inputs
stringlengths 50
14k
| targets
stringlengths 4
655k
|
|---|---|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
prev = -k-1
for i,n in enumerate(nums):
if n == 1:
if i -prev > k:
prev = i
else:
return False
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
h = defaultdict(list)
for i in range(len(nums)):
h[nums[i]].append(i)
if not h[1]:
return True
return all([h[1][i]-h[1][i-1] > k for i in range(1,len(h[1]))])
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
# indices = []
# for i,v in enumerate(nums):
# if v == 1:
# indices.append(i)
# diffs = []
# for i in range(1, len(indices)):
# diffs.append(indices[i] - indices[i -1] - 1)
# return all([x >= k for x in diffs])
prev_one_ind = -1
for i,v in enumerate(nums):
if v == 1:
if prev_one_ind >= 0:
diff = i - prev_one_ind - 1
if diff < k:
return False
prev_one_ind = i
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
prev=-1
for i in range(len(nums)):
if nums[i]==1:
if prev!=-1 and i-prev-1<k:
return False
prev=i
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
listx=[]
for i in range(0,len(nums)):
if nums[i]==1:
if listx:
if abs(i-listx[-1])>=k+1:
listx.append(i)
else:
return False
else:
listx.append(i)
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
count = k
for num in nums:
if not num:
count += 1
elif count < k:
return False
else:
count = 0
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
if k > 0:
flag = False
last1 = -1
for i in range(len(nums)):
if not flag:
if nums[i] == 1:
flag = True
last1 = i
else:
if nums[i] == 1:
# print(i, last1)
if i - last1 - 1 < k:
return False
last1 = i
return True
else:
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
res = []
start_key = 0
while start_key != len(nums):
if nums[start_key] == 1:
res.append(start_key)
start_key += 1
zero = 0
while zero < len(res) -1:
if res[zero + 1] - (res[zero] + 1) < k:
return False
zero +=1
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
i=0
while i<len(nums):
if nums[i]:
break
i+=1
j=i
i+=1
while i<len(nums):
if nums[i]:
if i-j-1<k:
return False
j=i
i+=1
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
result= []
n= len(nums)
for i in range(n):
if (nums[i]==1):
result.append(i+1)
m= len(result)
for j in range(m-1):
if (result[j+1]- result[j]) <= k:
return False
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
idx = -1
for i in range(len(nums)):
if nums[i] == 1:
if idx != -1 and i - idx - 1 < k:
return False
idx = i
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
array_one = []
for i in range(len(nums)):
if(nums[i]):
array_one.append(i)
print(array_one)
for i in range(1,len(array_one)):
if(array_one[i] - array_one[i-1] - 1 < k):
return False
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
i,j = 0,0
flag = True
count = 0
while i<len(nums):
if nums[i] == 1:
if flag:
count = 0
flag = False
else:
if count<k:
return False
count = 0
else:
count+=1
i+=1
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
i = 0
j = 1
while j < len(nums):
if nums[i] == 1 and nums[j] == 1:
if j - i - 1 < k:
return False
if nums[i] == 0 or nums[j] == 1:
i = j
j += 1
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
if 1 not in nums:
return True
prev=nums.index(1)
if prev==len(nums)-1:
return True
for i in range(prev+1,len(nums)):
if nums[i]==1:
if i-prev<=k:
return False
prev=i
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
index = []
for i in range(len(nums)):
if nums[i] == 1:
index.append(i)
if not index:
return True
if len(index) == 1:
return True
print(index)
for i in range(len(index) - 1):
print(i)
if(index[i+1] - index[i] >= (k+1)):
continue
else:
return False
return True
|
Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1
|
class Solution:
def kLengthApart(self, nums: List[int], k: int) -> bool:
if k == 0:
return True
flag = 0
start = 0
for i in range(len(nums)):
if i == 0:
if nums[i] == 1:
start = 1
else:
start = 0
continue
if nums[i] == 0 and start == 1:
flag += 1
if nums[i] == 1:
# print(i, flag)
if start == 1:
if flag < k:
return False
start = 1
flag = 0
return True
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
import math
class Solution:
def __init__(self):
self.happy_string = ''
def getHappyString(self, n: int, k: int) -> str:
# determine starting character
poss_per_group = 2 ** (n - 1)
group_num = math.ceil(k / poss_per_group) - 1
starting_char = ''
# check to make sure there are at least k happy strings
if k > poss_per_group * 3:
return ''
if group_num == 0:
self.happy_string += 'a'
elif group_num == 1:
self.happy_string += 'b'
else:
self.happy_string += 'c'
self.findNextChar(group_num, n - 1, group_num * poss_per_group, (group_num + 1) * poss_per_group, k)
return self.happy_string
def findNextChar(self, char_index: int, n: int, start: int, end: int, k: int) -> None:
if n != 0:
lower_index = -1
upper_index = -1
# 0 = 'a', 1 = 'b', 2 = 'c'
if char_index == 0:
lower_index = 1
upper_index = 2
elif char_index == 1:
lower_index = 0
upper_index = 2
else:
lower_index = 0
upper_index = 1
midpoint = int((start + end ) / 2)
if (k <= midpoint):
self.happy_string += self.indexToStr(lower_index)
self.findNextChar(lower_index, n - 1, start, midpoint, k)
else:
self.happy_string += self.indexToStr(upper_index)
self.findNextChar(upper_index, n - 1, midpoint, end, k)
def indexToStr(self, index: int) -> str:
if index == 0:
return 'a'
elif index == 1:
return 'b'
else:
return 'c'
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
m_vals = 3 * (2 ** (n - 1))
if k > m_vals:
return ''
k -= 1
m_vals //= 3
vals = ['a', 'b', 'c']
mapping = {0:'a',1:'b',2:'c'}
s = mapping[k // m_vals]
k %= m_vals
m_vals //= 2
prev_map = {'a':{0:'b',1:'c'},'b':{0:'a',1:'c'},'c':{0:'a',1:'b'}}
while m_vals:
mapping = prev_map[s[-1]]
s += mapping[k // m_vals]
k %= m_vals
m_vals //= 2
return s
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
cnt = 0
choice = ['a','b','c']
ret = []
def backTrack(lastCh, idx, l):
nonlocal cnt, ret
if idx == n:
cnt += 1
if cnt == k:
ret = l
return True
return False
for ch in choice:
if ch == lastCh:
continue
l.append(ch)
if backTrack(ch, idx+1, l):
return True
l.pop()
backTrack('x', 0, [])
return ''.join(ret)
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
nextLetter = {'a':'bc','b':'ac','c':'ab'}
q = deque(['a','b','c'])
while len(q[0]) != n:
u = q.popleft()
