.values()) == 1 and len(sb.intersection(sa))==0: solncopy = soln solncopy+=arr[i] solns = self.back(arr[i+1:],solncopy, solns) solns.append([len(soln),soln]) return solns def maxLength(self, arr: List[str]) -> int: solns = [] for i in range(len(arr)): soln = arr[i] c = dict(Counter(arr[i])) if max(c.values()) == 1: solns = self.back(arr[i+1:],soln, solns) # print(solns) # for s in solns: # print(s) if not solns: return 0 return max(solns, key=lambda x:x[0])[0]
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: letters_dict = {} def dfs(letter_set, arr, i): if i >= len(arr): return 0 if (tuple(letter_set), i) not in letters_dict: if len(set(arr[i]).intersection(letter_set)) == 0 and (len(set(arr[i])) == len(arr[i])): letters_dict[(tuple(letter_set), i)] = max( dfs(letter_set.union(set(arr[i])), arr, i+1)+len(set(arr[i])), dfs(letter_set, arr, i+1)) else: letters_dict[(tuple(letter_set), i)] = dfs(letter_set, arr, i+1) return letters_dict[(tuple(letter_set), i)] return dfs(set(), arr, 0)
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: arr_sets = [set(x) for x in arr] def buildSet(bitlist): output = set() for i, bit in enumerate(bitlist): if bit: output = output.union(arr_sets[i]) return output def recurse(bitlist, index): if index == len(arr): return len(buildSet(bitlist)) not_included = recurse(bitlist, index+1) if len(arr_sets[index]) != len(arr[index]) or buildSet(bitlist).intersection(arr_sets[index]): return not_included else: new_bitlist = bitlist[:] new_bitlist[index] = 1 return max(not_included, recurse(new_bitlist, index+1)) return recurse([0 for _ in arr], 0)
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: self.res = 0 def walk(i, temp): self.res = max(self.res, len(temp)) for j in range(i, len(arr)): if all(v <= 1 for v in list(collections.Counter(temp+arr[j]).values())): walk(j+1, temp+arr[j]) return walk(0, '') return self.res
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
import collections class Solution: def maxLength(self, arr: List[str]) -> int: self.m = collections.defaultdict(list) for ix_1 in range(len(arr)): set_1 = set(list(arr[ix_1])) for ix_2 in range(ix_1+1, len(arr)): set_2 = set(list(arr[ix_2])) if len(set_1) == len(arr[ix_1]) and len(set_2) == len(arr[ix_2]) and len(set_1.intersection(set_2)) == 0: self.m[ix_1].append(ix_2) #self.m[ix_2].append(ix_1) self.ans = 0 for ix in range(len(arr)): if len(set(list(arr[ix]))) == len(arr[ix]): self.dfs(arr, [ix]) return self.ans def dfs(self, arr, visiting): curr = visiting[-1] l = [len(arr[i]) for i in visiting] self.ans = max(sum(l), self.ans) if not self.m.get(curr): return for i in self.m.get(curr): if i in visiting: continue possible = True for j in visiting[:-1]: if len(set(list(arr[i])).intersection(set(list(arr[j]))))>0: possible = False break if possible: visiting.append(i) self.dfs(arr, visiting) visiting.pop()
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: #array with all possible unique string combinations so far possible_strings = [''] maximum = 0 for i in range(len(arr)): temp_len = len(possible_strings) for j in range(temp_len): #trying combination x = arr[i] + possible_strings[j] #string is unique if (len(x)==len(set(x))): #append to possible strings possible_strings.append(x) #set max maximum = max(maximum,len(x)) return maximum
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def is_unique(self, s): return len(set(s)) == len(s) def maxLength(self, arr: List[str]) -> int: dct= {} maxVal = 0 for i in range(0, len(arr)): if self.is_unique(arr[i]): maxVal = max(maxVal, len(arr[i])) for j in range(i+1, len(arr)): t = arr[i] + arr[j] if self.is_unique(t): arr.append(t) maxVal = max(maxVal, len(t)) # print(dct) return maxVal
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: if len(arr)==1: if len(set(arr[0]))==len(arr[0]): return len(arr[0]) else: return 0 new_arr = [] for s in arr: if len(s) == len(set(s)): new_arr.append((set(s), len(s))) if not new_arr: return 0 # print(new_arr) ans = 0 def backtrack(ind, temp, temp_sum): nonlocal ans if temp_sum > ans: ans = temp_sum for i in range(ind, len(new_arr)): if not (new_arr[i][0] & temp): backtrack(i+1, temp | new_arr[i][0], temp_sum+new_arr[i][1]) else: backtrack(i+1, temp, temp_sum) backtrack(0, set(), 0) return ans
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def is_unique(self, s): return len(set(s)) == len(s) def maxLength(self, arr: List[str]) -> int: dct= {} maxVal = 0 for i in range(0, len(arr)): if self.is_unique(arr[i]): maxVal = max(maxVal, len(arr[i])) for j in range(i+1, len(arr)): t = arr[i] + arr[j] if self.is_unique(t): # print(t) arr.append(t) maxVal = max(maxVal, len(t)) # print(dct) return maxVal
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def is_unique(self, s): return len(set(s)) == len(s) def maxLength(self, arr: List[str]) -> int: maxVal = 0 for i in range(0, len(arr)): if self.is_unique(arr[i]): maxVal = max(maxVal, len(arr[i])) for j in range(i+1, len(arr)): t = arr[i] + arr[j] if self.is_unique(t): arr.append(t) maxVal = max(maxVal, len(t)) # print(dct) return maxVal
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
from collections import Counter class Solution: def maxLength(self, arr: List[str]) -> int: self.max_len = 0 for i, s in enumerate(arr): self.bfs(Counter(s), arr, i) return self.max_len def bfs(self, counter, arr, _index): if max(counter.values()) > 1: return if len(counter) > self.max_len: self.max_len = len(counter) for i in range(_index + 1, len(arr)): s = arr[i] counter_copy = copy.copy(counter) counter_copy.update(Counter(s)) self.bfs(counter_copy, arr, i)
Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters. Return the maximum possible length of s.   Example 1: Input: arr = ["un","iq","ue"] Output: 4 Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique". Maximum length is 4. Example 2: Input: arr = ["cha","r","act","ers"] Output: 6 Explanation: Possible solutions are "chaers" and "acters". Example 3: Input: arr = ["abcdefghijklmnopqrstuvwxyz"] Output: 26   Constraints: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] contains only lower case English letters.
class Solution: def maxLength(self, arr: List[str]) -> int: res = 0 arr = list([x for x in arr if len(set(x))==len(x)]) arr = [set(x) for x in arr] def dfs(n, s, l, cur): nonlocal res if n == l: res = max(res, len(cur)) return for i in range(s, len(arr)): if len(cur.intersection(arr[i])) == 0: dfs(n, i+1, l+1, cur.union(arr[i])) # new_cur = cur + arr[i] # if len(set(new_cur)) != len(new_cur): # return # dfs(n, i+1, l+1, new_cur) for i in range(len(arr)+1): dfs(i, 0, 0, set()) return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: sum_set = set() sum_set.add(0) temp = 0 count = 0 for num in nums: temp += num if temp - target in sum_set: count += 1 sum_set.clear() sum_set.add(0) temp = 0 continue sum_set.add(temp) return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: res=0 s=set() s.add(0) t=0 for x in nums: t+=x if t-target in s: res+=1 s.clear() s.add(t) return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) cumsum = [0]*(n+1) for i in range(n): cumsum[i+1] = cumsum[i] + nums[i] d = {0:0} temp = [] for i in range(n): # print(i, cumsum[i+1]-target) if cumsum[i+1]-target in d: temp.append((d[cumsum[i+1]-target], i+1)) # print(d[cumsum[i+1]-target], i+1) d[cumsum[i+1]] = i+1 l = sorted(temp, key=lambda x:(x[0],x[1])) cur_s = -1 cur_e = -1 total = 0 for s,e in l: if s >= cur_e: total += 1 cur_s = s cur_e = e elif e < cur_e: cur_s = s cur_e = e return total
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: ans, m, j, cur = 0, {0:-1}, -1, 0 for i, x in enumerate(nums): cur += x k = cur - target if k in m and m[k] >= j: ans += 1; j = i m[cur] = i return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: dp = [0] * len(nums) prev_sum = {0: -1} num_nonover = 0 current_sum = 0 for (index, num) in enumerate(nums): current_sum += num if current_sum - target in prev_sum: gain = dp[prev_sum[current_sum-target]] if prev_sum[current_sum-target] >= 0 else 0 num_nonover = max(num_nonover, gain + 1) dp[index] = num_nonover prev_sum[current_sum] = index return num_nonover
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: curSum = 0 sumsSet = {0} result = 0 for x in nums: curSum += x if (curSum - target) in sumsSet: result += 1 curSum = 0 sumsSet.clear() sumsSet.add(curSum) return result