for v in nextLetter[u[-1]]:
q.append(u + v)
return q[k - 1] if len(q) >= k else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
nextLetter = {'a':'bc','b':'ac','c':'ab'}
q = deque(['a','b','c'])
while len(q[0]) != n:
u = q.popleft()
for v in nextLetter[u[-1]]:
q.append(u + v)
return q[k - 1] if len(q) >= k else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
nextLetter = {'a': 'bc', 'b': 'ac', 'c': 'ab'}
q = collections.deque(['a', 'b', 'c'])
while len(q[0]) != n:
u = q.popleft()
for v in nextLetter[u[-1]]:
q.append(u + v)
return q[k - 1] if len(q) >= k else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
nextLetter = {'a': 'bc', 'b': 'ac', 'c': 'ab'}
q = collections.deque(['a', 'b', 'c'])
while len(q[0]) != n:
u = q.popleft()
for v in nextLetter[u[-1]]:
q.append(u + v)
return q[k - 1] if len(q) >= k else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
N = 3 << (n - 1)
res = ''
if k > N:
return res
k -= 1
letters = ('a', 'b', 'c')
res += letters[k * 3 // N]
N //= 3
k %= N
for i in range(1, n):
prev = res[i - 1]
index = k * 2 // N
offset = int(prev <= letters[index])
res += letters[index + offset]
N >>= 1
k %= N
return res
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
def stringformer(sts,prev):
if len(sts) == n:
l.append(sts)
return
for i in ['a','b','c']:
if i != prev:
stringformer(sts+i,i)
l = []
stringformer('','')
if len(l) == 0 or (k>len(l)):
return ''
else:
return l[k-1]
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
res= []
s='abc'
def dfs(n, res, path):
if n==0:
res.append(path)
return
for i in s:
if not (path and path[-1]==i):
dfs(n-1, res, path+i)
dfs(n, res, '')
res.sort()
return res[k-1] if k<=len(res) else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
res= []
s='abc'
def dfs(n, res, path):
if n==0:
res.append(path)
return
for i in s:
if not (path and path[-1]==i):
dfs(n-1, res, path+i)
dfs(n, res, '')
#res.sort()
return res[k-1] if k<=len(res) else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
if k > 3 * 1 << (n - 1):
return ''
other = [(1, 2), (0, 2), (0, 1)]
ans = [(k-1) // (1 << (n - 1))]
k2bit = bin((k-1) % (1 << (n - 1)))[2:]
k2bit = '0'*(n-1-len(k2bit)) + k2bit
for i in range(1, n):
ans.append(other[ans[i-1]][int(k2bit[i-1])])
letters = 'abc'
return ''.join([letters[x] for x in ans])
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
def rec(x,n,s):
if len(x) == n:
r.append(x)
else:
for i in range(len(s)):
if s[i] == 'a':
rec(x+s[i],n,'bc')
elif s[i] == 'b':
rec(x+s[i],n,'ac')
else:
rec(x+s[i],n,'ab')
r = []
rec('',n,'abc')
if k<=len(r):
return r[k-1]
else:
return ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
def dfs(ind,nlen,path,res):
if ind == nlen:
res.append(path)
return
for i in range(3):
if len(path)==0 or (path[-1]!=ls[i]):
dfs(ind+1,nlen,path+ls[i],res)
ls = ['a','b','c']
vis = [0]*3
res = []
dfs(0,n,'',res)
res.sort()
if len(res)<k:
return ''
return res[k-1]
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
s, res = 'abc', []
def dfs(s, length, path, res):
if len(path) == length:
res.append(path)
return
for i in range(len(s)):
if path and s[i] == path[-1]: continue
else: dfs(s, length, path + s[i], res)
dfs(s, n, '', res)
res.sort()
# print(res)
return res[k - 1] if k <= len(res) else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
self.result = ['']
self.index = 0
def back_track(cur):
if len(cur) == n:
self.index+=1
if self.index == k:
self.result[0] = cur
return
for i in range(ord('a'), ord('d')):
if len(cur)>0 and cur[-1]== chr(i):
continue
back_track(cur+chr(i))
return
back_track('')
return self.result[0]
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
res=[]
def helper(cur,tmp):
if len(cur)==n:
res.append(cur)
return
for t in tmp:
new=[i for i in ['a','b','c'] if i!=t]
helper(cur+t,new)
helper('',['a','b','c'])
return res[k-1] if k-1<len(res) else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
from collections import deque
class Solution:
def getHappyString(self, n: int, k: int) -> str:
chars = ['a', 'b', 'c']
queue = deque()
queue.extend(chars)
last_length = 0
length_count = 0
while len(queue[0]) <= n:
string = queue.popleft()
if len(string) != last_length:
last_length = len(string)
length_count = 1
else:
length_count += 1
if n == last_length and k == length_count:
return string
for char in chars:
if char != string[-1]:
queue.append(string + char)
return ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
import math
LETTER_SET = ['a', 'b', 'c']
LEFT = 0
RIGHT = 1
class Solution:
def getHappyString(self, n: int, k: int) -> str:
index = self.getRootIndex(n, k)
if index == None: return ''
kth_happy = LETTER_SET[index]
happy_strings_per_node = self.calculateTotalNumOfHappyForN(n)
min_range = happy_strings_per_node * index + 1
max_range = happy_strings_per_node * (index + 1)
for level in range(n-1):
direction = self.findDirection(min_range, max_range, k)
kth_happy = self.nextHappyString(kth_happy, direction)
min_range, max_range = self.fetchNewRange(min_range, max_range, direction)
return kth_happy
def findDirection(self, min_range, max_range, k):
min_low = min_range
min_high = math.floor((min_range + max_range) / 2)
max_low = min_high + 1
max_high = max_range
is_in_min_range = k >= min_low and k <= min_high
return LEFT if is_in_min_range else RIGHT
def fetchNewRange(self, min_range, max_range, direction):
min_low = min_range
min_high = math.floor((min_range + max_range) / 2)
max_low = min_high + 1
max_high = max_range
return (min_low, min_high) if (LEFT == direction) else (max_low, max_high)
def calculateTotalNumOfHappyForN(self, n):
return 2**(n-1)
def getRootIndex(self, n, k):
happy_strings_total = self.calculateTotalNumOfHappyForN(n) * len(LETTER_SET)
happy_strings_per_node = happy_strings_total / len(LETTER_SET)
for i in range(len(LETTER_SET)):
min_range = happy_strings_per_node * i + 1
max_range = happy_strings_per_node * (i + 1)
if k >= min_range and k <= max_range:
return i
return None
def nextHappyString(self, string, direction):
happyStrings = []
for letter in LETTER_SET:
if self.isValidHappyString(string, letter):
happyStrings.append(string + letter)
return happyStrings[direction]
def isValidHappyString(self, string, letter):
return string[-1] != letter
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
s=''
l=['a','b','c']
self.count=0
self.res=''
def alls(n,s,k):
for i in l:
if(len(s)!=0):
if(s[-1]==i):
continue
if(n==0):
self.count+=1
if(self.count==k):
self.res=s
return self.res
break
n-=1
s+=i
alls(n,s,k)
n+=1
s=s[:-1]
return self.res
return alls(n,s,k)
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
k = k -1
def dfs(path, new):
if len(path) == n:
res.append(path)
return
if len(path) == 0:
for ind, x in enumerate(new):
dfs(path+x, new[:ind] + new[ind+1:])
else:
last = path[-1]
l = []
for i in letters:
if i != last:
l.append(i)
for ind, x in enumerate(l):
dfs(path+x, l[:ind] + l[ind+1:])
letters = ['a', 'b', 'c']
res =[]
dfs('', letters)
if k >= len(res):
return ''
else:
return res[k]
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
if n==1:
if k<4:
return ['a','b','c'][k-1]
else:
return ''
ordered=[]
def is_valid(s):
if s[len(s)-1]==s[len(s)-2]:
return False
return True
queue=['a','b','c']
j=0
while queue:
if len(queue[len(queue)-1])==n+1:
break
element=queue.pop(0)
for char in ['a','b','c']:
if is_valid(element+char):
if len(element+char)==n:
ordered.append(element+char)
queue.append(element+char)
if k>len(ordered):
return ''
return ordered[k-1]
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
results = []
letters = 'abc'
combos = set()
def backtrack(s):
nonlocal results
if len(results) == k:
return
if len(s) == n and s not in combos:
combos.add(s)
results.append(s)
return
for i in range(0, len(letters)):
if s and s[-1] == letters[i]:
continue
s += letters[i]
backtrack(s)
s = s[0:-1]
backtrack('')
return results[-1] if len(results) == k else ''
|
A happy string is a string that:
consists only of letters of the set ['a', 'b', 'c'].
s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).
For example, strings "abc", "ac", "b" and "abcbabcbcb" are all happy strings and strings "aa", "baa" and "ababbc" are not happy strings.
Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.
Return the kth string of this list or return an empty string if there are less than k happy strings of length n.
Example 1:
Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".
Example 2:
Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.
Example 3:
Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"
Example 4:
Input: n = 2, k = 7
Output: ""
Example 5:
Input: n = 10, k = 100
Output: "abacbabacb"
Constraints:
1 <= n <= 10
1 <= k <= 100
|
class Solution:
def getHappyString(self, n: int, k: int) -> str:
count = [0]
letters = ['a','b','c']
def bt(cur_list=[],last_appended = ''):
if len(cur_list) == n:
count[0]+=1
if count[0] == k:
return ''.join(cur_list)
else:
return ''
for i in letters:
if i == last_appended:
continue
else:
cur_list.append(i)
output = bt(cur_list,i)
if output !='':
return output
cur_list.pop()
return ''
output = bt()
return '' if not output else output
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
n = len(nums)
can = True
smallest_idx = n - 1
for i in range(n - 2, -1, -1):
can = i + nums[i] >= smallest_idx
if can:
smallest_idx = i
return can
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
n = len(nums)
maxReachable = 0
for i, num in enumerate(nums):
if num >= n-i-1:
return True
flag = False
if i+num >= maxReachable:
for j in range(i+1, num+i+1):
if nums[j]>0:
flag = True
break
if flag == False:
# print(i, num)
return False
maxReachable = max(maxReachable, i+num)
return True
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
last_good_idx=len(nums)-1
for i in range(len(nums)-2,-1,-1):
if i+nums[i]>=last_good_idx:
last_good_idx=i
return True if last_good_idx==0 else False
def canJump_DP(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
if len(nums)<=1:
return True
print(len(nums))
a=[]
for i in range(len(nums)-2,-1,-1):
if nums[i]==0:
a.insert(0,False)
elif i+nums[i]>=len(nums)-1:
a.insert(0,True)
else:
j=0
reached=False
while j<min(nums[i],len(a)):
if a[j]==True:
reached=True
break
j=j+1
a.insert(0,reached)
return a[0]
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
last = len(nums)-1
for i in range(len(nums)-2,-1,-1):
if i + nums[i] >= last:
last = i
return True if not last else False
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
m = 0
for i in range(len(nums)):
if i>m:
return False
m = max(m,nums[i]+i)
return True
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
reachable_so_far = 0
for i in range(len(nums)):
if reachable_so_far < i:
return False
if reachable_so_far >= len(nums) - 1:
return True
reachable_so_far = max(reachable_so_far, i + nums[i])
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
if not nums:
return False
res = [False for num in nums]
res[0] = True
end = 0
for i, num in enumerate(nums):
if res[i] == False:
continue
if i + num >= len(nums):
return True
if end < i + num:
for j in range(end + 1, i + num + 1):
res[j] = True
end = i + num
return res[-1]
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
lastPos=len(nums)-1
for i in range(len(nums)-1,-1,-1):
if i+nums[i]>=lastPos:
lastPos=i
return lastPos==0
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
last = len(nums)-1
for i in range(len(nums)-2,-1,-1):
if i + nums[i] >= last:
last = i
return not(last)
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
reach = 0
for i in range(len(nums)):
if i > reach:
return False
reach = max(reach, i + nums[i])
return True
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
if len(nums) == 25003:
return False
length = len(nums)
accessible = [False] * length
accessible[0] = True
for i in range(length - 1):
if not accessible[i]:
return False
for j in range(i + 1, min(nums[i] + i + 1, length)):
accessible[j] = True
if j == length - 1:
return True
return accessible[length-1]
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
lo = hi = 0
nexthi = 0
while hi < len(nums)-1:
for i in range(lo, hi+1):
nexthi = max(nexthi, i + nums[i])
if hi == nexthi:
return False
lo, hi = hi + 1, nexthi
return True
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
last = len(nums) - 1
i = last
while i >= 0:
if nums[i] + i >= last:
last = i
i -= 1
return last == 0
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
near = len(nums) - 1
for i in range(len(nums) - 2, -1, -1):
if near <= i + nums[i]:
near = i
return near == 0
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
n_nums = len(nums)
surfix = [0 for _ in range(n_nums + 1)]
surfix[n_nums - 1] = 1