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) dp = [0] * (n+1) dic = {} dic[0] = 0 cur = 0 for i in range(1, n+1): cur += nums[i-1] if cur - target in dic: dp[i] = 1 + dp[dic[cur - target]] dp[i] = max(dp[i-1], dp[i]) dic[cur] = i return dp[n]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: d = {} d[0] = -1 N = len(nums) if(N==0): return 0 L = [0 for i in range(N)] s = nums[0] d[s] = 0 if(s==target): L[0] = 1 for i in range(1,N): s += nums[i] L[i] = L[i-1] if(s-target in d): idx = d[s-target] if(idx==-1): L[i] = max(L[i],1) else: L[i] = max(L[i],L[idx]+1) d[s] = i return L[N-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums, target): ans = 0 cur = 0 tmp = set([0]) for n in nums: cur += n if cur - target in tmp: ans += 1 cur = 0 tmp = set([0]) tmp.add(cur) return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: P = [0] for e in nums: P.append(P[-1]+e) seen = set() ans = 0 for psum in P: if psum - target in seen: seen = {psum} ans += 1 else: seen.add(psum) return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: pre = [0] for n in nums: pre.append(pre[-1] + n) dp = {0: 0} counter = [0] * len(pre) for i in range(1, len(pre)): if pre[i] - target in dp: idx = dp[pre[i] - target] counter[i] = max(counter[i-1], counter[idx] + 1) else: counter[i] = counter[i-1] dp[pre[i]] = i return counter[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefixsum = {} prefixsum[0] = True prev = 0 res = 0 for num in nums: curr = prev + num if curr - target in prefixsum: res += 1 prefixsum = {} prefixsum[0] = True prev = 0 else: prefixsum[curr] = True prev = curr print(res) return res ''' class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefixsum = {} prefixsum[0] = 0 res = 0 last = -1 prev = 0 for idx, num in enumerate(nums): curr = prev + num prefixsum[curr] = idx if curr - target in prefixsum: if prefixsum[curr - target] >= last: res += 1 last = prefixsum[curr] prev = curr print(prefixsum) print(res) return res '''
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
### good explanation in https://www.youtube.com/watch?v=EW521e8c8lk ### video starts 10:40 class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefixsum = {} prefixsum[0] = True prev = 0 res = 0 for num in nums: curr = prev + num if curr - target in prefixsum: res += 1 prefixsum = {} prefixsum[0] = True prev = 0 else: prefixsum[curr] = True prev = curr print(res) return res ''' It seems that I have exact the same idea as the following post https://leetcode.com/problems/maximum-number-of-non-overlapping-subarrays-with-sum-equals-target/discuss/780882/Java-14-lines-Greedy-PrefixSum-with-line-by-line-explanation-easy-to-understand why does the following code now working???? ### The following code does not pass submission ..... class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefixsum = {} prefixsum[0] = -1 res = 0 last = -1 prev = 0 for idx, num in enumerate(nums): curr = prev + num prefixsum[curr] = idx if curr - target in prefixsum: if prefixsum[curr - target] >= last: res += 1 last = prefixsum[curr] prev = curr print(prefixsum) print(res) return res '''
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) dp = [0]*(n+1) dict = {} dict[0] = 0 curr = 0 for i in range(1,n+1): curr += nums[i-1] miss = curr - target if miss in dict: dp[i]= 1 + dp[dict[miss]] dp[i] = max(dp[i-1],dp[i]) dict[curr]=i return dp[n]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: res = 0 csum = [0] for n in nums: csum.append(csum[-1]+n) # print (csum[1:]) # print ([c-target for c in csum[1:]]) seen = set([]) for c in csum[:]: # print (c, c-target, seen) if c-target in seen: res += 1 seen.clear() seen.add(c) return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: csum = {} csum[0] = 0 dp = [0 for i in range(len(nums)+1)] sum,best = (0,0) for i,v in enumerate(nums): sum += v x = sum - target dp[i+1] = dp[i] if x in csum: dp[i+1] = max(dp[i+1], dp[csum[x]] + 1) best = max(best, dp[i+1]) csum[sum] = i + 1 return best