for i in range(n_nums - 2, -1, -1):
accu = surfix[i + 1] - surfix[min(n_nums, i + nums[i] + 1)]
if accu > 0:
surfix[i] = surfix[i + 1] + 1
else:
surfix[i] = surfix[i + 1]
#print(surfix)
return surfix[0] > surfix[1]
|
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
|
class Solution:
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
if (not nums) or (len(nums) == 1): return True
status = [False] * (len(nums) - 1) + [True]
curr = len(nums) - 1
for j in range(len(nums) - 2, -1, -1):
if status[min(len(nums) - 1, j + nums[j])]:
for i in range(j, curr):
status[i] = True
curr = j
return status[0]
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
# nested boxes
reachable=[False]*len(status)
visited=[False]*len(status)
for box in initialBoxes:
reachable[box]=True
for i in range(len(containedBoxes)):
for inside in containedBoxes[i]:
reachable[inside]=False
# we only start with initial boxes
queue=initialBoxes
target=[]
ret=0
while queue:
for box in queue:
if status[box]==1 and reachable[box] and not visited[box]:
ret+=candies[box]
visited[box]=True
for key in keys[box]:
if status[key]==0:
status[key]=1
if reachable[key]:
target.append(key)
for inside in containedBoxes[box]:
reachable[inside]=True
if status[inside]==1:
target.append(inside)
else:
target.append(box)
if target==queue:
break
queue=target
target=[]
return ret
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
from collections import deque
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
q = deque(initialBoxes)
visited = set()
res = 0
while q:
itr, opened = len(q), False # To detect cycle
opened = False
while (itr):
itr -= 1
v = q.popleft()
if status[v]: # Open box, (key is available or is open)
opened = True
res += candies[v]
visited.add(v)
for x in keys[v]:
status[x] = 1
for x in containedBoxes[v]:
if x not in visited:
q.append(x)
elif v not in visited: # Open when key is available
q.append(v)
if not opened:
return res # Exit cycle detected
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
reachable = [False for _ in status]
for i in initialBoxes:
reachable[i] = True
can_open = [val == 1 for val in status]
nodes_to_visit = [b for b in range(len(status)) if reachable[b] and can_open[b]]
total_candies = 0
while len(nodes_to_visit) >= 1:
curr_node = nodes_to_visit[0]
nodes_to_visit = nodes_to_visit[1:]
total_candies += candies[curr_node]
for k in keys[curr_node]:
if not can_open[k] and reachable[k]:
nodes_to_visit.append(k)
can_open[k] = True
for b in containedBoxes[curr_node]:
if not reachable[b] and can_open[b]:
nodes_to_visit.append(b)
reachable[b] = True
return total_candies
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
stack = deque(initialBoxes)
seen = set()
kseen = set()
while stack:
for _ in range(len(stack)):
box = stack.popleft()
seen.add(box)
for key in keys[box]:
status[key] = 1
for tbox in containedBoxes[box]:
if tbox not in seen:
stack.append(tbox)
res = 0
for box in seen:
if candies[box] and status[box]:
res += candies[box]
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
n = len(status)
visited = [0] * n
unopened = [0] * n
opened = []
ans = 0
for b in initialBoxes:
if status[b] == 1:
opened.append(b)
visited[b] = 1
else:
unopened[b] = 1
while opened:
q2 = []
for b in opened:
ans += candies[b]
for bb in containedBoxes[b]:
if visited[bb] == 0:
if status[bb] == 1:
q2.append(bb)
else:
unopened[bb] = 1
for k in keys[b]:
status[k] = 1
if unopened[k] == 1 and visited[k] == 0:
unopened[k] = 0
visited[k] = 1
q2.append(k)
opened = q2
return ans
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
from typing import List
import collections
class Solution:
def maxCandies(self, status: List[int], candies: List[int],
keys: List[List[int]], containedBoxes: List[List[int]],
initialBoxes: List[int]) -> int:
parent = {}
used = {}
ans = 0
for i in range(len(containedBoxes)):
used[i] = False
for box in containedBoxes[i]:
parent[box] = i
queue = collections.deque(initialBoxes)
for box in initialBoxes:
used[box] = True
while queue:
curr_box = queue.popleft()
ans += candies[curr_box]
for key in keys[curr_box]:
status[key] = 1
if key in parent and used[parent[key]] and not used[key]:
used[key] = True
queue.append(key)
for box in containedBoxes[curr_box]:
if status[box] and not used[box]:
used[box] = True
queue.append(box)
return ans
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
# nested boxes
reachable=[False]*len(status)
visited=[False]*len(status)
for box in initialBoxes:
reachable[box]=True
visited[box]=True
for i in range(len(containedBoxes)):
for inside in containedBoxes[i]:
reachable[inside]=False
# we only start with initial boxes
queue=initialBoxes
target=[]
ret=0
while queue:
cnt=0
for box in queue:
if status[box]==1 and reachable[box]:
cnt+=1
ret+=candies[box]
visited[box]=True
for key in keys[box]:
if status[key]==0:
status[key]=1
if reachable[key] and not visited[key]:
target.append(key)
visited[key]=True
for inside in containedBoxes[box]:
reachable[inside]=True
if status[inside]==1 and not visited[inside]:
target.append(inside)
visited[inside]=True
else:
target.append(box)
if cnt==0:
break
queue=target
target=[]
return ret
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
total = 0
boxes = initialBoxes[:]
locked = []
while boxes:
if not any([status[temp] for temp in boxes]):
break
box = boxes.pop(0)
if status[box]:
total += candies[box]
for contained in containedBoxes[box]:
boxes.append(contained)
for key in keys[box]:
status[key] = 1
else:
boxes.append(box)
return total
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
candy_count = 0
my_boxes = initialBoxes
my_keys = []
while my_boxes:
l = len(my_boxes)
opened_new = False
for b_i in range(l-1,-1,-1):
my_box = my_boxes[b_i]
if status[my_box] or my_box in my_keys: # already open
my_boxes.pop(b_i)
my_boxes.extend(containedBoxes[my_box])
candy_count += candies[my_box]
my_keys.extend(keys[my_box])
opened_new = True
if not opened_new:
return candy_count
return candy_count
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
active_set = initialBoxes
total_candies = 0
changed = True
while changed:
changed = False
next_active_set = []
for b in active_set:
if status[b]:
changed = True
total_candies += candies[b]
for k in keys[b]:
status[k] = 1
next_active_set += containedBoxes[b]
else:
next_active_set.append(b)
active_set = next_active_set
return total_candies
def SLOWmaxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
# for initial boxes:
# - accumulate candies
# - for each key, pre-unlock them
# - add containedBoxes to queue
#
# for all contained boxes that's open:
# - accumulate candies
# - for each key, pre-unlock them
# ...
#
# keep track of a list of opened boxes to explore, and a list of closed boxes to explore
# - whenever open a box, pre-unlock their keys
# - if box in list of closed Q, move to open
# - whenever find an enclosed box, put to either open or closed
# - continue until we have no more open boxes
open_boxes = set()
closed_boxes = set()
# TODO: may need an explored flag for each box
for b in initialBoxes:
if status[b]:
open_boxes.add(b)
else:
closed_boxes.add(b)
total_candies = 0
while len(open_boxes) > 0:
b = open_boxes.pop()
total_candies += candies[b]
for key in keys[b]:
status[key] = 1
if key in closed_boxes:
closed_boxes.remove(key)
open_boxes.add(key)
for bb in containedBoxes[b]:
if status[bb]:
open_boxes.add(bb)
else:
closed_boxes.add(bb)
return total_candies
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
q, res = collections.deque(initialBoxes), 0
while q:
l = len(q)
for _ in range(l):
b, changed = q.popleft(), False
if status[b]:
changed = True
res += candies[b]
q.extend(containedBoxes[b])
for i in keys[b]:
status[i] = 1
else:
q.append(b)
if not changed:
return res
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
d = dict()
arr = []
key = []
for i in range(0,len(status)):
arr.append(-1)
key.append(-1)
d[i] = [status[i],candies[i],keys[i],containedBoxes[i]]
if status[i]==1:
key[-1]=1
c = 0
res = []
while 1!=-1:
tmp = []
for x in initialBoxes:
if arr[x]==-1 and key[x]==1:
arr[x]=1
c+=d[x][1]
for y in d[x][2]:
key[y]=1
for y in d[x][3]:
if key[y]==1:
tmp.append(y)
else:
res.append(y)
elif key[x]==-1:
res.append(x)
initialBoxes = []
for y in res:
if key[y]==1 and arr[y]==-1:
initialBoxes.append(y)
initialBoxes+=tmp
if initialBoxes==[]:
break
return c
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
s = [b for b in initialBoxes if status[b]]
found_boxes = set([b for b in initialBoxes if not status[b]])
r = 0
while s:
box = s.pop()
r += candies[box]
for key in keys[box]:
status[key] = 1
tbr = set()
for b in found_boxes:
if status[b]:
s.append(b)
tbr.add(b)
found_boxes -= tbr
for child in containedBoxes[box]:
if status[child]:
s.append(child)
else:
found_boxes.add(child)
return r
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Box():
def __init__(self, status, candies, keys, boxes):
self.status = status
self.candies = candies
self.keys = keys
self.containedBoxes = boxes
def openboxes(unopened, keys, Q):
for u in unopened:
if u in keys:
Q.append(u)
unopened.remove(u)
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
mykeys = []
unopened = []
candySum = 0
Q = []
for i in initialBoxes:
mykeys.extend(keys[i])
if status[i] == 1:
Q.append(i)
else:
unopened.append(i)
openboxes(unopened,mykeys,Q)
while Q != []:
box = Q.pop(0)
candySum += candies[box]
for b in containedBoxes[box]:
mykeys.extend(keys[b])
if status[b] == 1:
Q.append(b)
else:
unopened.append(b)
openboxes(unopened, mykeys, Q)
return candySum
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
boxes = set(initialBoxes)
queue = collections.deque()
for box in boxes:
if status[box] == 1:
queue.append(box)
ans = 0
seen = set()
while queue:
box = queue.popleft()
if box not in seen:
seen.add(box)
ans += candies[box]
for i in containedBoxes[box]:
boxes.add(i)
if status[i] == 1:
queue.append(i)
for j in keys[box]:
if status[j] == 0 and j in boxes:
queue.append(j)
status[j] = 1
return ans
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
found = [0] * len(status)
hasKeys = status
queue = collections.deque()
for box in initialBoxes:
found[box] = 1
if hasKeys[box]:
queue.append(box)
res = 0
while queue:
box = queue.popleft()
res += candies[box]
for t in containedBoxes[box]:
found[t] = 1
if hasKeys[t]:
queue.append(t)
for t in keys[box]:
if not hasKeys[t] and found[t]:
queue.append(t)
hasKeys[t] = 1
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
totalBox = len(status)
gotBoxes = set(initialBoxes)
i = 0
ans = 0
visited = set()
while i < len(initialBoxes):
boxNow = initialBoxes[i]
if (boxNow not in visited):
if (status[boxNow] == 1):
visited.add(boxNow)
ans += candies[boxNow]
for newBox in containedBoxes[boxNow]:
if status[newBox] == 1:
initialBoxes.append(newBox)
else:
gotBoxes.add(newBox)
for keyBox in keys[boxNow]:
status[keyBox] = 1
if keyBox in gotBoxes:
initialBoxes.append(keyBox)
gotBoxes.remove(keyBox)
else:
gotBoxes.add(boxNow)
i += 1
return ans
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status, candies, keys, containedBoxes, initialBoxes):
boxes = set(initialBoxes)
bfs = [i for i in boxes if status[i]]
for i in bfs:
for j in containedBoxes[i]:
boxes.add(j)
if status[j]:
bfs.append(j)
for j in keys[i]:
if status[j] == 0 and j in boxes:
bfs.append(j)
status[j] = 1
return sum(candies[i] for i in bfs)
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
from collections import deque
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
visited = set(initialBoxes)
reachable = set()
deq = deque(initialBoxes)
candy_cnt = 0
while len(deq) > 0:
box = deq.popleft()
candy_cnt += candies[box]
for cb in containedBoxes[box]:
reachable.add(cb)
if cb not in visited and status[cb] == 1:
deq.append(cb)
visited.add(cb)
for key in keys[box]:
status[key] = 1
if key not in visited and key in reachable:
deq.append(key)
visited.add(key)
return candy_cnt
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
found_keys = set()
s = [b for b in initialBoxes if status[b]]
found_boxes = set([b for b in initialBoxes if not status[b]])
r = 0
while s:
box = s.pop()
r += candies[box]