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: count = 0 sums = set() sums.add(0) tot = 0 for num in nums: tot += num if (tot - target) in sums: count += 1 sums=set() sums.add(tot) return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: lookup = {0 : -1} running_sum = 0 count = 0 for i in range(len(nums)): running_sum += nums[i] if running_sum - target in lookup: count += 1 lookup = {} #reset the map lookup[running_sum] = i return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: dp = [0] + [-1] * len(nums) s = 0 dic = {} dic[0] = 0 res = 0 for i in range(len(nums)): s += nums[i] if s - target in dic: dp[i+1] = max(dp[dic[s-target]] + 1, dp[i]) else: dp[i+1] = dp[i] dic[s] = i + 1 print(dp) return dp[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: for i in range(1, len(nums)): nums[i] += nums[i - 1] res = 0 seen = {} used_i = 0 nums = [0] + nums for i, num in enumerate(nums): if num - target in seen and seen[num - target] >= used_i: res += 1 used_i = i seen[num] = i return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefix_sum = count = 0 seen = {0} for num in nums: prefix_sum += num if prefix_sum - target in seen: prefix_sum = 0 count += 1 seen = set([0]) seen.add(prefix_sum) return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: dic = {0:-1} acc = 0 last = -1 res = 0 for i, n in enumerate(nums): acc += n if acc - target in dic and dic[acc-target] >= last: res += 1 last = i dic[acc] = i return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: m = {0: 0} res = 0 sum = 0 for x in nums: sum += x if sum - target in m: res = max(res, m[sum - target] + 1) m[sum] = res return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: cache = set([0]) cur, res = 0, 0 for i in range(len(nums)): cur += nums[i] if cur - target in cache: res += 1 cache.clear() cache.add(cur) return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: count = 0 total = 0 pastSums = set() for n in nums: total += n if total == target or total - target in pastSums: total = 0 count += 1 pastSums.clear() else: pastSums.add(total) return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefix_sum = count = 0 prev_subarray_end = -1 seen = {0 : -1} for i, num in enumerate(nums): prefix_sum += num if seen.get(prefix_sum - target, -2) >= prev_subarray_end: count += 1 prev_subarray_end = i seen[prefix_sum] = i return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: dp = [0] + list(accumulate(nums)) len_dp = len(dp) answer = 0 lo = 0 lo_sum = 0 for hi in range(1, len_dp): if dp[hi] < lo_sum: lo_sum = dp[hi] if dp[hi] - lo_sum >= target: if dp[hi] - target in dp[lo:hi]: answer += 1 lo = hi lo_sum = dp[hi] return answer
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: curr = 0 ans = 0 seen = set() for num in nums: seen.add(curr) curr += num want = curr - target if want in seen: ans += 1 seen = set() curr = 0 return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: psum = [0] for v in nums: psum.append(v+psum[-1]) def helper(lo, target): d = {psum[lo-1]} ans = 0 for i in range(lo, len(psum)): if psum[i] - target in d: ans = 1 + helper(i+1, target) break d.add(psum[i]) return ans return helper(1, target)
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: cum_map = { 0: -1, } intervals = [-1] * len(nums) cur = 0 for i, x in enumerate(nums): cur += x rest = cur - target boundary = cum_map.get(rest) if boundary is not None: intervals[i] = boundary + 1 cum_map[cur] = i res = 0 s = [0] * len(nums) for i in range(len(nums)): if intervals[i] == i: s[i] = s[i-1] + 1 continue s[i] = s[i-1] if intervals[i] == 0: s[i] = max(s[i-1], 1) elif intervals[i] > 0: s[i] = max(s[i-1], s[intervals[i] - 1] + 1) return s[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
from collections import defaultdict from bisect import * class Solution: def maxNonOverlapping(self, lst: List[int], k: int) -> int: n = len(lst) first = 0 last = 0 total = lst[0] dct = defaultdict(list) dp = [0 for i in range(n+1)] for i in range(1,n+1): dp[i] = dp[i-1]+lst[i-1] dct[dp[i]].append(i) intervals = [ ] for i in range(n+1): # for temp in dct[k+dp[i]]: # if(temp>i): # intervals.append((i,temp)) left = bisect_right(dct[k+dp[i]],i) if(left!=len(dct[k+dp[i]])): intervals.append((i,dct[k+dp[i]][left])) intervals.sort(key = lambda x:x[1]) pre = -float('inf') ans = 0 index = 0 print(intervals) while(index<len(intervals)): if(intervals[index][0]>=pre): ans+=1 pre = intervals[index][1] index+=1 return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: pref = {} pref[0] = -1 ans = 0 presum = 0 j = -1 for i in range(len(nums)): presum += nums[i] c = presum - target if c in pref and pref[c] >= j: ans += 1 j = i pref[presum] = j return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: N = len(nums) prefix_sum = [0 for _ in range(N)] prefix_sum[0] = nums[0] for i in range(1, N): prefix_sum[i] = nums[i] + prefix_sum[i-1] prev_prefix = {} last_index = -1 subarrays = 0 for i in range(N): prefix = prefix_sum[i] to_look = prefix - target if to_look in prev_prefix and prev_prefix[to_look] >= last_index: last_index = i subarrays += 1 elif nums[i] == target: subarrays += 1 last_index = i elif prefix == target and last_index == -1: subarrays += 1 last_index = i prev_prefix[prefix] = i return subarrays
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) dp = [0] * (n+1) dic = {} dic[0] = 0 curr = 0 for i in range(1, n+1): curr += nums[i-1] if curr - target in dic: dp[i] = dp[dic[curr-target]] + 1 dp[i] = max(dp[i-1], dp[i]) dic[curr] = i return dp[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums, target) -> int: hashMap = {0: -1} #totalSum -> inclusive ending index totalSum = 0 answer = [] count = 0 for i in range(len(nums)): totalSum += nums[i] if totalSum - target in hashMap: answer.append([hashMap[totalSum-target] + 1, i]) hashMap[totalSum] = i ending = None for i in answer: if ending is None or i[0] > ending: count += 1 ending = i[1] return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: D = {0:-1} cumsum = 0 idx = -1 res = 0 for i, x in enumerate(nums): cumsum += x if cumsum - target in D and D[cumsum-target] >= idx: res += 1 idx = i D[cumsum] = i return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: s = set() s.add(0) ans = 0 prefsum = 0 for num in nums: prefsum += num if prefsum - target in s: ans += 1 s = set() s.add(prefsum) return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: dp = [0] * (len(nums)+1) acc = [0] * (len(nums)+1) sumDict = {0:0} for k, ele in enumerate(nums): dk = k+1 acc[dk] = acc[k] + ele if acc[dk]-target in sumDict: dp[dk] = max(dp[k], dp[sumDict[acc[dk]-target]]+1) else: dp[dk] = dp[k] sumDict[acc[dk]] = dk return dp[len(nums)]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
from collections import defaultdict class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: cum_sum=[0] for i in range(len(nums)): cum_sum.append(cum_sum[-1]+nums[i]) mem=defaultdict(list) for i in range(len(nums)+1): mem[cum_sum[i]].append(i) def binSearch(index): arr=mem[cum_sum[index]-target] right=len(arr)-1 left=0 best=None while left<=right: mid=(left+right)//2 if arr[mid]<index: best=arr[mid] left=mid+1 else: right=mid-1 return best dp=[0 for i in range(len(nums)+1)] for i in range(1,len(nums)+1): ind=binSearch(i) s=0 if ind!=None: s=1+dp[ind] dp[i]=max(dp[i-1],s) return dp[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: N = len(nums) prefix_sum = [0 for _ in range(N)] prefix_sum[0] = nums[0] for i in range(1, N): prefix_sum[i] = nums[i] + prefix_sum[i-1] # TODO: there is a bug here..not sure what the hell it is though!!!! prev_prefix = {} last_index = -1 subarrays = 0 for i in range(N): prefix = prefix_sum[i] to_look = prefix - target if to_look in prev_prefix and prev_prefix[to_look] >= last_index: last_index = i subarrays += 1 elif nums[i] == target: subarrays += 1 last_index = i elif prefix == target and last_index == -1: subarrays += 1 last_index = i prev_prefix[prefix] = i return subarrays
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefix_sum = 0 seen = {0} res = 0 for n in nums: prefix_sum += n if prefix_sum - target in seen: seen = {prefix_sum} res += 1 seen.add(prefix_sum) return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: # Taking a walk through the array, if we can ever make the target, we might as well because we'd like the border for the last subarray to be as far left as possible for the next. To see if we can make the target, we just take the total sum so far and see if we ever had the right previous total sum to chop off. We also check that the chop point does not overlap another subarray end point we used. #maintain a list of end indices hmap = collections.defaultdict(int) rsum = 0 res = 0 last = -1 hmap[0] = -1 for index,num in enumerate(nums): rsum += num csum = rsum - target # if rsum == target: # res += 1 if csum in hmap and hmap[csum] >= last: res += 1 last = index hmap[rsum] = index