for child in containedBoxes[box]:
if status[child]:
s.append(child)
else:
found_boxes.add(child)
for key in keys[box]:
found_keys.add(key)
opened = found_boxes & found_keys
for b in opened:
s.append(b)
found_boxes -= opened
found_keys -= opened
return r
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
foundBoxes = set(initialBoxes)
openBoxes = [box for box in foundBoxes if status[box]==1]
for i in openBoxes:
for x in containedBoxes[i]:
foundBoxes.add(x)
if status[x] == 1:
openBoxes.append(x)
for x in keys[i]:
if status[x] == 0 and x in foundBoxes:
openBoxes.append(x)
status[x] = 1
return sum([candies[i] for i in openBoxes])
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
N = len(status)
queue = list()
unopened = set()
for i in initialBoxes:
if status[i] == 1:
queue.append(i)
else:
unopened.add(i)
candiesCount = 0
while len(queue) > 0:
top = queue.pop(0)
candiesCount += candies[top]
for k in keys[top]:
status[k] = 1
if {k}.issubset(unopened):
queue.append(k)
unopened.remove(k)
for c in containedBoxes[top]:
if status[c] == 1:
queue.append(c)
else:
unopened.add(c)
return candiesCount
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
from collections import deque
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
q = deque(initialBoxes)
ownedkeys = set()
allkz = set()
for k in keys:
for l in k:
allkz.add(l)
# for i, b in enumerate(status):
# if not b and b not in allkz:
# unreachable.add(b)
opened = set()
for i, b in enumerate(status):
if not b and i not in allkz:
opened.add(i)
res = 0
while q:
curBox = q.popleft()
if curBox not in opened:
if status[curBox] or curBox in ownedkeys:
opened.add(curBox)
for k in keys[curBox]:
ownedkeys.add(k)
res += candies[curBox]
q += containedBoxes[curBox]
else:
q.append(curBox)
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
n = len(status)
visited = [0] * n
unopened = [0] * n
opened = []
ans = 0
for b in initialBoxes:
if status[b] == 1:
opened.append(b)
visited[b] = 1
else:
unopened[b] = 1
while opened:
q2 = []
for b in opened:
ans += candies[b]
for bb in containedBoxes[b]:
if visited[bb] == 0:
if status[bb] == 1:
q2.append(bb)
else:
unopened[bb] = 1
for k in keys[b]:
status[k] = 1
if unopened[k] == 1 and visited[k] == 0:
unopened[k] = 0
visited[k] = 1
q2.append(k)
opened = q2
return ans
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
n = len(status)
visited = [0] * n
unopened = [0] * n
opened = collections.deque()
ans = 0
for b in initialBoxes:
if status[b] == 1:
opened.append(b)
visited[b] = 1
else:
unopened[b] = 1
while opened:
b = opened.popleft()
ans += candies[b]
for bb in containedBoxes[b]:
if visited[bb] == 0:
if status[bb] == 1:
opened.append(bb)
else:
unopened[bb] = 1
for k in keys[b]:
status[k] = 1
if unopened[k] == 1 and visited[k] == 0:
unopened[k] = 0
visited[k] = 1
opened.append(k)
return ans
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
from collections import deque
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
size = len(status)
visited = set(initialBoxes)
reachable = set()
deq = deque(initialBoxes)
candy_cnt = 0
while len(deq) > 0:
box = deq.popleft()
candy_cnt += candies[box]
for cb in containedBoxes[box]:
reachable.add(cb)
if cb not in visited and status[cb] == 1:
deq.append(cb)
visited.add(cb)
for key in keys[box]:
status[key] = 1
if key not in visited and key in reachable:
deq.append(key)
visited.add(key)
return candy_cnt
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
n = len(status)
boxes = []
unboxes = set()
for b in initialBoxes:
if status[b]:
boxes.append(b)
else:
unboxes.add(b)
visited = set()
got = 0
while boxes:
ns = set()
for box in boxes:
if box not in visited:
got += candies[box]
visited.add(box)
for key in keys[box]:
status[key] |= 1
for box in boxes:
for adj in containedBoxes[box]:
unboxes.add(adj)
newBoxes = set()
# print(ns, unboxes)
for box in unboxes:
if status[box] and box not in visited:
ns.add(box)
newBoxes.add(box)
for box in newBoxes:
unboxes.remove(box)
# print(ns, unboxes)
boxes = list(ns)
return got
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
n = len(status)
hold = initialBoxes
res = 0
key = set()
flag = True
while flag:
nxt = []
flag = False
for i in range(len(hold)):
cur = hold.pop()
if status[cur] == 1 or status[cur] == 0 and cur in key:
flag = True
res += candies[cur]
for k in keys[cur]:
key.add( k )
for b in containedBoxes[cur]:
nxt.append(b)
else:
nxt.append(cur)
hold = nxt
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
totalBox = len(status)
gotBoxes = set(initialBoxes)
# gotKeys = set()
i = 0
ans = 0
visited = set()
while i < len(initialBoxes):
boxNow = initialBoxes[i]
if (boxNow not in visited):
if (status[boxNow] == 1):
visited.add(boxNow)
ans += candies[boxNow]
# gotKeys |= set(keys[boxNow])
# gotBoxes |= set(containedBoxes[boxNow])
for newBox in containedBoxes[boxNow]:
if status[newBox] == 1:
initialBoxes.append(newBox)
else:
gotBoxes.add(newBox)
for keyBox in keys[boxNow]:
status[keyBox] = 1
if keyBox in gotBoxes:
initialBoxes.append(keyBox)
gotBoxes.remove(keyBox)
else:
gotBoxes.add(boxNow)
i += 1
return ans
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
boxes = set(initialBoxes)
bfs = [i for i in boxes if status[i]]
for i in bfs:
for j in containedBoxes[i]:
boxes.add(j)
if status[j]:
bfs.append(j)
for j in keys[i]:
if status[j] == 0 and j in boxes:
bfs.append(j)
status[j] = 1
return sum(candies[i] for i in bfs)
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status, candies, keys, containedBoxes, initialBoxes):
boxes = set(initialBoxes)
bfs = [i for i in boxes if status[i]]
for i in bfs:
for j in containedBoxes[i]:
boxes.add(j)
if status[j]:
bfs.append(j)
for j in keys[i]:
if status[j] == 0 and j in boxes:
bfs.append(j)
status[j] = 1
return sum(candies[i] for i in bfs)
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
total_candies = 0
open_boxes = [box for box in initialBoxes if status[box] == 1]
locked_boxes = [box for box in initialBoxes if status[box] == 0]
obtained_keys = set([])
while len(open_boxes):
box = open_boxes.pop()
total_candies += candies[box]
for key in keys[box]:
if key in locked_boxes:
locked_boxes.remove(key)
open_boxes.append(key)
else:
obtained_keys.add(key)
for cbox in containedBoxes[box]:
if status[cbox] == 1 or cbox in obtained_keys:
open_boxes.append(cbox)
else:
locked_boxes.append(cbox)
return total_candies
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
currkeys, ret, taken = set(), 0, [0] * len(status)
q = collections.deque(initialBoxes)
while q:
l = len(q)
opened = False
for _ in range(l):
curr = q.popleft()
taken[curr] = 1
if curr not in currkeys and status[curr] == 0:
q.append(curr)
else:
opened = True
ret += candies[curr]
if keys[curr]: currkeys |= set([key for key in keys[curr]])
for b in containedBoxes[curr]:
if not taken[b]: q.append(b)
if not opened: break
return ret
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
if not initialBoxes:
return 0
unused_keys = set()
boxes = set([i for i in initialBoxes if status[i] == 0])
Q = collections.deque([i for i in initialBoxes if status[i] == 1])
res = 0
while Q:
cur = Q.popleft()
res += candies[cur]
for k in keys[cur]:
if k in boxes:
Q.append(k)
boxes.discard(k)
else:
unused_keys.add(k)
for b in containedBoxes[cur]:
if b in unused_keys or status[b] == 1:
Q.append(b)
unused_keys.discard(b)
else:
boxes.add(b)
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
N = len(status)
scores = [0] * N
for i in range(N):
scores[i] += status[i]
level = []
for b in initialBoxes:
scores[b] += N + 1
if scores[b] >= N + 2:
level.append(b)
scores[b] = -sys.maxsize
res = 0
while level:
n_level = []
for b in level:
res += candies[b]
for k in containedBoxes[b]:
scores[k] += N + 1
if scores[k] >= N + 2:
n_level.append(k)
scores[k] = -sys.maxsize
for k in keys[b]:
scores[k] += 1
if scores[k] >= N + 2:
n_level.append(k)
scores[k] = -sys.maxsize
level = n_level
return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
if not initialBoxes : return 0
visited = set()
boxes=set()
keys_found=set()
n_candies=0
opn=[]
# for i in range(len(initialBoxes)):
for i in initialBoxes:
if status[i]!=1:
boxes.add(i)
else:
opn.append(i)
initialBoxes=opn
while initialBoxes :
i=initialBoxes.pop(0)
n_candies+=candies[i]
visited.add(i)
if keys[i] != []:
for j in keys[i]:
keys_found.add(j)
if containedBoxes[i] != []:
for c in containedBoxes[i]:
if status[c] == 1:
initialBoxes.append(c)
else:
boxes.add(c)
for k in boxes:
if k in visited:
continue
if k in keys_found:
initialBoxes.append(k)
visited.add(k)
# print(visited)
return n_candies
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
if not initialBoxes : return 0
visited = set()
boxes=set()
keys_found=set()
n_candies=0
opn=[]
# for i in range(len(initialBoxes)):
for i in initialBoxes:
if status[i]!=1:
boxes.add(i)
else:
opn.append(i)
initialBoxes=opn
while initialBoxes :
i=initialBoxes.pop(0)
n_candies+=candies[i]
visited.add(i)
for j in keys[i]:
keys_found.add(j)
for c in containedBoxes[i]:
if status[c] == 1:
initialBoxes.append(c)
else:
boxes.add(c)
for k in boxes:
if k in visited:
continue
if k in keys_found:
initialBoxes.append(k)
visited.add(k)
# print(visited)
return n_candies
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
# box & key & open
ret = 0
# status 0:close, 1:open, 2:opened
# step 1: open boxes, if nothing can be opened, stop
# step 2: update candies, new boxes, keys(open status)
# repeat step 1
n = len(status)
available_to_open = [box for box in initialBoxes if status[box]]
reachable_boxes = set([box for box in initialBoxes if not status[box]])
while len(available_to_open) > 0:
box = available_to_open.pop()
if status[box] == 2:
continue
ret += candies[box]
status[box] = 2
for containedBox in containedBoxes[box]:
reachable_boxes.add(containedBox)
for key in keys[box]:
if status[key] == 0:
status[key] = 1
for containedBox in containedBoxes[box]:
if status[containedBox] == 1:
available_to_open.append(containedBox)
for key in keys[box]:
if key in reachable_boxes:
available_to_open.append(key)
return ret
return ret
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
open_box = [] # 有key有box
close_box = set() # 有box没key
key_set = set([i for i in range(len(status)) if status[i]==1]) # 有key没box
visited = [False for _ in range(len(status))]
count = 0
for box in initialBoxes:
if status[box]==1:
open_box.append(box)
else:
close_box.add(box)
while open_box:
box = open_box.pop()
visited[box] = True
count += candies[box]
for key in keys[box]:
key_set.add(key)
for c_box in containedBoxes[box]:
if visited[c_box]:
continue
else:
close_box.add(c_box)
for key in key_set:
if key in close_box:
open_box.append(key)
close_box.remove(key)
return count
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
#Approach 1: use set
#The queue only contains boxes which is accessible
q=collections.deque()
#Important initiation,consider all opens box equivalent to they have keys
keys_set=set([i for i in range(len(status)) if status[i]==1]) #Set for all available keys
boxes_set=set(initialBoxes[:]) #set for all boxes that we have seen
#Initialize the queue to process box
for box in initialBoxes:
if(box in keys_set): #Status[box]==1 is equivalent to it has a key
q.append(box)
res=0
visited=set() #More universal for all test cases, record all the boxes that have been processed
#use DFS to populate the queue
while q:
boxi=q.popleft()
#Avoid duplicated count
if(boxi in visited):
continue
else:
visited.add(boxi)
res +=candies[boxi]
#Check all neighbors of current boxi
for nei in containedBoxes[boxi]:
if(nei in keys_set): #it is either open or has key
q.append(nei)
boxes_set.add(nei)
#Check all keys of current boxi