return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: run_sum = 0 count = 0 book_keep = {0:1} for num in nums: run_sum += num prev_sum = run_sum - target if prev_sum in book_keep: count += 1 run_sum = 0 book_keep.clear() book_keep = {0:1} else: book_keep[run_sum] = 1 return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) for i in range(1, n): nums[i] += nums[i-1] seen = {0: 0} res = 0 for i, n in enumerate(nums): if n-target in seen: res += 1 seen = {n:0} else: seen[n] = i return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: pre = 0 sums = [0] for el in nums: pre += el sums.append(pre) #print(\"---\") # print(sums) ans = 0 seen = {} # seen[v] = i iff sums[i] == v for i, v in enumerate(sums): #print(f\"seen: {seen}\") if v-target in seen: ans += 1 seen = {} # satisfies non-overlapping seen[v] = i #print(f\"seen: {seen}\") return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) hashmap = {0:0} ans = 0 sums = 0 for i in range(n): sums += nums[i] if sums-target in hashmap: ans = max(ans, hashmap[sums-target] + 1) hashmap[sums] = ans return ans # n = len(nums) # preSum = [0 for i in range(n+1)] # hashmap = {0:0} # lastend = 0 # ans = 0 # for i in range(1, n+1): # preSum[i] = preSum[i-1] + nums[i-1] # begin = hashmap.get(preSum[i]-target, -1) # if begin >= 0 and begin >= lastend: # lastend = i # ans += 1 # pos = hashmap.get(preSum[i], 0) # hashmap[preSum[i]] = max(pos, i) # return ans # n = len(nums) # dp = [0 for i in range(n+1)] # for i in range(n): # tmpsum = 0 # for j in range(i, -1, -1): # tmpsum += nums[j] # if tmpsum == target: # dp[i+1] = max(dp[i+1], dp[j] + 1) # else: # dp[i+1] = max(dp[i+1], dp[j]) # print(dp) # return dp[n] # n = len(nums) # dp = [0 for i in range(n)] # if target == nums[0]: # dp[0] = 1 # for i in range(1, n): # tmpsum = 0 # for j in range(i, -1, -1): # tmpsum += nums[j] # if tmpsum == target: # if j > 0: # dp[i] = max(dp[i], dp[j-1] + 1) # else: # dp[i] = max(dp[i], 1) # break # print(dp) # return dp[n-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) prefix =[0] * (n + 1) for i in range(n): prefix[i + 1] = prefix[i] + nums[i] seen = {0:0} ans = 0 for i in range(1,n + 1): current = prefix[i] a = current - target if a in seen: ans += 1 seen = {} seen[current] = 1 return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: sums=set() s=0 cnt=0 sums.add(0) for n in nums: s+=n if s-target in sums: cnt+=1 sums=set() sums.add(s) return cnt
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: h = {0: 1} summ = count = 0 for i in range(0, len(nums)): summ += nums[i] if summ - target in h: count += 1 h = {} h[summ] = i return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: if not nums: return 0 seen = set([0]) out = 0 curr = 0 for i in nums: curr += i if curr - target in seen: out += 1 seen = set([0]) curr = 0 else: seen.add(curr) return out
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) res = 0 cumsum = 0 cache = set([0]) for num in nums: cumsum += num if cumsum - target in cache: res += 1 cache = set() cache.add(cumsum) return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: count = 0 curr_cnt = 0 dic = {0:-1} for i in range(len(nums)): curr_cnt += nums[i] if curr_cnt - target in dic: count += 1 dic = {} dic[curr_cnt] = i return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: tot = 0 seen = set([0]) cur = 0 for n in nums: cur += n if cur - target in seen: tot += 1 cur = 0 seen = set([0]) else: seen.add(cur) return tot
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: # n = len(nums) # hashmap = {0:0} # ans = 0 # sums = 0 # for i in range(n): # sums += nums[i] # if sums-target in hashmap: # ans = max(ans, hashmap[sums-target] + 1) # hashmap[sums] = ans # return ans n = len(nums) preSum = [0 for i in range(n+1)] hashmap = {0:0} lastend = 0 ans = 0 for i in range(1, n+1): preSum[i] = preSum[i-1] + nums[i-1] begin = hashmap.get(preSum[i]-target, -1) if begin >= 0 and begin >= lastend: lastend = i ans += 1 hashmap[preSum[i]] = i return ans # n = len(nums) # dp = [0 for i in range(n+1)] # for i in range(n): # tmpsum = 0 # for j in range(i, -1, -1): # tmpsum += nums[j] # if tmpsum == target: # dp[i+1] = max(dp[i+1], dp[j] + 1) # else: # dp[i+1] = max(dp[i+1], dp[j]) # print(dp) # return