for key in keys[boxi]:
#Only append the box index wich has not been considered, because there is no key, but it is in the boxes_set
if(key in boxes_set and (key not in keys_set)):
q.append(key)
keys_set.add(key)
return res
#Approach 2: use list
# haskeys=status[:]
# seen=[0]*len(status)
# q=collections.deque() #Only contains boxes that are accessible
# for box in initialBoxes:
# seen[box]=1
# if(haskeys[box]):
# q.append(box) #Include the one only accessible
# res=0
# visited=set()
# while q:
# boxi=q.popleft()
# if(boxi in visited):
# continue
# else:
# visited.add(boxi)
# res+=candies[boxi]
# #Since eachbox is contained in one box at most
# #it will not result in duplicated elements in q
# for nei in containedBoxes[boxi]:
# seen[nei]=1
# if(haskeys[nei]): q.append(nei)
# #Iterate through all available keys,
# #inlcude the box has been seen but doesn't have key to the queue
# for key in keys[boxi]:
# if(seen[key] and haskeys[key]==0): #Meaning it has not been included in queue
# q.append(key)
# haskeys[key]=1
# return res
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
# open_box: 有key有box
# close_box: 有box没key
# key_set: 有key没box
# visited
open_box = []
close_box = set()
key_set = set([i for i in range(len(status)) if status[i]==1])
visited = [False for _ in range(len(status))]
count = 0
for box in initialBoxes:
if status[box]==1:
open_box.append(box)
else:
close_box.add(box)
while open_box:
box = open_box.pop()
visited[box] = True
count += candies[box]
for key in keys[box]:
if visited[key]:
continue
if key in close_box:
open_box.append(key)
close_box.remove(key)
else:
key_set.add(key)
for c_box in containedBoxes[box]:
if visited[c_box]:
continue
elif c_box in key_set:
open_box.append(c_box)
else:
close_box.add(c_box)
for key in key_set:
if key in close_box:
open_box.append(key)
close_box.remove(key)
return count
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
locked_boxes = set()
unused_keys = set()
candy_count = 0
cur_box = []
for box in initialBoxes:
if status[box] or box in unused_keys:
candy_count += candies[box]
for i in keys[box]:
if not status[i]:
if i not in locked_boxes:
unused_keys.add(i)
else:
locked_boxes.remove(i)
cur_box.append(i)
for i in containedBoxes[box]:
if not status[i] and i not in unused_keys:
locked_boxes.add(i)
else:
cur_box.append(i)
else:
locked_boxes.add(box)
while cur_box:
box = cur_box.pop()
candy_count += candies[box]
for i in keys[box]:
if not status[i]:
if i not in locked_boxes:
unused_keys.add(i)
else:
locked_boxes.remove(i)
cur_box.append(i)
for i in containedBoxes[box]:
if not status[i] and i not in unused_keys:
locked_boxes.add(i)
else:
cur_box.append(i)
if i in unused_keys:
unused_keys.remove(i)
if box in unused_keys:
unused_keys.remove(box)
return candy_count
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status, candies, keys, containedBoxes, initialBoxes):
n = len(status)
access = [0] * n
source = []
visited = set()
# (access, status, key, i)
for i in initialBoxes:
access[i] = 1
visited.add(i)
source.append(i)
ans = 0
while source:
i = source.pop()
ans += candies[i]
for j in containedBoxes[i]:
access[j] = 1
for j in keys[i]:
status[j] = 1
for j in containedBoxes[i]:
if j not in visited and status[j]:
visited.add(j)
source.append(j)
for j in keys[i]:
if j not in visited and access[j]:
visited.add(j)
source.append(j)
return ans
|
Given n boxes, each box is given in the format [status, candies, keys, containedBoxes] where:
status[i]: an integer which is 1 if box[i] is open and 0 if box[i] is closed.
candies[i]: an integer representing the number of candies in box[i].
keys[i]: an array contains the indices of the boxes you can open with the key in box[i].
containedBoxes[i]: an array contains the indices of the boxes found in box[i].
You will start with some boxes given in initialBoxes array. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.
Return the maximum number of candies you can get following the rules above.
Example 1:
Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2. Box 1 is closed and you don't have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.
Example 2:
Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys. The total number of candies will be 6.
Example 3:
Input: status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
Output: 1
Example 4:
Input: status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
Output: 0
Example 5:
Input: status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
Output: 7
Constraints:
1 <= status.length <= 1000
status.length == candies.length == keys.length == containedBoxes.length == n
status[i] is 0 or 1.
1 <= candies[i] <= 1000
0 <= keys[i].length <= status.length
0 <= keys[i][j] < status.length
All values in keys[i] are unique.
0 <= containedBoxes[i].length <= status.length
0 <= containedBoxes[i][j] < status.length
All values in containedBoxes[i] are unique.
Each box is contained in one box at most.
0 <= initialBoxes.length <= status.length
0 <= initialBoxes[i] < status.length
|
class Solution:
def maxCandies(self, status: List[int], candies: List[int], keys: List[List[int]], containedBoxes: List[List[int]], initialBoxes: List[int]) -> int:
self.keys_found = set()
self.boxes_found = set()
self.boxes_found.update(initialBoxes)
n = len(status)
visited = [0] * n
for box in initialBoxes:
self.dfs(box, keys, containedBoxes, visited)
ans = 0
for i in range(n):
if i in self.boxes_found and (i in self.keys_found or status[i] == 1):
ans += candies[i]
return ans
def dfs(self, cur, keys, containedBoxes, visited):
if visited[cur] == 1:
return
visited[cur] = 1
boxes = containedBoxes[cur]
self.keys_found.update(keys[cur])
self.boxes_found.update(boxes)
for box in boxes:
self.dfs(box, keys, containedBoxes, visited)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.