dp[n] # n = len(nums) # dp = [0 for i in range(n)] # if target == nums[0]: # dp[0] = 1 # for i in range(1, n): # tmpsum = 0 # for j in range(i, -1, -1): # tmpsum += nums[j] # if tmpsum == target: # if j > 0: # dp[i] = max(dp[i], dp[j-1] + 1) # else: # dp[i] = max(dp[i], 1) # break # print(dp) # return dp[n-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: # TC: O(N), SC:O(N) n = len(nums) # prefix sum for i in range(1, n): nums[i] += nums[i - 1] seen, dp = {0: -1}, [0] * n for i in range(n): x = nums[i] - target if x in seen: dp[i] = max(dp[i - 1], dp[seen[x]] + 1) else: dp[i] = dp[i - 1] seen[nums[i]] = i return dp[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
from typing import List, Tuple class Solution: def maxNonOverlappingIntervals(self, intervals: List[Tuple[int, int]], sort=True) -> int: if not intervals: return 0 # Sort intervals by ending time if sort: intervals = sorted(intervals, key=lambda x: x[1]) ans = 1 cur_end = intervals[0][1] for start, end in intervals[1:]: if start <= cur_end: continue ans += 1 cur_end = end return ans def maxNonOverlapping(self, nums: List[int], target: int) -> int: # If we can get all subarrays that sum to target in order sorted by ending index, # then we can simply apply activity selection to it. # We can use prefix sums to get this^^. Note that because negative numbers are allowed, # we might get multiple subarrays ending at i that sum to target. However, we can ignore # all except the smallest one, as we want non-overlapping. prefix_sum = {0: -1} cumsum = 0 intervals = [] for i, x in enumerate(nums): cumsum += x if cumsum - target in prefix_sum: intervals.append((prefix_sum[cumsum-target]+1, i)) prefix_sum[cumsum] = i # Don't bother with multiple indices, just use the the latest one return self.maxNonOverlappingIntervals(intervals, False)
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) presum = 0 last_pos = {0: 0} dp = [0] * (1 + n) for i in range(1, 1 + n): presum += nums[i - 1] dp[i] = dp[i - 1] if presum - target in last_pos: pos = last_pos[presum - target] dp[i] = max(dp[i], dp[pos] + 1) last_pos[presum] = i # print(dp) return dp[n]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: dp=[0]*(1+len(nums)) mem={0:0} cur=0 for i,v in enumerate(nums): cur+=v dp[i+1]=dp[i] if cur-target in mem: dp[i+1]=max(dp[i+1],dp[mem[cur-target]]+1) mem[cur]=i+1 # print(dp) return dp[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
# idea: greedy. keep a check of cumulated sum, and as soon as we find a subarray whose sum equals target, we reset cumulated sum class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: cum_sum = 0 seen_cum_sum = set([0]) count = 0 for num in nums: cum_sum += num complement = cum_sum-target if complement in seen_cum_sum: count += 1 cum_sum = 0 seen_cum_sum = set([0]) seen_cum_sum.add(cum_sum) return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefixSum = {0:-1} dp = [0] * len(nums) currSum = 0 for i in range (len(nums)): currSum = currSum + nums[i] if currSum - target in prefixSum: end = prefixSum[currSum - target] dp[i] = max(1 + dp[end], dp[i-1]) elif i == 0: dp[i] = 0 else: dp[i] = dp[i-1] prefixSum[currSum] = i return dp[len(nums)-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefix = {0:-1} cur = 0 res = 0 for i,v in enumerate(nums): cur += v if (cur - target) in prefix: res += 1 prefix = {} prefix[cur] = i return res
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: ''' Get prefix sum: pref[] Find the largest sorted list of indices index[] where pref[index[1]] - pref[index[0]] = pref[index[3]] - pref[index[2]] = ... = target ''' pref = [0] * (len(nums) + 1) for i in range(len(nums)): pref[i+1] = pref[i] + nums[i] d = {} ans = 0 #print(pref) for i in range(len(pref)): #print(pref[i], d) if pref[i] - target in d: ans += 1 #print(ans) d.clear() d[pref[i]] = i return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: d={0:-1} add=0 count=0 i=0 while(i<=len(nums)-1): add+=nums[i] if (add-target) in d : count+=1 d= {} d[add]=i i+=1 return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: prefix = list(itertools.accumulate(nums)) def dfs(i): s = {prefix[i - 1] if i > 0 else 0} for j in range(i, len(prefix)): if prefix[j] - target in s: return 1 + dfs(j + 1) s.add(prefix[j]) return 0 return dfs(0)
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: count, sums, curr = 0, {0}, 0 for num in nums: curr += num if curr - target in sums: count += 1 sums.clear() sums.add(curr) return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) prefix = [0] * (n + 1) for i in range(n): prefix[i + 1] = prefix[i] + nums[i] ans = 0 seen = {0:0} for i in range(1,n + 1): curr = prefix[i] a = curr - target if a in seen: ans += 1 seen = {} seen[curr] = i return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) presum = [0] for num in nums: presum.append(presum[-1] + num) last_pos = {0: 0} dp = [0] * (1 + n) for i in range(1, 1 + n): dp[i] = dp[i - 1] if presum[i] - target in last_pos: pos = last_pos[presum[i] - target] dp[i] = max(dp[i], dp[pos] + 1) last_pos[presum[i]] = i # print(dp) return dp[n]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: preSum = [0] for num in nums: preSum.append(preSum[-1] + num) n = len(nums) dp = [0 for i in range(n + 1)] temp = {0:0} for i in range(1, n + 1): dp[i] = dp[i - 1] if preSum[i] - target in temp: dp[i] = max(dp[i], dp[temp[preSum[i] - target]] + 1) temp[preSum[i]] = i return dp[n]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: N = len(nums) rtv = 0 presum = dict() presum[0] = -1 total = 0 for i,v in enumerate(nums): total += v ne = total - target if ne in presum and presum[ne] < i: rtv += 1 # print(\"{} {}\".format(presum[ne]+1, i)) presum = dict() presum[0] = i total = 0 else: presum[total] = i return rtv
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: ln = len(nums) ret = 0 sums = {0 : 0} dp = [0] * (ln+1) s = 0 for i in range(ln): s += nums[i] if s - target in sums: idx = sums[s-target] dp[i+1] = 1 + dp[idx] dp[i+1] = max(dp[i], dp[i+1]) sums[s] = i+1 return dp[ln] pass
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: subarrays = [] summ = 0 lookup = set([0]) count = 0 for num in nums: summ += num if summ - target in lookup: count += 1 summ = 0 lookup = set([0]) else: lookup.add(summ) return count
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: if len(nums) == 0: return 0 h = {} dp = [] s = nums[0] if s == target: dp.append(1) else: dp.append(0) h[s] = 0 for i in range(1, len(nums)): s = s + nums[i] if s == target: if 0 in h: dp.append(max(dp[h[0]]+1, dp[-1])) else: dp.append(max(1, dp[-1])) elif s-target in h: dp.append(max(dp[h[s-target]]+1, dp[-1])) else: dp.append(dp[-1]) h[s] = i return dp[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) d = {0: -1} cursum = 0 ans = 0 for i,n in enumerate(nums): cursum += n prev = cursum - target if prev in d: ans += 1 d = {} d[cursum] = i return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: cur = 0 n = len(nums) dp = [0]*(n+1) dic = {} dic[0]=0 for i in range(1,n+1): cur+=nums[i-1] if cur-target in dic: dp[i] = 1+dp[dic[cur-target]] dp[i] = max(dp[i],dp[i-1]) dic[cur]=i return dp[n]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: n = len(nums) prefix = [0] * (n + 1) for i in range(n): prefix[i + 1] = prefix[i] + nums[i] seen = {0:0} ans = 0 for i in range(1,n + 1): cur = prefix[i] a = cur - target if a in seen: ans += 1 seen = {} seen[cur] = 1 return ans
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: dp = [0] * (len(nums) + 1) mem = dict() mem[0] = -1 cur = 0 for i in range(1, len(nums) + 1): dp[i] = dp[i - 1] cur += nums[i - 1] t = cur - target #print(i-1, cur, t, mem) if t in mem: dp[i] = max(dp[i], dp[mem[t]] + 1) #print('!!', i, dp) mem[cur] = i return dp[-1]
Given an array nums and an integer target. Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.   Example 1: Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2). Example 2: Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping. Example 3: Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3 Example 4: Input: nums = [0,0,0], target = 0 Output: 3   Constraints: 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 0 <= target <= 10^6
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: sm = 0 hsh = {} dp = {} dp[-1] = 0 ans = 0 for i in range(len(nums)): dp[i] = dp[i-1] sm += nums[i] if sm - target in hsh: dp[i] = max(dp[i], dp[hsh[sm-target]] + 1) hsh[sm] = i if sm == target: dp[i] = max(dp[i], 1) ans = max(ans, dp[i]) return ans